

Part Number 405EP

Revision 1.08 – July 18, 2007

405EP
PPC405EP Embedded Processor

Preliminary User’s Manual
PPC405EP Embedded Processor
User’s Manual
AMCC Proprietary 1

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Applied Micro Circuits Corporation
6290 Sequence Dr., San Diego, CA 92121

Phone: (858) 450-9333 — (800) 755-2622 — Fax: (858) 450-9885
http://www.amcc.com

AMCC reserves the right to make changes to its products, its datasheets, or related documentation, without notice and war-
rants its products solely pursuant to its terms and conditions of sale, only to substantially comply with the latest available
datasheet. Please consult AMCC’s Term and Conditions of Sale for its warranties and other terms, conditions and limitations.
AMCC may discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information is current. AMCC does not assume any lia-
bility arising out of the application or use of any product or circuit described herein, neither does it convey any license under
its patent rights nor the rights of others. AMCC reserves the right to ship devices of higher grade in place of those of lower
grade.
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL
APPLICATIONS.
AMCC is a registered Trademark of Applied Micro Circuits Corporation. Copyright © 2007 Applied Micro Circuits Corporation.
2 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table of Contents

Chapter 1. Overview .. 1-43
PPC405EP Features .. 1-44

Bus and Peripheral Features ... 1-44
PowerPC 405 Processor Core Features ... 1-45

PowerPC Architecture .. 1-46
The PPC405EP as a PowerPC Implementation .. 1-46
RISC Processor Core Organization ... 1-47

Instruction and Data Cache Controllers ... 1-47
Instruction Cache Unit .. 1-47
Data Cache Unit ... 1-47

Memory Management Unit .. 1-48
Timer Facilities .. 1-49
Debug .. 1-49

Development Tool Support .. 1-49
Debug Modes ... 1-50

Processor Core Interfaces ... 1-50
Processor Local Bus .. 1-50
Device Control Register Bus .. 1-50
Clock and Power Management .. 1-50
JTAG .. 1-50
Interrupts .. 1-50
On-Chip Memory .. 1-50

Processor Core Programming Model ... 1-50
Data Types .. 1-51
Processor Core Register Set Summary .. 1-51

General Purpose Registers .. 1-51
Special Purpose Registers ... 1-51
Machine State Register .. 1-51
Condition Register ... 1-51
Device Control Registers ... 1-52

Memory-Mapped I/O Registers ... 1-52
Addressing Modes ... 1-52

Chapter 2. On-Chip Buses .. 1-53
Processor Local Bus .. 1-53

PLB Features .. 1-53
PLB Masters and Slaves ... 1-54
PLB Master Assignments .. 1-54
PLB Transfer Protocol ... 1-55
Overlapped PLB Transfers .. 1-55
PLB Arbiter Registers .. 1-56

PLB Arbiter Control Register (PLB0_ACR) .. 1-57
PLB Error Address Register (PLB0_BEAR) ... 1-57
PLB Error Status Register (PLB0_BESR) .. 1-58

PLB to OPB Bridge Registers .. 1-59
Bridge Error Address Register (POB0_BEAR) .. 1-59
Bridge Error Status Registers (POB0_BESR0–POB0_BESR1) .. 1-60

On-Chip Peripheral Bus ... 1-62
OPB Features .. 1-62
OPB Master Assignments ... 1-63
OPB Arbiter Registers ... 1-63

OPB Arbiter Control Register (OPBA0_CR) .. 1-63
AMCC Proprietary 3

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
OPB Arbiter Priority Register (OPBA0_PR) ... 1-64
Chapter 3. Programming Model .. 1-67
User and Privileged Programming Models .. 1-67
Memory Organization and Addressing ... 1-68

Physical Address Map ... 1-68
Storage Attributes .. 1-69

Registers .. 1-70
General Purpose Registers (R0-R31) ... 1-73
Special Purpose Registers .. 1-73

Count Register (CTR) .. 1-75
Link Register (LR) .. 1-75
Fixed Point Exception Register (XER) ... 1-76
Special Purpose Register General (SPRG0–SPRG7) ... 1-79
Processor Version Register (PVR) .. 1-79

Condition Register (CR) .. 1-80
CR Fields after Compare Instructions .. 1-80
The CR0 Field .. 1-81

The Time Base .. 1-82
Machine State Register (MSR) .. 1-82
Device Control Registers ... 1-84

Directly Accessed DCRs .. 1-84
Indirectly Accessed DCRs ... 1-86

Memory-Mapped Input/Output Registers .. 1-87
Data Types and Alignment ... 1-89

Alignment for Storage Reference and Cache Control Instructions .. 1-89
Alignment and Endian Operation ... 1-90
Summary of Instructions Causing Alignment Exceptions .. 1-90

Byte Ordering ... 1-90
Structure Mapping Examples .. 1-91

Big Endian Mapping ... 1-92
Little Endian Mapping .. 1-92

Support for Little Endian Byte Ordering ... 1-92
Endian (E) Storage Attribute .. 1-92

Fetching Instructions from Little Endian Storage Regions ... 1-93
Accessing Data in Little Endian Storage Regions .. 1-93
PowerPC Byte-Reverse Instructions .. 1-94

Instruction Processing .. 1-96
Branch Processing ... 1-96

Unconditional Branch Target Addressing Options ... 1-96
Conditional Branch Target Addressing Options .. 1-97
Conditional Branch Condition Register Testing ... 1-97
BO Field on Conditional Branches .. 1-97
Branch Prediction .. 1-99

Speculative Accesses .. 1-100
Speculative Accesses in the PPC405EP ... 1-100

Prefetch Distance Down an Unresolved Branch Path ... 1-100
Prefetch of Branches to the CTR and Branches to the LR .. 1-100

Preventing Inappropriate Speculative Accesses ... 1-101
Fetching Past an Interrupt-Causing or Interrupt-Returning Instruction .. 1-101
Fetching Past tw or twi Instructions ... 1-102
Fetching Past an Unconditional Branch ... 1-102
Suggested Locations of Memory-Mapped Hardware ... 1-102

Summary ... 1-103
Privileged Mode Operation .. 1-103

MSR Bits and Exception Handling ... 1-103
Privileged Instructions ... 1-104
4 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Privileged SPRs ... 1-104
Privileged DCRs .. 1-105

Synchronization ... 1-105
Context Synchronization .. 1-105
Execution Synchronization .. 1-107
Storage Synchronization ... 1-108

Instruction Set .. 1-109
Instructions Specific to the IBM PowerPC Embedded Environment ... 1-109
Storage Reference Instructions ... 1-110
Arithmetic Instructions ... 1-110
Logical Instructions .. 1-111
Compare Instructions .. 1-112
Branch Instructions .. 1-112

CR Logical Instructions .. 1-112
Rotate Instructions ... 1-113
Shift Instructions .. 1-113
Cache Management Instructions ... 1-113

Interrupt Control Instructions ... 1-114
TLB Management Instructions ... 1-114
Processor Management Instructions ... 1-114
Extended Mnemonics .. 1-115

Chapter 4. Cache Operations .. 1-117
ICU Organization ... 1-118

ICU Operations .. 1-119
Instruction Cachability Control ... 1-119
Instruction Cache Synonyms ... 1-120
ICU Coherency .. 1-121

DCU Organization .. 1-121
DCU Operations .. 1-121
DCU Write Strategies .. 1-122
DCU Load and Store Strategies .. 1-123
Data Cachability Control .. 1-123
DCU Coherency .. 1-124

Cache Instructions ... 1-124
ICU Instructions ... 1-124
DCU Instructions ... 1-125

Cache Control and Debugging Features ... 1-126
CCR0 Programming Guidelines .. 1-128
ICU Debugging .. 1-129
DCU Debugging .. 1-131

DCU Performance .. 1-131
Pipeline Stalls .. 1-132
Cache Operation Priorities .. 1-133
Simultaneous Cache Operations ... 1-133
Sequential Cache Operations .. 1-133

Chapter 5. On-Chip Memory ... 1-135
OCM Addressing .. 1-136
OCM Programming Guidelines .. 1-137
Store Data Bypass Behavior and Memory Coherency .. 1-137
Registers .. 1-139

OCM Instruction-Side Address Range Compare Register (OCM0_ISARC) ... 1-139
OCM Instruction-Side Control Register (OCM0_ISCNTL) ... 1-139
OCM Data-Side Address Range Compare Register (OCM0_DSARC) ... 1-140
OCM Data-Side Control Register (OCM0_DSCNTL) .. 1-141
AMCC Proprietary 5

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Chapter 6. Memory Management .. 1-143
MMU Overview .. 1-143
Address Translation ... 1-143
Translation Lookaside Buffer (TLB) ... 1-144

Unified TLB .. 1-144
TLB Fields ... 1-145

Page Identification Fields ... 1-145
Translation Field .. 1-146
Access Control Fields .. 1-147
Storage Attribute Fields ... 1-147

Shadow Instruction TLB .. 1-148
ITLB Accesses ... 1-148

Shadow Data TLB ... 1-149
1 DTLB Accesses .. 1-149

Shadow TLB Consistency ... 1-149
TLB-Related Interrupts ... 1-151

Data Storage Interrupt ... 1-151
Instruction Storage Interrupt .. 1-151
Data TLB Miss Interrupt ... 1-152
Instruction TLB Miss Interrupt .. 1-152

TLB Management .. 1-152
TLB Search Instructions (tlbsx/tlbsx.) .. 1-152
TLB Read/Write Instructions (tlbre/tlbwe) .. 1-153
TLB Invalidate Instruction (tlbia) .. 1-153
TLB Sync Instruction (tlbsync) ... 1-153

Recording Page References and Changes ... 1-153
Access Protection .. 1-154

Access Protection Mechanisms in the TLB ... 1-154
General Access Protection .. 1-154
Execute Permissions ... 1-154
Write Permissions .. 1-155
Zone Protection .. 1-155

Access Protection for Cache Control Instructions ... 1-157
Access Protection for String Instructions ... 1-158

Real-Mode Storage Attribute Control ... 1-158
Storage Attribute Control Registers ... 1-159

Data Cache Write-through Register (DCWR) .. 1-159
Data Cache Cachability Register (DCCR) ... 1-160
Instruction Cache Cachability Register (ICCR) .. 1-160
Storage Guarded Register (SGR) .. 1-160
Storage User-defined 0 Register (SU0R) .. 1-160
Storage Little-Endian Register (SLER) .. 1-160

Chapter 7. Clocking ... 1-163
Input Reference Clock (SysClk) ... 1-163
PLL Overview ... 1-164

Software Clock Configuration After Reset ... 1-165
PCI Clocking .. 1-166

PCI Adapter Applications ... 1-167
Serial Port Clocking ... 1-167
Clocking Registers ... 1-167

Boot Control Register (CPC0_BOOT) ... 1-168
EMAC to PHY Control Register (CPC0_EPCTL) .. 1-169
PLL Mode Register 0 (CPC0_PLLMR0) .. 1-170
PLL Mode Register 1 (CPC0_PLLMR1) .. 1-171
UART Control Register (CPC0_UCR) ... 1-172
6 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 8. Reset and Initialization ... 1-175
Reset Signals ... 1-175
Reset Types ... 1-175

Core Reset .. 1-175
Chip Reset ... 1-175
System Reset .. 1-175

PCI Power Management Initiated Resets .. 1-178
Processor Initiated Resets ... 1-178
Software Reset of the PCI Interface .. 1-178
Processor State After Reset .. 1-178

Machine State Register Contents after Reset ... 1-179
Contents of Special Purpose Registers after Reset .. 1-179

DCR Contents after Reset ... 1-180
MMIO Register Contents After Reset .. 1-184
PPC405EP Chip Initialization ... 1-189

OCM Initialization .. 1-189
Initializing Instruction-Side OCM .. 1-189
Initializing Data-Side OCM ... 1-190

UIC Initialization ... 1-190
PPC405EP Initial Processor Sequencing .. 1-190
Initialization Requirements ... 1-190
Initialization Code Example .. 1-191
Chapter 9. Pin Strapping and Sharing ... 1-195
Pin Strapping ... 1-195
IIC serial EPROM controller (IEC) Operation ... 1-196
Pin Strapping Registers ... 1-200

Boot Control Register (CPC0_BOOT) ... 1-200
PCI Bootstrap Control Register (CPC0_PCI) .. 1-201

Pin Sharing .. 1-201
Chapter 10. Interrupt Controller Operations ... 1-203
UIC Overview ... 1-203
UIC Features .. 1-204
UIC Interrupt Assignments ... 1-204
Interrupt Programmability ... 1-205
UIC Registers ... 1-205

UIC Status Register (UIC0_SR) .. 1-206
UIC Enable Register (UIC0_ER) ... 1-208
UIC Critical Register (UIC0_CR) ... 1-210
UIC Polarity Register (UIC0_PR) .. 1-213
UIC Trigger Register (UIC0_TR) ... 1-215
UIC Masked Status Register (UIC0_MSR) .. 1-217
UIC Vector Configuration Register (UIC0_VCR) ... 1-220
UIC Vector Register (UIC0_VR) .. 1-221

Using the Value in UIC0_VR as a Vector Address or Entry Table Lookup .. 1-221
Vector Generation Scenarios ... 1-222

Interrupt Handling in the Processor Core ... 1-222
Architectural Definitions and Behavior ... 1-222
Behavior of the PPC405EP Implementation .. 1-223
Interrupt Handling Priorities ... 1-224
Critical and Noncritical Interrupts ... 1-226
General Interrupt Handling Registers .. 1-227

Machine State Register (MSR) .. 1-227
Save/Restore Registers 0 and 1 (SRR0–SRR1) ... 1-229
Save/Restore Registers 2 and 3 (SRR2–SRR3) ... 1-230
Exception Vector Prefix Register (EVPR) .. 1-231
AMCC Proprietary 7

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Exception Syndrome Register (ESR) .. 1-232
Data Exception Address Register (DEAR) .. 1-233

Critical Input Interrupts ... 1-234
Machine Check Interrupts .. 1-234

Instruction Machine Check Handling ... 1-235
Data Machine Check Handling .. 1-236

Data Storage Interrupt ... 1-236
Instruction Storage Interrupt .. 1-237
External Interrupt ... 1-238

External Interrupt Handling .. 1-238
Alignment Interrupt ... 1-239
Program Interrupt ... 1-239
System Call Interrupt ... 1-240
Programmable Interval Timer (PIT) Interrupt ... 1-241
Fixed Interval Timer (FIT) Interrupt .. 1-241
Watchdog Timer Interrupt .. 1-242
Data TLB Miss Interrupt ... 1-243
Instruction TLB Miss Interrupt .. 1-243
Debug Interrupt .. 1-244
Chapter 11. Timer Facilities .. 1-245
Time Base .. 1-246

Reading the Time Base ... 1-247
Writing the Time Base ... 1-247

Programmable Interval Timer (PIT) ... 1-248
Fixed Interval Timer (FIT) .. 1-249

Watchdog Timer ... 1-250
Timer Status Register (TSR) .. 1-252
Timer Control Register (TCR) .. 1-253
Chapter 12. General Purpose Timers ... 1-255
GPT Features .. 1-255
GPT Operations ... 1-255

Time Base Counter .. 1-255
Compare Timers .. 1-256
Compare Timers Interrupt ... 1-256

GPT Registers ... 1-257
GPT Time Base Counter Register (GPT0_TBC) ... 1-257
GPT Interrupt Mask Register (GPT0_IM) .. 1-258
GPT Interrupt Status Register (GPT0_ISS and GPT0_ISC) ... 1-259
GPT Interrupt Enable Register (GPT0_IE) .. 1-260
GPT Compare Timer Registers (GPT0_COMP0 - GPT0_COMP4) .. 1-261
GPT Compare Mask Registers (GPT0_MASK0 - GPT0_MASK4) .. 1-261

Chapter 13. Debugging .. 2-262
Development Tool Support .. 2-262
Debug Interfaces .. 2-262
IEEE 1149.1 Test Access Port (JTAG Debug Port) ... 2-262
JTAG Connector .. 2-263

JTAG Instructions .. 2-263
JTAG Boundary Scan .. 2-263
JTAG Implementation .. 2-264
JTAG ID Register (CPC0_JTAGID) ... 2-264

Trace Port .. 2-264
Debug Modes ... 2-265

Internal Debug Mode ... 2-265
External Debug Mode .. 2-265
Debug Wait Mode .. 2-266
8 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Real-time Trace Debug Mode ... 2-266
Processor Control .. 2-267
Processor Status .. 2-267
Debug Registers .. 2-267

Debug Control Registers ... 2-268
Debug Control Register 0 (DBCR0) ... 2-268
Debug Control Register1 (DBCR1) .. 2-269

Debug Status Register (DBSR) .. 2-271
Instruction Address Compare Registers (IAC1–IAC4) .. 2-273
Data Address Compare Registers (DAC1–DAC2) .. 2-273
Data Value Compare Registers (DVC1–DVC2) .. 2-274
Debug Events .. 2-274
Instruction Complete Debug Event .. 2-275
Branch Taken Debug Event .. 2-275
Exception Taken Debug Event .. 2-275
Trap Taken Debug Event .. 2-275
Unconditional Debug Event ... 2-275
IAC Debug Event ... 2-276

IAC Exact Address Compare ... 2-276
IAC Range Address Compare ... 2-276

DAC Debug Event ... 2-277
DAC Exact Address Compare ... 2-277
DAC Range Address Compare .. 2-278
DAC Applied to Cache Instructions .. 2-279
DAC Applied to String Instructions ... 2-280

Data Value Compare Debug Event ... 2-280
Imprecise Debug Event ... 2-282

Chapter 14. Clock and Power Management .. 3-284
CPM Registers ... 3-284

CPM Enable Register (CPC0_ER) .. 3-286
CPM Force Register (CPC0_FR) .. 3-286
CPM Status Register (CPC0_SR) ... 3-286

Chapter 15. SDRAM Controller ... 5-290
Interface Signals .. 5-290
Accessing SDRAM Registers .. 5-291
SDRAM Controller Configuration and Status ... 5-292

Memory Controller Configuration Register (SDRAM0_CFG) .. 5-292
Memory Controller Status (SDRAM0_STATUS) ... 5-294
Memory Bank 0–1 Configuration (SDRAM0_B0CR–SDRAM0_B1CR) .. 5-294
Page Management .. 5-296
Logical Address to Memory Address Mapping .. 5-297
SDRAM Timing Register (SDRAM0_TR) .. 5-298
Selected Timing Diagrams .. 5-299
Auto (CAS Before RAS) Refresh ... 5-302
Refresh Timer Register (SDRAM0_RTR) .. 5-303

Self-Refresh ... 5-303
Power Management ... 5-304

Sleep Mode Entry .. 5-304
Power Management Idle Timer (SDRAM0_PMIT) .. 5-304
Sleep Mode Exit .. 5-304

Chapter 16. External Bus Controller .. 6-306
Interface Signals .. 6-306

Interfacing to Byte and Halfword Devices .. 6-307
Driver Enables ... 6-308

Non-Burst Peripheral Bus Transactions ... 6-308
AMCC Proprietary 9

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Single Read Transfer ... 6-309
Single Write Transfer ... 6-311

Burst Transactions ... 6-312
Burst Read Transfer .. 6-313
Burst Write Transfer .. 6-314

Device-Paced Transfers .. 6-315
Device-Paced Single Read Transfer ... 6-316
Device-Paced Single Write Transfer ... 6-317
Device-Paced Burst Read Transfer ... 6-318
Device-Paced Burst Write Transfer ... 6-319

EBC Registers ... 6-320
EBC Configuration Register (EBC0_CFG) .. 6-321
Peripheral Bank Configuration Registers (EBC0_BnCR) .. 6-323
Peripheral Bank Access Parameters (EBC0_BnAP) ... 6-324

Error Reporting .. 6-326
Error Locking ... 6-326
Peripheral Bus Error Address Register (EBC0_BEAR) ... 6-327
Peripheral Bus Error Status Register 0 (EBC0_BESR0) ... 6-328
Peripheral Bus Error Status Register 1 (EBC0_BESR1) ... 6-329

Chapter 17. PCI Interface .. 7-332
PCI Overview ... 7-332

PCI Bridge Features .. 7-332
PCI Bridge Block Diagram ... 7-333
Byte Ordering .. 7-333
Reference Information .. 7-334

PCI Bridge Functional Blocks .. 7-334
PLB-to-PCI Half-Bridge ... 7-335
PCI-to-PLB Half-Bridge ... 7-335
PCI Arbiter ... 7-336

PCI Bridge Address Mapping ... 7-336
PLB-to-PCI Address Mapping ... 7-336
PCI-to-PLB Address Mapping ... 7-339
PCI Target Map Configuration ... 7-339

PCI Bridge Transaction Handling ... 7-340
PLB-to-PCI Transaction Handling ... 7-340

PCI Master Commands .. 7-342
PLB Slave Read Handling ... 7-343
Prefetching ... 7-343
PLB Slave Write Handling .. 7-343
Aborted PLB Requests .. 7-344
Retried PCI Reads ... 7-344

PCI-to-PLB Transaction Handling ... 7-345
PLB Master Commands ... 7-346
Handling of Reads from PCI Masters .. 7-346
Handling Writes from PCI Masters ... 7-348
Miscellaneous .. 7-348

Completion Ordering ... 7-348
PCI Producer-Consumer Model ... 7-349

Collision Resolution ... 7-349
PCI Bridge Configuration Registers ... 7-350

PCI Bridge Register Summary .. 7-350
PCI Bridge Local Configuration Registers ... 7-352

PMM 0 Local Address Register (PCIL0_PMM0LA) ... 7-352
PMM 0 Mask/Attribute Register (PCIL0_PMM0MA) .. 7-353
PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA) .. 7-353
PMM 0 PCI High Address Register (PCIL0_PMM0PCIHA) ... 7-354
10 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PMM 1 Local Address Register (PCIL0_PMM1LA) ... 7-354
PMM 1 Mask/Attribute Register (PCIL0_PMM1MA) .. 7-355
PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA) .. 7-355
PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA) ... 7-356
PMM 2 Local Address Register (PCIL0_PMM2LA) ... 7-356
PMM 2 Mask/Attribute Register (PCIL0_PMM2MA) .. 7-357
PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA) .. 7-357
PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA) ... 7-358
PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS) ... 7-358
PTM 1 Local Address Register (PCIL0_PTM1LA) ... 7-359
PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS) ... 7-359
PTM 2 Local Address Register (PCIL0_PTM2LA) ... 7-360

PCI Configuration Registers .. 7-360
PCI Configuration Address Register (PCIC0_CFGADDR) .. 7-361
PCI Configuration Data Register (PCIC0_CFGDATA) .. 7-361
PCI Vendor ID Register (PCIC0_VENDID) .. 7-362
PCI Device ID Register (PCIC0_DEVID) ... 7-362
PCI Command Register (PCIC0_CMD) ... 7-363
PCI Status Register (PCIC0_STATUS) ... 7-364
PCI Revision ID Register (PCIC0_REVID) .. 7-366
PCI Class Register (PCIC0_CLS) .. 7-366
PCI Cache Line Size Register (PCIC0_CACHELS) .. 7-367
PCI Latency Timer Register (PCIC0_LATTIM) .. 7-367
PCI Header Type Register (PCIC0_HDTYPE) .. 7-368
PCI Built-In Self Test (BIST) Control Register (PCIC0_BIST) ... 7-368
Unused PCI Base Address Register Space ... 7-368
PCI PTM 1 BAR (PCIC0_PTM1BAR) .. 7-369
PCI PTM 2 BAR (PCIC0_PTM2BAR) .. 7-370
PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID) ... 7-370
PCI Subsystem ID Register (PCIC0_SBSYSID) .. 7-371
PCI Capabilities Pointer (PCIC0_CAP) .. 7-371
PCI Interrupt Line Register (PCIC0_INTLN) .. 7-371
PCI Interrupt Pin Register (PCIC0_INTPN) ... 7-372
PCI Minimum Grant Register (PCIC0_MINGNT) ... 7-372
PCI Maximum Latency Register (PCIC0_MAXLTNCY) ... 7-372
PCI Interrupt Control/Status Register (PCIC0_ICS) .. 7-373
Error Enable Register (PCIC0_ERREN) .. 7-373
Error Status Register (PCIC0_ERRSTS) ... 7-374
Bridge Options 1 Register (PCIC0_BRDGOPT1) .. 7-375
PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0) .. 7-376
PLB Slave Error Syndrome Register 1 (PCIC0_PLBBESR1) .. 7-379
PLB Slave Error Address Register (PCIC0_PLBBEAR) .. 7-379
Capability Identifier (PCIC0_CAPID) ... 7-380
Next Item Pointer (PCIC0_NEXTIPTR) ... 7-380
Power Management Capabilities (PCIC0_PMC) ... 7-381
Power Management Control/Status Register (PCIC0_PMCSR) .. 7-382
PMCSR PCI-to-PCI Bridge Support Extensions (PCIC0_PMCSRBSE) .. 7-382
PCI Data Register (PCIC0_DATA) .. 7-383
Bridge Options 2 Register (PCIC0_BRDGOPT2) .. 7-383
Power Management State Change Request Register (PCIC0_PMSCRR) ... 7-385

Error Handling .. 7-386
PLB Unsupported Transfer Type ... 7-386
PCI Master Abort ... 7-387
Bridge PCI Master Receives Target Abort While PCI Bus Master .. 7-387
PCI Target Data Bus Parity Error Detection .. 7-388
PCI Master Data Bus Parity Error Detection ... 7-388
PCI Address Bus Parity Error While PCI Target .. 7-389
AMCC Proprietary 11

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PLB Master Bus Error Detection ... 7-389
PCI Bridge Clocking Configuration .. 7-390
PCI Power Management Interface ... 7-390

Capabilities and Power Management Status and Control Registers ... 7-390
Power State Control .. 7-390
Changing Power States ... 7-390

PCI Bridge Reset and Initialization .. 7-391
Address Map Initialization .. 7-391
Other Configuration Register Initialization ... 7-393
Target Bridge Initialization ... 7-393
Local Processor Boot from PCI Memory ... 7-394
Type 0 Configuration Cycles for Other Devices .. 7-394

Timing Diagrams .. 7-394
PCI Timing Diagram Descriptions ... 7-395

PCI Master Burst Read From SDRAM ... 7-395
PCI Master Burst Write To SDRAM ... 7-395
CPU Read From PCI Memory Slave, Nonprefetching ... 7-395
CPU Read From PCI Memory Slave, Prefetching ... 7-395
CPU Write To PCI Memory Slave .. 7-395
PCI Memory To SDRAM DMA Transfer .. 7-395
SDRAM To PCI Memory DMA Transfer .. 7-396

Asynchronous .. 7-396
Synchronous ... 7-417

Chapter 18. Direct Memory Access Controller .. 8-448
Functional Overview .. 8-448

Peripheral Mode Transfers .. 8-448
Memory-to-Memory Transfers ... 8-449
Scatter/Gather Transfers ... 8-449

Configuration and Status Registers ... 8-449
DMA Sleep Mode Register (DMA0_SLP) .. 8-450
DMA Status Register (DMA0_SR) ... 8-451
DMA Channel Control Registers (DMA0_CR0–DMA0_CR3) .. 8-452
DMA Source Address Registers (DMA0_SA0–DMA0_SA3) ... 8-454
DMA Destination Address Registers (DMA0_DA0–DMA0_DA3) .. 8-454
DMA Count Registers (DMA0_CT0–DMA0_CT3) ... 8-455
DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3) 8-455
DMA Scatter/Gather Command Register (DMA0_SGC) ... 8-455

Channel Priorities ... 8-456
Errors ... 8-457

Address Alignment Error ... 8-457
PLB Timeout .. 8-457
Slave Errors ... 8-457

DMA Interrupts ... 8-457
Scatter/Gather Transfers ... 8-458
Programming the DMA Controller .. 8-459

Peripheral-to-Memory and Memory-to-Peripheral Transfers ... 8-459
Memory-to-Memory Transfers ... 8-460
Software-Initiated Memory-to-Memory Transfers (Non-Device-Paced) .. 8-460

Chapter 19. Ethernet Media Access Controllers ... 9-462
EMAC Features ... 9-463
EMAC Operation .. 9-464

MAL Slave Logic ... 9-465
OPB Slave Logic ... 9-465
Ethernet Address Match Logic .. 9-465
Configuration and Status Registers ... 9-465
12 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Wake On LAN Logic .. 9-465
Ethernet MAC .. 9-465
EMAC Loopback Modes .. 9-466

EMAC Transmit Operation ... 9-466
Arbitration Between TX Channels ... 9-466
Independent Mode .. 9-467
Dependent Mode ... 9-467

MAL TX Descriptor Control/Status Field .. 9-468
Early Packet Termination during Transmit ... 9-469
Empty Packets ... 9-470
Automatic Retransmission of Colliding Packets ... 9-470
Inter-Packet Gap (IPG) Tuning .. 9-470
Full-Duplex Operation .. 9-470
Packet Content Configuration Options ... 9-471

EMAC Receive Operation .. 9-473
EMAC – MAL RX Packet Transfer Flow .. 9-473
MAL RX Descriptor Status ... 9-473
Early Packet Termination during Receive ... 9-474
Discarding Packets During Receive .. 9-474
WOL Support ... 9-475

EMAC WOL Support .. 9-475
Flow Control ... 9-476

MAC Control Packet .. 9-476
Control Packet Transmission ... 9-477
Integrated Flow Control ... 9-477
Control Packet Reception .. 9-478

VLAN Support .. 9-479
VLAN Tagged Packet Transmission .. 9-480
VLAN Tagged Packet Reception ... 9-480
Address Match Mechanism ... 9-480

Non-WOL Mode ... 9-480
WOL Mode ... 9-482

EMAC Registers .. 9-483
Mode Register 0 (EMACx_MR0) ... 9-485
Mode Register 1 (EMACx_MR1) ... 9-486
Transmit Mode Register 0 (EMACx_TMR0) .. 9-488
Transmit Mode Register 1 (EMACx_TMR1) .. 9-488

Low-Priority Requests .. 9-488
Urgent-Priority Requests .. 9-489

Receive Mode Register (EMACx_RMR) ... 9-489
Interrupt Status Register (EMACx_ISR) .. 9-491
Interrupt Status Enable Register (EMACx_ISER) ... 9-494
Individual Address High (EMACx_IAHR) ... 9-496
Individual Address Low (EMACx_IALR) .. 9-496
VLAN TPID Register (EMACx_VTPID) ... 9-497
VLAN TCI Register (EMACx_VTCI) .. 9-497
Pause Timer Register (EMACx_PTR) ... 9-498
Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4) ... 9-498
Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4) .. 9-499
Last Source Address High (EMACx_LSAH) .. 9-499
Last Source Address Low (EMACx_LSAL) ... 9-500
Inter-Packet Gap Value Register (EMACx_IPGVR) .. 9-500
STA Control Register (EMACx_STACR) ... 9-501
Transmit Request Threshold Register (EMACx_TRTR) .. 9-502
Receive Low/High Water Mark Register (EMACx_RWMR) .. 9-503
Number of Octets Transmitted (EMACx_OCTX) ... 9-504
Number of Octets Received (EMACx_OCRX) .. 9-504
AMCC Proprietary 13

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
MII .. 9-505
MII Station Management Interface .. 9-505
EMAC – MII ... 9-506

MAL – EMAC Packet Transfer Flow .. 9-506
Packet Rejection Filter ... 9-506
Programming Notes ... 9-507

Reset and Initialization .. 9-507
Scenario 1 .. 9-508
Scenario 2 .. 9-508
Scenario 3 .. 9-509

Chapter 20. Memory Access Layer .. 10-510
MAL Features .. 10-510

MAL Internal Structure ... 10-512
PLB Master .. 10-512
OPB Master ... 10-512
Transmit Channel Handler ... 10-512
Receive Channel Handler .. 10-512
Transmit Channel Arbiter ... 10-512
Receive Channel Arbiter .. 10-513
Transmit Common Channel Logic ... 10-513
Receive Common Channel Logic .. 10-513
Register Map File ... 10-513

MAL0 Interfaces and Channel Assignments .. 10-513
Transmit and Receive Operations ... 10-513
Buffer Descriptor Overview .. 10-516
Transmit Software Interface ... 10-518

Wrapping the BD Table for Transmit ... 10-519
Continuous Mode for Transmit .. 10-519
Back Up a Packet for Transmit .. 10-519
Descriptor Not Valid for Transmit .. 10-520
Scroll Descriptors for Transmit .. 10-520

Receive Software Interface .. 10-521
Wrapping the BD Table for Receive .. 10-521
Continuous Mode for Receive ... 10-522
Descriptor Not Valid for Receive ... 10-522
Buffer Length for Receive .. 10-522

Descriptor Buffer Status/Control Fields .. 10-522
Information from a Software Device Driver Directed To MAL and COMMAC 10-522
Information from MAL and COMMAC Directed to Software .. 10-523
Status/Control Field Handling .. 10-523
Status/Control Field Format ... 10-523
Transmit Status/Control Field Format .. 10-524

Bit 0 – R – Ready ... 10-524
Bit 1 – W – Wrap .. 10-524
Bit 2 – CM – Continuous Mode .. 10-524
Bit 3 – L – Last ... 10-524
Bit 4 – Reserved .. 10-524
Bit 5 – I – Interrupt ... 10-525
Bits 6 to 15 ... 10-525

Receive Status/Control Field Format ... 10-525
Bit 0 – E – Empty ... 10-525
Bit 1 – W – Wrap .. 10-525
Bit 2 – CM – Continuous Mode .. 10-526
Bit 3 – L – Last ... 10-526
Bit 4 – F – First ... 10-526
Bit 5 – I – Interrupt ... 10-526
14 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Bits 6 to 15 ... 10-526
MAL Programming Notes ... 10-526

MAL Initialization ... 10-526
Interrupts ... 10-527
Error Handling ... 10-528

Error Detection ... 10-528
Indicated Errors .. 10-528
Error Handling Registers .. 10-529
Operational Error Modes .. 10-530
Resolution of an Error Situation ... 10-530
Interrupts To Software ... 10-532

MAL Registers ... 10-533
MAL Configuration Register (MAL0_CFG) .. 10-533
Channel Active Set and Reset Registers .. 10-535

End of Buffer Interrupt Status Registers .. 10-537
MAL Error Status Register (MAL0_ESR) .. 10-538
Descriptor Error Interrupt Registers (MAL0_TXDEIR, MAL0_RXDEIR) .. 10-541
Channel Table Pointer Registers (MAL0_TXCTPnR, MAL0_RXCTPnR) ... 10-542

Receive Channel Buffer Size Register (MAL0_RCBS0) .. 10-543
Chapter 21. Serial Port Operations .. 11-544
Functional Description ... 11-544
Serial Input Clocking .. 11-545
UART Registers ... 11-548

Receiver Buffer Registers (UARTx_RBR) ... 11-548
Transmitter Holding Registers (UARTx_THR) ... 11-549
Interrupt Enable Registers (UARTx_IER) .. 11-549
Interrupt Identification Registers (UARTx_IIR) .. 11-550
FIFO Control Registers (UARTx_FCR) ... 11-551
Line Control Registers (UARTx_LCR) ... 11-552
Modem Control Registers (UARTx_MCR) ... 11-553
Line Status Registers (UARTx_LSR) .. 11-555
Modem Status Registers (UARTx_MSR) .. 11-557
Scratchpad Registers (UARTx_SCR) .. 11-557
Divisor Latch LSB and MSB Registers (UARTx_DLL, UARTx_DLM) ... 11-558

FIFO Operation .. 11-559
Interrupt Mode ... 11-559

Receiver Interrupts ... 11-559
Transmitter Interrupts ... 11-560

Polled Mode .. 11-560
UART and Sleep Mode .. 11-561
DMA Operation .. 11-561

UART Control Register (CPC0_UCR) ... 11-561
Transmitter DMA Mode ... 11-563
Receiver DMA Mode ... 11-564

Chapter 22. IIC Bus Interface .. 12-566
Addressing ... 12-566

Addressing Modes ... 12-566
Seven-Bit Addresses ... 12-567
Ten-Bit Addresses ... 12-567

IIC Registers .. 12-568
IIC Register Descriptions ... 12-569

IIC0 Master Data Buffer (IIC0_MDBUF) .. 12-569
IIC0 Slave Data Buffer (IIC0_SDBUF) ... 12-570
IIC0 Low Master Address Register (IIC0_LMADR) ... 12-571
IIC0 High Master Address Register (IIC0_HMADR) .. 12-572
AMCC Proprietary 15

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
IIC0 Control Register (IIC0_CNTL) .. 12-573
IIC0 Mode Control Register (IIC0_MDCNTL) .. 12-574
IIC0 Status Register (IIC0_STS) ... 12-576
IIC0 Extended Status Register (IIC0_EXTSTS) .. 12-578
IIC0 Low Slave Address Register (IIC0_LSADR) .. 12-580
IIC0 High Slave Address Register (IIC0_HSADR) .. 12-581
IIC0 Clock Divide Register (IIC0_CLKDIV) .. 12-582
IIC0 Interrupt Mask Register (IIC0_INTRMSK) ... 12-583
IIC0 Transfer Count Register (IIC0_XFRCNT) .. 12-584
IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS) .. 12-585
IIC0 Direct Control Register (IIC0_DIRECTCNTL) .. 12-588

Programming the IIC Controller ... 12-588
Initialization .. 12-589
IIC Read .. 12-589
IIC Write .. 12-590

Interrupt Handling .. 12-591
General Considerations ... 12-592
Chapter 23. GPIO Operations ... 13-594
Overview .. 13-594
Features ... 13-595
Clock and Power Management .. 13-596
GPIO Register Overview .. 13-596
Detailed Register Descriptions ... 13-597

GPIO Register Reset Values ... 13-597
GPIO Output Register (GPIO0_OR) .. 13-597
GPIO Three-State Control Register (GPIO0_TCR) ... 13-597
GPIO Output Select Registers (GPIO0_OSRH, GPIO0_OSRL) ... 13-598
GPIO Three-State Select Registers (GPIO0_TSRH, GPIO0_TSRL) .. 13-598
GPIO Open Drain Register (GPIO0_ODR) ... 13-599
GPIO Input Register (GPIO0_IR) .. 13-599
GPIO Input Select Registers (GPIO0_ISR1H, GPIO0_ISR1L) ... 13-599
GPIO Receive Register (GPIO0_RR1) .. 13-600

GPIO0 Signal Assignments ... 13-600
Programming the GPIO0 Alternate 1 Bank ... 13-601

Sample GPIO Bank Programming ... 13-602
Chapter 24. Event Counters .. 14-604
Packet Rejection Counts .. 14-604
Counter Configuration .. 14-604
EVC0 Count Registers ... 14-604

Event Counters (EVC0_CNT0, EVC0_CNT1) ... 14-605
Event Counter Control Register (EVC0_ECR) .. 14-605

Chapter 25. Instruction Set ... 16-608
Instruction Set Portability ... 16-608
Instruction Formats .. 16-609
Pseudocode ... 16-609

Operator Precedence .. 16-612
Register Usage .. 16-612
Alphabetical Instruction Listing .. 16-612
Chapter 26. Register Summary ... 25-816
Reserved Registers ... 25-816
Reserved Fields ... 25-816
General Purpose Registers .. 25-816
Machine State Register and Condition Register .. 25-816
Special Purpose Registers ... 25-817
16 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Time Base Registers .. 25-819
Device Control Registers ... 25-820

Directly Addressed DCRs .. 25-820
Indirectly Accessed DCRs .. 25-822

Indirect Access of SDRAM Controller DCRs .. 25-823
Indirect Access of EBC DCRs ... 25-823

Memory-Mapped Input/Output Registers .. 25-824
Indirectly Accessed MMIO Registers ... 25-828

Alphabetical Listing of Processor Core Registers .. 25-830
Alphabetical Listing of Chip Control and Peripheral Registers .. 25-879
Chapter 27. Signal Summary .. 26-1110
Signals Listed Alphabetically ... 26-1110
Signal Descriptions .. 26-1114
AMCC Proprietary 17

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
18 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figures

Figure 1-1. PPC405EP Block Diagram ... 1-44
Figure 2-1. Overlapped PLB Transfers ... 1-56
Figure 2-2. PLB Arbiter Control Register (PLB0_ACR) .. 1-57
Figure 2-3. PLB Error Address Register (PLB0_BEAR) ... 1-57
Figure 2-4. PLB Error Status Register (PLB0_BESR) .. 1-58
Figure 2-5. Bridge Error Address Register (POB0_BEAR) ... 1-60
Figure 2-6. Bridge Error Status Register 0 (POB0_BESR0) ... 1-60
Figure 2-7. Bridge Error Status Register 1 (POB0_BESR1) ... 1-61
Figure 2-8. OPB Arbiter Control Register (OPBA0_CR) ... 1-63
Figure 2-9. OPB Arbiter Priority Register (OPBA0_PR) ... 1-64
Figure 3-1. PPC405EP Programming Model—Registers ... 1-72
Figure 3-2. General Purpose Registers (R0-R31) .. 1-73
Figure 3-3. Count Register (CTR) ... 1-75
Figure 3-4. Link Register (LR) ... 1-75
Figure 3-5. Fixed Point Exception Register (XER) .. 1-77
Figure 3-6. Special Purpose Register General (SPRG0–SPRG7) ... 1-79
Figure 3-7. Processor Version Register (PVR) ... 1-79
Figure 3-8. Condition Register (CR) ... 1-80
Figure 3-9. Machine State Register (MSR) ... 1-83
Figure 3-10. PPC405EP Data Types .. 1-89
Figure 3-11. Normal Word Load or Store (Big Endian Storage Region) ... 1-94
Figure 3-12. Byte-Reverse Word Load or Store (Little Endian Storage Region) .. 1-95
Figure 3-13. Byte-Reverse Word Load or Store (Big Endian Storage Region) ... 1-95
Figure 3-14. Normal Word Load or Store (Little Endian Storage Region) .. 1-95
Figure 3-15. PPC405EP Instruction Pipeline .. 1-96
Figure 4-1. Instruction Flow .. 1-119
Figure 4-2. Core Configuration Register 0 (CCR0) ... 1-126
Figure 4-3. Instruction Cache Debug Data Register (ICDBDR) .. 1-129
Figure 5-1. OCM Address Usage .. 1-136
Figure 5-2. OCM Instruction-Side Address Range Compare Register (OCM0_ISARC) 1-139
Figure 5-3. OCM Instruction-Side Control Register (OCM0_ISCNTL) .. 1-140
Figure 5-4. OCM Data-Side Address Range Compare Register (OCM0_DSARC) 1-140
Figure 5-5. OCM Data-Side Control Register (OCM0_DSCNTL) ... 1-141
Figure 6-1. Effective to Real Address Translation Flow .. 1-144
Figure 6-2. TLB Entries ... 1-145
Figure 6-3. ITLB/DTLB/UTLB Address Resolution ... 1-150
Figure 6-4. Process ID (PID) ... 1-154
Figure 6-5. Zone Protection Register (ZPR) ... 1-156
Figure 6-6. Generic Storage Attribute Control Register .. 1-159
Figure 7-1. PPC405EP Clocking ... 1-163
Figure 7-2. Boot Control Register (CPC0_BOOT) .. 1-168
Figure 7-3. EMAC to PHY Control Register (CPC0_EPCTL) ... 1-169
Figure 7-4. PLL Mode Register 0 (CPC0_PLLMR0) ... 1-170
AMCC Proprietary 19

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 7-5. PLL Mode Register 1 (CPC0_PLLMR1) ... 1-171
Figure 7-6. UART Control Register (CPC0_UCR) .. 1-172
Figure 8-1. System reset with the IEC enabled and booting over the peripheral bus 1-176
Figure 8-2. System reset with the IEC enabled and booting over the PCI bus ... 1-177
Figure 8-3. System Reset with the IEC Disabled .. 1-177
Figure 8-4. Soft Reset Register (CPC0_SRR) .. 1-178
Figure 9-1. IEC Bootstrap Control Flow .. 1-196
Figure 9-2. Boot Control Register (CPC0_BOOT) .. 1-200
Figure 9-3. PCI Control Register (CPC0_PCI) .. 1-201
Figure 10-1. Interrupt Sources for the UIC and the PPC405EP Processor Core 1-203
Figure 10-2. UIC Status Register (UIC0_SR) ... 1-206
Figure 10-3. UIC Enable Register (UIC0_ER) .. 1-208
Figure 10-4. UIC Critical Register (UIC0_CR) .. 1-210
Figure 10-5. UIC Polarity Register (UIC0_PR) ... 1-213
Figure 10-6. UIC Trigger Register (UIC0_TR) .. 1-215
Figure 10-7. UIC Masked Status Register (UIC0_MSR) ... 1-217
Figure 10-8. UIC Vector Configuration Register (UIC0_VCR) .. 1-220
Figure 10-9. UIC Vector Register (UIC0_VR) ... 1-221
Figure 10-10. Machine State Register (MSR) ... 1-228
Figure 10-11. Save/Restore Register 0 (SRR0) ... 1-229
Figure 10-12. Save/Restore Register 1 (SRR1) ... 1-229
Figure 10-13. Save/Restore Register 2 (SRR2) ... 1-230
Figure 10-14. Save/Restore Register 3 (SRR3) ... 1-230
Figure 10-15. Exception Vector Prefix Register (EVPR) ... 1-231
Figure 10-16. Exception Syndrome Register (ESR) ... 1-232
Figure 10-17. Data Exception Address Register (DEAR) ... 1-233
Figure 11-1. Relationship of Timer Facilities to the Time Base .. 1-245
Figure 11-2. Time Base Lower (TBL) .. 1-246
Figure 11-3. Time Base Upper (TBU) ... 1-246
Figure 11-4. Programmable Interval Timer (PIT) .. 1-249
Figure 11-5. Watchdog Timer State Machine ... 1-251
Figure 11-6. Timer Status Register (TSR) .. 1-252
Figure 11-7. Timer Control Register (TCR) ... 1-253
Figure 12-1. Timebase Counter and Compare Register ... 1-256
Figure 12-2. Time Base Counter Register (GPT0_TBC) .. 1-257
Figure 12-3. GPT Interrupt Enable Register (GPT0_IE) ... 1-258
Figure 12-4. GPT Interrupt Status Register (GPT0_ISS and GPT0_ISC) .. 1-259
Figure 12-5. GPT Interrupt Enable Register (GPT0_IE) ... 1-260
Figure 12-6. Compare Timer Register (GPT0_COMP0 - GPT0_COMP4) ... 1-261
Figure 12-7. Compare Mask Register (GPT0_MASK0 - GPT0_MASK4) ... 1-261
Figure 13-1. JTAG ID Register (CPC0_JTAGID) .. 2-264
Figure 13-2. Debug Control Register 0 (DBCR0) ... 2-268
Figure 13-3. Debug Control Register 1 (DBCR1) ... 2-269
Figure 13-4. Debug Status Register (DBSR) .. 2-271
Figure 13-5. Instruction Address Compare Registers (IAC1–IAC4) ... 2-273
Figure 13-6. Data Address Compare Registers (DAC1–DAC2) ... 2-273
Figure 13-7. Data Value Compare Registers (DVC1–DVC2) ... 2-274
20 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 13-8. Inclusive IAC Range Address Compares ... 2-276
Figure 13-9. Exclusive IAC Range Address Compares .. 2-277
Figure 13-10. Inclusive DAC Range Address Compares .. 2-278
Figure 13-11. Exclusive DAC Range Address Compares .. 2-278
Figure 14-1. CPM Registers (CPC0_ER, CPC0FR, CPC0_SR) .. 3-285
Figure 15-1. SDRAM Controller Signals ... 5-290
Figure 15-2. Memory Controller Configuration (SDRAM0_CFG) .. 5-293
Figure 15-3. Memory Controller Status (SDRAM0_STATUS) .. 5-294
Figure 15-4. Memory Bank 0–1 Configuration Registers (SDRAM0_B0CR–SDRAM0_B1CR) 5-295
Figure 15-5. SDRAM Timing Register (SDRAM0_TR) ... 5-298
Figure 15-6. Activate, Four Word Read, Precharge, Activate ... 5-300
Figure 15-7. Activate, Four Word Write, Precharge, Activate ... 5-300
Figure 15-8. Precharge All, Activate ... 5-301
Figure 15-9. CAS Before RAS Refresh ... 5-301
Figure 15-10. Self-Refresh Entry and Exit .. 5-302
Figure 15-11. Refresh Timing Register (SDRAM0_RTR) ... 5-303
Figure 15-12. Power Management Idle Timer (SDRAM0_PMIT) ... 5-304
Figure 16-1. EBC Signals ... 6-306
Figure 16-2. Attachment of Devices of Various Widths to the Peripheral Data Bus 6-307
Figure 16-3. Single Read Transfer .. 6-310
Figure 16-4. Single Write Transfer .. 6-311
Figure 16-5. Burst Read Transfer ... 6-313
Figure 16-6. Burst Write Transfer ... 6-314
Figure 16-7. Device-Paced Single Read Transfer .. 6-316
Figure 16-8. Device-Paced Single Write Transfer .. 6-317
Figure 16-9. Device-Paced Burst Read Transfer .. 6-318
Figure 16-10. Device-Paced Burst Write Transfer .. 6-320
Figure 16-11. EBC Configuration Register (EBC0_CFG) ... 6-321
Figure 16-12. Peripheral Bank Configuration Registers (EBC0_B0CR–EBC0_B4CR) 6-323
Figure 16-13. Peripheral Bank Access Parameters (EBC0_B0AP–EBC0_B4AP) 6-324
Figure 16-14. Peripheral Bus Error Address Register (EBC0_BEAR) .. 6-327
Figure 16-15. Peripheral Bus Error Status Register 0 (EBC0_BESR0) .. 6-328
Figure 16-16. Peripheral Bus Error Status Register 1 (EBC0_BESR1) .. 6-329
Figure 17-1. PCI Bridge Block Diagram .. 7-333
Figure 17-2. PLB-to-PCI Half-Bridge Block Diagram .. 7-335
Figure 17-3. PCI-to-PLB Half-Bridge Block Diagram .. 7-335
Figure 17-4. Arbitration Structure .. 7-336
Figure 17-5. PMM Register Sets Map PLB Address Space to PCI Address Space 7-338
Figure 17-6. PTM Register Sets Map PCI Address Space to PLB Address Space 7-340
Figure 17-7. PMM 0 Local Address Register (PCIL0_PMM0LA) .. 7-352
Figure 17-8. PMM 0 Mask/Attribute Register (PCIL0_PMM0MA) ... 7-353
Figure 17-9. PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA) ... 7-353
Figure 17-10. PMM 0 High Address Register (PCIL0_PMM0PCIHA) .. 7-354
Figure 17-11. PMM 1 Local Address Register (PCIL0_PMM1LA) .. 7-354
Figure 17-12. PMM 1 Mask/Attribute Register (PCIL0_PMM1MA) ... 7-355
Figure 17-13. PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA) ... 7-355
Figure 17-14. PMM 0 High Address Register (PCIL0_PMM0PCIHA) .. 7-356
AMCC Proprietary 21

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 17-15. PMM 2 Local Address Register (PCIL0_PMM2LA) .. 7-356
Figure 17-16. PMM 2 Mask/Attribute Register (PCIL0_PMM2MA) ... 7-357
Figure 17-17. PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA) ... 7-357
Figure 17-18. PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA) ... 7-358
Figure 17-19. PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS) .. 7-358
Figure 17-20. PTM 2 Local Address Register (PCIL0_PTM1LA) ... 7-359
Figure 17-21. PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS) .. 7-359
Figure 17-22. PTM 2 Local Address Register (PCIL0_PTM2LA) ... 7-360
Figure 17-23. PCI Configuration Address Register (PCIC0_CFGADDR) ... 7-361
Figure 17-24. PCI Configuration Data Register (PCIC0_CFGDATA) ... 7-362
Figure 17-25. PCI Vendor ID Register (PCIC0_VENDID) .. 7-362
Figure 17-26. PCI Device ID Register (PCIC0_DEVID) .. 7-362
Figure 17-27. PCI Command Register (PCIC0_CMD) ... 7-363
Figure 17-28. PCI Status Register (PCIC0_STATUS) .. 7-364
Figure 17-29. PCI Revision ID Register (PCIC0_REVID) ... 7-366
Figure 17-30. PCI Class Register (PCIC0_CLS) .. 7-366
Figure 17-31. PCI Cache Line Size Register (PCIC0_CACHELS) ... 7-367
Figure 17-32. PCI Latency Timer Register (PCIC0_LATTIM) ... 7-367
Figure 17-33. PCI Header Type Register (PCIC0_HDTYPE) ... 7-368
Figure 17-34. PCI Built-in Self Test Control Register (PCIC0_BIST) ... 7-368
Figure 17-35. PCI PTM 1 BAR Register (PCIC0_PTM1BAR) .. 7-369
Figure 17-36. PCI PTM 2 BAR Register (PCIC0_PTM2BAR) .. 7-370
Figure 17-37. PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID) ... 7-370
Figure 17-38. PCI Subsystem ID Register (PCIC0_SBSYSID) .. 7-371
Figure 17-39. PCI Capabilities Pointer (PCIC0_CAP) .. 7-371
Figure 17-40. PCI Interrupt Line Register (PCIC0_INTLN) ... 7-371
Figure 17-41. PCI Interrupt Pin Register (PCIC0_INTPN) .. 7-372
Figure 17-42. PCI Minimum Grant Register (PCIC0_MINGNT) ... 7-372
Figure 17-43. PCI Maximum Latency Register (PCIC0_MAXLTNCY) ... 7-372
Figure 17-44. PCI Interrupt Control/Status Register ... 7-373
Figure 17-45. Error Enable Register (PCIC0_ERREN) .. 7-373
Figure 17-46. Error Status Register (PCIC0_ERRSTS) ... 7-374
Figure 17-47. Bridge Options 1 Register (PCIC0_BRDGOPT1) ... 7-375
Figure 17-48. PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0) .. 7-377
Figure 17-49. PLB Slave Error Syndrome 1 (PCIC0_PLBBESR1) ... 7-379
Figure 17-50. PLB Slave Error Address Register (PCIC0_PLBBEAR) ... 7-379
Figure 17-51. Capability Identifier (PCIC0_CAPID) .. 7-380
Figure 17-52. Next Item Pointer (PCIC0_NEXTIPTR) .. 7-380
Figure 17-53. Power Management Capabilities Register (PCIC0_PMC) ... 7-381
Figure 17-54. Power Management Control/Status Register (PCIC0_PMCSR) .. 7-382
Figure 17-55. PMCSR PCI to PCI Bridge Support Extensions (PCIC0_PMCSRBSE) 7-382
Figure 17-56. PCI Data (PCIC0_DATA) ... 7-383
Figure 17-57. Bridge Options 2 Register (PCIC0_BRDGOPT2) ... 7-383
Figure 17-58. Power Management State Change Request Register (PCIC0_PMSCRR) 7-385
Figure 17-60. PCI Master Burst Read From SDRAM ... 7-396
Figure 17-61. PCI Master Burst Write To SDRAM .. 7-400
Figure 17-62. CPU Read From PCI Memory Slave, Nonprefetching .. 7-404
22 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 17-63. CPU Read From PCI Memory Slave, Prefetching .. 7-406
Figure 17-64. CPU Write To PCI Memory Slave .. 7-410
Figure 17-65. PCI Memory To SDRAM DMA Transfer ... 7-413
Figure 17-66. SDRAM To PCI Memory DMA Transfer ... 7-415
Figure 17-67. PCI Master Burst Read From SDRAM ... 7-418
Figure 17-68. PCI Master Burst Write To SDRAM .. 7-425
Figure 17-69. CPU Read From PCI Memory Slave, Nonprefetching .. 7-431
Figure 17-70. CPU Read From PCI Memory Slave, Prefetching .. 7-433
Figure 17-71. CPU Write To PCI Memory Slave .. 7-437
Figure 17-72. PCI Memory To SDRAM DMA Transfer ... 7-441
Figure 17-73. SDRAM To PCI Memory DMA Transfer ... 7-444
Figure 18-1. DMA Sleep Mode Register (DMA0_SLP) ... 8-451
Figure 18-2. DMA Status Register (DMA0_SR) .. 8-451
Figure 18-3. DMA Channel Control Registers (DMA0_CR0–DMA0_CR3) ... 8-452
Figure 18-4. DMA Source Address Registers (DMA0_SA0–DMA0_SA3) .. 8-454
Figure 18-5. DMA Destination Address Registers (DMA0_DA0–DMA0_DA3) ... 8-454
Figure 18-6. DMA Count Registers (DMA0_CT0–DMA0_CT3) .. 8-455
Figure 18-7. DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3) 8-455
Figure 18-8. DMA Scatter/Gather Command Register (DMA0_SGC) .. 8-456
Figure 19-1. EMAC in a Typical Ethernet Application ... 9-463
Figure 19-2. Internal EMAC Structure ... 9-464
Figure 19-3. EMAC Loopback Modes ... 9-466
Figure 19-4. MAL TX Descriptor Control/Status Field ... 9-468
Figure 19-5. Transmit Packet Structure (Excluding VLAN Tagged and Control Packets) 9-471
Figure 19-6. MAL RX Descriptor Control/Status Field .. 9-473
Figure 19-7. Wake-Up Packet Format .. 9-475
Figure 19-8. Control Packet Format .. 9-476
Figure 19-9. Integrated Flow Control Mechanism ... 9-477
Figure 19-10. Pause Operation State Machine ... 9-478
Figure 19-11. Tagged MAC Packet Format .. 9-479
Figure 19-12. Tag Control Information Field Structure ... 9-479
Figure 19-13. Receive Address Recognition Flowchart .. 9-482
Figure 19-14. Ethernet Address Filter Operation .. 9-483
Figure 19-15. Mode Register 0 (EMACx_MR0) .. 9-485
Figure 19-16. Mode Register 1 (EMACx_MR1) .. 9-486
Figure 19-17. Transmit Mode Register 0 (EMACx_TMR0) ... 9-488
Figure 19-18. Transmit Mode Register 1 (EMACx_TMR1) ... 9-489
Figure 19-19. Receive Mode Register (EMACx_RMR) .. 9-490
Figure 19-20. Interrupt Status Register (EMACx_ISR) ... 9-491
Figure 19-21. Interrupt Status Enable Register (EMACx_ISER) .. 9-494
Figure 19-22. Individual Address High Register (EMACx_IAHR) ... 9-496
Figure 19-23. Individual Address Low Register (EMACx_IALR) ... 9-497
Figure 19-24. VLAN TPID Register (EMACx_VTPID) .. 9-497
Figure 19-25. VLAN TCI Register (EMACx_VTCI) ... 9-498
Figure 19-26. Pause Timer Register (EMACx_PTR) .. 9-498
Figure 19-27. Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4) 9-499
Figure 19-28. Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4) 9-499
AMCC Proprietary 23

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 19-29. Last Source Address High Register (EMACx_LSAH) .. 9-500
Figure 19-30. Last Source Address Low Register (EMACx_LSAL) .. 9-500
Figure 19-31. Inter-Packet Gap Value Register (EMACx_IPGVR) ... 9-501
Figure 19-32. STA Control Register (EMACx_STACR) .. 9-501
Figure 19-33. Transmit Request Threshold Register (EMACx_TRTR) ... 9-503
Figure 19-34. Receive Low/High Water Mark Register (EMACx_RWMR) .. 9-504
Figure 19-35. Number of Octets Transmitted (EMACx_OCTX) ... 9-504
Figure 19-36. Number of Octets Received (EMACx_OCRX) .. 9-504
Figure 19-37. Management Interface with PHY .. 9-505
Figure 19-38. EMAC-MAL Communication Phases .. 9-506
Figure 20-1. General MAL Structure ... 10-511
Figure 20-2. MAL Internal Structure .. 10-512
Figure 20-3. Transmit Operation ... 10-514
Figure 20-4. Receive Operation .. 10-515
Figure 20-5. Buffer Descriptor Structure ... 10-517
Figure 20-6. Packet Structure in Memory ... 10-518
Figure 20-7. Transmit Status/Control Field ... 10-524
Figure 20-8. Receive Status/Control Field .. 10-525
Figure 20-9. Error Status Register Field ... 10-530
Figure 20-10. MAL Error Processing .. 10-532
Figure 20-11. MAL Configuration Register (MAL0_CFG) ... 10-534
Figure 20-12. Transmit Channel Active Set Register (MAL0_TXCASR) .. 10-536
Figure 20-13. Transmit Channel Active Reset Register (MAL0_TXCARR) .. 10-536
Figure 20-14. Receive Channel Active Set Register (MAL0_RXCASR) ... 10-536
Figure 20-15. Receive Channel Active Reset Register (MAL0_RXCARR) ... 10-537
Figure 20-16. Transmit End of Buffer Interrupt Status Register (MAL0_TXEOBISR) 10-537
Figure 20-17. Receive End of Buffer Interrupt Status Register (MAL0_RXEOBISR) 10-538
Figure 20-18. MAL Error Status Register (MAL0_ESR) ... 10-539
Figure 20-19. MAL Interrupt Enable Register (MAL0_IER) .. 10-540
Figure 20-20. TX Descriptor Error Interrupt Register (MAL0_TXDEIR) .. 10-541
Figure 20-21. RX Descriptor Error Interrupt Register (MAL0_RXDEIR) ... 10-541
Figure 20-22. TX Channel Table Pointer Register (MAL0_TXCTPnR) ... 10-542
Figure 20-23. RX Channel Table Pointer Register (MAL0_RXCTPnR) .. 10-543
Figure 20-24. Receive Channel Buffer Size Register (MAL0_RCBSn) .. 10-543
Figure 21-1. Serial Clock Configuration .. 11-545
Figure 21-2. UART Receiver Buffer Registers (UARTx_RBR) ... 11-548
Figure 21-3. UART Transmitter Holding Registers (UARTx_THR) ... 11-549
Figure 21-4. UART Interrupt Enable Registers (UARTx_IER) .. 11-549
Figure 21-5. UART Interrupt Identification Registers (UARTx_IIR) .. 11-551
Figure 21-6. UART FIFO Control Registers (UARTx_FCR) ... 11-552
Figure 21-7. UART Line Control Registers (UARTx_LCR) ... 11-553
Figure 21-8. UART Modem Control Registers (UARTx_MCR) ... 11-554
Figure 21-9. UART Line Status Registers (UARTx_LSR) ... 11-555
Figure 21-10. UART Modem Status Registers (UARTx_MSR) .. 11-557
Figure 21-11. Scratchpad Registers (UARTx_SCR) ... 11-558
Figure 21-12. UART Baud-Rate Divisor Latch (MSB) Registers (UARTx_DLM) 11-558
Figure 21-13. UART Baud-Rate Divisor Latch (LSB) Registers (UARTx_DLL) .. 11-558
24 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 21-14. UART Control Register (CPC0_UCR) .. 11-561
Figure 22-1. 7-Bit Addressing ... 12-567
Figure 22-2. 10-Bit Addressing ... 12-567
Figure 22-3. IIC0 Master Data Buffer (IIC0_MDBUF) ... 12-569
Figure 22-4. FIFO Stages ... 12-569
Figure 22-5. IIC0 Slave Data Buffer (IIC0_SDBUF) .. 12-570
Figure 22-6. IIC0 Low Master Address Register (IIC0_LMADR) .. 12-571
Figure 22-7. IIC0 High Master Address Register (IIC0_HMADR) ... 12-572
Figure 22-8. IIC0 Control Register (IIC0_CNTL) ... 12-573
Figure 22-9. IIC0 Mode Control Register (IIC0_MDCNTL) ... 12-575
Figure 22-10. IIC0 Status Register (IIC0_STS) .. 12-576
Figure 22-11. IIC0 Extended Status Register (IIC0_EXTSTS) ... 12-578
Figure 22-12. IIC0 Low Slave Address Register (IIC0_LSADR) ... 12-580
Figure 22-13. IIC0 High Slave Address Register (IIC0_HSADR) ... 12-581
Figure 22-14. IIC0 Clock Divide Register (IIC0_CLKDIV) ... 12-582
Figure 22-15. IIC0 Interrupt Mask Register (IIC0_INTRMSK) .. 12-583
Figure 22-16. IIC0 Transfer Count Register (IIC0_XFRCNT) ... 12-584
Figure 22-17. IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS) 12-585
Figure 22-18. IIC0 Direct Control Register (IIC0_DIRECTCNTL) ... 12-588
Figure 23-1. GPIO Data Flow and Configuration Registers .. 13-595
Figure 23-2. GPIO Registers .. 13-597
Figure 24-1. Event Count Registers (EVC0_CNT0, EVC0_CNT1) ... 14-605
Figure 24-2. Event Counter Control Register (EVC0_ECR) ... 14-605
Figure 26-1. Core Configuration Register 0 (CCR0) ... 25-831
Figure 26-2. Condition Register (CR) ... 25-833
Figure 26-3. Count Register (CTR) ... 25-834
Figure 26-4. Data Address Compare Registers (DAC1–DAC2) ... 25-835
Figure 26-5. Debug Control Register 0 (DBCR0) ... 25-836
Figure 26-6. Debug Control Register 1 (DBCR1) ... 25-838
Figure 26-7. Debug Status Register (DBSR) .. 25-840
Figure 26-8. Data Cache Cachability Register (DCCR) .. 25-842
Figure 26-9. Data Cache Write-through Register (DCWR) ... 25-844
Figure 26-10. Data Exception Address Register (DEAR) ... 25-846
Figure 26-11. Data Value Compare Registers (DVC1–DVC2) ... 25-847
Figure 26-12. Exception Syndrome Register (ESR) ... 25-848
Figure 26-13. Exception Vector Prefix Register (EVPR) ... 25-849
Figure 26-14. General Purpose Registers (R0-R31) .. 25-850
Figure 26-15. Instruction Address Compare Registers (IAC1–IAC4) ... 25-851
Figure 26-16. Instruction Cache Cachability Register (ICCR) .. 25-852
Figure 26-17. Instruction Cache Debug Data Register (ICDBDR) .. 25-854
Figure 26-18. Link Register (LR) ... 25-855
Figure 26-19. Machine State Register (MSR) ... 25-856
Figure 26-20. Process ID (PID) ... 25-858
Figure 26-21. Programmable Interval Timer (PIT) .. 25-859
Figure 26-22. Processor Version Register (PVR) ... 25-860
Figure 26-23. Storage Guarded Register (SGR) .. 25-861
Figure 26-24. Storage Little-Endian Register (SLER) ... 25-863
AMCC Proprietary 25

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 26-25. Special Purpose Registers General (SPRG0–SPRG7) .. 25-865
Figure 26-26. Save/Restore Register 0 (SRR0) ... 25-866
Figure 26-27. Save/Restore Register 1 (SRR1) ... 25-867
Figure 26-28. Save/Restore Register 2 (SRR2) ... 25-868
Figure 26-29. Save/Restore Register 3 (SRR3) ... 25-869
Figure 26-30. Storage User-defined 0 Register (SU0R) ... 25-870
Figure 26-31. Time Base Lower (TBL) .. 25-872
Figure 26-32. Time Base Upper (TBU) ... 25-873
Figure 26-33. Timer Control Register (TCR) ... 25-874
Figure 26-34. Timer Status Register (TSR) .. 25-875
Figure 26-35. User SPR General 0 (USPRG0) ... 25-876
Figure 26-36. Fixed Point Exception Register (XER) .. 25-877
Figure 26-37. Zone Protection Register (ZPR) ... 25-878
Figure 26-38. Boot Control Register (CPC0_BOOT) .. 25-880
Figure 26-39. EMAC to PHY Control Register (CPC0_EPCTL) ... 25-881
Figure 26-40. CPM Enable Register (CPC0_ER) ... 25-882
Figure 26-41. CPM Force Register (CPC0_FR) ... 25-883
Figure 26-42. JTAG ID Register (CPC0_JTAGID) .. 25-884
Figure 26-43. PCI Control Register (CPC0_PCI) .. 25-885
Figure 26-44. PLL Mode Register 0 (CPC0_PLLMR0) ... 25-886
Figure 26-45. PLL Mode Register 1 (CPC0_PLLMR1) ... 25-888
Figure 26-46. CPM Status Register (CPC0_SR) .. 25-890
Figure 26-47. Soft Reset Register (CPC0_SRR) .. 25-891
Figure 26-48. UART Control Register (CPC0_UCR) .. 25-892
Figure 26-49. DMA Channel Control Registers (DMA0_CR0–DMA0_CR3) ... 25-894
Figure 26-50. DMA Count Registers (DMA0_CT0–DMA0_CT3) .. 25-896
Figure 26-51. DMA Destination Address Registers (DMA0_DA0–DMA0_DA3) 25-897
Figure 26-52. DMA Source Address Registers (DMA0_SA0–DMA0_SA3) .. 25-898
Figure 26-53. DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3) 25-899
Figure 26-54. DMA Scatter/Gather Command Register (DMA0_SGC) .. 25-900
Figure 26-55. DMA Sleep Mode Register (DMA0_SLP) ... 25-901
Figure 26-56. DMA Status Register (DMA0_SR) .. 25-902
Figure 26-57. Peripheral Bus Error Address Register (EBC0_BEAR) .. 25-903
Figure 26-58. Peripheral Bus Error Status Register 0 (EBC0_BESR0) .. 25-904
Figure 26-59. Peripheral Bus Error Status Register 1 (EBC0_BESR1) .. 25-905
Figure 26-60. Peripheral Bank Access Parameters (EBC0_B0AP–EBC0_B4AP) 25-906
Figure 26-61. Peripheral Bank Configuration Registers (EBC0_B0CR–EBC0_B4CR) 25-907
Figure 26-62. EBC Configuration Register (EBC0_CFG) ... 25-908
Figure 26-63. EBC Configuration Address Register (EBC0_CFGADDR) ... 25-910
Figure 26-64. EBC Configuration Data Register (EBC0_CFGDATA) ... 25-911
Figure 26-65. Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4) 25-912
Figure 26-66. Individual Address High Register (EMACx_IAHR) ... 25-913
Figure 26-67. Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4) 25-914
Figure 26-68. Individual Address Low Register (EMACx_IALR) ... 25-915
Figure 26-69. Inter-Packet Gap Value Register (EMACx_IPGVR) ... 25-916
Figure 26-70. Interrupt Status Enable Register (EMACx_ISER) .. 25-918
Figure 26-71. Interrupt Status Register (EMACx_ISR) ... 25-921
26 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 26-72. Last Source Address High Register (EMACx_LSAH) .. 25-924
Figure 26-73. Last Source Address Low Register (EMACx_LSAL) .. 25-925
Figure 26-74. Mode Register 0 (EMACx_MR0) .. 25-926
Figure 26-75. Mode Register 1 (EMACx_MR1) .. 25-927
Figure 26-76. Number of Octets Received (EMACx_OCRX) .. 25-929
Figure 26-77. Number of Octets Transmitted (EMACx_OCTX) ... 25-930
Figure 26-78. Pause Timer Register (EMACx_PTR) .. 25-931
Figure 26-79. Receive Mode Register (EMACx_RMR) .. 25-933
Figure 26-80. Receive Low/High Water Mark Register (EMACx_RWMR) .. 25-935
Figure 26-81. STA Control Register (EMACx_STACR) .. 25-936
Figure 26-82. Transmit Mode Register 0 (EMACx_TMR0) ... 25-937
Figure 26-83. Transmit Mode Register 1 (EMACx_TMR1) ... 25-938
Figure 26-84. Transmit Request Threshold Register (EMACx_TRTR) ... 25-939
Figure 26-85. VLAN TCI Register (EMACx_VTCI) ... 25-940
Figure 26-86. VLAN TPID Register (EMACx_VTPID) .. 25-941
Figure 26-87. Event Count Registers (EVC0_CNT0, EVC0_CNT1) ... 25-942
Figure 26-88. Event Counter Control Register (EVC0_ECR) ... 25-943
Figure 26-89. GPIO Input Register (GPIO0_IR) ... 25-944
Figure 26-90. GPIO Input Select Register 1 High (GPIO0_ISR1H) .. 25-945
Figure 26-91. GPIO Input Select Register 1 Low (GPIO0_ISR1L) ... 25-946
Figure 26-92. GPIO Open Drain Register (GPIO0_ODR) .. 25-946
Figure 26-93. GPIO Output Register (GPIO0_OR) ... 25-947
Figure 26-94. GPIO Output Select Register High (GPIO0_OSRH) .. 25-948
Figure 26-95. GPIO Output Select Register Low (GPIO0_OSRL) .. 25-949
Figure 26-96. GPIO Receive Register 1 (GPIO0_RR1) .. 25-950
Figure 26-97. GPIO Three-State Control Register (GPIO0_TCR) .. 25-951
Figure 26-98. GPIO Three-State Select Register High (GPIO0_TSRH) ... 25-952
Figure 26-99. GPIO Three-State Select Register Low (GPIO0_TSRL) ... 25-953
Figure 26-100. IIC0 Clock Divide Register (IIC0_CLKDIV) ... 25-954
Figure 26-101. IIC0 Control Register (IIC0_CNTL) ... 25-955
Figure 26-102. IIC0 Direct Control Register (IIC0_DIRECTCNTL) ... 25-956
Figure 26-103. IIC0 Extended Status Register (IIC0_EXTSTS) ... 25-957
Figure 26-104. IIC0 High Master Address Register (IIC0_HMADR) ... 25-959
Figure 26-105. IIC0 High Slave Address Register (IIC0_HSADR) ... 25-960
Figure 26-106. IIC0 Interrupt Mask Register (IIC0_INTRMSK) .. 25-961
Figure 26-107. IIC0 Low Master Address Register (IIC0_LMADR) .. 25-962
Figure 26-108. IIC0 Low Slave Address Register (IIC0_LSADR) ... 25-963
Figure 26-109. IIC0 Master Data Buffer (IIC0_MDBUF) ... 25-964
Figure 26-110. IIC0 Mode Control Register (IIC0_MDCNTL) ... 25-965
Figure 26-111. IIC0 Slave Data Buffer (IIC0_SDBUF) .. 25-966
Figure 26-112. IIC0 Status Register (IIC0_STS) .. 25-967
Figure 26-113. IIC0 Transfer Count Register (IIC0_XFRCNT) ... 25-968
Figure 26-114. IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS) 25-969
Figure 26-115. MAL Configuration Register (MAL0_CFG) ... 25-971
Figure 26-116. MAL Error Status Register (MAL0_ESR) ... 25-974
Figure 26-117. MAL Interrupt Enable Register (MAL0_IER) .. 25-976
Figure 26-118. Receive Channel Buffer Size Register (MAL0_RCBSn) .. 25-977
AMCC Proprietary 27

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 26-119. Receive Channel Active Reset Register (MAL0_RXCARR) ... 25-978
Figure 26-120. Receive Channel Active Set Register (MAL0_RXCASR) ... 25-979
Figure 26-121. RX Channel Table Pointer Register (MAL0_RXCTPnR) .. 25-980
Figure 26-122. RX Descriptor Error Interrupt Register (MAL0_RXDEIR) ... 25-981
Figure 26-123. Receive End of Buffer Interrupt Status Register (MAL0_RXEOBISR) 25-982
Figure 26-124. Transmit Channel Active Reset Register (MAL0_TXCARR) .. 25-983
Figure 26-125. Transmit Channel Active Set Register (MAL0_TXCASR) .. 25-984
Figure 26-126. TX Channel Table Pointer Register (MAL0_TXCTPnR) ... 25-985
Figure 26-127. TX Descriptor Error Interrupt Register (MAL0_TXDEIR) .. 25-986
Figure 26-128. Transmit End of Buffer Interrupt Status Register (MAL0_TXEOBISR) 25-987
Figure 26-129. OCM Data-Side Address Range Compare Register (OCM0_DSARC) 25-988
Figure 26-130. OCM Data-Side Control Register (OCM0_DSCNTL) ... 25-989
Figure 26-131. OCM Instruction-Side Address Range Compare Register (OCM0_ISARC) 25-990
Figure 26-132. OCM Instruction-Side Control Register (OCM0_ISCNTL) .. 25-991
Figure 26-133. OPB Arbiter Control Register (OPBA0_CR) ... 25-992
Figure 26-134. OPB Arbiter Priority Register (OPBA0_PR) ... 25-993
Figure 26-135. PCI Base Address Register (PCIC0_BAR0) .. 25-994
Figure 26-136. PCI Built-in Self Test Control Register (PCIC0_BIST) ... 25-995
Figure 26-137. Bridge Options 1 Register (PCIC0_BRDGOPT1) ... 25-996
Figure 26-138. Bridge Options 2 Register (PCIC0_BRDGOPT2) ... 25-997
Figure 26-139. PCI Cache Line Size Register (PCIC0_CACHELS) ... 25-998
Figure 26-140. PCI Capabilities Pointer (PCIC0_CAP) .. 25-999
Figure 26-141. Capability Identifier (PCIC0_CAPID) .. 25-1000
Figure 26-142. PCI Configuration Address Register (PCIC0_CFGADDR) ... 25-1001
Figure 26-143. PCI Configuration Data Register (PCIC0_CFGDATA) ... 25-1002
Figure 26-144. PCI Class Register (PCIC0_CLS) .. 25-1003
Figure 26-145. PCI Command Register (PCIC0_CMD) ... 25-1005
Figure 26-146. PCI Data (PCIC0_DATA) ... 25-1007
Figure 26-147. PCI Device ID Register (PCIC0_DEVID) .. 25-1008
Figure 26-148. Error Enable Register (PCIC0_ERREN) .. 25-1009
Figure 26-149. Error Status Register (PCIC0_ERRSTS) ... 25-1010
Figure 26-150. PCI Header Type Register (PCIC0_HDTYPE) ... 25-1011
Figure 26-151. PCI Interrupt Control/Status Register ... 25-1012
Figure 26-152. PCI Interrupt Line Register (PCIC0_INTLN) ... 25-1013
Figure 26-153. PCI Interrupt Pin Register (PCIC0_INTPN) .. 25-1014
Figure 26-154. PCI Latency Timer Register (PCIC0_LATTIM) ... 25-1015
Figure 26-155. PCI Maximum Latency Register (PCIC0_MAXLTNCY) ... 25-1016
Figure 26-156. PCI Minimum Grant Register (PCIC0_MINGNT) ... 25-1017
Figure 26-157. Next Item Pointer (PCIC0_NEXTIPTR) .. 25-1018
Figure 26-158. PLB Slave Error Address Register (PCIC0_PLBBEAR) ... 25-1019
Figure 26-159. PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0) .. 25-1021
Figure 26-160. PLB Slave Error Syndrome 1 (PCIC0_PLBBESR1) ... 25-1023
Figure 26-161. Power Management Capabilities Register (PCIC0_PMC) ... 25-1024
Figure 26-162. Power Management Control/Status Register (PCIC0_PMCSR) 25-1025
Figure 26-163. PMCSR PCI to PCI Bridge Support Extensions (PCIC0_PMCSRBSE) 25-1026
Figure 26-164. Power Management State Change Request Register (PCIC0_PMSCRR) 25-1027
Figure 26-165. PCI PTM 1 BAR Register (PCIC0_PTM1BAR) .. 25-1028
28 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 26-166. PCI PTM 2 BAR Register (PCIC0_PTM2BAR) .. 25-1029
Figure 26-167. PCI Revision ID Register (PCIC0_REVID) ... 25-1030
Figure 26-168. PCI Subsystem ID Register (PCIC0_SBSYSID) .. 25-1031
Figure 26-169. PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID) ... 25-1032
Figure 26-170. PCI Status Register (PCIC0_STATUS) .. 25-1034
Figure 26-171. PCI Vendor ID Register (PCIC0_VENDID) .. 25-1036
Figure 26-172. PMM 0 Local Address Register (PCIL0_PMM0LA) .. 25-1037
Figure 26-173. PMM 0 Mask/Attribute Register (PCIL0_PMM0MA) ... 25-1038
Figure 26-174. PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA) ... 25-1039
Figure 26-175. PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA) ... 25-1040
Figure 26-176. PMM 1 Local Address Register (PCIL0_PMM1LA) .. 25-1041
Figure 26-177. PMM 1 Mask/Attribute Register (PCIL0_PMM1MA) ... 25-1042
Figure 26-178. PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA) ... 25-1043
Figure 26-179. PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA) ... 25-1044
Figure 26-180. PMM 2 Local Address Register (PCIL0_PMM2LA) .. 25-1045
Figure 26-181. PMM 2 Mask/Attribute Register (PCIL0_PMM2MA) ... 25-1046
Figure 26-182. PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA) ... 25-1047
Figure 26-183. PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA) ... 25-1048
Figure 26-184. PTM 2 Local Address Register (PCIL0_PTM1LA) ... 25-1049
Figure 26-185. PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS) .. 25-1050
Figure 26-186. PTM 2 Local Address Register (PCIL0_PTM2LA) ... 25-1051
Figure 26-187. PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS) .. 25-1052
Figure 26-188. PLB Arbiter Control Register (PLB0_ACR) .. 25-1053
Figure 26-189. PLB Error Address Register (PLB0_BEAR) ... 25-1054
Figure 26-190. PLB Error Status Register (PLB0_BESR) .. 25-1055
Figure 26-191. Bridge Error Address Register (POB0_BEAR) ... 25-1057
Figure 26-192. Bridge Error Status Register 0 (POB0_BESR0) ... 25-1058
Figure 26-193. Bridge Error Status Register 1 (POB0_BESR1) ... 25-1060
Figure 26-194. Memory Bank 0–1 Configuration Registers (SDRAM0_B0CR–SDRAM0_B1CR) 25-1061
Figure 26-195. Memory Controller Configuration (SDRAM0_CFG) .. 25-1062
Figure 26-196. SDRAM Configuration Address Register (SDRAM0_CFGADDR) 25-1063
Figure 26-197. SDRAM Configuration Data Register (SDRAM0_CFGDATA) .. 25-1064
Figure 26-198. ECC Configuration Register (SDRAM0_ECCCFG) .. 25-1065
Figure 26-199. ECC Error Status Register (SDRAM0_ECCESR) .. 25-1065
Figure 26-200. Power Management Idle Timer (SDRAM0_PMIT) ... 25-1067
Figure 26-201. Refresh Timing Register (SDRAM0_RTR) ... 25-1068
Figure 26-202. Memory Controller Status (SDRAM0_STATUS) .. 25-1069
Figure 26-203. SDRAM Timing Register (SDRAM0_TR) ... 25-1070
Figure 26-204. UART Baud-Rate Divisor Latch (LSB) Registers (UARTx_DLL) 25-1072
Figure 26-205. UART Baud-Rate Divisor Latch (MSB) Registers (UARTx_DLM) 25-1073
Figure 26-206. UART FIFO Control Registers (UARTx_FCR) ... 25-1074
Figure 26-207. UART Interrupt Enable Registers (UARTx_IER) .. 25-1075
Figure 26-208. UART Interrupt Identification Registers (UARTx_IIR) .. 25-1076
Figure 26-209. UART Line Control Registers (UARTx_LCR) ... 25-1077
Figure 26-210. UART Line Status Registers (UARTx_LSR) ... 25-1078
Figure 26-211. UART Modem Control Registers (UARTx_MCR) ... 25-1080
Figure 26-212. UART Modem Status Registers (UARTx_MSR) .. 25-1081
AMCC Proprietary 29

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 26-213. UART Receiver Buffer Registers (UARTx_RBR) ... 25-1082
Figure 26-214. Scratchpad Registers (UARTx_SCR) ... 25-1083
Figure 26-215. UART Transmitter Holding Registers (UARTx_THR) ... 25-1084
Figure 26-216. UIC Critical Register (UIC0_CR) .. 25-1086
Figure 26-217. UIC Enable Register (UIC0_ER) .. 25-1090
Figure 26-218. UIC Masked Status Register (UIC0_MSR) ... 25-1094
Figure 26-219. UIC Polarity Register (UIC0_PR) ... 25-1098
Figure 26-220. UIC Status Register (UIC0_SR) ... 25-1102
Figure 26-221. UIC Trigger Register (UIC0_TR) .. 25-1106
Figure 26-222. UIC Vector Configuration Register (UIC0_VCR) .. 25-1109
Figure 26-223. UIC Vector Register (UIC0_VR) ... 25-1109
30 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
List of Tables

Table 2-1. Registers Controlling PLB Master Priority Assignments.. 1-54
Table 2-2. PLB Arbiter Registers .. 1-56
Table 2-3. PLB-to-OPB Bridge Registers ... 1-59
Table 2-4. PPC405EP OPB Master Assignments .. 1-63
Table 2-5. OPB Arbiter Registers ... 1-63
Table 3-1. PPC405EP Address Space ... 1-68
Table 3-2. PPC405EP SPRs .. 1-74
Table 3-3. XER[CA] Updating Instructions.. 1-78
Table 3-4. XER[SO,OV] Updating Instructions ... 1-78
Table 3-5. Time Base Registers ... 1-82
Table 3-6. Directly Accessed DCRs.. 1-84
Table 3-7. EBC DCR Usage ... 1-86
Table 3-8. Offsets for EBC Registers.. 1-86
Table 3-9. Directly Accessed MMIO Registers ... 1-87
Table 3-10. Alignment Exception Summary.. 1-90
Table 3-11. Bits of the BO Field.. 1-98
Table 3-12. Conditional Branch BO Field ... 1-98
Table 3-13. Example Memory Mapping .. 1-102
Table 3-14. Privileged Instructions.. 1-104
Table 3-15. PPC405EP Instruction Set Summary .. 1-109
Table 3-16. Implementation-specific Instructions.. 1-110
Table 3-17. Storage Reference Instructions ... 1-110
Table 3-18. Arithmetic Instructions ... 1-111
Table 3-19. Multiply-Accumulate and Multiply Halfword Instructions.. 1-111
Table 3-20. Logical Instructions .. 1-111
Table 3-21. Compare Instructions... 1-112
Table 3-22. Branch Instructions .. 1-112
Table 3-23. CR Logical Instructions.. 1-112
Table 3-24. Rotate Instructions... 1-113
Table 3-25. Shift Instructions .. 1-113
Table 3-26. Cache Management Instructions ... 1-113
Table 3-27. Interrupt Control Instructions ... 1-114
Table 3-28. TLB Management Instructions... 1-114
Table 3-29. Processor Management Instructions ... 1-114
Table 4-1. Instruction Cache Organization ... 1-118
Table 4-2. Data Cache Organization .. 1-121
Table 4-3. Priority Changes With Different Data Cache Operations... 1-133
Table 5-1. Examples of Store Data Bypass ... 1-138
Table 5-2. OCM DCRs.. 1-139
Table 6-1. TLB Fields Related to Page Size... 1-146
Table 6-2. Protection Applied to Cache Control Instructions .. 1-157
Table 7-1. PLL Tuning Settings .. 1-164
Table 7-2. VCO and PLLOUT A Values... 1-165
AMCC Proprietary 31

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 7-3. Example Synchronous PCI Clock Frequencies in Asynchronous Mode 1-166
Table 7-4. Clocking Control Registers .. 1-167
Table 8-1. MSR Contents after Reset... 1-179
Table 8-2. SPR Contents After Reset ... 1-180
Table 8-3. DCR Contents After Reset... 1-180
Table 8-4. MMIO Register Contents After Reset .. 1-184
Table 9-1. Pin Straps .. 1-195
Table 9-2. Serial EPROM Data Organization ... 1-197
Table 9-3. Alphabetical Signal List.. 1-202
Table 10-1. UIC Interrupt Assignments... 1-204
Table 10-2. UIC DCRs .. 1-205
Table 10-3. Interrupt Handling Priorities ... 1-225
Table 10-4. Interrupt Vector Offsets.. 1-227
Table 10-5. ESR Alteration by Various Interrupts ... 1-233
Table 10-6. Register Settings during Critical Input Interrupts ... 1-234
Table 10-7. Register Settings during Machine Check—Instruction Interrupts .. 1-235
Table 10-8. Register Settings during Machine Check—Data Interrupts ... 1-236
Table 10-9. Register Settings during Data Storage Interrupts .. 1-237
Table 10-10. Register Settings during Instruction Storage Interrupts ... 1-238
Table 10-11. Register Settings during External Interrupts .. 1-238
Table 10-12. Alignment Interrupt Summary .. 1-239
Table 10-13. Register Settings during Alignment Interrupts ... 1-239
Table 10-14. ESR Usage for Program Interrupts.. 1-239
Table 10-15. Register Settings during Program Interrupts ... 1-240
Table 10-16. Register Settings during System Call Interrupts .. 1-240
Table 10-17. Register Settings during Programmable Interval Timer Interrupts... 1-241
Table 10-18. Register Settings during Fixed Interval Timer Interrupts ... 1-242
Table 10-19. Register Settings during Watchdog Timer Interrupts ... 1-242
Table 10-20. Register Settings during Data TLB Miss Interrupts.. 1-243
Table 10-21. Register Settings during Instruction TLB Miss Interrupts... 1-243
Table 10-22. SRR2 during Debug Interrupts .. 1-244
Table 10-23. Register Settings during Debug Interrupts... 1-244
Table 11-1. Time Base Access ... 1-247
Table 11-2. FIT Controls ... 1-249
Table 11-3. Watchdog Timer Controls .. 1-250
Table 12-1. GPT Registers ... 1-257
Table 13-1. JTAG Instructions .. 2-263
Table 13-2. Debug Events .. 2-274
Table 13-3. DAC Applied to Cache Instructions ... 2-279
Table 13-4. Setting of DBSR Bits for DAC and DVC Events .. 2-280
Table 13-5. Comparisons Based on DBCR1[DVnM] .. 2-281
Table 13-6. Comparisons for Aligned DVC Accesses .. 2-281
Table 13-7. Comparisons for Misaligned DVC Accesses ... 2-282
Table 14-1. CPM Registers... 3-284
Table 15-1. SDRAM Signal Usage and State During/Following Reset ... 5-291
Table 15-2. SDRAM Controller DCR Addresses .. 5-291
Table 15-3. SDRAM Controller Configuration and Status Registers .. 5-292
32 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 15-4. SDRAM Addressing Modes ... 5-296
Table 15-5. SDRAM Page Size .. 5-296
Table 15-6. Logical Address Bit on BA1:0 and MemAddr12:0 Versus Addressing Mode. 5-297
Table 15-7. SDRAM Memory Timing Parameters .. 5-299
Table 16-1. EBC Signal Usage and State During and After Chip and System Resets................................. 6-307
Table 16-2. Effect of Driver Enable Programming on EBC Signal States... 6-308
Table 16-3. EBC DCR Addresses... 6-320
Table 16-4. EBC Configuration and Status Registers... 6-320
Table 17-1. PowerPC, CoreConnect PLB, and PCI Address Bit-Naming Conventions................................ 7-333
Table 17-2. PowerPC, CoreConnect PLB, and PCI Data Bus Bit-Naming Conventions 7-334
Table 17-3. PLB Address Map.. 7-336
Table 17-4. PCI Memory Address Map... 7-339
Table 17-5. Transaction Mapping: PLB —> PCI... 7-340
Table 17-6. Transaction Mapping: PCI → PLB... 7-345
Table 17-7. Collision Resolution ... 7-349
Table 17-8. Directly Accessed MMIO Registers ... 7-350
Table 17-9. PCI Configuration Address and Data Registers .. 7-350
Table 17-10. PCI Configuration Register Offsets.. 7-350
Table 17-11. PLB Unsupported Transfer Types ... 7-386
Table 17-12. Address Map Register Values ... 7-392
Table 18-1. DMA Controller Configuration and Status Registers ... 8-450
Table 18-2. DMA Transfer Priorities ... 8-456
Table 18-3. Address Alignment Requirements ... 8-457
Table 18-4. Scatter/Gather Descriptor Table .. 8-458
Table 18-5. Bit Fields in the Scatter/Gather Descriptor Table .. 8-458
Table 18-6. DMA Registers Loaded from Scatter/Gather Descriptor Table.. 8-459
Table 19-1. FCS/SA Enable - Possible Configurations... 9-472
Table 19-2. FCS/Pad Enable - Possible Configurations ... 9-472
Table 19-3. FCS/VLAN Tag Enable - Possible Configurations... 9-472
Table 19-4. In Range Length Error Behavior for Various Packet Lengths.. 9-474
Table 19-5. EMAC0 Register Summary.. 9-483
Table 19-6. EMAC1 Register Summary.. 9-484
Table 20-1. MAL0 Channel Assignment ... 10-513
Table 20-2. MAL Register Summary... 10-533
Table 21-1. Baud Rate Settings.. 11-546
Table 21-2. UART Configuration Registers .. 11-548
Table 21-3. Interrupt Priority Level.. 11-550
Table 21-4. Divisor Latch Settings for Certain Baud Rates .. 11-559
Table 21-5. DMA Channel Assignments... 11-561
Table 21-6. UART0 Transmitter DMA Mode Register Field Settings.. 11-563
Table 21-7. UART1 Transmitter DMA Mode Register Field Settings.. 11-564
Table 21-8. UART0 Receiver DMA Mode Register Field Settings.. 11-564
Table 21-9. UART1 Receiver DMA Mode Register Field Settings.. 11-565
Table 22-1. IIC Registers .. 12-568
Table 22-2. IIC Response to IIC0_CNTL Field Settings ... 12-574
Table 22-3. IIC0_STS[ERR, PT] Decoding... 12-577
Table 22-4. IIC0 Clock Divide Programming... 12-582
AMCC Proprietary 33

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 22-5. IICn_SCL Fequency for OPB CLK and IICn_CLKDIV Settings ... 12-583
Table 23-1. GPIO Register Summary ... 13-596
Table 23-2. GPIO Output Signal Selection ... 13-598
Table 23-3. GPIO Three-State Selection .. 13-598
Table 23-4. GPIO0_ODR Control Settings ... 13-599
Table 23-5. GPIO Alternate Input Signal Selection... 13-599
Table 23-6. GPIO0 Signal Assignments ... 13-600
Table 23-7. Selecting GPIO0 Alternate 1 Signals... 13-601
Table 24-1. Event Count Registers... 14-604
Table 25-1. Implementation-Specific Instructions ... 16-608
Table 25-2. Operator Precedence .. 16-612
Table 25. Extended Mnemonics for addi .. 17-617
Table 25-1. Extended Mnemonics for addic ... 17-618
Table 25-2. Extended Mnemonics for addic. .. 17-619
Table 25-3. Extended Mnemonics for addis ... 17-620
Table 25-4. Extended Mnemonics for bc, bca, bcl, bcla ... 17-629
Table 25-5. Extended Mnemonics for bcctr, bcctrl.. 17-635
Table 25-6. Extended Mnemonics for bclr, bclrl.. 17-638
Table 25-7. Extended Mnemonics for cmp ... 17-642
Table 25-8. Extended Mnemonics for cmpi .. 17-643
Table 25-9. Extended Mnemonics for cmpl .. 17-644
Table 25-10. Extended Mnemonics for cmpli.. 17-645
Table 25-11. Extended Mnemonics for creqv ... 17-649
Table 25-12. Extended Mnemonics for crnor.. 17-651
Table 25-13. Extended Mnemonics for cror .. 17-652
Table 25-14. Extended Mnemonics for crxor .. 17-654
Table 25-18. Transfer Bit Mnemonic Assignment... 20-718
Table 25-19. Extended Mnemonics for mfspr ... 21-724
Table 25-20. Extended Mnemonics for mftb ... 21-725
Table 25-21. Extended Mnemonics for mftb ... 21-725
Table 25-22. Extended Mnemonics for mtcrf .. 21-727
Table 25-22. Extended Mnemonics for mtspr ... 22-732
Table 25-23. Extended Mnemonics for nor, nor.. 23-752
Table 25-24. Extended Mnemonics for or, or.. 23-753
Table 25-25. Extended Mnemonics for ori .. 23-755
Table 25-26. Extended Mnemonics for rlwimi, rlwimi. .. 23-759
Table 25-27. Extended Mnemonics for rlwinm, rlwinm. .. 23-760
Table 25-28. Extended Mnemonics for rlwnm, rlwnm. ... 23-763
Table 25-24. Extended Mnemonics for subf, subf., subfo, subfo. ... 24-790
Table 25-25. Extended Mnemonics for subfc, subfc., subfco, subfco... 24-791
Table 25-26. Extended Mnemonics for tlbre ... 24-799
Table 25-27. Extended Mnemonics for tlbwe.. 24-803
Table 25-28. Extended Mnemonics for tw .. 24-805
Table 25-29. Extended Mnemonics for twi.. 24-808
Table 26-1. PPC405EP General Purpose Registers .. 25-816
Table 26-2. Special Purpose Registers .. 25-818
Table 26-3. Time Base Registers ... 25-820
34 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 26-4. Directly Accessed DCRs.. 25-820
Table 26-5. SDRAM Controller DCR Usage ... 25-823
Table 26-6. Offsets for SDRAM Controller Registers ... 25-823
Table 26-7. EBC DCR Usage ... 25-823
Table 26-8. Offsets for EBC Registers.. 25-823
Table 26-9. Directly Accessed MMIO Registers ... 25-824
Table 26-10. PCI Configuration Address and Data Registers .. 25-828
Table 26-11. PCI Configuration Registers .. 25-828
Table 27-1. Alphabetical Signal List.. 26-1110
Table 27-2. Signal Descriptions .. 26-1114
AMCC Proprietary 35

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
36 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
About This Book
This user’s manual provides the architectural overview, programming model, and detailed information about the
registers, the instruction set, and operations of the AMCC PowerPC™ 405EP (PPC405EP) 32-bit RISC embedded
processor.
The PPC405EP RISC embedded processor features:
• PowerPC Architecture™
• Single-cycle execution for most instructions
• Instruction cache unit and data cache unit
• Support for little endian operation
• Interrupt interface for one critical and one non-critical interrupt signal
• JTAG interface

Who Should Use This Book
This book is for system hardware and software developers, and for application developers who need to understand
the PPC405EP. The audience should understand network processor design, network system design, operating
systems, RISC processing, and design for testability.
AMCC Proprietary 37

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
How to Use This Book
This book describes the PPC405EP device architecture, programming model, external interfaces, internal regis-
ters, and instruction set. This book contains the following chapters, arranged in parts:

Part I Introducing the PPC405EP Embedded Processor
Chapter 1, “Overview”
Chapter 2, “On-Chip Buses”

Part II The PPC405EP RISC Processor
Chapter 3, “Programming Model”
Chapter 4, “Cache Operations”
Chapter 5, “On-Chip Memory”
Chapter 6, “Memory Management”

Part III PPC405EP System Operations
Chapter 7, “Clocking”
Chapter 8, “Reset and Initialization”
Chapter 9, “Pin Strapping and Sharing”
Chapter 10, “Interrupt Controller Operations”
Chapter 11, “Timer Facilities”
Chapter 12, “General Purpose Timers”
Chapter 13, “Debugging”
Chapter 14, “Clock and Power Management”

Part IV PPC405EP External Interfaces
Chapter 15, “SDRAM Controller”
Chapter 16, “External Bus Controller”
Chapter 17, “PCI Interface”
Chapter 18, “Direct Memory Access Controller”
Chapter 19, “Ethernet Media Access Controllers”
Chapter 20, “Memory Access Layer”
Chapter 21, “Serial Port Operations”
Chapter 22, “IIC Bus Interface”
Chapter 23, “GPIO Operations”
Chapter 24, “Event Counters”

Part V Reference
Chapter 25, “Instruction Set”
Chapter 26, “Register Summary”
Chapter 27, “Signal Summary”

This book contains the following appendixes:
Appendix A, “Instruction Summary.”
Appendix B, “Instructions by Category.”
Appendix C, “Code Optimization and Instruction Timings.”

To help readers find material in these chapters, the book contains:
Table of Contents on page 3.
Figures on page 27.
List of Tables on page 39.
Index, on page X-1.
38 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Conventions
The following is a list of notational conventions frequently used in this manual.

ActiveLow An overbar indicates an active-low signal.

n A decimal number

0xn A hexadecimal number

0bn A binary number

= Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Twos complement addition

– Twos complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division; (33 % 32) = 1.

|| Concatenation

=, ≠ Equal, not equal relations

<, > Signed comparison relations

, Unsigned comparison relations

if...then...else... Conditional execution; if condition then a else b, where a and b represent one or
more pseudocode statements. Indenting indicates the ranges of a and b. If b is
null, the else does not appear.

do Do loop. “to” and “by” clauses specify incrementing an iteration variable; “while”
and “until” clauses specify terminating conditions. Indenting indicates the scope
of a loop.

leave Leave innermost do loop or do loop specified in a leave statement.

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

FLDb,b, . . . A list of bits, by number or name, in a named instruction or register field

REGb A bit in a named register

REGb:b A range of bits in a named register

REGb,b, . . . A list of bits, by number or name, in a named register

REG[FLD] A field in a named register

REG[FLD, FLD . . .] A list of fields in a named register

<u >u
AMCC Proprietary 39

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
REG[FLD:FLD] A range of fields in a named register

GPR(r) General Purpose Register (GPR) r, where 0 ≤ r ≤ 31.

(GPR(r)) The contents of GPR r, where 0 ≤ r ≤ 31.

DCR(DCRN) A Device Control Register (DCR) specified by the DCRF field in an mfdcr or
mtdcr instruction

SPR(SPRN) An SPR specified by the SPRF field in an mfspr or mtspr instruction

TBR(TBRN) A Time Base Register (TBR) specified by the TBRF field in an mftb instruction

GPRs RA, RB, . . .
(Rx) The contents of a GPR, where x is A, B, S, or T

(RA|0) The contents of the register RA or 0, if the RA field is 0.

CRFLD The field in the condition register pointed to by a field of an instruction.

c0:3 A 4-bit object used to store condition results in compare instructions.
nb The bit or bit value b is replicated n times.

xx Bit positions which are don’t-cares.

CEIL(x) Least integer ≥ x.

EXTS(x) The result of extending x on the left with sign bits.

PC Program counter.

RESERVE Reserve bit; indicates whether a process has reserved a block of storage.

CIA Current instruction address; the 32-bit address of the instruction being described
by a sequence of pseudocode. This address is used to set the next instruction
address (NIA). Does not correspond to any architected register.

NIA Next instruction address; the 32-bit address of the next instruction to be
executed. In pseudocode, a successful branch is indicated by assigning a value
to NIA. For instructions that do not branch, the NIA is CIA +4.

MS(addr, n) The number of bytes represented by n at the location in main storage
represented by addr.

EA Effective address; the 32-bit address, derived by applying indexing or indirect
addressing rules to the specified operand, that specifies a location in main
storage.

EAb A bit in an effective address.

EAb:b A range of bits in an effective address.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits specified by n.

MASK(MB,ME) Mask having 1s in positions MB through ME (wrapping if MB > ME) and 0s
elsewhere.

instruction(EA) An instruction operating on a data or instruction cache block associated with an
EA.
40 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Part I. Introducing the PPC405EP Embedded Processor
AMCC Proprietary 41

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
42 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 1. Overview

The AMCC PowerPC PPC405EP 32-bit embedded processor is a system-on-a-chip (SOC) that integrates a Pow-
erPC 405 embedded processor core with a rich set of on-chip peripherals:
• TwoFour 10/100Mbps Ethernet controllers
• 32-channel high-level datalink controller (HDLC)
• 8-port HDLC controller
• SDRAM controller
• Two serial ports
• External bus controller (EBC)
• Interrupt controller
• PCI bus interface
• Direct memory access (DMA) with scatter/gather support
• Inter-integrated circuit (IIC) interface
• General-purpose input/output (GPIO)
This chapter describes:
• PPC405EP features
• The PowerPC Architecture™
• The PPC405EP implementation of the AMCC PowerPC Embedded Environment, an extension of the Pow-

erPC Architecture for embedded applications
• PPC405EP organization, including a block diagram and descriptions of the functional units
• PPC405EP registers
• PPC405EP addressing modes
AMCC Proprietary 43

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 1-1 illustrates the logical organization of the PPC405EP:

1.1 PPC405EP Features

The PPC405EP provides high performance and low power consumption. The PPC405EP RISC CPU executes at
sustained speeds approaching one cycle per instruction. On-chip instruction and data caches reduce chip count
and design complexity in systems and improve system throughput.

1.1.1 Bus and Peripheral Features
The PPC405EP multilevel bus architecture and peripherals feature:
• Processor local bus (PLB)
• On-chip peripheral bus (OPB)
• PC-100 and PC-133 compatible synchronous DRAM (SDRAM) controller

– 32-bit interface for non-ECC applications
– 40-bit interface (32 data bits and 8 check bits) for ECC applications

• External bus controller (EBC)
– Flash/Boot ROM interface
– Direct support for 8-, or 16-, or 32-bit SRAM or external peripherals

• PCI bus, designed to Revision 2.2 (32 bit, up to 66 MHz)
– PCI bus interface operates asynchronously to the PLB

PPC405
Processor Core

DCU ICU

DCR Bus

DCRs

Array OPB (32 bits)

GPIO IIC UART UART

MAL

DMA
Bridge

PLB

SDRAM
Controller

Clock
Control
Reset

Power
Mgmt

JTAG Trace

Timers

MMU

Array

MII

Controller
OPB

Interrupt
Controller

(64 bits)

Arb

External
Bus

Controller

Figure 1-1. PPC405EP Block Diagram

Ethernet
(2 cores)

GPT
OCM

PCI Bridge
44 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
– Internal PCI bus arbiter that can be disabled for use with an external arbiter
• Two Ethernet 10/100 Mbps (full-duplex) controllers with memory access layer (MAL) support
• Interrupt controller supporting programmable interrupt handling from a variety of sources
• Two 8-bit serial ports (165750 compatible UARTs)
• Inter-integrated circuit (IIC) controller
• General purpose I/O (GPIO) controller

1.1.2 PowerPC 405 Processor Core Features
The PowerPC 405 RISC fixed-point CPU features:
• PowerPC User Instruction Set Architecture (UISA) and extensions for embedded applications
• Thirty-two 32-bit general purpose registers (GPRs)
• Static branch prediction
• Five-stage pipeline with single-cycle execution of most instructions, including loads/stores
• Unaligned load/store support to cache arrays, main memory, and on-chip memory (OCM)
• Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-cycle divide)
• Multiply-accumulate instructions
• Enhanced string and multiple-word handling
• True little endian operation
• Forward and reverse trace from a trigger event
• Storage control

– Separate, configurable, two-way set-associative instruction and data cache units
– Eight words (32 bytes) per cache line
– 16KB instruction and 816KB data cache arrays
– Instruction cache unit (ICU) non-blocking during line fills, data cache unit (DCU) non-blocking during line

fills and flushes
– Read and write line buffers
– Instruction fetch hits are supplied from line buffer
– Data load/store hits are supplied to line buffer
– Programmable ICU prefetching of next sequential line into line buffer
– Programmable ICU prefetching of non-cacheable instructions, full line (eight words) or half line (four words)
– Write-back or write-through DCU write strategies
– Programmable allocation on loads and stores
– Operand forwarding during cache line fills

• Memory Management
– Translation of the 4GB logical address space into physical addresses
– Independent enabling of instruction and data translation/protection
– Page level access control using the translation mechanism
– Software control of page replacement strategy
– Additional control over protection using zones
– WIU0GE (write-through, cachability, compressed user-defined 0, guarded, endian) storage attribute control

for each virtual memory region
• WIMU0GE storage attribute control for thirty-two real 128MB regions
• PowerPC timer facilities

– 64-bit time base
– PIT, FIT, and watchdog timers
AMCC Proprietary 45

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
– Synchronous external time base clock input
• Debug Support

– Enhanced debug support with logical operators
– Four instruction address compares (IACs)
– Two data address compares (DACs)
– Two data value compares (DVCs)
– JTAG instruction to write to ICU
– Forward or backward instruction tracing

• Minimized interrupt latency
• Advanced power management support

1.2 PowerPC Architecture

The PowerPC Architecture comprises three levels of standards:
• PowerPC User Instruction Set Architecture (UISA), including the base user-level instruction set, user-level reg-

isters, programming model, data types, and addressing modes. This is referred to as Book I of the PowerPC
Architecture.

• PowerPC Virtual Environment Architecture, describing the memory model, cache model, cache control instruc-
tions, address aliasing, and related issues. While accessible from the user level, these features are intended to
be accessed from within library routines provided by the system software. This is referred to as Book II of the
PowerPC Architecture.

• PowerPC Operating Environment Architecture, including the memory management model, supervisor-level
registers, and the exception model. These features are not accessible from the user level. This is referred to as
Book III of the PowerPC Architecture.

Book I and Book II define the instruction set and facilities available to the application programmer. Book III defines
features, such as system-level instructions, that are not directly accessible by user applications. The PowerPC
Architecture is described in The PowerPC Architecture: A Specification for a New Family of RISC Processors.
The PowerPC Architecture provides compatibility of PowerPC Book I application code across all PowerPC imple-
mentations to help maximize the portability of applications developed for PowerPC processors. This is
accomplished through compliance with the first level of the architectural definition, the PowerPC UISA, which is
common to all PowerPC implementations.

1.3 The PPC405EP as a PowerPC Implementation

The PPC405EP implements the PowerPC UISA, user-level registers, programming model, data types, addressing
modes, and 32-bit fixed-point operations. The PPC405EP fully complies with the PowerPC UISA. The UISA 64-bit
and floating point operations are not implemented. The floating point operations, which cause exceptions, can then
be emulated by software.
Most of the features of the PPC405EP processor core are compatible with the PowerPC Virtual Environment and
Operating Environment Architectures, as implemented in PowerPC processors such as the 6xx/7xx family. The
PPC405EP processor core also provides a number of optimizations and extensions to these layers of the Pow-
erPC Architecture. The full architecture of the PPC405EP is defined by the PowerPC Embedded Environment and
the PowerPC User Instruction Set Architecture.
The primary extensions of the PowerPC Architecture defined in the Embedded Environment are:
• A simplified memory management mechanism with enhancements for embedded applications
• An enhanced, dual-level interrupt structure
• An architected DCR address space for integrated peripheral control
• The addition of several instructions to support these modified and extended resources
46 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Finally, some of the specific implementation features of the PPC405EP are beyond the scope of the PowerPC
Architecture. These features are included to enhance performance, integrate functionality, and reduce system
complexity in embedded control applications.

1.4 RISC Processor Core Organization

The processor core consists of a 5-stage pipeline, separate instruction and data cache units, virtual memory man-
agement unit (MMU), three timers, debug, and interfaces to other functions.

1.4.1 Instruction and Data Cache Controllers
The PPC405EP processor core uses a 16KB instruction cache unit (ICU) and an 16KB data cache unit (DCU) to
enable concurrent accesses and minimize pipeline stalls. Both cache units are two-way set-associative and use a
32-byte line size. The instruction set provides a rich assortment of cache control instructions, including instructions
to read tag information and data arrays. See Chapter 4, “Cache Operations,” for detailed information about the ICU
and DCU.

1.4.1.1 Instruction Cache Unit

The ICU provides one or two instructions per cycle to the execution unit (EXU) over a 64-bit bus. A line buffer (built
into the output of the array for manufacturing test) enables the ICU to be accessed only once for every four instruc-
tions, to reduce power consumption by the array.
The ICU can forward any or all of the words of a line fill to the EXU to minimize pipeline stalls caused by cache
misses. The ICU aborts speculative fetches abandoned by the EXU, eliminating unnecessary line fills and enabling
the ICU to handle the next EXU fetch. Aborting abandoned requests also eliminates unnecessary PLB activity to
increase PLB availability for other on-chip cores, such as the DMA controller.

1.4.1.2 Data Cache Unit

The DCU transfers 1, 2, 3, 4, or 8 bytes per cycle, depending on the number of byte enables presented by the
CPU. The DCU contains a single-element command and store data queue to reduce pipeline stalls; this queue
enables the DCU to independently process load/store and cache control instructions. Dynamic PLB request priori-
tization reduces pipeline stalls even further. When the DCU is busy with a low-priority request while a subsequent
storage operation requested by the CPU is stalled, the DCU automatically increases the priority of the current
request to the PLB.
The DCU uses a two-line flush queue to minimize pipeline stalls caused by cache misses. Line flushes are post-
poned until after a line fill is completed. Registers comprise the first position of the flush queue; the line buffer built
into the output of the array for manufacturing test serves as the second position of the flush queue. Pipeline stalls
are further reduced by forwarding the requested word to the CPU during the line fill. Single-queued flushes are
non-blocking. When a flush operation is pending, the DCU can continue to access the array to determine subse-
quent load or store hits. Under these conditions, load hits can occur concurrently with store hits to write-back
memory without stalling the pipeline. Requests abandoned by the CPU can also be aborted by the cache
controller.
Additional DCU features enable the programmer to tailor performance for a given application. The DCU can func-
tion in write-back or write-through mode, as controlled by the Data Cache Write-through Register (DCWR) or the
translation look-aside buffer (TLB). DCU performance can be tuned to balance performance and memory coher-
ency. Store-without-allocate, controlled by the SWOA field of the Core Configuration Register 0 (CCR0), can inhibit
line fills caused by store misses to further reduce potential pipeline stalls and unwanted external bus traffic. Simi-
larly, load-without-allocate, controlled by CCR0[LWOA], can inhibit line fills caused by load misses.
AMCC Proprietary 47

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
1.4.2 Memory Management Unit
The 4GB address space of the PPC405EP is presented as a flat address space.
The MMU provides address translation, protection functions, and storage attribute control for embedded applica-
tions. The MMU supports demand paged virtual memory and other management schemes that require precise
control of logical to physical address mapping and flexible memory protection. Working with appropriate system
level software, the MMU provides the following functions:
• Translation of the 4GB logical address space into physical addresses
• Independent enabling of instruction and data translation/protection
• Page level access control using the translation mechanism
• Software control of page replacement strategy
• Additional control over protection using zones
• Storage attributes for cache policy and speculative memory access control
The MMU can be disabled under software control. If the MMU is not used, the PPC405EP provides other storage
control mechanisms.
The translation lookaside buffer (TLB) is the hardware resource that controls translation and protection. It consists
of 64 entries, each specifying a page to be translated. The TLB is fully associative; a page entry can be placed any-
where in the TLB. The translation function of the MMU occurs pre-cache for data accesses. Cache tags and
indexing use physical addresses for data accesses; instruction fetches are virtually indexed and physically tagged.
Software manages the establishment and replacement of TLB entries. This gives system software significant flexi-
bility in implementing a custom page replacement strategy. For example, to reduce TLB thrashing or translation
delays, software can reserve several TLB entries for globally accessible static mappings. The instruction set pro-
vides several instructions to manage TLB entries. These instructions are privileged and require the software to be
executing in supervisor state. Additional TLB instructions are provided to move TLB entry fields to and from GPRs.
The MMU divides logical storage into pages. Eight page sizes (1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB)
are simultaneously supported, so that, at any given time, the TLB can contain entries for any combination of page
sizes. For a logical to physical translation to occur, a valid entry for the page containing the logical address must be
in the TLB. Addresses for which no TLB entry exists cause TLB-Miss exceptions.
To improve performance, 4 instruction-side and 8 data-side TLB entries are kept in shadow arrays. The shadow
arrays prevent TLB contention. Hardware manages the replacement and invalidation of shadow-TLB entries; no
system software action is required. The shadow arrays can be thought of as level 1 TLBs, with the main TLB serv-
ing as a level 2 TLB.
When address translation is enabled, the translation mechanism provides a basic level of protection. Physical
addresses not mapped by a page entry are inaccessible when translation is enabled. Read access is implied by
the existence of the valid entry in the TLB. The EX and WR bits in the TLB entry further define levels of access for
the page, by permitting execute and write access, respectively.
The Zone Protection Register (ZPR) enables the system software to override the TLB access controls. For exam-
ple, the ZPR provides a way to deny read access to application programs. The ZPR can be used to classify storage
by type; access by type can be changed without manipulating individual TLB entries.
The PowerPC Architecture provides WIU0GE (write-back/write through, cachability, user-defined 0, guarded,
endian) storage attributes that control memory accesses, using bits in the TLB or, when address translation is dis-
abled, storage attribute control registers.
When address translation is enabled (MSR[IR, DR] = 1), storage attribute control bits in the TLB control the storage
attributes associated with the current page. When address translation is disabled (MSR[IR, DR] = 0), bits in each
storage attribute control register control the storage attributes associated with storage regions. Each storage
attribute control register contains 32 fields. Each field sets the associated storage attribute for a 128MB memory
region. See “Real-Mode Storage Attribute Control” on page 158 for more information about the storage attribute
control registers.
48 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
1.4.3 Timer Facilities
The processor core contains a time base and three timers:
• Programmable Interval Timer (PIT)
• Fixed Interval Timer (FIT)
• Watchdog timer

The time base is a 64-bit counter incremented either by an internal signal equal to the CPU clock rate or by a
separate external timer clock signal. No interrupts are generated when the time base rolls over.

The PIT is a 32-bit register that is decremented at the same rate as the time base is incremented. The user
loads the PIT register with a value to create the desired delay. When a decrement occurs on a PIT count of 1,
the timer stops decrementing, a bit is set in the Timer Status Register (TSR), and a PIT interrupt is generated.
Optionally, the PIT can be programmed to reload automatically the last value written to the PIT register, after
which the PIT begins decrementing again.The Timer Control Register (TCR) contains the interrupt enable for
the PIT interrupt.

The FIT generates periodic interrupts based on selected bits in the time base. Users can select one of four
intervals for the timer period by setting the appropriate bits in the TCR. When the selected bit in the time base
changes from 0 to 1, a bit is set in the TSR and a FIT interrupt is generated. The FIT interrupt enable is
contained in the TCR.

The watchdog timer generates a periodic interrupt based on selected bits in the time base. Users can select
one of four time periods for the interval and the type of reset generated if the watchdog timer expires twice
without an intervening clear from software.

1.4.4 Debug

The processor core debug facilities include debug modes for the various types of debugging used during
hardware and software development. Also included are debug events that allow developers to control the
debug process. Debug modes and debug events are controlled using debug registers in the chip. The debug
registers are accessed either through software running on the processor, or through the JTAG port. The
JTAG port can also be used for board test.

The debug modes, events, controls, and interfaces provide a powerful combination of debug facilities for
hardware and software development tools.

1.4.4.1 Development Tool Support

The PPC405EP is supported by a wide range of hardware and software development tools.

An operating system debugger is an example of an operating system-aware debugger, implemented using
software traps.

RISCWatch is an example of a development tool that uses the external debug mode, debug events, and the
JTAG port to support hardware and software development and debugging.

The RISCTrace™ feature of RISCWatch is an example of a development tool that uses the real-time trace
capability of the processor core.
AMCC Proprietary 49

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
1.4.4.2 Debug Modes

The internal, external,real-time-trace, and debug wait modes support a variety of debug tool used in
embedded systems development. These debug modes are described in detail in “Debug Modes” on
page 13-265.

1.4.5 Processor Core Interfaces

The processor core provides a range of I/O interfaces.

1.4.5.1 Processor Local Bus

The PLB-compliant interface provides separate 32-bit address and 64-bit data buses for the instruction and
data sides.

1.4.5.2 Device Control Register Bus

The Device Control Register (DCR) bus interface provides access to on-chip registers for configuration and
status of peripherals such as SDRAM, DMA and so on.

These registers are accessed using the mfdcr and mtdcr instructions.

1.4.5.3 Clock and Power Management

This interface supports several methods of clock distribution and power management.

1.4.5.4 JTAG

The JTAG port is enhanced to support the attachment of a debug tool such as the RISCWatch product from
IBM Microelectronics. Through the JTAG test access port, a debug tool can single-step the processor and
interrogate internal processor state to facilitate software debugging. The enhancements comply with the IEEE
1149.1 specification for vendor-specific extensions, and are therefore compatible with standard JTAG
hardware for boundary-scan system testing.

1.4.5.5 Interrupts

The processor core provides an interface to the UIC, an on-chip interrupt controller that is logically outside the
processor core. The UIC combines asynchronous interrupt inputs from on-chip and offchip sources and
presents them to the processor core using a pair of interrupt signals: critical and non-critical.

1.4.5.6 On-Chip Memory

The on-chip memory (OCM) interface supports the implementation of instruction- and data-side memory that
can be accessed at performance levels matching the cache arrays.

The PPC405EP provides 4KB of OCM.

1.5 Processor Core Programming Model

The programming model is described in detail in Chapter 3, “Programming Model.”

The PowerPC instruction set and Special Purpose Registers (SPRs) provide a high degree of user control
over configuration and operation of the processor core functional units.
50 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
1.5.1 Data Types

Processor core operands are bytes, halfwords, and words. Multiple words or strings of bytes can be
transferred using the load/store multiple and load/store string instructions. Data is represented in twos
complement notation or in unsigned fixed-point format.

The address of a multibyte operand is always the lowest memory address occupied by that operand. Byte
ordering can be selected as big endian (the lowest memory address of an operand contains its most
significant byte) or as little endian (the lowest memory address of an operand contains its least significant
byte). See “Byte Ordering” on page 90 for more information about big and little endian operation.

1.5.2 Processor Core Register Set Summary

The processor core registers can be grouped into basic categories based on function and access mode:
general purpose registers (GPRs), special purpose registers (SPRs), the machine state register (MSR), the
condition register (CR), and device control registers (DCRs).

Chapter 26, “Register Summary,” provides a register diagram and a register field description table for each
register.

1.5.2.1 General Purpose Registers

The processor core contains 32 GPRs; each register contains 32 bits. The contents of the GPRs can be
transferred from memory using load instructions and stored to memory using store instructions. GPRs, which
are specified as operands in many instructions, can also receive instruction results and the contents of other
registers.

1.5.2.2 Special Purpose Registers

Special Purpose Registers (SPRs), which are part of the PowerPC Architecture, are accessed using the
mtspr and mfspr instructions. SPRs control the use of the debug facilities, timers, interrupts, storage control
attributes, and other architected processor resources.

All SPRs are privileged (unavailable to user-mode programs), except the Count Register (CTR), the Link
Register (LR), SPR General Purpose Registers (SPRG4–SPRG7, read-only), and the Fixedpoint Exception
Register (XER). Note that access to the Time Base Lower (TBL) and Time Base Upper (TBU) registers, when
addressed as SPRs, is write-only and privileged. However, when addressed as Time Base Registers (TBRs),
read access to these registers is not privileged. See “Time Base Registers” on page 819 for more information.

1.5.2.3 Machine State Register

The PPC405EP processor core contains a 32-bit Machine State Register (MSR). The contents of a GPR can
be written to the MSR using the mtmsr instruction, and the MSR contents can be read into a GPR using the
mfmsr instruction. The MSR contains fields that control the operation of the processor core.

1.5.2.4 Condition Register

The PPC405EP processor core contains a 32-bit Condition Register (CR). These bits are grouped into eight
4-bit fields, CR[CR0]–CR[CR7]. Instructions are provided to perform logical operations on CR fields and bits
within fields and to test CR bits within fields. The CR fields, which are set by compare instructions, can be
used to control branches. CR[CR0] can be set implicitly by arithmetic instructions.
AMCC Proprietary 51

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
1.5.2.5 Device Control Registers

DCRs, which are architecturally outside of the processor core, are accessed using the mtdcr and mfdcr
instructions. DCRs are used to control, configure, and hold status for various functional units that are not part
of the processor core.

The mtdcr and mfdcr instructions are privileged, for all DCRs. Therefore, all accesses to DCRs are privileged.
See “Privileged Mode Operation” on page 103.

1.5.3 Memory-Mapped I/O Registers

The memory-mapped I/O (MMIO) registers are accessed using load and store instructions. MMIO registers,
which are outside processor core and which are not architected, are used to control, configure, and hold
status for various functional units that are not part of the processor core.

1.5.4 Addressing Modes

The processor core supports the following addressing modes, which enable efficient retrieval and storage of
data in memory:

• Base plus displacement addressing
• Indexed addressing
• Base plus displacement addressing and indexed addressing, with update

In the base plus displacement addressing mode, an effective address (EA) is formed by adding a
displacement to a base address contained in a GPR (or to an implied base of 0). The displacement is an
immediate field in an instruction.

In the indexed addressing mode, the EA is formed by adding an index contained in a GPR to a base address
contained in a GPR (or to an implied base of 0).

The base plus displacement and the indexed addressing modes also have a “with update” mode. In “with
update” mode, the effective address calculated for the current operation is saved in the base GPR, and can
be used as the base in the next operation. The “with update” mode relieves the processor from repeatedly
loading a GPR with an address for each piece of data, regardless of the proximity of the data in memory.
52 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 2. On-Chip Buses

The on-chip bus architecture, which consists of the processor local bus (PLB), on-chip peripheral bus (OPB),
and device control register (DCR) bus, provides a link between the cache units in the processor core and
other PLB and OPB master and slave devices used in the PPC405EP. These devices include the SDRAM
controller, PCI bridge, DMA controller, and external bus controller.

The PLB is a high performance bus used to access memory through bus interface units. The PLB master and
slave assignments for the PPC405EP are listed in “PLB Masters and Slaves” on page 2-54.

Lower performance peripherals (such as serial ports) are attached to the OPB. A bridge between the PLB
and OPB enables data transfers between PLB masters and OPB slaves. DMA peripherals can also be OPB
peripherals.

The DCR bus is used primarily to access status and control registers of the various PLB and OPB masters
and slaves. The DCR bus offloads status and control read and write transfers from the PLB. The DCR bus is
not described further in this chapter.

The following publications, which are available from your IBM representative and in the IBM Microelectronics
technical library (www.chips.ibm.com), describe the on-chip bus architecture:

• The CoreConnect™ Bus Architecture
• Processor Local Bus Architecture Specifications
• On-Chip Peripheral Bus Architecture Specifications
• Device Control Register Bus Architecture Specifications

The PPC405EP block diagram (Figure 1-1 on page 1-44) illustrates the on-chip bus structure of the
PPC405EP.

2.1 Processor Local Bus

The PLB is a high-performance on-chip bus. The PLB supports read and write data transfers between master
and slave devices equipped with a PLB interface and connected through PLB signals.

Each PLB master is attached to the PLB through separate address, read data and write data buses, and
transfer qualifier signals. PLB slaves are attached to the PLB through shared, but decoupled, address, read
data and write data buses, and transfer control and status signals for each data bus.

Access to the PLB is granted through a central arbitration mechanism that enables masters to compete for
bus ownership. This arbitration mechanism provides for fixed and fair priority schemes.

Timing for all PLB signals is provided by a clock source that is shared by all PLB masters and slaves.

2.1.1 PLB Features
• Overlapping of read and write transfers allows two data transfers per clock cycle for maximum bus utilization
• Decoupled address and data buses support split-bus transaction capability for improved bandwidth
• Address pipelining reduces overall bus latency by allowing the latency associated with a new request to be

overlapped with an ongoing data transfer in the same direction
• Late master request abort capability reduces latency associated with aborted requests
• Four levels of request priority and selectable arbitration modes provide flexible arbitration policies.
• Support for 16-, 32-, and 64-byte line data transfers
AMCC Proprietary 53

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• Sequential burst protocol allows byte, halfword, and word burst data transfers.
• DMA buffered peripheral-to-memory, memory-to-peripheral, and memory-to-memory operations are supported

2.1.2 PLB Masters and Slaves

Lists the PLB masters and slaves provided in the PPC405EP.

2.1.3 PLB Master Assignments

Each PLB master can be programmed to use one of four priority levels during PLB transfers, enabling the
system designer to tune PLB transfer priorities to the requirements of a particular application. For example, if
an application always requires PCI to SDRAM transfers to have the lowest latency, the PCI master can be
programmed to the highest PLB master priority. This causes the PLB arbiter to grant PCI access requests
before granting the access requests of any other master.

Programming Note: PLB master priority assignments, which are application-dependent, must be considered
carefully to prevent potential lockouts of lower priority masters. For most applications, assigning a priority of
0b10 to each master is a useful starting point.

A register associated with each master controls the priority of that master. Table 2-1 lists the PLB masters
and the register fields controlling the priority of the masters. Priorities range from 0b00 (lowest) to 0b11
(highest).

See “PLB Arbiter Control Register (PLB0_ACR)” on page 57 for information about programming the
PLB0_ACR to control PLB priority mode and priority order, which determine how the PLB arbitrates
simultaneous PLB bus access requests having equal priorities.

Table 2-1. Registers Controlling PLB Master Priority Assignments

Master ID Description Register Field Comments

0 DMA controller DMA0_CR0[CP] Unique priorities can be
assigned to each DMA
channel.

DMA0_CR1[CP]
DMA0_CR2[CP]
DMA0_CR3[CP]

1 Processor core ICU CCR0[IPP]

2 Processor core DCU CCR0[DPP1] The high-order bit of
CCR0[DPP1] is controlled
by the DCU logic, so only
the low-order priority bit
can be programmed.

3 Reserved

4 PCI bridge master PCIC0_BRDGOPT1[PRP]

5 MAL0 MAL0_CFG[PLBP]

6 Reserved

7 Reserved
54 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
2.1.4 PLB Transfer Protocol

A PLB transaction is composed of an address cycle and a data cycle.

The address cycle has three phases: request, transfer, and address acknowledge. A PLB transaction begins
when a master drives its address and transfer qualifier signals and requests ownership of the bus during the
request phase of the address cycle. Once bus ownership has been granted by the PLB arbiter, the master’s
address and transfer qualifiers are presented to the slave devices during the transfer phase.

During normal operation, the address cycle is terminated by a slave latching the master’s address and
transfer qualifiers during the address acknowledge phase.

Each data beat in the data cycle has two phases: transfer and data acknowledge. During the transfer phase,
the master drives the write data bus for a write transfer or samples the read data bus for a read transfer. Data
acknowledge signals are required during the data acknowledge phase for each data beat in a data cycle.

Note: For single-beat transfers, data acknowledge signals also indicate the end of the data transfer. For line
or burst transfers, the data acknowledge signals apply to each beat and indicate the end of the data
cycle only after the final beat.

2.1.5 Overlapped PLB Transfers

Figure 2-1 shows an example of overlapped PLB transactions on the read/write data buses with pipelining.
PLB address, read data, and write data buses are decoupled from one another, allowing for address cycles to
be overlapped with read or write data cycles, and for read data cycles to be overlapped with write data cycles.
The PLB split-bus transaction capability allows the address and data buses to have different masters at the
same time.

PLB address pipelining capability enables a new bus transfer to begin before an ongoing transfer finishes.
Address pipelining reduces overall bus latency on the PLB by enabling the latency associated with a new
transfer request to be overlapped with an ongoing data transfer in the same direction.

PLB masters A and B each present a read request followed by a write request. Master B gets the bus first, so
its read is the primary read transaction. The master A address cycle begins as soon as the master B address
cycle ends. The master A read is taken as a secondary transfer. Writes follow reads.
AMCC Proprietary 55

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Note: A master can begin to request ownership of the PLB in parallel with the address cycle or data cycle of
another master bus transfer. Overlapped read and write data transfers and split-bus transactions
enable the PLB to operate at a very high bandwidth.

2.1.6 PLB Arbiter Registers

PLB arbiter registers are DCRs accessed using the mfdcr and mtdcr instructions.

Table 2-2 summarizes the PLB arbiter DCRs.

Table 2-2. PLB Arbiter Registers

Mnemonic Register Name Address Access Page

PLB0_ACR PLB Arbiter Control Register 0x087 R/W 2-57
PLB0_BEAR PLB Error Address Register 0x086 R/O 2-57
PLB0_BESR PLB Error Status Register 0x084 R/Clear 2-58

PLB Clock

2 4 5 8 91 3Cycle

Figure 2-1. Overlapped PLB Transfers

6 7 10 12 14 15 18 1911 13 16 17 20

Master A

Master B

PLB Addr Bus

PLB Write Data

PLB Read Data

Bus

Bus

REQ REQ REQ REQREQ REQX/AA X/AA

REQ REQREQ REQX/AA X/AA

X/AA:B

X/DA X/DAX/DA X/DA X/DA X/DAX/DA X/DA

X/AA:A X/AA:B X/AA:A

Read Write

Read Write

Master B Write Master A Write

X/DA X/DAX/DA X/DA X/DA X/DAX/DA X/DA

Note: X/AA = Xfer/AddrAck
X/DA = Xfer/DataAck
X/AA:A = X/AA Master A
X/AA:B = X/AA Master B

Master B Read Master A Read

Pri
Read B

Sec
Read A

Pri
Write B

Sec
Write A
56 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
2.1.6.1 PLB Arbiter Control Register (PLB0_ACR)

The PLB0_ACR controls PLB arbitration priority, which is determined by PLB priority mode and PLB priority
order.

2.1.6.2 PLB Error Address Register (PLB0_BEAR)

The read-only PLB0_BEAR contains the address of the access on which a bus timeout error occurred.

The PLB0_BEAR can be locked by the master. Once locked, the PLB0_BEAR cannot be updated, if a
subsequent error occurs, until all PLB0_BESR[FLCKn] fields are cleared (n is the master ID).

Figure 2-2. PLB Arbiter Control Register (PLB0_ACR)
0 PPM PLB Priority Mode

0 Fixed
1 Fair

1:3 PPO PLB Priority Order
000 Masters 0, 1, 2, 4, 5
001 Masters 1, 2, 4, 5, 0
010 Masters 2, 4, 5, 0, 1
011 Masters 4, 5, 0, 1, 2
100 Masters 5, 0, 1, 2, 4
101 Reserved
110 Reserved
111 Reserved

4 HBU High Bus Utilization
0 Disabled
1 Enabled

5:31 Reserved

Figure 2-3. PLB Error Address Register (PLB0_BEAR)
0:31 Address of bus timeout error

0 1 3 4 5 31

PPM

PPO

HBU

0 31
AMCC Proprietary 57

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
2.1.6.3 PLB Error Status Register (PLB0_BESR)

The read/clear PLB0_BESR identifies timeout errors on PLB bus transfers, the master initiating the transfer,
and the type of transfer.

Each PLB0_BESR[PTEn] field (n is the master ID) can be locked by the master. Once locked, PLB0_BESR
[PTEn] fields cannot be updated if a subsequent error occurs until the corresponding PLB0_BESR [FLCKn]
field is cleared. To clear a PLB0_BESR field, write 1 to the field. Writing 0 to a PLB0_BESR field does not
affect the field.

Figure 2-4. PLB Error Status Register (PLB0_BESR)
0 PTE0 Master 0 PLB Timeout Error Status

0 No master 0 timeout error
1 Master 0 timeout error

Master 0 is DMA.

1 R/W0 Master 0 Read/Write Status
0 Master 0 error operation was a write
1 Master 0 ICU error operation was a read

2 FLK0 Master 0 PLB0_BESR Field Lock
0 Master 0 PLB0_BESR field is unlocked
1 Master 0 field is locked

3 ALK0 Master 0 PLB0_BEAR Address Lock
0 Master 0 PLB0_BEAR is unlocked
1 Master 0 PLB0_BEAR is locked

4 PTE1 Master 1 PLB Timeout Error Status
0 No master 1 timeout error
1 Master 1 timeout error

Master 1 is the processor core ICU.

5 R/W1 Master 1 Read/Write Status
0 Master 1 error operation was a write
1 Master 1 error operation was a read

6 FLK1 Master 1PLB0_BESR Field Lock
0 Master 1 PLB0_BESR field is unlocked
1 Master 1 PLB0_BESR field is locked

7 ALK1 Master 1 PLB0_BEAR Address Lock
0 Master 1 PLB0_BEAR is unlocked
1 Master 1 PLB0_BEAR is locked

8 PTE2 Master 2 PLB Timeout Error Status
0 No master 2 timeout error
1 Master 2 timeout error

Master 2 is the processor core DCU.

9 R/W2 Master 2 Read/Write Status
0 Master 2 error operation was a write
1 Master 2 error operation was a read

10 FLK2 Master 2 PLB0_BESR Field Lock
0 Master 2 PLB0_BESR field is unlocked
1 Master 2 PLB0_BESR field is locked

11 ALK2 Master 2 PLB0_BEAR Address Lock
0 Master 2 PLB0_BEAR is unlocked
1 Master 2 PLB0_BEAR is locked

12:15 Reserved
16 PTE4 Master 4 PLB Timeout Error Status

0 No master 4 timeout error
1 Master 4 timeout error

Master 4 is PCI bridge.
58 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
2.1.7 PLB to OPB Bridge Registers

The PLB to OPB bridge registers are DCRs accessed using the mfdcr and mtdcr instructions.

Table 2-3 lists the PLB to OPB bridge registers.

2.1.7.1 Bridge Error Address Register (POB0_BEAR)

The read-only POB0_BEAR reports the address of a PLB to OPB transfer that results in an error. The PLB to
OPB bridge writes the error address in the POB0_BEAR, unless the associated POB0_BESRm[ALCKn] field

17 R/W4 Master 4 Read/Write Status
0 Master 4 error operation was a write
1 Master 4 error operation was a read

18 FLK4 Master 4 PLB0_BESR Field Lock
0 Master 4 PLB0_BESR field is unlocked
1 Master 4 field is locked

19 ALK4 Master 4 PLB0_BEAR Address Lock
0 Master 4 PLB0_BEAR is unlocked
1 Master 4 PLB0_BEAR is locked

20 PTE5 Master 5 PLB Timeout Error Status
0 No master 5 timeout error
1 Master 5 timeout error

Master 5 is MAL0.

21 R/W5 Master 5 Read/Write Status
0 Master 5 error operation was a write
1 Master 5 error operation was a read

22 FLK5 Master 5 PLB0_BESR Field Lock
0 Master 5 PLB0_BESR field is unlocked
1 Master 5 PLB0_BESR field is locked

23 ALK5 Master 5 PLB0_BEAR Address Lock
0 Master 5 PLB0_BEAR is unlocked
1 Master 5 PLB0_BEAR is locked

24:31 Reserved

Table 2-3. PLB-to-OPB Bridge Registers

Mnemonic Register Name Address Access Page

POB0_BEAR Bridge Error Address Register 0x0A2 R/O 2-59
POB0_BESR0 Bridge Error Status Register 0

(Master IDs 0,1, 2)
0x0A0 R/Clear 2-60

POB0_BESR1 Bridge Error Status Register
(Master IDs 4, 5)

0x0A4 R/Clear 2-60
AMCC Proprietary 59

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
is set (m is either 0 or 1, depending on the master ID specified by n). Once locked, the PLB to OPB bridge
cannot write POB0_BEAR until all POB0_BESRm[ALCKn] fields that are set are cleared.

2.1.7.2 Bridge Error Status Registers (POB0_BESR0–POB0_BESR1)

The PLB to OPB bridge writes error information into the POB0_BESR. (For master IDs 0, 1, 2, m = 0; for
master ID, m = 1.)

POB0_BESRm fields can be locked using the POB0_BESRm[FLKn] and POB0_BESRm[ALKn] fields (n is
the master ID). Once locked, the POB0_BESRm fields associated with a master cannot be overwritten if a
subsequent error occurs until the locking fields are cleared. To clear a lock, write 1 to the
POB0_BESRm[FLKn] and POB0_BESRm[ALKn] fields that are set. Writing 0 to a lock field does not affect
the field.

Figure 2-5. Bridge Error Address Register (POB0_BEAR)
0:31 BEA Address of bus error

Figure 2-6. Bridge Error Status Register 0 (POB0_BESR0)
0:1 PTE0 PLB Timeout Error Status Master 0

00 No master 0 error occurred
01 Master 0 timeout error occurred
10 Master 0 slave error occurred
11 Reserved

Master 0 is DMA.

2 R/W0 Read Write Status Master 0
0 Master 0 error operation is a write
1 Master 0 error operation is a read

3 FLK0 POB0_BESR0 Field Lock Master 0
0 Master 0 POB0_BESR0 field is unlocked
1 Master 0 POB0_BESR0 field is locked

4 ALK0 POB0_BEAR Address Lock Master 0
0 Master 0 POB0_BEAR address is

unlocked
1 Master 0 POB0_BEAR address is locked

0 31

BEA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31

PTE0 PTE2FLK0 PTE1 FLK1 FLK2

R/W0 R/W2ALK0 R/W1 ALK1 ALK2
60 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 2-7 illustrates POB0_BESR1.

5:6 PTE1 PLB Timeout Error Status Master 1
00 No master 1 error occurred
01 Master 1 timeout error occurred
10 Master 1 slave error occurred
11 Reserved

Master 1 is the processor core ICU.

7 R/W1 Read/Write Status Master 1
0 Master 1 error operation is a write
1 Master 1 error operation is a read

8 FLK1 POB0_BESR0 Field Lock Master 1
0 Master 1 POB0_BESR0 field is unlocked
1 Master 1 POB0_BESR0 field is locked

9 ALK1 POB0_BEAR Address Lock Master 1
0 Master 1 POB0_BEAR address is

unlocked
1 Master 1 POB0_BEAR address is locked

10:11 PTE2 PLB Timeout Error Status Master 2
00 No master 2 error occurred
01 Master 2 timeout error occurred
10 Master 2 slave error occurred
11 Reserved

Master 2 is the processor core DCU.

12 R/W2 Read/Write Status Master 2
0 Master 2 error operation is a write
1 Master 2 error operation is a read

13 FLK2 POB0_BESR0 Field Lock Master 2
0 Master 2 POB0_BESR0 field is unlocked
1 Master 2 POB0_BESR0 field is locked

14 ALK2 POB0_BEAR Address Lock Master 2
0 Master 2 POB0_BEAR address is

unlocked
1 Master 2 POB0_BEAR address is locked

15:31 Reserved

Figure 2-7. Bridge Error Status Register 1 (POB0_BESR1)
0:1 PTE4 PLB Timeout Error Status Master 4

00 No Master 4 error occurred
01 Master 4 timeout error occurred
10 Master 4 slave error occurred
11 Reserved

Master 4 is PCI bridge.

2 R/W4 Read/Write Status Master 4
0 Master 4 error operation is a write
1 Master 4 error operation is a read

0 1 2 3 4 5 6 7 8 9 10 31

PTE4 FLK4 PTE5 FLK5

R/W4 ALK4 R/W5 ALK5
AMCC Proprietary 61

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
2.2 On-Chip Peripheral Bus

The OPB is used to attach peripherals that do not require the bandwidth of the PLB. The OPB does not
connect directly to the PPC405EP processor core, which accesses peripherals attached to the OPB through
a PLB-to-OPB bridge.

2.2.1 OPB Features

The on-chip peripheral bus features:

• A 32-bit address bus and a 32-bit data bus
• Dynamic bus sizing; byte, halfword, and word transfers
• Byte and halfword duplication for byte and halfword transfers
• Single-cycle transfer of data between OPB bus master and OPB slaves
• Sequential address (burst) protocol support
• Devices on the OPB may be memory mapped, act as DMA peripherals, or support both transfer methods
• A 16-cycle fixed bus timeout provided by the OPB arbiter
• Bus parking for reduced latency
• Bus arbitration overlapped with last cycle of bus transfers

3 FLK4 POB0_BESR1 Field Lock Master 4
0 Master 4 POB0_BESR1 field is unlocked
1 Master 4 POB0_BESR1 field is locked

4 ALK4 POB0_BEAR Address Lock Master 4
0 Master 4 POB0_BEAR address is

unlocked
1 Master 4 POB0_BEAR address is locked

5:6 PTE5 PLB Timeout Error Status Master 5
00 No Master 5 error occurred
01 Master 5 timeout error occurred
10 Master 5 slave error occurred
11 Reserved

Master 5 is MAL0.

7 R/W5 Read/Write Status Master 5
0 Master 5 error operation is a write
1 Master 5 error operation is a read

8 FLK5 POB0_BESR1 Field Lock Master 5
0 Master 5 POB0_BESR1 field is unlocked
1 Master 5 POB0_BESR1 field is locked

9 ALK5 POB0_BEAR Address Lock Master 5
0 Master 5 POB0_BEAR address is

unlocked
1 Master 5 POB0_BEAR address is locked

10:31 Reserved
62 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
2.2.2 OPB Master Assignments

Table 2-4 lists the OPB masters. (The numbering reflects that the PPC405EP implements two masters; the
OPB can support four masters.)

2.2.3 OPB Arbiter Registers

The OPB arbiter contains the MMIO registers summarized in Table 2-5.

2.2.3.1 OPB Arbiter Control Register (OPBA0_CR)

The OPBA0_CR fields controls updating of the OPBA0_PR (described in “OPB Arbiter Priority Register
(OPBA0_PR)” on page 2-64). Because the PPC405EP provides two masters, master IDs 2 and 3 are
ignored.

Table 2-4. PPC405EP OPB Master Assignments

OPB Agents Description

DMA controller DMA (master 0)
OPB to PLB bridge OPB to PLB bridge (master 1)

Table 2-5. OPB Arbiter Registers

Mnemonic Register Name Address Access Page

OPBA0_CR OPB Arbiter Control Register 0xEF600601 R/W 2-63
OPBA0_PR OPB Arbiter Priority Register 0xEF600600 R/W 2-64

Figure 2-8. OPB Arbiter Control Register (OPBA0_CR)
0 DPE Dynamic Priority Enable

0 Dynamic priority disabled
1 Dynamic priority enabled

When DPE = 1, the OPB arbiter uses an
approximately fair arbitration algorithm.

1 PEN Park Enable
0 Park disabled
1 Park enabled

2 PMN Park on Master Not Last
0 Park on last master last
1 Park on master specified by PID

3:4 PID Parked Master ID
00 DMA
01 Unused
10 OPB to PLB bridge
11 Unused

5:7 Reserved

0 1 2 3 4 5 7

DPE PMN

PEN PID
AMCC Proprietary 63

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
2.2.3.2 OPB Arbiter Priority Register (OPBA0_PR)

The OPBA0_PR assigns priorities to the OPB master IDs. Because the PPC405EP provides two masters,
master IDs 2 and 3 are ignored. At reset, master ID 0 (DMA) has a higher priority than master 1 (OPB to PLB
bridge).

Figure 2-9. OPB Arbiter Priority Register (OPBA0_PR)
0:1 HPM High Priority Master ID

00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

2:3 MHP Medium High Priority Master ID
00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

4:5 MLP Medium Low Priority Master ID
00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

6:7 LPM Low Priority Master ID
00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

0 1 2 3 4 5 6 7

HPM

MHP

MLP

LPM
64 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Part II. The PPC405EP RISC Processor
AMCC Proprietary 65

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
66 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 3. Programming Model

The programming model of the PPC405EP embedded processor describes the following features and
operations:

• Memory organization and addressing, starting on page 68
• Registers, starting on page 70
• Data types and alignment, starting on page 89
• Byte ordering, starting on page 90
• Instruction processing, starting on page 96
• Branching control, starting on page 96
• Speculative accesses, starting on page 100
• Privileged mode operation, starting on page 103
• Synchronization, starting on page 105
• Instruction set, starting on page 109

3.1 User and Privileged Programming Models

The PPC405EP executes programs in two modes, also referred to as states. Programs running in privileged
mode (also referred to as the supervisor state) can access any register and execute any instruction. These
instructions and registers comprise the privileged programming model. In user mode, certain registers and
AMCC Proprietary 67

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
instructions are unavailable to programs. This is also called the problem state. Those registers and
instructions that are available comprise the user programming model.

Privileged mode provides operating system software access to all processor resources. Because access to
certain processor resources is denied in user mode, application software runs in user mode. Operating
system software and other application software is protected from the effects of an errant application program.

Throughout this book, the terms user program and privileged programs are used to associate programs with
one of the programming models. Registers and instructions are described as user or privileged. Privileged
mode operation is described in detail in “Privileged Mode Operation” on page 3-103.

3.2 Memory Organization and Addressing

The PowerPC Architecture defines a 32-bit, 4-gigabyte (GB) address space for memory and peripherals, as
shown in Figure 3-1 on page 3-72.

3.2.1 Physical Address Map

Table 3-1 illustrates the physical address map.

Table 3-1. PPC405EP Address Space

Function
Start

Address
End

Address Size

Local Memory/Peripherals1 0x00000000 0x7FFFFFFF 2GB

PCI Bridge (Total) 0x80000000 0xEF5FFFFF 1.744GB

PCI Memory 0x80000000 0xE7FFFFFF 1.625GB

PCI I/O 0xE8000000 0xE800FFFF 64KB

PCI I/O 0xE8800000 0xEBFFFFFF 56MB

PCI Configuration Registers 0xEEC00000 0xEEC00007 8B

PCI Interrupt Acknowledge (read) 0xEED00000 0xEED00003 4B

PCI Special Cycle (write) 0xEED00000 0xEED00003 4B

PCI Local Configuration Registers 0xEF400000 0xEF40003F 64B

Internal Peripherals (Total) 0xEF600000 0xEFFFFFFF 10MB

GPT Registers 0xEF600000 0xEF6000FF 256B

UART0 Registers 0xEF600300 0xEF600307 8B

UART1 Registers 0xEF600400 0xEF600407 8B

IIC Registers 0xEF600500 0xEF60051F 32B

OPB Arbiter Registers 0xEF600600 0xEF600601 2B

GPIO Controller Registers 0xEF600700 0xEF60077F 128B

EMAC0 Registers 0xEF600800 0xEF600867 104B

EMAC1 Registers 0xEF600900 0xEF600967 104B

Expansion ROM2 0xF0000000 0xFFDFFFFF 254MB

Boot ROM2, 3 0xFFE00000 0xFFFFFFFF 2MB
68 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.2.2 Storage Attributes

The PowerPC Architecture defines storage attributes that control data and instruction accesses. Storage
attributes are provided to control cache write-through policy (the W storage attribute), cachability (the I
storage attribute), memory coherency in multiprocessor environments (the M storage attribute), and guarding
against speculative memory accesses (the G storage attribute). The IBM PowerPC Embedded Environment
defines additional storage attributes for storage compression (the U0 storage attribute) and byte ordering (the
E storage attribute).

The PPC405EP provides two control mechanisms for the W, I, U0, G, and E attributes. Because the
PPC405EP does not provide hardware support for multiprocessor environments, the M storage attribute,
when present, has no effect.

When the PPC405EP operates in virtual mode (address translation is enabled), each storage attribute is
controlled by the W, I, U0, G, and E fields in the translation lookaside buffer (TLB) entry for each memory
page. The size of memory pages, and hence the size of storage attribute control regions, is variable. Multiple
sizes can be in effect simultaneously on different pages.

When the PPC405EP operates in real mode (address translation is disabled), storage attribute control
registers control the corresponding storage attributes. These registers are:

• Data Cache Write-through Register (DCWR)
• Data Cache Cachability Register (DCCR)
• Instruction Cache Cachability Register (ICCR)
• Storage Guarded Register (SGR)
• Storage Little-Endian Register (SLER)
• Storage User-defined 0 Register (SU0R)

Each storage attribute control register contains 32 bits; each bit controls one of thirty-two 128MB storage
attribute control regions. Bit 0 of each register controls the lowest-order region, with ascending bits controlling
ascending regions in memory. The storage attributes in each storage attribute region are set independently of
each other and of the storage attributes for other regions.

1. The local memory/peripheral area of the memory map can be configured for SDRAM, ROM, or peripherals.

2. The boot ROM and expansion ROM areas of the memory map are intended for ROM or flash devices. The
controller supports volatile memory devices such as SDRAM and SRAM in these areas.

3. When booting from PCI memory, the boot ROM address space begins at 0xFFFE 0000 (size is 128KB).
AMCC Proprietary 69

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.3 Registers

All PPC405EP registers are listed in this section. Some of the frequently-used registers are described in
detail. Other registers are covered in their respective topic chapters (for example, the cache registers are
described in Chapter 4, “Cache Operations”). All registers are summarized in Chapter 25, “Register
Summary.”

The registers are grouped into categories: General Purpose Registers (GPRs), Special Purpose Registers
(SPRs), Time Base Registers (TBRs), the Machine State Register (MSR), the Condition Register (CR),
Device Control Registers (DCRs), and memory-mapped I/O registers (MMIO). Different instructions are used
to access each category of registers.

For all registers with fields marked as reserved, the reserved fields should be written as 0 and read as
undefined. That is, when writing to a register with a reserved field, write a 0 to the reserved field. When
reading from a register with a reserved field, ignore that field. Programming Note: A good coding practice is to
perform the initial write to a register with reserved fields as described, and to perform all subsequent writes to
the register using a readmodify-write strategy: read the register, use logical instructions to alter defined fields,
leaving reserved fields unmodified, and write the register.

Figure 3-1 on page 3-72 illustrates the registers in the user and supervisor programming models.
70 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
AMCC Proprietary 71

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
User Model
General-Purpose Registers

GPR0

GPR1

GPR31

•
•
•

Condition Register

CR

Fixed-Point Exception Register

XER

Link Register

LR

Count Register

CTR

Time Base Registers (read-only)

TBL

TBU

SPR 0x001

SPR 0x009

SPR 0x008

TBR 0x10C

TBR 0x10D

Supervisor Model

MSR

Machine State Register

PVR

Processor Version Register

SPR 0x3DA

Exception Handling Registers
Exception Vector Prefix Register

Exception Syndrome Register

EVPR

ESR

SPR 0x3D5

SPR 0x3D4

SPR General Registers

SPRG0

SPRG1

SPRG7

SPR 0x110

SPR 0x111

SPR 0x114

Save/Restore Registers

SRR0

SRR1

SRR2

SRR3

SPR 0x01A

SPR 0x01B

SPR 0x3DE

SPR 0x3DF

SPRG4

SPRG5

SPRG7

SPR 0x104

SPR 0x105

SPR 0x107

SPRG5 SPR 0x106

SPR General Registers (read-only)

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPR 0x112

SPR 0x113

SPR 0x115

SPR 0x116

SPR 0x117

Data Exception Address Register

DEAR SPR 0x3D5

Timer Control Register

TCR

Timer Status Register

TSR

Timer FacilitiesCore Configuration Register

CCR0

Figure 3-1. PPC405EP Programming Model—Registers

Instruction Address Compares

IAC1

IAC2

IAC3

IAC4

SPR 0x3F4

SPR 0x3F5

SPR 0x3B4

SPR 0x3B5

Debug Registers

Time Base Registers

TBL

TBU

SPR 0x11C

SPR 0x11D

Data Address Compares

DAC1

DAC2

SPR 0x3F6

SPR 0x3F7

Debug Status Register

DBSR

Storage Attribute Control Registers

DCCR

DCWR

SPR 0x3FA

SPR 0x3BA

SPR 0x3BB

ICCR

SGR

SLER

SU0R

SPR 0x3FB

SPR 0x3B9

SPR 0x3BC

Debug Control Registers

DBCR0

DBCR1

SPR 0x3F2

SPR 0x3BD

Data Value Compares

DVC1

DVC2

SPR 0x3B6

SPR 0x3B7

Instruction Cache Debug Data Register

ICDBR SPR 0x3D3

SPR 0x3F0

Memory Management Registers

Process ID

Zone Protection Register

PID

ZPR

SPR 0x3B1

SPR 0x3B0

SPR 0x3B3

SPR 0x3D8

SPR 0x11F

Programmable Interval Timer

PIT SPR 0x3DBUser SPR General Register 0 (read/write)

USPRG0 SPR 0x100
72 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.3.1 General Purpose Registers (R0-R31)

The PPC405EP contains thirty-two 32-bit general purpose registers (GPRs). Data from memory can be read
into GPRs using load instructions and the contents of GPRs can be written to memory using store
instructions. Most integer instructions use GPRs for source and destination operands. See Table 26-1,
Chapter 26, “Register Summary,” on page 26-816 for the numbering of the GPRs.

3.3.2 Special Purpose Registers

Special purpose registers (SPRs), which are part of the PowerPC Architecture and the IBM PowerPC
Embedded Environment, are accessed using the mtspr and mfspr instructions.

SPRs control the operation of debug facilities, timers, interrupts, storage control attributes, and other
architected processor resources. Table 26-1, Chapter 26, “Register Summary,” on page 26-816 shows the
mnemonic, name, and number for each SPR. Table 3-2, “PPC405EP SPRs,” on page 74, lists the PPC405EP
SPRs by function and indicates the pages where the SPRs are described more fully.

Except for the Link Register (LR), the Count Register (CTR), the Fixed-point Exception Register (XER), User
SPR General 0 (USPRG0, and read access to SPR General 4–7 (SPRG4–SPRG7), all SPRs are privileged.
As SPRs, the registers TBL and TBU are privileged write-only; as TBRs, these registers can be read in user
mode. Unless used to access non-privileged SPRs, attempts to execute mfspr and mtspr instructions while
in user mode cause privileged violation program interrupts. See “Privileged SPRs” on page 104.

Figure 3-2. General Purpose Registers (R0-R31)
0:31 General Purpose Register data

0 31
AMCC Proprietary 73

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 3-2. PPC405EP SPRs
Function Register Access Page

Configuration CCR0 Privileged 4-126

Branch Control
CTR User 3-75
LR User 3-75

Debug

DAC1 DAC2 Privileged 13-273
DBCR0 DBCR1 Privileged 13-273
DBSR Privileged 13-274
DVC1 DVC2 Privileged 13-274
IAC1 IAC2 IAC3 IAC4 Privileged 13-273
ICDBDR Privileged 4-129

Fixed-point Exception XER User 3-76

General-Purpose SPR

SPRG0 SPRG1 SPRG2 SPRG3 Privileged 3-79
SPRG4 SPRG5 SPRG6 SPRG7 User read, privileged write 3-79
USPRG0 User 3-79

Interrupts and Exceptions

DEAR Privileged 10-233
ESR Privileged 10-232
EVPR Privileged 10-231
SRR0 SRR1 Privileged 10-236
SRR2 SRR3 Privileged 10-242

Processor Version PVR Privileged, read-only 3-79

Storage Attribute Control

DCCR Privileged 6-160
DCWR Privileged 6-159
ICCR Privileged 6-160
SGR Privileged 6-160
SLER Privileged 6-160
SU0R Privileged 6-160

Timer Facilities

TBL TBU Privileged, write-only 11-246
PIT Privileged 11-248
TCR Privileged 11-253
TSR Privileged 11-252

Zone Protection ZPR Privileged 6-155
74 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.3.2.1 Count Register (CTR)

The CTR is written from a GPR using mtspr. The CTR contents can be used as a loop count that is
decremented and tested by some branch instructions. Alternatively, the CTR contents can specify a target
address for the bcctr instruction, enabling branching to any address.

The CTR is in the user programming model.

3.3.2.2 Link Register (LR)

The LR is written from a GPR using mtspr, and by branch instructions that have the LK bit set to 1. Such
branch instructions load the LR with the address of the instruction following the branch instruction. Thus, the
LR contents can be used as the return address for a subroutine that was called using the branch.

The LR contents can be used as a target address for the bclr instruction. This allows branching to any
address.

When the LR contents represent an instruction address, LR30:31 are assumed to be 0, because all
instructions must be word-aligned. However, when LR is read using mfspr, all 32 bits are returned as written.

The LR is in the user programming model.

Figure 3-3. Count Register (CTR)
0:31 Count Used as count for branch conditional with

decrement instructions, or as address for
branch-to-counter instructions.

Figure 3-4. Link Register (LR)
0:31 Link Register contents If (LR) represents an instruction address,

LR30:31 should be 0.

0 31

0 31
AMCC Proprietary 75

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.3.2.3 Fixed Point Exception Register (XER)

The XER records overflow and carry conditions generated by integer arithmetic instructions.

The Summary Overflow (SO) field is set to 1 when instructions cause the Overflow (OV) field to be set to 1.
The SO field does not necessarily indicate that an overflow occurred on the most recent arithmetic operation,
but that an overflow occurred since the last clearing of XER[SO]. mtspr(XER) sets XER[SO, OV] to the value
of bit positions 0 and 1 in the source register, respectively.

Once set, XER[SO] is not reset until an mtspr(XER) is executed with data that explicitly puts a 0 in the SO bit,
or until an mcrxr instruction is executed.

XER[OV] is set to indicate whether an instruction that updates XER[OV] produces a result that “overflows” the
32-bit target register. XER[OV] = 1 indicates overflow. For arithmetic operations, this occurs when an
operation has a carry-in to the most-significant bit of the result that does not equal the carry-out of the most-
significant bit (that is, the exclusive-or of the carry-in and the carry-out is 1).

The following instructions set XER[OV] differently. The specific behavior is indicated in the instruction
descriptions in Chapter 24, “Instruction Set.”

• Move instructions:
mcrxr, mtspr(XER)

• Multiply and divide instructions:
mullwo, mullwo., divwo, divwo., divwuo, divwuo

The Carry (CA) field is set to indicate whether an instruction that updates XER[CA] produces a result that has
a carry-out of the most-significant bit. XER[CA] = 1 indicates a carry.

The following instructions set XER[CA] differently.The specific behavior is indicated in the instruction
descriptions in Chapter 24, “Instruction Set.”

• Move instructions
mcrxr, mtspr(XER)

• • Shift-algebraic operations
sraw, srawi

The Transfer Byte Count (TBC) field is the byte count for load/store string instructions.

The XER is part of the user programming model.
76 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Figure 3-5. Fixed Point Exception Register (XER)
0 SO Summary Overflow

0 No overflow has occurred.
1 Overflow has occurred.

Can be set by mtspr or by using “o” form
instructions; can be reset by mtspr or by
mcrxr.

1 OV Overflow
0 No overflow has occurred.
0 Overflow has occurred.

Can be set by mtspr or by using “o” form
instructions; can be reset by mtspr, by
mcrxr, or “o” form instructions.

2 CA Carry
0 Carry has not occurred.
1 Carry has occurred.

Can be set by mtspr or arithmetic
instructions that update the CA field; can
be reset by mtspr, by mcrxr, or by
arithmetic instructions that update the CA
field.

3:24 Reserved

25:31 TBC Transfer Byte Count Used by lswx and stswx; written by mtspr.

0 1 2 3 24 25 31

SO

OV

CA TBC
AMCC Proprietary 77

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 3-3 and Table 3-4 list the PPC405EP instructions that update the XER. In the tables, the syntax “[o]”
indicates that the instruction has an “o” form that updates XER[SO,OV], and a “non-o” form. The syntax “[.]”
indicates that the instruction has a “record” form that updates CR[CR0] (see “Condition Register (CR)” on
page 3-80), and a “non-record” form.

Table 3-3. XER[CA] Updating Instructions

Integer Arithmetic
Integer

Shift
Processor

Control

Add Subtract

Shift
Right

Algebraic
Register

Management
addc[o][.]
adde[o][.]
addic[.]
addme[o][.]
addze[o][.]

subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

sraw[.]
srawi[.]

mtspr
mcrxr

Table 3-4. XER[SO,OV] Updating Instructions

Integer Arithmetic Auxiliary Processor
Processor

Control

Add Subtract Multiply Divide Negate
Multiply-

Accumulate

Negative
Multiply-

Accumulate
Register

Management
addo[.]
addco[.]
addeo[.]
addmeo[.]
addzeo[.]

subfo[.]
subfco[.]
subfeo[.]
subfmeo[.]
subfzeo[.]

mullwo[.] divwo[.]
divwuo[.]

nego[.] macchwo[.]
macchwso[.]
macchwsuo[.]
macchwuo[.]
machhwo[.]
machhwso[.]
machhwsuo[.]
machhwuo[.]
maclhwo[.]
maclhwso[.]
maclhwsuo[.]
maclhwuo[.]

nmacchwo[.]
nmacchwso[.]
nmachhwo[.]
nmachhwso[.]
nmaclhwo[.]
nmaclhwso[.]

mtspr
mcrxr
78 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.3.2.4 Special Purpose Register General (SPRG0–SPRG7)

USPRG0 and SPRG0–SPRG7 are provided for general purpose software use. For example, these registers
are used as temporary storage locations. For example, an interrupt handler might save the contents of a GPR
to an SPRG, and later restore the GPR from it. This is faster than a save/restore to a memory location. These
registers are written using mtspr and read using mfspr.

Access to USPRG0 is non-privileged for both read and write.

SPRG0–SPRG7 provide temporary storage locations. For example, an interrupt handler might save the
contents of a GPR to an SPRG, and later restore the GPR from it. This is faster than performing a
save/restore to memory. These registers are written by mtspr and read by mfspr.

Access to SPRG0–SPRG7 is privileged, except for read access to SPRG4–SPRG7. See “Privileged SPRs”
on page 3-104 for more information.

3.3.2.5 Processor Version Register (PVR)

The PVR is a read-only register that uniquely identifies a standard product or Core+ASIC implementation.
Software can examine the PVR to recognize implementation-dependent features and determine available
hardware resources.

Access to the PVR is privileged. See “Privileged SPRs” on page 3-104 for more information.

Figure 3-6. Special Purpose Register General (SPRG0–SPRG7)
0:31 General data Software value; no hardware usage.

Figure 3-7. Processor Version Register (PVR)
0:31 Assigned PVR value

0 31

0 31
AMCC Proprietary 79

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.3.3 Condition Register (CR)

The CR contains eight 4-bit fields (CR0–CR7), as shown in Figure 3-8. The fields contain conditions detected
during the execution of integer or logical compare instructions, as indicated in the instruction descriptions in
Chapter 24, “Instruction Set.” The CR contents can be used in conditional branch instructions.

The CR can be modified in any of the following ways:

• mtcrf sets specified CR fields by writing to the CR from a GPR, under control of a mask specified as an
instruction field.

• mcrf sets a specified CR field by copying another CR field to it.
• mcrxr copies certain bits of the XER into a designated CR field, and then clears the corresponding XER bits.
• The “with update” forms of integer instructions implicitly update CR[CR0].
• Integer compare instructions update a specified CR field.
• The CR-logical instructions update a specified CR bit with the result of a logical operation on a specified pair of

CR bit fields.
• Conditional branch instructions can test a CR bit as one of the branch conditions.

If a CR field is set by a compare instruction, the bits are set as described in “CR Fields after Compare
Instructions.”

The CR is part of the user programming model.

3.3.3.1 CR Fields after Compare Instructions

Compare instructions compare the values of two 32-bit registers. The two types of compare instructions,
arithmetic and logical, are distinguished by the interpretation given to the 32-bit values. For arithmetic
compares, the values are considered to be signed, where 31 bits represent the magnitude and the most-
significant bit is a sign bit. For logical compares, the values are considered to be unsigned, so all 32 bits
represent magnitude. There is no sign bit. As an example, consider the comparison of 0 with 0xFFFFFFFF. In
an arithmetic compare, 0 is larger, because 0xFFFF FFFF represents –1; in a logical compare, 0xFFFFFFFF
is larger.

Figure 3-8. Condition Register (CR)
0:3 CR0 Condition Register Field 0

4:7 CR1 Condition Register Field 1

8:11 CR2 Condition Register Field 2

12:15 CR3 Condition Register Field 3

16:19 CR4 Condition Register Field 4

20:23 CR5 Condition Register Field 5

24:27 CR6 Condition Register Field 6

28:31 CR7 Condition Register Field 7

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

CR0

CR1

CR2

CR3

CR4

CR5

CR6

CR7
80 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A compare instruction can direct its CR update to any CR field. The first data operand of a compare
instruction specifies a GPR. The second data operand specifies another GPR, or immediate data derived
from the IM field of the immediate instruction form. The contents of the GPR specified by the first data
operand are compared with the contents of the GPR specified by the second data operand (or with the
immediate data). See descriptions of the compare instructions (page 24-34 through page 24-37) for precise
details.

3.3.3.2 The CR0 Field

After the execution of compare instructions that update CR[CR0], CR[CR0] is interpreted as described in “CR
Fields after Compare Instructions” on page 3-80. The “dot” forms of arithmetic and logical instructions also
alter CR[CR0]. After most instructions that update CR[CR0], the bits of CR0 are interpreted as follows:

The CR[CR0]LT, GT, EQ subfields are set as the result of an algebraic comparison of the instruction result to
0, regardless of the type of instruction that sets CR[CR0]. If the instruction result is 0, the EQ subfield is set to
1. If the result is not 0, either LT or GT is set, depending on the value of the mostsignificant bit of the result.

When updating CR[CR0], the most significant bit of an instruction result is considered a sign bit, even for
instructions that produce results that are not usually thought of as signed. For example, logical instructions
such as and., or., and nor. update CR[CR0]LT, GT, EQ using such an arithmetic comparison to 0, although
the result of such a logical operation is not actually an arithmetic result.

If an arithmetic overflow occurs, the “sign” of an instruction result indicated in CR[CR0]LT, GT, EQ might not
represent the “true” (infinitely precise) algebraic result of the instruction that set CR0. For example, if an add.
instruction adds two large positive numbers and the magnitude of the result cannot be represented as a twos-
complement number in a 32-bit register, an overflow occurs and CR[CR0]LT, SO are set, although the
infinitely precise result of the add is positive.

Adding the largest 32-bit twos-complement negative number, 0x8000 0000, to itself results in an arithmetic
overflow and 0x0000 0000 is recorded in the target register. CR[CR0]EQ, SO is set, indicating a result of 0,
but the infinitely precise result is negative.

The CR[CR0]SO subfield is a copy of XER[SO]. Instructions that do not alter the XER[SO] bit cannot cause
an overflow, but even for these instructions CR[CR0]SO is a copy of XER[SO].

LT (bit 0) The first operand is less than the second operand.

GT (bit 1) The first operand is greater than the second operand.

EQ (bit 2) The first operand is equal to the second operand.

SO (bit 3) Summary overflow; a copy of XER[SO].

LT (bit 0) Less than 0; set if the most-significant bit of the 32-bit result is 1.

GT (bit 1) Greater than 0; set if the 32-bit result is non-zero and the most-
significant bit of the result is 0.

EQ (bit 2) Equal to 0; set if the 32-bit result is 0.

SO (bit 3) Summary overflow; a copy of XER[SO] at instruction completion.
AMCC Proprietary 81

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Some instructions set CR[CR0] differently or do not specifically set any of the subfields. These instructions
include:

• Compare instructions
cmp, cmpi, cmpl, cmpli

• CR logical instructions
crand, crandc, creqv, crnand, crnor, cror, crorc, crxor, mcrf

• Move CR instructions
mtcrf, mcrxr

• stwcx.

The instruction descriptions provide detailed information about how the listed instructions alter CR[CR0].

3.3.4 The Time Base

The PowerPC Architecture provides a 64-bit time base. “Time Base” on page 11-246 describes the
architected time base. Access to the time base is through two 32-bit time base registers (TBRs). The least-
significant 32 bits of the time base are read from the Time Base Lower (TBL) register and the most-significant
32 bits are read from the Time Base Upper (TBU) register.

User-mode access to the time base is read-only, and there is no explicitly privileged read access to the time
base.

The mftb instruction reads from TBL and TBU. Writing the time base is accomplished by moving the contents
of a GPR to a pair of SPRs, which are also called TBL and TBU, using mtspr.

Table 3-5 shows the mnemonics and names of the TBRs.

3.3.5 Machine State Register (MSR)

The Machine State Register (MSR) controls processor core functions, such as the enabling or disabling of
interrupts and address translation.

The MSR is written from a GPR using the mtmsr instruction. The contents of the MSR can be read into a
GPR using the mfmsr instruction. MSR[EE] is set or cleared using the wrtee or wrteei instructions.

The MSR contents are automatically saved, altered, and restored by the interrupt-handling mechanism. See
“Machine State Register (MSR)” on page 10-227.

Table 3-5. Time Base Registers
Mnemonic Register Name Access
TBL Time Base Lower (Read-only) Read-only

TBU Time Base Upper (Read-only) Read-only
82 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Figure 3-9. Machine State Register (MSR)
0:12 Reserved

13 WE Wait State Enable
0 The processor is not in the wait state.
1 The processor is in the wait state.

If MSR[WE] = 1, the processor remains in
the wait state until an interrupt is taken, a
reset occurs, or an external debug tool
clears WE.

14 CE Critical Interrupt Enable
0 Critical interrupts are disabled.
1 Critical interrupts are enabled.

Controls the critical interrupt input and
watchdog timer first time-out interrupts.

15 Reserved

16 EE External Interrupt Enable
0 Asynchronous interrupts (external to the

processor core) are disabled.
1 Asynchronous interrupts are enabled.

Controls the non-critical external interrupt
input, PIT, and FIT interrupts.

17 PR Problem State
0 Supervisor state (all instructions

allowed).
1 Problem state (some instructions not

allowed).

18 Reserved

19 ME Machine Check Enable
0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

20 Reserved

21 DWE Debug Wait Enable
0 Debug wait mode is disabled.
1 Debug wait mode is enabled.

22 DE Debug Interrupts Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23:25 Reserved

26 IR Instruction Relocate
0 Instruction address translation is

disabled.
1 Instruction address translation is

enabled.

27 DR Data Relocate
0 Data address translation is disabled.
1 Data address translation is enabled.

28:31 Reserved

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
AMCC Proprietary 83

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.3.6 Device Control Registers

Device Control Registers (DCRs), on-chip registers that exist architecturally outside the processor core, are
not part of the IBM PowerPC Embedded Environment. The Embedded Environment simply defines the
existence of a DCR address space and the instructions that access the DCRs, but does not define any DCRs.
The instructions that access the DCRs are mtdcr (move to device control register) and mfdcr (move from
device control register).

DCRs are used to control the operations of on-chip buses, peripherals, and some processor behavior.

3.3.6.1 Directly Accessed DCRs

The DCRs listed in Table 3-6 are directly accessed; that is, they are accessed using their DCR numbers.

Table 3-6. Directly Accessed DCRs

Register
DCR

Number Access Description
DCRs Used for Indirect Access

SDRAM0_CFGADDR 0x010 R/W Memory Controller Address Register
SDRAM0_CFGDATA 0x011 R/W Memory Controller Data Register
EBC0_CFGADDR 0x012 R/W Peripheral Controller Address Register
EBC0_CFGDATA 0x013 R/W Peripheral Controller Data Register
DCP0_CFGADDR 0x014 R/W Decompression Controller Address Register
DCP0_CFGDATA 0x015 R/W Decompression Controller Data Register
On-Chip Buses

PLB0_BESR 0x084 R/Clear PLB Bus Error Status Register
PLB0_BEAR 0x086 R PLB Bus Error Address Register
PLB0_ACR 0x087 R/W PLB Arbiter Control Register
POB0_BESR0 0x0A0 R/Clear PLB to OPB Bus Error Status Register 0
POB0_BEAR 0x0A2 R PLB to OPB Bus Error Address Register
POB0_BESR1 0x0A4 R/Clear PLB to OPB Bus Error Status Register 1
Clocking, Power Management, and Chip Control

CPC0_PLLMR 0x0B0 R PLL Mode Register
CPC0_PSR 0x0B4 R Chip Pin Strapping Register
CPC0_JTAGID 0x0B5 R JTAG ID Register
CPC0_SR 0x0B8 R CPM Status Register
CPC0_ER 0x0B9 R/W CPM Enable Register
CPC0_FR 0x0BA R/W CPM Force Register
Universal Interrupt Controllers

UIC0_SR 0x0C0 R/Clear UIC0 Status Register
UIC0_ER 0x0C2 R/W UIC0 Enable Register
UIC0_CR 0x0C3 R/W UIC0 Critical Register
UIC0_PR 0x0C4 R/W UIC0 Polarity Register
UIC0_TR 0x0C5 R/W UIC0 Triggering Register
UIC0_MSR 0x0C6 R UIC0 Masked Status Register
UIC0_VR 0x0C7 R UIC0 Vector Register
84 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_VCR 0x0C8 W UIC0 Vector Configuration Register
Direct Memory Access

DMA0_CR0 0x100 R/W DMA Channel Control Register 0
DMA0_CT0 0x101 R/W DMA Count Register 0
DMA0_DA0 0x102 R/W DMA Destination Address Register 0
DMA0_SA0 0x103 R/W DMA Source Address Register 0
DMA0_SG0 0x104 R/W DMA Scatter/Gather Descriptor Address Register 0
DMA0_CR1 0x108 R/W DMA Channel Control Register 1
DMA0_CT1 0x109 R/W DMA Count Register 1
DMA0_DA1 0x10A R/W DMA Destination Address Register 1
DMA0_SA1 0x10B R/W DMA Source Address Register 1
DMA0_SG1 0x10C R/W DMA Scatter/Gather Descriptor Address Register 1
DMA0_CR2 0x110 R/W DMA Channel Control Register 2
DMA0_CT2 0x111 R/W DMA Count Register 2
DMA0_DA2 0x112 R/W DMA Destination Address Register 2
DMA0_SA2 0x113 R/W DMA Source Address Register 2
DMA0_SG2 0x114 R/W DMA Scatter/Gather Descriptor Address Register 2
DMA0_CR3 0x118 R/W DMA Channel Control Register 3
DMA0_CT3 0x119 R/W DMA Count Register 3
DMA0_DA3 0x11A R/W DMA Destination Address Register 3
DMA0_SA3 0x11B R/W DMA Source Address Register 3
DMA0_SG3 0x11C R/W DMA Scatter/Gather Descriptor Address
DMA0_SR 0x120 R/Clear DMA Status Register
DMA0_SGC 0x123 R/W DMA Scatter/Gather Command Register
DMA0_SLP 0x125 R/W DMA Sleep Mode Register
DMA0_POL 0x126 R/W DMA Polarity Configuration Register

Table 3-6. Directly Accessed DCRs (continued)

Register
DCR

Number Access Description
AMCC Proprietary 85

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.3.6.2 Indirectly Accessed DCRs

The DCRs for the SDRAM controller and external bus controller (EBC) are indirectly accessed.

The following general procedure can be used to access the indirectly accessed DCRs:

1. Write an offset to an address DCR.
2. Read data from or write data to a data DCR.

Detailed procedures for indirectly accessing the DCRs for the specific peripherals follow.

Indirect Access of SDRAM Controller DCRs

Indirect Access of EBC DCRs

The following procedure accesses the EBC DCRs.

1. Write the offset to the Peripheral Controller Address Register (EBC0_CFGADDR).
2. Read data from or write data to the Peripheral Controller Data Register (EBC0_CFGDATA).

Table 3-7. EBC DCR Usage

Register
DCR

Number Access Description
EBC0_CFGADDR 0x012 R/W Peripheral Controller Address Register
EBC0_CFGDATA 0x013 R/W Peripheral Controller Data Register

Table 3-8. Offsets for EBC Registers

Register Offset Access Description
EBC0_B0CR 0x00 R/W Peripheral Bank 0 Configuration Register
EBC0_B1CR 0x01 R/W Peripheral Bank 1 Configuration Register
EBC0_B2CR 0x02 R/W Peripheral Bank 2 Configuration Register
EBC0_B3CR 0x03 R/W Peripheral Bank 3 Configuration Register
EBC0_B4CR 0x04 R/W Peripheral Bank 4 Configuration Register
EBC0_B5CR 0x05 R/W Peripheral Bank 5 Configuration Register
EBC0_B6CR 0x06 R/W Peripheral Bank 6 Configuration Register
EBC0_B7CR 0x07 R/W Peripheral Bank 7 Configuration Register
EBC0_B0AP 0x10 R/W Peripheral Bank 0 Access Parameters
EBC0_B1AP 0x11 R/W Peripheral Bank 1 Access Parameters
EBC0_B2AP 0x12 R/W Peripheral Bank 2 Access Parameters
EBC0_B3AP 0x13 R/W Peripheral Bank 3 Access Parameters
EBC0_B4AP 0x14 R/W Peripheral Bank 4 Access Parameters
EBC0_B5AP 0x15 R/W Peripheral Bank 5 Access Parameters
EBC0_B6AP 0x16 R/W Peripheral Bank 6 Access Parameters
EBC0_B7AP 0x17 R/W Peripheral Bank 7 Access Parameters
EBC0_BEAR 0x20 R/W Peripheral Bus Error Address Register
EBC0_BESR0 0x21 R/W Peripheral Bus Error Status Register 0
EBC0_BESR1 0x22 R/W Peripheral Bus Error Status Register 1
EBC0_CFG 0x23 R/W External Peripheral Control Register
86 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.3.7 Memory-Mapped Input/Output Registers

Some registers associated with on-chip peripherals are memory-mapped input/output (MMIO) registers. Such
registers are mapped into the system memory space and are accessed using load/store instructions.

are accessed using load/store instructions that contain the register addresses. Table 3-9 lists the MMIO
registers.

Table 3-9. Directly Accessed MMIO Registers

Register Address Access Description
Serial Ports

UART0_RBR 0xEF600300 R UART 0 Receiver Buffer Register
Note: Set UART0_LCR[DLAB] = 0 to access.

UART0_THR W UART 0 Transmitter Holding Register
Note: Set UART0_LCR[DLAB] = 0 to access.

UART0_DLL R/W UART 0 Baud-rate Divisor Latch LSB
Note: Set UART0_LCR[DLAB] = 1 to access.

UART0_IER 0xEF600301 R/W UART 0 Interrupt Enable Register
Note: Set UART0_LCR[DLAB] = 0 to access.

UART0_DLM R/W UART 0 Baud-rate Divisor Latch MSB
Note: Set UART0_LCR[DLAB] = 1 to access.

UART0_IIR 0xEF600302 R UART 0 Interrupt Identification Register
UART0_FCR 0xEF600302 W UART 0 FIFO Control Register
UART0_LCR 0xEF600303 R/W UART 0 Line Control Register
UART0_MCR 0xEF600304 R/W UART 0 Modem Control Register
UART0_LSR 0xEF600305 R/W UART 0 Line Status Register
UART0_MSR 0xEF600306 R/W UART 0 Modem Status Register
UART0_SCR 0xEF600307 R/W UART 0 Scratch Register
UART1_RBR 0xEF600400 R UART 1 Receiver Buffer Register

Note: Set UART1_LCR[DLAB] = 0 to access.
UART1_THR W UART 1 Transmitter Holding Register

Note: Set UART1_LCR[DLAB] = 0 to access.
UART1_DLL R/W UART 1 Baud-rate Divisor Latch LSB

Note: Set UART1_LCR[DLAB] = 1 to access.
UART1_IER 0xEF600401 R/W UART 1 Interrupt Enable Register

Note: Set UART1_LCR[DLAB] = 0 to access.
UART1_DLM R/W UART 1 Baud-rate Divisor Latch MSB

Note: Set UART1_LCR[DLAB] = 1 to access.
UART1_IIR 0xEF600402 R UART 1 Interrupt Identification Register
UART1_FCR 0xEF600402 W UART 1 FIFO Control Register
UART1_LCR 0xEF600403 R/W UART 1 Line Control Register
UART1_MCR 0xEF600404 R/W UART 1 Modem Control Register
UART1_LSR 0xEF600405 R/W UART 1 Line Status Register
UART1_MSR 0xEF600406 R/W UART 1 Modem Status Register
UART1_SCR 0xEF600407 R/W UART 1 Scratch Register
Inter-Integrated Circuit

IIC0_MDBUF 0xEF600500 R/W IIC0 Master Data Buffer
IIC0_SDBUF 0xEF600502 R/W IIC0 Slave Data Buffer
AMCC Proprietary 87

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
IIC0_LMADR 0xEF600504 R/W IIC0 Low Master Address
IIC0_HMADR 0xEF600505 R/W IIC0 High Master Address
IIC0_CNTL 0xEF600506 R/W IIC0 Control
IIC0_MDCNTL 0xEF600507 R/W IIC0 Mode Control
IIC0_STS 0xEF600508 R/W IIC0 Status
IIC0_EXTSTS 0xEF600509 R/W IIC0 Extended Status
IIC0_LSADR 0xEF60050A R/W IIC0 Low Slave Address
IIC0_HSADR 0xEF60050B R/W IIC0 High Slave Address
IIC0_CLKDIV 0xEF60050C R/W IIC0 Clock Divide
IIC0_INTRMSK 0xEF60050D R/W IIC0 Interrupt Mask
IIC0_XFRCNT 0xEF60050E R/W IIC0 Transfer Count
IIC0_XTCNTLSS 0xEF60050F R/W IIC0 Extended Control and Slave Status
IIC0_DIRECTCNTL 0xEF600510 R/W IIC0 Direct Control
OPB Arbiter

OPBA0_PR 0xEF600600 R/W OPB Arbiter Priority Register
OPBA0_CR 0xEF600601 R/W OPB Arbiter Control Register
General-Purpose I/O

GPIO0_OR 0xEF600700 R/W GPIO0 Output Register
GPIO0_TCR 0xEF600704 R/W GPIO0 Three-State Control Register
GPIO0_ODR 0xEF600718 R/W GPIO0 Open Drain Register
GPIO0_IR 0xEF60071C R GPIO0 Input Register

Table 3-9. Directly Accessed MMIO Registers (continued)

Register Address Access Description
88 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.4 Data Types and Alignment

The data types consist of bytes (eight bits), halfwords (two bytes), words (four bytes), and strings (1 to 128
bytes). Figure 3-10 shows the byte, halfword, and word data types and their bit and byte definitions for big
endian representations of values. Note that PowerPC bit numbering is reversed from industry conventions; bit
0 represents the most significant bit of a value.

Data is represented in either twos-complement notation or in an unsigned integer format; data representation
is independent of alignment issues.

The address of a data object is always the lowest address of any byte comprising the object.

All instructions are words, and are word-aligned (the lowest byte address is divisible by 4).

3.4.1 Alignment for Storage Reference and Cache Control Instructions

The storage reference instructions (loads and stores; see Table 3-17, “Storage Reference Instructions,” on
page 110) move data to and from storage. The data cache control instructions listed in Table 3-26, “Cache
Management Instructions,” on page 113, control the contents and operation of the data cache unit (DCU).
Both types of instructions form an effective address (EA). The method of calculating the EA for the storage
reference and cache control instructions is detailed in the description of those instructions. See Chapter 24,
“Instruction Set,” for more information.

Cache control instructions ignore the five least significant bits of the EA; no alignment restrictions exist in the
DCU because of EAs. However, storage control attributes can cause alignment exceptions. When data
address translation is disabled and a dcbz instruction references a storage region that is non-cachable, or for
which write-through caching is the write strategy, an alignment exception is taken. Such exceptions result
from the storage control attributes, not from EA alignment.

The alignment exception enables system software to emulate the write-through function. Alignment
requirements for the storage reference instructions and the dcread instruction depend on the particular
instruction. Table 3-10, “Alignment Exception Summary,” on page 90, summarizes the instructions that cause
alignment exceptions.

The data targets of instructions are of types that depend upon the instruction. The load/store instructions
have the following “natural” alignments:

• Load/store word instructions have word targets, word-aligned.
• Load/ store halfword instructions have halfword targets, halfword-aligned.
• Load/store byte instructions have byte targets, byte-aligned (that is, any alignment).

Byte

Halfword

Word

Bit

Figure 3-10. PPC405EP Data Types

3 2 10

0 31

Byte

0 15

 10

0

0

7

AMCC Proprietary 89

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Misalignments are addresses that are not naturally aligned on data type boundaries. An address not divisible
by four is misaligned with respect to word instructions. An address not divisible by two is misaligned with
respect to halfword instructions. The PPC405EP implementation handles misalignments within and across
word boundaries, but there is a performance penalty because additional cycles are required.

3.4.2 Alignment and Endian Operation

The endian storage control attribute does not affect alignment behavior. In little endian storage regions, the
alignment of data is treated as it is in big endian storage regions; no special alignment exceptions occur when
accessing data in little endian storage regions. Note that the alignment exceptions that apply to big endian
region accesses also apply to little endian storage region accesses.

3.4.3 Summary of Instructions Causing Alignment Exceptions

Table 3-10 summarizes the instructions that cause alignment exceptions and the conditions under which the
alignment exceptions occur.

3.5 Byte Ordering

The following discussion describes the “endianness” of the PPC405EP core, which, by default and in normal
use is “big endian.” The PPC405EP also contains “little endian” peripherals and supports the attachment of
external little endian peripherals.

If scalars (individual data items and instructions) were indivisible, “byte ordering” would not be a concern. It is
meaningless to consider the order of bits or groups of bits within a byte, the smallest addressable unit of
storage; nothing can be observed about such order. Only when scalars, which the programmer and
processor regard as indivisible quantities, can comprise more than one addressable unit of storage does the
question of byte order arise.

For a machine in which the smallest addressable unit of storage is the 32-bit word, there is no question of the
ordering of bytes within words. All transfers of individual scalars between registers and storage are of words,
and the address of the byte containing the high-order eight bits of a scalar is the same as the address of any
other byte of the scalar.

For the PowerPC Architecture, as for most computer architectures currently implemented, the smallest
addressable unit of storage is the 8-bit byte. Other scalars are halfwords, words, or doublewords, which
consist of groups of bytes. When a word-length scalar is moved from a register to storage, the scalar is stored
in four consecutive byte addresses. It thus becomes meaningful to discuss the order of the byte addresses
with respect to the value of the scalar: that is, which byte contains the highest-order eight bits of the scalar,
which byte contains the next-highest-order eight bits, and so on.

Table 3-10. Alignment Exception Summary

Instructions Causing Alignment
Exceptions Conditions

dcbz EA in non-cachable or write-through storage

dcread, lwarx, stwcx. EA not word-aligned
90 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Given a scalar that contains multiple bytes, the choice of byte ordering is essentially arbitrary. There are 4! =
24 ways to specify the ordering of four bytes within a word, but only two of these orderings are commonly
used:

• The ordering that assigns the lowest address to the highest-order (“leftmost”) eight bits of the scalar, the next
sequential address to the next-highest-order eight bits, and so on.
This ordering is called big endian because the “big end” of the scalar, considered as a binary number, comes
first in storage.

• The ordering that assigns the lowest address to the lowest-order (“rightmost”) eight bits of the scalar, the next
sequential address to the next-lowest-order eight bits, and so on.
This ordering is called little endian because the “little end” of the scalar, considered as a binary number, comes
first in storage.

3.5.1 Structure Mapping Examples

The following C language structure, s, contains an assortment of scalars and a character string. The
comments show the value assumed to be in each structure element; these values show how the bytes
comprising each structure element are mapped into storage.

struct {
int a; /* 0x1112_1314 word */
long long b; /* 0x2122_2324_2526_2728 doubleword */
char *c; /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

C structure mapping rules permit the use of padding (skipped bytes) to align scalars on desirable boundaries.
The structure mapping examples show each scalar aligned at its natural boundary. This alignment introduces
padding of four bytes between a and b, one byte between d and e, and two bytes between e and f. The same
amount of padding is present in both big endian and little endian mappings.
AMCC Proprietary 91

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.5.1.1 Big Endian Mapping

The big endian mapping of structure s follows. (The data is highlighted in the structure mappings. Addresses,
in hexadecimal, are below the data stored at the address. The contents of each byte, as defined in structure
s, is shown as a (hexadecimal) number or character (for the string elements).

3.5.1.2 Little Endian Mapping

Structure s is shown mapped little endian.

3.5.2 Support for Little Endian Byte Ordering

Except as noted, this book describes the processor as if it operated only in a big endian fashion. In fact, the
IBM PowerPC Embedded Environment also supports little endian operation.

The PowerPC little endian mode, defined in the PowerPC Architecture, is not implemented.

3.5.3 Endian (E) Storage Attribute

The endian (E) storage attribute supports direct connection of the PPC405EP to little endian peripherals and
to memory containing little endian instructions and data. For every storage reference (instruction fetch or
load/store access), an E storage attribute is associated with the storage region of the reference. The E
attribute specifies whether that region is organized as big endian (E = 0) or little endian (E = 1).

When address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1), the E field in the corresponding TLB
entry controls the endianness of a memory region. When address translation is disabled (MSR[IR] = 0 or
MSR[DR] = 0), the SLER controls the endianness of a memory region.

11 12 13 14
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
21 22 23 24 25 26 27 28

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
31 32 33 34 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
'E' 'F' 'G' 51 52

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

14 13 12 11
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
34 33 32 31 'A' 'B' 'C' 'D'

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
'E' 'F' 'G' 52 51

0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
64 63 62 61

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
92 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Bytes in storage that are accessed as little endian are arranged in true little endian format. The PPC405EP
does not support the little endian mode defined in the PowerPC architecture and used in PPC401xx and
PPC403xx processors. Furthermore, no address modification is performed when accessing storage regions
programmed as little endian. Instead, the PPC405EP reorders the bytes as they are transferred between the
processor and memory.

The on-the-fly reversal of bytes in little endian storage regions is handled in one of two ways, depending on
whether the storage access is an instruction fetch or a data access (load/store). The following sections
describe byte reordering for the two kinds of storage accesses.

3.5.3.1 Fetching Instructions from Little Endian Storage Regions

Instructions are words (four bytes) that are aligned on word boundaries in memory. As such, instructions in a
big endian memory region are arranged with the most significant byte (MSB) of the instruction word at the
lowest address.

Consider the big endian mapping of instruction p at address 00, where, for example, p = add r7, r7, r4:

On the other hand, in the little endian mapping instruction p is arranged with the least significant byte (LSB) of
the instruction word at the lowest numbered address:

When an instruction is fetched from memory, the instruction must be placed in the instruction queue in the
proper order. The execution unit assumes that the MSB of an instruction word is at the lowest address.
Therefore, when instructions are fetched from little endian storage regions, the four bytes of an instruction
word are reversed before the instruction is decoded. In the PPC405EP, the byte reversal occurs between
memory and the instruction cache unit (ICU). The ICU always stores instructions in big endian format,
regardless of whether the memory region containing the instruction is programmed as big endian or little
endian. Thus, the bytes are already in the proper order when an instruction is transferred from the ICU to the
decode stage of the pipeline.

If a storage region is reprogrammed from one endian format to the other, the storage region must be reloaded
with program and data structures in the appropriate endian format. If the endian format of instruction memory
changes, the ICU must be made coherent with the updates. The ICU must be invalidated and the updated
instruction memory using the new endian format must be fetched so that the proper byte ordering occurs
before the new instructions are placed in the ICU.

3.5.3.2 Accessing Data in Little Endian Storage Regions

Unlike instruction fetches from little endian storage regions, data accesses from little endian storage regions
are not byte-reversed between memory and the DCU. Data byte ordering, in memory, depends on the data
type (byte, halfword, or word) of a specific data item. It is only when moving a data item of a specific type from
or to a GPR that it becomes known what type of byte reversal is required. Therefore, byte reversal during
load/store accesses is performed between the DCU and the GPR.

When accessing data in a little endian storage region:

• For byte loads/stores, no reordering occurs.

MSB LSB
0x00 0x01 0x02 0x03

LSB MSB
0x00 0x01 0x02 0x03
AMCC Proprietary 93

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• For halfword loads/stores, bytes are reversed within the halfword.
• For word loads/stores, bytes are reversed within the word.

Note that this applies, regardless of data alignment.

The big endian and little endian mappings of the structure s, shown in “Structure Mapping Examples” on
page 3-91, demonstrate how the size of an item determines its byte ordering. For example:

• The word a has its four bytes reversed within the word spanning addresses 0x00–0x03.
• The halfword e has its two bytes reversed within the halfword spanning addresses 0x1C–0x1D.

Note that the array of bytes d, where each data item is a byte, is not reversed when the big endian and little
endian mappings are compared. For example, the character 'A' is located at address 0x14 in both the big
endian and little endian mappings.

In little endian storage regions, the alignment of data is treated as it is in big endian storage regions. Unlike
PowerPC little endian mode, no special alignment exceptions occur when accessing data in little endian
storage regions.

3.5.3.3 PowerPC Byte-Reverse Instructions

For big endian storage regions, normal load/store instructions move the more significant bytes of a register to
and from the lower-numbered memory addresses. The load/store with byte-reverse instructions move the
more significant bytes of the register to and from the higher numbered memory addresses.

As Figure 3-11 through Figure 3-14 illustrate, a normal store to a big endian storage region is the same as a
byte-reverse store to a little endian storage region. Conversely, a normal store to a little endian storage region
is the same as a byte-reverse store to a big endian storage region.

Figure 3-11 illustrates the contents of a GPR and memory (starting at address 00) after a normal load/store in
a big endian storage region.

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

11 12 13 14

Figure 3-11. Normal Word Load or Store (Big Endian Storage Region)
94 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Note that the results are identical to the results of a load/store with byte-reverse in a little endian storage
region, as illustrated in Figure 3-12.

Figure 3-13 illustrates the contents of a GPR and memory (starting at address 00) after a load/store with byte-
reverse in a big endian storage region.

Note that the results are identical to the results of a normal load/store in a little endian storage region, as
illustrated in Figure 3-14.

The E storage attribute augments the byte-reverse load/store instructions in two important ways:

• The load/store with byte-reverse instructions do not solve the problem of fetching instructions from a storage
region in little endian format.
Only the endian storage attribute mechanism supports the fetching of little endian program images.

• Typical compilers cannot make general use of the byte-reverse load/store instructions, so these instructions
are ordinarily used only in device drivers written in hand-coded assembler.
Compilers can, however, take full advantage of the endian storage attribute mechanism, enabling application
programmers working in a high-level language, such as C, to compile programs and data structures into little
endian format.

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

11 12 13 14

Figure 3-12. Byte-Reverse Word Load or Store (Little Endian Storage Region)

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

14 13 12 11

Figure 3-13. Byte-Reverse Word Load or Store (Big Endian Storage Region)

GPR

LSBMSB

Memory

0x00 0x01 0x02 0x03

11 12 13 14

14 13 12 11

Figure 3-14. Normal Word Load or Store (Little Endian Storage Region)
AMCC Proprietary 95

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.6 Instruction Processing

The instruction pipeline, illustrated in Figure 3-15, contains three queue locations: prefetch buffer 1 (PFB1),
prefetch buffer 0 (PFB0), and decode (DCD). This queue implements a pipeline with the following functional
stages: fetch, decode, execute, write-back and load write-back. Instructions are fetched from the instruction
cache unit (ICU), placed in the instruction queue, and eventually dispatched to the execution unit (EXU).

Instructions are fetched from the ICU at the request of the EXU. Cachable instructions are forwarded directly
to the instruction queue and stored in the ICU cache array. Non-cachable instructions are also forwarded
directly to the instruction queue, but are not stored in the ICU cache array. Fetched instructions drop to the
empty queue location closest to the EXU. When there is room in the queue, instructions can be returned from
the ICU two at a time. If the queue is empty and the ICU is returning two instructions, one instruction drops
into DCD while the other drops into PFB0. PFB1 buffers instructions when the pipeline stalls.

Branch instructions are examined in DCD and PFB0 while all other instructions are decoded in DCD. All
instructions must pass through DCD before entering the EXU. The EXU contains the execute, write-back and
load write-back stages of the pipe. The results of most instructions are calculated during the execute stage
and written to the GPR file during the write back stage. Load instructions write the GPR file during the load
write-back stage.

3.7 Branch Processing

The PPC405EP, which provides a variety of conditional and unconditional branching instructions, uses the
branch prediction techniques described in “Branch Prediction” on page 3-99.

3.7.1 Unconditional Branch Target Addressing Options

The unconditional branches (b, ba, bl, bla) carry the displacement to the branch target address as a signed
26-bit value (the 24-bit LI field right-extended with 0b00). The displacement enables unconditional branches
to cover an address range of ±32MB.

EXU

DCD

PFB0

PFB1

ICU

Figure 3-15. PPC405EP Instruction Pipeline

Fetch

Dispatch

Queue
Instruction
96 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
For the relative (AA = 0) forms (b, bl), the target address is the current instruction address (CIA, the address
of the branch instruction) plus the signed displacement.

For the absolute (AA = 1) forms (ba, bla), the target address is 0 plus the signed displacement. If the sign bit
(LI[0]) is 0, the displacement is the target address. If the sign bit is 1, the displacement is a negative value and
wraps to the highest memory addresses. For example, if the displacement is 0x3FF FFFC (the 26-bit
representation of –4), the target address is 0xFFFF FFFC (0 – 4B, or 4 bytes below the top of memory).

3.7.2 Conditional Branch Target Addressing Options

The conditional branches (bc, bca, bcl, bcla) carry the displacement to the branch target address as a
signed 16-bit value (the 14-bit BD field right-extended with 0b00). The displacement enables conditional
branches to cover an address range of ±32KB.

For the relative (AA = 0) forms (bc, bcl), the target address is the CIA plus the signed displacement.

For the absolute (AA = 1) forms (bca, bcla), the target address is 0 plus the signed displacement. If the sign
bit (BD[0]) is 0, the displacement is the target address. If the sign bit is 1, the displacement is negative and
wraps to the highest memory addresses. For example, if the displacement is 0xFFFC (the 16-bit
representation of –4), the target address is 0xFFFF FFFC (0 – 4B, or 4 bytes from the top of memory).

3.7.3 Conditional Branch Condition Register Testing

Conditional branch instructions can test a CR bit. The value of the BI field specifies the bit to be tested (bit 0–
31). The BO field controls whether the CR bit is tested, as described in the following section.

3.7.4 BO Field on Conditional Branches

The BO field of the conditional branch instruction specifies the conditions used to control branching, and
specifies how the branch affects the CTR.

Conditional branch instructions can test one bit in the CR. This option is selected when BO[0] = 0; if
BO[0] = 1, the CR does not participate in the branch condition test. If this option is selected, the condition is
satisfied (branch can occur) if CR[BI] = BO[1].

Conditional branch instructions can decrement the CTR by one, and after the decrement, test the CTR value.
This option is selected when BO[2] = 0. If this option is selected, BO[3] specifies the condition that must be
satisfied to allow a branch to be taken. If BO[3] = 0, CTR ≠ 0 is required for a branch to occur. If BO[3] = 1,
CTR = 0 is required for a branch to occur.

If BO[2] = 1, the contents of the CTR are left unchanged, and the CTR does not participate in the branch
condition test.
AMCC Proprietary 97

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 3-11 summarizes the usage of the bits of the BO field. BO[4] is further discussed in “Branch Prediction.”

Table 3-12 lists specific BO field contents, and the resulting actions; z represents a mandatory value of 0, and
y is a branch prediction option discussed in “Branch Prediction.”

Table 3-11. Bits of the BO Field
BO Bit Description

BO[0] CR Test Control
0 Test CR bit specified by BI field for value specified by BO[1]
1 Do not test CR

BO[1] CR Test Value
0 Test for CR[BI] = 0.
1 Test for CR[BI] = 1.

BO[2] CTR Test Control
0 Decrement CTR by one and test whether CTR satisfies the

condition specified by BO[3].
1 Do not change CTR, do not test CTR.

BO[3] CTR Test Value
0 Test for CTR ≠ 0.
1 Test for CTR = 0.

BO[4] Branch Prediction Reversal
0 Apply standard branch prediction.
1 Reverse the standard branch prediction.

Table 3-12. Conditional Branch BO Field
BO Value Description
0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and CR[BI]=0.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and CR[BI] = 0.

001zy Branch if CR[BI] = 0.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and CR[BI] = 1.

0101y Decrement the CTR, then branch if the decremented CTR=0 and CR[BI] = 1.

011zy Branch if CR[BI] = 1.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.
98 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.7.5 Branch Prediction

Conditional branches present a problem to the instruction fetcher. A branch might be taken. The branch EXU
attempts to predict whether or not a branch is taken before all information necessary to determine the branch
direction is available. This decision is called a branch prediction. The fetcher can then prefetch instructions
starting at the predicted branch target address. If the prediction is correct, time is saved because the
branched-to instruction is available in the instruction queue. Otherwise, the instruction pipeline stalls while the
correct instruction is fetched into the instruction queue. To be effective, branch prediction must be correct
most of the time.

The PowerPC Architecture enables software to reverse the default branch prediction, which is defined as
follows:

Predict that the branch is to be taken if ((BO[0] ∧ BO[2]) ∨ s) = 1

where s is the sign bit of the displacement for conditional branch (bc) instructions, and 0 for bclr and bcctr
instructions.

(BO[0] ∧ BO[2]) = 1 only when the conditional branch tests nothing (the “branch always” condition).
Obviously, the branch should be predicted taken for this case.

If the branch tests anything, (BO[0] ∧ BO[2]) = 0, and s entirely controls the prediction. The default prediction
for this case was decided by considering the relative form of bc, which is commonly used at the end of loops
to control the number of times that a loop is executed. The branch is taken every time the loop is executed
except the last, so it is best if the branch is predicted taken. The branch target is the beginning of the loop, so
the branch displacement is negative and s = 1.

If branch displacements are positive (s = 0), the branch is predicted not taken. If the branch instruction is any
form of bclr or bcctr except the “branch always” forms, then s = 0, and the branch is predicted not taken.

There is a peculiar consequence of this prediction algorithm for the absolute forms of bc (bca and bcla). As
described in “Unconditional Branch Target Addressing Options” on page 3-96, if the algebraic sign of the
displacement is negative (s = 1), the branch target address is in high memory. If the algebraic sign of the
displacement is positive (s = 0), the branch target address is in low memory. Because these are absolute-
addressing forms, there is no reason to treat high and low memory differently. Nevertheless, for the high
memory case the default prediction is taken, and for the low memory case the default prediction is not taken.

BO[4] is the prediction reversal bit. If BO[4] = 0, the default prediction is applied. If BO[4] = 1, the reverse of
the standard prediction is applied. For the cases in Table 3-17 where BO[4] = y, software can reverse the
default prediction. This should only be done when the default prediction is likely to be wrong. Note that for the
“branch always” condition, reversal of the default prediction is not allowed.

The PowerPC Architecture requires assemblers to provide a way to conveniently control branch prediction.
For any conditional branch mnemonic, a suffix may be added to the mnemonic to control prediction, as
follows:

+ Predict branch to be taken

− Predict branch to be not taken

For example, bcctr+ causes BO[4] to be set appropriately to force the branch to be predicted taken.
AMCC Proprietary 99

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.8 Speculative Accesses

The PowerPC Architecture permits implementations to perform speculative accesses to memory, either for
instruction fetching, or for data loads. A speculative access is defined as any access which is not required by
a sequential execution model.

For example, prefetching instructions beyond an undetermined conditional branch is a speculative fetch; if
the branch is not in the predicted direction, the program, as executed, never needs the instructions from the
predicted path.

Sometimes speculative accesses are inappropriate. For example, attempting to fetch instructions from
addresses that cannot contain instructions can cause problems.To protect against errant accesses to
“sensitive” memory or I/O devices, the PowerPC Architecture provides the G (guarded) storage attribute,
which can be used to specify memory pages from which speculative accesses are prohibited. (Actually,
speculative accesses to guarded storage are allowed in certain limited circumstances; if an instruction in a
cache block will be executed, the rest of the cache block can be speculatively accessed.)

3.8.1 Speculative Accesses in the PPC405EP

The PPC405EP does not perform speculative loads.

Two methods control speculative instruction fetching. If instruction address translation is enabled (MSR[IR] =
1), the G (guarded) field in the translation lookaside buffer (TLB) entries controls speculative accesses.

If instruction address translation is disabled (MSR[IR] = 0), the Storage Guarded Register (SGR) controls
speculative accesses for regions of memory. When a region is guarded (speculative fetching is disallowed),
instruction prefetching is disabled for that region. A fetch request must be completely resolved (no longer
speculative) before it is issued. There is a considerable performance penalty for fetching from guarded
storage, so guarding should be used only when required.

Note that, following any reset, the PPC405EP operates with all of storage guarded.

Note that when address translation is enabled, attempts to fetch from guarded storage result in instruction
storage exceptions. Guarded memory is in most often needed with peripheral status registers that are cleared
automatically after being read, because an unintended access resulting from a speculative fetch would cause
the loss of status information. Because the MMU provides 64 pages with a wide range of page sizes as small
as 1KB, fetching instructions from guarded storage should be unnecessary.

3.8.1.1 Prefetch Distance Down an Unresolved Branch Path

The fetcher will speculatively access up to 19 instructions down a predicted branch path, whether taken or
sequential, regardless of cachability.

3.8.1.2 Prefetch of Branches to the CTR and Branches to the LR

When the instruction fetcher predicts that a bctr or blr instruction will be taken, the fetcher does not attempt to
fetch an instruction from the target address in the CTR or LR if an executing instruction updates the register
ahead of the branch. (See “Instruction Processing” on page 3-96 for a description of the instruction pipeline).
The fetcher recognizes that the CTR or LR contains data left from an earlier use and that such data is
probably not valid.

In such cases, the fetcher does not fetch the instruction at the target address until the instruction that is
updating the CTR or LR completes. Only then are the “correct” CTR or LR contents known. This prevents the
fetcher from speculatively accessing a completely “random” address. After the CTR or LR contents are
100 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
known to be correct, the fetcher accesses no more than five instructions down the sequential or taken path of
an unresolved branch, or at the address contained in the CTR or LR.

3.8.2 Preventing Inappropriate Speculative Accesses

A memory-mapped I/O peripheral, such as a serial port having a status register that is automatically reset
when read provides a simple example of storage that should not be speculatively accessed. If code is in
memory at an address adjacent to the peripheral (for example, code goes from 0x0000 0000 to 0x0000 0FFF,
and the peripheral is at 0x0000 1000), prefetching past the end of the code will read the peripheral.

Guarding storage also prevents prefetching past the end of memory. If the highest memory address is left
unguarded, the fetcher could attempt to fetch past the last valid address, potentially causing machine checks
on the fetches from invalid addresses. While the machine checks do not actually cause an exception until the
processor attempts to execute an instruction at an invalid address, some systems could suffer from the
attempt to access such an invalid address. For example, an external memory controller might log an error.

System designers can avoid problems from speculative fetching without using the guarded storage attributes.
The rest of this section describes ways to prevent speculative instruction fetches to sensitive addresses in
unguarded memory regions.

3.8.2.1 Fetching Past an Interrupt-Causing or Interrupt-Returning Instruction

Suppose a bctr or blr instruction closely follows an interrupt-causing or interrupt-returning instruction (sc, rfi,
or rfci). The fetcher does not prevent speculatively fetching past one of these instructions. In other words, the
fetcher does not treat the interrupt-causing and interrupt-returning instructions specially when deciding
whether to predict down a branch path. Instructions after an rfi, for example, are considered to be on the
determined branch path.

To understand the implications of this situation, consider the code sequence:

 handler: aaa
bbb
rfi

subroutine: bctr

When executing the interrupt handler, the fetcher does not recognize the rfi as a break in the program flow,
and speculatively fetches the target of the bctr, which is really the first instruction of a subroutine that has not
been called. Therefore, the CTR might contain an invalid pointer.

To protect against such a prefetch, the software must insert an unconditional branch hang (b $) just after the
rfi. This prevents the hardware from prefetching the invalid target address used by bctr.

Consider also the above code sequence, with the rfi instruction replaced by an sc instruction used to initialize
the CTR with the appropriate value for the bctr to branch to, upon return from the system call. The sc handler
returns to the instruction following the sc, which can’t be a branch hang. Instead, software could put a mtctr
just before the sc to load a non-sensitive address into the CTR. This address will be used as the prediction
address before the sc executes. An alternative would be to put a mfctr or mtctr between the sc and the bctr;
the mtctr prevents the fetcher from speculatively accessing the address contained in the CTR before
initialization.
AMCC Proprietary 101

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.8.2.2 Fetching Past tw or twi Instructions

The interrupt-causing instructions, tw and twi, do not require the special handling described in “Fetching Past
an Interrupt-Causing or Interrupt-Returning Instruction” on page 3-101. These instructions are typically used
by debuggers, which implement software breakpoints by substituting a trap instruction for the instruction
originally at the breakpoint address. In a code sequence mtlr followed by blr (or mtctr followed by bctr),
replacement of mtlr/mtctr by tw or twi leaves the LR/CTR uninitialized. It would be inappropriate to fetch from
the blr/bctr target address. This situation is common, and the fetcher is designed to prevent the problem.

3.8.2.3 Fetching Past an Unconditional Branch

When an unconditional branch is in DCD in the instruction queue, the fetcher recognizes that the sequential
instructions following the branch are unnecessary. These sequential addresses are not accessed. Addresses
at the branch target are accessed instead.

Therefore, placing an unconditional branch just before the start of a sensitive address space (for example, at
the “end” of a memory area that borders an I/O device) guarantees that addresses in the sensitive area will
not be speculatively fetched.

3.8.2.4 Suggested Locations of Memory-Mapped Hardware

The preferred method of protecting memory-mapped hardware from inadvertent access is to use address
translation, with hardware isolated to guarded pages (the G storage attribute in the associated TLB entry is
set to 1.) The pages can be as small as 1KB. Code should never be stored in such pages.

If address translation is disabled, the preferred protection method is to isolate memory-mapped hardware into
regions guarded using the SGR. Code should never be stored in such regions. The disadvantage of this
method, compared to the preferred method, is that each region guarded by the SGR consumes 128MB of the
address space.

Table 3-13 shows two address regions of the PPC405EP. Suppose a system designer can map all I/O
devices and all ROM and SRAM devices into any location in either region. The choices made by the designer
can prevent speculative accesses to the memory-mapped I/O devices.

A simple way to avoid the problem of speculative reads to peripherals is to map all storage containing code
into Region 2, and all I/O devices into Region 1. Thus, accesses to Region 2 would only be for code and
program data. Speculative fetches occuring in Region 2 would never access addresses in Region 1. Note
that this hardware organization eliminates the need to use of the G storage attribute to protect Region 1.
However, Region 1 could be set as guarded with no performance penalty, because there is no code to
execute or variable data to access in Region 1.

The use of these regions could be reversed (code in Region 1 and I/O devices in Region 2), if Region 2 is set
as guarded. Prefetching from the highest addresses of Region 1 could cause an attempt to speculatively
access the bottom of Region 2, but guarding prevents this from occurring. The performance penalty is slight,
under the assumption that code infrequently executes the instructions in the highest addresses of Region 1.

Table 3-13. Example Memory Mapping
0x7800 0000 – 0x7FFF FFFF (SGR bit 15) 128MB Region 2

0x7000 0000 – 0x77FF FFFF (SGR bit 14) 128MB Region 1
102 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.8.3 Summary

Software should take the following actions to prevent speculative accesses to sensitive data areas, if the
sensitive data areas are not in guarded storage:

• Protect against accesses to “random” values in the LR or CTR on blr or bctr branches following rfi, rfci, or sc
instructions by putting appropriate instructions before or after the rfi, rfci, or sc instruction. See “Fetching Past
an Interrupt-Causing or Interrupt-Returning Instruction” on page 3-101.

• Protect against “running past” the end of memory into a bordering I/O device by putting an unconditional
branch at the end of the memory area. See “Fetching Past an Unconditional Branch” on page 3-102.

• Recognize that a maximum of 19 words can be prefetched past an unresolved conditional branch, either down
the target path or the sequential path. See “Prefetch Distance Down an Unresolved Branch Path” on
page 3-100.

Of course, software should not code branches with known unsafe targets (either relative to the instruction
counter, or to addresses contained in the LR or CTR), on the assumption that the targets are “protected” by
code guaranteeing that the unsafe direction is not taken. The fetcher assumes that if a branch is predicted to
be taken, it is safe to fetch down the target path.

3.9 Privileged Mode Operation

In the PowerPC Architecture, several terms describe two operating modes that have different instruction
execution privileges. When a processor is in “privileged mode,” it can execute all instructions in the instruction
set. This mode is also called the “supervisor state.” The other mode, in which certain instructions cannot be
executed, is called the “user mode,” or “problem state.” These terms are used in pairs:

The architecture uses MSR[PR] to control the execution mode. When MSR[PR] = 1, the processor is in user
mode (problem state); when MSR[PR] = 0, the processor is in privileged mode (supervisor state).

After a reset, MSR[PR] = 0.

3.9.1 MSR Bits and Exception Handling

The current value of MSR[PR] is saved, along with all other MSR bits, in the SRR1 (for non-critical interrupts)
or SRR3 (for critical interrupts) upon any interrupt, and MSR[PR] is set to 0. Therefore, all exception handlers
operate in privileged mode.

Attempting to execute a privileged instruction while in user mode causes a privileged violation program
exception (see “Program Interrupt” on page 10-239). The PPC405EP does not execute the instruction, and
the program counter is loaded with EVPR[0:15] || 0x0700, the address of an exception processing routine.

The PRR field of the Exception Syndrome Register (ESR) is set when an interrupt was caused by a privileged
instruction program exception. Software is not required to clear ESR[PPR].

 Privileged Non-privileged
Privileged Mode User Mode
Supervisor State Problem State
AMCC Proprietary 103

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.9.2 Privileged Instructions

The instructions listed in Table 3-14 are privileged and cannot be executed while in user mode (MSR[PR] =
1).

3.9.3 Privileged SPRs

All SPRs are privileged, except for the LR, the CTR, the XER, USPRG0, and read access to SPRG4–
SPRG7. Reading from the time base registers Time Base Lower (TBL) and Time Base Upper (TBU) is not
privileged. These registers are read using the mftb instruction, rather than the mfspr instruction. TBL and
TBU are written (with different addresses) using mtspr, which is privileged for these registers. Except for
moves to and from non-privileged SPRs, attempts to execute mfspr and mtspr instructions while in user
mode result in privileged violation program exceptions.

