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About This Manual 

Integrated Device Technology, Inc. 

This manual provides a description of the functional operation of the 
IDT79R36 l 00 Integrated RISController™. 

Summary of Contents 
Chapter 1, "Overview," contains an overview of the R36100 micropro­

cessor. 
Chapter 2, "Instruction Set Architecture," contains an overview of 

the MIPS~ 1 architecture set and discusses the programmers' model for 
this device. 

Chapter 3, "Cache Architecture," describes the fundamentals of 
general cache operations, as well as the particular organization of the on­
chip caches of the R36100. 

Chapter 4, "Virtual to Physical Address Translation and Address 
Map," describes the operating states of the processor, as well as the 
virtual to physical address translation mechanisms provided in the 
R36100. 

Chapter 5, "Coprocessor 0 Register Set," describes the implementa­
tion of CPO found on the R36100, which are similar to those of the rest of 
the R30xx family. 

Chapter 6, "Interruption and Exception Handling," discusses excep­
tion handling issues in R36100-based systems, including software exam­
ples of exception handlers. 

Chapter 7, "System Bus Interface Unit Overview," provides an over­
view of the operation of the execution core, as well as operation of the 
various memoiy controllers during both external transactions and 
internal peripheral transactions. 

Chapter 8, "Memory Controller," provides an overview of the memoiy 
controller interface and a complete description of the signal pins and their 
timing. 

Chapter 9, "1/0 Controller," provides an overview of the 1/0 
controller interface, a description of the signal pins and their timing, and 
a discussion of the relationship between the interface and typical hard­
ware I/O devices. 

Chapter 10, "DRAM Controller," provides an overview of the DRAM 
controller interface, a description of the signal pins and their timing, and 
a discussion of the relationship between the interface and typical external 
hardware DRAM systems. 

Chapter 11, "Direct Memory Access (DMA) Controller," provides an 
overview of the OMA controller interface, a description of the signal pins 
and their timing, and a discussion of the relationship between the inter­
face and typical internal and external hardware OMA systems. 

Chapter 12, "Parallel Input/Output (PIO)," provides an overview of 
the PIO controller interface, a description of the signal pins and their 
timing, and a discussion of how PIOs relate to typical internal and 
external systems. 

Chapter 13, "Peripheral Expansion Interrupt Controller," provides 
(ln overview of the PIO controlier interface, a description of the signal pins 
and their timing, and a discussion of how expansion interrupts relate to 
typical internal and external systems. 

iii 
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Chapter 14, "Timers," provides an overview of the Timer program­
ming interface, a description of the signal pins and their waveforms, and 
a discussion of how the timers relate to typical internal and external 
systems. 

Chapter 15, "Serial Ports," provides an overview of the serial port 
register interface, a description of the signal pins, and a discussion of 
various aspects of the signal timing. 

Chapter 16, "Bidirectional Parallel Port," provides an overview of the 
bidirectional Centronics parallel port register interface, a description of 
the signal pins, and a discussion of various aspects of the signal timing. 

Chapter 17, "Laser Printer Video Port," provides an overview of the 
laser printer video port register interface, a description of the signal pins, 
and a discussion of various aspects of the signal timing. 

Chapter 18, "Reset Initialization and Input Clocking," discusses 
the reset initialization sequence required by the R36100, the configura­
tion mode selectable features of the processor, and boot software require­
ments. 

Chapter 19, "Debug Mode Features," discusses features that facili­
tate debugging of R36100-based systems. 

For More Product Information 
Details about the R36 l 00 electrical interface can be found in the 

product's data sheet. Data sheets also include packaging and pin-out 
information. 

For information about development tools, complementary support 
chips, and how to use this product in various applications, refer to IDT's 
online library of data sheets, applications notes, software reference 
manuals, and the IDT Advantage Program Guides. 

Your local IDT sales representative can help you identify and use these 
resources. 
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Introduction 
The IDT79R36100 is a highly integrated member of the IDT RISCon­

troller family. The R36100 RISController incorporates the "system on a 
chip" integration philosophy and is well-suited for a wide variety of low­
cost embedded applications. 

The R36 l 00 RISController contains the general purpose R3000A MIPS 
RISC CPU core and substantial amounts of on-chip Instruction Cache 
and Data Cache memory. In addition, the R36100 integrates four 
Memory Controllers on-chip, including ROM, DRAM, 1/0, and OMA; 
printer and data communication peripherals, including an IEEE 1284 
Parallel Port, Laser Printer Video Rasterizer, and two Serial Communica­
tions Ports; and standard embedded peripherals, including an Interrupt 
Controller, Timers, and Parallel Inputs and Outputs. 

This extensive integration simplifies the overall system design and 
reduces external component requirements, system cost and development 
time. 
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The R36 l 00 RlSController is software compatible with all of the IDT 
R1$Controller family, including the low cost 32-bit R3051 RlSControllers 
and the R4xxx Orion family of high-performance 64-bit CPUs. Common 
instruction set architecture (ISA) enables the same applications software 
to be used across a wide variety of price/performance points. 

The R36100 RlSController integrates four on-chip Bus Controllers, 
allowing seamless interfacing with a wide variety of standard memories 
and peripherals that include: 

• Standard page mode DRAMs 
• EPROMs, FLASH, SRAM, Dual-Port SRAM 
• FIFOs, SCSI, A/D, and other I/O peripherals 
• Ethernet, Data Compression, and other coprocessors 
The R36100 RlSController integrates an IEEE Parallel Port, RS-232C 

and Local Talk Serial Ports, and a Laser Printer Video Rasterizer, to serve 
printer system applications that include: 

• Monochrome laser and ink~jet printers 
• Host based printer cards 
• Multi-function laser/fax printer systems 
The R36 l 00 RISController integrates asynchronous and synchronous 

Serial Ports and multiple Timers, to serve data communications applica­
tions that include: 

• Local Area.Network (LAN) interface cards 
• CSU/DSU SDLC/HDLC line driver cards 
• Router, switcher, and data compressor cards 
The next section contains a list of R36 l 00 features. 
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R36100 Feature List 
• Instruction set compatible with IDT79R3000A, R305 I family, and IDT. 

Orion family of MIPS RISC CPUs . 
• System cost minimized through high level of integration 

RISC CPU 
- Instruction Cache 
- Data Cache 
- Flexible Bus Interface 
- Controllers 
- Peripheral 

• Double frequency clock input 
• 24 MIPS/ 42K Dhrystones-2.1 at 25 MHz 
• 3.3V and 5V versions 
• Low cost PQFP packaging 
• On-chip instruction and data caches 

- 4KB of Instruction Cache 
- IKB of Data Cache 
- Improved Cache Control for fast data movement and cache locking 

• Flexible bus interface allows simple, low cost designs 
- Separate de-multiplexed Address Bus and Data Bus 
- Synchronized Bus Interface Timing 
- On-chip 4-deep write buffer eliminates memory write stalls 
- On-chip 4-word read buffer supports burst or simple block reads 
- Programmable port width interface (8-, 16-, and 32-bit memory 

sub-regions) 
• On-chip DRAM Controller with Address Multiplexer 

- . Supports non-interleaved or Interleaved DRAM memory 
• On-chip Memory and I/O Controller 

- Chip Selects 
- Wait-State Generator 
- Supports non-interleaved or interleaved ROMs 
- Boot from 8-bit, 16-bit, 32-bit or interleaved ROMs 
- Supports CS/Rd/Wr 1/0 protocol 
- Supports CS/Wr/Strobe I/O protocol 
- Supports PCMCIA Master protocol 

• On-chip OMA Controller for autonomous burst data movement 
- 4 internal channels 
- 2 external channels 
- On-chip Parallel I/O pins 
- On-chip Interrupt Expansion controller 

• On-chip Timers 
• On-chip Serial Port(s) 
• On-chip IEEE 1284 Bidirectional Centronics Target Interface 

Controller 
• On-chip Laser Printer Video Raster Engine Interface Controller 
• "Reduced Frequency Mode" assists in power-managed and 

"Green PC" applications 
• Complete software support 

- Optimizing compilers 
- Real-time operating systems 
- Monitors/debuggers 
- Floating Point emulation software 
- Printer Page Description Languages 

• Built-in Debug/Emulator Support 
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Device Overview 
The R36 l 00 can be viewed as a "system on a chip," the embodiment of 

a discrete system built around the R3000A CPU. Integrating system 
functions onto a single chip reduced the system's cost. size, and power 
requirements. This high level of integration also reduced system 
complexity and minimized system development time. 

Figure 1. I on page 1 provides a block level representation of the 
R36100's functional units. This section also includes the R36100's logic 
symbol diagram (Figure 1.2 on page 9) and pin description table (Table 
1.1 on page 10). A system overview is presented here in Chapter I with 
more detailed information provided in subsequent chapters. 

CPU Core 
The R36 l 00 RISController is based on the R3000A CPU core. The 

R3000A is a full 32-bit RISC integer execution engine, capable of 
sustaining a peak single cycle execution rate by using its five-stage pipe­
line. The CPU core contains an integer ALU unit and bit shifter with a 
separate integer multiplier I divider unit, address adder and program 
counter generator, and 32 orthogonal 32-bit registers. The R36100 
execution core implements the MIPS-I Instruction Set Architecture (ISA). 
Therefore, the R36 l 00 is binary compatible with all other MIPS CPU 
engines, including the low cost R305 l family and the high-speed. R4xxx 
Orion family. 

System Control Co-Processor 
The R36100 RISController integrates an on-chip System Control Co­

processor (CPO). CPO manages the R36100's exception handling opera­
tions. its virtual to physical address memory mapping, and its various 
programmable bus-to-cache interface capabilities. All of these topics are 
discussed in subsequent chapters. 

The R36 l 00 does not include the optional TLB found in other members 
of the IDT RISController family. Instead, the R36 l 00 performs virtual to 
physical address mapping identical to that of the R305 l family's Base 
Versions. These Base Version devices still support distinct kernel and 
user mode operation but do not require page management software or an 
on-chip TLB, leading to a simplified operating system software model and 
a lower cost processor. 

Clock Generator Unit 
The R36100 RISController is driven from a single, 2x-frequency input 

clock. An on-chip clock generator unit is responsible for managing the 
interaction of the CPU core, caches, and bus interface. The clock gener­
ator unit replaces the external delay line that was required in discrete 
R3000A based systems. 

For power sensitive or "Green" applications, the R36100 supports a 
reduced frequency mode, allowing the system to reduce power consump­
tion in idle periods. 

1-4 



R36100 Device Overview Chapter 1 

Instruction Cache 
The R36100 RISController integrates 4kB of on-chip Instruction Cache, 

organized with a line size of 16 bytes (four 32-bit entries). This relatively 
large cache contributes substantially to the high performance inherent in 
the R36100, which allows systems based on the R36100 to achieve high 
performance even from low-cost memory systems. The cache is imple­
mented as a direct mapped cache and is capable of caching instructions 
from anywhere within the large physical address space. The cache is 
implemented using physical addresses and physical tags (rather than 
virtual addresses or tags), which does not require flushing on context 
switches. 

The R36 l 00 implements special features . that allow the instruction 
cache to be split into halves or quarters; each section then services a 
different area of the large address space. This feature enables the system 
software to "lock" time critical code-such as router address hash-table 
lookup algorithms and interrupt service routines-into one of the halves 
or quarters while allowing other tasks to utilize unused areas without 
disrupting the time critical code. This technique permits software to 
perform instruction cache "locking" without requiring memory manage­
ment support. 

Data Cache 
The R36100 RISController incorporates an on-chip data cache of IKB 

organized as a line size of 4 bytes (one word). This relatively large data 
cache contributes substantially to the high performance of the R36100. 
As with the instruction cache, the data cache is implemented as a direct 
mapped physical address cache and is capable of mapping any word 
within the large physical address space. 

The data cache is implemented as a write-through cache, to ensure 
that main memory is always consistent and coherent with the internal 
cache. To minimize processor stalls due to data write operations, the bus 
interface unit incorporates a 4-deep write buffer which captures address 
and data at the processor execution rate, allowing the data to be retired to 
main memory at a much slower rate without impacting the performance 
of the CPU core. · 

The R36100 contains special features that also allow the data cache to 
be split into halves or quarters; each section services a different area of 
the large address space. This feature enables the system software to 
"lock" time critical data-such as routing address information tables and 
the interrupt stack-into one of the halves or quarters while allowing 
other tasks to utilize unused portions without disrupting the critical data. 
This technique permits software to perform data cache "locking" without 
requiring memory management support. 

Bus Interface Unit 
The R36 l 00 RISController uses its large internal caches to provide the 

execution engine with most of its memory bandwidth requirements. The 
execution engine pipeline can then perform both 1 instruction fetch and 1 
data load/ store per clock cycle. And only on the rare occasion of a cache 
miss· or on writes does the R36 l 00 require its external bus interface; 
therefore, the R36100 is able to use a simple bus interface that connects 
to slow, inexpensive memory devices. 

The R36100 bus interface uses a de-multiplexed address and data bus. 
The bus interface readily connects to memory subsystems that are 8-, 
16-, 32-bits wide, and/or interleaved 32-bit. / 
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The R36100 incorporates a 4-deep write buffer to decouple the speed of 
the execution engine from the speed of the memory system. The write 
buffers capture and FIFO the processor's address and data information 
during internal store operations at the CPU pipeline rate. The write buffer 
then presents the bus interface write transactions at the rate the memory 
system can accommodate. 

During main memory writes, the R36 l 00 can break a large datum-such 
as a 32-bit word-into a series of smaller transactions-such as bytes­
according to the width of the memory port being written. This operation is 
transparent to the software that initiated the store, ensuring that the same 
software is able to run in a variety of memory systems. 

The R36 l 00 read interface performs both single datum reads and quad 
word reads. To accommodate slower reads, the R36100 incorporates a 4-
deep read buffer FIFO, allowing the external interface to queue up data 
within the processor before releasing it to perform a burst fill of the 
internal caches. 

In addition, the R36100 can perform on-chip data packing when 
performing large datum reads-such as quad words-from narrower 
memory systems-such asl6-bits. Once again, this operation is trans­
parent to the software, simplifying migration of software to different 
memory systems and simplifying field upgrades to wider memory. Since 
this capability works for either instruction or data reads, using 8-, 16-, 32-
bit. or interleaved boot PRO Ms is easily supported by the R36 l 00. 

As described throughout this manual, one of the on-chip memory bus 
controllers services bus transactions. The bus interface unit merely 
provides a common translation between these memory bus controllers and 
the CPU core. 

Memory Controller 
The R36100 RlSController uses the on-chip memory controller to glue­

lessly attach external ROM-including FLASH-and/ or SRAM in a number 
of system configurations. For example, the memory controller supports 
interleaved ROM and/or SRAM, 8-bit boot ROM; 32-bit burst ROMs, as 
well as an array of simple 32-bit wide EPROMs. Under the control of boot 
software, the memory controller integrates all control signals and manages 
the access timing and wait-state generation for multiple banks. 

DRAM Controller 
The R36100 RlSController integrates an on-chip DRAM controller. The 

DRAM controller directly controls up to four banks of standard page mode 
DRAMs in a number of configurations, including systems with varying 
densities of DRAM; 32-bit wide. interleaved DRAM; and 16-bit wide DRAM 
subsystems. 

1/0 Controller 
To perform all necessary address decoding and wait-state generation for 

external I/O devices, the R36100 RlSController has an on-chip I/O 
controller. In addition. the on-chip I/O controller interfaces as a master to 
PCMCIA, including support of the large address space required and the 
PCMCIA chip-select protocol and timing. 

DMA Control and Interface 
The R36100 RlSController features on-chip OMA control for internal 

peripherals. external peripherals, and external memory. Multiple internal 
channels are provided, allowing block moves of data between any combina­
tion of memory and I/O device. Each channel can also be interrupt 
controlled so that an I/O peripheral-like the serial port-can regulate the 
individual transactions of a block move. 
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The R36100 RISController also supports external OMA masters that 
take over the external system bus via a bus request and grant hand­
shake. Once in control, the external OMA master can read and write to 
memory, 1/0, and internal peripherals via the R36100's bus controllers. 

Counter /Timers 
The R36100 RISController contains three general purpose timers. 

Each timer consists of a 16-bit count register as well as a 16-bit compare 
register. The count register resets to zero and then counts upward until it 
equals the compare register. When the count register equals the compare 
register, the TCN output is asserted and the count is reset back to zero. 

To increase the amount of time each timer can handle, the timers use a 
common 16-bit prescaler counter. Each timer is programmable to select 
a power-of-2 divisor of the prescaler. 

Using the default mode, each timer can be used as a general purpose 
real-time clock. Some special effects include: 

• Bus timeout timer 
• Watch dog timer 
• PWM/square wave/baud rate generator 
• Gated clock external event counter 

PIO Interface 
For controlling multi-purpose utility pins, the R36100 RISController 

has a Parallel Input/Output (PIO) interface.. The PIO pins can be 
programmed to act as general purpose inputs or outputs. 

Each PIO pin is multiplexed with other controller's inputs or outputs. 
This flexible arrangement allows the system designers to customize 
R36100's resources according to their needs. Therefore, designs needing 
a special purpose controller-such as the laser printer video controller­
can allocate the LP Video pins for that purpose; other applications can 
use those pins for general purpose inputs or outputs. 

Serial Communications Controller 
The R36100 RISController integrates a dual channel serial port. This 

peripheral controller can perform a variety of synchronous and asynchro­
nous protocols, including RS-232C, LocalTalk, SOLC, and HOLC. To 
maximize throughput, the on-chip Serial Port is optionally serviced by the 
auto-initiated on-chip OMA controller, which can automatically block 
move data to and from the port. 

Interrupt Controller 
The R36100 RISController integrates an on-chip interrupt controller to 

manage both external interrupts and interrupts signaled from the on-chip 
peripherals. The interrupt controller speeds interrupt service of the 
internal interrupts and assists in interrupt prioritization and nesting as 
well as interfacing with the auto-initiated OMA. 
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IEEE 1284 Bi-directional Centronics 
The R36100 RISController includes an internal IEEE1284 parallel port 

peripheral, which implements a true bi-directional Centronics port. 
Features include: 

• 8-bit input Target Compatible protocol (for backward compatibility 
with Centronics) 

• Nibble and byte mode output protocol (for backward compatibility 
with PCs) 

• ECP protocol (for the emerging Laser Printer PC standard) 
• EPP protocol (for communications applications) 
• External transceiver interface control pins 
• Auto-initiated OMA via internal interrupts 

Laser Printer Video Interface 
The R36100 RISController integrates an on-chip laser printer video/ 

control interface. This peripheral provides support for the following: 

• 1-bit serial stream laser printer or raster engine interface 
• On-chip FIFO 
·• Programmable margin widths and page lengths 
• Auto-initiated OMA via internal interrupts 
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Logic Symbol 
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Figure 1.2 R.36100 Logic Symbol 
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Pin Description 

Pin Function and Description 

System Bus Interface Pins 

SysAddr(25:0) 1/0 . System Address Bus. Also serves as the DramAddr(l3:2) Bus . 

SysData(3 l :0) 1/0 System Data Bus. 

SysClkln Input System Clock Input. Twice (2x) the internal CPU frequency. 

SysClk Output System Clock Output. All other outputs are referenced to this system clock. 

Sys Reset Input System Reset. Initializes entire chip, except for JTAG circuitry. 

Sys Wait Input System Wait. Extends current bus transaction. 

SysBusError Input System Bus Error. Terminates current bus transaction. 

SysALEn 1/0 System Address Latch Enable. Indicates valid address at the beginning of a 
bus transaction. 

SysBurstFrame 1/0 System Burst Frame. First indicates the beginning of a bus transaction. 
Then indicates if the bus transaction is a burst and if the next datum is the 
last datum. 

SysDataRdy Output System Data Ready. Indicates valid data during each datum of a bus trans-
action (except when SysWait is asserted). 

Sys Rd 1/0 System Read. Indicates current bus transaction is a read. 

SysWr I/O System Write. Indicates current bus transaction is a write. 

DRAM Controller Pins 

DramRAS(3:0) Output DRAM Row Address Strobe. 

DramCAS(3:0j Output DRAM Column Address Strobe. 

DramRdEnEven Output DRAM Read Enable for Even FCT245/543 Type Banks. On FCT260 type 
banks, it is the read enable for both even and odd banks. 

DramRdEnOdd Output DRAM Read Enable for Odd FCT245/543 Type Banks. On FCT260 Type 
banks, it is the path select. 

DramWrEnEven Output DRAM Write Enable for Even Banks. 

DramWrEnOdd Output DRAM Write Enable for Odd Banks. 

Memory Controller Pins 

MemCS/IoCS(7:0) Output Memory or 1/0 Chip Selects. MemCS(O) and optionally MemCS(l) are 
reserved for the Boot PROM. IoCS(6) and/or IoCS(7) are optionally reserved 
for the Centronics Port if used .. 

MemRdEnEven Output ·Memory Read Enable for Even FCT245/543 Type Banks. On FCT260 type 
banks, it is the read enable for both even and odd banks. 

MemRdEnOdd OutptJt Memory Read Enable for Odd FCT245/543 Type Banks. On FCT260 Type 
banks, it is the path select. 

MemWrEnEven Output Memory Write Enable for Even Banks. 

MemWrEnOdd Output Memory Write Enable for Odd Banks. 

MemWrEn(3:0) Output Memory Write Enable for each Byte Lane. 

IoRdEn/DStrobe Output 1/0 Read Enable or 1/0 Data Strobe. 

IoWrEn7RdWr Output I/O Write Enable or I/O Read/Write. 

Table 1.1 R36100 Pin Descriptions 
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Pin Function and Description 

DMA Controller Pins 

DmaBusGnt(l :0) Output DMA Bus Grant. Indicates that the CPU has tri-stated the bus and other 
DMA related signals. 

DmaBusReq( 1 :0) Input DMA Bus Request. Indicates that external DMA agent wants bus control. 

DmaDone Input DMA Transaction Done. 

Serial Port Pins 

SerialPClkln(l :0) Input Optional Primary Serial Clock Input. 

SerialSClk( 1 :0) 1/0 Optional Secondary Serial Clock Input or Output. 

SerialRxData( 1 :0) Input Serial Receiver Data Stream. 

SerialTxData( 1 :0) Output Serial Transmitter Data Stream. 

SerialCTS( 1 :OJ Input Serial Clear To Send. 

SerialRTS( 1:0) Output Serial Request To Send. 

SerialSync(l :0) 1/0 Serial Frame Sync. 

SerialDCD( 1 :OJ Input Serial Data Carrier Detect. 

SerialDTR(l :0) Output Serial Data Terminal Ready. 

Timer Pins 

Timer TC(2:0J/ 1/0 Timer Terminal Count output or Timer Count Gate Enable input. Terminal 
TimerGate(2:0) Count asserts when Timer Count equals 0. Timer Gate enables Counter to 

count upward or to stop. 

PIO Pins 

PI0(31:0) 1/0 Parallel Inputs or Parallel Outputs. Parallel inputs and parallel outputs are 
multiplexed with various peripheral inputs and peripheral outputs. If the 
peripheral is unused, the input or output pin can be reconfigured to be a 
general purpose input or output, respectively. 

Bi-directional Centronics Interface Pins 

CentStrobe Input Centronics Strobe. In Compatible mode, strobes data into the printer. Has 
other uses for other modes. 

CentAck Output Centronics Acknowledge. In Compatible mode, acknowledges a strobe. Has 
other uses for other modes. 

CentBusy Output Centronics Busy. In Compatible mode, delays the Host from sending more 
data. Has other uses for other modes. 

CentPaperError Output Centronics Paper Out/Jam Error. In Compatible mode, indicates that the 
printer has a paper error when asserted with CentFault Has other uses for 
other modes. 

CentSelect Output Centronics Select. In Compatible mode, used to indicate that this printer is 
on-line. Has other uses for other modes. 

CentAutoFeed Input Centronics Auto Page Feed. In Compatible mode, sends a paper feed to the 
printer. Has other uses for other modes. 

Centlnit Input Centronics Initialization/Reset. In Compatible mode, resets the printer. 
Has other uses for other modes. 

Table 1.1 R36100 Pin Descriptions (Continued) 
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Pin Function and Description 

Bi-directional Centronics Interface Pins (continued) 

CentFault Output Centronics Fault. In Compatible mode, indicates that the printer has a 
problem. Has other uses for other modes. 

CentSelectln Input Centronics Select In. In Compatible mode, indicates that the Host wants to 
select this printer on a shared cable. Has other uses for other modes. 

CentHostStrobe Output Centronics Host Strobe. Used to latch Host data on the external FCT952/ 
374 data transceiver during a Host write. 

CentHostOEn Output Centronics Host Output Enable. Used to enable the external FCT952/374 
data transceiver during a Host read. 

Laser Engine Interface Pins 

LaserVideoData Output Laser Video Data Stream. 

LaserVideoClkin Input Laser Video Clock Input. Accepts either the (Ix) Video Data Stream 
frequency or 8 times (8x) the PLL frequency. 

LaserLineSync Input Laser Line Sync. Indicates that the laser drum is ready to start accepting 
data for a new line. 

LaserPageSync Input Laser Page Sync. Indicates that the laser drum is ready to start a new page. 

Debug/Emulator Interface Pins 

JtagClkln Input JTAG Clock Input (TCK). Test mode serial boundary scan input clock. 

JtagModeSelect Input JTAG Mode Select (TSEL). Test mode serial boundary scan command data. 
In normal operating mode, JtagModeSelect should be left unasserted high. 

JtagDatain Input JTAG Data In (TDI). Test mode serial boundary scan register data input. 

JtagDataOut Output JTAG Data Out (TDO). Test mode serial boundary scan register data 
output. 

JtagReset Input JTAG Reset (TRES*). Resets the JTAG test circuitry. Does not reset any 
other chip functions. In normal operating mode, JtagReset should be left 
asserted low. 

Diagnostic Pins 

DiagC/UnC Output Diagnostic Cached versus Uncached. On read bus transactions indicates 
whether the read is cached or uncached. 

Diaginst/Data Output Diagnostic Instruction versus Data. On read bus transactions indicates 
whether the read is for instructions or data. 

DiagRun Output Diagnostic Run. Indicates an internal pipeline run cycle. This pin has 
"pseudo-synchronous" timing. 

DiagBranchTaken Output Diagnostic Branch Taken. Indicates that a branch, jump, or exception has 
been taken. This pin has "pseudo-synchronous" timing. 

DiagJRorExe Output Diagnostic Jump Register or Exception occurring. Indicates that a jump 
register or exception is executing. This pin has "pseudo-synchronous" 
timing. 

Diaginterna!Wr Output Diagnostic Internal Write. Indicates that a MTCO to CPO register $3 is 
occurring. 

Table 1.1 R36100 Pin Descriptions (Continued) 
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Pin Function and Description 

Diagnostic Pins (continued) 

DiaglnstCache Input Diagnostic Cache Write Disable. Disables writes to the instrnction and data 
WrDis cache. This pin has "pseudo-synchronous" timing and is not recommended 

for functional use. 

DiagTriState Input Diagnostic Tri-State all outputs. All outputs are tri-stated including SysClk 
This pin is asynchronous such that tri-stating asserts or de-asserts external 
output enables immediately. 

DiagFCM Input Diagnostic Force Cache Miss. This pin has "pseudo-synchronous" timing. 
If used for functional board tests, it is recommended that it be (de-)asserted 
statically at reset time and left (de-)asserted. 

DiaglntDis Input Diagnostic Interrnpt Disable. 

DiagNoCS Output Diagnostic No Chip Select. No internal or external chip select has occurred 
for the current bus transaction. therefore an external state machine should 
handle the bus transaction. 

DiaglnternalDMA Output Diagnostic Internal DMA. Asserts whenever any of the Internal DMA chan-
nels is generating the current bus transaction. 

Exception Handling 

ExcSint(2:0) Input Exception Synchronized Interrnpts. Also us_ed as the reset initialization 
vector for 2:Bootl6, l:Boot8, and O:BigEndian modes. 

Exclnt(4:3) Input Exception Interrnpts. 

ExcSBrCond(3:2) Input Exception Synchronized Branch Condition inputs. 

Power/Ground Pins 

vcc Input Power pin. All power pins must be connected. 5V or 3.3V depending on 
part type. 

Gnd Input Ground pin (VSS). All ground pins must be connected. ov. 

Table 1.1 R36100 Pin Descriptions (Continued) 
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LocalTalk 
xceiver/ 

Connector 

System Usage 
The IDT R36100 RISController is specifically designed to easily imple­

ment low-cost memory systems. Typical low-cost meinory systems use 
EPROMs and DRAM as well as application specific peripherals. Some 
embedded systems also optionally contain or substitute DRAM with static 
RAMs. 

Figure 1.3 illustrates the low-system cost inherent in the R36100. For 
this example, which is typical of a low-cost laser printer, a 32-bit PROM 
interface is used, due to the size of the POL interpreter. Other embedded 
systems could optionally use an 8-bit or 16-bit PROM, or an interleaved 
64-bit interface. 

A 16-bit font cartridge interface is provided through PCMClA for add-in 
cards, and a 32-bit page buffer DRAM is used for high-resolution. In this 
example, a field or manufacturing upgrade to a larger page buffer is 
supported by the boot software and DRAM controller. Such a system 
features a very low entry price, with a range of field upgrade options. Note 
that the performance of the R36 l 00 allows software frame buffer 
compression to be effective in reducing system DRAM while maintaining 
expected performance. 
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Figure 1.3 R36100-based Printer System 
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Development Support 
The IDT R36 l 00 RlSController is supported by a rich set of develop­

ment tools through the AdvantageIDT development tools program. 
Figure 1.4 shows an overview of the system development process that 

is typically used with the R36100. Tools that allow timely, parallel devel­
opment of hardware and software for R36 l 00 family- based applications 
support all phases of R36 l 00 project development. 

These are some of the available support tools: 
• Optimizing compilers from a number of leading compiler vendors. 
• The IDT/c compiler, based on the GCC/GNU tool chain. 
• The high-performance IDT floating point library software. . 
• The IDT Evaluation Board, which includes RAM, EPROM, 1/0, and 

the IDT PROM Monitor. 
• Adobe PostScript™ Page Description Language running on the IDT 

RlSController family. 
• The IDT/sim PROM Monitor, which implements a full PROM monitor 

(diagnostics, remote debug support, downloading utilities). 
• IDT/kit (Kernel Integration Toolkit), providing library support and a 

frame work for the system run time environment. 

Software 

Stand-Alone Libraries 
Floating Point Library 
Cross Development 

Tools 
Adobe Postscript POL 
IDT/sim device drivers 

IDT/kit 

Hardware 

Hardware Models 
General CAD Tools 
Evaluation Board 

Laser Printer 
System 

Figure 1.4 Development Support 
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Performance Overview 
The R36 l 00 RISController achieves a very high performance level that 

is based on: 
• An efficient execution engine. The CPU executes almost all instruc­

tions at a single-cycle rate. Thus, the R36100 achieves over 24 dhry­
stone MIPS performance at 25MHz. By using a traditional 5-stage 
pipeline, the performance of the R36100 does not degrade in applica­
tions with a high-degree of data dependency. 

• Large on-chip caches. The R36100 contains caches which are 
substantially larger than those on the majority of low-cost embedded 
microprocessors. These large caches minimize the number of bus 
transactions required and allow the R36100 to achieve actual 
sustained performance that is very close to its peak execution rate, 
even with low cost memory systems. 

• Autonomous multiply and divide operations. The R36100 features an 
on-chip integer multiplier/divide unit which is separate from the 
other ALU. This allows the R36100 to perform multiply or divide oper­
ations in parallel with other integer operations. using a single 
multiply or divide instruction rather than with "step" operations. 

• Integrated write buffer. The R36100 features a four deep write buffer, 
which captures store target addresses and data at the processor 
execution rate and retires it to main memory at the slower main 
memory access rate. Use of on-chip write buffers eliminates the need 
for the processor to stall when performing store operations. 

• Burst read support. The R36 l 00 enables the system designer to 
utilize page, static or nibble mode RAMs when performing read oper­
ations to minimize the main memory read penalty and increase the 
effective cache hit rates. 

• Tightly coupled memory system. Integration of on-chip memory 
controllers~llow system resources to be accessed and managed effi­
cientlyior the needs of the execution core. 
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Architecture 

Introduction 

Chapter 2 

The IDT R36100 contains the same basic execution core as the IDT 
MIPS R3000A and the IDT R30xx RISControllers. In addition to being 
able to run software written for any of these processors, this enables the 
R36100 to achieve dramatic levels of performance, based on the efficiency 
of the execution engine. 

This chapter gives an overview of the MIPS-I architecture implemented 
in the R36 l 00, and discusses the programmers' model for this device. 
Further detail on the processor software model is found in the "IDT R30xx 
Family Software Reference Manual", available from IDT. The R36100 is 
fully ISA compatible with the R30xx family. 

The R36100 is also address map compatible with the base versions of 
the R30xx family. However, to reduce system cost, the TLB functions 
present in the "E" versions are not available in the R36100; instead, the 
R36100 features were selected for minimal device and system cost. 

Processor Features Overview 
The R36100 has many of the same attributes of the IDT R30xx family, 

at a higher level of integration geared to lower system cost. These features 
include: 

• Full 32-bit Operation. The R36100 contains thirty-two 32-bit 
general-purpose registers, and all instructions and addresses are 32 
bits. 

• Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to 
achieve an execution rate approaching one instruction per cycle. 
Pipeline stalls, hazards, and exceptional events are handled precisely 
and efficiently. 

• Large On-Chip Instruction and Data Caches. The R36 l 00 utilizes 
large on-chip caches to provide high-bandwidth to the execution 
engine. The large size of the caches insures high hit rates, minimizing 
stalls due to cache miss processing and dramatically contributing to 
overall performance. Both the instruction and data cache can be 
accessed during a single CPU cycle. 

• On-chip Memory Management. The R36 l 00 is compatible with the 
base versions of the IDTR30xx family, which do not utilize a TLB, but 
perform fixed segment-based mapping of the virtual space to physical 
addresses. In addition, the R36100 allows kernel software to manage 
the system interface, by programming of the on-chip memory control­
lers and peripherals. 

2-1 



Instruction Set Architecture Chapter 2 

CPU Registers Overview 
The IDT R36 l 00 provides 32 general purpose 32-bit registers, an 

internal 32-bit Program Counter, and two dedicated 32-bit registers 
which hold the result of an integer multiply or divide operation. The CPU 
registers, illustrated in Figure 2.1, are discussed later in this chapter. 

Note that the MIPS architecture does not use a traditional Program 
Status Word (PSW) register. The functions normally provided by such a 
register are instead provided through the use of "Set" instructions and 
conditional branches. By avoiding the use of traditional condition codes, 
the architecture can be more finely pipelined. This, coupled with the fine 
granularity of the instruction set, allows the compilers to achieve dramat­
ically higher levels of optimizations than for traditional architectures. 

Overflow and exceptional conditions are then handled through the use 
of the on-chip Status and Cause registers, which reside on-chip as part of 
the System Control Coprocessor (Coprocessor 0). These registers contain 
information about the run-time state of the machine, and any exceptional 
conditions it has encountered. 

General Purpose 

I 
Multip~~~~~5Result 

Prof'am Counter 

i pp j 

Figure 2.1 CPU Registers 

Instruction Set Overview 
All R36100 instructions are 32-bits long, and there are only three basic 

instruction formats. This approach dramatically simplifies instruction 
decoding, permitting higher frequency operation. More complicated (but 
less frequently used) operations and addressing modes are synthesized by 
the compiler/assembler, using sequences of the basic instruction set. 
This approach enables object code optimizations at a finer level of resolu­
tion than achievable in micro-coded CPU architectures. 

Figure 2.2 shows the instruction set encoding used by the MIPS archi­
tecture. This approach simplifies instruction decoding in the CPU. 

The R3000A instruction set (implemented in the R36100) can be 
divided into the following basic groups: 

• Load/Store instructions move data between memory and the general 
registers. They are all encoded as "I-Type" instructions, and the only 
addressing mode implemented is base register plus signed, imme­
diate offset. This directly enables the use of three distinct addressing 
modes: register plus offset; register direct; and immediate. 

• Computational instructions perform arithmetic, logical. and shift 
operations on values in registers. They are encoded as either "R­
Type" instructions, when both source operands as well as the result 
are general registers, and "I-Type", when one of the source operands 
is a I6-bit immediate value. Computational instructions use a three 
address format. so that operations don't needlessly interfere with the 
contents of source registers. 

• Jump and Branch instructions change the control flow of a program. 
A Jump instruction can be encoded as a "J-Type" instruction, in 
which case the Jump target address is a paged absolute address 
formed by combining the 26-bit immediate value with the upper four 
bits of the Program Counter. This form is used for subroutine calls. 
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Alternately, Jumps can be encoded using the "R-Type" format, in which 
case the target address is a 32-bit value contained in one of the general 
registers. This form is typically used for returns and dispatches. 

Branch operations are encoded as "I-Type" instructions. The target 
address is formed from a 16-bit displacement relative to the Program 
Counter. 

The Jump and Link instructions save a return address in General 
Register r3 l. These are typically used as subroutine calls, where the 
subroutine return address is stored into r3 l during the call operation. 

• Coprocessor instructions perform operations on the co-processor 
set. Coprocessor Loads and Stores are always encoded as "I-Type" 
instructions; in the MIPS architecture, co-processor operational 
instructions have co-processor dependent formats. 

In the R36100, the System Control Coprocessor (CPO) contains regis­
ters which are used in system interface control, cache control, and excep­
tion handling. 

• Special instructions perform a variety of tasks, including movement 
of data between special and general registers, system calls, and 
breakpoint operations. They are always encoded as "R-Type" instruc­
tions. 

I/here: 

~ 
rs 
rt 

I-Type (Immediate) 

31 26 25 21 29 16 15 9 

I op I rs I rt I immediate I 
J-Type (Jump) 

31 26 25 

R-Type (Register) 

9 
target 

31 26 25 21 29 16 15 11 19 6 5 9 

I op I rs I rt I rd Isham! I funcq 

is a 6-bit ~ration code 
is a 5-b~ source~ster specifier 

is a s-bn ta~ter or branch condition 
immediate is a 16-~ immediate, or branch or address di~lacement 

[l8rgjjf 1s a_20-0111umprargeracfifress 

rd is a 5-bil destination ~er ~ecifier 
snamr 1s a-S:Dlt snin amouiif 

lune! is a 6-bit function field 

Figure 2.2 Instruction Encoding 
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OP Description OP Description 

Load/Store Instructions Multiply /Divide Instructions 
LB Load Byte MULT Multiply 
l.BU LoaoByte -Unsignoo MULTU MuTtiply Unsigned 
LH LoaoHalfWoro DIV Div1cfe 
LHU Loao Halfworounsignoo lJIVU Divioe Unsigneo 
LW Load Word 
LWL Loaawora Left MFHI Move From HI 

LWR"" LoaoWorCf Righl. MTHI Move To HI 
SB Store Byte MFLO Move From LO 
SH Store Halfword MTLO Move' To LO 
SW Store Woro 

SWT Store Word Left Jump and Branch Instructions 
SWR Store WoroRignt J Jump 

JAL Jump and Link 
Arithmetic Instructions JR Jump to Register 
(ALU Immediate) JALR Jump and Link Register 

ADDI Add Immea:Iate BEQ Branen on EquaT 
ADDICT .Add Immediate Unsigned BNE Branch on Not Equal 
STTI Set on l:ess Than ImmeCilate ~LEZ Branen-on Less Tnan or Equru 
SLTIU Set on Less Tnan Immediate to Zero 

Unsigned BGTZ Branch on Greater Than Zero 
ANDI ANlJ Immooiate BLTZ Branen on Less Than Zero 
ORI OR Immediate BGEZ Branch on Greater Than or 
XORI ExCfusive OR Immea:Iate EquaT to Zero 
LUI Load Upper Immediate BLTZAL Branch on Less Than Zero and 

Link 
BGEZAL -Srancli on Greater Than or EquaT to 

Zero and Link 
Arithmetic Instructions 
(3-operand, register-type) 

ADD Add Special Instructions 
ADDU Aaa Unsignoo SY SC ALL System Calf 
SUB Subtract BREAK BreaK: 

SUBU Suotract Unsignoo 
SLT Set on Less Than Coprocessor Instructions 
SLTU Set on Less Than Unsignea LWCz LoacfWord from Coprocessor 
AND AND SWCz Store Worcl to Coprocessor 
OR OR MTCz Move To Coprocessor 
XOR ExClusive OR MFCz Move From Coprocessor 
NOR NOR CTCz Move Control To Coprocessor 

CFCz Move Con trill From Coprocessor 
Shift Instructions COPz Coprocessor Operation 

SLL -smft LeTt LogicaT BCzT Branen on Coprocessor z True 
SRL Shift Right Logical BCzF Branch on Coprocessor z False 
SRA Shift Right Arithmetic 
SLLV Slllft LeTt LogicaTVariable System ControT Coprocessor 
SRLV Shift Right Logical Variable (CPO) Instructions 

-sRAV Slllft Rignt Arillimetic VariaDre l'VfTCO Move To (;PO 
l'VfFCO Move From CPO 
TIBRt ReaoinaexeaTLB entry 
TLBWit Write indexed TLB entry 
TffiWRt Write Ranoom TLB entry 
TLBPt Probe TLB for matching entry 
RFE Restore From ~xception 

tThese instructions are not vaIRf wiill me R36TOO, wniclicfoes not incTuae a 'TLH. 

Table 2.1 Instruction Set Mnemonics 
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Table 2.1 lists the instruction set mnemonics of the R36100. More 
detail on these operations is presented later in this chapter. For further 
detail, consult the "IDT R30xx Family Software Reference Manual", avail­
able from IDT. 

Programming Model 
This section describes the organization of data in the general registers 

and in memory, and discusses the set of general registers available. A 
summary description of all of the CPU registers is presented. 

Data Formats and Addressing 
The MIPS-I architecture defines a word as 32-bits, a half-word as 16-

bits, and a byte as 8-bits. The byte ordering convention is configurable 
during hardware reset into either a big-endian or little-endian convention. 

When configured as a big-endian system, byte 0 is always the most 
significant (leftmost) byte in a word. But when configured as a little­
endian system, byte 0 is always the least significant (rightmost) byte in a 
word. 

Figure 2.3 shows the ordering of bytes within words and the ordering of 
words within multiple word structures for the big-endian and little-endian 
conventions. 

Higher Big-Endian Byte Ordering Word 
Address 31 24 23 16 15 8 7 . O Address 

LDl~lflll~I ~ 
ower 0 

Address • Most significant byte is at lowest address 

• Word is addressed by byte address of 
most significant byte 

Higher Little-Endian Byte Ordering Word 
Address 31 24 23 16 15 8 7 0 Address 

LDlflil!l!I 
ower 

8 
4 
0 

Address • Least significant byte is at lowest address 

• Word is addressed by byte address of 
least significant byte 

Figure 2.3 Byte Ordering Conventions 

The R36100 uses byte addressing for all accesses, including half-word 
and word. The MIPS architecture has alignment constraints that require 
half-word accesses to be aligned on an even byte boundary, and word 
accesses to be aligned on a modulo-4 byte boundary. Thus, in big-endian 
systems, the address of a multiple-byte data item is the address of the 
most-significant byte, while in little-endian systems it is the address of 
the least-significant byte of the structure. 
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The MIPS instruction set provides special instructions for addressing 
32-bit words which are not aligned on 4-byte boundaries. These instruc­
tions, which are Load/Store Left/Right, are used in pairs to provide 
addressing of misaligned words. This effectively means that these types 
of data movements require only one-additional instruction cycle over that 
required for properly aligned words (note that unaligned data is read by 
the CPU in the same number of cycles as would be required for a full 
hardware solution_, and provides a much more efficient way of dealing 
with this case than is possible using sequences of loads/stores and shift 
operations or by using traps. Various tool chains, such as the IDT/c 
compiler, can automatically generate these instructions for "packed" data. 
Figure 2.4 shows the bytes accessed when addressing a mis-aligned word 
with a byte address of 3, for each of the two byte ordering conventions. 

Figure 2.4 Unaligned Words 
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CPU General Registers 
The R36100 contains 32 general registers, each containing a single 32-

bit word. The 32 general registers are treated symmetrically (orthogo­
nally), with two notable exceptions: general register rO is hardwired to a 
zero value, and r3 l is used as the link register in Jump and Link instruc­
tions 

Register rO maintains the value zero under all conditions, when used 
as a source register, and discards data written to it. Thus, instructions 
which attempt to write to it may be used as No-Op Instructions. The use 
of a register wired to the zero value allows the simple synthesis of 
different addressing modes, no-ops, register or memocy clear operations, 
etc., without requiring expansion of the basic instruction set. 

Register r3 l is used as the link register in jump and link instructions. 
These instructions are used in subroutine calls, and the subroutine 
return address is placed in register r3 l. This register can be written to or 
read as a normal register in other operations. 

In addition to the general registers, the CPU contains two registers (HI 
and LO) which store the double-word, 64-bit result of integer multiply 
operations, and the quotient and remainder of integer divide operations. · 

CPO Special Registers 
In addition to the general CPU registers, the R36 l 00 contains a 

number of special registers on-chip. These registers logically reside in the 
on-chip System Control Co-processor CPO, and are used in memocy 
management and exception handling. 

Table 2.2 on page 8 shows the logical CPO address of each of the regis­
ters. The format of each of these registers, and their use, is discussed in 
later chapters. Note that the MIPS architecture allows CPO to vacy by 
implementation; the R36100 contains some new CPO registers not found 
in other R30xx family members; however, their definition is such that it 
still remains possible to use a single binacy program across all family 
members, in that these registers are typically managed only at reset. 
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Number Mnemonic Description 

0 Reserved(l) 

1 Reserved(l) 

2 Reserved ( 1) 

3 Config(3) Cache Usage Configuration 

4 Reserved(l) 

5-7 Reserved 

8 BadVAddr Bad Virtual Address 

9 Reserved(3) 

10 Reserved(3) 

11 Reserved(3) 

12 SR Status Register 

13 Cause Cause of Last Exception 

14 EPC Exception Program Counter 

15 PRld Processor Revision Identifier 

16-31 Reserved 

NOTES: 
1. This register is used in Extended Architecture CPUs to control the 

TLB and virtual memory system. In the "E" versions, register $2 is "TLB 
EntryLo", and register $10 is "TLB EntryHi". 

2. This register is reserved in other family members. 
3. This register has a different meaning in other family members. 

Table 2.2 R36100 CPO Registers 

Operating Modes 
The R36100 supports two different operating modes: User and Kernel 

modes. The R36100 normally operates in User mode until an exception is 
detected, forcing it into kernel mode. It remains in Kernel mode until a 
Return From Exception (RFE) instruction is executed, returning it to its 
previous operation mode. 

The processor supports these levels of protection by segmenting the 
4GB virtual address space into 4 distinct segments. One segment is 
accessible from either the User state or the Kernel mode, and the other 
three segments are only accessible from kernel mode. 

In addition to providing memory address protection, the kernel can 
protect the co-processors (in the case of the R36100, CPO) from access or 
modification by the user task. Chapter 4 discusses the memory manage­
ment facilities of the processor. 

2-8 



Instruction Set Architecture Chapter 2 

Pipeline Architecture 
The IDT R36100 uses the same basic pipeline structure as that imple­

mented in the R3000A. Thus, the execution of a single instruction is 
performed in the following five distinct stages: 

• Instruction Fetch [IF). In this stage, the instruction virtual address is· 
translated to a physical address and the instruction is read from the 
internal Instruction Cache. 

• Read (RD). During this stage, the instruction is decoded and required 
operands are read from the on-chip register file. 

• ALU. The required operation is performed on the instruction oper­
ands. 

• Memory Access (MEM). If the instruction was a load or store, the Data 
Cache is accessed. Note that there is a skew between the instruction 
cycle which fetches the instruction and the one in which the required 
data transfer occurs. This skew is a result of the intervening pipe­
stages. 

• Write Back (WB). During the write back pipestage, the results of the 
ALU stage operation are updated into the on-chip register file. 

Each of these pipestages require approximately one CPU cycle, as 
shown in Figure 2.5. Parts of soine operations lap into the next cycle, 
while other operations require only 1 /2 cycle. 

The net effect of the pipeline structure is that a new instruction can be 
initiated every clock cycle. Thus, the execution of five instructions at a 
time is overlapped, as shown in Figure 2.6. 

IF RD ALU MEM WB 

ID D-Cache WB 

\,, 

"' One Cycle 

Figure 2.5 5-Stage Pipeline 
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The pipeline operates efficiently, because different CPU resources such 
as address and data bus access. ALU operations. and the register file, are 
utilized on a non-interfering basis. 

1#1 IF RD ALU MEM WB 

1#2 IF RD ALU MEM WB 

1#3 IF RD ALU MEM WB 

1#4 IF RD ALU MEM WB 

1#5 IF RD ALU MEM WB 

Current 
CPU 
Cycle 

Figure 2.6 5-Instructions per Clock Cycle 

Pipeline Hazards 
In a pipelined machine such as the R36100, there are certain instruc­

tions which. based on the pipeline structure. can potentially disrupt the 
smooth operation of the pipeline. The basic problem is that the current 
pipestage of an instruction may require the result of a previous instruc­
tion, still in the pipeline, whose result is not yet available. This class of 
problems is referred to as pipeline hazards. 

An example of a potential pipeline hazard occurs when a computational 
instruction n+ 1) requires the result of the immediately prior instruction 
(instruction n). Instruction n+l wants to access the register file during 
the RF pipestage. However, instruction n has not yet completed its 
register writeback operation, and thus the current value is not available 
directly from the register file. In this case, special logic within the execu­
tion engine forwards the result of instruction n's ALU operation to 
instruction n+ 1, prior to the true writeback operation. The pipeline is 
undisturbed, and no pipeline stalls need to occur. 

Another example of a pipeline hazard handled in hardware is the 
integer multiply and divide operations. If an instruction attempts to 
access the HI or LO registers prior to the completion of the multiply or 
divide, that instruction will be interlocked (held ofO until the multiply or 
divide operation completes. Thus, the programmer is isolated from the 
actual execution time of this operation. The optimizing compilers attempt 
to schedule as many instructions as possible between the start of the 
multiply I divide and the access of its result, to minimize stalls. 
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However, not all pipeline hazards are handled in hardware. There are 
two notable categories of instructions which require software intervention 
to insure logical operation. · The optimizing compilers (and peephole 
scheduler of the assembler) are capable of insuring proper execution. 
These two instruction classes are: 

• Load instructions have a delay, or latency, of one cycle before the data 
loaded from memory is available another instruction. This is because 
the ALU stage of the immediately subsequent instruction is processed 
simultaneously with the Data Cache access of the load operation. 
Figure 2. 7 illustrates the cause of this delay slot. 

IF 

1#1 

(Load 
l 
) 

RD 

1-C~ che l iD 

1#2 

ALU MEM WB 

OP D-Cache wsj 
~ 

OP 
(Delay Slot) 

I-Cache l ID 

1#3 I I-Ca !<:he j 1D 

'--~ 
One Cycle 

Figure 2. 7 Lead Delay 

Data 
Available 

OP 

• Jump and Branch instructions have a delay of one cycle before the 
program flow change can occur. This is due to the fact that the next 
instruction is fetched prior to the decode and ALU stage of the jump/ 
branch operation. Figure 2.8 illustrates the cause of this delay slot. 

IF 

1#1 1-C che 

(Branch) 

RD ALU MEM WB 

ID OP D-Cache WB 

I-Address 

1#3 
Address I Cache ID OP 
Available --.....---~r------t 

I 
\..--y---1 

One Cycle 

Figure 2.8 Branch Delay 

The R36 l 00 continues execution, despite the delay in the operation. 
Thus, loads, jumps and branches do not disrupt the pipeline flow of 
instructions, and the processor always executes the instruction immedi­
ately following one of these "delayed" instructions. 

Note: Note that there may also be latencies associated with changes 
to various of the CPO registers; for example, changing the bus inter­
face control register may require multiple cycles before the change is 
actually reflected in the chip interface. 

2-11 



Instruction Set Architecture Chapter 2 

Rather than include extensive pipeline control logic, the MIPS-I 
instruction set gives responsibility for dealing with "delay slots" to soft­
ware. Thus, peephole optimizations (which can be performed as part of 
compilation or assembly) can re-order the code to insure that the instruc­
tion in the delay slot does not require the logical result of the "delayed" 
instruction. In the worst case, a NOP can be inserted to guarantee proper 
software execution. 

Chapter 6 discusses the impact of pipelining on exception handling. In 
general, when an instruction causes an exception, it is desirable for all 
instructions initiated prior to that instruction to complete, and all subse­
quent instructions to abort. This insures that the machine state 
presented to the exception handler reflects the logical state that existed at 
the time the exception was detected. In addition, it is desirable to avoid 
requiring software to explicitly manage the pipeline when handling or 
returning from exceptions. The IDT R36100 pipeline is designed to prop­
erly manage exceptional events. 

Instruction Set Summary 
This section provides an overview of the R36 l 00 instruction set by 

presenting each category of instructions in a tabular summary form. 
Refer to the "IDT R30xx Family Software Reference Manual"; for a detailed 
description of each instruction. 

Instruction Formats 
Every instruction consists of a single word (32 bits) aligned on a word 

boundary. There are only three instruction formats, as shown in 
Figure 2.2 on page 3. This approach simplifies instruction decoding. 
More complicated or less frequently used operations and addressing 
modes are synthesized by the compilers. 

Instruction Notational Conventions 
In this manual. all variable sub-fields in an instruction format (such as 

rs, rt, immediate, and so on) are shown in lower-case names. 
For the sake of clarity, an alias is sometimes used for a variable sub­

field in the formats of specific instructions. For example, "base" rather 
than "rs" is used in the format for Load and Store instructions. Such an 
alias is always lower case, since it refers to a variable sub-field. 

Instruction opcodes are shown in upper case. 
The actual bit encoding for all the mnemonics is specified at the end of 

this chapter. 
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CPU Core 
Size VAdrLo(l) 

Word 0 

Tri- 0 
Byte 

Tri- 0 
Byte 

16-Bit 0 

16-Bit 1 

Byte 0 

Byte 0 

Byte 1 

Byte 1 

Load and Store Instructions 
Load/Store instructions move data between memory and general regis­

ters. They are all Hype instructions. The only addressing mode directly 
supported is base register plus 16-bit signed immediate offset. This can 
be used to directly implement immediate addressing (using the rO 
register) or register direct (using an immediate offset value of zero). 

All load operations have a latency effect of one instruction. That is, the 
data being loaded from memory into a register is not available to the 
instruction that immediately follows the load instruction: the data is 
available to the second instruction after the load instruction. An excep­
tion to this rule is that for the target register for the "load word left" and 
"load word right" instructions may be specified as the same register used 
as the destination of the related unaligned load instruction that immedi­
ately precedes it. 

The Load/Store instruction opcode determines the size of the data item 
to be loaded or stored, as shown in Table 2.1 on page 4. Regardless of 
access type or byte numbering-order (endian-ness). the address specifies 
the byte which has the smallest byte address of all bytes in the addressed 
field. For a big-endian access, this is the most significant byte; for a little­
endian access, this is the least significant byte. Note that in an R36 l 00 
based system, the endianness of a given access is dynamic, in that the RE 
(Reverse Endianness) bit of the Status Register can be used to force user 
space accesses of the opposite byte convention of the kernel. 

Big-Endian (32-bit memory system) 

CPU Core BE(3) BE(2) BE(l) BE(O) 
VAdrLo(O) Data(3 l :24) Data(23: 16) Data(l5:8) Data(7:0) 

0 Yes Yes Yes Yes 

0 Yes Yes Yes No 

1 No Yes Yes Yes 

0 Yes Yes No No 

0 No No Yes Yes 

0 Yes No No No 

1 No Yes No No 

0 No No Yes No 

1 No No No Yes 

Table 2.3 Big-Endian (32-bit memory system) 
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Little-Endian (32-bit memory system) 

BE(3) BE(2) BE(l) BE(O) 
Size VAdrLo(l) VAdrLo(O) Data(31:24) Data(23: 16) Data(l5:8) Data(7:0) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 No Yes Yes Yes 

Tri-Byte 0 1 Yes Yes Yes No 

16-Bit 0 0 No No Yes Yes 

16-Bit 1 0 Yes Yes No No 

Byte 0 0 No No No Yes 

Byte 0 1 No No Yes No 

Byte 1 0 No Yes No No 

Byte 1 1 Yes No No No 

Table 2.4 Byte Addressing in Load/Store Operations (32-blt memory) 

Big-Endian (16-bit memory system) 

First Transfer Second Transfer 

Size CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0) 
VAdrLo(l) VAdrLo(O) Data(31:24) Data(23: 16) Data(3 l :24) Data(23:16 

) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 Yes Yes Yes No 

Tri-Byte 0 1 No Yes Yes Yes 

16-Bit 0 0 Yes Yes N/A N/A 

16-Bit 1 0 Yes Yes N/A N/A 

Byte 0 0 Yes No NIA N/A 

Byte 0 1 No Yes N/A N/A 

Byte 1 0 Yes No N/A N/A 

Byte 1 1 No Yes NIA N/A 

Table 2.5 Blg-Endlan (16-blt memory system) 
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CPU Core 
Size VAdrLo(l) 

Word 0 

Tri-Byte 0 

Tri-Byte 0 

16-Bit 0 

16-Bit 1 

Byte 0 

Byte 0 

Byte 1 

Byte 1 

Little-Endian (16-bit memory system) 

First Transfer Second Transfer 

CPU Core BE16(1) BE16(0) BE16(1) 
VAdrLo(O) Data(l5:8) Data(7:0) Data(l5:8) 

0 Yes Yes Yes 

0 Yes Yes No 

1 Yes No Yes 

0 Yes Yes N/A 

0 Yes Yes NIA 

0 No Yes N/A 

1 Yes No N/A 

0 No Yes N/A 

1 Yes No N/A 

Table 2.6 Byte Addressing in Load/Store Operations 
(16-bit memory) 

BE16(0) 
Data(7:0) 

Yes 

Yes 

Yes 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Note that the size of the operand requested by the load instruction is 
independent of the memory width of the addressed memory. Thus, if the 
actual size of the datum is 32-bits, software can safely use a load or store 
word instruction, even if the addressed memory is actually only 8- or 16-
bits wide. The bus interface unit will interact with CPO to determine the 
width of the addressed memory, and will, if necessary, perform multiple 
datum transfers to satisfy a single load or store instruction. 

The bytes within the addressed word that are used can be determined 
directly from the access size and the two low-order bits of the address, as 
shown in Table 2.3, Table 2.4, Table 2.5, and Table 2.6. Note that certain 
combinations of access type and low-order address bits can never occur: 
only the combinations shown in these tables are permissible. 
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Table 2.7 shows the load/store instructions supported by the MIPS-I 
ISA. 

Instruction Format and Description 

Load Byte LB rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Sign-extend contents of addressed byte and load into rt. 

Load Byte Unsigned LBU rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Zero-extend contents of addressed byte and load into rt. 

Load Halfword LH rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Sign-extend contents of addressed half-word and load into rt. 

Load Halfword Unsigned LHU rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Zero-extend contents of addressed half-word and load into rt. 

Load Word LW rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Load contents of addressed word into register rt. 

Load Word Left LWL rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Shift addressed word left so that addressed byte is leftmost byte of a word. 
Merge bytes from memory with contents of register rt and load result into 
register rt. 

Load Word Right LWR rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Shift addressed word right so that addressed byte is rightmost byte of a word. 
Merge bytes from memory with contents of register rt and load result into 
register rt. 

Store Byte SB rt, offset (base) 
Sign-extend I 6-bit offset and add to contents of register base to form address. 
Store least significant byte of register rt at addressed location. 

Store Halfword SH rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Store least significant halfword of register rt at addressed location. 

Store Word SW rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Store least significant word of register rt at addressed location. 

Store Word Left SWL rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Shift contents of register rt right so that leftmost byte of the word is in position 
of addressed byte. Store bytes containing original data into corresponding 
bytes at addressed byte. 

Store Word Right SWR rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to form address. 
Shift contents of register rt left so that rightmost byte of the word is in pcisition 
of addressed byte. Store bytes containing original data into corresponding bytes 
at addressed byte. 

Table 2. 7 Load and Store Instructions 
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Instruction 

ADD Immediate 

Computational Instructions 
Computational instructions perform arithmetic, logical and shift opera­

tions on values in registers. They occur in both R-type (both operands are 
registers) and I-type (one operand is a 16-bit immediate) formats. There 
are four categories of computational instructions: 

• ALU Immediate instructions are summarized in Table 2.8. 
• 3-0perand Register-Type instructions are summarized in Table 2.9 

on page 18. 
• Shift instructions are summarized in Table 2.10 on page 19. 
• Multiply /Divide instructions are summarized in Table 2. 11 on 

page 19. 

Format and Description 

ADDI rt, rs. immediate 
Add 16-bit sign-extended immediate to register rs and place 32-bit 
result in register rt . Trap on two's complement overflow. 

ADD Immediate Unsigned ADDIU rt, rs, immediate 
Add 16-bit sign-extended immediate to register rs and place 32-bit 
result in register rt . Do not trap on overflow. 

Set on Less Than Imme- SL TI rt, rs, immediate 
diate Compare 16-bit sign-extended immediate with register rs as signed 32-

bit integers. Result = 1 if rs is less than immediate; otherwise result = 
0. 
Place result in register rt. 

Set on Less Than SLTIU rt, rs, immediate 
Unsigned Immediate Compare 16-bit sign-extended immediate with register rs as unsigned 

32-bit integers. Result= 1 if rs is less than immediate; otherwise result 
= 0. Place result in register rt. Do not trap on overflow. 

AND Immediate ANDI rt, rs, immediate 
Zero-extend 16-bit immediate, AND with contents ofregister rs and 
place result in register rt. 

OR Immediate ORI rt, rs, immediate 
Zero-extend 16-bit immediate, OR with contents of register rs and 
place result in register rt. 

Exclusive OR Immediate XOR! rt, rs, immediate 
Zero-extend 16-bit immediate, exclusive OR with contents of register rs 
and place result in register rt. 

Load Upper Immediate LUI rt, immediate 
Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word 
to zeroes. Store result in register rt. 

Table 2.8 ALU Immediate Operations 
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Instruction Format and Description 

Add ADD rd, rs, rt 
Add contents of registers rs and rt and place 32-bit result in register rd. 
Trap on two's complement overflow. 

ADD Unsigned ADDU rd, rs, rt 
Add contents of registers rs and rt and place 32-bit result in register rd. 
Do not trap on overflow. 

Subtract SUB rd, rs, rt 
Subtract contents of registers rt and rs and place 32-bit result in 
register rd. Trap on two's complement overflow. 

Subtract Unsigned SUBU rd, rs, rt 
Subtract contents of registers rt and rs and place 32-bit result in 
register rd. Do not trap on overflow. 

Set on Less Than SLT rd, rs, rt 
Compare contents ofregister rt to register rs (as signed 32-bit integers). 
If register rs is less than rt, result = 1; otherwise, result = 0. 

Set on Less Than Unsigned SLTU rd, rs, rt 
Compare contents of register rt to register rs (as unsigned 32-bit inte-
gers). If register rs is less than rt, result = I; otherwise, result = 0. 

AND AND rd, rs, rt 
Bit-wise AND contents ofregisters rs and rt and place result in register 
rd. 

OR OR rd, rs, rt 
Bit-wise OR contents of registers rs and rt and place result in register 
rd. 

Exclusive OR XOR rd, rs, rt 
Bit-wise Exclusive OR contents of registers rs and rt and place result in 
register rd. 

NOR NOR rd, rs, rt 
Bit-wise NOR contents of registers rs and rt and place result in register 
rd. 

Table 2.9 Three Operand Register-Type Operations 
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Instruction Format and Description 

Shift Left Logical SLL rd, rt, shamt 
Shift contents of register rt left by shamt bits, inserting zeroes into low 
order bits. Place 32-bit result in register rd. 

Shift Right Logical SRL rd, rt, shamt 
Shift contents of register rt right by shamt bits, inserting zeroes into 
high order bits. Place 32-bit result in register rd. 

Shift Right Arithmetic SRA rd, rt, shamt 
Shift contents ofregister rt right by shamt bits, sign-extending the high 
order bits. Place 32-bit result in register rd. 

Shift Left Logical Variable SLLV rd, rt. rs 
Shift contents of register rt left. Low-order 5 bits of register rs specify 
number of bits to shift. Insert zeroes into low order bits of rt and place 
32-bit result in register rd. 

Shift Right Logical Variable SRLV rd, rt, rs 
Shift contents of register rt right. Low-order 5 bits of register rs specify 
number of bits to shift. Insert zeroes into high order bits ofrt and place 
32-bit result in register rd. 

Shift Right Arithmetic SRAV rd, rt, rs 
Variable Shift contents of register rt right. Low-order 5 bits of register rs specify 

number of bits to shift. Sign-extend the high order bits of rt and place 
32-bit result in register rd. 

Table 2.10 Shift Operations 

Instruction Format and Description 

Multiply MULT rs, rt 
Multiply contents of registers rs and rt as twos complement values. 
Place 64-bit result in special registers HI/LO 

,. 

Multiply Unsigned MULTU rs, rt 
Multiply contents of registers rs and rt as unsigned values. Place 64-
bit result in special registers HI/LO 

Divide DN rs, rt 
Divide contents of register rs by rt treating operands as twos comple-
ments values. Place 32-bit quotient in special register LO, and 32-bit 
remainder in HI. 

Divide Unsigned DIVU rs, rt 
Divide contents of register rs by rt treating operands as unsigned 
values. Place 32-bit quotient in special register LO, and 32-bit 
remainder in HI. 

Move From HI MFHI rd 
Move contents of special register HI to register rd. 

Move From LO MFLOrd 
Move contents of special register LO to register rd. 

Move To HI MTHird 
Move contents of special register rd to special register HI. 

Move To LO MTLOrd 
Move contents of register rd to special register LO. 

Table 2.11 Multiply and Divide Operations 
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Instruction 

Jump 

Jump and Link 

Jump Register 

Jump and Branch instructions 
Jump and Branch instructions change the control flow of a program. 

All Jump and Branch instructions occur with a one instruction delay: 
that is, the instruction immediately following the jump or branch is 
always executed while the target instruction is being fetched, regardless 
of whether the branch is to be taken. 

An assembler has several possibilities for utilizing the branch delay slot 
productively: 

• It can insert an instruction that logically precedes the branch instruc­
tion in the delay slot since the instruction immediately following the 
jump/branch effectively belongs to the block preceding the transfer 
instruction. 

• It can replicate the instruction that is the target of the branch/jump 
into the delay slot provided that no side-effects occur if the branch 
falls through. 

• It can move an instruction up from below the branch into the delay 
slot, provided that no side-effects occur if the branch is taken. 

• If no other instruction is available, it can insert a NOP instruction in 
the delay slot. 

The J-type instruction format is used for both jumps-and-links for 
subroutine calls. In this format, the 26-bit target address is shifted left 
two bits, and combined with high-order 4 bits of the current program 
counter to form a 32-bit absolute address. 

The R-type instruction format which takes a 32-bit byte address 
contained in a register is used for returns, dispatches, and cross-page 
jumps. 

Branches have 16-bit offsets relative to the program counter (I-type). 
Jump-and-Link and Branch-and-Link instructions save a return address 
in register r3 l. 

Table 2.12 summarizes the R36100's Jump instructions and 
Table 2.13 on page 21 summarizes the Branch instructions. 

Format and Description 

J target 
Shift 26-bit target address left two bits, combine with high-order 4 bits 
of PC and jump to address with a one instruction delay. 

JAL target 
Shift 26-bit target address left two bits, combine with high-order 4 bits 
of PC and jump to address with a one instruction delay. Place address 
of instruction following delay slot in r31 (link register). 

JR rs 
Jump to address contained in register rs with a one instruction delay. 

Jump and Link Register JALR rs, rd 
Jump to address contained in register rs with a one instruction delay. 
Place address of instruction following delay slot in rd. 

Table 2.12 Jump Instructions 
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Instruction Format and Description 

Branch Target: All Branch instruction target addresses are computed 
as follows: Add address of instruction in delay slot and the 16-bit 
offset (shifted left two bits and signcextended to 32 bits). All branches 
occur with a delay of one instruction. 

Branch on Equal BEQ rs, rt, offset 
Branch to target address if register rs equal to rt 

Branch on Not Equal BNE rs, rt, offset 
Branch to target address if register rs not equal to rt. 

Branch on Less than or BLEZ rs.offset 
Equal Zero Branch to target address if register rs less than or equal to 0. 

Branch on Greater Than BGTZ rs.offset 
Zero Branch to target address if register rs greater than 0. 

Branch on Less Than Zero BLTZ rs.offset 
Branch to target address if register rs less than 0. 

Branch on Greater than or BGEZ rs.offset 
Equal Zero Branch to target address if register rs greater than or equal to 0. 

Branch on Less Than Zero BLTZAL rs, offset 
And Link Place address of instruction following delay slot in register r3 l {link 

register). Branch to target address if register rs less than 0. 

Branch on greater than or BGEZAL rs, offset 
Equal Zero And Link Place address of instruction following delay slot in register r3 l (link 

register). Branch to target address ifregister rs is greater than or equal 
to 0. 

Table 2.13 Branch Instructions 

Special Instructions 

Instruction 

System Call 

Breakpoint 

The two Special instructions let software initiate traps. They are 
always R-type. Table 2.14 summarizes Special Instructions. 

Format and Description 

SYSCALL 
Initiates system call trap, immediately transferring control to exception 
handler. 

BREAK 
Initiates breakpoint trap, immediately transferring control to exception 
handler. 

Table 2.14 Special Instructions 
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co.:.processor Instructions 
Co-processor instructions perform operations in the co-processors. 

Co-processor Loads and Stores are I-type. Co-processor computational 
instructions have co-processor-dependent formats. The only co­
processor operations of relevance for the R36 l 00 are those targeted at the 
on-chip CPO. 

Table 2.15 summarizes the Co-processor Instruction Set of the MIPS 
ISA. 

Instruction Format and Description 

Load Word to Co-processor LWCz rt, offset (base) 
Sign-extend 16-bit offset and add to base to form address. Load 
contents of addressed word into co-processor register rt of co-processor 
unit z. 

Store Word from Co- SWCz rt, offset (base) 
processor Sign-extend 16-bit offset and add to base to form address. Store 

contents of co-processor register rt from co-processor unit z at 
addressed memory word. 

Move To Co-processor MTCz rt, rd 
Move contents of CPU register rt into co-processor register rd of co-
processor unit z. 

Move from Co-processor MFCz rt.rd 
Move contents of co-processor register rd from co-processor unit z to 
CPU register rt. 

Move Control To Co- CTCz rt,rd 
processor Move contents of CPU register rt into co-processor control register rd of 

co-processor unit z. 

Move Control From Co- CFCz rt.rd 
processor Move contents of control register rd of co-processor unit z into CPU 

register rt. 

Co-processor Operation COPz cofun 
Co-processor z performs an operation. The state of the R36100 is not 
modified by a co-processor operation. 

Branch on Co-processor z BCzT offset 
True Compute a branch target address by adding address of instruction in 

the 16-bit offset (shifted left two bits and sign-extended to 32-bits). 
Branch to the target address (with a delay of one instruction) if co-
processor z's condition line is true. 

Branch on Co-processor z BCzF offset 
False Compute a branch target address by adding address of instruction in 

the 16-bit offset (shifted left two bits and sign-extended to 32-bits). 
Branch to the target address (with a delay of one instruction) if co-
processor z's condition line is false. 

Table 2.15 Co-Processor Operations 
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Instruction 

Move To CPO 

Move From CPO 

System Control Co-processor (CPO) Instructions 
Co-processor 0 instructions perform operations on the System Control 

Co-processor (CPO) registers to manipulate the memory management, bus 
programmability, timer, and exception handling facilities of the processor. 
Memory management, bus programmability, and exception handling are 
described in later chapters. 

Table 2.16 summarizes the instructions available to work with CPO. 

Format and Description 

MTCO rt, rd 
Store contents of CPU register rt into register rd of CPO. This follows 
the convention of store operations. 

MFCO rt, rd 
Load CPU register rt with contents of CPO register rd. 

Read Indexed TLB Entry TLBRt 
Load EntryHi and EntryLo registers with TLB entry pointed at by Index 
register. 

Write Indexed TLB Entry TLBWit 
Load TLB entry pointed at by Index register with contents of EntryHi 
and EntryLo registers. 

Write Random TLB Entry TLBWRt 
Load TLB entry pointed at by Random register with contents of 
EntryHi and EntryLo registers. 

Probe TLB for Matching TLBPt 
Entry Load Inde register with address ofTLB entry whose contents match 

EntryHi and EntryLo. If no TLB entry matches, set high-order bit of 
Index register. 

Restore From Exception RFE 
Restore previous interrupt mask and mode bits of status register into 
current status bits. Restore old status bits into previous status bits. 

tThese operations are undefined/reserved in the R36100, which does not include an on-chip TLB. 

Table 2.16 System Control Co-Processor (CPO) Operations 
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R36100 Opcode Encoding 
Table 2.17 shows the opcode encoding for the MIPS architecture. 

28 .. 26 OPCODE 
31..29 0 1 2 3 4 5 6 7 
0 
1 
2 
3 
4 
5 
6 
7 

2 .. 0 SPECIAL 
5 .. 3 0 1 2 3 4 5 6 7 
0 
1 
2 
3 
4 
5 
6 
7 

18 .. 16 BCOND 
20 .. 19 0 1 2 3 4 5 6 7 
0 

1~~;~ 1:~ 
I I I I I I I 

1 
2 
3 
4 

23 .. 21 COPz 
25 .. 24 0 1 2 3 4 5 6 7 
0 

1~ Ir Ir Ir I r1 Ir I T1 Ir 1 
·2 

3 

18 .. 16 Co-Processor Specific Operations 
20 .. 19 0 1 2 3 4 5 6 7 
0 IBCzF I BCZf 

I I I I I I 
1 
2 
3 

2 .. 0 CPO 
4 .. 3 0 1 2 3 4 5 6 7 
0 

1~ I ILBR I l[BWI 

I I I 

l'ILBWR 

I 
1 
2 
3 

Table 2.17 Opcode Encoding 

2-24 



Cache Architecture Chapter 3 

Integrated Device Technology, Inc. 

Introduction 
The R36 l 00 achieves its high standard of performance by combining a 

fast, efficient execution engine (that of the R3000A) with high-memory 
bandwidth, supplied from its large internal instruction and data caches .. 
These caches insure that the majority of processor execution occurs at 
the rate of one instruction per clock cycle, and serve to decouple the high­
speed execution engine from slower, external memory resources. 

Portions of this chapter review the fundamentals of general cache oper­
ation, and may be skipped by readers already familiar with these 
concepts. This chapter also discusses the particular organization of the 
on-chip caches of the R36100. However, as these caches are managed by 
the R36 l 00 itself, the system designer does not typically need to be 
explicitly aware of this structure. 

Fundamentals of Cache Operation 
High-performance microprocessor-based systems frequently borrow 

from computer architecture principles long used in mini-computers and 
mainframes. These principles include instruction execution pipelining 
(discussed in Chapter 2) and instruction and data caching. 

A cache is a high-speed memory store which contains the instructions 
and data most likely to be needed by the processor. That is, rather than 
implement the entire memory system with zero wait-state memory 
devices, a small zero wait-state memory is implemented. This memory, 
called a cache, contains the instructions/data most likely to be refer­
enced by the processor. lf indeed the processor issues a reference to an 
item contained in the cache, then a zero wait-state access is made; if the 
reference is not contained in the cache, then the longer latency associated 
with the true processor memory is incurred. The processor will achieve 
its maximum performance as long as its references "hit" (are resident) in 
the cache. 

Caches rely on the principles of locality of software. These principles 
state that when a data/instruction element is used by a processor, it and 
its close neighbors are likely to be used again soon. The cache is then 
constructed to keep a copy of instructions and data referenced by the 
processor, so that subsequent references occur with zero wait-states. 

