I

NTEGRATED

DEV

T

fums

E

TECHNOLOGY

N



i
frEm
\

dt

Integrated Device Technology, Inc.

L wnn
g

IDT79R36100 "
Integrated RISController

Hardware User’'s Manual

Version 1.1
December 1995

2975 Stender Way, Santa Clara, California 95054
Telephone: (800) 345-7015 ¢ TWX: 910-338-2070 » FAX: (408) 492-8674
Printed in U.S.A.
©1995 Integrated Device Technology, Inc.




Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications
at any time, without notice, in order to improve design or performance and to supply the best possible
product. IDT does not assume any responsibility for use of any circuitry described other than the
circuitry embodied in an IDT product. The Company makes no representations that circuitry de-
scribed herein is free from patent infringement or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent, patent rights or other
rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life sup-
port devices or systems unless a specific written agreement pertaining to such intended use is exe-
cuted between the manufacturer and an officer of IDT.

1. Life support devices or systems are devices or systems which (a) are intended for surgical implant
into the body or (b) support or sustain life and whose failure to perform, when properly used in ac-
cordance with instructions for use provided in the labeling, can be reasonably expected to result in a
significant injury to the user. v

2. A critical component is any components of a life support device or system whose failure to perform
can be reasonably expected to cause the failure of the life support device or system, or to affect its
safety or effectiveness.

The IDT logo is a registered trademark, and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port,
FLEXI-CACHE, Flexi-PAK, Flow-thruEDC, IDT/c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, PalatteDAC, REALS,
R3041, R3051, R3052, R3071, R3081, R36100, R3721, R4600, R4650, R4700, RISController, RISCore, RISC Subsystem, RISC Windows,
SARAM, SmartLogic, SyncFIFO, SyncBiFIFO, SPC, TargetSystem and WideBus are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark, and RISCompiler, RISComponent, RISComputer, RISCware, RISC/os, R3000, and R3010 are trademarks
of MIPS Computer Systems, Inc. Postscript is a registered trademark of Adobe Systems, Inc. AppleTalk, LocalTalk, and Macintosh are
registered trademarks of Apple Computer, Inc. Centronics is a registered trademark of Genicom, Inc. Ethernet is a registered trademark
of Digital Equipment Corp. PS2 is a registered trademark of IBM Corp.




N About This Manual

‘:5

Integrated Device Technology, Inc.

This manual provides a description of the functional operation of the
IDT79R36100 Integrated RISController™.

Summary of Contents

Chapter 1, “Overview,” contains an overview of the R36100 micropro-
Cessor. : ‘

Chapter 2, “Instruction Set Architecture,” contains an overview of
the MIPS-1 architecture set and discusses the programmers’ model for
this device.

Chapter 3, “Cache Architecture,” describes the fundamentals of
general cache operations, as well as the particular organization of the on-
chip caches of the R36100.

Chapter 4, “Virtual to Physical Address Translation and Address
Map,” describes the operating states of the processor, as well as the
virtual to physical address translation mechanisms provided in the
R36100.

Chapter 5, “Coprocessor 0 Register Set,” describes the implementa-
tion of CPO found on the R36100, which are similar to those of the rest of
the R30xx family.

Chapter 6, “Interruption and Exception Handling,” discusses excep-
tion handling issues in R36100-based systems, including software exam-
ples of exception handlers.

Chapter 7, “System Bus Interface Unit Overview,” provides an over-
view of the operation of the execution core, as well as operation of the
various memory controllers during both external transactions and
internal peripheral transactions.

Chapter 8, “Memory Controller,” provides an overview of the memory
controller interface and a complete description of the signal pins and their
timing.

Chapter 9, “I/O Controller,” provides an overview of the 1/0
controller interface, a description of the signal pins and their timing, and
a discussion of the relationship between the interface and typical hard-
ware 1/0 devices.

Chapter 10, “DRAM Controller,” provides an overview of the DRAM
controller interface, a description of the signal pins and their timing, and
a discussion of the relationship between the interface and typical external
hardware DRAM systems.

Chapter 11, “Direct Memory Access (DMA) Controller,” provides an
overview of the DMA controller interface, a description of the signal pins
and their timing, and a discussion of the relationship between the inter-
face and typical internal and external hardware DMA systems.

Chapter 12, “Parallel Input/Output (PIO),” provides an overview of
the PIO controller interface, a description of the signal pins and their
timing, and a discussion of how PIOs relate to typical internal and
external systems.

Chapter 13, “Peripheral Expansion Interrupt Controller,” provides
an overview of the PIO controller interface, a description of the signal pins
and their timing, and a discussion of how expansion interrupts relate to
typical internal and external systems.
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Chapter 14, “Timers,” provides an overview of the Timer program-
ming interface, a description of the signal pins and their waveforms, and
a discussion of how the timers relate to typical internal and external
systems.

Chapter 15, “Serial Ports,” provides an overview of the serial port
register interface, a description of the signal pins, and a discussion of
various aspects of the signal timing.

Chapter 16, “Bidirectional Parallel Port,” provides an overview of the
bidirectional Centronics parallel port register interface, a description of
the signal pins, and a discussion of various aspects of the signal timing,.

Chapter 17, “Laser Printer Video Port,” provides an overview of the
laser printer video port register interface, a description of the signal pins,

-and a discussion of various aspects of the signal timing,.

Chapter 18, “Reset Initialization and Input Clocking,” discusses
the reset initialization sequence required by the R36100, the configura-
tion mode selectable features of the processor, and boot software require-
ments. :

Chapter 19, “Debug Mode Features,” discusses features that facili-
tate debugging of R36100-based systems.

For More Product Information

Details about the R36100 electrical interface can be found in the
product’s data sheet. Data sheets also include packaging and pin-out
information.

For information about development tools, complementary support
chips, and how to use this product in various applications, refer to IDT’s
online library of data sheets, applications notes, software reference
manuals, and the IDT Advantage Program Guides.

Your local IDT sales representative can help you identify and use these
resources.

iv
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R36100 Device Overview Chapter 1

Introduction

The IDT79R36100 is a highly integrated member of the IDT RISCon-
troller family. The R36100 RISController incorporates the “system on a
chip” integration philosophy and is well-suited for a wide variety of low-
cost embedded applications.

The R36100 RISController contains the general purpose R3000A MIPS
RISC CPU core and substantial amounts of on-chip Instruction Cache
and Data Cache memory. In addition, the R36100 integrates four
Memory Controllers on-chip, including ROM, DRAM, I/0O, and DMA;
printer and data communication peripherals, including an IEEE 1284
Parallel Port, Laser Printer Video Rasterizer, and two Serial Communica-
tions Ports; and standard embedded peripherals, including an Interrupt
Controller, Timers, and Parallel Inputs and Outputs.

This extensive integration simplifies the overall system design and
reduces external component requirements, system cost and development
time.
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Figure 1.1 R36100 Block Diagram
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The R36100 RiSController is software compatible with all of the IDT
RISController family, including the low cost 32-bit R3051 RISControllers
and the R4xxx Orion family of high-performance 64-bit CPUs. Common
instruction set architecture (ISA) enables the same applications software
to be used across a wide variety of price/performance points.

The R36100 RISController integrates four on-chip Bus Controllers,
allowing seamless interfacing with a wide variety of standard memories
and peripherals that include:

Standard page mode DRAMs
EPROMs, FLASH, SRAM, Dual-Port SRAM
FIFOs, SCSI, A/D, and other I/O peripherals
Ethernet, Data Compression, and other coprocessors

The R36100 RISController integrates an IEEE Parallel Port, RS-232C
and Local Talk Serial Ports, and a Laser Printer Video Rasterizer, to serve
printer system applications that include:

¢ Monochrome laser and ink-jet printers

¢ Host based printer cards

e Multi-function laser/fax printer systems

The R36100 RISController integrates asynchronous and synchronous
Serial Ports and multiple Timers, to serve data communications applica-
tions that include:

* Local Area Network (LAN) interface cards

e CSU/DSU SDLC/HDLC line driver cards

¢ Router, switcher, and data compressor cards

The next section contains a list of R36100 features.
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R36100 Feature List

Instruction set compatible with IDT79R3000A, R3051 family, and IDT
Orion family of MIPS RISC CPUs ’

System cost minimized through high level of integration

- RISC CPU )

- Instruction Cache

- Data Cache

- Flexible Bus Interface

Controllers

- Peripheral

Double frequency clock input

24 MIPS/ 42K Dhrystones-2.1 at 25 MHz

3.3V and 5V versions '

Low cost PQFP packaging

On-chip instruction and data caches

- 4KB of Instruction Cache

- 1KB of Data Cache

- Improved Cache Control for fast data movement and cache locking

Flexible bus interface allows simple, low cost designs

- Separate de-multiplexed Address Bus and Data Bus

- Synchronized Bus Interface Timing

- On-chip 4-deep write buffer eliminates memory write stalls

- On-chip 4-word read buffer supports burst or simple block reads

- Programmable port width interface (8-,16-, and 32-bit memory
sub-regions)

On-chip DRAM Controller with Address Multiplexer

- Supports non-interleaved or Interleaved DRAM memory

On-chip Memory and I/0O Controller

- Chip Selects

- Wait-State Generator

- Supports non-interleaved or interleaved ROMs

- Boot from 8-bit, 16-bit, 32-bit or interleaved ROMs
- Supports CS/Rd/Wr 1/0 protocol

- Supports CS/Wr/Strobe 1/0 protocol

- Supports PCMCIA Master protocol

On-chip DMA Controller for autonomous burst data movement

- 4 internal channels

- 2 external channels

- On-chip Parallel I/O pins

- On-chip Interrupt Expansion controller
On-chip Timers

¢ On-chip Serial Port(s)
e On-chip IEEE 1284 Bidirectional Centronics Target Interface

Controller

¢ On-chip Laser Printer Video Raster Engine Interface Controller
e “Reduced Frequency Mode” assists in power-managed and

“Green PC” applications

Complete software support

- Optimizing compilers

- Real-time operating systems
Monitors/debuggers

- Floating Point emulation software

- Printer Page Description Languages

Built-in Debug/Emulator Support
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Device Overview

The R36100 can be viewed as a “system on a chip,” the embodiment of
a discrete system built around the R3000A CPU. Integrating system
functions onto a single chip reduced the system’s cost, size, and power
requirements. This high level of integration also reduced system
complexity and minimized system development time.

Figure 1.1 on page 1 provides a block level representation of the
R36100’s functional units. This section also includes the R36100’s logic
symbol diagram (Figure 1.2 on page 9) and pin description table (Table
1.1 on page 10). A system overview is presented here in Chapter 1 with
more detailed information provided in subsequent chapters.

CPU Core

The R36100 RISController is based on the R3000A CPU core. The
R3000A is a full 32-bit RISC integer execution engine, capable of
sustaining a peak single cycle execution rate by using its five-stage pipe-
line. The CPU core contains an integer ALU unit and bit shifter with a
separate integer multiplier/divider unit, address adder and program
counter generator, and 32 orthogonal 32-bit registers. The R36100
execution core implements the MIPS-I Instruction Set Architecture (ISA).
Therefore, the R36100 is binary compatible with all other MIPS CPU
engines, including the low cost R3051 family and the high-speed R4xxx
Orion family.

System Control Co-Processor

The R36100 RISController integrates an on-chip System Control Co-
processor (CPO). CPO manages the R36100’s exception handling opera-
tions, its virtual to physical address memory mapping, and its various
programmable bus-to-cache interface capabilities. All of these topics are
discussed in subsequent chapters.

The R36100 does not include the optional TLB found in other members
of the IDT RISController family. Instead, the R36100 performs virtual to
physical address mapping identical to that of the R3051 family’s Base
Versions. These Base Version devices still support distinct kernel and
user mode operation but do not require page management software or an
on-chip TLB, leading to a simplified operating system software model and
a lower cost processor.

Clock Generator Unit

The R36100 RISController is driven from a single, 2x-frequency input
clock. An on-chip clock generator unit is responsible for managing the
interaction of the CPU core, caches, and bus interface. The clock gener-
ator unit replaces the external delay line that was required in discrete
R3000A based systems.

For power sensitive or “Green” applications, the R36100 supports a
reduced frequency mode, allowing the system to reduce power consump-
tion in idle periods.
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Instruction Cache
The R36100 RISController 1ntegrates 4kB of on-chip Instruction Cache,

organized with a line size of 16 bytes (four 32-bit entries). This relatively
large cache contributes substantially to the high performance inherent in
the R36100, which allows systems based on the R36100 to achieve high
performance even from low-cost memory systems. The cache is imple-
mented as a direct mapped cache and is capable of caching instructions
from anywhere within the large physical address space. The cache is
implemented using physical addresses and physical tags (rather than
virtual addresses or tags), which does not require flushing on context
switches.

The R36100 implements special features that allow the instruction
cache to be split into halves or quarters; each section then services a
different area of the large address space. This feature enables the system
software to “lock” time critical code—such as router address hash-table
lookup algorithms and interrupt service routines—into one of the halves
or quarters while allowing other tasks to utilize unused areas without
disrupting the time critical code. This technique permits software to
perform instruction cache “locking” without requiring memory manage-
ment support.

Data Cache

The R36100 RISController incorporates an on-chip data cache of 1KB
organized as a line size of 4 bytes (one word). This relatively large data
cache contributes substantially to the high performance of the R36100.
As with the instruction cache, the data cache is implemented as a direct
mapped physical address cache and is capable of mapping any word
within the large physical address space.

The data cache is implemented as a write-through cache, to ensure
that main memory is always consistent and coherent with the internal
cache. To minimize processor stalls due to data write operations, the bus
interface unit incorporates a 4-deep write buffer which captures address
and data at the processor execution rate, allowing the data to be retired to
main memory at a much slower rate without impacting the performance
of the CPU core.

The R36100 contains special features that also allow the data cache to
be split into halves or quarters; each section services a different area of
the large address space. This feature enables the system software to
“lock” time critical data—such as routing address information tables and
the interrupt stack—into one of the halves or quarters while allowing
other tasks to utilize unused portions without disrupting the critical data.
This technique permits software to perform data cache “locking” without
requiring memory management support.

Bus Interface Unit

The R36100 RISController uses its large internal caches to provide the
execution engine with most of its memory bandwidth requirements. The
execution engine pipeline can then perform both 1 instruction fetch and 1
data load/store per clock cycle. And only on the rare occasion of a cache
miss or- on writes does the R36100 require its external bus interface;
therefore, the R36100 is able to use a simple bus interface that connects
to slow, inexpensive memory devices.

The R36100 bus interface uses a de-multiplexed address and data bus.
The bus interface readily connects to memory subsystems that are 8-,
16-, 32-bits wide, and/or interleaved 32-bit.
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The R36100 incorporates a 4-deep write buffer to decouple the speed of
the execution engine from the speed of the memory system. The write
buffers capture and FIFO the processor's address and data information
during internal store operations at the CPU pipeline rate. The write buffer
then presents the bus interface write transactions at the rate the memory
system can accommodate.

During main memory writes, the R36100 can break a large datum—such
as a 32-bit word—into a series of smaller transactions—such as bytes—
according to the width of the memory port being written. This operation is
transparent to the software that initiated the store, ensuring that the same
software is able to run in a variety of memory systems.

The R36100 read interface performs both single datum reads and quad
word reads. To accommodate slower reads, the R36100 incorporates a 4-
deep read buffer FIFO, allowing the external interface to queue up data
within the processor before releasing it to perform a burst fill of the
internal caches.

In addition, the R36100 can perform on-chip data packing when
performing large datum reads—such as quad words—from narrower
memory systems—such as16-bits. Once again, this operation is trans-
parent to - the software, simplifying migration of software to different
memory systems and simplifying field upgrades to wider memory. Since
this capability works for either instruction or data reads, using 8-, 16-, 32-
bit, or interleaved boot PROMs is easily supported by the R36100.

As described throughout this manual, one of the on-chip memory bus

‘controllers services bus transactions. The bus interface unit merely

provides a common translation between these memory bus controllers and
the CPU core.

Memory Controller _

The R36100 RISController uses the on-chip memory controller to glue-
lessly attach external ROM—including FLASH—and/or SRAM in a number
of system configurations. For example, the memory controller supports
interleaved ROM and/or SRAM, 8-bit boot ROM, 32-bit burst ROMs, as
well as an array of simple 32-bit wide EPROMs. Under the control of boot
software, the memory controller integrates all control signals and manages
the access timing and wait-state generation for multiple banks.

DRAM Controller

The R36100 RISController integrates an on-chip DRAM controller. The
DRAM controller directly controls up to four banks of standard page mode
DRAMs in a number of configurations, including systems with varying
densities of DRAM; 32-bit wide, interleaved DRAM; and 16-bit wide DRAM
subsystems.

I/0 Controller

To perform all necessary address decoding and wait-state generation for
external I/O devices, the R36100 RISController has an on-chip 1/0
controller. In addition, the on-chip I/O controller interfaces as a master to
PCMCIA, including support of the large address space required and the
PCMCIA chip-select protocol and timing.

DMA Control and Interface .

The R36100 RISController features on-chip DMA control for internal
peripherals, external peripherals, and external memory. Multiple internal
channels are provided, allowing block moves of data between any combina-
tion of memory and I/O device. Each channel can also be interrupt
controlled so that an 1I/0 peripheral—like the serial port—can regulate the
individual transactions of a block move.

1-6
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The R36100 RISController also supports external DMA masters that
take over the external system bus via a bus request and grant hand-
shake. Once in control, the external DMA master can read and write to
memory, I/0, and internal peripherals via the R36100's bus controllers.

Counter/Timers
The R36100 RISController contains three general purpose timers.

Each timer consists of a 16-bit count register as well as a 16-bit compare
register. The count register resets to zero and then counts upward until it
equals the compare register. When the count register equals the compare
register, the TCN output is asserted and the count is reset back to zero.
To increase the amount of time each timer can handle, the timers use a
common 16-bit prescaler counter. Each timer is programmable to select
a power-of-2 divisor of the prescaler. ,
Using the default mode, each timer can be used as a general purpose
real-time clock. Some special effects include:
¢ Bus timeout timer
Watch dog timer
PWM/square wave/baud rate generator
Gated clock external event counter

PIO Interface

For controlling multi-purpose utility pins, the R36100 RISController
has a Parallel Input/Output (PIO) interface. The PIO pins can be
programmed to act as general purpose inputs or outputs.

Each PIO pin is multiplexed with other controller’s inputs or outputs.
This flexible arrangement allows the system designers to customize
R36100’s resources according to their needs. Therefore, designs needing
a special purpose controller—such as the laser printer video controller—
can allocate the LP Video pins for that purpose; other applications can
use those pins for general purpose inputs or outputs.

Serial Communications Controller

The R36100 RISController integrates a dual channel serial port. This
peripheral controller can perform a variety of synchronous and asynchro-
nous protocols, including RS-232C, LocalTalk, SDLC, and HDLC. To
maximize throughput, the on-chip Serial Port is optionally serviced by the
auto-initiated on-chip DMA controller, which can automatically block
move data to and from the port.

Interrupt Controller

The R36100 RISController integrates an on-chip interrupt controller to
manage both external interrupts and interrupts signaled from the on-chip
peripherals. The interrupt controller speeds interrupt service of the
internal interrupts and assists in interrupt prioritization and nesting as
well as interfacing with the auto-initiated DMA.
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IEEE 1284 Bi-directional Centronics

The R36100 RISController includes an internal IEEE1284 parallel port
peripheral, which implements a true bi-directional Centronics port.
Features include:

8-bit input Target Compatible protocol (for backward compatibility
with Centronics)

Nibble and byte mode output protocol (for backward compatibility
with PCs) "

ECP protocol (for the emerging Laser Printer PC standard)

EPP protocol (for communications applications)

External transceiver interface control pins

Auto-initiated DMA via internal interrupts

Laser Printer Video Interface
The R36100 RISController integrates an on-chip laser printer video/
control interface. This peripheral provides support for the following:

1-bit serial stream laser printer or raster engine interface
On-chip FIFO

Programmable margin widths and page lengths
Auto-initiated DMA via internal interrupts
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Logic Symbol
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Figure Note:
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Figure 1.2 R36100 Logic Symbol
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- Pin Description

Pin Function and Description

System Bus Interface Pins

SysAddr(25:0) I/0 .System Address Bus. Also serves as the DramAddr(13:2) Bus.