In a mfspr or mtspr instruction, the 10-bit SPRN field specifies the SPR number of the source or destination
SPR. The SPRN field contains two five-bit subfields, SPRN0:4 and SPRN5:9. The assembler handles the
unusual register number encoding to generate the SPRF field. In the machine code for the mfspr and mtspr
instructions, the SPRN subfields are reversed (ending up as SPRF5:9 and SPRF0:4) for compatibility with the
POWER Architecture.

In the PowerPC Architecture, SPR numbers having a 1 in the most-significant bit of the SPRF field are
privileged.

Table 3-14. Privileged Instructions
dcbi
dccci
dcread
iccci
icread
mfdcr
mfmsr
mfspr For all SPRs except CTR, LR, SPRG4–SPRG7, and XER. See

“Privileged SPRs” on page 3-104

mtdcr
mtmsr
mtspr For all SPRs except CTR, LR, XER. See “Privileged SPRs” on

page 3-104

rfci
rfi
tlbia
tlbre
tlbsx
tlbsync
tlbwe

wrtee
wrteei
104 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
The following example illustrates how SPR numbers appear in assembler language coding and in machine
coding of the mfspr and mtspr instructions.

In assembler language coding, SRR0 is SPR 26. Note that the assembler handles the unusual register
number encoding to generate the SPRF field.

mfspr r5,26

When the SPR number is considered as a binary number (0b0000011010), the most-significant bit is 0.
However, the machine code for the instruction reverses the subfields, resulting in the following SPRF field:
0b1101000000. The most-significant bit is 1; SRR0 is privileged.

When an SPR number is considered as a hexadecimal number, the second digit of the three-digit
hexadecimal number indicates whether an SPR is privileged. If the second digit is odd (1, 3, 5, 7, 9, B, D, F),
the SPR is privileged.

For example, the SPR number of SRR0 is 26 (0x01A). The second hexadecimal digit is odd; SRR0 is
privileged. In contrast, the LR is SPR 8 (0x008); the second hexadecimal digit is not odd; the LR is non-
privileged.

3.9.4 Privileged DCRs

The mtdcr and mfdcr instructions themselves are privileged, in all cases. All DCRs are privileged.

3.10 Synchronization

The PPC405EP supports the synchronization operations of the PowerPC Architecture. The following book,
chapter, and section numbers refer to related information in The PowerPC Architecture: A Specification for a
New Family of RISC Processors:

• Book II, Section 1.8.1, “Storage Access Ordering” and “Enforce In-order Execution of I/O”
• Book III, Section 1.7, “Synchronization”
• Book III, Chapter 7, “Synchronization Requirements for Special Registers and Lookaside Buffers”

3.10.1 Context Synchronization

The context of a program is the environment (for example, privilege and address translation) in which the
program executes. Context is controlled by the content of certain registers, such as the Machine State
Register (MSR), and includes the content of all GPRs and SPRs.

An instruction or event is context synchronizing if it satisfies the following requirements:

1. All instructions that precede a context synchronizing operation must complete in the context that existed
before the context synchronizing operation.

2. All instructions that follow a context synchronizing operation must complete in the context that exists after
the context synchronizing operation.

Such instructions and events are called “context synchronizing operations.” In the PPC405EP, these include
any interrupt, except a non-recoverable instruction machine check, and the isync, rfci, rfi, and sc
instructions.

However, context specifically excludes the contents of memory. A context synchronizing operation does not
guarantee that subsequent instructions observe the memory context established by previous instructions. To
guarantee memory access ordering in the PPC405EP, one must use either an eieio instruction or a sync
AMCC Proprietary 105

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
instruction. Note that for the PPC405EP, the eieio and sync instructions are implemented identically. See
“Storage Synchronization” on page 3-108.

The contents of DCRs are not considered as part of the processor “context” managed by a context
synchronizing operation. DCRs are not part of the processor core, and are analogous to memorymapped
registers. Their context is managed in a manner similar to that of memory contents.

Finally, implementations of the PowerPC Architecture can exempt the machine check exception from context
synchronization control. If the machine check exception is exempted, an instruction that precedes a context
synchronizing operation can cause a machine check exception after the context synchronizing operation
occurs and additional instructions have completed.

The following scenarios use pseudocode examples to illustrate these limitations of context synchronization.
Subsequent text explains how software can further guarantee “storage ordering.”

1. Consider the following instruction sequence:
STORE non-cachable to address XYZ
isync
XYZ instruction

In this sequence, the isync instruction does not guarantee that the XYZ instruction is fetched after the
STORE has occurred to memory. There is no guarantee which XYZ instruction will execute; either the old
version or the new (stored) version might.

2. Consider the following instruction sequence, which assumes that the PPC405EP uses DCRs to provide
bus region control:
STORE non-cachable to address XYZ
isync
MTDCR to change a bus region containing XYZ
In this sequence, there is no guarantee that the STORE will occur before the mtdcr changing the bus region
control DCR. The STORE could fail because of a configuration error.

Consider an interrupt that changes privileged mode. An interrupt is a context synchronizing operation,
because interrupts cause the MSR to be updated. The MSR is part of the processor context; the context
synchronizing operation guarantees that all instructions that precede the interrupt complete using the
preinterrupt value of MSR[PR], and that all instructions that follow the interrupt complete using the
postinterrupt value.

Consider, on the other hand, some code that uses mtmsr to change the value of MSR[PR], which changes
the privileged mode. In this case, the MSR is changed, changing the context. It is possible, for example, that
prefetched privileged instructions expect to execute after the mtmsr has changed the operating mode from
privileged mode to user mode. To prevent privileged instruction program exceptions, the code must execute a
context synchronization operation, such as isync, immediately after the mtmsr instruction to prevent further
instruction execution until the mtmsr completes.

eieio or sync can ensure that the contents of memory and DCRs are synchronized in the instruction stream.
These instructions guarantee storage ordering because all memory accesses that precede eieio or sync are
completed before subsequent memory accesses. Neither eieio nor sync guarantee that instruction
prefetching is delayed until the eieio or sync completes. The instructions do not cause the prefetch queues to
be purged and instructions to be refetched. See “Storage Synchronization” on page 3-108 for more
information.

Instruction cache state is part of context. A context synchronization operation is required to guarantee
instruction cache access ordering.
106 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3. Consider the following instruction sequence, which is required for creating self-modifying code:
STORE Change data cache contents
dcbst Flush the new data cache contents to memory
sync Guarantee that dcbst completes before subsequent instructions begin
icbi Context changing operation; invalidates instruction cache contents.
isync Context synchronizing operation; causes refetch using new instruction cache context

text and new memory context, due to the previous sync.

If software wishes to ensure that all storage accesses are complete before executing a mtdcr to change a
bus region (Example 2), the software must issue a sync after all storage accesses and before the mtdcr.
Likewise, if the software is to ensure that all instruction fetches after the mtdcr use the new bank register
contents, the software must issue an isync, after the mtdcr and before the first instruction that should be
fetched in the new context.

isync guarantees that all subsequent instructions are fetched and executed using the context established by
all previous instructions. isync is a context synchronizing operation; isync causes all subsequently
prefetched instructions to be discarded and refetched.

The following example illustrates the use of isync with debug exceptions:

mtdbcr0 Enable an instruction address compare (IAC) event
isync Wait for the new Debug Control Register 0 (DBCR0) context to be established
XYZ This instruction is at the IAC address; an isync was necessary to guarantee that the

IAC event occurs at the execution of this instruction

3.10.2 Execution Synchronization

For completeness, consider the definition of execution synchronizing as it relates to context synchronization.
Execution synchronization is architecturally a subset of context synchronization.

Execution synchronization guarantees that the following requirement is met:

All instructions that precede an execution synchronizing operation must complete in the context that existed
before the execution synchronizing operation.

The following requirement need not be met:

All instructions that follow an execution synchronizing operation must complete in the context that exists after
the execution synchronizing operation.

Execution synchronization ensures that preceding instructions execute in the old context; subsequent
instructions might execute in either the new or old context (indeterminate). The PPC405EP provides three
execution synchronizing operations: the eieio, mtmsr, and sync instructions.

Because mtmsr is execution synchronizing, it guarantees that previous instructions complete using the old
MSR value. (For example, using mtmsr to change the endian mode.) However, to guarantee that subsequent
instructions use the new MSR value, we have to insert a context synchronization operation, such as isync.

Note that the PowerPC Architecture requires MSR[EE] (the external interrupt bit) to be, in effect, execution
synchronizing: if a mtmsr sets MSR[EE] = 1, and an external interrupt is pending, the exception must be
taken before the instruction that follows mtmsr is executed. However, the mtmsr instruction is not a context
synchronizing operation, so the PPC405EP does not, for example, discard prefetched instructions and
AMCC Proprietary 107

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
refetch. Note that the wrtee and wrteei instructions can change the value of MSR[EE], but are not execution
synchronizing.

Finally, while sync and eieio are execution synchronizing, they are also more restrictive in their requirement
of memory ordering. Stating that an operation is execution synchronizing does not imply storage ordering.
This is an additional specific requirement of sync and eieio.

3.10.3 Storage Synchronization

The sync instruction guarantees that all previous storage references complete with respect to the PPC405EP
before the sync instruction completes (therefore, before any subsequent instructions begin to execute). The
sync instruction is execution synchronizing. Consider the following use of sync:

Consider the following use of sync:

stw Store to peripheral
sync Wait for store to actually complete
mtdcr Reconfigure device

The eieio instruction guarantees the order of storage accesses. All storage accesses that precede eieio
complete before any storage accesses that follow the instruction, as in the following example:

stb X Store to peripheral, address X; this resets a status bit in the device
eieio Guarantee stb X completes before next instruction
lbz Y Load from peripheral, address Y; this is the status register updated by stb X.

eieio was necessary, because the read and write addresses are different, but
affect each other

The PPC405EP implements both sync and eieio identically, in the manner described above for sync. In the
PowerPC Architecture, sync can function across all processors in a multiprocessor environment; eieio
functions only within its executing processor. The PPC405EP does not provide hardware support for
multiprocessor memory coherency, so sync does not guarantee memory ordering across multiple
processors.
108 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.11 Instruction Set

The PPC405EP instruction set contains instructions defined in the PowerPC Architecture and instructions
specific to the IBM PowerPC 400 family of embedded processors.

Chapter 24, “Instruction Set,” contains detailed descriptions of each instruction.

Appendix A, “Instruction Summary,” alphabetically lists each instruction and extended mnemonic and
provides a short-form description. Appendix B, “Instructions by Category,” provides short-form descriptions of
instructions, grouped by the instruction categories listed in Table 3-15, “PPC405EP Instruction Set Summary,”
on page 109.

Table 3-15 summarizes the PPC405EP instruction set functions by categories. Instructions within each
category are described in subsequent sections.

3.11.1 Instructions Specific to the IBM PowerPC Embedded Environment

To support functions required in embedded real-time applications, the IBM processors defines instructions
that are not defined in the PowerPC Architecture.

Table 3-16 lists the instructions specific to IBM PowerPC embedded processors. Programs using these
instructions are not portable to PowerPC implementations that are not part of the IBM PowerPC 400 family of
embedded processors.

Table 3-15. PPC405EP Instruction Set Summary

Storage Reference load, store
Arithmetic add, subtract, negate, multiply, multiply-accumulate, multiply halfword, divide
Logical and, andc, or, orc, xor, nand, nor, xnor, sign extension, count leading zeros
Comparison compare, compare logical, compare immediate
Branch branch, branch conditional, branch to LR, branch to CTR
CR Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor, move CR field
Rotate rotate and insert, rotate and mask, shift left, shift right
Shift shift left, shift right, shift right algebraic
Cache Management invalidate, touch, zero, flush, store, read
Interrupt Control write to external interrupt enable bit, move to/from MSR, return from interrupt,

return from critical interrupt
Processor Management system call, synchronize, trap, move to/from DCRs, move to/from SPRs, move

to/from CR
AMCC Proprietary 109

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
In the table, the syntax [s] indicates that the instruction has a signed form. The syntax [u] indicates that the
instruction has an unsigned form. The syntax “[.]” indicates that the instruction has a “record” form that
updates CR[CR0], and a “non-record” form.

3.11.2 Storage Reference Instructions

Table 3-17 lists the PPC405EP storage reference instructions. Load/store instructions transfer data between
memory and the GPRs. These instructions operate on bytes, halfwords, and words. Storage reference
instructions also support loading or storing multiple registers, character strings, and bytereversed data.

In the table, the syntax “[u]” indicates that an instruction has an “update” form that updates the RA addressing
register with the calculated address, and a “non-update” form. The syntax “[x]” indicates that an instruction
has an “indexed” form, which forms the address by adding the contents of the RA and RB GPRs and a “base
+ displacement” form, in which the address is formed by adding a 16-bit signed immediate value (included as
part of the instruction word) to the contents of RA GPR.

3.11.3 Arithmetic Instructions

Arithmetic operations are performed on integer operands stored in GPRs. Instructions that perform
operations on two operands are defined in a three-operand format; an operation is performed on the
operands, which are stored in two GPRs. The result is placed in a third, operand, which is stored in a GPR.
Instructions that perform operations on one operand are defined using a two-operand format; the operation is
performed on the operand in a GPR and the result is placed in another GPR. Several instructions also have
immediate formats in which an operand is contained in a field in the instruction word.

Most arithmetic instructions have versions that can update CR[CR0] and XER[SO, OV], based on the result
of the instruction. Some arithmetic instructions also update XER[CA] implicitly. See “Condition Register (CR)”
on page 3-80 and “Fixed Point Exception Register (XER)” on page 3-76 for more information.

Table 3-16. Implementation-specific Instructions

dccci
dcread
iccci
icread

macchw[s][u]
machhw[s][u]
maclhw[s][u]
nmacchw[s]
nmachhw[s]
nmaclhw[s]

mulchw[u]
mulhhw[u]
mullhw[u]

mfdcr
mtdcr
rfci
tlbre
tlbsx[.]
tlbwe
wrtee
wrteei

Table 3-17. Storage Reference Instructions
Loads Stores

Byte Halfword Word Multiple/String Byte Halfword Word Multiple/String
lbz[u][x] lha[u][x]

lhbrx
lhz[u][x]

lwarx
lwbrx
lwz[u][x]

lmw
lswi
lswx

stb[u][x] sth[u][x]
sthbrx

stw[u][x]
stwbrx
stwcx.

stmw
stswi
stswx
110 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 3-18 lists the PPC405EP arithmetic instructions. In the table, the syntax “[o]” indicates that an
instruction has an “o” form that updates XER[SO,OV], and a “non-o” form. The syntax “[.]” indicates that the
instruction has a “record” form that updates CR[CR0], and a “non-record” form.

Table 3-19 lists additional arithmetic instructions for multiply-accumulate and multiply halfword operations. In
the table, the syntax “[o]” indicates that an instruction has an “o” form that updates XER[SO,OV], and a “non-
o” form. The syntax “[.]” indicates that the instruction has a “record” form that updates CR[CR0], and a “non-
record” form.

3.11.4 Logical Instructions

Table 3-20 lists the PPC405EP logical instructions. In the table, the syntax “[.]” indicates that the instruction
has a “record” form that updates CR[CR0], and a “non-record” form.

Table 3-18. Arithmetic Instructions
Add Subtract Multiply Divide Negate

add[o][.]
addc[o][.]
adde[o][.]
addi
addic[.]
addis
addme[o][.]
addze[o][.]

subf[o][.]
subfc[o][.]
subfe[o][.]
subfic
subfme[o][.
]
subfze[o][.]

mulhw[.]
mulhwu[.]
mulli
mullw[o][.]

divw[o][.]
divwu[o][.]

neg[o][.]

Table 3-19. Multiply-Accumulate and Multiply Halfword Instructions

Multiply-
Accumulate

Negative-
Multiply-

Accumulate
Multiply
Halfword

macchw[o][.]
macchws[o][.]
macchwsu[o][.]
macchwu[o][.]
machhw[o][.]
machhws[o][.]
machhwsu[o][.]
machhwu[o][.]
maclhw[o][.]
maclhws[o][.]
maclhwsu[o][.]
maclhwu[o][.]

nmacchw[o][.]
nmacchws[o][.]
nmachhw[o][.]
nmachhws[o][.]
nmaclhw[o][.]
nmaclhws[o][.]

mulchw[.]
mulchwu[.]
mulhhw[.]
mulhhwu[.]
mullhw[.]
mullhwu[.]

Table 3-20. Logical Instructions

And
And with

complement Nand Or
Or with

complement Nor Xor Equivalence Extend sign

Count
leading
zeros

and[.]
andi.
andis.

andc[.] nand[.] or[.]
ori
oris

orc[.] nor[.] xor[.]
xori
xoris

eqv[.] extsb[.]
extsh[.]

cntlzw[.]
AMCC Proprietary 111

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.11.5 Compare Instructions

These instructions perform arithmetic or logical comparisons between two operands and update the CR with
the result of the comparison.

Table 3-21 lists the PPC405EP compare instructions.

3.11.6 Branch Instructions

These instructions unconditionally or conditionally branch to an address. Conditional branch instructions can
test condition codes set by a previous instruction and branch accordingly. Conditional branch instructions can
also decrement and test the CTR as part of branch determination, and can save the return address in the
LR.The target address for a branch can be a displacement from the current instruction address (a relative
address), an absolute address, or contained in the CTR or LR.

See “Branch Processing” on page 3-96 for more information on branch operations.

Table 3-22 lists the PPC405EP branch instructions. In the table, the syntax “[l]” indicates that the instruction
has a “link update” form that updates LR with the address of the instruction after the branch, and a “non-link
update” form. The syntax “[a]” indicates that the instruction has an “absolute address” form, in which the
target address is formed directly using the immediate field specified as part of the instruction, and a “relative”
form, in which the target address is formed by adding the immediate field to the address of the branch
instruction).

3.11.6.1 CR Logical Instructions

These instructions perform logical operations on a specified pair of bits in the CR, placing the result in
another specified bit. These instructions can logically combine the results of several comparisons without
incurring the overhead of conditional branch instructions. Software performance can significantly improve if
multiple conditions are tested at once as part of a branch decision.

Table 3-23 lists the PPC405EP condition register logical instructions.

Table 3-21. Compare Instructions
Arithmetic Logical
cmp
cmpi

cmpl
cmpli

Table 3-22. Branch Instructions
Branch

b[l][a]
bc[l][a]
bcctr[l]
bclr[l]

Table 3-23. CR Logical Instructions
crand
crandc
creqv
crnand

crnor
cror
crorc
crxor
mcrf
112 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.11.6.2 Rotate Instructions

These instructions rotate operands stored in the GPRs. Rotate instructions can also mask rotated operands.

Table 3-24 lists the PPC405EP rotate instructions. In the table, the syntax “[.]” indicates that the instruction
has a “record” form that updates CR[CR0], and a “non-record” form.

3.11.6.3 Shift Instructions

These instructions rotate operands stored in the GPRs.

Table 3-25 lists the PPC405EP shift instructions. Shift right algebraic instructions implicitly update XER[CA].
In the table, the syntax “[.]” indicates that the instruction has a “record” form that updates CR[CR0], and a
“non-record” form.

3.11.6.4 Cache Management Instructions

These instructions control the operation of the ICU and DCU. Instructions are provided to fill or invalidate
instruction cache blocks. Instructions are also provided to fill, flush, invalidate, or zero data cache blocks,
where a block is defined as a 32-byte cache line.

Table 3-26 lists the PPC405EP cache management instructions.

Table 3-24. Rotate Instructions
Rotate and Insert Rotate and Mask
rlwimi[.] rlwinm[.]

rlwnm[.]

Table 3-25. Shift Instructions

Shift Left Shift Right
Shift Right
Algebraic

slw[.] srw[.] sraw[.]
srawi[.]

Table 3-26. Cache Management Instructions
DCU ICU

dcba
dcbf
dcbi
dcbst
dcbt
dcbtst
dcbz
dccci
dcread

icbi
icbt
iccci
icread
AMCC Proprietary 113

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
3.11.7 Interrupt Control Instructions

mfmsr and mtmsr read and write data between the MSR and a GPR to enable and disable interrupts. wrtee
and wrteei enable and disable external interrupts. rfi and rfci return from interrupt handlers. Table 3-27 lists
the PPC405EP interrupt control instructions.

3.11.8 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array in the MMU, search the TLB array
for an entry which will translate a given address, and invalidate all TLB entries. There is also an instruction for
synchronizing TLB updates with other processors, but because the PPC405EP is for use in uniprocessor
environments, this instruction performs no operation.

Table 3-28 lists the TLB management instructions. In the table, the syntax “[.]” indicates that the instruction
has a “record” form that updates CR[CR0], and a “non-record” form.

3.11.9 Processor Management Instructions

These instructions move data between the GPRs and SPRs, the CR, and DCRs in the PPC405EP, and
provide traps, system calls, and synchronization controls.

Table 3-29 lists the processor management instructions in the PPC405EP.

Table 3-27. Interrupt Control Instructions
mfmsr
mtmsr
rfi
rfci
wrtee
wrteei

Table 3-28. TLB Management Instructions
tlbia
tlbre
tlbsx[.]
tlbsync
tlbwe

Table 3-29. Processor Management Instructions
eieio
isync
sync

mcrxr
mfcr
mfdcr
mfspr

mtcrf
mtdcr
mtspr
sc
tw
twi
114 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3.11.10 Extended Mnemonics

In addition to mnemonics for instructions supported directly by hardware, the PowerPC Architecture defines
numerous extended mnemonics.

An extended mnemonic translates directly into the mnemonic of a hardware instruction, typically with
carefully specified operands. For example, the PowerPC Architecture does not define a “shift right word
immediate” instruction, because the “rotate left word immediate then AND with mask,” (rlwinm) instruction
can accomplish the same result:

rlwinm RA,RS,32–n,n,31

However, because the required operands are not obvious, the PowerPC Architecture defines an extended
mnemonic:

srwi RA,RS,n

Extended mnemonics transfer the problem of remembering complex or frequently used operand
combinations to the assembler, and can more clearly reflect a programmer’s intentions. Thus, programs can
be more readable.

Refer to the following chapter and appendixes for lists of the extended mnemonics:

• Chapter 24, “Instruction Set,” lists extended mnemonics under the associated hardware instruction mnemon-
ics.

• Appendix A, “Instruction Summary,” lists extended mnemonics alphabetically, along with the hardware instruc-
tion mnemonics.

• Table B-5 in Appendix B, “Instructions by Category,” lists all extended mnemonics.
AMCC Proprietary 115

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
116 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 4. Cache Operations

The PPC405EP incorporates two internal caches, a 16KB instruction cache and a 16KB data cache.
Instructions and data can be accessed in the caches much faster than in main memory.

The instruction cache unit (ICU) controls instruction accesses to main memory and stores frequently used
instructions to reduce the overhead of instruction transfers between the instruction pipeline and external
memory. Using the instruction cache minimizes access latency for frequently executed instructions.

The data cache unit (DCU) controls data accesses to main memory and stores frequently used data to
reduce the overhead of data transfers between the GPRs and external memory. Using the data cache
minimizes access latency for frequently used data.

The ICU features:
• Programmable address pipelining and prefetching for cache misses and non-cachable lines
• Support for non-cachable hits from lines contained in the line fill buffer
• Programmable non-cachable requests to memory as 4 or 8 words (or half line or line)
• Bypass path for critical words
• Non-blocking cache for hits during fills
• Flash invalidate (one instruction invalidates entire cache)
• Programmable allocation for fetch fills, enabling program control of cache contents using the icbt instruction
• Virtually indexed, physically tagged cache arrays
• Support for 64-bit and 32-bit PLB slaves
• A rich set of cache control instructions

The DCU features:
• Address pipelining for line fills
• Support for load hits from non-cachable and non-allocated lines contained in the line fill buffer
• Bypass path for critical words
• Non-blocking cache for hits during fills
• Write-back and write-through write strategies controlled by storage attributes
• Programmable non-cachable load requests to memory as lines or words.
• Handling of up to two pending line flushes.
• Holding of up to three stores before stalling the core pipeline
• Physically indexed, physically tagged cache arrays
• Support for 64-bit and 32-bit PLB slaves
• A rich set of cache control instructions

“ICU Organization” on page 4-118 and “DCU Organization” on page 4-121 describe the organization and
provide overviews of the ICU and the DCU.
AMCC Proprietary 117

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
4.1 ICU Organization

The ICU manages instruction transfers between external cachable memory and the instruction queue in the
execution unit.

The ICU contains a two-way set-associative 16KB cache memory. Each way is organized in 256 lines of eight
words (eight instructions) each.

As shown in Table 4-1, tag ways A and B store instruction address bits A0:21 for each line in cache ways A
and B. Instruction address bits A19:26 serve as the index to the cache array. The two cache lines that
correspond to the same line index (one in each way) are called a congruence class.

When a cache line is to be loaded, the cache way to receive the line is determined by using an leastrecently-
used (LRU) policy. The index, determined by the instruction address, selects a congruence class. Within a
congruence class, the line which was accessed most recently is retained, and the other line is marked as
LRU, using an LRU bit in the tag array. The line to receive the incoming data is the LRU line. After the cache
line fill, the LRU bit is then set to identify as least-recently-used the line opposite the line just filled.

Table 4-1. Instruction Cache Organization

Tags (Two-way Set) Instructions (Two-way Set)

Way A Way B Way A Way B

A0:21 Line 0 A A0:21 Line 0 B Line 0 A Line 0 B

A0:21 Line 1 A A0:21 Line 1 B Line 1 A Line 1 B

•
•
•

•
•
•

•
•
•

•
•
•

A0:21 Line 254 A A0:21 Line 254 B Line 254 A Line 254 B

A0:21 Line 255 A A0:21 Line 255 B Line 255 A Line 255 B
118 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 4-1 shows the relationships between the ICU and the instruction pipeline.

4.1.1 ICU Operations

Instructions from cachable memory regions are copied into the instruction cache array. The fetcher can
access instructions much more quickly from a cache array than from memory. Cache lines are loaded either
target-word-first or sequentially. Target-word-first fills start at the requested word, continue to the end of the
line, and then wrap to fill the remaining words at the beginning of the line. Sequential fills start at the first word
of the cache line and proceed sequentially to the last word of the line.

The bypass path handles instructions in cache-inhibited memory and improves performance during line fill
operations. If a request from the fetcher obtains an entire line from memory, the queue does not have to wait
for the entire line to reach the cache. The target word (the word requested by the fetcher) is sent on the
bypass path to the queue while the line fill proceeds, even if the selected line fill order is not target-word-first.

Cache line fills always run to completion, even if the instruction stream branches away from the rest of the
line. As requested instructions are received, they go to the fetcher from the fill register before the line fills in
the cache. The filled line is always placed in the ICU; if an external memory subsystem error occurs during
the fill, the line is not written to the cache. During a clock cycle, the ICU can send two instructions to the
fetcher.

4.1.2 Instruction Cachability Control

When instruction address translation is enabled (MSR[IR] = 1), instruction cachability is controlled by the I
storage attribute in the translation lookaside buffer (TLB) entry for the memory page. If TLB_entry[I] = 1,
caching is inhibited; otherwise caching is enabled. Cachability is controlled separately for each page, which
can range in size from 1KB to 16MB. “Translation Lookaside Buffer (TLB)” on page 6-144 describes the TLB.

Execute

PFB1

PFB0

Decode

Addresses from Fetcher

Instruction
Arrays
Tag

Arrays

Addresses to Memory

Instructions from Memory

Figure 4-1. Instruction Flow

Bypass Path

Instruction Queue
AMCC Proprietary 119

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
When instruction address translation is disabled (MSR[IR] = 0), instruction cachability is controlled by the
Instruction Cache Cachability Register (ICCR). Each field in the ICCR (ICCR[S0:S31]) controls the cachability
of a 128MB region (see “Real-Mode Storage Attribute Control” on page 6-158). If ICCR[Sn] = 1, caching is
enabled for the specified region; otherwise, caching is inhibited.

The performance of the PPC405EP is significantly lower while fetching instructions from cacheinhibited
regions.

Following system reset, address translation is disabled and all ICCR bits are reset to 0 so that no memory
regions are cachable. Before regions can be designated as cachable, the ICU cache array must be
invalidated. The iccci instruction must execute before the cache is enabled. Address translation can then be
enabled, if required, and the TLB or the ICCR can then be configured for the required cachability.

4.1.3 Instruction Cache Synonyms

The following information applies only if instruction address translation is enabled (MSR[IR] = 1) and 1KB or
4KB page sizes are used. See Chapter 6, “Memory Management,” for information about address translation
and page sizes.

An instruction cache synonym occurs when the instruction cache array contains multiple cache lines from the
same real address. Such synonyms result from combinations of:

• Cache array size
• Cache associativity
• Page size
• The use of effective addresses (EAs) to index the cache array

For example, the instruction cache array has a "way size" of 8KB (16KB array/2 ways). Thus, 11 bits
(EA19:29) are needed to select a word (instruction) in each way. For the minimum page size of 1KB, the low
order 8 bits (EA22:29) address a word in a page. The high order address bits (EA0:21) are translated to form a
real address (RA), which the ICU uses to perform the cache tag match. Cache synonyms could occur
because the index bits (EA19:29) overlap the translated RA bits. For 1KB pages, overlap in EA19:21 and
RA19:21 could result in as many as 8 synomyms. In other words, data from the same RA could occur as many
as 8 locations in the cache array. Similarly, for 4KB pages, EA0:19 are translated. Differences in EA19 and
RA19 could result in as many as 2 synonyms. For the next largest page size (16KB), only EA 0:17 are
translated. Because there is no overlap with index bits EA19:21, synonyms do not occur.

In practice, cache synonyms occur when a real instruction page having multiple virtual mappings exists in
multiple cache lines. For 1KB pages, all EAs differing in EA19:21 must be cast out of cache, using an icbi
instruction for each such EA (up to 8 per cache line in the page). For 4KB pages, all EAs differing in EA19
must be cast out in the same manner (up to 2 per cache line in the page). For larger pages, cache synonyms
do not occur, and casting out any of the multiple EAs removes the physical information from the cache.

Programming Note: To prevent the occurrence of cache synonyms, use only page sizes greater than
the cache way size (8KB), if possible. For the PPC405EP, the minimum such page size is 16KB.
120 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
4.1.4 ICU Coherency

The ICU does not “snoop” external memory or the DCU. Programmers must follow special procedures for
ICU synchronization when self-modifying code is used or if a peripheral device updates memory containing
instructions.

The following code example illustrates the necessary steps for self-modifying code. This example assumes
that addr1 is both data and instruction cachable.

stw regN, addr1 # the data in regN is to become an instruction at addr1
dcbst addr1 # forces data from the data cache to memory
sync # wait until the data actually reaches the memory
icbi addr1 # the previous value at addr1 might already be in

the instruction cache; invalidate it in the cache
isync # the previous value at addr1 may already have been

pre-fetched into the queue; invalidate the queue
so that the instruction must be re-fetched

4.2 DCU Organization

The DCU manages data transfers between external cachable memory and the general-purpose registers in
the execution unit.

The DCU contains a two-way set-associative 16KB cache memory. Each way is organized in 256 lines of
eight words (32 bytes) each.

As shown in Table 4-2, tag ways A and B store data address bits A0:19 for each line in cache ways A and B.
Data address bits A18:26 serve as the index to the cache array. The two cache lines that correspond to the
same line index (one in each way) are called a congruence class.

A bypass path handles data operations in cache-inhibited memory and improves performance during line fill
operations.

4.2.1 DCU Operations

Data from cachable memory regions are copied from external memory into lines in the data cache array so
that subsequent cache operations result in cache hits. Loads and stores that hit in the DCU are completed in
one cycle. For loads, GPRs receive the requested byte, halfword, or word of data from the data cache array.
The DCU supports byte-writeability to improve the performance of byte and halfword store operations.

Table 4-2. Data Cache Organization

Tags (Two-way Set) Data (Two-way Set)

Way A Way B Way A Way B

A0:19 Line 0 A A0:19 Line 0 B Line 0 A Line 0 B

A0:19 Line 1 A A0:19 Line 1 B Line 1 A Line 1 B

•
•
•

•
•
•

•
•
•

•
•
•

A0:19 Line 254 A A0:19 Line 254 B Line 254 A Line 254 B

A0:19 Line 255 A A0:19 Line 255 B Line 255 A Line 255 B
AMCC Proprietary 121

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Cache operations require a line fill when they require data from cachable memory regions that are not
currently in the DCU. A line fill is the movement of a cache line (eight words) from external memory to the
data cache array. Eight words are copied from external memory into the fill buffer, either targetword-first or
sequentially. Loading order is controlled by the PLB slave. Target-word-first fills start at the requested word,
continue to the end of the line, and then wrap to fill the remaining words at the beginning of the line.
Sequential fills start at the first word of the cache line and proceed sequentially to the last word of the line. In
both types of fills, the fill buffer, when full, is transferred to the data cache array. The cache line is marked
valid when it is filled.

Loads that result in a line fill, and loads from non-cachable memory, are sent to a GPR. The requested byte,
halfword, or word is sent from the DCU to the GPR from the fill buffer, using a cache bypass mechanism.
Additional loads for data in the fill buffer can be bypassed to the GPR until the data is moved into the data
array.

Stores that result in a line fill have their data held in the fill buffer until the line fill completes. Additional stores
to the line being filled will also have their data placed in the fill buffer before being transferred into the data
cache array.

To complete a line fill, the DCU must access the tag and data arrays. The tag array is read to determine the
tag addresses, the LRU line, and whether the LRU line is dirty. A dirty cache line is one that was accessed by
a store instruction after the line was established, and can be inconsistent with external memory. If the line
being replaced is dirty, the address and the cache line must be saved so

that external memory can be updated. During the cache line fill, the LRU bit is set to identify the line opposite
the line just filled as LRU.

When a line fill completes and replaces a dirty line, a line flush begins. A flush copies updated data in the data
cache array to main storage. Cache flushes are always sequential, starting at the first word of the cache line
and proceeding sequentially to the end of the line.

Cache lines are always completely flushed or filled, even if the program does not request the rest of the bytes
in the line, or if a bus error occurs after a bus interface unit accepts the request for the line fill. If a bus error
occurs during a line fill, the line is filled and the data is marked valid. However, the line can contain invalid
data, and a machine check exception occurs.

4.2.2 DCU Write Strategies

DCU operations can use write-back or write-through strategies to maintain coherency with external cachable
memory.

The write-back strategy updates only the data cache, not external memory, during store operations. Only
modified data lines are flushed to external memory, and then only when necessary to free up locations for
incoming lines, or when lines are explicitly flushed using dcbf or dcbst instructions. The write-back strategy
minimizes the amount of external bus activity and avoids unnecessary contention for the external bus
between the ICU and the DCU.

The write-back strategy is contrasted with the write-through strategy, in which stores are written
simultaneously to the cache and to external memory. A write-through strategy can simplify maintaining
coherency between cache and memory.

When data address translation is enabled (MSR[DR] = 1), the W storage attribute in the TLB entry for the
memory page controls the write strategy for the page. If TLB_entry[W] = 0, write-back is selected; otherwise,
write-through is selected. The write strategy is controlled separately for each page. “Translation Lookaside
Buffer (TLB)” on page 6-144 describes the TLB.
122 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
When data address translation is disabled (MSR[DR] = 0), the Data Cache Write-through Register (DCWR)
sets the storage attribute. Each bit in the DCWR (DCWR[W0:W31]) controls the write strategy of a 128MB
storage region (see “Real-Mode Storage Attribute Control” on page 6-158). If DCWR[Wn] = 0, write-back is
enabled for the specified region; otherwise, write-through is enabled.

Programming Note: The PowerPC Architecture does not support memory models in which write-through
is enabled and caching is inhibited.

4.2.3 DCU Load and Store Strategies

The DCU can control whether a load receives one word or one line of data from main memory. For cachable
memory, the load without allocate (LWOA) field of the CCR0 controls the type of load resulting from a load
miss. If CCR0[LWOA] = 0, a load miss causes a line fill. If CCR0[LWOA] = 1, load misses do not result in a
line fill, but in a word load from external memory. For infrequent reads of non-contiguous memory, setting
CCR0[LWOA] = 1 may provide a small performance improvement.

For non-cachable memory and for loads misses when CCR0[LWOA] = 1, the load word as line (LWL) field in
the CCR0 affects whether load misses are satisfied with a word, or with eight words (the equivalent of a
cache line) of data. If CCR0[LWL] = 0, only the target word is bypassed to the core. If CCR0[LWL] = 1, the
DCU saves eight words (one of which is the target word) in the fill buffer and bypasses the target data to the
core to satisfy the load word request. The fill buffer is not written to the data cache array.

Setting CCR0[LWL] = 1 provides the fastest accesses to sequential non-cachable memory. Subsequent
loads from the same line are bypassed to the core from the fill buffer and do not result in additional external
memory accesses. The load data remains valid in the fill buffer until one of the following occurs: the beginning
of a subsequent load that requires the fill buffer, a store to the target address, a dcbi or dccci instruction
issued to the target address, or the execution of a sync instruction. Non-cachable loads to guarded storage
never cause a line transfer on the PLB even if CCR0[LWL] = 1. Subsequent loads to the same non-cachable
storage are always requested again from the PLB.

For cachable memory, the store without allocate (SWOA) field of the CCR0 controls the type of store resulting
from a store miss. If CCR0[SWOA] = 0, a store miss causes a line fill. If CCR0[SWOA] = 1, store misses do
not result in a line fill, but in a single word store to external memory.

4.2.4 Data Cachability Control

When data address translation is disabled (MSR[DR] = 0), data cachability is controlled by the Data Cache
Cachability Register (DCCR). Each bit in the DCCR (DCCR[S0:S31]) controls the cachability of a 128MB
region (see “Real-Mode Storage Attribute Control” on page 6-158). If DCCR[Sn] = 1, caching is enabled for
the specified region; otherwise, caching is inhibited.

When data address translation is enabled (MSR[DR] = 1), data cachability is controlled by the I bit in the TLB
entry for the memory page. If TLB_entry[I] = 1, caching is inhibited; otherwise caching is enabled. Cachability
is controlled separately for each page, which can range in size from 1KB to 16MB. “Translation Lookaside
Buffer (TLB)” on page 6-144 describes the TLB.

Programming Note: The PowerPC Architecture does not support memory models in which write-through
is enabled and caching is inhibited.

The performance of the PPC405EP is significantly lower while accessing memory in cache-inhibited regions.

Following system reset, address translation is disabled and all DCCR bits are reset to 0 so that no memory
regions are cachable. The dccci instruction must execute 256 times before regions can be designated as
AMCC Proprietary 123

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
cachable. This invalidates all congruence classes before enabling the cache. Address translation can then be
enabled, if required, and the TLB or the DCCR can then be configured for the desired cachability.

Programming Note: If a data block corresponding to the effective address (EA) exists in the cache, but
the EA is non-cachable, loads and stores (including dcbz) to that address are considered programming
errors (the cache block should previously have been flushed). The only instructions that can legitimately
access such an EA in the data cache are the cache management instructions dcbf, dcbi, dcbst, dcbt,
dcbtst, dccci, and dcread.

4.2.5 DCU Coherency

The DCU does not provide snooping. Application programs must carefully use cache-inhibited regions and
cache control instructions to ensure proper operation of the cache in systems where external devices can
update memory.

4.3 Cache Instructions

For detailed descriptions of the instructions described in the following sections, see Chapter 25, “Instruction
Set.”

In the instruction descriptions, the term “block” is synonymous with cache line. A block is the unit of storage
operated on by all cache block instructions.

4.3.1 ICU Instructions

The following instructions control instruction cache operations:

icbi Instruction Cache Block Invalidate

Invalidates a cache block.

icbt Instruction Cache Block Touch

Initiates a block fill, enabling a program to begin a cache block fetch before the
program needs an instruction in the block.

The program can subsequently branch to the instruction address and fetch the
instruction without incurring a cache miss.

This is a privileged instruction.

iccci Instruction Cache Congruence Class Invalidate

Invalidates the instruction cache array.

This is a privileged instruction.

icread Instruction Cache Read

Reads either an instruction cache tag entry or an instruction word from an
instruction cache line, typically for debugging. Fields in CCR0 control instruction
behavior (see “Cache Control and Debugging Features” on page 4-126).

This is a privileged instruction.
124 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
4.3.2 DCU Instructions

Data cache flushes and fills are triggered by load, store and cache control instructions. Cache control
instructions are provided to fill, flush, or invalidate cache blocks.

The following instructions control data cache operations.

dcba Data Cache Block Allocate

Speculatively establishes a line in the cache and marks the line as modified.

If the line is not currently in the cache, the line is established and marked as
modified without actually filling the line from external memory.

If dcba references a non-cachable address, dcba is treated as a no-op.

If dcba references a cachable address, write-through required (which would
otherwise cause an alignment exception), dcba is treated as a no-op.

dcbf Data Cache Block Flush

Flushes a line, if found in the cache and marked as modified, to external memory;
the line is then marked invalid.

If the line is found in the cache and is not marked modified, the line is marked invalid
but is not flushed.

This operation is performed regardless of whether the address is marked cachable.

dcbi Data Cache Block Invalidate

Invalidates a block, if found in the cache, regardless of whether the address is
marked cachable. Any modified data is not flushed to memory.

This is a privileged instruction.

dcbst Data Cache Block Store

Stores a block, if found in the cache and marked as modified, into external memory;
the block is not invalidated but is no longer marked as modified.

If the block is marked as not modified in the cache, no operation is performed.

This operation is performed regardless of whether the address is marked cachable.

dcbt Data Cache Block Touch

Fills a block with data, if the address is cachable and the data is not already in the
cache. If the address is non-cachable, this instruction is a no-op.

dcbtst Data Cache Block Touch for Store

Implemented identically to the dcbt instruction for compatibility with compilers and
other tools.
AMCC Proprietary 125

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
4.4 Cache Control and Debugging Features

Registers and instructions are provided to control cache operation and help debug cache problems. For ICU
debug, the icread instruction and the Instruction Cache Debug Data Register (ICDBDR) are provided. See
“ICU Debugging” on page 4-129 for more information. For DCU debug, the dcread instruction is provided.
See “DCU Debugging” on page 4-131 for more information.

CCR0 controls the behavior of the icread and the dcread instructions.

dcbz Data Cache Block Set to Zero

Fills a line in the cache with zeros and marks the line as modified.

If the line is not currently in the cache (and the address is marked as cachable and
non-write-through), the line is established, filled with zeros, and marked as modified
without actually filling the line from external memory. If the line is marked as either
non-cachable or write-through, an alignment exception results.

dccci Data Cache Congruence Class Invalidate

Invalidates a congruence class (both cache ways).

This is a privileged instruction.

dcread Data Cache Read

Reads either a data cache tag entry or a data word from a data cache line, typically
for debugging. Bits in CCR0 control instruction behavior (see “Cache Control and
Debugging Features” on page 4-126).

This is a privileged instruction.

Figure 4-2. Core Configuration Register 0 (CCR0)
0:5 Reserved

6 LWL Load Word as Line
0 The DCU performs load misses or non-

cachable loads as words, halfwords, or
bytes, as requested

1 For load misses or non-cachable loads,
the DCU moves eight words (including
the target word) into the line fill buffer

7 LWOA Load Without Allocate
0 Load misses result in line fills
1 Load misses do not result in a line fill, but

in non-cachable loads

0 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 26 27 28 30 31

CWS

CIS

LWL

LWOA

SWOA

U0XE PFC

PFNC FWOA

NCRSDPP1

IPP
126 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
8 SWOA Store Without Allocate
0 Store misses result in line fills
1 Store misses do not result in line fills, but

in non-cachable stores

9 DPP1 DCU PLB Priority Bit 1
0 DCU PLB priority 0 on bit 1
1 DCU PLB priority 1 on bit 1

Note: DCU logic dynamically controls DCU
priority bit 0.

10:11 IPP ICU PLB Priority Bits 0:1
00 Lowest ICU PLB priority
01 Next to lowest ICU PLB priority
10 Next to highest ICU PLB priority
11 Highest ICU PLB priority

12:13 Reserved

14 U0XE Enable U0 Exception
0 Disables the U0 exception
1 Enables the U0 exception

15:19 Reserved

20 PFC ICU Prefetching for Cachable Regions
0 Disables prefetching for cachable

regions
1 Enables prefetching for cachable regions

21 PFNC ICU Prefetching for Non-Cachable Regions
0 Disables prefetching for non-cachable

regions
1 Enables prefetching for non-cachable

regions

22 NCRS Non-cachable ICU request size
0 Requests are for four-word lines
1 Requests are for eight-word lines

23 FWOA Fetch Without Allocate
0 An ICU miss results in a line fill.
1 An ICU miss does not cause a line fill,

but results in a non-cachable fetch.

24:26 Reserved

27 CIS Cache Information Select
0 Information is cache data.
1 Information is cache tag.

28:30 Reserved

31 CWS Cache Way Select
0 Cache way is A.
1 Cache way is B.
AMCC Proprietary 127

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
4.4.1 CCR0 Programming Guidelines

Several fields in CCR0 affect ICU and DCU operation. Altering these fields while the cache units are involved
in PLB transfers can cause errant operation, including a processor hang.

To guarantee correct ICU and DCU operation, specific code sequences must be followed when altering
CCR0 fields.

CCR0[IPP, FWOA] affect ICU operation. When these fields are altered, execution of the following code
sequence (Sequence 1) is required.

! SEQUENCE 1 Altering CCR0[IPP, FWOA]
! Turn off interrupts
mfmsr RM
addis RZ,r0,0x0002 ! CE bit
ori RZ,RZ,0x8000 ! EE bit
andc RZ,RM,RZ ! Turn off MSR[CE,EE]
mtmsr RZ
! sync
sync
! Touch code sequence into i-cache
addis RX,r0,seq1@h
ori RX,RX,seq1@l
icbt r0,RX

! Call function to alter CCR0 bits
b seq1

back:
! Restore MSR to original value

mtmsr RM
•
•
•

! The following function must be in cacheable memory
.align 5 ! Align CCR0 altering code on a cache line boundary.
seq1:
icbt r0,RX ! Repeat ICBT and execute an ISYNC to guarantee CCR0
isync ! altering code has been completely fetched across the PLB.
mfspr RN,CCR0 ! Read CCR0.
andi/ori RN,RN,0xXXXX ! Execute and/or function to change any CCR0 bits.

! Can use two instructions before having to touch
! in two cache lines.

mtspr CCR0, RN ! Update CCR0.
isync ! Refetch instructions under new processor context.
b back ! Branch back to initialization code.

CCR0[DPP1, U0XE] affect DCU operation. When these fields are altered, execution of the following code
sequence (Sequence 2) is required. Note that Sequence 1 includes Sequence 2, so Sequence 1 can be used
to alter any CCR0 fields.
128 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
In the following sample code, registers RN, RM, RX, and RZ are any available GPRs.

! SEQUENCE 2 Alter CCR0[DPP1, U0XE)
! Turn off interrupts

mfmsr RM
addis RZ,r0,0x0002 ! CE bit
ori RZ,RZ,0x8000 ! EE bit
andc RZ,RM,RZ ! Turn off MSR[CE,EE]
mtmsr RZ

! sync
sync

! Alter CCR0 bits
mfspr RN,CCR0 ! Read CCR0.
andi/ori RN,RN,0xXXXX ! Execute and/or function to change any CCR0 bits.
mtspr CCR0, RN ! Update CCR0.
isync ! Refetch instructions under new processor context.

! Restore MSR to original value
mtmsr RM

CCR0[CIS, CWS] do not require special programming.

4.4.2 ICU Debugging

The icread instruction enables the reading of the instruction cache entries for the congruence class specified
by EA18:26. The cache information is read into the ICDBDR; from there it can subsequently be moved, using
a mfspr instruction, into a GPR.

Figure 4-3. Instruction Cache Debug Data Register (ICDBDR)
0:31 Instruction cache information See icread, p. -677.

0 31
AMCC Proprietary 129

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
ICU tag information is placed into the ICDBDR as shown:

If CCR0[CIS] = 0, the data is a word of ICU data from the addressed line, specified by EA27:29. If
CCR0[CWS] = 0, the data is from the A-way; otherwise; the data from the B-way.

If CCR0[CIS] = 1, the cache information is the cache tag. If CCR0[CWS] = 0, the tag is from the A-way;
otherwise, the tag is from the B-way.

Programming Note: The instruction pipeline does not wait for data from an icread instruction to arrive
before attempting to use the contents the ICDBDR. The following code sequence ensures proper results:

icread r5,r6# read cache information
isync # ensure completion of icread
mficdbdr r7# move information to GPR

0:21 TAG Cache Tag

22:26 Reserved

27 V Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LRU Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU
130 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
4.4.3 DCU Debugging

The dcread instruction provides a debugging tool for reading the data cache entries for the congruence class
specified by EA18:26. The cache information is read into a GPR.

If CCR0[CIS] = 0, the data is a word of DCU data from the addressed line, specified by EA27:29. If EA30:31
are not 00, an alignment exception occurs. If CCR0[CWS] = 0, the data is from the A-way; otherwise; the data
is from the B-way.

If CCR0[CIS] = 1, the cache information is the cache tag. If CCR0[CWS] = 0, the tag is from the Away;
otherwise the tag is from the B-way.

DCU tag information is placed into the GPR as shown:

Note: A “dirty” cache line is one which has been accessed by a store instruction after it was established, and
can be inconsistent with external memory.

4.5 DCU Performance

DCU performance depends upon the application, but, in general, cache hits complete in one cycle without
stalling the CPU pipeline. Under certain conditions and limitations of the DCU, the pipeline stalls (stops
executing instructions) until the DCU completes current operations.

Several factors affect DCU performance, including:

• Pipeline stalls
• DCU priority
• Simultaneous cache operations
• Sequential cache operations

0:19 TA
G

Cache Tag

20:25 Reserved

26 D Cache Line Dirty
0 Not dirty
1 Dirty

27 V Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LR
U

Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU
AMCC Proprietary 131

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
4.5.1 Pipeline Stalls

The CPU issues commands for cache operations to the DCU. If the DCU can immediately perform the
requested cache operation, no pipeline stall occurs. In some cases, however, the DCU cannot immediately
perform the requested cache operation, and the pipeline stalls until the DCU can perform the pending cache
operation.

In general, the DCU, when hitting in the cache array, can execute a load/store every cycle. If a cache miss
occurs, the DCU must retrieve the line from main memory. For cache misses, the DCU stores the cache line
in a line fill buffer until the entire cache line is received. The DCU can accept new DCU commands while the
fill progresses. If the instruction causing the line fill is a load, the target word is bypassed to the GPR during
the cycle after it becomes available in the fill buffer. When the fill buffer is full, it must be moved into the tag
and data arrays. During this time, the DCU cannot begin a new cache operation and stalls the pipeline if new
DCU commands are presented. Storing a line in the line fill buffer takes 3 cycles, unless the line being
replaced has been modified. In that case, the operation takes 4 cycles.

The DCU can accept up to two load commands. If the data for the first load command is not immediately
available, the DCU can still accept the second load command. If the load data is not required by subsequent
instructions, those instructions will continue to execute. If data is required from either load command, the
CPU pipeline will stall until the load data has been delivered. The pipeline will also stall until the second load
has read the data array if a subsequent data cache command is issued.

In general, if the fill buffer is being used and the next load or store command requires the fill buffer, only one
additional command can be accepted before causing additional DCU commands to stall the pipeline.

The DCU can accept up to three outstanding store commands before stalling the CPU pipeline for additional
data cache commands.

The DCU can have two flushes pending before stalling the CPU pipeline.

DCU cache operations other than loads and stores stall the CPU pipeline until all prior data cache operations
complete. Any subsequent data cache command will stall the pipeline until the prior operation is complete.
132 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
4.5.2 Cache Operation Priorities

The DCU uses a priority signal to improve performance when pipeline stalls occur. When the pipeline is
stalled because of a data cache operation, the DCU asserts the priority signal to the PLB. The priority signal
tells the external bus that the DCU requires immediate service, and is valid only when the data cache is
requesting access to the PLB. The priority signal is asserted for all loads that require external data, or when
the data cache is requesting the PLB and stalling an operation that is being presented to the data cache.

Table 4-3 provides examples of when the priority is asserted and deasserted.

4.5.3 Simultaneous Cache Operations

Some cache operations can occur simultaneously to improve DCU performance. For example, combinations
of line fills, line flushes, word load/stores, and operations that hit in the cache can occur simultaneously.
Cache operations other than loads/stores cannot begin until the PLB completes all previous operations.

4.5.4 Sequential Cache Operations

Some common cache operations, when performed sequentially, can limit DCU performance: sequential
loads/stores to non-cachable storage regions, sequential line fills, and sequential line flushes.

In the case of sequential cache hits, the most commonly occurring operations, the DCU loads or stores data
every cycle. In such cases, the DCU does not limit performance.

However, when a load from a non-cachable storage region is followed by multiple loads from noncachable
regions, the loads can complete no faster than every four cycles, assuming that the addresses are accepted
during the same cycle in which it is requested, and that the data is returned during the cycle after the load is
accepted.

Similarly, when a store to a non-cachable storage region is followed by multiple stores to noncachable
regions the fastest that the stores can complete is every other cycle. The DCU can have accepted up to three
stores before additional DCU commands will stall waiting for the prior stores to complete.

Sequential line fills can limit DCU performance. Line fills occur when a load/store or dcbt instruction misses in
the cache, and can be pipelined on the PLB interface such that up to two requests can be accepted before
stalling subsequent requests. The subsequent operations will wait in the DCU until the first line fill completes.
The line fills must complete in the order that they are accepted.

Table 4-3. Priority Changes With Different Data Cache Operations

Instruction
Requesting PLB Priority Next Instruction Priority

Any load from external
memory

1 N/A N/A

Any store 0 Any other cache operation not being accepted by the DCU. 1

dcbf 0 Any cache hit. 0

dcbf/dcbst 0 Load non-cache. 1

dcbf/dcbst 0 Another command that requires a line flush. 1

dcbt 0 Any cache hit. 0

dcbi/dccci/dcbz 0 N/A N/A
AMCC Proprietary 133

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Sequential line flushes from the DCU to main memory also limit DCU performance. Flushes occur when a line
fill replaces a valid line that is marked dirty (modified), or when a dcbf instruction flushes a specific line. If two
flushes are pending, the DCU stalls any new data cache operations until the first flush finishes and the
second flush begins.
134 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 5. On-Chip Memory

The on-chip memory (OCM) subsystem consists of a memory controller that connects the PPC405EP
processor core to a one-port, 4KB on-chip SRAM array. OCM is ideal for applications requiring lowlatency
access to critical instructions and data. OCM can provide performance that is identical to cache hits, yet,
unlike a cache, the OCM never misses. Instructions and data stored in the OCM are always available
because OCM contents only change under program control. Therefore, if the programmer avoids instruction-
side and data-side OCM access contention, OCM can provide information availability that is superior to a
cache line locking scheme. OCM is superior because it can provide single cycle performance identical to
cache hits without locking down portions of the cache. This results in more effective cache utilization for the
processor.

Instructions and data returned from OCM interface do not flow through the PPC405EP core caches. The
caches remain available for caching from other memory sources accessed across the PLB interface. The
system designer must ensure that each address has a single access path into the PPC405EP core for a
given software process. Each address that is requested should be found in either the OCM address space or
the PLB address space, but not in both.

Code to initialize OCM should execute in non-OCM address space in a region marked as noncachable. The
initialization code should invalidate the cache arrays (in the instruction cache unit (ICU) and data cache unit
(DCU), as appropriate) to ensure that no addresses to be programmed as OCM space are in the cache. After
programming the OCM address and control registers, the OCM address space should remain marked as
non-cachable. Chip initialization for OCM usage is described in “OCM Initialization” on page 8-189.

Read and write accesses to the OCM array share a single access port. OCM accesses have the following
priorities:

2. Data-side OCM reads (loads)
3. Data-side OCM writes (stores)
4. Instruction-side OCM read (fetches)

Data-side OCM reads occur in one cycle. Data-side writes also complete in one cycle, though they can be
pre-empted by higher priority data-side reads. Instruction-side OCM reads occur by default (that is, after a
reset) in two cycles. However, when the Instruction-Side Two-Cycle Mode field of the OCM Instruction-Side
Control Register is set to 0 (OCM0_ISCNTL[ISTCM] = 0), instruction-side OCM reads occur in one cycle,
unless pre-empted by higher priority data-side transfers. Two-cycle mode is provided for chips that cannot
make instruction-side timing to the processor core. The PPC405EP, however, meets the timing requirement.
Therefore, programmers should set OCM0_ISCNTL[ISTCM] = 0 during chip initialization, as described in
“OCM Initialization” on page 8-189.
AMCC Proprietary 135

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
5.1 OCM Addressing

The address space for the instruction-side OCM and the data side OCM are defined by the OCM Instruction-
Side Address Range Compare Register (OCM0_ISARC) and OCM Data-Side Address Range Compare
Register (OCM0_DSARC), respectively. These registers are implemented as 6-bit registers that define the
most significant address bits of the respective OCM address space. Using 6 bits defines a 64MB address
space. The instruction side and data side can share a 64MB address space, or each can have its own 64MB
address space. The address spaces are fully relocatable on 64MB boundaries within the 4GB address space
of the PPC405EP, but the programmer must assign OCM address space to avoid conflicts with other
assigned addresses. See “Programming Model” on page 3-67 for information about the PPC405EP memory
map.

Figure 5-1 illustrates OCM address usage. The OCM SRAM array size is 4KB. Address bits 20:31 select byte
addresses for data-side accesses. Address bits 30:31 are ignored for instruction-side accesses, because
instruction-side accesses return either one or two words per transfer.

Note that the instruction-side and data-side OCM address spaces overlap physically, even if defined as
distinct logical address spaces, because the 4KB SRAM is shared. There is no distinction between data
space or instruction space, except as defined by the programmer.

Addresses in the OCM array are aliased throughout the larger OCM address spaces. The larger OCM
address spaces are filled with multiple images of the 4KB SRAM. Aliased addresses refer to the same
physical memory locations.

Programming Note: To avoid possible memory coherency problems when using aliased addresses, align
aliased addresses on 16KB boundaries rather than on 4KB boundaries. See

“Store Data Bypass Behavior and Memory Coherency” on page 5-137 for details.

If address translation is enabled (MSR[IR, DR] = 1), one or more TLB entries for the OCM address space
must exist to validate accesses. However, the virtual addresses are not translated, and 32-bit effective
addresses (virtual addresses) are presented to OCM.

Data-side OCM contents can use big endian or little endian byte ordering. Instruction-side OCM contents
must use big endian byte ordering. See “Byte Ordering” on page 3-90 for detailed information about byte
ordering.

0 5 6 19 20 31

OCM Address Space OCM SRAM

Figure 5-1. OCM Address Usage
136 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
5.2 OCM Programming Guidelines

The following guidelines prevent potential problems associated with using OCM:

• Code that uses mtdcr to disable instruction-side OCM access should not run out of the instructionside OCM.

Instructions following an mtdcr are not guaranteed to be fetched before the instruction-side OCM is disabled.

• Do not change the value in OCM0_ISARC while fetching from the instruction-side OCM.
• To change the value in OCM0_ISARC or OCM0_DSARC:

1. Set OCM0_ISCNTL[ISEN] = 0 to disable instruction-side OCM accesses, or set OCM0_DSCNTL[DSEN]
= 0 to disable data-side OCM accesses.

2. Clear MSR[EE] and MSR[CE] to mask interrupts, to ensure that interrupts do not interfere with the cache
invalidation described in Step 4. This avoids a potential problem with “dirty” cache addresses that would
not be fetched from the cache because they have been marked as noncachable.

3. Mark the address region to be programmed as OCM address space as noncachable.
4. Invalidate the cache array that corresponds to the OCM (instruction-side or data-side) whose address

range compare register is to be modified to ensure that no addresses to be programmed as OCM
addresses exist in the cache. A single iccci instruction invalidates the ICU cache array. To invalidate the
DCU cache array, use a sequence of dcbf instructions (one per cache line).

5. Modify the value in OCM0_ISARC or OCM0_DSARC.
6. Set OCM0_ISCNTL[ISEN] = 1 to enable instruction-side OCM accesses, or set OCM0_DSCNTL[DSEN]

= 1 to enable data-side OCM accesses.

• Self-modifying code that accesses OCM to update instructions should not fetch instructions from the area
being modified until a sync instruction executes, followed by an isync instruction.
The sync instruction ensures that instructions are updated. The isync instruction ensures that only updated
instructions are fetched into the pipeline.
Instructions in OCM can be updated while instructions from non-OCM addresses execute. A syncisync pair
should still be used whenever such self-modifying code is updated.

• The CPU can become less efficient when instructions and data in OCM are accessed at the same time,
because the SRAM has only one access port and instruction fetches have the lowest priority.
For example, instructions fetched from OCM that contain several sequential data-side loads accessing OCM
can result in bubbles in the instruction pipeline. The sequential data-side loads dominate OCM accesses,
resulting in the inability to fetch instructions from OCM.

• If aliased addresses are used, the aliased 4KB address spaces should be aligned on 16KB boundaries to elim-
inate potential store data bypass problems, as described in “Store Data Bypass Behavior and Memory Coher-
ency.”

5.3 Store Data Bypass Behavior and Memory Coherency

The OCM subsystem provides only one mechanism, data-side store operations, for writing both instructions
and data into the OCM array. However, two independent mechanisms request read access of OCM contents;
one for instruction-side fetches and the other for data-side loads.

The following description applies only to applications that alias the OCM address space and perform a mix of
data-side loads and stores. It does not apply to applications that use data-side stores only to initialize OCM
with instructions.

If a data-side OCM store is followed in the next cycle by a data-side load, the load actually accesses the OCM
array before the store. This is due to the nature of the processor pipeline, the cycle availability of the store
AMCC Proprietary 137

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
data, and the fact that data-side loads have a higher priority than data-side stores. In this scenario, store data
is queued in a register while the load accesses the array. Further, if the store is immediately followed by a
sequence of consecutive loads, it remains in the queue until the last of the consecutive loads has accessed
the OCM array. The queued store data is written into the OCM array in the first cycle that does not have a
data-side load operation accessing the array.

Consider a scenario where such a situation causes store data to be held in the store data queue. If any of the
loads access the same address as the address of the store operation whose data is being held in the store
data queue, there is a need to bypass the store data from the store data queue to provide the correct data to
the load operation.

A bypass is determined to be required by comparing the pending store address with the load address.
However, the comparison is done with a 16KB address representation for the load and store operations, not
the 4KB address (the physical size of the PPC405EP OCM array). If the 16KB address compares, the store
data is bypassed to the load operation. This implies that a bypass results for address aliasing only when the
OCM addresses match at a 16KB multiple, which corresponds to a match of address bits 18:29 (a word
address that is further specified by byte enables). Although the physical address space is aliased at 4KB
multiples, the bypass determination is made at 16KB multiples. Therefore, if bits 18:19 of an aliased load
address do not match bits 18:19 of the 16KB store address of the data being held in the store data queue, the
load data will not be coherent. Instead of returning the most recently stored data, which is being held in the
store data queue, the load returns “old” data previously stored in and accessed from the OCM array.

Table 5-1 provides examples that describe bypass behavior when address aliasing is used.

Example 1 provides the most basic example, in which the load and store addresses are the same. This
results in the load accessing the queued store data, bypassing the OCM array to satisfy the load.

Example 2 shows two different addresses that are not aliased (both addresses are in the 4KB SRAM address
space). No bypass occurs, and the load returns the correct data from the OCM array.

Examples 3 and 4 show aliased addresses that do not bypass data because the addresses do not compare
within a 16KB address space. In both examples, address bits 18:19 do not match. In both examples, the load
does not return the most recently stored data from the store data queue; the load returns the “old’ data from
the array. To avoid such problems, alias on 16KB boundaries. If addresses are aliased on 4KB boundaries,
place at least one instruction that does not access the data-side OCM between a load and a store to the
same aliased address so the store data has a cycle to be written into the array.

Examples 5 and 6 bypass data out of the store data queue because the aliased addresses compare within a
16KB address space. In both examples, address bits 18:29 match, and load data is returned from the store
data queue.

Table 5-1. Examples of Store Data Bypass

Example Store Address Load Address 4KB Aliased
Address

16KB Aliased
Address Bypass

1 0x00000100 0x00000100 Same Same Yes
2 0x00000100 0x00000400 No No No
3 0x00000100 0x00001100 Yes No, loads old data No
4 0x00000100 0x00005100 Yes No, loads old data No
5 0x00000100 0x00004100 Yes Yes Yes
6 0x00000100 0x00008100 Yes Yes Yes
138 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
5.4 Registers

The OCM controller uses the Device Control Registers (DCRs) listed in Table 5-2.

5.4.1 OCM Instruction-Side Address Range Compare Register (OCM0_ISARC)

OCM0_ISARC defines the address range of the OCM controller when it is presented with instruction fetch
requests. OCM0_ISARC[ISAR] is compared to the high-order 6 bits of the requested instruction address,
providing a 64MB address space. The address space can be shared with, or distinct from, the data-side OCM
address space.

The OCM controller returns requested instructions if instruction-side OCM access is enabled
(OCM0_ISCNTL[ISEN] = 1) and OCM0_ISARC[ISAR] matches the high-order 6 bits of the requested
instruction address.

OCM0_ISARC must be initialized before OCM0_ISCNTL[ISEN] is set to 1 to enable instruction-side OCM
accesses. See “OCM Initialization” on page 8-189 for details.
.

5.4.2 OCM Instruction-Side Control Register (OCM0_ISCNTL)

OCM0_ISCNTL enables and disables instruction-side OCM access and controls whether instruction requests
are satisfied in one or two cycles.

OCM0_ISCNTL[ISEN] enables the OCM controller to respond to requests for instruction fetches to addresses
in the instruction-side OCM address range defined by OCM0_ISARC[ISAR]. At reset, OCM0_ISCNTL[ISEN]
= 0; instruction-side OCM is not enabled. If instruction-side OCM is to be accessed, this field must be set to 1
during chip initialization, as described in “OCM Initialization” on page 8-189.

Setting OCM0_ISCNTL[ISTCM] = 1 places the instruction-side OCM in a mode in which accesses complete
in no fewer than two cycles. Two-cycle mode is provided for chips that cannot make instruction-side timing to
the processor core. The PPC405EP, however, meets the timing requirement. At reset,
OCM0_ISCNTL[ISTCM] = 1. This field should be set to 0 during chip initialization so that instruction-side
accesses can complete in one cycle. OCM0_ISCNTL[ISTCM] does not affect data-side OCM operation.

Table 5-2. OCM DCRs

Register Mnemonic DCR Number Access Page

OCM Instruction-Side Address Range Compare Register OCM0_ISARC 0x018 R/W 5-139
OCM Instruction-Side Control Register OCM0_ISCNTL 0x019 R/W 5-139
OCM Data-Side Address Range Compare Register OCM0_DSARC 0x01A R/W 5-140
OCM Data-Side Control Register OCM0_DSCNTL 0x01B R/W 5-141

Figure 5-2. OCM Instruction-Side Address Range Compare Register (OCM0_ISARC)
0:5 ISAR Instruction-side OCM address range
6:31 Reserved

0 5 6 31

ISAR
AMCC Proprietary 139

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

5.4.3 OCM Data-Side Address Range Compare Register (OCM0_DSARC)

OCM0_DSARC defines the address range of the OCM controller when it is presented with load and store
requests. OCM0_DSARC[DSAR] is compared to the high-order 6 bits of the requested data address,
providing a 64MB address space. The address space can be shared with, or distinct from, the instruction-side
OCM address space.

The OCM controller transfers the requested load/store data if data-side OCM access is enabled
(OCM0_DSCNTL[DSEN] = 1) and OCM0_DSARC[DSAR] matches the high-order 6 bits of the requested
data address.

OCM0_DSARC must be initialized before OCM0_DSCNTL[DSEN] is set to 1 to enable data-side OCM
accesses. See “OCM Initialization” on page 8-189 for details.

Figure 5-3. OCM Instruction-Side Control Register (OCM0_ISCNTL)
0 ISEN Instruction-Side OCM Enable

0 Instruction-side OCM accesses are
disabled.

1 Instruction-side OCM accesses are
enabled.

1 ISTCM Instruction-Side Two Cycle Mode
0 Instruction-side OCM accesses are

returned in one cycle.
1 Instruction-side OCM accesses are

returned in two cycles.

OCM0_ISCNTL[ISTCM], which has a reset
value of 1, should be set to
OCM0_ISCNTL[ISTCM] = 0 during chip
initialization.

2:31 Reserved

Figure 5-4. OCM Data-Side Address Range Compare Register (OCM0_DSARC)
0:5 DSAR Data-side OCM address range
6:31 Reserved

0 1 2 31

ISEN

ISTCM

0 5 6 31

DSAR
140 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
5.4.4 OCM Data-Side Control Register (OCM0_DSCNTL)

OCM0_DSCNTL enables and disables data-side OCM access.

OCM0_DSCNTL[DSEN] enables the OCM controller to respond to requests for data loads and stores within
the data-side OCM address range defined by OCM0_DSARC[DSAR]. At reset, OCM0_DSCNTL[DSEN] = 0;
data-side OCM is not enabled. If data-side OCM is to be accessed, this field must be set to 1 during chip
initialization, as described in “OCM Initialization” on page 8-189.

The reset value of the DOF field is 1. This field should always remain set to 1 when writing OCM0_DSCNTL.

Figure 5-5. OCM Data-Side Control Register (OCM0_DSCNTL)
0 DSEN Data-Side OCM Enable

0 Data-side OCM accesses are disabled.
1 Data-side OCM accesses are enabled.

1 DOF This field should remain set to 1.
2:31 Reserved

0 1 2 31

DSEN

DOF
AMCC Proprietary 141

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
142 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 6. Memory Management

The PPC405EP memory management unit (MMU) performs address translation and protection functions.
With appropriate system software, the MMU supports:

• Translation of effective addresses to real addresses
• Independent enabling of instruction and data address translation and protection
• Page-level access control using the translation mechanism
• Software control of page replacement strategy
• Additional virtual-mode control of protection using zones
• Real-mode write protection

6.1 MMU Overview

The instruction and integer units generate 32-bit effective addresses (EAs) for instruction fetches and data
accesses, respectively. Instruction EAs are generated for sequential instruction fetches, and for instruction
fetches causing changes in program flow (branches and interrupts). Data EAs are generated for load/store
and cache control instructions. The MMU translates EAs into real addresses; the instruction cache unit (ICU)
and data cache unit (DCU) use real addresses to access memory.

The PPC405EP MMU supports demand-paged virtual memory and other memory management schemes
that depend on precise control of effective to real address mapping and flexible memory protection.
Translation misses and protection faults cause precise interrupts. Sufficient information is available to correct
the fault and restart the faulting instruction.

The MMU divides storage into pages. A page represents the granularity of EA translation and protection
controls. Eight page sizes (1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB) are simultaneously supported.
A valid entry for a page containing the EA to be translated must be in the translation lookaside buffer (TLB)
for address translation to be performed. EAs for which no valid TLB entry exists cause TLB-miss interrupts.

6.2 Address Translation

Fields in the Machine State Register (MSR) control the use of the MMU for address translation. The
instruction relocate (IR) field of the MSR controls translation for instruction accesses. The data relocate (DR)
field of the MSR controls the translation mechanism for data accesses. These fields, specified independently,
can be changed at any time by a program in supervisor state. Note that all interrupts clear MSR[IR, DR] and
place the processor in the supervisor state. Subsequent discussion about translation and protection assumes
that MSR[IR, DR] are set, enabling address translation.

The processor references memory when it fetches an instruction, and when it executes load/store, branch,
and cache control instructions. Processor accesses to memory use EAs to references a memory location.
When translation is enabled, the EA is translated into a real address, as illustrated in Figure 6-1 on page
6-144. The ICU or DCU uses the real address for the access. (When translation is not enabled, the EA is
already a real address.)
AMCC Proprietary 143

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
In address translation, the EA is combined with an 8-bit process ID (PID) to create a 40-bit virtual address.
The virtual address is compared to all of the TLB entries. A matching entry supplies the real address for the
storage reference. Figure 6-1 illustrates the process..

6.3 Translation Lookaside Buffer (TLB)

The TLB is hardware that controls translation, protection, and storage attributes. The instruction and data
units share a unified fully-associative TLB, in which any page entry (TLB entry) can be placed anywhere in
the TLB. TLB entries are maintained under program control. System software determines the TLB entry
replacement strategy and the format and use of page state information. A TLB entry contains the information
required to identify the page, to specify translation and protection controls, and to specify the storage
attributes.

6.3.1 Unified TLB

The unified TLB (UTLB) contains 64 entries; each has a TLBHI (tag) portion and a TLBLO (data) portion, as
described in Figure 6-2 on page 6-145. TLBHI contains 36 bits; TLBLO contains 32 bits. When translation is
enabled, the UTLB tag portion compares some or all of EA0:21 with some or all of the effective page number
EPN0:21, based on the size bits SIZE0:2. All 64 entries are simultaneously checked for a match. If an entry
matches, the corresponding data portion of the UTLB provides the real page number (RPN), access control
bits (ZSEL, EX, WR), and storage attributes (W, I, M, G, E, U0).

[0:n–1] [n:31]

OffsetEffective Page Address

[0:7]

PID

Effective Page Address OffsetPID

32-bit EA

Unified TLB
64-entry Fully-associative Array

OffsetReal Page Number

32-bit Real Address

[8:n+7]

[0:n–1] [n:31]

[n+8:39]

[24:31][0:23]

40-bit Virtual Address

Note:n is determined by page size.
See Table 6-1 on page 6-146.

PID Register

Figure 6-1. Effective to Real Address Translation Flow
144 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
The virtual address space is extended by adding an 8-bit translation ID (TID) loaded from the Process ID
(PID) register during a TLB access. The PID identifies one of 255 unique software entities, usually used as a
process or thread ID. TLBHI[TID] is compared to the PID during a TLB look-up.

Tag and data entries are written by copying data from GPRs and the PID, using the tlbwe instruction. Tag and
data entries are read by copying data to GPRs and the PID, using the tlbre instruction. Software can search
for specific entries using the tlbsx instruction.

6.3.2 TLB Fields

Each TLB entry describes a page that is enabled for translation and access controls. Fields in the TLB entry
fall into four categories:

• Information required to identify the page to the hardware translation mechanism
• Control information specifying the translation
• Access control information
• Storage attribute control information

6.3.2.1 Page Identification Fields

When an EA is presented to the MMU for processing, the MMU applies several selection criteria to each TLB
entry to select the appropriate entry. Although it is possible to place multiple entries into the TLB to match a
specific EA and PID, this is considered a programming error, and the result of a TLB lookup for such an EA is
undefined. The following fields in the TLB entry identify the page. Except as noted, all comparisons must
succeed to validate an entry for subsequent use.

EPN (effective page number, 22 bits)

Compared to some number of the EA0:21 bits presented to the MMU. The number of bits corresponds to the
page size.

0 21 22 24

ZSELRPN

TLBHI
0

SIZEEPN V

27 29 3 031

W I M GEX WR

TID

(Tag entry)
21 2522 352824

23 28

PID
0 24

ID

31
(Process ID)

23

Figure 6-2. TLB Entries

TLBLO (Data entry)

26 27

E U0
AMCC Proprietary 145

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The exact comparison depends on the page size, as shown in Table 6-1.

SIZE (page size, 3 bits)

Selects one of the eight page sizes, 1KB–16MB, listed in Table 6-1.

V (valid,1 bit)

Indicates whether a TLB entry is valid and can be used for translation.

A valid TLB entry implies read access, unless overridden by zone protection. TLB_entry[V] can be written
using a tlbwe instruction. The tlbia instruction invalidates all TLB entries.

TID (translation ID, 8 bits)

Loaded from the PID register during a tlbwe operation. The TID value is compared with the PID value during
a TLB access. The TID provides a convenient way to associate a translation with one of 255 unique software
entities, typically a process or thread ID maintained by operating system software. Setting TLBHI_entry[TID]
= 0x00 disables TID-PID comparison and identifies a TLB entry as valid for all processes; the value of the PID
register is then irrelevant.

6.3.2.2 Translation Field

When a TLB entry is identified as matching an EA (and possibly the PID), TLBLO_entry[RPN] defines how
the EA is translated.

RPN (real page number, 22 bits)

Replaces some, or all, of EA0:21, depending on page size. For example, a 16KB page uses EA0:17 for
comparison. The translation mechanism replaces EA0:17 with TLBLO_entry[RPN]0:17 to form the physical
address, and EA18:31 becomes the real page offset, as illustrated in Figure 6-1.

Programming Note: Software must set all unused bits of RPN (as determined by page size) to 0. See
Table 6-1.

Table 6-1. TLB Fields Related to Page Size

Page
Size

SIZE
Field

n Bits
Compared

EPN to EA
Comparison

RPN Bits
Set to 0

1KB 000 22 EPN0:21 ↔ EA0:21 —

4KB 001 20 EPN0:19 ↔ EA0:19 RPN20:21

16KB 010 18 EPN0:17 ↔ EA0:17 RPN18:21

64KB 011 16 EPN0:15 ↔ EA0:15 RPN16:21

256KB 100 14 EPN0:13 ↔ EA0:13 RPN14:21

1MB 101 12 EPN0:11 ↔ EA0:11 RPN12:21

4MB 110 10 EPN0:9 ↔ EA0:9 RPN10:21

16MB 111 8 EPN0:7 ↔ EA0:7 RPN8:21
146 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6.3.2.3 Access Control Fields

Several access controls are available in the UTLB entries.

ZSEL (zone select, 4 bits)

Selects one of 16 zone fields (Z0—Z15) from the Zone Protection Register (ZPR). The ZPR field bits can
modify the access protection specified by the TLB_entry[V, EX, WR] bits of a TLB entry. Zone protection is
described in detail in “Zone Protection” on page 6-155.

EX (execute enable, 1 bit)

When set (TLBLO_entry[EX] = 1), enables instruction execution at addresses within a page. ZPR settings
can override TLBLO_entry[EX]; see “Zone Protection” on page 6-155, for more information.

WR (write-enable 1 bit)

When set (TLBLO_entry[WR] = 1), enables store operations to addresses in a page. ZPR settings can
override TLBLO_entry[WR]; see “Zone Protection” on page 6-155.

6.3.2.4 Storage Attribute Fields

TLB entries contain bits that control and provide information about the storage control attributes. Four of the
attributes (W, I, M, and G) are defined in the PowerPC Architecture. The E storage attribute is defined in the
IBM PowerPC Embedded Environment.

W (write-through,1 bit)

When set (TLBLO_entry[W] = 1), stores are specified as write-through. If data in the referenced page is in the
data cache, a store updates the cached copy of the data and the external memory location. Contrast this with
a write-back strategy, which updates memory only when a cache line is flushed.

In real mode, the Data Cache Write-through Register (DCWR) controls the write strategy.

Note that the PowerPC Architecture does not support memory models in which write-through is enabled and
caching is inhibited. It is considered a programming error to use these memory models; the results are
undefined.

I (caching inhibited,1 bit)

When set (TLBLO_entry[I] = 1), a memory access is completed by using the location in main memory,
bypassing the cache arrays. During the access, the accessed location is not put into the cache arrays.

In real mode, the Instruction Cache Cachability Register (ICCR) and Data Cache Cachability Register
(DCCR) control cachability. In these registers, the setting of the bit is reversed; 1 indicates that a storage
control region is cachable, rather than caching inhibited.

Note that the PowerPC Architecture does not support memory models in which write-through is enabled and
caching is inhibited. It is considered a programming error to use these memory models; the results are
undefined.

It is considered a programming error if the target location of a load/store, dcbz, or fetch access to caching
inhibited storage is in the cache; the results are undefined. It is not considered a programming error for the
target locations of other cache control instructions to be in the cache when caching is inhibited.

M (memory coherent,1 bit)
AMCC Proprietary 147

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
For implementations that support multiprocessing, the M storage attribute improves the performance of
memory coherency management. Because the PPC405EP does not provide multi-processor support or
hardware support for data coherency, the M bit is implemented, but has no effect.

G (guarded,1 bit)

When set (TLBLO_entry[G] = 1), indicates that the hardware cannot speculatively access the location for pre-
fetching or out-of-order load access. The G storage attribute is typically used to protect memory-mapped I/O
from inadvertent access. Attempted execution of an instruction from a guarded data storage address while
instruction address translation is enabled results in an instruction storage interrupt because data storage and
memory mapped I/O (MMIO) addresses are not used to contain instructions.

An instruction fetch from a guarded region does not occur until the execution pipeline is empty, thus
guaranteeing that the access is necessary and therefore not speculative. For this reason, performance is
degraded when executing out of guarded regions, and software should avoid unnecessarily marking regions
of instruction storage as guarded.

In real mode, the Storage Guarded Register (SGR) controls guarding.

U0 (user-defined attribute, 1 bit)

When set (TLBLO[U0] = 1), indicates the user-defined attribute applies to the data in the associated page.

In real mode, the Storage User-defined 0 Register (SU0R) controls the setting of the U0 storage attribute.

E (endian, 1 bit)

When set (TLBLO[E] = 1), indicates that data in the associated page is stored in true little endian format.

In real mode, the Storage Little-Endian Register (SLER) controls the setting of the E storage attribute.

6.3.3 Shadow Instruction TLB

To enhance performance, four instruction-side TLB entries are kept in a four-entry fully-associative shadow
array. This array, called the instruction TLB (ITLB), helps to avoid TLB contention between instruction
accesses to the TLB and load/store operations. Replacement and invalidation of the ITLB entries is managed
by hardware. See “Shadow TLB Consistency” on page 6-149 for details.

The ITLB can be considered a level-1 instruction-side TLB; the UTLB serves as the level-2 instruction-side
TLB. The ITLB is used only during instruction fetches for storing instruction address translations. Each ITLB
entry contains the translation information for a page. The processor uses the ITLB for address translation of
instruction accesses when MSR[IR] = 1.

6.3.3.1 ITLB Accesses

The instruction unit accesses the ITLB independently of the rest of the MMU. ITLB accesses are transparent
to the executing program, except that ITLB hits contribute to higher overall instruction throughput by allowing
data address translations to occur in parallel. Therefore, when instruction accesses hit in the ITLB, the
address translation mechanisms in the UTLB are available for use by data accesses simultaneously.

The ITLB requests a new entry from the UTLB when an ITLB miss occurs. A four-cycle latency occurs at each
ITLB miss that is also a UTLB hit; the latency is longer if it is also a UTLB miss, or if there is contention for the
UTLB from the data side. A round-robin replacement algorithm replaces existing entries with new entries.
148 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6.3.4 Shadow Data TLB

To enhance performance, eight data-side TLB entries are kept in a eight-entry fully-associative shadow array.
This array, called the data TLB (DTLB), helps to avoid TLB contention between instruction accesses to the
TLB and load/store operations. Replacement and invalidation of the DTLB entries is managed by hardware.
See “Shadow TLB Consistency” on page 6-149 for details.

The DTLB can be considered a level-1 data-side TLB; the UTLB serves as the level-2 data-side TLB. The
DTLB is used only during instruction execute for storing data address translations. Each DTLB entry contains
the translation information for a page. The processor uses the DTLB for address translation of data accesses
when MSR[DR] = 1.

6.3.4.1 1 DTLB Accesses

The execute unit accesses the DTLB independently of the rest of the MMU. DTLB accesses are transparent
to the executing program, except that DTLB hits contribute to higher overall instruction throughput by allowing
instruction address translations to occur in parallel. Therefore, when data accesses hit in the DTLB, the
address translation mechanisms in the UTLB are available for use by instruction accesses simultaneously.

The DTLB requests a new entry from the UTLB when a DTLB miss occurs. A three-cycle latency occurs at
each DTLB miss that is also a UTLB hit; the latency is longer if it is also a UTLB miss. If there is contention for
the UTLB from the instruction side, the data side has priority. A round-robin replacement algorithm replaces
existing entries with new entries.

6.3.5 Shadow TLB Consistency

To help maintain the integrity of the shadow TLBs, the processor invalidates the ITLB and DTLB contents
when the following context-synchronizing events occur:

• isync instruction
• Processor context switch (all interrupts, rfi, rfci)
• sc instruction

If software updates a translation/protection mechanism (UTLB, PID, ZPR, or MSR) and must synchronize
these updates with the ITLB and DTLB, the software must perform the necessary context synchronization.

A typical example is the manipulation of the TLB by an operating system within an interrupt handler for a TLB
miss. Upon entry to the interrupt handler, the contents of the ITLB and DTLB are invalidated and translation is
disabled. If the operating system simply made the TLB updates and returned from the handler (using rfi or
rfci), no additional explicit software action would be required to synchronize the ITLB and DTLB.

If, instead, the operating system enables translation within the handler and then performs TLB updates within
the handler, those updates would not be effective in the ITLB and DTLB until rfi or rfci is executed to return
from the handler. For those TLB updates to be reflected in the ITLB and DTLB within the handler, an isync
must be issued after TLB updates finish. Failure to properly synchronize the shadow TLBs can cause
unexpected behavior.

Programming Note: As a rule of thumb, follow software manipulation of an translation mechanism (if
performed while translation is active) with a context-synchronizing operation (usually isync).
AMCC Proprietary 149

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 6-3 illustrates the relationship of the shadow TLBs and UTLB in address translation:

Figure 6-3. ITLB/DTLB/UTLB Address Resolution

Generate I-side
Effective Address

Extract Real
Address from ITLB

Continue I-cache
Access

Perform ITLB
Look-up

Translation Disabled
(MSR[IR]=0)

Translation Enabled
(MSR[IR] = 1)

I-Side TLB Miss
or

D-Side TLB Miss

No Translation

Translation Enabled
(MSR[DR] = 1)

Translation Disabled
(MSR[DR] = 0)

No Translation

Generate D-side
Effective Address

Perform DTLB
Look-up

ITLB MissITLB Hit

Perform UTLB
Look-up

DTLB Miss DTLB Hit

Extract Real
Address from UTLB

Access

Continue I-cache
or D-cache

Access

UTLB MissUTLB Hit

Extract Real
Address from DTLB

Route Address
to ITLB

Route Address
to DTLB

Exception
150 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6.4 TLB-Related Interrupts

The processor relies on interrupt handling software to implement paged virtual memory, and to enforce
protection of specified memory pages.

When an interrupt occurs, the processor clears MSR[IR, DR]. Therefore, at the start of all interrupt handlers,
the processor operates in real mode for instruction accesses and data accesses. Note that when address
translation is disabled for an instruction fetch or load/store, the EA is equal to the real address and is passed
directly to the memory subsystem (including cache units). Such untranslated addresses bypass all memory
protection checks that would otherwise be performed by the MMU.

When translation is enabled, MMU accesses can result in the following interrupts:

• Data storage interrupt
• Instruction storage interrupt
• Data TLB miss interrupt
• Instruction TLB miss interrupt

6.4.1 Data Storage Interrupt

A data storage interrupt is generated when data address translation is active, and the desired access to the
EA is not permitted for one of the following reasons:

• In the problem state
– icbi, load/store, dcbz, or dcbf with an EA whose zone field is set to no access (ZPR[Zn] = 00). In this case,

dcbt and dcbtst no-op, rather than cause an interrupt. Privileged instructions cannot cause data storage
interrupts.

– Stores, or dcbz, to an EA having TLB[WR] = 0 (write access disabled) and ZPR[Zn] ≠ 11. (The
privileged instructions dcbi and dccci are treated as “stores”, but cause program interrupts, rather than
data storage interrupts.)

• In supervisor state

– Data store, dcbi, dcbz, or dccci to an EA having TLB[WR] = 0 and ZPR[Zn] other than 11 or 10.

dcba does not cause data storage exceptions (cache line locking or protection). If conditions occur that would
otherwise cause such an exception, dcba is treated as a no-op.

“Zone Protection” on page 6-155 describes zone protection in detail. See “Data Storage Interrupt” on
page 10-236 for a detailed discussion of the data storage interrupt.

6.4.2 Instruction Storage Interrupt

An instruction storage interrupt is generated when instruction address translation is active and the processor
attempts to execute an instruction at an EA for which fetch access is not permitted, for any of the following
reasons:

• In the problem state

– Instruction fetch from an EA with ZPR[Zn] = 00.
– Instruction fetch from an EA having TLB_entry[EX] = 0 and ZPR[Zn] ≠ 11.
– Instruction fetch from an EA having TLB_entry[G] = 1.
AMCC Proprietary 151

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• In the supervisor state

– Instruction fetch from an EA having TLB_entry[EX] = 0 and ZPR[Zn] other than 11 or 10.
– Instruction fetch from an EA having TLB_entry[G] = 1.

See “Zone Protection” on page 6-155 for a detailed discussion of zone protection. See “Instruction Storage
Interrupt” on page 10-237 for a detailed discussion of the instruction storage interrupt.

6.4.3 Data TLB Miss Interrupt

A data TLB miss interrupt is generated if data address translation is enabled and a valid TLB entry matching
the EA and PID is not present. The interrupt applies to data access instructions and cache operations
(excluding cache touch instructions).

See “Data TLB Miss Interrupt” on page 10-243 for a detailed discussion.

6.4.4 Instruction TLB Miss Interrupt

The instruction TLB miss interrupt is generated if instruction address translation is enabled and execution is
attempted for an instruction for which a valid TLB entry matching the EA and PID for the instruction fetch is
not present.

See “Instruction TLB Miss Interrupt” on page 10-243 for a detailed discussion.

6.5 TLB Management

The processor does not imply any format for the page tables or the page table entries because there is no
hardware support for page table management. Software has complete flexibility in implementing a
replacement strategy, because software does the replacing. For example, software can “lock” TLB entries
that correspond to frequently used storage by electing to never replace them, so that those entries are never
cast out of the TLB.

TLB management is performed by software with some hardware assist, consisting of:

• Storage of the missed EA in the Save/Restore Register 0 (SRR0) for an instruction-side miss, or in the Data
Exception Address Register (DEAR) for a data-side miss.

• Instructions for reading, writing, searching, and invalidating the TLB, as described briefly in the following sub-
sections. See Chapter 25, “Instruction Set,” for detailed instruction descriptions.

6.5.1 TLB Search Instructions (tlbsx/tlbsx.)

tlbsx locates entries in the TLB, to find the TLB entry associated with an interrupt, or to locate candidate
entries to cast out. tlbsx searches the UTLB array for a matching entry. The EA is the value to be matched;
EA = (RA|0)+(RB).

If the TLB entry is found, its index is placed in RT26:31. RT can then serve as the source register for a tlbre
or tlbwe instruction to read or write the entry, respectively. If no match is found, the contents of RT are
undefined.

tlbsx. sets the Condition Register (CR) bit CR0EQ. The value of CR0EQ depends on whether an entry is
found: CR0EQ = 1 if an entry is found; CR0EQ = 0 if no entry is found.
152 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6.5.2 TLB Read/Write Instructions (tlbre/tlbwe)

TLB entries can be accessed for reading and writing by tlbre and tlbwe, respectively. Separate extended
mnemonics are available for the TLBHI (tag) and TLBLO (data) portions of a TLB entry.

6.5.3 TLB Invalidate Instruction (tlbia)

tlbia sets TLB_entry[V] = 0 to invalidate all TLB entries. All other TLB entry fields remain unchanged.

Using tlbwe to set TLB_entry[V] = 0 invalidates a specific TLB entry.

6.5.4 TLB Sync Instruction (tlbsync)

tlbsync guarantees that all TLB operations have completed for all processors in a multi-processor system.
PPC405EP provides no multiprocessor support, so this instruction performs no function. The instruction is
included to facilitate code portability.

6.6 Recording Page References and Changes

When system software manages virtual memory, the software views physical memory as a collection of
pages. Each page is associated with at least one TLB entry. To manage memory effectively, system software
often must know whether a particular page has been referenced or modified. Note that this involves more
than knowing whether a particular TLB entry was used to reference or alter memory, because multiple TLB
entries can translate to the same page.

When system software manages a demand-paged environment, and the software needs to replace the
contents of a page with other data, previously referenced pages (accessed for any purpose) are more likely to
be maintained than pages that were never referenced. If the contents of a page must be replaced, and data
contained in that page was modified, system software generally must write the contents of the modified page
to the backing store before replacing its contents. System software must maintain records to control the
environment.

Similarly, when system software manages TLB entries, the software often must know whether a particular
TLB entry was referenced. When the system software must select a TLB entry to cast out, previously
referenced entries are more likely to be maintained than entries which were never referenced. System
software must also maintain records for this purpose.

The PPC405EP does not provide hardware reference or change bits, but TLB miss interrupts and data
storage interrupts enable system software to maintain reference information for TLB entries and their
associated pages, respectively.

A possible algorithm follows. First, the TLB entries are built, with each TLB_entry[V, WR] = 0. System
software retains the index and EPN of each entry.

The first attempt by application code to access a page causes a TLB miss interrupt, because its TLB entry is
marked invalid. The TLB miss handler records the reference to the TLB entry (and to the associated page) in
a data structure, then sets TLB_entry[V] = 1. (Note that TLB_entry[V] can be considered a reference bit for
the TLB entry.) Subsequent read accesses to the page associated with the TLB entry proceed normally.

In the example just given for recording TLB entry references, the first write access to the page using the TLB
entry, after the entry is made valid, causes a data storage interrupt because write access was nturned off.
The TLB miss handler records the write to the page in a data structure, for use as a “changed” flag, then sets
AMCC Proprietary 153

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
TLB_entry[WR] = 1 to enable write access. (Note that TLB_entry[WR] can be considered a change bit for the
page.) Subsequent write accesses to the page proceed normally.

6.7 Access Protection

The PPC405EP provides virtual-mode access protection. The TLB entry enables system software to control
general access for programs in the problem state, and control write and execute permissions for all pages.
The TLB entry can specify zone protection that can override the other access control mechanisms supported
in the TLB entries.

TLB entry and zone protection methods also support access controls for cache operation and string
loads/stores.

6.7.1 Access Protection Mechanisms in the TLB

For MMU access protection to be in effect, one or both of MSR[IR] or MSR[DR] must be set to one to enable
address translation. MSR[IR] enables protection on instruction fetches, which are inherently read-only.
MSR[DR] enables protection on data accesses (loads/stores).

6.7.1.1 General Access Protection

The translation ID (TLB_entry[TID]) provides the first level of MMU access protection. This 8-bit field, if non-
zero, is compared to the contents of TLB_entry[PID]. These fields must match in a valid TLB entry if any
access is to be allowed. In typical use, it is assumed that a program in the supervisor state, such as a real-
time operating system, sets the PID before starting a problem state program that is subject to access control.

If TLB_entry[TID] = 0x00, the associated memory page is accessible to all programs, regardless of their PID.
This enables multiple processes to share common code and data. The common area is still subject to all
other access protection mechanisms. Figure 6-4 illustrates the PID.

6.7.1.2 Execute Permissions

If instruction address translation is enabled, instruction fetches are subject to MMU translation and have
MMU access protection. Fetches are inherently read-only, so write protection is not needed. Instead, using
TLB_entry[EX], a memory page is marked as executable (contains instructions) or not executable (contains
only data or memory-mapped control hardware).

If an instruction is pre-fetched from a memory page for which TLB_entry[EX] = 0, the instruction is tagged as
an error. If the processor subsequently attempts to execute this instruction, an instruction storage interrupt

Figure 6-4. Process ID (PID)
0:23 Reserved

24:31 Process ID

0 23 24 31
154 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
results. This interrupt is precise with respect to the attempted execution. If the fetcher discards the instruction
without attempting to execute it, no interrupt will result.

Zone protection can alter execution protection.

6.7.1.3 Write Permissions

If MSR[DR] = 1, data loads and stores are subject to MMU translation and are afforded MMU access
protection. The existence of a TLB entry describing a memory page implies read access; write access is
controlled by TLB_entry[WR].

If a store (including those caused by dcbz, dcbi, or dccci) is made to an EA having TLB_entry[WR] = 0, a data
storage interrupt results. This interrupt is precise.

Zone protection can alter write protection (see “Zone Protection” on page 6-155). In addition, only zone
protection can prevent read access of a page defined by a TLB entry.

6.7.1.4 Zone Protection

Each TLB entry contains a 4-bit zone select (ZSEL) field. A zone is an arbitrary identifier for grouping TLB
entries (memory pages) for purposes of protection. As many as 16 different zones may be defined. Any zone
can have any number of member pages.

Each zone is associated with a 2-bit field (Z0-Z15) in the ZPR. The values of the field define how protection is
applied to all pages that are member of that zone. Changing the value of the ZPR field can alter the protection
attributes of all pages in the zone. Without ZPR, the change would require finding, reading, altering, and
rewriting the TLB entry for each page in a zone, individually. The ZPR provides a much faster means of
altering the protection for groups of memory pages.

The ZSEL values 0-15 select ZPR fields Z0-Z15, respectively.

The fields are defined within the ZPR as follows:

While it is common for TLB_entry[EX, WR] to be identical for all member pages in a group, this is not
required. The ZPR field alters the protection defined by TLB_entry[EX] and TLB_entry[WR], on a page-by-
page basis, as shown in the ZPR illustration. An application program (presumed to be running in the problem
state) can have execute and write permissions as defined by TLB_entry[EX] and TLB_entry[WR] for the
individual pages, or no access (denies loads, as well as stores and execution), or complete access.
AMCC Proprietary 155

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Setting ZPR[Zn] = 00 for a ZPR field is the only way to deny read access to a page defined by an otherwise
valid TLB entry. TLB_entry[EX] and TLB_entry[WR] do not support read protection. Note that the icbi
instruction is considered a load with respect to access protection; executed in user mode, it causes a data
storage interrupt if MSR[DR] = 1 and ZPR[Zn] = 00 is associated with the EA.

For a given ZPR field value, a program in supervisor state always has equal or greater access than a
program in the problem state. System software can never be denied read (load) access for a valid TLB entry.

Figure 6-5. Zone Protection Register (ZPR)
0:1 Z0 TLB page access control for all pages in this zone.

In the problem state (MSR[PR] = 1):
00 No access
01 Access controlled by applicable

TLB_entry[EX, WR]
10 Access controlled by applicable

TLB_entry[EX, WR]
11 Accessed as if execute and write

permissions (TLB_entry[EX, WR]) are
granted

In the supervisor state (MSR[PR] = 0):
00 Access controlled by applicable

TLB_entry[EX, WR]
01 Access controlled by applicable

TLB_entry[EX, WR]
10 Accessed as if execute and write

permissions (TLB_entry[EX, WR]) are
granted

11 Accessed as if execute and write
permissions (TLB_entry[EX, WR]) are
granted

2:3 Z1 See the description of Z0.

4:5 Z2 See the description of Z0.

6:7 Z3 See the description of Z0.

8:9 Z4 See the description of Z0.

10:11 Z5 See the description of Z0.

12:13 Z6 See the description of Z0.

14:15 Z7 See the description of Z0.

16:17 Z8 See the description of Z0.

18:19 Z9 See the description of Z0.

20:21 Z10 See the description of Z0.

22:23 Z11 See the description of Z0.

24:25 Z12 See the description of Z0.

26:27 Z13 See the description of Z0.

28:29 Z14 See the description of Z0.

30:31 Z15 See the description of Z0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Z0

Z1

Z2

Z3

Z6Z4

Z5

Z8 Z10 Z12 Z14

Z7 Z9 Z11 Z13 Z15
156 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6.7.2 Access Protection for Cache Control Instructions

Architecturally the instructions dcba, dcbi, and dcbz are treated as “stores” because they can change data,
or cause loss of data by invalidating a dirty line (a modified cache block).

Table 6-2 summarizes the conditions under which the cache control instructions can cause data storage
interrupts.

If data address translation is enabled, and write permission is denied (TLB_entry[WR] = 0), dcbi and dcbz
can cause data storage interrupts. dcbz can cause a data storage interrupt when executed in the problem
state and all access is denied (ZPR[Zn] = 00); dcbi cannot cause a data storage interrupt because it is a
privileged instruction.

The dcba instruction enables “speculative” line establishment in the cache arrays; the established lines do
not cause a line fill. Because the effects of dcba are speculative, interrupts that would otherwise result when
ZPR[Zn] = 00 or TLB_entry[WR] = 0 do not occur. In such cases, dcba is treated as a no-op.

The dccci instruction can also be considered a “store” because it can change data by invalidating a dirty line;
however, dccci is not address-specific (it affects an entire congruence class regardless of the operand
address of the instruction). To restrict possible damage from an instruction which can change data and yet
avoids the protection mechanism, the dccci instruction is privileged.

If data address translation is enabled, dccci can cause data storage interrupts when TLB_entry[WR] = 0; the
operand is treated as if it were address-specific. dccci cannot cause a data storage interrupt when ZPR[Zn] =
00, because it is a privileged instruction.

Because dccci can cause data storage and TLB -miss interrupts, use of dccci is not recommended when
MSR[DR] = 1; if dccci is used. Note that the specific operand address can cause an interrupt.

Architecturally, dcbt and dcbtst are treated as “loads” because they do not change data; they cannot cause
data storage interrupts when TLB_entry[WR] = 0.

Table 6-2. Protection Applied to Cache Control Instructions

Instruction

Possible Data Storage interrupt

When ZPR[Zn] = 00 When TLB_entry[WR] = 0

dcba No (instruction no-ops) No (instruction no-ops)

dcbf Yes No

dcbi No Yes

dcbst Yes No

dcbt No (instruction no-ops) No

dcbtst No (instruction no-ops) No

dcbz Yes Yes

dccci No Yes

dcread No No

icbi Yes No

icbt No (instruction no-ops) No

iccci No No

icread No No
AMCC Proprietary 157

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The cache block touch instructions dcbt and dcbtst are considered “speculative” loads; therefore, if a data
storage interrupt would otherwise result from the execution of dcbt or dcbtst when ZPR[Zn] = 00, the
instruction is treated as a no-op and the interrupt does not occur. Similarly, TLB miss interrupts do not occur
for these instructions.

Architecturally, dcbf and dcbst are treated as “loads”. Flushing or storing a line from the cache is not
architecturally considered a “store” because a store was performed to update the cache, and dcbf or dcbst
only update main memory. Therefore, neither dcbf nor dcbst can cause data storage interrupts when
TLB_entry[WR] = 0. Because neither instruction is privileged, they can cause data storage interrupts when
ZPR[Zn] = 00 and data address translation is enabled.

dcread is a “load” from a non-specific address, and is privileged. Therefore, it cannot cause data storage
interrupts when ZPR[Zn] = 00 or TLB_entry[WR] = 0.

icbi and icbt are considered “loads” and cannot cause data storage interrupts when TLB_entry[WR] = 0. icbi
can cause data storage interrupts when ZPR[Zn] = 00.

The iccci instruction cannot change data; an instruction cache line cannot be dirty. The iccci instruction is
privileged and is considered a load. It does not cause data storage interrupts when ZPR[Zn] = 00 or
TLB_entry[WR] = 0.

Because iccci can cause a TLB miss interrupt, using iccci is not recommended when data address
translation is enabled; if it is used, note that the specific operand address can cause an interrupt.

icread is considered a “load” from a non-specific address, and is privileged. Therefore, it cannot cause data
storage interrupts when ZPR[Zn] = 00 or TLB_entry[WR] = 0.

6.7.3 Access Protection for String Instructions

The stswx instruction with string length equal to 0(XER[TBC] = 0) is a no-op.

When data address translation is enabled and the Transfer Byte Count (TBC) field of the Fixed Point
Exception Register (XER) is 0, neither lswx nor stswx can cause TLB miss interrupts, or data storage
interrupts when ZPR[Zn] = 0 or TLB_entry[WR] = 0.

6.8 Real-Mode Storage Attribute Control

The PowerPC Architecture and the PowerPC Embedded Environment define several SPRs to control the
following storage attributes in real mode: W, I, G,U0, and E. Note that the U0 and E attributes are not defined
in the PowerPC Architecture. The E attribute is defined in the IBM PowerPC Embedded Environment, and the
U0 attribute is implementation-specific. No storage attribute control register is implemented for the M storage
attribute because the PPC405EP does not provide multi-processor support or hardware support for data
coherency.

These SPRs, called storage attribute control registers, control the various storage attributes when address
translation is disabled. When address translation is enabled, these registers are ignored, and the storage
attributes supplied by the TLB entry are used (see “TLB Fields” on page 6-145).

The storage attribute control registers divide the 4GB real address space into thirty-two 128MB regions. In a
storage attribute control register, bit 0 controls the lowest addressed 128MB region, bit 1 the next higher-
addressed 128MB region, and so on. EA0:4 specify a storage control region.

For detailed information on the function of the storage attributes, see “Storage Attribute Fields” on
page 6-147.
158 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6.8.1 Storage Attribute Control Registers

Figure 6-6 shows a generic storage attribute control register. The storage attribute control registers have the
same bit numbering and address ranges.

6.8.1.1 Data Cache Write-through Register (DCWR)

The DCWR controls write-through policy (the W storage attribute) for the data cache unit (DCU). Write-
through is not applicable to the instruction cache unit (ICU).

After any reset, all DCWR bits are set to 0, which establishes a write-back write strategy for all regions.

The PowerPC Architecture does not support memory models in which write-through is enabled and caching
is inhibited.

Figure 6-6. Generic Storage Attribute Control Register
Bit Address Range Bit Address Range

0 0x0000 0000 –0x07FF FFFF 16 0x8000 0000 –0x87FF FFFF

1 0x0800 0000 –0x0FFF FFFF 17 0x8800 0000 –0x8FFF FFFF

2 0x1000 0000 –0x17FF FFFF 18 0x9000 0000 –0x97FF FFFF

3 0x1800 0000 –0x1FFF FFFF 19 0x9800 0000 –0x9FFF FFFF

4 0x2000 0000 –0x27FF FFFF 20 0xA000 0000 –0xA7FF FFFF

5 0x2800 0000 –0x2FFF FFFF 21 0xA800 0000 –0xAFFF FFFF

6 0x3000 0000 –0x37FF FFFF 22 0xB000 0000 –0xB7FF FFFF

7 0x3800 0000 –0x3FFF FFFF 23 0xB800 0000 –0xBFFF FFFF

8 0x4000 0000 –0x47FF FFFF 24 0xC000 0000 –0xC7FF FFFF

9 0x4800 0000 –0x4FFF FFFF 25 0xC800 0000 –0xCFFF FFFF

10 0x5000 0000 –0x57FF FFFF 26 0xD000 0000 –0xD7FF FFFF

11 0x5800 0000 –0x5FFF FFFF 27 0xD800 0000 –0xDFFF FFFF

12 0x6000 0000 –0x67FF FFFF 28 0xE000 0000 –0xE7FF FFFF

13 0x6800 0000 –0x6FFF FFFF 29 0xE800 0000 –0xEFFF FFFF

14 0x7000 0000 –0x77FF FFFF 30 0xF000 0000 –0xF7FF FFFF

15 0x7800 0000 –0x7FFF FFFF 31 0xF800 0000 –0xFFFF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
AMCC Proprietary 159

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
6.8.1.2 Data Cache Cachability Register (DCCR)

The DCCR controls the I storage attribute for data accesses and cache management instructions. Note that
the polarity of the bits in this register is opposite to that of the I attribute in the TLB; DCCR[Sn] = 1 enables
caching, while TLB_entry[I] = 1 inhibits caching.

After any reset, all DCCR bits are set to 0. No memory regions are cachable. Before memory regions can be
designated as cachable in the DCCR, it is necessary to execute the dccci instruction once for each
congruence class in the DCU cache array. This procedure invalidates all congruence classes. The DCCR can
then be reconfigured, and the DCU can begin normal operation.

The PowerPC Architecture does not support memory models in which write-through is enabled and caching
is inhibited.

6.8.1.3 Instruction Cache Cachability Register (ICCR)

The ICCR controls the I storage attribute for instruction fetches. Note that the polarity of the bits in this
register is opposite of that of the I attribute (ICCR[Sn] = 1 enables caching, while TLB_entry[I] = 1 inhibits
caching).

After any reset, all ICCR bits are set to 0. No memory regions are cachable. Before memory regions can be
designated as cachable in the ICCR, it is necessary to execute the iccci instruction. This procedure
invalidates all congruence classes. The ICCR can then be reconfigured, and the ICU can begin normal
operation.

6.8.1.4 Storage Guarded Register (SGR)

The SGR controls the G storage attribute for instruction and data accesses.

This attribute does not affect data accesses; the PPC405EP does not perform speculative loads or stores.

After any reset, all SGR bits are set to 1, marking all storage as guarded. For best performance, system
software should clear the guarded attribute of appropriate regions as soon as possible. If MSR[IR] = 1, the G
attribute comes from the TLB entry. Attempting to execute from a guarded region in translate mode causes
an instruction storage interrupt. See “Instruction Storage Interrupt” on page 10-237 for more information.

6.8.1.5 Storage User-defined 0 Register (SU0R)

The Storage User-defined 0 Register (SU0R) controls the user-defined (U0) storage attribute for instruction
and data accesses.

After any reset, all SU0R bits are set to 0.

6.8.1.6 Storage Little-Endian Register (SLER)

The SLER controls the E storage attribute for instruction and data accesses.

This attribute determines the byte ordering of storage. “Byte Ordering” on page 3-90 provides a detailed
description of byte ordering in the IBM PowerPC Embedded Environment.

After any reset, all SLER bits are set to 0 (big endian).
160 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Part III. PPC405EP System Operations
AMCC Proprietary 161

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
162 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 7. Clocking

Clocking in the PPC405EP is highly configurable and supports a wide range of clock ratios on the internal
and external buses.

Figure 7-1 illustrates the clocking options for the PPC405EP. A phase-locked loop (PLL) is the source for the
CPU clock during normal operation. Generated clock frequencies are integer ratios of the reference clock,
PLLOUT A. Applicable bit fields from these registers are included in Figure 7-1.

7.1 Input Reference Clock (SysClk)

The input reference clock, SysClk, must be between 25 MHz and 100 MHz for the PLL to achieve a stable
lock. Input clocks outside this range are not supported.

V
C
O

FWD
DIV
A

PLL

Clock Generation/Divides

÷1–4

CPU Clock

PLB Clock

PerClk

OPB Clock
Tuning Bits

MemClkOut0:1

Figure 7-1. PPC405EP Clocking

÷1–4

÷1–4

÷2–5

SysClk

IICSCL

Timers

PCIClk

Sync PCI Clock
PCI
Clock

IIC

÷1–4

FWD
DIV
B

FDBK
DIV

P
LL

O
U

T
A

P
LL

O
U

T
B

Serial Clocks

÷2–128 UART0

UART1 ÷2–128

MALClk
1–4

[SSCS]

[CCDV]

[CBDV]

[PPDV]

[MPDV]

[EPDV]

[OPDV]

[UODIV]

[U1DIV]
AMCC Proprietary 163

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7.2 PLL Overview

The PLL operating range is controlled by forward divide and feedback divide ratios, tuning bits, and SysClk.
The voltage controlled oscillator (VCO) in the PLL must operate within the range of 500–1000 MHz. The
values of the forward divide and feedback divide ratios affect the CPU frequency and the VCO operating
frequency.

Note: The PLL requires a filter power and ground (AVDD and AGND). See the PPC405EP Data Sheet for
filter design details.

Divider values are required to correctly configure the PPC405EP. When setting the values, pay close
attention to the following information to avoid accidentally configuring the controller in an unusable state.

For any acceptable SysClk input, the VCO frequency is set by the feedback and forward dividers, and the
CPU to PLB divider, as shown in the following equation:

VCO = Reference Clock × M
where M = Feedback Divide × Forward Divide B

For example, with an input reference frequency of 33.33 MHz, feedback divider of 8 and forward divider B of
3, the VCO frequency at which the PLL stabilizes is 800 MHz.

The PLL tuning bit setting depends upon the value of M, which can range from 4 to 40. M decreases as the
reference clock frequency increases.

Table 7-1 lists recommended PLL tuning settings. The tune bits adjust parameters that control PLL jitter. The
recommended values minimize jitter for the PLL implemented in the PPC405EP.

Table 7-1. PLL Tuning Settings

M Range VCO Frequency (F) Range PLL TUNE Bits, CPC0_PLLMR1[TUN]

3 < M ≤ 6 500MHz ≤ F ≤ 800MHz 0100110100

6 < M ≤ 10
500MHz ≤ F ≤ 800MHz 0100111000

800MHz < F ≤ 1000MHz 0110111000

10 < M ≤ 14
500MHz ≤ F ≤ 800MHz 0100111100

800MHz < F ≤ 1000MHz 0110111100

14 < M ≤ 40
500MHz ≤ F ≤ 800MHz 1000111110

800MHz < F ≤ 1000MHz 1010111110
164 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 7-1 contains sample SysClk frequencies and divider settings along with resulting VCO and PLLOUT A
values.

Values for FWDVA, FWDVB, and FBDV are set in CPC0_PLLMR1, as shown in “PLL Mode Register 1
(CPC0_PLLMR1)” on page 7-171. To minimize jitter, FWDVA and FWDVB should be set to the same value.
Other fields in CPC0_PLLMR0 are used to configure the clock frequencies output to the CPU, PLB, OPB, and
the external peripheral bus.

Clock configuration is done either automatically from settings read by the IIC serial EPROM controller (IEC)
as described on “IIC serial EPROM controller (IEC) Operation” on page 9-196, or by software during
initialization while SysClk is the clock source and the PLL is held in reset (CPC0_PLLMR1[SSCS,
PLLMR]=0b01). Pin straps determine which initialization method is used.

See “Pin Strapping” on page 9-195 for a description of the pin straps.

PLL and clock configuration should be performed prior to initializing interfaces such as the SDRAM and PCI.
The clock divisors and PLL dividers can be configured after reset while in PLL is held in reset by initializing
CPC0_PLLMR0 and CPC0_PLLMR1 registers. Once PLL operation is enabled (CPC0_PLLMR1[PLLR]=0),
the PLL begins a locking process that requires 100 us during which time initialization software must wait. The
suggested method for waiting is demonstrated in “Initialization Code Example” on page 8-191. After 100 us,
the clock source should be changed to PLLOUTA, CPC0_PLLMR1[SSCS]=1.

7.2.1 Software Clock Configuration After Reset

2. Ensure SysClk is the clock source, CPC0_PLLMR1[SSCS]=0 and the PLL is reset,
CPC0_PLLMR1[PLLR]=1.

3. Initialize clock divisors in CPC0_PLLMR0.
4. Initialize PLL dividers and PLL tune bits, CPC0_PLLMR1[FBMUL, FWDVA, FWDVB, TUN].
5. Clear the PLL Reset, CPC0_PLLMR1[PLLR]=0.
6. Wait 100 us to allow the PLL to lock before continuing. See “Initialization Code Example” on page 8-191.
7. Select PLL PLLOUTA and PLLOUTB as the clock source, CPC0_PLLMR1[SSCS]=1. .

Table 7-2. VCO and PLLOUT A Values

SysClk (MHz)
FWDVA/
FWDVB FBDV

M (SysClk
Multiplier) VCO (MHz)

PLLOUT A
(MHz)

33.3 3 8 24 800 266.6
33.3 4 6 24 800 200
33.3 6 4 24 800 133.3
66.6 3 4 12 800 266.6
66.6 4 3 12 800 200
66.6 6 2 12 800 133.3
100 2 4 8 800 400
100 3 2 6 600 200
100 5 2 10 1000 200

Note: These examples assume tuning bits are set to 10 0011 1110, for 14 ≤ M ≤ 40.
AMCC Proprietary 165

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7.3 PCI Clocking

The following clocks are related to the PCI logic:

• The on-chip PLB clock
• The on-chip synchronous PCI clock
• An external asynchronous PCI clock, PCIClk

The PPC405EP only supports asynchronous mode. In this mode, the PCI bridge core has two clock inputs,
an asynchronous PCI clock and a synchronous PCI clock. The asynchronous PCI clock is the PCIClk
provided by the PCI bus and the synchronous clock is derived from the internal PLB clock.

Table 7-3 describes the relationships between the synchronous PCI clock , PCIClk and the PLB clock. In
asynchronous PCI mode, the synchronous PCI clock must meet certain requirements. The following equation
describes the relationship that must be maintained between the asynchronous PCI clock and synchronous
PCI clock. Select an appropriate PCI:PLB ratio to maintain the relationship:

AsyncPCIClk - 1MHz <= SyncPCIclock <= ((2 × AsyncPCIClk) - 1MHz)

Table 7-3 lists supported and commonly used combinations of synchronous and PCIClk. In general, higher
synchronous PCI clock frequencies provides better performance, while lower synchronous PCI clock
frequencies minimize power consumption.

Table 7-3. Example Synchronous PCI Clock Frequencies in Asynchronous Mode

Asynchronous
PCI Frequency

Synchronous
PCI Frequency PLB Frequency

Sync PCI:PLB
Ratio

20 MHz 33.3 MHz 133.3 MHz 1:4
33.3 MHz 100 MHz 1:3
27.6 MHz 83.3 MHz 1:3

33.3 MHz 44.4 MHz 133.3 MHz 1:3
33.3 MHz 133.3 MHz 1:4
50 MHz 100 MHz 1:2

41.6 MHz 83.3 MHz 1:2
40 MHz 44.4 MHz 133.3 MHz 1:3

50 MHz 100 MHz 1:2
41.6 MHz 83.3 MHz 1:2

66.6 MHz 66.6 MHz 133.3 MHz 1:2
100 MHz 100 MHz 1:1
83.3 MHz 83.3 MHz 1:1
166 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
7.3.1 PCI Adapter Applications

Because various systems run PCI expansion buses at different PCI frequencies, several PCI clock
frequencies may need to be supported when the PPC405EP is used in PCI adapters.

Asynchronous PCI mode uses an externally provided PCI clock that does not interact with an on-chip PLL, so
there is no lower frequency limit imposed by loss of PLL lock. However, the requirements resulting from the
relationship between the synchronous and PCIClk must still be satisfied.

Note: Satisfying the equation in “PCI Clocking” on page 7-166 presents a potential problem. The divisor
selection needed to set an acceptable synchronous PCI clock for a 33 MHz PCIClk differs from the
selection for a 66 MHz PCIClk. External logic is required to detect the state of the M66 pin on the PCI
adapter interface and select appropriate PPC405EP divisor values during system reset.

7.4 Serial Port Clocking

The two PPC405EP UARTs (serial ports) are clocked by two independently derived serial clocks sourced
internally. The internally generated clocks are derived from the PLLOUTA, and can be set to PLLOUTA/n,
where n ranges from 2 to 128. The divisor value for each UART is programmed by setting a value of 0 to 127
in CPC0_UCR (see “UART Control Register (CPC0_UCR)” on page 7-172).

Subsequently, the serial clock input to the UART is further divided in the UART to generate the desired serial
data rate (baud rate).

Refer to Chapter 21, “Serial Port Operations,” for more information about choosing CPU clock and serial input
clock divisors.

7.5 Clocking Registers

Table 7-4 summarizes the Device Control Registers (DCRs) that control clocking in the PPC405EP.

These clocking registers are read and written using the mtdcr and mfdcr instructions.

Table 7-4. Clocking Control Registers

Register Address R/W Description

CPC0_BOOT 0x0F1 R Clock Status Register
CPC0_EPCTL 0x0F3 R/W EMAC to PHY Control Register
CPC0_PLLMR0 0x0F0 R/W PLL Mode Register 0
CPC0_PLLMR1 0x0F4 R/W PLL Mode Register 1
CPC0_UCR 0x0F5 R/W UART Control Register
AMCC Proprietary 167

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7.5.1 Boot Control Register (CPC0_BOOT)

CPC0_BOOT allows software to read PLL lock status, as well as strap settings for boot source selection the
serial EPROM offset address. See“Pin Strapping and Sharing” on page 9-195.

Figure 7-2. Boot Control Register (CPC0_BOOT)
0:24 Reserved

25:26 SEBA Serial EPROM Base Address
00 Byte offset 0x00
01 Byte offset 0x40
10 Byte offset 0x80
11 Byte offset 0xC0

The serial EPROM, if present, must have a
7-bit slave address of 0b101000.
This field specifies the byte address within
the serial EPROM where the 32 bytes of
bootstrap information resides.

27 BSS Boot Source Select
0 EBC is source for chip initialization code.
1 PCI is source for chip initialization code.

28:29 EBW EBC Boot Width
00 8-bit
01 16-bit
10 Reserved
11 Reserved

30 SEP Serial EPROM Present
0 IIC EEPROM Controller disabled
1 IIC EEPROM Controller enabled

31 SPLI SYSPLL lock indicator.
0 SYSPLL not locked.
1 SYSPLL locked.

Reading this bit may not provide reliable
PLL lock status in certain system
implementations. Waiting the maximum
lock period, 100us, is a more reliable
method of guaranteeing lock. See
“Initialization Code Example” on
page 8-191.

0 24 25 26 27 28 29 30 31

SPLISEBA EBW

SEPBSS
168 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
7.5.2 EMAC to PHY Control Register (CPC0_EPCTL)

CPC0_EPCTL provides controls for noise filtering on the EMAC interfaces and clock source selection for the
EMAC PHY receive channels.

Figure 7-3. EMAC to PHY Control Register (CPC0_EPCTL)
0 E0NF EMAC0 Noise Filter Enable

0 Not enabled
1 Enabled

For normal operation, set E0NF to 1.

1 E1NF EMAC1 Noise Filter Enable
0 Not enabled
1 Enabled

For normal operation, set E1NF to 1.

2:23 Reserved

24 E1PR Select polarity of EMAC1 Packet Reject
0 Active low
1 Active high

25 E0PR Select polarity of EMAC0 Packet Reject
0 Active low
1 Active high

26 E1RM Enable EMAC1 Packet Removal
0 Not enabled
1 Enabled

27 E0RM Enable EMAC0 Packet Removal
0 Not enabled
1 Enabled

28:29 Reserved

30 E1PCI Source of EMAC1 PHY RX Clock Input.
0 Clock is sourced from PHY0Rx1Clk, the

external PHY Rx Clock output (normal
operation).

1 Clock is sourced from PHY0Tx1Clk, the
external PHY Tx Clock output (internal
loopback mode only).

31 E0PCI Source of EMAC0 PHY RX Clock Input.
0 Clock is sourced from PHY0Rx0Clk, the

external PHY Rx Clock output (normal
operation).

1 Clock is sourced from PHY0Tx0Clk, the
external PHY Tx Clock output (internal
loopback mode only).

0 1 2 23 24 25 26 27 28 29 30 31

E1RM

E0RM

E1PCI

E0PCI

E1PR

E0PR

E0NF

E1NF
AMCC Proprietary 169

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7.5.3 PLL Mode Register 0 (CPC0_PLLMR0)

The CPC0_PLLMR0 contains divisor values to configure several on-chip clocks.

Figure 7-4. PLL Mode Register 0 (CPC0_PLLMR0)
0:9 Reserved

10:11 CCDV CPU Clock Divider. These bits control the ratio of the PLL frequency and the CPU
frequency.
00 Divider = 1
01 Divider = 2
10 Divider = 3
11 Divider = 4

12:13 Reserved

14:15 CBDV CPU–PLB Frequency Divisor
00 CPU–PLB divisor is 1
01 CPU–PLB divisor is 2
10 CPU–PLB divisor is 3
11 CPU–PLB divisor is 4

16:17 Reserved

18:19 OPDV OPB–PLB Frequency Divisor
00 OPB–PLB divisor is 1
01 OPB–PLB divisor is 2
10 OPB–PLB divisor is 3
11 OPB–PLB divisor is 4

20:21 Reserved

22:23 EPDV EBC–PLB Frequency Divisor
00 EBC–PLB divisor is 2
01 EBC–PLB divisor is 3
10 EBC–PLB divisor is 4
11 EBC–PLB divisor is 5

24:25 Reserved

26:27 MPDV MAL–PLB Frequency Divisor
00 MAL–PLB divisor is 1
01 MAL–PLB divisor is 2
10 MAL–PLB divisor is 3
11 MAL–PLB divisor is 4

28:29 Reserved

30:31 PPDV PCI-PLB Frequency Divisor
00 PCI–PLB divisor is 1
01 PCI–PLB divisor is 2
10 PCI–PLB divisor is 3
11 PCI–PLB divisor is 4

0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CCDV

CBDV EPDV

OPDV MPDV

PPDV
170 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
7.5.4 PLL Mode Register 1 (CPC0_PLLMR1)

The CPC0_PLLMR1 contains PLL and clock divisor values.

Figure 7-5. PLL Mode Register 1 (CPC0_PLLMR1)
0 SSCS Select System Clock Source

0 SysClk (PLL bypass)
1 PLL PLLOUTA output

1 PLLR PLL Reset
0 PLL is operating
1 Reset PLL

After PLLR is set to 0, software must wait at least
100 us to allow the PLL to lock before continuing.

2:7 Reserved

8:11 FBMUL PLL feedback multiplier value
0000 Multiplier is 16
0001 Multiplier is 1
0010 Multiplier is 2
0011 Multiplier is 3
0100 Multiplier is 4
0101 Multiplier is 5
0110 Multiplier is 6
0111 Multiplier is 7
1000 Multiplier is 8
1001 Multiplier is 9
1010 Multiplier is 10
1011 Multiplier is 11
1100 Multiplier is 12
1101 Multiplier is 13
1110 Multiplier is 14
1111 Multiplier is 15

12 Reserved

13:15 FWDVA PLL forward divider A value
000 Forward divisor is 8.
001 Forward divisor is 7.
010 Forward divisor is 6.
011 Forward divisor is 5.
100 Forward divisor is 4.
101 Forward divisor is 3.
110 Forward divisor is 2.
111 Forward divisor is 1.

16 Reserved

17:19 FWDVB PLL forward divider B value FWDVB should be programmed to match FWDVA.

20:21 Reserved

0 1 2 7 8 11 12 13 15 16 17 19 20 21 22 31

SSCS

PLLR FWDVA

FWDVBFBMUL

TUN
AMCC Proprietary 171

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7.5.5 UART Control Register (CPC0_UCR)

UART controls and divider values are set in this register.

22:31 TUN PLL TUNE Bits Note: The tune bits adjust parameters that control
PLL jitter. The recommended values
minimize jitter for the PLL.

Figure 7-6. UART Control Register (CPC0_UCR)
0:9 Reserved

10 U0DC UART0 DMA Clear Enable
0 Disables UART0 clear
1 Enables UART0 to clear CPC0_UCR[U0DT] and CPC0_UCR[U0DR] bits after the

DMA controller asserts its terminal count signal.

11 U0DT Enable UART0 DMA Transmit Channel
0 DMA transmit channel is disabled.
1 DMA transmit channel is enabled.

12 U0DR Enable UART0 DMA Receive Channel
0 DMA receive channel is disabled.
1 DMA receive channel is enabled.

13 U1DC UART1 DMA Clear Enable
0 Disables UART1 clear
1 Enables UART1 to clear

CPC0_UCR[U1DT] and
CPC0_UCR[U1DR] after the DMA
controller asserts its terminal count
signal.

14 U1DT Enable UART1 DMA Transmit Channel
0 DMA transmit channel disabled.
1 DMA transmit channel enabled.

15 U1DR Enable UART1 DMA Receive Channel
0 DMA receive channel is disabled.
1 DMA receive channel is enabled.

16 Reserved

0 9 10 11 12 13 14 15 16 17 23 24 25 31

U0DC

U0DT

U0DR

U1DC

U1DT

U1DIVU1DR U0DIV
172 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17:23 U1DIV UART1 Serial Clock Divisor
0000000 128
0000001 Stops the clock to UART1 baud
rate generator
0000010 2
0000011 3
.
.
.
.
1111101 125
1111110 126
1111111 127

This value should be chosen to select a
frequency less than half the
programmed OPB clock frequency.

24 Reserved

25:31 U0DIV UART0 Serial Clock Divisor
0000000 128
0000001 Stops the clock to UART1 baud
rate generator
0000010 2
0000011 3
.
.
.
.
1111101 125
1111110 126
1111111 127

This value should be chosen to select a
frequency less than half the
programmed OPB clock frequency.
AMCC Proprietary 173

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
174 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 8. Reset and Initialization

This chapter describes reset operations, the initial state of the PPC405EP processor core after a reset, and
an example of the initialization code required to begin executing application code. Initialization of external
system components or system-specific chip facilities must also be performed, in addition to the basic
initialization described in this chapter.

Reset operations affect the PPC405EP at power on time as well as during normal operation, if programmed
to do so. To understand how these operations work it is necessary to first understand the signal pins involved
as well as the terminology of core, chip and system resets.

8.1 Reset Signals

SysReset is a bidirectional open drain driver functioning initially as an external input and later during reset as
an output. External logic must assert SysReset a minimum of 16 SysClk cycles to be detected by the
PPC405EP. Once detected. the SysReset open drain driver is activated and the signal is driven low.

The number of cycles the PPC405EP drives SysReset depends on the previous state of the processor.
Following power-on, the PPC405EP drives SysReset low 0-8192 SysClk cycles. Following a system reset
from an initialized state, the PPC405EP drives SysReset low 4096-8192 SysClk cycles. In systems requiring
SysReset to be driven a deterministic number of cycles, SysReset must be asserted externally a minimum of
8192 cycles.

8.2 Reset Types

Three types of reset, each with different scope, are possible in the PPC405EP. A core reset affects only the
processor core. Chip resets affect the processor core and all on-chip peripherals. System resets affect the
processor core, all on-chip peripherals, and any off-chip devices connected to the chip reset net. See
“Processor Initiated Resets” on page 8-178 for information about the reset behavior of the processor core.
See chapters describing the on-chip peripherals for detailed information about their reset behavior. Detailed
information about the reset behavior of each on-chip peripheral can be found in their respective chapters.

8.2.1 Core Reset

A core reset results in a reset of the processor core. No other on-chip logic is affected. Clocking logic, outside
the processor core, detects the core reset request and asserts the reset input to the processor core for a
period of 8 processor core clock cycles.

8.2.2 Chip Reset

During a chip reset, most registers are reset to their default power-on values. Strapping values are not
reread, however, and the CPC0_PLLMR and CPC0_PLLMR1 registers maintaintheir programmed value.
When clocking logic detects a request for a chip reset, it resets and locks the PLL. This process takes
approximately 10,000 SysClk cycles.

8.2.3 System Reset

A system reset results in a reset of all PPC405EP logic, including the processor core, phase-locked loop
(PLL), and on-chip peripherals. A system reset can be initiated externally or internally. External system resets
AMCC Proprietary 175

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
are initiated by the assertion of the SysReset. Internal system resets are initiated by the processor
corethrough software as described in “PCI Power Management Initiated Resets” on page 8-178.

When a system reset is requested internally, the bidirectional open drain SysReset signal is asserted to
enable other chips to be reset at the same time. In this case, the SysReset signal is driven low for 4095-8192
SysClk periods, resulting in a System reset of the PPC405EP chip and all other devices attached to the reset
network connected to SysReset.

Once SysReset is deasserted, the PPC405EP completes system reset as configured by the pins straps listed
on Table 9-1,“Pin Strapping” on page 9-195. If the pin straps enable the IIC serial EPROM Controller (IEC),
the PPC405EP reads the strap configuration from a serial EPROM on the IIC bus, configures the registers
listed in Table 9-2, “Serial EPROM Data Organization” on page 9-197 and locks the PLL before deasserting
ExtReset. If the IEC is disabled, the PPC405EP deasserts ExtReset and holds the PLL in reset as described
in “Software Clock Configuration After Reset” on page 7-165.

Upon completing system reset, the PPC405EP boots from memory attached to either the peripheral bus or
the PCI bus. If the IEC is enabled, the strap configuration read from the serial EPROM selects the boot
source. Figure 8-1 and Figure 8-2 illustrate system reset for both boot options. If the IEC is disabled, the
PPC405EP boots from memory on the peripheral bus as shown in Figure 8-3.

Detailed information about boot can be found in “PPC405EP Chip Initialization” on page 8-189.

SysReset

ExtReset

IIC Bus

PerCS0

∼330,000 SysClk cycles ∼10,000 SysClk cycles

IEC reads strap configuration PLL resets and locks

Figure 8-1. System reset with the IEC enabled and booting over the peripheral bus
176 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SysReset

ExtReset

IIC Bus

PCIFrame

∼330,000 SysClk cycles ∼10,000 SysClk cycles

IEC reads strap configuration PLL resets and locks
PCI registers are initialized

Figure 8-2. System reset with the IEC enabled and booting over the PCI bus

SysReset

ExtReset

PerCS0

∼50 SysClk cycles

∼25 SysClk cycles

Figure 8-3. System Reset with the IEC Disabled
AMCC Proprietary 177

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
8.3 PCI Power Management Initiated Resets

An external PCI master can write the Power Management Control/Status Register (PCIC0_PMCSR) to
request a change from the D3hot PCI power management state to the D0 state. The on-chip PCI logic always
accepts such a write and assumes that requested state changes from D3hot are always to D0. After receiving
such a write, the PCI logic asserts a signal that immediately results in an internally requested system reset.

8.4 Processor Initiated Resets

The PPC405EP processor core can initiate three types of processor resets: core, chip, and system. Each
type of reset can be generated by a JTAG debug tool, by the second expiration of the watchdog timer, or by
writing a non-zero value to the Reset (RST) field of Debug Control Register 0 (DBCR0).

The reset type is recorded in two status registers, DBSR and TSR. The Debug Status Register MRR bit field
(DBSR[MRR]) records most-recent reset. The Timer Status Register WRS bit field (TSR[WRS]) records the
reset type of the most recent watchdog reset.

8.5 Software Reset of the PCI Interface

Software can reset the PCI bridge, as shown in Figure 8-4. This feature should only be used after chip reset
or a system reset while the PCI bus is idle. Resetting the PCI bridge in the middle of a PCI operation can
cause the PCI bridge to improperly terminate a PCI transaction. After a chip reset the PCI bridge is held in
reset until the CPC0_SRR[RPCI] bit is cleared.

8.6 Processor State After Reset

After a reset, the contents of the Machine State Register (MSR) and the Special Purpose Registers (SPRs)
control the initial processor state. The contents of Device Control Registers (DCRs) control the initial states of
on-chip devices. Chapter 26, “Register Summary,” contains descriptions of the registers.

In general, the contents of SPRs are undefined after a reset. Reset initializes the minimum number of SPR
fields required for successful instruction fetching. “Contents of Special Purpose Registers after Reset” on
page 8-179 describes these initial values. System software fully configures the processor.

“Machine State Register Contents after Reset” on page 8-179 describes the MSR contents.

Figure 8-4. Soft Reset Register (CPC0_SRR)
0:12 Reserved

13 RPCI PCI Bridge Reset by Software
0 PCI bridge not reset
1 Reset PCI bridge

Defaults to 1 during chip reset.
PCI is held in reset until software clears
this bit.

14:31 Reserved

0 12 13 14 31

RPCI
178 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
The MCI field of the Exception Syndrome Register (ESR) is cleared so that it can be determined if there has
been a machine check during initialization, before machine check exceptions are enabled.

Two SPRs contain status on the type of reset that has occurred. The Debug Status Register (DBSR) contains
the most recent reset type. The Timer Status Register (TSR) contains the most recent watchdog reset.

8.6.1 Machine State Register Contents after Reset

After all resets, all fields of the Machine State Register (MSR) contain zeros. Table 8-1 shows how this affects
chip operation.

8.6.2 Contents of Special Purpose Registers after Reset

In general, the contents of Special Purpose Registers (SPRs) are undefined after a core, chip, or system
reset. Some SPRs retain the contents they had before a reset occurred.

Table 8-1. MSR Contents after Reset

Register Field
Core
Reset

Chip
Reset

System
Reset Comment

MSR WE 0 0 0 Wait state disabled

CE 0 0 0 Critical interrupts disabled

EE 0 0 0 External interrupts disabled

PR 0 0 0 Supervisor mode

ME 0 0 0 Machine check exceptions disabled

DWE 0 0 0 Debug wait mode disabled

DE 0 0 0 Debug interrupts disabled

DR 0 0 0 Instruction translation disabled

IR 0 0 0 Data translation disabled
AMCC Proprietary 179

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 8-2 shows the contents of SPRs that are defined or unchanged after core, chip, and system resets.

8.7 DCR Contents after Reset

DCR reset values are unaffected by core resets and are generally identical for chip and system resets.

Table 8-2. SPR Contents After Reset
Register Bits/Fields Core Reset Chip Reset System Reset Comment

CCR0 0:31 0x00700000 0x00700000 0x00700000 Sets ICU and DCU PLB
priorities

DBCR0 EDM 0 0 0 External debug mode
disabled

RST 00 00 00 No reset action.

DBCR1 0:31 0x00000000 0x00000000 0x00000000 Data compares disabled

DBSR MRR 01 10 11 Most recent reset

DCCR S0:S31 0x00000000 0x00000000 0x00000000 Data cache disabled

DCWR W0:W31 0x00000000 0x00000000 0x00000000 Data cache write-through
disabled

ESR 0:31 0x00000000 0x00000000 0x00000000 No exception syndromes

ICCR S0:S31 0x00000000 0x00000000 0x00000000 Instruction cache disabled

SGR G0:G31 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF Storage is guarded

SLER S0:S31 0x00000000 0x00000000 0x00000000 Storage is big endian

SU0R K0:K31 0x00000000 0x00000000 0x00000000 Storage is uncompressed

TCR WRC 00 00 00 Watchdog timer reset
disabled

TSR WRS Copy of
TCR[WRC]

Copy of
TCR[WRC]

Copy of
TCR[WRC]

Watchdog reset status

PIS Undefined Undefined Undefined After POR

FIS Unchanged Unchanged Unchanged If reset not caused by
watchdog timer

Table 8-3. DCR Contents After Reset
Register Bits Reset Value Comment

Chip Control

CPC0_BOOT 0:31 Undefined Value is affected by the strap settings applied during reset.

CPC0_EPCTL 0:31 0x00000000

CPC0_JTAGID 0:31 Refer to PPC405EP Embedded Processor Data Sheet for the
value of this read-only register.

CPC0_PCI 0:31 0x00000000 Contents of these registers can be affected by the values read
from the serial EEPROM bootstrap settings (if available).

CPC0_PLLMR0 0:31 0x00011010

CPC0_PLLMR1 0:31 0x40000000
180 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_SRR 0:31 0x00040000

CPC0_UCR 0:31 0x00000000

Clock and Power Management (CPM)

CPC0_ER 0:31 0x00000000

CPC0_FR 0:31 0x00000000

CPC0_SR 0:31 0x00000000

Direct Memory Access (DMA)

DMA0_CR0 0:31 0x00000000

DMA0_CR1 0:31 0x00000000

DMA0_CR2 0:31 0x00000000

DMA0_CR3 0:31 0x00000000

DMA0_CT0 0:31 0x00000000

DMA0_CT1 0:31 0x00000000

DMA0_CT2 0:31 0x00000000

DMA0_CT3 0:31 0x00000000

DMA0_DA0 0:31 0x00000000

DMA0_DA1 0:31 0x00000000

DMA0_DA2 0:31 0x00000000

DMA0_DA3 0:31 0x00000000

DMA0_SA0 0:31 0x00000000

DMA0_SA1 0:31 0x00000000

DMA0_SA2 0:31 0x00000000

DMA0_SA3 0:31 0x00000000

DMA0_SG0 0:31 0x00000000

DMA0_SG1 0:31 0x00000000

DMA0_SG2 0:31 0x00000000

DMA0_SG3 0:31 0x00000000

DMA0_SGC 0:31 0x00000000

DMA0_SLP 0:31 0x7C000000

DMA0_SR 0:31 0x00000000

External Bus Controller (EBC)

EBC0_B0AP 0:31 0x7F8FFE80 Slowest possible bus timings.

EBC0_B0CR 0:31 0xFFE28000 2MB read-only bank.

EBC0_B1AP 0:31 0x00000000

Table 8-3. DCR Contents After Reset (continued)
Register Bits Reset Value Comment
AMCC Proprietary 181

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
EBC0_B1CR 0:31 0x00000000

EBC0_B2AP 0:31 0x00000000

EBC0_B2CR 0:31 0x00000000

EBC0_B3AP 0:31 0x00000000

EBC0_B3CR 0:31 0x00000000

EBC0_B4AP 0:31 0x00000000

EBC0_B4CR 0:31 0x00000000

EBC0_BEAR 0:31 0x00000000

EBC0_BESR0 0:31 0x00000000

EBC0_BESR1 0:31 0x00000000

EBC0_CFG 0:31 0x80400000

Event Counters (EVC)

EVC0_CNT0 0:31 0x00000000

EVC0_CNT1 0:31 0x00000000

EVC0_ECR 0:31 0x00000000

Indirect Addressing Registers

EBC0_CFGADDR Undefined

EBC0_CFGDATA Undefined

SDRAM0_CFGADDR Undefined

SDRAM0_CFGDATA Undefined

Media Access Layer (MAL)

MAL0_CFG 0:31 0x0007C000

MAL0_ESR 0:31 0x00000000

MAL0_IER 0:31 0x00000000

MAL0_RCBS0–
MAL0_RCBS1

0:31 Undefined

MAL0_RXCASR 0:31 0x00000000

MAL0_RXCTP0R–
MAL0_RXCTP1R

0:31 Undefined

MAL0_RXDEIR 0:31 0x00000000

MAL0_RXEOBISR 0:31 0x00000000

MAL0_TXCASR 0:31 0x00000000

MAL0_TXCTP0R–
MAL0_TXCTP3R

0:31 Undefined

MAL0_TXDEIR 0:31 0x00000000

Table 8-3. DCR Contents After Reset (continued)
Register Bits Reset Value Comment
182 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_TXEOBISR 0:31 0x00000000

On-Chip Buses

PLB0_ACR 0:31 0x00000000

PLB0_BEAR 0:31 Undefined

POB0_BEAR 0:31 Undefined

POB0_BESR0 0:31 0x00000000

POB0_BESR1 0:31 0x00000000

SDRAM Controller

SDRAM0_B0CR 0:31 0x00000000

SDRAM0_B1CR 0:31 0x00000000

SDRAM0_CFG 0:31 0x00800000

SDRAM0_PMIT 0:31 0x07C00000

SDRAM0_RTR 0:31 0x05F00000

SDRAM0_TR 0:31 0x00854009

Universal Interrupt Controller (UIC)

UIC0_CR Undefined

UIC0_ER 0x00000000

UIC0_MSR Undefined

UIC0_PR Undefined

UIC0_SR Undefined

UIC0_TR Undefined

UIC0_VCR Undefined

UIC0_VR Undefined

Table 8-3. DCR Contents After Reset (continued)
Register Bits Reset Value Comment
AMCC Proprietary 183

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
8.8 MMIO Register Contents After Reset

MMIO registers are unaffected by core resets, and are generally identical for chip and system resets.

Table 8-4. MMIO Register Contents After Reset
Register Bits Reset Value Comment

Ethernet (EMAC0)

EMAC0_GAHT1 0:31 0x00000000

EMAC0_GAHT2 0:31 0x00000000

EMAC0_GAHT3 0:31 0x00000000

EMAC0_GAHT4 0:31 0x00000000

EMAC0_IAHR 0:31 0x00000000

EMAC0_IAHT1 0:31 0x00000000

EMAC0_IAHT2 0:31 0x00000000

EMAC0_IAHT3 0:31 0x00000000

EMAC0_IAHT4 0:31 0x00000000

EMAC0_IALR 0:31 0x00000000

EMAC0_IPGVR 0:31 0x00000004

EMAC0_ISER 0:31 0x00000000

EMAC0_ISR 0:31 0x00000000

EMAC0_LSAH 0:31 0x00000000

EMAC0_LSAL 0:31 0x00000000

EMAC0_MR0 0:31 0xC0000000

EMAC0_MR1 0:31 0x00000000

EMAC0_PTR 0:31 0x0000FFFF

EMAC0_RMR 0:31 0x00000000

EMAC0_RWMR 0:31 0x04001000

EMAC0_STACR 0:31 0x00008000

EMAC0_TMR0 0:31 0x00000000

EMAC0_TMR1 0:31 0x380F0000

EMAC0_TRTR 0:31 0x00000000

EMAC0_VTCI 0:31 0x00000000

EMAC0_VTPID 0:31 0x00008808

Ethernet (EMAC1)

EMAC1_GAHT1 0:31 0x00000000

EMAC1_GAHT2 0:31 0x00000000

EMAC1_GAHT3 0:31 0x00000000
184 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMAC1_GAHT4 0:31 0x00000000

EMAC1_IAHR 0:31 0x00000000

EMAC1_IAHT1 0:31 0x00000000

EMAC1_IAHT2 0:31 0x00000000

EMAC1_IAHT3 0:31 0x00000000

EMAC1_IAHT4 0:31 0x00000000

EMAC1_IALR 0:31 0x00000000

EMAC1_IPGVR 0:31 0x00000004

EMAC1_ISER 0:31 0x00000000

EMAC1_ISR 0:31 0x00000000

EMAC1_LSAH 0:31 0x00000000

EMAC1_LSAL 0:31 0x00000000

EMAC1_MR0 0:31 0xC0000000

EMAC1_MR1 0:31 0x00000000

EMAC1_PTR 0:31 0x0000FFFF

EMAC1_RMR 0:31 0x00000000

EMAC1_RWMR 0:31 0x04001000

EMAC1_STACR 0:31 0x00008000

EMAC1_TMR0 0:31 0x00000000

EMAC1_TMR1 0:31 0x380F0000

EMAC1_TRTR 0:31 0x00000000

EMAC1_VTCI 0:31 0x00000000

EMAC1_VTPID 0:31 0x00008808

General Purpose I/O (GPIO)

GPIO0_IR 0:31 Undefined Read-only; follows the GPIO_In input.

GPIO0_ISR1H 0:31 0x00000000

GPIO0_ISR1L 0:31 0x00000000

GPIO0_ODR 0:31 0x00000000

GPIO0_OR 0:31 0x00000000

GPIO0_OSRH 0:31 0x00000000

GPIO0_OSRL 0:31 0x00000000

GPIO0_RR1 0:31 0x00000000

GPIO0_TCR 0:31 0x00000000

GPIO0_TSRH 0:31 0x00000000

Table 8-4. MMIO Register Contents After Reset (continued)
Register Bits Reset Value Comment
AMCC Proprietary 185

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
GPIO0_TSRL 0:31 0x00000000

Inter-Integrated Circuit (IIC)

IIC0_CLKDIV 0:7 0x00

IIC0_CNTL 0:7 0x00

IIC0_DIRECTCNTL 0:7 0x0F

IIC0_EXTSTS 0:7 0x00

IIC0_HMADR 0:7 Undefined

IIC0_HSADR 0:7 Undefined

IIC0_INTRMSK 0:7 0x00

IIC0_LMADR 0:7 Undefined

IIC0_LSADR 0:7 Undefined

IIC0_MDBUF 0:7 0x00

IIC0_MDCNTL 0:7 0x00

IIC0_SDBUF 0:7 0x00

IIC0_STS 0:7 0x00

IIC0_XFRCNT 0:7 0x00

IIC0_XTCNTLSS 0:7 0x00

OPB Arbiter

OPBA0_CR 0:31 0x00000000

OPBA0_PR 0:31 0x00011011

PCI Bridge

PCIC0_BASECC 0:7 0x06

PCIC0_BIST 0:7 0x00

PCIC0_BRDGOPT1 0:15 0xFF60

PCIC0_BRDGOPT2 0:15 0x0101

PCIC0_CACHELS 0:7 0x00

PCIC0_CAP 0:7 0x00

PCIC0_CAPID 0:7 0x00

PCIC0_CFGADDR 0:31 0x00000000

PCIC0_CFGDATA 0:31 0x00000000

PCIC0_CLS 0:23 0x060000 Default setting can be affected by a value read
from the serial EEPROM bootstrap settings (if
available).

PCIC0_CMD 0:15 0x0000

Table 8-4. MMIO Register Contents After Reset (continued)
Register Bits Reset Value Comment
186 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_DEVID 0:15 0x0000 Default setting can be affected by a value read
from the serial EEPROM bootstrap settings (if
available).

PCIC0_ERREN 0:7 0x00

PCIC0_ERRSTS 0:7 0x00

PCIC0_HDTYPE 0:7 0x00

PCIC0_ICS 0:7 0x00

PCIC0_INTCLS 0:7 0x00

PCIC0_INTLN 0:7 0x00

PCIC0_INTPN 0:7 0x01

PCIC0_LATTIM 0:7 0x00

PCIC0_MAXLTNCY 0:7 0x00

PCIC0_MINGNT 0:7 0x00

PCIC0_NEXTIPTR 0:7 0x00

PCIC0_PLBBEAR 0:31 0x00000000

PCIC0_PLBBESR0 0:31 0x00000000

PCIC0_PLBBESR1 0:31 0x00000000

PCIC0_PMC 0:15 0x0202

PCIC0_PMCSR 0:15 0x0000

PCIC0_PMCSRBSE 0:7 0x00

PCIC0_PMSCRR 0:7 0x10

PCIC0_PTM1BAR 0:31 0x00000008

PCIC0_PTM2BAR 0:31 0x00000000

PCIC0_REVID 0:7 0x00 Default setting can be affected by a value read
from the serial EEPROM bootstrap settings (if
available).PCIC0_SBSYSID 0:15 0x0000

PCIC0_SBSYSVID 0:15 0x0000

PCIC0_STATUS 0:15 0x0210

PCIC0_SUBCLS 0:7 0x00

PCIC0_VENDID 0:15 0x0000 Default setting can be affected by a value read
from the serial EEPROM bootstrap settings (if
available).

PCIL0_PMM0LA 0:31 0xFFFE0000 Value if strapped for PCI boot at reset.

PCIL0_PMM0MA 0:31 0xFFFE0001 Value if strapped for PCI boot at reset.

PCIL0_PMM0PCIHA 0:31 0x00000000 Value if strapped for PCI boot at reset.

PCIL0_PMM0PCILA 0:31 0xFFFE0000 Value if strapped for PCI boot at reset.

PCIL0_PMM1LA 0:31 Undefined

Table 8-4. MMIO Register Contents After Reset (continued)
Register Bits Reset Value Comment
AMCC Proprietary 187

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PCIL0_PMM1MA 0:31 0x00000000

PCIL0_PMM1PCIHA 0:31 Undefined

PCIL0_PMM1PCILA 0:31 Undefined

PCIL0_PMM2LA 0:31 Undefined

PCIL0_PMM2MA 0:31 0x00000000

PCIL0_PMM2PCIHA 0:31 Undefined

PCIL0_PMM2PCILA 0:31 Undefined

PCIL0_PTM1LA 0:31 Undefined Default setting can be affected by a value read
from the serial EEPROM bootstrap settings (if
available).PCIL0_PTM1MS 0:31 Undefined

PCIL0_PTM2LA 0:31 Undefined

PCIL0_PTM2MS 0:31 Undefined

PCIC0_PLBBEAR2 0:31 0x00000000

PCIC0_PLBBEAR3 0:31 0x00000000

Serial Port (UART0)

UART0_DLL 0:7 0b00000000

UART0_DLM 0:7 0b00000000

UART0_FCR 0:7 0b00000000

UART0_IER 0:7 0b00000000

UART0_IIR 0:7 0b00000001

UART0_LCR 0:7 0b00000000

UART0_LSR 0:7 0b01100000

UART0_MCR 0:7 0b00000000

UART0_MSR 0:7 Undefined

UART0_RBR 0:7 0b00000000

UART0_SCR 0:7 Undefined

UART0_THR 0:7 0b00000000

Serial Port (UART1)

UART1_DLL 0:7 0b00000000

UART1_DLM 0:7 0b00000000

UART1_FCR 0:7 0b00000000

UART1_IER 0:7 0b00000000

UART1_IIR 0:7 0b00000001

UART1_LCR 0:7 0b00000000

UART1_LSR 0:7 0b01100000

Table 8-4. MMIO Register Contents After Reset (continued)
Register Bits Reset Value Comment
188 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
8.9 PPC405EP Chip Initialization

The universal Interrupt controller (UIC) require initialization for proper operation. The UART controller may
require initialization, depending upon the application.

Can be initialized as appropriate for the system design.

8.9.1 OCM Initialization

The following information applies if OCM is to be accessed.

If instruction-side OCM is to be accessed, the OCM Instruction-Side Address Range Compare Register
(OCM0_ISARC) must be initialized to locate the instruction-side OCM address space in the PPC405EP
address map. If data-side OCM is to be accessed, the OCM Data-Side Address Range Compare Register
(OCM0_DSARC) must be initialized to locate the data-side OCM address space into the PPC405EP address
map. “OCM Addressing” on page 5-136 provides details of the instructionside OCM and data-side OCM
address spaces. See “Memory Organization and Addressing” on page 3-68 for information about the
PPC405EP memory map.

8.9.1.1 Initializing Instruction-Side OCM

The following procedure describes the steps to be taken If instruction-side OCM is to be accessed.

1. Set the ISEN field of the OCM Instruction-Side Control Register to disable instruction-side OCM accesses
(OCM0_ISCNTL[ISEN] = 0).

2. To ensure that interrupts do not interfere with the instruction cache array invalidation performed in step 4,
set MSR[EE] = 0 and MSR[CE] = 0 to mask interrupts. This prevents a potential problem caused by dirty
cache addresses that would not be fetched from the cache because they are marked as non-cachable.

3. Mark the address region to be programmed as OCM address space as non-cachable.
4. Invalidate the instruction cache array to ensure that no addresses to be programmed as OCM addresses

are in the cache. The iccci instruction invalidates the instruction cache array.
5. Modify the value in OCM0_ISARC.
6. Set OCM0_ISCNTL[ISEN] = 1 to enable instruction-side OCM accesses. Also, set

OCM0_ISCNTL[ISTCM] = 0. OCM0_ISCNTL[ISTCM] should be initialized to 0 to take the instruction-side
OCM controller out of two cycle mode, the default mode after a reset. This enables instruction-side fetches to
complete in a single cycle, providing the same performance as cache hits. See “OCM Instruction-Side Control
Register (OCM0_ISCNTL)” on page 5-139 for details.

UART1_MCR 0:7 0b00000000

UART1_MSR 0:7 Undefined

UART1_RBR 0:7 Undefined

UART1_SCR 0:7 Undefined

UART1_THR 0:7 0b00000000

Table 8-4. MMIO Register Contents After Reset (continued)
Register Bits Reset Value Comment
AMCC Proprietary 189

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
8.9.1.2 Initializing Data-Side OCM

The following procedure describes the steps to be taken if data-side OCM is used to load the initial contents
of instruction-side OCM, or if data-side OCM is to be accessed.

1. Set the DSEN field of the Data-Side Control Register to disable data-side OCM accesses
(OCM0_DSCNTL[DSEN] = 0).

2. To ensure that interrupts do not interfere with the data cache array invalidation performed in step 4, set
MSR[EE] = 0 and MSR[CE] = 0 to mask interrupts. This prevents a potential problem caused by dirty
cache addresses that would not be fetched from the cache because they are marked as non-cachable.

3. Mark the address region that is to be programmed as OCM address space as non-cachable.
4. Invalidate the data cache array to ensure that no addresses to be programmed as OCM addresses are in

the cache. Use a sequence of dcbf instructions to invalidate the data cache.
5. Modify the value in OCM0_DSARC.
6. Set OCM0_DSCNTL[DSEN] = 1 to enable data-side OCM accesses.

OCM0_DSCNTL[DOF] should remain at its reset value of 1. See “OCM Data-Side Control Register
(OCM0_DSCNTL)” on page 5-141 for details.

8.9.2 UIC Initialization

The following information does not provide all initialization information for the UIC. Some initialization details
are application-dependent.

The polarity and sensitivity of the on-chip interrupts must be initialized for proper chip operation. The fields
controlling on-chip interrupts in the UIC Polarity Register (UIC0_PR) must be set to 1. See “Interrupt
Controller Operations” on page 10-203 for details. The fields controlling on-chip interrupts in the UIC Trigger
Register (UIC0_TR) must be set to 0.

8.10 PPC405EP Initial Processor Sequencing

After any reset, the processor core fetches the word at address 0xFFFFFFFC and attempts to execute it.
Because the only memory configured immediately after reset is the upper 2MB region (0xFFE00000–
0xFFFFFFFF), the instruction at 0xFFFFFFFC must be a branch instruction.

Because the processor is initially in big endian mode, initialization code must be in big endian format until the
endian storage attribute for the addressed region is changed, or until code branches to a region defined as
little endian storage.

Before a reset operation begins, the system must provide non-volatile memory, or memory initialized by some
mechanism external to the processor. This memory must be located at address 0xFFFFFFFC. This memory
can be attached to the external bus controller (EBC)he upper 2MB bank configuration after reset is 255 wait
states, three cycles of address to chip select delay, three cycles of chip select to output enable delay, and
seven cycles of hold time. The bus width (8- 16-bit) is controlled by the ROM width strapping signals. See
“Pin Strapping and Sharing” on page 9-195 for details.

8.11 Initialization Requirements

When any reset is performed, the processor is initialized to a minimum configuration to start executing
initialization code. Initialization code is necessary to complete the processor and system configuration.
190 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
The initialization code example in this section performs the configuration tasks required to prepare the
PPC405EP to boot an operating system or run an application program.

Some portions of the initialization code work with system components that are beyond the scope of this
manual.

Initialization code should perform the following tasks to configure the processor resources.

To improve instruction fetching performance: initialize the SGR appropriately for guarded or unguarded
storage. Since all storage is initially guarded and speculative fetching is inhibited to guarded storage,
reprogramming the SGR will improve performance for unguarded regions.

1. Configure the PLL and interface clocks by writing the required bitfields in the CPC0_PLLMR register:
– Load divisors for the CPU clock rate, PLB frequency, peripheral bus frequency, and PLL forward and feed-

back divisor settings.
– Select the PLL as the System Clock source.
– Initialize the SLER to configure storage byte ordering.

2. Before using storage access instructions:
– Invalidate the data cache.
– Initialize CRRO to determine if a store miss results in a line fill (SWOA).
– Initialize the DCWR to select copy-back or write-through caching.
– Initialize the DCCR to configure data cachability.

3. Before allowing interrupts (synchronous or asynchronous):
– Initialize the EVPR to point to vector table.
– Provide vector table with branches to interrupt handlers.

4. Before enabling asynchronous interrupts:
– Initialize timer facilities.
– Initialize MSR to enable appropriate interrupts.

5. Initialize other processor features, such as the MMU, debug, and trace.
6. Initialize non-processor resources.

– Initialize system memory as required by the operating system or application code.
– Initialize off-chip system facilities.

7. Start the execution of operating system or application code.

8.12 Initialization Code Example

The following initialization code illustrates the steps that should be taken to initialize the processor before an
operating system or user programs begin execution. The example is presented in pseudocode; function calls
are named similarly to PPC405EP mnemonics where appropriate.

/* ————————————————————————————————————— */
/* PPC405EP Initialization Pseudo Code */
/* ————————————————————————————————————— */
@0xFFFFFFFC: /* initial instruction fetch from 0xFFFFFFFC */

ba(init_code); /* branch to initialization code */

@init_code:

/* ———————————————————————————————————— */
/* Configure guarded attribute for performance. */
/* ———————————————————————————————————— */
AMCC Proprietary 191

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
mtspr(SGR, guarded_attribute);

/* ———————————————————————————————————— */
/* Configure endianness and compression. */
/* ———————————————————————————————————— */

mtspr(SLER, endianness);

/* ————————————————————————— */
/* Invalidate the instruction cache and enable cachability — */
/* ————————————————————————— */

iccci; /* invalidate i-cache */
mtspr(ICCR, i_cache_cachability); /* enable I-cache*/

isync;

/* ———————————————————————————————————— */
/* Invalidate the data cache and enable cachability */
/* ———————————————————————————————————— */

address = 0; /* start at first line */
for (line = 0; line <m_lines; line++) /* D-cache has m_lines congruence classes */
{

dccci(address); /* invalidate congruence class */
address += 32; /* point to the next congruence class */

}
mtspr(CCR0, store-miss_line-fill);
mtspr(DCWR, copy-back_write-thru);
mtspr(DCCR, d_cache_cachability); /* enable D-cache */
isync;

/* ———————————————————————————————————— */
/* Configure PLL and on-chip clocks. */
/* Check to see if SysClk is in bypass mode. If so, write CPC0_PLLMR value */
/* and perform a CPU reset. Otherwise skip this step and keep going. */
/* ———————————————————————————————————— */

mfdcr %r5, cpc0_pllmr1
rlwinm %r4,%r5,31,0x1 /* get system clock source (SSCS) */
cmpi %cr0,0,%r4,0x1
beq done /* if SSCS =b'1' then PLL has already been set */

/* and CPU has been reset, so skip PLL code */
/* ———————————————————————————————————— */
/* Write PLL configuration values = */
/* Assuming a 33MHz SysClk input
/* CPU clk = 200MHz
/* PLB clk = CPU/2 = 100MHz
/* EBC clk = PLB/2 = 50MHz
/* OPB clk = PLB/2 = 50MHz
/* MAL clk = PLB/1 = 100MHz
/* ———————————————————————————————————— */

addis %r3,0,0x0011 /* PLL configuration values: */
ori %r3,r3,0x1002 /* 200/100/50/50 MHz */
192 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
addis %r4,0,0x80C6 /* M = 24, VCO = 800MHz */
ori %r4,r3,0x623E */

set_pll:
mtdcr cpc0_pllmr0,%r3 /* Set clock dividers */
mtdcr cpc0_pllmr1,%r3 /* Set PLL */

/* ———————————————————————————————————— */
/* Wait minimum of 100µs for PLL to lock. At 200MHz, that means */
/* waiting 20,000 instructions. See IBM ASIC SA27E databook for more info. */
/* ———————————————————————————————————— */

addi %r3,0,20000 /* 20000 = 0x4e20 */
mtctr %r3

pll_wait:
bdnz pll_wait

/* ———————————————————————————————————— */
/* Reset CPU core to guarantee external timings are OK. */
/* CPU core reset will not alter cpc0_pllmr values. */
/* ———————————————————————————————————— */

addis %r3,0,0x1000
mtspr dbcr0,%r3 /* This causes a CPU core reset. Execution */

/* continues from the poweron vector of 0xfffffffc */
/* ———————————————————————————————————— */
/* CPU PLL setting completed */
/* ———————————————————————————————————— */
done:

/* ———————————————————————————————————— */
/* Prepare system for synchronous interrupts. */
/* ———————————————————————————————————— */

mtspr(EVPR, prefix_addr); /* initialize exception vector prefix */

/* Initialize vector table and interrupt handlers if not already done */

/* Initialize and configure timer facilities */

mtspr(PIT, 0); /* clear PIT so no PIT indication after TSR cleared*/
mtspr(TSR, 0xFFFFFFFF); /* clear TSR */
mtspr(TCR, timer_enable); /* enable desired timers */
mtspr(TBL, 0); /* reset time base low first to avoid ripple */
mtspr(TBU, time_base_u); /* set time base, hi first to catch possible ripple */
mtspr(TBL, time_base_l); /* set time base, low */
mtspr(PIT, pit_count); /* set desired PIT count */

/* Initialize the MSR */

/* ———————————————————————————————————— */
/* Exceptions must be enabled immediately after timer facilities to avoid missing a */
/* timer exception. */
/* */
/* The MSR also controls privileged/user mode, translation, and the wait state. */
/* These must be initialized by the operating system or application code. */
AMCC Proprietary 193

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
/* If enabling translation, code must initialize the TLB. */
/* ———————————————————————————————————— */

mtmsr(machine_state);

/* ———————————————————————————————————— */
/* Initialization of other processor facilities should be performed at this time. */
/* ———————————————————————————————————— */

/* ———————————————————————————————————— */
/* Initialization of non-processor facilities should be performed at this time. */
/* ———————————————————————————————————— */

/* ———————————————————————————————————— */
/* Branch to operating system or application code can occur at this time. */
/* ———————————————————————————————————— */
194 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 9. Pin Strapping and Sharing

The PPC405EP has several features that are user configurable through software and pin straps. These
features include clock ratios, boot source, boot width, reset PCI configuration and pin multiplexing. This
chapter describes pin strapping and initialization options followed by a listing of multiplexed pins and their
configurations.

9.1 Pin Strapping

Pin straps read during reset determine how the PPC405EP is configured after reset. The configuration
registers listed in Table 9-2 are either initialized with settings read by the IIC serial EPROM controller (IEC) or
loaded with default settings.

The PPC405EP reads the pin-straps while the SysReset is asserted. The pin-strap settings are recorded by
the nearest SysClk clock edge before the deassertion of SysReset. Refer to Table 9-1 for a description of the
pin-straps.

Pin-strap UART0_Tx enables the IEC. When the IEC is enabled, the PPC405EP reads configuration data
from the serial EPROM at IIC address 0b1010000 and configures the registers listed in Table 9-2. When
disabled, the PLL is bypassed and clock settings are initialized through software as described in “Software
Clock Configuration After Reset” on page 7-165. Depending on how UART0_Tx is strapped, pin-straps
UART0_RTS and SysErr specify either the base address within the serial EPROM or the bus width of the
boot ROM attached to the EBC interface.

1. A pull-up is indicated as a 1 and a pull-down is indicated as a 0.

Table 9-1. Pin Straps

Function Pin-strap1 Option

Serial EPROM Present UART0_Tx Strap Option
0 IEC is disabled
1 IEC is enabled to read from

serial EPROM present at IIC
address 0b1010000.

When UART0_Tx = 1, UART0_RTS
and SysErr select the EPROM base
address. The base address is the
address within the serial EPROM.

UART0_RTS SysErr EPROM Base Address
0 0 0x00
0 1 0x40
1 0 0x80
1 1 0xC0

When UART0_Tx = 0, UART0_RTS
and SysErr select the bus width of the
boot ROM device,
CPC0_BOOT[EBW].

UART0_RTS SysErr EBC boot width
0 0 8-bit
0 1 16-bit
1 0 reserved
1 1 reserved
AMCC Proprietary 195

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
9.2 IIC serial EPROM controller (IEC) Operation

Following the deassertion of SysReset, the IEC, when enabled, reads 32 bytes of strap configuration data
from the serial EPROM as outlined by Figure 9-1. The strap configuration is stored in the strapping registers
listed in Table 9-2. The PPC405EP then completes the reset process by setting the clock divisors and locking
the PLL.

Figure 9-1. IEC Bootstrap Control Flow

Use default
strap configuration

SEPROM error

chip is held in reset and

SysReset
deasserted

IICBoot
Enabled

Initialize
IIC0 interface

address serial
EPROM for a write

SlaveAck
from serial
EPROM

Write Base
Address

SlaveAck
from serial
EPROM

SlaveAck
from serial
EPROM

Address serial
EPROM for a read

Read 32 Bytes
from serial EPROM

IIC0 controller
assumes control
of IIC0 interface

1. Write a stop condition to complete any pending write.

2. Cycle the IIC clock for 8 cycles and perform a Not Acknowledge to
flush a pending read

3. Write a stop condition to complete any pending read.

No

No

No

No

Yes

Yes

Yes

Yes

does not take the boot vector

If SEPROM does not ACK,
196 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Before reading the serial EPROM, the IEC places the IIC bus in a known state through an IIC initialization
sequence. The initialization sequence assumes that the PPC405EP is the only IIC master on the IIC bus.
Master arbitration is not supported by the IEC.

To access the strap configurations, the IEC addresses the serial EPROM at 0b1010000 and writes the base
address. The IEC then reads 32 bytes starting with the base address and ending with the base address plus
0x1F. The data is stored in the registers listed in Table 9-2. The base address is specified by the pin-straps
UART0_RTS and SysErr.

If the IEC is faster than the serial EPROM, the serial EPROM can hold the IIC clock signal low until it is
prepared for the next transaction. If the serial EPROM does not acknowledge its address or the receipt of the
base address, the PPC405EP is held in reset and does not access the boot vector (0xFFFFFFFC).

The data contained in the serial EPROM should be organized as shown in Table 9-2. The address within the
serial EPROM of a particular byte of data is the base address plus the byte offset. Bit 7 of each byte is the
leftmost bit (MSb) and bit 0 is the rightmost bit (LSb). To follow numbering conventions in applicable PCI
standards, PCI bridge register bit numbering is also given with bit 31 as the leftmost bit (MSb) and bit 0 as the
rightmost bit (LSb) in each 32-bit register.

Table 9-2. Serial EPROM Data Organization

Byte Offset Bit Numbers Register[Field] Default Strap Configuration
(UART0_Tx = 0) Strap Configuration Description

0x00

Bit 7 (MSB) CPC0_PCI[HCE] 0
Host configuration enable
0 Host config accesses are retried.
1 Host config accesses are enabled.

Bit 6 CPC0_BOOT[BSS] 0
Boot source select
0 EBC is source for chip initialization code
1 PCI is source for chip initialization code

Bit 5 CPC0_PCI[PAE] 0
PCI on-chip arbiter enable
0 PCI on-chip arbiter disabled
1 PCI on-chip arbiter enabled

Bit 4:3 CPC0_PLLMR0[PPDV] 0b00

PCI-PLB Frequency Divisor
00 PCI-PLB divisor is 1
01 PCI-PLB divisor is 2
10 PCI-PLB divisor is 3
11 PCI-PLB divisor is 4

Bit 2 CPC0_PCI[SPE] 0
Select PCIINT or PerWE as output
0 PCIINT output is selected
1 PerWE outp is selected

Bit 1:0 (LSB) CPC0_BOOT[EBW] UART0_RTS and SysErr
pin-straps EBC boot width

0x01 Bits 7:0 PCIL0_PTM1MS[MASK31:24]
0x00000

Defines the size of the region of PCI memory
space that is mapped to local (PLB) space
using PTM 1.

0x02 Bits 7:0 PCIL0_PTM1MS[MASK23:16]

0x03
Bits 7:4 PCIL0_PTM1MS[MASK15:12]
Bits 3:0 Reserved

0x04 Bits 7:0 PCIL0_PTM1LA[WLA31:24]
0x00000 Writable PTM1 Local Address0x05 Bits 7:0 PCIL0_PTM1LA[WLA23:16]

0x06
Bits 7:4 PCIL0_PTM1LA[WLA15:12]

Bits 3:0 Reserved
0x07 Bits 7:0 PCIL0_PTM2MS[MASK31:24]

0x00000
Defines the size of the region of PCI memory
space mapped to local (PLB) space using
PTM 2.

0x08 Bits 7:0 PCIL0_PTM2MS[MASK23:16]

0x09
Bits 7:4 PCIL0_PTM2MS[MASK15:12]
Bits 3:0 Reserved
AMCC Proprietary 197

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
0x0A Bits 7:0 PCIL0_PTM2LA[31:24]
0x00000 PTM1 Local Address0x0B Bits 7:0 PCIL0_PTM2LA[23:16]

0x0C
Bits 7:4 PCIL0_PTM2LA[15:12]
Bits 3:0 Reserved

0x0D Bits 7:0 PCIC0_VENDID[15:8]
0x0000 Vendor ID

0x0E Bits 7:0 PCIC0_VENDID[7:0]
0x0F Bits 7:0 PCIC0_DEVID[15:8]

0x0000 PCI Device ID
0x10 Bits 7:0 PCIC0_DEVID[7:0]
0x11 Bits 7:0 PCIC0_REVID[7:0] 0x00 Revision ID
0x12 Bits 7:0 PCIC0_CLS[BASE23:16]

0x000000
Base Class

0x13 Bits 7:0 PCIC0_CLS[SUB15:8] Subclass
0x14 Bits 7:0 PCIC0_CLS[INT7:0] Interface Class
0x15 Bits 7:0 PCIC0_SBSYSVID[15:8]

0x0000 PCI Subsystem Vendor ID
0x16 Bits 7:0 PCIC0_SBSYSVID[7:0]
0x17 Bits 7:0 PCIC0_SBSYSID[15:8]

0x0000 PCI Subsystem ID
0x18 Bits 7:0 PCIC0_SBSYSID[7:0]

0x19

Bits 7:6 CPC0_PLLMR0[OPDV] 0b01

OPB-PLB Frequency Divisor
00 OPB-PLB divisor is 1
01 OPB-PLB divisor is 2
10 OPB-PLB divisor is 3
11 OPB-PLB divisor is 4

Bits 5:4 CPC0_PLLMR0[CBDV] 0b01

CPU-PLB Frequency Divisor
00 CPU-PLB divisor is 1
01 CPU-PLB divisor is 2
10 CPU-PLB divisor is 3
11 CPU-PLB divisor is 4

Bits 3:2 CPC0_PLLMR0[CCDV] 0b00

CPU Clock Divider
00 Divider = 1
01 Divider = 2
10 Divider = 3
11 Divider = 4

Bits 1 PCIL0_PTM2MS[ENA] 0

Determines if range 2 is enabled to map PCI
memory space to PLBspace.
0 disabled
1 enabled

Bits 0 PCIL0_PTM1MS[ENA] 0

Determines if range 1is enabled to map PCI
memory space to PLBspace.
0 disabled
1 enabled

Table 9-2. Serial EPROM Data Organization (continued)

Byte Offset Bit Numbers Register[Field] Default Strap Configuration
(UART0_Tx = 0) Strap Configuration Description
198 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
0x1A

Bits 7 Reserved

Bits 6 CPC0_SRR[RPCI] 0b1
PCI Bridge Reset by Software
0 PCI bridge not reset
1 Reset PCI bridge

Bits 5:2 CPC0_PLLMR1[FBMUL] 0x0

PLL feedback multiplier value
0000 Mulitiplier is 16
0001 Mulitiplier is 1
0010 Mulitiplier is 2
.
.
1111 Mulitiplier is 15

Bits 1:0 CPC0_PLLMR0[EPDV] 0b00

EBC-PLB Frequency Divisor
00 EBC-PLB divisor is 2
01 EBC-PLB divisor is 3
10 EBC-PLB divisor is 4
11 EBC-PLB divisor is 5

0x1B

Bits 7:6 Reserved

Bits 5:3 CPC0_PLLMR1[FWDVB] 0b000

PLL forward divider B value
000 Forward divisor is 8
001 Forward divisor is 7
.
.
110 Forward divisor is 2
111 Forward divisor is 1

Bits 2:0 CPC0_PLLMR1[FWDVA] 0b000

PLL forward divider A value
000 Forward divisor is 8
001 Forward divisor is 7
.
.
110 Forward divisor is 2
111 Forward divisor is 1

0x1C

Bit 7 CPC0_PLLMR1[PLLR] 1
PLL Reset
0 PLL is operating
1 Reset PLL

Bit 6 CPC0_PLLMR1[SSCS] 0
Select System Clock Source
0 PLL bypass
1 PLL PLLOUTA output

Bits 5:4 CPC0_PLLMR0[MPDV] 0b01

MAL-PLB Frequency Divisor
00 MAL-PLB divisor is 1
01 MAL-PLB divisor is 2
10 MAL-PLB divisor is 3
11 MAL-PLB divisor is 4
MPDV must be set equal to OPDV.

Bits 3:2 Reserved
Bits 1:0 CPC0_PLLMR1[TUN22:23]

0b0000000000 PLL Tune Bits
0x1D Bits 7:0 CPC0_PLLMR1[TUN24:31]
0x1E Bits 7:0 Reserved
0x1F Bits 7:0 Reserved

Table 9-2. Serial EPROM Data Organization (continued)

Byte Offset Bit Numbers Register[Field] Default Strap Configuration
(UART0_Tx = 0) Strap Configuration Description
AMCC Proprietary 199

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
9.3 Pin Strapping Registers

The pin strapping registers contain the strap configurations affecting chip settings. Refer to registers
CPC0_PLLMR0 and CPC0_PLLMR1 for strap configurations controlling clocking.

9.3.1 Boot Control Register (CPC0_BOOT)

CPC0_BOOT contains several fields set by package pin strappings that indicate the presence of a serial
EPROM for bootstrap loading and that select the chip initialization interface, either EBC or PCI.

Figure 9-2. Boot Control Register (CPC0_BOOT)
0:24 Reserved

25:26 SEBA Serial EPROM Base Address
00 Byte offset 0x00
01 Byte offset 0x40
10 Byte offset 0x80
11 Byte offset 0xC0

The serial EPROM, if present, must have a
7-bit slave address of 0b101000.
This field specifies the byte address within
the serial EPROM where the 32 bytes of
bootstrap information resides.

27 BSS Boot Source Select
0 EBC is source for chip initialization code.
1 PCI is source for chip initialization code.

28:29 EBW EBC Boot Width
00 8-bit
01 16-bit
10 Reserved
11 Reserved

30 SEP Serial EPROM Present
0 IIC EEPROM Controller disabled
1 IIC EEPROM Controller enabled

31 SPLI SYSPLL lock indicator.
0 SYSPLL not locked.
1 SYSPLL locked.

Reading this bit may not provide reliable
PLL lock status in certain system
implementations. Waiting the maximum
lock period, 100us, is a more reliable
method of guaranteeing lock. See
“Initialization Code Example” on
page 8-191.

0 24 25 26 27 28 29 30 31

SPLISEBA EBW

SEPBSS
200 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
9.3.2 PCI Bootstrap Control Register (CPC0_PCI)

CPC0_PCI contains register fields indicating the PCI configuration bits loaded from a serial EPROM attached
to the IIC interface.

9.4 Pin Sharing

The PPC405EP uses pin (ball) multiplexing (sharing) to reduce the total pin requirement without significantly
reducing functionality. The functions of the multiplexed pins are software-programmable. While nothing
prevents changing the function of a pin during operation, most applications configure a pin once at power-on
reset (POR). Table 9-3 lists the multiplexed PPC405EP signals. Multiplexed signals appear alphabetically
multiple times in the list, once for each signal on a ball.

With the exception of the PCIINT[PerWE] pin the multiplexed pin, functions are selected by the GPIO0 control
registers: GPIO0_TCR, GPIO0_OSRH, GPIO0_OSRL, GPIO0_TSRH, GPIO0_TSRL, GPIO0_ISRH, and
GPIO0_ISRL. “Sample GPIO Bank Programming” on page 23-602 describes how to configure the GPIO pins
for an alternate function. The PCIINT[PerWE] pin function is configured by the PCI control register,
CPC0_PCI[SPE].

Figure 9-3. PCI Control Register (CPC0_PCI)
0:26 Reserved

27 SPE Select PCIINT or PerWE as output
0 PCIINT output is selected
1 PerWE output is selected

28 HCE HCE Initial Setting
0 Host config accesses are retried.
1 Host config accesses are enabled.

Sets initial value to be copied into HCE bit
in the PCIC0_BRDGOPT2 register during
chip initialization.

29:30 Reserved

31 PAE PCI on-chip arbiter enable
0 PCI on-chip arbiter disabled
1 PCI on-chip arbiter enabled

Use CPC0_SRR[RPCI] to hold the PCI
bridge in reset whenever the AE bit
setting is changed.

0 26 27 28 29 30 31

SPE

HCE

PAE
AMCC Proprietary 201

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 9-3. Alphabetical Signal List

Signal Name Interface Page

GPIO00[PerBLast] System 27-1111

GPIO01:02[TS1:2E] System 27-1111

GPIO03:04[TS1:2O] System 27-1111

GPIO05:08[TS3:6] System 27-1111

GPIO09[TrcClk] System 27-1111

GPIO10:13[PerCS1:4] System 27-1111

GPIO14:16[PerAddr03:05] System 27-1111

GPIO17:23[IRQ0:6] System 27-1111

GPIO24[UART0_DCD] System 27-1111

GPIO25[UART0_DSR] System 27-1111

GPIO26[UART0_RI] System 27-1111

GPIO27[UART0_DTR] System 27-1111

GPIO28[UART1_Rx] System 27-1111

GPIO29[UART1_Tx] System 27-1111

GPIO30:31[RejectPkt0:1] System 27-1111

[IRQ0:6]GPIO17:23 Interrupts 27-1118

PCIINT[PerWE] PCI 27-1111

[PerBLast]GPIO00 External Slave Peripheral 27-1112

[PerCS1:4]GPIO10:13 External Slave Peripheral 27-1112

[PerWE]PCIINT External Slave Peripheral 27-1112

[RejectPkt0:1]GPIO30:31 Internal peripheral 27-1113

[TS1:2E]GPIO01:02 Trace 27-1113

[TS1:2O]GPIO03:04 Trace 27-1113

[TS3:6]GPIO05:08 Trace 27-1113

[UART0_DCD]GPIO24 Internal Peripheral 27-1113

[UART0_DSR]GPIO25 Internal Peripheral 27-1113

[UART0_DTR]GPIO27 Internal Peripheral 27-1113

[UART0_RI]GPIO26 Internal Peripheral 27-1113

[UART1_Rx]GPIO28 Internal Peripheral 27-1113

[UART1_Rx]GPIO28 Internal Peripheral 27-1113
202 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 10. Interrupt Controller Operations

The PPC405EP contains a universal interrupt controller (UIC0) that provides all necessary control, status,
and communication between the various internal and external interrupt sources and the processor core.

10.1 UIC Overview

The UIC provides programmable control of interrupts from on-chip peripherals and seven external interrupts,
which are listed in Table 10-1. Status reporting, using the UIC Status Register (UIC0_SR), enables system
software to determine the current and interrupting state of the system and respond appropriately. Software
can generate interrupts to simplify software development and for diagnostics.

The PPC405EP has 18 architected PowerPC interrupts. Two of these interrupts are the Critical and External
(noncritical) interrupt inputs connected to the universal interrupt controller (UIC) as shown in Figure 10-1. The
UIC routes interrupts from the 7 external (off-chip) and 23 internal (on-chip) sources to the PPC405EP
processor core.

Figure 10-1. Interrupt Sources for the UIC and the PPC405EP Processor Core

The interrupts can be programmed, using the UIC Critical Register (UIC0_CR), to generate either a critical or
a non-critical interrupt signal to the processor core.

The privileged mtdcr and mfdcr instructions, which are used by system software, are used to read and write
the UIC registers.

An optional critical interrupt vector generator can reduce interrupt handling latency for critical interrupts.
Vector calculation is described in detail in “UIC Vector Configuration Register (UIC0_VCR)” on page 10-220.

23 internal (on-chip)

7 external (off-chip)

UICInterupt
Sources

Critical Interupt

External Interupt

PPC405
Processor

Core
AMCC Proprietary 203

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.2 UIC Features

• Support for asychronous level- or edge-sensitive interrupt types
• Programmable polarity for all interrupt types
• Programmable critical/non-critical interrupt selection for each interrupt bit
• Prioritized critical interrupt vector generation
• A UIC Status Register (UIC0_SR) providing the following information:

– Current state of interrupts
– Current state of all enabled interrupts (those masked using the UIC Enable Register (UIC0_ER)

10.3 UIC Interrupt Assignments

The UIC supports various internal and external interrupt sources as shown in Table 10-1.

Table 10-1. UIC Interrupt Assignments

Interrupt Polarity Sensitivity Interrupt Source

0 High Level UART0
1 High Level UART1
2 High Level IIC
3 High Level PCI External Command Write
4 Reserved
5 High Level DMA Channel 0
6 High Level DMA Channel 1
7 High Level DMA Channel 2
8 High Level DMA Channel 3
9 High Level Ethernet Wake Up

10 High Level MAL System Error (SERR)
11 High Level MAL TX End of Buffer (T XEOB0)
12 High Level MAL RX End of Buffer (RXEOB)
13 High Level MAL TX Descriptor Error (TXDE)
14 High Level MAL RX Descriptor Error (RXDE)
15 High Level EMAC0
16 Low Level External PCI SERR
17 High Level EMAC1
18 High Level PCI Power Management
19 GPT Level GPT Interrupt 0
20 GPT Level GPT Interrupt 1
21 GPT Level GPT Interrupt 2
22 GPT Level GPT Interrupt 3
23 GPT Level GPT Interrupt 4
24 Reserved
25 Programmable Programmable External IRQ 0
26 Programmable Programmable External IRQ 1
27 Programmable Programmable External IRQ 2
28 Programmable Programmable External IRQ 3
204 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.4 Interrupt Programmability

The on-chip interrupts and the external interrupts are programmable. However, the polarity and sensitivity of
the on-chip interrupts must be programmed as shown in Table 10-1, “UIC Interrupt Assignments” on
page 10-204, using the UIC Polarity Register (UIC0_PR) and the UIC Trigger Register (UIC0_TR),
respectively.

10.5 UIC Registers

The UIC includes the Device Control Registers (DCRs) listed in Table 10-2.

The registers are accessed using the mfdcr and mtdcr instructions.

29 Programmable Programmable External IRQ 4
30 Programmable Programmable External IRQ 5
31 Programmable Programmable External IRQ 6

Table 10-2. UIC DCRs

Mnemonic Register DCR Number Access Page

UIC0_SR UIC Status Register 0x0C0 Read/Clear 10-205
UIC0_ER UIC Enable Register 0x0C2 R/W 10-205
UIC0_CR UIC Critical Register 0x0C3 R/W 10-205
UIC0_PR UIC Polarity Register 0x0C4 R/W 10-205
UIC0_TR UIC Trigger Register 0x0C5 R/W 10-205
UIC0_MSR UIC Masked Status Register 0x0C6 Read-only 10-205
UIC0_VR UIC Vector Register 0x0C7 Read-only 10-205
UIC0_VCR UIC Vector Configuration Register 0x0C8 Write-only 10-205

Table 10-1. UIC Interrupt Assignments (continued)

Interrupt Polarity Sensitivity Interrupt Source
AMCC Proprietary 205

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.5.1 UIC Status Register (UIC0_SR)

To report interrupt status, the UIC0_SR fields capture and hold internal and external interrupts until the fields
are intentionally cleared. To clear a field, write 1 to the field. Writing a 0 to a field has no effect.

The values of other UIC registers do not affect the UIC0_SR fields.

Figure 10-2 illustrates UIC0_SR.

Figure 10-2. UIC Status Register (UIC0_SR)

0 U0IS UART0 Interrupt Status
0 A UART0 interrupt has not occurred.
1 A UART0 interrupt occurred.

1 U1IS UART1 Interrupt Status
0 A UART1 interrupt has not occurred.
1 A UART1 interrupt occurred.

2 IICIS IIC Interrupt Status
0 An IIC interrupt has not occurred.
1 An IIC interrupt occurred.

3 PCIIS PCI Interrupt Status
0 A PCI interrupt has not occurred.
1 A PCI interrupt occurred.

An external write to PCIC0_CMD causes
UIC0_SR[PCIIS] to be set.

4 Reserved
5 D0IS DMA Channel 0 Interrupt Status

0 A DMA channel 0 interrupt has not occurred.
1 A DMA channel 0 interrupt occurred.

6 D1IS DMA Channel 1 Interrupt Status
0 A DMA channel 1 interrupt has not occurred.
1 A DMA channel 1 interrupt occurred.

7 D2IS DMA Channel 2 Interrupt Status
0 A DMA channel 2 interrupt has not occurred.
1 A DMA channel 2 interrupt occurred.

8 D3IS DMA Channel 3 Interrupt Status
0 A DMA channel 3 interrupt has not occurred.
1 A DMA channel 3 interrupt occurred.

9 EWIS Ethernet Wake-up Interrupt Status
0 An Ethernet wake-up interrupt has not
occurred.
1 An Ethernet wake-up interrupt occurred.

10 MSIS MAL SERR Interrupt Status
0 A MAL SERR interrupt has not occurred.
1 A MAL SERR interrupt occurred.

11 MTEIS MAL TX EOB Interrupt Status
0 A MAL TX EOB interrupt has not occurred.
1 A MAL TX EOB interrupt occurred.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EIR5SEIR1S EIR3SU0IS

U1IS

IICIS

PCIIS D0IS D2IS EWIS MTEIS MTDIS EIS0 EIS1 GTI0S GTI2S GTI4S EIR0S EIR2S EIR4S EIR6S

D1IS D3IS MSIS MREIS MRDISEPSIS PPMIS GTI1S GTI3S
206 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12 MREIS MAL RX EOB Interrupt Status
0 A MAL RX EOB interrupt has not occurred.
1 A MAL RX EOB interrupt occurred.

13 MTDIS MAL TX DE Interrupt Status
0 A MAL TX DE interrupt has not occurred.
1 A MAL TX DE interrupt occurred.

14 MRDIS MAL RX DE Interrupt Status
0 A MAL RX DE interrupt has not occurred.
1 A MAL RX DE interrupt occurred.

15 EIS0 EMAC0 Interrupt Status
0 An EMAC0 interrupt has not occurred.
1 An EMAC0 interrupt occurred.

16 EPSIS External PCI SERR Interrupt Status
0 An external PCI SERR interrupt has not
occurred.
1 An external PCI SERR interrupt occurred.

If enabled, a PCI SERR interrupt occurs whenever
the PCI SERR signal is asserted, either by the
PCI bridge or by an external device.

17 EIS1 EMAC1 Interrupt Status
0 An EMAC1 interrupt has not occurred.
1 An EMAC1 interrupt occurred.

18 PPMIS PCI Power Management Interrupt Status
0 A PCI power management interrupt has not
occurred.
1 A PCI power management interrupt occurred.

19 GTI0S General Purpose Timer Interrupt 0 Status
0 A GPT interrupt 0 has not occurred.
1 A GPT interrupt 0 occurred.

20 GTI1S General Purpose Timer Interrupt 1 Status
0 A GPT interrupt 1 has not occurred.
1 A GPT interrupt 1 occurred.

21 GTI2S General Purpose Timer Interrupt 2 Status
0 A GPT interrupt 2 has not occurred.
1 A GPT interrupt 2 occurred.

22 GTI3S General Purpose Timer Interrupt 3 Status
0 A GPT interrupt 3 has not occurred.
1 A GPT interrupt 3 occurred.

23 GTI4S General Purpose Timer Interrupt 4 Status
0 A GPT interrupt 4 has not occurred.
1 A GPT interrupt 4 occurred.

24 Reserved
25 EIR0S External IRQ 0 Status 0 An external IRQ

0 interrupt has not occurred.
1 An external IRQ 0 interrupt occurred.

26 EIR1S External IRQ 1 Status
0 An external IRQ 1 interrupt has not occurred.
1 An external IRQ 1 interrupt occurred.

27 EIR2S External IRQ 2 Status
0 An external IRQ 2 interrupt has not occurred.
1 An external IRQ 2 interrupt occurred.

28 EIR3S External IRQ 3 Status
0 An external IRQ 3 interrupt has not occurred.
1 An external IRQ 3 interrupt occurred.
AMCC Proprietary 207

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.5.2 UIC Enable Register (UIC0_ER)

Fields in UIC0_ER, which correspond to fields in UIC0_SR, enable or disable the reporting of the
corresponding fields of UIC0_SR.

If a UIC_ER field is set to 1, the corresponding field of UIC0_SR generates a critical or non-critical interrupt
signal to the processor core, if the UIC0_SR field is set to 1. If a UIC0_ER field is set to 0, the corresponding
field of the UIC0_SR field does not generate a critical or non-critical interrupt signal to the processor core,
regardless of the setting of the UIC0_SR field. The critical and non-critical interrupt signals in the processor
core are controlled by fields in the Machine State Register (MSR).

The class of generated signals (critical or non-critical) is controlled by UIC0_CR.

Figure 10-3 illustrates UIC0_ER..

Figure 10-3. UIC Enable Register (UIC0_ER)

29 EIR4S External IRQ 4 Status
0 An external IRQ 4 interrupt has not occurred.
1 An external IRQ 4 interrupt occurred.

30 EIR5S External IRQ 5 Status
0 An external IRQ 5 interrupt has not occurred.
1 An external IRQ 5 interrupt occurred.

31 EIR6S External IRQ 6 Status
0 An external IRQ 6 interrupt has not occurred.
1 An external IRQ 6 interrupt occurred.

0 U0IE UART0 Interrupt Enable
0 UART0 interrupt is disabled.
1 UART0 interrupt is enabled.

1 U1IE UART1 Interrupt Enable
0 UART1 interrupt is disabled.
1 UART1 interrupt is enabled.

2 IICIE IIC Interrupt Enable
0 IIC interrupt is disabled.
1 IIC interrupt is enabled.

3 PCIIE PCI Interrupt Enable
0 PCI interrupt is disabled.
1 PCI interrupt is enabled.

Enables a PCI interrupt when an external write to
PCIC0_CMD is performed.

4 Reserved
5 D0IE DMA Channel 0 Interrupt Enable

0 DMA channel 0 interrupt is disabled.
1 DMA channel 0 interrupt is enabled.

6 D1IE DMA Channel 1 Interrupt Enable
0 DMA channel 1 interrupt is disabled.
1 DMA channel 1 interrupt is enabled.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EIR5EEIR1E EIR3EU0IE

U1IE

IICIE

PCIIE D0IE D2IE EWIE MTEIE MTDIE EIE0 EIE1 GTI0E GTI2E GTI4E EIR0E EIR2E EIR4E EIR6E

D1IE D3IE MSIE MREIE MRDIEEPSIE PPMIE GTI1E GTI3E
208 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
7 D2IE DMA Channel 2 Interrupt Enable
0 DMA channel 2 interrupt is disabled.
1 DMA channel 2 interrupt is enabled.

8 D3IE DMA Channel 3 Interrupt Enable
0 DMA channel 3 interrupt is disabled.
1 DMA channel 3 interrupt is enabled.

9 EWIE Ethernet Wake-up Interrupt Enable
0 Ethernet wake-up interrupt is disabled.
1 Ethernet wake-up interrupt is enabled.

10 MSIE MAL SERR Interrupt Enable
0 MAL SERR interrupt is disabled.
1 MAL SERR interrupt is enabled.

11 MTEIE MAL TX EOB Interrupt Enable
0 MAL TX EOB interrupt is disabled.
1 MAL TX EOB interrupt is enabled.

12 MREIE MAL RX EOB Interrupt Enable
0 MAL RX EOB interrupt is disabled.
1 MAL RX EOB interrupt is enabled.

13 MTDIE MAL TX DE Interrupt Enable
0 MAL TX DE interrupt is disabled.
1 MAL TX DE interrupt is enabled.

14 MRDIE MAL RX DE Interrupt Enable
0 MAL RX DE interrupt is disabled.
1 MAL RX DE interrupt is enabled.

15 EIE0 EMAC0 Interrupt Enable
0 An EMAC0 interrupt is disabled.
1 An EMAC0 interrupt is enabled.

16 EPSIE External PCI SERR Interrupt Enable
0 External PCI SERR interrupt is disabled.
1 External PCI SERR interrupt is enabled.

17 EIE1 EMAC1 Interrupt Enable
0 An EMAC1 interrupt is disabled.
1 An EMAC1 interrupt is enabled.

18 PPMI PCI Power management Interrupt Enable
0 PCI power management interrupt is disabled.
1 PCI power management interrupt is enabled.

19 GTI0E General Purpose Timer Interrupt 0 Enable
0 GPT interrupt 0 is disabled.
1 GPT interrupt 0 is enabled.

20 GTI1E General Purpose Timer Interrupt 1 Enable
0 GPT interrupt 1 is disabled.
1 GPT interrupt 1 is enabled.

21 GTI2E General Purpose Timer Interrupt 2 Enable
0 GPT interrupt 2 is disabled.
1 GPT interrupt 2 is enabled.

22 GTI3E General Purpose Timer Interrupt 3 Enable
0 GPT interrupt 3 is disabled.
1 GPT interrupt 3 is enabled.

23 GTI4E General Purpose Timer Interrupt 4 Enable
0 GPT interrupt 4 is disabled.
1 GPT interrupt 4 is enabled.

24 Reserved
AMCC Proprietary 209

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.5.3 UIC Critical Register (UIC0_CR)

Fields in UIC0_CR, which correspond to fields in UIC0_SR and UIC0_ER, determine whether an interrupt
captured in corresponding UIC0_SR fields generates a non-critical or critical interrupt, if the interrupts are
enabled in the corresponding UIC0_ER fields. The processor core handles critical interrupts when MSR[CE]
= 1 and non-critical interrupts when MSR[EE]=1.

If a UIC0_CR field is set to 0, an enabled interrupt (captured in the corresponding UIC0_SR field and enabled
in the corresponding UIC0_ER field) generates a non-critical interrupt signal to the processor core. If a
UIC0_CR field is a 1, a critical interrupt signal is generated.

Figure 10-4 illustrates UIC0_CR.

Figure 10-4. UIC Critical Register (UIC0_CR)

25 EIR0E External IRQ 0 Interrupt Enable
0 An external IRQ 0 interrupt is disabled.
1 An external IRQ 0 interrupt is enabled.

26 EIR1E External IRQ 1 Interrupt Enable
0 An external IRQ 1 interrupt is disabled.
1 An external IRQ 1 interrupt is enabled.

27 EIR2E External IRQ 2 Interrupt Enable
0 An external IRQ 2 interrupt is disabled.
1 An external IRQ 2 interrupt is enabled.

28 EIR3E External IRQ 3 Interrupt Enable
0 An external IRQ 3 interrupt is disabled.
1 An external IRQ 3 interrupt is enabled.

29 EIR4E External IRQ 4 Interrupt Enable
0 An external IRQ 4 interrupt is disabled.
1 An external IRQ 4 interrupt is enabled.

30 EIR5E External IRQ 5 Interrupt Enable
0 An external IRQ 5 interrupt is disabled.
1 An external IRQ 5 interrupt is enabled.

31 EIR6E External IRQ 6 Interrupt Enable
0 An external IRQ 6 interrupt is disabled.
1 An external IRQ 6 interrupt is enabled.

0 U0IC UART0 Interrupt Class
0 UART0 interrupt is non-critical.
1 UART0 interrupt is critical.

1 U1IC UART1 Interrupt Class
0 UART1 interrupt is non-critical.
1 UART1 interrupt is critical.

2 IICIC IIC Interrupt Class
0 IIC interrupt is non-critical.
1 IIC interrupt is critical.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EIR5CEIR1C EIR3CU0IC

U1IC

IICIC

PCIIC D0IC D2IC EWIC MTEIC MTDIC EIC0 EIC1 GTI0C GTI2C GTI4C EIR0C EIR2C EIR4C EIR6C

D1IC D3IC MSIC MREIC MRDICEPSIC PPMIC GTI1C GTI3C
210 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3 PCIIC PCI Interrupt Class
0 PCI interrupt is non-critical.
1 PCI interrupt is critical.

4 Reserved
5 D0IC DMA Channel 0 Interrupt Class

0 DMA channel 0 interrupt is non-critical.
1 DMA channel 0 interrupt is critical.

6 D1IC DMA Channel 1 Interrupt Class
0 DMA channel 1 interrupt is non-critical.
1 DMA channel 1 interrupt is critical.

7 D2IC DMA Channel 2 Interrupt Class
0 DMA channel 2 interrupt is non-critical.
1 DMA channel 2 interrupt is critical.

8 D3IC DMA Channel 3 Interrupt Class
0 DMA channel 3 interrupt is non-critical.
1 DMA channel 3 interrupt is critical.

9 EWIC Ethernet Wake-up Interrupt Class
0 Ethernet wake-up interrupt is non-critical.
1 Ethernet wake-up interrupt is critical.

10 MSIC MAL SERR Interrupt Class
0 MAL SERR interrupt is non-critical.
1 MAL SERR interrupt is critical.

11 MTEIC MAL TX EOB Interrupt Class
0 MAL TX EOB interrupt is non-critical.
1 MAL TX EOB interrupt is critical.

12 MREIC MAL RX EOB Interrupt Class
0 MAL RX EOB interrupt is non-critical.
1 MAL RX EOB interrupt is critical.

13 MTDIC MAL TX DE Interrupt Class
0 MAL TX DE interrupt is non-critical.
1 MAL TX DE interrupt is critical.

14 MRDIC MAL RX DE Interrupt Class
0 MAL RX DE interrupt is non-critical.
1 MAL RX DE interrupt is critical.

15 EIC0 EMAC0 Interrupt Class
0 An EMAC0 interrupt is non-critical.
1 An EMAC0 interrupt is critical.

16 EPSIC External PCI SERR Interrupt Class
0 External PCI SERR interrupt is noncritical.
1 External PCI SERR interrupt is critical.

17 EIC1 EMAC1 Interrupt Class
0 An EMAC 1 interrupt is non-critical.
1 An EMAC1 interrupt is critical.

19 GTI0C General Purpose Timer Interrupt 0 Class
0 GPT interrupt 0 is non-critical.
1 GPT interrupt 0 is critical.

20 GTI1C General Purpose Timer Interrupt 1 Class
0 GPT interrupt 1 is non-critical.
1 GPT interrupt 1 is critical.

21 GTI2C General Purpose Timer Interrupt 2 Class
0 GPT interrupt 2 is non-critical.
1 GPT interrupt 2 is critical.
AMCC Proprietary 211

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22 GTI3C General Purpose Timer Interrupt 3 Class
0 GPT interrupt 3 is non-critical.
1 GPT interrupt 3 is critical.

23 GTI4C General Purpose Timer Interrupt 4 Class
0 GPT interrupt 4 is non-critical.
1 GPT interrupt 4 is critical.

24 Reserved
25 EIR0C External IRQ 0 Class 0 An external IRQ

0 interrupt is non-critical.
1 An external IRQ 0 interrupt is critical.

26 EIR1C External IRQ 1 Class
0 An external IRQ 1 interrupt is non-critical.
1 An external IRQ 1 interrupt is critical.

27 EIR2C External IRQ 2 Class
0 An external IRQ 2 interrupt is non-critical.
1 An external IRQ 2 interrupt is critical.

28 EIR3C External IRQ 3 Class
0 An external IRQ 3 interrupt is non-critical.
1 An external IRQ 3 interrupt is critical.

29 EIR4C External IRQ 4 Class
0 An external IRQ 4 interrupt is non-critical.
1 An external IRQ 4 interrupt is critical.

30 EIR5C External IRQ 5 Class
0 An external IRQ 5 interrupt is non-critical.
1 An external IRQ 5 interrupt is critical.

31 EIR6C External IRQ 6 Class
0 An external IRQ 6 interrupt is non-critical.
1 An external IRQ 6 interrupt is critical.
212 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.5.4 UIC Polarity Register (UIC0_PR)

Fields in UIC0_PR, which correspond to the fields in UIC0_SR, determine whether the interrupts associated
with the corresponding fields in the UIC0_SR are active high (have positive polarity) or active low (have
negative polarity).

For level-sensitive interrupts, a 0 in a UIC0_PR field causes the corresponding interrupt to be active low. A 1
in a UIC0_PR field causes the corresponding interrupt to be active high.

For edge-sensitive interrupts, a 0 in a UIC0_PR field causes the corresponding interrupt to be detected on a
falling edge (as polarity changes from 1 to 0). A 1 in a UIC0_PR field causes the corresponding interrupt to be
detected on a rising edge (as polarity changes from 0 to 1).

Because the on-chip interrupts are active high, the associated fields must be set to 1, as shown in Figure
10-5.

Figure 10-5 illustrates UIC0_PR.

Figure 10-5. UIC Polarity Register (UIC0_PR)

0 U0IP UART0 Interrupt Polarity
0 UART0 interrupt has negative polarity.
1 UART0 interrupt has positive polarity.

Must be set to 1.

1 U1IP UART1 Interrupt Polarity
0 UART1 interrupt has negative polarity.
1 UART1 interrupt has positive polarity.

Must be set to 1.

2 IICIP IIC Interrupt Polarity
0 IIC interrupt has negative polarity.
1 IIC interrupt has positive polarity.

Must be set to 1.

3 PCIIP PCI Interrupt Polarity
0 PCI interrupt has negative polarity.
1 PCI interrupt has positive polarity.

Must be set to 1.

4 Reserved
5 D0IP DMA Channel 0 Interrupt Polarity

0 DMA channel 0 interrupt has negative polarity.
1 DMA channel 0 interrupt has positive polarity.

Must be set to 1.

6 D1IP DMA Channel 1 Interrupt Polarity
0 DMA channel 1 interrupt has negative polarity.
1 DMA channel 1 interrupt has positive polarity.

Must be set to 1.

7 D2IP DMA Channel 2 Interrupt Polarity
0 DMA channel 2 interrupt has negative polarity.
1 DMA channel 2 interrupt has positive polarity.

Must be set to 1.

8 D3IP DMA Channel 3 Interrupt Polarity
0 DMA channel 3 interrupt has negative polarity.
1 DMA channel 3 interrupt has positive polarity.

Must be set to 1.

9 EWIP Ethernet Wake-up Interrupt Polarity
0 Ethernet wake-up interrupt has negative polarity.
1 Ethernet wake-up interrupt has positive polarity.

Must be set to 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EIR5PEIR1P EIR3PU0IP

U1IP

IICIP

PCIIP D0IP D2IP EWIP MTEIP MTDIP EIP0 EIP1 GTI0P GTI2P GTI4P EIR0P EIR2P EIR4P EIR6P

D1IP D3IP MSIP MREIP MRDIPEPSIP PPMIP GTI1P GTI3P
AMCC Proprietary 213

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10 MSIP MAL SERR Interrupt Polarity
0 MAL SERR interrupt has negative polarity.
1 MAL SERR interrupt has positive polarity.

Must be set to 1.

11 MTEIP MAL TX EOB Interrupt Polarity
0 MAL TX EOB interrupt has negative polarity.
1 MAL TX EOB interrupt has positive polarity.

Must be set to 1.

12 MREIP MAL RX EOB Interrupt Polarity
0 MAL RX EOB interrupt has negative polarity.
1 MAL RX EOB interrupt has positive polarity.

Must be set to 1.

13 MTDIP MAL TX DE Interrupt Polarity
0 MAL TX DE interrupt has negative polarity.
1 MAL TX DE interrupt has positive polarity.

Must be set to 1.

14 MRDIP MAL RX DE Interrupt Polarity
0 MAL RX DE interrupt has negative polarity.
1 MAL RX DE interrupt has positive polarity.

Must be set to 1.

15 EIP0 EMAC0 Interrupt Polarity
0 An EMAC0 interrupt has negative polarity.
1 An EMAC0 interrupt has positive polarity.

Must be set to 1.

16 EPSIP External PCI SERR Interrupt Polarity
0 External PCI SERR interrupt has negative polarity.
1 External PCI SERR interrupt has positive polarity.

Must be set to 0.

17 EIP1 EMAC1 Interrupt Polarity
0 An EMAC1 interrupt has negative polarity.
1 An EMAC1 interrupt has positive polarity.

Must be set to 1.

19 GTI0P General Purpose Timer Interrupt 0 Polarity
0 GPT interrupt 0 has negative polarity.
1 GPT interrupt 0 has positive polarity.

20 GTI1P General Purpose Timer Interrupt 1 Polarity
0 GPT interrupt 1 has negative polarity.
1 GPT interrupt 1 has positive polarity.

21 GTI2P General Purpose Timer Interrupt 2 Polarity
0 GPT interrupt 2 has negative polarity.
1 GPT interrupt 2 has positive polarity.

22 GTI3P General Purpose Timer Interrupt 3 Polarity
0 GPT interrupt 3 has negative polarity.
1 GPT interrupt 3 has positive polarity.

23 GTI4P General Purpose Timer Interrupt 4 Polarity
0 GPT interrupt 4 has negative polarity.
1 GPT interrupt 4 has positive polarity.

24 Reserved
25 EIR0P External IRQ 0 Polarity 0 An external IRQ

0 interrupt has negative polarity.
1 An external IRQ 0 interrupt has positive polarity.

26 EIR1P External IRQ 1 Polarity
0 An external IRQ 1 interrupt has negative polarity.
1 An external IRQ 1 interrupt has positive polarity.

27 EIR2P External IRQ 2 Polarity
0 An external IRQ 2 interrupt has negative polarity.
1 An external IRQ 2 interrupt has positive polarity.

28 EIR3P External IRQ 3 Polarity
0 An external IRQ 3 interrupt has negative polarity.
1 An external IRQ 3 interrupt has positive polarity.
214 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.5.5 UIC Trigger Register (UIC0_TR)

Fields in UIC0_TR, which correspond to fields in UIC0_SR, determine whether interrupts associated with the
corresponding UIC0_SR fields are edge-sensitive or level-sensitive.

Level-sensitive interrupts are triggered depending on whether the associated interrupt signal is high (1) or low
(0). Edge-sensitive interrupts are triggered depending on whether the associated interrupt signal is rising or
falling (changing from 0 to 1 or 1 to 0, respectively). Whether a rising or falling edge causes the trigger is
controlled by bits in UIC0_TR.

If a UIC0_TR field is 0, the associated interrupt is level-sensitive. If the UIC0_TR field is 1, the interrupt is
edge-sensitive.

The on-chip interrupts are level-sensitive, so the associated fields must be set to 0 as shown in Figure 10-6.

Figure 10-6 illustrates UIC0_TR.

Figure 10-6. UIC Trigger Register (UIC0_TR)

29 EIR4P External IRQ 4 Polarity
0 An external IRQ 4 interrupt has negative polarity.
1 An external IRQ 4 interrupt has positive polarity.

30 EIR5P External IRQ 5 Polarity
0 An external IRQ 5 interrupt has negative polarity.
1 An external IRQ 5 interrupt has positive polarity.

31 EIR6P External IRQ 6 Polarity
0 An external IRQ 6 interrupt has negative polarity.
1 An external IRQ 6 interrupt has positive polarity.

0 U0IT UART0 Interrupt Trigger
0 UART0 interrupt is level-sensitive.
1 UART0 interrupt is edge-sensitive.

Must be set to 0.

1 U1IT UART1 Interrupt Trigger
0 UART1 interrupt is level-sensitive.
1 UART1 interrupt is edge-sensitive.

Must be set to 0.

2 IICIT IIC Interrupt Trigger
0 IIC interrupt is level-sensitive.
1 IIC interrupt is edge-sensitive.

Must be set to 0.

3 PCIIT PCI Interrupt Trigger
0 PCI interrupt is level-sensitive.
1 PCI interrupt is edge-sensitive.

Must be set to 0.

4 Reserved
5 D0IT DMA Channel 0 Interrupt Trigger

0 DMA channel 0 interrupt is level-sensitive.
1 DMA channel 0 interrupt is edge-sensitive.

Must be set to 0.

6 D1IT DMA Channel 1 Interrupt Trigger
0 DMA channel 1 interrupt is level-sensitive.
1 DMA channel 1 interrupt is edge-sensitive.

Must be set to 0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EIR5TEIR1T EIR3TU0IT

U1IT

IICIT

PCIIT D0IT D2IT EWIT MTEIT MTDIT EIT0 EIT1 GTI0T GTI2T GTI4T EIR0T EIR2T EIR4T EIR6T

D1IT D3IT MSIT MREIT MRDIT EPSIT PPMIT GTI1T GTI3T
AMCC Proprietary 215

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7 D2IT DMA Channel 2 Interrupt Trigger
0 DMA channel 2 interrupt is level-sensitive.
1 DMA channel 2 interrupt is edge-sensitive.

Must be set to 0.

8 D3IT DMA Channel 3 Interrupt Trigger
0 DMA channel 3 interrupt is level-sensitive.
1 DMA channel 3 interrupt is edge-sensitive.

Must be set to 0.

9 EWIT Ethernet Wake-up Interrupt Trigger
0 Ethernet wake-up interrupt is level-sensitive.
1 Ethernet wake-up interrupt is edge-sensitive.

Must be set to 0.

10 MSIT MAL SERR Interrupt Trigger
0 MAL SERR interrupt is level-sensitive.
1 MAL SERR interrupt is edge-sensitive.

Must be set to 0.

11 MTEIT MAL TX EOB Interrupt Trigger
0 MAL TX EOB interrupt is level-sensitive.
1 MAL TX EOB interrupt is edge-sensitive.

Must be set to 0.

12 MREIT MAL RX EOB Interrupt Trigger
0 MAL RX EOB interrupt is level-sensitive.
1 MAL RX EOB interrupt is edge-sensitive.

Must be set to 0.

13 MTDIT MAL TX DE Interrupt Trigger
0 MAL TX DE interrupt is level-sensitive.
1 MAL TX DE interrupt is edge-sensitive.

Must be set to 0.

14 MRDIT MAL RX DE Interrupt Trigger
0 MAL RX DE interrupt is level-sensitive.
1 MAL RX DE interrupt is edge-sensitive.

Must be set to 0.

15 EIT0 EMAC0 Interrupt Trigger
0 An EMAC0 interrupt is level-sensitive.
1 An EMAC0 interrupt is edge-sensitive.

Must be set to 0.

16 EPSIT External PCI SERR Interrupt Trigger
0 External PCI SERR interrupt is level-sensitive.
1 External PCI SERR interrupt is edge-sensitive.

Must be set to 0.

17 EIT1 EMAC1 Interrupt Trigger
0 An EMAC1 interrupt is level-sensitive.
1 An EMAC1 interrupt is edge-sensitive.

Must be set to 0.

19 GTI0T General Purpose Timer Interrupt 0 Trigger
0 GPT interrupt 0 is level-sensitive.
1 GPT interrupt 0 is edge-sensitive.

20 GTI1T General Purpose Timer Interrupt 1 Trigger
0 GPT interrupt 1 is level-sensitive.
1 GPT interrupt 1 is edge-sensitive.

21 GTI2T General Purpose Timer Interrupt 2 Trigger
0 GPT interrupt 2 is level-sensitive.
1 GPT interrupt 2 is edge-sensitive.

22 GTI3T General Purpose Timer Interrupt 3 Trigger
0 GPT interrupt 3 is level-sensitive.
1 GPT interrupt 3 is edge-sensitive.

23 GTI4T General Purpose Timer Interrupt 4 Trigger
0 GPT interrupt 4 is level-sensitive.
1 GPT interrupt 4 is edge-sensitive.

24 Reserved
25 EIR0T External IRQ 0 Trigger

0 An external IRQ 0 interrupt is level-sensitive.
1 An external IRQ 0 interrupt is edge-sensitive.
216 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.5.6 UIC Masked Status Register (UIC0_MSR)

This read-only register contains the result of masking the UIC0_SR with UIC0_ER. Reading this register,
instead of the actual UIC0_SR, eliminates the need for software to read and apply the enable mask to the
contents of the UIC0_SR to determine which enabled interrupt fields are active.

If an interrupt is configured as level-sensitive, and a clear is attempted on the UIC0_SR, the UIC0_SR field is
not cleared if the incoming interrupt signal is at the asserted polarity. The interrupt signal must be reset before
UIC0_SR can be successfully cleared.

Figure 10-7 illustrates UIC0_MSR.

Figure 10-7. UIC Masked Status Register (UIC0_MSR)

26 EIR1T External IRQ 1 Trigger
0 An external IRQ 1 interrupt is level-sensitive.
1 An external IRQ 1 interrupt is edge-sensitive.

27 EIR2T External IRQ 2 Trigger
0 An external IRQ 2 interrupt is level-sensitive.
1 An external IRQ 2 interrupt is edge-sensitive.

28 EIR3T External IRQ 3 Trigger
0 An external IRQ 3 interrupt is level-sensitive.
1 An external IRQ 3 interrupt is edge-sensitive.

29 EIR4T External IRQ 4 Trigger
0 An external IRQ 4 interrupt is level-sensitive.
1 An external IRQ 4 interrupt is edge-sensitive.

30 EIR5T External IRQ 5 Trigger
0 An external IRQ 5 interrupt is level-sensitive.
1 An external IRQ 5 interrupt is edge-sensitive.

31 EIR6T External IRQ 6 Trigger
0 An external IRQ 6 interrupt is level-sensitive.
1 An external IRQ 6 interrupt is edge-sensitive.

0 U0IS UART0 Masked Interrupt Status
0 A UART0 interrupt has not occurred.
1 A UART0 interrupt occurred.

1 U1IS UART1 Masked Interrupt Status
0 A UART1 interrupt has not occurred.
1 A UART1 interrupt occurred.

2 IICIS IIC Masked Interrupt Status
0 An IIC interrupt has not occurred.
1 An IIC interrupt occurred.

3 PCIIS PCI Masked Interrupt Status
0 A PCI interrupt has not occurred.
1 A PCI interrupt occurred.

4 Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EIR5SEIR1S EIR3SU0IS

U1IS

IICIS

PCIIS D0IS D2IS EWIS MTEIS MTDIS EIS0 EIS1 GTI0S GTI2S GTI4S EIR0S EIR2S EIR4S EIR6S

D1IS D3IS MSIS MREIS MRDISEPSIS PPMIS GTI1S GTI3S
AMCC Proprietary 217

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
5 D0IS DMA Channel 0 Masked Interrupt Status
0 A DMA channel 0 interrupt has not occurred.
1 A DMA channel 0 interrupt occurred.

6 D1IS DMA Channel 1 Masked Interrupt Status
0 A DMA channel 1 interrupt has not occurred.
1 A DMA channel 1 interrupt occurred.

7 D2IS DMA Channel 2 Masked Interrupt Status
0 A DMA channel 2 interrupt has not occurred.
1 A DMA channel 2 interrupt occurred.

8 D3IS DMA Channel 3 Masked Interrupt Status
0 A DMA channel 3 interrupt has not occurred.
1 A DMA channel 3 interrupt occurred.