Since the cache is typically many orders of magnitude smaller than 
main memory or the virtual address space, each cache element must 
contain both the data (or instruction) required by the processor, as well as 
information which can be used to determine whether a cache "hit" occurs. 
This information, called the cache "TAG", is typically some or all of the 
address in main memory of the data item contained in that cache element 
as well as a "Valid" flag for that cache element. Thus, when the processor 
issues an address for a reference, the cache controller compares the TAG 
with the processor address to determine whether a hit occurs. 

To minimize cost while maintaining high-performance, the R36100 
integrates a reasonable amount of cache internal to the chip, eliminating 
the cost and complexity of external caches. 

3-1 



Cache Architecture Chapter 3 

R36100 Cache Organization 
There are a number of algorithms possible for managing a processor 

cache. This section describes the cache organization and operation of the 
R36100. 

Basic Cache Operation 
When the processor makes a reference, its 32-bit internal physical 

address bus contains the address it desires. The processor address bus 
is split into two parts; the low-order address bits specify a location in the 
cache to access, and the remaining high-order address bits contain the 
value expected from the cache TAG. Thus, both the instruction/data 
element and the cache TAG are fetched simultaneously from the cache 
memory. If the value read from the TAG memories is the same as the 
high-order address bits, a cache hit occurs and the processor is allowed 
to operate on the instruction/ data element retrieved. Otherwise, a cache 
miss is processed. This operation is illustrated in Figure 3.1. 
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Figure 3.1 Cache Line $election 

To maximize performance, the R36 l 00 implements a Harvard Architec­
ture caching strategy. That is, there are two separate caches: one 
contains instructions (operations). and the other contains data (oper­
ands). By separating the caches, higher overall bandwidth to the execu­
tion core is achieved, and thus higher performance is realized. 

Memory Address to Cache Location Mapping 
The R36100's caches are direct-mapped. That is, each main memory 

address can be mapped to (contained in) only one particular cache loca­
tion. This is different from set-associative mappings, where each main 
memory location has multiple candidate cache locations for address 
mapping. 

This organization, coupled with the relatively large cache sizes resident 
on the R36100, achieve extremely high hit rates while maximizing speed 
and minimizing complexity and power consumption. 
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Cache Addressing . 
The address presented to the cache and cache controller is that of the 

physical (main) memory element to be accessed. That is, the virtual 
address to physical address translation is performed by the memory 
management unit prior to the processor issuing its reference address. 

Some microprocessors utilize virtual indexing and virtual tagging in the 
cache, where the processor virtual address is used to specify the ·cache 
element to be retrieved. This type of cache structure complicates software 
and slows embedded applications: 

• When the processor performs a context switch, a virtually tagged 
cache must be flushed. This is because two different tasks can use 
the same virtual address but mean totally different physical 
addresses. This cache flushing for a large cache dramatically slows 
context switch performance. 

• Software must be aware of and specifically manage against "alias" 
problems. An alias occurs when two different virtual addresses corre­
spond to the same physical address. If that occurs in a virtually 
indexed cache, then the same data element may be present in two 
different cache locations. If one virtual address is used to change the 
value of that memory location, and a different address used to read it 
later, then the second reference will not get the current value of that 
data item. 

By providing for the virtual-to-physical address translation in the 
processor pipeline. physical cache addressing is used with no inherent 
performance penalty. 

To support cache locking, the R36 l 00 allows the kernel software to 
select certain high-order physical address bits to replace normal high­
order cache index lines. This separates the cache into two portions: a 
lower portion, which services physical addresses below the high-order 
address; and a higher portion, which services physical addresses above 
the high-order address. Even when this mode is enabled, the R36100 
implements direct-mapped,. physically indexed, physically tagged caches. 

Write Policy 
The R36100 utilizes a write-through cache. That is, whenever the 

processor performs a write operation to memory, then both the cache 
(data and TAG fields) and main memory are written. If the reference is 
uncacheable, then only main memory is written. 

To minimize the delays associated with updating main memory, the 
R36 l 00 contains a 4 element write buffer. The write buffer captures the 
target address and data value in a single processor clock cycle, and 
subsequently performs the main memory write at its own, slower rate. 
The write buffer can FIFO up to 4 pending writes, as described in a later 
chapter. 

Partial Word Writes 
In the case of partial word writes (store operations of less than 32-bits). 

the R36100 operates by performing a read-modify-write sequence in the 
cache: the store target address is used to perform a cache fetch; if the 
cache "hits". then the partial word data is merged with the cache and the 
cache is updated. If the cache read results in a hit, the memory interface 
will see the full word write, rather than the partial word. This allows the 
designer to observe the actual activity in the on-chip caches. 

If the cache lookup of a partial word write "misses" in the cache, then 
only main memory is updated. 
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Instruction Cache Line Size 
The "line size" of a cache refers to the number of cache elements 

mapped by a single TAG element. In the R36100, th,e instruction cache 
line size is 16 bytes, or four words. 

This means that each cache line contains four adjacent words from 
main. memory. In order to accommodate this, an instruction cache miss 
is processed by performing a quad word (block) read from the main 
memory, as discussed in a later chapter. This insures that a cache line 
contains four adjacent memory locations. Note that since the instruction 
cache is typically never written into directly by user software. the larger 
line size is permissible. If software does explicitly store into the instruc­
tion cache (perform store operations with the caches "swapped"). the 
programmer must insure that either the written lines are left invalidated, 
or that they contain four adjacent instructions. 

Block refill uses the principle of locality of reference. Since instructions 
typically execute sequentially, there is a high probability that the instruc­
tion address immediately after the current instruction will be the next 
instruction. Block refill then brings into the cache those instructions 
immediately near the current instruction, resulting in a higher instruc­
tion cache hit rate. 

Block refill also takes advantage of the difference between memory 
latency and memory bandwidth. Memory latency refers to the amount of 
time required to perform a processor request, while bandwidth refers to 
the rate at which subsequent transfers can occur. Factors that affect 
memory latency include address decoding, bus arbitration, and memory 
pre-charge requirements; .factors which maximize bandwidth include the 
use of page mode or nibble mode accesses, memory interleaving, and 
burst memory devices. 

The processing of a quad word read is discussed in a later chapter; 
however, it is worth noting that the R36100 can support either true 
"burst" accesses or can utilize a simpler, slower memory protocol for quad 
word reads. Also note that the variable bus sizing capability of the 
R36100 means that block reads can occur from 8- or 16-bit memory 
systems. This includes the case of instruction fetches; the bus interface 
unit will automatically translate the block read protocol into a larger 
number of sub-word reads, depending on the memory width programmed 
for the target memory location. 

Finally. note that the R36100 performs "streaming" during instruction 
cache refill. That is, the processor will simultaneously refill the instruc­
tion cache and execute the incoming instructions. Streaming contributes 
an average of 5% of performance. 

Data Cache Line Size 
The data cache line size is different from that of the instruction cache, 

based on differences in their use. The data cache is organized as a line 
size of one word (four bytes). 

This is optimal for the write policy of the data cache: since an indi­
vidual cache word may be written by a software store instruction, the 
cache controller cannot guarantee that four adjacent words in the cache 
are from adjacent memory locations. Thus each word is individually 
tagged. The partial word.writes Oess than 4 bytes) are handled as a read-

.modify-write sequence, as described above. 
Although the data cache line size is one word, the system may elect to 

perform data cache updates using quad word reads (block refill). The 
performance of the data cache update options can be measured in an 
actual system, by turning on the two different options under software 
control. 
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Summary 
The on-chip caches of the R36100 family can be thought of as 

constructed from discrete devices around the R3000A. Figure 3.2 shows 
the block diagram of the cache interface for the R36100. 
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Figure 3.2 R36100 Execution Core and Cache Interface 

Cache Operation 
The operation of the on-chip caches is very straightforward, and is 

automatically handled by the processor. 

Basic Cache Fetch Operation 
As with the R3000A/R3500, the R36 l 00 can access both the instruc­

tion and data caches in a single clock cycle, resulting in high bandwidth 
to the execution core. It does this by time multiplexing the cycle in the 
cache interface: 

• During the first phase, a· data cache address is presented, and a 
previous instruction cache read is completed. 

• During the second phase, the data cache is read into the processor (or 
written by the processor). Also, the instruction cache is addressed 
with the next desired instruction. 

• During the first phase of the next cycle, the instruction fetch begun 
in the previous phase is completed and a new data transaction is initi­
ated. 

This operation is illustrated in Figure 3.3 on page 6. As long as the 
processor hits in the cache, and no internal stall conditions are encoun­
tered, it will continue to execute run cycles. A run cycle is defined to be a 
clock cycle in which forward progress in the processor pipeline occurs. 
Note that data in the cache is organized into 32-bit words, regardless of 
the width associated with main-memory from which the datum was 
taken. Thus, cache hits can retrieve a full 32-bits in a single cycle, mini­
mizing the performance impact of the narrower memory system. 
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In the case of a cache miss (due to either a failed tag comparison or 
because the processor issued an uncacheable reference), the main 
memory interface (discussed in a later chapter) is invoked. If, during a 
given clock cycle, both the instruction and data cache miss, the data 
reference will be resolved before the instruction cache miss is processed. 

While the processor is waiting for a cache miss to be processed, it will 
enter stall cycles until the bus interface unit indicates that it has obtained 
the necessary data. 

When the bus interface unit returns the data from main memory, it is 
simultaneously brought to the execution unit and written into the on-chip 
caches. This is performed in· a processor fixup cycle. 

During a fixup cycle, the processor re-issues the cache access that 
failed; this occurs by having the processor re-address the instruction and 
data caches, so that the data may be written into the caches and brought 
into the execution core. If the cache miss was due to an uncacheable 
reference, the write is not performed, although a fixup cycle does occur to 
allow the data to be brought into the execution core. 

Instruction Streaming 
A special feature of the R36 l 00 is utilized when performing block reads 

for instruction cache misses. This process is called instruction streaming. 
Instruction streaming is simultaneous instruction execution and cache 
refill. 

As the block is brought in, the processor refills the instruction cache. 
Execution of the instructions within the block begins when the instruc­
tion corresponding to the cache miss is returned by the bus interface unit 
to the execution core. Execution continues until the end of the block is 
reached (in which case normal execution is resumed), or until some event 
forces the processor core to discontinue execution of that stream. These 
events include: 

• Taken branches 
• Data cache miss 
• Internal stalls (TLB miss, multiply/ divide interlock) 
• Exceptions 
When one of these events occur, the processor re-enters simple cache 

refill until the rest of the block has been written into the cache, to insure 
that one TAG describes all four adjacent words. 
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Cacheable References 
Chapter 4 explains how the processor determines whether a particular 

reference (either instruction or data) is to a memory location that may 
reside in the cache. The fundamental mechanism is that certain virtual 
addresses are considered to be "cacheable". If the processor attempts to 
make a reference to a cacheable address, then it will employ its cache 
management protocol through that reference. Otherwise, the cache will 
be bypassed, and the execution engine core will directly communicate 
with the bus interface unit to process the reference. 

Whether a given reference should be cacheable or not depends on the 
application and on the target of the reference. Generally, 1/0 devices 
should be referenced as uncacheable data; for example. if software was 
polling a status register, and that register was cached, then it would never 
see the device update the status (note that most compiler suites support 
the "volatile" data type to insure that the 1/0 device status register data in 
this case never gets allocated into an internal register). In the R36100, 
the cacheability of the on-chip registers in the 1/0 and peripheral devices 
is automatically selected to be "non-cacheable". 

There may be other instances where the uncacheable attribute is 
appropriate. For example, software which directly manipulates or flushes 
the caches can not be cached; similarly, boot software can not rely on the 
state of the caches, and thus must operate uncached at least until the 
caches are initialized. 

Software Directed Cache Operations 
In order to support certain system requirements, the R36 l 00 provides 

mechanisms for software to explicitly manipulate the caches. These 
mechanisms support diagnostics, cache and memory sizing, and cache 
flushing. In general, these mechanisms are enabled/ disabled through 
the use of the Status Register in CPO. 

The primary mechanisms for supporting these operations are cache 
swapping and cache isolation. Cache swapping forces· the processor to 
use the data cache as an instruction cache, and vice versa. It is useful for 
allowing the processor to issue store instructions which cause the 
instruction cache to be written. Cache isolation causes the current data 
cache to be "isolated" from main memory; store operations do not cause 
main memory to be written, and all load operations "hit" in the data 
cache. 

These mechanisms are enabled through the use of the "IsC" (Isolate 
Cache) and "SwC" (Swap Cache) bits of the status register, which resides 
in the on-chip System Control Co-Processor (CPO). The 5 instructions 
which immediately precede and succeed these operations must not be 
cacheable, so that the actual swapping/isolation of the cache does not 
disrupt operation. 

Cache Sizing 
It is possible for software to determine the amount of cache resident on 

any given R3xxx-based chip (note that the R3041, R3051, R3052, and 
R3071/R3081 each feature differing amounts of cache on chip). Having 
software determine the size of the cache at boot time, rather than building 
static values into the software. allows for maximum flexibility in using 
various members of the R3xxx family, including future devices. 

Cache sizing in an R36 l 00 is performed much like traditional memory 
sizing algorithms. but with the cache isolated. This avoids side-effects in 
memory from the sizing algorithm, and allows the software to use the 
"Cache Miss" bit of the status register in the sizing algorithm. 
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To determine the size of the instruction cache. software should: 
I. Swap Caches (not needed for D-Cache sizing) 
2. Isolate Caches 
3. Write a value at location 8000_0000 
4. Write a value at location 8000_0200 (8000_0000 + 512B) 

Re~.d location 8000_0000. 
Examine the CM (Cache_Miss) bit of the status register; if it indicates a 
cache miss, then the cache is 512B; otherwise, the cache is lkB or larger. 

5. Write a value at location 8000_0400 (8000_0000 + lkB) 
Read location 8000_0000. 
Examine the CM (Cache_Miss) bit of the status register; if it indicates a 
cache miss, then the cache is IKB; otherwise, the cache is 2KB or larger. 

6. etc ... 
Of course a more generalized algorithm could be developed to deter­

mine the cache size; this may be desirable for compatibility with discrete 
R3000A/R3500 systems or other R305 l family members. However, any 
algorithm will probably include the Swap and Isolate of the Instruction 
Cache, and the use of the Cache Miss bit. Sizing the data cache is done 
with a similar algorithm, although the caches need not be swapped, and 
smaller cache sizes need to be considered. 

Note that this software should operate as uncached. Once this algo­
rithm is done, software should return the caches to their normal state by 
performing either a complete cache flush or an invalidate of those cache 
lines modified by the sizing algorithm. 

Cache Flushing 
Cache flushing refers to the act of invalidating (indicating a line does 

not have valid contents) lines within either the instruction or data caches. 
Flushing must be performed before the caches are first used as real 
caches, and might also be performed during main memory page swapping 
or at certain context switches (note that the R305 l family implements 
physically addressed caches, so that cache flushing at context switch 
time is not generally required). 

The basic concept behind cache flushing is to have the "Valid" bit of 
each cache line set to indicate invalid. This is done in the R36100 by 
having the cache isolated, and then writing a partial word quantity into 
the current data cache. Under these conditions. the CPU will negate the 
"Valid" bit of the target cache line. 

Again, this software should operate as uncached. To flush the data 
cache: 

1. Isolate Caches 
2. Perform a byte write every 4 bytes, starting at location 0, until 256 

such writes have been performed (128 in the R3041, more for other R3xxx 
family members). · 

3. Return the data cache to its normal state by clearing the IsC bit. 
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To flush the instruction cache: 
1. Swap Caches 
2. Isolate Caches 
3. Perform a byte write every 16 bytes (based on the instruction cache 

line size of 16 bytes). This should be done until each line (256 lines in the 
R36100, more or less for other R3xxx devices) have been invalidated. Note 
that treating the R36100 as if it had larger on-chip caches, and flushing/ 
invalidating more than 256 lines is acceptable though less efficient. 

4. Return the caches to their normal state (unswapped and not 
isolated). 

To minimize the execution time of the cache flush, this software should 
probably use an "unrolled" loop. That is, rather than have one iteration of 
the loop invalidate only one cache line, each iteration should invalidate 
multiple lines. This spreads the overhead of the loop flow control over 
more cache line invalidates, thus reducing execution time. 

Also, of course it is preferable to use the cache sizing algorithm 
described earlier to determine the number of lines to be flushed. 

Forcing Data into the Caches 
Using these basic tools. it is possible to have software directly place 

values into the caches. When combined with appropriate software tech­
niques, this could be used to "lock" values into the on-chip caches, by 
insuring that software does not issue other cacheable address references 
which may displace these locked values. 

In order to force values into a cache, the cache should be Isolated. If 
software is trying to write instructions into the instruction cache, then the 
caches should also be swapped. 

When forcing values into the instruction cache, software must take 
care with regards to the line size of the instruction cache. Specifically, a 
single TAG and Valid field describe four words in the instruction cache; 
software must then insure that any instruction cache line tagged as Valid 
actually contains valid data from all four words of the block. 
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Cache-Locking Operation 
The R36100 implements the ability to segregate the caches into 2 or 4 

portions, or to allow it to operate as a normal single contiguous entity. 
Either or both the instruction and data cache can be run in any split or 
non-split mode independently. 

As an example, splitting the cache into halves or quarters allows inter­
rupt service routines and data to be locked into part of the cache, while 
the remainder of the cache is used for the user program and data. 

If run in the normal mode (as a single contiguous entity), the cache 
index (used internally to address the Cache Data and Tag RAMs) is 
derived solely from the low-order physical address bits. For example, the 
cache index for the data cache is PhysAddr(9:2); and for the instruction 
cache, the cache index is PhysAddr(l 1:2). 

TagAddr(31:10) Addrlolndex(9:2) 

t ' Physical Address Latch 

Tag and Index Bit Swap Multiplexer 

CacheTag(31 :10) CacheRamAddr(9:2) 

~ 

x 
Tag Cells Data Cells ID 

II) 
(256x22) (256x32) £!, 

CacheRamAddr(9:2) .., .!? 

~ 
~ 
:2 
tu 
> 

~ • • CacheRamTagData(32:10) CacheRamData(31 :0) 

Figure 3.4 R36100 Instruction Cache Index Address Path 

In the normal mode case, a reference with the same low-order Phys­
Addr bits but different high-order PhysAddr tags will cause the current 
cache contents to be replaced. For example, location Ox0000_1008 will 
be entered into the line at cache index OxOOOO; if that line previously was 
cached with main memory location Ox0000_0008, it would be replaced 
with new data and tag. Any address which is modulo 4kB (for instance 
Ox1004_0008) could cause replacement of that cache line. 

On the other hand, in the split modes, the system software can instruct 
the cache controller to use either or both of PhysAddr(28:27) as the 
uppermost two index bits (2 or 4 portions). In this case, the cache simul­
taneously direct-maps multiple distinctly different memory spaces. The 
10 . bits for the instruction cache index can be constructed as Phys­
Addr(28, 10:2). for example. 

3-10 



Cache Architecture Chapter 3 

When the caches are operated in split mode, typically the MSBs going 
to main memory (bits 31-29) are masked out from the physical address 
decode. On the R36100, the physical address decode is part of either the . 
DRAM Controller's or the Memory /IO Controller's Page Register and Page 
Mask Register (which ever one is used to control main memory). Masking 
out the MSBs allows physical RAM space to be contiguous (for instance 
contained within a lMB block), while the virtual program space can vary 
the MSBs. For instance the virtual program space can consist of a 5 I 2KB 
block beginning at OxOOOO_OOOO and a second virtual program space with 
a 512KB block beginning at Oxl004_0000. The two virtual addresses will 
translate (see the next chapter for more details) to physical addresses 
Ox4000_0000 and Ox5004_0000, respectively, as far as cache memory is 
concerned. Since bits 31-29 are ignored by the main memory controller, 
the two physical addresses are effectively OxOOOO_OOOO and Ox0004_0000 
as far as main memory RAM is concerned. Thus by using the Page Mask 
Register, the caches can see 2 or 4 blocks of address spaces, while main 
memory sees a single large block of address space. 

To continue the instruction cache example, the upper 2kB portion of 
the I-cache services physical addresses in the range of OxlOOO_OOOO and 
above; physical addresses in the range OxOfff_ffff and below are serviced 
by the lower 2kB I-cache portion. 

In this example, the instruction at physical location Oxl004_0008 will 
not replace the contents of the line which holds memory location 
Ox0000_0008. These two portions of software will not interfere with each 
other in the caches. The software developer typically specifies the 
address region for code in either the kernel, or with the linker. This 
mechanism allows the programmer to separate code into portions and 
independently lock them, without requiring page management software or 
complex operating system software. 

Physical address Ox0000_0008 is accessed via Kuseg (explained in the 
next chapter), and is typically in the area of the exception vector. Physical 
address Oxl000_0008 is spaced 256MB higher in memory. In this 
system, system tasks operating higher in kuseg or in ksegO do not "knock 
our the exception service code, effectively locking this time critical code 
into one half of the on-chip cache. 

Table 3.1 on page 13 shows the correlation between physical address 
lines, cache index lines, and cache sub-segments supported by the 
R36100. Figure 3.5, Figure 3.6, and Figure 3.7 on page 12 shows the 
mapping of physical addresses to cache when the cache is 1, 2, or 4 
portions. 

Note that these tables and drawings assume that the code operates out 
of kuseg (explained in the next chapter). Since the R36100 implements 
32-bit virtual and physical addressing, the patterns shown repeat every 
time a very high-order (PhysAddr(29) and above) is changed; thus, there 
are 8 such copies of each cache region, separated by 512MB each. The 
tables arid example assume that PhysAddr(3 l :29) are all 'O' throughout 
system software. However, memory spaces larger than 512MB are rarely 
used with embedded systems, the example in these tables will suffice for 
almost all systems. 
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Main Memory 

4Gb 

Figure 3.5 R36100 Cache in One Portion 

Main Memory 

256 Mb 

256 Mb 

Figure 3.6 R36100 Cache in Two Portions 

Main Memory 

128Mb 

128 Mb 

128 Mb 

128 Mb 

Figure 3.7 R36100 Cache in Four Portions 
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Cache IndexAddr(l l) Cache IndexAddr( 10) Physical Address Range Cache Size 

PhysAddr( 11) PhysAddr(lO) OxOOOO_OOOO 4kB 
OxlFFF_FFFF 

PhysAddr(28) PhysAddr( 10) OxOOOO_OOOO - 2kB 
OxOFFF_FFFF 

Ox 1000 _0000 - 2kB 
OxlFFF_FFFF 

PhysAddr(28) PhysAddr(27) OxOOOO_OOOO - lkB 
Ox07FF_FFFF 

Ox0800_0000 - lkB 
OxOAFF _FFFF 

Ox 1000 _0000 - lkB 
Oxl7FF_FFFF 

Oxl800_0000 - lkB 
OxlFFF_FFFF 

Note: This table describes byte-addressable caches, with the lsb of the 
cache index == 2. 

Table 3.1 Instruction Cache to Address Mapping under Various Cache Locking Condi­
tions 

Cache Index Addr(9) Cache Index Addr(8) Physical Address Range Cache Size 

PhysAddr(9) PhysAddr(8) OxOOOO_OOOO - lkB 
OxlFFF_FFFF 

PhysAddr(28) PhysAddr(8) OxOOOO_OOOO - 512B 
OxOFFF_FFFF 

OxlOOO_OOOO - 512B 
OxlFFF_FFFF 

PhysAddr(28) PhysAddr(27) OxOOOO_OOOO - 256B 
Ox07FF_FFFF 

Ox0800_0000 - 256B 
OxOAFF _FFFF 

OxlOOO_OOOO - 256B 
Oxl7FF_FFFF 

Oxl800_0000 - 256B 
OxlFFF_FFFF 

Note: This table describes byte-addressable caches, with the lsb of the 
cache index == 2. 

Table 3.2 Data Cache to Address Mapping under Various Cache Locking Conditions 

Summary 
The on-chip caches of the R36100 are key to the inherent performance 

of the processor. The R36 l 00 design, however, does not require the 
system designer (either software or hardware) to explicitly manage this 
important resource, other than to correctly choose virtual addresses 
which may or may not be cached, and to flush the caches at system boot. 
This contributes to both the simplicity and performance of an R36100 
system. 
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Integrated Device Technology, Inc. 

Virtual-to-Physical 
Address Translation and 
Address Map 

Chapter 4 

The R36100 provides the same basic virtual-to-physical address trans­
lation as the rest of the R30xx family base versions (the R304 l, R305 l, 
R3052, R3071, and R3081). These devices provide segment-based 
virtual-to-physical address translation, and support the segregation of 
kernel and user tasks without requiring extensive virtual page manage­
ment. 

The extended versions of the R30xx family (the R305 l E, R3052E, 
R3071E, and R3081E) provide a full featured memory management unit 
(MMU) identical to the MMU structure of the R3000A and R3500. The 
extended MMU uses an on-chip translation lookaside buffer (TLB) and 
dedicated registers in CPO to provide for software management of page 
tables. There is no Extended Architecture version of the R36 l 00. 

This chapter describes the operating states of the processor (kernel and 
user). and describes the virtual-to-physical address translation mecha­
nisms provided in the R36100. 

Virtual Memory in the R3000A Architecture 
There are two primary purposes of the memory management capabili­

ties of the R3000A Architecture: 
• Various areas of main memory can have individual sets of attributes 

associated with them. For example, some segments may be indicated 
as requiring kernel status to be accessed; others may have cacheable 
or uncacheable attributes. The virtual-to-physical address transla­
tion establishes the rules appropriate for a given virtual address. The 
R36100 memory manager provides for these mechanisms, without 
requiring the use of a TLB. 

• The virtual memory system can be used to logically expand the phys­
ical memory space of the processor, by translating addresses 
composed in a large virtual address space into the physical address 
space of the system. This is particularly important in applications 
where software may not be explicitly aware of the hardware resources 
of the processor system, and includes applications such as X-Window 
display systems. These types of applications may be better served by 
the "E" (extended architecture) versions of the R30xx family. On the 
other hand, certain real-time operating systems offer similar func­
tionality without requiring an MMU; for example, the IDT /c tool chain 
supports position-independent code without requiring a page fault 
manager in the operating system. 

Figure 4. 1 shows the format of an R3000A architecture virtual address. 
The most significant 20 bits of the 32-bit virtual address are called the 
virtual page number, or VPN. In the extended architecture versions, the 
VPN allows mapping of virtual addresses based on 4kB pages; in the base 
versions (and thus in the R36100), only the three highest bits (segment 
number) are involved in the virtual-to-physical address translation. 
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31 12 11 0 

I I I I VPN I Offset I 
31 30 29 20 12 

:I 
0 x x kuseg 
1 0 0 ksegO 
1 0 1 kseg1 
1 1 x kseg2 

Figure 4.1 Virtual Address Format 

The three most significant bits of the virtual address identify which 
virtual address segment the processor is currently referencing; these 
segments have associated with them the mapping algorithm to be 
employed, and whether virtual addresses in that segment may reside in 
the cache. The translation of the virtual address to an equivalent privi­
lege level/ segment is the same for the base and extended versions of the 
architecture. 

Privilege States 
The R36 l 00 provides for two unique privilege states: the "Kernel" 

mode, which is analogous to the "supervisory" mode provided in many 
systems, and the "User" mode, where non-supervisory programs are 
executed. Kernel mode is entered whenever the processor detects an 
exception; when a Restore From Exception (RFE) instruction is executed, 
the processor will return either to its previous privilege mode or to User 
mode, depending on the state of the machine and when the exception was 
detected. 

User Mode Virtual Addressing 
While the processor is operating in User mode, a single, uniform virtual 

address space (kuseg) of 2GB is available for Users. All valid user-mode 
virtual addresses have the most significant bit of the virtual address 
cleared to 0. An attempt to reference a Kernel address (most significant 
bit of the virtual address set to 1) while in User mode will cause an 
Address Error Exception. Kuseg begins at virtual address 0 and extends 
linearly for 2GB. This segment is typically used to hold user code and 
data, and the current user processes. 

Also note that the physical address space corresponding to kuseg is 
independent of the physical address spaces of the various kernel only 
segments. Thus, systems can be constructed which preclude user tasks 
from affecting kernel memory. On the other hand, simple systems can, 
by virtue of the address decode, compress the mapping into a single 
address region. 
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Kernel Mode Virtual Addressing 
When the processor is operating in Kernel mode, four distinct virtual 

address segments are simultaneously available. The segments are: 
• kuseg. The kernel may assert the same virtual address as a user 

process, and have the same virtual-to-physical address translation 
performed for it as the translation for the user task. This facilitates 
the kernel having direct access to user memory regions. The virtual­
to-physical address translation, including the Port Size attributes, is 
identical with User mode addressing to this segment. 

• ksegO. KsegO is a 512MB segment, beginning at virtual address 
Ox8000_0000. This segment is always translated to a linear 512MB 
region of the physical address space starting at physical address 0. 
All references through this segment are cacheable. 
When the most significant three bits of the virtual address are "100", 
the virtual address resides in ksegO. The physical address is 
constructed by replacing these three bits of the virtual address with 
the value "000". As these .references are cacheable, ksego is typically 
used for kernel executable code and some kernel data. 

• ksegl. Ksegl is also a 512MB segment, beginning at virtual address 
OxaOOO_OOOO. This segment is also translated directly to the 512MB 
physical address space starting at address 0. All references through 
this segment are uncacheable. 
When the most significant three bits of the virtual address are "10 l ". 
the virtual address resides in ksegl. The physical address is 
constructed by replacing these three bits of the virtual address with 
the value "000". Unlike ksegO, references through ksegl are not 
cacheable. This segment is typically used for 1/0 registers, boot ROM 
code, and operating system data areas such as disk buffers. 

• kseg2. This segment is analogous to kuseg, but is accessible only 
from kernel mode. This segment contains 1 GB of linear addresses, 
beginning at virtual address OxcOOO_OOOO. As with kuseg, the 
virtual-to-physical address translation depends on whether the 
processor is a base or extended architecture version. 
When the two most significant bits of the virtual address are "11," the 
virtual address resides in the 1024MB segment kseg2. The virtual­
to-physical translation is done either through the TLB (extended 
versions of the processor) or through a direct segment mapping (base 
versions). An operating system would typically use this segment for 
stacks, per-process data that must be re-mapped at context switch, 
user page tables, and for some dynamically allocated data areas. 

Base versions of the R30xx family (including the R36100) are distin­
guishable from extended versions in software by examining the TS (TLB 
Shutdown) bit of the Status Register after reset, before the TLB is used. If 
the TS bit is set (1) immediately after reset, indicating that the TLB is non­
functional, then the current processor is a base version of the architec­
ture. If the TS bit is cleared after reset, then the software is executing on 
an extended architecture version of the processor. 

The PRld register-described in a later chapter-can be used to distin­
guish the R36100 from other members of the R30xx family. 
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R36100 address translation 
Processors which only implement the base versions of memocy 

management perform direct segment mapping of virtual-to-physical 
addresses, as illustrated in Figure 4.2. Thus, the mapping of kuseg and 
kseg2 is performed as follows: 

• Kuseg is always translated to a contiguous 2GB region of the physical 
address space, beginning at location Ox4000_0000. That is, the value 
"00'' in the two highest order bits of the virtual address space are 
translated to the value "O 1 ", and "O 1" is translated to "l O'', with the 
remaining 30 bits of the virtual address unchanged. 

• Virtual addresses in kseg2 are directly output as physical addresses; 
that is, references to kseg2 occur with the physical address 
unchanged from the virtual address. 

• Virtual addresses in ksegO and kseg 1 are both translated identically 
to the same physical address region. 

The . base versions of the architecture allow kernel software to be 
protected from user mode accesses, without requiring virtual page 
management software. User references to kernel virtual address will 
result in an address error exception. 

Note that the special areas of the virtual address space shown in 
Figure 4.2 are translated to physical addresses identically with the 
remainder of their virtual address segment. In the R30xx family, these 
address areas were indicated as "reserved" for compatibility with future 
devices. 

Oxfff f ff ff 

OxfffOOOOO 
Oxffefffff 

VIRTUAL 

Kernel Cached 
(kseg2) 

OxcOOOOOOO t--~~~~~--1 
Oxbfff ff ff Kernel Uncached 

(kseg1) 
OxaOOOOOOO 1--~~~~~--1 
Ox9fff ff f~ 

Ox80000000 
Ox7fffffff 

Ox7ff00000 
Ox7fefffff 

Kernel/User 
Cached 
(kuseg) 

OxOOOOOOOO ......... ~~~~~__. 

PHYSICAL 

Kernel/User 
Cached 
Tasks 

2047 MB 

Inaccessible 
512MB 

Kernel Boot 
andl/O 
512 MB 

Oxfff ff f ff 

OxfffOOOOO 
Oxffefff ff 

OxcOOOOOOO 
Oxbfffffff 
OxbffOOOOO 
Oxbfefffff 

Ox40000000 
Ox3fffffff 

Ox20000000 
Oxlf ffff ff 

OxOOOOOOOO 

Figure 4.2 virtual-to-physical Address Translation in R36100 
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Some systems may elect to protect external physical memory as well. 
That is, the system may include distinct memory devices which can only 
be accessed from kernel mode. The physical address output determines 
whether the reference occurred from kernel or user mode, according to 
Table 4. 1. Some systems may wish to limit accesses to some memory or 
1/0 devices to those physical address bits which correspond to kernel 
mode virtual addresses. 

Alternately, some systems may wish to have the kernel and user tasks 
share common areas of memory. Those systems could choose to have 
their address decoder ignore the high-order physical address bits, and 
compress all of memory into the lower region of physical memory. The 
high-order physical address bits may be useful as privilege mode status 
outputs in these systems. 

Physical Address (31:29) Virtual Address Segment 

·ooo· KsegO or Kseg I 

'001' Inaccessible 

'Olx' Kuseg 

'I Ox' Kuseg 

'llx' Kseg2 

Table 4.1 Virtual and Physical Address Relationships in Base Versions 
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On-Chip Registers 
The top lMB of virtual memory-which resides in the protected kernel 

space, kseg2-is treated as "non-cacheable" by the cache controller. The 
rest of kseg2 is treated as cacheable. The on-chip memory controllers 
and peripherals. have their register sets mapped into this address space; 
these registers need to be uncached to insure proper operation. Table 4.2 
shows the address map for the on-chip resources. 

Note that writes to addresses above OxFFFF _EOOO are propagated out 
to the external bus. However, none of the memory controllers are acti­
vated: This feature is provided to facilitate debug and in-circuit emula­
tion equipment. Reads in this address range are propagated to the 
externai bus. 

Base Virtual. Address On-chip Resource 

OxFFFF8000 External Debug/Emulator Controller 

OXFFFF9000 Reserved 

OxFFFFAOOO 

OxFFFFBOOO 

OxFFFFCOOO 

OxFFFFDOOO 

OxFFFFEOOO 

OxFFFF EIOO DRAM Controller 

OxFFFFE200 Memory and IO Controller 

OxFFFF E300 Internal DMA Controller 

OxFFFF E400 External DMA Controller 

OxFFFFE500 Internal Debug/Emulator Controller 

OXFFFFE600 Reserved 

OxFFFF E700 Reserved 

OxFFFF E800 Serial Port Interface 

OxFFFF E900 Timer Interface 

OxFFFF EAOO PIO Interface 

OxFFFF EBOO Interrupt Peripheral Interface 

OxFFFF ECOO Centronics Interface (Pl284 interface) 

OxFFFF EDOO Laser Printer Engine Interface 

OxFFFF EEOO 

OxFFFF EFOO 

OxFFFF FOOO 

Table 4.2 ~36100 On-Chip Resow:ces and Address Map 

As a general rule. the registers residing above OxFFFF_EOOO are 16-bits 
and in some cases 8-bits wide. Thus these registers require either half­
word ·or byte load and store instructions for proper access. Because of 
the less-than-a-word access. if the system is big endian, the registers will 
either need a halfword offset of Ox2 or a byte offset of Ox3. Little endian 
systems do not need an offset. 
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Cache Miss Area 
The top lMB of kuseg is also special. In the R36100, this area is the 

"Cache Miss" area. 
If software attempts to "load" data with a modulo 16 address (lowest 4 

address bits == 0). the cache controller will consider the access to have 
"missed" in the cache, regardless of the current tag contents. 

This operation can speed certain types of data movement operations, 
especially when the contents of the corresponding main memory area may 
be updated externally to the processor. For example (See Table 4.3) if the 
main memory is a FIFO type memory, the code may perform a load to the 
FIFO address; the memory controller would burst four words into the 
cache (presuming a data block refill setting of four words) and load word 
"O" into the target register. The remaining words of the quad word read 
would be accessed from the cache. Once all four words are consumed, 
the code would issue another load with an offset of "O". causing another 
cache miss process to the FIFO. Burst data movement is faster, since the 
software does not need to explicitly flush the cache line between bursts, 
nor does it need to use slower "uncached" single datum transfers. 

#define FIFO_BASE Ox7FFOOOOO /* phys addr is OxBFFOOOOO *I 

get_fifo: 

Ii 

lw 

lw 

lw 

lw 

tO, FIFO_BASE 

tl, OxOO(tO) 

t2, Ox04(t0) 

t3, Ox08(t0) 

t4, OxOC(tO) /* 13 cached clocks per 4 words *I 

Table 4.3 Example: FIFO load code using FCM memory space. 

Summary 
The R30xx family architecture provides two models of memory manage­

ment: a very simple, segment based mapping, found in the base versions 
of the architecture, and a more sophisticated, TLB-based page mapping 
scheme, present in the extended versions of the architecture. Each 
scheme has advantages to different applications. The R36100 only imple­
ments the base version address translation in order to support low-cost 
systems. 
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Integrated Device Technology, Inc. 

Introduction 
The MIPS architecture separates a processor into two (or three, in the 

case of a device with on-chip FPA) functional units: one is the general 
purpose CPU, which executes the actual code, and remains compatible 
across all of the devices; the other portion is the system control copro­
cessor (CPO) which manages the machine state, the virtual to physical 
address translation, and other device specific attributes. 

This separation allows devices to be tailored to the needs of specific 
applications (by modifying CPO). yet retain software compatibility for the 
actual application itself (via the compatible CPU). 

This chapter describes the implementation of CPO found on the 
R36100. In general, the exception handling methods of the R36100 are 
identical with those of the rest of the R30xx family; the memory manage­
ment resources are identical with those of the base versions of the R30xx 
family; the only significant difference between this device and the R30xx 
family is in the implementation of the Cache Control register. 

CoprQcessor 0 Bus Interface Control 
Figure 5. 1 illustrates the coprocessor 0 registers found in the R36 l 00. 

Note that the MIPS architecture allows the register set of CPO to vary by 
implementation; software can easily identify the R36 l 00 (and its CPO 
registers) from other devices by reading the PRid from CPO. 

The fields of these registers are described below. Table 5.1 lists the 
register numbers for the various R36100 CPO registers. 

Used for CPU 
Identification 

PAID $15 

Used for Cache 
Control 

CONFIG$3 

Used with Exception 
Processing 

.... I S_T_A_T-US-$1_2___, 

CAUSE $13 

EPC $14 

BADVA$8 

Figure 5.1 R36100 CPO Registers 

5-1 



Coprocessor O Register Set Chapter 5 

Mnemonic 

Config 

BadVA 

Status 

Cause 

EPC 

Pr ID 

CPO Register # Description 

$3 Cache and CPU configuration control 

$8 Bad Virtual Address for last Addressing Exception 

$12 Processor status, control. and diagnostic information 

$13 Cause of current exception/ exception state 

$14 Exception Program Counter; return address for exception 
handler 

$15 Identification information for current processor 

Table 5.1 R36100 CPO Register Addresses 

Cache Configuration Register 
The cache configuration register allows the kernel to control various 

operational aspects of the on-chip caches of the R36100. These features 
can be used to improve performance and/ or implement debug capability 
Jar the R36100. The. Config register is both readable and writable. 

Figure 5.2 illustrates the various fields of the cache configuration 
register. The reset defaults for this register insure R30xx compatible 
operation. · 

31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 

Lock DBR DCI 
FD Fl D I 

0 Halt ICI RF CM CM WrD WrD 

2 1 . 2 3 

15 0 

0 

16 

Lock: Register Write Lock 
'1 ': Reserved: Must be written 
DBR: as '1' 
DCI: Data Burst Refill Mode 
'O': Data Cache Index 
Halt: Reserved: Must be written 
ICI: as'O' 
RF: Halt Mode 
FDCM: Instruction Cache Index 
FICM: Reduced Frequency Mode 
DWrD: Force Data Cache Miss 
IWrD: Force Instruction Cache Miss 

Data Cache Write Disable 
Instruction Cache Write 
Disable 

Figure 5.2 R36100 Cache Control Register 
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Lock ('Lock') 
The lock bit can be used by the kernel to inhibit subsequent write oper­

ations to this register. It is useful in ensuring that operating systems 
written for other R30xx-based applications do not inadvertently change 
the fields of the Cache Configuration register. 

Table 5.2 illustrates the Cache Configuration Register Lock Field. At 
reset, the register is unlocked (Lock bit is 'O'). Thus, the Config register 
can be written and re-written as the operating system chooses. Once the 
Lock bit is written with a 'l ', subsequent writes to the Config register will 
be ignored. · 

Value Action 

'O' Leave Unlocked (Default) 

'l' Lock register from future writes 

Table 5.2 R36100 Cache Configuration Register Lock Field 

Reserved-High ('l') 
This bit is reserved for testing of the R36100. At reset. the bit will be 

set high (' l '). Writes to the Config register must maintain this bit as high 
(' l '). 

Reserved-Low ('0') 
These fields are reserved for testing and for future R3xxx-based 

devices. At reset. these bit fields are reset ('O'). Writes to the Config 
register must maintain these bit fields as low ('O'). 

DBlockRefill ('DBR') 
Table 5.3 indicates the value and action of the DBR. If this bit is set 

high ('l '). data cache misses will be processed as a quad (four-word) read. 
If this bit is reset low ('O'). data cache misses will be processed as a single 
word read. At reset. this bit is reset low ('0'). 

Value Action 

'O' Data cache misses use single word refill (default). 

'l' Data cache misses use quad word refill. 

Table 5.3 R36100 DBlockRefi.11 Field 

D-CachelndexControl ('DCI') 
This two bit field controls which bits of the physical address provide the 

high-order data cache index, as described in Chapter 3. Table 5.4 shows 
the actions of the various bit combinations. At reset. this field is cleared 
to '00', resulting in normal operation. 

Value DCache Index(9) DCache Index(8) Cache Portions 

'00' PhyAddr(9) PhyAddr(8) 1 (default) 

'01' reserved reserved Not useful. Reserved 

'10' PhyAddr(28) PhyAddr(8) 2 

'11' PhyAddr(28) PhyAddr(27) 4 

Table 5.4 R36100 D-Cache Index Control Field 
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Halt Mode ('Halt') 
If this bit is set high (' l '), the CPU pipeline will be stalled until either an 

interrupt is asserted (regardless of current masking) or a reset exception 
is signalled. If this bit is set low ('O'}, the pipeline will continue operation. 

If the halt mode is exited, for example by an interrupt, the RF mode 
(described below) will also be exited. Table 5.5 shows the actions and 
values of the R36100 Halt Mode ('Halt'). 

Value Action 

'O' Normal pipeline operation (default). 

'l' Halt until interrupt or Reset 

Table 5.5 R36100 Halt Field 

1-CachelndexControl ('ICI') 
This two bit field controls which bits of the physical address provide the 

high-order instruction cache index, as described in chapter 3. Table 5.6 
shows the actions of the various bit combinations. At reset. this field is 
cleared to '00'. resulting in normal operation. 

Value ICache Index(l l) !Cache Index( 10) Cache Portions 

'00' PhyAddr(l l) PhyAddr(l 0) 1 (default) 

'01' reserved reserved Not useful. Reserved 

'10' PhyAddr(28) PhyAddr(lO) 2 

'11' PhyAddr(28) PhyAddr(27) 4 

Table 5.6 R36100 I-Cache Index Control Field 

ReduceFrequency ('RF') 
This 3 bit field can be used to divide the normal pipeline frequency 

down to a lower frequency, thus lowering device power consumption. 
Table 5. 7 shows the actions of the various bit settings. At reset, this field 
is cleared to '000'. resulting in normal operation. Similarly, whenever the 
halt mode is exited, this field will be cleared to '000'. 

Value Action 

'000' Normal Pipeline frequency (default) 

'001' Divide by 2 

'010' Divide by 4 

'011' Divide by 8 

'100' Divide by 16 

'101' Divide by 32 

'110' Divide by 64 

'111' Reserved 

Table 5.7 R36100 Reduced Frequency Mode Field 
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When a reduced frequency mode is enabled, both the pipeline 
frequency and the system interface frequency will be reduced by the 
programmed amount. The minimum allowed frequency is a CPU pipeline 
frequency of0.5MHz. To prevent internal synchronization problems, soft­
ware should always switch from the Normal frequency to a particular 
divide by frequency or vice-versa. Thus if a switch between 64 and 32 is 
desired, first switch from 64 to Normal and then to 32. 

Note that the "RF" mode also impacts the frequency of the bus inter­
face, including the on-chip devices. System software may need to adjust 
timer values, baud rates, DRAM refresh, and other frequency sensitive 
system variables when entering and exiting "RF" mode. 

ForceDCacheMiss ('FDCM') 
Table 5.8 shows the values and actions for the R36100 ForceDCache­

Miss field. If this bit is set high ('l '). all cacheable data load references 
will be forced to miss in the data cache. The data references will then be 
supplied using the Data Cache miss protocol (including DBlockRefill). 
Store operations will continue to update the cache, and the cache miss 
processing will update the cache. Thus, this bit provides a quick method 
of initializing the cache or reloading the cache from an external device. 

At reset, this bit is reset low ('O'). allowing normal operation of the data 
cache. Note also that this bit is logically "OR'ed" with the emulator inter­
face "FCM" pin. 

Value Action 

'O' Normal data cache operation (default). 

'l' Force data cache operations to miss. 

Table 5.8 R36100 ForceDCacheMiss Field 

ForceICacheMiss ('FICM') 
Table 5.9 shows the values and actions for the ForcelCacheMiss field. If 

this bit is set high ('l '). all cacheable instruction references will be forced 
to miss in the instruction cache. The instruction references will then be 
supplied using the Instruction Cache miss protocol (a quad word read). 
Cache miss processing will update the cache. Thus, this bit provides a 
quick method of initializing the cache or reloading the cache from an 
external device. 

At reset, this bit is reset low ('O'). allowing normal operation of the 
instruction cache. Note also that this bit is logically "OR'ed" with the 
emulator interface "FCM" pin. 

Value Action 

'O' Normal instruction cache operation (default). 

'l' Force instruction cache operations to miss. 

Table 5.9 R36100 ForceICacheMiss Field 
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DCacheWrlteDisable('DWrD') 
Table 5.10 shows the values and actions for the Data Cache Write 

Disable field. According to this table, when set high (' l '). this field causes 
data cache writes to be ignored. The data cache will thus contain the 
older value, regardless of the reason for the cache miss processing. Simi­
larly, store instructions will not cause the 0-cache to be updated. When 
cleared low ('O'), normal cache operation results. 

Value Action 

'O' Normal data cache operation (default). 

'I' Data cache writes inhibited. 

Table 5.10 R36100 Data Cache Write Disable Field 

1-CacheWriteDisable ('IWrD') 
Table 5.11 shows the values and actions for the Instruction Cache 

Write Disable field. According to this table, when set high ('l'), this field 
causes instruction cache writes to be ignored. The instruction cache will 
thus contain the older value. regardless of the reason for the cache miss 
processing. When cleared low ('O'), normal cache operation results. 

Value Action 

'O' Normal data cache operation (default). 

, I' Instruction cache writes inhibited. 

Table 5.11 R36100 Instruction Cache Write Disable Field 
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The Cause Register 
The contents of the Cause register describe the last exception. A 5-bit 

exception code indicates the cause of the current exception; the 
remaining fields contain detailed information specific to certain excep­
tions. 

All bits in this register, with the exception of the SW bits, are read-only. 
The SW bits can be written to set or ·reset software interrupts. Figure 5.3 
illustrates the format of the Cause register. Table 5.12 details the 
meaning of the various exception codes. 

31 29:28 

1 2 12 

BO: Branch Delay 
CE: Co-processor Error 

IP: Interrupts Pending 

Sw: Software Interrupts* 

15:10 

IP[5 .. 0] 

6 

*R_ead AND Write. The rest are read-only. 

9:8 6:2 

Sw I 0 I ExcCode 

2 1 5 

ExcCode: Exception Code 

~:RESERVED 
Must Be Written as 

0 

Returns O when 

Read 

Figure 5.3 R36100 Cause Register 

Number Mnemonic Description 

0 Int External Interrupt 

I MODt TLB Modification Exception . 

2 TLBLt TLB miss Exception (Load or instruction fetch) 

3 TLBSt TLB miss exception (Store) 

0 

2 

4 AdEL Address Error Exception (Load or instruction fetch) 

5 Ad ES Address Error Exception (Store) 

6 IBE Bus Error Exception (for Instruction Fetch) 

7 DBE Bus Error Exception (for data Load or Store) 

8 Sys SYSCALL Exception 

9 Bp Breakpoint Exception 

10 RI Reserved Instruction Exception 

11 CpU Co-Processor Unusable Exception 

12 Ovf Arithmetic Overflow Exception 

13-31 - Reserved 

tThese exceptions will not occur in R36100. 

Table 5.12 Cause Register Exception Codes 
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The meanings of the other cause register bits are as follows: 

BD The Branch Delay bit is set (1) ifthe last exception was tak­
en while the processor was executing in the branch delay 
slot. If so, then the EPC will be rolled back to point to the 
branch instruction, so that it can be re-executed and the 
branch direction re-determined. 

CE The Coprocessor Error field captures the coprocessor unit 
number referenced when a Coprocessor Unusable excep­
tion is detected. 

IP The Interrupt Pending field indicates which interrupts are 
pending. Regardless of which interrupts are masked, the IP 
field can be used to determine which interrupts are pend­
ing. 

SW The Software interrupt bits can be thought of as the logical 
extension of the IP field. The SW interrupts can be written 
to force an interrupt to be pending to the processor, and are 
useful in the prioritization of exceptions. To set a software 
interrupt, a "l" is written to the appropriate SW bit, and a 
"O" will clear the pending interrupt. There are correspond­
ing interrupt mask bits in the status register for these inter­
rupts. 

ExcCode The exception code field indicates the reason for the last ex­
ception. Its values are listed in Table 5.12 on page 7. 

The EPC (Exception Program Counter) Register 
The 32-bit EPC register contains the virtual address of the instruction 

which took the exception, from which point processing resumes after the 
exception has been serviced. When the virtual address of the instruction 
resides in a branch delay slot, the EPC contains the virtual address of the 
instruction immediately preceding the exception (that is, the EPC points 
to the Branch or Jump instruction). 

Bad VAddr Register 
The Bad VAddr register saves the entire bad virtual address for any 

addressing exception. 

The Status Register 
The Status register contains all the major status bits; any exception 

puts the system in Kernel mode. All bits in the status register, with the 
exception of the TS (TLB Shutdown) bit. are readable and writable; the TS 
bit is read-only. Figure 5.4 on page 9 shows the functions of the various 
bits in the status register. 
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CU3 CU2 CU1 cuo 0 RE 0 BE TS PE CM PZ SwC lsC 

2 2 

5 8 7 6 5 4 3 2 0 

'arsk 0 I KUo I 1Eo IKUp I 1Ep IKuc I 1Ec I -~:O); 
s t(J:O) 

8 2 

CU(n): Co-processor 'n' Usable lntMask: Interrupt Mask field 
'O': Reserved: must be written as KUo: Kernel/User mode (old) 
RE: 'O' IEo: Interrupt Enable (old) 

BEV: Reverse Endian enable KUp: Kernel/User mode (previous) 
TS: Boot-time Exception vector IEp: Interrupt Enable (previous) 
PE: TLB Shutdown KUc: Kernel/User mode (current) 
CM: Parity Error IEc: Interrupt Enable (current) 
PZ: Cache Miss 

SwC: Parity Zero 
lsC: Swap Caches 

Isolate Cache 

Figure 5.4 R36100 Status Register 

The status register contains a three-level stack (current, previous, and 
old) of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. 
The stack is pushed when each exception is taken and popped by the 
Restore From Exception instruction. These bits may also be directly read 
or written. 

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; 
and the value of the TS bit is set to "l ". The rest of the bit fields are unde­
fined after reset. 

The various bits of the status register are defined as follows: 

CU Coprocessor Usability. These bits individually control user 
level access to coprocessor operations, including the polling 
of the BrCond input pins and the manipulation of the Sys­
tem Control Coprocessor (CPO). 

RE Reverse Endianness. The R3000 architecture allows the 
system to determine the byte ordering convention for the 
Kernel mode, and the default setting for user mode, at reset 
time. If this bit is cleared, the endianness defined at reset 
is used for the current user task. If this bit is set, then the 
user task will operate with the opposite byte ordering con­
vention from that determined at reset. This bit has no effect 
on kernel mode. Also note that the setting of this bit does 
not affect the byte lanes used in 16- and 8-bit memory 
ports; thus, external byte lane shift logic is not required. 

BEV Bootstrap Exception Vector. The value of this bit deter­
mines the locations of the exception vectors of the proces­
sor. If BEV = 1, then the processor is in "Bootstrap" mode, 
and the exception vectors reside in uncacheable space. If 
BEV= 0, then the processor is in normal mode, and the ex­
ception vectors reside in cacheable space. 
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TS 

PE 

CM 

PZ 

SwC 

IsC 

IntMask 

KUo 

IEo 

KUp 

IEp 

KUc 

IEc 

·o· 

Chapter 5 

TLB Shutdown. This bit reflects whether the TLB is func­
tioning. At reset, this bit can be used to determine whether 
the current processor is a base or extended architecture 
version. For the R36100, this bit is frozen at "l". 

Parity Error. This field should be written with a "l" at boot 
time. Once initialized, this field will always be read as "O'. 

Cache Miss. This bit is set if a cache miss occurred while 
the cache was isolated. It is useful in determining the size 
and operation of the internal cache subsystem. 

Parity Zero. This field should always be written with a "O''. 

Swap Caches. Setting this bit causes the execution core to 
use the on-chip instruction cache as a data cache and vice­
versa. Resetting the bit to zero un-swaps the caches. This 
is useful for certain operations such as instruction cache 
flushing. This feature is not intended for normal operation 
with the caches swapped. 

Isolate Cache. If this bit is set, the data cache is "isolated" 
from main memory; that is, store operations modify the 
data cache but do not cause a main memory write to occur, 
and load operations return the data value from the cache 
whether or not a cache hit occurred. This bit is also useful 
in various operations such as flushing, as described in 
Chapter 3. 

Interrupt Mask. This 8-bit field can be used to mask the 
hardware and software interrupts to the execution engine 
(that is, not allow them to cause an exception). IM(l :0) are 
used to mask the software interrupts, and IM (7:2) mask the 
6 external interrupts. A value of 'O' disables a particular in­
terrupt, and a 'l' enables it. Note that the IE bit is a global 
interrupt enable; that is, if the IE is used to disable inter­
rupts. the value of particular mask bits is irrelevant; if I.E 
enables interrupts, then a particular interrupt is selectively 
masked by this field. 

Kernel/User old. This is the privilege state two exceptions 
previously. A 'O' indicates kernel mode. 

Interrupt Enable old. This is the global interrupt enable 
state two exceptions previously. A 'l' indicates that inter­
rupts were enabled, subject to the IM mask. 

Kernel/User previous. This is the privilege state prior to the 
current exception A 'O' indicates kernel mode. 

Interrupt Enable previous. This is the global interrupt en­
able state prior to the current exception. A' l' indicates that 
interrupts were enabled, subject to the IM mask. 

Kernel/User current. This is the current privilege state. A 
'O' indicates kernel mode. 

Interrupt Enable current. This is the current global inter­
rupt enable state. A 'l' indicates that interrupts are en­
abled, subject to the IM mask. 

Fields indicated as 'O' are reserved; they must be written as 
·o·, and will return ·o· when read. 
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PRid Register 
This register is useful to software in determining which revision of the 

processor is executing the code. The foqnat of this register is illustrated 
in Figure 5.5. For the R36100, the value returned is Ox0000_0710. On 
the R36100, the most significant 4 bits of the Revision field form an 
extension to the Implementation field. The least significant 4 bits of the 
Revision field are reserved for manufacturing. This value is different from 
other members of the IDT RISController family, so that software can 
easily determine the CPU type. This facilitates the development of one 
binary working with all family members. 

0 

16 

0: 
Implementation: 

Revision: 

Implementation Revision 

8 8 

Returns 'O' when Read 
CPU Implementation number ('07' for IDT embedded) 
Revision ('10' for R36100) 

Figure 5.5 R36100 PrID Register 
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Processors execute code in a highly-directed fashion. The instruction 
immediately subsequent to the current instruction is fetched and then 
executed; if that instruction is a branch instruction, the program execu­
tion is diverted to the specified location. Thus, program execution is rela­
tively straightforward and predictable. 

Exceptions are a mechanism used to break into this execution stream 
and to force the processor to begin handling another task, typically 
related to either the system state or to the erroneous or undesirable 
execution of the program stream. Thus, exceptions typically are viewed 
by programmers as asynchronous interruptions of their program. (Note 
that exceptions are not necessarily unpredictable or asynchronous, in 
that the events which cause the exception may be exactly repeatable by 
the same software executing on the same data; however, the programmer 
does not typically "expect" an exception to occur when and where it does, 
and thus will view exceptions as asynchronous events). 

The R3000 architecture provides for extremely fast, flexible interrupt 
and exception handling. The processor makes no assumptions about 
interrupt causes or handling techniques, and allows the system designer 
to build his own model of the best response to exception conditions. 
However, the processor provides enough information and resources to 
minimize both the amount of time required to begin handling the specific 
cause of the exception, and to minimize the amount of software required 
to preserve processor state information so that the normal instruction 
stream may be resumed. 

This chapter discusses exception handling issues in R36100-based 
systems. The topics· examined are: the exception model, the machine 
state to be saved on an exception, and nested exceptions. Representative 
software examples of exception handlers are also provided, as are tech­
niques and issues appropriate to specific classes of exceptions. 

R36100 Exception Model 
The exception processing capability of. the R36 l 00 assures an orderly 

transfer of control from an executing program to the kernel. Exceptions 
may be broadly divided into two categories: they can be caused by an 
instruction or instruction sequence, including an unusual condition 
arising during its execution; or can be caused by external events such as 
interrupts. When an R36 l 00 detects an exception, the normal sequence 
of instruction flow is suspended; the processor is forced to kernel mode 
where it can respond to the abnormal or asynchronous event. Table 6. 1 
on page 2 lists the exceptions recognized by the R3000 architecture. 
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Exception Mnemonic Cause. 

Reset Reset Assertion of the Reset signal causes an exception that 
transfers control to the special vector at virtual address 
OxbfcO_OOOO. 

UTLB Misst UTLB User TLB Miss. A reference is made (in either kernel or 
user mode) to a page in kuseg that has no matching TLB 
entry. This can occur only in extended architecture 
versions of the processor. 

TLB Misst TLBL (Load) TLBS A referenced TLB entry's Valid bit isn't set, orthere is a 
(Store) reference to a kseg2 page that has no matching TLB entry. 

This can occur only in extended architecture versions of 
the processor. 

TLB Modiftedt Mod During a store instruction, the Valid bi,t is set but the dirty 
bit is not set in a matching TLB entry. This can occur only 
in extended architecture versions of the processor. 

Bus Error IBE (Instruction) DBE Assertion of the Bus Error input during a read operation, 
(Data) due to such external events as bus timeout, backplane 

memory errors, invalid physical address, or invalid access 
types. 

Address Error AdEL (Load) AdES Attempt to load, fetch, or store an unaligned word; that is, 
(Store) a word or halfword at an address not evenly divisible by 

four or two, respectively. Also caused by reference toa 
virtual address with most significant bit set while in User 
Mode. 

Overftow Ovf Twos complement overflow during add or subtract. 

System Call Sys Execution of the SYSCALL Trap Instruction 

Breakpoint Bp Execution of the break instruction 

Reserved RI Execution of an instruction with an undefined or reserved 
Instruction major operation code (bits 31:26), or a special instruction 

whose minor opcode (bits 5:0) is undefined. 

Co-processor CpU Execution of a co-processor instruction when the CU (Co-
Unusable processor Usable) bit is not set for the target co-processor. 

Interrupt Int Assertion of one of the six hardware interrupt inputs or 
setting of one of the two software interrupt bits in the 
Cause register. 

tThese exceptions will not occur in an R36 l 00, or in any base member of the R30xx family. 

Table 6.1 R3000 Architecture Exceptions 

Precise vs. Imprecise Exceptions 
One classification of exceptions refers to the precision with which the 

exception cause and processor context can be determined. That is, some 
exceptions are precise in their nature, while others are "imprecise." 

In a precise exception, much is known about the system state at the 
exact instance the exception is caused. Specifically, the exact processor 
context and the exact cause of the exception are known. The processor 
thus maintains its exact state before the exception was generated, and 
can accurately handle the exception, allowing the instruction stream to 
resume when the situation is corrected. Additionally, in a precise excep­
tion model, the processor can not advance state; that is, subsequent 
instructions, which may already be in the processor pipeline, are not 
allowed to change the state of the machine. 
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Many real-time applications greatly benefit from a processor model 
which guarantees precise exception context and cause information. The 
MIPS architecture, including the R36100, implements a precise exception 
model for all exceptional events. 

Exception Processing 
The R36 l 00 exception handling system efficiently handles machine 

exceptions, including arithmetic overflows, 1/0 interrupts, system calls, 
breakpoints, reset, and co-processor unusable conditions. Any of these 
events interrupt the normal execution flow; the R36100 aborts the 
instruction causing the exception and also aborts all those following in 
the exception pipeline which have already begun, thus not modifying 
processor context. The CPU then performs a direct jump into a desig­
nated exception handler routine. This insures thatthe R36100 is always 
consistent with the precise exception model. 

Exception Handling Registers 
The system co-processor (CPO) registers contain information pertinent 

to exception processing. Software can examine these registers during 
exception processing to determine the cause of the exception and the 
state of the processor when it occurred There are four registers used in 
exception processing, shown in Chapter 5. These are the Cause register, 
the EPC register, the Status register, and the BadVAddr register. A brief 
description of each follows. 

The Cause Register 
The contents of the Cause register describe the last exception. A 5-bit 

exception code indicates the cause of the current exception; the 
remaining fields contain detailed information specific to certain excep­
tions. 
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All bits in this register, with the exception of the SW bits, are read-only. 
The SW bits can be written to set or reset software interrupts. Figure 6.1 
shows the cause register. 

31 29:28 

1 1 2 12 

BO: Branch Delay 
CE: Co-processor Error 
IP: Interrupts Pending 
Sw: Software Interrupts* 

15:10 

IP[S .. O] 

6 

*Read AND Write. The rest are read-only. 

9:8 6:2 

Sw 0 ExcCode 

2 1 5 

ExcCode: Exception Code 

[QJ : RESERVED 
Must Be Written as 

0 
Returns O when 

Read 

Figure 6.1 R36100 Cause Register 

The meaning of the other bits of the cause register is as follows: 

0 

2 

BD The Branch Delay bit is set (I) if the last exception was tak­
en while the processor was executing in the branch delay 
slot. If so, then the EPC will be rolled back to point to the 
branch instruction, so that it can be re-executed and the 
branch direction re-determined. 

CE The Co-processor Error field captures the co-processor unit 
number referenced when a Co-processor Unusable excep­
tion is detected. 

IP The Interrupt Pending field indicates which interrupts are 
pending. Regardless of which interrupts are masked, the IP 
field can be used to determine which interrupts are pend­
ing. 

SW The Software interrupt bits can be thought of as the logical 
extension of the IP field. The SW interrupts can be written 
to force an interrupt to be pending to the processor, and are 
useful in the prioritization of exceptions. To set a software 
interrupt, a "l" is written to the appropriate SW bit, and a 
"O" will clear the pending interrupt. There are correspond­
ing interrupt mask bits in the status register for these inter- . 
rupts. 

ExcCode The exception code field indicates the reason for the last ex­
ception. Its values are listed in Table 6.2. 
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Number Mnemonic Description 

0 Int External Interrupt 

1 MODt TLB Modification Exception 

2 TLBLt TLB miss Exception (Load or instruction fetch) 

3 TLBSt TLB miss exception (Store) 

4 AdEL Address Error Exception (Load or instruction fetch) 

5 Ad ES Address Error Exception (Store) 

6 IBE Bus Error Exception (for Instruction Fetch) 

7 DBE Bus Error Exception (for data Load or Store) 

8 Sys SYSCALL Exception 

9 Bp Breakpoint Exception 

10 RI Reserved Instruction Exception 

11 CpU Co-Processor Unusable Exception 

12 Ovf Arithmetic Overflow Exception 

13-31 - Reserved 

tThese exceptions will not occur in an R36100 

Table 6.2 Cause Register Exception Codes 

The EPC (Exception Program Counter) Register 
The 32-bit EPC register contains. the virtual address of the instruction 

which took the exception, from which point processing resumes after the 
exception has been serviced. When the virtual address of the instruction 
resides in a branch delay slot, the EPC contains the virtual address of the 
instruction immediately preceding the exception (that is, the EPC points 
to the Branch or Jump instruction). 

Bad VAddr Register 
The Bad VAddr register saves the entire bad virtual address for any 

addressing exception. 

The Status Register 
The Status register contains all the major status bits; any exception 

puts the system in Kernel mode. All bits in the status register, with the 
exception of the TS (TLB Shutdown) bit, are readable and writable; the TS 
bit is read-only, and frozen to 'l' in the R36100. Figure 6.2 shows the 
definition and position of the various bits in the status register. 

The status register contains a three level stack (current, previous, and 
old) of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. 
The stack is pushed when each exception is taken, and popped by the 
Restore From Exception instruction. These bits may also be directly read 
or written. 

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; 
and the value of the TS bit is set to "l ". The rest of the bit fields are unde­
fined after reset. 
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Reserved: must be written as 
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Int Mask: 
KUo: 
IEo: 

KUp: 
IEp: 

KUc: 
IEc: 

Interrupt Mask field 
Kernel/User mode (old) 
Interrupt Enable (old) 
Kernel/User mode (previous) 
Interrupt Enable (previous) 
Kernel/User mode (current) 
Interrupt Enable (current) 

Figure 6.2 The Status Register 

The various bits of the status register are defined in chapter 5. The bits 
of most relevance in exception processing are repeated below. 

'BEV 

IM 

KUo 

IEo 

KUp 

IEp 

Bootstrap Exception Vector. The value of this bit deter­
mines the locations of the exception vectors of the proces­
sor. If BEV = 1, then the processor is in "Bootstrap" mode, 
and the exception vectors reside in uncacheable space. If 
BEV= 0, then the processor is in normal mode, and the ex­
ception vectors reside in cacheable space. 

Interrupt Mask. This 8-bit field can be used to mask the 
hardware and software interrupts to the execution engine 
(that is, not allow them to cause an exception). IM(l:O) are 
used to mask the software interrupts, and IM (7:2) mask the 
6 external interrupts. A value of'O' disables a particular in­
terrupt, and a 'I' enables it. Note that the IE bit is a global 
interrupt enable; that is, if the IE is used to disable inter­
rupts, the value of particular mask bits is irrelevant; if IE 
enables interrupts, then a particular interrupt is selectively 
masked by this field. 

Kernel/User old. This is the privilege state two exceptions 
previously. A 'O' indicates kernel mode. 

Interrupt Enable old. This is the global interrupt enable 
state two exceptions previously. A 'I' indicates that inter­
rupts were enabled, subject to the IM mask. 

Kernel/User previous. This is the privilege state prior to the 
_ current exception A 'O' indicates kernel mode. 

Interrupt Enable previous. This is the global interrupt en­
able state prior to the current exception. A 'I' indicates that 
interrupts were enabled, subject to the IM mask. 
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KUc 

IEc 

Chapter 6 

Kernel/User current. This is the current privilege state. A 
'O' indicates kernel mode. 

Interrupt Enable current. This is the current global inter­
rupt enable state. A 'l' indicates that interrupts are en­
abled, subject to the IM mask. 

Exception Vector Locations 
The R3000 architecture separates exceptions into three vector spaces. 

The value of each vector depends on the BEV (Boot Exception Vector) bit 
of the status register, which allows two alternate sets of veetors (and thus 
two different pieces of code) to be used. 

Typically, this is used to allow diagnostic tests to occur before the func­
tionality of the cache is validated; processor reset forces the value of the 
BEV bit to a 'l'. Table 6.3 and Table 6.4 list the exception vectors for the 
R36100 for the two different modes. 

Exception Virtual Address Physical Address 

Reset OxbfcO_OOOO OxlfcO_OOOO 

UTLB Miss Ox8000_0000 OxOOOO_OOOO 

General Ox8000_0080 Ox0000_0080 

Table 6.3 Exception Vectors When BEV = 0 

Exception Virtual Address Physical Address 

Reset OxbfcO_OOOO OxlfcO_OOOO 

UTLB Miss OxbfcO_OlOO OxlfcO_OlOO 

General Oxbfc0_0180 Oxlfc0_0180 

Table 6.4 Exception Vectors When BEV = 1 

Exception Prioritization 
It is important to understand the structure of the R36 l 00 instruction 

execution unit in order to understand the exception priority model of the 
processor. The R36100 runs instructions through a five stage pipeline, 
illustrated in Figure 6. 3. 

IF RD ALU MEM WB 

IVA I ID 
TLB 

OP D-FETCH WB 

DVA D 
TLB 

Figure 6.3 Pipelining in the R3051 family 
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The pipeline stages are as follows: 
• IF (Instruction Fetch). This cycle contains two parts: the NA (Instruc­

tion Virtual Address) phase, which generates the virtual instruction 
address of the next instruction to be fetched, and the ITLB phase, 
which performs the virtual to physical translation of the address. 

• RD (Read and Decode). This phase obtains th.e required data from the 
internal registers and also decodes the instruction. 

• ALU (Arithmetic Logic Unit). This phase either performs the desired 
arithmetic or logical operation, or generates the address for the 
upcoming data operation. For data operations, this phase contains 
both the data virtual address stage, which generates the desired 
virtualaddress, and the data TLB stage, which performs the virtual 
to physical translation. 

• MEM (Memory). This phase performs the data load or store transac­
tion. 

• WB (Write Back). This stage updates the registers with the result 
data. 

High performance is achieved because five instructions are operating 
concurrently, each in a different stage of the pipeline. However, since 
multiple instructions are operating concurrently, it is possible that 
multiple exceptions are generated concurrently. If so, the processor must 
decide which exception to process, basing this decision on the stage of the 
pipeline that detected the exception. The processor will then flush all 
preceding pipeline stages to avoid altering processor context, thus imple­
menting precise exceptions. This determines the relative priority of the 
exceptions. 

For example, an illegal instruction exception can only be detected in 
the instruction decode stage of the R36 l 00; an Instruction Bus Error can 
only be determined in the I-Fetch pipe stage. Since the illegal instruction 
was fetched before the instruction which generated the bus error was 
fetched, and since it is conceivable that handling this exception might 
have avoided the second exception, it is important that the processor 
handle the illegal instruction before the bus error. Therefore the excep­
tion detected in the latest pipeline stage has priority over exceptions 
detected in earlier pipeline stages. All instructions fetched subsequent to 
this (all preceding pipeline stages) are flushed to avoid altering state infor­
mation, maintaining the precise exception model. 
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Table 6. 5 lists the priority of exceptions from highest first to lowest. 

Mnemonic Pipestage 

Reset Any 

AdEL Memory (Load instruction) 

AdES Memory (Store instruction) 

DBE Memory (Load or store) 

MODt ALU (Data TLB) 

TLBLt ALU (DTLB Miss) 

TLBSt ALU (DTLB Miss) 

Ovf ALU 

Int ALU 

Sys RD (Instruction Decode) 

Bp RD (Instruction Decode) 

RI RD (Instruction Decode) 

CpU RD (Instruction Decode) 

TLBLt I-Fetch (ITLB Miss) 

AdEL IVA (Instruction Virtual Address) 

IBE RD (end of I-Fetch) 

tThese exceptions will not occur in an R36100. which does not include a TLB. 

Table 6.5 R36100 Exception Priority 

Exception Latency 
A critical measurement of a processor's throughput in interrupt driven 

systems is the interrupt "latency" of the system. Interrupt latency is a 
measurement of the amount time from the assertion of an interrupt until 
software begins handling that interrupt. Often included when discussing 
latency is the amount of overhead associated with restoring context once 
the exception is handled, although this is typically less critical than the 
initial latency. 

In systems where the processor is responsible for managing a number 
of time-critical operations in real time, it is important that the processor 
minimize interrupt latency. That is, it is more important that every inter­
rupt be handled at a rate above some given value, rather than occasion­
ally handle an interrupt at very high speed. 

Factors which affect the interrupt latency of a system include the types 
of operations it performs (that is, systems which have long sequences of 
operations during which interrupts can not be accepted have long 
latency), how much information must be stored and restored to preserve 
and restore processor context, and the priority scheme of the system. 

Table 6.5 illustrates which pipestage recognizes which exceptions. As 
mentioned above, all instructions less advanced in the pipeline are 
flushed from the pipeline to avoid altering state execution. Those instruc­
tions will be restarted when the exception handler completes. 
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Once the exception is recognized, the address of the appropriate excep­
tion vector will be the next instruction to be fetched. In general, the 
latency to the exception handler is one instruction cycle, and at worst the 
longest stallcycle in that system. 

The R36100 implements mechanisms which can help improve excep­
tion response time. Primacy among these is the cache locking mechanism 
described in earlier chapters. System software can be easily arranged 
such that the exception service routines . and/ or critical exception data 
are locked into the on-chip cache. The result will be both high-speed and 
fully deterministic. 

Interrupts Inputs ln the R36100 
The organization of interrupts in an R36100-based system is up to the 

system architect. Specifically, the R36100 multiplexes various interrupt 
pins with PIO pins; depending on the programming of the PIO unit, the 
system may have 6 external interrupts and 2 BrCond input pins available 
for interrupt software. This section describes operation assuming all 
such inputs are available to system software. Later chapters describe the 
on-chip PIO and interrupt control units. 

Interrupt Operation ln the R36100 
The R36 l 00 family features two types of interrupt inputs: synchronized 

internally and non-synchronized, or direct. 
The Slnt(2:0) bus (Synchronized Interrupts) allow the system designer 

to connect unsynchronized interrupt sources to the processor. The 
processor includes special logic on these inputs to avoid meta-stable 
states associated with switching inputs right at the processor sampling 
point. Because of this logic, these interrupt sources have slightly longer 
latency from the Slnt(n) pin to the exception vector than the non-synchro­
nized inputs. The operation of the synchronized interrupts is illustrated 
in Figure 6.4. · 

Run Cvcle Exceotion Vector 

Phi 

Slnt(n) -+-

-
t 28 t29 

Figure 6.4 Synchronized Interrupt Operation 

The other interrupts, Int(5:3), do not contain this synchronization logic, 
and thus have slightly better latency to the exception vector. However, 
the interrupting agent must guarantee that it always meets the interrupt 
input set-up and hold time requirements of the processor. These inputs 
are useful for interrupting agents which operate off of the synchronously 
with the R36100. The operation of these interrupts is illustrated in 
Figure 6.5. 
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Run Cvcle Exceotion Vector 

Phi 

t30 I 31 

Figure 6.5 Direct Interrupt Operation 

Since the interrupt exception is detected during the ALU stage of the 
instruction currently in the processor pipeline, at least one run cycle 
must occur between (or at) the assertion of the external interrupt input 
and the fetch of the exception vector. Thus, if the processor is in a stall 
cycle when an external agent sends an interrupt, it will execute at least 
one run cycle before beginning exception processing. In this instance, 
there would be no difference in the latency of synchronized and direct 
interrupt inputs. 

All of the interrupts are level-sensitive and active low. They continue to 
be sampled after an interrupt exception has occurred, and are not latched 
within the processor when an interrupt exception occurs. It is important 
that the external interrupting agent maintain the interrupt line until soft­
ware acknowledges the interrupt. 