SysData(31:0) 1/0 System Data Bus. )

SysClkin Input System Clock Input. Twice (2x) the internal CPU frequency.

SysClk Output | System Clock Output. All other outputs are referenced to this system clock.

SysReset Input System Reset. Initializes entire chip, except for JTAG circuitry.

SysWait Input System Wait. Extends current bus transaction.

SysBusError Input System Bus Error. Terminates current bus transaction.

SysALEn I/0 System Address Latch Enable. Indicates valid address at the beginning of a
bus transaction.

SysBurstFrame I/0 System Burst Frame. First indicates the beginning of a bus transaction.
Then indicates if the bus transaction is a burst and if the next datum is the
last datum.

SysDataRdy Output | System Data Ready. Indicates valid data during each datum of a bus trans-
action (except when SysWait is asserted).

SysRd I/0 System Read. Indicates current bus transaction is a read.

SysWr 1/0 System Write. Indicates current bus transaction is a write.

DRAM Controller Pins

DramRAS(3:0) Output | DRAM Row Address Strobe.
DramCAS(3:0) Output | DRAM Column Address Strobe.
DramRdEnEven Output | DRAM Read Enable for Even FCT245/543 Type Banks. On FCT260 type
banks, it is the read enable for both even and odd banks.
DramRdEnOdd Output | DRAM Read Enable for Odd FCT245/543 Type Banks. On FCT260 Type
‘ banks, it is the path select.
DramWrEnEven Output | DRAM Write Enable for Even Banks.
DramWrEnOdd Output | DRAM Write Enable for Odd Banks.

Memory Controller Pins

MemCS/IoCS(7:0) | Output | Memory or 1/0 Chip Selects. MemCS(0) and optionally MemCS(1) are
' reserved for the Boot PROM. [0CS(6) and/or IoCS(7) are optionally reserved
for the Centronics Port if used. .
MemRdEnEven Output | Memory Read Enable for Even FCT245/543 Type Banks. On FCT260 type
banks, it is the read enable for both even and odd banks.
MemRdEnOdd Output | Memory Read Enable for Odd FCT245/543 Type Banks. On FCT260 Type
\ banks, it is the path select.
MemWrEnEven Output | Memory Write Enable for Even Banks.
MemWrEnOdd Output | Memory Write Enable for Odd Banks.
MemWrEn(3:0) Output Memory Write Enable for each Byte Lane.
IoRdEn/DStrobe Output [/O Read Enable or I/0O Data Strobe.
IoWrEn/RdWr Output 1/0 Write Enable or I/O Read /Write.

Table 1.1 R36100 Pin Descriptions
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Pin Function and Description

DMA Controller Pins v

DmaBusGnt(1:0) Output | DMA Bus Grant. Indicates that the CPU has tri-stated the bus and other
DMA related signals.

DmaBusReq(1:0) Input DMA Bus Request. Indicates that external DMA agent wants bus control.

DmaDone Input DMA Transaction Done.

Serial Port Pins

SerialPCIkIn(1:0) Input Optional Primary Serial Clock Input.

SerialSCIk(1:0) I/0 Optional Secondary Serial Clock Input or Output.

SerialRxData(1:0) | Input Serial Receiver Data Stream.

SerialTxData(1:0) | Output | Serial Transmitter Data Stream.

SerialCTS(1:0) Input Serial Clear To Send.

SerialRTS(1:0) Output | Serial Request To Send.

SerialSync(1:0) 1/0 Serial Frame Sync.

SerialDCD(1:0) Input Serial Data Carrier Detect.

SerialDTR(1:0) Output | Serial Data Terminal Ready.

Timer Pins

Timer TC(2:0)/ 1/0 Timer Terminal Count output or Timer Count Gate Enable input. Terminal

TimerGate(2:0) Count asserts when Timer Count equals 0. Timer Gate enables Counter to
count upward or to stop.

PIO Pins

PIO(31:0) 1/0 Parallel Inputs or Parallel Outputs. Parallel inputs and parallel outputs are

multiplexed with various peripheral inputs and peripheral outputs. If the
peripheral is unused, the input or output pin can be reconfigured to be a
general purpose input or output, respectively.

Bi-directional Centronics Interface Pins

CentStrobe Input Centronics Strobe. In Compatible mode, strobes data into the printer. Has
other uses for other modes.

CentAck Output | Centronics Acknowledge. In Compatible mode, acknowledges a strobe. - Has
other uses for other modes.

CentBusy Output | Centronics Busy. In Compatible mode, delays the Host from sending more
data. Has other uses for other modes.

CentPaperError Output | Centronics Paper Out/Jam Error. In Compatible mode, indicates that the
printer has a paper error when asserted with CentFault Has other uses for
other modes.

CentSelect Output | Centronics Select. In Compatible mode, used to indicate that this printer is
on-line. Has other uses for other modes.

CentAutoFeed Input Centronics Auto Page Feed. In Compatible mode, sends a paper feed to the
printer. Has other uses for other modes.

CentlInit Input Centronics Initialization/Reset. In Compatible mode, resets the printer.

Has other uses for other modes.

Table 1.1 R36100 Pin Descriptions (Continued)
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Pin Function and Description

Bi-directional Centronics Interface Pins (continued)

CentFault Output | Centronics Fault. In Compatible mode, indicates that the printer has a
problem. Has other uses for other modes.

CentSelectln Input Centronics Select In. In Compatible mode, indicates that the Host wants to
select this printer on a shared cable. Has other uses for other modes.

CentHostStrobe Output Centronics Host Strobe. Used to latch Host data on the external FCT952/
374 data transceiver during a Host write.

CentHostOEn Output | Centronics Host Output Enable. Used to enable the external FCT952/374

data transceiver during a Host read. :

Laser Engine Interface Pins

LaserVideoData Output | Laser Video Data Stream.
LaserVideoClkIn Input. Laser Video Clock Input. Accepts either the (1x) Video Data Stream
. frequency or 8 times (8x) the PLL frequency.
LaserLineSync Input Laser Line Sync. Indicates that the laser drum is ready to start accepting
data for a new line.
LaserPageSync Input Laser Page Sync. Indicates that the laser drum is ready to start a new page.

Debug/Emulator Interface Pins

JtagClkIn Input JTAG Clock Input (TCK). Test mode serial boundary scan input clock.

JtagModeSelect Input JTAG Mode Select (TSEL). Test mode serial boundary scan command data.
In normal operating mode, JtagModeSelect should be left unasserted high.

JtagDataln Input JTAG Data In (TDI). Test mode serial boundary scan register data input.

JtagDataOut Output | JTAG Data Out (TDO). Test mode serial boundary scan register data
output. ’

JtagReset Input JTAG Reset (TRES*). Resets the JTAG test circuitry. Does not reset any
other chip functions. In normal operating mode, JtagReset should be left
asserted low.

Diagnostic Pins

DiagC/UnC Output | Diagnostic Cached versus Uncached. On read bus transactions indicates
whether the read is cached or uncached.

Diaglnst/Data Output | Diagnostic Instruction versus Data. On read bus transactions indicates
whether the read is for instructions or data.

DiagRun Output Diagnostic Run. Indicates an internal pipeline run cycle. This pin has
“pseudo-synchronous” timing.

DiagBranchTaken | Output | Diagnostic Branch Taken. Indicates that a branch, jump, or exception has

: ) been taken. This pin has “pseudo-synchronous” timing.

DiagJRorExe Output | Diagnostic Jump Register or Exception occurring. Indicates that a jump
register or exception is executing. This pin has “pseudo-synchronous”
timing.

DiaginternalWr Output | Diagnostic Internal Write. Indicates that a MTCO to CPO register $3 is

occurring.

Table 1.1 R36100 Pin Descriptions (Continued)
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Pin Function and Description

Diagnostic Pins (continued)

DiaginstCache Input Diagnostic Cache Write Disable. Disables writes to the instruction and data
WrDis cache. This pin has “pseudo-synchronous” timing and is not recommended

for functional use.

DiagTriState Input Diagnostic Tri-State all outputs. All outputs are tri-stated including SysClk
This pin is asynchronous such that tri-stating asserts or de-asserts external
output enables immediately.

DiagFCM Input Diagnostic Force Cache Miss. This pin has “pseudo-synchronous” timing.
If used for functional board tests, it is recommended that it be (de-)asserted
statically at reset time and left (de-)asserted.

DiagIntDis Input Diagnostic Interrupt Disable.

DiagNoCS Output | Diagnostic No Chip Select. No internal or external chip select has occurred
for the current bus transaction, therefore an external state machine should
handle the bus transaction.

DiaginternalDMA | Output | Diagnostic Internal DMA. Asserts whenever any of the Internal DMA chan-
nels is generating the current bus transaction.

Exception Handling

ExcSInt(2:0) Input Exception Synchronized Interrupts. Also used as the reset initialization
vector for 2:Boot16, 1:Boot8, and 0:BigEndian modes.

ExcInt(4:3) Input Exception Interrupts.

ExcSBrCond(3:2) | Input Exception Synchronized Branch Condition inputs.

Power/Ground Pins

VvCC Input Power pin. All power pins must be connected. 5V or 3.3V depending on
part type.
Gnd Input Ground pin (VSS). All ground pins must be connected. OV.

Table 1.1 R36100 Pin Descriptions (Continued)
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System Usage

The IDT R36100 RISController is specifically designed to easily imple-
ment low-cost memory systems. Typical low-cost memory systems use
EPROMs and DRAM as well as application specific peripherals. Some
embedded systems also optionally contain or substitute DRAM with static
RAMSs.

Figure 1.3 illustrates the low-system cost inherent in the R36100. For
this example, which is typical of a low-cost laser printer, a 32-bit PROM
interface is used, due to the size of the PDL interpreter. Other embedded
systems could optionally use an 8-bit or 16-bit PROM, or an interleaved
64-bit interface. '

A 16-bit font cartridge interface is provided through PCMCIA for add-in
cards, and a 32-bit page buffer DRAM is used for high-resolution. In this
example, a field or manufacturing upgrade to a larger page buffer is
supported by the boot software and DRAM controller. Such a system
features a very low entry price, with a range of field upgrade options. Note
that the performance of the R36100 allows software frame buffer
compression to be effective in reducing system DRAM while maintaining
expected performance. '

' l 16-bit FONT ,
LAN f Add-in
h FONT ROM|| Hard Disk ;
cartridge cartridge || cartridge cartridges
e

i

DRAM Printer Controller Card
; PCMCIA
Font ROM | | PDL ROM DRAM | é\gdl;ler; Adapter
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BERIAL VIDEO CENT PIO 10 Co-processor
Video Bidir. }
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Figure 1.3 R36100-based Printer System
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Development Support

The IDT R36100 RISController is supported by a rich set of develop-
ment tools through the AdvantagelDT development tools program.

Figure 1.4 shows an overview of the system development process that
is typically used with the R36100. Tools that allow timely, parallel devel-
opment of hardware and software for R36100 family- based applications
support all phases of R36100 project development.

These are some of the available support tools:

Optimizing compilers from a number of leading compiler vendors.
The IDT/c compiler, based on the GCC/GNU tool chain.

The high-performance IDT floating point library software.

The IDT Evaluation Board, which 1ncludes RAM, EPROM, 1/0, and
the IDT PROM Monitor.

Adobe PostScript™ Page Description Language running on the IDT
RISController family.

The IDT/sim PROM Monitor, which implements a full PROM monitor
(diagnostics, remote debug support, downloading utilities).

IDT/kit (Kernel Integration Toolkit), providing library support and a
frame work for the system run time environment.

Benchmarks

Evaluation Board
Laser Printer
System

Software

Stand-Alone Libraries
Floating Point Library
Cross Development
Tools
Adobe PostScript PDL

IDT/sim device drivers . .
IDT/k“ N LOglC Ana|ySIS

Diagnostics
IDT/sim Monitor
In-circuit Tools
Hardware Remote Debug
Real-Time OS

Hardware Models
General CAD Tools
Evaluation Board
Laser Printer
System

Figure 1.4 Development Support




R36100 Device Overview Chapter 1

Performance Overview

The R36100 RISController achieves a very high performance level that

is based on:

¢ An efficient execution engine. The CPU executes almost all instruc-
tions at a single-cycle rate. Thus, the R36100 achieves over 24 dhry-
stone MIPS performance at 25MHz. By using a traditional 5-stage
pipeline, the performance of the R36100 does not degrade in applica-
tions with a high-degree of data dependency.

e Large on-chip caches. The R36100 contains caches which are
substantially larger than those on the majority of low-cost embedded
microprocessors. These large caches minimize the number of bus
transactions required and allow the R36100 to achieve actual
sustained performance that is very close to its peak execution rate,
even with low cost memory systems.

¢ Autonomous multiply and divide operations. The R36100 features an
on-chip integer multiplier/divide unit which is separate from the
other ALU. This allows the R36100 to perform multiply or divide oper-
ations in parallel with other integer operations, using a single
multiply or divide instruction rather than with “step” operations.

¢ Integrated write buffer. The R36100 features a four deep write buffer,
which captures store target addresses and data at the processor
execution rate and retires it to main memory at the slower main
memory access rate. Use of on-chip write buffers eliminates the need
for the processor to stall when performing store operations.

¢ Burst read support. The R36100 enables the system designer to
utilize page, static or nibble mode RAMs when performing read oper-
ations to minimize the main memory read penalty and increase the
effective cache hit rates.

* Tightly coupled memory system. Integration of on-chip memory
controllers allow system resources to be accessed and managed effi-
ciently for the needs of the execution core.
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The IDT R36100 contains the same basic execution core as the IDT
MIPS R3000A and the IDT R30xx RISControllers. In addition to being
able to run software written for any of these processors, this enables the
R36100 to achieve dramatic levels of performance, based on the efficiency
of the execution engine.

This chapter gives an overview of the MIPS-I architecture implemented
in the R36100, and discusses the programmers' model for this device.
Further detail on the processor software model is found in the "IDT R30xx
Family Software Reference Manual"’, available from IDT. The R36100 is
fully ISA compatible with the R30xx family.

The R36100 is also address map compatible with the base versions of
the R30xx family. However, to reduce system cost, the TLB functions
present in the "E" versions are not available in the R36100; instead, the
R36100 features were selected for minimal device and system cost.

Processor Features Overview

The R36100 has many of the same attributes of the IDT R30xx family,
at a higher level of integration geared to lower system cost. These features
include:

e Full 32-bit Operation. The R36100 contains thirty-two 32-bit
general-purpose registers, and all instructions and addresses are 32
bits.

¢ Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to
achieve an execution rate approaching one instruction per cycle.
Pipeline stalls, hazards, and exceptional events are handled precisely
and efficiently.

¢ Large On-Chip Instruction and Data Caches. The R36100 utilizes
large on-chip caches to provide high-bandwidth to the execution
engine. The large size of the caches insures high hit rates, minimizing
stalls due to cache miss processing and dramatically contributing to
overall performance. Both the instruction and data cache can be
accessed during a single CPU cycle.

e On-chip Memory Management. The R36100 is compatible with the
base versions of the IDT R30xx family, which do not utilize a TLB, but
perform fixed segment-based mapping of the virtual space to physical
addresses. In addition, the R36100 allows kernel software to manage
the system interface, by programming of the on-chip memory control-
lers and peripherals.
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CPU Registers Overview

The IDT R36100 provides 32 general purpose 32-bit registers, an
internal 32-bit Program Counter, and two dedicated 32-bit registers
which hold the result of an integer multiply or divide operation. The CPU
registers, illustrated in Figure 2.1, are discussed later in this chapter.

Note that the MIPS architecture does not use a traditional Program
Status Word (PSW) register. The functions normally provided by such a
register are instead provided through the use of “Set” instructions and
conditional branches. By avoiding the use of traditional condition codes,
the architecture can be more finely pipelined. This, coupled with the fine
granularity of the instruction set, allows the compilers to achieve dramat-
ically higher levels of optimizations than for traditional architectures.

Overflow and exceptional conditions are then handled through the use
of the on-chip Status and Cause registers, which reside on-chip as part of
the System Control Coprocessor (Coprocessor 0). These registers contain
information about the run-time state of the machine, and any exceptional
conditions it has encountered.

General Purpose Multiply/Divide Result
Registers egisters

—m—
== =

$ Proiram Counter
L

Figure 2.1 CPU Registers

Instruction Set Overview

All R36100 instructions are 32-bits long, and there are only three basic
instruction formats. This approach dramatically simplifies instruction
decoding, permitting higher frequency operation. More complicated (but
less frequently used) operations and addressing modes are synthesized by
the compiler/assembler, using sequences of the basic instruction set.
This approach enables object code optimizations at a finer level of resolu-
tion than achievable in micro-coded CPU architectures.

Figure 2.2 shows the instruction set encoding used by the MIPS archi-

tecture. This approach simplifies instruction decoding in the CPU.

The R3000A instruction set (implemented in the R36100) can be

divided into the following basic groups:

* Load/Store instructions move data between memory and the general
registers. They are all encoded as “I-Type” instructions, and the only
addressing mode implemented is base register plus signed, imme-
diate offset. This directly enables the use of three distinct addressing
modes: register plus offset; register direct; and immediate.

* Computational instructions perform arithmetic, logical, and shift
operations on values in registers. They are encoded as either “R-
Type” instructions, when both source operands as well as the result
are general registers, and “I-Type”, when one of the source operands
is a 16-bit immediate value. Computational instructions use a three
address format, so that operations don’t needlessly interfere with the
contents of source registers.

e Jump and Branch instructions change the control flow of a program.
A Jump instruction can be encoded as a “J-Type” instruction, in
which case the Jump target address is a paged absolute address
formed by combining the 26-bit immediate value with the upper four
bits of the Program Counter. This form is used for subroutine calls.
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Alternately, Jumps can be encoded using the “R-Type” format, in which
case the target address is a 32-bit value contained in one of the general
registers. This form is typically used for returns and dispatches.

Branch operations are encoded as “I-Type” instructions. The target
address is formed from a 16-bit displacement relative to the Program
Counter.

The Jump and Link instructions save a return address in General
Register r31. These are typically used as subroutine calls, where the
subroutine return address is stored into r31 during the call operation.

¢ Coprocessor instructions perform operations on the co-processor
set. Coprocessor Loads and Stores are always encoded as “I-Type”
instructions; in the MIPS architecture, co-processor operational
instructions have co-processor dependent formats.

In the R36100, the System Control Coprocessor (CPO) contains regis-
ters which are used in system interface control, cache control, and excep-
tion handling,.

e Special instructions perform a variety of tasks, including movement
of data between special and general registers, system calls, and
breakpoint operations. They are always encoded as “R-Type” instruc-
tions.

|-Type (Immediate)

31 25 21 20 16 15
op rs 3 | immediate

J-Type (Jump)
1 26 25
op | target

R-Type (Register)
31 26 2521 20 16 15 11 10 6 5 0

op s t rd  Wshamt § funct
phere:
op is a 6-bit operation code
s is a 5-bit source register specifier
t is a 5-bit target register or branch condition
immediate | is a 16-bit immediate, or branch or address displacement o |
arge! is a 26-bit jump target address
rd is a 5-bit destination register specifier
nam 1S a o-bit shift amoun
funct is a 6-bit function field

Figure 2.2 Instruction Encoding
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oP Description OP Description
Load/Store Instructions Multiply/Divide Instructions
LB Load Byte MULT Multiply
LBU Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword Unsigned DIVU Divide Unsigned
LW Load Word
LWL Load Word Left MFHI Move From HI
LWR Load Word Right . MTHI Move To HI
SB Store Byte MFLO Move From LO
SH Store Halfword MTLO Move To LO
SW Store Word
SWL Store Word Left Jump and Branch Instructions
SWR Store Word Right dJ Jump
JAL Jump and Link
Arithmetic Instructions JR Jump to Register
(ALU Immediate) JALR Jump and Link Register
ADDI Add Immediate BEQ Branch on Equal
ADDIU | Add Immediate Unsigned BNE Branch on Not Equal
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal
SLTIU Set on Less Than Immediate to Zero
Unsigned BGTZ Branch on Greater Than Zero
ANDI AND Immediate BLTZ Branch on Less Than Zero
ORI OR Immediate BGEZ Branch on Greater Than or
XORI Exclusive OR Immediate Equal to Zero
LUI Load Upper Immediate BLTZAL Branch on Less Than Zero and
Link
BGEZAL Branch on Greater Than or Equal to
Zero and Link
Arithmetic Instructions
(3-operand, register-type)
ADD Add Special Instructions
ADDU | Add Unsigned SYSCALL System Call
SUB Subtract BREAK Break
SUBU Subtract Unsigned
SLT Set on Less Than Coprocessor Instructions
SLTU Set on Less Than Unsigned LWCz Load Word from Coprocessor
AND AND SWCz Store Word to Coprocessor
OR OR MTCz Move To Coprocessor
XOR Exclusive OR MFCz Move From Coprocessor
NOR NOR CTCz Move Control To Coprocessor
CFCz Move Control From Coprocessor
“Shift Instructions COPz Coprocessor Operation
SLL Shift Left Logical BCZT Branch on Coprocessor z True
SRL Shift Right Logical BCzF Branch on Coprocessor z False
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable System Control Coprocessor
SRLV Shift Right Logical Variable (CPO) Instructions
SRAV Shift Right Arithmetic Variable MTCO Move To CPO
MFCO Move From CPO
TLBRfY Read indexed TLB entry
TLBWTIt Write indexed TLB entry
TLBWR{ Write Random TLB entry
TLBPY Probe TLB for matching entry
RFE Restore From Exception
tThese instructions are not valid with the R36100, which does not include a TLB.

