

intel.

80C186EC/80C188EC
Microprocessor
User’'s Manual

1995 Order Number 272047-003

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1995

intel.

CONTENTS
CHAPTER 1
INTRODUCTION
1.1 HOW TO USE THIS MANUAL ..ottt 1-2
1.2 RELATED DOCUMENTS ...ttt 1-3
1.3 ELECTRONIC SUPPORT SYSTEMSoiiiiiiiiiii e 1-4
1.3.1 FAXBACK SEIVICEccueiiiiiiiiiitii ittt 1-4
1.3.2 Bulletin Board System (BBS)coiiiiiiiiiiie ettt 1-5
1321 How to Find ApBUILDER Software and Hypertext Documents on the BBS ...1-6
1.3.3 COMPUSEIVE FOMUMS ...iiiiiiiiiiiiiiiiettieeeeeesssssbib e et e aeeaeeaeesssssssntbbbbeaereeeaeaeeaeeas 1-6
1.3.4 WOrld Wide WEDooiiiiii e 1-6
1.4 TECHNICAL SUPPORT ...ttt et 1-6
1.5 PRODUCT LITERATUREcciiiiiiieiiiit ettt 1-7
1.6 TRAINING CLASSESottt nb e 1-7
CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
21 ARCHITECTURAL OVERVIEWoiiiiiiiiiiiiieiie ettt 2-1
211 EXECULION UNIE ...ttt e et e e e et e e e e e naeeae e an 2-2
212 BUS INEIfACe UNIL ... e et e e e 2-3
2.1.3 GeNEral REGISIEIS ...oiiiiieiiie ettt ettt e e st e e e et e e e e naraeeeeeaan 2-4
2.1.4 SegmeNnt REQISIEISiuiiiieiiiiiiie ettt ettt e et e e e et e e e e bbb e e e e e s anaeeeeeaan 2-5
2.15 INSTPUCEION POINET .o e e e e e e e e e ennees 2-6
2.1.6 [F= o PP UPTPUPPPPTN 2-7
217 MEMOrY SEOMENTALIONcccciiiuiiiiiee ittt e e e e e e e e e e et ee e e e s snebeeeeeaan 2-8
2.1.8 LOGICAl AQUIESSES ...coiiiieeiieee ettt ettt ettt e e e s e ta e e e e e s enbeeeee s 2-10
2.1.9 Dynamically Relocatable COOec.uuuiiiiiiiiiiiiee e 2-13
2.1.10 Stack IMPIEMENTAtIONeeiiiiiiiiiiie et 2-15
2.1.11 Reserved Memory and [/O SPACEccueeeeeeiiiiiiiie et 2-15
2.2 SOFTWARE OVERVIEW
221 INSLrUCLION Setevveieiiiiiie e
2211 Data Transfer INSIIUCHIONScouuviiiiiiiiiiii e
2212 Arithmetic INSTIUCHIONSeiiiiiiec s
2213 Bit Manipulation Instructions
2214 String INStructionscccccocvveeiiiveenne
2215 Program Transfer Instructions
2.2.16 Processor Control Instructions
2.2.2 AJAresSiNg MOUESooiiiiiiiiiiiiie ettt e et e e e e ieee e e an
2221 Register and Immediate Operand Addressing Modesccccceveeiiiieenennn. 2-27
2222 Memory Addressing MOUESoocuviiiiiiiiiiee et 2-28
2223 1/O Port Addressing
2224 Data Types Used in the 80C186 Modular Core Familyccccccevviineennnen. 2-37

CONTENTS Inte|®

2.3 INTERRUPTS AND EXCEPTION HANDLINGccceeiciiiiiiiceieecc e 2-39
23.1 Interrupt/Exception Processing
23.11 Non-Maskable Interrupts
23.1.2 Maskable Interruptscccccceeveiiieeeenn.
23.1.3 Exceptionsccccceeeeen.
2.3.2 Software Interrupts
2.33 INEEITUPE LALENCY ...ttt e e e e e e e e e e e e e e e e e
234 Interrupt Response Time

235 Interrupt and EXCEPLION PrIOILYcoouuiiiiie it e e 2-46
CHAPTER 3
BUS INTERFACE UNIT
3.1 MULTIPLEXED ADDRESS AND DATA BUS ...ttt 3-1

3.2 ADDRESS AND DATA BUS CONCEPTS
3.21 16-Bit Data Bus
3.2.2 8-BitDataBusccccceiiiiiii e

3.3 MEMORY AND I/O INTERFACES
331 16-Bit Bus Memory and I/O Requirements
3.3.2 8-Bit Bus Memory and I/O Requirements

3.4 BUS CYCLE OPERATION

341 AJAress/Status PhaSeooiiiiiiiiiiiii it e e e e e
3.4.2 DAta PhaSEcocieiiiiiieeee et
343 WA STAIES ..eiviiiiieiiiiie ettt e e e s et e e e e e e e e e bt be e e e e antbaaeeeannee
344 [0 | LI €= L (= SOOI
35 BUS CYCLES................

35.1 Read Bus Cycles

3511 Refresh Bus Cycles
352 Write BUS CyCIeS ...eevveiiiiiiiiieececce
3.5.3 Interrupt Acknowledge Bus Cycle

3531 System Design Considerations

354 HALT BUS CYCIE .ttt e e e
3.5.5 Temporarily Exiting the HALT Bus State
356 EXIING HALT oottt ettt nae e
3.6 SYSTEM DESIGN ALTERNATIVES

3.6.1 BUffering the Data BUScccueiiiiiieiiie e e
3.6.2 Synchronizing Software and Hardware Events
3.6.3 USING @ LOCKED BUSceeiiiiiiiiiii ettt
3.7 MULTI-MASTER BUS SYSTEM DESIGNS.....cc.coiiiiiiiiiiiiie e
3.7.1 ENtering BUS HOLDooiiiiiiieie ettt
3.7.11 HOLD BUS LatenCyccccvevveriiiniiieenieeee e
3.7.1.2 Refresh Operation During a Bus HOLD
3.7.2 EXItING HOLD ...ceiiiiiii ettt e e et e e e et e e e e s e baneee s
3.8 BUS CYCLE PRIORITIES ...ttt sttt sttt e

Inte|® CONTENTS

CHAPTER 4
PERIPHERAL CONTROL BLOCK
4.1 PERIPHERAL CONTROL REGISTERS......cciiiiiiiiiiiee ettt 4-1
4.2 PCB RELOCATION REGISTER
4.3 RESERVED LOCATIONSooiiiiiieiiiieesieeeiee e see e
4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK
441 BUS CYCIES ..ottt ettt e e e eat et e e e e ekt e e e e e e e ebbeeeee e e e annreeeee s
442 READY Signals and Wait StateSc.coiiiiiiiuiiiei e eeee e e
443 [U S @ o 1= = T RSP TPR
4431 Writing the PCB Relocation Register
4.4.3.2 Accessing the Peripheral Control Registers
4.4.3.3 Accessing Reserved Locations
4.5 SETTING THE PCB BASE LOCATIONcccviiiiiiieiiiie et
45.1 Considerations for the 80C187 Math Coprocessor Interface

CHAPTER 5
CLOCK GENERATION AND POWER MANAGEMENT
51 CLOCK GENERATION. ...ttt st
51.1 Crystal Oscillator
5.1.11 Oscillator Operation
5.1.1.2 SeleCtiNg CrYSLAlSeoiiiiiiiii e
5.1.2 Using an External OSCIllAatorooiiuiiiii i e
5.1.3 Output from the CIOCK GENEIALOFeiiiiiiiiiiia et
5.14 Reset and Clock SYNChronNizationcocuueiiieiiiiiiiie e
5.2 POWER MANAGEMENTooiiiiiiii ettt a e e e e e e e s
521 [AIE MOOE .ttt sat e e et
5.2.11 Entering [d1e MOAEoooieiiiie e
5.2.1.2 Bus Operation During Idle Mode
5.2.1.3 Leaving ldle MOdeoccieieiiiiiiiiiieeieieeee e
5.2.1.4 Example Idle Mode Initialization Code
5.2.2 Powerdown Modeccocviiiiiieniiieie e
5221 Entering POwerdown MOOEocueeiiiiiiiiiiieiee s
5222 Leaving POWErdown MOAEcccueieiiiiieiniiiee e
5.2.3 POWET-SAVE MOUEooiiiiiiii it
5.2.31 Entering POWer-Save MOOEeeiiiiiiiiiiieei et
5.2.3.2 Leaving Power-Save Modecccccooniiieeiieninnne
5.2.33 Example Power-Save Initialization Code
5.2.4 Implementing a Power Management Scheme

CHAPTER 6

CHIP-SELECT UNIT
6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS.......cooiiiiieiiiieeceeiienn 6-1
6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS ... 6-1
6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEWcooiiiiiiiiiceeeee e 6-2

CONTENTS Inte|®

6.4 PROGRAMMING ...ttt ettt 6-5
6.4.1 INItIAlIZAtION SEQUENCE ...eiiiiiiiiiiei ettt e e e et aae e e e e stnaarae e e e snneaes 6-6
6.4.2 STAINt AGAIESSoiiiiiiii ittt 6-10
L B (o o I AN o [1= 1T SRR 6-10
6.4.4 Enabling and Disabling Chip-SelectSccciiiiiiiiiiiiiiiie e 6-11
6.4.5 Bus Wait State and Ready CONrolccccoiiiviiieiiiiiiiee e e e 6-11
6.4.6 Overlapping Chip-SEIECEScueiiiiiieiiie e 6-12
6.4.7 Memory or [/O Bus Cycle DECOAINGceiivuieiiiiiiiiieeiiie et 6-14
6.4.8 Programming CONSIAEIAtIONSeeiiiiiiiiiee ittt e 6-14

6.5 CHIP-SELECTS AND BUS HOLD.cciiiiii ittt 6-15

6.6 EXAMPLES ...ttt ettt 6-15
6.6.1 Example 1: Typical System Configurationccccceeoiiiiiiineeiniiiieee e 6-15
6.6.2 Example 2: Detecting Attempts to Access Guarded Memorycccccceevviviieeeennns 6-20

CHAPTER 7

REFRESH CONTROL UNIT
7.1 THE ROLE OF THE REFRESH CONTROL UNIT .
7.2 REFRESH CONTROL UNIT CAPABILITIES......cccctiiieiiietie e
7.3 REFRESH CONTROL UNIT OPERATION.....cccttiiiiiiteitie ittt
7.4 REFRESH ADDRESSES...........cccooiniiiiieieeen
7.5 REFRESH BUS CYCLES
7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS......cccccoviiiiiiiiiiiiiicecee 7-5
7.7 PROGRAMMING THE REFRESH CONTROL UNIT...ccccoiiiiiiiiiiiiiiiiiieie e 7-7

7.7.1 Calculating the Refresh INtervalccccoooeiiiiiiiiiii e
7.7.2 Refresh Control UNit REJISLEISoiiiiiiiiieeiiiee et

7.7.21 Refresh Base Address REQISIENoovuiiiiiiieiiiee e

7.7.22 Refresh Clock Interval REQISTENoviiiiiiiiieiiiee e

7.7.23 Refresh Control REGISIELooiiiiiiiiiee e

7.7.24 Refresh Address Register

7.7.3 Programming Exampleccccccooieeenn.
7.8 REFRESH OPERATION AND BUS HOLD

CHAPTER 8
INTERRUPT CONTROL UNIT
8.1 FUNCTIONAL OVERVIEW: THE INTERRUPT CONTROLLERcccoociiiiiiieiicce 8-1
8.2 INTERRUPT PRIORITY AND NESTING.....ccoiiiiiiiiiiiiie e 8-4
8.3 OVERVIEW OF THE 8259A ARCHITECTURE........cociiiiiiiiieiiie e 8-4
8.3.1 A Typical Interrupt Sequence Using the 8259A Modulecccccevriieeiiieeenincenne, 8-6
8.3.2 INEEITUPE REQUESTES ...ttt e e e 8-9
8.3.21 Edge and Level THOOEeNNG ...coocuuriiiee ittt 8-9
8.3.2.2 The Interrupt Request REJISIEreiiiiiieiiie e 8-9
8.3.23 SPUOUS INTEITUPLS ...eeeiiie ettt e e e e e s e e e e e eene s 8-10
8.3.3 The Priority Resolver and Priority RESOIULIONc.occeeiiiiiiiiiiiiii e 8-10

Vi

Inte|® CONTENTS

8.3.3.1 Default (FiXed) PrIOMILY ...cocvveeriei ittt e e eneae e
8.3.3.2 Changing the Default Priority: Specific Rotationccccccvvviviee i
8.3.3.3 Changing the Default Priority: Automatic Rotation
8.3.4 The IN-Service REJISIErcoiii i
8.34.1 Clearing the In-Service Bits: Non-Specific End-Of-Interrupt ...
8.3.4.2 Clearing the In-Service Bits: Specific End-Of-Interruptccccccceiviiinee.n.
8.3.4.3 Automatic End-Of-INterrupt MOdeccvevveeiiiiiiiiie et
8.3.5 MaSKING INTEITUPLS .oeiiiiiiiiee ettt ettt e e st e st e e e e et e e e e e s enbaeaae s
8.3.6 CaSCAUING B259AS ...uviiiiiiiiiiiee ettt a e e a e a e e e e s
8.3.6.1 Master/Slave CONNECIONc.ceeviviiiiiiee e
8.3.6.2 The Cascaded Interrupt Acknowledge Cycle: An Example
8.3.6.3 Master Cascade Configurationccccccoeeiciiireeeiiiiiiieeeennns
8.3.6.4 5] = 1Y 1 L USSP
8.3.6.5 Issuing EOl Commands in a Cascaded System
8.3.6.6 Spurious Interrupts in a Cascaded System
8.3.7 Alternate Modes of Operation: Special Mask Modecc.........

8.3.8 Alternate Modes of Operation: Special Fully Nested Mode
8.3.9 Alternate Modes of Operation: The Poll Command

8.4 PROGRAMMING THE 8259A MODULEccccoiiiiiiiriie ittt
8.4.1 Initialization and Operation Command WOIdScccceeiiiiiiiiiiiiaiiieeee e
8.4.2 Programming Sequence and Register AddreSSingcccooouieeieeeiiiiiieeeeniieeeeene
8.4.3 Initializing the 8259A MOAUIEcooiiiiiiie e

8431 8259A Initialization SEqUENCEcccoevveviiiiieeiiiieeieee e

8.4.3.2 ICW1: Edge/Level Mode, Single/Cascade Mode

8.4.3.3 ICW2: Base INterrupt TYPE ...cocoviiirieieeiiiieiee et

8.4.3.4 ICW3: Cascaded Pins/Slave AAAreSScccoocvveiriieiiieee e

8.4.35 ICW4: Special Fully Nested Mode, EOI Mode, Factory Test Modes 8-26
8.4.4 The Operation Command WOIAScoouuiiiiiiiiiiiae i 8-30

8.4.4.1 Masking INterrupts: OCWL ...t 8-30

8.4.4.2 EOI And Interrupt Priority: OCW2 ... 8-30

8.4.4.3 Special Mask Mode, Poll Mode and Register Reading: OCW3 8-34

8.5 MODULE INTEGRATION: THE 80C186EC INTERRUPT CONTROL UNIT............... 8-36

85.1 Internal INterrupt SOUICEScccovvieiiiiieiiice e
8.5.1.1 Directly Supported Internal Interrupt Sources
8.5.1.2 Indirectly Supported Internal Interrupt Sources
8.5.1.3 Using the Interrupt Request Latch ReQIStersccccoovvvviiviiniiieeiiieeesneeens
8.5.1.4 Using the Interrupt Request Latch Registers to Debug Interrupt Handlers ...8-40

8.6 HARDWARE CONSIDERATIONS WITH THE INTERRUPT CONTROL UNIT........... 8-42
8.6.1 Interrupt Latency and ReSPONSE TiMEcooiuiiiiiiiiiiiiiee e 8-43
8.6.2 Resetting the EAge DELECIONooiiiiiiiiiiiiee e 8-43
8.6.3 REAAY GENETALIONeiiiiieiiieee ettt ettt e et e e e e et e e e e e e s anreeaee s 8-44
8.6.4 Connecting External 8259A DEVICESccoiuuiiiiiiiiiiiiiie e eriiiiie e siiiiea e satieeee e e 8-44

8.6.4.1 The EXternal INTA CYCIEooeieeieeeeeeeeeee ettt 8-45
8.6.4.2 TIMING CONSITAINTSeeeiiee ettt ettt ee e e e sae e e e e saeeeeeaeeeenees 8-46
8.7 MODULE EXAMPLES ..ottt sttt sttt sre et sne e 8-47

vii

CONTENTS Inte|®

CHAPTER 9
TIMER/COUNTER UNIT
9.1 FUNCTIONAL OVERVIEW.ottt eaeb e ee e e e e e e e e s anss s saninsnnnes 9-1
9.2 PROGRAMMING THE TIMER/COUNTER UNIT ...ccoviiiiiiiiiee e 9-6
9.2.1 INItIAlIZAtION SEQUENCE ...viiiiiiiiiii i e e e e s ae e e e e 9-11
9.2.2 CIOCK SOUICES ..eiveiiieiiiiiitt ettt ettt bt ettt ettt e e et e e st e nnnee s bnee s 9-12
9.2.3 COUNLING MOAES ...oviieieiiiiiiiiie ettt e et e e e et e e e s et et e e e e e e stree e e e s s nnraaeeesan 9-12
9.2.3.1 [23=] g1 To =141 oV SR EPP P 9-13
9.2.4 Pulsed and Variable Duty Cycle OUIPULc.cuviieiiiiiiiee e 9-14

9.25 Enabling/Disabling Counters
S 2 S 0 ¢ 1= T 11 (=T (U o £ PR
9.2.7 Programming Considerations
9.3 TIMING ...
9.3.1 Input Setup and Hold Timings
9.3.2 Synchronization and Maximum Frequencyc.......
9.3.2.1 Timer/Counter Unit Application Examples
9.3.3 REAIFTIME CIOCK ...iiiiiiiiiiie e e e ae e e e e sbaaaee s
9.3.4 Square-Wave Generator
9.3.,5 Digital One-Shotc.cccccvveennee

CHAPTER 10
DIRECT MEMORY ACCESS UNIT
10.1 FUNCTIONAL OVERVIEW
10.1.1 The DMA TraNSIEI .ovvvieiiiiiiiiie et e e e e e s e e e e reaeeeaeeee e s
10.1.1.1 DMA Transfer Directions
10.1.1.2 Byte and Word Transfers
10.1.2 Source and Destination Pointers
10.1.3 DIMA REUUESLS ...uuieieiniiiiiiietiieeeeae e e e e ee s e s bbb e et et e e aeaeaeaaassaa s bbsbbnsreseeeeeeaaaaaeaens
10.1.4 External Requests

10.1.4.1 Source SYNChrONIZAtIONciiiiiiiiiiie et
10.1.4.2 Destination Synchronization
10.1.5 Internal REQUESESccvevvirvieiiieiiieeee e

10.1.5.1 Integrated Peripheral Requests
10.1.5.2 Timer 2-Initiated Transfers ...
10.1.5.3 Serial Communications Unit Transfers
10.1.5.4 Unsynchronized Transfers
10.1.6 DMA Transfer COUNES ...uuiiiiiiiiiiiiii et e s s s ar e e e e aaaaaae s
10.1.7 Termination and Suspension of DMA Transfers
10.1.7.1 Termination at Terminal Count
10.1.7.2 Software Terminationcccceeeennee.
10.1.7.3 Suspension of DMA During NMI
10.1.7.4 Software Suspension
10.1.8 DMA UNItINEEITUDPES .eiiiiiiie ittt e e e e an e e nnees
10.1.9 DMA Cycles and the BIUooouiiiiiiiiiiiieiiie et
10.1.10 The Two-Channel DMA Module
10.1.10.1 DMA Channel Arbitration

viii

Inte|® CONTENTS

10.1.11 DMA MOdUIE INTEGIatiONcciiiieiieeiiiiiiee e ettt e e e e e e e e e s e aaeeaeas
10.1.11.1 DMA UNIt STFUCLUIE ...ttt e b en
10.2 PROGRAMMING THE DMA UNIT ..ottt
10.2.1 DMA Channel Parameterscccooeiuiiiiiiiiiiiieiiie st sie et e st
10.2.1.1 Programming the Source and Destination Pointers
10.2.1.2 Selecting Byte or Word Size Transfers
10.2.1.3 Selecting the Source of DMA Requests
10.2.1.4 Arming the DMA Channel ...
10.2.15 Selecting Channel Synchronizationcccccoeeviiieeee i
10.2.1.6 Programming the Transfer Count Options
10.2.1.7 Generating Interrupts on Terminal Count
10.2.1.8 Setting the Relative Priority of a Channel
10.2.2 Setting the Inter-Module POtyueiiiiiiiee e
10.2.3 Using the DMA Unit with the Serial POrMScccooiiiiiiiie e
10.2.4 Suspension of DMA Transfers Using the DMA Halt BitScccoccovieiiiiiiiiineen.
10.2.5 Initializing the DMA UNIEooooiieee e e e e aeeeeeens
10.3 HARDWARE CONSIDERATIONS AND THE DMA UNIT
10.3.1 DRQ Pin Timing REQUIFEMENESccoiiiiiiieiiiiiiiee et e e e see e earaeea s
O B B 1Y N - 1= o o3 TSP PPPPPPPTPT
10.3.3 DMA Transfer RAESoiiiiiiiiiiee ittt raae e e s aee e e s streeeas
10.3.4 Generating a DMA ACKNOWIEAQEvvviiiiiiiiiiiie et
10.4 DMA UNIT EXAMPLESoouiiiiiiiiiitieiniseisi ettt

CHAPTER 11
SERIAL COMMUNICATIONS UNIT
11.1 INTRODUCTION L.ttt et e e s e e e e e e e e et et aa e s e e e e e e e eeseasaaaa e e eeaeeeeeeeesanes 11-1
11.1.1 Asynchronous COMMUNICALIONScccueiiiiieeiiiie ettt 11-1
11111 RX Machineccoccoveiiiiiiiiieeiie,
11.1.1.2 TX Machinecccccoeeue
11.1.1.3 Modes 1,3 and 4
11.1.1.4 MOOE 2 oot e et e e e e e e e e e e e e s e e e e raraa s
11.1.2 Synchronous Communications
11.2 PROGRAMMING ...ttt ittt e e et e e st e e e bt e e snteeesnneeeanteeeanneeeenneeenn
11.2. 1 BAUA RAIES ..ttt ettt e et e e e e e e e e e aeeea s
11.2.2 Asynchronous Mode Programming
11.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial Communications
11.2.2.2 Modes 2 and 3 for Multiprocessor Communicationsccceovvveerieeennnne.
11.2.2.3 Sending and Receiving a Break Charactercccccovvviinieeeniiieeniiiee e,
11.2.3 Programming iN MOOE Ocooiuiiiiiieiiiiiiiee et e e e e s re e e e s senineaea s
11.3 HARDWARE CONSIDERATIONS FOR THE SERIAL PORTcccooviiiieeiiieeciee e,
11.3.1 CTS Pin TIMINGS covviivieieiteecieete et e ettt et ets e eteete et e steetteete et e eteansesteaseesaeeseesreenee e
11.3.2 BCLK PiN TiMINGS .iiiiiiiiiie ettt e e te e e e e e e e staaa e e e e e anneeeeas
11.3.3 MOAE O TIMUNGS .ereeieeiiiiiieee ittt e sttt e st e e e s e e e e e bbb e e e e et bareeesestaeseeeseanneeeens
11.3.3.1 CLKOUT as Baud Timebase ClOCKccooviiiiieiiiiieeeiiceieee e
11.3.3.2 BCLK as Baud Timebase CIOCKcceeiiuiiiiiieiiiieeeeee e

CONTENTS Inte|®

11.4 SERIAL COMMUNICATIONS UNIT INTERRUPTScoiiiiiiiiiiiececee e 11-21
11.5 SERIAL PORT EXAMPLES.ttt en e et ae e e e e s e e s s snnsnenenes 11-21
11.5.1 Asynchronous Mode EXamPlecccciiiiieiiiiiiiie e 11-21
11.5.2 MOAE O EXAMPIE .eoiiiiiiiiiiiie ettt a s 11-23
11.5.3 Master/Slave EXAmMPIE ...ttt 11-24
CHAPTER 12
WATCHDOG TIMER UNIT
12.1 FUNCTIONAL OVERVIEW......uuiiiiiiiiiiiiiiite ettt en e e e e e e e s 12-1
12.2 USING THE WATCHDOG TIMER AS A SYSTEM WATCHDOGoooevviiiiiiiinnes 12-1

12.2.1 Reloading the Watchdog Timer Down Counter

12.2.2 Watchdog Timer Reload Value

12.2.3 INILAIZALION ..eeiiiiiieiciee e
12.3 USING THE WATCHDOG TIMER AS A GENERAL-PURPOSE TIMERc.ccc........ 12-6
12.4 DISABLING THE WATCHDOG TIMERcoiieeiee e 12-6
125 WATCHDOG TIMER REGISTERS.......cc oo e e 12-8
12.6 INITIALIZATION EXAMPLE. ...t e e e aeaaaa 12-12

CHAPTER 13
INPUT/OUTPUT PORTS
13.1 FUNCTIONAL OVERVIEW......ciiiiiiiiiiiiiee et
13.1.1 Bidirectional Portc.......
13.1.2 OUPUL POIt ...
13.1.3 Open-Drain Bidirectional Port
13.1.4 Port Pin Organization
13.1.4.1 Port 1 Organization
13.1.4.2 Port 2 Organization
13.1.4.3 POrt 3 Organizationc.cooiiuiiiiiiiiiiiee e
13.2 PROGRAMMING THE /O PORT UNIT..cciiiiiiiiieiiiee e
13.2.1 POrt CONrOl REGISLEEuiiiieiiiiiiiie et e e e et e e e e e enbbaeeaeeeaees
13.2.2 POrt DIreCtioN REGISIELoiiiiiiiiiiiiie ettt et e e a e e e
13.2.3 Port Data LatCh REQISIETccouieiiiiieiiie ettt e e
13.2.4 POrt Pin State REQISIErooiiiiiiiiiie et
13.2.5 Initializing the I/O Ports
13.3 PROGRAMMING EXAMPLE

CHAPTER 14
MATH COPROCESSING
14.1 OVERVIEW OF MATH COPROCESSINGcoiiiiiiieei ettt 14-1
14.2 AVAILABILITY OF MATH COPROCESSING........cccititiiieiitieee ettt 14-1
14.3 THE 80C187 MATH COPROCESSOR........oiiiiiiiiiie ettt 14-2
14.3.1 80C187 INSIIUCHION SEL ...ceeeeiiiiiiii it e e e e e e e e e e e s e s s e s e e e e sanrenenrrerareees 14-2
14.3.1.1 Data Transfer INStrUCLIONSovviiiiiiieccc e 14-3

Inte|® CONTENTS

14.3.1.2 Arthmetic INSIIUCLIONSciiiiiiiiiiic e
14.3.1.3 Comparison INSITUCHIONSiiiiiiiiiiee et e e
14.3.1.4 Transcendental Instructions
14.3.1.5 (70 a1Sy = o1 [15 1 (1 1o 10 o =
14.3.1.6 Processor Control INStrUCHIONScovveeeiiiiii e 14-6
14.3.2 80CIL87 DAA TYPES ..eeeeeeriiiiieeaaaieeeeaa e e ettt r e e et eeeeaaeaaaaaaaasaasasaaannennnnnes 14-7
144 MICROPROCESSOR AND COPROCESSOR OPERATION......cccoiieeiiiiieiee e, 14-7
14.4.1 Clocking the BOCL87cccueiieiieeeiiieeeeieeeeee e e e e stee e e st e e aneeeesssteeesnaeesenaeeeanneeeaes 14-10
14.4.2 Processor Bus Cycles Accessing the 80CL87c..eeveeeiiiiiiiieeieeiiieee e eiieeeee e 14-10

14.4.3 System Design Tips
14.4.4 Exception Trapping

145 EXAMPLE MATH COPROCESSOR ROUTINES........ccoiiiiiieee e 14-13
CHAPTER 15

ONCE MODE
15.1 ENTERING/LEAVING ONCE MODE........cccccoiiiti ittt 15-1
APPENDIX A

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS
A.l 80C186 INSTRUCTION SET ADDITIONS
Al1l Data Transfer Instructions

Al2 String Instructions
A.l13 High-LeVel INSIIUCLIONSot
A2 80C186 INSTRUCTION SET ENHANCEMENTS. ...t A-8
A2.1 Data Transfer INSIIUCLIONSuuuiiiiiiiiieieiie e er e e ae e A-8
A.2.2 ArthmEtiC INSLIUCLIONSuviiiiiiiiieieee e e e e e e e e e e A-9
A.2.3 Bit Manipulation INSLrUCLIONSuiiiiiiiiiiie e A-9
A.2.3.1 Shift INSITUCHIONS ... are e e A-9
A.2.3.2 ROtAtE INSITUCLIONS ...iuiviiiiiiiiiiiiieeiee e rereeeeeee s A-10
APPENDIX B
INPUT SYNCHRONIZATION

B.1 WHY SYNCHRONIZERS ARE REQUIRED
B.2 ASYNCHRONOUS PINS

APPENDIX C
INSTRUCTION SET DESCRIPTIONS

APPENDIX D
INSTRUCTION SET OPCODES AND CLOCK CYCLES

INDEX

Xi

CONTENTS Inte|®

FIGURES
Figure Page
2-1 Simplified Functional Block Diagram of the 80C186 Family CPUccccccvvveeeinnns 2-2
2-2 Physical Address GENEIatiONccciiiuuiiieiiiiiiieeeee et e e e e s e e e e st e e e e e s snibeeeaesnnne 2-3
2-3 GENEIAl REQISIEIS .. .iiiiiii ettt e e e et e e e e e sat e e e e s stbae e e e s enaraees
2-4 Segment Registers

2-5 Processor StAatUS WOIcooiiiiiiiiae ittt et e et e e e e ennnaeeaeeas
2-6 Segment Locations in Physical Memory
2-7 Currently Addressable Segments..................
2-8 Logical and Physical Address
2-9 Dynamic Code Relocation..........

2-10 SEACK OPEIALION ...ttt e et ee e e e e et ee e e e et e e e e s e aneeeeeeeannaeeas
2-11 Flag Storage FOMMALuiiii ettt e e e e e e e e e eaneeee s
2-12 Memory Address Computation...

2-13 Direct Addressingcccccveeeenn.

2-14 Register Indirect Addressing

2-15 2 F Y =To AN [0 [T] gV PP EPPROPPIP
2-16 Accessing a Structure with Based AddreSSiNgoccuuveeiaaiiiiiiieeeeeiiiiee e
2-17 Indexed AAreSSINgG......ccocveeiiieiiiieiee e

2-18 Accessing an Array with Indexed Addressing

2-19 Based INdeX AdAreSSINgveeieiiiiiiiie e

2-20 Accessing a Stacked Array with Based Index Addressing
2-21 Y 111 aTe @] o= = 1o o PP
2-22 I/O Port Addressing

2-23 80C186 Modular Core Family Supported Data TYPES.......c.evervreeirireerieee e
2-24 INterrupt CoNTrOl UNIT........ooueieiiiieece ettt
2-25 INtErruUPt VECtOr TaBIE........oveiiiiiceee e
2-26 INEEITUPTE SEOUENCE ...ttt ettt e e e bbb r e et e aeaaaaaeaaeeeeeaenans
2-27 Interrupt Response Factors..........cccccceeeeeennn.

2-28 Simultaneous NMI and Exception

2-29 Simultaneous NMI and Single Step INTEITUPES........coccvvieiieeeiiiiine e
2-30 Simultaneous NMI, Single Step and Maskable Interrupt..

3-1 Physical Data Bus Models..........

3-2 16-Bit Data Bus Byte Transfers

3-3 16-Bit Data Bus Even Word TranSTerscooiiuieiiieiiiiee et
3-4 16-Bit Data Bus Odd WOrd TranSfers..........ouo ot
3-5 8-Bit Data Bus Word Transfers

3-6 Typical Bus Cycle.........ccccceu..e.

3-7 T-State Relation to CLKOUT

3-8] (WS =) (R B =T | = o SRR
3-9 T-State and BUS PhaSESc.eeiiiiiiiiiiiiiie e
3-10 Address/Status Phase Signal Relationships

3-11 Demultiplexing Address INfOrMation............ceeoiiieiiieeie e
3-12 Data Phase Signal RelationShipsc.evviiiiiiiiieiie e
3-13 Typical Bus Cycle with Walit StAteScceeiiiiiiiiiiiiiee e
3-14 READY Pin BIOCK DI@gIam......c.ueiiiiiieiiiiiaiiiiesiiee st ettt e e e sieeeseseeesnneeesnnneennes

Xii

Inte|® CONTENTS

FIGURES
Figure Page
3-15 Generating a Normally Not-Ready Bus Signal..........cccccccciviiiiiiiiiiiiecccciiec e 3-16
3-16 Generating a Normally Ready BUS Signal...........cccveeeiiiiiiiiie e 3-17
3-17 Normally Not-Ready System TimMiNguveeeeiiiiiiee e e 3-18
3-18 Normally Ready System Timings
3-19 Typical REAA BUS CYCIE ..ottt e e e e
3-20 Read-Only Device INErfacCecoooi i
3-21 Typical Write Bus CycCle.........cccccveevviiviieeecene,
3-22 16-Bit Bus Read/Write Device Interface
3-23 Interrupt Acknowledge Bus Cycle..................
3-24 Typical 82C59A INTEITACE ... e
3-25 HALT BUS CYCIO ...ttt ettt e ettt e e e et e e e et e e e e ennneee s
3-26 Returning to HALT After a HOLD/HLDA Bus Exchange
3-27 Returning to HALT After a Refresh Bus Cycle
3-28 Returning to HALT After a DMA Bus Cycle.........cccccccouu.
3-29 Exiting HALT (POWerdown MOE)uuvieeiiiiiiie ettt
3-30 Exiting HALT (ACtive/ldle MOE).......coooiiiiee ettt
3-31 DEN and DT/R Timing Relationships.............
3-32 Buffered AD Bus System........ccccceeeeeeniinnnen.

3-33 Qualifying DEN with Chip-Selects
3-34 Timing Sequence Entering HOLD

3-35 Refresh Request DUNNG HOLDccooiiiiiiiii ettt
3-36 Latching HLDAcccceiiiiiiieeeene

3-37 (g T [R
4-1 PCB RElOCAtION REQISTEceiiiiiieiiee ettt ee ettt et e e e e stbe e e e e annneeaeeas
5-1 Clock GENEratorcocvveivieeiiiiieniieeciieeas

5-2 Ideal Operation of Pierce Oscillator...................

5-3 Crystal Connections to Microprocessor

5-4 Equations for Crystal CalCulations.............cooi i
5-5 Simple RC Circuit for POWEIUP RESELueiiiiiiiiii e
5-6 Cold Reset Waveformcccccceeeviieeeeeennnee.

5-7 Warm Reset Waveform..................

5-8 Clock Synchronization at Reset

5-9 Power Control REGISTETciiiiiiiii ettt e e st e et rae s
5-10 ENtering [d1e MOGEcooo ettt et ee s
5-11 HOLD/HLDA During Idle Mode

5-12 Entering Powerdown Mode

5-13 Powerdown Timer Circuit

5-14 POWET-SaVE REQISIET ...ttt e et e e s e eraaaee s
5-15 Power-Save CloCK TranSitionioiueeiiiiieeiiieeeseee e eeesinee e e iree e s e e e seeas
6-1 Common Chip-Select Generation Methods...

6-2 Chip-Select BIOCK DIAGIAM.ccuviiiiiieiiiie ettt eansnee e
6-3 Chip-Select Relative Timings

6-4 UCS Reset Configuration...........

6-5 START Register Definition

xiii

CONTENTS Inte|®

Figure
6-6
6-7
6-8
6-9
6-10
6-11
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28

Xiv

FIGURES

STOP Register DefiNitiOncoiiiiiiiiiiiiiiii e e e e et e e e e sraees 6-8
Wait State and Ready Control FUNCLONSvevveiiiiiiiiee e esvirie e 6-12
Overlapping Chip-SeIECES......uuiiiiiiiiiiee e e
Using Chip-Selects During HOLD
TYPICAI SYSTEIM ...ttt e e ettt e e e e et e et e e s s nee e e e e aanneeaaeanns
Guarded MemOrY DELECIONccii ittt e e e be e e e e e aeeas
Refresh Control Unit Block Diagram..................

Refresh Control Unit Operation Flow Chart
Refresh Address Formation...........c.cccocvveveenceiiiiniennneen,
Suggested DRAM Control Signal Timing Relationships
Formula for Calculating Refresh Interval for RFTIME RegiSter..........cccccveeiiiiieeeaennes 7-7
Refresh Base Address Register
Refresh Clock Interval Register.....................
Refresh Control Register
Refresh AddreSs REQISTENcoocuiiiieiiiciiee sttt et e e e e
Regaining Bus Control to Run a DRAM Refresh Bus Cycle...........ccccoovieiiiiiiieeeennes 7-14
Interrupt Control Unit Block Diagram
Interrupt Acknowledge Cycle.........c.ccccoovvneeenn.
8259A Module Block Diagram....
[1101V O] | PSSP PTPOTRRP
SPUOUS INEEITUDLSvviie ettt e e e e e e e s st e e e e s et e e e e s s ntn e e e e e saaaees
Default Priority
SPECIFIC ROTALION ...t e
AULOMALIC ROTALION ...t e e e et e e e e e eneeeeaeeanes
Typical Cascade CONNECHON.........cciiiiiiiiee et ee e et e e e ee e e e s sraraeae e e s eaees
Spurious Interrupts in a Cascaded SYStEMcccvvveeeiiiiiiiiee e 8-18
8259A Module Initialization Sequence
ICWL REGISIEN ...ttt etttk e et rn e e e sn e e e s ne e e nnnes
ICW2 REGISIEN ...ttt ettt etttk nn e e e sn e e s n e e e
ICW3 Register — Master Cascade Configuration
ICW3 Register — Slave ID
ICWA4 REQIStEr ...t

OCW1 — Interrupt Mask REQISIETccciiiiiiiiee et
OCW?2 Register
OCW3 Register
Poll Status Byte
Interrupt Request Latch Register Function....
Default Slave 8259 MoOdUIE PriOrityc.uuuiiiiiiiiieie e e
Multiplexed INTEIrTUPt REQUESESuuiiiiiiie ittt
DMA Interrupt Request Latch Register
Serial Communications Interrupt Request Latch Register.........c.ccocvviee e,
Timer Interrupt Request LatCh REGISIENcceeviiiiiiiiiieeeee e
INterrupt RESOIULION TIME ...eiiiiiie ettt et et e e e
Resetting the Edge Detection CirCUIL..........ueiiiirieiiiee et

Inte|® CONTENTS

Figure
8-29
8-30
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17

FIGURES

Typical Cascade Connection for 82C59A-2cooiiiiiiiiee it
Software Wait State for External 82C59A-2cooiiiiiiiiiiiiiieiie e
Timer/Counter Unit BIOCK Diagram...........cociuiiiiiiiiiiee et e e
Counter Element Multiplexing and Timer Input Synchronization
TiMers 0 and 1 FIOW Chartcooiiiiiie e e s e e
Timer/Counter Unit OUIPUL MOOES........ooii i e e
Timer 0 and Timer 1 Control Registers
Timer 2 Control Register
Timer Count Registers..........occvvvveeviiiiieeeennns
Timer Maxcount Compare REQISIEISccooi i ee e
TXOUT SIgNaAl TIMING ettt e e e et e e e e e ennae e e e e e snnebeeeaaeannns
Typical DMA Transfer........ccoccocciiiiiieeeiien.

DMA Request Minimum Response Time
Source-Synchronized Transfers....................

Destination-Synchronized Transfers ...
Two-Channel DMA MOAUIEooiiiii ettt e
Examples of DMA Priority........ccccceeveeenivnnnen.

Internal DMA Request Multiplexer.....................

80C186EC/C188EC DMA Unit.......coovverrerennne

DMA Source Pointer (High-Order Bits)
DMA Source Pointer (Low-Order Bits)
DMA Destination Pointer (High-Order Bits)...
DMA Destination Pointer (LOW-Order BitS).........ccooveeirrieiiieeiiee e
DMA CONIOl REJISTEY......ciiiieiitiie ettt e
DMA Module Priority REQISTENcviiiiiiiieee ettt
Transfer COUNt REQISIETcoi it et et ee e e e
DMA Module HALT Register
Typical 10-Bit ASynchronous Data Frame............ccccvriiiiiiieniiee e
RX MACKINE ...ttt e e et e e e et ae e e e e ennneeeens
TX Machine..............
Mode 1 Waveform...
Mode 3 Waveform.... .
MOAE 4 WAVETOIN ...ttt e e e e e s e naes
MOAE O WAVETOIMS ...ttt e et e e e e eaneeae s
Serial Receive Buffer Register (SXRBUF)
Serial Transmit Buffer Register (SXTBUF)
Baud Rate Counter Register (BXCNT)

Baud Rate Compare Register (BXCMP)........ccoiiiiiiiiee e
Calculating the BxXCMP Value for a Specific Baud Rate.............ccccoeveiiviiiiniiinene
Serial Port Control Register (SXCON)
Serial Port Status RegiSter (SXSTS)...uuii ittt
CTS Recognition Sequence
BCLK Synchronization

MOE 0, BXCIMP > 2 ...ttt sttt e e e

XV

CONTENTS Inte|®

Figure
11-18
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
13-1
13-2
13-3
13-4
13-5
13-6
13-7
14-1
14-2
14-3
14-4
15-1
A-1
A-2
A-3
A-4
A-5
A-6
B-1

Xvi

FIGURES

MasSter/SIave EXamPIEoueiiiiiiieiieie et
Block Diagram of the Watchdog Timer UNitcooovviiiieioiiiiiiee e eesieee e
Watchdog Timer RESEt CIFCUIL.........cciiiiiiieeeeiiiiiie e e ciiieie e s ssttreie e e s e st ee e e e e srabaeaeeeennees
Generating Interrupts with the Watchdog Timer
WDTOUT WAVETOIMS........oeiveieieie ettt ettt e et e e
WDT Reload Value (High)
WDT Reload Value (Low)
WDT Count Value (High)............

WDT Count Value (LOW).....cccoiiiiiieeeiiiiieieesiieesee s
Simplified Logic Diagram of a Bidirectional Port Pin
Simplified Logic Diagram of an Output POrt Pincoooiiiiiiiiiiieeeeiiiee e
Simplified Logic Diagram of an Open-Drain Bidirectional Port
Port Control Register (PxCON)
Port Direction Register (PxDIR)
Port Data Latch Register (PXLTCH)
Port Pin State Register (PXPIN) ... e
80C187-SuppOorted Data TYPES. . cueeeieueeeeeeeeeaiiiieieeeeeiteeeeaeeeesreeeeeeeeeeeeeeeas

80C186 Modular Core Family/80C187 System Configuration
80C187 Configuration with a Partially Buffered Bus..............c...ccue..

80C187 Exception Trapping via Processor Interrupt Pin...........ccccovveeeiiiiiiiinee v,
Entering/Leaving ONCE MOGEccoiiiiiieiiiiiiie et
Formal Definition of ENTER
Variable Access in Nested ProCeAUIESccuuuuiiiiiiiiiee e
Stack Frame for Main at Level L..........ooo i
Stack Frame for Procedure A at LEVEl 2coooiiiiiiiiiiiiicceei e
Stack Frame for Procedure B at Level 3 Called from A........cccevviiieiiiiieiiiee e
Stack Frame for Procedure C at Level 3 Called from B ...
INput SYNChroNization CIFCUIT.........c.uviiiirieiiie e

Inte|® CONTENTS

TABLES
Table Page
1-1 Comparison of 80C186 Modular Core Family ProductS............cceveeiiiieniiiniiiieeeee e 1-2
1-2 Related Documents and Software
2-1 Implicit Use of General Registers......................
2-2 LOQICAl AUrESS SOUICES.....ceiiiiieiiiieeie e ettt s ettt e e e e et e e e st e e e e s sta e e e e e s saraeeee s
2-3 Data Transfer INSIIUCHIONSeiiiiiiiiiii e
2-4 Arithmetic INStructionsocceeevviveiiiecenieenn
2-5 Arithmetic Interpretation of 8-Bit NUMDEISoiiiiiiiiiiiie e
2-6 Bit Manipulation INSIFUCLIONScoiiiiiiiiiei e 2-21
2-7 SING INSIIUCHIONS ...ttt e e e e et e e e e ennbe e e e e e eanebeeeas 2-22
2-8 String Instruction Register and Flag USE..........ccccuvieiiiiiiiiiiiic et 2-23
2-9 Program Transfer Instructions.......................
2-10 Interpretation of Conditional Transfers
2-11 Processor Control Instructionscc.cceeuveeee.
2-12 YU o] oJo] g (=To B F- 1= Y/ o 1T PR
3-1 BUS CYCIE TYPES ...ttt ettt e e nne e e nne e
3-2 Read Bus Cycle TYpesS......ccccccevvvreeeeeeiirnnnen.
3-3 Read Cycle Critical Timing Parameters
3-4 Write Bus Cycle TYpeScccceeevvvvveeeeeciiiinnen.
3-5 Write Cycle Critical Timing Parameters
3-6 HALT BUS CYClE PiN STAES......ciiiiieieiiiieeeeiiie et
3-7 Signal Condition Entering HOLD
4-1 Peripheral Control BIOCK...........cuvuiiiiiiiiiiie et earvaee e
5-1 Suggested Values for Inductor L4 in Third Overtone Oscillator Circuit..............cceen... 5-4
5-2 Summary of Power Management Modes
6-1 Chip-Select Unit Registersccccceeeeennee.
6-2 Memory and I/0 Compare AddreSses.......cccceecvueeeeeeennnn.
6-3 Example Adjustments for Overlapping Chip-Selects............ccuiiieiiiiiiieiiiieeeeee
7-1 Identification of Refresh BUS CYCIES..........oiiiiiiiiiiie e
8-1 Operation Command Word Addressing
8-2 OCW?2 Instruction Field Decodingc.......
9-1 Timer 0 and 1 Clock SOUICeSc.coevivieeeeeninns
9-2 TIMEr REIGOEIING - eeeeeee ettt e e e ettt e e e e st e e e e e s nbe e e e e s anbeeeeeeannneeaaeannes
10-1 DMA Unit Naming Conventions and Signal Connections
11-1 BxCMP Values for Typical Baud Rates and CPU Frequencies...........ccccccoecvvvveeennns 11-13

13-1 Port 1 Multiplexing Options
13-2 Port 2 Multiplexing Options
13-3 Port 3 Multiplexing Options

14-1 80C187 Data Transfer INSITUCHIONS.cuuiuiieiee et 14-3
14-2 80C187 Arithmetic Instructions

14-3 80C187 Comparison INSITUCHIONSuuiiiiiiiiiiee e sttt e e e r e e e e e e s eeaes
14-4 80C187 Transcendental INSITUCHIONS........uuvvvreieieiiiiiiieieeeeeee e
14-5 80C187 Constant Instructions..............ccccuune.

14-6 80C187 Processor Control Instructions

14-7 80C187 1/O POrt ASSIGNMENTSveeiiiiieiiiee ettt

CONTENTS Inte|®

Table

C-1

C-3
C-4
D-1
D-2

D-4
D-5

Xviii

TABLES

Instruction Format Variables
INSTPUCEION OPEFANGSeeieiie ettt ettt e e e e e e e e e st be e e e e st bee e e e e enneneaaeas C-2
Flag Bit Functions
INSITUCTION S ...t
Operand Variablesocuuiiii i
Instruction Set Summaryccoeceveveeevennen.

Machine Instruction Decoding Guide
Mnemonic Encoding MatriXccccceeeriiieeieanniiieeee e,
Abbreviations for Mnemonic Encoding Matrix

Inte|® CONTENTS

Example

5-1
5-2
6-1
7-1
8-1
8-2
8-3
9-1
9-2
9-3
10-1
10-2
10-3
11-1
11-2
11-3
11-4
11-5
11-6
12-1
12-2
12-3
12-4
12-5
13-1
14-1
14-2

EXAMPLES

Initializing the Power Management Unit for Idle or Powerdown Modecc........ 5-16
Initializing the Power Management Unit for Power-Save Modecccccceeeiivveneennn.
Initializing the Chip-Select Unit......................

Initializing the Refresh Control Unit
Initializing the Interrupt Control UNitooooiiiiiiie e
Template for a Simple Interrupt Handler
Using the Poll Command............cccceeeeviiiieneenns
Configuring a Real-Time Clock
Configuring a Square-Wave Generator.............

Configuring a Digital ONe-Shot............coiiiiiiiiiie e
INitializing the DIMA ULooiiiii e e e e e e e
DMA-Driven Serial Transfers
TIMed DMA TTaNSTEIS ...ttt
Asynchronous Mode 4 EXamPIE........coiiiiiiiiiiiiiies e
Lo L O b= To o] o = T URRT
Master/Slave — Implementing the Master/Slave ROUtINESccccceveiiiiiieiianies
Master/Slave — The _select_slave Routine............ccccvveeeeiiiiiiieeeniis
Master/Slave — The slave_1 ROULINEccooiiiiiiei e
Master/Slave — The _send_slave_command ROULINEccccoeeivieeieiiiiiieiee s
Reload Sequence (Peripheral Control Block Located in I/O Space)
Reload Sequence (Peripheral Control Block Located in Memory Space).................. 12-5
Disabling the Watchdog Timer (Peripheral Control Block in I/O Space) 12-7
Disabling the Watchdog Timer (Peripheral Control Block in Memory Space) 12-8
Initializing the Watchdog Timer (Peripheral Control Block Located in I/0O Space)....12-13
1/0 Port Programming EXample..........cccouviiiiiiiiiiiec et
Initialization Sequence for 80C187 Math Coprocessor
Floating Point Math Routine Using FSINCOSccoccviiiiiee e

XiX

intel.

Introduction

intel.

CHAPTER 1
INTRODUCTION

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcom-
puter engine of choice. There are literally millions of 8086/8088-based systems in the world to-
day. The amount of software written for the 8086/8088 is rivaled by no other architecture.

By the early 1980’s, however, it was clear that a replacement for the 8086/8088 was necessary.
An 8086/8088 system required dozens of support chips to implement even a moderately complex
design. Intel recognized the need to integrate commonly used system peripherals onto the same
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family
of embedded microprocessors. The original 80186/80188 integrated an enhanced 8086/8088
CPU with six commonly used system peripherals. A parallel effort within Intel also gave rise to
the 80286 microprocessor in 1982. The 80286 began the trend toward the very high performance
Intel architecture that today includes the Intel38@ntel486]1 and Pentiul microprocessors.

As technology advanced and turned toward small geometry CMOS processes, it became clear
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186 family:
the 80C186/C188. The 80C186 family is pin compatible with the 80186 family, while adding an
enhanced feature set. The high-performance CHMOS llI process allowed the 80C186 to run at
twice the clock rate of the NMOS 80186, while consuming less than one-fourth the power.

The 80186 family took another major step in 1990 with the introduction of the 80C186EB family.
The 80C186EB heralded many changes for the 80186 family. First, the enhanced 8086/8088 CPU
was redesigned as a static, stand-alone module known as the 80C186 Modular Core. Second, the
80186 family peripherals were also redesigned as static modules with standard interfaces. The
goal behind this redesign effort was to give Intel the capability to proliferate the 80186 family
rapidly, in order to provide solutions for an even wider range of customer applications.

The 80C186EB/C188EB was the first product to use the new modular capability. The
80C186EB/C188EB includes a different peripheral set than the original 80186 family. Power
consumption was dramatically reduced as a direct result of the static design, power management
features and advanced CHMOS IV process. The 80C186EB/C188EB has found acceptance in a
wide array of portable equipment ranging from cellular phones to personal organizers.

In 1991 the 80C186 Modular Core family was again extended with the introduction of three new
products: the 80C186XL, the B0C186EA and the 80C186EC. The 80C186XL/C188XL is a high-
er performance, lower power replacement for the 80C186/C188. The 80C186EA/C188EA com-
bines the feature set of the 80C186 with new power management features for power-critical
applications. The 80C186EC/C188EC offers the highest level of integration of any of the 80C186
Modular Core family products, with 14 on-chip peripherals (see Table 1-1).

I 1-1

INTRODUCTION Intel®

The 80C186 Modular Core family is the direct result of ten years of Intel development. It offers
the designer the peace of mind of a well-established architecture with the benefits of state-of-the-
art technology.