Note that the R308 l incorporates a hardware floating point accelerator 
on-chip. The MIPS architecture recommends that Int(3) be used to 
handle the floating point interrupt; thus, the R308 l defaults to this inter­
rupt assignment. However, the R308 l Config register (which differs from 
the R36100 Config register) can be used to change the assignment. 

Also, the on-chip interrupt controller of the R36100 will signal its inter­
rupt to the CPU using one of the available CPU interrupts. The interrupt 
controller defaults to Int(4) for this operation; however, the interrupt 
controller does allow software to select an alternative interrupt. In any 
case, the system needs to reserve one CPU interrupt for the on-chip inter­
rupt controller. 

Each of the eight interrupts (6 hardware and 2 software) can be individ­
ually masked by clearing the corresponding bit in the Interrupt Mask field 
of the Status Register. All eight interrupts can be masked at once by 
clearing the IEc bit in the Status Register. 

On the synchronized interrupts, care should be taken to allow at least 
two clock cycles between the negation of the interrupt input and the re­
enabling of the interrupt mask for that bit. In general, it is recommended 
that software continue polling the IP field of the Cause register once it has 
instructed the peripheral to negate its interrupt, prior to re-enabling its 
mask, to avoid a spurious interrupt. 

The value shown in the interrupt pending bits of the Cause register 
reflects the current state of the interrupt pins of the processor. These bits 
are not latched (except for sampling from the data bus to guarantee that 
they are stable when examined), and the masking of specific interrupt 
inputs does not mask the bits from being read. 
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Using the BrCond Inputs 
In addition to the interrupt pins themselves, many systems can use the 

BrCond(3:2) input port pins in their exception model. These pins can be 
· directly tested by software, and can be used for polling or fast interrupt 

decoding. The kernel must enable the use of the corresponding co­
processor unit before testing the state of the BrCond input pin. 

The R36100 provides two synchronized BrCond inputs: SBrCond(3:2). 
Note that BrCond(O), corresponding to the on-chip CPO, and BrCond(l), 
corresponding to Co-Processor 1 (the FPA, present on the R308 l), are not 
available on the R36 l 00 as user inputs. Instructions that use 
BrCond(l :0) will always see a 'l' on the R36100. Also note that the 
SBrCond(3:2) on the R36 l 00 may be not be enabled in the PIO unit, in 
which case the SBrCond(3:2) input values are undefined. When 
programmed to be SBrCond(3:2) inputs, the timing requirements of the 
SBrCond inputs are illustrated in Figure 6.6. Since these inputs are 
synchronized by the R36100, they do not need to be driven synchro­
nously to the processor. 

Similar to the interrupt inputs, at least one instruction must be 
executed (in the ALU stage) of the instruction pipeline prior to software 
being able to detect a change in one of these inputs. This is because the 
processor actually captures the value of these flags one instruction prior 
to the branch on co-processor instruction. Before executing a Branch 
Condition instruction (i.e. BCzT, BCzF) the corresponding co-processor 
usable bit in the CPO status register must be set; otherwise, a co­
processor unusable exception will be signalled. 

t28 t29 

Figure 6.6 Synchronized BrCond Inputs 
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Interrupt Handling 
The assertion of an unmasked interrupt input causes the R36 l 00 to 

branch to the general exception vector at virtual address Ox8000_0080, 
and write the 'Int' code in the Cause register. The IP field of the Cause 
register shows which of the six hardware interrupts are pending and the 
SW field in the Cause register show which of the two software irtterrupts 
are pending. Multiple interrupts can be pending at the same time, with 
no priority assumed by the processor. 

If the interrupt asserted is due to the on-chip interrupt controller, the 
interrupt controller must be accessed to determine which of its interrupt 
sources caused the assertion. This operation is described in a later 
chapter. 

When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status 
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status 
register, respectively, as illustrated in Figure 6.7. The current kernel 
status bit KUc and the interrupt bit IEc are cleared. This will mask all of 
the interrupts and then place the processor in kernel mode. This 
sequence will be reversed by the execution of an r:fe (restore from excep­
tion) instruction, typically in the branch delay slot of the branch which 
resumes normal execution. 

IKUo~~Eol 

KUo I IEo I KUp I IEp I KUc I IEc I 
Exception Recognition 

RFE Instruction 

Figure 6. 7 Kernel and Interrupt Status Being Saved on Interrupts 

Interrupt Servicing 
In case of a hardware interrupt. the interrupt must be cleared by de-· 

asserting the interrupt line, which has to be done by alleviating the 
external conditions that caused the interrupt. Software interrupts have 
to be cleared by clearing the corresponding bits, SW(l:O). in the Cause 
register to zero. It is recommended that software continue polling the IP 
field of the Cause register once it has instructed the peripheral to negate 
its interrupt, prior to re-enabling its mask, to avoid a spurious interrupt. 
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Basic Software Techniques For Handling Interrupts 
Once an exception is detected the processor suspends the current task; 

enters kernel mode, disables intenupts, and begins processing at the 
exception vector location. The EPC is loaded with the address the 
processor will return to once the exception event is handled. t 

The specific actions of the processor depend on the cause of the excep­
tion being handled. The MIPS architecture classifies exceptions into three 
distinct classes: RESET, UTLB Miss , and General. 

Coming out of reset, the processor initializes the state of the machine. 
In addition to initializing system peripherals, page tables, the 1LB , and 
the caches, software clears both STATUS and CAUSE registers, and 
initializes the exception vectors. 

The code located at the exception vector may be just a branch to the 
actual exception code; however, in more time critical systems the instruc­
tions located at the exception vector may perform the actual exception 
processing. In order to cause the exception vector location to branch to 
the appropriate exception handler (presuming that such a jump is appro­
priate), a short code sequence such as that illustrated in Figure 6.8 may 
be used. · 

It should be noted the contents of register kO are not preserved. This is 
not a problem for software, since MIPS compiler and assembler conven­
tions reserve kO (and often k 1) for kernel processes, and do not use it for 
user programs. For the system developer it is advised that the use of kO 
be reserved for use by the exception handling code exclusively. This will 
make debugging and development much easier. 

The "IDT R30xx Family Software Reference Manual" provides a great 
deal of information on the software requirements of exception manage­
ment, including interrupt service. 

/* 

** 
*I 

/* 

** 
*/ 

.set noreorder # tells the assembler not to reorder the code 

·code sequence copied to UTLB exception vector 

la 

j 

nop 

kO,excep_utlb 

kO 

#address of utlb excp. handler 

# jump via reg kO 

code sequence copied to general exception vector 

la kO,excep_gener #address of general excp. handler 
al 

j kO #jump via reg kO 

nop 

Figure 6.8 Code Sequence to Initialize Exception Vectors 
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Preserving Context 
The R36 l 00 has the following four registers related to exception 

processing: 
• The Cause register 
• The EPC (exception program counter) register 
• The Status register 
• The BadVAddr (bad virtual address) register 
Typical exception handlers preserve the status, cause, and EPC regis­

ters in general registers (or on the system stack). If the exception cause is 
due to an address error, software may also preserve the bad virtual 
address register for later processing. 

Note that not all systems need to preserve this information. Since the 
R36100 disables subsequent interrupts, it is possible for software to 
directly process the exception while leaving the processor context in the 
CPO registers. Care must be taken to insure that the execution of the 
exception handler does not generate subsequent exceptions. 

Preserving the context in general registers (and on the stack) does have 
the advantage that interrupts can be re-enabled while the original excep­
tion is handled, thus allowing a priority interrupt model to be built. 

A typical code sequence to preserve processor context is shown in 
Figure 6.9. This code sequence preserves the context into an area of 
memory pointed to by the kO kernel register. This register points to a 
block of memory capable of storing processor context. Constants identi­
fied by name (such as R_EPC) are used to indicate the offset of a partic­
ular register from the start of that memory area. 

It should be noted that this sequence for fetching the co-processor zero 
registers is required because there is a one dock delay in the register 
value actually being loaded into the general registers after the execution 
of the mfcO instruction. 

/* 

"'* 
"'/ 

la kO,except_regs # fetch address of reg save array 

SW AT,R_AT*4(k0) #save register AT 

SW vO,R_ V0*4(k0) # save register vO 

SW vl ,R_ Vl *4(k0) # save register v 1 

mfcO vO,CO_EPC # fetch the epc register 

mfcO vl,CO_SR # fetch the status register 

SW v0,R_EPC*4(k0) # save the epc 

mfcO vO,CO_CAUSE # fetch the cause register 

SW vl,R_SR"'4(k0) # save status register 

The above code is about the minimum required 

The user specific code would follow 

Figure 6.9 Preserving Processor Context 
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Determining The Cause Of The Exception 
The cause register indicates the reason the exception handler was 

invoked. Thus, to invoke the appropriate exception service routine, soft­
ware merely needs to examine the cause register, and use its contents to 
direct a branch to the appropriate handler. 

One method of decoding the jump to an appropriate software routine to 
handle the exception and cause is shown in Figure 6.10. Register vO 
contains the cause register, and register kO still points to the register save 
array . 

. set noreorder 

SW 

and 

lw 

SW 

j 

SW 

.set 

a0,R_A0*4(k0) 

vl ,vO,EXCMASK 

aO,cause_table(vl) 

al,R_Al *4(k0) 

aO 

kl,R_Kl *4(sp) 

reorder 

# save register aO 

# isolate exception code 

# get address of interrupt routine. 

#use delay slot to save register al 

# save k 1 register 

# re-enable pipeline scheduling 

Figure 6.10 Exception Cause Decoding 

The above sequence of instructions extracts the exception code from 
the cause register and uses that code to index into the table of pointers to 
functions (the cause_table). The cause_table data structure is shown in 
Figure 6.11. 

Each of the entries in this table point to a function for processing the 
particular type of interrupt detected. The specifics of the code contained 
in each function is unique to a given application; all registers used in 
these functions must be saved and restored. 
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int (*cause_table[l6))0 = { 

int_ extern, 

int_tlbmod, 

int_tlbmiss, 

int_tlbmiss, 

int_addrerr, 

int_addrerr, 

int_ibe, 

int_dbe, 

int_syscall, 

int_breakpoint, 

int_ trap, 

int_cpunuse, 

int_trap, 

int_unexp, 

int_unexp, 

int_unexp 

}; 

/* External interrupts 

/* TLB modification error 

/* load or instruction fetch 

/* write miss 

/* load or instruction fetch 

/* write address error 

/* Bus error - Instruction fetch 

/* Bus error - load or store data 

/* SYSCALL exception 

/* breakpoint instruction 

/* Reserved instruction 

/* coprocessor unusable 

/*Arithmetic overflow 

/*Reserved 

/*Reserved 

/*Reserved 

Figure 6.11 Exception Service Branch Table 
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Returning From Exceptions 
Returning from the exception routine is made through the rfe instruc­

tion. When the exception first occurs the R36 l 00 automatically saves 
some of the processor context, the current value of the interrupt enable 
bit is saved into the field for the previous interrupt enable bit, and the 
kernel/user mode context is preserved. 

The IE interrupt enable bit must be asserted (a one) for external inter­
rupts to be recognized. The KU kernel mode bit must be a zero in kernel 
mode. When an exception occurs, external interrupts are disabled and 
the processor is forced into kernel mode. When the rfe instruction is 
executed at completion of exception handling, the state of the mode bits is 
restored to what it was when the exception was recognized (presuming 
the programmer restored the status register to its value when the excep­
tion occurred). This is done by "popping" the old/previous/current KU 
and IE bits of the status register. 

The code sequence in Figure 6.12 is an example of exiting an interrupt 
handler. The assumption is that registers and context were saved as 
outlined above. To properly exit from exception handling, this code 
sequence must either be replicated in each of the cause handling func­
tions or each of them must branch to this code sequence. 

Note that this code sequence must be executed with interrupts 
disabled. If the exception handler routine re-enables interrupts, they 
must be disabled when the CPO registers are being restored. 

gen_excp_exit: 

.set noreorder 

lw k0,CO_SR*4(AT) 

lw vO,R_ V0*4(AT) 

mtcO kO,CO_SR 

lw k0,R_EPC*4(AT) 

lw AT,R_AT*4(AT) 

j kO 

rfe 

.set reorder 

# by the time we have gotten here 

# all general registers have been 

# restored (except of kO and vO) 

# reg. AT points to the reg save array 

# fetch status reg. contents 

# restore reg. vO 

# restore the status reg. contents 

# Get the return address 

# restore AT in load delay 

# return from int. via jump reg. 

# the rfe instr. is executed in the 

# branch delay slot 

Figure 6.12 Returning from Exception 
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Special Techniques For Interrupt Handling 
There are a number of techniques which take advantage of the R3q 100 

architecture to minimize exception latency and maximize throughput in 
interrupt driven systems. This section discusses a number of those tech­
niques. 

Interrupt Masking . 
Only the six external and two software interrupts are maskable excep­

tions. The mask for these interrupts are in the status register. 
To enable a given external interrupt. the corresponding bit in the 

status register must be set. The IEc bit in the status register must also be 
set. It follows that by setting and clearing these bits within the interrupt 
handler that interrupt priorities can be established. The general mecha­
nism for doing this is performed within the external interrupt-handler 
portion of the exception handler. 

The interrupt handler preserves the current mask value when the / 
status register is preserved. The interrupt handler then calculates which 
(if any) external interrupts have priority, and sets the interrupt mask bit 
field of the status register accordingly. Once this is done, the IEc bit is 
changed to allow higher priority interrupts. Note that all interrupts must 
again be disabled when the return from exception is processed. 

Using BrCond For Fast Response 
The R36 l 00 instruction set contains mechanisms to allow external or 

internal co-processors to operate as an extension of the main CPU. Some 
of these features may also be used in an interrupt-driven system to 
provide the highest levels ofresponse. 

Specifically. the R36100 allows external input port signals. the 
SBrCond(3:2) signals. These signals are used by external agents to report 
status back to the processor. The instruction set contains instructions 
which allow the external bits to be tested, and branches to be executed 
depending on the value of the SBrCond input. 

An interrupt-driven system can use these SBrCond signals, and the 
corresponding instructions, to implement an input port for time-critical 
interrupts. Rather than mapping an input port in memory (which 
requires external logic). the SBrCond signals can be examined by software 
to control interrupt handling. 

There are actually two techniques to use this advantageously. One 
method uses these signals to perform interrupt polling; in this method, 
the processor continually examines these signals, waiting for an appro­
priate value before handling the interrupt. A sample code sequence is 
shown in Figure 6.13. 

The software in this system is very compact. and easily resides in the 
on-chip cache of the processor. Thus, the latency to the interrupt service 
routine in this system is minimized. allowing the fastest interrupt service 
capabilities. 

A second method utilizes external interrupts combined with the 
SBrCond signals. In this method. both the SBrCond signal and one of the 
external interrupt lines are asserted when an external event occurs. This 
configuration allows the CPU to perform normal tasks while waiting for 
the external event. 

For example. assume that. a valve must be closed and then normal 
processing continued when SBrCond(2) is asserted TRUE. The valve is 
controlled by a register that is memory-mapped to address Oxaffe_0020 
and writing a one to this location closes the valve. The software in 
Figure 6.14 accomplishes this, using SBrCond(2) to aid in cause 
decoding. 
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The number of cycles for a deterministic system is five cycles between 
the time the interrupt occurred and it was serviced. Interrupts were re­
enabled in four additional cycles. Note that none of the processor context 
needs to be preserved and restored for this routine. 

.set noreorder 

polling_loop: 

bc2f polling_loop 

nop 

fast_response_cp2: 

b polling_loop 

# prevents the assembler from 

# reordering the code below 

# branch to yourself until 

# BrCond(2) is asserted 

# Once BrCond(2) is asserted, fall through 

# and begin processing the external event 

# code sequence that would do the 

# event processing 

# return to polling 

Figure 6.13 Polllng System Using BrCond 
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.set noreorder # prevents the assembler from reordering 

# the code sequences below 

/* This section of code is placed at the general exception 
** vector location Ox8000_0080. When an external interrupt is 
** asserted execution begins here. 

*/ 

bc2t 
Ii 
la 
j 
nop 

close_ valve 
kO,l 
kO,gen_exp_hand 
kO 

# test for emergency condition and 
# jump to close valve if TRUE 
# otherwise, 
#jump to general exc. handler 
#. and process less critical excepts. 

/* This is the close valve routine - its sole purpose is to close the 
** valve as quickly as possible. The registers 'kO' and 'kl' are reserved 
** for kernel use and therefore need not be saved when a client or 
*"' user program is interrupted. It should be noted that the value to 
** write ·to the valve close register was put in reg 'kO' in the 
** branch delay slot above - so by the time we get here it is 
** ready to output to the close register. 

*/ 

close_ valve: 

la kl,Oxaffe0020 

sw kO,O(kl) 

mfcO kO,CO_EPC 

nop 

j kO 

rfe 

. set reorder 

# the address of the close register 

# write the value to the close register 

# get the return address to cont processing 

# return to normal processing 

# restore previous interrupt mask 

# and kernel/user mode bits of the 

# status register . 

Figure 6.14 Using BrCond for Fast Interrupt Decoding 
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cache Locking 
The R36100 allows the cache to be split into multiple sections, each 

servicing a different section of the processor address space. Using this 
technique, the system can "dedicate" one such section to exception 

. service. Since the portion of the cache which deals with exception service 
will not be disturbed by normal system operation, the exception service 
code can be effectively locked into the on-chip cache. This has two posf­
tive benefits. 

First, this insures that the exception service routine will operate 
directly out of the on-chip cache, and avoid main memory I-cache miss 
fetches. This speeds overall execution. 

Secondly, this insures that the exception service routine performance 
will not be dependent on the tasks run since it was last invoked. Since 
those tasks will not displace the exception software from the on-chip 
cache, the exception software performance will be deterministic. 

Nested Interrupts 
Note that the processor does not automatically stack processor context 

when an exception occurs; thus, to allow nested exceptions it is important 
that software perform this stacking. 

Most of the software illustrated above also applies to a nested exception 
system. However, rather than using just one register (pointed to by kO) as 
a save area, a stacking area must be implemented and managed by soft­
ware. Also, since interrupts are automatically disabled once an exception 
is detected, the interrupt handling routine must mask the interrupt it is 
currently servicing, and re-enable other interrupts (once context is 
preserved) through the IEc bit. 

The use of Interrupt Mask bits of the status register to implement an 
interrupt prioritization scheme was discussed earlier. An analogous tech­
nique can be performed by using an external interrupt encoder to allow 
more interrupt sources to be presented to the processor. 

Software interrupts can also be used as part of the prioritization of 
interrupts. If the interrupt service routine desires to service the inter­
rupting agent, but not completely perform the interrupt service, it can 
cause the external agent to negate the interrupt input but leave interrupt 
service pending through the use of the SW bits of the Cause register. 

Catastrophic Exceptions 
There are certain types of exceptions that indicate fundamental prob­

lems with the system. Although there is little the software can do to 
handle such events, they are worth discussing. Exceptions such as these 
are typically associated with faulty systems, such as in the initial debug­
ging or development of the system. 

Potential problems can arise because the processor does not automati­
cally stack context information when an exception is detected. If the 
processor context has not been preserved when another exception is 
recognized, the value of the status, cause, and EPC registers are lost and 
thus the original task can not be resumed. 

An example of this occurring is an exception handler performing a 
memory reference that results in a bus error (for example, when 
attempting to preserve context). The bus error forces execution to the 
exception vector location, overwriting the status, cause, and context 
registers. Proper operation cannot be resumed. 
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Handling Specific Exceptions 
This section documents some specific issues and techniques for 

handling particular R36 l 00 exceptions. 

Address Error ·Exception 

Cause 
This exception occurs when an attempt is made to load, fetch, or store 

a word that is not aligned on a word boundary. Attempting to load or 
store a half-word that is not aligned on a half-word boundary will also 
cause this exception. The exception also occurs in User mode if a refer­
ence is made to a virtual address whose most significant bit is set (a 
kernel .address). This exception is not maskable. 

Handling 
The R36 l 00 branches to the General Exception vector for this excep­

tion. When the exception occurs, the CPU sets the ADEL or ADES code in 
the Cause register ExcCode field to indicate whether the address error 
occurred during an instruction fetch or a load operation (ADEL) or a store 
operation (ADES). 

The EPC register points at the instruction that caused the exception, 
unless the instruction is in a branch delay slot: in that case, the EPC 
register points at the branch instruction that preceded the exception­
causing instruction and sets the BD bit of the Cause register. 

The R36100 saves the KUp, IEp, KUc, and IEc bits of the Status 
register in the KUo, IEo, KUp, and IEp bits, respectively and clears the 
KUc and IEc bits. 

When this exception occurs, the BadVAddr register contains the virtual 
address that was not properly aligned or that improperly addressed 
kernel data while in User mode. The contents of the VPN field of the 
Context and EntryHi registers are undefined. 

Servicing 
A kernel should hand the executing process a segmentation violation 

signal. Such an error is usually fatal; although. an alignment error might 
be handled by simulating the instruction that caused the error. 

Breakpoint Exception 

Cause 
This exception occurs when the R36100 executes the BREAK instruc­

tion and is not maskable. 

Handling 
The R36 l 00 branches to the General Exception vector for the exception 

and sets the BP code in the CAUSE register ExcCode field. 
The R36 l 00 saves the KUp, IEp, KUc, and IEc bits of the Status register 

in the KUo, KUp, and IEp bits, respectively, and clears the KUc and IEc 
bits. 

The EPC register points at the BREAK instruction that caused the 
exception, unless the instruction is in a branch delay slot: in that case, 
the EPC register points at the BRANCH instruction that preceded the 
BREAK instruction and sets the BD bit of the Cause register. 
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Service 
The breakpoint exception is typically handled by a dedicated system 

routine. Unused bits of the BREAK instruction (bits 25 .. 6) can be used 
pass additional information. To examine these bits, load the contents of 
the instruction pointed at by the EPC register. 

Note: If the instruction resides in the branch delay slot, add four to the 
contents of the EPC register to find the instruction, 

To resume execution, change the EPC register so that the R36 l 00 does 
not execute the BREAK instruction again. To do this, add four to the EPC 
register before returning. 

Note: If a BREAK instruction is in the branch delay slot, the BRANCH 
instruction must be interpreted in order to resume execution. 

Bus Error Exception 

cause . 
This exception occurs when the Bus Error input to the CPU is asserted 

by external logic during a read operation. For example, events like bus 
time-outs, backplane bus parity errors, and invalid physical memory 
addresses or access types can signal exception. This exception is not 
maskable. 

This exception is used for synchronously occurring events such as 
cache miss refills. The general interrupt mechanism must be used to 
report a bus error that results from asynchronous events such as a buff­
ered write transaction. 

Handling 
The R36100 branches to the General Exception vector for this excep­

tion. When exception occurs, the R36100 sets the IBE or DBE code in the 
CAUSE register ExcCode field to indicate whether the error occurred 
during an instruction fetch reference (IBE) or during a data load or store 
reference (DBE). 

The EPC register points at the instruction that caused the exception, 
unless the instruction is in a branch delay slot: in that case, the EPC 
register points at the BRANCH instruction that preceded the exception­
causing instruction and sets the BO bit of the cause register. 

The R36100 saves the KUp, IEp. KUc, and IEc bits of the Status 
register in the KUo, IEo, KUp, and IEp bits, respectively, and clears the 
KUc and IEc bits. 

Servicing 
The physical address where the fault occurred can be computed from 

the information in the CPO registers: 
• If the Cause register's IBE code is set (showing an instruction fetch 

reference), the virtual address resides in the EPC register. 
• If the Cause register's DBE exception code is set (specifying a load or 

store reference), the instruction that caused the exception is at the 
virtual address contained in the EPC register (if the BO bit of the 
cause register is set, add four to the contents of the EPC register). 
Interpret the instruction to get the virtual address of the load or store 
reference and then use the TLBProbe (tlbp) instruction and read 
EntryLO to compute tlie physical page number. 

A kernel should hand the executing process a bus error when this 
exception occurs. Such an error is usually fatal. 
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Co-processor Unusable Exception 

Cause 
This exception occurs due to an attempt to execute a co-processor 

instruction when the corresponding co-processor unit has not been 
marked usable (the appropriate CU bit in the status register has not been 
set). For CPO instructions, this exception occurs when the unit has not 
been marked usable and the process is executing in User mode: CPO is 
always usable from Kernel mode regardless of the setting of the CPO bit in 
the status register. This exception is not maskable. 

Handling 
The R36100 branches to the General Exception vector for this excep­

tion. It sets the CPU code in the CAUSE register ExcCode field. Only one 
co-processor can fail at a time. 

The contents of the cause register's CE (Co-processor Error) field show 
which of the four co-processors (3,2.1, or 0) the R36100 referenced when 
the exception occurred. 

The EPC register points at the co-processor instruction that caused the 
exception, unless the instruction is in a branch delay slot: in that case, 
the EPC register points at the branch instruction that preceded the co­
processor instruction and sets the BO bit of the Cause register. 

The R36100 saves the KUp, IEp. KUc, and IEc bits of the status register 
in the KUo. IEo, KUp. and IEp bits, respectively, and clears the KUc and 
IEc bits. 

Servicing 
To identify the co-processor unit that was referenced, examine the 

contents of the Cause register's CE field. If the process is entitled to 
access, mark the co-processor usable and restore the corresponding user 
state to the co-processor. 

If the process is entitled to access to the co-processor, but the co­
processor is known not to exist or to have failed, the system could inter­
pret the co-processor instruction. If the BO bit is set in the Cause 
register, the BRANCH instruction must be interpreted; then, the co­
processor instruction could be emulated with the EPC register advanced 
past the co-processor instruction. 

If the process is not entitled to access to the co-processor, the process 
executing at the time should be handed an illegal instruction/privileged 
instruction fault signal. Such an error is usually fatal. 

Interrupt Exception 

Cause 
This exception occurs when one of eight interrupt conditions (software 

generates two, hardware generates six) occurs. 
Each of the eight external interrupts can be individually masked by 

clearing the corresponding bit in the IntMask field of the status register. 
All eight of the interrupts can be masked at once by clearing the IEc bit in 
the status register. · 
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Handling 
The R36100 branches to the General Exception vector for this excep­

tion. The R36100 sets the INT code in the Cause register's ExcCode field. 
The IP field in the Cause register show which of six external interrupts 

are pending, and the SW field in the cause register shows which two soft­
ware interrupts are pending. More than one interrupt can be pending at 
a time. 

The R36100 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and 
IEc bits. 

Servicing 
If software generates the interrupt, clear the interrupt condition by 

setting the corresponding Cause register bit (SWl:O) to zero. 
If external hardware generated the interrupt, clear the interrupt condi­

tion by alleviating the conditions that assert the interrupt signal. 

Overflow Exception 

Cause 
This exception occurs when an ADD ADDI, SUB, or SUBI instruction 

results in two's complement overflow. This exception is not maskable. 

Handling 
The R36 l 00 branches to the General Exception vector for this excep­

tion. The R36 l 00 sets the OV code in the CAUSE register. 
The EPC register points at the instruction that caused the exception, 

unless the instruction is in a branch delay slot: in that case, the EPC 
register points at the Branch instruction that preceded the exception­
causing instruction and sets the BD bit of the CAUSE register. 

The R36100 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and 
IEc bits. 

Servicing 
A kernel should hand the executing process a floating point exception · 

or integer overflow error when this exception occurs. Such an error is 
usually fatal. 

Reserved Instruction Exception 

Cause 
This exception occurs when the R36 l 00 executes an instruction whose 

major opcode (bits 31..26) is undefined or a Special instruction whose 
minor opcode (bits 5 .. 0) is undefined. 

This exception provides a way to interpret instructions that might be 
added to or removed from the MIPS processor architecture. 

Handling 
The R36 l 00 branches to ·the General Exception vector for this excep­

tion. It sets the RI code of the Cause register's ExcCode field. 
The EPC register points at the instruction that caused the exception, 

unless the instruction is in a branch delay slot: in that case, the EPC 
register points at the Branch instruction that preceded the reserved 
instruction and sets the BD bit of the CAUSE register. 

The R36100 saves the KUp; IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and 
IEc bits. 
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Servicing 
If instruction interpretation is not implemented, the kernel should 

hand the executing process an illegal instruction/reserved operand fault 
signal. Such an error is usually fatal. 

An operating system can interpret the undefined instruction and pass 
control to a routine that implements the instruction in software. If the 
undefined instruction is in the branch delay slot, the routine that imple­
ments the instruction is responsible for simulating the branch instruction 
after the undefined instruction has been "executed". Simulation of the 
branch instruction includes determining if the conditions of the branch 
were met and transferring control to the branch target address ( if 
required) or to the instruction following the delay slot if the branch is not 
taken. If the branch is not taken, the next instruction's address is [EPCJ 
+ 8. If the branch is taken, the branch target address is calculated as 
[EPC] + 4 +(Branch Offset* 4). 

Note that the target address is relative to the address of the instruction 
in the delay slot, not the address of the branch instruction. For details on 
how branch target addresses are calculated, refer to the description of 
branch instruction. 

Reset Exception 

Cause 
This exception occurs when the R36 l 00 RESET signal is asserted and 

then de-asserted. 

Handling 
The R36 l 00 provides a special exception vector for this exception. The 

Reset vector resides in the R36 l OO's un-mapped and un-cached address 
space; Therefore the hardware need not initialize the Translation Looka­
side Buffer (TLB) or the cache to handle this exception. The processor 
can fetch and execute instructions while the caches and virtual memoiy 
are in an undefined state. 

The contents of all registers in the R36 l 00 are undefined when this 
exception occurs except for the following: 

• The SWc, KUc, and IEc bits of the Status register are cleared to zero. 
• The BEV bit of the Status register is set to one. 
• The TS bit of the Status register is frozen at one. 
• The Config register is unlocked and initialized as described in Chapter 

5. 

Servicing 
The reset exception is serviced by initializing all processor registers, co­

processor registers, caches, and the memoiy system. Typically, diagnos­
tics would then be executed and the operating system bootstrapped, 
including setting of the PortSize, Config, and BusCtrl registers. The reset 
exception vector is selected to appear in the uncached, un-mapped 
memoiy space of the machine so that instructions can be fetched and 
executed while the cache and virtual memoiy system are still in an unde­
fined state. 
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System Call Exception 

Cause 
This exception occurs when the R36100 executes a SYSCALL instruc­

tion. 

Handling 
The R36100 branches to the General Exception vector for this excep­

tion and sets the SYS code in the CAUSE register's ExcCode field. 
The EPC register points at the SYSCALL instruction that caused the 

exception, unless the SYSCALL instruction is in a branch delay slot: in 
that case, the EPC register points at the branch instruction that preceded 
the SYSCALL instruction and the BD bit of the CAUSE register is set. 

The R36100 saves the KUp, IEp, KUc, and IEc bits of the status register 
in the KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and 
IEc bits. 

Servicing 
The operating system transfers control to the applicable system 

routine. To resume execution, alter the EPC register so that the SYSCALL 
instruction does not execute again. To do this, add four to the EPC 
register before returning. 

Note: If a SYSCALL instruction is in a branch delay slot, the branch 
instruction must be interpreted in order to resume execution. 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36 l 00 RlSController is an integration of system memory 

controllers and peripherals around an R30xx family core. Thus, the 
system interface can be described at many levels: 

• Operation of the execution core, including caches and write buffers. 
• Operation of the various memory controllers during external transac­

tions. 
• Operation during internal peripheral transactions. 

This chapter will provide an overview of these interfaces, and a 
complete description of the rules for the internal core. Detail on each of 
the internal memory controllers and peripherals are found in the later 
chapters. This chapter also includes an overview of the write interface 
and detailed timing diagrams of the write interface. 

Bus Interface Overview 
The R36100 RlSController bus interface uses a separate de-multi­

plexed address and data bus, along with control signals which select the 
targeted memory resource and perform the necessary data path steering. 
Figure 7.1 is a conceptual representation of the R36100 bus interface. 

CPU Cache Core Addr CPU Cache Core Data CPU Cache Core Control 

ReadAddr 
Latch 

( Endianess, AccType, Addrlo, MemRd, 

OMA Addr Controller, 
DRAM C ntroller Addr . 
Mux 

OMA Controller Data Latch 

MemWr) 
Other Bus Controllers 

(Endianess, AccType, 

Addrlo, Rd Wr, BurstSlze) 

Write Buffer 
Addr4-

Deep FIFO 

SysAddr{25:0) 

Read Buffer 
Data 4-

Deep FIFO 

BIU 
Data 
Control 

Write Buffer 
Data4-

Deep FIFO 

By~ -· Chopper 

SysData(31 :O) 

BIU 
I State Machine I 

Figure 7.1 R36100 Bus Interface Unit Block Diagram 

Other Bus Controllers 
(RdCEn. Ack, BEn, Timeout) 

The address bus of the R36100 is a 26-bit address bus. Although the 
address bus is only 26 bits wide, the address space of the R36100 is actu­
ally 32 bits wide; the internal address decoder provides "Chip Selects" to 
target particular memory subsystems; thus, the width of the address bus 
pnly limits the size of any one memory sub-system, not the overall 
addressable memory. 
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The data bus is a 32-bit wide bus, with the capability to gather or 
parcel out data into smaller pieces when working with 8- or 16-bit data 
ports. Thus, the R36100 can mate directly with 8-, 16- and/or 32-bit 
memory subsystems; in fact, the widths of the various sub-systems are 
independently programmable through the various control registers. In 
addition, the R36l00 can be used to implement either Big- or Little­
endian memory systems, as selected at reset. 

The control signals provided by the R36 l 00 enable the processor to 
directly connect with a wide variety of external memory devices and 
peripherals~ Wait-state generation and address decode is performed 
internally by the processor; once the proper external device for a transfer 
is determined by the R36100, the output control signals implement the 
protocol· and timing selected for that memory sub-space. 

During accesses to DRAM, the address bus will first carry the row 
address, then the column address, in a fashion suitable for direct connec­
tion with external page mode DRAM devices. Additional control signals 
provide RAS, CAS, and transceiver control. Thus, the R36100 does not 
require external address multiplexors or complicated DRAM control state 
machines. 

These techniques enable the R36 l 00 to simply implement a wide 
. variety of low cost systems, minimizing both system cost and development 

time, while maintaining high system throughput. 

Pin Description 
This section describes the signals used in the basic bus interface. 

Detailed information on the behavior of these signals, and of other signals 
used in other peripheral or memory control subsystems, are described in 
later chapters. 

Note: Many R36100 signals have multiple functions, the exact 
behavior of a given pin is typically selected at device reset, and that 
signals indicated with an overbar (for example, overbar) are active low. 

System Bus Interface Signals 
These signals are used by the bus interface to generate and provide 

global read and write signals. 

SysAddr(25:0) Output/(Input during external DMA) 
System Address Bus: The R36100 uses a dedicated 26-bit physical 

address bus always driven by the R36100, except during the Address 
Strobe portion of external OMA cycles. 

The address first becomes valid on the same (first) clock cycle that the 
address latch enable indicator, SysALEn, asserts. Coincidently either 
SysRd or SysWr will also assert on the first valid cycle. The address is 
valid until either SysRd or SysWr de-asserts at the end of a transaction. 

During Memory or 1/0 transactions, SysAddr(25:0) contain the inter­
nally latched 26-bit physical address. The SysAddr(3:0) bits represent 
the doubleword, word, halfword, and byte addresses that count with each 
datum during quad-word-burst and mini-burst reads and writes. 

During DRAM transactions, SysAddr(l3:2) are driven with the multi­
plexed DRAM row and column address. The SysAddr(4:2) bits during the 
column address period represent the doubleword, word, or halfword 
addresses that count with each datum during quad-word-burst and mini­
burst reads and writes. 

During idle cycles between valid transactions, the behavior of 
Addr(25:0) is undefined. 
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SysData(31:0) Input/Output 
System Data Bus: The R36100 uses a dedicated 32-bit data bus. For 

reads, data is sampled on the rising edge of the SysClk reference clock. 
Although the data bus is 32-bits wide, the R36100 directly supports the 
use of narrower memory subsystems. In these cases, the R36100 bus 
unit interface will gather smaller data into the requested transfer size on 
reads, and break write data up into a series of smaller pieces on writes, 
depending on whether the port is 32, 16 or 8-bits wide. The bus inter­
face will shift and adjust the LSB SysAddr bits accordingly for big or little 
endian data. Collectively, when these types of transactions are a result of 
word size or smaller accesses these are referred to as "mini-bursts" and 
quad-word accesses are referred to as "bursts". However, on the R36100, 
in contrast to the R305 l family, both mini-bursts and bursts assert the 
system burst signal, SysBurstFrame. 

Note: During internal peripheral register reads, SysData(l5:0) is 
driven with the register contents by the R36100. Also note that the 
SysData Bus may tri-state when the Bus Interface Unit is not in use. 

Clock and Reset Signals 

SysClkln Input 
System Clock Input: This is a double frequency input clock used to 

generate the timing of the processor. 

SysClk Output 
System Output Clock: This output clock provides the master timing 

reference for all bus interface signals. All input signals are sampled on 
the rising edge of SysClk, and all outputs except for the external strobes 
DramCAS(3:0) and SysWrEn(3:0) are generated from the rising edge of 
SysClk. Thus, external logic can use the rising edge of the SysClk output 
reference to generate control signals back to the R36100, and to sample 
R36100 outputs. 

The number of loads on SysClk should be kept below or equal to a 
maximum of 5 CMOS type loads due to internal pin skew feedback moni­
toring on the R36100. Systems requiring additional loads should either 
buffer or invert SysClk. 

There is no guaranteed AC timing delay relationship between the 
SysClkln input clock and the SysClk output clock. However, the phase 
relationship can be guaranteed via the method described in Chapter 19, 
"Debug Mode Features." 

Reset Input 
Reset: This active low input signal initializes the processor and is 

required after power up before correct operation can begin. Optional 
features of the processor including the Endianess and the Port Width of 
the Boot ROM are established during the last cycle of reset using the reset 
configuration mode inputs (also known as the reset initialization vector) 
which are multiplexed with the interrupt pins. See Chapter 18 for more 
information on the reset initialization vector. 

Bus Interface Control Signals 

SysALEn Output (Input during external DMA) 
System Address Latch Enable: As an output signal, this active low 

signal indicates when a new address is first valid. SysALEn de-asserts 
high one clock after being asserted by the R36100. 
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As an input signal, it is used by an external OMA agent to indicate that 
it has provided a valid address on the processor data bus. The R36100 
will then use this address to select which memory subsystem or periph­
eral is the target of the OMA, and perform the necessary access. As an 
input, its timing is similar to the output case; however, its assertion by 
the external OMA agent may be 1 or more clocks long. The address is 
sampled by the CPU on the first rising SysClk edge where SysALEn is 
asserted. Any additional SysALEn asserted clocks are ignored as far as 
the address is concerned, however, its assertion delays the second phase 
of the OMA transaction where the external OMA agent tri-states most of 
the bus control signals and lets the R36 l 00 memory controllers drive the 
bus control signals. 

SysRd Output (Input during external DMA) 
System Read: SysRd is always driven by the R36100, except during 

external OMA cycles. 
As an output, SysRd is an active low read control signal. During 

external read transfer cycles, this signal will be asserted. This signal cart 
be used for external control and diagnostics as needed. 

Note: During internal peripheral register reads, the SysData(15:0) is 
driven with the register contents by the R36100. 

As an input, this signal can be driven by an external OMA engine. 
However, the R36100 does not use this signal during OMA. If SysWr is 
high when SysALEn is asserted, then a OMA read is implied. 

SysWr Output (Input during external DMA) 
System Write: SysWr is always driven by the R36100, except during 

external OMA cycles. 
As an output, SysWr is an active low control signal to indicate that the 

current transaction is a write. This signal can be used for external 
control and diagnostics as needed. 

As an input, this signal is used internally during OMA as a read/write 
input signal. If SysWr is high when SysALEn is de-asserted, then a OMA 
read is implied. 

SysBurstFrame Output (Input during external DMA) 
System Burst: SysBurstFrame is always driven by the R36100, except 

during external OMA transactions. 
This active low control signal specifies that at least one more datum 

will be written or read. This signal is valid for both reads and writes. 
SysBurstFrame always asserts on the first clock of a transaction. There­
after it de-asserts high on the first clock of the last datum. Thus, if there 
is only a single datum, SysBurstFrame will assert for one clock only. If 
there are multiple datum, SysBurstFrame remains asserted until the last 
datum begins. · 

However, an external OMA has the ability to continue ·a burst for an 
indefinite length. Under this condition. the R36100 is unable to deter­
mine when the last datum will occur, and it is assumed that the external 
OMA agent is able to determine how many datum it needs to read or 
write. 

So, on external OMA transactions, SysBurstFrame is an input signal 
for the first clock cycle of an R36100 DRAM, memory, or 1/0 controller 
access. During the bus transaction phase of external OMA, SysBurst­
Frame reverts back to an output, but is undefined after the SysALE 
phase. 
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SysDataRdy Output 
System Data Ready: This active low output signal indicates that the 

CPU is ready to receive data on a read or that it is driving data on a write. 
If wait-states are inserted by the use of SysWait (as opposed to the 

internally wait-state generator), then SysDataRdy is kept asserted for the 
same number of clock cycles. Thus external diagnostic tools such as logic 
analyzers may want to gate SysDataRdy with SysWait. 

During external OMA transactions, SysDataRdy is still driven by the 
CPU the entire time. Thus during the second part of the OMA transaction 
where the R36 l 00 memory controller is being used to access data, the 
CPU drives SysDataRdy whenever it has or expects valid data. 

Sys Walt Input 
System Wait: Active low is used to extend the length of the memory 

cycle by stalling the Memory, or I/O Controller for as many cycles as 
SysWait is sampled low. SysWait can be asserted anytime during single 
word or smaller read and write transactions. However, the effect of 
SysWait occurs 1 clock later due to internal pipelining of the signal. 
During burst reads, SysWait is valid up until the internal Acknowledge is 
generated to release the execution core for refill cycles. Thus systems 
that are quad-word bursting and using SysWait must either not use the 
internal Acknowledge, or guarantee that SysWait is only asserted during 
the early part of a cycle with the Memory or 1/0 Controller Wait option 
programmed. 

The specific behavior of SysWait is dependent on the type of memory 
accessed. In general, its effect is to delay the de-assertion of the pertinent 
data strobe, such as MemRdEnOdd. 

SysBusError Input 
System Bus Error: This is an active low input signal which terminates 

a bus transaction on the next clock. If an internal Acknowledge has not 
already been generated on a read access, a bus error exception will be 
generated. If on a read access, SysBusError is asserted after the internal 
Acknowledge, then the bus transaction will be terminated, but no error 
will be reported. SysBusError assertion during a write access always end 
the bus transaction on the next clock; however, a bus error exception is 
never generated for a write access. 

CPU Core Transaction Types 
The R36 l 00 RlSController execution core is capable of requesting the 

following types of transactions: 

Read Operation 
The processor executes an instruction fetch or a data load operation as 

the result of either a cache miss or an uncacheable reference. 
Quad word reads occur when the processor requests a contiguous 

block of four words from memory. Quad word reads occur in response to 
instruction cache misses, and will occur in response to a data cache miss 
if the DBlockRefill option in the CPO Cache Configuration register is 
enabled. The R36100 incorporates an on-chip 4-word deep read buffer 
which may be used to "queue up" the read response before passing it 
through to the high-bandwidth cache and execution core. Read buffering 
is appropriate in systems which require wait states between adjacent 
datums of a block read or in interfacing to memory systems narrower 
than 32-bits wide. 
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On the other hand, systems that use high-bandwidth memory tech­
niques-such as page mode, static column, nibble mode, or memory 
interleaving-can effectively bypass the read buffer by providing words of 
the block at the processor clock rate. Note that the choice of burst vs. 
read buffering is independent of the initial latency of the memory; that is, 
burst mode can be used even if multiple wait states are required to access 
the first datum of the block. 

Single data reads (single word, tri-byte, halfword, or byte) are used for 
uncacheable references (such as for I/O or boot code) and will be used in 
response to a data cache miss if the DBlockRefill option in the CPO Cache 
Configuration register is disabled. A single data read returns one unit of 
data per read transaction. 

Write Operations 
The R36100 utilizes an on-chip write buffer to isolate the execution 

core from the speed of external memory during write operations. There is 
a single primary type of write: 

Single data writes (word, tri-byte, halfword, or byte writes corre­
sponding to 32-bit, 16-bit, and 8-bit interfaces, respectively) are used in 
response to a store operation, either cached or uncached (the R36 l 00 
uses a write-through cache). 

Although the CPU execution core is capable of producing only single 
data writes, the DMA Controller can produce 4 word burst writes. 

Quad word writes occur when the DMA Controller is instructed to 
transfer 4 words at a time. The DMA Controller will first read 4 words 
into the read buffer, then latch out the data for 4 consecutive writes. 

Although the data bus is 32-bits wide, the R36100 directly supports 
the use of narrower memory subsystems. In these cases, the R36100 will 
gather smaller data into the requested transfer size on reads, and break 
write data up into a series of smaller pieces on writes. Collectively, these 
types of transactions are referred to as "mini-bursts". 

Multiple Operations 
It is possible for the R36100 execution core to have multiple activities 

pending. Specifically, there may be data in the write buffer, a read 
request-such as due to a cache miss-or two read requests (both the I­
cache and D-cache misses in a single clock cycle), even as the bus inter­
face is servicing some external DMA activity. 

In establishing the order in which the requests are processed, the 
R36 l 00 is sensitive to possible conflicts and data coherency issues as 
well as to performance issues. For example, if the on-chip write buffer 
contains data which has not yet been written to memory, and the 
processor issues a read request to the target address of one of the write 
buffer entries, then the processor strategy must insure that the read 
request is satisfied by the new, current value of the data. 

There are two levels of priority: that performed by the CPU engine, and 
that performed by the bus interface unit. The internal execution engine 
can be viewed as making requests to the bus interface unit. In the case of 
multiple requests in the same clock cycle, the CPU core will: 

• Perform the data request first. That is, if both the data cache and 
instruction cache miss in the same clock cycle, the processor core will 
request a read to satisfy the data cache first. Similarly, a write buffer 
full stall will be processed before an instruction cache miss. 

• Perform a read due to an instruction cache miss. 
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This prioritization is important in maintaining the precise exception 
model of the MIPS architecture. Since data references are the result of 
instructions which entered the pipeline earlier, they must be processed 
(and any exceptions serviced) before subsequent instructions (and their 
exceptions) are serviced. 

Once the processor core internally decides which type of request to 
make to the bus interface unit, it then presents that request to the bus 
interface unit. 

In the R36100 Bus Interface Unit, multiple operations are serviced in 
the following order: 

1. DRAM refreshes may delay the start of a read or write DRAM data 
access. 
2. Ongoing transactions are completed without interruption. 
3. OMA requests are serviced according to the OMA priorities estab­
lished in the R36100. (OMA requests using the cache, stall the CPU and 
flush the write buffer before beginning). 
4. Instruction cache misses are processed. 
5. Pending writes are processed. 
6. Data cache misses or uncacheable reads/uncacheable instruction 
fetches are processed. 
This service order has been designed to achieve maximum perfor­

mance, minimize complexity, and solve the data coherency problem 
possible in write buffer systems. 

This order assumes that the write buffer does not contain instructions 
which the processor may wish to execute. The processor does not write 
directly into the instruction cache: store instructions generate data 
writes which may change only the data cache and main memory. The 
only way in which an instruction reference may reside in the write buffer 
is in the case of self modifying code, generated with the caches swapped. 
However, in order to unswap the caches, an uncacheable instruction 
which modifies CPO must be executed; the fetch of this instruction would 
cause the write buffer to be flushed to memory. Thus, this ordering 
enforces strong ordering of operations in hardware, even for self modi­
fying code. Of course, software could perform an uncacheable reference 
to flush the write buffer at any time, thus achieving explicit memory 
synchronization with software. 

Execution Engine Fundamentals 
This section describes the fundamentals of the processor interface and 

its interaction with the execution core. These fundamentals will help to 
explain the relationship between design trade-offs in the system interface 
and the performance achieved in R36100 systems. 

Execution Core Cycles 
The R36100 execution core utilizes many of the same operation funda­

mentals as does the R3000A processor. Thus, much of the terminology 
used to describe the activity of the R36100 is derived from the termi­
nology used to describe the R3000A. In many instances, the activity of 
the execution core is independent of that of the bus interface unit. 

Cycles 
A cycle is the basic timing reference of the R36100 execution core. 

Cycles in which forward progress is made (the processor pipeline 
advances) are called Run cycles. Cycles in which no forward progress 
occurs are called Stall cycles. Stall cycles are used for resolving exigen­
cies such as cache misses, write stalls, and other types of events. All 
cycles can be classified as either run or stall cycles. 
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Run Cycles 
Run cycles are characterized by the transfer of an instruction into the 

processor execution core, and the optional transfer of data into or out of 
the execution core. Thus, each run cycle can be thought of as having an 
instruction and data, or ID, pair. 

There are two types of run cycles: cache-run cycles and refill-run 
cycles. Cache-run cycles, typically referred to as just-run cycles, occur 
while the execution core is executing out of its on-chip cache; these are 
the principal execution mechanism. 

Refill-run cycles, referred to as streaming cycles, occur when the 
execution core is executing instructions as they are brought into the on­
chip cache. For the R36100, streaming cycles are defined as cycles in 
which data is brought out of the on-chip read buffer into the execution 
core, rather than defining them as cycles in which data is brought from 
the memory interface to the read buffer. 

Stall Cycles 
There are three types of stall cycles: 
Wait Stall Cycles. These are commonly referred to simply as stall 

cycles. During wait stall cycles, the execution core maintains a state 
consistent with resolving a stall causing event. No cache activity will 
occur during wait stalls. 

Refill Stall Cycles. These occur only during memory reads, and are 
used to transfer data from the on-chip read buffer into the caches. 

Fixup Stall Cycles. Fixup cycles occur during the final cycle of a stall; 
that is, one cycle before entering a run cycle or entering another stall. 
During the final fixup cycle (the one which occurs before finally re­
entering run operation), the Instruction/Data (ID) pair which should have 
been processed during the last run cycle is handled by the processor. The 
fixup cycle is used to restart the processor and co-processor pipelines, 
and in general to fixup conditions which caused the stall. 
There are five basic stalls that are caused by the following conditions: 

Read Busy Stalls: If the processor core requires read data, either to 
process a cache miss or an uncacheable reference, then it will be stalled 
until the read data is brought back to the execution core. 

Write Busy Stalls: If the processor attempts to perform a store opera­
tion while the on-chip write buffer is already full, then the processor will 
stail until a write transaction is begun on the interface to free up room in 
the write buffer for the new address and data. 

Multiply /Divide Busy Stalls: If software attempts to read the result 
registers of the integer multiply/divide unit (the HI and LO registers) 
while a multiply or divide operation is underway, the processor execution 
core will stall until the results are available. 

Micro-TLB1 Fill Stalls: These stalls can occur when an instruction 
translation misses in the instruction TLB cache (the micro-TLB, which is 
a two-entry cache of the main TLB used to translate instruction refer­
ences). When such an event occurs, the execution core will stall for one 
cycle, in order to refill the micro-TLB from the main TLB. Since this is a 
single-cycle stall, it is of necessity a fixup cycle. 

I. Micro-TLB stalls will not occur in the R36100, which does. not include an on-chip TLB. 
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Multiple Stalls: Multiple stalls are possible whenever more than one 
stall initiating event occurs within a single run cycle. An example of this 
condition is when a single cycle results in both an instruction cache miss 
and a data cache miss. The most important characteristic of any multiple 
stall cycle is the validity of the Instruction/Data (ID) pair processed in the 
final fixup cycle. The R36100 execution core keeps track of nested stalls 
to insure that orderly operation is resumed once all of the stall causing 
events are processed. 

For the general case of multiple stalls, the service order is: 
1. Micro-TLB Miss and Partial Word Store 
2. Data Cache Miss or Write Busy Stall 
3. Instruction Cache Miss 
4. Multiply /Divide Unit Busy 

Internal Acknowledgment 
To speed performance, the R36100 CPU core allows the CPU to exit 

wait stalls and begin refill and/ or streaming, even while the bus interface 
continues to provide additional data to the CPU. 

To do this, the R36100 incorporates an on-chip 4-entry read buffer. In 
response to a quad word read, data begins to be returned to the CPU. As 
each datum is returned, it is entered into the read buffer. At some point, 
the internal core is "Acknowledged" (the "AckN" internal signal) to indicate 
that the read buffer contents may begin being transferred to the internal 
caches and execution core. 

Transfer from the read buffer to the core/ caches occurs at the pipeline 
rate. Thus, the ideal time to provide such an acknowledgment is 3 cycles 
before the last datum is returned to the R36100. In this case, the last 
datum will be entered into the read buffer, and in the very next clock cycle 
be placed into the cache/core. Note that in the case of single word reads, 
acknowledge is provided with the last byte of the requested transfer; in 
the very next clock cycle, the datum is transferred into the core. 

To facilitate this operation, the R36100 requires that the various 
memory controllers be programmed for the optimal placement of "Ack", 
the internal control signal which is used to begin refill/ streaming. As a 
rule, Ack should be placed 3 cycles before the last response datum in a 
quad word read. 

Read Interface Timing Overview 
The read interface is designed to allow a variety of memory strategies. 

An overview of how data is transmitted from memory and I/O devices to 
the processor is discussed below. 

Initiation of a Read Request 
A read transaction occurs when the processor internally performs a 

run cycle which is not satisfied by the internal caches. Immediately after 
the run cycle, the processor enters a stall cycle and asserts the internal 
control signal MemRd. This signals to the internal bus interface unit 
arbiter that a read transaction is pending. 

Assuming that the read transaction can be immediately processed (that 
is, there are no ongoing bus operations and no higher priority operations 
pending), the processor will initiate a bus read transaction on the rising 
edge of SysClk which occurs during phase two of the processor stall cycle. 
Higher priority operations would have the effect of delaying the start of 
the read by inserting additional processor stall cycles. 

Figure 7.2 illustrates the initiation of a read transaction, based on the 
internal assertion of the MemRd control signal. This figure is useful in 
determining the overall latency of cache misses on processor operation. 
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A read transaction begins when the processor asserts its SysRd control 
output, and also drives the address and other control information onto 
the SysAddr and memory interface buses. Figure 7.3 illustrates the start 
of a processor read transaction. 

The addressing occurs throughout the read transaction. At the rising 
edge of SysClk, the processor will drive the read target address onto the 
SysAddr bus. At this time, SysALEn will also be asserted, to allow an 
external ASIC or peripheral to capture the address. During the initial 
part of the read phase, all-memory control read enables will be held high 
indicating that memory drivers should not be enabled onto the SysData 
bus. 
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Concurrent with driving addresses on the SysAddr bus, the processor 
will redundantly indicate the beginning of the read transaction with 
SysBurstFrame asserting. A multi-datum transaction and bursts will be 

. indicated by SysBurstFrame remaining asserted as the current datum is 
sampled. The functioning of the SysAddr(3:0) counter during mini-burst 
and burst reads is also described later. 

Initiation of the Data Phase 
Once the SysAddr bus has presented the address for the transfer, the 

various memocy controller read enables assert and data is ready to be 
sampled. 

Bringing Data into the Processor 
Regardless of whether the transfer is a burst read or. a single datum 

transfer, the basic mechanism for transferring data presented on the A/D 
bus into the processor is the same. 
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Although there are two internal control signals involved in terminating 
read operations, only the internal RdCEnN signal is used to cause data to 
be captured from the bus. 

The memory system asserts internal RdCEnN to indicate to the 
processor that it has (or will have) data on the data bus to be sampled. 
The earliest that internal RdCEnN can be detected by the processor is the 
rising edge of SysClk after it has asserted SysALEn (start of phase 1 of the 
second clock cycle of the read). 

Ifinternal RdCEnN is detected as asserted by the internal wait-state 
generator, the processor will capture (with proper setup and hold time) 
the contents of the SysData bus on the immediately subsequent rising 
edge of SysClk. This captures the data in the internal read buffer for later 
processing by the execution core/cache subsystem. 

The R36100 integrates on-chip a 4-word read buffer, capable of acting 
as a speed-matching FIFO between the system interface and the execu­
tion core. This bus interface then performs byte or half-word gathering, 
and assembles them into 32-bit words forthe read buffer. Thus, the bus 
interface supports 8-, 16-, and 32-bit memory subsystems, even for quad 
word reads, with no real system impact. 

Figure 7.4 illustrates the sampling of data by the R36100. 

SysClk --

SysAddr(25:4) -----.....-----.....------+---
Data Input 

SysAddr(3:0) Current Word/Hal ord/Byte Address 

Internal RdCEnN ___ _, 

AckN or 
RdCEnN? 

AckN/ 
RdCEnN/ 
Sample 

Data 

Figure 7.4 Data Sampling. 
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Terminating the Read 
Following are three methods for the external memory system to termi­

nate an ongoing read operation: 
• It can supply an internal AckN (acknowledge) to the processor, to indi­

cate that it has sufficiently processed the read request and has or will 
supply the requested data in a timely fashion. Note that internal 
AckN may be signalled to the processor "early", to enable it to begin 
processing the read data even while additional data is brought from 
the SysData bus. This is applicable only in quad-word read opera­
tions. 

• It can supply a SysBusError to the processor, to indicate that the 
requested data transfer has "failed" on the bus, and force the 
processor to take a bus error exception. Although the system inter­
face behavior of the processor when SysBusError is presented is 
similar to the behavior when internal AckN is presented, no data will 
actually be written into the on-chip cache. Rather, the cache line will 
either remain unchanged, or will be invalidated by the processor, 
depending on how much of the read has already been processed. 
Thus it is recommended that if SysBusError is to be used for quad 
word burst transactions, that it be asserted on the first clock of the 
transaction. 

• The external memory system can supply the requested data, using 
internal RdCEnN to enable the processor to capture data from the 
bus. The processor will "count" the number of times internal RdCEnN 
is sampled as asserted; once the processor counts that the memory 
system has returned the desired amount of data (one byte to four 
words), it will implicitly "acknowledge" the read after it samples the 
last required internal RdCEnN. This technique may be important in 
memory systems where the latency can vary--e.g. dual ported 
memory. 

Throughout this chapter, method one will be illustrated. The other 
cases can be extrapolated easily from these diagrams (for example, the 
system designer can assume that internal AckN is asserted simultaneous 
with the last internal RdCEnN of a single word read transfer and 3 clocks 
before the last internal RdCEnN of a quad word burst read transfer). 

There are actually two phases of terminating the read: there is the 
phase where the memory system indicates to the processor that it has 
sufficiently processed the read request, and the internal read buffer can 
be released to begin refilling the internal caches; and there is the phase in 
which the read control signals are negated by the processor bus interface 
unit. 

The difference between these phases is due to block refill: it is possible 
for the memory system to "release" the execution core even though addi­
tional words of the block are still required; in that case, the processor will 
continue to assert the external read control signals until all four words 
are brought into the read buffer, while simultaneously refilling/ executing 
based on the data already brought on board. 

To determine the end of the read transaction, one of the following 
methods may be used: 

• Systems that only use 32-bit memory sub-region ports as with the 
R3051 family only have single datum reads or burst reads and can 
either count the number of wait-cycles or use the de-asserting edge of 
SysRd to end the transaction. 

• Systems that use 16 or 8-bit ports must in general support mini­
burst (multi-datum) reads. Memory controllers. for such systems can 
use the <le-asserting edge of SysRd to reset the controller. The 
memory controller can also look for SysBurstFrame to de-assert. 
When SysBurstFrame de-asserts, the controller knows that it is 
handling the final datum of the transaction. 
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Figure 7.5 shows the timing of the control signals when the read cycle 
is being terminated. 

Latency Between Processor Operations 
In general, the processor may begin a new bus activity as soon as the 

phase immediately after the termination of the read cycle. Although this 
operation may logically be either a read, write, or bus grant, there are no 
cases where a read operation can be signalled by the internal execution 
core at this time. 

Since a new operation may begin one-half clock cycle after the data is 
sampled from the bus, it is important that the external memory system 
cease to drive the bus prior to this clock edge. To simplify design. the 
processor provides various read enable outputs for each memory 
controller, which can be used to control either the Output Enable of the 
memory device (presuming its tri-state time is fast enough), or to control 
the Output Enable of a buffer or transceiver between the memory device 
data bus and the processor SysData bus. 
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Figure 7 .5 Read Cycle Termination. 
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The R36 l 00 also adds a feature to the R305 l family to enable the 
system designer to lengthen the amount of time available for bus turn­
around. The Bus Turn Around control field of the various memory 
controller Control Registers enables the system designer to extend the 
minimum guaranteed amount of time available for bus turn-around. This 
enables the system designer to eliminate some transceiver devices and/ or 
use slower system components, without worrying about bus conflicts. 

Processor Internal Activity 
In general, the processor will execute stall cycles until an internal AckN 

is detected. It will then begin the process of refilling the internal caches 
from the read buffer. 

The system designer should consider the difference between the time 
when the memory interface has completed the read, and when the 
processor core has completed the read. The bus interface may have 
successfully returned all of the required data, but the processor core may 
still require additional clock cycles to bring the data out of the read buffer 
and into the caches. Figure 7.6 illustrates the relationship between Ack 
and the internal activity for a block read. 

RdBusyN 

XEnN 

Stall Stall 
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Refill/ 
Fix up 

Word 0 

Refill/ 
Stream 

I 
Word 1 
Fixup 

Refill/ 
Str7am 

Word 2 
Fixup 

Refill/ 
Str7am 

Word3 
Fixup 

Figure 7.6 Internal Processor States on 4-word Burst Read. 

This figure illustrates that the processor may perform either a stream, 
fixup, or refill cycle in cycles in which data is brought from the read 
buffer. The difference between these cycles is defined as follows: 

• Refill. A refill cycle is a clock cycle in which data is brought out of 
the read buffer and placed into the internal processor cache. The 
processor does not execute on this data. 

• Fixup. A fixup cycle is a cycle in which the processor transitions into 
executing the incoming data. It can be thought of as a "retry" of the 
cache cycle which resulted in a miss. 

• Stream. A stream cycle is a cycle in which the processor simulta­
neously refills the internal instruction cache and executes the 
instruction brought out of the read buffer. 
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RdBusyN 

XEnN 

When reading the block from the read buffer, the processor will use the 
following rules: 

• For uncacheable references, the processor will bring the single word 
out of the read buffer using a fixup cycle. 

• For data cache refill, it will execute either one or four refill cycles, 
followed by a fixup cycle. 

• For instruction cache refill, it will execute refill cycles starting at word 
zero until it encounters the . miss address, and then transition to a 
fixup cycle. It will then execute stream cycles until either the entire 
block is processed, or an event stops execution. If something causes 
execution to stop, the processor will process the remainder of the 
block using simple refill cycles. For example, Figure 7. 7 illustrates 
the refill/fixup/stream sequence appropriate for a miss which occurs 
on the second word of the block (word address 1). 

Although this operation is transparent to the external memocy system, 
it is important to understand this operation in order to gauge the impact 
of design trade-offs on performance. 
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Figure 7.7 Instruction Streaming Internal Operation Example. 
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The Write Interface 
The write protocol of the R36 l 00 has been designed to complement the 

read interface of the processor. Many of the same signals are used for 
both reads and writes, simplifying the design of the memory system 
control logic. 

Importance of Writes in R36100 Systems 
The design goal of the write interface is to insure that a relatively slow 

write cycle does not degrade the performance of the processor. To this 
end, a four deep write buffer has been incorporated on-chip. The role of 
the write buffer is to decouple the speed of the memory interfaces from 
the speed of the execution engine. 

The write buffer captures store information (data, address, and trans­
action size) from the processor at its clock rate, and later presents it to 
the memory interface at the rate it can perform the writes. Four such 
buffer entries are incorporated, thus allowing the processor to continue 
execution even when performing a quick succession of writes. Only when 
the write buffer is already filled will the processor stall; simulations have 
shown that significantly less than 1 % of processor clock cycles are lost to 
write buffer full stalls. 

Although it may be counter-intuitive, a significant percentage of the 
bus traffic will in fact be processor writes to memory. This can be demon­
strated if one assumes the following: 

Instruction Mix: 

ALU Operations 

Branch Operations 

Load Operations 

Store Operations 

Cache Performance: 

Instruction Hit Rate 

Data Hit Rate 

55% 

15% 

20% 

10% 

95% 

90% 

For these assumptions, in 100 instructions, the bus would see: 
- 5 Reads to process instruction cache misses on instruction fetches 
- 10% x 20 = 2 reads to process data cache misses on loads 
- 10 store operations to the write through cache 
- Total: 7 reads and 10 writes 

In this example, about 60% of the bus transactions are write opera­
tions, even though only 10 instructions were store operations versus 100 
instruction fetches and 20 data fetches. 

Types of Write Transactions 
The R36 l 00 has two basic types of write transactions, depending on 

the port size selected in the CPO Port Size Configuration register for each 
memory sub-region. When writes are generated from the CPU core,· the 
32-bit ports use only the single-word write type. DMA channels are also 
able to generate burst writes. The 16-bit ports can use the single half­
word write or the mini-burst (double halfword) write type. And 8-bit ports 
are able to use the single byte write or the mini-burst (double, tri, or quad 
byte) or DMA burst write types. 
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32-Bit Write Transactions 
Unlike instruction fetches and data loads, which are usually satisfied 

by the on-chip caches and thus are not seen at the bus interface, all 32-
bit write activity is seen at the bus interface as single write transactions 
from the CPU core. There is no such thing as a "four word block burst 
write" from the CPU core; the processor performs a word or sub-word 
write as a single autonomous bus transaction. However, the on-chip 
OMA channels are capable of generating multi-word burst writes if so 
programmed. The SysBurstFrame output is used to decode burst writes. 
Successive write transactions can be processed using page mode writes 
by DRAM Memory Controller. This is particularly important when 
"flushing" the write buffer before performing a data read. 

Uncached writes-which contain only 1, 2, or 3 bytes of data-assert 
the appropriate byte enables, MemWrEn(3:0) or DramCAS(3:0). Thus, 
there really is only one type of non-burst 32-bit write transaction. 
However, in some cases such as with the DRAM Controller, the memory 
system may elect to take advantage of the assertion of a page comparator 
internal write near signal during a write to perform quicker write opera­
tions than would otherwise be performed. 

In processing 32-bit writes, there is only one parameter of interest: the 
latency of the write. This latency is influenced by the overall system archi­
tecture as well as the type of memory system being addressed: time 
required to perform address decoding and bus arbitration, memory pre­
charge requirements, and memory control requirements, as well as 
memory access time. 

The R36100 has been designed to accommodate a wide variety of 
memory system designs, including no-wait cycle operations (write 
completed in two cycles) through simpler, slower systems incorporating 
many bus wait cycles. 

16-Bit Transactions 
When the R36100 uses a 16-bit port, it does its writes in halfword size 

or smaller increments. Thus if the data contains 8 or 16 bits ( 1 or 2 
bytes). it will be handled with a single halfword write with the appropriate 
byte enables, MemWrEn(l:O) or DramCAS(l:O) asserted. Note that during 
16-bit accesses, MemWrEn and DramCAS bit3 is equal to bit 0 and bit 2 
is equal to bit 1. 

If the data contains 24 or 32 bits (3 or 4 bytes). it will be handled with a 
double halfword write mini-burst with the appropriate byte enables, 
MemWrEn(l:O) or DramCAS for each halfword asserted. A mini-burst • 
puts both halfwords out as separate data phases of the same write trans­
action. The memory system ~imply returns an internal AckN for each 
halfword datum which will automatically increment SysAddr(3: 1) and 
change the write enables if appropriate. 

Similar to a read mini-burst, a write mini-burst can be detected using 
the SysBurstFrame signal to determine when the final halfword data is 
being returned or by using the de-assertion of the SysWr line. The 
R36100 is designed to accommodate a wide variety of different memory 
bandwidths, including DRAM systems that need pre-charge wait cycles 
for the first halfword and then use a fast page mode access for bursting 
the second halfword. 
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The data lines used in 16-bit ports are always SysData(31:16) for big 
endian systems and SysData(l5:0) for little endian systems. This is 
regardless of the Reverse Endianess bit in the CPO Status register. For big 
endian systems, MemWrEn(3) and DramCAS(3) correspond to the byte 
lane in SysData(31:24) and MemWrEn(2) and DramCAS(2) correspond to 
SysData(23; 16). For little endian systems, MemWrEn(l) and DramCAS(l) 
correspond to the byte lane in SysData(l5:8) and MemWrEn(O) and 
DramCAS(O) correspond to SysData(7:0). 

8-Bit Transactions 
When the R36100 uses an 8-bit port, it performs writes in byte size 

increments. Thus if the data contains 1 byte, it will be handled with a 
single byte write. If the data contains 2, 3, or 4 bytes, it will handled with 
a double, tri, or quad byte write mini-burst, respectively. A mini-burst 
puts 2, 3, or 4 bytes out as separate data phases of the same write trans­
action. 

The memory system simply returns an internal AckN for each byte 
datum which will automatically increment SysAddr(3:0). Similar to a 
read mini-burst, a write mini-burst can be detected using the SysBurst­
Frame signal to determine when the final byte datum is being returned or 
by using the de-assertion of the SysWr line. The R36100 is designed to 
accommodate a wide variety of different memory bandwidths, including 
DRAM systems that need pre-charge wait cycles for the first byte and 
then use a fast page mode access for bursting subsequent bytes. 

The data lines used in 8-bit ports are always SysData(3 l :24) for big 
endian systems and SysData(7:0) for little endian systems. This is regard­
less of the Reverse Endianess bit in the CPO Status register. 

Write Interface Timing Overview 
The protocol for transmitting data from the processor to memory and I/ 

0 devices are discussed below. 

Initiating the Write 
A write transaction occurs when the processor has placed data into the 

write buffer, and the bus interface is either free, or write has the highest 
priority. Internally, the processor bus arbiter uses the NotEmpty indi­
cator from the write buffer to indicate that a write is being requested. 

Assuming that the write transaction can be processed (that is, there 
are no ongoing bus operations, and no higher prioi'ity operations 
pending), the processor will initiate a bus write transaction on the next 
rising edge of SysClk. Higher priority operations would have the effect of 
delaying the start of the write. 

Figure 7.8 on page 21 illustrates the initiation of a write transaction, 
based on the internal negation of the internal WbEmptyN control signal. 
This figure applies when the processor is performing a write, and the 
write buffer is otherwise empty. If the write buffer already had data in it, 
the buffer would continually request the use of the bus until it was 
emptied; it would be up to the bus interface unit arbiter to decide the 
priority of the request relative to other pending requests. Additional 
stores would be captured by other write buffer entries, until the write 
buffer was filled. 
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Memory Addressing 
A write transaction begins when the processor asserts its SysWr control 

output, and also drives the address and other control information onto 
the SysAddr and memory interface buses. The data is driven with 
SysALEn asserting. Figure 7.8 also illustrates the start of this type of 
processor write transaction, including the addressing of memory and 
presenting the store data on the SysData bus. 

At the rising edge of SysClk, the processor will drive the write target 
address onto the SysAddr bus. At this time, SysALEn and SysBurst­
Frame will also be asserted, to indicate to external ASICs and peripherals 
that a memory transaction is beginning. 

The Data Phase 
Simultaneous with driving the address out, the data phase begins. 
The processor enters the data phase by performing the following 

sequence of events: 
--~-• It negates SysALEn. 

• It internally captures the data in a register in the bus interface unit, 
and enables this register onto its output drivers on the SysData bus. 

At this time, it begins to look for the end of the write cycle. 

Terminating the Write 
There are only two methods for the external memory system to termi­

nate a write operation: 
• It can supply the appropriate number of internal AckNs (acknowl­

edges) to the processor by using an internal memory controller wait­
state generator to indicate that it has sufficiently processed the write 
request, and that the processor may terminate the write. 

It can supply a SysBusError to the processor, to indicate that the 
requested data transfer has "failed" on the bus. The system interface 
behavior of the processor when SysBusError is presented is identical to 
the behavior when the last internal AckN is asserted. In the case of writes 
terminated by SysBusError, no exception is taken, and the data transfer 
cannot be retried. 
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Figure 7.9 shows the timing of the control signals when the write cycle 
is being terminated. 

Run/ Run/ Run/ 
Stall Stall Stall 

SysClk 

SvsAddr(25:0) Addr 

SvsData(31 :0) Data Cutout 

SysALEn 

SysWr 

SysBurstFrame 

SysDataRdy 

Sys Wait 

Wait? Data OuV 
New 

Transaction 

Figure 7 .8 Write Cycle Termination 

To determine the end of the write cycle one of these methods may be 
used: 

- Systems that only use 32-bit memory sub-region ports, such as the 
R305 l family, only have single datum writes as generated from the 
CPU and either count the number of wait-cycles or use the de­
asserting edge of SysWr to end the transaction. However, since the 
on-chip DMA Controller can generate burst writes, memory 
systems in general must be able to handle bursts. 

- Systems that use 16 or 8-bit ports must in general support mini­
burst writes. Memory controllers for such systems can use the de­
asserting edge of SysWr to reset the controller. An external memory 
controller or logic analyzer can also look for SysBurstFrame to de­
assert. When SysBurstFrame de-asserts, the controller knows that 
it is handling the final datum of the transaction. 

Latency Between Processor Operations 
In general, the processor may begin a new bus activity in the phase 

immediately after the termination of the write cycle. This operation may 
be either a read, write, or bus grant. A new operation may begin as soon 
as one clock cycle after the final internal AckN is sampled from the inter­
face. 
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Also note that bus turn around after a write transaction does not 
occur. That is, the processor continues to drive the SysAddr and SysData 
buses throughout the write transaction (both address and data phases), 
and it will also drive the SysAddr bus during the start of either a subse­
quent read or write transaction. Since · no change in bus ownership 
occurs, the Bus Turn Around field of the CPO Bus Control register does 
not apply after write transactions. 

Write Buffer Full Operation 
It is possible that the execution core on occasion may be able to fill the 

on-chip write buffer. If the processor core attempts to perform a store to 
.the write buffer while the buffer is full, the execution core will be stalled 
by the write buffer until a space is available. Once space is made avail­
able, the execution core will use an internal fixup cycle to "retry" the 
store, allowing the data to be captured by the write buffer. It will then 
resume execution. 

The write buffer can actually be thought of as "four and one-half' 
entries: it contains a special data buffer which captures the data being 
presented by an ongoing bus write transaction. Thus, when the bus inter­
face unit begins a write transaction, the write buffer slot containing the 
data for that write is freed up in the second phase of the write transac­
tion. If the processor was in a write busy stall, it will be released to write 
into the now available slot at this time, regardless of how long it takes the 
memory system to retire the ongoing write. · 

Note that each write buffer entry is one internal 32-bit word wide, but 
each entry can only hold the result of one store operation. Thus a 32-bit 
port can store 4 words while a 16-bit port can store up to 8 halfwords 
when using store word operands. However, if for example, four store byte 

·operations are done, each byte takes a full entry. 
Figure 7.9 illustrates the write-buffer-full operation. 
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Figure 7.9 Write-Buffer-Full Operation 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. One of the on~chip bus control­
lers is the "Memory Controller" as described in this chapter. 

This chapter will provide an overview of the Memory Controller 
interface, a complete description of the signal pins and their timing, and 
how the interface relates to typical external hardware ROMs and RAMs. 

Features 
• Controls ROM, Flash, EEPROM, SRAM and PCMCIA style memories 
• Controls up to 8 banks of memory 

(Note: chip selects are shared with the 1/0 Controller) 
• Interleaved and Non-Interleaved support 
• Each MemCS can be programmed to: 

- Individual chip selects 
- Combined interleaved pair-wise chip selects 
- Combined PCMCIA/MEM-style pair-wise chip selects 

• Each Bank has Programmable Base Address 
• Each Bank Size programmable from 8KB - 64MB 
• 8, 16, 32-bit, and interleaved 32-bit boot prom support 
• Wait State Generator features: 

- Programmable time from start to end of each data access for each 
area 

- Programmable time options for reads and writes 
- Programmable time options for single word accesses and for burst 

block accesses 
- Internally generates the RdCEnN and AckN timing for all CPU 

accesses 
- A programmed value may be overridden by the SysWait input 

signal 
- Direct control of data path transceivers supports various options: 
- Direct Bus Connection 
- FCT260 Bidirectional Latched Multiplexor 
- FCT245 Bidirectional Transceiver 
- FCT543 Bidirectional Registered Transceiver 

Block Diagram 
The functional block diagram of the Memory Bus Controller is shown in 

Figure 8.1. Starting at the bottom, the main Memory Controller Control 
Signal State Machine is responsible for generating the basic Memory 
Control signals used to connect to external PROMs, SRAMs, and other 
similar types of memory. These signals include chip selects, read 
enables/strobes, and write enables/strobes. The Memory Controller as a 
whole works in cooperation with the Bus Interface Unit described in 
Chapter 7. 