Table 2.1 Instruction Set Mnemonics
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Table 2.1 lists the instruction set mnemonics of the R36100. More
detail on these operations is presented later in this chapter. For further
detail, consult the "IDT R30xx Family Software Reference Manual", avail-
able from IDT. '

Programming Model

This section describes the organization of data in the general registers
and in memory, and discusses the set of general registers available. A
summary description of all of the CPU registers is presented.

Data Formats and Addressing

The MIPS-I architecture defines a word as 32-bits, a half-word as 16-
bits, and a byte as 8-bits. The byte ordering convention is configurable
during hardware reset into either a big-endian or little-endian convention.

When configured as a big-endian system, byte O is always the most
significant (leftmost) byte in a word. But when configured as a little-
endian system, byte O is always the least significant (rightmost) byte in a
word.

Figure 2.3 shows the ordering of bytes within words and the ordering of
words within multiple word structures for the big-endian and little-endian

conventions.
Higher Big-Endian Byte Ordering Word

Address 31 24 23 16 15 87 Add8ress

4

Lower 0

Address , \1ost significant byte is at lowest address

» Word is addressed by byte address of
most significant byte

Higher Little-Endian Byte Ordering Word

Address 31 2423 1615 87 0 Address

S

312 ] Q 0

Lower

Address , | east significant byte is at lowest address

* Word is addressed by byte address of
least significant byte

Figure 2.3 Byte Ordering Conventions

The R36100 uses byte addressing for all accesses, including half-word
and word. The MIPS architecture has alignment constraints that require
half-word accesses to be aligned on an even byte boundary, and word
accesses to be aligned on a modulo-4 byte boundary. Thus, in big-endian
systems, the address of a multiple-byte data item is the address of the
most-significant byte, while in little-endian systems it is the address of
the least-significant byte of the structure.
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The MIPS instruction set provides special instructions for addressing
32-bit words which are not aligned on 4-byte boundaries. These instruc-
tions, which are Load/Store Left/Right, are used in pairs to provide
addressing of misaligned words. This effectively means that these types
of data movements require only one-additional instruction cycle over that
required for properly aligned words (note that unaligned data is read by
the CPU in the same number of cycles as would be required for a full
hardware solution_, and provides a much more efficient way of dealing
with this case than is possible using sequences of loads/stores and shift
operations or by using traps. Various tool chains, such as the IDT/c
compiler, can automatically generate these instructions for "packed" data.
Figure 2.4 shows the bytes accessed when addressing a mis-aligned word
with a byte address of 3, for each of the two byte ordering conventions.

Higher
Address .
Big
Endian
Little
Endian
Lower
Address

Figure 2.4 Unaligned Words
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CPU General Registers

The R36100 contains 32 general registers, each containing a single 32-
bit word. The 32 general registers are treated symmetrically (orthogo-
nally), with two notable exceptions: general register rO is hardwired to a
zero value, and r31 is used as the link register in Jump and Link instruc-
tions

Register rO maintains the value zero under all conditions, when used
as a source register, and discards data written to it. Thus, instructions
which attempt to write to it may be used as No-Op Instructions. The use
of a register wired to the zero value allows the simple synthesis of
different addressing modes, no-ops, register or memory clear operations,
etc., without requiring expansion of the basic instruction set.

Register r31 is used as the link register in jump and link instructions.
These instructions are used in subroutine calls, and the subroutine
return address is placed in register r31. This register can be written to or
read as a normal register in other operations.

In addition to the general registers, the CPU contains two registers (HI
and LO) which store the double-word, 64-bit result of integer multiply
operations, and the quotient and remainder of integer divide operations.

CPO Special Registers

In addition to the general CPU registers, the R36100 contains a
number of special registers on-chip. These registers logically reside in the
on-chip System Control Co-processor CPO, and are used in memory
management and exception handling.

Table 2.2 on page 8 shows the logical CPO address of each of the regls~
ters. The format of each of these registers, and their use, is discussed in
later chapters. Note that the MIPS architecture allows CPO to vary by
implementation; the R36100 contains some new CPO registers not found
in other R30xx family members; however, their definition is such that it
still remains possible to use a single binary program across all family
members, in that these registers are typically managed only at reset.
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Number | Mnemonic Description

0 Reserved(1)

1 Reserved(1)

2 Reserved(1)

3 Config(3) Cache Usage Configuration

4 Reserved(1)

5-7 Reserved

8 BadVAddr Bad Virtual Address

9 Reserved(3)

10 Reserved(3)

11 Reserved(3)

12 SR Status Register

13 Cause Cause of Last Exception

14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16-31 Reserved

NOTES:

1. This register is used in Extended Architecture CPUs to control the
TLB and virtual memory system. In the "E" versions, register $2 is "TLB
EntryLo", and register $10 is "TLB EntryHi".

2. This register is reserved in other family members.

3. This register has a different meaning in other family members.

Table 2.2 R36100 CPO Registers

Operating Modes ; ,

The R36100 supports two different operating modes: User and Kernel
modes. The R36100 normally operates in User mode until an exception is
detected, forcing it into kernel mode. It remains in Kernel mode until a
Return From Exception (RFE) instruction is executed, returning it to its
previous operation mode.

The processor supports these levels of protection by segmenting the
4GB virtual address space into 4 distinct segments. One segment is
accessible from either the User state or the Kernel mode, and the other
three segments are only accessible from kernel mode.

In addition to providing memory address protection, the kernel can
protect the co-processors (in the case of the R36100, CPO) from access or
modification by the user task. Chapter 4 discusses the memory manage-
ment facilities of the processor.
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Pipeline Architecture

The IDT R36100 uses the same basic pipeline structure as that imple-
~ mented in the R3000A. Thus, the execution of a single instruction is
~ performed in the following five distinct stages:

Instruction Fetch (IF). In this stage, the instruction virtual address is-
translated to a physical address and the instruction is read from the
internal Instruction Cache.

Read (RD). During this stage, the instruction is decoded and required
operands are read from the on-chip register file.

ALU. The required operation is performed on the instruction oper-
ands.

Memory Access (MEM). If the instruction was a load or store, the Data
Cache is accessed. Note that there is a skew between the instruction
cycle which fetches the instruction and the one in which the required
data transfer occurs. This skew is a result of the intervening pipe-
stages.

Write Back (WB). During the write back pipestage, the results of the
ALU stage operation are updated into the on-chip register file.

Each of these pipestages require approximately one CPU cycle, as
shown in Figure 2.5. Parts of some operations lap into the next cycle,
while other operations require only 1/2 cycle.

The net effect of the pipeline structure is that a new instruction can be
initiated every clock cycle. Thus, the execution of five instructions at a
time is overlapped, as shown in Figure 2.6.

IF I RD ALU MEM ws
I-Cache J ID OP D-Cache | WB |
FAddr EAddr
One Cycle

Figure 2.5 5-Stage Pipeline
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The pipeline operates efficiently, because different CPU resources such
as address and data bus access, ALU operations, and the register file, are
utilized on a non-interfering basis.

1#1| IF | RD [ ALU[MEM| wB

i#2 | IF | RD | ALU [MEM]| WB |

#3| IF | RD | ALU|MEM| WB |

I#4 | IF | RD | ALU|MEM]| WB |

5| IF | RD | ALU [MEM| WB |

Current
CPU
Cycle

Figure 2.6 5-Instructions per Clock Cycle

Pipeline Hazards :

In a pipelined machine such as the R36100, there are certain instruc-
tions which, based on the pipeline structure, can potentially disrupt the
smooth operation of the pipeline. The basic problem is that the current
pipestage of an instruction may require the result of a previous instruc-
tion, still in the pipeline, whose result is not yet available. This class of
problems is referred to as pipeline hazards.

An example of a potential pipeline hazard occurs when a computational
instruction n+1) requires the result of the immediately prior instruction
(instruction n). Instruction n+1 wants to access the register file during
the RF pipestage. However, instruction n has not yet completed its
register writeback operation, and thus the current value is not available
directly from the register file. In this case, special logic within the execu-
tion engine forwards the result of instruction n’s ALU operation to
instruction n+1, prior to the true writeback operation. The pipeline is
undisturbed, and no pipeline stalls need to occur. '

- Another example of a pipeline hazard handled in hardware is the
integer multiply and divide operations. If an instruction attempts to
access the HI or LO registers prior to the completion of the multiply or
divide, that instruction will be interlocked (held off) until the multiply or
divide operation completes. Thus, the programmer is isolated from the
actual execution time of this operation. The optimizing compilers attempt
to schedule as many instructions as possible between the start of the
multiply/divide and the access of its result, to minimize stalls.




Instruction Set Architecture Chapter 2

However, not all pipeline hazards are handled in hardware. There are
two notable categories of instructions which require software intervention
to insure logical operation.- The optimizing compilers (and peephole
scheduler of the assembler) are capable of insuring proper execution.
These two instruction classes are:

¢ Load instructions have a delay, or latency, of one cycle before the data

loaded from memory is available another instruction. This is because
the ALU stage of the immediately subsequent instruction is processed
simultaneously with the Data Cache access of the load operation.
Figure 2.7 illustrates the cause of this delay slot.

IF | RD ALU MEM wWB
W1 icqghe | D] op | p-cacne |wa |
(Load)

2 lcache | D [ oP
(Delay Slot)
Data
Available
3 | I-Cdehe | ID oP
I
—
One Cycle

Figure 2.7 Lead Delay

e Jump and Branch instructions have a delay of one cycle before the
program flow change can occur. This is due to the fact that the next
instruction is fetched prior to the decode and ALU stage of the jump/
branch operation. Figure 2.8 illustrates the cause of this delay slot.

IF, FRD ALU MEM wB
i | rcqene [ 0 [ op | Dcache [we
(Branch) I-Address I

3\
#2 I-Cache | \D oP
(Delay Slot)| T: ° | \
143
Address[ ICache J D oP
Avalilable [
—
One Cycle

Figure 2.8 Branch Delay

The R36100 continues execution, despite the delay in the operation.
Thus, loads, jumps and branches do not disrupt the pipeline flow of
instructions, and the processor always executes the instruction immedi-
ately following one of these “delayed” instructions.

Note: Note that there may also be latencies associated with changes
to various of the CPO registers; for example, changing the bus inter-

face control register may require multiple cycles before the change is
actually reflected in the chip interface.
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Rather than include extensive pipeline control logic, the MIPS-I
instruction set gives responsibility for dealing with “delay slots” to soft-
ware. Thus, peephole optimizations (which can be performed as part of
compilation or assembly) can re-order the code to insure that the instruc-
tion in the delay slot does not require the logical result of the “delayed”
instruction. In the worst case, a NOP can be inserted to guarantee proper
software execution.

Chapter 6 discusses the impact of pipelining on exception handling. In
general, when an instruction causes an exception, it is desirable for all
instructions initiated prior to that instruction to complete, and all subse-
quent instructions to abort. This insures that the machine state
presented to the exception handler reflects the logical state that existed at
the time the exception was detected. In addition, it is desirable to avoid
requiring software to explicitly manage the pipeline when handling or
returning from exceptions. The IDT R36100 pipeline is designed to prop-
erly manage exceptional events.

Instruction Set Summary

This section provides an overview of the R36100 instruction set by
presenting each category of instructions in a tabular summary form.
Refer to the "IDT R30xx Family Software Reference Manual"; for a detailed
description of each instruction.

Instruction Formats

Every instruction consists of a single word (32 bits) aligned on a word
boundary. There are only three instruction formats, as shown in
Figure 2.2 on page 3. This approach simplifies instruction decoding.
More complicated or less frequently used operations and addressing
modes are synthesized by the compilers.

Instruction Notational Conventions

In this manual, all variable sub-fields in an mstructlon format (such as
rs, rt, immediate, and so on) are shown in lower-case names.

For the sake of clarity, an alias is sometimes used for a variable sub-
field in the formats of specific instructions. For example, “base” rather
than “rs” is used in the format for Load and Store instructions. Such an
alias is always lower case, since it refers to a variable sub-field.

Instruction opcodes are shown in upper case. ‘

The actual bit encoding for all the mnemonics is specified at the end of
this chapter.
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Load and Store Instructions

Load/Store instructions move data between memory and general regis-
ters. They are all I-type instructions. The only addressing mode directly
supported is base register plus 16-bit signed immediate offset. This can
be used to directly implement immediate addressing (using the rO
register) or register direct (using an immediate offset value of zero).

All load operations have a latency effect of one instruction. That is, the
data being loaded from memory into a register is not available to the
instruction that immediately follows the load instruction: the data is
available to the second instruction after the load instruction. An excep-
tion to this rule is that for the target register for the “load word left” and
“load word right” instructions may be specified as the same register used
as the destination of the related unaligned load instruction that immedi-
ately precedes it.

The Load/Store instruction opcode determines the size of the data item
to be loaded or stored, as shown in Table 2.1 on page 4. Regardless of
access type or byte numbering-order (endian-ness), the address specifies
the byte which has the smallest byte address of all bytes in the addressed
field. For a big-endian access, this is the most significant byte; for a little-
endian access, this is the least significant byte. Note that in an R36100
based system, the endianness of a given access is dynamic, in that the RE
(Reverse Endianness) bit of the Status Register can be used to force user
space accesses of the opposite byte convention of the kernel.

Big-Endian (32-bit memory system)

CPU Core CPU Core BE(3) BE(2) BE(1) BE(0)
Size VAdrLo(1) VAdrLo(0) Data(31:24) Data(23:16) Data(15:8) Data(7:0)
Word 0 0 Yes Yes Yes Yes
Tri- 0 0 Yes Yes Yes | No
Byte
Tri- 0 1 No Yes Yes Yes
Byte )
16-Bit | O 0 Yes Yes No No
16-Bit 1 0 No No Yes Yes
Byte 0 0 Yes No No No
Byte 0 1 No Yes No No
Byte ' 1 0 No No Yes No
Byte 1 1 No No No Yes

Table 2.3 Big-Endian (32-bit memory system)
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Little-Endian (32-bit memory system)

BE(3) BE(2) BE(1) BE(0)
Size VAdrLo(1) VAdrLo(0) Data(31:24) Data(23:16) Data(15:8) Data(7:0)
Word o 0 Yes Yes Yes Yes
Tri-Byte | O (0] No Yes Yes Yes
Tri-Byte | O 1 Yes Yes Yes No
16-Bit (0] 0 No No Yes Yes
16-Bit 1 0 Yes Yes No | No
Byte 0 0 No No No Yes
Byte 0 1 No No Yes No
Byte 1 0 No Yes No No
Byte 1 1 Yes No No No
Table 2.4 Byte Addressing in Load/Store Operations (32-bit memory)
Big-Endian (16-bit memory system)
First Transfer Second Transfer
Size CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0)
VAdrLo(1) VAdrLo(0) Data(31:24) Data(23:16) Data(31:24) ;)ata(23:16 ,
Word 0 0 Yes Yes Yes Yes
Tri-Byte | O 0 Yes Yes Yes No
Tri-Byte | O 1 No Yes Yes Yes
16-Bit 0 0 Yes Yes N/A N/A
16-Bit 1 0 Yes Yes N/A N/A
Byte 0 0 Yes No N/A N/A
‘Byte 0 1 No Yes N/A N/A
Byte 1 0 Yes No N/A N/A
Byte 1 1 No Yes N/A N/A

Table 2.5 Big-Endian (16-bit memory system)
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Little-Endian (16-bit memory system)

First Transfer

Second Transfer

CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0)

Size VAdrLo(1) VAdrLo(0) Data(15:8) Data(7:0) Data(15:8) Data(7:0)
Word (0] 0 Yes Yes Yes Yes
Tri-Byte | O 0 Yes Yes No Yes
Tri-Byte (0] 1 Yes No Yes Yes
16-Bit 0 0 Yes Yes 1 N/A N/A
16-Bit 1 0 Yes Yes N/A N/A
Byte 0 0 No Yes N/A N/A
Byte 0 1 Yes No N/A N/A
Byte 1 0 No Yes N/A N/A
Byte 1 1 Yes No N/A N/A

Table 2.6 Byte Addressing in Load/Store Operations

(16-bit memory)

Note that the size of the operand requested by the load instruction is
independent of the memory width of the addressed memory. Thus, if the
actual size of the datum is 32-bits, software can safely use a load or store
word instruction, even if the addressed memory is actually only 8- or 16-
bits wide. The bus interface unit will interact with CPO to determine the
width of the addressed memory, and will, if necessary, perform multiple

datum transfers to satisfy a single load or store instruction.

The bytes within the addressed word that are used can be determined
directly from the access size and the two low-order bits of the address, as
shown in Table 2.3, Table 2.4, Table 2.5, and Table 2.6. Note that certain
combinations of access type and low-order address bits can never occur:

only the combinations shown in these tables are permissible.
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Table 2.7 shows the load/store instructions supported by the MIPS-I
ISA.

Instruction

Format and Description

Load Byte

LB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.

Load Byte Unsigned

LBU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.

Load Halfword

LH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed half-word and load into rt.

Load Halfword Unsigned

LHU rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed half-word and load into rt.

Load Word

LW rt. offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt.

Load Word Left

LWL rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load result into
register rt.

Load Word Right

LWR rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result into
register rt.

Store Byte

SB rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant byte of register rt at addressed location.

Store Halfword

SH rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant halfword of register rt at addressed location.

Store Word

SW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant word of register rt at addressed location.

Store Word Left

SWL rt, offset (base)

| Sign-extend 16-bit offset and add to contents of register base to form address.

Shift contents of register rt right so that leftmost byte of the word is in position
of addressed byte. Store bytes containing original data into corresponding
bytes at addressed byte.

Store Word Right

SWR rt, offset (base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that rightmost byte of the word is in position
of addressed byte. Store bytes containing original data into corresponding bytes
at addressed byte.

Table 2.7 Load and Store Instructions
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Computational Instructions
Computational instructions perform arithmetic, logical and shift opera-
tions on values in registers. They occur in both R-type (both operands are
registers) and I-type (one operand is a 16-bit immediate) formats. There
are four categories of computational instructions:
¢ ALU Immediate instructions are summarized in Table 2.8.
¢ 3-Operand Register-Type instructions are summarized in Table 2.9
on page 18.
* Shift instructions are summarized in Table 2.10 on page 19.
e Multiply/Divide instructions are summarized in Table 2.11 on
page 19.

Instruction

Format and Description

ADD Immediate

ADDI rt, rs, immediate
Add 16-bit sign-extended immediate to register rs and place 32-bit
result in register rt . Trap on two’s complement overflow.

ADD Immediate Unsigned ADDIU rt, rs, immediate

Add 16-bit sign-extended immediate to register rs and place 32-bit
result in register rt . Do not trap on overflow.

diate

Set on Less Than Imme- SLTI rt, rs, immediate

Compare 16-bit sign-extended immediate with register rs as signed 32-
bit integers. Result = 1 if rs is less than immediate; otherwise result =
0.

Place result in register rt.

Set on Less Than
Unsigned Immediate

SLTIU rt, rs, immediate

Compare 16-bit sign-extended immediate with register rs as unsigned
32-bit integers. Result = 1 if rs is less than immediate; otherwise result
= 0. Place result in register rt. Do not trap on overflow.