9 EWIS Ethernet Wake-up Masked Interrupt Status
0 An Ethernet wake-up interrupt has not occurred.
1 An Ethernet wake-up interrupt occurred.

10 MSIS MAL SERR Masked Interrupt Status
0 A MAL SERR interrupt has not occurred.
1 A MAL SERR interrupt occurred.

11 MTEIS MAL TX EOB Masked Interrupt Status
0 A MAL TX EOB interrupt has not occurred.
1 A MAL TX EOB interrupt occurred.

12 MREIS MAL RX EOB Masked Interrupt Status
0 A MAL RX EOB interrupt has not occurred.
1 A MAL RX EOB interrupt occurred.

13 MTDIS MAL TX DE Masked Interrupt Status
0 A MAL TX DE interrupt has not occurred.
1 A MAL TX DE interrupt occurred.

14 MRDIS MAL RX DE Masked Interrupt Status
0 A MAL RX DE interrupt has not occurred.
1 A MAL RX DE interrupt occurred.

15 EIS0 EMAC0 Masked Interrupt Status
0 An EMAC0 interrupt has not occurred.
1 An EMAC0 interrupt occurred.

16 EPSIE External PCI SERR Masked Interrupt Status
0 An external PCI SERR interrupt has not occurred.
1 An external PCI SERR interrupt occurred.

17 EIS1 EMAC1 Masked Interrupt Status
0 An EMAC1 interrupt has not occurred.
1 An EMAC1 interrupt occurred.

19 GTI0S General Purpose Timer Interrupt 0 Masked Interrupt
Status
0 GPT interrupt 0 has not occurred.
1 GPT interrupt 0 occurred.

20 GTI1S General Purpose Timer Interrupt 1 Masked Interrupt
Status
0 GPT interrupt 1 has not occurred.
1 GPT interrupt 1 occurred.

21 GTI2S General Purpose Timer Interrupt 2 Masked Interrupt
Status
0 GPT interrupt 2 has not occurred.
1 GPT interrupt 2 occurred.
218 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22 GTI3S General Purpose Timer Interrupt 3 Masked Interrupt
Status
0 GPT interrupt 3 has not occurred.
1 GPT interrupt 3 occurred.

23 GTI4S General Purpose Timer Interrupt 4 Masked Interrupt
Status
0 GPT interrupt 4 has not occurred.
1 GPT interrupt 4 occurred.

24 Reserved
25 EIR0E External IRQ 0 Masked Status

0 An external IRQ 0 interrupt has not occurred.
1 An external IRQ 0 interrupt occurred.

26 EIR1S External IRQ 1 Masked Status
0 An external IRQ 1 interrupt has not occurred.
1 An external IRQ 1 interrupt occurred.

27 EIR2S External IRQ 2 Masked Status
0 An external IRQ 2 interrupt has not occurred.
1 An external IRQ 2 interrupt occurred.

28 EIR3S External IRQ 3 Masked Status
0 An external IRQ 3 interrupt has not occurred.
1 An external IRQ 3 interrupt occurred.

29 EIR4S External IRQ 4 Masked Status
0 An external IRQ 4 interrupt has not occurred.
1 An external IRQ 4 interrupt occurred.

30 EIR5S External IRQ 5 Masked Status
0 An external IRQ 5 interrupt has not occurred.
1 An external IRQ 5 interrupt occurred.

31 EIR6S External IRQ 6 Masked Status
0 An external IRQ 6 interrupt has not occurred.
1 An external IRQ 6 interrupt occurred.
AMCC Proprietary 219

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.5.7 UIC Vector Configuration Register (UIC0_VCR)

The write-only UIC0_VCR enables software control of interrupt vector generation for critical interrupts. The
UIC0_VCR contains an address, used as an interrupt vector base address, and specifies interrupt ordering
priority. Vector generation is not performed for non-critical interrupts.

UIC0_VCR[VBA] can contain either the base address for an interrupt handler vector table or the base
address for the interrupt handler associated with each interrupt. The actual interrupt vector (the address of
the interrupt handler that services the interrupt) is generated in the UIC0_VR, using UIC0_VCR[VBA]. Vector
generation is described in “UIC Vector Register (UIC0_VR)” on page 10-221.

Because the two lowest-order bits of an interrupt handler address are assumed to be 00 to ensure word
alignment, 30 bits are sufficient to form the base address. A general interrupt handler uses the vector to
access a table of interrupt vectors. Each interrupt vector table entry contains the address of an interrupt
handler for a specific interrupt. Alternatively, UIC0_VCR[VBA] can directly address the interrupt handlers for
specific interrupts, which in memory are separated by an offset calculated in UIC0_VR. UIC0_VCR[PRO]
controls whether the interrupt associated with UIC0_SR[0] or UIC0_SR[31] has the highest priority. If
UIC0_VCR[PRO] =0, the interrupt associated with UIC0_SR[31] has the highest priority; if UIC0_VCR[PRO]
= 1, the interrupt associated with UIC0_SR[0] has the highest priority.

Priority decreases across the UIC0_SR to the end opposite the highest priority field.

Figure 10-8 illustrates UIC0_VCR.

Figure 10-8. UIC Vector Configuration Register (UIC0_VCR)

0:29 VBA Vector Base Address
30 Reserved
31 PRO Priority Ordering

0 UIC0_SR[31] is the highest priority interrupt.
1 UIC0_SR[0] is the highest priority interrupt.
Note: Vector generation is not performed for non-
critical interrupts.

0 29 30 31

PRO

VBA
220 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.5.8 UIC Vector Register (UIC0_VR)

The read-only UIC0_VR contains an interrupt vector that can reduce interrupt handling latency for critical
interrupts. Vector generation logic adds an offset to UIC0_VCR[VBA], and the sum is returned in the
UIC0_VR. Vectors are not computed for non-critical interrupts.

The interrupt vector is based on the field position of the current highest priority, enabled, active, critical
interrupt relative to the highest priority interrupt in UIC0_SR. The generated vectors can be programmed to
point directly to the interrupt handlers.

Programming Note: Regardless of the programming of UIC0_VCR and UIC0_VR registers, the
processor always vectors to EVPR[0:15] || 0x100 when a critical interrupt occurs.

The interrupt vector offset is based on the bit position of the current highest priority, enabled, active, critical
interrupt relative to the highest priority interrupt in the UIC0_SR. The offset has a fixed value of 512 per bit.
The main critical interrupt handler can interpret the vector returned by UIC0_VR as the address of the
interrupt handler for that interrupt, assuming the routine is 512 bytes or smaller.

Alternatively, the main critical interrupt handler can interpret the vector as a look-up table entry for the
address of the interrupt handler for that interrupt.

Figure 10-9 illustrates UIC0_VR.

Figure 10-9. UIC Vector Register (UIC0_VR)

The following example illustrates the generation of a UIC0_VR vector for external interrupt request

IRQ2.

For the example, assume that UIC0_VCR[PRO] = 0, so that UIC0_SR[EIR6S] (UIC0_SR31) has the highest
interrupt priority, and that UIC0_SR[EIR2S] (UIC0_SR27) is the current highest priority, enabled, active,
critical interrupt. To generate the vector for the interrupt associated with UIC0_SR[EIR2S], internal logic
multiplies the difference between the highest priority interrupt bit and the active enabled priority interrupt bit
by 512. The interrupt vector offset is therefore (31 – 27) × 512 = 4 × 512. This offset is added to the base
address in UIC0_VCR[VBA], and the UIC0_VR returns UIC0_VCR[VBA] + (4 × 512).

10.5.8.1 Using the Value in UIC0_VR as a Vector Address or Entry Table Lookup

If an interrupt handler is 512 bytes or smaller, system software can interpret the value returned in the
UIC0_VR as an address. In this case, when the interrupt is received, the UIC0_VR is read and software
simply jumps to the address represented by the UIC0_VR value. Alternatively, the routine can be at a
different address, and system software can treat the value of the UIC0_VR as a pointer, storing the interrupt
handler address in the UIC0_VR during system initialization. In this case, when the interrupt is handled,
software must read the UIC0_VR, read the entry at the UIC0_VR value, and jump to the entry. Hardware has
no knowledge of the method is used, which is determined by system software.

0:31 VBA Interrupt Vector

0 31
AMCC Proprietary 221

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.5.8.2 Vector Generation Scenarios

For the following sequence, assume that the interrupts are enabled and critical (vectors are not generated for
disabled or non-critical interrupts). The sequence illustrates several scenarios for vector generation.

1. An intermediate priority interrupt goes active; its vector is stored in UIC0_VR.
2. A low priority interrupt goes active; UIC0_VR is unchanged.
3. Software reads the vector; UIC0_VR is unchanged.
4. Software resets the intermediate priority interrupt; UIC0_VR contains the vector for the low priority inter-

rupt.
5. A high priority interrupt goes active; UIC0_VR contains the vector for the high priority interrupt.
6. Software resets the high priority interrupt; UIC0_VR contains the vector for the low priority interrupt.
7. Software resets the UIC0_ER field for the low priority interrupt, disabling it; UIC0_VR contains

0x00000000.
8. UIC0_CR is reprogrammed to make the low priority interrupt non-critical and UIC0_ER is reprogrammed

to re-enable the low priority interrupt; UIC0_VR continues to contain 0x00000000.

10.6 Interrupt Handling in the Processor Core

An interrupt is the action in which the processor saves its old context (MSR and instruction pointer) and
begins execution at a pre-determined interrupt-handler address, with a modified MSR. Exceptions are events
which, if enabled, cause the processor to take an interrupt. Exceptions are generated by signals from internal
and external peripherals, instructions, internal timer facilities, debug events, or error conditions.

Table 10-4, “Interrupt Vector Offsets” on page 10-227, lists the interrupts handled by the PPC405EP in the
order of interrupt vector offsets. Detailed descriptions of each interrupt follow, in the same order. Table 10-4
also provides an index to the descriptions.

Several registers support interrupt handling and control.“General Interrupt Handling Registers” on
page 10-227 describes the general interrupt handling registers:

• Data Exception Address Register (DEAR)
• Exception Syndrome Register (ESR)
• Exception Vector Prefix Register (EVPR)
• Machine State Register (MSR)
• Save/Restore Registers (SRR0–SRR3)

10.7 Architectural Definitions and Behavior

Precise interrupts are those for which the instruction pointer saved by the interrupt must be either the address
of the excepting instruction or the address of the next sequential instruction. Imprecise interrupts are those for
which it is possible (but not required) for the saved instruction pointer to be something else, possibly
prohibiting guaranteed software recovery.

Note that “precise” and “imprecise” are defined assuming that the interrupts are unmasked (enabled to occur)
when the associated exception occurs. Consider an exception that would cause a precise interrupt, if the
interrupt was enabled at the time of the exception, but that occurs while the interrupt is masked. Some
exceptions of this type can cause the interrupt to occur later, immediately upon its enabling. In such a case,
the interrupt is not considered precise with respect to the enabling instruction, but imprecise (“delayed
precise”) with respect to the cause of the exception.
222 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Asynchronous interrupts are caused by events which are independent of instruction execution. All
asynchronous interrupts are precise, and the following rules apply:

1. All instructions prior to the one whose address is reported to the interrupt handling routine (in the
save/restore register) have completed execution. However, some storage accesses generated by these
preceding instructions may not have completed.

2. No subsequent instruction has begun execution, including the instruction whose address is reported to
the interrupt handling routine.

3. The instruction having its address reported to the interrupt handler may appear not to have begun execu-
tion, or may have partially completed.

Synchronous interrupts are caused directly by the execution (or attempted execution) of instructions.
Synchronous interrupts can be either precise or imprecise.

For synchronous precise interrupts, the following rules apply:

1. The save/restore register addresses either the instruction causing the exception or the next sequential
instruction. Which instruction is addressed is determined by the interrupt type and status bits.

2. All instructions preceding the instruction causing the exception have completed execution. However,
some storage accesses generated by these preceding instructions may not have completed.

3. The instruction causing the exception may appear not to have begun execution (except for causing the
exception), may have partially completed, or may have completed, depending on the interrupt type.

4. No subsequent instruction has begun execution.

Refer to PowerPC Embedded Environment for an architectural description of imprecise interrupts.

Machine check interrupts are a special case typically caused by some kind of hardware or storage subsystem
failure, or by an attempt to access an invalid address. A machine check can be indirectly caused by the
execution of an instruction, but not recognized or reported until long after the processor has executed past
the instruction that caused the machine check. As such, machine check interrupts cannot properly be thought
of as synchronous, nor as precise or imprecise. For machine checks, the following general rules apply:

1. No instruction following the one whose address is reported to the machine check handler in the
save/restore register has begun execution.

2. The instruction whose address is reported to the machine check handler in the save/restore register, and
all previous instructions, may or may not have completed successfully. All previous instructions that
would ever complete have completed, within the context existing before the machine check interrupt. No
further interrupt (other than possible additional machine checks) can occur as a result of those instruc-
tions.

10.8 Behavior of the PPC405EP Implementation

All interrupts, except for machine checks, are handled precisely. Precise handling implies that the address of
the excepting instruction (for synchronous exceptions other than the system call exception), or the address of
the next instruction to be executed (asynchronous exceptions and the system call exception), is passed to an
interrupt handling routine. Precise handling also implies that all instructions that precede the instruction
whose address is reported to the interrupt handling routine have executed and that no subsequent instruction
has begun execution. The specific instruction whose address is reported may not have begun execution or
may have partially completed, as specified for each precise interrupt type.

Synchronous precise interrupts include most debug event interrupts, program interrupts, instruction and data
storage interrupts, TLB miss interrupts, system call interrupts, and alignment interrupts.
AMCC Proprietary 223

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Asynchronous precise interrupts include the critical and noncritical external interrupts, and can be caused by
on-chip peripherals, timer facility interrupts, and some debug events.

In the PPC405EP, machine checks are handled as critical interrupts (see “Critical and Noncritical Interrupts”
on page 10-226). If a machine check is associated with an instruction fetch, the critical interrupt save/restore
register contains the address of the instruction being fetched when the machine check occurred.

The synchronism of instruction-side machine checks (errors that occur while attempting to fetch an instruction
from external memory) requires further explanation. Fetch requests to cachable memory that miss in the
instruction cache unit (ICU) cause an instruction cache line fill (eight words). If any instructions (words) in the
fetched line are associated with an exception, an interrupt occurs upon attempted execution and the cache
line is invalidated.

It is improper to declare an exception when an erroneous word is passed to the fetcher; the address could be
the result of an incorrect speculative access. It is quite likely that no attempt will be made to execute an
instruction from the erroneous address. An instruction-side machine check interrupt occurs only when
execution is attempted. If an exception occurs, execution is suppressed, SRR2 contains the erroneous
address, and the indicates that an instruction-side machine check occurred. Although such an interrupt is
clearly asynchronous to the erroneous memory access, it is handled synchronously with respect to the
attempted execution from the erroneous address.

Except for machine checks, all PPC405EP interrupts are handled precisely:

• The address of the excepting instruction (for synchronous exceptions, other than the system call exception) or
the address of the next sequential instruction (for asynchronous exceptions and the system call exception) is
passed to the interrupt handling routine.

• All instructions that precede the instruction whose address is reported to the interrupt handling routine have
completed execution and that no subsequent instruction has begun execution. The specific instruction whose
address is reported might not have begun execution or might have partially completed, as specified for each
interrupt type.

10.9 Interrupt Handling Priorities

The PPC405EP processor core handles only one interrupt at a time. Multiple simultaneous interrupts are
handled in the priority order shown in Table 10-3 (assuming, of course, that the interrupt types are enabled).
Multiple interrupts can exist simultaneously, each of which requires the generation of an interrupt. The
architecture does not provide for simultaneously reporting more than one interrupt of the same class (critical
or non-critical). Therefore, interrupts are ordered with respect to each other. A masking mechanism is
available for certain persistent interrupt types.

When an interrupt type is masked, and an event causes an exception which would normally generate an
interrupt of that type, the exception persists as a status bit in a register. However, no interrupt is generated.
Later, if the interrupt type is enabled (unmasked), and the exception status has not been cleared by software,
the interrupt due to the original exception event is finally generated.
224 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
All asynchronous interrupt types can be masked. In addition, certain synchronous interrupt types can be
masked.

Table 10-3. Interrupt Handling Priorities

Priority Interrupt Type
Critical or
Noncritical Causing Conditions

1 Machine check—data Critical External bus error during data-side access
2 Debug—IAC Critical IAC debug event (in internal debug mode)
3 Machine check—

instruction
Critical Attempted execution of instruction for which an external bus error

occurred during fetch
4 Debug—EXC, UDE Critical EXC or UDE debug event (in internal debug mode)
5 Critical interrupt input Critical Active level on the critical interrupt input by the UIC
6 Watchdog timer—first

time-out
Critical Posting of an enabled first time-out of the watchdog timer in the

TSR
7 Instruction TLB Miss Noncritical Attempted execution of an instruction at an address and process

ID for which a valid matching entry was not found in the TLB
8 Instruction storage —

ZPR[Zn] = 00
Noncritical Instruction translation is active, execution access to the translated

address is not permitted because ZPR[Zn] = 00 in user mode, and
an attempt is made to execute the instruction

9 Instruction storage —
TLB_entry[EX] = 0

Noncritical Instruction translation is active, execution access to the translated
address is not permitted because TLB_entry[EX] = 0, and an
attempt is made to execute the instruction

Instruction storage —
TLB_entry[G] = 1 or
SGR[Gn] = 1

Noncritical Instruction translation is active, the page is marked guarded, and
an attempt is made to execute the instruction

10 Program Noncritical Attempted execution of illegal instructions, TRAP instruction,
privileged instruction in problem state

System call Noncritical Execution of the sc instruction
11 Data TLB miss Noncritical Valid matching entry for the effective address and process ID of

an attempted data access is not found in the TLB
12 Data storage—

ZPR[Zn] = 00
Noncritical Data translation is active and data-side access to the translated

address is not permitted because ZPR[Zn] = 00 in user mode
13 Data storage—

TLB_entry[WR] = 0
Noncritical Data translation is active and write access to the translated

address is not permitted because TLB_entry[WR] = 0
Data storage—
TLB_entry[U0] = 1 or
SU0R[Un] = 1

Noncritical Data translation is active and write access to the translated
address is not permitted because TLB_entry[U0] = 1 or
SU0R[Un] = 1

14 Alignment Noncritical dcbz to non-cachable address or write-through storage; non-word
aligned dcread, lwarx, and stwcx, as described in Table 10-12

15 Debug—BT, DAC, DVC,
IC, TIE

Critical BT, DAC, DVC, IC, TIE debug event (in internal debug mode)

16 External interrupt input Noncritical Active level on the external interrupt input by the UIC
17 Fixed Interval Timer (FIT) Noncritical Posting of an enabled FIT interrupt in the TSR
18 Programmable Interval

Timer (PIT)
Noncritical Posting of an enabled PIT interrupt in the TSR
AMCC Proprietary 225

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.10 Critical and Noncritical Interrupts

The PPC405EP processes interrupts as noncritical and critical. The following interrupts are defined as
noncritical: data storage, instruction storage, an active external interrupt input, alignment, program, system
call, programmable interval timer (PIT), fixed interval timer (FIT), data TLB miss, and instruction TLB miss.
The following interrupts are defined as critical: machine check interrupts (instruction- and data-side), debug
interrupts, interrupts caused by an active critical interrupt input, and the first time-out from the watchdog
timer.

When a noncritical interrupt is taken, Save/Restore Register 0 (SRR0) is written with the address of the
excepting instruction (most synchronous interrupts) or the next sequential instruction to be processed
(asynchronous interrupts and system call).

If the PPC405EP was executing a multicycle instruction (multiply, divide, or cache operation), the instruction
is terminated and its address is written in SRR0.

Aligned scalar loads/stores that are interrupted do not appear on the PLB. An aligned scalar load/store
cannot be interrupted after it is requested on the PLB, so the Guarded (G) storage attribute does not need to
prevent the interruption of an aligned scalar load/store.

To enhance performance, the DCU can respond to non-cachable load requests by retrieving a line instead of
a word. This is controlled by CCR0[LWL]. Note, however, that If CCR0[LWL] = 1, and the target non-cachable
region is also marked as guarded (the G storage attribute is set to 1), that the DCU will request on the PLB
only those bytes requested by the CPU.

Load/store multiples, load/store string, and misaligned scalar loads/stores that cross a word boundary can be
interrupted and restarted upon return from the interrupt handler.

When load instructions terminate, the addressing registers are not updated. This ensures that the instructions
can be restarted; if the addressing registers were in the range of registers to be loaded, this would be an
invalid form in any event. Some target registers of a load instruction may have been written by the time of the
interrupt; when the instruction restarts, the registers will simply be written again. Similarly, some of the target
memory of a store instruction may have been written, and is written again when the instruction restarts.

Save/Restore Register 1 (SRR1) is written with the contents of the MSR; the MSR is then updated to reflect
the new machine context. The new MSR contents take effect beginning with the first instruction of the
interrupt handling routine.

Interrupt handling routine instructions are fetched at an address determined by the interrupt type. The
address of the interrupt handling routine is formed by concatenating the 16 high-order bits of the EVPR and
the interrupt vector offset. (A user must initialize the EVPR contents at power-up using an mtspr instruction.)

Table 10-4 shows the interrupt vector offsets for the interrupt types. Note that there can be multiple sources of
the same interrupt type; interrupts of the same type are mapped to the same interrupt vector, regardless of
source. In such cases, the interrupt handling routine must examine status registers to determine the exact
source of the interrupt.

At the end of the interrupt handling routine, execution of an rfi instruction forces the contents of SRR0 and
SRR1 to be written to the program counter and the MSR, respectively. Execution then begins at the address
in the program counter.
226 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Critical interrupts are processed similarly. When a critical interrupt is taken, Save/Restore Register 2 (SRR2)
and Save/Restore Register 3 (SRR3) hold the next sequential address to be processed when returning from
the interrupt, and the contents of the MSR, respectively. At the end of the critical interrupt handling routine,
execution of an rfci instruction writes the contents of SRR2 and SRR3 into the program counter and the
MSR, respectively.

10.11 General Interrupt Handling Registers

The general interrupt handling registers are the Machine State Register (MSR), SRR0–SRR3, the Exception
Vector Prefix Register (EVPR), the Exception Syndrome Register (ESR), and the Data Exception Address
Register (DEAR).

10.11.1 Machine State Register (MSR)

The MSR is a 32-bit register that holds the current context of the PPC405EP. When a noncritical interrupt is
taken, the MSR contents are written to SRR1; when a critical interrupt is taken, the MSR contents are written
to SRR3. When an rfi or rfci instruction executes, the contents of the MSR are read from SRR1 or SRR3,
respectively.

Programming Note: The rfi and rfci instructions can alter reserved MSR fields.

Table 10-4. Interrupt Vector Offsets

Offset Interrupt Type Interrupt Class Category Page

0x0100 Critical input interrupt Asynchronous precise Critical 10-234
0x0200 Machine check—data — Critical 10-234

Machine check—instruction — Critical 10-234
0x0300 Data storage interrupt—

MSR[DR]=1 and
ZPR[Zn] = 0 or
TLB_entry[WR] = 0 or
TLB_entry[U0] = 1 or
SU0R[Un] = 1

Synchronous precise Noncritical 10-236

0x0400 Instruction storage interrupt Synchronous precise Noncritical 10-237
0x0500 External interrupt (external

to the processor core)
Asynchronous precise Noncritical 10-238

0x0600 Alignment Synchronous precise Noncritical 10-239
0x0700 Program Synchronous precise Noncritical 10-239
0x0C00 System Call Synchronous precise Noncritical 10-240
0x1000 PIT Asynchronous precise Noncritical 10-241
0x1010 FIT Asynchronous precise Noncritical 10-241
0x1020 Watchdog timer Asynchronous precise Critical 10-242
0x1100 Data TLB miss Synchronous precise Noncritical 10-243
0x1200 Instruction TLB miss Synchronous precise Noncritical 10-243
0x2000 Debug—BT, DAC, DVC,

IAC, IC, TIE
Synchronous precise Critical 10-244

Debug—EXC, UDE Asynchronous precise Critical
AMCC Proprietary 227

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The MSR contents can be read into a general purpose register (GPRs) using an mfmsr instruction. The
contents of a GPR can be written to the MSR using an mtmsr instruction. The MSR[EE] bit may be
set/cleared atomically using the wrtee or wrteei instructions.

Figure 10-10 shows the MSR bit definitions and describes the function of each bit.

Figure 10-10. Machine State Register (MSR)
0:12 Reserved

13 WE Wait State Enable
0 The processor is not in the wait state.
1 The processor is in the wait state.

If MSR[WE] = 1, the processor remains in
the wait state until an interrupt is taken, a
reset occurs, or an external debug tool
clears WE.

14 CE Critical Interrupt Enable
0 Critical interrupts are disabled.
1 Critical interrupts are enabled.

Controls the critical interrupt input and
watchdog timer first time-out interrupts.

15 Reserved

16 EE External Interrupt Enable
0 Asynchronous interrupts (external to the

processor core) are disabled.
1 Asynchronous interrupts are enabled.

Controls the non-critical external interrupt
input, PIT, and FIT interrupts.

17 PR Problem State
0 Supervisor state (all instructions

allowed).
1 Problem state (some instructions not

allowed).

18 Reserved

19 ME Machine Check Enable
0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

20 Reserved

21 DWE Debug Wait Enable
0 Debug wait mode is disabled.
1 Debug wait mode is enabled.

22 DE Debug Interrupts Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23:25 Reserved

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
228 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.11.2 Save/Restore Registers 0 and 1 (SRR0–SRR1)

SRR0 and SRR1 are 32-bit registers that hold the interrupted machine context when a noncritical interrupt is
processed. On interrupt, SRR0 is set to the current or next instruction address and the contents of the MSR
are written to SRR1. When an rfi instruction is executed at the end of the interrupt handler, the program
counter and the MSR are restored from SRR0 and SRR1, respectively.

The contents of SRR0 and SRR1 can be written into GPRs using the mfspr instruction. The contents of GPRs
can be written to SRR0 and SRR1 using the mtspr instruction.

Figure 10-11 shows the bit definitions for SRR0..

Figure 10-12 shows the bit definitions for SRR1.

26 IR Instruction Relocate
0 Instruction address translation is

disabled.
1 Instruction address translation is

enabled.

27 DR Data Relocate
0 Data address translation is disabled.
1 Data address translation is enabled.

28:31 Reserved

Figure 10-11. Save/Restore Register 0 (SRR0)
0:29 SRR0 receives an instruction address when a non-critical interrupt is taken;

the Program Counter is restored from SRR0 when rfi executes.

30:31 Reserved

Figure 10-12. Save/Restore Register 1 (SRR1)
0:31 SRR1 receives a copy of the MSR when an

interrupt is taken; the MSR is restored from
SRR1 when rfi executes.

0 29 30 31

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
AMCC Proprietary 229

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.11.3 Save/Restore Registers 2 and 3 (SRR2–SRR3)

SRR2 and SRR3 are 32-bit registers that hold the interrupted machine context when a critical interrupt is
processed. On interrupt, SRR2 is set to the current or next instruction address and the contents of the MSR
are written to SRR3. When an rfci instruction is executed at the end of the interrupt handler, the program
counter and the MSR are restored from SRR2 and SRR3, respectively.

The contents of SRR2 and SRR3 can be written to GPRs using the mfspr instruction. The contents of GPRs
can be written to SRR2 and SRR3 using the mtspr instruction.
Figure 10-13 shows the bit definitions for SRR2..

Figure 10-14 shows the bit definitions for SRR3.

Because critical interrupts do not automatically clear MSR[ME], SRR2 and SRR3 can be corrupted by a
machine check interrupt, if the machine check occurs while SRR2 and SRR3 contain valid data that has not
yet been saved by the critical interrupt handler.

Because critical interrupts do not automatically clear MSR[ME], SRR2 and SRR3 can be corrupted by a
machine check interrupt, if the machine check occurs while SRR2 and SRR3 contain valid data that has not
yet been saved by the critical interrupt handler.

Figure 10-13. Save/Restore Register 2 (SRR2)
0:29 SRR2 receives an instruction address when a critical interrupt is taken; the Program

Counter is restored from SRR2 when rfci executes.

30:31 Reserved

Figure 10-14. Save/Restore Register 3 (SRR3)
0:31 SRR3 receives a copy of the MSR when a

critical interrupt is taken; the MSR is
restored from SRR3 when rfci executes.

0 29 30 31

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
230 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.11.4 Exception Vector Prefix Register (EVPR)

The EVPR is a 32-bit register whose high-order 16 bits contain the prefix for the address of an interrupt
handling routine. The 16-bit interrupt vector offsets (shown in Table 10-4, “Interrupt Vector Offsets,” on
page 227) are concatenated to the right of the high-order 16 bits of the EVPR to form the 32-bit address of an
interrupt handling routine.

The contents of the EVPR can be written to a GPR using the mfspr instruction. The contents of a GPR can
be written to EVPR using the mtspr instruction.

Figure 10-15 shows the EVPR bit definitions.

Figure 10-15. Exception Vector Prefix Register (EVPR)
0:15 EVP Exception Vector Prefix

16:31 Reserved

0 15 16 31

EVP
AMCC Proprietary 231

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.11.5 Exception Syndrome Register (ESR)

The ESR is a 32-bit register whose bits help to specify the exact cause of various synchronous interrupts.
These interrupts include instruction side machine checks, data storage interrupts, and program interrupts,
instruction storage interrupts, and data TLB miss interrupts.

“Instruction Machine Check Handling” on page 10-38 describes instruction machine checks. “Data Storage
Interrupt” on page 10-39 describes data storage interrupts. “Program Interrupt” on page 10-42 describes
program interrupts.

Although interrupt handling routines are not required to reset the ESR, it is recommended that instruction
machine check handlers reset the ESR; “Instruction Machine Check Handling” on page 10-38 describes why
such resets are recommended.

The contents of the ESR can be written to a GPR using the mfspr instruction. The contents of a GPR can be
written to the ESR using the mtspr instruction.

Figure 10-16 shows the ESR bit definitions.

Figure 10-16. Exception Syndrome Register (ESR)
0 MCI Machine check—instruction

0 Instruction machine check did not occur.
1 Instruction machine check occurred.

1:3 Reserved

4 PIL Program interrupt—illegal
0 Illegal Instruction error did not occur.
1 Illegal Instruction error occurred.

5 PPR Program interrupt—privileged
0 Privileged instruction error did not occur.
1 Privileged instruction error occurred.

6 PTR Program interrupt—trap
0 Trap with successful compare did not

occur.
1 Trap with successful compare occurred.

7 Reserved

8 DST Data storage interrupt—store fault
0 Excepting instruction was not a store.
1 Excepting instruction was a store

(includes dcbi, dcbz, and dccci).

9 DIZ Data/instruction storage interrupt—zone
fault
0 Excepting condition was not a zone fault.
1 Excepting condition was a zone fault.

10:15 Reserved

0 1 3 4 5 6 7 8 9 10 15 16 17 31

MCI PIL

PPR

PTR DIZ

U0FDST
232 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
In general, ESR bits are set to indicate the type of precise interrupt that occurred; other bits are cleared.
However, the machine check—instruction (ESR[MCI]) bit behaves differently. Because instruction-side
machine checks can occur without an interrupt being taken (if MSR[ME] = 0), ESR[MCI] can be set even
while other ESR-setting interrupts (program, data storage, DTLB-miss) occurring. Thus, data storage and
program interrupts leave ESR[MCI] unchanged, clear all other ESR bits, and set the bits associated with any
data storage or program interrupts that occurred. Enabled instruction-side machine checks (MSR[ME] = 1)
set ESR[MCI] and clear the data storage and program interrupt bits.

If a machine check—instruction interrupt occurs but is disabled (MSR[ME] = 0), it sets but leaves the data
storage and program interrupt bits alone. If a machine check—instruction interrupt occurs while MSR[ME] =
0, and the instruction upon which the machine check—instruction interrupt is occurring also is some other
kind of ESR-setting instruction (program, data storage, DTLB-miss, or instruction storage interrupt),
ESR[MCI] is set to indicate that a machine check—instruction interrupt occurred; the other ESR bits are set or
cleared to indicate the other interrupt. These scenarios are summarized in Table 10-5.

10.11.6 Data Exception Address Register (DEAR)

The DEAR is a 32-bit register that contains the address of the access for which one of the following
synchronous precise errors occurred: alignment error, data TLB miss, or data storage interrupt. The contents
of the DEAR can be written to a GPR using the mfspr instruction. The contents of a GPR can be written to the
DEAR using the mtspr instruction.

Figure 10-17 shows the DEAR bit definitions.

16 U0F Data storage interrupt—U0 fault
0 Excepting instruction did not cause a U0

fault.
1 Excepting instruction did cause a U0

fault.

17:31 Reserved

Table 10-5. ESR Alteration by Various Interrupts

Scenario ECR[MCI] ESR4: ESR8:9, 16

Program interrupt Unchanged Set to type Cleared
Data storage interrupt Unchanged Cleared Set to Type
Data TLB miss interrupt Unchanged Cleared Cleared
Machine check—instruction Set to 1 Cleared Cleared
Disabled MCI, no others Unchanged Unchanged Unchanged
Disabled MCI and program interrupt Unchanged Set to type Cleared

Figure 10-17. Data Exception Address Register (DEAR)
0:31 Address of Data Error (synchronous)

0 31
AMCC Proprietary 233

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.12 Critical Input Interrupts

The UICCR can be programmed so that any UIC interrupt can be presented as a critical interrupt input to the
processor core. See “UIC Critical Register (UIC0_CR)” on page 10-9 for details. Critical interrupts are
recognized only if enabled by MSR[CE].

MSR[CE] also enables the watchdog timer first-time-out interrupt. However, the watchdog interrupt has a
different interrupt vector than the critical pin interrupt. See “Watchdog Timer Interrupt” on page 10-45.

After detecting a critical interrupt, if no synchronous precise interrupts are outstanding, the PPC405EP
immediately takes the critical interrupt and writes the address of the next instruction to be executed in SRR2.
Simultaneously, the contents of the MSR are saved in SRR3. MSR[CE] is reset to 0 to prevent another critical
interrupt or the watchdog timer first time-out interrupt from interrupting the critical interrupt handler before
SRR2 and SRR3 get saved. MSR[DE] is reset to 0 to disable debug interrupts during the critical interrupt
handler.

The MSR is also written with the values shown in Table 10-6, “Register Settings during Critical Input
Interrupts,” on page 234. The high-order 16 bits of the program counter are then loaded with the contents of
the EVPR and the low-order 16 bits of the program counter are loaded with 0x0100. Interrupt processing
begins at the address in the program counter.

Inside the interrupt handling routine, after the contents of SRR2/SRR3 are saved, critical interrupts can be
enabled again by setting MSR[CE] = 1.

Executing an rfci instruction restores the program counter from SRR2 and the MSR from SRR3, and
execution resumes at the address in the program counter.

10.13 Machine Check Interrupts

When an external bus error occurs on an instruction fetch, and execution of that instruction is subsequently
attempted, a machine check—instruction interrupt occurs.

When an external bus error occurs while attempting data accesses, a machine check—data interrupt occurs.

When an instruction-side machine check interrupt occurs, the PPC405EP stores the address of the excepting
instruction in SRR2. When a data-side machine check occurs, the PPC405EP stores the address of the next
sequential instruction in SRR2. Simultaneously, for all machine check interrupts, the contents of the MSR are
loaded into SRR3.

The MSR Machine Check Enable bit (MSR[ME]) is reset to 0 to disable another machine check from
interrupting the machine check interrupt handling routine. The other MSR bits are loaded with the values
shown in Table 10-7, “Register Settings during Machine Check—Instruction Interrupts,” on page 235 and
Table 10-8, “Register Settings during Machine Check—Data Interrupts,” on page 236. The high-order 16 bits
of the program counter are then written with the contents of the EVPR and the low-order 16 bits of the
program counter are written with 0x0200. Interrupt processing begins at the new address in the program
counter.

Table 10-6. Register Settings during Critical Input Interrupts

SRR2 Written with the address of the next instruction to be executed
SRR3 Written with the contents of the MSR
PC EVPR[0:15] || 0x0100
234 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Executing an rfci instruction restores the program counter from SRR2 and the MSR from SRR3, and
execution resumes at the address in the program counter.

10.13.1 Instruction Machine Check Handling

When a machine check occurs on an instruction fetch, and execution of that instruction is subsequently
attempted, a machine check—instruction interrupt occurs. If enabled by MSR[ME], the processor reports the
machine check—instruction interrupt by vectoring to the machine check handler (EVPR[0:15] || 0x0200),
setting . Note that only a bus error can cause a machine check—instruction interrupt. Taking the vector
automatically clears MSR[ME] and the other MSR fields.

Note that it is improper to declare a machine check—instruction interrupt when the instruction is fetched,
because the address is possibly the result of an incorrect speculation by the fetcher. It is quite likely that no
attempt will be made to execute an instruction from the erroneous address. The interrupt will occur only if
execution of the instruction is subsequently attempted.

When a machine check occurs on an instruction fetch, the erroneous instruction is never validated in the
instruction cache unit (ICU). Fetch requests to cachable memory that miss in the ICU cause an instruction
cache line fill (eight words). If any words in the fetched line are associated with an error, an interrupt occurs
upon attempted execution and the cache line is invalidated. If any word in the line is in error, the cache line is
invalidated after the line fill.

If an instruction machine check occurs, the ESR[MCI] bit is set, even if MSR[ME] = 0. For selected interfaces,
it is possible to turn off input receivers for some or all of the signals on that interface. Control for this receiver
gating is in register CPC0_CR1. When this gating capability is applied to unused signals, it is not necessary
to strap them. Refer to the PowerPC 405EP Embedded Processor User’s Manual for details. Software
running with MSR[ME] disabled can sample to determine whether at least one machine check—instruction
interrupt occurred during the disabled execution.

If a new machine check—instruction interrupt occurs after MSR[ME] is enabled again, the new machine
check—instruction interrupt is recorded in , and the machine check—instruction interrupt handler is invoked.
However, enabling MSR[ME] again does not cause a machine Check interrupt to occur simply due to the
presence of indicating that a machine check—instruction interrupt occurred while MSR[ME] was disabled.
The machine check—instruction interrupt must occur while MSR[ME] is enabled for the machine check
interrupt to be taken. Software should, in general, clear the bits before returning from a machine check
interrupt to avoid any ambiguity when handling subsequent machine check interrupts.

Table 10-7. Register Settings during Machine Check—Instruction Interrupts
SRR2 Written with the address that caused the machine check.

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x0200

ESR MCI ← 1
All other bits are cleared.
AMCC Proprietary 235

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.13.2 Data Machine Check Handling

When a machine check occurs on an data access, a machine check—data interrupt occurs. To determine the
cause of a machine check, examine the various error reporting registers of the external PLB slaves.

10.14 Data Storage Interrupt

The data storage interrupt occurs when the desired access to the effective address is not permitted for any of
the following reasons:

• A U0 fault: any store to an EA with the U0 storage attribute set and CCR0[U0XE] = 1
• In the problem state with data translation enabled:

– A zone fault, which is any user-mode storage access (data load, store, icbi, dcbz, dcbst, or dcbf) with an
effective address with (ZPR field) = 00. (dcbt and dcbtst will no-op in this situation, rather than cause an
interrupt. The instructions dcbi, dccci, icbt, and iccci, being privileged, cannot cause zone fault data stor-
age interrupts.)

– Data store or dcbz to an effective address with the WR bit clear and (ZPR field) ¼ 11. (The privileged
instructions dcbi and dccci are treated as “stores,” but will cause privileged program interrupts, rather than
data storage interrupts.)

• In the supervisor state with data translation enabled:
– Data store, dcbi, dcbz, or dccci to an effective address with the WR bit clear and (ZPR field) other than 11

or 10.
Programming Note: The icbi, icbt, and iccci instructions are treated as loads from the addressed byte with
respect to address translation and protection. Instruction cache operations use MSR[DR], not MSR[IR], to
determine translation of their operands. Instruction storage interrupts and Instruction-side TLB Miss Interrupts
are associated with the fetching of instructions, not with the execution of instructions. Data storage interrupts
and data TLB miss interrupts are associated with the execution of instruction cache operations.

When a data storage interrupt is detected, the PPC405EP suppresses the instruction causing the interrupt
and writes the instruction address in SRR0. The Data Exception Address Register (DEAR) is loaded with the
data address that caused the access violation. ESR bits are loaded as shown in Table 10-9, “Register
Settings during Data Storage Interrupts,” on page 237 to provide further information about the error. The
current contents of the MSR are loaded into SRR1, and MSR bits are then loaded with the values shown in
Table 10-9.

The high-order 16 bits of the program counter are then loaded with the contents of the EVPR and the low-
order 16 bits of the program counter are loaded with 0x0300. Interrupt processing begins at the new address
in the program counter. Executing the return from interrupt instruction (rfi) restores the contents of the
program counter and the MSR from SRR0 and SRR1, respectively, and the PPC405EP resumes execution at
the new program counter address.

Table 10-8. Register Settings during Machine Check—Data Interrupts
SRR2 Written with the address of the next sequential instruction.

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x0200
236 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
For instructions that can simultaneously generate program interrupts (privileged instructions executed in
Problem State) and data storage interrupts, the program interrupt has priority.

10.15 Instruction Storage Interrupt

The instruction storage interrupt is generated when instruction translation is active and execution is
attempted for an instruction whose fetch access to the effective address is not permitted for any of the
following reasons:

• In Problem State:
– Instruction fetch from an effective address with (ZPR field) = 00.
– Instruction fetch from an effective address with the EX bit clear and (ZPR field) ¼ 11.
– Instruction fetch from an effective address contained within a Guarded region (G=1).

• In Supervisor State:
– Instruction fetch from an effective address with the EX bit clear and (ZPR field) other than 11 or 10.
– Instruction fetch from an effective address contained within a Guarded region (G=1).

SRR0 will save the address of the instruction causing the instruction storage interrupt.

ESR is set to indicate the following conditions:

• If ESR[DIZ] = 1, the excepting condition was a zone fault: the attempted execution of an instruction address
fetched in user-mode with (ZPR field) = 00.

• If ESR[DIZ] = 0, then the excepting condition was either EX = 0 or G = 1.

The interrupt is precise with respect to the attempted execution of the instruction. Program flow vectors to
EVPR[0:15] || 0x0400.

Table 10-9. Register Settings during Data Storage Interrupts
SRR0 Written with the EA of the instruction causing the data storage interrupt

SRR1 Written with the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x0300

DEAR Written with the EA of the failed access

ESR DST ← 1 if excepting operation is a store
DIZ ← 1 if access failure caused by a zone protection fault (ZPR[Zn] = 00 in
user mode)
U0F ← 1 if access failure caused by a U0 fault (the U0 storage attribute is
set and CCR0[U0XE] = 1)
MCI ← unchanged
All other bits are cleared.
AMCC Proprietary 237

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The following registers are modified to the specified values:

10.16 External Interrupt

External interrupts (external to the processor core) are triggered by active levels non-critical interrupts in the
UIC. All external interrupting events are presented to the processor as a single external interrupt. External
interrupts are enabled or disabled by MSR[EE].

Programming Note: MSR[EE] also enables PIT and FIT interrupts. However, after timer interrupts, control
passes to different interrupt vectors than for the interrupts discussed in the preceding paragraph. Therefore,
these timer interrupts are described in “Programmable Interval Timer (PIT) Interrupt” on page 10-44 and “Fixed
Interval Timer (FIT) Interrupt” on page 10-44.

10.16.1 External Interrupt Handling

When MSR[EE] = 1 (external interrupts are enabled), a noncritical external interrupt occurs, and this interrupt
is the highest priority interrupt condition, the processor immediately writes the address of the next sequential
instruction into SRR0. Simultaneously, the contents of the MSR are saved in SRR1.

When the processor takes a noncritical external interrupt, MSR[EE] is set to 0. This disables other external
interrupts from interrupting the interrupt handler before SRR0 and SRR1 are saved. The MSR is also written
with the other values shown in Table 10-11, “Register Settings during External Interrupts,” on page 238. The
high-order 16 bits of the program counter are written with the contents of the EVPR and the low-order 16 bits
of the program counter are written with 0x0500. Interrupt processing begins at the address in the program
counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

Table 10-10. Register Settings during Instruction Storage Interrupts
SRR0 Set to the EA of the instruction for which execute access was not permitted

SRR1 Set to the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x0400

ESR DIZ ← 1If access failure due to a zone protection fault (ZPR[Zn] = 00 in
user mode)
Note: If ESR[DIZ] is not set, the interrupt occurred because TBL_entry[EX]
was clear in an otherwise accessible zone, or because of an instruction
fetch from a storage region marked as guarded. See “Exception Syndrome
Register (ESR)” on page 10-232 for details of ESR operation.
MCI ← unchanged
All other bits are cleared.

Table 10-11. Register Settings during External Interrupts
SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0500
238 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.17 Alignment Interrupt

Alignment interrupts are caused by dcbz instructions to non-cachable or write-through storage andmisaligned
dcread, lwarx, or stwx. instructions. Table 10-12 summarizes the instructions and conditions causing
alignment interrupts.

Execution of an instruction causing an alignment interrupt is prohibited from completing. SRR0 is written with
the address of that instruction and the current contents of the MSR are saved into SRR1. The DEAR is written
with the address that caused the alignment error. The MSR bits are written with the values shown in
Table 10-13, “Register Settings during Alignment Interrupts,” on page 239. The high-order 16 bits of the
program counter are written with the contents of the EVPR and the low-order 16 bits of the program counter
are written with 0x0600. Interrupt processing begins at the new address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

Alignment interrupts cannot be disabled. To avoid overwrites of SRR0 and SRR1 by alignment interrupts that
occur within a handler, interrupt handlers should save these registers as soon as possible.

10.18 Program Interrupt

Program interrupts are caused by attempting to execute:

• An illegal instruction
• A privileged instruction while in the problem state
• Executing a trap instruction with conditions satisfied

The ESR bits that differentiate these situations are listed and described in Table 10-14. When a program
interrupt occurs, the appropriate bit is set and the others are cleared. These interrupts are not maskable.

Table 10-12. Alignment Interrupt Summary

Instructions Causing Alignment Interrupts Conditions

dcbz EA in non-cachable or write-through storage

dcread, lwarx, stwcx. EA not word-aligned

Table 10-13. Register Settings during Alignment Interrupts
SRR0 Written with the address of the instruction causing the alignment interrupt

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0600

DEAR Written with the address that caused the alignment violation

Table 10-14. ESR Usage for Program Interrupts
Bits Interrupts Cause

ESR[PIL] Illegal instruction Opcode not recognized

ESR[PPR] Privileged instruction Attempt to use a privileged instruction in the problem state

ESR[PTR] Trap Excepting instruction is a trap
AMCC Proprietary 239

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The program interrupt handler does not need to reset the ESR.

When one of the following occurs, the PPC405EP does not execute the instruction, but writes the address of
the excepting instruction into SRR0:

• Attempted execution of a privileged instruction in problem state
• Attempted execution of an illegal instruction (including memory management instructions when memory man-

agement is disabled

Trap instructions can be used as a program interrupt or a debug event, or both (see “Debug Events” on page
13-13 for information about debug events). When a trap instruction is detected as a program interrupt, the
PPC405EP writes the address of the trap instruction into SRR0. See tw on page 25-190 and twi on page 25-
193 (both in Chapter 25, “Instruction Set”) for a detailed discussion of the behavior of trap instructions with
various interrupts enabled.

After any program interrupt, the contents of the MSR ar MSR[APA] = 0, an attempt to execute an instruction
intended for an APU causes a program interrupt if MSR[APE] = 0e written into SRR1 and the MSR bits are
written with the values shown in Table 10-15. The high-order 16 bits of the program counter are written with
the contents of the EVPR; the low-order 16 bits of the program counter are written with 0x0700. Interrupt
processing begins at the new address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

10.19 System Call Interrupt

System call interrupts occur when a sc instruction is executed. The PPC405EP writes the address of the
instruction following the sc into SRR0. The contents of the MSR are written into SRR1 and the MSR bits are
written with the values shown in Table 10-16. The high-order 16 bits of the program counter are then written
with the contents of the EVPR and the low-order 16 bits of the program counter are written with 0x0C00.
Interrupt processing begins at the new address in the program counter.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

Table 10-15. Register Settings during Program Interrupts
SRR0 Written with the address of the excepting instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0700

ESR Written with the type of program interrupt. (See Table 10-14)
MCI ← unchanged
All other bits are cleared.

Table 10-16. Register Settings during System Call Interrupts
SRR0 Written with the address of the instruction following the sc instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x0C00
240 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.20 Programmable Interval Timer (PIT) Interrupt

For a discussion of the PPC405EP timer facilities, see Chapter 11, “Timer Facilities.” The PIT is described in
“Programmable Interval Timer (PIT)” on page 11-4.

If the PIT interrupt is enabled by TCR[PIE] and MSR[EE], the PPC405EP initiates a PIT interrupt after
detecting a time-out from the PIT. Time-out is detected when, at the beginning of a clock cycle, TSR[PIS] = 1.
(This occurs on the cycle after the PIT decrements on a PIT count of 1.) The PPC405EP immediately takes
the interrupt. The address of the next sequential instruction is saved in SRR0; simultaneously, the contents of
the MSR are written into SRR1 and the MSR is written with the values shown in Table 10-17. The high-order
16 bits of the program counter are then written with the contents of the EVPR and the low-order 16 bits of the
program counter are written with 0x1000. Interrupt processing begins at the address in the program counter.

To clear a PIT interrupt, the interrupt handling routine must clear the PIT interrupt bit, TSR[PIS]. Clearing is
performed by writing a word to TSR, using an mtspr instruction, that has 1 in bit positions to be cleared and 0
in all other bit positions. The data written to the TSR is not direct data, but a mask; a 1 clears the bit and 0 has
no effect.

Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

10.21 Fixed Interval Timer (FIT) Interrupt

For a discussion of the PPC405EP timer facilities, see Chapter 11, “Timer Facilities.” The FIT is described in
“Fixed Interval Timer (FIT) Interrupt” on page 10-239.

If the FIT interrupt is enabled by TCR[FIE] and MSR[EE], the PPC405EP initiates a FIT interrupt after
detecting a time-out from the FIT. Time-out is detected when, at the beginning of a clock cycle, TSR[FIS] = 1.
(This occurs on the second cycle after the 0 → 1 transition of the appropriate time-base bit.) The PPC405EP
immediately takes the interrupt. The address of the next sequential instruction is written into SRR0;
simultaneously, the contents of the MSR are written into SRR1 and the MSR is written with the values shown
in Table 10-18. The high-order 16 bits of the program counter are then written with the contents of the EVPR
and the low-order 16 bits of the program counter are written with 0x1010. Interrupt processing begins at the
address in the program counter.

To clear a FIT interrupt, the interrupt handling routine must clear the FIT interrupt bit, TSR[FIS]. Clearing is
performed by writing a word to TSR, using an mtspr instruction, that has 1 in any bit positions to be cleared
and 0 in all other bit positions. The data written to the TSR is not direct data, but a mask; a 1 clears a bit and
0 has no effect.

Table 10-17. Register Settings during Programmable Interval Timer Interrupts
SRR0 Written with the address of the next instruction to be executed

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x1000

TSR PIS ← 1
AMCC Proprietary 241

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Executing an rfi instruction restores the program counter from SRR0 and the MSR from SRR1, and execution
resumes at the address in the program counter.

10.22 Watchdog Timer Interrupt

For a general description of the PPC405EP timer facilities, see Chapter 11, “Timer Facilities.” The watchdog
timer (WDT) is described in “Watchdog Timer” on page 11-250.

If the WDT interrupt is enabled by TCR[WIE] and MSR[CE], the PPC405EP initiates a WDT interrupt after
detecting the first WDT time-out. First time-out is detected when, at the beginning of a clock cycle,
TSR[WIS] = 1. (This occurs on the second cycle after the 0→1 transition of the appropriate time-base bit
while TSR[ENW] = 1 and TSR[WIS] = 0.) The PPC405EP immediately takes the interrupt. The address of the
next sequential instruction is saved in SRR2; simultaneously, the contents of the MSR are written into SRR3
and the MSR is written with the values shown in Table 10-19. The high-order 16 bits of the program counter
are then written with the contents of the EVPR and the low-order 16 bits of the program counter are written
with 0x1020. Interrupt processing begins at the address in the program counter.

To clear the WDT interrupt, the interrupt handling routine must clear the WDT interrupt bit TSR[WIS].
Clearing is done by writing a word to TSR (using mtspr), with a 1 in any bit position that is to be cleared and
0 in all other bit positions. The data written to the status register is not direct data, but a mask; a 1 causes the
bit to be cleared, and a 0 has no effect.

Executing the return from critical interrupt instruction (rfci) restores the contents of the program counter and
the MSR from SRR2 and SRR3, respectively, and the PPC405EP resumes execution at the contents of the
program counter.

Table 10-18. Register Settings during Fixed Interval Timer Interrupts
SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

PC EVPR[0:15] || 0x1010

TSR FIS ← 1

Table 10-19. Register Settings during Watchdog Timer Interrupts
SRR2 Written with the address of the next sequential instruction

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x1020

TSR WIS ← 1
242 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10.23 Data TLB Miss Interrupt

The data TLB miss interrupt is generated if data translation is enabled and a valid TLB entry matching the EA
and PID is not present. The address of the instruction generating the untranslatable effective data address is
saved in SRR0. In addition, the hardware also saves the data address (that missed in the TLB) in the DEAR.

The ESR is set to indicate whether the excepting operation was a store (includes dcbz, dcbi, dccci).

The interrupt is precise. Program flow vectors to EVPR[0:15] || 0x1100.

The following registers are modified to the values specified in Table 10-20.

Programming Note: Data TLB miss interrupts can happen whenever data translation is enabled. Therefore,
ensure that SRR0 and SRR1 are saved before enabling translation in an interrupt handler.

10.24 Instruction TLB Miss Interrupt

The instruction TLB miss interrupt is generated if instruction translation is enabled and execution is attempted
for an instruction for which a valid TLB entry matching the EA and PID for the instruction fetch is not present.
The instruction whose fetch caused the TLB miss is saved in SRR0.

The interrupt is precise with respect to the attempted execution of the instruction. Program flow vectors to
EVPR[0:15 || 0x1200.

The following are modified to the values specified in Table 10-21.

Programming Note: Instruction TLB miss interrupts can happen whenever instruction translation is active.
Therefore, insure that SRR0 and SRR1 are saved before enabling translation in an interrupt handler.

Table 10-20. Register Settings during Data TLB Miss Interrupts
SRR0 Set to the address of the instruction generating the effective address for

which no valid translation exists.

SRR1 Set to the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x1100

DEAR Set to the effective address of the failed access

ESR DST ← 1 if excepting operation is a store operation (includes dcbi, dcbz,
and dccci).
MCI ← unchanged
All other bits are cleared.

Table 10-21. Register Settings during Instruction TLB Miss Interrupts
SRR0 Set to the address of the instruction for which no valid translation exists.

SRR1 Set to the value of the MSR at the time of the interrupt

PC EVPR[0:15] || 0x1200
AMCC Proprietary 243

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10.25 Debug Interrupt

Debug interrupts can be either synchronous or asynchronous. These debug events generate synchronous
interrupts: branch taken (BT), data address compare (DAC), data value compare (DVC), instruction address
compare (IAC), instruction completion (IC), and trap instruction (TIE). The exception (EXC) and unconditional
(UDE) debug events generate asynchronous interrupts. See “Debug Events” on page 13-13 for more
information about debug events.

For debug events, SRR2 is written with an address, which varies with the type of debug event, as shown in
Table 10-22.

SRR3 is written with the contents of the MSR and the MSR is written with the values shown in Table 10-23,
“Register Settings during Debug Interrupts,” on page 10-47. The high-order 16 bits of the program counter
are then written with the contents of the EVPR; the low-order 16 bits of the program counter are written with
0x2000. Interrupt processing begins at the address in the program counter.

Executing an rfci instruction restores the program counter from SRR2 and the MSR from SRR3, and
execution resumes at the address in the program counter.

Table 10-22. SRR2 during Debug Interrupts

Debug Event Address Saved in SRR2

BT
DAC
IAC
TIE

Address of the instruction causing the event

DVC
IC

Address of the instruction following the instruction that causing the event

EXC Interrupt vector address of the initial exception that caused the exception debug event
UDE Address of next instruction to be executed at time of UDE

Table 10-23. Register Settings during Debug Interrupts
SRR2 Written with an address as described in Table 10-22

SRR3 Written with the contents of the MSR

PC EVPR[0:15] || 0x2000

DBSR Set to indicate type of debug event.
244 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 11. Timer Facilities

The PPC405EP processor core provides four timer facilities: a time base, a Programmable Interval Timer
(PIT), a fixed interval timer (FIT), and a watchdog timer. The PIT is a Special Purpose Register (SPR). These
facilities, which are driven by the same base clock, can, among other things, be used for:

• Time-of-day functions
• Data logging functions
• Peripherals requiring periodic service
• Periodic task switching

Additionally, the watchdog timer can help a system to recover from faulty hardware or software.

Figure 11-1 shows the relationship of the timers and the clock source to the time base..

TBU (32 bits)

Bit 3 (229 clocks)

Bit 7 (225 clocks)

Bit 11 (221 clocks)

Bit 15 (217 clocks)

Bit 11 (221 clocks)

Bit 15 (217 clocks)

Bit 19 (213 clocks)

Bit 23 (29 clocks)

Watchdog Timer Events

FIT Events

Time Base (Incrementer)

31

TBL (32 bits)

31 00

PIT (Decrementer)

(32 bits)

310

Zero Detect PIT Events

Figure 11-1. Relationship of Timer Facilities to the Time Base

CPU
Clock

Source
AMCC Proprietary 245

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
11.1 Time Base

The PPC405EP implements a 64-bit time base as required in The PowerPC Architecture. The time base,
which increments once during each period of the source clock, provides a time reference.

Read access to the time base is through the mftb instruction. mftb provides user-mode read-only access to
the time base. The TBR numbers (0x10C and 0x10D; TBL and TBU, respectively) that specify the time base
registers to mftb are not SPR numbers. However, the PowerPC Architecture allows an implementation to
handle mftb as mfspr. Accordingly, these register numbers cannot be used for other SPRs. PowerPC
compilers cannot use mftb with register numbers other than those specified in the PowerPC Architecture as
read-access time base registers (0x10C and 0x10D).

Write access to the time base, using mtspr, is privileged. Different register numbers are used for read access
and write access. Writing the time base is accomplished by using SPR 0x11C and SPR 0x11D (TBL and
TBU, respectively) as operands for mtspr.

The period of the 64-bit time base is approximately 2925 years for a 200 MHz clock source. The time base
does not generate interrupts, even when it wraps. For most applications, the time base is set once at system
reset and only read thereafter. Note that the FIT and the watchdog timer (discussed below) are driven by
0→1 transitions of bits from the TBL. Transitions caused by software alteration of TBL have the same effect
as transitions caused by normal incrementing of the time base.

Figure 11-2 illustrates the TBL.

Figure 11-3 illustrates the TBU.

Figure 11-2. Time Base Lower (TBL)
0:31 Time Base Lower Current count; low-order 32 bits of time

base.

Figure 11-3. Time Base Upper (TBU)
0:31 Time Base Upper Current count, high-order 32 bits of time

base.

0 31

0 31
246 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 11-1 summarizes the TBRs, instructions used to access the TBRs, and access restrictions.

11.1.1 Reading the Time Base

The following code provides an example of reading the time base. mftb moves the low-order 32 bits of the
time base to a GPR; mftbu moves the high-order 32 bits of the time base to a second GPR.

loop:
mftbu Rx # load from TBU
mftb Ry # load from TBL
mftbu Rz # load from TBU
cmpw Rz, Rx # see if old = new
bne loop # loop/reread if rollover occurred

The comparison and loop ensure that a consistent pair of values is obtained.

11.1.2 Writing the Time Base

The following code provides an example of writing the time base. Writing the time base is privileged. mttbl
moves the contents of a GPR to the low-order 32 bits of the time base; mttbu moves the contents of a
second GPR to the high-order 32 bits of the time base.

lwz Rx, upper # load 64-bit time base value into Rx and Ry
lwz Ry, lower
li Rz, 0
mttbl Rz # force TBL to 0 to avoid rollover while writing TBU
mttbu Rx # set TBU
mttbl Ry # set TBL

Table 11-1. Time Base Access

Instructions
Register
Number Access Restrictions

TBU
Upper
32 bits

mftbu RT
Extended mnemonic for
mftb RT,TBU

0x10D Read-only

mttbu RS
Extended mnemonic for
mtspr TBU,RS

0x11D Privileged; write-only

TBL
Lower
32 bits

mftb RT
Extended mnemonic for
mftb RT,TBL

0x10C Read-only

mttbl RS
Extended mnemonic for
mtspr TBL,RS

0x11C Privileged; write-only
AMCC Proprietary 247

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
11.2 Programmable Interval Timer (PIT)

The PIT is a 32-bit SPR that decrements at the same rate as the time base. The PIT is read and written using
mfspr and mtspr, respectively. Writing to the PIT also simultaneously writes to a hidden reload register.
Reading the PIT using mfspr returns the current PIT contents; the hidden reload register cannot be read.
When a non-zero value is written to the PIT, it begins to decrement. A PIT event occurs when a decrement
occurs on a PIT count of 1. When a PIT event occurs, the following occurs:

1. If the PIT is in auto-reload mode (the ARE field of the Timer Control Register (TCR) is 1), the PIT is
loaded with the last value an mtspr wrote to the PIT. A decrement from a PIT count of 1 immediately
causes a reload; no intermediate PIT content of 0 occurs.
If the PIT is not in auto-reload mode (TCR[ARE] = 0), a decrement from a PIT count of 1 simply causes a
PIT content of 0.

2. TSR[PIS] is set to 1.

3. If enabled (TCR[PIE] = 1 and the EE field of the Machine State Register (MSR) is 1), a PIT interrupt is
taken. See “Programmable Interval Timer (PIT) Interrupt” on page 10-44 for details of register behavior
during a PIT interrupt.

The interrupt handler should use software to reset the PIS field of the Timer Status Register (TSR). This is
done by using mtspr to write a word to the TSR having a 1 in TSR[PIS] and any other bits to be cleared, and
a 0 in all other bits. The data written to the TSR is not direct data, but a mask. A 1 clears a bit; a 0 has no
effect.

Using mtspr to force the PIT to 0 does not cause a PIT interrupt. However, decrementing that was ongoing at
the instant of the mtspr instruction can cause the appearance of an interrupt. To eliminate the PIT as a
source of interrupts, write a 0 to TCR[PIE], the PIT interrupt enable bit.

To eliminate all PIT activity:

1. Write a 0 to TCR[PIE]. This prevents PIT activity from causing interrupts.

2. Write a 0 to TCR[ARE]. This disables the PIT auto-reload feature.

3. Write zeroes to the PIT to halt PIT decrementing. Although this action does not cause a pit PIT interrupt to
become pending, a near-simultaneous decrement to 0 might have done so.

4. Write a 1 to TSR[PIS] (PIT Interrupt Status bit). This clears TSR[PIS] to 0 (see “Timer Status Register
(TSR)” on page 11-8). This also clears any pending PIT interrupt. Because the PIT stops decrementing,
no further PIT events are possible.

If the auto-reload feature is disabled (TCR[ARE] = 0) when the PIT decrements to 0, the PIT remains 0 until
software uses mtspr to reload it.

After a reset, TCR[ARE] = 0, which disables the auto-reload feature.

Figure 11-4 illustrates the PIT.
248 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

11.2.1 Fixed Interval Timer (FIT)

The FIT provides timer interrupts having a repeatable period. The FIT is functionally similar to an auto-reload
PIT, except that only a smaller fixed selection of interrupt periods are available.

The FIT exception occurs on 0→1 transitions of selected bits from the time base, as shown in Table 11-2.

The TSR[FIS] field logs a FIT exception as a pending interrupt. A FIT interrupt occurs if TCR[FIE] and
MSR[EE] are enabled at the time of the FIT exception. “Fixed Interval Timer (FIT) Interrupt” on page 10-44
describes register settings during a FIT interrupt.

The interrupt handler should reset TSR[FIS]. This is done by using mtspr to write a word to the TSR having a
1 in TSR[FIS] and any other bits to be cleared, and a 0 in all other bits. The data written to the TSR is not
direct data, but a mask. A 1 clears a bit and a 0 has no effect.

Figure 11-4. Programmable Interval Timer (PIT)
0:31 Programmed interval remaining Number of clocks remaining until the PIT

event

Table 11-2. FIT Controls

TCR[FP] TBL Bit
Period

(Time Base Clocks)
Period

(200 Mhz Clock)

0, 0 23 29 clocks 2.56 µsec

0, 1 19 213 clocks 40.96 µsec

1, 0 15 217 clocks 0.655 msec

1, 1 11 221 clocks 10.49 msec

0 31
AMCC Proprietary 249

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
11.3 Watchdog Timer

The watchdog timer aids system recovery from software or hardware faults.

A watchdog timeout occurs on 0→1 transitions of a selected bit from the time base, as shown in the following
table.

If a watchdog timeout occurs while TSR[WIS] = 0 and TSR[ENW] = 1, a watchdog interrupt occurs if the
interrupt is enabled by TCR[WIE] and MSR[CE]. “Watchdog Timer” on page 11-6 describes register behavior
during a watchdog interrupt.

The interrupt handler should reset the TSR[WIS] bit. This is done by using mtspr to write a word to the TSR
having a 1 in TSR[WIS] and any other bits to be cleared, and a 0 in all other bits. The data written to the TSR
is not direct data, but a mask. A 1 clears a bit and a 0 has no effect.

If a watchdog timeout occurs while TSR[WIS] = 1 and TSR[ENW] = 1, a hardware reset occurs if enabled by
a non-zero value of TCR[WRC]. In other words, a reset can occur if a watchdog timeout occurs while a
previous watchdog timeout is pending. The assumption is that TSR[WIS] was not cleared because the
processor could not execute the watchdog handler, leaving reset as the only way to restart the system. Note
that after TCR[WRC] is set to a non-zero value, it cannot be reset by software. This prevents errant software
from disabling the watchdog timer reset capability. After a reset, the initial value of TCR[WRC] = 00.

Table 11-3. Watchdog Timer Controls

TCR[WP] TBL Bit
Period

(Time Base Clocks)
Period

(200 MHz Clock)

0,0 15 217 clocks 0.655 msec

0,1 11 221 clocks 10.49 msec

1,0 7 225 clocks 0.168 sec

1,1 3 229 clocks 2.684 sec
250 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 11-5 describes the watchdog state machine. In the figure, numbers in parentheses refer to
descriptions of operating modes that follow the table.

The controls described in Figure 11-5 imply three different ways of using the watchdog timer. The modes
assume that TCR[WRC] was set to allow processor reset by the watchdog timer:

1. Always take a pending watchdog interrupt, and never attempt to prevent its occurrence. (This mode is
described in the preceding text.)

a. Clear TSR[WIS] in the watchdog timer handler.

b. Never use TSR[ENW].

2. Always take a pending watchdog interrupt, but avoid it whenever possible by delaying a reset until a sec-
ond watchdog timer occurs.
This assumes that a recurring code loop of known maximum duration exists outside the interrupt handlers, or
that a FIT interrupt handler is operational. One of these mechanisms clears TSR[ENW] more frequently than
the watchdog period.

a. Clear TSR[ENW] to 0 in loop or in FIT interrupt handler.
To clear TSR[ENW], use mtspr to write a 1 to TSR[ENW] (and to any other bits that are to be
cleared), with 0 in all other bit locations.

Figure 11-5. Watchdog Timer State Machine
Enable Next
Watchdog
TSR[ENW]

Watchdog
Timer Status

TSR[WIS] Action When Timer Interval Expires

0 0 Set TSR[ENW] = 1.

0 1 Set TSR[ENW] = 1.

1 0 Set TSR[WIS] = 1.
If TCR[WIE] = 1 and MSR[CE] = 1, then interrupt.

1 1 Cause the watchdog reset action specified by
TCR[WRC].
On reset, copy current TCR[WRC] to TSR[WRS] and
clear TCR[WRC], disabling the watchdog timer.

WIS = 0

Time-out, no interrupt

Watchdog timeout occurred, watchdog

Time-out, no interrupt Time-out

(2) SW Loop

(3) SW Loop

(1) Interrupt
Handler

(2) Interrupt
Handler

interrupt will occur if enabled

Value of TCR[WRC]

00 No reset will occur
01 Core reset
10 Chip reset
11 System reset

ENW = 0

WIS = 0

ENW = 1

WIS = 1

ENW = 0

WIS = 1

ENW = 1
AMCC Proprietary 251

405EP – PPC405EP Embedded Processor

Timer Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
b. Clear TSR[WIS] in watchdog timer handler.
It is not expected that a watchdog interrupt will occur every time, but only if an exceptionally high execution
load delays clearing of TSR[ENW] in the usual time frame.

3. Never take a watchdog interrupt.

This assumes that a recurring code loop of reliable duration exists outside the interrupt handlers, or that a FIT
interrupt handler is operational. This method only guarantees one watchdog timeout period before a reset
occurs.

a. Clear TSR[WIS] in the loop or in FIT handler.

b. Never use TSR[ENW] but have it set.

11.4 Timer Status Register (TSR)

The TSR can be accessed for read or write-to-clear.

Status registers are generally set by hardware and read and cleared by software. The mfspr instruction reads
the TSR. Clearing the TSR is performed by writing a word to the TSR, using mtspr, having a 1 in all fields to
be cleared and a 0 in all other fields. The data written to the TSR is not direct data, but a mask. A 1 clears the
field and a 0 has no effect.

Figure 11-6. Timer Status Register (TSR)
0 ENW Enable Next Watchdog

0 Action on next watchdog event is to set
TSR[ENW] = 1.

1 Action on next watchdog event is
governed by TSR[WIS].

Software must reset TSR[ENW] = 0 after
each watchdog timer event.

1 WIS Watchdog Interrupt Status
0 No Watchdog interrupt is pending.
1 Watchdog interrupt is pending.

2:3 WRS Watchdog Reset Status
00 No Watchdog reset has occurred.
01 Core reset was forced by the watchdog.
10 Chip reset was forced by the watchdog.
11 System reset was forced by the

watchdog.
4 PIS PIT Interrupt Status

0 No PIT interrupt is pending.
1 PIT interrupt is pending.

5 FIS FIT Interrupt Status
0 No FIT interrupt is pending.
1 FIT interrupt is pending.

6:31 Reserved

0 1 2 3 4 5 6 31

ENW

WIS

WRS FIS

PIS
252 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Timer Status Register
11.5 Timer Control Register (TCR)

The TCR controls PIT, FIT, and watchdog timer operation.

The TCR[WRC] field is cleared to 0 by all processor resets. (Chapter 8, “Reset and Initialization,” describes
the types of processor reset.) This field is set only by software. However, hardware does not allow software to
clear the field after it is set. After software writes a 1 to a bit in the field, that bit remains a 1 until any reset
occurs. This prevents errant code from disabling the watchdog timer reset function.

All processor resets clear TCR[ARE] to 0, disabling the auto-reload feature of the PIT.

Figure 11-7. Timer Control Register (TCR)
0:1 WP Watchdog Period

00 217 clocks
01 221 clocks
10 225 clocks
11 229 clocks

2:3 WRC Watchdog Reset Control
00 No Watchdog reset will occur.
01 Core reset will be forced by the

Watchdog.
10 Chip reset will be forced by the

Watchdog.
11 System reset will be forced by the

Watchdog.

TCR[WRC] resets to 00.
This field can be set by software, but
cannot be cleared by software, except by a
software-induced reset.

4 WIE Watchdog Interrupt Enable
0 Disable watchdog interrupt.
1 Enable watchdog interrupt.

5 PIE PIT Interrupt Enable
0 Disable PIT interrupt.
1 Enable PIT interrupt.

6:7 FP FIT Period
00 29 clocks
01 213 clocks
10 217 clocks
11 221 clocks

8 FIE FIT Interrupt Enable
0 Disable FIT interrupt.
1 Enable FIT interrupt.

9 ARE Auto Reload Enable
0 Disable auto reload.
1 Enable auto reload.

Disables on reset.

10:31 Reserved

0 1 2 3 4 5 6 7 8 9 10 31

WP

WRC

WIE

PIE

FP FIE

ARE
AMCC Proprietary 253

405EP – PPC405EP Embedded Processor

Timer Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
254 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 12. General Purpose Timers

The General Purpose Timer (GPT) is a system timer with five maskable compare registers and a 32-bit time
base counter. Each compare register has a corresponding GPT interrupt to the UIC. GPT interrupts can be
generated for a specific count by a match between the contents of a compare register and the time base
counter. GPT interrupts may also be generated on a specific interval by masking individual bits of a compare
register. The following sections provide an overview, programming steps and register descriptions.

12.1 GPT Features

• OPB slave interface for access to all control, timer and status registers which provide direct control of all GPT
functions

• Five interrupt outputs to the UIC, one per each compare timer

12.2 GPT Operations

GPT is fully programmable through the OPB interface. Programmability features include:

• Programmable time base register (sets the Time Base Counter)
• Maskable time-base comparison support for each compare timer
• Programmable compare timer values
• Enable/disable control of all compare interrupts
• Mask control of interrupt status bits
• Programmable level for all compare timers

12.2.1 Time Base Counter

The Time Base Counter (TBC) is both an OPB register and an unsigned counter, and provides the reference
time for all compare timers. It increments by one with each OPB clock period and is 32-bit wide.

When the Time Base Counter is at its maximum value (all bits set to 1) it will roll back to zero upon the next
clock.

The TBC is synchronously reset to zero upon a full chip reset. It may be read and written via software through
the OPB interface. When written the new value is stored with the next rising edge of OPBClk.
AMCC Proprietary 255

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12.2.2 Compare Timers

The time base counter, GPT0_TBC, is incremented each OPB clock period and evaluated for equivalence to the
compare registers as illustrated in Figure 12-1. The bit wise XNOR identifies bits in the time base counter that are
equivalent to corresponding bits in a compare register, GTP0_COMP0:6. The 32-bit output of the XNOR is bit wise
OR’ed with a 32-bit compare mask, GPT0_MASK0:6. Bits set to 1 in the compare mask are masked and are not
evaluated for equivalence. The comparison result of the 32-bit input AND reduces the masked result of the OR to a
single bit indicating equivalence if set to 1. The status register, GPT0_ISS, records the comparison if the
corresponding compare result is unmasked by the interrupt mask register, GPT0_IM[CTnM]=0. To generate a GPT
interrupt the interrupt enable bit, GPT0_IE[CTnI]=1, must also be enabled. Figure 12-1 illustrates the comparison
of the time base counter to a compare register.

12.2.3 Compare Timers Interrupt

The following are steps for enabling a GPT interrupt:

1. Set the corresponding compare register (GPT0_COMPn) to the desired compare value.

2. Sethe corresponding compare mask register (GPT0_MASKn) with the desired mask bit pattern.

3. Unmask the GPT interrupt by clearing the interrupt mask bit (GPT0_IM[CTnM]=0).

4. Enable the GPT interrupt by setting the enable bit (GPT0_IE[CTnI]=1).

5. Configure the UIC to enable a GPT interrupt (see Universal Interrupt Controller on page 357).

Note: Seven separate interrupt lines, (UIC 16:22) one for each of the seven compare timers are implemented.

Figure 12-1. Timebase Counter and Compare Register

GPT0_TBCOPB CLK

GPT0_COMPn

GPT0_MASKn

32

32

XNOR

OR
32

AND
1

bit wise

bit wise result (1/5)32

32

comparison

GPT0_IM[CTnM]
GPT0_ISS[CTnS]

UIC
GPT0_IE[CTnI]

1
1

1
1

AMCC Proprietary 256

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12.3 GPT Registers

The GPT registers listed in Table 12-1 are memory mapped and accessed via load/store instructions at the
address of the register. The registers are accessed from the OPB on 32-bit boundaries relative to the
configurable base address. The GPT Interrupt Status Register (GPT0_ISS) bits are either set or cleared
when written, depending upon which one of two addresses are used. All other registers are both read and
write accessible in the normal manner.

12.3.1 GPT Time Base Counter Register (GPT0_TBC)

GPT time base counter register (GPT0_TBC) is used by the compare timers as a reference for determining
event occurrences and for software to use as a general timer. Figure 12-2 describes GPT0_TBC register
bits.

Table 12-1. GPT Registers

Mnemonic Register Address Access Page

GPT0_TBC Time Base Counter 0xEF600000 R/W 12-255
GPT0_IM GPT Interrupt Mask 0xEF600018 R/W 12-258
GPT0_ISS GPT Interrupt Status (Set bits if write 1) 0xEF60001C R/W 12-259
GPT0_ISC GPT Interrupt Status (Clear bits if write 1) 0xEF600020 R/W 12-259
GPT0_IE GPT Interrupt Enable 0xEF600024 R/W 12-260
GPT0_COMP0 Compare Timer 0 0xEF600080 R/W 12-256
GPT0_COMP1 Compare Timer 1 0xEF600084 R/W 12-256
GPT0_COMP2 Compare Timer 2 0xEF600088 R/W 12-256
GPT0_COMP3 Compare Timer 3 0xEF60008C R/W 12-256
GPT0_COMP4 Compare Timer 4 0xEF600090 R/W 12-256
GPT0_MASK0 Compare Mask (Compare Timer 0) 0xEF6000C0 R/W 12-261
GPT0_MASK1 Compare Mask (Compare Timer 1) 0xEF6000C4 R/W 12-261
GPT0_MASK2 Compare Mask (Compare Timer 2) 0xEF6000C8 R/W 12-261
GPT0_MASK3 Compare Mask (Compare Timer 3) 0xEF6000CC R/W 12-261
GPT0_MASK4 Compare Mask (Compare Timer 4) 0xEF6000DD R/W 12-261

Figure 12-2. Time Base Counter Register (GPT0_TBC)
0:31 TB Time Base

0 31

TB
AMCC Proprietary 257

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12.3.2 GPT Interrupt Mask Register (GPT0_IM)

GPT interrupt mask register (GPT0_IM) bits correspond to the compare timer interrupt masks. The register
bits mask both the setting of the corresponding GPT0_IS bits and the interrupt output signals, GPT_uicIntrpt.
If masked, GPT0_IS bits are not set, and interrupt signals are not generated (even if the GPT0_IE bits are
enabled). For interrupt signals to be active, the GPT0_IM bits must be reset (not masked) and the GPT0_IE
bits must be enabled. Figure 12-3 describes GPT0_IM register bits.

Figure 12-3. GPT Interrupt Enable Register (GPT0_IE)
0:15 Reserved

16 CT0I
Compare Timer 0 Interrupt Enable
0 Compare timer 0 interrupt enable disabled
1 Compare timer 0 interrupt enable enabled

17 CT1I
Compare Timer 1 Interrupt Enable
0 Compare timer 1 interrupt enable disabled
1 Compare timer 1 interrupt enable enabled

18 CT2I
Compare Timer 2 Interrupt Enable
0 Compare timer 2 interrupt enable disabled
1 Compare timer 2 interrupt enable enabled

19 CT3I
Compare Timer 3 Interrupt Enable
0 Compare timer 3 interrupt enable disabled
1 Compare timer 3 interrupt enable enabled

20 CT4I
Compare Timer 4 Interrupt Enable
0 Compare timer 4 interrupt enable disabled
1 Compare timer 4 interrupt enable enabled

21:31 Reserved

0 15 16 17 18 19 20 21 31

CT0I

CT1I

CT2I

CT3I

CT4I
AMCC Proprietary 258

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12.3.3 GPT Interrupt Status Register (GPT0_ISS and GPT0_ISC)

GPT interrupt status register (GPT0_ISS/ICC) bits correspond to the compare timer interrupt status. The GPT
Interrupt status bits for the compare timers are set when a valid comparison is made, and the compare
interrupt is enabled.

GPT0_ISS can be accessed through address offset 0x1C, which provides a normal read access and a
“Write-Set” access, allowing individual status bits to be set through a write access. Any status bits written to 1
are set (forced to 1), while bits written to 0 remain unchanged (0 or 1).

Offset 0x20 (GPT0_ISC) provides a normal read access and a “Write-Clear” access, which allows individual
status bits to be reset through a write access. Any status bits written to 1 are cleared (forced to 0), while bits
written to 0 remain unchanged (0 or 1).

Figure 12-4 describes GPT0_ISS and GPT0_ISC bits.

Figure 12-4. GPT Interrupt Status Register (GPT0_ISS and GPT0_ISC)
0:15 Reserved

16 CT0S
Compare Timer 0 Interrupt Status
0 Compare timer 0 interrupt status disabled
1 Compare timer 0 interrupt status enabled

17 CT1S
Compare Timer 1 Interrupt Status
0 Compare timer 1 interrupt status disabled
1 Compare timer 1 interrupt status enabled

18 CT2IS
Compare Timer 2 Interrupt Status
0 Compare timer 2 interrupt status disabled
1 Compare timer 2 interrupt status enabled

19 CT3S
Compare Timer 3 Interrupt Status
0 Compare timer 3 interrupt status disabled
1 Compare timer 3 interrupt status enabled

20 CT4S
Compare Timer 4 Interrupt Status
0 Compare timer 4 interrupt status disabled
1 Compare timer 4 interrupt status enabled

21:31 Reserved

0 15 16 17 18 19 20 21 31

CT0S

CT1S

CT2S

CT3S

CT4S
AMCC Proprietary 259

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12.3.4 GPT Interrupt Enable Register (GPT0_IE)

GPT interrupt enable register (GPT0_IE) bits correspond to the compare timer interrupt enable bits. When set,
GPT0_IE bits prevent the corresponding compare from activating the GPT UIC interrupts, even if the interrupt
mask (GPT0_IM) bits are set; however, these bits have no effect on the corresponding interrupt status (GPT0_IS)
bits.

Figure 12-5 describes GPT0_IE register bits.

Figure 12-5. GPT Interrupt Enable Register (GPT0_IE)
0:15 Reserved

16 CT0I
Compare Timer 0 Interrupt Enable
0 Compare timer 0 interrupt enable disabled
1 Compare timer 0 interrupt enable enabled

17 CT1I
Compare Timer 1 Interrupt Enable
0 Compare timer 1 interrupt enable disabled
1 Compare timer 1 interrupt enable enabled

18 CT2I
Compare Timer 2 Interrupt Enable
0 Compare timer 2 interrupt enable disabled
1 Compare timer 2 interrupt enable enabled

19 CT3I
Compare Timer 3 Interrupt Enable
0 Compare timer 3 interrupt enable disabled
1 Compare timer 3 interrupt enable enabled

20 CT4I
Compare Timer 4 Interrupt Enable
0 Compare timer 4 interrupt enable disabled
1 Compare timer 4 interrupt enable enabled

21:31 Reserved

0 15 16 17 18 19 20 21 31

CT0I

CT1I

CT2I

CT3I

CT4I
AMCC Proprietary 260

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12.3.5 GPT Compare Timer Registers (GPT0_COMP0 - GPT0_COMP4)

Each GPT compare timer register (GPT0_COMP0:GPT0_COMP4) is programmed with the value that is continu-
ally compared to the TBC value, as filtered through each MASK register. The width of each
GPT0_COMP0:GPT0_COMP4 is 32 bits.

12.3.6 GPT Compare Mask Registers (GPT0_MASK0 - GPT0_MASK4)

GPT compare mask registers (GPT0_MASK0:GPT0_MASK4) bits are used by the compare timers to mask off the
comparison (i.e., force a valid compare) of individual bits when the comparison function is performed. For bits that
are set, a valid compare is always assumed, regardless of the actual value of these bits in the
GPT0_COMP0:GPT0_COMP4 or GPT0_TBC registers. The width of each implemented Mask Register is 32 bits.

Figure 12-6. Compare Timer Register (GPT0_COMP0 - GPT0_COMP4)
0:31 COMP Compare Timer

Figure 12-7. Compare Mask Register (GPT0_MASK0 - GPT0_MASK4)

0:31 MASK
Comparison Function
0 Comparison enabled
1 Comparison disabled

When set to 1, a valid comparison is assumed.
AMCC Proprietary 261

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 13. Debugging

The debug facilities of the PPC405EP include support for debug modes for debugging during hardware and
software development, and debug events that allow developers to control the debug process. Debug
registers control the debug modes and debug events. The debug registers are accessed through software
running on the processor or through a JTAG debug port. The debug interface is the JTAG debug port. The
JTAG debug port can also be used for board test.

The debug modes, events, controls, and interface provide a powerful combination of debug facilities for a
wide range of hardware and software development tools.

13.1 Development Tool Support

The RISCWatch product from IBM is an example of a development tool that uses the external debug mode,
debug events, and the JTAG debug port to implement a hardware and software development tool. The
RISCTrace™ feature of RISCWatch is an example of a development tool that uses the real-time instruction
trace capability of the PPC405EP.

13.2 Debug Interfaces

The PPC405EP provides JTAG and trace interfaces to support hardware and software test and debug.
Typically, the JTAG interface connects to a debug port external to the PPC405EP; the debug port is typically
connected to a JTAG connector on a processor board.

The trace interface connects to a trace port, also external to the PPC405EP, that is typically connected to a
trace connector on the processor board.

13.3 IEEE 1149.1 Test Access Port (JTAG Debug Port)

The IEEE 1149.1 Test Access Port (TAP), commonly called the JTAG (Joint Test Action Group) debug port,
is an architectural standard described in IEEE Std 1149.1–1990, IEEE Standard Test Access Port and
Boundary Scan Architecture. The standard describes a method for accessing internal chip facilities using a
four- or five-signal interface.

The JTAG debug port, originally designed to support scan-based board testing, is enhanced to support the
attachment of debug tools. The enhancements, which are designed to the IEEE 1149.1 specifications for
vendor-specific extensions, are compatible with standard JTAG hardware for boundary-scan system testing.

JTAG Signals The JTAG debug port implements the four required JTAG signals: TCK,
TMS, TDI, and TDO, and the optional TRST signal.

JTAG Clock
Requirements

The frequency of the TCK signal can range from DC to one-half of the
internal chip clock frequency.

JTAG Reset
Requirements

The JTAG debug port logic is reset at the same time as a system reset.
Upon receiving TRST, the JTAG debug port returns to the Test-Logic
Reset state.
AMCC Proprietary 262

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.4 JTAG Connector

A 16-pin male 2x8 header connector is suggested as the JTAG debug port connector. This connector
definition matches the requirements of the RISCWatch debugger from IBM. The connector is described in
detail in RISCWatch Debugger User’s Guide.

13.4.1 JTAG Instructions

The JTAG debug port provides the standard extest, idcode, sample/preload, and bypass instructions and the
optional highz and clamp instructions. Invalid instructions behave as the bypass instruction.

13.4.2 JTAG Boundary Scan

Boundary Scan Description Language (BSDL), IEEE 1149.1b-1994, is a supplement to IEEE 1149.1-1990
and IEEE 1149.1a-1993 Standard Test Access Port and Boundary-Scan Architecture. BSDL, a subset of the
IEEE 1076-1993 Standard VHSIC Hardware Description Language (VHDL), allows a rigorous description of
testability features in components which comply with the standard. BSDL is used by automated test pattern
generation tools for package interconnect tests and by electronic design automation (EDA) tools for
synthesized test logic and verification. BSDL supports robust extensions that can be used for internal test
generation and to write software for hardware debug and diagnostics.

The primary components of BSDL include the logical port description, the physical pin map, the instruction
set, and the boundary register description.

The logical port description assigns symbolic names to the pins of a chip. Each pin has a logical type of in,
out, inout, buffer, or linkage that defines the logical direction of signal flow.

The physical pin map correlates the logical ports of the chip to the physical pins of a specific package. A
BSDL description can have several physical pin maps; each map is given a unique name.

Instruction set statements describe the bit patterns that must be shifted into the Instruction Register to place
the chip in the various test modes defined by the standard. Instruction set statements also support
descriptions of instructions that are unique to the chip.

The boundary register description lists each cell or shift stage of the Boundary Register. Each cell has a
unique number: the cell numbered 0 is the closest to the Test Data Out (TDO) pin; the cell with the highest
number is closest to the Test Data In (TDI) pin. Each cell contains additional information, including: cell type,

Table 13-1. JTAG Instructions

Instruction Code Comments

Extest 1111000 IEEE 1149.1 standard.

1111001 Reserved.

Sample/Preload 1111010 IEEE 1149.1 standard.

IDCode 1111011 IEEE 1149.1 standard.

Private xxxx100 Private instructions

HighZ 1111101 IEEE 1149.1a-1993 optional

Clamp 1111110 IEEE 1149.1a-1993 optional

Bypass 1111111 IEEE 1149.1 standard.
263 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
logical port associated with the cell, logical function of the cell, safe value, control cell number, disable value,
and result value.

13.4.3 JTAG Implementation

PPC405EP JTAG interface I/Os (TDI, TDO, TMs, TCK, and TRST) are 5V tolerant and do not contain internal
pull up resistors.

The optional JTAG instructions, idcode and highz, offer additional JTAG functionality. The idcode instruction
returns the PPC405EP JTAG ID, which is unique for each chip version. The highz instruction disables all chip
outputs regardless of whether they are included in the JTAG boundary scan chain.

The PPC405EP provides boundary scan structures on most I/O signals. However, the following signals are
excluded because of speed and functional considerations:

• DrvrInh1
• DrvrInh2
• PciClk
• RcvrInh
• TestEn

13.4.4 JTAG ID Register (CPC0_JTAGID)

CPC0_JTAGID is a Device Control Register that enables manufacturing, part number, and version
information to be determined through the TAP. The mfdcr instruction is used to read this register.

Refer to PowerPC 405EP Embedded Processor Data Sheet for the values of the CPC0_JTAGID fields.

13.5 Trace Port

The PPC405EP implements a trace status interface to support the tracing of code running in real-time. This
interface enables the connection of an external trace tool, such as RISCWatch, and allows for user-extended
trace functions. A software tool with trace capability, such as RISCWatch with RISCTrace, can use the data
collected from this port to trace code running on the processor. The result is a trace of the code executed,

Figure 13-1. JTAG ID Register (CPC0_JTAGID)
0:3 VERS Version

4:7 LOC Developer Location

8:19 PART Part Number

20:31 MANF Manufacturer Identifier

0 3 4 7 8 19 20 31

LOC

VERS PART

MANF
AMCC Proprietary 264

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
including code executed out of the instruction cache if it was enabled. Information on trace capabilities, how
trace works, and how to connect the external trace tool is available in RISCWatch Debugger User’s Guide.

13.6 Debug Modes

The PPC405EP supports the following debug modes, each of which supports a type of debug tool or debug
task commonly used in embedded systems development:

• Internal debug mode, which supports ROM monitors

• External debug mode, which supports JTAG debuggers

• Debug wait mode, which supports processor stopping or stepping for JTAG debuggers while servicing
interrupts

• Real-time trace mode, which supports trigger events for real-time tracing

Internal and external debug modes can be enabled simultaneously. Both modes are controlled by fields in
Debug Control Register 0 (DBCR0). Real-time trace mode is available only if internal, external, and debug
wait modes are disabled.

13.6.1 Internal Debug Mode

Internal debug mode provides access to architected processor resources and supports setting hardware and
software breakpoints and monitoring processor status. In this mode, debug events generate debug interrupts,
which can interrupt normal program flow so that monitor software can collect processor status and alter
processor resources.

Internal debug mode relies on exception handling software at a dedicated interrupt vector and an external
communications path to debug software problems. This mode, used while the processor executes
instructions, enables debugging of operating system or application programs.

In this mode, debugger software is accessed through a communications port, such as a serial port, external
to the processor core.

To enable internal debug mode, the Debug Control Register 0 (DBCR0) field IDM is set to 1
(DBCR0[IDM] = 1). To enable debug interrupts, MSR[DE] = 1. A debug interrupt occurs on a debug event
only if DBCR0[IDM] = 1 and MSR[DE] = 1.

13.6.2 External Debug Mode

External debug mode provides access to architected processor resources and supports stopping, starting,
and stepping the processor, setting hardware and software breakpoints, and monitoring processor status. In
this mode, debug events cause the processor to become architecturally frozen. While the processor is frozen,
normal instruction execution stops and architected processor resources can be accessed and altered.
External bus activity continues in external debug mode.

The JTAG mechanism can pass instructions to the processor for execution, allowing a JTAG debugger to
display and alter processor resources, including memory.

The JTAG mechanism prevents the occurrence of a privileged exception when a privileged instruction is
executed while the processor is in user mode.

Storage access control by a memory management unit (MMU) remains in effect while in external debug
mode; the debugger may need to modify MSR or TLB values to access protected memory.
265 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Because external debug mode relies only on internal processor resources, it can be used to debug system
hardware and software.

In this mode, access to the processor is through the JTAG debug port.

To enable external debug mode, DBCR0[EDM] = 1. To enable debug interrupts, MSR[DE] = 1. A debug
interrupt occurs on a debug event only if DBCR0[EDM] = 1 and MSR[DE] = 1.

13.6.3 Debug Wait Mode

In debug wait mode, debug events cause the PPC405EP to enter a state in which interrupts can be serviced
while the processor appears to be stopped.

Debug wait mode provides access to architected processor resources in a manner similar to external debug
mode, except that debug wait mode allows the servicing of interrupt handlers. It supports stopping, starting,
and stepping the processor, setting hardware and software breakpoints, and monitoring processor status. In
this mode, if a debug event caused the processor to become architecturally frozen, an interrupt causes the
processor to run an interrupt handler and return to the architecturally frozen state upon returning from the
interrupt handler. While the processor is frozen, normal instruction execution stops and architected processor
resources can be accessed and altered. External bus activity continues in debug wait mode.

The processor enters debug wait mode when internal and external debug modes are disabled
(DBCR0[IDM, EDM] = 0), debug wait mode is enabled (MSR[DWE] = 1), debug wait is enabled by the JTAG
debugger, and a debug event occurs.

For example, while the PPC405EP is in debug wait mode, an external device might generate an interrupt that
requires immediate service. The PPC405EP can service the interrupt (vector to an interrupt handler and
execute the interrupt handler code) and return to the previous stopped state.

Debug wait mode relies only on internal processor resources, so it can be used to debug both system
hardware and software problems. This mode can also be used for software development on systems without
a control program, or to debug control program problems.

In this mode, access to the processor is through the JTAG debug port.

13.6.4 Real-time Trace Debug Mode

Real-time trace debug mode supports the generation of trigger events for tracing the instruction stream being
executed out of the instruction cache in real-time. In this mode, debug events can be used to control the
collection of trace information through the use of trigger event generation. The broadcast of trace information
is independent of the use of debug events as trigger events.This mode does not alter the processor
performance.

A trace event occurs when internal and external debug modes are disabled (DBCR0[IDM, EDM] = 0) and a
debug events occurs.

When a trace event occurs, a trace device can capture trace signals that provide the instruction trace
information. Most trace events generated from debug events are blocked when internal debug, external
debug, or debug wait modes are enabled
AMCC Proprietary 266

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.7 Processor Control

The PPC405EP provides the following debug functions for processor control. Not all facilities are available in
all debug modes.

13.8 Processor Status

The processor execution status, exception status, and most recent reset can be monitored.

13.9 Debug Registers

Several debug registers, available to debug tools running on the processor, are not intended for use by
application code. Debug tools control debug resources such as debug events. Application code that uses
debug resources can cause the debug tools to fail, as well as other unexpected results, such as program
hangs and processor resets.

Application code should not use the debug resources, including the debug registers.

Instruction Step The processor is stepped one instruction at a time, while stopped, using the
JTAG debug port.

Instruction Stuff While the processor is stopped, instructions can be stuffed into the processor
and executed using the JTAG debug port.

Halt The processor can be stopped by activating an external halt signal on an
external event, such as a logic analyzer trigger. This signal freezes the
processor architecturally. While frozen, normal instruction execution stops and
architected processor resources can be accessed and altered using the JTAG
debug port. Normal execution resumes when the halt signal is deactivated.

Stop The processor can be stopped using the JTAG debug port. Activating a stop
causes the processor to become architecturally frozen. While frozen, normal
instruction execution stops and the architected processor resources can be
accessed and altered using the JTAG debug port.

Reset An external reset signal, the JTAG debug port, or DBCR0 can request core,
chip, and system resets.

Debug Events A debug event triggers a debug operation. The operation depends on the
debug mode. For more information and a list of debug events, see “Debug
Events” on page 13-274.

Freeze Timers The JTAG debug port or DBCR0 can control timer resources. The timers can
be enabled to run, freeze always, or freeze on a debug event.

Trap Instructions The trap instructions tw and twi can be used, with debug events, to implement
software breakpoints.

Execution Status The JTAG debug port can monitor processor execution status to determine
whether the processor is stopped, waiting, or running.

Exception Status The JTAG debug port can monitor the status of pending synchronous
exceptions.

Most Recent Reset The JTAG debug port or an mfspr instruction can be used to read the Debug
Status Register (DBSR) to determine the type of the most recent reset.
267 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
13.9.1 Debug Control Registers

The debug control registers (DBCR0 and DBCR1) can enable and configure debug events, reset the
processor, control timer operation during debug events, enable debug interrupts, and set the processor
debug mode.

13.9.1.1 Debug Control Register 0 (DBCR0)

Figure 13-2. Debug Control Register 0 (DBCR0)
0 EDM External Debug Mode

0 Disabled
1 Enabled

1 IDM Internal Debug Mode
0 Disabled
1 Enabled

2:3 RST Reset
00 No action
01 Core reset
10 Chip reset
11 System reset

Causes a processor reset request when
set by software.

Attention: Writing 01, 10, or 11 to this field causes a processor reset request.

4 IC Instruction Completion Debug Event
0 Disabled
1 Enabled

5 BT Branch Taken Debug Event
0 Disabled
1 Enabled

6 EDE Exception Debug Event
0 Disabled
1 Enabled

7 TDE Trap Debug Event
0 Disabled
1 Enabled

8 IA1 IAC 1 Debug Event
0 Disabled
1 Enabled

9 IA2 IAC 2 Debug Event
0 Disabled
1 Enabled

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 30 31

EDM

IDM

RST

IC EDE

BT

IA1 IA34

TDE

FTIA12

IA2

IA3

IA12X IA4

IA12T

IA34X IA34T
AMCC Proprietary 268

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.9.1.2 Debug Control Register1 (DBCR1)

10 IA12 Instruction Address Range Compare 1–2
0 Disabled
1 Enabled

Registers IAC1 and IAC2 define an
address range used for IAC address
comparisons.

11 IA12X Enable Instruction Address Exclusive
Range Compare 1–2
0 Inclusive
1 Exclusive

Selects the range defined by IAC1 and
IAC2 to be inclusive or exclusive.

12 IA3 IAC 3 Debug Event
0 Disabled
1 Enabled

13 IA4 IAC 4 Debug Event
0 Disabled
1 Enabled

14 IA34 Instruction Address Range Compare 3–4
0 Disabled
1 Enabled

Registers IAC3 and IAC4 define an
address range used for IAC address
comparisons.

15 IA34X Instruction Address Exclusive Range
Compare 3–4
0 Inclusive
1 Exclusive

Selects range defined by IAC3 and IAC4 to
be inclusive or exclusive.

16 IA12T Instruction Address Range Compare 1-2
Toggle
0 Disabled
1 Enable

Toggles range 12 inclusive, exclusive
DBCR[IA12X] on debug event.

17 IA34T Instruction Address Range Compare 3–4
Toggle
0 Disabled
1 Enable

Toggles range 34 inclusive, exclusive
DBCR[IA34X] on debug event.

18:30 Reserved

31 FT Freeze timers on debug event
0 Timers not frozen
1 Timers frozen

Figure 13-3. Debug Control Register 1 (DBCR1)

0 D1R DAC1 Read Debug Event
0 Disabled
1 Enabled

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 23 24 31

D1R

D2R

D1W D1S

D2S

DA12

DA12X

DV1M DV1BE

DV2M DV2BED2W
269 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
1 D2R DAC 2 Read Debug Event
0 Disabled
1 Enabled

2 D1W DAC 1 Write Debug Event
0 Disabled
1 Enabled

3 D2W DAC 2 Write Debug Event
0 Disabled
1 Enabled

4:5 D1S DAC 1 Size
00 Compare all bits
01 Ignore lsb (least significant bit)
10 Ignore two lsbs
11 Ignore five lsbs

Address bits used in the compare:

Byte address
Halfword address
Word address
Cache line (8-word) address

6:7 D2S DAC 2 Size
00 Compare all bits
01 Ignore lsb (least significant bit)
10 Ignore two lsbs
11 Ignore five lsbs

Address bits used in the compare:

Byte address
Halfword address
Word address
Cache line (8-word) address

8 DA12 Enable Data Address Range Compare 1:2
0 Disabled
1 Enabled

Registers DAC1 and DAC2 define an
address range used for DAC address
comparisons

9 DA12X Data Address Exclusive Range Compare
1:2
0 Inclusive
1 Exclusive

Selects range defined by DAC1 and DAC2
to be inclusive or exclusive

10:11 Reserved

12:13 DV1M Data Value Compare 1 Mode
00 Undefined
01 AND

10 OR

11 AND-OR

Type of data comparison used:

All bytes selected by DBCR1[DV1BE] must
compare to the appropriate bytes of DVC1.

One of the bytes selected by
DBCR1[DV1BE] must compare to the
appropriate bytes of DVC1.

The upper halfword or lower halfword must
compare to the appropriate halfword in
DVC1. When performing halfword
compares set DBCR1[DV1BE] = 0011,
1100, or 1111.
AMCC Proprietary 270

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.9.2 Debug Status Register (DBSR)

The DBSR contains status on debug events and the most recent reset; the status is obtained by reading the
DBSR. The status bits are normally set by debug events or by any of the three reset types.

Clearing DBSR fields is performed by writing a word to the DBSR, using the mtdbsr extended mnemonic,
having a 1 in all bit positions to be cleared and a 0 in the all other bit positions. The data written to the DBSR
is not direct data, but a mask. A 1 clears the bit and a 0 has no effect.

Application code should not use the DBSR.

14:15 DV2M Data Value Compare 2 Mode
00 Undefined
01 AND

10 OR

11 AND-OR

Type of data comparison used

All bytes selected by DBCR1[DV2BE] must
compare to the appropriate bytes of DVC2.

One of the bytes selected by
DBCR1[DV2BE] must compare to the
appropriate bytes of DVC2.

The upper halfword or lower halfword must
compare to the appropriate halfword in
DVC2. When performing halfword
compares set DBCR1[DV2BE] = 0011,
1100, or 1111.

16:19 DV1B
E

Data Value Compare 1 Byte
0 Disabled
1 Enabled

Selects which data bytes to use in data
value comparison

20:23 DV2B
E

Data Value Compare 2 Byte
0 Disabled
1 Enabled

Selects which data bytes to use in data
value comparison

24:31 Reserved

Figure 13-4. Debug Status Register (DBSR)
0 IC Instruction Completion Debug Event

0 Event did not occur
1 Event occurred

1 BT Branch Taken Debug Event
0 Event did not occur
1 Event occurred

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 22 23 24 31

IC

BT TIE IA1 DR1

EDE UDE DW1 MRR

IDE

IA2

DR2

DW2 IA3

IA4
271 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
2 EDE Exception Debug Event
0 Event did not occur
1 Event occurred

3 TIE Trap Instruction Debug Event
0 Event did not occur
1 Event occurred

4 UDE Unconditional Debug Event
0 Event did not occur
1 Event occurred

5 IA1 IAC1 Debug Event
0 Event did not occur
1 Event occurred

6 IA2 IAC2 Debug Event
0 Event did not occur
1 Event occurred

7 DR1 DAC1 Read Debug Event
0 Event did not occur
1 Event occurred

8 DW1 DAC1 Write Debug Event
0 Event did not occur
1 Event occurred

9 DR2 DAC2 Read Debug Event
0 Event did not occur
1 Event occurred

10 DW2 DAC2 Write Debug Event
0 Event did not occur
1 Event occurred

11 IDE Imprecise Debug Event
0 No circumstance that would cause a

debug event (if MSR[DE] = 1) occurred
1 A debug event would have occurred, but

debug exceptions were disabled
(MSR[DE] = 0)

12 IA3 IAC3 Debug Event
0 Event did not occur
1 Event occurred

13 IA4 IAC4 Debug Event
0 Event did not occur
1 Event occurred

14:21 Reserved

22:23 MRR Most Recent Reset
00 No reset has occurred since last

cleared by software.
01 Core reset
10 Chip reset
11 System reset

This field is set to a value, indicating the
type of reset, when a reset occurs.

24:31 Reserved
AMCC Proprietary 272

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.9.3 Instruction Address Compare Registers (IAC1–IAC4)

The PPC405EP can take a debug event upon an attempt to execute an instruction from an address. The
address, which must be word-aligned, is defined in an IAC register. The DBCR0[IA1, IA2] fields of DBCR0
controls the instruction address compare (IAC) debug event.

13.9.4 Data Address Compare Registers (DAC1–DAC2)

The PPC405EP can take a debug event upon storage or cache references to addresses specified in the DAC
registers. The specified addresses in the DAC registers are EAs of operands of storage references or cache
instructions.The fields DBCR1[D1R], [D2R] and DBCR[D1W], [D2W] control the DAC-read and DAC-write
debug events, respectively.

Addresses in the DAC registers specify exact byte EAs for DAC debug events. However, one may want to
take a debug event on any byte within a halfword (ignore the least significant bit (LSb) of the DAC), on any
byte within a word (ignore the two LSbs of DAC), or on any byte within eight words (ignore four LSbs of DAC).
DBCR1[D1S, D2S] control the addressing options.

Errors related to execution of storage reference or cache instructions prevent DAC debug events.

Figure 13-5. Instruction Address Compare Registers (IAC1–IAC4)
0:29 Instruction Address Compare word

address
Omit two low-order bits of complete
address.

30:31 Reserved

Figure 13-6. Data Address Compare Registers (DAC1–DAC2)
0:31 Data Address Compare (DAC) byte

address
DBCR0[D1S] determines which address
bits are examined.

0 29 30 31

0 31
273 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
13.9.5 Data Value Compare Registers (DVC1–DVC2)

The PPC405EP can take a debug event upon storage or cache references to addresses specified in the DAC
registers, that also require the data at that address to match the value specified in the DVC registers. The
data address compare for a DVC events works the same as for a DAC event. Cache operations do not cause
DVC events. If the data at the address specified matches the value in the corresponding DVC register a DVC
event will occur. The fields DBCR1[DV1M, DV2M] control how the data value are compared.

Errors related to execution of storage reference or cache instructions prevent DVC debug events.

13.9.6 Debug Events

Debug events, enabled and configured by DBCR0 and DBCR1 and recorded in the DBSR, cause debug
operations. A debug event occurs when an event listed in Table 13-2, “Debug Events,” on page 13-274 is
detected. The debug operation is performed after the debug event.

In internal debug mode, the processor generates a debug interrupt when a debug event occurs. In external
debug mode, the processor stops when a debug event occurs. When internal and external debug mode are
both enabled, the processor stops on a debug event with the debug interrupt pending. When external and
internal debug mode are both disabled, and debug wait mode is enabled the processor stops, but can be
restarted by an interrupt. When all debug modes are disabled, debug events are recorded in the DBSR, but
no action is taken.

Table 13-2 lists the debug events and the related fields in DBCR0, DBCR1, and DBSR. DBCR0 and DBCR1
enable the debugs events, and the DBSR fields report their occurrence.

Figure 13-7. Data Value Compare Registers (DVC1–DVC2)
0:31 Data Value to Compare

Table 13-2. Debug Events

Event

Enabling
DBCR0, DBCR1

Fields
Reporting

DBSR Fields Description

Instruction Completion IC IC Occurs after completion of an instruction.

Branch Taken BT BT Occurs before execution of a branch
instruction determined to be taken.

Exception Taken EDE EXC Occurs after an exception.

Trap Instruction TDE TIE Occurs before execution of a trap
instruction where the conditions are such
that the trap will occur.

0 31
AMCC Proprietary 274

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.9.7 Instruction Complete Debug Event

This debug event occurs after the completion of an instruction. If DBCR0[IDM] = 1, DBCR0[EDM] = 0 and
MSR[DE] =0 this debug event is disabled.

13.9.8 Branch Taken Debug Event

This debug event occurs before execution of a branch instruction determined to be taken. If DBCR0[IDM] = 1,
DBCR0[EDM] = 0 and MSR[DE] =0 this debug event is disabled.

13.9.9 Exception Taken Debug Event

This debug event occurs after an exception. Exception debug events always include the non-critical class of
exceptions. When DBCR0[IDM] = 1 and DBCR0[EDM] = 0 the critical exceptions are not included.

13.9.10 Trap Taken Debug Event

This debug event occurs before execution of a trap instruction where the conditions are such that the trap will
occur. When trap is enabled for a debug event, external debug mode is enabled, internal debug mode is
enabled with MSR[DE] enabled, or debug wait mode is enabled, a trap instruction will not cause a program
exception.

13.9.11 Unconditional Debug Event

This debug event occurs immediately upon being set by the JTAG debug port.

Unconditional UDE UDE Occurs immediately upon being set by the
JTAG debug port.

Instruction Address
Compare

IA1, IA2, IA3,
IA4, IA12,
IA12X, IA12T,
IA34, IA34X,
IA34T

IA1, IA2, IA3,
IA4

Occurs before execution of an instruction
at an address that matches an address
defined by the Instruction Address Compare
Registers (IAC1–IAC4).

Data Address
Compare

D1R, D1W, D1S,
D2R, D2W, D2S,
DA12, DA12X

DR2,DW2 Occurs before execution of an instruction
that accesses a data address that matches
the contents of the specified DAC register.

Data Value Compare DV1M, DV2M,
DV1BE, DV2BE

DR1, DW1 Occurs after execution of an instruction
that accesses a data address for which a
DAC occurs, and for which the value at the
address matches the value in the specified
DVC register.

Imprecise IDE Indicates that another debug event
occurred while MSR[DE] = 0

Table 13-2. Debug Events

Event

Enabling
DBCR0, DBCR1

Fields
Reporting

DBSR Fields Description
275 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
13.9.12 IAC Debug Event

This debug event occurs before execution of an instruction at an address that matches an address defined by
the Instruction Address Compare Registers (IAC1–IAC4). DBCR0[IA1, IA2, IA3, IA4] enable IAC debug
events IAC can be defined as an exact address comparison to one of the IACn registers or on a range of
addresses to compare defined by a pair of IACn registers.

13.9.12.1 IAC Exact Address Compare

In this mode each IACn register specifies an exact address to compare. These are enabled by setting
DBCR0[IAn] = 1 and disabling IAC range compare (DBCR0[IA12X] = 0 for IAC1 and IAC2 and
DBCR0[IA23X] = 0 for IAC3 and IAC4). The corresponding DBSR[IAn] bit displays the results of the debug
event.

13.9.12.2 IAC Range Address Compare

In this mode a pair of IACn registers are used to define a range of addresses to compare:

Range 1:2 corresponds to IAC1 and IAC2
Range 3:4 corresponds to IAC3 and IAC4

To enable Range 1:2, DBCR0[IA12] = 1 and DBCR0[IA1] or DBCR0[IA2] =1. An IAC event will be seen on
the DBSR[IAn] field that corresponds to the enabled DBCR0[IAn] field. If DBCR0[IA1] and DBCR0[IA2] are
enabled, the results of the event are reported on both DBSR fields. Setting DBCR0[IA12] =1 prohibits IAC1
and IAC2 from being used for exact address compares.

To enable Range 3:4, DBCR0[IA34] = 1 and DBCR0[IA3] or DBCR0[IA4] =1. An IAC event will be seen on
the DBSR[IAn] field that corresponds to the enabled DBCR0[IAn] field. If DBCR0[IA3] and DBCR0[IA4] are
enabled, the results of the event will be reported on both DBSR fields. Setting DBCR0[IA34] =1 prohibits
IAC3 and IAC4 from being used for exact address compares.

Ranges can be defined as inclusive, as shown in the preceding examples, or exclusive, using DBCR0[IA12X]
(corresponding to range 1:2) and DBCR0[IA34X] (corresponding to range 3:4), as follows:

DBCR0[IA12] = 1: Range 1:2 = IAC1 ≤ range < IAC2.
DBCR0[IA12X] = 1: Range 1:2 = Range low < IAC1 or IAC2 ð≤ Range high
DBCR0[IA34] = 1: Range 3:4 = IAC3 ≤ range < IAC4.
DBCR0[IA34X] = 1: Range 3:4 = Range low < IAC3 or IAC4 ≤ Range high

Figure 13-8 shows the range selected in an inclusive IAC range address compare. Note that the address in
IAC1 is considered part of the range, but the address in IAC2 is not, as shown in the preceding examples.
The thick lines indicate that the indicated address is included in the compare results.

Figure 13-8. Inclusive IAC Range Address Compares

IAC1 IAC2

0 FFFF FFFF
AMCC Proprietary 276

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 13-9 shows the range selected in an inclusive IAC range address compare. Note that the address in
IAC1 is not considered part of the range, but the address in IAC2 is, along with the highest memory address,
as shown in the preceding examples.

To toggle the range from inclusive to exclusive or from exclusive to inclusive on a IAC range debug event,
DBCR0[IA12T] (corresponding to range 1:2) and DBCR0[IA34T] (corresponding to range 3:4) are used. If
these fields are set, the DBCR0[IA12X] or DBCR0[IA34X] fields toggle on an IAC debug event, changing the
defined range.

When a toggle is enabled (DBCR0[IA12T] for range 1:2 or DBCR0[IA34T] = 1 for range 3:4), and
DBCR0[IDM] =1, DBCR0[EDM] = 0, and MSR[DE] = 0, IAC range comparisons for the corresponding toggle
field are disabled.

13.9.13 DAC Debug Event

This debug event occurs before execution of an instruction that accesses a data address that matches the
contents of the specified DAC register. DBCR1[D1R, D2R, D1W, D2W] enable DAC debug events for
address comparisons on DAC1 and DAC2 for read instructions, DAC2 for read instructions, DAC1 for write
instructions, DAC2 for write instructions respectively. Loads are reads and stores are writes. DAC can be
defined(DBCR1[D1R, D2R])as an exact address comparison to one of the DACn registers or a range of
addresses to compare defined by DAC1 and DAC2 registers.

13.9.13.1 DAC Exact Address Compare

In this mode, each DACn register specifies an exact address to compare. Thes registers are enabled by
setting one or more of DBCR1[D1R,D2R,D1W,D2W] = 1, and disabling DAC range compare DBCR1[DA12X]
= 0. The corresponding DBSR[DR1,DR2,DW1,DW2] field displays the results of a DAC debug event.

The address for a DAC is the effective address (EA) of a storage reference instruction. EAs are always
generated within a single aligned word of memory. Unaligned load and store, strings, and multiples generate
multiple EAs to be used in DAC comparisons.

Data address compare (DAC) debug events can be set to react to any byte in a larger block of memory, in
addition to reacting to a byte address match. The DAC Compare Size fields (DBCR1[D1S, D2S]) allow DAC
debug events to react to byte, halfword, word, or 8-word line address by ignoring a number of LSBs in the EA.

The user must determine how the addresses of interest are accessed, relative to byte, halfword, word, string,
and unaligned storage instructions, and adjust the DAC compare size field appropriately to cover the
addresses of interest.

DAC 1 Size
00 Compare all bits
01 Ignore LSB (least significant bit)
10 Ignore two LSBs
11 Ignore five LSBs

Byte address
Halfword address
Word address
Cache line (8-word) address

Figure 13-9. Exclusive IAC Range Address Compares

IAC1 IAC2

0 FFFF FFFF
277 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
For example, suppose that a DAC debug event should react to byte 3 of a word-aligned target. A DAC set for
exact compare would not recognize a reference to that byte by load/store word or load/store halfword
instructions, because the byte address is not the EA of such instructions. In such a case, the D1S field must
be set for a wider capture range (for example, to ignore the two least significant bits (LSBs) if word operations
to the misaligned byte are to be detected). The wider capture range may result in excess debug events
(events that are within the specified capture range, but reflect byte operations in addition to the desired byte).
Such excess debug events must be handled by software.

While load/store string instructions are inherently byte addressed the processor will generate EAs containing
the largest portion of an aligned word address as possible. It may not be possible to DAC on a specific
individual byte using load/store string instructions.

13.9.13.2 DAC Range Address Compare

In this mode, the pair of DAC1 and DAC2 registers are used to define a range of addresses to compare.

To enable DAC range, DBCR1[DA12] = 1 and one or more of DBCR1[D1R,D2R,D1W,D2W] =1. The DAC
event is seen on the DBSR[DR1,DR2,DW1,DW2] field that corresponds to the DBCR1[D1R,D2R,D1W,D2W]
field that is enabled. For example, if DBCR1[D1R] and DBCR1[D2R] are enabled, the results of a DAC debug
event are reported on DBSR[DR1, DR2]. Setting DBCR1[DA12] =1 prohibits DAC1 and DAC2 from being
used for exact address compares.

Ranges are defined to be inclusive or exclusive, using the DBCR1[DA12X], as follows:

DBCR1[DA12] = 1: Range = DAC1 ≤ range < DAC2.
DBCR1[DA12X] = 1: Range = Range low < DAC1 or DAC2 ≤ Range high.

Figure 13-10 shows the range selected in an inclusive DAC range address compare. Note that the address in
DAC1 is considered part of the range, but the address in DAC2 is not, as shown in the preceding examples.
The thick lines indicate that the indicated address is included in the compare results.

Figure 13-11 shows the range selected in an exclusive DAC range address compare. Note that the address in
DAC1 is not considered part of the range, but the address in DAC2 is, along with the highest memory
address, as shown in the preceding examples.

The DAC Compare Size fields (DBCR1[D1S, D2S]) are not used by DAC range comparisons.

Figure 13-10. Inclusive DAC Range Address Compares

DAC1 DAC2

0 FFFF FFFF

Figure 13-11. Exclusive DAC Range Address Compares

DAC1 DAC2

0 FFFF FFFF
AMCC Proprietary 278

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13.9.13.3 DAC Applied to Cache Instructions

Some cache instructions can cause DAC debug events. There are several special cases.

Table 13-3 summarizes possible DAC debug events by cache instruction:

Architecturally, the dcbi and dcbz instructions are “stores.” These instructions can change data, or cause the
loss of data by invalidating a dirty line. Therefore, they can cause DAC-write debug events.

The dccci instruction can also be considered a “store” because it can change data by invalidating a dirty line.
However, dccci is not address-specific; it affects an entire congruence class regardless of the operand
address of the instruction. Because it is not address-specific, dccci does not cause DAC-write debug events.

Architecturally, the dcbt, dcbtst, dcbf, and dcbst instructions are “loads.” These instructions do not change
data. Flushing or storing a cache line from the cache is not architecturally a “store” because a store had
already updated the cache; the dcbf or dcbst instruction only updates the copy in main memory.

The dcbt and dcbtst instructions can cause DAC-read debug events regardless of cachability.

Although dcbf and dcbst are architecturally “loads,” these instructions can create DAC-write (but not DAC-
read) debug events. In a debug environment, the fact that external memory is being written is the event of
interest.

Even though dcread and dccci are not address-specific (they affect a congruence class regardless of the
instruction operand address), and are considered “loads,” in the PPC405EP they do not cause DAC debug
events.

All ICU operations (icbi, icbt, iccci, and icread) are architecturally treated as “loads.” icbi and icbt cause
DAC debug events. iccci and icread do not cause DAC debug events in the PPC405EP.

Table 13-3. DAC Applied to Cache Instructions

Instruction

Possible DAC Debug Event

DAC-Read DAC-Write

dcba No Yes

dcbf No Yes

dcbi No Yes

dcbst No Yes

dcbt Yes No

dcbz No Yes

dccci No No

dcread No No

dcbtst Yes No

icbi Yes No

icbt Yes No

iccci No No

icread No No
279 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
13.9.13.4 DAC Applied to String Instructions

An stswx instruction with a string length of 0 is a no-op. The lswx instruction with the string length equal to 0
does not alter the RT operand with undefined data, as allowed by the PowerPC Architecture. Neither stswx
nor lswx with zero length causes a DAC debug event because storage is not accessed by these instructions.

13.9.14 Data Value Compare Debug Event

A data value compare (DVC) debug event can occur only after execution of a load or store instruction to an
address that compares with the address in one of the DACn registers and has a data value that matches the
corresponding DVCn register. Therefore, a DVC debug event requires both the data address comparison
and the data value comparison to be true. A DVCn debug event when enabled in the DBCR1 supercedes a
DACn debug event since the DVCn and the DACn both use the same DACn register.

DVC1 debug events are enabled by setting the appropriate DAC enable DBCR1[D1R,D1W] to cause an
address comparison and by setting anybit combination in the DBCR1[DV1BE]. DVC2 debug events are
enabled by setting the appropriate DAC enable DBCR1[D2R,D2W] to cause an address comparison and by
setting any bit combination in the DBCR1[DV1BE]. Each bit in DBCR1[DV1BE, DV2BE] correspondes to a
byte in DVC1 and DVC2. Exact address compare and range address compare work the same for DVC as for
a simple DAC.

DBSR[DR1] and DBSR[DW1] record status for DAC1 debug events. Which DBSR bit is set depends on the
setting of DBCR1[D1R] and DBCR[D1W]. If DBCR1[D1R] = 1, DBSR[DR1] = 1, assuming that a DVC event
occurred. Similarly, if DBCR1[D1W] = 1, DBSR[DW1] = 1, assuming that a DVC event occurred.

Similarly, DBSR[DR2] and DBSR[DW2] record status for DAC2 debug events. Which DBSR bit is set
depends on the setting of DBCR1[D2R] and DBCR[D2W]. If DBCR1[D2R] = 1, DBSR[DR2] = 1, assuming
that a DVC event occurred. Similarly, if DBCR1[D2W] = 1, DBSR[DW2] = 1, assuming that a DVC event
occurred.

In the following example, a DVC1 event is enabled by setting DBCR1[D1R] = 1, DBCR1[D1W] = 1,
DBCR1[DA12] = 0, and DBCR1[DV1BE] = 0000. When the data address and data value match the DAC1
and DVC1, a DVC1 event is recorded in DBSR[DR1] or DBSR[DW1], depending on whether the operation is
a load (read) or a store (write). This example corresponds to the last line of Table 13-4.

In Table 13-4, n is 1 or 2, depending on whether the bits apply to DAC1, DAC2, DVC1, and DVC2 events.
“Hold” indicates that the DBSR holds its value unless cleared by software. “RA” indicates that the operation is
a read (load) and the data address compares (exact or range). “WA” indicates that the operation is a write
(store) and the data address compares (exact or range). “RV” indicates that the operation is a read (load), the
data address compares (exact or range), and the data value compares according to DBCR1[DVCn].

Table 13-4. Setting of DBSR Bits for DAC and DVC Events

DBCR1 DBSR

DACn Event
DVCn

Enabled
DVCn
Event [DnR] [DnW] [DA12] [DRn] [DWn]

0 — — — — — Hold Hold

— — — 0 0 — Hold Hold

1 0 — 0 1 — Hold WA

1 0 — 1 0 — RA Hold

1 0 — 1 1 — RA WA
AMCC Proprietary 280

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The settings of DBCR1[DV1M] and DBCR1[DV2M] are more precisely defined in Table 13-6 and Table 13-7.
(n enables the table to apply to DBCR1[DV1M, DV2M] and DBCR1[DV1BE, DV2BE]). DVnBEm indicates
bytes selected (or not selected) for comparison in DBCR1[DVnBE].

When DBCR1[DVnM] = 01, the comparison is an AND; all bytes must compare to the appropriate bytes of
DVC1.

When DBCR1[DVnM] = 10, the comparison is an OR; at least one of the selected bytes must compare to the
appropriate bytes of DVC1.

When DBCR1[DVnM] = 11, the comparison is an AND-OR (halfword) comparison. This is intended for use
when DBCR1[DVnBE] is set to 0011, 0111, or 1111. Other values of DBCR1[DVnBE] can be compared, but
the results are more easily understood using the AND and OR comparisons. In Table 13-5, “not” is ¬,
AND is ∧, and OR is ∨.

Table 13-6 illustrates comparisons for aligned DVC accesses, that is, words, halfwords, or bytes on naturally
aligned boundaries (all byte accesses are aligned).

1 1 0 — — — Hold Hold

1 1 1 0 1 — Hold WV

1 1 1 1 0 — RV Hold

1 1 1 1 1 — RV WV

Table 13-5. Comparisons Based on DBCR1[DVnM]

DBCR1[DVnM] Setting Operation Comparison

00 — Undefined

01 AND (¬DVnBE0 ∨ (DVC1[byte 0] = data[byte 0])) ∧
(¬DVnBE1 ∨ (DVC1[byte 1] = data[byte 1])) ∧
(¬DVnBE2 ∨ (DVC1[byte 2] = data[byte 2])) ∧
(¬DVnBE3 ∨ (DVC1[byte 3] = data[byte 3]))

10 OR (DVnBE0 ∧ (DVC1[byte 0] = data[byte 0])) ∨
(DVnBE1 ∧ (DVC1[byte 1] = data[byte 1])) ∨
(DVnBE2 ∧ (DVC1[byte 2] = data[byte 2])) ∨
(DVnBE3 ∧ (DVC1[byte 3] = data[byte 3]))

11 AND-OR (DVnBE0 ∧ (DVC1[byte 0] = data[byte 0])) ∧
(DVnBE1 ∧ (DVC1[byte 1] = data[byte 1])) ∨
(DVnBE2 ∧ (DVC1[byte 2] = data[byte 2])) ∧
(DVnBE3 ∧ (DVC1[byte 3] = data[byte 1]))

Table 13-6. Comparisons for Aligned DVC Accesses

Access DBCR1[DVnBE] Setting Value Operation

Word All Word value AND

Table 13-4. Setting of DBSR Bits for DAC and DVC Events

DBCR1 DBSR

DACn Event
DVCn

Enabled
DVCn
Event [DnR] [DnW] [DA12] [DRn] [DWn]
281 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
For halfword accesses, the halfword value is replicated in the “empty “ halfword in the DVC register, for
example, if the low-order halfword is to be compared, its value is stored in the low-order halfword and the
high-order halfword of the register. Similarly, a byte value is replicated in each byte in the register.

Table 13-7 illustrates comparisons for misaligned DVC accesses. In the “DVC1” and “DVC2” columns, “x”
indicates a don’t care.

Note: Misaligned accesses stop the processor on the instruction causing the compare hit. The second part
of an instruction is not performed if the first part of the compare hits.

13.9.15 Imprecise Debug Event

The imprecise debug event is not an independent debug event, but indicates that a debug event occurred
while MSR[DE] = 0. This is useful in internal debug mode if a debug event occurs while in a critical interrupt
handler. On return from interrupt, a debug interrupt occurs if MSR[DE] = 1. If DBSR[IDE] = 1, the debug event
causing the interrupt occurred sometime earlier, not immediately after a debug event.

Halfword (Low-Order) All Halfword value replicated AND-OR

Halfword (High-Order) All Halfword value replicated AND-OR

Byte All Byte value replicated OR

Table 13-7. Comparisons for Misaligned DVC Accesses

Access Operation DVC1 (Hex) DVC2 (Hex)
DBCR1[DV1BE]

Setting
DBCR1[DV2BE]

Setting
DBCR1[D2S]

Setting

Word
(Offset 1)

AND xx112233 44xx xxxx 123 0 01

Word
(Offset 2)

AND xxxx1122 3344xxxx 23 01 10

Word
(Offset 3)

AND xxxxxx11 223344xx 3 012 10

Halfword
(Offset 1)

AND xx1122xx 12 12 10

Halfword
(Offset 3)

AND xxxxxx11 22xxxxxx 3 0 10

Table 13-6. Comparisons for Aligned DVC Accesses

Access DBCR1[DVnBE] Setting Value Operation
AMCC Proprietary 282

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
283 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 14. Clock and Power Management

The PPC405EP provides a clock and power management (CPM) controller that reduces power dissipation by
stopping clocks in unused or dormant functional units. Use of the CPM controller requires careful
programming and special consideration to avoid compromising system and functional unit integrity.

The CPM controller supports three different types of sleep interfaces to the functional units:

• In a CPM class 1 interface, the CPM_Sleep_N signal is asserted by the CPM controller when a register bit
is set by software. The functional unit is unconditionally put to sleep. There is no other communication with
the functional unit.

• In a CPM class 2 interface, the functional unit uses a combination of its internal state and external inputs to
determine whether or not it can be put to sleep. If sleeping is permitted, the functional unit asserts the
Sleep_Req signal to the CPM controller that responds by asserting CPM_Sleep_N if the enable for that
unit is set. The CPM_Sleep_N signal to a class 2 unit is deasserted when the CPM controller enable bit for
that unit is reset, or when the unit deasserts its Sleep_Req signal.

• The CPM class 3 interface has a CPM_SleepInit signal that is asserted by the CPM controller to request
that a functional unit go to sleep. If the unit can sleep, it asserts the Sleep_Req signal to the CPM
controller. The CPM_Sleep_N signal is then asserted by the CPM controller to shut off the class 3 clocks in
the functional unit. The functional unit or the CPM controller can end the sleep state. If the CPM controller
enable bit for the unit is reset, the CPM controller immediately deasserts CPM_SleepInit and
CPM_Sleep_N.

14.1 CPM Registers

Table 14-1 lists the registers used to program the CPM controller.

Each functional unit has one bit in each of CPC0_ER, CPC0_FR, and CPC0_SR. The bit assignment is the
same in the three registers. Figure 14-1 on page 14-285 shows the bit assignment and CPM class for each
PPC405EP functional units.

Table 14-1. CPM Registers

Register Name DCR Address Access
Reset Value (0:16)

(bits 17:31 reserved)

CPC0_ER 0x0B8 Read/Write 0x0000xxxx
CPC0_FR 0x0B9 Read/Write 0x0000xxxx
CPC0_SR 0x0BA Read Only 0xFFFFxxxx
AMCC Proprietary 284

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Figure 14-1. CPM Registers (CPC0_ER, CPC0FR, CPC0_SR)
0 GPT GPT Class 1

1 PCI PCI Class 1

2:14 Reserved

15 UIC0 UIC0 Class 1

16 CPU CPU Class 1

17 EBC EBC Class 2

18 SDRAM SDRAM Class 2

19 GPIO GPIO Class 1

20 Reserved

21 TMRCLK CPU Timers Sleep Class 1

22 Reserved

23 PLB PLB Arbiter Class 2

24 POB PLB-to-OPB Bridge Class 2

25 DMA DMA Class 2

26 Reserved

27 IIC IIC Class 3.2

28:29 Reserved

30 UART1 UART1 Class 1

31 UART0 UART0 Class 1

0 1 2 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TMRCLK POB IIC

PLB DMA UART1

UART0

GPT UICO

PCI CPU

EBC GPIO

SDRAM
285 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
14.1.1 CPM Enable Register (CPC0_ER)

The CPC0_ER bits enable the process of putting a functional unit to sleep. The class of a unit determines
how its interface signals are controlled when the bit associated with the unit is set to 1.

14.1.2 CPM Force Register (CPC0_FR)

Setting a CPC0_FR bit forces assertion of the CPM_Sleep_N signal to the functional unit. For a class 1 unit,
this is equivalent to setting the CPC0_ER bit associated with the unit. For class 2 or class 3 units,
CPM_Sleep_N is asserted regardless of the state of the Sleep_Req signal coming from the unit.

14.1.3 CPM Status Register (CPC0_SR)

The read-only CPC0_SR shows the current state of the CPM_Sleep_N signals associated with each unit. If a
bit is 0, the associated unit is asleep. If a bit is 1, the associated unit is awake and operating normally.

Class 1 When an associated CPC0_ER bit is set to 1, the CPM_Sleep_N signal to the class
1 unit is asserted. When the bit is set to 0, CPM_Sleep_N is deasserted. There are
some additional considerations to avoid generating extraneous interrupts when
waking the UIC. Before enabling sleep mode (setting DPC0_ER[UIC] to 1), save the
contents of the UIC Masked Status Register (UIC0_MSR) and UIC Enable Register
(UIC0_ER), and disable all interrupts by setting UIC0_ER to 0. After exiting sleep
mode, write the ones complement of the saved contents of the UIC0_MSR to the
UIC Status Register (UIC0_SR), and restore the state of the UIC0_ER.

Class 2 When an associated CPC0_ER bit is set to 1, and the Sleep_Req signal from the
class 2 unit is asserted (the unit is requesting sleep state), CPM_Sleep_N to the
class 2 unit is asserted. When the bit is set to 0, the CPM_Sleep_N signal is
deasserted.

Class 3 When an associated CPC0_ER bit is set to 1, the CPM_SleepInit signal to the class
3 unit is asserted (the CPM controller is requesting permission to put the unit to
sleep). When the class 3 unit activating the Sleep_Req in response, (the unit is
giving permission to be put to sleep), CPM_Sleep_N signal to the class 3 unit is
asserted. When the bit is set to 0, CPM_SleepInit and CPM_Sleep_N are
deasserted.
AMCC Proprietary 286

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
287 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Part IV. PPC405EP External Interfaces
AMCC Proprietary 288

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
289 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 15. SDRAM Controller

The SDRAM controller provides a 32-bit interface to SDRAM memory. The memory controller provides
flexible, fully programmable timings for interfacing to a wide variety of SDRAM devices. It supports two
physical banks of dual- or quad-bank SDRAMs, where each physical bank is from 4 MB to 256 MB in size. In
addition, the SDRAM controller supports the use of registered SDRAMs.

The controller supports page mode operation with bank interleaving and maintains up to four open pages. To
improve performance, the controller features separate 32-byte read and 128-byte write buffers. Designers
also have the opportunity to reduce system power by placing the SDRAM controller in sleep and/or self-
refresh mode.

15.1 Interface Signals

In many systems the memory controller can directly interface to SDRAM, relieving designers from the need to
buffer signals or add circuitry to phase adjust the SDRAM clock. However, since each application is unique, a
detailed timing and signal integrity analysis must always be performed. Please note that while the SDRAM
address signals (MemAddr12:0 and BA1:0) utilize industry standard bit ordering, the data bus
(MemData0:31) follows the PowerPC bit numbering convention. That is, MemData0 is the most significant bit
and DQM0 is the byte enable for MemData0:7.

Figure 15-1 illustrates the SDRAM signal I/Os.

Figure 15-1. SDRAM Controller Signals

MemClkOut1:0
ClkEn1:0

PLB

DCR Bus
Configuration

Registers

SDRAM
Controller

BA1:0

CAS
RAS

WE

MemAddr12:0
BankSel1:0

MemData0:31
DQM0:3
AMCC Proprietary 290

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The usage and signal state after a PPC405EP reset for each of these signals is shown in Table 15-1 on
page 15-291.

Note 1: MemClkOut1:0 follow the internal PLB clock. During power-up, PLBClk and MemClkOut1:0 run at
SySClk/4, until PLBClk is configured for normal operation.

15.2 Accessing SDRAM Registers

After a system reset, software is required to configure and then enable the SDRAM controller. When this is
complete, the SDRAM memory is ready for access by the processor, or any other master in the PPC405EP.
Once the controller is operating, it is usually not necessarily for software to access the SDRAM configuration
registers. The status registers, however, are useful for determining the state of the memory controller.

All SDRAM configuration and status registers are accessed using the mtdcr and mfdcr PowerPC
instructions. Access to these registers is performed using an indirect addressing method through the
SDRAM0_CFGADDR and SDRAM0_CFGDATA registers.

Table 15-1. SDRAM Signal Usage and State During/Following Reset

Signal Reset State Usage

MemClkOut1:0 Toggling1 Two copies of the SDRAM clock.

ClkEn1:0 1 SDRAM clock enable.

BA1:0 2’b0 Bank address. Used to select an internal SDRAM bank in dual- and
quad-bank SDRAM devices.

MemAddr12:0 13b’0 Memory address. See Table 15-6, “Logical Address Bit on BA1:0 and
MemAddr12:0 Versus Addressing Mode.,” on page 15-297 for
additional details.

BankSel1:0 2b’1 Bank Selects. Used to select between different physical banks of
SDRAM memory.

RAS 1 Row Address Strobe.

CAS 1 Column Address Strobe.

WE 1 Write Enable.

MemData0:31 High-Z Data input/output. MemData0 is the most significant bit.

DQM0:3 1 Data Mask, an input mask for write accesses and an output enable
during read operations. DQM0 applies to MemData0:7, DQM1 to
MemData8:15, DQM2 to MemData16:23 and DQM3 to
MemData24:31.

Table 15-2. SDRAM Controller DCR Addresses

Register DCR Address Access Description

SDRAM0_CFGADDR 0x010 R/W SDRAM Controller Address Register
SDRAM0_CFGDATA 0x011 R/W SDRAM Controller Data Register
291 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 15-3 lists the indirectly accessed SDRAM configuration and status registers.

To read or write one of these SDRAM controller registers, software must first write the register’s address
offset into the SDRAM0_CFGADDR register. The target register can then be read or written through the
SDRAM0_CFGDATA DCR address. The following PowerPC code illustrates this procedure by reading the
SDRAM0_CFG register.

li r3,SDRAM0_CFG ! address offset of SDRAM0_CFG
mtdcr SDRAM0_CFGADDR,r3 ! set offset address
mfdcr r4,SDRAM0_CFGDATA ! read value of SDRAM0_CFG

Programming Note: Reserved fields in SDRAM controller configuration registers must not change when
the register is written. To modify bit fields within a register, read the register, use a mask to clear the
target bits, OR in the new field value, and then write the result back.

15.3 SDRAM Controller Configuration and Status

Software must program a number of SDRAM control registers before the SDRAM controller can be started
and memory accessed. At a minimum, this involves writing to the SDRAM Configuration Register
(SDRAM0_CFG), SDRAM Timing Register (SDRAM0_TR) and one or more Memory Bank Configuration
Registers (SDRAM0_BnCR).

15.3.1 Memory Controller Configuration Register (SDRAM0_CFG)

After a system reset the SDRAM controller is disabled and must be configured before memory transactions
can occur. The Memory Controller Configuration Register (SDRAM0_CFG) serves to both enable the
controller and select from various memory controller features. These features include enabling power
management and registered SDRAM support. Each of these settings is global and applies to the entire
SDRAM subsystem.

Prior to enabling the SDRAM controller by setting SDRAM0_CFG[DCE], the SDRAM0_TR, SDRAM0_RTR,
SDRAM0_PMIT, and SDRAM0_BnCR registers must be configured. This is because once
SDRAM0_CFG[DCE]=1 writing any of the listed SDRAM registers does not actually update the target
register. Write access to SDRAM0_CFG is independent of SDRAM0_CFG[DCE]. However, software must

Table 15-3. SDRAM Controller Configuration and Status Registers

Mnemonic Address Offset Access Description Page

SDRAM0_CFG 0x20 R/W SDRAM Configuration 15-
292

SDRAM0_STATUS 0x24 R SDRAM Controller Status 15-
294

SDRAM0_RTR 0x30 R/W Refresh Timer Register 15-
303

SDRAM0_PMIT 0x34 R/W Power Management Idle Timer 15-
304

SDRAM0_B0CR 0x40 R/W Memory Bank 0 Configuration Register 15-
294

SDRAM0_B1CR 0x44 R/W Memory Bank 1 Configuration Register 15-
294

SDRAM0_TR 0x80 R/W SDRAM Timing Register 15-
298
AMCC Proprietary 292

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
ensure that the SDRAM controller is idle when updating SDRAM0_CFG[3:10]. This guarantees that the
register update does not affect any in-progress SDRAM operations.

Before software enables the SDRAM controller by setting SDRAM0_CFG[DCE] it must ensure that the
SDRAM power-on delay has been satisfied. For example, the IBM 16MB SDRAM requires a 100µs pause;
the 64MB SDRAM requires a 200µs pause. Once enabled, the SDRAM controller automatically performs the
following initialization procedure:

1. Issues the precharge command to all banks.

2. Waits SDRAM0_TR[PTA] cycles.

3. Performs eight CAS before RAS refresh cycles, each separated by SDRAM0_TR[RFTA] clock cycles)

4. Issues the mode register write command to each bank.

5. Perform eight CAS before RAS refresh cycles (each separated by SDRAM0_TR[RFTA] clock cycles).

6. Waits SDRAM0_TR[RFTA] clock cycles.

The SDRAM is then available for read and write access.

Figure 15-2. Memory Controller Configuration (SDRAM0_CFG)
0 DCE SDRAM Controller Enable

0 Disable
1 Enable

All SDRAM controller configuration
registers must be initialized and valid prior to
setting DCE.

1 SRE Self-Refresh Enable
0 Disable
1 Enable

See “Self-Refresh” on page 15-303.

2 PME Power Management Enable
0 Disable
1 Enabled

See “Power Management” on page 15-304.

3 Reserved
4 REGEN Registered Memory Enable

0 Disabled
1 Enabled

5:6 DRW SDRAM Width
00 32-bit
01 Reserved
10 Reserved
11 Reserved

Must be set to 0b00.

7:8 BRPF Burst Read Prefetch Granularity
00 Reserved
01 16 bytes
10 32 bytes
11 Reserved

Most applications should set this field to 0b01.

9 Reserved

0 1 2 3 4 5 6 7 8 9 10 11 31

DCE

SRE

BRPFPME
REGEN

DRW

EMDULR
293 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
15.3.2 Memory Controller Status (SDRAM0_STATUS)

The Memory Controller Status Register (SDRAM0_STATUS) allows software to determine the current state
of the SDRAM controller. If SDRAM0_STATUS[MRSCMP]=0 the SDRAM is not accessible for either read or
write operations. Similarly, the SDRAM is also inaccessible when the SDRAM is in self-refresh mode,
SDRAM0_STATUS[SRSTATUS]=1.

15.3.3 Memory Bank 0–1 Configuration (SDRAM0_B0CR–SDRAM0_B1CR)

These registers are used to configure and enable memory in each respective bank. Only SDRAM banks with
SDRAM0_BnCR[BE]=1 are initialized when SDRAM0_CFG[DCE] is set to 1 and subsequently available for
access. Since the SDRAM0_BnCR registers cannot be modified when SDRAM0_CFG[DCE]=1, adding or
removing memory banks requires that the SDRAM controller be disabled and then reinitialized.

10 EMDULR Enable Memory Data Unless Read
0 MemData0:31 are placed in high

impedance unless a memory write
is being performed.

1 MemData0:31 are driven unless a
memory read is being performed.

11:31 Reserved

Figure 15-3. Memory Controller Status (SDRAM0_STATUS)
0 MRSCMP Mode Register Set Complete

0 MRS not complete
1 MRS completed

Set to 1 when the SDRAM controller completes
the Mode Register Set Command, which results
from setting SDRAM0_CFG[DCE].
Clearing SDRAM0_CFG[DCE] causes this bit to
clear in the following MemClkOut1:0 cycle.

1 SRSTATUS Self-Refresh State
0 Not in Self-Refresh Mode
1 Self-Refresh Mode

See “Self-Refresh” on page 15-303.

2:31 Reserved

0 1 2 31

MRSCMP

SRSTATUS
AMCC Proprietary 294

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Figure 15-4. Memory Bank 0–1 Configuration Registers (SDRAM0_B0CR–SDRAM0_B1CR)
0:9 BA Base Address The base address must be aligned on a

boundary that matches the size of the
region defined in the SZ field. For example,
a 4 MB region must begin on an address
that is divisible by 4 MB.

10:11 Reserved

12:14 SZ Size
000 4M byte
001 8M byte
010 16M byte
011 32M byte
100 64M byte
101 128M byte
110 256M byte
111 Reserved

15 Reserved

16:18 AM Addressing Mode
000 Mode 1
001 Mode 2
010 Mode 3
011 Mode 4
100 Mode 5
101 Mode 6
110 Mode 7
111 Reserved

See Table 15-4, “SDRAM Addressing
Modes,” on page 296.

19:30 Reserved

31 BE Memory Bank Enable
0 Bank is disabled
1 Bank is enabled

0 9 10 11 12 14 15 16 18 19 30 31

BA

SZ

AM

BE
295 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
.

15.3.4 Page Management

The SDRAM controller supports page mode operation with bank interleaving and maintains up to four open
pages in the memory subsystem. The SDRAM controller page management unit (PMU) tracks memory
accesses (activate, read/write, precharge, and refresh) and maintains a directory of up to four open pages. All
PMU entries are allocated and deallocated based on current and pending accesses. Allocated entries are
checked against the address of the pending access, and a page hit occurs when a match exists. All PMU
directory entries are deallocated when a CAS before RAS refresh occurs.

Open pages can be spread across the system memory array on different bank selects (BankSeln) or be
contained in a single bank select, depending on the memory access sequences and the memory subsystem
implementation. For a single bank memory subsystem, the number of open pages is limited to the number of
internal banks associated with the SDRAM devices in that bank. For example, a single bank implementation
consisting of SDRAMs with two internal banks can have two open pages. In this case, the maximum of two
open pages is a limitation of the memory subsystem implementation, not the SDRAM controller.

The SDRAM page size for page hits varies, depending on the address mode programmed in
SDRAM0_BnCR[AM]. Table 15-5, “SDRAM Page Size,” on page 15-296 details the relationship of the
address mode to the page size.

Table 15-4. SDRAM Addressing Modes

Addressing
Mode

SDRAM
Memory Organization

1 11 x 9 - 2 Bank
11 x 10 - 2 Bank

2 12 x 9 - 4 Bank
12 x 10 - 4 Bank

3 13 x 9 - 4 Bank
13 x 10 - 4 Bank
13 x 11 - 4 Bank

4 12 x 8 - 2 Bank
12 x 8 - 4 Bank
13 x 8 - 2 Bank

5 11 x 8 - 2 Bank
11 x 8 - 4 Bank

6 13 x 8 - 2 Bank
13 x 8 - 4 Bank

7 13 x 9 - 2 Bank
13 x 10 - 2 Bank

Table 15-5. SDRAM Page Size

Address Mode Page Size

1,2,3,7 2 KB

4,5,6 1 KB
AMCC Proprietary 296

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
15.3.5 Logical Address to Memory Address Mapping

SDRAM memory requires that addresses be divided into row and column portions. The relationship between
a logical address and the SDRAM row and column address is determined by the address mode programmed
in SDRAM0_BnCR[AM] and is shown in Table 15-6.

Note 1: Memory organization is the number of rows x columns x internal banks.

Note 2: Column address bit 10 sent out on MemAddr11 for 13 x 11 x 4 parts.

Note 3: All read operations transfer 64-bits from SDRAM memory to the controller. Therefore, MemAddr0 is
first driven with 0 and then 1. For data items narrower than 64-bits, the requested byte(s) are fulfilled
from the 64-bit doubleword.

Table 15-6. Logical Address Bit on BA1:0 and MemAddr12:0 Versus Addressing Mode.

Mode
Bank Size Address

Phase
BA MemAddr

Organization1 1 0 12 11 10 9 8 7 6 5 4 3 2 1 0

1 8 MB Row 7 9 7 9 10 11 12 13 14 15 16 17 18 19 20

11 x 9 x 2 Column 7 9 7 9 AP 8 21 22 23 24 25 26 27 28 29

16 MB Row 7 9 7 9 10 11 12 13 14 15 16 17 18 19 20

11 x 10 x 2 Column 7 9 7 9 AP 8 21 22 23 24 25 26 27 28 29

2 32 MB Row 7 8 7 9 10 11 12 13 14 15 16 17 18 19 20

12 x 9 x 4 Column 7 8 7 4 AP 6 21 22 23 24 25 26 27 28 29

64 MB Row 7 8 7 9 10 11 12 13 14 15 16 17 18 19 20

12 x 10 x 4 Column 7 8 7 4 AP 6 21 22 23 24 25 26 27 28 29

3 64 MB Row 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

13 x 9 x 4 Column 6 7 7 4 AP 5 21 22 23 24 25 26 27 28 29

128 MB Row 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

13 x 10 x 4 Column 6 7 7 4 AP 5 21 22 23 24 25 26 27 28 29

256 MB Row 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

13 x 11 x 4 Column 6 7 7 42 AP 5 21 22 23 24 25 26 27 28 29

4 8/16 MB Row 8 21 8 9 10 11 12 13 14 15 16 17 18 19 20

12 x 8 x 2/4 Column 8 21 8 4 AP 6 21 22 23 24 25 26 27 28 29

5 4/8 MB Row 9 21 9 21 10 11 12 13 14 15 16 17 18 19 20

11 x 8 x 2/4 Column 9 21 9 21 AP 8 21 22 23 24 25 26 27 28 29

6 16/32 MB Row 7 21 8 9 10 11 12 13 14 15 16 17 18 19 20

13 x 8 x 2/4 Column 7 21 8 9 AP 8 21 22 23 24 25 26 27 28 29

7 32 MB Row 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20

13 x 9 x 2 Column 7 7 7 4 AP 6 21 22 23 24 25 26 27 28 29

64 MB Row 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20

13 x 10 x 2 Column 7 7 7 4 AP 6 21 22 23 24 25 26 27 28 29
297 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
15.3.6 SDRAM Timing Register (SDRAM0_TR)

The SDRAM Timing Register sets the timing parameters for all SDRAM memory banks. This register must be
written prior to setting SDRAM0_CFG[DCE]. If SDRAM0_CFG[DCE]=1, writes to this register appear to
complete, but do not affect the contents of SDRAM0_TR.

If the SDRAM interface is operated in registered mode, (SDRAM0_CFG[REGE]=1) a programmed CAS
latency of 2 clocks (SDRAM0_TR[CASL] = 2‘b01) corresponds to a registered CAS latency of 3 clocks, and a
programmed latency of 3 clocks (SDRAM0_TR[CASL] = 2‘b10) corresponds to a registered CAS latency of 4
clocks. Programming the CAS latency to 4 clocks (SDRAM0_TR[CASL] = 2‘b11), corresponding to a
registered CAS latency of 5 clocks, is not supported.

See “Selected Timing Diagrams” on page 15-299 for timing diagrams illustrating how the fields in
SDRAM0_TR affect the signalling on the SDRAM memory interface.

Figure 15-5. SDRAM Timing Register (SDRAM0_TR)
0:6 Reserved

7:8 CASL SDRAM CAS latency.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

9:11 Reserved

12:13 PTA SDRAM Precharge Command to next
Activate Command minimum.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

14:15 CTP SDRAM Read / Write Command to
Precharge Command minimum.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

16:17 LDF SDRAM Command Leadoff.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

18:26 Reserved

0 6 7 8 9 11 12 13 14 15 16 17 18 26 27 29 30 31

CASL

PTA

CTP

LDF

RFTA

RCD
AMCC Proprietary 298

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
15.3.7 Selected Timing Diagrams

The SDRAM controller is capable of performing many different types of read and write operations. Since the
SDRAM controller is often servicing read and write requests from several masters, the exact sequence of
operations on the external SDRAM interface cannot be predicted. Therefore, the timing diagrams in this
section should be considered as examples of the signalling that can be observed on the SDRAM interface,
and not the only types of transactions that occur.

The timing diagrams in this section are intended to illustrate cycle-based SDRAM programmable timing
parameters only. As such, AC specific timing information should not be inferred from the timing diagrams.
Instead, please refer to the PPC405EP data sheet for AC specifications.

Table 15-7 summarizes the SDRAM memory timing parameters used to annotate the waveforms. These
parameters are set in the SDRAM Timing Register (SDRAM0_TR).

27:29 RFTA SDRAM CAS before RAS Refresh
Command to next Activate Command
minimum.
000 4 MemClkOut1:0 cycles
001 5 MemClkOut1:0 cycles
010 6 MemClkOut1:0 cycles
011 7 MemClkOut1:0 cycles
100 8 MemClkOut1:0 cycles
101 9 MemClkOut1:0 cycles
110 10 MemClkOut1:0 cycles
111 Reserved

30:31 RCD SDRAM RAS to CAS Delay
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

Table 15-7. SDRAM Memory Timing Parameters

Name Function Description

RCD Activate to Read/Write
Command

Minimum number of clock cycles from an activate command to a read
or write command. Corresponds to SDRAM RAS to CAS assertion
delay.

RFTA Refresh to Activate Minimum number of clock cycles from a CAS before RAS refresh
command to the next activate command.

CTP Command to
Precharge

Minimum number of clock cycles from a read or write command to a
precharge command.

PTA Precharge to Active Minimum number of clock cycles required to wait following a
Precharge Command to issuing the next activate command.

CASL CAS Latency CAS access latency.

LDF Command Leadoff
Delay

Number of clock cycles from address/command assertion to bank
select (BankSeln) assertion.
299 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 15-6. Activate, Four Word Read, Precharge, Activate

Figure 15-7. Activate, Four Word Write, Precharge, Activate

MemClkOut1:0

ClkEn1:0

BA1:0

MemAddr2:11

MemAddr10/AP

BankSeln

RAS

CAS

MemData0:31

 CASL

 LDF LDF

 LDF

 LDF

 PTA CTP RCD

WE

MemAddr9:0

DQM0:3

MemClkOut1:0

ClkEn1:0

BA1:0

MemAddr12:11

MemAddr10/AP

MemAddr9:0

RAS

CAS

WE

MemData0:31

BankSeln

 PTA CTP RCD

DQM0:3
AMCC Proprietary 300

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 15-8. Precharge All, Activate

Figure 15-9. CAS Before RAS Refresh

ClkEn1:0

BA1:0

MemAddr12:11

MemAddr10/AP

MemAddr9:0

BankSeln

RAS

CAS

WE

MemClkOut1:0

 PTA

DQM0:3

MemClkOut1:0

ClkEn1:0

BA1:0

MemAddr12:0

BankSel0

BankSel1

RAS

CAS

WE

RFT

 LDF

DQM0:3
301 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 15-10. Self-Refresh Entry and Exit

15.3.8 Auto (CAS Before RAS) Refresh

Refresh of odd memory banks is staggered from the refresh of even memory banks. Only enabled SDRAM
banks (SDRAM0_BnCR[BE]=1) are initialized when the controller is enabled (SDRAM0_CFG[DCE] set to 1)
and refreshed during normal operation. Once the memory controller is enabled and the initialization
sequence has completed, the refresh mechanism starts automatically with refreshing of the memory
continuing independent of SDRAM0_CFG[DCE].

Refresh requests are generated internally when the refresh timer expires. The refresh interval is
programmable via the Refresh Timer Register (SDRAM0_RTR). During refresh, all SDRAM accesses are
delayed until the refresh cycle completes.

MemClkOut1:0

ClkEn1:0

BA1:0

MemAddr12:11

MemAddr10/AP

MemAddr9:0

BankSeln

RAS

CAS

 PTA

Precharge all
(if necessary)

Self Refresh Exit

WE

 PTA

DQM0:3
AMCC Proprietary 302

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
15.3.9 Refresh Timer Register (SDRAM0_RTR)

The Refresh Timer Register determines the memory refresh rate for the SDRAM. The internal counter runs at
the controller clock frequency, thus if MemClkOut1:0 is 100MHz, a value of 0x05F0 produces a refresh
interval of 15.20µs (1520 x 10 ns = 15.20µs). This register is programmable to accommodate other SDRAM
clock frequencies.

15.4 Self-Refresh

The SDRAM controller supports self-refresh operation for applications desiring lower power. When the
SDRAM memory is placed in self-refresh mode it is no longer accessible for read or write accesses. Prior to
placing the SDRAM controller in self-refresh mode all pending and previously queued requests targeting the
SDRAM controller must be allowed to complete. Self-refresh entry is then initiated by setting
SDRAM0_CFG[SRE]. When set, the SDRAM controller:

1. Completes the current SDRAM operation.

2. Issues precharge all commands to close all open pages.

3. Performs an auto-refresh cycle.

4. Enters self-refresh mode and sets SDRAM0_STATUS[SRSTATUS].

The SDRAM controller maintains the SDRAM in self-refresh mode, independent of any pending memory
access requests, until SDRAM0_CFG[SRE] is cleared. Any attempt to read or write SDRAM memory during
this time will stall the PLB.

Once SDRAM0_CFG[SRE] is cleared, the SDRAM controller performs the following:

1. Exits self-refresh mode.

2. Performs an auto-refresh cycle.

3. Clears SDRAM0_STATUS[SRSTATUS].

The SDRAM controller is then ready to service any memory request.

Figure 15-11. Refresh Timing Register (SDRAM0_RTR)
0:1 Always 0b00

2:12 IV Interval Including bits 0:1 and 13:15, the value of
the high-order halfword of the register can
range from 0x0000–0x3BF8

13:15 Always 0b000

16:31 Reserved

0 1 2 12 13 15 16 31

IV

00 000
303 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
15.5 Power Management

The SDRAM controller provides a sleep mode where all SDRAM controller clocking is disabled with the
exception of the SDRAM refresh logic and the power management wake-up logic. When the SDRAM
controller is in sleep mode SDRAM refresh continues to preserve the contents of the memory and maintain
the refresh interval.

15.5.1 Sleep Mode Entry

Sleep mode is enabled by setting SDRAM0_CFG[PME] and CPM0_ER[SDRAM]. Once sleep mode is
enabled and the SDRAM controller has been idle for the number of cycles programmed in SDRAM0_PMIT,
the SDRAM controller goes to sleep.

15.5.2 Power Management Idle Timer (SDRAM0_PMIT)

The SDRAM0_PMIT register determines the number for SDRAM clock (MemClkOut1:0) cycles that the
controller must be idle before it asserts a sleep request when power management is enabled
(SDRAM0_CFG[PME]=1). At system reset, SDRAM0_PMIT[CNT] is set to zero. This corresponds to a sleep
request after 32 idle cycles.

15.5.3 Sleep Mode Exit

The power management wake-up logic monitors the PLB for SDRAM reads or writes from other masters. In
addition, the wakeup logic also monitor the DCR bus for accesses to SDRAM configuration and status
registers. If either a PLB or DCR operation targeting the SDRAM controller is detected the SDRAM controller
wakes up. The wakeup process results in a two cycle additional latency to the pending operation.

Figure 15-12. Power Management Idle Timer (SDRAM0_PMIT)
0:4 CNT Cycle Count Before Sleep Request

(0b00000–0b11111)
If CNT = 0b00000, the SDRAM clock must
be idle for 32 cycles before the SDRAM
controller asserts a sleep request.

5:9 Always 0b11111

10:31 Reserved

0 4 5 9 10 31

CNT

11111
AMCC Proprietary 304

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
305 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 16. External Bus Controller

The PPC405EP external bus controller (EBC) provides direct attachment for most SRAM and Flash memory
and peripheral devices. The interface minimizes the amount of external glue logic needed to communicate
with memory and peripheral devices, reducing embedded system device count, circuit board area, and cost.

To eliminate off-chip address decoding, the EBC provides five programmable chip selects that enable system
designers to locate memory and peripherals within the PPC405EP memory map. Chip select, data bus, and
associated control signal timings are programmable for both single and burst transfers. For peripherals with
variable timing requirements, the EBC supports device-paced transfers with optional bus-timeout. System
design is further simplified through dynamic bus sizing that supports seamlessly attaching 8- and 16-bit wide
memories and peripherals. Whenever a size mismatch exists between a read or write operation and the
externally attached device, the EBC automatically packs or unpacks data as appropriate.

16.1 Interface Signals

Figure 16-1 illustrates the signal I/O between the EBC and the external peripheral bus. The signals are
described in detail in Chapter 27, “Signal Summary.”

Figure 16-1. EBC Signals

PerClk

PerAddr3:31

PerCS1:4[GPIO10:13]
PerR/W

PerWE
PerOE

PLB

DCR Bus

PerBLast

PerData0:15

PerReady

Configuration
Registers

External Bus
Controller

PerWBE0:1

PerCS0
AMCC Proprietary 306

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 16-1 describes signal usage and state during and after chip and system resets.

16.1.1 Interfacing to Byte and Halfword Devices

Figure 16-2 illustrates how to interface byte and halfword devices to the peripheral data bus. When devices
are connected in this way, the EBC supports burst transfers and automatically converts read and write
operations to the data width of the external device. As shown in Figure 16-2, halfword devices should not
connect to PerAddr31. Instead, the active byte lanes should be inferred from PerWBE0:1, the read/write byte
enables.

When a large number of byte devices are attached to the peripheral data bus, the capacitive loading on byte
lane 0 is much larger than the loading on byte 1, possibly resulting in unacceptable timing performance on
byte 0.

If a bank register is configured as halfword-wide, then byte-wide devices may be attached to the bus in any
byte lane (and accessed using byte loads and stores). External logic may be required to develop additional
control signals if the data bus is used in this manner.

Table 16-1. EBC Signal Usage and State During and After Chip and System Resets

Signal Usage

PerClk Peripheral bus clock. During an EBC transfer all EBC signal transitions and data sampling
occurs synchronous to PerClk.

PerAddr3:31 Peripheral address bus. PerAddr4 is the most significant bit.

PerData0:15 Peripheral data bus. PerData0 is the most significant bit.

PerCS0:4 Chip selects.

PerR/W Read not write.

PerWBE0:1 Write byte enables or read/write byte enables.

PerOE Output enable.

PerWE Write enable. PerWE is low whenever a bit in PerWBE0:1 is low and PerR/W = 0.

PerBLast Burst Last. Active during non-burst operations and the last transfer of a burst access.

PerReady An input to allow external peripherals to perform device-paced transfers.

Byte
Device

Halfword
Device

PerData00:07

PerWBE0

PerData08:15

PerWBE1

Figure 16-2. Attachment of Devices of Various Widths to the Peripheral Data Bus

PerAddr03:31

03:31
PerCS0:4

CS 03:30CS
307 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.1.2 Driver Enables

As shown in Table 16-2 the output enables for the peripheral address, data and most of the EBC control
signals are configurable. Setting EBC0_CFG[CSTC]=1 eliminates the need for pull-up resistors on PerCS0:4.
Pullups are also unnecessary on the remainder of the EBC control signals when EBC0_CFG[EBTC]=1.

Both chip and system resets set EBC0_CFG[EBTC]=1 and EBC0_CFG[CSTC]=1. In most applications,
clearing EBC0_CFG[CSTC] is not recommended. If EBC0_CFG[EBTC]=0, EBC control signals can change
from the active state to high-Z without first being driven inactive. To prevent this, peripheral banks must be
configured with at least one hold cycle (EBC0_BnAP[TH] > 0).

Note: If the EBC0_CFG bit is set, the signal is driven to the appropriate state during the indicated EBC
operation. Otherwise, the I/O is High-Z.

16.2 Non-Burst Peripheral Bus Transactions

The timing of the PerCSn, PerOE, and PerWBE0:1 signals is programmable using the Peripheral Bank
Access Parameter (EBC0_BnAP) registers. For non-burst transfers, the access parameter registers control
the peripheral bus timing as follows:

• PerCSn becomes active 0–3 PerClk cycles (EBC0_BnAP[CSN]) after the address is driven.

• PerOE is driven low 0–3 PerClk cycles (EBC0_BnAP[OEN]) after PerCSn is active.

• PerBLast is active throughout the entire transfer and is driven high during the programmed hold time
(EBC0_BnAP[TH]).

• PerWBE0:1 can be either write byte enables or read and write enables.

If EBC0_BnAP[BEM]=0, PerWBE0:1 are write byte enables and:

– PerWBE0:1 goes active 0–3 (EBC0_BnAP[WBN]) PerClk cycles after PerCSn becomes active.

– PerWBE0:1 becomes inactive 0–3 (EBC0_BnAP[WBF]) PerClk cycles before PerCSn becomes
inactive.

If EBC0_BnAP[BEM]=1, PerWBE0:1 are read/write byte enables and have timing identical to the
peripheral address bus. In this case the EBC0_BnAP[WBN] and EBC0_BnAP[WBF] parameters are
ignored.

• 1–256 PerClk cycles (EBC0_BnAP[TWT] + 1) after the address became valid:

– If EBC0_CFG[CSTC]=1 or EBC0_BnAP[TH]>0, PerCSn is driven high.

Table 16-2. Effect of Driver Enable Programming on EBC Signal States

EBC
Operation

PerClk
PerWE PerCS0:4

PerAddr3:31
PerR/W

PerWBE0:1
PerOE

PerBLast PerData0:15

Reset High-Z High-Z High-Z High-Z

Idle Driven EBC0_CFG[CSTC] EBC0_CFG[EBTC] EBC0_CFG[EBTC]

Read Driven Driven Driven High-Z

Write Driven Driven Driven Driven
AMCC Proprietary 308

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
– If EBC0_CFG[CSTC]=0 and EBC0_BnAP[TH]=0, PerCSn transitions directly from logic 0 to the high-
impedance state.

• The parameters TWT, CSN, OEN, WBN, and WBF in EBC0_BnAP are not independent. For non-burst
configured banks it is required that TWT ≥ CSN + MAX(OEN,WBN) + WBF.

• The hold time, EBC0_BnAP[TH], is programmable from 0–7 PerClk cycles. During the hold time, the
peripheral address bus remains driven with the last address and all control signals are actively driven high.
If the operation was a write, the peripheral data bus continues driving the last data value.

• There is no guarantee of dead cycles between transfers on the peripheral interface. If there are back-to-
back transfers to the same memory bank and the number of hold cycles is programmed to zero
(EBC0_BnAP[TH]=0) and EBC0_BnAP[CSN]=0, then:

– PerCSn may not go inactive between the back-to-back transfers.

– If EBC0_BnAP[OEN]=0, PerOE may not become inactive between the two transfers.

– If EBC0_BnAP[WBN]=0 and EBC0_BnAP[WBF]=0, PerWBE0:1 may not go inactive between the back-
to-back transfers.

16.2.1 Single Read Transfer

Figure 16-3 shows the peripheral interface timing for a single read transfer from a non-burst enabled
(EBC0_BnAP[BME]=0) bank. The transaction begins with the address being driven. Since this is a single
transfer, PerBLast is also driven active along with the address. If byte enable mode is enabled for the bank
(EBC0_BnAP[BEM]=1) the byte enables are also output concurrently on PerWBE0:1. PerCSn then becomes
active EBC0_BnAP[CSN] cycles after the address, while PerOE goes low EBC0_BnAP[OEN] cycles after
PerCSn. The EBC then waits until EBC0_BnAP[TWT]+1 cycles have elapsed since the start of the
transaction and then reads the data bus and the peripheral error input, PerErr. If parity checking is enabled
(EBC0_BnAP[PAR]=1) the parity is also read at this time. The EBC then drives PerCSn, PerOE and
PerBLast high and waits EBC0_BnAP[TH] cycles.
309 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PerClk

1Cycle n

PerAddr03:31

PerCSn

PerOE

PerBLast

PerR/W

PerWBE0:1

PerData00:15

TWT+1

Figure 16-3. Single Read Transfer

CSN

Address

TH

OEN

PerWE

PerWE

PerWBE0:1
BEM=0

Data

BE
BEM=1
AMCC Proprietary 310

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16.2.2 Single Write Transfer

Figure 16-4 shows the peripheral interface timing for a single write transfer to a non-burst enabled
(EBC0_BnAP[BME]=0) bank. The transaction begins with the address being driven. Since this is a single
transfer, PerBLast is also driven active along with the address. PerCSn then becomes active
EBC0_BnAP[CSN] cycles after the address. At this point the signalling sequence depends on whether or not
byte enable mode is enabled for the bank.

• If EBC0_BnAP[BEM]=0, byte enable mode is disabled and the PerWBE0:1 are write byte enables. The
appropriate write byte enables go low EBC0_BnAP[WBN] cycles after PerCSn. The EBC then waits until
(EBC0_BnAP[TWT] – EBC0_BnAP[WBF] + 1) cycles have elapsed since the start of the transaction, then
drives all the PerWBE0:1 inactive.

• If EBC0_BnAP[BEM]=1, the PerWBE0:1 lines are byte enables and have the same timing as the
peripheral address bus.

After EBC0_BnAP[TWT+1] cycles elapse from the start of transfer, PerCSn and PerBLast are driven high.
The EBC then waits EBC0_BnAP[TH] cycles before allowing any pending transfers to occur.

PerClk

Cycle

PerAddr03:31

PerCSn

PerOE

PerBLast

PerR/W

Figure 16-4. Single Write Transfer

1

TWT+1
CSN

Address

TH

Data

n

WBN

WBE

BE

WBF

PerWBE0:1

PerData00:15

PerWE

PerWE

PerWBE0:1
BEM=0

BEM=1
311 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.3 Burst Transactions

Bursting is controlled on a per-bank basis by the Burst Mode Enable bit in the EBC0_BnAP registers. When
enabled (EBC0_BnAP[BME]=1) this mode activates bursting for all cache line fills and flushes, PLB burst
transfers to the EBC, and all packing and unpacking operations. When bursting is enabled:

• PerCSn becomes active 0–3 (EBC0_BnAP[CSN]) PerClk cycles after the address becomes valid.

• PerCSn is no longer actively driven:

– 1–32 (EBC0_BnAP[FWT]+1) PerClk cycles after the address becomes valid when a single transfer
occurs to a burst-enabled bank.

– 1–8 (EBC0_BnAP[BWT]+1) PerClk cycles after the last address becomes valid during a burst:

- If EBC0_CFG[CSTC]=1 or EBC0_BnAP[TH]>0, PerCSn is driven high.

- If EBC0_CFG[CSTC]=0 and EBC0_BnAP[TH]=0, PerCSn transitions directly from logic 0 to the high-
impedance state.

• During read operations PerOE is driven low 0–3 (EBC0_BnAP[OEN]) PerClk cycles after PerCSn is active.
PerOE goes inactive when PerCSn goes inactive.

• For bursts, the EBC drives a new address (EBC0_BnAP[FWT]+1) + N*(EBC0_BnAP[BWT]+1) cycles after
the start of the transaction, where N = 0, 1, 2, ...

• Addresses during a burst may “wrap.” For example, cache line fills are processed critical word first.

• During write operations, the write data is driven concurrent with each address.

• PerWBE0:1 can be either write byte enables or read and write enables.

If EBC0_BnAP[BEM]=0, PerWBE0:1 are write byte enables and:

– For the first transfer of a burst, or a single transfer to a burst enabled bank, the appropriate write byte
enables go low 0–3 (EBC0_BnAP[WBN]) cycles after PerCSn becomes active. The EBC then waits until
EBC0_BnAP[FWT] – EBC0_BnAP[WBF] + 1 cycles have elapsed since the start of the transaction and
drives PerWBE0:1 inactive.

– The remaining transfers of the burst are similar, except that PerWBE0:1 becomes active at the same
time that each new address is driven on the interface. The PerWBE0:1 remain low for
(EBC0_BnAP[BWT] + 1) – EBC0_BnAP[WBF] cycles.

If EBC0_BnAP[BEM]=1, PerWBE0:1 are byte enables that have timing identical to the peripheral address
bus. In this case the EBC0_BnAP[WBN] and EBC0_BnAP[WBF] parameters are ignored.

• PerBLast is active throughout the entire last (or only) transfer of a burst operation and is deactivated during
the programmed hold time (EBC0_BnAP[TH]).

• Access bank parameters CSN, OEN and WBN apply to the first (or only) transfer of a burst, while WBF
applies to all transfers. It is required that FWT ≥ CSN + MAX(OEN,WBN) + WBF and
BWT ≥ WBF.

• Hold time (EBC0_BnAP[TH]) is programmable from 0 to 7 cycles. During the hold time, the peripheral
address bus remains driven and all control signals are driven inactive. If the operation was a write, the
peripheral data bus continues driving the write data.
AMCC Proprietary 312

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• There is no guarantee of dead cycles between transfers on the peripheral interface. If there are back-to-
back transfers to the same memory bank and the number of hold cycles is programmed to zero
(EBC0_BnAP[TH]=0) and EBC0_BnAP[CSN]=0, then:

– PerCSn may not go inactive between the back-to-back transfers.

– If EBC0_BnAP[OEN]=0, PerOE may not become inactive between the two transfers.

– If EBC0_BnAP[WBN]=0 and EBC0_BnAP[WBF]=0, PerWBE0:1 may not go inactive between the back-
to-back transfers.

16.3.1 Burst Read Transfer

Figure 16-5 shows the peripheral interface timing for a burst read transfer from a burst enabled
(EBC0_BnAP[BME]=1) bank. The transaction begins with the address being driven. If byte enable mode is
enabled for the bank (EBC0_BnAP[BEM]=1) the byte enables are also output concurrently on PerWBE0:1.
PerCSn then becomes active EBC0_BnAP[CSN] cycles after the address, while PerOE goes low
EBC0_BnAP[OEN] cycles after PerCSn. The EBC then waits until EBC0_BnAP[FWT]+1 cycles have elapsed
since the start of the transaction and then reads the data bus and the peripheral error input, PerErr. If parity
checking is enabled (EBC0_BnAP[PEN]=1) the parity is also read at this same time.

The next address of the burst is then driven and after EBC0_BnAP[BWT]+1 cycles the EBC performs the
next read. The remaining items in the burst are read in the same manner, except that PerBLast is active
during the last data element. The EBC then drives PerCSn, PerOE and PerBLast high and waits
EBC0_BnAP[TH] cycles before allowing any pending transfers to occur.

BE n

PerClk

Cycle

PerAddr03:31

PerCSn

PerOE

PerBLast

PerR/W

Figure 16-5. Burst Read Transfer

1 n

FWT+1
CSN

Address 0

TH

OEN

D n

A 1 A 2 Address n

BWT+1

D 0 D 1 D 2

BE 1 BE 2BE 0PerWBE0:1

PerData00:15

PerWE

PerWE

PerWBE0:1
BEM=0

BEM=1
313 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.3.2 Burst Write Transfer

Figure 16-6 shows the peripheral interface timing for a burst write transfer to burst enabled
(EBC0_BnAP[BME]=1) bank. The transaction begins with the address being driven. At this point the
signalling sequence depends on whether byte enable mode is enabled for the bank.

• If EBC0_BnAP[BEM]=0, byte enable mode is disabled and PerWBE0:1 are write byte enables. In this
case, the appropriate write byte enables go low EBC0_BnAP[WBN] cycles after PerCSn. The EBC then
waits until (EBC0_BnAP[FWT] +1) - EBC0_BnAP[WBF] cycles have elapsed since the start of the
transaction and drives PerWBE0:1 inactive. EBC0_BnAP[WBF] cycles are then allowed to elapse after
which the address and data are output for the second element in the burst. As shown in Figure 16-6, the
EBC transfers the subsequent data items in a similar manner.

• If EBC0_BnAP[BEM]=1, the PerWBE0:1 lines are byte enables and have the same timing as the
peripheral address bus. In this configuration external logic may be necessary to latch write data at the
appropriate times.

PerBLast goes low at the beginning of the last transfer to indicate that the burst is ending. The EBC then
drives PerCSn and PerBLast high and waits EBC0_BnAP[TH] cycles before allowing any pending transfers
to occur.

Figure 16-6. Burst Write Transfer

PerClk

Cycle

PerAddr03:31

PerCSn

PerOE

PerBLast

PerR/W

PerWBE0:1

PerData00:15

PerWE

PerWE

PerWBE0:1
BEM=0

BEM=1

1

FWT+1
CSN

Address 0

TH

WBN

WBE 0

Address 1 Address 2 Address n

n

BE 0 BE 1 BE 2 BE n

Data 0 Data 1 Data n

WBE 1 WBE 2 WBE n

WBF WBF WBFWBF

Data 2

BWT+1 BWT+1 BWT+1
AMCC Proprietary 314

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16.4 Device-Paced Transfers

For device-paced transfers, the EBC provides two distinct modes: Sample On Ready enabled and Sample
On Ready disabled. The selection of these modes is controlled, for each bank, by EBC0_BnAP[SOR]. When
Sample On Ready is enabled (EBC0_BnAP[SOR] = 1) data is transferred on the PerClk rising edge when
PerReady is sampled active. When Sampling On Ready is disabled
(EBC0_BnAP[SOR] = 0), PerReady sampled active causes the data transfer to occur in the next cycle, which
results in an additional cycle of wait time.

The ready signal (PerReady) is an input which allows the insertion of externally generated (device-paced)
wait states. PerReady is monitored only when EBC0_BnAP[RE]=1.

• For burst disabled banks (EBC0_BnAP[BME] = 0) sampling of the PerReady input starts
EBC0_BnAP[TWT] cycles after the beginning of the transfer. Wait states are inserted and sampling
continues once per cycle until either PerReady is high when sampled or a timeout occurs.

• For burst enabled banks (EBC0_BnAP[BME] = 1) sampling of the PerReady input starts
EBC0_BnAP[FWT] PerClk cycles after the beginning of the first transfer of a burst, and EBC0_BnAP[BWT]
cycles after the beginning of subsequent transfers of the burst. Sampling continues once per cycle until
either PerReady is sampled high or a timeout occurs.

• When EBC0_BnAP[SOR] = 1 data transfer occurs in the same cycle where PerReady is sampled active. In
contrast, if EBC0_BnAP[SOR]=0 the data transfer occurs in the next cycle.

• When EBC0_BnAP[SOR] = 1, if the hold time is set to zero, EBC0_BnAP[TH] = 0, the programmed hold
time is ignored and the EBC performs the transaction with one hold cycle.

• When EBC0_BnAP[RE] = 1, the Write Byte Enable Off parameter must be programmed to 0,
EBC0_BnAP[WBF] = 0. As a result, during device-paced burst write transfers PerWBE0:1 does not
become inactive between data elements.

The EBC may be programmed to wait only a limited time for PerReady to become active, or it may be
programmed for unlimited wait. If EBC0_CFG[PTD] = 1, timeouts are disabled and the EBC waits indefinitely
for an active PerReady.

If EBC0_CFG[PTD] = 0, device-paced timeouts are enabled and the EBC only waits for the number of PerClk
cycles programmed in EBC0_CFG[RTC]. The timeout counter is reset whenever the peripheral address
changes. In this manner each data element within a device-paced burst transaction is treated separately for
the purposes of determining whether a timeout error occurs. If PerReady does not become active before the
timeout counter reaches the value programmed into EBC0_CFG[RTC], the transfer is aborted and an error is
signalled. See “Error Reporting” on page 16-160 for details about how timeout errors are logged.
315 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.4.1 Device-Paced Single Read Transfer

Figure 16-7 shows the peripheral interface timing for a device-paced single read transfer from a burst
disabled (EBC0_BnAP[BME]=0) bank. The transaction begins with the address being driven. Since this is a
single transfer, PerBLast is also driven active along with the address. If byte enable mode is enabled for the
bank (EBC0_BnAP[BEM]=1) the byte enables are also output concurrently on PerWBE0:1. PerCSn then
becomes active EBC0_BnAP[CSN] cycles after the address, while PerOE goes low EBC0_BnAP[OEN]
cycles after PerCSn.

The EBC then waits until EBC0_BnAP[TWT] cycles have elapsed since the start of the transaction and then
begins sampling PerReady. If device-paced timeouts are disabled (EBC0_CFG[PTD]=1) the EBC waits
indefinitely for PerReady to become active. Otherwise, the EBC waits only EBC0_CFG[RTC] cycles from the
start of the transaction until logging a timeout error.

Once PerReady is sampled active if Sample On Ready is disabled (EBC0_BnAP[SOR]=0) the EBC waits one
more cycle. The EBC then samples the data bus and the peripheral error input, PerErr. If parity checking is
enabled (EBC0_BnAP[PEN]=1) the parity is also read at this time. The EBC then drives PerCSn, PerOE and
PerBLast high and waits EBC0_BnAP[TH] cycles before allowing any pending EBC transfers to occur.

PerClk

1Cycle

PerAddr03:31

PerCSn

PerOE

PerBLast

PerR/W

PerWBE0:1

PerData00:15

Figure 16-7. Device-Paced Single Read Transfer

CSN
Address

TH

OEN

PerWE

PerWE

PerWBE0:1
BEM=0

Data

BE
BEM=1

PerReady

PerReady

SOR=0

SOR=1

TWT

n

AMCC Proprietary 316

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16.4.2 Device-Paced Single Write Transfer

Figure 16-8 shows the peripheral interface timing for a device-paced single write transfer from a burst
enabled (EBC0_BnAP[BME]=1) bank. The transaction begins with the address being driven. Since this is a
single transfer, PerBLast is also driven active along with the address. At this point the signalling sequence
depends on whether byte enable mode is enabled for the particular bank.

• If EBC0_BnAP[BEM]=0, byte enable mode is disabled and the PerWBE0:1 are write byte enables. The
appropriate write byte enables go low EBC0_BnAP[WBN] cycles after PerCSn went low. PerWBE0:1
return high on the same PerClk edge that the write data is transferred (see below).

• If EBC0_BnAP[BEM]=1, the PerWBE0:1 lines are byte enables and have the same timing as the
peripheral address bus.

The EBC then waits until EBC0_BnAP[TWT] cycles have elapsed since the start of the transaction and then
begins sample PerReady. If device-paced timeouts are disabled (EBC0_CFG[PTD]=1) the EBC waits
indefinitely for PerReady to become active. Otherwise, the EBC waits only EBC0_CFG[RTC] cycles from the
start of the transaction until logging a timeout error.

If PerReady is sampled active and Sample On Ready is disabled (EBC0_BnAP[SOR]=0) the EBC waits one
more cycle. At this point, the write transfer occurs and the EBC reads the peripheral error input, PerErr. The
EBC then drives PerCSn, PerOE and PerBLast high and waits EBC0_BnAP[TH] cycles.

PerClk

1Cycle

PerAddr3:31

PerCSn

PerOE

PerBLast

PerR/W

PerWBE0:1

PerData0:15

Figure 16-8. Device-Paced Single Write Transfer

CSN
Address

TH

PerWE

PerWE

PerWBE0:1
BEM=0

Data

BE
BEM=1

PerReady

PerReady

SOR=0

SOR=1

TWT

WBN

BE

n

317 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.4.3 Device-Paced Burst Read Transfer

Figure 16-9 shows the peripheral interface timing for a device-paced burst read transfer from a burst enabled
(EBC0_BnAP[BME]=1) bank. The transaction begins with the address being driven. If byte enable mode is
enabled for the bank (EBC0_BnAP[BEM]=1) the byte enables are also output concurrently on PerWBE0:1.
PerCSn then becomes active EBC0_BnAP[CSN] cycles after the address, while PerOE goes low
EBC0_BnAP[OEN] cycles after PerCSn. The EBC then waits until EBC0_BnAP[FWT] cycles have elapsed
since the start of the transaction and begins sampling PerReady.

If device-paced timeouts are disabled (EBC0_CFG[PTD]=1) the EBC waits indefinitely for PerReady to
become active. Otherwise, the EBC waits only EBC0_CFG[RTC] cycles from the start of the transaction until
logging a timeout error.

If PerReady is sampled active and Sample On Ready is disabled (EBC0_BnAP[SOR]=0) the EBC waits one
more cycle before sampling read data. The EBC then reads the data bus and the peripheral error input,
PerErr. If parity checking is enabled (EBC0_BnAP[PEN]=1) the parity is also read.

The next address of the burst is then driven and after EBC0_BnAP[BWT] cycles the EBC waits for PerReady
as described above. The remaining items in the burst are read in this same manner, except that PerBLast is
active during the last data element. The EBC then drives PerCSn, PerOE and PerBLast high and waits
EBC0_BnAP[TH] cycles before allowing any pending transfers to occur.

PerClk

1Cycle

PerAddr03:31

PerCSn

PerOE

PerBLast

PerR/W

PerWBE0:1

PerData00:15

Figure 16-9. Device-Paced Burst Read Transfer

CSN
Address 0

TH

PerWE

PerWE

PerWBE0:1
BEM=0

D 0

BEM=1

PerReady

PerReady

SOR=0

SOR=1

D 1

Address 1 Address 2 Address n

BWT

OEN

BE 0 BE 1 BE 2 BE n

FWT BWT BWT

D 2 D n

n

AMCC Proprietary 318

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16.4.4 Device-Paced Burst Write Transfer

Figure 16-10 shows the peripheral interface timing for a device-paced burst write transfer to a burst enabled
(EBC0_BnAP[BME]=1) bank. The transaction begins with the address being driven. PerCSn then becomes
active EBC0_BnAP[CSN] cycles after the address. At this point the signalling sequence depends on whether
or not byte enable mode is enabled for the bank.

• If byte enable mode is disabled (EBC0_BnAP[BEM]=0) PerWBE0:1 are write byte enables. In this case the
appropriate write byte enables go low EBC0_BnAP[WBN] cycles after PerCSn becomes active for the first
element in a burst and EBC0_BnAP[WBN] cycles after each new address for the remainder of the burst. If
EBC0_BnAP[WBN]<>0, PerWBE0:1 is driven inactive on the same PerClk edge that write data is
transferred (see below). Otherwise, PerWBE0:1 remains low for all data elements in the burst.

• If EBC0_BnAP[BEM]=1, PerWBE0:1 are byte enables and have the same timing as PerAddr:31.

The EBC then waits until EBC0_BnAP[FWT] cycles have elapsed since the start of the transaction and
begins sampling PerReady. If device-paced timeouts are disabled (EBC0_CFG[PTD]=1) the EBC waits
indefinitely for PerReady. Otherwise, the EBC waits only EBC0_CFG[RTC] cycles from the start of the
transaction until logging a timeout error.

If PerReady is sampled active and Sample On Ready is disabled (EBC0_BnAP[SOR]=0) the EBC waits one
more cycle. At this point the write transfer occurs and the EBC reads the peripheral error input, PerErr.

The next address of the burst is then driven and after EBC0_BnAP[BWT] cycles the EBC waits for PerReady
as described above. The remaining items in the burst are transferred in this same manner, except that
PerBLast is active for the last data element. The EBC then drives PerCSn, PerOE and PerBLast high and
waits EBC0_BnAP[TH] cycles before allowing any pending transfers to occur.
319 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.5 EBC Registers

All EBC configuration and status registers are accessed using the mtdcr and mfdcr instructions. Access to
these registers is performed using an indirect addressing method through the EBC0_CFGADDR and
EBC0_CFGDATA registers.

Table 16-4 lists the indirectly accessed EBC configuration and status registers.

Table 16-3. EBC DCR Addresses

Register DCR Address Access Description

 EBC0_CFGADDR 0x012 R/W External Bus Controller Address Register
 EBC0_CFGDATA 0x013 R/W External Bus Controller Data Register

Table 16-4. EBC Configuration and Status Registers

Mnemonic Address Offset Access Description Page

EBC0_B0CR–EBC0_B4CR 0x00–0x04 R/W Peripheral Bank Configuration Registers 16-157
EBC0_B0AP–EBC0_B4AP 0x10–0x14 R/W Peripheral Bank Access Parameters 16-158
EBC0_BEAR 0x20 R Peripheral Bus Error Address Register 16-161
EBC0_BESR0 0x21 R/W Peripheral Bus Error Status Register 0 16-162
EBC0_BESR1 0x22 R/W Peripheral Bus Error Status Register 1 16-163
EBC0_CFG 0x23 R/W EBC Configuration Register 16-155

Figure 16-10. Device-Paced Burst Write Transfer

PerClk

1Cycle

PerAddr3:31

PerCSn

PerOE

PerBLast

PerR/W

PerWBE0:1

PerData0:15

CSN
Address 0

TH

PerWE

PerWE

PerWBE0:1
BEM=0

Data 0

BEM=1

PerReady

PerReady

SOR=0

SOR=1

FWT

WBN

WBE 0

BE 0

WBE 1

Data 1 Data n

Address 1 Address 2 Address n

BE 1 BE 2 BE n

WBE 2 WBE n

Data 2

BWT BWT BWT

n

AMCC Proprietary 320

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
To access an indirectly accessed register, software must first write the address offset into the
EBC0_CFGADDR register. The target register can then be read or written through the EBC0_CFGDATA
DCR address. The following PowerPC code illustrates this procedure by writing the EBC0_B0CR register and
then reading back the written value.

li r3,EBC0_B0CR ! address offset
lis r4,<config upper> ! upper 16-bits of configuration data
ori r4,r4,<config lower> ! lower 16-bits of configuration data
mtdcr EBC0_CFGADDR,r3 ! set offset addr
mtdcr EBC0_CFGDATA,r4 ! write config data
mfdcr r5,EBC0_CFGDATA ! read back config data

16.5.1 EBC Configuration Register (EBC0_CFG)

The contents of EBC0_CFG are accessed indirectly, using the EBC0_CFGADDR and EBC0_CFGDATA. .

Figure 16-11. EBC Configuration Register (EBC0_CFG)

0 EBTC External Bus Three-State Control
0 Address, data and control signals are

high-Z between EBC transfers.
1 Between EBC transfers the peripheral data

bus, address bus and control signals are
driven.

Default after reset is EBTC=1. See “Effect of
Driver Enable Programming on EBC Signal
States” on page 16-308.

1 PTD Device-Paced Time-out Disable
0 Enabled time-outs
1 Disable time-outs

If PTD=1, the EBC waits indefinitely for
assertion of PerReady during device-paced
accesses.

2:4 RTC Ready Timeout Count
000 16 PerClk cycles
001 32 PerClk cycles
010 64 PerClk cycles
011 128 PerClk cycles
100 256 PerClk cycles
101 512 PerClk cycles
110 1024 PerClk cycles
111 2048 PerClk cycles

When PTD=0, the number of cycles from
PerAddr3:31 changing until a timeout error
occurs.

5:8 Reserved

9 CSTC Chip Select Three-state Control
0 PerCS0:4 are high-Z between EBC

transfers.
1 PerCS0:4 are always driven.

Default after reset is CSTC=1. See “Effect of
Driver Enable Programming on EBC Signal
States” on page 16-142.

10:11 BPF Burst Prefetch
00 Prefetch 1 doubleword
01 Prefetch 2 doublewords
10 Prefetch 4 doublewords
11 Reserved

Controls the amount of data prefetching
when the EBC is servicing a PLB burst read.
For most applications set this field to 0b00.

0 1 2 4 5 8 9 10 11 12 13 14 15 19 20 31

PTD

EBTC PME

PMT

BPF

CSTC

RTC
321 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
12:13 Reserved

14 PME Power Management Enable
0 Disabled
1 Enabled

15:19 PMT Power Management Timer
0000–1111

The EBC makes a sleep request to the Clock
and Power Management unit when PME=1
and the EBC has been idle for 32 × PMT
PerClk cycles.

20:31 Reserved
AMCC Proprietary 322

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16.5.2 Peripheral Bank Configuration Registers (EBC0_BnCR)

These registers must be configured to enable memory in each respective bank. Boot ROM, if installed, must
be attached to bank 0. If a boot ROM is installed, the bank 0 starting address register is loaded with a value of
0xFFE, and the bank 0 size register is loaded with a value of 0b001 (2MB) immediately following SysReset
inactive.

• BAS (Base Address Select, bits 0:11) – Sets the base address for a peripheral device. The bank starting
address must be a multiple of the bank size programmed in the BS field. The BAS field is compared to bits
0:11 of the address. If the address is within the range of a BAS field, the associated bank is enabled for the
transaction.

Multiple bank registers may be inadvertently programmed with the same base address or as overlapping
banks. An attempt to use such overlapping banks is recorded in EBC0_BESR0 or EBC0_BESR1 as a
configuration error and no external access occurs. This error may result in a machine check exception if
the requesting master is the CPU. If the error occurred during a DMA access, the DMA may signal an
interrupt to the PPC405EP through the UIC.

• BS (Bank Size, bits 12:14) – Sets the number of bytes which the bank may access, beginning with the
base address set in the BAS field.

Figure 16-12. Peripheral Bank Configuration Registers (EBC0_B0CR–EBC0_B4CR)
0:11 BAS Base Address Select Specifies the bank starting address, which

must be a multiple of the bank size.

12:14 BS Bank Size
000 1 MB bank
001 2 MB bank
010 4 MB bank
011 8 MB bank
100 16 MB bank
101 32 MB bank
110 64 MB bank
111 128 MB bank

15:16 BU Bank Usage
00 Disabled
01 Read-only
10 Write-only
11 Read/Write

Specifies the type of accesses allowed for
the bank. A protect error occurs if a write is
attempted to a read-only bank or a read
from a write-only bank.

17:18 BW Bus Width
00 8-bit bus
01 16-bit bus
10 Reserved
11 Reserved

The boot ROM must be attached to bank 0.
Its bus width is controlled by strapping pins.

19:31 Reserved

0 11 12 14 15 16 17 18 19 31

BAS

BS

BU

BW
323 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• BU (Bank Usage, bits 15:16) – Protects banks of physical devices from read or write accesses.

When a write access is attempted to an address within the range of the BAS field, and the bank is
designated as read-only, a protection error occurs. Also, when a read access is attempted to an address
within the range of the BAS field, and the bank is designated as write-only, a protection error occurs. The
address of the attempted access is logged in EBC0_BEAR and type of error is logged in either
EBC0_BESR0 or EBC0_BESR1.

• BW (Bus Width, bits 17:18) – Controls the width of region accesses. If the BW field is 0b00, the region is
configured for an 8-bit data bus; 0b01 indicates a 16-bit data bus. If devices are attached to the data bus as
shown in Figure 16-2 on page 16-141, the EBC automatically packs read data and unpacks write data
when a data transfer size mismatch exists.

16.5.3 Peripheral Bank Access Parameters (EBC0_BnAP)

Figure 16-13. Peripheral Bank Access Parameters (EBC0_B0AP–EBC0_B4AP)

0 BME Burst Mode Enable
0 Bursting is disabled
1 Bursting is enabled

1:8 TWT Transfer Wait
0–255 PerClk cycles

Wait states on all transfers when BME=0.

1:5 FWT First Wait
0–31 PerClk cycles

If BME=1, number of wait states on the first
transfer of a burst.

6:8 BWT Burst Wait
0–7 PerClk cycles

If BME=1, number of wait states on non-first
transfers of a burst.

9:11 Reserved

12:13 CSN Chip Select On Timing
0–3 PerClk cycles

Number of cycles from peripheral address
driven to PerCSn low.

14:15 OEN Output Enable On Timing
0–3 PerClk cycles

Number of cycles from PerCSn low to
PerOE low.

16:17 WBN Write Byte Enable On Timing
0–3 PerClk cycles

If BEM=0, number of cycles from PerCSn
low to PerWBE0:1 active.

18:19 WBF Write Byte Enable Off Timing
0–3 PerClk cycles

If BEM=0 and RE=0, number of cycles
PerWBEn becomes inactive prior to PerCSn
inactive.

20:22 TH Transfer Hold
0–7 PerClk cycles

Contains the number of hold cycles inserted
at the end of a transfer.

23 RE Ready Enable
0 PerReady is disabled
1 PerReady is enabled

0 1 5 6 8 9 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 31

BME CSN TH

BEM

TWT

OEN

WBN

WBF RE

SOR

FWT BWT
AMCC Proprietary 324

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• BME (Burst Mode Enable, bit 0) – Controls bursting for cache line fills and flushes, PLB burst transfers
and all packing and unpacking operations. If BME=1, bursting is enabled. When bursting is enabled the
parameters Chip Select On (CSN), Output Enable On (OEN), and First Wait (FWT) apply only to the first
transfer, while Burst Wait (BWT) and Write Byte Enable On (WBN) apply during all remaining transfers of
the burst.

• TWT (Transfer Wait, bits 1:8) – Specifies the number of wait states taken by each transfer to the bank.
The number of cycles from address valid to the deassertion of PerCSn is (1 + TWT), where
0 ≤ TWT ≤ 255. This field is used for non-burst transfers (field BME = 0).

• FWT (First Wait, bits 1:5) – Specifies the number of wait states to be taken by the first access to the bank
during a burst transfer (field BME = 1). During a burst the number of cycles from the first address valid to
the second address is (1 + FWT), where 0 ≤ FWT ≤ 31.

• BWT (Burst Wait, bits 6:8) – Specifies the number of wait states to be taken by accesses beyond the first
during a burst transfer (field BME = 1). On burst accesses except for the last, the number of cycles from
address valid to the next valid address on each burst access is (1 + BWT), where 0 ≤ BWT ≤ 7. On the last
burst access, the number of cycles from address valid to the deassertion of PerCSn is (1 + BWT), where
0 ≤ BWT ≤ 7.

• CSN (Chip Select On Timing, bits 12:13) – Specifies the chip select turn on delay relative to the address.
PerCSn may turn on coincident with the address or be delayed by 1, 2, or 3 PerClk cycles.

• OEN (Output Enable On Timing, bits 14:15) – Specifies when the output enable signal, PerOE, is
asserted for read operations relative to the chip select signal. If 0, PerOE is asserted coincident with the
chip select. If 1, 2 or 3, PerOE is delayed by 1, 2, or 3 PerClk cycles.

• WBN (Write Byte Enable On Timing, bits 16:17) – Specifies when the write byte enables, PerWBE0:1,
are asserted relative to the chip select signal. If 0, then PerWBE0:1 turns on coincident with the chip select.
If 1, 2, or 3, PerWBE0:1 is delayed 1, 2, or 3 PerClk cycles from the chip select.

• WBF (Write Byte Enable Off Timing, bits 18:19) – Specifies when the write byte enables are deasserted,
relative to the deassertion of the chip select signal. If WBF=0, PerWBE0:1 goes high coincident with the
chip select signal. If WBF is 1, 2, or 3, PerWBE0:1 turns off 1, 2, or 3 PerClk cycles before the turn-off of
the chip select signal.

Programming Note: It is an error to set WBF > BWT. Moreover, for device-paced transfers
(EBC0_BnAP[RE]=1) WBF must be set to 0.

24 SOR Sample on Ready
0 Data transfer occurs one PerClk cycle after

PerReady is sampled active
1 Data transfer occurs in the same PerClk

cycle that PerReady becomes active

25 BEM Byte Enable Mode
0 PerWBE0:1 are only active for write cycles
1 PerWBE0:1 are active for read and write

cycles

If BEM=0, PerWBE0:1 timing is controlled
by WBN and WBF. If BEM=1, PerWBE0:1
has the same timing as PerAddr3:31.

26:31 Reserved
325 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• TH (Transfer Hold, bits 20:22) – Specifies the number of PerClk cycles (0 through 7) that the peripheral
bus is held idle after the deassertion of PerCSn. During these cycles, the address bus and data bus are
active and PerR/W is valid. During the hold time, chip select, output enable, and write byte enables are
inactive. If Ready Mode is used (RE=1) along with Sample on Ready (SOR=1) TH must be set to at least 1.

• RE (Ready Enable, bit 23) – Controls the use of the PerReady input signal. If RE=0, the PerReady input is
ignored and no additional wait states are inserted into bus transactions. If RE=1, the PerReady input is
examined after the wait period expires; additional wait states are inserted if the PerReady input is 0. The
maximum number of wait states in each transaction is determined by the settings in the Device-Paced
Timeout Disable (PTD) and Ready Timeout Counter (RTC) fields in EBC0_CFG. If EBC0_CFG[PTD] = 0,
the PPC405EP waits the number of cycles indicated by EBC0_CFG[RTC] for PerReady to become active.
If EBC0_CFG[PTD] = 1, the ready timeout function is disabled and the PPC405EP waits indefinitely until
PerReady=1. If PerReady does not become active in the allotted time, the address of the error is logged in
EBC0_BEAR and the type of error is captured in either EBC0_BESR0 or EBC0_BESR1.

• SOR (Sample Ready, bit 24) – Controls the location of the data transfer cycle with respect to the
PerReady input. If SOR=1 the data transfer occurs on the same PerClk edge that PerReady is sampled
active, whereas if SOR=0 the data transfer occurs one cycle later.

• BEM (Byte Enable Mode, bit 25) – Controls whether PerWBE0:1 is active during writes or for both reads
and writes.

16.6 Error Reporting

The EBC monitors three kinds of the following errors when performing read and write transfers. Of these four,
bank protect and external bus errors are always checked, while timeout and read parity error checking must
be enabled using DCR-mapped configuration registers.

• Protect Error – Requested read or write operation violates the bank usage programmed in
EBC0_BnCR[BU]. For example, write attempt to read-only bank. In all cases, no external bus activity
occurs.

• Timeout Error – This error is possible during memory operations when both PerReady sampling is
enabled, EBC0_BnAP[RE]=1, and device paced timeouts are enabled, EBC0_CFG[PTD]=0. Whenever
the peripheral address bus changes the EBC begins counting PerClk cycles. If the count reaches the value
represented by EBC0_CFG[RTC] a timeout error occurs. Note that timeout errors are not possible during
the peripheral portion of DMA transfers.

When the EBC slave detects one of the above errors it reports the error condition to the PLB master that
initiated the transfer. The EBC also logs the type of error into EBC0_BESR0 or EBC0_BESR1 and the
address of the error in EBC0_BEAR.

16.6.1 Error Locking

The PCI Bridge and Memory Access Layer (MAL) controllers may qualify their PLB transactions to the EBC
such that the information describing any errors that occur during these transfers becomes locked. When an
error is locked, subsequent errors are not permitted to overwrite the information detailing the first error.

When a master requests error locking an error locks not only the EBC0_BESRn field for the master, but also
the EBC0_BEAR. These remain locked until software clears them. For each PLB master that supports error
locking the EBC has a EBC0_BESRn field containing two bits associated with error locking. One is the field
lock bit and the other is the address lock bit. When an error is detected with locking enabled the field lock bit
is set to a value of one. Setting the field lock bit prevents subsequent errors for this master from being logged
AMCC Proprietary 326

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
and overwriting the contents of the field. In addition, the address lock bit is set if no other master has
previously locked the EBC0_BEAR. Once the EBC0_BEAR is locked, no future errors from this or any master
can update the EBC0_BEAR until software clears the lock bits. When software processes an error it should
clear the error status and both lock bits at the same time.

16.6.2 Peripheral Bus Error Address Register (EBC0_BEAR)

The Peripheral Bus Error Address Register (EBC0_BEAR) is a 32-bit register containing the address of the
access where a data bus error occurred. The contents of the EBC0_BEAR are accessed indirectly through
the EBC0_CFGADDR and EBC0_CFGDATA registers using the mfdcr and mtdcr instructions.

Figure 16-14. Peripheral Bus Error Address Register (EBC0_BEAR)

0:31 Address of Bus Error (asynchronous)

0 31
327 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
16.6.3 Peripheral Bus Error Status Register 0 (EBC0_BESR0)

The Peripheral Bus Error Status Register 0 (EBC0_BESR0) records the occurrence and type of errors for
transactions attempted on behalf of the processor core and DMA controller, and MAL0. The contents of
EBC0_BESR0 are accessed indirectly through the EBC0_CFGADDR and EBC0_CFGDATA registers using
the mfdcr and mtdcr instructions.

Figure 16-15. Peripheral Bus Error Status Register 0 (EBC0_BESR0)
0:2 EET0 Error type for master 0

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 0 is the DMA controller.

3 RWS0 Read/write status for master 0
0 Error operation was a write operation
1 Error operation was a read operation

4:5 Reserved
6:8 EET1 Error type for master 1

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 1 is the instruction cache unit.

9 RWS1 Read/write status for master 1
0 Error operation was a write operation
1 Error operation was a read operation

10:11 Reserved
12:14 EET2 Error type for master 2

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 2 is the processor data side.

15 RWS2 Read/write status for master 2
0 Error operation was a write operation
1 Error operation was a read operation

0 2 3 4 5 6 8 9 10 11 12 14 15 16 31

EET0

RWS0 RWS1 RWS2

EET1 EET2
AMCC Proprietary 328

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16.6.4 Peripheral Bus Error Status Register 1 (EBC0_BESR1)

EBC0_BESR1 records the occurrence and type of errors for transactions attempted on behalf of the . The
contents of EBC0_BESR1 are accessed indirectly through the EBC0_CFGADDR and EBC0_CFGDATA
registers using the mfdcr and mtdcr instructions.

16:31 Reserved

Figure 16-16. Peripheral Bus Error Status Register 1 (EBC0_BESR1)
0:2 EET4 Error type for master 4

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 4 is PCI bridge.

3 RWS4 Read/write status for master 4
0 Error operation was a write operation
1 Error operation was a read operation

4 FL4 Field lock for master 4
0 EET4 and RWS4 fields are unlocked
1 EET4 and RWS4 fields are locked

5 AL4 EBC0_BEAR address lock for master 4
0 EBC0_BEAR address unlocked
1 EBC0_BEAR address locked

6:8 EET5 Error type for master 5
000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 5 is MAL0.

9 RWS5 Read/write status for master 5
0 Error operation was a write operation
1 Error operation was a read operation

10 FL5 Field lock for master 5
0 EET5 and RWS5 fields are unlocked
1 EET5 and RWS5 fields are locked

0 2 3 4 5 6 8 9 10 11 12 31

EET4 FL5FL4

RWS4 AL4 RWS5

EET5

AL5
329 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
11 AL5 EBC0_BEAR address lock for master 5
0 EBC0_BEAR address unlocked
1 EBC0_BEAR address locked

12:31 Reserved
AMCC Proprietary 330

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
331 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 17. PCI Interface

17.1 PCI Overview

The peripheral component interconnect (PCI) interface and bridge (referred to as PCI bridge in this chapter)
provides a means for connecting PCI-compatible devices to the on-chip bus architecture of the PPC405EP
chip. The PCI bridge is designed to the PCI Specification, Version 2.2. The PCI bridge is bidirectional in that
it allows PPC405EP PLB masters to access PCI targets off-chip. It also allows PCI masters to access PLB
slave devices such as the SDRAM controller. The PCI bridge contains an arbiter which can optionally be
used for host applications.

The PCI bridge can be used as the host bridge. The PCI bridge is also configurable by an external PCI agent,
allowing it to be used in target adapter applications. The PCI bridge contains address mapping register sets
to provide address mapping for both transaction directions. See Figure 17-3 on page 17-335 for a graphic
overview of the PCI bridge.

Agents on the PLB are referred to as masters or slaves. Agents on the PCI are referred to as targets or
masters.

17.1.1 PCI Bridge Features

• PCI bus frequency up to 66 MHz (asynchronous)

• Asynchronous clocking between PLB and PCI buses (optional)

• Supports 1:1, 2:1, 3:1, and 4:1 clock ratios from PLB to PCI

• 32-bit PCI Address/Data Bus

• Power Management

• Buffering:

– PCI target 64-byte write post buffer

– PCI target 96-byte read prefetch buffer

– PLB slave 32-byte write post buffer

– PLB slave 64-byte read prefetch buffer

• Error tracking/status

• PCI arbitration function (optional)

• Supports PCI target-side configuration

• Supports processor access to all PCI address spaces:

– Single-beat PCI I/O reads and writes

– PCI memory single-beat and prefetch-burst reads and single-beat writes

– Single-beat PCI configuration reads and writes (type 0 and type 1)

– PCI interrupt acknowledge
AMCC Proprietary 332

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.1.2 PCI Bridge Block Diagram

Figure 17-1 shows the PCI bridge block diagram.

17.1.3 Byte Ordering

The PCI bridge configuration register address space must be treated as little endian, as required by PCI
Specification, Version 2.2. In most cases data memory areas in PCI address space will be configured and
used in little endian format. To provide for this, PCI configuration space and memory map regions should be
defined as little endian memory space by means of the corresponding entry in the PPC405EP CPU’s MMU or
by means of the appropriate memory region bit in the Storage Little-Endian Register (SLER) if the MMU is not
being used. Because the endianness attribute in the SLER can only be applied to 128MB memory regions,
this method of defining little endian memory space for PCI must be carefully considered in defining a system
memory map.

Byte ordering and management of little endian memory space from a PowerPC CPU point of view is
described in detail in “Byte Ordering” on page 3-90. PowerPC architecture and CoreConnect bus architecture
both use a bit naming convention in which the most significant bit (msb) name incorporates the numeral 0 and
the least significant bit (lsb name for a 32-bit vector incorporates the numeral 31. Table 17-1 shows the
correspondence of address bit-naming conventions for PowerPC, CoreConnect PLB, and PCI interface.

Table 17-1. PowerPC, CoreConnect PLB, and PCI Address Bit-Naming Conventions

Functional Unit/Interface Word Address Byte Address

PPC405EP Processor Core Address A0:29 A30:31
CoreConnect — PLB Address Bus PLB_ABus0:29 PLB_ABus30:31

Processor Local Bus (PLB)

Configuration

Interlock

PLB Slave Interface

WriteRead

PLB Master Interface

PCI Target Interface

Read Write

Buffer Buffer

Registers

Buffer Buffer

PCI Master Interface

PCI Bus

Configure

Figure 17-1. PCI Bridge Block Diagram

PCI
Arbiter

Async
333 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 17-2 shows the correspondence of data bus bit naming conventions and data lane connections for
PowerPC, CoreConnect PLB, and PCI interface. Note that within a data lane (column), the data signal
naming indicates that, for example, AD31is connected to PLB Write Data24.

17.1.4 Reference Information

17.2 PCI Bridge Functional Blocks

The following sections describe the PCI bridges and the associated arbiter.

PCI Address Bus AD31:2 AD1:0

Table 17-2. PowerPC, CoreConnect PLB, and PCI Data Bus Bit-Naming Conventions

Functional Unit/ Interface
Most Significant

Byte (MSB) ↔ ↔
Least Significant

Byte (LSB)

Data Byte Value (0xnn) 11 22 33 44
Little Endian Byte Address (0bnn) 11 10 01 00
PPC405EP Processor Core
(Write) Data Bus

Data24:31 Data16:23 Data8:15 Data0:7

CoreConnect — PLB Write Data
Bus — Byte Group

PLB Write
Data24:31

PLB Write
Data16:23

PLB Write
Data8:15

PLB Write
Data0:7

PLB Byte Enable PLB_BE3 PLB_BE2 PLB_BE1 PLB_BE0
PCI Byte Enable C/BE3 C/BE2 C/BE1 C/BE0
PCI Data Bus — Byte Group AD31:24 AD23:16 AD15:8 AD7:0
Note 1: Logical data work (32-bit word) == 0x11223344

Note 2: 405 CPU performing either:

• Store word to little endian memory space
• Store word—byte reversed—to big endian address space

Subject Pointer

PLB Overview Chapter 2, “On-Chip Bus”
Register Summary Chapter 25, “Register Summary”
Clocking Chapter 7, “Clocking”
PCI PCI Specification, Version 2.2

Table 17-1. PowerPC, CoreConnect PLB, and PCI Address Bit-Naming Conventions (continued)

Functional Unit/Interface Word Address Byte Address
AMCC Proprietary 334

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.2.1 PLB-to-PCI Half-Bridge

As shown in Figure 17-2, the 64-bit PLB slave interface and PCI master interface function together as a PLB-
to-PCI half-bridge to enablePLB master devices to access PCI target devices. The half-bridge configuration
contains a 32-byte write post buffer and a 64-byte read prefetch buffer.

17.2.2 PCI-to-PLB Half-Bridge

As shown in Figure 17-3, the PCI target interface and 64-bit PLB master interface function together as a PCI-
to-PLB half-bridge to enable PCI master devices to access PLB slave devices. The half-bridge configuration
contains a 64-byte write post buffer and a 96-byte read prefetch buffer.

Figure 17-2. PLB-to-PCI Half-Bridge Block Diagram

PLB Slave Interface

PCI Master Interface

PLB Master

PCI Target

Acknowledge Request

Acknowledge Request

Read
Prefetch
Buffer

Write
Post

Buffer
PCI Bridge

Figure 17-3. PCI-to-PLB Half-Bridge Block Diagram

PLB Master Interface

PCI Target Interface

PLB Slave

PCI Master

Acknowledge Request

Acknowledge Request

Read
Prefetch
Buffer

Write
Post

Buffer
PCI Bridge
335 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.2.3 PCI Arbiter

The internal arbiter can be used with up to three external PCI masters (three Req/Gnt pairs) or can be
disabled. When the internal arbiter is disabled, there is one Req/Gnt pair that must be attached to an external
arbiter. A strapping pin determines whether the internal arbiter is enabled or not. Priority is round-robin
(rotating). Priority switches when a master begins a transfer by asserting Frame. Each block keeps a priority
bit that only switches if its highest priority requestor receives a grant. Assuming that all priority bits are initially
cleared and all requests are active, an example rotation would be PPC405EP 1, 0, 2. PCI Specification,
Version 2.2 requires that all PCI devices three-state their pins during reset. The PPC405EP PCI arbiter
supports bus parking during normal operation.

Figure 17-4 shows the logical arbitration structure.

17.3 PCI Bridge Address Mapping

The following sections describe the address maps supported by the PCI bridge.

17.3.1 PLB-to-PCI Address Mapping

The PCI bridge responds as a slave on the PLB bus in several address ranges. These ranges enable a PLB
master to configure the PCI bridge, and to cause the PCI bridge to generate memory, I/O, configuration,
interrupt acknowledge, and special cycles to the PCI bus. Table 17-3 shows the address map from the view of
the PLB, that is, as decoded by the PCI bridge as a PLB slave.

Table 17-3. PLB Address Map

PLB Address
Range Description

PCI Address
Range

0xE8000000–
0xE800FFFF

PCI I/O
Accesses to this range are translated to an I/O access on PCI
in the range 0 to 64KB − 1.

0x00000000–
0x0000FFFF

0xE8010000–
0xE87FFFFF

Reserved
PCI bridge does not respond.
(Other bridges use this space for non-contiguous I/O.)

0xE8800000–
0xEBFFFFFF

PCI I/O
Accesses to this range are translated to an I/O access on PCI
in the range 8MB to 64MB − 1.

0x00800000–
0x03FFFFFF

0xEC000000–
0xEEBFFFFF

Reserved
PCI bridge does not respond

0
1

0
1

Arbitration Winner

PCIReq0
0
1

0
1

0
1

PCIReq1
PCIReq2

Figure 17-4. Arbitration Structure

PPC405EP Bridge PCI Master
AMCC Proprietary 336

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Three PCI bridge address ranges, associated with PLB masters in PLB space, are mapped to PCI memory
space: PCI master map (PMM) 0, PMM1, and PMM2.

0xEEC00000–
0xEECFFFFF

PCIC0_CFGADDR and PCIC0_CFGDATA
0xEEC00000: PCIC0_CFGADDR
0xEEC00004: PCIC0_CFGDATA
0xEEC00008–0xEECFFFFF: Reserved (can mirror
PCIC0_CFGADDR and PCIC0_CFGDATA).

0xEED00000–
0xEEDFFFFF

PCI Interrupt Acknowledge and Special Cycle
0xEED00000 read: Interrupt Acknowledge
0xEED00000 write: Special Cycle
0xEED00004–0xEEDFFFFF: Reserved (can mirror Interrupt
Acknowledge and Special Cycle).

0xEEE00000–
0xEF3FFFFF

Reserved
PCI bridge does not respond.

0xEF400000–
0xEF4FFFFF

PCI Bridge Local Configuration Registers
0xEF400000: PCIL0_PMM0LA
0xEF400004: PCIL0_PMM0MA
0xEF400008: PCIL0_PMM0PCILA
0xEF40000C: PCIL0_PMM0PCIHA
0xEF400010: PCIL0_PMM1LA
0xEF400014: PCIL0_PMM1MA
0xEF400018: PCIL0_PMM1PCILA
0xEF40001C: PCIL0_PMM1PCIHA
0xEF400020: PCIL0_PMM2LA
0xEF400024: PCIL0_PMM2MA
0xEF400028: PCIL0_PMM2PCILA
0xEF40002C: PCIL0_PMM2PCIHA
0xEF400030: PCIL0_PTM1MS
0xEF400034: PCIL0_PTM1LA
0xEF400038: PCIL0_PTM2MS
0xEF40003C: PCIL0_PTM2LA
0xF400040–0xEF4FFFFF: Reserved (can mirror PCI local
registers)

0x00000000–
0xFFFFFFFF1

PCI Memory—Range 0
PMM 0 registers map a region in PLB space to a region in PCI
memory space. The address ranges are fully programmable.
The PCI address is 64 bits.

0x0000000000000000–
0xFFFFFFFFFFFFFFFF

0x00000000–
0xFFFFFFFF*

PCI Memory—Range 1
PMM 1 registers map a region in PLB space to a region in PCI
memory space. The address ranges are fully programmable.
The PCI address is 64 bits.

0x0000000000000000–
0xFFFFFFFFFFFFFFFF

0x00000000–
0xFFFFFFFF*

PCI Memory—Range 2
PMM 2 registers map a region in PLB space to a region in PCI
memory space. The address ranges are fully programmable.
The PCI address is 64 bits.

0x0000000000000000–
0xFFFFFFFFFFFFFFFF

1. Memory map ranges are fully programmable. The ranges must not overlap with each other or conflict with any
other memory mappings.