Thus the Control Signal State Machine sends and receives information 
from the BIU Controller for assistance with controlling the port width and 
controlling partial word reads and writes. The Control Signal State 
Machine also uses information stored in the software programmable 
Memory Controller Register Bank for example, to control interleaved 
versus non-interleaved memory cycles. 
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The Memoxy Controller Wait-State Generator is located in the center of 
Figure 8.1. The Wait-State Generator takes care of sending and receiving 
information from the BIU Controller in order to control the sequencing 
and timing of reading and writing each individual datum. The number of 
wait-states is derived from the settings programmed into the Register 
Bank. Once the correct number of wait-states has been counted out, 
then the Wait-State Generator sets the appropriate internal BIU Acknowl­
edge signals. With the programmable Wait-State Generator it is possible 
to eliminate the external state machines that are traditionally used for 
this function. 

At the top of Figure 8. 1 is the Memoxy Controller Decoder. The decoder 
constantly monitors the Bus Interface Unit's address and data bus to see 
if either: 

1. The access is to the Memoxy Controller's Register Bank. 
2. The access is in one of the Memoxy Controller's Chip Select Areas 
that is responsible for controlling the bus transaction. 
And, at the left of Figure 8. 1, is the Memoxy Controller Register Bank. 

The Register Bank allows the software programmer access to the many 
different options of the Memoxy Controller. 

The chip select address ranges, the number of wait-states, the port­
width of the chip select, and other similar options are programmed into 
the Register Bank as part of the software initialization sequence of the 
boot operating system. 

Because the Memoxy Controller is typically used by the boot PROM, the 
essential default values of the boot PROM chip select, MemCS(O) are set 
by the Reset Initialization Vector as described in Chapter 18, "Reset and 
Clocking." 
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Figure 8.1 R36100 Memory Bus.Controller Block Diagram 
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Memory Bus Controller Interface Signals 

Memory Controller Signals 
These external pins are typically attached directly from the R36 l 00 

RISController to external ROM and RAM chips and their transceivers. 

MemCSC7:0) / Output 
loCS(7:0) 

Memory Chip Select: The MemCS signals are active low outputs used 
to select one of the programmable memory controller areas. Typically a 
bank of external memory chips each attach to a MemCS signal such that 
the memory bank can be selected and turned on during a memory trans­
action. When the address from the CPU or OMA Controller matches the 
memory block corresponding to a particular MemCS signal, that MemCS 
will assert at the beginning of the next memory transaction and de­
asserts at the end of that transaction. 

MemCS signals are used individually for non-interleaved systems or in 
pairs (i.e., MemCS 0 & I, 2 & 3, 4 & 5, or 6 & 7) for interleaved systems. 
When using interleaved memory, the pair of chip selects are both asserted 
for a read but only one at a time is asserted for a write. 

The boot PROM is assigned to MemCS(O) and if interleaved, MemCS(l). 
The port width option is determined using the Reset Initialization Vector 
on the Exclnt(2:0) pins. Other options are set to universal settings which 
the boot software can reprogram. 

The MemCS chip selects are selectable and shared between Memory 
and I/O type-types (see Chapter 10, "1/0 Bus Controller"). 

MemRd.EnEven Output 
Memory Read Enable Even Bank: This active-low output signal is 

used as a read enable strobe used in conjunction with the even chip 
selects, such as MemCS(6:4:2:0)). Typically, MemRdEnEven is attached 
to all even bank's memory chips and transceivers (if present). If the 
banks are interleaved, this signal is the output enable for the even bank 
of the selected memory pair. Whether the banks are interleaved or non­
interleaved, all banks that share the same transceiver must use either all 
even or all odd chip selects (MemCSs) rather than an odd/ even pair 
unless external gating circuitry is provided. MemRdEnEven controls 
when the memory chip and its transceiver (if present) can drive the data 
signals back on to the main system data bus, SysData(31:0). 

Transceivers (FCt260, FCT245, or FCT543) can be used to isolate 
memory systems and allow for the different turnoff times for various 
memory devices.. If transceivers are used, then during Multiplexer 
FCT260-Type interleaved accesses, MemRdEnEven OR's with MemRdE­
nOdd internally such that MemRdEnEven remains asserted for the 
majority of the bus transaction for both even and odd accesses. . Typically 
in the Multiplexer Mode, MemRdEnEven is attached to the common 
output enable input pin of the multiplexer while MemRdEnOdd is 
attached to the path input pin of the multiplexer. During FCT245-Type 
interleaved type accesses, MemRdEnEven OR's with MemWrEnEven 
internally. 
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MemRdEnOdd Output 
Memory Read Enable Odd Bank: This active-low output signal is 

used as a read enable strobe used in conjunction with the odd chip 
selects, (i.e., MemCS(7:5:3: 1)). Typically MemRdEnOdd is attached to all 
odd bank's memory chips and transceivers (if present). During FCT245-
Type interleaved type accesses, MemRdEnOdd OR's with MemWrEnOdd 
internally. Please see the signal description for MemRdEnEven for more 
information. 

MemWrEn(3:0) I Output/(Input during DMA) 
MemByteEn(3:0) 
MemAddr(29:26) I 

System Write Enable: This dedicated byte enable strobes is always 
driven by the R36100, except during the Address Strobe of external OMA 
cycles. The pins always act as write enables except during PCMCIA-type 
accesses or PCI-style accesses. 

Output - During 32-bit accesses, these strobes are always de-asserted, 
except for the appropriate byte lane(s) for partial-word writes and mini­
bursts. SRAM and Flash EPROM memories can directly connect their 
byte write enables to the R36100 MemWrEn(3:0) signals. During 16-bit 
accesses, either MemWrEn(3:2) or MemWrEn(l:O) are used as both pairs 
will be equivalent. During 8-bit accesses, either MemWrEn(3) or 
MemWrEn(O) are used as they will be equivaient. 

Input - During External OMA accesses, the external OMA Controller 
must assert the appropriate byte lanes during Phase 1 of a write when 
SysALEn and SysWr are asserted. The byte enables are ignored by the 
BIU Controller during external OMA reads. 

MemWrEn(3:0) assert and de-assert on the falling edge of SysClk, 
whereas most control signals use the opposite edge of the clock. Thus it 
is not generally recommended that they be used for any. external state 
machine inputs. 

During idle cycles, MemWrEn(3:0) will return to inactive (high). 
Memory Byte Enable Bus: During a PCI-Memory-style or PCI-I/0-

style access, the MemWrEn(3:0) bus is programmed to assert the appro­
priate byte lanes on both reads and writes, rather than just on writes. In 
this mode as with the other modes, MemByteEn(3:0) are required to 
return de-asserted high at the end of ev,ery bus transaction. 

Memory Address Bus: During a PCMCIA Memory or I/0 type access, 
the MemWrEn(3:0) bus is instead driven with Physical Address bits. On 
the R36100 and R3051-base family memory map, virtual and physical 
addresses (29:0) are the same. An application using PCMCIA can for 
example use MemAddr(27:26) to externally decode PCMCIA style chip 
selects into as many as four (256M/64M = 4) slots. In this mode as in the 
other modes, the signals all return inactive high at the end of the bus 
transaction. 

BW Controller Signals 
Many of the BIU Controller Signals are necessary to complete the 

memory interface. These signals are listed here as a reminder. Informa­
tion specific to the Memory Controller is given here and general informa­
tion about the signal is given in Chapter 7, "BIU Controller." 
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SysAddr(25:0) Output/Input 
System Address Bus: SysAddr is an output bus when used with the 

Memory Controller. Typical 32-bit memory banks connect the word offset 
of the Least Significant Bits (LSB) of SysAddr to each memory chip. Thus 
the typical 32-bit memory bank skips SysAddr(l:O) and connects starting 
with SysAddr(2) on up. Typical 16-bit memory banks connect the half­
word offset of the LSBs of SysAddr to each memory chip starting with 
SysAddr( 1) on up. Typical 8-bit memory banks connect the LSBs of 
SysAddr to each memory chip starting with SysAddr(O) on up. 

SysData(3 l: 0) Output/Input 
System Data Bus: Typical 32-bit memory banks connect the entire 

32-bit SysData bus to the memory chips' data pins or to their trans­
ceivers. 16-bit and 8-bit memory banks connect to particular data pins 
depending on whether the Endianess of the system is Big Endian or Little 
Endian. Thus 16-bit memory banks use SysData(31: 16) if they are Big 
Endian and SysData(l5:0) if they are Little Endian. 8-bit memory banks 
use SysData(31:24) if they are Big Endian and SysData(7:0) if they are 
Little Endian. The User Mode Reverse Endianess Bit in the CPO Status 
Register has no effect on the connections to SysData, however, it strongly 
recommended that the Reverse Endianess Bit not be used to "correct" an 
endianess connection as it does not function in the kernel mode, nor does 
it correct the boot prom endianess. 

Sys\Vait Input 
System Wait Negated: SysWait can be used by an external source to 

add wait-states to the Memory Controller. Since the Memory Controller 
itself has a Wait-State Generator, Sys Wait typically is not needed and can 
be pulled-up with a resistor. The most likely application of SysWait is for 
an asynchronous memory event such as a Dual-Port Memory Busy signal 
which can be used to attach to SysWait to delay the beginning of a 
Memory Transaction in the Wait Mode option of the Memory Control 
Register 2. Please see Chapter 7. "BIU Controller" for a general descrip­
tion of Sys Wait. 

Overview of the Memory Controller (MemCntrl) 
The Memory Controller (MemCntrl) provides control for all memory 

spaces except for the DRAM space. These memory areas are intended for 
use by items such as boot ROM, Flash memory cards, additional EPROM 
and EEPROM space, SRAMs, and Dual Port RAM. Such memories typi­
cally have address inputs, data 1/0, chip select, read output enable, and 
if writable, a write enable strobe. 
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Chip Selects 
The Memory Controller (MemCntrl) contains up to 8 separate memory 

spaces each having its own Memory Controller Chip Select (MemCS) 
output pin. Each MemCS space occupies from 8K to 256MB of address 
space of which 64MB is externally addressable (due to the 26 address 
lines). The address space that each MemCS decodes is programmable. 
The MemCntrl will use the programmed information in the MSB and LSB 
Base Address Registers along with the size (8K to 256MB) of the given 
area as programmed in the MSB and LSB Page Mask Registers. This 
information is used to compare with the address asserted by the CPU-BIU 
or DMA Controller to determine if that particular MemCS area is being 
accessed for the current read or write. Each area supports single reads, 
burst reads, single writes, and burst writes. The port size of the data path 
(8, 16, 32-bit, or interleaved) of each area is also programmable with each 
area's Control Register. 

The MemCS signals can be used in pairs for interleaving. The pairs are 
MemCS(l:O) for one interleaved area and for the others, MemCS(3:2), 
MemCS(5:4), and MemCS(7:6). When interleaved, both chip selects 
within a pair must be programmed to the same values by the user. Note 
that the memory controller does not support seamless jumperless 
upgrades from single bank to interleaved systems because of the system 
dependent address multiplexing involved. This can be done externally for 
RAM types, however, for ROM types, the PROM chip programmer would 
require "switching of the binary object file" which is rarely worth the 
trouble. 

Transceiver Control Interface 
The Memory Controller provides transceiver output enables and write 

enables that are suitable for direct bus connection, FCT260 multiplexors, 
FCT245 transceivers, or for FCT543 bidirectional registers. The selection 
of the type of memory is software programmable. 8/ 16/32-bit wide Boot 
PROMs can use either the direct bus connection, FCT244s, or FCT543s. 
FCT245s can be used if the Boot PROM initializes the Memory Controller 
before doing any writes. Interleaved Boot PROMs are assumed to use the 
FCT260 type. 
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Wait State Generator 
The Wait-State Generator (WSG) controls the speed of the memory 

accesses to and from the Bus Interface Unit Controller. This includes the 
time from the start of a memory transaction until the first datum is sent 
or received and the time between consecutive datum on burst transac­
tions. The WSG also is programmed to generate the internal RdCEnN and 
AckN signals for CPU read and write requests. 

The internal Acknowledge signal, "AckN" (described in Chapter 7) is the 
same as the external signal pin that the R305 l RISController family uses. 
On single word reads and on both single word and burst writes, AckN is 
automatically placed at the end of the transaction by the WSG. However, 
on burst reads, the user is required to program the correct value into 
each corresponding MemCS area's Control Register "Burst Ack" field in 
order to optimize the CPU pipeline restart after a burst read. The most 
optimal value is 3 pipeline clocks previous to when the last datum is 
sampled. Less optimal values can be used if for instance Sys Wait is used. 

The signal called SysWait can be used to override the programmed 
settings of the Wait State Generator. The actual action the WSG performs 
when SysWait is asserted will depend on when it is asserted relative to the 
transaction. SysWait has a pipeline delay, such that it must be asserted 
two clocks before the desired effect is noticeable. By asserting it immedi­
ately after a datum is received or transmitted, the next datum can be 
delayed. However, use for this purpose is generally not recommended 
since the WSG has the same functionality. 

The SysWait signal is useful for accessing memories such as Dual-Port­
type memory, off-card "Ack"-type memory, and PCl-style memory. 

Register Option Programmability 
The Memory Controller contains 8 sets of registers, one set for each 

chip select. These registers allow the Memory Controller to be configured 
for different types and speeds of memory. Thus almost any system 
speed/cost/manufacturing trade-off can be accommodated. 

Register Descriptions 
The Memory Controller Registers are divided into 8 sets of registers, 

one set for each chip select memory area. Table 8.1 and Table 8.2 provide 
the address map and descriptions of the Memory and 1/0 Controller 
registers. These registers are shared with the 1/0 Controller as described 
in Chapter 9. 
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Phys. Address Register Description 

OxFFFF_E200 Memory and 1/0 LSB Base Address Register for Bank 0 
OxFFFF_E204 Memory and 1/0 MSB Base Address Register for Bank 0 
OxFFFF_E208 Memory and 1/0 LSB Bank Mask Register for Bank 0 
OxFFFF_E20C Memory and 1/0 MSB Bank Mask Register for Bank 0 
OxFFFF_E210 Memory and 1/0 Control Register for Bank 0 
OxFFFF_E214 Memory and 1/0 LSB Wait State Generator Register for Bank 0 
OxFFFF_E218 Memory and 1/0 MSB Wait State Generator Register for Bank 0 

OxFFFF_E220 Memory and 1/0 LSB Base Address Register for Bank 1 
OxFFFF_E224 Memory and 1/0 MSB Base Address Register for Bank 1 
OxFFFF_E228 Memory and 1/0 LSB Bank Mask Register for Bank 1 
OxFFFF _E22C Memory and 1/0 MSB Bank Mask Register for Bank 1 
OxFFFF_E230 Memory and 1/0 Control Register for Bank 1 
OxFFFF_E234 Memory and 1/0 LSB Wait State Generator Register for Bank 1 
OxFFFF_E238 Memory and 1/0 MSB Wait State Generator Register for Bank 1 

OxFFFF_E240 Memory and 1/0 LSB Base Address Register for Bank 2 
OxFFFF_E244 Memory and 1/0 MSB Base Address Register for Bank 2 
OxFFFF_E248 Memory and 1/0 LSB Bank Mask Register for Bank 2. 
OxFFFF_E24C Memory and 1/0 MSB Bank Mask Register for Bank 2 
OxFFFF _E250 Memory and 1/0 Control Register for Bank 2 
OxFFFF _E254 Memory and 1/0 LSB Wait State Generator Register for Bank 2 
OxFFFF_E258 Memory and 1/0 MSB Wait State Generator Register for Bank 2 

OxFFFF_E260 Memory and 1/0 LSB Base Address Register for Bank 3 
OxFFFF_E264 Memory and 1/0 MSB Base Address Register for Bank 3 
OxFFFF_E268 Memory and 1/0 LSB Bank Mask Register for Bank 3 
OxFFFF_E26C Memory and 1/0 MSB Bank Mask Register for Bank 3 
OxFFFF_E270 Memory and 1/0 Control Register for Bank 3 
OxFFFF_E274 Memory and 1/0 LSB Wait State Generator Register for Bank 3 
OxFFFF_E278 Memory and 1/0 MSB Wait State Generator Register for Bank 3 

OxFFFF_E280 Memory and 1/0 LSB Base Address Register for Bank 4 
OxFFFF_E284 Memory and 1/0 MSB Base Address Register for Bank 4 
OxFFFF_E288 Memory and 1/0 LSB Bank Mask Register for Bank 4 
OxFFFF_E28C Memory and 1/0 MSB Bank Mask Register for Bank 4 
OxFFFF_E290 Memory and I/O Control Register for Bank 4 
OxFFFF_E294 Memory and 1/0 LSB Wait State Generator Register for Bank 4 
OxFFFF_E298 Memory and 1/0 MSB Wait State Generator Register for Bank 4 

NOTES: 1. Big Endian software must offset these addresses by b' 10 (Ox2). 

Table 8.1 List of the Memory and 1/0 Controller Registers (I of 2). 
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Phys. Address 

OxFFFF_E2AO 
OxFFFF_E2A4 
OxFFFF _E2A8 
OxFFFF _E2AC 
OxFFFF _E2BO 
OxFFFF _E2B4 
OxFFFF _E2B8 

OxFFFF _E2CO 
OxFFFF_E2C4 
OxFFFF_E2C8 
OxFFFF _E2CC 
OxFFFF _E2DO 
OxFFFF _E2D4 
OxFFFF _E2D8 

OxFFFF_E2EO 
OxFFFF_E2E4 
OxFFFF_E2E8 
OxFFFF _E2EC 
OxFFFF_E2FO 
OxFFFF_E2F4 
OxFFFF_E2F8 

Register Description 

Memory and 1/0 LSB Base Address Register for Bank 5 
Memory and 1/0 MSB Base Address Register for Bank 5 
Memory and 1/0 LSB Bank Mask Register for Bank 5 
Memory and 1/0 MSB Bank Mask Register for Bank 5 
Memory and 1/0 Control Register for Bank 5 
Memory and 1/0 LSB Wait State Generator Register for Bank 5 
Memory and I/O MSB Wait State Generator Register for Bank 5 

Memory and 1/0 LSB Base Address Register for Bank 6 
Memory and I/O MSB Base Address Register for Bank 6 
Memory and 1/0 LSB Bank Mask Register for Bank 6 
Memory and I/O MSB Bank Mask Register for Bank 6 
Memory and I/O Control Register for Bank 6 
Memory and I/O LSB Wait State Generator Register for Bank 6 
Memory and I/O MSB Wait State Generator Register for Bank 6 

Memory and I/O LSB Base Address Register for Bank 7 
Memory and I/O MSB Base Address Register for Bank 7 
Memory and I/O LSB Bank Mask Register for Bank 7 
Memory and I/O MSB Bank Mask Register for Bank 7 
Memory and 1/0 Control Register for Bank 7 
Memory and I/O LSB Wait State Generator Register for Bank 7 
Memory and I/O MSB Wait State Generator Register for Bank 7 

Chapter 8 

NOTES: 1. Big Endian software must offset these addresses by b' 10 (Ox2). 

Table 8.2 List of the memory and 1/0 Controller Registers (2 of 2) 

Memory MSB Base Address Register for Bank 7 •• 0 
('MemMSBBaseAddrReg(7 •• 0)'), 

and 
Memory LSB Base Address Register for Bank 7 •• 0 
('MemLSBBaseAddrReg(7 •• 0)') 

There are 8 pairs of Base Address MSB & LSB Registers, a pair for each 
Memory Chip Select (MemCS). Each pair of memory base address regis­
ters is concatenated into an internal "32-bit" register and refer to the 
most significant 16 address bits and the least significant 16 address bits. 

The formats of the MemMSBBaseAddrReg and MemLSBBaseAddrReg 
are displayed in Figure 8.2 and Figure 8.3. These registers are both read­
able and writable. 

The Base Address Registers are used to determine the starting location 
of a particular Memory Chip Select. 

15 0 

MSB Base Addr 

16 

Figure 8.2 Memory and 1/0 MSB Base Address Register ('MemMSBBaseAddrReg'). 

15 13 12 0 ..-------
LSB Base Addr 

3 13 

Figure 8.3 Memory and 1/0 LSB Base Address Register ('MemLSBBaseAddrReg'). 
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Because of the possibility of interleaving, there are 4 groups of 2 chip 
selects, as follows: 

Group 0: 

Group I: 

Group 2: 

Group 3: 

MemCS(l:O) 

MemCS(3:2) 

MemCS(5:4) 

MemCS(7:6) 

Bits 31-28 of each group must be programmed identically since the 
internal hardware uses bits 31-28 from the even register, MemCS(0.2,4,6) 
for each group. This corresponds to setting each group of four chip 
selects into 1 of 16 possible 256M address spaces. 

Bits 27-13 must be programmed to the desired base address. This 
corresponds to separate address spaces for each chip select of BK to 
256M. 

Internally, bits 12:0 are reserved to 'O' and must be programmed as 'O'. 
This corresponds to having minimum contiguous chip select banks of BK. 
The default base addresses at reset are shown in Table 8.3. 

Chip Select Default Value 

MemCS(O) Ox IFCO_OOOO 

MemCS(l) Ox IFFO_OOOO non-interleaved 

(if interleaved, then OxlFCOOOOO) 

MemCS(2) Ox 2FCO_OOOO 

MemCS(3) Ox 2FFO_OOOO non-interleaved 

(if interleaved, then Ox 2FCO_OOOO) 

MemCS(4) Ox 3FCO_OOOO 

MemCS(5) Ox 3FFO_OOOO non-interleaved 

(if interleaved, then Ox 3FCO_OOOO) 

MemCS(6) Ox 4FCO_OOOO 

MemCS(7) Ox 4FFO_OOOO non-interleaved 

(if interleaved, then Ox 4FCO_OOOO) 

Table 8.3 Memory and 1/0 Controller Base Addresses. 
In summary: 

1. Bits 31:28 of each group of four MemCS base addresses is set by the 
first MemCS of the group. 

--~ 2. Bits 27: 13 of each MemCS base address is used to distinguish the 
starting address of each memory space within a group. 

3. Bits 12:0 are always ignored. 

Memory MSB Bank Mask Register for Bank 7 .. 0 
('MemMSBBankMaskReg(7 .. 0)'), 

and 
Memory LSB Bank Mask Register for Bank 7 .. 0 
('MemLSBBankMaskReg(7 .. 0)') 

There are 8 pairs of Bank Mask Registers, one pair for each chip select 
(MemCS). The two Bank Mask Registers are concatenated into an 
internal "32-bit" register and refer to the most significant 16 address bits 
and the least significant 16 address bits. 
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The formats of the MemMSBBankMaskReg and MemLSBBankMaskReg 
are displayed in Figure B.4 and Figure B.5. These registers are both read­
able and writable and bits 31: 13 are set and bits 12:0 are cleared by 
default on reset. 

15 0 

MSB Bank Mask 

16 

Figure 8.4 Memory and 1/0 MSB Page Mask Register ('MemMSBPageMaskReg'). 

15 13 12 0 ...-------
LSB Base Addr 

3 13 

Figure 8.5 Memory and 1/0 LSB Page Mask Address Register ('MemLSBPageMaskReg'). 

The Bank Mask Registers are used to decide which address bits in the 
base address are to be used for comparing whether a chip select (MemCS) 
is to be activated. 

The internal grouping of chip selects is as follows: 

Group 0: 

Group 1: 

Group 2: 

Group 3: 

MemCS(l:O) 

MemCS(3:2) 

MemCS(5:4) 

MemCS(7:6) 

Bits 31-28 of each group must be programmed identically since the 
internal hardware uses bits 3 l-2B from the even register, MemCS(0,2,4,6) 
for each group. This corresponds to setting each group of four chip 
selects into 1 of 16 possible 256M address spaces. 

Internally, bits 27-13 must be programmed to the desired Bank mask. 
This corresponds to separate address spaces for each chip select of BK to 
256M. Bits 12:0 are reserved to 'O' and must be programmed as 'O'. This 
corresponds to having minimum contiguous chip select banks of BK. 

In summary: 
1. Bits 31:2B of each group of four MemCS Bank masks is set by the 

first MemCS of the group. 
--~ 2. Bits 27: 13 of each MemCS Bank mask are used to distinguish the 

size of each memory space. 
3. Bits 12:0 are always ignored 
Table B.4 lists the values and actions for the Memory Mask Field 

Encoding, Figure B.6 shows the Memory and I/O Control Register, and 
Table B.5 provides the register's bit assignments. 

Value Action 

'l' Bit is used in Address comparison 

'O' Bit is masked out 

Table 8.4 Memory Mask Field Encoding 
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Memory and 1/0 Control Register for Bank 7 .• 0 
('MemControlReg(7 .. 0)'), 

15 12 11 8 7 6 
MemType MemSize 

4 4 2 6 

Figure 8.6 Memory and 1/0 Control Register Bit Assignments. 

Bit Assignment 

11:8 Memory Type ('MemType') 

7:6 Port Size Width ('MemSize') 

Table 8.5 Memory and 1/0 Control Register Bit Assignments. 
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Memory Type ('Type') Field 
The Type field determines the type of timing the Bus Interface will use. 
Values and actions for this field are listed in Table 8.6. 

Value Action 

'1011' PCMCIA-Memory-Style 
·' 

'1010' PCMCIA-1/0-Style 

'1001' M-Type 1/0 

'1000' I-Type 1/0 

'0010' Memory-Type for FCT260 (default) 

'0001' Memory-Type for FCT245 

'0000' Memory-Type for FCT543 

All others Reserved, undefined 

Note: 
1. PCI-Style supports a PCI subset that is likely to be used with PCI 

Peripheral chips. Both PCI master and slave (via external DMA) modes 
are supported. However, full support if needed must be externally 
provided, for instance, parity and terminate/stop issues. 

2. PCMCIA-Style supports a PCMCIA host mode subset that is likely to be 
used with PCMCIA peripherals. PCMCIA-Memory and -IO Styles are 
intended for dynamic swapping by the software onto the same pair of 
chip selects. Typically, the Memory-Style is left on, and the 1/0-Style is 
swapped in whenever it is needed, then swapped back to Memory-Style. 

Table 8.6 Memory Type Field ('MemType') Encoding. 

Port Size Width ('MemSize') Field 
The PortSize field determines the width of the memory or 1/0 port. The 

value is inverted relative to the reset initialization vector value. Encoding 
information for this field is listed in Table 8. 7 

Value Action 

'11' 64-bit (32-bit 2-way interleaved) accesses (Valid for Memory 

Type only) 

'10' 16-bit accesses 

'01' 8-bit accesses 

'00' 32-bit accesses 

Table 8. 7 PortSize ('MemSize') Encoding. 
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Memory LSB Walt State Register for Bank 7 .. 0 
('MemLSBWaltStateReg(7 .. 0)') 

15 12 11 4 
RdStart2Datum WrStart2Datum RdDatum2Datum 

4 4 4 

Chepter 8 

3 0 
WrDatum2Datum 

4 

Figure 8.7 Memory LSB Walt State Register ('MemLSBWaltStateReg'). 

The Wait-State Generator registers provide fields to control the access 
timings to/from the CPU and the memory control and 1/0 control areas 
or these control areas for DMA accesses. The parameters controlled are: 

1. Time from CS asserted to the first RdCEnN for read burst or time to 
RdCEnN and AckN for single word access or time to the first AckN for a 
burst DMA write. 

2. Time between the RdCEnN's for burst reads or AckN's for burst DMA 
writes. 

3. Time from the first RdCEnN to the AckN for burst reads or time from 
first AckN to last AckN for burst DMA writes. 

4. The functionality of the SysWaitN signal for the corresponding 
control area. 

There is a MemLSBWaitStateReg for each of the control areas or a total 
of 8 MemLSBWaitStateReg's. 

The various fields and bit assignments of the Memory LSB Wait State 
Register are shown in Figure 8. 7 and Table 8.8. 

Bit Assignment 

15:12 RdStart2Datum 

11:8 · WrStart2Datum 

7:4 RdDatum2Datum 

3:0 WrDatum2Datum 

Table 8.8 Memory LSB Walt State Register ('MemLSBWaltStateReg') Bit 
Assignments. 
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Read Start Cycle to the First Datum ('RdStart2Datum ') Field: 
and 

Write Start Cycle to the First Datum ('WrStart2Datum ') Field: 
This field sets the number of cycles from the. last (if repeated) 'SO Start' 

bus cycle to the first RdCEnN for a burst read or to the RdCEnN and 
AckN for a single word read or to the first AckN for a burst DMA write or 
to the AckN for a single word write. The time can be from 1 cycle 
(Start2Datum = b'OOOO) (default) to 16 cycles (Start2Datum = b'l 111). 
The wait states (Start2Rd value - I) are injected onto the "2nd" clock edge 
after the bus cycle begins, such that the Second. 'S 1' state is repeated. 
Encoding information for this field is contained in Table 8.9. 

Value Action 

'15' 15 clock cycles to 1st datum (default). 

... 
·o· 1 clock cycle from Start to 1st datum. 

Note: At least 1 clock cycle is always implied by 'Sl' state. 

Table 8.9 Start to the first Datum ('Rc1Start2Datum' and 'WrStart2Datum') Field 
Encoding. 

Read Datum to Datum ('RdDatum2Datum') Field: 
and 

Write Datum to Datum ('WrDatum2Datum') Field: 
This field sets the number of cycles between RdCEnN Datum for burst 

reads or AckN Datum for burst OMA writes. The time can be from 1 
(Datum2Datum = b'OOOO) to 16 cycles· (Datum2Datum = b' 1111) such 
that the 'S2' state is repeated. Interleaved delay is between pairs of 
datum. Encoding information for this field is listed in Table 8.10. 

Value Action 

'2' to '15' 3 to 16 cycles to next burst datum. 

'l' 2 cycles to next burst datum (default) 

·o· 1 cycle to next burst datum. 

Table 8.10 Datum-to-Datum (RdDatum2Datum, WrDatum2Datum) 
Field Encoding 
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Memory MSB Walt State Register for Bank 7 .. 0 
('MemMSBWaltStateReg(7 .. 0)') 

Chapter 8 

These registers are both readable and writable. Programming informa­
tion for this field is located in Figure 8.8 (Memory MSB Wait State 
Register) and Table 8.11 (Memory MSB Wait State Register Bit Assign­
ments). 

15 14 13 8 7 6 5 2 

Start2BurstAck ·o I BTA 

1 1 6 1 1 1 1 1 3 

Figure 8.8 Memory MSB Wait State Register ('MemMSBWaitStateReg). 

Bit Assignment 

15 Reserved to 'O' 

14 StartRepeat (default is 1) 

13:8 Start2BurstAck (default is O) 

7 Reserved to 'O' 

6 BEn (default is OJ 

5:3 Reserved to 'O' 

2:0 BTA (default is 0) 

Table 8.11 Memory MSB Wait State Register 
('MemMSBWaitStateReg') Bit Assignments. 

Repeat Start Bus Cycle State 0 ('StartRepeat') Field 

0 

This field controls the number of times the SO first bus cycle state is 
repeated until the second 'Sl' state is entered. An application is to allow 
more time for address setup to the chip select on the slowest 600ns 
PCMCIA cards. Field encoding information for this field is located in 
Table 8.12. 

Value Action 

'l' Repeat Start Cycle 1 time (default). 

·o· Repeat Start Cycle 0 times (typical). 

Table 8.12 Repeat Start Bus Cycle State 0 ('StartRepeat') 
Field Encoding. 
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Start of Read to AckN on Burst Reads ('Start2BurstAck') Field 
This field sets the number of cycles from the first bus cycle to the AckN 

for a burst read or to the last AckN for a burst OMA write. The time can 
be from 0 cycles (Start2BurstAck = b'OOOOOO) to 62 cycles 
(Start2BurstAck = b'l 11110). This field is only valid for Memo:ry type and 
not valid for 1/0 type accesses. Field encoding information for this field is 
listed in Table 8.13. 

Value Action 

'63' No Ack (default). 

'62' .. .'0' 62 to 0 cycles until Ack (typical is 0). 

Table 8.13 First Read to AckN on Burst Reads ('Start2BurstAck') 
Field Encoding. 

Byte Enables on Reads ('BEn') Field 
;-;-~;;-;-=-~--:=-

This field selects whether the MemWrEn(3:0) pins are asserted on 
reads. It is recommended that byte enables only be enabled for reads on 
PCI accesses in order to support future Fly-By OMA modes on other 
peripherals that may use MemWrEn(3:0). MemWrEn(3:0) always return 
high at the end of a bus transaction. Field encoding information for this 
field is listed in Table 8.14. 

Value Action 

'l' Allow Byte Enables on reads. 

·o· Allow Byte Enables on writes only with MemWrEn (default). 

Table 8.14 Byte Enables on Reads ('BEn') Field Encoding. 

Bus Turn-Around ('BTA') Field 
This field sets the minimum number of idle data bus cycles after a 

read. This field must be set to at least 'l' because of the possibility of a 
read followed by a write. On a read followed by a read, the number of idle 
cycles is from the pertinent read enable de-asserting until the next perti­
nent read enable (Memo:ry, 1/0, or DRAM) asserting. Field encoding infor­
mation for this field is listed in Table 8.15 

Value Action 

'111' Minimum of 7 clocks (may increase in future products) 

'110' 6 clocks 

'101' 5 clocks 

'100' 4 clocks 

'011' 3 clocks 

'010' 2 clocks 

'001' 1 clock (default) 

'000' Reserved 

Table 8.15 Bus Tum-Around ('BTA') Field Encoding. 
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Memory Controller Timing Diagrams 
This section illustrates a number of timing diagrams applicable to 

R36 l 00 RISController memory transactions. The values for the AC 
parameters are contained in the separate document, "R36100 RISCon­
troller Data Sheet." 

Read Transactions 
The bus interface timing for read transactions is described in the 

following section. The internal bus interface to CPU core timing for reads 
is described in Chapter 7, "Bus Interface Unit Controller". 

Basic I-Datum Read with 0 Wait-States 
Figure 8.9 illustrates a basic Memory-Type Memory Controller read 

transaction. Each transaction begins with both SysALEn and SysBurst­
Frame asserting. At this time, SysRd and the appropriate MemCS() assert 
(if they are not already in this state, as the result of a previous transac­
tion) to indicate the read transaction and which memory bank is being 
used. After the completion of this initial 'Start' cycle stage, the Data 
Sampling stage is begun. In this second stage, the appropriate Memory 
Read Enable signal. either MemRdEnEven or MemRdEnOdd, will assert 
to allow the external memory bank to turn on and begin driving data back 
to the RISController. 

Since Figure 8. I 0 is for a single datum read, this Data Sampling Stage 
is the last Datum for this transaction and thus SysBurstFrame is de­
asserted. To end a Data Sampling Stage, SysDataRdy asserts on clock 
cycles where data is expected. After the last Data is sampled, note that 
the signals, SysRd and MemCS may not necessarily de-assert as the next 
bus transaction may already be starting. The internal signal, AckN, that 
is associated with R305 l-family read cycles is generated automatically for 
single word reads (and writes). 

8-18 



Memory Controller 

Run/ 
Stall 

SysAddr(25:0) 

SysData(31 :0) 

SysALEn 

SysBurstFrame 

SysDataRdy 

MemCS(O) 

MemRdEnEven 

MemRdEnOdd 

Sys Wait 

Stall-Arb 

I....-----. 

'j ,_______,. 

~ 
7 

\ 

7 
\ 

7 

7 

Start 
Read 

Chapter 8 

I Stall-RdBusy .1 Fixup (on Data) I 
(on Data) Stall-Rdbusy 

Stall (on Inst) (on Inst) 
Stall 

_I~ ir-

Addr 

~ [7 
Wait? 

<Data Input~ 

\ 

I 

\ 

I 

Sample Data/ 
New 

Transaction 

Ir--
j -

Figure 8.9 I-Datum Read with 0 Wait-States. 
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I-Datum Read with O Wait-States using Odd Chip Select 
Figure 8.10 illustrates a basic Memm:y-Type Memory Controller read 

transaction, except that the access is to an Odd Memory Chip Select, 
MemCS(7,5,3,l) instead of an even one. Because an odd MemCS is 
asserted, MemRdEnOdd is asserted during the Data Sampling Stage 
instead of its even counterpart. 

Run/ 
Stall Stall-Arb 

-ll 
I 

Stall 

-1l 
I 

Stall-Rd Busy 
(on Data) 

Stall (on Inst) 

-ll 
) 

Fixup (on Data) 
Stall-Rdbusy 
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-ll 
) 

SysAddr(25:0) 
Addr 

SysData(3t:O) 

SysALEn 

SysBurstFrame 

SysDataRdy 

MemCS(1) 

MemRdEnEven 

MemRdEnOdd 

Sys Wait 

\ 
7 

~ 

7 

"i 
7 

7 

Start 
Read 

\ 7 
Wait? 
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I 

Sample Data/ 
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Figure 8.10 I-Datum Read with 0 Wait-States Using an Odd Chip Select. 
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Read with Wait-State using Start Repeat Field 
Figure 8.11 illustrates a basic Mem01y-Type Memory Controller read 

where 1 wait-state has been added by repeating the Start Cycle. This 
special effect is programmed into the Wait-State Generator using the Start 
Repeat Field in the MemLSBWaitStateRegO Register. When the Start 
Cycle repeats, the Data Sampling Stage is delayed and the assertion of 
the Memory Read Enable strobe, MemRdEnEven or MemRdEnOdd is 
delayed. This effect is useful for very slow memories or memories that 
require significant address setup before the chip is selected. An example 
is the 600ns access time mode of the PCMCIA memory protocol. The 
Start repeat Field affects both reads and writes. 
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Figure 8.11 I-Datum Read with I Wait-State using StartRepeat Field. 
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Read with Wait-State using RdStart2Datum Field 
Figure 8.12 illustrates a basic Memory-Type Memory Controller read 

where 1 wait-state is added using the RdStart2Datum Field of the 
MemMSBWaitStateRegO Register. Any number from 0 to 15 internal wait­
states may be added using the RdStart2Datum Field. With this field, the 
Memory Read Enable strobe, either MemRdEnEven or MemRdEnOdd is 
asserted as normal, but then wait-states are added where SysDataRdy is 
not asserted until the RdStart2Datum Field has finished counting. When 
SysDataRdy is asserted, then the Data from the external Memory Bank is 
sampled into the RISController. 
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Figure 8.12 Read with Wait-State using RdStart2Datum Field. 

8-22 



Memory Controller Chapter 8 

Read with Wait-State using SysWait 
Figure 8.13 illustrates a basic Memory-Type Memory Controller read 

where 1 wait-state is added using the external signal pin, SysWait. 
SysWait is not expected to be used for conventional memories, since it is 
easier to program the Wait-State Generator to produce wait-states. 
However, SysWait can be useful for Dual-Port memory and off-card 
memories where there may be an indeterminate amount of time before 
the access can begin. Since SysWait is sampled a clock ahead of when it 
is used, its effect is seen two clocks later than when it is asserted. If 
SysWait is asserted when SysDataRdy is asserted then an additional Data 
Sampling clock cycle is repeated with SysDataRdy remaining low. Thus 
external logic analyzers or other debug equipment may want to gate 
SysDataRdy with Sys Wait in order to decode valid Data samples. 

Run/ I Stall-Arb 
Stall Stall Stall 

Stall-RdBusy I Fixup (on Data) I 
(on Data) Stall-Rdbusy 
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Figure 8.13 Read with Wait-State using SysWait. 
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4-Word Burst Read with 0 Walt-States 
Figure 8.14 illustrates a 4-word Burst Read when using the Memory­

Type Memory Controller. This example can also be generalized to demon­
strate any multi-datum read generated from the CPU core which includes 
double, triple, quad, and 16-byte reads using an 8-bit port width, and 
double, and octi-halfword reads using a 16-bit port width. Note that the 
OMA Controller~can potentially do any length from 1 to 16 datum. 

As shown in Figure 8.14, SysFrameBurst can be used to determine 
which is the last datum to be sampled. After the first datum is sampled, 
the Wait-State Generator uses the RdDatum2Datum field in the MemMS­
BWaitStateRegO Register in order to determine the number ofwait.:.states 
to generate. Figure 8.15 gives an example of inserting wait-states 
between later data elements. By programming different values into the 
RdStart2Datum and the RdDatum2Datum Fields, a burst read can be 
throttled to, for example, give a longer access time to the first datum and 
shorter access time for any subsequent datum. 

To obtain the maximum optimization of a 4-word burst read (4 32-bit 
datum, 8 16-bit datum or 16 8-bit datum) the Start2BurstAck Field of the 
MemMSBWaitStateRegO Register must be programmed. Programming 
this field to 3 clock cycles before the last datum is sampled places the 
internal R3051-family like signal, AckN, such that the CPU pipeline can 
be restarted early. Systems that have an indeterminate number of 
external SysWait wait-states must program this field to give an internal 
AckN. In such cases, like single word reads, AckN is generated automati-
cally on the last datum sample. · 

Run/ I I Stall Stall-Arb Stall Stall I Refill (on Data) I Refill (on Data) I Refill(on Data) I Fixup (on Data) I 
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Figure 8.14 4-Word Burst Read with 0 Walt-States. 
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Figure 8.15 4-Word Burst Read with Wait-States using RdDatum2Datum Field. 

Basic 16-bit PCMCIA-style 1/0 Read with 0 Wait-States 
Figure 8.16 illustrates a basic 16-bit PCMCIA-Style Memory Controller 

read transaction. Each transaction begins with both SysALEn and 
SysBurstFrame asserting. At this time, SysRd asserts (if it is not in this 
state, as the result of the previous transaction). Assuming there are no 
internally programmed StartRepeat wait-states, on the next clock cycle, 
SysBurstFrame de-asserts and the MemCS() pair asserts. Note that on 
PCMCIA transactions the MemCS() pair is asserted, according to which 
bytes are enabled and valid. Thus if the even byte is valid, then the even 
MemCS() will assert. If the odd byte is valid, then the odd MemCS() will 
assert. If both bytes are valid, then both MemCS()s in the pair assert. 
Assuming there are no internally programmed RdStart2Datum wait­
states, SysDataRdy asserts to indicate that the data from the memory 
device is being sampled into the RISController. On the next clock--the 
final clock of the transaction--the MemCS() pair de-asserts and, simulta­
neously, the next transaction may begin. 
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Figure 8.16 PCMCIA-Style Memory Read with 0 Wait-States 
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Write Transactions 
The bus interface aspect of write transactions is described in the 

following section. The internal bus interface to CPU core aspect of writes 
is described in Chapter 7, "Bus Interface Unit Controller". 

Single Datum Write 
Figure 8.1 7 illustrates a basic Memory-Type Memory Controller Write 

transaction. Each transaction begins with both SysALEn and SysBurst., 
Frame asserting. At this time, SysWr and the appropriate MemCS assert 
(if they are not already in this state) to indicate the write transaction and 
the memory bank being used. After completing this Start cycle stage, the 
Data Driving stage begins. In this second stage, MemWrEn(3:0) (which 
acts as write byte enable strobes) assert. In general. from 1 to 4 of the 
MemWrEn(3:0) signals will be asserted. 

Since Figure 8.17 is for a single datum write, this Data Driving Stage is 
the last Datum for this transaction and thus SysBurstFrame is de­
asserted. To end a Data Driving Stage, SysDataRdy asserts on clock 
cycles where data is expected to be latched with the trailing de-asserting 
edges of MemWrEn(3:0). After the last Data is driven, note that signals 
such as SysWr and MemCS may not necessarily de-assert, as the next 
bus transaction may already be starting. The internal signal, AckN, 
associated with R3051-family write cycles, is generated automatically for 
single word writes (and reads). 

Note: This manual does not illustrate a Memory-type write transac­
tion to an Odd Memory Chip Select. However, the only difference is 
that during the Data Driving Stage an odd MemCS is asserted instead 
of its even counterpart. 
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1-Datum Write with 0 Wait-States using FCT245-Type Field 
Figure 8.18 illustrates a basic write using the FCT245-Type Field. 

Either the even or the odd read enable, MemRdEnEven or MemRdEnOdd 
will assert on even or odd writes such that a FCT245 transceiver output 
enable can be connected. 
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Figure 8.18 1-Datum Write with O Wait-States using FCT245-Type Field. 
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I-Datum Write with Wait-State using StartRepeat Field 
Figure 8.19 illustrates a basic Memory-Type Memory Controller write 

where 1 wait-state has been added by repeating the Start Cycle. This 
special effect is programmed into the Wait-State Generator using the Start 
Repeat Field in the MemLSBWaitStateRegO Register. When the Start 
Cycle repeats, the Data Driving Stage is delayed and the assertion of the 
Memory Write Enable strobes, MemWrEn(3:0), are delayed. This effect is 
useful for very slow memories or memories that require significant 
address setup before the chip is selected. For example, with the 600ns 
access time mode of the PCM CIA memory protocol, the Start repeat Field 
affects both reads and writes. 
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Figure 8.19 I-Datum Write with Wait-State using StartRepeat Field. 
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Chapter 8 

I-Datum Write with Wait-State using WrStart2Datum Field 
Figure 8.20 illustrates a basic Memory-Type Memory Controller write 

where 1 wait-state is added using the WrStart2Datum Field of the 
MemMSBWaitStateRegO Register. Any number from 0 to 15 internal wait­
states may be added using the WrStart2Datum Field. With this field, the 
Memory Write Enable strobe (either MemWrEnEven or MemWrEnOdd) as 
well as the write byte enables (MemWrEn(3:0)) are asserted as normal. 
However, wait-states are added (where SysDataRdy is not asserted) until 
the WrStart2Datum Field has finished counting. When SysDataRdy is 
asserted, then the Data from the external Memory Bank is sampled by 
external memory. 
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I-Datum Write with Wait-State using SysWait 
Figure 8.21 illustrates a basic Memo:ry-Type Memo:ry Controller write 

where 1 wait-state is added using the external signal pin, SysWait. 
SysWait is not expected to be used for conventional memories, since it is 
easier to program the Wait-State Generator to produce internal wait­
states. However, Sys Wait can be useful for· Dual-Port memo:ry and off­
card memories where there may be an indeterminate amount of time 
before the access can begin. Since SysWait is sampled a clock ahead of 
when it is used, its effect is seen two clocks later than when it is asserted. 
If SysWait is asserted when SysDataRdy is asserted then an additional 
Data Sampling clock cycle is repeated with SysDataRdy remaining low. 
Thus external logic analyzers or other debug equipment may want to gate 
SysDataRdy with SysWait in order to decode valid Data samples. 
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Figure 8.21 1-Datum Write with Walt-State using SysWalt. 
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Multi-Datum Burst Write 
Figure 8.22 illustrates a 2-datum Burst Write when using the Memory­

Type Memory Controller. This example can also be generalized to demon­
strate any multi-datum write generated from the CPU core which includes 
double, triple, and quad byte writes using an 8-bit port width, and double 
halfword writes using a 16-bit port width. Note that although the CPU 
core will not generate bursts in the 32-bit width. the internal and external 
OMA Controller channels can do so, and can potentially do any length. 

In Figure 8.21, SysBurstFrame can be used to determine which is the 
last datum to be sampled. At the end of each datum, MemWrEn(3:0) de­
asserts for 1 clock cycle. They re-assert if more datum needs to be 
processed. After the first datum is sampled, then the Wait-State Gener­
ator uses the WrDatum2Datum Field in the MemMSBWaitStateReg() 
Register to determine the number of wait-states to generate. 

Most conventional SRAMs need to use WrDatum2Datum wait-states 
to de-assert MemWrEn(3:0) at the end of each word written. The zero 
wait-state case is useful for certain types of FIFOs. 
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Figure 8.22 Multi-Datum Burst Write. 
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Multi-Datum Burst Write using Wait-State with WrDatum2Datum 
Figure 8.23 gives an example of inserting wait-states between later 

data elements. By programming different values into the WrStart2Datum 
and the WrDatum2Datum Fields, a burst write can be throttled to for 
instance give a longer access time to the first datum and shorter access 
time for any subsequent datum. 

Like single word writes, AckN is generated automatically on the last 
datum sample. 
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Figure 8.23 Multi-Datum Burst Write using Wait-State with WrDatum2Datum. 
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Basic PCMCIA-Type Memory Write with 0 Wait-States 
Figure 8.24 illustrates a basic PCMCIA-Type Memory Controller write 

transaction. Each transaction begins with both SysALEn and SysBurst­
Frame asserting. At this time, SysWr asserts if hasn't done so already 
(from the previous transaction), and it is guaranteed that MemCS() will be 
in its de-asserted state. Assuming that there are no internally 
programmed StartRepeat wait-states, on the next clock cycle, SysBurst­
Frame de-asserts. 

On the third cycle MemCS() asserts. On PCMCIA transactions the 
MemCS() pair is asserted according to which bytes are enabled and valid. 
If the even byte is valid, the even MemCS() will assert, while if the odd byte 
is valid, then the odd MemCS() will assert. If both bytes are valid, then 
both MemCS() signals in the pair will assert. 

Assuming there are no internally programmed RdStart2Datum wait­
states, SysDataRdy asserts to indicate that the data from the RlSCon­
troller is ready to be latched into the memory device. On the 4th clock 
cycle, MemCS() de-asserts, providing a means for the write data from .the 
RlSController to be latched into the memory device. On the next clock, 
the next transaction may begin. 

During a PCMCIA-Type transaction, there is 1 clock of address setup 
time before MemCS() asserts. All signals are setup before MemCS(), 
which is being used as the write strobe, de-asserts. 
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Interleaved-Type Transactions 
The R36100 RISController's Memory Controller has the capability to 

interleave memory transactions such that 64-bits of memory are accessed 
at a time and then funneled into or out of the CPU in two 32-bit chunks. 
Thus on a burst read, the CPU begins a pair of 32-bit accesses at the 
same time. The first word is read in as normal, while the second word is 
externally latched. Then while the second word is read, the third and 
forth words begin their accesses. When large memory arrays are used, 
interleaved systems speed up the overall transaction time of burst reads 
and do not add cost to the system, since transceivers are typiCally needed 
to isolate the multiple memory banks anyway. The R36100 supports a 
variety of different data transceiver options, as shown here. 

Interleaved Read using FCT260-Type Field 
Figure 8.25 illustrates an interleaved 4-word burst read using the 

FCT260-Type. The odd Read Enable, MemRdEnOdd is used as the Path 
Select and the Odd Latch Enable. MemRdEnEven changes its function­
ality in that it asserts for both the even and odd Data Sampling periods. 
As with the non-interleaved types, various throttled wait-state options are 
available via the internal Wait-State Generator including optimal Burst 
Ack placement. It is implied that the odd words are always returned 1 
clock after the even words. 

Figure 8.26 shows a single datum access to an "even" bank of an inter­
leaved memory system using 'FCT260 transceivers. Note that the timing 
of this access is identical with the timing of the first word of a 4-word 
access. 

Figure 8.27 shows the analogous access to the "odd" bank of an inter­
leaved memory system, using 'FCT260 transceivers. In this figure, the 
timing is identical with the timing of the access of the second word of a 4-
word access; however, the first word is not actually returned to the CPU. 

Due to a limitation on the number of transceiver control signals, there 
is a performance difference between even and odd single word accesses. 
However, note that this should not· affect system performance in the 
following areas: 

- single word accesses will occur for uncached loads, and uncached 
instructions. These are typically not time critical programs or data. 

- for cached data, these accesses will only occur if the data block 
refill option is selected to "one word" rather than "four words". 
However, this selection is unlikely for an interleaved memory, 
which dramatically mitigates the time required for 4-word 
accesses, and thus is expected to use 4-word accesses on data 
cache misses. 

- cached instruction misses are always satisfied using 4-word read 
accesses. 
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Interleaved Read using FCT245-Type Field 
Figure 8.28 illustrates an interleaved 4-word burst read, using the 

FCT245-Type. The even and odd Read Enables, MemRdEnEven and 
MemRdEnOdd, change their functionality and become active for both 
reads and writes. This allows their use for the output enable pins of their 
respective FCT245 banks. Also, because FCT245s do not latch data, the 
doubleword increment from OxO to Ox8 is done after the second word is 
completely read and sampled by the R36100. The Datum2Datum delay is 
between pairs of datum. 
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Figure 8.28 Interleaved Read using FCT245-Type Field. 
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Interleaved Read using FCT543-Type Field 
Figure 8.29 illustrates an interleaved 4-word burst read using the 

FCT543-Type. The read and write output enables match the functionality 
of memory chip read and write output enables. 
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Figure 8.29 Interleaved Read using FCT543-Type Field. 
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The following Figure 8.30 shows a single datum access to an "even" 
bank of an interleaved memory system using 'FCT543 transceivers. Note 
that the timing of this access is identical with the timing of the first word 
of a 4-word access. 

Figure 8.31 shows the analogous access to the "odd" bank of an inter­
leaved memory system, using 'FCT543 transceivers. In this figure, the 
timing is identical with the timing of the access of the second word of a 4-
word access; however, the first word is not actually returned to the CPU. 
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Figure 8.30 · "Even" Read ofFCT543-Type Memory 
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Due to a limitation on the number of transceiver control signals, there 
is a performance difference between even and odd single word accesses. 
Note, however, that this should not affect system performance of the 
following: 
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- single word accesses will occur for uncached loads, and uncached 
instructions. These are typically not time critical programs or 
data. 

- for cached data, these accesses will only occur if the data block 
refill option is selected to "one word" rather than "four words". 
However, this selection is unlikely for an interleaved memory, 
which dramatically mitigates the time required for · 4-word 
accesses, and thus is expected to use 4-word accesses <:>n data 
cache misses. 

- cached instruction misses are always satisfied using 4-word read 
accesses. 
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Interleaved Writes 
Figure 8.32 and Figure 8.33 illustrate interleaved writes for the 260-

Type, the 543-Type, and the 245-Type, respectively. Because the byte 
enables, MemWrEn(3:0), are not duplicated for even and odd cases, burst 
writes do not occur any quicker than they do for non-interleaved cases. 
Any subsequent words are delayed by the MemWrEn(3:0) de-asserting for 
1 clock (or 2 clocks if the Start Repeat Field is set). The 245-Type is 
different from the others in that MemRdEnEven or MemRdEnOdd is 
asserted for the 245's Output Enable pin. 
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System Examples 
32-bit SRAM/ROM Directly Connected or using 543 Transceivers 

Figure 8.34 shows a typical 32-bit SRAM memory system. The example 
is also applicable to Flash Memory systems and with the elimination of 
the write-related signals, to ROM systems. In small systems, the SRAM/ 
ROM can be attached directly to the SysAddr and SysData buses. In 
larger systems, FCT543 transceivers can be added between the memory 
bank and the SysData bus. Also in large systems, the SysAddr bus can 
also be buffered using FCT244 buffers. Note that all even MemCS()s that 
use transceivers must be placed behind the same set of transceivers 
unless external decoding is done for each MemRdEnEven OR MemCS(). 

MemRdEnEven 

l 
OE 

SRAM 
Bank 

_.. cs ill -,.. 
MemCS(O) SysData(31 :0) 

SysAddr(18:2) ...... ADDR 

ws 
MemWrEn(3:0) t 

Figure 8.34 32-bit SRAM System. 

Figure 8.35 shows a typical 32-bit SRAM memory system using an odd 
MemCS() line. Note that all odd MemCS()s that use transceivers must be 
behind the same set of transceivers unless external decoding is done for 
each MemRdEnOdd OR MemCS(). 

MemRdEnOdd 

MemCS(1) ..... 

SysAddr(18:2) 

MemWrEn(3:0) 

1 
SRAM 

Bank 

t 

SysData(31 :0) 

Figure 8.35 32-bit SRAM System using an Odd Chip Select. 
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32-bit SRAM using 245 Transceivers 
Figure 8.36 shows. a typical 32-bit SRAM memory system using 

FCT245 transceivers. This example is also applicable to Flash Memory 
systems and with the elimination of the write-related signals and the 
substitution of FCT244 buffers to ROM systems. The functionality of 
MemRdEnEven or MemRdEnOdd is modified so that the read enables will 
also assert on writes. The use of a 245-Type chip select requires that all 
the odd or all the even memory chip selects also be of the same 245-Type 
type. 

MemRdEnEven 

1 OEnN 

Sys Rd 

.. Dir. w 

SAAM 

MemCS(O) 
Bank B A 

.... .... ~ rr ..... 
SysData(31:0) 

SysAddr(18:2) .. ~ FCT ,. 
245 

MemWrEn(3:0) :f 

Figure 8.36 32-bit SRAM System using FCT245-Type. 
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Interleaved SRAM/ROM using 245 Transceivers 
In Figure 8.37 an interleaved system using the Interleaved-FCT245-

Type is shown. FCT245s are 16-bit (or 8-bit) bidirectional transceivers. 
Four (or eight) are required per bank. Because FCT245s do not latch the 
data of the odd words, the generation of the next double word address 
(Ox8) for words three and four is delayed. MemRdEnEven and MemRdE­
nOdd change their functionality in that if their bank is selected, as they 
assert on both reads and writes such that they can be connected to their 
l:>ank's 245 Output Enable pin. 

Note: The R36100 cannot have a stand-alone 32-bit odd bank, 
because it must be interleaved with an even bank partner. For the 
FCT245, interleaved ROMs must be booted with 32-bit port size and 
load the initial first few instructions from every even word, up until the 
boot code initializes the memory controller registers 

ivlemRdEnEven 

Dir OEnN 

MemCS{2) 
.,.......,~~~--! SAAM 
_M_e_m_c_s{_O_) - .. Bank 0 i------ A B 

MemWrEn{3:0) 

MemCS{3) 

FCT 
245 

_M_em_CS{_.._1 )'"--~ ~~,;1~ ~-+--..__~ A B 

MemWrEn{3:0) 

MemRdEnOdd 

FCT 
245 

Dir OEnN 

S sData 31:0 

Figure 8.37 Interleaved FCT245-Type System. 
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Interleaved SRAM/ROM using 260 Multiplexors 
In Figure 8.38 an interleaved system using the Interleaved-FCT260-

Type is shown. FCT260s are 12-bit bidirectional multiplexors. Tims 
three FCT260s are required per bank pair. MemRdEnOdd is used for 
both the Path Selection and the Odd Bank Latch Enable. MemRdEnEven 
changes its functionality in that it asserts for both the even and odd Data 
Sampling periods. The LSB address lines change on a doubleword 
boundary from OxO to Ox8 at the same time word 2 is being read. 

Note that during an even (odd) bank read access, the chip select (for 
example, CSO or CS2) is used to keep the two banks from contending on 
the data bus. In this example, SysWr is used to control the data path 
outputs on writes. 
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Figure 8.38 Interleaved FCT260-Type System. 
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Interleaved SRAM/ROM using FCT543 Transceivers 
Figure 8.39 shows an interleaved system using the Interleaved­

FCT543-Type. FCT543s are 16-bit bidirectional registers. Thus, four 
FCT543s are required per bank pair. MemRdEnOdd is used for both the 
Path Selection and the Odd Bank Latch Enable. MemRdEnEven changes 
its functionality in that it asserts for both the even and odd Data 
Sampling periods. The LSB address lines change on a doubleword 
boundary from OxO to Ox8 at the same time that word 2 is being read. 

In systems that contain memories with fast output disable times, only 
two FCT543s may be required by letting MemRdEnEven and MemRdE­
nOdd control the outputs of the two memory banks behind a common 
transceiver. Such an appro~ch usually implies that the two memory . 
banks be of the same type and that the type specify output disable times 
less than output enable times. 

Note: The R36100 cannot have a stand-alone 32-bit odd bank. 
because it must be interleaved with an even bank partner. For the 
FCT543, interleaved ROMs must be booted with 32-bit port size and 
load the initial first few instructions from every even word, up until the 
boot code initializes the memory controller registers 
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Figure 8.39 Interleaved FCT543-Type System 
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16-bit SRAM/ROM 
Figure 8.40 and Figure 8.41 show a typical 16-bit SRAM memory 

system. These examples are also applicable to Flash Memory systems 
and, with the elimination of the write-related signals, to ROM systems. 
Since a 16-bit system is a smaller system, the SRAM/ROM can be 
attached directly to the SysAddr and SysData buses. In larger systems, 
FCT543 transceivers can be added between the memory bank and the 
SysData bus. Also in large systems, the SysAddr bus can be buffered 
using FCT244 buffers. 

Note: With 16-bit systems it is imperative that the correct data line 
connections are made. Big Endian systems must attach 
SysData(3 l: 16) and Little Endian systems must attach SysData( 15:0). 

Hooking up the correct data lines insures that byte gathering can 
occur on word accesses and is required for boot-proms to execute instruc­
tions. SRAM systems that require later expansion to 32-bits must exter­
nally multiplex a·MSB address line with SysAddr(l). 

' 

MemAdEnEven 

MemCS(O) 

SysAddr(17:1) 

MemWrEn(3:2) 

.... 

.... 

SAAM 
Bank 

..... SysData(31 : 16) 

Figure 8.40 16-bit Big Endian SRAM System. 
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MemWrEn(1 :O} t 

Figure 8.41 16-bit Little Endian BRAM System. 

8-51 

..... 

..... -.. 



Memory Controller Chapter 8 

8-bit SRAM/ROM 
Figure 8.42 and Figure 8.43 show two typical 8-bit SRAM memocy 

systems. These examples are also applicable to Flash Memocy systems 
and, with the elimination of the write-related signals, to ROM systems. 
Since an 8-bit system is a smaller system, the SRAM/ROM can be 
attached directly to the SysAddr and SysData buses. In larger systems, 
FCT543 transceivers can be added between the memocy bank and the 
SysData bus. Also in large systems, the SysAddr bus can be buffered 
using FCT244 buffers. 

Note: With 8-bit systems it is imperative that the correct data line 
connections are made. Big Endian systems must attach 
SysData(31:24) and Little Endian systems must attach SysData(7:0). 
Hooking up the correct data lines insures that byte gathering can occur 

on word accesses, and it is required for boot-proms to execute instruc­
tions. SRAM systems that require later expansion to 32-bits must exter­
nally multiplex a MSB address line with SysAddr(O). 

MemAdEnEven 

MemCS(O) -

SAAM 
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4 SysData(31 :2:) 

_SysAddr(16:0) ~ 

MemWrEn(3) t 

Figure 8.42 8-bit Big Endian SRAM System. 
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Figure 8.43 8-bit Uttle Endian SRAM System. 
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Dual-Port-Type 
Dual-Port memory systems usually have a BusyN pin that indicates 

both ports of a memory location are being accessed simultaneously. The 
port that is accessed second receives the BusyN signal, indicating it must 
wait until the port that was accessed first is finished. Such Dual-Port 
systems can use the SysWait signal. 

This allows a full Dual-Port memory access cycle when BusyN de­
asserts. Using this type, if the Dual-Port memory glitches BusyN, (for 
instance, if the addresses match before MemCS is asserted, but don't 
afterwards) then the Dual-Port access will not be optimal in the sense 
that additional wait-states will be injected; however. operation will be 
correct. If increased optimization is. required, the system designer can 
add external circuitry to gate BusyN with the beginning of MemCS so that 
it is ignored until BusyN is valid. 

PCMCIA-Style Application 
Multiple cards can be externally decoded using SysWrEn(l :0) 

programmed as MemAddr(27:26). Table 8.16 lists the PCMCIA and 
R36 I 00 functional equivalents. 

PCM CIA R36100 Function 

A SysAddr(25:0). 

REG Discrete PIO output pin. 

MemioCS() pair program defaulted to PCMCIA-Memory Style 
-CE(2:1) and then to PCMCIA-IO-Style when necessary. 

-IORD IoRd. 

-IOWR IoWr. 

-OE -(-MemloCS() & - SysRd & - SysDataRdy) 

-WE MemWrEnEven. 

D SysData(l5:0). 

-WAIT Sys Wait 

-INPACK Ignored. 

-IOIS16 Ignored. 

RESET System dependent or PIO output pin. 

-IREQ Exclnt() pin. 

CD(2:1) Two PIO input pins. 

BVD(2:1) Two PIO input pins or ignore. 

WP System dependent. 

Table 8.16 PCMCIA and R36100 Functional Equivalents. 
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PCI-Style 
The R36100 RISController does not directly support the PCI Bus speci­

fication. Tue intention is to allow PCI-style peripheral chips to be used, 
most of which are tolerant of slight variations on the PCI specification. 

Thus certain liberties, such as lower drive and slightly looser AC setup 
and hold specifications, may have to be accommodated; certain features­
such as device identification, parity, and various system status proto­
cols-are ignored. It is assumed that the PCl-style peripheral control 
registers are loaded and read with slave accesses generated from the 
RISController and that the peripheral uses an External OMA Channel (see 
Chapter I 1) to read and write data via a RISController Bus Controller. 

PCI-Style changes the MemWrEn(3:0) pins to PCI-Style pins using the 
MSB Wait State Control Register BEn Field. MemWrEn(3:0) becomes 
active for both reads and writes. Tue MemWrEn pins always return high 
at the end of the bus transaction. In addition, the sense of the Sys Wait is 
inverted using the MSB Wait State Control Register InvWait Field. Note 
that PCI has to have address and data multiplexing done externally, typi­
cally with three FCT260 bus exchangers. Table 8. 1 7 lists the PCI and 
R36 l 00 Functional Equivalents. 

PCI R36100 Function 

FRAME* Use SysBurstFrame. Bursts must be aligned to the block size. 

Use 3x FCT260/272 to multiplex SysAddr(25:0) and 
SysData(3 l :0) as selected by SysALEn. "Sys"Addr(3 l :26) use 

AD(31:0) pull-downs. PAL needed to generate the three OEn's. 

Use PAL to multiplex pull-ups, pull-downs, and Rd* with 
C/BE*(3:0) MemWrEn(3:0) in SysBEn mode. 

Ignore or use parity generating/ checking transceiver instead 
PAR of FCT260 /272. 

IRDY* SysDataRdy 

SysWait in InvWait mode on Slave Reads. Data must be 
TROY* latched with FCT260/272 for 1 clock. 

DEVSEL* Pull-Down; or FCT244 gated with DmaGntO. 

Ignore or use PAL (needed if lengthy linear bursts must be 
STOP* split into smaller I single transactions). 

REQ* DmaReqN() 

GNT* DmaGntNO 

Table 8.17 PCI and R36100 Functional Equivalents. 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. One of the on-chip bus control­
lers is the "I/O Controller" as described in this chapter. 

This chapter will provide an overview of the I/O Controller interface, a 
complete description of the signal pins and their timing, and how the 
interface relates to typical external hardware I/O devices and peripherals. 

Because the I/O Bus Controller shares the Memory Controller (see 
Chapter 8) Registers and Chip Selects, the Register Description is not 
repeated here, except for the I/O specific "types" as described in the Type 
Field of each chip select's Control Register. 

Features 
• Controls support industry standard peripherals: 

- I-Type I/O support 
- M-Type I/O support 
- PCMCIA-Style 1/0 support 

• Controls up to 8 banks ofl/O 
Note: Chip selects are shared with the Memory Controller. 

• Each IOCS can be programmed to: 
- Individual. chip selects 
- Combined PCMCIA-I/0-style pair-wise chip selects 

• Each Bank has Programmable Base Address 
• Each Bank Size programmable from 8KB - 64MB 
• 8, 16, and 32-bit support 
• Wait State Generator features: 

- Programmable time from start to end of each data access for each 
area 

- Programmable time options for reads and writes 
- Programmable time options for single word accesses 
- Internally generates the RdCEnN and AckN timing for all CPU 

accesses 
- A programmed value may be overridden by the SysWait input 

signal 
• Direct control of data path transceivers supports various options: 

- Direct Bus Connection 
- FCT245 Bidirectional Transceiver 
- FCT543 Bidirectional Registered Transceiver 
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Block Diagram 
Figure 9.1 is a functional block diagram of the Memory and I/O 

Controller. The main Memory and I/O Controller Control Signal State 
Machine is responsible for generating the basic I/O Control signals used 
to connect to external peripherals. These signals include chip selects, 
read enables/strobes, and write enables/strobes. 

The I/O Controller works in cooperation with the Bus Interface Unit as 
described in Chapter 7. Thus the Control Signal State Machine sends 
and receives inforination from the BIU Controller for assistance with 
controlling the port width and controlling partial word reads and writes. 
The Control Signal State Machine also uses information stored in the 
software programmable I/O Controller Register Bank for eyample, to 
control I-Type versus M-Type accesses. 

The Wait-State Generator takes care of sending and receiving informa­
tion from the BIU Controller in order to control the sequencing and timing 
of reading and writing each individual datum. The number of wait-states 
is derived from the settings programmed into the Register Bank. Once 
the correct number of wait-states has been counted out, then the Wait­
State Generator sets the appropriate internal BIU 'Acknowledge' signals. 
With the programmable Wait-State Generator it is possible to eliminate 
the external state machines that are traditionally used for this function. 

The I/O Controller Decoder constantly monitors the Bus Interface 
Unit's address and data bus to see if either: 

• The access is to the 1/0 Controller's Register Bank. 
• The access is in one of the 1/0 Controller's Chip Select Areas that is 

responsible for controlling the bus transaction. 
The Register Bank allows the software programmer access to the many 

different options of the 1/0 Controller. The chip select address ranges, 
the number of wait-states, the port-width of the chip select, and other 
similar options are programmed into the Register Bank as part of the soft­
ware initialization sequence of the boot operating system. 

BIU Controller Data 
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Bank 

BIU Controller rdress and Control 

I De<ode• 

Wait­
State 
Generator 

Control 
Signal 
State 
Machine 

MemBdEnBten 
MemRdEnOdd 
MemWrEn(3:0) 

Ack, RdCEn, BTA 

~-B_u_sR .... e...;q-.., B ... u .... s_G_nt-~ BIU Controller 
Sys Wait ... 

loCS~..,,.........-
1.aBd/loOStmbe 
loWr/loRdHWr 

BIU Controller 
Byte En 

Figure 9.1 R361001/0 Bus Controller Block Diagram 
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1/0 Bus Controller Interface Signals 
These external interface pins are typically attached directly from the 

R36100 RISController to external peripheral chips and their transceivers. 
Their descriptions are as follows: 

IoCS(7:0) I Output 
MemCS(7:0) 

I/O Chip Select: The IoCS signals are active low outputs used to 
select one of the programmable 1/0 controller areas. Typically each 
external peripheral is attached to a MemCS signal such that the periph­
eral can be selected and turned on during an 1/0 transaction. When the 
address from the CPU or OMA Controller matches the 1/0 memory block 
corresponding to a particular IoCS signal, that IoCS asserts at the begin­
ning of the next bus transaction and de-asserts at the end of that trans­
action. 

IoCS signals are used individually for non-PCMCIA systems or in pairs 
(for example IoCS 0 & 1, 2 & 3, 4 & 5, or 6 & 7) for PCMCIA systems. 

The boot PROM memory is assigned to Mem/IoCS(O) and if interleaved, 
Mem/IoCS(l). 

The IoCS chip selects are selectable and shared between Memory and 
Mem-types (see Chapter 8). 

IoRd I Output 
IoDStrobe 

This output is multiplexed depending on the 1/0-Type selected in the 
Control Register ofeach 1/0 Space. This output only asserts during an I/ 
0 Controller bus transaction. 

Input/Output Read: This active low output signal is used as a read 
enable strobe in conjunction with the write enable strobe, IoWr. IoRd 
controls when the peripheral chip can drive the data signals back on to 
the main system data bus, SysData(). The timing of loRd is such that 
SysAddr is stable before and after loRd asserts. 

Input/Output Data Strobe: This active low output signal is used as a 
data strobe for both reads and writes. IoDStrobe works in conjunction 
with the IoRdWr write status line. IoDStrobe controls when the data bus 
is valid. The de-asserting edge of IoDStrobe can be used to strobe the 
data into the peripheral on writes and indicates that the data has just 
been clocked into the CPU on reads. The timing of IoDStrobe is such that 
SysAddr is stable before and after IoDStrobe asserts. In some cases, 
IoCS() can be used instead of loDStrobe. 

IoWr / Output 
IoRdHWr 

This output is multiplexed depending on the I/0-Type selected in the 
Control Register of each 1/0 Space. This output only asserts during an I/ 
0 Controller bus transaction. 

Input/Output Write: This active low output signal is used as an 1/0 
write strobe in conjunction with the 1/0 read enable strobe, loRd. loWr 
controls when data is valid on the system data bus, SysData. When loWr 
de-asserts, the peripheral can strobe the data into the chip. The timing of 
loWr is such that SysAddr is stable before and after loWr asserts. 
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Input/Output Read High and Write: This output is active high 
during I/O reads and active low during I/O Writes. IoRdHWr is used as a 
read versus write status line. IoRdHWr works in conjunction with the 
IoDstrobe. The timing of IoDStrobe is such that both IoRdHWr and 
SysAddr is stable before and after IoDStrobe asserts. Note that since this 
signal asserts on the same clock edge as IoCS(), if setup is required to 
IoCs() as well, then SysWr (which asserts a clock earlier) can be substi­
tuted for IoRdHWr. 

MemAddr(29:26) / Output/(lnput during DMA) 
MemWrEn(S:O) I 
MemByteEn(S:O) 

Memory Address Bus: During a PCMCIA Memory or I/O type access, 
the MemWrEn(3:0) bus is instead driven with Physical Address bits. On 
the R36100 and R3051-base family memory map, virtual and physical 
addresses (29:0) are the same. An application using PCMCIA can, for 
example, use MemAddr(27:26) to externally decode PCMCIA style chip 
selects into as many as four (256M/64M = 4) slots. In this mode (as in 
the other modes), the signals all return inactive high at the end of the bus 
transaction. 

BIU Controller Signals 
Many of the BIU Controller Signals are necessary to complete the I/0 

interface. These signals are listed here as a reminder. Information 
specific to the I/O Controller is given here and general information about 
the signal is given in Chapter 7, " System BIU Controller." 

SysAddr Output/Input 
System Address Bus: SysAddr is an output bus when used with the I/ 

0 Controller. The MIPS architecture does not provide distinct memory 
and I/O spaces; thus MIPS I/O is considered to be "memory mapped I/ 
0." A 32~bit peripheral connects to the word offset of the Least Signifi­
cant Bits (LSB) of SysAddr. Thus such a 32-bit peripheral skips 
SysAddr(l:O) and connects starting with SysAddr(2) on up. A 16-bit 
peripheral may connect to the halfword offset of the LSBs of SysAddr 
starting with SysAddr(l) on up. An 8-bit peripheral may connect the 
LSBs of SysAddr starting with SysAddr(O) on up. 16-bit and 8-bit periph­
erals traditionally use the word offset on MIPS systems so that they can 
be addressed from either Big or Little endian data 'Paths. 

SysData Output/Input 
System Data Bus: A 32-bit peripheral connects the entire 32-bit 

SysData bus to its data pins or to its transceivers. A system implementa:­
tion choice must be made on 16-bit and 8-bit peripherals. 

In case l, traditionally, MIPS systems have connected 16-bit and 8-bit . 
peripherals with a word offset address. In such a case, a 16-bit device 
can be attached to SysData(31: 16) or SysData(l5:0) and accessed with 
either endianess by using a half-word offset of Ox2 for the. opposite endi­
aness. In such a case, an 8-bit device can be attached to SysData(3 l :24) 
or SysData(7:0) and accessed with either endianess by using a byte offset 
of Ox3 for the opposite endianess. 
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In case 2, 16-bit devices can use the halfword offset address, 
SysAddr(x: 1) and 8-bit devices can use the byte address, SysAddr(x:O). 