AND Immediate

ANDI rt, rs, immediate
Zero-extend 16-bit immediate, AND with contents of register rs and
place result in register rt.

OR Immediate

ORI rt, rs, immediate
Zero-extend 16-bit immediate, OR with contents of register rs and
place result in register rt.

Exclusive OR Immediate XORI rt, rs, immediate

Zero-extend 16-bit immediate, exclusive OR with contents of register rs
and place result in register rt.

Load Upper Immediate LUI rt, immediate

Shift 16-bit immediate left 16 bits. Set least significant 16 bits of word
to zeroes. Store result in register rt.

Table 2.8 ALU Immediate Operations
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Instruction

Format and Description

Add

ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd.
Trap on two’s complement overflow.

ADD Unsigned

ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd.
Do not trap on overflow.

Subtract

SUB rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in
register rd. Trap on two’s complement overflow.

Subtract Unsigned

SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result in
register rd. Do not trap on overflow.

Set on Less Than

SLT rd, rs, rt
Compare contents of register rt to register rs (as signed 32-bit integers).
If register rs is less than rt, result = 1; otherwise, result = O.

Set on Less Than Unsigned

SLTU rd, rs, 1t
Compare contents of register rt to register rs (as unsigned 32-bit inte-
gers). If register rs is less than rt, result = 1; otherwise, result = O.

AND AND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in register
rd.

OR OR rd, rs, rt

Bit-wise OR contents of registers rs and rt and place result in register
rd.

Exclusive OR

XOR rd, 1s, rt '
Bit-wise Exclusive OR contents of registers rs and rt and place result in
register rd.

NOR

NOR rd, rs, rt
Bit-wise NOR contents of registers rs and rt and place result in register
rd.

Table 2.9 Three Operand Register-Type Operations
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Instruction Format and Description

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeroes into low
order bits. Place 32-bit result in register rd.

Shift Right Logical SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeroes into
high order bits. Place 32-bit result in register rd.

Shift Right Arithmetic SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high
order bits. Place 32-bit result in register rd.

Shift Left Logical Variable SLLV rd, rt, rs

Shift contents of register rt left. Low-order 5 bits of register rs specify
number of bits to shift. Insert zeroes into low order bits of rt and place
32-bit result in register rd.

Shift Right Logical Variable | SRLV rd, rt, rs

Shift contents of register rt right. Low-order 5 bits of register rs specify
number of bits to shift. Insert zeroes into high order bits of rt and place
32-bit result in register rd.

Shift Right Arithmetic SRAV rd, rt, rs

Variable Shift contents of register rt right. Low-order 5 bits of register rs specify
number of bits to shift. Sign-extend the high order bits of rt and place

32-bit result in register rd. _ '

Table 2.10 Shift Operations

Instruction | Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement values.
Place 64-bit result in special registers HI/LO

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rs and rt as unsigned values. Place 64-
bit result in special registers HI/LO

Divide DIV rs, rt

Divide contents of register rs by rt treating operands as twos comple-
ments values. Place 32-bit quotient in special register LO, and 32-bit
remainder in HI.

Divide Unsigned DIVU rs, 1t

Divide contents of register rs by rt treating operands as unsigned
values. Place 32-bit quotient in special register LO, and 32-bit
remainder in HI.

Move From HI MFHI rd

Move contents of special register HI to register rd.
Move From LO MFLO rd

Move contents of special register LO to register rd.
Move To HI MTHI rd

Move contents of special register rd to special register HI.
Move To LO MTLO rd

Move contents of register rd to special register LO.

Table 2.11 Mﬁltiply and Divide Operations
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Jump and Branch instructions

Jump and Branch instructions change the control flow of a program.
All Jump and Branch instructions occur with a one instruction delay:
that is, the instruction immediately following the jump or branch is
always executed while the target instruction is being fetched, regardless
of whether the branch is to be taken.

An assembler has several possibilities for utilizing the branch delay slot
productively:
¢ It can insert an instruction that logically precedes the branch instruc-

tion in the delay slot since the instruction immediately following the

jump/branch effectively belongs to the block preceding the transfer
instruction.

¢ It can replicate the instruction that is the target of the branch/jump
into the delay slot provided that no side-effects occur if the branch
falls through.

¢ It can move an instruction up from below the branch into the delay
slot, provided that no side-effects occur if the branch is taken.

¢ If no other instruction is available, it can insert a NOP instruction in

the delay slot. .

The J-type instruction format is used for both jumps-and-links for
subroutine calls. In this format, the 26-bit target address is shifted left
two bits, and combined with high-order 4 bits of the current program
counter to form a 32-bit absolute address.

The R-type instruction format which takes a 32-bit byte address
contained in a register is used for returns, dispatches, and cross-page
jumps.

Branches have 16-bit offsets relative to the program counter (I-type).
Jump-and-Link and Branch-and-Link instructions save a return address
in register r31.

Table 2.12 summarizes the R36100’s Jump instructions and
Table 2.13 on page 21 summarizes the Branch instructions.

Instruction

Format and Description

Jump

dJ target
Shift 26-bit target address left two bits, combine with high-order 4 bits
of PC and jump to address with a one instruction delay.

Jump and Link

JAL target

Shift 26-bit target address left two bits, combine with high-order 4 bits
of PC and jump to address with a one instruction delay. Place address
of instruction following delay slot in r31 (link register).

Jump Register

JRrs
Jump to address contained in register rs with a one instruction delay.

Jump and Link Register JALR 1s, rd

Jump to address contained in register rs with a one instruction delay.
Place address of instruction following delay slot in rd.

Table 2.12 Jump Instructions
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Instruction

Format and Description

Branch Target: All Branch instruction target addresses are computed
as follows: Add address of instruction in delay slot and the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). All branches
occur with a delay of one instruction.

Branch on Equal

BEQ rs, rt, offset
Branch to target address if register rs equal to rt

Branch on Not Equal

BNE rs, rt, offset
Branch to target address if register rs not equal to rt.

Branch on Less than or
Equal Zero

BLEZ rs,offset
Branch to target address if register rs less than or equal to O.

Branch on Greater Than
Zero

BGTZ rs,offset
Branch to target address if register rs greater than O.

Branch on Less Than Zero

BLTZ rs,offset
Branch to target address if register rs less than 0.

Branch on Greater than or
Equal Zero

BGEZ rs,offset
Branch to target address if register rs greater than or equal to O.

Branch on Less Than Zero
And Link

BLTZAL rs, offset
Place address of instruction following delay slot in register r31 (link
register). Branch to target address if register rs less than 0.

Branch on greater than or
Equal Zero And Link

BGEZAL rs, offset _

Place address of instruction following delay slot in register r31 (link
register). Branch to target address if register rs is greater than or equal
to O.

Table 2.13 Branch Instructions

Special Instructions
The two Special instructions let software initiate traps. They are
always R-type. Table 2.14 summarizes Special Instructions.

Instruction

Format and Description

System Call

SYSCALL
Initiates system call trap, immediately transferring control to exception
handler.

Breakpoint

BREAK
Initiates breakpoint trap, immediately transferring control to exception
handler.

Table 2.14 Special Instructions
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Co-processor Instructions
Co-processor instructions perform operations in the co-processors.

Co-processor Loads and Stores are I-type. Co-processor computational
instructions have co-processor-dependent formats. The only co-
processor operations of relevance for the R36100 are those targeted at the
on-chip CPO. :

Table 2.15 summarizes the Co-processor Instruction Set of the MIPS

ISA.

Instruction

Format and Description

Load Word to Co-processor

LWCz rt, offset (base)

Sign-extend 16-bit offset and add to base to form address. Load
contents of addressed word into co-processor register rt of co-processor
unit z. : '

Store Word from Co-
processor

SWCz rt, offset (base)

Sign-extend 16-bit offset and add to base to form address.” Store
contents of co-processor register rt from co-processor unit z at
addressed memory word.

Move To Co-processor

MTCz rt, rd
Move contents of CPU register rt into co-processor register rd of co-
processor unit z.

Move from Co-processor

MFCz rt,rd
Move contents of co-processor register rd from co-processor unit z to
CPU register rt.

Move Control To Co-
processor

CTCz rt,rd
Move contents of CPU register rt into co-processor control register rd of
CO-processor unit z.

Move Control From Co-
processor

CFCz rt,rd
Move contents of control register rd of co-processor unit z into CPU
register rt.

Co-processor Operation

COPz cofun
Co-processor z performs an operation. The state of the R36100 is not
modified by a co-processor operation.

Branch on Co-processor z
True

BCzT offset ,
Compute a branch target address by adding address of instruction in
the 16-bit offset (shifted left two bits and sign-extended to 32-bits).
Branch to the target address (with a delay of one instruction) if co-
processor z's condition line is true.

Branch on Co-processor z
False

BCzF offset

Compute a branch target address by adding address of instruction in
the 16-bit offset (shifted left two bits and sign-extended to 32-bits).
Branch to the target address (with a delay of one instruction) if co-
processor z's condition line is false.

Table 2.15 Co-Processor Operations
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System Control Co-processor (CPO) Instructions

Co-processor 0 instructions perform operations on the System Control
Co-processor (CPO) registers to manipulate the memory management, bus
programmability, timer, and exception handling facilities of the processor.
Memory management, bus programmability, and exception handling are
described in later chapters.

Table 2.16 summarizes the instructions available to work with CPO.

Instruction

Format and Deséription

Move To CPO

MTCO rt, rd
Store contents of CPU register rt into register rd of CPO. This follows
the convention of store operations.

Move From CPO MFCO rt, rd
Load CPU register rt with contents of CPO register rd.
Read Indexed TLB Entry TLBRf

Load EntryHi and EntryLo registers with TLB entry pointed at by Index
register.

Write Indexed TLB Entry

TLBWI+t
Load TLB entry pointed at by Index register with contents of EntryHi
and EntryLo registers.

Write Random TLB Entry

TLBWR{t
Load TLB entry pointed at by Random register with contents of
EntryHi and EntryLo registers.

Probe TLB for Matching
Entry

TLBPt '

Load Inde register with address of TLB entry whose contents match
EntryHi and EntryLo. If no TLB entry matches, set high-order bit of
Index register.

Restore From Exception

RFE
Restore previous interrupt mask and mode bits of status register into
current status bits. Restore old status bits into previous status bits.

tThese operations are undefined/reserved in the R36100, which does not include an on-chip TLB.

Table 2.16 System Control Co-Processor (CPO) Operations
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R36100 Opcode Encoding

Table 2.17 shows the opcode encoding for the MIPS architecture.

28..26 OPCODE

0 2 .3 4 5 6 7
SPECIAL BCOND J JAL BEQ BNE BLEZ BGTZ
ADDI ADDIU SLTT SLTIU ANDI ORI XORI LUI
COPO COPI1 COP2 COP3 ¥ T ¥ ¥

i T i T T T i

LB LH LWL LW LBU LHU LWR i
SB SH SWL SW ¥ T SWR ki
LWCO LWCI LWC2Z LWC3 ¥ ¥ i T
SWCO SWCI SWC2 SWC3 i il ¥ T
2..0 SPECIAL

0 1 2 3 4 5 7
SLL T SRL SRA SLLV T SRLV SRAV
JR JALR T T SYSCALL BREAK ¥ i
MFHI MTHI MFLO MTLO ¥ T T T
"MULT MULTU DIV DIVU ¥ i i i
ADD ADDU SUB SUBU AND OR XOR NOR
i i SLT SLTU i i i i

i T T i i T T T

i i i i T T i T
18..16 BCOND

0 1 2 3 4 5 6 7
BLTZ BGEZ

BLTZAL BGEZAL

23..21 COPz

0 1 2 3 4 5 6 7
MF CF MT CT

BC i T i T T T T

18..16 Co-Processor Specific Operations

0 1 3 4 6 7

CzF BCzT
2..0 CPO
0 1 2 3 4 5 6 7
TLBR TLBWI ILBWR
TLBP
RFE

Table 2.17 Opcode Encoding
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Introduction

The R36100 achieves its high standard of performance by combining a
fast, efficient execution engine (that of the R3000A) with high-memory
bandwidth, supplied from its large internal instruction and data caches..
These caches insure that the majority of processor execution occurs at
the rate of one instruction per clock cycle, and serve to decouple the high-
speed execution engine from slower, external memory resources.

Portions of this chapter review the fundamentals of general cache oper-
ation, and may be skipped by readers already familiar with these
concepts. This chapter also discusses the particular organization of the
on-chip caches of the R36100. However, as these caches are managed by
the R36100 itself, the system designer does not typically need to be
explicitly aware of this structure.

Fundamentals of Cache Operation

High-performance microprocessor-based systems frequently borrow
from computer architecture principles long used in mini-computers and
mainframes. These principles include instruction execution pipelining
(discussed in Chapter 2) and instruction and data caching.

A cache is a high-speed memory store which contains the instructions
and data most likely to be needed by the processor. That is, rather than
implement the entire memory system with zero wait-state memory
devices, a small zero wait-state memory is implemented. This memory,
called a cache, contains the instructions/data most likely to be refer-
enced by the processor. If indeed the processor issues a reference to an
item contained in the cache, then a zero wait-state access is made; if the
reference is not contained in the cache, then the longer latency associated
with the true processor memory is incurred. The processor will achieve

“its maximum performance as long as its references “hit” (are resident) in
the cache.

Caches rely on the principles of locality of software. These principles
state that when a data/instruction element is used by a processor, it and
its close neighbors are likely to be used again soon. The cache is then
constructed to keep a copy of instructions and data referenced by the
processor, so that subsequent references occur with zero wait-states.

Since the cache is typically many orders of magnitude smaller than
main memory or the virtual address space, each cache element must
contain both the data (or instruction) required by the processor, as well as
information which can be used to determine whether a cache “hit” occurs.
This information, called the cache “TAG”, is typically some or all of the
address in main memory of the data item contained in that cache element
as well as a “Valid” flag for that cache element. Thus, when the processor
issues an address for a reference, the cache controller compares the TAG
with the processor address to determine whether a hit occurs.

To minimize cost while maintaining high-performance, the R36100
integrates a reasonable amount of cache internal to the chip, eliminating
the cost and complexity of external caches.
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R36100 Cache Organization

There are a number of algorithms possible for managing a processor
cache. This section describes the cache organization and operation of the
R36100.

Basic Cache Operation
When the processor makes a reference, its 32-bit internal physical
address bus contains the address it desires. The processor address bus

" is split into two parts; the low-order address bits specify a location in the

cache to access, and the remaining high-order address bits contain the
value expected from the cache TAG. Thus, both the instruction/data
element and the cache TAG are fetched simultaneously from the cache
memory. If the value read from the TAG memories is the same as the
high-order address bits, a cache hit occurs and the processor is allowed
to operate on the instruction/data element retrieved. Otherwise, a cache
miss is processed. This operation is illustrated in Figure 3.1.
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Figure 3.1 Cache Line Selection

To maximize performance, the R36100 implements a Harvard Architec-
ture caching strategy. That is, there are two separate caches: one
contains instructions (operations), and the other contains data (oper-
ands). By separating the caches, higher overall bandwidth to the execu-
tion core is achieved, and thus higher performance is realized.

Memory Address to Cache Location Mapping

The R36100’s caches are direct-mapped. That is, each main memory
address can be mapped to (contained in) only one particular cache loca-
tion. This is different from set-associative mappings, where each main
memory location has multiple candidate cache locations for address
mapping. ; .

This organization, coupled with the relatively large cache sizes resident
on the R36100, achieve extremely high hit rates while maximizing speed
and minimizing complexity and power consumption.
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Cache Addressing

The address presented to the cache and cache controller is that of the
physical (main) memory element to be accessed. That is, the virtual
address to physical address translation is performed by the memory
management unit prior to the processor issuing its reference address.

Some microprocessors utilize virtual indexing and virtual tagging in the
cache, where the processor virtual address is used to specify the cache
element to be retrieved. This type of cache structure complicates software
and slows embedded applications:

e When the processor performs a context switch, a wrtually tagged
cache must be flushed. This is because two different tasks can use
the same virtual address but mean totally different physical
addresses. This cache flushing for a large cache dramatically slows
context switch performance.

e Software must be aware of and specifically manage against “alias”
problems. An alias occurs when two different virtual addresses corre-
spond to the same physical address. If that occurs in a virtually
indexed cache, then the same data element may be present in two
different cache locations. If one virtual address is used to change the
value of that memory location, and a different address used to read it
later, then the second reference will not get the current value of that
data item.

By providing for the virtual-to-physical address translation in the
processor pipeline, physical cache addressing is used with no inherent
performance penalty.

To support cache locking, the R36100 allows the kernel software to
select certain high-order physical address bits to replace normal high-
order cache index lines. This separates the cache into two portions: a
lower portion, which services physical addresses below the high-order
address; and a higher portion, which services physical addresses above
the high-order address. Even when this mode is enabled, the R36100
implements direct-mapped, physically indexed, physically tagged caches.

Write Policy

The R36100 utilizes a write-through cache. That is, whenever the
processor performs a write operation to memory, then both the cache
(data and TAG fields) and main memory are written. If the reference is
uncacheable, then only main memory is written.

To minimize the delays associated with updating main memory, the
R36100 contains a 4 element write buffer. The write buffer captures the
target address and data value in a single processor clock cycle, and
subsequently performs the main memory write at its own, slower rate.
The write buffer can FIFO up to 4 pending writes, as described in a later
chapter.

Partial Word Writes

In the case of partial word writes (store operations of less than 32-bits),
the R36100 operates by performing a read-modify-write sequence in the
cache: the store target address is used to perform a cache fetch; if the
cache “hits”, then the partial word data is merged with the cache and the
cache is updated. If the cache read results in a hit, the memory interface
will see the full word write, rather than the partial word. This allows the
designer to observe the actual activity in the on-chip caches.

If the cache lookup of a partial word write “misses” in the cache, then
only main memory is updated.
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Instruction Cache Line Size

The “line size” of a cache refers to the number of cache elements
mapped by a single TAG element. In the R36100, the instruction cache
line size is 16 bytes, or four words. _

This means that each cache line contains four adjacent words from
main. memory. In order to accommodate this, an instruction cache miss
is processed by performing a quad word (block) read from the main
memory, as discussed in a later chapter. This insures that a cache line
contains four adjacent memory locations. Note that since the instruction
cache is typically never written into directly by user software, the larger
line size is permissible. If software does explicitly store into the instruc-
tion cache (perform store operations with the caches “swapped”), the
programmer must insure that either the written lines are left invalidated,
or that they contain four adjacent instructions.

Block refill uses the principle of locality of reference. Since instructions
typically execute sequentially, there is a high probability that the instruc-

. tion address immediately after the current instruction will be the next

instruction. Block refill then brings into the cache those instructions
immediately near the current instruction, resulting in a higher instruc-
tion cache hit rate. o

Block refill also takes advantage of the difference between memory
latency and memory bandwidth. Memory latency refers to the amount of
time required to perform a processor request, while bandwidth refers to
the rate at which subsequent transfers can occur. Factors that affect
memory latency include address decoding, bus arbitration, and memory
pre-charge requirements; factors which maximize bandwidth include the
use of page mode or nibble mode accesses, memory interleaving, and
burst memory devices.

The processing of a quad word read is discussed in a later chapter;
however, it is worth noting that the R36100 can support either true
“burst” accesses or can utilize a simpler, slower memory protocol for quad
word reads. Also note that the variable bus sizing capability of the
R36100 means that block reads can occur from 8- or 16-bit memory
systems. This includes the case of instruction fetches; the bus interface
unit will automatically translate the block read protocol into a larger
number of sub-word reads, depending on the memory width programmed
for the target memory location.

Finally, note that the R36100 performs “streaming” during instruction
cache refill. That is, the processor will simultaneously refill the instruc-
tion cache and execute the incoming instructions. Streaming contributes
an average of 5% of performance.

Data Cache Line Size

The data cache line size is different from that of the instruction cache,
based on differences in their use. The data cache is organized as a line
size of one word (four bytes).

This is optimal for the write policy of the data cache: since an indi-
vidual cache word may be written by a software store instruction, the
cache controller cannot guarantee that four adjacent words in the cache
are from adjacent memory locations. Thus each word is individually
tagged. The partial word writes (less than 4 bytes) are handled as a read-

-modify-write sequence, as described above.