Table 1-1. Comparison of 80C186 Modular Core Family Products

Feature 80C186XL 80C186EA 80C186EB 80C186EC

Enhanced 8086 Instruction Set

Low-Power Static Modular CPU

Power-Save (Clock Divide) Mode

Powerdown and Idle Modes
80C187 Interface

ONCE Mode

Interrupt Control Unit 8259
Compatible

Timer/Counter Unit

Chip-Select Unit Enhanced Enhanced

DMA Unit 2 Channel 2 Channel 4 Channel

Serial Communications Unit

Refresh Control Unit Enhanced Enhanced

Watchdog Timer Unit

I/0 Ports 16 Total 22 Total

1.1 HOW TO USE THIS MANUAL

This manual uses phrases sucl8@€186 Modular Core Familgr 80C188 Modular Corgas
well as references to specific products sucBM3188EAEach phrase refers to a specific set of
80C186 family products. The phrases and the products they refer to are as follows:

80C186 Modular Core Family:This phrase refers to any device that uses the modular
80C186/C188 CPU core architecture. At this time these include the 80C186EA/C188EA,
80C186EB/C188EB, 80C186EC/C188EC and 80C186XL/C188XL.

80C186 Modular CoreWithout the wordamily, this phrase refers only to the 16-bit bus mem-
bers of the 80C186 Modular Core Family.

80C188 Modular CoreThis phrase refers to the 8-bit bus products.

80C188EC:A specific product reference refers only to the named device. For ex@mpilee
80C188EC..refers strictly to the 80C188EC and not to any other device.

1-2 I

Intel® INTRODUCTION

Each chapter covers a specific section of the device, beginning with the CPU core. Each periph-
eral chapter includes programming examples intended to aid in your understanding of device op-
eration. Please read the comments carefully, as not all of the examples include all the code
necessary for a specific application.

This user’s guide is a supplement to the device data sheet. Specific timing values are not dis-
cussed in this guide. When designing a system, always consult the most recent version of the de-
vice data sheet for up-to-date specifications.

1.2 RELATED DOCUMENTS

The following table lists documents and software that are useful in designing systems that incor-
porate the 80C186 Modular Core Family. These documents are available through Intel Literature.
In the U.S. and Canada, call 1-800-548-4725 to order. In Europe and other international locations,
please contact your local Intel sales office or distributor.

NOTE

If you will be transferring a design from the 80186/80188 or 80C186/80C188
to the 80C186XL/80C188XL, refer to FaxBack Document No. 2132,

Table 1-2. Related Documents and Software

Document/Software Title %?g:mggt

Embedded Microprocessors (includes 186 family data sheets) 272396
186 Embedded Microprocessor Line Card 272079
80186/80188 High-Integration 16-Bit Microprocessor Data Sheet 272430
80C186XL/C188XL-20, -12 16-Bit High-Integration Embedded Microprocessor 272431
Data Sheet

80C186EA/80C188EA-20, -12 and 80L186EA/80L188EA-13, -8 (low power 272432
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet
80C186EB/80C188EB-20, -13 and 80L186EB/80L188EB-13, -8 (low power 272433
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet
80C186EC/80C188EC-20, -13 and 80L186EC/80L188EC-13, -8 (low power 272434
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet

80C187 80-Bit Math Coprocessor Data Sheet 270640
Low Voltage Embedded Design 272324
80C186/C188, 80C186XL/C188XL Microprocessor User's Manual 272164
80C186EA/80C188EA Microprocessor User's Manual 270950
80C186EB/B0C188EB Microprocessor User's Manual 270830
80C186EC/80C188EC Microprocessor User's Manual 272047
8086/8088/8087/80186/80188 Programmer’s Pocket Reference Guide 231017

INTRODUCTION Intel®

Table 1-2. Related Documents and Software (Continued)

Document/Software Title %?g:mggt
8086/8088 User's Manual Programmer’s and Hardware Reference Manual 240487
ApPBUILDER Software 272216
80C186EA Hypertext Manual 272275
80C186EB Hypertext Manual 272296
80C186EC Hypertext Manual 272298
80C186XL Hypertext Manual 272630
ZCON - Z80 Code Converter Available on BBS

1.3 ELECTRONIC SUPPORT SYSTEMS

Intel's FaxBack* service and application BBS provide up-to-date technical information. Intel
also maintains several forums on CompuServe and offers a variety of information on the World
Wide Web. These systems are available 24 hours a day, 7 days a week, providing technical infor-
mation whenever you need it.

1.3.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. You can
get product announcements, change notifications, product literature, device characteristics, de-
sign recommendations, and quality and reliability information from FaxBack 24 hours a day, 7
days a week.

1-800-628-2283 U.S. and Canada
916-356-3105 U.S., Canada, Japan, APac
44(0)1793-496646 Europe

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document has an order number and is listed in a subject catalog. The first time you use Fax-
Back, you should order the appropriate subject catalogs to get a complete list of document order
numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list the title, sta-
tus, and order number of each document that has been added, revised, or deleted during the pas
eight weeks. To recieve the update for a subject catalog, enter the subject catalog number fol-
lowed by a zero. For example, for the complete microcontroller and flash catalog, request docu-
ment number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

1-4

Intel® INTRODUCTION

The following catalogs and information are available at the time of publication:
1. Solutions OEMsubscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX software catalog and BBS file listings

Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© © N o g > W DN

iIAL (Intel Architecture Labs) technology catalog

1.3.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application BBS
has the latesApBUILDER software, hypertext manuals and datasheets, software drivers, firm-
ware upgrades, application notes and utilities, and quality and reliability data.

916-356-3600 U.S., Canada, Japan, APac (up to 19.2 Kbaud)
916-356-7209 U.S., Canada, Japan, APac (2400 baud only)
44(0)1793-496340 Europe

The toll-free BBS (available in the U.S. and Canada) offers lists of documents available from
FaxBack, a master list of files available from the application BBS, and a BBS user’s guide. The
BBS file listing is also available from FaxBack (catalog humber 6; see page 1-4 for phone num-
bers and a description of the FaxBack service).

1-800-897-2536 U.S. and Canada only

Any customer with a modem and computer can access the BBS. The system provides automatic
configuration support for 1200- through 19200-baud modems. Typical modem settings are 14400
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, just dial the telephone number and respond to the system prompts. During
your first session, the system asks you to register with the system operator by entering your name
and location. The system operator will set up your access account within 24 hours. At that time,
you can access the files on the BBS.

NOTE

If you encounter any difficulty accessing the high-speed modem, try the
dedicated 2400-baud modem. Use these modem settings: 2400, N, 8, 1.

I 1-5

INTRODUCTION Intel®

1.3.2.1 How to Find ApBUILDER Software and Hypertext Documents on the BBS

The latesApBUILDER files and hypertext manuals and data sheets are available first from the
BBS. To access the files, complete these steps:

1. TypeF from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. TypelL and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Type25and press <Enter> to selegpBUILDER/Hypertext. The BBS displays several
options: one forApBUILDER software and the others for hypertext documents for
specific product families.

4. Typel and press <Enterte list the latesApBUILDER files, or type the number of the
appropriate product family sublevel and press <Enter> for a list of available hypertext
manuals and datasheets.

5. Type the file numbers to select the files you wish to download (for exalyfpfer files 1
and 6 or3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the selected files and gives you the option to download
them.

1.3.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoveries, and
debate issues. Type “go intel” for access. For information about CompuServe access and service
fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1.3.4 World Wide Web

Intel offers a variety of information through the World Wide Web (http://www.intel.com/). Select
“Embedded Design Products” from the Intel home page.

1.4 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-356-6100 (fax) U.S. and Canada

1-6 I

Intel® INTRODUCTION

1.5 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.
1-800-468-8118, ext. 283 U.S. and Canada

708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)

1.6 TRAINING CLASSES

In the U.S. and Canada, you can register for training classes through the Intel customer training
center. Classes are held in the U.S.

1-800-234-8806 U.S. and Canada

I 1-7

intel.

Overview of the
80C186 Family
Architecture

CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY
ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086,
8088, 80186, 80188, 80286, Intel386™ and Intel486™ processors. The 80C186 Modular Core
maintains full object-code compatibility with the 8086/8088 family of 16-bit microprocessors,
while adding hardware and software performance enhancements. Most instructions require fewer
clocks to execute on the 80C186 Modular Core because of hardware enhancements in the Bus
Interface Unit and the Execution Unit. Several additional instructions simplify programming and
reduce code size (see Appendix A, “80C186 Instruction Set Additions and Extensions”).

2.1 ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an Exe-
cution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally identical
among all family members. The Bus Interface Unit is configured for a 16-bit external data bus
for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units interface
via an instruction prefetch queue.

The Execution Unit executes instructions; the Bus Interface Unit fetches instructions, reads op-
erands and writes results. Whenever the Execution Unit requires another opcode byte, it takes the
byte out of the prefetch queue. The two units can operate independently of one another and are
able, under most circumstances, to overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data move-
ment between registers, memory and I/O space.

The 80C186 Modular Core family CPU allows for high-speed data transfer from one area of
memory to another using string move instructions and between an I/O port and memory using
block I/O instructions. The CPU also provides many conditional branch and control instructions.

The 80C186 Modular Core architecture features 14 basic registers grouped as general registers,
segment registers, pointer registers and status and control registers. The four 16-bit general-pur-
pose registers (AX, BX, CX and DX) can be used as operands for most arithmetic operations as
either 8- or 16-bit units. The four 16-bit pointer registers (Sl, DI, BP and SP) can be used in arith-
metic operations and in accessing memory-based variables. Four 16-bit segment registers (CS,
DS, SS and ES) allow simple memory partitioning to aid modular programming. The status and
control registers consist of an Instruction Pointer (IP) and the Processor Status Word (PSW) reg-
ister, which contains flag bits. Figure 2-1 is a simplified CPU block diagram.

I 2-1

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

General
Registers

AH

AL

BH

BL

CH

CL

DH

DL

SP

BP

Sl

A

ALU Data Bus

Address Bus (20 Bits)

CS

DS
SS

ES
1P

Internal

AA¢

¢

Temporary
Registers

s d

(16 Bits)

EU
Control

System

A Communications
Registers

Bus

Control
Bus

Instruction Queue

Execution Unit

(EV)

1
k Q Bus

(8 Bits)

Bus Interface Unit
(BIU)

External
Logic [&=————>

A1012-0A

Figure 2-1. Simplified Functional Block Diagram of the 80C186 Family CPU

2.1.1 Execution Unit

The Execution Unit executes all instructions, provides data and addresses to the Bus Interface
Unit and manipulates the general registers and the Processor Status Word. The 16-bit ALU within
the Execution Unit maintains the CPU status and control flags and manipulates the general reg-
isters and instruction operands. All registers and data paths in the Execution Unit are 16 bits wide
for fast internal transfers.

2-2

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The Execution Unit does not connect directly to the system bus. It obtains instructions from a

gueue maintained by the Bus Interface Unit. When an instruction requires access to memory or a
peripheral device, the Execution Unit requests the Bus Interface Unit to read and write data. Ad-

dresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit, however,

performs an address calculation that allows the Execution Unit to access the full megabyte of

memory space.

To execute an instruction, the Execution Unit must first fetch the object code byte from the in-
struction queue and then execute the instruction. If the queue is empty when the Execution Unit
is ready to fetch an instruction byte, the Execution Unit waits for the Bus Interface Unit to fetch
the instruction byte.

2.1.2 Bus Interface Unit

The 80C186 Modular Core and 80C188 Modular Core Bus Interface Units are functionally iden-
tical. They are implemented differently to match the structure and performance characteristics of
their respective system buses. The Bus Interface Unit executes all external bus cycles. This unit
consists of the segment registers, the Instruction Pointer, the instruction code queue and several
miscellaneous registers. The Bus Interface Unit transfers data to and from the Execution Unit on
the ALU data bus.

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder shifts
a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived from com-
binations of the pointer registers, the Instruction Pointer and immediate values (see Figure 2-2).
Any carry from this addition is ignored.

Shift left 4 bits 1 2 3 4 Segment Base

15 0 Logical
T Address
1 2 3 4,0 0 0 2 2| Offset
19 + 0 15
+ 0 0 2 2 fje——
15 + 0
=1 2 3 6 2| Physical Address
19 + 0
To Memory

A1500-0A

Figure 2-2. Physical Address Generation

I 2-3

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit
sequentially prefetches instructions from memory. As long as the prefetch queue is partially full,
the Execution Unit fetches instructions.

2.1.3 General Registers

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2-3). The
general registers are subdivided into two sets of four registers. These sets are the data registers
(also called the H & L group for high and low) and the pointer and index registers (also called the

P & I group).

H ; L
15 8i7 0
AX
poeeee Accumulator
AH AL
BX
R Base
Data < BH BL
Group CcX
CH cL Count
DX
g Data
DH DL
SP Stack Pointer
Pointer BP Base Pointer
and
Index
Group Sl Source Index
DI Destination Index
A1033-0A

Figure 2-3. General Registers

2-4

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The data registers can be addressed by their upper or lower halves. Each data register can be use
interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always access-
ed as 16-bit values. The CPU can use data registers without constraint in most arithmetic and log-

ic operations. Arithmetic and logic operations can also use the pointer and index registers. Some

instructions use certain registers implicitly (see Table 2-1), allowing compact encoding.

Table 2-1. Implicit Use of General Registers

Register Operations
AX Word Multiply, Word Divide, Word I/O
AL Byte Multiply, Byte Divide, Byte 1/O, Translate, Decimal Arithmetic
AH Byte Multiply, Byte Divide
BX Translate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, Word Divide, Indirect I/O
SP Stack Operations
Sl String Operations
DI String Operations

The contents of the general-purpose registers are undefined following a processor reset.

2.1.4 Segment Registers

The 80C186 Modular Core family memory space is 1 Mbyte in size and divided into logical seg-
ments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The segmen
registers contain the base addresses (starting locations) of these memory segments (see Figure
2-4). The CS register points to the current code segment, which contains instructions to be
fetched. The SS register points to the current stack segment, which is used for all stack operations.
The DS register points to the current data segment, which generally contains program variables.
The ES register points to the current extra segment, which is typically used for data storage. The
CS register initializes to OFFFFH, and the SS, DS and ES registers initialize to 0000H. Programs
can access and manipulate the segment registers with several instructions.

2-5

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

15 0
CS Code Segment
DS Data Segment
SS Stack Segment
ES Extra Segment

Figure 2-4. Segment Registers

2.1.5 Instruction Pointer

The Bus Interface Unit updates the 16-hbit Instruction Pointer (IP) register so it contains the offset
of the next instruction to be fetched. Programs do not have direct access to the Instruction Pointer,
but it can change, be saved or be restored as a result of program execution. For example, if the
Instruction Pointer is saved on the stack, it is first automatically adjusted to point to the next in-
struction to be executed.

Reset initializes the Instruction Pointer to 0000H. The CS and IP values comprise a starting exe-

cution address of OFFFFOH (see “Logical Addresses” on page 2-10 for a description of address
formation).

2-6

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.1.6 Flags

The 80C186 Modular Core family has six status flags (see Figure 2-5) that the Execution Unit
posts as the result of arithmetic or logical operations. Program branch instructions allow a pro-
gram to alter its execution depending on conditions flagged by a prior operation. Different in-

structions affect the status flags differently, generally reflecting the following states:

¢ If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the high
nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order
byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions.

¢ If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order bit
of the instruction result (8- or 16-bit). This flag is used by instructions that add or subtract
multibyte numbers. Rotate instructions can also isolate a bit in memory or a register by
placing it in the Carry Flag.

* If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit
has been lost because the size of the result exceeded the capacity of its destination location.
An Interrupt On Overflow instruction is available that will generate an interrupt in this
situation.

¢ If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary
numbers are represented in standard two’'s complement notation, SF indicates the sign of
the result (0 = positive, 1 = negative).

¢ If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag
can be used to check for data transmission errors.

¢ If the Zero Flag (ZF) is set, the result of the operation is zero.

Additional control flags (see Figure 2-5) can be set or cleared by programs to alter processor op-
erations:

¢ Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are
processed from high address to low address (or “right to left”). Clearing DF causes string
operations to auto-increment. Strings are processed from low address to high address (or
“left to right”).

¢ Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag
has no effect on software interrupts or non-maskable interrupts.

* Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In
this mode, the CPU automatically generates an interrupt after each instruction. This allows
a program to be inspected instruction by instruction during execution.

The status and control flags are contained in a 16-bit Processor Status Word (see Figure 2-5). Re-
set initializes the Processor Status Word to OFO00H.

I 2-7

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

2.1.7 Memory Segmentation

Programs for the 80C186 Modular Core family view the 1 Mbyte memory space as a group of
user-defined segments. A segment is a logical unit of memory that can be up to 64 Kbytes long.
Each segment is composed of contiguous memory locations. Segments are independent and sep
arately addressable. Software assigns every segment a base address (starting location) in memon
space. All segments begin on 16-byte memory boundaries. There are no other restrictions on seg-
ment locations. Segments can be adjacent, disjoint, partially overlapped or fully overlapped (see
Figure 2-6). A physical memory location can be mapped into (covered by) one or more logical
segments.

2-8 I

intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Register Name:
Register Mnemonic:

Register Function:

Processor Status Word
PSW (FLAGS)

Posts CPU status information.

15 0
O|D| I S|1Z A P C
FIF|F F|F F F F
A1035-0A
Bit . Reset .
Mnemonic Bit Name State Function

OF Overflow Flag 0 If OF is set, an arithmetic overflow has occurred.
If DF is set, string instructions are processed high

DF Direction Flag 0 address to low address. If DF is clear, strings are
processed low address to high address.
If IF is set, the CPU recognizes maskable interrupt

Interrupt . .
IF 0 requests. If IF is clear, maskable interrupts are
Enable Flag .

ignored.

TF Trap Flag 0 If TF is set, the processor enters single-step mode.

SE Sign Flag 0 If SF is se_t, the_h|gh-qrde'r p|t of thg result of an
operation is 1, indicating it is negative.

ZF Zero Flag 0 If ZF is set, the result of an operation is zero.
If AF is set, there has been a carry from the low

- nibble to the high or a borrow from the high nibble

AR Auxiliary Flag 0 to the low nibble of an 8-bit quantity. Used in BCD
operations.

PE Parity Flag 0 If P'F is set, the result of an operation has even
parity.
If CF is set, there has been a carry out of, or a

CF Carry Flag 0 borrow into, the high-order bit of the result of an
instruction.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

Figure 2-5. Processor Status Word

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Fully
Overlapped -
Partly Segment D e
Overlapped Disjoint
. Logical
Contiguous Segment C Segments
Segment A | Segment B Segment E

('} Nemor

? ? ? ?

OH 10000H 20000H 30000H

A1036-0A

Figure 2-6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2-7). The
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64
Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another seg
ment by updating the segment register to point to the new segment.

2.1.8 Logical Addresses

It is useful to think of every memory location as having two kinds of addresses, physical and log-
ical. A physical address is a 20-bit value that identifies a unique byte location in the memory
space. Physical addresses range from OH to OFFFFFH. All exchanges between the CPU and
memory use physical addresses.

Programs deal with logical rather than physical addresses. Program code can be developed with-
out prior knowledge of where the code will be located in memory. A logical address consists of

a segment base value and an offset value. For any given memory location, the segment base value
locates the first byte of the segment. The offset value represents the distance, in bytes, of the tar-
get location from the beginning of the segment. Segment base and offset values are unsigned 16-
bit quantities. Many different logical addresses can map to the same physical location. In Figure
2-8, physical memory location 2C3H is contained in two different overlapping segments, one be-
ginning at 2BOH and the other at 2COH.

2-10 I

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

FFFFFH
A
B
Data: DS: B
> c
Code: CS: E F--eeo]
i D
Stack: SS: H -
1 1
1 1
Extra: ES: J ka1 E
1 I Ll F
1 1
P G
P H
1 1
A >
| [
1 J
1
O >
K
OH
A1037-0A

Figure 2-7. Currently Addressable Segments

The segment register is automatically selected according to the rules in Table 2-2. All information
in one segment type generally shares the same logical attributes (e.g., code or data). This leads tc
programs that are shorter, faster and better structured.

The Bus Interface Unit must obtain the logical address before generating the physical address.
The logical address of a memory location can come from different sources, depending on the type
of reference that is being made (see Table 2-2).

Segment registers always hold the segment base addresses. The Bus Interface Unit determines
which segment register contains the base address according to the type of memory reference
made. However, the programmer can explicitly direct the Bus Interface Unit to use any currently
addressable segment (except for the destination operand of a string instruction). In assembly lan-
guage, this is done by preceding an instruction with a segment override prefix.

2-11

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

B B

2C4H

Physical
Address

= * \ > 2C3H

Offset 2C2H
(3H) 2C1H

S?;ng—* 2COH
2BFH
2BEH
2BDH
2BCH

2BBH

Logical Offset 2BAH
Addresses (13H)
2B9H

2B8H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
2B1H
2BOH

Segment
L Base

~ ~

A1038-0A

Figure 2-8. Logical and Physical Address

2-12 I

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2-2. Logical Address Sources

Type of Memory Reference Se gEﬁeefr?tug ase s eg\rlemir:taéea se Offset
Instruction Fetch Cs NONE P
Stack Operation SS NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS,ES, SS Sl
String Destination ES NONE DI
BP Used as Base Register SS CS, DS, ES Effective Address

Instructions are always fetched from the current code segment. The IP register contains the in-
struction’s offset from the beginning of the segment. Stack instructions always operate on the cur-
rent stack segment. The Stack Pointer (SP) register contains the offset of the top of the stack from
the base of the stack. Most variables (memory operands) are assumed to reside in the current date
segment, but a program can instruct the Bus Interface Unit to override this assumption. Often, the
offset of a memory variable is not directly available and must be calculated at execution time. The
addressing mode specified in the instruction determines how this offset is calculated (see “Ad-
dressing Modes” on page 2-27). The result is called the operand’s Effective Address (EA).

Strings are addressed differently than other variables. The source operand of a string instruction
is assumed to lie in the current data segment. However, the program can use another currently
addressable segment. The operand’s offset is taken from the Source Index (SI) register. The des-
tination operand of a string instruction always resides in the current extra segment. The destina-
tion's offset is taken from the Destination Index (DI) register. The string instructions
automatically adjust the Sl and DI registers as they process the strings one byte or word at a time.

When an instruction designates the Base Pointer (BP) register as a base register, the variable is
assumed to reside in the current stack segment. The BP register provides a convenient way to ac-
cess data on the stack. The BP register can also be used to access data in any other currently ac
dressable segment.

2.1.9 Dynamically Relocatable Code

The segmented memory structure of the 80C186 Modular Core family allows creation of dynam-
ically relocatable (position-independent) programs. Dynamic relocation allows a multiprogram-
ming or multitasking system to make effective use of available memory. The processor can write
inactive programs to a disk and reallocate the space they occupied to other programs. A disk-res-
ident program can then be read back into available memory locations and restarted whenever it
is needed. If a program needs a large contiguous block of storage and the total amount is available
only in non-adjacent fragments, other program segments can be compacted to free enough con-
tinuous space. This process is illustrated in Figure 2-9.

2-13

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

intel.

Before
Relocation
Code
Segment
L CS CS
SS SS
Stack DS DS
Segment — ES ES
Data
Segment
-
Extra
Segment |
|:| Free Space

After
Relocation

Code
Segment

Stack
Segment

Y

Data
Segment

Y

Y

Extra
Segment

A1039-0A

Figure 2-9. Dynamic Code Relocation

To be dynamically relocatable, a program must not load or alter its segment registers and must
not transfer directly to a location outside the current code segment. All program offsets must be
relative to the segment registers. This allows the program to be moved anywhere in memory, pro-
vided that the segment registers are updated to point to the new base addresses.

2-14

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.1.10 Stack Implementation

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the Stack
Segment register (SS) and the Stack Pointer (SP). A system can have multiple stacks, but only
one stack is directly addressable at a time. A stack can be up to 64 Kbytes long, the maximum
length of a segment. Growing a stack segment beyond 64 Kbytes overwrites the beginning of the
segment. The SS register contains the base address of the current stack. The top of the stack, no
the base address, is the origination point of the stack. The SP register contains an offset that points
to the Top of Stack (TOS).

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one
word at a time. An element is pushed onto the stack (see Figure 2-10) by first decrementing the
SP register by 2 and then writing the data word. An element is popped off the stack by copying

it from the top of the stack and then incrementing the SP register by 2. The stack grows down in
memory toward its base address. Stack operations never move or erase elements on the stack. Th
top of the stack changes only as a result of updating the stack pointer.

2.1.11 Reserved Memory and I/O Space

Two specific areas in memory and one area in /0O space are reserved in the 80C186 Core family.

¢ Locations OH through 3FFH in low memory are used for the Interrupt Vector Table.
Programs should not be loaded here.

¢ Locations OFFFFOH through OFFFFFH in high memory are used for system reset code
because the processor begins execution at OFFFFOH.

* Locations OF8H through OFFH in I/O space are reserved for communication with other Intel
hardware products and must not be used. On the 80C186 core, these addresses are used a
I/O ports for the 80C187 numerics processor extension.

I 2-15

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

- TOS
> 1056 | 34 | 12 |=

POP AX

POP BX
1 -~
PUSH AX 0]%0 '
1
Existing 12 | 34 F--, BB | AA |1
Stack : T
n
: T
1062 | 00 | 11 1062 | 00 | 11 | i 1062 | 00 | 11 |
! 1
1060 | 22 | 33 x 1060 | 22 | 33 | 1060 | 22 | 33 | i
(o] ! K
105E | 44 | 55 ° 105E | 44 | 55 | 1 105E | 44 | 55 [I}
S]] "
105B | 66 | 77 £ 105B | 66 | 77 | | 105B | 66 | 77 | 1
= 1 TOS "
105A | 88 | 99 2 105A | 88 | 99 [! >105A | 88 | 99 | i
TOS ' o
1058 | AA | BB 1058 | AA [BB | 1058 | AA | BB f--it
1
, 1

1056 | 01 | 23 1056 | 34 | 12 [----

1054 | 45 | 67 1054 | 45 | 67 1054 | 45 | 67

1052 | 89 | AB

[1050 CcD | EF [1050 CcD | EF I—:loso co | EF
10 | 50 |SS 10 | 50 |SS 10 | 50 |SS

1052 | 89 | AB 1052 | 89 | AB

Not presently
on stack

00 | os |SP 00 | o | SP 00 | 0A [SP
Stack operation for code sequence
PUSH AX
POP AX
POP BX

A1013-0A

Figure 2-10. Stack Operation

2-16

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.2 SOFTWARE OVERVIEW

All 80C186 Modular Core family members execute the same instructions. This includes all the

8086/8088 instructions plus several additions and enhancements (see Appendix A, “80C186 In-
struction Set Additions and Extensions”). The following sections describe the instructions by cat-

egory and provide a detailed discussion of the operand addressing modes.

Software for 80C186 core family systems need not be written in assembly language. The proces-
sor provides direct hardware support for programs written in the many high-level languages
available. The hardware addressing modes provide straightforward implementations of based
variables, arrays, arrays of structures and other high-level language data constructs. A powerful
set of memory-to-memory string operations allow efficient character data manipulation. Finally,
routines with critical performance requirements can be written in assembly language and linked
with high-level code.

2.2.1 Instruction Set

The 80C186 Modular Core family instructions treat different types of operands uniformly. Nearly
every instruction can operate on either byte or word data. Register, memory and immediate op-
erands can be specified interchangeably in most instructions. Immediate values are exceptions:
they must serve as source operands and not destination operands. Memory variables can be ma
nipulated (added to, subtracted from, shifted, compared) without being moved into and out of reg-
isters. This saves instructions, registers and execution time in assembly language programs. In
high-level languages, where most variables are memory-based, compilers can produce faster and
shorter object programs.

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One is
the assembly level and the other is the machine level. To the assembly language programmer, the
80C186 Modular Core family appears to have about 100 instructions. One MOV (data move) in-
struction, for example, transfers a byte or a word from a register, a memory location or an imme-
diate value to either a register or a memory location. The 80C186 Modular Core family CPUs,
however, recognize 28 different machine versions of the MOV instruction.

The two levels of instruction sets address two requirements: efficiency and simplicity. Approxi-
mately 300 forms of machine-level instructions make very efficient use of storage. For example,
the machine instruction that increments a memory operand is three or four bytes long because the
address of the operand must be encoded in the instruction. Incrementing a register, however, re-
quires less information, so the instruction can be shorter. The 80C186 Core family has eight sin-
gle-byte machine-level instructions that increment different 16-bit registers.

The assembly level instructions simplify the programmer’s view of the instruction set. The pro-
grammer writes one form of an INC (increment) instruction and the assembler examines the op-
erand to determine which machine level instruction to generate. The following paragraphs
provide a functional description of the assembly-level instructions.

2-17

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

22.1.1 Data Transfer Instructions

The instruction set contains 14 data transfer instructions. These instructions move single bytes
and words between memory and registers. They also move single bytes and words between the
AL or AX register and 1/O ports. Table 2-3 lists the four types of data transfer instructions and
their functions.

Table 2-3. Data Transfer Instructions

General-Purpose

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push registers onto stack

POPA Pop registers off stack

XCHG Exchange byte or word

XLAT Translate byte
Input/Output

IN Input byte or word

ouT Output byte or word

Address Object and Stack Frame

LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
ENTER Build stack frame

LEAVE Tear down stack frame

Flag Transfer

LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags from stack
POPF Pop flags off stack

Data transfer instructions are categorized as general purpose, input/output, address object and
flag transfer. The stack manipulation instructions, used for transferring flag contents and instruc-
tions used for loading segment registers are also included in this group. Figure 2-11 shows the
flag storage formats. The address object instructions manipulate the addresses of variables in-
stead of the values of the variables.

2-18

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

§8,§E'F U u,uUuUoD, I, T,S,Z,UAUP,UC
1514131211109 8 7 6 5 4 3 2 1 O

U = Undefined; Value is indeterminate
O = Overflow Flag

D = Direction Flag

| = Interrupt Enable Flag

T = Trap Flag

S = Sign Flag

Z = Zero Flag

A = Auxiliary Carry Flag

P = Parity Flag

C = Carry Flag

A1014-0A

Figure 2-11. Flag Storage Format

22.1.2 Arithmetic Instructions

The arithmetic instructions (see Table 2-4) operate on four types of numbers:
* Unsigned binary
¢ Signed binary (integers)
¢ Unsigned packed decimal

¢ Unsigned unpacked decimal

2-19

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Table 2-5 shows the interpretations of various bit patterns according to number type. Binary num-
bers can be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for packed
decimal and one digit per byte for unpacked decimal. The processor assumes that the operands in
arithmetic instructions contain data that represents valid numbers for that instruction. Invalid data
may produce unpredictable results. The Execution Unit analyzes the results of arithmetic instruc-
tions and adjusts status flags accordingly.

Table 2-4. Arithmetic Instructions

Addition
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition
Subtraction

SUB Subtract byte or word
SBB Subtract byte or word with borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction

Multiplication
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiplication

Division

DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCII adjust for division
cBwW Convert byte to word
CWD Convert word to double-word

2-20

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2-5. Arithmetic Interpretation of 8-Bit Numbers

ex | mpanem | Vgsned | Soned | Utpaed | packed

07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

C5 11000101 197 -59 invalid invalid
2.2.1.3 Bit Manipulation Instructions

There are three groups of instructions for manipulating bits within bytes and words. These three
groups are logical, shifts and rotates. Table 2-6 lists the bit manipulation instructions and their
functions.

Table 2-6. Bit Manipulation Instructions

Logicals
NOT “Not” byte or word
AND “And” byte or word
OR “Inclusive or” byte or word
XOR “Exclusive or” byte or word
TEST “Test” byte or word
Shifts
SHL/SAL Shift logical/arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
Rotates
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR), as
well as a TEST instruction. The TEST instruction sets the flags as a result of a Boolean AND op-
eration but does not alter either of its operands.

Individual bits in bytes and words can be shifted either arithmetically or logically. Up to 32 shifts
can be performed, according to the value of the count operand coded in the instruction. The count
can be specified as an immediate value or as a variable in the CL register. This allows the shift
count to be a supplied at execution time. Arithmetic shifts can be used to multiply and divide bi-
nary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words.

2-21

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Individual bits in bytes and words can also be rotated. The processor does not discard the bits ro-
tated out of an operand. The bits circle back to the other end of the operand. The number of bits
to be rotated is taken from the count operand, which can specify either an immediate value or the
CL register. The carry flag can act as an extension of the operand in two of the rotate instructions.
This allows a bit to be isolated in the Carry Flag (CF) and then tested by a JC (jump if carry) or
JNC (jump if not carry) instruction.

2214 String Instructions

Five basic string operations process strings of bytes or words, one element (byte or word) at a
time. Strings of up to 64 Kbytes can be manipulated with these instructions. Instructions are avail-
able to move, compare or scan for a value, as well as to move string elements to and from the
accumulator. Table 2-7 lists the string instructions. These basic operations can be preceded by a
one-byte prefix that causes the instruction to be repeated by the hardware, allowing long strings
to be processed much faster than is possible with a software loop. The repetitions can be termi-
nated by a variety of conditions. Repeated operations can be interrupted and resumed.

Table 2-7. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero
REPNE/REPNZ Repeat while not equal/not zero
MOVSB/MOVSW Move byte string/word string
MOVS Move byte or word string
INS Input byte or word string
OUTS Output byte or word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS Load byte or word string
STOS Store byte or word string

String instructions operate similarly in many respects (see Table 2-8). A string instruction can
have a source operand, a destination operand, or both. The hardware assumes that a source strin
resides in the current data segment. A segment prefix can override this assumption. A destination
string must be in the current extra segment. The assembler does not use the operand names to ac
dress strings. Instead, the contents of the Source Index (Sl) register are used as an offset to addres
the current element of the source string. The contents of the Destination Index (DI) register are
taken as the offset of the current destination string element. These registers must be initialized to
point to the source and destination strings before executing the string instructions. The LDS, LES
and LEA instructions are useful in performing this function.

2-22

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

String instructions automatically update the Sl register, the DI register, or both, before processing
the next string element. The Direction Flag (DF) determines whether the index registers are auto-
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, Sl, or both
registers by one for byte strings or by two for word strings.

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of
the string instruction. The CX register must be initialized to the number of repetitions before the
string instruction is executed. If the CX register is 0, the string instruction is not executed and
control goes to the following instruction.

Table 2-8. String Instruction Register and Flag Use

Sl Index (offset) for source string
DI Index (offset) for destination string
CX Repetition counter
AL/AX Scan value
Destination for LODS
Source for STOS
DF Direction Flag
0 = auto-increment Sl, DI
1 = auto-decrement Sl, DI
ZF Scan/compare terminator
2215 Program Transfer Instructions

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the in-
struction execution sequence in the 80C186 Modular Core family. The CS register contains the
base address of the current code segment. The Instruction Pointer register points to the memory
location of the next instruction to be fetched. In most operating conditions, the next instruction
will already have been fetched and will be waiting in the CPU instruction queue. Program transfer
instructions operate on the IP and CS registers. Changing the contents of these registers cause:
normal sequential operation to be altered. When a program transfer occurs, the queue no longer
contains the correct instruction. The Bus Interface Unit obtains the next instruction from memory
using the new IP and CS values. It then passes the instruction directly to the Execution Unit and
begins refilling the queue from the new location.

The 80C186 Modular Core family offers four groups of program transfer instructions (see Table

2-9). These are unconditional transfers, conditional transfers, iteration control instructions and in-
terrupt-related instructions.

2-23

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Unconditional transfer instructions can transfer control either to a target instruction within the
current code segment (intrasegment transfer) or to a different code segment (intersegment trans-
fer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment trans-
fer FAR. The transfer is made unconditionally when the instruction is executed. CALL, RET and
JMP are all unconditional transfers.

CALL is used to transfer the program to a procedure. A CALL can be NEAR or FAR. A NEAR
CALL stacks only the Instruction Pointer, while a FAR CALL stacks both the Instruction Pointer
and the Code Segment register. The RET instruction uses the information pushed onto the stack
to determine where to return when the procedure finishes. Note that the RET and CALL instruc-
tions must be the same type. This can be a problem when the CALL and RET instructions are in
separately assembled programs. The JMP instruction does not push any information onto the
stack. A JMP instruction can be NEAR or FAR.

Conditional transfer instructions are jumps that may or may not transfer control, depending on
the state of the CPU flags when the instruction is executed. Each conditional transfer instruction
tests a different combination of flags for a condition (see Table 2-10). If the condition is logically
TRUE, control is transferred to the target specified in the instruction. If the condition is FALSE,
control passes to the instruction following the conditional jump. All conditional jumps are
SHORT. The target must be in the current code segment within —128 to +127 bytes of the next
instruction’s first byte. For example, IMP O0H causes a jump to the first byte of the next instruc-
tion. Jumps are made by adding the relative displacement of the target to the Instruction Pointer.
All conditional jumps are self-relative and are appropriate for position-independent routines.

2-24

Table 2-9. Program Transfer Instructions

Conditional Transfers

JA/INBE Jump if above/not below nor equal
JAE/INB Jump if above or equal/not below
JB/INAE Jump if below/not above nor equal
JBE/JNA Jump if below or equal/not above
JC Jump if carry
JENJZ Jump if equal/zero
JG/INLE Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less
JL/INGE Jump if less/not greater nor equal
JLE/ING Jump if less or equal/not greater
JNC Jump if not carry
JNE/INZ Jump if not equal/not zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd
JINS Jump if not sign
JO Jump if overflow
JP/IPE Jump if parity/parity even
JS Jump if sign

Unconditional Transfers
CALL Call procedure
RET Return from procedure
JMP Jump

Iteration Control
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ Loop if not equal/not zero
JCXZ Jump if register CX=0
Interrupts

INT Interrupt
INTO Interrupt if overflow
BOUND Interrupt if out of array bounds
IRET Interrupt return

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2-25

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Iteration control instructions can be used to regulate the repetition of software loops. These in-
structions use the CX register as a counter. Like the conditional transfers, the iteration control in-
structions are self-relative and can transfer only to targets that are within —128 to +127 bytes of

themselves. They are SHORT transfers.

The interrupt instructions allow programs and external hardware devices to activate interrupt ser-
vice routines. The effect of a software interrupt is similar to that of a hardware-initiated interrupt.
The processor cannot execute an interrupt acknowledge bus cycle if the interrupt originates in

software or with an NMI (Non-Maskable Interrupt).

Table 2-10. Interpretation of Conditional Transfers

Mnemonic Condition Tested “Jump if...”
JA/IJNBE (CF or ZF)=0 above/not below nor equal
JAE/INB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/INA (CFor ZzF)=1 below or equal/not above
JC CF=1 carry
JENZ ZF=1 equal/zero
JG/INLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/INGE (SF xor OF)=1 less/not greater nor equal
JLE/ING ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry
JNE/INZ ZF=0 not equal/not zero
JNO OF=0 not overflow
JINP/IPO PF=0 not parity/parity odd
JINS SF=0 not sign
JO OF=1 overflow
JP/IPE PF=1 parity/parity equal
JS SF=1 sign

NOTE: The terms above and below refer to the relationship of two unsigned values;

greater and less refer to the relationship of two signed values.

2-26

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.2.1.6 Processor Control Instructions

Processor control instructions (see Table 2-11) allow programs to control various CPU functions.
Seven of these instructions update flags, four of them are used to synchronize the microprocessor
with external events, and the remaining instruction causes the CPU to do nothing. Except for flag
operations, processor control instructions do not affect the flags.

Table 2-11. Processor Control Instructions

Flag Operations

STC Set Carry flag

CLC Clear Carry flag

CMC Complement Carry flag
STD Set Direction flag

CLD Clear Direction flag

STI Set Interrupt Enable flag
CLI Clear Interrupt Enable flag

External Synchronization

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active

ESC Escape to external processor
LOCK Lock bus during next instruction

No Operation

NOP No operation

2.2.2 Addressing Modes

The 80C186 Modular Core family members access instruction operands in several ways. Oper-
ands can be contained either in registers, in the instruction itself, in memory or at I/O ports. Ad-
dresses of memory and 1/O port operands can be calculated in many ways. These addressing
modes greatly extend the flexibility and convenience of the instruction set. The following para-
graphs briefly describe register and immediate modes of operand addressing. A detailed descrip-
tion of the memory and 1/0O addressing modes is also provided.

2221 Register and Immediate Operand Addressing Modes

Usually, the fastest, most compact operand addressing forms specify only register operands. This
is because the register operand addresses are encoded in instructions in just a few bits and no bu
cycles are run (the operation occurs within the CPU). Registers can serve as source operands, des
tination operands, or both.

2-27

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Immediate operands are constant data contained in an instruction. Immediate data can be either
8 or 16 bits in length. Immediate operands are available directly from the instruction queue and

can be accessed quickly. As with a register operand, no bus cycles need to be run to get an imme-
diate operand. Immediate operands can be only source operands and must have a constant value

2222 Memory Addressing Modes

Although the Execution Unit has direct access to register and immediate operands, memory op-
erands must be transferred to and from the CPU over the bus. When the Execution Unit needs to
read or write a memory operand, it must pass an offset value to the Bus Interface Unit. The Bus
Interface Unit adds the offset to the shifted contents of a segment register, producing a 20-bit
physical address. One or more bus cycles are then run to access the operand.

The offset that the Execution Unit calculates for memory operand is called the operand’s Effec-
tive Address (EA). This address is an unsigned 16-bit number that expresses the operand’s dis-
tance, in bytes, from the beginning of the segment in which it resides. The Execution Unit can
calculate the effective address in several ways. Information encoded in the second byte of the in-
struction tells the Execution Unit how to calculate the effective address of each memory operand.
A compiler or assembler derives this information from the instruction written by the programmer.
Assembly language programmers have access to all addressing modes.

The Execution Unit calculates the Effective Address by summing a displacement, the contents of

a base register and the contents of an index register (see Figure 2-12). Any combination of these
can be present in a given instruction. This allows a variety of memory addressing modes.

2-28

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Single Index Double Index
or or or
BP [
Encoded BP DI
in the 4 or
Instruction)
S| M EU
or
DI |
Explicit vy _
in the G')«-: Displacement H-») Effective
Instruction bemmmmm o Address]
[— CS 0000 |+
or
Assumed Unless — SS [0000—
Overridden] or
by Prefix | D5s Toooo BIU
or
®H=<« ES [0000 —->(!)
—> Physical Addr [«
A1015-0A

Figure 2-12. Memory Address Computation

The displacement is an 8- or 16-bit number contained in the instruction. The displacement gen-
erally is derived from the position of the operand’s name (a variable or label) in the program. The
programmer can modify this value or explicitly specify the displacement.

I 2-29

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

The BX or BP register can be specified as the base register for an effective address calculation.
Similarly, either the Sl or the DI register can be specified as the index register. The displacement
value is a constant. The contents of the base and index registers can change during execution. This
allows one instruction to access different memory locations depending upon the current values in
the base or base and index registers. The default base register for effective address calculations
with the BP register is SS, although DS or ES can be specified.

Direct addressing is the simplest memory addressing mode (see Figure 2-13). No registers are in-
volved, and the effective address is taken directly from the displacement of the instruction. Pro-
grammers typically use direct addressing to access scalar variables.

With register indirect addressing, the effective address of a memory operand can be taken directly
from one of the base or index registers (see Figure 2-14). One instruction can operate on various
memory locations if the base or index register is updated accordingly. Any 16-bit general register
can be used for register indirect addressing with the JMP or CALL instructions.

In based addressing, the effective address is the sum of a displacement value and the contents o
the BX or BP register (see Figure 2-15). Specifying the BP register as a base register directs the

Bus Interface Unit to obtain the operand from the current stack segment (unless a segment over-

ride prefix is present). This makes based addressing with the BP register a convenient way to ac-

cess stack data.

Opcode Mod R/M Displa{:ement H

A1016-0A

Figure 2-13. Direct Addressing

2-30

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Opcode Mod R/M

Y

BX
or
BP
or
S
or
DI > EA

A1017-0A

Figure 2-14. Register Indirect Addressing

Opcode Mod R/M Displacement |
U 1
BX
or
BP
EA
A1018-0A

Figure 2-15. Based Addressing

Based addressing provides a simple way to address data structures that may be located in different
places in memory (see Figure 2-16). A base register can be pointed at the structure. Elements of
the structure can then be addressed by their displacements. Different copies of the same structure
can be accessed by simply changing the base register.

2-31

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Displacement

(Rate)

High Address

{

Age Status

Rate

Base
Register

Vac Sick

Dept Div

Employee

2

Age Status

Rate

Displacement

(Rate)

§

Base Register

Y

EA

A

Vac Sick

Dept Div

Employee

Low Address

A1019-0A

With indexed addressing, the effective address is calculated by summing a displacement and the
contents of an index register (Sl or DI, see Figure 2-17). Indexed addressing is often used to ac-
cess elements in an array (see Figure 2-18). The displacement locates the beginning of the array,
and the value of the index register selects one element. If the index register contains 0000H, the
processor selects the first element. Since all array elements are the same length, simple arithmetic

Figure 2-16. Accessing a Structure with Based Addressing

on the register can select any element.

2-32

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Opcode Mod R/M Displacement |
i 1
Sl
> or
DI
EA

A1020-0A

Figure 2-17. Indexed Addressing

High Address

Low Address

o~ o~
Array (8)
---|Displacement| —> Array (7) Displacement [F--=
Array (6) i
Array (5) i
Index Register Array (4) Index Register i
14 Array (3) 2 i
¢ Array (2) Y i
EA Array (1) - EA |
------------------ > Array (0) S
d~ I~
1 Word

A1021-0A

Figure 2-18. Accessing an Array with Indexed Addressing

2-33

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Based index addressing generates an effective address that is the sum of a base register, an inde
register and a displacement (see Figure 2-19). The two address components can be determined a
execution time, making this a very flexible addressing mode.

Opcode Mod R/M Displagement i

BX

> or —)5)
BP
Sl

—- or >é
DI

Y

EA

A1022-0A

Figure 2-19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array located or
a stack (see Figure 2-20). The BP register can contain the offset of a reference point on the stack.
This is typically the top of the stack after the procedure has saved registers and allocated local
storage. The offset of the beginning of the array from the reference point can be expressed by a
displacement value. The index register can be used to access individual array elements. Arrays
contained in structures and matrices (two-dimensional arrays) can also be accessed with based
indexed addressing.

String instructions do not use normal memory addressing modes to access operands. Instead, the
index registers are used implicitly (see Figure 2-21). When a string instruction executes, the Si
register must point to the first byte or word of the source string, and the DI register must point to
the first byte or word of the destination string. In a repeated string operation, the CPU will auto-
matically adjust the S| and DI registers to obtain subsequent bytes or words. For string instruc-
tions, the DS register is the default segment register for the Sl register and the ES register is the
default segment register for the DI register. This allows string instructions to operate on data lo-
cated anywhere within the 1 Mbyte address space.

2-34

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Displacement

-- 6

{

- Base Register

Index Register

12

EA

High Address

Low Address

Parm 2 Displacement
Parm 1 6 --1
P % i
Old BP i
(BP) old BX (BP)|Base Register [+ i
1
Old AX ! i
1
—> Array (6) L
Array (5) Index Register 1 |
rra !
’ 12 Pl
Array (4) ! :
1
Array (3) l ! i
]
Array (2) -< EA ! i
]
Array (1) ! E
U
A Array (0) 5 [
! 1 i H
! Count] Ly
- S G L
! Temp] :
U
Y I
Status B P J
1 Word

A1024-0A

Figure 2-20. Accessing a Stacked Array with Based Index Addressing

2-35

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Opcode

Source EA
Destination EA |

A1025-0A

Figure 2-21. String Operand

2223 1/0 Port Addressing

Any memory operand addressing modes can be used to access an 1/O port if the port is memory-
mapped. String instructions can also be used to transfer data to memory-mapped ports with an
appropriate hardware interface.

Two addressing modes can be used to access ports located in the I/O space (see Figure 2-22). Fo
direct 1/0 port addressing, the port number is an 8-bit immediate operand. This allows fixed ac-
cess to ports numbered 0 to 255. Indirect I/O port addressing is similar to register indirect address-
ing of memory operands. The DX register contains the port number, which can range from 0 to
65,535. Adjusting the contents of the DX register allows one instruction to access any port in the
I/O space. A group of adjacent ports can be accessed using a simple software loop that adjusts the
value of the DX register.

Opcode

Data

Opcode

l

l

Port Address

DX ——-

Port Address

Direct

Port

Addressing

Indirect Port
Addressing

A1026-0A

2-36

Figure 2-22. 1/O Port Addressing

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2224 Data Types Used in the 80C186 Modular Core Family

The 80C186 Modular Core family supports the data types described in Table 2-12 and illustrated
in Figure 2-23. In general, individual data elements must fit within defined segment limits.

Table 2-12. Supported Data Types

Type Description

Integer A signed 8- or 16-bit binary numeric value (signed byte or word). All operations assume
a 2's complement representation.

The 80C187 numerics processor extension, when added to an 80C186 Modular Core
system, directly supports signed 32- and 64-bit integers (signed double-words and
quad-words). The 80C188 Modular Core does not support the 80C187.

Ordinal An unsigned 8- or 16-bit binary numeric value (unsigned byte or word).

BCD A byte (unpacked) representation of a single decimal digit (0-9).

ASCII A byte representation of alphanumeric and control characters using the ASCII
standard.

Packed BCD A byte (packed) representation of two decimal digits (0-9).One digit is stored in each
nibble (4 bits) of the byte.

String A contiguous sequence of bytes or words. A string can contain from 1 byte to 64
Kbytes.
Pointer A 16- or 32-bit quantity. A 16-bit pointer consists of a 16-bit offset component; a 32-bit

pointer consists of the combination of a 16-bit base component (selector) plus a 16-bit
offset component.

Floating Point A signed 32-, 64-, or 80-bit real number representation.

The 80C187 numerics processor extension, when added to an 80C186 Modular Core
system, directly supports floating point operands. The 80C188 Modular Core does not
support the 80C187.

2-37

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Signed Byte

Sign Bit

Signed Word
Sign Bit

Signed Double
Word*

Sign Bit

Signed Quad
Word*

Sign Bit
Binary Coded

Decimal (BCD)

ASCII

Packed BCD

String

Pointer

Floating
Point*
Sign Bit

7 0 7 0
] Unsigned Byte [T
LMSB

- L Magnitude—! L— Magnitude—!
1514 *1 g5 0 0 Unsigned 13 L gy 0 0
[T [' | word | ' [' |
1, LMSB LMSB

L Magnitude | L= Magnitude——!
31 "3 2423 "2 1615 *1 g7 O 0
| I T T I LI L I L T 1 1 I L T 1 1 I L

LMSB
L Magnitude |
6377 *Ougar?® Mhgpp;t3 +245057 %o

LMSB
L Magnitude |
7 o 7 1 o7 0 o

.o T T

BCD Digit n BCD Digit 1 BCD Digit 0

7 ¢ 7 Y o7 0 0
. T[T

ASCII Character n ASCII Character 1 ASCII Character 0
7 M g 7 1 07 0 o9
m o o | LI I LI | LI I LI |
—_
Most Least
Significant Digit Significant Digit
7 Mo 7 "1 o7 0 0
m . ° | T T T I T T T | T T T I T T T |

Byte Word n Byte Word 1 Byte Word 0
31 *3 2423 *?2 1515 *L 0
| T 1 1 I LI | L I L | T 1 1 I L | T 1 1 I L |
L Selector 1 Offset 1
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 9
4 L——Exponent ! Magnitude !

NOTE: *Directly supported if the system contains an 80C187.
A1027-0B

Figure 2-23. 80C186 Modular Core Family Supported Data Types

2-38

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.3 INTERRUPTS AND EXCEPTION HANDLING

Interrupts and exceptions alter program execution in response to an external event or an error
condition. An interrupt handles asynchronous external events, for example an NMI. Exceptions
result directly from the execution of an instruction, usually an instruction fault. The user can
cause a software interrupt by executing an ‘tiNifistruction. The CPU processes software in-
terrupts in the same way that it handles exceptions.

The 80C186 Modular Core responds to interrupts and exceptions in the same way for all devices
within the 80C186 Modular Core family. However, devices within the family may have different
Interrupt Control Units. The Interrupt Control Unit handles all external interrupt sources and pre-
sents them to the 80C186 Modular Core via one maskable interrupt request (see Figure 2-24).
This discussion covers only those areas of interrupts and exceptions that are common to the
80C186 Modular Core family. The Interrupt Control Unit is proliferation-dependent; see Chapter
7, “Interrupt Control Unit,” for additional information.