Table 17-3. PLB Address Map (continued)

PLB Address
Range Description

PCI Address
Range
337 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Each PMM is configured using the following registers (n is 0, 1, or 2, corresponding with PMM0, PMM1, and
PMM2, respectively):

• PMMnLocal Address (PCIL0_PMMnLA)
• PMMnMask/Attribute (PCIL0_PMMnMA)
• PMMnPCI Low Address (PCIL0_PMMnPCILA)
• PMMnPCI High Address (PCIL0_PMMnPCIHA)

The location of each PMM in PLB space is programmable, using the PCIL0_PMMnLA registers. The PLB
address range assigned to each PMM should not overlap any other PLB address space range that is used or
reserved. Overlapping results in undefined behavior.

The range of PCI memory address space associated with each PMM is also programmable, and is a 64-bit
address space to enable address translation between the PCI bus and the PLB. The PCIL0_PMMnPCILA
registers contain the low-order word of a PCI address; the PCIL0_PMMnPCIHA registers contain the high-
order word of a PCI address. If the high-order word of a PCI address is greater than 0, the PCI bridge
generates dual address cycles to the PCI.

The size of each PMM is programmable, using the mask portion of the PCIL0_PMMnMA registers. The size is
a power of 2, ranging from 4KB–4GB. The PLB and PCI address spaces for each PMM are aligned to the
size contained in the associated PCIL0_PMMnMA registers.

The attribute portion of the PCIL0_PMMnMA registers specify whether the associated PMM is enabled or
disabled, and marked as prefetchable or not prefetchable.

Address ranges and attributes should be initialized before a PMM is enabled.

Figure 17-5 shows the detail of the PMM register sets used to map PLB memory regions to PCI address
space.

Size Size

Starting Address

PLB Memory
Region

PCI Memory
Region

Starting Address

PMM #

PMM # Mask/Attribute

PMM # PCI

PMM # PCI
High Address

Figure 17-5. PMM Register Sets Map PLB Address Space to PCI Address Space

PMM # Local Address

Low Address
AMCC Proprietary 338

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.3.2 PCI-to-PLB Address Mapping

The PCI bridge responds as a PCI target for memory accesses and configuration Type 0 accesses.
Table 17-4 shows the PCI memory address map from the view of PCI, that is, as decoded by the PCI bridge
as a PCI target.

17.3.3 PCI Target Map Configuration

Two PCI bridge address ranges in PCI memory space are mapped to PLB space: PCI target map (PTM1)
and PTM2 (PTM0 is reserved).

Each PTM is configured using the following registers (n is 1 or 2, corresponding with PTM1 and PTM2,
respectively).

• PTMnMemory Size (PCIL0_PTMnMS)
• PTMnLocal Address (PCIL0_PTMnLA)
• PTMnBAR (PCIL0_PTMnBAR)

The size of each PTM is programmable, using the PCIL0_PTMnMS registers. The size is a power of 2, and
ranges from 4KB–4GB. The PLB and PCI address spaces for each PTM are aligned to this size.

The address range of PLB space accessed through each PTM is also programmable, enabling address
translation between the PCI bus and the PLB. The PLB address range is defined in the PCIL0_PTMnLA
registers.

The location of each PTM in PCI memory space is programmable, using the PCIPCIL0_PTMnBAR registers.

The PTMs are enabled and disabled using PCIC0_CMD[MA]. PTM address ranges and sizes should be
initialized before being enabled. If the PCI bridge is not the host bridge, the local processor must initialize the
PTM size before enabling host configuration setting the Host Configuration Enable (HCE) field of the Bridge
Options 2 register (PCIC0_BRDGOPT2). This ensures that the host experiences proper behavior from the
PCIL0_PTMnBAR registers. Note that PTM1 is always enabled. The PTM1 registers must always be
initialized.

Table 17-4. PCI Memory Address Map

PCI Memory
Address Description PLB Address

0x00000000–
0xFFFFFFFF

System Memory or ROM—Range 0
PTM 1 maps a region of PCI memory space to PLB space, which can
map to system memory or ROM. Size and location is programmable.
The space supports address translation between the PCI and the PLB.

0x00000000–
0xFFFFFFFF

0x00000000–
0xFFFFFFFF

System Memory or ROM—Range 1
PTM 2 maps a region of PCI memory space to PLB space, which can
map to system memory or ROM. Size and location is programmable.
The space supports address translation between the PCI and the PLB.

0x00000000–
0xFFFFFFFF
339 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 17-6 shows the detail of the PMM/BAR register sets used to map PCI memory regions to PLB address
space.

17.4 PCI Bridge Transaction Handling

The following sections discuss PCI bridge transactions and completion ordering.

17.4.1 PLB-to-PCI Transaction Handling

This section describes how the PCI bridge responds to read and write requests from a PLB master. The PCI
bridge decodes and accepts PLB transactions to different address ranges resulting in the generation of
memory, I/O, configuration, interrupt acknowledge and special cycles on the PCI bus.

Table 17-5. Transaction Mapping: PLB —> PCI

PLB Transaction
PLB Master → Bridge
(PLB Slave Interface)

Bridge Mapping and
Qualifications

PCI Transaction
Bridge (PCI Master Interface) → PCI

Target
Single-beat 1 → 8-byte Read 64KB or 56MB PCI I/O

address range
I/O Read

Single-beat 1 → 8-byte Write 64KB or 56MB PCI I/O
address range

I/O Write

Single-Beat 1 → 8-byte Read Access to
PCIC0_CFGDATA register

Configuration Read (Type 0, 1)

Single-Beat 1 → 8-byte Write Access to
PCIC0_CFGDATA register

Configuration Write (Type 0, 1)

Single-Beat 1 → 8-byte Read PLB address decodes to
PMM0, PMM1, or PMM2,
nonprefetchable

Memory Read

Burst Read PLB address decodes to
PMM0, PMM1, or PMM2,
nonprefetchable

Memory Read

PLB 4-word and 8-word Line Reads PLB address decodes to
PMM0, PMM1, or PMM2

Memory Read Line

Size Size

Starting Address

PCI Memory
Region

PLB Memory
Region

Starting Address

PTM #/BAR #

PTM # Local Address

PTM # Mask/Attribute

PTM # BAR – PCI
Base Address

Figure 17-6. PTM Register Sets Map PCI Address Space to PLB Address Space
AMCC Proprietary 340

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Single-Beat 1 → 4-byte Read PLB address decodes to
PMM0, PMM1, or PMM2,
prefetchable

Memory Read Multiple

Burst Read PLB address decodes to
PMM0, PMM1, or PMM2,
prefetchable

Memory Read Multiple

Single-Beat 1 → 4-byte Write PLB address decodes to
PMM0, PMM1, or PMM2

Memory Write

Burst Write PLB address decodes to
PMM0, PMM1, or PMM2

Memory Write

Single-Beat 1 → 4-byte Read Address 0xEED00000 Interrupt Acknowledge
Single-Beat 1 → 4-byte Write Address 0xEED00000 Special Cycle

— Not supported Memory Write and Invalidate
— Not supported Memory Write Line

Table 17-5. Transaction Mapping: PLB —> PCI (continued)

PLB Transaction
PLB Master → Bridge
(PLB Slave Interface)

Bridge Mapping and
Qualifications

PCI Transaction
Bridge (PCI Master Interface) → PCI

Target
341 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.4.1.1 PCI Master Commands

The type of cycle generated to the PCI bus depends on the PLB address, the type of PLB transfer, and the
data size. The following sections describe the transaction types supported and outlines the translation of
commands from one bus to the other.

The terms “single beat” or “1–8-byte,” in reference to PLB transfers, refer to the M_size=0000 transaction
type.

PCI bridge initiates the following commands as a PCI master:

• I/O Read and I/O Write

This command is generated in response to PLB 1–8-byte read or write requests that decode to one of the
two PCI I/O spaces.

• Configuration Read and Configuration Write (type 0 and type 1)

This command is generated in response to PLB 1–8-byte read or write requests that decode to the
PCIC0_CFGDATA register.

• Memory Read

This command is generated in response to PLB 1–8-byte reads or byte and halfword burst reads that
decode to one of the three PMMs when the PMM is marked as nonprefetchable.

• Memory Read Line

This command is generated in response to PLB 4- and 8-word line reads or word and doubleword reads of
32 bytes or less that decode to one of the three PMMs.

• Memory Read Multiple

This command is generated in response to PLB 1–8-byte reads or byte and halfword burst reads that
decode to one of the three PMMs when the PMM is marked as prefetchable. This command is also
generated in response to word and doubleword burst reads of greater than 32 bytes that decode to one of
the three PMMs. For prefetches, the PCI bridge bursts up to a 64 bytes from the PCI.

• Memory Write

This command is generated in response to PLB 1–8-byte writes or burst writes to one of the three PMMs.

• Interrupt Acknowledge

This command is generated in response to a PLB 1–8-byte read from address 0xEED00000.

• Special Cycle

This command is generated in response to a PLB 1–8-byte write to address 0xEED00000.

The Memory Write and Invalidate command is not generated. All PCI memory writes are performed with
Memory Write.

The PLB slave responds as a 64-bit device to word and doubleword bursts. All other commands receive a 32-
bit response.

The PCI bridge supports PLB size 1–8-byte encodings. Burst reads of all sizes are also supported. Read line
sizes greater than eight words are not supported, and no line writes are supported. The PCI bridge posts all
writes which are decoded to PCI memory and PCI I/O space. Posted data is kept in internal write buffers until
it can be transferred to the PCI bus. All other writes and all reads are connected, that is, they complete on the
PCI bus before completing on the PLB.
AMCC Proprietary 342

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.4.1.2 PLB Slave Read Handling

PLB master read requests are decoded into four types: PCI Memory, I/O, Configuration, and Interrupt
Acknowledge. If the request falls within any of these ranges, and is a supported command type, the bridge
claims the cycle initially by asserting a PLB wait signal (as opposed to a PLB address acknowledge signal).
The bridge must first gain access to the PCI bus before acknowledging a PLB read request. The specific
timing of the address acknowledge is dependent upon the type of transfer. All posted writes must be flushed
before a read is allowed to complete.

For PLB line reads, the PCI bridge must wait for all read data to be received before acknowledging the PLB
request. This is because PCI targets are allowed to disconnect in the middle of a transfer, and the PLB
requires line transfers to be atomic. If the system can guarantee that PCI targets do not disconnect these
reads, PCIC0_BRDGOPT1[APLRM] can be set to 1. In this mode, line read performance is improved by
having the bridge PLB slave assert an address acknowledge signal and begin its data tenure as soon as the
first word is received on the PCI bus. If the above guarantee cannot be made, the setting of this bit could
hang the bridge.

If the PCI cycle Master Aborts, all beats of read data are returned as 0xFFFFFFFF.

PLB master reads to the PCI bridge configuration registers are allowed to execute regardless of whether any
write data is posted in the bridge. The configuration registers are described in “PCI Bridge Configuration
Registers” on page 17-350.

17.4.1.3 Prefetching

When the PCI bridge receives a PLB 1–8-byte or word or doubleword burst read request that decodes to a
PMM marked as nonprefetchable. The PCI bridge runs a single beat read to the PCI. If the PCI cycle is
retried, the PLB cycle is rearbitrated.

When the PCI bridge receives a PLB 1–8-byte read request that decodes to a PMM marked as prefetchable,
the PCI bridge burst reads up to a 64 bytes from the PCI and saves the data in the PLB slave read prefetch
buffer. Less than 64 bytes can be read if the PCI target disconnects, or if the PCI bridge PCI master
disconnects due to a master latency time out. Note that PCI bridge prefetching is not affected by memory
management page boundaries (PLB_Guarded is ignored). If a subsequent PLB 1–8-byte or byte or halfword
burst read is contained in the prefetch buffer, the data is returned to the PLB directly from the prefetch buffer,
and no cycle is generated on the PCI.

If a PLB read to the PCI bridge occurs while the PCI bridge is prefetching and does not hit in the prefetch
buffer, then the PLB read is rearbitrated. After prefetching completes, any PLB read (of any type or address
range) to the PCI bridge that does not hit in the prefetch buffer causes the prefetch buffer to be emptied, and
a new PCI read to begin. PLB writes, including configuration writes, will invalidate the prefetch buffer.

17.4.1.4 PLB Slave Write Handling

PLB master write requests are decoded into four types: PCI Memory (one of three PMM ranges), PCI I/O,
PCI Configuration, or Special Cycles. If the request falls within any of these ranges, and is a supported
command type, the bridge claims the cycle by asserting a PLB wait signal. If the write is connected, or
translates to a PCI Configuration or Special Cycle, the bridge must gain access to the PCI bus and
successfully transfer the data before it may assert a PLB address acknowledge signal. If the address is to
PCI I/O or memory, the bridge immediately asserts a PLB address acknowledge signal and posts the write if
there is sufficient buffer space.
343 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Internal configuration writes are not allowed to execute if posted write data exists in either the PCI slave write
buffer or the PLB slave write buffer. The internal configuration mechanism is described in “PCI Bridge
Configuration Registers” on page 17-350.

PLB Slave Write Post Buffer

The PCI bridge has a 32-byte write post buffer that may contain four separate single-beat PLB write
transactions or one burst. New PLB write requests are rearbitrated if there is not enough room in the write
post buffer.

The buffers are not snooped, and are always completed on the PCI bus in the same order as they are
received on the PLB bus.

Each write buffer entry preserves the master ID and drives the appropriate PLB bus busy signal until the write
is deallocated (it completes on the PCI bus). It is recommended that PLB masters do not use PLB bus busy
signal. Instead, PLB masters generating cycles to the PCI should use the standard PCI mechanisms for data
coherency.

17.4.1.5 Aborted PLB Requests

The PCI bridge aborts PLB reads only.

A PLB master accessing the PCI bridge can abort PLB write cycles only under the following conditions:

• The PCI bridge rearbitrates the cycle.

• The PCI bridge does not see the cycle because the PLB bus is granted to some other master. A
CPU/System Memory interface is expected to do this when a CPU cycle is pending to PCI bridge, but a
PLB Master requests system memory access requiring snooping.

Note: If a PLB master aborts the write cycle at any other time, the results are undefined and the bus may
hang.

17.4.1.6 Retried PCI Reads

The PCI specification requires that a PCI master must repeat any read that is retried. The PCI bridge adheres
to this requirement. It is only mentioned here because, under certain conditions with respect to aborted PLB
reads, the PCI bridge must execute a PCI read and discard the data.
AMCC Proprietary 344

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.4.2 PCI-to-PLB Transaction Handling

This section describes how PCI bridge handles read and write requests from a PCI master device. PCI bridge
responds as a PCI target to PCI memory transactions when the PCI address is in one of the two PTM ranges
and PCIC0_CMD[MA] = 1. PCI bridge responds by claiming the PCI cycle and mastering a cycle on the PLB.

PCI bridge is also a PCI target for configuration cycles when its PCIIDSel pin is active. PCI bridge will master
abort if a configuration cycle is run to itself.

Table 17-6. Transaction Mapping: PCI → PLB

PCI Transaction
PCI Master → Bridge (PCI Target

Interface)
Bridge Mapping

and Qualifications

PLB Transaction
Bridge (PLB Master Interface) → PLB

Slave

Single-Beat Memory Read PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

8-byte or doubleword burst read

Burst Memory Read PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

8-byte or doubleword burst read

Memory Read Line PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

Doubleword burst read

Memory Read Multiple PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

Doubleword burst read

Memory Read PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

Doubleword burst read

Single-Beat Memory Write PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

1 → 8-byte write

Single-Beat Memory Write and
Invalidate

PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

1 → 8-byte write

Burst Memory Write PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

Doubleword burst write

Burst Memory Write and Invalidate PCI address decodes
to PTM1/BAR1 or
PTM2/BAR2, memory
access flag

Doubleword burst write

— Not supported Memory line reads
— Not supported Memory line writes
345 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.4.2.1 PLB Master Commands

PCI bridge generates PLB transactions based on the type and length of received PCI transactions. The
following sections describe the transaction types supported and outline the translation of commands from one
bus to the other.

The term “single-beat” refers to the M_size = 0000 transaction type. PCI slave devices are referred to as
“targets.”

PCI bridge initiates the following PLB master commands:

• 8-Byte Read:

Generated in response to single beat or burst Memory Read commands from the PCI bus.

• Doubleword Burst Read:

Generated in response to Memory Read Line and Memory Read Multiple commands on the PCI bus. PCI
bridge can also be programmed to perform doubleword bursts on behalf of Memory Read.

• 1–8-Byte Write:

Generated in response to single-beat (1–4 byte) Memory Write commands on the PCI bus; also generated
when the PCI master uses non-contiguous byte enables (see “Byte Enable Handling” on page 17-348).

• Doubleword Burst Write:

Generated in response to burst Memory Write and Memory Write and Invalidate commands on the PCI
bus.

The PLB treats Memory Write and Memory Write and Invalidate identically (nothing on the PLB distinguishes
a Memory Write from a Memory Write and Invalidate.)

PCI bridge does not generate line reads or line writes on the PLB.

17.4.2.2 Handling of Reads from PCI Masters

PCI bridge responds to PCI Memory Read, Memory Read Line, and Memory Read Multiple commands. The
PCI bridge initiates all PLB reads as single-beat or doubleword burst transfers.

Memory Read generates a PLB single-beat doubleword read. Memory Read Line and Memory Read Multiple
commands generate PLB doubleword bursts. For Memory Read Line, PCI bridge encodes a burst length on
the byte enable pins of the PLB that corresponds to the number of doublewords from the start address to the
end of a word boundary and terminates when the encoded number of words has been transferred. This is
called a PLB fixed length burst. If the starting address is the last doubleword on a word boundary (typically,
this should not occur), PCI bridge executes a single-beat read. For Memory Read Multiple, PCI bridge sets
the byte enables to 0s, indicating a variable length burst.

The PCI target can be programmed to treat Memory Reads as Memory Read Line commands or Memory
Read Multiple commands in terms of PLB read behavior.

The PCI bridge guarantees the PCI initial target latency requirement by retrying the PCI cycle if read data is
not immediately available in the read buffer. Subsequent latency is programmable using
PCIC0_BRDGOPT2[STLD].

The PCI bridge master latency timer can limit the length of read bursts using PCIC0_BRDGOPT1[MLTC].
The timer limits the duration of a burst to the programmed value in units of PLB clock cycles.
AMCC Proprietary 346

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Read Buffer

The PCI bridge read buffer stores all read data (including delayed read and prefetched data) when the data is
received from the PLB, before it is passed to the PCI. The 96-byte read buffer can store one transaction.

Delayed Reads

A delayed read is queued if a PCI master requests a read while PCI master writes are posted. Posted writes
are completed on the PLB before the read is run. PCI bridge continues to post PCI master writes (if buffer
space is available) while a delayed read is in progress. Such writes complete on the PLB after the read, even
though they complete on the PCI before the read.

A delayed read is also queued if data is not immediately available in the read buffer and a delayed read does
not already exist.

When a PCI master returns for a previously requested delayed read, the data is passed out of the read buffer.
While the PCI master accepts delayed read data, the PCI bridge can begin to prefetch more read data, if the
PCI master posted write buffer is empty. See “Read Prefetching” on page 17-347 for more details.

Any data remaining in the read buffer after delayed read data has been passed to a PCI master is marked as
prefetch data and discarded upon a write in either direction.

PCI bridge can hold one delayed read transaction. PCI bridge retries all other PCI master reads until the
delayed read completes on the PCI. The read buffer discards data from a delayed read under only one
condition. The PCI discard timer is used to track the amount of time it takes for a PCI master to re-request the
read. If the PCI master does not re-request the read in 215 PCI clocks (about one millisecond for a 33 MHz
PCI clock), PCI bridge discards the delayed read data. This timer begins counting at the beginning of the
initial PCI cycle (delayed read request). If PCI bridge is used in a system on which the PLB target (memory)
maximum latency (including PLB arbitration) is a significant portion of the timer duration, the timer can expire
despite normal bus operation. One solution to this problem is to disable the PCI Discard Timer.

If a delayed read is burst terminated on the PLB (a rare occurrence), PCI bridge will not repeat the request
until the PCI master re-requests and only then if the PCI master requests more data than is already buffered.

Read Prefetching

PCI bridge attempts to prefetch data to maximize burst throughput on PCI read requests. Read prefetching
occurs only in response to Memory Read Multiple commands or Memory Read, if the PCI target is
programmed to treat them as Memory Read Multiple (Memory Read Line causes prefetching to the next word
boundary only). This prefetch buffer is 96 bytes.

If a PCI master reads from the read buffer while a PLB read is in progress, data is passed to PCI as it is being
filled from the PLB. If the read buffer goes empty long enough for the PCI subsequent latency timer to expire,
the PCI is target disconnected. If the read buffer fills up, the PLB cycle is master terminated. The bridge PLB
master will not attempt to reacquire the PLB bus if its posted write buffer is not empty.

Prefetched data is discarded if a write is accepted from either the PLB or the PCI. A PCI master read that
misses the prefetch buffer also causes current read data to be discarded and the new request to be serviced.
347 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Byte Enable Handling

PCI byte enables are treated as don’t cares for PCI reads. The PCI bridge performs doubleword burst or
single-beat doubleword reads on the PLB, regardless of the byte enables presented by the requesting PCI
master.

Note: This rule assumes that all PLB memory is prefetchable and that all PLB memory accesses are
nondestructive.

17.4.2.3 Handling Writes from PCI Masters

PCI bridge responds to Memory Write and Memory Write and Invalidate commands. All PCI master writes are
posted. A 64-byte write buffer is used for this purpose. The write buffer accepts up to two separate PCI write
transactions. Two single-beat writes, one burst write, or a combination of a single-beat and a burst writes can
be posted. If the write buffer is full, new writes are retried until buffer space becomes available.

Note: The maximum of two posted transactions is as viewed from the PCI master. The number of writes
performed on the PLB can be more than two, depending on the setting of byte enables of write burst
data. See “Byte Enable Handling” on page 17-348.

The PCI bridge begins a PLB write request as soon as a PCI master write has completed on the PCI bus, or
a bursting PCI master has written at least six words of data. The PCI bridge continues to receive data from a
bursting PCI master as it transfers data to the PLB. If the write post buffer fills, the PCI master is target
disconnected. If the write post buffer empties, the PLB cycle is master terminated.

Writes are executed in the same order they are received.

Byte Enable Handling

The PLB does not support non-contiguous byte enables, whereas the PCI bus does. The PLB supports the
use of byte enables only for non-line, non-burst transactions, whereas the PCI bus supports any combination
of byte enables for any data phase. Therefore, when a PCI master presents a data phase without all byte
enables asserted, the bridge disconnects and treats that data phase as one or two single-beat writes on PLB,
depending on whether or not byte enables are non-contiguous.

Masters presenting writes without all byte enables asserted experience degraded performance.

17.4.2.4 Miscellaneous

The PCI target forces single-beat transfers when reserved burst or cache line wrap order is used.

The PCI target causes master abort of reserved command encodings, and does not respond to I/O, interrupt
acknowledge, or special cycle commands.

The PLB master does not abort requests.

17.4.3 Completion Ordering

PCI bridge implements the following completion ordering rules:

1. PCI master writes are accepted if there is room in the PCI write post buffer.

2. New PCI master reads are accepted if there is no delayed read (DRR or DRC) in progress:

a. If PCI write post buffer is empty and read data is not buffered, then begin a delayed read (enter DRR
state).
AMCC Proprietary 348

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
b. If PCI write post buffer is not empty, then begin delayed read (enter DRR state).

Delayed reads are handled as follows:

a. While in DRR state, retry all PCI master reads. Wait for all PCI master writes if any that were posted
before entering DRR state to complete on PLB.

b. Execute PLB read, enter DRC state.
c. While in DRC state, retry all PCI master reads if the address does not match. If it does match, pass the

read data to the PCI master. If data is passed, exit the DRC state.

3. PLB master writes are accepted if there is room in the PLB write post buffer.

4. PLB master reads are accepted if the PLB write post buffer and the PCI write post buffer are both empty.

17.4.3.1 PCI Producer-Consumer Model

The PCI Producer-Consumer model is followed with one exception: PCI master reads do not flush PLB writes
and PCI master writes do not cause PLB prefetched read data to be discarded. If the “flag” is stored in system
memory (PLB side), but the “data” is stored in a PCI target, the control software must manually force
coherency. This can be done by following two rules:

1. To ensure data written by a PLB master has reached the intended PCI target, the PLB master should
execute a read from PCI, to any nondestructive address. This is only necessary if the write is postable.

2. To ensure data read by a PLB master is current (rather than old prefetched data), the PLB master should
execute a read from PCI to any other nondestructive address. This is only necessary if the read is
prefetchable.

17.4.4 Collision Resolution

The PCI bridge must resolve collisions when a PLB master and a PCI master attempt accesses through the
PCI bridge at the same time. Table 17-7 summarizes collision resolution.

In general, PLB postable writes are always accepted (if buffer space is available), and passed to the PCI
when given the chance. PCI master writes are always accepted (if buffer space is available), but cause PLB
reads and non-postable writes to be rearbitrated to clear the path to the PLB. PLB reads and non-postable
writes proceed as long as there is no PCI master activity, which causes the PLB cycle to be rearbitrated. PCI
master reads are always allowed to proceed, and cause PLB reads and non-postable writes to be
rearbitrated.

Internal configuration accesses have their own rules. Configuration writes are not allowed to complete while
any write data is posted in the PCI bridge, or while the PCI master is prefetching. Otherwise, there are no
restrictions. Configuration reads have no restrictions; however, only one internal configuration access (PLB or
PCI side) may be serviced at a time.

Table 17-7. Collision Resolution

Access Type PLB Read from PCI PLB Postable Write to PCI
PLB Non-postable

Write to PCI

PCI Write to PLB Rearbitrate PLB master
(reads flush writes)

No conflict Rearbitrate PLB master

PCI Read from PLB Rearbitrate PLB master No conflict Rearbitrate PLB master
349 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5 PCI Bridge Configuration Registers

The PCI bridge has two sets of configuration registers for configuring the bridge, handling errors, and
reporting status. Local configuration registers control PLB functions, and are accessed only from the PLB.
The PCI configuration registers control PCI functions, and can be accessed from the PLB and the PCI. In
addition, the mechanism used to access the bridge configuration registers may also be used to configure
other devices on the PCI bus.

17.5.1 PCI Bridge Register Summary

Table 17-8 provides a summary of all of the PCI bridge registers. The registers are discussed in detail in the
following sections. See Chapter 8, “Reset and Initialization,” for register reset values.

Table 17-8. Directly Accessed MMIO Registers

Register Address Access Description Page

PCIL0_PMM0LA 0xEF400000 R/W PMM 0 Local Address 17-352
PCIL0_PMM0MA 0xEF400004 R/W PMM 0 Mask/Attribute 17-353
PCIL0_PMM0PCILA 0xEF400008 R/W PMM 0 PCI Low Address 17-353
PCIL0_PMM0PCIHA 0xEF40000C R/W PMM 0 PCI High Address 17-354
PCIL0_PMM1LA 0xEF400010 R/W PMM 1 Local Address 17-354
PCIL0_PMM1MA 0xEF400014 R/W PMM 1 Mask/Attribute 17-355
PCIL0_PMM1PCILA 0xEF400018 R/W PMM 1 PCI Low Address 17-355
PCIL0_PMM1PCIHA 0xEF40001C R/W PMM 1 PCI High Address 17-356
PCIL0_PMM2LA 0xEF400020 R/W PMM 2 Local Address 17-356
PCIL0_PMM2MA 0xEF400024 R/W PMM 2 Mask/Attribute 17-357
PCIL0_PMM2PCILA 0xEF400028 R/W PMM 2 PCI Low Address 17-357
PCIL0_PMM2PCIHA 0xEF40002C R/W PMM 2 PCI High Address 17-358
PCIL0_PTM1MS 0xEF400030 R/W PTM 1 Memory Size/Attribute 17-358
PCIL0_PTM1LA 0xEF400034 R/W PTM 1 Local Address 17-359
PCIL0_PTM2MS 0xEF400038 R/W PTM 2 Memory Size/Attribute 17-359
PCIL0_PTM2LA 0xEF40003C R/W PTM 2 Local Address 17-360

Table 17-9. PCI Configuration Address and Data Registers

Register Address Access Description

PCIC0_CFGADDR 0xEEC00000 R/W PCI Configuration Address Register
PCIC0_CFGDATA 0xEEC00004 R/W PCI Configuration Data Register

Table 17-10. PCI Configuration Register Offsets

Register Offset

Access

DescriptionPLB PCI

PCIC0_VENDID 0x01–0x00 R/W R PCI Vendor ID
PCIC0_DEVID 0x03–0x02 R/W R PCI Device ID
AMCC Proprietary 350

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PCIC0_CMD 0x05–0x04 R/W R/W PCI Command Register
PCIC0_STATUS 0x07–0x06 R/W R/W PCI Status Register
PCIC0_REVID 0x08 R/W R/W PCI Revision ID
PCIC0_PCICLS 0x0B–0x09 R/W R PCI Class Register
PCIC0_CACHELS 0x0C R R PCI Cache Line Size
PCIC0_LATTIM 0x0D R/W R/W PCI Latency Timer
PCIC0_HDTYPE 0x0E R R PCI Header Type
PCIC0_BIST 0x0F R R PCI Built In Self Test Control
Reserved PCI BAR 0x13–0x10 R R Reserved, PCI BAR
PCIC0_PTM1BAR 0x17–0x14 R/W R/W PCI PTM 1 BAR
PCIC0_PTM2BAR 0x1B–0x18 R/W R/W PCI PTM 2 BAR
Reserved PCI BAR 0x1F–0x1C R R Reserved PCI BAR. Refer to PCI Specification,

Version 2.2 for more information on values.
Reserved PCI BAR 0x23–0x20 R R Reserved PCI BAR. Refer to PCI Specification,

Version 2.2 for more information on values.
Reserved PCI BAR 0x27–0x24 R R Reserved PCI BAR. Refer to PCI Specification,

Version 2.2 for more information on values.
Reserved Cardbus
CIS Pointer

0x2B–0x28 R R Reserved Cardbus CIS Pointer. Refer to PCI
Specification, Version 2.2 for more information on
values.

PCIC0_SBSYSVID 0x2D–0x2C R/W R PCI Subsystem Vendor ID
PCIC0_SBSYSID 0x2F–0x2E R/W R PCI Subsystem ID
Reserved Exp ROM
Base Addr

0x33–0x30 R R Reserved Expansion ROM Base Address. Refer
to PCI Specification, Version 2.2 for more
information on values.

PCIC0_CAP 0x34 R R PCI Capabilities Pointer
Reserved 0x3B–0x35 R R Reserved
PCIC0_INTLN 0x3C R/W R/W PCI Interrupt Line
PCIC0_INTPN 0x3D R R PCI Interrupt Pin
PCIC0_MINGNT 0x3E R R PCI Minimum Grant
PCIC0_MAXLTNCY 0x3F R R PCI Maximum Latency
PCIC0_PCIICS 0x44 R/W R/W PCI Interrupt Control/Status
PCIC0_ERREN 0x48 R/W R/W Error Enable
PCIC0_ERRSTS 0x49 R/W R/W Error Status
PCIC0_BRDGOPT1 0x4B–0x4A R/W R/W PCI Bridge Options 1
PCIC0_PLBBESR0 0x4F–0x4C R/W R/W PLB Slave Error Syndrome 0
PCIC0_PLBBESR1 0x53–0x50 R/W R/W PLB Slave Error Syndrome 1
PCIC0_PLBBEAR 0x57–0x54 R/W R/W PLB Slave Error Address Register
PCIC0_CAPID 0x58 R R Capability Identifier
PCIC0_NEXTIPTR 0x59 R R Next Item Pointer
PCIC0_PMC 0x5B–0x5A R R Power Management Capabilities
PCIC0_PMCSR 0x5D–0x5C R/W R/W Power Management Control Status
PCIC0_PMCSRBSE 0x5E R R PMCSR PCI-to-PCI Bridge Support Extensions

Table 17-10. PCI Configuration Register Offsets (continued)

Register Offset

Access

DescriptionPLB PCI
351 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.2 PCI Bridge Local Configuration Registers

The PCI bridge local configuration registers have fixed addresses in PLB space and must be accessed using
single beat PLB read or write cycles of the same size as shown in the register descriptions.

Failure to access all bytes of a particular register could produce unexpected results. Reading of reserved bit
locations produces unpredictable values. Software must use appropriate masks to extract the desired bits.
Writes must preserve the values of reserved bit positions by first reading the register, merging the new value,
and writing the result.

17.5.2.1 PMM 0 Local Address Register (PCIL0_PMM0LA)

PCIL0_PMM0LA defines the PLB starting address of range 0 in PLB space that is mapped to PCI memory.
Only bits that are 1 in the PCIL0_PMM0MA are used to determine the starting address; all other bits are don’t
cares. Only bits 31:12 are writable. Bits 11:0 are always 0.

PCIC0_DATA 0x5F R R Data
PCIC0_BRDGOPT2 0x63–0x60 R/W R/W PCI Bridge Options 2
PCIC0_PMSCRR 0x64 R/W R/W Power Management State Change Request

Register

Figure 17-7. PMM 0 Local Address Register (PCIL0_PMM0LA)
31:12 WLA Writable PLB Local Address

11:0 PLB Local Address Always 0

Table 17-10. PCI Configuration Register Offsets (continued)

Register Offset

Access

DescriptionPLB PCI

31 12 11 0

WLA
AMCC Proprietary 352

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.2.2 PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)

PCIL0_PMM0MA controls the size and attributes of the PLB space mapped to PCI memory for range 0.

17.5.2.3 PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)

PCIL0_PMM0PCILA defines the low-order 32 bits of the PCI address generated in response to a PLB access
to range 0. Only bits that are 1 in PCIL0_PMM0MA are passed to the PCI address. The other (least
significant) bits of the PCI address are passed through from the PLB address. Only bits 31:12 are writable.
Bits 11:0 are always 0.

Figure 17-8. PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)
31:12 MASK The mask bits determine the size of the

address map range.
The mask must be of the form 111....0000.
Bits set to 1 cause the corresponding
PCIL0_PMM0LA bits to be compared with
incoming PLB addresses. Note that the
minimum range size is 4KB, and valid
ranges are powers of 2. For example, a
128MB range would be encoded as
0xF8000 and a 4KB range would be
encoded as all ones.

11:2 Reserved Returns 0 when read.

1 PRE Read Prefetching Enable
1 Read prefetching is enabled.

If read prefetch is enabled, the PCI bridge
prefetches 64 bytes from PCI memory in
response to a PLB single-beat, byte-burst,
or half word burst read from PMM 0.

0 ENA PLB to PCI Memory Mapping Enable
1 Memory mapping is enabled.

Note that PCIL0_PMM0LA,
PCIL0_PMM0PCIHA, and
PCIL0_PMM0PCILA must be initialized
before enabling.

Figure 17-9. PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)
31:12 WLA Writable PCI Low Address

11:0 PCI Low Address Always 0

31 12 13 2 1 0

MASK

PRE

ENA

31 12 11 0

WLA
353 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.2.4 PMM 0 PCI High Address Register (PCIL0_PMM0PCIHA)

PCIL0_PMM0PCIHA defines the high-order 32 bits of the PCI address generated in response to a PLB
access to range 0. If PCIL0_PMM0PCIHA is greater than 0, the PCI bridge generates a PCI dual address
cycle using the value in PCIL0_PMM0PCIHA as the high-order 32 bits of the PCI address.

17.5.2.5 PMM 1 Local Address Register (PCIL0_PMM1LA)

PCIL0_PMM1LA defines the PLB starting address of range 1 in PLB space that is mapped to PCI memory.
See “PMM 0 Local Address Register (PCIL0_PMM0LA)” on page 17-352.

Figure 17-10. PMM 0 High Address Register (PCIL0_PMM0PCIHA)
31:0 PCI High Address

Figure 17-11. PMM 1 Local Address Register (PCIL0_PMM1LA)
31:0 PLB Local Address

31 0

31 0
AMCC Proprietary 354

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.2.6 PMM 1 Mask/Attribute Register (PCIL0_PMM1MA)

PCIL0_PMM1MA defines the size and attributes of range 1 in PLB space that is mapped to PCI memory. See
“PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)” on page 17-353.

17.5.2.7 PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA)

PCIL0_PMM1PCILA defines the low-order 32 bits of the PCI address generated in response to a PLB access
to range 1. See “PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)” on page 17-353.

Figure 17-12. PMM 1 Mask/Attribute Register (PCIL0_PMM1MA)
31:12 MASK The mask bits determine the size of the

address map range.
The mask must be of the form 111....0000.
Bits set to 1 cause the corresponding
PCIL0_PMM1LA bits to be compared with
incoming PLB addresses. Note that the
minimum range size is 4KB, and valid
ranges are powers of 2. For example, a
128MB range would be encoded as
0xF8000 and a 4KB range would be
encoded as 0x11111.

11:2 Reserved Returns 0 when read.

1 PRE Read Prefetching Enable
1 Read prefetching is enabled.

If read prefetch is enabled, the PCI bridge
prefetches 64 bytes from PCI memory in
response to a PLB single-beat, byte-burst,
or half word burst read from PMM 0.

0 ENA PLB to PCI Memory Mapping Enable
1 Memory mapping is enabled.

Note that PCIL0_PMM1LA,
PCIL0_PMM1PCIHA, and
PCIL0_PMM1PCILA must be initialized
before enabling.

Figure 17-13. PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA)
31:12 WLA Writable PCI Low Address

11:0 PCI Low Address Always 0

31 12 11 2 1 0

MASK

PRE

ENA

31 12 11 0

WLA
355 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.2.8 PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA)

PCIL0_PMM1PCIHA defines the high-order 32 bits of the PCI address generated in response to a PLB
access to range 1. See “PMM 0 PCI High Address Register (PCIL0_PMM0PCIHA)” on page 17-354.

17.5.2.9 PMM 2 Local Address Register (PCIL0_PMM2LA)

PCIL0_PMM2LA defines the PLB starting address of range 2 in PLB space that is mapped to PCI memory.
See “PMM 0 Local Address Register (PCIL0_PMM0LA)” on page 17-352.

Figure 17-14. PMM 0 High Address Register (PCIL0_PMM0PCIHA)
31:0 PCI High Address

Figure 17-15. PMM 2 Local Address Register (PCIL0_PMM2LA)
31:0 PLB Local Address

31 0

31 0
AMCC Proprietary 356

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.2.10 PMM 2 Mask/Attribute Register (PCIL0_PMM2MA)

PCIL0_PMM2MA defines the size and attributes of range 2 in PLB space that is mapped to PCI memory. See
“PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)” on page 17-353.

17.5.2.11 PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA)

PCIL0_PMM2PCILA defines the low-order 32 bits of the PCI address generated in response to a PLB access
to range 2. See “PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)” on page 17-353.

Figure 17-16. PMM 2 Mask/Attribute Register (PCIL0_PMM2MA)
31:12 MASK The mask bits determine the size of the

address map range.
The mask must be of the form 111....0000.
Bits set to 1 cause the corresponding
PCIL0_PMM2LA bits to be compared with
incoming PLB addresses. Note that the
minimum range size is 4KB, and valid
ranges are powers of 2. For example, a
128MB range would be encoded as
0xF8000 and a 4KB range would be
encoded as 0x11111.

11:2 Reserved Returns 0 when read.

1 PRE Read Prefetching Enable
1 Read prefetching is enabled.

If read prefetch is enabled, the PCI bridge
prefetches 64 bytes from PCI memory in
response to a PLB single-beat, byte-burst,
or half word burst read from PMM 0.

0 ENA PLB to PCI Memory Mapping Enable
1 Memory mapping is enabled.

Note that PCIL0_PMM2LA,
PCIL0_PMM2PCIHA, and
PCIL0_PMM2PCILA must be initialized
before enabling.

Figure 17-17. PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA)
31:12 WLA Writable PCI Low Address

11:0 PCI Low Address Always 0

31 12 11 2 1 0

MASK

PRE

ENA

31 12 11 0

WLA
357 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.2.12 PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA)

PCIL0_PMM2PCIHA defines the high-order 32 bits of the PCI address generated in response to PLB access
to range 2. See “PMM 0 PCI High Address Register (PCIL0_PMM0PCIHA)” on page 17-354.

17.5.2.13 PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS)

PCIL0_PTM1MS defines the size and attributes of the of PCI memory region mapped to local (PLB) space
through PTM 1. PCIL0_PTM1MS affects the operation of PCI PTM 1 BAR.

Figure 17-18. PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA)
31:0 PCI High Address

Figure 17-19. PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS)
31:12 MASK Defines the size of the region of PCI

memory space that is mapped to local
(PLB) space using PTM 1.

The minimum range size is 4KB. Valid
ranges are always a power of 2.
For example, a value of 0xFF000000
indicates that the region contains 16MB.

11:1 Reserved Returns 0 when read.

0 ENA Determines if range 1 is enabled to map
PCI memory space to PLB space.

31 0

31 12 11 1 0

ENA

MASK
AMCC Proprietary 358

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.2.14 PTM 1 Local Address Register (PCIL0_PTM1LA)

PCIL0_PTM1LA defines the local (PLB) address that is generated in response to a PCI access to local (PLB)
space through PTM 1. Only bits that are 1 in PCIL0_PTM1MS are passed to the PLB address. The other
(least significant) bits of the PLB address are passed through from the PCI address. Only bits 31:12 are
writable. Bits 11:0 are always 0.

17.5.2.15 PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS)

PCIL0_PTM2MS defines the size of the region of PCI memory space mapped to local (PLB) space through
PTM 2.

Figure 17-20. PTM 2 Local Address Register (PCIL0_PTM1LA)
31:12 WLA Writable PTM 1 Local Address Writable

11:0 PTM 1 Local Address Always 0

Figure 17-21. PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS)
31:12 MASK Defines the size of the region of PCI

memory space mapped to local (PLB)
space using PTM 2.

The minimum range size is 4KB. Valid
ranges are always a power of 2.
For example, a value of 0xFF000000
indicates that the region contains 16MB.

11:1 Reserved. Returns 0 when read.

0 ENA Determines if range 2 is enabled to map
PCI memory space to PLB space.

When ENA is disabled, PCIC0_PTM2BAR
cannot be written. Set PCIC0_PTM2BAR
to 0 before disabling ENA.

31 12 11 0

WLA

31 12 11 1 0

ENA

MASK
359 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.2.16 PTM 2 Local Address Register (PCIL0_PTM2LA)

This register defines the local (PLB) address generated in response to a PCI access to local (PLB) space
through PTM 2. See “PMM 1 Local Address Register (PCIL0_PMM1LA)” on page 17-354 for more
information.

17.5.3 PCI Configuration Registers

The PCI configuration registers can be accessed from both the PLB and PCI buses.

PLB side configuration is supported using the mechanism defined in the PCI Local Bus Specification Version
2.2. This mechanism uses PCIC0_CFGADDR and PCIC0_CFGDATA to access the configuration registers
indirectly. These registers reside at addresses 0xEEC00000 and 0xEEC00004, respectively.

To access (from the PLB side) the configuration space of other devices on the PCI bus, write a value to
PCIC0_CFGADDR that specifies the following:

• Bus number

• Device number on that bus

• Register number to be accessed

The value must also set PCIC0_CFGADDR[EN] = 1. An access to PCIC0_CFGDATA then results in a
configuration cycle on the PCI bus.

To access the bridge configuration registers from the PLB side, use the same mechanism as described
above, but set PCIC0_CFGADDR[BN, DN] = 0. The bridge is assumed to reside on PCI bus 0 and to have a
device number of 0.

The bridge configuration registers can be accessed from the PCI side by Type 0 configuration reads or writes,
with the PCIIDSel pin asserted to the bridge. There are some restrictions on PCI side accesses that are noted
in the register descriptions that follow.

PCIC0_CFGADDR and CONFIG_DATA should be accessed with single-beat PLB commands. All registers
are byte addressable. Reading of reserved bit locations produces unpredictable values. Software must use
appropriate masks to extract the desired bits. Writes must preserve the values of reserved bit positions by
first reading the register, merging the new value, and writing the result.

Figure 17-22. PTM 2 Local Address Register (PCIL0_PTM2LA)
31:0 PTM 2 Local Address

31 0
AMCC Proprietary 360

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.1 PCI Configuration Address Register (PCIC0_CFGADDR)

PCIC0_CFGADDR controls the type of cycle generated when PCIC0_CFGDATA is accessed. Its fields are
shown in Figure 17-23.

See the PCI Local Bus Specification Version 2.2 for details about how the fields are used.

17.5.3.2 PCI Configuration Data Register (PCIC0_CFGDATA)

Accessing PCIC0_CFGDATA causes one of three things to happen, depending on the value of
PCIC0_CFGADDR.

1. Generation of a Type 0 configuration cycle on the PCI bus (PCIC0_CFGADDR[BN] = 0,
PCIC0_CFGADDR[DN] > 0).

2. Generation of a Type 1 configuration cycle on the PCI bus (PCIC0_CFGADDR[BN] > 0).

3. Access of a PCI bridge PCI configuration register (PCIC0_CFGADDR[BN, DN] = 0).

Figure 17-24 illustrates the PCIC0_CFGDATA register.

Figure 17-23. PCI Configuration Address Register (PCIC0_CFGADDR)
31 EN Enable

0 Disabled
1 Enabled

30:24 Reserved

23:16 BN Bus Number

15:11 DN Device Number

10:8 FN Function Number

7:2 RN Register Number

1 0

0 0

31 30 24 23 16 15 11 10 8 7 2 1 0

EN

BN FN

RN

0

0DN
361 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

17.5.3.3 PCI Vendor ID Register (PCIC0_VENDID)

PCIC0_VENDID identifies the manufacturer of a PCI device. This register contains 0x1014 (index
0x00 = 0x14, index 0x01 = 0x10) at reset. This vendor ID is assigned for all IBM PCI devices. The local CPU
(PLB master) can write a different value to this register.

17.5.3.4 PCI Device ID Register (PCIC0_DEVID)

PCIC0_DEVID identifies the PCI device. This value is 0x0156 (index 0x03 = 0x01, index 0x02 = 0x56) at
reset. The local CPU (PLB master) can write a different value to this register.

Figure 17-24. PCI Configuration Data Register (PCIC0_CFGDATA)
31:0 Configuration Data

Figure 17-25. PCI Vendor ID Register (PCIC0_VENDID)
15:0 Vendor ID

Figure 17-26. PCI Device ID Register (PCIC0_DEVID)
15:0 PCI Device ID

31 0

15 0

15 0
AMCC Proprietary 362

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.5 PCI Command Register (PCIC0_CMD)

PCIC0_CMD controls the operation of the PCI bridge on the PCI bus. Figure 17-27 describes the bits.

Figure 17-27. PCI Command Register (PCIC0_CMD)
15:10 Reserved .

9 FBB Fast Back-to-Back Write Enable Enables PCI masters to perform fast back-
to-back transactions. Because he PCI
bridge does not perform fast back-to-back
transactions; FBB is read-only and returns
0 when read.

8 SE PCISErr Enable
0 Disabled
1 Enabled

Enables driving PCISErr when a PCI bus
parity error is detected when the PCI bridge
is the PCI target. PCIC0_CMD[PER] must
be enabled for address parity errors.
PCIC0_CMD[PER] and
PCIC0_ERREN[WDPE] must be enabled
for write data parity errors.

7 AS Address stepping wait states. The PCI bridge does not address step
(except for address stepping when
generating a Config Type 0 cycle); AS is
read-only and returns 0 when read.

6 PER Parity error response
0 Disabled
1 Enabled

This bit is enabled for all types of PCI bus
parity errors, including the following:
• PCI data bus parity errors while PCI is

master.
• PCI data bus parity errors while PCI is

target.
• PCI address bus parity errors.
When parity error response is disabled,
detection of these errors is masked and
PCIPErr (PERR#) is not asserted, although
parity is still generated.

5 PS Palette Snooping Enable special palette snooping.
The PCI bridge is not a VGA device; PS is
read-only and returns 0 when read

4 MWI Memory Write and Invalidate Enable The PCI bridge does not generate this
command; MWI is read-only and returns 0
when read.

3 SC Special Cycle Operations Enable The PCI bridge never monitors special
cycles; SC is read-only and returns 0 when
read.

15 10 9 8 7 6 5 4 3 2 1 0

SE

FBB AS PS

PER

SC MA

MWI ME IOA
363 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.6 PCI Status Register (PCIC0_STATUS)

PCIC0_STATUS is a read/bit-reset register used to record status information for PCI bus events. Bits in
PCIC0_STATUS are set only as a result of specific events occurring on the PCI bus. They are reset by writing
a 1 to the desired bit. Writing a 0 to a bit location leaves that bit unchanged.

2 ME Master Enable
0 Disabled
1 Enabled

Enables PCI bridge-to-master cycles on
the PCI bus. When ME is 0, the PCI bridge
only responds as a PLB slave to
PCIC0_CFGADDR, PCIC0_CFGDATA,
and PCI bridge local configuration register
access. Except for configuration cycles, the
PCI bridge cannot master cycles to the PCI
bus.

1 MA Memory Access
0 Disabled
1 Enabled

Controls PCI bridge response as a PCI
memory target. MA is disabled at reset.

0 IOA I/O Access Controls the PCI bridge response as a PCI
I/O target. The PCI bridge does not
respond to I/O space accesses; IOA is
read-only and returns 0 when read.

Figure 17-28. PCI Status Register (PCIC0_STATUS)
15 DEPE Detected Parity Error

Write 1 to clear.
The PCI bridge sets DEPE when the PCI
bridge detects a PCI bus parity error,
regardless of the setting of any enable bits
(DEPE is non-maskable).
The following events set DEPE:
• PCI address bus parity error detected

when PCI bridge is a target.
• PCI data bus parity error detected when

a PCI master writes to PLB memory (PCI
bridge is the target).

• PCI data bus parity error detected when
PCI bridge masters a PCI read cycle.

14 SSE Signaled System Error
Write 1 to clear.

The PCI bridge sets SSE if the PCI bridge
asserts PCISErr (see “Error Handling” on
page 17-386 for causes of PCISErr
assertion).

13 RMA Received Master Abort
Write 1 to clear.

The PCI bridge sets RMA when a PCI
cycle for which the PCI bridge is the
master is terminated with master abort.

15 14 13 12 11 10 9 8 7 6 5 4 3 0

SSE

DEPE RMA STA

RTA

DST FBBC

DPE UDFS

66C

CL
AMCC Proprietary 364

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
12 RTA Received Target Abort
Write 1 to clear.

The PCI bridge sets RTA when a PCI cycle
for which it is the master is terminated with
target abort.

11 STA Signaled Target Abort
Write 1 to clear.

The PCI bridge sets STA when a PCI cycle
for which it is the target is terminated with
target abort.

10:9 DST PCIDevSel Response Timing
Read-only.

The PCI bridge asserts PCIDevSel on the
second clock after PCIFframe is asserted
(called medium response time).
Read-only; always returns 0b01 when
read.

8 DPE Data Parity Error Detected
Write 1 to clear.

DPE is set when the following conditions
are met:
• The PCI bridge detects a data parity

error (PCIPErr is asserted) when the PCI
bridge is the master on a PCI read cycle,
or is the master when it samples
PCIPErr asserted on a PCI write cycle.

• PCIC0_CMD[PER] = 1.

7 FBBC Fast Back-to-Back Capable
Read-only; returns 0 when read.

Indicates that the PCI target can accept
fast back-to-back transactions when the
transactions are not to the same agent.
The PCI bridge target does not accept this
type of fast back-to-back transaction.

6 UDFS UDF Supported
Read-only; returns 0 when read.

Indicates device support of user-definable
features. The PCI bridge does not support
user-definable features.

5 66C 66 MHz Capable
0 At reset
1 PCI bridge is configured for 66MHz

operation.

Indicates that the device can run at 66
MHz. The PCI bridge can be configured to
run at 33 MHz max or 66 MHz. The local
CPU (PLB master) sets 66C to 1 if PCI
bridge is configured for 66 MHz operation.

4 CL Capabilities List
This bit is read only and returns 1 when
read.

Indicates that the value at offset 0x34 is a
pointer in configuration space to a linked
list of new capabilities.

3:0 Reserved These bits return 0s when read.
365 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.7 PCI Revision ID Register (PCIC0_REVID)

PCIC0_REVID holds the current incremental revision number. The reset value is the version number of the
PCI bridge macro (first version is 00). However, the local CPU (PLB master) can write a value to this register.

17.5.3.8 PCI Class Register (PCIC0_CLS)

This register holds the class code. This register is 0x060000 at reset, which indicates that the PCI bridge is a
bridge device located between the PLB and the PCI bus; however, the local CPU (PLB master) can write a
value to this register for the case where PCI bridge is not the host bridge.

Class information is defined in the PCI Local Bus Specification, Version 2.2.

Figure 17-29. PCI Revision ID Register (PCIC0_REVID)
7:0 Revision ID Revision level of device.

Figure 17-30. PCI Class Register (PCIC0_CLS)
23:16 BASE Base Class Reset to 0x06, which indicates bridge

device.
Users of the RISCWatch debugger must
use the PCIC0_BASECC register to
access this field.

15:8 SUB Subclass Reset to 00, which indicates host bridge.
Users of the RISCWatch debugger must
use the PCIC0_SUBCLS register to
access this field.

7:0 INT Interface Class Reset to 00.
Users of the RISCWatch debugger must
use the PCIC0_INTCLS register to access
this field.

7 0

23 16 15 8 7 0

BASE INT

SUB
AMCC Proprietary 366

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.9 PCI Cache Line Size Register (PCIC0_CACHELS)

PCIC0_CACHELS determines the size of a PCI cache line. PCI bridge does not support a PCI cache.
Therefore, this register is read-only and returns 0x00 when read.

17.5.3.10 PCI Latency Timer Register (PCIC0_LATTIM)

PCIC0_LATTIM holds the value of the PCI latency timer. The granularity of the latency timer is 8 PCI cycles.
Therefore, the 3 low-order bits of this register are read-only and return 0x111.

PCI Local Bus Specification Version 2.2 specifies that PCI masters capable of multi-beat bursts must, after
losing their PCI grant, get off the bus when PCIC0_LATTIM has decremented to 0.

The actual number of clock cycles to disconnect varies somewhat when in asynchronous mode. If
PCIC0_LATTIM is programmed in asynchronous mode to a value that is less than 64, the PCI bridge PCI
master interface could timeout, regardless of the state of its grant line.

In asynchronous mode, the PCI master starts its timer and can timeout regardless of the state of the PCI
grant. This is strictly a performance issue and does not limit functionality or affect data integrity.

Several factors affect the frequency of timeouts.

• The amount of PCI bus traffic. In moderate to heavily loaded systems, this is less of an issue because a
PCI master tends to lose its grant more often after gaining the bus.

• Fast targets that introduce few or no wait states reduce the chances of timeouts occurring.

Figure 17-31. PCI Cache Line Size Register (PCIC0_CACHELS)
7:0 PCI Cache Line Size

Figure 17-32. PCI Latency Timer Register (PCIC0_LATTIM)
7:0 PCI Latency Timer

7 0

7 0
367 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.11 PCI Header Type Register (PCIC0_HDTYPE)

PCIC0_HDTYPE (bits 0:6) identifies the second part of the PCI header, which begins at offset 0x10. It also
determines whether a device contains multiple functions (bit 7). The PCI bridge implements the standard
header and is not a multi-function device; therefore, PCIC0_HDTYPE is read-only and returns 0x00 when
read.

17.5.3.12 PCI Built-In Self Test (BIST) Control Register (PCIC0_BIST)

PCIC0_BIST is used for control and status of BIST. PCI bridge does not implement BIST. PCIBIST is read-
only and returns 0x00 when read.

17.5.3.13 Unused PCI Base Address Register Space

PCI base address register space is defined to begin at offset 0x10; however, the first 32 bits of this space are
unused by PCI bridge, and the defined base address registers begin at offset 0x14.

Figure 17-33. PCI Header Type Register (PCIC0_HDTYPE)
7:0 PCI Header Type

Figure 17-34. PCI Built-in Self Test Control Register (PCIC0_BIST)
7:0 PCI BIST Control

7 0

7 0
AMCC Proprietary 368

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.14 PCI PTM 1 BAR (PCIC0_PTM1BAR)

PCIC0_PTM1BAR defines a space in PCI memory space mapped to PLB space (system memory or ROM).

Figure 17-35. PCI PTM 1 BAR Register (PCIC0_PTM1BAR)
31:12 BA Base Address

These bits determine where in PCI memory
address space this region is located.

Only corresponding bits in PCIL0_PTM1MS
that are set to 1 are writable. Bits in
PCIL0_PTM1MS that are set to 0 cause
the corresponding Base Address register
bits to be always 0. PCIL0_PTM1MS must
be initialized by a PLB master before any
PCI device is allowed to configure this
register.

11:4 BAZ Base Address Always Zero BAZ = 0x00 because the minimum size of
this range is 4KB.

3 PF Prefetchable PF = 1 to indicate that prefetching is
allowed.

2:1 LT Location Type LT = 0b00 to indicate that the memory
space can be located anywhere in the 32-
bit address space.

0 MSI Memory Space Indicator MSI = 0 to indicate memory space, rather
than I/O space.

31 12 11 4 3 2 1 0

BA

BAZ MSI

LTPF
369 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.15 PCI PTM 2 BAR (PCIC0_PTM2BAR)

PCIC0_PTM2BAR defines a second space in PCI memory space that is mapped to PLB space (system
memory or ROM). Note that if PCIC0_PTM2BAR is disabled using PCIL0_PTM2MS, PCIC0_PTM2BAR
cannot be written. Set PCIC0_PTM2BAR to 0 before disabling this bit. If disabled in this way, reads to
PCIC0_PTM2BAR always return 0.

17.5.3.16 PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID)

PCIC0_SBSYSVID holds the vendor ID for a subsystem or add-in board.

Figure 17-36. PCI PTM 2 BAR Register (PCIC0_PTM2BAR)
31:12 BA Base Address

These bits determine where in PCI
Memory address space this region is
located.

Only corresponding bits in
PCIL0_PTM2MS that are set to 1 are
writable. Bits in PCIL0_PTM2MS that
are set to 0 cause the corresponding
Base Address register bits to be always
0. PCIL0_PTM2MS must be initialized
by a PLB master before any PCI device
can configure this register.

11:4 BAZ Base Address Always Zero BAZ = 0x00 because the minimum size
of this range is 4KB.

3 PF Prefetchable PF = 1 to indicate that prefetching is
allowed.

2:1 LT Location Type LT = 0b00 to indicate that the memory
space can be located anywhere in the
32-bit address space.

0 MSI Memory Space Indicator MSI = 0 to indicate memory space,
rather than I/O space.

Figure 17-37. PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID)
15:0 PCI Subsystem Vendor ID

31 12 11 4 3 2 1 0

BA PF

MSILTBAZ

15 0
AMCC Proprietary 370

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.17 PCI Subsystem ID Register (PCIC0_SBSYSID)

PCIC0_SBSYSID holds the device ID of a subsystem or add-in board.

17.5.3.18 PCI Capabilities Pointer (PCIC0_CAP)

PCIC0_CAP contains an 8-bit pointer in configuration space to the next capability. This data structure is
indicated by PCIC0_STATUS[CL]. PCIC0_CAP points to the first item in the list of capabilities at address
offset 0x58, which is the PCI power management capability structure.

17.5.3.19 PCI Interrupt Line Register (PCIC0_INTLN)

PCIC0_INTLN contains interrupt line routing information.

Figure 17-38. PCI Subsystem ID Register (PCIC0_SBSYSID)
15:0 PCI Subsystem ID

Figure 17-39. PCI Capabilities Pointer (PCIC0_CAP)
7:0 PCI Capabilities Pointer

Figure 17-40. PCI Interrupt Line Register (PCIC0_INTLN)
7:0 PCI Interrupt Line

15 0

7 0

7 0
371 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.20 PCI Interrupt Pin Register (PCIC0_INTPN)

PCIC0_INTPN specifies the PCI interrupt line that the device uses. The value 0x01 indicates INTA#.

17.5.3.21 PCI Minimum Grant Register (PCIC0_MINGNT)

PCIC0_MINGNT specifies the burst period length of a PCI device. PCIC0_MINGNT is read-only and returns
0x00 when read.

17.5.3.22 PCI Maximum Latency Register (PCIC0_MAXLTNCY)

PCIC0_MAXLTNCY specifies how often a PCI device needs to access to the PCI bus. PCIC0_MAXLTNCY is
read-only and returns 0x00 when read.

Figure 17-41. PCI Interrupt Pin Register (PCIC0_INTPN)
7:0 PCI Interrupt Pin

Figure 17-42. PCI Minimum Grant Register (PCIC0_MINGNT)
7:0 PCI Minimum Grant

Figure 17-43. PCI Maximum Latency Register (PCIC0_MAXLTNCY)
7:0 PCI Maximum Latency

7 0

7 0

7 0
AMCC Proprietary 372

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.23 PCI Interrupt Control/Status Register (PCIC0_ICS)

A PLB master or a PCI master device may generate an interrupt to the PCI bus by writing a 1 to bit 0.
Clearing this bit clears the interrupt. Bit 0 also reports the status of the interrupt. A value of 1 means that the
interrupt is asserted, a value of 0 means that the interrupt is deasserted.

17.5.3.24 Error Enable Register (PCIC0_ERREN)

ERREN enables detection and reporting of various errors for the PCI bridge (see “Error Handling” on
page 17-386).

Figure 17-44. PCI Interrupt Control/Status Register
7:1 Reserved These bits return 0 when read.

0 API Assert PCI interrupt When software sets this bit, the PCI bridge
asserts its Interrupt pin.

Figure 17-45. Error Enable Register (PCIC0_ERREN)
7 Reserved

6 TAEE Target Abort Error Enable
0 Disabled
1 Enabled

While the PCI bridge is the PCI master,
this bit enables the detection of a target
abort as an error condition. If TAEE is
enabled, the PCI bridge reports PLB bus
errors.

5:4 MERE PLB Bus Error Response Enable
00 No action is taken.
01 The PCI target should drive PCISErr on

the PCI bus.
10 Target should target abort the offending

read.
11 Indicates the PCI target should drive

PCISErr and target abort.

MERE controls the response taken by the
PCI bridge on the PCI bus (as the PCI
target) when PLB bus errors are asserted
to the PCI bridge PLB master.
Note: Only reads can be target aborted.
Note: Modes 10 and 11 cannot be used in

asynchronous mode.

7 1 0

7 6 5 4 3 2 1 0

TAEE

MERE

MEDE

MAEEMEAE

WDPE
373 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.25 Error Status Register (PCIC0_ERRSTS)

PCIC0_ERRSTS contains status for detected error conditions (see “Error Handling” on page 17-386). Bits in
PCIC0_ERRSTS can be set to 1 only as the result of a system error. Writing a 1 to a PCIC0_ERRSTS bit
clears the bit. Writing a 0 to a bit leaves that bit unchanged.

3 MEDE PLB Master Error Detection Enable
0 Disables detection of PLB master errors.
1 Enables detection of PLB master errors.

MEDE enables the detection of PLB bus
errors when the PCI bridge is a PLB
master.

2 MEAE PLB Bus Error Assertion Enable
0 Disabled
1 Enabled

MEAE enables the reporting of a PLB bus
error when the PCI bridge is a PLB slave.

1 WDPE Write Data Parity PCISErr Enable
0 Disabled
1 Enabled.

The PCI bridge drives PCISErr when a
data parity error is detected on a write
cycle when the PCI bridge is the PCI
target. PCIC0_CMD[SE] must also be 1.

0 MAEE Master Abort Error Enable
0 Disabled
1 Enabled

MAEE enables the detection of a master
abort as an error condition when the PCI
bridge is the master. The PCI bridge drives
Sl_MErr on the PLB bus in response to a
master abort. If this bit is disabled, driving
of Sl_Merr in response to master abort is
masked.

Figure 17-46. Error Status Register (PCIC0_ERRSTS)
7:5 Reserved

4 SARME PCISErr Asserted on Received PLB Bus
Error

Set when PCI bridge asserts PCISErr on
the PCI bus in response to PCI bridge
receiving a PLB bus error while PLB
master.

3 MED PLB Bus Error Detected
1 Error detected

Set when a PLB bus error signal is
asserted when PCI bridge is the PLB
master. MED is set regardless of whether
the PCI bridge is enabled to treat this as an
error condition (the setting of MED is not
maskable).

7 5 4 3 2 1 0

SARME

MED

MEAE

WDPE

PUR
AMCC Proprietary 374

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.26 Bridge Options 1 Register (PCIC0_BRDGOPT1)

PCIC0_BRDGOPT1 controls various operating parameters of the PCI bridge. The parameters must be
initialized before PCI masters access the PCI bridge.

2 MEAE PLB Bus Error Assertion Event
1 An PCI bridge error, which can cause a

PLB bus error, occurred.

Set when an error occurs that would cause
PCI bridge (as PLB slave) to assert a PLB
bus error signal. MEAE is set regardless of
whether the the PLB bus error assertion is
enabled (the setting of MEAE is not
maskable).

1 WDPE PCISerr on Write Data Parity Error Set when the PCI bridge drives PCISErr in
response to a data parity error detected on
a PCI write to PLB memory. PCIPErr is
also driven.

0 PUR PLB Unsupported Request Set when the PCI bridge is a PLB slave
and detects an unsupported request from a
PLB master to an address range that PCI
bridge decodes. The PCI bridge allows
such requests to time out.

Figure 17-47. Bridge Options 1 Register (PCIC0_BRDGOPT1)
15:8 PMLTC

R
PLB Master Latency Timer Count
Register

PMLTCR contains the value used by the
PLB master to load its latency timer. The
granularity of this timer is 16 PLB cycles;
therefore, the low-order bits of this
register are read-only and are hardwired to
1.

7 PLESE PLB Lock Error Status Enable
0 Slave error locking is disabled.
1 Slave error locking is enabled.

PLESE controls the handling of slave error
locking.

6:5 PRP PLB Request Priority
11 Highest
10 Next highest
01 Next highest
00 Lowest

PRP controls the request priority for PLB
accesses.

4 PGMAE PLB Guarded Memory Access Enable
0 Bridge PLB master memory accesses

are unguarded.
1 Bridge PLB master memory

accesses are guarded.

PGMAE controls whether PLB accesses
are guarded or unguarded.

15 8 7 6 5 4 3 2 1 0

PLMTCR

PLESE

PRP

PGMAE

PAPM

PTMRCI

APLRM
375 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.27 PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0)

PCIC0_PLBBESR0 stores information about errors reported by the PCI bridge PLB slave. There are four
groups of errors, one each for PLB masters 0–3. PCIC0_PLBBESR0[MxET] fields (x represents a particular
PLB master ID) contain information about the type of error. PCI parity errors set PCIC0_PLBBESR0[MxET] to
0b001. Master and target aborts set PCIC0_PLBBESR0[MxET] to 0b101 (non-configured bank error). The
PCIC0_PLBBESR0[MxRWS] fields show whether the transaction causing the error was a read or write.

Each error field can be locked by PCIC0_PLBBESR0[MxFL], which is set by a PLB lock error signal to the
bridge PLB slave. If the PCIC0_PLBBESR0[MxFL] field associated with a master is 0, the PLB lock error
signal is driven high to the bridge PLB slave, and an error associated with that master occurs. The error is
then reported, and PCIC0_PLBBESR0[MxFL] is set. Subsequent errors do not set PCIC0_PLBBESR0 fields
for that master until PCIC0_PLBBESR0[MxFL] is cleared. If PCIC0_PLBBESR0[MxFL] = 0, and the PLB lock
error signal is low, the error is reported, and PCIC0_PLBBESR0[MxFL] is not set. Additional errors are also
reported. Only software can clear PCIC0_PLBBESR0[MxFL].

Writing 1 to a PCIC0_PLBBESR0 field clears the field.

3 PAPM PCI Arbiter Park Mode
0 The arbiter parks on requester 0 (the

bridge PCI master).
1 The arbiter parks on the last master

granted the bus.

PAPM defines how the internal PCI arbiter
handles bus parking.

2:1 PTMRCI PCI Target Memory Read Command
Interpretation
00 Memory Read
01 Memory Read Line
10 Memory Read Multiples
11 Reserved

PTMRCI enables the PCI bridge to be
forced to treat a PCI memory read as a
memory read multiple, or as a memory
read line, with respect to the burst size
implied by the read commands. This is for
masters that use memory read for multiple
beat bursts.

0 APLRM Atomic PLB Line Read Mode
0
1 PLB slave asserts Addrack and

begins its data tenure immediately
after the PCI master receives the first
read data word.

APLRM controls the behavior of the bridge
PLB slave with respect to PLB line reads.
APLRM must not be se t to 1 unless all
PCI target devices can guarantee no
disconnects for PLB line reads.
AMCC Proprietary 376

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Figure 17-48. PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0)
31:29 M0ET Master 0 Error Type

000 No Error
001 Parity Error
010 Reserved
011 Reserved
100 Reserved
101 Non-configured Bank Error
110 Reserved
111 Reserved

Master 0 is the DMA controller.

28 M0RWS Master 0 Read/Write Status
0 Error operation was a write
1 Error operation was a read

27 M0FL Master 0 PCIC0_PLBBESR0 Field Lock
0 PCIC0_PLBB ESR0 unlocked
1 PCIC0_PLBB ESR0 locked

26 M0AL Master 0 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 0
1 PCIC0_PLBBEAR locked by Master 0

25:23 M1ET Master 1 Error Type See PCIC0_PLBBESR0[M0ET]
Master 1 is the instruction cache unit.

22 M1RWS Master 1 Read/Write Status
0 Error operation was a write
1 Error operation was a read

21 M1FL Master 1 PCIC0_PLBBESR0 Field Lock
0 PCIC0_PLBB ESR0 unlocked
1 PCIC0_PLBB ESR0 locked

20 M1AL Master 1 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 1
1 PCIC0_PLBBEAR locked by Master 1

19:17 M2ET Master 2 Error Type See PCIC0_PLBBESR0[M0ET]
Master 2 is the data cache unit.

16 M2RWS Master 2 Read/Write Status
0 Error operation was a write
1 Error operation was a read

15 M2FL Master 2 PCIC0_PLBBESR0 Field Lock
0 PCIC0_PLBB ESR0 unlocked
1 PCIC0_PLBB ESR0 locked

31 29 28 27 26 25 23 22 21 20 19 17 16 15 14 13 0

M0ET

M0RWS

M0FL

M0AL

M1ET

M1RWS

M1FL

M1AL

M2ET

M2RWS

M2FL

M2AL
377 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
14 M2AL Master 2 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 2
1 PCIC0_PLBBEAR locked by Master 2

13:0 Reserved
AMCC Proprietary 378

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.28 PLB Slave Error Syndrome Register 1 (PCIC0_PLBBESR1)

PCIC0_PLBBESR1 stores information about errors reported by the bridge PLB slave. There are four groups
of errors, one each for PLB masters 4–7. See “PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0)”
on page 17-376 for additional information about the fields of this register.

Only software can clear PCIC0_PLBBESR1[MxFL]. The PCIC0_PLBBESR1[MxAL] fields control the and
PCIC0_PLBBESR0 and PCIC0_PLBBESR1 in the same way. Writing a 1 to a field of the PCIC0_PLBBESRx
clears the bit.

17.5.3.29 PLB Slave Error Address Register (PCIC0_PLBBEAR)

PCIC0_PLBBEAR contains addresses associated with errors, as indicated by the PLB slave asserting
Sl_MErr for transactions initiated by the PCI bridge on the PCI bus. PCIC0_PLBBEAR is read-only.

Figure 17-49. PLB Slave Error Syndrome 1 (PCIC0_PLBBESR1)
31:26 Reserved

25:23 M5ET Master 5 Error Type See PCIC0_PLBBESR1[M4ET]
Master 5 is MAL0.

22 M5RWS Master 5 Read/Write Status
0 Write error operation
1 Read error operation

21 M5FL Master 5 PCIC0_PLBBESR1 Field Lock
0 PCIC0_PLBBESR1 Unlocked
1 PCIC0_PLBBESR1 Locked

20 M5AL Master 5 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 5
1 PCIC0_PLBBEAR locked by Master 5

19:0 Reserved

Figure 17-50. PLB Slave Error Address Register (PCIC0_PLBBEAR)
31:0 PLB Slave Error Address

31 26 25 23 22 21 20 19 0

M5ET

M5RWS

M5FL

M5AL

31 0
379 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.30 Capability Identifier (PCIC0_CAPID)

When PCIC0_CAPID contains 0x01, the PCI bridge supports power management and the data structure
currently being pointed to is the PCI power management capability structure.

17.5.3.31 Next Item Pointer (PCIC0_NEXTIPTR)

PCIC0_NEXTIPTR describes the location of the next item in the capability list of the function.
PCIC0_NEXTIPTR is set to 0x00 to indicate that this is the last item on the capability list.

Figure 17-51. Capability Identifier (PCIC0_CAPID)
7:0 PCI Capability Identifier

Figure 17-52. Next Item Pointer (PCIC0_NEXTIPTR)
7:0 PCI Next Item Pointer

7 0

7 0
AMCC Proprietary 380

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.32 Power Management Capabilities (PCIC0_PMC)

PCIC0_PMC provides information about the capabilities of the function related to power management. A
value of 0x0202 indicates no specific capabilities.

Figure 17-53. Power Management Capabilities Register (PCIC0_PMC)
15:11 PMES PME Support The PCI bridge does not support PME#;

therefore, PMES is hardwired to
0b00000.

10 D2S D2 Support
Determines if the D2 power management
state is supported.

The PCI bridge does not support the D2
power management state; therefore, D2S
is hardwired to 0.

9 D1S D1 Support
Determines if the D1 power management
state is supported.

The PCI bridge supports the D1 power
management state; therefore, D1S is
hardwired to 1.

8:6 AUXCU
R

Auxiliary Current Support The PCI bridge does not support
Aux_Current; therefore, AUXCUR is
hardwired to 0b000.

5 DSI Device Specific Initialization
0 after reset

This bit indicates whether special
initialization of this function is required
(beyond the standard PCI configuration
header) before the generic class device
driver is able to use it.

4 Reserved Always read as 0.

3 PMECLK This bit is hardwired to 0 indicating that
the function does not support PME#
generation in any state.

2:0 VERS Returns 0b010 on reads, indicating that
PMC complies with Revision 1.1 of PCI
Power Management Interface
Specification.

15 11 10 9 8 6 5 4 3 2 0

PMES D1S

D2S AUXCUR

DSI

PMECLK

VERS
381 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.5.3.33 Power Management Control/Status Register (PCIC0_PMCSR)

PCIC0_PMCSR is used to manage the PCI power management state and to enable and monitor PMEs.

17.5.3.34 PMCSR PCI-to-PCI Bridge Support Extensions (PCIC0_PMCSRBSE)

PCIC0_PMCSRBSE is required for all PCI-to-PCI bridges. The PCI bridge in not a PCI-to-PCI bridge;
therefore, it returns 0 when this register is read.

Figure 17-54. Power Management Control/Status Register (PCIC0_PMCSR)
15 PMEST The PCI bridge does not support PME#;

therefore, PMEST is hardwired to 0.
14:13 DSCAL The PCI bridge does not support data

register; therefore, DSCAL is hardwired to
0b00.

12:9 DSEL The PCI bridge does not support a data
register; therefore, DSEL is hardwired to
0b0000.

8 PMEEN The PCI bridge does not support PME
generation; therefore, PMEEN is hardwired
to 0.

7:2 Reserved Returns 0 when read.
1:0 PSTAT Determine the current power state of a

function and sets the function into a new
power state.
00 D0
01 D1
10 D2
11 D3 Hot

If software attempts to write a value for an
unsupported power state to PSTAT, its
value does not change. Writing this field
may change PCIC0_PMSCRR.

Figure 17-55. PMCSR PCI to PCI Bridge Support Extensions (PCIC0_PMCSRBSE)
7:0 PCI to PCI Bridge Support Extensions

15 14 13 12 9 8 7 2 1 0

PMEST

PMEEN

DSEL PSTAT

DSCAL

7 0
AMCC Proprietary 382

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.35 PCI Data Register (PCIC0_DATA)

PCIC0_DATA is an optional register that provides a mechanism for the function to report state dependent
operating data such as power consumed or heat dissipation. The PCI bridge does not implement this register;
therefore, it returns 0 when this register is read.

17.5.3.36 Bridge Options 2 Register (PCIC0_BRDGOPT2)

PCIC0_BRDGOPT2 controls various operating parameters of the PCI bridge.

Figure 17-56. PCI Data (PCIC0_DATA)
7:0 PCI Data

Figure 17-57. Bridge Options 2 Register (PCIC0_BRDGOPT2)
15:14 Reserved

13 EWPCI External Write to PCI Command Interrupt
0 No write to PCIC0_CMD has occurred.
1 External PCI master has written to

PCIC0_CMD.

Software can set or clear this bit. Setting
this bit also causes UIC0_SR[PCIIS] to be
set.

12 DPR Drive PCI Reset
0 Normal operation
1 Causes PCIReset pin to be asserted.

Software that asserts this bit must leave it
asserted long enough to guarantee the PCI
pulse width requirements. DPR does not
reset PLB bus interface registers or PCI
bridge registers.
PCIReset is also asserted when the PCI
bridge is reset.

11:8 PSTLTD Subsequent Target Latency Timer
Duration
Specifies the number of PCI clocks that a
PCI master burst can be held in a wait
state before a target disconnect is initiated.

Only set on reads.
In synchronous mode, PSTLTD equals the
maximum number of PCI clocks to
disconnect. In asynchronous mode,
PSTLTD plus 3 equals the maximum
number of PCI clocks to disconnect. The
asynchronous value must be 2 or less.

7 0

15 14 13 12 11 8 7 3 2 1 0

HCEPSTLTD

PDTD

EWPCI

DPR
383 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
In synchronous mode, the PCI subsequent target latency timer duration equals the maximum number of PCI
clocks to disconnect. In asynchronous mode, PCI subsequent target latency timer duration plus 3 equals the
maximum number of PCI clocks to disconnect. The asynchronous value must be 2 or less.

7:3 Reserved

2 PDTD PCI Discard Timer Disable
0 Disabled
1 Enabled

When enabled, the PCI bridge never
discards delayed read data.

1 Reserved

0 HCE Host Configuration Enable
0 Disabled
1 Enabled

HCE controls host PCI access to the PCI
bridge configuration registers. All host
attempts to access the PCI bridge PCI
configuration registers are retried. This
give the local CPU (PLB master) time to
initialize them before the host sees them.
AMCC Proprietary 384

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.5.3.37 Power Management State Change Request Register (PCIC0_PMSCRR)

PCIC0_PMSCRR provides a method of informing the local processor of a power management state change
request and prevents the completion of the write to PCIC0_PMCSR until the local processor indicates it is
ready for the state change. All writes to PCIC0_PMCSR are retried until the local processor sets
PCIC0_PMSCRR[APW] = 1. PCIC0_PMSCRR is used with the registers in the capability structure for power
management. Descriptions of each bit are shown in Figure 17-58.

Figure 17-58. Power Management State Change Request Register (PCIC0_PMSCRR)
7:5 Reserved Always read as 0.

4 APW Accept PCIC0_PMCSR Writes
Always 1 if DWE is 0.

The local processor sets APW when the
local processor is ready to change the
power management state. APW is cleared
when the host configuration writes to the
PCIC0_PMCSR register is accepted. The
local processor can write 0 to APW.

3 SCR State Change Request The PCI bridge sets SCR when a host
writes PCIC0_PMCSR to request a power
management state change. This drives an
interrupt to the local processor informing it
of a state change request. The local
processor must simultaneously clear SCR
and set APW = 1 when the local processor
is ready to change the state. After SCR is
cleared, new requests are not detected
until the outstanding delayed write is
accepted. The local processor can set
SCR = 1. Note that any host side write to
any byte (0x5C–0x5F) is considered a
power state change request.

2:1 REQST Request State Indicates the new power management
state requested by a delayed host write to
PCIC0_PMCSR. This field is read-only
from the PLB side.

7 5 4 3 2 1 0

DWE

REQSTAPW

SCR
385 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.6 Error Handling

The PCI bridge detects and reports several types of errors, which are reported to the PLB or the PCI. Status
information is saved in the configuration registers to enable error type determination.

All errors are associated with either a cycle on the PLB or a cycle on the PCI bus.

Each error that can be detected is associated with a mask. If the mask is set, detection of that error condition
is disabled. There are also masks for the PCISErr, PCIPErr, and PLB bus error signals that prevent reporting
of any error by these signals. The masks do not prevent error detection.

The error types are as follows:

• PLB unsupported transfer type
• PCI master abort generated (while PCI master)
• PCI target abort received (while PCI master)
• PCI target data bus parity error detection
• PCI master data bus parity error detection
• PCI target address parity error detection
• PLB bus error detection

The following sections describe in detail how these errors are generated, what actions are taken for each,
and how to reset a given error.

17.6.1 PLB Unsupported Transfer Type

This error occurs when the bridge PLB slave encounters an unsupported PLB transfer type. Table 17-11
outlines transfers not supported by the bridge PLB slave.

Upon detection of this error, the bridge sets PCIC0_ERRSTS[PUR] = 1.

0 DWE Delayed Write Enable
0 Immediate write
1 Delayed write

When DWE is set to 1, any configuration
write to the PCIC0_PMCSR is completed
as a delayed write. All writes to
PCIC0_PMCSR are retried until the local
processor sets the “Accept
PCIC0_PMCSR Write bit” (bit 4). When 0,
any configuration write to the
PCIC0_PMCSR is completed immediately.
DWE is a don’t care if a host write to
PCIC0_PMCSR requests a state change
from D3hot to D0.

Table 17-11. PLB Unsupported Transfer Types

PLB Transaction PCI Address Space

4- and 8-word line read/write Nonmemory
16-word line read/write Any
Burst Nonmemory
AMCC Proprietary 386

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.6.2 PCI Master Abort

This error is generated by the bridge PCI master when no target responds with PCIDevSel within the required
time-out window and error detection is enabled. The bridge PLB slave may assert a PLB bus error signal on
the PLB in response to this error, as explained below.

Two masks are associated with a PCI master abort. PCIC0_ERREN[MAEE] masks error reporting. If the
error is detected, a PLB bus error signal is asserted if PCIC0_ERREN[MAEE] = 1. For reads, the bridge PLB
slave still completes the transfer on the PLB, but drives 1s on the read data bus and the appropriate PLB bus
error signal for each data beat. For posted writes, a PLB bus error is asserted for 1 cycle, asynchronously to
the corresponding write data beat on the PLB. For connected writes, a PLB bus error signal is asserted with
the data transfer, and the data is discarded. If PCIC0_ERREN[MAEE] = 0, error reporting is masked. No PLB
bus error signal is asserted, regardless of the setting of PCIC0_ERREN[MEAE].

The following status bits are set:

1. If a master abort is signalled, PCIC0_STATUS[RMA] = 1. Setting of this field is non-maskable. Writing a 1
to PCIC0_STATUS[RMA] resets the field.

2. If master abort is detected as an error, PCIC0_ERRS[MEAE] is set to 1 to indicate an event that would
cause a PLB bus error to be asserted by the bridge PLB slave, regardless of the setting of
PCIC0_ERREN[MEAE]. This field can be reset by writing a 1 to PCIC0_ERREN[MEAE].

3. PCIC0_PLBBEAR and PCIC0_PLBBESRx are updated as follows:

The address of the aborted request is saved in PCIC0_PLBBEAR if all PCIC0_PLBBESRx[MxAL] = 0
(PCIC0_PLBBEAR is unlocked). If all PCIC0_PLBBESRx[MxFL] = 0, PCIC0_PLBBESRx[MxET] = 0b101
to indicate a non-configured bank error; and PCIC0_PLBBESRx[MxRWS] is set to 0 on a write, 1 on a
read. If PCIC0_ERREN[MAEE] = 0 or PCIC0_ERREN[MEAE] = 0, no PCIC0_PLBBEAR or
PCIC0_PLBBESRx update is performed.

17.6.3 Bridge PCI Master Receives Target Abort While PCI Bus Master

This error is generated when the bridge PCI master receives a target abort while mastering a cycle on the
PCI bus. Upon detection of this error, the bridge PLB slave may assert a PLB bus error signal on the PLB in
response to this error, as explained below.

Two masks are associated with a target abort. PCIC0_ERREN[TAEE] masks error reporting. If the error is
detected, a PLB bus error signal is asserted if PCIC0_ERREN[TAEE] = 1. For reads, the bridge PLB slave
still completes the transfer on the PLB and drives the appropriate PLB bus error line for each data beat (note
that for line reads, a PLB bus error signal is asserted for all data beats). For posted writes, if
PCIC0_ERREN[TAEE] = 1, the bridge PLB slave asserts a PLB bus error for 1 cycle, asynchronously to the
corresponding write data beat on the PLB. For connected writes, a PLB bus error signal is asserted with the
data transfer, and the data is discarded. If PCIC0_ERREN[TAEE] = 0, error reporting is masked No PLB bus
error signal is asserted, regardless of the setting of PCIC0_ERREN[MEAE]. If prefetching is occurring when a
target abort is received, data preceding the target abort is kept in a prefetch buffer.

The following status bits are set:

1. If a target abort is received, PCIC0_STATUS[RTA] = 1. Setting this field is non-maskable. Writing a 1 to
PCIC0_STATUS[RTA] clears the field.

2. If a target abort is detected as an error, PCIC0_ERRSTS[MEAE] = 1 to indicate an event that would cause
the bridge PLB slave to assert a PLB bus error signal, regardless of the setting of PCIC0_ERREN[MEAE].
Writing a 1 to PCIC0_ERRSTS[MEAE] resets the field.
387 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3. PCIC0_PLBBEAR and PCIC0_PLBBESRx are updated as follows:

The address of the aborted request is saved in PCIC0_PLBBEAR if all PCIC0_PLBBESRx[MxAL] = 1
(PCIC0_PLBBEAR is unlocked). If all PCIC0_PLBBESRx[MxFL] = 1, PCIC0_PLBBESRx[MxET] = 0b101
to indicate a nonconfigured bank error, and PCIC0_PLBBESRx[MxRWS] is set to 0 on a write, or to 1 on a
read. If PCIC0_ERREN[MAEE] = 0 or PCIC0_ERREN[MEAE] = 0, no PCIC0_PLBBEAR or
PCIC0_PLBBESRx update is performed.

17.6.4 PCI Target Data Bus Parity Error Detection

This error is generated when the bridge PCI target detects a data bus parity error on write data from a PCI
master doing a write cycle to PLB memory. PCI uses even parity.

Setting PCIC0_CMD[PER] = 0 masks this error.

The following status bits are set:

1. PCIC0_STATUS[DEPE] = 1 to indicate a PCI bus parity error. Setting this field is non-maskable. Writing a
1 to PCIC0_STATUS[DEPE] clears the field.

2. PCIC0_STATUS[SSE] = 1 if PCIC0_ERREN[WDPE] = 1. Writing a 1 to PCIC0_STATUS[SSE] clears the
field.

3. PCIC0_ERRSTS[WDPE] = 1 if PCIC0_ERREN[WDPE] = 1. Writing a 1 to PCIC0_ERRSTS[WDPE clears
the field.

17.6.5 PCI Master Data Bus Parity Error Detection

This error is generated when a data bus parity error is detected on the PCI bus during a cycle mastered by
the bridge PCI master. The bridge PCI master checks parity on read cycles and samples PCIPErr on write
cycles. The bridge PCI master may assert PCIPErr if the master detects a parity error on a read. PCI uses
even parity.

Setting PCIC0_CMD[PER] = 0 masks this error. PCIC0_STATUS[DEPE] = 1. If a parity error is detected,
writing a 1 to PCIC0_STATUS[DEPE] = 1 clears the field.

If PCIC0_ERREN[MEAE] = 1 and the error is detected as described, the PLB slave asserts a PLB error
signal on the PLB in response to the error. For reads, a PLB bus error is asserted for each data beat in which
bad parity was detected. For writes, a PLB bus error is asserted for each data beat in which bad parity was
detected, but asynchronously to the actual transfer of write data on the PLB.

The following status bits are set:

1. PCIC0_STATUS[DEPE] = 1 if the bridge PCI master detects bad parity on read data, regardless of the
state of PCIC0_CMD[PER]. Writing a 1 to PCIC0_STATUS[DEPE] clears the field.

2. If a data bus parity error is detected as an error, PCIC0_ERRSTS[MEAE] = 1 to indicate an event that
would cause a PLB bus error signal to be asserted by the bridge PLB slave, regardless of the state of
PCIC0_ERREN[MEAE]. Writing a 1 to PCIC0_ERRSTS[MEAE] = 1 clears the field.

3. PCIC0_PLBBEAR and the PCIC0_PLBBESRx are updated as follows:
AMCC Proprietary 388

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The address of the PCI transaction where parity errors occurred is saved in the PCIC0_PLBBEAR.
PCIC0_PLBBEAR is set if all PCIC0_PLBBESRx[MxAL] = 1 (PCIC0_PLBBEAR is unlocked). If
PCIC0_PLBBESRx[MxFL] = 1, PCIC0_PLBBESRx[MxET] = 0b001 to indicate a parity error, and
PCIC0_PLBBESRx[MxRWS] is set to 0 on a write, 1 on a read. If PCIC0_CMD[PER] = 0 or
PCIC0_ERRSTS[MEAE] = 0, no PCIC0_PLBBEAR or PCIC0_PLBBESRx update is performed.

Note: For clock ratios greater than 2:1 (independent of asynchronous/synchronous mode), the PCI bridge
detects errors but does not assert a PLB bus error signal or log the error in PCIC0_PLBBEAR,
PCIC0_PLBBESRx, and PCIC0_ERRSTS[MEAE].

17.6.6 PCI Address Bus Parity Error While PCI Target

This error occurs when a PCI address bus parity error is detected during the address phase of a cycle in
which the bridge is the PCI target. PCI uses even parity.

Setting PCIC0_CMD[PER] = 0 masks this error. This error does not have an explicit status bit, however the
following actions are taken:

1. PCIC0_STATUS[SSE] = 1 to indicate assertion of PCISErr, if the mask at PCIC0_CMD[SE] = 1. Writing a
1 to PCIC0_STATUS[SSE] clears the field.

2. PCIC0_STATUS[DEPE] = 1 to indicate a PCI bus parity error, regardless of the state of
PCIC0_CMD[PER]. PCIC0_STATUS[DEPE] = 1 when any type of PCI parity error is detected. Writing a 1
to PCIC0_STATUS[DEPE] clears the field.

17.6.7 PLB Master Bus Error Detection

This error occurs when the bridge PLB master detects a PLB bus error. If the bridge PLB master receives a
PLB bus error while mastering a read, the master associates the error with the currently executing read. If the
master receives a PLB bus error while mastering a write or while idle, the master associates the error with a
write.

PLB bus error detection is masked by PCIC0_ERREN[MEDE] = 0. If PCIC0_ERREN[MEDE] = 1, PLB bus
error detection is enabled.

PCIC0_ERREN[MERE] controls the response of the bridge PCI target to PLB bus error detection. If
PCIC0_ERREN[MERE] = 10 or 11, the bridge PCI target will execute a target abort. If
PCIC0_ERREN[MERE] = 01 or 11, the bridge PCI target asserts PCISErr and allows the transaction to
continue. If PCIC0_ERREN[MERE] = 11, the bridge PCI target both target aborts and asserts PCISErr.

The following status bits are set:

1. If the bridge PCI target executes a target abort, PCIC0_STATUS[STA] = 1. The setting of
PCIC0_STATUS[STA] in such an event is non-maskable. Writing a 1 to PCIC0_STATUS[STA] clears the
field.

2. f the bridge PCI target asserts PCISErr, PCIC0_STATUS[SSE] = 1. The setting of PCIC0_STATUS[SSE]
is non-maskable. Writing a 1 to PCIC0_STATUS[SSE] clears the field.

3. If the bridge PCI target asserts PCISErr, PCIC0_ERRSTS[SARME] = 1 to indicate that the bridge PCI
target asserted PCISErr in response to a received PLB bus error signal. The setting of
PCIC0_ERRSTS[SARME] is non-maskable. Writing a 1 to PCIC0_ERRSTS[SARME] clears the field.

4. PCIC0_ERRSTS[MED] = 1 to indicate that the bridge PLB master received a PLB bus error signal. Setting
of PCIC0_ERRSTS[MED] is non-maskable. Writing a 1 to PCIC0_ERRSTS[MED] clears the field.
389 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.7 PCI Bridge Clocking Configuration

See for detailed information regarding the choice and setup involved with both synchronous and
asynchronous PCI clocking modes.

17.8 PCI Power Management Interface

The PCI bridge supports PCI Power Management Interface Specification Revision 1.1 (PCI-PM).

17.8.1 Capabilities and Power Management Status and Control Registers

The PCI bridge has a capabilities structure in the PCI configuration space that indicates that the PCI bridge
core is PCI Power Management capable. The capabilities structure includes the following registers:

• PCIC0_CAPID, value 0x01, indicates Power Management
• PCIC0_NEXTIPTR, points to next capabilities structure
• PCIC0_PMC, value 0x0202, indicates no specific capabilities
• PCIC0_PMCSR, indicates hold the current PowerState
• PCIC0_PMCSR_BSE, value 0x00, unused in PCI-to-PCI bridge
• PCIC0_Data, value 0x00, not used
• See “PCI Configuration Registers” on page 17-360 for details.

17.8.2 Power State Control

The current power management state is reported by reading PCIC0_PMCSR. The PCI bridge supports states
D0, D1, D3hot, and D3cold. State D2 is not supported. When the state is not D0, the PCI bridge is masked
from being a master or a memory or I/O target on the PCI bus. The PCI bridge can still be a config target.
Thus, accesses claimed by the PCI bridge when in state D0 are no longer claimed, resulting in master aborts
on the PLB or PCI if such an access is attempted. Note that this mask is independent of the state of the PCI
Command register.

17.8.3 Changing Power States

The PCI bridge has two registers that control changing the power state. The host requests a change in the
power state by writing to the PCIC0_PMCSR. The other register is PCIC0_PMSCRR, which provides a
method of informing the local processor of a state change request and of preventing completion of the write to
the PCIC0_PMCSR until the local processor indicates that it is ready for the state change.

Power state changes are handled as follows:

• If a host write to PCIC0_PMCSR requests an unsupported state change (such as a change to D2), the
write is accepted but is ignored (no state change occurs).

• If a host write to PCIC0_PMCSR requests a change from D3hot to D0, the write is accepted. Then, the PCI
bridge asserts the power management reset signal, which causes the entire SOC to be reset.

Note: The PCI bridge assumes that any requested state change from D3hot is always to D0.

• All other change requests are handled with the following sequence:
AMCC Proprietary 390

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
1.The host requests a new power state by a PCI write to the PCIC0_PMCSR.

2.The host PCI write is retried (unless PCIC0_PMSCRR[DWE] = 0).

3.The host PCI write (retried or not) sets PCIC0_PMSCRR[SCR] = 1, which drives an interrupt to the local
processor.

4.The local processor recognizes the interrupt. The local processor checks PCIC0_PMSCRR[SCR,
REQST] to determine the nature of the request.

5.The local processor proceeds to power down the subsystem if the requested state is valid.

6.When the subsystem has been powered down and is ready to change state, the local processor clears
the PCIC0_PMSCRR[SCR] and sets PCIC0_PMSCRR[APW] = 1.

7.When the host PCI write reoccurs:

- It is accepted.

- PCIC0_PMSCR is updated (only if the transition is valid).

- PCIC0_PMSCRR[APW] = 0, unless PCIC0_PMSCRR[DWE] = 0, in which case
PCIC0_PMSCRR[APW] = 1 always.

- The PCI bridge enters a new power state.

The PCI bridge operates with the clock power management (CPM) logic to enable the bridge to be put into
sleep mode under control of software. See Chapter 14, “Clock and Power Management” for discussion of the
CPM function.

17.9 PCI Bridge Reset and Initialization

The following sections discuss resetting and initializing the PCI bridge.

17.9.1 Address Map Initialization

When the PCI bridge is the PCI master, it can generate memory, I/O, configuration, interrupt acknowledge,
and special cycles. The method of cycle generation, and the associated address ranges, are fixed, except for
memory cycles. PCI memory cycles are generated when the PCI bridge detects a cycle in one of three
specified PLB address ranges. The sizes and address spaces of these ranges are specified using the PMM
registers. Also, the address of the resulting PCI memory cycle can be an offset from the PLB address
(address translation occurs). This translation is also specified in the PMM registers. The PMM registers do
not default to usable values following reset; they must be initialized before attempting to generate PCI
memory cycles.

When the PCI bridge is a target on the PCI bus, the PCI bridge can respond to memory cycles. The memory
cycle address ranges that the PCI bridge responds to are specified in PCIC0_PTM1BAR and
PCIC0_PTM2BAR. These registers are typically initialized as part of the standard PCI initialization process.

Figure 17-59 shows the desired address map. System memory resides from 0x00000000–0x0FFF FFFF in
the CPU/PLB address space, which is accessible from the PCI in the same address space (PCI bridge as a
memory target) as defined by PTM1/BAR1. PTM2/BAR2 is disabled in this example. The CPU/PLB master
has two spaces in which to access PCI Memory space. Range 0 is 0x20000000 to 0x27FFFFFF and is
mapped to the same address on the PCI bus, and is nonprefetchable. Range 1 is 0x28000000 to
0x2BFFFFFF, and is translated to address range 0x30000000 to 0x33FFFFFF of PCI memory space. Range
2 is disabled.
391 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 17-59. Example Address Map

The following register values provide the address map shown in Figure 17-59:

Table 17-12. Address Map Register Values

Register Name Value Comments

PCIL0_PMM0LA 0x20000000

PCIL0_PMM0MA 0xF800 0001 128MB; enabled; read prefetching not allowed.

PCIL0_PMM0PCILA 0x20000000

PCIL0_PMM0PCIHA 0x00000000

PCIL0_PMM1LA 0x28000000

PCIL0_PMM1MA 0xFC000003 64MB; enabled; prefetching allowed.

PCIL0_PMM1PCILA 0x30000000

PCIL0_PMM1PCIHA 0x00000000

ROM

Memory

CPU
(PLB)

PCI
Memory
Space

PMM1

PMM0

PTM1/BAR1

Prefetchable
PCI Targets

Nonprefetchable
PCI Targets

2C000000

28000000

20000000

10000000

34000000

30000000

28000000

20000000

10000000

0 0
AMCC Proprietary 392

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.9.2 Other Configuration Register Initialization

Additional register initialization is required, as follows:

• Error handling is initially disabled (error detection is masked). If error handling is to be enabled,
PCIC0_ERREN must be initialized appropriately.

• PCIC0_BRDGOPT1 contains options for controlling the PLB. Its default values can be used.

• PCIC0_BRDGOPT2 contains options for controlling the PCI bus. Its default values assume that the PCI is
run synchronously to the PLB, and that the PCI bridge is the primary host bridge. If the PCI bridge is used
otherwise, the values must be changed accordingly.

Note: PCI devices that are targets and support delayed reads may be attached to the PCI bus. To ensure
that the PPC405EP does not deadlock when accessing such devices, the PLB priority of the PCI and
of all the PLB masters that access PCI space must be set to the same value, and the arbitration mode
within the PLB arbiter must be set to fair mode. Since the processor data cache unit has dynamic PLB
priority, the higher priority value of the DCU must be the same as the PCI. For additional information
on setting PLB priorities see “PLB Master Assignments” on page 2-54.

17.9.3 Target Bridge Initialization

The PCI bridge can also respond as a configuration target; however, the PCI bridge only responds as a
configuration target when the PCIIDSel pin is attached, rather than pulled inactive. Note that if the size and
local address of these ranges are not strapped to desired values at reset, the local CPU must specify them by
setting the PTM Memory Size and Local Address registers before initializing PCIC0_PTM1BAR and
PCIC0_PTM2BAR.

The local CPU must update the following registers (if the default value is not suitable or they were not
strapped to appropriate values at reset) before setting the Host Config Enable bit:

• The address map registers (see “Address Map Initialization” on page 17-391)
• PCIC0_VENDID
• PCIC0_DEVID

PCIL0_PMM2LA 0x00000000

PCIL0_PMM2MA 0x00000000 Not enabled.

PCIL0_PMM2PCILA 0x00000000

PCIL0_PMM2PCIHA 0x00000000

PCIL0_PTM1MSr 0xF0000001 256MB; enabled.

PCIL0_PTM1LA 0x00000000

PCIL0_PTM2MS 0x00000000 Not enabled.

PCIL0_PTM2LA 0x00000000

PCIC0_PTM1BAR 0x00000008 PCI memory space; address decode starts at PCI
address 0x0000 0000.

PCIC0_PTM2BAR 0x00000000

Table 17-12. Address Map Register Values (continued)

Register Name Value Comments
393 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• PCIC0_REVID
• PCIC0_CLS
• PCIC0_SBSYSID
• PCIC0_SBSYSVID

17.9.4 Local Processor Boot from PCI Memory

The PCI bridge has a mode that enables a PLB master to access a PCI memory range without initial
configuration cycles. This mode is enabled when CPC0_BOOT[BSS] = 1. System designers can use this
mode to enable a processor to access a boot ROM in PCI memory space.

The PCI bridge comes out of reset with PMM0 enabled and programmed for the address range,
0xFFFE0000–0xFFFFFFFF. Also, PCIC0_CMD[ME] = 1 after reset. Note that enabling PCI boot mode does
not prevent subsequent updates to the PMM0 registers.

Note: The PPC405EP allows booting from PCI memory. See Chapter 9, “Pin Strapping and Sharing” for
more information.

17.9.5 Type 0 Configuration Cycles for Other Devices

Twenty-one devices can be accessed using the PCIIDSel mechanism. The PCI master asserts 1 bit of
AD(31:11) for type 0 configuration cycles based on the value in the Device Number field. The mapping is as
follows:

• If device number is 1, AD(11) is asserted
• If device number is 2, AD(12) is asserted

.

.

.

• If device number is 21, AD(31) is asserted

If device number contains a value of 22–31, no bit of AD(31:11) is asserted.

17.10 Timing Diagrams

This section contains timing diagrams of several different PCI bridge operations. The following paragraphs
describe each diagram in detail. Each description assumes basic knowledge of PCI and PLB protocols.

Each operation is shown in both synchronous and asynchronous modes. The PCI is clocked at 33 MHz in
synchronous mode and 66 MHz in asynchronous mode. The PLB is clocked at 100 MHz in all cases.

The SDRAM uses a 32-bit, PC100 memory interface configured for CAS latency of 2, command leadoff of 2,
and RAS to CAS delay (Trcd) of 2. All memory accesses are page idle, unless indicated otherwise.

Note: The PLB signals shown in the following timing diagrams are not externally accessible. They are
included for information purposes and as an aid to understanding the PCI operations. For more
information on these signals, refer to Processor Local Bus Architecture Specifications.
AMCC Proprietary 394

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.10.1 PCI Timing Diagram Descriptions

The following sections briefly describe each of the timing diagrams that follow the descriptions. Each
description covers both the asynchronous and synchronous clocking modes for that operation. The timing
diagrams then follow with all of the asynchronous diagrams grouped together followed by all of the
synchronous diagrams grouped together.

17.10.1.1 PCI Master Burst Read From SDRAM

Figure 17-60 (asynchronous) and Figure 17-67 (synchronous) show a PCI Master executing a 128-byte Read
Multiple from SDRAM. PCI bridge retries the initial request and performs a delayed read. PCI bridge executes
a variable-length, doubleword read burst on PLB to SDRAM, filling its 96-byte read buffer. The read is a page
hit. When the PCI master re-requests its read, PCI bridge begins bursting out of its read buffer, while
continuing to prefetch from SDRAM.

17.10.1.2 PCI Master Burst Write To SDRAM

Figure 17-61 and Figure 17-68 show a PCI Master executing a 128-byte Write to SDRAM. PCI bridge accepts
several beats of data into its 64-byte write buffer before executing variable-length, doubleword write bursts on
PLB to SDRAM. The final write burst is fixed-length, since the PCI write has completed, and PCI bridge
knows the exact burst length.

17.10.1.3 CPU Read From PCI Memory Slave, Nonprefetching

In Figure 17-62 and Figure 17-69, a PLB Master (CPU) executes a single-beat 64-bit read from a region of
PCI memory marked as nonprefetchable. PCI bridge responds as a 32-bit PLB slave, so the CPU executes
conversion cycles for each read. PCI bridge executes a single-beat PCI read for both PLB read requests.

17.10.1.4 CPU Read From PCI Memory Slave, Prefetching

In Figure 17-63 and Figure 17-70, a PLB Master (CPU) executes 8, 64-bit, single-beat reads from a region of
PCI memory marked as prefetchable. The first PLB read causes PCI bridge to execute a 64-byte Read
Multiple to fill its 64-byte read prefetch buffer. The data for subsequent PLB reads is provided from the read
buffer and no PCI cycles are generated. PCI bridge responds as a 32-bit PLB slave, so the CPU executes
conversion cycles for each read.

17.10.1.5 CPU Write To PCI Memory Slave

Figure 17-64 and Figure 17-71 show a PLB Master (CPU) executing 4, 64-bit, single-beat writes to PCI
memory. PCI bridge responds as a 32-bit slave, so the CPU executes conversion cycles for each write. PCI
bridge posts the writes in its 4-entry write buffer, and executes a PCI single-beat Memory Write for each
request.

17.10.1.6 PCI Memory To SDRAM DMA Transfer

Figure 17-65 and Figure 17-72 show a DMA transfer of data from PCI memory to SDRAM. The DMA PLB
Master executes a 4-doubleword read burst to PCI bridge followed by a 4-doubleword write burst to SDRAM.
For the read, PCI bridge executes a 32-byte PCI Read Line.
395 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
17.10.1.7 SDRAM To PCI Memory DMA Transfer

Figure 17-66 and Figure 17-73 show a DMA transfer of data from SDRAM to PCI memory. The DMA PLB
Master executes a 4-doubleword read burst from SDRAM followed by a 4-doubleword write burst to PCI
memory. PCI bridge then executes a 32-byte write on the PCI bus.

17.10.2 Asynchronous

The following diagrams are for asynchronous clocking mode. Note that all of the diagrams flow across
multiple pages. Each diagram begins with cycle 1 on the left facing page.

A0

D0 D2 D4

D1 D3 D5

A0

hC h0

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

Figure 17-60. PCI Master Burst Read From SDRAM

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 396

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
D6 D8 D10 D12 D14 D16 D18 D20 D22 D24

D7 D9 D11 D13 D15 D17 D19 D21 D23 D25

A0 D0 D1 D2 D3 D4 D5 D6 D7 D8

hC

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Figure 17-60. PCI Master Burst Read From SDRAM (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40Cycles

h0

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel
397 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h00

D26 D28 D30 D32 D34 D36 D38 D40 D42 D44

D27 D29 D31 D33 D35 D37 D39 D41 D43 D45

D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21

h0

Figure 17-60. PCI Master Burst Read From SDRAM (Continued)

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 60

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 398

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
A0+200

D46 D48

D47 D49

D22 D23 D24 D25 D26 D27 D28 D29 D30 D31

Figure 17-60. PCI Master Burst Read From SDRAM (Continued)

62 64 65 66 67 68 69 70 71 72 73 74 75 76 7761 63 78 79 80

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
399 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

h7

Figure 17-61. PCI Master Burst Write To SDRAM

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

D10

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 400

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h00 h00

A0 A0+48

D0 D2 D4 D6 D8 D10

D1 D3 D5 D7 D9 D11

D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23

h0

Figure 17-61. PCI Master Burst Write To SDRAM (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCISTOP

PCIDevSel

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

RdDBus0:31

RdDBus32:63

Cycles
401 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h00

A0+48

D12 D14 D16 D18 D20 D22

D13 D15 D17 D19 D21 D23

A0+96 D24 D25 D26 D27

h7 h0

Figure 17-61. PCI Master Burst Write To SDRAM (Continued)

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 60

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 402

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h30

A0+96

D24 D26 D28 D30

D25 D27 D29 D31

D28 D29 D30 D31

h0

Figure 17-61. PCI Master Burst Write To SDRAM (Continued)

62 64 65 66 67 68 69 70 71 72 73 74 75 76 7761 63

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

RdDBus0:31

RdDBus32:63

Cycles
403 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
b11111111

A0

D0

A0 D0 A1

h6 h0 h6

Figure 17-62. CPU Read From PCI Memory Slave, Nonprefetching

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

D0

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 404

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
b00001111

A1

D1

A1 D1

h6 h0

Gnt

Figure 17-62. CPU Read From PCI Memory Slave, Nonprefetching (Continued)

22 24 25 26 27 28 29 30 3121 23

D1

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
405 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
hFF h0F

A0 A1

D0 D1

A0 D0 D1 D2 D3 D4 D5 D6

hC

Figure 17-63. CPU Read From PCI Memory Slave, Prefetching

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

D0 D1

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 406

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
hFF h0F hFF h0F hFF

A2 A3 A4 A5 A6

D1 D2 D3 D4 D5 D6

D7 D8 D9 D10 D11 D12 D13 D14 D15

h0

Figure 17-63. CPU Read From PCI Memory Slave, Prefetching (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

D1 D2 D3 D4 D5 D6

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
407 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h0F hFF h0F hFF h0F

A7 A8 A9 A10 A11

D6 D7 D8 D9 D10

Figure 17-63. CPU Read From PCI Memory Slave, Prefetching (Continued)

D6 D7 D8 D9 D10

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 60

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 408

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
hFF h0F hFF h0F

A12 A13 A14 A15

D11 D12 D13 D14 D15

Figure 17-63. CPU Read From PCI Memory Slave, Prefetching (Continued)

D11 D12 D13 D14 D15

62 64 65 66 67 68 69 70 71 72 73 74 75 76 7761 63

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
409 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
hFF h0F hFF h0F hFF h0F h0F

A0 A1 A2 A3 A4 A5 A5

D0 D1 D2 D3 D4 D5 D5

A0 D0 A1 D1 A2 D2

h7 h0 h7 h0 h7 h0

Figure 17-64. CPU Write To PCI Memory Slave

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
AMCC Proprietary 410

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h0F hFF hFF h0F h0F

A5 A6 A6 A7 A7

D5 D6 D6 D7 D7

D2 A3 D3 D4 D4 A5 D5

h0 h7 h0 h7 h0 h7 h0

Figure 17-64. CPU Write To PCI Memory Slave (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
411 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A6 D6 A7 D7

h7 h0 h7 h0

Figure 17-64. CPU Write To PCI Memory Slave (Continued)

42 44 45 46 47 48 49 50 5141 43

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
AMCC Proprietary 412

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h30

A0

A0 D0 D1 D2 D3 D4 D5 D6 D7

hE h0

WrDAck

WrDBus0:31

WrDBus32:63

Figure 17-65. PCI Memory To SDRAM DMA Transfer

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
413 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h30

A1

D0 D2 D4 D6

D1 D3 D5 D7

D0 D2 D4 D6

D1 D3 D5 D7

D7

Figure 17-65. PCI Memory To SDRAM DMA Transfer (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 414

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h30

A0

D0 D2 D4 D6

D1 D3 D5 D7

Figure 17-66. SDRAM To PCI Memory DMA Transfer

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
415 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h30

A1

D0 D2 D4 D6

D1 D3 D5 D7

A1 D0 D1 D2 D3 D4

h7 h0

Figure 17-66. SDRAM To PCI Memory DMA Transfer (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 416

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17.10.3 Synchronous

The following diagrams are for synchronous clocking mode. Note that all of the diagrams flow across multiple
pages. Each diagram begins with cycle 1 on the left facing page.

D5 D6 D7

Figure 17-66. SDRAM To PCI Memory DMA Transfer (Continued)

42 44 4541 43

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
417 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A0

D0 D2 D4

D1 D3 D5

A0

hC h0

Figure 17-67. PCI Master Burst Read From SDRAM

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 418

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
D6 D8 D10 D12 D14 D16 D18 D20 D22

D7 D9 D11 D13 D15 D17 D19 D21 D23

A0 D0 D1

hC

Figure 17-67. PCI Master Burst Read From SDRAM (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
419 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
D2 D3 D4 D5 D6 D7 D8

Figure 17-67. PCI Master Burst Read From SDRAM (Continued)

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 50

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 420

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h00

A0+96

D24 D26 D28 D30 D32

D25 D27 D29 D31 D33

D9 D10 D11 D12 D13 D14 D15

h0

Figure 17-67. PCI Master Burst Read From SDRAM (Continued)

62 64 65 66 67 68 69 70 71 72 73 74 75 76 7761 63 78 79 80

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
421 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
D34 D36 D38

D35 D37 D39

D15 D16 D17 D18 D19 D20 D21

h0

Figure 17-67. PCI Master Burst Read From SDRAM (Continued)

82 84 85 86 87 88 89 90 91 92 93 94 95 96 9781 83 98 99 100

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 422

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
A0+160

D40

D41

D22 D23 D24 D25 D26 D27 D28

Figure 17-67. PCI Master Burst Read From SDRAM (Continued)

102 104 105 106 107 108 109 110 111 112 113 114 115 116 117101 103 118 119 120

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
423 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
D42 D44 D46 D48 D50 D52

D43 D45 D47 D49 D51 D53

D29 D30 D31

Figure 17-67. PCI Master Burst Read From SDRAM (Continued)

122 124 125 126 127 128 129 130 11121 123 131 132 133

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 424

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
A0 D0 D1 D2 D3 D4

h7

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:31

WrDBus32:63

Figure 17-68. PCI Master Burst Write To SDRAM

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20Cycles

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel
425 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h00

A0

D0 D2 D4 D6

D1 D3 D5 D7

D4 D5 D6 D7 D8 D9 D10

Figure 17-68. PCI Master Burst Write To SDRAM (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:31

WrDBus32:63

Cycles
AMCC Proprietary 426

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h00

A0+32

D8 D10

D9 D11

D11 D12 D13 D14 D15 D16 D17

h0

Figure 17-68. PCI Master Burst Write To SDRAM (Continued)

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 60

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:31

WrDBus32:63

Cycles
427 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
D12 D14

D13 D15

D18 D19 D20 D21 D22 D23 D24

Figure 17-68. PCI Master Burst Write To SDRAM (Continued)

62 64 65 66 67 68 69 70 71 72 73 74 75 76 7761 63 78 79 80

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:31

WrDBus32:63

Cycles
AMCC Proprietary 428

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h00

A0+64

D16 D18 D20 D22

D17 D19 D21 D23

D24 D25 D26 D27 D28 D29 D30

Figure 17-68. PCI Master Burst Write To SDRAM (Continued)

82 84 85 86 87 88 89 90 91 92 93 94 95 96 9781 83 98 99 100

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:31

WrDBus32:63

Cycles
429 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h30

A0+96

D24 D26 D28 D30

D25 D27 D29 D31

D31

Figure 17-68. PCI Master Burst Write To SDRAM (Continued)

102 104 105 106 107 108 109 110101 103 111

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:31

WrDBus32:63

Cycles
AMCC Proprietary 430

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
b11111111

A0

D0

A0 D0

h6 h0

Figure 17-69. CPU Read From PCI Memory Slave, Nonprefetching

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

D0

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
431 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
b00001111

A1

D1

A1 D1

h6 h0

Figure 17-69. CPU Read From PCI Memory Slave, Nonprefetching (Continued)

22 24 25 26 27 28 29 30 1121 23 31 32 33 34

D1

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 432

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
hFF h0F h0F

A0 A1 A1

D0

A0 D0 D1 D2 D3

hC

Figure 17-70. CPU Read From PCI Memory Slave, Prefetching

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

D0

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
433 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
hFF h0F hFF h0F hFF

A2 A3 A4 A5 A6

D1 D2 D3 D4 D5

D4 D5 D6 D7 D8 D9 D10

h0

Figure 17-70. CPU Read From PCI Memory Slave, Prefetching (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

D1 D2 D3 D4 D5

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 434

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h0F hFF h0F hFF h0F

A7 A8 A9 A10 A11

D6 D7 D8 D9 D10

D10 D11 D12 D13 D14 D15

Figure 17-70. CPU Read From PCI Memory Slave, Prefetching (Continued)

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 60

D6 D7 D8 D9 D10

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
435 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
hFF h0F hFF h0F

A12 A13 A14 A15

D11 D12 D13 D14 D15

Figure 17-70. CPU Read From PCI Memory Slave, Prefetching (Continued)

62 64 65 66 67 68 69 70 71 72 73 74 75 76 7761 63 78 79

D11 D12 D13 D14 D15

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 436

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
hFF h0F hFF h0F hFF h0F h0F

A0 A1 A2 A3 A4 A5 A5

D0 D1 D2 D3 D4 D5 D5

A0 D0 A1 D1

h7 h0 h7 h0

Figure 17-71. CPU Write To PCI Memory Slave

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
437 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h0F hFF hFF hFF h0F h0F

A5 A6 A6 A6 A7 A7

D5 D6 D6 D6 D7 D7

A2 D2 A3 D3

h7 h0 h7 h0

Figure 17-71. CPU Write To PCI Memory Slave (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
AMCC Proprietary 438

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h00

h0000000000000000

0

h0000000000000000

A4 D4 A5 D5 A6

h7 h0 h7 h0 h7

Figure 17-71. CPU Write To PCI Memory Slave (Continued)

42 44 45 46 47 48 49 50 51 52 53 54 55 56 5741 43 58 59 60

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
439 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h0000000000000000

D6 A7 D7

h0 h7 h0

Figure 17-71. CPU Write To PCI Memory Slave (Continued)

62 64 65 66 67 68 69 70 1161 63 71 72 73

h0000000000000000

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

WrDAck

WrDBus0:63

Cycles
AMCC Proprietary 440

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h30

A0

A0 D0 D1 D2 D3

hE h0

Figure 17-72. PCI Memory To SDRAM DMA Transfer

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
441 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
D0 D2 D4 D6

D1 D3 D5 D7

D3 D4 D5 D6 D7

h0

Figure 17-72. PCI Memory To SDRAM DMA Transfer (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 442

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h30

A1

D0 D2 D4 D6

D1 D3 D5 D7

Figure 17-72. PCI Memory To SDRAM DMA Transfer (Continued)

41 42 43 44 45 46 47

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
443 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
h30

A0

D0 D2 D4 D6

D1 D3 D5 D7

PCI_CLK

GNT_N

AD[31:0]

CBE_N[3:0]

FRAME_N

IRDY_N

TRDY_N

STOP_N

DEVSEL_N

Figure 17-73. SDRAM To PCI Memory DMA Transfer

2 4 5 6 7 8 9 10 11 12 13 14 15 16 171 3 18 19 20

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 444

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
h30

A1

D0 D2 D4 D6

D1 D3 D5 D7

A1 D0 D1 D2

h7

Figure 17-73. SDRAM To PCI Memory DMA Transfer (Continued)

22 24 25 26 27 28 29 30 31 32 33 34 35 36 3721 23 38 39 40

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
445 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
D3 D4 D5 D6 D7

h0

Figure 17-73. SDRAM To PCI Memory DMA Transfer (Continued)

42 44 45 46 47 48 49 50 1141 43 51 52 53 54 55 56

Gnt

PCIClk

PCIAD31:0

PCIC[BE]3:0

PCIFrame

PCIIRDY

PCITRDY

PCIStop

PCIDevSel

WrDAck

WrDBus0:31

WrDBus32:63

PLBClk

BE0:7

ABus0:31

R/W

AddrAck

RdDAck

RdDBus0:31

RdDBus32:63

Cycles
AMCC Proprietary 446

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
447 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 18. Direct Memory Access Controller

The direct memory access (DMA) controller is a processor local bus (PLB) and on-chip peripheral bus (OPB)
master that supports the autonomous transfer of data between memory and peripherals and from memory to
memory. The controller provides four DMA channels, each of which has an independent set of configuration
registers. Each channel has its own control, source address, destination address, count, and scatter/gather
address registers. After these registers are programmed by the PPC405EP, the DMA controller performs the
requested data transfer without the need for processor intervention.

The four DMA channels also support scatter/gather transfers. During a scatter/gather transfer, the
configuration registers for a particular DMA channel are automatically loaded from a data structure in memory
instead of being individually programmed. Because the scatter/gather address register is updated in this
process, the channel can optionally reconfigure itself for another transfer when the current one completes.

As master on both the PLB and OPB, the DMA controller can read and write any address accessible by the
PPC405EP.

18.1 Functional Overview

As a specialized controller, the DMA unit provides system designers and programmers with a highly efficient
method of moving data. During any DMA transfer the controller always buffers data read from the source prior
to writing the data to the destination. Since many buses provide substantially better performance when
bursting data, the DMA controller includes a 32-byte (4 doubleword) buffer. This buffer is enabled on a per-
channel basis by setting DMA0_CRn[BEN] and serves to minimize the number of discrete memory
transactions. Each of the four DMA channels is configurable for either peripheral or memory-to-memory
transfers.

18.1.1 Peripheral Mode Transfers

The PPC405EP supports peripheral mode transfer between memory and internal peripherals UART0 and
UART1. In this mode, UARTn requests a DMA transfer by asserting an internal DMA request. When the
requested DMA channel has the highest priority of any active channel, UARTn receives an internal DMA
acknowledge.

There are two types of peripheral mode transfers: peripheral-to-memory and memory-to-peripheral. A
peripheral-to-memory transfer reads data from a DMA device, while a memory-to-peripheral transfer writes
data. In both cases, the peripheral interface never bursts and data is transferred at the width of the peripheral.
If the DMA buffer is disabled for the active channel (DMA0_CRn[BEN]=0), each peripheral transfer causes a
corresponding memory operation.

When buffering is enabled during a peripheral-to-memory transfer, data is collected until the 32-byte buffer is
full, a higher priority DMA request becomes pending, or the channel completes. The buffer contents are then
written to the target memory as efficiently as possible. If the initial programming of the channel’s destination
address register (DMA0_DAn) is 32-byte aligned, the buffer is emptied in one burst operation to the target
memory.

Memory-to-peripheral transfers differ since the amount of data that will be requested by the peripheral is
unknown. If the DMA buffer is disabled (DMA0_CRn[BEN]=0) a discrete source memory read occurs for each
element in the DMA transfer. Since this is inefficient, the buffer should only be disabled for low data rate
transfers or when the source memory is FIFO-like, and reads are therefore destructive. When the 32-byte
AMCC Proprietary 448

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
buffer is enabled the controller uses the setting in DMA0_CRn[PF] to prefetch 1, 2, or 4 64-bit doublewords
from the source memory. The DMA controller provides data from the buffer until the peripheral deasserts its
request, the channel is interrupted by one of higher priority, or the transfer completes. Whenever any of these
conditions occurs any unused data in the DMA buffer is discarded.

18.1.2 Memory-to-Memory Transfers

The DMA controller can perform software-initiated memory-to-memory transfers between memories with
fixed timings. During a software-initiated transfer the DMA controller knows the exact amount of data to be
transferred. As a result, when the 32-byte DMA buffer is enabled (DMA0_CRn[BEN]=1) the controller uses
bursts as much as possible. To ensure the highest bandwidth, source and destination addresses should be
aligned on 32-byte boundaries.

There are two cases that limit the ability to burst during software-initiated memory-to-memory transfers.
Bursting is not possible from the source memory when the source address increment is zero
(DMA0_CRn[SAI]=0). Similarly, the DMA controller does not burst to the destination when the destination
address increment is zero (DMA0_CRn[DAI]=0).

18.1.3 Scatter/Gather Transfers

Each of the four DMA channels supports scatter/gather transfers. This scatter/gather capability allows the
chaining of multiple DMA controller operations within a channel. During a normal DMA operation software
must program the control, source address, destination address, and count registers for each transfer.
Scatter/gather transfers differ in that these registers are automatically loaded from a linked list data structure
in system memory. When a channel completes one transfer the DMA controller loads the next set of
configuration values into the channel’s registers and the channel continues with the new programmings.

18.2 Configuration and Status Registers

Table 18-1 on page 18-450 lists the DMA configuration and status registers, each of which is accessed using
the mtdcr and mfdcr instructions. As example, the following assembly code writes DMA0_CR0 and then
reads DMA0_SR:

#define DMA0_CR0 0x100
#define DMA0_SR 0x120

mtdcr DMA0_CR0,r3 ! write r3 to channel 0 control register
mfdcr r4,DMA0_SR ! read contents of status register into r4

The DMA configuration and status registers are readable at any time. However, because each register read
requires a separate operation, it is not possible to guarantee that the values read from multiple registers
correspond to a state that ever existed in the DMA controller. To illustrate, consider software that reads the
destination address for channel 0 (DMA0_DA0) and then the count for channel 0 (DMA0_CT0). If the DMA
controller updates the count between these two operations, the values read differ from what is expected.

While reads can occur at any time, software must not write the configuration registers for any channel that is
currently enabled (DMA0_CRn[CE]=1). The only exception is that a channel may be disabled by reading the
449 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
channel control register, clearing the channel enable bit, and then writing the new value to the control
register. Once a channel is disabled, all of its configuration registers may be reprogrammed as desired.

18.2.1 DMA Sleep Mode Register (DMA0_SLP)

DMA0_SLP enables the DMA controller to enter sleep (low-power) mode and programs the number of PLB
clock cycles to wait when the controller is idle before going to sleep. The DMA controller only goes to sleep
when no DMA channels are enabled and no configuration or status (DCR) register operations are in
progress. Reading or writing any of the DMA control or status register awakens the DMA controller.

To enable sleep mode, set DMA0_SLP[SME] and CPM0_ER[DMA]. When sleep mode is enabled and the
DMA controller becomes idle, the 10-bit idle timer begins counting down from the programmed value. Only
the upper 5 bits of the idle counter are programmable; the lower 5 bits are hardcoded to 0b11111. Therefore,
the minimum granularity of the idle timer is 32 PLB clock cycles. When the counter reaches 0, the controller is
placed in sleep mode.

Table 18-1. DMA Controller Configuration and Status Registers

Mnemonic DCR Address Access Description Page
DMA0_CR0 0x100 R/W DMA Channel Control Register 0 18-452
DMA0_CT0 0x101 R/W DMA Count Register 0 18-455
DMA0_DA0 0x102 R/W DMA Destination Address Register 0 18-454
DMA0_SA0 0x103 R/W DMA Source Address Register 0 18-454
DMA0_SG0 0x104 R/W DMA Scatter/Gather Descriptor Address Register 0 18-455
DMA0_CR1 0x108 R/W DMA Channel Control Register 1 18-452
DMA0_CT1 0x109 R/W DMA Count Register 1 18-452
DMA0_DA1 0x10A R/W DMA Destination Address Register 1 18-454
DMA0_SA1 0x10B R/W DMA Source Address Register 1 18-454
DMA0_SG1 0x10C R/W DMA Scatter/Gather Descriptor Address Register 1 18-455
DMA0_CR2 0x110 R/W DMA Channel Control Register 2 18-452
DMA0_CT2 0x111 R/W DMA Count Register 2 18-455
DMA0_DA2 0x112 R/W DMA Destination Address Register 2 18-454
DMA0_SA2 0x113 R/W DMA Source Address Register 2 18-454
DMA0_SG2 0x114 R/W DMA Scatter/Gather Descriptor Address Register 2 18-455
DMA0_CR3 0x118 R/W DMA Channel Control Register 3 18-452
DMA0_CT3 0x119 R/W DMA Count Register 3 18-455
DMA0_DA3 0x11A R/W DMA Destination Address Register 3 18-454
DMA0_SA3 0x11B R/W DMA Source Address Register 3 18-454
DMA0_SG3 0x11C R/W DMA Scatter/Gather Descriptor Address Register 3 18-455
DMA0_SR 0x120 R/Clear DMA Status Register 18-451
DMA0_SGC 0x123 R/W DMA Scatter/Gather Command Register 18-455
DMA0_SLP 0x125 R/W DMA Sleep Mode Register 18-454
AMCC Proprietary 450

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

18.2.2 DMA Status Register (DMA0_SR)

As shown in Figure 18-2, DMA0_SR provides status information for each of the DMA channels. Bits in
DMA0_SR are set in hardware, and can be either read or cleared by software. Clearing is performed by
writing a word to DMA0_SR containing a 1 in any bit position to be cleared and 0 in all other bit positions.

The terminal count status (DMA0_SR[CSn]) and error status (DMA0_SR[RIn]) must be cleared for a DMA
channel to operate. If a scatter/gather operation generates an interrupt for any of these conditions, the
channel pauses until software clears any associated status fields in DMA0_SR.

Figure 18-1. DMA Sleep Mode Register (DMA0_SLP)
0:4 IDU Idle Timer Upper

0–31
Upper 5-bits of the idle timer.

5:9 IDL Idle Timer Lower
Hardcoded to 0b11111

Lower 5-bit portion of the idle timer. Writing
this field has no effect.

10 SME Sleep Mode Enable
0 Sleep disabled
1 Sleep enabled

If SME=1, also set CPM0_ER[DMA] to
enable the clock and power management
logic to put the DMA controller to sleep.

11:31 Reserved

Figure 18-2. DMA Status Register (DMA0_SR)
0:3 CS[0:3] Channel 0–3 Terminal Count Status

0 Terminal count has not occurred
1 Terminal count has been reached

Set when the transfer count reaches 0.

4:7 Reserved

8:11 RI[0:3] Channel 0–3 Error Status
0 No error
1 Error occurred

See “Errors” on page 18-457 for more
information.

12:15 IR[0:3] Internal DMA Request
0 No internal DMA request pending
1 Internal DMA request is pending

16:19 Reserved

0 4 5 9 10 11 31

SMEIDU

IDL

0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 31

CS0 RI0 IR0 CB0 SG0

CS1

CS2

CS3 RI1

RI2

RI3 CB1

CB2

CB3IR1

IR2

IR3 SG1

SG2

SG3
451 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
18.2.3 DMA Channel Control Registers (DMA0_CR0–DMA0_CR3)

DMA0_CR0–DMA0_CR3 are used to configure and enable their respective DMA channels. Before a DMA
channel can transfer data, the channel control, source address, destination address, and transfer count
registers must be programmed. If a DMA channel is programmed for scatter/gather transfers
(DMA_SGC[SSGn]=1) the DMA channel control register is automatically loaded from memory. For additional
details, see “Scatter/Gather Transfers” on page 18-458.

20:23 CB[0:3] Channel Busy
0 Channel is idle
1 Channel currently active

24:27 SG[0:3] Scatter/Gather Status
0 No scatter/gather operation in progress
1 Scatter/gather operation in progress

28:31 Reserved

Figure 18-3. DMA Channel Control Registers (DMA0_CR0–DMA0_CR3)
0 CE Channel Enable

0 Channel is disabled
1 Channel is enabled

This field is automatically cleared when
the transfer completes or an error occurs.

1 CIE Channel Interrupt Enable
0 Disable interrupts from this channel
1 Enable interrupts from this channel

When enabled, interrupts are generated
for terminal count, end of transfer, and
errors conditions. See “DMA Interrupts”
on page 18-457.

2 TD In peripheral mode:
0 Transfers are from memory-to-peripheral
1 Transfers are from peripheral-to-memory
In device-paced memory-to-memory mode:
0 Peripheral is at the destination address
1 Peripheral is at the source address

TD is not used (don’t care) for software-
initiated memory-to-memory transfers.
For peripheral mode UART transfers,
refer to “DMA Operation” on
page 21-561.

3 PL Peripheral Location
0 External peripheral (EBC) bus
1 OPB (UART0 or UART1)

For peripheral mode UART transfers,
refer to “DMA Operation” on
page 21-561.

4:5 PW Peripheral Width/Memory alignment
00 Byte (8 bits)
01 Halfword (16 bits)
10 Word (32 bits)
11 Doubleword (64 bits) memory-to-memory

transfers only

For memory-to-memory mode, PW is the
address alignment.
For peripheral mode, PW is the transfer
width of the peripheral device.

0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31

CE

CIE

TD

PL DAI

SAI

BEN

TMPW ETD CP

TCE PF

PCE

DEC
AMCC Proprietary 452

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
6 DAI Destination Address Increment
0 Do not increment destination address
1 After each data transfer increment the

destination address by:
1, if the transfer width is a byte (8 bits)
2, if the transfer width is a halfword (16 bits)
4, if the transfer width is a word (32 bits)
8, if the transfer width is a doubleword (64 bit)

7 SAI Source Address Increment
0 Do not increment source address
1 After each data transfer increment the source

address by:
1, if the transfer width is a byte (8 bits)
2, if the transfer width is a halfword (16 bits)
4, if the transfer width is a word (32 bits)
8, if the transfer width is a doubleword (64 bit)

8 BEN Buffer Enable
0 Disable DMA 32-byte buffer
1 Enable DMA 32-byte buffer

If BEN=0, discrete read and write
operations occur for each data transfer.

9:10 TM Transfer mode
00 Peripheral
01 Reserved
10 Software-initiated memory-to-memory
11 Reserved

For peripheral mode UART transfers,
refer to “DMA Operation” on
page 21-561.

11:21 Reserved
22 ETD End-of-Transfer/Terminal Count (EOTn[TCn])

Pin Direction
0 Reserved
1 EOTn[TCn] is a TC output

ETD must be set to 1 for peripheral and
memory-to-memory modes. The
EOTn[TCn] signal is not available in the
PPC405EP.

23 TCE Terminal Count (TC) Enable
0 Channel does not stop when TC is reached
1 Channel stops when TC is reached

If TCE=1, it is required that ETD=1.

24:25 CP Channel Priority
00 Low priority
01 Medium low priority
10 Medium high priority
11 High priority

Actively requesting channels of the same
priority are prioritorized by channel
number; channel 0 has the highest
priority. See “Channel Priorities” on
page 18-456 for more information.

26:27 PF Memory Read Prefetch Transfer
00 Prefetch 1 doubleword
01 Prefetch 2 doublewords
10 Prefetch 4 doublewords
11 Reserved

Used only during memory-to-peripheral
and deviced-paced memory-to-memory
transfers. To enable prefetching it is
required that BEN=1.

28 PCE Parity Check Enable
0 Disable parity checking
1 Enable parity checking

Enables parity checking for peripheral
mode transfers. See “Direct Memory
Access Controller” on page 18-448.

29 DEC Address Decrement
0 SAI and DAI fields control memory address

incrementing.
1 After each data transfer the memory address

is decremented by the transfer width.

If DEC=1, it is required that BEN=0. This
field is valid only for peripheral mode
transfers (TM=00).

30:31 Reserved
453 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
18.2.4 DMA Source Address Registers (DMA0_SA0–DMA0_SA3)

DMA0_SA0–DMA0_SA3 contain source addresses for memory-to-memory and memory-to-peripheral
transfers. If a DMA channel is setup for scatter/gather transfers (DMA_SGC[SSGn]=1), the associated
source address register is automatically loaded from memory. For additional details, see “Scatter/Gather
Transfers” on page 18-458.

The source address must be aligned at the transfer width programmed in DMA0_CRn[PW]. Otherwise, the
error bit (DMA0_SR[RIn]) is set for the channel and no transfer occurs. If the source address increment bit in
the channel control register is set (DMA0_CRn[SAI]), the address is incremented by the transfer width after
each data transfer. In contrast, if the channel is performing a memory-to-peripheral transfer and the address
decrement bit is set (DMA0_CRn[DEC]=1), the address is decremented by the transfer width after each
transfer.

18.2.5 DMA Destination Address Registers (DMA0_DA0–DMA0_DA3)

DMA0_DA0–DMA0_DA3 contain the destination address for memory-to-memory and peripheral-to-memory
transfers. When a DMA channel is configured for scatter/gather transfers (DMA_SGC[SSGn]=1), the
destination address register is automatically loaded from memory. For additional details see “Scatter/Gather
Transfers” on page 18-458.

The destination address must be aligned at the transfer width programmed in DMA0_CRn[PW]. Otherwise,
the error bit (DMA0_SR[RIn]) is set for the channel and no transfer occurs. If the destination address
increment bit in the channel’s control register is set (DMA0_CRn[DAI]) the address is incremented by the
transfer width after each data transfer. However, if the channel is performing a peripheral-to-memory transfer
and the address decrement bit is set (DMA0_CRn[DEC]=1), the destination address is decremented by the
transfer width after each transfer.

Figure 18-4. DMA Source Address Registers (DMA0_SA0–DMA0_SA3)
0:31 Source address for memory-to-memory

and memory-to-peripheral transfers.

Figure 18-5. DMA Destination Address Registers (DMA0_DA0–DMA0_DA3)
0:31 Destination address for memory-to-memory

and peripheral-to-memory transfers.

0 31

0 31
AMCC Proprietary 454

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
18.2.6 DMA Count Registers (DMA0_CT0–DMA0_CT3)

DMA0_CT0–DMA0_CT3 contain the number of transfers left in the DMA transaction for their respective
channels. If a DMA channel is setup for scatter/gather transfers (DMA_SGC[SSGn]=1), the count register is
automatically loaded from memory. For additional details see “Scatter/Gather Transfers” on page 18-458.

The value in the DMA count register is interpreted as the number of transfers of the width specified in
DMA0_CRn[PW], not the total number of bytes. The maximum number of transfers is 64 K, and each transfer
can be either 1, 2, 4, or 8 bytes as programmed in DMA0_CR[PW]. The maximum count of 64 K transfers is
programmed by writing zero to DMA0_CTn.

18.2.7 DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3)

When a DMA channel is setup for scatter/gather transfers (DMA_SGC[SSGn]=1), the Scatter/Gather
Descriptor Address Register (DMA0_SGn) contains the memory address of the next scatter/gather descriptor
table. Prior to starting a scatter/gather transfer, software must write the address of the channel’s descriptor
table to DMA0_SGn. Once the scatter/gather transfer starts, DMA0_SGn is automatically updated from the
descriptor table. For additional details see “Scatter/Gather Transfers” on page 18-458.

18.2.8 DMA Scatter/Gather Command Register (DMA0_SGC)

DMA0_SGC[SSGn] are the start scatter/gather enable bits for channels 0 to 3. DMA0_SGC[EMn] are the
corresponding enable mask bits for DMA0_SGC[SSGn]. Setting DMA0_SGC[EMn] = 1 causes the selected
channel to begin a scatter/gather operation, while writing a 0 stops the scatter/gather operation. To start or
stop a specific scatter/gather channel, the corresponding DMA0_SGC[EMn] bit must be set to 1; otherwise,

Figure 18-6. DMA Count Registers (DMA0_CT0–DMA0_CT3)
0:15 Reserved

16:31 NTR Number of transfers remaining

Figure 18-7. DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3)
0:31 Address of next scatter/gather descriptor

table.

0 15 16 31

NTR

0 31
455 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DMA0_SGC holds the previous value. Note that halting a scatter/gather transfer does not stop the transfer
currently in progress.

Upon completion of a scatter/gather sequence of transfers, the DMA controller clears DMA0_SGC[SSGn].

If an error occurs when the DMA controller is reading the scatter/gather descriptor table, DMA0_SGC[SSGn]
is cleared for the affected channel, and the channel error status bit (DMA0_SR[RIn]) is set.

For additional details see “Scatter/Gather Transfers” on page 18-458.

18.3 Channel Priorities

The priority of DMA transfers is controlled on a per-channel basis by the channel priority field in the channel
control register. Table 18-2 shows the different priority settings for DMA0_CRn[PW].

These priorities serve two purposes. First, the DMA controller arbitrates among all actively requesting
channels and selects the highest priority channel for service. If multiple channels request at the same priority,
the arbiter selects the lowest numbered channel for service.

DMA0_CRn[CP] determines the priority of the internal PLB transactions that the DMA controller uses to read
and write data.

Figure 18-8. DMA Scatter/Gather Command Register (DMA0_SGC)
0:3 SSG[0:3] Start Scatter/Gather for channels 0-3.

0 Scatter/gather support is disabled
1 Scatter/gather support is enabled

To start a scatter/gather operation for
channel n, EM[n] must also be set.

4:15 Reserved

16:19 EM[0:3] Enable Mask for channels 0-3.
0 Writes to SSG[n] are ignored
1 Allow writing to SSG[n]

To write SSG[n], EM[n] must be set.
Otherwise, writing SSG[n] has no effect.

20:31 Reserved

Table 18-2. DMA Transfer Priorities

DMA0_CRn[CP] Priority Level

0b00 Low
0b01 Medium Low
0b10 Medium High
0b11 High

0 1 2 3 4 15 16 17 18 19 20 31

SSG0

SSG1

SSG2

SSG3

EM0

EM1

EM2

EM3
AMCC Proprietary 456

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
18.4 Errors

The DMA controller detects and reports three types of errors: address alignment, PLB timeout and slave
errors. The DMA controller reports errors through the channel error status bit in the DMA status register
(DMA0_SR[RIn]). If the error status bit for a channel is set, the channel enable bit (DMA0_CRn[CE]) is
cleared, disabling the channel. An interrupt signal is also presented to the interrupt controller if
DMA0_CRn[CIE] is set. See “DMA Interrupts” on page 18-457 for more information on interrupt processing.

When the DMA controller has multiple channels active, an error may be reported on the current channel
which was in actuality caused by a previously active channel. This causes the current channel to have its
error status bit set. Therefore, for deterministic error analysis with multiple DMA channels active the PLB
slave bus controller’s error status registers (the bus error address register in particular), must be queried to
isolate the actual channel which encountered the error. In any case, the channel causing the errors will
eventually cause all active channels, including itself, to be disabled.

18.4.1 Address Alignment Error

The source address (DMA0_SAn) and destination address (DMA0_DAn) registers must be aligned to the
programmed transfer width (DMA0_CRn[PW]).The address alignment rules are outlined in Table 18-3. In
addition, when a channel is configured for scatter/gather transfers, the scatter/gather table must be word-
aligned. If the source, destination and scatter/gather address registers are not appropriately aligned an error
occurs immediately after the channel is enabled.

18.4.2 PLB Timeout

The DMA controller uses PLB operations to read and write memory. A PLB timeout results if the DMA
controller attempts to access a non-existent memory location. This will occur if the source, destination or
scatter/gather address registers do not map to valid memory locations.

18.4.3 Slave Errors

If the DMA controller detects an error from a PLB slave, it finishes any active read/write pair transfer on the
channel and then reports an error. An EBC bank protection error is an example of a PLB slave error.

18.5 DMA Interrupts

Each DMA channel can generate interrupts for terminal count and error conditions. Interrupts from a
particular DMA channel are enabled by setting the channel enable bit in the channel’s control register
(DMA0_CRn[CIE]=1). When an interrupt occurs for a given channel, the DMA controller sends a signal to the
Universal Interrupt Controller. For the PPC405EP’s CPU to take an exception, interrupts from the particular
DMA channel must be enabled in the interrupt controller’s interrupt enable register (UIC0_ER). Also, the

Table 18-3. Address Alignment Requirements

DMA0_CRn[PW]
Setting

Required Alignment for
DMA0_SAn and DMA0_DAn

0b00 Byte (8-bit)
0b01 Halfword (16-bit)
0b10 Word (32-bit)
0b11 Doubleword (64-bit)
457 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPU’s machine state register’s interrupt enable bit must be enabled for the appropriate interrupt type (critical
or non-critical), MSR[EE,CE]. See Chapter 10, “Interrupt Controller Operations” for more information on
interrupt controller processing.

For DMA channels with interrupts enabled (DMA0_CRn[CIE]=1) and not performing a scatter/gather transfer
an interrupt is generated while any of the following are true:

DMA0_CRn[TCE]=1 and DMA0_SR[CSn]=1
DMA0_SR[RIn]=1

When a channel is performing a scatter/gather transfer, interrupt generation is further qualified by the TCI,
ETI and ERI bits loaded from the descriptor table (see Table 18-4, “Scatter/Gather Descriptor Table,” on
page 18-458). Any of the following conditions cause an interrupt during a scatter/gather transfer when
interrupts are enabled for the channel (DMA0_CRn[CIE=1]):

TCI=1 and DMA0_CRn[TCE]=1 and DMA0_SR[CSn]=1
ERI=1 and DMA0_SR[RIn]=1

For both normal DMA and scatter/gather transfers the interrupt remains active until the appropriate bits are
cleared in the DMA Status Register (DMA0_SR). In addition, interrupts from a channel performing a
scatter/gather transfer cause the channel to pause until the interrupt is cleared.

18.6 Scatter/Gather Transfers

With a normal DMA transfer it is necessary to program a channel’s control, source, destination, and count
registers for each transfer. The scatter/gather capability of the DMA controller provides a more efficient
solution for applications that require multiple transactions on a single DMA channel. Instead of individually
programming a channel’s registers, software creates a set (linked list) of descriptor tables in system memory.
Table 18-4 illustrates the required table format.

Table 18-5 details the usage of the bit fields in the scatter/gather table.

Table 18-4. Scatter/Gather Descriptor Table

Memory Address Byte 0
(MSB)

Byte 1 Byte 2 Byte 3
(LSB)

x (word aligned) DMA Channel Control Word

x + 4 Source Address
x + 8 Destination Address

x + 12 LK TCI ERI Count
x + 16 Next Scatter/Gather Descriptor Table Address

Table 18-5. Bit Fields in the Scatter/Gather Descriptor Table

Bit Mnemonic Description

0 LK Link
0 This is the last descriptor.
1 Fetch next descriptor from address DMA0_SGn when the channel completes

2 TCI Enable Terminal Count Interrupt
0 Do not interrupt when terminal count occurs
1 Allow an interrupt when terminal count occurs
AMCC Proprietary 458

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
To configure a channel for a scatter/gather transfer the DMA Scatter/Gather Descriptor Address Register
(DMA0_SGn) for the channel is set to the address of the first descriptor table, which must be word-aligned.
To begin the scatter/gather transfer, software then writes a start scatter/gather and enable mask to the
Scatter/Gather Command Register (DMA0_SGC). The DMA controller then reads the descriptor table at
address DMA0_SGn and updates the DMA controller registers as shown in Table 18-6. Upon receiving the
data from the scatter/gather descriptor table, the channel’s terminal count status bit (DMA0_SR[TCn]) is
automatically cleared.

After loading the channel’s registers from the descriptor table, the transfer functions as a normal non-
scatter/gather operation.

If the channel control word loaded from the descriptor table enables interrupts for the channel
(DMA0_CRn[CIE]=1), the TCI and ERI bits further qualify the generation of interrupts. See “DMA Interrupts”
on page 18-457 for more information on scatter/gather interrupts.

If the LK (link) bit was not set the scatter/gather process stops when the current transfer completes.
Otherwise, the DMA controller reads the descriptor table at address DMA0_SGn and the process repeats.

18.7 Programming the DMA Controller

Before the DMA controller can transfer data it must be configured, both globally and on a per-channel basis.
For most applications, these registers should be configured when the DMA controller is initialized.

The channel registers are DMA0_CRn, DMA0_SAn, DMA0_DAn, DMA0_CTn, and DMA0_SGn. The type of
DMA transfer determines which of these registers must be programmed and what causes the channel to
start. In all cases,DMA0_SR[CSn, RIn] must be cleared, or the channel will not start.

The programming information that follows assumes that the DMA controller is operating in non-scatter/gather
mode. For scatter/gather transfers, the channel configuration data must be written into a set of descriptor
tables in system memory, as described in “Scatter/Gather Transfers” on page 18-458.

18.7.1 Peripheral-to-Memory and Memory-to-Peripheral Transfers

The PPC405EP supports peripheral mode transfers for internal peripheral devices UART0 and UART1.
Instructions for configuring UARTn and DMA controllers for peripheral mode DMA are provided in “DMA
Operation” on page 21-561.

4 ERI Enable Error Interrupt
0 Do not interrupt if an error occurs
1 Allow an interrupt if an error occurs

Table 18-6. DMA Registers Loaded from Scatter/Gather Descriptor Table

Descriptor Table Entry Register Loaded

Channel Control Word DMA0_CRn
Source Address DMA0_SAn
Destination Address DMA0_DAn
Count DMA0_CTn
Next Descriptor Address DMA0_SGn

Table 18-5. Bit Fields in the Scatter/Gather Descriptor Table

Bit Mnemonic Description
459 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
18.7.2 Memory-to-Memory Transfers

Memory-to-memory transfers are initiated by software and begin as soon as the channel is configured and
enabled. The configuration set in the DMA registers determines transfer width, source address, destination
address, and transfer count.

18.7.3 Software-Initiated Memory-to-Memory Transfers (Non-Device-Paced)

Following is the procedure for performing a software-initiated memory-to-memory DMA transfer:

1. Set the transfer width (DMA0_CRn[PW] as desired.

2. Set the source (DMA0_SAn) and destination (DMA0_DAn) address registers to the desired memory
locations. These addresses must be aligned to the programmed transfer width (DMA0_CRn[PW]),
otherwise an alignment error will occur.

3. Program the count register (DMA0_CTn) for the number of transfers.

4. Clear the channel’s status bits in the DMA status register (DMA0_SR).

5. Set up the channel control register (DMA0_CRn):

a. Optionally enable the DMA buffer, BEN = 1.

b. Set the source address increment, SAI, and destination address increment, DAI, as desired.
c. Set the transfer mode to software-initiated memory-to-memory, TM = 0b10.
d. Enable the channel, CE = 1.

Once the channel is enabled, the DMA controller transfers data from source to destination until the channel
count reaches zero.
AMCC Proprietary 460

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
461 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 19. Ethernet Media Access Controllers

The PPC405EP provides two Ethernet media access controllers (EMACs) that are generic implementations
of the Ethernet Media Access Control (MAC) protocol designed to ANSI/IEEE Std 802.3 and IEEE 802.3u
supplement. EMAC supports half-duplex (CSMA/CD) and full-duplex operation for 10-Mbps and 100-Mbps
operations.

All EMACs are implemented identically, with the exception of register addresses. Because the EMACs
operate identically, the rest of this chapter describes a single EMAC. The EMACs are referred to as EMAC0
through EMAC1. Except in the register summary tables in “EMAC Registers” on page 19-483, the EMAC
registers are prefixed “EMACx_” to denote the identical implementation of registers in each EMAC.

Each EMAC provides two on-chip peripheral bus (OPB) slave interfaces. The first OPB interface provides
access to the EMAC configuration and status registers. The PLB/OPB bridge enables the processor core to
access these registers.

The second OPB interface is used to exchange packet information with the memory access layer (MAL). The
MAL is a multi-channel, intermediate hardware layer that resides between packet-based communication
cores (such as EMAC) and external memory (such as SDRAM or SRAM). The MAL transfers packet
information and status between the EMACs and external memory separately for each of the three EMAC
channels (one receive and two transmit). Software (a device driver) maintains a buffer descriptor ring and a
set of data buffers in external memory for each channel, and manages the exchange of packet data between
the data buffers and the software protocol.

The MAL performs functions such as arbitration between service requests, handling the buffer descriptor
memory structure, updating the descriptor status/control fields at the end of packet transfer, and so on.
EMAC supports unlimited burst length transactions on the MAL interface.

Each EMAC uses a media independent interface (MII) to communicate with standard physical interface
devices (PHYs).

EMAC uses independent receive and transmit FIFOs. Programmable FIFO thresholds minimize overflows
and underruns, and can launch integrated IEEE 802.3x pause packets for flow control.

As part of the remote monitoring (RMON) and management information base (MIB) defined in IEEE 802.3z,
the EMAC contains registers that count the number of octets transmitted and received.
AMCC Proprietary 462

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 19-1 illustrates an EMAC in a typical Ethernet application.

Note: Each EMAC is connected to an OPB, to which the OPB master and MAL are also connected. EMAC
transmit channels operate independently from the receive channels.

19.1 EMAC Features

Each EMAC features:

• Dual speed (10/100 Mbps) CSMA/CD (half-duplex) and full-duplex Ethernet MAC designed to ANSI/IEEE
Std. 802.3 and IEEE 802.3u supplement.

• Automatic source address insertion or replacement for transmitted packets is a programmable option.

• Automatic stripping of frame padding bytes and frame check sequence (FCS) is a programmable option.

Note: When padding bytes are stripped, the padding and FCS field are removed. FCS stripping
removes only the FCS field.

• FCS control for transmit/receive packets.

• Access to registers with support for burst processing.

• MAL for packet moving having one-cycle MAL slave latency.

• Independent, large (2 KB) transmit and (4 KB) receive FIFOs with programmable thresholds to minimize
overruns and underruns.

PHY

OPB Interface

TX0TX1RX

RX FIFO

TX FIFO

RMON/MIB

OPB MasterMAL

MAL Interface

EMAC

Control Logic

Ethernet MAC

MII

Figure 19-1. EMAC in a Typical Ethernet Application

(Packet Data and
Packet Status)

(Configuration and Status
Register Access)
463 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• Multiple packet handling in transmit and receive FIFOs.

• Unicast, multicast, broadcast, and promiscuous address filtering capabilities.

• Two 64-bit hash filters for unicast and multicast packets.

• Automatic retransmission of collided packets.

• Rejection of runt packets before providing them to MAL.

• MII for connection to a variety of PHY layer devices.

• Programmable inter-packet gap to enable tuning for better system performance.

• Compatibility with IEEE 802.3x standard packet-based flow control, including self-assembled control
pause packet transmitting.

• Support for VLAN tag ID compatible with IEEE Draft 802.3ac/D1.0 standard.

• VLAN tag insertion or replacement for transmit packets is a programmable option.

• Wake on LAN (WOL) handling.

• Programmable internal and external loop-back capabilities.

• Extensive error/status vector generation for each processed packet.

• Power management using a clock and power management (CPM) unit.

19.2 EMAC Operation

The EMAC hardware components and its internal structure are illustrated in the block diagram in Figure 19-2.

The control logic sub-block implements the following functions:

• OPB slave device
• MAL slave device
• FIFO management logic

Ethernet MAC

MAL Interface Link Interface

RXMAC

TXMAC

STA

To MIBTo FIFOs

OPB Interface

MAL
Slave

Wake On LAN

Address
Match
Logic

Configuration
and Status
Registers

Link
Engine

TX FIFO
Handler

RX FIFO
Handler

OPB
Slave

Control Logic

MII

Figure 19-2. Internal EMAC Structure

TX FIFO
Handler

To ZMII
AMCC Proprietary 464

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• Ethernet address and pause packet match logic
• Register file for FIFOs and Ethernet MAC handler management
• Logic for support of WOL technology

The Ethernet MAC sub-block implements the following functions:

• Transmit MAC Handler (TXMAC)
• Receive MAC Handler (RXMAC)
• MII management function unit (STA)

These functions are described in the following sections.

19.2.1 MAL Slave Logic

The MAL slave (MALS) logic controls MAL transactions. MALS transfers TX and RX data between MAL and
the OPB on one side, and the EMAC FIFO handlers on the other side. MALS is a dedicated MAL slave.

19.2.2 OPB Slave Logic

The OPB slave (OPBS) logic controls all OPB transactions between the processor core and the EMAC
configuration and status registers.

19.2.3 Ethernet Address Match Logic

Address match logic checks the destination address of received packets against a set of predefined
addresses specified by the current address filtering mode. EMAC contains one unicast (individual address)
register, two hash tables for filtering individual and group address, and logic for detecting broadcast address
(all ones). EMAC supports promiscuous mode and multicast promiscuous mode.

This logic also checks the destination address of the incoming packet against a special multicast address
used for control (pause) packet recognition.

All checks for address matching are performed only after the entire destination address field is received
(except for promiscuous and multicast promiscuous modes).

19.2.4 Configuration and Status Registers

Configuration and status registers define the EMAC configuration and reflect error/status of recent
transmitted or received packets.

19.2.5 Wake On LAN Logic

EMAC supports Wake On LAN (WOL) technology, an industry standard described in the Wired for
Management (WFM) specification. This technology allows a sleeping or powered-off network node to be
awakened with a special packet called a Magic Packet. In the PPC405EP, with WOL mode enabled, the
EMAC discards all incoming packets and does not request data from the MAL for transmission. When a
magic packet is detected, the EMAC generates an interrupt on UIC0 Interrupt 9, called Ethernet WOL.

19.2.6 Ethernet MAC

The Ethernet MAC logic supports MII.
465 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.2.7 EMAC Loopback Modes

EMAC supports the external and internal loop-back modes illustrated in Figure 19-3.

External loop-back mode uses the PHY device. To EMAC, external loop-back is identical to full-duplex
operation. Configuring EMAC to operate in a full-duplex mode enables external loop-back. EMAC does not
need an external loopback configuration signal.

In internal loopback mode, data from the EMAC transmit channel is routed to the EMAC receive channel. The
loopback mode functions correctly with or without a connected PHY. In internal loopback mode, EMAC does
not activate (monitor) any MII signals. Transmit channel signals are buffered internally to the receive channel.
However, if internal loopback is used without a PHY, the EMAC transmit and receive clocks must be provided
by another means. In internal loopback mode, the EMAC transmit clock and receive clock must be sourced
from a single clock.

19.3 EMAC Transmit Operation

The transmit part of EMAC handles packet transmission from the MAL device to the MII. At the end of a
transmission process, EMAC provides a status/error word which allows monitoring the transmission
operation.

EMAC implements dual MAL transmit channels (two transmit channels are allocated within MAL) to support
efficient use of the transmit FIFO. Both channels share resources inside the EMAC. The transmit channels
can be configured to independently request packets from MAL and drive them into the transmit FIFO, or to
function as a single channel (in dependent mode).

19.3.1 Arbitration Between TX Channels

Because the transmit channels (referred to as TX Channel 0 and TX Channel 1) for each EMAC drive data
into one FIFO, they cannot request packet data from MAL at the same time. MAL ensures that only one
EMAC transmit channel for each EMAC is active at a given time.

TXMAC

RXMAC

PHY

TXMAC

RXMAC

PHY

External

Internal

EMAC

EMAC

Loop-back

Loop-back

MII

Figure 19-3. EMAC Loopback Modes
AMCC Proprietary 466

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.3.2 Independent Mode

In independent mode, each EMAC transmit channel independently requests packets from MAL. Each
channel can be configured to work in either single packet or multiple packet mode.

In single packet mode, EMACx_MR1[TR0] = 00 and EMACx_MR1[TR1] = 00. The channel requests one
packet from MAL and resets EMACx_TMR0[GNP0, GNP1] as appropriate. The channel asks for service
again only after EMACx_TMR0[GNP0] = 1 or EMACx_TMR0[GNP1] = 1 (set by the device driver).

In multiple packet mode, EMACx_MR1[TR0] = 01 and EMACx_MR1[TR1] = 01. After the channel finishes
transferring a packet, the channel asks MAL for the next packet as soon as the other channel is in its Idle
Phase and there is enough room in the FIFO. The channel continues to request more packets until one of the
following events occur:

• The channel receives notification from MAL that the next buffer descriptor is not marked ready for
transmission. When this occurs, the channel sets EMACx_TMR0[GNP0, GNP1] = 0, as appropriate, and
waits for software to reactivate the channel by setting EMACx_TMR0[GNP0] = 1 or
EMACx_TMR0[GNP1] = 1.

• A transmit error or signal quality error (SQE) occurs and the corresponding interrupt is not masked in the
EMACx_ISER. After such an error, the channel sets EMACx_TMR0[GNP0, GNP1] = 0, as appropriate,
and sets EMACx_ISR[DB0] = 1 or EMACx_ISR[DB1] = 1 (the EMACx_ISR field that is set depends on
which channel is active) and the corresponding EMACx_ISR error. The channel does not request service
again until EMACx_TMR0[GNP0] = 1 or EMACx_TMR0[GNP1] = 1 and EMACx_ISR[DB0] = 0 or
EMACx_ISR[DB1] = 0 (again, depending on channel).

In independent mode, if both channels are configured to work in multiple packet mode and both
EMACx_TMR0[GNP0] = 1 and EMACx_TMR0[GNP1] = 1 at the same time, the channels operate in a
sequential repeating manner as long as no errors occur.

19.3.3 Dependent Mode

In dependent mode, EMACx_MR1[TR0] = 10 and EMACx_MR1[TR1] = 10. The two TX channels act as if
they were one channel, sharing EMACx_TMR0[GNPD]. When EMACx_TMR0[GNPD] = 1, the channel
specified by EMACx_TMR0[FC] starts requesting MAL service. Then, both channels continue to request
packets from MAL in an alternating, sequential, repeating manner, until one of the following occurs:

• One of the channels receives notification from MAL that the next buffer descriptor is not marked ready for
transmission. When this occurs, EMAC clears EMACx_TMR0[GNPD]. At this point, neither channel
requests a packet from MAL until EMACx_TMR0[GNPD] back to 1. The first channel to request a new
packet from MAL when this occurs is the channel that received notification from MAL that no packets were
ready to transmit (regardless of the setting of EMACx_TMR0[FC]). Further requests continue in an
alternating, repeating manner.

• Either a transmit error or an SQE occurs on one of the channels and the corresponding interrupt is not
masked in the EMACx_ISER. One of the following scenarios can occur.

– If the other channel has not yet requested MAL service when the channel for which the error occurred
receives notification from MAL that the transmit operation has completed, EMACx_TMR0[GNPD] is
cleared (EMACx_TMR0[GNPD] = 0) and the EMACx_ISR[DBDM] is immediately set
(EMAC_ISR[DBDM]=1).
467 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
– If the other channel was receiving data from MAL, it initiates early termination. If a second packet was
being transmitted on the media, it is stopped. In these cases, EMACx_TMR0[GNPD] is cleared
(EMACx_TMR0[GNPD] = 0) and the EMACx_ISR[DBDM] = 1 only after notification from MAL that the
transmit operation has completed has been received for the second channel.

At this point, neither channel activates a request to MAL until EMACx_TMR0[GNPD] = 1 and
EMACx_ISR[DBDM] = 0. The channel specified by EMACx_TMR0[FC] is the first to request service from
MAL. Subsequent requests continue in an alternating, sequential manner.

19.3.3.1 MAL TX Descriptor Control/Status Field

For each transmitted packet, MAL uses the descriptor control/status field of the buffer descriptor to provide an
EMAC with control information (write), and to obtain packet status from the EMAC after transmission is
complete (read). Software writes the control bits in the buffer descriptor before packet transmission, and
reads the status bits from the buffer descriptor after packet transmission has completed. See “Buffer
Descriptor Overview” on page 20-516 for more information on the buffer descriptor structure.

Figure 19-4. MAL TX Descriptor Control/Status Field

Bits Bit Name Bit Description Mode

0:5 MAL Usage See “Transmit Status/Control Field Format” on page 20-524. R
TX Control Information (Write Access)

6 Generate FCS 0 FCS is not generated by EMAC.
1 EMAC calculates and adds the FCS field to the packet to

be transmitted.

W

7 Generate padding 0 Padding is not generated by EMAC.
1 EMAC adds the padding field to the packet to be

transmitted (only when Generate FCS is also set).

W

8 Insert source address 0 EMAC will not insert source address.
1 EMAC inserts the source address field into the packet to be

transmitted using the content of the Individual Address High
(EMACx_IAHR) and Individual Address Low
(EMACx_IALR) Registers.

W

9 Replace source address 0 EMAC will not replace source address.
1 EMAC replaces the source address field in the packet to be

transmitted using the content of the Individual Address High
(EMACx_IAHR) and Individual Address Low
(EMACx_IALR) Registers.

W

10 Insert VLAN Tag 0 EMAC will not insert a VLAN tag.
1 EMAC inserts the VLAN Tag field into the packet to be

transmitted using the content of the VLAN TPID register
(EMACx_VTPID).

W

MALMALMALMALMAL

0 1 2 3 5

*

11

*

10

*

6

*

7

*

8

*

9

MAL

4

*

14

*

13

*

12

*

15

EMAC specific control/status – for software handlingMAL usage
AMCC Proprietary 468

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.3.3.2 Early Packet Termination during Transmit

EMAC can initiate early packet termination during transmit, terminating packet transmission before MAL
finishes transferring all packet data from memory to the EMAC transmit FIFO. Early packet information is
typically used when error conditions force the EMAC to abort a transmission.

EMAC performs early termination on the MAL interface if any of the following conditions occur:

11 Replace VLAN Tag 0 EMAC will not replace the VLAN tag.
1 EMAC replaces the VLAN Tag field in the packet to be

transmitted using the content of the VLAN TPID register
(EMACx_VTPID).

W

TX Status Information (Read Access)

6 Bad FCS on transmitted
frame

0 FCS was correct in the transmitted packet.
1 Indicates that a bad FCS was found in the transmitted

packet.

R

7 Bad previous packet in
dependent mode

0 Packet transmission OK.
1 Indicates that a Descriptor Error, Transmit Error, or SQE

Error occurred in the previously transmitted frame. This bit
will only be activated in dependent mode.

R

8 Loss of carrier sense 0 No loss of carrier.
1 During the transmission of a frame, the PHY_CRS input

was de-asserted after it previously was asserted, or it was
not asserted at all.

R

9 Excessive deferral 0 No excessive deferral.
1 Indicates that the current frame has been deferred for an

excessive period of time. Applicable only in half duplex
mode. The value of this period in bit times is calculated in
the following ways: For 10/100 Mbps operation it is: 2 x
(maxFrameSize x 8) bit times.

R

10 Excessive collisions 0 Less than 16 collisions.
1 Indicates that the current frame transmission had ended

with a collision on the 16th consecutive attempt. Applicable
only in half-duplex mode.

R

11 Late collision 0 No late collision.
1 Frame collided outside of the collision window. Applicable

only in half-duplex mode.

R

12 Multiple collision 0 More than 1 but less than 16 collisions did not occur.
1 Transmitted frame collided more than once but less than 16

times. Applicable only in half-duplex mode.

R

13 Single collision 0 Single collision did not occur.
1 Activates if transmitted frame collided once. Applicable only

in half-duplex mode.

R

14 Underrun 0 Underrun did not occur.
1 Frame transmission was aborted because of underrun;

data from the Transmit FIFO was not valid in time to allow
continuous data transmission on the MII.

R

15 SQE 0 Signal Quality Error did not occur.
1 Signal Quality Error test failed during packet transmission.

Applicable only in half -duplex mode during 10 Mbps
operation.

R

Bits Bit Name Bit Description Mode
469 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• Underrun in the transmit FIFO.
• Excessive collisions.
• Excessive deferral.
• Late collision.

19.3.3.3 Empty Packets

EMAC treats empty packets as if a normal packet had been written, but does not write data to the transmit
FIFO. A status word of all 0s is returned after an empty packet. EMAC expects that for word-aligned packets,
MAL activates the related word transfer indication during the last data transfer, rather than providing an
empty packet indication.

19.3.3.4 Automatic Retransmission of Colliding Packets

EMAC automatically retransmits packets that collide on the MII. The transmit FIFO always preserves the first
64 bytes of a packet until it receives an indication that the collision window has passed. Otherwise, if a
collision was detected within the collision window, the packet is retransmitted without a new request from
MAL.

19.3.3.5 Inter-Packet Gap (IPG) Tuning

EMAC supports user-programmable IPG length using the EMACx_IPGVR register, which contains one-third
of the IPG value. Changing the contents of EMACx_IPGVR enables the user to adjust the fairness or
aggressiveness of EMAC on the medium. Programming a lower number (but not less than four) causes
EMAC becomes more aggressive on the media. This can result in EMAC capturing the network by forcing
less aggressive nodes to defer. Programming a larger number of bit times causes EMAC to becomes less
aggressive on the network; it might defer more often than normal. EMAC performance might decrease as the
IPG period is increased from the default value, but the resulting behavior can improve media performance by
reducing the occurrence of collisions.

19.3.3.6 Full-Duplex Operation

Full-duplex operation allows simultaneous transmit and receive activity on the MII. Software can set
EMACx_MR1[FDE] = 1 to enable full-duplex mode. During full-duplex operation, the following changes occur
in EMAC functionality.

• Transmission is not deferred while receive is active.

• The IPG counter, which controls transmit deferral during the IPG between back-to-back transmits, is
started when transmit activity for the first packet ends, instead of when transmit and carrier activity end.

• SQE test is not performed.

• Collision indication is ignored.
AMCC Proprietary 470

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.3.3.7 Packet Content Configuration Options

EMAC can modify the content of the packet coming from MAL before issuing it to the MII. Figure 19-5
illustrates possible changes in the transmit packet format.

The following options, unless mutually exclusive, can be set for each packet, and can be provided as a part of
command write transactions from MAL (see “MAL TX Descriptor Control/Status Field” on page 19-468).

• Automatic data padding for short transmit packets

EMAC pads the transmit packet with extra bytes between the data and the FCS field to reach a total length
of 64 bytes (including FCS). This feature is supported only when the packet coming from the transmit FIFO
does not contain the FCS. Automatic padding enables software to avoid sending padding as a part of the
packet data field, and, therefore, reduces the amount of data transferred on the system bus during the
short packet transmission.

• Source address insertion

EMAC adds the source address (SA) field to the transmitted packet. EMAC uses the contents of the
Individual Address High (EMACx_IAHR) and Individual Address Low (EMACx_IALR) registers for the
source address value. This option is mutually exclusive with source address replacement.

• Source address replacement

EMAC replaces the source address received from the transmit FIFO with the contents of EMACx_IAHR
and EMACx_IALR. This option is mutually exclusive with source address insertion.

• Add four FCS bytes

EMAC calculates the FCS for the transmitted packet. The FCS is appended to data coming from the
Transmit FIFO or padding bytes (if added).

DA

Packet as delivered to EMAC by MAL

Preamble - combination of alternative 0s and 1s (7 bytes)
SPD - Start Of Packet delimiter (1 byte)
DA - Destination Address (6 bytes)
SA - Source Address (6 bytes)
Length/Type - length of data field / type definition (Ethernet) (2 bytes)
Data - data field including padding if needed in short packets
Padding (optional) - needed to pad the packet to the minimum packet size
FCS - Cycle Redundancy Check (4 bytes)

Preamble SPD DA SA Length/Type Data Padding
 (if needed) FCS

Packet as delivered by EMAC on the MII

Figure 19-5. Transmit Packet Structure (Excluding VLAN Tagged and Control Packets)

SA Length/Type
(optional)
FCSData

(optional)
471 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• VLAN Tag insertion

EMAC adds the content of the VLAN Tag field to the transmitted packet (see “VLAN Support” on
page 19-479). EMAC uses the content of the VLAN TPID (EMACx_VTPID) and VLAN TCI (EMACx_VTCI)
registers for the VLAN Tag value. This feature is supported only when the packet from the transmit FIFO
does not contain an FCS. This option is mutually exclusive with VLAN tag replacement.

• VLAN Tag replacement.

EMAC replaces the content of the VLAN Tag field in the transmitted packet. EMAC uses the contents of
EMACx_VTPID and EMACx_VTCI for the VLAN Tag value. This feature is supported only when the packet
from the transmit FIFO does not contain an FCS. This option is mutually exclusive with VLAN tag insertion.

Table 19-1 summarizes the possible options for adding FCS and source address to the transmitted packet.

Table 19-2 summarizes the possible options for adding FCS and padding to the transmitted packet.

Table 19-3 summarizes the possible options for adding FCS and VLAN Tag to the transmitted packet.

Table 19-1. FCS/SA Enable - Possible Configurations

Configuration Options EMAC Action

Generate FCS Insert SA Replace SA Add FCS Add SA Replace SA

0 Don’t care Don’t care N N N
1 0 0 Y N N
1 0 1 Y N Y
1 1 0 Y Y N

Table 19-2. FCS/Pad Enable - Possible Configurations

Configuration Options EMAC Action

Generate FCS Generate Pad Add FCS Add Pad

0 Don’t care N N
1 0 Y N
1 1 Y Y

Table 19-3. FCS/VLAN Tag Enable - Possible Configurations

Configuration Options EMAC Action

Generate FCS
Insert

VLAN Tag
Replace

VLAN Tag Add FCS
Insert

VLAN Tag
Replace

VLAN Tag

0 Don’t care Don’t care N N N
1 0 0 Y N N
1 0 1 Y N Y
1 1 0 Y Y N
AMCC Proprietary 472

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.4 EMAC Receive Operation

The receive part of EMAC is responsible for receiving packets coming from the physical layer (PHY) device
and forwarding them to the receive channel of the attached MAL. At the end of the reception process, EMAC
provides a status/error word that enables software to monitor the receive operation.

19.4.1 EMAC – MAL RX Packet Transfer Flow

EMAC initiates request for service from MAL when the number of occupied entries in the receive FIFO
reaches the low water mark specified in EMACx_RWMR[RLWM].

19.4.2 MAL RX Descriptor Status

For each packet that is received, MAL obtains status from EMAC after reception is complete, and writes this
information into the buffer descriptor status/control field. Software uses this information to monitor the status
of received packets. See “Buffer Descriptor Overview” on page 20-516 for more information on the buffer
descriptor structure.

Figure 19-6. MAL RX Descriptor Control/Status Field

Bits Bit Name Bit Description Mode

0:5 MAL Usage See “Receive Status/Control Field Format” on page 20-525. R
RX Status Information (Read Access)

6 Overrun Error 0 No overrun error.
1 EMAC detected an overrun error.
An overrun error occurs if the flow of received data to the RX
FIFO is corrupted because of insufficient empty space.

R

7 Pause Packet 0 Received packet is not a control pause packet.
1 Received packet is a control pause packet.

R

8 Bad Packet 0 No packet errors.
1 Early termination caused by packet error.

R

9 Runt Packet 0 Duration of PHY_RX_DV signal OK.
1 Duration of PHY_RX_DV signal greater than ShortEventMax

Time constant and less than collision windows.

R

10 Short Event 0 Duration of PHY_RX_DV signal OK.
1 Duration of PHY_RX_DV signal was less than

ShortEventMaxTime constant

R

11 Alignment Error 0 Received packet length OK.
1 Received packet length not an integral number of octets.

R

12 Bad FCS 0 FCS OK.
1 The FCS value does not match the FCS value calculated by

EMAC.

R

MALMALMALMALMAL

0 1 2 3 5

*

11

*

10

*

6

*

7

*

8

*

9

MAL

4

*

14

*

13

*

12

*

15

EMAC specific control/status – for software handlingMAL usage
473 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.4.3 Early Packet Termination during Receive

Early packet termination occurs when packet reception is aborted by EMAC before the packet data transfer to
MAL is completed.

EMAC performs early termination in the following cases.

• An overrun occurs in the receive FIFO
• Packet is too long and the Receive Oversize Packet option is not enabled (EMACx_RMR[ROP] = 0)

19.4.4 Discarding Packets During Receive

Receive packets can be discarded if certain error conditions are detected. EMAC behavior depends on
whether the packet to be discarded is already being output to MAL. If the packet containing the error is not
being provided to MAL when the discard condition is detected, the packet is flushed from the Receive FIFO.
In this case, EMAC does not provide status information to MAL. If the packet containing the error is already
being output to MAL,EMAC initiates an early packet termination procedure, as described in “Early Packet
Termination during Receive.”

Each receive discard condition can be individually controlled using appropriate settings, as described in
“Receive Mode Register (EMACx_RMR)” on page 19-489.

13 Packet Too Long 0 Received packet length OK.
1 Received packet length exceeds maximum packet length.
• 1518 octets for standard packet
• 1522 octets for VLAN tagged packet
Data following the maximum packet length is not transferred to
MAL

R

14 Out of Range Error 0 Received packet length field value OK.
1 Received packet length field value greater than maximum

allowed LLC data size.
The maximum allowed logical link control (LLC) data size is
greater than 1500 and less than 1536.

R

15 In Range Error Refer to Table 19-4 for a description of conditions for activating
this status bit.

R

Table 19-4. In Range Length Error Behavior for Various Packet Lengths

Programmed Length (Bytes) Actual Length EMAC Action

Less than 46
(42 if VLAN Tagged packet)

Differs from 46 (42 in case of VLAN
Tagged packet)

In range length error is activated

Less than 46
(42 if VLAN Tagged packet)

46 (42 in case of VLAN Tagged
packet)

In range length error is not activated

Greater than or equal to 46
(42 if VLAN Tagged packet)
and less than or equal to 1500

Equals the length field value In range length error is not activated

Greater than or equal to 46
(42 if VLAN Tagged packet)
and less than or equal to 1500

Differs from the length field value In range length error is activated

Bits Bit Name Bit Description Mode
AMCC Proprietary 474

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.4.5 WOL Support

WOL logic in EMAC supports WOL technology, an industry standard in the Wired for Management (WFM)
Specification. WOL remotely awakens sleeping or powered-off nodes on a network. To wake up a node, a
specific packet, called a magic packet, is sent to the network node. When so configured, EMAC monitors the
incoming bit stream for magic packets.

The magic packet, also called a wake-up packet, contains a unique data field not normally expected in LAN
traffic. When a WOL-enabled adapter on a powered-off client decodes this data field, a wake-up signal is
generated. In the PPC405EP, with WOL mode enabled, EMAC discards all incoming packets and does not
request data from the MAL for transmission. When a magic packet is detected, EMAC generates an Ethernet
WOL interrupt on UIC interrupt 9.

Figure 19-7 shows the wake-up packet format. The key to the wake-up packet is the MAC address of the
target client, which is repeated 16 times. This pattern of 16 addresses in the data field is not expected to
occur in any packet except the wake-up packet.

The destination address can be a specific address, called the universally administered address (UAA), or a
broadcast address. If the destination address is a UAA, the wake-up packet is sent only to the client at that
address. However, because the client is powered off and is no longer transmitting, some protocols remove
the client MAC address from routing tables and internal caches at other nodes. In this case, wake-up packets
addressed to a target client are discarded because nodes and routers do not know where to send them. The
solution to this problem is to use a broadcast address. A directed broadcast has a valid network address and
a broadcast host address. Network routers and nodes forward directed broadcasts to the appropriate
network, where it is seen as a MAC-level broadcast and detected by the powered-off client.

19.4.5.1 EMAC WOL Support

EMAC enters WOL mode when EMACx_MR0[WKE] = 1.

WOL mode should only be changed while EMACx_MR0[RXI] = 1 and EMACx_MR0[RXE] = 0. After
EMACx_MR0[WKE] = 1, EMACx_MR0[RXE] can be set to 1.

DA SA Length/Type Optional Wake-up Segment Optional CRC

MAC address repeated consecutively 16 timesSix bytes of ones

DA - destination address (6bytes) - UAA or Broadcast address
SA - source address (6 bytes)
Length/Type - length of data field (802.3)/type definition (Ethernet) (2 bytes)
optional - for example, IP header
CRC - Cycle Redundancy Check (4 bytes)

Figure 19-7. Wake-Up Packet Format
475 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A reset (soft or hard) should be issued before programming EMAC to WOL mode. In to WOL mode, EMAC
does not propagate any received packets to MAL. Also, EMAC transmit channels do not request data from
MAL.

19.5 Flow Control

For efficient system performance, each EMAC implements full-duplex flow control by handling specific MAC
control packets contained in the pause opcode. EMAC supports flow control as defined in the IEEE 802.3x-
1997 standard.

19.5.1 MAC Control Packet

The flow control mechanism enables receive FIFO control logic to automatically notify the node transmitting
packets to suspend transmission for a defined period of time. The pause control packet has a fixed length
defined as follows:

MinFrameSize – 32 bits (60 bytes)

MAC control packets have a unique value of 0x8808 in the length/type field, and share the same packet
format as normal Ethernet packets, except that the data field consists of an opcode field and a parameter
field. The opcode field contains an opcode command and the parameter field contains a value associated
with the opcode command (0x0001). The only opcode command defined by IEEE 802.3x is the pause
opcode; the parameter field for the pause opcode defines the pause time. MAC control packets containing a
pause opcode, also called pause packets, can have a destination address equal to a reserved multicast
address, or can be the address of the receive station itself. The reserved multicast address is
0x0180C2000001.

Figure 19-8 illustrates the control packet format.

The timer value field contains the value of the delay interval in resolution of pause_quanta, defined in IEEE
802.3x as follows: “MAC Control Parameter[s] (pause_time) is a 2-octet, unsigned integer containing the
length of time for which the receiving station is requested to inhibit data packet transmission. The field is
transmitted most-significant octet first, and least-significant octet second. The pause_time is measured in
units of pause_quanta, equal to 512 bit times. The range of possible pause_time is 0 to 65535
pause_quanta.”

Preamble SPD DA SA Length/
Type

Opcode Timer Value
Field Reserved FCS

Figure 19-8. Control Packet Format

Preamble - Alternating zeroes and ones (7 bytes)
SPD (Start Of Packet Delimiter), 1 byte
DA (Destination Address) = 0x0180C2000001
SA (Source Address) = Universally Administered Address (UAA)
Length/Type = 0x8808
Opcode Field = 0x0001
Timer Value Field = PauseValue
Reserved = zeroes (42 bytes)
FCS = calculated FCS
AMCC Proprietary 476

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.5.2 Control Packet Transmission

Two options initiate the pause packet transmission from EMAC. The transmitted pause packet forces the
node, with the destination address specified, to temporarily suspend the transmission of packets to EMAC.

• Software initiated

The packet transferred to EMAC by MAL for transmission is a pause packet created by software. EMAC
transmits this as a normal packet.

• Automatic flow control initiated

The EMAC integrated flow control mechanism detects the need for and then transmits a control (pause)
packet automatically. When building the control packet, EMAC obtains the SA (source address) field from
EMACx_IAHR and EMACx_IALR, and the timer value from the Pause Timer Register
(EMACx_PTR[TVF]). The contents of the other fields in the packet are shown in Figure 19-8.

19.5.3 Integrated Flow Control

To enable integrated flow control in full-duplex mode, set EMACx_MR1[EIFC] = 1. When the receive FIFO
reaches a predefined threshold level (called a high water mark and specified by EMACx_RWMR[RHWM]), an
internal request for control (pause) packet transmission is activated. EMAC sends a control (pause) packet
when a new packet enters the receive FIFO and the number of vacant entries in the Receive FIFO is less
than the high water mark. When the receive FIFO reaches another predefined threshold level (the low water
mark, specified by EMACx_RWMR[RLWM]), a new internal request for a pause packet transmission, with a
pause timer value of 0, is activated. EMAC sends a pause packet, with a pause timer value of 0, only once,
and only if a pause packet with a non-zero value in the pause timer was transmitted earlier.

Receive FIFO

To MAL

Low Water Mark

High Water Mark

From Ethernet MAC Sub-block

Launch Pause

Packet

Figure 19-9. Integrated Flow Control Mechanism

Packet 0

Packet 1

Packet n
477 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.5.4 Control Packet Reception

In the receive path, the EMAC can be configured to respond to pause packets, or ignore them, as specified
by EMACx_MR1[APP]. When response to pause packets is enabled and EMAC detects a valid MAC control
packet with a pause opcode, the EMAC stores the value of the timer value field. The received packet is
considered a valid control packet only if no error was detected during the packet reception. If, at the end of
packet reception, the packet is considered valid, EMAC launches a pause operation state machine, as
specified in the IEEE P802.3x standard. Figure 19-10 illustrates the pause operation state machine.

If a control (pause) packet is received while another packet is transmitted, the ongoing transmission process
is completed and the transmitter is paused. If other packets are in the transmit FIFO, their transmission is
delayed until the pause timer expires. EMAC normally does not pass the MAC control packets to MAL unless
EMACx_RMR[PPP] = 1.

In the Pause Function state, EMAC decrements its internal pause timer, which was set to the timer value field
of the received control packet.

Note 1: The transmission of control (pause) packets is not affected by the reception of a receive control
(pause) packet. Received control (pause) packets inhibit only the transmission of regular packets
from the Transmit FIFO.

Note 2: Receipt of a new valid control (pause) packet causes the pause timer of EMAC to be reloaded with
the contents of the timer value field of the recently received packet, regardless of the current pause
timer setting. This indicates new pause operations take precedence over earlier pause operations.

Valid Control (Pause) packet is detected

Wait for transmission completion

End pause

Currently ongoing transmit is completed without interruption

Wait for Pause Counter expiration

Open the transmit path

Pause Function

Figure 19-10. Pause Operation State Machine
AMCC Proprietary 478

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.6 VLAN Support

EMAC can handle VLAN tagged packets, as specified in IEEE Draft P802.3ac/D1.0a standard when
EMACx_MR1[VLE] = 1.

A tagged MAC frame is an extension of the standard MAC packet. The extension for VLAN tag support
consists of a 4-octet VLAN tag inserted between the end of the source address and the beginning of the
length/type fields of the MAC packet.

The VLAN tag consists of two fields:

• A 2-octet constant Type field value equal to the VLAN Tag Protocol Identifier (0x8100)
• A 2-octet field containing Tag Control Information (TCI)

The MAC client data and FCS fields of the basic MAC packet follow the VLAN tag. The length of the packet is
extended by four octets by the VLAN tag (up to 1522 bytes). The FCS is calculated over all fields from the
destination address through the end of the MAC client data or pad (if present); that is, all fields except the
preamble, SPD, and FCS.

Figure 19-11 illustrates the Tagged MAC Frame format.

Figure 19-12 illustrates the structure of the TCI field.

Preamble SPD DA SA Length/ Data PadType=TPID
Tag

Control Type
FCS

Preamble – Alternating 0s and 1s (7 bytes)
SPD (Start Of Packet Delimiter)1 byte

DA (Destination Address) 6 bytes
SA (Source Address) 6 bytes
TPID (Tag Protocol Identifier, 2 bytes) = 0x8100

TCI (Tag Control Information) 2 bytes
Length/Type 2 bytes
Data (42–1500 bytes)
Pad (Optional field)
FCS – Calculated FCS

Figure 19-11. Tagged MAC Packet Format

user priority CFI VLAN Identifier

7 6 5 4 3 0

7 0

First Octet

Second Octet

CFI is a Canonical Format Indicator (always 1 for Ethernet media)

VLAN Identifier

Figure 19-12. Tag Control Information Field Structure
479 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.6.1 VLAN Tagged Packet Transmission

When EMACx_MR1[VLE] = 1, the following configuration options are available, depending on the content of
the appropriate bits in the MAL control word (see “MAL TX Descriptor Control/Status Field” on page 19-468):

• The Generate FCS bit (bit 6) is not set or both Insert VLAN Tag and Replace VLAN Tag bits (bits 10 and
11, respectively) are not set: EMAC transmits the packet without any changes

• Bit 6 is set and bit 10 is also set: EMAC will insert TPID and Tag control information for the transmitting
packet using the content of EMACx_VTPID and EMACx_VTCI, respectively

• Bit 6 is set and bit 11 is also set: EMAC will replace TPID and Tag control information for the transmitting
packet using the content of EMACx_VTPID and EMACx_VTCI, respectively

19.6.2 VLAN Tagged Packet Reception

If EMACx_MR1[VLE] = 1, the EMAC parses the VLAN Tag unique type/length in the incoming packet during
the receive process. If the VLAN Tag is equal to the value stored in EMACx_VTPID, EMAC continues the
receive process and allows the received packet to contain up to 1522 octets. Otherwise, the receive process
is continued unless the length is greater than 1518 bytes.

19.6.3 Address Match Mechanism

The address match (or filtering) mechanism is a hardware aid that reduces the average amount of CPU
cycles required to determine whether an incoming packet should be accepted.

EMAC uses various address filters for incoming packets by using the following address recognition modes.

• Individual mode (also referred to as physical)
• Multicast mode (also referred to as group)
• Broadcast mode (an all-ones group address)
• Promiscuous mode
• Promiscuous multicast mode
• WOL mode

A flowchart for address recognition of received packets is shown in Figure 19-13 on page 19-482. If the least
significant bit (LSb) of the first byte of the destination address (DA) is 0, the packet is considered individual. If
the first bit received is 1, the packet is considered multicast. When the DA field contains all 1s, the packet is
broadcast, a special type of multicast.

19.6.3.1 Non-WOL Mode

When EMAC operates in single individual mode (EMACx_RMR[IAE] = 1), the DA of the received packet is
compared to the physical address stored in EMACx_IAHR and EMACx_IALR.

When EMAC operates in multiple individual mode (EMACx_RMR[MIAE] = 1), EMAC performs a calculation
on the contents of the DA field (logical address filter) to determine whether or not to accept the packet.

When EMAC operates in promiscuous mode (EMACx_RMR[PME] = 1), all properly formed packets are
received, regardless of the content of the DA field.

When EMAC operates in multicast promiscuous mode (EMACx_RMR[PMME] = 1), all multicast packets are
received, regardless of the content of the DA field.
AMCC Proprietary 480

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
When EMAC operates in broadcast address mode (EMACx_RMR[BAE] = 1), EMAC performs an address
compare on received packets with broadcast addresses.

When EMAC operates in multicast address mode (EMACx_RMR[MAE] = 1), EMAC performs a calculation on
the contents of the DA field (logical address filter) as in multiple individual mode, in order to determine
whether or not the packet should be accepted.

The logical address filter hardware implements a hash code searching technique commonly used by
programmers. The hardware maps the DA of the incoming packet into one of 64 categories corresponding to
64 bits stored in the EMACx_IAHT1–EMACx_IAHT4 or EMACx_GAHT1–EMACx_GAHT4 registers. The
hardware accepts or rejects the packet, depending on the state of the corresponding bit in the
EMACx_IAHT1–EMACx_IAHT4 or EMACx_GAHT1–EMACx_GAHT4 registers corresponding to the selected
category.

Figure 19-14 on page 19-483 shows the details of the hardware mapping algorithm. The example depicts
multiple individual address mode, but with changes can be used for the multicast address mode.

If the most significant bit (MSb) of an incoming address is 0, the address is individual and is passed to the
individual address filter. If the MSb of an incoming address is 1, the address is multicast and is passed to the
multicast address filter. The individual/multicast address filter is a 64-bit mask composed of the
EMACx_IAHT1–EMACx_IAHT4 or EMACx_GAHT1–EMACx_GAHT4 registers (each register contains 16
bits of a 64-bit mask). The incoming address is sent through the FCS circuit. After the 48 address bits have
gone through the FCS circuit, the high-order 6 bits of the resulting FCS (32-bit CRC) are used to select a the
64-bit positions in the individual/multicast address filter. If the selected filter bit is a 1, the address is accepted.

Note: The individual/multicast address filter ensures only that there is a possibility that the incoming packet
belongs to this node. To determine if the packet belongs to the node, the incoming individual/multicast
address propagated to the main memory is compared by software to the list of logical addresses to be
accepted by this node.

For software, the task of mapping an individual/multicast address to one of 64 bit positions requires a
program that uses the same CRC algorithm to calculate the hash.
481 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.6.3.2 WOL Mode

In WOL mode (EMACx_MR0[WKE] = 1), EMAC operates only with the broadcast or individual address in the
destination address field.

WOL enabled
N

Promiscuous Y

N

Individual
match

Y

N

Discard
packet

Address
HIT

Accept DA address

Y
1

enabled

Broadcast
match

Individual
match

Individual
hash match

Promiscuous
multicast

Broadcast
match

Multicast
match

Discard
packet

Y

Y

Y

Y

Y

NN

N

N

N

N

2

3

4

5

6

7

8

9

Detailed Description of Branch Conditions

1. EMACx_MR0[WKE] = 1.
2. EMACx_RMR[PME] = 1.
3 EMACx_RMR[IAE] = 1 and DA matches
EMACx_IAHR and EMACx_IALR.
4. EMACx_RMR[MIAE] = 1 and selected Individual
Address filter bit is a 1.
5. EMACx_RMR[PMME] = 1 and DA(0) = 1.
6. EMACx_RMR[BAE] = 1 and DA matches
Broadcast Address.
7. EMACx_RMR[MAE] = 1 and selected Multicast
Address filter bit is a1.
8. DA(0) = 0 and DA matches EMACx_IAHR and
EMACx_IALR.
9. DA(0) = 1 and DA matches Broadcast Address.

To WOL Match
Logic

Figure 19-13. Receive Address Recognition Flowchart

Y

AMCC Proprietary 482

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The example in Figure 19-14 shows that the received individual address maps into category 24, and that bit 8
in EMACx_IAHT2 is set. The match indication is activated and the packet should be accepted.

19.7 EMAC Registers

This section describes the EMAC registers, which are listed in Table 19-5 for EMAC0 and in Table 19-6 for
EMAC1. In the register descriptions, the registers are prefixed “EMACx” to denote the identical register
implementations in each EMAC. The EMAC registers are accessed using the OPB slave interface. Access to
these memory-mapped I/O (MMIO) registers should be word-aligned.

Table 19-5. EMAC0 Register Summary

Register Name Address Write Access
Power-on

Reset Value Access Page

EMAC0_MR0 0xEF60 0800 See description in “Scenario 1”
on page 19-508

0xC0000000 R/W 19-488

EMAC0_MR1 0xEF600804 Reset 0x00000000 R/W 19-486
EMAC0_TMR0 0xEF600808 See description on

page 19-488
0x00000000 R/W 19-488

EMAC0_TMR1 0xEF60080C See description on
page 19-488

0x380F0000 R/W 19-488

EMAC0_RMR 0xEF600810 Reset 0x00000000 R/W 19-489
EMAC0_ISR 0xEF600814 Always 0x00000000 R/W 19-491
EMAC0_ISER 0xEF600818 Reset 0x00000000 R/W 19-494
EMAC0_IAHR 0xEF60081C Reset, R, T 0x00000000 R/W 19-496
EMAC0_IALR 0xEF600820 Reset, R, T 0x00000000 R/W 19-496
Note: See “Reset and Initialization” on page 19-507 for definitions of letters in the Write Access column.

EMAC0_IAHT1 EMAC0_IAHT2 EMAC0_IAHT3 EMAC0_IAHT4

16 31 16 31 16 31 16 31

0 15 16 31 32 47 48 63

0 50 47
32-Bit Resultant CRC

Match

6
64

Select

In

Individual Address Filter

0 63
Individual Address FilterDestination Address

When Match = 0, Packet is rejected.
When Match = 1, Packet is accepted.

CRC
Generator

Figure 19-14. Ethernet Address Filter Operation
483 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

EMAC0_VTPID 0xEF600824 Reset, R, T 0x00008808 R/W 19-497
EMAC0_VTCI 0xEF600828 Reset, R, T 0x00000000 R/W 19-497
EMAC0_PTR 0xEF60082C Reset, T 0x0000FFFF R/W 19-498
EMAC0_IAHT1 0xEF600830 Reset, R 0x00000000 R/W 19-498
EMAC0_IAHT2 0xEF600834 Reset, R 0x00000000 R/W 19-498
EMAC0_IAHT3 0xEF600838 Reset, R 0x00000000 R/W 19-498
EMAC0_IAHT4 0xEF60083C Reset, R 0x00000000 R/W 19-498
EMAC0_GAHT1 0xEF600840 Reset, R 0x00000000 R/W 19-499
EMAC0_GAHT2 0xEF600844 Reset, R 0x00000000 R/W 19-499
EMAC0_GAHT3 0xEF600848 Reset, R 0x00000000 R/W 19-499
EMAC0_GAHT4 0xEF60084C Reset, R 0x00000000 R/W 19-499
EMAC0_LSAH 0xEF600850 Not applicable 0x00000000 R 19-499
EMAC0_LSAL 0xEF600854 Not applicable 0x00000000 R 19-500
EMAC0_IPGVR 0xEF600858 Reset, T 0x00000004 R/W 19-500
EMAC0_STACR 0xEF60085C See description on

page 19-501
0x00008000 R/W 19-501

EMAC0_TRTR 0xEF600860 See description on
page 19-502

0x00000000 R/W 19-502

EMAC0_RWMR 0xEF600864 Reset 0x04001000 R/W 19-503
EMAC0_OCTX 0xEF600868 Not applicable 0x00000000 R 19-504
EMAC0_OCRX 0xEF60086C Not applicable 0x00000000 R 19-504

Table 19-6. EMAC1 Register Summary

Register Name Address Write Access
Power-on

Reset Value Access Page

EMAC1_MR0 0xEF60 0900 See description in “Scenario 1”
on page 19-508

0xC0000000 R/W 19-488

EMAC1_MR1 0xEF600904 Reset 0x00000000 R/W 19-488
EMAC1_TMR0 0xEF600908 See description on

page 19-488
0x00000000 R/W 19-488

EMAC1_TMR1 0xEF60090C See description on
page 19-488

0x380F0000 R/W 19-488

EMAC1_RMR 0xEF600910 Reset 0x00000000 R/W 19-489
EMAC1_ISR 0xEF600914 Always 0x00000000 R/W 19-491
EMAC1_ISER 0xEF600918 Reset 0x00000000 R/W 19-494
EMAC1_IAHR 0xEF60091C Reset, R, T 0x00000000 R/W 19-496
EMAC1_IALR 0xEF600920 Reset, R, T 0x00000000 R/W 19-496
EMAC1_VTPID 0xEF600924 Reset, R, T 0x00008808 R/W 19-497
EMAC1_VTCI 0xEF600928 Reset, R, T 0x00000000 R/W 19-497
Note: See “Reset and Initialization” on page 19-507 for definitions of letters in the Write Access column.

Table 19-5. EMAC0 Register Summary (continued)

Register Name Address Write Access
Power-on

Reset Value Access Page

Note: See “Reset and Initialization” on page 19-507 for definitions of letters in the Write Access column.
AMCC Proprietary 484

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.7.1 Mode Register 0 (EMACx_MR0)

EMACx_MR0 defines the operating modes of the EMAC, which can be changed at any time during EMAC
operation.

Both PHY clocks, PHYTxClk and PHYRxClk, must be active prior to requesting a soft reset through
EMAC0_MR0[SRST]. If the PHY clocks are inactive, the soft reset never completes, even if the clocks
subsequently become active. Therefore, software should poll EMAC0_MR0[SRST] only for a limited time
waiting for the EMAC to complete its reset. If the EMAC does not reset, the PHY clocks are probably inactive.
If this occurs, the application should wait until the PHY clocks are running and issues a new reset request
through EMAC0_MR0[SRST].

EMAC1_PTR 0xEF60092C Reset, T 0x0000FFFF R/W 19-498
EMAC1_IAHT1 0xEF600930 Reset, R 0x00000000 R/W 19-498
EMAC1_IAHT2 0xEF600934 Reset, R 0x00000000 R/W 19-498
EMAC1_IAHT3 0xEF600938 Reset, R 0x00000000 R/W 19-498
EMAC1_IAHT4 0xEF60093C Reset, R 0x00000000 R/W 19-498
EMAC1_GAHT1 0xEF600940 Reset, R 0x00000000 R/W 19-499
EMAC1_GAHT2 0xEF600944 Reset, R 0x00000000 R/W 19-499
EMAC1_GAHT3 0xEF600948 Reset, R 0x00000000 R/W 19-499
EMAC1_GAHT4 0xEF60094C Reset, R 0x00000000 R/W 19-499
EMAC1_LSAH 0xEF600950 Not applicable 0x00000000 R 19-499
EMAC1_LSAL 0xEF600954 Not applicable 0x00000000 R 19-500
EMAC1_IPGVR 0xEF600958 Reset, T 0x00000004 R/W 19-500
EMAC1_STACR 0xEF60095C See description on

page 19-501
0x00008000 R/W 19-501

EMAC1_TRTR 0xEF600960 See description on
page 19-502

0x00000000 R/W 19-502

EMAC1_RWMR 0xEF600964 Reset 0x04001000 R/W 19-503
EMAC1_OCTX 0xEF600968 Not applicable 0x00000000 R 19-504
EMAC1_OCRX 0xEF60096C Not applicable 0x00000000 R 19-504

Figure 19-15. Mode Register 0 (EMACx_MR0)
0 RXI Receive MAC Idle

0 RX MAC processing packet
1 RX MAC idle; RX packet processing

complete

Read-only

Table 19-6. EMAC1 Register Summary (continued)

Register Name Address Write Access
Power-on

Reset Value Access Page

Note: See “Reset and Initialization” on page 19-507 for definitions of letters in the Write Access column.

0 1 2 3 4 5 6 31

RXI

TXI

SRST

TXE

RXE

WKE
485 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.7.2 Mode Register 1 (EMACx_MR1)

EMACx_MR1 defines the EMAC operating modes, which can be changed only after a reset.

Software can use EMACx_MR1[FDE] and proper programming of the attached PHY to activate external loop-
back mode.

When EMACx_MR1[FDE, ILE] = 1, EMAC wraps transmitted packets back to the receive FIFO without
accessing the MII.

1 TXI Transmit MAC Idle
0 TX MAC processing packet
1 TX MAC idle; TX packet processing

complete

Read-only

2 SRST Soft Reset
0 No effect
1 Soft reset in progress

If EMACx_MR0[SRST] = 1, writing to any
EMAC register, and reading any other bit in
this register, is not supported.

3 TXE Transmit MAC Enable
0 TX MAC is disabled
1 TX MAC is enabled

4 RXE Receive MAC Enable
0 RX MAC is disabled
1 RX MAC is enabled

5 WKE Wake-Up Enable
0 Incoming packets are not examined for

wake-up packet
1 Examine incoming packets for wake-up

packet

Software can change EMACx_MR0[WKE]
only while EMACx_MR0[RXI] = 1 and
EMACx_MR0[RXE] = 0.

6:31 Reserved

Figure 19-16. Mode Register 1 (EMACx_MR1)
0 FDE Full-Duplex Enable

0 Disable simultaneous transmit and
receive

1 Enable simultaneous transmit and
receive

1 ILE Internal Loop-back Enable
0 No wrap back
1 Transmitted packets wrapped back to

receive FIFO

Full Duplex must also be set
(EMACx_MRI[FDE]=1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 31

FDE

ILE

VLE

EIFC

APP

IST

MF RFS TFS

TR0

TR1
AMCC Proprietary 486

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
2 VLE VLAN Enable
0 Disable processing of VLAN Tags
1 Enable processing of VLAN Tags

3 EIFC Enable Integrated Flow Control
0 Disable integrated flow control

mechanism
1 Enable integrated flow control

mechanism

Refer to “Flow Control” on page 19-476 for
more details.
Set EMACx_MR1[EIFC] = 0 in half-duplex
mode.

4 APP Allow Pause Packet
0 Disables processing of incoming control

(pause) packets
1 Enables processing of incoming control

(pause) packets

5:6 Reserved Always zero

7 IST Ignore SQE test
0 Wait for end of SQE test period before

activation of valid signal
1 Do not wait for end of SQE test period

before activation of valid signal

EMACx_MR1[IST] = 0 only during half-
duplex operation on 10 Mbps media.

8:9 MF Medium Frequency
00 10 Mbps (Ethernet mode)
01 100 Mbps (Fast Ethernet mode)
10 Reserved
11 Reserved

Defines the possible operational frequency
on the MII interface.

10:11 RFS Receive (RX) FIFO Size
00 512 bytes
01 1 KB
10 2 KB
11 4 KB

The maximum Rx FIFO size is 4K bytes.
Each Rx FIFO entry = 8 bytes.

12:13 TFS Transmit (TX) FIFO Size
00 Reserved
01 1 KB
10 2 KB
11 Reserved

The maximum Tx FIFO size is 2K bytes.
Each Tx FIFO entry = 8 bytes.

14 Reserved Always 0

15:16 TR0 Transmit Request 0
00 Single packet
01 Multiple packets
10 Dependent mode (bits 17:18 must also

be programmed to 10)
11 Reserved

Defines the different modes for using
transmit channel 0 of EMAC.

17:18 TR1 Transmit Request 1
00 Single packet
01 Multiple packets
10 Dependent mode (bits 15:16 must also

be programmed to 10)
11 Reserved

Defines the different modes for using
transmit channel 1 of EMAC.

19:31 Reserved
487 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.7.3 Transmit Mode Register 0 (EMACx_TMR0)

EMACx_TMR0 defines EMAC operating modes during transmit operations (see “EMAC Transmit Operation”
on page 19-466).

EMACx_TMR0[GNP0, GNP1, GNPD] are self-clearing. Writing 0 to these fields has no effect.

19.7.4 Transmit Mode Register 1 (EMACx_TMR1)

EMACx_TMR1 defines conditions for activation of MAL service requests during transmit operations (see
“EMAC Transmit Operation” on page 19-466).

19.7.4.1 Low-Priority Requests

EMAC requests low priority service from MAL when the number of vacant entries in the transmit FIFO
exceeds the decimal transmit low request (TLR) value.

EMACx_TMR1[TRL] must at least equal ((MAL Burst Limit / 2) + 1). For example, if MAL supports 16-word
bursts, the decimal TLR value should be at least 9.

Note: In the PPC405EP, all MAL channels are capable of 16 word bursts.

Figure 19-17. Transmit Mode Register 0 (EMACx_TMR0)
0 GNP0 Get New Packet 0

0 Writing 0 has no effect.
1 Packet ready for transmission on TX

Channel 0

EMACx_TMR0[GNP0] = 0 if EMAC is
programmed in dependent mode.

1 GNP1 Get New Packet 1
0 Writing 0 has no effect.
1 Packet ready for transmission on TX

Channel 1

EMACx_TMR0[GNP1] = 0 if EMAC is
programmed in dependent mode.

2 GNPD Get New Packet for Dependent Mode
0 Writing 0 to this bit has no effect
1 Packet ready for transmission in

dependent mode

EMACx_TMR0[GNPD] = 0 if EMAC is not
programmed in dependent mode.
EMACx_TMR0[GNPD] = 1 activates the
EMAC transmit path in dependent mode.

3 FC First Channel
0 Activate TX Channel 0 first when GNPD

is 1
1 Activate TX Channel 1 first when GNPD

is 1

EMACx_TMR0[FC] is only meaningful in
dependent mode, after resetting
EMACx_ISR[DBDM].
EMACx_TMR0[FC] = 0 if EMAC is not
programmed in dependent mode.

4:31 Reserved

0 1 2 3 4 31

GNP0

GNP1

 GNPD

FC
AMCC Proprietary 488

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
To avoid a deadlock, the sum of EMACx_TMR1[TRL] and EMACx_TRTR[TRT] must be at least 4 smaller
than the transmit FIFO size specified by EMACx_MR1[TFS].

19.7.4.2 Urgent-Priority Requests

EMAC requests urgent priority service from MAL if the following conditions occur:

• EMAC begins transmitting the packet to the media before the entire packet is placed in the TX FIFO
• The number of vacant entries for the currently transmitting packet exceeds the decimal TUR value

Software must coordinate the value of EMACx_TMR1[TUR] with the value of EMACx_MR1[TFS].The value
of EMACx_TMR1[TUR] must be smaller than that of EMACx_MR1[TFS] so that the array address encoded in
EMACx_TMR1[TUR] can access the full 66-bit wide array.

The binary value of EMACx_TMR1[TUR] must be greater than that of EMACx_TMR1[TLR].

The EMACx_TMR1 contents can be changed only when EMACx_TMR0[GNP0, GNP1, GNPD] = 0.

19.7.5 Receive Mode Register (EMACx_RMR)

EMACx_RMR defines EMAC operating modes during receive operations.

Figure 19-18. Transmit Mode Register 1 (EMACx_TMR1)
0:4 TLR Transmit Low Request

5:7 Reserved

8:15 TUR Transmit Urgent Request

16:31 Reserved

0 4 5 7 8 15 16 31

TLR

TUR
489 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Figure 19-19. Receive Mode Register (EMACx_RMR)
0 SP Strip Padding

0 Do not strip pad bytes from the received
packet.

1 Strip pad/FCS bytes from the received
packet.

1 SFCS Strip FCS
0 Do not strip FCS bytes from the received

packet.
1 Strip FCS bytes from the received

packet.

2 RRP Receive Runt Packets
0 Discard packets less than 64 bytes in

length.
1 Receive packets less than 64 bytes in

length.

3 RFP Allow Receive Packets with a FCS Error
0 Discard packets containing a FCS error.
1 Receive packets containing a FCS error.

4 ROP Receive Oversize Packet
0 Discard packets that activate Packet Is

Too Long error.
1 Receive packets that activate Packet Is

Too Long error.

5 RPIR Receive Packets with In Range Error
0 Discard packets that activate In Range

Error.
1 Receive packets that activate In Range

Error.

6 PPP Propagate Pause Packet
0 Do not propagate incoming pause packet

to MAL; remove packet from FIFO.
1 Propagate incoming pause packet to

MAL.

When PPP is enabled, the EMAC must
either have the PMM (promiscuous
Multicast Mode) enabled or the MAE bit
enabled with the proper hash register
value; otherwise. the EMAC will not
progagate the pause packet to the MAL.

7 PME Promiscuous Mode Enable
0 Do not enable promiscuous mode.
1 Accept all packets.

8 PMME Promiscuous Multicast Mode Enable
0 Do not accept all multicast packets.
1 Accept all multicast packets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 31

SP

SFCS

RRP

RFP

ROP PPP PMME MIAE MAE

RPIR PME IAE BAE
AMCC Proprietary 490

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.7.6 Interrupt Status Register (EMACx_ISR)

Each EMAC generates a distinct interrupt as an event indication. The interrupts are routed to the chip UIC.
This interrupt is generated from the content of the EMACx_ISR. The content of the EMACx_ISR is first
ANDed with the corresponding mask bits in the EMACx_ISER; the resulting bits are then logically ORed to
produce the interrupt signal. Thus, if any of the resulting bits is a 1, an interrupt is generated.

Note: EMAC activates its interrupt signal only after an indication that status for the current packet was
accepted by MAL (with the exception of “MMA Operation Succeed/MMA Operation Failed,” which
causes unconditional activation of interrupt, if it is not masked).

The interrupt indication is cleared by writing 1 to the related bit in the EMACx_ISR; writing 0 has no effect.

The event indication signal is cleared when all non-masked event indication bits are cleared.

9 IAE Individual Address Enable
0 Do not compare address of received

packets with content of individual
address register.

1 Compare address of received packets
with content of individual address
register.

10 MIAE Multiple Individual Address Enable
0 Do not compare address of received

packets with hash table of individual
addresses.

1 Compare address of received packets
with hash table of individual addresses.

11 BAE Broadcast Address Enable
0 Do not compare address of received

packets with broadcast addresses.
1 Compare address of received packets

with broadcast addresses.

12 MAE Multicast Address Enable
0 Do not compare address of received

packets with multicast addresses.
1 Compare address of received packets

with multicast addresses.

13:31 Reserved

Figure 19-20. Interrupt Status Register (EMACx_ISR)
0:5 Reserved

0 5 6 7 8 9 10 11 12 13 14 15 16 21 22 23 24 25 26 27 28 29 30 31

ORE

PTLE

DBDM

IRE

SE0OVR BP SE BFCS

DB0PP RP ALE TE0 SE1

DB1 TE1

MOS

MOF
491 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
6 OVR Overrun
0 No overrun error
1 Overrun error during reception of recent

packet

7 PP Pause Packet
0 Received packet is not a control pause

packet
1 Received packet is a control pause

packet

8 BP Bad Packet
0 Receive operation OK
1 Early termination was initiated because

of a packet error

9 RP Runt Packet
0 No Runt packets received
1 Runt packet received

Set when EMACx_RMR[RRP] = 1 and the
duration of PHY_RX_DV signal was
greater than ShortEventMaxTime constant
and less than the collision window.

10 SE Short Event
0 No short events
1 Duration of PHY_RX_DV signal less

than ShortEventMaxTime constant

11 ALE Alignment Error
0 No alignment error in received packet
1 Alignment error in received packet

The packet contained an odd number of
nibbles (4 bits).

12 BFCS Bad FCS
0 No FCS error in received packet
1 Packet with an FCS error received

Set if EMACx_RMR[RFP] = 1.

13 PTLE Packet Too Long Error
0 No oversized packets received
1 Oversized packet received

Set if EMACx_RMR[ROP] = 1 and the
received packet length exceeded the
maximum allowed value:
• 1518 octets for standard packet

(checked only if the length/type field of
the transmitted packet contained length
value)

• 1522 octets for VLAN tagged packet
(checked only if the length/type field of
the transmitted packet contained length
value and jumbo support is disabled)

14 ORE Out Of Range Error
0 Received packet length field value OK
1 Received packet length field value

greater than the maximum allowed LLC
data size

Indicates that received packet has a length
field value greater than the maximum
allowed logical link control (LLC) data size
(greater than 1500 and less than 1536).

15 IRE In Range Error
0 Received packet does not contain an In

Range Error
1 Received packet contains an In Range

Error

16:21 Reserved
AMCC Proprietary 492

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22 DBDM Dead Bit Dependent Mode
0 No transmit error or SQE in dependent

mode
1 Transmit error or SQE has occurred

while in dependent mode

If EMACx_ISR[DBDM] = 1, EMAC does
not request MAL service, even if
EMACx_TMR0[GNPD] = 1.
EMACx_ISR[DBDM] does not affect
EMC_INT.

23 DB0 Dead Bit 0
0 No transmit error or SQE for TX Channel

0 while not in dependent mode
1 Transmit error or SQE has occurred for

TX Channel 0 while not in dependent
mode

If EMACx_ISR[DB0] = 1, EMAC does not
request service for TX Channel 0 from
MAL, even if EMACx_TMR0[GNP0] = 1.
EMACx_ISR[DB0] does not affect
EMC_INT.

24 SE0 SQE Error 0
0 No SQEs on TX Channel 0
1 SQE test failure during transmission of a

packet from TX Channel 0

Applicable only in half-duplex mode during
10 Mbps operations; 0 in all other modes.

25 TE0 Transmit Error 0
0 TX Channel 0 transmission OK
1 TX Channel 0 transmission aborted

EMAC aborts the transmitted packet if one
of the following events takes place:
• Late collision detection
• Excessive collision detection
• Excessive deferral
• TX FIFO underrun
• Loss of carrier sense

26 DB1 Dead Bit 1
0 No transmit error or SQE for TX Channel

1 while not in dependent mode
1 Transmit error or a SQE has occurred for

TX Channel 1 while not in dependent
mode

If this bit is set, EMAC does not request
MAL service for TX Channel 1 even if
EMACx_TMR1[GNP1] = 1.
EMACx_ISR[DB1] does not affect
EMC_INT.

27 SE1 SQE Error 1
0 No Signal Quality Errors on TX Channel

1
1 Signal Quality Error test failure during

transmission of a packet from TX
Channel 1

 Applicable only in half-duplex mode during
10 Mbps operations; 0 in all other modes.

28 TE1 Transmit Error 1
0 TX Channel 1 transmission OK
1 TX Channel 1 transmission aborted

EMAC aborts the transmitted packet if one
of the following events takes place:
• Late collision detection
• Excessive collision detection
• Excessive deferral
• TX FIFO underrun
• Loss of carrier sense

29 Reserved Always 0

30 MOS MMA Operation Succeeded
0 MMA_CONTROL addressed on the OPB
1 PHY transfer valid

The device driver should poll assertion of
EMACx_ISR[MOS] or EMACx_ISR[MOF]
before issuing a new command or before
using data read from the PHY.

31 MOF MMA Operation Failed
0 MMA_CONTROL addressed on the OPB
1 PHY transfer not valid

The device driver should poll assertion of
EMACx_ISR[MOF] or EMACx_ISR[MOS]
before issuing a new command or before
using data read from the PHY.
493 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.7.7 Interrupt Status Enable Register (EMACx_ISER)

EMACx_ISER indicates which conditions in the EMACx_ISR can generate an interrupt.

Each masking bit in the EMACx_ISER corresponds to a related bit in the EMACx_ISR. If a mask bit is set to
1, the corresponding status bit, when set, causes an interrupt to be generated. Setting a mask bit to 0
suppresses interrupt generation for the associated condition.

Mask bits for reserved bits in the EMACx_ISR are not implemented, have no effect on write, and return 0 on
read.

Figure 19-21. Interrupt Status Enable Register (EMACx_ISER)
0:5 Reserved

6 OVR Overrun
0 Overrun error will not generate an

interrupt.
1 Overrun error will generate an interrupt.

7 PP Pause Packet
0 Received control pause packet will not

generate an interrupt.
1 Received control pause packet will

generate an interrupt.

8 BP Bad Packet
0 Early termination on received packet will

not generate an interrupt.
1 Early termination on received packet will

generate an interrupt.

9 RP Runt Packet
0 Received runt packet will not generate

an interrupt.
1 Received runt packet will generate an

interrupt.

10 SE Short Event
0 Short event during receive will not

generate an interrupt.
1 Short event during receive will generate

an interrupt.

0 5 6 7 8 9 10 11 12 13 14 15 16 23 24 25 26 27 28 29 30 31

ORE

PTLE IRE

SE0OVR BP SE BFCS

PP RP SYE TE0 SE1

TE1

MOS

MOF
AMCC Proprietary 494

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
11 ALE Alignment Error
0 Alignment error in received packet will

not generate an interrupt.
1 Alignment error in received packet will

generate an interrupt.

12 BFCS Bad FCS
0 FCS error in received packet will not

generate an interrupt.
1 FCS error in received packet will

generate an interrupt.

13 PTLE Packet Too Long Error
0 Oversized packets received will not

generate an interrupt.
1 Oversized packet received will generate

an interrupt.