Note: In this case, 16-bit and 8-bit peripherals connect to particular 
data pins depending on whether the Endianess of the system is Big 
Endian or Little Endian. · ' 
Thus 16-bit peripherals use SysData(31:16) if they are Big Endian and 

SysData(l5:0) if they are Little Endian. 8-bit peripherals use 
SysData(31:24) if they are Big Endian and SysData(7:0) if they are Little 
Endian. The User Mode Reverse Endianess Bit in the CPO Status Register 
has no effect on the connections to SysData, however, it strongly recom­
mended that the Reverse Endianess Bit not be used to "correct" an endi­
aness connection as it does not function in the kernel mode. 

SysWalt Input 
.System Wait Negated: SysWait can be used by an external source to 

add wait-states to the I/O Controller. Since the I/O Controller itself has a 
Wait-State Generator, SysWait typically is not needed and can be pulled­
up with a resistor. The most likely application of Sys Wait is for an asyn­
chronous memory event such as a Dual-Port Memory Busy signal which 
can be used to attach to SysWait to delay the beginning of a 1/0 Transac­
tion in the Wait Mode option of the Memory I/O Control Register 2. Please 
see Chapter 7 for a general description of SysWait. 

9-5 



1/0 Controller Chapter9 

Overview of the 1/0 Controller 
The I/O Controller provides control for all I/O spaces. These I/0 

spaces are memory mapped and are intended for use by items such as 
LAN controllers, SCSI controllers, 1/0 signal conditioners, A/D, and D/A 
chips. Such peripheral chips typically have address inputs, data 1/0, 
chip select, read output enable, and if writable, a write enable strobe. 

Chip Selects 
The 1/0 Controller contains up to B separate memory spaces, each 

having its own 1/0 Controller Chip Select (IOCS) output pin. Each IOCS 
space occupies from BK to 256MB of address space of which 64MB is 
externally addressable (due to the 26 address lines), and the address 
space that each IOCS decodes is programmable. The 1/0 Controller will 
use the programmed information in the MSB and LSB Base Address 
Registers along with the size (BK to 256MB) of the given area as 
programmed in the MSB and LSB Page Mask Registers. 

This information is used to compare the address asserted by the CPU­
BIU or OMA Controller to determine if that particular IOCS area is being 
accessed for the current read or write. Each area supports single datum 
reads and writes. Burst reads and writes are not supported in the IOCS 
area. The port size of the data path (B, 16, or 32-bit) of each area is also 
programmable with each area's Control Register. 

The IOCS signal can be used in pairs for PCMCIA. The pairs are 
IOCS(3:2) for one interleaved area and for the others, MemCS(5:4) and 
MemCS(7:6). When in the PCMCIA mode, both chip selects Within a pair 
must be programmed to the same values. 

Signal Control Interface 
The I/O Controller provides read enables and write enables that are 

suitable for.direct chip connection. I-Type read and write enables can in 
general also be attached to FCT543 type transceivers. M-Type write line 
and data strobes can in general also be attached to FCT245 type trans­
ceivers. 

Walt State Generator 
The Wait-State Generator (WSG) controls the speed of the 1/0 accesses 

to and from the Bus Interface Unit Controller~ This includes the time 
from the start of an 1/0 transaction until the first datum is sent or 
received. The WSG also is programmed to generate the internal RdCEnN 
and AckN signals for CPU read and write requests. 

The internal Acknowledge signal, "AckN" (as described in Chapter 7) is 
the same as the external signal pin that the R3051 RISController family 
uses. On single word reads and on both single word and burst writes, 
AckN is automatically placed at the end of the transaction by the WSG. 
Since burst I/O reads and writes are not supported, the Control Register 
'Burst Ack' field is not needed. 

Since burst reads and writes to 1/0 are not supported, the software is 
required to access 1/0 spaces with single datum loads whicb are in 
general non-cached and the same data size as the port width. 
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-
The signal called SysWait can be used to override the programmed 

settings of the Wait State Generator. The actual action the WSG performs 
when SysWait is asserted will depend on when it is asserted relative to the 
transaction. SysWait has a pipeline delay, such that it must be asserted 
two clocks before the desired effect is noticeable. By asserting it immedi­
ately after a datum is received or transmitted, the next datum can be 
delayed. However, use for this purpose is generally not recommended 
since the WSG has the same functionality. SysWait is useful for accessing 
off-card "Ack"-type peripherals. 

Register Option Programmability 
The Memory and 1/0 Controller contains 8 sets of registers, one set for 

each chip select. These registers allow the 1/0 Controller to be configured 
for different types and speeds of peripherals. Thus almost any system 
speed/cost/manufacturing trade-off can be accommodated. 
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Phys. Address 

OxFFFF_E200 
OxFFFF_E204 
OxFFFF_E208 
OxFFFF_E20C 
OxFFFF_E210 
OxFFFF_E214 
OxFFFF_E218 

OxFFFF_E220 
OxFFFF_E224 
OxFFFF_E228 
OxFFFF_E22C 
OxFFFF_E230 
OxFFFF_E234 
OxFFFF_E238 

OxFFFF _E240 
OxFFFF_E244 
OxFFFF_E248 
OxFFFF_E24C 
OxFFFF_E250 
OxFFFF _E254 
OxFFFF_E258 

OxFFFF_E260 
OxFFFF_E264 
OxFFFF _E268 
OxFFFF _E26C 
OxFFFF_E270 
OxFFFF_E274 
OxFFFF_E278 

OxFFFF_E280 
OxFFFF _E284 
OxFFFF _E288 
OxFFFF _E28C 
OxFFFF_E290 
OxFFFF_E294 
OxFFFF_E298 

OxFFFF_E2AO 
OxFFFF_E2A4 
OxFFFF_E2A8 
OxFFFF _E2AC 
OxFFFF _E2BO 
OxFFFF _E2B4 
OxFFFF _E2B8 

OxFFFF _E2CO 
OxFFFF_E2C4 
OxFFFF _E2C8 
OxFFFF _E2CC 
OxFFFF _E2DO 
OxFFFF _E2D4 
OxFFFF _E2D8 

OxFFFF _E2EO 
OxFFFF_E2E4 
OxFFFF _E2E8 
OxFFFF _E2EC 
OxFFFF_E2FO 
OxFFFF_E2F4 
OxFFFF_E2F8 

Chapter 9 

Register Descriptions 
The Memory and 1/0 Controller Registers are divided into 8 sets of 

registers, one set for each chip select memory area. Physical addresses 
and register descriptions are shown in Table 9.1. 

Register Description 

Memory and 1/0 LSB Base Address Register for Bank O 
Memory and 1/0 MSB Base Address Register for Bank 0 
Memory and 1/0 LSB Bank Mask Register for Bank 0 
Memory and 1/0 MSB Bank Mask Register for Bank 0 
Memory and 1/0 Control Register for Bank 0 
Memory and 1/0 LSB Wait State Generator Register for Bank 0 
Memory and 1/0 MSB Wait State Generator Register for Bank 0 

Memory and 1/0 LSB Base Address Register for Bank 1 
Memory and 1/0 MSB Base Address Register for Bank 1 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 1 · 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 1 
Memory and 1/0 MSB Control Register for Bank 1 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 1 
Memory and 1/0 MSB MSB Wait State Generator Register for Bank 1 

Memory and 1/0 MSB LSB Base Address Register for Bank 2 
Memory and 1/0 MSB MSB Base Address Register for Bank 2 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 2 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 2 
Memory and 1/0 MSB Control Register for Bank 2 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 2 
Memory and 1/0 MSB MSB Wait State Generator Registerfor Bank 2 

Memory and 1/0 MSB LSB Base Address Register for Bank 3 
Memory and 1/0 MSB MSB Base Address Register for Bank 3 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 3 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 3 
Memory and 1/0 MSB Control Register for Bank 3 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 3 
Memory and 1/0 MSB MSB Wait State Generator Register for Bank 3 

Memory and 1/0 MSB LSB Base Address Register for Bank 4 
Memory and 1/0 MSB MSB Base Address Register for Bank 4 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 4 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 4 
Memory and 1/0 MSB Control Register for Bank 4 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 4 
Memory and 1/0 MSB MSB Wait State Generator Register for Bank 4 

Memory and 1/0 MSB LSB Base Address Register for Bank 5 
Memory and 1/0 MSB MSB Base Address Register for Bank 5 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 5 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 5 
Memory and 1/0 MSB Control Register for Bank 5 . 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 5 
Memory and 1/0 MSB MSB Wait State Generator Register for Bank 5 

Memory and 1/0 MSB LSB Base Address Register for Bank 6 
Memory and 1/0 MSB MSB Base Address Register for Bank 6 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 6 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 6 
Memory and 1/0 MSB Control Register for Bank 6 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 6 
Memory and 1/0 MSB MSB Wait State Generator Register for Bank 6 

Memory and 1/0 MSB LSB Base Address Register for Bank 7 
Memory and 1/0 MSB MSB Base Address Register for Bank 7 
Memory and 1/0 MSB LSB Bank Mask Register for Bank 7 
Memory and 1/0 MSB MSB Bank Mask Register for Bank 7 
Memory and 1/0 MSB Control Register for Bank 7 
Memory and 1/0 MSB LSB Wait State Generator Register for Bank 7 
Memory and 1/0 MSB MSB Wait State Generator Register for Bank 7 

Note: Big Endian software must offset these addresses by b'IO (Ox2). 

Table 9.1 Memory and 1/0 Controller Register Addresses and Descriptions 
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Memory and 1/0 Control Register7 .. 
('MemloCntr1Reg(7 .. O)') 

15 12 11 8 7 
MemType MemSize 

4 4 2 6 

Figure 9.2 Memory and 1/0 Control Register ('MemloCntrlReg(7 .. 0)') 

Chapter 9 

0 

As shown in Figure 9.2, each MemCntrlReg contains a Type Field that 
has options specific to 1/0 types of signals. 

Memory Type ('MemType') Field 
The Type field determines the type of timing the Bus Interface will use. 

Table 9.2 lists the possible Type field values and their actions. 

Value Action 

'1011' · PCMCIA-Memory-Style 

'1010' PCMCIA-1/0-Style 

'1001' M-Type 1/0 

'1000' I-Type 1/0 

'0010' Memory-Type for FCT260 (default) 

'0001' Memory-Type for FCT245 (non-interleaved) 

'0000' Memory-Type (for FCT543) 

All other values Reserved 

Note: 
PCMCIA-Style supports a PCMCIA host mode subset that is likely to be used with PCMCIA 
peripherals. PCMCIA-Memory and -IO Styles are intended for dynamic swapping by the 
software onto the same pair of chip selects. Typically, the Memory-Style Is left on, and the 
1/0-Style is swapped in whenever It is needed, then swapped back to Memory-Style. 

Table 9.2 MemCntrlReg Memory-Type Field ('MemType') 

Portsize Width ('MemSize') Field 
The PortSize field, shown in Table 9.3, determines the width of the 

memory or 1/0 port. The value is inverted relative to the reset initializa­
tion vector value. 

Value Action 

64-bit (32-bit 2-way interleaved) accesses (Valid for 
'11' Memory Type only) 

'10' 16-bit accesses 

'01' s.:.bit accesses 

'QO' 32-bit accesses 
Table 9.3 PortSize ('MemSize') Encoding 
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I-Type 1/0 Type: 
The I-Type (Intel Type) puts the bus interface into a mode such that the 

1/0 signals loCS(), loRd, and loWr support I-type devices. Such devices 
have an address decoded chip select, loCS(), and separate read (IoRd) and 
write (loWr) data strobes. Older I-Type devices may also have an active 
high Reset input; an artifact that may require an external inverter. 

M-Type 1/0 Type: 
The M-Type (Motorola Type) puts the bus interface into a mode such 

that the 1/0 signals loRd and loWr are used as loDStrobe and loRdHWr, 
respectively. The device is assumed to have an address decoded chip 
select, loCS() while using the loRdHWr line -as a status line indicating a 
read or write, and using loDStrobe as a data strobe. 

PCMCIA-1/0 Style: 
The PCMCIA-Style puts the bus interface into a mode such that the 1/0 

signals IoCS(odd,even), loRd, and loWr support 16-bit slave PCMCIA 
devices. The odd and even chip select pair is used to indicate whether 
one or both of the byte lanes are valid. loRd and loWr are used as sepa­
rate read and write data strobes. 
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1/0 Controller Timing Diagrams 
This section illustrates a number of timing diagrams applicable to 

R36100 I/O transactions. The values for· the AC parameters are 
contained in the separate document, "R36 l 00 RISController Data Sheet." 

1/0 Datum Size 
All I/0 accesses must be single datum accesses. For example, a 32-bit 

port must not use a cached burst access; a 16-bit port must use an 
uncached store or load halfword or byte operation (such as one of these: 
sh, lhu, sb, lbu). An 8-bit port must only use uncached byte operations 
(such as one of these: sb, lbu). · 

Read Transactions 
The bus interface timing for read transactions is described in the 

following section. The internal bus interface to CPU core for read loads is 
described in Chapter 7. 

Basic I-Type 1/0 Read with O Wait-States 
Figure 9.3 illustrates a basic I-Type I/O Controller read transaction. 

Each transaction begins with both SysALEn and SysBurstFrame 
asserting. At this time, SysRd asserts {if it is not already in this state, as 
the result of a previous transaction). Now it is guaranteed that IoCS(), 
IoRd, and IoWr will be in their de-asserted states. And assuming there 
are no internally programmed StartRepeat wait-states, on the next clock 
cycle, SysBurstFrame de-asserts and IoCS() asserts. 

On the third cycle, IoRd asserts. Then assuming there are no inter­
nally programmed RdStart2Datum wait-states, SysDataRdy asserts to 
indicate that the data from the 1/0 device is being sampled into the 
RISController. On the 4th clock cycle, IoRd de-asserts, indicating that the 
read data from the 1/0 device has just been latched into the RISCon­
troller. On the next clock--the final clock of the transaction--IoCS() de­
asserts, and the next transaction may begin. 

During an I-Type transaction, there is I clock of address setup time 
before loCS() asserts. All signals are setup before the read strobe, IoRd, 
asserts. After data has been sampled by the CPU, loRd de-asserts, with 
all other signals having hold time. On the next clock, IoCS() de-asserts. 
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Run/ I Stall-Arb Stall Stall Stall Fixup Run/Stall Stall 

SysClk 

SysAddr(25:0) 

SysData(31 :0) 

SysALEn 

sys Rd 

SysBurstFrame 

SysDataRdy, 

loCS(2) 

10Rd 

iOWr 

Sys Wait 

Start Wait? Sample Data New Transaction 
Read 

Figure 9.3 I-Type 1/0 Read with 0 Wait-States 
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Basic M-Type 1/0 Read with 0 Wait-States 
Figure 9.4 illustrates a basic M-Type I/O Controller read transaction. 

Each transaction begins with both SysALEn and SysBurstFrame 
asserting. At this time, SysRd asserts (if it is not already in this state, as 
the result of a previous transaction). Now it is guaranteed that IoCS(), 
IoDStrobe (also known as loRd), and IoRdHWr (also known as IoWr) will 
be in their de-asserted states. Then assuming there are no internally 
programmed StartRepeat wait-states, on the next clock cycle, SysBurst­
Frame de-asserts; and IoCS() asserts. If this is a write transaction, 
loRdHWr (IoWr) will assert. 

On the third cycle, ~Io~D~S~tr-o~b-e (IoRd) asserts. And assuming there are 
no internally programmed RdStart2Datum wait-states, SysDataRdy 
asserts, to indicate that the data from the 1/0 device is being sampled 
into the RISController. On the 4th clock cycle, IoDStrobe (IoRd) de­
asserts, indicating that the read data from the I/O device has just been 
latched into the RISController. On the next clock--the final clock of the 
transaction--IoCS() de-asserts and, at the same time, the next transaction 
may begin. 

During an M-Type transaction, there is 1 clock of address setup time 
before rocso asserts. All signals are setup before the data strobe, 
IoDStrobe, asserts. After data has been sampled by the CPU, IoDStrobe 
de-asserts, with all other signals having hold time. On the next clock, 
IoCS() de-asserts. 

Note that because IoRdHWr asserts on the same clock edge as IoCS(), 
systems that require setup time from loRdHWr to IoCs() can substitute 
SysWr for IoRdHWr. Many systems can also substitute loCS() for 
IoDStrobe which, if the peripheral timing allows, may require fewer wait­
states. 

Stall Fixup I Run/Stall I Run/ Stall-Arb I Stall Stall Stall 

SysClk 

SysAddr(25:0) 

SysData(31 :0) 

SysALEn 

Sys Rd 

SysBurstFrame 

SysDataRdy 

loCS(2) 

lnBd t 
loDStrobe 

__JDWr.L_ 
loRdHWr 

Sys Wait 

Start 
Read 

Wait? Sample Data New Transaction 

Figure 9.4 M-Type 1/0 Read with O Wait-States 
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Basic 16-blt PCMCIA.-style 1/0 Read with O Wait-States 
Figure 9.5 illustrates a basic 16-bit PCMCIA-Style 1/0 Controller read 

transaction. Each transaction begins with both SysALEn and SysBurst­
Frame asserting. At this time, SysRd asserts (if it is not already in this 
state, as the result of a previous transaction). Now it is guaranteed that 
loCSQ, loRd, and IoWr will be in thefr. de-asserted states. Then assuming 
that there are no internally programmed StartRepeat wait-states, on the 
next clock cycle, SysBurstFrame de-asserts and the IoCSO pair asserts. 
Note that on PCMCIA transactions, the loCS() pair is asserted according 
to which bytes are enabled and valid. Thus if the even byte is valid, then 
the even IoCSO will assert. If the odd byte is valid, then the odd IoCS() will 
assert. If both bytes are valid, then both loCSO signals in the pair assert. 

On the third cycle loRd asserts. And assuming there are no internally 
programmed RdStart2Datum wait-states, SysDataRdy asserts to indicate 
that the data from the 1/0 device is being sampled into the RISController. 
On the 4th clock cycle, loRd de-asserts, indicating that the read data from 
the 1/0 device has just been latched into the RISController. On the next 
clock--the final clock of the transaction--the loCS() pair de-asserts and, 
at the same time, the next transaction may begin. 

During an I-Type transaction, there is 1 clock of address setup time 
before the IoCS() pair asserts. All signals are setup before the read strobe, 
Io Rd, asserts. After data has been sampled by the CPU, lo Rd de-asserts, 
with all other signals having hold time. On the next clock the loCS() pair 
de-asserts. 

Run/ I Stall·Arb Stall Stall Stall Fixup I Run/Stall Stall 

SysClk 

SysAddr(25:0) 

SysData(31 :0) 

sysALEn 

5YSRd 

sysBurstFrame 

sysDataRdy 

loCS(2) Active If Byte 0 is valid 

loCS(3) Active if Byte 1 is valid 

loRcl 

loWr 

MemWrEn(1:0) MemAddr(27:26) 

syswalt 

Start Walt? Sample Data New Transaction 
Read 

Figure 9.5 PCMCIA-Style 1/0 Read with 0 Walt-States 
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Basic I-Type 1/0 Write with 0 Wait-States 
Figure 9.6 illustrates a basic I-Type 1/0 Controller write transaction. 

Each transaction begins with both SysALEn and SysBurstFrame 
asserting. At this time, SysWr asserts (if it is not already in this state, as 
the result of a previous transaction). Now it is guaranteed that loCSO. 
IoRd, and IoWr will be in their de-asserted states. Assuming that there 
are no internally programmed StartRepeat wait-states, on the next clock 
cycle, SysBurstFrame de-asserts and loCSO asserts. 

On the third cycle, loWr asserts. And assuming there are no internally 
programmed RdStart2Datum wait-states, SysDataRdy asserts to indicate 
that the data from the RISController is ready to be latched into the 1/0 
device. On the 4th clock cycle, IoWr de-asserts. providing a means for the 
write data from the RISController to be latched into the 1/0 device. On 
the next clock--which is the final clock of the transaction--loCSO de­
asserts and, at the same time, the next transaction may begin. 

During an I-Type transaction, there is I clock of address setup time 
before IoCSO asserts. All signals are setup before the write strobe, IoWr, 
asserts. After data has been sampled by the CPU, loWr de-asserts, with 
all other signals having hold time. On the next clock, IoCSO de-asserts. 

Run/ I Run/Stall I Run/Stall 
Stall 

SysBurstFrame 

Start 
Write 

Run/Stall I Run/Stall I Run/Stall I Run/Stall 

Wait? Sample Data New Transaction 

Figure 9.6 I-Type 1/0 Write with 0 Wait-States 
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Basic M-Type 1/0 Write with 0 Wait-States 
Figure 9.7 illustrates a basic M-Type 1/0 Controller write transaction. 

Each transaction begins with both SysALEn and SysBurstFrame 
asserting. At this time, SysWr asserts (if it is not already in this state, as 
the result of·a previous transaction). Now it is guaranteed that loCS(), 
loDStrobe (also known as IoRd), and loRdHWr (also known as IoWr) will 
be in their de-asserted states. Assuming that there are no internally 
programmed StartRepeat wait-states, on the next clock cycle, SysBurst­
Frame de-asserts; and loCS() asserts. loRdHWr (IoWrl also asserts here to 
indicate the 1/0 write transaction. 

On the third cycle IoDStrobe (IoRd) asserts. And assuming that there 
are no internally programmed RdStart2Datum wait-states, SysDataRdy 
asserts to indicate that the data from the 1/0 device is being sampled into 
the RISController. On the 4th clock cycle, IoDStrobe (IoRd) de-asserts 
indicating that the read data from the 1/0 device has just been latched 
into the RISController. On the next clock--the final clock of the transac­
tion--IoCS() and IoRdHWr de-assert and, at the same time, the next trans­
action may begin. 

During an M-Type transaction, there is 1 clock of address setup time 
before rocso asserts. All signals are setup before the data strobe, 
loDStrobe, asserts. After data has been sampled by the CPU, IoDStrobe 
de-asserts with all other signals having hold time. On the next clock, 
loCS() de·asserts. 

Note that because IoRdHWr asserts on the same clock edge as IoCS(), 
systems that require setup time from IoRdHWr to IoCs() can substitute 
SysWr for loRdHWr. Many systems can also substitute loCS() for 
IoDStrobe, which ifthe peripheral timing allows, may require fewer wait­
states. 

Run/ 
Stall 

SysBurstFrame 

Run/Stall I Run/Stall I Run/Stall I Run/Stall I Run/Stall I Run/Stall 

j(iR(j1~~~+-~~--t~~~-t-.. 

loDStrobe 

loWr/~~~+-~~~~ 

loRdHWr 

S%Wait ~~~~~~-+~~-.--+--.-~~+-~~~~~~-+~-

Start 
Wrtte 

Walt? Sample Data New Transaction 

Figure 9. 7 M-Type 1/0 Write with 0 Walt-States 
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Basic 16-bit PCMCIA-Style 1/0 Write with 0 Wait-States 
Figure 9.8 illustrates a basic 16-bit PCMCIA-Style I/O Controller write 

transaction. Each transaction begins with both SysALEn and SysBurst­
Frame asserting. At this time, SysWr asserts (if it is not already in this 
state, as the result of a previous transaction). Now it is guaranteed that 
IoCS(), IoRd, and IoWr will be in their de-asserted states. And assuming 
there are no internally programmed StartRepeat wait-states, on the next 
clock cycle, SysBurstFrame de-asserts, and the IoCS() pair asserts. Note 
that on PCMCIA transactions the IoCS() pair is asserted according to 
which bytes are enabled and valid. Thus if the even byte is valid, then 
the even loCS() will assert. If the odd byte is valid, then the odd loCS() will 
assert. If both bytes are valid, then both IoCS() signals in the pair assert. 

On the third cycle loWr asserts. Assuming there are no internally 
programmed RdStart2Datum wait-states, SysDataRdy asserts to indicate 
that the data from the RISController is ready to be latched into the I/O 
device. On the fourth clock cycle, IoWr de-asserts, providing a means for 
the write data from the RISController to be latched into the I/O device. 
On the next clock cycle--the final clock of the transaction--the loCS() pair 
de-asserts and, at the same time, the next transaction may begin. 

During an I-Type transaction, there is 1 clock of address setup time 
before the IoCS() pair asserts. All signals are setup before the write strobe, 
IoWr, asserts. After data has been sampled by the CPU, loWr de-asserts 
with all other signals having hold time. On the next clock, the IoCS() pair 
de-asserts. 

Run/Stall I Run/Stall I Run/Stall I Run/Stall Run/ I Run/Stall I Run/Stall 
Stall 

SysClk 

SysAddr(25:0) 

SysData(31 :O) 

SysALEn 

SysWr 

SysBurstFrame 

SysDataRdy 

loCS(2) Active if Byte 0 is active 

loCS(3) Active if Byte 1 is active 

loRd 

loWr 

MemWrEn(1 :0) MemAddr(27:26) 

Sys Wait 

' -Start 
Write 

Wait? Sample Data New Transaction 

Figure 9.8 PCMCIA-Style 1/0 Write with 0 Wait-States 
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SysBurstFrame 

Stall-Arb I 

Start 
Read 
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Read.with Wait-State using Start Repeat Field 
The left half of Figure 9.9 illustrates a basic I/O Controller read where 

1 wait-state has been added by repeating the Start Cycle. Although 
Figure 9.9 shows an I-Type transaction, the same general timing concept 
applies to M-Type, and PCMCIA-style accesses as well. This special effect 
is programmed into the Wait-State Generator using the Start Repeat Field 
in the MemloLSBWaitStateReg() Register. When the Start Cycle repeats, 
the IoCS() assertion is delayed. This effect is useful for very slow periph­
erals or peripherals that require significant address setup before the chip 
is selected. An example is the 600ns access time mode of the PCMCIA I/ 
0 protocol. The Start repeat Field affects both reads and writes. 

Read with Wait-State using RdStart2Datum Field 
The right half of Figure 9.9· illustrates a basic I/O Controller read where 

1 wait-state is added using the RdStart2Datum Field of the MemloMSB­
WaitStateReg() Register. Any number from 0 to 15 internal wait-states 
may be added using the RdStart2Datum Field. With this field, IoCS() and 
the read, write, or data strobe is asserted as normal, but then wait-states 
are added such that SysDataRdy is not asserted until the RdStart2Datum 
Field has finished counting. When SysDataRdy is asserted, then the Data 
from the external Memory Bank is sampled into the RlSController. 

Stall 

Start Cycle 
Repeat Wait 

Stall Stall 

RdStart2Datum 
Wait 

Stall Stall Fixup 

Wait? Sample Data New Transaction 

Figure 9.9 1/0 Read with Internal Walt-States 
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Read with Wait-State using SysWait 
Figure 9.10 illustrates a basic I/O Controller read where 1 wait-state is 