NMI
Maskable
Interrupt
Request
-
—
: Interrupt External
CPU : Control — [nterrupt
> Unit Sources
Interrupt
Acknowledge®
A1028-0A

Figure 2-24. Interrupt Control Unit

2.3.1 Interrupt/Exception Processing

The 80C186 Modular Core can service up to 256 different interrupts and exceptions. A 256-entry
Interrupt Vector Table (Figure 2-25) contains the pointers to interrupt service routines. Each en-
try consists of four bytes, which contain the Code Segment (CS) and Instruction Pointer (IP) of
the first instruction in the interrupt service routine. Each interrupt or exception is given a type

number, 0 through 255, corresponding to its position in the Interrupt Vector Table. Note that in-

terrupt types 0-31 are reserved for Intel and shootde used by an application program.

I 2-39

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

intel.

Memory Table
Address Entry
3FE CS
3FC P
82 Cs
80 IP
7E Cs
7C IP
46 CcS
44 1P
42 CS
40 P
3E CS
3C 1P
22 CS
20 IP

I 2 Bytes I

Vector
Definition

1 Type 7 - Esc
- Opcode

L Type 6 - Unused
- Opcode

L Type 5 - Array
Bounds

L Type 4 - Overflow

L Type 3 - Breakpoint
L Type 2 - NMI

L Type 1 - Single

Step

Type 0 - Divide
Error

Vector Memory Table
Definition Address Entry
T 25; 1€ cS

ype 1c P
\ User 1A CS
Available 18 P
Type 32 16 cs
b 14 P
Type 31 12 CS
10 IP
f Reserved OE Cs
ocC P
Type 17 0A csS
- 08 P
Type 16 - Numerics g CcS
(80C186EC) 04 5
Type 15 02 Cs
: 00 IP
i
}Type 8 I 2 Bytes I
CS =Code Segment Value

IP = Instruction Pointer Value

A1011-0A

When an interrupt is acknowledged, a common event sequence (Figure 2-26) allows the proces-

Figure 2-25. Interrupt Vector Table

sor to execute the interrupt service routine.

1.

2-40

The processor saves a partial machine status by pushing the Processor Status Word onto

the stack.

The Trap Flag bit and Interrupt Enable bit are cleared in the Processor Status Word. This
prevents maskable interrupts or single step exceptions from interrupting the processor

during the interrupt service routine.

The current CS and IP are pushed onto the stack.

The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt

Vector Table and begins executing from that point.

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The CPU is now executing the interrupt service routine. The programmer must save (usually by
pushing onto the stack) all registers used in the interrupt service routine; otherwise, their contents
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt En-
able bit in the Processor Status Word.

When exiting an interrupt service routine, the programmer must restore (usually by popping off
the stack) the saved registers and execute an IRET instruction, which performs the following
steps.

1. Loads the return CS and IP by popping them off the stack.

2. Pops and restores the old Processor Status Word from the stack.

The CPU now executes from the point at which the interrupt or exception occurred.

Interrupt Enable Bit
Trap Flag

PSW @) @)
cS \' |O | O| | Processor Status Word

sp—»{ P
SN N @

Stack

rd

Code Segment Register

Instruction Pointer

=4
-’

CS
P

N

-

Interrupt
Vector
Table

A1029-0A

Figure 2-26. Interrupt Sequence

2-41

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

23.11 Non-Maskable Interrupts

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked)
by software. When the NMI input is asserted, the interrupt processing sequence begins after ex-
ecution of the current instruction completes (see “Interrupt Latency” on page 2-44). The CPU au-
tomatically generates a type 2 interrupt vector.

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition on
a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT period
and meet the correct setup and hold times. NMI is edge-triggered and level-latched. Multiple
NMI requests cause multiple NMI service routines to be executed. NMI can be nested in this man-
ner an infinite number of times.

23.1.2 Maskable Interrupts

Maskable interrupts are the most common way to service external hardware interrupts. Software
can globally enable or disable maskable interrupts. This is done by setting or clearing the Inter-
rupt Enable bit in the Processor Status Word.

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs among
members of the 80C186 Modular Core family; see Chapter 7, “Interrupt Control Unit,” for infor-
mation.

23.1.3 Exceptions

Exceptions occur when an unusual condition prevents further instruction processing until the ex-
ception is corrected. The CPU handles software interrupts and exceptions in the same way. The
interrupt type for an exception is either predefined or supplied by the instruction.

Exceptions are classified as either faults or traps, depending on when the exception is detected
and whether the instruction that caused the exception can be restarted. Faults are detected and sel
viced before the faulting instruction can be executed. The return address pushed onto the stack
in the interrupt processing instruction points to the beginning of the faulting instruction. This al-
lows the instruction to be restarted. Traps are detected and serviced immaétextéhe instruc-

tion that caused the trap. The return address pushed onto the stack during the interrupt processing
points to the instruction following the trapping instruction.

Divide Error — Type O

A Divide Error trap is invoked when the quotient of an attempted division exceeds the maximum
value of the destination. A divide-by-zero is a common example.

2-42

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Single Step — Type 1

The Single Step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit set
in the Processor Status Word. This allows programs to execute one instruction at a time. Inter-
rupts are not generated after prefix instructions (e.g., REP), after instructions that modify segment
registers (e.g., POP DS) or after the WAIT instruction. Vectoring to the single-step interrupt ser-
vice routine clears the Trap Flag bit. An IRET instruction in the interrupt service routine restores
the Trap Flag bit to logic “1” and transfers control to the next instruction to be single-stepped.

Breakpoint Interrupt — Type 3

The Breakpoint Interrupt is a single-byte version of the INT instruction. It is commonly used by
software debuggers to set breakpoints in RAM. Because the instruction is only one byte long, it
can substitute for any instruction.

Interrupt on Overflow — Type 4

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Processor Status
Word and the INTO instruction is executed. Interrupt on Overflow is a common method for han-
dling arithmetic overflows conditionally.

Array Bounds Check — Type 5

An Array Bounds trap occurs when the array index is outside the array bounds during execution
of the BOUND instruction (see Appendix A, “80C186 Instruction Set Additions and Exten-
sions”).

Invalid Opcode — Type 6

Execution of an undefined opcode causes an Invalid Opcode trap.

Escape Opcode — Type 7

The Escape Opcode fault is used for floating point emulation. With 80C186 Modular Core family
members, this fault is enabled by setting the Escape Trap (ET) bit in the Relocation Register (see
Chapter 3, “Peripheral Control Block”). When a floating point instruction is executed with the
Escape Trap bit set, the Escape Opcode fault occurs, and the Escape Opcode service routine em
ulates the floating point instruction. If the Escape Trap bit is cleared, the CPU sends the floating

point instruction to an external 80C187.

80C188 Modular Core Family members do not support the 80C187 interface and always generate
the Escape Opcode Fault.

I 2-43

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Numerics Coprocessor Fault — Type 16

The Numerics Coprocessor fault is caused by an external 80C187 numerics coprocessor. The
80C187 reports the exception by asserting the ERRi@RThe 80C186 Modular Core checks

the ERRORpin only when executing a numerics instruction. A Numerics Coprocessor Fault in-
dicates that therevious numerics instruction caused the exception. The 80C187 saves the ad-
dress of the floating point instruction that caused the exception. The return address pushed onto
the stack during the interrupt processing points to the numerics instruction that detected the ex-
ception. This way, the last numerics instruction can be restarted.

2.3.2 Software Interrupts

A Software Interrupt is caused by executing an ‘fiNifistruction. Then parameter corresponds

to the specific interrupt type to be executed. The interrupt type can be any number between 0 and
255. If then parameter corresponds to an interrupt type associated with a hardware interrupt
(NMI, Timers), the vectors are fetched and the routine is executed, but the corresponding bits in
the Interrupt Status registare not altered

The CPU processes software interrupts and exceptions in the same way. Software interrupts, ex-
ceptions and traps cannot be masked.

2.3.3 Interrupt Latency

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an inter-
rupt. The CPU generally recognizes interrupts only between instructions or on instruction bound-
aries. Therefore, the current instruction must finish executing before an interrupt can be
recognized.

The worst-case 80C186 instruction execution time is an integer divide instruction with segment
override prefix. The instruction takes 69 clocks, assuming an 80C186 Modular Core family mem-
ber and a zero wait-state external bus. The execution time for an 80C188 Modular Core family
member may be longer, depending on the queue.

This is one factor in determining interrupt latency. In addition, the following are also factors in
determining maximum latency:
1. The CPU does not recognize the Maskable Interrupt unless the Interrupt Enable bit is set.
2. The CPU does not recognize interrupts during HOLD.

3. Once communication is completely established with an 80C187, the CPU does not
recognize interrupts until the numerics instruction is finished.

2-44

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The CPU can recognize interrupts only on valid instruction boundaries. A valid instruction
boundary usually occurs when the current instruction finishes. The following is a list of excep-
tions:

1. MOVs and POPs referencing a segment register delay the servicing of interrupts until
after the following instruction. The delay allows a 32-bit load to the SS and SP without an
interrupt occurring between the two loads.

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes
precede a string instruction and the instruction is interrupted, only the one prefix
preceding the string primitive is restored.

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the WAIT
instruction.

2.3.4 Interrupt Response Time

Interrupt response time is the time from the CPU recognizing an interrupt until the first instruction
in the service routine is executed. Interrupt response time is less for interrupts or exceptions
which supply their own vector type. The maskable interrupt has a longer response time because
the vector type must be supplied by the Interrupt Control Unit (see Chapter 7, “Interrupt Control
Unit”).

Figure 2-27 shows the events that dictate interrupt response time for the interrupts that supply

their type. Note that an on-chip bus master, such as the DRAM Refresh Unit, can make use of
idle bus cycles. This can increase interrupt response time.

2-45

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Clocks

Idle 5

Read IP 4

Idle 5

Read CS 4

Idle 4

Push Flags 4

Idle 3

Push CS 4

Push IP 4

Idle 5

FIrSt InStrUCtlon FetCh)
From Interrupt Routine

Total 42

A1030-0A

Figure 2-27. Interrupt Response Factors

2.3.5 Interrupt and Exception Priority

Interrupts can be recognized only on valid instruction boundaries. If an NMI and a maskable in-

terrupt are both recognized on the same instruction boundary, NMI has precedence. The
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the highest

priority.

Only the single step exception can occur concurrently with another exception. At most, two ex-
ceptions can occur at the same instruction boundary and one of those exceptions must be the sin-
gle step. Single step is a special case; itis discussed on page 2-47. Ignoring single step (for now),
only one exception can occur at any given instruction boundary.

An exception has priority over both NMI and the maskable interrupt. However, a pending NMI

can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an excep-
tion service routine. If an exception and NMI occur simultaneously, the exception vector is taken,
then is followed immediately by the NMI vector (see Figure 2-28). While the exception has high-
er priority at the instruction boundary, the NMI interrupt service routine is executed first.

2-46

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

F=1
NM|—> Divide «—Divide Error
I
Push PSW, CS, IP
Fetch Divide Error Vector

Y

Push PSW, CS, IP
Fetch NMI Vector

Y

Execute NMI
Service Routine

* IRET

Execute Divide
Service Routine

¢ IRET

Figure 2-28. Simultaneous NMI and Exception

A1031-0A

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same instruc-
tion boundary as a single step, the interrupt vector is taken first, then is followed immediately by
the single step vector. However, the single step service routine is executed before the interrupt
service routine (see Figure 2-29). If the single step service routine re-enables single step by exe-
cuting the IRET, the interrupt service routine will also be single stepped. This can severely limit
the real-time response of the CPU to an interrupt.

2-47

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

To prevent the single-step routine from executing before a maskable interrupt, disable interrupts
while single stepping an instruction, then enable interrupts in the single step service routine. The
maskable interrupt is serviced from within the single step service routine and that interrupt ser-

vice routine is not single-stepped. To prevent single stepping before an NMI, the single-step ser-
vice routine must compare the return address on the stack to the NMI vector. If they are the same,
return to the NMI service routine immediately without executing the single step service routine.

NMI—> Instruction |-<—— TrapFlag=1

Y

Push PSW, CS, IP
Fetch Divide Error Vector

L
Y

Push PSW, CS, IP
Fetch Single Step Vector

Y

Execute Single Step
Service Routine

Trap Flag =0

000000 <

IRET

Trap Flag = ???

A1032-0A

Figure 2-29. Simultaneous NMI and Single Step Interrupts

The most complicated case is when an NMI, a maskable interrupt, a single step and another ex-
ception are pending on the same instruction boundary. Figure 2-30 shows how this case is prior-

itized by the CPU. Note that if the single-step routine sets the Trap Flag (TF) bit before executing
the IRET instruction, the NMI routine will also be single stepped.

2-48

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) =1

NMI—» Divide [-«—Timer Interrupt

I_*

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0
Fetch Divide Error Vector | Trap Flag (TF) =0

I_*

Push PSW, CS, IP | Interrupt Enable Bit (IE) =0
Fetch NMI Vector | Trap Flag (TF) =0

I_*

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0
Fetch Single Step Vector | Trap Flag (TF) =0

[

Execute Single Step
Service Routine

000000 < |

IRET

Interrupt Enable Bit (IE) =0
Trap Flag (TF) = ???

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) = X

Push PSW, CS, IP Interrupt Enable Bit (IE) =1
Fetch Single Step Vector | Trap Flag (TF) = X

Y

Execute Single Step Service Routine

; IRET

A1034-0A

Figure 2-30. Simultaneous NMI, Single Step and Maskable Interrupt

2-49

intel.

Bus Interface Unit

intel.

CHAPTER 3
BUS INTERFACE UNIT

The Bus Interface Unit (BIU) generates bus cycles that prefetch instructions from memory, pass
data to and from the execution unit, and pass data to and from the integrated peripheral units.

The BIU drives address, data, status and control information to define a bus cycle. The start of a
bus cycle presents the address of a memory or 1/O location and status information defining the
type of bus cycle. Read or write control signals follow the address and define the direction of data
flow. A read cycle requires data to flow from the selected memory or I/O device to the BIU. In a
write cycle, the data flows from the BIU to the selected memory or I/O device. Upon termination
of the bus cycle, the BIU latches read data or removes write data.

3.1 MULTIPLEXED ADDRESS AND DATA BUS

The BIU has a combined address and data bus, commonly referred to as a time-multiplexed bus.
Time multiplexing address and data information makes the most efficient use of device package
pins. A system with address latching provided within the memory and 1/O devices can directly
connect to the address/data buslgoal bug. The local bus can be demultiplexed with a single

set of address latches to provide non-multiplexed address and data information to the system.

3.2 ADDRESS AND DATA BUS CONCEPTS

The programmer views the memory or I/O address space as a sequence of bytes. Memory space
consists of 1 Mbyte, while I/O space consists of 64 Kbytes. Any byte can contain an 8-bit data
element, and any two consecutive bytes can contain a 16-bit data element (identified as a word).
The discussions in this section apply to both memory and 1/O bus cycles. For brevity, memory
bus cycles are used for examples and illustration.

3.2.1 16-Bit Data Bus

The memory address space on a 16-bit data bus is physically implemented by dividing the address
space into two banks of up to 512 Kbytes each (see Figure 3-1). One bank connects to the lower
half of the data bus and contains even-addressed bytes (A0=0). The other bank connects to the
upper half of the data bus and contains odd-addressed bytes (AO=1). Address lines A19:1 select
a specific byte within each bank. A0 and Byte High Enable (BitfEermine whether one bank

or both banks participate in the data transfer.

I 3-1

BUS INTERFACE UNIT Intel®

Physical Implementation Physical Implementation
of the Address Space for of the Address Space for
8-Bit Systems 16-Bit Systems
1 MByte 512 KBytes 512 KBytes
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC
::> ::> O) -
2 5 4
1 3 2
0 1 0
PN
~ s
A19:0 D7:0 A19:1 D15:8 BHE D7:0 A0
A1100-0A

Figure 3-1. Physical Data Bus Models

Byte transfers to even addresses transfer information over the lower half of the data bus (see Fig-
ure 3-2). A0 low enables the lower bank, while Bigh disables the upper bank. The data value
from the upper bank is ignored during a bus read cycle. lBgtEprevents a write operation from
destroying data in the upper bank.

Byte transfers to odd addresses transfer information over the upper half of the data bus (see Figure
3-2). BHElow enables the upper bank, while A0 high disables the lower bank. The data value
from the lower bank is ignored during a bus read cycle. A0 high prevents a write operation from
destroying data in the lower bank.

To access even-addressed 16-bit words (two consecutive bytes with the least-significant byte at
an even address), information is transferred over both halves of the data bus (see Figure 3-3).
A19:1 select the appropriate byte within each bank. A0 and @#E low to enable both banks
simultaneously.

Odd-addressed word accesses require the BIU to split the transfer into two byte operations (see
Figure 3-4). The first operation transfers data over the upper half of the bus, while the second op-

eration transfers data over the lower half of the bus. The BIU automatically executes the two-byte

sequence whenever an odd-addressed word access is performed.

3-2 I

BUS INTERFACE UNIT

Even Byte Transfer
Y+1 Y
X+1) (X)
PN
~ |
A19:1 D15:8 BHE D7:0 A0
(High) (Low)
Odd Byte Transfer
Y+1 Y
X +1)) X
PN
~ e
A19:1 D158 BHE D7:0 A0
(Low) (High)

A1104-0A

Figure 3-2. 16-Bit Data Bus Byte Transfers

3-3

BUS INTERFACE UNIT Intel®

e W
00—
PaN
~ |
Al19:1 D158 BHE D7:0 AO
(Low) (Low)

A1107-0A

Figure 3-3. 16-Bit Data Bus Even Word Transfers

During a byte read operation, the BIU floats the entire 16-bit data bus, even though the transfer
occurs on only one half of the bus. This action simplifies the decoding requirements for read-only
devices (e.g., ROM, EPROM, Flash). During the byte read, an external device cdpothive
halvesof the bus, and the BIU automatically accesses the correct half. During the byte write op-
eration, the BIU drives both halves of the bus. Information on the half of the bus not involved in
the transfer is indeterminate. This action requires that the appropriate bank (defined by BHE
A0 high) be disabled to prevent destroying data.

3-4 I

Intel® BUS INTERFACE UNIT

First Bus Cycle
Y
(X + 1) X
00—
PN
~ e
A19:1 D158 BHE D7:0 A0
(Low) (High)
Second Bus Cycle
Y+1 (Y)
X+1 X
0—
PN
~ e
A19:1 D158 BHE D7:0 A0
(High) (Low)
A1108-0A

Figure 3-4. 16-Bit Data Bus Odd Word Transfers

3.2.2 8-Bit Data Bus

The memory address space on an 8-bit data bus is physically implemented as one bank of 1 Mbyte
(see Figure 3-1 on page 3-2). Address lines A19:0 select a specific byte within the bank. Unlike
transfers with a 16-bit bus, byte and word transfers (to even or odd addresses) all transfer data
over the same 8-bit bus.

Byte transfers to even or odd addresses transfer information in one bus cycle. Word transfers to
even or odd addresses transfer information in two bus cycles. The BIU automatically converts the
word access into two consecutive byte accesses, making the operation transparent to the program-
mer.

I 3-5

BUS INTERFACE UNIT Intel®

For word transfers, the word address defines the first byte transferred. The second byte transfer
occurs from the word address plus one. Figure 3-5 illustrates a word transfer on an 8-bit bus in-
terface.

First Bus Cycle Second Bus Cycle

) 4—} —
g g

A19:0 D7:0 Al19:0 D7:0

A1109-0A

Figure 3-5. 8-Bit Data Bus Word Transfers

3.3 MEMORY AND I/O INTERFACES

The CPU can interface with 8- and 16-bit memory and 1/0O devices. Memory devices exchange
information with the CPU during memory read, memory write and instruction fetch bus cycles.

I/O (peripheral) devices exchange information with the CPU during memory read, memory write,

I/O read, I/O write and interrupt acknowledge bus cycles. Memory-mapped I/O refers to periph-
eral devices that exchange information during memory cycles. Memory-mapped I/O allows the
full power of the instruction set to be used when communicating with peripheral devices.

I/0O read and I/0O write bus cycles use a separate 1/0 address space. Only IN and OUT instructions
can access I/O address space, and information must be transferred between the peripheral device
and the AX register. The first 256 bytes (0—255) of I/O space can be accessed directly by the 1/0
instructions. The entire 64 Kbyte 1/0O address space can be accessed only indirectly, through the
DX register. I/0O instructions always force address bits A19:16 to zero.

Interrupt acknowledge, or INTAus cycles access an I/O device intended to increase interrupt

input capability. Valid address informationrist generated as part of the INTAus cycle, and
data is transferred only over the lower bank (16-bit device).

3-6 I

Intel® BUS INTERFACE UNIT

3.3.1 16-Bit Bus Memory and I/O Requirements

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to store
instruction operands (i.e., the program) and immediate data must be 16 bits wide. Instruction
prefetch bus cycles require thaith banks be used. The lower bank contains the even bytes of
code and the upper bank contains the odd bytes of code.

Memory used to store interrupt vectors and stack data must be 16 bits wide. Memory address
space between OH and 3FFH (1 Kbyte) holds the starting location of an interrupt routine. In re-
sponse to an interrupt, the BIU fetches two consecutive, even-addressed words from this 1 Kbyte
address space. Stack pushes and pops always write or read even-addressed word data.

3.3.2 8-Bit Bus Memory and I/O Requirements

An 8-bit bus interface has no restrictions on implementing the memory or 1/O interfaces. All
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word transfers
automatically execute two consecutive byte transfers.

3.4 BUS CYCLE OPERATION

The BIU executes a bus cycle to transfer data between any of the integrated units and any external
memory or I/O devices (see Figure 3-6). A bus cycle consists of a minimum of four CPU clocks
known as “T-states.” A T-state is bounded by one falling edge of CLKOUT to the next falling
edge of CLKOUT (see Figure 3-7). Phase 1 represents the low time of the T-state and starts at the
high-to-low transition of CLKOUT. Phase 2 represents the high time of the T-state and starts at
the low-to-high transition of CLKOUT. Address, data and control signals generated by the BIU
go active and inactive at different phases within a T-state.

I 3-7

BUS INTERFACE UNIT Intel®

P T1 P T2 ' T3

AN
R\ /EVaIid (Sitatus\ \/

éAddresE? // I;Data /)__

RD / WR
A1507-0A
Figure 3-6. Typical Bus Cycle
TN
Falling Rising
CLKOUT Edge Edge

Phase 1 Phase 2

(Low Phase) ! (High Phase)

Al1111-0A

Figure 3-7. T-State Relation to CLKOUT

Figure 3-8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T-
states labeled T1, T2, T3 and T4. A Tl (idle) state occurs when no bus cycle is pending. Multiple

T3 states occur to generate wait states. The TW symbol represents a wait state.

The operation of a bus cycle can be separated into two phases:
* Address/Status Phase

¢ Data Phase

3-8

Intel® BUS INTERFACE UNIT

The address/status phase starts just before T1 and continues through T1. The data phase starts ¢
T2 and continues through T4. Figure 3-9 illustrates the T-state relationship of the two phases.

Bus Ready
Request Pending
HOLD Deasserted

Halt Bus Cycle

Bus Not
Ready

Bus Ready
No Request Pending
HOLD Deasserted

Request Pending
HOLD Deasserted

RESIN
Asserted

HOLD Asserted
A1538-01

Figure 3-8. BIU State Diagram

3-9

BUS INTERFACE UNIT Intel®

T4 T3 iy
o : T T2 i or TW foorTI
CLKOUT
Address/
Status Phase Data Phase
Al1113-0A

Figure 3-9. T-State and Bus Phases

3.4.1 Address/Status Phase

Figure 3-10 shows signal timing relationships for the address/status phase of a bus cycle. A bus
cycle begins with the transition of ALE and SZIhese signals transition during phase 2 of the
T-state just prior to T1. Either T4 or Tl precedes T1, depending on the operation of the previous
bus cycle (see Figure 3-8 on page 3-9).

ALE provides a strobe to latch physical address information. Address is presented on the multi-
plexed address/data bus during T1 (see Figure 3-10). The falling edge of ALE occurs during the
middle of T1 and provides a strobe to latch the address. Figure 3-11 presents a typical circuit for
latching addresses.

The status signals (S2:6efine the type of bus cycle (Table 3-1). S&Main valid until phase

1 of T3 (or the last TW, when wait states occur). The circuit shown in Figure 3-11 can also be
used to extend S2ifeyond the T3 (or TW) state.

3-10 I

BUS INTERFACE UNIT

CLKOUT

T4
orTl | T1 : T2

ALE
AD15:0
Al19:16
S2:0
BHE %(Valid
NOTES:
1. Teyoy : Clock high to ALE high, S2:0 valid.
2. TcLov - Clock low to address valid, BHE valid.
3. TayLL Addressvalid to ALE low (address setup to ALE).
4. TCHOV * Clock high to ALE low.
5. TeLop : Clock low to address invalid (address hold from clock low).
6. T LAx ‘ALE low to address invalid (address hold from ALE).
A1101-0A
Figure 3-10. Address/Status Phase Signal Relationships

3-11

BUS INTERFACE UNIT Intel®

Latched

Signals From CPU Address Signals

A19:16 %;» I 4 _
S20 —S—~ 3] O —#4> LA19:16

>STE 0> (520

OE
. 8 ,
AD15:8 —~ > |

> STB 0] ﬁ84> LA15:8

OE
AD7:0 8/ > |
ALE >{STB o] % LA7:0
OE

A1102-0A

Figure 3-11. Demultiplexing Address Information

Table 3-1. Bus Cycle Types

Status Bit

Operation

wn
N
(92}
=N
(92}
o

Interrupt Acknowledge
1/0 Read

1/0 Write

Halt

Instruction Prefetch

Memory Read

Memory Write

Rl [FRP[O|O|O|O
PRI O|O|(FR|[FR|O|O
ROl FRP|[O|(FR|O|F|O

Idle (passive)

3-12 I

Intel® BUS INTERFACE UNIT

3.4.2 DataPhase

Figure 3-12 shows the timing relationships for the data phase of a bus cycle. The only bus cycle
type that does not have a data phase is a bus halt. During the data phase, the bus transfers infor
mation between the internal units and the memory or peripheral device selected during the ad-
dress/status phase. Appropriate control signhals become active to coordinate the transfer of data.

The data phase begins at phase 1 of T2 and continues until phase 2 of T4 or Tl. The length of the
data phase varies depending on the number of wait states. Wait states occur after T3 and before
T4 or Tl.

3.4.3 Wait States

Wait states extend the data phase of the bus cycle. Memory and I/O devices that cannot provide
or accept data in the minimum four CPU clocks require wait states. Figure 3-13 shows a typical
bus cycle with wait states inserted.

The READY input and the Chip-Select Unit control bus cycle wait states. Only the READY input
is described in this chapter. (See Chapter 6, “Chip-Select Unit,” for additional information.)

Figure 3-14 shows a simplified block diagram of the READY input. To avoid wait states,
READY must be active (high) within a specified setup time prior to phase 2 of T2. To insert wait
states, READY must be inactive (low) within a specified setup time to phase 2 of T2 or phase 1
of T3. Depending on the size and characteristics of the system, ready implementation can take
one of two approaches: normally not-ready or normally ready.

I 3-13

BUS INTERFACE UNIT Intel®

T3 T4
T2 orTW or Tl
CLKOUT ‘S 0\ |
©) @) @
RD/ WR

®
\\@

/ / /
. /<$< Valid)N?ite Dlalta @\\ \%
AD150) / ©
_/

Read Read Data

: Clock low to valid RD/ WR active; Write data valid
: Clock low to status inactive

: Data input valid to clock low

: Clock valid to RD/ WR inactive

: Data input HOLD from clock low

: Output data HOLD from WR high

: Bus no longer floating from RD high

A1103-0A

Figure 3-12. Data Phase Signal Relationships

3-14

intel.

BUS INTERFACE UNIT

I

T™W | TW | T4

cLkouT __| | | | | | | | | | | | |
IS/ N S R N
o U T vaid | 7
A19:16 / Address \
AD15:0 X ;Address; X i Valifj Write Data i
W Ny
o L

A1040-0A

Figure 3-13. Typical Bus Cycle with Wait States

READY —L

0

-

D Q —1D Q— BUS READY
Rising K\ Falling
CLKOUT j—} Edge D Edge
A1079-01
Figure 3-14. READY Pin Block Diagram
3-15

BUS INTERFACE UNIT Intel®

A normally not-ready system is one in which READY remains low at all times except to signal a
ready condition. For any bus cycle, only the selected device drives the READY input high to
complete the bus cycle. The circuit shown in Figure 3-15 illustrates a simple circuit to generate a
normally not-ready signalNote that if no device is selected the bus remains not-ready indef-
initely. Systems with many slow devices that cannot operate at the maximum bus bandwidth usu-
ally implement a normally not-ready signal.

The start of a bus cycle clears the wait state module and forces READY low. After every rising
edge of CLKOUT, INPUT1 and INPUT2 are shifted through the module and eventually drive
READY high. Assuming INPUT1 and INPUT2 are valid prior to phase 2 of T2, no delay through
the module causes one wait state. Each additional clock delay through the module generates one
additional wait state. Two inputs are used to establish different wait state conditions.

CS1 Wait State Module
CS2

Input 1
- Input 2
CS3
Csa Out READY
ALE Clear
CLKOUT Clock

A1080-0A

Figure 3-15. Generating a Normally Not-Ready Bus Signal

A normally ready signal remains high at all times except when the selected device needs to signal
a not-ready condition. For any bus cycle, only the selected device drives the READY input low
to delay the completion of the bus cycle. The circuit shown in Figure 3-16 illustrates a simple cir-
cuit to generate a normally ready sigridbte that if no device is selected the bus remains
ready. Systems that have few or no devices requiring wait states usually implement a normally
ready signal.

The start of a bus cycle preloads a zero shifter and forces READY active (high). READY remains
active if neither CSbr CS2goes low. Should either C®t CS2go low, zeros are shifted out on

every rising edge of CLKOUT, causing READY to go inactive. At the end of the shift pattern,
READY is forced active again. Assuming C8id CS2are active just prior to phase 2 of T2,
shifting one zero through the module causes two wait states. Each additional zero shifted through
the module generates one wait state.

3-16 I

Intel® BUS INTERFACE UNIT

Wait State Module
Cs1
_ Enable
CS2

ALE
CLKOUT

Out READY

Load
Clock

A1081-0A

Figure 3-16. Generating a Normally Ready Bus Signal

The READY input has two major timing concerns that can affect whether a normally ready or
normally not-ready signal may be required. Two latches capture the state of the READY input
(see Figure 3-14 on page 3-15). The first latch captures READY on the phase 2 clock edge. The
second latch captures READY and the result of first latch on the phase 1 clock edge. The follow-
ing items define the requirements of the READY input to meet ready or not-ready bus conditions.
* The bus igeady if both of these two conditions are true:
— READY is active prior to the phase 2 clock edayad

— READY remains active after the phase 1 clock edge.

* The bus imot-ready if either of these two conditions is true:
— READY is inactive prior to the phase 2 clock edye,
— READY is inactive prior to the phase 1 clock edge.

A normally not-ready system must generate a valid READY input at phase 2 of T2 to prevent
wait states. If it cannot, then running without wait states requires a normally ready system. Figure
3-17 illustrates the timing necessary to prevent wait states in a normally not-ready system. Figure
3-17 also shows how to terminate a bus cycle with wait states in a normally not-ready system.

I 3-17

BUS INTERFACE UNIT Intel®

T2 T3
orT3 orTW
I orTW I orTW d T4

CLKOUT 7 0 |—
@ @

READY

In a Normally-Not-Ready system, wait states will be inserted until both 1 & 2 are met.

1. TCHIS : READY active to clock high (assumes Ready remains
active between 1 & 2)
2. TeH © READY hold from clock low

A1082-0A

Figure 3-17. Normally Not-Ready System Timing

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a normally
ready system. A normally not-ready system must run wait states if the not-ready condition cannot
be met in time. Figure 3-18 illustrates the minimum and maximum timing necessary to insert wait
states in a normally ready system. Figure 3-18 also shows how to terminate a bus cycle with wait
states in a normally ready system.

The BIU can execute an indefinite number of wait states. However, bus cycles with large numbers
of wait states limit the performance of the CPU and the integrated peripherals. CPU performance
suffers because the instruction prefetch queue cannot be kept full. Integrated peripheral perfor-
mance suffers because the maximum bus bandwidth decreases.

3.4.4 |dle States

Under most operating conditions, the BIU executes consecutive (back-to-back) bus cycles. How-
ever, several conditions cause the BIU to become idle. An idle condition occurs between bus cy-
cles (see Figure 3-8 on page 3-9) and may last an indefinite period of time, depending on the
instruction sequence.

3-18

Intel® BUS INTERFACE UNIT

CLKOUT J v A

READY

In a Normally-Ready system, a wait state will be inserted when 1 & 2 are met.

1. Tchis @ READY low to clock high
2. TepiH @ READY hold from clock high

CLKOUT J)

READY

Alternatively, in a Normally-Ready system, a wait state will be inserted whenl & 2 are met.

1. TcLs - READY low to clock low
2. TcLH - READY hold from clock low

Failure to meet READY setup and hold can cause a device failure
(i.e., the bus hangs or operates inappropriately).

A1083-0A

Figure 3-18. Normally Ready System Timings

Conditions causing the BIU to become idle include the following.
* The instruction prefetch queue is full.
* An effective address calculation is in progress.

* The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked opera-
tions).
¢ Instruction execution forces idle states (e.g., HLT, WAIT).

3-19

BUS INTERFACE UNIT Intel®

An idle bus state may or may not drive the bus. An idle bus state following a bus read cycle con-
tinues to float the bus. An idle bus state following a bus write cycle continues to drive the bus.
The BIU drives no control strobes active in an idle state except to indicate the start of another bus
cycle.

3.5 BUSCYCLES

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt
acknowledge and halt bus cycles define special bus operations and require separate discussions
Read bus cycles include memory, 1/0O and instruction prefetch bus operations. Write bus cycles
include memory and I/O bus operations. All read and write bus cycles have the same basic format.

The following sections present timing equations containing symbols found in the data sheet. The
timing equations provide information necessary to start a worst-case design analysis.

3.5.1 Read Bus Cycles

Figure 3-19 illustrates a typical read cycle. Table 3-2 lists the three types of read bus cycles.

Table 3-2. Read Bus Cycle Types

Status Bit
Bus Cycle Type
S2 S1 SO
0 0 1 Read 1/0 — Initiated by the Execution Unit for IN, OUT, INS, OUTS instructions

or by the DMA Unit. A19:16 are driven to zero (see Chapter 10, “Direct Memory
Access Unit”).

1 0 0 Instruction Prefetch — Initiated by the BIU. Data read from the bus fills the
prefetch queue.

1 0 1 Read Memory — Initiated by the Execution Unit, the DMA Unit or the Refresh
Control Unit. A19:0 select the desired byte or word memory location.

3-20

Intel® BUS INTERFACE UNIT

Figure 3-20 illustrates a typical 16-bit interface connection to a read-only device interface. The
same example applies to an 8-bit bus system, except that no devices connect to an upper bus. Fou
parameters (Table 3-3) must be evaluated when determining the compatibility of a memory (or
I/0O) device. T ey defines the delay through the address latch.

Table 3-3. Read Cycle Critical Timing Parameters

Megla(;;ymeg:ce Description Equation
Toe Output enable (RD low) to data valid 2T — Terove— Teus
Tace Address valid to data valid 3T — Terove —Taoiren — Teus
Tee Chip enable (UCS) to data valid 3T —Teiove— Teus
Tor Output disable (RD high) to output float | Tryax

Tom Tace and Tee define the maximum data access requirements for the memory device. These
device parameters must lss$than the value calculated in the equation column. An equal to or
greater than result indicates that wait states must be inserted into the bus cycle.

Toe determines the maximum time the memory device can float its outputs before the next bus
cycle begins. A J-value greater than the equation result indicates a buffer fight. A buffer fight
means two (or more) devices are driving thedtube same time This can lead to short circuit
conditions, resulting in large current spikes and possible device damage.

Truax cannot be lengthened (other than by slowing the clock rate). To resolve a buffer fight con-
dition, choose a faster device or buffer the AD bus (see “Buffering the Data Bus” on page 3-37).

3-21

BUS INTERFACE UNIT

A19:16

RFSH

A15:0
[AD7:0]

RD

ﬁ [A15:8]

DT/R 7 \

\

an

s

DEN __+ i/

A1084-0A

T1 . . T4 .
1 ! 1 | 1
] I] I] 1] | 1 1
1 ! 1 ! 1 | | | 1 1
1 I B 1 1 T I T I T
! E Status Va;lld i i ! i ! \ :
1 1 1 1 1
1 1 1 1 1 1 1 1 1
VAR N R R R e
| 1 | I | I | I | 1
| 1 \ 1 | 1 \ 1 \ 1
1 : T T - T T T T
' i Address Valid | 0, A19=Valid Status ><
i i : i i : i
1 1 ! 1 1 ! 1
1 1 T 1 1 T 1
1 1 ! 1 ! 1
: I X
1 1 ! 1 1 |
1 1 ! 1 1 1
: Address \ | |
: valid / | Valid/ |
i i i '
T 1
1 1
1 1
1 I
1 1
1
1 1
1 1
1
1
1
1
1
1

3511 Refresh Bus Cycles

A refresh bus cycle operates similarly to a normal read bus cycle except for the following:
* For a 16-bit data bus, address bit AO and Bhiize to a 1 (high) and the data value on the

bus is ignored.

* For an 8-bit data bus, address bit AO drives to a 1 (high) and k&fiven active (low).

Figure 3-19. Typical Read Bus Cycle

The data value on the bus is ignored. RHl the same bus timingas BHE

3-22

Intel® BUS INTERFACE UNIT

ucs T o| CE
AD7:0 < 00-7
| 27C256

LA15:1 > AO-14
OE

> Ao-14

27C256
o CE
Note: Agand BHE are not used.
A1105-0A

Figure 3-20. Read-Only Device Interface

3.5.2 Write Bus Cycles

Figure 3-21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE
high and the generation of valid status bits SZHe bus cycle ends when WRnsitions high
(inactive), although data remains valid for one additional clock. Table 3-4 lists the two types of
write bus cycles.

I 3-23

BUS INTERFACE UNIT

intel.

==

1
1
1
1
|
1
/ Address Valid

A18:16 = 0, Al19=Valid Status

X

1
|
1
Al19:16 : . . !
1 1 1 1 1 1 1 1
- | 1 | 1 1 1 1 , 1
BHE W T T v 1 X
. 1 ! 1 1 1
[A15:8] ——— A —
1 ! 1 ! | | 1 | 1
AD15:0 : ! Address Data Valid
[AD7:0] 't /A Vald
1 ! 1 []]]]]]
e
- U VA
1 ! 1 ! 1 T | T | 1
1 ! 1 I] !] 1 I 1
ptR —/ ¢+ 1 & 1 & 1 b1
1 | ! 1 | 1 ! 1 !
——
-_— 1 I 1 I 1 1 1 1 1 1
DEN I / N
1 1 1 ! 1 1 1 1 | 1
1 1 1 1 1
A1085-0A
Figure 3-21. Typical Write Bus Cycle
Table 3-4. Write Bus Cycle Types
Status Bits
Bus Cycle Type
S2 S1 SO
0 1 0 Write 1/0 — Initiated by executing IN, OUT, INS, OUTS instructions or by the
DMA Unit. A15:0 select the desired I/O port. A19:16 are driven to zero (see
Chapter 10, “Direct Memory Access Unit”).
1 1 0 Write Memory — Initiated by any of the Byte/ Word memory instructions or the
DMA Unit. A19:0 selects the desired byte or word memory location.

Figure 3-22 illustrates a typical 16-bit interface connection to a read/write device. Write bus cy-
cles have many parameters that must be evaluated in determining the compatibility of a memory
(or 1/0O) device. Table 3-5 lists some critical write bus cycle parameters.

3-24

Intel® BUS INTERFACE UNIT

Most memory and peripheral devices latch data on the rising edge of the write strobe. Address,
chip-select and data must be valid (set up) prior to the rising edge .of \WRTcw and T, de-

fine the minimum data setup requirements. The value calculated by their respective equations
must be greater than the device requirements. To increase the calculated value, insert wait states

LA15:1 >AO:14
RD —e—O OE
1/01:8 <:> AD7:0
O WE
— OCS1
LAO
WR
AO:14
BHE
-G

OE
1/01:8 <:> AD15:8

LCS ® OCS1

A1106-0A

Figure 3-22. 16-Bit Bus Read/Write Device Interface

I 3-25

BUS INTERFACE UNIT Intel®

The minimum device data hold time (from Wigh) is defined by J,. The calculated value
must be greater than the minimum device requirements; however, the value can be changed only
by decreasing the clock rate.

Table 3-5. Write Cycle Critical Timing Parameters

Megl a(;;ymDefgice Description Equation

Twe Write cycle time 47

Taw Address valid to end of write strobe (WR high) 3T — TapLren
Tew Chip enable (LCS) to end of write strobe (WR high) | 3T

Twr Write recover time Twhin

Tow Data valid to write strobe (WR high) 2T

Tou Data hold from write strobe (WR high) Twhox

Twe Write pulse width Twiwn

Twe and Typ define the minimum time (maximum frequency) a device can process write bus cy-
cles. Tg determines the minimum time from the end of the current write cycle to the start of the
next write cycle. All three parameters require that calculated values be greater than device re-
quirements. The calculateg,d and Ty, values increase with the insertion of wait states. The cal-
culated Ty value, however, can be changed only by decreasing the clock rate.

3.5.3 Interrupt Acknowledge Bus Cycle

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral
device such as the 82C59A Programmable Interrupt Controller. (See Chapter 8, “Interrupt Con-
trol Unit,” for more information.) The BIU controls the bus cycles required to fetch vector infor-
mation from the peripheral device, then passes the information to the CPU. These bus cycles,
collectively known as Interrupt Acknowledge bus cycles, operate similarly to read bus cycles.
However, instead of generating Renable the peripheral, the INBgnal is used. Figure 3-23
illustrates a typical Interrupt Acknowledge (or INYBus cycle.

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. [SQféKerated

to indicate the sequential bus operation. The second bus cycle strobes vector information only
from the lower half of the bus (D7:0). In a 16-bit bus system, D15:13 contain cascade address
information and D12:8 float. .

3-26

BUS INTERFACE UNIT

INTA

AD15:13
[A15:13]

AD12:0
[AD7:0]

LOCK
DT/R
DEN
A19:16
[A12:8]
BHE

RD, WR

Tl

I_I
15

T2

T3 | T4

TI

TI

T1

T2

[

T3

| [

T4

_‘

JENF

CAS (Slave ID) Valid

Sl

{

/

1 1
A12:8 are unknown
A19:16 are driven

oW

N

NOTE: Vector Type is read from AD7:0 only.

Figure 3-23. Interrupt Acknowledge Bus Cycle

3-27

BUS INTERFACE UNIT Intel®

Figure 3-24 shows a typical 82C59A interface example. Bus ready must be provided to terminate
both bus cycles in the interrupt acknowledge sequence.

NOTE
Due to an internal condition, external ready is ignored if the device is
configured in Cascade mode and the Peripheral Control Block (PCB) is
located at 0000H in I/O space. In this case, wait statesot be added to
interrupt acknowledge bus cycles. However, gan add wait states to
interrupt acknowledge cycles if the PCB is located at any other address.

3531 System Design Considerations

Although ALE is generated for both bus cycles, the BIU does not drive valid address information.
Actually, all address bits except A19:16 float during the time ALE becomes active (on both 8-
and 16-bit bus devices). Address-decoding circuitry must be disabled for Interrupt Acknowledge
bus cycles to prevent erroneous operation.

Processor 82C59A

INTA |—> INTA

INTX [INT

AD15:13] CASO:2 IRO

M Y —

RD > RD IR7
WR > WR
GCS0 > CS
LA1— AOQ D7-0

Ty

A1087-0A

Figure 3-24. Typical 82C59A Interface

3-28 I

Intel® BUS INTERFACE UNIT

3.5.4 HALT Bus Cycle

Suspending the CPU reduces device power consumption and potentially reduces interrupt latency
time. The HLT instruction initiates two events:

1. Suspends the Execution Unit.

2. Instructs the BIU to execute a HALT bus cycle.

The Idle or Powerdown power management mode (or the absence of both of them, known as Ac-
tive Mode) affects the operation of the bus HALT cycle. The effects relating to BIU operation
and the HALT bus cycle are described in this chapter. Chapter 5, “Clock Generation and Power
Management,” discusses the concepts of Active, Idle and Powerdown power management modes.

After executing a HALT bus cycle, the BIU suspends operation until one of the following events
occurs:

* An interrupt is generated.
* A bus HOLD is generated (except when Powerdown mode is enabled).
* A DMA request is generated (except when Powerdown mode is enabled).

¢ Arefresh request is generated (except when Powerdown mode is enabled).

Figure 3-25 shows the operation of a HALT bus cycle. The address/data bus either floats or drives
during T1, depending on the next bus cycle to be executed by the BIU. Under most instruction
sequences, the BIU floats the address/data bus because the next operation would most likely be
an instruction prefetch. However, if the HALT occurs just after a bus write operation, the ad-
dress/data bus drives either data or address information during T1. A19:16 continue to drive the
previous bus cycle information under most instruction sequences (otherwise, they drive the next
prefetch address). The BIU always operates in the same way for any given instruction sequence.

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT bus

cycle. However, chip-selects generated by external decoder circuits must be disabled for HALT
bus cycles.

I 3-29

BUS INTERFACE UNIT

After several Tl bus states, all address/data, address/status and bus control pins drive to a known
state when Powerdown or Idle Mode is enabled. The address/data and address/status bus pins
force a low (0) state. Bus control pins force their inactive state. Figure 3-3 lists the state of each

pin after entering the HALT bus state.

Table 3-6. HALT Bus Cycle Pin States

Pin State

Pin(s) No Powerdown Powerdown

or Idle Mode or Idle Mode
AD15:0 (AD7:0 for 8-bit) Float Drive Zero
A15:8 (8-bit) Drive Address Drive Zero
A19:16 Drive 8H or Zero Drive Zero
BHE (16-bit) Drive Last Value Drive One
RD, WR, DEN, DT/R, RFSH (8-bit), S2:0 | Drive One Drive One

3-30

Intel® BUS INTERFACE UNIT

T1 TI TI
cikout | L | L L1 |

ALE / \

S2:0 \ on /

AD15:0 TN N T N o
[AD7:0] Note 1 \ Note 2 \ Note 3

[A15:8] Note 2 \ Note2 \ Note3

A19:16 \ Note 4

BHE 7
[RFSH = 1]

NOTES:

1. The AD15:0 [AD7:0] bus can be floating, driving a previous write data value,
or driving the next instruction prefetch address value. For an 8-bit device,
A15:8 either drives the previous bus address value or the next instruction
prefetch address value.

2. The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Powerdown Mode is enabled. When Powerdown
Mode is not enabled, the AD15:0 [AD7:0] bus either floats or drives previous
write data, and A15:8 (8-bit device) continues to drive its previous value.

3. The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Idle Mode is enabled. When Idle Mode is not
enabled, the AD15:0 [AD7:0] bus either floats or drives previous write data,
and A15:8 (8-bit device) continues to drive its previous value.

4. The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6,
which can be high if the previous bus cycle was a DMA or refresh operation).
If either Idle or Powerdown Mode is enabled, the A19:16 bus drives zeros
(all low) at phase 1 of TI. Otherwise, the previous value remains active.

A1088-0A

Figure 3-25. HALT Bus Cycle

3-31

BUS INTERFACE UNIT Intel®

3.5.5 Temporarily Exiting the HALT Bus State

A DMA request, refresh request or bus hold request causes the BIU to exit the HALT bus state
temporarily. This can occur only when in the Active or Idle power management mode. The BIU
returns to the HALT bustate after it completes the desired bus operation. However, the BIU
does notexecute another bus HALdycle (i.e., ALE and bus cycle status are not regenerated).
Figures 3-26, 3-27 and 3-28 illustrate how the BIU temporarily exits and then returns to the
HALT bus state.

ctkouT [1T LT LT ML ror
HOLD | "
HLDA I_|I |
AD15:0 .
[AD?:O] ! "
A15:8
A19:16 /! \
CONTROL Valid >— < Vvalid
A1089-0A

Figure 3-26. Returning to HALT After a HOLD/HLDA Bus Exchange

3-32 I

Intel® BUS INTERFACE UNIT

cikout ~ LT LT LT LT LT Ll LTI
ALE . [

S2:0 . \ /
DTl Addr -
[A15:8] " / Note 1X Address \
A19:16) / Note1 XAddr A19=1,A1816=0 \
BHE

m
__—
Z
(@]
@ !
N
—~—
"

1

1
z|
=1
o !
“|

1

1
\i

RFSH

NOTE:

1. Previous bus cycle value.

2. Only occurs for BHE on the first refresh bus cycle after entering HALT.
3. BHE = 1 for 16-bit device, RFSH = 0 for 8-bit device.

A1091-0A

Figure 3-27. Returning to HALT After a Refresh Bus Cycle

3-33

BUS INTERFACE UNIT Intel®

T4 T1 T2 T3 T4 T1 T2 T3 TI TI TI TI

ALE || ||

S2:0 {Valid Status | [Valid Status |
9%75:6(; -—(Addrf Valid Data }————
[A15:8] /Note) Address X Address \
A19:16 [Note Yaddi) 8H XAdd 8H \
[FTSIH?’:HlE] \ Note Y vaiid X Valid /

NOTE: Drives previous bus cycle value

A1090-0A

Figure 3-28. Returning to HALT After a DMA Bus Cycle

3.5.6 Exiting HALT

Any NMI or maskable interrupt forces the BIU to exit the HALT bus state (in any power man-
agement mode). The first bus operations to occur after exiting HALT are read cycles to reload the
CS:IP registers. Figure 3-29 and Figure 3-30 show how the HALT bus state is exited when an
NMI or INTn occurs.

3-34 I

intel.

BUS INTERFACE UNIT

AD15:0
[AD7:0]

[A15:8]

[RFSH = 1]

A19:16

CLKOUT _"_| R

>
8 1/2 clocks to first vector fetch

/ Note x

BHE —_—

| Time is determmed by PDTMR

-
NMI, INTX _/—"—\ (4 1/2 clocks m|n)

NOTE: Previous bus cycle address value.

A1092-0A

Figure 3-29. Exiting HALT (Powerdown Mode)

3-35

BUS INTERFACE UNIT Intel®

| Note 1

NMI/NTX :f)
ALE . | |

S2:0 N | Valid
3%17%?) [—————Note2 —————{ Addr)—

[A15:8] " / Note 3 X Address
A19:16 . / Note 4 \
I% i \ Note 3 \
NOTE:

1. For NMI, delay =4 1/2 clocks. For INTX, delay = 7 1/2 clocks (min).

2. If previous bus cycle was a read, bus will float. If previous bus cycle was
a write, bus will drive data value.

3. Previous bus cycle value.

4. If previous bus cycle was a refresh or DMA bus cycle, value will be
8H (A19 = 1), otherwise value will be 0.

A1093-0A

Figure 3-30. Exiting HALT (Active/ldle Mode)

3.6 SYSTEM DESIGN ALTERNATIVES

Most system designs require no signals other than those already provided by the BIU. However,
heavily loaded bus conditions, slow memory or peripheral device performance and off-board de-
vice interfaces may not be supported directly without modifying the BIU interface. The following
sections deal with topics to enhance or modify the operation of the BIU.

3-36 I

Intel® BUS INTERFACE UNIT

3.6.1 Buffering the Data Bus

The BIU generates two control signals, D&EhJ DT/R to control bidirectional buffers or trans-
ceivers. The timing relationship of DEMd DT/Ris shown in Figure 3-31. The following con-
ditions require transceivers:

* The capacitive load on the address/data bus gets too large.
* The current load on the address/data bus exceeds device specifications.
¢ Additional Vg and V, drive is required.

* A memory or I/O device cannot float its outputs in time to prevent bus contention, even at
reset.

ckout | L1 L L LI |
RD,WR ./
ot —/ 7
bEN . .\ [T

— — — Write Cycle Operation
Read Cycle Operation

A1094-A0

Figure 3-31. DEN and DT/R Timing Relationships

The circuit shown in Figure 3-32 illustrates how to use transceivers to buffer the address/data bus.
The connection between the processor and the transceiver is knowloaalthes A connection
between the transceiver and other memory or 1/O devices is known lasfféned busA fully
bufferedsystem haso devices attached to the local bugaktially bufferedsystem has devices

on both the local and buffered buses.

I 3-37

BUS INTERFACE UNIT

ALE

Y

A19:16

Address Bus

N/

Data

Address

Memory
or
I/0

Device

CS

A

CPU Local Bus

Processor : Latch
K AD15:0)
M Transceiver
DEN 5
DT/ R >

—_—
Buffered Bus

A1095-0A

Figure 3-32. Buffered AD Bus System

In a fully buffered system, DEMNirectly drives the transceiver output enable. A partially buffered
system requires that DEbe qualified with another signal to prevent the transceiver from going
active for local bus accesses. Figure 3-33 illustrates how to use chip-selects to qualify DEN

DT/R always connects directly to the transceiver. However, an inverter may be required if the po-
larity of DT/R does not match the transceiver. DGées low (0) only for memory and 1/O read,
instruction prefetch and interrupt acknowledge bus cycles.