14 ORE Out Of Range Error
0 Out of range error on received packet will

not generate an interrupt.
1 Out of range error on received packet will

generate an interrupt.

15 IRE In Range Error
0 In range error on received packet will not

generate an interrupt.
1 In range error on received packet will

generate an interrupt.

16:23 Reserved

24 SE0 SQE Error 0
0 SQE error on TX Channel 0 will not

generate an interrupt.
1 SQE error on TX Channel 0 will generate

an interrupt.

25 TE0 Transmit Error 0
0 TX error on TX Channel 0 will not

generate an interrupt.
1 TX error on TX Channel 0 will generate

an interrupt.

26 Reserved

27 SE1 SQE Error 1
0 SQE error on TX Channel 1 will not

generate an interrupt.
1 SQE error on TX Channel 1 will generate

an interrupt.

28 TE1 Transmit Error 1
0 TX error on TX Channel 1 will not

generate an interrupt.
1 TX error on TX Channel 1 will generate

an interrupt.

29 Reserved
495 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.7.8 Individual Address High (EMACx_IAHR)

EMACx_IAHR contains the high-order halfword of the station unique individual address.

During packet reception, if EMAC is programmed in individual address match mode (EMACx_RMR[IAE] = 1),
the contents of EMACx_IAHR are concatenated with the content of EMACx_IALR to form a composite
address that is compared with the destination address of the received packet. If addresses match, the packet
is transferred to MAL.

During packet transmission, EMACx_IAHR is used in source address inclusion/replacement and as the
source address field in the self-assembled control (pause) packet.

19.7.9 Individual Address Low (EMACx_IALR)

EMACx_IALR contains the low-order word of the station unique individual address.

During packet reception, EMACx_IALR is compared with the corresponding address bits of the received
packet.

During packet transmission, EMACx_IALR is used in source address inclusion/replacement and as the
source address field in the self-assembled control (pause) packet.

30 MOS MMA Operation Succeeded
0 Successful MMA Operation with a PHY

will not generate an interrupt.
1 Successful MMA Operation with a PHY

will generate an interrupt.

31 MOF MMA Operation Failed
0 Unsuccessful MMA Operation with a

PHY will not generate an interrupt.
1 Unsuccessful MMA Operation with a

PHY will generate an interrupt.

Figure 19-22. Individual Address High Register (EMACx_IAHR)
0:15 Reserved

16:31 High-order halfword of the station unique
individual address

This field contains bits 0:15 of the station
address (bit 0 is the most significant bit).

0 15 16 31
AMCC Proprietary 496

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

19.7.10 VLAN TPID Register (EMACx_VTPID)

EMACx_VTPID contains the value of the VLAN TPID (Tag Protocol Identifier) field.

During packet reception, packet bytes 13 and 14 are compared to the content of this register to check
whether the packet is tagged with a VLAN ID.

During packet transmission, EMAC uses EMACx_VTPID when VLAN Tag replacement or VLAN Tag
inclusion mode is chosen.

The value of this register must be a Type field (8100).

19.7.11 VLAN TCI Register (EMACx_VTCI)

EMACx_VTCI contains the value of the VLAN TCI (Tag Control Information) field.

During packet transmission, EMAC uses EMACx_VTCI when VLAN Tag replacement or VLAN Tag inclusion
mode is chosen.

Figure 19-23. Individual Address Low Register (EMACx_IALR)
0:31 Low-order bits of Receive Individual

Address or Transmit Source Address

Figure 19-24. VLAN TPID Register (EMACx_VTPID)
0:15 Reserved

16:31 VIDT VLAN ID tag

0 31

0 15 16 31

VIDT
497 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

19.7.12 Pause Timer Register (EMACx_PTR)

EMACx_PTR defines the time period for which the pause function is enabled. EMAC uses
EMACx_PTR[TVR] as the timer value field of control (pause) packets (see “Control Packet Transmission” on
page 19-477). Each bit corresponds to 512 bit times.

19.7.13 Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4)

These registers are used in the hash table function of the multiple individual addressing mode.

See “Address Match Mechanism” on page 19-480 for more information. See Figure 19-14 on page 19-483 for
bit mapping information.

Figure 19-25. VLAN TCI Register (EMACx_VTCI)
0:15 Reserved

16:31 VTCI VLAN TCI tag

Figure 19-26. Pause Timer Register (EMACx_PTR)
0:15 Reserved

16:31 TVF Timer Value Field

0 15 16 31

VTCI

0 15 16 31

TVF
AMCC Proprietary 498

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

19.7.14 Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4)

These registers are used in the hash table function of the group addressing mode.

See “Address Match Mechanism” on page 19-480 for more information. See Figure 19-14 on page 19-483 for
bit mapping information.

19.7.15 Last Source Address High (EMACx_LSAH)

EMACx_LSAH contains the high-order halfword of the source address of the last “good” received packet. The
packet is considered to be “good” if EMAC is programmed to provide this packet to MAL.

Figure 19-27. Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4)
0:15 Reserved

16:31 Individual Address Hash Number

Figure 19-28. Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4)
0:15 Reserved

16:31 Group Address Hash Number

0 15 16 31

0 15 16 31
499 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

19.7.16 Last Source Address Low (EMACx_LSAL)

EMACx_LSAL contains the low-order word of the source address of the last “good” received packet. The
packet is considered “good” if EMAC is programmed to provide this packet to MAL.

19.7.17 Inter-Packet Gap Value Register (EMACx_IPGVR)

EMACx_IPGVR contains the value of one-third of the inter-packet gap (IPG) for the next packet to be
transmitted. (“Frame” is synonymous with “packet.”)

The resolution of each bit is 8-bit times. The minimum value in the register is four, causing a minimum IPG
period of 96-bit times).

Figure 19-29. Last Source Address High Register (EMACx_LSAH)
0:15 Reserved

16:31 Last Source Address High-Order Halfword

Figure 19-30. Last Source Address Low Register (EMACx_LSAL)
0:31 Last Source Address Low-Order Word

0 15 16 31

0 31
AMCC Proprietary 500

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

19.7.18 STA Control Register (EMACx_STACR)

EMACx_STACR controls the MII Management interface. In the PPC405EP, only the MDIO interface for
EMAC0 is pinned out. Therefore EMAC1_STACR cannot be used to control the MDIO interface for EMAC1.
Both PHYs in the system must be connected to the MDIO interface for EMAC0, and software must use
EMAC0_STACR to access both PHYs. The software must follow the following steps during access to the
EMACx_STACR:

1. Software polls EMACx_STACR[OC], waiting for it to be set by EMAC.

EMAC sets EMACx_STACR[OC] = 0 when the EMACx_STACR is written to.

EMAC then sets EMACx_STACR[OC] = 1 to indicate that the data has been written to the PHY, or the data
read from the PHY is valid. The device driver should poll for EMACx_STACR[OC] = 1 before issuing a new
command, or before using data read from the PHY.

2. The software can perform read/write access to the EMACx_STACR.

3. EMAC clears EMACx_STACR[OC] (sets EMAC0_STACR[OC] = 0) and starts activity on the MII
management interface.

4. Return to step 1.

Figure 19-31. Inter-Packet Gap Value Register (EMACx_IPGVR)
0:25 Reserved

26:31 Inter-Packet Gap

Figure 19-32. STA Control Register (EMACx_STACR)
0:15 PHYD PHY data Data to be sent to the PHY if the command

is a write, or data is read from the PHY if
the command is a read.

16 OC Operation Complete
0 EMACx_STACR is addressed
1 PHY data transfer complete

0 25 26 31

0 15 16 17 18 19 20 21 22 26 27 31

OC

PHYEPHYD

STAC

OPBC

PCDA

PRA
501 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.7.19 Transmit Request Threshold Register (EMACx_TRTR)

EMACx_TRTR defines the conditions that cause EMAC to initiate transmission to the Ethernet MAC sub-
block, and for requesting service from MAL.

EMACx_TRTR[TRT] defines the number of occupied entries in the transmit FIFO that should be written
before the transmit FIFO control logic initiates a transmit request to the Ethernet MAC sub-block.

If an entire packet is already located in the transmit FIFO, EMAC initiates a transmit regardless of the
programmed value.

The software must coordinate the value of EMACx_TRTR[TRT] with the transmit FIFO size specified in
EMACx_MR1[TFS].

To avoid deadlock, the sum of EMACx_ TMR1[TLR] and EMACx_TRTR[TRT] must be smaller, by at least 4,
than the transmit FIFO specified in EMACx_MR1[TFS].

To avoid an underrun, program this threshold to a high enough value.

In half-duplex mode, in case of collision, to allow packet re-transmission without involving MAL, EMAC
preserves the necessary space in the Transmit FIFO unless it gets an indication that the collision window has
elapsed.

The EMACx_TRTR can be written only while EMACx_MR0[TXI] = 1.

17 PHYE PHY Error
0 Successful read transaction
1 Read transaction was not successful

EMACx_STACR[PHYE] = 0 when a read is
successful.

18:19 STAC STA Command
00 Reserved
01 Read
10 Write
11 Reserved

EMAC sets EMACx_STACR[STAC] = 0
when the command is completed.

20:21 OPBC OPB Bus Clock Frequency
00 50 MHz
01 66 MHz
10 83 MHz
11 100 MHz

EMACx_STACR[OPBC] is used to
generate the Management Data Clock
(EMCMDCIk).
When the operational frequency differs
from those in the list, then the next greater
frequency should be chosen.

22:26 PCDA PHY Command Destination Address

27:31 PRA PHY Register Address
AMCC Proprietary 502

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

19.7.20 Receive Low/High Water Mark Register (EMACx_RWMR)

The EMACx_RWMR defines the conditions that cause the EMAC to activate a low or urgent priority MAL
request, and that manage flow control.

EMAC activates a low priority request if the number of occupied entries in the receive FIFO is greater than or
equal to the content of EMACx_RWMR[RLWM] (the receive low water mark is reached). A request for a
pause packet with a pause_value of 0 is also issued when the receive low water mark is reached.

Software must coordinate the value of EMACx_RWMR[RLWM] with the value of EMACx_MR1[RFS].
EMACx_RWMR[RLWM] should be smaller than EMACx_MR1[RFS] and larger than the MAL burst length.

Note: In the PPC405EP, the MAL burst length is 16 words for all channels.

If the entire packet is already in the receive FIFO, EMAC initiates a low priority request regardless of the
programmed value.

EMAC activates an urgent priority request if the number of occupied entries in the Receive FIFO is greater
than or equal to EMACx_RWMR[RHWM] (the receive high water mark is reached). A request for a pause
packet is also issued when the receive high water mark is reached.

Software must coordinate the value of EMACx_RWMR[RHWM] with the value of EMACx_MR1[RFS].
EMACx_RWMR[RHWM] should be greater than the value of EMACx_RWMR[RLWM] and less then the size
of the receive FIFO.

Figure 19-33. Transmit Request Threshold Register (EMACx_TRTR)
0:4 TRT Transmit Request Threshold

The following number of bytes must be
placed in the Transmit FIFO before
initiating a transmit request.
00000 64 bytes
00001 128 bytes
00010 192 bytes
00011 256 bytes
.
.
.
11111 2048 bytes

5:31 Reserved

0 4 5 31

TRT
503 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

19.7.21 Number of Octets Transmitted (EMACx_OCTX)

The read-only EMACx_OCTX register contains the number of transmitted octets.

19.7.22 Number of Octets Received (EMACx_OCRX)

The read-only EMACx_OCRX register contains the number of received octets.

Figure 19-34. Receive Low/High Water Mark Register (EMACx_RWMR)
0:8 RLWM Receive Low Water Mark

9:15 Reserved

16:24 RHWM Receive High Water Mark

25:31 Reserved

Figure 19-35. Number of Octets Transmitted (EMACx_OCTX)
0:31 OCTX Number of octets (bytes) transmitted.

Figure 19-36. Number of Octets Received (EMACx_OCRX)
0:31 OCRX Number of octets (bytes) received.

0 8 9 15 16 24 25 31

RLWM

RHWM

0 31

0 31
AMCC Proprietary 504

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.8 MII

EMAC implements all MII functionality in accordance with Clause 22 in the IEEE Std. 802.3u.

The MII is a reconciliation sublayer interface which allows a variety of PHYs to be attached to the EMAC
Ethernet MAC without future upgrade problems.

19.8.1 MII Station Management Interface

The EMAC MII station management unit (STA) implements a specific protocol and a special packet format to
exchange management packets with the registers of the attached PHY. EMAC automatically generates MII
management packets, which conform to Clause 22 in IEEE Std. 802.3u. EMAC uses the EMACx_STACR for
generation of the management packet. Figure 19-37 illustrates the interface.

MAC

EMCMDCIk

EMCMDIO

EMAC

EMC_MDC

PHY_MDIO

EMC_MDIO_EN

EMC_MDIO

Figure 19-37. Management Interface with PHY

PHY
505 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
19.8.2 EMAC – MII

See PPC405EP Data Sheet for information.

19.9 MAL – EMAC Packet Transfer Flow

The packet transfer flow consists of three phases. These three phases are used to define the details of the
EMAC-MAL protocol.

1. Packet phase - EMAC initiates a packet transfer operation. The packet transfer is started by a command
write. During command write MAL provides control information for EMAC on a per-packet basis. Following
the command write, MAL begins the data transfer, during which MAL transfers data between the buffers
located in the system’s memory and EMAC. In transmit, the data is transferred from the system’s memory
to EMAC, while in receive, the data is transferred from EMAC to the system’s memory buffers.

– EMAC remains in the packet phase until the data transfer has been completed or a ready status can be
returned to MAL. The packet phase ends when EMAC deasserts the FRAME signal associated with the
related channel (receive/transmit).

– The packet phase is defined by activity of an appropriate FRAME signal.

2. Status phase - This is the second phase of the packet transfer. Following the de-assertion of the FRAME
signal, EMAC switches to the status phase. At this stage, EMAC uses an appropriate signal as a request
for service which is interpreted by MAL as a request for status read.

3. Idle phase - EMAC moves into the idle phase following a reset or after status was transferred (end of
status phase). During the idle phase, EMAC cannot send any signals to MAL, nor can MAL send any active
signals to EMAC. EMAC exits the idle phase by asserting the FRAME signal (and entering the packet
phase described above). Idle phase can be skipped when EMAC operates in multiple transfer mode.

Figure 19-38 illustrates the different phases in the EMAC-MAL communication.

During the packet and status phases EMAC signals a request for service by driving its arbitration level signal
to a non-idle level.

19.10 Packet Rejection Filter

The 405EP can be configured to remove incoming packets without forwarding them to the MAL. Packet
filtering can be handled by a Music Semiconductors MU9C8338A chip or similar device external to the
PPC405EP. When the external filter chip identifies a packet to be rejected, the filter chip asserts the
RejectPkt input signal to the PPC405EP. There are two RejectPkt input signals and two sets of packet

Frame

Packet Status
 phasephase

Idle
phase

Packet
phase

Command
write

Data
transfer

Status
read

Figure 19-38. EMAC-MAL Communication Phases
AMCC Proprietary 506

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
removal logic, one for each EMAC. The packet removal logic in the PPC405EP is enabled by setting control
bits E0RM and E1RM in CPC0_EPCTL. Polarity control is also available to select the active signal states for
the RejectPkt inputs by setting control bits E0PR and E1PR in CPC0_EPCTL. See “EMAC to PHY Control
Register (CPC0_EPCTL)” on page 7-169 for a complete description of the CPC0_EPCTL register.

When a packet arrives on either EMAC interface and the external filter chip asserts that the packet should be
removed, the RejectPkt signal is latched and passed to the corresponding EMAC during the same cycle that
the EMC_RX_STATUS_VALID input is active. The current packet is then removed and the event counter
corresponding to that EMAC is incremented, if the counter is enabled.

Configuring the event counters for use with the packet rejection filter is described in “Counter Configuration”
on page 24-604.

19.11 Programming Notes

Certain combinations in device drivers are not allowed when writing to EMAC registers. When creating device
drivers, ensure that the following guidelines are used:

• In dependent mode, EMACx_MR1[TR0] must be equal EMACx_MR1[TR1]

• When internal loopback is enabled (EMACx_MR1[ILE] = 1), EMAC must be configured in full-duplex mode
(EMACx_MR1[FDE] =1)

• EMACx_MR1[IST] =0 only when EMACx_MR1[MF] = 10 and EMACx_MR1[FDE] =0

• In dependent mode, EMACx_ISER[SE0, TE0] must equal EMACx_ISER[SE1, TE1]

• EMACx_MR1[EIFC] =0 if EMACx_MR1[FDE] =0

• EMACx_TMR1[TLR] must be greater than the MAL burst size in entries (6 for MAL)

• EMACx_TMR1[TUR] must be greater or equal to EMACx_TMR1[TLR] and less than the Transmit FIFO
size in entries (EMACx_MR1[TFS])

• To avoid deadlock, the sum of EMACx_TMR1[TLR] and the EMACx_TRTR[TRT] must be at least four less
than the Transmit FIFO size specified in EMACx_MR1[TFS]

• EMACx_RWMR[RLWM] must be greater than the MAL burst size in entries (six for MAL)

• EMACx_RWMR[RHWM] must be greater than EMACx_RWMR[RLWM]

• EMACx_RWMR[RHWM] must be less than the Receive FIFO size in entries (EMACx_MR1[RFS])

19.11.1 Reset and Initialization

The EMAC must be initialized after a reset, or before performing configuration changes. The following types
of reset operations can be applied to EMAC. All EMAC reset functions require that PHY Rx and PHY Tx clock
inputs be present on the EMAC PHY interface. The PHY clocks should be applied to the EMAC interface in
order to insure that the EMAC is properly initialized by reset even if the EMAC interface is not used.

• Hard Reset. When RESET input is asserted, EMAC aborts all on-going activities unconditionally, initializes
all internal state machines, counters, registers, and flushes transmit and receive FIFOs. To be recognized,
the reset signal must be asserted for at least two cycles of the slowest clock domain inside EMAC
(indicating that the hard reset must be at least 800 ns).
507 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• Soft Reset. Software first should reset the appropriate MAL channels and then begin a soft reset by setting
EMACx_MR0[SRST] = 1. In response to the soft reset, EMAC aborts all on-going activities unconditionally,
initializes all internal state machines, counters, registers, and flushes transmit and receive FIFOs. After
EMAC finishes all activities related to the soft reset processing, EMACx_MR0[SRST] = 0.

• Smart Reset. The software initializes smart reset mode by writing 0 to EMACx_MR0[TXE] or
EMACx_MR0[RXE], or to both. In this case, the Ethernet MAC sub-block completes on-going activity
(receive, transmit, or both) and then goes to the related Idle state (indicated by setting either
EMACx_MR0[TXI] = 1 or EMACx_MR0[RXI] = 1, or both). In this case, the control logic sub-block of
EMAC is still accessible for OPB and MAL transactions.

Before performing the necessary configuration changes in EMAC, the software must follow one of the
following scenarios. Then the EMAC can be properly configured.

19.11.1.1 Scenario 1

• Hard/soft reset was activated.

• During hard/soft reset, EMACx_MR0[TXE] and EMACx_MR0[RXE] are reset.

• Software detects that the EMACx_MR0[SRST] is reset (after soft reset only).

• Software keeps EMACx_TMR0[GNP0, GNP1] = 0.

• The software can change one or more fields in registers marked with a Reset write access mode in
Table 19-5, “EMAC0 Register Summary,” on page 19-483 (actually, all EMAC registers are accessible in
this scenario).

• The software initializes EMACx_TMR0[GNP0, GNP1] as appropriate.

• The software configures EMACx_MR0[TXE, RXE].

19.11.1.2 Scenario 2

• Software sets EMACx_MR0[TXE] = 0.

• The TXMAC component of the Ethernet MAC sub-block completes on-going activity and then sets
EMACx_MR0[TXI] = 1 to enter the related Idle state.

• Software detects EMACx_MR0[TXI] = 1.

• Software performs the necessary EMAC configuration, keeping EMACx_MR0[TXE] = 0. The software can
access only part of the EMAC registers marked with write access mode T in Table 19-5, “EMAC0 Register
Summary,” on page 19-483.

• After all configuration is done, software can set EMACx_MR0[TXE] = 1.

Note: When Scenario 2 occurs, EMAC can still receive packets if EMACx_MR0[RXE] = 1. Scenarios 2 and 3
can occur simultaneously.
AMCC Proprietary 508

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
19.11.1.3 Scenario 3

• Software sets EMACx_MR0[RXE] = 0.

• The RXMAC component of the Ethernet MAC sub-block completes on-going activity and then sets
EMACx_MR0[RXI] = 1 to enter the related Idle state.

• Software detects EMACx_MR0[RXI] = 1.

• Software performs the necessary EMAC configuration, keeping EMACx_MR0[RXE] = 0. The software can
access only part of EMAC registers marked with write access mode R in Table 19-5, “EMAC0 Register
Summary,” on page 19-483.

• After all configuration is done, software can set EMACx_MR0[RXE] = 1.

Note: When Scenario 3 occurs, EMAC can still transmit packets if EMACx_MR0[TXE] = 1. Scenarios 2 and
3 can occur simultaneously.
509 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 20. Memory Access Layer

The Memory Access Layer (MAL) is a hardware core that manages data transfers between packet-oriented
communications cores, also known as COMMACs (communications media access controllers), and memory.
To communicate with software device drivers, MAL utilizes a buffer descriptor ring structure in memory. A
software device driver uses the buffer descriptor structure to inform MAL about buffer locations and packet or
buffer status. MAL uses the buffer descriptors to convey packet transfer status from the COMMAC core back
to the software device driver. Each MAL channel requires its own buffer descriptor table ring structure in
memory.

In the PPC405EP, MAL0 manages the transfer of packets between the Ethernet Media Access Controllers
(EMAC0 and EMAC1) and the memory attached to the PPC405EP (SDRAM or SRAM). The primary function
of MAL is to move packets directly between memory and a COMMAC core with minimal involvement of the
processor core.

20.1 MAL Features

MAL has the following features:

• No restrictions on buffer alignment
• Aligned bus accesses to enable burst operation with external memories
• Configurable receive buffer size (configurable per channel)
• No minimum transmit buffer size
• Maximum buffer sizes of 4095 bytes (transmit) and 4080 bytes (receive)
• Up to 256 descriptors in the buffer descriptor table per channel
• Configures COMMAC according to commands specified in the descriptor status/control field
• Updates the descriptor status/control field at the end of packet transfer according to the status received

from COMMAC
• Buffer-based interrupt capabilities for each channel
• Concurrent operation of transmit and receive channels
• Configuration using Device Control Registers (DCRs)
• Programmable PLB arbitration priority
• PLB/OPB error detection
AMCC Proprietary 510

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 20-1 illustrates a general system structure overview of an embedded PowerPC processor core
integrated with a packet oriented communication core.

COMMACs are configured and controlled by the processor core using the OPB without MAL intervention.
Packet data to be transmitted and received are stored in buffers in external memory. The MAL processes
buffer descriptors and provides all data access facilities to the COMMACs.

The MAL is not aware of COMMACs such as EMAC as an entity. It is only aware of the COMMAC's channels.
In the PPC405EP, each EMAC contains two transmit channels and one receive channel. Transmit and
receive operations can be performed simultaneously by MAL (full duplex). When a channel wins arbitration,
MAL transfers data between system memory and the COMMAC. MAL and the software driver maintain
separate, dedicated buffer descriptor tables for each channel to maintain channel, packet, and buffer status.
Packets can be constructed from one data buffer, or from several data buffers, which is known as buffer
chaining.

Figure 20-1. General MAL Structure

Communication
Macro
(ComMac)

External
Memory

MAL

PPC405
External Bus Controller

PLB

OPB

Transmit
Channels

Receive
Channels

PLB-OPB Bridge

DCR
Bus

Processor Core

COMMAC

SDRAM Controller
or
511 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.1.1 MAL Internal Structure

Figure 20-2 illustrates the internal structure of MAL.

20.1.1.1 PLB Master

The PLB Master performs PLB transactions for MAL, and is used to transfer data between a COMMAC and
memory, fetch buffer descriptors, and communicate status regarding data transfer.

20.1.1.2 OPB Master

The OPB Master performs OPB transactions for MAL, and is used to transfer data between a COMMAC and
memory.

20.1.1.3 Transmit Channel Handler

The transmit channel handler is a dedicated section for each transmit channel. It keeps a record of the
descriptor information and the current state of each channel.

20.1.1.4 Receive Channel Handler

The receive channel handler is a dedicated section for each receive channel. It keeps a record of the
descriptor information and the current state of each channel.

20.1.1.5 Transmit Channel Arbiter

The transmit channel arbiter, connected to request lines from each transmit channel, arbitrates between the
transmit channels and decides which channel gains access to the transmit common channel logic.

PLB

PLB
Master

OPB
Master

MAL

COMMAC
TXRX

RX Channel
Handler

Common
Channel
Logic

Register
Map File

DCR
Configuration
Bus

OPB

TX Channels
Arbiter

RX Channels
Arbiter

PLB OPB

Arbiter
Access

TX
Common
Channel
Logic

RX

Handler
TX Channel

2

Figure 20-2. MAL Internal Structure
AMCC Proprietary 512

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
20.1.1.6 Receive Channel Arbiter

The receive channel arbiter, connected to request lines from each receive channel, arbitrates between the
receive channels and decides which channel gains access to the receive common channel logic.

20.1.1.7 Transmit Common Channel Logic

The transmit common channel logic is shared by all transmit channels. It services a single transmit channel at
a time (selected by the transmit arbiter). This logic activates the PLB and OPB masters for data and buffer
descriptor transactions.

20.1.1.8 Receive Common Channel Logic

The receive common channel logic is shared by all receive channels. It services a single receive channel at a
time (selected by the receive arbiter). This logic activates the PLB and OPB masters for data and buffer
descriptor transactions.

20.1.1.9 Register Map File

The register map file is used to configure MAL and read its status registers. Software accesses the MAL
register file using the mtdcr and mfdcr instructions.

20.2 MAL0 Interfaces and Channel Assignments

MAL0 comprises 8 channels (4 transmit channels and 4 receive channels). Each channel is dedicated to one
of the two EMAC cores in the PPC405EP with the exception of 2 receive channels which are unused. See
Table 20-1 for MAL0 channel assignments.

In the PPC405EP, MAL0 uses 1/1 clocking, that is, the interface between MAL0 and the EMAC cores is
clocked at the same frequency as the interface between MAL0 and the PLB.

20.3 Transmit and Receive Operations

The device driver is responsible for configuring MAL before a COMMAC can begin requesting MAL to
process packets of data. The device driver should ensure that channels are not enabled during
reconfiguration; otherwise, fatal errors may occur.

For more information about the MAL software interface, see “MAL Programming Notes” on page 20-526.

Table 20-1. MAL0 Channel Assignment

MAL0 Channel EMAC Channel

Receive Channel 0 EMAC0 Receive Channel
Receive Channel 1 EMAC1 Receive Channel
Transmit Channel 0 EMAC0 Transmit Channel 0
Transmit Channel 1 EMAC0 Transmit Channel 1
Transmit Channel 2 EMAC1 Transmit Channel 0
Transmit Channel 3 EMAC1 Transmit Channel 1
513 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 20-3 describes the software and hardware operations involved in a typical transmit operation.

Figure 20-3. Transmit Operation

Network

OPB

MAL

PLB

Protocol
Transmit

CPU (activated
via “Device Driver”)

2

3

4

5

6

7

7

8

10

9

11

12

1

The numbered steps are described as follows:

1. The protocol stack (high-level software layer) initiates a packet transmit.

2. Software device driver parses the protocol stack buffer into descriptor table entries and buffers.

3. Software device driver instructs the COMMAC to process a new transmit packet.

4. The COMMAC channel requests MAL to process a new packet.

5. MAL fetches descriptor information.

6. MAL writes control information into the COMMAC and initiates the data move.

7. Packet data is transferred from memory into the COMMAC (the COMMAC controls the pace of the
data transfer).

8. The packet is transmitted on the media (steps 7 and 8 can overlap).

9. The COMMAC requests that MAL read the packet status.

10. The status read by MAL is written back into a buffer descriptor.

11. Software is interrupted (if interrupt conditions are met) by the COMMAC or by the MAL end-of-buffer
interrupt.

12. Software clears the interrupt status bits in the COMMAC and in MAL.

13. Software informs the protocol stack that transmission is complete.

Stack

Packet

COMMAC

Buffer Descriptor Table Buffers

13
AMCC Proprietary 514

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 20-4 describes the software and hardware operations when receiving a typical packet.

Note: The description in Figure 20-4 is the general scheme for MAL operation in the software environment.
The device driver should follow recommendations from “MAL Programming Notes” on page 20-526.

Figure 20-4. Receive Operation

MAL

Network

OPB

PLB

CPU (activated
via “Device Driver”)

1

2

4

5

6

3

9

10

12

The numbered steps are described as follows:

1. Software device driver initializes the receive buffer descriptors.

2. Software device driver enables the COMMAC to process a new packet.

3. A packet is received from the network (steps 2 and 3 can change in order).

4. The COMMAC channel requests that MAL process a new packet.

5. MAL fetches receive buffer information from the descriptor table.

6. MAL writes the control word from the descriptor to the COMMAC and initiates the data
transfer.

7. The COMMAC channel fills its FIFO storage.

8. MAL stores the packet in system memory buffers pointed to by the descriptors.

9. MAL reads status information from the COMMAC and writes it to the buffer descriptors.

10. Software device driver is interrupted (if interrupt conditions are met) by the COMMAC or
by the MAL end-of-buffer interrupt.

11. The receive packet is passed to the protocol stack.

12. Software clears the receive buffer descriptor positions allowing them to be used again.

9

7

8

Protocol Stack
11Packet

COMMAC
515 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.4 Buffer Descriptor Overview

The software interface for buffer descriptor (BD) processing consists of a set of registers within MAL and a
set of circular queues in memory. Each transmit and receive COMMAC channel has a descriptor table that
contains buffer location and status information allocated to the channel.

Note: Since MAL uses a flat addressing scheme on the PLB, the physical memory that holds descriptor
tables and buffers can be allocated anywhere in the address space where memory is possible. Also, it
is not necessary to place buffer descriptor tables and buffers in the same physical memory.

During its operation, MAL is able to modify the contents of memory directly without processor core
knowledge. If the processor core does not provide hardware enforced data cache coherency or data cache
snooping (the processor core does not), data cache coherency is the responsibility of the software device
driver. To simplify device driver software, the MAL buffer descriptor tables should be placed in non-cached
memory when possible. If this is not possible, the software driver must maintain cache coherency of the
buffer descriptor tables by performing data cache flushes or invalidates when appropriate. When descriptors
are in cached memory, the driver software must be aware that multiple descriptors are present in a single
cache line and that cache invalidate or flush operations will be performed on multiple descriptors at the same
time. This is significant because a cache line flush done by the driver to force a descriptor from the data
cache to physical memory could corrupt another descriptor that occupies the same data cache line and is
simultaneously being updated in physical memory by MAL.

Data buffers, in contrast, should be placed in cachable memory if possible. The software driver can easily
maintain cache coherency of data buffers if:

• All buffers are aligned on a data cache line boundary
• All buffers are a multiple of a data cache line in size

Note: The data cache line size and alignment in the PPC405EP is 32 bytes.

Before using a received packet, the software driver must invalidate the memory occupied by the buffer in the
data cache for the length specified in the receive buffer descriptor data length field. Before transmitting a
packet the software driver must flush the data buffer from the data cache before setting the Ready bit in the
transmit buffer descriptor.

The software device driver fills the buffers pointed to by transmit buffer descriptors with packets to be
transmitted, and/or provides empty buffers pointed to by receive buffer descriptors to be filled with received
packets. Meanwhile, the hardware processes the descriptors, transfers the packet data to/from the
COMMAC, and updates the status fields of the descriptors.

Each individual transmit or receive channel has its own buffer descriptor table. They are managed
independently of each other. This section describes the individual transmit and receive interfaces.

Packet data associated with each transmit or receive channel is stored in buffers. Each buffer has an entry
dedicated to it in one of the channel's buffer descriptor tables. MAL has a Channel Table Pointer Register for
each of its channels. The COMMAC (EMAC in the PPC405EP) device driver sets the contents of these
registers to point to the starting address of the buffer descriptor table for the associated channel.

Note: Buffer descriptors must be 8 byte aligned.

The buffer descriptor table forms a circular queue with a programmable length. The last descriptor in the table
is defined by setting the Wrap bit in the status/control field (see “Status/Control Field Format” on
page 20-523). If there is no Wrap bit set in the table, then MAL automatically wraps after processing 256
descriptors (the maximum number of descriptors allow per channel).
AMCC Proprietary 516

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The buffer descriptor format, illustrated in Figure 20-5, is the same for all COMMACs, and has the same
structure for transmit and receive. The most significant halfword in each buffer descriptor contains a
status/control halfword. This field contains two parts: the first part (6 bits) is BD handling information used by
the MAL for descriptor processing, the second field (10 bits) is content specific for each COMMAC. The
second halfword determines the data length referenced in this buffer descriptor. The second word in the
buffer descriptor contains a 32 bit data buffer pointer that points to the actual data buffer in memory. It is
suggested that each data buffer start on a cache line boundary and be a multiple of a cache line in size, if the
buffer is in cachable memory. (The cache line size in the PPC405 processor core is 32 bytes.)

A packet may be stored in as many buffers as necessary (transmit or receive). Each buffer has a maximum
length of (4KB–16) bytes. In transmit channels, the buffer descriptor length field is written by the device driver
and defines the number of bytes in the data buffer that is identified by the data buffer pointer. In receive
channels, the buffer descriptor length field is written by MAL and defines the number of bytes written by MAL
to the buffer that is identified by the data buffer pointer (see “Receive Software Interface” on page 20-521).

When processing a packet, MAL does not assume that all buffers of the current packet are already valid. It
expects the buffers to be ready in due time to be transmitted or received. Failure of the software to provide
the descriptors in due time may result in an error.

 Data Buffer Pointer

Status/Control Data Length

0 15

Offset + 0

Offset + 4

16 3120

Not in Use

Figure 20-5. Buffer Descriptor Structure
517 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Figure 20-6 describes the structure of the packet in memory.

20.5 Transmit Software Interface

Once a channel is enabled in MAL (this is done by setting the appropriate bit in the Channel Active Register),
a channel may request service from MAL. When the first transmit request comes in from a COMMAC transmit
channel, MAL finds the starting address of the buffer descriptor table for the channel by looking in the
corresponding Transmit Channel Table Pointer Register. If the first descriptor is marked as ready, MAL will
start processing the associated buffer.

When MAL begins processing a packet, it writes the contents of the descriptor status/control field into the
COMMAC. This information, (depending on communication core implementation), may be used by the
communication core to configure each packet transfer.

Once all data from the current buffer has been transferred to the communication core on the channel, MAL
moves on to the next buffer descriptor in the table.

If a given buffer descriptor indicates that it contains the last section of the current packet, MAL informs the
channel that the last data transferred to the channel completed the transfer of a data packet. At this point, the
COMMAC asks MAL to read the packet status. MAL then writes this information back into the status/control
field of the last buffer descriptor of the packet.

BD Tables (Memory) Memory

Data Buffer

 Pointer Register

Descriptor 0
Descriptor 1

.......

Buffer Pointer
W=1

* W=1 means the wrap bit is set for this descriptor

MAL BD Table

Buffer Pointer

MAL Channel

Figure 20-6. Packet Structure in Memory
AMCC Proprietary 518

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The COMMAC channel may request that MAL process the next buffer descriptor and the same packet
handling process will be initiated. The first descriptor in the next packet follows the descriptor marked “last” in
the previous packet.

20.5.1 Wrapping the BD Table for Transmit

When MAL processes a buffer descriptor (while handling a packet for a COMMAC channel), it may encounter
a Wrap indication within a buffer descriptor control field. This causes MAL to go back to the beginning of the
buffer descriptor table for the next descriptor table entry. (This will also happen when MAL reaches the
maximum number of descriptors.) The wrapping of the BD table, like all other BD table handling processes, is
transparent to the COMMAC.

20.5.2 Continuous Mode for Transmit

After transmitting the data pointed to by a buffer descriptor, MAL clears the Ready bit in the buffer descriptor
control/status field. In this way, MAL will not process the same buffer descriptor again until software has filled
the buffer with valid data and set the Ready bit in the descriptor again. While the Continuous Mode (CM) bit is
set in the status/control field, MAL will not clear the Ready bit. The Continuous Mode allows re-transmission
of the current data buffer without software intervention. This mode is generally used by protocols in which
frequent re-transmission is an integral part of the protocol itself. In such cases, re-transmission can be
performed without software intervention.

20.5.3 Back Up a Packet for Transmit

MAL is capable of re-transmitting the last packet (“back up a packet”) following a request from a COMMAC. If
re-transmission is requested by the COMMAC, it must be assured that all the buffers of the re-transmitted
packet are available and were not re-processed by the device driver. In regular operation, MAL resets the
Ready bit of each buffer descriptor when finished processing the descriptor. When MAL is requested by the
COMMAC to retransmit the last packet (the Back Up a Packet bit in the COMMAC transmit channel Status
Halfword is set), MAL doesn’t reset the READY bit in the last processed buffer descriptor, activate the end of
packet interrupt, or write the status back to the descriptor in the memory. MAL also doesn’t consider this as
an end of packet event.

On the next service request from the same channel, MAL will start transmitting the packet again, starting from
the first descriptor.

Note: The last processed buffer descriptor can be either the last descriptor of the packet or, in case of early
packet termination, the buffer descriptor that was being processed when the transmit channel initiated
the early packet termination. MAL will retransmit the backed-up packet regardless of the Ready bit
value.

During retransmission of a backed-up packet, MAL may use descriptors on which the Ready bit was already
cleared. Therefore, the device driver should not reuse descriptors before the Ready bit of the last descriptor is
cleared.

Note: In the case of descriptor not valid, which is the first one in transmit channel, COMMAC is not allowed
to return a status that contains a Back-Up a Packet request.
519 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.5.4 Descriptor Not Valid for Transmit

When MAL accesses a buffer descriptor, it checks whether or not the Ready bit is set. If the Ready bit is not
set, two cases apply (special treatment of the READY bit is performed in the case of Back-up a packet):

For the case when the READY bit is not set:

• If the descriptor is the first descriptor of the packet MAL informs the channel that data is currently
unavailable. Further handling of this scenario is COMMAC-specific. The channel might either instruct MAL
to access the same buffer descriptor periodically (by keeping its service request to MAL active) until it
becomes ready, or ‘give up’ on the descriptor, completing the end-of-packet protocol with MAL. The
channel might also indicate the buffer descriptor status to the device driver via an interrupt. However, in
this case the COMMAC should eventually complete the packet transfer protocol with MAL. Following a
descriptor not valid indication, the MAL BD pointer continues pointing to the same location in the BD table.
The next time a descriptor read is initiated by the COMMAC, MAL will search for the buffer in the same
location.

• If the descriptor is not the first descriptor of the packet, it is considered a descriptor error. MAL deactivates
the channel and from its point of view, the processing of the current packet has ended. Software may learn
about this situation from one of two MAL interrupts (or from both). The first one is a nonmaskable interrupt
that indicates the number of the transmit channel, in which the descriptor error had occurred (interrupt bit
for each transmit channel, see “Each bit in the following register, when it is set, enables assertion of the interrupt
signal (MAL0_SERR_INT) when the associated bit is set in MAL0_ESR.” on page 20-540). The second one is a
maskable interrupt which indicates a descriptor error event, regardless the channel number (one interrupt
bit for all the channels, see “MAL Error Status Register (MAL0_ESR)” on page 20-538). For more information
about error handling, see “Error Handling” on page 20-528.

For the case of a back-up packet:

• When the current transmitted packet is a backed-up packet, all descriptors except the last, are valid even if
the READY bit is not set. In this case, (not the last descriptor) MAL processes the packet descriptors
regardless the READY bit value. If the READY bit of the last descriptor in the backed-up packet is not set,
MAL treats it as a descriptor error. MAL handles the descriptor error as described above for the case when
the packet is not a backed-up packet.

20.5.5 Scroll Descriptors for Transmit

MAL may be configured by software, in the case of early packet termination, to scroll in the buffer descriptor
table to the first descriptor of the next packet.

When a multiple-buffer packet is terminated early by the COMMAC, while MAL is processing a buffer which is
not the last buffer in the packet, MAL can operate in one of the following ways:

The MAL Scroll Descriptor in the configuration register is set:

• In this case MAL will read the status word from the COMMAC channel. Then MAL will reset the READY bit
in all the remaining buffer descriptors of the current packet. In addition, MAL will write the status to all the
buffer descriptors. On the next service of this channel, MAL will fetch the first descriptor of the next packet.

The MAL Scroll Descriptor in the configuration register is clear:
AMCC Proprietary 520

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• In this case MAL will read the Status word from the COMMAC channel. Then MAL will terminate the
current channel service by resetting the READY bit of the last processed buffer descriptor (the one in
which there was an early termination) and will write the status only to this descriptor. On the next service of
this channel, MAL will fetch the next descriptor in the current packet. In this case, the software is
responsible to monitor the MAL location in the buffer descriptor table.

In the case that the COMMAC requests a re-transmit of the early terminated packet (when the “backup” bit in
the COMMAC status is set), MAL will re-transmit the packet regardless of the MAL Scroll Descriptor bit.

20.6 Receive Software Interface

MAL uses the receive channel buffer descriptors in a manner similar to that used for transmission. Once a
receive COMMAC channel requests that a new packet be processed, MAL starts processing the channel’s
next buffer descriptor in the table. Once a channel is enabled in MAL, the channel may request MAL service.
When it does, MAL accesses the first buffer descriptor (in that channel’s buffer descriptor table) that is
pointed to by the COMMAC channel table pointer register. If that descriptor is ready (empty for receive), MAL
will start processing the buffer.

When it begins processing each packet, MAL writes the contents of the status/control field into the COMMAC.
This information (defined by the COMMAC implementation) can be used by the COMMAC for a per-packet
configuration.

Once data is received from the memory, MAL moves the data from the receive channel FIFO into the data
buffer pointed to by the first buffer descriptor. The current buffer descriptor may be closed for two reasons:
there is no more room left in the buffer, or the COMMAC channel indicated that the packet reception ended. If
additional buffering space is needed for the current packet, MAL moves on to the next buffer descriptor. As
each buffer descriptor is closed, MAL updates the length field with the actual amount of bytes written into the
buffer. The maximum buffer length for each channel is defined by a configuration register (see “Receive
Channel Buffer Size Register (MAL0_RCBS0)” on page 20-543). The maximal receive buffer length is
defined per channel.

Once the COMMAC channel indicates that the packet reception has ended, it is expected to request that MAL
update the received packet status in the BD status/control field. MAL updates the packet status and notifies
the COMMAC. At this point the packet is considered received and the COMMAC may request that MAL begin
the process of receiving a new packet. The first buffer of the next packet is the buffer in the BD table that
followed the last descriptor of the previous packet.

20.6.1 Wrapping the BD Table for Receive

When MAL processes the buffer descriptor, it may encounter a Wrap indication within a buffer descriptor
control field. This causes MAL to go back to the head of the channel’s buffer descriptor for the next buffer
descriptor. This also happens when MAL reaches the maximal number of descriptors.
521 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.6.2 Continuous Mode for Receive

After using a buffer descriptor, MAL sets the buffer descriptor control to the Not-Empty state. In this way, MAL
will not use the same buffer descriptor a second time until the software has processed the not-empty buffer
descriptor and set it to Empty again. MAL will not clear the Empty bit while the Continuous Mode (CM) bit is
set in the status/control field. The Continuous Mode is generally used by protocols where frequent collisions
are an integral part of the protocol itself (forcing the COMMAC to abort a reception process and restart). In
such cases, re-reception can be performed without software intervention.

20.6.3 Descriptor Not Valid for Receive

When MAL accesses a buffer descriptor it may find that the Empty bit is not set. In the case of an receive
channel descriptor, this situation is considered as a descriptor error. MAL deactivates the channel and from
its point of view, the processing of the current packet has ended. Software may learn about this situation from
one of two MAL interrupts (or from both):

• An RXDE interrupt with the MAL0_RXDEIR indicating which channel caused the interrupt

• An SERR interrupt (system error) with one interrupt bit for all channels in the MAL0_ESR

For more about error handling, see “Error Handling” on page 20-528.

20.6.4 Buffer Length for Receive

The maximum length of an receive buffer descriptor is predetermined for all receive descriptors in each
channel. The data-length value is programmable through a set of MAL registers (see “MAL Registers” on
page 20-533). The actual data length field within the receive buffer descriptor is written by MAL. If the buffer
is completely filled up, the value written matches the value programmed into the matching receive channel
Descriptor data-length register. If the buffer is only partially filled up (for example, when the receive packet
ended before running out of buffer space), the actual amount of space filled is written into the length field.

20.7 Descriptor Buffer Status/Control Fields

The following sections details the status/control field bits. The information fields within the status/control field
can be divided as follows:

• Information from a software device driver directed to MAL and COMMAC
• Information from MAL and COMMAC directed to software
• Status/control field handling
• Status/control field format
• Transmit status/control field format
• Receive status/control field format

20.7.1 Information from a Software Device Driver Directed To MAL and COMMAC

• MAL-related buffer descriptor processing information:

– Buffer Ready/Not Ready (determines the validity of the buffer).
– Wrap to top of table or continue to next descriptor.
– In a transmit buffer descriptor – Is the current buffer the last one in the packet?
AMCC Proprietary 522

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
– Continuous or normal mode; that is, should MAL change the Ready/Not Ready value?

• COMMAC channel configuration information:

– Should the channel generate an interrupt following the end of packet processing.
– Protocol specific configuration.

20.7.2 Information from MAL and COMMAC Directed to Software

• MAL generated status information:

– Buffer Ready/Not Ready (passes the buffer handling to software).
– In receive buffer descriptor - Is the current buffer the first one in the packet?
– In receive buffer descriptor - Is the current buffer the last one in the packet?

• COMMAC channel generated status information:

– Protocol specific error and status information (transmit and receive).

20.7.3 Status/Control Field Handling

When MAL accesses a new buffer descriptor, the status/control word is written to the COMMAC channel.
This allows the channel to configure itself for the current packet.

For all “intermediate” buffer descriptors (all descriptors that do not contain the packet’s ending), the
status/control field is written by MAL (rather than the COMMAC). In this case, the status/control field indicates
that the current buffer is not the last one in the current packet.

As MAL finishes processing the last buffer descriptor in a given packet, it reads the channel’s status (via an
OPB transaction) and writes it into the buffer descriptor’s status/control field.

In effect, since all of the various control and status fields do not overlap, the status/control halfword is
read/written as a whole. Each agent (MAL, COMMAC channel, and software) reads the entire status/control
halfword, relates to specific fields of interest, and updates another subset of fields within the same halfword.
While an agent modifies its related fields, all other fields remain unchanged.

20.7.4 Status/Control Field Format

The status/control halfword is divided into COMMAC channel data and MAL related data. As explained
above, the MAL related fields are either aimed at controlling MAL or written by MAL for use by the software.
The MAL fields are of no interest to the COMMAC (except the Ready and Empty bits).

The same applies to the COMMAC channel fields. The COMMAC related fields are either aimed at controlling
the COMMAC or written by COMMAC for use by the software. These fields are of no interest to MAL.

MAL will not manipulate the COMMAC related fields, and COMMAC is not allowed to manipulate the MAL
related fields.
523 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.7.5 Transmit Status/Control Field Format

Note: The bit numbering in Figure 20-7 relates to the Buffer Descriptor’s fullword which contains both the
status/control and the length fields.

20.7.5.1 Bit 0 – R – Ready

This bit is set by the device driver and is cleared by MAL.

The device driver sets this bit after preparing the buffer for transmission.

MAL clears this bit when finish processing the buffer descriptor. MAL doesn’t clear the Ready bit in the case
of backing-up a packet request and in case of continuous mode (see “Back Up a Packet for Transmit” on
page 20-519 and “Continuous Mode for Transmit” on page 20-519).

20.7.5.2 Bit 1 – W – Wrap

0 – This is not the last data buffer descriptor in the buffer descriptor table.

1 – This is the last data buffer descriptor in the buffer descriptor table. After this buffer has been used, MAL
will transmit data from the first descriptor buffer in the table.

This bit is controlled by software only. It controls MAL activities, and does not affect the COMMAC channel.

20.7.5.3 Bit 2 – CM – Continuous Mode

0 – Normal Operation

1 – Continuous Operation. After this buffer descriptor is closed, the R-bit is not cleared by MAL. This ensures
that the data buffer is ready for transmission when MAL next accesses this buffer descriptor. However, the R-
bit is cleared if an error occurs during transmission.

This bit is controlled by software only. It controls MAL activities and does not affect the COMMAC channel.

20.7.5.4 Bit 3 – L – Last

0 – This is not the last buffer in the current packet.

1 – This is the last buffer in the current packet.

This bit is controlled by software only. It controls MAL activities, and does not affect the COMMAC channel.

20.7.5.5 Bit 4 – Reserved

This bit is reserved. It is assumed that this bit is set to zero by the software.

Figure 20-7. Transmit Status/Control Field

ILCMWR

0 1 2 3 5

*

11

*

10

*

6

*

7

*

8

*

9

Res

4

*

14

*

13

*

12

*

15

MAL related data COMMAC channel related data

* - COMMAC specific control or status fields
AMCC Proprietary 524

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
20.7.5.6 Bit 5 – I – Interrupt

1 – After finishing processing the current buffer, if this bit is 1, the end of buffer field in the End of Buffer
Interrupt Status Register is set and the end of buffer interrupt is asserted.

0 – There is no action taken by MAL once it reaches the end of the current buffer.

MAL asserts the end of buffer interrupt after it updates the buffer descriptor’s status field.

This bit is controlled by software only. It controls the MAL activities and does not affect the COMMAC.

20.7.5.7 Bits 6 to 15

These bits are COMMAC specific and may contain control fields generated by the software in order to control
the COMMAC channel. They may also contain status fields, generated by the COMMAC channel, that will be
processed by software.

20.7.6 Receive Status/Control Field Format

Note: The bit numbering in Figure 20-8 relates to the buffer descriptor’s fullword which contains both the
status/control and the length fields.

20.7.6.1 Bit 0 – E – Empty

0 – The data buffer associated with this buffer descriptor has been filled with received data, or data reception
has been aborted due to an error condition. Software is free to examine or write to any fields of this buffer
descriptor. While this bit is set to Not Empty, MAL will not use this buffer descriptor again.

1 – The data buffer associated with this buffer descriptor is empty, or reception is currently in progress. This
buffer descriptor and its associated receive buffer are owned by MAL. Once the E-bit is set, software should
not write to any fields of this Receive buffer descriptor.

MAL clears this bit after the buffer has been filled with received data or after an error is encountered.
Software sets this bit to Empty after preparing the buffer for reception. This bit controls MAL and software
activities. See “Bit 2 – CM – Continuous Mode” on page 20-524.

20.7.6.2 Bit 1 – W – Wrap

0 – This is not the last data buffer descriptor in the buffer descriptor table.

1 – This is the last data buffer descriptor in the buffer descriptor table. After this buffer has been used, MAL
will transfer data to the first buffer descriptor in the table.

This bit is controlled by software only. It controls MAL activities and does not affect the COMMAC channel.

Figure 20-8. Receive Status/Control Field

ILCMWE

0 1 2 3 5

*

11

*

10

*

6

*

7

*

8

*

9

F

4

*

14

*

13

*

12

*

15

MAL related data COMMAC channel related data

* - COMMAC specific control or status fields
525 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.7.6.3 Bit 2 – CM – Continuous Mode

0 – Normal Operation

1 – Continuous Operation. After this buffer descriptor is closed, the E-bit is not cleared by MAL. This ensures
that the data buffer is ready to receive data when MAL next accesses its buffer descriptor. However, the E-bit
is cleared if an error occurs during reception.

This bit is controlled by software only. It controls MAL activities and does not affect the COMMAC channel.

20.7.6.4 Bit 3 – L – Last

0 – This is not the last buffer in the current packet.

1 – This is the last buffer in the current packet.

This bit is updated by MAL following the activity of the channel.

20.7.6.5 Bit 4 – F – First

0 – This is not the first buffer in the current packet.

1 – This is the first buffer in the current packet.

This bit is updated by MAL following the activity of the channel.

20.7.6.6 Bit 5 – I – Interrupt

1 – After finish processing the current buffer, if this bit is 1, the end of buffer field in the End of Buffer Interrupt
Status Register is set and the end of buffer interrupt is asserted.

0 – No action is taken by MAL at the end of the current buffer.

MAL asserts the end of buffer interrupt after updating the buffer descriptor’s status field.

This bit is controlled by software only. It controls MAL activities and does not affect the COMMAC.

20.7.6.7 Bits 6 to 15

These bits are COMMAC-specific and they may contain control fields generated by the software in order to
control the COMMAC channel. They may also contain status fields generated by the COMMAC channel to be
processed by software.

20.8 MAL Programming Notes

The following sections contain information about programming the MAL.

20.8.1 MAL Initialization

MAL initialization includes two parts: configuration and channel activation.

Configuration involves two steps:

• MAL configuration - This step is done only after a power on reset or after a MAL soft reset. The following
registers are involved:

– MAL0_CFG. This register defines MAL operation on the PLB and OPB.
AMCC Proprietary 526

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
– MAL0_IER. This register is used to enable interrupts for various MAL error conditions.

• Channel specific configuration - This information can be changed only when the associated channel is not
active. (The bit for the channel in the channel active set registers, is cleared.) The following registers are
involved:

– MAL0_RCBSn – (one register for each receive channel). This register defines the length of the RX
buffers in memory.

– MAL0_TXCTPnR or MAL0_RXCTPnR – (one register for each channel). These registers are
programmed with the memory address of the first buffer descriptor table entry for the channel.

Setting the channel specific configuration can be done as part of MAL initialization or as part of the COMMAC
initialization process. In order to activate a channel, the following actions should be taken:

• The channel has to be configured in MAL

• The related bit in channel active set register (MAL0_TXCASR or MAL0_RXCASR) has to be set

• The channel operation must be enabled (COMMAC configuration)

20.8.2 Interrupts

MAL has five interrupt lines (in the PPC405EP, all are connected to the UIC). Two interrupt lines, one for
transmit and one for RX, are used for interrupt events during packet transfer. An additional two interrupt lines,
one for transmit and one for RX, are used to report descriptor errors on a per-channel basis. The fifth interrupt
is used to report MAL errors.

• TXEOB interrupt line is used to report end of buffer or end of packet for a specific transmit channel. A bit
for the related channel is set in the MAL0_TXEOBISR. See “End of Buffer Interrupt Status Registers” on
page 20-537.

• RXEOB interrupt line is used to report end of buffer or end of packet for a specific RX channel. A bit for the
related channel is set in the MAL0_RXEOBISR. See “End of Buffer Interrupt Status Registers” on page 20-537.

• TXDE interrupt line is used to indicate a descriptor error event in a specific transmit channel descriptor
table. A bit for the related channel is asserted in the MAL0_TXDEIR. See “Descriptor Error Interrupt Registers
(MAL0_TXDEIR, MAL0_RXDEIR)” on page 20-541.

• RXDE interrupt line is used to indicate a descriptor error event in a specific RX channel descriptor table. A
bit for the related channel is asserted in the MAL0_RXDEIR. See “Descriptor Error Interrupt Registers
(MAL0_TXDEIR, MAL0_RXDEIR)” on page 20-541.

• SERR interrupt is used to report a system error indicated by MAL. For more information on handling the
SERR interrupts, see “Error Handling” on page 20-528 and “Error Handling Registers” on page 20-529.
527 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.8.3 Error Handling

MAL handles errors on a per-channel basis. Within a COMMAC channel, errors may arise from the
COMMAC (detected as an OPB error), or from the memory access operations involved in MAL activity
(detected as a PLB/descriptor error).

When a bus error occurs, MAL is notified by an OPB or PLB error signal. OPB errors are related to a specific
channel and therefore channel operation is stopped. In the case of a PLB error, MAL cannot identify which
channel is involved, therefore channel operation is not stopped. When a descriptor error occurs, MAL can
again identify the channel involved, so channel operation is stopped. MAL stops channel operation by
clearing the associated bit in the MAL0_TXCASR or MAL0_RSCASR register.

MAL keeps a record of the channels that experience errors and are made inactive. It also keeps a record of
the characteristics of the first (or last) error detected (see “End of Buffer Interrupt Status Registers” on
page 20-537).

20.8.3.1 Error Detection

The MAL communication, both with COMMACs and with memory, is carried out via the OPB or PLB. As long
as this bus communication is error-free and no descriptor errors are detected, MAL maintains normal activity
with the channels set by the processor as active in the Channel Active Registers.

When an error is detected while performing a transfer for a channel, MAL asserts a maskable interrupt signal.
If the identity of the channel is known (as is the case for OPB errors or descriptor errors) then MAL
immediately halts the dialogue with the channel. No further transactions are made, and that channel is
registered by MAL as a nonactive channel. MAL resets the channel by resetting its active bit in the Channel
Active Register. Software must access the Channel Active Register in order to reactivate the channel.

If the identity of the channel that caused the error is not known (as is the case for PLB errors) then MAL
continues to work normally. Error resolution and channel deactivation are the responsibility of the software.

20.8.3.2 Indicated Errors

Error description is stored in the Error Status Register (MAL0_ESR), (see “MAL Error Status Register
(MAL0_ESR)” on page 20-538).

• Descriptor Error

A descriptor error is a data error recognized during access to the descriptor table. The error can occur
during transmit or receive.

For receive channels, a descriptor error occurs when MAL accesses a descriptor in which the Empty bit is
cleared.

For transmit channels, a descriptor error occurs when MAL accesses a descriptor in which the Ready bit is
cleared. The following cases are exceptions.

– On access to the first buffer descriptor in a transmit packet.
– On access to a buffer descriptor that is not the last descriptor in a backed-up packet.

As a result of this error, the following actions are taken by MAL:

– The Active bit of the related channel is reset and the channel activity is halted until software reactivates
channel activity.
AMCC Proprietary 528

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
– The associated bit in the transmit Descriptor Interrupt Error Register (MAL0_TXDEIR) or RX Descriptor
Error Register (MAL0_RXDEIR) is set, causing a nonmaskable TXDE interrupt or RXDE interrupt
respectively.

– When the channel is reactivated, MAL points to the descriptor at the head of the BD table.

• OPB Non-Fullword Error

This error indicates that a non-fullword acknowledge was asserted by a slave.

Following this error, the active bit of the associated channel is reset and channel activity is halted until it is
reactivated by software. When the channel is reactivated, MAL points to the descriptor at the head of the
BD table.

• OPB Time-Out Error

This error indicates that an OPB time-out error was reported by the OPB arbiter.

Following this error, the active bit of the associated channel is reset and channel activity is halted until
reactivated by software. When the channel is reactivated, MAL points to the descriptor at the head of the
BD table.

• OPB Error

This error indicates that an OPB error was detected.

Following this error, the active bit of the associated channel is reset and channel activity is halted until
reactivated by software. When the channel is reactivated, MAL points to the descriptor at the head of the
BD table.

• PLB Error

This error indicates that a PLB error was detected (from the PLB slave).

In this case, MAL cannot determine which channel caused the error. Therefore, operation is not halted for
any of the channels.

20.8.3.3 Error Handling Registers

MAL error handling logic includes two registers.

• Error Status Register (MAL0_ESR)

This register holds information about the error that occurred and the interrupt status. The register includes
the following fields:

Error status – This field holds the error information. The information includes the number of the channel on
which the error occurred (if known) and the type of the error. The error can be either the last detected error
or a locked error if “Locked error mode” is active. See “Operational Error Modes” on page 20-530 for
description of the Locked error mode.

The error status field includes an “Error Valid” bit which indicates whether there is valid error information in
the error status field or not. The error status field is not valid when the “Error Valid” bit is cleared (by writing
1 to this bit).
529 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Interrupt status – Every error detected by MAL sets a related bit in the interrupt status field. Software can
clear an interrupt status bit by writing 1 to the bit to be cleared. The bits in this field are accumulative which
allows more than one interrupt to be indicated in the register.

20.8.3.4 Operational Error Modes

MAL can operate in two different error handling modes:

• Locked Error Mode: Information about the error is written to the Error Status Register, and the Valid bit in
that register is set. Information in the Error Status field of the register stays locked until software unlocks it
by resetting the error Valid bit. The Interrupt Status bits of the Error Status Register are not locked in this
mode, so software can find out if more errors occur. However, the Error Status field applies only to the first
error that is locked.

• Non-Locked Error Mode: Information about the error is written in the Error Status Register, and the error
Valid bit is set. Each new error will be overwritten, so the information in the Error Status Field is valid only
for the last error that occurred.

In both modes, each error written in the error description field will set the error Valid bit, and it is the
responsibility of software to reset this bit.

The error handling mode is programmed in the MAL Configuration Register (see “MAL Configuration Register
(MAL0_CFG)” on page 20-533).

20.8.3.5 Resolution of an Error Situation

When MAL encounters an error, it reacts as follows:

• Writes information about the error in the Error Status Register (ESR). This information includes the
channel ID of the channel which caused the error (if known), the bus on which the error occurred, and the
kind of error that occurred.

• Resets the channel that caused the error (if known) in the Channel Active Register.

• Updates the Interrupt Status bits in the MAL0_ESR. Then, depending on the mask defined in MAL0_IER
(Interrupt Enable Register), it may send an interrupt to software (in PPC405EP, it sends it to the Universal
Interrupt Controller).

After receiving an interrupt from MAL, software can analyze the error information read from the Error Status
Register. Software can restart channel activity by setting the associated bit in the Channel Active Register.

When a channel is stopped and restarted, MAL starts processing descriptors from the first descriptor in the
channel descriptor table. Therefore, software may also update the value of the other channel related registers
(see “Channel Table Pointer Registers (MAL0_TXCTPnR, MAL0_RXCTPnR)” on page 20-542) in order to
continue from the same buffer in memory.

Figure 20-9. Error Status Register Field

Interrupt Status Bits

Accumulative field Non-accumulative field
Overwritten in non-locked mode
Locked in locked mode

Valid bit for
Error Status bits

Error Status Bits
AMCC Proprietary 530

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
In the case of PLB errors, MAL does not know which channel caused the error. It is the responsibility of the
software to analyze the MAL error registers and the PLB slave error registers to determine which channel
caused the error. Software should reset the channel within MAL, resolve the problem, and then reactivate the
channel.

See Figure 20-10 on page 20-532 for a flow chart illustrating the steps MAL performs when resolving an error
situation.
531 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.8.3.6 Interrupts To Software

Figure 20-10. MAL Error Processing

YES

No interrupt

NOAre interrupts enabled for this
type of error in IER ?

Error mode = locked ?

YES

NO

Is the Error valid bit in ESR set ?

YES

do not update them

NO

update Error status bits

YES

NO

with the error, therefore no

Is it a PLB error?

No channel is associated

channel is disabled
Channels Active register

Assert MAL_SERR_INT

Resume operation

 Signal

An Error is detected

YES

No interrupt

NO

YES

NO

YES

do not update them

NO

YES

Disable the channel in the

NO

Channels Active Register

Assert MAL_SERR_INT
 Signal

Error status bits lockedError status bits free –
Update Error status bits

Update Error status bits
and set Error valid bit to 1

Update relevant interrupt
bit in ESR.
AMCC Proprietary 532

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Figure 20-10 on page 20-532 describes MAL actions once an error is detected. Note that the actual decisions
MAL makes may be in a different order than represented by this figure. In any case, the device driver should
consider that all of the MAL actions are performed at the same time.

20.9 MAL Registers

The MAL registers are Device Control Registers (DCRs).

• Unless otherwise specified, all register fields are initialized at chip reset to 0.

• Reserved fields are read as undefined and must be written as 0s.

20.9.1 MAL Configuration Register (MAL0_CFG)

This register defines the operational mode of MAL. Unless a configuration change is required during system
operation, the configuration register needs to be set only during system initialization.

Table 20-2. MAL Register Summary

Register DCR Number Access Description

MAL0_CFG 0x180 R/W Configuration Register

MAL0_ESR 0x181 R/Clear Error Status Register

MAL0_IER 0x182 R/W Interrupt Enable Register

MAL0_TXCASR 0x184 R/W Transmit Channel Active Set Register

MAL0_TXCARR 0x185 R/W Transmit Channel Active Reset Register

MAL0_TXEOBISR 0x186 R/Clear Transmit End of Buffer Interrupt Status
Register

MAL0_TXDEIR 0x187 R/Clear Transmit Descriptor Error Interrupt Register

MAL0_RXCASR 0x190 R/W Receive Channel Active Set Register

MAL0_RXCARR 0x191 R/W Receive Channel Active Reset Register

MAL0_RXEOBISR 0x192 R/Clear Receive End of Buffer Interrupt Status Register

MAL0_RXDEIR 0x193 R/Clear Receive Descriptor Error Interrupt Register

MAL0_TXCTPnR 0x1A0–0x1A3 R/W Transmit Channel Table Pointer Register

MAL0_RXCTPnR 0x1C0–0x1C1 R/W Receive n Channel Table Pointer Register

MAL0_RCBSn 0x1E0–0x1E1 R/W Receive Channel Buffer Size Register
533 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Figure 20-11. MAL Configuration Register (MAL0_CFG)
0 SR MAL Software Reset

0 MAL reset is complete
1 Reset the MAL

Generates a general reset to MAL through
a software command.
After setting this bit, MAL hardware
(registers, interface and internal state
machines) returns to the power-on reset
value.
The software writes 1 to this bit in order to
drive MAL to the reset state. The bit is
cleared by the hardware when the reset is
completed (one system clock).

1:7 Reserved

8:9 PLBP PLB Priority
00 Lowest
01
10
11 Highest

Determines the priority of MAL requests on
the PLB.

10 GA Guarded Active
0 GUARDED signal not applied to the PLB

slave
1 GUARDED signal applied to the PLB

slave

When this bit is set, MAL applies the
GUARDED signal to the PLB slave when it
is the initiator on the bus.
When set, the slave can access all the
memory in the current page as well as the
subsequent page.

11 OA Ordered Active
0 ORDERED signal not applied to the PLB

slave
1 ORDERED signal applied to the PLB

slave

When this bit is set, MAL applies the
ORDERED signal to the PLB slave when it
is initiator on the bus during data write
transactions.
Note that the ORDERED signal is always
driven active during status write
transactions.

12 PLBLE PLB Lock Error
0 LOCKERROR signal not applied to the

PLB slave
1 LOCKERROR signal applied to the PLB

slave

When this bit is set, MAL applies the
LOCKERROR signal to the PLB slave
when it is the initiator during PLB
transactions.

13:16 PLBLT PLB Latency Timer Determines the number of cycles allowed
for burst transactions on the PLB.

17 PLBB PLB Burst
0 Burst transactions not allowed
1 Burst transactions allowed

When this bit is reset, MAL is not allowed
to perform burst transactions.

18:23 Reserved

0 1 7 8 9 10 11 12 13 16 17 18 23 24 25 28 29 30 31

SR

LEA

SD

PLBP

GA PLBLE

OA

PLBB EOPIE

PLBLT OPBBL
AMCC Proprietary 534

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
20.9.2 Channel Active Set and Reset Registers

For the Channel Active Set/Reset Registers (MAL0_TXCASR, MAL0_TXCARR, MAL0_RXCASR,
MAL0_RXCARR,), each bit represents its associated channel (bit 0 for channel 0, and so on). When a bit is
set to1, the channel is enabled for operation. When a bit is set to 0, the channel is disabled and MAL ignores
any requests for service on the channel. If a channel is active when its enable bit is set to 0, MAL stops
processing the current packet. After the enable bit associated with a channel is set to 0, MAL goes back to
the top of the channel descriptor table (pointed to by MAL0_TXCPTxR or MAL0_RXCPTxR).

• To enable a channel:

– Write a 1 to its corresponding bit in MAL0_CASR.
– Multiple channels can be enabled with a single MAL0_CASR register write.

• To stop and reset a channel:

– Write a 1 to the corresponding bit in MAL0_CARR.
– Writing a 0 to bits in MAL0_CARR has no effect.
– Multiple channels can be reset with one MAL0_CARR register write.

MAL also clears the enable bit associated with a channel after an error occurson the channel. The Channel
Active Set/Reset Registers can be read to determine the currently active channels.

24 OPBBL OPB Bus Lock
0 OPB not locked
1 OPB locked

When this bit is set, MAL locks the OPB
during data transfers to and from the
COMMACs.

25:28 Reserved

29 EOPIE End of Packet Interrupt Enable
0 Generate interrupt on every end-of-

packet only if the buffers I bit is set
1 Generate interrupt is on every end-of-

packet

When this bit is set, an interrupt is
generated on every end of packet (both
transmit and receive).
When clear, end of packet/buffer interrupt
is generated only if the buffers I bit is set
(1).
Note: An interrupt is generated for every

descriptor on which the I bit is set,
regardless of the state of the EOPIE
bit.

30 LEA Locked Error Active
0 Handle errors in a non-locked mode
1 Handle errors in locked mode

Determines MAL’s error handling mode.
When this bit is set, MAL will handle errors
in the locked mode, otherwise it will handle
errors in a non-locked mode.

31 SD MAL Scroll Descriptor
0 Do not scroll to the first descriptor of the

next packet
1 Scroll to the first descriptor of the next

packet

Determines whether or not MAL should
scroll to the first descriptor of the next
packet, following an early packet
termination initiated by the related
COMMAC. When set, Scrolling mode is
active.
535 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Figure 20-12. Transmit Channel Active Set Register (MAL0_TXCASR)
0:31 Transmit Channel Active Set Each bit represents its related channel

(bit 0 for channel 0, and so on). When 1 is
written to the bit, channel operation is
enabled.
MAL0 has four transmit channels.

Figure 20-13. Transmit Channel Active Reset Register (MAL0_TXCARR)
0:31 Transmit Channel Active Reset Each bit represents its related channel

(bit 0 for channel 0, and so on). When 1 is
written to the bit, channel operation is
enabled.
MAL0 has four transmit channels.

Figure 20-14. Receive Channel Active Set Register (MAL0_RXCASR)
0:31 Receive Channel Active Set Each bit represents its related channel (bit 0

for channel 0, and so on). When 1 is written
to the bit, channel operation is enabled.
MAL0 has two receive channels.

0 31

0 31

0 31
AMCC Proprietary 536

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

20.9.2.1 End of Buffer Interrupt Status Registers

Each bit in the end of buffer interrupt status registers (MAL0_TXEOBISR and MAL0_RXEOBISR) is
associated with the descriptor buffer table of a channel.

MAL0_TXEOBISR contains the end of buffer status bits for each transmit channel. MAL0_RXEOBISR
contains the end of buffer status bits for the receive channels. The mechanism for both registers is identical.

MAL sets a bit associated with a channel bit under any of the following conditions:

• When MAL finishes the processing of a buffer (writes back the status to the current descriptor), the related
bit in this register is set if the I bit in the descriptor status is set.

• When MAL finishes the processing of a packet (writes back the status of the last buffer of the packet) and
MAL0_MCR[EOPIE] is set.

Note: If MAL finishes processing a packet that is backed up, MAL does not consider it as an end of packet.
Therefore, MAL does not set the appropriate channel bit in the end of buffer interrupt status
registers.

• When the Bad Packet bit is set in the COMMAC channel status halfword.

The device driver resets the interrupt by writing a 1 to the related bit. Writing a 0 has no effect.

Figure 20-15. Receive Channel Active Reset Register (MAL0_RXCARR)
0:31 Receive Channel Active Reset Each bit represents its related channel

(bit 0 for channel 0, and so on).
When 0 is written to the bit, channel
operation is disabled.
 MAL0 has two receive channels.

Figure 20-16. Transmit End of Buffer Interrupt Status Register (MAL0_TXEOBISR)
0:31 Transmit Channel End of Buffer Interrupt Each bit represents its related channel

(bit 0 for channel 0, and so on). Writing 1 to
a bit clears it.
MAL0 has four transmit channels.

0 31

0 31
537 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

The following paragraphs describe MAL error registers. For more information about MAL errors, see “Error
Handling” on page 20-528.

20.9.3 MAL Error Status Register (MAL0_ESR)

This register holds the information about the error that occurred and the interrupts status. The register
includes the following fields:

• Error status bits – This field holds the error information. The information includes the number of the
channel on which the error occurred (if known) and the type of the error. The error can be either the last
detected error or a locked error if “Locked error mode” is active. (See “Operational Error Modes” on
page 20-530 for description of the Locked error mode.)

The error status field includes an “Error Valid” bit which indicates whether there is an error information in the
error status field or not. The error status bits are not valid when the “Error Valid” bit is cleared (by writing 1 to
this bit).

• Interrupt status bits – Every error detected by MAL sets a related bit in the interrupt status field. The
interrupt status bits may be cleared by software by writing 1 to the bit to be cleared. The bits in this field are
accumulative (more than one interrupt may be indicated here). These bits are masked by the IER (Interrupt
Enable Register) to create a maskable interrupt, which is implemented by the MAL_SERR_INT signal.

Note: In order to reset the interrupt bits and the Error valid bit in the Error Status register, 1 must be written to
the related bit. Writing 0 has no effect.

More than one bit can be cleared at a time and only R/W bits can be reset.

Figure 20-17. Receive End of Buffer Interrupt Status Register (MAL0_RXEOBISR)
0:31 Receive Channel End-of-Buffer Interrupt Each bit represents its related channel

(bit 0 for channe 0, and so on).
Writing 1 to a bit clears it.
MAL0 has two receive channels.

0 31
AMCC Proprietary 538

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Figure 20-18. MAL Error Status Register (MAL0_ESR)
0 EVB Error Valid Bit

0 Bit 1:15 are available for latching new
error information.

1 Bits 1:15 contain last error. A new error
cannot be latched.

When this bit is set, bits 1-6 include the ID
of the erroneous channel (in case of OPB
errors). Bits 11-15 indicate the type of
error.
In non-locked mode, the error indication
describes the last error that had occurred.
In locked mode, the error is the first one
that had occurred after this bit was cleared.
This bit is set when an error occurs and
remains set until reset by the software. In
locked mode, new errors cannot be latched
in the error lock indication fields if this bit is
set

1:6 CID Channel ID This field contains the number of the
channel which caused the locked error.
Bit 1 indicates whether the channel ID
represents an RX channel (1) or a TX
channel (0).
Bits 2:6 indicates the number of the
channel that caused the error.
Note: An error on the PLB cannot be

related to a channel. The error
condition may be resolved by using
the error information optionally
locked in the PLB slave.

7:10 Reserved

11 DE Descriptor Error
0 No error
1 Non-valid descriptor

Indicates that the error is a non-valid
descriptor, which is not the first descriptor
in a TX packet.

12 ONE OPB Non-fullword Error
0 No error
1 Non-fullword asserted

Indicates that the error is a non-fullword
acknowledge asserted by an OPB slave.

13 OTE OPB Timeout Error
0 No error
1 OPB timeout

Indicates the error is an OPB timeout.

14 OSE OPB Slave Error
0 No error
1 OPB slave error

Indicates the error is an error indication
asserted by an OPB slave.

15 PEIN PLB Bus Error Indication
0 No error
1 PLB bus error

When this bit is set, the detected error is a
PLB error. There is no meaning to the
Channel ID field in this case.

0 1 6 7 10 11 12 13 14 15 16 26 27 28 29 30 31

EVB

OTEI

OSEI

ONE

DE

DEI

PEIN ONEI

OSECID

OTE

PBEI
539 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Each bit in the following register, when it is set, enables assertion of the interrupt signal (MAL0_SERR_INT)
when the associated bit is set in MAL0_ESR.

16:26 Reserved

27 DEI Descriptor Error Interrupt
0 No error
1 Descriptor data error recognized

A descriptor data error is recognized
during access to the descriptor table.
This error indication is asserted when a
non-valid descriptor is accessed, which is
not the first descriptor in a TX packet. Set
condition for this bit generates a maskable
interrupt.

28 ONEI OPB Non-fullword Error Interrupt
0 No error
1 Non-fullword acknowledgment from a

slave

This bit is set following a non-fullword
acknowledgment coming from a slave. Set
condition for this bit generates a maskable
interrupt.

29 OTEI OPB Timeout Error Interrupt
0 No error
1 OPB time-out

This bit is set following an OPB time out
error indication. Set condition for this bit
generates a maskable interrupt.

30 OSEI OPB Slave Error Interrupt
0 No error
1 OPB error from a slave

This bit is set following an OPB error
indicated by the slave. Set condition for
this bit generates a maskable interrupt.

31 PBEI PLB Bus Error Interrupt
0 No error
1 PLB error indication

This bit is set following a PLB error
indication (from the PLB slave). Set
condition for this bit generates a maskable
interrupt.

Figure 20-19. MAL Interrupt Enable Register (MAL0_IER)
0:26 Reserved

27 DE Descriptor Error When set, this bit enables the descriptor
error (descriptor not valid) interrupt.

28 NWE Non_W_Err_Int_Enable When set, this bit enables OPB non-word
transfer error interrupt.

29 TO Time_Out_Int_Enable When set, this bit enables OPB time-out
error interrupt.

30 OPB OPB_Err_Int_Enable When set, this bit enables the OPB Slave
error interrupt.

31 PLB PLB_Err_Int_Enable When set, this bit enables the PLB error
interrupt.

0 26 27 28 29 30 31

NWE

DE TO

OPB

PLB
AMCC Proprietary 540

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
20.9.4 Descriptor Error Interrupt Registers (MAL0_TXDEIR, MAL0_RXDEIR)

Each bit in the following registers is related to a channel descriptor buffer table. Each bit indicates a
descriptor data error related to a certain channel.

MAL0_TXDEIR contains the descriptor errors bits of the transmit channels. MAL0_RXDEIR contains the
descriptor errors bits of the receive channels. The mechanism (as described below) for both registers is the
same.

MAL sets the bit associated with a channel bit when a descriptor data error was recognized during access to
the descriptor table of a specific channel (see “Descriptor Error” on page 20-528).

The device driver resets the interrupt by writing a 1 to the related bit. Writing a 0 has no effect. When one or
more of the MAL0_TXDEIR bits is set, the MAL_TX_DESC_ERR_INT bit is set. When one or more of the
MAL0_RXDEIR bits is set, the MAL_RX_DESC_ERR_INT signal is set.

Figure 20-20. TX Descriptor Error Interrupt Register (MAL0_TXDEIR)
0:31 Transmit Descriptor Error Interrupt Each bit represents its related channel

(bit 0 for channel 0, and so on). When one
or more bits are set to 1,
MAL_DESC_ERR_INT is set. Writing 1 to
a bit clears it.
MAL 0 has four transmit channels.

Figure 20-21. RX Descriptor Error Interrupt Register (MAL0_RXDEIR)
0:31 Receive Descriptor Error Interrupt Each bit represents its related channel

(bit 0 for channel 0, and so on).
When one or more bits are set,
MAL_DESC_ERR_INT is set. Writing 1 to
a bit clears it.
MAL0 has two receive channels.

0 31

0 31
541 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
20.9.5 Channel Table Pointer Registers (MAL0_TXCTPnR, MAL0_RXCTPnR)

MAL uses receive channel table pointer registers, one for each receive channel, and transmit channel table
pointer registers, one for each transmit channel. The channel table pointer registers point to the base
address, in memory, of the descriptor buffer table used by each channel.

Note 1: Bits 0–12 of the MAL0_TXCTPnR registers are mapped to the same physical register. Writing into
any of these registers overwrites bits 0–12 in all MAL0_TXCTPnR registers; read operations have no
effect. Similarly, bits 0–12 of the MAL0_RXCTPnR registers are mapped to the same physical
register. Writing into any of these registers overwrites bits 0–12 in all MAL0_RXCTPnR registers,
Read operations have no effect.

Note 2: When changing the value of any MAL0_TXCTPnR registers, all transmit channels must be idle. To
verify that a channel is idle, check the Transmit Idle bit of the device. Another way to ensure that the
channels are idle is to disable the channels before changing the MAL0_TXCTPnR register, and then
reenable them once the MAL0_TXCTPnR register is set to its new value.

The transmit and receive channel table pointer registers have identical formats, as shown in Figure 20-22 and
Figure 20-23. MAL0 has four transmit channel table pointer registers, and two receive channel table pointer
registers.

Figure 20-22. TX Channel Table Pointer Register (MAL0_TXCTPnR)
0:31 Channel Table Pointer Pointer to the base address of the buffer

descriptor table used by the channel. The
value entered should point to a location in
memory accommodating an aligned
doubleword (the three least significant bits
of the pointer must be 000).
MAL0 has four transmit channels.

0 31
AMCC Proprietary 542

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

The Table Pointer Registers retain their value following Soft Reset or Channel Reset.

20.10 Receive Channel Buffer Size Register (MAL0_RCBS0)

Each receive channel has a fixed buffer length. MAL0_RCBSn is configured by the device driver to specify
the length of the buffer. This size is the maximum number of bytes that can be stored in the buffer. Multiple
buffers are used to store an incoming packet if the length of the incoming packet data is greater than the
buffer length for the channel, as defined by the associated register for the channel.

The buffer length for a channel can be from 16 bytes to (4KB – 16) bytes, in 16-byte increments. This length
is represented by a 8-bit field.

The receive buffer size, in bytes, is calculated as:

Receive Channel Buffer Size ×16

Figure 20-24 illustrates the MAL0_RCBSn registers.

Figure 20-23. RX Channel Table Pointer Register (MAL0_RXCTPnR)
0:31 Channel Table Pointer Pointer to the base address of the buffer

descriptor table used by a channel. The
value entered should point to a location in
memory accommodating an aligned
doubleword (the three least significant bits
of the pointer must be 000).
MAL0 has two receive channels.

Figure 20-24. Receive Channel Buffer Size Register (MAL0_RCBSn)
0:23 Reserved

24:31 Receive Channel Buffer Size Each channel is associated with a
MAL0_RCBSn register. MAL0 has two
receive channels.

0 31

0 23 24 31
543 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 21. Serial Port Operations

The PPC405EP contains two universal asynchronous receiver/transmitters (UARTs) that provide full-duplex
serial interfaces to serial peripheral devices. Each UART is compatible with the 16750 chip, and includes a
64-byte transmit and a 64-byte receive FIFO.

Features of the UARTs include:

• 16750 compatibility
• 64-byte send FIFO, 64-byte receive FIFO
• Full duplex operation
• Programmable baud rate generator
• Supports 5- to 8-bit characters, 1 or 2 stop bits, even, odd, or no parity
• One 8-wire interface (UART0) and one 2-wire interface (UART1)

• Hardware flow control selectable on UART0

The UART performs serial-to-parallel conversion on data characters received from a peripheral device, and
parallel-to-serial conversion on data characters received from the processor. The processor can read the
complete status of the UART at any time during the functional operation. Status information reported includes
the type and condition of the transfer operations being performed by the UART, as well as any error
conditions, such as parity, overrun, framing, and break interrupt.

This UART is functionally identical to 16450 in character mode (on power up it will be in this mode), and can
be put into FIFO mode to relieve the processor of excessive software overhead. Here, internal FIFOs are
activated allowing 64 bytes (plus 3 bits per byte of error data in the RCVR FIFO) to be stored in both receive
and transmit modes.

The two UARTs can be clocked by two independently derived serial clocks sourced internally. A
programmable baud rate generator can divide the UART serial clock input by a divisor of 1 to (216 – 1) and
produce the 16× clock required for driving the UART internal transmitter and receiver logic. The internal serial
clock inputs are derived from the PLLOUTA by divisors specified in CPC0_UCR[U1DIV, U0DIV].

Each UART has an interrupt system that can be programmed to the user’s requirements, helping to minimize
the computing required to handle the communications link. UART interrupts are capable of triggering an
interrupt request to the PPC405EP interrupt controller.

21.1 Functional Description

• Runs 16750 software

• Registers are fully compatible with the 16750 register set

• After reset, UARTs revert to 16450 compatibility (16450 has no FIFOs)

• Complete status reporting capability

• Transmitter and receiver are each buffered with 64-byte FIFOs when FIFO mode selected

• Can add/delete standard asynchronous communication bits such as start, stop, and parity to/from the
serial data
AMCC Proprietary 544

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
• When in character mode, holding and shift registers eliminate the need for precise synchronization
between the processor and serial data

• Full prioritized interrupt system controls

• Independently controlled transmit, receive, line status, and data set interrupts

• Programmable baud rate generator divides the UART serial clock input by 1 to (216–1) and generates the
16× clock:

Baud rate (bps) = (Serial Clock Input) / (16 × Decimal Divisor)

• Receiver uses 5-way oversampling as follows: it samples each serial bit five times, and if at least three of
the samples are 1s, the bit is determined to be a 1, otherwise it is a 0

• Fully programmable serial-interface characteristics:

– 5-, 6-, 7-, or 8-bit characters
– Even, odd, or no parity bit generation and detection
– 1-,1.5-, or 2-stop bit generation
– Variable baud rate

• Line break generation and detection, and false start bit detection
• Internal diagnostic capability:

– Loopback controls for communications link fault isolation
– Break, parity, overrun, framing error simulation

21.2 Serial Input Clocking

The two UARTs can be clocked by two independently derived serial clocks sourced internally. The internally
generated serial clocks are derived from the PLLOUTA clock, and can be set to PLLOUTA/n, where n ranges
from 2 to 128. The divisor value for each UART is programmed by setting a divider value of 2 to 128 in
CPC0_UCR[U1DIV, U0DIV] (see “UART Control Register (CPC0_UCR)” on page 21-561). Figure 21-1
shows details of UART SerClk divisors and configuration registers:

Dividers U0DIV and U1DIV in CPC0_UCR should be selected so that the UART clock-high and clock-low
periods are each greater than the internally generated OPB_CLK period. The UART serial clock period is
therefore greater than 2 times the OPB_CLK period. If a U0DIV or U1DIV divider value is even, the clock-high
and clock-low periods are of equal duration. When a divisor is set to an odd value, the clock-low period for

UART02-128

2-128 UART1

PLLOUTA Clock
CPC0_UCR[U0DIV]

CPC0_UCR[U1DIV]

UART0_DLM, UART0_DLL

UART1_DLM, UART1_DLL

UART0 SerClk

UART1 SerClk

Figure 21-1. Serial Clock Configuration

Note: UART SerClk period > 2 × OPB Clock period. See Figure 7-1 on page 7-163 for
additional information concerning PPC405EP clocking.
545 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
that serial clock output is one PLLOUTA period longer than the clock-high period. For additional details about
clocking, see “Serial Port Clocking” on page 7-167.The choice of serial clock frequency affects the serial
communications error rate. Unless SysClk is chosen as an integer multiple of 1.8432 MHz, using the
internally generated UART clock typically results in a small error in the baud rate, as shown in Table 21-1.

The optimum serial clock frequency is then determined using the following relationship:

Serial Clock = Baud Rate × 16 × UART Divisor
where UART Divisor is controlled by UARTx_DLL and UARTx_DLM

Acceptable baud rates are always integral multiples of 300 (for example, 1200 = 4 × 300). Table 21-1 shows
optimum UART divisor and PLLOUTA divide ratios for a range of possible baud rates. This information is
provided for several different PLLOUTA settings. The UART divisor is programmed in UARTx_DLM and
UARTx_DLL (see “Divisor Latch LSB and MSB Registers (UARTx_DLL, UARTx_DLM)” on page 21-558).
The value range is 1 to (216 – 1)=65535.

Table 21-1. Baud Rate Settings

Desired Baud
Rate (bps)

PLLOUTA:UART
Divide Ratio UART Divisor Actual Baud Rate (bps) Error (%)

PLLOUTA = 400MHz , OPB = 50MHz, UART SerClk < (OPB/2)
1200 22 947 1199.96 -0.00
2400 31 336 2400.15 0.01
4800 31 168 4800.31 0.01
9600 31 84 9600.61 0.01

19200 31 42 19201.23 0.01
28800 31 28 28801.84 0.01
33600 31 24 33602.15 0.01
38400 31 21 38402.46 0.01
57600 31 14 57603.69 0.01

115200 31 7 115207.37 0.10
307200 27 3 308641.98 0.47

PLLOUTA = 266MHz , OPB = 66MHz, UART SerClk < (OPB/2)
1200 19 729 1200.27 0.023
2400 25 277 2400.72 0.030
4800 10 346 4804.91 0.102
9600 10 173 9609.83 0.102

19200 12 72 19241.90 0.218
28800 12 48 28862.85 0.218
33600 13 38 33653.85 0.160
38400 12 36 38483.80 0.218
57600 12 24 57725.69 0.218

115200 12 12 115451.39 0.218
307200 18 3 307870.37 0.218

PLLOUTA = 200MHz , OPB = 50MHz, UART SerClk < (OPB/2)
1200 12 868 1200.08 0.006
2400 12 434 2400.15 0.006
4800 12 217 4800.31 0.006
AMCC Proprietary 546

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
9600 14 93 9600.61 0.006
19200 21 31 19201.23 0.006
28800 14 31 28801.84 0.006
33600 12 31 33602.15 0.006
38400 13 25 38461.54 0.160
57600 31 7 57603.69 0.006

115200 109 1 114678.90 0.452
307200 41 1 304878.05 0.756

PLLOUTA = 166MHz , OPB = 33MHz, UART SerClk < (OPB/2)
1200 13 665 1200.12 0.010
2400 29 149 2401.06 0.044
4800 12 180 4803.24 0.068
9600 12 90 9606.48 0.068

19200 12 45 19212.96 0.068
28800 12 30 28819.44 0.068
33600 14 22 33685.06 0.253
38400 15 18 38425.93 0.068
57600 12 15 57638.89 0.068

115200 15 6 115277.78 0.068
307200 34 1 305147.06 0.668

Table 21-1. Baud Rate Settings (continued)

Desired Baud
Rate (bps)

PLLOUTA:UART
Divide Ratio UART Divisor Actual Baud Rate (bps) Error (%)
547 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
21.3 UART Registers

UART registers are accessed using memory locations 0xEF600xyy,where x = 3 for UART 0, and x = 4 for
UART 1.

In PPC405EP there are two UARTs, designated 0 (8-wire interface) and 1 (2-wire interface). In the following
sections, the registers are specified with generic names, where x represents 0 or 1. For example, the Line
Control Register appears as a UARTx_LCR.

For UART 1 there are only two wires, TX and RX.

21.3.1 Receiver Buffer Registers (UARTx_RBR)

Table 21-2. UART Configuration Registers

UART Register Address R/W Description Reset

UARTx_RBR EF600x00 1 R UART x Receiver Buffer Register

UARTx_THR EF600x00 1 W UART x Transmitter Holding Register

UARTx_IER EF600x01 1 R/W UART x Interrupt Enable Register 0000 0000

UARTx_IIR EF600x02 R UART x Interrupt Identification Register 0000 0001

UARTx_FCR EF600x02 W UART x FIFO Control Register 0000 0000

UARTx_LCR EF600x03 R/W UART x Line Control Register 0000 0000

UARTx_MCR EF600x04 R/W UART x Modem Control Register 0000 0000

UARTx_LSR EF600x05 R/W UART x Line Status Register 0110 0000

UARTx_MSR EF600x06 R/W UART x Modem Status Register xxxx 0000

UARTx_SCR EF600x07 R/W UART x Scratch Register

UARTx_DLL EF600x00 1 R/W UART x Divisor Latch (LSB)

UARTx_DLM EF600x01 1 R/W UART x Divisor Latch (MSB)

1. UARTx_LCR[DLAB] controls the function accessed through registers EF600X00 and EF600X01. When
UARTx_LCR[DLAB] is 0, access is enabled to the Receiver/Transmitter registers and the Interrupt Enable register.
When UARTx_LCR[DLAB] is a 1, access is enabled to the Divisor Latch registers.

Figure 21-2. UART Receiver Buffer Registers (UARTx_RBR)
0:7 Data bit

Note: UARTx_RBR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 7
AMCC Proprietary 548

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
21.3.2 Transmitter Holding Registers (UARTx_THR)

21.3.3 Interrupt Enable Registers (UARTx_IER)

UARTx_IER enables five UART interrupts on four priority levels. Any of the five interrupts can be used to
report a UART interrupt to the PPC405EP interrupt controller. Each interrupt can be enabled by setting its
appropriate bit. Resetting UARTx_IER[EDSSI, ELSI, ETBEI, ERBFI] completely disables the UART
interrupts. Disabling an interrupt prevents it from being shown as active in the UARTx_IIR and prevents it
from signaling a UART interrupt to the PPC405EP UIC. See Table 21-3, “Interrupt Priority Level,” on
page 21-550, for information about the interrupts.

Figure 21-3. UART Transmitter Holding Registers (UARTx_THR)
0:7 Data bit

Note: UARTx_THR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

Figure 21-4. UART Interrupt Enable Registers (UARTx_IER)
0:3 Reserved Always 0.

4 EDSSI Enable Modem Status Interrupt
0 Disable modem status interrupt
1 Enable modem status interrupt

5 ELSI Enable Receiver Line Status Interrupt
0 Disable receiver line status interrupt
1 Enable receiver line status interrupt

6 ETBEI Enable Transmitter Holding Register
Empty Interrupt
0 Disable transmitter holding register

empty interrupt
1 Enable transmitter holding register empty

interrupt

0 7

0 3 4 5 6 7

ETBEI

ERBFIELSI

EDSSI
549 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

21.3.4 Interrupt Identification Registers (UARTx_IIR)

The UART prioritizes interrupts into four levels, which are recorded in UARTx_IIR. The interrupt types, in the
order of their priority are as follows:

1. Receiver line status

2. Received data available and character timeout indication

3. Transmitter holding register empty

4. Modem status

Table 21-3 lists the interrupt priority levels.

When the processor accesses UARTx_IIR, the UART records new interrupts, but does not change its current
contents until the access by the processor is complete. The UART indicates the highest priority interrupt
pending to the PPC405EP interrupt controller using UARTx_IIR.

7 ERBFI Enable Received Data Available Interrupt
0 Disable received data available interrupt
1 Enable received data available interrupt

In FIFO mode, timeout interrupts follow the
enable/disable state of ERDAI.

Note: UARTx_IER is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb

Table 21-3. Interrupt Priority Level

IIR
Bit 4

IIR
Bit 5

IIR
Bit 6

Priority
Level Interrupt Type Interrupt Source Interrupt Reset Control

0 1 1 1 Receiver Line Status Overrun, Parity or Framing
Error, or Break Interrupt.

Read LSR.

0 1 0 2 Received Data
Available

Receiver data available or
trigger level reached.

Read RBR, or FIFO
drops below trigger level.

1 1 0 2 Character Timeout
Indication

No characters have been
removed from or input to
the receiver FIFO during
the last four character
times and it contains at
least one character during
this time.

Read RBR.

0 0 1 3 Transmitter Holding
Register Empty

Transmitter Holding
Register Empty.

Read IIR (if source of
interrupt) or write THR.

0 0 0 4 Modem Status Clear to Send, Data Set
Ready, Ring Indicator or
Data Carrier Detect.

Read MSR.
AMCC Proprietary 550

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

21.3.5 FIFO Control Registers (UARTx_FCR)

UARTx_FCR has the same address as UARTx_IIR, and is a write-only register. UARTx_FCR is used to
perform FIFO control operations, such as selecting the DMA signaling type, setting the receiver FIFO trigger
levels, clearing the FIFOs, and enabling the FIFO.

Figure 21-5. UART Interrupt Identification Registers (UARTx_IIR)
0:1 FCI FIFO Control Indicator

00 FIFOs disabled (UARTx_FCR[FE] = 0)
01 Reserved
10 Reserved
11 FIFOs enabled (UARTx_FCR[FE] = 1)

2:3 Reserved

4:6 IPL Interrupt Priority Level
000 Priority level 4
001 Priority level 3
010 Priority level 2
011 Priority level 1
100 Reserved
101 Reserved
110 Priority level 2
111 Reserved

See Table 21-3.

Note: Priority 1 is highest priority.

7 IP Interrupt Pending
0 Interrupt is pending
1 No interrupt pending

When set to 0, IIR contents can be used as
a pointer to the appropriate interrupt
service routine.

Note: UARTx_IIR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 6 7

IPL

IP

FCI
551 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

21.3.6 Line Control Registers (UARTx_LCR)

UARTx_LCR specifies the format of the asynchronous data communications exchange. Read capability
simplifies system programming, and eliminates the need for separate storage of the line characteristics in
system memory.

Figure 21-6. UART FIFO Control Registers (UARTx_FCR)
0:1 RFTL Receiver FIFO Trigger Level

00 1 byte
01 16 bytes
10 32 bytes
11 56 bytes

2:3 Reserved

4 DMS DMA Mode Select
0 Mode 0 = single transfer
1 Mode 1 = multiple transfers

Select single or multiple transfer mode if
UARTx_FCR[7] = 1.

5 TFR Transmitter FIFO Reset
0 Operation complete
1 Reset the transmitter FIFO

A 1 written to this bit clears all bytes in the
transmitter FIFO and resets all of its
counter logic to 0. The transmitter shift
register is not cleared. This bit is self-
clearing.

6 RFR Receiver FIFO Reset
0 Operation complete
1 Reset the receiver FIFO

A 1 written to this bit clears all bytes in the
receiver FIFO and resets all of its counter
logic to 0. The receiver shift register is not
cleared. This bit is self-clearing.

7 FE FIFO Enable
0 Disable FIFOs
1 Enable FIFOs

When set to 1, both the receiver and
transmitter FIFOs are enabled. When set
to 0, both receiver and transmitter FIFOs
are reset. Data is automatically cleared
from both FIFOs when changing to and
from FIFO and 16450 modes.
Programming other bits will be ignored if
this bit is not a 1.

Note: UARTx_FCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

RFTL DMS

TFR

RFR

FE
AMCC Proprietary 552

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

21.3.7 Modem Control Registers (UARTx_MCR)

UARTx_MCR controls the interface between the modem, data set, or peripheral device emulating a modem,
and the UART.

Figure 21-7. UART Line Control Registers (UARTx_LCR)
0 DLAB Divisor Latch Access Bit

0 Address RBR, THR and IER with
LTADR2-0 for read or write operation

1 Address Divisor Latches with LTADR2-0
for read or write operation

1 SB Set Break
0 Disable Break
1 Enable Break

Causes a break condition to be transmitted
to the UART when the core is receiving.
SOUT is forced to the spacing state (0).
This bit acts only on SOUT and has no
effect on the transmitter logic.

2 SP Sticky Parity
0 Disable sticky parity
1 Enable sticky parity

If UARTx_LCR[EPS] = 1 and
UARTx_LCR[PEN] = 1, the parity bit is
transmitted and checked as 0. If
UARTx_LCR [EPS] = 0 and
UARTx_LCR[PEN] = 1,the parity bit is
transmitted and checked as 1.

3 EPS Even Parity Select
0 Generate odd parity
1 Generate even parity

This bit is significant only if
UARTx_LCR[PEN] = 1.

4 PEN Parity Enable
0 Disable parity checking
1 Enable parity checking

5 SBS Stop Bit Select
0 Characters have 1 stop bit
1 Characters have 1.5 or 2 stop bits

If UARTx_LCR[WLS] = 00, characters
have 1.5 stop bits. For any other value of
UARTx_LCR[WLS], characters have 2 stop
bits.
The receiver checks the first stop bit only,
regardless of how many stop bits are
selected.

6:7 WLS0,
WLS1

Word Length Select Bits 0,1
00 Use 5-bit characters
01 Use 6-bit characters
10 Use 7-bit characters
11 Use 8-bit characters

Note: UARTx_LCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

DLAB

SB

SP

EPS

PEN

SBS

WLS
553 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Figure 21-8. UART Modem Control Registers (UARTx_MCR)
0:1 Reserved Always 0.
2 AFC Auto Flow Control

0 Disabled
1 Enabled

3 LOOP Loopback Mode
0 Disabled
1 Enabled

Provides a local loopback feature for diagnostic
testing of the UART. The following occurs:
1. SOUT is set to the marking state (logic 1) SIN is

disconnected.
2. The output of the transmitter shift register feeds

the input of the receiver shift register.
3. The four modem control inputs DSR, CTS, RI,

and DCD are disconnected.
4. The four modem control outputs DTR, RTS,

OUT1, and OUT2 are set to a logic 1 (their
inactive state).

5. The four modem control outputs are connected
internally to the four modem control inputs.

Transmitted data is immediately received to verify
the UART transmit and receive data paths.
Receiver and transmitter interrupts are operational.
Their sources are external to the UART. Also
operational are the modem control interrupts, but
their source is the low-order 4 bits of UARTx_MCR
instead of the modem control inputs to the UART.
UARTx_IER still controls the interrupts.

4 OUT2 User Output 2
0 OUT2 inactive (1)
1 OUT2 active (0)

May be written or read, but provides no function.

5 OUT1 User Output 1
0 OUT1 inactive (1)
1 OUT1 active (0)

May be written or read, but provides no function.

6 RTS Request To Send
0 RTS inactive (1)
1 RTS active (0)

7 DTR Data Terminal Ready
0 DTR inactive (1)
1 DTR active (0)

Note: UARTx_MCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

DTROUT1

RTSOUT2

LOOP

AFC
AMCC Proprietary 554

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
21.3.8 Line Status Registers (UARTx_LSR)

UARTx_LSR stores data transfer information. Bits 3 through 6 are conditions that produce a receiver line
status interrupt whenever the condition corresponding to the active bit is detected and the interrupt is
enabled. This register is intended for read operations only and writing is not recommended.

Figure 21-9. UART Line Status Registers (UARTx_LSR)
0 RFE Receiver FIFO Error Indicator

0 In FIFO mode, reset to 0 when the
processor reads the UARTx_LSR,
provided there are no subsequent errors
in the FIFO.

1 There are one or more instances of
parity error, framing error or break
indication in the FIFO.

Always 0 in 16450 mode.

1 TEMT Transmitter Empty Indicator
0 Reset to 0 whenever the THR or the

transmitter shift register contain a
character. In FIFO mode, it is reset to 0
whenever the transmitter FIFO or the
transmitter shift register contain a
character.

1 Set to 1 when the THR and the
Transmitter shift register are both empty.
In FIFO mode, it is set to 1 when the
transmitter FIFO and the transmitter shift
register are both empty.

2 THRE Transmitter Holding Register Empty
Indicator
0 Concurrent reset to 0 with the loading of

the THR by the processor. In FIFO mode
it is reset to 0 when at least one byte is
written to the transmitter FIFO.

1 Set to 1 when the UART is ready to
accept a new character for transmission.
In FIFO mode, this bit is set when the
transmitter FIFO is empty.

When UARTx_IER[THRE] = 1, the UART
issues an interrupt to the UIC. This bit is
set to 1 when a character is transferred
from the THR to the transmitter shift
register.

0 1 2 3 4 5 6 7

RFE

TEMT

THRE

BI

FE

PE

OE

DR
555 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
3 BI Break Interrupt Indicator
0 Reset to 0 whenever processor reads

Line Status Register (LSR).
1 Set to 1 whenever the received data

input is held at the spacing level (0) for
longer than a full word transmission time.

The word transmission time is the time
required for the start bit, data bits (can be
5–8 bits), parity and stop bits. In FIFO
mode, this error is reported to the
processor when the character associated
with the error is at the top of the FIFO. Only
one 0 character is loaded into the receiver
FIFO when a break occurs. After the next
valid start bit is received and is in the
marking state, the next character transfer is
enabled. The error causes a Receiver Line
Status Interrupt.

4 FE Framing Error Indicator.
0 Reset to 0 whenever processor reads

LSR.
1 Set to 1 whenever stop bit following the

last data bit or parity bit is detected as 0
(spacing level).Indicates that a valid stop
bit was not found in the received
character.

Error causes a Receiver Line Status
Interrupt.

5 PE Parity Error Indicator.
0 Reset to 0 whenever processor reads

UARTx_LSR.
1 Indicates that the received data

character does not have the correct
parity as determined by the even parity
select bit (UARTx_LCR.[EPS]). Set to 1
upon detection of a parity error.

In FIFO mode, this error is revealed to the
processor when the character this error is
associated with is at the top of the FIFO.
Error causes a Receiver Line Status
Interrupt.

6 OE Overrun Error Indicator.
0 Reset to 0 whenever processor reads

UARTx_LSR.
1 Data in the RBR was read by the

processor before the next character was
transferred into the UARTx_RBR, hence
the original data was lost.

In FIFO mode, if the incoming data
continues to fill the FIFO beyond the trigger
level, an OE occurs only after the FIFO is
completely full and the entire next
character has been received in the receiver
shift register. The processor is informed of
the OE immediately upon occurrence. The
character in the shift register will be
overwritten and will not be transferred to
the FIFO. Error causes a Receiver Line
Status Interrupt.

7 DR Receiver Data Ready Indicator.
0 Reset to 0 when all data has been read

from the receiver FIFO or the
UARTx_RBR.

1 An entire incoming character has been
received into the UARTx_RBR or
receiver FIFO.

Note: UARTx_LSR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.
AMCC Proprietary 556

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
21.3.9 Modem Status Registers (UARTx_MSR)

UARTx_MSR indicates the state of the modem (or peripheral device) control lines, and indicates whether any
modem (or peripheral device) control lines have changed state.

21.3.10 Scratchpad Registers (UARTx_SCR)

A scratchpad register intended for use by the programmer as a temporary data location is provided in this
UART. It does not control the UART operation in any way.

Figure 21-10. UART Modem Status Registers (UARTx_MSR)
0 DCD Data Carrier Detect In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[OUT2].
1 RI Complement of Ring Indicator In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[OUT1].
2 DSR Complement of Data Set Ready In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[DTR].
3 CTS Complement of Clear To Send In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[RTS].
4 DDCD Delta Data Carrier Detect

0 Set when processor reads the Modem
Status Register

1 DCD input changed state

Indicates that the DCD input to the UART
has changed state since the processor last
read the Modem Status Register. A modem
status interrupt is generated.

5 TERI Trailing Edge of Ring Indicator
0 Set when processor reads the Modem

Status Register
1 RI input changed from 0 to 1

Indicates that the RI input to the UART
changed from 0 to 1 since the processor
last read the Modem Status Register. A
modem status interrupt is generated.

6 DDSR Delta Data Set Ready
0 Set when processor reads the Modem

Status Register
1 DSR input changed state

Indicates that the DSR input to the UART
has changed state since the processor last
read the Modem Status Register. A modem
status interrupt is generated.

7 DCTS Delta Clear To Send
0 Set when processor reads the Modem

Status Register
1 CTS input changed state

Indicates that the CTS input to the UART
has changed state since the processor last
read the Modem Status Register. A modem
status interrupt is generated.

Note: UARTx_MSR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

DCTS

DDSR

TERI
CTS

RI

DDCD
DSR

DCD
557 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

21.3.11 Divisor Latch LSB and MSB Registers (UARTx_DLL, UARTx_DLM)

The divisor latches are used to program the UART divisor used in generating the baud clock. A 16-bit divisor
may be programmed through these registers. Access to these registers is provided by setting
UARTx_LCR[DLAB] = 1. These registers have a power-on reset value of 0.

The UART divisor is calculated using the following formula:

UART Divisor = Serial Input Clock/(16 × Baud Rate)

Figure 21-11. Scratchpad Registers (UARTx_SCR)
0:7 Data bits

Note: UARTx_SCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

Figure 21-12. UART Baud-Rate Divisor Latch (MSB) Registers (UARTx_DLM)
0:7 Data bits

Note: UARTx_DLM is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

Figure 21-13. UART Baud-Rate Divisor Latch (LSB) Registers (UARTx_DLL)
8:15 Data bits

Note: UARTx_DLL is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 7

0 7

8 15
AMCC Proprietary 558

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
For example, if the serial input clock= 11.0592 MHz and a baud rate of 9600bps is required:

UART Divisor = Serial Input Clock/(16 × Baud Rate)

= 11,059,200/(16 × 9600)

= 72 = 0x48

For this example, UARTx_DLM should be programmed to 0 and UARTx_DLL register should be programmed
to 0x48. Due to the error introduced by rounding, some baud rates cannot be generated at certain serial input
clock frequencies. Table 21-4 lists some common baud rates and their corresponding Divisor Latch register
values with a serial input clock of 11.0592 MHz.

21.4 FIFO Operation

There are two modes of FIFO operation, interrupt mode and polled mode.

21.4.1 Interrupt Mode

Receiver and transmitter interrupts can occur in interrupt mode.

21.4.1.1 Receiver Interrupts

Receiver interrupts occur as described below when the receiver FIFO and receiver interrupts are enabled by
setting UARTx_FCR[FE] = 1 and UARTx_IER[ERBFI] = 1.

The received data available interrupt is issued when the number of characters in the FIFO has reached the
trigger level programmed into UARTx_FCR. This interrupt is cleared (set to 0) when the FIFO character count
drops below this trigger level.

The received data available indicator is issued when the number of characters in the FIFO has reached the
trigger level programmed into UARTx_FCR. This indicator is reset to 0 when the FIFO character count drops
below this trigger level.

The receiver line status interrupt (UARTx_IIR = 0xC6) is a top priority interrupt, whereas the received data
available interrupt (UARTx_IIR = 0xC4) is a second priority interrupt.

Data Ready (UARTx_LSR[DR]) is when a character is transferred from the shift register to the receiver FIFO.
This bit is reset when the FIFO is empty.

Receiver timeout interrupts will occur as described below when the receiver FIFO and receiver interrupts are
enabled by setting UARTx_FCR[FE] = 1 and UARTx_IER[ERBFI] = 1.

Table 21-4. Divisor Latch Settings for Certain Baud Rates

Baud Rate (bps) Divisor Latch MSB Divisor Latch LSB

9600 0x00 0x48

19200 0x00 0x24

28800 0x00 0x18

38400 0x00 0x12

57600 0x00 0x0C
559 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A FIFO timeout occurs when at least one character is in the receiver FIFO, no serial characters have been
received for four serial character time periods, and the processor has not read the FIFO for four serial
character time periods. A serial character time period is as follows:

1/(baud rate) × (number of start bits + word length + number of parity bits + number of stop bits)

For example, the serial character time period for an 8-bit word with one parity bit, two stop bits at 56K baud
is:

1/(56000) × (1 + 8 + 1 + 2) = 214.3µs

Therefore, the timeout would occur after 857.1µs, if the above conditions hold.

When a timeout interrupt has occurred, it is cleared and the timer is reset when the processor reads one
character from the receiver FIFO.

When a timeout interrupt has not occurred, the timer is reset after a new serial character is received or the
processor reads the receiver FIFO.

21.4.1.2 Transmitter Interrupts

Transmitter interrupts occur when the transmitter FIFO and transmitter interrupts are enabled
(UARTx_FCR[FE] = 1 and UARTx_IER[ETBEI] = 1).

The transmitter holding register interrupt (UARTx_IIR = 0xC2) occurs when transmit FIFO is empty, and is
cleared as soon as the transmitter holding register is written to or the IIR is read. One to 64 characters may
be written to the transmitter FIFO while servicing this interrupt.

The transmitter FIFO empty indications are delayed by one character time minus the last stop bit time
whenever the following event occurs: UARTx_LSR[THRE] = 1 and there were less than two bytes
simultaneously present in the transmit FIFO since the last UARTx_LSR[THRE] = 1. If UARTx_FCR[FE] = 1
(FIFOs enabled), the first transmitter interrupt after changing UARTx_FCR[FE] is immediate.

Receiver FIFO trigger level interrupts, received data available interrupts, and character timeouts all have
equivalent second interrupt priority. Current transmitter holding register empty interrupt and Transmit FIFO
empty have equivalent third interrupt priority.

21.4.2 Polled Mode

When UARTx_FCR[FE] = 1 (FIFOs enabled), and UARTx_IER[5:7] are all set to 0 (interrupts disabled), the
UART is in FIFO polled mode of operation. The receiver and transmitter are controlled separately, so either
can be in polled mode of operation. In polled mode, the user program must check the UARTx_LSR to see the
status of the receiver and/or transmitter.

UARTx_LSR[BI, FE, PE, OE] specifies which errors (if any) have occurred. Character status errors are
handled in the same way as in interrupt mode. Since UARTx_IER[ELSI] = 0, the IIR is not affected.
UARTx_LSR[DR] is set as long as there is at least one character in the receiver FIFO. UARTx_LSR[THRE]
indicates if the transmitter FIFO is empty. UARTx_LSR[TEMT] indicates if the transmitter FIFO and the
transmitter shift register are empty. UARTx_LSR[RFE] indicates if there are any errors in the receiver FIFO.

In FIFO polled mode, there are no character timeout or trigger levels; however, the FIFOs are still capable of
holding characters.
AMCC Proprietary 560

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
21.5 UART and Sleep Mode

Both UARTs can be placed in sleep mode via the UART sleep bits in the CPC0_ER register
(CPC0_ER[UART0:UART1]). The most common usage would be to save a little power if one or both of the
UARTs were not going to be used.

Using sleep mode dynamically requires careful software control to make sure the UARTs are idle before
putting them to sleep.

21.6 DMA Operation

The DMA controller can be configured to perform DMA operations using the UARTs, which appears as 8-bit
peripherals to the DMA controller. When selected, each UART receiver is internally wired to the DMAReq and
DMAAck signals of its associated DMA channel, either 0 or 2, and the transmitter is internally wired to the
DMAReq and DMAAck signals of its associated DMA channel, either 1 or 3. Table 21-5 shows assignments
of the UART receivers and transmitters to DMA channels:

The UART can be operated in FIFO mode or non-FIFO mode. In FIFO mode, the transfers can be done as
single transfers (DMA mode 0) or multiple transfers (DMA mode 1), depending on the setting of the DMS field
in the FIFO Control Register (FCR). In non-FIFO mode, DMA transfers are performed using single transfers,
using the UART’s DMA mode 0. For more information on general DMA programming, see Chapter 18.,
“Direct Memory Access Controller,” on page 18-448.

21.6.1 UART Control Register (CPC0_UCR)

CPC0_UCR is used to select UART clock sources, set clock divisors, and enable DMA operations.

Table 21-5. DMA Channel Assignments

DMA Channel UART Interface

0 UART1 receiver
1 UART1 transmitter
2 UART0 receiver
3 UART0 transmitter

Figure 21-14. UART Control Register (CPC0_UCR)
0:9 Reserved

0 9 10 11 12 13 14 15 16 17 23 24 25 31

U0DC

U0DT

U0DR

U1DC

U1DT

U1DIVU1DR U0DIV
561 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
10 U0DC UART0 DMA Clear Enable
0 Disables UART0 clear
1 Enables UART0 to clear

CPC0_UCR[U0DT] and
CPC0_UCR[U0DR] bits after the DMA
controller asserts its terminal count
signal.

11 U0DT Enable UART0 DMA Transmit Channel
0 DMA transmit channel is disabled.
1 DMA transmit channel is enabled.

12 U0DR Enable UART0 DMA Receive Channel
0 DMA receive channel is disabled.
1 DMA receive channel is enabled.

13 U1DC UART1 DMA Clear Enable
0 Disables UART1 clear
1 Enables UART1 to clear

CPC0_UCR[U1DT] and
CPC0_UCR[U1DR] after the DMA
controller asserts its terminal count
signal.

14 U1DT Enable UART1 DMA Transmit Channel
0 DMA transmit channel disabled.
1 DMA transmit channel enabled.

15 U1DR Enable UART1 DMA Receive Channel
0 DMA receive channel is disabled.
1 DMA receive channel is enabled.

16 Reserved

17:23 U1DIV UART1 Serial Clock Divisor
0000000 128
0000001 Stops the clock to UART1 baud
rate generator
0000010 2
0000011 3
.
.
.
.
1111101 125
1111110 126
1111111 127

This value should be chosen to select a
frequency less than half the
programmed OPB clock frequency.

24 Reserved
AMCC Proprietary 562

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
21.6.2 Transmitter DMA Mode

The UARTx Transmit Channel Enable fields, CPC0_UCR[U0DT, U1DT], control the use of the serial port
transmitters as DMA destinations. For the transmitter in DMA mode 0 (UARTx_FCR[DMS] = 0), when the
FIFOs are disabled or the FIFOs are enabled and there are no characters in the TX FIFO or Transmit Holding
Register (THR), the DMA request goes active. Once activated, the DMA request goes inactive after the first
character is loaded into the TX FIFO or THR. For the transmitter in DMA mode 1 (UARTx_FCR[DMS] = 1),
when FIFOs are enabled and there is at least one unfilled position in the TX FIFO, the DMA request goes
active. This signal will become inactive when the TX FIFO is completely full. To operate in this mode, the
assigned DMA Channel Control Register, either channel 1 (DMA0_CR1) or channel 3 (DMA0_CR3), must be
configured to accept DMA requests from an internal source. Setting the Peripheral Location (PL) bit of the
DMA Channel Control Register to a logic 1 configures the DMA channel to accept DMA requests from the
UART. Other DMA registers and register fields must be programmed appropriately, see Chapter 18., “Direct
Memory Access Controller,” on page 18-448 for more information. Table 21-6 shows sample register field
settings to enable DMA on UART0 transmitter.

Table 21-7 shows sample register field settings to enable DMA on UART1 transmitter.

25:31 U0DIV UART0 Serial Clock Divisor
0000000 128
0000001 Stops the clock to UART1 baud
rate generator
0000010 2
0000011 3
.
.
.
.
1111101 125
1111110 126
1111111 127

This value should be chosen to select a
frequency less than half the
programmed OPB clock frequency.

Table 21-6. UART0 Transmitter DMA Mode Register Field Settings

Register [Field] Meaning

CPC0_UCR[U0DT]=1 UART0 DMA Transmit channel is enabled using DMA channel 3.

CPC0_UCR[U0DC]=0 Set to 0 to not clear CPC0_UCR[U0DT] enable when terminal count is
reached, set to 1 to clear enable when terminal count is reached.

DMA0_CR3[TD]=0 DMA Channel 3 transfer direction is from memory to peripheral.

DMA0_CR3[PL]=1 DMA Channel 3 peripheral is on the OPB (UART0).

DMA0_CR3[PW]=00 Peripheral width is byte (8 bits).

DMA0_CR3[TM]=00 DMA Channel 3 is in peripheral mode.

DMA0_CR3[PWC]=000010 Peripheral Wait cycles, how long the internal DMAck is active. Three
cycles are required.

DMA0_CR3[PHC]=000 Peripheral Hold Cycles are 0.

DMA0_CR3[ETD]=1 EOT/TC is programmed as terminal count output.

UART0_FCR[DMS] Set to 0 for a single DMA transfer or 1 for multiple DMA transfers.
563 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
21.6.3 Receiver DMA Mode

The UART0 Receive Enable fields, CPC0_UCR[U0DR, U1DR], control the use of the serial port receivers as
DMA sources. For the receiver in DMA mode 0 (UARTx_FCR[DMS] = 0), when there is at least one character
in the RX FIFO or Receive Buffer Register, RBR, the DMA request goes active. Once activated, the DMA
request goes inactive when there are no more characters in the FIFO or RBR. For the receiver in DMA mode
1 (UARTx_FCR[DMS] = 1), when the FIFOs are enabled and the trigger level or the timeout has been
reached, the DMA request goes active. Once activated, it will go inactive when there are no more characters
in the RX FIFO or RBR. To operate in this mode, the assigned DMA Channel Control Register, either channel
0 (DMA0_CR0) or channel 2 (DMA0_CR2), must be configured to accept DMA requests from an internal
source. Setting the Peripheral Location (PL) bit of the DMA Channel Control Register to a logic 1 configures
the assigned DMA channel to accept DMA requests from the UART. Table 21-8 shows sample register field
settings to enable DMA on UART0 receiver. Other DMA registers and register fields must be programmed
appropriately, see Chapter 18., “Direct Memory Access Controller,” on page 18-448 for more information.

Table 21-7. UART1 Transmitter DMA Mode Register Field Settings

Register [Field] Meaning

CPC0_UCR[U1DT]=1 UART1 DMA Transmit channel is enabled using DMA channel 1.

CPC0_UCR[U1DC]=0 Set to 0 to not clear CPC0_UCR[U1DT] enable when terminal count is
reached, set to 1 to clear enable when terminal count is reached.

DMA0_CR1[TD]=0 DMA Channel 1 transfer direction is from memory to peripheral.

DMA0_CR1[PL]=1 DMA Channel 1 peripheral is on the OPB (UART1).

DMA0_CR1[PW]=00 Peripheral width is byte (8 bits).

DMA0_CR1[TM]=00 DMA Channel 1 is in peripheral mode.

DMA0_CR1[PWC]=000010 Peripheral Wait cycles, how long the internal DMAck is active. Three
cycles are required.

DMA0_CR1[PHC]=000 Peripheral Hold Cycles are 0.

DMA0_CR1[ETD]=1 EOT/TC is programmed as terminal count output.

UART0_FCR[DMS] Set to 0 for a single DMA transfer or 1 for multiple DMA transfers.

Table 21-8. UART0 Receiver DMA Mode Register Field Settings

Register [Field] Meaning

CPC0_UCR[U0DR]=1 UART0 DMA Receiver channel is enabled using DMA channel 2.

CPC0_UCR[U0DC]=0 Set to 0 to not clear CPC0_UCR[U0DR] enable when terminal count is
reached, set to 1 to clear enable when terminal count is reached.

DMA0_CR2[TD]=1 DMA Channel 2 transfer direction is from peripheral to memory.

DMA0_CR2[PL]=1 DMA Channel 2 peripheral is on the OPB (UART0).

DMA0_CR2[PW]=00 Peripheral width is byte (8 bits).
AMCC Proprietary 564

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 21-9 shows sample register field settings to enable DMA on UART1 receiver.

DMA0_CR2[TM]=00 DMA Channel 2 is in peripheral mode.

DMA0_CR2[PWC]=000010 Peripheral Wait cycles (how long the internal DMAAck is active). Three cycles
are required.

DMA0_CR2[PHC]=000 Peripheral Hold Cycles are 0.

DMA0_CR2[ETD]=1 EOT/TC is programmed as terminal count output.

UART0_FCR[DMS] Set to 0 for a single DMA transfer or 1 for multiple DMA transfers.

Table 21-9. UART1 Receiver DMA Mode Register Field Settings

Register [Field] Meaning

CPC0_UCR[U1DR]=1 UART1 DMA Receiver channel is enabled using DMA channel 0.

CPC0_UCR[U1DC]=0 Set to 0 to not clear CPC0_UCR[U1DR] enable when terminal count is
reached, set to 1 to clear enable when terminal count is reached.

DMA0_CR0[TD]=1 DMA Channel 0 transfer direction is from peripheral to memory.

DMA0_CR0[PL]=1 DMA Channel 0 peripheral is on the OPB (UART1).

DMA0_CR0[PW]=00 Peripheral width is byte (8 bits).

DMA0_CR0[TM]=00 DMA Channel 0 is in peripheral mode.

DMA0_CR0[PWC]=000010 Peripheral Wait cycles (how long the internal DMAAck is active). Three cycles
are required.

DMA0_CR0[PHC]=000 Peripheral Hold Cycles are 0.

DMA0_CR0[ETD]=1 EOT/TC is programmed as terminal count output.

UART1_FCR[DMS] Set to 0 for a single DMA transfer or 1 for multiple DMA transfers.

Table 21-8. UART0 Receiver DMA Mode Register Field Settings

Register [Field] Meaning
565 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 22. IIC Bus Interface

The PPC405EP provides an inter-integrated circuit (IIC) bus interface designed to specifications contained in
the Philips® Semiconductors document The I2C-bus and how to use it (including specifications) (1995
update).

The IIC bus is a two-wire, bi-directional, open-drain, low-speed serial interface. The serial clock (IICSCL) and
serial data (IICSDA) lines are bidirectional, to support multiple bus masters and to mix high- and low-speed
devices on the same bus.

The IIC interface (referred to as IIC to distinguish it from the Philips I2C bus) supports the following standard
and enhanced features:

• 100-kHz and 400-kHz operation

• 8-bit data transfers

• 7-bit and 10-bit addressing

• Slave transmitter and receiver

• Master transmitter and receiver

• Multiple bus masters

The IIC interface can switch between 7-bit and 10-bit addressing under program control.

22.1 Addressing

The IIC interface supports 7-bit and 10-bit addressing for master and slave transfers.

Addressing is described in detail in “IIC0 Low Master Address Register (IIC0_LMADR)” on page 22-571, “IIC0
High Master Address Register (IIC0_HMADR)” on page 22-572, “IIC0 Low Slave Address Register
(IIC0_LSADR)” on page 22-580, and “IIC0 High Slave Address Register (IIC0_HSADR)” on page 22-581.

Descriptions of addressing modes and address formats follow.

22.1.1 Addressing Modes

For master transfers, the address mode (AMD) field of the IIC Control register (IIC0_CNTL) controls whether
7-bit or 10-bit addresses are used. If IIC0_CNTL[AMD] = 0, addresses contain 7 bits; if IIC0_CNTL[AMD] = 1,
addresses contain 10 bits.

For slave transfers, the contents of the IIC0 High Slave Address register (IIC0_HSADR) determines whether
7-bit or 10-bit addressing is used. If IIC0_HSADR = 0b00000000, 7-bit addressing is used. If 10-bit
addressing is to be used for slave transfers, IIC0_HSADR = 0b11110yyx, where yy contains the high-order
bits of the 10-bit address, and x is a don’t care.

Programming Note: For slave transfers, IIC0_CNTL[AMD] does not control addressing mode.
AMCC Proprietary 566

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22.1.2 Seven-Bit Addresses

Figure 22-1 illustrates a 7-bit address. For master transfers, the address bits 0 through 6 (A0:A6) are read
from IIC0_LMADR. For slave transfers, A0:A6 are read from IIC0_LSADR. Bit 7 of address byte 0 contains a
transfer type bit provided by the IIC interface.

22.1.3 Ten-Bit Addresses

Figure 22-2 illustrates a 10-bit address. A0:A1 of address byte 0 are read from IIC0_HMADR[A6:A7] (for
master transfers) or IIC0_HSADR[A6:A7] (for slave transfers). These are the two highest-order address bits
transmitted on the IIC bus. Bit 7 of address byte 0 contains a transfer type bit provided by the IIC interface.

For 10-bit addressing for master or slave transfers, respectively, IIC0_HMADR[A0:A4] and
IIC0_HSADR [A0:A4] must contain 0b11110.

The low-order byte of the 10-bit address, contained in A0:A7 of address byte 1, are read from IIC0_LMADR
or IIC0_LSADR for master or slave transfers, respectively.

MSb LSb

Address Byte
0

A0 A1 A2 A3 A4 A5 A6 R/W

Bit 0 Bit 7

Figure 22-1. 7-Bit Addressing

MSb LSb

Address Byte
0 1 1 1 1 0 A0 A1 R/W

Bit 0 Bit 7

MSb LSb

Address Byte
1 A2 A3 A4 A5 A6 A7 A8 A9

Bit 0 Bit 7

Figure 22-2. 10-Bit Addressing
567 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.2 IIC Registers

IIC registers are accessed at memory locations in the PPC405EP.

Table 22-1 lists the IIC registers. Descriptions of the registers, in the listed order, follow in “IIC Register
Descriptions” on page 22-569.

Table 22-1. IIC Registers

Register Mnemonic
PPC405EP

Memory Map Address Access
Effect of

Reset Bits

IIC0 Master Data Buffer IIC0_MDBUF 0xEF60 0500 0x0 R/W Cleared 8,16

Reserved 0xEF60 0501 0x1

IIC0 Slave Data Buffer IIC0_SDBUF 0xEF60 0502 0x2 R/W Cleared 8,16

IIC0 Reserved 0xEF60 0503 0x3

IIC0 Low Master Address IIC0_LMADR 0xEF60 0504 0x4 R/W No 8

IIC0 High Master Address IIC0_HMADR 0xEF60 0505 0x5 R/W No 8

IIC0 Control IIC0_CNTL 0xEF60 0506 0x6 R/W Cleared 8

IIC0 Mode Control IIC0_MDCNTL 0xEF60 0507 0x7 R/W Cleared 8

IIC0 Status IIC0_STS 0xEF60 0508 0x8 R/W Cleared 8

IIC0 Extended Status IIC0_EXTSTS 0xEF60 0509 0x9 R/W Cleared 8

IIC0 Low Slave Address IIC0_LSADR 0xEF60 050A 0xA R/W No 8

IIC0 High Slave Address IIC0_HSADR 0xEF60 050B 0xB R/W No 8

IIC0 Clock Divide IIC0_CLKDIV 0xEF60 050C 0xC R/W Cleared 8

IIC0 Interrupt Mask IIC0_INTRMSK 0xEF60 050D 0xD R/W Cleared 8

IIC0 Transfer Count IIC0_XFRCNT 0xEF60 050E 0xE R/W Cleared 8

IIC0 Extended Control
and Slave Status

IIC0_XTCNTLSS 0xEF60 050F 0xF R/W Cleared 8

IIC0 Direct Control IIC0_DIRECTCNTL 0xEF60 0510 0x10 R/W 0x0f 4
AMCC Proprietary 568

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22.3 IIC Register Descriptions

The following sections contains the bit definitions for the various registers in the IIC interface.

22.3.1 IIC0 Master Data Buffer (IIC0_MDBUF)

The IIC0 Master Data Buffer (IIC0_MDBUF) is a 1-byte × 4-byte first-in/first-out (FIFO) buffer. A byte written
to IIC0_MDBUF is placed into the fourth FIFO stage. If the third FIFO stage is empty, the data is moved into
the third stage at the next OPB clock. This process is repeated for the second and first FIFO stages at each
successive OPB clock. The byte moves through the buffer until it reaches the deepest unoccupied stage of
the FIFO. The buffer data is either written on the IIC bus when the IIC interface performs a write, or is
received from the IIC bus when the IIC interface performs a read.

Figure 22-3 illustrates the IIC0_MDBUF.

IIC0_MDBUF is cleared (flushed and set to empty) whenever the IIC interface is reset, or
IIC0_MDCNTL[FMDB] = 1. Figure 22-4 shows the four FIFO stages.

When IIC0_MDBUF is written with a byte, the byte is placed in the FIFO. The hardware pushes the byte into
the deepest unoccupied stage in the FIFO and advances one FIFO stage per clock. Thus, if the FIFO is
empty, four clocks are needed (one per stage) for the byte to walk to the first stage of the FIFO. This timing is
important to consider when reading the IIC0_MDBUF immediately after data is written. When a master
transfer is requested, the IIC interface handles this latency.

If a byte is written to IIC0_MDBUF while the FIFO is full, the byte is discarded and not placed into the FIFO.

Figure 22-3. IIC0 Master Data Buffer (IIC0_MDBUF)
0 Data bit

1 Data bit

2 Data bit

3 Data bit

4 Data bit

5 Data bit

6 Data bit

7 Data bit

0 7

Clock Cycle 1 Clock Cycle 4Clock Cycle 3Clock Cycle 2

Figure 22-4. FIFO Stages

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
569 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
If IIC0_MDBUF is written with two bytes in a halfword access, and there is space in the FIFO, byte 0 of the
halfword is placed ahead of byte 1 in the FIFO. The MSB, byte 0, is written to the IIC bus first, followed by the
LSB, byte 1.

IIC0_MDBUF receives data from the IIC bus when the requested master transfer is a read. The first byte
received is the first byte read by software from IIC0_MDBUF.

For halfword reads the first byte received is MSB, byte 0, and the following byte is LSB, byte 1. When an
empty FIFO is read, the byte (or halfword) most recently read is returned.

Care must be taken not to start a requested master operation while there is data in IIC0_MDBUF. If, for
example, a master read transfer is requested and obsolete data is in IIC0_MDBUF, the obsolete data would
be presented, to the requesting software, as data read by the requested transfer.

22.3.2 IIC0 Slave Data Buffer (IIC0_SDBUF)

IIC0_SDBUF works in the same way as IIC0_MDBUF, except that IIC0_SDBUF is used only to store data
sent or received in slave transfers on the IIC bus. Having a separate slave and master buffers enables
overlapping slave and master transactions on the IIC bus.

Bit assignments for the IIC0_MDBUF and IIC0_SDBUF are identical, as illustrated in Figure 22-5.

IIC0_SDBUF is cleared (flushed and set to empty) whenever the IIC interface is reset, or
IIC0_MDCNTL[FSBD] = 1.

Figure 22-5. IIC0 Slave Data Buffer (IIC0_SDBUF)
0 Data bit
1 Data bit
2 Data bit
3 Data bit
4 Data bit
5 Data bit
6 Data bit
7 Data bit

0 7
AMCC Proprietary 570

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22.3.3 IIC0 Low Master Address Register (IIC0_LMADR)

The IIC0 Low Master Address (IIC0_LMADR) and IIC0 High Master Address Register (IIC0_HMADR) form
addresses that the IIC interface transmits on the IIC bus.

Programming Note: IIC0_HMADR is used only for 10-bit addressing.

When IIC0_CNTL[AMD] = 0 (7-bit addressing), only IIC0_LMADR is written. IIC0_LMADR[A0:A6] form the
address transmitted on the IIC bus; IIC0_LMADR[A7] is a don’t care. When IIC0_CNTL[AMD] = 1 (10-bit
addressing), IIC0_LMADR[A0:A7] form the second byte address transmitted on the IIC bus.

Figure 22-6 illustrates the IIC0_LMADR.

Figure 22-6. IIC0 Low Master Address Register (IIC0_LMADR)
0 A0 Address bit 0
1 A1 Address bit 1
2 A2 Address bit 2
3 A3 Address bit 3
4 A4 Address bit 4
5 A5 Address bit 5
6 A6 Address bit 6 LSb for 7-bit addresses
7 A7 Address bit 7 LSb for 10-bit addresses; don’t care for

7-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
571 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.4 IIC0 High Master Address Register (IIC0_HMADR)

IIC0 High Master Address Register (IIC0_HMADR) is not used for 7-bit addressing.

When IIC0_CNTL[AMD] = 1 (10-bit addressing), IIC0_HMADR must be programmed to 0b1111 0yyx, where
yy are the high-order bits of a 10-bit address and x is a don’t care.

Thus, in 10-bit address mode, IIC0_HMADR[A5:A6] are the two highest-order bits of the 10-bit address and
IIC0_HMADR[A7] is a don’t care. IIC0_LMADR contains the low-order byte of the 10-bit address.

Figure 22-7 illustrates the IIC0_HMADR.

Figure 22-7. IIC0 High Master Address Register (IIC0_HMADR)
0 A0 Address bit 0 1 for 10-bit addresses

1 A1 Address bit 1 1 for 10-bit addresses

2 A2 Address bit 2 1 for 10-bit addresses

3 A3 Address bit 3 1 for 10-bit addresses

4 A4 Address bit 4 0 for 10-bit addresses

5 A5 Address bit 5 MSb for 10-bit addresses

6 A6 Address bit 6 Next to MSb for 10-bit addresses

7 A7 Address bit 7 Don’t care for 10-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
AMCC Proprietary 572

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22.3.5 IIC0 Control Register (IIC0_CNTL)

The IIC0 Control Register (IIC0_CNTL) starts and stops IIC interface master transfers on the IIC bus. When a
transfer begins, the IIC interface uses the values in IIC0_CNTL to determine the type and size of the transfer.

Programming Note: IIC0_CNTL must be the last register programmed. Whenever IIC0_CNTL[PT] = 1,
the IIC interface attempts to perform the requested transfer, using values set in other registers. Note that
not all IIC registers must be programmed before performing each transfer.

During transfers, and after transfers finish, software can read the IIC0_STS and IIC0_EXTSTS registers to
determine the state of the IIC interface and the IIC bus.

Only IIC0_CNTL[PT] is cleared when a requested master transfer is complete; the remaining bits are not
affected.

Figure 22-8 illustrates the IIC0_CNTL.

Figure 22-8. IIC0 Control Register (IIC0_CNTL)
0 HMT Halt Master Transfer

0 Normal transfer operation.
1 Issue Stop signal on the IIC bus as soon

as possible to halt master transfer.

If no transfer is in progress, no action is
taken.
IIC0_CNTL[PT] need not be set.
If IIC0_MDCNTL[EINT] = 1, an interrupt is
generated.

1 AMD Addressing Mode
0 Use 7-bit addressing.
1 Use 10-bit addressing.

Does not affect slave transfers.

2:3 TCT Transfer Count
00 Transfer one byte.
01 Transfer two bytes.
10 Transfer three bytes.
11 Transfer four bytes.

4 RPST Repeated Start
0 Normal start operation
1 Use repeated Start function to start

transfer.
5 CHT Chain Transfer

0 Transfer is only or last transfer.
1 Transfer is one of a sequence of

transfers (but not last in sequence).

Completion of a requested transfer causes
a Stop signal to be issued on the IIC bus.

6 RW Read/Write
0 Transfer is a write.
1 Transfer is a read.

7 PT Pending Transfer
0 Most recent requested transfer is

complete.
1 Start transfer if bus is free.

0 1 2 3 4 5 6 7

HMT

AMD

TCT

RPST

CHT

RW

PT
573 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Table 22-2 summarizes IIC interface operation for settings of IIC0_CNTL[HMT, RPST, CHT, PT] x is a don’t
care.

Settings of IIC0_CNTL[HMT, RPST, CHT, PT] result in the following actions.

IIC0_CNTL[HMT] overrides IIC0_CNTL[RPST, CHT].

IIC0_CNTL[RPST, PT] overrides IIC0_CNTL[CHT].

22.3.6 IIC0 Mode Control Register (IIC0_MDCNTL)

The IIC0 Mode Control Register (IIC0_MDCNTL) sets the major modes of operation on the IIC bus. In
addition, IIC0_MDCNTL can force the data buffers into the empty state.

In typical applications, IIC0_MDCNTL is configured once, during software initialization. Applications providing
complex error handling may reconfigure this register more often.

Programming Note: IIC0_CLKDIV must be initialized before IIC0_MDCNTL. IIC0_LSADR and
IIC0_HSADR should also be configured before IIC0_MDCNTL.

Note that the IIC hardware does not implement time-out functions on the IIC bus. Such functions must be
implemented, in software, by setting IIC0_CNTL[HMT] = 1, or setting IIC0_XTCNTLSS[SRST] = 1.

Regarding IIC0_MDCNTL[HSCL], a “slave not ready” condition occurs during a slave receive operation, if a
slave has no free space in its slave data buffer at the start of a write operation, or if the slave data buffer fills
during the write. In a slave transmit operation, a slave not ready condition occurs if a slave has no data in its
slave data buffer at the start of a read operation, or if the slave data buffer becomes empty during the read.

Table 22-2. IIC Response to IIC0_CNTL Field Settings
IIC0_CNTL Fields Resulting Action on IIC Bus

and Inside IIC InterfaceHMT RPST CHT PT
0 x x 0 No action taken
0 0 1 1 Start, Transfer, ACK on last byte,

Pause
0 0 0 1 Start, Transfer, NACK on last

byte, Stop
1 x x x NACK on current byte, Stop
0 1 x 1 Start, Transfer, NACK on last

byte, Wait

Start IIC Start condition generated, if the IIC interface was stopped or waiting.

Stop IIC Stop condition generated; IIC interface enters the Stop condition.

ACK IIC Acknowledge condition generated.

NACK IIC Not Acknowledge condition generated, if performing a read.

Transfer Requested bytes are transferred.

Pause IIC interface enters the Pause state.

Wait IIC interface enters the Wait state.
AMCC Proprietary 574

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Using IIC0_MDCNTL[HSCL] to handle slave not ready conditions can affect system performance. A slave
holding the IICSCL signal low guarantees data delivery to or from the requesting master, but prevents other
masters from performing transfers over the IIC bus. There is no general rule for handling slave not ready
conditions; each system has its own requirements.

Figure 22-9 illustrates the IIC0_MDCNTL.

Figure 22-9. IIC0 Mode Control Register (IIC0_MDCNTL)
0 FSDB Flush Slave Data Buffer

0 Normal operation
1 Set slave data buffer to empty.

Cleared after buffer is emptied.

1 FMDB Flush Master Data Buffer
0 Normal operation
1 Set master data buffer to empty.

Cleared after buffer is emptied.

2 Reserved

3 FSM Fast/Standard Mode
0 IIC transfers run at 100 kHz (standard

mode).
1 IIC transfers run at 400 kHz (fast mode).

4 ESM Enable Slave Mode
0 Slave transfers are ignored.
1 Slave transfers are enabled.

Program IIC0_LSADR and IIC0_HSADR
before setting this field.

5 EINT Enable Interrupt
0 Interrupts are disabled.
1 Enables interrupts for interrupts enabled

in IIC0_INTRMSK.

6 EUBS Exit Unknown IIC Bus State
0 Normal operation.
1 IIC bus control state machine exits

unknown bus state, if in an unknown
state.

If the IIC bus control state machine is in a
known state, setting
IIC0_MDCNTL[EUBS] = 1 has no effect.

7 HSCL Hold IIC Serial Clock Low
0 If slave is not ready, issue a NACK in

response to slave transfer request.
1 If slave is not ready, hold the IICSCL

signal low until slave is ready.

This field is used only when in slave mode.

0 1 2 3 4 5 6 7

FSDB

FMDB FSM

ESM

EINT

EUBS

HSCL
575 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.7 IIC0 Status Register (IIC0_STS)

The IIC0 Status register (IIC0_STS) provides a summary of the state of the IIC interface and the status of any
previously requested master transfer.

During and after transfers, software can read the IIC0_STS and IIC0_EXTSTS registers to determine the
state of the IIC interface and the IIC bus.

Programming Note: IIC0_STS should be the first register read by an interrupt or error handler routine.
IIC0_STS can also be read in a polling loop if software does not use the IIC interrupts.

Software must clear IIC0_STS before requesting another master transfer, except for IIC0_STS[SSS].
Because IIC0_STS[SSS] involves slave transfers, it can remain set.

Figure 22-10 illustrates IIC0_STS.

Figure 22-10. IIC0 Status Register (IIC0_STS)
0 SSS Slave Status Set

0 No slave operations are in progress.
1 Slave operation is in progress.

Read-only; this field is set when any of the
following fields are set:
IIC0_XTCNTLSS[SRC, SRRS, SWC,
SWRS].

1 SLPR Sleep Request
0 Normal operation.
1 Sleep mode (CPC0_ER[IIC] = 1).

Read-only. The IIC interface is awakened
when a start signal is detected on the IIC
bus or when the CPC0_ER[IIC] is
cleared.

2 MDBS Master Data Buffer Status
0 Master data buffer is empty.
1 Master data buffer contains data.

Read-only.

3 MDBF Master Data Buffer Full
0 Master data buffer is not full.
1 Master data buffer is full.

Read-only.

4 SCMP Stop Complete
0 No request to halt transfer, or master

data transfer, is complete.
1 Request to halt transfer, or master data

transfer, is complete.

To clear IIC0_STS[SCMP], set
IIC0_STS[SCMP] = 1.

5 ERR Error
0 No error has occurred.
1 One of the following fields is set:

IIC0_EXTSTS[LA, ICT, XFRA] = 1.

Read-only.

6 IRQA IRQ Active
0 No IIC interrupt has been sent to the

universal interrupt controller (UIC).
1 An IIC interrupt has been sent to the UIC.

To clear IIC0_STS[IRQA], set
IIC0_STS[IRQA] = 1.
If IIC0_MDCNTL[EINT] = 0, then
IIC0_STS[IRQA] is not set.

0 1 2 3 4 5 6 7

SSS

SLPR

MDBS

MDBF

SCMP

ERR

IRQA

PT
AMCC Proprietary 576

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
The Error and Pending Transfer, IIC0_STS[ERR, PT], bit fields indicate the success or failure of the
requested transfer. Table 22-3 interprets the transfer status for all possible combinations of the
IIC0_STS[ERR,PT] bit fields.

Programming Note: Software should not take any action regarding a master transfer unless all
pending transfers are completed, IIC0_STS[PT] = 0.

If an error requires the IIC interface to send a Stop, the Stop Complete bit field is set, IIC0_STS[SCMP] = 1.
Note that slave operations should be serviced regardless of the state of a requested master transfer.

IIC0_MDCNTL[EUBS] must be set after a reset before the IIC interface can be placed in sleep mode. The IIC
interface is placed in sleep mode by setting the CPC0_ER[IIC] via software. Awaking the IIC interface is
possible directly through software by clearing the CPC0_ER[IIC] or indirectly by detecting a Start condition on
the IIC bus. When a Start condition is detected, the IIC interface is awakened, and CPC0_SR[IIC] and
IIC0_STS[SLPR] are cleared.

The IIC0_STS[MDBS, MDBF] contain the current status of the Master Data Buffer, IIC0_MDBUF. When the
IIC0_MDBUF contains data, IIC0_STS[MDBS] is set. When the IIC0_MDBUF is full, IIC0_STS[MDBF] is set.

The state of the IIC0_MDBUF is not instantly recorded by the IIC0_STS[MDBS, MDBF]. The delay depends
on the size of the buffer access. For halfword accesses, these fields are valid on the third OPB clock following
the transfer. For byte accesses, these fields are valid on the second OPB clock following the transfer.

7 PT Pending Transfer
0 No transfer is pending, or transfer is in

progress.
1 Transfer is pending.

Read-only.

Table 22-3. IIC0_STS[ERR, PT] Decoding

ERR PT Status

0 0 Requested transfer completed without errors

0 1 Requested transfer is in progress; no errors were detected

1 0 Requested transfer is complete, but not all data was
transferred

1 1 Requested transfer is in progress; but an error was detected
577 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.8 IIC0 Extended Status Register (IIC0_EXTSTS)

The IIC0 Extended Status register (IIC0_EXTSTS) reports additional IIC status.

During and after transfers, software can read the IIC0_STS and IIC0_EXTSTS registers to determine the
state of the IIC interface and the IIC bus.

Figure 22-11 illustrates the IIC0_EXTSTS.

Figure 22-11. IIC0 Extended Status Register (IIC0_EXTSTS)
0 IRQP IRQ Pending

0 No IRQ is pending.
1 An IRQ is active, another IRQ is on-deck,

and another interrupt-generating
condition has occurred.

• IIC0_EXTSTS[IRQP] might be set
momentarily while an IRQ moves from
the Pending to the On-deck state.

• An interrupt remains pending,
IIC0_EXTSTS[IRQP]=1, until the current
on-deck interrupt becomes active,
IIC0_EXTSTS[IRQD]=0 and
IIC0_STS[IRQA]]=1.

• Writing 1 to IIC0_EXTSTS[IRQP] clears
the field.

• When the IIC interrupt is disabled,
IIC0_MDCNTL[IRQP] = 0,
IIC0_EXTSTS[IRQP] should be ignored.

1:3 BCS Bus Control State
000 Unused; if this value is read, a major

IIC hardware problem occurred.
001 Slave-selected state; the IIC interface

has detected and decoded a slave
transfer request on the IIC bus.

010 Slave Transfer state; the IIC interface
has detected but has not decoded a
slave transfer request on the IIC bus.

011 Master Transfer state; entered after a
master transfer request has started on
the IIC bus.

100 Free Bus state; the bus is free and no
transfer request is pending.

101 Busy Bus state; the bus is busy.
110 Unknown state; value after IIC reset.
111 Unused; if this value is read, a major

IIC hardware problem occurred.

Read-only.

0 1 3 4 5 6 7

IRQP

BCS

IRQD

LA

ICT

XFRA
AMCC Proprietary 578

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
IIC0_EXTSTS[IRQP, IRQD] and IIC0_STS[IRQA] provide a FIFO for storing interrupts. A new interrupt is
considered pending, and remains pending while an on-deck interrupt is present. Once the on-deck interrupt
becomes active, the pending interrupt moves on-deck, and remains on-deck until there is no active interrupt.
When the active interrupt is cleared, the on-deck (initially pending) interrupt becomes active.

Programming Note: An active interrupt remains active until software clears it.

IIC0_EXTSTS[BCS] indicates the state of the IIC interface. The field is read-only.

IIC0_EXTSTS[LA, ICT, XFRA] are cleared when IIC0_CNTL[PT] = 1.

Writing 1 to IIC0_EXTSTS[IRQP, IRQD, LA, ICT, XFRA] clears these fields.

4 IRQD IRQ On-Deck
0 No IRQ is on-deck.
1 An interrupt is active, and another

interrupt-generating condition has
occurred.

• IIC0_EXTSTS[IRQD] might be set
momentarily while an IRQ moves from
the On-deck to the Active state.

• An interrupt remains on-deck,
IIC0_EXTSTS[IRQD] = 1, until the cur-
rent active interrupt is no longer active,
IIC0_STS[IRQA] = 0.

• If IIC0_EXTSTS[IRQP] = 1,
IIC0_EXTSTS[IRQD] is set on the next
OPB clock.

• Writing 1 to IIC0_EXTSTS[IRQD] clears
the field.

• When the IIC interrupt is disabled,
IIC0_EXTSTS[IRQP]=0,
IIC0_EXTSTS[IRQD] should be ignored.

5 LA Lost Arbitration
0 Normal operation.
1 Loss of arbitration has ended the

requested master transfer.

• If arbitration is lost, any requested mas-
ter transaction may have terminated pre-
maturely. Read data may be incomplete
and not all write data may have been
written.

• If arbitration is lost during a repeat start,
the master may not own the IIC bus.

6 ICT Incomplete Transfer
0 Normal operation.
1 Some of the bytes of the requested

master transfer were not transferred.

For an incomplete transfer, read the
transfer count, IIC0_XFRCNT, to
determine how bytes were transferred.

7 XFRA Transfer Aborted
0 No transfer is pending, or transfer is in

progress.
1 A requested master transfer was aborted

by a NACK during the transfer of the
address byte, or was aborted because
arbitration was lost. Lost arbitration can
be caused by the loss of data during the
transfer of the second or subsequent
data byte.

Transfer aborted. When set to a 1, a
requested master transfer was aborted by
a NOT acknowledge during the transfer of
the address byte. It is also set to a 1 when
a requested master transfer loses data.
Lost arbitration can be caused by the loss
of data during the transfer of the second or
subsequent data byte.
579 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.9 IIC0 Low Slave Address Register (IIC0_LSADR)

The IIC0 Low Slave Address Register (IIC0_LSADR) and IIC0 High Slave Address Register (IIC0_HSADR)
program the slave address of the IIC interface. IIC0_HSADR is used only for 10-bit addressing, and is not
programmed in 7-bit addressing mode.

When 7-bit addressing is used, IIC0_LSADR is written with the slave address; IIC0_HSADR must be written
with zeros. For 7-bit addressing, IIC0_LSADR[A0:A6] contain the address transmitted on the IIC bus;
IIC0_LSADR[A7] is a don’t care.

When 10-bit addressing is used, IIC0_LSADR[A0:A7] contain the second address byte transmitted on the IIC
bus.

Figure 22-6 illustrates the IIC0_LSADR.

Figure 22-12. IIC0 Low Slave Address Register (IIC0_LSADR)
0 A0 Address bit 0

1 A1 Address bit 1

2 A2 Address bit 2

3 A3 Address bit 3

4 A4 Address bit 4

5 A5 Address bit 5

6 A6 Address bit 6 LSb for 7-bit addresses

7 A7 Address bit 7 LSb for 10-bit addresses; don’t care for
7-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
AMCC Proprietary 580

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22.3.10 IIC0 High Slave Address Register (IIC0_HSADR)

For 7-bit addressing, set IIC0 High Slave Address Register (IIC0_HSADR) to 0.

To enable 10-bit slave addressing, IIC0_HSADR must be programmed to 0b1111 0yyx, where yy are the
high-order bits of a 10-bit address and x is a don’t care.

Programming Note: IIC0_HSADR is used only for 10-bit addressing, and should be set to 0 for
7-bit addressing mode.

Thus, in 10-bit address mode, IIC0_HSADR[A6:A7] contain the two highest -order bits of the 10-bit address;
IIC0_HSADR[A7] is a don’t care. IIC0_LSADR contains the low-order byte of the 10-bit address.

Figure 22-13 illustrates the IIC0_HSADR.

Thus, in 10-bit address mode, bits 0:6 are used to decode the first address byte that was transmitted on the
IIC bus, and bit 7 is in a don’t care state.

Figure 22-13. IIC0 High Slave Address Register (IIC0_HSADR)
0 A0 Address bit 0 1 for 10-bit addresses

1 A1 Address bit 1 1 for 10-bit addresses

2 A2 Address bit 2 1 for 10-bit addresses

3 A3 Address bit 3 1 for 10-bit addresses

4 A4 Address bit 4 0 for 10-bit addresses

5 A5 Address bit 5 MSb for 10-bit addresses

6 A6 Address bit 6 Next to MSb for 10-bit addresses

7 A7 Address bit 7 Don’t care for 10-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
581 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.11 IIC0 Clock Divide Register (IIC0_CLKDIV)

The IIC0 Clock Divide Register (IIC0_CLKDIV) establishes a reference between the OPB clock and the IIC
bus serial clock.

Programming Note: IIC0_CLKDIV must be initialized before IIC0_MDCTRL. Until IIC0_CLKDIV is
initialized, all IIC bus activity is ignored.

Figure 22-14 illustrates the IIC0_CLKDIV.

IIC0_CLKDIV divides PPC405EP’s on-chip peripheral bus (OPB) clock to form the base clock for the IIC bus.

Table 22-4 lists the divisor values for several OPB frequency ranges. These divisor values apply for standard
and fast mode. Select the divisor value by matching the OPB clock frequency to the corresponding frequency
range in Table 22-4. For example, if the OPB clock frequency is 50MHz, select a divisor value of 0x4.

The IIC serial clock (IIC0_SCL) is always below the maximum frequencies allowed by the IIC specification.
The maximum specified frequencies for Fast- and Standard-modes are 400 KHz and 100 KHz respectively.

Figure 22-14. IIC0 Clock Divide Register (IIC0_CLKDIV)
0 DIV0 Divisor bit 0

1 DIV1 Divisor bit 1

2 DIV2 Divisor bit 2

3 DIV3 Divisor bit 3

4 DIV4 Divisor bit 4

5 DIV5 Divisor bit 5

6 DIV6 Divisor bit 6

7 DIV7 Divisor bit 7

Table 22-4. IIC0 Clock Divide Programming

OPB Frequency Range (MHz) Divisor Value

20 0x01

20 < f ≤ 30 0x02

30 < f ≤ 40 0x03

40 < f ≤ 50 0x04

50 < f ≤ 60 0x05

60 < f ≤ 70 0x06

0 1 2 3 4 5 6 7

DIV0

DIV1 DIV3 DIV5 DIV7

DIV2 DIV4 DIV6
AMCC Proprietary 582

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 22-5 lists IIC0_SCL clock frequencies for several common OPB clk frequencies and IIC0_CLKDIV
settings.

22.3.12 IIC0 Interrupt Mask Register (IIC0_INTRMSK)

The IIC0 Interrupt Mask Register (IIC0_INTRMSK) specifies which conditions can generate an IIC interrupt
when the IIC interrupt is enabled, IIC0_MDCNTL[EINT]=1.

Figure 22-15 illustrates the IIC0_INTRMSK.

Table 22-5. IICn_SCL Fequency for OPB CLK and IICn_CLKDIV Settings

OPB CLK Frequency IIC0_CLKDIV Fast/Standard Mode IICn_SCL Frequency

25 MHz 2 Standard 81.7 KHz

25 MHz 2 Fast 308.6 KHz

33 MHz 3 Standard 81.7 KHz

33 MHz 3 Fast 308.6 KHz

50 MHz 4 Standard 98.1 KHz

50 MHz 4 Fast 370.4 KHz

66 MHz 6 Standard 94.3 KHz

66 MHz 6 Fast 352.7 KHz

Figure 22-15. IIC0 Interrupt Mask Register (IIC0_INTRMSK)
0 EIRC Enable IRQ on Slave Read Complete

0 Disable
1 Enable

The interrupt is activated upon receipt of a
Stop during a slave read on the IIC bus.
IIC0_XTCNTLSS[SRC] = 1 indicates a
Slave Read Complete.

1 EIRS Enable IRQ on Slave Read Needs Service
0 Disable
1 Enable

The interrupt is activated upon receipt of a
slave read on the IIC bus and the slave
buffer was empty or went empty and more
data was requested on the IIC bus.
Note: IIC0_XTCNTLSS[SRS] = 1 indicates

a Slave Read Needs Service.

2 EIWC Enable IRQ on Slave Write Complete
0 Disable
1 Enable

The interrupt is activated upon receipt of a
Stop during a slave write on the IIC bus.
Note: IIC0_XTCNTLSS[SWC] = 1

indicates a Slave Write Compete.

0 1 2 3 4 5 6 7

EIRC

EIRS EIWS EIIC EIMTC

EIWC EITAEIHE
583 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.13 IIC0 Transfer Count Register (IIC0_XFRCNT)

The IIC0 Transfer Count Register (IIC0_XFRCNT) reports the number of bytes transferred on the IIC bus
during a master or a slave operation.

Figure 22-16 illustrates the IIC0_XFRCNT.

3 EIWS Enable IRQ on Slave Write Needs Service
0 Disable
1 Enable

The interrupt is activated when the slave
buffer becomes full during a slave write on
the IIC bus.
Note: IIC0_XTCNTLSS[SWS] = 1

indicates a Slave Write Needs
Service.

4 EIHE Enable IRQ on Halt Executed
0 Disable
1 Enable

5 EIIC Enable IRQ on Incomplete Transfer
0 Disable
1 Enable

6 EITA Enable IRQ on Transfer Aborted
0 Disable
1 Enable

7 EIMTC Enable IRQ on Requested Master Transfer
Complete
0 Disable
1 Enable

Figure 22-16. IIC0 Transfer Count Register (IIC0_XFRCNT)
0 Reserved

1:3 STC Slave Transfer Count
000 0 bytes transferred
001 1 byte transferred
010 2 bytes transferred
011 3 bytes transferred
100 4 bytes transferred
101 Reserved
110 Reserved
111 Reserved

4 Reserved

0 1 3 4 5 7

STC

MTC
AMCC Proprietary 584

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
IIC0_XFRCNT[MTC] is cleared when there is a pending transfer, IIC0_CNTL[PT] = 1.

IIC0_XFRCNT[STC] is cleared when:

• A slave operation starts on the IIC bus

• Software indicates the slave does not need service by clearing IIC0_XTCNTLSS[SRS] or
IIC0_XTCNTLSS[SWS].

22.3.14 IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS)

The IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS) provides additional control of IIC
interface functions and reports the status of slave operations.

Figure 22-17 illustrates the IIC0_XTCNTLSS.

5:7 MTC Master Transfer Count
000 0 bytes transferred
001 1 byte transferred
010 2 bytes transferred
011 3 bytes transferred
100 4 bytes transferred
101 Reserved
110 Reserved
111 Reserved

Figure 22-17. IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS)
0 SRC Slave Read Complete

0 Normal operation, or
IIC0_MDCNTL[HSCL] = 0, IIC0_SDBUF is
empty, and a read operation is in progress.

1 A NACK or Stop condition was received
over the IIC bus, or a repeated Start
condition ended a read operation.

Check whether the read operation emptied
IIC0_SDBUF.

0 1 2 3 4 5 6 7

SRC

SRS SWS SDBF SRST

SWC SDBD EPI
585 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
1 SRS Slave Read Needs Service
0 Normal operation or slave read does not

need service.
1 IIC0_SDBUF is empty, and a read

operation was requested on the IIC bus.
The set condition may also indicate that
IIC0_SDBUF is empty due to a slave read
and additional data is requested by the
master.

1. If IIC0_MDCNTL[HSCL]=0 and IIC0_SDBUF
contains no data, the slave issues a NACK and
IIC0_XTCNTLSS[SRS] is set.
2. If IIC0_MDCNTL[HSCL]=0, and IIC0_SDBUF
contains data, the slave sends the data.
IIC0_XTCNTLSS[SRS] is not set unless the
master request additional data.
3. If IIC0_MDCNTL[HSCL]=0, and IIC0_SDBUF
contains no data, the slave holds IICSCL low to
indicate the slave is busy. IIC0_XTCNTLSS[SRS]
is set until the IIC0_SDBUF is filled. Once filled,
IICSCL is released, IIC0_XTCNTLSS[SRS] is
cleared, and the slave sends the data.
4. If IIC0_MDCNTL[HSCL]=1, and IIC0_SDBUF
contains data, the slave sends the data.
IIC0_XTCNTLSS[SRS] is not set unless the
master requests additional data.

2 SWC Slave Write Complete
0 Normal operation or slave write in

progress.
1 A Stop signal was received during a write

operation, or a repeated Start condition
ended a write operation.

3 SWS Slave Write Needs Service
0 Normal operation or slave write does not

need service.
1 IIC0_SDBUF is full during a slave write.

1. If IIC0_MDCNTL[HSCL] = 1 and IIC0_SDBUF
is full, the slave holds IICSCL low to indicate the
slave is busy. IIC0_XTCNTLSS[SWS] is set until
IIC0_SDBUF is empty. Once empty, IICSCL is
released, IIC0_XTCNTLSS[SWS] is cleared, and
the slave receives the data.
2. If IIC0_MDCNTL[HSCL] = 0 and IIC0_SDBUF
is full, the slave issues a NACK and
IIC0_XTCNTLSS[SWS] is set.

4 SDBD Slave Data Buffer Has Data
0 IIC0_SDBUF is empty
1 IIC0_SDBUF contains data

Read-only

5 SDBF Slave Data Buffer Full
0 IIC0_SDBUF is not full
1 IIC0_SDBUF is full

Read-only

6 EPI Enable Pulsed IRQ
0 The internal IIC interrupt signal to the UIC

remains active until the status is cleared,
IIC0_STS[IRQA] =0.

1 The internal IIC interrupt signal to the UIC
is active for one OPB clock cycle.

7 SRST Soft Reset
0 Normal operation
1 Soft reset
AMCC Proprietary 586

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Writing a 1 to IIC0_XTCNTLSS[SRC, SRS, SWC, SWS] clears these fields.

Care must be used when changing IIC0_XTCNTLSS[EPI]. If this field changes (from 1 to 0 or from 0 to 1)
while an interrupt is active, the IIC interrupt signal is asserted to the universal interrupt controller (UIC).

The IIC0_XTCNTLSS[SDBD, SDBF] contain the current status of the Slave Data Buffer, IIC0_SDBUF. When
the IIC0_SDBUF contains data, IIC0_XTCNTLSS[SDBD] is set. When the IIC0_SDBF is full,
IIC0_XTCNTLSS[SDBF] is set.

The state of the IIC0_SDBUF is not instantly recorded by the IIC0_XTCNTL[SDBD, SDBF]. The delay
depends on the size of the buffer access. For half-word accesses, these fields are valid on the third OPB
clock following the transfer. For byte accesses, these fields are valid on the second OPB clock following the
transfer.

If any of the following fields: IIC0_XTCNTLSS[SRC, SRS, SWC, SWS] = 1 and IIC0_MDCNTL[HSCL] = 0; no
new slave operations will be accepted over the IIC bus. A NACK is issued until the slave service bits and the
slave complete bits are cleared: IIC0_XTCNTLSS[SRC, SRS, SWC, SWS] = 0.

Soft reset, IIC0_XTCNTLSS[SRST], provides a last means of recovery from IIC interface or IIC bus failure.
Once enabled, soft reset completely resets the IIC interface. All IIC registers are affected. All transmissions
from the IIC interface are terminated. Enabling soft reset during an IIC transmission may improperly terminate
the transmission and hang the IIC bus.
587 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.3.15 IIC0 Direct Control Register (IIC0_DIRECTCNTL)

The IIC0 Direct Control Register (IIC0_DIRECTCNTL), which controls and monitors the IIC serial
clock (IICSCL) and serial data (IICSDA) signal, is used for error recovery when a malfunction is detected on
the IIC interface.

Figure 22-18 illustrates the IIC0_DIRECTCNTL.

IIC0_DIRECTCNTL[SDAC, SCC] can be written to control the IICSDA and IICSCL signals. When controlling
the IICSDA and IICSCL signals directly, the IIC controller must be placed in the reset state,
IIC0_XTCNTLSS[SRST] = 1.

IIC0_DIRECTCNTL[MSDA, MSC] are used to verify that IIC0_DIRECTCNTL[SDAC, SCC] were written
successfully, and that the IICSCL signals can be controlled. If IIC0_DIRECTCNTL[MSDA, MSC] do not
correspond to IIC0_DIRECTCNTL[SDAC, SCC], respectively, toggle IICSCL repeatedly to regain control.

IIC0_DIRECTCNTL[SDAC, SCC, MSDA, MSC] = 1 after a chip or system reset. A Soft Reset,
IIC0_XTCNTLSS[SRST] = 1, does not affect the state IIC0_DIRECTCNTL.

22.4 Programming the IIC Controller

This section describes initialization and configurion of the IIC controller for reading and writing IIC slave
devices.

Figure 22-18. IIC0 Direct Control Register (IIC0_DIRECTCNTL)
0:3 Reserved

4 SDAC IICSDA Output Control
Directly controls the IICSDA output.
0 IICSDA is a logic 0
1 IICSDA is a logic 1

5 SCC IICSCL Output Control
Directly controls the IICSCL output
0 IICSCL is a logic 0
1 IICSCL is a logic 1

6 MSDA Monitor IICSDA
Used to monitor the IICSDA input
0 IICSDA is a logic 0
1 IICSDA is a logic 1

Read-only

7 MSC Monitor IICSCL. Used to monitor the
IICSCL input.
0 IICSCL is a logic 0
1 IICSCL is a logic 1

Read-only

0 3 4 5 6 7

SCC MSC

SDAC MSDA
AMCC Proprietary 588

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
22.4.1 Initialization

Steps for initializating the IIC controller after reset:

1. Clear IIC Low Master Address (write IIC0_LMADR=0x00) and IIC High Master Address (write
IIC0_HMADR=0x00).

2. Clear IIC Low Slave Address (write IIC0_LSADR=0x00) and IIC High Slave Address (write
IIC0_MSADR=0x00).

3. Clear any active interrupts in the IIC Status register (write IIC0_STS=0x0A).

4. Clear all writeable status bits in the IIC Extended Status register (write IIC0_EXTSTS=0x8F).

5. Set the IIC Clock Divisor register (IIC0_CLKDIV).

6. Clear all interrupt mask bits in the IIC Interrupt Mask register (write IIC0_INTRMSK=0x00).

7. Clear the IIC Transfer Count register (write IIC0_XFRCNT=0x00).

8. Clear status set in the IIC Extended Control and Slave Status register (write IIC0_XTCNTLSS=0xF0).

9. Initialize the IIC Mode Control register (write IIC0_MDCNTL=0xC2).

Setting IIC0_MDCNTL=0xC2 does the following:

– Flushes master and slave data buffers
– Enables IIC Standard Mode (100Kb clock)
– Disables Interrupts
– Disables Slave Mode
– Enables Exit Unknown State
– Clear the IIC0 Control Register (write IIC0_CNTL=0x00)

22.4.2 IIC Read

Steps for performing an IIC read from an IIC slave:

1. Clear the Stop Complete bit (write IIC0_STS[SCMP]=1).

2. Poll the Pending Transfer bit (IIC0_STS[PT]) until it is 0, indicating that there are no pending transfers.

3. Set the Flush Master Data Buffer bit (write IIC0_MDCNTL[FMDB]=1) to clear the buffer.

4. Place the address of the IIC slave to be accessed in the IIC0 Low Master Address (IIC0_LMADR) and IIC
High Master Address (IIC0_HMADR) registers. The IIC0_HMADR and IIC0_LMADR[A7] are only used for
10-bit addressing.

5. Initialize the IIC Control Register (IIC0_CNTL) to start the read transfer. The IIC0_CNTL contains several
configuration options controlling the read transfer:

– Select a transfer as the bus operation

Clear the Halt Master Transfer bit (write IIC0_CNTL[HMT]=0) to perform a transfer.

– Select the address mode

Two address modes are supported, 7-bit addressing (IIC0_CNTL[AMD]=0) or 10-bit addressing
(IIC0_CNTL[AMD]=1).

– Set the transfer count
589 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
One to four bytes can be read per a transfer. The Transfer Count bit field specifies the number of
bytes (write IIC0_CNTL[TCT]).

– Select how the transfer starts

A transaction can begin with a start (IIC0_CNTL[RPST]=0) or a repeat start (IIC0_CNTL[RPST]=1)
condition. The start condition is typically used to start an IIC transaction.

– Specify if this transfer is the last transfer in a sequence of tranfers

For the last read in a chain or a single transfer, clear the Chain Transfer bit (write
IIC0_CNTL[CHT]=0). Clearing this bit instructs the IIC controller to place a stop condition after the
transfer. For a read chained to a subsequent read, set the Chain Transfer bit (write
IIC0_CNTL[CHT]=1). No stop condition is placed between chained transfers.

– Enable a read transfer

Set the Read/Write bit (write IIC0_CNTL[RW]=1) for a read.

– Begin the transfer

Set the Pending Transfer bit (write IIC0_CNTL[PT]=1). Once enabled, the read transfer begins as
soon as the IIC bus is free.

6. Poll the Pending Transfer bit (IIC0_STS[PT]) until it is 0, indicating that the read transfer completed.

7. Read the Error status bit (IIC0_STS[ERR]) to ensure the transfer completed error free.

– If an error is indicated (IIC0_STS[ERR]=1), read the Lost Arbitration, Incomplete Transfer and Transfer
Aborted bits (IIC0_EXTST[LA,ICT,XFRA]) to determine how to recover from the error.

– If no error is indicated (IIC0_STS[ERR]=0), read the data from the Master Data Buffer (IIC0_MDBUF).
The IIC Transfer Count Register (IIC0_XFRCNT[MTC]) indicates the number of bytes available in the
Master Data Buffer. The IIC0_MDBUF can be read with byte (lbz) or halfword (lhz) operations. Full word
operations are not supported.

22.4.3 IIC Write

Steps for performing an IIC write to an IIC slave:

1. Clear the Stop Complete bit (write IIC0_STS[SCMP]=1).

2. Poll the Pending Transfer bit (IIC0_STS[PT]) until it is 0, indicating that there are no pending transfers.

3. Set the Flush Master Data Buffer bit (write IIC0_MDCNTL[FMDB]=1) to clear the buffer.

4. Write 1 to 4 bytes of data into the the Master Data Buffer (IIC0_MDBUF). The IIC0_MDBUF can be written
with byte (stb) or halfword (sth) operations. Full word operations are not supported.

5. Place the address of the IIC slave to be accessed in the IIC0 Low Master Address (IIC0_LMADR) and IIC
High Master Address (IIC0_HMADR) registers. The IIC0_HMADR and IIC0_LMADR[A7] are only used for
10-bit addressing.

6. Initialize the IIC Control Register (IIC0_CNTL) to start the write transfer. The IIC0_CNTL contains several
configuration options controlling the write transfer:

– Select a transfer as the bus operation

Clear the Halt Master Transfer bit (write IIC0_CNTL[HMT]=0) to perform a transfer.

– Select the address mode
AMCC Proprietary 590

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Two address modes are supported, 7-bit addressing (IIC0_CNTL[AMD]=0) or 10-bit addressing
(IIC0_CNTL[AMD]=1).

– Set the transfer count

One to four bytes can be written per a transfer. The Transfer Count bit field specifies the number of
bytes (IIC0_CNTL[TCT])

– Select how the transfer starts

A transaction can begin with a start (IIC0_CNTL[RPST]=0) or a repeat start (IIC0_CNTL[RPST]=1)
condition. The start condition is typically used to start an IIC transaction.

– Specify if this transfer is the last transfer in a sequence of tranfers

For the last write in a chain or a single transfer, clear the Chain Transfer bit (write
IIC0_CNTL[CHT]=0). Clearing this bit instructs the IIC controller to place a stop condition after the
transfer. For a write chained to a subsequent write, set the Chain Transfer bit (write
IIC0_CNTL[CHT]=1). No stop condition is placed between chained transfers.

– Enable a write transfer

Clear the Read/Write bit (write IIC0_CNTL[RW]=0) for a write.

– Begin the transfer

Set the Pending Transfer bit (write IIC0_CNTL[PT]=1). Once enabled, the write transfer begins as
soon as the IIC bus is free.

7. Poll the Pending Transfer bit (IIC0_STS[PT]) until it is 0, indicating that the write transfer completed.

8. Read the Error status bit (IIC0_STS[ERR]) to ensure the transfer completed error free.

– If an error is indicated (IIC0_STS[ERR]=1), read the Lost Arbitration, Incomplete Transfer and Transfer
Aborted bits (IIC0_EXTST[LA,ICT,XFRA]) to determine how to recover from the error.

– If no error is indicated (IIC0_STS[ERR]=0), read the IIC Transfer Count Register (IIC0_XFRCNT[MTC]).
The IIC0_XFRCNT[MTC] bit field indicates the number of bytes written to the slave device.

22.5 Interrupt Handling

The IIC interface can handle interrupts in two ways. The processor can poll IIC0_STS[SSS, PT]. Alternatively,
software can use IIC interface interrupts, IIC0_MDCNTL[EINT] and the interrupt mask bits in the
IIC0_INTRMSK control interrupts.

Since a master operation can have one interrupt and a slave operation can have two interrupts, the IIC
interface can queue up to three interrupts. The current interrupt is referred to as the active interrupt. The first
interrupt in the queue is referred to as the on-deck interrupt; the second queued interrupt is called the
pending interrupt. The queue holds multiple interrupts until the active interrupt is cleared by writing a 1 to
IIC0_STS[IRQA]. When an active interrupt is cleared, the on-deck interrupt becomes the active interrupt and
the pending interrupt becomes the on-deck interrupt.

Status associated with an IIC interrupt is immediately set in its corresponding register. Thus, an interrupt
handler can see the status for the current and the queued interrupts. Since the interrupt handler cannot
determine the condition that generated the interrupt, it should read the status, handle all the conditions
currently set and clear the status. If the status changes after the interrupt handler read the status, clearing the
status has no ill effect. Status bits are cleared when set to 1.
591 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
22.6 General Considerations

1. After a reset, the IIC interface enters the unknown IIC bus state. This state is exited when either activity is
seen on the bus or when the exit unknown IIC bus state bit, in the mode control register, is set to a 1. If the
IIC interface is being used in a single master system as the master, then the exit unknown IIC bus state bit
must be used to force the logic out of the unknown state.

2. Once data is written into the slave or master buffter, there is no way to verify the data is in the buffer
without disturbing the IIC transaction. The act of verification requires removing the data. If the data is
removed, invalid data is placed on the IIC bus.

3. Use care when monitoring the IIC0_XCNTLSS[SDBD] or IIC0_STS[MDBS] to determine when data is
present. These bits are set to 1 when the buffer contains data in any stage. Consider the case where the
master buffer is empty prior to being loaded with a byte received over the IIC bus. The byte enters the
fourth stage of the buffer and the IIC0_STS[MDBS] is set to 1. Stages 1, 2, and 3 do not contain data.
Therefore, the data is not available for four OPB clock cycles. Any attempt to prematurely read the data
yields invalid data.

4. When responding to a slave needs service request, manage the data first. Read data out of the slave
buffer, IIC0_SDBUF, for slave reads or write data into the IIC0_SDBUF for slave writes. Next clear the
slave needs service request. For reads, clear IIC0_XTCNTLSS[SRS]. For writes, clear
IIC0_XTCNTLSS[SWS]. Last, clear the active interrupt, IIC0_STS[IRQA] =0.

5. There is no timeout function implemented in the IIC interface. If this type of error recovery function is
needed, it must be implemented in software.

6. Avoid the situations listed in Section 7.2 of the Philips Semiconductors I2C Specification, dated 1995. For
your convenience, the section is summarized as follows:

If multiple masters can be simultaneously involved in a transfer to the same address, or device, then the
design of the system must be done in such a way that arbitration between:

– A repeated Start condition and a data bit does not occur.

– A Stop condition and a data bit does not occur.

– A repeated Start condition and a Stop condition does not occur.
AMCC Proprietary 592

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
593 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 23. GPIO Operations

This chapter describes the General Purpose I/O (GPIO) controller attached to the on-chip peripheral bus
(OPB) of the PPC405EP. The GPIO controller provides flexible control of multiplexed I/Os selectable under
program control. Each of the I/Os is multiplexed with other signals to reduce the quantity of I/O pins needed
on the PPC405EP package.

23.1 Overview

The PPC405EP has one 32-bit GPIO controller. GPIO0 provides 32 user-programmable external signals,
multiplexed with system-related signal groups including trace outputs, external interrupt inputs, chip selects,
and UART interface signals.

Configuration registers provide direct control of all GPIO controller functions and I/O signal selections.

Refer to Figure 23-1 for an illustration of data flow on the selection and internal workings of the GPIO
controller. The module pin serves as both the the input and output.

I/O signal selection maintains a bit-for-bit correspondence with input register (GPIO0_IR), output register
(GPIO0_OR), three state control register (GPIO0_TCR) and open drain register (GPIO0_ODR). In the
405EP implementation the GPIO0_ODR is only applicable when a GPIO signal is selected. When set,
GPIO0_ODR also overides GPIO0_TCR.

For an output selection example, a signal output to pin GPIO0_Out[29] can be sourced from GPIO0 Output
Register (GPIO0_OR) bit 29 or an alternative output signal, UART1_Tx. A value to be sourced is set in
GPIO0_OR[29] and can be selected by GPIO0_OSHRL[26:27] = 00. Table 23-7 provides an list of
configurations for selecting Alt 1 input and output signals. This document refers to alternate signals
generically as Alt 1, in this example UART1_Tx would be an Alt1 output.

Output buffer operation (three-state output, open-drain output) is controlled by the Open Drain Register
(GPIO0_ODR) The Three-State Control Register (GPIO0_TCR) either enables the output driver or forces the
output to high impedance. Three State Select register (GPIO0_TSRH\L) selects between (GPIO0_TCR) and
Alt1 TS control.

A signal input on a GPIO pin is captured in the corresponding bit of the GPIO0_IR, as well as multiplexed to
one other internal functional connection which can be further selected by the GPIO0_ISRH/L register.
AMCC Proprietary 594

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
.

23.2 Features

The GPIO Controller has the following features:

• Direct control of all GPIO controller functions from registers programmed via memory-mapped addresses

– Each output can be selected from one of two sources.

– Each output three-state control can be selected from one of two sources.

– Selection of the input source for the Alternate 1 input

– Settable register as one of the possible inputs for the Alternate 1 input

• Control of 32 bidirectional GPIO module pins

– Each GPIO output can be set from the corresponding Output Register bit.

Output Select GPIOx_OSRH\L

Open Drain GPIOx_ODR

Receive Register 1 GPIOx_RR1

Receive Register 2 GPIOx_RR2

Input Select GPIOx_ISR2H\L

Input Select GPIOx_ISR1H\L

Three-State Select GPIOx_TSRH\L

Output Register GPIOx_OR

ALT1 TS Control

Three-State Control GPIOx_TCR

Sync

Hold

Module
Pin

Input Register GPIOx_IR

GPIOx TS Control

GPIO
Macro
Boundary

Module
Boundary

Alt1 Output
Alt2 Output

2

2

2

Open
Drain
Logic

Alt1 Inputs

2

Alt2 Inputs

Figure 23-1. GPIO Data Flow and Configuration Registers
595 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
– Each GPIO output has programmable three-state control.

– Each GPIO output can also be programmed to emulate an open drain output.

– Each GPIO input is observable from the corresponding Input Register bit.

23.3 Clock and Power Management

The GPIO controllers support clock and power management. Unconditional Sleep (Class 1) power
management is implemented for each controller, and is enabled by setting the corresponding
CPC0_ER[GPIO0] bit, as shown in Figure 14-1 on page 14-285.

23.4 GPIO Register Overview

When an I/O is used as GPIO it is controlled by the corresponding bit in the Output Register GPIO0_OR, the
Three-State Control Register GPIO0_TCR, the Open Drain Register GPIO0_ODR, and the Input Register
GPIO0_IR. Whether an I/O is used as a GPIO or a functional output is selected using the Output Select
Register pair GPIO0_OSRH and GPIO0_OSRL. The source of the three-state control is selected using the
Three-State Select Register pair GPIO0_TSRH and GPIO0_TSRL. When an alternate input is used, the
source of the alternate input is selected using the Input Select Register GPIO0_ISR1L and GPIO0_ISR1H.
The controller also contains Receive Registers GPIO0_RR1. A detailed description of the function of each of
the registers is contained in “Detailed Register Descriptions” on page 23-597.

Table 23-1 contains a summary of the GPIO registers.

Table 23-1. GPIO Register Summary

Mnemonic Address Access Description

GPIO0_OR 0xEF600700 R/W GPIO0 Output

GPIO0_TCR 0xEF600704 R/W GPIO0 Three-State Control

GPIO0_OSRH 0xEF60070C R/W GPIO0 Output Select (High)

GPIO0_OSRL 0xEF600708 R/W GPIO0 Output Select (Low)

GPIO0_TSRH 0xEF600714 R/W GPIO0 Three-State Select (High)

GPIO0_TSRL 0xEF600710 R/W GPIO0 Three-State Select (Low)

GPIO0_ODR 0xEF600718 R/W GPIO0 Open Drain

GPIO0_IR 0xEF60071C R GPIO0 Input

GPIO0_RR1 0xEF600720 R/W GPIO0 Receive Register 1

GPIO0_ISR1H 0xEF600734 R/W GPIO0 Input Select 1 (High)

GPIO0_ISR1L 0xEF600730 R/W GPIO0 Input Select 1 (Low)

Note 1: All GPIO registers are memory-mapped and accessed using load/store instructions at the register address.
Note 2: All registers are aligned on word boundaries. The input and output select registers are also aligned on

doubleword boundaries.
Note 3: (High) register set controls GPIO0 I/O signals 0 to 15.
Note 4: (Low) register set controls GPIO0 I/O signals 16 to 32.
AMCC Proprietary 596

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
23.5 Detailed Register Descriptions

The following sections provide detailed descriptions of the GPIO controller registers. The two GPIO
controllers are attached to the OPB bus. The GPIO0_IR register is read-only; all other registers are both
read- and write-accessible.

23.5.1 GPIO Register Reset Values

When a system reset occurs, all register bits in the GPIO controllers, except GPIO0_IR, are reset to 0. All
outputs are placed in high impedance. GPIO0_IR is not reset because it is synchronized to the OPB clock
and always tracks the state of the I/O pins.

23.5.2 GPIO Output Register (GPIO0_OR)

When a bit in the GPIO controller is used as a GPIO output, the state of the output is controlled by the value
in the GPIO0 Output Register, GPIO0_OR. Whether the setting of the bit in the GPIO0_OR is visible on the
I/O pin is a function of the settings in the GPIO0_TCR, GPIO0_ODR, GPIO0_OSRH, GPIO0_OSRL,
GPIO0_TSRH, and GPIO0_TSRL registers described below.

23.5.3 GPIO Three-State Control Register (GPIO0_TCR)

The GPIO0_TCR register is one source for three-stating a corresponding output. For each bit in the
GPIO0_TCR Register to control the corresponding output, the appropriate 2 bits in the GPIO Three-State
Select Register High and Low (GPIO0_TSRH, GPIO0_TSRL) must be programmed to 0b00. If the
GPIO0_TCR register is selected; setting a bit to 1 in GPIO0_TCR enables the associated output driver.
Clearing the bit to 0 forces the corresponding output into high impedance state. When the same bit is also set
in GPIO0_ODR, the output emulates an open-drain output, regardless of the bit setting in GPIO0_TCR.

Figure 23-2. GPIO Registers
0:31 GPIO register bits

0 31
597 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
23.5.4 GPIO Output Select Registers (GPIO0_OSRH, GPIO0_OSRL)

The GPIO0_OSR register pair (GPIO0_OSRH, GPIO0_OSRL) determines what signal source is sent to the
output pin. The 32 bits that control outputs 0-15 are in the GPIO0_OSRH register, and the 32 bits that control
outputs 16-31 are GPIO0_OSRL. For each output there can be up to three sources of output value. Two bits
in the GPIO0_OSRH/L register pair are needed for each output. This requires a total of 64 bits to control the
32 output bits in one GPIO controller. The 64 bits are made up of two 32 bit registers. The 32 bits that control
outputs 0-16 are in the GPIO0_OSRH register, and the 32 bits that control outputs 17-31 are in the
GPIO0_OSRL register. Table 23-2 shows how these 2 bits control the selection of the signal connected to
that GPIO Out pin.

23.5.5 GPIO Three-State Select Registers (GPIO0_TSRH, GPIO0_TSRL)

The GPIO0_TSR register pair (GPIO0_TSRH, GPIO0_TSRL) determines what signal source is used for the
three-state control input for the GPIO output signals. The 32 bits that control outputs 0-15 are in the
GPIO0_TSRH register, and the 32 bits that control outputs 16-31 are GPIO0_TSRL. For each output there
can be two sources of three-state control. Two bits in the GPIO0_TSRH/L register pair are needed for each
output. This requires a total of 64 bits to control the 32 output bits in one GPIO controller. The 64 bits are
made up of two 32 bit registers. The 32 bits that control outputs 0-16 are in the GPIO0_TSRH register, and
the 32 bits that control outputs 17-31 are in the GPIO0_TSRL register. Table 23-3 shows how these 2 bits
control the selection of the signal connected to that GPIO_Out pin.

Table 23-2. GPIO Output Signal Selection

GPIO0_OSRH/L Bits GPIO_Out Signal Source

00 GPIO0_OR

01 Alt1 output source

10 Reserved

11 Reserved

Table 23-3. GPIO Three-State Selection

GPIO0_TSRH/L Bits GPIO Three-State Control Source

00 GPIO0_TCR

01 Alt1 three-state source

10 Reserved

11 Reserved
AMCC Proprietary 598

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
23.5.6 GPIO Open Drain Register (GPIO0_ODR)

The GPIO0_ODR configures the module I/O three-state driver to emulate open drain drivers on a bit-by-bit
basis. Table 23-4 shows the function of the GPIO0_ODR register and its interaction with the three-state
control signal and output signal. While the GPIO0_ODR register can control Alternate 1 outputs, as well as
alternate three-state control signals, this feature is not used in the PPC405EP. For this reason the registers
listed in the table are used when a bit is used as a GPIO.

23.5.7 GPIO Input Register (GPIO0_IR)

The state of each bit in the GPIO0_IR Register reflects the corresponding GPIO controller input signal. All
input signals are synchronized to OPBClk before being stored in the GPIO0_IR Register. The GPIO0_IR
register is read-only and does not change during a read access. To receive valid data as input from a module
pin, the three-state output attached to that module pin is first placed in high impedance by setting the
corresponding three-state control bit in the GPIO0_TCR register.

23.5.8 GPIO Input Select Registers (GPIO0_ISR1H, GPIO0_ISR1L)

The GPIO0_ISR1 register pair (GPIO0_ISR1H, GPIO0_ISR1L) determine what signal source is used as the
input signals. The 32 bits that control outputs 0-15 are in the GPIO0_ISR1H register, and the 32 bits that
control outputs 16-31 are GPIO0_ISR1L. For each Alt1 input there can be up to three sources of input value.
Two bits in the GPIO0_OSR1H/L register pair are needed for each Alt1 input. This requires a total of 64 bits
to control the 32 Alt1 input bits. The 64 bits are made up of two 32 bit registers. The 32 bits that control Alt1
inputs 0-16 are in the GPIO0_ISR1H register, and the 32 bits that control Alt1 inputs 17-31 are in the
GPIO0_ISR1L register. Table 23-5 shows how these 2 bits control the selection of the input. For normal
operation the only setting used is 01 which selects the pin input.

Table 23-4. GPIO0_ODR Control Settings

GPIO0_ODR bit GPIO0_TCR bit GPIO0_OR bit State of Module pin

0 0 x Forced to high impedance
0 1 0 Driving 0
0 1 1 Driving 1
1 x 0 Driving 0
1 x 1 Forced to high impedance

Table 23-5. GPIO Alternate Input Signal Selection

GPIO0_ISR1H/L Bits Alt_1 Input Signal

00 Receive Register

01 Pin input (not synchronized)

10 Hold input when selected

11 Reserved
599 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
23.5.9 GPIO Receive Register (GPIO0_RR1)

For normal operation the receive register is not used, as noted in later sections on selecting the Alt 1 signals.
They may however be useful during software debug. There are times when a programmer would like to
control input values without having to determine how to cause the system to produce the desired value at an
input. By programming the desired input bit in GPIO0_RR1 for Alt1 inputs and then setting the appropriate 2
bits, in the associated GPIO0_ISR1H/L register pair to 00, a desired input value can be set. Note that these
registers only affect the alternate inputs, not the GPIO0_IR register.

23.6 GPIO0 Signal Assignments

Table 23-6 shows the multiplexed signal assignments for the GPIO0 controller.

When a pin is used as a GPIO, the signal at the pin is controlled by the GPIO0_OR, GPIO0_TCR,
GPIO0_ODR registers and observed by the GPIO0_IR register. The values in GPIO0 registers GPIO0_RR1
and GPIO0_ISR1H/L are don’t care, so the reset default of 0 is usable. Registers GPIO0_OSRH/L and
GPIO0_TSRH/L default to all zeros so they are properly set up as GPIOs. The values in the table must be
maintained, and respective bits in GPIO0_OSRH/L, and GPIO0_TSRH/L must be 0 for GPIOs when
modifying these registers for pins using the Alternate 1 functions.

Table 23-6. GPIO0 Signal Assignments

Pin used as GPIO I/O Pin used as GPIO I/O

GPIO0_0[PerBLast] I/O GPIO0_16[PerAddr05] I/O

GPIO0_1[TS0E] I/O GPIO0_17[IRQ0] I/O

GPIO0_2[TS1E] I/O GPIO0_18[IRQ1] I/O

GPIO0_3[TS0O] I/O GPIO0_19[IRQ2] I/O

GPIO0_4[TS1O] I/O GPIO0_20[IRQ3] I/O

GPIO0_5[TS3] I/O GPIO0_21[IRQ4] I/O

GPIO0_6[TS4] I/O GPIO0_22[IRQ5] I/O

GPIO0_7[TS5] I/O GPIO0_23[IRQ6] I/O

GPIO0_8[TS6] I/O GPIO0_24[UART0_DCD] I/O

GPIO0_9[TrcClk] I/O GPIO0_25[UART0_DSR] I/O

GPIO0_10[PerCS1] I/O GPIO0_26[UART0_RI] I/O

GPIO0_11[PerCS2] I/O GPIO0_27[UART0_DTR] I/O

GPIO0_12[PerCS3] I/O GPIO0_28[UART1_Rx] I/O

GPIO0_13[PerCS4] I/O GPIO0_29[UART1_Tx] I/O

GPIO0_14[PerAddr03] I/O GPIO0_30[RejectPkt0] I/O

GPIO0_15[PerAddr04] I/O GPIO0_31[RejectPkt1] I/O
AMCC Proprietary 600

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
23.6.1 Programming the GPIO0 Alternate 1 Bank

When a pin is used as a functional pin, the registers must be set up to use the Alternate 1 inputs and outputs.
Registers GPIO0_TCR, GPIO0_OSRH/L, GPIO0_TSRH/L, GPIO0_ISR1H/L must be set as shown in the
table. GPIO0_IR is not used and the values in registers GPIO0_OR and GPIO0_RR1 are don’t care, so the
reset default of 0 is usable. The GPIO0_ODR register defaults to all 0s so it is properly set. The values in the
table must be maintained and respective bits in GPIO0_ODR must be 0 for Alternate 1 functions when
modifying these registers for pins using the GPIO functions.

Table 23-7. Selecting GPIO0 Alternate 1 Signals

Signal Name I/O

GPIO0_TCR GPIO0_OSRH GPIO0_TSRH GPIO0_ISRH

Bit Value Bit Value Bit Value Bit Value

GPIO0_0[PerBLast] O 0 1 0:1 01 0:1 00 0:1 xx
GPIO0_1[TS1E] O 1 1 2:3 01 2:3 00 2:3 xx
GPIO0_2[TS2E] O 2 1 4:5 01 4:5 00 4:5 xx
GPIO0_3[TS1O] O 3 1 6:7 01 6:7 00 6:7 xx
GPIO0_4[TS2O] O 4 1 8:9 01 8:9 00 8:9 xx
GPIO0_5[TS3] O 5 1 10:11 01 10:11 00 10:11 xx
GPIO0_6[TS4] O 6 1 12:13 01 12:13 00 12:13 xx
GPIO0_7[TS5] O 7 1 14:15 01 14:15 00 14:15 xx
GPIO0_8[TS6] O 8 1 16:17 01 16:17 00 16:17 xx
GPIO0_9[TrcClk] O 9 1 18:19 01 18:19 00 18:19 xx
GPIO0_10[PerCS1] O 10 1 20:21 01 20:21 00 20:21 xx
GPIO0_11[PerCS2] O 11 1 22:23 01 22:23 00 22:23 xx
GPIO0_12[PerCS3] O 12 1 24:25 01 24:25 00 24:25 xx
GPIO0_13[PerCS4] O 13 1 26:27 01 26:27 00 26:27 xx
GPIO0_14[PerAddr03] O 14 1 28:29 01 28:29 00 28:29 xx
GPIO0_15[PerAddr04] O 15 1 30:31 01 30:31 00 30:31 xx
GPIO0_16[PerAddr05] O 16 1 0:1 01 0:1 00 0:1 xx
GPIO0_17[IRQ0] I 17 0 2:3 xx 2:3 00 2:3 01
GPIO0_18[IRQ1] I 18 0 4:5 xx 4:5 00 4:5 01
GPIO0_19[IRQ2] I 19 0 6:7 xx 6:7 00 6:7 01
GPIO0_20[IRQ3] I 20 0 8:9 xx 8:9 00 8:9 01
GPIO0_21[IRQ4] I 21 0 10:11 xx 10:11 00 10:11 01
GPIO0_22[IRQ5] I 22 0 12:13 xx 12:13 00 12:13 01
GPIO0_23[IRQ6] I 23 0 14:15 xx 14:15 00 14:15 01
GPIO0_24[UART0_DCD] I 24 0 16:17 xx 16:17 00 16:17 01
GPIO0_25[UART0_DSR] I 25 0 18:19 xx 18:19 00 18:19 01
GPIO0_26[UART0_RI] I 26 0 20:21 xx 20:21 00 20:21 01
GPIO0_27[UART0_DTR] O 27 1 22:23 01 22:23 00 22:23 xx
GPIO0_28[UART1_Rx] I 28 0 24:25 xx 24:25 00 24:25 01
GPIO0_29[UART1_Tx] O 29 1 26:27 01 26:27 00 26:27 xx
GPIO0_30[RejectPkt0] I 30 0 28:29 xx 28:29 00 28:29 01
GPIO0_31[RejectPkt1] I 31 0 30:31 xx 30:31 00 30:31 01
601 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
23.7 Sample GPIO Bank Programming

The following programming examples show sample code for configuring the signals available on the
Alternate1 bank.

!---
 ! GPIO0 setup. Configure for Instruction Trace, external interrupts
 ! and UARTs.
 !
 ! GPIO0[0] - External Bus Controller BLAST output
 ! GPIO0[1-9] - Instruction trace outputs
 ! GPIO0[10-13] - External Bus Controller CS_1 - CS_4 outputs
 ! GPIO0[14-16] - External Bus Controller ABUS3-ABUS5 outputs
 ! GPIO0[17-23] - External Interrupts IRQ0 - IRQ6 inputs
 ! GPIO0[24-27] - UART0 control signal inputs/outputs
 ! GPIO0[28-29] - UART1 data signal input/output
 ! GPIO0[30-31] - EMAC0 and EMAC1 reject packet inputs
 !---
 addis %r3,%r0,GPIO0_OSRH@h ! output select
 ori %r3,%r3,GPIO0_OSRH@l
 addis %r4,%r0,0x5555
 ori %r4,%r4,0x5555
 stw %r4, 0(%r3)
 sync

 addis %r3,%r0,GPIO0_OSRL@h
 ori %r3,%r3,GPIO0_OSRL@l
 addis %r4,%r0,0x4000
 ori %r4,%r4,0x0110
 stw %r4, 0(%r3)
 sync

 addis %r3,%r0,GPIO0_ISR1H@h ! input select
 ori %r3,%r3,GPIO0_ISR1H@l
 addis %r4,%r0,0x0000
 ori %r4,%r4,0x0000
 stw %r4, 0(%r3)
 sync

 addis %r3,%r0,GPIO0_ISR1L@h
 ori %r3,%r3,GPIO0_ISR1L@l
 addis %r4,%r0,0x1555
 ori %r4,%r4,0x5445
 stw %r4, 0(%r3)
 sync
AMCC Proprietary 602

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
 addis %r3,%r0,GPIO0_TSRH@h ! three-state select
 ori %r3,%r3,GPIO0_TSRH@l
 addis %r4,%r0,0x0000
 ori %r4,%r4,0x0000
 stw %r4, 0(%r3)
 sync

 addis %r3,%r0,GPIO0_TSRL@h
 ori %r3,%r3,GPIO0_TSRL@l
 addis %r4,%r0,0x0000
 ori %r4,%r4,0x0000
 stw %r4, 0(%r3)
 sync

 addis %r3,%r0,GPIO0_TCR@h ! enable output drivers for outputs
 ori %r3,%r3,GPIO0_TCR@l
 addis %r4,%r0,0xFFFF
 ori %r4,%r4,0x8014
 stw %r4, 0(%r3)
 sync
603 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 24. Event Counters

The event counter unit provides the following features:

• Event detection logic to doublelatch the input signals connected to GPIO30:31 and to detect either a rising
or falling signal transition, depending on edge type selected in the control register

• The event control register EVC0_ECR that enables the two 32-bit event counters and selects either falling
or rising edge detection independently for each counter

When configured and enabled, the two event counters EVC0_CNT0 and EVC0_CNT1 capture the number of
signal state changes detected on external inputs GPIO30:31. After the GPIO interface has been programmed
to select the input signals available on GPIO0 Bank1 bits 30 and 31, enabling each of the counters can be
done by setting bits EC0 and EC1 in the EVC0_ECR control register. Details of programming the GPIO
interface are provided in “GPIO Operations” on page 23-594.

24.1 Packet Rejection Counts

When GPIO30:31 are connected to the RejectPkt input signals, the event counters can be used to count
packet rejection events signalled to the PPC405EP by external logic, as described in “Packet Rejection Filter”
on page 19-506. With the packet removal logic disabled via CPC0_EPCTL, the event counters can also be
used as general-purpose external event counters.

24.2 Counter Configuration

Configuring and enabling the event counters is done by writing EVC0_ECR, to select the counter being
enabled and the edge events to be counted. When a counter is enabled, it resets to 0x00000000, after which it
increments whenever a signal state transition is detected. See “Event Counter Control Register (EVC0_ECR)”
on page 24-605 for details.

24.3 EVC0 Count Registers

Table 24-1 lists the event count registers and the event count control register (all DCRs) in the PPC405EP.

These EVC0 registers are read and written using the mtdcr and mfdcr instructions.

Table 24-1. Event Count Registers

Register Address R/W Description

EVC0_CNT0 0x200 R/W Event Count Register 0
EVC0_CNT1 0x201 R/W Event Count Register 1
EVC0_ECR 0x202 R/W Event Count Control Register
AMCC Proprietary 604

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
24.3.1 Event Counters (EVC0_CNT0, EVC0_CNT1)

Each event counter is a 32-bit read/write register, as shown in XREFTBD:

24.3.2 Event Counter Control Register (EVC0_ECR)

Counters to be enabled and edge events to be counted are selected using the fields in this register.

Figure 24-1. Event Count Registers (EVC0_CNT0, EVC0_CNT1)
0:31 Event count

Figure 24-2. Event Counter Control Register (EVC0_ECR)
0 EC0 Event Counter 0 Enable

0 Counter 0 disabled
1 Counter 0 enabled

1 EC1 Event Counter 1 Enable
0 Counter 1 disabled
1 Counter 1 enabled

2 ES0 Edge Selection Counter 0
0 Falling edge selected
1 Rising edge selected

3 ES1 Edge Selection Counter 1
0 Falling edge selected
1 Rising edge selected

4:31 Reserved

0 31

0 1 2 3 4 31

ES1EC1

ES0EC0
605 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Part V. Reference
AMCC Proprietary 606

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
607 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 25. Instruction Set

Descriptions of the PPC405EP instructions follow. Each description contains the following elements:

• Instruction names (mnemonic and full)
• Instruction syntax
• Instruction format diagram
• Pseudocode description
• Prose description
• Registers altered
• Architecture notes identifying the associated PowerPC Architecture component

Where appropriate, instruction descriptions list invalid instruction forms and exceptions, and provide
programming notes.

25.1 Instruction Set Portability

To support embedded real-time applications, the instruction sets of the PPC405EP and other IBM controllers
implement the IBM PowerPC Embedded Environment, which is not part of the PowerPC Architecture defined
in The PowerPC Architecture: A Specification for a New Family of RISC Processors.

Programs using these instructions are not portable to PowerPC implementations that do not implement the
IBM PowerPC Embedded Environment.

The PPC405EP implements a number of implementation-specific instructions that are not part of the
PowerPC Architecture or the IBM PowerPC Embedded Environment, which are listed in Table 25-1. In the
table, the syntax “[o]” indicates that an instruction has an “o” form, which updates the XER[SO,OV] fields, and
a “non-o” form. The syntax “[.]” indicates that an instruction has a “record” form, which updates CR[CR0], and
a “non-record” form.

Table 25-1. Implementation-Specific Instructions

dccci
dcread
iccci
icread

macchw[o][.]
macchws[o][.]
macchwsu[o][.]
macchwu[o][.]
machhw[o][.]
machhws[o][.]
machhwsu[o][.]
machhwu[o][.]
maclhw[o][.]
maclhws[o][.]
maclhwsu[o][.]
maclhwu[o][.]

mfdcr
mtdcr
mulchw[.]
mulchwu[.]
mulhhw[.]
mulhhwu[.]
mullhw[.]
mullhwu[.]

nmacchw[o][.]
nmacchws[o][.]
nmachhw[o][.]
nmachhws[o][.]
nmaclhw[o][.]
nmaclhws[o][.]

rfci
tlbre
tlbsx[.]
tlbwe
wrtee
wrteei
AMCC Proprietary 608

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
25.2 Instruction Formats

For more detailed information about instruction formats, including a summary of instruction field usage and
instruction format diagrams for the PPC405EP, see “Instruction Formats” on page 25-609.

Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode
in another field. The remaining instruction bits contain additional fields. All instruction fields belong to one of
the following categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The instruction format
diagrams specify the values of defined fields.

• Variable

These fields contain operands, such as general purpose register selectors and immediate values, that may
vary from execution to execution. The instruction format diagrams specify the operands in variable fields.

• Reserved

Bits in a reserved field should be set to 0. In the instruction format diagrams, reserved fields are shaded.

If any bit in a defined field does not contain the expected value, the instruction is illegal and an illegal
instruction exception occurs. If any bit in a reserved field does not contain 0, the instruction form is invalid and
its result is architecturally undefined. Unless otherwise noted, the execute all invalid instruction forms without
causing an illegal instruction exception.

25.3 Pseudocode

The pseudocode that appears in the instruction descriptions provides a semi-formal language for describing
instruction operations.

The pseudocode uses the following notation:

= Assignment

∧ AND logical operator

¬ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) logical operator

+ Twos complement addition

– Twos complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division; (33 % 32) = 1.

|| Concatenation

=, ≠ Equal, not equal relations
609 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
<, > Signed comparison relations

, Unsigned comparison relations

if...then...else... Conditional execution; if condition then a else b, where a and b represent
one or more pseudocode statements. Indenting indicates the ranges of a
and b. If b is null, the else does not appear.

do Do loop. “to” and “by” clauses specify incrementing an iteration variable;
“while” and “until” clauses specify terminating conditions. Indenting
indicates the scope of a loop.

leave Leave innermost do loop or do loop specified in a leave statement.

n A decimal number

0xn A hexadecimal number

0bn A binary number

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

FLDb,b, . . . A list of bits, by number or name, in a named instruction or register field

REGb A bit in a named register

REGb:b A range of bits in a named register

REGb,b, . . . A list of bits, by number or name, in a named register

REG[FLD] A field in a named register

REG[FLD, FLD . . .] A list of fields in a named register

REG[FLD:FLD] A range of fields in a named register

GPR(r) General Purpose Register (GPR) r, where 0 ≤ r ≤ 31.

(GPR(r)) The contents of GPR r, where 0 ≤ r ≤ 31.

DCR(DCRN) A Device Control Register (DCR) specified by the DCRF field in an
mfdcr or mtdcr instruction

SPR(SPRN) An SPR specified by the SPRF field in an mfspr or mtspr instruction

TBR(TBRN) A Time Base Register (TBR) specified by the TBRF field in an mftb
instruction

GPRs RA, RB, . . .
(Rx) The contents of a GPR, where x is A, B, S, or T

(RA|0) The contents of the register RA or 0, if the RA field is 0.

c0:3 A four-bit object used to store condition results in compare instructions.
nb The bit or bit value b is replicated n times.

xx Bit positions which are don’t-cares.

CEIL(x) Least integer ≥ x.

EXTS(x) The result of extending x on the left with sign bits.

<
u >

u

AMCC Proprietary 610

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PC Program counter.

RESERVE Reserve bit; indicates whether a process has reserved a block of
storage.

CIA Current instruction address; the 32-bit address of the instruction being
described by a sequence of pseudocode. This address is used to set the
next instruction address (NIA). Does not correspond to any architected
register.

NIA Next instruction address; the 32-bit address of the next instruction to be
executed. In pseudocode, a successful branch is indicated by assigning
a value to NIA. For instructions that do not branch, the NIA is CIA +4.

MS(addr, n) The number of bytes represented by n at the location in main storage
represented by addr.

EA Effective address; the 32-bit address, derived by applying indexing or
indirect addressing rules to the specified operand, that specifies an
location in main storage.

EAb A bit in an effective address.

EAb:b A range of bits in an effective address.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits
specified by n.

MASK(MB,ME) Mask having 1s in positions MB through ME (wrapping if MB > ME) and
0s elsewhere.

instruction(EA) An instruction operating on a data or instruction cache block associated
with an EA.
611 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
25.3.1 Operator Precedence

Table 25-2 lists the pseudocode operators and their associativity in descending order of precedence:

25.4 Register Usage

Each instruction description lists the registers altered by the instruction. Some register changes are explicitly
detailed in the instruction description (for example, the target register of a load instruction). Other registers
are changed, with the details of the change not included in the instruction description. This category
frequently includes the Condition Register (CR) and the Fixed-point Exception Register (XER). For
discussion of the CR, see “Condition Register (CR)” on page 3-80. For discussion of XER, see “Fixed Point
Exception Register (XER)” on page 3-76.

25.5 Alphabetical Instruction Listing

The following pages list the instructions available in the PPC405EP in alphabetical order.

Table 25-2. Operator Precedence

Operators Associativity

REGb, REG[FLD], function
evaluation

Left to right

nb Right to left

¬, – (unary minus) Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, >, , Left to right

∧, ⊕ Left to right

∨ Left to right

← None

<
u >

u

AMCC Proprietary 612

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
613 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
add
Add
25.Instruction Setadd
Add

(RT) ← (RA) + (RB)

The sum of the contents of register RA and the contents of register RB is placed into register RT.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

add RT, RA, RB OE= 0, Rc= 0
add. RT, RA, RB OE= 0, Rc= 1
addo RT, RA, RB OE= 1, Rc= 0
addo. RT, RA, RB OE= 1, Rc= 1

31 RT RA RB OE 266 Rc

0 6 11 16 21 22 31
AMCC Proprietary 614

405EP – PPC405EP Embedded Processor
addc
Add Carrying

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

addc
Add Carrying

(RT) ← (RA) + (RB)
if (RA) + (RB) 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and register RB is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addc RT, RA, RB OE= 0, Rc= 0
addc. RT, RA, RB OE= 0, Rc= 1
addco RT, RA, RB OE= 1, Rc= 0
addco. RT, RA, RB OE= 1, Rc= 1

31 RT RA RB OE 10 Rc

0 6 11 16 21 22 31

>
u

615 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
adde

Add Extended
adde
Add Extended

(RT) ← (RA) + (RB) + XER[CA]
if (RA) + (RB) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, register RB, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains 1

• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

adde RT, RA, RB OE= 0, Rc= 0
adde. RT, RA, RB OE= 0, Rc= 1
addeo RT, RA, RB OE= 1, Rc= 0
addeo. RT, RA, RB OE =1, Rc=1

31 RT RA RB OE 138 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary 616

405EP – PPC405EP Embedded Processor
addi
Add Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

addi
Add Immediate

(RT) ← (RA|0) + EXTS(IM)

If the RA field is 0, the IM field, sign-extended to 32 bits, is placed into register RT.

If the RA field is nonzero, the sum of the contents of register RA and the contents of the IM field, sign-
extended to 32 bits, is placed into register RT.

Registers Altered
• RT

Programming Note

To place an immediate, sign-extended value into the GPR specified by RT, set RA = 0.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addi RT, RA, IM

14 RT RA IM

0 6 11 16 31

Table 25–3. Extended Mnemonics for addi

Mnemonic Operands Function
Other Registers

Altered

la RT, D(RA) Load address (RA ≠ 0); D is an offset from a base
address that is assumed to be (RA).
(RT) ← (RA) + EXTS(D)

Extended mnemonic for
addi RT,RA,D

li RT, IM Load immediate.
(RT) ← EXTS(IM)

Extended mnemonic for
addi RT,0,IM

subi RT, RA, IM Subtract EXTS(IM) from (RA|0).
Place result in RT.

Extended mnemonic for
addi RT,RA,−IM
617 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
addic

Add Immediate Carrying
addic
Add Immediate Carrying

(RT) ← (RA) + EXTS(IM)
if (RA) + EXTS(IM) 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32 bits, is placed
into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT
• XER[CA]

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addic RT, RA, IM

12 RT RA IM

0 6 11 16 31

Table 25-1. Extended Mnemonics for addic

Mnemonic Operands Function
Other Registers

Altered

subic RT, RA, IM Subtract EXTS(IM) from (RA)
Place result in RT; place carry-out in XER[CA].

Extended mnemonic for
addic RT,RA,−IM

>
u

AMCC Proprietary 618

405EP – PPC405EP Embedded Processor
addic.
Add Immediate Carrying and Record

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

addic.
Add Immediate Carrying and Record

(RT)� ← (RA) + EXTS(IM)
if (RA) + EXTS(IM) 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32 bits, is placed
into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO

Programming Note

addic. is one of three instructions that implicitly update CR[CR0] without having an RC field. The other
instructions are andi. and andis..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addic. RT, RA, IM

13 RT RA IM

0 6 11 16 31

Table 25-2. Extended Mnemonics for addic.

Mnemonic Operands Function
Other Registers

Altered

subic. RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT; place carry-out in XER[CA].

Extended mnemonic for
addic. RT,RA,−IM

CR[CR0]

>
u

619 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
addis

Add Immediate Shifted
addis
Add Immediate Shifted

(RT)� ← (RA|0) + (IM || 160)

If the RA field is 0, the IM field is concatenated on its right with sixteen 0-bits and placed into register RT.

If the RA field is nonzero, the contents of register RA are added to the contents of the extended IM field. The
sum is stored into register RT.

Registers Altered
• RT

Programming Note

An addi instruction stores a sign-extended 16-bit value in a GPR. An addis instruction followed by an ori
instruction stores an arbitrary 32-bit value in a GPR, as shown in the following example:

addis RT, 0, high 16 bits of value
ori RT, RT, low 16 bits of value

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addis RT, RA, IM

15 RT RA IM

0 6 11 16 31

Table 25-3. Extended Mnemonics for addis

Mnemonic Operands Function
Other Registers

Altered

lis

RT, IM Load immediate shifted.
(RT) ← (IM || 160)

Extended mnemonic for
addis RT,0,IM

subis

RT, RA, IM Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for
addis RT,RA,−IM
AMCC Proprietary 620

405EP – PPC405EP Embedded Processor
addme
Add to Minus One Extended

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

addme
Add to Minus One Extended

(RT) ← (RA) + XER[CA] + (–1)
if (RA) + XER[CA] + 0xFFFF FFFF 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, XER[CA], and –1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addme RT, RA OE= 0, Rc= 0
addme. RT, RA OE= 0, Rc= 1
addmeo RT, RA OE=1, Rc= 0
addmeo. RT, RA OE =1, Rc=1

31 RT RA OE 234 Rc

0 6 11 16 21 22 31

>
u

621 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
addze

Add to Zero Extended
addze
Add to Zero Extended

(RT) ← (RA) + XER[CA]
if (RA) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

addze RT, RA OE=0, Rc=0
addze. RT, RA OE=0, Rc=1
addzeo RT, RA OE=1, Rc=0
addzeo. RT, RA OE=1, Rc=1

31 RT RA OE 202 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary 622

405EP – PPC405EP Embedded Processor
and
AND

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

and
AND

(RA) ← (RS) ∧ (RB)

The contents of register RS are ANDed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

and RA, RS, RB Rc=0
and. RA, RS, RB Rc=1

31 RS RA RB 28 Rc

0 6 11 16 21 31
623 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
andc

AND with Complement
andc
AND with Complement

(RA) ← (RS) ∧ ¬(RB)

The contents of register RS are ANDed with the ones complement of the contents of register RB; the result is
placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

andc RA,RS,RB Rc=0
andc. RA,RS,RB Rc=1

31 RS RA RB 60 Rc

0 6 11 16 21 2 31
AMCC Proprietary 624

405EP – PPC405EP Embedded Processor
andi.
AND Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

andi.
AND Immediate

(RA) ← (RS) ∧ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of register RS is ANDed
with the extended IM field; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO

Programming Note

The andi. instruction can test whether any of the 16 least-significant bits in a GPR are 1-bits.

andi. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other
instructions are addic. and andis..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

andi. RA, RS, IM

28 RS RA IM

0 6 11 16 31
625 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
andis.

AND Immediate Shifted
andis.
AND Immediate Shifted

(RA) ← (RS) ∧ (IM || 160)

The IM field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of register RS are
ANDed with the extended IM field; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO

Programming Note

The andis. instruction can test whether any of the 16 most-significant bits in a GPR are 1-bits.

andis. is one of three instructions that implicitly update CR[CR0] without having an Rc field. The other
instructions are addic. and andi..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

andis. RA, RS, IM

29 RS RA IM

0 6 11 16 31
AMCC Proprietary 626

405EP – PPC405EP Embedded Processor
b
Branch

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

b
Branch

If AA = 1 then
LI ← target6:29
NIA ← EXTS(LI || 20)

else
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The next instruction address (NIA) is the effective address of the branch. The NIA is formed by adding a
displacement to a base address. The displacement is obtained by concatenating two 0-bits to the right of the
LI field and sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is also the current
instruction address (CIA). If the AA field contains 1, the base address is 0.

Program flow is transferred to the NIA.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• LR if LK contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

b target AA=0, LK=0
ba target AA=1, LK=0
bl target AA=0, LK=1
bla target AA=1, LK=1

18 LI AA LK

0 6 30 31
627 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bc

Branch Conditional
bc
Branch Conditional

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1)) then
if AA = 1 then

BD ← target16:29
NIA ← EXTS(BD || 20)

else
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If bit 2 of the BO field contains 0, the CTR decrements.

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the effective address of the branch. The NIA is formed by adding a
displacement to a base address. The displacement is obtained by concatenating two 0-bits to the right of the
BD field and sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is also the current
instruction address (CIA). If the AA field contains 1, the base address is 0.

The BO field controls options that determine when program flow is transferred to the NIA. The BO field also
controls branch prediction, a performance-improvement feature. See “Branch Prediction” on page 3-99 for a
complete discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0
• LR if LK contains 1

bc BO, BI, target AA=0, LK= 0
bca BO, BI, target AA =1, LK= 0
bcl BO, BI, target AA= 0, LK=1
bcla BO, BI, target AA =1, LK=1

16 BO BI BD AA LK

0 6 11 16 30 31
AMCC Proprietary 628

405EP – PPC405EP Embedded Processor
bc
Branch Conditional

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 25-4. Extended Mnemonics for bc, bca, bcl, bcla

Mnemonic Operands Function
Other Registers

Altered

bdnz target Decrement CTR; branch if CTR ≠ 0.
Extended mnemonic for
bc 16,0,target

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target

(LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target

(LR) ← CIA + 4.

bdnzf cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 0,cr_bit,target

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target

(LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target

(LR) ← CIA + 4.

bdnzt cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 8,cr_bit,target

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target

(LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target

(LR) ← CIA + 4.

bdz target Decrement CTR; branch if CTR = 0.
Extended mnemonic for
bc 18,0,target

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target

(LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target

(LR) ← CIA + 4.
629 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bc

Branch Conditional
bdzf cr_bit, target Decrement CTR
Branch if CTR = 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 2,cr_bit,target

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target

(LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target

(LR) ← CIA + 4.

bdzt cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 10,cr_bit,target

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target

(LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target

(LR) ← CIA + 4.

beq [cr_field,]
target

Branch if equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+2,target

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target

(LR) ← CIA + 4.

bf cr_bit, target Branch if CRcr_bit = 0.
Extended mnemonic for
bc 4,cr_bit,target

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target

LR

bfla Extended mnemonic for
bcla 4,cr_bit,target

LR

Table 25-4. Extended Mnemonics for bc, bca, bcl, bcla (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 630

405EP – PPC405EP Embedded Processor
bc
Branch Conditional

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bge [cr_field,]
target

Branch if greater than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target

LR

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target

LR

bgt [cr_field,]
target

Branch if greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+1,target

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target

LR

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target

LR

ble [cr_field,]
target

Branch if less than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target

LR

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target

LR

blt [cr_field,]
target

Branch if less than
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+0,target

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target

(LR) ← CIA + 4.