added using. the external signal pin, Sys Wait. Sys Wait is not expected to 
be used for conventional I/ 0 systems, since it is easier to program the 
Wait-State Generator to produce internal wait-states. However, SysWait 
can be useful for off-card 1/0 where there may be an indeterminate 
amount of time before the access can begin. Since Sys Wait is sampled a 
clock ahead of when it is used, its effect is seen two clocks later than 
when it is asserted. If Sys Wait is asserted when SysDataRdy is asserted, 
then an additional Data Sampling clock cycle is repeated with SysDa­
taRdy remaining low. Thus external logic analyzers or other debug equip­
ment may want to gate SysDataRdy with SysWait in order to decode valid 
Data samples. 

~~~( I Stall-Arb Stall Stall Stall Stall Fixup Run/Stall 

SysAddr{25:0) 

SysData(31 :0) 

SysBurstFrame 

SysDataRdy 

\___J ~ ~ v--~ ~ ru ~ 

_l 
J 

~ 

j 

Start 
Read 

Addr 

~ -t 
\ 
_L 

\ 

j_ 

\_J I/ \_ 7 
-

Wait Wait? Sample Data New Transaction 

Figure 9.10 1/0 Read with external SysWait Wait-State 
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1-Datum Write with Wait-State using StartRepeat Field 
The right half of Figure 9.11 illustrates a basic 1/0 Controller write 

where 1 wait-state has been added by repeating the Start Cycle. This 
special effect is programmed into the Wait-State Generator using the Start 
Repeat Field in the MemloLSBWaitStateReg() Register. When the Start 
Cycle repeats, the assertion of IoCS() is delayed. This effect is useful for 
very slow peripherals or peripherals that require significant address setup 
before the chip is selected. An example is the 600ns access time mode of 
the PCMCIA 1/0 protocol. The Start repeat Field affects both reads and 
writes. 

1-Datum Write with Wait-State using WrStart2Datum Field 
The left half of Figure 9.11 illustrates a basic 1/0 Controller write 

where 1 wait-state is added using the WrStart2Datum Field of the Meml­
oMSBWaitStateReg() Register. Any number from 0 to 15 internal wait­
states may be added using the WrStart2Datum Field. With this field, the 
1/0 Write Enable strobe, either IoWr or IoDStrobe is asserted as normal. 
but then wait-states are added where SysDataRdy is not asserted until 
the WrStart2Datum Field has finished counting. When SysDataRdy is 
asserted, then the Data from the external Memory Bank is sampled by 
external memory. 

Run/Stall I Run/Stall I Run/Stall I Run/Stall I Run/Stall I Run/Stall I Run/Stall I Run/Stall 

SysAddr(25:0) Addr 

SysData(31 :0) 

SysBurstFrame 

SysDataRdy 

----+-]{• Data Out )E----1---
----+-' '----.....----.....----.....-----0-----t-----t-' '----.....-~ 

---+-'! 

Start 
Write 

Start Cycle 
Repeat Wait 

WrStart2Datum 
Walt 

Walt? 

'~­
j_ 
\ ____ ___ 

Sample Data New Transaction 

Figure 9.11 1/0 Write with Internal Wait-States 
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Stall 

Chapter9 

1-Datum Write with Wait-State using SysWait 
Figure 9.12 illustrates a basic 1/0 Controller write where 1 wait-state is 

added using the external signal pin, SysWait. SysWait is not Wait-State 
Generator to produce internal wait-states. However, SysWait can be 
useful for off-card peripherals where there may be an indeterminate 
amount of time before the access can begin. Since SysWait is sampled a 
clock ahead of when it is used, its effect is seen two clocks later than 
when it is asserted. If SysWait is asserted when SysDataRdy is asserted 
then an additional Data Sampling clock cycle is repeated with SysDa­
taRdy remaining low. Thus external logic analyzers or other debug equip­
ment may want to gate SysDataRdy with SysWait in order to decode valid 
Data samples. 

Run/Stall I Run/Stall Run/Stall Run/Stall Run/Stall Run/Stall 

SysAddr(25:0) ____ _, ,,_ ________ .,.... _____________ __,._, ,_ _____ _ 

Sys0ata(31:0) ____ _,A.__ _______ ~--------------......., '------+--

SysWr ____ t--~.._----i~----+-----+-----+------+-'-----+---

SysBurstFrame 

SysDataRdy -----+-'} 

Start 
Write 

1 

-\..!._/ \ 7 
...., -

Wait Wait? Sample Data New Transaction 

Figure 9.12 1/0 Write with external SysWait Wait-State 
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System Examples 

32-bit 1/0 Device Directly Connected to Bus 
Figure 9.13 shows a typical 32-bit I/O device using the I-Type. And 

Figure 9.14 shows a typical 32-bit I/O device using the M-Type. In small 
systems, the 1/0 device can be attached directly to the SysAddr and 
SysData buses. If the current load is relatively large or the device turn-off 
time after a read is relatively long, the 1/0 device should be isolated with 
a transceiver. 

. S_y_sAddi:{_n:2l 

l 
1/0 

Device 

J 

SyspataC31 ;Q) 

Figure 9.13 I-Type 1/0 System with Direct Bus Connection 

loDStrobe 

SysAddr( n :2) 

loRdHWr 

1 
1/0 

Device 

J 

SysData(31:0) 

Figure 9.14 M·Type 1/0 System with Direct Bus Connection 

1/0 Reset Application 

.. 

Certain types ofl/O devices require both Read and Write to be asserted 
for generating a Reset. Type 3 can be used to do so, however, this 
requires that no other devices be of Type 3. If such devices must be used 
with Type 3 devices, then the Read and Write Reset device must externally 
gate its chip select with either the read or write line. 

Other types of I/O devices require an active high reset (I-type). This 
can either be accomplished with an external inverter of ResetN or with a 
spare PIO line. 
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32-bit 1/0 Device using 245 Transceivers 
Figure 9.15 shows a typical I-Type 1/0 device using FCT245 trans­

ceivers. Figure 9.16 shows a typical M-Type 1/0 device using FCT245 
transceivers. 

1 T/R 1 OE 
... 

110 B A 
Device SysData(31 :O) ..... .. • .. .. • 

SysAddr(n:2) • FCT 
245 

t 

Figure 9.15 I-Type I/O System using FCT245 Transceivers 

loCS(2) 

Sys Rd 

loDStrobe 
T/R 1 ~ 

OE 

1/0 B A 
Device SysData(31 :0) ...... .. • .. • -,.. 

SysAddr(n:2) • FCT 
245 

loRdHWr t 

Figure 9.16 M-Type I/O System using FCT245 Transceivers 
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32-bit 1/0 Device using 543 Transceivers 
Figure 9.17 shows a typical I-Type 1/0 device using FCT543 trans­

ceivers. This example system takes advantage of the dual output enable 
and chip select gating of the FCT543 where both the output enable and 
the chip select need to be asserted for the transceiver to drive its outputs. 
Figure 9.18 shows a typical M~Type 1/0 device using FCT543, trans­
ceivers. 

loWr 

_l_ 

loCS(2) 110 A B 
Device LL ....... ..._ SysData(31 :0) ...... .. __... 

SysAddr(n:2) FCT 
....- ...... 

__... 
543 

loWr :.'.i CEBA EAB 

Figure 9.17 I-Type 1/0 System using FCT543 Transceivers 

SysWr 

loDStrobe 
:I. OEBA T OEAB 

loCS(2) 1/0 A B SysData(31 :O) 
Device :.... __... ..._ 

...... .. ...-

SysAddr(n:2) ....... FCT 
543 

loRdHWr _j' ,. 
.. CEAB CEBA 

loCS(2) 

Figure 9.18 M-Type 1/0 System using FCT543 Transceivers 

Using more than one device behind each transceiver 
Multiple 1/0 devices can be put behind the same set of transceivers. 

The most obvious method is to add an external decoder to divide the chip 
select up into individual chips selects for each device using the MSB 
SysAddr line as the select. A second method is to use a spare R36 l 00 
IoCSO pin and assign it the same address spaces as the devices behind 
the transceiver. Thus the common IoCSO combines all of the address 
spaces of the devices behind the transceiver, such that the transceiver is 
turned on for any of those devices. 
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16-bit 1/0 Devices 
Figure 9.19 and Figure 9.20 show typical 16-bit 1/0 devices. There are 

two choices for hooking up 16-bit 1/0 devices. 
For the first option, refer back to the 32-bit case in Figure 9.15 on 

page 23 and Figure 9.16 on page 23. The 16-bit device is word-aligned 
(using SysAddr bits n:2) even though it is a 16-bit device. This is the 
traditional MIPS connection and allows the device to be accessed from 
either endianess. For example, ifthe device is connected to SysData(15:0), 
then little endian software accesses the registers like OxOO, Ox04, Ox08, 
OxOC, ... and big endian software accesses the registers with a Ox02 offset 
like Ox02, Ox06, OxOA, OxOE, . . . For example, if the device is connected to 
SysData(31: 16), then little endian software accesses the registers with a 
Ox02 offset with addresses like Ox02, Ox06, OxOA, OxOE, ... and big endian 
software accesses the registers with addresses like OxOO, Ox04, Ox08, 
OxOC, ... 

In the second option, the 16-bit device is halfword-aligned (using 
SysAddr bits n: 1). With 16-bit systems it is imperative that the correct 
data line connections are made. Big Endian systems must attach 
SysData(31: 16) and Little Endian systems. must attach SysData(15:0). 
For example with half-word aligned connections, the software accesses 
the registers with addresses like OxOO, Ox02, Ox04, Ox06. 

..... 

SysAddr(n: 1) 

1/0 
Device 

SysData(31 :16) 

Figure 9.19 16-bit 1/0 System with Big Endian Connection 

lo Rd 

l. 
1/0 

loCS(2) 
Device 

SysData(15:0) __... -... ...- ..... 

SysAddr(n:1) __... 
--,. 

loWr _j 

Figure 9.20 16-bit 1/0 System with Little Endian Connection 
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8-bit 1/0 Devices 
Figure 9.21 and Figure 9.22 show two typical 8-bit I/O device systems. 

There are two choices for hooking up 8-bit I/O devices. 
In choice 1, refer back to the 32-bit case in Figure 9.15 on page 23 and 

Figure 9.16 on page 23. The 8-bit device is word-aligned (using SysAddr 
bits n:2) even though it is a 8-bit device. This is the traditional MIPS 
connection and allows the device to be accessed from either endianess. 
For example, if the device is connected to SysData(7:0), then little endian 
software accesses the registers like OxOO, Ox04, Ox08, OxOC, ... and big 
endian software accesses the registers with a Ox03 offset like Ox03, Ox07, 
OxOB, OxOF, ... For example, ifthe device is connected to SysData(31:24), 
then little endian software accesses the registers with a Ox03 offset with 
addresses like Ox03, Ox07, OxOB, OxOF, . . . and big endian software 
accesses the registers with addresses like OxOO, Ox04, Ox08, OxOC, ... 

In choice 2, the 8-bit device is byte-aligned (using SysAddr bits n:O). 
With 8-bit systems it is imperative that the correct data line connections 
are made. Big Endian systems must attach SysData(3 l :24) and Little 
Endian systems must attach SysData(7:0). For example with half-word 
aligned connections, the software accesses the registers with addresses 
like OxOO, OxOl. Ox02, Ox03. 

Since an 8-bit system is probably a smaller system, the SRAM/ROM 
can be attached directly to the SysAddr and SysData buses. In larger 
systems, FCT245 transceivers can be added between the memory bank 
and the SysData bus. Also in large systems, th~ SysAddr bus can also be 
buffered using FCT244 buffers. 

]._ 

110 
Device 

SysData(31 :24) 

SysAddr(n:O) 

. Figure 9.21 8-bit 1/0 System with Little Endian Connection 

SysAddr(n:O) 

1/0 
Device 

SysData(7:0) 

Figure 9.22 8-bit 1/0 System with Little Endian Connection 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. One of the four on-chip bus 
controllers in the R36100 is the DRAM Controller: 

This chapter provides an overview of the DRAM Controller interface, a 
complete description of the signal pins and their timing, and how the 
interface relates to typical external hardware DRAM systems. 

Features 
• Controls up to 4 banks of Page Mode DRAMs 
• Each bank pair programmable to Interleaved or non-Interleaved mode 
• Each bank programmable to use IM, 4M, or 16M DRAM chips 
• Each bank programmable to 32-bit or 16-bit Mode 
• Provides jumper-less 16-bit to 32-bit or Interleaved upgrade 
• Built-in CAS-before-RAS Refresh Timer 
• Video DRAM Serial Transfer Protocol support 
• Wait State Generator features: 

- Programmable time from start to end of each data access for each 
area 

- Programmable time options for Reads and Writes 
- Programmable time options for Single and Burst Accesses 
- Internally generates the RdCEnN and AckN timing for all CPU 

accesses 
- A programmed value may be overridden by the SysWait input 

signal 
• Direct Control of Data Path Transceivers include: 

- Direct Bus Connection 
- FCT260 Bidirectional Bus Exchanger Multiplexer 
- FCT245 Bidirectional Transceiver 
- FCT543 Bidirectional Registered Transceiver 

Block Diagram 
The functional block diagram of the DRAM Controller is shown in 

Figure 10. 1. Located at the bottom of Figure 10.1, the DRAM Control 
Signal State Machine is responsible for generating the basic control 
signals used to connect to external DRAM chips and their transceivers. 
These signals include row and column address strobes, read enables, and 
write enables. The DRAM Controller as a whole works in cooperation with 
the Bus Interface Unit described in Chapter 7. Thus the Control Signal 
State Machine sends and receives information from the BIU Controller for 
assistance with controlling the port width and controlling partial word 
reads and writes. 

The Control Signal State Machine also uses information stored in the 
software programmable DRAM Controller Register Bank for example, to 
control FCT260-Type versus FCT245-Type (transceiver interface) 
accesses. In addition to the Control Signal State Machine, there is a 
Refresh Timer and State Machine. The refresh circuitry implements CAS­
before-RAS refresh timing as required by conventional page mode 
DRAMs. 
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The DRAM Controller Wait-State Generator is shown in the center of 
Figure 10.1. The Wait-State Generator takes care of sending and receiving 
information from the BIU Controller in order to control the sequencing 
and timing of reading and writing each individual datum. The number of 
wait-states is derived from the settings programmed into the Register 
Bank. Once the correct number of wait-states has been counted out, the 
Wait-State Generator sets the appropriate internal BIU Acknowledge 
signals. The programmable Wait-State Generator eliminates the need for 
external state machines that are traditionally used for this function. 

The DRAM Controller Decoder is shown at the top of Figure 10.1. The 
decoder constantly monitors the Bus Interface Unit's address and data 
bus to see if (I) the access is to the DRAM Controller's Register Bank, or, 
(2) the access is in one of the DRAM Controller's Chip Select areas that 
are responsible for controlling the bus transaction. 

The DRAM Address Multiplexer is also shown at the top of Figure 10.1. 
The DRAM multiplexer switches the address lines between the MSB row 
address and LSB column address as required by conventional page mode 
DRAM chips. The multiplexer also includes address options to allow 
seamless upgrades from 16-bit to 32-bit or to interleaved 32-bit systems. 
The row address is also stored and compared using the Page Comparator 
circuitry. The Page Comparator allows the page mode DRAMs to enter 
into their faster page access mode whenever consecutive locations are 
accessed in the same block of memory. 

The DRAM Controller Register Bank is shown at the left in Figure 10.1. 
The Register Bank allows the software programmer access to the many 
different options of the DRAM Controller. The chip select address ranges, 
the number of wait-states, the port-width of the chip select, and other 
similar options are programmed into the Register Bank as part of the soft­
ware initialization sequence· of the boot operating system. 

BIU Controller Data 

t 

Register 
Bank 

BIU Controller Address and Control 

Decoder, 
AddrMux, 

t 
Page Comparator 

Wait­
State 
Generator 

Control Signal 
State Machine, 
Refresh Timer and 
State Machine 

DramRAS(3:0) 
DramCAS(3:0) 

Rd, Wr 

DataRdy Ack,RdCEn,BTA BIU Controller 

PortWidth ,Bank Access 

... Byte En 

DramRdEnEven 
DramRdEnOdd 
DramWrEnEyen 
DramWrEnOdd 

BIU Controller 

• 

Figure 10.1 R36100 DRAM Bus Controller Block Diagram 
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DRAM BUS CONTROLLER INTERFACE SIGNALS 

DRAM Interface Signals 
The following external pins are typically attached directly from the 

R36 l 00 RISController to external DRAM devices and their transceivers: 

SysAddr(13:2) Output 
The System Address provides the byte multiplexed address for DRAMs. 

This allows maximum of 16M words of unique locations to be accessed, 
thus providing a maximum of 64MBytes of memory for each bank. These 
signals share 12 of the lower 26 system address· pins, SysAddr(l3:2). 
Whenever a bus transaction is decoded to be a DRAM access, the 
behavior of these pins change and they act as DRAM-style multiplexed 
Row- and Column- address lines. Address assignments within the 
address multiplexer are such that a 16-bit system can be upgraded to a 
32-bit system without external jumpers. In addition address assignments 
within the address multiplexer are such that single bank non-interleaved 
systems can be upgraded to pair-wise interleaved systems without 
external jumpers. 

DramRAS(S:O) Output 
DRAM Row Address Strobes are active low outputs used to strobe the 

row address into the DRAM. Each DramRAS() signal drives one bank of 
DRAM. They also provide balanced series resistor high drive for large 
memory systems (up to 8-10 chips each). 

DramCAS(S:O) Output 
DRAM Column Address Strobes are active low outputs used to strobe 

the column address into the DRAM. If the system uses a 16-bit wide bus 
instead of a 32-bit wide bus, then DramCAS(3:2) are used for a big endian 
system, while DramCAS(l :0) are used for a little endian system. 

DramWrEnEven Output 
DRAM Write Enable for Even Bank is an active low output signal used 

to write the selected DRAM bank 0 or 2. "Early write" cycles are used, so 
the byte selection is done by activating the leading edge of appropriate 
DramCAS() signals. It also provides balanced series resistor high drive for 
large memory systems (every other chip, up to 8-10 chips). although we 
recommend external FCT244/344 buffering if more than 8-10 connec­
tions are needed. Note that the DRAM specific write enables must be used 
instead of SysWr or MemWrEn(3:0) because. refreshes may occur simulta­
neously with Memory Controller writes which could potentially cause 4M-
16Mbit DRAMs to enter a test mode. 

DramWrEnOdd Output 
DRAM Write Enable for Odd Bank is an: active low output signal used to 

write the selected DRAM bank 1 or 3. "Early write" cycles are used, so the 
byte selection is done by activating the leading edge of appropriate 
DramCAS() signals. It also provides balanced series resistor high drive for 
large memory systems (every other chip, up to 16 chips), although we 
recommend external FCT244/344 buffering if more than 8-10 connec­
tions are needed. 

Note that the DRAM specific write enables must be used instead of 
SysWr or MemWrEn(3:0) because refreshes may occur simultaneously 
with. Memory Controller writes, which could cause 4M-16Mbit DRAMs to 
enter a test mode. 
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DramRdEnEven Output 
DRAM Read Enable for Even Bank is an active low output signal that is 

used to control the enabling of DRAM bank 0 or 2. 1)'pically, 
DramRdEnEven is attached to the DRAM bank data transceiver output · 
enable of banks 0 and 2, while Dram CASO controls the output enabling 
between the DRAM chips on the corresponding byte lane of bank 0 and 2. 

In FCT260 type systems, DramRdEnEven is used as the overall 
DramRdEn path enable. · 

In FCT245 type systems, DramRdEnEven asserts on both reads and 
writes as a DramEnEven even bank transceiver enable. 

DramRdEnOdd 
Dram Tr En 

Output 

DRAM Read Enable for Odd Bank is an active low output signal used to 
control the enabling of DRAM bank 1 or 3. 1)'pically DramRdEnOdd is 
attached to the DRAM bank data transceiver output enable of banks 1 
and 3, while DramCAS() controls the output enabling between the two 
banks on each of the corresponding byte lanes. In FCT260-type systems, 
DramRdEnOdd is used as the overall DramRdPathSel path select. In 
FCT245-type systems, DramRdEnOdd asserts on both reads and writes 
as a DramEnOdd odd bank transceiver enable. 

BID Controller Signals 
The BIU Controller Signals are used to complete the DRAM interface. 

These signals are also listed here for reference. Information specific to the 
DRAM Controller is given here and general information about the signal is 
given in Chapter 7, "System BIU Controller." 

SysDataOutput/ Input 
System Data Bus: A 32-bit peripheral connects the entire 32-bit 

SysData bus to its data pins or to its transceivers. 16-bit systems use the 
halfword offset address, A(x: 1). (Note that the corresponding SysAddr() 
line is not SysAddr(x: 1), since the DRAM address mux starts with 
SysAddr(2)). 8-bit systems can use the byte address, A(x:O). In this case, 
16-bit DRAMs connect to particular data pins depending on whether the 
Endianness of the system is Big. Endian or Little Endian. Thus 16-bit 
DRAMs use SysData(31:16) if they are Big Enqian and SysData(l5:0) if 
they are Little Endian .. The User Mode Reverse Endianess Bit in the CPO 
Status Register has no effect on the connections to SysData, however, it 
strongly recommended that the Reverse Endianess Bit not be used to 
"correct" an endianess connection as it does not function in the kernel 
mode address space. 

Sys Wait Input 
System Wait: The SysWait signal is ignored during DRAM Controller 

accesses. 

Overview of the DRAM Controller 
The R36100 RISController's DRAM Bus Controller supports up to four 

individual banks of standard RAS/CAS controlled page-mode DRAM 
chips. Each bank can have a minimum of 2x256KBytes (16-bit) and a 
maximum of 4xI6MBytes (32..:bit) of memory. Each bank can individually 
be programmed for 32-bits or 16-bits. Each pair of banks can be 
programmed to be non-interleaved or pair-wise interleaved. Thus the 
system as a whole can support up to four banks of DRAM and anywhere 
from 512KBytes up to 256MBytes. 
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. 
The R36100 DRAM Controller, in addition to the RAS and CAS control 

lines, provides transceiver enable pins, and an address multiplexer (mux). 
The DRAM Controller also provides software configured options for wait­
states as well as for CAS-before-RAS refresh timing. 

Address mapping 
All four banks must be contained within a single 256MByte address 

space. Then by programming the Base and Page Mask Registers of each 
bank, they can be individually mapped anywhere within the selected 
DRAM-designated 256MByte address space. This allows systems with 
mixed sized banks to have a contiguous memory space. Although mixed 
sized banks can be contained within a pair of DRAM banks, banks with 
different port widths (16-bit, 32-bit, or 64-bit) must be contained in 
different pairs of banks. Cacheability or non-cacheability of the references 
to these memory banks depends as to which virtual segment they are 
mapped to as per the R36100's memory map and CPO Cache Control 
Register. This choice designates which references will be serviced as burst 
or non-burst references. 

32-bit and 16-bit mode support 
Each bank of DRAM memory can be programmed individually as either 

an interleaved, 32-bit, or a 16-bit bank. A two bit'PortWidth' field is 
provided in the DRAM configuration register, one for each bank, which 
will select between the port width configuration options. 

In 32-bit mode, the DRAM interface behaves similar to the 32-bit inter­
face of the R3051 family in that address bits (1:0) are ignored as per 
word-aligned addressing. Thus address lines A( 1) & A(O) are mapped out 
of the address multiplexing generation. Single word reads/writes are 
treated as one 32-bit datum. Partial word reads or writes are treated as 
single partial word read or write cycles by activating appropriate CAS 
signals, depending on the endianess of the processor. For block reads, the 
controller does four DRAM reads, back to back, to bring four words into 
the processor, using the page mode feature of DRAM. 

The 16-bit mode is treated slightly different from the 32-bit mode. Most 
importantly, address line A(l) is included in the address multiplexer in 
order to support halfword-alignment. In case of 16-bit read/write instruc­
tions and data, the controller treats them as halfword mini-burst/burst 
read or write cycles, activating appropriate CAS signals based on the 
endianness of the device, DramCAS(3:2) for big endian and DramCAS( 1 :0) 
for little endian. 

The mini-burst is continued until all halfword datum are read or 
written. Data will be driven on SysData(3l:16) lines if it is a big-endian 
system or on SysData(l5:0) if it is little-endian system. In cases of byte 
read or write instructions, the controller will activate appropriate CAS 
signals depending on the endianess of the processor. 

With 16-bit mode block read accesses, the controller will perform 8 
back to back reads in burst mode. This will be treated as a single burst 
transaction, bringing 16 bits of data every datum. The number of wait­
states added between each datum can be programmed to differ from the 
number of wait-states added to the first datum, such that page mode 
DRAMs have optimal timing. 

When the processor wants to read or write 32-bit data from a 16-bit 
memory, two 16-bit datum transfers occur back to back within the same 
address transaction. This is called a mini-burst write. The number of 
wait-states added between burst datum.can be programmed to differ from 
the number of wait-states added to the first datum, such that page-mode 
DRAMs have optimal timing. 
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The interleaved mode is treated slightly different from the 32-bit mode. 
Most importantly, address line A(2) is ignored, along with A(l:O), per 
doubleword-aligned addressing. In essence, two words are simulta­
neously read from two separate banks; however, the second word must 
wait 1 extra clock before it can be latched into the CPU. Depending on the 
access time of the DRAM, this saves 1-2 clocks per every pair of words 
read. In addition, if every other word is latched, the CPU can pipeline the 
address for the second pair of words, a clock early, for additional savings. 

Types of memory supported 
The following three types of memory cycles are supported by the 

controller: 
• Page Mode support. The page mode feature of the DRAM Controller 

is always enabled. In the case of a mini-burst or burst refill, the page 
mode is used to obtain data by use of an octi (16-bit) or quad (32-bit) 
word read. In the cases specified in a later section, "Page Comparator 
Algorithm", RAS will be left active expecting a subsequent page mode 
access to the same block of memory. The controller has an on-chip 
page register and comparator which uses the programmed DRAM 
density to determine whether or not a given access can take advan­
tage of page mode; as well as whether or not to leave RAS asserted at 
the end of the transaction. 

• Non-Interleaved support. At any given time in the non-interleaved 
mode, only one bank will have an active RAS. In the case of an access 
to a different bank, first the RAS of the active bank will be deactivated 
and then the RAS of the accessed bank will be activated. In case of a 
page miss within the same bank, RAS will deactivate for a precharge 
period, a new page address will be strobed in by driving the new row 
address, and then re-activating RAS. 

• Interleaved support. A programmable option field is provided in the 
configuration register which will enable or disable two-way inter­
leaving. Various interleaving sub-options allow various types of trans­
ceivers to be used by changing the functionality of the controller's 
output enables. 

Programmable wait state generation 
A programmable wait state feature is supported by: 
• RAS Precharge, Row Addr Setup, and Row Addr Hold settings 
• . CAS Addr Setup /Precharge setting 
• CAS Pulse Width and CAS Addr Hold settings 

Page Comparator Algorithm 
An internal page comparator compares the page address of consecutive 

DRAM bus cycles. After completing the current DRAM bus access, RAS 
can be held asserted after: 

• Writes 
• Single Word Reads 
• Burst Cache Reads 

When asserted, RAS is de-asserted if: 
• refresh occurs 
• non-page write occurs 
• non-page read occurs 
The page comparator is not affected by non-DRAM accesses. It is 

assumed that uncached reads and writes are unlikely to be done to 
DRAM, thus the distinction. between instruction and data is not statisti­
cally important to throughput. Also, the maximum assertion time for RAS 
is assumed to be covered by the occurrence of refreshes .. 
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Unaligned page accesses 
Since long bursts are always aligned to the burst length, bursts across 

non-page boundaries are not possible from the CPU or internal OMA 
channels. Therefore, unaligned page accesses will not occur. There is one 
possible exception: if external OMA with long burst access does a non­
aligned burst, then a page boundary crossing is possible. Most OMA 
agents capable of long bursts (for example, 16 words) also pre-align or are 
capable of pre-aligning the burst on a boundary (for example, align to a 
16 word boundary). 

Refresh Timing 
The CAS-before-RAS refresh mode is supported. The refresh rate is 

programmable in order to take into account the speed of the processor. 

Initialization 
The system boot software is responsible for initializing the DRAMs after 

reset. The DRAM Controller is guaranteed to hold all DRAM control 
signals de-asserted until a proper DRAM cycle is initiated by the user. 
Usually initialization involves the software OS to program a wait of 200us 
after power up (reset). initializing all of the DRAM control registers, and 
then doing 8 RAS cycles. Alternatively, the boot software can wait 200us 
and then wait until 8 refresh cycles occur. 

Programmable features 
The DRAM Controller has the following programmable features: 
• Page Size 
• RAS assertion selection 
• RAS precharge time 
• RAS Addr Setup and Addr Hold time 
• CAS precharge/ Addr Setup time 
• CAS Addr Hold Time on Writes (WrBTA) 
• CAS Pulse Width 
• Internal Burst Ack generation 

Signal Control Interface 
The DRAM Controller provides read enables and write enables that are 

suitable for direct chip connection. The read and write enables can in 
general also be attached to FCT260, FCT245, and FCT543 type trans­
ceivers. 

Wait State Generator 
The Wait-State Generator controls the speed of the DRAM accesses to 

and from the Bus Interface Unit Controller. This includes the time from 
the start of a DRAM transaction until the first datum is sent or received. 
The Wait-State Generator also is programmed to generate the internal 
RdCEnN and AckN signals for CPU read and write requests. 

The internal Acknowledge signal, "AckN" (as described in Chapter 7). is 
the same as the external signal pin that the R305 l RISController family 
uses. On single word reads and on both single word and burst writes, 
AckN is automatically placed at the end of the transaction by the Wait­
State Generator. Burst DRAM read operations return AckN earlier than 
the end of the transaction (because of the read buffer); thus, a Control 
Register'Burst Ack' field is provided. 
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Phys. Address 
OxFFFF_ElOO 
OxFFFF_El04 

OxFFFF _E 110 
OxFFFF _E 114 

OxFFFF_El20 
OxFFFF_El24 

OxFFFF_El80 
OxFFFF_El84 
OxFFFF_El88 
OxFFFF_El8C 
OxFFFF_El90 
OxFFFF_El94 
OxFFFF_El98 
OxFFFF _El 9C 
OxFFFF_ElAO 
OxFFFF_ElA4 
OxFFFF_ElA8 
OxFFFF _E lAC 

OxFFFF_ElBO 
OxFFFF _ElB4 
OxFFFF _El BS 
OxFFFF _E lBC 

Chapter 10 

Register Option Field Programmability 
The DRAM Controller contains 4 sets of registers, one set for each chip 

select, DramRAS(3:0). There is also a global set of registers for the 
address multiplexer options and refresh timing options. These registers 
allow the DRAM Controller to be configured for different speeds and types 
of DRAM chips; therefore, almost any system speed/cost/manufacturing 
trade-off can be accommodated. 

Register Descriptions 
Table 10. l provides the address map for the DRAM Controller registers. 

the Note that Big Endian software must offset these addresses by b'lO 
(Ox2). 

Register 

DRAM Refresh Count Register 
DRAM Refresh Compare Register 

DRAM RAS Multiplexer Select Register for Pair J :O 
DRAM RAS Multiplexer Select Register for Pair 3:2 

DRAM CAS Multiplexer Select Register Pairl:O 
DRAM CAS Multiplexer Select Register Pair 3:2 

DRAM MSB Base Address Register for Bank 0 
DRAM MSB Bank Mask Register for Bank 0 
DRAM LSB Control Register for Bank 0 
DRAM MSB Control Register for Bank 0 

DRAM MSB Base Address Register for Bank 1 
DRAM MSB Bank Mask Register for Bank 1 
DRAM LSB Control Register for Bank 1 
DRAM MSB Control Register for Bank 1 
DRAM MSB Base Address Register for Bank 2 
DRAM MSB Bank Mask Register for Bank 2 
DRAM LSB Control Register for Bank 2 
DRAM LSB Control Registei; for Bank 2 

DRAM MSB Base Address Register for Bank 3 
DRAM MSB Bank Mask Register for Bank 3 
DRAM LSB Control Register for Bank.3 
DRAM MSB Control Register for Bank 3 

Table 10.1 DRAM Controller Registers. 
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DRAM Refresh Count Register 
('DramRefreshCountReg') 

15 

6 

Chapter 10 

RefreshCount 

10 

Figure 10.2 DRAM Refresh Count Register ('DramRefreshCountReg') 

BIT Function 
9:0 Refresh Count 

Table 10.2 DRAM Refresh Count Register (DramRefreshCountReg') 
Bit Assignments. 

The lower 10 bits form a 10-bit binary up-counter. The Count register, 
shown in Figure 10.2, ticks upward on each system clock. When Count 
equals Compare, the DRAM Controller will initiate a refresh sequence and 
the Count register will be reset back to 0. The upper 6 bits are reserved to 
be "O". The default value of the DRAM Refresh Count Register, shown in 
Table 10.2, is OxOOOO at reset. The register is both readable and writable. 

Staggered Refresh 
In order to reduce the amount of peak instantaneous current and 

intra-bus transaction average current used by refreshing DRAMs, refresh 
is done by refreshing (RAS'ing) Banks 0 & 2 together, then afterwards 
refreshing (RAS'ing) Banks 1 & 3 together. 

Refresh Arbitration 
Refreshes on the R36100 must obtain the DRAM Controller before 

doing a refresh. DRAM systems in general must not use MemWrEn or 
SysWr, because some other peripheral driving them low during a refresh 
would accidently put some types of DRAM chips in their internal test 
mode. If the CPU or OMA channel tries to access DRAM at the same time 
as a Refresh, they will wait for the Refresh to finish. 

Panic Mode Refresh Application 
Ordinarily it is only possible to have a 4-word burst OMA after which 

the refresh controller can regain the bus and do a pending refresh. 
However, external OMA can burst up to a system defined length. In such 
a situation, multiple (depending on the application) refresh ticks may be 
missed. If this is of concern to the system designer, they can either ( 1) 
divide the external OMA burst into smaller units, or, (2) initiate N 
refreshes before and N refreshes after the burst, where N is the potential 
number of refreshes missed. 
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Reduced Frequency Mode Application 
To use DRAMs in the reduced frequency mode, it is assumed the ultimate 

objective is to save power. Suggestion 1 is to use self-refreshing DRAMs. 
Suggestion 2 is to use low power extended refresh DRAMs. Since the indi­
rect objective is to minimize the RAS low time, a CAS-before-RAS Refresh 
should complete as soon as possible. Therefore, one way of accomplishing 
this is to reprogram the Refresh count/ compare registers to suitable values 
such that once every refresh period (64ms) the CPU is internally inter­
rupted. The interrupt will exit the halt and RF modes. A short interrupt 
handler loop can strobe through all 512 row addresses and then return the 
CPU into halt and RF modes. 

DRAM Refresh Compare Register 
('DramRefreshCompReg') 

15 14 

RefreshCompare 

1 5 10 

Figure 10.3 DRAM Refresh Compare Register. 

This register forms a 10-bit Compare Register, shown in Figure 10.3. Bit 
15 is a Disable Field, and bits 14: 10 are reserved and should be written to 
with the same value as· that of bit 15. When Compare equals Count, the 
DRAM Controller will reset the count back to 0. If the Refresh Disable Field 
is set to 'enable', then a refresh sequence is initiated. The default value of 
the DRAM Refresh Count Register is OxOOOO at reset. As an example: for 25 
MHz CPU with Sms/512 refresh period, Compare should be programmed to 
Floor(Sm/(512+1) I (l/25M))-l = Ox0185. The register is both readable and 
writable. Table 10.3 lists the bits assignments for this register. 

Note: Technical worst case accounts for maximum burst length, where 
it is sufficient to add 1 to the DRAM page size. 
The Refresh Compare Register is provided in a binary count manner (as 

opposed to a frequency select manner) to allow easier accessibility for diag­
nostic and test purposes. The default value at reset is OxFFFF (refer to 
Table 10.4).Common refresh settings are given in Table 10.5. 

Bit Function 
15 Refresh Disable 
14:10 Reserved (write the same value as bit 15) 
9:0 Refresh Count 

Table 10.3 DRAM Refresh Compare Register ('DramRefreshCompareReg') Bit Assign­
ments. 

Value Action 
'l' DisaDre RJresn Counter J:OxFFFF default[ 
·o· Enable Refresh Counter 

Table 10.4 Refresh Disable ('RefreshDis') Field Encodings. 
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Refresh Compare CPU Frequency 

OxOOFB 16 
Ox0136 20 
Ox0184 25 
Ox0201 33 
OxFFFF default: disabled 

Table 10.5 Common Refresh Settings for Sms/512 or 16ms/1024 DRAMs. 

DRAM RAS Multiplexer Select Register for Pair(l:O, 3:2) 
('DramRasMuxSelReg' 1_0, 3_2) 

15 14 13 12 11 10 9 4 3 2 1 0 
0 13 12 11 10 09 04 03 02 

2 5 4 3 2 

Figure 10.4 DRAM RAS Mux Select Register ('DramRasMuxSelReg'). 

The DRAM RA~ Address Multiplexer Select Register, shown in 
Figure 10.4, programs which address bits go out to a DRAM Pair system 
during the row address period. The different selections allow software to 
upgrade the size of the DRAM chips and the memory port width without 
the use of external hardware jumpers. The register· is both readable and 
writable with a default of OxOOOO at reset. This register should be 
programmed before the DRAM Controller is first used. 

Bit Function High Low 

7~1 13 SysAddr RAS_l3 A26 A24 

i 12 SysAddr RAS 12 A23 AIO 
11 SysAddr RAS 11 A22 A20 
10 SysAddr RAS 10 Al9 AIO I 
09 SysAddr RAS 09 Al8 A9 
04 SysAddr RAS 04 A25 Al3 
03 SysAddr RAS 03 A22 Al2 
02 SysAddr RAS 02 A21 All \. 

Table 10.6 DRAM RAS Mux Select Register Bit Assignments. 

Note: Bits 15, 14, 8:5, 1, and 0 are reserved for future use. 

DRAM CAS Multiplexer Select Register for Pair (1:0, 3:2) 
('DramCasMuxSelReg' 1_0,. 3_2) 

15 14 13 12 11 10 9 
13 12 11 10 09 

2 5 6 

Figure 10.5 DRAM CAS llilux Select Register 
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The DRAM Pair CAS Multiplexer Select register, shown in Figure 10.5, 
programs which address bits go out to the DRAM system during the 
column address period. The different selections allow software to upgrade 
the size of the DRAM chips and the memory port width without the use of 
external hardware jumpers. The register is both readable and writable 
with a default of. OxOOOO at reset. This register should be programmed 
before the DRAM Controller is first used. The DRAM CAS Mux Select 
Register Bit Assignments are listed in Table 10. 7. Refer to Table 10.8 for 
an example of DRAM RAS and CAS Mux select register settings. 

Bit Function High 
13 SysAddr CAS 13 Al3 
12 SysAddr CAS 12 A24 
11 SysAddr CAS 11 All 
10 SysAddr CAS 10 AlO 
09 SysAddr CAS 09 A9 
02 SysAddr CAS 02 A20 

Low 

Al 
Al2 
Al 
Al 
AO , 

A2 

!:> 

1.e 

x: ·o 
I ,, 
• 0 

Table io. 7 DRAM CAS Mm: Select Register ('DramCasMm:SelReg') Bit Assignments. 

Note: Bits 15, 14, 8:3, 1, and 0 are reserved for future use. 
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~ !))_\,ti ~I( 3):-b~-t- M i&~ t.in 
SysAddr Row 

32-bit 
I SysAadr(l 3J 
1sysAaarn2T 
SysAddr(l 1)_ 
SysAddr( 1 O) Al9 
sysAaan9T AIB 
SysAddr(_Bl Al7 
SysAddr(7) Al6 
sysAaan6T Alo 
SysAaar(5J Al4 
SysAddr(4) Al3 
SysAadr(3f Al2 
SysAaar(_2)_ Al 1 
SysAddr(l) 
SysAaanOT 

Col Row Col lM Row Col Row Col Row 
256K 32-bit 32-bit 4M 16-bit 256K 16-bit 

A23 Al2 
A20 All A20 Al 1 A20 

AlO Al9 AlO Al9 AlO AlO Al Al9 
A9 AlB A9 AlB A9 AlB A9 AlB 
AB Al7 AB Al7 AB Al7 AB Al7 
A7 Al6 A7 Al6 A7 Al6 A7 Al6 
A6 Al5 A6 Al5 A6 Al5 A6 Al5 
Ao Al4 Ao Al4 Ao Al4 Ao Al4 
A4 Al3 A4 Al3 A4 Al3 A4 Al3 
A3 Al2 A3 A22 A3 Al2 A3 Al2 
A2 A21 A2 A21 A2 All A2 Al 1 

Row Col Row Col Row Col 
SysAddr 64-bit 256K 64-bit lM 64-bit 4M 
I SysAddr(l3J 
SysAoonl 2f A23 A24 
SysAddr(l l) A22 All A22 All 
sysAoonl q: Al9 AlO Al9 AlO Al9 AlO 
SysAddrl9) AlB A9 AlB A9 AlB A9 
SysAddr(_B) Al7 AB Al7 AB Al7 AB 
SysAddr(7) Al6 A7 Al6 A7 Al6 A7 

[SysAoorIBI Alo A6 Alo A6 Alo A6 
SysAddr(5) Al4 A5 Al4 A5 Al4 A5 
SysAooi[41 Al3 A4 Al3 A4 Al3 A4 
SysAddr(3) Al2 A3 Al2 A3 Al2 A3 
SysAddr[2) All A20 A21 A20 A21 A20 
sysAoor:IlI 
SysAddr(O) 

SysAddr Row Col Row3 Col Row Col 
16-bit 16M 2-bit 16M 64-bit 16M 

SysAddrl~ A24 Al A24 Al3 A26 Al3 
SysAddr( 12) A23 Al2 A23 Al2 A23 A24 
SysAddr(l lT A20 All A20. Al 1 A22 Al 1 
SysAdar( 1 OT Al9 AlO Al9 AlO Al9 AlO 
SysAddr(9) AlB A9 AlB A9 AlB A9 
SysACfclr(8f Al7 AB Al7 AB Al7 AB 
SysACfclr[7} Al6 A7 Al6 A7 Al6 A7 
SysAddr(6) Al5 A6 Al5 A6 Al5 A6 
sysAaar(5 J Al4 Ao Al4 Ao Al4 Ao 
SysAddr(<l,J Al3 A4 A25 A4 A25 A4 
SysAddi{3) A22 A3 A22 A3 Al2 A3 
SysACfclr[2} A21 A2 A21 A2 A21 A20 
SysAddr(l) 
SysAOOr[OT 

Table 10.8 Example 'DramRasMwcSelReg' and 'Dram­
CasMwcSelReg' Settings. 
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Col Row Col 
lM 16-bit 4M 

AlO Al2 
Al A20 Al 1 
AlO Al9 Al 
A9 AlB A9 
AB Al7 AB 
A7 Al6 A7 
A6 Al5 A6 
J\5 Al4 A5 
A4 Al3 A4 
A3 A22 A3 
A2 A21 A2 
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·DRAM MSB Base Address Register for Bank 0 .. 3 
('DramMSBBaseAdclrReg(0 .. 3)') 

15 

MSB Dram Base Address 

14 

Chapter 10 

2 

Figure 10.6 DRAM MSB Base Address Register ("DramMSBBaseAddrReg') 

This field contains Bits 31-18 of the starting base physical address of 
the DRAM Bank. The programmer must write the same value for bits 31-
28 to all DRAM MSB Base Address Registers. In addition, the programmer 
must write "O" for bits 17-16 of all DRAM MSB Base Address Registers, 
which restricts the smallest multiple DRAM bank size to 256K. The 
default value on reset is OxEEEE. Thus the upper 3 DRAM Bank MSB 
Base Address registers must be programmed before any DRAM accesses 
can be initiated. The register is both readable and writable. Figure 10.6 
illustrates the DRAM MSB Base Address Register. 

Internally to the R36100, bits 31-28 of Bank 0 MSB Base Address are 
used for the starting address of all banks. Also internally, bits 1 7 -16 are 
reserved and hardwired to 0. 

An example for 4 banks (2 pairs) of lMByte interleaved DRAM starting 
at physical address 0 is in Table 10.9. 

Bank Phys. Address 

Banko OxOOOO_OOOO 
Bankl OxOOOO_OOOO 
Ban).{2 Ox0020_0000 
Bank3 Ox0020_0000 

Table 10.9 Example Bank Base Address Register ('DramMSBBaseAddrReg') Assign­
ment. 

An example for IM DRAM + 2 banks of 4MByte interleaved DRAM at 
physical address 0 is in Table 10.10. Note that Bankl must be assigned 
to an unused memory space. 

Bank Phys. Address 

Banko OxOOOO_OOOO 
Bankl OxOFOO_OOOO 
Bank2 OxOOlO_OOOO 
Bank3 OxOOlO_OOOO 

Table 10.10 Example Bank Base Address Register ('DramMSBBaseAddrReg') Assign­
ment. 

10-14 



DRAM Controller Chapter 10 

DRAM MSB Bank Mask Register for Bank 0 .. 3 
('DramMSBBankMaskReg(0 .. 3)') 

MSB Dram Bank Mask 

16 

Figure 10.7 DRAM MSB Bank Mask ('DramMSBBankMask(3:0)') Registers. 

There are 4 bank mask registers, one for each DRAM bank. The bank 
mask address register, shown in Figure 10. 7, represents the most signifi­
cant 16 address bits (bits 31: 16). Bit settings for this register are listed in 
Table 10.11. 

The bank mask registers are used to decide which address bits in the 
base address are to be used for comparing whether a DRAM bank select is 
to be activated. This DRAM Bank Mask is independent of the DRAM RAS 
Page Size Mask. 

Internally, bits 31-16 must be programmed to the desired bank mask. 
This corresponds to separate address spaces for each chip select of 64K to 
256M. Internally, bits 15:0 are ignored for bank mask comparisons. 

To summarize, Bits 31: 16 of each DRAM bank page mask are used to 
distinguish the size of each memory space. The format of the DramMSB­
BankMask is displayed in the above figure. The register is both readable 
and writable and is set to OxFFFF by default on reset. This register should 
be programmed before the DRAM Controller is first used. 

Value Action 
'l' Bit is used in comparison 
'O' Bit is masked out of comparison 

Table 10.11 DRAM MSB Bank Mask Bit Settings. 

DRAM LSB Control Register for Bank 0 .. 3 
('DramLSBControlReg(0 .. 3)') 

14 13 10 7 6 5 4 3 2 1 
LSB RAS Bank Mask Dram Type Size Page Type 

4 2 3 2 3 

Figure 10.8 DRAM LSD Bank Control Register ('DramLSBControlReg'). 

0 

The DRAM LSB Control Register, shown in Figure 10.8, is used to 
control various DRAM controller options. The register is both readable 
and writable. The default value at reset is OxFC03. This register should be 
programmed before the DRAM Controller is first used. Bit assignments for 
this register are listed in Table 10.12. 

Bit Description 

15:14 Reserved to 1 
13:10 RASBankMask 
9:8 Reserved to 0 
7:5 Dram Type 
4:3 Size 
2:0 Page Type 

Table 10.12 DRAM LSD Control Register ('DramLSBControlReg') Bit Assignments. 
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RAS Bank Mask ('RASPageMask') Field (bits 15:8) 
The RAS Bank Compare Mask is used to determine how many of the 

upper physical address bits will be compared to determine if subsequent 
DRAM accesses are on the same RAS page of memory and thus do not 
need to initiate a RAS precharge. Note that the RAS Bank Mask is inde­
pendent and does not have the same function as the DRAM Bank Mask. 
To determine the bank mask, Physical Address Bits 31-16 are always 
compared, and Physical Address Bits 15-8 are compared if their corre­
sponding RAS Bank Mask bit is clear. Page Mask bits are listed in 
Table 10.13 and DRAM LSB Page Mask bit settings are listed in 
Table 10.14. 

-
DRAM- Port- Inter- PageMask to 
Type Size leaved(l) LSB(2) 

16MxN 64-bit yes 11 
16MxN 32-bit . non- 13(2) 
16MxN 16-bit non- 12 
4MxN 64-bit yes 11 -
4MxN 32-bit non- 12 
4MxN 16-bit non- 9 -
lMxN 64-bit yes 11 
lMxN 32-bit nori- 11 
lMxN 16-bit non- 10 
256KxN 64-bit yes 10 
256KxN 32-bit non- 10 
256KxN 16-bit non- 9 
NOTES: 
1. Interleaved systems compare 1 less bit than theoretically 
possible, due to Column Address selection limitations. 
2. Most configurations compare less bits than theoretically 
possible, as a trade-off for the jumper-less expansion. 
3. 16Mx32 systems compare less bits than theoretically 
possible, due to Column Address selection limitations. 
4. For very small memory systems, don't set any of the Page 
Type ('PType') control bits. In this case, the page comparator 
is ignored. 

Table 10.13 Page Mask ('PMask') Bits. 

Value Action 
'l' Bit is used in comparison 
'O' Bit is masked out of comparison 

Table 10.14 DRAM LSB Page Mask Bit Settings. 

DRAM Type ('DramType') Field (bits 7:5) 
The DRAM Type selections are used to chose between different types of 

DRAM configurations. DRAM Type settings are listed in Table 10.15. 

Value Action 
'7:3' Reserved 
'2' FCT260 
'l' FCT245 
·o· FCT543 (default) 

Table 10.15 DRAM Type ('DramType') Settings. 
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FCT543-Type (Latched Non-Multiplexer Type) 
FCT543 Latched Mode assumes that the transceiver hardware between 

DRAM and the R36100 consists oflatched or registered transceivers such 
as the FCT543. 

Setting this type with an interleaved port width causes the DRAM 
controller to use the interleave bus protocol. Interleaved systems use a 
different bus protocol which in essence accesses two banks at the same 
time, but only output enables 1 bank at a time, and thus can be burst 
read very quickly. 

Non-interleaved systems use a bus protocol which in essence accesses 
the two banks in separate distinct address spaces. Latching words 1 and 
3 on burst reads allows words 1 and 3 to be returned exactly 1 clock after 
words 0 and 2, respectively. This in turn allows the LS double word 
address to be bumped up (from OxOO to Ox08) one clock earlier. 

FCT245 Type (Non-latched Transceiver Type) 
Non-Latched Mode assumes that the transceiver hardware between 

DRAM and the R36100 consists of non-latched or non-registered trans­
ceivers such as the FCT245. In addition, in order to support the direction 
select and the single output enables of FCT245s, the even read output 
enable, DramRdOEnEven, logically OR's DramRdEnEven with Dram­
WrEnEven. Likewise, the odd read output enable, DramRdOEnOdd, logi­
cally OR's DramRdEnOdd with DramWrEnOdd. DramWrEnEven and 
DramWrEnOdd are unchanged as they are needed to indicate writes. If 
the FCT2451'.Ype is used, all four banks must be of FCT2451'.Ype. 

FCT260-Type (Latched Multiplexer Type) 
FCT260 Latched Multiplexer 1'.Ype assumes that the transceiver hard­

ware between DRAM and the R36100 consists of latched or registered 
multiplexers such as the FCT260. In order to support the path select and 
single output enables of multiplexers, the even read output enable, 
DramRdOEnEven, logically OR's DramRdOEnEven with DramRdOEnOdd 
and stays low for most of the bus transaction instead of toggling just for 
even banks, so that it can be used for the FCT260 output enable. 
DramRdOEnOdd is unchanged, so that it can be used for a path select. 

Setting this type with an interleaved port width causes the DRAM 
controller to use the interleave bus protocol. Interleaved systems use a 
different bus protocol which in essence accesses two banks at the same 
time, but only enables 1 bank at a time, and thus can be burst read very 
quickly. Non-interleaved systems use a bus protocol which in essence 
accesses the two banks in separate distinct address spaces. Latching 
words 1 and 3 on burst reads allows words 1 and 3 to be returned exactly 
1 clock after words 0 and 2, respectively. This in turn allows the LS 
double word address to be bumped up (from OxOO to Ox08) one clock 
earlier. 

Note: At present, the FCT260 hardware approach represents one of 
the better price/performance ratios for interleaved systems, since only 
3 chips instead of 4 chips are required. 
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Port Size ('Size') Field (bits 4:3) 
The Port size of a bank determines its memory width. Table I 0. 16 lists 

the DRAM Port Width Encoding field. 

Value Port Size 
·10· 16-bit 
'00' 32-bit (default) 
'11' 64-bit (2x32-bit interleaved) 
'01' Reserved 

Table 10.16 DRAM Port Width ('Size') Encoding Field. 

Page Type ('PageType') Field (bits 2:0) 
The Page Type field determines after which type of bus transaction 

DramRASO is held low. The values and descriptions for this field are indi­
cated in Table 10.17. Note: Default value is '11 l'. 

Value Description 

'lxx' After Burst Reads. 
'Oxx' Not After Burst Reads. 
'xlx' After Single Word Reads. 
'xOx' Not After Single Word Reads. 
'xxl' After Writes. 
'xxO' Not after Writes. 

Table 10.17 Page Type ('PageType') (bits 2:0) Field. 

DRAM MSB Control Register for Bank 0 •. 3 
('DramMSBControlReg'0 •. 3) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
RASP 

2 

Addr Addr CASW DramRdBTA 
Setup 

1 1 2 2 

DramBurstAck 

3 5 

Figure 10.9 DRAM MSB Bank Control Register ('DramMSBControlReg'). 

The DRAM MSB Control Register, shown in Figure 10.9, is used to 
control various DRAM controller options. This register is both readable 
and writable. Bit assignments for this register are listed in Table 10.18. 

Bit Description 

15:14 RASP 
13 RASAddrHold 
12 AddrSetup 
11:10 CASW 
9:8 DramRdBTA 
7 ·o· 
6 DramWrBTA 
5 ·o· 
4:0 DramBurstAck 

Table 10.18 DRAM MSB Control Register Bit Assignments. 
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RAS Precharge Period ('RASP') Field (bit 15: 14) 
Before initiating a DRAM access to a new page, RAS must be held de­

asserted in order to precharge the DRAM chip row decoders and sense 
amps. The RASP setting defines the length of this precharge period. The 
default value at reset is 'O' which encodes to 1 clock. RAS Precharge Field 
Encodings are listed in Table 10.19. 

Value Action 
'3' reserved 
'2' 3 clocks 
'l' 2 clocks 
·o· 1 clock (default) 

Table 10.19 RAS Precharge ('RASP') Field Encodings. 

RAS Address Hold Time ('RASAddrHold') Field (bit 13) 
DRAM Address Hold Time is required in the following three places: 
• after RAS asserts 
• after CAS asserts 
• after CAS re-asserts 
Address Hold Time from RAS asserting is handled by this field, the 

RASAddrHold field. Address Hold Time from CAS asserting and re­
asserting on reads is handled by the CASW field. Address Hold Time from 
CAS asserting and re-asserting (on writes) is handled by the DRAMWrBTA 
field. 

RASAddrHold (see Table 10.20 for field encodings) defines the length of 
the DRAM row address hold time. Normally, 0.5 clocks is enough hold 
time since most DRAMs require that the row address be held for about 
1 Ons after RAS asserts. However, in very fast systems where the clock 
period is short, or in very noisy, heavily delayed systems, additional 
address hold time may be needed. Thus RASAddrHold can be extended 
from 0.5 to 1.5 clocks if necessary. 

Value Action 
'l' 1.5 clocks 
·o· 0.5 clocks (default) 

Table 10.20 RAS Address Hold Time ('RASAddrHold') Field Encoding. 

Address Setup Time to RAS and to CAS ('AddrSetup') Field (bit 12) 
DRAM Address Setup Time is required in the following three places: 
• Row Address Setup Time to RAS asserting 
• Column Address Setup Time to CAS asserting (also Early Write Signal 

Setup Time to CAS asserting) 
• Column Address Setup Time to CAS re-asserting on mini-bursts or 

bursts (also Early Write Signal Setup Time to CAS re-asserting on 
mini-bursts or bursts) 

AddrSetup (field encodings are listed inTable 10.21) defines the length 
of the DRAM address setup time. Normally, 0.5 clocks is enough setup 
time since most DRAMs require that the row or column address be setup 
Ons before RAS or CAS asserts. However, in very fast systems where the 
clock period is short, or in very noisy, heavily delayed systems additional 
address (and also early write)_ setup time may be needed. Therefore, 
AddrSetup can be extended from 0.5 to 1.5 clocks if necessary; Thus for a 
new page DRAM access, AddrSetup may add I extra address setup clock 
cycle before RAS asserts, before CAS asserts, or before every CAS re­
assertion. 
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Value Action 
'l' 1.5 clocks 
·o· 0.5 clocks (default) 

Table 10.21 Address Setup Time to RAS or to CAS ('AddrSetup') Field Encoding. 

CAS Active Pulse Width ('CASW') Field (bit 11:10) 
· The 2 bit encoding lengthens the CAS active pulse width from a 
minimum of 0.5 clocks up to 2.5 clocks. The default value is ·1· at reset 
which decodes to 1.5 docks (see Table 10.22 for field encodings). This 
field can also be thought of as the CASAddrHold field on read accesses; 
however, on DRAM writes, DRAMWrBTA must be used to extend the 
address hold and early write signal hold time. 

Value Action 
'3' reserved 
'2' 2.5 clocks 
'l' 1.5 clocks (default) 
'O' 0.5 clocks 

Table 10.22 CAS Width ('CASW') Field Encoding. 

DRAM Read Cycle Bus Turn-Around ('DramRdBTA') Field (bit 9:8) 
The Bus Turn-Around field determines the minimum number of clocks 

between the end of a read and the beginning of the next non-DRAM bus 
tn:msaction. Sometimes a slow interface is needed because of the amount 
of time it takes the DRAM or its transceivers to trt-state off of their respec­
tive busses. Thus, a slow bus turnaround option is incorporated into the 
DRAM Controller. A two-bit value stored in a control register will stall the 
bus interface unit between the end of a read cycle and from starting the 
subsequent transfer by up to two system clock cycles. The default at reset 
is the value 'l'. which decodes to 1 clock of BTA. Field encodings are listed 
in Table 10.23. 

Value Action 
'3' 3 cfocks 
'2' 2 clocks 
'l' 1 clock (default) 
'O' 0 clocks 

Table 10.23 DRAM Read Cycle Bus Turn-Around ('DramRdBTA') Field Encoding. 

DRAM Write Cycle Bus Turn Around ('DramWrBTA') Field (bit 6) 
The DRAM Write Cycle Bus Turn Around Field determines whether 

other transactions can begin either one clock cycle before the final CAS 
de-assertion or after the final CAS de-assertion. 

DramWrBTA defines the minimum number of clocks between the end· 
of a write and the beginning of the next non-DRAM bus transaction. The 
DRAM Controller uses the early write protocol and thus can typically give 
up the data and address buses one clock before the end of the write ( 1 
clock before CAS de-asserts for the last time). 

However, this leaves the column address and the early write signal 0.5 
clocks of Hold Time (assuming CASW == 1). Thus very fast systems or 
very noisy systems may want to extend the Address Hold Time after CAS 
writes to 1.5 clocks. This can be done indirectly by changing the Dram­
WrBTA field. (Address Hold Time on DRAM reads is always at least 1.5 
clocks). The default at reset is the value 'O' which decodes to 0 clocks of 
Write Cycle BTA. Field encodings are listed in Table 10.24. 
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Value Action 
'l' 1 clock 
·o· 0 clocks (default) 

Table 10.24 DRAM Write Cycle Bus Tum-Around ('DramWrBTA') Field Encoding. 

Burst Acknowledge Placement ('DramBurstAck') Field (bit 4:0) 
On 4-word burst reads, the acknowledge back to the CPU core needs to 

be placed so that the CPU pipeline can restart optimally. Acknowledge 
should be placed 3 clock cycles before the last datum arrives. Wait states 
via SysWait delay the next de-assertion of CAS, however BurstAck may 
have already asserted. Thus on burst memory cycles where SysWait may 
potentially be asserted, BurstAck must be programmed to '31' such that it 
asserts with the last Datum. Field encodings are listed in Table 10.25. 

As a reference point, it is from the clock cycle that CAS first asserts and 
theDramBurstAck internal counter begins counting. The DRAM controller 
uses the page hit case with no extra CAS Precharge as its minimum value 
and in the case of page misses and/ or in the case of extra CAS Precharge 
settings, automatically delays the DramBurstAck internal counter. 

Note: In the Debug mode of the R36100, if the DebugFCMN pin is 
asserted, BAck is always automatically asserted with the last Datum. 

Value Action 
Acknowledge with last Datum (use if SysWait is to be 

'31' asserted). 
Acknowledge from 30 to 0 clocks (referenced to CAS first 

·30· ... ·o· asserting). Default is 4. 

Table 10.25 Burst Read Acknowledge ('DramBurstAck') Encoding. 

TinlingDiagraDJ.s 
The timing diagrams for the R36100 DRAM Controller are divided into 

the following six sections: 
• basic reads 
• basic writes 
• interleaved reads 
• interleaved writes 
• transfer mode reads and writes 
• refreshes 
In the Basic Reads and Basic Writes sections, ordinary 8/ 16/32-bit 

DRAM accesses are discussed. Concepts including single versus multiple 
datum accesses, and many of the option fields, including RASP, RASAd­
drHold, AddrSetup, and CASW are shown. 

The Interleaved Reads and Interleaved Writes sections discuss the 
timing for connecting two banks of 32-bit DRAM such that for burst read 
accesses, both even and odd words are accessed simultaneously and thus 
improve the performance of the DRAM system. 

The Transfer Mode timing section will show how the R36 l 00 imple­
ments the Video DRAM Read Output Enable strobe to assert a little 
earlier than standard DRAM. 

In the Refresh timing section, the R36 l 00 is shown to implement a 
staggered refresh cycle using the CAS-before-RAS protocol of standard 
DRAMs. 
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Standard DRAM Chip Summary 
The R36100 DRAM Controller uses standard page mode DRAM chips. 

These DRAM chips multiplex their address pins, support page-mode, and 
use CAS-before-RAS refresh. Thus on the first part of a DRAM access, 
upper half of the address is strobed in with a Row Address Strobe (RAS) 
and on the last part of the access, the lower half of the address is strobed 
in with a Column Address Strobe (CAS). 

Because page mode DRAMs have an internal array such that an entire 
row (page) of memory data cells are selected, once that row (page) is 
turned on, subsequent accesses using CAS can be done much quicker 
than the first access of any given row. 

Thus on burst accesses, the R36100 DRAM Controller keeps RAS 
asserted and toggles CAS to get multiple datum. However, if a new row 
(page) is accessed, then the DRAM row array must be re-precharged, typi­
cally for two clock cycles. Similarly, CAS is toggled in order to precharge 
the CAS array before accessing a new memory data location. 

On writes, DRAM chips have two modes: early writes and regular 
writes. Because of the timing advantage of early writes, the R36 l 00 
DRAM Controller uses early writes where data is strobed into the DRAM 
chip with the assertion of CAS instead of with the assertion of the write 
strobe. 

Finally, DRAM· devices require that their contents be periodically 
refreshed. One method is simply to make sure each DRAM row is 
accessed periodically; however, DRAM chips also have a special CAS­
before-RAS refresh protocol: if CAS is asserted before RAS, the chip inter­
nally executes a refresh access and bumps up an internal row address 
counter. The R36100 DRAM Controller uses the CAS-before-RAS refresh 
protocol. 

Basic New Page DRAM Read 
In Figure 10.10 on page 23, a basic new page DRAM read transaction is 

shown. The transaction is initiated like other transactions with the asser­
tion of SysALE and SysBurstFrame. Along with the assertion of SysALE, 
the SysAddrO bus drives the row address (the upper half of the addresses 
that the DRAM chips are expecting). 

Unlike the Memory Controller, the DRAM Controller has many signals 
that assert and/ or de-assert using the falling edge of SysClk in order to 
fully optimize the timing for DRAM systems. Thus, 1/2 clock cycle after 
SysALE asserts, one of the four DramRAS(3:0) strobes will assert 
depending on which of the four banks is selected. This gives the DRAM 
chips minimal address setup time to the RAS strobe. 

One-half clock cycle after DramRAS asserts, the SysAddrO bus 
switches, giving 1/2 clock of address hold time, and begins driving the 
column address (the lower half of the addresses that the DRAM chips are 
expecting). One-half cycle after SysAddr() changes to the column address, 
from one to four of the DramCAS(3:0) strobes will assert depending on if a 
particular byte is required on the read. 

Note that the R36100 may assert all four CAS lines even though it only 
requires some of the bytes (in such a case, the unneeded bytes are 
ignored by the R36100 internally). The default CAS assertion gives the 
column address setup time to the CAS strobe. In a typical read, 
DramCASO remains active for 1.5 clocks. On the final clock of the asser­
tion of DramCASQ, SysDataRdy is asserted and the data from the DRAM 
is latched into the CPU on the final SysClk rising edge. 
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During the time that DramRASO is active, one of the read enable 
strobes will also be asserted. These read enable strobes, either Dram­
RdEnEven (see Figure 10.10) or DramRdEnOdd (asserted analogously to 
the 'Even' signal) can be used to select even (DramRAS(2) or DramRAS(O)) 
or odd (DramRAS(3) or DramRAS(l)) memoiy banks, respectively when 
multiple banks or transceivers are used. The use of DramRdEn(Even/ 
Odd) varies slightly depending on the type of transceivers and interleaving 
factor and will be explained in later sections of this chapter. This includes . 
"Interleaved Reads," "Interleaved Writes," and "System Examples." 

Run/ I Stall-Arb Stall Stall I Stall-RdBusy I Fixup (on Data)/ I 
Stall (on Data)/ Stall-Rdbusy 

Stall (on Inst) (on Inst) 

SysClk 

SysAddr(25:0) 

SysData(31 :O) 

~ 

Sys Rd 

SysBurstFrame 

SysDataRdy 

DramRAS(O) 

DramCAS(3:0) 

DramRdEnEven 

Sys Wait 

Start 
Read 

Watt? Sample Data/ 
New Transaction 

Figure 10.10 Basic DRAM Read 

Note: DRAM styles FCT245 and FCT260 have slightly different 
DRAMRdEnEven behavior than the case shown in Figure 10.10. 

RAS Asserted at End of Transfer 
The R36 l 00 DRAM Controller contains programmable options to allow 

DramRAS() to be left asserted at the end of a DRAM transaction. Leaving 
RAS asserted allows a subsequent DRAM transaction to go directly into 
the CAS stage if the next transaction is to the same row (page) as the 
previous transaction. Thus by using the Control LSB Register Page Type 
('PI'ype') field, the DRAM Controller can keep RAS asserted after burst 
reads, single word reads, and/or writes. The DRAM Controller accom­
plishes this by using its internal Page Comparator as described in the 
Page Comparator Algorithm section earlier in this chapter. Figure 10.11 
illustrates this operation. · 
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Figure 10.11 RAS asserted at End of Transfer 

RAS Asserted at Start of Transfer 
If the R36100 DRAM Controller leaves DramRASO asserted at the end 

of a previous DRAM transaction and the current DRAM transaction is on 
the same row (page), then DramRAS() does not go through a precharge/ 
address strobe stage and is skipped. In this case as shown in Figure 
10.12, the CAS address strobe and data access stages happen immedi­
ately at the start of the transaction. Note that intervening non-DRAM 
accesses do not affect the page comparator. 

RAS Asserted Throughout Transfer 
If the R36100 DRAM Controller leaves DramRASO asserted at the end 

of a previous transaction and the current transaction is on the same row 
(page), then DramRAS() does not go through a precharge/address strobe 
stage and is skipped. In this case, as shown in Figure 10.12, the CAS 
address strobe and data access stages happen immediately at the start of 
the transaction. As in the RAS Asserted at End Case discussed above, the 
R36100 DRAM Controller contains programmable options to allow 
DramRAS() to be left asserted at the end of a DRAM transaction. 
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Figure 10.12 RAS asserted at Start of Transfer 
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RAS Precharge Field 
The R36100 DRAM Controller generates an access that either has RAS 

asserted on a row (page) or has RAS de-asserted. On a subsequent access 
to a different row (page), the DRAM Controller then verifies that RAS 
either is de-asserted or has been de-asserted for at least an amount of 
clocks equal to the Control Register 0 RAS Precharge ('RASP') Field. 

Figure 10.13 shows a RASP of 2 clocks where RAS was left asserted on 
the previous DRAM transaction. To precharge the DRAM chips, 
DramRASO must first de-assert for 2 clocks. Then DRAMRAS() asserts 
after the 2 clocks, and the transaction continues. 

Run/ I Stall Stall· Arb Stall Stall-RdBusy I Fixup (on Data)1 
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Figure 10.13 RAS Precharge at start of Transfer 
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RAS Address Hold Field 
The RASAddrHold setting can provide extra row address hold time by 

extending the number of clocks that the DRAM Address Multiplexer 
delays before switching between row and column addresses. Figure 10. 14 
shows a DRAM read where RASAddrHold has been set for 1.5 clocks 
instead of the default of 0.5 clocks in fast or noisy systems, as shown in 
Figure 10.14. 
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Figure 10.14 Extended Row Address Hold 
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Address Setup Field 
Whenever the R36100 DRAM Controller generates an access where 

RAS is de-asserted and a new RAS is generated (new page case) or a new 
CAS is generated, the DRAM Controller is responsible for making sure 
that RAS or CAS is de-asserted for at least the DRAM Control Register 
Addr Setup Field amount of clocks after the row or column address is 
valid. 

Figure 10.15 shows a case with AddrSetup of 1.5 clocks between 
multiple datum on a read. Although this field primarily controls the 
address setup time of CAS relative to the column address being valid, this 
field also allows control over the precharge time before DramCAS() 
asserts. To match the column address setup time characteristic, the 
R36100 DRAM Controller also applies this field to the DramRAS() signal 
relative to the row address on cases where DramRAS() was left de­
asserted from a previous· transaction. 

Although not pictured, the AddrSetup field also applies to CAS in the 
case where RAS is left asserted and then a subsequent same page access 
occurs. The RASPrecharge field takes care of the case where RAS is 
asserted and then a subsequent different page access occurs. 
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Figure 10.15 Extended Address Set-up 
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CAS Width Field 
The R36100 DRAM Controller can support slower DRAM speeds by 

increasing the CAS pulse width. This option is programmable using the 
DRAM Control Register CAS Width ('CASW') field. Figure 10.16 shows the 
case where CASW has been set to 2.5 clocks instead of the default 1.5 
clocks. 
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Figure 10.16 Extended CAS Width 
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Multiple Datum Reads 
The R36100 DRAM Controller groups mini-bursts (word and tri-byte 

accesses on a 16-bit wide port) and non-interleaved bursts (4-word cache 
refill) the same way. Mini-bursts and burst reads require multiple datum. 
As shown in Figure 10.17, second and subsequent datum are first 
preceded with DramCAS() de-asserting for 1/2 clock (default) and the 
DRAM mux'ed SysAddr() counting up towards the next column address. 
(On 16-bit ports Al is the LSB; on 32-bit ports A2 is the LSB). In each 
case, the final datum is denoted. by SysBurstFrame de-asserting. 
Although not shown, AddrSetup and CASW fields apply to each CAS 
Datum. 

Stall Stall 
Stall-RdBusy I Fixup (on Data)/ I 

(on Data)/ Stall-Rdbusy 
Stall (on Inst) (on Inst) 

Stall Stall-Arb Stall 

DramCAS(3:0) -----+--' 

DramRdEnEven 

Start 
Read 

Wait? Sample Data 

Figure 10.17 Multiple Datum read 
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Basic DRAM Write 
Figure 10.18 shows a basic DRAM write transaction on a precharged 

(e.g., after reset or a refresh) new page (row). The transaction is initiated 
like other transactions with the assertion of SysALE and SysBurstFrame. 
Along with the assertion of SysALE, the SysAddrO bus drives the row 
address (the upper half of the addresses that the DRAM chips are 
expecting). 

Unlike the Memory Controller, the DRAM Controller has many signals 
that asserted and/ or de-assert using the falling edge of SysClk in order to 
fully optimize the timing for DRAM systems. Thus 1/2 clock cycle after 
SysALE asserts, one of the four DramRAS(3:0) strobes will assert 
(depending on which one of the four banks is selected). This gives the 
DRAMs address setup time to the RAS strobe. 1/2 clock cycle after 
DramRAS asserts, the SysAddrO bus switches and begins driving the 
column address (the lower half of the addresses that the DRAM chips are 
expecting). 

In addition, the SysData() bus begins driving the appropriate data. 
One-half cycle after SysAddr() changes, from one to four of the 
DramCAS(3:0) strobes will assert, depending on if a particular byte is 
required on the write. The default CAS assertion gives the column address 
setup time and data setup time to the CAS strobe. The DRAM Controller 
uses the early write mode of page mode DRAMs where the data is latched 
by the DRAM chips on the asserting edge of CAS instead of the de­
asserting edge. Thus SysDataRdy also asserts a clock early, to indicate to 
external resources, such as a logic analyzer, that data is valid. 

The early write mode allows address pipelining if another non-DRAM 
access is waiting to use the system bus. Because of the early write mode 
and address pipelining, the data for the write may disappear on the final 
clock of the write, if the Write Bus Turn Around is programmed to be 'O', 
because another non-DRAM transaction may have already started. To 
prevent address pipelining on systems that require additional data hold 
time (either very high frequency systems or very noisy systems), the Write 
Bus Turn Around can be programmed to be 'l '. 

During the time that DramCAS() is active, one of the write enable 
strobes will also be asserted. These write enable strobes, either Dram­
WrEnEven or DramWrEnOdd can be used to select even (DramRAS(2) or 
DramRAS(O)) or odd (DramRAS(3) or DramRAS(l)) memory banks, respec­
tively when multiple banks or transceivers are used. The use of Dram­
WrEn(Even:Odd) and DramWrEn(Even:Odd) varies slightly depending on 
the type of transceivers and interleaving factor and will be further 
explained in a later section of this chapter, "System Examples." 
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Run/Stall 

Note: DRAMRdEnEven or Odd (not shown) have slightly different 
behaviors depending on the DRAM style (FCT245, 260, or 543). 

RAS Asserted at Start of Write 
If the R36100 DRAM Controller leaves DramRAS() asserted at the end 

of a previous transaction and the current transaction is on the same row 
(page), then DramRAS() does not go through a precharge/address strobe 
stage and is skipped. In this case, as shown in Figure 10.19, the CAS 
address strobe and data access stages happen immediately at the start of 
the transaction. 
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RAS Asserted at End of Write 
The R36100 DRAM Controller contains programmable options to allow 

DramRAS() to be left asserted at the end of a DRAM transaction. Leaving 
RAS asserted allows a subsequent DRAM transaction to go directly into 
the CAS stage if the next transaction is to the same row (page) as the 
previous transaction. Thus by using the Control 0 MSB Register Page 
Type ('PType') field, the DRAM Controller can keep RAS asserted after 
burst reads, single word reads, and/or writes. The DRAM Controller 
accomplishes this by using its internal Page Comparator as described in 
the Page Comparator Algorithm section earlier in this chapter. 
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RAS Asserted Throughout Write 
If the R36100 DRAM Controller leaves DramRAS() asserted at the end 

of a previous transaction and the current transaction is on the same row 
(page), then DramRAS() does not go through a precharge/address strobe 
stage and is skipped. In this case, as shown in Figure 10.19, the CAS 
address strobe and data access stages happen immediately at the start of 
the transaction. As with RAS Asserted at End of Write, the R36100 DRAM 
Controller contains programmable options to allow DramRAS() to be left 
asserted at the end of a DRAM transaction. 
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Figure 10.19 RAS Asserted Throughout DRAM Write 
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Other DRAM timing Controls 
Most of the DRAM Control Fields work identically for reads and writes, 

this includes: 
RAS Precharge Field, 
RAS Address Hold Field, 
Address Setup Field, 
RAS Address Hold Field, 
CASW Field, 

For more detail, see the DRAM Read Timing section. 

Write Bus Turn-Around 
Normally, a subsequent non-DRAM transaction can potentially begin 1 

clock before the DRAM has actually completed the write. For example, 
this DRAM Write Pipelining can occur when a DRAM write is followed by 
an instruction read from PROM. In some cases where either the system 
clock frequency is very high or the column address is very noisy, the 
column address needs additional hold time. By using the Write Bus Turn­
Around Field in a DRAM bank's MSB Control Register, the column 
address is held for an extra clock by delaying any non-DRAM transactions 
for 1 clock, as shown in Figure 10.20. 
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Figure 10.20 Write Bus Turn-around 
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Two Datum Write Transaction 
In cases with a 16-bit bus port width that access more than a halfword 

(tri-byte, word, or DMA Burst Write) or in cases with a non-interleaved 32-
bit bus port width that is a DMA Burst Write, the R36100 DRAM 
Controller does a two datum or multi-datum write transaction, as sh9wn 
in Figure 10.21. The second or subsequent data have firtished using the 
DRAM page mode, such that new SysDataO is put on the data bus and 
DramCAS() is re-asserted. The control lines, DramRdEn(Odd/Even) and 
DramWrEn(Odd/Even) for the FCT245-Type transceivers operate slightly 
differently than for FCT260- or FCT543-Type transceivers as will be 
explained later this chapter in the sections on "Interleaved Reads," "Inter­
leaved Writes," and "System Examples". 
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Figure 10.21 Two Datum Write 
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Interleaved Reads 

Interleaved FCT245 Reads 
If the DRAM LSB Control Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT245' setting, then the 
DRAM Controller assumes the timing shown in Figure 10.22 for reads. 
Because data is not latched by the transceiver, the 2nd, 4th, 6th, ... datum 
must be read with a constant address and CAS assertion. Thus the inter­
leaved FCT245 case saves 1 clock per odd datum over the non-interleaved 
case. In the Interleaved FCT245 case, the read enables 
DramRdEn(Odd,Even) are used as transceiver enables on both reads and 
writes. The DramWrEn(Odd,Even) signals can be used for the direction. 
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Figure 10.22 Interleaved 'FCT245 type read 
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Interleaved FCT260 Reads 
If the DRAM LSB Control Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT260' . setting, then the 
DRAM Controller assumes the timing shown in Figure 10.23 for reads. It 
is assumed odd datum are latched by the multiplexer, such that the next 
address and CAS lines (for the even datum) can be pipelined to change 1 
clock early. Thus the interleaved FCT260 case saves at least 3 clocks for 
each 4-word burst read. In the Interleaved FCT260 case, the even read 
enable DramRdEnEven is used to latch the odd datum while the odd read 
enable DramRdEnOdd is used as the overall read enable for the multi­
plexer. 
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Figure 10.24 shows a single datum access to an interleaved memory 
system using FCT260-type multiplexers in the data path. Note that the 
timing of this access is identical to the timing of the first word access of a 
quad.word read. 
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Figure 10.24 Single word access to even bank of FTC260-type system 
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Figure 10.25 shows the analogous access to the "odd" bank of an inter­
leaved FCT260-type memory system. In this figure, the timing is identical 
with the timing of the access of the second word of a 4-word access; 
however, the first word is not actually returned to the CPU. 

Therefore, there is a performance difference between even and odd 
single-word accesses, due to a limitation on the number of transceiver 
control pins available. However, for the following reasons, this should not 
adversely affect system performance: 

• Single word accesses occur for uncached instruction or data fetches. 
These are typically not used in performance critical parts of the 
system software. 

• Cached instruction misses are always satisfied using 4-word refills, 
and utilize instruction streaming to resume execution once the crit­
ical missing instruction is returned from memory. 

• Single word accesses may be used for cached data refills, if the data 
block refill parameter is set accordingly. However, the use of an inter­
leaved memory in the first place indicates that the burst performance 
of the memory system is very high, leading to an extremely high prob­
ability that 4-word D-cache refill is used. 
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Figure 10.25 Single word access to odd bank of FCT260-type system 
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Interleaved FCT543 Reads 
If the DRAM LSB Control Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT543' setting, then the 
DRAM Controller assumes the timing shown in Figure 10.26 for reads. It 
is assumed odd datum are latched by the registered transceiver, such 
that the next address and CAS lines (for the even datum) can be pipelined 
to change 1 clock early. Thus the interleaved FCT543 case saves at least 3 
clocks for each 4-word burst read. In the Interleaved FCT543 case, the 
two re.ad enables and two write enables match up with the FCT543 part 
directly. 
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Figure 10.26 Interleaved FCT543 Read 
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Figure 10.27 shows a single datum access to an interleaved memory 
system using FCT543-type multiplexers in the data path. Note that the 
timing of this access is identical with the timing of the first word access of 
a quad word read. 

Run/ 
Stall Stall-Arb Stall Stall Stall Stall 

Stall-RdBusy 
(on Data)/ 

Stall (on Inst) 

SysAddr(2s:O) ------1-- __ R_o_w_A_d_d_r ~ ____ c_o...,.l_A_d_dr ___ __,,.._, ~-----1------+-

SysData(31 :0) -----+-1+-----+------t-----+{Data lnput}-----t--------1-

SysALEn 

SysBurstFrame 

SysDataRdy -----+-'/ 

DramRAS(O) __/ 

DramRAS(1) ~ 

DramCAS(3:0) -----+-'7 

DramRdEnEven ] 
--t-' 

DramRdEnOdd _____ _,7 

Start 
Read 

L 

Wait? Sample Data 

Figure 10.27 Single word access to even bank of FCT543-
type system 
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Figure 10.28 shows the analogous access to the "odd"" bank of an inter­
leaved FCT543-type memory system. In this figure. the timing is identical 
with the timing of the access of the second word of a 4-word access; 
however, the first word is not actually returned to the CPU. 

Thus, there is a performance difference between even and odd single 
word accesses, due to a limitation on the number of transceiver control 
pins available. However, for the following reasons, this should not 
adversely affect system performance: 

• Single word accesses occur for uncached instruction or data fetches. 
These are typically not used in performance critical parts of the 
system software. 

• Cached instruction misses are always satisfied using 4-word refills, 
and utilize instruction streaming to resume execution once the crit­
ical missing instruction is returned from memory. 

• Single word accesses may be used for cached data refills, if the data 
block refill parameter is set accordingly. However, the use of an inter­
leaved memory in the first place indicates that the burst performance 
of the memory system is very high, leading to an extremely high prob­
ability that 4-word D-cache refill is used. 
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Interleaved Writes 
Interleaved writes on the R36100 occur one word at a time on the 

respective bank. The R36100 CPU core is only capable of issuing one 
write at a time. However, the DMA engines are capable of issuing burst 
writes. At present, such burst writes are not highly optimized on the 
R36100 and issue sequentially one after another with separate RAS (as 
well as CAS) strobes, switching between banks. This choice is due to the 
leading edge of CAS needing to be delayed for early writes on fully opti­
mized bursts, which would cause needless complications for more typical 
systems. 

Single Word Interleaved FCT245 Write 
If the DRAM Control MSB Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT245' setting, then the 
DRAM Controller assumes the timing similar to that shown in the first 
half of Figure 10.29 on page 45 on writes. 

In the Interleaved FCT245 case, the read enables DramRdEn{Odd/ 
EVeilJ are used as transceiver enables on both reads and writes. The 
DramWrEn(Odd/Even) signals can be used for the direction. The Single 
Word case is similar to the multi-word case, except that the second asser­
tion of CAS does not occur. 

Interleaved FCT245 Writes 
If the DRAM Control MSB Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT245' setting, then the 
DRAM Controller assumes the timing shown in Figure 10.29 on writes. 

On interleaved writes, the R36100 DRAM Controller does the writes 
with'early writes' and thus if a burst write occurs, separate CAS strobes 
occur for each datum. 

In the Interleaved FCT245 case, the read enables DramRdEn(Odd/ 
EVeilJ are used as transceiver enables on both reads and writes. The 
DramWrEn(Odd/Even) signals can be used for the direction. 
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Single Word Interleaved FCT260 Write 
If the DRAM Control MSB Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT260' setting, then the 
DRAM Controller assumes the timing shown in on writes. 

On interleaved writes, the R36100 DRAM Controller does the writes 
with 'early writes' and thus if a burst write occurs, separate CAS strobes 
occur for each datum. 

In the Interleaved FCT260 case, the even read enable DramRdEnEven 
is used to latch the odd datum while the odd read enable DramRdEnOdd 
is used as the overall read enable for the multiplexer. 

The Single Word case is similar to the multi-word case, except that the 
second assertion of CAS does not occur. 

Interleaved FCT260 Writes 
If the DRAM Control MSB Register Type Field of a pair of chip select 

channels is programmed to the 'Interleaved FCT260' setting, then the 
DRAM Controller assumes the timing shown in Figure 10.30 on writes. 

On interleaved writes, the R36100 DRAM Controller does the writes 
with 'early writes' and thus if a burst write occurs, separate CAS strobes 
occur for each datum. 

In the Interleaved FCT260 case, the even read enable DramRdEnEven 
is used to latch the odd datum while the odd read enable DramRdEnOdd 
is used as the overall read enable for the multiplexer. 

Interleaved FCT543 Writes 
If the DRAM Control MSB Register Type Field of a pair of chip select 

channels is programmed to the'Interleaved FCT543' setting, then the 
DRAM Controller assumes the timing shown in Figure 10.30 on writes. 

On interleaved writes, the R36100 DRAM Controller does the writes 
with'early writes' and thus if a burst write occurs, separate CAS strobes 
occur for each datum. 

In the Interleaved FCT543 case, the two read enables and two write 
enables match up with the FCT543 part directly. 
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Refresh 
The refresh cycle of DRAM chips is supported by the DRAM Controller 

by using the CAS-before-RAS refresh protocol. All four DramCAS() lines 
are asserted for CASW time followed after 1 clock by asserting the even 
DramRAS() lines for CASW+0.5 time followed (staggered) by the odd 
DramRAS() lines asserting for CASW+0.5 clocks time. All four DramCAS() 
lines, as shown in Figure 10.31, de-assert 1.5 clocks after the odd 
DramRAS() lines assert. Staggering the RAS lines allows the peak power 
consumption of turning DRAM chips on to be minimized. The DRAM 
Controller guarantees that the write enables, DramWrEn(Odd/Even) are 
de-asserted during refreshes to avoid entry into an internal test mode of 
higher density (4-16Mbit) DRAM chips. 

Refresh cycles can occur in parallel with non-DRAM accesses. If a CPU 
or OMA transfer requiring DRAM occurs concurrently or after a refresh, 
the refresh has priority and will complete first. 

Because refreshes can happen in parallel with non-DRAM accesses, the 
R36 l 00 Debug Interface provides a DiagNoCS() signal to decode precisely 
when a load or store occurs when no chip select (or RAS line) is asserted 
for a load/ store transaction. 

Run/Stall Run/Stall Run/Stall Run/Stall Run/Stall Run/Stall 

DramCAS(3:0) ____ +---+---'-+---+--+---+--+---+--+---+--+-''---+--+---
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Figure 10.31 DRAM Staggered Refresh 
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System Examples 
The following DRAM systems concentrate on distinguishing the data 

path connections between the three different DRAM types: 
• FCT245 Transceiver Type 
• FCT260 Latched Multiplexer (Bus Exchanger) Type 
• FCT543 Registered Transceiver Type . 
The address path of a particular system will depend on the total 

number of loads the address bus needs to drive. Typically there are 8 
DRAM chips per bank, each of them with an address connection. 
Assuming that a ROM bank is also connected, that is already 12 loads. 
Assuming that the DRAM and the EPROM are CMOS type input loads 
(micro-amps), typically the drive current from the R36 l 00 is rarely an 
issue. However, as the number of loads gets larger, the output propaga­
tion defay will also have a capacitive delay factor as well as a noise factor 
from the trace length. If more than about 8 loads are connected to the 
SysAddr bus, then allowances in the programmable timing settings of the 
DRAM· Controller should be made for ringing and settling time as well as 
capacitive load delay derating. If optimal timing is still desired, then 
address buffers such as the FCT244, FCT344, or FCT827 can be used. 

DRAM System using FCT245 Transceivers 
DRAM Systems using FCT245 transceivers can be expanded from 1 

bank to 4 banks. The first bank, even bank DramRAS(O), uses one set of 
transceivers and shares the transceiver set with the other optional even 
bank DramRAS(2). If present, the second bank, odd bank DramRAS(l), 
uses a separate set of transceivers and shares the transceiver set with the 
other optional odd bank DramRAS(3). The use of a second set of trans­
ceivers allows even and odd banks to be used in the interleaved mode. 

In an FCT245 type system, DramRdEn(Odd,Even) are used as the 
common output enable. Thus DramRdEn(Odd,Even) for the FCT245 type, 
assert for both reads and writes and could be called, 
"DramEn(Odd,Even)." Because the FCT245 does not contain a latch, 
address pipelining optimization cannot occur. The use of SysRd or 

. perhaps SysWr (depending on whether the data path from the CPU is A to 
B or perhaps B to A) avoids leading edge bus contention from direction to 
output enable skew. Note that the use of SysRd or SysWr on DRAM 
accesses may in the future, limit the use of the future use of OMA fly by 
accesses. (The R36100 does not presently support OMA fly by accesses. 
The other DRAM types described below do not use SysRd or SysWr). 

Note that the R36100 DRAM Controller depends on CAS without RAS 
having no effect (always true of standard DRAMs, since some chips do not 
have dedicated output enable pins) in order to share transceivers between 
DRAM chip banks. 

With present day pricing, the FCT245 type system is the least expen­
sive interleaved option, however, it is not as fast on burst reads as the 