Although the data cache line size is one word, the system may elect to
perform data cache updates using quad word reads (block refill). The
performance of the data cache update options can be measured in an
actual system, by turning on the two different options under software
control.




Cache Architecture

Chapter 3

Summary

The on-chip caches of the R36100 family can be thought of as
constructed from discrete devices around the R3000A. Figure 3.2 shows
the block diagram of the cache interface for the R36100.
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Figure 3.2 R36100 Execution Core and Cache Interface

Cache Operation ,
The operation of the on-chip caches is very straightforward, and is
automatically handled by the processor.

Basic Cache Fetch Operation

As with the R3000A/R3500, the R36100 can access both the instruc-
tion and data caches in a single clock cycle, resulting in high bandwidth
to the execution core. It does this by time multiplexing the cycle in the
cache interface:

e During the first phase, a data cache address is presented, and a

previous instruction cache read is completed.

* During the second phase, the data cache is read into the processor (or
written by the processor). Also, the instruction cache is addressed
with the next desired instruction.

e During the first phase of the next cycle, the instruction fetch begun
in the previous phase is completed and a new data transaction is initi-
ated.

This operation is illustrated in Figure 3.3 on page 6. As long as the
processor hits in the cache, and no internal stall conditions are encoun-
tered, it will continue to execute run cycles. A run cycle is defined to be a
clock cycle in which forward progress in the processor pipeline occurs.
Note that data in the cache is organized into 32-bit words, regardless of
the width associated with main-memory from which the datum was
taken. Thus, cache hits can retrieve a full 32-bits in a single cycle, mini-
mizing the performance impact of the narrower memory system.
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Figure 3.3 Phased Access of Instruction and Data Caches

Cache Miss Processing

In the case of a cache miss (due to either a failed tag comparison or
because the processor issued an uncacheable reference), the main
memory interface (discussed in a later chapter) is invoked. If, during a
given clock cycle, both the instruction and data cache miss, the data
reference will be resolved before the instruction cache miss is processed.

While the processor is waiting for a cache miss to be processed, it will
enter stall cycles until the bus interface unit indicates that it has obtained
the necessary data.

When the bus interface unit returns the data from main memory, it is

‘ simultaneously brought to the execution unit and written into the on-chip

caches. This is performed in a processor fixup cycle.

During a fixup cycle, the processor re-issues the cache access that
failed; this occurs by having the processor re-address the instruction and
data caches, so that the data may be written into the caches and brought
into the execution core. If the cache miss was due to an uncacheable
reference, the write is not performed, although a fixup cycle does occur to
allow the data to be brought into the execution core.

Instruction Streaming

A special feature of the R36100 is utilized when performing block reads
for instruction cache misses. This process is called instruction streaming.
Instruction streaming is simultaneous instruction execution and cache
refill.

As the block is brought in, the processor refills the instruction cache.
Execution of the instructions within the block begins when the instruc-
tion corresponding to the cache miss is returned by the bus interface unit
to the execution core. Execution continues until the end of the block is
reached (in which case normal execution is resumed), or until some event
forces the processor core to discontinue execution of that stream. These
events include:

e Taken branches

¢ Data cache miss

¢ Internal stalls (TLB miss, multiply/divide mterlock)

* Exceptions

When one of these events occur, the processor re-enters simple cache
refill until the rest of the block has been written into the cache, to insure
that one TAG describes all four adjacent words.
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Cacheable References

Chapter 4 explains how the processor determines whether a particular
reference (either instruction or data) is to a memory location that may
reside in the cache. The fundamental mechanism is that certain virtual
addresses are considered to be “cacheable”. If the processor attempts to
make a reference to a cacheable address, then it will employ its cache
management protocol through that reference. Otherwise, the cache will
be bypassed, and the execution engine core will directly communicate
with the bus interface unit to process the reference.

Whether a given reference should be cacheable or not depends on the
application and on the target of the reference. Generally, I/O devices
should be referenced as uncacheable data; for example, if software was
polling a status register, and that register was cached, then it would never
see the device update the status (note that most compiler suites support
the “volatile” data type to insure that the I/O device status register data in
this case never gets allocated into an internal register). In the R36100,
the cacheability of the on-chip registers in the I/O and peripheral devices
is automatically selected to be “non-cacheable”.

There may be other instances where the uncacheable attribute is
appropriate. For example, software which directly manipulates or flushes
the caches can not be cached; similarly, boot software can not rely on the
state of the caches, and thus must operate uncached at least until the
caches are initialized.

Software Directed Cache Operations

In order to support certain system requirements, the R36100 provides
mechanisms for software to explicitly manipulate the caches. These
mechanisms support diagnostics, cache and memory sizing, and cache
flushing. In general, these mechanisms are enabled/disabled through
the use of the Status Register in CPO.

The primary mechanisms for supporting these operatlons are cache
swapping and cache isolation. Cache swapping forces the processor to
use the data cache as an instruction cache, and vice versa. It is useful for
allowing the processor to issue store instructions which cause the
instruction cache to be written. Cache isolation causes the current data
cache to be “isolated” from main memory; store operations do not cause
main memory to be written, and all load operations “hit” in the data
cache.

These mechanisms are enabled through the use of the “IsC” (Isolate
Cache) and “SwC” (Swap Cache) bits of the status register, which resides
in the on-chip System Control Co-Processor (CPO). The 5 instructions
which immediately precede and succeed these operations must not be
cacheable, so that the actual swapping/isolation of the cache does not
disrupt operation.

Cache Sizing

It is possible for software to determine the amount of cache resident on
any given R3xxx-based chip (note that the R3041, R3051, R3052, and
R3071/R3081 each feature differing amounts of cache on chip). Having
software determine the size of the cache at boot time, rather than building
static values into the software, allows for maximum flexibility in using
various members of the R3xxx family, including future devices.

Cache sizing in an R36100 is performed much like traditional memory
sizing algorithms, but with the cache isolated. This avoids side-effects in
memory from the sizing algorithm, and allows the software to use the
“Cache Miss” bit of the status register in the sizing algorithm.
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To determine the size of the instruction cache, software should:

1. Swap Caches (not needed for D-Cache sizing)

2. Isolate Caches

3. Write a value at location 8000_0000

4. Write a value at location 8000_0200 (8000_0000 + 512B)

Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates 'a
cache miss, then the cache is 512B; otherwise, the cache is 1kB or larger.

5. Write a value at location 8000_0400 (8000_0000 + 1kB)

Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is 1KB; otherwise, the cache is 2KB or larger.

6. etc...

Of course a more generalized algorithm could be developed to deter-
mine the cache size; this may be desirable for compatibility with discrete
R3000A/R3500 systems or other R3051 family members. However, any
algorithm will probably include the Swap and Isolate of the Instruction
Cache, and the use of the Cache Miss bit. Sizing the data cache is done
with a similar algorithm, although the caches need not be swapped, and
smaller cache sizes need to be considered.

Note that this software should operate as uncached. Once this algo-
rithm is done, software should return the caches to their normal state by
performing either a complete cache flush or an invalidate of those cache
lines modified by the sizing algorithm.

Cache Flushing

Cache flushing refers to the act of invalidating (indicating a line does
not have valid contents) lines within either the instruction or data caches.
Flushing must be performed before the caches are first used as real
caches, and might also be performed during main memory page swapping
or at certain context switches (note that the R3051 family implements
physically addressed caches, so that cache flushing at context switch
time is not generally required).

The basic concept behind cache flushing is to have the “Valid” bit of
each cache line set to indicate invalid. This is done in the R36100 by
having the cache isolated, and then writing a partial word quantity into
the current data cache. Under these conditions, the CPU will negate the
“Valid” bit of the target cache line.

Again, this software should operate as uncached. To flush the data
cache:

1. Isolate Caches

2. Perform a byte write every 4 bytes, starting at location 0, until 256
such writes have been performed (128 in the R3041, more for other R3xxx
family members).

3. Return the data cache to its normal state by clearing the IsC bit.
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To flush the instruction cache:

1. Swap Caches

2. Isolate Caches

3. Perform a byte write every 16 bytes (based on the instruction cache
line size of 16 bytes). This should be done until each line (256 lines in the
R36100, more or less for other R3xxx devices) have been invalidated. Note
that treating the R36100 as if it had larger on-chip caches, and flushing/
invalidating more than 256 lines is acceptable though less efficient.

4. Return the caches to their normal state (unswapped and not
isolated).

To minimize the execution time of the cache flush, this software should
probably use an “unrolled” loop. That is, rather than have one iteration of
the loop invalidate only one cache line, each iteration should invalidate
multiple lines. This spreads the overhead of the loop flow control over
more cache line invalidates, thus reducing execution time.

Also, of course it is preferable to use the cache sizing algorithm
described earlier to determine the number of lines to be flushed.

Forcing Data into the Caches

Using these basic tools, it is possible to have software directly place
values into the caches. When combined with appropriate software tech-
niques, this could be used to “lock” values into the on-chip caches, by
insuring that software does not issue other cacheable address references
which may displace these locked values.

In order to force values into a cache, the cache should be Isolated. If
software is trying to write instructions into the instruction cache, then the
caches should also be swapped.

When forcing values into the instruction cache, software must take
care with regards to the line size of the instruction cache. Specifically, a
single TAG and Valid field describe four words in the instruction cache;
software must then insure that any instruction cache line tagged as Valid
actually contains valid data from all four words of the block.




Cache Architecture

Chapter 3

Cache-Locking Operation

The R36100 implements the ability to segregate the caches into 2 or 4
portions, or to allow it to operate as a normal single contiguous entity.
Either or both the instruction and data cache can be run in any split or
non-split mode independently.

As an example, splitting the cache into halves or quarters allows inter-
rupt service routines and data to be locked into part of the cache, while
the remainder of the cache is used for the user program and data.

If run in the normal mode (as a single contiguous entity), the cache
index (used internally to address the Cache Data and Tag RAMSs) is
derived solely from the low-order physical address bits. For example, the
cache index for the data cache is PhysAddr(9:2); and for the instruction
cache, the cache index is PhysAddr(11:2).

Physical Address Latch 28p7 098 I I

TagAddr(31:10) AddrLolndex(9:2)

y /

Y Y

Tag and Index Bit Swap Multiplexer

CacheTag(31:10) CacheRamAddr(9:2)

8 Tag Cells Data Cells

& (256x22) (256x32)
CacheRamAddr(9:2) > |2

3

@

z

S

>

CacheRamTagData(32:10)  CacheRamData(31:0)

Figure 3.4 R36100 Instruction Cache Index Address Path

In the normal mode case, a reference with the same low-order Phys-
Addr bits but different high-order PhysAddr tags will cause the current
cache contents to be replaced. For example, location 0x0000_1008 will
be entered into the line at cache index 0x0000; if that line previously was
cached with main memory location 0x0000_0008, it would be replaced
with new data and tag. Any address which is modulo 4kB (for instance
0x1004_0008) could cause replacement of that cache line.

On the other hand, in the split modes, the system software can instruct
the cache controller to use either or both of PhysAddr(28:27) as the
uppermost two index bits (2 or 4 portions). In this case, the cache simul-
taneously direct-maps multiple distinctly different memory spaces. The
10 bits for the instruction cache index can be constructed as Phys-
Addr(28, 10:2), for example.
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When the caches are operated in split mode, typically the MSBs going
to main memory (bits 31-29) are masked out from the physical address
decode. On the R36100, the physical address decode is part of either the
DRAM Controller's or the Memory/IO Controller's Page Register and Page
Mask Register (which ever one is used to control main memory). Masking
out the MSBs allows physical RAM space to be contiguous (for instance
contained within a 1MB block), while the virtual program space can vary
the MSBs. For instance the virtual program space can consist of a 512KB
block beginning at 0x0000_0000 and a second virtual program space with
a 512KB block beginning at 0x1004_0000. The two virtual addresses will
translate (see the next chapter for more details) to physical addresses
0x4000_0000 and 0x5004_0000, respectively, as far as cache memory is
concerned. Since bits 31-29 are ignored by the main memory controller,
the two physical addresses are effectively 0x0000_0000 and 0x0004_0000
as far as main memory RAM is concerned. Thus by using the Page Mask
Register, the caches can see 2 or 4 blocks of address spaces, while main
memory sees a single large block of address space.

To continue the instruction cache example, the upper 2kB portion of
the I-cache services physical addresses in the range of 0x1000_0000 and
above; physical addresses in the range OxOfff_ffff and below are serviced
by the lower 2kB I-cache portion.

In this example, the instruction at physical location 0x1004_0008 will
not replace the contents of the line which holds memory location
0x0000_0008. These two portions of software will not interfere with each
other in the caches. The software developer typically specifies the
address region for code in either the kernel, or with the linker. This
mechanism allows the programmer to separate code into portions and
independently lock them, without requiring page management software or
complex operating system software.

Physical address 0x0000_0008 is accessed via Kuseg (explained in the
next chapter), and is typically in the area of the exception vector. Physical
address 0x1000_0008 is spaced 256MB higher in memory. In this
system, system tasks operating higher in kuseg or in ksegO do not “knock
out” the exception service code, effectively locking this time critical code
into one half of the on-chip cache.

Table 3.1 on page 13 shows the correlation between physical address
lines, cache index lines, and cache sub-segments supported by the
R36100. Figure 3.5, Figure 3.6, and Figure 3.7 on page 12 shows the
mapping of physical addresses to cache when the cache is 1, 2, or 4
portions.

Note that these tables and drawings assume that the code operates out
of kuseg (explained in the next chapter). Since the R36100 implements
32-bit virtual and physical addressing, the patterns shown repeat every
time a very high-order (PhysAddr(29) and above) is changed; thus, there
are 8 such copies of each cache region, separated by 512MB each. The
tables and example assume that PhysAddr(31:29) are all 'O’ throughout
system software. However, memory spaces larger than 512MB are rarely
used with embedded systems, the example in these tables will suffice for
almost all systems.
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Figure 3.5 R36100 Cache in One Portion
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Figure 3.6 R36100 Cache in Two Portions
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Figure 3.7 R36100 Cache in Four Portions
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Cache IndexAddr(11) | Cache IndexAddr(10) | Physical Address Range | Cache Size
PhysAddr(11) PhysAddr(10) 0x0000_0000 4kB

Ox1FFF_FFFF
PhysAddr(28) PhysAddr(10) 0x0000_0000 - 2kB
OxOFFF_FFFF
0x1000_0000 - 2kB
Ox1FFF_FFFF
PhysAddr(28) PhysAddr(27) 0x0000_0000 - 1kB
0x07FF_FFFF
0x0800_0000 - 1kB
OxOAFF_FFFF
0x1000_0000 - 1kB
0x17FF_FFFF
0x1800_0000 - 1kB
Ox1FFF_FFFF
Note: This table describes byte-addressable caches, with the Isb of the
cache index == 2.

Table 3.1 Instruction Cache to Address Mapping under Various Cache Locking Condi-

tions
Cache Index Addr(9) | Cache Index Addr(8) | Physical Address Range | Cache Size
PhysAddr(9) PhysAddr(8) 0x0000_0000 - 1kB
Ox1FFF_FFFF
PhysAddr(28) PhysAddr(8) 0x0000_0000 - 512B
. ) OxOFFF_FFFF
0x1000_0000 - 512B
Ox1FFF_FFFF
PhysAddr(28) PhysAddr(27) 0x0000_0000 - 256B
OxO7FF_FFFF
0x0800_0000 - 2568
OxOAFF_FFFF .
0x1000_0000 - 256B
Ox17FF_FFFF
0x1800_0000 - 256B
Ox1FFF_FFFF
Note: This table describes byte-addressable caches, with the 1sb of the
cache index == 2.

Table 3.2 Data Cache to Address Mapping under Various Cache Locking Conditions

Summary

The on-chip caches of the R36100 are key to the inherent performance
of the processor. The R36100 design, however, does not require the
system designer (either software or hardware) to explicitly manage this
important resource, other than to correctly choose virtual addresses
which may or may not be cached, and to flush the caches at system boot.
This contributes to both the simplicity and performance of an R36100
system. ‘
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The R36100 provides the same basic virtual-to-physical address trans-
lation as the rest of the R30xx family base versions (the R3041, R3051,
R3052, R3071, and R3081). These devices provide segment-based
virtual-to-physical address translation, and support the segregation of
kernel and user tasks without requiring extensive virtual page manage-
ment.

The extended versions of the R30xx family (the R3051E, R3052E,
R3071E, and R3081E) provide a full featured memory management unit
(MMU) identical to the MMU structure of the R3000A and R3500. The
extended MMU uses an on-chip translation lookaside buffer (TLB) and
dedicated registers in CPO to provide for software management of page
tables. There is no Extended Architecture version of the R36100.

This chapter describes the operating states of the processor (kernel and
user), and describes the virtual-to-physical address translation mecha-
nisms provided in the R36100.

Virtual Memory in the R3000A Architecture

There are two primary purposes of the memory management capabili-
ties of the R3000A Architecture:

e Various areas of main memory can have individual sets of attributes
associated with them. For example, some segments may be indicated
as requiring kernel status to be accessed; others may have cacheable
or uncacheable attributes. The virtual-to-physical address transla-
tion establishes the rules appropriate for a given virtual address. The
R36100 memory manager provides for these mechanisms, without
requiring the use of a TLB.

¢ The virtual memory system can be used to logically expand the phys-
ical memory space of the processor, by translating addresses
composed in a large virtual address space into the physical address
space of the system. This is particularly important in applications
where software may not be explicitly aware of the hardware resources
of the processor system, and includes applications such as X-Window
display systems. These types of applications may be better served by
the “E” (extended architecture) versions of the R30xx family. On the
other hand, certain real-time operating systems offer similar func-
tionality without requiring an MMU; for example, the IDT/c tool chain
supports position-independent code without requiring a page fault
manager in the operating system.

Figure 4.1 shows the format of an R3000A architecture virtual address.
The most significant 20 bits of the 32-bit virtual address are called the
virtual page number, or VPN. In the extended architecture versions, the
VPN allows mapping of virtual addresses based on 4kB pages; in the base
versions (and thus in the R36100), only the three highest bits (segment
number) are involved in the virtual-to-physical address translation.
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31 1211 0
VPN Offset

31 30 29 20 12

0 x x  kuseg

1 0 0 kseg0

10 1 ksegl

11 x  kseg2

Figure 4.1 Virtual Address Format

The three most significant bits of the virtual address identify which
virtual address segment the processor is currently referencing; these
segments have associated with them the mapping algorithm to be
employed, and whether virtual addresses in that segment may reside in
the cache. The translation of the virtual address to an equivalent privi-
lege level/segment is the same for the base and extended versions of the
architecture.

Privilege States

The R36100 provides for two unique privilege states: the “Kernel”
mode, which is analogous to the “supervisory” mode provided in many
systems, and the “User” mode, where non-supervisory programs are
executed. Kernel mode is entered whenever the processor detects an
exception; when a Restore From Exception (RFE) instruction is executed,
the processor will return either to its previous privilege mode or to User
mode, depending on the state of the machine and when the exception was
detected.

User Mode Virtual Addressing

While the processor is operating in User mode, a single, uniform virtual
address space (kuseg) of 2GB is available for Users. All valid user-mode
virtual addresses have the most significant bit of the virtual address
cleared to 0. An attempt to reference a Kernel address (most significant
bit of the virtual address set to 1) while in User mode will cause an
Address Error Exception. Kuseg begins at virtual address O and extends
linearly for 2GB. This segment is typically used to hold user code and
data, and the current user processes.