Table 25-4. Extended Mnemonics for bc, bca, bcl, bcla (continued)

Mnemonic Operands Function
Other Registers

Altered
631 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bc

Branch Conditional
bne [cr_field,]
target

Branch if not equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+2,target

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4*cr_field+2,target

(LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bng [cr_field,]
target

Branch if not greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bnl [cr_field,]
target

Branch if not less than; use CR0 if cr_field is omitted.
Extended mnemonic for
bc 4,4∗cr_field+0,target

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bns [cr_field,]
target

Branch if not summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

Table 25-4. Extended Mnemonics for bc, bca, bcl, bcla (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 632

405EP – PPC405EP Embedded Processor
bc
Branch Conditional

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bnu [cr_field,]
target

Branch if not unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bso [cr_field,]
target

Branch if summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bt cr_bit, target Branch if CRcr_bit = 1.
Extended mnemonic for
bc 12,cr_bit,target

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target

(LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target

(LR) ← CIA + 4.

bun [cr_field],
target

Branch if unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

Table 25-4. Extended Mnemonics for bc, bca, bcl, bcla (continued)

Mnemonic Operands Function
Other Registers

Altered
633 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bcctr

Branch Conditional to Count Register
bcctr
Branch Conditional to Count Register

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1)) then
NIA ← CTR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the target address of the branch. The NIA is formed by concatenating
the 30 most significant bits of the CTR with two 0-bits on the right.

The BO field controls options that determine when program flow is transferred to the NIA. The BO field also
controls branch prediction, a performance-improvement feature. See “Branch Prediction” on page 3-99 for a
complete discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0

• LR if LK contains 1

Invalid Instruction Forms
• Reserved fields

• If bit 2 of the BO field contains 0, the instruction form is invalid, but the pseudocode applies. If the branch
condition is true, the branch is taken; the NIA is the contents of the CTR after it is decremented.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

bcctr BO, BI LK = 0
bcctrl BO, BI LK =1

19 BO BI 528 LK

0 6 11 16 21 31
AMCC Proprietary 634

405EP – PPC405EP Embedded Processor
bcctr
Branch Conditional to Count Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Table 25-5. Extended Mnemonics for bcctr, bcctrl

Mnemonic Operands Function
Other Registers

Altered

bctr Branch unconditionally to address in CTR.
Extended mnemonic for
bcctr 20,0

bctrl Extended mnemonic for
bcctrl 20,0

(LR) ← CIA + 4.

beqctr [cr_field] Branch, if equal, to address in CTR
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+2

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2

(LR) ← CIA + 4.

bfctr cr_bit Branch, if CRcr_bit = 0, to address in CTR.
Extended mnemonic for
bcctr 4,cr_bit

bfctrl Extended mnemonic for
bcctrl 4,cr_bit

(LR) ← CIA + 4.

bgectr [cr_field] Branch, if greater than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgtctr [cr_field] Branch, if greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+1

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1

(LR) ← CIA + 4.

blectr [cr_field] Branch, if less than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bltctr [cr_field] Branch, if less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+0

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0

(LR) ← CIA + 4.
635 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bcctr

Branch Conditional to Count Register
bnectr [cr_field] Branch, if not equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+2

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bngctr [cr_field] Branch, if not greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnlctr [cr_field] Branch, if not less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bnsctr [cr_field] Branch, if not summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnuctr [cr_field] Branch, if not unordered, to address in CTR; use CR0
if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bsoctr [cr_field] Branch, if summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

btctr cr_bit Branch if CRcr_bit = 1 to address in CTR.
Extended mnemonic for
bcctr 12,cr_bit

btctrl Extended mnemonic for
bcctrl 12,cr_bit

(LR) ← CIA + 4.

Table 25-5. Extended Mnemonics for bcctr, bcctrl (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 636

405EP – PPC405EP Embedded Processor
bcctr
Branch Conditional to Count Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bunctr [cr_field] Branch if unordered to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

Table 25-5. Extended Mnemonics for bcctr, bcctrl (continued)

Mnemonic Operands Function
Other Registers

Altered
637 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bclr

Branch Conditional to Link Register
bclr
Branch Conditional to Link Register

if BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ∨ ((CTR = 0) = BO3)) ∧ (BO0 = 1 ∨ (CRBI = BO1)) then
NIA ← LR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If bit 2 of the BO field contains 0, the CTR is decremented.

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the target address of the branch. The NIA is formed by concatenating
the 30 most significant bits of the LR with two 0-bits on the right.

The BO field controls options that determine when program flow is transferred to the NIA. The BO field also
controls branch prediction, a performance-improvement feature. See “Branch Prediction” on page 3-99 for a
complete discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
• CTR if BO2 contains 0
• LR if LK contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

bclr BO, BI LK = 0
bclrl BO, BI LK =1

19 BO BI 16 LK

0 6 11 16 21 31

Table 25-6. Extended Mnemonics for bclr, bclrl

Mnemonic Operands Function
Other Registers

Altered

blr Branch unconditionally to address in LR.
Extended mnemonic for
bclr 20,0

blrl Extended mnemonic for
bclrl 20,0

(LR) ← CIA + 4.
AMCC Proprietary 638

405EP – PPC405EP Embedded Processor
bclr
Branch Conditional to Link Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bdnzlr Decrement CTR.
Branch if CTR ≠ 0 to address in LR.

Extended mnemonic for
bclr 16,0

bdnzlrl Extended mnemonic for
bclrl 16,0

(LR) ← CIA + 4.

bdnzflr cr_bit Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 0,cr_bit

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit

(LR) ← CIA + 4.

bdnztlr cr_bit Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 8,cr_bit

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit

(LR) ← CIA + 4.

bdzlr Decrement CTR.
Branch if CTR = 0 to address in LR.

Extended mnemonic for
bclr 18,0

bdzlrl Extended mnemonic for
bclrl 18,0

(LR) ← CIA + 4.

bdzflr cr_bit Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 2,cr_bit

bdzflrl Extended mnemonic for
bclrl 2,cr_bit

(LR) ← CIA + 4.

bdztlr cr_bit Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 10,cr_bit

bdztlrl Extended mnemonic for
bclrl 10,cr_bit

(LR) ← CIA + 4.

beqlr [cr_field] Branch if equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+2

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2

(LR) ← CIA + 4.

Table 25-6. Extended Mnemonics for bclr, bclrl (continued)

Mnemonic Operands Function
Other Registers

Altered
639 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bclr

Branch Conditional to Link Register
bflr cr_bit Branch if CRcr_bit = 0 to address in LR.
Extended mnemonic for
bclr 4,cr_bit

bflrl Extended mnemonic for
bclrl 4,cr_bit

(LR) ← CIA + 4.

bgelr [cr_field] Branch, if greater than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgtlr [cr_field] Branch, if greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+1

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1

(LR) ← CIA + 4.

blelr [cr_field] Branch, if less than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bltlr [cr_field] Branch, if less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+0

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bnelr [cr_field] Branch, if not equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+2

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bnglr [cr_field] Branch, if not greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

Table 25-6. Extended Mnemonics for bclr, bclrl (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 640

405EP – PPC405EP Embedded Processor
bclr
Branch Conditional to Link Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bnllr [cr_field] Branch, if not less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bnslr [cr_field] Branch if not summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnulr [cr_field] Branch if not unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bsolr [cr_field] Branch if summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

btlr cr_bit Branch if CRcr_bit = 1 to address in LR.
Extended mnemonic for
bclr 12,cr_bit

btlrl Extended mnemonic for
bclrl 12,cr_bit

(LR) ← CIA + 4.

bunlr [cr_field] Branch if unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

Table 25-6. Extended Mnemonics for bclr, bclrl (continued)

Mnemonic Operands Function
Other Registers

Altered
641 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
cmp

Compare
cmp
Compare

c0:3 ← 40
if (RA) < (RB) then c0 ← 1
if (RA) > (RB) then c1 ← 1
if (RA) = (RB) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The contents of register RA are compared with the contents of register RB using a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of
XER[SO] is placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmp BF,L,RA,RB, where L selects operand size for
64-bit PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an
invalid form); hence for PPC405EP, use of the extended mnemonic cmpw BF,RA,RB is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmp BF, 0, RA, RB

31 BF RA RB 0

0 6 9 11 16 21 31

Table 25-7. Extended Mnemonics for cmp

Mnemonic Operands Function
Other Registers

Altered

cmpw [BF,] RA, RB Compare Word; use CR0 if BF is omitted.
Extended mnemonic for
cmp BF,0,RA,RB
AMCC Proprietary 642

405EP – PPC405EP Embedded Processor
cmpi
Compare Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

cmpi
Compare Immediate

c0:3 ← 40
if (RA) < EXTS(IM) then c0 ← 1
if (RA) > EXTS(IM) then c1 ← 1
if (RA) = EXTS(IM) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The IM field is sign-extended to 32 bits. The contents of register RA are compared with the extended IM field,
using a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of
XER[SO] is placed into the same CR field.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmpi BF,L,RA,IM, where L selects operand size for
64-bit PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an
invalid form); hence for the PPC405EP, use of the extended mnemonic cmpwi BF,RA,IM is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmpi BF, 0, RA, IM

11 BF RA IM

0 6 9 11 16 31

Table 25-8. Extended Mnemonics for cmpi

Mnemonic Operands Function
Other Registers

Altered

cmpwi [BF,] RA, IM Compare Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpi BF,0,RA,IM
643 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
cmpl

Compare Logical
cmpl
Compare Logical

c0:3 ← 40
if (RA) (RB) then c0 ← 1
if (RA) (RB) then c1 ← 1
if (RA) (RB) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The contents of register RA are compared with the contents of register RB, using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of
XER[SO] is placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Notes

The PowerPC Architecture defines this instruction as cmpl BF,L,RA,RB, where L selects operand size for
64-bit PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an
invalid form); hence for PPC405EP, use of the extended mnemonic cmplw BF,RA,RB is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmpl BF, 0, RA, RB

31 BF RA RB 32

0 6 9 11 16 21 31

Table 25-9. Extended Mnemonics for cmpl

Mnemonic Operands Function
Other Registers

Altered

cmplw [BF,] RA, RB Compare Logical Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpl BF,0,RA,RB

<
u

>
u

=

AMCC Proprietary 644

405EP – PPC405EP Embedded Processor
cmpli
Compare Logical Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

cmpli
Compare Logical Immediate

c0:3 ← 40
if (RA) (160 || IM) then c0 ← 1
if (RA) (160 || IM) then c1 ← 1
if (RA) (160 || IM) then c2 ← 1
c3 ← XER[SO]
n ← BF
CR[CRn] ← c0:3

The IM field is extended to 32 bits by concatenating 16 0-bits to its left. The contents of register RA are
compared with IM using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the value of
XER[SO] is placed into the same CR field.

Registers Altered
• CR[CRn] where n is specified by the BF field

Invalid Instruction Forms
• Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmpli BF,L,RA,IM, where L selects operand size for
64-bit PowerPC implementations. For all 32-bit PowerPC implementations, L = 0 is required (L = 1 is an
invalid form); hence for the PPC405EP, use of the extended mnemonic cmplwi BF,RA,IM is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cmpli BF, 0, RA, IM

10 BF RA IM

0 6 9 11 16 31

Table 25-10. Extended Mnemonics for cmpli

Mnemonic Operands Function
Other Registers

Changed

cmplwi [BF,] RA, IM Compare Logical Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpli BF,0,RA,IM

<
u

>
u

=

645 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
cntlzw

Count Leading Zeros Word
cntlzw
Count Leading Zeros Word

n ← 0
do while n < 32

if (RS)n = 1 then leave
n ← n + 1

(RA) ← n

The consecutive leading 0 bits in register RS are counted; the count is placed into register RA.

The count ranges from 0 through 32, inclusive.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cntlzw RA, RS Rc=0
cntlzw. RA, RS Rc=1

31 RS RA 26 Rc

0 6 11 16 21 31
AMCC Proprietary 646

405EP – PPC405EP Embedded Processor
crand
Condition Register AND

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

crand
Condition Register AND

CRBT ← CRBA ∧ CRBB

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the result is placed
into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crand BT, BA, BB

19 BT BA BB 257

0 6 11 16 21 31
647 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
crandc

Condition Register AND with Complement
crandc
Condition Register AND with Complement

CRBT ← CRBA ∧ ¬CRBB

The CR bit specified by the BA field is ANDed with the ones complement of the CR bit specified by the BB
field; the result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crandc BT, BA, BB

19 BT BA BB 129

0 6 11 16 21 31
AMCC Proprietary 648

405EP – PPC405EP Embedded Processor
creqv
Condition Register Equivalent

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

creqv
Condition Register Equivalent

CRBT ← ¬(CRBA ⊕ CRBB)

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the ones complement
of the result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

creqv BT, BA, BB

19 BT BA BB 289

0 6 11 16 21 31

Table 25-11. Extended Mnemonics for creqv

Mnemonic Operands Function
Other Registers

Altered

crset bx CR set.
Extended mnemonic for
creqv bx,bx,bx
649 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
crnand

Condition Register NAND
crnand
Condition Register NAND

CRBT ← ¬(CRBA ∧ CRBB)

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the ones complement
of the result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crnand BT, BA, BB

19 BT BA BB 225

0 6 11 16 21 31
AMCC Proprietary 650

405EP – PPC405EP Embedded Processor
crnor
Condition Register NOR

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

crnor
Condition Register NOR

CRBT ← ¬(CRBA ∨ CRBB)

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the ones complement
of the result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crnor BT, BA, BB

19 BT BA BB 33

0 6 11 16 21 31

Table 25-12. Extended Mnemonics for crnor

Mnemonic Operands Function
Other Registers

Altered

crnot bx, by CR not.
Extended mnemonic for
crnor bx,by,by
651 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
cror

Condition Register OR
cror
Condition Register OR

CRBT ← CRBA ∨ CRBB

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the result is placed into
the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

cror BT, BA, BB

19 BT BA BB 449

0 6 11 16 21 31

Table 25-13. Extended Mnemonics for cror

Mnemonic Operands Function
Other Registers

Altered

crmove bx, by CR move.
Extended mnemonic for
cror bx,by,by
AMCC Proprietary 652

405EP – PPC405EP Embedded Processor
crorc
Condition Register OR with Complement

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

crorc
Condition Register OR with Complement

CRBT ← CRBA ∨ ¬CRBB

The condition register (CR) bit specified by the BA field is ORed with the ones complement of the CR bit
specified by the BB field; the result is placed into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crorc BT, BA, BB

19 BT BA BB 417

0 6 11 16 21 31
653 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
crxor

Condition Register XOR
crxor
Condition Register XOR

CRBT ← CRBA ⊕ CRBB

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the result is placed
into the CR bit specified by the BT field.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

crxor BT, BA, BB

19 BT BA BB 193

0 6 11 16 21 31

Table 25-14. Extended Mnemonics for crxor

Mnemonic Operands Function
Other Registers

Altered

crclr bx Condition register clear.
Extended mnemonic for
crxor bx,bx,bx
AMCC Proprietary 654

405EP – PPC405EP Embedded Processor
dcba
Data Cache Block Allocate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

dcba
 Data Cache Block Allocate

EA ← (RA|0) + (RB)
DCBA(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and the EA is marked as cachable and non-write-through, the
data in the cache block is architecturally undefined. For the PPC405EP, the cache data block is set to 0.

If the data block at the EA is not in the data cache and the EA is marked as cachable and not marked as
write-through, a cache block is established and set to an architecturally-undefined value. Note that no data is
read from main storage, as described in the programming note.

If the data block at the EA is marked as non-cachable, a no-op occurs.

If the data block at the EA is in the data cache and marked as write-through, architecturally the data in the
cache block can be left unmodified. Alternatively, the data block at the EA can be undefined in the data cache
and in main storage. For the PPC405EP, a no-op occurs.

If the data block at the EA is not in the data cache and marked as write-through, architecturally the instruction
can establish a cache block and set the block to 0, or a no-op can occur. For the PPC405EP, a no-op occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Because dcba can establish an address in the data cache without copying the contents of that address from
main storage, the address established can be invalid with respect to main storage. A subsequent operation
may cause the address to be copied back to main storage, for example, to make room for a new cache block;
a machine check exception could occur under these circumstances.

dcba provides a hint that a block of storage will soon be stored to or no longer needed; there is no need to
retain the data in the block. Establishing the line in the cache, without reading from main storage, improves
performance.

Exceptions

This instruction is considered a “store” with respect to data storage exceptions. However, this instruction does
not cause data storage exceptions or data TLB-miss exceptions. If conditions occur that would otherwise
cause such exceptions, dcba is treated as a no-op.

dcba RA, RB

31 RA RB 758

0 6 11 16 21 31
655 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
dcba

Data Cache Block Allocate
This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See
“Data Storage Interrupt” on page 10-236.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.
AMCC Proprietary 656

405EP – PPC405EP Embedded Processor
dcbf
Data Cache Block Flush

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

dcbf
Data Cache Block Flush

EA ← (RA|0) + (RB)
DCBF(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block corresponding to the EA is in the data cache and marked as modified (stored into), the data
block is copied back to main storage and then marked invalid in the data cache. If the data block is not
marked as modified, it is simply marked invalid in the data cache. The operation is performed whether or not
the EA is marked as cachable.

If the data block at the EA is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

dcbf RA, RB

31 RA RB 86

0 6 11 16 21 31
657 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
dcbi

Data Cache Block Invalidate
dcbi
Data Cache Block Invalidate

EA ← (RA|0) + (RB)
DCBI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache, the data block is marked invalid, regardless of whether or not
the EA is marked as cachable. If modified data existed in the data block prior to the operation of this
instruction, that data is lost.

If the data block at the EA is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

Exceptions

This instruction is considered a “store” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

dcbi RA, RB

31 RA RB 470

0 6 11 16 21 31
AMCC Proprietary 658

405EP – PPC405EP Embedded Processor
dcbst
Data Cache Block Store

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

dcbst
Data Cache Block Store

EA ← (RA|0) + (RB)
DCBST(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0, and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and marked as modified, the data block is copied back to main
storage and marked as unmodified in the data cache.

If the data block at the EA is in the data cache, and is not marked as modified, or if the data block at the EA is
not in the data cache, no operation is performed.

The operation specified by this instruction is performed whether or not the EA is marked as cachable.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

dcbst RA, RB

31 RA RB 54

0 6 11 16 21 31
659 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
dcbt

Data Cache Block Touch
dcbt
Data Cache Block Touch

EA ← (RA|0) + (RB)
DCBT(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

If the data block at the EA is not in the data cache and the EA is marked as cachable, the block is read from
main storage into the data cache.

If the data block at the EA is in the data cache, or if the EA is marked as non-cachable, no operation is
performed.

This instruction is not allowed to cause data storage exceptions or data TLB miss exceptions. If execution of
the instruction would cause such an exception, then no operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

The dcbt instruction allows a program to begin a cache block fetch from main storage before the program
needs the data. The program can later load data from the cache into registers without incurring the latency of
a cache miss.

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

dcbt RA, RB

31 RA RB 278

0 6 11 16 21 31
AMCC Proprietary 660

405EP – PPC405EP Embedded Processor
dcbtst
Data Cache Block Touch for Store

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

dcbtst
 Data Cache Block Touch for Store

EA ← (RA|0) + (RB)
DCBTST(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is not in the data cache and the EA address is marked as cachable, the data block
is loaded into the data cache.

If the EA is marked as non-cachable, or if the data block at the EA is in the data cache, no operation is
performed.

This instruction is not allowed to cause data storage exceptions or data TLB miss exceptions. If execution of
the instruction would cause such an exception, then no operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

The dcbtst instruction allows a program to begin a cache block fetch from main storage before the program
needs the data. The program can later store data from GPRs into the cache block, without incurring the
latency of a cache miss.

Architecturally, dcbtst brings data into the cache in “Exclusive” mode, which allows the program to alter the
cached data. “Exclusive” mode is part of the MESI protocol for multi-processor systems, and is not
implemented. The implementation of the dcbtst instruction is identical to the implementation of the dcbt
instruction.

Exceptions

This instruction is considered a “load” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

dcbtst RA, RB

31 RA RB 246

0 6 11 16 21 31
661 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
dcbz

Data Cache Block Set to Zero
dcbz
 Data Cache Block Set to Zero

EA ← (RA|0) + (RB)
DCBZ(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the data block at the EA is in the data cache and the EA is marked as cachable and non-write-through, the
data in the cache block is set to 0.

If the data block at the EA is not in the data cache and the EA is marked as cachable and non-write-through,
a cache block is established and set to 0. Note that nothing is read from main storage, as described in the
programming note.

If the data block at the EA is marked as either write-through or as non-cachable, an alignment exception
occurs.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Because dcbz can establish an address in the data cache without copying the contents of that address from
main storage, the address established may be invalid with respect to the storage subsystem. A subsequent
operation may cause the address to be copied back to main storage, for example, to make room for a new
cache block; a machine check exception could occur under these circumstances.

If dcbz is attempted to an EA which is marked as non-cachable, the software alignment exception handler
should emulate the instruction by storing zeros to the block in main storage. If a data block corresponding to
the EA exists in the cache, but the EA is non-cachable, stores (including dcbz) to that address are
considered programming errors (the cache block should previously have been flushed).

If the EA is marked as write-through, the software alignment exception handler should emulate the instruction
by storing zeros to the block in main storage. An EA that is marked as write-through required should also be
marked as cachable; when dcbz is attempted to such an address, the alignment exception handler should
maintain coherency of cache and memory.

Exceptions

An alignment exception occurs if the EA is marked as non-cachable or as write-through.

dcbz RA, RB

31 RA RB 1014

0 6 11 16 21 31
AMCC Proprietary 662

405EP – PPC405EP Embedded Processor
dcbz
Data Cache Block Set to Zero

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
This instruction is considered a “store” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “store” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.
663 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
dccci

Data Cache Congruence Class Invalidate
dccci
 Data Cache Congruence Class Invalidate

EA ← (RA|0) + (RB)
DCCCI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

Both cache lines in the congruence class specified by EA18:26 are invalidated, whether or not they match the
EA. If modified data existed in the cache congruence class before the operation of this instruction, that data is
lost.

The operation specified by this instruction is performed whether or not the EA is marked as cachable.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire data cache tag array
before enabling the data cache. A series of dccci instruction should be executed, one for each congruence
class. Cachability can then be enabled.

Exceptions

 See “Access Protection for Cache Control Instructions” on page 6-157.

The execution of an dccci instruction can cause a data TLB miss exception, at the specified EA, regardless
of the non-specific intent of that EA.

This instruction does not cause data address compare (DAC) debug exceptions. See “Debug Interrupt” on
page 10-244.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

dccci RA, RB

31 RA RB 454

0 6 11 16 21 31
AMCC Proprietary 664

405EP – PPC405EP Embedded Processor
dcread
Data Cache Read

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

dcread
Data Cache Read

EA ← (RA|0) + (RB)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (RT) ← (d-cache data, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (RT) ← (d-cache data, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (RT) ← (d-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (RT) ← (d-cache tag, way B)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

This instruction is a debugging tool for reading the data cache entries for the congruence class specified by
EA18:26. The cache information is read into register RT.

If CCR0[CIS] = 0, the information is a word of data cache array data from the addressed congruence class.
The word is specified by EA27:29. If EA30:31 are not 00, an alignment exception occurs. If CCR0[CWS] = 0,
the data is from the A-way; otherwise; the data is from the B-way.

If CCR0[CIS] = 1, the information is a cache tag from the addressed congruence class. If CCR0[CWS] = 0,
the tag is from the A-way; otherwise the tag is from the B-way.

Data cache tag information is placed into register RT as shown:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

dcread RT, RA, RB

31 RT RA RB 486

0 6 11 16 21 31

0:19 TA
G

Cache Tag

20:25 Reserved

26 D Cache Line Dirty
0 Not dirty
1 Dirty

27 V Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LRU Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU
665 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
dcread

Data Cache Read
Programming Note

Execution of this instruction is privileged.

Exceptions

If EA is not word-aligned, an alignment exception occurs.

This instruction is considered a “load” with respect to data storage exceptions, but cannot cause a data
storage exception. See “Access Protection for Cache Control Instructions” on page 6-157.

The execution of an dcread instruction can cause a data TLB miss exception, at the specified EA, regardless
of the non-specific intent of that effective address.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions. See
“Debug Interrupt” on page 10-244.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.
AMCC Proprietary 666

405EP – PPC405EP Embedded Processor
divw
Divide Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

divw
 Divide Word

(RT) ← (RA) ÷ (RB)

The contents of register RA are divided by the contents of register RB. The quotient is placed into register RT.

Both the dividend and the divisor are interpreted as signed integers. The quotient is the unique signed integer
that satisfies:

dividend = (quotient × divisor) + remainder

where the remainder has the same sign as the dividend and its magnitude is less than that of the divisor.

If an attempt is made to perform (0x8000 0000 ÷ –1) or (n ÷ 0), the contents of register RT are undefined; if
the Rc field also contains 1, the contents of CR[CR0]LT, GT, EQ are undefined. Either invalid division operation
sets XER[OV, SO] to 1 if the OE field contains 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[OV, SO] if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions:

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient × divisor
subf RT,RT,RA # RT = remainder

The sequence does not calculate correct results for the invalid divide operations.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

divw RT, RA, RB OE=0, Rc=0
divw. RT, RA, RB OE=0, Rc=1
divwo RT, RA, RB OE=1, Rc=0
divwo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 491 Rc

0 6 11 16 21 22 31
667 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
divwu

Divide Word Unsigned
divwu
Divide Word Unsigned

(RT) ← (RA) ÷ (RB)

The contents of register RA are divided by the contents of register RB. The quotient is placed into register RT.

The dividend and the divisor are interpreted as unsigned integers. The quotient is the unique unsigned
integer that satisfies:

dividend = (quotient × divisor) + remainder

If an attempt is made to perform (n ÷ 0), the contents of register RT are undefined; if the Rc also contains 1,
the contents of CR[CR0]LT, GT, EQ are also undefined. The invalid division operation also sets XER[OV, SO]
to 1 if the OE field contains 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[OV, SO] if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient × divisor
subf RT,RT,RA # RT = remainder

This sequence does not calculate the correct result if the divisor is zero.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

divwu RT, RA, RB OE=0, Rc=0
divwu. RT, RA, RB OE=0, Rc=1
divwuo RT, RA, RB OE=1, Rc=0
divwuo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 459 Rc

0 6 11 16 21 22 31
AMCC Proprietary 668

405EP – PPC405EP Embedded Processor
eieio
Enforce In Order Execution of I/O

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

eieio
Enforce In Order Execution of I/O

The eieio instruction ensures that all loads and stores preceding eieio complete with respect to main storage
before any loads and stores following eieio access main storage.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Architecturally, eieio orders storage access, not instruction completion. Therefore, non-storage operations
after eieio could complete before storage operations that were before eieio. The sync instruction guarantees
ordering of both instruction completion and storage access. For the PPC405EP, the eieio instruction is
implemented to behave as a sync instruction.

To write code that is portable between various PowerPC implementations, programmers should use the
mnemonic that corresponds to the desired behavior.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

eieio

31 854

0 6 21 31
669 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
eqv

Equivalent
eqv
Equivalent

(RA) ← ¬((RS) ⊕ (RB))

The contents of register RS are XORed with the contents of register RB; the ones complement of the result is
placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

eqv RA, RS, RB Rc=0
eqv. RA, RS, RB Rc=1

31 RS RA RB 284 Rc

0 6 11 16 21 31
AMCC Proprietary 670

405EP – PPC405EP Embedded Processor
extsb
Extend Sign Byte

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

extsb
Extend Sign Byte

(RA) ← EXTS(RS)24:31

The least significant byte of register RS is sign-extended to 32 bits by replicating bit 24 of the register into bits
0 through 23 of the result. The result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

extsb RA, RS Rc=0
extsb. RA, RS Rc=1

31 RS RA 954 Rc

0 6 11 16 21 31
671 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
extsh

Extend Sign Halfword
extsh
Extend Sign Halfword

(RA) ← EXTS(RS)16:31

The least significant halfword of register RS is sign-extended to 32 bits by replicating bit 16 of the register into
bits 0 through 15 of the result. The result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

extsh RA, RS Rc=0
extsh. RA, RS Rc=1

31 RS RA 922 Rc

0 6 11 16 21 31
AMCC Proprietary 672

405EP – PPC405EP Embedded Processor
extsh
Extend Sign Halfword

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
673 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
icbi

Instruction Cache Block Invalidate
25.Instruction Seticbi
Instruction Cache Block Invalidate

EA ← (RA|0) + (RB)
ICBI(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the instruction block at the EA is in the instruction cache, the cache block is marked invalid.

If the instruction block at the EA is not in the instruction cache, no additional operation is performed.

The operation specified by this instruction is performed whether or not the EA is marked as cachable in the
ICCR.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

Instruction cache operations use MSR[DR], not MSR[IR], to determine translation of their operands.

When data translation is disabled, cachability for the EA of the operand of instruction cache operations is
determined by the ICCR, not the DCCR.

Exceptions

Instruction storage exceptions and instruction-side TLB miss exceptions are associated with instruction
fetching, not with instruction execution. Exceptions that occur during the execution of instruction cache
operations cause data-side exceptions (data storage exceptions and data TLB miss exceptions).

This instruction is considered a “load” with respect to data storage exceptions. See “Data Storage Interrupt”
on page 10-236.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

icbi RA, RB

31 RA RB 982

0 6 11 16 21 31
AMCC Proprietary 674

405EP – PPC405EP Embedded Processor
icbt
Instruction Cache Block Touch

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

icbt
Instruction Cache Block Touch

EA← (RA|0) + (RB)
ICBT(EA)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

If the instruction block at the EA is not in the instruction cache, and is marked as cachable, the instruction
block is loaded into the instruction cache.

If the instruction block at the EA is in the instruction cache, or if the EA is marked as non-cachable, no
operation is performed.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

This instruction allows a program to begin a cache block fetch from main storage before the program needs
the instruction. The program can later branch to the instruction address and fetch the instruction from the
cache without incurring the latency of a cache miss.

Instruction cache operations use MSR[DR], not MSR[IR], to determine translation of their operands. When
data translation is disabled, cachability for the effective address of the operand of instruction cache
operations is determined by the ICCR, not the DCCR.

Exceptions

Instruction storage exceptions and instruction-side TLB miss exceptions are associated with instruction
fetching, not with instruction execution. Exceptions occurring during execution of instruction cache operations
cause data storage and data TLB miss exceptions.

If the execution of an icbt instruction would cause a data TLB miss exception, no operation is performed and
no exception occurs.

This instruction is considered a “load” with respect to protection exceptions, but cannot cause data storage
exceptions. This instruction is also considered a “load” with respect to data address compare (DAC) debug
exceptions.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

icbt RA, RB

31 RA RB 262

0 6 11 16 21 31
675 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
iccci

Instruction Cache Congruence Class Invalidate
iccci
Instruction Cache Congruence Class Invalidate

EA ← (RA|0) + (RB)
ICCCI(ICU cache array)

This instruction invalidates the entire ICU cache array. The EA is not used; previous implementations have
used the EA for protection checks. The instruction form is maintained for software and tool compatibility.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Notes

Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire cache tag array
before enabling the cache. Cachability can then be enabled.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

iccci RA, RB

31 RA RB 966

0 6 11 16 21 31
AMCC Proprietary 676

405EP – PPC405EP Embedded Processor
icread
Instruction Cache Read

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

icread
Instruction Cache Read

EA ← (RA|0) + (RB)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (i-cache data, way A)
if ((CCR0[CIS] = 0) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (i-cache data, way B)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 0)) then (ICDBDR) ← (i-cache tag, way A)
if ((CCR0[CIS] = 1) ∧ (CCR0[CWS] = 1)) then (ICDBDR) ← (i-cache tag, way B)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

This instruction is a debugging tool for reading the instruction cache entries for the congruence class
specified by EA18:26. The cache information is read into the Instruction Cache Debug Data Register
(ICDBDR), from where it can be read into a GPR using the extended mnemonic mficdbdr.

If CCR0[CIS] = 0, the information is a word of instruction cache data from the addressed line. The word is
specified by EA27:29. If CCR0[CWS] = 0, the data is from the A-way, otherwise from the B-way.

If (CCR0[CIS] = 1), the information is a cache tag from the addressed congruence class. If (CCR0[CWS] = 0),
the tag is from the A-way, otherwise from the B-way.

Instruction cache tag information is placed in the ICDBDR as shown:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• ICDBDR

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

icread RA, RB

31 RA RB 998

0 6 11 16 21 31

0:21 TAG Cache Tag

22:26 Reserved

27 V Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LRU Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU
677 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
icread

Instruction Cache Read
The instruction pipeline does not automatically wait for data from icread to arrive at the ICDBDR before
attempting to use the contents of the ICDBDR. Therefore, insert an isync instruction between icread and
mficdbdr.

icread r5,r6 # read cache information
isync # ensure completion of icread
mficdbdr r7 # move information to GPR

Instruction cache operations use MSR[DR], not MSR[IR], to determine translation of their operands. When
data translation is disabled, cachability for the EA of the operand of instruction cache operations is
determined by the ICCR, not the DCCR.

Exceptions

Instruction storage exceptions and instruction-side TLB miss exceptions are associated with instruction
fetching, not with instruction execution. Exceptions that occur during the execution of instruction cache
operations cause data-side exceptions (data storage exceptions and data TLB miss exceptions).

The execution of icread can cause a data TLB miss exception, at the specified EA, regardless of the non-
specific intent of that EA.

This instruction is considered a “load” and cannot cause a data storage exception.

This instruction is considered a “load” with respect to data address compare (DAC) debug exceptions, but will
not cause DAC debug events.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.
AMCC Proprietary 678

405EP – PPC405EP Embedded Processor
isync
Instruction Synchronize

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

isync
Instruction Synchronize

The isync instruction is a context synchronizing instruction.

isync provides an ordering function for the effects of all instructions executed by the processor. Executing
isync insures that all instructions preceding the isync instruction execute before isync completes, except
that storage accesses caused by those instructions need not have completed.

No subsequent instructions are initiated by the processor until isync completes. Finally, execution of isync
causes the processor to discard any prefetched instructions, with the effect that subsequent instructions are
fetched and executed in the context established by the instructions preceding isync.

isync has no effect on caches.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

See the discussion of context synchronizing instructions in “Synchronization” on page 3-105.

The following code example illustrates the necessary steps for self-modifying code. This example assumes
that addr1 is both data and instruction cachable.

stw regN, addr1 # data in regN is to become an instruction at addr1
dcbst addr1 # forces data from the data cache to memory
sync # wait until the data actually reaches the memory
icbi addr1 # the previous value at addr1 might already be in

the instruction cache; invalidate in the cache
isync # the previous value at addr1 might already have been

pre-fetched into the queue; invalidate the queue
so that the instruction must be re-fetched

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

isync

19 150

0 6 21 31
679 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lbz

Load Byte and Zero
lbz
Load Byte and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the
contents of register RA otherwise.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into
register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbz RT, D(RA)

34 RT RA D

0 6 11 16 31
AMCC Proprietary 680

405EP – PPC405EP Embedded Processor
lbzu
Load Byte and Zero with Update

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lbzu
Load Byte and Zero with Update

EA ← (RA|0) + EXTS(D)
(RA) ← EA
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the
contents of register RA otherwise. The EA is placed into register RA.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into
register RT.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• RA=RT
• RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbzu RT, D(RA)

35 RT RA D

0 6 11 16 31
681 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lbzux

Load Byte and Zero with Update Indexed
lbzux
Load Byte and Zero with Update Indexed

EA ← (RA|0) + (RB)
(RA) ← EA
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA is
placed into register RA.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into
register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• Reserved fields
• RA=RT
• RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbzux RT, RA, RB

31 RT RA RB 119

0 6 11 16 21 31
AMCC Proprietary 682

405EP – PPC405EP Embedded Processor
lbzx
Load Byte and Zero Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lbzx
Load Byte and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← 240 || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The byte at the EA is extended to 32 bits by concatenating 24 0-bits to its left. The result is placed into
register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lbzx RT,RA, RB

31 RT RA RB 87

0 6 11 16 21 31
683 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lha

Load Halfword Algebraic
25.Instruction Setlha
Load Halfword Algebraic

EA ← (RA|0) + EXTS(D)
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the
contents of register RA otherwise.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lha RT, D(RA)

42 RT RA D

0 6 11 16 31
AMCC Proprietary 684

405EP – PPC405EP Embedded Processor
lhau
Load Halfword Algebraic with Update

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lhau
Load Halfword Algebraic with Update

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding a displacement to the base address in register RA. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• RA = RT
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhau RT, D(RA)

43 RT RA D

0 6 11 16 31
685 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lhaux

Load Halfword Algebraic with Update Indexed
lhaux
Load Halfword Algebraic with Update Indexed

EA ← (RA) + (RB)
(RA) ← EA
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• Reserved fields
• RA = RT
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhaux RT, RA, RB

31 RT RA RB 375

0 6 11 16 21 31
AMCC Proprietary 686

405EP – PPC405EP Embedded Processor
lhax
Load Halfword Algebraic Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lhax
Load Halfword Algebraic Indexed

EA ← (RA|0) + (RB)
(RT) ← EXTS(MS(EA,2))

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhax RT, RA, RB

31 RT RA RB 343

0 6 11 16 21 31
687 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lhbrx

Load Halfword Byte-Reverse Indexed
lhbrx
Load Halfword Byte-Reverse Indexed

EA ← (RA|0) + (RB)
(RT) ← 160 || MS(EA +1,1) || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is byte-reversed. The resulting halfword is extended to 32 bits by concatenating 16 0-
bits to its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhbrx RT, RA, RB

31 RT RA RB 790

0 6 11 16 21 31
AMCC Proprietary 688

405EP – PPC405EP Embedded Processor
lhz
Load Halfword and Zero

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lhz
Load Halfword and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the
contents of register RA otherwise.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into
register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhz RT, D(RA)

40 RT RA D

0 6 11 16 31
689 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lhzu

Load Halfword and Zero with Update
lhzu
Load Halfword and Zero with Update

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding a displacement to the base address in register RA. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into
register RT.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• RA = RT
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhzu RT, D(RA)

41 RT RA D

0 6 11 16 31
AMCC Proprietary 690

405EP – PPC405EP Embedded Processor
lhzux
Load Halfword and Zero with Update Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lhzux
Load Halfword and Zero with Update Indexed

EA ← (RA) + (RB)
(RA) ← EA
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into
register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• Reserved fields
• RA = RT
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhzux RT, RA, RB

31 RT RA RB 311

0 6 11 16 21 31
691 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lhzx

Load Halfword and Zero Indexed
lhzx
Load Halfword and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← 160 || MS(EA,2)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The halfword at the EA is extended to 32 bits by concatenating 16 0-bits to its left. The result is placed into
register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lhzx RT, RA, RB

31 RT RA RB 279

0 6 11 16 21 31
AMCC Proprietary 692

405EP – PPC405EP Embedded Processor
lmw
Load Multiple Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lmw
Load Multiple Word

EA ← (RA|0) + EXTS(D)
r ← RT
do while r ≤ 31

if ((r ≠ RA) ∨ (r = 31)) then
(GPR(r)) ← MS(EA,4)

r ← r + 1
EA ← EA + 4

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field in the instruction to 32 bits. The base address is 0 if the RA field
is 0 and is the contents of register RA otherwise.

A series of consecutive words starting at the EA are loaded into a set of consecutive GPRs, starting with
register RT and continuing to and including GPR(31). Register RA is not altered by this instruction (unless RA
is GPR(31), which is an invalid form of this instruction). The word which would have been placed into register
RA is discarded.

Registers Altered
• RT through GPR(31).

Invalid Instruction Forms
• RA is in the range of registers to be loaded, including the case RA = RT = 0.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lmw RT, D(RA)

46 RT RA D

0 6 11 16 31
693 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lswi

Load String Word Immediate
lswi
Load String Word Immediate

EA ← (RA|0)
if NB = 0 then

CNT ← 32
else

CNT ← NB
n ← CNT
RFINAL ← ((RT + CEIL(CNT/4) – 1) % 32)
r ← RT – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1
if r = 32 then

r ← 0
if ((r ≠ RA) ∨ (r = RFINAL)) then

(GPR(r)) ← 0
if ((r ≠ RA) ∨ (r = RFINAL)) then

(GPR(r)i:i+7) ← MS(EA,1)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is determined by the RA field. If the RA field contains 0, the EA is 0. Otherwise, the
EA is the contents of register RA.

The NB field specifies the byte count CNT. If the NB field contains 0, the byte count is CNT = 32. Otherwise,
the byte count is CNT = NB.

A series of CNT consecutive bytes in main storage, starting at the EA, are loaded into CEIL(CNT/4)
consecutive GPRs, four bytes per GPR, until the byte count is exhausted. Bytes are loaded into GPRs; the
byte at the lowest address is loaded into the most significant byte. Bits to the right of the last byte loaded into
the last GPR are set to 0.

The set of loaded GPRs starts at register RT, continues consecutively through GPR(31), and wraps to
register 0, loading until the byte count is exhausted, which occurs in register RFINAL. Register RA is not
altered (unless RA = RFINAL, an invalid form of this instruction). Bytes which would have been loaded into
register RA are discarded.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT and subsequent GPRs as described above.

lswi RT, RA, NB

31 RT RA NB 597

0 6 11 16 21 31
AMCC Proprietary 694

405EP – PPC405EP Embedded Processor
lswi
Load String Word Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Invalid Instruction Forms
• Reserved fields
• RA is in the range of registers to be loaded
• RA = RT = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.
695 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lswx

Load String Word Indexed
lswx
Load String Word Indexed

EA ← (RA|0) + (RB)
CNT ← XER[TBC]
n ← CNT
RFINAL ← ((RT + CEIL(CNT/4) – 1) % 32)
r ← RT – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1
if r = 32 then

r ← 0
if (((r ≠ RA) ∧ (r ≠ RB)) ∨ (r = RFINAL)) then

(GPR(r)) ← 0
if (((r ≠ RA) ∧ (r ≠ RB)) ∨ (r = RFINAL)) then

(GPR(r)i:i+7) ← MS(EA,1)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

A byte count CNT is obtained from XER[TBC].

A series of CNT consecutive bytes in main storage, starting at the EA, are loaded into CEIL(CNT/4)
consecutive GPRs, four bytes per GPR, until the byte count is exhausted. Bytes are loaded into GPRs; the
byte having the lowest address is loaded into the most significant byte. Bits to the right of the last byte loaded
in the last GPR used are set to 0.

The set of consecutive GPRs loaded starts at register RT, continues through GPR(31), and wraps to register
0, loading until the byte count is exhausted, which occurs in register RFINAL. Register RA is not altered
(unless RA = RFINAL, which is an invalid form of this instruction). Register RB is not altered (unless
RB = RFINAL, which is an invalid form of this instruction). Bytes which would have been loaded into registers
RA or RB are discarded.

If XER[TBC] is 0, the byte count is 0 and the contents of register RT are undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT and subsequent GPRs as described above.

lswx RT, RA, RB

31 RT RA RB 533

0 6 11 16 21 31
AMCC Proprietary 696

405EP – PPC405EP Embedded Processor
lswx
Load String Word Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Invalid Instruction Forms
• Reserved fields
• RA or RB is in the range of registers to be loaded.
• RA = RT = 0

Programming Note

If XER[TBC] = 0, the contents of register RT are unchanged and lswx is treated as a no-op.

The PowerPC Architecture states that, if XER[TBC] = 0 and if the EA is such that a precise data exception
would normally occur (if not for the zero length), lswx is treated as a no-op and the precise exception will not
occur. Data storage exceptions and alignment exceptions are examples of precise data exceptions.

However, the PowerPC Architecture makes no statement regarding imprecise exceptions related to lswx with
XER[TBC] = 0. The PPC405EP generates an imprecise exception (machine check) on this instruction when
all of the following conditions are true:

• The instruction passes all protection bounds checking
• The address is cachable
• The address is passed to the data cache
• The address misses in the data cache (resulting in a line fill request)
• The address encounters some form of bus error

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.
697 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lwarx

Load Word and Reserve Indexed
lwarx
Load Word and Reserve Indexed

EA ← (RA|0) + (RB)
RESERVE ← 1
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Execution of the lwarx instruction sets the reservation bit.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

lwarx and the stwcx. instruction should paired in a loop, as shown in the following example, to create the
effect of an atomic operation to a memory area used as a semaphore between asynchronous processes.
Only lwarx can set the reservation bit to 1. stwcx. sets the reservation bit to 0 upon its completion, whether
or not stwcx. sent (RS) to memory. CR[CR0]EQ must be examined to determine whether (RS) was sent to
memory.

loop: lwarx # read the semaphore from memory; set reservation
“alter” # change the semaphore bits in register as required
stwcx. # attempt to store semaphore; reset reservation
bne loop # an asynchronous process has intervened; try again

If the asynchronous process in the code example had paired lwarx with a store other than stwcx., the
reservation bit would not have been cleared in the asynchronous process, and the code example would have
overwritten the semaphore.

Exceptions

An alignment exception occurs if the EA is not word-aligned.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwarx RT, RA, RB

31 RT RA RB 20

0 6 11 16 21 31
AMCC Proprietary 698

405EP – PPC405EP Embedded Processor
lwbrx
Load Word Byte-Reverse Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lwbrx
Load Word Byte-Reverse Indexed

EA ← (RA|0) + (RB)
(RT) ← MS(EA+3,1) || MS(EA+2,1) || MS(EA+1,1) || MS(EA,1)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is byte-reversed: the least significant byte becomes the most significant byte, the next
least significant byte becomes the next most significant byte, and so on. The resulting word is placed into
register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwbrx RT, RA, RB

31 RT RA RB 534

0 6 11 16 21 31
699 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lwz

Load Word and Zero
lwz
Load Word and Zero

EA ← (RA|0) + EXTS(D)
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the
contents of register RA otherwise.

The word at the EA is placed into register RT.

Registers Altered
• RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwz RT, D(RA)

32 RT RA D

0 6 11 16 31
AMCC Proprietary 700

405EP – PPC405EP Embedded Processor
lwzu
Load Word and Zero with Update

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lwzu
Load Word and Zero with Update

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding a displacement to the base address in register RA. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The word at the EA is placed into register RT.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• RA = RT
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwzu RT, D(RA)

33 RT RA D

0 6 11 16 31
701 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lwzux

Load Word and Zero with Update Indexed
lwzux
Load Word and Zero with Update Indexed

EA ← (RA) + (RB)
(RA) ← EA
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA
• RT

Invalid Instruction Forms
• Reserved fields
• RA = RT
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwzux RT, RA, RB

31 RT RA RB 55

0 6 11 16 21 31
AMCC Proprietary 702

405EP – PPC405EP Embedded Processor
lwzx
Load Word and Zero Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

lwzx
Load Word and Zero Indexed

EA ← (RA|0) + (RB)
(RT) ← MS(EA,4)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The word at the EA is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

lwzx RT, RA, RB

31 RT RA RB 23

0 6 11 16 21 31
703 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
macchw

Multiply Accumulate Cross Halfword to Word Modulo Signed
macchw
Multiply Accumulate Cross Halfword to Word Modulo Signed

prod0:31 ← (RA)16:31 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced
by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

macchw RT, RA, RB OE=0, Rc=0
macchw. RT, RA, RB OE=0, Rc=1
macchwo RT, RA, RB OE=1, Rc=0
macchwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 172 Rc

0 6 11 16 21 22 31
AMCC Proprietary 704

405EP – PPC405EP Embedded Processor
macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

macchws
Multiply Accumulate Cross Halfword to Word Saturate Signed

prod0:31 ← (RA)16:31 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231,
the value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

macchws RT, RA, RB OE=0, Rc=0
macchws. RT, RA, RB OE=0, Rc=1
macchwso RT, RA, RB OE=1, Rc=0
macchwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 236 Rc

0 6 11 16 21 22 31
705 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
macchwsu

Multiply Accumulate Cross Halfword to Word Saturate Unsigned
macchwsu
Multiply Accumulate Cross Halfword to Word Saturate Unsigned

prod0:31 ← (RA)16:31 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The low-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is greater than
232 – 1, the value stored in RT is 232 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

macchwsu RT, RA, RB OE=0, Rc=0
macchwsu. RT, RA, RB OE=0, Rc=1
macchwsuo RT, RA, RB OE=1, Rc=0
macchwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 204 Rc

0 6 11 16 21 22 31
AMCC Proprietary 706

405EP – PPC405EP Embedded Processor
macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

macchwu
Multiply Accumulate Cross Halfword to Word Modulo Unsigned

prod0:31 ← (RA)16:31 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

macchwu RT, RA, RB OE=0, Rc=0
macchwu. RT, RA, RB OE=0, Rc=1
macchwuo RT, RA, RB OE=1, Rc=0
macchwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 140 Rc

0 6 11 16 21 22 31
707 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
machhw

Multiply Accumulate High Halfword to Word Modulo Signed
machhw
Multiply Accumulate High Halfword to Word Modulo Signed

prod0:31 ← (RA)0:15 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced
by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

machhw RT, RA, RB OE=0, Rc=0
machhw. RT, RA, RB OE=0, Rc=1
machhwo RT, RA, RB OE=1, Rc=0
machhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 44 Rc

0 6 11 16 21 22 31
AMCC Proprietary 708

405EP – PPC405EP Embedded Processor
machhws
Multiply Accumulate High Halfword to Word Saturate Signed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

machhws
Multiply Accumulate High Halfword to Word Saturate Signed

prod0:31 ← (RA)0:15 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231,
the value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

machhws RT, RA, RB OE=0, Rc=0
machhws. RT, RA, RB OE=0, Rc=1
machhwso RT, RA, RB OE=1, Rc=0
machhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 108 Rc

0 6 11 16 21 22 31
709 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
machhwsu

Multiply Accumulate High Halfword to Word Saturate Unsigned
machhwsu
Multiply Accumulate High Halfword to Word Saturate Unsigned

prod0:31 ← (RA)0:15 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The high-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is greater than
232 – 1, the value stored in RT is 232 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

machhwsu RT, RA, RB OE=0, Rc=0
machhwsu. RT, RA, RB OE=0, Rc=1
machhwsuo RT, RA, RB OE=1, Rc=0
machhwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 76 Rc

0 6 11 16 21 22 31
AMCC Proprietary 710

405EP – PPC405EP Embedded Processor
machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

machhwu
Multiply Accumulate High Halfword to Word Modulo Unsigned

prod0:31 ← (RA)0:15 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The unsigned product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

machhwu RT, RA, RB OE=0, Rc=0
machhwu. RT, RA, RB OE=0, Rc=1
machhwuo RT, RA, RB OE=1, Rc=0
machhwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 12 Rc

0 6 11 16 21 22 31
711 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
maclhw

Multiply Accumulate Low Halfword to Word Modulo Signed
maclhw
Multiply Accumulate Low Halfword to Word Modulo Signed

prod0:31 ← (RA)16:31 x (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced
by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

maclhw RT, RA, RB OE=0, Rc=0
maclhw. RT, RA, RB OE=0, Rc=1
maclhwo RT, RA, RB OE=1, Rc=0
maclhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 428 Rc

0 6 11 16 21 22 31
AMCC Proprietary 712

405EP – PPC405EP Embedded Processor
maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

maclhws
Multiply Accumulate Low Halfword to Word Saturate Signed

prod0:31 ← (RA)16:31 x (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)

if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The signed product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231,
the value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

maclhws RT, RA, RB OE=0, Rc=0
maclhws. RT, RA, RB OE=0, Rc=1
maclhwso RT, RA, RB OE=1, Rc=0
maclhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 492 Rc

0 6 11 16 21 22 31
713 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
maclhwsu

Multiply Accumulate Low Halfword to Word Saturate Unsigned
maclhwsu
Multiply Accumulate Low Halfword to Word Saturate Unsigned

prod0:31 ← (RA)16:31 x (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← (temp1:32 ∨ 32temp0)

The low-order halfword of RA is multiplied by the low-order halfword of RB. The unsigned product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is greater than
232 – 1, the value stored in RT is 232 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

maclhwsu RT, RA, RB OE=0, Rc=0
maclhwsu. RT, RA, RB OE=0, Rc=1
maclhwsuo RT, RA, RB OE=1, Rc=0
maclhwsuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 460 Rc

0 6 11 16 21 22 31
AMCC Proprietary 714

405EP – PPC405EP Embedded Processor
maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

maclhwu
Multiply Accumulate Low Halfword to Word Modulo Unsigned

prod0:31 ← (RA)16:31 x (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The unsigned product is summed
with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are replaced
by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

maclhwu RT, RA, RB OE=0, Rc=0
maclhwu. RT, RA, RB OE=0, Rc=1
maclhwuo RT, RA, RB OE=1, Rc=0
maclhwuo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 396 Rc

0 6 11 16 21 22 31
715 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mcrf

Move Condition Register Field
mcrf
Move Condition Register Field

m ← BFA
n ← BF
(CR[CRn]) ← (CR[CRm])

The contents of the CR field specified by the BFA field are placed into the CR field specified by the BF field.

Registers Altered
• CR[CRn] where n is specified by the BF field.

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mcrf BF, BFA

19 BF BFA 0

0 6 9 11 14 21 31
AMCC Proprietary 716

405EP – PPC405EP Embedded Processor
mcrf
Move Condition Register Field

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
717 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mcrxr

Move to Condition Register from XER
25.Instruction Setmcrxr
Move to Condition Register from XER

n ← BF
(CR[CRn]) ← XER0:3
XER0:3 ← 40

The contents of XER0:3 are placed into the CR field specified by the BF field. XER0:3 are then set to 0.

This transfer is positional, by bit number, so the mnemonics associated with each bit are changed. See
Table 25-18 for clarification.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR[CRn] where n is specified by the BF field.
• XER[SO, OV, CA]

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mcrxr BF

31 BF 512

0 6 9 21 31

Table 25-18. Transfer Bit Mnemonic Assignment

Bit XER Usage CR Usage

0 SO LT

1 OV GT

2 CA EQ

3 Reserved SO
AMCC Proprietary 718

405EP – PPC405EP Embedded Processor
mfcr
Move From Condition Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mfcr
Move From Condition Register

(RT) ← (CR)

The contents of the CR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mfcr RT

31 RT 19

0 6 11 21 31
719 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mfdcr

Move from Device Control Register
mfdcr
Move from Device Control Register

DCRN ← DCRF5:9 || DCRF0:4
(RT) ← (DCR(DCRN))

The contents of the DCR specified by the DCRF field are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields
• Invalid DCRF values

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of mfdcr refers to a DCR number. The
assembler handles the unusual register number encoding to generate the DCRF field.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

mfdcr RT, DCRN

31 RT DCRF 323

0 6 11 21 31
AMCC Proprietary 720

405EP – PPC405EP Embedded Processor
mfdcr
Move from Device Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
721 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mfmsr

Move From Machine State Register
25.Instruction Setmfmsr
Move From Machine State Register

(RT) ← (MSR)

The contents of the MSR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

mfmsr RT

31 RT 83

0 6 11 21 31
AMCC Proprietary 722

405EP – PPC405EP Embedded Processor
mfspr
Move From Special Purpose Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mfspr
Move From Special Purpose Register

SPRN ← SPRF5:9 || SPRF0:4
(RT) ← (SPR(SPRN))

The contents of the SPR specified by the SPRF field are placed into register RT. See “Special Purpose
Registers” on page 26-817 for a listing of SPR mnemonics and corresponding SPRN and SPRF values.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields
• Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 contains 1. See “Privileged Mode Operation” on
page 3-103.

The SPR number (SPRN) specified in the assembler language coding of mfspr refers to an SPR number
(see “Special Purpose Registers” on page 26-817 for a list of SPRN values). The assembler handles the
unusual register number encoding to generate the SPRF field. Also, see “Privileged SPRs” on page 3-104 for
information about privileged SPRs.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mfspr RT, SPRN

31 RT SPRF 339

0 6 11 21 31
723 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mfspr

Move From Special Purpose Register
Table 25-19. Extended Mnemonics for mfspr

Mnemonic Operands Function

Other
Registers
Changed

mfccr0
mfctr
mfdac1
mfdac2
mfdear
mfdbcr0
mfdbcr1
mfdbsr
mfdccr
mfdcwr
mfdvc1
mfdvc2
mfesr
mfevpr
mfiac1
mfiac2
mfiac3
mfiac4
mficcr
mficdbdr
mflr
mfpid
mfpit
mfpvr
mfsgr
mfsler
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mfsrr2
mfsrr3
mfsu0r
mftcr
mftsr
mfxer
mfzpr

RT Move from special purpose register SPRN.
Extended mnemonic for
mfspr RT,SPRN

See “Special Purpose Registers” on page 26-817
for a list of valid SPRN values.
AMCC Proprietary 724

405EP – PPC405EP Embedded Processor
mftb
Move From Time Base

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mftb

Move From Time Base

TBRN ← TBRF5:9 || TBRF0:4
(RT) ← (TBR(TBRN))

The contents of the time base register (TBR) specified by the TBRF field are placed into register RT. The
following table lists the TBRN and TBRF values.

If TBRN is a value other than those listed in the table, the results are boundedly undefined.

Registers Altered
• RT

Invalid Instruction Forms
• Reserved fields

• Invalid TBRF values

Programming Notes

The mnemonic mftb serves as both a hardware mnemonic and an extended mnemonic. The assembler
recognizes an mftb mnemonic having two operands as the hardware form; an mftb mnemonic having one
operand is recognized as the extended form.

The TBR number (TBRN) specified in the assembler language coding of the mftb instruction refers to a TBR
number listed in the preceding table. The assembler handles the unusual register number encoding to
generate the TBRF field.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Virtual Environment.

mftb RT, TBRN

31 RT TBRF 371

0 6 11 21 31

Table 25-20. Extended Mnemonics for mftb

Register
Mnemonic Register Name

TBRN

TBRF AccessDecimal Hex

TBL Time Base Lower 268 0x10C 0x188 Read-only

TBU Time Base Upper 269 0x10D 0x1A8 Read-only

Table 25-21. Extended Mnemonics for mftb

Mnemonic Operands Function
Other Registers

Altered

mftb RT Move the contents of TBL into RT.
Extended mnemonic for
mftb RT,TBL
725 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mftb

Move From Time Base
mftbu RT Move the contents of TBU into RT.
Extended mnemonic for
mftb RT,TBU

Table 25-21. Extended Mnemonics for mftb (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 726

405EP – PPC405EP Embedded Processor
mtcrf
Move to Condition Register Fields

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mtcrf
Move to Condition Register Fields

mask ← 4(FXM0) || 4(FXM1) || ... || 4(FXM6) || 4(FXM7)
(CR) ← ((RS) ∧ mask) ∨ ((CR) ∧ ¬mask)

Some or all of the contents of register RS are placed into the CR as specified by the FXM field.

Each bit in the FXM field controls the copying of 4 bits in register RS into the corresponding bits in the CR.
The correspondence between the bits in the FXM field and the bit copying operation is shown in the following
table:

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• CR

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mtcrf FXM, RS

31 RS FXM 144

0 6 11 12 20 21 31

FXM Bit
Number

Bits
Controlled

0 0:3

1 4:7

2 8:11

3 12:15

4 16:19

5 20:23

6 24:27

7 28:31

Table 25-22. Extended Mnemonics for mtcrf

Mnemonic Operands Function
Other Registers

Altered

mtcr RS Move to CR.
Extended mnemonic for
mtcrf 0xFF,RS
727 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mtdcr

Move To Device Control Register
mtdcr
Move To Device Control Register

DCRN ← DCRF5:9 || DCRF0:4
(DCR(DCRN)) ← (RS)

The contents of register RS are placed into the DCR specified by the DCRF field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• DCR(DCRN)

Invalid Instruction Forms
• Reserved fields
• Invalid DCRF values

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of mtdcr refers to a DCR number. The
assembler handles the unusual register number encoding to generate the DCRF field.

Architecture Note

This instruction is implementation-specific and may not be portable to other implementations.

mtdcr DCRN, RS

31 RS DCRF 451

0 6 11 21 31
AMCC Proprietary 728

405EP – PPC405EP Embedded Processor
mtdcr
Move To Device Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
729 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mtmsr

Move To Machine State Register
25.Instruction Setmtmsr
Move To Machine State Register

(MSR) ← (RS)

The contents of register RS are placed into the MSR.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR

Invalid Instruction Forms
• Reserved fields

Programming Note

The mtmsr instruction is privileged and execution synchronizing.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

mtmsr RS

31 RS 146

0 6 11 21 31
AMCC Proprietary 730

405EP – PPC405EP Embedded Processor
mtspr
Move To Special Purpose Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mtspr
Move To Special Purpose Register

SPRN ← SPRF5:9 || SPRF0:4
(SPR(SPRN)) ← (RS)

The contents of register RS are placed into register RT. See “Special Purpose Registers” on page 26-817 for
a listing of SPR mnemonics and corresponding SPRN and SPRF values.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• SPR(SPRN)

Invalid Instruction Forms
• Reserved fields
• Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 is a 1. See “Privileged SPRs” on page 3-104 for
more information.

The SPR number (SPRN) specified in the assembler language coding of the mtspr instruction refers to an
SPR number (see “Special Purpose Registers” on page 26-817 for a list of SPRN values). The assembler
handles the unusual register number encoding to generate the SPRF field.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mtspr SPRN, RS

31 RS SPRF 467

0 6 11 21 31
731 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mtspr

Move To Special Purpose Register
Table 25-22. Extended Mnemonics for mtspr

Mnemonic Operands Function
Other Registers

Altered

mtccr0
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbsr
mtdccr
mtdcwr
mtdear
mtdvc1
mtdvc2
mtesr
mtevpr
mtiac1
mtiac2
mtiac3
mtiac4
mticcr
mticdbdr
mtlr
mtpid
mtpit
mtpvr
mtsgr
mtsler
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mtsu0r
mttcr
mttsr
mtxer
mtzpr

RS Move to special purpose register SPRN.
Extended mnemonic for
mtspr SPRN,RS

See “Special Purpose Registers” on page 26-817
for a list of valid SPRN values.
AMCC Proprietary 732

405EP – PPC405EP Embedded Processor
mtspr
Move To Special Purpose Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
733 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mulchw

Multiply Cross Halfword to Word Signed
25.Instruction Setmulchw
Multiply Cross Halfword to Word Signed

(RT)0:31 ← (RA)16:31 x (RB)0:15 signed

The low-order halfword of RA is multiplied by the high-order halfword of RB. The resulting signed product
replaces the contents of RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

mulchw RT, RA, RB Rc=0
mulchw. RT, RA, RB Rc=1

4 RT RA RB 168 Rc

0 6 11 16 21 31
AMCC Proprietary 734

405EP – PPC405EP Embedded Processor
mulchwu
Multiply Cross Halfword to Word Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mulchwu
Multiply Cross Halfword to Word Unsigned

(RT)0:31 ← (RA)16:31 x (RB)0:15 unsigned

The low-order halfword of RA is multiplied by the high-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

mulchwu RT, RA, RB Rc=0
mulchwu. RT, RA, RB Rc=1

4 RT RA RB 136 Rc

0 6 11 16 21 31
735 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mulhhw

Multiply High Halfword to Word Signed
mulhhw
Multiply High Halfword to Word Signed

(RT)0:31 ← (RA)0:15 x (RB)0:15 signed

The high-order halfword of RA is multiplied by the high-order halfword of RB. The resulting signed product
replaces the contents of RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

mulhhw RT, RA, RB Rc=0
mulhhw. RT, RA, RB Rc=1

4 RT RA RB 40 Rc

0 6 11 16 21 31
AMCC Proprietary 736

405EP – PPC405EP Embedded Processor
mulhhwu
Multiply High Halfword to Word Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mulhhwu
Multiply High Halfword to Word Unsigned

(RT)0:31 ← (RA)0:15 x (RB)0:15 unsigned

The high-order halfword of RA is multiplied by the high-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

mulhhwu RT, RA, RB Rc=0
mulhhwu. RT, RA, RB Rc=1

4 RT RA RB 8 Rc

0 6 11 16 21 31
737 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mulhw

Multiply High Word
mulhw
Multiply High Word

prod0:63 ← (RA) × (RB) signed
(RT) ← prod0:31

The 64-bit signed product of registers RA and RB is formed. The most significant 32 bits of the result is
placed into register RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ depending on
whether the registers RA and RB are interpreted as signed or unsigned quantities. mulhw generates the
correct result when these operands are interpreted as signed quantities. mulhwu generates the correct result
when these operands are interpreted as unsigned quantities.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mulhw RT, RA, RB Rc=0
mulhw. RT, RA, RB Rc=1

31 RT RA RB 75 Rc

0 6 11 16 21 22 31
AMCC Proprietary 738

405EP – PPC405EP Embedded Processor
mulhwu
Multiply High Word Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mulhwu
Multiply High Word Unsigned

prod0:63 ← (RA) × (RB) unsigned
(RT) ← prod0:31

The 64-bit unsigned product of registers RA and RB is formed. The most significant 32 bits of the result are
placed into register RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ depending on
whether the registers RA and RB are interpreted as signed or unsigned quantities. The mulhw instruction
generates the correct result when these operands are interpreted as signed quantities. The mulhwu
instruction generates the correct result when these operands are interpreted as unsigned quantities.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mulhwu RT, RA, RB Rc=0
mulhwu. RT, RA, RB Rc=1

31 RT RA RB 11 Rc

0 6 11 16 21 31
739 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mullhw

Multiply Low Halfword to Word Signed
mullhw
Multiply High Halfword to Word Signed

(RT)0:31 ← (RA)16:31 x (RB)16:31 signed

The low-order halfword of RA is multiplied by the low-order halfword of RB. The resulting signed product
replaces the contents of RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

mullhw RT, RA, RB Rc=0
mullhw. RT, RA, RB Rc=1

4 RT RA RB 424 Rc

0 6 11 16 21 31
AMCC Proprietary 740

405EP – PPC405EP Embedded Processor
mullhwu
Multiply Low Halfword to Word Unsigned

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mullhwu
Multiply High Halfword to Word Unsigned

(RT)0:31 ← (RA)16:31 x (RB)16:31 unsigned

The low-order halfword of RA is multiplied by the low-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

mullhwu RT, RA, RB OE=0, Rc=0
mullhwu. RT, RA, RB OE=0, Rc=1

4 RT RA RB 392 Rc

0 6 11 16 21 31
741 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mulli

Multiply Low Immediate
mulli
Multiply Low Immediate

prod0:47 ← (RA) × EXTS(IM) signed
(RT) ← prod16:47

The 48-bit product of register RA and the sign-extended IM field is formed. Both register RA and the IM field
are interpreted as signed quantities. The least significant 32 bits of the product are placed into register RT.

Registers Altered
• RT

Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA and field IM are
interpreted as signed or unsigned numbers.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mulli RT, RA, IM

7 RT RA IM

0 6 11 16 31
AMCC Proprietary 742

405EP – PPC405EP Embedded Processor
mullw
Multiply Low Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

mullw
Multiply Low Word

prod0:63 ← (RA) × (RB) signed
(RT) ← prod32:63

The 64-bit signed product of register RA and register RB is formed. The least significant 32 bits of the result is
placed into register RT.

If the signed product cannot be represented in 32 bits and OE=1, XER[SO, OV] are set to 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE=1

Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA and register RB are
interpreted as signed or unsigned numbers. The overflow indication is correct only if the operands are
regarded as signed numbers.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

mullw RT, RA, RB OE=0, Rc=0
mullw. RT, RA, RB OE=0, Rc=1
mullwo RT, RA, RB OE=1, Rc=0
mullwo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 235 Rc

0 6 11 16 21 22 31
743 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
nand
NAND
nand
NAND

(RA) ← ¬((RS) ∧ (RB))

The contents of register RS is ANDed with the contents of register RB; the ones complement of the result is
placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

nand RA, RS, RB Rc=0
nand. RA, RS, RB Rc=1

31 RT RA RB 476 Rc

0 6 11 16 21 31
AMCC Proprietary 744

405EP – PPC405EP Embedded Processor
neg
Negate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

neg
Negate

(RT) ← ¬(RA) + 1

The twos complement of the contents of register RA are placed into register RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE=1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

neg RT, RA OE=0, Rc=0
neg. RT, RA OE=0, Rc=1
nego RT, RA OE=1, Rc=0
nego. RT, RA OE=1, Rc=1

31 RT RA OE 104 Rc

0 6 11 16 21 22 31
745 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
nmacchw

Negative Multiply Accumulate Cross Halfword to Word Modulo
nmacchw
Negative Multiply Accumulate Cross Halfword to Word Modulo Signed

nprod0:31 ← –((RA)16:31 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

nmacchw RT, RA, RB OE=0, Rc=0
nmacchw. RT, RA, RB OE=0, Rc=1
nmacchwo RT, RA, RB OE=1, Rc=0
nmacchwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 174 Rc

0 6 11 16 21 22 31
AMCC Proprietary 746

405EP – PPC405EP Embedded Processor
nmacchws
Negative Multiply Accumulate Cross Halfword to Word Saturate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

nmacchws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

nprod0:31 ← –((RA)16:31 x (RB)0:15 signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231,
the value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

nmacchws RT, RA, RB OE=0, Rc=0
nmacchws. RT, RA, RB OE=0, Rc=1
nmacchwso RT, RA, RB OE=1, Rc=0
nmacchwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 238 Rc

0 6 11 16 21 22 31
747 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
nmachhw

Negative Multiply Accumulate High Halfword to Word Modulo
nmachhw
Negative Multiply Accumulate High Halfword to Word Modulo Signed

nprod0:31 ← –((RA)0:15 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

nmachhw RT, RA, RB OE=0, Rc=0
nmachhw. RT, RA, RB OE=0, Rc=1
nmachhwo RT, RA, RB OE=1, Rc=0
nmachhwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 46 Rc

0 6 11 16 21 22 31
AMCC Proprietary 748

405EP – PPC405EP Embedded Processor
nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

nmachhws
Negative Multiply Accumulate High Halfword to Word Saturate Signed

nprod0:31 ← –((RA)0:15 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The high-order halfword of RA is multiplied by the high-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow (i.e., it is accurately representable in 32 bits), the low-order 32 bits of the
temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231,
the value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

nmachhws RT, RA, RB OE=0, Rc=0
nmachhws. RT, RA, RB OE=0, Rc=1
nmachhwso RT, RA, RB OE=1, Rc=0
nmachhwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 110 Rc

0 6 11 16 21 22 31
749 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
nmaclhw

Negative Multiply Accumulate Low Halfword to Word Modulo Signed
nmaclhw
Negative Multiply Accumulate Low Halfword to Word Modulo Signed

nprod0:31 ← –((RA)16:31 x (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)

(RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register. The contents of RT are
replaced by the low-order 32 bits of the temporary register.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

nmaclhw RT, RA, RB OE=0, Rc=0
nmaclhw. RT, RA, RB OE=0, Rc=1
nmaclhwo RT, RA, RB OE=1, Rc=0
nmachlwo. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 430 Rc

0 6 11 16 21 22 31
AMCC Proprietary 750

405EP – PPC405EP Embedded Processor
nmaclhws
Negative Multiply Accumulate High Halfword to Word Saturate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

nmaclhws
Negative Multiply Accumulate Low Halfword to Word Saturate Signed

nprod0:31 ← –((RA)16:31 x (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)

if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0 || 31(¬RT0))

else (RT) ← temp1:32

The low-order halfword of RA is multiplied by the low-order halfword of RB. The negated signed product is
summed with the contents of RT and the sum is stored in a 33-bit temporary register.

If a result does not overflow, the low-order 32 bits of the temporary register are stored in RT.

If a result overflows, the returned result is the nearest representable value. Thus, if a result is less than –231,
the value stored in RT is –231. Likewise, if a result is greater than 231 – 1, the value stored in RT is 231 – 1.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the Multiply-Accumulate instruction set extensions and complies with the
architectural requirements for APUs of the IBM PowerPC Embedded Environment. As such, it is not part of
the PowerPC Architecture, nor is it part of the IBM PowerPC Embedded Environment. Programs that use this
instruction may not be portable to other implementations.

nmaclhws RT, RA, RB OE=0, Rc=0
nmaclhws. RT, RA, RB OE=0, Rc=1
nmaclhwso RT, RA, RB OE=1, Rc=0
nmachlwso. RT, RA, RB OE=1, Rc=1

4 RT RA RB OE 494 Rc

0 6 11 16 21 22 31
751 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
nor

NOR
nor
NOR

(RA) ← ¬((RS) ∨ (RB))

The contents of register RS is ORed with the contents of register RB; the ones complement of the result is
placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

nor RA, RS, RB Rc=0
nor. RA, RS, RB Rc=1

31 RT RA RB 124 Rc

0 6 11 16 21 31

Table 25-23. Extended Mnemonics for nor, nor.

Mnemonic Operands Function
Other Registers

Altered

not

RA, RS Complement register.
(RA) ← ¬(RS)

Extended mnemonic for
nor RA,RS,RS

not.
Extended mnemonic for
nor. RA,RS,RS

CR[CR0]
AMCC Proprietary 752

405EP – PPC405EP Embedded Processor
or
OR

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

or
OR

(RA) ← (RS) ∨ (RB)

The contents of register RS is ORed with the contents of register RB; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

or RA, RS, RB Rc=0
or. RA, RS, RB Rc=1

31 RS RA RB 444 Rc

0 6 11 16 21 31

Table 25-24. Extended Mnemonics for or, or.

Mnemonic Operands Function
Other Registers

Altered

mr RT, RS Move register.
(RT) ← (RS)

Extended mnemonic for
or RT,RS,RS

mr. Extended mnemonic for
or. RT,RS,RS

CR[CR0]
753 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
orc

OR with Complement
orc
OR with Complement

(RA) ← (RS) ∨ ¬(RB)

The contents of register RS is ORed with the ones complement of the contents of register RB; the result is
placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

orc RA, RS, RB Rc=0
orc. RA, RS, RB Rc=1

31 RT RA RB 412 Rc

0 6 11 16 21 31
AMCC Proprietary 754

405EP – PPC405EP Embedded Processor
ori
OR Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

ori
OR Immediate

(RA) ← (RS) ∨ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. Register RS is ORed with the
extended IM field; the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

ori RA, RS, IM

24 RS RA IM

0 6 11 16 31

Table 25-25. Extended Mnemonics for ori

Mnemonic Operands Function
Other Registers

Changed

nop Preferred no-op; triggers optimizations based on
no-ops.

Extended mnemonic for
ori 0,0,0
755 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
oris

OR Immediate Shifted
oris
OR Immediate Shifted

(RA) ← (RS) ∨ (IM || 160)

The IM Field is extended to 32 bits by concatenating 16 0-bits on the right. Register RS is ORed with the
extended IM field and the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

oris RA, RS, IM

25 RS RA IM

0 6 11 16 31
AMCC Proprietary 756

405EP – PPC405EP Embedded Processor
rfci
Return From Critical Interrupt

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

rfci
Return From Critical Interrupt

(PC) ← (SRR2)
(MSR) ← (SRR3)

The program counter (PC) is restored with the contents of SRR2 and the MSR is restored with the contents of
SRR3.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Programming Note

Execution of this instruction is privileged and context-synchronizing.

Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

rfci

19 51

0 6 21 31
757 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
rfi

Return From Interrupt
rfi
Return From Interrupt

(PC) ← (SRR0)
(MSR) ← (SRR1)

The program counter (PC) is restored with the contents of SRR0 and the MSR is restored with the contents of
SRR1.

Instruction execution returns to the address contained in the PC.

Registers Altered
• MSR

Invalid Instruction Forms
• Reserved fields

Programming Note

Execution of this instruction is privileged and context-synchronizing.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

rfi

19 50

0 6 21 31
AMCC Proprietary 758

405EP – PPC405EP Embedded Processor
rlwimi
Rotate Left Word Immediate then Mask Insert

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

rlwimi
Rotate Left Word Immediate then Mask Insert

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask is
generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position
specified by the ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the mask
wraps from the highest bit position back around to the lowest. The rotated data is inserted into register RA, in
positions corresponding to the bit positions in the mask that contain a 1-bit.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

rlwimi RA, RS, SH, MB, ME Rc=0
rlwimi. RA, RS, SH, MB, ME Rc=1

20 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Table 25-26. Extended Mnemonics for rlwimi, rlwimi.

Mnemonic Operands Function
Other Registers

Altered

inslwi RA, RS, n, b Insert from left immediate (n > 0).
(RA)b:b+n-1 ← (RS)0:n-1

Extended mnemonic for
rlwimi RA,RS,32−b,b,b+n−1

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1

CR[CR0]

insrwi RA, RS, n, b Insert from right immediate. (n > 0)
(RA)b:b+n-1 ← (RS)32-n:31

Extended mnemonic for
rlwimi RA,RS,32−b−n,b,b+n−1

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1

CR[CR0]
759 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
rlwinm

Rotate Left Word Immediate then AND with Mask
rlwinm
Rotate Left Word Immediate then AND with Mask

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← r ∧ m

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask is
generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position
specified by the ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the mask
wraps from the highest bit position back around to the lowest. The rotated data is ANDed with the generated
mask; the result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

rlwinm RA, RS, SH, MB, ME Rc=0
rlwinm. RA, RS, SH, MB, ME Rc=1

21 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Table 25-27. Extended Mnemonics for rlwinm, rlwinm.

Mnemonic Operands Function
Other Registers

Altered

clrlwi RA, RS, n Clear left immediate. (n < 32)
(RA)0:n-1 ← n0

Extended mnemonic for
rlwinm RA,RS,0,n,31

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31

CR[CR0]

clrlslwi RA, RS, b, n Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b-n:31-n ← (RS)b:31
(RA)32-n:31 ← n0
(RA)0:b-n-1 ← b-n0

Extended mnemonic for
rlwinm RA,RS,n,b−n,31−n

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n

CR[CR0]
AMCC Proprietary 760

405EP – PPC405EP Embedded Processor
rlwinm
Rotate Left Word Immediate then AND with Mask

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
clrrwi RA, RS, n Clear right immediate. (n < 32)
(RA)32-n:31 ← n0
Extended mnemonic for

rlwinm RA,RS,0,0,31−n

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n

CR[CR0]

extlwi RA, RS, n, b Extract and left justify immediate. (n > 0)
(RA)0:n-1 ← (RS)b:b+n-1
(RA)n:31 ← 32-n0

Extended mnemonic for
rlwinm RA,RS,b,0,n−1

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1

CR[CR0]

extrwi RA, RS, n, b Extract and right justify immediate. (n > 0)
(RA)32-n:31 ← (RS)b:b+n-1
(RA)0:31-n ← 32-n0

Extended mnemonic for
rlwinm RA,RS,b+n,32−n,31

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31

CR[CR0]

rotlwi RA, RS, n Rotate left immediate.
(RA) ← ROTL((RS), n)

Extended mnemonic for
rlwinm RA,RS,n,0,31

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31

CR[CR0]

rotrwi RA, RS, n Rotate right immediate.
(RA) ← ROTL((RS), 32−n)

Extended mnemonic for
rlwinm RA,RS,32−n,0,31

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31

CR[CR0]

slwi RA, RS, n Shift left immediate. (n < 32)
(RA)0:31-n ← (RS)n:31
(RA)32-n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,n,0,31−n

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n

CR[CR0]

Table 25-27. Extended Mnemonics for rlwinm, rlwinm. (continued)

Mnemonic Operands Function
Other Registers

Altered
761 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
rlwinm

Rotate Left Word Immediate then AND with Mask
srwi RA, RS, n Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31-n
(RA)0:n-1 ← n0

Extended mnemonic for
rlwinm RA,RS,32−n,n,31

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31

CR[CR0]

Table 25-27. Extended Mnemonics for rlwinm, rlwinm. (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 762

405EP – PPC405EP Embedded Processor
rlwnm
Rotate Left Word then AND with Mask

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

rlwnm
Rotate Left Word then AND with Mask

r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← r ∧ m

The contents of register RS are rotated left by the number of bit positions specified by the contents of register
RB27:31. A mask is generated, having 1-bits starting at the bit position specified in the MB field and ending in
the bit position specified by the ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the ones portion of the mask
wraps from the highest bit position back to the lowest. The rotated data is ANDed with the generated mask
and the result is placed into register RA.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

rlwnm RA, RS, RB, MB, ME Rc=0
rlwnm. RA, RS, RB, MB, ME Rc=1

23 RS RA RB MB ME Rc

0 6 11 16 21 26 31

Table 25-28. Extended Mnemonics for rlwnm, rlwnm.

Mnemonic Operands Function
Other Registers

Altered

rotlw RA, RS, RB Rotate left.
(RA) ← ROTL((RS), (RB)27:31)

Extended mnemonic for
rlwnm RA,RS,RB,0,31

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31

CR[CR0]
763 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sc

System Call
sc
System Call

(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || 0x0C00
(MSR[WE, EE, PR, DR, IR]) ← 0

A system call exception is generated. The contents of the MSR are copied into SRR1 and (4 + address of sc
instruction) is placed into SRR0.

The program counter (PC) is then loaded with the exception vector address. The exception vector address is
calculated by concatenating the high halfword of the Exception Vector Prefix Register (EVPR) to the left of
0x0C00.

The MSR[WE, EE, PR, DR, IR] bits are set to 0.

Program execution continues at the new address in the PC.

The sc instruction is context synchronizing.

Registers Altered
• SRR0
• SRR1
• MSR[WE, EE, PR, DR, IR]

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sc

17 1

0 6 30 31
AMCC Proprietary 764

405EP – PPC405EP Embedded Processor
slw
Shift Left Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

slw
Shift Left Word

n ← (RB)27:31
r ← ROTL((RS), n)
if (RB)26 = 0 then

m ← MASK(0, 31 – n)
else

m ← 320
(RA) ← r ∧ m

The contents of register RS are shifted left by the number of bits specified by the contents of register RB27:31.
Bits shifted left out of the most significant bit are lost, and 0-bits fill vacated bit positions on the right. The
result is placed into register RA.

If RB26 = 1, register RA is set to zero.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

slw RA, RS, RB Rc=0
slw. RA, RS, RB Rc=1

31 RS RA RB 24 Rc

0 6 11 16 21 31
765 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sraw

Shift Right Algebraic Word
sraw
Shift Right Algebraic Word

n ← (RB)27:31
r ← ROTL((RS), 32 – n)
if (RB)26 = 0 then

m ← MASK(n, 31)
else

m ← 320
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0)

The contents of register RS are shifted right by the number of bits specified the contents of register RB27:31.
Bits shifted out of the least significant bit are lost. Register RS0 is replicated to fill the vacated positions on the
left. The result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least significant bit position,
XER[CA] is set to 1; otherwise, it is set to 0.

If bit 26 of register RB contains 1, register RA and XER[CA] are set to bit 0 of register RS.

Registers Altered
• RA
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sraw RA, RS, RB Rc=0
sraw. RA, RS, RB Rc=1

31 RS RA RB 792 Rc

0 6 11 16 21 31
AMCC Proprietary 766

405EP – PPC405EP Embedded Processor
srawi
Shift Right Algebraic Word Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

srawi
Shift Right Algebraic Word Immediate

n ← SH
r ← ROTL((RS), 32 – n)
m ← MASK(n, 31)
s ← (RS)0
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m)
XER[CA] ← s ∧ ((r ∧ ¬m)≠0)

The contents of register RS are shifted right by the number of bits specified in the SH field. Bits shifted out of
the least significant bit are lost. Bit RS0 is replicated to fill the vacated positions on the left. The result is
placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least significant bit position,
XER[CA] is set to 1; otherwise, it is set to 0.

Registers Altered
• RA
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

srawi RA, RS, SH Rc=0
srawi. RA, RS, SH Rc=1

31 RS RA SH 824 Rc

0 6 11 16 21 31
767 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
srw

Shift Right Word
srw
Shift Right Word

n ← (RB)27:31
r ← ROTL((RS), 32 – n)
if (RB)26 = 0 then

m ← MASK(n, 31)
else

m ← 320
(RA) ← r ∧ m

The contents of register RS are shifted right by the number of bits specified the contents of register RB27:31.
Bits shifted right out of the least significant bit are lost, and 0-bits fill the vacated bit positions on the left. The
result is placed into register RA.

If bit 26 of register RB contains a one, register RA is set to 0.

Registers Altered
• RA
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

srw RA, RS, RB Rc=0
srw. RA, RS, RB Rc=1

31 RS RA RB 536 Rc

0 6 11 16 21 31
AMCC Proprietary 768

405EP – PPC405EP Embedded Processor
stb
Store Byte

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stb
Store Byte

EA ← (RA|0) + EXTS(D)
MS(EA, 1) ← (RS)24:31

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is
the contents of register RA otherwise.

The least significant byte of register RS is stored into the byte at the EA.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stb RS, D(RA)

38 RS RA D

0 6 11 16 31
769 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stbu

Store Byte with Update
stbu
Store Byte with Update

EA ← (RA) + EXTS(D)
MS(EA, 1) ← (RS)24:31
(RA) ← EA

An effective address (EA) is formed by adding a displacement to the base address in register RA. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The least significant byte of register RS is stored into the byte at the EA.

Registers Altered
• RA

Invalid Instruction Forms

RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stbu RS, D(RA)

39 RS RA D

0 6 11 16 31
AMCC Proprietary 770

405EP – PPC405EP Embedded Processor
stbux
Store Byte with Update Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stbux
Store Byte with Update Indexed

EA ← (RA) + (RB)
MS(EA, 1) ← (RS)24:31
(RA) ← EA

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The least significant byte of register RS is stored into the byte at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stbux RS, RA, RB

31 RS RA RB 247

0 6 11 16 21 31
771 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stbx

Store Byte Indexed
stbx
Store Byte Indexed

EA ← (RA|0) + (RB)
MS(EA, 1) ← (RS)24:31

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant byte of register RS is stored into the byte at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stbx RS, RA, RB

31 RS RA RB 215

0 6 11 16 21 31
AMCC Proprietary 772

405EP – PPC405EP Embedded Processor
stbx
Store Byte Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
773 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sth

Store Halfword
25.Instruction Setsth
Store Halfword

EA ← (RA|0) + EXTS(D)
MS(EA, 2) ← (RS)16:31

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0 and is
the contents of register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA in main storage.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sth RS, D(RA)

44 RS RA D

0 6 11 16 31
AMCC Proprietary 774

405EP – PPC405EP Embedded Processor
sthbrx
Store Halfword Byte-Reverse Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

sthbrx
Store Halfword Byte-Reverse Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← (RS)24:31 || (RS)16:23

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant halfword of register RS is byte-reversed. The result is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthbrx RS, RA, RB

31 RS RA RB 918

0 6 11 16 21 31
775 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sthu

Store Halfword with Update
sthu
Store Halfword with Update

EA ← (RA) + EXTS(D)
MS(EA, 2) ← (RS)16:31
(RA) ← EA

An effective address (EA) is formed by adding a displacement to the base address in register RA. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The least significant halfword of register RS is stored into the halfword at the EA.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthu RS, D(RA)

45 RS RA D

0 6 11 16 31
AMCC Proprietary 776

405EP – PPC405EP Embedded Processor
sthux
Store Halfword with Update Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

sthux
Store Halfword with Update Indexed

EA ← (RA) + (RB)
MS(EA, 2) ← (RS)16:31
(RA) ← EA

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The least significant halfword of register RS is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthux RS, RA, RB

31 RS RA RB 439

0 6 11 16 21 31
777 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sthx

Store Halfword Indexed
sthx
Store Halfword Indexed

EA ← (RA|0) + (RB)
MS(EA, 2) ← (RS)16:31

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant halfword of register RS is stored into the halfword at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sthx RS, RA, RB

31 RS RA RB 407

0 6 11 16 21 31
AMCC Proprietary 778

405EP – PPC405EP Embedded Processor
stmw
Store Multiple Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stmw
Store Multiple Word

EA ← (RA|0) + EXTS(D)
r ← RS
do while r ≤ 31

MS(EA, 4) ← (GPR(r))
r ← r + 1
EA ← EA + 4

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is
the contents of register RA otherwise.

The contents of a series of consecutive registers, starting with register RS and continuing through GPR(31),
are stored into consecutive words starting at the EA.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stmw RS, D(RA)

47 RS RA D

0 6 11 16 31
779 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stswi

Store String Word Immediate
stswi
Store String Word Immediate

EA ← (RA|0)
if NB = 0 then

n ← 32
else

n ← NB
r ← RS – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1

if r = 32 then
r ← 0

MS(EA,1) ← (GPR(r)i:i+7)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is determined by the RA field. If the RA field contains 0, the EA is 0; otherwise, the
EA is the contents of register RA.

A byte count is determined by the NB field. If the NB field contains 0, the byte count is 32; otherwise, the byte
count is the contents of the NB field.

The contents of a series of consecutive GPRs (starting with register RS, continuing through GPR(31),
wrapping to GPR(0), and continuing to the final byte count) are stored, starting at the EA. The bytes in each
GPR are accessed starting with the most significant byte. The byte count determines the number of
transferred bytes.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stswi RS, RA, NB

31 RS RA NB 725

0 6 11 16 21 31
AMCC Proprietary 780

405EP – PPC405EP Embedded Processor
stswx
Store String Word Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stswx
Store String Word Indexed

EA ← (RA|0) + (RB)
n ← XER[TBC]
r ← RS – 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1

if r = 32 then
r ← 0

MS(EA, 1) ← (GPR(r)i:i+7)
i ← i + 8
if i = 32 then

i ← 0
EA ← EA + 1
n ← n – 1

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

A byte count is contained in XER[TBC].

The contents of a series of consecutive GPRs (starting with register RS, continuing through GPR(31),
wrapping to GPR(0), and continuing to the final byte count) are stored, starting at the EA. The bytes in each
GPR are accessed starting with the most significant byte. The byte count determines the number of
transferred bytes.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

If XER[TBC] = 0, stswx is treated as a no-op.

The PowerPC Architecture states that if XER[TBC] = 0 and if the EA is such that a precise data exception
would normally occur (if not for the zero length), stswx is treated as a no-op and the precise exception will
not occur. Data storage exceptions and alignment exceptions are examples of precise data exceptions.

However, the architecture makes no statement regarding imprecise exceptions related to stswx when
XER[TBC] = 0. IBM PowerPC processors generate an imprecise exception (machine check) on this
instruction when all of the following conditions are true:

• The instruction passes all protection bounds checking

stswx RS, RA, RB

31 RS RA RB 661

0 6 11 16 21 31
781 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stswx

Store String Word Indexed
• The address is cachable
• The address is passed to the data cache
• The address misses in the data cache (resulting in a line fill request)
• The address encounters some form of bus error (non-configured, for example)

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.
AMCC Proprietary 782

405EP – PPC405EP Embedded Processor
stw
Store Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stw
Store Word

EA ← (RA|0) + EXTS(D)
MS(EA, 4) ← (RS)

An effective address (EA) is formed by adding a displacement to a base address. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The base address is 0 when the RA field is 0, and is
the contents of register RA otherwise.

The contents of register RS are stored at the EA.

Registers Altered
• None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stw RS, D(RA)

36 RS RA D

0 6 11 16 31
783 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stwbrx

Store Word Byte-Reverse Indexed
stwbrx
Store Word Byte-Reverse Indexed

EA ← (RA|0) + (RB)
MS(EA, 4) ← (RS)24:31 || (RS)16:23 || (RS)8:15 || (RS)0:7

An EA is formed by adding an index to a base address. The index is the contents of register RB. The base
address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The contents of register RS are byte-reversed: the least significant byte becomes the most significant byte,
the next least significant byte becomes the next most significant byte, and so on. The result is stored into the
word at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwbrx RS, RA, RB

31 RS RA RB 662

0 6 11 16 21 31
AMCC Proprietary 784

405EP – PPC405EP Embedded Processor
stwcx.
Store Word Conditional Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stwcx.
Store Word Conditional Indexed

EA ← (RA|0) + (RB)
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

If the reservation bit contains 1 when the instruction is executed, the contents of register RS are stored into
the word at the EA and the reservation bit is cleared. If the reservation bit contains 0 when the instruction is
executed, no store operation is performed.

CR[CR0] is set as follows:

• CR[CR0]LT, GT are cleared
• CR[CR0]EQ is set to the state of the reservation bit at the start of the instruction
• CR[CR0]SO is set to the contents of the XER[SO] bit

Registers Altered
• CR[CR0]LT, GT, EQ, SO

Programming Note

lwarx and the stwcx. instruction should paired in a loop, as shown in the following example, to create the
effect of an atomic operation to a memory area used as a semaphore between asynchronous processes.
Only lwarx can set the reservation bit to 1. stwcx. sets the reservation bit to 0 upon its completion, whether
or not stwcx. sent (RS) to memory. CR[CR0]EQ must be examined to determine whether (RS) was sent to
memory.

loop: lwarx # read the semaphore from memory; set reservation
“alter” # change the semaphore bits in register as required
stwcx. # attempt to store semaphore; reset reservation
bne loop # an asynchronous process has intervened; try again

If the asynchronous process in the code example had paired lwarx with a store other than stwcx., the
reservation bit would not have been cleared in the asynchronous process, and the code example would have
overwritten the semaphore.

Exceptions

An alignment exception occurs if the EA is not word-aligned.

stwcx. RS, RA, RB

31 RS RA RB 150

0 6 11 16 21 31
785 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stwcx.

Store Word Conditional Indexed
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.
AMCC Proprietary 786

405EP – PPC405EP Embedded Processor
stwu
Store Word with Update

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stwu
Store Word with Update

EA ← (RA) + EXTS(D)
MS(EA, 4) ← (RS)
(RA) ← EA

An effective address (EA) is formed by adding a displacement to the base address in register RA. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The contents of register RS are stored into the word at the EA.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwu RS, D(RA)

37 RS RA D

0 6 11 16 31
787 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
stwux

Store Word with Update Indexed
stwux
Store Word with Update Indexed

EA ← (RA) + (RB)
MS(EA, 4) ← (RS)
(RA) ← EA

An effective address (EA) is formed by adding an index to the base address in register RA. The index is the
contents of register RB. The EA is placed into register RA.

The contents of register RS are stored into the word at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RA

Invalid Instruction Forms
• Reserved fields
• RA = 0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwux RS, RA, RB

31 RS RA RB 183

0 6 11 16 21 31
AMCC Proprietary 788

405EP – PPC405EP Embedded Processor
stwx
Store Word Indexed

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

stwx
Store Word Indexed

EA ← (RA|0) + (RB)
MS(EA,4) ← (RS)

An effective address (EA) is formed by adding an index to a base address. The index is the contents of
register RB. The base address is 0 when the RA field is 0, and is the contents of register RA otherwise.

The contents of register RS are stored into the word at the EA.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

stwx RS, RA, RB

31 RS RA RB 151

0 6 11 16 21 31
789 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
subf

Subtract From
subf
Subtract From

(RT) ← ¬(RA) + (RB) + 1

The sum of the ones complement of register RA, register RB, and 1 is stored into register RT.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subf RT, RA, RB OE=0, Rc=0
subf. RT, RA, RB OE=0, Rc=1
subfo RT, RA, RB OE=1, Rc=0
subfo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 40 Rc

0 6 11 16 21 22 31

Table 25-24. Extended Mnemonics for subf, subf., subfo, subfo.

Mnemonic Operands Function
Other Registers

Altered

sub RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.

Extended mnemonic for
subf RT,RB,RA

sub. Extended mnemonic for
subf. RT,RB,RA

CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA

XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]
AMCC Proprietary 790

405EP – PPC405EP Embedded Processor
subfc
Subtract From Carrying

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

subfc
Subtract From Carrying

(RT) ← ¬(RA) + (RB) + 1
if ¬(RA) + (RB) + 1 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB, and 1 is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfc RT, RA, RB OE=0, Rc=0
subfc. RT, RA, RB OE=0, Rc=1
subfco RT, RA, RB OE=1, Rc=0
subfco. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 8 Rc

0 6 11 16 21 22 31

Table 25-25. Extended Mnemonics for subfc, subfc., subfco, subfco.

Mnemonic Operands Function
Other Registers

Altered

subc RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].

Extended mnemonic for
subfc RT,RB,RA

subc. Extended mnemonic for
subfc. RT,RB,RA

CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA

XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

>
u

791 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
subfe

Subtract From Extended
subfe
Subtract From Extended

(RT) ← ¬(RA) + (RB) + XER[CA]
if ¬(RA) + (RB) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfe RT, RA, RB OE=0, Rc=0
subfe. RT, RA, RB OE=0, Rc=1
subfeo RT, RA, RB OE=1, Rc=0
subfeo. RT, RA, RB OE=1, Rc=1

31 RT RA RB OE 136 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary 792

405EP – PPC405EP Embedded Processor
subfic
Subtract From Immediate Carrying

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

subfic
Subtract From Immediate Carrying

(RT) ← ¬(RA) + EXTS(IM) + 1
if ¬(RA) + EXTS(IM) + 1 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of RA, the IM field sign-extended to 32 bits, and 1 is placed into register
RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfic RT, RA, IM

8 RT RA IM

0 6 11 16 31

>
u

793 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
subfme

Subtract from Minus One Extended
subfme
Subtract from Minus One Extended

(RT) ← ¬(RA) – 1 + XER[CA]
if ¬(RA) + 0xFFFF FFFF + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, –1, and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1
• XER[CA]

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfme RT, RA OE=0, Rc=0
subfme. RT, RA OE=0, Rc=1
subfmeo RT, RA OE=1, Rc=0
subfmeo. RT, RA OE=1, Rc=1

31 RT RA OE 232 Rc

0 6 11 16 21 22 31

>
u

AMCC Proprietary 794

405EP – PPC405EP Embedded Processor
subfze
Subtract from Zero Extended

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

subfze
Subtract from Zero Extended

(RT) ← ¬(RA) + XER[CA]
if ¬(RA) + XER[CA] 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA and XER[CA] is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Registers Altered
• RT
• XER[CA]
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• XER[SO, OV] if OE contains 1

Invalid Instruction Forms
• Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

subfze RT, RA OE=0, Rc=0
subfze. RT, RA OE=0, Rc=1
subfzeo RT, RA OE=1, Rc=0
subfzeo. RT, RA OE=1, Rc=1

31 RT RA OE 200 Rc

0 6 11 16 21 22 31

>
u

795 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sync

Synchronize
sync
Synchronize

The sync instruction guarantees that all instructions initiated by the processor preceding sync will complete
before sync completes, and that no subsequent instructions will be initiated by the processor until after sync
completes. When sync completes, all storage accesses that were initiated by the processor before the sync
instruction will have been completed with respect to all mechanisms that access storage.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None.

Invalid Instruction Forms
• Reserved fields

Programming Note

Architecturally, the eieio instruction orders storage access, not instruction completion. Therefore, non-
storage operations that follow eieio could complete before storage operations that precede eieio. The sync
instruction guarantees ordering of instruction completion and storage access. For the PPC405EP, the eieio
instruction is implemented to behave as a sync instruction.

To write code that is portable between various PowerPC implementations, programmers should use the
mnemonic that corresponds to the desired behavior.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

sync

31 598

0 6 21 31
AMCC Proprietary 796

405EP – PPC405EP Embedded Processor
tlbia
TLB Invalidate All

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

tlbia
TLB Invalidate All

All of the entries in the TLB are invalidated and become unavailable for translation by clearing the valid (V) bit
in the TLBHI portion of each TLB entry. The rest of the fields in the TLB entries are unmodified.

Registers Altered
• None.

Invalid Instruction Forms
• None.

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of this instruction.
The effects of the invalidation are not guaranteed to be visible to the programming model until the completion
of a context synchronizing operation.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

tlbia

31 370

0 6 21 31
797 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
tlbre

TLB Read Entry
tlbre
TLB Read Entry

if WS4 = 1
(RT) ← TLBLO[(RA26:31)]

else
(RT) ← TLBHI[(RA26:31)]
(PID) ← TID from TLB[(RA26:31)]

The contents of the selected TLB entry is placed into register RT (and possibly into PID).

Bits 26:31 of the contents of RA is used as an index into the TLB. If this index specifies a TLB entry that does
not exist, the results are undefined.

The WS field specifies which portion (TLBHI or TLBLO) of the entry is loaded into RT. If TLBHI is being
accessed, the PID SPR is set to the value of the TID field in the TLB entry.

If the WS field is not 0 or 1, the instruction form is invalid and the result is undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• RT
• PID (if WS = 0)

Invalid Instruction Forms
• Reserved fields
• Invalid WS value

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

The contents of RT after the execution of this instruction are interpreted as follows:

If WS = 0 (TLBHI):
RT[0:21] ← EPN[0:21]
RT[22:24] ← SIZE[0:2]
RT[25] ← V
RT[26] ← E
RT[27] ← U0
RT[28:31] ← 0
PID[24:31] ← TID[0:7]; (note that the TID is copied to the PID, not to RT)

If WS = 1 (TLBLO):
RT[0:21] ← RPN[0:21]
RT[22:23] ← EX,WR
RT[24:27] ← ZSEL[0:3]
RT[28:31] ← WIMG

tlbre RT, RA, WS

31 RT RA WS 946

0 6 11 16 21 31
AMCC Proprietary 798

405EP – PPC405EP Embedded Processor
tlbre
TLB Read Entry

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

Table 25-26. Extended Mnemonics for tlbre

Mnemonic Operands Function
Other Registers

Altered

tlbrehi RT, RA Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID
field of the selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

Extended mnemonic for
tlbre RT,RA,0

tlbrelo RT, RA Load TLBLO portion of the selected TLB entry into
RT.
(RT) ← TLBLO[(RA)]

Extended mnemonic for
tlbre RT,RA,1
799 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
tlbsx

TLB Search Indexed
tlbsx
TLB Search Indexed

EA ← (RA|0) + (RB)
if Rc = 1

CR[CR0]LT ← 0
CR[CR0]GT ← 0
CR[CR0]SO ← XER[SO]

if Valid TLB entry matching EA and PID is in the TLB then
(RT) ← Index of matching TLB Entry
if Rc = 1

CR[CR0]EQ ← 1
else

(RT) Undefined
if Rc = 1

CR[CR0]EQ ← 0

An effective address is formed by adding an index to a base address. The index is the contents of register
RB. The base address is 0 if the RA field is 0 and is the contents of register RA otherwise.

The TLB is searched for a valid entry which translates EA and PID. See XREF for details. The record bit (Rc)
specifies whether the results of the search will affect CR[CR0] as shown above. The intention is that
CR[CR0]EQ can be tested after a tlbsx. instruction if there is a possibility that the search may fail.

Registers Altered
• CR[CR0]LT, GT, EQ, SO if Rc contains 1

Invalid Instruction Forms
• None.

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

tlbsx RT, RA, RB Rc=0
tlbsx. RT, RA, RB Rc=1

31 RT RA RB 914 Rc

0 6 11 16 21 31
AMCC Proprietary 800

405EP – PPC405EP Embedded Processor
tlbsync
TLB Synchronize

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

tlbsync
TLB Synchronize

The tlbsync instruction is provided in the PowerPC architecture to support synchronization of TLB operations
among the processors of a multi-processor system. In the PPC405EP, this instruction performs no operation,
and is provided to facilitate code portability.

Registers Altered
• None.

Invalid Instruction Forms
• None.

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

Since the PPC405EP does not support tightly-coupled multiprocessor systems, tlbsync performs no
operation.

Architecture Note

This instruction is part of the IBM PowerPC Embedded Operating Environment.

tlbsync

31 566

0 6 21 31
801 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
tlbwe

TLB Write Entry
tlbwe
TLB Write Entry

if WS4 = 1
TLBLO[(RA26:31)] ← (RS)

else
TLBHI[(RA26:31)] ← (RS)
TID of TLB[(RA26:31)] ← (PID24:31)

The contents of the selected TLB entry is replaced with the contents of register RS (and possibly PID).

Bits 26:31 of the contents of RA are used as an index into the TLB. If this index specifies a TLB entry that
does not exist, the results are undefined.

The WS field specifies which portion (TLBHI or TLBLO) of the entry is replaced from RS. For instructions that
specify TLBHI, the TID field in the TLB entry is supplied from PID24:31.

If the WS field is not 0 or 1, the instruction form is invalid and the result is undefined.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None.

Invalid Instruction Forms
• Reserved fields

• Invalid WS value

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of this instruction.

The effects of this update are not guaranteed to be visible to the programming model until the completion of a
context synchronizing operation. For example, updating a zone selection field within the TLB while in
supervisor code should be followed by an isync instruction (or other context synchronizing operation) to
guarantee that the desired translation and protection domains are used.

tlbwe writes the TLB fields from RS and the PID as follows:

If WS = 0 (TLBHI):
EPN[0:21] ← RS[0:21]
SIZE[0:2] ← RS[22:24]
V ← RS[25]
E ← RS[26]
U0 ← RS[27]
TID[0:7] ← PID[24:31]; (note that the TID is written from the PID, not RS)

tlbwe RS, RA, WS

31 RS RA WS 978

0 6 11 16 21 31
AMCC Proprietary 802

405EP – PPC405EP Embedded Processor
tlbwe
TLB Write Entry

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
If WS = 1 (TLBLO):
RPN[0:21] ← RT[0:21]
EX,WR ← RS[22:23]
ZSEL[0:3] ← RS[24:27]
WIMG ← RS[28:31]

Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

Table 25-27. Extended Mnemonics for tlbwe

Mnemonic Operands Function

Other
Registers

Altered

tlbwehi RS, RA Write TLBHI portion of the selected TLB entry from
RS.
Write the TID register of the selected TLB entry from
the PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID24:31)

Extended mnemonic for
tlbwe RS,RA,0

tlbwelo RS, RA Write TLBLO portion of the selected TLB entry from
RS.
TLBLO[(RA)] ← (RS)

Extended mnemonic for
tlbwe RS,RA,1
803 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
tw

Trap Word
tw
Trap Word

if (((RA) (RB) ∧ TO0 = 1) ∨
((RA) (RB) ∧ TO1 = 1) ∨
((RA) (RB) ∧ TO2 = 1) ∨
((RA) (RB) ∧ TO3 = 1) ∨
((RA) (RB) ∧ TO4 = 1)) then TRAP (see details below)

Register RA is compared with register RB. If any comparison condition selected by the TO field is true, a
TRAP occurs. The behavior of a TRAP depends upon the debug mode of the processor, as described below:

• If TRAP is not enabled as a debug event (DBCR[TDE] = 0 or DBCR[EDM,IDM] = 0,0):

TRAP causes a program interrupt. See “Program Interrupt” on page 10-239.

(SRR0) ← address of tw instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

• If TRAP is enabled as an external debug event (DBCR[TDE] = 1 and DBCR[EDM] = 1):

TRAP goes to the debug stop state, to be handled by an external debugger with hardware control.

(DBSR[TIE]) ← 1

In addition, if TRAP is also enabled as an internal debug event (DBCR[IDM] = 1)
and debug exceptions are disabled (MSR[DE] = 0), then report an imprecise event:

(DBSR[IDE]) ← 1
PC ← address of tw instruction

• If TRAP is enabled as an internal debug event and not an external debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and debug exceptions are enabled (MSR[DE] = 1):

TRAP causes a debug interrupt. See “Debug Interrupt” on page 10-244.

(SRR2) ← address of tw instruction
(SRR3) ← (MSR)
(DBSR[TIE]) ← 1
(MSR[WE, EE, PR, CE, DE, DR, IR]) ← 0
PC ← EVPR0:15 || 0x2000

• If TRAP is enabled as an internal debug event and not an external debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and Debug Exceptions are disabled (MSR[DE] = 0):

TRAP reports the debug event as an imprecise event and causes a program interrupt. See “Program
Interrupt” on page 10-239.

tw TO, RA, RB

31 TO RA RB 4

0 6 11 16 21 31

<
>
=
<
u

>
u

AMCC Proprietary 804

405EP – PPC405EP Embedded Processor
tw
Trap Word

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
(SRR0) ← address of tw instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(DBSR[TIE,IDE]) ← 1,1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• None

Invalid Instruction Forms
• Reserved fields

Programming Note

This instruction is inserted into the execution stream by a debugger to implement breakpoints, and is not
typically used by application code.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 25-28. Extended Mnemonics for tw

Mnemonic Operands Function
Other Registers

Altered

trap Trap unconditionally.
Extended mnemonic for
tw 31,0,0

tweq RA, RB Trap if (RA) equal to (RB).
Extended mnemonic for
tw 4,RA,RB

twge RA, RB Trap if (RA) greater than or equal to (RB).
Extended mnemonic for
tw 12,RA,RB

twgt RA, RB Trap if (RA) greater than (RB).
Extended mnemonic for
tw 8,RA,RB

twle RA, RB Trap if (RA) less than or equal to (RB).
Extended mnemonic for
tw 20,RA,RB

twlge RA, RB Trap if (RA) logically greater than or equal to (RB).
Extended mnemonic for
tw 5,RA,RB

twlgt RA, RB Trap if (RA) logically greater than (RB).
Extended mnemonic for
tw 1,RA,RB

twlle RA, RB Trap if (RA) logically less than or equal to (RB).
Extended mnemonic for
tw 6,RA,RB
805 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
tw

Trap Word
twllt RA, RB Trap if (RA) logically less than (RB).
Extended mnemonic for
tw 2,RA,RB

twlng RA, RB Trap if (RA) logically not greater than (RB).
Extended mnemonic for
tw 6,RA,RB

twlnl RA, RB Trap if (RA) logically not less than (RB).
Extended mnemonic for
tw 5,RA,RB

twlt RA, RB Trap if (RA) less than (RB).
Extended mnemonic for
tw 16,RA,RB

twne RA, RB Trap if (RA) not equal to (RB).
Extended mnemonic for
tw 24,RA,RB

twng RA, RB Trap if (RA) not greater than (RB).
Extended mnemonic for
tw 20,RA,RB

twnl RA, RB Trap if (RA) not less than (RB).
Extended mnemonic for
tw 12,RA,RB

Table 25-28. Extended Mnemonics for tw (continued)

Mnemonic Operands Function
Other Registers

Altered
AMCC Proprietary 806

405EP – PPC405EP Embedded Processor
twi
Trap Word Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

twi
Trap Word Immediate

if (((RA) EXTS(IM) ∧ TO0 = 1) ∨
((RA) EXTS(IM) ∧ TO1 = 1) ∨
((RA) EXTS(IM) ∧ TO2 = 1) ∨
((RA) EXTS(IM) ∧ TO3 = 1) ∨
((RA) EXTS(IM) ∧ TO4 = 1)) then TRAP (see details below)

Register RA is compared with the IM field, which has been sign-extended to 32 bits. If any comparison
condition selected by the TO field is true, a TRAP occurs. The behavior of a TRAP depends upon the Debug
Mode of the processor, as described below:

• If TRAP is not enabled as a debug event (DBCR[TDE] = 0 or DBCR[EDM,IDM] = 0,0):

TRAP causes a program interrupt. See “Program Interrupt” on page 10-239.

(SRR0) ← address of twi instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

• If TRAP is enabled as an External debug event (DBCR[TDE] = 1 and DBCR[EDM] = 1):

TRAP goes to the Debug Stop state, to be handled by an external debugger with hardware control of the
PPC405EP.

(DBSR[TIE]) ← 1
In addition, if TRAP is also enabled as an Internal debug event (DBCR[IDM] = 1)
and Debug Exceptions are disabled (MSR[DE] = 0), then report an imprecise event:
(DBSR[IDE]) ← 1

PC ← address of twi instruction

• If TRAP is enabled as an Internal debug event and not an External debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and Debug Exceptions are enabled (MSR[DE] = 1):

TRAP causes a Debug interrupt. See “Debug Interrupt” on page 10-244.

(SRR2) ← address of twi instruction
(SRR3) ← (MSR)
(DBSR[TIE]) ← 1
(MSR[WE, EE, PR, CE, DE, DR, IR]) ← 0
PC ← EVPR0:15 || 0x2000

• If TRAP is enabled as an Internal debug event and not an External debug event (DBCR[TDE] = 1 and
DBCR[EDM,IDM] = 0,1) and Debug Exceptions are disabled (MSR[DE] = 0):

TRAP will report the debug event as an imprecise event and will cause a Program interrupt. See “Program
Interrupt” on page 10-239.

twi TO, RA, IM

3 TO RA IM

0 6 11 16 31

<
>
=
<
u

>
u

807 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
twi

Trap Word Immediate
(SRR0) ← address of twi instruction
(SRR1) ← (MSR)
(ESR[PTR]) ← 1
(DBSR[TIE,IDE]) ← 1,1
(MSR[WE, EE, PR, DR, IR]) ← 0
PC ← EVPR0:15 || 0x0700

Registers Altered
• None

Programming Note

This instruction is inserted into the execution stream by a debugger to implement breakpoints, and is not
typically used by application code.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 25-29. Extended Mnemonics for twi

Mnemonic Operands Function
Other Registers

Altered

tweqi RA, IM Trap if (RA) equal to EXTS(IM).
Extended mnemonic for
twi 4,RA,IM

twgei RA, IM Trap if (RA) greater than or equal to EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

twgti RA, IM Trap if (RA) greater than EXTS(IM).
Extended mnemonic for
twi 8,RA,IM

twlei RA, IM Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twlgei RA, IM Trap if (RA) logically greater than or equal to
EXTS(IM).

Extended mnemonic for
twi 5,RA,IM

twlgti RA, IM Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for
twi 1,RA,IM

twllei RA, IM Trap if (RA) logically less than or equal to EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twllti RA, IM Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for
twi 2,RA,IM

twlngi RA, IM Trap if (RA) logically not greater than EXTS(IM).
Extended mnemonic for
twi 6,RA,IM
AMCC Proprietary 808

405EP – PPC405EP Embedded Processor
twi
Trap Word Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
twlnli RA, IM Trap if (RA) logically not less than EXTS(IM).
Extended mnemonic for
twi 5,RA,IM

twlti RA, IM Trap if (RA) less than EXTS(IM).
Extended mnemonic for
twi 16,RA,IM

twnei RA, IM Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for
twi 24,RA,IM

twngi RA, IM Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twnli RA, IM Trap if (RA) not less than EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

Table 25-29. Extended Mnemonics for twi (continued)

Mnemonic Operands Function
Other Registers

Altered
809 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
wrtee

Write External Enable
wrtee
Write External Enable

MSR[EE] ← (RS)16

The MSR[EE] is set to the value specified by bit 16 of register RS.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR[EE]

Invalid Instruction Forms:
• Reserved fields

Programming Note

Execution of this instruction is privileged.

This instruction is used to provide atomic update of MSR[EE]. Typical usage is:

mfmsr Rn #save EE in Rn[16]
wrteei 0 #Turn off EE
• #Code with EE disabled
•
•
wrtee Rn #restore EE without affecting any MSR changes that occurred in the disabled code

Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

wrtee RS

31 RS 131

0 6 11 21 31
AMCC Proprietary 810

405EP – PPC405EP Embedded Processor
wrteei
Write External Enable Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

wrteei
Write External Enable Immediate

MSR[EE] ← E

MSR[EE] is set to the value specified by the E field.

If instruction bit 31 contains 1, the contents of CR[CR0] are undefined.

Registers Altered
• MSR[EE]

Invalid Instruction Forms:
• Reserved fields

Programming Note

Execution of this instruction is privileged.

This instruction is used to provide an atomic update of MSR[EE]. Typical usage is:

mfmsr Rn #save EE in Rn[16]
wrteei 0 #Turn off EE
• #Code with EE disabled
•
•
wrtee Rn #restore EE without affecting any MSR changes that occurred in the disabled code

Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

wrteei E

31 E 163

0 6 16 17 21 31
811 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
xor

XOR
xor
XOR

(RA) ← (RS) ⊕ (RB)

The contents of register RS are XORed with the contents of register RB; the result is placed into register RA.

Registers Altered
• CR[CR0]LT, GT, EQ, SO if Rc contains 1
• RA

Architecture Note

This instruction part of the IBM PowerPC Embedded Operating Environment.

xor RA, RS, RB Rc=0
xor. RA, RS, RB Rc=1

31 RS RA RB 316 Rc

0 6 11 16 21 31
AMCC Proprietary 812

405EP – PPC405EP Embedded Processor
xori
XOR Immediate

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

xori
XOR Immediate

(RA) ← (RS) ⊕ (160 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register RS are
XORed with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

xori RA, RS, IM

26 RS RA IM

0 6 11 16 31
813 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
xoris

XOR Immediate Shifted
xoris
XOR Immediate Shifted

(RA) ← (RS) ⊕ (IM || 160)

The IM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents of register RS are
XORed with the extended IM field; the result is placed into register RA.

Registers Altered
• RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

xoris RA, RS, IM

27 RS RA IM

0 6 11 16 31
AMCC Proprietary 814

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
815 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 26. Register Summary

The registers are grouped into categories, based on access mode: General Purpose Registers (GPRs),
Special Purpose Registers (SPRs), Time Base Registers (TBRs), the Machine State Register (MSR), the
Condition Register (CR), Device Control Registers (DCRs), and memory-mapped I/O (MMIO) registers.

26.1 Reserved Registers

Any register numbers not listed in the tables which follow are reserved, and should be neither read nor
written. These reserved register numbers may be used for additional functions in future processors.

26.2 Reserved Fields

For all registers having fields marked as reserved, the reserved fields should be written as zero and read as
undefined. That is, when writing to a reseved field, write a 0 to the field. When reading from a reserved field,
ignore the field.

It is good coding practice to perform the initial write to a register with reserved fields as described in the
preceding paragraph, and to perform all subsequent writes to the register using a read-modify-write strategy:
read the register, alter desired fields with logical instructions, and then write the register.

26.3 General Purpose Registers

The PPC405EP processor core provides 32 General Purpose Registers (GPRs). The contents of these
registers can be loaded from memory using load instructions and stored to memory using store instructions.
GPRs are also addressed by all integer instructions.

26.4 Machine State Register and Condition Register

Because these registers are accessed using special instructions, they do not require addressing.

Table 26-1. PPC405EP General Purpose Registers

Mnemonic Register Name

GPR Number

AccessDecimal Hex

R0–R31 General Purpose Register 0–31 0–31 0x0–0x1F Read/Write
AMCC Proprietary 816

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
26.5 Special Purpose Registers

Special Purpose Registers (SPRs), which are part of the PowerPC Embedded Environment, are accessed
using the mtspr and mfspr instructions. SPRs control the use of the debug facilities, timers, interrupts,
storage control attributes, and other architected processor resources.

Table 26-2 shows the mnemonics, names, and numbers of the SPRs. The columns under “SPRN” list the
register numbers used as operands in assembler language coding of the mfspr and mtspr instructions. The
column labeled “SPRF” lists the corresponding fields contained in the machine code of mfspr and mtspr.
The SPRN field contains the five-bit subfields of the SPRF field, which are reversed in the machine code for
the mfspr and mtspr instructions (SPRN ← SPRF5:9 || SPRF0:4) for compatibility with the POWER
Architecture. Note that the assembler handles the special coding transparently.

All SPRs are privileged, except the Count Register (CTR), the Link Register (LR), SPR General Purpose
Registers (SPRG4–SPRG7, read-only), User SPR General Purpose Register (USPRG0), and the Fixed-
point Exception Register (XER). Note that access to the Time Base Lower (TBL) and Time Base Upper (TBU)
registers, when addressed as SPRs, is write-only and privileged. However, when addressed as Time Base
817 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Registers (TBRs), read access to these registers is not privileged. See “Time Base Registers” on page 819.
for more information.

Table 26-2 lists the SPRs, their mnemonics and names, their numbers (SPRN) and the corresponding SPRF
numbers, and access. All SPR numbers not listed are reserved, and should be neither read nor written.

Table 26-2. Special Purpose Registers

Mnemonic Register Name

SPRN

SPRF AccessDecimal Hex

CCR0 Core Configuration Register 0 947 0x3B3 0x27D Read/Write

CTR Count Register 9 0x009 0x120 Read/Write

DAC1 Data Address Compare 1 1014 0x3F6 0x2DF Read/Write

DAC2 Data Address Compare 2 1015 0x3F7 0x2FF Read/Write

DBCR0 Debug Control Register 0 1010 0x3F2 0x25F Read/Write

DBCR1 Debug Control Register 1 957 0x3BD 0x3BD Read/Write

DBSR Debug Status Register 1008 0x3F0 0x21F Read/Clear

DCCR Data Cache Cachability Register 1018 0x3FA 0x35F Read/Write

DCWR Data Cache Write-through Register 954 0x3BA 0x35D Read/Write

DVC1 Data Value Compare 1 950 0x3B6 0x2DD Read/Write

DVC2 Data Value Compare 2 951 0x3B7 0x2FD Read/Write

DEAR Data Error Address Register 981 0x3D5 0x2BE Read/Write

ESR Exception Syndrome Register 980 0x3D4 0x29E Read/Write

EVPR Exception Vector Prefix Register 982 0x3D6 0x2DE Read/Write

IAC1 Instruction Address Compare 1 1012 0x3F4 0x29F Read/Write

IAC2 Instruction Address Compare 2 1013 0x3F5 0x2B5 Read/Write

IAC3 Instruction Address Compare 3 948 0x3B4 0x29D Read/Write

IAC4 Instruction Address Compare 4 949 0x3B5 0x2BD Read/Write

ICCR Instruction Cache Cachability Register 1019 0x3FB 0x37F Read/Write

ICDBDR Instruction Cache Debug Data Register 979 0x3D3 0x27E Read-only

LR Link Register 8 0x008 0x100 Read/Write

PID Process ID 945 0x3B1 0x23D Read/Write

PIT Programmable Interval Timer 987 0x3DB 0x37E Read/Write

PVR Processor Version Register 287 0x11F 0x3E8 Read-only

SGR Storage Guarded Register 953 0x3B9 0x33D Read/Write

SLER Storage Little Endian Register 955 0x3BB 0x37D Read/Write

SPRG0 SPR General 0 272 0x110 0x208 Read/Write

SPRG1 SPR General 1 273 0x111 0x228 Read/Write

SPRG2 SPR General 2 274 0x112 0x248 Read/Write

SPRG3 SPR General 3 275 0x113 0x268 Read/Write

SPRG4 SPR General 4 260 0x104 0x088 Read-only

SPRG4 SPR General 4 276 0x114 0x288 Read/Write

SPRG5 SPR General 5 261 0x105 0x0A8 Read-only
AMCC Proprietary 818

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
26.6 Time Base Registers

The PowerPC Architecture provides a 64-bit time base. Chapter 11, “Timer Facilities,” describes the
architected time base. In the PPC405EP, the time base is implemented as two 32-bit time base registers
(TBRs). The low-order 32 bits of the time base are read from the TBL and the high-order 32 bits are read from
the TBL.

User-mode access to the TBRs is read-only, and there is no explicitly privileged read access to the time base.

The mftb instruction reads from TBL and TBU. (Writing the time base is accomplished by moving the
contents of a GPR to a pair of SPRs, which are also called TBL and TBU, using the mtspr instruction.)

Table 26-3 shows the mnemonics, names, and numbers of the TBRs. The columns under “TBRN” list the
register numbers used as operands in assembler language coding of the mftb and mtspr instructions. The
column labeled “TBRF” lists the corresponding fields contained in the machine code of mftb and mtspr. The
TBRN field contains two five-bit subfields of the TBRF field; the subfields are reversed in the machine code

SPRG5 SPR General 5 277 0x115 0x2A8 Read/Write

SPRG6 SPR General 6 262 0x106 0x0C8 Read-only

SPRG6 SPR General 6 278 0x116 0x2C8 Read/Write

SPRG7 SPR General 7 263 0x107 0x0E8 Read-only

SPRG7 SPR General 7 279 0x117 0x2E8 Read/Write

SRR0 Save/Restore Register 0 26 0x01A 0x340 Read/Write

SRR1 Save/Restore Register 1 27 0x01B 0x360 Read/Write

SRR2 Save/Restore Register 2 990 0x3DE 0x3DE Read/Write

SRR3 Save/Restore Register 3 991 0x3DF 0x3FE Read/Write

SU0R Storage User-defined 0 Register 956 0x3BC 0x39D Read/Write

TBL Time Base Lower 284 0x11C 0x388 Write-only

TBU Time Base Upper 285 0x11D 0x3A8 Write-only

TCR Timer Control Register 986 0x3DA 0x35E Read/Write

TSR Timer Status Register 984 0x3D8 0x31E Read/Clear

USPRG0 User SPR General 0 256 0x100 0x008 Read/Write

XER Fixed Point Exception Register 1 0x001 0x020 Read/Write

ZPR Zone Protection Register 944 0x3B0 0x21D Privileged

Table 26-2. Special Purpose Registers (continued)

Mnemonic Register Name

SPRN

SPRF AccessDecimal Hex
819 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
for the mftb and mtspr instructions (TBRN ← TBRF5:9 || TBRF0:4). Note that the assembler handles the
special coding transparently.

26.7 Device Control Registers

Device Control Registers (DCRs) are on-chip registers that are architecturally outside of the processor core.
They are used to control, configure, and hold status for various functional units. DCRs are accessed using the
mfdcr and mtdcr instructions.

The mfdcr and mtdcr instructions are privileged, for all DCR numbers. Therefore, all DCR accesses are
privileged. All DCR numbers are reserved, and should be neither read nor written.

26.7.1 Directly Addressed DCRs

The DCRs in Table 26-4 are directly accessed; that is, they are accessed using their DCR numbers.

Table 26-3. Time Base Registers

Mnemonic Register Name

TBRN

TBRF AccessDecimal Hex

TBL Time Base Lower (Read-only) 268 0x10C 0x188 Read-only

TBU Time Base Upper (Read-only) 269 0x10D 0x1A8 Read-only

Table 26-4. Directly Accessed DCRs

Register
DCR

Number Access Description
DCRs Used for Indirect Access

SDRAM0_CFGADDR 0x010 R/W Memory Controller Address Register
SDRAM0_CFGDATA 0x011 R/W Memory Controller Data Register
EBC0_CFGADDR 0x012 R/W Peripheral Controller Address Register
EBC0_CFGDATA 0x013 R/W Peripheral Controller Data Register
On-Chip Buses

PLB0_BESR 0x084 R/Clear PLB Bus Error Status Register
PLB0_BEAR 0x086 R PLB Bus Error Address Register
PLB0_ACR 0x087 R/W PLB Arbiter Control Register
POB0_BESR0 0x0A0 R/Clear PLB to OPB Bus Error Status Register 0
POB0_BEAR 0x0A2 R PLB to OPB Bus Error Address Register
POB0_BESR1 0x0A4 R/Clear PLB to OPB Bus Error Status Register 1
Clocking and Chip Control

CPC0_PLLMR0 0x0F0 R/W PLL Mode Register 0
CPC0_BOOT 0x0F1 R Clock Status Register
CPC0_EPCTL 0x0F3 R/W EMAC PHY Receive Clock Source Register
CPC0_PLLMR1 0x0F4 R/W PLL Mode Register 1
AMCC Proprietary 820

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
CPC0_UCR 0x0F5 R/W UART Control Register
CPC0_SRR 0x0F6 R/W Soft Reset Register
CPC0_JTAGID 0x0F7 R JTAG ID Register
CPC0_PCI 0x0F9 R/W PCI Control Register
Clock and Power Management

CPC0_ER 0x0B8 R/W CPM Enable Register
CPC0_FR 0x0B9 R/W CPM Force Register
CPC0_SR 0x0BA R CPM Status Register
Universal Interrupt Controllers

UIC0_SR 0x0C0 R/Clear UIC0 Status Register
UIC0_ER 0x0C2 R/W UIC0 Enable Register
UIC0_CR 0x0C3 R/W UIC0 Critical Register
UIC0_PR 0x0C4 R/W UIC0 Polarity Register
UIC0_TR 0x0C5 R/W UIC0 Triggering Register
UIC0_MSR 0x0C6 R UIC0 Masked Status Register
UIC0_VR 0x0C7 R UIC0 Vector Register
UIC0_VCR 0x0C8 W UIC0 Vector Configuration Register
Direct Memory Access

DMA0_CR0 0x100 R/W DMA Channel Control Register 0
DMA0_CT0 0x101 R/W DMA Count Register 0
DMA0_DA0 0x102 R/W DMA Destination Address Register 0
DMA0_SA0 0x103 R/W DMA Source Address Register 0
DMA0_SG0 0x104 R/W DMA Scatter/Gather Descriptor Address Register 0
DMA0_CR1 0x108 R/W DMA Channel Control Register 1
DMA0_CT1 0x109 R/W DMA Count Register 1
DMA0_DA1 0x10A R/W DMA Destination Address Register 1
DMA0_SA1 0x10B R/W DMA Source Address Register 1
DMA0_SG1 0x10C R/W DMA Scatter/Gather Descriptor Address Register 1
DMA0_CR2 0x110 R/W DMA Channel Control Register 2
DMA0_CT2 0x111 R/W DMA Count Register 2
DMA0_DA2 0x112 R/W DMA Destination Address Register 2
DMA0_SA2 0x113 R/W DMA Source Address Register 2
DMA0_SG2 0x114 R/W DMA Scatter/Gather Descriptor Address Register 2
DMA0_CR3 0x118 R/W DMA Channel Control Register 3
DMA0_CT3 0x119 R/W DMA Count Register 3
DMA0_DA3 0x11A R/W DMA Destination Address Register 3
DMA0_SA3 0x11B R/W DMA Source Address Register 3
DMA0_SG3 0x11C R/W DMA Scatter/Gather Descriptor Address
DMA0_SR 0x120 R/Clear DMA Status Register
DMA0_SGC 0x123 R/W DMA Scatter/Gather Command Register
DMA0_SLP 0x125 R/W DMA Sleep Mode Register
On-Chip Memory

Table 26-4. Directly Accessed DCRs (continued)

Register
DCR

Number Access Description
821 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
26.7.2 Indirectly Accessed DCRs

The DCRs for the SDRAM controller and external bus controller (EBC) are indirectly accessed.

The following general procedure can be used to access the indirectly accessed DCrs:

1. Write an offset to an address DCR.

2. Read data dfrom or write data to a data DCR.

OCM0_ISARC 0x018 R/W OCM Instruction-Side Address Range Compare
Register

OCM0_ISCNTL 0x019 R/W OCM Instruction-Side Control Register
OCM0_DSARC 0x01A R/W OCM Data-Side Address Range Compare Register
OCM0_DSCNTL 0x01B R/W OCM Data-Side Control Register
Memory Access Layer

MAL0_CFG 0x180 R/W MAL Configuration Register
MAL0_ESR 0x181 R/Clear Error Status Register
MAL0_IER 0x182 R/W Interrupt Enable Register
MAL0_TXCASR 0x184 R/W Tx Channel Active Register (Set)
MAL0_TXCARR 0x185 R/W Tx Channel Active Register (Reset)
MAL0_TXEOBISR 0x186 R/Clear Tx End of Buffer Interrupt Status Register
MAL0_TXDEIR 0x187 R/Clear Tx Descriptor Error Interrupt Register
MAL0_RXCASR 0x190 R/W Rx Channel Active Register (Set)
MAL0_RXCARR 0x191 R/W Rx Channel Active Register (Reset)
MAL0_RXEOBISR 0x192 R/Clear Rx End of Buffer Interrupt Status Register
MAL0_RXDEIR 0x193 R/Clear Rx Descriptor Error Interrupt Register
MAL0_TXCTP0R 0x1A0 R/W Channel Tx 0 Channel Table Pointer Register
MAL0_TXCTP1R 0x1A1 R/W Channel Tx 1 Channel Table Pointer Register
MAL0_TXCTP2R 0x1A2 R/W Channel Tx 2 Channel Table Pointer Register
MAL0_TXCTP3R 0x1A3 R/W Channel Tx 3Channel Table Pointer Register
MAL0_RXCTP0R 0x1C0 R/W Channel Rx 0 Channel Table Pointer Register
MAL0_RXCTP1R 0x1C1 R/W Channel Rx 1 Channel Table Pointer Register
MAL0_RCBS0 0x1E0 R/W Channel RX 0 Channel Buffer Size Register
MAL0_RCBS1 0x1E1 R/W Channel RX 1 Channel Buffer Size Register
Event Counters

EVC0_CNT0 0x200 R/W Event Counter 0
EVC0_CNT1 0x201 R/W Event Counter 1
EVC0_ECR 0x202 R/W Event Counter Control Register

Table 26-4. Directly Accessed DCRs (continued)

Register
DCR

Number Access Description
AMCC Proprietary 822

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Detailed procedures for indirectly accessing the DCRs for the specific peripherals follow.

26.7.2.1 Indirect Access of SDRAM Controller DCRs

The following procedure accesses the SDRAM controller DCRs listed in Table 26-5.

1. Write the offset from Table 26-6 to the Memory Controller Address Register (SDRAM0_CFGADDR).

2. Read data from or write data to the Memory Controller Data Register (SDRAM0_CFGDATA).

26.7.2.2 Indirect Access of EBC DCRs

The following procedure accesses the EBC DCRs listed in Table 26-8.

1. Write the offset from Table 26-8 to the Peripheral Controller Address Register (EBC0_CFGADDR).

2. Read data from or write data to the Peripheral Controller Data Register (EBC0_CFGDATA).

Table 26-5. SDRAM Controller DCR Usage

Register
DCR

Number Access Description
SDRAM0_CFGADDR 0x010 R/W Memory Controller Address Register
SDRAM0_CFGDATA 0x011 R/W Memory Controller Data Register

Table 26-6. Offsets for SDRAM Controller Registers

Register Offset R/W Description
SDRAM0_CFG 0x20 R/W Memory Controller Options 1
SDRAM0_STATUS 0x24 R SDRAM Controller Status
SDRAM0_RTR 0x30 R/W Refresh Timer Register
SDRAM0_PMIT 0x34 R/W Power Management Idle Timer
SDRAM0_B0CR 0x40 R/W Memory Bank 0 Configuration Register
SDRAM0_B1CR 0x44 R/W Memory Bank 1 Configuration Register
SDRAM0_TR 0x80 R/W SDRAM Timing Register 1

Table 26-7. EBC DCR Usage

Register
DCR

Number Access Description
EBC0_CFGADDR 0x012 R/W Peripheral Controller Address Register
EBC0_CFGDATA 0x013 R/W Peripheral Controller Data Register

Table 26-8. Offsets for EBC Registers

Register Offset Access Description
EBC0_B0CR 0x00 R/W Peripheral Bank 0 Configuration Register
EBC0_B1CR 0x01 R/W Peripheral Bank 1 Configuration Register
EBC0_B2CR 0x02 R/W Peripheral Bank 2 Configuration Register
EBC0_B3CR 0x03 R/W Peripheral Bank 3 Configuration Register
EBC0_B4CR 0x04 R/W Peripheral Bank 4 Configuration Register
EBC0_B0AP 0x10 R/W Peripheral Bank 0 Access Parameters
823 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
26.8 Memory-Mapped Input/Output Registers

Some registers associated with on-chip peripherals are memory-mapped input/output (MMIO) registers. Such
registers are mapped into the system memory space and are accessed using load/store instructions.

 are accessed using load/store instructions that contain the register addresses. Table 26-9 lists the MMIO
registers.

EBC0_B1AP 0x11 R/W Peripheral Bank 1 Access Parameters
EBC0_B2AP 0x12 R/W Peripheral Bank 2 Access Parameters
EBC0_B3AP 0x13 R/W Peripheral Bank 3 Access Parameters
EBC0_B4AP 0x14 R/W Peripheral Bank 4 Access Parameters
EBC0_BEAR 0x20 R/W Peripheral Bus Error Address Register
EBC0_BESR0 0x21 R/W Peripheral Bus Error Status Register 0
EBC0_BESR1 0x22 R/W Peripheral Bus Error Status Register 1
EBC0_CFG 0x23 R/W External Peripheral Control Register

Table 26-9. Directly Accessed MMIO Registers

Register Address Access Description

Serial Ports

UART0_RBR 0xEF600300 R UART 0 Receiver Buffer Register
Note: Set UART0_LCR[DLAB] = 0 to access.

UART0_THR W UART 0 Transmitter Holding Register
Note: Set UART0_LCR[DLAB] = 0 to access.

UART0_DLL R/W UART 0 Baud-rate Divisor Latch LSB
Note: Set UART0_LCR[DLAB] = 1 to access.

UART0_IER 0xEF600301 R/W UART 0 Interrupt Enable Register
Note: Set UART0_LCR[DLAB] = 0 to access.

UART0_DLM R/W UART 0 Baud-rate Divisor Latch MSB
Note: Set UART0_LCR[DLAB] = 1 to access.

UART0_IIR 0xEF600302 R UART 0 Interrupt Identification Register
UART0_FCR 0xEF600302 W UART 0 FIFO Control Register
UART0_LCR 0xEF600303 R/W UART 0 Line Control Register
UART0_MCR 0xEF600304 R/W UART 0 Modem Control Register
UART0_LSR 0xEF600305 R/W UART 0 Line Status Register
UART0_MSR 0xEF600306 R/W UART 0 Modem Status Register
UART0_SCR 0xEF600307 R/W UART 0 Scratch Register
UART1_RBR 0xEF600400 R UART 1 Receiver Buffer Register

Note: Set UART1_LCR[DLAB] = 0 to access.
UART1_THR W UART 1 Transmitter Holding Register

Note: Set UART1_LCR[DLAB] = 0 to access.
UART1_DLL R/W UART 1 Baud-rate Divisor Latch LSB

Note: Set UART1_LCR[DLAB] = 1 to access.

Table 26-8. Offsets for EBC Registers (continued)

Register Offset Access Description
AMCC Proprietary 824

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
UART1_IER 0xEF600401 R/W UART 1 Interrupt Enable Register
Note: Set UART1_LCR[DLAB] = 0 to access.

UART1_DLM R/W UART 1 Baud-rate Divisor Latch MSB
Note: Set UART1_LCR[DLAB] = 1 to access.

UART1_IIR 0xEF600402 R UART 1 Interrupt Identification Register
UART1_FCR 0xEF600402 W UART 1 FIFO Control Register
UART1_LCR 0xEF600403 R/W UART 1 Line Control Register
UART1_MCR 0xEF600404 R/W UART 1 Modem Control Register
UART1_LSR 0xEF600405 R/W UART 1 Line Status Register
UART1_MSR 0xEF600406 R/W UART 1 Modem Status Register
UART1_SCR 0xEF600407 R/W UART 1 Scratch Register
Inter-Integrated Circuit

IIC0_MDBUF 0xEF600500 R/W IIC0 Master Data Buffer
IIC0_SDBUF 0xEF600502 R/W IIC0 Slave Data Buffer
IIC0_LMADR 0xEF600504 R/W IIC0 Low Master Address
IIC0_HMADR 0xEF600505 R/W IIC0 High Master Address
IIC0_CNTL 0xEF600506 R/W IIC0 Control
IIC0_MDCNTL 0xEF600507 R/W IIC0 Mode Control
IIC0_STS 0xEF600508 R/W IIC0 Status
IIC0_EXTSTS 0xEF600509 R/W IIC0 Extended Status
IIC0_LSADR 0xEF60050A R/W IIC0 Low Slave Address
IIC0_HSADR 0xEF60050B R/W IIC0 High Slave Address
IIC0_CLKDIV 0xEF60050C R/W IIC0 Clock Divide
IIC0_INTRMSK 0xEF60050D R/W IIC0 Interrupt Mask
IIC0_XFRCNT 0xEF60050E R/W IIC0 Transfer Count
IIC0_XTCNTLSS 0xEF60050F R/W IIC0 Extended Control and Slave Status
IIC0_DIRECTCNTL 0xEF600510 R/W IIC0 Direct Control
General Purpose Timers

GPT0_TBC 0xEF600000 R/W GPT Time Base Counter
GPT0_OE 0xEF600010 R/W GPT Output Enable Register
GPT0_OL 0xEF600014 R/W GPT Output Level Register
GPT0_IM 0xEF600018 R/W GPT Interrupt Mask Register
GPT0_ISS 0xEF60001C R/W GPT Interrupt Status (Set) Register
GPT0_ISC 0xEF600020 R/W GPT Interrupt Status (Clear) Register
GPT0_IE 0xEF600024 R/W GPT Interrupt Enable Register
GPT0_COMP0 0xEF600080 R/W GPT Compare Timer Register 0
GPT0_COMP1 0xEF600084 R/W GPT Compare Timer Register 1
GPT0_COMP2 0xEF600088 R/W GPT Compare Timer Register 2
GPT0_COMP3 0xEF60008C R/W GPT Compare Timer Register 3
GPT0_COMP4 0xEF600090 R/W GPT Compare Timer Register 4
GPT0_MASK0 0xEF6000C0 R/W GPT Compare Mask Register 0
GPT0_MASK1 0xEF6000C4 R/W GPT Compare Mask Register 1
GPT0_MASK2 0xEF6000C8 R/W GPT Compare Mask Register 2

Table 26-9. Directly Accessed MMIO Registers (continued)

Register Address Access Description
825 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPT0_MASK3 0xEF6000CC R/W GPT Compare Mask Register 3
GPT0_MASK4 0xEF6000D0 R/W GPT Compare Mask Register 4
OPB Arbiter

OPBA0_CR 0xEF600601 R/W OPB Arbiter Control Register
OPBA0_PR 0xEF600600 R/W OPB Arbiter Priority Register
General-Purpose I/O

GPIO0_OR 0xEF600700 R/W GPIO0 Output Register
GPIO0_TCR 0xEF600704 R/W GPIO0 Three-State Control Register
GPIO0_OSRH 0xEF600708 R/W GPIO0 Output Select Register High
GPIO0_OSRL 0xEF60070C R/W GPIO0 Output Select Register Low
GPIO0_TSRH 0xEF600710 R/W GPIO0 Three-State Select Register High
GPIO0_TSRL 0xEF600714 R/W GPIO0 Three-State Select Register Low
GPIO0_ODR 0xEF600718 R/W GPIO0 Open Drain Register
GPIO0_IR 0xEF60071C R GPIO0 Input Register
GPIO0_RR1 0xEF600720 R/W GPIO0 Receive Register 1
GPIO0_ISR1H 0xEF600730 R/W GPIO0 Input Select Register 1 High
GPIO0_ISR1L 0xEF600734 R/W GPIO0 Input Select Register 1 Low
Ethernet

EMAC0_MR0 0xEF600800 R/W Mode Register 0
EMAC0_MR1 0xEF600804 R/W Mode Register 1
EMAC0_TMR0 0xEF600808 R/W Transmit Mode Register 0
EMAC0_TMR1 0xEF60080C R/W Transmit Mode Register 1
EMAC0_RMR 0xEF600810 R/W Receive Mode Register
EMAC0_ISR 0xEF600814 R/W Interrupt Status Register
EMAC0_ISER 0xEF600818 R/W Interrupt Status Enable Register
EMAC0_IAHR 0xEF60081C R/W Individual Address High
EMAC0_IALR 0xEF600820 R/W Individual Address Low
EMAC0_VTPID 0xEF600824 R/W VLAN TPID Register
EMAC0_VTCI 0xEF600828 R/W VLAN TCI Register
EMAC0_PTR 0xEF60082C R/W Pause Timer Register
EMAC0_IAHT1 0xEF600830 R/W Individual Address Hash Table 1
EMAC0_IAHT2 0xEF600834 R/W Individual Address Hash Table 2
EMAC0_IAHT3 0xEF600838 R/W Individual Address Hash Table 3
EMAC0_IAHT4 0xEF60083C R/W Individual Address Hash Table 4
EMAC0_GAHT1 0xEF600840 R/W Group Address Hash Table 1
EMAC0_GAHT2 0xEF600844 R/W Group Address Hash Table 2
EMAC0_GAHT3 0xEF600848 R/W Group Address Hash Table 3
EMAC0_GAHT4 0xEF60084C R/W Group Address Hash Table 4
EMAC0_LSAH 0xEF600850 R Last Source Address High
EMAC0_LSAL 0xEF600854 R Last Source Address Low
EMAC0_IPGVR 0xEF600858 R/W Inter-Packet Gap Value Register
EMAC0_STACR 0xEF60085C R/W STA Control Register

Table 26-9. Directly Accessed MMIO Registers (continued)

Register Address Access Description
AMCC Proprietary 826

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
EMAC0_TRTR 0xEF600860 R/W Transmit Request Threshold Register
EMAC0_RWMR 0xEF600864 R/W Receive Low/High Water Mark Register
EMAC0_OCTX 0xEF600868 R/W Number of Octets Transmitted Register
EMAC0_OCRX 0xEF60086C R/W Number of Octets Received Register
EMAC1_MR0 0xEF600900 R/W Mode Register 0
EMAC1_MR1 0xEF600904 R/W Mode Register 1
EMAC1_TMR0 0xEF600908 R/W Transmit Mode Register 0
EMAC1_TMR1 0xEF60090C R/W Transmit Mode Register 1
EMAC1_RMR 0xEF600910 R/W Receive Mode Register
EMAC1_ISR 0xEF600914 R/W Interrupt Status Register
EMAC1_ISER 0xEF600918 R/W Interrupt Status Enable Register
EMAC1_IAHR 0xEF60091C R/W Individual Address High
EMAC1_IALR 0xEF600920 R/W Individual Address Low
EMAC1_VTPID 0xEF600924 R/W VLAN TPID Register
EMAC1_VTCI 0xEF600928 R/W VLAN TCI Register
EMAC1_PTR 0xEF60092C R/W Pause Timer Register
EMAC1_IAHT1 0xEF600930 R/W Individual Address Hash Table 1
EMAC1_IAHT2 0xEF600934 R/W Individual Address Hash Table 2
EMAC1_IAHT3 0xEF600938 R/W Individual Address Hash Table 3
EMAC1_IAHT4 0xEF60093C R/W Individual Address Hash Table 4
EMAC1_GAHT1 0xEF600940 R/W Group Address Hash Table 1
EMAC1_GAHT2 0xEF600944 R/W Group Address Hash Table 2
EMAC1_GAHT3 0xEF600948 R/W Group Address Hash Table 3
EMAC1_GAHT4 0xEF60094C R/W Group Address Hash Table 4
EMAC1_LSAH 0xEF600950 R Last Source Address Low
EMAC1_LSAL 0xEF600954 R Last Source Address High
EMAC1_IPGVR 0xEF600958 R/W Inter-Packet Gap Value Register
EMAC1_STACR 0xEF60095C R/W STA Control Register
EMAC1_TRTR 0xEF600960 R/W Transmit Request Threshold Register
EMAC1_RWMR 0xEF600964 R/W Receive Low/High Water Mark Register
EMAC1_OCTX 0xEF600968 R/W Number of Octets Transmitted Register
EMAC1_OCRX 0xEF60096C R/W Number of Octets Received Register

Table 26-9. Directly Accessed MMIO Registers (continued)

Register Address Access Description
827 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
26.8.1 Indirectly Accessed MMIO Registers

The PCI configuration registers, listed in Table 26-11, are indirectly accessed.

The following procedure accesses the PCI configuration registers, using the address and data registers listed
in Table 26-10:

1. OR the Enable, Bus, Device, and Function fields of the PCI Configuration Address Register
(PCIC0_CFGADDR) with the high-order 6 bits of the offset from Table 26-11 and write the result to the
PCIC0_CFGADDR.

2. OR the low-order 2 bits of the offset from Table 26-11 with the address of the PCI Configuration Data
Register (PCIC0_CFGDATA) to form an address.

Read data from or write data to the address.

Table 26-10. PCI Configuration Address and Data Registers

Register Address Access Description
PCIC0_CFGADDR 0xEEC00000 R/W PCI Configuration Address Register
PCIC0_CFGDATA 0xEEC00004 R/W PCI Configuration Data Register

Table 26-11. PCI Configuration Registers

Register Offset

Access

DescriptionPLB PCI

PCIC0_VENDID 0x01–0x00 R/W R PCI Vendor ID
PCIC0_DEVID 0x03–0x02 R/W R PCI Device ID
PCIC0_CMD 0x05–0x04 R/W R/W PCI Command Register
PCIC0_STATUS 0x07–0x06 R/W R/W PCI Status Register
PCIC0_REVID 0x08 R/W R/W PCI Revision ID
PCIC0_CLS 0x0B–0x09 R/W R PCI Class Register
PCIC0_CACHELS 0x0C R R PCI Cache Line Size
PCIC0_LATTIM 0x0D R/W R/W PCI Latency Timer
PCIC0_HDTYPE 0x0E R R PCI Header Type
PCIC0_BIST 0x0F R R PCI Built In Self Test Control
PCIC0_ BAR0 0x13–0x10 R R PCI Reserved BAR 0
PCIC0_PTM1BAR 0x17–0x14 R/W R/W PCI PTM 1 BAR
PCIC0_PTM2BAR 0x1B–0x18 R/W R/W PCI PTM 2 BAR
PCIC0_ BAR3 0x1F–0x1C — — PCI Reserved BAR 3
PCIC0_ BAR4 0x23–0x20 — — PCI Reserved BAR 4
PCIC0_ BAR5 0x27–0x24 — — PCI Reserved BAR 5
PCIC0_CISPTR 0x2B–0x28 — — Unused Cardbus CIS Pointer
PCIC0_SBSYSVID 0x2D–0x2C R/W R PCI Subsystem Vendor ID
PCIC0_SBSYSID 0x2F–0x2E R/W R PCI Subsystem ID
PCIC0_EROMBA 0x33–0x30 — — Unused Expansion ROM Base Address
PCIC0_CAP 0x34 R R PCI Capabilities Pointer
PCIC0_INTLN 0x3C R/W R/W PCI Interrupt Line
PCIC0_INTPN 0x3D R R PCI Interrupt Pin
PCIC0_MINGNT 0x3E R R PCI Minimum Grant
AMCC Proprietary 828

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PCIC0_MAXLTNCY 0x3F R R PCI Maximum Latency
PCIC0_ICS 0x44 R/W R/W PCI Interrupt Control/Status
PCIC0_ERREN 0x48 R/W R/W Error Enable
PCIC0_ERRSTS 0x49 R/W R/W Error Status
PCIC0_BRDGOPT1 0x4B–0x4A R/W R/W PCI Bridge Options 1
PCIC0_PLBBESR0 0x4F–0x4C R/W R/W PLB Slave Error Syndrome 0
PCIC0_PLBBESR1 0x53–0x50 R/W R/W PLB Slave Error Syndrome 1
PCIC0_PLBBEAR 0x57–0x54 R/W R/W PLB Slave Error Address Register
PCIC0_CAPID 0x58 R R Capability Identifier
PCIC0_NEXTIPTR 0x59 R R Next Item Pointer
PCIC0_PMC 0x5B–0x5A R R Power Management Capabilities
PCIC0_PMCSR 0x5D–0x5C R/W R/W Power Management Control Status
PCIC0_PMCSRBSE 0x5E R R PMCSR PCI to PCI Bridge Support Extensions
PCIC0_DATA 0x5F — — Unused Data
PCIC0_BRDGOPT2 0x63–0x60 R/W R/W PCI Bridge Options 2
PCIC0_PMSCRR 0x64 R/W R/W Power Management State Change Request Register

Table 26-11. PCI Configuration Registers (continued)

Register Offset

Access

DescriptionPLB PCI
829 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
26.Register Summary26.9 Alphabetical Listing of Processor Core Registers

The following pages list the registers available in the processor core. For each register, the following
information is supplied:

• Register mnemonic and name

• Cross-reference to a detailed register description

• Register type (SPR or TBR; the names of CR, GPR0–31, and MSR are the same as their register types)

• Register number (address)

• A diagram illustrating the register fields (all register fields have mnemonics, unless there is only one field)

• A table describing the register fields, giving field mnemonic, field bit location, field name, and the function
associated with various field values
AMCC Proprietary 830

405EP – PPC405EP Embedded Processor
CCR0
Core Configuration Register 0

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

CCR0

SPR 0x3B3

See “Core Configuration Register 0 (CCR0)” on page 4-126.

Figure 26-1. Core Configuration Register 0 (CCR0)
0:5 Reserved

6 LWL Load Word as Line
0 The DCU performs load misses or non-

cachable loads as words, halfwords, or
bytes, as requested

1 For load misses or non-cachable loads,
the DCU moves eight words (including
the target word) into the line fill buffer

7 LWOA Load Without Allocate
0 Load misses result in line fills
1 Load misses do not result in a line fill, but

in non-cachable loads

8 SWOA Store Without Allocate
0 Store misses result in line fills
1 Store misses do not result in line fills, but

in non-cachable stores

9 DPP1 DCU PLB Priority Bit 1
0 DCU PLB priority 0 on bit 1
1 DCU PLB priority 1 on bit 1

Note: DCU logic dynamically controls DCU
priority bit 0.

10:11 IPP ICU PLB Priority Bits 0:1
00 Lowest ICU PLB priority
01 Next to lowest ICU PLB priority
10 Next to highest ICU PLB priority
11 Highest ICU PLB priority

12:13 Reserved

14 U0XE Enable U0 Exception
0 Disables the U0 exception
1 Enables the U0 exception

15:19 Reserved

20 PFC ICU Prefetching for Cachable Regions
0 Disables prefetching for cachable

regions
1 Enables prefetching for cachable regions

21 PFNC ICU Prefetching for Non-Cachable Regions
0 Disables prefetching for non-cachable

regions
1 Enables prefetching for non-cachable

regions

0 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 26 27 28 30 31

CWS

CIS

LWL

LWOA

SWOA

U0XE PFC

PFNC FWOA

NCRSDPP1

IPP
831 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CCR0 (cont.)

Core Configuration Register 0
22 NCRS Non-cachable ICU request size
0 Requests are for four-word lines
1 Requests are for eight-word lines

23 FWOA Fetch Without Allocate
0 An ICU miss results in a line fill.
1 An ICU miss does not cause a line fill,

but results in a non-cachable fetch.

24:26 Reserved

27 CIS Cache Information Select
0 Information is cache data.
1 Information is cache tag.

28:30 Reserved

31 CWS Cache Way Select
0 Cache way is A.
1 Cache way is B.
AMCC Proprietary 832

405EP – PPC405EP Embedded Processor
CR
Condition Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

CR

See “Condition Register (CR)” on page 3-80.

Figure 26-2. Condition Register (CR)
0:3 CR0 Condition Register Field 0

4:7 CR1 Condition Register Field 1

8:11 CR2 Condition Register Field 2

12:15 CR3 Condition Register Field 3

16:19 CR4 Condition Register Field 4

20:23 CR5 Condition Register Field 5

24:27 CR6 Condition Register Field 6

28:31 CR7 Condition Register Field 7

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

CR0

CR1

CR2

CR3

CR4

CR5

CR6

CR7
833 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CTR

Count Register
CTR

SPR 0x009

See “Count Register (CTR)” on page 3-75.

Figure 26-3. Count Register (CTR)
0:31 Count Used as count for branch conditional with

decrement instructions, or as address for
branch-to-counter instructions.

0 31
AMCC Proprietary 834

405EP – PPC405EP Embedded Processor
DAC1–DAC2
Data Address Compare Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

DAC1–DAC2

SPR 0x3F6–0x3F7

See “Data Address Compare Registers (DAC1–DAC2)” on page 13-273.

Figure 26-4. Data Address Compare Registers (DAC1–DAC2)
0:31 Data Address Compare (DAC) byte

address
DBCR0[D1S] determines which address
bits are examined.

0 31
835 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DBCR0

Debug Control Register 0
DBCR0

SPR 0x3F2

See “Debug Control Registers” on page 13-268.

Figure 26-5. Debug Control Register 0 (DBCR0)
0 EDM External Debug Mode

0 Disabled
1 Enabled

1 IDM Internal Debug Mode
0 Disabled
1 Enabled

2:3 RST Reset
00 No action
01 Core reset
10 Chip reset
11 System reset

Causes a processor reset request when
set by software.

Attention: Writing 01, 10, or 11 to this field causes a processor reset request.

4 IC Instruction Completion Debug Event
0 Disabled
1 Enabled

5 BT Branch Taken Debug Event
0 Disabled
1 Enabled

6 EDE Exception Debug Event
0 Disabled
1 Enabled

7 TDE Trap Debug Event
0 Disabled
1 Enabled

8 IA1 IAC 1 Debug Event
0 Disabled
1 Enabled

9 IA2 IAC 2 Debug Event
0 Disabled
1 Enabled

10 IA12 Instruction Address Range Compare 1–2
0 Disabled
1 Enabled

Registers IAC1 and IAC2 define an
address range used for IAC address
comparisons.

11 IA12X Enable Instruction Address Exclusive
Range Compare 1–2
0 Inclusive
1 Exclusive

Selects the range defined by IAC1 and
IAC2 to be inclusive or exclusive.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 30 31

EDM

IDM

RST

IC EDE

BT

IA1 IA34

TDE

FTIA12

IA2

IA3

IA12X IA4

IA12T

IA34X IA34T
AMCC Proprietary 836

405EP – PPC405EP Embedded Processor
DBCR0 (cont.)
Debug Control Register 0

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
12 IA3 IAC 3 Debug Event
0 Disabled
1 Enabled

13 IA4 IAC 4 Debug Event
0 Disabled
1 Enabled

14 IA34 Instruction Address Range Compare 3–4
0 Disabled
1 Enabled

Registers IAC3 and IAC4 define an
address range used for IAC address
comparisons.

15 IA34X Instruction Address Exclusive Range
Compare 3–4
0 Inclusive
1 Exclusive

Selects range defined by IAC3 and IAC4 to
be inclusive or exclusive.

16 IA12T Instruction Address Range Compare 1-2
Toggle
0 Disabled
1 Enable

Toggles range 12 inclusive, exclusive
DBCR[IA12X] on debug event.

17 IA34T Instruction Address Range Compare 3–4
Toggle
0 Disabled
1 Enable

Toggles range 34 inclusive, exclusive
DBCR[IA34X] on debug event.

18:30 Reserved

31 FT Freeze timers on debug event
0 Timers not frozen
1 Timers frozen
837 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DBCR1

Debug Control Register 1
DBCR1

SPR 0x3BD

See “Debug Control Registers” on page 13-268.

Figure 26-6. Debug Control Register 1 (DBCR1)
0 D1R DAC1 Read Debug Event

0 Disabled
1 Enabled

1 D2R DAC 2 Read Debug Event
0 Disabled
1 Enabled

2 D1W DAC 1 Write Debug Event
0 Disabled
1 Enabled

3 D2W DAC 2 Write Debug Event
0 Disabled
1 Enabled

4:5 D1S DAC 1 Size
00 Compare all bits
01 Ignore lsb (least significant bit)
10 Ignore two lsbs
11 Ignore five lsbs

Address bits used in the compare:

Byte address
Halfword address
Word address
Cache line (8-word) address

6:7 D2S DAC 2 Size
00 Compare all bits
01 Ignore lsb (least significant bit)
10 Ignore two lsbs
11 Ignore five lsbs

Address bits used in the compare:

Byte address
Halfword address
Word address
Cache line (8-word) address

8 DA12 Enable Data Address Range Compare 1:2
0 Disabled
1 Enabled

Registers DAC1 and DAC2 define an
address range used for DAC address
comparisons

9 DA12X Data Address Exclusive Range Compare
1:2
0 Inclusive
1 Exclusive

Selects range defined by DAC1 and DAC2
to be inclusive or exclusive

10:11 Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 23 24 31

D1R

D2R

D1W D1S

D2S

DA12

DA12X

DV1M DV1BE

DV2M DV2BED2W
AMCC Proprietary 838

405EP – PPC405EP Embedded Processor
DBCR1 (cont.)
Debug Control Register 1

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
12:13 DV1M Data Value Compare 1 Mode
00 Undefined
01 AND

10 OR

11 AND-OR

Type of data comparison used:

All bytes selected by DBCR1[DV1BE] must
compare to the appropriate bytes of DVC1.

One of the bytes selected by
DBCR1[DV1BE] must compare to the
appropriate bytes of DVC1.

The upper halfword or lower halfword must
compare to the appropriate halfword in
DVC1. When performing halfword
compares set DBCR1[DV1BE] = 0011,
1100, or 1111.

14:15 DV2M Data Value Compare 2 Mode
00 Undefined
01 AND

10 OR

11 AND-OR

Type of data comparison used

All bytes selected by DBCR1[DV2BE] must
compare to the appropriate bytes of DVC2.

One of the bytes selected by
DBCR1[DV2BE] must compare to the
appropriate bytes of DVC2.

The upper halfword or lower halfword must
compare to the appropriate halfword in
DVC2. When performing halfword
compares set DBCR1[DV2BE] = 0011,
1100, or 1111.

16:19 DV1B
E

Data Value Compare 1 Byte
0 Disabled
1 Enabled

Selects which data bytes to use in data
value comparison

20:23 DV2B
E

Data Value Compare 2 Byte
0 Disabled
1 Enabled

Selects which data bytes to use in data
value comparison

24:31 Reserved
839 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DBSR

Debug Status Register
DBSR

SPR 0x3F0 Read/Clear

See “Debug Status Register (DBSR)” on page 13-271.

Figure 26-7. Debug Status Register (DBSR)
0 IC Instruction Completion Debug Event

0 Event did not occur
1 Event occurred

1 BT Branch Taken Debug Event
0 Event did not occur
1 Event occurred

2 EDE Exception Debug Event
0 Event did not occur
1 Event occurred

3 TIE Trap Instruction Debug Event
0 Event did not occur
1 Event occurred

4 UDE Unconditional Debug Event
0 Event did not occur
1 Event occurred

5 IA1 IAC1 Debug Event
0 Event did not occur
1 Event occurred

6 IA2 IAC2 Debug Event
0 Event did not occur
1 Event occurred

7 DR1 DAC1 Read Debug Event
0 Event did not occur
1 Event occurred

8 DW1 DAC1 Write Debug Event
0 Event did not occur
1 Event occurred

9 DR2 DAC2 Read Debug Event
0 Event did not occur
1 Event occurred

10 DW2 DAC2 Write Debug Event
0 Event did not occur
1 Event occurred

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 21 22 23 24 31

IC

BT TIE IA1 DR1

EDE UDE DW1 MRR

IDE

IA2

DR2

DW2 IA3

IA4
AMCC Proprietary 840

405EP – PPC405EP Embedded Processor
DBSR (cont.)
Debug Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
11 IDE Imprecise Debug Event
0 No circumstance that would cause a

debug event (if MSR[DE] = 1) occurred
1 A debug event would have occurred, but

debug exceptions were disabled
(MSR[DE] = 0)

12 IA3 IAC3 Debug Event
0 Event did not occur
1 Event occurred

13 IA4 IAC4 Debug Event
0 Event did not occur
1 Event occurred

14:21 Reserved

22:23 MRR Most Recent Reset
00 No reset has occurred since last

cleared by software.
01 Core reset
10 Chip reset
11 System reset

This field is set to a value, indicating the
type of reset, when a reset occurs.

24:31 Reserved
841 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DCCR

Data Cache Cacheability Register
DCCR

SPR 0x3FA

See “Real-Mode Storage Attribute Control” on page 6-158.

Figure 26-8. Data Cache Cachability Register (DCCR)
0 S0 0 Noncachable

1 Cachable
0x0000 0000 –0x07FF FFFF

1 S1 0 Noncachable
1 Cachable

0x0800 0000 –0x0FFF FFFF

2 S2 0 Noncachable
1 Cachable

0x1000 0000 –0x17FF FFFF

3 S3 0 Noncachable
1 Cachable

0x1800 0000 –0x1FFF FFFF

4 S4 0 Noncachable
1 Cachable

0x2000 0000 –0x27FF FFFF

5 S5 0 Noncachable
1 Cachable

0x2800 0000 –0x2FFF FFFF

6 S6 0 Noncachable
1 Cachable

0x3000 0000 –0x37FF FFFF

7 S7 0 Noncachable
1 Cachable

0x3800 0000 –0x3FFF FFFF

8 S8 0 Noncachable
1 Cachable

0x4000 0000 –0x47FF FFFF

9 S9 0 Noncachable
1 Cachable

0x4800 0000 –0x4FFF FFFF

10 S10 0 Noncachable
1 Cachable

0x5000 0000 –0x57FF FFFF

11 S11 0 Noncachable
1 Cachable

0x5800 0000 –0x5FFF FFFF

12 S12 0 Noncachable
1 Cachable

0x6000 0000 –0x67FF FFFF

13 S13 0 Noncachable
1 Cachable

0x6800 0000 –0x6FFF FFFF

14 S14 0 Noncachable
1 Cachable

0x7000 0000 –0x77FF FFFF

15 S15 0 Noncachable
1 Cachable

0x7800 0000 –0x7FFF FFFF

16 S16 0 Noncachable
1 Cachable

0x8000 0000 –0x87FF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S0

S1

S2

S3

S6S4 S30

S31S5

S8 S10 S12 S14

S7 S9 S11 S13 S15

S16 S18 S20 S22 S24 S26 S28

S17 S19 S21 S23 S25 S27 S29
AMCC Proprietary 842

405EP – PPC405EP Embedded Processor
DCCR (cont.)
Data Cache Cacheability Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17 S17 0 Noncachable
1 Cachable

0x8800 0000 –0x8FFF FFFF

18 S18 0 Noncachable
1 Cachable

0x9000 0000 –0x97FF FFFF

19 S19 0 Noncachable
1 Cachable

0x9800 0000 –0x9FFF FFFF

20 S20 0 Noncachable
1 Cachable

0xA000 0000 –0xA7FF FFFF

21 S21 0 Noncachable
1 Cachable

0xA800 0000 –0xAFFF FFFF

22 S22 0 Noncachable
1 Cachable

0xB000 0000 –0xB7FF FFFF

23 S23 0 Noncachable
1 Cachable

0xB800 0000 –0xBFFF FFFF

24 S24 0 Noncachable
1 Cachable

0xC000 0000 –0xC7FF FFFF

25 S25 0 Noncachable
1 Cachable

0xC800 0000 –0xCFFF FFFF

26 S26 0 Noncachable
1 Cachable

0xD000 0000 –0xD7FF FFFF

27 S27 0 Noncachable
1 Cachable

0xD800 0000 –0xDFFF FFFF

28 S28 0 Noncachable
1 Cachable

0xE000 0000 –0xE7FF FFFF

29 S29 0 Noncachable
1 Cachable

0xE800 0000 –0xEFFF FFFF

30 S30 0 Noncachable
1 Cachable

0xF000 0000 –0xF7FF FFFF

31 S31 0 Noncachable
1 Cachable

0xF800 0000 –0xFFFF FFFF
843 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DCWR

Data Cache Write-through Register
DCWR

SPR 0x3BA

See “Real-Mode Storage Attribute Control” on page 6-158.

Figure 26-9. Data Cache Write-through Register (DCWR)
0 W0 0 Write-back

1 Write-through
0x0000 0000 –0x07FF FFFF

1 W1 0 Write-back
1 Write-through

0x0800 0000 –0x0FFF FFFF

2 W2 0 Write-back
1 Write-through

0x1000 0000 –0x17FF FFFF

3 W3 0 Write-back
1 Write-through

0x1800 0000 –0x1FFF FFFF

4 W4 0 Write-back
1 Write-through

0x2000 0000 –0x27FF FFFF

5 W5 0 Write-back
1 Write-through

0x2800 0000 –0x2FFF FFFF

6 W6 0 Write-back
1 Write-through

0x3000 0000 –0x37FF FFFF

7 W7 0 Write-back
1 Write-through

0x3800 0000 –0x3FFF FFFF

8 W8 0 Write-back
1 Write-through

0x4000 0000 –0x47FF FFFF

9 W9 0 Write-back
1 Write-through

0x4800 0000 –0x4FFF FFFF

10 W10 0 Write-back
1 Write-through

0x5000 0000 –0x57FF FFFF

11 W11 0 Write-back
1 Write-through

0x5800 0000 –0x5FFF FFFF

12 W12 0 Write-back
1 Write-through

0x6000 0000 –0x67FF FFFF

13 W13 0 Write-back
1 Write-through

0x6800 0000 –0x6FFF FFFF

14 W14 0 Write-back
1 Write-through

0x7000 0000 –0x77FF FFFF

15 W15 0 Write-back
1 Write-through

0x7800 0000 –0x7FFF FFFF

16 W16 0 Write-back
1 Write-through

0x8000 0000 –0x87FF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

W0

W1

W2

W3

W6W4 W30

W31W5

W8 W10 W12 W14

W7 W9 W11 W13 W15

W16 W18 W20 W22 W24 W26 W28

W17 W19 W21 W23 W25 W27 W29
AMCC Proprietary 844

405EP – PPC405EP Embedded Processor
DCWR (cont.)
Data Cache Write-through Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17 W17 0 Write-back
1 Write-through

0x8800 0000 –0x8FFF FFFF

18 W18 0 Write-back
1 Write-through

0x9000 0000 –0x97FF FFFF

19 W19 0 Write-back
1 Write-through

0x9800 0000 –0x9FFF FFFF

20 W20 0 Write-back
1 Write-through

0xA000 0000 –0xA7FF FFFF

21 W21 0 Write-back
1 Write-through

0xA800 0000 –0xAFFF FFFF

22 W22 0 Write-back
1 Write-through

0xB000 0000 –0xB7FF FFFF

23 W23 0 Write-back
1 Write-through

0xB800 0000 –0xBFFF FFFF

24 W24 0 Write-back
1 Write-through

0xC000 0000 –0xC7FF FFFF

25 W25 0 Write-back
1 Write-through

0xC800 0000 –0xCFFF FFFF

26 W26 0 Write-back
1 Write-through

0xD000 0000 –0xD7FF FFFF

27 W27 0 Write-back
1 Write-through

0xD800 0000 –0xDFFF FFFF

28 W28 0 Write-back
1 Write-through

0xE000 0000 –0xE7FF FFFF

29 W29 0 Write-back
1 Write-through

0xE800 0000 –0xEFFF FFFF

30 W30 0 Write-back
1 Write-through

0xF000 0000 –0xF7FF FFFF

31 W31 0 Write-back
1 Write-through

0xF800 0000 –0xFFFF FFFF
845 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DEAR

Data Exception Address Register
DEAR

SPR 0x3D5

See “Data Exception Address Register (DEAR)” on page 10-233.

Figure 26-10. Data Exception Address Register (DEAR)
0:31 Address of Data Error (synchronous)

0 31
AMCC Proprietary 846

405EP – PPC405EP Embedded Processor
DVC1–DVC2
Data Value Compare Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

DVCR1–DVCR2

SPR 0x3B6–0x3B7

See “Data Value Compare Registers (DVC1–DVC2)” on page 13-274.

Figure 26-11. Data Value Compare Registers (DVC1–DVC2)
0:31 Data Value to Compare

0 31
847 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
ESR

Exception Syndrome Register
ESR

SPR 0x3D4

See “Exception Syndrome Register (ESR)” on page 10-232.

Figure 26-12. Exception Syndrome Register (ESR)
0 MCI Machine check—instruction

0 Instruction machine check did not occur.
1 Instruction machine check occurred.

1:3 Reserved

4 PIL Program interrupt—illegal
0 Illegal Instruction error did not occur.
1 Illegal Instruction error occurred.

5 PPR Program interrupt—privileged
0 Privileged instruction error did not occur.
1 Privileged instruction error occurred.

6 PTR Program interrupt—trap
0 Trap with successful compare did not

occur.
1 Trap with successful compare occurred.

7 Reserved

8 DST Data storage interrupt—store fault
0 Excepting instruction was not a store.
1 Excepting instruction was a store

(includes dcbi, dcbz, and dccci).

9 DIZ Data/instruction storage interrupt—zone
fault
0 Excepting condition was not a zone fault.
1 Excepting condition was a zone fault.

10:15 Reserved

16 U0F Data storage interrupt—U0 fault
0 Excepting instruction did not cause a U0

fault.
1 Excepting instruction did cause a U0

fault.

17:31 Reserved

0 1 3 4 5 6 7 8 9 10 15 16 17 31

MCI PIL

PPR

PTR DIZ

U0FDST
AMCC Proprietary 848

405EP – PPC405EP Embedded Processor
EVPR
Exception Vector Prefix Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EVPR

SPR 0x3D6

See “Exception Vector Prefix Register (EVPR)” on page 10-231.

Figure 26-13. Exception Vector Prefix Register (EVPR)
0:15 EVP Exception Vector Prefix

16:31 Reserved

0 15 16 31

EVP
849 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPR0–GPR31

General Purpose Registers
GPR0–GPR31

See “General Purpose Registers (R0-R31)” on page 3-73.

Figure 26-14. General Purpose Registers (R0-R31)
0:31 General Purpose Register data

0 31
AMCC Proprietary 850

405EP – PPC405EP Embedded Processor
IAC1–IAC4
Instruction Address Compare Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IAC1–IAC4

SPR 0x3F4–0x3F5

See “Instruction Address Compare Registers (IAC1–IAC4)” on page 13-273.

Figure 26-15. Instruction Address Compare Registers (IAC1–IAC4)
0:29 Instruction Address Compare word

address
Omit two low-order bits of complete
address.

30:31 Reserved

0 29 30 31
851 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
ICCR

Instruction Cache Cacheability Register
ICCR

SPR 0x3FB

See “Real-Mode Storage Attribute Control” on page 6-158.

Figure 26-16. Instruction Cache Cachability Register (ICCR)
0 S0 0 Noncachable

1 Cachable
0x0000 0000 –0x07FF FFFF

1 S1 0 Noncachable
1 Cachable

0x0800 0000 –0x0FFF FFFF

2 S2 0 Noncachable
1 Cachable

0x1000 0000 –0x17FF FFFF

3 S3 0 Noncachable
1 Cachable

0x1800 0000 –0x1FFF FFFF

4 S4 0 Noncachable
1 Cachable

0x2000 0000 –0x27FF FFFF

5 S5 0 Noncachable
1 Cachable

0x2800 0000 –0x2FFF FFFF

6 S6 0 Noncachable
1 Cachable

0x3000 0000 –0x37FF FFFF

7 S7 0 Noncachable
1 Cachable

0x3800 0000 –0x3FFF FFFF

8 S8 0 Noncachable
1 Cachable

0x4000 0000 –0x47FF FFFF

9 S9 0 Noncachable
1 Cachable

0x4800 0000 –0x4FFF FFFF

10 S10 0 Noncachable
1 Cachable

0x5000 0000 –0x57FF FFFF

11 S11 0 Noncachable
1 Cachable

0x5800 0000 –0x5FFF FFFF

12 S12 0 Noncachable
1 Cachable

0x6000 0000 –0x67FF FFFF

13 S13 0 Noncachable
1 Cachable

0x6800 0000 –0x6FFF FFFF

14 S14 0 Noncachable
1 Cachable

0x7000 0000 –0x77FF FFFF

15 S15 0 Noncachable
1 Cachable

0x7800 0000 –0x7FFF FFFF

16 S16 0 Noncachable
1 Cachable

0x8000 0000 –0x87FF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S0

S1

S2

S3

S6S4 S30

S31S5

S8 S10 S12 S14

S7 S9 S11 S13 S15

S16 S18 S20 S22 S24 S26 S28

S17 S19 S21 S23 S25 S27 S29
AMCC Proprietary 852

405EP – PPC405EP Embedded Processor
ICCR (cont.)
Instruction Cache Cacheability Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17 S17 0 Noncachable
1 Cachable

0x8800 0000 –0x8FFF FFFF

18 S18 0 Noncachable
1 Cachable

0x9000 0000 –0x97FF FFFF

19 S19 0 Noncachable
1 Cachable

0x9800 0000 –0x9FFF FFFF

20 S20 0 Noncachable
1 Cachable

0xA000 0000 –0xA7FF FFFF

21 S21 0 Noncachable
1 Cachable

0xA800 0000 –0xAFFF FFFF

22 S22 0 Noncachable
1 Cachable

0xB000 0000 –0xB7FF FFFF

23 S23 0 Noncachable
1 Cachable

0xB800 0000 –0xBFFF FFFF

24 S24 0 Noncachable
1 Cachable

0xC000 0000 –0xC7FF FFFF

25 S25 0 Noncachable
1 Cachable

0xC800 0000 –0xCFFF FFFF

26 S26 0 Noncachable
1 Cachable

0xD000 0000 –0xD7FF FFFF

27 S27 0 Noncachable
1 Cachable

0xD800 0000 –0xDFFF FFFF

28 S28 0 Noncachable
1 Cachable

0xE000 0000 –0xE7FF FFFF

29 S29 0 Noncachable
1 Cachable

0xE800 0000 –0xEFFF FFFF

30 S30 0 Noncachable
1 Cachable

0xF000 0000 –0xF7FF FFFF

31 S31 0 Noncachable
1 Cachable

0xF800 0000 –0xFFFF FFFF
853 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
ICDBDR

Instruction Cache Debug Data Register
ICDBDR

SPR 0x3D3 Read-Only

See “ICU Debugging” on page 4-129.

ICU tag information is placed into the ICDBDR as shown:

Figure 26-17. Instruction Cache Debug Data Register (ICDBDR)
0:31 Instruction cache information See icread, page 677

0:21 TAG Cache Tag

22:26 Reserved

27 V Cache Line Valid
0 Not valid
1 Valid

28:30 Reserved

31 LRU Least Recently Used (LRU)
0 A-way LRU
1 B-way LRU

0 31
AMCC Proprietary 854

405EP – PPC405EP Embedded Processor
LR
Link Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

LR

SPR 0x008

See “Link Register (LR)” on page 3-75.

Figure 26-18. Link Register (LR)
0:31 Link Register contents If (LR) represents an instruction address,

LR30:31 should be 0.

0 31
855 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MSR

Machine State Register
MSR

See “Machine State Register (MSR)” on page 10-227.

Figure 26-19. Machine State Register (MSR)
0:12 Reserved

13 WE Wait State Enable
0 The processor is not in the wait state.
1 The processor is in the wait state.

If MSR[WE] = 1, the processor remains in
the wait state until an interrupt is taken, a
reset occurs, or an external debug tool
clears WE.

14 CE Critical Interrupt Enable
0 Critical interrupts are disabled.
1 Critical interrupts are enabled.

Controls the critical interrupt input and
watchdog timer first time-out interrupts.

15 Reserved

16 EE External Interrupt Enable
0 Asynchronous interrupts (external to the

processor core) are disabled.
1 Asynchronous interrupts are enabled.

Controls the non-critical external interrupt
input, PIT, and FIT interrupts.

17 PR Problem State
0 Supervisor state (all instructions

allowed).
1 Problem state (some instructions not

allowed).

18 Reserved

19 ME Machine Check Enable
0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

20 Reserved

21 DWE Debug Wait Enable
0 Debug wait mode is disabled.
1 Debug wait mode is enabled.

22 DE Debug Interrupts Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23:25 Reserved

26 IR Instruction Relocate
0 Instruction address translation is

disabled.
1 Instruction address translation is

enabled.

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
AMCC Proprietary 856

405EP – PPC405EP Embedded Processor
MSR (cont.)
Machine State Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
27 DR Data Relocate
0 Data address translation is disabled.
1 Data address translation is enabled.

28:31 Reserved
857 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PID

Process ID
PID

SPR 0x3B1

See “Address Translation” on page 6-143.

Figure 26-20. Process ID (PID)
0:23 Reserved

24:31 Process ID

0 23 24 31
AMCC Proprietary 858

405EP – PPC405EP Embedded Processor
PIT
Programmable Interval Timer

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PIT

SPR 0x3DB

See “Programmable Interval Timer (PIT)” on page 11-248.

Figure 26-21. Programmable Interval Timer (PIT)
0:31 Programmed interval remaining Number of clocks remaining until the PIT

event

0 31
859 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PVR

Processor Version Register
PVR

SPR 0x11F Read-Only

See “Processor Version Register (PVR)” on page 3-79.

Figure 26-22. Processor Version Register (PVR)
0:31 Assigned PVR value

0 31
AMCC Proprietary 860

405EP – PPC405EP Embedded Processor
SGR
Storage Guarded Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SGR

SPR 0x3B9

See “Real-Mode Storage Attribute Control” on page 6-158.

Figure 26-23. Storage Guarded Register (SGR)
0 G0 0 Normal

1 Guarded
0x0000 0000 –0x07FF FFFF

1 G1 0 Normal
1 Guarded

0x0800 0000 –0x0FFF FFFF

2 G2 0 Normal
1 Guarded

0x1000 0000 –0x17FF FFFF

3 G3 0 Normal
1 Guarded

0x1800 0000 –0x1FFF FFFF

4 G4 0 Normal
1 Guarded

0x2000 0000 –0x27FF FFFF

5 G5 0 Normal
1 Guarded

0x2800 0000 –0x2FFF FFFF

6 G6 0 Normal
1 Guarded

0x3000 0000 –0x37FF FFFF

7 G7 0 Normal
1 Guarded

0x3800 0000 –0x3FFF FFFF

8 G8 0 Normal
1 Guarded

0x4000 0000 –0x47FF FFFF

9 G9 0 Normal
1 Guarded

0x4800 0000 –0x4FFF FFFF

10 G10 0 Normal
1 Guarded

0x5000 0000 –0x57FF FFFF

11 G11 0 Normal
1 Guarded

0x5800 0000 –0x5FFF FFFF

12 G12 0 Normal
1 Guarded

0x6000 0000 –0x67FF FFFF

13 G13 0 Normal
1 Guarded

0x6800 0000 –0x6FFF FFFF

14 G14 0 Normal
1 Guarded

0x7000 0000 –0x77FF FFFF

15 G15 0 Normal
1 Guarded

0x7800 0000 –0x7FFF FFFF

16 G16 0 Normal
1 Guarded

0x8000 0000 –0x87FF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

G0

G1

G2

G3

G6G4 G30

G31G5

G8 G10 G12 G14

G7 G9 G11 G13 G15

G16 G18 G20 G22 G24 G26 SG28

G17 G19 G21 G23 G25 G27 G29
861 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SGR (cont.)

Storage Guarded Register
17 G17 0 Normal
1 Guarded

0x8800 0000 –0x8FFF FFFF

18 G18 0 Normal
1 Guarded

0x9000 0000 –0x97FF FFFF

19 G19 0 Normal
1 Guarded

0x9800 0000 –0x9FFF FFFF

20 G20 0 Normal
1 Guarded

0xA000 0000 –0xA7FF FFFF

21 G21 0 Normal
1 Guarded

0xA800 0000 –0xAFFF FFFF

22 G22 0 Normal
1 Guarded

0xB000 0000 –0xB7FF FFFF

23 G23 0 Normal
1 Guarded

0xB800 0000 –0xBFFF FFFF

24 G24 0 Normal
1 Guarded

0xC000 0000 –0xC7FF FFFF

25 G25 0 Normal
1 Guarded

0xC800 0000 –0xCFFF FFFF

26 G26 0 Normal
1 Guarded

0xD000 0000 –0xD7FF FFFF

27 G27 0 Normal
1 Guarded

0xD800 0000 –0xDFFF FFFF

28 G28 0 Normal
1 Guarded

0xE000 0000 –0xE7FF FFFF

29 G29 0 Normal
1 Guarded

0xE800 0000 –0xEFFF FFFF

30 G30 0 Normal
1 Guarded

0xF000 0000 –0xF7FF FFFF

31 G31 0 Normal
1 Guarded

0xF800 0000 –0xFFFF FFFF
AMCC Proprietary 862

405EP – PPC405EP Embedded Processor
SLER
Storage Little-Endian Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SLER

SPR 0x3BB

See “Real-Mode Storage Attribute Control” on page 6-158.

Figure 26-24. Storage Little-Endian Register (SLER)
0 S0 0 Big endian

1 Little endian
0x0000 0000 –0x07FF FFFF

1 S1 0 Big endian
1 Little endian

0x0800 0000 –0x0FFF FFFF

2 S2 0 Big endian
1 Little endian

0x1000 0000 –0x17FF FFFF

3 S3 0 Big endian
1 Little endian

0x1800 0000 –0x1FFF FFFF

4 S4 0 Big endian
1 Little endian

0x2000 0000 –0x27FF FFFF

5 S5 0 Big endian
1 Little endian

0x2800 0000 –0x2FFF FFFF

6 S6 0 Big endian
1 Little endian

0x3000 0000 –0x37FF FFFF

7 S7 0 Big endian
1 Little endian

0x3800 0000 –0x3FFF FFFF

8 S8 0 Big endian
1 Little endian

0x4000 0000 –0x47FF FFFF

9 S9 0 Big endian
1 Little endian

0x4800 0000 –0x4FFF FFFF

10 S10 0 Big endian
1 Little endian

0x5000 0000 –0x57FF FFFF

11 S11 0 Big endian
1 Little endian

0x5800 0000 –0x5FFF FFFF

12 S12 0 Big endian
1 Little endian

0x6000 0000 –0x67FF FFFF

13 S13 0 Big endian
1 Little endian

0x6800 0000 –0x6FFF FFFF

14 S14 0 Big endian
1 Little endian

0x7000 0000 –0x77FF FFFF

15 S15 0 Big endian
1 Little endian

0x7800 0000 –0x7FFF FFFF

16 S16 0 Big endian
1 Little endian

0x8000 0000 –0x87FF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S0

S1

S2

S3

S6S4 S30

S31S5

S8 S10 S12 S14

S7 S9 S11 S13 S15

S16 S18 S20 S22 S24 S26 S28

S17 S19 S21 S23 S25 S27 S29
863 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SLER (cont.)

Storage Little-Endian Register
17 S17 0 Big endian
1 Little endian

0x8800 0000 –0x8FFF FFFF

18 S18 0 Big endian
1 Little endian

0x9000 0000 –0x97FF FFFF

19 S19 0 Big endian
1 Little endian

0x9800 0000 –0x9FFF FFFF

20 S20 0 Big endian
1 Little endian

0xA000 0000 –0xA7FF FFFF

21 S21 0 Big endian
1 Little endian

0xA800 0000 –0xAFFF FFFF

22 S22 0 Big endian
1 Little endian

0xB000 0000 –0xB7FF FFFF

23 S23 0 Big endian
1 Little endian

0xB800 0000 –0xBFFF FFFF

24 S24 0 Big endian
1 Little endian

0xC000 0000 –0xC7FF FFFF

25 S25 0 Big endian
1 Little endian

0xC800 0000 –0xCFFF FFFF

26 S26 0 Big endian
1 Little endian

0xD000 0000 –0xD7FF FFFF

27 S27 0 Big endian
1 Little endian

0xD800 0000 –0xDFFF FFFF

28 S28 0 Big endian
1 Little endian

0xE000 0000 –0xE7FF FFFF

29 S29 0 Big endian
1 Little endian

0xE800 0000 –0xEFFF FFFF

30 S30 0 Big endian
1 Little endian

0xF000 0000 –0xF7FF FFFF

31 S31 0 Big endian
1 Little endian

0xF800 0000 –0xFFFF FFFF
AMCC Proprietary 864

405EP – PPC405EP Embedded Processor
SPRG0–SPRG7
Special Purpose Registers General

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SPRG0–SPRG7

SPR 0x104–0x107 (User Read-only); 0x110–0x117 (Privileged Read/Write)

See “Special Purpose Register General (SPRG0–SPRG7)” on page 3-79.

Figure 26-25. Special Purpose Registers General (SPRG0–SPRG7)
0:31 General data Software value; no hardware usage.

0 31
865 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SRR0

Save/Restore Register 0
SRR0

SPR 0x01A

See “Save/Restore Registers 0 and 1 (SRR0–SRR1)” on page 10-229.
 .

Figure 26-26. Save/Restore Register 0 (SRR0)
0:29 SRR0 receives an instruction address when a non-critical interrupt is taken;

the Program Counter is restored from SRR0 when rfi executes.

30:31 Reserved

0 29 30 31
AMCC Proprietary 866

405EP – PPC405EP Embedded Processor
SRR1
Save/Restore Register 1

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SRR1

SPR 0x01B

See “Save/Restore Registers 0 and 1 (SRR0–SRR1)” on page 10-229.

Figure 26-27. Save/Restore Register 1 (SRR1)
0:31 SRR1 receives a copy of the MSR when an

interrupt is taken; the MSR is restored from
SRR1 when rfi executes.

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
867 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SRR2

Save/Restore Register 2
SRR2

SPR 0x3DE

See “Save/Restore Registers 2 and 3 (SRR2–SRR3)” on page 10-230.
 .

Figure 26-28. Save/Restore Register 2 (SRR2)
0:29 SRR2 receives an instruction address when a critical interrupt is taken; the Program

Counter is restored from SRR2 when rfci executes.

30:31 Reserved

0 29 30 31
AMCC Proprietary 868

405EP – PPC405EP Embedded Processor
SRR3
Save/Restore Register 3

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SRR3

SPR 0x3DF

See “Save/Restore Registers 2 and 3 (SRR2–SRR3)” on page 10-230.

Figure 26-29. Save/Restore Register 3 (SRR3)
0:31 SRR3 receives a copy of the MSR when a

critical interrupt is taken; the MSR is
restored from SRR3 when rfci executes.

0 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 31

DE

CE

EE IRWE

PR DRME DWE
869 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SU0R

Storage User-Defined 0 Register
SU0R

SPR 0x3BC

See “Real-Mode Storage Attribute Control” on page 6-158.

Figure 26-30. Storage User-defined 0 Register (SU0R)
0 UD0 0 Storage compression is off

1 Storage compression is on
0x0000 0000 –0x07FF FFFF

1 UD1 0 Storage compression is off
1 Storage compression is on

0x0800 0000 –0x0FFF FFFF

2 UD2 0 Storage compression is off
1 Storage compression is on

0x1000 0000 –0x17FF FFFF

3 UD3 0 Storage compression is off
1 Storage compression is on

0x1800 0000 –0x1FFF FFFF

4 UD4 0 Storage compression is off
1 Storage compression is on

0x2000 0000 –0x27FF FFFF

5 UD5 0 Storage compression is off
1 Storage compression is on

0x2800 0000 –0x2FFF FFFF

6 UD6 0 Storage compression is off
1 Storage compression is on

0x3000 0000 –0x37FF FFFF

7 UD7 0 Storage compression is off
1 Storage compression is on

0x3800 0000 –0x3FFF FFFF

8 UD8 0 Storage compression is off
1 Storage compression is on

0x4000 0000 –0x47FF FFFF

9 UD9 0 Storage compression is off
1 Storage compression is on

0x4800 0000 –0x4FFF FFFF

10 UD10 0 Storage compression is off
1 Storage compression is on

0x5000 0000 –0x57FF FFFF

11 UD11 0 Storage compression is off
1 Storage compression is on

0x5800 0000 –0x5FFF FFFF

12 UD12 0 Storage compression is off
1 Storage compression is on

0x6000 0000 –0x67FF FFFF

13 UD13 0 Storage compression is off
1 Storage compression is on

0x6800 0000 –0x6FFF FFFF

14 UD14 0 Storage compression is off
1 Storage compression is on

0x7000 0000 –0x77FF FFFF

15 UD15 0 Storage compression is off
1 Storage compression is on

0x7800 0000 –0x7FFF FFFF

16 UD16 0 Storage compression is off
1 Storage compression is on

0x8000 0000 –0x87FF FFFF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

UD0

UD1

UD2

UD3

UD6UD4 UD30

UD31UD5

UD8 UD10 UD12 UD14

UD7 UD9 UD11 UD13 UD15

UD16 UD18 UD20 UD22 UD24 UD26 UD28

UD17 UD19 UD21 UD23 UD25 UD27 UD29
AMCC Proprietary 870

405EP – PPC405EP Embedded Processor
SU0R (cont.)
Storage User-Defined 0 Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17 UD17 0 Storage compression is off
1 Storage compression is on

0x8800 0000 –0x8FFF FFFF

18 UD18 0 Storage compression is off
1 Storage compression is on

0x9000 0000 –0x97FF FFFF

19 UD19 0 Storage compression is off
1 Storage compression is on

0x9800 0000 –0x9FFF FFFF

20 UD20 0 Storage compression is off
1 Storage compression is on

0xA000 0000 –0xA7FF FFFF

21 UD21 0 Storage compression is off
1 Storage compression is on

0xA800 0000 –0xAFFF FFFF

22 UD22 0 Storage compression is off
1 Storage compression is on

0xB000 0000 –0xB7FF FFFF

23 UD23 0 Storage compression is off
1 Storage compression is on

0xB800 0000 –0xBFFF FFFF

24 UD24 0 Storage compression is off
1 Storage compression is on

0xC000 0000 –0xC7FF FFFF

25 UD25 0 Storage compression is off
1 Storage compression is on

0xC800 0000 –0xCFFF FFFF

26 UD26 0 Storage compression is off
1 Storage compression is on

0xD000 0000 –0xD7FF FFFF

27 UD27 0 Storage compression is off
1 Storage compression is on

0xD800 0000 –0xDFFF FFFF

28 UD28 0 Storage compression is off
1 Storage compression is on

0xE000 0000 –0xE7FF FFFF

29 UD29 0 Storage compression is off
1 Storage compression is on

0xE800 0000 –0xEFFF FFFF

30 UD30 0 Storage compression is off
1 Storage compression is on

0xF000 0000 –0xF7FF FFFF

31 UD31 0 Storage compression is off
1 Storage compression is on

0xF800 0000 –0xFFFF FFFF
871 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
TBL

Time Base Lower
TBL

TBR 0x10C (Read-only); SPR 0x11C (Privileged write-only)

See “Time Base” on page 11-246.

Figure 26-31. Time Base Lower (TBL)
0:31 Time Base Lower Current count; low-order 32 bits of time

base.

0 31
AMCC Proprietary 872

405EP – PPC405EP Embedded Processor
TBU
Time Base Upper

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

TBU

TBR 0x10D (Read-only); SPR 0x11D (Privileged write-only)

See “Time Base” on page 11-246.

Figure 26-32. Time Base Upper (TBU)
0:31 Time Base Upper Current count, high-order 32 bits of time

base.

0 31
873 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
TCR

Timer Control Register
TCR

SPR 0x3DA

See “Timer Control Register (TCR)” on page 11-253.

Figure 26-33. Timer Control Register (TCR)
0:1 WP Watchdog Period

00 217 clocks
01 221 clocks
10 225 clocks
11 229 clocks

2:3 WRC Watchdog Reset Control
00 No Watchdog reset will occur.
01 Core reset will be forced by the

Watchdog.
10 Chip reset will be forced by the

Watchdog.
11 System reset will be forced by the

Watchdog.

TCR[WRC] resets to 00.
This field can be set by software, but
cannot be cleared by software, except by a
software-induced reset.

4 WIE Watchdog Interrupt Enable
0 Disable watchdog interrupt.
1 Enable watchdog interrupt.

5 PIE PIT Interrupt Enable
0 Disable PIT interrupt.
1 Enable PIT interrupt.

6:7 FP FIT Period
00 29 clocks
01 213 clocks
10 217 clocks
11 221 clocks

8 FIE FIT Interrupt Enable
0 Disable FIT interrupt.
1 Enable FIT interrupt.

9 ARE Auto Reload Enable
0 Disable auto reload.
1 Enable auto reload.

Disables on reset.

10:31 Reserved

0 1 2 3 4 5 6 7 8 9 10 31

WP

WRC

WIE

PIE

FP FIE

ARE
AMCC Proprietary 874

405EP – PPC405EP Embedded Processor
TSR
Timer Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

TSR

SPR 0x3D8 Read/Clear

See “Timer Status Register (TSR)” on page 11-252.

Figure 26-34. Timer Status Register (TSR)
0 ENW Enable Next Watchdog

0 Action on next watchdog event is to set
TSR[ENW] = 1.

1 Action on next watchdog event is
governed by TSR[WIS].

Software must reset TSR[ENW] = 0 after
each watchdog timer event.

1 WIS Watchdog Interrupt Status
0 No Watchdog interrupt is pending.
1 Watchdog interrupt is pending.

2:3 WRS Watchdog Reset Status
00 No Watchdog reset has occurred.
01 Core reset was forced by the watchdog.
10 Chip reset was forced by the watchdog.
11 System reset was forced by the

watchdog.
4 PIS PIT Interrupt Status

0 No PIT interrupt is pending.
1 PIT interrupt is pending.

5 FIS FIT Interrupt Status
0 No FIT interrupt is pending.
1 FIT interrupt is pending.

6:31 Reserved

0 1 2 3 4 5 6 31

ENW

WIS

WRS FIS

PIS
875 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
USPRG0

User Special Purpose Register General 0
USPRG0

SPR 0x100 (User R/W)

See “Special Purpose Register General (SPRG0–SPRG7)” on page 3-79.

Figure 26-35. User SPR General 0 (USPRG0)
0:31 General data Software value; no hardware usage.

0 31
AMCC Proprietary 876

405EP – PPC405EP Embedded Processor
XER
Fixed Point Exception Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

XER

SPR 0x001

See “Fixed Point Exception Register (XER)” on page 3-76.

Figure 26-36. Fixed Point Exception Register (XER)
0 SO Summary Overflow

0 No overflow has occurred.
1 Overflow has occurred.

Can be set by mtspr or by using “o” form
instructions; can be reset by mtspr or by
mcrxr.

1 OV Overflow
0 No overflow has occurred.
0 Overflow has occurred.

Can be set by mtspr or by using “o” form
instructions; can be reset by mtspr, by
mcrxr, or “o” form instructions.

2 CA Carry
0 Carry has not occurred.
1 Carry has occurred.

Can be set by mtspr or arithmetic
instructions that update the CA field; can
be reset by mtspr, by mcrxr, or by
arithmetic instructions that update the CA
field.

3:24 Reserved

25:31 TBC Transfer Byte Count Used by lswx and stswx; written by
mtspr.

0 1 2 3 24 25 31

SO

OV

CA TBC
877 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
ZPR

Zone Protection Register
ZPR

SPR 0x3B0

See “Zone Protection” on page 6-155.

Figure 26-37. Zone Protection Register (ZPR)
0:1 Z0 TLB page access control for all pages in this zone.

In the problem state (MSR[PR] = 1):
00 No access
01 Access controlled by applicable

TLB_entry[EX, WR]
10 Access controlled by applicable

TLB_entry[EX, WR]
11 Accessed as if execute and write

permissions (TLB_entry[EX, WR]) are
granted

In the supervisor state (MSR[PR] = 0):
00 Access controlled by applicable

TLB_entry[EX, WR]
01 Access controlled by applicable

TLB_entry[EX, WR]
10 Accessed as if execute and write

permissions (TLB_entry[EX, WR]) are
granted

11 Accessed as if execute and write
permissions (TLB_entry[EX, WR]) are
granted

2:3 Z1 See the description of Z0.

4:5 Z2 See the description of Z0.

6:7 Z3 See the description of Z0.

8:9 Z4 See the description of Z0.

10:11 Z5 See the description of Z0.

12:13 Z6 See the description of Z0.

14:15 Z7 See the description of Z0.

16:17 Z8 See the description of Z0.

18:19 Z9 See the description of Z0.

20:21 Z10 See the description of Z0.

22:23 Z11 See the description of Z0.

24:25 Z12 See the description of Z0.

26:27 Z13 See the description of Z0.

28:29 Z14 See the description of Z0.

30:31 Z15 See the description of Z0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Z0

Z1

Z2

Z3

Z6Z4

Z5

Z8 Z10 Z12 Z14

Z7 Z9 Z11 Z13 Z15
AMCC Proprietary 878

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

26.Register Summary26.10 Alphabetical Listing of Chip Control and Peripheral Registers

This section lists the chip control and peripheral registers available in the PPC405EP.

The following pages list the registers available in the PPC405EP. For each register, the following information
is supplied:

• Register mnemonic and name

• Cross reference to a detailed register description

• Register type (DCR or MMIO)

• Register number (address)

• A diagram illustrating the register fields (all register fields have mnemonics, unless there is only one field)

• A table describing the register fields, giving field mnemonic, field bit location, field name, and the function
associated with various field values
879 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_BOOT

Boot Control Register
Chip Control Registers
CPC0_BOOT

DCR 0x0F1

See “Boot Control Register (CPC0_BOOT)” on page 7-168.

Figure 26-38. Boot Control Register (CPC0_BOOT)
0:24 Reserved

25:26 SEBA Serial EPROM Base Address
00 Byte offset 0x00
01 Byte offset 0x40
10 Byte offset 0x80
11 Byte offset 0xC0

The serial EPROM, if present, must have a
7-bit slave address of 0b101000.
This field specifies the byte address within
the serial EPROM where the 32 bytes of
bootstrap information resides.

27 BSS Boot Source Select
0 EBC is source for chip initialization code.
1 PCI is source for chip initialization code.

28:29 EBW EBC Boot Width
00 8-bit
01 16-bit
10 Reserved
11 Reserved

30 SEP Serial EPROM Present
0 IIC EEPROM Controller disabled
1 IIC EEPROM Controller enabled

31 SPLI SYSPLL lock indicator.
0 SYSPLL not locked.
1 SYSPLL locked.

Reading this bit may not provide reliable
PLL lock status in certain system
implementations. Waiting the maximum
lock period, 100us, is a more reliable
method of guaranteeing lock. See
“Initialization Code Example” on
page 8-191.

0 24 25 26 27 28 29 30 31

SPLISEBA EBW

SEPBSS
AMCC Proprietary 880

405EP – PPC405EP Embedded Processor
CPC0_EPCTL
EMAC to PHY Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

CPC0_EPCTL

DCR 0x0F3

See “EMAC to PHY Control Register (CPC0_EPCTL)” on page 7-169.

Figure 26-39. EMAC to PHY Control Register (CPC0_EPCTL)
0 E0NF EMAC0 Noise Filter Enable

0 Not enabled
1 Enabled

For normal operation, set E0NF to 1.

1 E1NF EMAC1 Noise Filter Enable
0 Not enabled
1 Enabled

For normal operation, set E1NF to 1.

2:23 Reserved

24 E1PR Select polarity of EMAC1 Packet Reject
0 Active low
1 Active high

25 E0PR Select polarity of EMAC0 Packet Reject
0 Active low
1 Active high

26 E1RM Enable EMAC1 Packet Removal
0 Not enabled
1 Enabled

27 E0RM Enable EMAC0 Packet Removal
0 Not enabled
1 Enabled

28:29 Reserved

30 E1PCI Source of EMAC1 PHY RX Clock Input.
0 Clock is sourced from PHY0Rx1Clk, the

external PHY Rx Clock output (normal
operation).

1 Clock is sourced from PHY0Tx1Clk, the
external PHY Tx Clock output (internal
loopback mode only).

31 E0PCI Source of EMAC0 PHY RX Clock Input.
0 Clock is sourced from PHY0Rx0Clk, the

external PHY Rx Clock output (normal
operation).

1 Clock is sourced from PHY0Tx0Clk, the
external PHY Tx Clock output (internal
loopback mode only).

0 1 2 23 24 25 26 27 28 29 30 31

E1RM

E0RM

E1PCI

E0PCI

E1PR

E0PR

E0NF

E1NF
881 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_ER

CPM Enable Register
CPC0_ER

DCR 0x0B8

See “CPM Enable Register (CPC0_ER)” on page 14-286.

Figure 26-40. CPM Enable Register (CPC0_ER)
0 GPT GPT Class 1

1 PCI PCI Class 1

2:14 Reserved

15 UIC0 UIC0 Class 1

16 CPU CPU Class 1

17 EBC EBC Class 2

18 SDRAM SDRAM Class 2

19 GPIO GPIO Class 1

20 Reserved

21 TMRCLK CPU Timers Sleep Class 1

22 Reserved

23 PLB PLB Arbiter Class 2

24 POB PLB-to-OPB Bridge Class 2

25 DMA DMA Class 2

26 Reserved

27 IIC IIC Class 3.2

28:29 Reserved

30 UART1 UART1 Class 1

31 UART0 UART0 Class 1

0 1 2 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TMRCLK POB IIC

PLB DMA UART1

UART0

GPT UICO

PCI CPU

EBC GPIO

SDRAM
AMCC Proprietary 882

405EP – PPC405EP Embedded Processor
CPC0_FR
CPM Force Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

CPC0_FR

DCR 0x0B9

See “CPM Force Register (CPC0_FR)” on page 14-286.

Figure 26-41. CPM Force Register (CPC0_FR)
0 GPT GPT Class 1

1 PCI PCI Class 1

2:14 Reserved

15 UIC0 UIC0 Class 1

16 CPU CPU Class 1

17 EBC EBC Class 2

18 SDRAM SDRAM Class 2

19 GPIO GPIO Class 1

20 Reserved

21 TMRCLK CPU Timers Sleep Class 1

22 Reserved

23 PLB PLB Arbiter Class 2

24 POB PLB-to-OPB Bridge Class 2

25 DMA DMA Class 2

26 Reserved

27 IIC IIC Class 3.2

28:29 Reserved

30 UART1 UART1 Class 1

31 UART0 UART0 Class 1

0 1 2 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TMRCLK POB IIC

PLB DMA UART1

UART0

GPT UICO

PCI CPU

EBC GPIO

SDRAM
883 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_JTAGID

 JTAG ID Register
CPC0_JTAGID

DCR 0x0F7 Read-Only

See “JTAG ID Register (CPC0_JTAGID)” on page 13-264.

Figure 26-42. JTAG ID Register (CPC0_JTAGID)
0:3 VERS Version

4:7 LOC Developer Location

8:19 PART Part Number

20:31 MANF Manufacturer Identifier

0 3 4 7 8 19 20 31

LOC

VERS PART

MANF
AMCC Proprietary 884

405EP – PPC405EP Embedded Processor
CPC0_PCI
PCI Bootstrap Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

CPC0_PCI

DCR 0x0F4

See “PCI Bootstrap Control Register (CPC0_PCI)” on page 9-201.

Figure 26-43. PCI Control Register (CPC0_PCI)
0:26 Reserved

27 SPE Select PCIINT or PerWE as output
0 PCIINT output is selected
1 PerWE output is selected

28 HCE HCE Initial Setting
0 Host config accesses are retried.
1 Host config accesses are enabled.

Sets initial value to be copied into HCE bit
in the PCIC0_BRDGOPT2 register during
chip initialization.

29:30 Reserved

31 PAE PCI on-chip arbiter enable
0 PCI on-chip arbiter disabled
1 PCI on-chip arbiter enabled

Use CPC0_SRR[RPCI] to hold the PCI
bridge in reset whenever the AE bit
setting is changed.

0 26 27 28 29 30 31

SPE

HCE

PAE
885 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_PLLMR0

PLL Mode Register 0
CPC0_PLLMR0

DCR 0x0F0

See “PLL Mode Register 0 (CPC0_PLLMR0)” on page 7-170.

Figure 26-44. PLL Mode Register 0 (CPC0_PLLMR0)
0:9 Reserved

10:11 CCDV CPU Clock Divider. These bits control the
ratio of the PLL frequency and the CPU
frequency.
00 Divider = 1
01 Divider = 2
10 Divider = 3
11 Divider = 4

12:13 Reserved

14:15 CBDV CPU–PLB Frequency Divisor
00 CPU–PLB divisor is 1
01 CPU–PLB divisor is 2
10 CPU–PLB divisor is 3
11 CPU–PLB divisor is 4

16:17 Reserved

18:19 OPDV OPB–PLB Frequency Divisor
00 OPB–PLB divisor is 1
01 OPB–PLB divisor is 2
10 OPB–PLB divisor is 3
11 OPB–PLB divisor is 4

20:21 Reserved

22:23 EPDV EBC–PLB Frequency Divisor
00 EBC–PLB divisor is 2
01 EBC–PLB divisor is 3
10 EBC–PLB divisor is 4
11 EBC–PLB divisor is 5

24:25 Reserved

26:27 MPDV MAL–PLB Frequency Divisor
00 MAL–PLB divisor is 1
01 MAL–PLB divisor is 2
10 MAL–PLB divisor is 3
11 MAL–PLB divisor is 4

CPC0_PLLMR0[MPDV] must be set
equal to CPC0_PLLMR0[OPDV].

28:29 Reserved

30:31 PPDV PCI-PLB Frequency Divisor
00 PCI–PLB divisor is 1
01 PCI–PLB divisor is 2
10 PCI–PLB divisor is 3
11 PCI–PLB divisor is 4

0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CCDV

CBDV EPDV

OPDV MPDV

PPDV
AMCC Proprietary 886

405EP – PPC405EP Embedded Processor
CPC0_PLLMR0 (cont.)
PLL Mode Register 0

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
887 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_PLLMR1

PLL Mode Register 1
CPC0_PLLMR1

DCR 0x0F4

See “PLL Mode Register 1 (CPC0_PLLMR1)” on page 7-171.

Figure 26-45. PLL Mode Register 1 (CPC0_PLLMR1)
0 SSCS Select System Clock Source

0 SysClk (PLL bypass)
1 PLL PLLOUTA output

1 PLLR PLL Reset
0 PLL is operating
1 Reset PLL

After PLLR is set to 0, software must wait
at least 100 us to allow the PLL to lock
before continuing.

2:7 Reserved

8:11 FBMUL PLL feedback multiplier value
0000 Multiplier is 16
0001 Multiplier is 1
0010 Multiplier is 2
0011 Multiplier is 3
0100 Multiplier is 4
0101 Multiplier is 5
0110 Multiplier is 6
0111 Multiplier is 7
1000 Multiplier is 8
1001 Multiplier is 9
1010 Multiplier is 10
1011 Multiplier is 11
1100 Multiplier is 12
1101 Multiplier is 13
1110 Multiplier is 14
1111 Multiplier is 15

12 Reserved

13:15 FWDVA PLL forward divider A value
000 Forward divisor is 8.
001 Forward divisor is 7.
010 Forward divisor is 6.
011 Forward divisor is 5.
100 Forward divisor is 4.
101 Forward divisor is 3.
110 Forward divisor is 2.
111 Forward divisor is 1.

16 Reserved

17:19 FWDVB PLL forward divider B value FWDVB should be programmed to match
FWDVA.

20:21 Reserved

0 1 2 7 8 11 12 13 15 16 17 19 20 21 22 31

SSCS

PLLR FWDVA

FWDVBFBMUL

TUN
AMCC Proprietary 888

405EP – PPC405EP Embedded Processor
CPC0_PLLMR1 (cont.)
PLL Mode Register 1

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

22:31 TUN PLL TUNE Bits Note: The tune bits adjust parameters
that control PLL jitter. The
recommended values minimize
jitter for the PLL.
889 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_SR

CPM Status Register
CPC0_SR

DCR 0x0BA Read-Only

See “CPM Status Register (CPC0_SR)” on page 14-286.

Figure 26-46. CPM Status Register (CPC0_SR)
0 GPT GPT Class 1

1 PCI PCI Class 1

2:14 Reserved

15 UIC0 UIC0 Class 1

16 CPU CPU Class 1

17 EBC EBC Class 2

18 SDRAM SDRAM Class 2

19 GPIO GPIO Class 1

20 Reserved

21 TMRCLK CPU Timers Sleep Class 1

22 Reserved

23 PLB PLB Arbiter Class 2

24 POB PLB-to-OPB Bridge Class 2

25 DMA DMA Class 2

26 Reserved

27 IIC IIC Class 3.2

28:29 Reserved

30 UART1 UART1 Class 1

31 UART0 UART0 Class 1

0 1 2 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

TMRCLK POB IIC

PLB DMA UART1

UART0

GPT UICO

PCI CPU

EBC GPIO

SDRAM
AMCC Proprietary 890

405EP – PPC405EP Embedded Processor
CPC0_SRR
Soft Reset Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

CPC0_SRR

DCR 0x0F6

See “Software Reset of the PCI Interface” on page 8-178.

Figure 26-47. Soft Reset Register (CPC0_SRR)
0:12 Reserved

13 RPCI PCI Bridge Reset by Software
0 PCI bridge not reset
1 Reset PCI bridge

Defaults to 1 during chip reset.
PCI is held in reset until software clears
this bit.

14:31 Reserved

0 12 13 14 31

RPCI
891 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_UCR

UART Control Register
CPC0_UCR

DCR 0x0F5

See “UART Control Register (CPC0_UCR)” on page 7-172.

Figure 26-48. UART Control Register (CPC0_UCR)
0:9 Reserved

10 U0DC UART0 DMA Clear Enable
0 Disables UART0 clear
1 Enables UART0 to clear

CPC0_UCR[U0DT] and
CPC0_UCR[U0DR] bits after the DMA
controller asserts its terminal count
signal.

11 U0DT Enable UART0 DMA Transmit Channel
0 DMA transmit channel is disabled.
1 DMA transmit channel is enabled.

12 U0DR Enable UART0 DMA Receive Channel
0 DMA receive channel is disabled.
1 DMA receive channel is enabled.

13 U1DC UART1 DMA Clear Enable
0 Disables UART1 clear
1 Enables UART1 to clear

CPC0_UCR[U1DT] and
CPC0_UCR[U1DR] after the DMA
controller asserts its terminal count
signal.

14 U1DT Enable UART1 DMA Transmit Channel
0 DMA transmit channel disabled.
1 DMA transmit channel enabled.

15 U1DR Enable UART1 DMA Receive Channel
0 DMA receive channel is disabled.
1 DMA receive channel is enabled.

16 Reserved

0 9 10 11 12 13 14 15 16 17 23 24 25 31

U0DC

U0DT

U0DR

U1DC

U1DT

U1DIVU1DR U0DIV
AMCC Proprietary 892

405EP – PPC405EP Embedded Processor
CPC0_UCR
UART Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
17:23 U1DIV UART1 Serial Clock Divisor
0000000 128
0000001 Stops the clock to UART1 baud
rate generator
0000010 2
0000011 3
.
.
.
.
1111101 125
1111110 126
1111111 127

This value should be chosen to select a
frequency less than half the
programmed OPB clock frequency.

24 Reserved

25:31 U0DIV UART0 Serial Clock Divisor
0000000 128
0000001 Stops the clock to UART1 baud
rate generator
0000010 2
0000011 3
.
.
.
.
1111101 125
1111110 126
1111111 127

This value should be chosen to select a
frequency less than half the
programmed OPB clock frequency.
893 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DMA0_CR0–DMA0_CR3

DMA Channel Control Registers 0–3
26.Register SummaryDMA Registers
DMA0_CR0–DMA0_CR3

DCR 0x100, 0x108, 0x110, 0x118

See “DMA Channel Control Registers (DMA0_CR0–DMA0_CR3)” on page 18-452.

Figure 26-49. DMA Channel Control Registers (DMA0_CR0–DMA0_CR3)
0 CE Channel Enable

0 Channel is disabled
1 Channel is enabled

This field is automatically cleared when
the transfer completes or an error occurs.

1 CIE Channel Interrupt Enable
0 Disable interrupts from this channel
1 Enable interrupts from this channel

When enabled, interrupts are generated
for terminal count, end of transfer, and
errors conditions. See “DMA Interrupts”
on page 18-457.

2 TD In peripheral mode:
0 Transfers are from memory-to-peripheral
1 Transfers are from peripheral-to-memory
In device-paced memory-to-memory mode:
0 Peripheral is at the destination address
1 Peripheral is at the source address

TD is not used (don’t care) for software-
initiated memory-to-memory transfers.
For peripheral mode UART transfers,
refer to “DMA Operation” on
page 21-561.

3 PL Peripheral Location
0 External peripheral (EBC) bus
1 OPB (UART0 or UART1)

For peripheral mode UART transfers,
refer to “DMA Operation” on
page 21-561.

4:5 PW Peripheral Width/Memory alignment
00 Byte (8 bits)
01 Halfword (16 bits)
10 Word (32 bits)
11 Doubleword (64 bits) memory-to-memory

transfers only

For memory-to-memory mode, PW is the
address alignment.
For peripheral mode, PW is the transfer
width of the peripheral device.

6 DAI Destination Address Increment
0 Do not increment destination address
1 After each data transfer increment the

destination address by:
1, if the transfer width is a byte (8 bits)
2, if the transfer width is a halfword (16 bits)
4, if the transfer width is a word (32 bits)
8, if the transfer width is a doubleword (64 bit)

7 SAI Source Address Increment
0 Do not increment source address
1 After each data transfer increment the source

address by:
1, if the transfer width is a byte (8 bits)
2, if the transfer width is a halfword (16 bits)
4, if the transfer width is a word (32 bits)
8, if the transfer width is a doubleword (64 bit)

8 BEN Buffer Enable
0 Disable DMA 32-byte buffer
1 Enable DMA 32-byte buffer

If BEN=0, discrete read and write
operations occur for each data transfer.