3-38

Intel® BUS INTERFACE UNIT

AD15:8 8/ ® > A
DEN \ _ 8 -
— —@—> OE B 7L> D15:8
GCSO0
— T
Buff
urer Buffered
+ Data
Bus
AD7:0 8/ ® > A
>| OF B % D7:0
DT/R o—>|T
Buffer
8,/ > Local
8 Data
A > Bus
A1096-01

Figure 3-33. Qualifying DEN with Chip-Selects

3.6.2 Synchronizing Software and Hardware Events

The execution sequence of a program and hardware events occurring within a system are often
asynchronous to each other. In some systems there may be a requirement to suspend program ex
ecution until an event (or events) occurs, then continue program execution.

One way to synchronize software execution with hardware events requires the use of interrupts.
Executing a HALT instruction suspends program execution until an unmasked interrupt occurs.

However, there is a delay associated with servicing the interrupt before program execution can
proceed. Using the WAIT instruction removes the delay associated with servicing interrupts.

3-39

BUS INTERFACE UNIT Intel®

The WAIT instruction suspends program execution until one of two events occurs: an interrupt
is generated, or the TESAput pin is sampled low. Unlike interrupts, the TE8&put pin does

not require that program execution be transferred to a new location (i.e., an interrupt routine is
not executed). In processing the WAIT instruction, program execution remains suspended as long
as TESTremains high (at least until an interrupt occurs). When TieSampled low, program
execution resumes.

The TESTinput and WAIT instruction provide a mechanism to delay program execution until a
hardware event occurs, without having to absorb the delay associated with servicing an interrupt.

3.6.3 Using a Locked Bus

To address the problems of controlling accesses to shared resources, the BIU provides a hardware
LOCK output. The execution of a LOCK prefix instruction activates the L@Qdut.

LOCK goes active in phase 1 of T1 of the first bus cycle following execution of the LOCK prefix
instruction. It remains active until phase 1 of T1 of the first bus cycle following the execution of
the instruction following the LOCK prefix. To provide bus access control in multiprocessor sys-
tems, the LOCKsignal should be incorporated into the system bus arbitration logic residing in
the CPU.

During normal multiprocessor system operation, priority of the shared system bus is determined
by the arbitration circuits on a cycle by cycle basis. As each CPU requires a transfer over the sys-
tem bus, it requests access to the bus via its resident bus arbitration logic. When the CPU gains
priority (determined by the system bus arbitration scheme and any associated logic), it takes con-
trol of the bus, performs its bus cycle and either maintains bus control, voluntarily releases the
bus or is forced off the bus by the loss of priority.

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force)
and guarantees that the CPU can execute multiple bus cycles without intervention and possible
corruption of the data by another CPU. A classic use of the mechanism is the “TEST and SET
semaphore,” during which a CPU must read from a shared memory location and return data to
the location without allowing another CPU to reference the same location during the test and set
operations.

Another application of LOCHKor multiprocessor systems consists of a locked block move, which
allows high speed message transfer from one CPU’s message buffer to another. During the locked
instruction (i.e., while LOCHKs active), a bus hold, DMA or refresh request is recorded, but is

not acknowledged until completion of the locked instruction. However, LBG&Kno effect on
interrupts. As an example, a locked HALT instruction causes bus hold, DMA or refresh bus re-
guests to be ignored, but still allows the CPU to exit the HALT state on an interrupt.

3-40

Intel® BUS INTERFACE UNIT

In general, prefix bytes (such as LOCK) are considered extensions of the instructions they pre-
cede. Interrupts, DMA requests and refresh requests that occur during execution of the prefix are
not acknowledged until the instruction following the prefix completes (except for instructions
that are servicing interrupts during their execution, such as HALT, WAIT and repeated string
primitives). Note that multiple prefix bytes can precede an instruction.

Another example is a string primitive preceded by the repetition prefix (REP), which can be in-
terrupted after each execution of the string primitive, even if the REP prefix is combined with the
LOCK prefix. This prevents interrupts from being locked out during a block move or other re-
peated string operations. However, bus hold, DMA and refresh requests remain locked out until
LOCK is removed (either when the block operation completes or after an interrupt occurs.

3.7 MULTI-MASTER BUS SYSTEM DESIGNS

The BIU supports protocols for transferring control of the local bus between itself and other de-
vices capable of acting as bus masters. To support such a protocol, the BIU uses a hold request
input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake signals. To
gain control of the bus, a device asserts the HOLD input, then waits until the HLDA output goes
active before driving the bus. After HLDA goes active, the requesting device can take control of
the local bus and remains in control of the bus until HOLD is removed.

3.7.1 Entering Bus HOLD

In responding to the hold request input, the BIU floats the entire address and data bus, and many
of the control signals. Figure 3-34 illustrates the timing sequence when acknowledging the hold
request. Table 3-7 lists the states of the BIU pins when HLDA is asserted. All device pins not
mentioned in Table 3-7 or shown in Figure 3-34 remain either active (e.g., CLKOUT and
T1O0UT) or inactive (e.g., UC&1d INTA). Refer to the data sheet for specific details of pin func-
tions during a bus hold.

I 3-41

BUS INTERFACE UNIT Intel®

CLKOUT g "\
HLDA /
AD15:0 // k \ Float
DEN N
Al9:16
RD,WR
VIR \ Float
DT/R \/
S2:0,BHE
LOCK
NOTES:
1. T g HOLD input to clock low
2. TeHor - Clock high to output float
3. ToLok : Clock low to output float
4. Te oy : Clock low to HLDA high
A1097-0A
Figure 3-34. Timing Sequence Entering HOLD
Table 3-7. Signal Condition Entering HOLD
Signal HOLD Condition
A19:16, S2:0, RD, WR, DT/R, BHE (RFSH), LOCK These signals float one-half clock before HLDA
is generated (i.e., phase 2).
AD15:0 (16-bit), AD7:0 (8-bit), A15:8 (8-bit), DEN These signals float during the same clock in
which HLDA is generated (i.e., phase 1).

3.71.1 HOLD Bus Latency

The duration between the time that the external device asserts HOLD and the time that the BIU
asserts HLDA is known asus latencyln Figure 3-34, the two-clock delay between HOLD and
HLDA represents the shortest bus latency. Normally this occurs only if the bus is idle or halted
or if the bus hold request occurs just before the BIU begins another bus cycle.

3-42

Intel® BUS INTERFACE UNIT

The major factors that influence bus latency are listed below (in order from longest delay to short-
est delay).

1. Bus Not Ready — As long as the bus remains not ready, a bus hold request cannot be
serviced.

2. Locked Bus Cycle — As long as LOQKmains asserted, a bus hold request cannot be
serviced. Performing a locked move string operation can take several thousands of clocks.

3. Completion of Current Bus Cycle — A bus hold request cannot be serviced until the
current bus cycle completes. A bus hold request will not separate bus cycles required to
move odd-aligned word data. Also, bus cycles with long wait states will delay the
servicing of a bus hold request.

4. Interrupt Acknowledge Bus Cycle — A bus hold request is not serviced until after an
INTA bus cycle has completed. An TNTus cycle drives LOClactive.

5. DMA and Refresh Bus Cycles — A bus hold request is not serviced until after the DMA
request or refresh bus cycle has completed. Refresh bus cycles have a higher priority than
hold bus requests. A bus hold request cannot separate the bus cycles associated with a
DMA transfer (worst case is an odd-aligned transfer, which takes four bus cycles to
complete).

3.7.1.2 Refresh Operation During a Bus HOLD

Under normal operating conditions, once HLDA has been asserted it remains asserted until
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is re-
moved (driven low) to signal the need for the BIU to regain control of the local bus. The BIU does
not gain control of the bus until HOLD is removed. This procedure prevents the BIU from just
arbitrarily regaining control of the bus.

Figure 3-35 shows the timing associated with the occurrence of a refresh request while HLDA is
active. Note that HLDA can be as short as one clock in duration. This happens when a refresh
request occurs just after HLDA is granted. A refresh request has higher priority than a bus hold
request; therefore, when the two occur simultaneously, the refresh request occurs before HLDA
becomes active.

I 3-43

BUS INTERFACE UNIT Intel®

CLKOUT_J ¢

/},

—

Jj
//p
]

T
@)
-
O
S~
——]
T~

AD15:0 L
DEN I | N
RD, WR, ®
BHE, S2:0 L
DT/R, v -
A19:16
LOCK
NOTES:
1. : HLDA is deasserted, signaling need to run refresh bus cycle
2. : External bus master terminates use of the bus
3. : HOLD deasserted
4. : Hold may be reasserted after one clock
5. : BIU runs refresh cycle

A1098-0A

Figure 3-35. Refresh Request During HOLD

The device requesting a bus hold must be able to detect a HLDA pulse that is one clock in dura-
tion. A bus lockup (hang) condition can result if the requesting device fails to detect the short
HLDA pulse and continues to wait for HLDA to be asserted while the BIU waits for HOLD to be
deasserted. The circuit shown in Figure 3-36 can be used to latch HLDA.

3-44 I

Intel® BUS INTERFACE UNIT

+5

5 PRE

Latched HLDA

HLDA >

CLR

RESOUT
HOLD

Figure 3-36. Latching HLDA

A1310-0A

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain
the bus and execute a refresh bus cycle. Should HOLD go active before the refresh bus cycle is
complete, the BIU will release the bus and generate HLDA.

3.7.2 Exiting HOLD

Figure 3-37 shows the timing associated with exiting the bus hold state. Normally a bus operation
(e.g., an instruction prefetch) occurs just after HOLD is released. However, if no bus cycle is
pending when leaving a bus hold state, the bus and associated control signals remain floating, if
the system is in normal operating mode. (For signal states associated with Idle and Powerdown
modes, see “Temporarily Exiting the HALT Bus State” on page 3-32).

I 3-45

BUS INTERFACE UNIT Intel®

o

]

CLKOUT J ‘\ "\

®

)
HOLD =\ @

\o oo
7]
.

DEN
RD, WR, BHE, —
DT /R, S2:0, {

A19:16
NOTES:
1. T g HOLD recognition setup to clock low
2. : HOLD internally synchronized
3. Te oy : Clock low to HLDA low
4 TehHov Clock high to signal active (high or low)
5 Tolov Clock low to signal active (high or low)

A1099-0A

3.8

Figure 3-37. Exiting HOLD

BUS CYCLE PRIORITIES

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals

(e.q.,

Interrupt Control Unit) and external bus masters (i.e., bus hold requests). The list below

summarizes the priorities for all bus cycle requests (from highest to lowest).

1.

o~ N

Instruction execution read/write following a non-pipelined effective address calculation.
Refresh bus cycles.

Bus hold request.

Single step interrupt vectoring sequence.

Non-Maskable interrupt vectoring sequence.

Intel® BUS INTERFACE UNIT

© © N o

Internal error (e.g., divide error, overflow) interrupt vectoring sequence.
Hardware (e.g., INTO, DMA) interrupt vectoring sequence.
80C187 Math Coprocessor error interrupt vectoring sequence.

DMA bus cycles.

General instruction execution. This category includes read/write operations following a

pipelined effective address calculation, vectoring sequences for software interrupts and

numerics code execution. The following points apply to sequences of related execution

cycles.

— The second read/write cycle of an odd-addressed word operation is inseparable from
the first bus cycle.

— The second read/write cycle of an instruction with both load and store accesses (e.qg.,
XCHG) can be separated from the first cycle by other bus cycles.

— Successive bus cycles of string instructions (e.g., MOVS) can be separated by other bus
cycles.

— When a locked instruction begins, its associated bus cycles become the highest priority
and cannot be separated (or preempted) until completed.

11. Bus cycles necessary to fill the prefetch queue.

3-47

intel.

Peripheral Control
Block

intel.

CHAPTER 4
PERIPHERAL CONTROL BLOCK

All integrated peripherals in the 80C186 Modular Core family are controlled by sets of registers
within an integrated Peripheral Control Block (PCB). The peripheral control registers are physi-
cally located in the peripheral devices they control, but they are addressed as a single block of
registers. The Peripheral Control Block encompasses 256 contiguous bytes and can be located on
any 256-byte boundary of memory or I/O space. The PCB Relocation Register, which is also lo-
cated within the Peripheral Control Block, controls the location of the PCB.

4.1 PERIPHERAL CONTROL REGISTERS

Each of the integrated peripherals’ control and status registers is located at a fixed offset above
the programmed base location of the Peripheral Control Block (see Table 4-1). These registers
are described in the chapters that cover the associated peripheral. “Accessing the Peripheral Con-
trol Block” on page 4-4 discusses how the registers are accessed and outlines considerations for
reading and writing them.

4.2 PCB RELOCATION REGISTER

In addition to control registers for the integrated peripherals, the Peripheral Control Block con-
tains the PCB Relocation Register (Figure 4-1). The Relocation Register is located at a fixed off-
set within the Peripheral Control Block (Table 4-1). If the Peripheral Control Block is moved, the
Relocation Register also moves.

The PCB Relocation Register allows the Peripheral Control Block to be relocated to any 256-byte
boundary within memory or 1/0O space. The Memory I/O bit (MEM) selects either memory space
or I/0 space, and the R19:8 bits specify the starting (base) address of the PCB. The remaining bit,
Escape Trap (ET), controls access to the math coprocessor interface.

“Setting the PCB Base Location” on page 4-6 describes how to set the base location and outlines
some restrictions on the Peripheral Control Block location.

I 4-1

intel.

PERIPHERAL CONTROL BLOCK

Register Name: PCB Relocation Register

Register Mnemonic: RELREG

Register Function: Relocates the PCB within memory or I/O space.

15 0
E M RIR|IR]|R RIR|IR]R RIR]|R|R
T E 11111 11111]1 1111918

M 918 |71]6 514|312 11]0

A1263-0A

Bit . Reset .
Mnemonic Bit Name State Function
ET Escape Trap | O The ET bit controls access to the math copro-
cessor. If ET is set, the CPU will trap (resulting in
a Type 7 interrupt) when an ESC instruction is
executed.
NOTE: The 8-bit bus version of the device
automatically traps an ESC opcode to the Type 7
interrupt, regardless of the state of the ET bit.
MEM Memory /O 0 The MEM bit specifies the PCB location. Set
MEM to locate the PCB in memory space, or
clear it to locate the PCB in I/O space.
R19:8 PCB Base OFFH R19:8 define the upper address bits of the PCB
Address base address. All lower bits are zero. R19:16 are
Upper Bits ignored when the PCB is mapped to I/O space.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 4-1. PCB Relocation Register

Table 4-1. Peripheral Control Block

PCB Function PCB Function PCB Function PCB Function
Offset Offset Offset Offset

OOH MPICPO 40H T2CNT 80H GCSOST COH DOSRCL
02H MPICP1 42H T2CMPA 82H GCSO0SP C2H DOSRCH

intel.

PERIPHERAL CONTROL BLOCK

Table 4-1. Peripheral Control Block

PCB Function PCB Function PCB Function PCB Function
Offset Offset Offset Offset
04H SPICPO 44H Reserved 84H GCS1ST C4H DODSTL
06H SPICP1 46H T2CON 86H GCS1SP C6H DODSTH
08H Reserved 48H P3DIR 88H GCS2ST C8H DOTC
OAH SCUIRL 4AH P3PIN 8AH GCS2SsP CAH DOCON
OCH DMAIRL 4CH P3CON 8CH GCS3ST CCH DMAPRI
OEH TIMIRL 4EH P3LTCH 8EH GCS3SP CEH DMAHALT
10H Reserved 50H P1DIR 90H GCS4ST DOH D1SRCL
12H Reserved 52H P1PIN 92H GCS4SP D2H D1SRCH
14H Reserved 54H P1CON 94H GCS5ST D4H D1DSTL
16H Reserved 56H P1LTCH 96H GCS5SP D6H D1DSTH
18H Reserved 58H P2DIR 98H GCS6ST D8H D1TC
1AH Reserved 5AH P2PIN 9AH GCS6SP DAH D1CON
1CH Reserved 5CH P2CON 9CH GCS7ST DCH Reserved
1EH Reserved 5EH P2LTCH 9EH GCS7SP DEH Reserved
20H WDTRLDH 60H BOCMP AOH LCSST EOH D2SRCL
22H WDTRLDL 62H BOCNT A2H LCSSP E2H D2SRCH
24H WDTCNTH 64H SOCON A4H UCSST E4H D2DSTL
26H WDTCNTL 66H SOSTS A6H UCSSP E6H D2DSTH
28H WDTCLR 68H SORBUF A8H RELREG E8H D2TC
2AH WDTDIS 6AH SOTBUF AAH Reserved EAH D2CON
2CH Reserved 6CH Reserved ACH Reserved ECH Reserved
2EH Reserved 6EH Reserved AEH Reserved EEH Reserved
30H TOCNT 70H B1CMP BOH RFBASE FOH D3SRCL
32H TOCMPA 72H B1CNT B2H RFTIME F2H D3SRCH
34H TOCMPB 74H S1CON B4H RFCON F4H D3DSTL
36H TOCON 76H S1STS B6H RFADDR F6H D3DSTH
38H TICNT 78H S1RBUF B8H PWRCON F8H D3TC
3AH T1CMPA 7AH S1TBUF BAH Reserved FAH D3CON
3CH T1CMPB 7CH Reserved BCH STEPID FCH Reserved
3EH T1CON 7EH Reserved BEH PWRSAV FEH Reserved

4-3

PERIPHERAL CONTROL BLOCK Intel®

4.3 RESERVED LOCATIONS

Many locations within the Peripheral Control Block are not assigned to any peripheral. Unused
locations are reserved. Reading from these locations yields an undefined result. If reserved reg-
isters are written (for example, during a block MOV instruction) they must be set to OH.

NOTE

Failure to follow this guideline could result in incompatibilities with future
80C186 Modular Core family products.

4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK

All communication between integrated peripherals and the Modular CPU Core occurs over a spe-
cial bus, called th&-Bus which always carries 16-bit data. The Peripheral Control Block, like
all integrated peripherals, is always accessed 16 bits at a time.

4.4.1 Bus Cycles

The processor runs an external bus cycle for any memory or I/O cycle accessing a location within
the Peripheral Control Block. Address, data and control information is driven on the external pins
as with an ordinary bus cycle. Information returned by an external device is ignored, even if the
access does not correspond to the location of an integrated peripheral control register. This is also
true for the 80C188 Modular Core family, except that word accesses made to integrated registers
are performed in two bus cycles.

4.4.2 READY Signals and Wait States

The processor generates an internal READY signal whenever an integrated peripheral is access-
ed. External READY is ignored. READY is also generated if an access is made to a location with-
in the Peripheral Control Block that does not correspond to an integrated peripheral control
register. For accesses to timer control and counting registers, the processor inserts one wait state
This is required to properly multiplex processor and counter element accesses to the timer control
registers. For accesses to the remaining locations in the Peripheral Control Block, the processor
does not insert wait states.

4-4 I

Inte|® PERIPHERAL CONTROL BLOCK

4.4.3 F-Bus Operation

The F-Bus functions differently than the external data bus for byte and word accesses. All write
transfers on the F-Bus occur as words, regardless of how they are encoded. For example, the in-
struction OUT DX, AL (DX is even) will write the entire AX register to the Peripheral Control
Block register at location [DX]. If DX were an odd location, AL would be placed in [DX] and

AH would be placed at [DX-1]. A word operation to an odd address would write [DX] and [DX—

1] with AL and AH, respectively. This differs from normal external bus operation where un-
aligned word writes modify [DX] and [DX+1]. In summary, do not use odd-aligned byte or word
writes to the PCB.

Aligned word reads work normally. Unaligned word reads work differently. For example, IN AX,
DX (DX is odd) will transfer [DX] into AL and [DX-1] into AH. Byte reads from even or odd
addresses work normally, but only a byte will be read. For example, IN AL, DXatilfansfer

[DX] into AX (only AL is modified).

No problems will arise if the following recommendations are adhered to.

Word reads Aligned word reads of the PCB work normally. Access only even-
aligned words with IN AX, DX or MOWvord register, even PCB
address

Byte reads Byte reads of the PCB work normally. Beware of reading word-wide

PCB registers that may change value between successive reads (e.g.,
timer count value).

Word writes Always write even-aligned words to the PCB. Writing an odd-
aligned word will give unexpected results.

For the 80C186 Modular Core, use either
— OUT DX, AX or

— OUT DX, AL or

— MOQV even PCB addresword register

For the 80C188 Modular Core, using OUT DX, AX will perform an
unnecessary bus cycle and is not recommended. Use either

— OUT DX, AL or

— MOV even-aligned byte PCB addrebgte register low byte

Byte writes Always use even-aligned byte writes to the PCB. Even-aligned byte
writes will modify the entire word PCB location. Dt perform
unaligned byte writes to the PCB.

I 4-5

PERIPHERAL CONTROL BLOCK Intel®

443.1 Writing the PCB Relocation Register

Whenever mapping the Peripheral Control Block to another location, the user should program the
Relocation Register withlayte write (i.e., OUT DX, AL). Internally, the Relocation Register is
written with 16 bits of the AX register, while externally the Bus Interface Unit runs a single 8-bit
bus cycle. If a word instruction (i.e., OUT DX, AX) is used with an 80C188 Modular Core family
member, the Relocation Register is written on the first bus cycle. The Bus Interface Unit then runs
an unnecessary second bus cycle. The address of the second bus cycle is no longer within the con
trol block, since the Peripheral Control Block was moved on the first cycle. External READY
must now be generated to complete the cycle. For this reason, we recommend byte operations for
the Relocation Register.

4.43.2 Accessing the Peripheral Control Registers

Byte instructions should be used for the registers in the Peripheral Control Block of an 80C188
Modular Core family member. This requires half the bus cycles of word operations. Byte opera-
tions are valid only for even-addressed writes to the Peripheral Control Block. A word read (e.qg.,
IN AX, DX) must be performed to read a 16-bit Peripheral Control Block register when possible.

4.4.3.3 Accessing Reserved Locations

Unused locations are reserved. If a write is made to these locations, a bus cycle occurs, but data
is not stored. If a subsequent read is made to the same location, the value written is not read back.
If reserved registers are written (for example, during a block MOV instruction) they must be
cleared to OH.

NOTE

Failure to follow this guideline could result in incompatibilities with future
80C186 Modular Core family products.

4.5 SETTING THE PCB BASE LOCATION
Upon reset, the PCB Relocation Register (see Figure 4-1 on page 4-2) contains the value 00FFH,

which causes the Peripheral Control Block to be located at the top of 1/O space (OFFOOH to
OFFFFH). Writing the PCB Relocation Register allows the user to change that location.

4-6 I

Inte|® PERIPHERAL CONTROL BLOCK

As an example, to relocate the Peripheral Control Block to the memory range 10000-100FFH, the
user would program the PCB Relocation Register with the value 1100H. Since the Relocation
Register is part of the Peripheral Control Block, it relocates to word 10000H plus its fixed offset.

NOTE

Due to an internal condition, external ready is ignored if the device is
configured in Cascade mode and the Peripheral Control Block (PCB) is
located at 0000H in I/O space. In this case, wait statesot be added to
interrupt acknowledge bus cycles. However, gan add wait states to
interrupt acknowledge cycles if the PCB is located at any other address.

4.5.1 Considerations for the 80C187 Math Coprocessor Interface

Systems using the 80C187 math coprocessor interfacenoiustlocate the Peripheral Control
Block to location 0000H in I/O space. The 80C187 interface uses 1/O locations OF8H through
OFFH. If the Peripheral Control Block resides in these locations, the processor communicates
with the Peripheral Control Blockpt the 80C187 interface circuitry.

NOTE

If the PCB is located at 0000H in 1/0O space and access to the math coprocessor
interface is enabled (the Escape Trap bit is clear), a numerics (ESC) instruction
causes indeterminate system operation.

Since the 8-bit bus version of the device does not support the 80C187, it automatically traps an
ESC instruction to the Type 7 interrupt, regardless of the state of the Escape Trap (ET) bit.

For details on the math coprocessor interface, see Chapter 14, “Math Coprocessing.”

I 4-7

intel.

o

Clock Generation and
Power Management

CHAPTER 5
CLOCK GENERATION AND POWER
MANAGEMENT

The clock generation and distribution circuits provide uniform clock signals for the Execution
Unit, the Bus Interface Unit and all integrated peripherals. The 80C186 Modular Core Family
processors have additional logic that controls the clock signals to provide power management
functions.

5.1 CLOCK GENERATION

The clock generation circuit (Figure 5-1) includes a crystal oscillator, a divide-by-two counter
and power-save and reset circuitry. See “Power-Save Mode” on page 5-19 for a discussion of
Power-Save mode as a power management option.

- - * < Power Down
Schmitt Trigger — < dle
"Squares-up" CLKIN < Power Save
CLKIN
2o M clock [P Phase [01 | Internal
>Clock Divider Drivers Phase
- i > —> (2 | Clocks
> To CLKOUT
OSCOouUT Y
Reset Circuitry —> |Internal Reset
RESIN
A1118-0A

Figure 5-1. Clock Generator

5.1.1 Crystal Oscillator

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common
phase shift oscillator.

I 5-1

CLOCK GENERATION AND POWER MANAGEMENT Intel®

51.1.1 Oscillator Operation

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified ver-
sion of the input connects back to the input. A 360° phase shift around the loop will sustain the
feedback in the oscillator. The on-chip inverter provides a 180° phase shift. The combination of
the inverter’s output impedance and the first load capacitor (see Figure 5-2) provides another 90°
phase shift. At resonance, the crystal becomes primarily resistive. The combination of the crystal
and the second load capacitor provides the final 90° phase shift. Above and below resonance, the
crystal is reactive and forces the oscillator back toward the crystal’s nominal frequency.

Z, = Inverter Output Z

AW l lﬂl l {>o—

NOTE:

At resonance, the crystal is essentially resistive.
Above resonance, the crystal is inductive.
Below resonance, the crystal is capacitive.

A1125-0A

Figure 5-2. Ideal Operation of Pierce Oscillator

Figure 5-3 shows the actual microprocessor crystal connections. For low frequencies, crystal ven-
dors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the only
choice. The external capacitors, @t CLKIN and &, at OSCOUT, together with stray capaci-
tance, form the load. A third overtone crystal requires an additional indyctodLcapacitor C

to select the third overtone frequency and reject the fundamental frequency. See “Selecting Crys-
tals” on page 5-5 for a more detailed discussion of crystal vibration modes.

5-2

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Choose Gand L, component values in the third overtone crystal circuit to satisfy the following
conditions:

* The LC components form an equivalent series resonant circuit at a frequency below the
fundamental frequency. This criterion makes the circuit inductive at the fundamental
frequency. The inductive circuit cannot make the 90° phase shift and oscillations do not
take place.

* The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This
criterion makes the circuit capacitive at the third overtone frequency, necessary for oscil-
lation.

* The two capacitors and inductor at OSCOUT, plus some stray capacitance, approximately
equal the 20 pF load capacitok,Cused alone in the fundamental mode circuit.

(@) (b) (c)
Fundamental Third Overtone Third Overtone Mode
Mode Circuit Mode Circuit (Equivalent Circuit)

T Yol l e

CLKIN [] CLKIN [] i; ! i

{Cx2 == Ly

L,E :

0SCoUT 0SCcouT : _T_ :

B A N A
CXl = CXZ = 20pF C1 = 200pF L1 = (See text)

A1126-0A

Figure 5-3. Crystal Connections to Microprocessor

Choosing G as 200 pF (at least 10 times the value of the load capacitor) simplifies the circuit
analysis. At the series resonance, the capacitance connectdad &DQ pF in series with 20 pF.

The equivalent capacitance is still about 20 pF and the equation in Figure 5-4(a) yields the series
resonant frequency.

To examine the parallel resonant frequency, refer to Figure 5-3(c), an equivalent circuit to Figure
5-3(b). The capacitance connected 1as.200 pF in parallel with 20 pF. The equivalent capaci-
tance is still about 200 pF (within 10%) and the equation in Figure 5-4(a) now yields the parallel
resonant frequency.

I 5-3

CLOCK GENERATION AND POWER MANAGEMENT Intel®

(a) Series or Parallel Resonant Frequency (b) Equivalent Capacitance
‘= 1 c = w?C;Cy,L ~Cy ~-Cyp
= - eq = .
2T[A/L1C1 w ClLl_l

Figure 5-4. Equations for Crystal Calculations

The equation in Figure 5-4(b) yields the equivalent capacitagecat the operation frequency.

The desired operation frequency is the third overtone frequency marked on the crystal. Optimiz-
ing equations for the above three criteria yields Table 5-1. This table shows suggested standard
inductor values for various processor frequencies. The equivalent capacitance is about 15 pF.

Table 5-1. Suggested Values for Inductor L ; in Third Overtone Oscillator Circuit

CLKOUT Third-Overtone Crystal Inductor L 4
Frequency (MHz) Frequency (MHz) Values (uH)
13.04 26.08 6.8, 8.2,10.0

16 32 3.9, 47,56

20 40 2.2,2.7,33

5-4

Intel® CLOCK GENERATION AND POWER MANAGEMENT

5.1.1.2 Selecting Crystals

When specifying crystals, consider these parameters:

Resonance and Load Capacitance — Crystals carry a parallel or series resonance specifi-
cation. The two types do not differ in construction, just in test conditions and expected
circuit application. Parallel resonant crystals carry a test load specification, with typical
load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry a load
capacitance specification. You may use a series resonant crystal with the microprocessor,
even though the circuit is parallel resonant. However, it will vibrate at a frequency slightly
(on the order of 0.1%) higher than its calibration frequency.

Vibration Mode — The vibration mode is either fundamental or third overtone. Crystal
thickness varies inversely with frequency. Vendors furnish third or higher overtone crystals
to avoid manufacturing very thin, fragile quartz crystal elements. At a given frequency, an
overtone crystal is thicker and more rugged than its fundamental mode counterpart. Below
20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz range, you can purchase
both modes. You must know the vibration mode to know whether to add the LC circuit at
OSCOUT.

Equivalent Series Resistance (ESR) — ESR is proportional to crystal thickness, inversely
proportional to frequency. A lower value gives a faster startup time, but the specification is
usually not important in microprocessor applications.

Shunt Capacitance — A lower value reduces ESR, but typical values such as 7 pF will work
fine.

Drive Level — Specifies the maximum power dissipation for which the manufacturer
calibrated the crystal. It is proportional to ESR, frequency, load apdDisregard this
specification unless you use a third overtone crystal whose ESR and frequency will be
relatively high. Several crystal manufacturers stock a standard microprocessor crystal line.
Specifying a “microprocessor grade” crystal should ensure that the rated drive level is a
couple of milliwatts with 5-volt operation.

Temperature Range — Specifies an operating range over which the frequency will not vary
beyond a stated limit. Specify the temperature range to match the microprocessor
temperature range.

Tolerance — The allowable frequency deviation at a particular calibration temperature,

usually 25° C. Quartz crystals are more accurate than microprocessor applications call for;
do not pay for a tighter specification than you need. Vendors quote frequency tolerance in
percentage or parts per million (ppm). Standard microprocessor crystals typically have a
frequency tolerance of 0.01% (100 ppm). If you use these crystals, you can usually
disregard all the other specifications; these crystals are ideal for the 80C186 Modular Core
family.

5-5

CLOCK GENERATION AND POWER MANAGEMENT Intel®

An important consideration when using crystals is that the oscifi@drcorrectly over the volt-

age and temperature ranges expected in operation. Observe oscillator startup in the laboratory.
Varying the load capacitors (within about + 50%) can optimize startup characteristics versus sta-
bility. In your experiments, consider stray capacitance and scope loading effects.

For help in selecting external oscillator components for unusual circumstances, count on the crys-
tal manufacturer as your best resource. Using low-cost ceramic resonators in place of crystals is
possible if your application will tolerate less precise frequencies.

5.1.2 Using an External Oscillator

The microprocessor’'s on-board clock oscillator allows the use of a relatively low cost crystal.
However, the designer may also use a “canned oscillator” or other external frequency source.
Connect the external frequency input (EFI) signal directly to the oscillator CLKIN input. Leave
OSCOUT unconnected. This oscillator input drives the internal divide-by-two counter directly,
generating the CPU clock signals. The external frequency input can have practically any duty cy-
cle, provided it meets the minimum high and low times stated in the data sheet. Selecting an ex-
ternal clock oscillator is more straightforward than selecting a crystal.

5.1.3 Output from the Clock Generator

The crystal oscillator output drives a divide-by-two circuit, generating a 50% duty cycle clock for
the processor’s integrated components. All processor timings refer to this clock, available exter-
nally at the CLKOUT pin. CLKOUT changes state on the high-to-low transition of the CLKIN
signal, even during reset and bus hold. CLKOUT is also available during Idle mode, but not dur-
ing Powerdown mode. (See “Idle Mode” on page 5-11 and “Powerdown Mode” on page 5-16.)

In a CMOS circuit, significant current flows only during logic level transitions. Since the micro-
processor consists mostly of clocked circuitry, the clock distribution is the basis of power man-
agement.

5.1.4 Reset and Clock Synchronization

The clock generator provides a system reset signal (RESOUT). The RipBitNjenerates RE-
SOUT and the clock generator synchronizes it to the CLKOUT signal.

A Schmitt trigger in thé RESIMput ensures that the switch point for a low-to-high transition is
greater than the switch point for a high-to-low transition. The processor must remain in reset a
minimum of 4 CLKOUT cycles after \éd and CLKOUT stabilize. The hysteresis allows a simple

RC circuit to drive the RESIMput (see Figure 5-5). Typical applications can use about 100 mil-
liseconds as an RC time constant.

5-6

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Reset may be either cold (power-up) or warm. Figure 5-6 illustrates a cold reset. Assert the RES-
IN input during power supply and oscillator startup. The processor’s pins assume their reset pin
states a maximum of 28 CLKIN periods after CLKIN ang: gtabilize. Assert RESIM addi-

tional CLKIN periods after the device pins assume their reset states.

Applying RESINwhen the device is running constitutes a warm reset (see Figure 5-7). In this
case, assert RESIgr at least 4 CLKOUT periods. The device pins will assume their reset states
on the second falling edge of CLKIN following the assertion of RESIN

VCC

-t

. RC
100k typical Vc(t) =Vil-e
RESET IN RESIN
1uF typical
Al1128-0A
Figure 5-5. Simple RC Circuit for Powerup Reset
The processor exits reset identically in both cases. The rising R&ig@generates an internal

RESYNC pulse (see Figure 5-8), resynchronizing the divide-by-two internal phase clock. The
clock generator samples RESty the falling CLKIN edge. If RESINs sampled high while
CLKOUT is high, the processor forces CLKOUT low for the next two CLKIN cycles. The clock
essentially “skips a beat” to synchronize the internal phases. If RESampled high while
CLKOUT is low, CLKOUT is already in phase.

I 5-7

CLOCK GENERATION AND POWER MANAGEMENT Intel®

CLK'N*MMMWWWM

T T T T T T
Vee —"/Vcc and CLKIN stable to output valid 28 CLKIN periods (max)
coury AR NN
UCS, LCS "]
GCSTO,NPS,, L / _
TOOUT, T1OUT
TXD1:0
HLDA, ALE / /Z \ J_
RXI1, TXI1 At i} YA RS
DMAIO, DMAI1
i 1
A19:1 64— { / \
AD15:0, S2:0 —
RD, WR. DEN4! -~ (! >'-'1"'||"1""1“"r'""r'“ll<’_
DT/R, LOCK
ST 3 . r@ =
RESINA ¢ 14
RESOUTH——— ¢ — -
I > >
Vce and CLKIN stable to RESET high to
RESET high, approximately first bus activity,
32 CLKIN periods. 7 CLKOUT periods.
NOTES:

1. CLKOUT synchronization occurs on the rising edge of RESIN. If RESIN is sampled high while
CLKOUT is high (solid line), then CLKOUT will remain low for two CLKIN periods. If RESIN is
sampled high while CLKOUT is low (dashed line), the CLKOUT will not be affected.

Al1116-0A

Figure 5-6. Cold Reset Waveform

5-8

intel.

CLOCK GENERATION AND POWER MANAGEMENT

ckin NANNNNNNNNNNNANANNNNNNNN]
STEIAVAVAVAVAVAVAVAVAW ANE/AWE WA\
UCS, LCS
GCS7:.0, NPS)
TOOUT | 7 N '__
T10UT
TXD1:0
HLDA, ALE
RXI1, TXI1
DMAIO l \ it :L
DMAIL
A19:16 | 7 " '~
_AD150
S2:0, RD
WR, DEN | VAR H H
DT/R
LOCK
—
RESIN AN N
RESOUT 1 o
t > >
Minimum RESIN RESIN
low time 4 CLKOUT high to
periods. first bus
activity 7
CLKOUT
periods.

Al1132-0A

At the second falling CLKOUT edge after the internal clocks resynchronize, the processor deas-

Figure 5-7. Warm Reset Waveform

serts RESOUT. Bus activity starts seven CLKOUT periods after recognifion of REBidlog-

ic high state. If an alternate bus master asserts HOLD during reset, the processor immediately

asserts HLDA and will not prefetch instructions.

5-9

CLOCK GENERATION AND POWER MANAGEMENT Intel®

CLKIN

RESIN

RESYNC
(Internal)

CLKOUT

RESOUT

NOTES:

1. Setup of RESIN to falling CLKIN.

RESOUT goes active.

. RESIN allowed to go inactive after minimum 4 CLKOUT cycles.

. RESYNC pulse generated.

. RESYNC pulse drives CLKOUT low, resynchronizing the clock generator.

. RESOUT goes inactive on the second falling CLKOUT edge following CLKOUT resynchronization.

OUAWN

Al1117-0A

Figure 5-8. Clock Synchronization at Reset

5.2 POWER MANAGEMENT

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays
over time due to leakage currents in the silicon. If the device does not use the stored information
before it decays, the state of the entire device may be lost. Circuits must periodically refresh dy-
namic RAMs, for example, to ensure data retention. Any microprocessor that has a minimum
clock frequency has dynamic logic. On a dynamic microprocessor, if you stop or slow the clock,
the dynamic nodes within it begin discharging. With a long enough delay, the processor is likely
to lose its present state, needing a reset to resume normal operation.

An 80C186 Modular Core microprocessor is fulhatic. The CPU stores its current state in
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can
stop without losing any internal information, provided the design maintains power. When the
clock restarts, the device will execute from its previous state. When the processor is inactive for
significant periods, special power management hardware takes advantage of static operation to
achieve major power savings.

5-10

Intel® CLOCK GENERATION AND POWER MANAGEMENT

There are three power management modes: Idle, Powerdown and Power-Save. Power-Save mode
is a clock generation function, while Idle and Powerdown modes are clock distribution functions.
For this discussion, Active mode is the condition of no programmed power management. Active
mode operation feeds the clock signal to the CPU core and all the integrated peripherals and pow-
er consumption reaches its maximum for the application. The processor defaults to Active mode
at reset.

5.2.1 Idle Mode

During Idle mode operation, the clock signal is routed only to the integrated peripheral devices.
CLKOUT continues toggling. The clocks to the CPU core (Execution and Bus Interface Units)
freeze in a logic low state. Idle mode reduces current consumption by about a third, depending
on the activity in the peripheral units.

5.2.11 Entering Idle Mode

Setting the appropriate bit in the Power Control Register (Figure 5-9) prepares for Idle mode. The
processor enters Idle mode when it executes the HLT (halt) instruction. If the program arms both
Idle mode and Powerdown mode by mistake, the device halts but remains in Active mode. See
Chapter 3, “Bus Interface Unit,” for detailed information on HALT bus cycles. Figure 5-10
shows some internal and external waveforms during entry into Idle mode.

5-11

CLOCK GENERATION AND POWER MANAGEMENT

15

Register Name:

Register Function:

Register Mnemonic:

Power Control Register

PWRCON

Arms power management functions.

mro-—
ZUTSTO

A1129-0A

Bit
Mnemonic

Bit Name

Reset
State

Function

IDLE

Idle Mode

Setting the IDLE bit forces the CPU to enter the
Idle mode when the HLT instruction is executed.
The PWRDN bit must be cleared when setting
the IDLE bit, otherwise Idle mode is not armed.

PWRDN

Powerdown
Mode

Setting the PWRDN bit forces the CPU to enter
the Powerdown mode when the next HLT
instruction is executed. The IDLE bit must be
cleared when setting the PWRDN bit, otherwise
Powerdown mode is not armed.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

5-12

Figure 5-9. Power Control Register

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Halt Cycle
T4 or Tl T1 Tl Tl Tl
CLKOUT
Internal
Peripheral
Clock

CPU Core Clock

A1119-0A

Figure 5-10. Entering Idle Mode

5.2.1.2 Bus Operation During Idle Mode

DMA requests, refresh requests and HOLD requests temporarily turn on the core clocks. If the
processor needs to run a DMA cycle during Idle mode, the internal core clock begins to toggle
on the falling CLKOUT edge three clocks after the processor samples the DMA request pin. After
one idle T-state, the processor runs the DMA cycle. The BIU uses the ready, wait state generation
and chip-select circuitry as necessary for DMA cycles during Idle mode. There is one idle T-state
after T4 before the internal core clock shuts off again.

I 5-13

CLOCK GENERATION AND POWER MANAGEMENT Intel®

If the processor needs to run a refresh cycle during Idle mode, the internal core clock begins to
toggle on the falling CLKOUT edge immediately after the down-counter reaches zero. After one
idle T-state, the processor runs the refresh cycle. As with all other bus cycles, the BIU uses the
ready, wait state generation and chip-select circuitry as necessary for refresh cycles during Idle
mode. There is one idle T-state after T4 before the internal core clock shuts off again.

A HOLD request from an external bus master turns on the core clock as long as HOLD is active
(see Figure 5-11). The core clock restarts one CLKOUT cycle after the bus processor samples
HOLD high. The microprocessor asserts HLDA one cycle after the core clock starts. The core
clock turns off and the processor deasserts HLDA one cycle after the external bus master deas-
serts HOLD.

1 Clock Core Processor Core Clock
Delay Restart In Hold Shuts Off
s SIS . .
ot s Y ' g \
TIETIETIETIETIETIETIE ETIETIETIETIETIE
CLKOUT
Internal
Peripheral
Clock
Internal
Core Clock
HOLD
HLDA

A1120-0A

Figure 5-11. HOLD/HLDA During Idle Mode
As in Active mode, refresh requests will force the BIU to drop HLDA during bus hold. (For more
information on refresh cycles during hold, see “Refresh Operation During a Bus HOLD” on page

3-43 and “Refresh Operation and Bus HOLD” on page 7-13.) Refresh requests will also correctly
break into sequences of back-to-back DMA cycles.

5.2.1.3 Leaving Idle Mode

Any unmasked interrupt or non-maskable interrupt (NMI) will return the processor to Active
mode. Reset also returns the processor to Active mode, but the device loses its prior state.

5-14 I

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Any unmaskedinterrupt received by the core will return the processor to Active mode. Interrupt
requests pass through the Interrupt Control Unit with an interrupt resolution time for mask and
priority level checking. Then, after 1% clocks, the core clock begins toggling. It takes an addi-
tional 6 CLKOUT cycles for the core to begin the interrupt vectoring sequence.

After execution of the IRET (interrupt return) instruction in the interrupt service routine, the
CS:IP will point to the instruction following the HALT. Interrupt execution does not modify the
Power Control Register. Unless the programmer intentionally reprograms the register after exit-
ing Idle mode, the processor will re-enter Idle mode at the next HLT instruction.

Like an unmasked interrupt, an NMI will return the core to Active mode from Idle mode. It takes
two CLKOUT cycles to restart the core clock after an NMI occurs. The NMI signal does not need
the mask and priority checks that a maskable interrupt does. This results in a considerable differ-
ence in clock restart time between an NMI and an unmasked interrupt. The core begins the inter-
rupt response six cycles after the core clock restarts when it fetches the NMI vector from location
00008H. NMI does not clear the IDLE bit in the Power Control Register.

Resetting the microprocessor will return the device to Active mode. Unlike interrupts, a reset
clears the Power Control Register. Execution begins as it would following a warm reset (see “Re-
set and Clock Synchronization” on page 5-6).

5.2.14 Example Idle Mode Initialization Code

Example 5-1 illustrates programming the Power Control Register and entering Idle mode upon
HLT. The interrupts from the serial port and timers are not masked. Assume that the serial port
connects to a keyboard controller. At every keystroke, the keyboard sends a data byte, and the
processor wakes up to service the interrupt. After acting on the keystroke, the core will go back
into Idle mode. The example excludes the actual keystroke processing.

5-15

CLOCK GENERATION AND POWER MANAGEMENT Intel®

$mod186

name example_80C186_power_management_code

;FUNCTION: This function reduces CPU power consumption.

; SYNTAX: extern void far power_mgt(int mode);

; INPUTS: mode - 00 -> Active Mode

; 01 -> Powerdown Mode

; 02 -> Idle Mode

; 03 -> Active Mode

; OUTPUTS: None

;. NOTE: Parameters are passed on the stack as required

; by high-level languages

PWRCON equ xxxxH ;substitute PWRCON register

;offset

lib_80C186 segment public ‘code’
assume cs:lib_80C186
public _power_mgt

_power_mgt proc far
push bp ;save caller's bp
mov bp, sp ;get current top of stack
push ax ;save registers that will
push dx ;be modified

_mode equ word ptr[bp+6] ;get parameter off the

;stack

mov dx, PWRCON ;select Power Control Reg
mov ax, _mode ;get mode
and ax, 3 ;mask off unwanted bits
out dx, ax
hit ;enter mode
pop dx ;restore saved registers
pop ax
pop bp ;restore caller's bp
ret

_power_mgt endp

lib_80C186 ends
end

Example 5-1. Initializing the Power Management Unit for Idle or Powerdown Mode

5.2.2 Powerdown Mode

Powerdown mode freezes the clock to the entire device (core and peripherals) and disables the
crystal oscillator. All internal devices (registers, state machines, etc.) maintain their states as long
as V¢ is applied. The BIU will not honor DMA, DRAM refresh and HOLD requests in Power-
down mode because the clocks for those functions are off. CLKOUT freezes in a logic high state.
Current consumption in Powerdown mode consists of just transistor leakage (typically less than

100 microamps).

5-16

Intel® CLOCK GENERATION AND POWER MANAGEMENT

5.2.2.1 Entering Powerdown Mode

Powerdown mode is entered by executing the HLT instruction after setting the PWRDN bit in the
Power Control Register (see Figure 5-9 on page 5-12). The HALT cycle turns off both the core
and peripheral clocks and disables the crystal oscillator. See Chapter 3, “Bus Interface Unit,” for
detailed information on HALT bus cycles. Figure 5-12 shows the internal and external wave-
forms during entry into Powerdown mode.

CLKIN toggles
only when
external

f 1 frequency
T4 or T1 E T1 i T2 i T E input is used E

cwn L L LML L L L L
oscoutT + [ML ML LML L[Tindeterminais:

Halt Cycle

CLKOUT

CPU Core |
Clock E—I |
L

Internal
Peripheral
Clock

>
—
m

Al1121-0A

Figure 5-12. Entering Powerdown Mode

During the T2 phase of the HLT instruction, the core generates a signal called Enter_Powerdown.
Enter_Powerdown immediately disables the internal CPU core and peripheral clocks. The pro-
cessor disables the oscillator inverter during the next CLKOUT cycle. If the design uses a crystal
oscillator, the oscillator stops immediately. When CLKIN originates from an external frequency
input (EFI1), Powerdown isolates the signal on the CLKIN pin from the internal circuitry. There-
fore, the circuit may drive CLKIN during Powerdown mode, although it will not clock the device.

I 5-17

CLOCK GENERATION AND POWER MANAGEMENT Intel®

5.2.2.2 Leaving Powerdown Mode

An NMI, unmasked interrupt, or reset returns the processor to Active mode. Unlike other 80C186
Modular Core family members, the processor does not have clocked logic in the Interrupt Control
Unit.

If the device leaves Powerdown mode by an NMI or unmasked interrupt, a delay must follow the

interrupt request to allow the crystal oscillator to stabilize before gating it to the internal phase

clocks. An external timing pin sets this delay as described below. Leaving Powerdown by an un-
masked interrupt or NMI does not clear the PWRDN bit in the Power Control Register. A reset

also takes the processor out of Powerdown mode. Since the oscillator is off, the user should fol-
low the oscillator cold start guidelines (see “Reset and Clock Synchronization” on page 5-6).

The Powerdown timer circuit (Figure 5-13) has a PDTMR pin. Connecting this pin to an external
capacitor gives the user control over the gating of the crystal oscillator to the internal clocks. The
strong P-channel device is always on except during exit from Powerdown mode. This pullup
keeps the powerdown capacitasg@harged up to ¥-. When the processor detects an interrupt

or NMI, the weak N-channel device turns on and the P-channel turns off. Leaving Powerdown by
an unmasked interrupt or NMI does not clear the PWRDN bit in the Power Control Register. C
discharges slowly. At the same time, the circuit turns on the feedback inverter on the crystal os-
cillator and oscillation starts.

The Schmitt trigger connected to the PDTMR pin asserts the internal OSC_OK signal when the
voltage at the pin drops below its switching threshold. The OSC_OK signal gates the crystal os-
cillator output to the internal clock circuitry. One CLKOUT cycle runs before the internal clocks
turn back on. It takes two additional CLKOUT cycles for an NMI request to reach the CPU and
another six clocks for the vector to be fetched. An unmasked interrupt request reaches the CPU
two clocks after the Interrupt Control Unit resolution time, and the Tirst IMy&e starts six

clocks later.

5-18

Intel® CLOCK GENERATION AND POWER MANAGEMENT

A

Strong P-Channel 0, Except when leaving
Pullup Powerdown

PDTMR Pin ° %—»@SC_OK

Cpp = Weak N-Channel Ii Exit Powerdown
Pulldown

A1122-0A

Figure 5-13. Powerdown Timer Circuit

The first step in determining the propesy,@alue is startup time characterization for the crystal
oscillator circuit. This step can be done with a storage oscilloscope if you compensate for scope
probe loading effects. Characterize startup over the full range of operating voltages and temper-
atures. The oscillator starts up on the order of a couple of milliseconds. After determining the os-
cillator startup time, refer to “PDTMR Pin Delay Calculation” in the data sheet. Multiply the
startup time (in seconds) by the given constant to getghgalue. Typical values are less than

1pF.

If the design uses an external oscillator instead of a crystal, the external oscillator continues run-
ning during Powerdown mode. Leave the PDTMR pin unconnected and the processor can exit
Powerdown mode immediately.

5.2.3 Power-Save Mode

In addition to Idle and Powerdown modes, Power-Save mode provides another means for reduc-
ing operating current. Power-Save mode enables a programmable clock divider in the clock gen-
eration circuit. This divider operates in addition to the divide-by-two counter (see Figure 5-1 on
page 5-1).

NOTE

Power-Save mode can be used to stretch bus cycles as an alternative to wait
states.

5-19

CLOCK GENERATION AND POWER MANAGEMENT Intel®

Possible clock divisor settings are 1 (undivided), 4, 8, 16, 32 and 64. The divided frequency feeds
the core, the integrated peripherals and CLKOUT. The processor operates at the divided clock
rate exactly as if the crystal or external oscillator frequency were lower by the same amount.

Since the processor is static, a lower limit clock frequency does not apply.

The advantage of Power-Save mode over Idle and Powerdown modes is that operation of both
the core and the integrated peripherals can continue. However, it may be necessary to reprogram
integrated peripherals such as the Timer Counter Unit and the Refresh Control Unit to compen-
sate for the overall reduced clock rate.

5231 Entering Power-Save Mode

The Power-Save Register (Figure 5-14) controls Power-Save mode operation. The lower two bits
select the divisor. When program execution sets the PSEN bit, the processor enters Power-Save
mode. The internal clock frequency changes at the falling edge of T3 of the write to the Power-
Save Register. CLKOUT changes simultaneously and does not glitch. Figure 5-15 illustrates the
change at CLKOUT.

5-20 I

intel.

CLOCK GENERATION AND POWER MANAGEMENT

Register Name:
Register Mnemonic:

Register Function:

Power Save Register
PWRSAV

Enables and sets clock division factor.