Also note that the physical address space corresponding to kuseg is
independent of the physical address spaces of the various kernel only
segments. Thus, systems can be constructed which preclude user tasks
from affecting kernel memory. On the other hand, simple systems can,
by virtue of the address decode, compress the mapping into a single
address region.
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Kernel Mode Virtual Addressing

When the processor is operating in Kernel mode, four distinct virtual

address segments are simultaneously available. The segments are:

e kuseg. The kernel may assert the same virtual address as a user
process, and have the same virtual-to-physical address translation
performed for it as the translation for the user task. This facilitates
the kernel having direct access to user memory regions. The virtual-
to-physical address translation, including the Port Size attributes, is
identical with User mode addressing to this segment.

e kseg0. KsegO is a 512MB segment, beginning at virtual address

0x8000_0000. This segment is always translated to a linear 512MB
region of the physical address space starting at physical address O.
All references through this segment are cacheable.
When the most significant three bits of the virtual address are “100”,
the virtual address resides in ksegO. The physical address is
constructed by replacing these three bits of the virtual address with
the value “000”. As these references are cacheable, ksegO is typically
used for kernel executable code and some kernel data. -

e ksegl. Ksegl is also a 512MB segment, beginning at virtual address

0xa000_0000. This segment is also translated directly to the 512MB
physical address space starting at address 0. All references through
this segment are uncacheable.
When the most significant three bits of the virtual address are “101”,
the virtual address resides in ksegl. The physical address is
constructed by replacing these three bits of the virtual address with
the value “000”. Unlike ksegO, references through ksegl are not
cacheable. This segment is typically used for I/O registers, boot ROM
code, and operating system data areas such as disk buffers.

e kseg2. This segment is analogous to kuseg, but is accessible only

from kernel mode. This segment contains 1GB of linear addresses,
beginning at virtual address 0xcO00_0000. As with kuseg, the
virtual-to-physical address translation depends on whether the
processor is a base or extended architecture version.
When the two most significant bits of the virtual address are “11,” the
virtual address resides in the 1024MB segment kseg2. The virtual-
to-physical translation is done either through the TLB (extended
versions of the processor) or through a direct segment mapping (base
versions). An operating system would typically use this segment for
stacks, per-process data that must be re-mapped at context switch,
user page tables, and for some dynamically allocated data areas.

Base versions of the R30xx family (including the R36100) are distin-

guishable from extended versions in software by examining the TS (TLB
Shutdown) bit of the Status Register after reset, before the TLB is used. If
the TS bit is set (1) immediately after reset, indicating that the TLB is non-
functional, then the current processor is a base version of the architec-
ture. If the TS bit is cleared after reset, then the software is executing on
an extended architecture version of the processor.

The PRId register—described in a later chapter—can be used to distin-

guish the R36100 from other members of the R30xx family.
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R36100 address translation

Processors which only implement the base versions of memory
management perform direct segment mapping of virtual-to-physical
addresses, as illustrated in Figure 4.2. Thus, the mapping of kuseg and
kseg2 is performed as follows:

¢ Kuseg is always translated to a contiguous 2GB region of the physical
address space, beginning at location 0x4000_0000. That is, the value
“00” in the two highest order bits of the virtual address space are
translated to the value “01”, and “01” is translated to “10”, with the
remaining 30 bits of the virtual address unchanged.

e Virtual addresses in kseg2 are directly output as physical addresses;
that is, references to kseg2 occur with the physical address
unchanged from the virtual address.

* Virtual addresses in ksegO and ksegl are both translated identically
to the same physical address region.

The base versions of the architecture allow kernel software to be
protected from user mode accesses, without requiring virtual page
management software. User references to kernel virtual address will
result in an address error exception.

Note that the special areas of the virtual address space shown in
Figure 4.2 are translated to physical addresses identically with the
remainder of their virtual address segment. In the R30xx family, these
address areas were indicated as “reserved” for compatibility with future

devices.

VIRTUAL PHYSICAL
OXEFEEFEEE i of OxfEEEEEEE
0x£££00000 . 8x§§fggggg
Oxffefffff : xffe
Kernel Cached |——| Kemel Cached
(kseg2) Tasks
seg 1
0x%c0000000 023 MB 0xc0000000
0xbEEEEEEE | komel Uncached OxbfffEfEE
0xb££00000
0%20000000 (kseg1) Oxbfefffff
0x9f£££££E |  Kernel Cached
(kseg0) ’ Kernel/User
0x80000000 "~ Cached
Ox7fEEL£EEE Tasks
0x7££00000 2047 MB
0x7fefffff
Keé’;i'#e’ge’ 0x40000000
: Inaccessible Ox3££LEELLE
(kuseg) 512 MB
: 0x20000000
Kernel Boot OxX1EfE£EEE
L | and l/O
0%00000000 512 MB 0%00000000

Figure 4.2 virtual-to-physical Address Translation in R36100
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Some systems may elect to protect external physical memory as well.
That is, the system may include distinct memory devices which can only
be accessed from kernel mode. The physical address output determines
whether the reference occurred from kernel or user mode, according to
Table 4.1. Some systems may wish to limit accesses to some memory or
I/0O devices to those physical address bits which correspond to kernel
mode virtual addresses. '

Alternately, some systems may wish to have the kernel and user tasks
share common areas of memory. Those systems could choose to have
their address decoder ignore the high-order physical address bits, and
compress all of memory into the lower region of physical memory. The
high-order physical address bits may be useful as privilege mode status
outputs in these systems.

Physical Address (31:29) Virtual Address Segment
‘000’ KsegO or Ksegl

‘0or’ ‘ Inaccessible

'01x’ Kuseg

'10x’ Kuseg

11x : Kseg2

Table 4.1 Virtual and Physical Address Relationships in Base Versions
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On-Chip Registers

The top 1MB of virtual memory—which resides in the protected kernel
space, kseg2—is treated as “non-cacheable” by the cache controller. The
rest of kseg2 is treated as cacheable. The on-chip memory controllers
and peripherals have their register sets mapped into this address space;
these registers need to be uncached to insure proper operation. Table 4.2
shows the address map for the on-chip resources.

Note that writes to addresses above OxFFFF_EOO0O are propagated out
to the external bus. However, none of the memory controllers are acti-
vated. This feature is provided to facilitate debug and in-circuit emula-
tion equipment. Reads in this address range are propagated to the
external bus.

Base Virtual Address On-chip Resource

OxFFFF 8000 External Debug/Emulator Controller
OxFFFF 9000 Reserved

OxFFFF A0O0O

OxFFFF B0O0OO

OxFFFF CO00

OxFFFF DOOO

OxFFFF EO00O

OxFFFF E100 DRAM Controller

OxFFFF E200 Memory and 10 Controller

OxFFFF E300 Internal DMA Controller

OxFFFF E400 External DMA Controller ,
OxFFFF E500 Internal Debug/Emulator Controller
OxFFFF E600 Reserved

OxFFFF E700 Reserved

OxFFFF E800 Serial Port Interface

OxFFFF E900 Timer Interface

OxFFFF EAOO PIO Interface

OxFFFF EBOO Interrupt Peripheral Interface
O0xFFFF EC00 Centronics Interface (P1284 interface)
OxFFFF EDOO Laser Printer Engine Interface
OxFFFF EEOO

OxFFFF EF00

OxFFFF FOO0

Table 4.2 R36100 On-Chip Resources and Address Map

As a general rule, the registers residing above OxFFFF_EO0QO are 16-bits
and in some cases 8-bits wide. Thus these registers require either half-
word -or byte load and store instructions for proper access. Because of
the less-than-a-word access, if the system is big endian, the registers will
either need a halfword offset of 0x2 or a byte offset of 0x3. Little endian
systems do not need an offset. :
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Cache Miss Area

The top 1MB of kuseg is also special. In the R36100, this area is the
“Cache Miss” area.

If software attempts to “load” data with a modulo 16 address (lowest 4
address bits == 0), the cache controller will consider the access to have
“missed” in the cache, regardless of the current tag contents.

This operation can speed certain types of data movement operations,
especially when the contents of the corresponding main memory area may
be updated externally to the processor. For example (See Table 4.3) if the
main memory is a FIFO type memory, the code may perform a load to the
FIFO address; the memory controller would burst four words into the
cache (presuming a data block refill setting of four words) and load word
“0” into the target register. The remaining words of the quad word read
would be accessed from the cache. Once all four words are consumed,
the code would issue another load with an offset of “0”, causing another
cache miss process to the FIFO. Burst data movement is faster, since the
software does not need to explicitly flush the cache line between bursts,
nor does it need to use slower “uncached” single datum transfers.

#define FIFO_BASE 0x7FF00000 /* phys addr is 0xBFF00000 */
get_fifo:

li t0, FIFO_BASE

w t1, 0x00(t0)

Iw t2, 0x04(t0)

Iw t3, 0x08(t0)

Iw t4, 0x0C(t0) /* 13 cached clocks per 4 words */

Table 4.3 Example: FIFO load code using FCM memory space.

Summary

The R30xx family architecture provides two models of memory manage-
ment: a very simple, segment based mapping, found in the base versions
of the architecture, and a more sophisticated, TLB-based page mapping
scheme, present in the extended versions of the architecture. Each
scheme has advantages to different applications. The R36100 only imple-
ments the base version address translation in order to support low-cost
systems.
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Introduction

The MIPS architecture separates a processor into two (or three, in the
case of a device with on-chip FPA) functional units: one is the general
purpose CPU, which executes the actual code, and remains compatible
across all of the devices; the other portion is the system control copro-
cessor (CPO) which manages the machine state, the virtual to physical
address translation, and other device specific attributes.

This separation allows devices to be tailored to the needs of specific
applications (by modifying CPO), yet retain software compatibility for the
actual application itself (via the compatible CPU).

This chapter describes the implementation of CPO found on the
R36100. In general, the exception handling methods of the R36100 are
identical with those of the rest of the R30xx family; the memory manage-
ment resources are identical with those of the base versions of the R30xx
family; the only significant difference between this device and the R30xx
family is in the implementation of the Cache Control register.

Coprocessor 0 Bus Interface Control
v Figure 5.1 illustrates the coprocessor O registers found in the R36100.
Note that the MIPS architecture allows the register set of CPO to vary by
implementation; software can easily identify the R36100 (and its CPO
registers) from other devices by reading the PRId from CPO.
The fields of these registers are described below. Table 5.1 lists the
register numbers for the various R36100 CPO registers. '

Used for CPU Used for Cache Used with Exception
Identification Control Processing
PRID $15 CONFIGS3 STATUS $12
CAUSE $13
EPC $14
BADVA $8

Figure 5.1 R36100 CPO Registers
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Mnemonic CPO Register # Description

Config $3 Cache and CPU configuration control

BadVA $8 Bad Virtual Address for last Addressing Exception

Status S12 Processor status, control, and diagnostic information

Cause $13 : Cause of current exception/exception state

EPC S14 Exception Program Counter; return address for excéption
handler

PriD $15 Identification information for current processor

Table 5.1 R36100 CPO Register Addresses

Cache Configuration Register

The cache configuration register allows the kernel to control various
operational aspects of the on-chip caches of the R36100. These features
can be used to improve performance and/or implement debug capability
for the R36100. The Config register is both readable and writable.

Figure 5.2 illustrates the various fields of the cache configuration
register. The reset defaults for this register insure R30xx compatible
operation. "

31 30 29 28 27 26 25 24 23 22 20 19 18 17 16
: FD| FI}] D |
Lock] 1 |DBR DCI 0 | Halt ICI KRF cm | emlwmlwi
1 1 1 2 1.1 -2 . 3 1 1 1 1
15 ) : 0
0
16
Lock: Register Write Lock
1" Reserved: Must be written
DBR: as 't
DCl: Data Burst Refill Mode
‘0" Data Cache Index
Halt: Reserved: Must be written
IClI: as'0’
RF: Halt Mode
FDCM: Instruction Cache Index
FICM: Reduced Frequency Mode
DWrD: Force Data Cache Miss
IWrD: Force Instruction Cache Miss
Data Cache Write Disable
Instruction Cache Write
Disable

Figure 5.2 R36100 Cache Control Register
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Lock ('Lock’)

The lock bit can be used by the kernel to inhibit subsequent write oper-
ations to this register. It is useful in ensuring that operating systems
written for other R30xx-based applications do not inadvertently change
the fields of the Cache Configuration register.

Table 5.2 illustrates the Cache Configuration Register Lock Field. At
reset, the register is unlocked (Lock bit is '0). Thus, the Config register
can be written and re-written as the operating system chooses. Once the
Lock bit is written with a '1', subsequent writes to the Config register will

be ignored.
Value Action
‘0’ Leave Unlocked (Default)
1 Lock register from future writes

Table 5.2 R36100 Cache Configuration Register Lock Field

Reserved-High ('1')

This bit is reserved for testing of the R36100. At reset, the bit will be
set high ('1'). Writes to the Config register must maintain this bit as high
(‘1.

Reserved-Low ('0') :

These fields are reserved for testing and for future R3xxx-based
devices. At reset, these bit fields are reset ('0). Writes to the Config
register must maintain these bit fields as low ('0').

DBlockRefill ('DBR)

Table 5.3 indicates the value and action of the DBR. If this bit is set
high ('1), data cache misses will be processed as a quad (four-word) read.
If this bit is reset low ('0’), data cache misses will be processed as a single
word read. At reset, this bit is reset low ('0').

| Value Action
0 Data cache misses use single word refill (default).
'l Data cache misses use quad word refill.

Table 5.3 R36100 DBlockRefill Field

D-CachelndexControl ('DCI')

This two bit field controls which bits of the physical address provide the
high-order data cache index, as described in Chapter 3. Table 5.4 shows
the actions of the various bit combinations. At reset, this field is cleared
to '00', resulting in normal operation.

Value DCache Index(9) DCache Index(8) Cache Portions

'00' PhyAddr(9) PhyAddr(8) 1 (default)

o1 reserved » reserved Not useful. Reserved
"10' PhyAddr(28) PhyAddr(8) 2

"1 PhyAddr(28) - | PhyAddr(27) 4

Table 5.4 R36100 D-Cache Index Control Field
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Halt Mode ('Halt')

If this bit is set high ('1), the CPU pipeline will be stalled until either an
interrupt is asserted (regardless of current masking) or a reset exception
is signalled. If this bit is set low ('0'), the pipeline will continue operation.

If the halt mode is exited, for example by an interrupt, the RF mode
(described below) will also be exited. Table 5.5 shows the actions and
values of the R36100 Halt Mode (‘Halt’).

Value Action
0’ Normal pipeline operation (default).
1T Halt until interrupt or Reset

Table 5.5 R36100 Halt Field

I-CachelndexControl ('ICI')

This two bit field controls which bits of the physical address provide the
high-order instruction cache index, as described in chapter 3. Table 5.6
shows the actions of the various bit combinations. At reset, this field is
cleared to '00', resulting in normal operation.

Value ICache Index(11) ICache Index(10) Cache Portions

'00' PhyAddr(11) PhyAddr(10) 1 (default)

‘ol reserved reserved Not useful. Reserved
10’ PhyAddr(28) PhyAddr(10) 2

11 PhyAddr(28) PhyAddr(27) |4

Table 5.6 R36100 I-Cache Index Control Field

ReduceFrequency ('RF')

This 3 bit field can be used to divide the normal pipeline frequency
down to a lower frequency, thus lowering device power consumption.
Table 5.7 shows the actions of the various bit settings. At reset, this field
is cleared to '000', resulting in normal operation. Similarly, whenever the
halt mode is exited, this field will be cleared to '000'.

Value Action

'000' Normal Pipeline frequency (default)
‘001’ Divide by 2

010 Divide by 4

011 Divide by 8

'100' Divide by 16

‘101’ ' Divide by 32

'110' Divide by 64

111 Reserved

Table 5.7 R36100 Reduced Frequency Mode Field
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When a reduced frequency mode is enabled, both the pipeline
frequency and the system interface frequency will be reduced by the
programmed amount. The minimum allowed frequency is a CPU pipeline
frequency of 0.5MHz. To prevent internal synchronization problems, soft-
ware should always switch from the Normal frequency to a particular
divide by frequency or vice-versa. Thus if a switch between 64 and 32 is
desired, first switch from 64 to Normal and then to 32. ,

Note that the "RF" mode also impacts the frequency of the bus inter-
face, including the on-chip devices. System software may need to adjust
timer values, baud rates, DRAM refresh, and other frequency sensitive
system variables when entering and exiting "RF" mode.

ForceDCacheMiss ('FDCM')

Table 5.8 shows the values and actions for the R36100 ForceDCache-
Miss field. If this bit is set high ('1), all cacheable data load references
will be forced to miss in the data cache. The data references will then be
supplied using the Data Cache miss protocol (including DBlockRefill).
Store operations will continue to update the cache, and the cache miss
processing will update the cache. Thus, this bit provides a quick method
of initializing the cache or reloading the cache from an external device.

At reset, this bit is reset low ('0'), allowing normal operation of the data
cache. Note also that this bit is logically "OR'ed" with the emulator inter-
face "FCM" pin.

Value Action
‘0’ Normal data cache operation (default).
1 Force data cache operations to miss.

Table 5.8 R36100 ForceDCacheMiss Field

ForcelCacheMiss ('FICM')
Table 5.9 shows the values and actions for the ForcelCacheMiss field. If

this bit is set high ('1'), all cacheable instruction references will be forced
to miss in the instruction cache. The instruction references will then be
supplied using the Instruction Cache miss protocol (a quad word read).
Cache miss processing will update the cache. Thus, this bit provides a
quick method of initializing the cache or reloading the cache from an
external device.

At reset, this bit is reset low ('0), allowing normal operation of the
instruction cache. Note also that this bit is logically "OR'ed" with the
emulator interface "FCM" pin.

Value Action
0’ Normal instruction cache operation (default).
‘' Force instruction cache operations to miss.

Table 5.9 R36100 ForceICacheMiss Field
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DCacheWriteDisable('DWrD')

Table 5.10 shows the values and actions for the Data Cache Write
Disable field. According to this table, when set high ('1'), this field causes
data cache writes to be ignored. The data cache will thus contain the
older value, regardless of the reason for the cache miss processing. Simi-
larly, store instructions will not cause the D-cache to be updated. When
cleared low ('0"), normal cache operation results.

‘Value Action
0’ Normal data cache operation (default).
T Data cache writes inhibited.

Table 5.10 R36100 Data Cache Write Disable Field

I-CacheWriteDisable ('IWrD')

Table 5.11 shows the values and actions for the Instruction Cache
Write Disable field. According to this table, when set high ('1'), this field
causes instruction cache writes to be ignored. The instruction cache will
thus contain the older value, regardless of the reason for the cache miss
processing. When cleared low ('0'), normal cache operation results.

| Value Action
0’ Normal data cache operation (default).
1 Instruction cache writes inhibited.

Table 5.11 R36100 Instruction Cache Write Disable Field
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The Cause Register

The contents of the Cause register describe the last exception. A 5-bit
~exception code indicates the cause of the current exception; the
remaining fields contain detailed information specific to certain excep-

tions.

All bits in this register, with the exception of the SW bits, are read-only.
The SW bits can be written to set or reset software interrupts. Figure 5.3

illustrates the format of the Cause register.

meaning of the various exception codes.

BD: Branch Delay

CE: Co-processor Error
IP: Interrupts Pending
Sw: Software Interrupts*

31 29:28 15:10 9:8 6:2 0
BD| 0 [CE 0 IP[5..0] Sw 0 ExcCode 0
1 1 2 12 6 2 1 5 2

ExcCode: Exception Code

0 | . RESERVED
Must Be Written as

0

*Read AND Write. The rest are read-only. Returns O when

Read

Figure 5.3 R36100 Cause Register

Number | Mnemonic Description
0 Int External Interrupt
1 MODt TLB Modification Exception
2 TLBL* TLB miss Exception (Load or instruction fetch)
3 TLBS+ TLB miss exception (Store)
4 AdEL Address Error Exception (Load or instruction fetch)
5 AdES Address Error Exception (Store)
6 IBE Bus Error Exception (for Instruction Fetch)
7 DBE Bus Error Exception (for data Load or Store)
8 Sys SYSCALL Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Co-Processor Unusable Exception
12 Ovf Arithmetic Overflow Exception
13-31 - Reserved
tThese exceptions will not occur in R36100.

Table 5.12 Cause Register Exception Codes

Table 5.12 details the
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The meanings of the other cause register bits are as follows:

BD The Branch Delay bit is set (1) if the last exception was tak-
en while the processor was executing in the branch delay
slot. If so, then the EPC will be rolled back to point to the
branch instruction, so that it can be re-executed and the
branch direction re-determined.

CE The Coprocessor Error field captures the coprocessor unit
number referenced when a Coprocessor Unusable excep-
tion is detected.

IP The Interrupt Pending field indicétes which interrupts are
pending. Regardless of which interrupts are masked, the IP
field can be used to determine which interrupts are pend-
ing.

Sw The Software interrupt bits can be thought of as the logical
extension of the IP field. The SW interrupts can be written
to force an interrupt to be pending to the processor, and are
useful in the prioritization of exceptions. To set a software
interrupt, a “1” is written to the appropriate SW bit, and a
“0” will clear the pending interrupt. There are correspond-
ing interrupt mask bits in the status register for these inter-
rupts.