0 1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 30 31

CE

CIE

TD

PL DAI

SAI

BEN

TMPW ETD CP

TCE PF

PCE

DEC
AMCC Proprietary 894

405EP – PPC405EP Embedded Processor
DMA0_CR0–DMA0_CR3 (cont.)
DMA Channel Control Registers 0–3

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
9:10 TM Transfer mode
00 Peripheral
01 Reserved
10 Software-initiated memory-to-memory
11 Reserved

For peripheral mode UART transfers,
refer to “DMA Operation” on
page 21-561.

11:21 Reserved
22 ETD End-of-Transfer/Terminal Count (EOTn[TCn])

Pin Direction
0 Reserved
1 EOTn[TCn] is a TC output

ETD must be set to 1 for peripheral and
memory-to-memory modes. The
EOTn[TCn] signal is not available in the
PPC405EP.

23 TCE Terminal Count (TC) Enable
0 Channel does not stop when TC is reached
1 Channel stops when TC is reached

If TCE=1, it is required that ETD=1.

24:25 CP Channel Priority
00 Low priority
01 Medium low priority
10 Medium high priority
11 High priority

Actively requesting channels of the same
priority are prioritorized by channel
number; channel 0 has the highest
priority. See “Channel Priorities” on
page 18-456 for more information.

26:27 PF Memory Read Prefetch Transfer
00 Prefetch 1 doubleword
01 Prefetch 2 doublewords
10 Prefetch 4 doublewords
11 Reserved

Used only during memory-to-peripheral
and deviced-paced memory-to-memory
transfers. To enable prefetching it is
required that BEN=1.

28 PCE Parity Check Enable
0 Disable parity checking
1 Enable parity checking

Enables parity checking for peripheral
mode transfers. See “Direct Memory
Access Controller” on page 18-448.

29 DEC Address Decrement
0 SAI and DAI fields control memory address

incrementing.
1 After each data transfer the memory address

is decremented by the transfer width.

If DEC=1, it is required that BEN=0. This
field is valid only for peripheral mode
transfers (TM=00).

30:31 Reserved
895 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DMA0_CT0–DMA0_CT3

DMA Count Register 0–3
DMA0_CT0–DMA0_CT3

DCR 0x101, 0x109, 0x111, 0x119

See “DMA Count Registers (DMA0_CT0–DMA0_CT3)” on page 18-455.

Figure 26-50. DMA Count Registers (DMA0_CT0–DMA0_CT3)
0:15 Reserved

16:31 NTR Number of transfers remaining

0 15 16 31

NTR
AMCC Proprietary 896

405EP – PPC405EP Embedded Processor
DMA0_DA0–DMA0_DA3
DMA Destination Address Register 0–3

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

DMA0_DA0–DMA0_DA3

DCR 0x102, 0x10A, 0x112, 0x11A

See “DMA Destination Address Registers (DMA0_DA0–DMA0_DA3)” on page 18-454.

Figure 26-51. DMA Destination Address Registers (DMA0_DA0–DMA0_DA3)
0:31 Destination address for memory-to-memory

and peripheral-to-memory transfers.

0 31
897 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DMA0_SA0–DMA0_SA3

DMA Source Address Registers 0–3
DMA0_SA0–DMA0_SA3

DCR 0x103, 0x10B, 0x113, 0x11B

See “DMA Source Address Registers (DMA0_SA0–DMA0_SA3)” on page 18-454.

Figure 26-52. DMA Source Address Registers (DMA0_SA0–DMA0_SA3)
0:31 Source address for memory-to-memory

and memory-to-peripheral transfers.

0 31
AMCC Proprietary 898

405EP – PPC405EP Embedded Processor
DMA0_SG0–DMA0_SG3
DMA Scatter/Gather Descriptor Address Registers 0–3

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

DMA0_SG0–DMA0_SG3

DCR 0x104, 0x10C, 0x114, 0x11C

See “DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3)” on page 18-455.

Figure 26-53. DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0–DMA0_SG3)
0:31 Address of next scatter/gather descriptor

table.

0 31
899 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DMA0_SGC

DMA Scatter/Gather Command Register
DMA0_SGC

DCR 0x123

See “DMA Scatter/Gather Command Register (DMA0_SGC)” on page 18-455.

Figure 26-54. DMA Scatter/Gather Command Register (DMA0_SGC)
0:3 SSG[0:3] Start Scatter/Gather for channels 0-3.

0 Scatter/gather support is disabled
1 Scatter/gather support is enabled

To start a scatter/gather operation for
channel n, EM[n] must also be set.

4:15 Reserved

16:19 EM[0:3] Enable Mask for channels 0-3.
0 Writes to SSG[n] are ignored
1 Allow writing to SSG[n]

To write SSG[n], EM[n] must be set.
Otherwise, writing SSG[n] has no effect.

20:31 Reserved

0 1 2 3 4 15 16 17 18 19 20 31

SSG0

SSG1

SSG2

SSG3

EM0

EM1

EM2

EM3
AMCC Proprietary 900

405EP – PPC405EP Embedded Processor
DMA0_SLP
DMA Sleep Mode Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

DMA0_SLP

DCR 0x125

See “DMA Sleep Mode Register (DMA0_SLP)” on page 18-450.

Figure 26-55. DMA Sleep Mode Register (DMA0_SLP)
0:4 IDU Idle Timer Upper

0–31
Upper 5-bits of the idle timer.

5:9 IDL Idle Timer Lower
Hardcoded to 0b11111

Lower 5-bit portion of the idle timer. Writing
this field has no effect.

10 SME Sleep Mode Enable
0 Sleep disabled
1 Sleep enabled

If SME=1, also set CPM0_ER[DMA] to
enable the clock and power management
logic to put the DMA controller to sleep.

11:31 Reserved

0 4 5 9 10 11 31

SMEIDU

IDL
901 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
DMA0_SR

DMA Status Register
DMA0_SR

DCR 0x120

See “DMA Scatter/Gather Command Register (DMA0_SGC)” on page 18-455.

Figure 26-56. DMA Status Register (DMA0_SR)
0:3 CS[0:3] Channel 0–3 Terminal Count Status

0 Terminal count has not occurred
1 Terminal count has been reached

Set when the transfer count reaches 0.

4:7 Reserved

8:11 RI[0:3] Channel 0–3 Error Status
0 No error
1 Error occurred

See “Errors” on page 18-457 for more
information.

12:15 IR[0:3] Internal DMA Request
0 No internal DMA request pending
1 Internal DMA request is pending

16:19 Reserved

20:23 CB[0:3] Channel Busy
0 Channel is idle
1 Channel currently active

24:27 SG[0:3] Scatter/Gather Status
0 No scatter/gather operation in progress
1 Scatter/gather operation in progress

28:31 Reserved

0 1 2 3 4 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 31

CS0 RI0 IR0 CB0 SG0

CS1

CS2

CS3 RI1

RI2

RI3 CB1

CB2

CB3IR1

IR2

IR3 SG1

SG2

SG3
AMCC Proprietary 902

405EP – PPC405EP Embedded Processor
EBC0_BEAR
Peripheral Bus Error Address Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
26.Register SummaryEBC Registers
EBC0_BEAR

DCR Accessed using EBC0_CFGADDR; EBC0_CFGDATA; Offset 0x20 Read-Only

See “Peripheral Bus Error Address Register (EBC0_BEAR)” on page 16-327.

Figure 26-57. Peripheral Bus Error Address Register (EBC0_BEAR)

0:31 Address of Bus Error (asynchronous)

0 31
903 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EBC0_BESR0

Peripheral Bus Error Status Register 0
EBC0_BESR0

DCR Accessed using EBC0_CFGADDR; EBC0_CFGDATA; Offset 0x21

See “Peripheral Bus Error Status Register 0 (EBC0_BESR0)” on page 16-328.

Figure 26-58. Peripheral Bus Error Status Register 0 (EBC0_BESR0)
0:2 EET0 Error type for master 0

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 0 is the DMA controller.

3 RWS0 Read/write status for master 0
0 Error operation was a write operation
1 Error operation was a read operation

4:5 Reserved
6:8 EET1 Error type for master 1

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 1 is the instruction cache unit.

9 RWS1 Read/write status for master 1
0 Error operation was a write operation
1 Error operation was a read operation

10:11 Reserved
12:14 EET2 Error type for master 2

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 2 is the processor data side.

15 RWS2 Read/write status for master 2
0 Error operation was a write operation
1 Error operation was a read operation

16:31 Reserved

0 2 3 4 5 6 8 9 10 11 12 14 15 16 31

EET0

RWS0 RWS1 RWS2

EET1 EET2
AMCC Proprietary 904

405EP – PPC405EP Embedded Processor
EBC0_BESR1
Peripheral Bus Error Status Register 1

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EBC0_BESR1

DCR Accessed using EBC0_CFGADDR; EBC0_CFGDATA; Offset 0x22

See “Peripheral Bus Error Status Register 1 (EBC0_BESR1)” on page 16-329.

Figure 26-59. Peripheral Bus Error Status Register 1 (EBC0_BESR1)
0:2 EET4 Error type for master 4

000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 4 is PCI bridge.

3 RWS4 Read/write status for master 4
0 Error operation was a write operation
1 Error operation was a read operation

4 FL4 Field lock for master 4
0 EET4 and RWS4 fields are unlocked
1 EET4 and RWS4 fields are locked

5 AL4 EBC0_BEAR address lock for master 4
0 EBC0_BEAR address unlocked
1 EBC0_BEAR address locked

6:8 EET5 Error type for master 5
000 No error
001 Reserved
010 Reserved
011 Reserved
100 Protection error
101 Reserved
110 External bus input error
111 External bus timeout error

Master 5 is MAL0.

9 RWS5 Read/write status for master 5
0 Error operation was a write operation
1 Error operation was a read operation

10 FL5 Field lock for master 5
0 EET5 and RWS5 fields are unlocked
1 EET5 and RWS5 fields are locked

11 AL5 EBC0_BEAR address lock for master 5
0 EBC0_BEAR address unlocked
1 EBC0_BEAR address locked

12:31 Reserved

0 2 3 4 5 6 8 9 10 11 12 31

EET4 FL5FL4

RWS4 AL4 RWS5

EET5

AL5
905 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EBC0_BnAP

Peripheral Bank Access Parameters
EBC0_BnAP

DCR Accessed using EBC0_CFGADDR; EBC0_CFGDATA; Offset 0x10–0x14

See “Peripheral Bank Access Parameters (EBC0_B0AP–EBC0_B4AP)” on page 16-324.

Figure 26-60. Peripheral Bank Access Parameters (EBC0_B0AP–EBC0_B4AP)

0 BME Burst Mode Enable
0 Bursting is disabled
1 Bursting is enabled

1:8 TWT Transfer Wait
0–255 PerClk cycles

Wait states on all transfers when BME=0.

1:5 FWT First Wait
0–31 PerClk cycles

If BME=1, number of wait states on the first
transfer of a burst.

6:8 BWT Burst Wait
0–7 PerClk cycles

If BME=1, number of wait states on non-first
transfers of a burst.

9:11 Reserved

12:13 CSN Chip Select On Timing
0–3 PerClk cycles

Number of cycles from peripheral address
driven to PerCSn low.

14:15 OEN Output Enable On Timing
0–3 PerClk cycles

Number of cycles from PerCSn low to
PerOE low.

16:17 WBN Write Byte Enable On Timing
0–3 PerClk cycles

If BEM=0, number of cycles from PerCSn
low to PerWBE0:1 active.

18:19 WBF Write Byte Enable Off Timing
0–3 PerClk cycles

If BEM=0 and RE=0, number of cycles
PerWBEn becomes inactive prior to PerCSn
inactive.

20:22 TH Transfer Hold
0–7 PerClk cycles

Contains the number of hold cycles inserted
at the end of a transfer.

23 RE Ready Enable
0 PerReady is disabled
1 PerReady is enabled

24 SOR Sample on Ready
0 Data transfer occurs one PerClk cycle after

PerReady is sampled active
1 Data transfer occurs in the same PerClk

cycle that PerReady becomes active

25 BEM Byte Enable Mode
0 PerWBE0:1 are only active for write cycles
1 PerWBE0:1 are active for read and write

cycles

If BEM=0, PerWBE0:1 timing is controlled
by WBN and WBF. If BEM=1, PerWBE0:1
has the same timing as PerAddr3:31.

26:31 Reserved

0 1 5 6 8 9 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 31

BME CSN TH

BEM

TWT

OEN

WBN

WBF RE

SOR

FWT BWT
AMCC Proprietary 906

405EP – PPC405EP Embedded Processor
EBC0_BnCR
Peripheral Bank Configuration Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EBC0_BnCR

DCR Accessed using EBC0_CFGADDR; EBC0_CFGDATA; Offset 0x00–0x04

See “Peripheral Bank Configuration Registers (EBC0_B0CR–EBC0_B4CR)” on page 16-323.

Figure 26-61. Peripheral Bank Configuration Registers (EBC0_B0CR–EBC0_B4CR)
0:11 BAS Base Address Select Specifies the bank starting address, which

must be a multiple of the bank size.

12:14 BS Bank Size
000 1 MB bank
001 2 MB bank
010 4 MB bank
011 8 MB bank
100 16 MB bank
101 32 MB bank
110 64 MB bank
111 128 MB bank

15:16 BU Bank Usage
00 Disabled
01 Read-only
10 Write-only
11 Read/Write

Specifies the type of accesses allowed for
the bank. A protect error occurs if a write is
attempted to a read-only bank or a read
from a write-only bank.

17:18 BW Bus Width
00 8-bit bus
01 16-bit bus
10 Reserved
11 Reserved

The boot ROM must be attached to bank 0.
Its bus width is controlled by strapping pins.

19:31 Reserved

0 11 12 14 15 16 17 18 19 31

BAS

BS

BU

BW
907 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EBC0_CFG

External Peripheral Control Register
EBC0_CFG

DCR Accessed using EBC0_CFGADDR; EBC0_CFGDATA; Offset 0x23

See “EBC Configuration Register (EBC0_CFG)” on page 16-321.

Figure 26-62. EBC Configuration Register (EBC0_CFG)

0 EBTC External Bus Three-State Control
0 Address, data and control signals are

high-Z between EBC transfers.
1 Between EBC transfers the peripheral data

bus, address bus and control signals are
driven.

Default after reset is EBTC=1. See “Effect of
Driver Enable Programming on EBC Signal
States” on page 16-308.

1 PTD Device-Paced Time-out Disable
0 Enabled time-outs
1 Disable time-outs

If PTD=1, the EBC waits indefinitely for
assertion of PerReady during device-paced
accesses.

2:4 RTC Ready Timeout Count
000 16 PerClk cycles
001 32 PerClk cycles
010 64 PerClk cycles
011 128 PerClk cycles
100 256 PerClk cycles
101 512 PerClk cycles
110 1024 PerClk cycles
111 2048 PerClk cycles

When PTD=0, the number of cycles from
PerAddr3:31 changing until a timeout error
occurs.

5:8 Reserved

9 CSTC Chip Select Three-state Control
0 PerCS0:4 are high-Z between EBC

transfers.
1 PerCS0:4 are always driven.

Default after reset is CSTC=1. See “Effect of
Driver Enable Programming on EBC Signal
States” on page 16-308.

10:11 BPF Burst Prefetch
00 Prefetch 1 doubleword
01 Prefetch 2 doublewords
10 Prefetch 4 doublewords
11 Reserved

Controls the amount of data prefetching
when the EBC is servicing a PLB burst read.
For most applications set this field to 0b00.

12:13 Reserved

14 PME Power Management Enable
0 Disabled
1 Enabled

15:19 PMT Power Management Timer
0000–1111

The EBC makes a sleep request to the Clock
and Power Management unit when PME=1
and the EBC has been idle for 32 × PMT
PerClk cycles.

20:31 Reserved

0 1 2 4 5 8 9 10 11 12 13 14 15 19 20 31

PTD

EBTC PME

PMT

BPF

CSTC

RTC
AMCC Proprietary 908

405EP – PPC405EP Embedded Processor
EBC0_CFG (cont.)
External Peripheral Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
909 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EBC0_CFGADDR

Peripheral Controller Address Register
EBC0_CFGADDR

DCR 0x012

See “EBC Registers” on page 16-320.

Figure 26-63. EBC Configuration Address Register (EBC0_CFGADDR)
0:31 Offset of indirectly-accessed DCR

0 31
AMCC Proprietary 910

405EP – PPC405EP Embedded Processor
EBC0_CFGDATA
Peripheral Controller Data Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EBC0_CFGDATA

DCR 0x013

See “EBC Registers” on page 16-320.

Figure 26-64. EBC Configuration Data Register (EBC0_CFGDATA)
0:31 Data from indirectly-accessed DCR

0 31
911 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_GAHT1–EMACx_GAHT4

Group Address Hash Tables 1–4
26.Register SummaryEthernet Registers
EMACx_GAHT1–EMACx_GAHT4

MMIO 0xEF600840–0xEF60084C (EMAC0), 0xEF600940–0xEF60094C (EMAC1)

See “Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4)” on page 19-499.

Figure 26-65. Group Address Hash Tables 1–4 (EMACx_GAHT1–EMACx_GAHT4)
0:15 Reserved

16:31 Group Address Hash Number

0 15 16 31
AMCC Proprietary 912

405EP – PPC405EP Embedded Processor
EMACx_IAHR
Individual Address High Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_IAHR

MMIO 0xEF60081C (EMAC0), 0xEF60091C (EMAC1)

See “Individual Address High (EMACx_IAHR)” on page 19-496.

Figure 26-66. Individual Address High Register (EMACx_IAHR)
0:15 Reserved

16:31 High-order halfword of the station unique
individual address

This field contains bits 0:15 of the station
address (bit 0 is the most significant bit).

0 15 16 31
913 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_IAHT1–EMACx_IAHT4
Individual Address Hash Tables 1–4
EMACx_IAHT1–EMACx_IAHT4

MMIO 0xEF600830–0xEF60083C (EMAC0), 0xEF600930–0xEF60093C (EMAC1)

See “Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4)” on page 19-498.

Figure 26-67. Individual Address Hash Tables 1–4 (EMACx_IAHT1–EMACx_IAHT4)
0:15 Reserved

16:31 Individual Address Hash Number

0 15 16 31
AMCC Proprietary 914

405EP – PPC405EP Embedded Processor
EMACx_IALR
Individual Address Low Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_IALR

MMIO 0xEF600820 (EMAC0), 0xEF600920 (EMAC1)

See “Individual Address Low (EMACx_IALR)” on page 19-496.

Figure 26-68. Individual Address Low Register (EMACx_IALR)
0:31 Low-order bits of Receive Individual

Address or Transmit Source Address

0 31
915 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_IPGVR

Inter-Packet Gap Value Register
EMACx_IPGVR

MMIO 0xEF600858 (EMAC0), 0xEF600958 (EMAC1)

See “Inter-Packet Gap Value Register (EMACx_IPGVR)” on page 19-500.

Figure 26-69. Inter-Packet Gap Value Register (EMACx_IPGVR)
0:25 Reserved

26:31 Inter-Packet Gap

0 25 26 31
AMCC Proprietary 916

405EP – PPC405EP Embedded Processor
EMACx_ISER
Interrupt Status Enable Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_ISER

MMIO 0xEF600818 (EMAC0), 0xEF600918 (EMAC1)

See “Interrupt Status Enable Register (EMACx_ISER)” on page 19-494.
917 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_ISER (cont.)

Interrupt Status Enable Register

Figure 26-70. Interrupt Status Enable Register (EMACx_ISER)
0:5 Reserved

6 OVR Overrun
0 Overrun error will not generate an

interrupt.
1 Overrun error will generate an interrupt.

7 PP Pause Packet
0 Received control pause packet will not

generate an interrupt.
1 Received control pause packet will

generate an interrupt.

8 BP Bad Packet
0 Early termination on received packet will

not generate an interrupt.
1 Early termination on received packet will

generate an interrupt.

9 RP Runt Packet
0 Received runt packet will not generate

an interrupt.
1 Received runt packet will generate an

interrupt.

10 SE Short Event
0 Short event during receive will not

generate an interrupt.
1 Short event during receive will generate

an interrupt.

11 ALE Alignment Error
0 Alignment error in received packet will

not generate an interrupt.
1 Alignment error in received packet will

generate an interrupt.

12 BFCS Bad FCS
0 FCS error in received packet will not

generate an interrupt.
1 FCS error in received packet will

generate an interrupt.

13 PTLE Packet Too Long Error
0 Oversized packets received will not

generate an interrupt.
1 Oversized packet received will generate

an interrupt.

0 5 6 7 8 9 10 11 12 13 14 15 16 23 24 25 26 27 28 29 30 31

ORE

PTLE IRE

SE0OVR BP SE BFCS

PP RP SYE TE0 SE1

TE1

MOS

MOF
AMCC Proprietary 918

405EP – PPC405EP Embedded Processor
EMACx_ISER (cont.)
Interrupt Status Enable Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
14 ORE Out Of Range Error
0 Out of range error on received packet will

not generate an interrupt.
1 Out of range error on received packet will

generate an interrupt.

15 IRE In Range Error
0 In range error on received packet will not

generate an interrupt.
1 In range error on received packet will

generate an interrupt.

16:23 Reserved

24 SE0 SQE Error 0
0 SQE error on TX Channel 0 will not

generate an interrupt.
1 SQE error on TX Channel 0 will generate

an interrupt.

25 TE0 Transmit Error 0
0 TX error on TX Channel 0 will not

generate an interrupt.
1 TX error on TX Channel 0 will generate

an interrupt.

26 Reserved

27 SE1 SQE Error 1
0 SQE error on TX Channel 1 will not

generate an interrupt.
1 SQE error on TX Channel 1 will generate

an interrupt.

28 TE1 Transmit Error 1
0 TX error on TX Channel 1 will not

generate an interrupt.
1 TX error on TX Channel 1 will generate

an interrupt.

29 Reserved

30 MOS MMA Operation Succeeded
0 Successful MMA Operation with a PHY

will not generate an interrupt.
1 Successful MMA Operation with a PHY

will generate an interrupt.

31 MOF MMA Operation Failed
0 Unsuccessful MMA Operation with a

PHY will not generate an interrupt.
1 Unsuccessful MMA Operation with a

PHY will generate an interrupt.
919 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_ISR

Interrupt Status Register
EMACx_ISR

MMIO 0xEF600818 (EMAC0), 0xEF600918 (EMAC1)

See “Interrupt Status Register (EMACx_ISR)” on page 19-491.
AMCC Proprietary 920

405EP – PPC405EP Embedded Processor
EMACx_ISR (cont.)
Interrupt Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Figure 26-71. Interrupt Status Register (EMACx_ISR)
0:5 Reserved

6 OVR Overrun
0 No overrun error
1 Overrun error during reception of recent

packet

7 PP Pause Packet
0 Received packet is not a control pause

packet
1 Received packet is a control pause

packet

8 BP Bad Packet
0 Receive operation OK
1 Early termination was initiated because

of a packet error

9 RP Runt Packet
0 No Runt packets received
1 Runt packet received

Set when EMACx_RMR[RRP] = 1 and the
duration of PHY_RX_DV signal was
greater than ShortEventMaxTime constant
and less than the collision window.

10 SE Short Event
0 No short events
1 Duration of PHY_RX_DV signal less

than ShortEventMaxTime constant

11 ALE Alignment Error
0 No alignment error in received packet
1 Alignment error in received packet

The packet contained an odd number of
nibbles (4 bits).

12 BFCS Bad FCS
0 No FCS error in received packet
1 Packet with an FCS error received

Set if EMACx_RMR[RFP] = 1.

13 PTLE Packet Too Long Error
0 No oversized packets received
1 Oversized packet received

Set if EMACx_RMR[ROP] = 1 and the
received packet length exceeded the
maximum allowed value:
• 1518 octets for standard packet

(checked only if the length/type field of
the transmitted packet contained length
value)

• 1522 octets for VLAN tagged packet
(checked only if the length/type field of
the transmitted packet contained length
value and jumbo support is disabled)

0 5 6 7 8 9 10 11 12 13 14 15 16 21 22 23 24 25 26 27 28 29 30 31

ORE

PTLE

DBDM

IRE

SE0OVR BP SE BFCS

DB0PP RP ALE TE0 SE1

DB1 TE1

MOS

MOF
921 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_ISR (cont.)

Interrupt Status Register
14 ORE Out Of Range Error
0 Received packet length field value OK
1 Received packet length field value

greater than the maximum allowed LLC
data size

Indicates that received packet has a length
field value greater than the maximum
allowed logical link control (LLC) data size
(greater than 1500 and less than 1536).

15 IRE In Range Error
0 Received packet does not contain an In

Range Error
1 Received packet contains an In Range

Error

16:21 Reserved

22 DBDM Dead Bit Dependent Mode
0 No transmit error or SQE in dependent

mode
1 Transmit error or SQE has occurred

while in dependent mode

If EMACx_ISR[DBDM] = 1, EMAC does
not request MAL service, even if
EMACx_TMR0[GNPD] = 1.
EMACx_ISR[DBDM] does not affect
EMC_INT.

23 DB0 Dead Bit 0
0 No transmit error or SQE for TX Channel

0 while not in dependent mode
1 Transmit error or SQE has occurred for

TX Channel 0 while not in dependent
mode

If EMACx_ISR[DB0] = 1, EMAC does not
request service for TX Channel 0 from
MAL, even if EMACx_TMR0[GNP0] = 1.
EMACx_ISR[DB0] does not affect
EMC_INT.

24 SE0 SQE Error 0
0 No SQEs on TX Channel 0
1 SQE test failure during transmission of a

packet from TX Channel 0

Applicable only in half-duplex mode during
10 Mbps operations; 0 in all other modes.

25 TE0 Transmit Error 0
0 TX Channel 0 transmission OK
1 TX Channel 0 transmission aborted

EMAC aborts the transmitted packet if one
of the following events takes place:
• Late collision detection
• Excessive collision detection
• Excessive deferral
• TX FIFO underrun
• Loss of carrier sense

26 DB1 Dead Bit 1
0 No transmit error or SQE for TX Channel

1 while not in dependent mode
1 Transmit error or a SQE has occurred for

TX Channel 1 while not in dependent
mode

If this bit is set, EMAC does not request
MAL service for TX Channel 1 even if
EMACx_TMR1[GNP1] = 1.
EMACx_ISR[DB1] does not affect
EMC_INT.

27 SE1 SQE Error 1
0 No Signal Quality Errors on TX Channel

1
1 Signal Quality Error test failure during

transmission of a packet from TX
Channel 1

 Applicable only in half-duplex mode during
10 Mbps operations; 0 in all other modes.
AMCC Proprietary 922

405EP – PPC405EP Embedded Processor
EMACx_ISR (cont.)
Interrupt Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
28 TE1 Transmit Error 1
0 TX Channel 1 transmission OK
1 TX Channel 1 transmission aborted

EMAC aborts the transmitted packet if one
of the following events takes place:
• Late collision detection
• Excessive collision detection
• Excessive deferral
• TX FIFO underrun
• Loss of carrier sense

29 Reserved Always 0

30 MOS MMA Operation Succeeded
0 MMA_CONTROL addressed on the OPB
1 PHY transfer valid

The device driver should poll assertion of
EMACx_ISR[MOS] or EMACx_ISR[MOF]
before issuing a new command or before
using data read from the PHY.

31 MOF MMA Operation Failed
0 MMA_CONTROL addressed on the OPB
1 PHY transfer not valid

The device driver should poll assertion of
EMACx_ISR[MOF] or EMACx_ISR[MOS]
before issuing a new command or before
using data read from the PHY.
923 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_LSAH

Last Source Address High
EMACx_LSAH

MMIO 0xEF600850 (EMAC0), 0xEF600950 (EMAC1

See “Last Source Address High (EMACx_LSAH)” on page 19-499.

Figure 26-72. Last Source Address High Register (EMACx_LSAH)
0:15 Reserved

16:31 Last Source Address High-Order Halfword

0 15 16 31
AMCC Proprietary 924

405EP – PPC405EP Embedded Processor
EMACx_LSAL
Last Source Address Low

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_LSAH

MMIO 0xEF600854 (EMAC0), 0xEF600954 (EMAC1)

See “Last Source Address Low (EMACx_LSAL)” on page 19-500.

Figure 26-73. Last Source Address Low Register (EMACx_LSAL)
0:31 Last Source Address Low-Order Word

0 31
925 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_MR0

Mode Register 0
EMACx_MR0

MMIO 0xEF60 0800 (EMAC0), 0xEF60 0900 (EMAC1)

See “Mode Register 0 (EMACx_MR0)” on page 19-485.

Figure 26-74. Mode Register 0 (EMACx_MR0)
0 RXI Receive MAC Idle

0 RX MAC processing packet
1 RX MAC idle; RX packet processing

complete

Read-only

1 TXI Transmit MAC Idle
0 TX MAC processing packet
1 TX MAC idle; TX packet processing

complete

Read-only

2 SRST Soft Reset
0 No effect
1 Soft reset in progress

If EMACx_MR0[SRST] = 1, writing to any
EMAC register, and reading any other bit in
this register, is not supported.

3 TXE Transmit MAC Enable
0 TX MAC is disabled
1 TX MAC is enabled

4 RXE Receive MAC Enable
0 RX MAC is disabled
1 RX MAC is enabled

5 WKE Wake-Up Enable
0 Incoming packets are not examined for

wake-up packet
1 Examine incoming packets for wake-up

packet

Software can change EMACx_MR0[WKE]
only while EMACx_MR0[RXI] = 1 and
EMACx_MR0[RXE] = 0.

6:31 Reserved

0 1 2 3 4 5 6 31

RXI

TXI

SRST

TXE

RXE

WKE
AMCC Proprietary 926

405EP – PPC405EP Embedded Processor
EMACx_MR1
Mode Register 1

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_MR1

MMIO 0xF60 0804

See “Mode Register 1 (EMACx_MR1)” on page 19-486.

Figure 26-75. Mode Register 1 (EMACx_MR1)
0 FDE Full-Duplex Enable

0 Disable simultaneous transmit and
receive

1 Enable simultaneous transmit and
receive

1 ILE Internal Loop-back Enable
0 No wrap back
1 Transmitted packets wrapped back to

receive FIFO

Full Duplex must also be set
(EMACx_MRI[FDE]=1).

2 VLE VLAN Enable
0 Disable processing of VLAN Tags
1 Enable processing of VLAN Tags

3 EIFC Enable Integrated Flow Control
0 Disable integrated flow control

mechanism
1 Enable integrated flow control

mechanism

Refer to “Flow Control” on page 19-476 for
more details.
Set EMACx_MR1[EIFC] = 0 in half-duplex
mode.

4 APP Allow Pause Packet
0 Disables processing of incoming control

(pause) packets
1 Enables processing of incoming control

(pause) packets

5:6 Reserved Always zero

7 IST Ignore SQE test
0 Wait for end of SQE test period before

activation of valid signal
1 Do not wait for end of SQE test period

before activation of valid signal

EMACx_MR1[IST] = 0 only during half-
duplex operation on 10 Mbps media.

8:9 MF Medium Frequency
00 10 Mbps (Ethernet mode)
01 100 Mbps (Fast Ethernet mode)
10 Reserved
11 Reserved

Defines the possible operational frequency
on the MII interface.

10:11 RFS Receive (RX) FIFO Size
00 512 bytes
01 1 KB
10 2 KB
11 4 KB

The maximum Rx FIFO size is 4K bytes.
Each Rx FIFO entry = 8 bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 31

FDE

ILE

VLE

EIFC

APP

IST

MF RFS TFS

TR0

TR1
927 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_MR1

Mode Register 1
12:13 TFS Transmit (TX) FIFO Size
00 Reserved
01 1 KB
10 2 KB
11 Reserved

The maximum Tx FIFO size is 2K bytes.
Each Tx FIFO entry = 8 bytes.

14 Reserved Always 0

15:16 TR0 Transmit Request 0
00 Single packet
01 Multiple packets
10 Dependent mode (bits 17:18 must also

be programmed to 10)
11 Reserved

Defines the different modes for using
transmit channel 0 of EMAC.

17:18 TR1 Transmit Request 1
00 Single packet
01 Multiple packets
10 Dependent mode (bits 15:16 must also

be programmed to 10)
11 Reserved

Defines the different modes for using
transmit channel 1 of EMAC.

19:31 Reserved
AMCC Proprietary 928

405EP – PPC405EP Embedded Processor
EMACx_OCRX
Number of Octets Received

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_OCRX

MMIO 0xF60086C

See “Number of Octets Received (EMACx_OCRX)” on page 19-504.

Figure 26-76. Number of Octets Received (EMACx_OCRX)
0:31 OCRX Number of octets (bytes) received.

0 31
929 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_OCTX

Number of Octets Transmitted
EMACx_OCTX

MMIO 0xF600868

See “Number of Octets Transmitted (EMACx_OCTX)” on page 19-504.

Figure 26-77. Number of Octets Transmitted (EMACx_OCTX)
0:31 OCTX Number of octets (bytes) transmitted.

0 31
AMCC Proprietary 930

405EP – PPC405EP Embedded Processor
EMACx_PTR
Pause Timer Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_PTR

MMIO 0xF60082C

See “Pause Timer Register (EMACx_PTR)” on page 19-498.

Figure 26-78. Pause Timer Register (EMACx_PTR)
0:15 Reserved

16:31 TVF Timer Value Field

0 15 16 31

TVF
931 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_RMR

Receive Mode Register
EMACx_RMR

MMIO 0xF60082C

See “Receive Mode Register (EMACx_RMR)” on page 19-489.
AMCC Proprietary 932

405EP – PPC405EP Embedded Processor
EMACx_RMR (cont.)
Receive Mode Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

Figure 26-79. Receive Mode Register (EMACx_RMR)
0 SP Strip Padding

0 Do not strip pad bytes from the received
packet.

1 Strip pad/FCS bytes from the received
packet.

1 SFCS Strip FCS
0 Do not strip FCS bytes from the received

packet.
1 Strip FCS bytes from the received

packet.

2 RRP Receive Runt Packets
0 Discard packets less than 64 bytes in

length.
1 Receive packets less than 64 bytes in

length.

3 RFP Allow Receive Packets with a FCS Error
0 Discard packets containing a FCS error.
1 Receive packets containing a FCS error.

4 ROP Receive Oversize Packet
0 Discard packets that activate Packet Is

Too Long error.
1 Receive packets that activate Packet Is

Too Long error.

5 RPIR Receive Packets with In Range Error
0 Discard packets that activate In Range

Error.
1 Receive packets that activate In Range

Error.

6 PPP Propagate Pause Packet
0 Do not propagate incoming pause packet

to MAL; remove packet from FIFO.
1 Propagate incoming pause packet to

MAL.

When PPP is enabled, the EMAC must
either have the PMM (promiscuous
Multicast Mode) enabled or the MAE bit
enabled with the proper hash register
value; otherwise. the EMAC will not
progagate the pause packet to the MAL.

7 PME Promiscuous Mode Enable
0 Do not enable promiscuous mode.
1 Accept all packets.

8 PMME Promiscuous Multicast Mode Enable
0 Do not accept all multicast packets.
1 Accept all multicast packets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 31

SP

SFCS

RRP

RFP

ROP PPP PMME MIAE MAE

RPIR PME IAE BAE
933 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_RMR (cont.)
Receive Mode Register
9 IAE Individual Address Enable
0 Do not compare address of received

packets with content of individual
address register.

1 Compare address of received packets
with content of individual address
register.

10 MIAE Multiple Individual Address Enable
0 Do not compare address of received

packets with hash table of individual
addresses.

1 Compare address of received packets
with hash table of individual addresses.

11 BAE Broadcast Address Enable
0 Do not compare address of received

packets with broadcast addresses.
1 Compare address of received packets

with broadcast addresses.

12 MAE Multicast Address Enable
0 Do not compare address of received

packets with multicast addresses.
1 Compare address of received packets

with multicast addresses.

13:31 Reserved
AMCC Proprietary 934

405EP – PPC405EP Embedded Processor
EMACx_RWMR
Receive Low/High Watermark Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_RWMR

MMIO 0xF600864

See “Receive Low/High Water Mark Register (EMACx_RWMR)” on page 19-503.

Figure 26-80. Receive Low/High Water Mark Register (EMACx_RWMR)
0:8 RLWM Receive Low Water Mark

9:15 Reserved

16:24 RHWM Receive High Water Mark

25:31 Reserved

0 8 9 15 16 24 25 31

RLWM

RHWM
935 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_STACR

STA Control Register
EMACx_STACR

MMIO 0xF60085C

See “STA Control Register (EMACx_STACR)” on page 19-501.

Figure 26-81. STA Control Register (EMACx_STACR)
0:15 PHYD PHY data Data to be sent to the PHY if the command

is a write, or data is read from the PHY if
the command is a read.

16 OC Operation Complete
0 EMACx_STACR is addressed
1 PHY data transfer complete

17 PHYE PHY Error
0 Successful read transaction
1 Read transaction was not successful

EMACx_STACR[PHYE] = 0 when a read is
successful.

18:19 STAC STA Command
00 Reserved
01 Read
10 Write
11 Reserved

EMAC sets EMACx_STACR[STAC] = 0
when the command is completed.

20:21 OPBC OPB Bus Clock Frequency
00 50 MHz
01 66 MHz
10 83 MHz
11 100 MHz

EMACx_STACR[OPBC] is used to
generate the Management Data Clock
(EMCMDCIk).
When the operational frequency differs
from those in the list, then the next greater
frequency should be chosen.

22:26 PCDA PHY Command Destination Address

27:31 PRA PHY Register Address

0 15 16 17 18 19 20 21 22 26 27 31

OC

PHYEPHYD

STAC

OPBC

PCDA

PRA
AMCC Proprietary 936

405EP – PPC405EP Embedded Processor
EMACx_TMR0
Transmit Mode Register 0

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_TMR0

MMIO 0xF600808

See “Transmit Mode Register 0 (EMACx_TMR0)” on page 19-488.

Figure 26-82. Transmit Mode Register 0 (EMACx_TMR0)
0 GNP0 Get New Packet 0

0 Writing 0 has no effect.
1 Packet ready for transmission on TX

Channel 0

EMACx_TMR0[GNP0] = 0 if EMAC is
programmed in dependent mode.

1 GNP1 Get New Packet 1
0 Writing 0 has no effect.
1 Packet ready for transmission on TX

Channel 1

EMACx_TMR0[GNP1] = 0 if EMAC is
programmed in dependent mode.

2 GNPD Get New Packet for Dependent Mode
0 Writing 0 to this bit has no effect
1 Packet ready for transmission in

dependent mode

EMACx_TMR0[GNPD] = 0 if EMAC is not
programmed in dependent mode.
EMACx_TMR0[GNPD] = 1 activates the
EMAC transmit path in dependent mode.

3 FC First Channel
0 Activate TX Channel 0 first when GNPD

is 1
1 Activate TX Channel 1 first when GNPD

is 1

EMACx_TMR0[FC] is only meaningful in
dependent mode, after resetting
EMACx_ISR[DBDM].
EMACx_TMR0[FC] = 0 if EMAC is not
programmed in dependent mode.

4:31 Reserved

0 1 2 3 4 31

GNP0

GNP1

 GNPD

FC
937 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_TMR1

Transmit Mode Register 1
EMACx_TMR1

MMIO 0xF60080C

See “Transmit Mode Register 1 (EMACx_TMR1)” on page 19-488.

Figure 26-83. Transmit Mode Register 1 (EMACx_TMR1)
0:4 TLR Transmit Low Request

5:7 Reserved

8:15 TUR Transmit Urgent Request

16:31 Reserved

0 4 5 7 8 15 16 31

TLR

TUR
AMCC Proprietary 938

405EP – PPC405EP Embedded Processor
EMACx_TRTR
Transmit Request Threshold Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_TRTR

MMIO 0xF600860

See “Transmit Request Threshold Register (EMACx_TRTR)” on page 19-502.

Figure 26-84. Transmit Request Threshold Register (EMACx_TRTR)
0:4 TRT Transmit Request Threshold

The following number of bytes must be
placed in the Transmit FIFO before
initiating a transmit request.
00000 64 bytes
00001 128 bytes
00010 192 bytes
00011 256 bytes
.
.
.
11111 2048 bytes

5:31 Reserved

0 4 5 31

TRT
939 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EMACx_VTCI

VLAN TCI Register
EMACx_VTCI

MMIO 0xF600828

See “VLAN TCI Register (EMACx_VTCI)” on page 19-497.

Figure 26-85. VLAN TCI Register (EMACx_VTCI)
0:15 Reserved

16:31 VTCI VLAN TCI tag

0 15 16 31

VTCI
AMCC Proprietary 940

405EP – PPC405EP Embedded Processor
EMACx_VTPID
VLAN TPID Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EMACx_VTPID

MMIO 0xF600824

See “VLAN TPID Register (EMACx_VTPID)” on page 19-497.

Figure 26-86. VLAN TPID Register (EMACx_VTPID)
0:15 Reserved

16:31 VIDT VLAN ID tag

0 15 16 31

VIDT
941 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
EVC0_CNT0-EVC0_CNT1

Event Count Registers
26.Register SummaryEvent Counter Registers
EVC0_CNT0-EVC0_CNT1

DCR 0x200, 0x201

See “EVC0 Count Registers” on page 24-604.

Figure 26-87. Event Count Registers (EVC0_CNT0, EVC0_CNT1)
0:31 Event count

0 31
AMCC Proprietary 942

405EP – PPC405EP Embedded Processor
EVC0_ECR
Event Counter Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

EVC0_ECR

DCR 0x202

See “EVC0 Count Registers” on page 24-604.

Figure 26-88. Event Counter Control Register (EVC0_ECR)
0 EC0 Event Counter 0 Enable

0 Counter 0 disabled
1 Counter 0 enabled

1 EC1 Event Counter 1 Enable
0 Counter 1 disabled
1 Counter 1 enabled

2 ES0 Edge Selection Counter 0
0 Falling edge selected
1 Rising edge selected

3 ES1 Edge Selection Counter 1
0 Falling edge selected
1 Rising edge selected

4:31 Reserved

0 1 2 3 4 31

ES1EC1

ES0EC0
943 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPIO0_IR

GPIO Input Register
26.Register SummaryGPIO Registers
GPIO0_IR

MMIO 0xEF60071C Read-Only

See “GPIO Input Register (GPIO0_IR)” on page 23-599.

Figure 26-89. GPIO Input Register (GPIO0_IR)
0:31 GPIO register bits

0 31
AMCC Proprietary 944

405EP – PPC405EP Embedded Processor
GPIO0_ISR1H
GPIO Input Select Register 1 High

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

GPIO0_ISR1H

MMIO 0xEF600730

See “GPIO Input Select Registers (GPIO0_ISR1H, GPIO0_ISR1L)” on page 23-599.

Figure 26-90. GPIO Input Select Register 1 High (GPIO0_ISR1H)
0:31 GPIO register bits

0 31
945 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPIO0_ISR1L

GPIO Input Select Register 1 Low
GPIO0_ISR1L

MMIO 0xEF600734

See “GPIO Input Select Registers (GPIO0_ISR1H, GPIO0_ISR1L)” on page 23-599.

GPIO0_ODR

MMIO 0xEF600718

See “GPIO Open Drain Register (GPIO0_ODR)” on page 23-599.

Figure 26-91. GPIO Input Select Register 1 Low (GPIO0_ISR1L)
32:63 GPIO register bits

Figure 26-92. GPIO Open Drain Register (GPIO0_ODR)
0:31 GPIO register bits

32 63

0 31
AMCC Proprietary 946

405EP – PPC405EP Embedded Processor
GPIO0_OR
GPIO Output Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

GPIO0_OR

MMIO 0xEF600700

See “GPIO Output Register (GPIO0_OR)” on page 23-597.

Figure 26-93. GPIO Output Register (GPIO0_OR)
0:31 GPIO register bits

0 31
947 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPIO0_OSRH

GPIO Output Select Register High
GPIO0_OSRH

MMIO 0xEF600708

See “GPIO Output Select Registers (GPIO0_OSRH, GPIO0_OSRL)” on page 23-598.

Figure 26-94. GPIO Output Select Register High (GPIO0_OSRH)
0:31 GPIO register bits

0 31
AMCC Proprietary 948

405EP – PPC405EP Embedded Processor
GPIO0_OSRL
GPIO Output Select Register Low

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

GPIO0_OSRL

MMIO 0xEF60070C

See “GPIO Output Select Registers (GPIO0_OSRH, GPIO0_OSRL)” on page 23-598.

Figure 26-95. GPIO Output Select Register Low (GPIO0_OSRL)
32:63 GPIO register bits

32 63
949 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPIO0_RR1

GPIO Receive Register 1
GPIO0_RR1

MMIO 0xEF600720

See “GPIO Receive Register (GPIO0_RR1)” on page 23-600.

Figure 26-96. GPIO Receive Register 1 (GPIO0_RR1)
0:31 GPIO register bits

0 31
AMCC Proprietary 950

405EP – PPC405EP Embedded Processor
GPIO0_TCR
GPIO Three-State Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

GPIO0_TCR

MMIO 0xEF600704

See “GPIO Three-State Control Register (GPIO0_TCR)” on page 23-597.

Figure 26-97. GPIO Three-State Control Register (GPIO0_TCR)
0:31 GPIO register bits

0 31
951 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
GPIO0_TSRH

GPIO Three-State Select Register High
GPIO0_TSRH

MMIO 0xEF600710

See “GPIO Three-State Select Registers (GPIO0_TSRH, GPIO0_TSRL)” on page 23-598.

Figure 26-98. GPIO Three-State Select Register High (GPIO0_TSRH)
0:31 GPIO register bits

0 31
AMCC Proprietary 952

405EP – PPC405EP Embedded Processor
GPIO0_TSRL
GPIO Three-State Select Register Low

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

GPIO0_TSRL

MMIO 0xEF600714

See “GPIO Three-State Select Registers (GPIO0_TSRH, GPIO0_TSRL)” on page 23-598.

Figure 26-99. GPIO Three-State Select Register Low (GPIO0_TSRL)
32:63 GPIO register bits

32 63
953 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_CLKDIV

IIC0 Clock Divide
26.Register SummaryIIC Registers
IIC0_CLKDIV

MMIO 0xEF60050C

See “IIC0 Clock Divide Register (IIC0_CLKDIV)” on page 22-582.

Figure 26-100. IIC0 Clock Divide Register (IIC0_CLKDIV)
0 DIV0 Divisor bit 0

1 DIV1 Divisor bit 1

2 DIV2 Divisor bit 2

3 DIV3 Divisor bit 3

4 DIV4 Divisor bit 4

5 DIV5 Divisor bit 5

6 DIV6 Divisor bit 6

7 DIV7 Divisor bit 7

0 1 2 3 4 5 6 7

DIV0

DIV1 DIV3 DIV5 DIV7

DIV2 DIV4 DIV6
AMCC Proprietary 954

405EP – PPC405EP Embedded Processor
IIC0_CNTL
IIC0 Control

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_CNTL

MMIO 0xEF600506

See “IIC0 Control Register (IIC0_CNTL)” on page 22-573.

Figure 26-101. IIC0 Control Register (IIC0_CNTL)
0 HMT Halt Master Transfer

0 Normal transfer operation.
1 Issue Stop signal on the IIC bus as soon

as possible to halt master transfer.

If no transfer is in progress, no action is
taken.
IIC0_CNTL[PT] need not be set.
If IIC0_MDCNTL[EINT] = 1, an interrupt is
generated.

1 AMD Addressing Mode
0 Use 7-bit addressing.
1 Use 10-bit addressing.

Does not affect slave transfers.

2:3 TCT Transfer Count
00 Transfer one byte.
01 Transfer two bytes.
10 Transfer three bytes.
11 Transfer four bytes.

4 RPST Repeated Start
0 Normal start operation
1 Use repeated Start function to start

transfer.
5 CHT Chain Transfer

0 Transfer is only or last transfer.
1 Transfer is one of a sequence of

transfers (but not last in sequence).

Completion of a requested transfer causes
a Stop signal to be issued on the IIC bus.

6 RW Read/Write
0 Transfer is a write.
1 Transfer is a read.

7 PT Pending Transfer
0 Most recent requested transfer is

complete.
1 Start transfer if bus is free.

0 1 2 3 4 5 6 7

HMT

AMD

TCT

RPST

CHT

RW

PT
955 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_DIRECTCNTL

IIC0 Direct Control
IIC0_DIRECTCNTL

MMIO 0xEF600510

See “IIC0 Direct Control Register (IIC0_DIRECTCNTL)” on page 22-588.

Figure 26-102. IIC0 Direct Control Register (IIC0_DIRECTCNTL)
0:3 Reserved

4 SDAC IICSDA Output Control
Directly controls the IICSDA output.
0 IICSDA is a logic 0
1 IICSDA is a logic 1

5 SCC IICSCL Output Control
Directly controls the IICSCL output
0 IICSCL is a logic 0
1 IICSCL is a logic 1

6 MSDA Monitor IICSDA
Used to monitor the IICSDA input
0 IICSDA is a logic 0
1 IICSDA is a logic 1

Read-only

7 MSC Monitor IICSCL. Used to monitor the
IICSCL input.
0 IICSCL is a logic 0
1 IICSCL is a logic 1

Read-only

0 3 4 5 6 7

SCC MSC

SDAC MSDA
AMCC Proprietary 956

405EP – PPC405EP Embedded Processor
IIC0_EXTSTS
IIC0 Extended Status

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_EXTSTS

MMIO 0xEF600509

See “IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS)” on page 22-585.

Figure 26-103. IIC0 Extended Status Register (IIC0_EXTSTS)
0 IRQP IRQ Pending

0 No IRQ is pending.
1 An IRQ is active, another IRQ is on-deck,

and another interrupt-generating
condition has occurred.

• IIC0_EXTSTS[IRQP] might be set
momentarily while an IRQ moves from
the Pending to the On-deck state.

• An interrupt remains pending,
IIC0_EXTSTS[IRQP]=1, until the current
on-deck interrupt becomes active,
IIC0_EXTSTS[IRQD]=0 and
IIC0_STS[IRQA]]=1.

• Writing 1 to IIC0_EXTSTS[IRQP] clears
the field.

• When the IIC interrupt is disabled,
IIC0_MDCNTL[IRQP] = 0,
IIC0_EXTSTS[IRQP] should be ignored.

1:3 BCS Bus Control State
000 Unused; if this value is read, a major

IIC hardware problem occurred.
001 Slave-selected state; the IIC interface

has detected and decoded a slave
transfer request on the IIC bus.

010 Slave Transfer state; the IIC interface
has detected but has not decoded a
slave transfer request on the IIC bus.

011 Master Transfer state; entered after a
master transfer request has started on
the IIC bus.

100 Free Bus state; the bus is free and no
transfer request is pending.

101 Busy Bus state; the bus is busy.
110 Unknown state; value after IIC reset.
111 Unused; if this value is read, a major

IIC hardware problem occurred.

Read-only.

0 1 3 4 5 6 7

IRQP

BCS

IRQD

LA

ICT

XFRA
957 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_EXTSTS (cont.)

IIC0 Extended Status
4 IRQD IRQ On-Deck
0 No IRQ is on-deck.
1 An interrupt is active, and another

interrupt-generating condition has
occurred.

• IIC0_EXTSTS[IRQD] might be set
momentarily while an IRQ moves from
the On-deck to the Active state.

• An interrupt remains on-deck,
IIC0_EXTSTS[IRQD] = 1, until the cur-
rent active interrupt is no longer active,
IIC0_STS[IRQA] = 0.

• If IIC0_EXTSTS[IRQP] = 1,
IIC0_EXTSTS[IRQD] is set on the next
OPB clock.

• Writing 1 to IIC0_EXTSTS[IRQD] clears
the field.

• When the IIC interrupt is disabled,
IIC0_EXTSTS[IRQP]=0,
IIC0_EXTSTS[IRQD] should be ignored.

5 LA Lost Arbitration
0 Normal operation.
1 Loss of arbitration has ended the

requested master transfer.

• If arbitration is lost, any requested mas-
ter transaction may have terminated pre-
maturely. Read data may be incomplete
and not all write data may have been
written.

• If arbitration is lost during a repeat start,
the master may not own the IIC bus.

6 ICT Incomplete Transfer
0 Normal operation.
1 Some of the bytes of the requested

master transfer were not transferred.

For an incomplete transfer, read the
transfer count, IIC0_XFRCNT, to
determine how bytes were transferred.

7 XFRA Transfer Aborted
0 No transfer is pending, or transfer is in

progress.
1 A requested master transfer was aborted

by a NACK during the transfer of the
address byte, or was aborted because
arbitration was lost. Lost arbitration can
be caused by the loss of data during the
transfer of the second or subsequent
data byte.

Transfer aborted. When set to a 1, a
requested master transfer was aborted by
a NOT acknowledge during the transfer of
the address byte. It is also set to a 1 when
a requested master transfer loses data.
Lost arbitration can be caused by the loss
of data during the transfer of the second or
subsequent data byte.
AMCC Proprietary 958

405EP – PPC405EP Embedded Processor
IIC0_HMADR
IIC0 High Master Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_HMADR

MMIO 0xEF600505

See “IIC0 High Master Address Register (IIC0_HMADR)” on page 22-572.

Figure 26-104. IIC0 High Master Address Register (IIC0_HMADR)
0 A0 Address bit 0 1 for 10-bit addresses

1 A1 Address bit 1 1 for 10-bit addresses

2 A2 Address bit 2 1 for 10-bit addresses

3 A3 Address bit 3 1 for 10-bit addresses

4 A4 Address bit 4 0 for 10-bit addresses

5 A5 Address bit 5 MSb for 10-bit addresses

6 A6 Address bit 6 Next to MSb for 10-bit addresses

7 A7 Address bit 7 Don’t care for 10-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
959 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_HSADR

IIC0 High Slave Address
IIC0_HSADR

MMIO 0xEF60050B

See “IIC0 High Slave Address Register (IIC0_HSADR)” on page 22-581.

Figure 26-105. IIC0 High Slave Address Register (IIC0_HSADR)
0 A0 Address bit 0 1 for 10-bit addresses

1 A1 Address bit 1 1 for 10-bit addresses

2 A2 Address bit 2 1 for 10-bit addresses

3 A3 Address bit 3 1 for 10-bit addresses

4 A4 Address bit 4 0 for 10-bit addresses

5 A5 Address bit 5 MSb for 10-bit addresses

6 A6 Address bit 6 Next to MSb for 10-bit addresses

7 A7 Address bit 7 Don’t care for 10-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
AMCC Proprietary 960

405EP – PPC405EP Embedded Processor
IIC0_INTRMSK
IIC0 Interrupt Mask

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_INTRMSK

MMIO 0xEF60050D

See “IIC0 Interrupt Mask Register (IIC0_INTRMSK)” on page 22-583.

Figure 26-106. IIC0 Interrupt Mask Register (IIC0_INTRMSK)
0 EIRC Enable IRQ on Slave Read Complete

0 Disable
1 Enable

The interrupt is activated upon receipt of a
Stop during a slave read on the IIC bus.
IIC0_XTCNTLSS[SRC] = 1 indicates a
Slave Read Complete.

1 EIRS Enable IRQ on Slave Read Needs Service
0 Disable
1 Enable

The interrupt is activated upon receipt of a
slave read on the IIC bus and the slave
buffer was empty or went empty and more
data was requested on the IIC bus.
Note: IIC0_XTCNTLSS[SRS] = 1 indicates

a Slave Read Needs Service.

2 EIWC Enable IRQ on Slave Write Complete
0 Disable
1 Enable

The interrupt is activated upon receipt of a
Stop during a slave write on the IIC bus.
Note: IIC0_XTCNTLSS[SWC] = 1

indicates a Slave Write Compete.

3 EIWS Enable IRQ on Slave Write Needs Service
0 Disable
1 Enable

The interrupt is activated when the slave
buffer becomes full during a slave write on
the IIC bus.
Note: IIC0_XTCNTLSS[SWS] = 1

indicates a Slave Write Needs
Service.

4 EIHE Enable IRQ on Halt Executed
0 Disable
1 Enable

5 EIIC Enable IRQ on Incomplete Transfer
0 Disable
1 Enable

6 EITA Enable IRQ on Transfer Aborted
0 Disable
1 Enable

7 EIMTC Enable IRQ on Requested Master Transfer
Complete
0 Disable
1 Enable

0 1 2 3 4 5 6 7

EIRC

EIRS EIWS EIIC EIMTC

EIWC EITAEIHE
961 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_LMADR

IIC0 Low Master Address
IIC0_LMADR

MMIO 0xEF600504

See “IIC0 Low Master Address Register (IIC0_LMADR)” on page 22-571.

Figure 26-107. IIC0 Low Master Address Register (IIC0_LMADR)
0 A0 Address bit 0
1 A1 Address bit 1
2 A2 Address bit 2
3 A3 Address bit 3
4 A4 Address bit 4
5 A5 Address bit 5
6 A6 Address bit 6 LSb for 7-bit addresses
7 A7 Address bit 7 LSb for 10-bit addresses; don’t care for

7-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
AMCC Proprietary 962

405EP – PPC405EP Embedded Processor
IIC0_LSADR
IIC0 Low Slave Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_LSADR

MMIO 0xEF60050A

See “IIC0 Low Slave Address Register (IIC0_LSADR)” on page 22-580.

Figure 26-108. IIC0 Low Slave Address Register (IIC0_LSADR)
0 A0 Address bit 0

1 A1 Address bit 1

2 A2 Address bit 2

3 A3 Address bit 3

4 A4 Address bit 4

5 A5 Address bit 5

6 A6 Address bit 6 LSb for 7-bit addresses

7 A7 Address bit 7 LSb for 10-bit addresses; don’t care for
7-bit addresses

0 1 2 3 4 5 6 7

A0

A1 A3 A5 A7

A2 A4 A6
963 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_MDBUF

IIC0 Master Data Buffer
IIC0_MDBUF

MMIO 0xEF600500

See “IIC0 Master Data Buffer (IIC0_MDBUF)” on page 22-569.

Figure 26-109. IIC0 Master Data Buffer (IIC0_MDBUF)
0 Data bit

1 Data bit

2 Data bit

3 Data bit

4 Data bit

5 Data bit

6 Data bit

7 Data bit

0 7
AMCC Proprietary 964

405EP – PPC405EP Embedded Processor
IIC0_MDCNTL
IIC0 Mode Control

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_MDCNTL

MMIO 0xEF600507

See “IIC0 Mode Control Register (IIC0_MDCNTL)” on page 22-574.

Figure 26-110. IIC0 Mode Control Register (IIC0_MDCNTL)
0 FSDB Flush Slave Data Buffer

0 Normal operation
1 Set slave data buffer to empty.

Cleared after buffer is emptied.

1 FMDB Flush Master Data Buffer
0 Normal operation
1 Set master data buffer to empty.

Cleared after buffer is emptied.

2 Reserved

3 FSM Fast/Standard Mode
0 IIC transfers run at 100 kHz (standard

mode).
1 IIC transfers run at 400 kHz (fast mode).

4 ESM Enable Slave Mode
0 Slave transfers are ignored.
1 Slave transfers are enabled.

Program IIC0_LSADR and IIC0_HSADR
before setting this field.

5 EINT Enable Interrupt
0 Interrupts are disabled.
1 Enables interrupts for interrupts enabled

in IIC0_INTRMSK.

6 EUBS Exit Unknown IIC Bus State
0 Normal operation.
1 IIC bus control state machine exits

unknown bus state, if in an unknown
state.

If the IIC bus control state machine is in a
known state, setting
IIC0_MDCNTL[EUBS] = 1 has no effect.

7 HSCL Hold IIC Serial Clock Low
0 If slave is not ready, issue a NACK in

response to slave transfer request.
1 If slave is not ready, hold the IICSCL

signal low until slave is ready.

This field is used only when in slave mode.

0 1 2 3 4 5 6 7

FSDB

FMDB FSM

ESM

EINT

EUBS

HSCL
965 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_SDBUF

IIC0 SLave Data Buffer
IIC0_SDBUF

MMIO 0xEF600502

See “IIC0 Slave Data Buffer (IIC0_SDBUF)” on page 22-570.

Figure 26-111. IIC0 Slave Data Buffer (IIC0_SDBUF)
0 Data bit
1 Data bit
2 Data bit
3 Data bit
4 Data bit
5 Data bit
6 Data bit
7 Data bit

0 7
AMCC Proprietary 966

405EP – PPC405EP Embedded Processor
IIC0_STS
IIC0 Status

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_STS

MMIO 0xEF600508

See “IIC0 Status Register (IIC0_STS)” on page 22-576.

Figure 26-112. IIC0 Status Register (IIC0_STS)
0 SSS Slave Status Set

0 No slave operations are in progress.
1 Slave operation is in progress.

Read-only; this field is set when any of the
following fields are set:
IIC0_XTCNTLSS[SRC, SRRS, SWC,
SWRS].

1 SLPR Sleep Request
0 Normal operation.
1 Sleep mode (CPC0_ER[IIC] = 1).

Read-only. The IIC interface is awakened
when a start signal is detected on the IIC
bus or when the CPC0_ER[IIC] is
cleared.

2 MDBS Master Data Buffer Status
0 Master data buffer is empty.
1 Master data buffer contains data.

Read-only.

3 MDBF Master Data Buffer Full
0 Master data buffer is not full.
1 Master data buffer is full.

Read-only.

4 SCMP Stop Complete
0 No request to halt transfer, or master

data transfer, is complete.
1 Request to halt transfer, or master data

transfer, is complete.

To clear IIC0_STS[SCMP], set
IIC0_STS[SCMP] = 1.

5 ERR Error
0 No error has occurred.
1 One of the following fields is set:

IIC0_EXTSTS[LA, ICT, XFRA] = 1.

Read-only.

6 IRQA IRQ Active
0 No IIC interrupt has been sent to the

universal interrupt controller (UIC).
1 An IIC interrupt has been sent to the UIC.

To clear IIC0_STS[IRQA], set
IIC0_STS[IRQA] = 1.
If IIC0_MDCNTL[EINT] = 0, then
IIC0_STS[IRQA] is not set.

7 PT Pending Transfer
0 No transfer is pending, or transfer is in

progress.
1 Transfer is pending.

Read-only.

0 1 2 3 4 5 6 7

SSS

SLPR

MDBS

MDBF

SCMP

ERR

IRQA

PT
967 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_XFRCNT

IIC0 Transfer Count
IIC0_XFRCNT

MMIO 0xEF60050E

See “IIC0 Transfer Count Register (IIC0_XFRCNT)” on page 22-584.

Figure 26-113. IIC0 Transfer Count Register (IIC0_XFRCNT)
0 Reserved

1:3 STC Slave Transfer Count
000 0 bytes transferred
001 1 byte transferred
010 2 bytes transferred
011 3 bytes transferred
100 4 bytes transferred
101 Reserved
110 Reserved
111 Reserved

4 Reserved

5:7 MTC Master Transfer Count
000 0 bytes transferred
001 1 byte transferred
010 2 bytes transferred
011 3 bytes transferred
100 4 bytes transferred
101 Reserved
110 Reserved
111 Reserved

0 1 3 4 5 7

STC

MTC
AMCC Proprietary 968

405EP – PPC405EP Embedded Processor
IIC0_XTCNTLSS
IIC0 Extended Control and Slave Status

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

IIC0_XTCNTLSS

MMIO 0xEF60050F

See “IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS)” on page 22-585.

Figure 26-114. IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS)
0 SRC Slave Read Complete

0 Normal operation, or
IIC0_MDCNTL[HSCL] = 0, IIC0_SDBUF
is empty, and a read operation is in
progress.

1 A NACK or Stop condition was received
over the IIC bus, or a repeated Start
condition ended a read operation.

Check whether the read operation emptied
IIC0_SDBUF.

1 SRS Slave Read Needs Service
0 Normal operation or slave read does not

need service.
1 IIC0_SDBUF is empty, and a read

operation was requested on the IIC bus.
The set condition may also indicate that
IIC0_SDBUF is empty due to a slave
read and additional data is requested by
the master.

1. If IIC0_MDCNTL[HSCL]=0 and
IIC0_SDBUF contains no data, the slave
issues a NACK and IIC0_XTCNTLSS[SRS]
is set.
2. If IIC0_MDCNTL[HSCL]=0, and
IIC0_SDBUF contains data, the slave
sends the data. IIC0_XTCNTLSS[SRS] is
not set unless the master request
additional data.
3. If IIC0_MDCNTL[HSCL]=0, and
IIC0_SDBUF contains no data, the slave
holds IICSCL low to indicate the slave is
busy. IIC0_XTCNTLSS[SRS] is set until
the IIC0_SDBUF is filled. Once filled,
IICSCL is released, IIC0_XTCNTLSS[SRS]
is cleared, and the slave sends the data.
4. If IIC0_MDCNTL[HSCL]=1, and
IIC0_SDBUF contains data, the slave
sends the data. IIC0_XTCNTLSS[SRS] is
not set unless the master requests
additional data.

2 SWC Slave Write Complete
0 Normal operation or slave write in

progress.
1 A Stop signal was received during a write

operation, or a repeated Start condition
ended a write operation.

0 1 2 3 4 5 6 7

SRC

SRS SWS SDBF SRST

SWC SDBD EPI
969 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_XTCNTLSS (cont.)

IIC0 Extended Control and Slave Status
3 SWS Slave Write Needs Service
0 Normal operation or slave write does not

need service.
1 IIC0_SDBUF is full during a slave write.

1. If IIC0_MDCNTL[HSCL] = 1 and
IIC0_SDBUF is full, the slave holds IICSCL
low to indicate the slave is busy.
IIC0_XTCNTLSS[SWS] is set until
IIC0_SDBUF is empty. Once empty,
IICSCL is released,
IIC0_XTCNTLSS[SWS] is cleared, and the
slave receives the data.
2. If IIC0_MDCNTL[HSCL] = 0 and
IIC0_SDBUF is full, the slave issues a
NACK and IIC0_XTCNTLSS[SWS] is set.

4 SDBD Slave Data Buffer Has Data
0 IIC0_SDBUF is empty
1 IIC0_SDBUF contains data

Read-only

5 SDBF Slave Data Buffer Full
0 IIC0_SDBUF is not full
1 IIC0_SDBUF is full

Read-only

6 EPI Enable Pulsed IRQ
0 The internal IIC interrupt signal to the

UIC remains active until the status is
cleared, IIC0_STS[IRQA] =0.

1 The internal IIC interrupt signal to the
UIC is active for one OPB clock cycle.

Enable pulsed IRQ. When set to a logic ‘1’,
the IIC_IRQ signal goes active for one
clock period. When set to a logic ‘0’, the
IIC_IRQ signal stays active until the IRQ
active bit, staus(1) is cleared.

7 SRST Soft Reset
0 Normal operation
1 Soft reset
AMCC Proprietary 970

405EP – PPC405EP Embedded Processor
MAL0_CFG
MAL Configuration Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

26.Register SummaryMAL Registers
MAL0_CFG

DCR 0x180 (MAL0)

See “MAL Configuration Register (MAL0_CFG)” on page 20-533.

Figure 26-115. MAL Configuration Register (MAL0_CFG)
0 SR MAL Software Reset

0 MAL reset is complete
1 Reset the MAL

Generates a general reset to MAL through
a software command.
After setting this bit, MAL hardware
(registers, interface and internal state
machines) returns to the power-on reset
value.
The software writes 1 to this bit in order to
drive MAL to the reset state. The bit is
cleared by the hardware when the reset is
completed (one system clock).

1:7 Reserved

8:9 PLBP PLB Priority
00 Lowest
01
10
11 Highest

Determines the priority of MAL requests on
the PLB.

10 GA Guarded Active
0 GUARDED signal not applied to the PLB

slave
1 GUARDED signal applied to the PLB

slave

When this bit is set, MAL applies the
GUARDED signal to the PLB slave when it
is the initiator on the bus.
When set, the slave can access all the
memory in the current page as well as the
subsequent page.

11 OA Ordered Active
0 ORDERED signal not applied to the PLB

slave
1 ORDERED signal applied to the PLB

slave

When this bit is set, MAL applies the
ORDERED signal to the PLB slave when it
is initiator on the bus during data write
transactions.
Note that the ORDERED signal is always
driven active during status write
transactions.

12 PLBLE PLB Lock Error
0 LOCKERROR signal not applied to the

PLB slave
1 LOCKERROR signal applied to the PLB

slave

When this bit is set, MAL applies the
LOCKERROR signal to the PLB slave
when it is the initiator during PLB
transactions.

13:16 PLBLT PLB Latency Timer Determines the number of cycles allowed
for burst transactions on the PLB.

17 PLBB PLB Burst
0 Burst transactions not allowed
1 Burst transactions allowed

When this bit is reset, MAL is not allowed
to perform burst transactions.

18:23 Reserved

0 1 7 8 9 10 11 12 13 16 17 18 23 24 25 28 29 30 31

SR

LEA

SD

PLBP

GA PLBLE

OA

PLBB EOPIE

PLBLT OPBBL
971 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_CFG (cont.)

MAL Configuration Register
24 OPBBL OPB Bus Lock
0 OPB not locked
1 OPB locked

When this bit is set, MAL locks the OPB
during data transfers to and from the
COMMACs.

25:28 Reserved

29 EOPIE End of Packet Interrupt Enable
0 Generate interrupt on every end-of-

packet only if the buffers I bit is set
1 Generate interrupt is on every end-of-

packet

When this bit is set, an interrupt is
generated on every end of packet (both
transmit and receive).
When clear, end of packet/buffer interrupt
is generated only if the buffers I bit is set
(1).
Note: An interrupt is generated for every

descriptor on which the I bit is set,
regardless of the state of the EOPIE
bit.

30 LEA Locked Error Active
0 Handle errors in a non-locked mode
1 Handle errors in locked mode

Determines MAL’s error handling mode.
When this bit is set, MAL will handle errors
in the locked mode, otherwise it will handle
errors in a non-locked mode.

31 SD MAL Scroll Descriptor
0 Do not scroll to the first descriptor of the

next packet
1 Scroll to the first descriptor of the next

packet

Determines whether or not MAL should
scroll to the first descriptor of the next
packet, following an early packet
termination initiated by the related
COMMAC. When set, Scrolling mode is
active.
AMCC Proprietary 972

405EP – PPC405EP Embedded Processor
MAL0_ESR
MAL Error Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_ESR

DCR 0x181 (MAL0) Read/Clear

See “MAL Error Status Register (MAL0_ESR)” on page 20-538.
973 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_ESR (cont.)

MAL Error Status Register

Figure 26-116. MAL Error Status Register (MAL0_ESR)
0 EVB Error Valid Bit

0 Bit 1:15 are available for latching new
error information.

1 Bits 1:15 contain last error. A new error
cannot be latched.

When this bit is set, bits 1-6 include the ID
of the erroneous channel (in case of OPB
errors). Bits 11-15 indicate the type of
error.
In non-locked mode, the error indication
describes the last error that had occurred.
In locked mode, the error is the first one
that had occurred after this bit was cleared.
This bit is set when an error occurs and
remains set until reset by the software. In
locked mode, new errors cannot be latched
in the error lock indication fields if this bit is
set

1:6 CID Channel ID This field contains the number of the
channel which caused the locked error.
Bit 1 indicates whether the channel ID
represents an RX channel (1) or a TX
channel (0).
Bits 2:6 indicates the number of the
channel that caused the error.
Note: An error on the PLB cannot be

related to a channel. The error
condition may be resolved by using
the error information optionally
locked in the PLB slave.

7:10 Reserved

11 DE Descriptor Error
0 No error
1 Non-valid descriptor

Indicates that the error is a non-valid
descriptor, which is not the first descriptor
in a TX packet.

12 ONE OPB Non-fullword Error
0 No error
1 Non-fullword asserted

Indicates that the error is a non-fullword
acknowledge asserted by an OPB slave.

13 OTE OPB Timeout Error
0 No error
1 OPB timeout

Indicates the error is an OPB timeout.

14 OSE OPB Slave Error
0 No error
1 OPB slave error

Indicates the error is an error indication
asserted by an OPB slave.

15 PEIN PLB Bus Error Indication
0 No error
1 PLB bus error

When this bit is set, the detected error is a
PLB error. There is no meaning to the
Channel ID field in this case.

0 1 6 7 10 11 12 13 14 15 16 26 27 28 29 30 31

EVB

OTEI

OSEI

ONE

DE

DEI

PEIN ONEI

OSECID

OTE

PBEI
AMCC Proprietary 974

405EP – PPC405EP Embedded Processor
MAL0_ESR (cont.)
MAL Error Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
16:26 Reserved

27 DEI Descriptor Error Interrupt
0 No error
1 Descriptor data error recognized

A descriptor data error is recognized
during access to the descriptor table.
This error indication is asserted when a
non-valid descriptor is accessed, which is
not the first descriptor in a TX packet. Set
condition for this bit generates a maskable
interrupt.

28 ONEI OPB Non-fullword Error Interrupt
0 No error
1 Non-fullword acknowledgment from a

slave

This bit is set following a non-fullword
acknowledgment coming from a slave. Set
condition for this bit generates a maskable
interrupt.

29 OTEI OPB Timeout Error Interrupt
0 No error
1 OPB time-out

This bit is set following an OPB time out
error indication. Set condition for this bit
generates a maskable interrupt.

30 OSEI OPB Slave Error Interrupt
0 No error
1 OPB error from a slave

This bit is set following an OPB error
indicated by the slave. Set condition for
this bit generates a maskable interrupt.

31 PBEI PLB Bus Error Interrupt
0 No error
1 PLB error indication

This bit is set following a PLB error
indication (from the PLB slave). Set
condition for this bit generates a maskable
interrupt.
975 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_IER

MAL Interrupt Enable Register
MAL0_IER

DCR 0x182 (MAL0) Read/Only

See “Each bit in the following register, when it is set, enables assertion of the interrupt signal
(MAL0_SERR_INT) when the associated bit is set in MAL0_ESR.” on page 20-540.

Figure 26-117. MAL Interrupt Enable Register (MAL0_IER)
0:26 Reserved

27 DE Descriptor Error When set, this bit enables the descriptor
error (descriptor not valid) interrupt.

28 NWE Non_W_Err_Int_Enable When set, this bit enables OPB non-word
transfer error interrupt.

29 TO Time_Out_Int_Enable When set, this bit enables OPB time-out
error interrupt.

30 OPB OPB_Err_Int_Enable When set, this bit enables the OPB Slave
error interrupt.

31 PLB PLB_Err_Int_Enable When set, this bit enables the PLB error
interrupt.

0 26 27 28 29 30 31

NWE

DE TO

OPB

PLB
AMCC Proprietary 976

405EP – PPC405EP Embedded Processor
MAL0_RCBSn
MAL Receive Channel Buffer Size Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_RCBSn

DCR 0x1E0–0x1E1 (MAL0)

See “Buffer Length for Receive” on page 20-522.

Figure 26-118. Receive Channel Buffer Size Register (MAL0_RCBSn)
0:23 Reserved

24:31 Receive Channel Buffer Size Each channel is associated with a
MAL0_RCBSn register. MAL0 has two
receive channels.

0 23 24 31
977 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_RXCARR

MAL Receive Channel Active Reset Registers
MAL0_RXCARR

DCR 0x191 (MAL0)

See “Channel Active Set and Reset Registers” on page 20-535.

Figure 26-119. Receive Channel Active Reset Register (MAL0_RXCARR)
0:31 Receive Channel Active Reset Each bit represents its related channel

(bit 0 for channel 0, and so on).
When 0 is written to the bit, channel
operation is disabled.
 MAL0 has two receive channels.

0 31
AMCC Proprietary 978

405EP – PPC405EP Embedded Processor
MAL0_RXCASR
MAL Receive Channel Active Set Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_RXCASR

DCR 0x190 (MAL0)

See “Channel Active Set and Reset Registers” on page 20-535.

Figure 26-120. Receive Channel Active Set Register (MAL0_RXCASR)
0:31 Receive Channel Active Set Each bit represents its related channel (bit 0

for channel 0, and so on). When 1 is written
to the bit, channel operation is enabled.
MAL0 has two receive channels.

0 31
979 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_RXCTPnR

MAL Receive Channel Pointer Registers
MAL0_RXCTPxR

DCR 0x1C0–0x1C1 (MAL0)

See “Channel Table Pointer Registers (MAL0_TXCTPnR, MAL0_RXCTPnR)” on page 20-542.

Figure 26-121. RX Channel Table Pointer Register (MAL0_RXCTPnR)
0:31 Channel Table Pointer Pointer to the base address of the buffer

descriptor table used by a channel. The
value entered should point to a location in
memory accommodating an aligned
doubleword (the three least significant bits
of the pointer must be 000).
MAL0 has two receive channels.

0 31
AMCC Proprietary 980

405EP – PPC405EP Embedded Processor
MAL0_RXDEIR
MAL Receive Descriptor Interrupt Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_RXDEIR

DCR 0x193 (MAL0) Read/Clear

See “Descriptor Error Interrupt Registers (MAL0_TXDEIR, MAL0_RXDEIR)” on page 20-541.

Figure 26-122. RX Descriptor Error Interrupt Register (MAL0_RXDEIR)
0:31 Receive Descriptor Error Interrupt Each bit represents its related channel

(bit 0 for channel 0, and so on).
When one or more bits are set,
MAL_DESC_ERR_INT is set. Writing 1 to
a bit clears it.
MAL0 has two receive channels.

0 31
981 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_RXEOBISR

MAL Receive End-of-Buffer Interrupt Status Registers
MAL0_RXEOBISR

DCR 0x192 (MAL0) Read/Clear

See “End of Buffer Interrupt Status Registers” on page 20-537.

Figure 26-123. Receive End of Buffer Interrupt Status Register (MAL0_RXEOBISR)
0:31 Receive Channel End-of-Buffer Interrupt Each bit represents its related channel

(bit 0 for channe 0, and so on).
Writing 1 to a bit clears it.
MAL0 has two receive channels.

0 31
AMCC Proprietary 982

405EP – PPC405EP Embedded Processor
MAL0_TXCARR
MAL Transmit Channel Active Reset Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_TXCARR

DCR 0x185 (MAL0)

See “Channel Active Set and Reset Registers” on page 20-535.

Figure 26-124. Transmit Channel Active Reset Register (MAL0_TXCARR)
0:31 Transmit Channel Active Reset Each bit represents its related channel

(bit 0 for channel 0, and so on). When 1 is
written to the bit, channel operation is
enabled.
MAL0 has four transmit channels.

0 31
983 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_TXCASR

MAL Transmit Channel Active Set Registers
MAL0_TXCASR

DCR 0x184 (MAL0)

See “Channel Active Set and Reset Registers” on page 20-535.

Figure 26-125. Transmit Channel Active Set Register (MAL0_TXCASR)
0:31 Transmit Channel Active Set Each bit represents its related channel

(bit 0 for channel 0, and so on). When 1 is
written to the bit, channel operation is
enabled.
MAL0 has four transmit channels.

0 31
AMCC Proprietary 984

405EP – PPC405EP Embedded Processor
MAL0_TXCTPnR
MAL Transmit Channel Pointer Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_TXCTPxR

DCR 0x1A0–0x1A3 (MAL0) Read/Write

See “Channel Table Pointer Registers (MAL0_TXCTPnR, MAL0_RXCTPnR)” on page 20-542.

Figure 26-126. TX Channel Table Pointer Register (MAL0_TXCTPnR)
0:31 Channel Table Pointer Pointer to the base address of the buffer

descriptor table used by the channel. The
value entered should point to a location in
memory accommodating an aligned
doubleword (the three least significant bits
of the pointer must be 000).
MAL0 has four transmit channels.

0 31
985 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
MAL0_TXDEIR

MAL Transmit Descriptor Interrupt Registers
MAL0_TXDEIR

DCR 0x187 (MAL0) Read/Clear

See “Descriptor Error Interrupt Registers (MAL0_TXDEIR, MAL0_RXDEIR)” on page 20-541.

Figure 26-127. TX Descriptor Error Interrupt Register (MAL0_TXDEIR)
0:31 Transmit Descriptor Error Interrupt Each bit represents its related channel

(bit 0 for channel 0, and so on). When one
or more bits are set to 1,
MAL_DESC_ERR_INT is set. Writing 1 to
a bit clears it.
MAL 0 has four transmit channels.

0 31
AMCC Proprietary 986

405EP – PPC405EP Embedded Processor
MAL0_TXEOBISR
MAL Transmit End of Buffer Interrupt Status Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

MAL0_TXEOBISR

DCR 0x186 (MAL0) Read/Clear

See “End of Buffer Interrupt Status Registers” on page 20-537.

Figure 26-128. Transmit End of Buffer Interrupt Status Register (MAL0_TXEOBISR)
0:31 Transmit Channel End of Buffer Interrupt Each bit represents its related channel

(bit 0 for channel 0, and so on). Writing 1 to
a bit clears it.
MAL0 has four transmit channels.

0 31
987 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
OCM0_DSARC

OCM Data-Side Address Range Compare Register
26.Register SummaryOn-Chip Memory Controller Registers
OCM0_DSARC

DCR 0x01A

See “OCM Data-Side Address Range Compare Register (OCM0_DSARC)” on page 5-140.

Figure 26-129. OCM Data-Side Address Range Compare Register (OCM0_DSARC)
0:5 DSAR Data-side OCM address range
6:31 Reserved

0 5 6 31

DSAR
AMCC Proprietary 988

405EP – PPC405EP Embedded Processor
OCM0_DSCNTL
OCM Data-Side Address Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

OCM0_DSCNTL

DCR 0x01B

See “OCM Data-Side Control Register (OCM0_DSCNTL)” on page 5-141.

Figure 26-130. OCM Data-Side Control Register (OCM0_DSCNTL)
0 DSEN Data-Side OCM Enable

0 Data-side OCM accesses are disabled.
1 Data-side OCM accesses are enabled.

1 DOF This field should remain set to 1.
2:31 Reserved

0 1 2 31

DSEN

DOF
989 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
OCM0_ISARC

OCM Instruction-Side Address Range Compare Register
OCM0_ISARC

DCR 0x018

See “OCM Instruction-Side Address Range Compare Register (OCM0_ISARC)” on page 5-139.
.

Figure 26-131. OCM Instruction-Side Address Range Compare Register (OCM0_ISARC)
0:5 ISAR Instruction-side OCM address range
6:31 Reserved

0 5 6 31

ISAR
AMCC Proprietary 990

405EP – PPC405EP Embedded Processor
OCM0_ISCNTL
OCM Instruction-Side Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

OCM0_ISCNTL

DCR 0x019

See “OCM Instruction-Side Control Register (OCM0_ISCNTL)” on page 5-139.

Figure 26-132. OCM Instruction-Side Control Register (OCM0_ISCNTL)
0 ISEN Instruction-Side OCM Enable

0 Instruction-side OCM accesses are
disabled.

1 Instruction-side OCM accesses are
enabled.

1 ISTCM Instruction-Side Two Cycle Mode
0 Instruction-side OCM accesses are

returned in one cycle.
1 Instruction-side OCM accesses are

returned in two cycles.

OCM0_ISCNTL[ISTCM], which has a reset
value of 1, should be set to
OCM0_ISCNTL[ISTCM] = 0 during chip
initialization.

2:31 Reserved

0 1 2 31

ISEN

ISTCM
991 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
OPBA0_CR

OPB Arbiter Control Register
26.Register SummaryOPB Arbiter Registers
OPBA0_CR

MMIO 0xEF600600

See “OPB Arbiter Control Register (OPBA0_CR)” on page 2-63.

Figure 26-133. OPB Arbiter Control Register (OPBA0_CR)
0 DPE Dynamic Priority Enable

0 Dynamic priority disabled
1 Dynamic priority enabled

When DPE = 1, the OPB arbiter uses an
approximately fair arbitration algorithm.

1 PEN Park Enable
0 Park disabled
1 Park enabled

2 PMN Park on Master Not Last
0 Park on last master last
1 Park on master specified by PID

3:4 PID Parked Master ID
00 DMA
01 Unused
10 OPB to PLB bridge
11 Unused

5:7 Reserved

0 1 2 3 4 5 7

DPE PMN

PEN PID
AMCC Proprietary 992

405EP – PPC405EP Embedded Processor
OPBA0_PR
OPB Arbiter Priority Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

OPBA0_PR

MMIO 0xEF600601

See “OPB Arbiter Priority Register (OPBA0_PR)” on page 2-64.

Figure 26-134. OPB Arbiter Priority Register (OPBA0_PR)
0:1 HPM High Priority Master ID

00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

2:3 MHP Medium High Priority Master ID
00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

4:5 MLP Medium Low Priority Master ID
00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

6:7 LPM Low Priority Master ID
00 Master ID 0
01 Master ID 1
10 Master ID 2
11 Master ID 3

0 1 2 3 4 5 6 7

HPM

MHP

MLP

LPM
993 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_BAR0

PCI Base Address Register 0
26.Register SummaryPCI Registers
PCIC0_BAR0

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x10 Read-Only

See “Unused PCI Base Address Register Space” on page 17-368.

Figure 26-135. PCI Base Address Register (PCIC0_BAR0)
7:0 PCI Base Address Unimplemented; always returns 0.

7 0
AMCC Proprietary 994

405EP – PPC405EP Embedded Processor
PCIC0_BIST
PCI Built In Self Test Control

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_BIST

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x0F Read-Only

See “PCI Built-In Self Test (BIST) Control Register (PCIC0_BIST)” on page 17-368.

Figure 26-136. PCI Built-in Self Test Control Register (PCIC0_BIST)
7:0 PCI BIST Control

7 0
995 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_BRDGOPT1

PCI Bridge Options 1
PCIC0_BRDGOPT1

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x4B–0x4A

See “Bridge Options 1 Register (PCIC0_BRDGOPT1)” on page 17-375.

Figure 26-137. Bridge Options 1 Register (PCIC0_BRDGOPT1)
15:8 PMLTC

R
PLB Master Latency Timer Count
Register

PMLTCR contains the value used by the
PLB master to load its latency timer. The
granularity of this timer is 16 PLB cycles;
therefore, the low-order bits of this
register are read-only and are hardwired to
1.

7 PLESE PLB Lock Error Status Enable
0 Slave error locking is disabled.
1 Slave error locking is enabled.

PLESE controls the handling of slave error
locking.

6:5 PRP PLB Request Priority
11 Highest
10 Next highest
01 Next highest
00 Lowest

PRP controls the request priority for PLB
accesses.

4 PGMAE PLB Guarded Memory Access Enable
0 Bridge PLB master memory accesses

are unguarded.
1 Bridge PLB master memory

accesses are guarded.

PGMAE controls whether PLB accesses
are guarded or unguarded.

3 PAPM PCI Arbiter Park Mode
0 The arbiter parks on requester 0 (the

bridge PCI master).
1 The arbiter parks on the last master

granted the bus.

PAPM defines how the internal PCI arbiter
handles bus parking.

2:1 PTMRCI PCI Target Memory Read Command
Interpretation
00 Memory Read
01 Memory Read Line
10 Memory Read Multiples
11 Reserved

PTMRCI enables the PCI bridge to be
forced to treat a PCI memory read as a
memory read multiple, or as a memory
read line, with respect to the burst size
implied by the read commands. This is for
masters that use memory read for multiple
beat bursts.

0 APLRM Atomic PLB Line Read Mode
0
1 PLB slave asserts Addrack and

begins its data tenure immediately
after the PCI master receives the first
read data word.

APLRM controls the behavior of the bridge
PLB slave with respect to PLB line reads.
APLRM must not be se t to 1 unless all
PCI target devices can guarantee no
disconnects for PLB line reads.

15 8 7 6 5 4 3 2 1 0

PLMTCR

PLESE

PRP

PGMAE

PAPM

PTMRCI

APLRM
AMCC Proprietary 996

405EP – PPC405EP Embedded Processor
PCIC0_BRDGOPT2
PCI Bridge Options 2

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_BRDGOPT2

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x61–0x60

See “Bridge Options 2 Register (PCIC0_BRDGOPT2)” on page 17-383.

Figure 26-138. Bridge Options 2 Register (PCIC0_BRDGOPT2)
15:14 Reserved

13 EWPCI External Write to PCI Command Interrupt
0 No write to PCIC0_CMD has occurred.
1 External PCI master has written to

PCIC0_CMD.

Software can set or clear this bit. Setting
this bit also causes UIC0_SR[PCIIS] to be
set.

12 DPR Drive PCI Reset
0 Normal operation
1 Causes PCIReset pin to be asserted.

Software that asserts this bit must leave it
asserted long enough to guarantee the PCI
pulse width requirements. DPR does not
reset PLB bus interface registers or PCI
bridge registers.
PCIReset is also asserted when the PCI
bridge is reset.

11:8 PSTLTD Subsequent Target Latency Timer
Duration
Specifies the number of PCI clocks that a
PCI master burst can be held in a wait
state before a target disconnect is initiated.

Only set on reads.
In synchronous mode, PSTLTD equals the
maximum number of PCI clocks to
disconnect. In asynchronous mode,
PSTLTD plus 3 equals the maximum
number of PCI clocks to disconnect. The
asynchronous value must be 2 or less.

7:3 Reserved

2 PDTD PCI Discard Timer Disable
0 Disabled
1 Enabled

When enabled, the PCI bridge never
discards delayed read data.

1 Reserved

0 HCE Host Configuration Enable
0 Disabled
1 Enabled

HCE controls host PCI access to the PCI
bridge configuration registers. All host
attempts to access the PCI bridge PCI
configuration registers are retried. This
give the local CPU (PLB master) time to
initialize them before the host sees them.

15 14 13 12 11 8 7 3 2 1 0

HCEPSTLTD

PDTD

EWPCI

DPR
997 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_CACHELS
PCI Cache Line Size
PCIC0_CACHELS

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x0C Read-Only

See “PCI Cache Line Size Register (PCIC0_CACHELS)” on page 17-367.

Figure 26-139. PCI Cache Line Size Register (PCIC0_CACHELS)
7:0 PCI Cache Line Size

7 0
AMCC Proprietary 998

405EP – PPC405EP Embedded Processor
PCIC0_CAP
PCI Capabilities Pointer

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_CAP

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x34 Read-Only

See “PCI Capabilities Pointer (PCIC0_CAP)” on page 17-371.

Figure 26-140. PCI Capabilities Pointer (PCIC0_CAP)
7:0 PCI Capabilities Pointer

7 0
999 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_CAPID

PCI Capability Identifier
PCIC0_CAPID

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x58 Read-Only

See “Capability Identifier (PCIC0_CAPID)” on page 17-380.

Figure 26-141. Capability Identifier (PCIC0_CAPID)
7:0 PCI Capability Identifier

7 0
AMCC Proprietary 1000

405EP – PPC405EP Embedded Processor
PCIC0_CFGADDR
PCI Configuration Address Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_CFGADDR

0xEEC00000

See “PCI Configuration Address Register (PCIC0_CFGADDR)” on page 17-361.

Figure 26-142. PCI Configuration Address Register (PCIC0_CFGADDR)
31 EN Enable

0 Disabled
1 Enabled

30:24 Reserved

23:16 BN Bus Number

15:11 DN Device Number

10:8 FN Function Number

7:2 RN Register Number

1 0

0 0

31 30 24 23 16 15 11 10 8 7 2 1 0

EN

BN FN

RN

0

0DN
1001 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_CFGDATA

PCI Configuration Data Register
PCIC0_CFGATA

0xEEC00004

See “PCI Configuration Data Register (PCIC0_CFGDATA)” on page 17-361.

Figure 26-143. PCI Configuration Data Register (PCIC0_CFGDATA)
31:0 Configuration Data

31 0
AMCC Proprietary 1002

405EP – PPC405EP Embedded Processor
PCIC0_CLS
PCI Class Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_CLS

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x09 Read-Only (PCI), R/W (PLB)

See “PCI Class Register (PCIC0_CLS)” on page 17-366.

Figure 26-144. PCI Class Register (PCIC0_CLS)
23:16 BASE Base Class Reset to 0x06, which indicates bridge

device.
Users of the RISCWatch debugger must
use the PCIC0_BASECC register to
access this field.

15:8 SUB Subclass Reset to 00, which indicates host bridge.
Users of the RISCWatch debugger must
use the PCIC0_SUBCLS register to
access this field.

7:0 INT Interface Class Reset to 00.
Users of the RISCWatch debugger must
use the PCIC0_INTCLS register to access
this field.

23 16 15 8 7 0

BASE INT

SUB
1003 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_CLS

PCI Class Register
PCIC0_CMD

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x05–0x04
AMCC Proprietary 1004

405EP – PPC405EP Embedded Processor
PCIC0_CMD
PCI Command Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
See “PCI Command Register (PCIC0_CMD)” on page 17-363.

Figure 26-145. PCI Command Register (PCIC0_CMD)
15:10 Reserved .

9 FBB Fast Back-to-Back Write Enable Enables PCI masters to perform fast back-
to-back transactions. Because he PCI
bridge does not perform fast back-to-back
transactions; FBB is read-only and returns
0 when read.

8 SE PCISErr Enable
0 Disabled
1 Enabled

Enables driving PCISErr when a PCI bus
parity error is detected when the PCI bridge
is the PCI target. PCIC0_CMD[PER] must
be enabled for address parity errors.
PCIC0_CMD[PER] and
PCIC0_ERREN[WDPE] must be enabled
for write data parity errors.

7 AS Address stepping wait states. The PCI bridge does not address step
(except for address stepping when
generating a Config Type 0 cycle); AS is
read-only and returns 0 when read.

6 PER Parity error response
0 Disabled
1 Enabled

This bit is enabled for all types of PCI bus
parity errors, including the following:
• PCI data bus parity errors while PCI is

master.
• PCI data bus parity errors while PCI is

target.
• PCI address bus parity errors.
When parity error response is disabled,
detection of these errors is masked and
PCIPErr (PERR#) is not asserted, although
parity is still generated.

5 PS Palette Snooping Enable special palette snooping.
The PCI bridge is not a VGA device; PS is
read-only and returns 0 when read

4 MWI Memory Write and Invalidate Enable The PCI bridge does not generate this
command; MWI is read-only and returns 0
when read.

3 SC Special Cycle Operations Enable The PCI bridge never monitors special
cycles; SC is read-only and returns 0 when
read.

15 10 9 8 7 6 5 4 3 2 1 0

SE

FBB AS PS

PER

SC MA

MWI ME IOA
1005 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_CMD (cont.)

PCI Command Register
2 ME Master Enable
0 Disabled
1 Enabled

Enables PCI bridge-to-master cycles on
the PCI bus. When ME is 0, the PCI bridge
only responds as a PLB slave to
PCIC0_CFGADDR, PCIC0_CFGDATA,
and PCI bridge local configuration register
access. Except for configuration cycles, the
PCI bridge cannot master cycles to the PCI
bus.

1 MA Memory Access
0 Disabled
1 Enabled

Controls PCI bridge response as a PCI
memory target. MA is disabled at reset.

0 IOA I/O Access Controls the PCI bridge response as a PCI
I/O target. The PCI bridge does not
respond to I/O space accesses; IOA is
read-only and returns 0 when read.
AMCC Proprietary 1006

405EP – PPC405EP Embedded Processor
PCIC0_DATA
PCI Data

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_DATA

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x5F Read-Only

See “PCI Data Register (PCIC0_DATA)” on page 17-383.

Figure 26-146. PCI Data (PCIC0_DATA)
7:0 PCI Data

7 0
1007 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_DEVID

PCI Device ID
PCIC0_DEVID

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x03–0x02 Read-Only (PCI), R/W (PLB)

See “PCI Device ID Register (PCIC0_DEVID)” on page 17-362.

Figure 26-147. PCI Device ID Register (PCIC0_DEVID)
15:0 PCI Device ID

15 0
AMCC Proprietary 1008

405EP – PPC405EP Embedded Processor
PCIC0_ERREN
PCI Error Enable

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_ERREN

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x48

See “Error Enable Register (PCIC0_ERREN)” on page 17-373.

Figure 26-148. Error Enable Register (PCIC0_ERREN)
7 Reserved

6 TAEE Target Abort Error Enable
0 Disabled
1 Enabled

While the PCI bridge is the PCI master,
this bit enables the detection of a target
abort as an error condition. If TAEE is
enabled, the PCI bridge reports PLB bus
errors.

5:4 MERE PLB Bus Error Response Enable
00 No action is taken.
01 The PCI target should drive PCISErr on

the PCI bus.
10 Target should target abort the offending

read.
11 Indicates the PCI target should drive

PCISErr and target abort.

MERE controls the response taken by the
PCI bridge on the PCI bus (as the PCI
target) when PLB bus errors are asserted
to the PCI bridge PLB master.
Note: Only reads can be target aborted.
Note: Modes 10 and 11 cannot be used in

asynchronous mode.

3 MEDE PLB Master Error Detection Enable
0 Disables detection of PLB master errors.
1 Enables detection of PLB master errors.

MEDE enables the detection of PLB bus
errors when the PCI bridge is a PLB
master.

2 MEAE PLB Bus Error Assertion Enable
0 Disabled
1 Enabled

MEAE enables the reporting of a PLB bus
error when the PCI bridge is a PLB slave.

1 WDPE Write Data Parity PCISErr Enable
0 Disabled
1 Enabled.

The PCI bridge drives PCISErr when a
data parity error is detected on a write
cycle when the PCI bridge is the PCI
target. PCIC0_CMD[SE] must also be 1.

0 MAEE Master Abort Error Enable
0 Disabled
1 Enabled

MAEE enables the detection of a master
abort as an error condition when the PCI
bridge is the master. The PCI bridge drives
Sl_MErr on the PLB bus in response to a
master abort. If this bit is disabled, driving
of Sl_Merr in response to master abort is
masked.

7 6 5 4 3 2 1 0

TAEE

MERE

MEDE

MAEEMEAE

WDPE
1009 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_ERRSTS

PCI Error Status
PCIC0_ERRSTS

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x49

See “Error Status Register (PCIC0_ERRSTS)” on page 17-374.

Figure 26-149. Error Status Register (PCIC0_ERRSTS)
7:5 Reserved

4 SARME PCISErr Asserted on Received PLB Bus
Error

Set when PCI bridge asserts PCISErr on
the PCI bus in response to PCI bridge
receiving a PLB bus error while PLB
master.

3 MED PLB Bus Error Detected
1 Error detected

Set when a PLB bus error signal is
asserted when PCI bridge is the PLB
master. MED is set regardless of whether
the PCI bridge is enabled to treat this as an
error condition (the setting of MED is not
maskable).

2 MEAE PLB Bus Error Assertion Event
1 An PCI bridge error, which can cause a

PLB bus error, occurred.

Set when an error occurs that would cause
PCI bridge (as PLB slave) to assert a PLB
bus error signal. MEAE is set regardless of
whether the the PLB bus error assertion is
enabled (the setting of MEAE is not
maskable).

1 WDPE PCISerr on Write Data Parity Error Set when the PCI bridge drives PCISErr in
response to a data parity error detected on
a PCI write to PLB memory. PCIPErr is
also driven.

0 PUR PLB Unsupported Request Set when the PCI bridge is a PLB slave
and detects an unsupported request from a
PLB master to an address range that PCI
bridge decodes. The PCI bridge allows
such requests to time out.

7 5 4 3 2 1 0

SARME

MED

MEAE

WDPE

PUR
AMCC Proprietary 1010

405EP – PPC405EP Embedded Processor
PCIC0_HDTYPE
PCI Header Type

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_HDTYPE

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x0E Read-Only

See “PCI Header Type Register (PCIC0_HDTYPE)” on page 17-368.

Figure 26-150. PCI Header Type Register (PCIC0_HDTYPE)
7:0 PCI Header Type

7 0
1011 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_ICS

PCI Interrupt Control/Status
PCIC0_ICS

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x44

See “PCI Interrupt Control/Status Register (PCIC0_ICS)” on page 17-373.

Figure 26-151. PCI Interrupt Control/Status Register
7:1 Reserved These bits return 0 when read.

0 API Assert PCI interrupt When software sets this bit, the PCI bridge
asserts its Interrupt pin.

7 1 0
AMCC Proprietary 1012

405EP – PPC405EP Embedded Processor
PCIC0_INTLN
PCI Interrupt Line

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_INTLN

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x3C

See “PCI Interrupt Line Register (PCIC0_INTLN)” on page 17-371.

Figure 26-152. PCI Interrupt Line Register (PCIC0_INTLN)
7:0 PCI Interrupt Line

7 0
1013 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_INTPN
PCI Interrupt Pin
PCIC0_INTPN

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x3D Read-Only

See “PCI Interrupt Pin Register (PCIC0_INTPN)” on page 17-372.

Figure 26-153. PCI Interrupt Pin Register (PCIC0_INTPN)
7:0 PCI Interrupt Pin

7 0
AMCC Proprietary 1014

405EP – PPC405EP Embedded Processor
PCIC0_LATTIM
PCI Latency Timer

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_LATTIM

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x0D

See “PCI Latency Timer Register (PCIC0_LATTIM)” on page 17-367.

Figure 26-154. PCI Latency Timer Register (PCIC0_LATTIM)
7:0 PCI Latency Timer

7 0
1015 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_MAXLTNCY
PCI Maximum Latency
PCIC0_MAXLTNCY

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x3F Read-Only

See “PCI Maximum Latency Register (PCIC0_MAXLTNCY)” on page 17-372.

Figure 26-155. PCI Maximum Latency Register (PCIC0_MAXLTNCY)
7:0 PCI Maximum Latency

7 0
AMCC Proprietary 1016

405EP – PPC405EP Embedded Processor
PCIC0_MINGNT
PCI Minimum Grant

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_MINGNT

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x3E Read-Only

See “PCI Minimum Grant Register (PCIC0_MINGNT)” on page 17-372.

Figure 26-156. PCI Minimum Grant Register (PCIC0_MINGNT)
7:0 PCI Minimum Grant

7 0
1017 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_NEXTIPTR
PCI Next Item Pointer
PCIC0_NEXTIPTR

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x59 Read-Only

See “Next Item Pointer (PCIC0_NEXTIPTR)” on page 17-380.

Figure 26-157. Next Item Pointer (PCIC0_NEXTIPTR)
7:0 PCI Next Item Pointer

7 0
AMCC Proprietary 1018

405EP – PPC405EP Embedded Processor
PCIC0_PLBBEAR
PLB Slave Error Address Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_PLBBEAR

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x57–0x54

See “PLB Slave Error Address Register (PCIC0_PLBBEAR)” on page 17-379.

Figure 26-158. PLB Slave Error Address Register (PCIC0_PLBBEAR)
31:0 PLB Slave Error Address

31 0
1019 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_PLBBEAR

PLB Slave Error Address Register
PCIC0_PLBBESR0

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x4F–0x4C
AMCC Proprietary 1020

405EP – PPC405EP Embedded Processor
PCIC0_PLBBESR0
PLB Slave Error Syndrome Register 0

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
See “PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0)” on page 17-376.

Figure 26-159. PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0)
31:29 M0ET Master 0 Error Type

000 No Error
001 Parity Error
010 Reserved
011 Reserved
100 Reserved
101 Non-configured Bank Error
110 Reserved
111 Reserved

Master 0 is the DMA controller.

28 M0RWS Master 0 Read/Write Status
0 Error operation was a write
1 Error operation was a read

27 M0FL Master 0 PCIC0_PLBBESR0 Field Lock
0 PCIC0_PLBB ESR0 unlocked
1 PCIC0_PLBB ESR0 locked

26 M0AL Master 0 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 0
1 PCIC0_PLBBEAR locked by Master 0

25:23 M1ET Master 1 Error Type See PCIC0_PLBBESR0[M0ET]
Master 1 is the instruction cache unit.

22 M1RWS Master 1 Read/Write Status
0 Error operation was a write
1 Error operation was a read

21 M1FL Master 1 PCIC0_PLBBESR0 Field Lock
0 PCIC0_PLBB ESR0 unlocked
1 PCIC0_PLBB ESR0 locked

20 M1AL Master 1 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 1
1 PCIC0_PLBBEAR locked by Master 1

19:17 M2ET Master 2 Error Type See PCIC0_PLBBESR0[M0ET]
Master 2 is the data cache unit.

16 M2RWS Master 2 Read/Write Status
0 Error operation was a write
1 Error operation was a read

15 M2FL Master 2 PCIC0_PLBBESR0 Field Lock
0 PCIC0_PLBB ESR0 unlocked
1 PCIC0_PLBB ESR0 locked

31 29 28 27 26 25 23 22 21 20 19 17 16 15 14 13 0

M0ET

M0RWS

M0FL

M0AL

M1ET

M1RWS

M1FL

M1AL

M2ET

M2RWS

M2FL

M2AL
1021 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_PLBBESR0 (cont.)

PLB Slave Error Syndrome Register 0
14 M2AL Master 2 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 2
1 PCIC0_PLBBEAR locked by Master 2

13:0 Reserved
AMCC Proprietary 1022

405EP – PPC405EP Embedded Processor
PCIC0_PLBBESR1
PLB Slave Error Syndrome Register 1

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_PLBBESR1

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x53–0x50

See “PLB Slave Error Syndrome Register 1 (PCIC0_PLBBESR1)” on page 17-379.

Figure 26-160. PLB Slave Error Syndrome 1 (PCIC0_PLBBESR1)
31:26 Reserved

25:23 M5ET Master 5 Error Type See PCIC0_PLBBESR1[M4ET]
Master 5 is MAL0.

22 M5RWS Master 5 Read/Write Status
0 Write error operation
1 Read error operation

21 M5FL Master 5 PCIC0_PLBBESR1 Field Lock
0 PCIC0_PLBBESR1 Unlocked
1 PCIC0_PLBBESR1 Locked

20 M5AL Master 5 PCIC0_PLBBEAR Address Lock
0 PCIC0_PLBBEAR unlocked by Master 5
1 PCIC0_PLBBEAR locked by Master 5

19:0 Reserved

31 26 25 23 22 21 20 19 0

M5ET

M5RWS

M5FL

M5AL
1023 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_PMC

PCI Power Management Capabilities
PCIC0_PMC

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x5A (Read-Only)

See “Power Management Capabilities (PCIC0_PMC)” on page 17-381.

Figure 26-161. Power Management Capabilities Register (PCIC0_PMC)
15:11 PMES PME Support The PCI bridge does not support PME#;

therefore, PMES is hardwired to
0b00000.

10 D2S D2 Support
Determines if the D2 power management
state is supported.

The PCI bridge does not support the D2
power management state; therefore, D2S
is hardwired to 0.

9 D1S D1 Support
Determines if the D1 power management
state is supported.

The PCI bridge supports the D1 power
management state; therefore, D1S is
hardwired to 1.

8:6 AUXCU
R

Auxiliary Current Support The PCI bridge does not support
Aux_Current; therefore, AUXCUR is
hardwired to 0b000.

5 DSI Device Specific Initialization
0 after reset

This bit indicates whether special
initialization of this function is required
(beyond the standard PCI configuration
header) before the generic class device
driver is able to use it.

4 Reserved Always read as 0.

3 PMECLK This bit is hardwired to 0 indicating that
the function does not support PME#
generation in any state.

2:0 VERS Returns 0b010 on reads, indicating that
PMC complies with Revision 1.1 of PCI
Power Management Interface
Specification.

15 11 10 9 8 6 5 4 3 2 0

PMES D1S

D2S AUXCUR

DSI

PMECLK

VERS
AMCC Proprietary 1024

405EP – PPC405EP Embedded Processor
PCIC0_PMCSR
PCI Power Management Control Status

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_PMCSR

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x5D–0x5C

See “Power Management Control/Status Register (PCIC0_PMCSR)” on page 17-382.

Figure 26-162. Power Management Control/Status Register (PCIC0_PMCSR)
15 PMEST The PCI bridge does not support PME#;

therefore, PMEST is hardwired to 0.
14:13 DSCAL The PCI bridge does not support data

register; therefore, DSCAL is hardwired to
0b00.

12:9 DSEL The PCI bridge does not support a data
register; therefore, DSEL is hardwired to
0b0000.

8 PMEEN The PCI bridge does not support PME
generation; therefore, PMEEN is hardwired
to 0.

7:2 Reserved Returns 0 when read.
1:0 PSTAT Determine the current power state of a

function and sets the function into a new
power state.
00 D0
01 D1
10 D2
11 D3 Hot

If software attempts to write a value for an
unsupported power state to PSTAT, its
value does not change. Writing this field
may change PCIC0_PMSCRR.

15 14 13 12 9 8 7 2 1 0

PMEST

PMEEN

DSEL PSTAT

DSCAL
1025 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_PMCSRBSE

PMCSR PCI to PCI Bridge Support Extensions
PCIC0_PMCSRBSE

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x5E Read-Only

See “PMCSR PCI-to-PCI Bridge Support Extensions (PCIC0_PMCSRBSE)” on page 17-382.

Figure 26-163. PMCSR PCI to PCI Bridge Support Extensions (PCIC0_PMCSRBSE)
7:0 PCI to PCI Bridge Support Extensions

7 0
AMCC Proprietary 1026

405EP – PPC405EP Embedded Processor
PCIC0_PMSCRR
PCI Power Management State Change Request Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_PMSCRR

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x64

See “Power Management State Change Request Register (PCIC0_PMSCRR)” on page 17-385.

Figure 26-164. Power Management State Change Request Register (PCIC0_PMSCRR)
7:5 Reserved Always read as 0.

4 APW Accept PCIC0_PMCSR Writes
Always 1 if DWE is 0.

The local processor sets APW when the
local processor is ready to change the
power management state. APW is cleared
when the host configuration writes to the
PCIC0_PMCSR register is accepted. The
local processor can write 0 to APW.

3 SCR State Change Request The PCI bridge sets SCR when a host
writes PCIC0_PMCSR to request a power
management state change. This drives an
interrupt to the local processor informing it
of a state change request. The local
processor must simultaneously clear SCR
and set APW = 1 when the local processor
is ready to change the state. After SCR is
cleared, new requests are not detected
until the outstanding delayed write is
accepted. The local processor can set
SCR = 1. Note that any host side write to
any byte (0x5C–0x5F) is considered a
power state change request.

2:1 REQST Request State Indicates the new power management
state requested by a delayed host write to
PCIC0_PMCSR. This field is read-only
from the PLB side.

0 DWE Delayed Write Enable
0 Immediate write
1 Delayed write

When DWE is set to 1, any configuration
write to the PCIC0_PMCSR is completed
as a delayed write. All writes to
PCIC0_PMCSR are retried until the local
processor sets the “Accept
PCIC0_PMCSR Write bit” (bit 4). When 0,
any configuration write to the
PCIC0_PMCSR is completed immediately.
DWE is a don’t care if a host write to
PCIC0_PMCSR requests a state change
from D3hot to D0.

7 5 4 3 2 1 0

DWE

REQSTAPW

SCR
1027 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_PTM1BAR

PCI PTM 1 Base Address Range
PCIC0_PTM1BAR

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x17–0x14

See “PCI PTM 1 BAR (PCIC0_PTM1BAR)” on page 17-369.

Figure 26-165. PCI PTM 1 BAR Register (PCIC0_PTM1BAR)
31:12 BA Base Address

These bits determine where in PCI memory
address space this region is located.

Only corresponding bits in PCIL0_PTM1MS
that are set to 1 are writable. Bits in
PCIL0_PTM1MS that are set to 0 cause
the corresponding Base Address register
bits to be always 0. PCIL0_PTM1MS must
be initialized by a PLB master before any
PCI device is allowed to configure this
register.

11:4 BAZ Base Address Always Zero BAZ = 0x00 because the minimum size of
this range is 4KB.

3 PF Prefetchable PF = 1 to indicate that prefetching is
allowed.

2:1 LT Location Type LT = 0b00 to indicate that the memory
space can be located anywhere in the 32-
bit address space.

0 MSI Memory Space Indicator MSI = 0 to indicate memory space, rather
than I/O space.

31 12 11 4 3 2 1 0

BA

BAZ MSI

LTPF
AMCC Proprietary 1028

405EP – PPC405EP Embedded Processor
PCIC0_PTM2BAR
PCI PTM 2 Base Address Range

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_PTM2BAR

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x1B–0x18

See “PCI PTM 2 BAR (PCIC0_PTM2BAR)” on page 17-370.

Figure 26-166. PCI PTM 2 BAR Register (PCIC0_PTM2BAR)
31:12 BA Base Address

These bits determine where in PCI
Memory address space this region is
located.

Only corresponding bits in
PCIL0_PTM2MS that are set to 1 are
writable. Bits in PCIL0_PTM2MS that
are set to 0 cause the corresponding
Base Address register bits to be always
0. PCIL0_PTM2MS must be initialized
by a PLB master before any PCI device
can configure this register.

11:4 BAZ Base Address Always Zero BAZ = 0x00 because the minimum size
of this range is 4KB.

3 PF Prefetchable PF = 1 to indicate that prefetching is
allowed.

2:1 LT Location Type LT = 0b00 to indicate that the memory
space can be located anywhere in the
32-bit address space.

0 MSI Memory Space Indicator MSI = 0 to indicate memory space,
rather than I/O space.

31 12 11 4 3 2 1 0

BA PF

MSILTBAZ
1029 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_REVID
PCI Revision ID
PCIC0_REVID

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x08 Read-Only

See “PCI Revision ID Register (PCIC0_REVID)” on page 17-366.

Figure 26-167. PCI Revision ID Register (PCIC0_REVID)
7:0 Revision ID Revision level of device.

7 0
AMCC Proprietary 1030

405EP – PPC405EP Embedded Processor
PCIC0_SBSYSID
PCI Subsystem ID

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_SBSYSID

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; Offset 0x2D–0x2C

See “PCI Subsystem ID Register (PCIC0_SBSYSID)” on page 17-371.

Figure 26-168. PCI Subsystem ID Register (PCIC0_SBSYSID)
15:0 PCI Subsystem ID

15 0
1031 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_SBSYSVID

PCI Subsystem Vendor ID
PCIC0_SBSYSVID

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; Offset 0x2F–0x2E

See “PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID)” on page 17-370.

Figure 26-169. PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID)
15:0 PCI Subsystem Vendor ID

15 0
AMCC Proprietary 1032

405EP – PPC405EP Embedded Processor
PCIC0_SBSYSVID
PCI Subsystem Vendor ID

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIC0_STATUS

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; offset 0x07–0x06
1033 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_STATUS

PCI Status Register
See “PCI Status Register (PCIC0_STATUS)” on page 17-364.

Figure 26-170. PCI Status Register (PCIC0_STATUS)
15 DEPE Detected Parity Error

Write 1 to clear.
The PCI bridge sets DEPE when the PCI
bridge detects a PCI bus parity error,
regardless of the setting of any enable bits
(DEPE is non-maskable).
The following events set DEPE:
• PCI address bus parity error detected

when PCI bridge is a target.
• PCI data bus parity error detected when

a PCI master writes to PLB memory (PCI
bridge is the target).

• PCI data bus parity error detected when
PCI bridge masters a PCI read cycle.

14 SSE Signaled System Error
Write 1 to clear.

The PCI bridge sets SSE if the PCI bridge
asserts PCISErr (see “Error Handling” on
page 17-386 for causes of PCISErr
assertion).

13 RMA Received Master Abort
Write 1 to clear.

The PCI bridge sets RMA when a PCI
cycle for which the PCI bridge is the
master is terminated with master abort.

12 RTA Received Target Abort
Write 1 to clear.

The PCI bridge sets RTA when a PCI cycle
for which it is the master is terminated with
target abort.

11 STA Signaled Target Abort
Write 1 to clear.

The PCI bridge sets STA when a PCI cycle
for which it is the target is terminated with
target abort.

10:9 DST PCIDevSel Response Timing
Read-only.

The PCI bridge asserts PCIDevSel on the
second clock after PCIFframe is asserted
(called medium response time).
Read-only; always returns 0b01 when
read.

8 DPE Data Parity Error Detected
Write 1 to clear.

DPE is set when the following conditions
are met:
• The PCI bridge detects a data parity

error (PCIPErr is asserted) when the PCI
bridge is the master on a PCI read cycle,
or is the master when it samples
PCIPErr asserted on a PCI write cycle.

• PCIC0_CMD[PER] = 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 0

SSE

DEPE RMA STA

RTA

DST FBBC

DPE UDFS

66C

CL
AMCC Proprietary 1034

405EP – PPC405EP Embedded Processor
PCIC0_STATUS (cont.)
PCI Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
7 FBBC Fast Back-to-Back Capable
Read-only; returns 0 when read.

Indicates that the PCI target can accept
fast back-to-back transactions when the
transactions are not to the same agent.
The PCI bridge target does not accept this
type of fast back-to-back transaction.

6 UDFS UDF Supported
Read-only; returns 0 when read.

Indicates device support of user-definable
features. The PCI bridge does not support
user-definable features.

5 66C 66 MHz Capable
0 At reset
1 PCI bridge is configured for 66MHz

operation.

Indicates that the device can run at 66
MHz. The PCI bridge can be configured to
run at 33 MHz max or 66 MHz. The local
CPU (PLB master) sets 66C to 1 if PCI
bridge is configured for 66 MHz operation.

4 CL Capabilities List
This bit is read only and returns 1 when
read.

Indicates that the value at offset 0x34 is a
pointer in configuration space to a linked
list of new capabilities.

3:0 Reserved These bits return 0s when read.
1035 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIC0_VENDID

PCI Vendor ID
PCIC0_VENDID

Accessed using PCIC0_CFGADDR, PCIC0_CFGDATA; Offset 0x01–0x00 Read-Only (PCI), R/W (PLB)

See “PCI Vendor ID Register (PCIC0_VENDID)” on page 17-362.

Figure 26-171. PCI Vendor ID Register (PCIC0_VENDID)
15:0 Vendor ID

15 0
AMCC Proprietary 1036

405EP – PPC405EP Embedded Processor
PCIL0_PMM0LA
PMM 0 Local Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PMM0LA

MMIO 0xEF400000

See “PMM 0 Local Address Register (PCIL0_PMM0LA)” on page 17-352.

Figure 26-172. PMM 0 Local Address Register (PCIL0_PMM0LA)
31:12 WLA Writable PLB Local Address

11:0 PLB Local Address Always 0

31 12 11 0

WLA
1037 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PMM0MA

PMM 0 Mask/Attribute
PCIL0_PMM0MA

MMIO 0xEF400004

See “PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)” on page 17-353.

Figure 26-173. PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)
31:12 MASK The mask bits determine the size of the

address map range.
The mask must be of the form 111....0000.
Bits set to 1 cause the corresponding
PCIL0_PMM0LA bits to be compared with
incoming PLB addresses. Note that the
minimum range size is 4KB, and valid
ranges are powers of 2. For example, a
128MB range would be encoded as
0xF8000 and a 4KB range would be
encoded as all ones.

11:2 Reserved Returns 0 when read.

1 PRE Read Prefetching Enable
1 Read prefetching is enabled.

If read prefetch is enabled, the PCI bridge
prefetches 64 bytes from PCI memory in
response to a PLB single-beat, byte-burst,
or half word burst read from PMM 0.

0 ENA PLB to PCI Memory Mapping Enable
1 Memory mapping is enabled.

Note that PCIL0_PMM0LA,
PCIL0_PMM0PCIHA, and
PCIL0_PMM0PCILA must be initialized
before enabling.

31 12 13 2 1 0

MASK

PRE

ENA
AMCC Proprietary 1038

405EP – PPC405EP Embedded Processor
PCIL0_PMM0PCIHA
PMM 0 PCI High Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PMM0PCIHA

MMIO 0xEF40000C

See “PMM 0 PCI High Address Register (PCIL0_PMM0PCIHA)” on page 17-354.

Figure 26-174. PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA)
31:0 PCI High Address

31 0
1039 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PMM0PCILA

PMM 0 PCI Low Address
PCIL0_PMM0PCILA

MMIO 0xEF400008

See “PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)” on page 17-353.

Figure 26-175. PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)
31:12 WLA Writable PCI Low Address

11:0 PCI Low Address Always 0

31 12 11 0

WLA
AMCC Proprietary 1040

405EP – PPC405EP Embedded Processor
PCIL0_PMM1LA
PMM 1 Local Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PMM1LA

MMIO 0xEF400010

See “PMM 1 Local Address Register (PCIL0_PMM1LA)” on page 17-354.

Figure 26-176. PMM 1 Local Address Register (PCIL0_PMM1LA)
31:0 PLB Local Address

31 0
1041 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PMM1MA

PMM 1 Mask/Attribute
PCIL0_PMM1MA

MMIO 0xEF400014

See “PMM 1 Mask/Attribute Register (PCIL0_PMM1MA)” on page 17-355.

Figure 26-177. PMM 1 Mask/Attribute Register (PCIL0_PMM1MA)
31:12 MASK The mask bits determine the size of the

address map range.
The mask must be of the form 111....0000.
Bits set to 1 cause the corresponding
PCIL0_PMM1LA bits to be compared with
incoming PLB addresses. Note that the
minimum range size is 4KB, and valid
ranges are powers of 2. For example, a
128MB range would be encoded as
0xF8000 and a 4KB range would be
encoded as 0x11111.

11:2 Reserved Returns 0 when read.
1 PRE Read Prefetching Enable

1 Read prefetching is enabled.
If read prefetch is enabled, the PCI bridge
prefetches 64 bytes from PCI memory in
response to a PLB single-beat, byte-burst,
or half word burst read from PMM 0.

0 ENA PLB to PCI Memory Mapping Enable
1 Memory mapping is enabled.

Note that PCIL0_PMM1LA,
PCIL0_PMM1PCIHA, and
PCIL0_PMM1PCILA must be initialized
before enabling.

31 12 11 2 1 0

MASK

PRE

ENA
AMCC Proprietary 1042

405EP – PPC405EP Embedded Processor
PCIL0_PMM1PCIHA
PMM 1 PCI High Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PMM1PCIHA

MMIO 0xEF40001C

See “PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA)” on page 17-356.

Figure 26-178. PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA)
31:0 PCI High Address

31 0
1043 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PMM1PCILA

PMM 1 PCI Low Address
PCIL0_PMM1PCILA

MMIO 0xEF400018

See “PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA)” on page 17-355.

Figure 26-179. PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA)
31:12 WLA Writable PCI Low Address

11:0 PCI Low Address Always 0

31 12 11 0

WLA
AMCC Proprietary 1044

405EP – PPC405EP Embedded Processor
PCIL0_PMM2LA
PMM 2 Local Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PMM2LA

MMIO 0xEF400020

See “PMM 2 Local Address Register (PCIL0_PMM2LA)” on page 17-356.

Figure 26-180. PMM 2 Local Address Register (PCIL0_PMM2LA)
31:0 PLB Local Address

31 0
1045 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PMM2MA

PMM 2 Mask/Attribute
PCIL0_PMM2MA

MMIO 0xEF400024

See “PMM 2 Mask/Attribute Register (PCIL0_PMM2MA)” on page 17-357.

Figure 26-181. PMM 2 Mask/Attribute Register (PCIL0_PMM2MA)
31:12 MASK The mask bits determine the size of the

address map range.
The mask must be of the form 111....0000.
Bits set to 1 cause the corresponding
PCIL0_PMM2LA bits to be compared with
incoming PLB addresses. Note that the
minimum range size is 4KB, and valid
ranges are powers of 2. For example, a
128MB range would be encoded as
0xF8000 and a 4KB range would be
encoded as 0x11111.

11:2 Reserved Returns 0 when read.

1 PRE Read Prefetching Enable
1 Read prefetching is enabled.

If read prefetch is enabled, the PCI bridge
prefetches 64 bytes from PCI memory in
response to a PLB single-beat, byte-burst,
or half word burst read from PMM 0.

0 ENA PLB to PCI Memory Mapping Enable
1 Memory mapping is enabled.

Note that PCIL0_PMM2LA,
PCIL0_PMM2PCIHA, and
PCIL0_PMM2PCILA must be initialized
before enabling.

31 12 11 2 1 0

MASK

PRE

ENA
AMCC Proprietary 1046

405EP – PPC405EP Embedded Processor
PCIL0_PMM2PCIHA
PMM 2 PCI High Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PMM2PCIHA

MMIO 0xEF40002C

See “PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA)” on page 17-358.

Figure 26-182. PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA)
31:0 PCI High Address

31 0
1047 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PMM2PCILA

PMM 2 PCI Low Address
PCIL0_PMM2PCILA

MMIO 0xEF400028

See “PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA)” on page 17-357.

Figure 26-183. PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA)
31:12 WLA Writable PCI Low Address

11:0 PCI Low Address Always 0

31 12 11 0

WLA
AMCC Proprietary 1048

405EP – PPC405EP Embedded Processor
PCIL0_PTM1LA
PTM 1 Local Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PTM1LA

MMIO 0xEF400034

See “PTM 1 Local Address Register (PCIL0_PTM1LA)” on page 17-359.

Figure 26-184. PTM 2 Local Address Register (PCIL0_PTM1LA)
31:12 WLA Writable PTM 1 Local Address Writable

11:0 PTM 1 Local Address Always 0

31 12 11 0

WLA
1049 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PTM1MS

PTM 1 Memory Size
PCIL0_PTM1MS

MMIO 0xEF400030

See “PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS)” on page 17-358.

Figure 26-185. PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS)
31:12 MASK Defines the size of the region of PCI

memory space that is mapped to local
(PLB) space using PTM 1.

The minimum range size is 4KB. Valid
ranges are always a power of 2.
For example, a value of 0xFF000000
indicates that the region contains 16MB.

11:1 Reserved Returns 0 when read.

0 ENA Determines if range 1 is enabled to map
PCI memory space to PLB space.

31 12 11 1 0

ENA

MASK
AMCC Proprietary 1050

405EP – PPC405EP Embedded Processor
PCIL0_PTM2LA
PTM 2 Local Address

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PCIL0_PTM2LA

MMIO 0xEF40003C

See “PTM 2 Local Address Register (PCIL0_PTM2LA)” on page 17-360.

Figure 26-186. PTM 2 Local Address Register (PCIL0_PTM2LA)
31:0 PTM 2 Local Address

31 0
1051 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIL0_PTM2MS

PTM 2 Memory Size
PCIL0_PTM2MS

MMIO 0xEF400038

See “PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS)” on page 17-359.

Figure 26-187. PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS)
31:12 MASK Defines the size of the region of PCI

memory space mapped to local (PLB)
space using PTM 2.

The minimum range size is 4KB. Valid
ranges are always a power of 2.
For example, a value of 0xFF000000
indicates that the region contains 16MB.

11:1 Reserved. Returns 0 when read.

0 ENA Determines if range 2 is enabled to map
PCI memory space to PLB space.

When ENA is disabled, PCIC0_PTM2BAR
cannot be written. Set PCIC0_PTM2BAR
to 0 before disabling ENA.

31 12 11 1 0

ENA

MASK
AMCC Proprietary 1052

405EP – PPC405EP Embedded Processor
PLB0_ACR
PLB Arbiter Control Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
26.Register SummaryPLB Registers
PLB0_ACR

DCR 0x087

See “PLB Arbiter Control Register (PLB0_ACR)” on page 2-57.

Figure 26-188. PLB Arbiter Control Register (PLB0_ACR)
0 PPM PLB Priority Mode

0 Fixed
1 Fair

1:3 PPO PLB Priority Order
000 Masters 0, 1, 2, 4, 5
001 Masters 1, 2, 4, 5, 0
010 Masters 2, 4, 5, 0, 1
011 Masters 4, 5, 0, 1, 2
100 Masters 5, 0, 1, 2, 4
101 Reserved
110 Reserved
111 Reserved

4 HBU High Bus Utilization
0 Disabled
1 Enabled

5:31 Reserved

0 1 3 4 5 31

PPM

PPO

HBU
1053 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PLB0_BEAR

PLB Error Address Register
PLB0_BEAR

DCR 0x086 Read-Only

See “PLB Error Address Register (PLB0_BEAR)” on page 2-57.

Figure 26-189. PLB Error Address Register (PLB0_BEAR)
0:31 Address of bus timeout error

0 31
AMCC Proprietary 1054

405EP – PPC405EP Embedded Processor
PLB0_BESR
PLB Error Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

PLB0_BESR

DCR 0x084 Read/Clear

See “PLB Error Status Register (PLB0_BESR)” on page 2-58.

Figure 26-190. PLB Error Status Register (PLB0_BESR)
0 PTE0 Master 0 PLB Timeout Error Status

0 No master 0 timeout error
1 Master 0 timeout error

Master 0 is DMA.

1 R/W0 Master 0 Read/Write Status
0 Master 0 error operation was a write
1 Master 0 ICU error operation was a read

2 FLK0 Master 0 PLB0_BESR Field Lock
0 Master 0 PLB0_BESR field is unlocked
1 Master 0 field is locked

3 ALK0 Master 0 PLB0_BEAR Address Lock
0 Master 0 PLB0_BEAR is unlocked
1 Master 0 PLB0_BEAR is locked

4 PTE1 Master 1 PLB Timeout Error Status
0 No master 1 timeout error
1 Master 1 timeout error

Master 1 is the processor core ICU.

5 R/W1 Master 1 Read/Write Status
0 Master 1 error operation was a write
1 Master 1 error operation was a read

6 FLK1 Master 1PLB0_BESR Field Lock
0 Master 1 PLB0_BESR field is unlocked
1 Master 1 PLB0_BESR field is locked

7 ALK1 Master 1 PLB0_BEAR Address Lock
0 Master 1 PLB0_BEAR is unlocked
1 Master 1 PLB0_BEAR is locked

8 PTE2 Master 2 PLB Timeout Error Status
0 No master 2 timeout error
1 Master 2 timeout error

Master 2 is the processor core DCU.

9 R/W2 Master 2 Read/Write Status
0 Master 2 error operation was a write
1 Master 2 error operation was a read

10 FLK2 Master 2 PLB0_BESR Field Lock
0 Master 2 PLB0_BESR field is unlocked
1 Master 2 PLB0_BESR field is locked

11 ALK2 Master 2 PLB0_BEAR Address Lock
0 Master 2 PLB0_BEAR is unlocked
1 Master 2 PLB0_BEAR is locked

12:15 Reserved
16 PTE4 Master 4 PLB Timeout Error Status

0 No master 4 timeout error
1 Master 4 timeout error

Master 4 is PCI bridge.

17 R/W4 Master 4 Read/Write Status
0 Master 4 error operation was a write
1 Master 4 error operation was a read
1055 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PLB0_BESR (cont.)

PLB Error Status Register
18 FLK4 Master 4 PLB0_BESR Field Lock
0 Master 4 PLB0_BESR field is unlocked
1 Master 4 field is locked

19 ALK4 Master 4 PLB0_BEAR Address Lock
0 Master 4 PLB0_BEAR is unlocked
1 Master 4 PLB0_BEAR is locked

20 PTE5 Master 5 PLB Timeout Error Status
0 No master 5 timeout error
1 Master 5 timeout error

Master 5 is MAL0.

21 R/W5 Master 5 Read/Write Status
0 Master 5 error operation was a write
1 Master 5 error operation was a read

22 FLK5 Master 5 PLB0_BESR Field Lock
0 Master 5 PLB0_BESR field is unlocked
1 Master 5 PLB0_BESR field is locked

23 ALK5 Master 5 PLB0_BEAR Address Lock
0 Master 5 PLB0_BEAR is unlocked
1 Master 5 PLB0_BEAR is locked

24:31 Reserved
AMCC Proprietary 1056

405EP – PPC405EP Embedded Processor
POB0_BEAR
Bridge Error Address Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

26.Register SummaryPLB-OPB Bridge Registers
POB0_BEAR

DCR 0x0A2 Read-Only

See “Bridge Error Address Register (POB0_BEAR)” on page 2-59.

Figure 26-191. Bridge Error Address Register (POB0_BEAR)
0:31 BEA Address of bus error

0 31

BEA
1057 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
POB0_BESR0

Bridge Error Status Register 0
POB0_BESR0

DCR 0x0A0 Read/Clear

See “Bridge Error Status Registers (POB0_BESR0–POB0_BESR1)” on page 2-60.

Figure 26-192. Bridge Error Status Register 0 (POB0_BESR0)
0:1 PTE0 PLB Timeout Error Status Master 0

00 No master 0 error occurred
01 Master 0 timeout error occurred
10 Master 0 slave error occurred
11 Reserved

Master 0 is DMA.

2 R/W0 Read Write Status Master 0
0 Master 0 error operation is a write
1 Master 0 error operation is a read

3 FLK0 POB0_BESR0 Field Lock Master 0
0 Master 0 POB0_BESR0 field is unlocked
1 Master 0 POB0_BESR0 field is locked

4 ALK0 POB0_BEAR Address Lock Master 0
0 Master 0 POB0_BEAR address is

unlocked
1 Master 0 POB0_BEAR address is locked

5:6 PTE1 PLB Timeout Error Status Master 1
00 No master 1 error occurred
01 Master 1 timeout error occurred
10 Master 1 slave error occurred
11 Reserved

Master 1 is the processor core ICU.

7 R/W1 Read/Write Status Master 1
0 Master 1 error operation is a write
1 Master 1 error operation is a read

8 FLK1 POB0_BESR0 Field Lock Master 1
0 Master 1 POB0_BESR0 field is unlocked
1 Master 1 POB0_BESR0 field is locked

9 ALK1 POB0_BEAR Address Lock Master 1
0 Master 1 POB0_BEAR address is

unlocked
1 Master 1 POB0_BEAR address is locked

10:11 PTE2 PLB Timeout Error Status Master 2
00 No master 2 error occurred
01 Master 2 timeout error occurred
10 Master 2 slave error occurred
11 Reserved

Master 2 is the processor core DCU.

12 R/W2 Read/Write Status Master 2
0 Master 2 error operation is a write
1 Master 2 error operation is a read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31

PTE0 PTE2FLK0 PTE1 FLK1 FLK2

R/W0 R/W2ALK0 R/W1 ALK1 ALK2
AMCC Proprietary 1058

405EP – PPC405EP Embedded Processor
POB0_BESR0 (cont.)
Bridge Error Status Register 0

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13 FLK2 POB0_BESR0 Field Lock Master 2
0 Master 2 POB0_BESR0 field is unlocked
1 Master 2 POB0_BESR0 field is locked

14 ALK2 POB0_BEAR Address Lock Master 2
0 Master 2 POB0_BEAR address is

unlocked
1 Master 2 POB0_BEAR address is locked

15:31 Reserved
1059 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
POB0_BESR1

Bridge Error Status Register 1
POB0_BESR1

DCR 0x0A4 Read/Clear

See “Bridge Error Status Registers (POB0_BESR0–POB0_BESR1)” on page 2-60.

Figure 26-193. Bridge Error Status Register 1 (POB0_BESR1)
0:1 PTE4 PLB Timeout Error Status Master 4

00 No Master 4 error occurred
01 Master 4 timeout error occurred
10 Master 4 slave error occurred
11 Reserved

Master 4 is PCI bridge.

2 R/W4 Read/Write Status Master 4
0 Master 4 error operation is a write
1 Master 4 error operation is a read

3 FLK4 POB0_BESR1 Field Lock Master 4
0 Master 4 POB0_BESR1 field is unlocked
1 Master 4 POB0_BESR1 field is locked

4 ALK4 POB0_BEAR Address Lock Master 4
0 Master 4 POB0_BEAR address is

unlocked
1 Master 4 POB0_BEAR address is locked

5:6 PTE5 PLB Timeout Error Status Master 5
00 No Master 5 error occurred
01 Master 5 timeout error occurred
10 Master 5 slave error occurred
11 Reserved

Master 5 is MAL0.

7 R/W5 Read/Write Status Master 5
0 Master 5 error operation is a write
1 Master 5 error operation is a read

8 FLK5 POB0_BESR1 Field Lock Master 5
0 Master 5 POB0_BESR1 field is unlocked
1 Master 5 POB0_BESR1 field is locked

9 ALK5 POB0_BEAR Address Lock Master 5
0 Master 5 POB0_BEAR address is

unlocked
1 Master 5 POB0_BEAR address is locked

10:31 Reserved

0 1 2 3 4 5 6 7 8 9 10 31

PTE4 FLK4 PTE5 FLK5

R/W4 ALK4 R/W5 ALK5
AMCC Proprietary 1060

405EP – PPC405EP Embedded Processor
SDRAM0_B0CR–SDRAM0_B1CR
Memory Bank 0–1 Configuration Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

26.Register SummarySDRAM Registers
SDRAM0_B0CR–SDRAM0_B1CR

DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x40–0x4C

See “Memory Bank 0–1 Configuration (SDRAM0_B0CR–SDRAM0_B1CR)” on page 15-294.

Figure 26-194. Memory Bank 0–1 Configuration Registers (SDRAM0_B0CR–
SDRAM0_B1CR)

0:9 BA Base Address The base address must be aligned on
a boundary that matches the size of
the region defined in the SZ field. For
example, a 4 MB region must begin on
an address that is divisible by 4 MB.

10:11 Reserved

12:14 SZ Size
000 4M byte
001 8M byte
010 16M byte
011 32M byte
100 64M byte
101 128M byte
110 256M byte
111 Reserved

15 Reserved

16:18 AM Addressing Mode
000 Mode 1
001 Mode 2
010 Mode 3
011 Mode 4
100 Mode 5
101 Mode 6
110 Mode 7
111 Reserved

See Table 15-4, “SDRAM Addressing
Modes,” on page 296.

19:30 Reserved

31 BE Memory Bank Enable
0 Bank is disabled
1 Bank is enabled

0 9 10 11 12 14 15 16 18 19 30 31

BA

SZ

AM

BE
1061 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SDRAM0_CFG

Memory Controller Configuration Register
SDRAM0_CFG

DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x20

See “Memory Controller Configuration Register (SDRAM0_CFG)” on page 15-292.

Figure 26-195. Memory Controller Configuration (SDRAM0_CFG)
0 DCE SDRAM Controller Enable

0 Disable
1 Enable

All SDRAM controller configuration
registers must be initialized and valid prior to
setting DCE.

1 SRE Self-Refresh Enable
0 Disable
1 Enable

See “Self-Refresh” on page 15-303.

2 PME Power Management Enable
0 Disable
1 Enabled

See “Power Management” on page 15-304.

3 Reserved
4 REGEN Registered Memory Enable

0 Disabled
1 Enabled

5:6 DRW SDRAM Width
00 32-bit
01 Reserved
10 Reserved
11 Reserved

Must be set to 0b00.

7:8 BRPF Burst Read Prefetch Granularity
00 Reserved
01 16 bytes
10 32 bytes
11 Reserved

Most applications should set this field to 0b01.

9 Reserved
10 EMDULR Enable Memory Data Unless Read

0 MemData0:31 are placed in high
impedance unless a memory write
is being performed.

1 MemData0:31 are driven unless a
memory read is being performed.

11:31 Reserved

0 1 2 3 4 5 6 7 8 9 10 11 31

DCE

SRE

BRPFPME
REGEN

DRW

EMDULR
AMCC Proprietary 1062

405EP – PPC405EP Embedded Processor
SDRAM0_CFGADDR
Memory Controller Address Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SDRAM0_CFGADDR

DCR 0x010

See “Accessing SDRAM Registers” on page 15-291.

Figure 26-196. SDRAM Configuration Address Register (SDRAM0_CFGADDR)
0:31 Offset of indirectly-accessed DCR

0 31
1063 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SDRAM0_CFGDATA

Memory Controller Data Register
SDRAM0_CFGDATA

DCR 0x011

See “Accessing SDRAM Registers” on page 15-291.

Figure 26-197. SDRAM Configuration Data Register (SDRAM0_CFGDATA)
0:31 Data from indirectly-accessed DCR

0 31
AMCC Proprietary 1064

405EP – PPC405EP Embedded Processor
SDRAM0_ECCCFG
ECC Configuration Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SDRAM0_ECCCFG

Offset 0x94 DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x94

See “ECC Configuration Register (SDRAM0_ECCCFG)” on page 26-1065.

Figure 26-198. ECC Configuration Register (SDRAM0_ECCCFG)
0:7 Reserved

8 CE0 ECC Correction Enable for Bank 0.
0 Disabled
1 Enabled

9 CE1 ECC Correction Enable for Bank 1.
0 Disabled
1 Enabled

10 CE2 ECC Correction Enable for Bank 2.
0 Disabled
1 Enabled

11 CE3 ECC Correction Enable for Bank 3.
0 Disabled
1 Enabled

12:31 Reserved

Figure 26-199. ECC Error Status Register (SDRAM0_ECCESR)
0:3 EWBLnCE Even Word Byte Lane n Corrected Error

0000 No error
0001 Error occurred in byte lane 0
0010 Error occurred in byte lane 1
0100 Error occurred in byte lane 2
1000 Error occurred in byte lane 3

Because only one byte lane corrected
error can occur at a time, field values
containing more than one 1 do not occur.

4:7 OWBLnCE Odd Word Byte Lane n Corrected Error
0000 No error
0001 Error occurred in byte lane 0
0010 Error occurred in byte lane 1
0100 Error occurred in byte lane 2
1000 Error occurred in byte lane 3

Because only one byte lane corrected
error can occur at a time, field values
containing more than one 1 do not occur.

0 7 8 9 10 11 12 31

CE0 CE2

CE1 CE3

0 3 4 7 8 9 10 11 12 15 16 17 18 19 20 31

EWBLnCE CE BK0E

CBE UEOWBLnCE

BK2E

BK1E BK3E
1065 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SDRAM0_ECCCFG

ECC Configuration Register
8:9 CBE Error Detected in Check bits
00 No error
01 Error in lower check bits
10 Error in upper check bits
11 Error in both sets of check bits

10 CE Correctable Error

11 UE Uncorrectable Error

12:15 Reserved

16 BK0E Bank 0 Error
0 No error
1 Error occurred in bank 0

17 BK1E Bank 0 Error
0 No error
1 Error occurred in bank 1

18 BK2E Bank 0 Error
0 No error
1 Error occurred in bank 2

19 BK3E Bank 0 Error
0 No error
1 Error occurred in bank 3

20:31 Reserved
AMCC Proprietary 1066

405EP – PPC405EP Embedded Processor
SDRAM0_PMIT
Power Management Idle Timer

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SDRAM0_PMIT

DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x34

See “Power Management Idle Timer (SDRAM0_PMIT)” on page 15-304.

Figure 26-200. Power Management Idle Timer (SDRAM0_PMIT)
0:4 CNT Cycle Count Before Sleep Request

(0b00000–0b11111)
If CNT = 0b00000, the SDRAM clock must
be idle for 32 cycles before the SDRAM
controller asserts a sleep request.

5:9 Always 0b11111

10:31 Reserved

0 4 5 9 10 31

CNT

11111
1067 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SDRAM0_RTR

Refresh Timer Register
SDRAM0_RTR

DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x30

See “Refresh Timer Register (SDRAM0_RTR)” on page 15-303.

Figure 26-201. Refresh Timing Register (SDRAM0_RTR)
0:1 Always 0b00

2:12 IV Interval Including bits 0:1 and 13:15, the value of
the high-order halfword of the register can
range from 0x0000–0x3BF8

13:15 Always 0b000

16:31 Reserved

0 1 2 12 13 15 16 31

IV

00 000
AMCC Proprietary 1068

405EP – PPC405EP Embedded Processor
SDRAM0_STATUS
SDRAM Controller Status

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

SDRAM0_STATUS

DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x24

See “Memory Controller Status (SDRAM0_STATUS)” on page 15-294.

Figure 26-202. Memory Controller Status (SDRAM0_STATUS)
0 MRSCMP Mode Register Set Complete

0 MRS not complete
1 MRS completed

Set to 1 when the SDRAM controller completes
the Mode Register Set Command, which results
from setting SDRAM0_CFG[DCE].
Clearing SDRAM0_CFG[DCE] causes this bit to
clear in the following MemClkOut1:0 cycle.

1 SRSTATUS Self-Refresh State
0 Not in Self-Refresh Mode
1 Self-Refresh Mode

See “Self-Refresh” on page 15-303.

2:31 Reserved

0 1 2 31

MRSCMP

SRSTATUS
1069 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
SDRAM0_TR

SDRAM Timing Register
SDRAM0_TR

DCR Accessed using SDRAM0_CFGADDR; SDRAM0_CFGDATA; Offset 0x80

See “SDRAM Timing Register (SDRAM0_TR)” on page 15-298.

Figure 26-203. SDRAM Timing Register (SDRAM0_TR)
0:6 Reserved

7:8 CASL SDRAM CAS latency.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

9:11 Reserved

12:13 PTA SDRAM Precharge Command to next
Activate Command minimum.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

14:15 CTP SDRAM Read / Write Command to
Precharge Command minimum.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

16:17 LDF SDRAM Command Leadoff.
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles

18:26 Reserved

27:29 RFTA SDRAM CAS before RAS Refresh
Command to next Activate Command
minimum.
000 4 MemClkOut1:0 cycles
001 5 MemClkOut1:0 cycles
010 6 MemClkOut1:0 cycles
011 7 MemClkOut1:0 cycles
100 8 MemClkOut1:0 cycles
101 9 MemClkOut1:0 cycles
110 10 MemClkOut1:0 cycles
111 Reserved

0 6 7 8 9 11 12 13 14 15 16 17 18 26 27 29 30 31

CASL

PTA

CTP

LDF

RFTA

RCD
AMCC Proprietary 1070

405EP – PPC405EP Embedded Processor
SDRAM0_TR
SDRAM Timing Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
30:31 RCD SDRAM RAS to CAS Delay
00 Reserved
01 2 MemClkOut1:0 cycles
10 3 MemClkOut1:0 cycles
11 4 MemClkOut1:0 cycles
1071 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_DLL

UART Baud-Rate Divisor Latch LSB Registers
26.Register SummaryUART Registers
UARTx_DLL

MMIO 0xEF600300 (UART0), 0xEF600400 (UART1)

See “UART Baud-Rate Divisor Latch (LSB) Registers (UARTx_DLL)” on page 21-558.

Figure 26-204. UART Baud-Rate Divisor Latch (LSB) Registers (UARTx_DLL)
8:15 Data bits

Note: UARTx_DLL is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

8 15
AMCC Proprietary 1072

405EP – PPC405EP Embedded Processor
UARTx_DLM
UART Baud-Rate Divisor Latch MSB Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UARTx_DLM

MMIO 0xEF600301 (UART0), 0xEF600401 (UART1)

See “UART Baud-Rate Divisor Latch (MSB) Registers (UARTx_DLM)” on page 21-558.

Figure 26-205. UART Baud-Rate Divisor Latch (MSB) Registers (UARTx_DLM)
0:7 Data bits

Note: UARTx_DLM is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 7
1073 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_FCR

UART FIFO Control Registers
UARTx_FCR

MMIO 0xEF600302 (UART0), 0xEF600402 (UART1) Write-Only

See “FIFO Control Registers (UARTx_FCR)” on page 21-551.

Figure 26-206. UART FIFO Control Registers (UARTx_FCR)
0:1 RFTL Receiver FIFO Trigger Level

00 1 byte
01 16 bytes
10 32 bytes
11 56 bytes

2:3 Reserved

4 DMS DMA Mode Select
0 Mode 0 = single transfer
1 Mode 1 = multiple transfers

Select single or multiple transfer mode if
UARTx_FCR[7] = 1.

5 TFR Transmitter FIFO Reset
0 Operation complete
1 Reset the transmitter FIFO

A 1 written to this bit clears all bytes in the
transmitter FIFO and resets all of its
counter logic to 0. The transmitter shift
register is not cleared. This bit is self-
clearing.

6 RFR Receiver FIFO Reset
0 Operation complete
1 Reset the receiver FIFO

A 1 written to this bit clears all bytes in the
receiver FIFO and resets all of its counter
logic to 0. The receiver shift register is not
cleared. This bit is self-clearing.

7 FE FIFO Enable
0 Disable FIFOs
1 Enable FIFOs

When set to 1, both the receiver and
transmitter FIFOs are enabled. When set
to 0, both receiver and transmitter FIFOs
are reset. Data is automatically cleared
from both FIFOs when changing to and
from FIFO and 16450 modes.
Programming other bits will be ignored if
this bit is not a 1.

Note: UARTx_FCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

RFTL DMS

TFR

RFR

FE
AMCC Proprietary 1074

405EP – PPC405EP Embedded Processor
UARTx_IER
UART Interrupt Enable Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UARTx_IER

MMIO 0xEF600301 (UART0), xEF600401 (UART1)

See “Interrupt Enable Registers (UARTx_IER)” on page 21-549.

Figure 26-207. UART Interrupt Enable Registers (UARTx_IER)
0:3 Reserved Always 0.

4 EDSSI Enable Modem Status Interrupt
0 Disable modem status interrupt
1 Enable modem status interrupt

5 ELSI Enable Receiver Line Status Interrupt
0 Disable receiver line status interrupt
1 Enable receiver line status interrupt

6 ETBEI Enable Transmitter Holding Register
Empty Interrupt
0 Disable transmitter holding register

empty interrupt
1 Enable transmitter holding register empty

interrupt

7 ERBFI Enable Received Data Available Interrupt
0 Disable received data available interrupt
1 Enable received data available interrupt

In FIFO mode, timeout interrupts follow the
enable/disable state of ERDAI.

Note: UARTx_IER is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb

0 3 4 5 6 7

ETBEI

ERBFIELSI

EDSSI
1075 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_IIR

UART Interrupt Identification Registers
UARTx_IIR

MMIO 0xEF600302 (UART0), 0xEF600402 (UART1) Read-Only

See “Interrupt Identification Registers (UARTx_IIR)” on page 21-550.

Figure 26-208. UART Interrupt Identification Registers (UARTx_IIR)
0:1 FCI FIFO Control Indicator

00 FIFOs disabled (UARTx_FCR[FE] = 0)
01 Reserved
10 Reserved
11 FIFOs enabled (UARTx_FCR[FE] = 1)

2:3 Reserved

4:6 IPL Interrupt Priority Level
000 Priority level 4
001 Priority level 3
010 Priority level 2
011 Priority level 1
100 Reserved
101 Reserved
110 Priority level 2
111 Reserved

See Table 21-3.

Note: Priority 1 is highest priority.

7 IP Interrupt Pending
0 Interrupt is pending
1 No interrupt pending

When set to 0, IIR contents can be used as
a pointer to the appropriate interrupt
service routine.

Note: UARTx_IIR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 6 7

IPL

IP

FCI
AMCC Proprietary 1076

405EP – PPC405EP Embedded Processor
UARTx_LCR
UART Line Control Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UARTx_LCR

MMIO 0xEF600303 (UART0), 0xEF600403 (UART1)

See “Line Control Registers (UARTx_LCR)” on page 21-552.

Figure 26-209. UART Line Control Registers (UARTx_LCR)
0 DLAB Divisor Latch Access Bit

0 Address RBR, THR and IER with
LTADR2-0 for read or write operation

1 Address Divisor Latches with LTADR2-0
for read or write operation

1 SB Set Break
0 Disable Break
1 Enable Break

Causes a break condition to be transmitted
to the UART when the core is receiving.
SOUT is forced to the spacing state (0).
This bit acts only on SOUT and has no
effect on the transmitter logic.

2 SP Sticky Parity
0 Disable sticky parity
1 Enable sticky parity

If UARTx_LCR[EPS] = 1 and
UARTx_LCR[PEN] = 1, the parity bit is
transmitted and checked as 0. If
UARTx_LCR [EPS] = 0 and
UARTx_LCR[PEN] = 1,the parity bit is
transmitted and checked as 1.

3 EPS Even Parity Select
0 Generate odd parity
1 Generate even parity

This bit is significant only if
UARTx_LCR[PEN] = 1.

4 PEN Parity Enable
0 Disable parity checking
1 Enable parity checking

5 SBS Stop Bit Select
0 Characters have 1 stop bit
1 Characters have 1.5 or 2 stop bits

If UARTx_LCR[WLS] = 00, characters
have 1.5 stop bits. For any other value of
UARTx_LCR[WLS], characters have 2 stop
bits.
The receiver checks the first stop bit only,
regardless of how many stop bits are
selected.

6:7 WLS0,
WLS1

Word Length Select Bits 0,1
00 Use 5-bit characters
01 Use 6-bit characters
10 Use 7-bit characters
11 Use 8-bit characters

Note: UARTx_LCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

DLAB

SB

SP

EPS

PEN

SBS

WLS
1077 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_LSR

UART Line Status Registers
UARTx_LSR

MMIO 0xEF600305 (UART0), 0xEF600405 (UART1)

See “Line Status Registers (UARTx_LSR)” on page 21-555.

Figure 26-210. UART Line Status Registers (UARTx_LSR)
0 RFE Receiver FIFO Error Indicator

0 In FIFO mode, reset to 0 when the
processor reads the UARTx_LSR,
provided there are no subsequent errors
in the FIFO.

1 There are one or more instances of
parity error, framing error or break
indication in the FIFO.

Always 0 in 16450 mode.

1 TEMT Transmitter Empty Indicator
0 Reset to 0 whenever the THR or the

transmitter shift register contain a
character. In FIFO mode, it is reset to 0
whenever the transmitter FIFO or the
transmitter shift register contain a
character.

1 Set to 1 when the THR and the
Transmitter shift register are both empty.
In FIFO mode, it is set to 1 when the
transmitter FIFO and the transmitter shift
register are both empty.

2 THRE Transmitter Holding Register Empty
Indicator
0 Concurrent reset to 0 with the loading of

the THR by the processor. In FIFO mode
it is reset to 0 when at least one byte is
written to the transmitter FIFO.

1 Set to 1 when the UART is ready to
accept a new character for transmission.
In FIFO mode, this bit is set when the
transmitter FIFO is empty.

When UARTx_IER[THRE] = 1, the UART
issues an interrupt to the UIC. This bit is
set to 1 when a character is transferred
from the THR to the transmitter shift
register.

3 BI Break Interrupt Indicator
0 Reset to 0 whenever processor reads

Line Status Register (LSR).
1 Set to 1 whenever the received data

input is held at the spacing level (0) for
longer than a full word transmission time.

The word transmission time is the time
required for the start bit, data bits (can be
5–8 bits), parity and stop bits. In FIFO
mode, this error is reported to the
processor when the character associated
with the error is at the top of the FIFO. Only
one 0 character is loaded into the receiver
FIFO when a break occurs. After the next
valid start bit is received and is in the
marking state, the next character transfer is
enabled. The error causes a Receiver Line
Status Interrupt.

0 1 2 3 4 5 6 7

RFE

TEMT

THRE

BI

FE

PE

OE

DR
AMCC Proprietary 1078

405EP – PPC405EP Embedded Processor
UARTx_LSR (cont.)
UART Line Status Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
4 FE Framing Error Indicator.
0 Reset to 0 whenever processor reads

LSR.
1 Set to 1 whenever stop bit following the

last data bit or parity bit is detected as 0
(spacing level).Indicates that a valid stop
bit was not found in the received
character.

Error causes a Receiver Line Status
Interrupt.

5 PE Parity Error Indicator.
0 Reset to 0 whenever processor reads

UARTx_LSR.
1 Indicates that the received data

character does not have the correct
parity as determined by the even parity
select bit (UARTx_LCR.[EPS]). Set to 1
upon detection of a parity error.

In FIFO mode, this error is revealed to the
processor when the character this error is
associated with is at the top of the FIFO.
Error causes a Receiver Line Status
Interrupt.

6 OE Overrun Error Indicator.
0 Reset to 0 whenever processor reads

UARTx_LSR.
1 Data in the RBR was read by the

processor before the next character was
transferred into the UARTx_RBR, hence
the original data was lost.

In FIFO mode, if the incoming data
continues to fill the FIFO beyond the trigger
level, an OE occurs only after the FIFO is
completely full and the entire next
character has been received in the receiver
shift register. The processor is informed of
the OE immediately upon occurrence. The
character in the shift register will be
overwritten and will not be transferred to
the FIFO. Error causes a Receiver Line
Status Interrupt.

7 DR Receiver Data Ready Indicator.
0 Reset to 0 when all data has been read

from the receiver FIFO or the
UARTx_RBR.

1 An entire incoming character has been
received into the UARTx_RBR or
receiver FIFO.

Note: UARTx_LSR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.
1079 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_MCR

UART Modem Control Registers
UARTx_MCR

MMIO 0xEF600304 (UART0), 0xEF600404 (UART1)

See “Modem Control Registers (UARTx_MCR)” on page 21-553.

Figure 26-211. UART Modem Control Registers (UARTx_MCR)
0:1 Reserved Always 0.
2 AFC Auto Flow Control

0 Disabled
1 Enabled

3 LOOP Loopback Mode
0 Disabled
1 Enabled

Provides a local loopback feature for diagnostic
testing of the UART. The following occurs:
1. SOUT is set to the marking state (logic 1) SIN is

disconnected.
2. The output of the transmitter shift register feeds

the input of the receiver shift register.
3. The four modem control inputs DSR, CTS, RI,

and DCD are disconnected.
4. The four modem control outputs DTR, RTS,

OUT1, and OUT2 are set to a logic 1 (their
inactive state).

5. The four modem control outputs are connected
internally to the four modem control inputs.

Transmitted data is immediately received to verify
the UART transmit and receive data paths.
Receiver and transmitter interrupts are operational.
Their sources are external to the UART. Also
operational are the modem control interrupts, but
their source is the low-order 4 bits of UARTx_MCR
instead of the modem control inputs to the UART.
UARTx_IER still controls the interrupts.

4 OUT2 User Output 2
0 OUT2 inactive (1)
1 OUT2 active (0)

May be written or read, but provides no function.

5 OUT1 User Output 1
0 OUT1 inactive (1)
1 OUT1 active (0)

May be written or read, but provides no function.

6 RTS Request To Send
0 RTS inactive (1)
1 RTS active (0)

7 DTR Data Terminal Ready
0 DTR inactive (1)
1 DTR active (0)

Note: UARTx_MCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

DTROUT1

RTSOUT2

LOOP

AFC
AMCC Proprietary 1080

405EP – PPC405EP Embedded Processor
UARTx_MSR
UART Modem Status Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UARTx_MSR

MMIO 0xEF600306 (UART0), 0xEF600406 (UART1)

See “Modem Status Registers (UARTx_MSR)” on page 21-557.

Figure 26-212. UART Modem Status Registers (UARTx_MSR)
0 DCD Data Carrier Detect In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[OUT2].
1 RI Complement of Ring Indicator In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[OUT1].
2 DSR Complement of Data Set Ready In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[DTR].
3 CTS Complement of Clear To Send In loopback mode (UARTx_MCR[LOOP] is

1), it is equivalent to UARTx_MCR[RTS].
4 DDCD Delta Data Carrier Detect

0 Set when processor reads the Modem
Status Register

1 DCD input changed state

Indicates that the DCD input to the UART
has changed state since the processor last
read the Modem Status Register. A modem
status interrupt is generated.

5 TERI Trailing Edge of Ring Indicator
0 Set when processor reads the Modem

Status Register
1 RI input changed from 0 to 1

Indicates that the RI input to the UART
changed from 0 to 1 since the processor
last read the Modem Status Register. A
modem status interrupt is generated.

6 DDSR Delta Data Set Ready
0 Set when processor reads the Modem

Status Register
1 DSR input changed state

Indicates that the DSR input to the UART
has changed state since the processor last
read the Modem Status Register. A modem
status interrupt is generated.

7 DCTS Delta Clear To Send
0 Set when processor reads the Modem

Status Register
1 CTS input changed state

Indicates that the CTS input to the UART
has changed state since the processor last
read the Modem Status Register. A modem
status interrupt is generated.

Note: UARTx_MSR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 1 2 3 4 5 6 7

DCTS

DDSR

TERI
CTS

RI

DDCD
DSR

DCD
1081 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_RBR

UART Receiver Buffer Registers
UARTx_RBR

MMIO 0xEF600300 (UART0), 0xEF600400 (UART1) Read-Only

See “Receiver Buffer Registers (UARTx_RBR)” on page 21-548.

Figure 26-213. UART Receiver Buffer Registers (UARTx_RBR)
0:7 Data bit

Note: UARTx_RBR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 7
AMCC Proprietary 1082

405EP – PPC405EP Embedded Processor
UARTx_SCR
UART Scratchpad Registers

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UARTx_SCR

MMIO 0xEF600307 (UART0), 0xEF600407 (UART1)

See “Scratchpad Registers (UARTx_SCR)” on page 21-557.

Figure 26-214. Scratchpad Registers (UARTx_SCR)
0:7 Data bits

Note: UARTx_SCR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 7
1083 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_THR

UART Transmitter Holding Registers
UARTx_THR

MMIO 0xEF600300 (UART0), 0xEF600400 (UART1) Write-Only

See “Transmitter Holding Registers (UARTx_THR)” on page 21-549.

Figure 26-215. UART Transmitter Holding Registers (UARTx_THR)
0:7 Data bit

Note: UARTx_THR is shown in standard PowerPC bit notation, where 0 is the MSb and 7 is the LSb.

0 7
AMCC Proprietary 1084

405EP – PPC405EP Embedded Processor
UIC0_CR
UIC Critical Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

26.Register SummaryUIC Registers
UIC0_CR

DCR 0x0C3

See “UIC Critical Register (UIC0_CR)” on page 10-210.
1085 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_CR (cont.)

UIC Critical Register

Figure 26-216. UIC Critical Register (UIC0_CR)
0 U0IC UART0 Interrupt Class

0 UART0 interrupt is non-critical.
1 UART0 interrupt is critical.

1 U1IC UART1 Interrupt Class
0 UART1 interrupt is non-critical.
1 UART1 interrupt is critical.

2 IICIC IIC Interrupt Class
0 IIC interrupt is non-critical.
1 IIC interrupt is critical.

3 PCIIC PCI Interrupt Class
0 PCI interrupt is non-critical.
1 PCI interrupt is critical.

4 Reserved

5 D0IC DMA Channel 0 Interrupt Class
0 DMA channel 0 interrupt is non-critical.
1 DMA channel 0 interrupt is critical.

6 D1IC DMA Channel 1 Interrupt Class
0 DMA channel 1 interrupt is non-critical.
1 DMA channel 1 interrupt is critical.

7 D2IC DMA Channel 2 Interrupt Class
0 DMA channel 2 interrupt is non-critical.
1 DMA channel 2 interrupt is critical.

8 D3IC DMA Channel 3 Interrupt Class
0 DMA channel 3 interrupt is non-critical.
1 DMA channel 3 interrupt is critical.

9 EWIC Ethernet Wake-up Interrupt Class
0 Ethernet wake-up interrupt is non-critical.
1 Ethernet wake-up interrupt is critical.

10 MSIC MAL SERR Interrupt Class
0 MAL SERR interrupt is non-critical.
1 MAL SERR interrupt is critical.

11 MTEIC MAL TX EOB Interrupt Class
0 MAL TX EOB interrupt is non-critical.
1 MAL TX EOB interrupt is critical.

12 MREIC MAL RX EOB Interrupt Class
0 MAL RX EOB interrupt is non-critical.
1 MAL RX EOB interrupt is critical.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

U0IC

U1IC

IICIC

PCIIC

D1IC

EIR4CD0IC

D3IC MSIC MREIC MRDIC

D2IC EWIC MTEIC MTDIC EIC0

EPSIC EIR1C EIR3C EIR5C

EIR0C EIR2C EIR6CEIC1

PPMIC

GTI0C

GTI1C GTI3C

GTI2C GTI4C
AMCC Proprietary 1086

405EP – PPC405EP Embedded Processor
UIC0_CR (cont.)
UIC Critical Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13 MTDIC MAL TX DE Interrupt Class
0 MAL TX DE interrupt is non-critical.
1 MAL TX DE interrupt is critical.

14 MRDIC MAL RX DE Interrupt Class
0 MAL RX DE interrupt is non-critical.
1 MAL RX DE interrupt is critical.

15 EIC0 EMAC0 Interrupt Class
0 An EMAC0 interrupt is non-critical.
1 An EMAC0 interrupt is critical.

16 EPSIC External PCI SERR Interrupt Class
0 External PCI SERR interrupt is non-

critical.
1 External PCI SERR interrupt is critical.

17 EIC1 EMAC1 Interrupt Class
0 An EMAC1 interrupt is non-critical.
1 An EMAC1 interrupt is critical.

19 GTI0C General Purpose Timer Interrupt 0 Class
0 GPT interrupt 0 is non-critical.
1 GPT interrupt 0 is critical.

20 GTI1C General Purpose Timer Interrupt 1 Class
0 GPT interrupt 1 is non-critical.
1 GPT interrupt 1 is critical.

21 GTI2C General Purpose Timer Interrupt 2 Class
0 GPT interrupt 2 is non-critical.
1 GPT interrupt 2 is critical.

22 GTI3C General Purpose Timer Interrupt 3 Class
0 GPT interrupt 3 is non-critical.
1 GPT interrupt 3 is critical.

23 GTI4C General Purpose Timer Interrupt 4 Class
0 GPT interrupt 4 is non-critical.
1 GPT interrupt 4 is critical.

24 Reserved

25 EIR0C External IRQ 0 Class
0 An external IRQ 0 interrupt is non-critical.
1 An external IRQ 0 interrupt is critical.

26 EIR1C External IRQ 1 Class
0 An external IRQ 1 interrupt is non-critical.
1 An external IRQ 1 interrupt is critical.

27 EIR2C External IRQ 2 Class
0 An external IRQ 2 interrupt is non-critical.
1 An external IRQ 2 interrupt is critical.

28 EIR3C External IRQ 3 Class
0 An external IRQ 3 interrupt is non-critical.
1 An external IRQ 3 interrupt is critical.

29 EIR4C External IRQ 4 Class
0 An external IRQ 4 interrupt is non-critical.
1 An external IRQ 4 interrupt is critical.
1087 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_CR (cont.)

UIC Critical Register
UIC0_ER

30 EIR5C External IRQ 5 Class
0 An external IRQ 5 interrupt is non-critical.
1 An external IRQ 5 interrupt is critical.

31 EIR6C External IRQ 6 Class
0 An external IRQ 6 interrupt is non-critical.
1 An external IRQ 6 interrupt is critical.
AMCC Proprietary 1088

405EP – PPC405EP Embedded Processor
UIC0_ER
UIC Interrupt Enable Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UIC0_ER

DCR 0x0C2

See “UIC Enable Register (UIC0_ER)” on page 10-208.
1089 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_ER (cont.)

UIC Interrupt Enable Register
Figure 26-217. UIC Enable Register (UIC0_ER)
0 U0IE UART0 Interrupt Enable

0 UART0 interrupt is disabled.
1 UART0 interrupt is enabled.

1 U1IE UART1 Interrupt Enable
0 UART1 interrupt is disabled.
1 UART1 interrupt is enabled.

2 IICIE IIC Interrupt Enable
0 IIC interrupt is disabled.
1 IIC interrupt is enabled.

3 PCIIE PCI Interrupt Enable
0 PCI interrupt is disabled.
1 PCI interrupt is enabled.

Enables a PCI interrupt when an external
write to PCIC0_CMD is performed.

4 Reserved

5 D0IE DMA Channel 0 Interrupt Enable
0 DMA channel 0 interrupt is disabled.
1 DMA channel 0 interrupt is enabled.

6 D1IE DMA Channel 1 Interrupt Enable
0 DMA channel 1 interrupt is disabled.
1 DMA channel 1 interrupt is enabled.

7 D2IE DMA Channel 2 Interrupt Enable
0 DMA channel 2 interrupt is disabled.
1 DMA channel 2 interrupt is enabled.

8 D3IE DMA Channel 3 Interrupt Enable
0 DMA channel 3 interrupt is disabled.
1 DMA channel 3 interrupt is enabled.

9 EWIE Ethernet Wake-up Interrupt Enable
0 Ethernet wake-up interrupt is disabled.
1 Ethernet wake-up interrupt is enabled.

10 MSIE MAL SERR Interrupt Enable
0 MAL SERR interrupt is disabled.
1 MAL SERR interrupt is enabled.

11 MTEIE MAL TX EOB Interrupt Enable
0 MAL TX EOB interrupt is disabled.
1 MAL TX EOB interrupt is enabled.

12 MREIE MAL RX EOB Interrupt Enable
0 MAL RX EOB interrupt is disabled.
1 MAL RX EOB interrupt is enabled.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

U0IE

U1IE

IICIE

PCIIE

D1IE

EIR4ED0IE

D3IE MSIE MREIE MRDIE

D2IE EWIE MTEIE MTDIE EIE0

EPSIE EIR1E EIR3E EIR5E

EIR0E EIR2E EIR6EEIE1

PPMIE

GTI0E

GTI1E GTI3E

GTI2E GTI4E
AMCC Proprietary 1090

405EP – PPC405EP Embedded Processor
UIC0_ER (cont.)
UIC Interrupt Enable Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13 MTDIE MAL TX DE Interrupt Enable
0 MAL TX DE interrupt is disabled.
1 MAL TX DE interrupt is enabled.

14 MRDIE MAL RX DE Interrupt Enable
0 MAL RX DE interrupt is disabled.
1 MAL RX DE interrupt is enabled.

15 EIE0 EMAC0 Interrupt Enable
0 An EMAC0 interrupt is disabled.
1 An EMAC0 interrupt is enabled.

16 EPSIE External PCI SERR Interrupt Enable
0 External PCI SERR interrupt is disabled.
1 External PCI SERR interrupt is enabled.

17 EIE1 EMAC1 Interrupt Enable
0 An EMAC1 interrupt is disabled.
1 An EMAC1 interrupt is enabled.

18 PPMI PCI Power management Interrupt Enable
0 PCI power management interrupt is

disabled.
1 PCI power management interrupt is

enabled.

19 GTI0E General Purpose Timer Interrupt 0 Enable
0 GPT interrupt 0 is disabled.
1 GPT interrupt 0 is enabled.

20 GTI1E General Purpose Timer Interrupt 1 Enable
0 GPT interrupt 1 is disabled.
1 GPT interrupt 1 is enabled.

21 GTI2E General Purpose Timer Interrupt 2 Enable
0 GPT interrupt 2 is disabled.
1 GPT interrupt 2 is enabled.

22 GTI3E General Purpose Timer Interrupt 3 Enable
0 GPT interrupt 3 is disabled.
1 GPT interrupt 3 is enabled.

23 GTI4E General Purpose Timer Interrupt 4 Enable
0 GPT interrupt 4 is disabled.
1 GPT interrupt 4 is enabled.

24 Reserved

25 EIR0E External IRQ 0 Interrupt Enable
0 An external IRQ 0 interrupt is disabled.
1 An external IRQ 0 interrupt is enabled.

26 EIR1E External IRQ 1 Interrupt Enable
0 An external IRQ 1 interrupt is disabled.
1 An external IRQ 1 interrupt is enabled.

27 EIR2E External IRQ 2 Interrupt Enable
0 An external IRQ 2 interrupt is disabled.
1 An external IRQ 2 interrupt is enabled.
1091 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_ER (cont.)

UIC Interrupt Enable Register
28 EIR3E External IRQ 3 Interrupt Enable
0 An external IRQ 3 interrupt is disabled.
1 An external IRQ 3 interrupt is enabled.

29 EIR4E External IRQ 4 Interrupt Enable
0 An external IRQ 4 interrupt is disabled.
1 An external IRQ 4 interrupt is enabled.

30 EIR5E External IRQ 5 Interrupt Enable
0 An external IRQ 5 interrupt is disabled.
1 An external IRQ 5 interrupt is enabled.

31 EIR6E External IRQ 6 Interrupt Enable
0 An external IRQ 6 interrupt is disabled.
1 An external IRQ 6 interrupt is enabled.
AMCC Proprietary 1092

405EP – PPC405EP Embedded Processor
UIC0_ER (cont.)
UIC Interrupt Enable Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UIC0_MSR

DCR 0x0C6 Read-Only
1093 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_MSR

UIC Masked Status Register
See “UIC Masked Status Register (UIC0_MSR)” on page 10-217.

Figure 26-218. UIC Masked Status Register (UIC0_MSR)
0 U0IS UART0 Masked Interrupt Status

0 A UART0 interrupt has not occurred.
1 A UART0 interrupt occurred.

1 U1IS UART1 Masked Interrupt Status
0 A UART1 interrupt has not occurred.
1 A UART1 interrupt occurred.

2 IICIS IIC Masked Interrupt Status
0 An IIC interrupt has not occurred.
1 An IIC interrupt occurred.

3 PCIIS PCI Masked Interrupt Status
0 A PCI interrupt has not occurred.
1 A PCI interrupt occurred.

4 Reserved
5 D0IS DMA Channel 0 Masked Interrupt Status

0 A DMA channel 0 interrupt has not
occurred.

1 A DMA channel 0 interrupt occurred.
6 D1IS DMA Channel 1 Masked Interrupt Status

0 A DMA channel 1 interrupt has not
occurred.

1 A DMA channel 1 interrupt occurred.
7 D2IS DMA Channel 2 Masked Interrupt Status

0 A DMA channel 2 interrupt has not
occurred.

1 A DMA channel 2 interrupt occurred.
8 D3IS DMA Channel 3 Masked Interrupt Status

0 A DMA channel 3 interrupt has not
occurred.

1 A DMA channel 3 interrupt occurred.
9 EWIS Ethernet Wake-up Masked Interrupt Status

0 An Ethernet wake-up interrupt has not
occurred.

1 An Ethernet wake-up interrupt occurred.
10 MSIS MAL SERR Masked Interrupt Status

0 A MAL SERR interrupt has not occurred.
1 A MAL SERR interrupt occurred.

11 MTEIS MAL TX EOB Masked Interrupt Status
0 A MAL TX EOB interrupt has not

occurred.
1 A MAL TX EOB interrupt occurred.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

U0IS

U1IS

IICIS

PCIIS

D1IS

EIR4SD0ITS

D3IS MSIS MREIS MRDIS

D2IS EWIS MTEIS MTDIS EIS0

EPSIS EIR1S EIR3S EIR5S

EIR0S EIR2S EIR6SEIS1

PPMIS

GTI0S

GTI1S GTI3S

GTI2S GTI4S
AMCC Proprietary 1094

405EP – PPC405EP Embedded Processor
UIC0_MSR (cont.)
UIC Masked Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
12 MREIS MAL RX EOB Masked Interrupt Status
0 A MAL RX EOB interrupt has not

occurred.
1 A MAL RX EOB interrupt occurred.

13 MTDIS MAL TX DE Masked Interrupt Status
0 A MAL TX DE interrupt has not occurred.
1 A MAL TX DE interrupt occurred.

14 MRDIS MAL RX DE Masked Interrupt Status
0 A MAL RX DE interrupt has not occurred.
1 A MAL RX DE interrupt occurred.

15 EIS0 EMAC0 Masked Interrupt Status
0 An EMAC0 interrupt has not occurred.
1 An EMAC0 interrupt occurred.

16 EPSIE External PCI SERR Masked Interrupt
Status
0 An external PCI SERR interrupt has not

occurred.
1 An external PCI SERR interrupt

occurred.
17 EIS1 EMAC1 Masked Interrupt Status

0 An EMAC1 interrupt has not occurred.
1 An EMAC1 interrupt occurred.

19 GTI0S General Purpose Timer Interrupt 0 Masked
Interrupt Status
0 GPT interrupt 0 has not occurred.
1 GPT interrupt 0 occurred.

20 GTI1S General Purpose Timer Interrupt 1 Masked
Interrupt Status
0 GPT interrupt 1 has not occurred.
1 GPT interrupt 1 occurred.

21 GTI2S General Purpose Timer Interrupt 2 Masked
Interrupt Status
0 GPT interrupt 2 has not occurred.
1 GPT interrupt 2 occurred.

22 GTI3S General Purpose Timer Interrupt 3 Masked
Interrupt Status
0 GPT interrupt 3 has not occurred.
1 GPT interrupt 3 occurred.

23 GTI4S General Purpose Timer Interrupt 4 Masked
Interrupt Status
0 GPT interrupt 4 has not occurred.
1 GPT interrupt 4 occurred.

24 Reserved
25 EIR0E External IRQ 0 Masked Status

0 An external IRQ 0 interrupt has not
occurred.

1 An external IRQ 0 interrupt occurred.
1095 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_MSR (cont.)

UIC Masked Status Register
26 EIR1S External IRQ 1 Masked Status
0 An external IRQ 1 interrupt has not

occurred.
1 An external IRQ 1 interrupt occurred.

27 EIR2S External IRQ 2 Masked Status
0 An external IRQ 2 interrupt has not

occurred.
1 An external IRQ 2 interrupt occurred.

28 EIR3S External IRQ 3 Masked Status
0 An external IRQ 3 interrupt has not

occurred.
1 An external IRQ 3 interrupt occurred.

29 EIR4S External IRQ 4 Masked Status
0 An external IRQ 4 interrupt has not

occurred.
1 An external IRQ 4 interrupt occurred.

30 EIR5S External IRQ 5 Masked Status
0 An external IRQ 5 interrupt has not

occurred.
1 An external IRQ 5 interrupt occurred.

31 EIR6S External IRQ 6 Masked Status
0 An external IRQ 6 interrupt has not

occurred.
1 An external IRQ 6 interrupt occurred.
AMCC Proprietary 1096

405EP – PPC405EP Embedded Processor
UIC0_PR
UIC Polarity Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UIC0_PR

DCR 0x0C4

See “UIC Polarity Register (UIC0_PR)” on page 10-213.
1097 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_PR (cont.)

UIC Polarity Register

Figure 26-219. UIC Polarity Register (UIC0_PR)
0 U0IP UART0 Interrupt Polarity

0 UART0 interrupt has negative polarity.
1 UART0 interrupt has positive polarity.

Must be set to 1.

1 U1IP UART1 Interrupt Polarity
0 UART1 interrupt has negative polarity.
1 UART1 interrupt has positive polarity.

Must be set to 1.

2 IICIP IIC Interrupt Polarity
0 IIC interrupt has negative polarity.
1 IIC interrupt has positive polarity.

Must be set to 1.

3 PCIIP PCI Interrupt Polarity
0 PCI interrupt has negative polarity.
1 PCI interrupt has positive polarity.

Must be set to 1.

4 Reserved

5 D0IP DMA Channel 0 Interrupt Polarity
0 DMA channel 0 interrupt has negative

polarity.
1 DMA channel 0 interrupt has positive

polarity.

Must be set to 1.

6 D1IP DMA Channel 1 Interrupt Polarity
0 DMA channel 1 interrupt has negative

polarity.
1 DMA channel 1 interrupt has positive

polarity.

Must be set to 1.

7 D2IP DMA Channel 2 Interrupt Polarity
0 DMA channel 2 interrupt has negative

polarity.
1 DMA channel 2 interrupt has positive

polarity.

Must be set to 1.

8 D3IP DMA Channel 3 Interrupt Polarity
0 DMA channel 3 interrupt has negative

polarity.
1 DMA channel 3 interrupt has positive

polarity.

Must be set to 1.

9 EWIP Ethernet Wake-up Interrupt Polarity
0 Ethernet wake-up interrupt has negative

polarity.
1 Ethernet wake-up interrupt has positive

polarity.

Must be set to 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

U0IP

U1IP

IICIP

PCIIP

D1IP

EIR4PD0IP

D3IP MSIP MREIP MRDIP

D2IP EWIP MTEIP MTDIP EIP0

EPSIP EIR1P EIR3P EIR5P

EIR0P EIR2P EIR6PEIP1

PPMIP

GTI0P

GTI1P GTI3P

GTI2P GTI4P
AMCC Proprietary 1098

405EP – PPC405EP Embedded Processor
UIC0_PR (cont.)
UIC Polarity Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10 MSIP MAL SERR Interrupt Polarity
0 MAL SERR interrupt has negative

polarity.
1 MAL SERR interrupt has positive

polarity.

Must be set to 1.

11 MTEIP MAL TX EOB Interrupt Polarity
0 MAL TX EOB interrupt has negative

polarity.
1 MAL TX EOB interrupt has positive

polarity.

Must be set to 1.

12 MREIP MAL RX EOB Interrupt Polarity
0 MAL RX EOB interrupt has negative

polarity.
1 MAL RX EOB interrupt has positive

polarity.

Must be set to 1.

13 MTDIP MAL TX DE Interrupt Polarity
0 MAL TX DE interrupt has negative

polarity.
1 MAL TX DE interrupt has positive

polarity.

Must be set to 1.

14 MRDIP MAL RX DE Interrupt Polarity
0 MAL RX DE interrupt has negative

polarity.
1 MAL RX DE interrupt has positive

polarity.

Must be set to 1.

15 EIP0 EMAC0 Interrupt Polarity
0 An EMAC0 interrupt has negative

polarity.
1 An EMAC0 interrupt has positive

polarity.

Must be set to 1.

16 EPSIP External PCI SERR Interrupt Polarity
0 External PCI SERR interrupt has

negative polarity.
1 External PCI SERR interrupt has

positive polarity.

Must be set to 0.

17 EIP1 EMAC1 Interrupt Polarity
0 An EMAC1 interrupt has negative

polarity.
1 An EMAC1 interrupt has positive

polarity.

Must be set to 1.

19 GTI0P General Purpose Timer Interrupt 0
Polarity
0 GPT interrupt 0 has negative polarity.
1 GPT interrupt 0 has positive polarity.

20 GTI1P General Purpose Timer Interrupt 1
Polarity
0 GPT interrupt 1 has negative polarity.
1 GPT interrupt 1 has positive polarity.
1099 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_PR (cont.)

UIC Polarity Register
21 GTI2P General Purpose Timer Interrupt 2
Polarity
0 GPT interrupt 2 has negative polarity.
1 GPT interrupt 2 has positive polarity.

22 GTI3P General Purpose Timer Interrupt 3
Polarity
0 GPT interrupt 3 has negative polarity.
1 GPT interrupt 3 has positive polarity.

23 GTI4P General Purpose Timer Interrupt 4
Polarity
0 GPT interrupt 4 has negative polarity.
1 GPT interrupt 4 has positive polarity.

24 Reserved

25 EIR0P External IRQ 0 Polarity
0 An external IRQ 0 interrupt has

negative polarity.
1 An external IRQ 0 interrupt has positive

polarity.

26 EIR1P External IRQ 1 Polarity
0 An external IRQ 1 interrupt has

negative polarity.
1 An external IRQ 1 interrupt has positive

polarity.

27 EIR2P External IRQ 2 Polarity
0 An external IRQ 2 interrupt has

negative polarity.
1 An external IRQ 2 interrupt has positive

polarity.

28 EIR3P External IRQ 3 Polarity
0 An external IRQ 3 interrupt has

negative polarity.
1 An external IRQ 3 interrupt has positive

polarity.

29 EIR4P External IRQ 4 Polarity
0 An external IRQ 4 interrupt has

negative polarity.
1 An external IRQ 4 interrupt has positive

polarity.

30 EIR5P External IRQ 5 Polarity
0 An external IRQ 5 interrupt has

negative polarity.
1 An external IRQ 5 interrupt has positive

polarity.

31 EIR6P External IRQ 6 Polarity
0 An external IRQ 6 interrupt has

negative polarity.
1 An external IRQ 6 interrupt has positive

polarity.
AMCC Proprietary 1100

405EP – PPC405EP Embedded Processor
UIC0_SR
UIC Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UIC0_SR

DCR 0x0C0 Read/Clear

See “UIC Status Register (UIC0_SR)” on page 10-206.
1101 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_SR (cont.)

UIC Status Register

Figure 26-220. UIC Status Register (UIC0_SR)
0 U0IS UART0 Interrupt Status

0 A UART0 interrupt has not occurred.
1 A UART0 interrupt occurred.

1 U1IS UART1 Interrupt Status
0 A UART1 interrupt has not occurred.
1 A UART1 interrupt occurred.

2 IICIS IIC Interrupt Status
0 An IIC interrupt has not occurred.
1 An IIC interrupt occurred.

3 PCIIS PCI Interrupt Status
0 A PCI interrupt has not occurred.
1 A PCI interrupt occurred.

An external write to PCIC0_CMD causes
UIC0_SR[PCIIS] to be set.

4 Reserved

5 D0IS DMA Channel 0 Interrupt Status
0 A DMA channel 0 interrupt has not

occurred.
1 A DMA channel 0 interrupt occurred.

6 D1IS DMA Channel 1 Interrupt Status
0 A DMA channel 1 interrupt has not

occurred.
1 A DMA channel 1 interrupt occurred.

7 D2IS DMA Channel 2 Interrupt Status
0 A DMA channel 2 interrupt has not

occurred.
1 A DMA channel 2 interrupt occurred.

8 D3IS DMA Channel 3 Interrupt Status
0 A DMA channel 3 interrupt has not

occurred.
1 A DMA channel 3 interrupt occurred.

9 EWIS Ethernet Wake-up Interrupt Status
0 An Ethernet wake-up interrupt has not

occurred.
1 An Ethernet wake-up interrupt occurred.

10 MSIS MAL SERR Interrupt Status
0 A MAL SERR interrupt has not occurred.
1 A MAL SERR interrupt occurred.

11 MTEIS MAL TX EOB Interrupt Status
0 A MAL TX EOB interrupt has not

occurred.
1 A MAL TX EOB interrupt occurred.

12 MREIS MAL RX EOB Interrupt Status
0 A MAL RX EOB interrupt has not

occurred.
1 A MAL RX EOB interrupt occurred.
AMCC Proprietary 1102

405EP – PPC405EP Embedded Processor
UIC0_SR (cont.)
UIC Status Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
13 MTDIS MAL TX DE Interrupt Status
0 A MAL TX DE interrupt has not occurred.
1 A MAL TX DE interrupt occurred.

14 MRDIS MAL RX DE Interrupt Status
0 A MAL RX DE interrupt has not occurred.
1 A MAL RX DE interrupt occurred.

15 EIS0 EMAC0 Interrupt Status
0 An EMAC0 interrupt has not occurred.
1 An EMAC0 interrupt occurred.

16 EPSIS External PCI SERR Interrupt Status
0 An external PCI SERR interrupt has not

occurred.
1 An external PCI SERR interrupt

occurred.

If enabled, a PCI SERR interrupt occurs
whenever the PCI SERR signal is
asserted, either by the PCI bridge or by an
external device.

17 EIS1 EMAC1 Interrupt Status
0 An EMAC1 interrupt has not occurred.
1 An EMAC1 interrupt occurred.

18 PPMIS PCI Power Management Interrupt Status
0 A PCI power management interrupt has

not occurred.
1 A PCI power management interrupt

occurred.

19 GTI0S General Purpose Timer Interrupt 0 Status
0 A GPT interrupt 0 has not occurred.
1 A GPT interrupt 0 occurred.

20 GTI1S General Purpose Timer Interrupt 1 Status
0 A GPT interrupt 1 has not occurred.
1 A GPT interrupt 1 occurred.

21 GTI2S General Purpose Timer Interrupt 2 Status
0 A GPT interrupt 2 has not occurred.
1 A GPT interrupt 2 occurred.

22 GTI3S General Purpose Timer Interrupt 3 Status
0 A GPT interrupt 3 has not occurred.
1 A GPT interrupt 3 occurred.

23 GTI4S General Purpose Timer Interrupt 4 Status
0 A GPT interrupt 4 has not occurred.
1 A GPT interrupt 4 occurred.

24 Reserved

25 EIR0S External IRQ 0 Status
0 An external IRQ 0 interrupt has not

occurred.
1 An external IRQ 0 interrupt occurred.

26 EIR1S External IRQ 1 Status
0 An external IRQ 1 interrupt has not

occurred.
1 An external IRQ 1 interrupt occurred.
1103 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_SR (cont.)

UIC Status Register
27 EIR2S External IRQ 2 Status
0 An external IRQ 2 interrupt has not

occurred.
1 An external IRQ 2 interrupt occurred.

28 EIR3S External IRQ 3 Status
0 An external IRQ 3 interrupt has not

occurred.
1 An external IRQ 3 interrupt occurred.

29 EIR4S External IRQ 4 Status
0 An external IRQ 4 interrupt has not

occurred.
1 An external IRQ 4 interrupt occurred.

30 EIR5S External IRQ 5 Status
0 An external IRQ 5 interrupt has not

occurred.
1 An external IRQ 5 interrupt occurred.

31 EIR6S External IRQ 6 Status
0 An external IRQ 6 interrupt has not

occurred.
1 An external IRQ 6 interrupt occurred.
AMCC Proprietary 1104

405EP – PPC405EP Embedded Processor
UIC0_TR
UIC Triggering Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UIC0_TR

DCR 0x0C5

See “UIC Trigger Register (UIC0_TR)” on page 10-215.
1105 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_TR (cont.)

UIC Triggering Register

Figure 26-221. UIC Trigger Register (UIC0_TR)
0 U0IT UART0 Interrupt Trigger

0 UART0 interrupt is level-sensitive.
1 UART0 interrupt is edge-sensitive.

Must be set to 0.

1 U1IT UART1 Interrupt Trigger
0 UART1 interrupt is level-sensitive.
1 UART1 interrupt is edge-sensitive.

Must be set to 0.

2 IICIT IIC Interrupt Trigger
0 IIC interrupt is level-sensitive.
1 IIC interrupt is edge-sensitive.

Must be set to 0.

3 PCIIT PCI Interrupt Trigger
0 PCI interrupt is level-sensitive.
1 PCI interrupt is edge-sensitive.

Must be set to 0.

4 Reserved

5 D0IT DMA Channel 0 Interrupt Trigger
0 DMA channel 0 interrupt is level-

sensitive.
1 DMA channel 0 interrupt is edge-

sensitive.

Must be set to 0.

6 D1IT DMA Channel 1 Interrupt Trigger
0 DMA channel 1 interrupt is level-

sensitive.
1 DMA channel 1 interrupt is edge-

sensitive.

Must be set to 0.

7 D2IT DMA Channel 2 Interrupt Trigger
0 DMA channel 2 interrupt is level-

sensitive.
1 DMA channel 2 interrupt is edge-

sensitive.

Must be set to 0.

8 D3IT DMA Channel 3 Interrupt Trigger
0 DMA channel 3 interrupt is level-

sensitive.
1 DMA channel 3 interrupt is edge-

sensitive.

Must be set to 0.

9 EWIT Ethernet Wake-up Interrupt Trigger
0 Ethernet wake-up interrupt is level-

sensitive.
1 Ethernet wake-up interrupt is edge-

sensitive.

Must be set to 0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

U0IT

U1IT

IICIT

PCIIT

D1IT

EIR4TD0ITP

D3IT MSIT MREIT MRDIT

D2IT EWIT MTEIT MTDIT EIT0

EPSIT EIR1T EIR3T EIR5T

EIR0T EIR2T EIR6TEIT1

PPMIT

GTI0T

GTI1T GTI3T

GTI2T GTI4T
AMCC Proprietary 1106

405EP – PPC405EP Embedded Processor
UIC0_TR (cont.)
UIC Triggering Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual
10 MSIT MAL SERR Interrupt Trigger
0 MAL SERR interrupt is level-sensitive.
1 MAL SERR interrupt is edge-sensitive.

Must be set to 0.

11 MTEIT MAL TX EOB Interrupt Trigger
0 MAL TX EOB interrupt is level-sensitive.
1 MAL TX EOB interrupt is edge-sensitive.

Must be set to 0.

12 MREIT MAL RX EOB Interrupt Trigger
0 MAL RX EOB interrupt is level-sensitive.
1 MAL RX EOB interrupt is edge-sensitive.

Must be set to 0.

13 MTDIT MAL TX DE Interrupt Trigger
0 MAL TX DE interrupt is level-sensitive.
1 MAL TX DE interrupt is edge-sensitive.

Must be set to 0.

14 MRDIT MAL RX DE Interrupt Trigger
0 MAL RX DE interrupt is level-sensitive.
1 MAL RX DE interrupt is edge-sensitive.

Must be set to 0.

15 EIT0 EMAC0 Interrupt Trigger
0 An EMAC0 interrupt is level-sensitive.
1 An EMAC0 interrupt is edge-sensitive.

Must be set to 0.

16 EPSIT External PCI SERR Interrupt Trigger
0 External PCI SERR interrupt is level-

sensitive.
1 External PCI SERR interrupt is edge-

sensitive.

Must be set to 0.

17 EIT1 EMAC1 Interrupt Trigger
0 An EMAC1 interrupt is level-sensitive.
1 An EMAC1 interrupt is edge-sensitive.

Must be set to 0.

19 GTI0T General Purpose Timer Interrupt 0 Trigger
0 GPT interrupt 0 is level-sensitive.
1 GPT interrupt 0 is edge-sensitive.

20 GTI1T General Purpose Timer Interrupt 1 Trigger
0 GPT interrupt 1 is level-sensitive.
1 GPT interrupt 1 is edge-sensitive.

21 GTI2T General Purpose Timer Interrupt 2 Trigger
0 GPT interrupt 2 is level-sensitive.
1 GPT interrupt 2 is edge-sensitive.

22 GTI3T General Purpose Timer Interrupt 3 Trigger
0 GPT interrupt 3 is level-sensitive.
1 GPT interrupt 3 is edge-sensitive.

23 GTI4T General Purpose Timer Interrupt 4 Trigger
0 GPT interrupt 4 is level-sensitive.
1 GPT interrupt 4 is edge-sensitive.

24 Reserved

25 EIR0T External IRQ 0 Trigger
0 An external IRQ 0 interrupt is level-

sensitive.
1 An external IRQ 0 interrupt is edge-

sensitive.
1107 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UIC0_TR (cont.)

UIC Triggering Register
26 EIR1T External IRQ 1 Trigger
0 An external IRQ 1 interrupt is level-

sensitive.
1 An external IRQ 1 interrupt is edge-

sensitive.

27 EIR2T External IRQ 2 Trigger
0 An external IRQ 2 interrupt is level-

sensitive.
1 An external IRQ 2 interrupt is edge-

sensitive.

28 EIR3T External IRQ 3 Trigger
0 An external IRQ 3 interrupt is level-

sensitive.
1 An external IRQ 3 interrupt is edge-

sensitive.

29 EIR4T External IRQ 4 Trigger
0 An external IRQ 4 interrupt is level-

sensitive.
1 An external IRQ 4 interrupt is edge-

sensitive.

30 EIR5T External IRQ 5 Trigger
0 An external IRQ 5 interrupt is level-

sensitive.
1 An external IRQ 5 interrupt is edge-

sensitive.

31 EIR6T External IRQ 6 Trigger
0 An external IRQ 6 interrupt is level-

sensitive.
1 An external IRQ 6 interrupt is edge-

sensitive.
AMCC Proprietary 1108

405EP – PPC405EP Embedded Processor
UIC0_VCR
UIC Vector Configuration Register

Revision 1.08 – July 18, 2007

Preliminary User’s Manual

UUIC0_VCR

DCR 0x0C8 Write-Only

See “UIC Vector Configuration Register (UIC0_VCR)” on page 10-220.

UIC0_VR

DCR 0x0C7 Read-Only

See “UIC Vector Register (UIC0_VR)” on page 10-221.

Figure 26-222. UIC Vector Configuration Register (UIC0_VCR)
0:29 VBA Vector Base Address

30 Reserved

31 PRO Priority Ordering
0 UIC0_SR[31] is the highest priority

interrupt.
1 UIC0_SR[0] is the highest priority

interrupt.
Note: Vector generation is not performed

for non-critical interrupts.

Figure 26-223. UIC Vector Register (UIC0_VR)
0:31 VBA Interrupt Vector

0 29 30 31

PRO

VBA

0 31
1109 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Chapter 27. Signal Summary

This chapter provides detailed information on the PPC405EP I/O signals.

27.1 Signals Listed Alphabetically

Table 27-1 lists the PPC405EP signals in alphabetical order. For each signal there is an indication of the
interface group to which it belongs and a page reference to that interface group in Table 27-2, “Signal
Descriptions,” on page 27-1114.

Multiplexed signals are shown with the secondary (alternate) signals in brackets and the primary (default)
signal not in brackets (for example, GPIO00[PerBLast]). Multiplexed signals appear alphabetically multiple
times in the list, once for each signal on a ball. Active-low signals are shown with an overbar on the signal
name (for example, CAS).

Table 27-1. Alphabetical Signal List

Signal Name Interface Page

BA1:0 SDRAM 27-1116

BankSel0:1 SDRAM 27-1116

CAS SDRAM 27-1116

ClkEn0:1 SDRAM 27-1116

DQM0:3 SDRAM 27-1116

EMCMDClk Ethernet 27-1115

EMCMDIO Ethernet 27-1115

EMC0Tx0D0:3 Ethernet 27-1115

EMC0Tx0En Ethernet 27-1115

EMC0Tx0Err Ethernet 27-1115

EMC0Tx1D0:3 Ethernet 27-1115

EMC0Tx1En Ethernet 27-1115

EMC0Tx1Err Ethernet 27-1115

ExtReset External Slave Peripheral 27-1116
AMCC Proprietary 1110

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
GPIO00[PerBLast] System 27-1118

GPIO01:02[TS1:2E] System 27-1118

GPIO03:04[TS1:2O] System 27-1118

GPIO05:08[TS3:6] System 27-1118

GPIO09[TrcClk] System 27-1118

GPIO10:13[PerCS1:4] System 27-1118

GPIO14:16[PerAddr03:05] System 27-1118

GPIO17:23[IRQ0:6] System 27-1118

GPIO24[UART0_DCD] System 27-1118

GPIO25[UART0_DSR] System 27-1118

GPIO26[UART0_RI] System 27-1118

GPIO27[UART0_DTR] System 27-1118

GPIO28[UART1_Rx] System 27-1118

GPIO29[UART1_Tx] System 27-1118

GPIO30:31[RejectPkt0:1] System 27-1118

Halt System 27-1118

IICSCL Internal Peripheral 27-1117

IICSDA Internal Peripheral 27-1117

[IRQ0:6]GPIO17:23 Interrupts 27-1118

MemAddr00:12 SDRAM 27-1116

MemClkOut0:1 SDRAM 27-1116

MemData00:31 SDRAM 27-1116

PCIAD00:31 PCI 27-1114

PCIC0:3/BE0:3 PCI 27-1114

PCIClk PCI 27-1114

PCIDevSel PCI 27-1114

PCIFrame PCI 27-1114

PCIGnt0/Req PCI 27-1114

PCIGnt1:2 PCI 27-1114

PCIIDSel PCI 27-1114

PCIINT[PerWE] PCI 27-1114

Table 27-1. Alphabetical Signal List (continued)

Signal Name Interface Page
1111 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIIRDY PCI 27-1114

PCIParity PCI 27-1114

PCIPErr PCI 27-1114

PCIReq0/Gnt PCI 27-1114

PCIReq1:2 PCI 27-1114

PCIReset PCI 27-1114

PCISErr PCI 27-1114

PCIStop PCI 27-1114

PCITRDY PCI 27-1114

[PerAddr03:05]GPIO14:16 External Slave Peripheral 27-1116

PerAddr06:31 External Slave Peripheral 27-1116

[PerBLast]GPIO00 External Slave Peripheral 27-1116

PerClk External Slave Peripheral 27-1116

PerCS0 External Slave Peripheral 27-1116

[PerCS1:4]GPIO10:13 External Slave Peripheral 27-1116

PerData0:15 External Slave Peripheral 27-1116

PerOE External Slave Peripheral 27-1116

PerReady External Slave Peripheral 27-1116

PerR/W External Slave Peripheral 27-1116

PerWBE0:1 External Slave Peripheral 27-1116

[PerWE]PCIINT External Slave Peripheral 27-1116

PHY0Col0:1 Ethernet 27-1115

PHY0CrS0:1 Ethernet 27-1115

PHY0Rx0Clk Ethernet 27-1115

PHY0Rx0D0:3 Ethernet 27-1115

PHY0Rx0DV Ethernet 27-1115

PHY0Rx0Err Ethernet 27-1115

PHY0Rx1Clk Ethernet 27-1115

PHY0Rx1D0:3 Ethernet 27-1115

PHY0Rx1DV Ethernet 27-1115

PHY0Rx1Err Ethernet 27-1115

Table 27-1. Alphabetical Signal List (continued)

Signal Name Interface Page
AMCC Proprietary 1112

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PHY0Tx0:1Clk Ethernet 27-1115

PLLRefClk Ethernet 27-1115

RAS SDRAM 27-1116

[RejectPkt0:1]GPIO30:31 System 27-1118

SysErr System 27-1118

SysReset System 27-1118

TCK JTAG 27-1118

TDI JTAG 27-1118

TDO JTAG 27-1118

TestEn System 27-1118

TMS JTAG 27-1118

TrcClk Trace 27-1118

TRST JTAG 27-1118

[TS1:2E]GPIO01:02 Trace 27-1118

[TS1:2O]GPIO03:04 Trace 27-1118

[TS3:6]GPIO05:08 Trace 27-1118

UART0_CTS Internal Peripheral 27-1117

[UART0_DCD]GPIO24 Internal Peripheral 27-1117

[UART0_DSR]GPIO25 Internal Peripheral 27-1117

[UART0_DTR]GPIO27 Internal Peripheral 27-1117

[UART0_RI]GPIO26 Internal Peripheral 27-1117

UART0_RTS Internal Peripheral 27-1117

UART0_Rx Internal Peripheral 27-1117

UART0_Tx Internal Peripheral 27-1117

[UART1_Rx]GPIO28 Internal Peripheral 27-1117

[UART1_Rx]GPIO28 Internal Peripheral 27-1117

WE SDRAM 27-1116

Table 27-1. Alphabetical Signal List (continued)

Signal Name Interface Page
1113 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
27.2 Signal Descriptions

Each I/O signal is listed with the other signals in the same interface group.

Some signals are multiplexed on the same package pin (ball) so that the pin can be used for different
functions. The signal names are shown in Table 27-2 without any associated multiplexed signal names.
Secondary multiplexed signals are shown in brackets. When signal names appear in brackets, refer to
Table 27-1 to see all of the multiplexed signal names for that pin.

In addition to multiplexing, many pins are also multi-purpose. For example, in the PCI interface
PCIC3:0/BE3:0 serves as both Command and Byte Enable signals. In this example, the pins are also
bidirectional, serving as both inputs and outputs.

Active-low signals such as RAS are marked with an overline.

Table 27-2. Signal Descriptions

Signal Name I/O Function

PCI Interface

PCIAD00:31 I/O PCI Address/Data Bus. Multiplexed address and data bus

PCIC0:3/BE0:3 I/O PCI C (bus command)
or
Byte enable

PCIClk I PCIClk is used as the asynchronous PCI clock when in
asynchronous mode. It is unused when the PCI interface
is operated synchronously with the PLB bus.

PCIFrame I/O PCIFrame is driven by the current PCI bus master to
indicate beginning and duration of a PCI access.

PCIParity I/O PCI parity. Parity is even across PCIAD3:31 and
PCIC0:3/BE0:3. PCIParity is valid one cycle after either
an address or data phase. The PCI device that drives
PCIAD0:31 is responsible for driving PCIParity on the
next PCI bus clock.

PCIIRDY I/O PCIIRDY is driven by the current PCI bus master.
Assertion of PCIIRDY indicates that the PCI initiator is
ready to transfer data.

PCITRDY I/O The target of the current PCI transaction drives
PCITRDY. Assertion of PCITRDY indicates that the PCI
target is ready to transfer data.

PCIStop I/O The target of the current PCI transaction may assert
PCIStop to indicate to the requesting PCI master that it
wants to end the current transaction.

PCIDevSel I/O PCIDevSel is driven by the target of the current PCI
transaction. A PCI target asserts PCIDevSel when it has
decoded an address and command encoding and claims
the transaction.

PCIIDSel I PCIIDSel is used during configuration cycles to select the
PCI slave interface for configuration
AMCC Proprietary 1114

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PCIINT O PCI interrupt

PCISErr I/O PCISErr is used for reporting address parity errors or
catastrophic failures detected by a PCI target.

PCIPErr I/O PCIPErr is used for reporting data parity errors on PCI
transactions. PCIPErr is driven active by the device
receiving PCIAD0:31, PCIC0:3/BE0:3, and PCIParity, two
PCI clocks following the data in which bad parity is
detected.

PCIReset O PCI specific reset

PCIReq0/Gnt I PCIReq0 when internal arbiter is used
or
Gnt when external arbiter is used.

PCIReq1:2 I PCIReq input when internal arbiter is used

PCIGnt0/Req O PCIGnt0 when internal arbiter is used
or
Req when external arbiter is used.

PCIGnt1:2 O PCIGnt output when internal arbiter is used.

Ethernet Interface

PHY0Rx0:1D3:0 I Received Data. A nibble wide bus from the PHY. The
data is synchronous with PHY0RxClk.

EMC0Tx0:1D3:0 O Transmit Data. A nibble wide data bus towards the net.
The data is synchronous with PHY0TxClk.

PHY0Rx0:1Err I Receive Error. This signal comes from the PHY and is
synchronous with PHY0RxClk.

PHY0Rx0:1Clk I Receiver medium clock. This signal is generated by the
PHY.

PHY0Rx0:1DV I Receive Data Valid. Data on the Data Bus is valid when
this signal is activated. Deassertion of this signal
indicates end of the frame reception.

PHY0CrS0:1 I Carrier Sense signal from the PHY. This is an
asynchronous signal.

EMC0Tx0:1Err O Transmit Error. This signal is generated by the Ethernet
controller, is connected to the PHY and is synchronous
with the PHY0TxClk. It informs the PHY that an error was
detected.

EMC0Tx0:1En O Transmit Enable. This signal is driven by EMAC to the
PHY. Data is valid during the active state of this signal.
Deassertion of this signal indicates end of frame
transmission. This signal is synchronous with
PHY0TxClk.

Table 27-2. Signal Descriptions (continued)

Signal Name I/O Function
1115 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PHY0Tx0:1Clk I This clock comes from the PHY and is the medium
Transmit Clock.

PHY0Col0:1 I Collision signal from the PHY. This is an asynchronous
signal.

EMC0MDClk O Management Data Clock. The clock is sourced to the
PHY. Management information is transferred
synchronously with respect to this clock.

EMC0MDIO I/O Management Data Input/Output is a bidirectional signal
between the Ethernet controller and the PHY. It is used to
transfer control and status information.

SDRAM Interface

MemData0:31 I/O Memory Data bus
Notes:
1. MemData0 is the most significant bit (msb).
2. MemData31 is the least significant bit (lsb).

MemAddr12:0 O Memory Address bus.
Notes:
1. MemAddr12 is the most significant bit (msb).
2. MemAddr0 is the least significant bit (lsb).

BA1:0 O Bank Address supporting up to 4 internal banks

RAS O Row Address Strobe.

CAS O Column Address Strobe.

DQM0:3 O DQM for byte lanes:
0 (MemData0:7),
1 (MemData8:15),
2 (MemData16:23), and
3 (MemData24:31)

DQMCB O DQM for ECC check bits.

BankSel0:1 O Select up to two external SDRAM banks.

WE O Write Enable.

ClkEn0:1 O SDRAM Clock Enable.

MemClkOut0:1 O Two copies of an SDRAM clock allows, in some cases,
glueless SDRAM attachment without requiring this signal
to be repowered by a PLL or zero-delay buffer.

External Slave Peripheral Interface

PerData0:15 I/O Peripheral data bus.
Note: PerData0 is the most significant bit (msb) on this
bus.

PerAddr03:31 O Peripheral address bus.

Table 27-2. Signal Descriptions (continued)

Signal Name I/O Function
AMCC Proprietary 1116

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
PerPar0:1 O Peripheral byte parity signals

PerPar0:3 O Peripheral byte parity signals

PerWBE0:1 O As outputs, these signals can act as byte-enables which
are valid for an entire cycle or as write-byte-enables
which are valid for each byte on each data transfer,
allowing partial word transactions. As outputs, the signals
are used by the peripheral controller or DMA controller,
depending upon the type of transfer involved.

PerWE I/O Peripheral Write Enable. Low when either of the two
PerWBE0:1 write byte enables are low.

PerCS0 O Peripheral chip selects.

[PerCS1:4] O Peripheral chip selects.

PerOE O Used by either peripheral controller or DMA controller
depending upon the type of transfer involved.

PerR/W O Used by either peripheral controller or DMA controller
depending upon the type of transfer involved.

PerReady I Ready to transfer data

[PerBLast] O Used to indicate the last transfer of a memory access.

PerClk O Peripheral Clock to be used by synchronous peripheral
slaves.

ExtReset O Peripheral reset to be used by an external master and by
synchronous peripheral slaves

Internal Peripheral Interface

UART0_Rx I UART0 Serial in data

UART0_Tx O UART0 Serial out data

UART0_DCD I UART0 Data Carrier Detect

UART0_DSR I UART0 Data Set Ready

UART0_CTS I UART0 Clear To Send

UART0_DTR O UART0 Data Terminal Ready

UART0_RTS O UART0 Request To Send

UART0_RI I UART0 Ring Indicator

UART1_Rx I UART1 Serial In data.

UART1_Tx O UART1 Serial Out data

IICSCL[IECSCL] I/O IIC [Initialization PROM] Serial Clock.

IICSCL I/O IIC Serial Clock.

Table 27-2. Signal Descriptions (continued)

Signal Name I/O Function
1117 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IICSDA I/O IIC Serial Data.

Interrupt Interface

[IRQ0:6] I Interrupt requests 0–6

System Interface

SysReset I/O Main system reset. This signal may be redriven by the
PPC405EP to allow a system reset to occur.

SysErr O Asserted when a machine check exception is generated.

Halt I Halt from external debugger.

GPIO00:31 I/O General Purpose I/O. To access this function, software
must toggle a DCR register bit.

TestEn I Test Enable. Reserved for manufacturing test.

PLLRefClk System PLL reference clock.

[RejectPkt0:1] I External request to reject a packet.

JTAG Interface

TDI I Test Data In

TMS I Test Mode Select

TDO O Test Data Out

TCK I Test Clock

TRST I Test Reset

Trace Interface

[TS1E]
[TS2E]

O Even Trace execution status.To access this function,
software must toggle a DCR bit.

[TS1O]
[TS2O]

O Odd Trace execution status. To access this function,
software must toggle a DCR bit.

[TS3:6] O Trace Status. To access this function, software must
toggle a DCR bit.

[TrcClk] O Trace interface clock. A toggling signal that is always half
of the CPU core frequency. To access this function,
software must toggle a DCR bit.

Table 27-2. Signal Descriptions (continued)

Signal Name I/O Function
AMCC Proprietary 1118

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
1119 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Appendix A. Instruction Summary

This appendix contains PPC405EP instructions summarized alphabetically and by opcode.

“Instruction Set and Extended Mnemonics – Alphabetical” lists all PPC405EP mnemonics, including extended
mnemonics, alphabetically. A short functional description is included for each mnemonic.

“Instructions Sorted by Opcode,” on page A-1152, lists all PPC405EP instructions, sorted by primary and
secondary opcodes. Extended mnemonics are not included in the opcode list.

“Instruction Formats,” on page A-1159, illustrates the PPC405EP instruction forms (allowed arrangements of
fields within instructions).

A.1 Instruction Set and Extended Mnemonics – Alphabetical

Table A-1 summarizes the PPC405EP instruction set, including required extended mnemonics. All
mnemonics are listed alphabetically, without regard to whether the mnemonic is realized in hardware or
software. When an instruction supports multiple hardware mnemonics (for example, b, ba, bl, bla are all
forms of b), the instruction is alphabetized under the root form. The hardware instructions are described in
detail in Chapter 25, “Instruction Set,” which is also alphabetized under the root form. Chapter 25 also
describes the instruction operands and notation.

Note the following for the branch conditional mnemonic:

Bit 4 of the BO field provides a hint about the most likely outcome of a conditional branch. (See “Branch
Prediction” on page 3-99 for a detailed description of branch prediction.) Assemblers should set BO4 = 0
unless a specific reason exists otherwise. In the BO field values specified in the table below, BO4 = 0 has
always been assumed. The assembler must allow the programmer to specify branch prediction. To do this,
the assembler supports a suffixes for the conditional branch mnemonics:

+ Predict branch to be taken.

− Predict branch not to be taken.

As specific examples, bc also could be coded as bc+ or bc–, and bne also could be coded bne+ or bne–.
These alternate codings set BO4 = 1 only if the requested prediction differs from the standard prediction.See
“Branch Prediction” on page 3-99 for more information.

Table A-1. PPC405EP Instruction Syntax Summary

Mnemonic Operands Function
Other Registers

Changed Page

add RT, RA, RB Add (RA) to (RB).
Place result in RT.

614
add. CR[CR0]
addo XER[SO, OV]
addo. CR[CR0]

XER[SO, OV]
AMCC Proprietary 1120

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
addc RT, RA, RB Add (RA) to (RB).
Place result in RT.
Place carry-out in XER[CA].

615
addc. CR[CR0]
addco XER[SO, OV]
addco. CR[CR0]

XER[SO, OV]
adde RT, RA, RB Add XER[CA], (RA), (RB).

Place result in RT.
Place carry-out in XER[CA].

616
adde. CR[CR0]
addeo XER[SO, OV]
addeo. CR[CR0]

XER[SO, OV]
addi RT, RA, IM Add EXTS(IM) to (RA|0).

Place result in RT.
617

addic RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

618

addic. RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0] 619

addis RT, RA, IM Add (IM || 160) to (RA|0).
Place result in RT.

620

addme RT, RA Add XER[CA], (RA), (-1).
Place result in RT.
Place carry-out in XER[CA].

621
addme. CR[CR0]
addmeo XER[SO, OV]
addmeo. CR[CR0]

XER[SO, OV]
addze RT, RA Add XER[CA] to (RA).

Place result in RT.
Place carry-out in XER[CA].

622
addze. CR[CR0]
addzeo XER[SO, OV]
addzeo. CR[CR0]

XER[SO, OV]
and RA, RS, RB AND (RS) with (RB).

Place result in RA.
623

and. CR[CR0]
andc RA, RS, RB AND (RS) with ¬(RB).

Place result in RA.
624

andc. CR[CR0]
andi. RA, RS, IM AND (RS) with (160 || IM).

Place result in RA.
CR[CR0] 625

andis. RA, RS, IM AND (RS) with (IM || 160).
Place result in RA.

CR[CR0] 626

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1121 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
b target Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

627

ba Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

bl Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

(LR) ← CIA + 4.

bla Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

(LR) ← CIA + 4.

bc BO, BI, target Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0. 628

bca Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.

bcl Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcla Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcctr BO, BI Branch conditional to address in CTR.
Using (CTR) at exit from instruction,
NIA ← CTR0:29 || 20.

CTR if BO2 = 0. 634
bcctrl CTR if BO2 = 0.

(LR) ← CIA + 4.
bclr BO, BI Branch conditional to address in LR.

Using (LR) at entry to instruction,
NIA ← LR0:29 || 20.

CTR if BO2 = 0. 638
bclrl CTR if BO2 = 0.

(LR) ← CIA + 4.
bctr Branch unconditionally to address in CTR.

Extended mnemonic for
bcctr 20,0

634

bctrl Extended mnemonic for
bcctrl 20,0

(LR) ← CIA + 4.

bdnz target Decrement CTR.
Branch if CTR ≠ 0.

Extended mnemonic for
bc 16,0,target

628

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target

(LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1122

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bdnzlr Decrement CTR.
Branch if CTR ≠ 0 to address in LR.

Extended mnemonic for
bclr 16,0

638

bdnzlrl Extended mnemonic for
bclrl 16,0

(LR) ← CIA + 4.

bdnzf cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 0,cr_bit,target

628

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target

(LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target

(LR) ← CIA + 4.

bdnzflr cr_bit Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 0,cr_bit

638

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit

(LR) ← CIA + 4.

bdnzt cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 8,cr_bit,target

628

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target

(LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target

(LR) ← CIA + 4.

bdnztlr cr_bit Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1 to address in LR.

Extended mnemonic for
bclr 8,cr_bit

638

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit

(LR) ← CIA + 4.

bdz target Decrement CTR.
Branch if CTR = 0.

Extended mnemonic for
bc 18,0,target

628

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target

(LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1123 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bdzlr Decrement CTR.
Branch if CTR = 0 to address in LR.

Extended mnemonic for
bclr 18,0

638

bdzlrl Extended mnemonic for
bclrl 18,0

(LR) ← CIA + 4.

bdzf cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 2,cr_bit,target

628

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target

(LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target

(LR) ← CIA + 4.

bdzflr cr_bit Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 2,cr_bit

638

bdzflrl Extended mnemonic for
bclrl 2,cr_bit

(LR) ← CIA + 4.

bdzt cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 10,cr_bit,target

628

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target

(LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target

(LR) ← CIA + 4.

bdztlr cr_bit Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1to address in LR.