F2 F1 FO Divisor

0 O By 1 (undivided)
By 4

By 8

By 16

By 32

By 64

Reserved

R Rk, RPrRP,OOOO
R Rk, O ORrR RO
R OFRr OFRr O R

Reserved

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0
P
S FIF|F
E 21110
N
A1123-0A
Bit . Reset)
Mnemonic Bit Name State Function
PSEN Power Save OH Setting this bit enables Power Save mode and
Enable divides the internal operating clock by the value
defined by F2:0. Clearing this bit disables
Power-Save mode and forces the CPU to
operate at full speed. PSEN is automatically
cleared whenever an interrupt occurs.
F2:0 Clock OH These bits control the clock division factor used
Division when Power Save mode is enabled. The
Factor allowable values are listed below:

Figure 5-14. Power-Save Register

5-21

CLOCK GENERATION AND POWER MANAGEMENT Intel®

T2 T3 T4

CLKOUTJ
®
w0 /

NOTES:
1. : Write to Power-Save Register (as viewed on the bus).
2. : Low-going edge of T3 starts new clock rate.

Al1124-0A

Figure 5-15. Power-Save Clock Transition

5.2.3.2 Leaving Power-Save Mode

Power-Save mode continues until one of three events occurs: execution clears the PSEN bit in
the Power-Save Register, an unmasked interrupt occurs or an NMI occurs.

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by-two)
at the falling T3dge of the write to the Power-Save Register. The same result happens from re-
programming the clock divisor to a new value. The Power-Save Register can be read or written
at any time.

Unmasked interrupts include those from the Interrupt Control Unit, but not software interrupts.
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core,
Power-Save mode will end. The PSEN bit clears and the clock resumes full-speed operation at
the falling edge of a bus cycle T3 state. However, the exact bus cycle of the transition is unde-
fined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN bit
again. If you still want Power-Save mode operation, you can set the PSEN bit as part of the inter-
rupt service routine.

5.2.3.3 Example Power-Save Initialization Code

Example 5-2 illustrates programming the Power-Save Unit for a typical system. The program also
includes code to change the DRAM refresh rate to compensate for the reduced clock rate.

5-22

intel.

CLOCK GENERATION AND POWER MANAGEMENT

$mod186
name

;FUNCTION:

: SYNTAX:
; INPUTS:

: OUTPUTS:
;. NOTE:
PWRSAV
RFTIME

RFCON
PSEN

data
FreqTable
data

lib_80C186

_power_save

_divisor

_power_save

lib_80C186

example_PSU_code

This function reduces CPU power consumption
by dividing the CPU operating frequency by a

divisor.

extern void far power_save(int divisor);
divisor - This variable represents FO, F1 and F2

of PWRSAV.
None

Parameters are passed on the stack as required

by high-level languages

equ xXxxxH
equ XxXxxxH

equ XxxxH
equ 8000H

segment public 'data’

dw 1, 4, 8, 16, 32, 64,0,0

ends

segment public ‘code’

;substitute register offset
;Power-Save Register
;Refresh Interval Count
;Register
;Refresh Control Register
;Power-Save enable bit

assume cs:lib_80C186, ds:data

public _power_save
proc far

push bp
mov bp, sp
push ax
push dx

equ word ptr[bp+6]

mov dx, RFTIME
in ax, dx
and ax, 01ffh

div FreqTable[_divisor]

out dx, ax
mov dx, PWRSAV
mov ax, _divisor
and ax, 7
or ax, PSEN
out dx, ax
pop dx
pop bx
pop ax
pop bp
ret
endp

ends
end

;save caller's bp

;get current top of stack
;save registers that will
;be modified

;get parameter off the
;stack

;get current DRAM refresh
;rate
;mask off unwanted bits

;divide refresh rate
;by _divisor
;set new refresh rate
;select Power-Save Register
;get divisor
;mask off unwanted bits
;set enable bit
;divide frequency
;restore saved registers

;restore caller's bp

Example 5-2. Initializing the Power Management Unit for Power-Save Mode

5-23

intel.

CLOCK GENERATION AND POWER MANAGEMENT

5.2.4 Implementing a Power Management Scheme
Table 5-2 summarizes the power management options available to the user. With three ways
available to reduce power consumption, here are some guidelines:

* Powerdown mode reduces power consumption by several orders of magnitude. If the
application goes into and out of Powerdown frequently, the power reduction can probably
offset the relatively long intervals spent leaving Powerdown mode.

¢ If background CPU tasks are usually necessary and the overhead of reprogramming
peripherals is not severe, Power-Save mode can “tune” the clock rate to the best value.
Remember that current varies linearly with respect to frequency.

¢ |dle mode fits DMA-intensive and interrupt-intensive (as opposed to CPU-intensive) appli-
cations perfectly.

The processor can operate in Power-Save mode and Idle mode concurrently. With Idle mode
alone, rated power consumption typically drops a third or more. Power-Save mode multiplies that
reduction further according to the selected clock divisor.

Overall power consumption has two parts: switching power dissipated by driving loads such as
the address/data bus, and device power dissipated internally by the microprocessor whether or not
it is connected to external devices. A power management scheme should consider loading as well
as the raw specifications in the processor's data sheet.

Table 5-2. Summary of Power Management Modes

Mode Relative Typical User Chief
Power Power Overhead Advantage
Active Full 250 mW at 16 MHz — Full-speed operation
Idle Low 175 mW at 16 MHz Low Peripherals are unaffected
Power-Save Adjustable 125 mW at 16/2 MHz Moderate to High | Code execution continues
Powerdown Lowest 250 pw Low to Moderate | Long battery life

NOTE

If an NMI or external maskable interrupt service routine is used to enter a
power management mode, the interrupt request signal should be deasserted
before entering the power management mode.

5-24

intel.

Chip-Select Unit

intel.

CHAPTER 6
CHIP-SELECT UNIT

Every system requires some form of component-selection mechanism to enable the CPU to ac-
cess a specific memory or peripheral device. The signal that selects the memory or peripheral de-
vice is referred to as a chip-select. Besides selecting a specific device, each chip-select can be
used to control the number of wait states inserted into the bus cycle. Devices that are too slow to
keep up with the maximum bus bandwidth can use wait states to slow the bus down.

6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS

One method of generating chip-selects uses latched address signals directly. An example inter-
face is shown in Figure 6-1(A). In the example, an inverted A16 is connected to an SRAM device
with an active-low chip-select. Any bus cycle with an address between 10000H and 1FFFFH
(A16 = 1) enables the SRAM device. Also note that any bus cycle with an address starting at
30000H, 50000H, 70000H and so on also selects the SRAM device.

Decoding more address bits solves the problem of a chip-select being active over multiple address
ranges. In Figure 6-1(B), a one-of-eight decoder is connected to the uppermost address bits. Each
decoded output is active for one-eighth of the 1 Mbyte address space. However, each chip-select
has a fixed starting address and range. Future system memory changes could require circuit
changes to accommodate the additional memory.

6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS
The Chip-Select Unit overcomes limitations of the designs shown in Figure 6-1 and has the fol-
lowing features:

* Ten chip-select outputs

* Programmable start and stop addresses

* Memory or I/O bus cycle decoder

* Programmable wait-state generator

* Provision to disable a chip-select

* Provision to override bus ready

Figure 6-2 illustrates the logic blocks that generate a chip-select. Each chip-select has a duplicate
set of logic.

I 6-1

CHIP-SELECT UNIT

intel.

27C256

A16 {>o0—q

A0:12

(D7:0

D158

(A)
Chip-Selects Using
Addresses Directly

74AC138
A19 — A3 Y7 [0> Selects 896K to 1M
A18 — A2 Y6 [0 Selects 768K to 896K
Al7—Al Y5 o>
Y4 [0
ALE—9 E1 Y3 [o>
HLDA—OQ E2 Y2 o>
Y1 jo>» Selects 128K to 256K
t E3 YO jo> Selects 0 to 128K

Chip-Selects Using
Simple Decoder

A1168-0A

6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEW

The Chip-Select Unit (CSU) decodes bus cycle address and status information and enables the
appropriate chip-select. Figure 6-3 illustrates the timing of a chip-select during a bus cycle. Note

that the chip-select goes active in the same bus state as address goes active, eliminating any dela:
through address latches and decoder circuits. The Chip-Select Unit activates a chip-select for bus

Figure 6-1. Common Chip-Select Generation Methods

cycles initiated by the CPU, DMA Control Unit or Refresh Control Unit.

Any of the ten chip-selects can map into either memory or I/O address space. A memory-mapped
chip-select can start and end on any 1 Kbyte address location. An 1/O-mapped chip-select can
start and end on any 64 byte address location. The chip-selects typically associate with memory

and peripheral devices as follows:

6-2

CHIP-SELECT UNIT

Internal

Address:)

Bus

Ignore Stop Chip Select
Stop Address Enable
Value ISTOP CSEN

Memory/IO
Selector
MEM Stop

| Value <

Comparator

=

Address
Shifter

Start
Value 2
Comparator

Chip
J Select

=1 53

Start Peripheral Control Block
Value Access Indicator

A1160-0A

Figure 6-2. Chip-Select Block Diagram

Mapped to the upper memory address space; selects the BOOT memory device
(EPROM or Flash memory types).

Mapped to the lower memory address space; selects a static memory (SRAM)
device that stores the interrupt vector table, local stack, local data, and scratch
pad data.

Mapped to memory or 1/O address space; selects additional SRAM memory,
DRAM memory, local peripherals, system bus, etc.

6-3

5.
€

CHIP-SELECT UNIT

2

T4 T1 T2 T3 T4
cikout || | |
ALE |1/ N /
A15:0 i L !
A19:16 . Address Valid : i

2

o
_mo‘
C‘(n
0O
0nlo

(1

Statusl /

T A

A1150-0A

Figure 6-3. Chip-Select Relative Timings

A chip-select goes active when it meets all of the following criteria:

The chip-select is enabled.

The bus cycle status matches the programmed type (memory or 1/O).
The bus cycle address is equal to or greater than the start address value.

The bus cycle address is less than the stop address value or the stop address is ignored.

o > w DN e

The bus cycle isot accessing the Peripheral Control Block.

A memory address applies to memory read, memory write and instruction prefetch bus cycles.
An 1/O address applies to I/0O read and I/O write bus cycles. Interrupt acknowledge and HALT
bus cycles never activate a chip-select, regardless of the address generated.

After power-on or system reset, only the Ugiip-select is initialized and active (see Figure 6-4).

6-4 I

CHIP-SELECT UNIT

Address

Ready

UCs—CE

Processor

NOTE:

<:>Data Ucs _[:

Active For
Top 1 KByte

Memory
Map

1. 15 Wait states automatically inserted. Bus READY must be provided.

1MB
1023K

Al1162-0A

Figure 6-4. UCS Reset Configuration

6.4 PROGRAMMING

Two registers, START and STOP, determine the operating characteristics of each chip-select.
The Peripheral Control Block defines the location of the Chip-Select Unit registers. Table 6-1

lists the registers and their associated programming names.

Table 6-1. Chip-Select Unit Registers

START Reg_ister STOP Regi_ster Chip-Select Affected
Mnemonic Mnemonic
GCSOST GCSOSP GCS0
GCS1ST GCS1SP GCS1
GCS2ST GCS2SP GCSs2
GCS3ST GCS3SP GCS3
GCS4ST GCS4SP GCS4
GCS5ST GCS5SP GCS5
GCS6ST GCS6SP GCS6
GCS7ST GCS7SP GCS7
UCSST UCSSP ucs
LCSST LCSSP LCS

6-5

CHIP-SELECT UNIT Intel®

The START register (Figure 6-5) defines the starting address and the wait state requirements. The
STOP register (Figure 6-6) defines the ending address and the bus ready, bus cycle and enable
requirements.

6.4.1 Initialization Sequence
Chip-selects do not have to be initialized in any specific order. However, the following guidelines
help prevent a system failure.

1. Initialize local memory chip-selects

2. Initialize local peripheral chip-selects

3. Perform local diagnostics

4. Initialize off-board memory and peripheral chip-selects

5. Complete system diagnostics
An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been writ-
ten to memory. Failure to prevent an interrupt from occurring during initialization will cause a

system failure. Use external logic to generate the chip-select if interrupts cannot be masked prior
to initialization.

6-6

intel.

CHIP-SELECT UNIT

Register Name:
Register Mnemonic:

Register Function:

Chip-Select Start Register
UCSST, LCSST, GCSxST (x=0-7)

Defines chip-select start address and number of
bus wait states.

15 0
c|cj|c|c c|cj|c]|c c|C WIlwW|WwW|Ww
S|S|S]|S S|S]|S]|S S|S S|S]|S]|S
9|18 | 7|6 514|312 110 312]11]0

A1163-0A
Bit . Reset)
Mnemonic Bit Name State Function
CS9:0 Start 3FFH Defines the starting (base) address for the chip-
Address select. CS9:0 are compared with the A19:10
(memory bus cycles) or A15:6 (I/0 bus cycles)
address bits. An equal to or greater than result
enables the chip-select.
WS3:0 Wait State OFH WS3:0 define the minimum number of wait
Value states inserted into the bus cycle. A zero value
means no wait states. Additional wait states
can be inserted into the bus cycle using bus
ready.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 6-5. START Register Definition

CHIP-SELECT UNIT Intel®

Register Name: Chip-Select Stop Register

Register Mnemonic: UCSSP, LCSSP, GCSXSP (x=0-7)

Register Function: Defines chip-select stop address and other control
functions.

15 0
clclclcflc|c]c]lc|lc]|c cli|M|R
s|s|s|s]||s|[s|s|s||s]s S|s|E|D
9(8|7]6 s5(413]2(]1]o0 E|T|IM]Y

N|O
=]
A1164-0A
Bit . Reset .
Mnemonic Bit Name State Function
CS9:.0 Stop 3FFH Defines the ending address for the chip-select.
Address CS9:0 are compared with the A19:10 (memory

bus cycles) or A15:6 (/0 bus cycles) address
bits. A less than result enables the chip-select.
CS9:0 are ignored if ISTOP is set.

CSEN Chip-Select 0 Disables the chip-select when cleared. Setting
Enable (Note) CSEN enables the chip-select.

ISTOP Ignore Stop 0 Setting this bit disables stop address checking,
Address (Note) which automatically sets the ending address at

OFFFFFH (memory) or OFFFFH (1/O). When
ISTOP is cleared, the stop address require-
ments must be met to enable the chip-select.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. The reset state of
CSEN and ISTOP is ‘1’ for the UCSSP register.

Figure 6-6. STOP Register Definition

Intel® CHIP-SELECT UNIT

Register Name: Chip-Select Stop Register

Register Mnemonic: UCSSP, LCSSP, GCSxSP (x=0-7)

Register Function: Defines chip-select stop address and other control
functions.

15 0
clclclc|lc|clc]|c]|lc]|c ClI|IM]R
s|{s]s|s s|{s|s|s]||s]|s s|{s|E|D
9|l8|7]6 5141312 110 E|T|IM]Y

N|O
P
A1164-0A
Bit . Reset)
Mnemonic Bit Name State Function
MEM Bus Cycle 1 When MEM is set, the chip-select goes active
Selector for memory bus cycles. Clearing MEM activates

the chip-select for I/O bus cycles.

MEM defines which address bits are used by
the start and stop address comparators. When
MEM is cleared, address bits A15:6 are routed
to the comparators. When MEM is set, address
bits A19:10 are routed to the comparators.

RDY Bus Ready 1 Setting RDY requires that bus ready be active
Enable to complete a bus cycle. Bus ready is ignored
when RDY is cleared. RDY must be set to
extend wait states beyond the number
determined by WS3:0.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. The reset state of
CSEN and ISTOP is ‘1’ for the UCSSP register.

Figure 6-6. STOP Register Definition (Continued)

The correct sequence to program a non-enabled chip-select is as follows. (If the chip-select is al-
ready enabled, either reverse the sequence or disable the chip-select before reprogramming it.)
1. Program the START register

2. Program the STOP register

CHIP-SELECT UNIT

intel.

6.4.2 Start Address

The START register of each chip-select defines its starting (base) address. The start address value
is compared to the ten most-significant address bits of the bus cycle. A bus cycle whose ten most-
significant address bits are equal to or greater than the start address value causes the chip-selec
to go active. Table 6-2 defines the address bits that are compared with the start address value for
memory and I/O bus cycles.

It is not possible to have a chip-select start on any arbitrary byte boundary. A chip-select config-
ured for memory accesses can start only on multiples of 1 Kbyte. A chip-select configured for 1/O
accesses can start only on multiples of 64 bytes. The equations below calculate the physical start
address for a given start address value.

For memory accesses:Start Value (Decimal) x 1024 = Physical Start Address (Decimal)

For I/O accesses:Start Value (Decimal) x 64= Physical Start Address (Decimal)

Table 6-2. Memory and I/O Compare Addresses

Address Space Address Range Number of Bits Cpmparator Input Resolution
Memory 1 Mbyte 20 A19:A10 1 Kbyte
110 64 Kbyte 16 A15:A6 64 Bytes
6.4.3 Stop Address

The STOP register of each chip-select defines its ending address. The stop address value is com-
pared to the ten most-significant address bits of the bus cycle. A bus cycle whose ten most-sig-
nificant bits of address are less than the stop address value causes the chip-select to go active
Table 6-2 defines the address bits that are compared with the stop address value for memory and
I/O bus cycles.

It is not possible to have a chip-select end on any arbitrary byte boundary. A chip-select config-
ured for memory accesses can end only on multiples of 1 Kbyte. A chip-select configured for 1/0O
accesses can end only on multiples of 64 bytes. The equations below define the ending address
for the chip-select.

For memory accesses:(Stop Value (Decimal) x 1024) — 1= Physical Ending Address (Decimal)

For 1/0 accesses:(Stop Value (Decimal) x 64) — 1= Physical Ending Address (Decimal)

6-10

Intel® CHIP-SELECT UNIT

In the previous equations, a stop value of 1023 (03FFH) results in a physical ending address of
OFFBFFH (memory) or OFFBFH (I/0O). These addressasodoepresent the top of the memory

or I/O address space. To have a chip-select enabled to the end of the physical address space, th
ISTOP control bit must be set. The ISTOP control bit overrides the stop address comparator out-
put (see Figure 6-2 on page 6-3).

6.4.4 Enabling and Disabling Chip-Selects

The ability to enable or disable a chip-select is important when multiple memory devices share
(or can share) the same physical address space. Examples of where two or more devices would
occupy the same address space include shadowed memory, bank switching and paging.

The STOP register holds the CSEN control bit, which determines whether the chip-select should
go active. A chip-select never goes active if its CSEN control bit is cleared.

Chip-selects can be disabled by programming the stop address value less than the start addres:
value or by programming the start address value greater than the stop address value. However,
the ISTOP control bit cannot be set when chip-selects are disabled in this manner.

6.4.5 Bus Wait State and Ready Control

Normally, the bus ready input must be inactive at the appropriate time to insert wait states into

the bus cycle. The Chip-Select Unit can ignore the state of the bus ready input to extend and com-
plete the bus cycle automatically. Most memory and peripheral devices operate properly using

fifteen or fewer wait states. However, accessing such devices as a dual-port memory, an expan-
sion bus interface, a system bus interface or remote peripheral devices can require more than fif-
teen wait states to complete a bus cycle.

The START register holds a four-bit value (WS3:0) that defines the number of wait states to in-

sert into the bus cycle. Figure 6-7 shows a simplified logic diagram of the wait state and ready
control functions.

I 6-11

CHIP-SELECT UNIT Intel®

BUS READY

READY Control Bit

::)— READY

Wait Wait

Wait State Value (WS3:0) ——)| State Stte
Counter

Ready

A1165-0A

Figure 6-7. Wait State and Ready Control Functions

The STOP register defines the RDY control bit to extend bus cycles beyond fifteen wait states.
The RDY control bit determines whether the bus cycle should complete normally (i.e., require
bus ready) or unconditionally (i.e., ignore bus ready). Chip-selects connected to devices requiring
fifteen wait states or fewer can program RDY inactive to automatically complete the bus cycle.
Devices that may require more than fifteen wait states must program RDY active.

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle that ignores
bus ready cannot be lengthened.

6.4.6 Overlapping Chip-Selects

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same physical
address space. This is true if any portion of the chip-selects’ address ranges overlap (i.e., chip-
selects’ ranges do not need to overlap completely to all go active). There are various reasons for
overlapping chip-selects. For example, a system might have a need for overlapping a portion of
read-only memory with read/write memory or copying data to two devices simultaneously.

If overlapping chip-selects do not have identical wait state and bus ready programming, the Chip-
Select Unit will adjust itself based on the criteria shown in Figure 6-8.

6-12 I

CHIP-SELECT UNIT

Wait
Minimum
WS3:0

No Any
READY =1
Y
Wait
Maximum
WS3:0
Complete
e Bus
Cycle

[

Wait
State

A1166-0A

Figure 6-8. Overlapping Chip-Selects

6-13

CHIP-SELECT UNIT

Table 6-3 lists example wait state and bus ready requirements for overlapping chip-selects and

the resulting requirements for accesses to the overlapped region.

Table 6-3. Example Adjustments for Overlapping Chip-Selects

intel.

Chip-Select X Chip-Select Y Overlapped Region Access

Wait States Bus Ready Wait States Bus Ready Wait States Bus Ready
3 ignored 9 ignored 9 ignored
5 required 0 ignored 0 required
2 required 2 required 2 required

Be cautious when overlapping chip-selects with different wait state or bus ready programming.
The following two conditions require special attention to ensure proper system operation:

1. When all overlapping chip-selects ignore bus ready but have different wait states, verify
that each chip-select still works properly using the highest wait state value. A system
failure may result when too few or too many wait states occur in the bus cycle.

2. If one or more of the overlapping chip-selects requires bus ready, verify that all chip-
selects thaignore bus ready still work properly using both the smallest wait state value
and the longest possible bus cycle. A system failure may result when too few or too many
wait states occur in the bus cycle.

6.4.7 Memory or I/0 Bus Cycle Decoding

The Chip-Select Unit decodes bus cycle status and address information to determine whether a
chip-select goes active. The MEM control bit in the STOP register defines whether memory or
I/O address space is decoded. Memory address space accesses consist of memory read, memor
write and instruction prefetch bus cycles. I1/O address space accesses consist of I/O read and I/O
write bus cycles.

Chip-selects go active for bus cycles initiated by the CPU, DMA Control Unit and Refresh Con-
trol Unit.

6.4.8 Programming Considerations

When programming chip-selects active for I1/O bus cycles, remember that eight bytes of I/O are
reserved by Intel. These eight bytes (locations 00F8H through O0FFH) control the interface to an
80C187 math coprocessor. A chip-select can overlap this reserved space provided there is no in-
tention of using the 80C187. However, to avoid possible future compatibility issues, Intel recom-
mends thaho chip-select start at I/0O address location 00COH.

6-14

Intel® CHIP-SELECT UNIT

The GCXhip-select outputs are multiplexed with output port functions. The register that controls
the multiplexed outputs resides in the I1/O Port Unit. (See Table 13-1 on page 13-6 and Figure
13-4 on page 13-8.)

6.5 CHIP-SELECTS AND BUS HOLD

The Chip-Select Unit decodes only internally generated address and bus state information. An ex-
ternal bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects remain
inactive.

The circuit shown in Figure 6-9 allows an external bus master to access a device during bus
HOLD.

CSU Chip Select
::D07 Device select
External Master Chip Select

A1167-0A

Figure 6-9. Using Chip-Selects During HOLD

6.6 EXAMPLES

The following sections provide examples of programming the Chip-Select Unit to meet the needs
of a particular application. The examples do not go into hardware analysis or design issues.

6.6.1 Example 1: Typical System Configuration
Figure 6-10 illustrates a block diagram of a typical system design with a 128 Kbyte EPROM and

a 32 Kbyte SRAM. The peripherals are mapped to I/O address space. Example 6.1 shows a pro-
gram template for initializing the Chip-Select Unit.

I 6-15

CHIP-SELECT UNIT

Processor

READY

ALE

A19:16
AD15:0

T EPROM D SRAM Floppy
L 128K R 32K Disk
20, A Control
& addr M DACK |-
AD Bus (t: Bus/ 512
7 DRQ 1
h l)—AO
|| —ICE CE CE | |>CE

DRQ

GCSO
ucs
GCs1
LCS

GCS2

A

A1157-0A

6-16

Figure 6-10. Typical System

Intel® CHIP-SELECT UNIT

$ TITLE (Chip-Select Unit Initialization)
$ MOD186XREF
NAME CSU_EXAMPLE_1

; External reference from this module

$ include(PCBMAP.INC) ;File declares Register
;Locations and names.

; Module equates

; Configuration equates

TRUE EQU OFFH

FALSE EQU NOT TRUE

READY EQU 0001H ;Bus ready control modifier
CSEN EQU 0008H ;Chip-Select enable modifier
ISTOP EQU 0004H ;Stop address modifier

MEM EQU 0002H ;Memory select modifier

10 EQU 0000H ;1/O select modifier

;Below is a list of the default system memory and I/O environment. These
;defaults configure the Chip-Select Unit for proper system operation.

;EPROM memory is located from OE0000 to OFFFFF (128 Kbytes).
;Wait states are calculated assuming 16MHz operation.
;UCS# controls the accesses to EPROM memory space.

EPROM_SIZEEQU 128 ;Size in Kbytes
EPROM_BASEEQU 1024 - EPROM_SIZE;Start address in Kbytes
EPROM_WAITEQU 1 ;Wait states

;The UCS# START and STOP register values are calculated using the above system
;constraints and the equations below.

UCSST_VALEQU (EPROM_BASE SHL 6) OR (EPROM_WAIT)
UCSSP_VALEQU (CSEN) OR (ISTOP) OR (MEM)

;SRAM memory starts at OH and continues to 7FFFH (32 Kbytes).
;Wait states are calculated assuming 16MHz operation.
;LCS# controls the accesses to SRAM memory space.

SRAM_SIZEEQU 32 ;Size in Kbytes
SRAM_BASEEQU 0 ;Start address in Kbytes
SRAM_WAITEQU 0 :Wait states

;The LCS# START and STOP register values are calculated using the above system
;constraints and the equations below

LCSST_VALEQU (SRAM_BASE SHL 6) OR (SRAM_WAIT)
LCSSP_VALEQU (((SRAM_BASE) OR (SRAM_SIZE)) SHL 6) OR
& (CSEN) OR (MEM)

;A DRAM interface is selected by the GCS1# chip-select. The BASE value defines
;the starting address of the DRAM window.The SIZE value (along with the BASE
;value) defines the ending address. Zero wait state performance is assumed. The
;Refresh Control Unit uses DRAM_BASE to properly configure refresh operation.

Example 6-1. Initializing the Chip-Select Unit

6-17

CHIP-SELECT UNIT Intel®

DRAM_BASEEQU 128 ;Window start address in Kbytes

DRAM_SIZEEQU 512 ;Window size in Kbytes

DRAM_WAITEQU 0 ;Wait states (change to match
;system)

;The GCS1# START and STOP register values are calculated using the above system
;constraints and the equations below

GCS1ST_VALEQU (DRAM_BASE SHL 6) OR (DRAM_WAIT)
GCS1SP_VALEQU (((DRAM_BASE) OR (DRAM_SIZE)) SHL 6) OR
& (CSEN) OR (MEM)

;1/0 is selected using the GCS2# chip-select. Wait states assume operation at
;16MHz. The SIZE and BASE values must be modulo 64 bytes. For this example, the
;Floppy Disk Controller is connected to GCS2# and GCS0# provides the

;DACK# signal.
10_SIZEEQU 64 ;Size in bytes
10_BASEEQU 256 ;Start address in bytes
I0_WAITEQU 4 ;Wait states
DACK_BASEEQU 512 ;DACK Address (used by DMA also)
DACK_WAITEQU 0 ;No need for DACK wait-states

;DACK Size assumed to be 64 bytes

;The GCS0# and GCS2# START and STOP register values are calculated using the
;above system contraints and the equations below.

GCS2ST_VALEQU ((I0_BASE/64) SHL 6) OR (I0_WAIT)
GCS2SP_VALEQU (((I0_ BASE/64) OR (I0_SIZE/64)) SHL 6) OR
& (CSEN) OR (I0)

GCSOST_VALEQU ((DACK_BASE/64) SHL 6) OR (DACK_WAIT)
GCSO0SP_VALEQU (((DACK_BASE/64) + 1) SHL 6) OR (CSEN) OR (I0)

;The following statements define the default assumptions for SEGMENT locations.
ASSUMECS:CODE
ASSUMEDS:DATA
ASSUMESS:DATA
ASSUMEES:DATA
CODE SEGMENT PUBLIC 'CODE’
;ENTRY POINT ON POWER UP:
;The power-on or reset code does a jump here after the UCS register is
;programmed.
FW_STARTLABEL FAR ;Forces far jump

CLI ;Make sure interrupts are
;globally disabled

; Place register initialization code here

Example 6-1. Initializing the Chip-Select Unit (Continued)

6-18

intel.

CHIP-SELECT UNIT

MOV
MOV
ouT

MOV
MOV
ouT
MOV
MOV
ouT

MOV
MOV
ouT
MOV
MOV
ouT

MOV
MOV
ouT
MOV
MOV
ouT

MOV
MOV
ouT
JMP

;SET UP CHIP SELECTS

UCS# - EPROM Select
LCS# - SRAM Select

GCS1# - DRAM Select
GCS2# - FLOPPY Select
GCSO0# - DACK Generator (programmed during DMA init)

DX, UCSSP
AX, UCSSP_VAL
DX, AL

DX, LCSST

AX, LCSST_VAL
DX, AL

DX, LCSSP

AX, LCSSP_VAL
DX, AL

DX, GCS1ST
AX, GCS1ST_VAL
DX, AL

AX, GCS1SP_VAL
DX, GCS1SP

DX, AL

DX, GCS2ST

AX, GCS2ST_VAL
DX, AL

DX, GCS2SP

AX, GCS2SP_VAL
DX, AL

;Place remaining User Code here.
CODE ENDS

;POWER ON RESET CODE TO GET STARTED
ASSUME CS:POWER_ON
POWER_ONSEGMENT AT OFFFFH

DX, UCSST

AX, UCSST_VAL
DX, AL
FW_START

POWER_ON ENDS

;Finish setting up UCS#
;Remember, byte writes work ok

;Set up LCS#

;Remember, byte writes work ok

;Set up GCS1#

;Remember, byte writes work ok

;Set up GCS2#

;Remember, byte writes work ok

;Point to UCS register
;Reprogram UCS# for EPROM size

;Jump to start of init code

Example 6-1. Initializing the Chip-Select Unit (Continued)

6-19

CHIP-SELECT UNIT

; DATA SEGMENT
DATA SEGMENT PUBLIC 'DATA’
DD 256 DUP (?)
;Place additional memory variable here
DW 500 DUP (?)
STACK_TOP LABEL WORD
DATA ENDS
;Program Ends

END

;Reserved for Interrupt Vectors

;Stack allocation

Example 6-1. Initializing the Chip-Select Unit (Continued)

6.6.2

A chip-select is configured to set an interrupt when the bus accesses a physical address region
that does not contain a valid memory or peripheral device. Figure 6-11 illustrates how a simple

circuit detects the errant bus cycle and generates an NMI. System software then deals with the
error. The purpose of using the chip-select is to generate a bus ready and prevent a bus “hang”

condition.

Example 2: Detecting Attempts to Access Guarded Memory

NMI

Processor

GCS5

o]

A1158-0A

Figure 6-11. Guarded Memory Detector

6-20

intel.
7

Refresh Control Unit

intel.

CHAPTER 7
REFRESH CONTROL UNIT

The Refreh Control Unit (RCU) simplifies dynamic memory controller design with its integrat-

ed address and clock counters. Figure 7-1 shows the relationship between the Bus Interface Unit
and the Refresh Control Unit. Integrating the Refresh Control Unit into the processor allows an
external DRAM controller to use chip-selects, wait state logic and status lines.

<:> Refresh Clock
Interval Register
CPU v

Clock _ [-

>p 9-Bit Down
Counter Refresh Request BIU
Interface

CLR | Refresh Acknowledge
REQ[™

<:> Refresh Control
Register

F-Bus

12-Bit Addr\éss Counter

<:> Refresh Base Refresh Address
Address Register Register
7\ 13|
— M Y
20-Bit

Refresh Address

A1264-01

Figure 7-1. Refresh Control Unit Block Diagram

I 7-1

REFRESH CONTROL UNIT Intel®

7.1 THE ROLE OF THE REFRESH CONTROL UNIT

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU execution.
Unlike a DMA controller, however, the Refresh Control Unit does not run bus cycle bursts nor
does it transfer data. The DRAM refresh process freshens individual DRAM rows in “dummy
read” cycles, while cycling through all necessary addresses.

The microprocessor interface to DRAMSs is more complicated than other memory interfaces. A
complete DRAM controller requires circuitry beyond that provided by the processor even in the
simplest configurations. This circuitry must respond correctly to reads, writes and DRAM refresh
cycles. The external DRAM controller generates the Row Address Strobg, (RalIBmn Ad-

dress Strobe (CASand other DRAM control signals.

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh address
es internally. The address counters still need external timing pulses. These pulses are easy to de-
rive from the processor’s bus control signals. Pseudo-static RAMs do not need a full DRAM
controller.

7.2 REFRESH CONTROL UNIT CAPABILITIES

A 12-bit address counter forms the refresh addresses, supporting any dynamic memory devices
with up to 12 rows of memory cells (12 refresh address bits). This includes all practical DRAM
sizes for the processor’s 1 Mbyte address space.

7.3 REFRESH CONTROL UNIT OPERATION

Figure 7-2 illustrates Refresh Control Unit counting, address generation and BIU bus cycle gen-
eration in flowchart form.

The nine-bit down-counter loads from the Refresh Interval Register on the falling edge of CLK-
OUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then the
down-counter reloads and starts counting again, simultaneously triggering a refresh request.
Once enabled, the DRAM refresh process continues indefinitely until the user reprograms the Re-
fresh Control Unit, a reset occurs, or the processor enters Powerdown mode. Power-Save mode
divides the Refresh Control Unit clocks, so reprogramming the Refresh Interval Register be-
comes necessary.

The refresh request remains active until the bus becomes available. When the bus is free, the BIU
will run its “dummy read” cycle. Refresh bus requests have higher priority than most CPU bus
cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles also have a
higher priority than the HOLD/HLDAbus arbitration protocol (see “Refresh Operation and Bus
HOLD” on page 7-13).

7-2 I

Inte|® REFRESH CONTROL UNIT

Refresh Control BIU Refresh
Unit Operation Bus Operation
Set "E" Bi Refresh Request
et"E" Bit Acknowledged
Y
Load Counter Execute
From Refresh Clock Memory Read

Interval Register

Increment
Address

¢

Remove
Executed Request

— Every
Clock

Continue

Decrement
Counter

Generated BIU
Request

A1265-0A

Figure 7-2. Refresh Control Unit Operation Flow Chart

The nine-bit refresh clock counter does not wait until the BIU services the refresh request to con-
tinue counting. This operation ensures that refresh requests occur at the correct interval. Other-
wise, the time between refresh requests would be a function of varying bus activity. When the

BIU services the refresh request, it clears the request and increments the refresh address.

7-3

REFRESH CONTROL UNIT Intel®

The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates another
request before the BIU handles the present request, the BIU loses the present request. However,
the address associated with the request is not lost. The refresh address changes only after the BIU
runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is still a chance
that the processor will successfully refresh the corresponding row of cells in the DRAM, retaining
the data.

7.4 REFRESH ADDRESSES

Figure 7-3 shows the physical address generated during a refresh bus cycle. This figure applies
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA19:13 come
from the Refresh Base Address Register. (See “Refresh Base Address Register” on page 7-8.)

From Refresh Base
Address Register From Refresh Address Counter Fixed
RA|RA|RA|RA|RA|RA|RA|RA|RA|RAIRA|RAIRAIRAIRAIRA|RAIRAIRA| 1
19|18]17|16|15|14|13|12|11|10|9 |8 |7 |6 |5]|4 |32 |1

20-Bit Refresh Address

A1266-0A

Figure 7-3. Refresh Address Formation

A linear-feedback shift counter generates address bits RA12:1 and RAO is always one. The
counter does not count linearly from 0 through FFFH. However, the counting algorithm cycles
uniquely through all possible 12-bit values. It matters only that each row of DRAM memory cells
is refreshed at a specific interval. The order of the rows is unimportant.

Address bit AQ is fixed at one during all refresh operations. In applications based on a 16-bit data
bus processor, A0 typically selects memory devices placed on the low (even) half of the bus. Ap-
plications based on an 8-bit data bus processor typically use AO as a true address bit. The DRAM
controller musnot route AO to row address pins on the DRAMSs.

7-4 I

Inte|® REFRESH CONTROL UNIT

7.5 REFRESH BUS CYCLES

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control sig-
nals listed in Table 7-1. These signals can be ANDed in a DRAM controller to detect a refresh
bus cycle. The 16-bit bus processor drives both the &wEAO pins high during refresh cycles.

The 8-bit bus version replaces the BHIE with RFSH which has the same timings. The 8-bit

bus processor drives RFSéiv and AO high during refresh cycles.

Table 7-1. Identification of Refresh Bus Cycles

Data Bus Width BHE /RFSH A0
16-Bit Device 1 1
8-Bit Device 0 1

7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS

The basic DRAM access method consists of four phases:
1. The DRAM controller supplies a row address to the DRAMSs.

2. The DRAM controller asserts a Row Address Strobe (RAMich latches the row
address inside the DRAMSs.

The DRAM controller supplies a column address to the DRAMSs.

4. The DRAM controller asserts a Column Address Strobe JOASich latches the column
address inside the DRAMSs.

Most 80C186 Modular Core family DRAM interfaces use only this method. Others are not dis-
cussed here.

The DRAM controller's purpose is to use the processor’s address, status and control lines to gen-
erate the multiplexed addresses and strobes. These signals must be appropriate for three bus cycl
types: read, write and refresh. They must also meet specific pulse width, setup and hold timing
requirements. DRAM interface designs need special attention to transmission line effects, since
DRAMs represent significant loads on the bus.

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller requires
a tapped digital delay line to derive the proper timings.

Clocked DRAM controllers may use either discrete or programmable logic devices. A state ma-
chine design is appropriate, especially if the circuit must provide wait state control (beyond that
possible with the processor’s Chip-Select Unit). Because of the microprocessor’s four-clock bus,
clocking some logic elements on each CLKOUT phase is advantageous (see Figure 7-4).

I 7-5

REFRESH CONTROL UNIT Intel®

T1 T2 T3TW T4

CLKOUT

Muxed
Address

S2:0

RAS

@) CAS

NOTES:
1. CAS is unnecessary for refresh cycles only.
2. WE is necessary for write cycles only.

A1267-0A

Figure 7-4. Suggested DRAM Control Signal Timing Relationships

The cycle begins with presentation of the row address. $8Id go active on the falling edge

of T2. At the rising edge of T2, the address lines should switch to a column addreS3o€3AS
active on the falling edge of T3. Refresh cycles do not require @4&®n CASis present, the
“dummy read” cycle becomes a true read cycle (the DRAM drives the bus), and the DRAM row
still gets refreshed.

Both' RASand CASstay active during any wait states. They go inactive on the falling edge of T4.

At the rising edge of T4, the address multiplexer shifts to its original selection (row addressing),
preparing for the next DRAM access.

7-6 I

Inte|® REFRESH CONTROL UNIT

7.7 PROGRAMMING THE REFRESH CONTROL UNIT

Given a specific processor operating frequency and information about the DRAMs in the system,
the user can program the Refresh Control Unit registers.

7.7.1 Calculating the Refresh Interval

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary
and the maximum period to run the cycles. (The number of refresh cycles is the same as the num-
ber of rows.) You must compensate for bus latency — the time it takes for the Refresh Control
Unit to gain control of the bus. This is typically 1-5%, but if an external bus master will be ex-
tremely slow to release the bus, increase the overhead percentage. At standard operating frequen-
cies, DRAM refresh bus overhead totals 2—3% of the total bus bandwidth.

Given this information and the CPU operating frequency, use the formula in Figure 7-5 to deter-
mine the correct value for the RFTIME Register value.

Rperiop * Fepu

= RFTIME RegisterValue
Rows + (Rows x Overhead%)

Reerion = Maximum refresh period specified by DRAM manufacturer (in us).
Fepu = Operating frequency (in MHz).
Rows = Total number of rows to be refreshed.

Overhead % = Derating factor to compensate for missed refresh requests (typically 1 — 5 %).

Figure 7-5. Formula for Calculating Refresh Interval for RFTIME Register

If the processor enters Power-Save mode, the refresh rate must increase to offset the reduced CPL
clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases. At fre-
guencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time running
refresh cycles. There may not be enough bandwidth left for the processor to perform other activ-
ities, especially if the processor must share the bus with an external master.

7.7.2 Refresh Control Unit Registers

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the Re-
fresh Base Address Register, Refresh Clock Interval Register and the Refresh Control Register.
A fourth register, the Refresh Address Register, permits examination of the refresh address bits
generated by the Refresh Control Unit.

77

REFRESH CONTROL UNIT Intel®

7.7.21 Refresh Base Address Register

The Refresh Base Address Register (Figure 7-6) programs the base (upper seven bits) of the re-
fresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary within the
1 Mbyte address space. When the partial refresh address from the 12-bit address counter (see Fig-
ure 7-1 and “Refresh Control Unit Capabilities” on page 7-2) passes FFFH, the Refresh Control
Unit doesot increment the refresh base address. Setting the base address ensures that the addres
driven during a refresh bus cycle activates the DRAM chip select.

Register Name: Refresh Base Address Register
Register Mnemonic: RFBASE
Register Function: Determines upper 7 bits of refresh address.
15 0
RIR]|R RIR|R|R
AlA]A AlA]JA]A
11111 111111
91817 65|43
A1008-0A
Bit . Reset)
Mnemonic Bit Name State Function
RA19:13 Refresh 00H Uppermost address bits for DRAM refresh
Base cycles.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 7-6. Refresh Base Address Register

7.7.2.2 Refresh Clock Interval Register

The Refresh Clock Interval Register (Figure 7-7) defines the time between refresh requests. The
higher the value, the longer the time between requests. The down-counter decrements every fall-
ing CLKOUT edge, regardless of core activity. When the counter reaches one, the Refresh Con-
trol Unit generates a refresh request, and the counter reloads the value from the register. Since
Power-Save mode divides the clock to the Refresh Control Unit, this register will require repro-
gramming if Power-Save mode is used.

7-8

Inte|® REFRESH CONTROL UNIT

Register Name: Refresh Clock Interval Register
Register Mnemonic: RFTIME
Register Function: Sets refresh rate.
15 0
R R|IR]R|R RIR|R|R
C c|c|c]|cC c|cl|c]|cC
8 7165 4 312(|1|0
A1288-0A
Bit . Reset .
Mnemonic Bit Name State Function
RC8:0 Refresh Counter 000H Sets the desired clock count between refresh
Reload Value cycles.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

Figure 7-7. Refresh Clock Interval Register

7.7.2.3 Refresh Control Register

Figure 7-8 shows the Refresh Control Register. The user may read or write the REN bit at any
time to turn the Refresh Control Unit on or off. The lower nine bits contain the current nine-bit
down-counter valueThe user cannot program these bitsDisabling the Refresh Control Unit
clears both the counter and the corresponding counter bits in the control register.

7-9

REFRESH CONTROL UNIT Intel®

Register Name: Refresh Control Register
Register Mnemonic: RFCON
Register Function: Controls Refresh Unit operation.
15 0
R R R|IR]R|R RIR|R|R
E C c|c|c]|C c|cl|c]|cC
N 8 7165 4 312(|1|0
A1311-0A
Bit . Reset .
Mnemonic Bit Name State Function
REN Refresh 0 Setting REN enables the Refresh Unit. Clearing
Control Unit REN disables the Refresh Unit.
Enable
RC8:0 Refresh O00OH These bits contain the present value of the
Counter down-counter that triggers refresh requests.
The user cannot program these bits.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 7-8. Refresh Control Register

7.7.2.4 Refresh Address Register

The Refresh Address Register (Figure 7-9) contains address bits RA12:1, which will appear on
the bus as A12:1 on the next refresh bus cycle. Bit O is fixed as a one in the register and in all
refresh addresses.

7-10

Inte|® REFRESH CONTROL UNIT

Register Name: Refresh Address Register
Register Mnemonic: RFADDR
Register Function: Contains the generated refresh address bits.
15 0
R RIR|R|R R|IR|R|R RIR|IR|R
A AlA]JAL]A A|lA]JA]A A|lATA]A
1 111198 716 |5]4 312|11]0
2 110
A1501-0A
Bit . Reset)
Mnemonic Bit Name State Function
RA12:1 Refresh 000H These bits comprise A12:1 of the refresh
Address Bits address.
RAO Refresh Bit 1 AO of the refresh address. This bit is always 1
0 and is read-only.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 7-9. Refresh Address Register

7.7.3 Programming Example
Example 7-1 contains sample code to initialize the Refresh Control Unit. Example 5-2 on page

5-23 shows the additional code to reprogram the Refresh Control Unit upon entering Power-Save
mode.

7-11

REFRESH CONTROL UNIT Intel®

$mod186
name

i SYNTAX:

i INPUTS:

; OUTPUTS:

RFBASE
RFTIME
RFCON
Enable

lib_80186

_config_rcu

_clock_time
_dram_addr

example_80C186_RCU_code

; FUNCTION: This function initializes the DRAM Refresh
; Control Unit to refresh the DRAM starting at dram_addr
; at clock_time intervals.

; extern void far config_rcu(int dram_addr, int clock_time);

dram_addr - Base address of DRAM to refresh
clock_time - DRAM refresh rate

None

NOTE: Parameters are passed on the stack as
required by high-level languages.

equ xxxxh ;substitute register offset
equ xxxxh

equ xxxxh
equ 8000h ;enable bit

segment public ‘code’
assume cs:lib_80186

public _config_rcu

proc far

push bp ;save caller's bp

mov bp, sp ;get current top of stack
equ word ptr[bp+6] ;get parameters off

equ word ptr[bp+8] ;the stack

push ax ;save registers that

push cx ;will be modified

push dx

push di

7-12

Example 7-1. Initializing the Refresh Control Unit

Inte|® REFRESH CONTROL UNIT

mov dx, RFBASE ;set upper 7 address bits

mov ax, _dram_addr

out dx, al

mov dx, RFTIME ;set clock pre_scaler

mov ax, _clock_time

out dx, al

mov dx, RFCON ;Enable RCU

mov ax, Enable

out dx, al

mov cX, 8 ;8 dummy cycles are
;required by DRAMs

xor di, di ;before actual use

_exercise_ram:
mov word ptr [di], O
loop _exercise_ram

pop di ;restore saved registers
pop dx

pop cx

pop ax

pop bp ;restore caller's bp

ret
_config_rcu endp
lib_80186 ends

end

Example 7-1. Initializing the Refresh Control Unit (Continued)

7.8 REFRESH OPERATION AND BUS HOLD

When another bus master controls the bus, the processor keeps &titivé as long as the

HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus
hold, the processor drives the HLB#gnal inactive, indicating to the current bus master that it
wishes to regain bus control (see Figure 7-10). The BIU begins a refresh bus cycle only after the
alternate master removes HOLD. The user must design the system so that the processor can re-
gain bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle,
the CPU will relinquish control by asserting HLDwhen the refresh cycle is complete.

7-13

REFRESH CONTROL UNIT Intel®

T1 T1 T1 T1 T1 T4 T1

CLKOUTJ 0\
®

HOLD

HLDA

NOTES:

1.

a bk wN

HLDA is deasserted; signaling need to run DRAM refresh cycles less than TCLOV'
External bus master terminates use of the bus.

HOLD deasserted; greater than Ti| |g.

Hold may be reasserted after one clock.

Lines come out of float in order to run DRAM refresh cycle.

A1269-0A

Figure 7-10. Regaining Bus Control to Run a DRAM Refresh Bus Cycle

7-14

intel.

Interrupt Control
Unit

intel.

CHAPTER 8
INTERRUPT CONTROL UNIT

The Interrupt Control Unit (ICU) is composed of two 8259A modules connected in cascade and
three Interrupt Request Latch Registers (Figure 8-1). The slave 8259A module controls seven in-
ternal interrupt sources and one external interrupt source (INT7). The master 8259A module con-
trols seven external interrupt sources (INT6—INTO) and the slave module cascade request. The
8259A modules are hardwired for master and slave operation. The master 8259A module offers
the ability to cascade to up to seven other 8259A modules. This arrangement is used to expand
the interrupt handling capability of an 80C186EC/C188EC system to 57 external sources.

The 8259A modules make up the heart of the Interrupt Control Unit. These modules are full im-
plementations of the industry standard 8259A architecture. Those readers already familiar with
the 8259A may be tempted to skip the following secti@@.NOT. There are subtle, yet ex-
tremely important, differences between the discrete implementation of the 8259A and the inte-
grated module.

To understand the function of the Interrupt Control Unit, you must first understand the architec-
ture and programming of a single 8259A module. The remainder of this chapter is organized as
follows:

* Functional overview of the interrupt controller

* Interrupt priority and nesting

¢ Architecture and programming of a single 8259A module

* Integration of the 8259A modules into the Interrupt Control Unit
* Programming of the Interrupt Control Unit

* Hardware interfacing and examples
8.1 FUNCTIONAL OVERVIEW: THE INTERRUPT CONTROLLER
All microcomputer systems must communicate in some way with the external world. A typical
system might have a keyboard, a disk drive and a communications port, all requiring CPU atten-

tion at different times. There are two distinct ways to process peripheral /O requests: polling and
interrupts.

I 8-1

INTERRUPT CONTROL UNIT Intel®

Master 8259A
INTO (3 >{ IR0 INT >
INT1 (3 >{1R1
INT2 [} > |[R2 INTA =
INT3 (3 > |[R3)
INT4 O3 > IR4 D7:0 <::> "
INT5 (3 > [R5 A0 [=&
INT6 (3 > |R6
INT7 [):I IR7 —
N - O m
222 a8 |
SRS MR ENE
21 laf B
Internal Interrupt YYY é 21 e
Request Latch p S S
. — e
Reqgisters © < o
2l |=| |=
Eel Slave 8259A © c %
| = O 9
> | TMIO o iRo INT of |E| |E
Eatl TMI1 IR1 IS =
DMAI2 _ IR2 INTA =
DMAI3
> |[R3 D7:0
Ea TMI2 R4 :
N O
Ea 0o
<< <
Cam 000
il
CAS Bus
Interrupt Requests From Integrated Peripherals

A1217-0A

Figure 8-1. Interrupt Control Unit Block Diagram

8-2

Intel® INTERRUPT CONTROL UNIT

Polling requires that the CPU check each peripheral device in the system periodically to see
whether it requires servicing. It would not be unusual to poll a low-speed peripheral (a serial port,
for instance) thousands of times before it required servicing. In most cases, the use of polling has
a detrimental effect on system throughput. Any time used to check the peripherals is time spent
away from the main processing tasks.

Interrupts eliminate the need for polling by signalling the CPU that a peripheral device requires
servicing. The CPU then stops executing the main task, saves its state and transfers execution to
the peripheral-servicing code (tiv@errupt handle). At the end of the interrupt handler, the
CPUr's original state is restored and execution continues at the point of interruption in the main
task.

The 80C186 Modular Core has a single maskable interrupt input. (See “Interrupts and Exception
Handling” on page 2-39.) Expanding the interrupt capabilities of the CPU beyond that of a single
source requires an interrupt controller. The controller acts like a filter between the multiple inter-
rupt request inputs and the single interrupt request to the CPU. The interrupt controller decides
which of the interrupt requests is the most important (has the highest priority) and presents that
interrupt to the CPU. Upon receipt of an interrupt, the CPU begins execution of a handshaking
sequence called thieterrupt acknowledge cycle

The interrupt acknowledge (or INJAycle) consists of two locked back-to-back bus cycles that
the CPU initiates upon receipt of an unmasked external interrupt. The ¢idi& (Figure 8-2)

is a specialized read cycle during which the CPU fetches the interrupt vector type from the inter-
rupt controller. Interrupt acknowledge cycle timings and waveforms are covered in detail in
Chapter 3, “Bus Interface Unit.”

Data Bus _m—
Vector Type

Figure 8-2. Interrupt Acknowledge Cycle

A1228-0A

Once the CPU has the vector type, it executes the interrupt processing sequence:
1. Saves a partial machine status by pushing the Processor Status Word onto the stack.

2. Clears the Trap Flag bit and Interrupt Enable bit in the Processor Status Word. This
prevents maskable interrupts or single-step exceptions from interrupting the processor
during the interrupt service routine.

3. Pushes the current CS and IP onto the stack.

I 8-3

INTERRUPT CONTROL UNIT Intel®

4. Fetches the new CS and IP for the interrupt vector routine from the Interrupt Vector Table
and begins executing from that point.