ExcCode The exception code field indicates the reason for the last ex-
ception. Its values are listed in Table 5.12 on page 7.

The EPC (Exception Program Counter) Register

The 32-bit EPC register contains the virtual address of the instruction
which took the exception, from which point processing resumes after the
exception has been serviced. When the virtual address of the instruction
resides in a branch delay slot, the EPC contains the virtual address of the
instruction immediately preceding the exception (that is, the EPC points
to the Branch or Jump instruction).

Bad VAddr Register
The Bad VAddr register saves the entire bad virtual address for any
addressing exception. '

The Status Register

The Status register contains all the major status bits; any exception
puts the system in Kernel mode. All bits in the status register, with the
exception of the TS (TLB Shutdown) bit, are readable and writable; the TS
bit is read-only. Figure 5.4 on page 9 shows the functions of the various
bits in the status register.
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31 30 29 281K 27 26 25 24 k 23 22 21 20¢ 19 18 17 16
cusfcuz|cut|cuo] © RE| o BEV| TS | PE |CM | PZ |swC]isC
1 1 1 1 2 1 2 1 1 1 1 1 1 1
5 8 7 6 5 4 3 2 1 0
IIm(5 0)
nt(5:0),
o o 0 KUo | IEo |KUp | IEp |KUc | IEc
8 2 1 1 1 1 1 1
Cu(n): Co-processor n’ Usable IntMask: Interrupt Mask field
'0": Reserved: must be written as KUo: Kernel/User mode (old)
RE: 0 ] IEo: Interrupt Enable (old)

BEV: Rever'se Endian enable KUp: Kernel/User mode (previous)
TS: Boot-time Exception vector IEp: Interrupt Enable (previous)
PE: TLE Shutdown KUc: Kernel/User mode (current)
CM: Parity Error IEC: Interrupt Enable (current)
PZ: Cache Miss

SwC: Parity Zero
IsC: Swap Caches

Isolate Cache

Figure 5.4 R36100 Status Register

The status register contains a three-level stack (current, previous, and
old) of the kernel/user mode bit (KU) and the interrupt enable (IE) bit.
The stack is pushed when each exception is taken and popped by the
Restore From Exception instruction. These bits may also be directly read
or written. ’

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one;
and the value of the TS bit is set to "1". The rest of the bit fields are unde-
fined after reset.

The various bits of the status register are defined as follows:

Cu

BEV

Coprocessor Usability. These bits individually control user
level access to coprocessor operations, including the polling
of the BrCond input pins and the manipulation of the Sys-
tem Control Coprocessor (CPO).

Reverse Endianness. The R3000 architecture allows the
system to determine the byte ordering convention for the
Kernel mode, and the default setting for user mode, at reset
time. If this bit is cleared, the endianness defined at reset
is used for the current user task. If this bit is set, then the
user task will operate with the opposite byte ordering con-
vention from that determined at reset. This bit has no effect
on kernel mode. Also note that the setting of this bit does
not affect the byte lanes used in 16- and 8-bit memory
ports; thus, external byte lane shift logic is not required.

Bootstrap Exception Vector. The value of this bit deter-
mines the locations of the exception vectors of the proces-
sor. If BEV = 1, then the processor is in “Bootstrap” mode,
and the exception vectors reside in uncacheable space. If
BEV = 0, then the processor is in normal mode, and the ex-
ception vectors reside in cacheable space.
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PE

CM

SwC

IsC

IntMask

KUo

KUp

IEp

KUc

TLB Shutdown. This bit reflects whether the TLB is func-
tioning. At reset, this bit can be used to determine whether
the current processor is a base or extended architecture
version. For the R36100, this bit is frozen at "1".

Parity Error. This field should be written with a "1" at boot
time. Once initialized, this field will always be read as "0'.

Cache Miss. This bit is set if a cache miss occurred while
the cache was isolated. It is useful in determining the size
and operation of the internal cache subsystem.

Parity Zero. This field should always be written with a "0".

Swap Caches. Setting this bit causes the execution core to
use the on-chip instruction cache as a data cache and vice-

versa. Resetting the bit to zero un-swaps the caches. This

is useful for certain operations such as instruction cache
flushing. This feature is not intended for normal operation
with the caches swapped.

Isolate Cache. If this bit is set, the data cache is “isolated”
from main memory; that is, store operations modify the
data cache but do not cause a main memory write to occur,
and load operations return the data value from the cache
whether or not a cache hit occurred. This bit is also useful
in various operations such as flushing, as described in
Chapter 3.

Interrupt Mask. This 8-bit field can be used to mask the
hardware and software interrupts to the execution engine
(that is, not allow them to cause an exception). IM(1:0) are
used to mask the software interrupts, and IM (7:2) mask the
6 external interrupts. A value of ‘0’ disables a particular in-
terrupt, and a ‘1’ enables it. Note that the IE bit is a global
interrupt enable; that is, if the IE is used to disable inter-
rupts, the value of particular mask bits is irrelevant; if IE
enables interrupts, then a particular interrupt is selectively
masked by this field.

Kernel/User old. This is the privilege state two exceptions
previously. A ‘O’ indicates kernel mode.

Interrupt Enable old. This is the global interrupt enable
state two exceptions previously. A ‘1’ indicates that inter-
rupts were enabled, subject to the IM mask.

Kernel/User previous. This is the privilege state prior to the
current exception A ‘O’ indicates kernel mode.

Interrupt Enable previous. This is the global interrupt en-
able state prior to the current exception. A ‘1’ indicates that
interrupts were enabled, subject to the IM mask.

Kernel/User current. This is the current privilege state. A
‘0’ indicates kernel mode.

Interrupt Enable current. This is the current global inter-
rupt enable state. A ‘1’ indicates that interrupts are en-

abled, subject to the IM mask.

Fields indicated as ‘O’ are reserved; they must be written as
‘0", and will return ‘0O’ when read.
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PRId Register

This register is useful to software in determining which revision of the
processor is executing the code. The format of this register is illustrated
in Figure 5.5. For the R36100, the value returned is 0x0000_0710. On
the R36100, the most significant 4 bits of the Revision field form an
extension to the Implementation field. The least significant 4 bits of the
Revision field are reserved for manufacturing. This value is different from
other members of the IDT RISController family, so.that software can
easily determine the CPU type. This facilitates the development of one
binary working with all family members.

0 | Implementation Revision
16 8 8
0: Returns '0' when Read
Implementation: CPU Implementation number (‘07" for IDT embedded)
Revision: Revision ('10' for R36100)

Figure 5.5 R36100 PrID Register
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Processors execute code in a highly-directed fashion. The instruction
immediately subsequent to the current instruction is fetched and then
executed; if that instruction is a branch instruction, the program execu-
tion is diverted to the specified location. Thus, program execution is rela-
tively straightforward and predictable.

Exceptions are a mechanism used to break into this execution stream
and to force the processor to begin handling another task, typically
related to either the system state or to the erroneous or undesirable
execution of the program stream. Thus, exceptions typically are viewed
by programmers as asynchronous interruptions of their program. (Note
that exceptions are not necessarily unpredictable or asynchronous, in
that the events which cause the exception may be exactly repeatable by
the same software executing on the same data; however, the programmer
‘does not typically "expect” an exception to occur when and where it does,
and thus will view exceptions as asynchronous events).

The R3000 architecture provides for extremely fast, flexible interrupt
and exception handling. The processor makes no assumptions about
interrupt causes or handling techniques, and allows the system designer
to build his own model of the best response to exception conditions.
However, the processor provides enough information and resources to
minimize both the amount of time required to begin handling the specific
cause of the exception, and to minimize the amount of software required
to preserve processor state information so that the normal instruction
stream may be resumed.

This chapter discusses exception handling issues in R36100-based
systems. The topics examined are: the exception model, the machine
state to be saved on an exception, and nested exceptions. Representative
software examples of exception handlers are also provided, as are tech-
niques and issues appropriate to specific classes of exceptions.

R36100 Exception Model

The exception processing capability of the R36100 assures an orderly
transfer of control from an executing program to the kernel. Exceptions
may be broadly divided into two categories: they can be caused by an
instruction or instruction sequence, including an unusual condition
arising during its execution; or can be caused by external events such as
interrupts. When an R36100 detects an exception, the normal sequence
of instruction flow is suspended; the processor is forced to kernel mode
where it can respond to the abnormal or asynchronous event. Table 6.1
on page 2 lists the exceptions recognized by the R3000 architecture.




Interrupt and Exception Handling

Chapter 6

Exception

Mnemonic

Cause

Reset

Reset

Assertion of the Reset signal causes an exception that
transfers control to the special vector at virtual address
0xbfc0_0000.

UTLB Misst

UTLB

User TLB Miss. A reference is made (in either kernel or
user mode) to a page in kuseg that has no matching TLB
entry. This can occur only in extended architecture
versions of the processor.

TLB Misst

| TLBL (Load) TLBS

A referenced TLB entry’s Valid bit isn’t set, orthere is a

(Store) reference to a kseg2 page that has no matching TLB entry.
This can occur only in extended architecture versions of
the processor.

TLB Modifiedt Mod During a store instruction, the Valid bit is set but the dirty
bit is not set in a matching TLB entry. This can occur only
in extended architecture versions of the processor.

Bus Error IBE (Instruction) DBE | Assertion of the Bus Error input during a read operation,

(Data) due to such external events as bus timeout, backplane
memory errors, invalid physical address, or invalid access
types.

Address Error AdEL (Load) AdES Attempt to load, fetch, or store an unaligned word; that is,

(Store) a word or halfword at an address not evenly divisible by
four or two, respectively. Also caused by reference to a
virtual address with most significant bit set while in User

v Mode.

Overflow Ovf Twos complement overflow during add or subtract.

System Call Sys Execution of the SYSCALL Trap Instruction

Breakpoint Bp Execution of the break instruction

Reserved RI Execution of an instruction with an undefined or reserved

Instruction major operation code (bits 31:26), or a special instruction
whose minor opcode (bits 5:0) is undefined.

Co-processor CpU Execution of a co-processor instruction when the CU (Co-

Unusable processor Usable) bit is not set for the target co-processor.

Interrupt Int Assertion of one of the six hardware interrupt inputs or

setting of one of the two software interrupt bits in the
Cause register.

t+These exceptions will not occur in an R36100, or in any base member of the R30xx family.

Table 6.1 R3000 Architecture Exceptions

Precise vs. Imprecise Exceptions

One classification of exceptions refers to the precision with which the
exception cause and processor context can be determined. That is, some
exceptions are precise in their nature, while others are “imprecise.”

In a precise exception, much is known about the system state at the
exact instance the exception is caused. Specifically, the exact processor
context and the exact cause of the exception are known. The processor
thus maintains its exact state before the exception was generated, and
can accurately handle the exception, allowing the instruction stream to
resume when the situation is corrected. Additionally, in a precise excep-
tion model, the processor can not advance state; that is, subsequent
instructions, which may already be in the processor pipeline, are not
allowed to change the state of the machine.
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Many real-time applications greatly benefit from a processor model
which guarantees precise exception context and cause information. The
MIPS architecture, including the R36100, implements a precise exception
model for all exceptional events.

Exception Processing

The R36100 exception handling system efficiently handles machine
exceptions, including arithmetic overflows, I/O interrupts, system calls,
breakpoints, reset, and co-processor unusable conditions. Any of these
events interrupt the normal execution flow; the R36100 aborts the
instruction causing the exception and also aborts all those following in
the exception pipeline which have already begun, thus not modifying
processor context. The CPU then performs a direct jump into a desig-
nated exception handler routine. This insures that the R36100 is always
consistent with the precise exception model.

Exception Handling Registers

The system co-processor (CPO) registers contain information pertinent
to exception processing. Software can examine these registers during
exception processing to determine the cause of the exception and the
state of the processor when it occurred There are four registers used in
exception processing, shown in Chapter 5. These are the Cause register,
the EPC register, the Status register, and the BadVAddr register. A brief
description of each follows.

The Cause Register

The contents of the Cause register describe the last exception. A 5-bit
exception code indicates the cause of the current exception; the
remaining fields contain detailed information specific to certain excep-
tions.
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All bits in this register, with the exception of the SW bits, are read-only.
The SW bits can be written to set or reset software interrupts. Figure 6.1
shows the cause register.

31 29:28 15:10 9:8 6:2 0

BD| O|CE[ © IP[5.0] | sw |o ExcCode 0

11 2 12 6 2 1 5 2
BD: Branch Delay ExcCode: Exception Code

CE: Co-processor Error
IP: Interrupts Pending
Sw: Software Interrupts*

*Read AND Write. The rest are read-only. Returns 0 when

0 | : RESERVED
Must Be Written as
0

Read

Figure 6.1 R36100 Cause Register

The meaning of the other bits of the cause register is as follows:

BD

CE

SwW

ExcCode

‘The Branch Delay bit is set (1) if the last exception was tak-

en while the processor was executing in the branch delay
slot. If so, then the EPC will be rolled back to point to the
branch instruction, so that it can be re-executed and the
branch direction re-determined.

The Co-processor Error field captures the co-processor unit
number referenced when a Co-processor Unusable excep-
tion is detected.

The Interrupt Pending field indicates which interrupts are
pending. Regardless of which interrupts are masked, the IP
field can be used to determine which interrupts are pend- .

ing.

The Software interrupt bits can be thought of as the logical
extension of the IP field. The SW interrupts can be written
to force an interrupt to be pending to the processor, and are
useful in the prioritization of exceptions. To set a software
interrupt, a “1” is written to the appropriate SW bit, and a
“0” will clear the pending interrupt. There are correspond-
ing interrupt mask bits in the status register for these inter-
rupts.

The exception code field indicates the reason for the last ex-
ception. Its values are listed in Table 6.2.
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Number Mnemonic Description
0 Int External Interrupt
1 MOD+t TLB Modification Exception
2 TLBL+ TLB miss Exception (Load or instruction fetch)
3 TLBSt TLB miss exception (Store)
4 AdEL Address Error Exception (Load or instruction fetch)
5 AdES Address Error Exception (Store)
6 IBE Bus Error Exception (for Instruction Fetch)
7 DBE Bus Error Exception (for data Load or Store)
8 Sys SYSCALL Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Co-Processor Unusable Exception
12 Oovf Arithmetic Overflow Exception
13-31 - Reserved
tThese exceptions will not occur in an R36100

Table 6.2 Cause Register Exception Codes

The EPC (Exception Program Counter) Register

The 32-bit EPC register contains. the virtual address of the instruction
which took the exception, from which point processing resumes after the
exception has been serviced. When the virtual address of the instruction
resides in a branch delay slot, the EPC contains the virtual address of the
instruction immediately preceding the exception (that is, the EPC points
to the Branch or Jump instruction).

Bad VAddr Register
The Bad VAddr register saves the entire bad virtual address for any
addressing exception.

The Status Register

The Status register contains all the major status bits; any exception
puts the system in Kernel mode. All bits in the status register, with the
exception of the TS (TLB Shutdown) bit, are readable and writable; the TS
bit is read-only, and frozen to 'l' in the R36100. Figure 6.2 shows the
definition and position of the various bits in the status register.
~ The status register contains a three level stack (current, previous, and
old) of the kernel/user mode bit (KU) and the interrupt enable (IE) bit.
The stack is pushed when each exception is taken, and popped by the
Restore From Exception instruction. These bits may also be directly read
or written.

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one;
and the value of the TS bit is set to "1". The rest of the bit fields are unde-
fined after reset.
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cusl cuz| cu1lcuo 0 RE 0 BEV|TS | PE |CM | PZ |SwC]|IsC
1 1 1 1 2 1 2 1 1 1 1 1 1 1
5 8 7 6 5 4 3 2 1 0
TRIVIask
Int(5:0);
Jnus:0y 0 KUo| IEo |KUp | IEp |KUc | IEc
8 2 1 1 1 1 1 1
CU(n): Co-processor 'n' Usable IntMask: Interrupt Mask field
‘0" Reserved: must be written as KUo: Kemel/User mode (old)
RE: ‘0’ . IEo: Interrupt Enable (old)

BEV: Rever§e Endian gnable KUp: Kernel/User mode (previous)
TS: Boot-time Exception vector IEp: Interrupt Enable (previous)
PE: TLB Shutdown KUc: Kernel/User mode (current)
Cm: Parity Error IEc: Interrupt Enable (current)
PZ: Cache Miss

SwC: Parity Zero
IsC: Swap Caches

Isolate Cache

Figure 6.2 The Status Register

The various bits of the status register are defined in chapter 5. The bits
of most relevance in exception processing are repeated below.

‘BEV

KUo

KUp

IEp

Bootstrap Exception Vector. The value of this bit deter-
mines the locations of the exception vectors of the proces-
sor. If BEV = 1, then the processor is in “Bootstrap” mode,
and the exception vectors reside in uncacheable space. If
BEV = 0, then the processor is in normal mode, and the ex-
ception vectors reside in cacheable space.

Interrupt Mask. This 8-bit field can be used to mask the
hardware and software interrupts to the execution engine
(that is, not allow them to cause an exception). IM(1:0) are
used to mask the software interrupts, and IM (7:2) mask the
6 external interrupts. A value of ‘0’ disables a particular in-
terrupt, and a ‘1’ enables it. Note that the IE bit is a global
interrupt enable; that is, if the IE is used to disable inter-
rupts, the value of particular mask bits is irrelevant; if IE
enables interrupts, then a particular interrupt is selectively
masked by this field.

Kernel/User old. This is the privilege state two exceptions
previously. A ‘0’ indicates kernel mode.

Interrupt Enable old. This is the global interrupt enable
state two exceptions previously. A ‘1’ indicates that inter-
rupts were enabled, subject to the IM mask.

Kernel/User previous. This is the privilege state prior to the

_current exception A ‘0’ indicates kernel mode.

Interrupt Enable previous. This is the global interrupt en-
able state prior to the current exception. A ‘1’ indicates that
interrupts were enabled, subject to the IM mask.
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KUc Kernel/User current. This is the current privilege state. A
‘0’ indicates kernel mode.

IEc Interrupt Enable current. This is the current global inter-
rupt enable state. A ‘1’ indicates that interrupts are en-
abled, subject to the IM mask.

Exception Vector Locations

The R3000 architecture separates exceptions into three vector spaces.
The value of each vector depends on the BEV (Boot Exception Vector) bit
of the status register, which allows two alternate sets of vectors (and thus
two different pieces of code) to be used.

Typically, this is used to allow diagnostic tests to occur before the func-
tionality of the cache is validated; processor reset forces the value of the
BEV bit to a '1'. Table 6.3 and Table 6.4 list the exceptlon vectors for the
R36100 for the two different modes.

Exception Virtual Address Physical Address
Reset Oxbfc0_0000 0x1fc0_0000
UTLB Miss 0x8000_0000 0x0000_0000
General 0x8000_0080 0x0000_0080

Table 6.3 Exception Vectors When BEV = 0

Exception Virtual Address Physical Address
Reset OxbfcO_0000 0x1£fc0_0000
UTLB Miss Oxbfc0_0100 0x1fc0_0100
General Oxbfc0_0180 0x1fc0_0180

Table 6.4 Exception Vectors When BEV = 1

Exception Prioritization

It is important to understand the structure of the R36100 instruction
execution unit in order to understand the exception priority model of the
processor. The R36100 runs instructions through a five stage pipeline,
illustrated in Figure 6.3.

F RD ALU MEM wB

IVA ID OoP D-FETCH WB
TLB

D
TLB

DVA

Figure 6.3 Pipelining in the R3051 family
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The pipeline stages are as follows:

¢ IF (Instruction Fetch). This cycle contains two parts: the IVA (Instruc-
tion Virtual Address) phase, which generates the virtual instruction
address of the next instruction to be fetched, and the ITLB phase,
which performs the virtual to physical translation of the address.

¢ RD (Read and Decode). This phase obtains the required data from the
internal registers and also decodes the instruction.

. » ALU (Arithmetic Logic Unit). This phase either performs the desired
arithmetic or logical operation, or generates the address for the
upcoming data operation. For data operations, this phase contains
both the data virtual address stage, which generates the desired
virtual address, and the data TLB stage, which performs the virtual
to physical translation.