Extended mnemonic for
bclr 10,cr_bit

638

bdztlrl Extended mnemonic for
bclrl 10,cr_bit

(LR) ← CIA + 4.

beq [cr_field],
target

Branch if equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+2,target

628

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1124

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
beqctr [cr_field] Branch if equal to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+2

634

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2

(LR) ← CIA + 4.

beqlr [cr_field] Branch if equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+2

638

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2

(LR) ← CIA + 4.

bf cr_bit, target Branch if CRcr_bit = 0.
Extended mnemonic for
bc 4,cr_bit,target

628

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target

(LR) ← CIA + 4.

bfla Extended mnemonic for
bcla 4,cr_bit,target

(LR) ← CIA + 4.

bfctr cr_bit Branch if CRcr_bit = 0 to address in CTR.
Extended mnemonic for
bcctr 4,cr_bit

634

bfctrl Extended mnemonic for
bcctrl 4,cr_bit

(LR) ← CIA + 4.

bflr cr_bit Branch if CRcr_bit = 0 to address in LR.
Extended mnemonic for
bclr 4,cr_bit

638

bflrl Extended mnemonic for
bclrl 4,cr_bit

(LR) ← CIA + 4.

bge [cr_field],
target

Branch if greater than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

628

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgectr [cr_field] Branch if greater than or equal to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

634

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1125 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bgelr [cr_field] Branch if greater than or equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

638

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgt [cr_field],
target

Branch if greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+1,target

628

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtctr [cr_field] Branch if greater than to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+1

634

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1

(LR) ← CIA + 4.

bgtlr [cr_field] Branch if greater than to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+1

638

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1

(LR) ← CIA + 4.

ble [cr_field],
target

Branch if less than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

628

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blectr [cr_field] Branch if less than or equal to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

634

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1126

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
blelr [cr_field] Branch if less than or equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

638

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

blr Branch unconditionally to address in LR.
Extended mnemonic for
bclr 20,0

638

blrl Extended mnemonic for
bclrl 20,0

(LR) ← CIA + 4.

blt [cr_field],
target

Branch if less than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+0,target

628

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltctr [cr_field] Branch if less than to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+0

634

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bltlr [cr_field] Branch if less than to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+0

638

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bne [cr_field],
target

Branch if not equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+2,target

628

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1127 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bnectr [cr_field] Branch if not equal to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+2

634

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bnelr [cr_field] Branch if not equal to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+2

638

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bng [cr_field],
target

Branch if not greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

628

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngctr [cr_field] Branch if not greater than to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

634

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnglr [cr_field] Branch if not greater than to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

638

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnl [cr_field],
target

Branch if not less than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

‘

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1128

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bnlctr [cr_field] Branch if not less than to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

634

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bnllr [cr_field] Branch if not less than to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

638

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bns [cr_field],
target

Branch if not summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

628

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsctr [cr_field] Branch if not summary overflow to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

634

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnslr [cr_field] Branch if not summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

638

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnu [cr_field],
target

Branch if not unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

628

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1129 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bnuctr [cr_field] Branch if not unordered to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

634

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnulr [cr_field] Branch if not unordered to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

638

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bso [cr_field],
target

Branch if summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

628

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsoctr [cr_field] Branch if summary overflow to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

634

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bsolr [cr_field] Branch if summary overflow to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

638

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bt cr_bit, target Branch if CRcr_bit = 1.
Extended mnemonic for
bc 12,cr_bit,target

628

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target

(LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target

(LR) ← CIA + 4.

btctr cr_bit Branch if CRcr_bit = 1 to address in CTR.
Extended mnemonic for
bcctr 12,cr_bit

634

btctrl Extended mnemonic for
bcctrl 12,cr_bit

(LR) ← CIA + 4.

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1130

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
btlr cr_bit Branch if CRcr_bit = 1,
to address in LR.

Extended mnemonic for
bclr 12,cr_bit

638

btlrl Extended mnemonic for
bclrl 12,cr_bit

(LR) ← CIA + 4.

bun [cr_field],
target

Branch if unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

628

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunctr [cr_field] Branch if unordered to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

634

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bunlr [cr_field] Branch if unordered,
to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

638

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

clrlwi RA, RS, n Clear left immediate. (n < 32)
(RA)0:n−1 ← n0

Extended mnemonic for
rlwinm RA,RS,0,n,31

760

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31

CR[CR0]

clrlslwi RA, RS, b, n Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b−n:31−n ← (RS)b:31
(RA)32−n:31 ← n0
(RA)0:b−n−1 ← b−n0

Extended mnemonic for
rlwinm RA,RS,n,b−n,31−n

760

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n

CR[CR0]

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1131 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
clrrwi RA, RS, n Clear right immediate. (n < 32)
(RA)32−n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,0,0,31−n

760

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n

CR[CR0]

cmp BF, 0, RA, RB Compare (RA) to (RB), signed.
Results in CR[CRn], where n = BF.

642

cmpi BF, 0, RA, IM Compare (RA) to EXTS(IM), signed.
Results in CR[CRn], where n = BF.

643

cmpl BF, 0, RA, RB Compare (RA) to (RB), unsigned.
Results in CR[CRn], where n = BF.

644

cmpli BF, 0, RA, IM Compare (RA) to (160 || IM), unsigned.
Results in CR[CRn], where n = BF.

645

cmplw [BF,] RA, RB Compare Logical Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpl BF,0,RA,RB

644

cmplwi [BF,] RA, IM Compare Logical Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpli BF,0,RA,IM

645

cmpw [BF,] RA, RB Compare Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmp BF,0,RA,RB

642

cmpwi [BF,] RA, IM Compare Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpi BF,0,RA,IM

643

cntlzw RA, RS Count leading zeros in RS.
Place result in RA.

646
cntlzw. CR[CR0]
crand BT, BA, BB AND bit (CRBA) with (CRBB).

Place result in CRBT.
647

crandc BT, BA, BB AND bit (CRBA) with ¬(CRBB).
Place result in CRBT.

648

crclr bx Condition register clear.
Extended mnemonic for
crxor bx,bx,bx

654

creqv BT, BA, BB Equivalence of bit CRBA with CRBB.
CRBT ← ¬(CRBA ⊕ CRBB)

649

crmove bx, by Condition register move.
Extended mnemonic for
cror bx,by,by

652

crnand BT, BA, BB NAND bit (CRBA) with (CRBB).
Place result in CRBT.

650

crnor BT, BA, BB NOR bit (CRBA) with (CRBB).
Place result in CRBT.

651

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1132

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
crnot bx, by Condition register not.
Extended mnemonic for
crnor bx,by,by

651

cror BT, BA, BB OR bit (CRBA) with (CRBB).
Place result in CRBT.

652

crorc BT, BA, BB OR bit (CRBA) with ¬(CRBB).
Place result in CRBT.

653

crset bx Condition register set.
Extended mnemonic for
creqv bx,bx,bx

649

crxor BT, BA, BB XOR bit (CRBA) with (CRBB).
Place result in CRBT.

654

dcba RA, RB Speculatively establish the data cache block which
contains the effective address (RA|0) + (RB).

655

dcbf RA, RB Flush (store, then invalidate) the data cache block
which contains the effective address (RA|0) + (RB).

657

dcbi RA, RB Invalidate the data cache block which contains the
effective address (RA|0) + (RB).

658

dcbst RA, RB Store the data cache block which contains the
effective address (RA|0) + (RB).

659

dcbt RA, RB Load the data cache block which contains the
effective address (RA|0) + (RB).

660

dcbtst RA,RB Load the data cache block which contains the
effective address (RA|0) + (RB).

661

dcbz RA, RB Zero the data cache block which contains the effective
address (RA|0) + (RB).

662

dccci RA, RB Invalidate the data cache congruence class
associated with the effective address (RA|0) + (RB).

664

dcread RT, RA, RB Read either tag or data information from the data
cache congruence class associated with the effective
address (RA|0) + (RB).
Place the results in RT.

665

divw RT, RA, RB Divide (RA) by (RB), signed.
Place result in RT.

667
divw. CR[CR0]
divwo XER[SO, OV]
divwo. CR[CR0]

XER[SO, OV]
divwu RT, RA, RB Divide (RA) by (RB), unsigned.

Place result in RT.
668

divwu. CR[CR0]
divwuo XER[SO, OV]
divwuo. CR[CR0]

XER[SO, OV]
eieio Storage synchronization. All loads and stores that

precede the eieio instruction complete before any
loads and stores that follow the instruction access
main storage.
Implemented as sync, which is more restrictive.

669

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1133 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
eqv RA, RS, RB Equivalence of (RS) with (RB).
(RA) ← ¬((RS) ⊕ (RB))

670
eqv. CR[CR0]
extlwi RA, RS, n, b Extract and left justify immediate. (n > 0)

(RA)0:n−1 ← (RS)b:b+n−1
(RA)n:31 ← 32−n0

Extended mnemonic for
rlwinm RA,RS,b,0,n−1

668

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1

CR[CR0]

extrwi RA, RS, n, b Extract and right justify immediate. (n > 0)
(RA)32−n:31 ← (RS)b:b+n−1
(RA)0:31−n ← 32−n0

Extended mnemonic for
rlwinm RA,RS,b+n,32−n,31

760

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31

CR[CR0]

extsb RA, RS Extend the sign of byte (RS)24:31.
Place the result in RA.

671
extsb. CR[CR0]
extsh RA, RS Extend the sign of halfword (RS)16:31.

Place the result in RA.
672

extsh. CR[CR0]
icbi RA, RB Invalidate the instruction cache block which contains

the effective address (RA|0) + (RB).
674

icbt RA, RB Load the instruction cache block which contains the
effective address (RA|0) + (RB).

675

iccci RA, RB Invalidate instruction cache. 676
icread RA, RB Read either tag or data information from the

instruction cache congruence class associated with
the effective address (RA|0) + (RB).
Place the results in ICDBDR.

677

inslwi RA, RS, n, b Insert from left immediate. (n > 0)
(RA)b:b+n−1 ← (RS)0:n−1

Extended mnemonic for
rlwimi RA,RS,32−b,b,b+n−1

759

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1

CR[CR0]

insrwi RA, RS, n, b Insert from right immediate. (n > 0)
(RA)b:b+n−1 ← (RS)32−n:31

Extended mnemonic for
rlwimi RA,RS,32−b−n,b,b+n−1

759

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1

CR[CR0]

isync Synchronize execution context by flushing the
prefetch queue.

679

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1134

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
la RT, D(RA) Load address. (RA ≠ 0)
D is an offset from a base address that is assumed to
be (RA).
(RT) ← (RA) + EXTS(D)

Extended mnemonic for
addi RT,RA,D

617

lbz RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left
with zeroes,
(RT) ← 240 || MS(EA,1).

680

lbzu RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left
with zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

681

lbzux RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

682

lbzx RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).

683

lha RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign
extend,
(RT) ← EXTS(MS(EA,2)).

649

lhau RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign
extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

650

lhaux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign
extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

651

lhax RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign
extend,
(RT) ← EXTS(MS(EA,2)).

652

lhbrx RT, RA, RB Load halfword from EA = (RA|0) + (RB), then reverse
byte order and pad left with zeroes,
(RT) ← 160 || MS(EA+1,1) || MS(EA,1).

653

lhz RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad
left with zeroes,
(RT) ← 160 || MS(EA,2).

654

lhzu RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad
left with zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

655

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1135 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lhzux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left
with zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

656

lhzx RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left
with zeroes,
(RT) ← 160 || MS(EA,2).

657

li RT, IM Load immediate.
(RT) ← EXTS(IM)

Extended mnemonic for
addi RT,0,value

617

lis RT, IM Load immediate shifted.
(RT) ← (IM || 160)

Extended mnemonic for
addis RT,0,value

620

lmw RT, D(RA) Load multiple words starting from
EA = (RA|0) + EXTS(D).
Place into consecutive registers RT through GPR(31).
RA is not altered unless RA = GPR(31).

658

lswi RT, RA, NB Load consecutive bytes from EA=(RA|0).
Number of bytes n=32 if NB=0, else n=NB.
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.

659

lswx RT, RA, RB Load consecutive bytes from EA=(RA|0)+(RB).
Number of bytes n=XER[TBC].
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.
RB is not altered unless RB = RFINAL.
If n=0, content of RT is undefined.

661

lwarx RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Set the Reservation bit.

663

lwbrx RT, RA, RB Load word from EA = (RA|0) + (RB) then reverse byte
order,
(RT) ← MS(EA+3,1) || MS(EA+2,1) ||
 MS(EA+1,1) || MS(EA,1).

664

lwz RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in
RT,
(RT) ← MS(EA,4).

665

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1136

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
lwzu RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in
RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

666

lwzux RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

667

lwzx RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).

668

macchw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

669
macchw. CR[CR0]
macchwo XER[SO, OV]
macchwo. CR[CR0]

XER[SO, OV]
macchws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

670
macchws. CR[CR0]
macchwso XER[SO, OV]
macchwso. CR[CR0]

XER[SO, OV]

macchwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

671
macchwsu. CR[CR0]
macchwsuo XER[SO, OV]
macchwsuo. CR[CR0]

XER[SO, OV]
macchwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

672
macchwu. CR[CR0]
macchwuo XER[SO, OV]
macchwuo. CR[CR0]

XER[SO, OV]
machhw RT, RA, RB prod0:15 ← (RA)16:31 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

673
machhw. CR[CR0]
machhwo XER[SO, OV]
machhwo. CR[CR0]

XER[SO, OV]
machhws RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 signed

temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

674
machhws. CR[CR0]
machhwso XER[SO, OV]
machhwso. CR[CR0]

XER[SO, OV]

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1137 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
machhwsu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

675
machhwsu. CR[CR0]
machhwsuo XER[SO, OV]
machhwsuo. CR[CR0]

XER[SO, OV]
machhwu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned

temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

676
machhwu. CR[CR0]
machhwuo XER[SO, OV]
machhwuo. CR[CR0]

XER[SO, OV]
maclhw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

677
maclhw. CR[CR0]
maclhwo XER[SO, OV]
maclhwo. CR[CR0]

XER[SO, OV]
maclhws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed

temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

678
maclhws. CR[CR0]
maclhwso XER[SO, OV]
maclhwso. CR[CR0]

XER[SO, OV]
maclhwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

679
maclhwsu. CR[CR0]
maclhwsuo XER[SO, OV]
maclhwsuo. CR[CR0]

XER[SO, OV]
maclhwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned

temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

680
maclhwu. CR[CR0]
maclhwuo XER[SO, OV]
maclhwuo. CR[CR0]

XER[SO, OV]
mcrf BF, BFA Move CR field, (CR[CRn]) ← (CR[CRm])

where m ← BFA and n ← BF.
681

mcrxr BF Move XER[0:3] into field CRn, where n←BF.
CR[CRn] ← (XER[SO, OV, CA]).
(XER[SO, OV, CA]) ← 30.

718

mfcr RT Move from CR to RT,
(RT) ← (CR).

719

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

720

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

722

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1138

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
mfccr0
mfctr
mfdac1
mfdac2
mfdear
mfdbcr0
mfdbcr1
mfdbsr
mfdccr
mfdcwr
mfdvc1
mfdvc2
mfesr
mfevpr
mfiac1
mfiac2
mfiac3
mfiac4
mficcr
mficdbdr
mflr
mfpid
mfpit
mfpvr
mfsgr
mfsler
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mfsrr2
mfsrr3
mfsu0r
mftcr
mftsr
mfxer
mfzpr

RT Move from special purpose register (SPR) SPRN.
Extended mnemonic for
mfspr RT,SPRN

See Table 26.5, “Special Purpose Registers,” on
page 26-817 for listing of valid SPRN values.

723

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).

723

mftb RT, TBRN Move from TBR to RT,
(RT) ← (TBR(TBRN)).

725

mftb RT Move the contents of TBL into RT,
(RT) ← (TBL)

Extended mnemonic for
mftb RT,TBL

725

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1139 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mftbu RT Move the contents of TBU into RT,
(RT) ← (TBU)

Extended mnemonic for
mftb RT,TBU

725

mr RT, RS Move register.
(RT) ← (RS)

Extended mnemonic for
or RT,RS,RS

753

mr. Extended mnemonic for
or. RT,RS,RS

CR[CR0]

mtcr RS Move to Condition Register.
Extended mnemonic for
mtcrf 0xFF,RS

727

mtcrf FXM, RS Move some or all of the contents of RS into CR as
specified by FXM field,
mask ← 4(FXM0) || 4(FXM1) || ... ||

4(FXM6) || 4(FXM7).
(CR)←((RS) ∧ mask) ∨ (CR) ∧ ¬mask).

727

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

728

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

730

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1140

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
mtccr0
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbsr
mtdccr
mtdear
mtdcwr
mtdvc1
mtdvc2
mtesr
mtevpr
mtiac1
mtiac2
mtiac3
mtiac4
mticcr
mticdbdr
mtlr
mtpid
mtpit
mtpvr
mtsgr
mtsler
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mtsu0r
mttbl
mttbu
mttcr
mttsr
mtxer
mtzpr

RS Move to SPR SPRN.
Extended mnemonic for
mtspr SPRN,RS

See Table 26.5, “Special Purpose Registers,” on
page 26-817 for listing of valid SPRN values.

731

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).

731

mulchw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 signed 734
mulchw. CR[CR0]
mulchwu RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 unsigned 735
mulchwu. CR[CR0]

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1141 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mulhhw RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 signed 736
mulhhw. CR[CR0]
mulhhwu RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 unsigned 737
mulhhwu. CR[CR0]
mullhw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)16:31 signed 738
mullhw. CR[CR0]
mullhwu RT, RA, RB (RT)16:31 ← (RA)16:31 x (RB)16:31 unsigned 739
mullhwu. CR[CR0]
mulhw RT, RA, RB Multiply (RA) and (RB), signed.

Place high-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod0:31.

740
mulhw. CR[CR0]

mulhwu RT, RA, RB Multiply (RA) and (RB), unsigned.
Place high-order result in RT.
prod0:63 ← (RA) × (RB) (unsigned).
(RT) ← prod0:31.

741
mulhwu. CR[CR0]

mulli RT, RA, IM Multiply (RA) and IM, signed.
Place low-order result in RT.
prod0:47 ← (RA) × IM (signed)
(RT) ← prod16:47

742

mullw RT, RA, RB Multiply (RA) and (RB), signed.
Place low-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod32:63.

743
mullw. CR[CR0]
mullwo XER[SO, OV]
mullwo. CR[CR0]

XER[SO, OV]
nand RA, RS, RB NAND (RS) with (RB).

Place result in RA.
744

nand. CR[CR0]
neg RT, RA Negative (twos complement) of RA.

(RT) ← ¬(RA) + 1
745

neg. CR[CR0]
nego XER[SO, OV]
nego. CR[CR0]

XER[SO, OV]
nmacchw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

746
nmacchw. CR[CR0]
nmacchwo XER[SO, OV]
nmacchwo. CR[CR0]

XER[SO, OV]
nmacchws RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

747
nmacchws. CR[CR0]
nmacchwso XER[SO, OV]
nmacchwso. CR[CR0]

XER[SO, OV]

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1142

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
nmachhw RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

748
nmachhw. CR[CR0]
nmachhwo XER[SO, OV]
nmachhwo. CR[CR0]

XER[SO, OV]
nmachhws RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0
|| 31(¬RT0))
else (RT) ← temp1:32

750
nmachhws. CR[CR0]
nmachhwso XER[SO, OV]
nmachhwso. CR[CR0]

XER[SO, OV]
nmachlw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)16:31) signed

temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0
|| 31(¬RT0))
else (RT) ← temp1:32

751
nmachlw. CR[CR0]
nmachlwo XER[SO, OV]
nmachlwo. CR[CR0]

XER[SO, OV]
nmachlws RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed

temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then (RT) ← (RT0
|| 31(¬RT0))
else (RT) ← temp1:32

749
nmachlws. CR[CR0]
nmachlwso XER[SO, OV]
nmachlwso. CR[CR0]

XER[SO, OV]
nop Preferred no-op, triggers optimizations based on

no-ops.
Extended mnemonic for
ori 0,0,0

747

nor RA, RS, RB NOR (RS) with (RB).
Place result in RA.

752
nor. CR[CR0]
not RA, RS Complement register.

(RA) ← ¬(RS)
Extended mnemonic for
nor RA,RS,RS

752

not. Extended mnemonic for
nor. RA,RS,RS

CR[CR0]

or RA, RS, RB OR (RS) with (RB).
Place result in RA.

747
or. CR[CR0]
orc RA, RS, RB OR (RS) with ¬(RB).

Place result in RA.
747

orc. CR[CR0]
ori RA, RS, IM OR (RS) with (160 || IM).

Place result in RA.
747

oris RA, RS, IM OR (RS) with (IM || 160).
Place result in RA.

756

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

757

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1143 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

758

rlwimi RA, RS, SH,
MB, ME

Rotate left word immediate, then insert according to
mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

759
rlwimi. CR[CR0]

rlwinm RA, RS, SH,
MB, ME

Rotate left word immediate, then AND with mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

760
rlwinm. CR[CR0]

rlwnm RA, RS, RB,
MB, ME

Rotate left word, then AND with mask.
r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

763
rlwnm. CR[CR0]

rotlw RA, RS, RB Rotate left.
(RA) ← ROTL((RS), (RB)27:31)

Extended mnemonic for
rlwnm RA,RS,RB,0,31

763

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31

CR[CR0]

rotlwi RA, RS, n Rotate left immediate.
(RA) ← ROTL((RS), n)

Extended mnemonic for
rlwinm RA,RS,n,0,31

760

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31

CR[CR0]

rotrwi RA, RS, n Rotate right immediate.
(RA) ← ROTL((RS), 32−n)

Extended mnemonic for
rlwinm RA,RS,32−n,0,31

760

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31

CR[CR0]

sc System call exception is generated.
(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || x'0C00'
(MSR[WE, PR, EE, PE, DR, IR]) ← 0

764

slw RA, RS, RB Shift left (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), n).
if (RB)26 = 0 then m ← MASK(0, 31 – n)
else m ← 320.
(RA) ← r ∧ m.

765
slw. CR[CR0]

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1144

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
slwi RA, RS, n Shift left immediate. (n < 32)
(RA)0:31−n ← (RS)n:31
(RA)32−n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,n,0,31−n

760

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n

CR[CR0]

sraw RA, RS, RB Shift right algebraic (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0).

766
sraw. CR[CR0]

srawi RA, RS, SH Shift right algebraic (RS) by SH.
n ← SH.
r ← ROTL((RS), 32 – n).
m ← MASK(n, 31).
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m)≠0).

767
srawi. CR[CR0]

srw RA, RS, RB Shift right (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
(RA) ← r ∧ m.

768
srw. CR[CR0]

srwi RA, RS, n Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31−n
(RA)0:n−1 ← n0

Extended mnemonic for
rlwinm RA,RS,32−n,n,31

760

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31

CR[CR0]

stb RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).

769

stbu RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

770

stbux RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

771

stbx RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).

772

sth RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).

774

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1145 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sthbrx RS, RA, RB Store halfword (RS)16:31 byte-reversed in memory at
EA = (RA|0) + (RB).
MS(EA, 2) ← (RS)24:31 || (RS)16:23

775

sthu RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

776

sthux RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

777

sthx RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).

778

stmw RS, D(RA) Store consecutive words from RS through GPR(31) in
memory starting at
EA = (RA|0) + EXTS(D).

779

stswi RS, RA, NB Store consecutive bytes in memory starting at
EA=(RA|0).
Number of bytes n=32 if NB=0, else n=NB.
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

780

stswx RS, RA, RB Store consecutive bytes in memory starting at
EA=(RA|0)+(RB).
Number of bytes n=XER[TBC].
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

781

stw RS, D(RA) Store word (RS) in memory at
EA = (RA|0) + EXTS(D).

783

stwbrx RS, RA, RB Store word (RS) byte-reversed in memory at
EA = (RA|0) + (RB).
MS(EA, 4) ← (RS)24:31 || (RS)16:23 ||

(RS)8:15 || (RS)0:7

784

stwcx. RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB)
only if reservation bit is set.
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso.

785

stwu RS, D(RA) Store word (RS) in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

787

stwux RS, RA, RB Store word (RS) in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

788

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1146

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
stwx RS, RA, RB Store word (RS) in memory at
EA = (RA|0) + (RB).

789

sub RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.

Extended mnemonic for
subf RT,RB,RA

790

sub. Extended mnemonic for
subf. RT,RB,RA

CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA

XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]

subc RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].

Extended mnemonic for
subfc RT,RB,RA

791

subc. Extended mnemonic for
subfc. RT,RB,RA

CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA

XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

subf RT, RA, RB Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.

790
subf. CR[CR0]
subfo XER[SO, OV]
subfo. CR[CR0]

XER[SO, OV]
subfc RT, RA, RB Subtract (RA) from (RB).

(RT) ← ¬(RA) + (RB) + 1.
Place carry-out in XER[CA].

791
subfc. CR[CR0]
subfco XER[SO, OV]
subfco. CR[CR0]

XER[SO, OV]
subfe RT, RA, RB Subtract (RA) from (RB) with carry-in.

(RT) ← ¬(RA) + (RB) + XER[CA].
Place carry-out in XER[CA].

792
subfe. CR[CR0]
subfeo XER[SO, OV]
subfeo. CR[CR0]

XER[SO, OV]
subfic RT, RA, IM Subtract (RA) from EXTS(IM).

(RT) ← ¬(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].

793

subfme RT, RA, RB Subtract (RA) from (–1) with carry-in.
(RT) ← ¬(RA) + (–1) + XER[CA].
Place carry-out in XER[CA].

794
subfme. CR[CR0]
subfmeo XER[SO, OV]
subfmeo. CR[CR0]

XER[SO, OV]

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1147 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
subfze RT, RA, RB Subtract (RA) from zero with carry-in.
(RT) ← ¬(RA) + XER[CA].
Place carry-out in XER[CA].

795
subfze. CR[CR0]
subfzeo XER[SO, OV]
subfzeo. CR[CR0]

XER[SO, OV]
subi RT, RA, IM Subtract EXTS(IM) from (RA|0).

Place result in RT.
Extended mnemonic for
addi RT,RA,−IM

617

subic RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].

Extended mnemonic for
addic RT,RA,−IM

618

subic. RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].

Extended mnemonic for
addic. RT,RA,−IM

CR[CR0] 619

subis RT, RA, IM Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for
addis RT,RA,−IM

620

sync Synchronization. All instructions that precede sync
complete before any instructions that follow sync
begin.
When sync completes, all storage accesses initiated
prior to sync will have completed.

796

tlbia All TLB entries are invalidated and become
unavailable for translation by clearing the valid (V) bit
in the TLBHI portion of each TLB entry. The rest of the
TLB fields unmodified.

797

tlbre RT, RA,WS If WS = 0:
Load TLBHI of the selected TLB entry into RT.
Load PID with the contents of the TID field of the
selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into
RT.
(RT) ← TLBLO[(RA)]

798

tlbrehi RT, RA Load TLBHI of the selected TLB entry into RT.
Load PID with the contents of the TID field of the
selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

Extended mnemonic for
tlbre RT,RA,0

798

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1148

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
tlbrelo RT, RA Load TLBLO of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

Extended mnemonic for
tlbre RT,RA,1

798

tlbsx RT, RA, RB Search the TLB for a valid entry that translates the
EA.
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

800

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,SO

tlbsync tlbsync does not complete until all previous TLB-
update instructions executed by this processor have
been received and completed by all other processors.
For the PPC405EP, tlbsync is a no-op.

801

tlbwe RS, RA,WS If WS = 0:
Write TLBHI of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the
PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31
If WS = 1:
Write TLBLO portion of the selected TLB entry from
RS.
TLBLO[(RA)] ← (RS)

802

tlbwehi RS, RA Write TLBHI of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the
PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

Extended mnemonic for
tlbwe RS,RA,0

802

tlbwelo RS, RA Write TLBLO of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

Extended mnemonic for
tlbwe RS,RA,1

802

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1149 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
trap Trap unconditionally.
Extended mnemonic for
tw 31,0,0

804

tweq RA, RB Trap if (RA) equal to (RB).
Extended mnemonic for
tw 4,RA,RB

twge Trap if (RA) greater than or equal to (RB).
Extended mnemonic for
tw 12,RA,RB

twgt Trap if (RA) greater than (RB).
Extended mnemonic for
tw 8,RA,RB

twle Trap if (RA) less than or equal to (RB).
Extended mnemonic for
tw 20,RA,RB

twlge Trap if (RA) logically greater than or equal to (RB).
Extended mnemonic for
tw 5,RA,RB

twlgt Trap if (RA) logically greater than (RB).
Extended mnemonic for
tw 1,RA,RB

twlle Trap if (RA) logically less than or equal to (RB).
Extended mnemonic for
tw 6,RA,RB

twllt Trap if (RA) logically less than (RB).
Extended mnemonic for
tw 2,RA,RB

twlng Trap if (RA) logically not greater than (RB).
Extended mnemonic for
tw 6,RA,RB

twlnl Trap if (RA) logically not less than (RB).
Extended mnemonic for
tw 5,RA,RB

twlt Trap if (RA) less than (RB).
Extended mnemonic for
tw 16,RA,RB

twne Trap if (RA) not equal to (RB).
Extended mnemonic for
tw 24,RA,RB

twng Trap if (RA) not greater than (RB).
Extended mnemonic for
tw 20,RA,RB

twnl Trap if (RA) not less than (RB).
Extended mnemonic for
tw 12,RA,RB

tw TO, RA, RB Trap exception is generated if, comparing (RA) with
(RB), any condition specified by TO is true.

804

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1150

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
tweqi RA, IM Trap if (RA) equal to EXTS(IM).
Extended mnemonic for
twi 4,RA,IM

807

twgei Trap if (RA) greater than or equal to EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

twgti Trap if (RA) greater than EXTS(IM).
Extended mnemonic for
twi 8,RA,IM

twlei Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twlgei Trap if (RA) logically greater than or equal to
EXTS(IM).

Extended mnemonic for
wi 5,RA,IM

twlgti Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for
twi 1,RA,IM

twllei Trap if (RA) logically less than or equal to EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twllti Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for
twi 2,RA,IM

twlngi Trap if (RA) logically not greater than EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twlnli Trap if (RA) logically not less than EXTS(IM).
Extended mnemonic for
twi 5,RA,IM

twlti Trap if (RA) less than EXTS(IM).
Extended mnemonic for
twi 16,RA,IM

twnei Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for
twi 24,RA,IM

twngi Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twnli Trap if (RA) not less than EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

twi TO, RA, IM Trap exception is generated if, comparing (RA) with
EXTS(IM), any condition specified by TO is true.

807

wrtee RS Write value of RS16 to MSR[EE]. 810
wrteei E Write value of E to MSR[EE]. 811

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1151 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A.2 Instructions Sorted by Opcode

All instructions are four bytes long and word aligned. All instructions have a primary opcode field (shown as
field OPCD in Figure A-1 through Figure A-9, beginning on page A-1162) in bits 0:5. Some instructions also
have a secondary opcode field (shown as field XO in Figure A-1 through Figure A-9). PPC405EP instructions,
sorted by primary and secondary opcode, are listed in Table A-2.

The “Form” indicated in the table refers to the arrangement of valid field combinations within the four-byte
instruction. See “Instruction Formats,” on page A-1159, for the field layouts of each form.

Form X has a 10-bit secondary opcode field, while form XO uses only the low-order 9-bits of that field.
Form XO uses the high-order secondary opcode bit (the tenth bit) as a variable; therefore, every form XO
instruction really consumes two secondary opcodes from the 10-bit secondary-opcode space. The implicitly
consumed secondary opcode is listed in parentheses for form XO instructions in the table below.

xor RA, RS, RB XOR (RS) with (RB).
Place result in RA.

812
xor. CR[CR0]
xori RA, RS, IM XOR (RS) with (160 || IM).

Place result in RA.
813

xoris RA, RS, IM XOR (RS) with (IM || 160).
Place result in RA.

814

Table A-2. PPC405EP Instructions by Opcode
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page

3 D twi TO, RA, IM 807
4 8 X mulhhwu RT, RA, RB 737

mulhhwu.
4 12 (524) XO machhwu RT, RA, RB 672

machhwu.
machhwuo
machhwuo.

4 40 X mulhhw RT, RA, RB 736
mulhhw.

4 44 (556) XO machhw RT, RA, RB 669
machhw.
machhwo
machhwo.

4 46 (558) XO nmachhw RT, RA, RB 748
nmachhw.
nmachhwo
nmachhwo

Table A-1. PPC405EP Instruction Syntax Summary (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1152

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
4 76 (588) XO machhwsu RT, RA, RB 675
machhwsu.
machhwsuo
machhwsuo.

4 108 (620) XO machhws RT, RA, RB 674
machhws.
machhwso
machhwso.

4 110 (622) XO nmachhws RT, RA, RB 749
nmachhws.
nmachhwso
nmachhwso.

4 136 X mulchwu RT, RA, RB 735
mulchwu.

4 140 (652) XO macchwu RT, RA, RB 672
macchwu.
macchwuo
machhwuo.

4 168 X mulchw RT, RA, RB 734
mulchw.

4 172 (684) XO macchw RT, RA, RB 669
macchw.
macchwo
macchwo.

4 174 (686) XO nmacchw RT, RA, RB 746
nmacchw.
nmacchwo
nmacchwo.

4 204 (716) XO macchwsu RT, RA, RB 671
macchwsu.
macchwsuo
macchwsuo.

4 236 (748) XO macchws RT, RA, RB 670
macchws.
macchwso
macchwso.

4 238 (750) XO nmacchws RT, RA, RB 747
nmacchws.
nmacchwso
nmacchwso.

4 392 X mullhwu RT, RA, RB 741
mullhwu.

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
1153 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
4 396 (908) XO maclhwu RT, RA, RB 680
maclhwu.
maclhwuo
maclhwuo.

4 424 X mullhw RT, RA, RB 740
mullhw.

4 428 (940) XO maclhw RT, RA, RB 677
maclhw.
maclhwo
maclhwo.

4 430 (942) XO nmaclhw RT, RA, RB 750
nmaclhw.
nmaclhwo
nmaclhwo.

4 492 (972) XO maclhws RT, RA, RB 678
maclhws.
maclhwso
maclhwso.

4 460 (1004) XO maclhwsu RT, RA, RB 679
maclhwsu.
maclhwsuo
maclhwsuo.

4 494 (1006) XO nmaclhws RT, RA, RB 751
nmaclhws.
nmaclhwso
nmaclhwso.

7 D mulli RT, RA, IM 742
8 D subfic RT, RA, IM 793
10 D cmpli BF, 0, RA, IM 645
11 D cmpi BF, 0, RA, IM 643
12 D addic RT, RA, IM 618
13 D addic. RT, RA, IM 619
14 D addi RT, RA, IM 617
15 D addis RT, RA, IM 620
16 B bc BO, BI, target 628

bca
bcl
bcla

17 SC sc 764

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
AMCC Proprietary 1154

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
18 I b target 627
ba
bl
bla

19 0 XL mcrf BF, BFA 681
19 16 XL bclr BO, BI 638

bclrl
19 33 XL crnor BT, BA, BB 651
19 50 XL rfi 758
19 51 XL rfci 757
19 129 XL crandc BT, BA, BB 648
19 150 XL isync 679
19 193 XL crxor BT, BA, BB 654
19 225 XL crnand BT, BA, BB 650
19 257 XL crand BT, BA, BB 647
19 289 XL creqv BT, BA, BB 649
19 417 XL crorc BT, BA, BB 653
19 449 XL cror BT, BA, BB 652
19 528 XL bcctr BO, BI 634

bcctrl
20 M rlwimi RA, RS, SH, MB, ME 759

rlwimi.
21 M rlwinm RA, RS, SH, MB, ME 760

rlwinm.
23 M rlwnm RA, RS, RB, MB, ME 763

rlwnm.
24 D ori RA, RS, IM 755
25 D oris RA, RS, IM 756
26 D xori RA, RS, IM 813
27 D xoris RA, RS, IM 814
28 D andi. RA, RS, IM 625
29 D andis. RA, RS, IM 626
31 0 X cmp BF, 0, RA, RB 642
31 4 X tw TO, RA, RB 804
31 8 (520) XO subfc RT, RA, RB 791

subfc.
subfco
subfco.

31 10 (522) XO addc RT, RA, RB 615
addc.
addco
addco.

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
1155 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
31 11 XO mulhwu RT, RA, RB 739
mulhwu.

31 19 X mfcr RT 719
31 20 X lwarx RT, RA, RB 663
31 23 X lwzx RT, RA, RB 668
31 24 X slw RA, RS, RB 783

slw.
31 26 X cntlzw RA, RS 646

cntlzw.
31 28 X and RA, RS, RB 623

and.
31 32 X cmpl BF, 0, RA, RB 644
31 40 (552) XO subf RT, RA, RB 790

subf.
subfo
subfo.

31 54 X dcbst RA, RB 659
31 55 X lwzux RT, RA, RB 702
31 60 X andc RA, RS, RB 624

andc.
31 75 XO mulhw RT, RA, RB 738

mulhw.
31 83 X mfmsr RT 722
31 86 X dcbf RA, RB 657
31 87 X lbzx RT, RA, RB 683
31 104 (616) XO neg RT, RA 745

neg.
nego
nego.

31 119 X lbzux RT, RA, RB 682
31 124 X nor RA, RS, RB 752

nor.
31 131 X wrtee RS 810
31 136 (648) XO subfe RT, RA, RB 792

subfe.
subfeo
subfeo.

31 138 (650) XO adde RT, RA, RB 616
adde.
addeo
addeo.

31 144 XFX mtcrf FXM, RS 727

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
AMCC Proprietary 1156

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
31 146 X mtmsr RS 730
31 150 X stwcx. RS, RA, RB 785
31 151 X stwx RS, RA, RB 789
31 163 X wrteei E 811
31 183 X stwux RS, RA, RB 788
31 200 (712) XO subfze RT, RA, RB 795

subfze.
subfzeo
subfzeo.

31 202 (714) XO addze RT, RA 622
addze.
addzeo
addzeo.

31 215 X stbx RS, RA, RB 772
31 232 (744) XO subfme RT, RA, RB 794

subfme.
subfmeo
subfmeo.

31 234 (746) XO addme RT, RA 621
addme.
addmeo
addmeo.

31 235 (747) XO mullw RT, RA, RB 743
mullw.
mullwo
mullwo.

31 246 X dcbtst RA,RB 661
31 247 X stbux RS, RA, RB 771
31 262 X icbt RA, RB 675
31 266 (778) XO add RT, RA, RB 614

add.
addo
addo.

31 278 X dcbt RA, RB 660
31 279 X lhzx RT, RA, RB 657
31 284 X eqv RA, RS, RB 670

eqv.
31 311 X lhzux RT, RA, RB 656
31 316 X xor RA, RS, RB 812

xor.
31 323 XFX mfdcr RT, DCRN 720
31 339 XFX mfspr RT, SPRN 723

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
1157 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
31 343 X lhax RT, RA, RB 687
31 370 X tlbia 797
31 371 XFX mftb RT, TBRN 725
31 375 X lhaux RT, RA, RB 686
31 407 X sthx RS, RA, RB 778
31 412 X orc RA, RS, RB 754

orc.
31 439 X sthux RS, RA, RB 777
31 444 X or RA, RS, RB 753

or.
31 451 XFX mtdcr DCRN, RS 728
31 454 X dccci RA, RB 664
31 459 (971) XO divwu RT, RA, RB 668

divwu.
divwuo
divwuo.

31 467 XFX mtspr SPRN, RS 731
31 470 X dcbi RA, RB 658
31 476 X nand RA, RS, RB 744

nand.
31 486 X dcread RT, RA, RB 665
31 491 (1003) XO divw RT, RA, RB 667

divw.
divwo
divwo.

31 512 X mcrxr BF 718
31 533 X lswx RT, RA, RB 696
31 534 X lwbrx RT, RA, RB 688
31 536 X srw RA, RS, RB 768

srw.
31 566 X tlbsync 801
31 597 X lswi RT, RA, NB 691
31 598 X sync 796
31 661 X stswx RS, RA, RB 781
31 662 X stwbrx RS, RA, RB 784
31 725 X stswi RS, RA, NB 780
31 758 X dcba RA, RB 655
31 790 X lhbrx RT, RA, RB 688
31 792 X sraw RA, RS, RB 766

sraw.
31 824 X srawi RA, RS, SH 767

srawi.

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
AMCC Proprietary 1158

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
A.3 Instruction Formats

Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended opcode
in another field. Remaining instruction bits contain additional fields. All instruction fields belong to one of the
following categories:

• Defined

These instructions contain values, such as opcodes, that cannot be altered. The instruction format
diagrams specify the values of defined fields.

31 854 X eieio 669
31 914 X tlbsx RT, RA, RB 800

tlbsx.
31 918 X sthbrx RS, RA, RB 775
31 922 X extsh RA, RS 672

extsh.
31 946 X tlbre RT, RA,WS 798
31 954 X extsb RA, RS 671

extsb.
31 966 X iccci RA, RB 676
31 978 X tlbwe RS, RA,WS 802
31 982 X icbi RA, RB 674
31 998 X icread RA, RB 677
31 1014 X dcbz RA, RB 658
32 D lwz RT, D(RA) 700
33 D lwzu RT, D(RA) 701
34 D lbz RT, D(RA) 680
35 D lbzu RT, D(RA) 681
36 D stw RS, D(RA) 783
37 D stwu RS, D(RA) 787
38 D stb RS, D(RA) 769
39 D stbu RS, D(RA) 770
40 D lhz RT, D(RA) 654
41 D lhzu RT, D(RA) 655
42 D lha RT, D(RA) 649
43 D lhau RT, D(RA) 650
44 D sth RS, D(RA) 774
45 D sthu RS, D(RA) 776
46 D lmw RT, D(RA) 658
47 D stmw RS, D(RA) 779

Table A-2. PPC405EP Instructions by Opcode (continued)
Primary
Opcode

Secondary
Opcode Form Mnemonic Operands Page
1159 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• Variable

These fields contain operands, such as GPR selectors and immediate values, that can vary from execution
to execution. The instruction format diagrams specify the operands in the variable fields.

• Reserved

Bits in reserved fields should be set to 0. In the instruction format diagrams, /, //, or /// indicate reserved
fields.

If any bit in a defined field does not contain the expected value, the instruction is illegal and an illegal
instruction exception occurs. If any bit in a reserved field does not contain 0, the instruction form is invalid; its
result is architecturally undefined. The PPC405EP executes all invalid instruction forms without causing an
illegal instruction exception.

A.3.1 Instruction Fields
PPC405EP instructions contain various combinations of the following fields, as indicated in the instruction
format diagrams that follow the field definitions. Numbers, enclosed in parentheses, that follow the field
names indicate bit positions; bit fields are indicated by starting and stopping bit positions separated by
colons.

AA (30) Absolute address bit.

0 The immediate field represents an address relative to the current instruction address
(CIA). The effective address (EA) of the branch is either the sum of the LI field sign-
extended to 32 bits and the branch instruction address, or the sum of the BD field sign-
extended to 32 bits and the branch instruction address.

1 The immediate field represents an absolute address. The EA of the branch is either the LI
field or the BD field, sign-extended to 32 bits.

BA (11:15) Specifies a bit in the CR used as a source of a CR-logical instruction.

BB (16:20) Specifies a bit in the CR used as a source of a CR-logical instruction.

BD (16:29) An immediate field specifying a 14-bit signed twos complement branch displacement. This
field is concatenated on the right with 0b00 and sign-extended to 32 bits.

BF (6:8) Specifies a field in the CR used as a target in a compare or mcrf instruction.

BFA (11:13) Specifies a field in the CR used as a source in a mcrf instruction.

BI (11:15) Specifies a bit in the CR used as a source for the condition of a conditional branch instruction.

BO (6:10) Specifies options for conditional branch instructions. See “BO Field on Conditional Branches”
on page 3-97.

BT (6:10) Specifies a bit in the CR used as a target as the result of a CR-Logical instruction.

D (16:31) Specifies a 16-bit signed twos-complement integer displacement for load/store instructions.

DCRN (11:20) Specifies a device control register (DCR).

FXM (12:19) Field mask used to identify CR fields to be updated by the mtcrf instruction.

IM (16:31) An immediate field used to specify a 16-bit value (either signed integer or unsigned).

LI (6:29) An immediate field specifying a 24-bit signed twos complement branch displacement; this
field is concatenated on the right with b'00' and sign-extended to 32 bits.

LK (31) Link bit.
AMCC Proprietary 1160

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
0 Do not update the link register (LR).
1 Update the LR with the address of the next instruction.

MB (21:25) Mask begin.

Used in rotate-and-mask instructions to specify the beginning bit of a mask.

ME (26:30) Mask end.

Used in rotate-and-mask instructions to specify the ending bit of a mask.

NB (16:20) Specifies the number of bytes to move in an immediate string load or store.

OPCD (0:5) Primary opcode. Primary opcodes, in decimal, appear in the instruction format diagrams
presented with individual instructions. The OPCD field name does not appear in instruction
descriptions.

OE (21) Enables setting the OV and SO fields in the fixed-point exception register (XER) for extended
arithmetic.

RA (11:15) A GPR used as a source or target.

RB (16:20) A GPR used as a source.

Rc (31) Record bit.

0 Do not set the CR.
1 Set the CR to reflect the result of an operation.

See “Condition Register (CR)” on page 3-80 for a further discussion of how the CR bits are
set.

RS (6:10) A GPR used as a source.

RT (6:10) A GPR used as a target.

SH (16:20) Specifies a shift amount.

SPRF (11:20) Specifies a special purpose register (SPR).

TO (6:10) Specifies the conditions on which to trap, as described under tw and twi instructions.

XO (21:30) Extended opcode for instructions without an OE field. Extended opcodes, in decimal, appear
in the instruction format diagrams presented with individual instructions. The XO field name
does not appear in instruction descriptions.

XO (22:30) Extended opcode for instructions with an OE field. Extended opcodes, in decimal, appear in
the instruction format diagrams presented with individual instructions. The XO field name
does not appear in instruction descriptions.

A.3.2 Instruction Format Diagrams
The instruction formats (also called “forms”) illustrated in Figure A-1 through Figure A-9 are valid
combinations of instruction fields. Table A-2 on page A-1152 indicates which “form” is utilized by each
PPC405EP opcode. Fields indicated by slashes (/, //, or ///) are reserved. The figures are adapted from the
PowerPC User Instruction Set Architecture.
1161 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A.3.2.1 I-Form

A.3.2.2 B-Form

A.3.2.3 SC-Form

A.3.2.4 D-Form

OPCD LI

0 6 31

Figure A-1. I Instruction Format

OPCD BO BI BD AA LK

0 6 11 16 30 31

Figure A-2. B Instruction Format

OPCD /// /// /// 1 /

0 6 11 16 30 31

Figure A-3. SC Instruction Format

OPCD RT RA D

OPCD RS RA SI

OPCD RS RA D

OPCD RS RA UI

OPCD BF / L RA SI

OPCD BF / L RA UI

OPCD TO RA SI

0 6 11 16 31

Figure A-4. D Instruction Format
AMCC Proprietary 1162

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
A.3.2.5 X-Form

OPCD RT RA RB XO Rc

OPCD RT RA RB XO /

OPCD RT RA NB XO /

OPCD RT RA WS XO /

OPCD RT /// RB XO /

OPCD RT /// /// XO /

OPCD RS RA RB XO Rc

OPCD RS RA RB XO 1

OPCD RS RA RB XO /

OPCD RS RA NB XO /

OPCD RS RA WS XO /

OPCD RS RA SH XO Rc

OPCD RS RA /// XO Rc

OPCD RS /// RB XO /

OPCD RS /// /// XO /

OPCD BF / L RA RB XO /

OPCD BF // BFA // /// XO Rc

OPCD BF // /// /// XO /

OPCD BF // /// U XO Rc

OPCD BF // /// /// XO /

OPCD TO RA RB XO /

OPCD BT /// /// XO Rc

OPCD /// RA RB XO /

OPCD /// /// /// XO /

OPCD /// /// E // XO /

0 6 11 16 21 31

Figure A-5. X Instruction Format
1163 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
A.3.2.6 XL-Form

A.3.2.7 XFX-Form

A.3.2.8 X0-Form

A.3.2.9 M-Form

OPCD BT BA BB XO /

OPCD BC BI /// XO L
K

OPCD BF // BFA // /// XO /

OPCD /// /// /// XO /

0 6 11 16 21 31

Figure A-6. XL Instruction Format

OPCD RT SPRF XO /

OPCD RT DCRF XO /

OPCD RT / FXM / XO /

OPCD RS SPRF XO /

OPCD RS DCRF XO /

0 6 11 16 21 31

Figure A-7. XFX Instruction Format

OPCD RT RA RB O
E

XO Rc

OPCD RT RA RB O
E

XO Rc

OPCD RT RA /// / XO Rc

0 6 11 16 21 22 31

Figure A-8. XO Instruction Format

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

0 6 11 16 21 26 31

Figure A-9. M Instruction Format
AMCC Proprietary 1164

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Appendix B. Instructions by Category

Chapter 25, “Instruction Set,” contains detailed descriptions of the instructions, their operands, and notation.

Table B-1 summarizes the instruction categories in the PPC405EP instruction set. The instructions within
each category are listed in subsequent tables.

B.1 Implementation-Specific Instructions

To meet the functional requirements of processors for embedded systems and real-time applications, the
PPC405EP defines the implementation-specific instructions summarized in Table B-2.

Table B-1. PPC405EP Instruction Set Categories
Storage Reference load, store
Arithmetic and Logical add, subtract, negate, multiply, divide, and, andc, or, orc, xor, nand, nor, xnor, sign

extension, count leading zeros, multiply accumulate
Comparison compare, compare logical, compare immediate
Branch branch, branch conditional, branch to LR, branch to CTR
CR Logical crand, crandc, cror, crorc, crnand, crnor, crxor, crxnor, move CR field
Rotate/Shift rotate and insert, rotate and mask, shift left, shift right
Cache Control invalidate, touch, zero, flush, store, read
Interrupt Control write to external interrupt enable bit, move to/from MSR, return from interrupt,

return from critical interrupt
Processor Management system call, synchronize, trap, move to/from DCRs, move to/from SPRs, move

to/from CR

Table B-2. Implementation-specific Instructions

Mnemonic Operands Function
Other Registers

Changed Page

dccci RA, RB Invalidate the data cache congruence class
associated with the effective address (EA)
(RA|0) + (RB).

664

dcread RT, RA, RB Read either tag or data information from the data
cache congruence class associated with the EA
(RA|0) + (RB).
Place the results in RT.

665

iccci RA, RB Invalidate instruction cache. 676

icread RA, RB Read either tag or data information from the
instruction cache congruence class associated with
the EA (RA|0) + (RB).
Place the results in ICDBDR.

676
1165 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
macchw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

704

macchw. CR[CR0]

macchwo XER[SO, OV]

macchwo. CR[CR0]
XER[SO, OV]

macchws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

705

macchws. CR[CR0]

macchwso XER[SO, OV]

macchwso. CR[CR0]
XER[SO, OV]

macchwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

706

macchwsu. CR[CR0]

macchwsuo XER[SO, OV]

macchwsuo. CR[CR0]
XER[SO, OV]

macchwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

707

macchwu. CR[CR0]

macchwuo XER[SO, OV]

macchwuo. CR[CR0]
XER[SO, OV]

machhw RT, RA, RB prod0:15 ← (RA)16:31 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

708

machhw. CR[CR0]

machhwo XER[SO, OV]

machhwo. CR[CR0]
XER[SO, OV]

machhws RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

709

machhws. CR[CR0]

machhwso XER[SO, OV]

machhwso. CR[CR0]
XER[SO, OV]

machhwsu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

710

machhwsu. CR[CR0]

machhwsuo XER[SO, OV]

machhwsuo. CR[CR0]
XER[SO, OV]

Table B-2. Implementation-specific Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1166

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
machhwu RT, RA, RB prod0:31 ← (RA)0:15 x (RB)0:15 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

711

machhwu. CR[CR0]

machhwuo XER[SO, OV]

machhwuo. CR[CR0]
XER[SO, OV]

maclhw RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

712

maclhw. CR[CR0]

maclhwo XER[SO, OV]

maclhwo. CR[CR0]
XER[SO, OV]

maclhws RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 signed
temp0:32 ← prod0:31 + (RT)
if ((prod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

713

maclhws. CR[CR0]

maclhwso XER[SO, OV]

maclhwso. CR[CR0]
XER[SO, OV]

maclhwsu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← (temp1:32 ∨ 32temp0)

714

maclhwsu. CR[CR0]

maclhwsuo XER[SO, OV]

maclhwsuo. CR[CR0]
XER[SO, OV]

maclhwu RT, RA, RB prod0:31 ← (RA)16:31 x (RB)16:31 unsigned
temp0:32 ← prod0:31 + (RT)
(RT) ← temp1:32

715

maclhwu. CR[CR0]

maclhwuo XER[SO, OV]

maclhwuo. CR[CR0]
XER[SO, OV]

mulchw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 signed 734

mulchw. CR[CR0]

mulchwu RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)0:15 unsigned 735

mulchwu. CR[CR0]

mulhhw RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 signed 736

mulhhw. CR[CR0]

mulhhwu RT, RA, RB (RT)0:31 ← (RA)0:15 x (RB)0:15 unsigned 737

mulhhwu. CR[CR0]

mullhw RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)16:31 signed 740

mullhw. CR[CR0]

Table B-2. Implementation-specific Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1167 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mullhwu RT, RA, RB (RT)16:31 ← (RA)0:15 x (RB)16:31 unsigned 741

mullhwu. CR[CR0]

nmacchw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

746

nmacchw. CR[CR0]

nmacchwo XER[SO, OV]

nmacchwo. CR[CR0]
XER[SO, OV]

nmacchws RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

747

nmacchws. CR[CR0]

nmacchwso XER[SO, OV]

nmacchwso. CR[CR0]
XER[SO, OV]

nmachhw RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

748

nmachhw. CR[CR0]

nmachhwo XER[SO, OV]

nmachhwo. CR[CR0]
XER[SO, OV]

nmachhws RT, RA, RB nprod0:31 ← –((RA)0:15 x (RB)0:15) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

749

nmachhws. CR[CR0]

nmachhwso XER[SO, OV]

nmachhwso. CR[CR0]
XER[SO, OV]

nmaclhw RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)16:31) signed
temp0:32 ← nprod0:31 + (RT)
(RT) ← temp1:32

750

nmaclhw. CR[CR0]

nmaclhwo XER[SO, OV]

nmaclhwo. CR[CR0]
XER[SO, OV]

nmaclhws RT, RA, RB nprod0:31 ← –((RA)16:31 x (RB)16:31) signed
temp0:32 ← nprod0:31 + (RT)
if ((nprod0 = RT0) ∧ (RT0 ≠ temp1)) then
(RT) ← (RT0 || 31(¬RT0))
else (RT) ← temp1:32

751

nmaclhws. CR[CR0]

nmaclhwso XER[SO, OV]

nmaclhwso. CR[CR0]
XER[SO, OV]

Table B-2. Implementation-specific Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1168

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
B.2 Instructions in the IBM PowerPC Embedded Environment

To meet the functional requirements of processors for embedded systems and real-time applications, the IBM
PowerPC Embedded Environment defines instructions that are not part of the PowerPC Architecture.

Table B-3 summarizes the PPC405EP instructions in the PowerPC Embedded Environment.

Table B-3. Instructions in the IBM PowerPC Embedded Environment

Mnemonic Operands Function
Other Registers

Changed Page

dcba RA, RB Speculatively establish the data cache block which
contains the EA (RA|0) + (RB).

655

dcbf RA, RB Flush (store, then invalidate) the data cache block
which contains the EA (RA|0) + (RB).

657

dcbi RA, RB Invalidate the data cache block which contains the EA
(RA|0) + (RB).

658

dcbst RA, RB Store the data cache block which contains the EA
(RA|0) + (RB).

659

dcbt RA, RB Load the data cache block which contains the EA
(RA|0) + (RB).

660

dcbtst RA,RB Load the data cache block which contains the EA
(RA|0) + (RB).

661

dcbz RA, RB Zero the data cache block which contains the EA
(RA|0) + (RB).

662

eieio Storage synchronization. All loads and stores that
precede the eieio instruction complete before any
loads and stores that follow the instruction access
main storage.

Implemented as sync, which is more restrictive.

669

icbi RA, RB Invalidate the instruction cache block which contains
the EA (RA|0) + (RB).

674

icbt RA, RB Load the instruction cache block which contains the
EA (RA|0) + (RB).

675

isync Synchronize execution context by flushing the
prefetch queue.

679

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

720

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

722

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).
Privileged for all SPRs except
LR, CTR, TBHU, TBLU, and XER.

723
1169 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mftb RT Move the contents of a Time Base Register (TBR)
into RT,
TBRN ← TBRF5:9 || TBRF0:4
(RT) ← (TBR(TBRN))

725

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

728

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

730

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).
Privileged for all SPRs except
LR, CTR, and XER.

731

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

757

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

758

tlbia All of the entries in the TLB are invalidated and
become unavailable for translation by clearing the
valid (V) bit in the TLBHI portion of each TLB entry.
The rest of the fields in the TLB entries are
unmodified.

797

tlbre RT, RA,WS If WS = 0:
Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID
field of the selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into
RT.
(RT) ← TLBLO[(RA)]

798

tlbsx RT,RA,RB Search the TLB array for a valid entry which
translates the EA
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

800

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,S
O

Table B-3. Instructions in the IBM PowerPC Embedded Environment (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1170

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
B.3 Privileged Instructions

Table B-4 lists instructions that are under control of the MSR[PR] bit. These instructions are not allowed to be
executed when MSR[PR] = 1:

tlbsync tlbsync does not complete until all previous TLB-
update instructions executed by this processor have
been received and completed by all other processors.

For the PPC405EP, tlbsync is a no-op.

801

tlbwe RS, RA,WS If WS = 0:
Write TLBHI portion of the selected TLB entry from
RS.
Write the TID field of the selected TLB entry from the
PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

If WS = 1:
Write TLBLO portion of the selected TLB entry from
RS.
TLBLO[(RA)] ← (RS)

802

wrtee RS Write value of RS16 to MSR[EE]. 810

wrteei E Write value of E to MSR[EE]. 811

Table B-4. Privileged Instructions

Mnemonic Operands Function
Other Registers

Changed Page

dcbi RA, RB Invalidate the data cache block which contains the EA
(RA|0) + (RB).

658

dccci RA, RB Invalidate the data cache congruence class associated
with the EA (RA|0) + (RB).

664

dcread RT, RA,
RB

Read either tag or data information from the data cache
congruence class associated with the EA (RA|0) + (RB).
Place the results in RT.

665

iccci RA, RB Invalidate instruction cache. 676

icread RA, RB Read either tag or data information from the instruction
cache congruence class associated with the EA
(RA|0) + (RB).
Place the results in ICDBDR.

677

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

720

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

722

Table B-3. Instructions in the IBM PowerPC Embedded Environment (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1171 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).
Privileged for all SPRs except
LR, CTR, TBHU, TBLU, and XER.

723

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

728

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

730

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).
Privileged for all SPRs except
LR, CTR, and XER.

731

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

757

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

758

tlbre RT,
RA,WS

If WS = 0:
Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID field of
the selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into RT.
(RT) ← TLBLO[(RA)]

798

tlbsx RT,RA,RB Search the TLB array for a valid entry which translates
the EA
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

800

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,S
O

Table B-4. Privileged Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1172

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
B.4 Assembler Extended Mnemonics

In the appendix “Assembler Extended Mnemonics” of the PowerPC Architecture, it is required that a
PowerPC assembler support at least a minimal set of extended mnemonics. These mnemonics encode to the
opcodes of other instructions; the only benefit of extended mnemonics is improved usability. Code using
extended mnemonics can be easier to write and to understand. Table B-5 lists the extended mnemonics
required for the PPC405EP.

Note for every Branch Conditional mnemonic:

Bit 4 of the BO field provides a hint about the most likely outcome of a conditional branch. (“Branch
Prediction” on page 3-99 describes branch prediction). Assemblers should set BO4 = 0 unless a specific
reason exists otherwise. In the BO field values specified in the following table, BO4 = 0 has always been
assumed. The assembler must allow the programmer to specify branch prediction. To do this, the assembler
will support a suffix to every conditional branch mnemonic, as follows:

+ Predict branch to be taken.

– Predict branch not to be taken.

As specific examples, bc also could be coded as bc+ or bc−, and bne also could be coded bne+ or bne−.
These alternate codings set BO4 = 1 only if the requested prediction differs from the standard prediction (see
“Branch Prediction” on page 3-99).

tlbwe RS,
RA,WS

If WS = 0:
Write TLBHI portion of the selected TLB entry from RS.
Write the TID field of the selected TLB entry from the
PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

If WS = 1:
Write TLBLO portion of the selected TLB entry from RS.
TLBLO[(RA)] ← (RS)

802

wrtee RS Write value of RS16 to the External Enable
bit (MSR[EE]).

810

wrteei E Write value of E to the External Enable
bit (MSR[EE]).

811

Table B-5. Extended Mnemonics for PPC405EP

Mnemonic Operands Function
Other Registers

Changed Page

bctr Branch unconditionally to address in CTR.
Extended mnemonic for
bcctr 20,0

634

bctrl Extended mnemonic for
bcctrl 20,0

(LR) ← CIA + 4

Table B-4. Privileged Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1173 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bdnz target Decrement CTR.
Branch if CTR ≠ 0.

Extended mnemonic for
bc 16,0,target

628

bdnza Extended mnemonic for
bca 16,0,target

bdnzl Extended mnemonic for
bcl 16,0,target

(LR) ← CIA + 4.

bdnzla Extended mnemonic for
bcla 16,0,target

(LR) ← CIA + 4.

bdnzlr Decrement CTR.
Branch, if CTR ≠ 0,to address in LR.

Extended mnemonic for
bclr 16,0

638

bdnzlrl Extended mnemonic for
bclrl 16,0

(LR) ← CIA + 4.

bdnzf cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 0,cr_bit,target

628

bdnzfa Extended mnemonic for
bca 0,cr_bit,target

bdnzfl Extended mnemonic for
bcl 0,cr_bit,target

(LR) ← CIA + 4.

bdnzfla Extended mnemonic for
bcla 0,cr_bit,target

(LR) ← CIA + 4.

bdnzflr cr_bit Decrement CTR.
Branch, if CTR ≠ 0 AND CRcr_bit = 0, to address in LR.

Extended mnemonic for
bclr 0,cr_bit

638

bdnzflrl Extended mnemonic for
bclrl 0,cr_bit

(LR) ← CIA + 4.

bdnzt cr_bit, target Decrement CTR.
Branch if CTR ≠ 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 8,cr_bit,target

628

bdnzta Extended mnemonic for
bca 8,cr_bit,target

bdnztl Extended mnemonic for
bcl 8,cr_bit,target

(LR) ← CIA + 4.

bdnztla Extended mnemonic for
bcla 8,cr_bit,target

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1174

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bdnztlr cr_bit Decrement CTR.
Branch, if CTR ≠ 0 AND CRcr_bit = 1, to address in LR.

Extended mnemonic for
bclr 8,cr_bit

638

bdnztlrl Extended mnemonic for
bclrl 8,cr_bit

(LR) ← CIA + 4.

bdz target Decrement CTR.
Branch if CTR = 0.

Extended mnemonic for
bc 18,0,target

628

bdza Extended mnemonic for
bca 18,0,target

bdzl Extended mnemonic for
bcl 18,0,target

(LR) ← CIA + 4.

bdzla Extended mnemonic for
bcla 18,0,target

(LR) ← CIA + 4.

bdzlr Decrement CTR.
Branch, if CTR = 0, to address in LR.

Extended mnemonic for
bclr 18,0

638

bdzlrl Extended mnemonic for
bclrl 18,0

(LR) ← CIA + 4.

bdzf cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 0.

Extended mnemonic for
bc 2,cr_bit,target

628

bdzfa Extended mnemonic for
bca 2,cr_bit,target

bdzfl Extended mnemonic for
bcl 2,cr_bit,target

(LR) ← CIA + 4.

bdzfla Extended mnemonic for
bcla 2,cr_bit,target

(LR) ← CIA + 4.

bdzflr cr_bit Decrement CTR.
Branch, if CTR = 0 AND CRcr_bit = 0 to address in LR.

Extended mnemonic for
bclr 2,cr_bit

638

bdzflrl Extended mnemonic for
bclrl 2,cr_bit

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1175 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bdzt cr_bit, target Decrement CTR.
Branch if CTR = 0 AND CRcr_bit = 1.

Extended mnemonic for
bc 10,cr_bit,target

628

bdzta Extended mnemonic for
bca 10,cr_bit,target

bdztl Extended mnemonic for
bcl 10,cr_bit,target

(LR) ← CIA + 4.

bdztla Extended mnemonic for
bcla 10,cr_bit,target

(LR) ← CIA + 4.

bdztlr cr_bit Decrement CTR.
Branch, if CTR = 0 AND CRcr_bit = 1, to address in LR.

Extended mnemonic for
bclr 10,cr_bit

638

bdztlrl Extended mnemonic for
bclrl 10,cr_bit

(LR) ← CIA + 4.

beq [cr_field,]
target

Branch if equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+2,target

628

beqa Extended mnemonic for
bca 12,4∗cr_field+2,target

beql Extended mnemonic for
bcl 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqla Extended mnemonic for
bcla 12,4∗cr_field+2,target

(LR) ← CIA + 4.

beqctr [cr_field] Branch, if equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+2

634

beqctrl Extended mnemonic for
bcctrl 12,4∗cr_field+2

(LR) ← CIA + 4.

beqlr [cr_field] Branch, if equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+2

638

beqlrl Extended mnemonic for
bclrl 12,4∗cr_field+2

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1176

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bf cr_bit, target Branch if CRcr_bit = 0.
Extended mnemonic for
bc 4,cr_bit,target

628

bfa Extended mnemonic for
bca 4,cr_bit,target

bfl Extended mnemonic for
bcl 4,cr_bit,target

(LR) ← CIA + 4.

bfla Extended mnemonic for
bcla 4,cr_bit,target

(LR) ← CIA + 4.

bfctr cr_bit Branch, if CRcr_bit = 0, to address in CTR.
Extended mnemonic for
bcctr 4,cr_bit

634

bfctrl Extended mnemonic for
bcctrl 4,cr_bit

(LR) ← CIA + 4.

bflr cr_bit Branch, if CRcr_bit = 0, to address in LR.
Extended mnemonic for
bclr 4,cr_bit

638

bflrl Extended mnemonic for
bclrl 4,cr_bit

(LR) ← CIA + 4.

bge [cr_field,]
target

Branch if greater than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

628

bgea Extended mnemonic for
bca 4,4∗cr_field+0,target

bgel Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgela Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bgectr [cr_field] Branch, if greater than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

634

bgectrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bgelr [cr_field] Branch, if greater than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

638

bgelrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1177 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bgt [cr_field,]
target

Branch if greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+1,target

628

bgta Extended mnemonic for
bca 12,4∗cr_field+1,target

bgtl Extended mnemonic for
bcl 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtla Extended mnemonic for
bcla 12,4∗cr_field+1,target

(LR) ← CIA + 4.

bgtctr [cr_field] Branch, if greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+1

634

bgtctrl Extended mnemonic for
bcctrl 12,4∗cr_field+1

(LR) ← CIA + 4.

bgtlr [cr_field] Branch, if greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+1

638

bgtlrl Extended mnemonic for
bclrl 12,4∗cr_field+1

(LR) ← CIA + 4.

ble [cr_field,]
target

Branch if less than or equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

628

blea Extended mnemonic for
bca 4,4∗cr_field+1,target

blel Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blela Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

blectr [cr_field] Branch, if less than or equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

634

blectrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

blelr [cr_field] Branch, if less than or equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

638

blelrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1178

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
blr Branch, unconditionally, to address in LR.
Extended mnemonic for
bclr 20,0

638

blrl Extended mnemonic for
bclrl 20,0

(LR) ← CIA + 4.

blt [cr_field,]
target

Branch if less than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+0,target

628

blta Extended mnemonic for
bca 12,4∗cr_field+0,target

bltl Extended mnemonic for
bcl 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltla Extended mnemonic for
bcla 12,4∗cr_field+0,target

(LR) ← CIA + 4.

bltctr [cr_field] Branch, if less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+0

634

bltctrl Extended mnemonic for
bcctrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bltlr [cr_field] Branch, if less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+0

638

bltlrl Extended mnemonic for
bclrl 12,4∗cr_field+0

(LR) ← CIA + 4.

bne [cr_field,]
target

Branch if not equal.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+2,target

628

bnea Extended mnemonic for
bca 4,4∗cr_field+2,target

bnel Extended mnemonic for
bcl 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnela Extended mnemonic for
bcla 4,4∗cr_field+2,target

(LR) ← CIA + 4.

bnectr [cr_field] Branch, if not equal, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+2

634

bnectrl Extended mnemonic for
bcctrl 4,4∗cr_field+2

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1179 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bnelr [cr_field] Branch, if not equal, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+2

638

bnelrl Extended mnemonic for
bclrl 4,4∗cr_field+2

(LR) ← CIA + 4.

bng [cr_field,]
target

Branch, if not greater than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+1,target

628

bnga Extended mnemonic for
bca 4,4∗cr_field+1,target

bngl Extended mnemonic for
bcl 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngla Extended mnemonic for
bcla 4,4∗cr_field+1,target

(LR) ← CIA + 4.

bngctr [cr_field] Branch, if not greater than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+1

634

bngctrl Extended mnemonic for
bcctrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnglr [cr_field] Branch, if not greater than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+1

638

bnglrl Extended mnemonic for
bclrl 4,4∗cr_field+1

(LR) ← CIA + 4.

bnl [cr_field,]
target

Branch if not less than.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+0,target

628

bnla Extended mnemonic for
bca 4,4∗cr_field+0,target

bnll Extended mnemonic for
bcl 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlla Extended mnemonic for
bcla 4,4∗cr_field+0,target

(LR) ← CIA + 4.

bnlctr [cr_field] Branch, if not less than, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+0

634

bnlctrl Extended mnemonic for
bcctrl 4,4∗cr_field+0

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1180

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bnllr [cr_field] Branch, if not less than, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+0

638

bnllrl Extended mnemonic for
bclrl 4,4∗cr_field+0

(LR) ← CIA + 4.

bns [cr_field,]
target

Branch if not summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

628

bnsa Extended mnemonic for
bca 4,4∗cr_field+3,target

bnsl Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsla Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnsctr [cr_field] Branch, if not summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

634

bnsctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnslr [cr_field] Branch, if not summary overflow, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

638

bnslrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bnu [cr_field,]
target

Branch if not unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 4,4∗cr_field+3,target

628

bnua Extended mnemonic for
bca 4,4∗cr_field+3,target

bnul Extended mnemonic for
bcl 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnula Extended mnemonic for
bcla 4,4∗cr_field+3,target

(LR) ← CIA + 4.

bnuctr [cr_field] Branch, if not unordered, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 4,4∗cr_field+3

634

bnuctrl Extended mnemonic for
bcctrl 4,4∗cr_field+3

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1181 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bnulr [cr_field] Branch, if not unordered, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 4,4∗cr_field+3

638

bnulrl Extended mnemonic for
bclrl 4,4∗cr_field+3

(LR) ← CIA + 4.

bso [cr_field,]
target

Branch if summary overflow.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

628

bsoa Extended mnemonic for
bca 12,4∗cr_field+3,target

bsol Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsola Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bsoctr [cr_field] Branch, if summary overflow, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

634

bsoctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bsolr [cr_field] Branch, if summary overflow, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

638

bsolrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bt cr_bit, target Branch if CRcr_bit = 1.
Extended mnemonic for
bc 12,cr_bit,target

628

bta Extended mnemonic for
bca 12,cr_bit,target

btl Extended mnemonic for
bcl 12,cr_bit,target

(LR) ← CIA + 4.

btla Extended mnemonic for
bcla 12,cr_bit,target

(LR) ← CIA + 4.

btctr cr_bit Branch if CRcr_bit = 1,
to address in CTR.

Extended mnemonic for
bcctr 12,cr_bit

634

btctrl Extended mnemonic for
bcctrl 12,cr_bit

(LR) ← CIA + 4.

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1182

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
btlr cr_bit Branch, if CRcr_bit = 1, to address in LR.
Extended mnemonic for
bclr 12,cr_bit

638

btlrl Extended mnemonic for
bclrl 12,cr_bit

(LR) ← CIA + 4.

bun [cr_field,]
target

Branch if unordered.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bc 12,4∗cr_field+3,target

628

buna Extended mnemonic for
bca 12,4∗cr_field+3,target

bunl Extended mnemonic for
bcl 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunla Extended mnemonic for
bcla 12,4∗cr_field+3,target

(LR) ← CIA + 4.

bunctr [cr_field] Branch, if unordered, to address in CTR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bcctr 12,4∗cr_field+3

634

bunctrl Extended mnemonic for
bcctrl 12,4∗cr_field+3

(LR) ← CIA + 4.

bunlr [cr_field] Branch, if unordered, to address in LR.
Use CR0 if cr_field is omitted.

Extended mnemonic for
bclr 12,4∗cr_field+3

638

bunlrl Extended mnemonic for
bclrl 12,4∗cr_field+3

(LR) ← CIA + 4.

clrlwi RA, RS, n Clear left immediate. (n < 32)
(RA)0:n−1 ← n0

Extended mnemonic for
rlwinm RA,RS,0,n,31

760

clrlwi. Extended mnemonic for
rlwinm. RA,RS,0,n,31

CR[CR0]

clrlslwi RA, RS, b, n Clear left and shift left immediate.
(n ≤ b < 32)
(RA)b−n:31−n ← (RS)b:31
(RA)32−n:31 ← n0
(RA)0:b−n−1 ← b−n0

Extended mnemonic for
rlwinm RA,RS,n,b−n,31−n

760

clrlslwi. Extended mnemonic for
rlwinm. RA,RS,n,b−n,31−n

CR[CR0]

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1183 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
clrrwi RA, RS, n Clear right immediate. (n < 32)
(RA)32−n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,0,0,31−n

760

clrrwi. Extended mnemonic for
rlwinm. RA,RS,0,0,31−n

CR[CR0]

cmplw [BF,] RA, RB Compare Logical Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpl BF,0,RA,RB

644

cmplwi [BF,] RA, IM Compare Logical Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpli BF,0,RA,IM

645

cmpw [BF,] RA, RB Compare Word.
Use CR0 if BF is omitted.

Extended mnemonic for
cmp BF,0,RA,RB

642

cmpwi [BF,] RA, IM Compare Word Immediate.
Use CR0 if BF is omitted.

Extended mnemonic for
cmpi BF,0,RA,IM

643

crclr bx Condition register clear.
Extended mnemonic for
crxor bx,bx,bx

654

crmove bx, by Condition register move.
Extended mnemonic for
cror bx,by,by

652

crnot bx, by Condition register not.
Extended mnemonic for
crnor bx,by,by

651

crset bx Condition register set.
Extended mnemonic for
creqv bx,bx,bx

649

extlwi RA, RS, n, b Extract and left justify immediate. (n > 0)
(RA)0:n−1 ← (RS)b:b+n−1
(RA)n:31 ← 32−n0

Extended mnemonic for
rlwinm RA,RS,b,0,n−1

760

extlwi. Extended mnemonic for
rlwinm. RA,RS,b,0,n−1

CR[CR0]

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1184

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
extrwi RA, RS, n, b Extract and right justify immediate. (n > 0)
(RA)32−n:31 ← (RS)b:b+n−1
(RA)0:31−n ← 32−n0

Extended mnemonic for
rlwinm RA,RS,b+n,32−n,31

760

extrwi. Extended mnemonic for
rlwinm. RA,RS,b+n,32−n,31

CR[CR0]

inslwi RA, RS, n, b Insert from left immediate. (n > 0)
(RA)b:b+n−1 ← (RS)0:n−1

Extended mnemonic for
rlwimi RA,RS,32−b,b,b+n−1

759

inslwi. Extended mnemonic for
rlwimi. RA,RS,32−b,b,b+n−1

CR[CR0]

insrwi RA, RS, n, b Insert from right immediate. (n > 0)
(RA)b:b+n−1 ← (RS)32−n:31

Extended mnemonic for
rlwimi RA,RS,32−b−n,b,b+n−1

759

insrwi. Extended mnemonic for
rlwimi. RA,RS,32−b−n,b,b+n−1

CR[CR0]

la RT, D(RA) Load address. (RA ≠ 0)
D is an offset from a base address that is assumed to
be (RA).

(RT) ← (RA) + EXTS(D)
Extended mnemonic for

addi RT,RA,D

617

li RT, IM Load immediate.
(RT) ← EXTS(IM)

Extended mnemonic for
addi RT,0,value

617

lis RT, IM Load immediate shifted.
(RT) ← (IM || 160)

Extended mnemonic for
addis RT,0,value

620

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1185 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mfccr0
mfctr
mfdac1
mfdac2
mfdear
mfdbcr0
mfdbcr1
mfdbsr
mfdccr
mfdcwr
mfdvc1
mfdvc2
mfesr
mfevpr
mfiac1
mfiac2
mfiac3
mfiac4
mficcr
mficdbdr
mflr
mfpid
mfpit
mfpvr
mfsgr
mfsler
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsprg4
mfsprg5
mfsprg6
mfsprg7
mfsrr0
mfsrr1
mfsrr2
mfsrr3
mfsu0r
mftcr
mftsr
mfxer
mfzpr

RT Move from special purpose register (SPR) SPRN.
Extended mnemonic for
mfspr RT,SPRN

See Table 26.5, “Special Purpose Registers,” on
page 26-817 for listing of valid SPRN values.

723

mftb RT Move the contents of TBL into RT,
(RT) ← (TBL)

Extended mnemonic for
mftb RT,TBL

725

mftbu RT Move the contents of TBU into RT,
(RT) ← (TBU)

Extended mnemonic for
mftb RT,TBU

725

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1186

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
mr RT, RS Move register.
(RT) ← (RS)

Extended mnemonic for
or RT,RS,RS

753

mr. Extended mnemonic for
or. RT,RS,RS

CR[CR0]

mtcr RS Move to Condition Register.
Extended mnemonic for
mtcrf 0xFF,RS

727

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1187 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mtccr0
mtctr
mtdac1
mtdac2
mtdbcr0
mtdbcr1
mtdbsr
mtdccr
mtdear
mtdcwr
mtdvc1
mtdvc2
mtesr
mtevpr
mtiac1
mtiac2
mtiac3
mtiac4
mticcr
mticdbdr
mtlr
mtpid
mtpit
mtpvr
mtsgr
mtsler
mtsprg0
mtsprg1
mtsprg2
mtsprg3
mtsprg4
mtsprg5
mtsprg6
mtsprg7
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mtsu0r
mttcr
mttsr
mtxer
mtzpr

RS Move to SPR SPRN.
Extended mnemonic for

mtspr SPRN,RS

See Table 26.5, “Special Purpose Registers,” on
page 26-817 for listing of valid SPRN values.

731

nop Preferred no-op; triggers optimizations based on
no-ops.

Extended mnemonic for
ori 0,0,0

755

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1188

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
not RA, RS Complement register.
(RA) ← ¬(RS)

Extended mnemonic for
nor RA,RS,RS

752

not. Extended mnemonic for
nor. RA,RS,RS

CR[CR0]

rotlw RA, RS, RB Rotate left.
(RA) ← ROTL((RS), (RB)27:31)

Extended mnemonic for
rlwnm RA,RS,RB,0,31

763

rotlw. Extended mnemonic for
rlwnm. RA,RS,RB,0,31

CR[CR0]

rotlwi RA, RS, n Rotate left immediate.
(RA) ← ROTL((RS), n)

Extended mnemonic for
rlwinm RA,RS,n,0,31

760

rotlwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31

CR[CR0]

rotrwi RA, RS, n Rotate right immediate.
(RA) ← ROTL((RS), 32−n)

Extended mnemonic for
rlwinm RA,RS,32−n,0,31

760

rotrwi. Extended mnemonic for
rlwinm. RA,RS,32−n,0,31

CR[CR0]

slwi RA, RS, n Shift left immediate. (n < 32)
(RA)0:31−n ← (RS)n:31
(RA)32−n:31 ← n0

Extended mnemonic for
rlwinm RA,RS,n,0,31−n

760

slwi. Extended mnemonic for
rlwinm. RA,RS,n,0,31−n

CR[CR0]

srwi RA, RS, n Shift right immediate. (n < 32)
(RA)n:31 ← (RS)0:31−n
(RA)0:n−1 ← n0

Extended mnemonic for
rlwinm RA,RS,32−n,n,31

760

srwi. Extended mnemonic for
rlwinm. RA,RS,32−n,n,31

CR[CR0]

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1189 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
sub RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.

Extended mnemonic for
subf RT,RB,RA

790

sub. Extended mnemonic for
subf. RT,RB,RA

CR[CR0]

subo Extended mnemonic for
subfo RT,RB,RA

XER[SO, OV]

subo. Extended mnemonic for
subfo. RT,RB,RA

CR[CR0]
XER[SO, OV]

subc RT, RA, RB Subtract (RB) from (RA).
(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA].

Extended mnemonic for
subfc RT,RB,RA

791

subc. Extended mnemonic for
subfc. RT,RB,RA

CR[CR0]

subco Extended mnemonic for
subfco RT,RB,RA

XER[SO, OV]

subco. Extended mnemonic for
subfco. RT,RB,RA

CR[CR0]
XER[SO, OV]

subi RT, RA, IM Subtract EXTS(IM) from (RA|0).
Place result in RT.

Extended mnemonic for
addi RT,RA,−IM

617

subic RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].

Extended mnemonic for
addic RT,RA,−IM

618

subic. RT, RA, IM Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA].

Extended mnemonic for
addic. RT,RA,−IM

CR[CR0] 619

subis RT, RA, IM Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for
addis RT,RA,−IM

620

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1190

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
tweqi RA, IM Trap if (RA) equal to EXTS(IM).
Extended mnemonic for
twi 4,RA,IM

804

twgei Trap if (RA) greater than or equal to EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

twgti Trap if (RA) greater than EXTS(IM).
Extended mnemonic for
twi 8,RA,IM

twlei Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twlgei Trap if (RA) logically greater than or equal to
EXTS(IM).

Extended mnemonic for
twi 5,RA,IM

twlgti Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for
twi 1,RA,IM

twllei Trap if (RA) logically less than or equal to EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twllti Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for
twi 2,RA,IM

twlngi Trap if (RA) logically not greater than EXTS(IM).
Extended mnemonic for
twi 6,RA,IM

twlnli Trap if (RA) logically not less than EXTS(IM).
Extended mnemonic for
twi 5,RA,IM

twlti Trap if (RA) less than EXTS(IM).
Extended mnemonic for
twi 16,RA,IM

twnei Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for
twi 24,RA,IM

twngi Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for
twi 20,RA,IM

twnli Trap if (RA) not less than EXTS(IM).
Extended mnemonic for
twi 12,RA,IM

Table B-5. Extended Mnemonics for PPC405EP (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1191 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
B.5 Storage Reference Instructions

The PPC405EP uses load and store instructions to transfer data between memory and the general purpose
registers. Load and store instructions operate on byte, halfword and word data. The storage reference
instructions also support loading or storing multiple registers, character strings, and byte-reversed data.
Table B-6 shows the storage reference instructions available for use in the PPC405EP.

Table B-6. Storage Reference Instructions

Mnemonic Operands Function
Other Registers

Changed Page

lbz RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left
with zeroes,
(RT) ← 240 || MS(EA,1).

680

lbzu RT, D(RA) Load byte from EA = (RA|0) + EXTS(D) and pad left
with zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

681

lbzux RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).
Update the base address,
(RA) ← EA.

682

lbzx RT, RA, RB Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,
(RT) ← 240 || MS(EA,1).

683

lha RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign
extend,
(RT) ← EXTS(MS(EA,2)).

684

lhau RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and sign
extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

685

lhaux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign
extend,
(RT) ← EXTS(MS(EA,2)).
Update the base address,
(RA) ← EA.

686

lhax RT, RA, RB Load halfword from EA = (RA|0) + (RB) and sign
extend,
(RT) ← EXTS(MS(EA,2)).

687

lhbrx RT, RA, RB Load halfword from EA = (RA|0) + (RB), then reverse
byte order and pad left with zeroes,
(RT) ← 160 || MS(EA+1,1) || MS(EA,1).

688

lhz RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad
left with zeroes,
(RT) ← 160 || MS(EA,2).

689
AMCC Proprietary 1192

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
lhzu RT, D(RA) Load halfword from EA = (RA|0) + EXTS(D) and pad
left with zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

689

lhzux RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left
with zeroes,
(RT) ← 160 || MS(EA,2).
Update the base address,
(RA) ← EA.

691

lhzx RT, RA, RB Load halfword from EA = (RA|0) + (RB) and pad left
with zeroes,
(RT) ← 160 || MS(EA,2).

692

lmw RT, D(RA) Load multiple words starting from
EA = (RA|0) + EXTS(D).
Place into consecutive registers, RT through
GPR(31).
RA is not altered unless RA = GPR(31).

693

lswi RT, RA, NB Load consecutive bytes from EA = (RA|0).
Number of bytes n = 32 if NB = 0, else n = NB.
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.

694

lswx RT, RA, RB Load consecutive bytes from EA=(RA|0)+(RB).
Number of bytes n = XER[TBC].
Stack bytes into words in CEIL(n/4) consecutive
registers starting with RT, to
RFINAL ← ((RT + CEIL(n/4) – 1) % 32).
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RFINAL.
RB is not altered unless RB = RFINAL.
If n=0, content of RT is undefined.

696

lwarx RT, RA, RB Load word from EA = (RA|0) + (RB)and place in RT,
(RT) ← MS(EA,4).
Set the Reservation bit.

698

lwbrx RT, RA, RB Load word from EA = (RA|0) + (RB) then reverse byte
order,
(RT) ← MS(EA+3,1) || MS(EA+2,1) ||
 MS(EA+1,1) || MS(EA,1).

688

lwz RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in
RT,
(RT) ← MS(EA,4).

700

Table B-6. Storage Reference Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1193 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
lwzu RT, D(RA) Load word from EA = (RA|0) + EXTS(D) and place in
RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

701

lwzux RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).
Update the base address,
(RA) ← EA.

702

lwzx RT, RA, RB Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).

703

stb RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).

769

stbu RS, D(RA) Store byte (RS)24:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

770

stbux RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

771

stbx RS, RA, RB Store byte (RS)24:31 in memory at
EA = (RA|0) + (RB).

772

sth RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).

774

sthbrx RS, RA, RB Store halfword (RS)16:31 byte-reversed in memory at
EA = (RA|0) + (RB).
MS(EA, 2) ← (RS)24:31 || (RS)16:23

775

sthu RS, D(RA) Store halfword (RS)16:31 in memory at
EA = (RA|0) + EXTS(D).
Update the base address,
(RA) ← EA.

776

sthux RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

777

sthx RS, RA, RB Store halfword (RS)16:31 in memory at
EA = (RA|0) + (RB).

778

stmw RS, D(RA) Store consecutive words from RS through GPR(31) in
memory starting at
EA = (RA|0) + EXTS(D).

779

Table B-6. Storage Reference Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1194

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
stswi RS, RA, NB Store consecutive bytes in memory starting at
EA=(RA|0).
Number of bytes n = 32 if NB = 0, else n = NB.
Bytes are unstacked from CEIL(n/4) consecutive
registers starting with RS.
GPR(0) is consecutive to GPR(31).

780

stswx RS, RA, RB Store consecutive bytes in memory starting at
EA=(RA|0)+(RB).
Number of bytes n = XER[TBC].
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).

781 781

stw RS, D(RA) Store word (RS) in memory at
EA = (RA|0) + EXTS(D).

783 783

stwbrx RS, RA, RB Store word (RS) byte-reversed in memory at EA =
(RA|0) + (RB).
MS(EA, 4) ← (RS)24:31 || (RS)16:23 ||

(RS)8:15 || (RS)0:7

784 784

stwcx. RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB)
only if the reservation bit is set.
if RESERVE = 1 then

MS(EA, 4) ← (RS)
RESERVE ← 0
(CR[CR0]) ← 20 || 1 || XERso

else
(CR[CR0]) ← 20 || 0 || XERso.

785 785

stwu RS, D(RA) Store word (RS) in memory at EA = (RA|0) +
EXTS(D).
Update the base address,
(RA) ← EA.

787 787

stwux RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB).
Update the base address,
(RA) ← EA.

788 788

stwx RS, RA, RB Store word (RS) in memory at
EA = (RA|0) + (RB).

789 789

Table B-6. Storage Reference Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1195 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
B.6 Arithmetic and Logical Instructions

Table B-7 lists the arithmetic and logical instructions. Arithmetic operations are performed on integer or
ordinal operands stored in registers. Instructions using two operands are defined in a three-operand format,
where the operation is performed on the operands stored in two registers, and the result is placed in a third
register. Instructions using one operand are defined in a two-operand format, where the operation is
performed on the operand in one register, and the result is placed in another register. Several instructions
have immediate formats, in which one operand is coded as part of the instruction itself. Most arithmetic and
logical instructions can optionally set the Condition Register (CR) based on the outcome of the instruction.

Table B-7. Arithmetic and Logical Instructions

Mnemonic Operands Function
Other Registers

Changed Page

add RT, RA, RB Add (RA) to (RB).
Place result in RT.

614

add. CR[CR0]

addo XER[SO, OV]

addo. CR[CR0]
XER[SO, OV]

addc RT, RA, RB Add (RA) to (RB).
Place result in RT.
Place carry-out in XER[CA].

615

addc. CR[CR0]

addco XER[SO, OV]

addco. CR[CR0]
XER[SO, OV]

adde RT, RA, RB Add XER[CA], (RA), (RB).
Place result in RT.
Place carry-out in XER[CA].

617

adde. CR[CR0]

addeo XER[SO, OV]

addeo. CR[CR0]
XER[SO, OV]

addi RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.

617

addic RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

618

addic. RT, RA, IM Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0] 619

addis RT, RA, IM Add (IM || 160) to (RA|0).
Place result in RT.

620

addme RT, RA Add XER[CA], (RA), (-1).
Place result in RT.
Place carry-out in XER[CA].

621

addme. CR[CR0]

addmeo XER[SO, OV]

addmeo. CR[CR0]
XER[SO, OV]
AMCC Proprietary 1196

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
addze RT, RA Add XER[CA] to (RA).
Place result in RT.
Place carry-out in XER[CA].

622

addze. CR[CR0]

addzeo XER[SO, OV]

addzeo. CR[CR0]
XER[SO, OV]

and RA, RS, RB AND (RS) with (RB).
Place result in RA.

623

and. CR[CR0]

andc RA, RS, RB AND (RS) with ¬(RB).
Place result in RA.

624

andc. CR[CR0]

andi. RA, RS, IM AND (RS) with (160 || IM).
Place result in RA.

CR[CR0] 625

andis. RA, RS, IM AND (RS) with (IM || 160).
Place result in RA.

CR[CR0] 626

cntlzw RA, RS Count leading zeros in RS.
Place result in RA.

646

cntlzw. CR[CR0]

divw RT, RA, RB Divide (RA) by (RB), signed.
Place result in RT.

667

divw. CR[CR0]

divwo XER[SO, OV]

divwo. CR[CR0]
XER[SO, OV]

divwu RT, RA, RB Divide (RA) by (RB), unsigned.
Place result in RT.

668

divwu. CR[CR0]

divwuo XER[SO, OV]

divwuo. CR[CR0]
XER[SO, OV]

eqv RA, RS, RB Equivalence of (RS) with (RB).
(RA) ← ¬((RS) ⊕ (RB))

670

eqv. CR[CR0]

extsb RA, RS Extend the sign of byte (RS)24:31.
Place the result in RA.

671

extsb. CR[CR0]

extsh RA, RS Extend the sign of halfword (RS)16:31.
Place the result in RA.

672

extsh. CR[CR0]

mulhw RT, RA, RB Multiply (RA) and (RB), signed.
Place hi-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod0:31.

740

mulhw. CR[CR0]

Table B-7. Arithmetic and Logical Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1197 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
mulhwu RT, RA, RB Multiply (RA) and (RB), unsigned.
Place hi-order result in RT.
prod0:63 ← (RA) × (RB) (unsigned).
(RT) ← prod0:31.

741

mulhwu. CR[CR0]

mulli RT, RA, IM Multiply (RA) and IM, signed.
Place lo-order result in RT.
prod0:47 ← (RA) × IM (signed)
(RT) ← prod16:47

742

mullw RT, RA, RB Multiply (RA) and (RB), signed.
Place lo-order result in RT.
prod0:63 ← (RA) × (RB) (signed).
(RT) ← prod32:63.

743

mullw. CR[CR0]

mullwo XER[SO, OV]

mullwo. CR[CR0]
XER[SO, OV]

nand RA, RS, RB NAND (RS) with (RB).
Place result in RA.

744

nand. CR[CR0]

neg RT, RA Negative (two’s complement) of RA.
(RT) ← ¬(RA) + 1

745

neg. CR[CR0]

nego XER[SO, OV]

nego. CR[CR0]
XER[SO, OV]

nor RA, RS, RB NOR (RS) with (RB).
Place result in RA.

752

nor. CR[CR0]

or RA, RS, RB OR (RS) with (RB).
Place result in RA.

747

or. CR[CR0]

orc RA, RS, RB OR (RS) with ¬(RB).
Place result in RA.

747

orc. CR[CR0]

ori RA, RS, IM OR (RS) with (160 || IM).
Place result in RA.

755

oris RA, RS, IM OR (RS) with (IM || 160).
Place result in RA.

756

subf RT, RA, RB Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.

790

subf. CR[CR0]

subfo XER[SO, OV]

subfo. CR[CR0]
XER[SO, OV]

Table B-7. Arithmetic and Logical Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1198

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
subfc RT, RA, RB Subtract (RA) from (RB).
(RT) ← ¬(RA) + (RB) + 1.
Place carry-out in XER[CA].

791

subfc. CR[CR0]

subfco XER[SO, OV]

subfco. CR[CR0]
XER[SO, OV]

subfe RT, RA, RB Subtract (RA) from (RB) with carry-in.
(RT) ← ¬(RA) + (RB) + XER[CA].
Place carry-out in XER[CA].

792

subfe. CR[CR0]

subfeo XER[SO, OV]

subfeo. CR[CR0]
XER[SO, OV]

subfic RT, RA, IM Subtract (RA) from EXTS(IM).
(RT) ← ¬(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].

793

subfme RT, RA, RB Subtract (RA) from (–1) with carry-in.
(RT) ← ¬(RA) + (–1) + XER[CA].
Place carry-out in XER[CA].

794

subfme. CR[CR0]

subfmeo XER[SO, OV]

subfmeo. CR[CR0]
XER[SO, OV]

subfze RT, RA, RB Subtract (RA) from zero with carry-in.
(RT) ← ¬(RA) + XER[CA].
Place carry-out in XER[CA].

794

subfze. CR[CR0]

subfzeo XER[SO, OV]

subfzeo. CR[CR0]
XER[SO, OV]

xor RA, RS, RB XOR (RS) with (RB).
Place result in RA.

812

xor. CR[CR0]

xori RA, RS, IM XOR (RS) with (160 || IM).
Place result in RA.

813

xoris RA, RS, IM XOR (RS) with (IM || 160).
Place result in RA.

814

Table B-7. Arithmetic and Logical Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1199 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
B.7 Condition Register Logical Instructions

CR logical instructions combine the results of several comparisons without incurring the overhead of
conditional branching. These instructions can significantly improve code performance if multiple conditions
are tested before making a branch decision. Table B-8 summarizes the CR logical instructions.

Table B-8. Condition Register Logical Instructions

Mnemonic Operands Function
Other Registers

Changed Page

crand BT, BA, BB AND bit (CRBA) with (CRBB).
Place result in CRBT.

647

crandc BT, BA, BB AND bit (CRBA) with ¬(CRBB).
Place result in CRBT.

648

creqv BT, BA, BB Equivalence of bit CRBA with CRBB.
CRBT ← ¬(CRBA ⊕ CRBB)

649

crnand BT, BA, BB NAND bit (CRBA) with (CRBB).
Place result in CRBT.

650

crnor BT, BA, BB NOR bit (CRBA) with (CRBB).
Place result in CRBT.

651

cror BT, BA, BB OR bit (CRBA) with (CRBB).
Place result in CRBT.

652

crorc BT, BA, BB OR bit (CRBA) with ¬ (CRBB).
Place result in CRBT.

653

crxor BT, BA, BB XOR bit (CRBA) with (CRBB).
Place result in CRBT.

654

mcrf BF, BFA Move CR field, (CR[CRn]) ← (CR[CRm])
where m ← BFA and n ← BF.

716
AMCC Proprietary 1200

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
B.8 Branch Instructions

The architecture provides conditional and unconditional branches to any storage location. The conditional
branch instructions test condition codes set previously and branch accordingly. Conditional branch
instructions may decrement and test the Count Register (CTR) as part of determination of the branch
condition and may save the return address in the Link Register (LR). The target address for a branch may be
a displacement from the current instruction address (CIA), or may be contained in the LR or CTR, or may be
an absolute address.

Table B-9. Branch Instructions

Mnemonic Operands Function
Other Registers

Changed Page

b target Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

627

ba Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

bl Branch unconditional relative.
LI ← (target – CIA)6:29
NIA ← CIA + EXTS(LI || 20)

(LR) ← CIA + 4.

bla Branch unconditional absolute.
LI ← target6:29
NIA ← EXTS(LI || 20)

(LR) ← CIA + 4.

bc BO, BI, target Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0. 628

bca Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.

bcl Branch conditional relative.
BD ← (target – CIA)16:29
NIA ← CIA + EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcla Branch conditional absolute.
BD ← target16:29
NIA ← EXTS(BD || 20)

CTR if BO2 = 0.
(LR) ← CIA + 4.

bcctr BO, BI Branch conditional to address in CTR.
Using (CTR) at exit from instruction,
NIA ← CTR0:29 || 20.

CTR if BO2 = 0. 634

bcctrl CTR if BO2 = 0.
(LR) ← CIA + 4.

bclr BO, BI Branch conditional to address in LR.
Using (LR) at entry to instruction,
NIA ← LR0:29 || 20.

CTR if BO2 = 0. 638

bclrl CTR if BO2 = 0.
(LR) ← CIA + 4.
1201 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
B.9 Comparison Instructions

Comparison instructions perform arithmetic and logical comparisons between two operands and set one of
the eight condition code register fields based on the outcome of the comparison. Table B-10 shows the
comparison instructions supported by the PPC405EP.

Table B-10. Comparison Instructions

Mnemonic Operands Function

Other
Registers
Changed Page

cmp BF, 0, RA,
RB

Compare (RA) to (RB), signed.
Results in CR[CRn], where n = BF.

642

cmpi BF, 0, RA,
IM

Compare (RA) to EXTS(IM), signed.
Results in CR[CRn], where n = BF.

643

cmpl BF, 0, RA,
RB

Compare (RA) to (RB), unsigned.
Results in CR[CRn], where n = BF.

644

cmpli BF, 0, RA,
IM

Compare (RA) to (160 || IM), unsigned.
Results in CR[CRn], where n = BF.

645
AMCC Proprietary 1202

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
B.10 Rotate and Shift Instructions

Rotate and shift instructions rotate and shift operands which are stored in the general purpose registers.
Rotate instructions can also mask rotated operands. Table B-11 shows the PPC405EP rotate and shift
instructions.

Table B-11. Rotate and Shift Instructions

Mnemonic Operands Function
Other Registers

Changed Page

rlwimi RA, RS, SH,
MB, ME

Rotate left word immediate, then insert according to
mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m)

759

rlwimi. CR[CR0]

rlwinm RA, RS, SH,
MB, ME

Rotate left word immediate, then AND with mask.
r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

763

rlwinm. CR[CR0]

rlwnm RA, RS, RB,
MB, ME

Rotate left word, then AND with mask.
r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← (r ∧ m)

763

rlwnm. CR[CR0]

slw RA, RS, RB Shift left (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), n).
if (RB)26 = 0 then m ← MASK(0, 31 – n)
else m ← 320.
(RA) ← r ∧ m.

765

slw. CR[CR0]

sraw RA, RS, RB Shift right algebraic (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m) ≠ 0).

766

sraw. CR[CR0]

srawi RA, RS, SH Shift right algebraic (RS) by SH.
n ← SH.
r ← ROTL((RS), 32 – n).
m ← MASK(n, 31).
s ← (RS)0.
(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).
XER[CA] ← s ∧ ((r ∧ ¬m)≠0).

767

srawi. CR[CR0]

srw RA, RS, RB Shift right (RS) by (RB)27:31.
n ← (RB)27:31.
r ← ROTL((RS), 32 – n).
if (RB)26 = 0 then m ← MASK(n, 31)
else m ← 320.
(RA) ← r ∧ m.

768

srw. CR[CR0]
1203 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
B.11 Cache Control Instructions

Cache control instructions allow the user to indirectly control the contents of the data and instruction caches.
The user may fill, flush, invalidate and zero blocks (16-byte lines) in the data cache. The user may also
invalidate congruence classes in both caches and invalidate individual lines in the instruction cache.

Table B-12. Cache Control Instructions

Mnemonic Operands Function

Other
Registers
Changed Page

dcba RA, RB Speculatively establish the data cache block which
contains the EA (RA|0) + (RB).

655

dcbf RA, RB Flush (store, then invalidate) the data cache block which
contains the EA (RA|0) + (RB).

657

dcbi RA, RB Invalidate the data cache block which contains the EA
(RA|0) + (RB).

658

dcbst RA, RB Store the data cache block which contains the EA
(RA|0) + (RB).

659

dcbt RA, RB Load the data cache block which contains the EA
(RA|0) + (RB).

660

dcbtst RA,RB Load the data cache block which contains the EA
(RA|0) + (RB).

661

dcbz RA, RB Zero the data cache block which contains the EA
(RA|0) + (RB).

662

dccci RA, RB Invalidate the data cache congruence class associated
with the EA (RA|0) + (RB).

664

dcread RT, RA, RB Read either tag or data information from the data cache
congruence class associated with the EA (RA|0) + (RB).
Place the results in RT.

665

icbi RA, RB Invalidate the instruction cache block which contains the
EA (RA|0) + (RB).

674

icbt RA, RB Load the instruction cache block which contains the EA
(RA|0) + (RB).

675

iccci RA, RB Invalidate instruction cache. 676

icread RA, RB Read either tag or data information from the instruction
cache congruence class associated with the EA
(RA|0) + (RB).
Place the results in ICDBDR.

677
AMCC Proprietary 1204

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
B.12 Interrupt Control Instructions

The interrupt control instructions allow the user to move data between general purpose registers and the
machine state register, return from interrupts and enable or disable maskable external interrupts. Table B-13
shows the interrupt control instruction set.

B.13 TLB Management Instructions

The TLB management instructions read and write entries of the TLB array in the MMU, search the TLB array
for an entry which will translate a given address, invalidate all TLB entries, and synchronize TLB updates with
other processors.

Table B-13. Interrupt Control Instructions

Mnemonic Operands Function
Other Registers

Changed Page

mfmsr RT Move from MSR to RT,
(RT) ← (MSR).

722

mtmsr RS Move to MSR from RS,
(MSR) ← (RS).

730

rfci Return from critical interrupt
(PC) ← (SRR2).
(MSR) ← (SRR3).

757

rfi Return from interrupt.
(PC) ← (SRR0).
(MSR) ← (SRR1).

757

wrtee RS Write value of RS16 to the External Enable bit
(MSR[EE]).

810

wrteei E Write value of E to the External Enable bit (MSR[EE]). 811

Table B-14. TLB Management Instructions

Mnemonic Operands Function
Other Registers

Changed Page

tlbia All of the entries in the TLB are invalidated and
become unavailable for translation by clearing the
valid (V) bit in the TLBHI portion of each TLB entry.
The rest of the fields in the TLB entries are
unmodified.

797

tlbre RT, RA,WS If WS = 0:
Load TLBHI portion of the selected TLB entry into RT.
Load the PID register with the contents of the TID
field of the selected TLB entry.
(RT) ← TLBHI[(RA)]
(PID) ← TLB[(RA)]TID

If WS = 1:
Load TLBLO portion of the selected TLB entry into
RT.
(RT) ← TLBLO[(RA)]

798
1205 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
B.14 Processor Management Instructions

The processor management instructions move data between GPRs and SPRs and DCRs in the PPC405EP;
these instructions also provide traps, system calls and synchronization controls.

tlbsx RT,RA,RB Search the TLB array for a valid entry which
translates the EA
EA = (RA|0) + (RB).
If found,

(RT) ← Index of TLB entry.
If not found,

(RT) Undefined.

800

tlbsx. If found,
(RT) ← Index of TLB entry.
CR[CR0]EQ ← 1.

If not found,
(RT) Undefined.
CR[CR0]EQ ← 1.

CR[CR0]LT,GT,S
O

tlbsync tlbsync does not complete until all previous TLB-
update instructions executed by this processor have
been received and completed by all other processors.

For the PPC405EP, tlbsync is a no-op.

801

tlbwe RS, RA,WS If WS = 0:
Write TLBHI portion of the selected TLB entry from
RS.
Write the TID field of the selected TLB entry from the
PID register.
TLBHI[(RA)] ← (RS)
TLB[(RA)]TID ← (PID)24:31

If WS = 1:
Write TLBLO portion of the selected TLB entry from
RS.
TLBLO[(RA)] ← (RS)

802

Table B-15. Processor Management Instructions

Mnemonic Operands Function
Other Registers

Changed Page

eieio Storage synchronization. All loads and stores that
precede the eieio instruction complete before any
loads and stores that follow the instruction access
main storage.

Implemented as sync, which is more restrictive.

669

isync Synchronize execution context by flushing the
prefetch queue.

679

Table B-14. TLB Management Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
AMCC Proprietary 1206

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
mcrxr BF Move XER[0:3] into field CRn, where n←BF.
CR[CRn] ← (XER[SO, OV, CA]).
(XER[SO, OV, CA]) ← 30.

718

mfcr RT Move from CR to RT,
(RT) ← (CR).

718

mfdcr RT, DCRN Move from DCR to RT,
(RT) ← (DCR(DCRN)).

720

mfspr RT, SPRN Move from SPR to RT,
(RT) ← (SPR(SPRN)).

723

mtcrf FXM, RS Move some or all of the contents of RS into CR as
specified by FXM field,
mask ← 4(FXM0) || 4(FXM1) || ... ||
4(FXM6) || 4(FXM7).
(CR)←((RS) ∧ mask) ∨ (CR) ∧ ¬mask).

727

mtdcr DCRN, RS Move to DCR from RS,
(DCR(DCRN)) ← (RS).

728

mtspr SPRN, RS Move to SPR from RS,
(SPR(SPRN)) ← (RS).

731

sc System call exception is generated.
(SRR1) ← (MSR)
(SRR0) ← (PC)
PC ← EVPR0:15 || 0x0C00
(MSR[WE, PR, EE, PE, DR, IR]) ← 0

764

sync Synchronization. All instructions that precede sync
complete before any instructions that follow sync
begin.
When sync completes, all storage accesses initiated
before sync will have completed.

796

tw TO, RA, RB Trap exception is generated if, comparing (RA) with
(RB), any condition specified by TO is true.

804

twi TO, RA, IM Trap exception is generated if, comparing (RA) with
EXTS(IM), any condition specified by TO is true.

807

Table B-15. Processor Management Instructions (continued)

Mnemonic Operands Function
Other Registers

Changed Page
1207 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Appendix C. Code Optimization and Instruction Timings

The code optimization guidelines in “Code Optimization Guidelines” and the information describing instruction
timings in “Instruction Timings,” on page C-1209 can help compiler, system, and application programmers
produce high-performance code and determine accurate execution times.

C.1 Code Optimization Guidelines

The following guidelines can help to reduce program execution times.

C.1.1 Condition Register Bits for Boolean Variables
Compilers can use Condition Register (CR) bits to store boolean variables, where 0 and 1 represent False
and True values, respectively. This generally improves performance, compared to using General Purpose
Registers (GPRs) to store boolean variables. Most common operations on boolean variables can be
accomplished using the CR Logical instructions.

C.1.2 CR Logical Instruction for Compound Branches
For example, consider the following pseudocode:

if (Var28 || Var29 || Var30 || Var 31) branch to target

Var28–Var31 are boolean variables, maintained as bits in the CR[CR7] field (CR28:31). The value 1
represents True; 0 represents False.

This could be coded with branches as:

bt 28, target
bt 29, target
bt 30, target
bt 31, target

Generally faster, functionally equivalent code, using CR Logical instructions, follows:

crcr 2, 28, 29
cror 2, 2, 30
cror 2, 2, 31
bt 2, target

C.1.3 Cache Usage
Code and data can be organized, based on the size and structure of the instruction and data cache arrays, to
minimize cache misses.

In the cache arrays, any two addresses in which Am:26 (the index) are the same, but which differ in A0:m-1 (the
tag), are called congruent. (This describes a two-way set-associative cache.) A27:31 define the 32 bytes in a
cache line, the smallest object that can be brought into the cache. Only two congruent lines can be in the
cache simultaneously; accessing a third congruent line causes the removal from the cache of one of the two
lines previously there

Table C-1 illustrates the value of m and the index size for the various cache array sizes.
AMCC Proprietary 1208

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
Moving new code and data into the cache arrays occurs at the speed of external memory. Much faster
execution is possible when all code and data is available in the cache. Organizing code to uniformly use
Am:26 minimizes the use of congruent addresses.

C.1.4 CR Dependencies
For CR-setting arithmetic, compare, CR-logical, and logical instructions, and the CR-setting mcrf, mcrxr, and
mtcrf instructions, put two instructions between the CR-setting instruction and a Branch instruction that uses
a bit in the CR field set by the CR-setting instruction.

C.1.5 Branch Prediction
Use the Y-bit in branch instructions to force proper branch prediction when there is a more likely prediction
than the standard prediction. See “Branch Prediction” on page 3-99 for a more information about branch
prediction.

C.1.6 Alignment
For speed, align all accesses on the appropriate operand-size boundary. For example, load/store word
operands should be word-aligned, and so on. Hardware does not trap unaligned accesses; instead, two
accesses are performed for a load or store of an unaligned operand that crosses a word boundary. Unaligned
accesses that do not cross word boundaries are performed in one access.

Align branch targets that are unlikely to be hit by “fall-through” code on cache line boundaries (such as the
address of functions such as strcpy), to minimize the number of unused instructions in cache line fills.

C.2 Instruction Timings

The following timing descriptions consider only “first order” effects of cache misses in the ICU (instruction-
side) and DCU (data-side) arrays.

The timing descriptions do not provide complete descriptions of the performance penalty associated with
cache misses; the timing descriptions do not consider bus contention between the instruction-side and the
data-side, or the time associated with performing line fills or flushes. Unless specifically stated otherwise, the
number of cycles apply to systems having zero-wait memory access.

C.2.1 General Rules
Instructions execute in order.

All instructions, assuming cache hits, execute in one cycle, except:

• Divide instructions execute in 35 clock cycles.

• Branches execute in one or three clock cycles, as described in “Branches.”

• MAC and multiply instructions execute in one to five cycles as described in “Multiplies.”

• Aligned load/store instructions that hit in the cache execute in one clock cycle/word. See “Alignment” for
information on execution timings for unaligned load/stores.
1209 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
• In isolation, a data cache control instruction takes two cycles in the processor pipeline. However,
subsequent DCU accesses are stalled until a cache control instruction finishes accessing the data cache
array.

Note: Note that subsequent DCU accesses do not remain stalled while transfers associated with previous
data cache control instructions continue on the PLB.

C.2.2 Branches
Branch instructions are decoded in prefetch buffer 0 (PFB0) and the decode stage of the instruction pipeline.
Branch targets, whether the branch is known or predicted taken, can be fetched from the PFB0 and DCD
stages. Incorrectly predicted branches can be corrected from the DCD or EXE (execute) stages of the
pipeline.

Branches can be known taken or known not taken, or can have address or condition dependencies.
Branches having address dependencies are never predicted taken. The directions of conditional branches
having no address dependencies are statically predicted.

Conditional branches may depend on the results of an instruction that is changing the CR or the CTR.

Address dependencies can occur when:

• A bclr instruction that is known taken, or unresolved, follows (immediately, or separated by only one
instruction) a link updating instruction (mtlr or a branch and link).

• A bcctr instruction that is known taken, or unresolved, follows (immediately, or separated by only one
instruction) a counter updating instruction (mtctr or a branch that decrements the counter).

Instruction timings for branch instructions follow:

• A branch known not taken (BKNT) executes in one clock cycle. By definition a BKNT does not have
address or condition dependencies.

• A branch known taken (BKT) by definition has no condition dependencies, but can have address
dependencies.A BKT without address dependencies can execute in one clock cycle if it is first decoded
from the PFB0 stage, or in two clock cycles if it is first decoded in the DCD stage. A BKT having address
dependencies can execute in two clock cycles if there is one instruction between the branch and the
address dependency, or in three clock cycles if there are no instructions between the branch and address
dependency.

• A branch predicted not taken (BPNT), which must have condition dependencies, executes in one clock
cycle if the prediction is correct. If the prediction is incorrect, the branch can take two or three cycles. If
there was one instruction between the branch and the instruction causing the condition dependency, the
branch executes in two cycles. If there were no instructions between the branch and the instruction
causing the condition dependency, the branch executes in three clock cycles.

• A branch that is correctly predicted taken (BPT), which must have condition dependencies, executes in
one clock cycle, if it is first decoded from the PFB0 stage, or two clock cycles if it is first decoded in the
DCD stage. If the prediction is incorrect, the branch can take two or three cycles. If there is one instruction
between the branch and the instruction causing the condition dependency, the branch executes in two
cycles. If there are no instructions between the branch and the instruction causing the condition
dependency, the branch executes in three clock cycles.
AMCC Proprietary 1210

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
C.2.3 Multiplies
For multiply instructions having two word operands, hardware internal to the core automatically detects
smaller operand sizes (by examining sign bit extension) to reduce the number of cycles necessary to
complete the multiplication.

The PPC405EP also supports multiply accumulate (MAC) instructions and multiply instructions having
halfword operands.

Word and halfword multiply instructions are pipelined in the execution unit and use the same multiplication
hardware. Because these instructions are pipelined in the execution stage they have latency and reissue rate
cycle numbers. Under conditions to be described, a second multiply or MAC instruction can begin execution
before the first multiply or MAC instruction completes. When these conditions are met, the reissue rate cycle
numbers should be used; otherwise, the latency cycle numbers should be used. (A MAC or multiply
instruction can follow another MAC or a multiply and still meet the conditions that support the use of the
reissue rate cycle numbers.

Use reissue rate cycle numbers for multiply or MAC instructions that are followed by another multiply or MAC
instruction, and do not have an operand dependency from a previous multiply or MAC instruction. However,
one operand dependency is allowed for reissue rate cycle numbers. Internal forwarding logic allows the
accumulate value of a first MAC instruction to be used as the accumulate value of a second MAC instruction
without affecting the reissue rate.

Use latency cycle numbers for multiply or MAC instructions that are not followed by another multiply or MAC,
or that have an operand dependency from a previous multiply or MAC instruction. However, accumulate-only
dependencies between adjacent MAC instructions use reissue rate cyle numbers.

An operand dependency exists when a second multiply or MAC instruction depends on the result of a first
multiply or MAC instruction.

Table C-1 summarizes the multiply and MAC instruction timings. In the table, the syntax “[o]” indicates that
the instruction has an “o” form that updates XER[SO,OV], and a “non-o” form. The syntax “[.]” indicates that
the instruction has a “record” form that updates CR[CR0], and a “non-record” form.

Table C-1. Multiply and MAC Instruction Timing

Operation
Reissue Rate

Cycles
Latency
Cycles

MAC

MAC and negative MAC instructions 1 2
Halfword × Halfword

mullhw[.], mullhwu[.], mulhhw[.],
mulhhwu[.],
mulchw[.], mulchwu[.]

1 2

mulli[.], mullw[o][.],
mulhw[.], mulhwu[.]

2 3

Halfword × Word

mulli[.], mullw[o][.],
mulhw[.], mulhwu[.]

2 3

Word × Word

mullw[o][.], mulhw[.], mulhwu[.] 4 5
1211 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
C.2.4 Scalar Load Instructions
Generally, the PPC405EP executes cachable load instructions that hit in the data cache array or line fill
buffer, or noncachable load instructions that hit in the line fill buffer (when enabled), in one cycle. However,
the pipelined nature of load instructions can even cause loads that hit in the cache or line fill buffer to appear
to take extra cycles under some conditions.

If a load is followed by an instruction that uses the load target as an operand, a load-use dependency exists.
When the load target is returned, it is forwarded to the operand register of the “using” instruction. This
forwarding results in an additional cycle of latency to a load immediately followed by a “using” instruction,
causing the load to appear to execute in two cycles.

Because the PPC405EP can execute instructions that follow load misses if no load-use dependency exists,
the load and the “using” instruction should be separated by two “non-using” instructions when possible. If
only one instruction can be placed between the load and the “using” instruction, the load appears to execute
in two cycles.

C.2.5 Scalar Store Instructions
Cachable stores that miss in the DCU, and noncachable stores, are queued in the data cache so that the
store appears to execute in a single cycle if operand-aligned. Under certain conditions, the DCU can pipeline
up to three store instructions. (See Chapter 4, “Cache Operations,” for more information.) stwcx. instructions
that do not cause alignment errors execute in two cycles.

C.2.6 Alignment in Scalar Load and Store Instructions
The PPC405EP requires an extra cycle to execute scalar loads and stores having unaligned big or little
endian data (except for lwarx and stwcx., which require word-aligned operands). If the target data is not
operand aligned, and the sum of the least two significant bits of the effective address (EA) and the byte count
is greater than four, the PPC405EP decomposes a load or store scalar into two load or store operations. That
is, the PPC405EP never presents the DCU with a request for a transfer that crosses a word boundary. For
example, a lwz with an EA of 0b11 causes the PPC405EP to decompose the lwz into two load operations.
The first load operation is for a byte at the starting effective address; the second load operation is for three
bytes, starting at the next word address.

C.2.7 String and Multiple Instructions
Calculating execution times for string and multiple instructions (lmw and stmw) instructions requires an
understanding of data alignment, and of the behavior of the string instructions with respect to alignment.

In the following example, the string contains 21 bytes. The first three bytes do not begin on a word boundary,
and the final two bytes do not end on a word boundary. The PPC405EP handles any unaligned leading bytes
as a special case, then moves as many bytes as aligned words as possible, and finally handles any
unaligned trailing bytes as a special case.

In the following example, arrows indicate word boundaries (the address is an exact multiple of four); shaded
boxes represent unaligned bytes.

The execution time of the string instruction is the sum of the:
AMCC Proprietary 1212

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
1. Cycles required to handle unaligned leading bytes; if any, add one clock cycle.

In the example, there are unaligned leading bytes; this transfer adds one clock cycle.

2. Cycles required to handle the number of word-aligned transfers required. Assuming data cache hits, each
word-aligned transfer requires one clock cycle.

In the example, there are four aligned words; this transfer requires four clock cycles.

3. Cycles required to handle unaligned trailing bytes; if any, add one clock cycle.

In the example, there are unaligned trailing bytes; this transfer adds one clock cycle.

A string instruction operating on the example 21-byte string requires six clock cycles.

C.2.8 Loads and Store Misses
Cachable stores that miss in the DCU, and noncachable stores, are queued internally in the DCU so that the
store instruction appears to execute in one cycle. Under certain conditions, the DCU can pipeline up to three
store instructions. (See the Chapter 4, “Cache Operations,” for more information.)

Because the PPC405EP can execute instructions that follow load misses if no load-use dependency exists,
the load and the “using” instruction should be separated by “non-using” instructions whenever possible. The
number of load miss penalty cycles incurred by a load that misses in the DCU or DCU line fill buffer is
reduced by one cycle for every non-use instruction following the load. When the number of non-use
instructions following the load is equal to or greater than the number of cycles that it takes to obtain the load
data, the load instruction appears to execute in a single cycle. The number of cycles that it takes to obtain
load data when it misses in the data cache and line fill buffer depends on whether operand forwarding is
enabled or disabled and the system memory timing.

C.2.9 Instruction Cache Misses
Refer to “Instruction Processing” on page 3-96 for detailed information about the instruction queue and
instruction fetching. Table C-2 illustrates instruction cache penalties for cachable and noncachable fetches
that miss in the ICU array and line fill buffer.

Table C-2 assumes that:

• The PPC405EP and processor local bus (PLB) run at the same frequency

• The PLB returns an address acknowledge during the first cycle in which the DCU asserts the PLB request

• The target instruction is returned in the cycle following the address acknowledge cycle

The penalty cycles shown for sequential ICU requests assume that the DCD stage and pre-fetch queue are
filled with single-cycle nonbranching instructions or BKNT branch instructions. The penalty cycles for the
remaining two rows are for taken branches from DCD and PFB0, respectively.

Table C-2. Instruction Cache Miss Penalties

Type of ICU Request Miss Penalty Cycles

Sequential 3
Branch Taken from DCD 5
Branch Taken from PFB0 4
1213 AMCC Proprietary

AMCC Proprietary 1214

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor

Revision Log

Revision Date Rev # Contents of Modification

07/18/07 1.08 Page 507, Section 19.11.1 Reset and Initialization, Updated first paragraph.

06/28/07 1.07 Page 199, Updated Table 9-2, added the statement about the Mal divisor in the cell
describing CPC0_PLLMR0[MPDV].

Page 247, Updated Figure 11.1. Relationship of Timer Facilities to the Time Base

Page 255, Updated Chapter 12.

• Page 257, Updated GPT Features and GPT Operations.
• Page 258, Added Figure 12-1. Timebase Counter and Compare Register.

Page 311, Updated 1st paragraph Section 15.4.6 Bus Error Address Register
(SDRAM0_BEAR)

Section 19.11 Programming Notes: "entities" should be changed to "entries" in 3 places in
this section.

Page 496 and 936, Added the following description for the RFS field in register
EMACx_MR1 "The maximum Rx FIFO size is 4K bytes. Each Rx FIFO entry = 8 bytes."

Page 496 and 937, Added the following description for the TFS field in register
EMACx_MR1 "The maximum Tx FIFO size is 2K bytes. Each Tx FIFO entry = 8 bytes."

Page 516, Updated Section 19.11.1 Reset and Initialization, Hard Reset paragraph.

Page 525, Section 20.4 Buffer Descriptor Overview

Updated text:

Note: Buffer descriptors must be 8 byte aligned.

Page 550, Section 20.9.4 Descriptor Error Interrupt Registers (MAL0_TXDEIR,
MAL0_RXDEIR) updated second paragraph.

12/20/06 1.06 Updated Table 23-1. GPIO Register Summary

10/13/06 1.05 Minor updates

09/27/06 1.04 Minor update to Chapter 19.

04/4/06 1.03 Minor update to Chapter 21.

1215 AMCC Proprietary

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual

02/14/06 1.02 Reformatted to AMCC format

Page 168, The formula in chapter 7 section 7.3 of the PPC405EP user manual for the
AsyncPCIClk and SyncPCIClk contains a typo. The '+' sign should be a '-'. The formula
should be: AsyncPCIClk <= SyncPCIClock <= ((2*AysncPCIClk)-1MHz).

In Figure 22-17 and Figure 26-114 the description of IIC0_XTCNTLSS[EPI] is incorrect.

First line of current description:

"Enable Pulsed IRQ on Transfer Aborted"

First line of description should be:

"Enable Pulsed IRQ"

The following is the complete description from the IIC core manual:

"Enable pulsed IRQ. When set to a logic ‘1’, the IIC_IRQ signal goes active for one clock
period. When set to a logic ‘0’, the IIC_IRQ signal stays active until the IRQ active bit,
staus(1) is cleared."

07/27/05 Page 177, Replaced formula in section 7.3 PCI Clocking with the following:

AsyncPCIClk - 1MHz <= SyncPCIclock <= ((2 × AsyncPCIClk) - 1MHz)

Page 211, Corrected Typo in Table 9-2 in the row describing CPC0_PLLMR0[CCDV]
setting.

Page 212, Add “CPC0_PLLMR0[MPDV] must be set equal to CPC0_PLLMR0[OPDV].” to
CPC0_PLLMR0[MPDV] Strap Configuration Description Cell

Page 251, Figure 11-1 shows an external clock source as an input to the 405EP timer
facility. The clocks actually come from the OPB clock source.

Page 261, Major updates to Chapter 12

Page 269, 405EP UM needs the GPT Compare (Section 12.3.7, Figure 12-7) and Mask
(Section 12.3.8, Figure 12-8) registers corrected to show that the ENTIRE 32 bits are
usable.

04/03/03 Generated new book.

03/27/03 Updated reset and initialization and IIC bus interface chapters.

03/24/03 Updated clocking and pin strapping chapter , universal interrupt controller chapters

03/21/03 Updated general purpose timers and PCI chapters

Revision Date Rev # Contents of Modification

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
Index

A
add 614
add. 614
addc 615
addc. 615
addco 615
addco. 615
adde 616
adde. 616
addeo 616
addeo. 616
addi 617
addic 618
addic. 619
addis 620
addme 621
addme. 621
addmeo 621
addmeo. 621
addo 614
addo. 614
addze 622
addze. 622
addzeo 622
addzeo. 622
alignment interrupts

register settings 239
and 623
and. 623
andc 624
andc. 624
andi. 625
andis. 626

B
b 627
ba 627
bc 628
bca 628
bcctr 634
bcctrl 634
bcl 628
bcla 628
bclr 638
bclrl 638
bctr 635
bctrl 635
bdnz 629
bdnza 629
bdnzf 629
bdnzfa 629
bdnzfl 629
bdnzfla 629
bdnzflr 639
bdnzflrl 639

bdnzl 629
bdnzla 629
bdnzlr 639
bdnzlrl 639
bdnzt 629
bdnzta 629
bdnztl 629
bdnztla 629
bdnztlr 639
bdnztlrl 639
bdz 629
bdza 629
bdzf 630
bdzfa 630
bdzfl 630
bdzfla 630
bdzflr 639
bdzflrl 639
bdzl 629
bdzla 629
bdzlr 639
bdzlrl 639
bdzt 630
bdzta 630
bdztl 630
bdztla 630
bdztlr 639
bdztlrl 639
beq 630
beqa 630
beqctr 635
beqctrl 635
beql 630
beqlr 639
beqlrl 639
bf 630
bfa 630
bfctr 635
bfctrl 635
bfl 630
bfla 630
bflr 640
bflrl 640
bge 631
bgea 631
bgectrl 635
bgel 631
bgela 631
bgelr 640
bgelrl 640
bgrctr 635
bgt 631
bgta 631
bgtctr 635
bgtctrl 635
bgtl 631
bgtla 631
bgtlr 640
bgtlrl 640
AMCC Proprietary 1216

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
bl 627
bla 627
ble 631
blea 631
blectr 635
blectrl 635
blel 631
blela 631
blelr 640
blelrl 640
blr 638
blrl 638
blt 631
blta 631
bltctr 635
bltctrl 635
bltl 631
bltla 631
bltlr 640
bltlrl 640
bne 632
bnea 632
bnectr 636
bnectrl 636
bnel 632
bnela 632
bnelr 640
bnelrl 640
bng 632
bnga 632
bngctr 636
bngctrl 636
bngl 632
bngla 632
bnglr 640
bnglrl 640
bnl 632
bnla 632
bnlctr 636
bnlctrl 636
bnll 632
bnlla 632
bnllr 641
bnllrl 641
bns 632
bnsa 632
bnsctr 636
bnsctrl 636
bnsl 632
bnsla 632
bnslr 641
bnslrl 641
bnu 633
bnua 633
bnuctr 636
bnuctrl 636
bnul 633
bnula 633
bnulr 641

bnulrl 641
branch prediction 1120, 1173

controlling through mnemonics 99
bso 633
bsoa 633
bsoctr 636
bsoctrl 636
bsol 633
bsola 633
bsolr 641
bsolrl 641
bt 633
bta 633
btctr 636
btctrl 636
btl 633
btla 633
btlr 641
btlrl 641
bun 633
buna 633
bunctr 637
bunctrl 637
bunl 633
bunla 633
bunlr 641
bunlrl 641

C
cache

instructions
DAC debug events 279

CCR0 831
clrlslwi 760
clrlslwi. 760
clrlwi 760
clrlwi. 760
clrrwi 761
clrrwi. 761
cmp 642
cmpi 643
cmpl 644
cmpli 645
cmplw 644
cmplwi 645
cmpw 642
cmpwi 643
cntlzw 646
cntlzw. 646
conditional branches

mnemonics used to control prediction 99
CPC0_BOOT 880
CPC0_EPCTL 881
CPC0_ER 882
CPC0_FR 883
CPC0_JTAGID 884
CPC0_PBCR 885
CPC0_PLLMR0 886
CPC0_PLLMR1 888
CPC0_SR 890
1217 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
CPC0_SRR 891
CPC0_UCR 892
CR 833
crand 647
crandc 648
crclr 654
creqv 649
critical input interrupts

register settings 234
crmove 652
crnand 650
crnor 651
crnot 651
cror 652
crorc 653
crset 649
crxor 654
CTR 294, 834

D
DAC1 273
DAC1–DAC2 273, 835
Data Address Compare Register (DAC1) 273
data storage interrupts

register settings 237
DBCR 268
DBCR0 836, 838
DBSR 271, 840
dcba

functions 125
dcbf 657

functions 125
dcbi 658

functions 125
dcbst 659

functions 125
dcbt 660

functions 125
dcbtst

functions 125
dcbz 662

functions 126
dccci 664

functions 126
DCCR 842
dcread 665

functions 126
DCRs (device control registers)

indirectly accessed 822
DCU (data cache unit)

priority changes 133
tag information in GPRs 131

DCWR 844
DEAR 846
Debug Control Register (DBCR) 268
debugging

boundary scan chain 263
debug events 274
debug interfaces 262

JTAG test access port 262

trace status port 264
development tools 262
modes 265

external 265
internal 265
real-time trace 266

processor control 267
processor status 267

divw 667
divw. 667
divwo 667
divwo. 667
divwu 668
divwu. 668
divwuo 668
divwuo. 668
DMA operations

arbitration transfer priorities 456
errors 457

DMA0_CR0-DMA0_CR3 452, 894
DMA0_CT0-DMA0_CT3 455, 896
DMA0_DA0-DMA0_DA3 454, 897
DMA0_SA0-DMA0_SA3 454
DMA0_SA0–DMA0_SA3 898
DMA0_SG0-DMA0_SG3 455
DMA0_SG0–DMA0_SG3 899
DMA0_SGC 900
DMA0_SLP 901
DMA0_SR 451, 902
DTLB (data translation lookaside buffer)

miss interrupts 152

E
EA (effective address)

translation to RA, illustrated 144
EBC (external bus controller)

DCRs
access procedures, overview 822
offsets 86, 823

EBC0_BEAR 903
EBC0_BESR0 904
EBC0_BESR1 905
EBC0_BnAP 906
EBC0_BnCR 907
EBC0_CFG 908
EBC0_CFGADDR 910
EBC0_CFGADDR (Peripheral Controller Address Register)

accessing 823
EBC0_CFGDATA 911
EBC0_CFGDATA (Peripheral Controller Data Register)

accessing 823
eieio 669
EMACx_GAHT1-EMACx_GAHT4 912
EMACx_IAHT1-EMACx_IAHT4 914
EMACx_IALR 915
EMACx_IPGVR 916
EMACx_ISER 917
EMACx_ISR 920
EMACx_LSAH 924
EMACx_LSAL 925
AMCC Proprietary 1218

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
EMACx_MR0 926
EMACx_MR1 927
EMACx_OCRX 929
EMACx_OCTX 930
EMACx_PTR 931
EMACx_RMR 932
EMACx_RWMR 935
EMACx_STACR 936
EMACx_TMR0 937
EMACx_TMR1 938
EMACx_VTCI 940
EMACx_VTPID 941
EMAx_TRTR 939
eqv 670
eqv. 670
ESR 848
ESR (Exception Status Register)

usage for program interrupts 239
EVC0_CNT0-EVC0_CNT1 942
EVC0_ECR 943
EVPR 849
exceptions

registers during debug exceptions 244
extended memonics

beqlr 639
extended menmonics

blectrl 635
bnlctrl 636

extended mnemonicd
bngla 632

extended mnemonics
alphabetical 1173
bctr 635
bctrl 635
bdnz 629
bdnza 629
bdnzf 629
bdnzfa 629
bdnzfkr 639
bdnzfl 629
bdnzfla 629
bdnzflrl 639
bdnzl 629
bdnzla 629
bdnzlr 639
bdnzlrl 639
bdnzt 629
bdnzta 629
bdnztl 629
bdnztla 629
bdnztlr 639
bdnztlrl 639
bdz 629
bdza 629
bdzf 630
bdzfa 630
bdzfl 630
bdzfla 630
bdzflr 639

bdzflrl 639
bdzl 629
bdzla 629
bdzlr 639
bdzlrl 639
bdzt 630
bdzta 630
bdztl 630
bdztla 630
bdztlr 639
bdztlrl 639
beq 630
beqa 630
beqctr 635
beqctrl 635
beql 630
beqlrl 639
bf 630
bfa 630
bfctr 635
bfctrl 635
bfl 630
bfla 630
bflr 640
bflrl 640
bge 631
bgea 631
bgectr 635
bgectrl 635
bgel 631
bgela 631
bgelr 640
bgelrl 640
bgt 631
bgta 631
bgtctr 635
bgtctrl 635
bgtl 631
bgtla 631
bgtlr 640
bgtlrl 640
ble 631
blea 631
blectr 635
blel 631
blela 631
blelr 640
blelrl 640
blr 638
blrl 638
blt 631
blta 631
bltctr 635
bltctrl 635
bltl 631
bltla 631
bltlr 640
bltlrl 640
bne 632
1219 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
bnea 632
bnectrl 636
bnel 632
bnela 632
bnelr 640
bnelrl 640
bng 632
bnga 632
bngctr 636
bngctrl 636
bngl 632
bnglr 640
bnglrl 640
bnl 632
bnla 632
bnlctr 636
bnll 632
bnlla 632
bnllr 641
bnllrl 641
bns 632
bnsa 632
bnsctr 636
bnsctrl 636
bnsl 632
bnsla 632
bnslr 641
bnslrl 641
bnu 633
bnua 633
bnuctr 636
bnuctrl 636
bnul 633
bnula 633
bnulr 641
bnulrl 641
bsalr 641
bso 633
bsoa 633
bsoctr 636
bsoctrl 636
bsol 633
bsola 633
bsolrl 641
bt 633
bta 633
btctr 636
btctrl 636
btl 633
btla 633
btlr 641
btlrl 641
bun 633
buna 633
bunctr 637
bunctrl 637
bunl 633
bunla 633
bunlr 641

bunlrl 641
clrlslwi 760
clrlslwi. 760
clrlwi 760
clrlwi. 760
clrrwi 761
clrrwi. 761
cmplw 644
cmplwi 645
cmpw 642
cmpwi 643
crclr 654
crmove 652
crnot 651
crset 649
extlwi 761
extlwi. 761
extrwi 761
extrwi. 761
for addi 617
for addic 618
for addic. 619, 725
for addis 620
for bc, bca, bcl, bcla 629
for bcctr, bcctrl 635
for bclr, bclrl 638
for cmp 642
for cmpi 643
for cmpl 644
for cmpli 645
for creqv 649
for crnor 651
for cror 652
for crxor 654
for mfspr 724
for mtcrf 727
for mtspr 732
for nor, nor. 752
for or, or. 753
for ori 755
for rlwimi, rlwimi. 759
for rlwinm, rlwinm. 760
for rlwnm, rlwnm. 763
for subf, subf., subfo, subfo. 790
for subfc, subfc., subfco, subfco. 791
for tlbre 799
for tw 805
for twi 808
inslwi 759
inslwi. 759
insrwi 759
insrwi. 759
li 617
lis 620
mftb 725
mftbu 726
mr 753
mr. 753
mtcr 727
AMCC Proprietary 1220

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
nop 755
not 752
not. 752
rotlw 763
rotlw. 763
rotlwi 761
rotlwi. 761
rotrwi 761
rotrwi. 761
slwi 761
slwi. 761
srwi 762
srwi. 762
sub 790
sub. 790
subc 791
subc. 791
subco 791
subco. 791
subi 617
subic 618
subic. 619
subis 620
subo 790
subo. 790
tblrehi 799
tblrelo 799
tblwehi 803
tblwelo 803
trap 805
tweq 805
tweqi 808
twge 805
twgei 808
twgle 805
twgt 805
twgti 808
twle 805
twlei 808
twlgei 808
twlgt 805
twlgti 808
twlle 805
twllei 808
twllt 806
twllti 808
twlng 806
twlngi 808
twlnl 806
twlnli 809
twlt 806
twlti 809
twne 806
twnei 809
twng 806
twngi 809
twnl 806
twnli 809

extended mnemonics for

tlbre 803
external bus controller. See EBC
external interrupts

register settings 238
extlwi 761
extlwi. 761
extrwi 761
extrwi. 761
extsb 671
extsb. 671

F
FIFO control register 551
FIT (fixed interval timer)

interrupts, causes 241
interrupts, register settings 242

fixed interval timer. See FIT

G
GPIO0_IR 944
GPIO0_ISR1H 945
GPIO0_ISR1L 946
GPIO0_ODR 946
GPIO0_OR 947
GPIO0_OSRH 948
GPIO0_OSRL 949
GPIO0_RR1 950
GPIO0_TCR 951
GPIO0_TSRH 952
GPIO0_TSRL 953
GPR0-GPR31 850

I
IAC1-IAC4 847, 851
IAC1–IAC4 273
icbi 674

function 124
icbt 675

function 124
iccci 676

function 124
ICCR 852
ICDBDR 854
ICDBDR (Instruction Cache Debug Data Register)

illustrated 129, 854
programming note 130

icread 677
function 124
programming note 130

IIC0_CLKDIV 954
IIC0_CNTL 955
IIC0_DIRECTCNTL 956
IIC0_EXTSTS 957
IIC0_HMADR 959
IIC0_HSADR 960
IIC0_INTRMSK 961
IIC0_LMADR 962
IIC0_LSADR 963
IIC0_MDBUF 964
IIC0_MDCNTL 965
IIC0_SDBUF 966
1221 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
IIC0_STS 967
IIC0_XFRCNT 968
IIC0_XTCNTLSS 969
inslwi 759
inslwi. 759
insrwi 759
insrwi. 759
instruction

add 614
add. 614
addc 615
addc. 615
addco 615
addco. 615
adde 616
adde. 616
addeo 616
addeo. 616
addi 617
addic 618
addic. 619
addis 620
addme 621
addme. 621
addmeo 621
addmeo. 621
addo 614
addo. 614
addze 622
addze. 622
addzeo 622
addzeo. 622
and 623
and. 623
andc 624
andc. 624
andi. 625
andis. 626
b 627
ba 627
bc 628
bca 628
bcctr 634
bcctrl 634
bcl 628
bcla 628
bclr 638
bclrl 638
bl 627
bla 627
cmp 642
cmpi 643
cmpl 644
cmpli 645
cntlzw 646
cntlzw. 646
crand 647
crandc 648
creqv 649

crnand 650
crnor 651
cror 652
crorc 653
crxor 654
dcbf 657
dcbi 658
dcbst 659
dcbt 660
dcbz 662
dccci 664
dcread 665
divw 667
divw. 667
divwo 667
divwo. 667
divwu 668
divwu. 668
divwuo 668
divwuo. 668
eieio 669
eqv 670
eqv. 670
extsb 671
extsb. 671
icbi 674
icbt 675
iccci 676
icread 677
isync 679
lbz 680
lbzu 681
lbzx 683
lha 684
lhau 685
lhax 687
lhbrx 688
lhz 689
lhzu 690
lhzux 691
lhzx 692
lmw 693
lswi 694
lswx 696
lwarx 698
lwz 700
lwzu 701
lwzux 702
lwzx 703
macchw 704
macchws 705
macchwsu 706
macchwu 707
machhw 708
machhwsu 710
machhwu 711
maclhw 712
maclhws 713, 751
maclhwu 715
AMCC Proprietary 1222

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
mcrf 716
mcrxr 718
mfcr 719
mfdcr 720
mfmsr 722
mfspr 723
mtcrf 727
mtdcr 728
mtspr 731
mulchw 734
mulchwu 735
mulhhw 736
mulhhwu 737
mulhwu 739
mulhwu. 739
mullhw 740
mullhwu 741
mulli 742
mullw 743
mullw. 743
mullwo 743
mullwo. 743
nand 744
nand. 744
neg 745
neg. 745
nego 745
nego. 745
nmacchw 746
nmacchws 747
nmachhw 748
nmachhws 749
nmaclhw 750
nmaclhws 751
nor 752
nor. 752
or 753
or. 753
orc 754
orc. 754
ori 755
oris 756
rfci 757
rfi 758
rlwimi 759
rlwimi. 759
rlwinm 760
rlwinm. 760
rlwnm 763
rlwnm. 763
sc 764
slw 765
slw. 765
sraw 766
sraw. 766
srawi 767
srawi. 767
srw 768
srw. 768

stb 769
stbu 770
stbux 771
stbx 772
sth 774
sthbrx 775
sthu 776
sthux 777
sthx 778
stmw 779
stswi 780
stswx 781
stw 783
stwbrx 784
stwcx. 785
stwu 787
stwux 788
stwx 789
subf 790
subf. 790
subfc 791
subfc. 791
subfco 791
subfco. 791
subfe 792
subfe. 792
subfeo 792
subfeo. 792
subfic 793
subfme 794
subfme. 794
subfmeo 794
subfmeo. 794
subfo 790
subfo. 790
subfze 795
subfze. 795
subfzeo 795
subfzeo. 795
sync 796
tlbia 797
tlbre 798
tlbsx 800
tlbsx. 800
tlbsync 801
tlbwe 802
tw 804
twi 807
wrtee 810
wrteei 811
xor 812
xori 813

Instruction Cache Debug Data Register. See ICDBDR
instruction fields 1160
instruction formats 1159

diagrams 1161
instruction forms 1159, 1161
instruction queue

illustrated 96
1223 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
instruction storage interrupts
register settings 238

instruction timings 1209
branches and cr logicals 1210
general rules 1209
instruction cache misses 1213
loads and stores 1213
strings 1212

instructions
alphabetical, including extended mnemonics 1120
arithmetic and logical 1196
branch 1201
cache

DAC debug events 279
cache control 1204
comparison 1202
condition register logical 1200
extended mnemonics 1173
format diagrams 1161
formats 1159
forms 1159, 1161
interrupt control 1205
opcodes 1152
privileged 1171
processor management 1206
rotate and shift 1203
specific to PowerPC Embedded Controllers 1169
storage reference 1192
TLB management 1205

interrupts
alignment

register settings 239
data storage

register settings 237
DTLB miss 152
external

register settings 238
FIT, causes 241
FIT, register settings 242
handling priorities, illustrated 225
instruction storage

register settings 238
machine check—instruction

register settings 235
program

ESR usage 239
register settings 240

register settings during critical 234
vector offsets, illustrated 227
WDT, causes 242
WDT, register settings 242

isync 679

L
lbz 680
lbzu 681
lbzx 683
lha 684
lhau 685
lhax 687

lhbrx 688
lhz 689
lhzu 690
lhzux 691
lhzx 692
li 617
lis 620
lmw 693
LR 855
lswi 694
lswx 696
lwarx 698
lwz 700
lwzu 701
lwzux 702
lwzx 703

M
macchw 704
macchws 705
macchwsu 706
macchwu 707
machhw 708
machhwsu 710
machhwu 711
machine check—instruction interrupts

register settings 235
maclhw 712
maclhws 713, 751
maclhwu 715
MAL0_CFG 971
MAL0_ESR 973
MAL0_IER 976
MAL0_RCBSn 977
MAL0_RXCARR 978
MAL0_RXCASR 979
MAL0_RXCTPnR 980
MAL0_RXDEIR 981
MAL0_RXEOBISR 982
MAL0_TXCARR 983
MAL0_TXCASR 984
MAL0_TXDEIR 986
MAL0_TXEOBISR 987
mcrf 716
mcrxr 718
Memory Controller Data Register. See SDRAM0_CFGDATA
memory interface

SRAM
timing 290

memory map
address space usage 68

memory-mapped input/output registers. See MMIO registers
mfcr 719
mfdcr 720
mfmsr 722
mfspr 723
mftb 725
mftbu 726
MMIO (memory-mapped input/output) registers

directly accessed 824
AMCC Proprietary 1224

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
indirectly accessed 828
MMU (memory management unit)

DTLB miss interrupts 152
mr 753
mr. 753
MSR 856
mtcr 727
mtcrf 727
mtdcr 728
mtspr 731
mulchw 734
mulchwu 735
mulhhw 736
mulhhwu 737
mulhwu 739
mulhwu. 739
mullhw 740
mullhwu 741
mulli 742
mullw 743
mullw. 743
mullwo 743
mullwo. 743

N
nand 744
nand. 744
neg 745
neg. 745
nego 745
nego. 745
nmacchw 746
nmacchws 747
nmachhw 748
nmachhws 749
nmaclhw 750
nmaclhws 751
nop 755
nor 752
nor. 752
not 752
not. 752
notation 1160

O
OCM0_DSARC 988
OCM0_DSCNTL 989
OCM0_ISARC 990
OCM0_ISCNTL 991
OPBA0_CR 992
OPBA0_PR 993
opcodes 1152
optimization

coding guidelines 1208
alignment 1209
boolean variables 1208
branch prediction 1209
dependency upon CR 1209

or 753
or. 753

orc 754
orc. 754
ori 755
oris 756

P
PCI configuration registers

accessing 828
offsets 350, 828

PCIC0_BAR0 994
PCIC0_BIST 995
PCIC0_BRDGOPT1 996
PCIC0_BRDGOPT2 997
PCIC0_CACHELS 998
PCIC0_CAP 999
PCIC0_CAPID 1000
PCIC0_CFGADDR 1001
PCIC0_CFGDATA 1002
PCIC0_CLS 1003
PCIC0_CMD 1005
PCIC0_DATA 1007
PCIC0_DEVID 1008
PCIC0_ERREN 1009
PCIC0_ERRSTS 1010
PCIC0_HDTYPE 1011
PCIC0_ICS 1012
PCIC0_INTLN 1013
PCIC0_INTPN 1014
PCIC0_LATTIM 1015
PCIC0_MAXLTNCY 1016
PCIC0_MINGNT 1017
PCIC0_NEXTIPTR 1018
PCIC0_PLBBEAR 1019
PCIC0_PLBBESR0 1021
PCIC0_PMC 1024
PCIC0_PMCSR 1025
PCIC0_PMSCRR 1027
PCIC0_PTM1BAR 1028
PCIC0_PTM2BAR 1029
PCIC0_REVID 1030
PCIC0_SBSYSID 1031
PCIC0_SBSYSVID 1032
PCIC0_STATUS 1034
PCIC0_VENDID 1036
PCIL0_PMM0LA 1037
PCIL0_PMM0MA 1038
PCIL0_PMM0PCIHA 1039
PCIL0_PMM0PCILA 1040
PCIL0_PMM1LA 1041
PCIL0_PMM1MA 1042
PCIL0_PMM1PCIHA 1043
PCIL0_PMM1PCILA 1044
PCIL0_PMM2LA 1045
PCIL0_PMM2MA 1046
PCIL0_PMM2PCIHA 1047
PCIL0_PMM2PCILA 1048
PCIL0_PTM1LA 1049
PCIL0_PTM1MS 1050
PCIL0_PTM2LA 1051
PCIL0_PTM2MS 1052
1225 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
PCIPCIC0_PLBBESR1 1023
Peripheral Controller Address Register. See
EBC0_CFGADDR
Peripheral Controller Data Register. See EBC0_CFGDATA
PID 858
PIT 859
PLB0_ACR 1053
PLB0_BEAR 1054
PLB0_BESR 1055
POB0_BEAR 1057
POB0_BESR0 1058
POB0_BESR1 1060
primary opcodes 1152
privileged mode

registers 72
program interrupts

ESR usage 239
register settings 240

programming note
instruction pipeline 130

PVR 860

R
registers

CCR0 831
CPC0_BOOT 880
CPC0_EPCTL 881
CPC0_ER 882
CPC0_FR 883
CPC0_JTAGID 884
CPC0_PBCR 885
CPC0_PLLMR0 886
CPC0_PLLMR1 888
CPC0_SR 890
CPC0_SRR 891
CPC0_UCR 892
CR 833
CTR 294, 834
DAC1 273
DAC1–DAC2 273, 835
DBCR 268
DBCR0 836, 838
DBSR 271, 840
DCCR 842
DCRs

indirectly accessed 822
DCWR 844
DEAR 846
DMA0_CR0-DMA0_CR3 452, 894
DMA0_CT0-DMA0_CT3 455, 896
DMA0_DA0-DMA0_DA3 454, 897
DMA0_SA0-DMA0_SA3 454
DMA0_SA0–DMA0_SA3 898
DMA0_SG0-DMA0_SG3 455
DMA0_SG0–DMA0_SG3 899
DMA0_SGC 900
DMA0_SLP 901
DMA0_SR 451, 902
during debug exceptions 244
EBC0_BEAR 903

EBC0_BESR0 904
EBC0_BESR1 905
EBC0_BnAP 906
EBC0_BnCR 907
EBC0_CFG 908
EBC0_CFGADDR 910
EBC0_CFGDATA 911
EMACx_GAHT1-EMACx_GAHT4 912
EMACx_IAHT1-EMACx_IAHT4 914
EMACx_IALR 915
EMACx_IPGVR 916
EMACx_ISER 917
EMACx_ISR 920
EMACx_LSAH 924
EMACx_LSAL 925
EMACx_MR0 926
EMACx_MR1 927
EMACx_OCRX 929
EMACx_OCTX 930
EMACx_PTR 931
EMACx_RMR 932
EMACx_RWMR 935
EMACx_STACR 936
EMACx_TMR0 937
EMACx_TMR1 938
EMACx_TRTR 939
EMACx_VTCI 940
EMACx_VTPID 941
ESR 848
EVC0_CNT0-EVC0_CNT1 942
EVC0_ECR 943
EVPR 849
GPIO0_IR 944
GPIO0_ISR1H 945
GPIO0_ISR1L 946
GPIO0_ODR 946
GPIO0_OR 947
GPIO0_OSRH 948
GPIO0_OSRL 949
GPIO0_RR1 950
GPIO0_TCR 951
GPIO0_TSRH 952
GPIO0_TSRL 953
GPR0-GPR31 850
IAC1-IAC4 847, 851
IAC1–IAC4 273
ICCR 852
ICDBDR 854
IIC0_CLKDIV 954
IIC0_CNTL 955
IIC0_DIRECTCNTL 956
IIC0_EXTSTS 957
IIC0_HMADR 959
IIC0_HSADR 960
IIC0_INTRMSK 961
IIC0_LMADR 962
IIC0_LSADR 963
IIC0_MDBUF 964
IIC0_MDCNTL 965
AMCC Proprietary 1226

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
IIC0_SDBUF 966
IIC0_STS 967
IIC0_XFRCNT 968
IIC0_XTCNTLSS 969
LR 855
MAL0_CFG 971
MAL0_ESR 973
MAL0_IER 976
MAL0_RCBSn 977
MAL0_RXCARR 978
MAL0_RXCASR 979
MAL0_RXCTPnR 980
MAL0_RXDEIR 981
MAL0_RXEOBISR 982
MAL0_TXCARR 983
MAL0_TXCASR 984
MAL0_TXCTPnR 985
MAL0_TXDEIR 986
MAL0_TXEOBISR 987
MMIO registers

directly accessed 824
indirectly accessed 828

MSR 856
OCM0_DSARC 988
OCM0_DSCNTL 989
OCM0_ISARC 990
OCM0_ISCNTL 991
OPBA0_CR 992
OPBA0_PR 993
PCIC0_BAR0 994
PCIC0_BIST 995
PCIC0_BRDGOPT1 996
PCIC0_BRDGOPT2 997
PCIC0_CACHELS 998
PCIC0_CAP 999
PCIC0_CAPID 1000
PCIC0_CFGADDR 1001
PCIC0_CFGDATA 1002
PCIC0_CLS 1003
PCIC0_CMD 1005
PCIC0_DATA 1007
PCIC0_DEVID 1008
PCIC0_ERREN 1009
PCIC0_ERRSTS 1010
PCIC0_HDTYPE 1011
PCIC0_ICS 1012
PCIC0_INTLN 1013
PCIC0_INTPN 1014
PCIC0_LATTIM 1015
PCIC0_MAXLTNCY 1016
PCIC0_MINGNT 1017
PCIC0_NEXTIPTR 1018
PCIC0_PLBBEAR 1019
PCIC0_PLBBESR0 1021
PCIC0_PMC 1024
PCIC0_PMCSR 1025
PCIC0_PMSCRR 1027
PCIC0_PTM1BAR 1028
PCIC0_PTM2BAR 1029

PCIC0_REVID 1030
PCIC0_SBSYSID 1031
PCIC0_SBSYSVID 1032
PCIC0_STATUS 1034
PCIC0_VENDID 1036
PCIL0_PMM0LA 1037
PCIL0_PMM0MA 1038
PCIL0_PMM0PCIHA 1039
PCIL0_PMM0PCILA 1040
PCIL0_PMM1LA 1041
PCIL0_PMM1MA 1042
PCIL0_PMM1PCIHA 1043
PCIL0_PMM1PCILA 1044
PCIL0_PMM2LA 1045
PCIL0_PMM2MA 1046
PCIL0_PMM2PCIHA 1047
PCIL0_PMM2PCILA 1048
PCIL0_PTM1LA 1049
PCIL0_PTM1MS 1050
PCIL0_PTM2LA 1051
PCIL0_PTM2MS 1052
PCIPCIC0_PLBBESR1 1023
PID 858
PIT 859
PLB0_ACR 1053
PLB0_BEAR 1054
PLB0_BESR 1055
POB0_BEAR 1057
POB0_BESR0 1058
POB0_BESR1 1060
PVR 860
SDRAM0_B0CR-SDRAM0_B1CR 1061
SDRAM0_CFG 1062
SDRAM0_CFGADDR 1063
SDRAM0_CFGDATA 1064
SDRAM0_ECCCFG 1065
SDRAM0_PMIT 1067
SDRAM0_RTR 1068
SDRAM0_STATUS 1069
SDRAM0_TR 1070
SGR 861
SLER 863
SPRG0-SPRG4 79
SPRG0-SPRG7 865
SRR0 866
SRR1 867
SRR2 868
SRR3 869
SU0R 870
supervisor, illustrated 72
TBL 872
TBU 873
TCR 874
TSR 875
UARTx_DLL 1072
UARTx_DLM 1073
UARTx_FCR 1074
UARTx_IER 1075
UARTx_IIR 1076
1227 AMCC Proprietary

Preliminary User’s Manual

Revision 1.08 – July 18, 2007 405EP – PPC405EP Embedded Processor
UARTx_LCR 1077
UARTx_LSR 1078
UARTx_MCR 1080
UARTx_MSR 1081
UARTx_RBR 1082
UARTx_SCR 1083
UARTx_THR 1084
UIC0_CR 1085
UIC0_ER 1089
UIC0_MSR 1094
UIC0_PR 1097
UIC0_SR 1101
UIC0_TR 1105
UIC0_VCR 1109
UIC0_VR 1109
user, illustrated 72
USPRG0 79, 876
XER 877
ZPR 878

reservation bit 698, 785
rfci 757
rfi 758
rlwimi 759
rlwimi. 759
rlwinm 760
rlwinm. 760
rlwnm 763
rlwnm. 763
rotlw 763
rotlw. 763
rotlwi 761
rotlwi. 761
rotrwi 761
rotrwi. 761
rxtended mnemonics

bnectr 636

S
sc 764
SDRAM controller

DCRs
indirect access 823
offsets 823

SDRAM0_B0CR-SDRAM0_B1CR 1061
SDRAM0_CFG 1062
SDRAM0_CFGADDR 1063
SDRAM0_CFGDATA 1064
SDRAM0_CFGDATA (Memory Controller Data Register)

accessing 823
SDRAM0_ECCCFG 1065
SDRAM0_PMIT 1067
SDRAM0_RTR 1068
SDRAM0_STATUS 1069
SDRAM0_TR 1070
secondary opcodes 1152
SGR 861
SLER 863
slw 765
slw. 765
slwi 761

slwi. 761
SPRG0-SPRG4 79
SPRG0-SPRG7 865
SPRs (special purpose registers)

listed, with page references 74
SRAM

timing 290
sraw 766
sraw. 766
srawi 767
srawi. 767
SRR0 866
SRR1 867
SRR2 868
SRR3 869
srw 768
srw. 768
srwi 762
srwi. 762
stb 769
stbu 770
stbux 771
stbx 772
sth 774
sthbrx 775
sthu 776
sthux 777
sthx 778
stmw 779
stswi 780
stswx 781
stw 783
stwbrx 784
stwcx. 785
stwu 787
stwux 788
stwx 789
SU0R 870
sub 790
sub. 790
subc 791
subc. 791
subco 791
subco. 791
subf 790
subf. 790
subfc 791
subfc. 791
subfco 791
subfco. 791
subfe 792
subfe. 792
subfeo 792
subfeo. 792
subfic 793
subfme 794
subfme. 794
subfmeo 794
subfmeo. 794
AMCC Proprietary 1228

405EP – PPC405EP Embedded Processor Revision 1.08 – July 18, 2007

Preliminary User’s Manual
subfo 790
subfo. 790
subfze 795
subfze. 795
subfzeo 795
subfzeo. 795
subi 617
subic 618
subic. 619
subis 620
subo 790
subo. 790
sync 796

T
TBL 872
tblrehi 799
tblrelo 799
tblwehi 803
tblwelo 803
TBU 873
TCR 874
timings

instruction 1209
branches and cr logicals 1210
general rules 1209
instruction cache misses 1213
loads and stores 1213
strings 1212

tlbia 797
tlbre 798
tlbsx 800
tlbsx. 800
tlbsync 801
tlbwe 802
trap 805
TSR 875
tw 804
tweq 805
tweqi 808
twge 805
twgei 808
twgle 805
twgt 805
twgti 808
twi 807
twle 805
twlei 808
twlgei 808
twlgt 805
twlgti 808
twlle 805
twllei 808
twllt 806
twllti 808
twlng 806
twlngi 808
twlnl 806
twlnli 809
twlt 806

twlti 809
twne 806
twnei 809
twng 806
twngi 809
twnl 806
twnli 809

U
UARTx_DLL 1072
UARTx_DLM 1073
UARTx_FCR 1074
UARTx_IER 1075
UARTx_IIR 1076
UARTx_LCR 1077
UARTx_LSR 1078
UARTx_MCR 1080
UARTx_MSR 1081
UARTx_RBR 1082
UARTx_SCR 1083
UARTx_THR 1084
UIC0_CR 1085
UIC0_ER 1089
UIC0_MSR 1094
UIC0_PR 1097
UIC0_SR 1101
UIC0_TR 1105
UIC0_VCR 1109
UIC0_VR 1109
user mode

registers 72
USPRG0 79, 876
UTLB (unified translation lookaside buffer)

entry format, illustrated 145

W
WDT (watchdog timer)

interrupts, causes 242
interrupts, register settings 242

wrtee 810
wrteei 811

X
XER 877
xor 812
xori 813

Z
ZPR 878
1229 AMCC Proprietary

	Table of Contents
	Figures
	List of Tables
	Part I. Introducing the PPC405EP Embedded Processor
	Chapter 1. Overview
	1.1 PPC405EP Features
	1.1.1 Bus and Peripheral Features
	1.1.2 PowerPC 405 Processor Core Features

	1.2 PowerPC Architecture
	1.3 The PPC405EP as a PowerPC Implementation
	1.4 RISC Processor Core Organization
	1.4.1 Instruction and Data Cache Controllers
	1.4.1.1 Instruction Cache Unit
	1.4.1.2 Data Cache Unit

	1.4.2 Memory Management Unit
	1.4.3 Timer Facilities
	1.4.4 Debug
	1.4.4.1 Development Tool Support
	1.4.4.2 Debug Modes

	1.4.5 Processor Core Interfaces
	1.4.5.1 Processor Local Bus
	1.4.5.2 Device Control Register Bus
	1.4.5.3 Clock and Power Management
	1.4.5.4 JTAG
	1.4.5.5 Interrupts
	1.4.5.6 On-Chip Memory

	1.5 Processor Core Programming Model
	1.5.1 Data Types
	1.5.2 Processor Core Register Set Summary
	1.5.2.1 General Purpose Registers
	1.5.2.2 Special Purpose Registers
	1.5.2.3 Machine State Register
	1.5.2.4 Condition Register
	1.5.2.5 Device Control Registers

	1.5.3 Memory-Mapped I/O Registers
	1.5.4 Addressing Modes

	Chapter 2. On-Chip Buses
	2.1 Processor Local Bus
	2.1.1 PLB Features
	2.1.2 PLB Masters and Slaves
	2.1.3 PLB Master Assignments
	Table 21. Registers Controlling PLB Master Priority Assignments
	2.1.4 PLB Transfer Protocol
	2.1.5 Overlapped PLB Transfers
	2.1.6 PLB Arbiter Registers
	Table 22. PLB Arbiter Registers
	2.1.6.1 PLB Arbiter Control Register (PLB0_ACR)
	2.1.6.2 PLB Error Address Register (PLB0_BEAR)
	2.1.6.3 PLB Error Status Register (PLB0_BESR)

	2.1.7 PLB to OPB Bridge Registers
	Table 23. PLB-to-OPB Bridge Registers
	2.1.7.1 Bridge Error Address Register (POB0_BEAR)
	2.1.7.2 Bridge Error Status Registers (POB0_BESR0-POB0_BESR1)

	2.2 On-Chip Peripheral Bus
	2.2.1 OPB Features
	2.2.2 OPB Master Assignments
	Table 24. PPC405EP OPB Master Assignments
	2.2.3 OPB Arbiter Registers
	Table 25. OPB Arbiter Registers
	2.2.3.1 OPB Arbiter Control Register (OPBA0_CR)
	2.2.3.2 OPB Arbiter Priority Register (OPBA0_PR)

	Part II. The PPC405EP RISC Processor
	Chapter 3. Programming Model
	3.1 User and Privileged Programming Models
	3.2 Memory Organization and Addressing
	3.2.1 Physical Address Map
	Table 31. PPC405EP Address Space
	3.2.2 Storage Attributes

	3.3 Registers
	3.3.1 General Purpose Registers (R0-R31)
	3.3.2 Special Purpose Registers
	Table 32. PPC405EP SPRs
	3.3.2.1 Count Register (CTR)
	3.3.2.2 Link Register (LR)
	3.3.2.3 Fixed Point Exception Register (XER)

	Table 33. XER[CA] Updating Instructions
	Table 34. XER[SO,OV] Updating Instructions
	3.3.2.4 Special Purpose Register General (SPRG0-SPRG7)
	3.3.2.5 Processor Version Register (PVR)

	3.3.3 Condition Register (CR)
	3.3.3.1 CR Fields after Compare Instructions
	3.3.3.2 The CR0 Field

	3.3.4 The Time Base
	Table 35. Time Base Registers
	3.3.5 Machine State Register (MSR)
	3.3.6 Device Control Registers
	3.3.6.1 Directly Accessed DCRs

	Table 36. Directly Accessed DCRs
	3.3.6.2 Indirectly Accessed DCRs

	Table 37. EBC DCR Usage
	Table 38. Offsets for EBC Registers
	3.3.7 Memory-Mapped Input/Output Registers
	Table 39. Directly Accessed MMIO Registers

	3.4 Data Types and Alignment
	3.4.1 Alignment for Storage Reference and Cache Control Instructions
	3.4.2 Alignment and Endian Operation
	3.4.3 Summary of Instructions Causing Alignment Exceptions
	Table 310. Alignment Exception Summary

	3.5 Byte Ordering
	3.5.1 Structure Mapping Examples
	3.5.1.1 Big Endian Mapping
	3.5.1.2 Little Endian Mapping

	3.5.2 Support for Little Endian Byte Ordering
	3.5.3 Endian (E) Storage Attribute
	3.5.3.1 Fetching Instructions from Little Endian Storage Regions
	3.5.3.2 Accessing Data in Little Endian Storage Regions
	3.5.3.3 PowerPC Byte-Reverse Instructions

	3.6 Instruction Processing
	3.7 Branch Processing
	3.7.1 Unconditional Branch Target Addressing Options
	3.7.2 Conditional Branch Target Addressing Options
	3.7.3 Conditional Branch Condition Register Testing
	3.7.4 BO Field on Conditional Branches
	Table 311. Bits of the BO Field
	Table 312. Conditional Branch BO Field
	3.7.5 Branch Prediction

	3.8 Speculative Accesses
	3.8.1 Speculative Accesses in the PPC405EP
	3.8.1.1 Prefetch Distance Down an Unresolved Branch Path
	3.8.1.2 Prefetch of Branches to the CTR and Branches to the LR

	3.8.2 Preventing Inappropriate Speculative Accesses
	3.8.2.1 Fetching Past an Interrupt-Causing or Interrupt-Returning Instruction
	3.8.2.2 Fetching Past tw or twi Instructions
	3.8.2.3 Fetching Past an Unconditional Branch
	3.8.2.4 Suggested Locations of Memory-Mapped Hardware

	Table 313. Example Memory Mapping
	3.8.3 Summary

	3.9 Privileged Mode Operation
	3.9.1 MSR Bits and Exception Handling
	3.9.2 Privileged Instructions
	Table 314. Privileged Instructions
	3.9.3 Privileged SPRs
	3.9.4 Privileged DCRs

	3.10 Synchronization
	3.10.1 Context Synchronization
	3.10.2 Execution Synchronization
	3.10.3 Storage Synchronization

	3.11 Instruction Set
	Table 315. PPC405EP Instruction Set Summary
	3.11.1 Instructions Specific to the IBM PowerPC Embedded Environment
	Table 316. Implementation-specific Instructions
	3.11.2 Storage Reference Instructions
	Table 317. Storage Reference Instructions
	3.11.3 Arithmetic Instructions
	Table 318. Arithmetic Instructions
	Table 319. Multiply-Accumulate and Multiply Halfword Instructions
	3.11.4 Logical Instructions
	Table 320. Logical Instructions
	3.11.5 Compare Instructions
	Table 321. Compare Instructions
	3.11.6 Branch Instructions
	Table 322. Branch Instructions
	3.11.6.1 CR Logical Instructions

	Table 323. CR Logical Instructions
	3.11.6.2 Rotate Instructions

	Table 324. Rotate Instructions
	3.11.6.3 Shift Instructions

	Table 325. Shift Instructions
	3.11.6.4 Cache Management Instructions

	Table 326. Cache Management Instructions
	3.11.7 Interrupt Control Instructions
	Table 327. Interrupt Control Instructions
	3.11.8 TLB Management Instructions
	Table 328. TLB Management Instructions
	3.11.9 Processor Management Instructions
	Table 329. Processor Management Instructions
	3.11.10 Extended Mnemonics

	Chapter 4. Cache Operations
	4.1 ICU Organization
	Table 41. Instruction Cache Organization
	4.1.1 ICU Operations
	4.1.2 Instruction Cachability Control
	4.1.3 Instruction Cache Synonyms
	4.1.4 ICU Coherency

	4.2 DCU Organization
	Table 42. Data Cache Organization
	4.2.1 DCU Operations
	4.2.2 DCU Write Strategies
	4.2.3 DCU Load and Store Strategies
	4.2.4 Data Cachability Control
	4.2.5 DCU Coherency

	4.3 Cache Instructions
	4.3.1 ICU Instructions
	4.3.2 DCU Instructions

	4.4 Cache Control and Debugging Features
	4.4.1 CCR0 Programming Guidelines
	4.4.2 ICU Debugging
	4.4.3 DCU Debugging

	4.5 DCU Performance
	4.5.1 Pipeline Stalls
	4.5.2 Cache Operation Priorities
	Table 43. Priority Changes With Different Data Cache Operations
	4.5.3 Simultaneous Cache Operations
	4.5.4 Sequential Cache Operations

	Chapter 5. On-Chip Memory
	5.1 OCM Addressing
	5.2 OCM Programming Guidelines
	5.3 Store Data Bypass Behavior and Memory Coherency
	Table 51. Examples of Store Data Bypass

	5.4 Registers
	Table 52. OCM DCRs
	5.4.1 OCM Instruction-Side Address Range Compare Register (OCM0_ISARC)
	5.4.2 OCM Instruction-Side Control Register (OCM0_ISCNTL)
	5.4.3 OCM Data-Side Address Range Compare Register (OCM0_DSARC)
	5.4.4 OCM Data-Side Control Register (OCM0_DSCNTL)

	Chapter 6. Memory Management
	6.1 MMU Overview
	6.2 Address Translation
	6.3 Translation Lookaside Buffer (TLB)
	6.3.1 Unified TLB
	6.3.2 TLB Fields
	6.3.2.1 Page Identification Fields

	Table 61. TLB Fields Related to Page Size
	6.3.2.2 Translation Field
	6.3.2.3 Access Control Fields
	6.3.2.4 Storage Attribute Fields

	6.3.3 Shadow Instruction TLB
	6.3.3.1 ITLB Accesses

	6.3.4 Shadow Data TLB
	6.3.4.1 1 DTLB Accesses

	6.3.5 Shadow TLB Consistency

	6.4 TLB-Related Interrupts
	6.4.1 Data Storage Interrupt
	6.4.2 Instruction Storage Interrupt
	6.4.3 Data TLB Miss Interrupt
	6.4.4 Instruction TLB Miss Interrupt

	6.5 TLB Management
	6.5.1 TLB Search Instructions (tlbsx/tlbsx.)
	6.5.2 TLB Read/Write Instructions (tlbre/tlbwe)
	6.5.3 TLB Invalidate Instruction (tlbia)
	6.5.4 TLB Sync Instruction (tlbsync)

	6.6 Recording Page References and Changes
	6.7 Access Protection
	6.7.1 Access Protection Mechanisms in the TLB
	6.7.1.1 General Access Protection
	6.7.1.2 Execute Permissions
	6.7.1.3 Write Permissions
	6.7.1.4 Zone Protection

	6.7.2 Access Protection for Cache Control Instructions
	Table 62. Protection Applied to Cache Control Instructions
	6.7.3 Access Protection for String Instructions

	6.8 Real-Mode Storage Attribute Control
	6.8.1 Storage Attribute Control Registers
	6.8.1.1 Data Cache Write-through Register (DCWR)
	6.8.1.2 Data Cache Cachability Register (DCCR)
	6.8.1.3 Instruction Cache Cachability Register (ICCR)
	6.8.1.4 Storage Guarded Register (SGR)
	6.8.1.5 Storage User-defined 0 Register (SU0R)
	6.8.1.6 Storage Little-Endian Register (SLER)

	Part III. PPC405EP System Operations
	Chapter 7. Clocking
	7.1 Input Reference Clock (SysClk)
	7.2 PLL Overview
	Table 71. PLL Tuning Settings
	Table 72. VCO and PLLOUT A Values
	7.2.1 Software Clock Configuration After Reset

	7.3 PCI Clocking
	Table 73. Example Synchronous PCI Clock Frequencies in Asynchronous Mode
	7.3.1 PCI Adapter Applications

	7.4 Serial Port Clocking
	7.5 Clocking Registers
	Table 74. Clocking Control Registers
	7.5.1 Boot Control Register (CPC0_BOOT)
	7.5.2 EMAC to PHY Control Register (CPC0_EPCTL)
	7.5.3 PLL Mode Register 0 (CPC0_PLLMR0)
	7.5.4 PLL Mode Register 1 (CPC0_PLLMR1)
	7.5.5 UART Control Register (CPC0_UCR)

	Chapter 8. Reset and Initialization
	8.1 Reset Signals
	8.2 Reset Types
	8.2.1 Core Reset
	8.2.2 Chip Reset
	8.2.3 System Reset

	8.3 PCI Power Management Initiated Resets
	8.4 Processor Initiated Resets
	8.5 Software Reset of the PCI Interface
	8.6 Processor State After Reset
	8.6.1 Machine State Register Contents after Reset
	Table 81. MSR Contents after Reset
	8.6.2 Contents of Special Purpose Registers after Reset
	Table 82. SPR Contents After Reset

	8.7 DCR Contents after Reset
	Table 83. DCR Contents After Reset

	8.8 MMIO Register Contents After Reset
	Table 84. MMIO Register Contents After Reset

	8.9 PPC405EP Chip Initialization
	8.9.1 OCM Initialization
	8.9.1.1 Initializing Instruction-Side OCM
	8.9.1.2 Initializing Data-Side OCM

	8.9.2 UIC Initialization

	8.10 PPC405EP Initial Processor Sequencing
	8.11 Initialization Requirements
	8.12 Initialization Code Example

	Chapter 9. Pin Strapping and Sharing
	9.1 Pin Strapping
	Table 91. Pin Straps

	9.2 IIC serial EPROM controller (IEC) Operation
	Table 92. Serial EPROM Data Organization

	9.3 Pin Strapping Registers
	9.3.1 Boot Control Register (CPC0_BOOT)
	9.3.2 PCI Bootstrap Control Register (CPC0_PCI)

	9.4 Pin Sharing
	Table 93. Alphabetical Signal List

	Chapter 10. Interrupt Controller Operations
	10.1 UIC Overview
	10.2 UIC Features
	10.3 UIC Interrupt Assignments
	Table 101. UIC Interrupt Assignments

	10.4 Interrupt Programmability
	10.5 UIC Registers
	Table 102. UIC DCRs
	10.5.1 UIC Status Register (UIC0_SR)
	10.5.2 UIC Enable Register (UIC0_ER)
	10.5.3 UIC Critical Register (UIC0_CR)
	10.5.4 UIC Polarity Register (UIC0_PR)
	10.5.5 UIC Trigger Register (UIC0_TR)
	10.5.6 UIC Masked Status Register (UIC0_MSR)
	10.5.7 UIC Vector Configuration Register (UIC0_VCR)
	10.5.8 UIC Vector Register (UIC0_VR)
	10.5.8.1 Using the Value in UIC0_VR as a Vector Address or Entry Table Lookup
	10.5.8.2 Vector Generation Scenarios

	10.6 Interrupt Handling in the Processor Core
	10.7 Architectural Definitions and Behavior
	10.8 Behavior of the PPC405EP Implementation
	10.9 Interrupt Handling Priorities
	Table 103. Interrupt Handling Priorities

	10.10 Critical and Noncritical Interrupts
	Table 104. Interrupt Vector Offsets

	10.11 General Interrupt Handling Registers
	10.11.1 Machine State Register (MSR)
	10.11.2 Save/Restore Registers 0 and 1 (SRR0-SRR1)
	10.11.3 Save/Restore Registers 2 and 3 (SRR2-SRR3)
	10.11.4 Exception Vector Prefix Register (EVPR)
	10.11.5 Exception Syndrome Register (ESR)
	Table 105. ESR Alteration by Various Interrupts
	10.11.6 Data Exception Address Register (DEAR)

	10.12 Critical Input Interrupts
	Table 106. Register Settings during Critical Input Interrupts

	10.13 Machine Check Interrupts
	10.13.1 Instruction Machine Check Handling
	Table 107. Register Settings during Machine Check-Instruction Interrupts
	10.13.2 Data Machine Check Handling
	Table 108. Register Settings during Machine Check-Data Interrupts

	10.14 Data Storage Interrupt
	Table 109. Register Settings during Data Storage Interrupts

	10.15 Instruction Storage Interrupt
	Table 1010. Register Settings during Instruction Storage Interrupts

	10.16 External Interrupt
	10.16.1 External Interrupt Handling
	Table 1011. Register Settings during External Interrupts

	10.17 Alignment Interrupt
	Table 1012. Alignment Interrupt Summary
	Table 1013. Register Settings during Alignment Interrupts

	10.18 Program Interrupt
	Table 1014. ESR Usage for Program Interrupts
	Table 1015. Register Settings during Program Interrupts

	10.19 System Call Interrupt
	Table 1016. Register Settings during System Call Interrupts

	10.20 Programmable Interval Timer (PIT) Interrupt
	Table 1017. Register Settings during Programmable Interval Timer Interrupts

	10.21 Fixed Interval Timer (FIT) Interrupt
	Table 1018. Register Settings during Fixed Interval Timer Interrupts

	10.22 Watchdog Timer Interrupt
	Table 1019. Register Settings during Watchdog Timer Interrupts

	10.23 Data TLB Miss Interrupt
	Table 1020. Register Settings during Data TLB Miss Interrupts

	10.24 Instruction TLB Miss Interrupt
	Table 1021. Register Settings during Instruction TLB Miss Interrupts

	10.25 Debug Interrupt
	Table 1022. SRR2 during Debug Interrupts
	Table 1023. Register Settings during Debug Interrupts

	Chapter 11. Timer Facilities
	11.1 Time Base
	Table 111. Time Base Access
	11.1.1 Reading the Time Base
	11.1.2 Writing the Time Base

	11.2 Programmable Interval Timer (PIT)
	11.2.1 Fixed Interval Timer (FIT)
	Table 112. FIT Controls

	11.3 Watchdog Timer
	Table 113. Watchdog Timer Controls

	11.4 Timer Status Register (TSR)
	11.5 Timer Control Register (TCR)

	Chapter 12. General Purpose Timers
	12.1 GPT Features
	12.2 GPT Operations
	12.2.1 Time Base Counter
	12.2.2 Compare Timers
	12.2.3 Compare Timers Interrupt

	12.3 GPT Registers
	Table 121. GPT Registers
	12.3.1 GPT Time Base Counter Register (GPT0_TBC)
	12.3.2 GPT Interrupt Mask Register (GPT0_IM)
	12.3.3 GPT Interrupt Status Register (GPT0_ISS and GPT0_ISC)
	12.3.4 GPT Interrupt Enable Register (GPT0_IE)
	12.3.5 GPT Compare Timer Registers (GPT0_COMP0 - GPT0_COMP4)
	12.3.6 GPT Compare Mask Registers (GPT0_MASK0 - GPT0_MASK4)

	Chapter 13. Debugging
	13.1 Development Tool Support
	13.2 Debug Interfaces
	13.3 IEEE 1149.1 Test Access Port (JTAG Debug Port)
	13.4 JTAG Connector
	13.4.1 JTAG Instructions
	Table 131. JTAG Instructions
	13.4.2 JTAG Boundary Scan
	13.4.3 JTAG Implementation
	13.4.4 JTAG ID Register (CPC0_JTAGID)

	13.5 Trace Port
	13.6 Debug Modes
	13.6.1 Internal Debug Mode
	13.6.2 External Debug Mode
	13.6.3 Debug Wait Mode
	13.6.4 Real-time Trace Debug Mode

	13.7 Processor Control
	13.8 Processor Status
	13.9 Debug Registers
	13.9.1 Debug Control Registers
	13.9.1.1 Debug Control Register 0 (DBCR0)
	13.9.1.2 Debug Control Register1 (DBCR1)

	13.9.2 Debug Status Register (DBSR)
	13.9.3 Instruction Address Compare Registers (IAC1-IAC4)
	13.9.4 Data Address Compare Registers (DAC1-DAC2)
	13.9.5 Data Value Compare Registers (DVC1-DVC2)
	13.9.6 Debug Events
	Table 132. Debug Events
	13.9.7 Instruction Complete Debug Event
	13.9.8 Branch Taken Debug Event
	13.9.9 Exception Taken Debug Event
	13.9.10 Trap Taken Debug Event
	13.9.11 Unconditional Debug Event
	13.9.12 IAC Debug Event
	13.9.12.1 IAC Exact Address Compare
	13.9.12.2 IAC Range Address Compare

	13.9.13 DAC Debug Event
	13.9.13.1 DAC Exact Address Compare
	13.9.13.2 DAC Range Address Compare
	13.9.13.3 DAC Applied to Cache Instructions

	Table 133. DAC Applied to Cache Instructions
	13.9.13.4 DAC Applied to String Instructions

	13.9.14 Data Value Compare Debug Event
	Table 134. Setting of DBSR Bits for DAC and DVC Events
	Table 135. Comparisons Based on DBCR1[DVnM]
	Table 136. Comparisons for Aligned DVC Accesses
	Table 137. Comparisons for Misaligned DVC Accesses
	13.9.15 Imprecise Debug Event

	Chapter 14. Clock and Power Management
	14.1 CPM Registers
	Table 141. CPM Registers
	14.1.1 CPM Enable Register (CPC0_ER)
	14.1.2 CPM Force Register (CPC0_FR)
	14.1.3 CPM Status Register (CPC0_SR)

	Part IV. PPC405EP External Interfaces
	Chapter 15. SDRAM Controller
	15.1 Interface Signals
	Table 151. SDRAM Signal Usage and State During/Following Reset

	15.2 Accessing SDRAM Registers
	Table 152. SDRAM Controller DCR Addresses
	Table 153. SDRAM Controller Configuration and Status Registers

	15.3 SDRAM Controller Configuration and Status
	15.3.1 Memory Controller Configuration Register (SDRAM0_CFG)
	15.3.2 Memory Controller Status (SDRAM0_STATUS)
	15.3.3 Memory Bank 0-1 Configuration (SDRAM0_B0CR-SDRAM0_B1CR)
	Table 154. SDRAM Addressing Modes
	15.3.4 Page Management
	Table 155. SDRAM Page Size
	15.3.5 Logical Address to Memory Address Mapping
	Table 156. Logical Address Bit on BA1:0 and MemAddr12:0 Versus Addressing Mode.
	15.3.6 SDRAM Timing Register (SDRAM0_TR)
	15.3.7 Selected Timing Diagrams
	Table 157. SDRAM Memory Timing Parameters
	15.3.8 Auto (CAS Before RAS) Refresh
	15.3.9 Refresh Timer Register (SDRAM0_RTR)

	15.4 Self-Refresh
	15.5 Power Management
	15.5.1 Sleep Mode Entry
	15.5.2 Power Management Idle Timer (SDRAM0_PMIT)
	15.5.3 Sleep Mode Exit

	Chapter 16. External Bus Controller
	16.1 Interface Signals
	Table 161. EBC Signal Usage and State During and After Chip and System Resets
	16.1.1 Interfacing to Byte and Halfword Devices
	16.1.2 Driver Enables
	Table 162. Effect of Driver Enable Programming on EBC Signal States

	16.2 Non-Burst Peripheral Bus Transactions
	16.2.1 Single Read Transfer
	16.2.2 Single Write Transfer

	16.3 Burst Transactions
	16.3.1 Burst Read Transfer
	16.3.2 Burst Write Transfer

	16.4 Device-Paced Transfers
	16.4.1 Device-Paced Single Read Transfer
	16.4.2 Device-Paced Single Write Transfer
	16.4.3 Device-Paced Burst Read Transfer
	16.4.4 Device-Paced Burst Write Transfer

	16.5 EBC Registers
	Table 163. EBC DCR Addresses
	Table 164. EBC Configuration and Status Registers
	16.5.1 EBC Configuration Register (EBC0_CFG)
	16.5.2 Peripheral Bank Configuration Registers (EBC0_BnCR)
	16.5.3 Peripheral Bank Access Parameters (EBC0_BnAP)

	16.6 Error Reporting
	16.6.1 Error Locking
	16.6.2 Peripheral Bus Error Address Register (EBC0_BEAR)
	16.6.3 Peripheral Bus Error Status Register 0 (EBC0_BESR0)
	16.6.4 Peripheral Bus Error Status Register 1 (EBC0_BESR1)

	Chapter 17. PCI Interface
	17.1 PCI Overview
	17.1.1 PCI Bridge Features
	17.1.2 PCI Bridge Block Diagram
	17.1.3 Byte Ordering
	Table 171. PowerPC, CoreConnect PLB, and PCI Address Bit-Naming Conventions
	Table 172. PowerPC, CoreConnect PLB, and PCI Data Bus Bit-Naming Conventions
	17.1.4 Reference Information

	17.2 PCI Bridge Functional Blocks
	17.2.1 PLB-to-PCI Half-Bridge
	17.2.2 PCI-to-PLB Half-Bridge
	17.2.3 PCI Arbiter

	17.3 PCI Bridge Address Mapping
	17.3.1 PLB-to-PCI Address Mapping
	Table 173. PLB Address Map
	17.3.2 PCI-to-PLB Address Mapping
	Table 174. PCI Memory Address Map
	17.3.3 PCI Target Map Configuration

	17.4 PCI Bridge Transaction Handling
	17.4.1 PLB-to-PCI Transaction Handling
	Table 175. Transaction Mapping: PLB -> PCI
	17.4.1.1 PCI Master Commands
	17.4.1.2 PLB Slave Read Handling
	17.4.1.3 Prefetching
	17.4.1.4 PLB Slave Write Handling
	17.4.1.5 Aborted PLB Requests
	17.4.1.6 Retried PCI Reads

	17.4.2 PCI-to-PLB Transaction Handling
	Table 176. Transaction Mapping: PCI Æ PLB
	17.4.2.1 PLB Master Commands
	17.4.2.2 Handling of Reads from PCI Masters
	17.4.2.3 Handling Writes from PCI Masters
	17.4.2.4 Miscellaneous

	17.4.3 Completion Ordering
	17.4.3.1 PCI Producer-Consumer Model

	17.4.4 Collision Resolution
	Table 177. Collision Resolution

	17.5 PCI Bridge Configuration Registers
	17.5.1 PCI Bridge Register Summary
	Table 178. Directly Accessed MMIO Registers
	Table 179. PCI Configuration Address and Data Registers
	Table 1710. PCI Configuration Register Offsets
	17.5.2 PCI Bridge Local Configuration Registers
	17.5.2.1 PMM 0 Local Address Register (PCIL0_PMM0LA)
	17.5.2.2 PMM 0 Mask/Attribute Register (PCIL0_PMM0MA)
	17.5.2.3 PMM 0 PCI Low Address Register (PCIL0_PMM0PCILA)
	17.5.2.4 PMM 0 PCI High Address Register (PCIL0_PMM0PCIHA)
	17.5.2.5 PMM 1 Local Address Register (PCIL0_PMM1LA)
	17.5.2.6 PMM 1 Mask/Attribute Register (PCIL0_PMM1MA)
	17.5.2.7 PMM 1 PCI Low Address Register (PCIL0_PMM1PCILA)
	17.5.2.8 PMM 1 PCI High Address Register (PCIL0_PMM1PCIHA)
	17.5.2.9 PMM 2 Local Address Register (PCIL0_PMM2LA)
	17.5.2.10 PMM 2 Mask/Attribute Register (PCIL0_PMM2MA)
	17.5.2.11 PMM 2 PCI Low Address Register (PCIL0_PMM2PCILA)
	17.5.2.12 PMM 2 PCI High Address Register (PCIL0_PMM2PCIHA)
	17.5.2.13 PTM 1 Memory Size/Attribute Register (PCIL0_PTM1MS)
	17.5.2.14 PTM 1 Local Address Register (PCIL0_PTM1LA)
	17.5.2.15 PTM 2 Memory Size/Attribute Register (PCIL0_PTM2MS)
	17.5.2.16 PTM 2 Local Address Register (PCIL0_PTM2LA)

	17.5.3 PCI Configuration Registers
	17.5.3.1 PCI Configuration Address Register (PCIC0_CFGADDR)
	17.5.3.2 PCI Configuration Data Register (PCIC0_CFGDATA)
	17.5.3.3 PCI Vendor ID Register (PCIC0_VENDID)
	17.5.3.4 PCI Device ID Register (PCIC0_DEVID)
	17.5.3.5 PCI Command Register (PCIC0_CMD)
	17.5.3.6 PCI Status Register (PCIC0_STATUS)
	17.5.3.7 PCI Revision ID Register (PCIC0_REVID)
	17.5.3.8 PCI Class Register (PCIC0_CLS)
	17.5.3.9 PCI Cache Line Size Register (PCIC0_CACHELS)
	17.5.3.10 PCI Latency Timer Register (PCIC0_LATTIM)
	17.5.3.11 PCI Header Type Register (PCIC0_HDTYPE)
	17.5.3.12 PCI Built-In Self Test (BIST) Control Register (PCIC0_BIST)
	17.5.3.13 Unused PCI Base Address Register Space
	17.5.3.14 PCI PTM 1 BAR (PCIC0_PTM1BAR)
	17.5.3.15 PCI PTM 2 BAR (PCIC0_PTM2BAR)
	17.5.3.16 PCI Subsystem Vendor ID Register (PCIC0_SBSYSVID)
	17.5.3.17 PCI Subsystem ID Register (PCIC0_SBSYSID)
	17.5.3.18 PCI Capabilities Pointer (PCIC0_CAP)
	17.5.3.19 PCI Interrupt Line Register (PCIC0_INTLN)
	17.5.3.20 PCI Interrupt Pin Register (PCIC0_INTPN)
	17.5.3.21 PCI Minimum Grant Register (PCIC0_MINGNT)
	17.5.3.22 PCI Maximum Latency Register (PCIC0_MAXLTNCY)
	17.5.3.23 PCI Interrupt Control/Status Register (PCIC0_ICS)
	17.5.3.24 Error Enable Register (PCIC0_ERREN)
	17.5.3.25 Error Status Register (PCIC0_ERRSTS)
	17.5.3.26 Bridge Options 1 Register (PCIC0_BRDGOPT1)
	17.5.3.27 PLB Slave Error Syndrome Register 0 (PCIC0_PLBBESR0)
	17.5.3.28 PLB Slave Error Syndrome Register 1 (PCIC0_PLBBESR1)
	17.5.3.29 PLB Slave Error Address Register (PCIC0_PLBBEAR)
	17.5.3.30 Capability Identifier (PCIC0_CAPID)
	17.5.3.31 Next Item Pointer (PCIC0_NEXTIPTR)
	17.5.3.32 Power Management Capabilities (PCIC0_PMC)
	17.5.3.33 Power Management Control/Status Register (PCIC0_PMCSR)
	17.5.3.34 PMCSR PCI-to-PCI Bridge Support Extensions (PCIC0_PMCSRBSE)
	17.5.3.35 PCI Data Register (PCIC0_DATA)
	17.5.3.36 Bridge Options 2 Register (PCIC0_BRDGOPT2)
	17.5.3.37 Power Management State Change Request Register (PCIC0_PMSCRR)

	17.6 Error Handling
	17.6.1 PLB Unsupported Transfer Type
	Table 1711. PLB Unsupported Transfer Types
	17.6.2 PCI Master Abort
	17.6.3 Bridge PCI Master Receives Target Abort While PCI Bus Master
	17.6.4 PCI Target Data Bus Parity Error Detection
	17.6.5 PCI Master Data Bus Parity Error Detection
	17.6.6 PCI Address Bus Parity Error While PCI Target
	17.6.7 PLB Master Bus Error Detection

	17.7 PCI Bridge Clocking Configuration
	17.8 PCI Power Management Interface
	17.8.1 Capabilities and Power Management Status and Control Registers
	17.8.2 Power State Control
	17.8.3 Changing Power States

	17.9 PCI Bridge Reset and Initialization
	17.9.1 Address Map Initialization
	Table 1712. Address Map Register Values
	17.9.2 Other Configuration Register Initialization
	17.9.3 Target Bridge Initialization
	17.9.4 Local Processor Boot from PCI Memory
	17.9.5 Type 0 Configuration Cycles for Other Devices

	17.10 Timing Diagrams
	17.10.1 PCI Timing Diagram Descriptions
	17.10.1.1 PCI Master Burst Read From SDRAM
	17.10.1.2 PCI Master Burst Write To SDRAM
	17.10.1.3 CPU Read From PCI Memory Slave, Nonprefetching
	17.10.1.4 CPU Read From PCI Memory Slave, Prefetching
	17.10.1.5 CPU Write To PCI Memory Slave
	17.10.1.6 PCI Memory To SDRAM DMA Transfer
	17.10.1.7 SDRAM To PCI Memory DMA Transfer

	17.10.2 Asynchronous
	17.10.3 Synchronous

	Chapter 18. Direct Memory Access Controller
	18.1 Functional Overview
	18.1.1 Peripheral Mode Transfers
	18.1.2 Memory-to-Memory Transfers
	18.1.3 Scatter/Gather Transfers

	18.2 Configuration and Status Registers
	Table 181. DMA Controller Configuration and Status Registers
	18.2.1 DMA Sleep Mode Register (DMA0_SLP)
	18.2.2 DMA Status Register (DMA0_SR)
	18.2.3 DMA Channel Control Registers (DMA0_CR0-DMA0_CR3)
	18.2.4 DMA Source Address Registers (DMA0_SA0-DMA0_SA3)
	18.2.5 DMA Destination Address Registers (DMA0_DA0-DMA0_DA3)
	18.2.6 DMA Count Registers (DMA0_CT0-DMA0_CT3)
	18.2.7 DMA Scatter/Gather Descriptor Address Registers (DMA0_SG0-DMA0_SG3)
	18.2.8 DMA Scatter/Gather Command Register (DMA0_SGC)

	18.3 Channel Priorities
	Table 182. DMA Transfer Priorities

	18.4 Errors
	18.4.1 Address Alignment Error
	Table 183. Address Alignment Requirements
	18.4.2 PLB Timeout
	18.4.3 Slave Errors

	18.5 DMA Interrupts
	18.6 Scatter/Gather Transfers
	Table 184. Scatter/Gather Descriptor Table
	Table 185. Bit Fields in the Scatter/Gather Descriptor Table
	Table 186. DMA Registers Loaded from Scatter/Gather Descriptor Table

	18.7 Programming the DMA Controller
	18.7.1 Peripheral-to-Memory and Memory-to-Peripheral Transfers
	18.7.2 Memory-to-Memory Transfers
	18.7.3 Software-Initiated Memory-to-Memory Transfers (Non-Device-Paced)

	Chapter 19. Ethernet Media Access Controllers
	19.1 EMAC Features
	19.2 EMAC Operation
	19.2.1 MAL Slave Logic
	19.2.2 OPB Slave Logic
	19.2.3 Ethernet Address Match Logic
	19.2.4 Configuration and Status Registers
	19.2.5 Wake On LAN Logic
	19.2.6 Ethernet MAC
	19.2.7 EMAC Loopback Modes

	19.3 EMAC Transmit Operation
	19.3.1 Arbitration Between TX Channels
	19.3.2 Independent Mode
	19.3.3 Dependent Mode
	19.3.3.1 MAL TX Descriptor Control/Status Field
	19.3.3.2 Early Packet Termination during Transmit
	19.3.3.3 Empty Packets
	19.3.3.4 Automatic Retransmission of Colliding Packets
	19.3.3.5 Inter-Packet Gap (IPG) Tuning
	19.3.3.6 Full-Duplex Operation
	19.3.3.7 Packet Content Configuration Options

	Table 191. FCS/SA Enable - Possible Configurations
	Table 192. FCS/Pad Enable - Possible Configurations
	Table 193. FCS/VLAN Tag Enable - Possible Configurations

	19.4 EMAC Receive Operation
	19.4.1 EMAC - MAL RX Packet Transfer Flow
	19.4.2 MAL RX Descriptor Status
	Table 194. In Range Length Error Behavior for Various Packet Lengths
	19.4.3 Early Packet Termination during Receive
	19.4.4 Discarding Packets During Receive
	19.4.5 WOL Support
	19.4.5.1 EMAC WOL Support

	19.5 Flow Control
	19.5.1 MAC Control Packet
	19.5.2 Control Packet Transmission
	19.5.3 Integrated Flow Control
	19.5.4 Control Packet Reception

	19.6 VLAN Support
	19.6.1 VLAN Tagged Packet Transmission
	19.6.2 VLAN Tagged Packet Reception
	19.6.3 Address Match Mechanism
	19.6.3.1 Non-WOL Mode
	19.6.3.2 WOL Mode

	19.7 EMAC Registers
	Table 195. EMAC0 Register Summary
	Table 196. EMAC1 Register Summary
	19.7.1 Mode Register 0 (EMACx_MR0)
	19.7.2 Mode Register 1 (EMACx_MR1)
	19.7.3 Transmit Mode Register 0 (EMACx_TMR0)
	19.7.4 Transmit Mode Register 1 (EMACx_TMR1)
	19.7.4.1 Low-Priority Requests
	19.7.4.2 Urgent-Priority Requests

	19.7.5 Receive Mode Register (EMACx_RMR)
	19.7.6 Interrupt Status Register (EMACx_ISR)
	19.7.7 Interrupt Status Enable Register (EMACx_ISER)
	19.7.8 Individual Address High (EMACx_IAHR)
	19.7.9 Individual Address Low (EMACx_IALR)
	19.7.10 VLAN TPID Register (EMACx_VTPID)
	19.7.11 VLAN TCI Register (EMACx_VTCI)
	19.7.12 Pause Timer Register (EMACx_PTR)
	19.7.13 Individual Address Hash Tables 1-4 (EMACx_IAHT1-EMACx_IAHT4)
	19.7.14 Group Address Hash Tables 1-4 (EMACx_GAHT1-EMACx_GAHT4)
	19.7.15 Last Source Address High (EMACx_LSAH)
	19.7.16 Last Source Address Low (EMACx_LSAL)
	19.7.17 Inter-Packet Gap Value Register (EMACx_IPGVR)
	19.7.18 STA Control Register (EMACx_STACR)
	19.7.19 Transmit Request Threshold Register (EMACx_TRTR)
	19.7.20 Receive Low/High Water Mark Register (EMACx_RWMR)
	19.7.21 Number of Octets Transmitted (EMACx_OCTX)
	19.7.22 Number of Octets Received (EMACx_OCRX)

	19.8 MII
	19.8.1 MII Station Management Interface
	19.8.2 EMAC - MII

	19.9 MAL - EMAC Packet Transfer Flow
	19.10 Packet Rejection Filter
	19.11 Programming Notes
	19.11.1 Reset and Initialization
	19.11.1.1 Scenario 1
	19.11.1.2 Scenario 2
	19.11.1.3 Scenario 3

	Chapter 20. Memory Access Layer
	20.1 MAL Features
	20.1.1 MAL Internal Structure
	20.1.1.1 PLB Master
	20.1.1.2 OPB Master
	20.1.1.3 Transmit Channel Handler
	20.1.1.4 Receive Channel Handler
	20.1.1.5 Transmit Channel Arbiter
	20.1.1.6 Receive Channel Arbiter
	20.1.1.7 Transmit Common Channel Logic
	20.1.1.8 Receive Common Channel Logic
	20.1.1.9 Register Map File

	20.2 MAL0 Interfaces and Channel Assignments
	Table 201. MAL0 Channel Assignment

	20.3 Transmit and Receive Operations
	20.4 Buffer Descriptor Overview
	20.5 Transmit Software Interface
	20.5.1 Wrapping the BD Table for Transmit
	20.5.2 Continuous Mode for Transmit
	20.5.3 Back Up a Packet for Transmit
	20.5.4 Descriptor Not Valid for Transmit
	20.5.5 Scroll Descriptors for Transmit

	20.6 Receive Software Interface
	20.6.1 Wrapping the BD Table for Receive
	20.6.2 Continuous Mode for Receive
	20.6.3 Descriptor Not Valid for Receive
	20.6.4 Buffer Length for Receive

	20.7 Descriptor Buffer Status/Control Fields
	20.7.1 Information from a Software Device Driver Directed To MAL and COMMAC
	20.7.2 Information from MAL and COMMAC Directed to Software
	20.7.3 Status/Control Field Handling
	20.7.4 Status/Control Field Format
	20.7.5 Transmit Status/Control Field Format
	20.7.5.1 Bit 0 - R - Ready
	20.7.5.2 Bit 1 - W - Wrap
	20.7.5.3 Bit 2 - CM - Continuous Mode
	20.7.5.4 Bit 3 - L - Last
	20.7.5.5 Bit 4 - Reserved
	20.7.5.6 Bit 5 - I - Interrupt
	20.7.5.7 Bits 6 to 15

	20.7.6 Receive Status/Control Field Format
	20.7.6.1 Bit 0 - E - Empty
	20.7.6.2 Bit 1 - W - Wrap
	20.7.6.3 Bit 2 - CM - Continuous Mode
	20.7.6.4 Bit 3 - L - Last
	20.7.6.5 Bit 4 - F - First
	20.7.6.6 Bit 5 - I - Interrupt
	20.7.6.7 Bits 6 to 15

	20.8 MAL Programming Notes
	20.8.1 MAL Initialization
	20.8.2 Interrupts
	20.8.3 Error Handling
	20.8.3.1 Error Detection
	20.8.3.2 Indicated Errors
	20.8.3.3 Error Handling Registers
	20.8.3.4 Operational Error Modes
	20.8.3.5 Resolution of an Error Situation
	20.8.3.6 Interrupts To Software

	20.9 MAL Registers
	Table 202. MAL Register Summary
	20.9.1 MAL Configuration Register (MAL0_CFG)
	20.9.2 Channel Active Set and Reset Registers
	20.9.2.1 End of Buffer Interrupt Status Registers

	20.9.3 MAL Error Status Register (MAL0_ESR)
	20.9.4 Descriptor Error Interrupt Registers (MAL0_TXDEIR, MAL0_RXDEIR)
	20.9.5 Channel Table Pointer Registers (MAL0_TXCTPnR, MAL0_RXCTPnR)

	20.10 Receive Channel Buffer Size Register (MAL0_RCBS0)

	Chapter 21. Serial Port Operations
	21.1 Functional Description
	21.2 Serial Input Clocking
	Table 211. Baud Rate Settings

	21.3 UART Registers
	Table 212. UART Configuration Registers
	21.3.1 Receiver Buffer Registers (UARTx_RBR)
	21.3.2 Transmitter Holding Registers (UARTx_THR)
	21.3.3 Interrupt Enable Registers (UARTx_IER)
	21.3.4 Interrupt Identification Registers (UARTx_IIR)
	Table 213. Interrupt Priority Level
	21.3.5 FIFO Control Registers (UARTx_FCR)
	21.3.6 Line Control Registers (UARTx_LCR)
	21.3.7 Modem Control Registers (UARTx_MCR)
	21.3.8 Line Status Registers (UARTx_LSR)
	21.3.9 Modem Status Registers (UARTx_MSR)
	21.3.10 Scratchpad Registers (UARTx_SCR)
	21.3.11 Divisor Latch LSB and MSB Registers (UARTx_DLL, UARTx_DLM)
	Table 214. Divisor Latch Settings for Certain Baud Rates

	21.4 FIFO Operation
	21.4.1 Interrupt Mode
	21.4.1.1 Receiver Interrupts
	21.4.1.2 Transmitter Interrupts

	21.4.2 Polled Mode

	21.5 UART and Sleep Mode
	21.6 DMA Operation
	Table 215. DMA Channel Assignments
	21.6.1 UART Control Register (CPC0_UCR)
	21.6.2 Transmitter DMA Mode
	Table 216. UART0 Transmitter DMA Mode Register Field Settings
	Table 217. UART1 Transmitter DMA Mode Register Field Settings
	21.6.3 Receiver DMA Mode
	Table 218. UART0 Receiver DMA Mode Register Field Settings
	Table 219. UART1 Receiver DMA Mode Register Field Settings

	Chapter 22. IIC Bus Interface
	22.1 Addressing
	22.1.1 Addressing Modes
	22.1.2 Seven-Bit Addresses
	22.1.3 Ten-Bit Addresses

	22.2 IIC Registers
	Table 221. IIC Registers

	22.3 IIC Register Descriptions
	22.3.1 IIC0 Master Data Buffer (IIC0_MDBUF)
	22.3.2 IIC0 Slave Data Buffer (IIC0_SDBUF)
	22.3.3 IIC0 Low Master Address Register (IIC0_LMADR)
	22.3.4 IIC0 High Master Address Register (IIC0_HMADR)
	22.3.5 IIC0 Control Register (IIC0_CNTL)
	Table 222. IIC Response to IIC0_CNTL Field Settings
	22.3.6 IIC0 Mode Control Register (IIC0_MDCNTL)
	22.3.7 IIC0 Status Register (IIC0_STS)
	Table 223. IIC0_STS[ERR, PT] Decoding
	22.3.8 IIC0 Extended Status Register (IIC0_EXTSTS)
	22.3.9 IIC0 Low Slave Address Register (IIC0_LSADR)
	22.3.10 IIC0 High Slave Address Register (IIC0_HSADR)
	22.3.11 IIC0 Clock Divide Register (IIC0_CLKDIV)
	Table 224. IIC0 Clock Divide Programming
	Table 225. IICn_SCL Fequency for OPB CLK and IICn_CLKDIV Settings
	22.3.12 IIC0 Interrupt Mask Register (IIC0_INTRMSK)
	22.3.13 IIC0 Transfer Count Register (IIC0_XFRCNT)
	22.3.14 IIC0 Extended Control and Slave Status Register (IIC0_XTCNTLSS)
	22.3.15 IIC0 Direct Control Register (IIC0_DIRECTCNTL)

	22.4 Programming the IIC Controller
	22.4.1 Initialization
	22.4.2 IIC Read
	22.4.3 IIC Write

	22.5 Interrupt Handling
	22.6 General Considerations

	Chapter 23. GPIO Operations
	23.1 Overview
	23.2 Features
	23.3 Clock and Power Management
	23.4 GPIO Register Overview
	Table 231. GPIO Register Summary

	23.5 Detailed Register Descriptions
	23.5.1 GPIO Register Reset Values
	23.5.2 GPIO Output Register (GPIO0_OR)
	23.5.3 GPIO Three-State Control Register (GPIO0_TCR)
	23.5.4 GPIO Output Select Registers (GPIO0_OSRH, GPIO0_OSRL)
	Table 232. GPIO Output Signal Selection
	23.5.5 GPIO Three-State Select Registers (GPIO0_TSRH, GPIO0_TSRL)
	Table 233. GPIO Three-State Selection
	23.5.6 GPIO Open Drain Register (GPIO0_ODR)
	Table 234. GPIO0_ODR Control Settings
	23.5.7 GPIO Input Register (GPIO0_IR)
	23.5.8 GPIO Input Select Registers (GPIO0_ISR1H, GPIO0_ISR1L)
	Table 235. GPIO Alternate Input Signal Selection
	23.5.9 GPIO Receive Register (GPIO0_RR1)

	23.6 GPIO0 Signal Assignments
	Table 236. GPIO0 Signal Assignments
	23.6.1 Programming the GPIO0 Alternate 1 Bank
	Table 237. Selecting GPIO0 Alternate 1 Signals

	23.7 Sample GPIO Bank Programming

	Chapter 24. Event Counters
	24.1 Packet Rejection Counts
	24.2 Counter Configuration
	24.3 EVC0 Count Registers
	Table 241. Event Count Registers
	24.3.1 Event Counters (EVC0_CNT0, EVC0_CNT1)
	24.3.2 Event Counter Control Register (EVC0_ECR)

	Part V. Reference
	Chapter 25. Instruction Set
	25.1 Instruction Set Portability
	Table 251. Implementation-Specific Instructions

	25.2 Instruction Formats
	25.3 Pseudocode
	25.3.1 Operator Precedence
	Table 252. Operator Precedence

	25.4 Register Usage
	25.5 Alphabetical Instruction Listing
	Table 25-3. Extended Mnemonics for addi
	Table 251. Extended Mnemonics for addic
	Table 252. Extended Mnemonics for addic.
	Table 253. Extended Mnemonics for addis
	Table 254. Extended Mnemonics for bc, bca, bcl, bcla
	Table 255. Extended Mnemonics for bcctr, bcctrl
	Table 256. Extended Mnemonics for bclr, bclrl
	Table 257. Extended Mnemonics for cmp
	Table 258. Extended Mnemonics for cmpi
	Table 259. Extended Mnemonics for cmpl
	Table 2510. Extended Mnemonics for cmpli
	Table 2511. Extended Mnemonics for creqv
	Table 2512. Extended Mnemonics for crnor
	Table 2513. Extended Mnemonics for cror
	Table 2514. Extended Mnemonics for crxor
	Table 2518. Transfer Bit Mnemonic Assignment
	Table 2519. Extended Mnemonics for mfspr
	Table 2520. Extended Mnemonics for mftb
	Table 2521. Extended Mnemonics for mftb
	Table 2522. Extended Mnemonics for mtcrf
	Table 2522. Extended Mnemonics for mtspr
	Table 2523. Extended Mnemonics for nor, nor.
	Table 2524. Extended Mnemonics for or, or.
	Table 2525. Extended Mnemonics for ori
	Table 2526. Extended Mnemonics for rlwimi, rlwimi.
	Table 2527. Extended Mnemonics for rlwinm, rlwinm.
	Table 2528. Extended Mnemonics for rlwnm, rlwnm.
	Table 2524. Extended Mnemonics for subf, subf., subfo, subfo.
	Table 2525. Extended Mnemonics for subfc, subfc., subfco, subfco.
	Table 2526. Extended Mnemonics for tlbre
	Table 2527. Extended Mnemonics for tlbwe
	Table 2528. Extended Mnemonics for tw
	Table 2529. Extended Mnemonics for twi

	Chapter 26. Register Summary
	26.1 Reserved Registers
	26.2 Reserved Fields
	26.3 General Purpose Registers
	Table 261. PPC405EP General Purpose Registers

	26.4 Machine State Register and Condition Register
	26.5 Special Purpose Registers
	Table 262. Special Purpose Registers

	26.6 Time Base Registers
	Table 263. Time Base Registers

	26.7 Device Control Registers
	26.7.1 Directly Addressed DCRs
	Table 264. Directly Accessed DCRs
	26.7.2 Indirectly Accessed DCRs
	26.7.2.1 Indirect Access of SDRAM Controller DCRs

	Table 265. SDRAM Controller DCR Usage
	Table 266. Offsets for SDRAM Controller Registers
	26.7.2.2 Indirect Access of EBC DCRs

	Table 267. EBC DCR Usage
	Table 268. Offsets for EBC Registers

	26.8 Memory-Mapped Input/Output Registers
	Table 269. Directly Accessed MMIO Registers
	26.8.1 Indirectly Accessed MMIO Registers
	Table 2610. PCI Configuration Address and Data Registers
	Table 2611. PCI Configuration Registers

	26.9 Alphabetical Listing of Processor Core Registers
	CCR0
	CR
	CTR
	DAC1-DAC2
	DBCR0
	DBCR1
	DBSR
	DCCR
	DCWR
	DEAR
	DVCR1-DVCR2
	ESR
	EVPR
	GPR0-GPR31
	IAC1-IAC4
	ICCR
	ICDBDR
	LR
	MSR
	PID
	PIT
	PVR
	SGR
	SLER
	SPRG0-SPRG7
	SRR0
	SRR1
	SRR2
	SRR3
	SU0R
	TBL
	TBU
	TCR
	TSR
	USPRG0
	XER
	ZPR

	26.10 Alphabetical Listing of Chip Control and Peripheral Registers
	CPC0_BOOT
	CPC0_EPCTL
	CPC0_ER
	CPC0_FR
	CPC0_JTAGID
	CPC0_PCI
	CPC0_PLLMR0
	CPC0_PLLMR1
	CPC0_SR
	CPC0_SRR
	CPC0_UCR
	DMA0_CR0-DMA0_CR3
	DMA0_CT0-DMA0_CT3
	DMA0_DA0-DMA0_DA3
	DMA0_SA0-DMA0_SA3
	DMA0_SG0-DMA0_SG3
	DMA0_SGC
	DMA0_SLP
	DMA0_SR
	EBC0_BEAR
	EBC0_BESR0
	EBC0_BESR1
	EBC0_BnAP
	EBC0_BnCR
	EBC0_CFG
	EBC0_CFGADDR
	EBC0_CFGDATA
	EMACx_GAHT1-EMACx_GAHT4
	EMACx_IAHR
	EMACx_IAHT1-EMACx_IAHT4
	EMACx_IALR
	EMACx_IPGVR
	EMACx_ISER
	EMACx_ISR
	EMACx_LSAH
	EMACx_LSAH
	EMACx_MR0
	EMACx_MR1
	EMACx_OCRX
	EMACx_OCTX
	EMACx_PTR
	EMACx_RMR
	EMACx_RWMR
	EMACx_STACR
	EMACx_TMR0
	EMACx_TMR1
	EMACx_TRTR
	EMACx_VTCI
	EMACx_VTPID
	EVC0_CNT0-EVC0_CNT1
	EVC0_ECR
	GPIO0_IR
	GPIO0_ISR1H
	GPIO0_ISR1L
	GPIO0_OR
	GPIO0_OSRH
	GPIO0_OSRL
	GPIO0_RR1
	GPIO0_TCR
	GPIO0_TSRH
	GPIO0_TSRL
	IIC0_CLKDIV
	IIC0_CNTL
	IIC0_DIRECTCNTL
	IIC0_EXTSTS
	IIC0_HMADR
	IIC0_HSADR
	IIC0_INTRMSK
	IIC0_LMADR
	IIC0_LSADR
	IIC0_MDBUF
	IIC0_MDCNTL
	IIC0_SDBUF
	IIC0_STS
	IIC0_XFRCNT
	IIC0_XTCNTLSS
	MAL0_CFG
	MAL0_ESR
	MAL0_IER
	MAL0_RCBSn
	MAL0_RXCARR
	MAL0_RXCASR
	MAL0_RXCTPxR
	MAL0_RXDEIR
	MAL0_RXEOBISR
	MAL0_TXCARR
	MAL0_TXCASR
	MAL0_TXCTPxR
	MAL0_TXDEIR
	MAL0_TXEOBISR
	OCM0_DSARC
	OCM0_DSCNTL
	OCM0_ISARC
	OCM0_ISCNTL
	OPBA0_CR
	OPBA0_PR
	PCIC0_BAR0
	PCIC0_BIST
	PCIC0_BRDGOPT1
	PCIC0_BRDGOPT2
	PCIC0_CACHELS
	PCIC0_CAP
	PCIC0_CAPID
	PCIC0_CFGADDR
	PCIC0_CFGATA
	PCIC0_CLS
	PCIC0_CMD
	PCIC0_DATA
	PCIC0_DEVID
	PCIC0_ERREN
	PCIC0_ERRSTS
	PCIC0_HDTYPE
	PCIC0_ICS
	PCIC0_INTLN
	PCIC0_INTPN
	PCIC0_LATTIM
	PCIC0_MAXLTNCY
	PCIC0_MINGNT
	PCIC0_NEXTIPTR
	PCIC0_PLBBEAR
	PCIC0_PLBBESR0
	PCIC0_PLBBESR1
	PCIC0_PMC
	PCIC0_PMCSR
	PCIC0_PMCSRBSE
	PCIC0_PMSCRR
	PCIC0_PTM1BAR
	PCIC0_PTM2BAR
	PCIC0_REVID
	PCIC0_SBSYSID
	PCIC0_SBSYSVID
	PCIC0_STATUS
	PCIC0_VENDID
	PCIL0_PMM0LA
	PCIL0_PMM0MA
	PCIL0_PMM0PCIHA
	PCIL0_PMM0PCILA
	PCIL0_PMM1LA
	PCIL0_PMM1MA
	PCIL0_PMM1PCIHA
	PCIL0_PMM1PCILA
	PCIL0_PMM2LA
	PCIL0_PMM2MA
	PCIL0_PMM2PCIHA
	PCIL0_PMM2PCILA
	PCIL0_PTM1LA
	PCIL0_PTM1MS
	PCIL0_PTM2LA
	PCIL0_PTM2MS
	PLB0_ACR
	PLB0_BEAR
	PLB0_BESR
	POB0_BEAR
	POB0_BESR0
	POB0_BESR1
	SDRAM0_B0CR-SDRAM0_B1CR
	SDRAM0_CFG
	SDRAM0_CFGADDR
	SDRAM0_CFGDATA
	SDRAM0_ECCCFG
	SDRAM0_PMIT
	SDRAM0_RTR
	SDRAM0_STATUS
	SDRAM0_TR
	UARTx_DLL
	UARTx_DLM
	UARTx_FCR
	UARTx_IER
	UARTx_IIR
	UARTx_LCR
	UARTx_LSR
	UARTx_MCR
	UARTx_MSR
	UARTx_RBR
	UARTx_SCR
	UARTx_THR
	UIC0_CR
	UIC0_ER
	UIC0_MSR
	UIC0_PR
	UIC0_SR
	UIC0_TR
	UUIC0_VCR

	Chapter 27. Signal Summary
	27.1 Signals Listed Alphabetically
	Table 271. Alphabetical Signal List

	27.2 Signal Descriptions
	Table 272. Signal Descriptions

	Appendix A. Instruction Summary
	Appendix B. Instructions by Category
	Appendix C. Code Optimization and Instruction Timings
	Revision Log
	Index