8.2 INTERRUPT PRIORITY AND NESTING

The priority of certain interrupts may change during program execution, or the program may wish
to ignore some interrupt sources entirely. The interrupt controller must offer the capability of
modifying interrupt priorities on the fly and must allow for the masking of individual interrupt
sources. The priority scheme used by a particular application is knownisgthept structure

In many systems, it is possible that an interrupt handler may itself be interrupted by another de-
vice. This situation is known asterrupt nesting Typically the system would want only higher-
priority interrupt sources to interrupt a handler in process. For example, you would want your
hard disk drive handler to be interrupted by an impending shut-down interrupt but not by a key-
board keystroke. Systems that allow only higher-priority interrupts to preempt handlers currently
in service are callefllly nestedFully nested is the default interrupt structure used by the 8259A
module.

There are times when it is appropriate to use an interrupt structure other than fully nested. For
example, during execution of an interrupt handler it may be necessary to temporarily enable in-
terrupts from a lower-priority source. The 8259A has several alternate modes that allow modifi-
cations to the fully nested structure.

It is important to define the interrupt structure early in the system design process. Interrupt prior-
ity is controlled by both the hardware and software design. It may not be possible to change the
interrupt structure “in software” if the hardware is incorrectly designed. When developing an in-
terrupt structure for your system, consider the effects of software interrupts, traps, exceptions and
non-maskable hardware interrupts.

8.3 OVERVIEW OF THE 8259A ARCHITECTURE

The 8259A Programmable Interrupt Controller was first introduced as a peripheral chip for 8085
and 8086/8088 microcomputer systems. The 8259A architecture has since been reimplemented
as a CMOS modaule for inclusion in more highly integrated devices.

The 8259A module (Figure 8-3) is divided into several functional blocks. The data bus buffer and
read/write logic constitute the interface between the 8259A module and the CPU. The 8259A
module’s internal control registers are accessed through this interface. This block drives the in-
terrupt vector type on the bus during an TN@ycle.

8-4 I

Intel® INTERRUPT CONTROL UNIT

INT INTA
D7:0 <:> Data Bus <:>
— Buffer
RD and Control Logic
WR »1Read/Write [|
AO—> |ogic
CS —>»
Internal Bus
Cascade S
CAS2:0 <:> Buffer/ {} v ¢ ¢ I/\I
Comparator .
- |R1
| - |R2
i . nterrupt| < |R3
In-service Priority
Register | € 2 [Resolver | €| Re0UeS< IR4
Register| « |R5
- |R6
- |R7
<:> Interrupt Mask Register
Y
A1239-0A

Figure 8-3. 8259A Module Block Diagram

Pending interrupt requests are posted in the Interrupt Request Register. The Interrupt Request
Register contains one bit for each of the eight Interrupt Request (IR) signals. When an interrupt

request is asserted, the corresponding Interrupt Request Register bit is set. The 8259A module
can be programmed to recognize either an active high level or a positive transition on the interrupt

request lines. (See “Edge and Level Triggering” on page 8-9.)

8-5

INTERRUPT CONTROL UNIT Intel®

The Interrupt Request Register bits feed into the Priority Resolver. The Priority Resolver decides
which of the pending interrupt requests is the highest priority based on the programmed operating
mode. The Priority Resolver controls the interrupt request line to the CPU. The Priority Resolver
has a default priority scheme that places IR0 as the highest priority and IR7 as the lowest priority.
The priority can be modified through software. (See “The Priority Resolver and Priority Resolu-
tion” on page 8-10.)

When an interrupt is acknowledged, an In-Service Register bit is set for that specific interrupt
source. In some operating modes, the Priority Resolver looks at the In-Service Register in order
to make its decision. In Fully Nested Mode, for example, the Priority Resolver needs to know
whether a higher-priority interrupt is already in service before it interrupts the CPU. An interrupt
handler must explicitly clear the In-Service bit for its interrupt before returning control to the
main task. (See “The In-Service Register” on page 8-12.)

The Interrupt Mask Register contains one bit for each interrupt request (IR) line. The Interrupt
Mask Register allows the selective disabling of individual interrupt request sources. (See “Mask-
ing Interrupts” on page 8-14.)

An interrupt request line is also referred to asm#errupt level For example, an interrupt on IR
line 7 is also called a “level 7 interrupt.” Figure 8-4 shows a simplified logic diagram for the cir-
cuitry for one IR line (opriority cell).

Multiple 8259A modules can be connected together to expand the interrupt processing capability
beyond eight levels. (See “Cascading 8259As” on page 8-14.) The Cascade Buffer/Comparator
is used only when the 8259A module is programmed for cascade mode. During anyiddA

the Cascade Buffer of the master 8259A drives the address of the slave 8259A module that is be-
ing acknowledged. Each slave 8259A module uses the Cascade Comparator to determine whether
it is the addressed slave.

8.3.1 A Typical Interrupt Sequence Using the 8259A Module

The function of the 8259A module is best illustrated by an example. For this example we assume
the simplest of 8259A module configurations: a single master with the default fixed priority and
programmed for Fully Nested Mode. The initial conditions are as follows:

¢ the 8259A has just been initialized
¢ there are no pending interrupts
¢ all interrupts are unmasked

¢ the IR inputs are programmed as edge-sensitive lines

8-6 I

intel.

INTERRUPT CONTROL UNIT

1. Master clear active only during ICW1.
2. FREEZE is active during INTA and POLL sequences only.
3. D flip-flops are transparent.

CLR In-Service
Edge 9 Latch
Sense CLR
Latch
SET Q CLEAR ISR
LTIM Bit o Control
0=Edge, 1= Level SET Logic
% | l SET ISR :>
IR {>C O) Priority
Resolver
Interrupt —
Request QP O_\ Non-Masked
Latch J/ Request
Q
INTA | B
/1
FREEZE g\
— Q
CLR
Internal Data Bus
MASTER CLEAR
WRITE MASK
- To
FREEZE , Other
READ IMR Priority
READ IRR Cells
READ ISR
Notes:

A1240-0A

Figure 8-4. Priority Cell

8-7

INTERRUPT CONTROL UNIT Intel®

A typical sequence takes place as follows:
1. A low-to-high transition on IR4 sets bit 4 in the Interrupt Request Register.

2. The Priority Resolver checks whether any bits are set in the Interrupt Request Register
that are of a higher priority than IR4. There are none.

3. Because the 8259A module is in Fully Nested Mode, the Priority Resolver checks whether
any bits are set in the In-Service Register that have priority greater than or equal to IR4.
There are none. This step prevents the interruption of higher-priority interrupt handlers by
lower-priority sources.

4. At this point, the Priority Resolver has determined that IR4 has sufficient priority to
interrupt the CPU. The interrupt request line to the CPU is asserted to signal an external
interrupt request.

5. The CPU signals acknowledgment of the interrupt by initiating an interrupt acknowledge
cycle.

6. On the first falling edge of INTAthe 8259A module sets the In-Service Bit for IR4.
Simultaneously, the Interrupt Request Bit is reset. The 8259A modnt# driving the
data bus during this phase of the cycle.

7. On the second falling edge of INT#e 8259A module drives the interrupt type corre-
sponding to IR4 on the data bus. The 8259A module floats its data bus whergtesA
high. The interrupt request signal to the CPU is deasserted.

8. The CPU executes the interrupt processing sequence and begins to execute the interrupt
handler for IR4.

9. During execution of the IR4 handler, IR6 goes high, setting bit 6 in the Interrupt Request
Register.

10. The Priority Resolver sees that IR6 is of lower priority than IR4, which is currently being
serviced (IR4’s In-Service bit is set). Because IR6 idowfer priority than IR4, no
interrupt request is sent to the CPU. If IR6 were sethiglaer priority than IR4, the IR4
handlewould be interrupted.

11. The IR4 handler completes execution. The final instructions of the handler issue an End-
of-Interrupt (EOI) command to the 8259A module. The EOI command clears the In-
Service bit IR4. This completes the servicing of IR4.

12. The Priority Resolver now sees that IR6 is still pending and that no other higher-priority
interrupts are pending or in-service. The 8259A module raises the interrupt request line
again, starting another INTéycle.

8-8 I

Intel® INTERRUPT CONTROL UNIT

8.3.2 Interrupt Requests

The processing of an external interrupt begins with the assertion of an interrupt request signal on
one of the IR lines. The signal first passes through the edge/level detection circuitry, then moves
on to the Interrupt Request Register.

8.3.2.1 Edge and Level Triggering

The IR lines are programmable for either edge or level triggering. Both types of triggering are
active high. For both types, the high state on the IR line must be maintained until after the falling
edge of the first INTApulse during an interrupt acknowledge cycle. (See “Spurious Interrupts”
on page 8-10.)

Edge triggering is defined as a zero-to-one transition on an IR line. The high state on the IR line
must be maintained until after the falling edge of the first INdulse during an interrupt ac-
knowledge cycle. An edge-sensitive IR line must be returned to its low state for a specified
amount of time (refer to the data sheet for the value) to reset the edge detection circuit. Unless an
edge-sensitive IR line is returned to a low state after it is acknowledgadnittgenerate addi-

tional interrupts.

Level triggering is defined as a valid logic one on an IR line. The high value on the IR line must
be maintained until after the falling edge of the first INdilse during an interrupt acknowledge

cycle. Unlike an edge-sensitive IR line, a level-sensitive IR line continues to generate interrupts
as long as it is asserted. A level-sensitive IR signal must be deasserted before the EOl command
is issued if continuous interrupts from the same source are not desired.

8.3.2.2 The Interrupt Request Register

The Interrupt Request Register maintains one bit for each of the eight interrupt request lines.
When a valid interrupt request is present on an IR line, the corresponding Interrupt Request Reg-
ister bit is set (an interrupt gending. The Interrupt Request Register bits are transparent; the
state of the IR line flows directly through the latch to the Priority Resolver until the bits are
latched. The output of the Interrupt Request Register is used by the Priority Resolver to decide
whether a CPU interrupt is warranted. Since the Interrupt Request Register is transparent, a tog-
gling IR line of sufficient priority causes the interrupt request output of the 8259A module to tog-
gle as well.

The state of Interrupt Request bits is latched by the falling edge of an internal signal called
FREEZE FREEZEis valid between the falling edge of the first INpPAlse and the rising edge

of the last INTApulse during an interrupt acknowledge cycle (see Figure 8-4). The highest-pri-
ority pending Interrupt Request Register bit is cleared on the first falling edge of tha éther

bits are left undisturbed.

8-9

INTERRUPT CONTROL UNIT Intel®

8.3.2.3 Spurious Interrupts

For both level- and edge-sensitive interrupts, a high value must be maintained on the IR line until
after the falling edge of the second INlIse (see Figure 8-5). gpurious interrupt requess
generated if this stipulation is not met. A spurious interrupt on any IR line generates the same
vector as an IR7 request. However, a spurious interrupt does not set the In-Service bit for IR7
when it is acknowledged by the CPU. The interrupt handler for IR7 must check the In-Service
Register to determine whether the interrupt source was a valid IR7 (the In-Service bit is set) or a
spurious interrupt (the In-Service bit is cleared).

] IR sampled on this edge.

INTA /

IR (Spurious) \
IR (Valid) \

|

A1241-0A

Figure 8-5. Spurious Interrupts

8.3.3 The Priority Resolver and Priority Resolution
The Priority Resolver uses four pieces of information when deciding whether to generate a CPU
interrupt:

¢ the programmed operating mode and priority structure

¢ the state of the bits in the Interrupt Request Register

¢ the state of the bhits in the In-Service Register

¢ the state of the bhits in the Interrupt Mask Register

The priority scheme used by the Priority Resolver is programmable. The remainder of this section
describes the priority structure options.

8-10

Intel® INTERRUPT CONTROL UNIT

8.3.3.1 Default (Fixed) Priority

After initialization, the 8259A module sets the priorities of the interrupt levels to the default con-
dition, in which IR7 is the lowest priority and IRO is the highest (Figure 8-6). For systems using
fixed priority, the interrupt source with the highest priority is connected to IR0, the interrupt
source with the second-highest priority is connected to IR1, and so on. The lowest-priority device
is connected to IR7.

Highest Lowest
Priority Priority

Y Y

IRO|IR1|IR2]|IR3|IR4|IR5]IR6 |IRY

—— Decreasing relative priority —>

A1242-0A

Figure 8-6. Default Priority

8.3.3.2 Changing the Default Priority: Specific Rotation

In some systems, it may be necessary to alter the default priority during program execution. Any
one of the IR lines can be reprogrammed to be the lowest-priority interrupt source. The priorities
of the remaining IR lines are then redefined in a circular fashion. For example, if IR5 is pro-
grammed to be the lowest-priority interrupt source, then IR6 becomes the highest-priority source
(see Figure 8-7). One could think of the priority pointer rotating through the IR sources. This
method of redefining the priority is callegecific rotation

The priorities of the IR lines cannot be set independently.

Highest Lowest
Priority Priority

Y Y

IR6 |IR7|IRO|IR1|IR2|IR3|IR4|IR5

—— Decreasing relative priority —>

A1243-0A

Figure 8-7. Specific Rotation

I 8-11

INTERRUPT CONTROL UNIT Intel®

8.3.3.3 Changing the Default Priority: Automatic Rotation

In some applications, a number of interrupting devices have equal priaritymatic rotation
ensures that devices of equal priority get equal shares of CPU resources.

When programmed for automatic rotation, the 8259A module automatically assigns an IR line
the lowest priority after the service routine for that interrupt has completed (and the EOI com-
mand has been sent). The respective priorities of the other interrupts that were pending during the
service routine are changed in the same circular fashion as described in “Changing the Default
Priority: Specific Rotation” on page 8-11.

For example, assume that IR0 is programmed as highest priority and that the IR4 handler is cur-
rently being executed. At the completion of the IR4 handler, the Rotate on Non-Specific EOI
command is sent to the 8259A module. The 8259A module then assigns IR4 as the lowest prior-
ity. IR5 becomes the highest-priority device (see Figure 8-8).

Highest Lowest

Priority Priority

IR0 [IR1 [IR2|IR3|IR4 | IR5 | IR6 | IR7| BEfore
Rotation

IR5|IR6|IR7|IRO|IR1|IR2|IR3|IR4 Afte_r
Rotation

—— Decreasing relative priority —

Al1244-0A

Figure 8-8. Automatic Rotation

8.3.4 The In-Service Register

The In-Service Register contains one bit for each of the eight IR lines. On the falling edge of the
first INTA pulse from the CPU, the In-Service bit corresponding to the highest-priority pending
interrupt is set. The In-Service bits are flags that indicate which interrupt requests have begun (but
not completed) execution of their interrupt handlers.

8-12 I

Intel® INTERRUPT CONTROL UNIT

More than one In-Service bit can be set concurrently. Consider the case in which a low priority
interrupt handler is interrupted by a higher-priority interrupt request (the interrupts are nested).
The In-Service bits for both interrupt sources are set when the higher-priority interrupt is ac-
knowledged.

Setting the In-Service bit for an IR line inhibits (masks) further interrupts from that IR line and

all IR lines of a lower priority when the 8259A module is programmed for fully nested operation.

For example, if the 8259A module is programmed for default priority (IR0 highest) and the IR4
In-Service bit is set, then no interrupts are possible from IR4 through IR7 until the In-Service bit
is reset.

The default masking of interrupts by the In-Service Register can be circumvented by using either
Special Fully Nested Mode or Special Mask Mode (described below).

The In-Service bits are cleared by an End-of-Interrupt (EOI) command. The EOI command can
either be sent to the 8259A module by the CPU or be generated automatically by the 8259A mod-
ule itself.

8.34.1 Clearing the In-Service Bits: Non-Specific End-Of-Interrupt

The Non-Specific End-of-Interrupt (EOI) command instructs the 8259A module to reset the high-
est-priority In-Service bit. When the 8259A module is operating in Fully Nested Mode, the high-
est-priority In-Service bit always corresponds to the interrupt handler in progress; the 8259A
module does not need to be told explicitly which handler is ending. The Non-Specific EOI is a
shortcut for systems that use the fully nested interrupt structure.

8.3.4.2 Clearing the In-Service Bits: Specific End-Of-Interrupt

Some operating modes of the 8259A module do not use the fully nested interrupt structure. In
these alternate modes, a lower-priority interrupt request can interrupt a higher-priority handler. If
a Non-Specific EOIl is issued in this case, the highest-priority In-Service bit ievesahough

the handler for that interrupt has not completed execution.The Specific End-of-Interrupt

(EOI) command instructs the 8259A module to reset a specific bit in the In-Service Register. Sys-
tems that are not using Fully Nested Mode must issue a Specific EOl command to ensure that the
proper In-Service bit is cleared.

8.3.4.3 Automatic End-Of-Interrupt Mode

The 8259A module can be programmed to clear the In-Service Bit for an IR line on the rising
edge of the second INTBulse of the interrupt acknowledge cycle. When Automatic End-of-In-
terrupt (EOI) Mode is selected, the In-Service bit for any given IR line is set only between the
falling edge of the first INTApulse and the rising edge of the second TNjLise.

I 8-13

INTERRUPT CONTROL UNIT Intel®

Use of Automatic EOI Mode precludes a fully nested interrupt structure. When Automatic EIO
Mode is selected, the In-Service bit is cleared before the handler begins execution. As soon as the
In-Service bit is cleared, any unmasked source (of any priority) can interrupt the handler.

Automatic EOI Mode can be used only in a master 8259A in a cascaded system. Using Automatic
EOI Mode for a slave in a cascaded system will lead to system malfunction.

8.3.5 Masking Interrupts

During program execution, the CPU may wish to ignore certain interrupts while enabling others.
The Interrupt Mask Register is used to selectively enable and disable each IR line. The masking
operation physically takes place after the Interrupt Request Register. A masked interrupt still sets
its corresponding Interrupt Request Register bit.

External maskable interrupts can be globally enabled and disabled within the CPU itself. The In-
terrupt Enable Flag in the Processor Status Word controls the global masking of external inter-
rupts. (See Chapter 2, “Overview of the 80C186 Family Architecture,” for more information
about the Interrupt Enable Flag.)

8.3.6 Cascading 8259As

The 8259A module includes the capability to cascade up to 8 slave interrupt controllers to a single
master module. In a fully cascaded system, the interrupt request capability is extended to 64 lev-
els. (The 80C186EC/C188EC Interrupt Control Unit uses a cascaded configuration.)

8.3.6.1 Master/Slave Connection

Figure 8-9 shows a typical master/slave connection. In a cascade configuration, each slave 8259A
module connects its interrupt output to one of the master 8259A module’s interrupt request in-
puts. The master controls the actions of the slaves through the Cascade Bus (CAS2:0). Each slave
device in a system has a unique Slave ID, which must be programmed to the same numerical val-
ue as the master IR line to which it is connected. During an interrupt acknowledge cycle, the mas-
ter 8259A drives CAS2:0 lines with the Slave ID of the slave that is being acknowledged. The
Cascade Bus lines are inactive low and are active only during interrupt acknowledge cycles.

8-14 I

INTERRUPT CONTROL UNIT

Slave 8259A

IRO INT
IR1 _
IR2 INTA
IR3
IR4
IR5
IR6
IR7

lVYYVYYV

Master 8259A
IRO INT ——> CTPOU
IR1
IR2 INTA [e—q— From
IR4
IR5
IR6
IR7
R
<< <
00O

—>{ CASO

—> CAS2
—> CAS1

A1245-0A

Figure 8-9. Typical Cascade Connection

8-15

INTERRUPT CONTROL UNIT Intel®

8.3.6.2 The Cascaded Interrupt Acknowledge Cycle: An Example

The following example illustrates the interaction between master and slave 8259A modules in a
cascaded configuration. We assume the following conditions:

* The master 8259A module is programmed for cascade operation, a slave on IR7, default
priority and edge-triggered mode.

* The slave 8259A module is programmed for cascade operation, a slave address of 7, default
priority and edge-triggered mode.

¢ Both modules have just been initialized and no interrupts are pending.
¢ Allinterrupts in both modules are unmasked.

A typical cascade interrupt sequence takes place as follows:

1. A low-to-high transition on IR2 of the slave 8259A module sets bit 2 in the Interrupt
Request Register.

2. The slave’s Priority Resolver checks whether any bits are set in the Interrupt Request
Register that are of a higher priority than IR2. There are none.

3. The slave’s Priority Resolver checks whether any bits are set in the In-Service Register
that are of an equal or higher priority than IR2. There are none.

4. At this point, the slave’s Priority Resolver has determined that IR2 has sufficient priority
to request an interrupt. The slave interrupt request line (connected to the IR7 line on the
master 8259A module) is asserted to signal an interrupt request.

5. The low-to-high transition on the IR7 line signals to the master that the slave module is
requesting an interrupt.

6. The Priority Resolver within the master 8259A module checks whether the slave request
is of sufficient priority to interrupt the CPU. (It is.) Note that, for the purposes of priority
resolution,a cascaded input looks just like any other IR line

7. The master 8259A module asserts the interrupt request output line to the CPU.

8. The CPU signals acknowledgment of the interrupt by initiating an interrupt acknowledge
(INTA) cycle.

9. On the first falling edge of INTAthe following actions occur:

— The master 8259A module clears the IR7 Interrupt Request Bit and sets the IR7 In-
Service Bit.

— The master 8259A module sees that IR7 has a slave connected to it and drives the
address of the slave (seven, in this case) on the CAS2:0 lines.

— The slave 8259A module recognizes its address on the CAS2:0 bus. The slave 8259A
module clears the IR2 Interrupt Request Bit and sets the IR2 In-Service bit.

8-16 I

Intel® INTERRUPT CONTROL UNIT

10. On the second falling edge of INTfe slave 8259A module drives the interrupt type
corresponding to IR2 on the data bus. The CAS2:0 lines return to their inactive low state
and the slave 8259A module floats its data bus when Ilgd&s high. The interrupt
request signal from the master 8259A module to the CPU goes inactive (low). The master
8259A module doesot drive the data bus during a slave acknowledge.

11. The CPU executes the interrupt processing sequence and begins to execute the interrupt
handler for a slave IR2.

12. The slave IR2 handler completes execution. The final instructions of the handler issue an
End-of-Interrupt (EOI) command to the master 8259A module and a second EOI
command to the slave 8259A module. This completes the servicing of slave IR2.

8.3.6.3 Master Cascade Configuration

The Master Cascade Configuration Register includes one bit for each of the eight interrupt re-
guest lines on the master 8259A module. Setting a bit for an IR line informs the master 8259A
module that a slave 8259A module is connected to that IR line. The master uses the Master Cas-
cade Configuration bits during an interrupt acknowledge cycle to determine whether the CAS
lines should be active. The CAS lines are active only when a cascaded input is being acknowl-
edged; the value on the CAS bus is equal to the line number of the cascaded interrupt request. For
example, if the master is acknowledging an interrupt from a slave cascaded on line IR4, then the
CAS2:0 bus is driving 100 binary (4 decimal).

8.3.6.4 Slave ID

The slave ID must always be programmed equal to the master IR line to which the slave is con-
nected. For example, if a slave’s interrupt request output is connected to the master’s IR6 line,
then that slave must be programmed for a slave ID of six. A slave 8259A module responds to an
INTA signal (and deposits a vector on the bus) only if its slave ID and the CAS2:0 address match.

Special precautions must be taken when connecting a slave to IR0 of a master 8259A module. A
slave programmed for an ID of zero is active both for interrupts that it has requested and for un-
cascaded master interrupts (uncascaded interrupts leave the CAS lines inactive low). If this situ-
ation occurs, there will be contention on the data bus as both the master and the slave attempt to
drive the interrupt type on the data bus. Never cascade a slave 8259A module to IR0 of a master
module unless IR0 is the last available uncascaded input (i.e., the system is fully cascaded with
eight slave 8259A modules).

8.3.6.5 Issuing EOl Commands in a Cascaded System

Interrupt handlers for slave interrupts must issue two EOl commands: one for the master and one
for the slave. The master EOI must be sent first, followed by the slave EOI.

I 8-17

INTERRUPT CONTROL UNIT Intel®

8.3.6.6 Spurious Interrupts in a Cascaded System

A spurious interrupt on a master IR line that is uncascaded will generate a spurious IR type 7. The
CAS lines remain inactive when a spurious interrupt is acknowledged (a slave connected to IR7
will not be addressed). The type that is placed on the bus is that of an IR7 interrupt for the master
module.

A spurious interrupt on a slave IR pin can cause one of two scenarios (Figure 8-10). If the slave
IR line goes inactive well before the falling edge of the first INTh&n the master will generate

a spurious IR type 7 interrupt; the slave is not involved. If the slave IR line goes imactithe

falling edge of the first INTAthe delay through the slave module may be long enough that the
interrupt will look like avalid slave interrupt to the master anslparious interrupt to the slave.

In this case, the slave will deposit the vector for IR7 on the bus; the handler for slave IR7 must
check the In-Service bit to see whether the interrupt was valid or spurious.

/

IR sampled on this edge

INTA

|

Delay through slave

Slave IR —\ﬁ/
/

Master IR \4\

Case 1: Spurious interrupt in master and slave

i Delay through slave
Slave IR e e

Master IR ki__,\

Case 2: Spurious interrupt in slave only

A1218-0A

Figure 8-10. Spurious Interrupts in a Cascaded System

8-18

Intel® INTERRUPT CONTROL UNIT

8.3.7 Alternate Modes of Operation: Special Mask Mode

Some applications require an interrupt handler to dynamically alter the system priority structure.
For example, the handler may need to inhibit lower-priority interrupts during a portion of its ex-
ecution but enable some of them during another portion of the code. In Fully Nested Mode this
is impossible; the interrupt handler cannot enable lower-priority interrupts.

Special Mask Mode circumvents the default masking of lower-priority interrupts in Fully Nested
Mode. When Special Mask Mode is selected, only interrupts from the interrupt source currently
in service are masked; all other interrupt requests (of both lower and higher priority) are enabled.
Interrupts can still be masked individually using the Interrupt Mask Register.

8.3.8 Alternate Modes of Operation: Special Fully Nested Mode

Special Fully Nested Mode allows the nesting of interrupts to be preserved in a cascaded system.
An example best illustrates the need for Special Fully Nested Mode.

Assume that a slave 8259A module receives an interrupt and passes that interrupt request to the
master 8259A module that is in Fully Nested Mode. When the slave interrupt is acknowledged,
both the In-Service bit in the slave and the In-Service bit for the slave input in the master are set.
If the slave receives a higher-priority interrupt, the master will ignore it because the In-Service
bit for the slave module is set. The fully nested structure has been disturbed, since a higher-pri-
ority interrupt cannot interrupt a lower-priority handler.

Special Fully Nested Mode restores the fully nested structure in a cascaded system. When pro-
grammed for Special Fully Nested Mode, a master 8259A module enables interrupt requests from
all sources of equal or higher priority than the request currently in service. This allows a slave
8259A module to issue higher-priority interrupts to the master while there are lower-priority
slave interrupts in service.

Special precautions need to be taken when using Special Fully Nested Mode. The software must
determine whether any other slave interrupts are still in service before issuing an EOI to the mas-
ter. This is done by modifying the EOI bit in OCW?2 to indicate a Specific EOI to the slave and
then reading the slave’s In-Service Register. If the slave’s In-Service Register is all zeros, then
no other interrupts are in service for the slave and an EOI can be sent to the master. If other slave
interruptsare still in service, then an EOI shoutdt be sent to the master 8259A module.

Special Fully Nested Mode should be used only in the master 8259A module in a cascaded sys-
tem.

8-19

INTERRUPT CONTROL UNIT Intel®

8.3.9 Alternate Modes of Operation: The Poll Command

Conventional polling requires that the CPU check each peripheral device to determine whether it
needs servicing. Polling can also be accomplished with an 8259A module by using the Poll com-
mand. This method improves polling efficiency because the CPU needs to check only the 8259A
module, not each of the devices connected to it.

The Poll command is useful in various situations. For example, if more than 64 interrupt sources
are required in a system (64 is the limit for cascaded 8259A modules) the interrupt capability can
be expanded using polling. The number of interrupt request sources in a polled 8259A module
system is limited only by the number of 8259A modules that can be addressed.

The Poll command takes the place of a standard interrupt acknowledge sequence. The external
maskable interrupt request of the CPU must be disabled either by disconnecting it from the 8259A
module (when possible) or by clearing the Interrupt Enable Flag in the CPU (with a CLI instruc-
tion). Polling is covered in greater detail in “Special Mask Mode, Poll Mode and Register Read-
ing: OCW3” on page 8-34.

8.4 PROGRAMMING THE 8259A MODULE

This section describes the programming of a single 8259A module. Programming requirements
that are specific to the 80C186EC/C188EC are covered in “Module Integration: The 80C186EC
Interrupt Control Unit” on page 8-36.

8.4.1 Initialization and Operation Command Words

The command register set of the 8259A module is divided into two types of words: Initialization
Command Words (ICWs) and Operation Command Words (OCWSs). The Initialization Com-
mand Words are usually written only once during program execution (during system initializa-
tion). The Operation Command Words can be written at any time during program execution (after
initialization is complete).

The Initialization Command Words specify information that does not change during execution.
For example, the base interrupt type for the module does not change and is specified by an Ini-
tialization Command Word. The Operation Command Words specify conditions that may change
during execution. The Interrupt Mask Register, for example, is accessed through an Operation
Command Word.

8-20 I

Intel® INTERRUPT CONTROL UNIT

8.4.2 Programming Sequence and Register Addressing

All of the 8259A module registers reside within an address window of two bytes. Write access to
individual registers is controlled by a combination of the following:

¢ the address of the register (state of the A0 address line on the 8259A module)
¢ the data written to the register

* the sequence in which the data is written

Registers are read from the 8259A module by first sending a “read command” and then immedi-
ately reading from the module. The Interrupt Mask Register is an exception to this rule; it can be
read directly.

Each 8259A module occupies two locations in the memory map. For the 80C186EC/C188EC,
each module occupies two consecutive words in the Peripheral Control Blockatteseports

are named MPICPO, MPICP1, SPICPO and SPICPIMtardSrefer tomasterandslave. It is
through these access ports that the Initialization and Operation Command Words are sent.

8.4.3 Initializing the 8259A Module

The 8259A module must be initialized before it can be used. After reset, the states of all the
8259A registers are undefined. The 8259A modules must be initialized before the Interrupt En-
able flag in the Processor Status Word is set (enabling interrupts).

8431 8259A Initialization Sequence

The 8259A module initialization sequence is usually performed as a part of the boot code for the
system. The Initialization Command Words are written to the 8259A module following the se-
guence shown in Figure 8-11. The exact sequence must be followed. The 8259A module has a
state machine that controls access to the individual registers. If the sequence is not followed cor-
rectly, the state machine will get “lost” and cause improper initialization. Should the initialization
sequence be interrupted, the state machine can be reinitialized by re-starting the initialization pro-
cess.

I 8-21

INTERRUPT CONTROL UNIT Intel®

Initialization begins with the writing of ICW1. ICW1 is accessed whenever a write to the 8259A
module occurs with AO=0 (MPICPO or SPICPO0) and data bit D4=1. The following actions occur
within the 8259A module when ICW1 is written:

* the edge detection circuit is reset

¢ the Interrupt Mask Register is cleared

¢ the IR7 line is assigned lowest priority (default)

* the slave mode address is setto 7

¢ Special Mask Mode is cleared

* the Status Read hits are set to select the Interrupt Request Register

Initialization continues with the successive writing of ICW2, ICW3 and ICW4. The remainder of
this section describes the Initialization Command Words in detail.

8-22 I

INTERRUPT CONTROL UNIT

Begin
Initialization

[write ICW1 |

Y

[write Icw2 |

In
Cascade
Mode?

No

[write ICW3 |

[write ICW4 |

—

Initialization
Complete

A1219-0A

Figure 8-11. 8259A Module Initialization Sequence

8.4.3.2 ICW1: Edge/Level Mode, Single/Cascade Mode

The bit positions and definitions for ICW1 are summarized in Figure 8-12.

8-23

INTERRUPT CONTROL UNIT Intel®

Register Name: Initialization Command Word 1
Register Mnemonic: ICW1 (accessed through MPICPO and SPICPO)
Register Function: Begins 8259A module initialization sequence.
15 0
L S |
T N|C
0jJ]ojo]1 I'Jo| G| 4
M L
A1220-0A
Bit . Reset .
Mnemonic Bit Name State Function
LTIM Level X Set to select level triggering on IR inputs. Clear
Trigger to select edge triggering.
Mode
SNGL Single X Set when 8259A module is the only one in
8259A in system. Clear to select cascade mode.
System NOTE: SNGL must always be cleared for
80C186EC and 80C188EC systems.
IC4 ICw4 X Set to indicate that an ICW4 is needed.
Needed? NOTE: IC4 must always be set for 80C186EC
and 80C188EC systems.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-12. ICW1 Register

The LTIM bit controls the edge detection circuitry on the interrupt request input lines. There is
no provision for setting the mode of the individual IR lines.

The SNGL bit selects either single master or cascade (master/slave) mode. The SNGL bit must
be cleared to select cascade mode for both 8259A modules in the 80C186EC/C188EC Interrupt
Control Unit.

The 1C4 bit, when set, informs the 8259A module that an ICW4 command will be issued. ICW4
is always needed for the 80C186EC/C188EC. The remaining bits in the ICW1 register must be
programmed with the bit values specified in Figure 8-12.

8-24

Intel® INTERRUPT CONTROL UNIT

8.4.3.3 ICW2: Base Interrupt Type

ICW?2 (Figure 8-13) specifies the five most-significant bits of the interrupt type for the 8259A
module. The lower three bits are automatically set equal to the interrupt request line that is being
acknowledged. For example, if ICW?2 is programmed to 20H (for a Type 32 interrupt) and IR4 is
being acknowledged, interrupt type 24H (for a Type 36 interrupt) is driven on the bus during an
interrupt acknowledge cycle.

Register Name: Initialization Command Word 2
Register Mnemonic: ICW?2 (accessed through MPICP1 and SPICP1)
Register Function: Sets the base interrupt type for the module.

15 0
TITI]IT|T TIT|TI|T
716|5]| 4 312|1|0

A1221-0A
Bit . Reset)
Mnemonic Bit Name State Function
T7:3 Interrupt X Write the five high-order bits of the base
Type address for the interrupt type (from the Interrupt
Vector Table, Figure 2-25 on page 2-40) to the
T7:3 bits. For example, write 20H to these bits
to specify a Type 8 interrupt.
T2:0 IR Line X T2:0 are automatically set equal to the interrupt
request line that is being acknowledged.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-13. ICW2 Register

NOTE

Pay strict attention to reserved interrupt types (see Figure 2-25 on page 2-40)
when assigning a base interrupt type to an 8259A module. Use of the reserved
interrupt types could cause incompatibilities with future Intel products.

8-25

INTERRUPT CONTROL UNIT Intel®

8.4.3.4 ICW3: Cascaded Pins/Slave Address

The function of ICW3 differs between 8259A modules configured as masters and those config-
ured as slaves. ICW3 is accepted by the 8259A module only if it has been programmed for cas-
cade mode.

In a master 8259A module, ICW3 is the Master Cascade Configuration Register (Figure 8-14).

Each bit in the Master Cascade Configuration Register corresponds to an interrupt request line.
Setting a bit in this register informs the master 8259A module that a slave 8259A module is con-

nected to the corresponding input. For example, if a slave is connected to IR3 of the master, the
S3 bit in the master must be set.

In a slave 8259A module, ICW3 is the Slave ID Register (Figure 8-15). The programmed ID of

a slave must match the IR on the master to which the slave is connected. For example, if a slave
is connected to IR7 of the master 8259A module, then the slave’s ID must be programmed to sev-
en.

8.4.35 ICW4: Special Fully Nested Mode, EOI Mode, Factory Test Modes

The bit positions and definitions for ICW4 are shown in Figure 8-16. The SFNM bit is used to
select Special Fully Nested Mode, and the AEOI bit is used to select the Automatic EOl Mode.
These modes can be used only in the master of a cascaded system.

The FT2:0 bits are used to select test modes during factory test. The 8259A test modes redefine
the 80C186EC/C188EC pinout to facilitate device testing.

CAUTION: The FT2:0 bitsnust be programmed with the values showifrigure 8-16Failure
to follow this guideline will result in system failure and possible damage to the
80C186EC/C188EC system.

The remaining bits in the ICW4 register must be programmed with the bit values specified in Fig-
ure 8-16.

8-26 I

Intel® INTERRUPT CONTROL UNIT

Register Name: Initialization Command Word 3 (Master)
Register Mnemonic: ICW3 (accessed through MPICP1)
Register Function: Selects cascaded input pins on master 8259A.
15 0
S|S|S|SsS S|Ss]|S|sS
716 (|5]4 312|1]0
A1222-0A
Bit . Reset .
Mnemonic Bit Name State Function
S7:0 Slave IRs XXH Each S7:0 bit corresponds to the IR line of the
same number. Setting an S7:0 bit indicates that
a slave 8259A is attached to the corresponding
IR line.
NOTE: The S7 bit must be set in the master
8259A module for the 80C186EC/C188EC.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-14. ICW3 Register — Master Cascade Configuration

8-27

INTERRUPT CONTROL UNIT Intel®

Register Name: Initialization Command Word 3 (Slave)
Register Mnemonic: ICW3 (accessed through SPICP1)
Register Function: Sets Slave ID for slave 8259A module.
15 0
[I
Df(D|D
ojojoj]o oj]2|1}|o0

A1223-0A

Bit . Reset)
Mnemonic Bit Name State Function
ID2:0 Slave ID XXH Sets the ID for a slave 8259A module.

NOTE: The slave module in the
80C186EC/C188EC must be setto an ID of 7
(111 binary).

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-15. ICW3 Register — Slave ID

8-28

Intel® INTERRUPT CONTROL UNIT

Register Name: Initialization Command Word 4
Register Mnemonic: ICW4 (accessed through MPICP1 and SPICP1)
Register Function: Selects SFN Mode and AEOI Mode.
15 0
s||F|F|A]F
F T|ITI|E|T
0]J]O0O|]O]|N 2111010
M |
A1224-0A
Bit . Reset .
Mnemonic Bit Name State Function
SFNM Special X Set to select Special Fully Nested Mode.
Fully NOTE: Special Fully Nested Mode must be
Nested used only in the master of a cascaded system.
Mode
AEOI Automatic X Set to select Automatic EOl Mode.
EOI Mode

NOTE: Automatic EOl Mode must be used only
in the master of a cascaded system.

FT2:0 Factory XXX These bits select factory test modes.
;‘élsetc'\tmde CAUTION: You must write the FT2:0 bits with

the following values. Failure to do so will cause
system failure and may cause system damage.

FT2 FT1 FTO
0 0 1

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-16. ICW4 Register

8-29

INTERRUPT CONTROL UNIT Intel®

8.4.4 The Operation Command Words

The 8259A is reprogrammed during program execution by using the Operation Command
Words. The Operation Command Words can be sent at any time after initialization of the 8259A
module is complete. The three Operation Command Words (OCW1, OCW2 and OCW3) are ad-
dressed through a combination of the A1l (register address) line and the state of data bits D3 and
D4 (see Table 8-1).

Table 8-1. Operation Command Word Addressing

Access Port Register Al D4 D3
SPICP1 OCW1 1 X X
SPICPO OCw2 0 0
SPICPO OCW3 0 1

8.4.4.1 Masking Interrupts: OCW1

OCWI1 (Figure 8-17) is the Interrupt Mask Register. Setting a bit in the Interrupt Mask Register
inhibits further interrupts from the corresponding IR line. For example, if the M3 bit is set, then
the IR3 line cannot generate interrupts. Clearing a bit in the Interrupt Mask Register enables in-
terrupts from the corresponding IR line.

Note that the Interrupt Mask Register operates on the output of the Interrupt Request Register.
The IR lines can still set the bits in the Interrupt Request Register, even though they are masked.
An interrupt will be requested if a masked IR line sets its Interrupt Request bit and then is un-
masked.

The Interrupt Mask Register is read directly by read cycles with A1=1 (the MPICP1 and SPICP1
Peripheral Control Block registers).

8.4.4.2 EOI And Interrupt Priority: OCW2
OCW?2 (Figure 8-18) is used to set priority and execute EOl commands. The R (rotate), SL (spe-

cific level) and EOI (end-of-interrupt) bits comprise a three-bit instruction field. The instruction
field is decoded as shown in Table 8-2.

8-30 I

Intel® INTERRUPT CONTROL UNIT

Register Name: Operation Command Word 1
Register Mnemonic: OCW1 (accessed through MPICP1, SPICP1)
Register Function: Interrupt Mask Register.

15 0
MIM|M|M MIM|IM|M
716|5]| 4 312|1|0

A1225-0A
Bit . Reset .

Mnemonic Bit Name State Function

M7:0 Mask IR XXH Setting a bit in the Interrupt Mask Register
inhibits the corresponding interrupt request line
from generating an interrupt. Clearing an M7:0
bit enables interrupts from the corresponding
source.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written

to a logic zero to ensure compatibility with future Intel products.

Figure 8-17. OCW1 — Interrupt Mask Register

8-31

INTERRUPT CONTROL UNIT

intel.

Register Name:

Register Mnemonic:

Register Function:

Operation Command Word 2
OCW?2 (accessed through MPICPO, SPICPO)

Priority and EOl commands

15 0
R|S]|E LlL]|L
L|O 21110
| 0 0
A1225-0A
Bit . Reset)
Mnemonic Bit Name State Function
R Rotate X This bit combines with the SL and EOI bits to
create a 3-bit instruction field. See Table 8-2.
SL Specific X This bit combines with the R and EOI bits to
Level create a 3-bit instruction field. See Table 8-2.
EOI End-of- X This bit combines with the R and SL bits to
Interrupt create a 3-bit instruction field. See Table 8-2.
L2:0 IR Level XXX These bits specify the interrupt level that the
instruction (see Table 8-2) is to act upon. When
the bits are not used by an OCW?2 instruction,
they are “don’t care” values.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-18. OCW?2 Register

Table 8-2. OCW?2 Instruction Field Decoding

R SL EOI Command

0 0 0 Rotate in Automatic EOl Mode (Clear)
0 0 1 Non-Specific EOl Command

0 1 0 No Operation

0 1 1 Specific EOI *

1 0 0 Rotate in Automatic EOl Mode (Set)

* These commands use the L2:0 field

8-32

Intel® INTERRUPT CONTROL UNIT

Table 8-2. OCW?2 Instruction Field Decoding (Continued)

R SL EOI Command

1 0 1 Rotate on Non-Specific EOl Command
1 1 0 Set Priority (Specific Rotation) *

1 1 1 Rotate on Specific EOl Command *

* These commands use the L2:0 field

The Rotate in Automatic EOl Mode commands control priority rotation when the 8259A module
is programmed (in ICW4) for Automatic EOI Mode. When Rotate in Automatic EOl Mode is set,

priority rotates automatically at the end of the interrupt acknowledge cycle. Automatic priority
rotation in Automatic EOI Mode is canceled by issuing the clear command (R=0, SL=0, EOI=0).

The Non-Specific EOl Command resets the highest-priority In-Service bit. The Rotate on Non-
Specific EOl Command resets the highest-priority In-Service bit and assigns the corresponding
IR line the lowest priority.

The Specific EOl Command resets the In-Service bit for the IR line specified in the L2:0 field of
OCW?2. The Rotate on Specific EOl Command resets the In-Service bit for the IR line specified
in the L2:0 field of OCW2 and assigns that line the lowest priority.

The Set Priority Command (Specific Rotation) assigns the lowest priority to the IR line specified
in L2:0 of OCW?2.

Bits D4 and D3 are part of the address for the OCW?2 register. D4 and D3 must always be pro-
grammed to zero. The L2:0 bits are “don’t care” when they are not used by an OCW?2 instruction.

I 8-33

INTERRUPT CONTROL UNIT Intel®

8.4.4.3 Special Mask Mode, Poll Mode and Register Reading: OCW3

OCWS3 (Figure 8-19) is used to control Special Mask Mode, Poll Mode, and register reading.

Register Name: Operation Command Word 3
Register Mnemonic: OCWS3 (accessed through MPICPO, SPICPO)
Register Function: Controls Special Mask Mode and register reading.
15 0
E|S PIE]|R
S| M O|lR]|S
O|M|M]O 1|J]L|RJ|E
M L L
A1227-0A
Bit . Reset)
Mnemonic Bit Name State Function
ESMM Enable X ESMM must be set to modify SMM.
Special
Mask Mode
SMM Special X Set SMM to select Special Mask Mode (allows
Mask Mode lower-priority interrupts to interrupt higher-
priority handlers).
POLL Poll X Setting this bit starts the polling sequence.
Command Polling always takes precedence over reading
the 8259A registers.
ERR Enable X ERR must be set to modify RSEL.
Register
Read
RSEL Read X RSEL chooses which register is read during the
Register next read cycle. When RSEL is set, the In-
Select Service Register is read; when RSEL is
cleared, the Interrupt Request Register is read.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-19. OCW3 Register

8-34

Intel® INTERRUPT CONTROL UNIT

The ESMM (Enable Special Mask Mode) and SMM (Special Mask Mode) bits are used to place
the 8259A module into Special Mask Mode. Special Mask Mode is selected by setting the SMM
bit. The SMM bit can be modified (set or cleared) only when the ESMM bit is set.

The ERR (Enable Read Register) and RSEL (Register Select) bits select which register is read
from the 8259A module during read cycles that have A0=0 (AO=1 reads the Interrupt Mask Reg-
ister). If the RSEL bit is set, read cycles with A0O=0 read the In-Service Register. When RSEL is
clear, read cycles with A0=0 read the Interrupt Request Register. The RSEL bit can be modified
only when ERR is set. RSEL does not have to be rewritten for each read cycle; the 8259A module
“remembers” which register has been selected in OCW3. After initialization the RSEL bit is
cleared, selecting the Interrupt Request Register.

The POLL bit is used to issue a Poll command to the 8259A module. Once the Poll command is
issued, the 8259A module treats the nextgride (qualified with CShe address is ignored) as

an interrupt acknowledge. If an interrupt of sufficient priority is present, then the In-Service bit
for that source is set. The 8259A module then releases the Poll Status Byte onto the data bus (see
Figure 8-20). The Poll Status Byte has bit 7 set if a device attached to the 8259A module has re-
guested servicing; the lower three bits indicate the highest-priority IR line that is requesting ser-
vice. If bit 7 is clear (no device is requesting service) then the lower three bits of the Poll Status
Byte are indeterminate and should be ignored. The Poll Command is always a two-step process:
first the Poll Command is sent to the 8259A module, then the Poll Status Byte is read. An EOI
must be issued at the end of the code for each service request, just as with normal interrupt han-
dlers.

7 0

| LjL]L
N 21110
T

INT = 1 When an interrupt request is pending.
L2:0 = Highest pending interrrupt request level.

A1229-0A

Figure 8-20. Poll Status Byte

The Poll command can be used with all modes of operation for the 8259A module. Polling and
standard interrupt processing can be used within the same program. Systems that use polling as
the only method of device servicing must still fully initialize the 8259A module. (See “Initializing

the 8259A Module” on page 8-21.) The base interrupt type must be programmed in the 8259A
module, even though this value is not used (i.e., it is a “dummy” value). The Poll command al-
ways takes precedence over a register read command.

I 8-35

INTERRUPT CONTROL UNIT Intel®

8.5 MODULE INTEGRATION: THE 80C186EC INTERRUPT CONTROL UNIT

The 80C186EC/C188EC Interrupt Control Unit uses two 8259A modules with additional support
circuitry. This section describes the integration of the two 8259A modules and the programming
of the Interrupt Control Unit.

8.5.1 Internal Interrupt Sources
The 80C186/C188EC has a total of eleven internal interrupt requests from the on-chip peripher-
als.

¢ Timer 0 Maximum Count (TMIO)

¢ Timer 1 Maximum Count (TMI1)

¢ Timer 2 Maximum Count (TMI2)

* DMA Channel 0 Terminal Count (DMAIQ) *

¢ DMA Channel 1 Terminal Count (DMAI1) *

¢ DMA Channel 2 Terminal Count (DMAI2)

* DMA Channel 3 Terminal Count (DMAI3)

¢ Serial Channel 0 Receive Complete (RXI0)

¢ Serial Channel 0 Transmit Complete (TXI0)

¢ Serial Channel 1 Receive Complete (RXI1) *

¢ Serial Channel 1 Transmit Complete (TXI1) *

* These sources are indirectly supported. See “Indirectly Supported Internal Interrupt

Sources” on page 8-38.

Internally, the request from each of these sources is an active-high pulse that is valid for one-half
clock cycle. The Interrupt Request Latch Registers convert the pulsed request into a valid level
for the 8259A modules (see Figure 8-21). The Interrupt Request Latch Registers also add inter-
rupt handler testing capability to the 80C186EC/C188EC.

There are three Interrupt Request Registers: one for the Timer/Counter Unit (TIMIRL), one for
the DMA Unit (DMAIRL) and one for the Serial Communication Unit (SCUIRL).

8-36 I

Intel® INTERRUPT CONTROL UNIT

Interrupt Request

Latch Bit
Internal
Interrupt —={ SET
Request

To 8259A Module
Q or Port MUX

Clear Internal
Request (From —>{ CLEAR

IRL Control Logic)

CLKOUT

Internal
Interrupt
Request

Output of
Interrupt
Request

Latch

A1230-0A

Figure 8-21. Interrupt Request Latch Register Function

85.1.1 Directly Supported Internal Interrupt Sources

Seven of the eleven internal interrupt sources are directly supported by the Interrupt Control Unit.
The connections between the Interrupt Request Latch Registers and the slave 8259A module are
“hardwired” and are not programmable. The default priority (see Figure 8-22) within the slave
8259A module is fixed due to the internal connections. The default priority can be changed by
using Specific or Automatic Rotation.

I 8-37

INTERRUPT CONTROL UNIT Intel®

Timer O Highest Priority

Timer 1

DMA Channel 2

DMA Channel 3

Timer 2

Serial Channel 0 Receive

Serial Channel 0 Transmit

INT7 Pin Lowest Priority

A1231-0A

Figure 8-22. Default Slave 8259 Module Priority

8.5.1.2 Indirectly Supported Internal Interrupt Sources

The interrupt request lines for DMA channel 0 and DMA channel 1 and the receive and transmit
interrupts for serial channel 1 aret tied internally to the Interrupt Control Unit. These interrupt
requests are routed to external device pins through the Port 3 multiplexer (Figure 8-23). If a sys-
tem requires interrupt support for these devices, the multiplexed interrupt request outputs must
be externally connected to the INT input pins of the Interrupt Control Unit.

8-38

Intel® INTERRUPT CONTROL UNIT

To Slave 8259A Module

AAA
- DMAI3
ﬁ
> ntormupt [DM
Request \
——> Latch DMAIL > —)DPS.B/DMAIl
Interrupt Register DMAIQ
P —>> > P3.2/DMAIO
Requests
Port 3
From j
On-Chip TXI1 MUx
. — > P3.1/TXI1
Peripherals .
Serial RXIL
—>{ Interrupt > —)D P3.0/RXI1
Request
—>{ Latch TXI0
Register
I RXIO

J\ /L Internal Data Bus

A1232-0A

Figure 8-23. Multiplexed Interrupt Requests

8.5.1.3 Using the Interrupt Request Latch Registers

An interrupt handler for an on-board peripheral must clear that peripheral’s Interrupt Request
Latch bit before issuing an EOI to the slave 8259A. Otherwise, the IR line to the slave 8259A
module remains high, requesting another interrupt. The three Interrupt Request Registers
(DMAIRL, SCUIRL and TIMIRL) are shown in Figures 8-24, 8-25 and 8-26. All three registers
function identically.

The state of the IR (interrupt request latch) bits can be chamdgdvhen the corresponding
mask bit is set. For example, to clear an interrupt request from Timer 0, you must write a word to
the TIMRL register with the TOIR bit cleared and the MSKO bit set. The IRL bits can be read as
well as written; the MSK bits always read back as zero.

I 8-39

INTERRUPT CONTROL UNIT Intel®

8.5.14 Using the Interrupt Request Latch Registers to Debug Interrupt Handlers

Software can set as well as clear the individual Interrupt Request Latch bits. Setting an Interrupt
Request Latch bit posts an interrupt reqjestas if the on-chip peripheral had requested an
interrupt. This feature allows the debugging of interrupt handlers independent of peripheral
function. A serial port interrupt handler, for example, could be debugged by initiating simulated
interrupts rather than connecting the necessary hardware to the serial port. Setting the Interrupt
Request Latch bit for DMA channel 0, DMA channel 1 or Serial channel 1 activates the corre-
sponding interrupt output, but the interrupt outputs must still be tied back to a processor interrupt
input.