¢ MEM (Memory). This phase performs the data load or store transac-
tion.

e WB (Write Back). This stage updates the registers with the result
data. :

 High performance is achieved because five instructions are operating
concurrently, each in a different stage of the pipeline. However, since
multiple instructions are operating concurrently, it is possible that
multiple exceptions are generated concurrently. If so, the processor must
decide which exception to process, basing this decision on the stage of the
pipeline that detected the exception. The processor will then flush all
preceding pipeline stages to avoid altering processor context, thus imple-
menting precise exceptions. This determines the relative priority of the
exceptions.

For example, an illegal instruction exception can only be detected in
the instruction decode stage of the R36100; an Instruction Bus Error can
only be determined in the I-Fetch pipe stage. Since the illegal instruction
was fetched before the instruction which generated the bus error was
fetched, and since it is conceivable that handling this exception might
have avoided the second exception, it is important that the processor
handle the illegal instruction before the bus error. Therefore the excep-
tion detected in the latest pipeline stage has priority over exceptions
detected in earlier pipeline stages. All instructions fetched subsequent to
this (all preceding pipeline stages) are flushed to avoid altering state infor-
mation, maintaining the precise exception model.
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Table 6.5 lists the priority of exceptions from highest first to lowest.

Mnemonic Pipestage
Reset . Any
AdEL Memory (Load instruction)
AdES Memory (Store instruction)
DBE Memory (Load or store)
MOD+t ALU (Data TLB)
TLBLt ALU (DTLB Miss)
TLBSY ALU (DTLB Miss)
Oovf ALU
Int ALU
Sys RD (Instruction Decode)
Bp RD (Instruction Decode)
RI RD (Instruction Decode)
CpU RD (Instruction Decode)
TLBLt I-Fetch (ITLB Miss)
AdEL IVA (Instruction Virtual Address)
IBE RD (end of I-Fetch)
tThese exceptions will not occur in an R36100, which does not include a TLB.

Table 6.5 R36100 Exception Priority

Exception Latency

A critical measurement of a processor’s throughput in interrupt driven
systems is the interrupt “latency” of the system. Interrupt latency is a
measurement of the amount time from the assertion of an interrupt until
software begins handling that interrupt. Often included when discussing
latency is the amount of overhead associated with restoring context once
the exception is handled, although this is typically less critical than the
initial latency.

In systems where the processor is responsible for managing a number
of time-critical operations in real time, it is important that the processor
minimize interrupt latency. That is, it is more important that every inter-
rupt be handled at a rate above some given value, rather than occasion-
ally handle an interrupt at very high speed.

Factors which affect the interrupt latency of a system include the types
of operations it performs (that is, systems which have long sequences of
operations during which interrupts can not be accepted have long
latency), how much information must be stored and restored to preserve
and restore processor context, and the priority scheme of the system.

Table 6.5 illustrates which pipestage recognizes which exceptions. As
mentioned above, all instructions less advanced in the pipeline are
flushed from the pipeline to avoid altering state execution. Those instruc-
tions will be restarted when the exception handler completes.
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Once the exception is recognized, the address of the appropriate excep-
tion vector will be the next instruction to be fetched. In general, the
latency to the exception handler is one instruction cycle, and at worst the
longest stall cycle in that system.

The R36100 implements mechanisms which can help improve excep-
tion response time. Primary among these is the cache locking mechanism
described in earlier chapters. System software can be easily arranged
such that the exception service routines and/or critical exception data
are locked into the on-chip cache. The result will be both high-speed and
fully deterministic.

Interrupts Inputs in the R36100

The organization of interrupts in an R36100- based system is up to the
system architect. Specifically, the R36100 multiplexes various interrupt
pins with PIO pins; depending on the programming of the PIO unit, the
system may have 6 external interrupts and 2 BrCond input pins available
for interrupt software. This section describes operation assuming all
such inputs are available to system software. Later chapters describe the
on-chip PIO and interrupt control units.

Interrupt Operation in the R36100

The R36100 family features two types of interrupt inputs: synchronized
internally and non-synchronized, or direct.

The SInt(2:0) bus (Synchronized Interrupts) allow the system designer
to connect unsynchronized interrupt sources to the processor. The
processor includes special logic on these inputs to avoid meta-stable
states associated with switching inputs right at the processor sampling
point. Because of this logic, these interrupt sources have slightly longer
latency from the SInt(n) pin to the exception vector than the non-synchro-
nized inputs. The operation of the synchronized interrupts is illustrated
in Figure 6.4.

Run Cvcle Exception Vector
Phi

SysClk

Sint(n)

tes tog

Figure 6.4 Synchronized Interrupt Operation

The other interrupts, Int(5:3), do not contain this synchronization logic,
and thus have slightly better latency to the exception vector. However,
the interrupting agent must guarantee that it always meets the interrupt
input set-up and hold time requirements of the processor. These inputs
are useful for interrupting agents which operate off of the synchronously
with the R36100. The operation of these interrupts is illustrated in
Figure 6.5.
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Run Cvcle Excention Vector
Phi
SysClk
int(n)
30 ta1

Figure 6.5 Direct Interrupt Operation

Since the interrupt exception is detected during the ALU stage of the
instruction currently in the processor pipeline, at least one run cycle
must occur between (or at) the assertion of the external interrupt input
and the fetch of the exception vector. Thus, if the processor is in a stall
cycle when an external agent sends an interrupt, it will execute at least
one run cycle before beginning exception processing. In this instance,
there would be no difference in the latency of synchronized and direct
interrupt inputs.

All of the interrupts are level-sensitive and active low. They continue to
be sampled after an interrupt exception has occurred, and are not latched
within the processor when an interrupt exception occurs. It is important
that the external interrupting agent maintain the interrupt line until soft-
ware acknowledges the interrupt.

Note that the R3081 incorporates a hardware floating point accelerator
on-chip. The MIPS architecture recommends that Int(3) be used to
handle the floating point interrupt; thus, the R3081 defaults to this inter-
rupt assignment. However, the R3081 Config register (which differs from
the R36100 Config register) can be used to change the assignment.

Also, the on-chip interrupt controller of the R36100 will signal its inter-
rupt to the CPU using one of the available CPU interrupts. The interrupt
controller defaults to Int(4) for this operation; however, the interrupt
controller does allow software to select an alternative interrupt. In any
case, the system needs to reserve one CPU interrupt for the on-chip inter-
rupt controller.

Each of the eight interrupts (6 hardware and 2 software) can be individ-
ually masked by clearing the corresponding bit in the Interrupt Mask field
of the Status Register. All eight interrupts can be masked at once by
clearing the IEc bit in the Status Register.

On the synchronized interrupts, care should be taken to allow at least
two clock cycles between the negation of the interrupt input and the re-
enabling of the interrupt mask for that bit. In general, it is recommended
that software continue polling the IP field of the Cause register once it has
instructed the peripheral to negate its interrupt, prior to re-enabling its
mask, to avoid a spurious interrupt.

The value shown in the interrupt pending bits of the Cause register
reflects the current state of the interrupt pins of the processor. These bits
are not latched (except for sampling from the data bus to guarantee that
they are stable when examined), and the masking of specific interrupt
inputs does not mask the bits from being read.
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Using the BrCond Inputs

In addition to the interrupt pins themselves, many systems can use the

BrCond(3:2) input port pins in their exception model. These pins can be

- directly tested by software, and can be used for polling or fast interrupt
decoding. The kernel must enable the use of the corresponding co-
processor unit before testing the state of the BrCond input pin.

The R36100 provides two synchronized BrCond inputs: SBrCond(3:2).
Note that BrCond(0), corresponding to the on-chip CPO, and BrCond(1),
corresponding to Co-Processor 1 (the FPA, present on the R3081), are not
available on the R36100 as wuser inputs. Instructions that use
BrCond(1:0) will always see a 'l' on the R36100. Also note that the
SBrCond(3:2) on the R36100 may be not be enabled in the PIO unit, in
which case the SBrCond(3:2) input values are undefined. When
programmed to be SBrCond(3:2) inputs, the timing requirements of the
SBrCond inputs are illustrated in Figure 6.6. Since these inputs are
synchronized by the R36100, they do not need to be driven synchro-
nously to the processor.

Similar to the interrupt inputs, at least one instruction must be
executed (in the ALU stage) of the instruction pipeline prior to software
being able to detect a change in one of these inputs. This is because the
processor actually captures the value of these flags one instruction prior

- to the branch on co-processor instruction. Before executing a Branch
Condition instruction (i.e. BCzT, BCzF) the corresponding co-processor
usable bit in the CPO status register must be set; otherwise, a co-
processor unusable exception will be signalled.

Capture BCzT/F

SysCk [T \__/ % /T \ /T N\ /ST

SBrCond(n) - 1k
B B

tes t29

Figure 6.6 Synchronized BrCond Inputs
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Interrupt Handling

The assertion of an unmasked interrupt input causes the R36100 to
branch to the general exception vector at virtual address 0x8000_0080,
and write the ‘Int’ code in the Cause register. The IP field of the Cause
register shows which of the six hardware interrupts are pending and the
SW field in the Cause register show which of the two software interrupts
are pending. Multiple interrupts can be pending at the same time, with
no priority assumed by the processor.

If the interrupt asserted is due to the on-chip interrupt controller, the
interrupt controller must be accessed to determine which of its interrupt
sources caused the assertion. This operation is described in a later
chapter.

When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status
register, respectively, as illustrated in Figure 6.7. The current kernel
status bit KUc and the interrupt bit IEc are cleared. This will mask all of
the interrupts and then place the processor in kernel mode. This
sequence will be reversed by the execution of an rfe (restore from excep-
tion) instruction, typically in the branch delay slot of the branch which
resumes normal execution.

IKUOI IEo I KUpl IEp | KUcl 1Ec |

i—o VO

I | IKUOI IEoIKUpl IEp|KUcI IEcI

Exception Recognition

KUo IEo Ec

\%\.\

KUo IEo KUp I IEp KUc IEc

" RFE Instruction

Figure 6.7 Kernel and Interrupt Status Being Saved on Interrupts

Interrupt Servicing

In case of a hardware interrupt, the interrupt must be cleared by de--
asserting the interrupt line, which has to be done by alleviating the
external conditions that caused the interrupt. Software interrupts have
to be cleared by clearing the corresponding bits, SW(1:0), in the Cause
register to zero. It is recommended that software continue polling the IP
field of the Cause register once it has instructed the peripheral to negate
its interrupt, prior to re-enabling its mask, to avoid a spurious interrupt.
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Basic Software Techniques For Handling Interrupts

Once an exception is detected the processor suspends the current task,
enters kernel mode, disables interrupts, and begins processing at the
exception vector location. The EPC is loaded with the address the
processor will return to once the exception event is handled. +

The specific actions of the processor depend on the cause of the excep-
tion being handled. The MIPS architecture classifies exceptions into three
distinct classes: RESET, UTLB Miss , and General.

Coming out of reset, the processor initializes the state of the machine.
In addition to initializing system peripherals, page tables, the TLB, and
the caches, software clears both STATUS and CAUSE registers, and
initializes the exception vectors.

The code located at the exception vector may be just a branch to the
actual exception code; however, in more time critical systems the instruc-
tions located at the exception vector may perform the actual exception
processing. In order to cause the exception vector location to branch to
the appropriate exception handler (presuming that such a jump is appro-
priate), a short code sequence such as that illustrated in Figure 6.8 may
be used.

It should be noted the contents of register kO are not preserved. This is
not a problem for software, since MIPS compiler and assembler conven-
tions reserve kO (and often k1) for kernel processes, and do not use it for
user programs. For the system developer it is advised that the use of kO
be reserved for use by the exception handling code exclusively. This will
make debugging and development much easier.

The "IDT R30xx Family Software Reference Manual" provides a great
deal of information on the software requirements of exception manage-
ment, including interrupt service.

.set noreorder # tells the assembler not to reorder the code
/*
**  ‘code sequence copied to UTLB exception vector
*/
la kO,excep_utlb #address of utlb excp. handler
j kO # jump via reg kO
nop '
/*
**  code sequence copied to general exception vector
*/
la kO,excep_gener  #address of general excp. handler
al
j kO # jump via reg kO
nop

Figure 6.8 Code Sequence to Initialize Exception Vectors
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Preserving Context

The R36100 has the following four registers related to exception
processing: :

e The Cause register

¢ The EPC (exception program counter) register

¢ The Status register

¢ The BadVAddr (bad virtual address) register

Typical exception handlers preserve the status, cause, and EPC regis-
ters in general registers (or on the system stack). If the exception cause is
due to an address error, software may also preserve the bad virtual
address register for later processing.

Note that not all systems need to preserve this information. Since the
R36100 disables subsequent interrupts, it is possible for software to
directly process the exception while leaving the processor context in the
CPO registers. Care must be taken to insure that the execution of the
exception handler does not generate subsequent exceptions.

Preserving the context in general registers (and on the stack) does have
the advantage that interrupts can be re-enabled while the original excep-
tion is handled, thus allowing a priority interrupt model to be built.

A typical code sequence to preserve processor context is shown in
Figure 6.9. This code sequence preserves the context into an area of
memory pointed to by the kO kernel register. This register points to a
block of memory capable of storing processor context. Constants identi-
fied by name (such as R_EPC) are used to indicate the offset of a partic-
ular register from the start of that memory area.

It should be noted that this sequence for fetching the co-processor zero
registers is required because there is a one clock delay in the register
value actually being loaded into the general registers after the execution
of the mfcO instruction.

la kO,except_regs # fetch address of reg save array
sSwW AT R_AT*4(k0) # save register AT
sw vO,R_V0*4(k0) # save register vO
sw v1,R_V1*4(k0) # save register vl
mfcO v0,CO_EPC # fetch the epc register
mfcO v1,CO_SR # fetch the status register
SwW A v0,R_EPC*4(kO0) # save the epc
mfcO v0,CO_CAUSE # fetch the cause register
swW v1,R_SR*4(kO0) # save status register

/* The above code is about the minimum required

i The user specific code would follow

*/

Figure 6.9 Preserving Processor Context
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Determining The Cause Of The Exception

The cause register indicates the reason the exception handler was
invoked. Thus, to invoke the appropriate exception service routine, soft-
ware merely needs to examine the cause register, and use its contents to
direct a branch to the appropriate handler.

One method of decoding the jump to an appropriate software routine to
handle the exception and cause is shown in Figure 6.10. Register vO
contains the cause register, and register kO still points to the register save

array.
.set " noreorder
sw a0,R_A0*4(k0) # save register a0
and v1,vO,EXCMASK # isolate exception code
Iw a0,cause_table(v1) # get address of interrupt routine.
swW al,R_A1*4(k0) # use delay slot to save register al
j a0
sw k1,R_K1*4(sp) # save k1 register
.set reorder # re-enable pipeline scheduling

Figure 6.10 Exception Cause Decoding

The above sequence of instructions extracts the exception code from
the cause register and uses that code to index into the table of pointers to
functions (the cause_table). The cause_table data structure is shown in
Figure 6.11. ’ .

Each of the entries in this table point to a function for processing the
particular type of interrupt detected. The specifics of the code contained
in each function is unique to a given application; all registers used in
these functions must be saved and restored.
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int (*cause_table[16])() ={

int_extern,
int_tlbmod,
int_tlbmiss,
int_tlbmiss,
int_éddrerr,
int_addrerr,
int_ibe,
int_dbe,
int_syscall,
int_breakpoint,
int_trap,
int_cpunuse,
int_trap,
int_unexp,
int_unexp,
int_unexp

|5

/* External interrupts

/* TLB modification error

/* load or instruction fetch

/* write miss

/* load or instruction fetch

/* write address error

/* Bus error - Instruction fetch
/* Bus error - load or store data
/* SYSCALL exception

/* breakpoint instruction

/* Reserved instruction

/* coprocessor unusable

/* Arithmetic overflow

/* Reserved

/* Reserved

/* Reserved

*/
*/
*/
*/
*/
. */
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Figure 6.11 Exception Service Branch Table
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Returning From Exceptions

Returning from the exception routine is made through the rfe instruc-
tion. When the exception first occurs the R36100 automatically saves
some of the processor context, the current value of the interrupt enable
bit is saved into the field for the previous interrupt enable bit, and the
kernel/user mode context is preserved.

The IE interrupt enable bit must be asserted (a one) for external inter-
rupts to be recognized. The KU kernel mode bit must be a zero in kernel
mode. When an exception occurs, external interrupts are disabled and
the processor is forced into kernel mode. When the rfe instruction is
executed at completion of exception handling, the state of the mode bits is
restored to what it was when the exception was recognized (presuming
the programmer restored the status register to its value when the excep-
tion occurred). This is done by “popping” the old/previous/current KU
and IE bits of the status register.

The code sequence in Figure 6.12 is an example of exiting an interrupt
handler. The assumption is that registers and context were saved as
outlined above. To properly exit from exception handling, this code
sequence must either be replicated in each of the cause handling func-
tions or each of them must branch to this code sequence.

Note that this code sequence must be executed with interrupts

disabled. If the exception handler routine re-enables interrupts, they
must be disabled when the CPO registers are being restored.
gen_excp_exit:
.set noreorder
# by the time we have gotten here
# all general registers have been
# restored (except of kO and vO)
# reg. AT points to the reg save array
Iw kO,CO_SR*4(AT) # fetch status reg. contents
Iw vO,R_VO*4(AT) # restore reg. vO
mtcO  kO,CO_SR # restore the status reg. contents
Iw kO,R_EPC*4(AT) # Get the return address
Iw AT, R_AT*4(AT) # restore AT in load delay
j kO # return from int. via jump reg.
rfe # the rfe instr. is executed in the
# branch delay slot
.set reorder

Figure 6.12 Returning from Exception
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Special Techniques For Interrupt Handling

There are a number of techniques which take advantage of the R36100
architecture to minimize exception latency and maximize throughput in
interrupt driven systems. This section discusses a number of those tech-
niques.

Interrupt Masking ,

Only the six external and two software interrupts are maskable excep-
tions. The mask for these interrupts are in the status register.

To enable a given external interrupt, the corresponding bit in the
status register must be set. The IEc bit in the status register must also be
set. It follows that by setting and clearing these bits within the interrupt
handler that interrupt priorities can be established. The general mecha-
nism for doing this is performed within the external interrupt-handier
portion of the exception handler."

The interrupt handler preserves the current mask value when the
status register is preserved. The interrupt handler then calculates which
(if any) external interrupts have priority, and sets the interrupt mask bit
field of the status register accordingly. Once this is done, the IEc bit is
changed to allow higher priority interrupts. Note that all interrupts must
again be disabled when the return from exception is processed.

Using BrCond For Fast Response

The R36100 instruction set contains mechanisms to allow external or
internal co-processors to operate as an extension of the main CPU. Some
of these features may also be used in an interrupt-driven system to
provide the highest levels of response.

Specifically, the R36100 allows external input port signals, the
SBrCond(3:2) signals. These signals are used by external agents to report
status back to the processor. The instruction set contains instructions
which allow the external bits to be tested, and branches to be executed
depending on the value of the SBrCond input.

An interrupt-driven system can use these SBrCond signals, and the
corresponding instructions, to implement an input port for time-critical
interrupts. Rather than mapping an input port in memory (which
requires external logic), the SBrCond signals can be examined by software
to control interrupt handling.

There are actually two techniques to use this advantageously. One
method uses these signals to perform interrupt polling; in this method,
the processor continually examines these signals, waiting for an appro-
priate value before handling the interrupt. A sample code sequence is
shown in Figure 6.13.

The software in this system is very compact, and easily resides in the
on-chip cache of the processor. Thus, the latency to the interrupt service
routine in this system is minimized, allowing the fastest interrupt service
capabilities.

A second method utilizes external interrupts combined with the
SBrCond signals. In this method, both the SBrCond signal and one of the
external interrupt lines are asserted when an external event occurs. This
configuration allows the CPU to perform normal tasks while waiting for
the external event.

For example, assume that a valve must be closed and then normal
processing continued when SBrCond(2) is asserted TRUE. The valve is
controlled by a register that is memory-mapped to address Oxaffe_0020
and writing a one to this location closes the valve. The software in
Figure 6.14 accomplishes this, using SBrCond(2) to aid in cause
decoding.
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The number of cycles for a deterministic system is five cycles between
the time the interrupt occurred and it was serviced. Interrupts were re-
enabled in four additional cycles. Note that none of the processor context
needs to be preserved and restored for this routine.

.set  noreorder # prevents the assembler from

# reordering the code below

polling_loop: # branch to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>