other two types. 
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Low Cost DRAM System using FCT245 Transceivers 
In very low cost systems that do not need the extra throughput of inter­

leaving, a single set of transceivers can be used for all 4 banks. However, 
this requires that the banks not be put into their software programmed 
interleaved mode and that the read enables, DramRdEn(Odd,Even) be 
externally OR'ed. 

Very Low Cost DRAM System without Transceivers 
In simpler systems, it is also possible to remove the transceivers 

completely, such that the DRAM bank is attached directly to the SysData 
bus. The Bus Turn Around setting can be adjusted to prevent bus conten­
tion between DRAM chips and the CPU on a DRAM read followed by a 
CPU write. For more information, refer to "Dram Read Cycle Bus Turn­
Around ('DramRdBTA') Field Encoding" (Table 10.23 on page 20). 

DRAM System using FCT260 Multiplexers 
DRAM Systems using a set of FCT260 latched multiplexers can be 

expanded from 1 bank to 4 banks. The even banks share one data path 
while the odd banks share the other data path. 

In an FCT260 system, DramRdEnEven is used as the common read 
data path enable to the CPU. DramRdEnEven for the FCT260 type, 
asserts for both even and odd reads and could be called, "DramRdEn." 
DramRdEnOdd is used to latch the odd read data temporarily so that 
address pipelining can occur. DramRdEnOdd is also used for the FCT260 
path select. The DRAM write enables, DramWrEn(Odd/Even) are hooked 
up in a straightforward manner, to the odd and even write data path 
enables of the FCT260, respectively. 
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The FCT260 system (see Figure 10.33 for system diagram) is one of the 
least expensive interleaved options, since just 3 chips are required 
instead of 4 chips. In addition, burst reads are fully optimized with 
address pipelining, and thus save an additional clock on each burst read 
relative to a FCT245 system. Thus for many multi-bank systems, the 
FCT260 system is the best cost/performance alternative. 
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SysData(31 :0) Ai.------• 

Figure 10.33 Interleaved FCT260 Interface 

DRAM System using FCT543 Registered Transceivers 
DRAM Systems using a set of FCT543 registered transceivers can be 

expanded from 1 bank to 4 banks. The even banks share one set of trans­
ceivers while the odd banks share another set of transceivers. 

The FCT543 system may be more expensive than other options and has 
the same performance as the FCT260 option. Because the connections 
are more straightforward, and therefore easier to understand, the FCT543 
option is mentioned here as an example system. 

In the FCT543 system (see Figure 10.34 for system diagram), the read 
enables, DramRdEn(Odd/Even), are hooked up to the odd and even 
transceiver banks' read data path enables respectively. Likewise, the write 
enables, DramWrEn(Odd/Even), are hooked up to the odd and even 
transceiver banks' write data path enables respectively. 
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Introduction 
The IDT R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. One of the on-chip memory 
controllers is the Direct Memory Access (DMA) Controller, which is 
described in this chapter. 

This chapter will provide an overview of the OMA Controller interface, a 
complete description of the signal pins and their timing, and how the 
interface relates to typical internal and external hardware OMA systems. 

Features 
• 4 internal channels 

- Slave mode device support for using R36 l 00 controlled memory 
- Physical memory to physical memory transfers 
- Link chaining protocol for continuous consecutive transfers 

• 2 external channels 
- Master mode devices support for using R36 l 00 controlled memory 
- Physical memory to physical memory transfers 

• Rotating priority arbitration or fixed priority arbitration 
• Coordinates BIU port width, Endianess, Byte Enable, and Read 

Buffer logic 
• Single word read/write mode 
• 4-word burst read/write mode 

CPU 
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Figure 11.1 DMA Controller Address and Data Flow Diagram. 
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Block Diagram 
The functional block diagram for the address and data path of the OMA 

Controller is shown in Figure 11. 1. The OMA Controller, as one of the bus 
controllers, coordinates and shares the Bus Interface Unit (BIU) 
resources with the CPU. An arbitration unit (not shown) coordinates 
when the OMA Controller Channels can make use of the BIU. 

When an internal OMA Controller channel gets the BIU, it first uses the 
OMA Addr Generator to put a source address out to the BIU. The various 
BIU control· signals, including Endianess and AccTyp (Byte Enables and 
Burst Length) are also coordinated by the OMA Controller. The BIU then 
generates a read to the System Interface. 

The System Interface executes the read from the source (for instance to · 
DRAM or to one of the on-chip peripherals). If the source read data is of a 
different port width than 32-bits, then the BIU takes care of the byte 
gathering, while the Read Buffer takes care of burst gathering. The source 
data is FIFO'ed into the Read Buffer just like a CPU read. 

At this point, the OMA Controller takes the read data from the Read 
Buffer and generates the target address. The read data is then sent to the 
BIU in 32-bit quantities with the proper Endianess and AccTyp (Byte 
Enables and Burst Length) and target address until the Read Buffer is 
emptied. On each BIU write, the System Interface is invoked and the write 
is completed out to the target (for instance to one of the on-chip periph­
erals or to DRAM). 

At the same time the OMA Controller is writing to the BIU, it can also 
optionally simultaneously update the data cache. 

Thus the OMA Controller takes control of the Bus Interface Unit and 
automatically coordinates memory to memory transfers. 

Overview 
The Direct Memory Access (OMA) controller has two basic functions: 
• Internally generated OMA capable of driving slave OMA devices 
• External master OMA through internal controllers 

Internal DMA Channels 
There are four independent OMA Channels in the R36100. Each 

channel has identical functionality except for their priority encoding. 
Each channel of the internal OMA Controller is initialized with a set of 
chaining registers to determine: 

• the base start address of the OMA source 
• the base start address of the OMA target 
• the number of datum to be transferred 
• the selection of various protocol styles 
Thus the programmable link chaining registers act as a set of instruc­

tions to the OMA channel which the channel needs to execute and 
complete. After completing the link chaining register instructions, the 
OMA channel may be instructed to stop and interrupt the CPU core, or it 
may be instructed to load a new set of link chaining register instructions. 
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At the beginning of a OMA transaction, the channel will first arbitrate 
for the system bus. By default, all OMA devices and the CPU rotate their 
priority, as shown in Figure 11.2. When rotating priority is used, the 
channel with the highest priority will keep its priority privilege until it 
requests the bus and receives a grant; it will then relinquish the privilege 
to the next channel in rotation. The exception is for DRAM Refresh which 
maintains a higher priority than any other rotating channel. 

Figure 11.2 Rotating Priority Scheme 

Alternatively, the OMA channels can have fixed priority, as shown in 
Table 11.1. 

Fixed Priority Agent 

Highest DRAM Refresh 

• ED MAO 

• EDMAl 

• ID MAO 

• IDMAl 

• IDMA2 

• IDMA3 

Lowest CPU 

Table 11.1 Fixed Priority Encoding 

Once arbitration is granted, the OMA channel will generate a read cycle 
with the source base address. The control register determines whether it 
is a burst read or not. Typically, the source address will be through an 
internal memory controller on the R36100 (e.g. the DRAM Controller). 
Thus the internal memory controller will take the address and generate 
data, acknowledges, etc., back to the OMA controller channel. The OMA 
controller uses the BIU 4-word deep buffer FIFO to absorb the potential 
burst read datum. 

After the read is completed, the OMA channel initiates a write to the 
target address, by emptying out the read buffer FIFO. As with the read, 
the write is typically through an internal memory controller on the 
R36100 (e.g. the I/O Controller). The internal memory controller will take 
the address and data from the FIFO and generate a write transaction. 
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At the end of the transaction, the OMA channel's count register is 
decremented by 1. If the count register has not reached 0, the source and 
target addresses are incremented to their next value (which could be by 
+O, +l. +2, +4, +8, or +16 in decimal depending on whether incrementing 
is enabled and whether a mini-burst or burst occurred). 

If the count register has reached 0, then the OMA channel is finished 
with its current link chaining register assignment. If the control register 
so instructs, the channel may set an interrupt and/or stop, and/or it may 
reload a new link/set of chaining registers. If a new link/set is loaded, 
then the OMA channel will repeat the basic OMA channel transaction by 
copying the new link instructions into the current instructions and 
executing them. 
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Internal DMA Algorithm 
Figure 11.3 shows the internal DMA algorithm. 

while (stop_field == false) /* note that if at anytime stop_field == true then break *I 
{ 
if (count_field != O) 
/* Start up *I 
if (wait_for_interrupt_field == true) 

{ while (DMAlnterruptN == false) 
{/*wait for DMAinterruptN */;}} 

assert BusReqN = active_low; 
while (BusGntN == non_active_low) 

{ /* wait for BusGntN *I; } 

/* Do the source read *I 
BusinterfaceUnit(source_addr_field, BurstN, 

BEnN(3:0), BigEndianFlag, RdN); 
while (Bus_Interface_Unit(FIFO_Data_WrN)) { 

FIFO_Data[I =Data; 

/* Do the target write *I 
BuslnterfaceUnit(target_addr_field, Burst, 
BEnN(3:0), BigEndianFlag, WrN); 
while (Bus_Interface_Unit(FIFO_Data_RdN)) 
{Data= *FIFO_Data++; } 

/* Finish up *I 
if (keep_bus_field == false) 
assert BusReqN = non_active_low; 
count_field = count_field - l; 
if (source_inc_field == true) 
{source_addr_field = source_addr_field + burst_length_field;} 
if (target_inc_field == true) 
{ target_addr_field = target_addr_field + burst_length_field;} 
if (wait_for_interrupt_field ==false) 

{break} 
} /* if count != 0 *I 
else { /* count == 0 *I 
assert Exclnt(DMA_Done_IntOl; /*pulse DMADoneN for 1 clock*/ 
if (break_field == true) { 
assert Stop_Field == true; 
break: 
} 
else { /* break == false *I 
case link_field { 
0: { DMA_Registers = LinkA_Registers; 
break /* from case *I; } 
1: { DMl\_Registers = LinkB_Registers: 
break /* from case *I; } 

2: { DMA_Registers = LinkC_Registers; 
break /* from case * /: } 

3: { DMA_Registers = LinkD_Registers; 
break /* from case *I; } 

} /*end count== 0 */ 
} /* end while *I 

Figure 11.3 Internal DMAAlgorithm. 
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Ertemal DMA Channels 
External OMA channels are conceptually much simpler than their 

internal counterparts. Much of the control logic is implemented by the 
external OMA controller agent; so essentially, all the R36100 is required 
to do is get off the system bus and react to reads and writes to internal · 
controllers. 

Thus the R36100 first gives the bus to the external OMA Agent which 
issues either a read or write command to the R36100. The external OMA 
Agent then gets off the address and control bus. The R36 l 00 then 
executes the command on one of the memoxy controllers and does fly-by 
data accesses where the external OMA Agent either reads or writes the 
data at the same time the memoxy controller writes or reads the data. 

The external OMA Controller uses the customaxy bus request/ grant, 
OMABusReqO and OMABusGnt() handshake signals to allow an external 
OMA agent to take control of the bus. When the OMA agent takes the bus 
it drives address and control information onto the pins of the R36100. 
SysRd is tri-stated; however, its input is ignored since the information is 
redundant with SysWr being de-asserted. Single word writes need to set 
the byte enables via MemWrEn(3:0). 

Note that if all MemWrEn() signals are left high (de-asserted) the 
R36 l 00 will automatically interpret this to be equivalent to the all low 
(asserted) case. Also note that internal peripherals must use single word 
reads, not burst reads. SysALEn may asserted for more than one clock; 
however, the address is latched in on the first rising clock edge where 
SysALEn is asserted. This allows SysALEn to follow the PCI FRAME# 
convention. In PCI mode, MemWrEn(3:0) are sampled on the clock after 
SysALEn is first asserted. The SysOata bus is used to get the external 
OMA 32-bit physical address. 

If the physical address corresponds to an on-chip controller and the 
transfer is a read, the R36 l 00 will generate a read from the proper device 
and drive the necessaxy data lines with the data. If the transaction is a 
bursf read or burst write, to indicate the end of the transaction, the 
accesses must be full word reads or writes and use a properly 
programmed OMADone input. SysWait is available during external OMA 
and can be an inverted input and can be used to slow down reads or 
writes. · 

Because the R36 l 00 must reuse the SysAddr and Sys Control lines 
during the second half of a OMA access, the OMA agent must tri-state its 
address (and data transceivers) after driving SysAddr, SysALEn, · 
SysBurstFrame, SysWr, and MemWrEn(3:0) into the R36100. The tri­
stating must occur by the second clock after de-asserting SysALEn. 
Before taking the bus back, the CPU drives all control lines de-asserted; 
therefore, the OMA agent doesn't necessarily have to do so. With the 
exception of write SysOata(), the R36100 will take over the bus to do a 
memoxy cycle. When the R36 l 00 has completed its internal memoxy 
cycle, it will assert SysOataRdy and de-assert SysAddr and all System 
Control lines. 

Burst transfers may be from 1 to 64 words and must be aligned with a 
64-word block. Burst transfer mode also requires the use of the 
OMADone pin. OMABusReqO must be kept asserted at least one clock 
after OMABusGnt() asserts. OMABusReq() must be deasserted before the 
last SysOataRdy occurs, unless another external OMA transaction is to 
occur. 
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Pin Descriptions . 

Direct Memory Access (DMA) Controller Signals 

DmaBusReq(l:O) Input 
DMA Bus Request: Active low input which signals the R36 l 00 that the 

external OMA controller would like to gain mastership of the system bus. 
OmaBusReq can be software programmed to be active high by using the 
ReqH field in the External OMA Control Register. 

DmaBusGnt(l:O) Output 
DMA Bus Grant: Active low output which signals to the external OMA 

controller that it is now master of the system bus. OMABusGnt can be 
software programmed to be active high by using the ReqH field in the 
External OMA Control Register. 

DmaDone Input 
DMA Done: Active low signals the R36100 that the current OMA trans­

action is the last transaction by the current OMA agent. 
For internal OMA, if OMADone is asserted the present link will abort. 

For external OMA, OMADone will indicate that the present datum is the 
last datum on a burst read or write. OMADone is required for burst trans­
fers. It must assert at least two clocks before the last clock cycle of the 
last datum. Thus it is recommended that burst transfers use at least 2 
clocks for each datum. (If 1 clock is used for each datum, then OMADone 
must be asserted with the next to last datum instead of with the last 
datum). 
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System Control Signals used during DMA Controller Accesses 

SysALEn 

SysBurstFrame 

Sys Rd 

SysWr 

Output/(Input during External DMA) 

Output/(Input during External DMA) 

Output/(Input during External DMA) 

Output/(Input during External DMA) 

MemWrEn(3:0) Output/(Input during External DMA) 
These signals are used during the initial part of an external OMA 

access, in order to give the R36100 a read, write, burst read, or burst 
write command. During this period, they are inputs. 

SysRd: 
SysRd can optionally be driven by the external OMA agent; however, it 

is ignored by the R36100, which uses an unasserted SysWr to indicate a. 
read command. 

· MemWrEnQ: 
External OMA, in addition to the regular cases, can support the' 1111' 

case which is equivalent to the '0000' all asserted case and the'lOOl' case 
which is a case the R3000A core never generates. 

SysDataRdy Output 
SysDataRdy asserts low whenever the CPU expects data to be read or 

written. It is always a CPU output. The datum is read or written by the 
CPU bus controller simultaneous with being written/read by the OMA 
agent. 
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Register Descriptions 
The R36100 OMA Controller has two sets of registers, one internal (4 

channels) and one external (2 channels). 

Internal DMA Controller Register Descriptions 
Table 11.2 is an address map of the Internal OMA Controller registers. 

Big Endian software must offset these addresses by b'IO (Ox2). 

Physical Addr Description 

OxFFFF_E300 DMA LSB Source Address Register for Channel O 
OxFFFF_E304 DMA MSB Source Address Register for Channel 0 
OxFFFF_E308 DMA LSB Target Address Register for Channel 0 
OxFFFF_E30C DMA MSB Target Address Register for Channel O 
OxFFFF_E310 DMA LSB Count Register for Channel 0 
OxFFFF_E314 DMA MSB Count Register for Channel 0 
OxFFFF_E318 DMA LSB Control Register for Channel O 
OxFFFF_E31 DMA MSB Control Register for Channel 0 

OxFFFF _E320 DMA LSB Source Address Register for Channel 1 
OxFFFF _E324 DMA MSB Source Address Register for Channel 1 
OxFFFF_E328 DMA LSB Target Address Register for Channel 1 
OxFFFF _E32C DMA MSB Target Address Register for Channel 1 
OxFFFF _E330 DMA LSB Count Register for Channel 1 
OxFFFF _E334 DMA MSB Count Register for Channel 1 
OxFFFF_E338 DMA LSB Control Register for Channel 1 
OxFFFF _E33C DMA MSB Control Register for Channel 1 

OxFFFF_E340 DMA LSB Source Address Register for Channel 2 
OxFFFF _E344 DMA MSB Source Address Register for Channel 2 
OxFFFF _E348 DMA LSB Target Address Register for Channel 2 
OxFFFF_E34C DMA MSB Target Address Register for Channel 2 
OxFFFF _E350 DMA LSB Count Register for Channel 2 
OxFFFF _E354 DMA MSB Count Register for Channel 2 
OxFFFF _E358 DMA LSB Control Register for Channel 2 
OxFFFF_E35C DMA MSB Control Register for Channel 2 

OxFFFF_E360 DMA LSB Source Address Register for Channel 3 
OxFFFF_E364 DMA MSB Source Address Register for Channel 3 
OxFFFF_E368 DMA LSB Target Address Register for Channel 3 
OxFFFF_E36C DMA MSB Target Address Register for Channel 3 
OxFFFF_E370 DMA LSB Count Register for Channel 3 
OxFFFF_E374 DMA MSB Count Register for Channel 3 
OxFFFF_E378 DMA LSB Control Register for Channel 3 
OxFFFF_E37C DMA MSB Control Register for Channel 3 

OxFFFF_E380 DMA LSB Source Address Register for Link A 
OxFFFF_E384 DMA MSB Source Address Register for Link A 
OxFFFF_E388 DMA LSB Target Address Register for Link A 
OxFFFF_E38C DMA MSB Target Address Register for Link A 
OxFFFF _E390 DMA LSB Count Register for Link A 
OxFFFF _E394 DMA MSB Count Register for Link A 
OxFFFF_E398 DMA LSB Control Register for Link A 
OxFFFF_E39C DMA MSB Control Register for Link A 

OxFFFF_E3AO OMA LSB Source Address Register for Link B 
OxFFFF_E3A4 OMA MSB Source Address Register for Link B 
OxFFFF_E3A8 OMA LSB Target Address Register for Link B 
OxFFFF _E3AC DMA MSB Target Address Register for Link B 
OxFFFF _E3BO OMA LSB Count Register for Link B 
OxFFFF _E3B4 OMA MSB Cou:i;it Register for Link B 
OxFFFF _E3B8 DMA LSB Control Register for Link B 
OxFFFF _E3BC DMA MSB Control Register for Link B 

OxFFFF _E3CO DMA LSB Source Address Register for Link C 
OxFFFF _E3C4 DMA MSB Source Address Register for Link C 
OxFFFF _E3C8 DMA LSB Target Address Register for Link C 
OxFFFF _E3CC OMA MSB Target Address Register for Link C 
OxFFFF _E300 OMA LSB Count Register for Link C 
OxFFFF _E304 OMA MSB Count Register for Link C 
OxFFFF _E308 OMA LSB Control Register for Link C 
OxFFFF _E30C. DMA MSB Control Register for Link C 

Table 11.2 Internal Channel DMA Controller Register Address Map 
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DMA LSB Source Address Register for Channel 0 •• 3 
('DmaLSBSourceAddrReg(0 •• 3)') 

DMA LSB Source Address Register for Link A..D 
('DmaLSBSourceAddrReg(A •• D)') 

15 14 13 12 11 10 9 8 7 6 5 

LSB Addr (15:0) 

15 

Chapter 11 

4 3 2 1 0 

Figure 11.4 Internal DMA LSB Source Address Register ('DmaLSBSourceAddrReg'). 

DMA MSB Source Address Register for Channel 0 .. 3 
('DmaMSBSourceAddrReg(0 •• 3)') 

DMA MSB Source Address Register for Link A..D 
('DmaMSBSourceAddrReg(A..D)') 

15 14 13 12 11 10 9 8 7 6 5 

MSB Addr (31:16) 

15 

4 3 2 1 0 

Figure 11.5 Internal DMA MSB Source Address Register ('DmaMSBSourceAddrReg'). 

The Source Address Register. shown in Figure 11.5, must be programmed 
with the initial address of the peripheral or memory that data is to be read 
from. The channel Source Address Register will be incremented by the Source 
Burst Size amount after each OMA transaction. Normally the Source Address 
Register is only written; however, it may also be read for diagnostic reasons. 

DMA LSB Target Address Register for Channel 0 .. 3 
('DmaLSBTargetAddrReg(0 •• 3)') 

DMA LSB Target Address Register for Link A .. D 
('DmaLSBTargetAddrReg(A..D)') 

15 14 13 12 11 10 9 8 7 6 5 

LSB Count(15:0) 

15 

4 3 2 1 

. Figure 11.6 Internal DMA LSB Target Address Register ('DmaLSBTargetAddrReg'). 
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DMA MSB Target Address Register for Channel 0 •• 3 
('DmaMSBTargetAddrReg(0 •• 3)') 

DMA MSB Target Address Register for Link A •• D 
('DmaMSBTargetAddrReg(A..D)') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I MSB Count(31 :16) I 

I 

I 

15 

Figure 11. 7 Internal DMA MSB Target Address Register ('DmaMSBTargetAdclrReg"). 

The Target Address Register (shown in Figure 11.6 and Figure 11. 7) 
must be programmed with the initial address of the peripheral or memory 
that data is to be written to. The channel Target Address Register will be 
incremented by the Target Burst Size amount after each DMA transac­
tion. Normally the Target Address Register is only written, however, it may 
also be read for diagnostic reasons. 

DMA LSB Count Register for Channel 0 •• 3 
('DmaLSBCountReg(0 •• 3)') 

DMA LSB Count Register for Link A •• D 
('DmaLSBCountReg(A..D)') 

15 14 13 12 11 10 9 8 7 6 

LSB Count (15:0) 

15 

5 4 3 2 

Figure 11.8 DMA LSB Count Register ('DmaLSBCountReg'). 

DMA MSB Count Register for Channel 0 •• 3 
('DmaMSBCountReg(0 •• 3)') 

DMA MSB Count Register for Link A..D 
('DmaMSBCountReg(A..D)') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

MSB Count(31 : 16) 

15 

1 

1 

Figure 11.9 Internal DMA MSB Count Register ('DmaMSBCountReg'). 

0 

I 

0 

I 

Note: The count is the number of read/write transactions to be done. 
A burst or mini-burst read/write only counts once. The channel count 
register is decremented by 1 after each DMA transaction. If the count 
is 0, then the DMA Channel will immediately proceed to the next link. 
The LSB and MSB registers are writable. They are also readable for 
diagnostic purposes. 
The lnternalDMA LSB Control register is shown in Figure 11.10, with 

bit assignments listed in Table 11.3. 
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DMA LSB Control Register for Channel 0 .. 3 
('DmaLSBControlReg(0 .. 3)') 

DMA LSB Control Register for Link A..D 
('DmaLSBControlReg(A..D)') 

15 14 13 12 9 8 7 6 5 4 3 2 1 0 
Arb Bus Done Wint Burs1 Cache SBE TBE SEnd TEnd Sine Tine 

1 1 1 1 2 1 1 2 2 1 1 1 

Figure 11.10 Internal DMA LSB Control Register ('DmaLSBControlReg'). 

Bit Assignment 

15 Arbitration Type 

14 Keep Bus 

13 Allow DMADone 

12 Wait for Interrupt 

11:10 'O' 

9 Burst Type 

8 Cacheable Type, Access Type(2) 

7:6 Source Byte Enable Type, Access Type(l:O) 

5:4 Target Byte Enable Type, Access Type(l:O) 

3 Source Endianess 

2 Target Endianess 

1 Increment Source 

0 Increment Target 

Table 11.3 Internal DMA LSB Control Register ('DmaLSBControlReg') 
Bit Assignments. 

Arbitration Type ('Arb') Field: 

1 

The Arbitration Type is only applicable to Channel 0. However, all 
channels are required to be programmed to the same value. The Arbitra­
tion Type field values are listed in Table 11.4. 

Value Action 

'l' Fixed Priority Arbitration (default) 

'O' Rotating Priority Arbitration. 

Table 11.4 Arbitration Type ('Arb') Field Encoding 
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Keep Bus ('Bus') Field: 

Value Action 

'l' Keep Bus until done with current link. 

·o· Let go of Bus at the end of each read/write. 

Table 11.5 Keep Bus ('Bus') Field Encoding 

Keep Bus field values are listed in Table 11.5. 

Allow DMADone ('Done') Field: 
Note: If'Oone' is programmed as a 'l' (see Table 11.6 for field encod­
ings). then it is required to program the OMADone pin as an input. 
Programming the value to' l' forces OMADone to behave as a "stop­
link" indicator; if OMADone gets asserted during a channel's OMA 
BusGnt asserted period, then it will abort the OMA channel and its 
link after this current transaction completes. Field values and descrip­
tions are listed in Table 11.6. 

Value Action 

'l' "Stop-link" 

'O' Normal. 

Table 11.6 Allow DMADone ('Done') Field Encoding. 

Walt for Interrupt ('Wint') Field: 
The OMA Controller cannot autonomously acknowledge the source of 

the interrupt. Thus, it is expected that interrupts either pulse low for 1 
clock or self reset when the pertinent data port is read or written. 

In the "Wait" mode, the OMA Controller does not sample for the inter­
rupt again until the clock after the internal bus grant is released. If 
programmed for the continuous mode, the OMA Controller does not 
sample until the clock after the internal bus grant would have been 
released. This gives adequate time for the external I/ 0 device being read 
or written to reset its internal interrupt generator. Refer to Table 11. 7 for 
field values. 

Value Action 

'l' Wait after each transfer until the next interrupt 

'O' Continuous Style. 

Table 11.7 Wait for Interrupt ('Int') Field Encoding 

Burst Type ('Burst') Field: 

Value Action 

'l' Transaction is a burst of more than 4 bytes. 

'O' Transaction is of 4 bytes or less. 

Table 11.8 Burst Type ('Burst') Field Encoding. 

Refer to Table 11.8 for Burst Type field values and descriptions. 
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Cacheable ('Cache') Field: 
If the Cacheable Field is set, then the internal CPU is guaranteed to 

halt. Otherwise, the CPU may be able to execute instructions out of cache 
up to the time it wrttes four words to the wrtte buffer. The CPU wrtte 
buffer is flushed before DMA can start. Refer to Table 11.9 for Cacheable 
field values and descriptions. 

Value Action 

'I' Transaction is write cached. 

'O' Transaction is write uncached. 

Table 11.9 Cacheable ('Cache') Field Encoding 

Source Byte Enable Type ('SBE') Field: 
The selected type is combined with Addr(l:O) and Endianness to form 

the byte-enables. Refer to Table 11. l 0 for Source Byte Enable field values 
and descriptions. 

Value Selected Type 

. ·11· Word . 

'IO' Reserved. 

'01' Halfwqrd. 

'00' Byte. 

Table 11.10 Source Byte Enable Type ('SBE') Field Encoding. 

Target Byte Enable Type ('TBE') Field: 
The selected type is combined with Addr(l :0) and Endianness (see 

Table 11.12 for Source BigEndianness type field values and descriptions 
or Table 11.13 for Target Endianness values and descriptions) to form the 
byte-enables. Refer to Table 11. 11 for Target Byte field values · and 
descriptions. 

Value Selected Type 

·11· Word. 

'IO' Reserved. 

'01' Halfword. 

'00' Byte. 

Table 11.11 Target Byte Enable Type ('TBE') Field Encoding 

Source Endianness Type ('SEndian') Field: 

Value Endianness 

'I' Big Endian. 

·o· .Little Endian. 

Table 11.12 Source Big Endianess Type ('SEndian') Field Encoding 
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Target Endianness Type ('TEndian') Field: 

Value Endianness 

'l'. Big Endian. 

·o· Little Endian. 

Table 11.13 Target Big Endianess Type ('TEndian') Field Encoding 

Increment Source Address ('Sine') Field: 

Value Action 

'l' Increment source address 

·o· Constant source address 

Table 11.14 Increment Source Address ('IDnc') Field Encoding 

Increment Target Address ('Tlilc') Field: 

Value Action 

'l' Increment target address 

·o· Constant target address 

Table 11.15 Increment Target Address ('Tine') Field Encoding 

Programming information for the Increment Source and Increment 
Target fields are listed in Table 11.14 and Table 11.15. 

DMA MSB Control Register for Channel 0 .. 3 
('DmaMSBControlReg(0 •. 3)') 

DMA MSB Control Register for Link A..D 
('DmaMSBControlReg(A .. D)') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Stop Break Rsvdlink Link 

1 1 4 2 4 4 

Figure 11.11 Internal DMA MSB Control Register ('DmaMSBControlReg'). 

The Internal OMA MSB Control register fields are shown in 
Figure 11. 11, with bit assignments listed in Table 11.16. Field values and 
descriptions are listed in Table 11.17, Table 11.18, Table 11.19, and 
Table 11.20. 
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Bit# Field Name 

15 Stop 

14 Break 

13:10 Reserved 

9:8 Link 

7:0 Reserved 

Table 11.16 lntemal DMA MSB Control Register ('DmaMSBControlReg') Bit 
Assignments 

Stop ('Stop') Field: 

Value Action 

'l' Stop Immediately and abort any DMA link in progress 
(default). Any DMA bus transaction may complete. 

·o· Enable DMA. 

Table 11.17 Stop ('Stop') Field Encodin 

Break ('Break') Field: 

Value Action 

'l' Break at the end of this DMA chain (default). All 
Reserved Link and all Link Bits must also be set to 1. 

·o· Execute next link at the end of this DMA chain. 

Table 11.18 Break ('Break') Field Encoding 

ReservedLink Field ('RsvdLink'): 

Value .Action 

'1111' Must be written with the same value as the Break field. 

L 
Undefined during reads. 

'0000' Must be written with the same value as the Break field. 
Undefined during reads. 

Table 11.19 Reserved Link ('RsvdLink') Field Encoding 

Link ('Link') Field: 

Value Action 

'3' Load LinkD at the end of this DMA chain and execute 
(default). 

'2' Load LinkC at the end of this DMA chain and execute. 

'l' Load LinkB at the end of this DMA chain and execute. 

·o· Load LinkA at the end of this DMA chain and execute. 

Table 11.20 Link ('Link') Field Encoding 
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External DMA Controller Register Descriptions 
Table 11.21 is an address map of the External OMA Controller regis­

ters. Note that Big Endian software must offset these addresses by b'lO 
(Ox2). The External OMA Control register 0 ... 1 fields are shown in 
Figure 11.12, bit assignments are listed in Table 11.22. Field values and 
descriptions are given in Table 11.23, Table 11.24. Table 11.25. and 
Table 11.26. 

Timing Diagrams for External OMA Single Datum Read using the 
Memoiy Controller (Figure 11.13 on page 19), External OMA Single 
Datum Write using Memoiy Controller (Figure 11.14 on page 20). 
External OMA Two-Datum Burst Read using the Memoiy Controller 
(Figure 11.15 on page 21). and External OMA Two-Datum Burst Write 
using the Memoiy Controller (Figure 11.16 on page 21) are also included 
in this section. 

Phys. Addr Description 

OxFFFF_E400 ExtDMA Control Register 0 

OxFFFF_E410 ExtDMA Control Register 1 

Table 11.21 External DMA Controller Register Address Assignments 

External DMA Control Register 0 .. 1 
('ExtDmaControlReg(0 .. 1)') 

15 

I SC 

1 

14 13 1? ll lO 9 8 z 6 5 4 3 2 I ReqH I GntH I j) I Sample! 1 I 0 I (l I 9 Late .. • 

1 1 1 1 1 8 

Figure 11.12 External DMA Control Register ('ExtDmaControlReg') 

Bit Assignment 

15 Stop Channel 

14 DMABusReq() active High 

13 DMABusGnt() active High 

12 Reserved 

11 Sample MemWrEn(3:0) and 
SysBurstFrame one clock later 

10 Reserved to ' l' 

9 .. 0 Reserved to 'O' 

Table 11.22 External DMA Control Register ('ExtDmaControlReg') 
Bit Assignments 
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Stop Channel ('EC') Field: 

Value Action 

'l' Stop/Disable External DMA Channel (default). 

·o· Enable External DMA Channel. 

Table 11.23 Enable Channel ('EC') Field Encoding 

Bus Request Protocol High ('ReqH') Field: 

Value Action 

'l' Active High Protocol; DMABusReq is active high for this 
channel (SCSI controller convention). 

·o· Active Low Protocol; DMABusReq is active low for this 
channel (default). 

Table 11.24 Bus Request Protocol High ('ReqH') Field Encoding 

Bus Grant Protocol High ('GntH') Field: 

Value Action 

'l' Active High Protocol (I-Style convention). 

·o· Active Low Protocol (default). 

Table 11.25 Bus Grant Protocol High ('GntH') Field Encoding 

Sample MemWrEn and SysBurstFrame 1 Clock Later 
('SampleLate') Field: 

This field selects whether to sample MemWrEn(3:0) and SysBurst­
Frame on writes with SysALEn or one clock later as would be done for PCI 
accesses. 

Value Action 

'l' Sample MemWrEn and SysBurstFrame one clock after 
SysALEn first asserts. 

·o· Sample MemWrEn and SysBurstFrame with SysALEn. 

Table 11.26 Sample MemWrEn and SysBurstFrame 1 clock later 
('SampleLate') Field Encoding 
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System Examples 

Memory-to-memory Copying 
One common system operation may be a memory-to-memory transfer. 

For example, the system may desire the transfer is from one block of 
DRAM starting at virtual address Ox80030000 to another block of DRAM 
starting at virtual address Ox80038000. The block is 1520 bytes long. 
Only one DMA Channel is needed. 

One of the DMA Channels can be programmed so that the source 
address register is Ox00030000 (the equivalent physical address for 
virtual address Ox80030000) and target address register Ox00038000. 
The count register is 1520 I 16 = 95 since the maximum DMA burst 
transaction can be up to 16 bytes (the size of the BIU read buffer). In the 
LSB Control Register, the DMA Channel is set up to Burst, Increment 
Source address, and Increment Target address. The MSB Control Register 
is set up to Break after all bytes have been transferred, to have a Burst 
length for 16 bytes, and to Enable the DMA Channel to begin. The CPU 
can then continue on with another process while the memory to memory 
transfer takes place. 

Transfers between 1/0 and Memory 
One example where this may be desirable is in copying data between 

the UART channels and memory. For example, the serial port may be 
used in full-duplex mode. Thus the serial port is both receiving and trans­
mitting data at the same time. In this scenario, two DMA Channels are 
used, one for receiving, and one for transmitting. 

Using the Interrupt Controller, certain interrupts can be steered to 
certain DMA Channels. For instance, the Serial Receive Interrupt can be 
steered to DMA Channel 1 and the Transmit Interrupt can be steered to 
DMA Channel 0. 

In the receiving case, the DMA Channel is programmed to transfer data 
from the serial port to a DRAM buffer block. When the buffer becomes 
full, the CPU can act on a DMA Channel 1 Done Interrupt and/ or set up 
another DRAM buffer block via the link registers. The DMA Channel is 
programmed to not Increase the Source Address for the serial port and to 
Increase the Target Address after each byte transfer. The DMA Channel is 
set to transfer 1 byte per count (for the burst length) and to Wait for Inter­
rupt between bytes. After each byte is transferred, the DMA Channel will 
wait for another receive interrupt before transferring another byte from 
the serial port to DRAM. 

In the transmit case, the DMA Channel is programmed to transfer the 
message length number of bytes from DRAM which Increases the Source 
Address after each byte to the Serial Port which does not Increase the 
Target Address after each byte. The DMA Channel is set to transfer 1 byte 
per count (as the burst length) and to Wait for Interrupt between bytes. 
(Alternatively, since the serial port's transmit FIFO is two bytes, DMA 
could transfer two bytes at a time). After each byte is transferred, the 
DMA Channel will wait for another transmit FIFO empty interrupt before 
transferring another byte from DRAM to the serial port. 

By using the two DMA Channels, the CPU is freed from either having to 
constantly poll for serial port status or from constantly handling inter­
rupts and interrupt service routines. 
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Distinguishing Between CPU and Internal DMA Accesses 
If the external system needs to distinguish between a bus transaction 

generated by the CPU core versus one of the internal OMA channels, 
there are a couple of options: 

• The system software can code an internal MSB address for the 
internal OMA channel, and have that address bit be ignored by the 
address map. The assertion of this address would then signal a OMA 
transfer. 

• Use the DIAGinternalDMA pin. 
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Parallel Input/Output 
(PIO) 

Chapter 12 

Integrated Device Technology, Inc. 

CPU Write 

Introduction 
The IDT79R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. The on-chip peripherals include 
Parallel Input/Output (PIO} Pins (see Figure 12.1 for block diagram) as 
described in this chapter. 

This chapter provides an overview of the PIO programming interface, a 
complete description of the signal pins, and discusses how PIOs relate to 
typical internal and external systems. 

Features 
• 39 general purpose PIO parallel input/output pins 

- PIO pins multiplexed with controller functions 

Block Diagram 

PIO Data Register 
D Q1t-----'.-i 

EffectPinSel 

Direction Enable 

Figure 12.1 PIO Block Diagram. 

Overview 

1/0 Pad 

The Parallel Input/Output (PIO) pins are multi-purpose pins that can 
be programmed to act as inputs or outputs. Each PIO pin is also multi­
plexed with other controller's inputs or outputs. This flexible arrangement 
allows the system designers to customize the R36100's resources 
according to their needs. Designs needing a special purpose controller, 
such as the Laser Video Controller, can allocate the Laser Video pins for 
that purpose. Other applications, such as Datacom, that do not m~ed the 
Laser Video Controller can use those pins for general purpose inputs or 
outputs. 

Inputs are not synchronized beyond the requirements of the destina­
tion unless otherwise noted. Outputs are non-synchronized (typically they 
are synchronized by the originating peripheral) and are multiplexed. 

Pin Descriptions 
Each of the PIO pins is multiplexed with other pin functions. Some 

PIOs are input only, some are output only, and some can be programmed 
as either inputs or outputs. 
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PIO(n) Input/Output 
Parallel Input/Output: These bi-directional signals can be used as 

generic input/ output pins. They are set individually through control 
registers in the PIO interface and can be read by software reads to the 
appropriate registers. 

Table 12.1 shows the relationship between the PIO pins and the other 
R36100 function pins that are multiplexed onto the same device pin. 

PIO Number Alternate Function Register Number Bit Position 

PI0(31) SerialCTS(O) 1 14 
PI0(30) SerialDCD(O) 1 13 
PI0(29) SerialRxData(l) 1 12 
PI0(28) SerialPClkln 1 11 
PI0(27) SerialCTS(l) 1 10 
PI0(26) SerialDCD(l) 1 9 
PI0(25) LaserVideoClkln 1 8 
PI0(24) LaserLineSync 1 7 
PI0(23) LaserPageSync 1 6 
PI0(22) CentStrobe 1 5 
PI0(21) CentAutoFeed 1 4 
PI0(20) Centlnit 1 3 
PIO(l9) CentSelect 1 2 
PIO(l8) DMABusReq( 1) 1 1 
PIO(l 7) Exclnt(4) 1 0 
PIO(l6) Exclnt(3) 2 14 
PIO(l5) BrCond(3) 2 13 
PIO(l4) BrCond(2) 2 12 

PI0(41) SerialTxData(O) 2 11 
PI0(40) SerialRxData(O) 2 10 
PI0(39) SerialPClkln(O) 2 9 
PI0(38) SerialSClk(O) 2 8 
PI0(37) SerialSync(O) 2 7 
PI0(36) SerialSClk(l) 2 6 
PI0(35) SerialSync(l) 2 5 
PI0(34) TimerTc/Gate(2) 2 4 
PI0(33) TimerTc/Gate(l) 2 3 
PI0(32) TimerTc/Gate(O) 2 2 

PIO(l3) SerialRTS(O) 0 13 
PIO(l2) SerialDTR(O) 0 12 
PIO(l l) SerialTxData(l) 0 11 
PIO(IO) SerialRTS(l) 0 10 

. PI0(9) SerialDTR( 1) 0 9 
PI0(8) LaserVideoData 0 8 
PI0(7) CentAck 0 7 
PI0(6) CentBusy 0 6 
PI0(5) CentPError 0 5 
PI0(4) CentSelect 0 4 
PI0(3) CentFault 0 3 
PI0(2) CentHostOEn 0 2 
PIO(l) CentHostStrobe 0 1 
PIO(O) DMABusGnt(l) 0 0 

Note: Input-only and output-only refer to the functionality of the pin, 
when the alternate function is used. The Register-Number and Bit-
Position fields describe which of the PIO Data, Direction, and Effect-
Select register /bit combinations control that PIO signal. 

Table 12.1 Altemate R36100 functions mapped to PIO pins 
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Register Definitions 
Note that Big Endian software must offset these addresses by b' 10 

(Ox2). 
Table 12.2 provides an address map and descriptions of the PIO Regis­

ters. And Figure 12.2 shows the PIO Data Registers. Additional program­
ming information is located in Table 12.3. 

Phys. Address Description 

OxFFFF _EAOO PIO Data Register 0 

OxFFFF _EA04 PIO Direction Control Register 0 

OxFFFF _EA08 PIO Effect Select Control Register 0 

OxFFFF_EAlO PIO Data Register 1 

OxFFFF_EA14 PIO Direction Control Register 1 

OxFFFF _EA18 PIO Effect Select Control Register 1 

OxFFFF_EA20 PIO Data Register 2 

OxFFFF_EA24 PIO Direction Control Register 2 

OxFFFF_EA28 PIO Effect Select Control Register 2 

Table 12.2 PIO Register Address Assignments. 

PIO Data Register 0 .. 2 
('PioDataReg'O .. 2) 

12 11 10 9 8 7 6 5 4 3 2 1 0 

Data 

1 15 

Figure 12.2 PIO Data Register ('PioDataReg'). 

PIO Data ('PIOData') Field: 

Value Action 

'l' PIO pin is high (default). 

·o· PIO pin is low. 

Table 12.3 PIO Data ('PIOData') Field Encoding. 

PIO Direction Register 0 .• 2 
('PioDirReg'0 .. 2) 

15 14 13 12 11 10. 9 8 7 6 5 4 3 2 1 0 

I Lock I Direction I 
1 15 

Figure 12.3 PIO Direction Register ('PloDlrReg'). 

Tue PIO Direction Control Registers (see Figure 12.3) contain 16 bits 
each: 

• Tue MSB is a lock bit (see Table 12.4). 
• Tue bits in PIO Direction Register control whether the PIOs are inputs 

or outputs (see Table 12.5). 
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Lock ('Lock') Field: 

Value Action 

'l' Locks the Register from being altered by future writes. 

·o· No action (default). 

Table 12.4 Lock ('Lock') Field Encoding. 

Direction ('Dir') Field: 

Value Action 

'l' PIO pin is an output. 

·o· PIO pin is an input (default). 

Note: To avoid internal device damage, this field must be 
programmed carefully. When used in the input direction, any 
internal output or I/O driver-for example a serial port-must first 
be programmed to be tri-state or an input (default). Only then can 
the PIO 'Dir' field be safely changed from output to input. 

Table 12.5 Direction ('Dir') Field Encoding. 

PIO Effect Select Register 0 •. 2 
('PioEffectSelReg'0 .. 2) 

15 14 13 12 11 10 9 8 7 6 

Effect Select 

1 15 

5 4 3 2 

Figure 12.4 PIO Effect Select Register ('PioEffectSelReg'). 

1 0 

The PIO Effect Select Registers (see Figure 12.4) contain 16 bits each: 
• The MSB is a lock bit (see Table 12.6). 
• The bits in PIO Effect Select Control Register 1 control whether the 

PIOs function as a special effect pin (e.g., Laser Printer, Serial Port, 
etc.) or as a general purpose PIO pin (see Table 12. 7). 

Lock ('Lock') Field: 

Value Action 

'l' Lock the Register from future writes. 

·o· No action (default). 

Table 12.6 Lock ('Lock') Field Encoding. 
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Effect Select ('EffectSel') Field: 

Value Action 

'I' PIO pin is a special effect pin (default). 

·o· PIO pin is a general purpose pin. 

Table 12. 7 Effect Select ('EffectSel') Field Encoding. 
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Integrated Device Technology, Inc. 

Peripheral Expansion 
Interrupt Controller 

Introduction 

Chapter 13 

The IDT R36100 RISController integrates bus controllers and periph­
erals around the R30xx family CPU core. Many of the on-chip peripherals 
use and produce interrupts. Thus the R36 l 00 includes an Expansion 
Interrupt Controller. as described in this chapter. 

The Expansion Interrupt Controller, see Figure 13.1, works in conjunc­
tion with the CPO Status and Cause Registers. The Expansion Interrupt 
Controller steers the 20+ peripheral interrupts into one of the six CPO 
interrupt lines. In addition, since the OMA Controller can also use inter­
rupts, each channel can select an interrupt from one of the peripherals. 

This chapter provides an overview of the Expansion Interrupt program­
ming interface and a complete description of the signal pins. Also 
included is an explanation on how expansion interrupts relate to typical 
internal and external systems. 

Features 
• Allows masking and status checking of all peripheral generated inter-

rupts. . 
• Allows each OMA Controller Channel to receive an interrupt. 

Block Diagrams 

From Peripheral 
Interrupts (Active Low) 

NANO Gates 

From CPU Data 
Bus 

D 
Expansion Interrupt 

Mask ~egister 

Wired-AND-Gate 
(OR Gate) 

lnt5 (to CPU) 

Figure 13.1 Expansion Interrupt Controller (to CPU Interrupt). 
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Peripheral Expansion Interrupt Controller 

(From Expansion 
Interrupt Controller 
Select Interrupt 
Register) 

To DMA Controller 
Channel Interrupt 

Inputs (3:0) 

Chapter 13 

Figure 13.2 Expansion Interrupt Controller: Steering Interrupts to DMA Requests. 

Overview 
The Peripheral Expansion Interrupt Controller provides a means of 

steering the various 20+ peripheral generated interrupts (Figure 13.2). 
These peripheral interrupts are combined into a single CPU interrupt, 
Int(5). Each of the peripheral interrupts are stored (active high) in the 
Pending Expansion Interrupt Register on every system clock. If the corre­
sponding mask bit in the Expansion Interrupt Mask Register is also set 
(active high). then the overall interrupt line Intr5l is set. At that point it is 
up to the CPU and ISR software to enable and handle Int(5). 

The Peripheral Expansion Interrupt Controller also provides a means of 
steering a number of the peripheral interrupts to the DMA Channels. 
Each channel can select from a list of 4 peripheral interrupts. Table 13.1 
provides an address map and description of the Expansion Interrupt 
Controller Register. 

Pin Descriptions 

Exception Signals 

ExcSintC2:0l, 
Exclnt(4:3) Input 

Processor Exception Synchronized Interrupt: These signals are 
functionally the same as the Int(4:0) signals of the R3000A. The synchro­
nized interrupt inputs are internally synchronized by the R36100, and 
therefore may be generated by an asynchronous interrupt agent; the 
direct interrupts must be externally synchronized by the interrupt agent. 

ExcSBrCond(3:2) ·Input 
Exception Synchronized Branch Condition Input: These input ports to 

the processor can use the Branch on Co-Processor Condition instructions 
to test their polarity, The branch condition inputs are synchronized by the 
R36100; therefore, they may be driven by an asynchronous source. 
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Phys. Address Description 

OxFFFF _EBOO PendO 

OxFFFF _EB04 MaskO 

OxFFFF _EB 10 Pend 1 

OxFFFF _EB 14 Mask 1 

OxFFFF _EB86 DMA Select 

Table 13.1 Expansion Interrupt Controller Register Address Assignments 

Expansion Interrupt Mask Register 0 .. 1 
('ExplntMaskRego •. ;J.)'), 

and 

Expansion Interrupt Pending Register 0 .. 1 
('ExplntPendReg0 .. 1)'), 

15 14 13 12 11 10 9 8 7 6 5 

Interrupt Mask Bits 

16 

4 3 2 1 

Figure 13.3 Expansion Interrupt Mask Register ('ExplntMaskReg'). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

Pending Interrupt Bits 

16 

Figure 13.4 Expansion Interrupt Pending Register ('ExplntPendReg'). 

a 

a 

A write to the Interrupt Pending Register (Figure 13.4) resets the 
· register bit de-asserted low if the write data bit is a 1, or leaves the 

register bit with its present value if the write data bit is a 0. The pending 
interrupt register samples on every clock and holds an interrupt assertion 
until it is acknowledged by a write to the pending interrupt register. Note 
that the Expansion Interrupt Pending Register is different than the CPU 
CPO Pending Interrupt Field in that the Expansion Interrupt Pending 
Register has the added feature holding a pulsed interrupt until acknowl­
edged. The Expansion Interrupt Mask Register is shown in Figure 13.3. 

Additional programming instructions for the Expansion Interrupt Mask 
and Expansion interrupts Pending registers are located in Table 13.2, 
Table 13.3, Table 13.4, and Table 13.5. 

Reserved Low ('O') Field: 
Must be written to 'O' for future compatibility. Value when read is unde­

fined. 
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Mask Bits ('Mask') Field: 

Bit Description 

'4' Serialint 

'3' SeriaIRx_Req( 1) 

'2' SerialRx_Req(O) 

'l' SeriaITx_Req (1) 

'O' SerialTx_Req(O) 

Note: Default values for the Pending and Mask Registers are all 
·o·. 

Table 13.2 Expansion Interrupt Mask Register 1 and Expansion Interrupt Pending 
Register 1. Bit Assignments. 

Pending Bits ('Pend') Field: 

Bit Description 

15 Reserved 

14 CentReadint 

13 CentWriteint 

12 CentResetlnt 

11 LaserVideoBandint 

10 LaserFIFONotFull 

9 LaserVideoPageint 

8 LaserVideoLineint 

7 Timer'fC(2) 

6 Timer'fC(l) 

5 Timer'fC(O) 

4 Reserved 

3 DMADoneinterrupt3 

2 DMADoneinterrupt2 

I DMADoneinterruptl 

0 DMADoneinterruptO 

Note: Default values for the Mask and Pending Registers are all 
·o·. 

Table 13.3 Expansion Interrupt Mask Register 0 and Expansion Interrupt Pending 
Register 0 Bit Assignments. 

Value Description 

'I' Interrupt pending. 

·o· Interrupt not pending. 

Table 13.4 Pending Interrupt Field Encoding. 
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Sel 

3 

2 

1 

0 

Value Description 

'l' Interrupt enabled/allowed. 

·o· Interrupt disabled/ disallowed. 

Table 13.5 Interrupt Mask Field Encoding. 

Expansion Interrupt DMA Select Register ('ExplntDMASelReg') 

2 2 2 2 2 2 2 2 

Figure 13.5 Expansion Interrupt DMA Select Register ('ExplntDMASelReg'). 

Select Interrupt 'SellntO' Field: 
Figure 13.5 gives the fields for the Expansion Interrupt OMA Select 

Register. The Select Interrupt field does a l -in-4 select on the inputs to 
particular Interrupt Pending Register fields. The resulting input is passed 
to the Internal OMA Controllers. The input to the Interrupt Pending 
Register is used so that the OMA Controller does not need to acknowledge 
the Interrupt Pending Register to reset it, i.e., it ignores it. It is implied 
that the peripheral receiving or transmitting the data will de-assert its 
interrupt line when it receives a data strobe. 

Additional programming instructions for this register are located in 
Table 13.6 and Table 13. 7. 

Note: Some interrupts are intentionally duplicated in multiple chan­
nels so that the system programmer can choose the relative priority of 
the interrupts. 

IDMA(3) IDMA(2) IDMA(l) IDMA(O) 

CentWritelnt CentReadlnt SerialTxReq(O) LaserFIFONotFull 

SerialRx_Req(l) SerialTx_Req( 1) SerialRx_Req(O) SerialTx_Req(O) 

TimerTc(2) CentWriteint TimerTC(l) TimerTC(O) 

Exclnt(3) Exclnt(2) Exclnt(l) Exclnt(O) 

Table 13.6 DMA Channel versus Interrupt De-Multiplexer. 

Value Action 

'15'-'4' Reserved. 

'3' Select Interrupt 3. 

'2' Select Interrupt 2. 

'l' Select Interrupt 1. I 

·o· Select Interrupt 0. 

Table 13. 7 Select Interrupt ('Sellnt()') Field Encoding. 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. The on-chip peripherals include 
Timers as described in this chapter. 

This chapter will provide an overview of the Timer programming inter­
face, a complete description of the signal pins and their waveforms, and 
discuss how the timers relate to typical internal and external systems. A 
block diagram of the R36 l 00 Timers is located in Figure 14.1. 

Features 
• 3 16-bit Timer Channels with global 16-bit prescaler 
• 3 TC I Gate pins 
• Each Timer has: 

- 16-bit count register with selectable 16-bit frequency divider/pres­
caler of pipeline clock input 

- 16-bit compare register 
- TC control bit allowing auto reset vs. compare reg write ack for 

interrupts 
- Gate option control bit (gate option allows PWM counting or time 

stamping) 
• Default Timer use is for a Real Time Clock/Timer. 
• Timers have bus timeout control bit 

- Reset on bus start, gate on bus cycles 
• TimerO has 16-bit PWM low time compare register 

- Square Wave Generator 

Block Diagram 

16-bit 
Counter 

16-bit PWM Comparator O 

16-bit Counter 2 
LK 

16-blt Comparator 2 

Figure 14.1 Block Diagram of the R36100 Timers. 

14 - 1 



Timers Chapter 14 

Overview 
The R36 l 00 contains 3 timers. Each timer consists of a 16-bit count 

register as well as a 16-bit compare register. The count register resets to 
0 and counts upward until it equals the compare register. When the 
count register equals the compare register, the TC output is asserted aild 
the count register is reset back to 0. 

In order to expand the amount of time that the timers can handle, the 
timers use a common 16-bit prescaler counter. Each timer can be 
programmed to select a power-of-2 divisor of the prescaler as its funda­
mental base frequency for clock ticks. The prescaler counter itself is 
based off of the System Clock, SysClk. 

Using the default mode, each timer can be used as a real-time counter. 
Special effects include the following: 

• Counter 
• Real-time interrupt-based timer 
• Bus timeout timer 
• Gated clock external event counter 
In addition to the above effects, timer channel 0 also has a PWM (Pulse 

Width Modulation, i.e., controllable duty cycle) compare register which 
controls the number of counter ticks that the timer output, TC, remains 
asserted low, allowing for use as a PWM generator. 

Pin Descriptions 

Timer Peripheral Signals 

TCC2:0), 

Tim~ate(2:0) 

Input/Output 

G•te: Active low input mode where the corresponding Timer() can 
increme~ its count whenever Gate() is asserted low. The Timer() stops 
counting ~henever Gate() is high. Typically, the Timer() prescaler is set to 
the divide~~y-1 mode so that each Gated clock corresponds to a Timer 
tick. Applications include Time Stamping, Pulse Width Measurement, 
·and Timer expansion. 

Terminal Count: Active low output mode is where the corresponding 
Timer() asserts TC low whenever its Count Register equals its Compare 
Register. There is a one clock delay from Count equalling Compare until 
TC is seen on the external pin due to internal synchronization. Normally 
TC asserts low then immediately de-asserts back high after 1 Timer clock 
cycle [tbd. May be based on "tick"]. If the 'AckOnWrCompare' bit option 
in the Timer Control Register is asserted, then TC de-asserts back high 
only when the Timer Compare Register is written. In this mode, the 
Timer can be used to generate an interrupt, and then the interrupt 

. handler can acknowledge the interrupt. Timer 0 has a Pulse Width 
Modulation (PWM) Compare Register that can be programmed to de­
assert TC back high· after a user programmed number of clock cycles. 
Applications include using the Timer to strobe external events, generating 
Real-time interrupts, Timer Expansion, and PWM control. 
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Register Descriptions 
Table 14.1 provides a Timer Register Physical Address Map. Note that 

Big Endian software must offset these addresses by b'lO (Ox2). 

Address Description 

Timer Prescaler Count Register 
OxFFFF_E900 Reserved (must not read or write, used for internal 
OxFFFF_E904 PWMO ten low count.) 

OxFFFF_E910 Timer Count Register 0 
OxFFFF_E914 Timer Compare Register 0 
OxFFFF_E918 Timer PWM Register 0 
OxFFFF_E91C Timer Control Register 0 

OxFFFF_E920 Timer Count Register 1 
OxFFFF_E924 Timer Compare Register 1 
OxFFFF_E92C Timer Control Register 1 

OxFFFF_E930 Timer Count Register 2 
OxFFFF_E934 Timer Compare Register 2 
OxFFFF_E93C Timer Control Register 2 

Table 14.1 Timer Register Physical Address Map. 

Timer Prescaler Count Register 
('TimerPrescalerCountReg') 

15 14 13 12 11 10 9 8 7 

Count 

16 

6 5 4 3 2 1 

Figure 14.2 Timer Prescaler Count Register ('TimerPrescalerCountReg'). 

0 

The prescaler counter starts at reset, and continuously counts in an 
upward direction, and wraps around on overflow. The reset default value 
is OxOOOO. The prescaler counter uses the System Clock, SysClk, as its 
fundamental base clock frequency. The Timer Prescaler Count Register is 
illustrated in Figure 14.2. 

Timer Count Register 0 .. 2 
('TimerCountReg'0 .. 2) 

15 14 13 12 11 10 

I 
9 8 7 6 5 4 3 

Count 

16 

Figure 14.3 Timer Count Register ('TimerCountReg'). 

2 1 0 

I 

The Count Register, shown in Figure 14.3, is a 16-bit register that 
contains the present count value. The Count Register increments on 
every prescaled clock tick. The default value at reset for the Count 
Register is OxOOOO. 

The Count Register does not count if PIOlslnputGate is enabled via the 
Timer Control Register and the input gate signal, Gate is high. The Count 
Register is 16-bit Readable and Writable if LockCountAndCompare 
control bit is not active. The Count Register ignores the Gate input if the 
Gate input control bit is not turned on. 
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Timer Compare Register 0 .. 2 
('TimerCompareReg'0 .. 2) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 
Compare 

16 
Figure 14.4 Timer Compare Register ('TimerCompareReg'). 

1 0 

The Compare Register, illustrated in Figure 14.4, is a 16-bit register 
containing the value that will reset the counter when the Count Register 
is equal to it. The default value at reset for the Compare Register is 
OxFFFF. This register is 16-bit readable and writable if the 'Lock­
CountAndCompare' control bit is not active. If written and 'WriteCompar­
eAck' Timer Control Register bit is active, then it brings TC back to 
inactive high. 

Timer Pulse Width Modulation Register 0 
('TimerPWMRegO') 

15 14 13 12 11 10 9 8 7 6 
PWM Compare 

16 

5 4 3 2 1 

Figure 14.5 Timer Pulse Width Modulation Register ('TimerPWMReg'). 

0 

The Timer Pulse Width Modulation Register, illustrated in Figure 14.5, 
has al6-bit value which brings PWM TC output back high 'N' prescaled 
clocks after TC goes low. Reset default value is OxOOOO. 

By programming various values for the compare and the PWM compare 
registers, the duty cycle of the TC output can be varied. For instance, by 
using a compare value equal to a PWM-1 value, the duty cycle will be 50/ 
50. For the TC output to always be high, the TC PIO pin should be 
temporarily programmed as a general purpose output with a value of 'l'. 
Additional programming information for this register is located in Table 
14.2. 

Value Action 

0 high after 1 clock 

1 high after 2 clocks 

compare high for 1 clock 

>compare always low 

Table 14.2 Time~ Pulse Width Modulation Register ('TimerPWMReg') Bit Fields. 

Timer Control Register 0 .• 2 
('TimerControlReg'0~.2) 

15 14 13 12 11 10 9 
Lock Lock WrCm Bus Timer 

p TC Gate Time Enable All cc Out 

1 1 1 1 1 1 1 

8 7 6 5 4 3 2 1 

Rsvd PreScaleSelect 

5 4 

Figure 14.6 Timer Control Register ('TimerControlReg'J. 
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Figure 14.6 illustrates the Timer Control Register. Additional program­
ming information is located in Table 14.3, Table 14.4, Table 14.5, Table 
14.6, Table 14. 7, Table 14.8, Table 14.9, Table 14.10, and Table 14.11. 

Bit Description 

15 Lock 

14 LockCountAndCompare 

13 AutoAck vs WriteCompareAck 

12 PIO is Output TC 

11 PIO is Input Gate 

10 BusTimeout 

9 Timer Enable 

8:4 Reserved. Must be writen as 'O' 

3:0 Prescale 1 of 16 Select 

Table 14.3 Timer Control Register ('TimerControlReg') Bit Assignments. 

Lock ('Lock') Field: 

Value AC ti on 

'l' Control locked from future writes. 

·o· No action (default). 

Table 14.4 Lock ('Lock') Field Encoding. 

Lock Count and Compare ('LockCC') Field: 

Value Action 

'l' Count and Compare Registers locked from future 
writes. 

·o· No action (default). 

Table 14.5 Lock Count and Compare ('LockCC') Field Encoding. 

Write Compare Ack ('Ack') Field: 

Value Action 

WriteCompareAck requires a write to the compare 
'l' register to set TC back high. 

·o· TC back high 1 clock after TC asserts low. (default) 

Table 14.6 Write Compare Ack ('Ack') Field Encoding. 
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PIO is Output TC ('TC') Field: 
The PIO is Output TC field must be identically programmed to the 

actual PIO pin. 

Value Action 

If PIO pin is programmed elsewhere as an output, then 
'l' TC is driven out of that PIO output. 

'O" Disable external TC. (default) 

Table 14. 7 PIO is Output TC ('TC') Field Encoding. 

PIO is Input Gate ('Gate') Field: 
The PIO is Input Gate field must be programmed identically to the 

actual PIO pin. 

Value Action 

'l' If PIO pin is programmed elsewhere as an input, then 
TC is driven in from that PIO input. 

·o· Does not enable external TC. (default) 

Table 14.8 PIO is Input Gate ('Gate') Field Encoding. 

BusTimeout ('BTO') Field: 

Value Action 

'l' Enable Bus Timeout feature. Reset counter to 0 on the 
beginning of each external bus cycle. 

·o· Disable use Bus Timeout feature, (default) 

Table 14.9 BusTimeout ('BTO') Field Encoding. 

Timer Enable ('TimerEn') Field: 
This field enables the timer to count. 

Value Action 

'l' Stop 

'O' Timer Enabled (default) 

Table 14.10 Timer Enable ('TimerEn') Field Encoding 

Prescaler Select ('PSel') Field: 
Note that changing the Prescaler Select can take up to 2*16 clocks to 

take effect due to internal synchronization. 

Value Prescaler Divide-By Frequency 

'F' div 2**15 (divide by 32768) 

... ... 
'2' div 2**2 (divide by 4) 

'l' div 2**1 (divide by 2) 

·o· div 2**0 (divide by 1) (default) 

Table 14.11 Prescaler Select ('PSel') Field Encoding. 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36100 RISController integrates bus controllers and periph­

erals around the R30xx family CPU core. The R36 l 00 contains two serial 
port channels. One of the many on-chip peripherals is the Serial Port 
interface (see Figure 15.1), as described in this chapter. 

Chapter 15 provides an overview of the Serial Port register interface, a 
description of the signal pins as well as various aspects of the signal 
timing. Figure 15.1 is a serial channel interface block diagram. 

Features 
• 2 serial channels 
• Asynchronous mode features such as: 

- Bits per char, stop bit, parity, and error detection options 
- Modem handshaking signals 

• Synchronous byte-mode features such as: 
- Monosync/Bisync/SDLC/HDLC packet frame options 
- Sync, flag, address field, abort, CRC generation and detection 
- 10 deep Frame Status FIFO 

• 3 deep Receiver Data FIFO 
• 2 deep Transmitter Data FIFO 
• Data Encoder /Decoder (ENDEC) with NRZ, NRZI, FMO, and FM 1 

options 
• Phase lock loop (PLL) for synchronous clock regeneration 
• Baud Rate Clock Generator 
• High Speed data rates (up to 1/4 speed of the CPU SysClk) 

Block Diagram 

BIU Controller Data BIU Controller Address and Control 

Register 
Bank 

SysClk 

Address 
Decoder 

3 Deep 
Receive 
FIFO 

Phase Lock 
Loop/ 
Baud Rate 
Generator 

10 Deep 
Receive 
Frame 
Status FIFO 

Encoder/ 
Decoder 
Serializer 

(2 Channels) 

2 Deep 
Transmit 
FIFO 

Control 
Signal 
State 
Machine 

serTa!Pnmarycikfnff:O) SerialRxData(1 :0) 9ei10.ICTS 
SerialSecondaryClk(1 :0) SerialTxData(1 :0) SerjalRTS 

SerialDCD 
SerjalDTR 
Seria1Sync(1 :0) 

Figure 15.1 Serial Channel Interface Block Diagram. 
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Overview 
The R36 l 00 contains two independent serial port channels. Either port 

can be used in asynchronous mode to support RS-232 protocols or in 
synchronous mode to support Monosync, Bisync, SDLC, and HDLC 
protocols. 

In the asynchronous mode, the Serial Ports are capable of full-duplex 
communication either via CPU polling or interrupt service routines. In 
addition, the internal DMA Controller may optionally be used to automate 
message buffer transfers from main memory to/from the Serial Ports. 
Various asynchronous features include: 

• character length, parity, and stop bit options 
• Input clocking options include: 

- using an external oscillator directly 
- using an external oscillator or using the internal CPU . provided 

SysClk via the internal Baud Rate Clock Generator of each channel 
In the typical asynchronous% 16 clock sampling mode, the serial ports 

can support up to lMbaud (with 16MHz CPU, 2Mbaud with 33MHz CPU). 
On errors, such as parity or framing errors, the serial ports can notify the 
CPU either via interrupt or via CPU polling. Modem handshaking signals 
including CTS/RTS, DTR, and DCD can optionally be controlled. A 3 deep 
receive data FIFO and a 2 deep transmit data FIFO are provided to buffer 
data. 

In the typical synchronous% 16 FM PLL clock sampling mode, the serial 
ports can support 300-lMbaud (with 16MHz CPU, 2Mbaud with 33MHz 
CPU). Non-PLL modes can support up to 4Mbaud with the 16MHz CPU 
(8.25Mbaud with the 33MHz CPU). A 3 deep receive data FIFO and a 2 
deep transmit data FIFO are provided to buffer data. 

While in the synchronous mode, the Serial Ports are capable of full­
duplex communication either via CPU polling, interrupt service routines. 
or semi-autonomously via the internal DMA Controller. Various features 
include: 

• Sync, 0-bit, CRC, Flag, and abort character generation/insertion and 
detection/ checking/ deletion 

• NRZ, NRZI. and FM encoder/decoder (ENDEC) 
• 10-deep Frame Status FIFO 
Input clocking options for each channel include: use of an external 

oscillator, use of the on-chip PLL, and use of the channel's internal Baud 
Rate Clock Generator as clocked via the CPU's SysClk or the external 
oscillator. 

DMA Connections 
The Serial Port Controller is connected internally to the DMA controller 

in full duplex mode. For example, while in the full duplex mode, DMA 
channel 0 is connected by the programmer to the Serial Channel 0 trans­
mitter, DMA channel 2 to the serial channel 0 receiver, DMA channel 1 to 
the serial channel 1 transmitter, and DMA channel 3 to the serial channel 
1 receiver. 

By assigning a separate DMA Channel to each data stream, the 
internal DMA Controller can manage the details of moving the individual 
datum to or from the Serial Ports from or to main memory data stream 
buffers while the CPU can manage and maintain the higher level message 
or frame structures. 
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DMA Data Movement 
The OMA controller can access the Serial Port interface in the same 

manner as the CPU and in the same number of clockcycles. 
The Serial Port is connected to Interna1Data(7:0) of the internal data 

bus, regardless of the endianess of the system. It only supports byte data 
transfers (sb or lb instructions) and will ignore the other 3 data lanes. The 
port width can be programmed as 8, 16, or 32-bits; however, (mini-) burst 
transfers are not supported, so the 32-bit port width is recommended. 
When the CPU is in the Big Endian byte ordering mode, the OMA 
controller must be programmed to appropriately funnel the data to and 
from the Serial Port to the Internal0ata(7:0) byte lane by using an 
address offset of 'b 11. 

Serial Data Speed Calculations 
The analysis presented here estimates the maximum data rate that this 

device can sustain using OMA techniques. The calculations are based on 
the following assumptions: 

• OMA access to the Serial Port (read or write)= 5 SysClk's. 
• OMA access to the DRAM system (read or write) = 3 SysClk's (actual 

number is system dependent). 
• OMA bus arbitration= 4 SysClk's (actual average is system depen­

dent). 
• OMA bus release to the CPU= 1 SysClk (actual is 0-2). 

It is further assumed that every OMA operation will consist of: 
• OMA access to Serial Port + OMA access to DRAM + OMA bus release 

to CPU = 5 + 3 + 1 = 9 SysClk's. 
• The OMA bus arbitration is added only once in the calculation, 

because it should usually occur in parallel with other operations and 
should not constitute a major portion of the transfer. 

• OMA should support a minimum of 2.048 Mbit/sec full duplex 
synchronous transfer on every channel to support maximum Serial 
Port rates: 
- Data rate (bit)= 2.048Mbit/sec 
- Data rate (byte)= (2.048Mbit/sec) I 8 = 0.256MByte/sec 
- Time per byte= 1 I (0.256MBytes/sec) = 3.90625µsec/byte 
- Number of clock cycles (for 33MHz) = 3.90625µsec I 30nsec = 130 

SysClk cycles 
For a full duplex operation, 2 bytes need to be transferred between the 

Serial port and the DRAM per channel (transmit and receive) during this 
time frame. (The actual requirement is slightly more lenient in that 6 
bytes of receive data must occur every 3 of these time frames). For 2 full 
duplex channels, the actual number of bytes to be transferred is then 4 
bytes. 

• Number of clock for byte transfer =(9 SysClk)* 4 = 36 SysClk's 
• The total number (including OMA bus arbitration) = 36 + 4 = 40 

SysClk's 
• The bus utilization of the Serial Port OMA operation= 40/ 130 = 31 %. 
This number is worst case estimate; however, it doesn't include the 

clock cycles required to set up the OMA controller registers for the CPU to 
respond to any Serial Port interrupt. 
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Compatibility Issues 
Although the R36 l 00 Serial Ports are similar in data link layer func­

tionality and contain many of the same resources as other serial port 
devices, the R36100 Serial Ports are not specifically designed to be 100% 
functionally compatible with any other specific serial port device. Areas of 
difference include pin AC/DC electrical and timing characteristics, 
register assignments, bit assignments, and detailed functional specifica­
tion. 

In many communication situations, both software and hardware use 
an application to transport data link/physical layer approach. The middle 
level/layer protocols, such as LocalTalk, can easily accommodate the 
R36 l 00 Serial Ports, with the addition of an assembly /low level C-code 
device driver specifically written/ported for the R36100. 
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Pin Definitions 

Serial Port Signals 
Serial port pins that are input only or output only are multiplexed with 

PIO registers such that they can be reprogrammed to be general purpose 
inputs or outputs. The exceptions are SerialRxData(O), SerialTxData(O) 
and SerialPrimaryClk(O) which are always dedicated to their serial port 
function. 

SerialRxData(l:O) Input 
Serial Port Receiver Data: The Serial Port receives the serial input 

data stream via this active high input. For typical RS232-C serial connec­
tions, an external transceiver inverts and level shifts this signal from + / -
12V. 

SerialTxData(l:O) Output 
Serial Port Transmitter Data: The Serial Port sends the serial trans­

mitter output data stream via this active high output. For typical RS232-
C serial connections, an external transceiver inverts and level shifts this 
signal to +I - l 2V. 

SerialPrimaryClkin(l:O) Input 
Serial Port Primary Receiver/Transmitter Clock Input Negated: 

Optionally provides the receiver clock, the transmitter clock; or the base 
clock for the Baud Rate Clock Generator or the PLL clock regenerator. The 
functionality of the pin is selected by programming the internal registers 
of the serial port. In addition, the SerialPrimaryClkin() pins can be 
programmed to be substituted with SysClk when used as the baud-rate 
clock generator input clock. 

If the receiver clock is provided by SerialPrimaryClkin(), the serial data 
stream on the SerialRxData() will be sampled on the de-asserting edge of 
the receiver clock in NRZ and NRZI modes. In FM modes, on the other 
hand, the input serial data stream on SerialRxData() will be sampled on 
both the asserting and de-asserting clock edges. 

SerialSecondaryClk( 1 :O) Input/ Output 
Serial Port Secondary Receiver/Transmitter Clock Negated Input: 

When this pin is programmed to be an active low input, it can optionally 
provide the receiver clock or the transmitter clock (bypassing the Baud 
Rate Clock Generator). If the transmitter clock is provided through Serial­
SecondaryClk(), the serial data stream on the SerialTxData() will be 
sampled on the de-asserting edge of the transmitter clock in NRZ and 
NRZI modes. In FM modes, on the other hand, the output serial data 
stream on the SerialTxData() will be sampled on both the asserting and 
de-asserting clock edges. 

Serial Port Secondary Receiver/Transceiver Clock Negated Output: 
When this pin is programmed to be an active low output, it can provide 
. the transmitter clock output, Baud Rate Clock Generator input, or the 
PLL clock regenerator input. 
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SerialSync( 1:0) Input/Output 

Serial Port Synchronization Negated: 
Asynchronous Mode Input: active low input which has no effect other 

than to change the state of the Sync status register bit. This input can be 
·used as the Ring Indicator modem handshake signal. 

External Synchronization Mode Input: Active low input which must 
be asserted for two clock cycles after the sync character is received in 
order to initiate the beginning of a frame. 

Internal Synchronization Mode Output: Active low output asserts 
whenever a sync/flag character is recognized. 

SerialCTS(l:O) Input 
Serial Port Clear to Send Negated: Active low input indicating that a 

communications agent (such as modem) is ready to send data. When 
programmed in the Auto-Handshaking mode, the Serial Port transmitter 
can be controlled (enabled) by this input. 

SerialRTS(l:O) Output 
Serial Port Request to Send Negated: Active low output indicating 

that the Serial Port has data to transmit to a communications agent (such 
as a modem). When programmed to the asynchronous Auto-Handshaking 
mode, SerialRTS asserts whenever the transmitter is not empty. 

SerialDCD(l:O) Input 
Serial Port Data Carrier Detect Negated: Active low input indicating 

that a communications agent is receiving valid data from the communica­
tion line. When the channel is programmed to be in the Auto-Hand­
shaking mode, the Serial Port receiver can be controlled (enabled) by this 
input. · 

SerialDTR(l:O) Output 
Serial Port Data Terminal Ready Negated: This active low output can 

be used as a general purpose output pin by writing to the DTR status 
register bit. 
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Register Definitions 
The R36100 Serial Ports use a concept called "MetaRegisters." The 

MetaRegisters provide a port like interface into the actual internal control 
registers of each channel. In general, the MetaRegister must first be 
written to with a Pointer Value indicating the internal register number 
that is to be accessed next (see Table 15. 2,Table 15. 3, Table 15. 4, and 
Table 15. 5 for more detailed programming information). Next, the read or 
write, from the channel's MetaRegister, will access that channel's internal 
register; therefore, internal registers are accessed with the following 
paired command sequence: 

1. internal register read: write followed by read to the MetaRegister 
2. internal write: write followed by write to the MetaRegister 
There are a few internal registers directly accessed by the CPU to speed 

up their access--such as the receive data or transmit data FIFOs--which 
can be accessed by reading or writing the Data Register, respectively. 

The MetaRegisters use byte addressing; thus, big endian systems must 
use an offset of b' 11 (Ox3). Note that because of the pointer before read/ 
write command register hardware construct, it· is necessary for software 
to guarantee that no interrupts that may context switch to a Serial Port 
Command register related ISR occur between a register pointer/ command 
pair. In any case, reads and writes always use Interna1Data(7:0) and 
ignore Intema1Data(31:8). 

Phys. Address Description 

OxFFFF _E800 Serial Port MetaRegister for Channel 1 

OxFFFF_E804 Serial Port Data Register for Channel 1 

OxFFFF_E808 Serial Port MetaRegister for Channel 0 

OxFFFF _EBOC Serial Port Data Register for Channel 0 

OxFFFF _E8 l 0 (read) Serial Port Reset Register for Both Channels 

Table 15. 1 List of Serial Port MetaRegisters. 

Pointer Address Description 

OxOO LSB Status Register for each Channel 

OxOl MSB Status Register for each Channel 

Ox02 Reserved when reading Channel 0, Interrupt Vector 

whe.n reading Channel 1 

Ox03 Interrupt Pending Register for each Channel 

Ox08 Receiver Data FIFO for each Channel 

OxOA Clock Status Register for each Channel 

OxOC LSB Baud Rate Generator Compare Register for each 

Channel 

OxOD MSB Baud Rate Generator Compare Register for each 

Channel 

OxOF MSB Interrupt Enable Register for each Channel 

Table 15. 2 Serial Port Internal Read Registers for each Channel (as pointed to by the 
MetaRegister). 
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Pointer Address 

OxOO 

OxOl 

Ox02 

Ox03 

Ox04 

Ox05 

Ox06 

Ox07 

Ox08 

Ox09 

OxOA 

OxOB 

OxOC 

OxOD 

OxOB 

OxOF 

Chapter 15 

Description 

Reset Register for each Channel 

LSB Interrupt Enable Register 0 for each Channel 

Reserved Low ('O') when writing Channel 0, Interrupt Vector when writing 
Channel I 

Receiver Control Register for each Channel 

LSB Mode Register for each Channel 

Transmitter Control Register for each Channel 

LSB Sync Char Register for each Channel 

MSB Sync Char Register for each Channel 

Transmitter Data FIFO Register for each Channel 

Reset Register for each Channel 

MSB Mode Register for each Channel 

Clock Control Register for each Channel 

LSB Baud Rate Generator Compare Register for each Channel 

MSB Baud Rate Generator Compare Register for each Channel 

PLL Control Register for each Channel 

MSB Interrupt Enable Register for each Channel 

Table 15. 3 Serial Port Internal Write Registers for each Channel (as pointed to by the 
Meta Register). 

Pointer Address Description 

Ox06 LSB Frame Status Register for each Channel (read) 

Ox07 MSB Frame Status Register for each Channel (read) 

Table 15. 4 Serial Port Internal Read Registers for each Channel as pointed to by the 
MetaPtrRegister OxF. 

Pointer Address Description 

Ox07 Meta Meta Control Register for each Channel (write) 

Table 15. 5 Serial Port Internal Write Register for each Channel as pointed to by the 
MetaPtrRegister OxOF. 

Data Register Usage 
On a read, the receive data register is read and the receive data FIFO 

entry is removed. On a write, the transmit data· register is written. The 
transmit FIFO must be non-full. 

MetaRegister Usage 
This register is used as a paired access. The first access is always a 

write which is used to write a 3-bit pointer that points to the internal 
register that is to be read or written. The next read or write is the actual 
command read/write, after which the pointer automatically returns to 0. 
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Interrupt service routines should take care to either not use the serial 
port directly, or, if it does, to read the pointer value first and return it to 
the same pointer value when completed. Typically, an ISR uses a sema­
phore to note if a character needs to be read/written and then passes this 
semaphore to a higher level routine to do the actual Serial Port data read/ 
write. 

MetaMetaRegister Usage 
By enabling the Frame Status FIFO via bit 2 of the Interrupt Enable 

Write Register, write register 7 accesses a different function than its 
MetaFunction as MSB Sync Char Register to a new function, called Meta 
Meta Register. In addition read registers 7:6 become accessible as the 
MSB and LSB Frame Status FIFO read registers. 

Figure 15.2 gives the fields for the Serial LSB Status Register, with bit 
assignments and field encodings listed in Table 15. 6 and Table 15. 7. 
The Serial MSB register fields are shown in Figure 15.3, with field encod­
ings listed in Table 15. 8 and Table 15. 9. And the Serial Interrupt Vector 
is shown in Figure 15.4, with bit assignments and field encodings for this 
register listed in Table 15. 10 and Table 15. 11 on page 11. 

Serial LSB Status Register ('SerialLSBStatusReg(l:O)') (Read Pointer 
Ox:OO) 

7 6 5 4 3 2 1 0 
Break l Underrun l CTSN l Sync l OCON 1 TxFIFO l Count l Not~~pty J Empty 

1 1 1 1 1 1 1 1 

Figure 15.2 Serial LSD Status Register ('SerialLSBStatusReg'). 

Bit Assignment 

7 Break (asynchronous mode) or Abort (SDLC Mode) ('Break') 

6 Transmitter Underrun ('Underrun') 

5 CTS Status ('CTSN') 

4 Sync Status ('Sync') 

3 DCD Status ('DCDN') 

2 Transmitter FIFO Empty Status ('TxFIFOEmpty') 

1 Count Rollover Status ('Count') 

0 Receiver FIFO Not Empty Status ('RxNotEmpty') 

Table 15. 6 Serial LSB Status Register ('SerialLSBStatusReg') Bit Assignments. 

LSB Status Bits 

Value Status 

'l' Status Condition is true 

'O' Status Condition is false 

Table 15. 7 LSB Status Bit Field Encoding. 
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Serial MSB Status Register ('SerialMSBStatusReg(l:O)') 
(Read Pointer Ox:Ol) 

7 6 5 4 3 2 1 
ValidSDLC FrameErr RxOverrun ParityErr Rsvd Rsvd Rsvd 

Frame 

1 1 1 1 1 1 1 

Figure 15.3 Serial MSB Status Register ('SerialMSBStatusReg') 

Bit Assignment 

7 SDLC Valid End of Frame Status ('ValidSDLCFrame') 

6 CRC/Frame Error Status ('FrameErr') 

5 Receiver Overrun Error Status ('RxOverrun') 

4 Parity Error Status ('ParityErr') 

3:1 Reserved ('Rsvd') 

0 
TxDone 

1 

0 Asynchronous Transmitter Done with Char Status ('TxDone') 

Table 15. 8 Serial MSB Status Register ('SerialMSBStatusReg') Field Encoding. 

Value Status 

'l' Status Condition is true 

'O' Status Condition is false 

Table 15. 9 MSB Status Bit Field Encoding. 

Serial Interrupt Vector ('SeriallntVector(l)') (Pointer Ox02) 

7 6 5 4 3 2 1 0 
lntVector 

5 3 

Figure 15.4 Serial Interrupt Vector ('SeriallntVector(l)'). 

Bit Assignment 

7:3 Reserved Low ('O'). 

2:0 · Interrupt Vector ('lntVector') 

Table 15. 10 Serial Interrupt Vector Register ('SerialRxControlReg') Bit Assignments. 
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Value Action 

'7' Exception Channel 0 

'6' Receiver FIFO Not Empty Channel 0 

'5' External Status Channel 0 

'4' Transmitter FIFO Empty Channel 0 

'3' Exception Channel 0 

'2' Receiver FIFO Not Empty Channel 0 

'l' External Status Channel 0 

'O' Transmitter FIFO Empty Channel 0 

Table 15. 11 Interrupt Vector ('lntVector') Field Encoding. 
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Serial LSB Sync Character/ Address Register 
('SerialLSBSyncCharReg( 1 :O)') 
(Pointer Ox06), 

Serial MSB Sync Character/ Address Register 
('SerialMSBSyncCharReg( 1 :O)') 
(Pointer Ox07) 

11~~7~~6~~-5~-M-~_s_yn:_ch_ar_!_er~-2~~-1~~0___.ll 
Figure 15.5 Serial MSB Sync Character/Address Register ('SerialMSBSyncCharReg'). 

7 6 5 4 3 2 1 0 
LSB Sync Character 

8 

Figure 15.6 Serial LSB Sync Character/Address Register ('SerialLSBSyncCharReg'). 

For additional programming information, please see the Write Pointer 
description of the Serial Sync Character/ Address Register in Figure 15.5 
and Figure 15.6. 

Receiver Data FIFO Register 
('SerialDataFIFOReg(l:O)') (Read Pointer Ox08) 

l~I _1 __ a __ s ___ \a_1~1F_o3 ___ 2 __ 1 __ o~ll 
Figure 15. 7 Receiver Data FIFO Register ('SerialDataFIFOReg'). 

The SerialDataFIFOReg is also directly accessible by the CPU by 
reading address OxFFFF _E800 for Channel 0 or OxFFFF _E808 for 
Channel L This register is shown in Figure 15.7. 

Serial Clock Status Register 
('SerialClkStatusReg(l:O)') (Read Pointer OxOA) 

7 6 
FMClkMiss FMClkMiss2 

1 1 1 1 1 1 1 

Figure 15.8 Serial Clock Status Register ('SerialClkStatusReg'). 
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Bit Assignment 

7 FM Clock Missing ('FMClkMiss') 

6 1\vo FM Clocks Missing ('FMClkMiss2') 

5 Reserved Low ('O') 

4 Active Transmitter On Loop ('ActiveTxLoop') 

3:2 Reserved Low ('O') 

I On Loop Status ('On Loop') 

0 Reserved Low ('O') 

Table 15. 12 Serial Clock Status Register ('SerialClkStatusReg') Bit Assignments. 

Value Status 

'I' Status Condition is true 

'O' Status Condition is false 

Table 15. 13 Clock Status Bit Field Encoding. 

The Serial Clock Status register fields are shown in Figure 15.8, with 
bit assignments and field encodings for this register listed in Table 15. 12 
and Table 15. 13. 

Serial LSB Baud Rate Generator Compare Register 
('SerialMSBBaudRateGenCompareReg(l:O)' (Pointer Ox:OC) 

Serial LSB Baud Rate Generator Compare Register 
('SerialLSBBaudRateGenCompareReg( 1:0)') (Pointer Ox:OD) 

7 6 5 4 3 2 1 
MSB Baud Rate Generator Compare 

8 

0 

Figure 15.9 Serial MSB Baud Rate Clock Generator Compare Register ('SerialMSBBaud­
CompareReg'). 

7 6 5 4 3 2 1 0 
LSB Baud Rate Generator Compare 

8 

Figure 15.10 Serial LSB Baud Rate Clock Generator Compare Register ('SerialLSBBaud­
CompareReg'). 

For additional programming information, please see the Write Pointer 
description for the Serial Baud Rate Clock Generator Compare Register in 
Figure 15.9 and Figure 15.10. 
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Serial MSB Interrupt Enable Register 
('SerlallntEnReg(l:O)') (Pointer OxOF), 
Meta Pointer Register 
('MetaPointerReg(l:O)') (Pointer OxOF) 

7 6 5 4 3 2 1 0 
BreaklntEn Underrun 

lntEn 
CTSlntN SynclntEn DCDNlntEn FrameFIFO ZerolntEn MetaMeta 

En , RegEn 

1 1 1 . 1 1 1 1 1 

Figure 15.11 Serial MSB Interrupt Enable Register ('SeriallntEnReg'). 

Bit Assignment 

'7' Break or Abort Interrupt Enable ('BreakintEn') 

'6' Transmitter Underrun or EOM Condition Interrupt Enable 

('UnderrunintEn') 

'5' CTS Interrupt Enable ('CTSintEn') 

'4' Sync Char Interrupt Enable ('SynclntEn') 

'3' DCD Interrupt Enable ('DCDintEn') 

'2' Frame Status FIFO Enable (MetaMetaRegister B) Enable 

('FrameFIFOEn') 

'l' Baud Rate Clock Generator Zero Condition Interrupt Enable 

('ZerointEn') 

'O' MetaMeta Control Register Enable ('MetaMetaRegEn') 

Table 15. 14 Serial MSB Interrupt Enable Register ('SeriallntEnReg') Bit Assignments. 

For additional programming information, refer to the Write Pointer 
description for the Serial MSB Interrupt Enable Register in Figure 15.1 L 
Bit assignments and field encodings for this register are listed in Table 
15. 14. 

Serial Meta Register ('SerlalMetaRegister(l:O)') 
(Write Pointer OxOO) 

7 6 5 4 3 2 
ResetA ResetB I Pointer 

2 6 

1 

Figure 15.12 Serial Meta Register ('SerialMetaRegister'). 

0 

Pointers and Reset B Commands must be written on separate writes. 

Bit Assignment 

7:6 Reset A Command 

5:0 Reset B Command I Pointer 

Table 15. 15 Serial Meta Register ('SerialMetaRegister') Bit Assignments. 
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If the Reset Transmitter Underrun Condition has been given, then the 
CRC is inserted (or SDLC Abort/Flag if enabled) at the end of a trans­
mitter underrun. 

Value Action 

'3' Reset Transmitter Underrun Condition 

'2' Reset Transmitter CRC Checker 

'l' Reset Receiver CRC Generator 

·o· No Effect. 

Table 15. 16 Reset A Command ('ResetA') Field Encoding. 

Value Action 

'38' Reset Highest Priority Interrupt 

'30' Reset Exception Condition 

'28' Reset Transmitter Pending Interrupt 

'20' Enable Interrupt on Next Receiver Character 

'18' Send Abort 

'10' Reset External Status Interrupts 

Table 15. 17 Reset B Command ('ResetB') Field Encoding. 

Value Action 

'bOOl 111' Internal Register F 

'bOOlllO' Internal Register E 

... ... 
'bOOOOOO' Internal Register 0 

Table 15. 18 Pointer Value ('Pointer') Field Encoding. 

The Serial Meta Register is shown in Figure 15.12. Refer to Table 
15. 15, Table 15. 16, Table 15. 17, and Table 15. 18 for additional 
programming information. 

Serial LSB Interrupt Enable Register ('SerlallntEnReg(l:O)') 
(Write Pointer OxOl) 

7 6 5 4 
RxlntEn 

1 1 1 2 

3 2 
Parity 
lntEn 

1 

1 
TxlntEn 

1 

0 
ExtStatus 

lntEn 

1 

Figure 15.13 Serial LSB Interrupt Enable Register ('SerlallntEnReg'). 
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Bit Assignment 

7 Reserved High (' l ') 

6 Reserved High (' l ') 

5 Reserved High (' l ') 
I 

4:3 Receiver Interrupt Enable ('RxlntEn') 

2 Parity Interrupt Enable ('ParityintEn') 

1 Transmitter Interrupt Enable ('TxintEn') 

0 External Status Interrupt Enable ('ExtStatuslntEn') 

Table 15. 19 Serial LSB. Interrupt Enable Register ('SeriallntEnReg') Bit Assignments. 

Receiver Interrupt Enable Mode ('RxlntEn') 

Value Action 

'3' Enable Receiver Interrupt Only on Exception 

'2' Enable Receiver Interrupt on Any Character or Exception 

'l' Enable Receiver Interrupt only on First Character or 

Any Exception 

'O' Disable Receiver Interrupt 

Table 15. 20 Receiver Interrupt Enable Mode ('RxlntEn') Field Encoding. 

Parity Interrupt Enable Mode ('ParitylntEn') 

Value Action 

'l' Enable Parity Interrupt 

'O' Disable Parity Interrupt 

Table 15. 21 Parity Interrupt Enable ('ParityintEn') Field Encoding. 

Transmitter Interrupt Enable Mode ('TxlntEn') 

Value Action 

'l' Enable Transmitter Interrupt Mode 

'O' Disable Transmitter Interrupt Mode 

Table 15. 22 Transmitter Interrupt Enable Mode ('T:dntEn') Field Encoding. 

External Status Interrupt Enable ('ExtStatuslntEn') 

Value Action 

'l' Enable External Status Interrupts/Exceptions 

'O' Disable External Status Interrupts/Exceptions 

Table 15. 23 External Status Interrupt Enable ('ExtStatusintEn') Field Encoding. 
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For additional programming information on the Serial LSB Interrupt 
Enable Register, refer to Figure 15.13. The bit assignments and field 
encodings are listed in Table 15. 19, Table 15. 20, Table 15. 21, Table 
15. 22, and Table 15. 23. 

Serial Interrupt Vector Register ('SeriallntVectorReg(l:O)') 
(Pointer Ox02 for Channel 1 Only) 

7 6 5 4 3 2 1 
lntVector 

5 3 

Figure 15.14 Serial Interrupt Vector ('SeriallntVector(l)'). 

0 

Additional programming information for the Serial Interrupt Vector 
Register is located in Figure 15.14, Table 15. 24 and Table 15. 25. 

Bit 

7:3 

2:0 

Value 

'7' 

'6' 

'5' 

'4' 

'3' 

'2' 

'l' 

'O' 

Assignment 

Reserved Low ('O'). 

Interrupt Vector 

Table 15. 24 Serial Interrupt Vector Register ('SerialintVectorReg') 
Bit Assignments. 

Action 

Exception Channel 0 

Receiver FIFO Not Empty Channel 0 

External Status Channel 0 

Transmitter FIFO Empty Channel 0 

Exception Channel 0 

Receiver FIFO Not Empty Channel 0 

External Status Channel 0 

Transmitter FIFO Empty Channel 0 

Table 15. 25 Interrupt Vector Bit Encocllng. 

Serial Receiver Control Register ('SerialRxControlReg(l:O)') 
(Write Pointer Ox03) 

4 3 1 0 
SyncHunt CRCCheck AddrMatch MultiMask RxEn 

2 1 1 1 1 1 1 

Figure 15.15 Serial Receiver Control Register ('SerialRzControlReg'). 

Figure 15.15 gives the Serial Receiver Control Registers. Additional 
programming information is located in Table 15. 26, Table 15. 27, Table 