Register Name: DMA Interrupt Request Latch
Register Mnemonic: DMAIRL
Register Function: Latches DMA interrupt requests.
15 0
MIM|M]|M D|D|D|D
S|IS]|S]|S MIM|IM]|M
KIK]K]K I I I I
312|1]0 RIRIR|R
312]1]0
A1233-0A
Bit . Reset)
Mnemonic Bit Name State Function
DMIR3:0 DMA OH The corresponding DMA channel sets a bit in
Interrupt this register to post an interrupt request. These
Request bits must be cleared to deassert the IR signal to
the 8259A module or to the Port 3 Multiplexer.
MSK3:0 IR Latch XH This bit must be set to modify the state of the
Clear Mask associated DMIR3:0 bit. The MSK3:0 bits are
safeguards against accidentally clearing a
pending interrupt request. These bits are write
only.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-24. DMA Interrupt Request Latch Register

8-40

Intel® INTERRUPT CONTROL UNIT

Register Name: Serial Communications Interrupt Request Latch
Register Mnemonic: SCUIRL
Register Function: Latches serial communications interrupt requests.
15 0
MIM|M|M RIT|R]|T
S|S|S]|S XX X]|X
K]lK|]K]|]K | | | |
312|11|0 RIR|R|R
111]0]O0
A1234-0A
Bit . Reset .
Mnemonic Bit Name State Function
TXIR1:0 Serial OH These bits are set by the corresponding
Transmitter transmitter in the Serial Communications Unit.
Interrupt These bits must be cleared to deassert the IR
Request signal to the 8259A module or to the Port 3
Multiplexer.
RXIR1:0 Serial OH These bits are set by the corresponding
Receiver receiver in the Serial Communications Unit.
Interrupt These bits must be cleared to deassert the IR
Request signal to the 8259A module or to the Port 3
Multiplexer.
MSK3:0 IR Latch XH This bit must be set to modify the state of the
Clear Mask corresponding IR bit. The MSK3:0 bits are
safeguards against accidentally clearing a
pending interrupt request. These bits are write
only.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-25. Serial Communications Interrupt Request Latch Register

8-41

INTERRUPT CONTROL UNIT

intel.

Register Name:

Register Function:

Register Mnemonic:

Timer Interrupt Request Latch
TIMIRL

Latches Timer/Counter Unit interrupt requests.

15 0
MI{M|M|M TITI|T
S|S|S]|S | | |
K|K]K]K RIR|IR
31211160 21110
A1235-0A
Bit . Reset :
Mnemonic Bit Name State Function
TIR2:0 Timer OH The corresponding timer sets a bit in this
Interrupt register to post an interrupt request. These bits
Request must be cleared to deassert the IR signal to the
8259A module.
MSK2:0 IR Latch XH This bit must be set to modify the state of the
Clear Mask associated TIR2:0 bit. The MSK2:0 bits are
safeguards against accidentally clearing a
pending interrupt request. These bits are write
only.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-26. Timer Interrupt Request Latch Register

8.6 HARDWARE CONSIDERATIONS WITH THE INTERRUPT CONTROL UNIT

This section covers hardware interface information for the Interrupt Control Unit. Specific timing
values are not presented, as these are subject to change. Consult the most recent version of the

data sheet for timing information.

8-42

Intel® INTERRUPT CONTROL UNIT

8.6.1 Interrupt Latency and Response Time

Interrupt latencyis the time required for the CPU to begin the interrupt acknowledge sequence
once an unmasked external interrupt is preseirggtrupt response timis the amount of time
necessary to complete the interrupt acknowledge cycle and transfer program control to the inter-
rupt handler.

The 8259A modules add a finite delay to the interrupt latency. The 8259A modules are asynchro-
nous; the path through the module is modeled as a purely combinatorial delay known as the In-
terrupt Resolution Time ({:9). The Interrupt Resolution Time is defined as the delay from an IR
line being asserted to the interrupt request output going active (Figure 8-27). An interrupt request
on the slave 8259A module must travel through two 8259A units (the slave and the master) and
therefore has twice the interrupt resolution delay [Zxes)

IR Line /

INT Output of
8259A Module

A1236-0A

Figure 8-27. Interrupt Resolution Time

8.6.2 Resetting the Edge Detector

When programmed for edge triggered mode, the 8259A module activates an edge-detection cir-
cuit that sits between the IR lines and the Interrupt Request Register (see Figure 8-4 on page 8-7).
The edge-detection circuit is reset in one of two ways: during initialization of the module or by
deasserting the IR line.

The edge-detection circuit requires that the IR line be held low for a minimum amount of time

(T\rup) inorder to reset properly (see Figure 8-28). Failure to meet the specification for minimum
low time prevents generation of further interrupts from an interrupt source.

I 8-43

INTERRUPT CONTROL UNIT Intel®

IR Line < TIRLH —>

A1237-0A

Figure 8-28. Resetting the Edge Detection Circuit

8.6.3 Ready Generation

The on-chip 8259A modules do not supply a READY signal to the CPU during interrupt ac-
knowledge cycles. The hardware designer must ensure that a READY signal is applied to prop-
erly terminate interrupt acknowledge cycles. Wait states are not required for interrupt
acknowledge cycles that access the on-chip 8259A modules. External cascaded 8259A devices
may require wait states.

READY is automatically asserted for read and write accesses to the on-board 8259A modules
(through the Peripheral Control Block).

8.6.4 Connecting External 8259A Devices

There are several hardware concerns when cascading additional 8259 family devices to the on-
board master 8259A module. The master 8259A module has seven direct inputs that are available
for cascading. The interrupt capability of the 80C186/C188EC can be extended to 57 external in-
terrupts by connecting seven additional 8259 family devices to these seven pins (8 skave IRs
master INT6:0 + INT7 = 57 total IRs). Polling may be used to extend I/O handling capability be-
yond 57 sources.

This section covers external cascading and applies to all of the 8259A family devices. Intel rec-
ommends the use of the 82C59A-2 device for cascading to the 80C186EC/C188EC family due
to its higher speed and lower power consumption compared with the older NMOS 8259A devic-
es.

A typical connection for an external cascaded 82C59A-2 device is shown in Figure 8-29. The
8259A device resides on the lower half of the 16-bit processor data bus in this example. The AO
address line is connected to latched Al address line (8-bit systems would connect latched AO to
the 8259A’s A0 line). The 8259A device is hardwired for slave mode by strapping the SP/EN pin.
The CAS2:0 pins are connected to the AD15:13/CAS2:0 (for 8-bit systems, these are
A15:13/CAS2:0) lines from the processor.

8-44 I

INTERRUPT CONTROL UNIT

CPU L _I\/Iaster 8259A
WR > \WR
o o IRO |—
RD > RD IR] |=——
GCs >{Cs IR2 [
From latched IR3 =
address line —> A0 IR4 <
(Note) IRS =
IR6 [€——
D7:0 < > D7:0 IR7 <——
INTA >1 INTA SP/EN
INT6 INT |
N O
0 un vy —
< <€ < -
000
T A A
AD15/CAS2
AD14/CAS1
AD13/CASO
Note: Latched A0 is used for 80C188EC, latched Al is used for 80C186EC
A1238-0A

Figure 8-29. Typical Cascade Connection for 82C59A-2

8.6.4.1 The External INTA Cycle

Every interrupt acknowledge (INT)&ycle, including those that access the internal 8259A mod-
ules, is visible on the external processor pins. For an internal interrupt acknowledge, the interrupt
type driven by the internal 8259A module does not appear on the external bus (and anything driv-
en on the external bus is ignored). The AD15:13/CAS2:0 lines drive the slave address (if one)
during both internal and external interrupt acknowledge cycles. The BY¢l& is described in
greater detail in Chapter 3, “Bus Interface Unit.”

I 8-45

INTERRUPT CONTROL UNIT Intel®

The AD15:13 pins are used for CAS2:0 information only during interrupt acknowledge cycles.
There is no need to latch the AD15:13/CAS2:0 signals during interrupt acknowledge cycles; the
8259A family devices have internal CAS latches that are activated by the $ighal. The
8259A family devices ignore the state of the CAS lines except during interrupt acknowledge cy-
cles. The AD15:13/CAS2:0 lines begin driving the Slave ID as soon as it is available internally.

8.6.4.2 Timing Constraints

There are several timing constraints to be aware of when connecting an external 8259 device. The
following discussion is based on an analysis of the 82C59A-2 device specifications. The
82C59A-2 is the fastest 8259A family device currently available from Intel.

Minimum RD/INTA Pulse Width (k. rn) can be met for read cycles by inserting wait states (with
the Chip-Select Unit or an external wait state generator). Minimum Ipil$e width can be met
for interrupt acknowledge cycles by inserting wait states as well.

Minimum Write Pulse Width @, wn) and Minimum Data Setup Timedjwy) can be met by in-
serting wait states into write cycles to the 82C59A-2.

Data Float After RDor TNTA (Tgupz) Can be guaranteed only below a processor frequency of
11.76 MHz. Above 11.76 MHz, the 82C59A-2 device (or devices) must be buffered with a trans-
ceiver (a 74F245 or the equivalent). Without the transceiver, the 82C59-A2 device does not stop
driving the data bus in time for the next bus cycle, causing bus contention.

Back-to-Back Reads {[iz,) and Back-to-Back Writes (I,) both refer to the recovery time
required by the 82C59A-2 between two accesses of the same type. This recovery time specifica-
tion is violated above a processor frequency of 12.5 MHz. The simplest way to solve this problem
is to insert a “software wait state” in the programming code. The most common software wait
state is the “JMP $+2” instruction. “JMP $+2" ensures an uninterruptable delay of 14 clock cy-
cles. Figure 8-30 shows the use of the “JMP $+2” instruction in a typical programming sequence.

MOV DX, EXT59_ODD;ACCESS IMR (A0O=1)

MOV AL, 07FH;UNMASK IR7 ONLY

ouT DX, AL

JMP $+2 ;SOFTWARE WAIT STATE

MOV DX, EXT59_EVN ;READ ISR (A0=1, ISR
JWILL BE SELECTED)

MOV AL, 0BH;READ ISR COMMAND

ouT DX, AL

Figure 8-30. Software Wait State for External 82C59A-2

8-46 I

Intel® INTERRUPT CONTROL UNIT

Non-Alike Access Recovery Time],) refers to the recovery time required by the 82C59A-2
between accesses of different types (e.g., &adR@wved by a WRor a WRfollowed by an TNTA.

This problem is more complicated than the back-to-back read or write recovery time because the
programmer does not typically have control over the T\$ighal. The only way to avoid violat-

ing this specification for INTAs to disable interrupts during reads or writes to the 82C59A-2 and
re-enable interrupts only after recovery time has elapsed. The “JMP $+2” method may be used
for wait states between reads and writes.

8.7 MODULE EXAMPLES

Example 8.1 is a template for system initialization. Follow this template closely when designing
your system software. Failure to initialize the 8259A modules correctly will result in system fail-
ure and potential system damage.

Example 8.2 shows the code necessary to issue an End-of-Interrupt (EOI) command. Note the
clearing of the Interrupt Request Register bit to prevent unrequested interrupts from occurring.

Example 8.3 illustrates the use of the Poll command in lieu of normal interrupt servicing.

MOD186
NAME 80C186EC_ICU_INITIALIZATION_TEMPLATE

;The following code would typically be found in the boot section
;of the system software.

;Itis assumed that the equates for the pcb register mnemonics
;are in the include file “pcb_equates.inc”

$INCLUDE (PCB_EQUATES.INC)

BOOT_ROM SEGMENT ;This is the boot rom code
ASSUME CS:BOOT_ROM, DS:NOTHING

;First, ensure that all external interrupts are disabled.
CLI ;Clear CPU interrupt enable

;Set up interrupt vector table. We only show the initialization of the timer O

;vector. The timer O vector type is set to 28h (Type 40) in the slave 8259a

;initialization.

;Your system code needs to initialize all vectors for the 8259a modules and
;all exceptions and traps.

Example 8-1. Initializing the Interrupt Control Unit

8-47

INTERRUPT CONTROL UNIT

intel.

;We begin with a type 28h (Type 40) interrupt.

XOR
MOV

AX, AX
DS, AX

MOV
MOV
MOV

AX, OFFSET TIMO_HANDLER
BX, 28H*4
DS:[BX], AX

MOV
MOV
MOV

AX, SEG TIMO_HANDLER
BX, 28H*4+2
DS:[BX], AX

;The remainder of the vectors would be initialized similarly.
;The above code was chosen for clarity, not efficiency!

;Now we begin initialization of the 8259A modules ... ICW1
MOV DX, SPICPO

XOR
MOV

AH, AH
AL, 10001B

OUT DX, AL

;Clear AX
;Data seg points to vector table

;Store the offset of the handler

;Store segment of the handler

is first

;ICW1 for the slave is
;accessed thru SPICPO
;Clear reserved bits

;Edge trigger, cascade mode,
;1C4 required

;Now set base interrupt type at 28H for slave module in ICW2

MOV DX, SPICP1
MOV AL, 28H
OUT DX, AL

:Slave ID is next in ICW3. The slave id must be 7.
MOV DX, SPICP1
MOV AL, 7
OUT DX, AL

;ICW4 completes the initialization
MOV DX, SPICP1
MOV AL, 1

OuUT DX, AL

;The initialization of the slave 8259A module is done.

:ICW2 is accessed thru SPICP1
;Base type is 28H (Type 40)

;ICW3 is also thru SPICP1
;ID=7 always for slave module

;ICW4 is also thru SPICP1

;No special fully nested mode

;No AEOI mode factory test codes
;set correctly

Example 8-1. Initializing the Interrupt Control Unit (Continued)

8-48

intel.

INTERRUPT CONTROL UNIT

;Now start the master initialization

MOV DX, MPICPO ;ICW1 for the slave is accessed
;thru MPICPO

XOR AH, AH ;Clear reserved bits

MOV AL, 10001B ;Edge trigger, cascade mode,
;1IC4 required

OUT DX, AL

:Now set base interrupt type at 20H (Type 32) for the master module in ICW2.
;This creates a contiguous block for the interrupt control unit
;from type 20H to type 2FH.

MOV DX, MPICP1 ;ICW?2 is accessed thru MPICP1
MOV AL, 20H ;Base type is 20H (Type 32)
OUT DX, AL

;Now program the master cascade configuration register in ICW3

MOV DX, MPICP1 ;ICW3 is also thru MPICP1
MOV AL, 80H ;Slave module is always on IR7
OUT DX, AL

;ICW4 completes the initialization

MOV DX, MPICP1 ;ICW4 is also thru MPICP1

MOV AL, 1B ;No special fully nested mode,
;no AEOI mode, factory test codes
;set correctly

OUT DX, AL

;Initialization is now complete. we can unmask global interrupts.
STI
BOOT_ROM ENDS

Example 8-1. Initializing the Interrupt Control Unit (Continued)

8-49

INTERRUPT CONTROL UNIT

STI

MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT

IRET

TIMO_HANDLER ENDP

INT_HNDLRS ENDS

INT_HNDLERS SEGMENT
ASSUME CS:INT_HNDLRS

TIMO_HANDLER PROC FAR

;Handler code would be inserted here.

DX, TIMIRL
AX, 0100H
DX, AL

DX, MPICPO
AX, 20H
DX, AL

DX, SPICPO
AX, 20H
DX, AL

;The following is a template for an interrupt handler for the 80C186EC/C188EC:

;Necessary to nest interrupts

;Need to clear IR for
;TIMER 0 (MSKO0=1, TIR0=0)
;Request is now deasserted

;EOl command to OCW2
;Non-specific EOI
;Send master EOI

;EOIl command to OCW2
;Non-specific EOI
;Send slave EOI

;Return to main task

Example 8-2. Template for a Simple Interrupt Handler

8-50

intel.

INTERRUPT CONTROL UNIT

;The following section of code shows the polling process
;for the 8259A modules...

;For brevity, the Register EQUates are not shown.

POLL_EXAMPLE SEGMENT
ASSUME CS:POLL_EXAMPLE

MOV DX, SPICPO
MOV AX, OCH
OUT DX, AL

;POLL Command issued thru OCW3
;POLL=1 and D5:4=01
;Issue POLL Command

;The slave 8259A will deposit the poll status byte on the
;next RD# pulse...

IN DX, AL
TEST AL, 80H
JNE INTERPT

;Read the slave 8259A
;Has there been an interrupt?
;If D7=1 --> yes!

;If the code gets to here then there has been no interrupt.

JMP NO_INTERRUPTS

INTERPT: AND AL, 111B ;Get just the interrupt type.

;At this point the interrupt type is in AL. Your code
;would branch to the appropriate routines...

POLL_EXMPL ENDS

Example 8-3. Using the Poll Command

8-51

intel.

Timer/Counter Unit

intel.

CHAPTER 9
TIMER/COUNTER UNIT

The Timer/Counter Unit can be used in many applications. Some of these applications include a
real-time clock, a square-wave generator and a digital one-shot. All of these can be implemented
in a system design. A real-time clock can be used to update time-dependent memory variables. A
square-wave generator can be used to provide a system clock tick for peripheral devices. (See
“Timer/Counter Unit Application Examples” on page 9-17 for code examples that configure the
Timer/Counter Unit for these applications.)

9.1 FUNCTIONAL OVERVIEW

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9-1). The op-
eration of these timers is independent of the CPU. The internal Timer/Counter Unit can be mod-
eled as a single counter element, time-multiplexed to three register banks. The register banks are
dual-ported between the counter element and the CPU. During a given bus cycle, the counter el-
ement and CPU can both access the register banks; these accesses are synchronized.

The Timer/Counter Unit is serviced over four clock periods, one timer during each clock, with an
idle clock at the end (see Figure 9-2). No connection exists between the counter element’s se-
guencing through timer register banks and the Bus Interface Unit's sequencing through T-states.
Timer operation and bus interface operation are asynchronous. This time-multiplexed scheme re-
sults in a delay of 2% to 6%2 CLKOUT periods from timer input to timer output.

Each timer keeps its own running count and has a user-defined maximum count value. Timers 0
and 1 can use one maximum count value (single maximum count mode) or two alternating max-
imum count values (dual maximum count mode). Timer 2 can use only one maximum count val-
ue. The control register for each timer determines the counting mode to be used. When a timer is
serviced, its present count value is incremented and compared to the maximum count for that tim-
er. If these two values match, the count value resets to zero. The timers can be configured either
to stop after a single cycle or to run continuously.

Timers 0 and 1 are functionally identical. Figure 9-3 illustrates their operation. Each has a
latched, synchronized input pin and a single output pin. Each timer can be clocked internally or
externally. Internally, the timer can either increment at ¥4 CLKOUT frequency or be prescaled by
Timer 2. A timer that is prescaled by Timer 2 increments when Timer 2 reaches its maximum
count value.

9-1

TIMER/COUNTER UNIT

TO In

!

T1lIn

!

Transition Latch/

Synchronizer

Transition Latch/

Synchronizer

me_erO <> T0
Registers Output Latch
cPU _ Counter Out
<] TMerl | S| Element
Reqgisters T1
Tim_er2 - Output Latch out
Registers
A
CPU Inlfe;rl;]pt
Clock ac

A1292-0A

9-2

Figure 9-1. Timer/Co

unter Unit Block Diagram

Intel® TIMER/COUNTER UNIT

Timer 0 Timer1 Timer 2 Timer 0 Timer1 Timer 2 Timer O
Serviced Serviced Serviced Dead Serviced Serviced Serviced Dead Serviced
L4 g g o o g o g

® ®

TOIN / '\) / |

T1IN / \ /

TOOUT =]

T10UT =
NOTES:

. TOIN resolution time (setup time met).

. T1IN resolution time (setup time not met).

. Modified count value written into Timer O count register.

. T1IN resolution time, count value written into Timer 1 count register.
. T1IN resolution time.

a b~ wNE

A1293-0A

Figure 9-2. Counter Element Multiplexing and Timer Input Synchronization

TIMER/COUNTER UNIT Intel®

External

Clocking

(EXT =1)
?

Yes

Retrigger
(RTG=1)
?

Loto Hi
transition on input
pin since last
service

Lo to Hi
transition on input
pin since last
service

Timer Input Yes Yes

at High Level
?

No

Clear Count
Prescaler On Register

(P=1)
?

Did Timer 2

Reach Maxcount

Last Service

State
?

Increment
Counter

Continued
A

Figure 9-3. Timers 0 and 1 Flow Chart

A1294-0A

9-4

TIMER/COUNTER UNIT

Continued From
A

Alternating

Maxcount Regs

(ALT =1)
?

Yes

No
(Use"B")

Using

Maxcount A

(RIU =0)
?

Counter =
Compare "A"
?

Counter =
Compare "B"
?

Counter =
Compare "A"
?

Yes
Pulse TOUT Pin Set RIU Bit Clear RIU Bit
Low For 1 Clock TOUT Pin Driven Low TOUT Pin Driven High

Continuous Mode
(CONT=1)
?

Continuous Mode
(CONT=1)
?

No No

Interrupt Bit Set
?

Clear Enable Bit
(Stop Counting)

Clear Enable Bit
(Stop Counting)

]

i | Request Interrupt |

Y

| Clear Counter |

A1295-0A

Figure 9-3. Timers 0 and 1 Flow Chart (Continued)

TIMER/COUNTER UNIT Intel®

When configured for internal clocking, the Timer/Counter Unit uses the input pins either to en-
able timer counting or to retrigger the associated timer. Externally, a timer increments on low-to-
high transitions on its input pin (up to ¥4 CLKOUT frequency).

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse, indicating
the end of a timing cycle, or a variable duty cycle wave. These two output options correspond to
single maximum count mode and dual maximum count mode, respectively (Figure 9-4). Inter-
rupts can be generated at the end of every timing cycle.

Timer 2 has no input or output pins and can be operated only in single maximum count mode
(Figure 9-4). It can be used as a free-running clock and as a prescaler to Timers 0 and 1. Timer 2
can be clocked only internally, at ¥» CLKOUT frequency. Timer 2 can also generate interrupts at
the end of every timing cycle.

Maxcount A Maxcount B
Dual Maximum
Count Mode
One CPU
Maxcount A Clock

Single Maximum
Count Mode

A1296-0A

Figure 9-4. Timer/Counter Unit Output Modes

9.2 PROGRAMMING THE TIMER/COUNTER UNIT

Each timer has three registers: a Timer Control register (Figure 9-5 and Figure 9-6), a Timer
Count register (Figure 9-7) and a Timer Maxcount Compare register (Figure 9-8). Timers 0 and
1 also have access to an additional Maxcount Compare register. The Timer Control register con-
trols timer operation. The Timer Count register holds the current timer count value, and the Max-
count Compare register holds the maximum timer count value.

9-6 I

intel.

TIMER/COUNTER UNIT

Register Name: Timer 0 and 1 Control Registers
Register Mnemonic: TOCON, T1CON
Register Function: Defines Timer 0 and 1 operation.
15 0
E| I Il R M| R PIEJA]|C
N|INJ|NJI C|T X|1L]|]O
H|TJ|U G T|TIN
T
A1297-0A
Bit . Reset .
Mnemonic Bit Name State Function

EN Enable 0 Set to enable the timer. This bit can be written only
when the INH bit is set.

INH Inhibit X Set to enable writes to the EN bit. Clear to ignore
writes to the EN bit. The TNH bit is not stored,; it
always reads as zero.

INT Interrupt X Set to generate an interrupt request when the Count
register equals a Maximum Count register. Clear to
disable interrupt requests.

RIU Register In X Indicates which compare register is in use. When set,

Use the current compare register is Maxcount Compare B;
when clear, it is Maxcount Compare A.
MC Maximum X This bit is set when the counter reaches a maximum
Count count. The MC bit must be cleared by writing to the
Timer Control register. This is not done automati-
cally. If MC is clear, the counter has not reached a
maximum count.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a

logic zero to ensure compatibility with future Intel products.

Figure 9-5. Timer 0 and Timer 1 Control Registers

9-7

TIMER/COUNTER UNIT

Register Name:
Register Mnemonic:

Register Function:

Timer 0 and 1 Control Registers
TOCON, T1CON

Defines Timer 0 and 1 operation.

15 0
E| I Il R M| R PIEJA]|C
N|INJ|NJI C| T X|1L]|]O
H|TJ|U G T|TIN
T
A1297-0A
Bit . Reset .
Mnemonic Bit Name State Function
RTG Retrigger X This bit specifies the action caused by a low-to-high
transition on the TMR INx input. Set RTG to reset the
count; clear RTG to enable counting. This bit is
ignored with external clocking (EXT=1).
P Prescaler X Set to increment the timer when Timer 2 reaches its
maximum count. Clear to increment the timer at %
CLKOUT. This bit is ignored with external clocking
(EXT=1).
EXT External X Set to use external clock; clear to use internal clock.
Clock The RTG and P bits are ignored with external clocking
(EXT set).
ALT Alternate X This bit controls whether the timer runs in single or
Compare dual maximum count mode (see Figure 9-4 on page
Register 9-6). Set to specify dual maximum count mode; clear
to specify single maximum count mode.
CONT Continuous X Set to cause the timer to run continuously. Clear to
Mode disable the counter (clear the EN bit) after each
counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a

logic zero to ensure compatibility with future Intel products.

9-8

Figure 9-5. Timer 0 and Timer 1 Control Registers (Continued)

Intel® TIMER/COUNTER UNIT

Register Name: Timer 2 Control Register
Register Mnemonic: T2CON
Register Function: Defines Timer 2 operation.
15 0
Ef 1] M c
N|N|[N c o
H|T N
T
ALZY98-UA
Bit . Reset .
Mnemonic Bit Name State Function
EN Enable 0 Set to enable the timer. This bit can be written

only when the TNH bit is set.

INH Inhibit X Set to enable writes to the EN bit. Clear to
ignore writes to the EN bit. The INH bit is not
stored; it always reads as zero.

INT Interrupt X Set to generate an interrupt request when the
Count register equals a Maximum Count
register. Clear to disable interrupt requests.

MC Maximum X This bit is set when the counter reaches a
Count maximum count. The MC bit must be cleared
by writing to the Timer Control register. This

is not done automatically. If MC is clear, the
counter has not reached a maximum count.

CONT Continuous X Set to cause the timer to run continuously.
Mode Clear to disable the counter (clear the EN bit)
after each counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 9-6. Timer 2 Control Register

9-9

TIMER/COUNTER UNIT

Register Name:

Register Function:

Register Mnemonic:

Timer Count Register
TOCNT, T1CNT, T2CNT

Contains the current timer count.

15 0
T T T T T T T T T T T T T T T T
c|cjl]c]|c c|cj|cj|c c|cjlJcj|c c|cjl]cj|c
1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
514]13]|2 110
A1299-0A
Bit . Reset .
Mnemonic Bit Name State Function
TC15:0 Timer XXXXH | Contains the current count of the associated
Count Value timer.

9-10

Figure 9-7. Timer Count Registers

Intel® TIMER/COUNTER UNIT

Register Name: Timer Maxcount Compare Register
Register Mnemonic: TOCMPA, TOCMPB, TICMPA, TICMPB, T2CMPA
Register Function: Contains timer maximum count value.
15 0
Tl T|T(|T]T|T|T|fTlT]TT|[T|T|T]|T
clc|lcfc]lc|c|c]|c|lc]c|c]c]||lc]|c]|lc]c
11|21 f12 11|98l 7|6]|5]4|]3]2]1]0
5(4]3]2 1|0
A1300-0A
Bit . Reset .
Mnemonic Bit Name State Function
TC15:0 Timer XXXXH | Contains the maximum value a timer will count
Compare to before resetting its Count register to zero.
Value

Figure 9-8. Timer Maxcount Compare Registers

9.2.1 Initialization Sequence

When initializing the Timer/Counter Unit, the following sequence is suggested:
1. If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table.

2. Clear the Timer Count register. This must be done before the timer is enabled because
the count register is undefined at reset. Clearing the count register ensures that counting
begins at zero.

3. Write the desired maximum count value to the Timer Maxcount Compare register. For
dual maximum count mode, write a value to both Maxcount Compare A and B.

4. Program the Timer Control register to enable the timer. When using Timer 2 to prescale
another timer, enable Timer 2 last. If Timer 2 is enabled first, it will be at an unknown
point in its timing cycle when the timer to be prescaled is enabled. This results in an
unpredictable duration of the first timing cycle for the prescaled timer.

9-11

TIMER/COUNTER UNIT Intel®

9.2.2 Clock Sources

The 16-bit Timer Count register increments once for each timer event. A timer event can be a
low-to-high transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth CPU
clock (all timers) or a timeout of Timer 2 (Timers 0 and 1). Up to 65586ef&nts can be count-

ed.

Timers 0 and 1 can be programmed to count low-to-high transitions on their input pins as timer
events by setting the External (EXT) bit in their control registers. Transitions on the external pin
are synchronized to the CPU clock before being presented to the timer circuitry. The timer counts
transitions on this pin. The input signal must go low, then high, to cause the timer to increment.
The maximum count-rate for the timers is ¥ the CPU clock rate (measured at CLKOUT) because
the timers are serviced only once every four clocks.

All timers can use transitions of the CPU clock as timer events. For internal clocking, the timer
increments every fourth CPU clock due to the counter element’s time-multiplexed servicing
scheme. Timer 2 can use only the internal clock as a timer event.

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this config-
uration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count. See Table
9-1 for a summary of clock sources for Timers 0 and 1. Timer 2 must be initialized and running
in order to increment values in other timer/counters.

Table 9-1. Timer 0 and 1 Clock Sources

EXT P Clock Source
0 0 Timer clocked internally at ¥ CLKOUT frequency.
0 1 Timer clocked internally, prescaled by Timer 2.
1 X Timer clocked externally at up to ¥a CLKOUT frequency.

9.2.3 Counting Modes

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1 also
have access to a second Maxcount Compare B register. Whenever the contents of the Timer
Count register equal the contents of the Maxcount Compare register, the count register resets to
zero. The maximum count value will never be stored in the count register. This is because the
counter element increments, compares and resets a timer in one clock cycle. Therefore, the max-
imum value is never written back to the count register. The Maxcount Compare register can be
written at any time during timer operation.

9-12

Intel® TIMER/COUNTER UNIT

The timer counting from its initial count (usually zero) to its maximum count (either Maxcount
Compare A or B) and resetting to zero defines one timing cycle. A Maxcount Compare value of
0 implies a maximum count of 65536, a Maxcount Compare value of 1 implies a maximum count
of 1, etc.

Only equivalence between the Timer Count and Maxcount Compare registers is checked. The

count does not reset to zero if its value is greater than the maximum count. If the count value ex-
ceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then counts
to the value in the Maxcount Compare register. Upon reaching a maximum count value, the Max-

imum Count (MC) bit in the Timer Control register sd@ise MC bit must be cleared by writing

to the Timer Control register. This is not done automatically.

The Timer/Counter Unit can be configured to execute different counting sequences. The timers
can operate in single maximum count mode (all timers) or dual maximum count mode (Timers O
and 1 only). They can also be programmed to run continuously in either of these modes. The Al-
ternate (ALT) bit in the Timer Control register determines the counting modes used by Timers 0
and 1.

All timers can use single maximum count mode, where only Maxcount Compare A is used. The
timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2 can
operate only in this mode.

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A and
Maxcount Compare B are both used. The timer counts to the value contained in Maxcount Com-
pare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets to zero
again. The Register In Use (RIU) bit in the Timer Control register indicates which Maxcount
Compare register is currently in use.

The timers can be programmed to run continuously in single maximum count and dual maximum
count modes. The Continuous (CONT) bit in the Timer Control register determines whether a
timer is disabled after a single counting sequence.

9231 Retriggering

The timer input pins affect timer counting in three ways (see Table 9-2). The programming of the
External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the input
signals are used. When the timers are clocked internally, the RTG bit determines whether the in-
put pin enables timer counting or retriggers the current timing cycle.

When the EXT and RTG bits are clear, the timer counts internal timer events. In this mode, the
input is level-sensitive, not edge-sensitive. A low-to-high transition on the timer input is not re-
quired for operation. The input pin acts as an external enable. If the input is high, the timer will
count through its sequence, provided the timer remains enabled.

9-13

TIMER/COUNTER UNIT Intel®

Table 9-2. Timer Retriggering

EXT RTG Timer Operation
0 0 Timer counts internal events, if input pin remains high.
0 1 Timer counts internal events; count resets to zero on every low-to-high transition on
the input pin.
1 X Timer input acts as clock source.

When the EXT bit is clear and the RTG bit is set, every low-to-high transition on the timer input
pin causes the Count register to reset to zero. After the timer is enabled, counting begins only after
the first low-to-high transition on the input pin. If another low-to-high transition occurs before
the end of the timer cycle, the timer count resets to zero and the timer cycle begins again. In dual
maximum count mode, the Register In Use (RIU) bit does not clear when a low-to-high transition
occurs. For example, if the timer retriggers while Maxcount Compare B is in use, the timer resets
to zero and counts to maximum count B before the RIU bit cléadual maximum count

mode, the timer retriggering extends the use of the current Maxcount Compare register.

9.2.4 Pulsed and Variable Duty Cycle Output

Timers 0 and 1 each have an output pin that can perform two functions. First, the output can be a
single pulse, indicating the end of a timing cycle (single maximum count mode). Second, the out-
put can be a level, indicating the Maxcount Compare register currently in use (dual maximum
count mode). The output occurs one clock after the counter element services the timer when the
maximum count is reached (see Figure 9-9).

With external clocking, the time between a transition on a timer input and the corresponding tran-
sition of the timer output varies from 2% to 6% clocks. This delay occurs due to the time-multi-
plexed servicing scheme of the Timer/Counter Unit. The exact timing depends on when the input
occurs relative to the counter element’s servicing of the timer. Figure 9-2 on page 9-3 shows the
two extremes in timer output delay. Timer 0 demonstrates the best possible case, where the input
occurs immediately before the timer is serviced. Timer 1 demonstrates the worst possible case,
where the input is latched, but the setup time is not met and the input is not recognized until the
counter element services the timer again.

In single maximum count mode, the timer output pin goes low for one CPU clock period (see Fig-

ure 9-4 on page 9-6). This occurs when the count value equals the Maxcount Compare A value.
If programmed to run continuously, the timer generates periodic pulses.

9-14

Intel® TIMER/COUNTER UNIT

Timer O
Serviced
{ ' @)

] N

Internal Count Value Maxcount - 1><

o
1

TxOUT Pin

NOTE: 1. TCLOVl

A1301-0A

Figure 9-9. TxOUT Signal Timing

In dual maximum count mode, the timer output pin indicates which Maxcount Compare register
is currently in use. A low output indicates Maxcount Compare B, and a high output indicates
Maxcount Compare A (see Figure 9-4 on page 9-6). If programmed to run continuously, a repet-
itive waveform can be generated. For example, if Maxcount Compare A contains 10, Maxcount
Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33 percent duty cycle
waveform at 104 KHz. The output pin always goes high at the end of the counting sequence (even
if the timer is not programmed to run continuously).

9.2.5 Enabling/Disabling Counters

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting. The
Inhibit (TNH) bit controls write accesses to the EN bit. Timers 0 and 1 can be programmed to use
their input pins as enable functions also. If a timer is disabled, the count register does not incre-
ment when the counter element services the timer.

The Enable bit can be altered by programming or the timers can be programmed to disable them-
selves at the end of a counting sequence with the Continuous (CONT) bit. If the timer is not pro-
grammed for continuous operation, the Enable bit automatically clears at the end of a counting
sequence. In single maximum count mode, this occurs after Maxcount Compare A is reached. In
dual maximum count mode, this occurs after Maxcount Compare B is reached (Timers 0 and 1

only).

9-15

TIMER/COUNTER UNIT Intel®

The input pins for Timers 0 and 1 provide an alternate method for enabling and disabling timer
counting. When using internal clocking, the input pin can be programmed either to enable the tim-
er or to reset the timer count, depending on the state of the Retrigger (RTG) bit in the control reg-
ister. When used as an enable function, the input pin either allows (input high) or prevents (input
low) timer counting. To ensure recognition of an input level, it must be valid for four CPU clocks.
This is due to the counter element’s time-multiplexed servicing scheme for the timers.

9.2.6 Timer Interrupts

All timers can generate internal interrupt requests. Although all three timers share a single inter-
rupt request to the CPU, each has its own vector location and internal priority. Timer O has the
highest interrupt priority and Timer 2 has the lowest.

Timer Interrupts are enabled or disabled by the Interrupt (INT) bit in the Timer Control register.

If enabled, an interrupt is generated every time a maximum count value is reached. In dual max-
imum count mode, an interrupt is generated each time the value in Maxcount Compare A or Max-
count Compare B is reached. If the interrupt is disabled after a request has been generated, but
before a pending interrupt is serviced, the interrupt request remains active (the Interrupt Control-
ler latches the request). If a timer generates a second interrupt request before the CPU services
the first interrupt request, the first request is lost.

9.2.7 Programming Considerations

Timer registers can be read or written whether the timer is operating or not. Since processor ac-
cesses to timer registers are synchronized with counter element accesses, a half-modified count
register will never be read.

When Timer 0 and Timer 1 use an internal clock source, the input pin must be high to enable
counting.

9.3 TIMING

Certain timing considerations need to be made with the Timer/Counter Unit. These include input
setup and hold times, synchronization and operating frequency.

9.3.1 Input Setup and Hold Timings

To ensure recognition, setup and hold times must be met with respect to CPU clock edges. The
timer input signal must be validJ,s before the rising edge of CLKOUT and must remain valid
Tcuin after the same rising edge. If these timing requirements are not met, the input will not be
recognized until the next clock edge.

9-16

Intel® TIMER/COUNTER UNIT

9.3.2 Synchronization and Maximum Frequency
All timer inputs are latched and synchronized with the CPU clock. Because of the internal logic
required to synchronize the external signals, and the multiplexing of the counter element, the

Timer/Counter Unit can operate only up to ¥ of the CLKOUT frequency. Clocking at greater fre-
guencies will result in missed clocks.

93.21 Timer/Counter Unit Application Examples

The following examples are possible applications of the Timer/Counter Unit. They include a real-
time clock, a square wave generator and a digital one-shot.

9.3.3 Real-Time Clock

Example 9-1 contains sample code to configure Timer 2 to generate an interrupt request every 10
milliseconds. The CPU then increments memory-based clock variables.

9.3.4 Square-Wave Generator

A square-wave generator can be useful to act as a system clock tick. Example 9-2 illustrates how
to configure Timer 1 to operate this way.

9.3.5 Digital One-Shot

Example 9-3 configures Timer 1 to act as a digital one-shot.

9-17

TIMER/COUNTER UNIT

$mod186
name example_80186_family_timer_code

;FUNCTION: This function sets up the timer and interrupt controller
; to cause the timer to generate an interrupt every

10 milliseconds and to service interrupts to
implement a real time clock.

Timer 2 is used in this example because no input or
output signals are required.

ESYNTAX: extern void far set_time(hour, minute, second, T2Compare)
EINPUTS: hour - hour to set time to.

; minute - minute to set time to.

; second - second to set time to.

; T2Compare - T2CMPA value (see note below)
‘OUTPUTS: None

;NOTE: Parameters are passed on the stack as required by
; high-level languages

For a CLKOUT of 16Mhz,

; f(timer2) = 16Mhz/4

; = 4Mhz

; = 0.25us for T2ZCMPA =1

; T2CMPA(10ms) = 10ms/0.25us

; = 10e-3/0.25e-6

; = 40000

;substitute register offsets
T2CON equ xxxxh ;Timer 2 Control register
T2CMPA equ xxxxh ;Timer 2 Compare register
T2CNT equ xxxxh ;Timer 2 Counter register
TCUCON equ xxxxh ;Int. Control register
EOQI equ xxxxh ;End Of Interrupt register
INTSTS equ xxxxh ;Interrupt Status register

timer_2_int equ 19 ;timer 2:vector type 19

data segment public 'data’
public _hour, _minute, _second, _msec
_hour db ?
_minute db?
_second db?
_msec db ?

data ends

Example 9-1. Configuring a Real-Time Clock

9-18

Intel® TIMER/COUNTER UNIT

lib_80186 segment public 'code’
assume cs:lib_80186, ds:data

public _set_time
_set_time proc far

push bp ;save caller’s bp
mov bp, sp ;get current top of stack
hour equ word ptr[bp+6] ;get parameters off stack

minute equ word ptr[bp+8]
second equ word ptr[bp+10]
T2Compare equ word ptr[bp+12]

push ax ;save registers used
push dx
push Si
push ds
xor ax, ax ;set interrupt vector
mov ds, ax
mov si, 4*timer_2_int
mov word ptr ds:[si], offset
timer_2_interrupt_routine
inc Si
inc si
mov ds:[si], cs
pop ds
mov ax, hour ;set time
mov _hour, al
mov ax, minute
mov _minute, al
mov ax, second
mov _second, al
mov _msec, 0
mov dx, T2CNT ;clear Count register
xor ax, ax
out dx, al
mov dx, T2CMPA ;set maximum count value
mov ax, T2Compare ;see note in header above
out dx, al
mov dx, T2CON ;set up the control word:
mov ax, OEOO1H ;enable counting,
out dx, al ;generate interrupt on MC,
;continuous counting
mov dx, TCUCON ;set up interrupt controller
Xor ax, ax ;unmask highest priority interrupt
out dx, al

Example 9-1. Configuring a Real-Time Clock (Continued)

9-19

TIMER/COUNTER UNIT

sti ;enable interrupts

pop si ;restore saved registers
pop dx

pop ax

pop bp ;restore caller’s bp

ret

_set_time endp

timer_2_interrupt_routine proc far

push ax ;save registers used
push dx
cmp _msec, 99 ;has 1 sec passed?
jae bump_second ;if above or equal...
inc _msec
jmp short reset_int_ctl
bump_second:
mov _msec, 0 ;reset millisecond
cmp _minute, 59 ;has 1 minute passed?
jae bump_minute
inc _second
jmp short reset_int_ctl
bump_minute:
mov _second, 0 ;reset second
cmp _minute, 59 ;has 1 hour passed?
jae bump_hour
inc _minute
jmp short reset_int_ctl
bump_hour:
mov _minute, 0 ;reset minute
cmp _hour, 12 ;have 12 hours passed?
jae reset_hour
inc _hour
jmp reset_int_ctl
reset_hour:
mov _hour, 1 ;reset hour
reset_int_ctl:
mov dx, EOI
mov ax, 8000h ;non-specific end of interrupt
out dx, al
pop dx
pop ax

iret
timer_2_interrupt_routine endp

lib_80186 ends
end

Example 9-1. Configuring a Real-Time Clock (Continued)

9-20

intel.

TIMER/COUNTER UNIT

$mod186
name

;FUNCTION:

; SYNTAX:
; INPUTS:

; OUTPUTS:
NOTE:

lib_80186

public
_clock

push
mov

_mark

push
push
push

mov
mov
out

mov
mov
out

mov
xor
out

mov
mov
out

T1CMPA equ xxxxH
T1CMPB equ xxxxH
TICNT equ xxxxH
T1ICON equ xxxxH

_space equ word ptr[bp+6]

example_timerl_square_wave_code

This function generates a square wave of given
frequency and duty cycle on Timer 1 output pin.

extern void far clock(int mark, int space)

mark - This is the mark (1) time.
space - This is the space (0) time.

The register compare value for a given time can be
easily calculated from the formula below.

CompareValue = (req_pulse_width*f)/4
None

Parameters are passed on the stack as required by
high-level Languages

;substitute register offsets

segment public 'code’

assume cs:lib_80186

_clock
proc far
bp ;save caller’s bp
bp, sp ;get current top of stack

;get parameters off the stack
equ word ptr[bp+8]

ax ;save registers that will be
bx ;modified
dx

dx, TLCMPA ;set mark time
ax, _mark
dx, al

dx, TLCMPB
ax, _space
dx, al

;set space time

dx, TICNT :Clear Timer 1 Counter
ax, ax
dx, al
dx, TLCON ;start Timer 1
ax, COO3H
dx, al

Example 9-2. Configuring a Square-Wave Generator

9-21

TIMER/COUNTER UNIT

pop dx ;restore saved registers

pop bx

pop ax

pop bp ;restore caller’s bp

ret
_clock endp
lib_80186 ends

end

Example 9-2. Configuring a Square-Wave Generator (Continued)

$mod186

: SYNTAX:
CINPUTS:

' NOTE:

lib_80186
public
_one_shot

push
mov

: OUTPUTS:

T1CNT
T1ICMPA equ xxxxH
T1CMPB equ xxxxH
T1CON
MaxCount equ 0020H

name example_timerl_1_shot_code

; FUNCTION: This function generates an active-low one-shot pulse

on Timer 1 output pin.
extern void far one_shot(int CMPB);

CMPB - This is the TLCMPB value required to generate a
pulse of a given pulse width. This value is calculated
from the formula below.

CMPB = (req_pulse_width*f)/4
None

Parameters are passed on the stack as required by
high-level languages

equ xxxxH ;substitute register offsets

equ xXxxxH

segment public 'code’
assume cs:lib_80186

_one_shot
proc far
bp ;save caller’s bp
bp, sp ;get current top of stack

9-22

Example 9-3. Configuring a Digital One-Shot

intel.

TIMER/COUNTER UNIT

_CMPB equ word ptr[bp+6]

push ax

push dx

mov dx, TLICNT
xor ax, ax

out dx, al

mov dx, TLICMPA
mov ax, 1

out dx, al

mov dx, TLCMPB
mov ax, _CMPB
out dx, al

mov dx, TLCON
mov ax, CO02H
out dx, al

CountDown: in ax, dx
test ax, MaxCount

jz CountDown

and ax, not MaxCount
out dx, al

pop dx

pop ax

pop bp

ret

_one_shot endp
lib_80186 ends
end

;get parameter off the stack
;save registers that will be
;modified
;Clear Timer 1 Counter

;set time before t_shot to 0

;set pulse time

;start Timer 1

;read in TAICON

;max count occurred?
;no: then wait

;clear max count bit

;update TICON

;restore saved registers

;restore caller’s bp

Example 9-3. Configuring a Digital One-Shot (Continued)

9-23

intel.

10

Direct Memory
Access Unit

intel.

CHAPTER 10
DIRECT MEMORY ACCESS UNIT

In many applications, large blocks of data must be transferred between memory and 1/0O space. A
disk drive, for example, usually reads and writes data in blocks that may be thousands of bytes
long. If the CPU were required to handle each byte of the transfer, the main tasks would suffer a
severe performance penalty. Even if the data transfers were interrupt driven, the overhead for
transferring control to the interrupt handler would still decrease system throughput.

Direct Memory Access, or DMA, allows data to be transferred between memory and peripherals
without the intervention of the CPU. Systems that use DMA have a special device, known as

the DMA controller, that takes control of the system bus and performs the transfer between mem-
ory and the peripheral device. When the DMA controller receives a request for a transfer from a
peripheral, it signals the CPU that it needs control of the system bus. The CPU then releases con-
trol of the bus and the DMA controller performs the transfer. In many cases, the CPU releases the
bus and continues to execute instructions from the prefetch queue. If the DMA transfers are rel-
atively infrequent, there is no degradation of software performance; the DMA transfer is trans-
parent to the CPU.

The DMA Unit has four channels. Each channel can accept DMA requests from one of four
sources: an external request pin, the Serial Communications Unit, the Timer/Counter Unit or di-
rect programming. Data can be transferred between any combination of memory and I/O space.
The DMA Unit can access the entire memory and I/O space in either byte or word increments.

10.1 FUNCTIONAL OVERVIEW
The DMA Unit is logically divided into two modules with two channels each. The four channels

are functionally identical. The following discussion is hierarchical, beginning with an overview
of a single channel and ending with a description of the full four-channel unit.

10.1.1 The DMA Transfer
A DMA transfer begins with a request. The requesting device may either have data to transmit (a

source request) or it may require data (a destination request). Alternatively, transfers may be ini-
tiated by the system software without an external request.

I 10-1

DIRECT MEMORY ACCESS UNIT Intel®

When the DMA request is granted, the Bus Interface Unit provides the bus signals for the DMA
transfer, while the DMA channel provides the address information for the source and destination
devices. The DMA Unit does not provide a discrete DMA acknowledge signal, unlike other DMA
controller chips (an acknowledge can be synthesized, however). The DMA channel continues
transferring data as long as the request is active and it has not exceeded its programmed transfel
limit.

Every DMA transfer consists of two distinct bus cycles: a fetch and a deposit (see Figure 10-1 on
page 10-2). During the fetch cycle, the byte or word is read from the data source and placed in an
internal temporary storage register. The data in the temporary storage register is written to the
destination during the deposit cycle. The two bus cycles are indivisible; they cannot be separated
by a bus hold request, a refresh request or another DMA request.

Fetch Deposit

TI TL 1 T2 1 T3 1 T4 1 T2 1 T2 1 T3 1+ T4

ewour | [LT L L L L L
me [T\ [i

AD15:0 /_.< H >_

1 1 1 1 1
Source Source Destination Destination
Address Data Address Data

RD \ /
WR \ [

A1186-0A

Figure 10-1. Typical DMA Transfer

10-2 I

Intel® DIRECT MEMORY ACCESS UNIT

10.1.1.1 DMA Transfer Directions

The source and destination addresses for a DMA transfer are programmable and can be in either
memory or 1/O space. DMA transfers can be programmed for any of the following four direc-
tions:

¢ from memory space to I/O space

¢ from I/O space to memory space

¢ from memory space to memory space
¢ from I/O space to I/O space

DMA transfers can access the Peripheral Control Block.

10.1.1.2 Byte and Word Transfers

DMA transfers can be programmed to handle either byte or word transfers. The handling of byte
and word data is the same as that for normal bus cycles and is dependent upon the processor bu:
width. For example, odd-aligned word DMA transfers on a processor with a 16-bit bus requires
two fetches and two deposits (all back-to-back). BIU bus cycles are covered in Chapter 3, “Bus
Interface Unit.” Word transfers are illegal on the 8-bit bus device.

10.1.2 Source and Destination Pointers

Each DMA channel maintains a twenty-bit pointer for the source of data and a twenty-bit pointer
for the destination of data. The twenty-bit pointers allow access to the full 1 Mbyte of memory
space. The DMA Unit views memory as a linear (unsegmented) array.

With a twenty-bit pointer, it is possible to create an I/O address that is above the CPU limit of 64
Kbytes. The DMA Unit will run I/O DMA cycles above 64K, even though these addresses are
not accessible through CPU instructions (e.g., IN and OUT). Some applications may wish to
make use of this by swapping pages of data from 1/O space above 64K to standard CPU memory.

The source and destination pointers can be individually programmed to increment, decrement or
remain constant after each transfer. The programmed data width (byte or word) determines the
amount that a pointer is incremented or decremented. Word transfers change the pointer by two;
byte transfers change the pointer by one.

10.1.3 DMA Requests
There are three distinct sources of DMA requests: the external DRQ pin, the internal DMA re-

guest line and the system software. In all three cases, the system softwamemaLB3MA chan-
nel before it recognizes DMA requests. (See “Arming the DMA Channel” on page 10-23.)

I 10-3

DIRECT MEMORY ACCESS UNIT Intel®

10.1.4 External Requests

External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the falling
edge of CLKOUT. It takes a minimum of four clocks before the DMA cycle is initiated by the
BIU (see Figure 10-2). The DMA request is cleared four clocks before the end of the DMA cycle
(effectively re-arming the DRQ input).

T4
orT3 T4
or T2 orT3 T4 T1
orT1l orT2 orT3 of
rorTW &+ orTL + orTW i T4 1 DMA
'orTlL Y orTI ! orTl ' orTl ' Cycle

(D> (3>

DRQ _}{/ @

NOTES:

1. TCLI% : DMA request to clock low.

2. Synchronizer resolution time.

3. DMA unit priority arbitration and overhead.

4. Bus interface unit latches DMA request and decides to run DMA cycle.

S

A1187-0A

Figure 10-2. DMA Request Minimum Response Time

External requests (and the resulting DMA transfer) are classified as either source-synchronized
or destination-synchronized. A source-synchronized request originates from the peripheral that is
sendingdata. For example, a disk controller in the process of reading data from a disk would use
a source-synchronized request (data would be moving from the disk to memory). A destination-
synchronized request originates from the peripheral th&ceving data. If a disk controller

were writing data to a disk, it would use a destination-synchronized request (data would be mov-
ing from memory to the disk). The type of synchronization a channel uses is programmable. (See
“Selecting Channel Synchronization” on page 10-23.)

10-4 I

Intel® DIRECT MEMORY ACCESS UNIT

10.1.4.1 Source Synchronization

A typical source-synchronized transfer is shown in Figure 10-3. Most DMA-driven peripherals
deassert their DRQ line only after the DMA transfer has begun. The DRQ signal must be deas-
serted at least four clocks before the end of the DMA transfer (at the T1 state of the deposit phase)
to prevent another DMA cycle from occurring. A source-synchronized transfer provides the
source device at least three clock cycles from the time it is accessed (acknowledged) to deassert
its request line if further transfers are not required.