15. 28, Table 15; 29, Table 15. 30, Table 15. 31, Table 15. 32, and Table 
15. 33 on page 19. 
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Bit Assignment 

7:6 Receiver Bits per Character ('RxBitsPerChar') 

5 Auto-Handshaking ('AutoHandShake') 

4 Sync Char Hunt Mode ('SyncHunt') 

3 CRC Checking ('CRCCheck') 

2 Address Match Search ('AddrMatch') 

1 Address Multiple Match Mask ('MultiMask') 

0 Receiver Enable ('RxEn') 

Table 15. 26 Serial Receiver Control Register ('SerlalRxControlReg') Bit Assignments. 

Receiver Bits per Character ('RxBitsPerChar') 

Value Action 

'3' 8-bits per character 

'2' 6-bits per character 

'l' 7-bits per character 

'O' 5-bits per character 

Table 15. 27 Receiver Bits per Character ('RxBitsPerChar') Field Encoding. 

Auto-Handshaking ('AutoHandShake') 

This field controls whether handshaking is performed for the Modem 
signals (CTS, RTS, DCD). 

Value Action 

'l' Enable Auto-Handshaking for Modem Signals 

'O' Disable Auto-Handshaking for Modem Signals 

Table 15. 28 Auto-Handshaking ('AutoHandShake') Field Encoding. 

Sync Char Hunt Mode ('SyncHunt') 

Value Action 

'l' Enable Sync Char Hunt Mode 

'O' Disable Sync Char Hunt Mode 

Table 15. 29 Sync Char Hunt ('SyncHunt') Mode Field Encoding. 

CRC Checking ('CRCCheck') 
, Also see the Serial Transmitter Control Register CRC-16 field. 

Value Action 

'l' Enable CRC Checking on the Receiver 

'O' Disable CRC Checking on the Receiver 

Table 15. 30 CRC Checking ('CRCCheck') Field Encoding. 
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Address Match Search ('AddrMatch') 

Value Action 

'l' Enable Address Match Search 

.'Q' Disable Address Match Search 

Table 15. 31 Address Match Search ('AddrMatch') Field Encoding. 

Address Multiple Match Mask ('MultiMask') 
In non-SDLC synchronous modes: 

Value Action 

'l' Disable Sync Char Match Load (receive sync char as data) 

·o· Enable Sync Char Stripping 

In SDLC mode: 

Value Action 

'l' Address Multi Mask 

·o· Compare all Address bits 

Table 15. 32 Address Multiple Match Mask ('MultiMask') Field Encoding. 

Receiver Enable ('RxEn') 

Values Action 

'l' Enable Receiver 

'O' Disable Receiver 

Table 15. 33 Enable Receiver ('RxEn') Field Encoding. 

Serial LSB Mode Register ('SerialLSBModeReg(l:O)') 
(Write Pointer Ox:04) 

7 6 4 2 
ClkSample SyncCharMode Stop Bit 

2 2 2 

1 0 
ParityMode ParityEn 

1 1 

Figure 15.16 Serial LSB Mode Register ('SerialLSBModeReg'). 

The Serial LSB Mode Register fields are given in Figure 15.16. Addi­
tional programming information for· this register is located in Table 
15. 34, Table 15. 35, Table 15. 36, Table 15. 37, Table 15. 38, and Table 
15. 39. 
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Bit Assignment 

7:6 Clock Sampling Mode ('ClkSample') 

5:4 Sync Character Mode ('SyncCharMode') 

3:2 Stop Bit Mode ('StopBit') 

1 Parity Mode ('ParityMode') 

0 Parity Enable ('ParityEn') Field Encoding 

Table 15. 34 Serial LSB Mode Register ('SerlalLSBModeReg') Bit Assignments. 

Clock Sampling Mode ('ClkSample') 

Value Action 

'3' %64 Clock Mode 

'2' %32 Clock Mode 

'l' %16 Clock Mode (typical) 

'O' %1 Clock Mode 

Table 15. 35 Clock Sampling Mode ('ClkSample') Field Encoding. 

Sync Character Mode ('SyncCharMode') 

Value Action 

'3' External Sync 

'2' SDLC Flag 

'l' 16-bit Sync 

'O' 8-bit Sync 

Table 15. 36 Sync Character Mode ('SyncChar') Field Encoding. 

Stop Bit Mode ('StopBit') 

Value Action 

'3' 2 Stop Bits 

'2' 1.5 Stop Bits 

'l' 1 Stop Bit 

'O' Sync Mode 

Table 15. 37 Stop Bit Mode ('StopBit') Field Encoding. 

Parity Mode ('ParityMode') 

Value Action 

'l' Even Parity 

'O' Odd Parity 

Table 15. 38 Parity Mode ('ParltyMode') Field Encoding. 
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Parity Enable ('ParityEn') 

Value Action 

'l' Enable Parity 

'O' Disable Parity 

Table 15. 39 Parity Enable ('ParltyEn') Field Encoding. 

Serial Transmitter Control Register ('SerialTxControlReg(l:O)') 
(Write Pointer Ox05) 

7 6 5 4 3 2 1 0 
DTRN TxBitsPerChar TxBreak TxEn CRCType RTSN TxCRCEn 

1 2 1 1 1 1 1 

Figure 15.17 Serial Transmitter Control Register ('SerialTxControlReg') 

The Serial Transmitter Control Register fields are given in Figure 15.17. 
Additional programming information for this register is located in Table 
15. 40, Table 15. 41, Table 15. 42, Table 15. 43, Table 15. 44, Table 
15. 45, Table 15. 46, and Table 15. 47 on page 22. 

Bit Assignment 

7 DTR Status ('DTRN') 

6:5 Transmitter Bits per Character ('TxBitsPerChar') 

4 Transmitter Break ('TxBreak') 

3 Transmitter Enable ('TxEn') 

2 CRC Type ('CRCType') 

1 RTS Status ('RTSN') 

0 Transmitter CRC Enable ('TxCRCEn') 

Table 15. 40 Serial Transmitter Control Register ('SerialTxControlReg(l:O)') Bit Assign­
ments. 

DTR Status ('DTRN') 

Value Action 

'l' SerialDTRQ Signal Low 

'O' SerialDTRO Signal High 

Table 15. 41 DTR Status ('DTRN') Field Encoding. 
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Transmitter Bits per Character ('TxBitsPerChar') 

Value Action 

'3' 8-bits per char 

'2' 6-bits per char 

'l' 7-bits per char 

'O' 5-bits per char 

Table 15. 42 Transmitter Bits per Character ('TzBitsPerChar'). 

Transmitter Break ('TxBreak') 

Value Action 

'l' Transmit Break Sequence 

'O' Normal 

Table 15. 43 Transmitter Break ('TzBreak') Field Encoding. 

Transmitter Enable ('TxEn') 

Value Action 

'l' Enable Transmitter 

'O' Disable Transmitter 

Table Ui. 44 Transmitter Enable ('TxEn') Field Encoding. 

CRC Type ('CRCType') 

Value Action 

'l' Use CRC-16 (xl6+xl5+x2+1) 

'O' Use. CRC-CCITI (xl6+xl2+x5+1) 

Table 115. 45 CRC Type ('CRCType') Field Encoding. 

RTS Status ('RTSN') 

Value Action 

'l' Set SerialRTS pin low 

'2' Set SerialRTS pin high 

Table 15. 46 RTS Status ('RTSN') Field Encoding. 

Transmitter CRC Enable ('TxCRCEn') 

Value Action 

'l' Enable CRC Generator 

'O' Disable CRC Generator 

Tabl~ 15. 47 Transmitter CRC Enable ('TxCRCEn') Field Encoding. 
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Serial LSB Sync Character/ Address Register 
('SerialLSBSyncCharReg( 1:0)') 
(Pointer O:z:06), 

Serial MSB Sync Character I Address Register 
('SerialMSBSyncCharReg( 1:0)') 
(Pointer O:z:07) 

Chapter 15 

1-1 _1 __ 6 ___ 5 __ M_:_0s_yn-~-ha_~_ter __ 2 __ 1 __ 0____.11 

Figure 15.18 Serial MSB Sync Character/Address Register ('SerialMSBSyncCharReg'). 

1-1 _
7 
__ 

6 
___ 

5 
__ L_s:_sy_n:-ch_ara_:e_r __ 

2 
___ 

1 
__ 

0
_11 

Figure 15.19 Serial LSB Sync Character/Address Register ('SerialLSBSyncCharReg'). 

Figure 15.18 and Figure 15.19 give the MSB and LSB Sync Character/ 
Address Register fields. 

Note: SDLC should always write Ox7E into MSB Sync Register. 

6-bit Monosync: 
SyncPattern(5:0) -> LSB(5:0) 
SyncPattern(l:O) -> LSB(7:6) 
SyncPattern(5:0) -> MSB(7:2) 

8-bit Monosync, fill both MSB and LSB registers with the same 8-bit 
value: 

SyncPattern(7:0) -> LSB(7:0) 
SyncPattern(7:0) -> MSB(7:0) 

12-bit Bisync: 
'bl 111 -> LSB(3:0) 
SyncPattern(3:0) -> LSB(7:4) 
SyncPattern(ll:4) -> MSB(7:0) 

16-bit Bisync: 
SyncPattern(7:0) -> LSB(7:0) 
SyncPattern(l5:0) -> MSB(7:0) 

SDLC: 
Address(7:0) -> LSB(7:0) 
'bOll 11110' -> MSB(7:0) 

SDLC Multi: 
AddressRange(7:4) -> LSB(7:4) 
'bOll 11110' -> MSB(7:0) 
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Transmitter Data FIFO Register ('SerialDataFIFOReg(l:O)') 
(Write Pointer Ox08) 

Figure 15.20 Transmitter Data FIFO Register ('SerialDataFIFOReg'). 

The SerialDataFIFOReg, see Figure 15.20, is also directly accessible by 
the CPU by writing address OxFFFF _E800 for Channel 0 or OxFFFF _E808 
for Channel 1. 

Serial Reset Register ('SerialResetReg(l:O)') 
(Write Pointer Ox09) 

Programming information for this register is located below in Table 
15. 48, Table 15. 49, and Table 15. 50. 

Bit Assignment 

7:6 Master Reset ('Reset') 

5 Reserved High (' l ') 

4 Reserved Low ('O') 

3 Interrupt Enable ('IntEn') 

2:0 Reserved High (' l ') 

Table 115. 48 Serial Reset Register ('SerialResetReg') Bit Assignments. 

Value Action 

'3' Reset Both Channels (Master Serial Port Reset) 

'2' Reset Channel 0 

'l' Reset Channel 1 

'O' No Effect 

Table 15. 49 Master Reset ('Reset') Field Encoding. 

Interrupt Enable ('lntEn') 

Value Action 

'l' Global Interrupt Enable Mask 

'O' GJobal Interrupt Disable Mask 

Table 15. 50 Interrupt Enable ('lntEn') Field Encoding. 

Serial MSB Mode Register ('SerialModeReg(l:O)') (Write Pointer OxOA) 

7 
CRCPreloa 

1 

6 5 
EndecMode 

2 

4 
Auto 

PollFrame 

1 

3 
ldleMark 

1 

2 
Underrun 

Abort 

1 

1 0 
SDLCLoop SyncLength 

1 1 

Figure 15.21 Serial MSB Mode Register ('SerialModeReg'). 
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Figure 15.21 shows the Serial MSB Mode Registers. Refer to Table 
15. 51, Table 15. 52, Table 15. 53, Table 15. 54, Table 15. 55, Table 
15. 56, Table 15. 57, and Table ·15. 58 on page 26 for additional program­
ming information. 

Bit Assignment 

7 CRC Preload ('CRCPreload') 

6:5 Endec Mode ('EndecMode') 

4 Automatic SDLC Poll Frame Mode ('AutoPollFrame') 

3 Automatic SDLC Transmitter Idle Mark or Flag ('IdleMark') 

2 Automatic SDLC Transmitter Underrun Abort ('UnderrunAbort') 

1 SDLC Loop Mode ('SDLCLoop') 

0 Sync Char Length ('SyncLength') 

Table 15. 51 Serial MSB Mode Register ('SerialModeReg') Bit Assignments. 

CRC Preload ('CRCPreload') 

Value Action 

'l' Preload CRC generator/checker with l's (Normal). 

'O' Preload CRC generator/checker with O's. 

Table 15. 52 CRC Preload ('CRCPreload') Field Encoding. 

Endec Mode ('EndecMode') 

Value Action 

'3' NRZ (typical asynchronous data endec) 

'2' NRZI 

'l' FMl 

'O' FMO 

Table 15. 53 Endec Mode ('EndecMode') Field Encoding. 

Automatic SDLC Poll Frame Mode ('AutoPollFrame') 

Value Action 

1 Send Flag when done 

0 Send Flag and revert to 1-bit delay when done 

Table 15. 54 Automatic SDLC Poll Frame Mode ('AutoPollFrame') Field Encoding. 

Automatic Transmitter SDLC Idle Mark ('ldleMark') 

Value Action 

'l' 

··o· 
Send Mark Highs (' l ') when transmitter is idle 

Send Flag when transmitter is idle (typical) 

Table 15. 55 Automatic Mark or Flag during Transmitter Idle ('IdleMark') Field 
Encoding. 
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Automatic Transmitter Underrun Abort ('UnderrunAbort') 

Value Action 

'l' Send Abort and Flag instead of CRC on transmitter underrun 

'O' Send CRC on transmitter underrun 

Table 15. 56 Automatic Transmitter Underrun Abort Field Encoding. 

SDLC Loop Mode ('SDLCLoop') 

Value Action 

'l' Attach Transmitter Data to Receiver Data 

'O' No Effect 
-:::-

Table 15. 57 SDLC Loop Mode ('SDLCLoop') Field Encoding. 

Sync Char Length ('SyncLength') 

Value Action 

'l 6-bit sync character length for Monosync. 12-bit Receiver sync 
character length and 16-bit transmitter sync character length 
for Bisync 

'O' 8-bit Sync character length 

Table 15. 58 Sync Char Length ('SyncLength') Field Encoding. 

Serial LSB Clock Control Register ('SerialLSBClkControlReg(l:O)') 
(Write Pointer OxOB) 

6 5 4 3 2 1 0 
RxClkln TxClkln SecClkDir SecClkOutSel 

1 2 2 1 2 

Figure 15.22 Serial LSB Clock Control Register ('SerlalLSBClkControlReg'). 

Figure 15.22 gives the fields for the Serial LSB Clock Control Register. 
For additional programming information, refer to Table 15. 59, Table . 
15. 60, Table 15. 61, Table 15. 62, Table 15. 62, and Table 15. 63. 

Bit Assignments 

7 Reserved Low ('O') 

6:5 Receiver Clock Input Source ('Rx:Clkln') 

4:3 Transmitter Clock Input Source ('TxClkln') 

2 SerialSecondaryClkO Direction ('SecClkDir') 

1:0 SerialSecondaryClk() Output Clock Select ('SecClkOutSel') 

Table 15. 59 Serial LSB Clock Control Register ('SerialLSBClkControlReg') Bit Assign­
ments. 
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Receiver Clock Input Source ('RxClkln') 

Value Action 

'3' Use PLL 

'2' Use Baud Rate Clock Generator 

'l' Use SerialSecondaryClk() 

'O' Use SerialPrimaryClkln() 

Table 15. 60 Receiver Clock Input Source ('RxClkln') Field Encoding. 

Transmitter Clock Input Source ('TxClkln') 

Value Action 

'3' UsePLL 

'2' Use Baud Rate Clock Generator 

'l' Use SerialSecondaryClk() 

'O' Use SerialPrimaryClkln() 

Table 15. 61 Transmitter Clock Input Source ('TxClkln') Field Encoding. 

SerialSecondaryClk() Direction ('SecClkDir') 

Value Action 

'l' SerialSecondaryClk() is an output 

'O' SerialSecondaryClk() is an input 

Table 15. 62 SerialSecondaryClk() Direction ('SecClkDir') Field Encoding. 

SerialSecondaryClk() Output Clock Select ('SecClkSel') 
If the SerialSecondaryClk() is configured as an output both in the Seri­

alSecondaryClkO Direction ('SecClkDir') Field and in the corresponding 
PIO Field, then the output can be 1 of 4 choices. 

Value Action 

'3' Use PLL 

'2' Use Baud Rate Clock Generator 

'l' Use SerialSecondaryClk() 

'O' Use SerialPrimaryClklnO 

Table 15. 63 SerialSecondaryClkO Output Clock Select ('SecClkOutSel') Field 
Encoding (if output is enabled). 
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Serial LSB Baud Rate Clock Generator Compare Register 
('SerialLSBBaudCompareReg(l:O)') (Pointer Ox:OC), 

Serial MSB Baud Rate Clock Generator Compare Register 
('SerialMSBBaudCompareReg(l:O)') (Pointer O:a:OD) 

7 6 5 4 3 2 1 0 

7 

MSB Baud Rate Generator Compare 

8 

Figure 15.23 Serial MSB Baud Rate Clock Generator Compare Register 
('SerialMSBBaudCompareReg'). 

6 5 4 3 2 1 
LSB Baud Rate Generator Compare 

8 

Figure 15.24 Serial LSB Baud Rate Clock Generator Compare Register 
('SerialLSBBaudCompareReg'). 

0 

The Serial LSB and MSB Baud Rate Clock Generator Compare Register 
fields are shown in Figure 15.23 and Figure 15.24. 

If the Baud Rate Clock Generator is used, then the Compare value 
must be programmed to: 

BRCGCompareReg = [BRCGClkln / (2 * BaudRate * ClkSample)J -2. 
Common values for a SysClk Baud Rate Clock Generator Clock Input 

with Clock Sampling Mode oft>AJ 16 are: 

18.42MHz 

Baud Compare % Error 

19200 28 0 

9600 58 0 

2400 238 0 

20.0MHz 

Baud Compare % Error 

9600 63 0.160 

25.0MHz 

Baud Compare % Error 

9600 79 0.469 

33.0MHz 

Baud Compare % Error 

9600 105 0.394 
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PLL Control Register ('PLLControlReg(I:O)') 
(Write Pointer OxOE) 

7 6 5 4 3 2 1 0 
PLLMode Loopback Echo BRCGClkln BRCGEn 

3 1 1 1 1 1 

Figure 15.25 PLL Control Register ('PLLControlReg'). 

Figure 15.25 gives the fields for the PLL Control Register. Additional 
programming information for this register is located in Table 15. 64, 
Table 15. 65, Table 15. 66, Table 15. 67, Table 15. 68, and Table 15. 69. 

Bit Assignment 

7:5 PLL Mode ('PLLMode') 

4 Loopback Test Mode ('Loopback') 

3 Echo Test Mode ('Echo') 

2 Reserved High ('I') 

I Baud Rate Clock Generator Clock Input ('BRCGClkln') 

0 Baud Rate Clock Generator Enable ('BRCGEn') 

Table 15. 64 PLL Control Register ('PLLControlReg'). 

PLL Mode ('PLLMode') 

Value Action 

'7' Use NRZI for PLL Clkln 

'6' Use FM for PLL Clkln 

'5' Use SerialPrirnaryClkln() for PLL Clkln 

'4' Use Baud Rate Clock Generator PLL Clkln 

'3' Disable PLL 

'2' Reset Missing Clock Status 

'I' PLL Search Mode 

'O' No action 

Table 15. 65 PLL Mode ('PLLMode') Field Encoding. 

Loopback Test Enable ('Loopback') 
The loopback test provides a manufacturing test mode where the trans­

mitter data path is tied directly to the receiver data path such that the 
external SerialTx:Data and SerialRxData pins are bypassed. 

Value Action 

'I' Enable Loopback Test 

'O' Normal Mode 

Table 15. 66 Loopback Test Enable ('Loopback') Field Encoding. 
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Echo Test Enable ('Echo') 

Value Action 

'l' Enable Echo Test Mode 

'O' Normal Mode 

Table 15. 67 Echo Test Enable ('Echo') Field Encoding. 

Baud Rate Clock Generator Clock Input ('BRCGClkln') 

Value Action 

'l' Use SysClk as the input clock 

'O' Use SerialPrimaryClkln as the input clock 

Table 15. 68 Baud Rate Clock Generator Clock Input ('BRCGClkln') Field Encoding. 

Baud Rate Clock Generator Enable ('BRCGEn') 

Value Action 

'l' Enable the Baud Rate Clock Generator counter 

'O' Disable the Baud Rate Clock Generator counter (default) 

Table 15. 69 Baud Rate Clock Generator Enable ('BRCGEn') Field Encoding. 

Serial MSB Interrupt Enable Register ('SeriallntEnReg(l:O)') 
(Write Pointer OxOF) 

Serial MetaMetaRegister ('SerialMetaMetaReg(l:O)') 
(Write Pointer OxOF) 

7 6 5 4 3 2 1 
BreaklntEn Underrun 

lntEn 
CTSlntN SynclntEn DCDNlntEn Fra~e:IFO ZerolntEn 

1 1 1 1 1 1 1 

0 
MetaMeta 

Reg En 

1 

Figure 15.26 Serial MSB Interrupt Enable Register ('SerlallntEnReg'). 

Figure 15.26 gives the fields for the Serial MSB Interrupt Enable 
Register. Additional programming information for this register is located 
in Table 15. 70, Table 15. 71, and Table 15. 72. 
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Bit Assignment 

'7' Break or Abort Interrupt Enable ('BreaklntEn') 

Transmitter Underrunor EOM Condition Interrupt Enable 
'6' ('UnderrunintEn') 

'5' CTS Interrupt Enable ('CTSintEn') 

'4' Sync Char Interrupt Enable ('SynclntEn') ' 

'3' DCD Interrupt Enable ('DCDintEn') 

Frame Status FIFO Enable (MetaMetaRegister Bl Enable 
'2' ('FrameFIFOEn') 

Baud Rate Clock Generator Zero Condition Interrupt Enable 
'l' ('ZerointEn') 

·o· MetaMeta Control Register Enable ('MetaMetaRegEn') 

Table 15. 70 Serial MSB Interrupt Enable Register ('SeriallntEnReg') Bit Assignments. 

Interrupt Enable Bits 
Note that interrupts feed into a common internal interrupt line, Seri­

alintN, that is further controlled by the R36100's Interrupt Controller. 
Thus to be fully enabled, the corresponding Interrupt Enable bit must be 
set, the master Interrupt Enable bit in the Serial Reset Register must be 
set, the Interrupt Controller SeriallntN IE bit must be set, the CPU Core 
Status Register IE bit for SysExclnt5 must be set, and finally, the CPU 
Core Status Register master IE bit must be set. 

Value Action 

'l' Enable Interrupt 

·o· Disable Interrupt 

Table 15. 71 Interrupt Enable Bit Field Encoding. 

MetaMeta Control Register Enable ('MetaMetaRegEn') 

Value Action 

Enable writes to the Meta Meta Control Register (Write Pointer 
'l' Ox07). 

Enable reads from the Meta Meta MSB and LSB Frame FIFO 
Status Registers (Read Pointers Ox07 and Ox06) 

·o· Enable writes to the MSB Sync Char Register (Pointer Ox07) 

Table 15. 72 MetaMeta Control Register Enable ('MetaMetaRegEn'). 
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Serial LSB Frame Status FIFO Data Register 
('SerialLSBFrameStatusDataReg(l:O)') (MetaPointer Ox06); 

Serial MSB Frame Status FIFO Data Register 
('SerialMSBFrameStatusDataReg(l:O)') (MetaPointer Ox07) 

7 6 5 4 3 2 1 

OverFlow I NotEmpty I Count 

1 1 6of14 
Figure 15.27 Serial MSB Frame Status FIFO Data Register 

('SerialMSBFrameStatusDataReg'). 

Chapter 15 

0 

I-I ~7~~6~~-s~~4-8-:-:~-4-s~~-2~~1~~o___.lj 
Figure 15.28 Serial LSB Frame Status FIFO Data Register 

('SerialLSBFrameStatusDataReg'). 

Figure 15.27 and Figure 15.28 show the fields for the Serial MSB and 
LSB Frame Status FIFO Data Registers. Refer to Table 15. 73, Table 
15. 74, and Table 15. 75 for additional programming instructions. 

Bit Assignments 

MSB7 Frame Status FIFO Overflow Flag ('Overflow') 

MSB6 Frame Status Not Empty Flag ('NotEmpty') 

MSB 5:0 LSB 7:0 Count 

Table 15. 73 Serial LSB and MSB Frame Status FIFO Data Register ('SerialMSB­
FrameStatusDataReg' and ('SerialMSBFrameStatusDataReg') Bit Assignments. 

Frame Status FIFO Overflow Flag ('Over:O.ow') 

Value Action 

'l' Frame Status FIFO Overflow Flag 

'O' Frame Status FIFO dkay Flag 

Table 15. 74 Frame Status FIFO Overflow Flag ('Overflow'). 

Frame Status Not Empty Flag ('NotEmpty') 

Value Action 

'1' Frame Status FIFO Not Empty (Entry is Ready) Flag 

'O' Frame Status FIFO Empty Flag 

Table 15. 75 Frame Status Not Empty Flag ('NotEmpty'). 

Count ('Count') 
The Count Field holds the number of byte data received during a frame. 
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Serial Meta Meta Register ('SerialMetaMetaReg(l:O)') 
(Write Pointer Ox07) 

2 1 0 
Auto Auto Auto 

SDLCRTS TxUnderrun TxFlag 

1 1 1 1 1 1 1 1 

Figure 15.29 Serial Meta Meta Register ('SerialMetaMetaReg'). 

Figure 15.29 shows the fields of the Serial Meta Meta Register. Addi­
tional programming instructions for this register are located in Table 
15. 76, Table 15. 77, Table 15. 78, Table 15. 79, Table 15. 80, and Table 
15. 81. 

Bit Assignments 

7 Reserved Low ('O') 

6 Reserved High (' l ') 

5 Wait for Receiver CRC ('WaitCRC') 

4 Reserved Low ('O') 

Automatically Drive SerialTxData High when disabled ('AutoTx-
3 DataHigh') 

Automatically De-assert SerialRTS after SDLC Flag ('AutoSDL-
2 CRTS') 

I Automatically Reset Transmitter Underrun ('AutoTxUnderrun') 

0 Automatic Insertion of Transmitter Opening Flag ('AutoTxFlag') 

Table 15. 76 Serial Meta Meta Register ('SerialMetaMetaReg') Bit Assignments. 

Wait for Receiver CRC ('WaitCRC') 

Value Action 

'l' Wait for CRC to completely shift into the receiver before loading 

into the Receiver Data FIFO. 

'O' Don't wait for CRC (CRC will be incorrect). 

Table 15. 77 Walt for Receiver CRC ('WaltCRC') Field Encoding. 

Automatically Drive SDLC SerialTxData High when disabled 
('AutoTxDataHigh') · 

Value Action 

'I' In the SDLC NRZI mode, automatically drive SerialTxData High 

when the transmitter is disabled. 

'O' No special effect. 

Table 15. 78 Automatically Drive SerialTxData High when disabled ('AutoTxDataHigh') 
Field Encoding. 
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Automatically De-assert SerialRTS after SDLC Flag ('AutoSDLCRTS') 

Value Action 

'l' In the SDLC mode, automatically de-assert SerialRTS high after 

the SDLC Flag at the end of the frame completes. " 

'O' No special effect. 

Table 15. 79 Automatically De-assert SerialRTS after SDLC Flag ('AutoSDLCRTS') 
Field Encoding. 
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Automatically Reset Transmitter Underrwi ('AutoTxUnderrun') 

Value Action 

'l' In Synchronous modes such as SDLC, automatically reset 
the transmitter underrun latch when the first byte of the 
frame is sent. 

'O' No special effect. 

Table 15. 80 Automatically Reset Transmitter Underrun ('AutoT:x:Underrun') Field 
Encoding. 

Automatic Insertion of Transmitter Opening Flag ('AutoTxFlag') 

Value Action 

'l' In Synchronous modes such as SDLC, automatically insert 
an opening flag before transmitting the first data character of 
a frame. 

'O' No special effect. 

Table 15. 81 Automatic Insertion of Transmitter Opening Flag ('AutoT:x:Flag') Field 
Encoding. 
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Integrated Device Technology, Inc. 

Bidirectional Parallel 
Port 

Introduction 

Chapter 16 

The IDT R36100 RISController integrates bus controllers and periph­
erals around the R30xx family CPU core. One of the many on-chip periph­
erals is the Bidirectional Centronics Parallel Port, as described in this 
chapter. 

This chapter will provide an overview of the Bidirectional Centronics 
Parallel Port register interface, a description of the signal pins, and 
various aspects of the signal timing. 

Features 
• Bidirectional ParallelPortTarget/Peripheral/PrinterController 

provided on-chip 
• Provides 9 pin interface to Bidirectional Centronics IEEE 1284 Stan-

dard Parallel Port 
• Provides 2 pins for host transceiver control 
• Reuses 3 I/O Controller pins for peripheral transceiver control 
• Uses external transceiver or bi-directional FIFO for data storage 
• OMA auto-initiate via internal interrupt 
• Compatible 8-bit input host to peripheral protocol (backward compat­

ibility with Centronics standard) 
• Nibble mode peripheral to host output protocol (Microsoft/PC stan-

dard) 
• Byte mode peripheral to host output protocol (IBM PS2 applications) 
• ECP bidirectional protocol (emerging Windows PC/Laser standard) 
• EPP bidirectional protocol (PC/Datacom applications) 
• 200KBytes/sec to 1 MByte/sec 

Block Diagram 

BIU Controller Data 

t 

Register 
Bank 

BIU Controller Address and Control 

Decoder 

Control 
Signal 
State 
Machine 

t 
CentSirobe 
CentAck 

I 
Cent Busy 
CentPaperError 
CentSelect 
CentAutoF89d 
Centi nit 
CentFault 
CentSelectln 

t 
CeiiiCS i(iOCS(7j) 
CentWrStrobe =100....,W""'rS..,.tro..,..b-.,.e) 

CentRdOEn l(loRdStrobe) 
CentHostStrobe 
CentHostOEn 

Figure 16.1 Block Diagram of the Bidirectional Parallel Port. 
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Overview 
The Bidirectional Parallel Port Target/Peripheral/Printer Interface is an 

implementation of the interface described in "Standard Signaling Method 
for a Bidirectional Parallel Peripheral Interface for Personal Computers, 
IEEE Standard 1284. 

The Bidirectional Parallel Port Interface's overall effect is to allow Laser 
Printers or add-in communication cards (such as external SCSI drives or 
external Ethernet ports) to communicate with a PC host in both direc­
tions by use of receive and transmit channels. 

When using the R36100 for an Apple laser printer peripheral, informa­
tion commonly associated with Apple LocalTalk/ AppleTalk functionality, 
such as printer status and resident font information, is passed back from 
the printer to the host Macintosh. However, in the IBM PC compatible 
environment, the original Centronics compatible mode is only unidirec­
tional and cannot report general purpose status information back to the 
PC host. 

With the addition of a reverse transfer 4-bit IEEE 1284 nibble mode, 
the Centronics port on the printer peripheral can now communicate bidi­
rectionally with the majority of legacy PC hosts by using the present 
printer status lines to pass 4-bits at a time back to the PC host. In newer 
PC's, such as the PS2 series, the PC hosts can use a truer bidirectional 
mode such as the IEEE 1284 reverse transfer byte mode. 

The R36100 also supports the newer IE,EE 1284 Extended Capabilities 
Port mode (ECP) and IEEE 1284 Enhanced Parallel Port (EPP) mode, 
which provide more efficient interlocked . handshaking as well as 
symmetric byte and host controlled read/write byte channel protocols, 
respectively. Both ECP and EPP are commonly found on Enhanced IDE I/ 
0 PC cards. 

The Bidirectional Parallel Port Interface uses 14 pins (see block 
diagram in Figure 16.1). The pins include 9 control signals multiplexed 
in/out with PIO. The data lines are supported by an external 8-bit data 
register transceiver chip or bidirectional FIFO controlled by any one of the 
I/O Controller chip selects, the I/O read strobe, and the 1/0 write strobe. 
The pins also include 2 external register control lines. One of them clocks 
the data from the PC to the printer port. The other line output enables the 
external register to the PC. 

When used with two 8-bit external buffers/transceivers and a 
compliant physical connector, the R36 l 00 Bidirectional Parallel Port 
Interface implementation meets the IEEE 1284 definition of a compliant 
device. The R36100 supports the following peripheral modes: 

• Compatible (standard forward transfer) 
• nibble (4-bit reverse transfer) 
• byte (8-bit reverse transfer) 
• ECP (Extended Capabilities Port) (forward and reverse interlocked 

handshake transfers with arbitration for host/port control) 
• EPP (Enhanced Parallel Port) (host controlled forward and reverse 

read/write-liketransfers) 
The R36100 also contains support for the negotiation phase necessary 

for transition between the different modes. As described below, each 
mode has different phases associated with them: 

Compatible Mode Phases are: 
1. Forward Data Transfer 
2. Forward Idle 
3. (Negotiation) 
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Nibble Mode and Byte Mode Phases are: 
1. Forward Data Transfer 
2. Forward Idle 
3. Negotiation 
4. Host Busy Data Available 
5. Reverse Data Transfer 
6. Host Busy Data Not Available 
7. Reverse Idle 
8. Interrupt Host 
9. Terminate 
Note: In nibble and byte modes, the R36100 Centronics port always 
goes from state 3 --> 7 and then to state 8 --> 4, never from state 3 to 
4. For data ready status, this requires the host to poll using the 7 I 4 
states, not in the 3 / 4 states. 

ECP Mode Phases are: 
1. Forward Data Transfer 
2. Forward Idle 
3. Negotiation 
4. Setup 
5. Forward Idle 
6. Forward 
7. Forward to Reverse 
8. Reverse Idle 
9. Reverse 
10. Reverse to Forward 
11. Terminate 
EPP Mode Phases are: 
1. Forward Data Transfer 
2. Forward Idle 
3. Negotiation 
4. Initial EPP Idle 
5. Address Read 
6. Data Read 
7. Address Write 
8. Data Write 
9. EPP Idle 
10. Terminate 

Support for the compatible mode includes the three variations listed in 
Table 16.1. 

Variation Strobe/Busy Busy/Ack 

Centronics Busy-after-Strobe Ack(2500 ns)-after-Busy 
Classic 

IBM/Epson Busy-after-Strobe Ack(2500 ns)-while-Busy 

Standard Busy-while-Strobe Ack(500 ns)-in-Busy 
1284 

Table 16.1 Compatible Forward Data Transfer Variations. 
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Negotiation Phase 
The Parallel Port Interface is initially put into Mcompatible mode" after 

reset. While in compatible mode, the host can send data to the pertpheral 
in a forward data transfer phase. In order to get into any of the other 
modes which support reverse data transfers, the port must undergo a 
negotiation phase in order to see if the port can support the requested 
mode. The Bidirectional Parallel Port Interface software driver must also 
configure the compatible mode to one of the three supported modes (IBM, 
classic, or standard) and to a data transfer option (OMA or interrupt per 
byte). Setting the modes and options is done by writing to the mode 
register. 

In the interrupt per byte mode, the R36100 will read data from external 
Centronics Data Register each time it responds to a CentRdlnt interrupt. 
In the OMA mode, the R36100 will initialize one of the Internal DMA 
Channel Controllers register to the start of the OMA operation. The Bidi­
rectional Parallel Port Interface software driver can be notified by inter­
rupt when the OMA counter reaches the terminal count. 

The negotiation is indicated by: 
1. Host asserts 1284Active (nSelectln) and de-asserts HostBusy 

(nAutoFd). 
2. The peripheral responds by bringing AckDataReq (PError), 

nDataAvail (nFault), Xflag (Select) high and PtrClk (nAck) low. 
3. Host nStrobes 8-bit extensibility request value on the data lines and 

also brings HostBusy (nAutoFd) high. 
4. Peripheral sets Xflag (Select) to a particular value, and in the nibble 

and byte modes, nDataAvail (nFault) and AckDataReq (PError). Busy and 
Ptr (nAck) are set appropriately. 

After step 1, the R36100 is interrupted by the Parallel Port Interface, 
CentWrlnt. The interrupt service routine must then read the extensibility 
request value from the external Centronics Data Register and write the 
appropriate mode and response bits back to the Parallel Port Interface so 
that it can finish the negotiation. If the extensibility link bit is asserted, 
then a second CentWrlnt will occur during the negotiation. 

A host request to return to compatibility mode, from any of the other 
modes, is indicated to the R36100 by the assertion of the CentRst inter­
rupt. 

Nibble Mode Phase 
The Parallel Port Interface will interrupt the R36100 by asserting Cent­

Wrlnt when the host requests a two-nibble (8-bits total) transfer. The 
R36100 will respond by writing data to the Parallel Port's Nibble Data 
Register. The Parallel Port Interface sends the two nibbles to the host over 
the appropriate Centronics control lines in two consecutive nibble trans­
actions. 

Byte Mode Phase 
The Parallel Port Interface will interrupt the R36100 by asserting Cent­

Wrlnt when the host requests a byte transfer. The R36100 will respond by 
writing data to the external Centronics Data Register. 

Note: In Nibble and Byte Mode, the peripheral can arbitrate for the 
port, but only if it is left in reverse idle phase. 

Extended Capabilities Port (ECP) Mode Phase 
The ECP Mode allows both the host and the printer port to arbitrate for 

the bus and send commands/data to each other. Up to 128 different 
channels (communication streams) are supported by the protocol. 

OMA and interrupt-per-byte options are supported for the ECP mode. 
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In the interrupt-per-byte option, the Parallel Port Interface will first 
assert CentRdint for host read or write requests, and then it will assert 
CentWrint for host write requests or CentRdint for host read requests. 
The R36100 will read or write from the external Centronics Data Register 
in response to the interrupts. 

In reverse transfer, in response to CentWrlnt, the R36100 needs to 
write to the Parallel Port's Status Register (to the Busy bit) to indicate if it 
is sending a command or data byte, and also write the data/command to 
an external Centronics Data Register. 

In forward transfer, in response to CentRdint, the R36100 needs to 
read from the Parallel Port's Command Register (nAutoFd bit) to see if the 
Centronics Data Register has a data or command byte. Run Length 
Encoding (RLE) Compression/ decompression, if implemented, must be 
done by the software driver. · 

In the OMA transfer option, data will be transferred by an internal OMA 
channel as long as the direction of the host requests matches the direc­
tion of the OMA. Software must handle Centronics interrupts until the 
address and control is set up. Afterwards, a data stream can be handled 
by OMA. CentWrlnt will be asserted when the host requests data. 
CentRdint will be asserted when the host sends data or when the host 
sends a command byte. 

Enhanced Parallel Port (EPP) Mode Phases 
The EPP mode allows the host to address the printer port much like a 

read and writable memory interface. However, as per the IEEE1284 spec­
ification, the peripheral can not initiate transfers in this mode. 

OMA and interrupt-per-byte options are supported for the EPP mode. 
In the interrupt-per-byte option, the Parallel Port Interface will assert 
CentRdlnt for host read requests, and will assert CentWrlnt for host write 
requests. The R36100 will read or write from the external Centronics Data 
Register in response to the interrupts. 

CentWrint will be asserted when the host requests data (from the 
IEEE1284 port to the host). CentRdint will be asserted when the host 
sends data or when the host sends an address byte. Software must 
handle Centronics interrupts until the address and control is set up. 
Afterwards, a data stream can be handled by OMA. 

CPU Control Reserved Mode Phases 
This mode enables the CPU to send the lower 5 bit values of the Parallel 

Port Interface's Status Register. 

Programmable Timing 
To allow for higher data rates than those specified by the IEEE1284 

Standard, the minimum delay on Strobe/Busy and Busy/ Ack can be 
programmed to lower values than the minimum required by the standard. 
Table 16.2 lists the three interrupt signals and descriptions. 
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Interrupt 
Signal Name Description 

CentWrlnt 1 clock pulse assertion after host write and for other forward 
transfer phases. 

CentRdint Pulse assertion after read or reverse transfer phases. 

CentResetlnt 1 clock pulse assertion after termination phase and after nego-
tiation phase is complete. 

CentNegint Asserts during negotiation phase 

Table 16.2 Interrupt Descriptions 

Pin Descriptions 
Note that the following pin descriptions are given in terms of the 

Centronics Modes. Actually, each mode has various phases that may 
further define the functionality of the signal. Please refer to IEEE 1284 
Standard for additional detail. 

Bidirectional Parallel Port Centronics Interface Signals 

CentStrobe Input 
(Aliases: nStrobe, nStrobe, HostClk, nWrite) 
Centronics Strobe: 
Compatibility: Data strobe. 
Nibble: Acknowledges reverse data transfer. 
Byte: Acknowledges reverse data transfer. 
ECP: Handshakes with Busy. 
EPP: Indicates Address write or Data write. 

CentAck Output 
(Aliases: nAck PtrClk, nAck PtrClk, PeripbClk, Int) 
Centronics Acknowledge: 
Compatibility: Data Acknowledge. 
Nibble: Data Acknowledge. 
Byte: Data Acknowledge. 
ECP: Handshakes with HostAck. 
EPP: Active High Interrupt. 

CentBusy Output 
(Aliases: Busy PtrBusy, Busy PtrBusy, PeriphAck, nWait) 
Centronics Busy: 
Compatibility: Active high indication that the peripheral is busy. 
Nibble: In later phases of nibble mode, Data bit 3 and 7. 
Byte: Active high indication that the peripheral is busy. 
ECP: Flow control in the forward direction, Command/Data bit in the reverse direction. 
EPP: Active low wait signal delaying an address or data. 

CentPaperError Output 
(Aliases: PError, PError, AckDataReq, nAckReverse) 
Centronics PaperError: 
Compatibility: When asserted with nFault, indicates a Paper Error. 

Additional uses during other phases including 1284Support. 
Nibble: Data bits 2 and 6. 
Byte: Same as nFault. 
ECP: Request nReverseRequest. 
EPP: User Defined (unused). 

16-6 



Bidirectional Parallel Port Chapter 16 

CentSelect Output 
(Aliases: Select XOag, Select XO.ag, XOag) 

Centronics Select: 
Compatibility: Peripheral is on line. In other, phases, the Extensibility 

Flag (XFlag). 
Nibble: Data bits 1 and 5. 
Byte: Peripheral is on line. In other phases, the Extensibility Flag 

(XFlag). 
ECP: In some phases, the Extensibility Flag (XFlag). 
EPP: User Defined (unused). 

CentAutoFeed Input 
(Aliases: nAutoFd HostBusy, nAutoFd HostBusy, HostAck, nDStrb) 

Centronics Auto Feed: 
Compatibility: Typically indicates auto linefeed mode, but often 

unused or redefined. Also used during Negotiation Phase as HostBusy. 
Nibble: Typically indicates auto linefeed mode. In other phases, used 

for several purposes. 
Byte: Typically indicates auto linefeed mode. In other phases, used for 

several purposes. 
ECP: Handshakes with PeriphClk. 
EPP: Denotes data cycle. 

Centlnit Input 
(Aliases: nlnit, nlnit, nReverseRequest, ninit) 

Centronics Initialize: 
Compatibility: When pulsed with 1284Active de-asserted, resets to 

idle phase. 
Nibble: When pulsed with 1284Active de-asserted, resets to idle phase. 
Byte: When pulsed with 1284Active de-asserted, resets to idle phase. 
ECP: Host allows the peripheral to drive the bi-directional data signals. 
EPP: When asserted, resets to compatibility mode. 

CentFault Output 
(Aliases: nFault nDataAvail, nFault nDataAvail, nPerlphRequest) 

Centronics Fault: 
Compatibility: Set low indicating an error. In other phases, set high to 

ack 1284, data available. 
Nibble: Data bits 0 and 4. 
Byte: Set low indicating an error. In other phases, set high to ack 1284 

and data available. 
ECP: Peripheral requests communication with host which host may 

chose to ignore. 
EPP: User defined (unused). 

CentSelectln Input 
(Aliases: nSelectln 1284Active, nSelectln 1284Active, 1284Active, 

nAStrb) . 

Centronics Select Input: 
Compatibility: Selects this peripheral (if Centronics is shared). In 

some phases, indicates 1284Active. 
Nibble: Selects this peripheral (if Centronics is shared). In some 

phases, indicates l 284Active. 
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Byte: Selects this peripheral (if Centronics is shared). In some phases, 
indicates 1284Active. 

ECP: Active high, if de-asserted, return to compatibility mode. 
EPP: Indicates an address cycle. 

Biclirectional Parallel Port Centronics Peripheral and Host Interface 
Signals 

CentCS() Output 
Centronics 1/0 Chip Select: Use 1 of the 8 IoCSO pins to create this 

signal. This active low signal is used by the R36100 to select the exter­
nally provided 8-bit Centronics Data Register /Transceiver. With some 
types of transceivers CentCS() must be externally gated with CentRd­
Strobe and or CentWrStrobe. 

CentWrStrobe Outpu_t ___ _ 
Centronics Write Strobe: Use IoWrStrobe to create this signal. This 

active low signal is used by the R36100 to write data into a registered 
transceiver so that the host may later retrieve the data. The transceiver 
must also be gated with an appropriately programmed IoCS(). 

CentRdOEn Output 
Centronics Read Output Enable: Uses IoRdStrobe to create this 

signal. This active low signal is used by the R36100 to read data into the 
peripheral from the registered transceiver which the host had previously 
stored. The transceiver must also be gated . with an appropriately 
programmed IoCS(). 

CentHostStrobe Output 
Centronics Host Strobe: Similar· to CentStrobe but active high and 

gated for actual host data writes since CentStrobe is also used by various 
IEEE 1284 modes to acknowledge actions other than writes. Active high 
output is attached to an external registered transceiver in order to clock/ 
latch-enable the data from the host into the registered transceiver. The 
CentHostStrobe pin is multiplexed with a PIO pin, and thus the PIO pin 
must be programmed to the CentHostStrobe special effect and to be an 
output. 

CentHostOEn Output 
Centronics Host Output Enable: Active low output attached to an 

external registered data transceiver in order to allow the host to read data 
from the registered transceiver. The CentrHostOEn pin is multiplexed 
with a PIO pin, and thus the PIO pin must be programmed to use the 
CentHostOEn special effect and to be an output. 

Register Definitions 
Table 16.3 lists the Bidirectional Parallel Port Interface addresses and 

descriptions. Note that Big Endian software must offset these addresses 
by b'lO (Ox2). 
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Phys. Address Description 

OxFFFF _ECOO Centronics Sub Mode Register 

OxFFFF _EC04 Centronics Status Register 

OxFFFF _EC08 Centronics Control Register 

OxFFFF _ECOC Centronics Nibble Data Register 

OxFFFF _EC 10 Centronics Host Status Register 

OxFFFF _EC 14 Centronics Minimum Delay Register 

Table 16.3 Bidirectional Parallel Port Interface Centronics Controller Registers. 

Centronics Sub Mode Register 
('CentSubModeReg') 

14 

Figure 16.2 Centronics Sub ModeRegister ('CentSubModeReg'). 

1 0 
SubMode 

2 

Additional programming information and instructions for the 
Centronics Sub Mode Register are located in Figure 16.2, Table 16.4, and 
Table 16.5. 

Bit Description 

1:0 CM ode 

Table 16.4 Centronics Sub ModeRegister ('CentSubModeReg') Bit Assignments. 

Centronics Compatible Sub Modes ('SubMode') Field 

Value Action 

'11' Classic Centronics. 

'10' Reserved. 

'01' IBM/Epson. 

'00' Standard 1284 (default). 

Note: See Table 16. 1 for more information. 

Table 16.5 Centronics Compatible Sub Mode ('SubMode') Field Encoding. 

Centronics Status Register 
('CentStatusReg') 

15 14 13 12 11 10 9 8 4 3 2 1 0 
CS(7) CS(6) Neg. Neg. Reset Reset PError Select nFault nAck Busy 
Mask Mask Pend. En. Pend. En. 

2 1 1 1 1 1 1 3 1 1 1 1 1 

Figure 16.3 Centronics Status Register ('CentStatusReg'). 
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The Centronics Status Register is shown in Figure 16.3. Additional 
programming information and instructions for this register are located in 
Table 16.6, Table 16.7, Table 16.8, Table 16.9, Table 16.10, Table 16.11, 
Table 16.12, Table 16.13, Table 16.14, Table 16.15, and Table 16.16. 

Bit Description 

13 IoCS(7) Mask Enable 

12 IoCS(6) Mask Enable 

11 Negotiation Interrupt Pending 

10 Negotiation Interrupt Enable 

9 Reset Interrupt Pending 

8 Reset Interrupt Enable 

4 Printer Error (PError) 

3 Printer On Line Select (Select) 

2 Printer Fault Negated (nFault) 

1 Printer is Acknowledging Negated (nAck) 

0 Printer is Busy (Busy) 

Table 16.6 Centronies Status Register ('CentStatusReg') Bit Assignments. 

IoCS(7), IoCS(6) Mask En.able 
Typically, a system using the R36100 bi-directional centronics inter­

face will use an external buffer to buffer data between the CPU bus and 
the Centronics port. These bits control whether either or both of IoCS(7:6) 
are used to control that buffer. The most common strategy is to use one 
IoCS for reads and one for writes, although other systems may just use 
one IoCS and decode read or write from the control bus. 

In addition, address bit 15 must be low when accessing the external 
Centronics data register. 

Value Action 

'l' Use IoCS for Centronics 

'O' Don't use loCS for Centronics 

Table 16. 7 IoCS(7:6) Mask Enable Field Encoding 

Centronics Negotiation Interrupt Pending 

Value Action 

'l' On reads, means negotiation interrupt is pending. 

On writes, clears the pending interrupt. 

'O' On reads, means no negotiation interrupt is pending. 

On writes, means do not change current interrupt state. 

Table 16.8 Centronies Negotiation Interrupt Pending Field. 
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Centronics Negotiation Interrupt Enable 

Value Action 

'l' Signal Pending Negotiation Interrupts to the interrupt controller. 

'O' Do not signal the interrupt controller (default). 

Table 16.9 Centronics Negotiation Interrupt Enable Field. 

Centronics Reset Interrupt Pending 

Value Action 

'l' On reads, means reset interrupt is pending. 

On writes, clears the pending interrupt. 

'O' On reads, means no reset interrupt is pending. 

On writes, means do not change current interrupt state. 

Note: Must first be written high and then written again low. This differs 
from the Expansion Interrupt Pending Registers. 

Table 16.10 Centronics Reset Interrupt Pending Field. 

Centronics Reset Interrupt Enable 

Value Action 

'l' Signal Pending Reset Interrupts to the interrupt controller. 

'O' Do not signal the interrupt controller (default). 

Table 16.11 Centronics Negotiation Interrupt Enable Field. 

Printer Error ('PError') Field: 

Value Meaning 

'l' Printer Error 

'O' Normal (default). 

Table 16.12 Printer Error Field ('PError') Field Encoding. 

Printer On Line Select ('Select') Field: 
. 

Value Meaning 

'l' Printer on line 

·o· Printer off line (default). 

Table 16.13 Select ('Select') Field Encoding. 

Printer Fault ('Fault') Field: 

Value Meaning 

'l' Printer Fault 

·o· Normal (default). 

Table 16.14 Printer Fault ('Fault') Field Encoding. 
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Printer Acknowledge Negated ('AckN') Field: 
.. 

Value Meaning 

'l' Normal 

·o· Printer Acknowledge (default). 

Table 16.15 Printer Ackn~leclge Negated ('AckN') Field Encoding. 

Printer Busy ('Busy') Field: 

Value Meaning 

'l' Printer Busy 

·o· Printer not Busy (default). 

Table 16.16 Printer Busy Field ('Busy') Field Encoding. 

Centronics Control Register ('CentControlReg') 

3 2 1 0 
Neg Rep NegMode 

1 3 

Figure 16.4 Centronic$ Control Register ('CentControlReg'). 

Figure 16.4 illustrates the Centronics Control Register and its fields. 
Additional programming instructions are located in Table 16.17, 
Table 16.18, and Table 16.19. 

Bit Description 

3 Negotiation XFlag Reply (NegRep) 

2:0 Negotiation Mode (NegMode) 

Table 16.17 Centronics Control Register ('CentControl') Bit Assignments. 

Negotiation XFlag Reply ('NegRep') Field: 

Value Action 

'l' Nibble Mode: mode requested supported. 

Other Modes: mode requested not supported. 

·o· Nibble Mode: mode requested not supported. 

Other Modes: mode requested supported (default). 

Table 16.18 Negotiation XFlag Reply ('NegRep') Field Encoding. 
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Negotiation Mode ('NegMode') Field: 

Value Action 

b'l 11' Termination 

b'l 10' Extensibility Link 

b'IOI' CPU Control (reserved) 

b'IOO' EPP 

b'Oll' ECP 

b'OIO' Byte 

b'OOI' Nibble 

b'OOO' Compatible (default) 

Table 16.19 Negotiation Mode ('NMode') Field Encoding. 

Centronics Nibble Data Register ('CentNibbleDataReg') 

Bit 

7:4 

3:0 

7 6 5 4 3 2 1 0 
MS Nibble Data LS Nibble Data 

8 4 4 

Figure 16.5 Centronics Nibble Data Register ('CentNibbleDataReg'). 

Description 

Most Significant Nibble Data 

Least Significant Nibble Data 

Table 16.20 Centro1'ics Nibble Data Register ('CentNibbleDataReg') Bit Assignments. 

Figure 16.5 and Figure 16.6 are illustrations of the Centronics Nibble 
Data and Host Status Registers. Additional programming instructions for 
these registers are located in Table 16.20, Table 16.21, Table 16.22, 
Table 16.23, Table 16.24, Table 16.25. 

Centronics Host Status Register ('CentHostStatusReg') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
nAuto nlnit nSelect nStrobe 
Fd In 

12 1 1 1 1 

Figure 16.6 Centronics Host Status Register ('CentHostStatusReg'). 
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Bit Description 

3 AutoFeed Negated (nAutoFd) 

2 Initialize Negated (nlnit) 

1 Select In Negated (nSelectln) 

0 Host Strobe Negated (nStrobe) 

Table 16.21 Centronlcs Host Status Register ('CentHostStatusReg') Bit Assignments. 

AutoFeed Negated ('nAutoFeed') Field: 

Value Meaning 

'l' Normal (default). 

·o· AutoFeed mode. 

Table 16.22 AutoFeed Negated ('nAutoFeed') Field Encoding. 

Initialize Negated ('nlnit') Field: 

Value Meaning 

'l' Normal (default). 

·o·. Initialize the printer. 

Table 16.23 Initialize Negated ('nlnit') Field Encoding. 

Select In Negated ('nSelectln') Field: 

Value Meaning 

'l' Don't select this printer (default). 

·o· Select this printer. 

Table 16.24 Select In Negated ('nSelectln') Field Encoding. 

Host Strobe Negated ('nStrobe') Field: 

Value Meaning 

'l' Host Strobe pulse de-asserted (default). 

·o· Host Strobe pulse asserted. 

Table 16.25 Host Strobe Negated ('nStrobe') Field Encoding. 

Centronlcs Minimum Delay Register ('CenIDelayReg') 

12 11 10 9 8 
D2500ns 

1 7 1 7 

Figure 16. 7 Centronics Mi~imum Delay Register ('CentDelayReg'), 
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Figure 16. 7 is an illustration of the Centronics Minimum Delay 
Register. Refer to Table 16.26, Table 16.27, Table 16.28, and Table 16.29 
for additional programming information. 

Bit Description 

15 Reserved. Must be written as ·o·. 
14:8 2500ns Delay Type Field (D2500ns) 

7 Reserved. Must be written as 'O'. 

6:0 500ns Delay Type Field (D500ns) 

Table 16.26 Centronics Minimum Delay Register ('CentDelayReg') Bit Assignments. 

2500ns Delay Type Field ('D2500ns') Field: 

Value Action 

'Ox7f Ox7f clock delay . 

... 
'OxOl' OxOl clock delay. 

'OxOO' undefined. (default). 

Table 16.27 2500ns Delay Type Field ('D2500ns') Field Encoding. 

500ns Delay Type Field ('D500ns') Field: 

Value Action 

'Ox7f Ox7f clock delay. 

... 

OxOl' OxOl clock delay. 

'OxOO' undefined. (default). 

Table 16.28 500ns Delay Type Field ('D500ns') Field Encoding. 

CPU MHz 2500ns 500ns 

33 Ox53 Oxll 

25 Ox3f OxOd 

20 Ox32 OxOa 

16 Ox28 Ox08 

Table 16.29 Example Settings for Delay Type Fields. 
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CentStrobe 

CentAck 

CentBusy 

loCS 

Chapter 16 

Timing Diagram 
Figure 16.8 illustrates a typically classic compatible mode transaction. 

Figure 16.8 Typically Classic Compatible Mode Transaction. 

System Example 
Figure 16. 9 illustrates typical parallel port system connections. 

D(7:0) 
411 u 
.@ 

ACKN ~ 
BUSY 

I/) 

.!.! c 
PAPE ROUT E! 

E 
SELECT 

Ill u 

FAULT 
iii c 
.Q 
ti 
I!! 

DSTROBE 
:g 
ca 

AUTO FEED 

INPRM 

CentSelectln SELECTIN 

3085 drw 08.1.1x 

Figure 16.9 Typical Parallel Port System Connections. 

Note: The virtual address for the external Centronics data register 
(in this example, FCT16-952) must have address bit 15 low. 
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Integrated Device Technology, Inc. 

Introduction 
The IDT R36100 RISController integrates bus controllers and pertph­

erals around the R30xx family CPU core. One of the many on-chip pertph­
erals is the Laser Printer Video Port as descrtbed in this chapter. 

This chapter will provide an overview of the Laser Printer Video Port 
register interface, a descrtption of the signal pins, and vartous aspects of 
the signal timing. Figure 1 7. 1 shows a block diagram of the Laser Prtnter 
Video Port 

Features 
• 1-bit sertal stream laser prtnter or raster engine interface 
• Supports 4-pin engine interface standard 
• On-chip 4-word Transmit FIFO 
• Programmable margin widths and page length 
• DMA auto-initiate via internal interrupt 

Block Diagram 

BIU Controller Data BIU Controller Address and Control 

t 

Register 
Bank 

Decoder 

4-Deep 
Data 
Register/ 
FIFO 

%8 
Phase 
Lock 
Loop 

t 
LaserVideoClkln 

t 

32-bit 
Serializer 

t 
LaserVideoData 

Control 
Signal 
State 
Machine 

LaserFI FOnotFulllnt 

LaserPagelnt 
LaserBandlnt 
LaserLinelnt 

LaserLine nc 
LaserPage nc 

Figure 17.1 Block Diagram of the Laser Printer Video Port 
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Overview 
The Laser controller's overall purpose is to take a laser printer video 

image stored in DRAM frame buffer memory, serialize it, and send it on to 
the laser printer imaging drum engine. 

When the R36 l 00 is used as a laser printer controller, the CPU receives 
Postscript or PCL page description language (POL) commands from the 
serial or the parallel port. The software (POL interpreter) translates the 
POL commands into an imaged video bit-map and stores the bit-map into 
a frame bufferin DRAM. Once the image is ready, the CPU uses the on­
chip Laser Controller to interface to the mechanics of the laser printer 
engine. The interface is used to let the engine mechanically load a page. 
The engine then .begins generating page sync (LaserPageSync) and line 
sync (LaserLineSync) signals. 

Once these signals begin, the Laser Controller must give a continuous 
serial bit stream from the data in.its serializer buffer. The.serializer buffer 
is supplied by a 4-word transmit FIFO which in turn must be updated 
from the frame buffer DRAM. With OMA, data can autonomously and 
automatically be loaded from DRAM into the transmit FIFO. Meanwhile, 
the CPU continues to finish up imaging the page or to begin receiving and 
imaging the next page. The . primary data path interface of the Laser 
controller consists of a 4-word transmit FIFO. This FIFO can be updated 
by either CPU single word writes or, more efficiently, by a OMA channel. 

The 32-bit words of video image data are moved through the FIFO to a 
separate 32-bit serializer buffer with the Most Signicant Bit (MSB) being 
the 1st bit shifted out and then driven from the CPU to the external Laser 
engine. Optionally, by using the 'Dir' field, the serializer can shift in the 
opposite direction. The video is a one bit wide serial stream of digital data. 
For a Canon type printer engine where the video clock is generated by the 
controller, there is a phase lock loop (PLL) on the Laser Controller. The 
PLL synchronizes the video data to the assertion of LaserLineSync. Six 
clocks after LaserLineSync is de-asserted, the Video Data begins shifting 
out. 

When the PLL option is selected, the input clock for the video is at eight 
times the true dot frequency. For Laser engines that supply the video 
clock, there is a PLL bypass option where the video clock is the same 
frequency as supplied. The Laser Controller serializer can shift data in 
either the left or right direction to support engines with duplex printing 
capabilites, which allows printing on both sides of the paper. 

Vertical and Horizontal page margins are supported. The vertical skip 
counter tells the Laser controller how many lines to skip before starting to 
output video data. The vertical skip counter starts counting on 
LaserPageSync, and decreases every LaserLineSync including the initial 
LaserLineSync. The horizontal skip counter sets the horizontal page 
margin by telling how many dots to skip from the beginning of each· line 
before starting to print. The horizontal counter is loaded and starts 
counting on LaserLineSync and decrements every video clock. After 
finishing the skip time, the actual data in the serializer begins to be 
shifted out. At the end of a line (as determined by the Line Pixel Count), 
any bits remaining in the seralizer buffer are deleted/flushed and the 
next FIFO word is loaded. 
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FIFO Depth: 
When the FIFO is not full, it will generate a not full status interrupt to 

notify the OMA controller, or CPU, that it can now be refilled. 

Internal PLL frequency: 
The internal PLL frequency is capable of supporting a variety of 

engines: 
• 2.5MHz %8, -> 40MHz PLL (e.g. 300DPI) 
• lOMHz %8 -> 80MHz PLL (e.g. 600DPI) 
• 15MHz %8 -> 100-120MHz PLL (e.g. high performance 600DPI) 

Reset Restriction: 
For proper operation, SysReset width must be longer than 5 internally 

derived Video Clock cycles. 

Interrupt Descriptions 

LaserFIFONotFulllnt 
Asserts when the Laser Video FIFO has one or more empty entries. 

Stays asserted until the FIFO is full. 

LaserPagelnt 
Asserts for 1 clock pulse at the leading edge of LaserPageSync. 

LaserBandlnt 
Asserts for 1 clock pulse on the second bit of the last line of band. 

LaserLlnelnt 
Asserts for 1 clock pulse when the first b~t of the 1 word is left at the 

end of a line and indicates that the Laser Video FIFO is about to become 
empty. 

Pin Descriptions 

Laser Printer Video Control Interface Signals 
Any one of the CPU 1/0 port chip selects, IoCS() can be used to support 

the byte wide EngineStrobe data to the engine control and the byte wide 
data from Engine Output status to the R36100. Note that the Laser Video 
pins are physically multiplexed with the PIO pins and must be appropri­
ately programmed before use. 

Laser Printer Video Interface Signals 
The five Laser video signal pins are multiplexed with PIO pins, and thus 

each of those PIO pins must be programmed to use the pins as Laser 
video pins. 
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LaserVideoClk.In Input 
The video clock is generated as a pixel clock which strobes the Laser­

Video Data stream. The video clock is the primary clock for controlling the 
pixel rate of the video engine interface and is derived either directly from 
LaserVClkln or indirectly from an internal PLL. LaserVideoClkln when 
used with the PLL is 8x the actual pixel rate. LaserVideoClkln when not 
used with the PLL is the same as the actual pixel rate. The maximum 
internally derived video clock frequency is 120MHz. 

Note: PI0(25) must be programmed appropriately for LaserVideo­
Clkln to be fully functional. 

LaserVideoData ' Output 
Laser Printer Video Data: Serial data stream connected to the print 

head. 

Note: PI0(8) must be programmed appropriately for LaserVideoClkln 
to be fully functional. 

LaserLineSync Input 
Laser Printer Line Sync: Input from the engine print head that indi­

cates that the next line of data is to begin the transfer. The LaserVideo­
Data stream begins to output data (assuming that the horizontal margin 
is 0) 6 clocks after the de-assertion of the LaserLineSync pulse. The 
LaserLineSync pulse width must be at least as wide as the internally 
derived video clock period. 

Note: PI0(24) must be programmed appropriately for LaserVideo­
Clkln to be fully functional. 

LaserPageSync Input 
Laser Printer Page Synchronization: Input from the engine print 

head indicating that the next page is to begin its transfer. The LaserPage­
Sync pulse width must be at least as wide as the internally derived video 
clock period. 

Note: PI0(3) must be programmed appropriately for LaserVideoClkln 
to be fully functional. 
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Register Definitions 
Table 17.1 lists the addresses and descriptions for the Laser Printer 

Video Controller Registers. Note that Big Endian software must offset 
these addresses by b'lO (Ox2), except for the Video Data Register, which is 
a full 32-bit wide register. 

Phys. Address Description 

OxFFFF _EDOO Video Control Register 

OxFFFF _ED04 Video Vertical Skip Count Register 

OxFFFF _EDOS Video Horizontal Skip Count Register 

OxFFFF _EDOC Video Band Line Count Register 

OxFFFF _ED 10 Video Pixel Word Count Register 

OxFFFF _ED20 Video Data Register 

Table 17 .1 Laser Printer Video Controller Registers. 

Laser Video Control Register 

('LaserControlReg') 

2 1 0 
Rev 
Dir Inv PLL 

9 1 1 1 1 1 1 1 

. Figure 17 .2 Laser Video Control Register ('LaserControlReg'). 

Figure 17.2 illustrates the Laser Video Control Register fields. Addi­
tional programming information for these fields is located in Table 17.2, 
Table 17.3, Table 17.4, Table 17.5, Table 17.6, Table 17.7, Table 17.8, 
and Table 17.9. 

Bit Description 

6 Video FIFO is Full 

5 Request Size 

4 Reset FIFO 

3 Last Band 

2 Reverse Video Stream Direction 

1 Inverse Video 

0 PLLOn 

Table 17.2 Laser Video Control Register ('LaserControlReg') Bit Assignments. 

Video FIFO Full 

Value Meaning 

'l' Video FIFO is full 

'O' Video FIFO is not Full (default) 

Table 17.3 FIFO Full Field. 
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Request Size ('ReqSize') 
Request size affects the Laser FIFONotFulllnt flag as to how many 

entries are used for the flag. 

Value Action 

'l' Reserved. 

'O' Request data when 1 or more slots are empty (default). 

Table 17.4 Request Size Field. 

Reset FIFO ('ResetFifo') 
A FIFO reset requires the following two steps: 
1. Writing a 'l.' to reset the FIFO. 
2. Writing a 'O.' to 'un' reset the FIFO. 

Value Action 

'l' When written with' l', clears video FIFO to empty. 

'O' No action (default). 

Table 17.5 Reset FIFO Field. 

Last Band ('Last') Field: 
Last Band Field must be set between pages before a new page sync. 

Value Action 

'l' Enable Interrupt at the end of this Last Band. 

·o· No action (default). 

Table 17.6 Last Band ('Last') Field Encoding. 

Video Direction ('Dir') Field: 

Value Action 

'l' Video Stream shifts from MSB to LSB (normal direction). 

Video Stream shifts from LSB to MSB (default) (reverse direc-
·o· tion). 

Note: In the initial version of the R36100, the DMA controller does not 
support the reverse direction; software is responsible for providing data in 
this order. 

Table 17.7 Video Direction ('Dir') Field Encoding. 

Inverse Video Data ('Inv') Field: 

Value Action 

'l' Video Stream data is inverted. 

'O' Video Stream data is normal (default). 

Table 17.8 Inverse Video Data ('Inv') Field Encoding . . 
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Phase Lock Loop Enabled ('PU') Field: 

Value Action 

'I' PLL enabled (video clock = Bx PLL). 

·o· PLL disabled (video clock= LaserVClkln (default). 

Table 17.9 Phase Lock Loop Enabled ('PLL') Field Encoding. 

Laser Video Vertical Skip Register 
('LaserVertSkipReg') 

14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Vertical Skip Count -1 

1 2 13 

Figure 17 .3 Laser Vertical Skip Register ('LaserVertSkipReg') 

0 

The Laser Vertical Skip Register, shown in Figure 17.3, must only be 
altered when the controller is not in the process of vertical skipping. 

Additional programming information for this register is located in 
Table 17.10, Table 17.11, and Table 17.12. 

Bit 

15 

12:0 

Description 

Vertical Skip Disable ('VSDis') 

Vertical Skip Count -1 ('VSCount') 

Table 17.10 Laser Video Vertical Skip Register ('LaserVertSkipReg') 
Bit Assignments. 

Laser Vertical Skip Dis ('VSDis') Field: 
The VSDis Field is used to program the 'O' skip case. 

Value Action 

'l' Vertical Skip is disabled (default). 

·o· Vertical Skip Count is enabled starting with the next page. 

Table 17.11 Vertical Skip Enable ('VSDis') Field Encoding. 

Vertical Skip Count ('VSCount') Field: 
Note the actual down counter is internal and is not accessible by the 

programmer. This Count/Compare register is loaded into the internal 
count register at first VideoClkln after SysReset and at page sync. 

Value Action 

'Ox7FF' Number of Lines to skip at the beginning of a page 1. 

... 

'OxOOO' Skip 1 line (default). 

Table 17.12 Vertical Skip Count ('VSCount') Field Encoding. 
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Laser Video Horizontal Skip Register 
('LaserHorSkipReg') 

14 13 12 11 _1;....;;.o___..;9----""""a_-'-7--""-6 ---'5'-"""""4--"-3_2~_1 ____ """'0 ...... 
Horizontal Skip Count -3 

1 4 11 

Figure 17 .4 Laser Video Horizontal Skip Register ('LaserHorSkipReg'). 

The Laser Video Horizontal Skip Register, shown in Figure 17.4, must 
only be altered when the controller is not in the process of horizontal 
skipping, preferably between pages. Note the actual down counter is 
internal and is not accessible by the programmer. This Count/Compare 
register is loaded into the internal count register during line sync. 

Additional programming information for the fields of this register is 
located in Table 17.13, Table 17.14, and Table 17.15. 

Bit Description ' 

15 Horizontal Skip Disable ('HSDis') 

10:0 Horizontal Skip Count - 4 ('HSCount') 

Table 17 .13 Laser Video Horizontal Skip Register ('LaserHorSkipReg') 
Bit Assignments. 

Horizontal Skip Enable ('HSDisEn') Field: 

Note: Whether or not the HSD Field is on or off, five clocks are 
skipped after LaserLineSync de-asserts. 

Value Action 

'l' Horizontal Skip Count is disabled (default). 

'O' Horizontal Skip is enabled for the next line. 

Table 17.14 Horizontal Skip Enable ('HSDisEn') Field Encoding. 

Horizontal Skip Count ('HSCount') Field: 
Note the actual down counter is internal and is not accessible by the 

programmer. This Count/Compare register is loaded into the internal 
count register during line sync. Therefore, 5+ HSCount +4 pixels are 
skipped. 

Value Action 

'Ox7FF' Number of pixels +4 to skip at the beginning of a line. 

... 
'OxOOO' Skip 1 pixel (default). 

Table 17.15 Horizontal Skip Count ('HSCount') Field Encoding. 
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Laser Video Band Line Count Register 
('LaserBandLineCountReg') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Band Line Count 

1 14 

0 

Figure 17.5 Laser Video Band Line Count Register ('LaserBandLineCountReg'). 

Bit Description 

13:0 Vertical Band Line Count ('BandLineCount'} 

Table 17.16 Laser Video Band Line Count Register ('LaserBandLineCountReg') 
Bit Assignments. 

Band Line (Lines per Band/Page) Count ('BandLineCount') Field: 
The Laser Video Band Line Count Register is shown in Figure 17.5. 

Additional programming information for the fields of this register is given 
in Table 17.16 and in Table 17.17. 

Note: The actual down counter is internal and is not accessible by 
the programmer. This Count/Compare register is loaded into the 
internal count register during page sync and at the end of each band. 
Typically, there are several bands per page. 

Value Action 

'Ox3FFF' Number of lines per band/page (not including vertical skip 

count} -1 . 

... ... 
'OxOOOO' 1 line per band/page (not including vertical skip count} (default}. 

Table 17.17 Band Line (Lines per Band/Page) Count ('BLCount') Field Encoding. 

Laser Video Horizontal Count Register 
('LaserPixelWordCountReg') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Horizontal Word Count -1 

2 13 

0 

Figure 17 .6 Laser Video Horizontal Word Count Register ('LaserHorizPb:elCountReg'). 

Bit Description 

13:0 Video Horizontal Pixel Word Count -1 

Table 17.18 Laser Video Horizontal Pixel Word Count Register 
('LaserPlzelWordCountReg') Bit Assignments. 

Figure 17.6 illustrates the fields of the Laser Video Horizontal Word 
Count Register. Additional programming information for these fields is 
located in Table 17.18 Programming instructions for The Video Vertical 
Pixel Count Field is located in Table 17.19. 
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Video Pixel Word Count ('PixelWordCount') Field: 

Note: The actual down counter is internal and is not accessible by 
the programmer. This Count/Compare register is loaded into the 
internal count register during line sync. If the PixelWordCount field is 
not divisible by 32, then the remaining bits are unidentified. 

Value Action 

Number of words (32 pixels/word) per Line (not including Skip 
'Ox3FFF' Count). 

... ... 
'OxOOOO' 1 word per line (not including Skip Count) (default). 

Table 17.19 Video Vert;ical Pixel Count ('PixCount') Field Encoding. 

Laser Video Data Register 
('LaserDataReg') 

I I 31 Data Reg/FIFO 

32 

Figure 17. 7 Laser Video Data Register ('LaserWordDataReg'). 

The Data Register, shown in Figure 17.7, is written to with a store word 
"sw" instruction (or the OMA equivalent). Figure 17.8 provides a R36100 
Video Interface System example. 

System Example 
Figure 17.8 is an example of an R36100 video interface system. 

VDO 

BD 
VSREQ 
SBSY (J) 

0 

PPRDY .ig 
RDY ~ 
STS (J) 

CPRDY c: ·c;, 
VSYNC c: w 
PANT 
CBSY 
CCLK 
CMD 
PCLK 

3085 drw 05.1 

Figure 17.8 R36100 Video Interface System Example 
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Reset Initialization and 
Input Clocking 

Introduction 

Chapter 18 

This chapter discusses the reset initialization sequence required by the 
R36100. Also included is a discussion of the configuration mode select­
able features of the processor and of the software requirements of the 
boot program. 

There are a number of selectable features in the R36100. These mode 
selectable features are determined by the polarity of the appropriate reset 
configuration mode inputs when the rising edge of SysReset occurs. 

Reset Timing 
The R36 l 00 requires a very simple reset sequence. There are only two 

concerns for the system designer: 
• That the set-up time and hold requirements of the reset configuration 

mode feature inputs with respect to the rising edge of SysReset are 
met. · 

• That the minimum SysReset pulse width is satisfied. 

Reset Configuration Mode Features 
The R36 l 00 has features that are determined at ·reset time. This is 

achieved by using a latch internal to the CPU: this latch samples the 
contents of the reset mode feature bus at the negating edge of SysReset. 
The encoding of the mode selectable features on the reset mode feature 
bus is described in Table 18.1. 

Pin Mode Feature 

ExcSint(O) BigEndian/LittleEndian 

ExcSint(l) BootProm8 

ExcSint(2) Boo1:Prom 16 

Table 18.1 R36100 Reset Configuration Mode Features 

Reset Configuration Mode Pin Descriptions 

Exception Signals 

SysReset Input 
System Reset is a master processor reset active-low-input signal that 

initializes the processor. The processor's optional features are established 
during the last cycle of reset, using the reset configuration mode inputs 
from EXCSint(2:0). 

Internally to .the chip, SysReset is further hardened (relative to the 
R36100) to accept slow rise times by the use of hysteresis and the elimi­
nation ofthe high pass TIL-level filtering. 

ExcSintC2:0l Input 
Exception Synchronized Interrupt: These signals are the same as the 

R305 l Slnt(2:0) signals except for the Reset Configuration Modes. 
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Value Description 

'11' 32-bit wide (non-interleaved) Boot Prom 

·10· 8-bit wide Boot Prom 

'01' 16-bit wide Boot Prom 

·oo· 64-bit wide (interleaved 32-bit wide) Boot Prom 

Table 18.2 Boot Prom Reset Configuration Modes for ExcSintN(2:ll pins. 

Note: The values of the Reset Initialization Vector for the Boot PROM 
are inverted relative to the internal size field in the configuration 
register of the Memory Controller. 

BigEndian 
Use Big Endian Addressing: if asserted (active high), the processor will 

operate as a big-endian machine, and the RE bit of the status register 
would then allow little-endian tasks to operate in a big-endian system. lf 
negated (inactive low), the processor will operate as a little-endian 
machine, and the RE bit will allow big-endian tasks to operate on a little­
endian machine. 

BootProm8 
8-bit Boot PROM Mode. lf asserted (active low). this mode will cause the 

port size mapping register to initialize all memory sub-regions to 8-bit 
ports instead of 32-bit ports. Thus an 8-bit boot PROM can be used to 
initialize the R304 l. This mode can only be asserted if BootFrom 16 is de­
asserted. Table 18.2 shows the encoding of this bit at reset. 

BootProm16 
16-bit Boot PROM Mode: if asserted (active low), this mode will cause 

the port size mapping register to initialize all memory sub-regions to 16-
bit ports instead of 32-bit ports. A 16-bit boot PROM can be used to 
initialize the R304 l. This mode can only be asserted if BootFrom8 is de­
asserted. Table 18.2 shows the encoding of this bit at reset. 

R3000A Equivalent Modes 
The R3000A features a number of modes, which are selected at Reset 

time. Although most of those modes are irrelevant. a number of equiva­
lences can be made: 

• IBlkSize = 4 word refill. 
• DBlkSize = 1 or 4 word refill, depending on the DBlockRefill mode as 

selected in the CPO Cache Configuration register. 
• Reverse Endianness capability enabled. 
• Instruction Streaming enabled. 
• Partial Word Stores enabled. 
Other modes of the R3000A pertain primarily to its cache interface, 

which is incorporated within the R36 l 00 and transparent to users of this 
processor. 

Reset Behavior 
While Reset is asserted, the processor maintains its interface in a state 

that allows the rest of the system to also be reset. Specifically: 
• SysClk operates at one-half the Clkln frequency. 
• SysData() is tri-stated 
• SysALEn is driven de-asserted (high). 
• Control signals are driven de-asserted (high). 
• SysAddr() and SysDiag functions are driven (value undefined). 
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The R36 l 00 samples for the negation of SysReset relative to a falling 
edge of SysClk. On a rising edge of SysClk, 6 cycles after the negation of 
SysReset is detected, the processor initiates a read request for the 
instruction located at the Reset Exception Address Vector. These cycles 
are a result of: 

• SysReset input synchronization performed by the CPU, The SysReset 
input uses special synchronization logic, thus allowing SysReset to be· 
negated asynchronously to the processor. This synchronization logic 
introduces a two cycle delay between the external negation of 
SysReset and the negation of SysReset to the execution core. 

• Internal clock cycles in which the execution core flushes its pipeline, 
before it attempts to read the exception vector. 

• One additional cycle for the read request to propagate from the 
internal execution core to the read interface, as described in Chapter 
8. 

Boot Software Requirements 
Basic mode selection is performed using hardware during the reset 

sequence, as discussed in the mode initialization section. However, there 
are certain aspects of the boot sequence that must be performed by soft­
ware. 

The assertion and subsequent negation of reset forces the CPU to begin 
execution at the reset vector, which is physical address OxlFCO_OOOO. 
This address resides in uncached, un-mapped memory, and thus does 
not require that the caches be initialized for the processor to execute boot 
code. 

The processor must perform the following activities during boot: 
• Initialize the CPO Status Register. The processor must be assured of 

having the kernel enabled to perform the boot sequence. Typically, 
a'mtcO rx, CO_SR' instruction is one of the first few instructions in the 
boot sequence. Specifically, co-processor usable bits, and cache 
control bits, must be set to the desired value before any data refer­
ences (cached or uncached). diagnostics or initialization occur. 

• Initialize the CPO Configuration Registers. The software should decide 
on the Cache Configuration, Port Sizes, and Bus Control during 
initialization. 

• Initialize the caches. The processor must determine the sizes of the 
on-chip caches, and flush each entry, as discussed in Chapter 3. This 
must be done before the processor attempts to execute cacheable 
code. 

• Re-initialize CPO Registers. The processor should establish appro­
priate values in various CPO registers, including: 
- The IM bits of the status register. 
- The BEV bit. 
- Initialize KUp/IEp so that user state can be entered using a RFE 

instruction. 
• Initialize on-chip memory and 1/0 controllers. The boot software 

should establish the appropriate timing parameters, control options, 
timer values, PIO uses, etc., as appropriate to the particular system. 

• Enter User State. 
Branch to the first user task and perform an RFE to enter the user 

mode. 

Detailed Reset Timing Diagrams 
The timing requirements of the processor reset sequence are illustrated 

below. The timing diagrams reference AC parameters whose values are 
contained in the R36100 data sheet. 
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Reset Pulse Width 
There are two parameters to be concerned with: the power on reset 

pulse Width and the warm reset pulse width. The minimum number of 
clock cycles for a warm-reset depends on whether the system relies on the 
internal pull-ups of the mode-vectors, or if they are actively drtven. If 
using the internal pull-ups, a considerably longer time must be allowed, 
since the pull-up values are rather weak. 

Figure 18. 1 illustrates the power on reset requirements of the R36 l 00 
family. And Figure 18.2 illustrates the warm reset requirements of the 
processor. 

Mode Initialization Timing Requirements 
The mode initialization vectors are sampled by an internal transparent 

latch, whose output enable is directly controlled by the SysReset input of 
the processor. The internal structure of the processor is illustrated in 
Figure 18.3. As illustrated in Figure 18.4, the mode vectors have a set-up 
and hold time with respect to the rtsing edge of SysReset. 

Vee 

Figure 18.1 Cold Start 

SysClkln 

Figure 18.2 Warm Reset 
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Figure 18.3 Configuration Mode Initialization Logic 
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Figure 18.4 Mode Vector Timing 
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Reset Setup Time Requirements 
The reset signal incorporates special synchronization logic that allows 

it to be driven from an asynchronous source. This allows the processor 
SysReset signal to be derived from a simple circuit, such as an RC 
network, with a time constant long enough to guarantee that the reset 
pulse width requirement is met. 

Such a system should buffer the RC circuit such that a sufficiently fast 
monotonic rise time is generated which.is capable of synchronously reset­
ting any external state machines and logic at the same time as resetting 
the CPU. 

~~--The SysReset set-up time parameter can be thought of as the amount 
of time SysReset must be negated before the rising edge of SysClk, for 
guaranteed recognition. Failure to meet this requirement will delay the 
internal recognition of the end of reset by one clock cycle. This does not 
affect the timing of the sampling of the mode initialization vectors. 
Figure 18.5 illustrates the set-up time parameter of the R36100. 

Clkln Requirements 
The input clock timing requirements are illustrated in Figure 18.6. The 

system designer does not need to be explicitly aware of the timing rela­
tionship between Clkln and SysClk. Note that SysClk is driven even 
during the SysReset period as long as Clkln is provided. 

SysClk 

SysReset ----------------"'• t25 

Figure 18.5 Reset Timing 

t22 

{ :f z ' / " SvsClkln 
t21 

120 

1 ~ ~ ~ !32 133 

!sys 

Figure 18.6 R36100 Clocking 
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Integrated Device Technology, Inc. 

Introduction 
This chapter discusses features included to facilitate debugging of 

R36100-b~sed systems. These features are intended to be used by an in­
circuit emulator, in-circuit tester, board level tester, logic analyzer, hard­
ware modeler, or similar tool. 

Features 
• Hardware trace/halt support, cache write suppression, and KO pres­

ervation 
• Cause register write option of the exception code bits (CPO) 
• Instruction stepping support via virtual address debug trace watch 

register 
• The ability of the processor to have instruction and data cache misses 

forced, thus allowing all internal cache accesses to be displayed on 
the bus interface. 

• The ability to tri-state all output pins including SysClk, thus allowing 
an in-circuit emulator or tester to drive and control the output pins 
directly. 

• The ability to deterministically set the phase relationship of the 
SysClk output relative to the Clkln input. This feature allows board 
level testers and hardware modelers to control the SysClk output. 

• The ability to distinguish data and instruction accesses, allowing logic 
analyzers to do instruction disassembly. 

• A software breakpoint instruction. 
Note: The features described in this chapter are intended for initial 
debug or production testing rather than for use in an end-user system. 
The following are several debug/ emulator hooks included in the 

normal functioning chip: 
• tri-state-able outputs 
• tracepoint register 
• extended CPO cache configuration register 
• JTAG output scan path 

Tri-State-able Outputs 
The tri-state-able outputs feature uses a dedicated input pin that if 

asserted causes all outputs (including SysClk) on the chip to tri-state. 
This feature is used in in-circuit manufacturing tests and by in-circuit 
emulators with non-socketed target CPUs. 

Tracepoint Registers 
The tracepoint registers consist of two memory mapped virtual address 

registers and a control register. When enabled through the control 
register, the tracepoint registers cause an exception when the virtual 
address register has the same value as the internal ALU stage Program 
Counter (PC). When the exception occurs, a status/cause bit in the 
control register is set so that software can figure out what caused the 
exception. Tracepoints in a delay slot will set the BD CPO Cause Register 
bit as expected; however, it is up to the software to jump past the delay 
slot correctly (by subtracting 4 and re-executing the branch). 
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Extended CPO Cache Configuration Register 
The CPO Cache Configuration Register, as described in an earlier 

section, contains several software controllable Force Cache Miss features 
that allow logic analyzers to interface to the R36100. 

cause and EPC Register Writes " 
The R36100 adds a control bit; which if asserted, enables writes to the 

CPO Cause register cause field and the CPO EPC. 

JTAG Scan Path 
All the inputs and outputs are boundary scannable. 

Features specific to debug/emulators 
It is envisfoned that operating system debug kernels always echo MTCO 

writes. Addresses are reserved in a scheme that frames the following 
registers: 

• 32 General Purpose Registers. 
• 32 CPO Registers (only 16 presently used for R3000 systems). 
• 64 CPI Floating Point Registers (only 32 presently used for R3000 

systems). 

Physical 
Address Register 

FFFF_8F68 K0$26 

FFFF_8F6C Kl $27 

FFFF_8F9C CPO $3 Config 

Table 19.lReserved Emulator Addresses. 

Pin Descriptions 

Debug/emulator and Diagnostic Signals 

DiagCache/UnCache Output 
Diagnostic Cached versus Uncached and Burst Miss Address 3: An 

output signal specifying cacheability type attribute of external system bus 
transactions. Signal is low during Uncached references, high during 
Cached ones. During the second clock of burst reads, outputs the miss 
address 3. The first and remainder clocks output cached versus 
uncached. 

Diaglnst/Data Output 
Diagnostic Instruction versus Data Status and Burst Miss Address 

2: An output signal specifying data type attribute of external system bus 
transactions. Signal is low during Instruction references, high during 
Data ones. During the second clock of burst reads, outputs the miss 
address 2. The first and remainder clocks output instruction versus data. 
Internal OMA transactions are always data transactions. 

DiagRun Output 
Diagnostic Run: A pseudo-synchronized active low output version of 

the internal CPU core RunN signal. 

DiagBranchTaken Output 
Diagnostic Branch Taken: !\.pseudo-synchronized active low output 

signal·indicating when a branch is taken (same as the R3041A). 
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DiagJRorExe Output 
Diagnostic Jump Register or Exception: A pseudo-synchronized 

active low output signal indicating when a jump register instruction is 
executed or an exception is taken. 

DiaglnternalWr Output 
Diagnostic Internal Resource Write: An active low output signal indi­

cating that an MTCO instruction to register 3 was executed. This signal is 
used to indicate to the debug/ emulator that it may want to interrogate 
the R36100 to find out if a control register that may have an effect on 
debug/ emulator interpretation was altered. 

DiagTriState Input 
Diagnostic Tri-State: An input signal that when asserted low causes 

all outputs to tri-state. Can be used to: 
1. Disable target board CPU during emulation. 
2. Disable CPU during in-circuit manufacturing testing. 

DiaglnstCacheWrDis Input 
Diagnostic Instruction Cache Write Disable: ~An active low input 

signal that disables instruction cache misses from updating the instruc­
tion cache. Meant to be asserted after DiagFICM and an instruction miss. 

DiagFCM Input 
Diagnostic Force Instruction and Data Cache Miss: An active low 

input signal causing all instructions and data loads (except internal 
partial word store reads) to miss the cache and do an external system bus 
read. In this mode no newly initiated read cache misses are written into 
the cache. During the assertion of DiagFCM, internal generation of 'AckN' 
is disabled. 

Note: Although emulators typically assert this pin during functional 
operation, the non-emulator user should either assert or not assert 
this pin during power-up, and leave it continuously asserted or not 
asserted. 

DiaglntDis Input 
Diagnostic Interrupt Disable: An active low input signal when 

asserted, causes all external and internal interrupts to be disabled. 

DiagNoCS Output 
Diagnostic No Chip Select: An active low input signal asserted 

concurrent with SysALEn indicating that no external or internal chip 
select was activated for this read or write. 

DiaginternalDmaBusGnt Output 
Diagnostic Internal DMA Channel Bus Grant: An active low output 

signal asserted whenever one of the four internal OMA channels receives 
a bus grant. This signal can be gated with a peripheral chip select to 
distinguish between a peripheral control register access versus a OMA 
access. 
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JTAG Signals 

JtagClkln (TCLK) Input 

JtagModeSelect (TMODE) Input 

JtagDataln (TDI) 

JtagDataOut (TDO) 

JtagReset (TRES*) 

Input 

Output 

Input 

Chapter 19 

See IEEE Specification 1149, "Standard Test Access Port and Boundary 
Scan Architecture" for more information on the specification of these 
signals. At a minimum, if JTAG is unused in the system application, 
TMODE must be pulled/tied high for at least 5 TCK rising edges and/or 
TRES* must be pulled/tied low in order to ensure that the JTAG circuitry 
is properly reset into an inactive state. TRES* must be pulled/tied low 
and TMODE must be pulled/tied high at all times after SysReset is 
asserted. 

The R36100 supports the following JTAG Instructions: EXTEST; 
BYPASS; and SAMPLE/PRELOAD. 

Register Descriptions 
Note that Big Endian software must offset these addresses by b'IO 

(Ox2). 

Phys. Address Description 

OxFFFF_E500 Tracepoint Control Register 

OxFFFF_E504 Debug Control Register 

OxFFFF_E510 TraceLSB(O) Address Register 

OxFFFF_E514 TraceMSB(O) Address Register 

OxFFFF_E520 TraceLSB(l) Address Register 

OxFFFF_E524 TraceMSB(l) Address Register 

Table 19.2 Debug Interface Register Address Assignments 

MSB Debug Tracepoint Address Register 
LSB Debug Tracepoint Address Register 
('DebugTraceAddrReg') 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

l MSB Tracepoint Virtual Address Bits 31-16 I 
16 

Figure 19.1 Debug Tracepoint Address Register ('MSB DebugTraceAddrReg'). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

· LSB Tracepoint Virtual Address Bits 15:2 I 'O' 

14 2 

Figure 19.2 Debug Tracepoint Address Register ('LSB DebugTraceAddrReg'). 
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When the Debug Tracepoint Virtual Address Register MSB and LSB 
matches the internal program counter (ALU pipeline stage). and the 
feature is enabled via the debug tracepoint control register, an exception 
is taken and a debug tracepoint control register cause bit is set. 

Bit Description 

15:2 Tracepoint Virtual Address 

1:0 Reserved ·o· 

Table 19.3 Debug Tracepoint Address Register ('DebugTraceAddrReg') 
Bit Assignments. 

Debug Tracepoint Control Register 
('DebugTraceControlReg') 

15 14 13 12 11 10 9 8 3 2 1 0 
CTP1 CTPO TP1 TPO 

12 1 1 1 1 

Figure 19.3 Debug Tracepoint Control Register ('DebugTraceControlReg'). 

The Debug Tracepoint Control Register is used to access and control 
tracepoint and single step functions. 

Bit Description 

15:4 Reserved ·o· 
3 CTPl 

2 CTPO 

1 TPl 

0 TPO 

Table 19.4 Table Debug Tracepoint Control Register ('DebugTraceControlReg') 
Bit Assignments. 

Reserved Low ('O') Field: 
Must be written to 'O' for future compatibility. Value when read is unde­

fined. 

Cause is Tracepoint ('CTP') Field: 
After getting an exception, if the CTP field is found to be an active 'l ', 

the exception handler should acknowledge the exception by writing a 'O' 
to the CTP bit. There are two fields: branch taken/branch not taken'. 

Value Action 

'l' Cause of exception is Tracepoint. 

·o· Cause of exception is not Tracepoint (default). 

Table 19.5 Cause is a Tracepoint ('CTP') Field Encoding. 
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Tracepoint ('TP') Field: 

Value Action 

'l' Tracepoint On. Forces CPU to allow tracepoint register to acti-
vate if the Program Counter matches the Tracepoint Address 
Register. 

·o· Tracepoint Off (default). 

Table 19.6 Tracepoint Enable ('TP') Field Encoding. 

Debug Control Register 
('DebugControlReg') 

15 14 13 12 11 10 9 8 

15 

7 6 5 4 

Figure 19.4 Debug Control Register ('DebugControlReg'). 

Bit Description 

15:1 Reserved ·o· 
0 Wr 

1 

Table 19. 7 Debug Control Register ('DebugControlReg') Bit Assignments. 

Reserved Low ('O') Field: 

0 

1 

Must be written to 'O' for future compatibility. Value when read is unde­
fined. 

Writabillty ('Wr') Field: 

Value Action 

'l' Allow CPO Cause Bits and EPC Register to be written. 

·o· CPO Cause Bits and EPC Register are read only. 

Table 19.8 Writability ('Wr') Field Encoding. 
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SysClk 

Sys Reset 

SysClk 

SysReset ----• 
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Initializing SysClk for Test 
Another feature for board level testing is the ability to initialize the 

phase of SysClk to its high phase. A low to high transition on Reset will 
cause the internally synchronized (delay of less than or equal to 2 clocks) 
version of Reset to always set SysClk high during its next phase. Thus the 
state of SysClk can be deterministically controlled within a known 
number of Clkln transitions. The two cases are shown in Figure 19.5 and 
in Figure 19.6. 

t33 

Figure 19.5 R36100 SysClk Phase Initialization Case A 

t25 t33 

Figure 19.6 R36100 SysClk Phase Initialization Case B 

Using Diag for Instruction Disassembly 
The R36100 provides a Diagnosis pin which during its data phase 

outputs whether a read transaction is the result of an instruction fetch or 
the result of a data fetch. This information is independent of the informa­
tion given during the address phase of whether or not the read was a 
result of a cached or uncached read. Note that this pin is undefined on 
writes; however, by necessity all writes must be data writes. 
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