Fetch Cycle Deposit Cycle

TL T2 T3 T4 T1 T2 T3 T4

CLKOUT
DRQ (Case 1) \ @
DRQ (Case 2) \®

NOTES:

1. Current source synchronized transfer will not be immediately
followed by another DMA transfer.

2. Current source synchronized transfer will be immediately
followed by another DMA transfer.

A1188-0A

Figure 10-3. Source-Synchronized Transfers

10.1.4.2 Destination Synchronization

A destination-synchronized transfer differs from a source-synchronized transfer by the addition
of two idle states at the end of the deposit cycle (Figure 10-4). The two idle states extend the DMA
cycle to allow the destination device to deassert its DRQ pin four clocks before the end of the
cycle. If the two idle statagere notinserted, the destination device would not be able to deassert
its request in time to prevent another DMA cycle from occurring.

The insertion of two idle states at the end of a destination synchronization transfer has an impor-
tant side effectA destination-synchronized DMA channel gives up the bus during the idle
states, allowing any other bus master to gain ownershifhis includes the CPU, the Refresh
Control Unit, an external bus master or another DMA channel.

10-5

DIRECT MEMORY ACCESS UNIT Intel®

Fetch Cycle Deposit Cycle

T1T T2 T3 T4 T1 T2 T3 T4 TI TI
CLKOUT

DRQ \ @)

(Case 1)
N

DRQ \ @)

(Case 2)

NOTES:

1. Current destination synchronized transfer will not be immediately
followed by another DMA transfer.

2. Current destination synchronized transfer will be immediately
followed by another DMA transfer.

A1189-0A

Figure 10-4. Destination-Synchronized Transfers

10.1.5 Internal Requests

Internal DMA requests can come from either an integrated peripheral or the system software.

10.1.5.1 Integrated Peripheral Requests

All four channels can be programmed to accept internal DMA requests from either Timer 2 or the
Serial Communications Unit. The request signals from the Serial Communications Unit and Tim-
er 2 connect to the DMA unit through the Internal DMA Request Multiplexer. (See “The Internal
DMA Request Multiplexer” on page 10-11.)

10.1.5.2 Timer 2-Initiated Transfers

When programmed for Timer 2-initiated transfers, the DMA channel performs one DMA transfer
every time that Timer 2 reaches its maximum count. Timer-initiated transfers are useful for ser-
vicing time-based peripherals. For example, an A/D converter would require data every 22 mi-
croseconds in order to produce an audio range waveform. In this case, the DMA source would
point to the waveform data, the destination would point to the A/D converter and Timer 2 would
request a transfer every 22 microseconds. (See “Timed DMA Transfers” on page 10-37.)

10-6

Intel® DIRECT MEMORY ACCESS UNIT

10.1.5.3 Serial Communications Unit Transfers

The Serial Communications Unit has two channels, each with its own receiver and transmitter.
Each of the DMA channels is assigned a Serial Communications Unit channel as follows:

* DMA channel 0 supports the serial port O transmitter (TXO0).
* DMA channel 1 supports the serial port O receiver (RX0).
* DMA channel 2 supports the serial port 1 transmitter (TX1).
* DMA channel 3 supports the serial port 1 receiver (RX1).

The DMA request and interrupt request signals from the serial channels are identical. For exam-
ple, when serial channel 1 completes a reception, it pulses both the interrupt request signal and
the DMA request signal high for one clock cycle.

Servicing the serial ports with DMA transfers (instead of interrupt requests) provides a tremen-

dous gain in system throughput when blocks of serial data are transmitted and received. When
using DMA-driven serial port transfers, it is important to note that as the baud rate of the transfer

is increased, so does bus utilization by the DMA Unit. Using high baud rates or multiple channels

can degrade CPU performance. (See “DMA-Driven Serial Transfers” on page 10-34.)

10.1.5.4 Unsynchronized Transfers

DMA transfers can be initiated directly by the system software by selecting unsynchronized
transfers. Unsynchronized transfers continue, back-to-back, at the full bus bandwidth, until the
channel’s transfer count reaches zero or DMA transfers are suspended by an NMI.

10.1.6 DMA Transfer Counts

Each DMA Unit maintains a programmable 16-bit transfer count value that controls the total
number of transfers the channel runs. The transfer count is decremented by one after each transfel
(regardless of data size). The DMA channel can be programmed to terminate transfers when the
transfer count reaches zero (also referred terasinal coun.

10.1.7 Termination and Suspension of DMA Transfers

When DMA transfers for a channel aeeminated no further DMA requests for that channel will

be granted until the channel is re-started by direct programmsigsgende@®MA transfer tem-
porarily disables transfers in order to perform a specific task. A suspended DMA channel does
not need to be re-started by direct programming.

10-7

DIRECT MEMORY ACCESS UNIT Intel®

10.1.7.1 Termination at Terminal Count

When programmed to terminate on terminal count, the DMA channel disarms itself when the
transfer count value reaches zero. No further DMA transfers take place on the channel until it is
re-armed by direct programming. Unsynchronized transilgrays terminate when the transfer
count reaches zero, regardless of programming.

10.1.7.2 Software Termination

A DMA channel can be disarmed by direct programming. Any DMA transfer that is in progress
will complete, but no further transfers are run until the channel is re-armed.

10.1.7.3 Suspension of DMA During NMI

DMA transfers are inhibited during the service of Non-Maskable Interrupts (NMI). DMA activity
is halted in order to give the CPU full command of the system bus during the NMI service. Exit
from the NMI via an IRET instruction re-enables the DMA Unit. DMA transfers can be enabled
during an NMI service routine by the system software.

10.1.7.4 Software Suspension

DMA transfers can be temporarily suspended by direct programming. In time-critical sections of
code, such as interrupt handlers, it may be necessary to shut off DMA activity temporarily in or-
der to give the CPU total control of the bus.

10.1.8 DMA Unit Interrupts

Each DMA channel can be programmed to generate an interrupt request when its transfer count
reaches zero. DMA channels 2 and 3 are supported internally by the integrated Interrupt Control
Unit. DMA channels 0 and 1 are supported by the DMAIO and DMAI1 outputs. DMAIO and
DMAI1 go active when the transfer count reaches zero. These outputs can be connected to ex-
ternal interrupt pins. (See “Indirectly Supported Internal Interrupt Sources” on page 8-38.)

10.1.9 DMA Cycles and the BIU

The DMA Unit uses the Bus Interface Unit to perform its transfers. When the DMA Unit has a
pending request, it signals the BIU. If the BIU has no other higher-priority request pending, it runs
the DMA cycle. (BIU priority is described in Chapter 3, “Bus Interface Unit.”) The BIU signals
that it is running a bus cycle initiated by a master other than the CPU by driving the S6 status bit
high.

10-8 I

Intel® DIRECT MEMORY ACCESS UNIT

The Chip-Select Unit monitors the BIU addresses to determine which chip-select, if any, to acti-
vate. Because the DMA Unit uses the BIU, chip-selects are active for DMA cycles. If a DMA
channel accesses a region of memory or I/0O space within a chip-select’s programmed range, then
that chip-select is asserted during the cycle. The Chip-Select Unit will not recognize DMA cycles
that access I/0O space above 64K.

10.1.10 The Two-Channel DMA Module

Two DMA channels are combined with arbitration logic to form a DMA module (see Figure
10-5).

10.1.10.1 DMA Channel Arbitration

Within a two-channel DMA module, the arbitration logic decides which channel takes prece-
dence when both channels simultaneously request transfers. Each channel can be set to either low
priority or high priority. If the two channels are set to the same priority (either both high or both
low), then the channels rotate priority.

10.1.10.1.1 Fixed Priority

Fixed priority results when one channel in a module is programmed to high priority and the other
is set to low priority. If both DMA requests occur simultaneously, the high priority channel per-
forms its transfer (or transfers) first. The high priority channel continues to perform transfers as
long as the following conditions are met:

¢ the channel's DMA request is still active
¢ the channel has not terminated or suspended transfers (through programming or interrupts)

¢ the channel has not released the bus (through the insertion of idle states for destination-
synchronized transfers)

The last point is extremely important when the two channels use different synchronization. For
example, consider the case in which channel 1 is programmed for high priority and destination
synchronization and channel 0 is programmed for low priority and source synchronization. If a
DMA request occurs for both channels simultaneously, channel 1 performs the first transfer. At
the end of channel 1's deposit cycle, two idle states are inserted (thus releasing the bus). With the
bus released, channel 0 is free to perform its traesfam though the higher-priority channel

has not completed all of its transfersChannel 1 regains the bus at the end of channel 0’s trans-
fer. The transfers will alternate as long as both requests remain active.

10-9

DIRECT MEMORY ACCESS UNIT Intel®

Module
Timer 2 DMA Request
Internal - DMA Inter-module
Request Arbitration
Multiplexer Logic
. A A
Timer 2
Request Timer 2 Request
Source Pointer Source Pointer
Destination Pointer Destination Pointer
Channel 0 | L] Channel 1
Control Logic Control Logic
f A T /
DRQ Pin DRQ Pin
A1540-01

Figure 10-5. Two-Channel DMA Module

A higher-priority DMA channel will interrupt the transfers of a lower-priority channel. Figure
10-6 shows several transfers with different combinations of channel priority and synchronization.

10-10 I

Intel® DIRECT MEMORY ACCESS UNIT

Both Requests Asserted

Channel| 0 1 1Y Etc.
Priority [Low | Low| | Channel 1 | Channel 0 | Channel 1 | Channel 0 [eee
Synch | SRC| SRC

Channel| 0 1 Etc.
Priority [High | Low| | Channel 0 | Channel 0 |[%|JChannel 1[Channel 1 |eee

Synch | SRC | SRC Channel 0 Completes
Channel| 0 1 All Transfers

Etc.
Priority | High | Low| | Channel 0 ||| Channel 1 || Channel 0 |||l Channel 1 |eee
Synch Dest | SRC

Destination Synch Releases Bus

A1190-0A

Figure 10-6. Examples of DMA Priority

10.1.10.1.2 Rotating Priority

Channel priority rotates when the channels are programmed as both high or both low priority. The
highest priority is initially assigned to channel 1 of the module. After a channel performs a trans-
fer, it is assigned the lower priority. When requests are active for both channels, the transfers al-
ternate between the two.

10.1.10.1.3 The Internal DMA Request Multiplexer

The source of internal DMA requests for a module is selected by the Internal DMA Request Mul-
tiplexer. The multiplexer controls the routing of internal DMA requests to each channel of the
module. When the multiplexer is programmed to select Timer 2 DMA requests, the internal re-
guest line of each channel is connected to Timer 2. When the multiplexer is programmed to select
serial port DMA requests, channel 0 is connected to the transmitter DMA request and channel 1
is connected to the receiver DMA request. A simplified diagram of the Internal DMA Request
Multiplexer is shown in Figure 10-7.

It is important to note that the Internal DMA Request Multiplexer only selects the source of in-

ternal DMA requests; it doa®sot control whether the channel responds to internal or external
DMA requests.

I 10-11

DIRECT MEMORY ACCESS UNIT Intel®

Timer 2
DMA Request

Internal
DMA Request
For Channel 0

o
Q
-
A\‘ Internal
Q DMA Request
mi

Serial Transmitter
DMA Request

Serial Receiver For Channel 1

DMA Request

Select
(From Internal
DMA Request
Multiplexer Register)

A1183-0A

Figure 10-7. Internal DMA Request Multiplexer

10.1.11 DMA Module Integration

The DMA Unit of the 80C186EC/C188EC consists of two DMA modules (a total of four chan-
nels) and the Inter-Module Arbitration Circuitfyee Figure 10-8).

10-12 I

Intel® DIRECT MEMORY ACCESS UNIT

10.1.11.1 DMA Unit Structure

The two DMA modules within the DMA Unit are referred to as module A and module B. Both
modules function identically. Table 10-1 includes naming and signal connection information for
each channel.

Table 10-1. DMA Unit Naming Conventions and Signal Connections

Module EZ?:S;' C’ngfl Interg&:}ltgiguest External Request Pin
0 DMAO TIMER2 or TX0 DRQO
A 1 DMA1 TIMER2 or RX0 DRQ1
0 DMA2 TIMER2 or TX1 DRQ2
B 1 DMA3 TIMER2 or RX1 DRQ3

10-13

DIRECT MEMORY ACCESS UNIT

Inter-Channel Arbitration
and
Internal Request Multiplexer

BIU Request
T R T
T X X Inter-Module
2 0 O Arbitration
D DD Logic
g CR) (F; Module A A A Module B
i t Request Request

""""""" Fv

Channel 0 Channel 1

Inter-Channel Arbitration

Internal Request Multiplexer

and

A Module A T

DRQO DRQ1

Channel 0 Channel 1
A Module B T :
DRQ2 DRQ3

A1184-0A

Figure 10-8. 80C186EC/C188EC DMA Unit

Like inter-channel priority, DMA module priority is set on a relative basis: one module may be

set higher than or equal to the other module.

Priority arbitration between modules is subject to the same rules as arbitration between channels.
When priority is fixed between modules (i.e., one module is set to a higher priority than the other),
the high-priority module continues to perform transfers as long as its DMA request is active, the

transfers have not been suspended or terminated and it has not released the bus.

The DMA modules rotate priority when both modules are set to the same priority. DMA module
B is initially set to high priority and module A is set to low priority. After a channel within a mod-

ule performs a transfer, the module is set to low priority.

10-14

Intel® DIRECT MEMORY ACCESS UNIT

Channel arbitration within the DMA Unit first begins on the module level. Each module priori-
tizes its two DMA requests (if active) and then presents a module request to the Inter-Module Ar-
bitration Logic. If both modules are requesting transfers, the Inter-Module Arbitration Logic
decides which of the two modules has highest priority and grants that module control of the bus.

10.2 PROGRAMMING THE DMA UNIT

A total of six Peripheral Control Block registers configure each DMA channel. Two additional
registers are used to specify parameters for inter-module priority, internal DMA request multi-
plexing and DMA suspension.

10.2.1 DMA Channel Parameters

The first step in programming the DMA Unit is to set up the parameters for each channel.

10.2.1.1 Programming the Source and Destination Pointers

The following parameters are programmable for the source and destination pointers:

* pointer address

* address space (memory or 1/0O)

¢ automatic pointer indexing (increment, decrement or no change) after transfer
Two 16-bit Peripheral Control Block registers define each of the 20-bit pointers. Figures 10.7 and
10.8 show the layout of the DMA Source Pointer address registers, and Figures 10.9 and 10.10
show the layout of the DMA Destination Pointer address registers. The DSA19:16 and
DDA19:16 (high-order address hits) are driven on the bus even if 1/O transfers have been pro-

grammed. When performing I/O transfers within the normal 64K I/O spagethe high-order
bits in the pointer registers must be cleared.

I 10-15

DIRECT MEMORY ACCESS UNIT

intel.

Register Name:
Register Mnemonic:

Register Function:

DMA Source Address Pointer (High)

DxSRCH

Contains the upper 4 bits of the DMA Source pointer.

15 0
D|ID|D]|D
S|S]|S]|S
AlATAT]A
111111
918|716
A1185-0A
Bit . Reset :
Mnemonic Bit Name State Function
DSA19:16 DMA XXXXH | DSA19:16 are driven on A19:16 during the

Source
Address

fetch phase of a DMA transfer.

NOTE:

Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

10-16

Figure 10-9. DMA Source Pointer (High-Order Bits)

Intel® DIRECT MEMORY ACCESS UNIT

Register Name: DMA Source Address Pointer (Low)
Register Mnemonic: DxSRCL
Register Function: Contains the lower 16 bits of the DMA Source pointer.
15 0
p|lopfp|D||D|D|D|D||D|D|D|D||D|D|D|D
S|s|s|s||s|s]|s|s|[s]|s]|s|s]||s|s]s]|s
AlalalallalalalalfalalalallalAa]lAalAa
11111 1|l1)9|8||l7|6]s5|4]||3|2]12]|0
514]13])2 1|0
A1177-0A
Bit . Reset .
Mnemonic Bit Name State Function
DSA15:0 DMA XXXXH | DSA15:0 are driven on the lower 16 bits of the
Source address bus during the fetch phase of a DMA
Address transfer.

Figure 10-10. DMA Source Pointer (Low-Order Bits)

The address space referenced by the source and destination pointers is programmed in the DMA
Control Register for the channel (see Figure 10-13 on page 10-20). The SMEM and DMEM bits
control the address space (memory or 1/O) for source pointer and destination pointer, respective-

ly.

Automatic pointer indexing is also controlled by the DMA Control Register. Each pointer has two
bits, increment and decrement, that control the indexing. If the increment and decrement bits for
a pointer are programmed to the same value, then the pointer remains constant. The programmed
data width (byte or word) for the channel automatically controls the amount that a pointer is in-
cremented or decremented.

10-17

DIRECT MEMORY ACCESS UNIT Intel®

Register Name: DMA Destination Address Pointer (High)
Register Mnemonic: DxDSTH
Register Function: Contains the upper 4 bits of the DMA

Destination pointer.

©rX>»00
o+ >»00
~N+—2>»00
o~ >»00

A1178-0A
Bit . Reset ’
Mnemonic Bit Name State Function
DDA19:16 DMA XXXXH DDA19:16 are driven on A19:16 during the
Destination deposit phase of a DMA transfer.
Address

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 10-11. DMA Destination Pointer (High-Order Bits)

10-18

Intel® DIRECT MEMORY ACCESS UNIT

Register Name: DMA Destination Address Pointer (Low)
Register Mnemonic: DxDSTL
Register Function: Contains the lower 16 bits of the DMA Destination
pointer.
15 0
plo|fp|Dp]||D|D|D|D||D|D|D|D||D|D|D|D
p|lpo|D|D||D|D|D|D||D|D|D|D]||D|D|D]|D
AlAlAalAallAalAalAalAallalAalAalAallA]lA]lA]A
11111 1]11]9]s 716|543 |2]1]0
5(4]3]2 1]o
A1179-0A
Bit . Reset .
Mnemonic Bit Name State Function
DDA15:0 DMA XXXXH | DDA15:0 are driven on the lower 16 bits of the
Destination address bus during the deposit phase of a DMA
Address transfer.

Figure 10-12. DMA Destination Pointer (Low-Order Bits)

10.2.1.2 Selecting Byte or Word Size Transfers

The WORD bit in the DMA Control Register (Figure 10-13) controls the data size for a channel.
When WORD is set, the channel transfers data in 16-bit words. Byte transfers are selected by
clearing the WORD bit. The data size for a channel also affects pointer indexing. Word transfers
modify (increment or decrement) the pointer registers by two for each transfer, while byte trans-
fers modify the pointer registers by one.

10-19

DIRECT MEMORY ACCESS UNIT

Register Name:
Register Mnemonic:

Register Function:

DMA Control Register
DxCON

Controls DMA channel parameters.

15 0
D|ID|DJ|S S|S | S|S|P]| I C|S|W
M|DIJ] I |M D| I N Y|Y D H|IT]|]O
E|JE|N]E E|N T N|N R G|R|R
M|C]|]C|M c|cC 110 Q T|D
A1180-0A
Bit . Reset .
Mnemonic Bit Name State Function
DMEM Destination X Selects memory or I/O space for the destination
Address pointer. Set DMEM to select memory space; clear
Space DMEM to select I/O space.
Select
DDEC Destination X Set DDEC to automatically decrement the destination
Decrement pointer after each transfer. (See Note.)
DINC Destination X Set DINC to automatically increment the destination
Increment pointer after each transfer. (See Note.)
SMEM Source X Selects memory or I/O space for the source pointer.
Address Set SMEM to select memory space; clear SMEM to
Space select 1/0O space.
Select
SDEC Source X Set SDEC to automatically decrement the source
Decrement pointer after each transfer. (See Note.)
SINC Source X Set SINC to automatically increment the source
Increment pointer after each transfer. (See Note.)
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a

logic zero to ensure compatibility with future Intel products. A pointer remains constant if
its increment and decrement bits are equal.

10-20

Figure 10-13. DMA Control Register

intel.

DIRECT MEMORY ACCESS UNIT

Register Name:
Register Mnemonic:

Register Function:

DMA Control Register
DxCON

Controls DMA channel parameters.

15 0
D|D|D]J|S S|S|T] I S|S|P]I C|S|W
MIDIJ] I M D|I|C]|N Y|Y D H|IT]|]O
E|E|N]|E E|N T N | N R G|R|R
M|C]|]C|M c|C 110 Q T|D
A1180-0A
Bit . Reset .
Mnemonic Bit Name State Function
TC Terminal X Set TC to terminate transfers on Terminal Count. This
Count bit is ignored for unsynchronized transfers (that is, the
DMA channel behaves as if TC is set, regardless of its
condition).
INT Interrupt X Set INT to generate an interrupt request on Terminal
Count. The TC bit must be set to generate an interrupt.
SYN1:0 Synchron- XX Selects channel synchronization:
ization Type SYN1 SYNO Synchronization Type
0 0 Unsynchronized
0 1 Source-synchronized
1 0 Destination-synchronized
1 1 Reserved (do not use)
P Relative X Set P to select high priority for the channel; clear P to
Priority select low priority for the channel.
IDRQ Internal X Set IDRQ to select internal DMA requests and ignore
DMA the external DRQ pin. Clear IDRQ to select the DRQ pin
Request as the source of DMA requests. When IDRQ is set, the
Select channel must be configured for source-synchronized
transfers (SYN1:0 = 01).

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

Figure 10-13. DMA Control Register (Continued)

10-21

DIRECT MEMORY ACCESS UNIT Intel®

Register Name: DMA Control Register
Register Mnemonic: DxCON
Register Function: Controls DMA channel parameters.
15 0
D|ID|DJ|S S|S|T | S|S|P | cC|S|WwW
MIDIJ] I M D|I|C]|N Y|Y D H|T]|]O
E|JE|N]E E|N T N|N R G|IR|R
M|IC]|CI|M cj|cC 11]0 Q T|D
A1180-0A
Bit . Reset .
Mnemonic Bit Name State Function
CHG Change X Set CHG to enable modifying the STRT bit.
Start Bit
STRT Start DMA 0 Set STRT to arm the DMA channel. The STRT bit can
Channel be modified only when the CHG bit is set.
WORD Word X Set WORD to select word transfers; clear WORD to
Transfer select byte transfers. The 8-bit bus versions of the
Select device ignore the WORD bit.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

Figure 10-13. DMA Control Register (Continued)

10.2.1.3 Selecting the Source of DMA Requests

DMA requests can come from either an internal source or an external source. The internal re-
quests are further divided into Timer 2 requests and serial port requests.

Internal DMA requests are selected by setting the IDRQ bit in the DMA Control Register (see
Figure 10-13 on page 10-20) for the channel. The DMA channel ignores its DRQ pin when inter-
nal requests are programmed. Similarly, the DMA channel responds only to the DRQ pin (and
ignores internal requests) when external requests are selected.

10-22

Intel® DIRECT MEMORY ACCESS UNIT

When internal DMA requests are selected, the source of the internal request must be pro-
grammed. The Internal DMA Request Multiplexer is programmable on a modul@blysishe

two channels in a module can be programmed to both respond to Timer 2 or both respond to the
serial port. A module cannot be programmed to have one channel respond to Timer 2 and one
channel respond to the serial port. The source of internal DMA requests for each module is con-
trolled by the IDRQA and IDRQB bits in the DMA Priority Register (see Figure 10-14).

10.2.1.4 Arming the DMA Channel

Each DMA channel must be armed before it can recognize DMA requests. A channel is armed
by setting its STRT (Start) bit in the DMA Control Register (Figure 10-13 on page 10-20). The
STRT bit can be modified only if the CHG (Change Start) bit is set at the same time. The CHG
bit is a safeguard to prevent accidentally arming a DMA channel while modifying other channel
parameters.

A DMA channel is disarmed by clearing its STRT bit. The STRT bit is cleared either directly by
software or by the channel itself when it is programmed to terminate on terminal count.

10.2.1.5 Selecting Channel Synchronization

The synchronization method for a channel is controlled by the SYNZ1:0 bits in the DMA Control
Register (Figure 10-13 on page 10-20).

NOTE

The combination SYN1:0=11 is reserved and will result in unpredictable
operation. When IDRQ is set (internal requests selected) the channel must
always be programmed for source-synchronized transfers (SYN1:0=01).

When programmed for unsynchronized transfers (SYN1:0=00), the DMA channel will begin to
transfer data as soon as the STRT bit is set.

I 10-23

DIRECT MEMORY ACCESS UNIT Intel®

Register Name: DMA Module Priority Register
Register Mnemonic: DMAPRI
Register Function: Controls inter-module priority and the Internal DMA
Request Multiplexer.
15 0
| | D D
D D M M
R R A A
Q Q P P
B A B A
A1181-0A
Bit . Reset .
Mnemonic Bit Name State Function
IDRQB Internal 0 Clear to select Timer 2 as the source of internal
DMA DMA requests. Set to select serial channel 1 as
Request for the source of internal DMA requests for Module
Module B B.
IDRQA Internal 0 Clear to select Timer 2 as the source of internal
DMA DMA requests. Set to select serial channel 0 as
Request for the source of internal DMA requests for Module
Module A A.
DMAPB DMA 0 Set to place DMA Module B at a high relative
Module B priority.
Priority
DMAPA DMA 0 Set to place DMA Module A at a high relative
Module A priority.
Priority
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 10-14. DMA Module Priority Register

10.2.1.6 Programming the Transfer Count Options

The Transfer Count Register (Figure 10-15) and the TC bit in the DMA Control Register (Figure
10-13 on page 10-20) are used to stop DMA transfers for a channel after a specified number of
transfers have occurred.

10-24

Intel® DIRECT MEMORY ACCESS UNIT

The transfer count (the number of transfers desired) is written to the DMA Transfer Count Reg-
ister. The Transfer Count Register is 16 bits wide, limiting the total number of transfers for a
channel to 65,536 (without reprogramming). The Transfer Count Register is decremented by one
after each transfer (for both byte and word transfers).

Register Name: DMA Transfer Count
Register Mnemonic: DxTC
Register Function: Contains the DMA channel’s transfer count.
15 0
T|IT|T]|T T|IT|T]|T T|ITI|T]|T T|IT|T]|T
cjcjcj|c cjcjcj|c c|cj|cj|c c|cjljcj|c
1|11 11]1 1111918 716|514 312]11]0
514]|3]2 110
A1172-0A
Bit . Reset :
Mnemonic Bit Name State Function
TC15:0 Transfer XXXXH | Contains the transfer count for a DMA channel.
Count This value is decremented by one after each
transfer.

Figure 10-15. Transfer Count Register

The TC bit, when set, instructs the DMA channel to disarm itself (by clearing the STRT bit) when
the transfer count reaches zero. If the TC bit is cleared, the channel continues to perform transfers
regardless of the state of the Transfer Count Register. Unsynchronized (software-initiated) trans-
fers always terminate when the transfer count reaches zero; the TC bit is ignored.

10.2.1.7 Generating Interrupts on Terminal Count
A channel can be programmed to generate an interrupt request whenever the transfer count reach-

es zero. Both the TC bit and the INT bit in the DMA Control Register (Figure 10-13 on page
10-20) must be set to generate an interrupt request.

10-25

DIRECT MEMORY ACCESS UNIT Intel®

10.2.1.8 Setting the Relative Priority of a Channel

The priority of a channel within a module is controlled by the Priority bit in the DMA Control
Register (Figure 10-13 on page 10-20). A channel may be assigned either high or low priority. If
both channels are programmed to the same priority (i.e., both high or both low), the channels ro-
tate priority.

10.2.2 Setting the Inter-Module Priority

The inter-module priority for the DMA Unit is controlled by the DMAPA and DMAPB bits in

the DMA Module Priority Register (Figure 10-14 on page 10-24). A module may be assigned ei-
ther high or low priority. When both modules are assigned the same priority, the modules rotate
priority.

10.2.3 Using the DMA Unit with the Serial Ports

The following setup is used for DMA-serviced serial port reception.

* The source pointer points at the receive buffer (SxRBUF) in the serial port.

* The destination pointer points to the area in memory where the message will be saved.

* The DMA channel is programmed for serial channel requests.

* The transfer count register holds the length of the memory buffer.
The serial port DMA request pulses high after each byte is received. The DMA unit then fetches
the received byte from the receive buffer (SxRBUF) register and deposits it in memory. Typical-
ly, the channel is programmed to interrupt the CPU when the memory buffer is full (i.e., when
the transfer count reaches zero).
The following setup is used for DMA-serviced serial port transmission.

* The source pointer points to the area of memory where the message resides.

* The destination pointer points to the transmit buffer (SXTBUF) for the serial channel.

* The DMA channel is programmed for serial channel requests.

* The transfer count register holds the length of the memory buffer.
The serial port DMA request pulses high after each byte is transmitted. The DMA unit then fetch-
es the next byte of the message from memory and deposits it in the transmit buffer (initiating an-

other transfer). Typically, the channel is programmed to interrupt the CPU when the memory
buffer is empty (i.e., when the transfer count reaches zero).

DMA-driven transmissions must be “primed” by sending the first byte manually, thus generating
the first transmit interrupt.

10-26 I

Intel® DIRECT MEMORY ACCESS UNIT

10.2.4 Suspension of DMA Transfers Using the DMA Halt Bits

The DMA Module HALT Register (Figure 10-16) contains three bits that allow the system soft-
ware to suspend DMA transfers temporarily. The HNMI bit is set automatically whenever the
CPU receives an NMI . When the HNMI bit is set, no DMA transfers can occur from either mod-
ule. The HNMI bit is automatically cleared when an IRET instruction is executed. The HNMI bit
can be cleared by the system software if DMA transfers are desired during the NMI service rou-
tine.

Executing an INT2 instruction (NMI) doest set the HNMI bit.

The HDMA and HDMB bits are used to suspend transfers for module A and module B, respec-
tively. The HDMA and HDMB bits should be used instead of HNMI when suspending transfers
under normal circumstances. This ensures that the system software will not inadvertently inter-
fere with an NMI service routine.

The mask bits (HMI, HMA, HMB) allow the modification of individual halt bits without per-
forming a read-modify-write operation on the DMA Halt Register.

10.2.5 Initializing the DMA Unit

Use the following sequence when programming the DMA Unit:
1. Program the source and destination pointers for all used channels.
2. Program the inter-module priority.

3. Program the DMA Control Registers in order of highest-priority channel to lowest-
priority channel.

I 10-27

DIRECT MEMORY ACCESS UNIT Intel®

Register Name: DMA Halt Register
Register Mnemonic: DMAHALT
Register Function: Allows software suspension of DMA transfers.
15 0
H HfH(]H H|H
M M| M N D|D
| BlA M MM
| B|A
A1504-A0
Bit . Reset)
Mnemonic Bit Name State Function
HMI Halt Mask 0 HMI must be set to modify HNMI.
for HNMI
HMB Halt Mask 0 HMB must be set to modify HDMB.
for Module B
HMA Halt Mask 0 HMA must be set to modify HDMA.
for Module A
HNMI Halt DMA 0 HNMI is set automatically when an NMI request
Unit for NMI is processed by the CPU. HNMI suspends DMA
Service transfers for both modules. HNMl is cleared
automatically when an IRET instruction is
executed by the CPU.
HDMB Halt DMA 0 Set to suspend transfers for module B.
Module B
HDMA Halt DMA 0 Set to suspend transfers for module A.
Module A

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 10-16. DMA Module HALT Register

10.3 HARDWARE CONSIDERATIONS AND THE DMA UNIT

This section covers hardware interfacing and performance factors for the DMA Unit.

10-28

Intel® DIRECT MEMORY ACCESS UNIT

10.3.1 DRQ Pin Timing Requirements

The DRQ pins are sampled on the falling edge of CLKOUT. The DRQ pins must be set up a min-
imum of T s before CLKOUT falling and must be held a minimum ¢f] after CLKOUT
falls. Refer to the data sheet for specific values.

The DRQ pins have an internal synchronizer. Violating the setup and hold times can cause only
a missed DMA request, not a processor malfunction.

10.3.2 DMA Latency

DMA Latencyis the delay between a DMA request being asserted and the DMA cycle being run.
The DMA latency for a channel is controlled by many factors:

* Bus HOLD — Bus HOLD takes precedence over internal DMA requests. Using bus HOLD
will degrade DMA latency.

* LOCKed Instructions — Long LOCKed instructions (e.g., LOCK REP MOVS) will
monopolize the bus, preventing access by the DMA Unit.

* Inter-channel Priority Scheme —Setting a channel at low priority will affect its latency.

The minimum latency in all cases is four CLKOUT cycles. This is the amount of time it takes to
synchronize and prioritize a request.

10.3.3 DMA Transfer Rates

The maximum DMA transfer rate is a function of processor operating frequency and synchroni-
zation mode. For unsynchronized and source-synchronized transfers, the 80C186 Modular Core
can transfer two bytes every eight CLKOUT cycles. For destination-synchronized transfers, the
addition of two idle T-states reduces the bandwidth by two clocks per word.

Maximum DMA transfer rates (in Mbytes per second) for the 80C186 Modular Core are calcu-
lated by the following equations, wherg-Fis the CPU operating frequency (in megahertz).

For unsynchronized and source-synchronized transfers:

0.25 x Fpy,

For destination-synchronized transfers:

0.20 X Fepy

I 10-29

DIRECT MEMORY ACCESS UNIT Intel®

Because of its 8-bit data bus, the 80C188 Modular Core can transfer only one byte per DMA cy-
cle. Therefore, the maximum transfer rates for the 80C188 Modular Core are half those calculated
by the equations for the 80C186 Modular Core.

10.3.4 Generating a DMA Acknowledge

The DMA channels do not provide a distinct DMA acknowledge signal. A chip-select line can be
programmed to activate for the memory or 1/O range that requires the acknowledge. The chip-
select must be programmed to activate only when a DMA is in progress. Latched status line S6
can be used as a qualifier to the chip-select for situations in which the chip-select line will be ac-
tive for both DMA and normal data accesses.

10.4 DMA UNIT EXAMPLES

Example 10-1 sets up channel 0 to perform an unsynchronized burst transfer from memory to
memory while channel 1 is used to service an external DMA request from a hard disk controller.

Example 10-2 shows the steps necessary to use the DMA Unit with the Serial Communications
Unit. Two DMA channels are used: one for transmit and one for receive functions.

Example 10-3 shows timed DMA transfers. A sawtooth waveform is created using DMA trans-
fers to an A/D converter.

10-30 I

Intel® DIRECT MEMORY ACCESS UNIT

$MOD186
name DMA_EXAMPLE_1

; This example shows code necessary to set up two DMA channels.

; One channel performs an unsynchronized transfer from memory to memory.
; The second channel is used by a hard disk controller located in

; 11O space.

; Itis assumed that the constants for PCB register addresses are
; defined elsewhere with EQUates.

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG

START: MOV AX, DATA_SEG ; DATA SEGMENT POINTER
MOV DS, AX
ASSUME DS:DATA_SEG

; First we must initialize DMA channel 0. DMAO will perform an

; unsynchronized transfer from SOURCE_DATA_1 to DEST_DATA_1.
; The first step is to calculate the proper values for the

; source and destination pointers.

MOV AX, SEG SOURCE_DATA_1

ROL AX 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET SOURCE_DATA_1
; NOW LOW BYTES OF POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE
AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, DOSRCL
OUT DX, AL ; AX=LOW 4 BYTES

MOV DX, DOSRCH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; SOURCE POINTER DONE. REPEAT FOR DESTINATION.

MOV AX, SEG DEST_DATA_1

ROL AX 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET DEST_DATA 1
; NOW LOW BYTES OF POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE
AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, DODSTL
ouT DX, AX ; AX=LOW 4 BYTES

Example 10-1. Initializing the DMA Unit

10-31

DIRECT MEMORY ACCESS UNIT Intel®

MOV DX, DODSTH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 29 ; THE MESSAGE IS 29 BYTES LONG.
MOV DX, DOTC ; XFER COUNT REG
OUT DX, AX

NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
DESTINATION SOURCE

MEMORY SPACE MEMORY SPACE
INCREMENT PTR INCREMENT PTR

; TERMINATE ON TC, NO INTERRUPT, UNSYNCHRONIZED, LOW PRIORITY RELATIVE
; TO CHANNEL 1, BYTE XFERS. WE START THE CHANNEL.

MOV AX, 1011011000000110B
MOV DX, DOCON
OUT DX, AX

; THE UNSYNCHRONIZED BURST IS NOW RUNNING ON THE BUS...
; NOW SET UP CHANNEL 1 TO SERVICE THE DISK CONTROLLER.

; FOR THIS EXAMPLE WE WILL ONLY BE READING FROM THE DISK.
; THE SOURCE IS THE I/0O PORT FOR THE DISK CONTROLLER.

MOV AX, DISK_IO_ADDR
MOV DX, D1SRCL

ouT DX, AX ; PROGRAM LOW ADDR
XOR AX, AX

MOV DX, D1ISRCH ; HI ADDR FOR 10=0
ouT DX, AX

; THE DESTINATION IS THE DISK BUFFER IN MEMORY
MOV AX, SEG DISK_BUFF

ROL AX 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET DISK_BUFF
; NOW LOW BYTES OF POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE
AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D1DSTL
ouT DX, AL ; AX=LOW 4 BYTES
MOV DX, D1DSTH
MOV AX, BX ; GET HIGH NIBBLE
ouT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

Example 10-1. Initializing the DMA Unit (Continued)

10-32

Intel® DIRECT MEMORY ACCESS UNIT

MOV AX, 512 ; THE DISK READS IN 512 BYTE
SECTORS

MOV DX, D1TC ; XFER COUNT REG

OuUT DX, AX

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
DESTINATION SOURCE

MEMORY SPACE I/0 SPACE
INCREMENT PTR CONSTANT PTR

; TERMINATE ON TC, INTERRUPT, SOURCE SYNC, HIGH PRIORITY RELATIVE TO
; CHANNEL 0, BYTE XFERS, USE DRQ PIN FOR REQUEST SOURCE. ARM CHANNEL.

MOV AX, 1010001101100110B

MOV DX, DOCON

OUT DX, AX
: REQUESTS ON DRQ1 WILL NOW RESULT IN TRANSFERS
CODE_SEG ENDS
DATA_SEG SEGMENT

SOURCE_DATA_1DB '80C186EC INTEGRATED PROCESSOR'
DEST_DATA_1DB 30 DUP('MITCH") ; JUNK DATA FOR TEST

DISK_BUFF DB 512 DUP(?)

DATA_SEG ENDS
END START

Example 10-1. Initializing the DMA Unit (Continued)

10-33

DIRECT MEMORY ACCESS UNIT

$mod186
name DMA_WITH_SCU

; The following example initializes the DMA unit to perform
; DMA-driven serial transfers.

It is assumed that the serial port has been initialized for

; Mode 1 asynchronous transfers. Register mnemonics are assumed
; to be defined elsewhere in EQUate instructions.

DATA SEGMENT

XMIT_BUFF DB ‘This is a serial message.'
RECV_BUFF DB 128 DUP('ReCV') ; JUNK DATA

DATA ENDS

CODE SEGMENT
ASSUME CS:CODE

MOV AX, DATA ; DATA SEGMENT POINTER
MOV DS, AX
ASSUME DS:DATA

; First we set up DMA channel 2 (Module B, channel 0) to handle
; transmit requests from serial port 1.

The source of data is the transmit buffer in memory.
; The destination for data is the TBUF register for serial port 1...

MOV AX, SEG XMIT_BUFF

ROL AX 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET XMIT_BUFF+1

; USE XMIT_BUFF+1 BECAUSE FIRST BYTE IS SENT MANUALLY.
; NOW LOW BYTES OF POINTER ARE IN AX.

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE
AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D2SRCL
OUT DX, AX ; AX=LOW 4 BYTES

MOV DX, D2SRCH

MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; SOURCE POINTER DONE. DESTINATION IS IN PCB.
MOV DX, D2DSTL

MOV AX, S1ITBUF ; TRANSMIT BUFFER FOR
OUT DX, AX ; CHANNEL 1 IS DEST

Example 10-2. DMA-Driven Serial Transfers

10-34

Intel® DIRECT MEMORY ACCESS UNIT

XOR AX, AX ; HIGH ADDRESS=0
MOV DX, D2DSTH
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 25 ; THE MESSAGE IS 25 BYTES LONG.
MOV DX, D2TC ; XFER COUNT REG
OUT DX, AX

; SELECT THE SERIAL PORTS AS THE SOURCE OF INTERNAL DMA REQUESTS
; AND SELECT MODULE B AS THE HIGHEST PRIORITY MODULE.

MOV DX, DMAPRI
MOV AX, 0404H ; IDRQB=1, DMAPB=1
OUT DX, AX

NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
DESTINATION SOURCE

I/0 SPACE MEMORY SPACE
CONSTANT PTR INCREMENT PTR

; TERMINATE ON TC, INTERRUPT, SOURCE-SYNCHRONIZED, LOW PRIORITY RELATIVE
; TO CHANNEL 1, BYTE XFERS. INTERNAL DRQ. ARM CHANNEL.

MOV AX, 0001011101010110B

MOV DX, DOCON

ouT DX, AX

; THE TRANSMIT CHANNEL IS NOW ARMED. IT WILL NOT BEGIN TRANSFERS UNTIL
; IT IS "PRIMED" BY SENDING THE FIRST BYTE MANUALLY.

; NOW SET UP CHANNEL 4 TO HANDLE RECEIVE REQUESTS FROM SERIAL CHANNEL 1.
MOV AX, SEG RECV_BUFF

ROL AX 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, OFFFOH ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET RECV_BUFF
; NOW LOW BYTES OF POINTER ARE IN AX.

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE
AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D3DSTL
OUT DX, AX ; AX=LOW 4 BYTES
MOV DX, D3DSTH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; DESTINATION POINTER DONE. SOURCE IS IN PCB.

MOV DX, D3SRCL
MOV AX, SIRBUF ; RECEIVE BUFFER FOR
OUT DX, AX ; CHANNEL 1 IS DEST

Example 10-2. DMA-Driven Serial Transfers (Continued)

10-35

DIRECT MEMORY ACCESS UNIT Intel®

XOR AX, AX ; HIGH ADDRESS=0
MOV DX, D3SRCH
ouT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 128 ; INTERRUPT AFTER 128 BYTES
MOV DX, D3TC ; ARE RECEIVED.
ouT DX, AX

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
DESTINATION SOURCE

: MEMORY SPACE /O SPACE

: INCREMENT PTR CONSTANT PTR

: TERMINATE ON TC, INTERRUPT, SOURCE-SYNCHRONIZED, HIGH PRIORITY
' RELATIVE TO CHANNEL 1, BYTE XFERS. INTERNAL DRQ. ARM CHANNEL.

MOV AX, 1010001101110110B
MOV DX, D3CON
ouT DX, AX

; AT THIS POINT THE DMA UNIT WILL HANDLE SERIAL RECEPTIONS,
; AS LONG AS THE SERIAL PORT HAS BEEN INITIALIZED.

; NOW START THE BURST TRANSMIT ("PRIME THE PUMP")
MOV AL, XMIT_BUFF ; GET FIRST BYTE
XOR AH, AH ; CLEAR RESERVED BITS
MOV DX, S1TBUF ; TRANSMIT IT
ouT DX, AX

; BURST TRANSMIT HAS BEGUN.

CODE ENDS
END

Example 10-2. DMA-Driven Serial Transfers (Continued)

10-36

intel.

DIRECT MEMORY ACCESS UNIT

$mod186

name DMA_EXAMPLE_1

; This example sets up the DMA Unit to perform a transfer from memory to
; I/O space every 22 uS. The data is sent to an A/D converter.

; It is assumed that the constants for PCB register addresses are

; defined elsewhere with EQUates.

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG

START: MOV AX, DATA_SEG

MOV DS, AX
ASSUME DS:DATA_SEG

; First, set up the pointers. The source is in memory.

; NOW LOW BYTES OF POINTER ARE IN AX.

ouT DX, AX

; PROGRAM IDRQ MUX

MOV AX, SEG WAVEFORM_DATA

ROL AX 4 ; GET HIGH 4 BITS

MOV BX, AX ; SAVE ROTATED VALUE

AND AX, OFFFOH ; GET SHIFTED LOW 4 NIBBLES
ADD AX, OFFSET WAVEFORM_DATA

ADC BX, 0 ; ADD IN THE CARRY

; TO THE HIGH NIBBLE
AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, DOSRCL
ouT DX, AX ; AX=LOW 4 BYTES
MOV DX, DOSRCH
MOV AX, BX ; GET HIGH NIBBLE
ouT DX, AX
MOV AX, DA_CNVTR ; 1/0 ADDRESS OF D/A
MOV DX, DODSTL
ouT DX, AX
MOV DX, DODSTH
XOR AX, AX ; CLEAR HIGH NIBBLE

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 255 ; 8-BIT D/A, SO WE SEND 256 BYTES
MOV DX, DOTC ; TO GET A FULL SCALE
ouT DX, AX

MOV DX, DMAPRI
MOV AX, O0H ; TIMER2 IS IDRQ SOURCE

; MODULES HAVE EQUAL PRIORITY
ouT DX, AX

; DATA SEGMENT POINTER

Example 10-3. Timed DMA Transfers

10-37

DIRECT MEMORY ACCESS UNIT Intel®

NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
DESTINATION SOURCE

I/0 SPACE MEMORY SPACE
CONSTANT PTR INCREMENT PTR

; TERMINATE ON TC, INTERRUPT, SOURCE SYNCHRONIZE, INTERNAL REQUESTS,
; LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS.

MOV AX, 0001011101010110B
MOV DX, DOCON
OUT DX, AX

; NOW WE ASSUME THAT TIMER 2 HAS BEEN PROPERLY PROGRAMMED FOR A 22uS DELAY.
; WHEN THE TIMER IS STARTED, A DMA TRANSFER WILL OCCUR EVERY 22uS.

CODE_SEG ENDS
DATA_SEG SEGMENT

WAVEFORM_DATADB 0,1,2,3,4,5,6,7,8,9,
1 0

0,11,12,13
DB 14,15,16,17,18,19,20,21

10,1
21,22,23,24
; ETC., UP TO 255

DATA_SEG ENDS

END START

Example 10-3. Timed DMA Transfers (Continued)

10-38

intel.

11

Serial
Communications
Unit

CHAPTER 11
SERIAL COMMUNICATIONS UNIT

11.1 INTRODUCTION

The Serial Communications Unit is composed of two identical serial ports, or channels. Each se-
rial port is independent of the other. This chapter describes the operation of a single serial port.

The serial port implements several industry-standard asynchronous communications protocols,
and it readily interfaces to many different processors over a standard serial interface. Several pro-
cessors and systems can be connected to a common serial bus using a multiprocessor protocol
The serial port also implements a simple synchronous protocol. The synchronous protocol is most
commonly used to expand the number of I/O pins with shift registers.
Features:

¢ Full duplex operation

* Programmable seven, eight or nine data bits in asynchronous mode

* Independent baud rate generator

* Maximum baud rate of 1/16 the processor clock

* Double-buffered transmit and receive

¢ Clear-to-Send feature for transmission

* Break character transmission and detection

* Programmable even, odd or no parity

¢ Detects both framing and overrun errors

* Supports interrupt on transmit and receive

11.1.1 Asynchronous Communications

Asynchronous communications protocols allow different devices to communicate without a com-
mon reference clock. The devices communicate at a common baud rate, or bits per second. Data
is transmitted and receivedfiames A frameis a sequence of bits shifted serially onto or off the
communications line.

Each asynchronous frame consists of a start bit (always a logic zero), followed by the data bits
and a terminating stop bit. The serial port can transmit and receive seven, eight or nine data bits.
The last data bit can optionally be replaced by an even or odd parity bit. Figure 11-1 shows a typ-
ical 10-bit frame.

11-1

SERIAL COMMUNICATIONS UNIT Intel®

1 + 2 1+ 3 1+ 4 1+ 5 1 6 1t 7 1. 8 1 .9 1 10
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 I | Parlty |
Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 or Stop
1\ Bit /i 1 1 1 1 1 Bit7 S Bit
1 1 1 1 1 1 1 I
1 1 1 1 1 1

Al1274-0A

Figure 11-1. Typical 10-Bit Asynchronous Data Frame

When discussing asynchronous communications, it makes sense to talk about the receive ma-
chine (RX machine) and the transmit machine (TX machine) separately. Each is completely in-
dependent. Transmission and reception can occur simultaneously, making the asynchronous
modes full-duplex.

11.1.1.1 RX Machine

The RX machine (Figure 11-2) shifts the received serial data into the receive shift register. When
the reception has completed, the data is then moved into the Serial Receive Buffer (SXRBUF)
Register. From there, the user can read the received data byte.

The RX machine samples the RXD pin, looking for a logical low (start bit) signifying the begin-
ning of a reception. Once the logical low has been detected, the RX machine begins the receive
process. Each expected bit-time is divided into eight samples by the 8X baud clock. The RX ma-
chine takes the three middle samples and, based on a two-out-of-three majority, determines the
data bit value. Thisversamplings common for asynchronous serial ports and improves noise
immunity. This majority value is then shifted into the receive shift register.

Using this method, the RX machine can tolerate incoming baud rates that differ from its own in-
ternal baud rates by 2.5% overspeed and 5.5% underspeed. These limits exceed the CCITT ex-
tended signaling rate specifications.

A stop bit is expected by the RX machine after the proper number of data bits. When the stop bit
has been validated, the data from the shift register is copied into SXRBUF and the Receive Inter-
rupt (RI) bit is set. Note that the stop bit is actually validated right after its middle three samples
are taken. Therefore, the data is moved into SXRBUF and the RI bit is set approximately in the
middle of the stop bit time.

11-2 I

SERIAL COMMUNICATIONS UNIT

reubis

1Senbay |y -«

S1SXS

d0d 01

I

1

oMy4daa

ad
™yd4aa /89y 34 30

21607 snie1s [suuey) B
A A A A A A A A A
I O I
1215169y
n \4 \4 \4 \4 \4 \4 \4 \4 s
185 [P 2sd [P] 95 [P ssd [P vsd [P s [P zsu [P] tsd [P osy aAI920Y
390|D T dNgdxs T
IS
'REREREREREAE
Js|dwes d d d d d @] d d
< < < < < < < <J-
axd Lad| |9ad Gad| |vad ead| [egd| |tad| (09| gi5dwon
; H O O O O O O O O CO:Q@O@N_
uld %2010 h h h h
axd pneg xg

g0d 0l

A1283-0A

Figure 11-2. RX Machine

11-3

SERIAL COMMUNICATIONS UNIT Intel®

The RX machine can detect several error conditions that may occur during reception:
1. Parity errors — A parity error flag is set when the parity of the received data is incorrect.

2. Framing errors — If a valid stop bit is not received when expected by the RX machine, a
framing error flag is set.

3. Overrun errors — If SXRBUF is not read before another reception completes, the old data
in SXRBUF is overwritten and an overrun error flag is set. This indicates that data from an
earlier reception has been lost.

The RX machine also recognizes two different break characters. The shorter break characteris M
bit times, where M is equal to the total number of bits (start + data + stop) in a frame. The longer
break character is 2M + 3 bit times. A break character results in at least one null (all zero) char-
acter with a framing error being received. Other error flags could be set depending on the length
of the break character and the mode of the serial port.

11.1.1.2 TX Machine

A block diagram of the TX machine is shown in Figure 11-3. The TX machine logic supports the
following features:

* parity generation (even, odd or none)
¢ (Clear-to-Send
¢ break character transmission

¢ double-buffered operation

A transmission begins by writing a byte to the Serial Transmit Buffer (SXTBUF) Register. SxT-
BUF is a holding register for the transmit shift register. The contents of SXTBUF are transferred
to the transmit shift register as soon as it is empty. If no transmission is in progress (i.e., the trans-
mit shift register is empty), SXTBUF is copied immediately to the transmit shift register. If parity

is enabled, the parity bits are calculated and appended to the transmit shift register during the
transfer. The start and stop bits are added when the data is transmitted. The Transmit Interrupt bit
(TI) is set at the beginning of the stop bit time.

Double buffering is a useful feature of the TX machine. When the transmit shift register is empty,

the user can write two sequential bytes to SXTBUF. The first byte is transmitted immediately and
the second byte is held in SXTBUF until the first byte has been transmitted.

11-4 I

SERIAL COMMUNICATIONS UNIT

ajqeus
%9010
Hiys sS1D T
ng NAI[|
N3O J21s1Bay WIYS Nwisuel | T
20|D pne Nad[|
AR0I0 pied 5010 WIUS X1
21607 Y
_O.‘_HCOO t.__z_m \'4 \'4 \'4 \'4 \'4 \'4 \'4 \'4
co;mw%cmo <€0SL[]1SL[<]zsSL[<]esL<|rSL™|sSL[™]9SL[=]sSL[<]8SL
ng doispes [~ A A A A A A A + \
21607 [
|0Juo)
Aued <€
ax1i A A
ng »
SEERS
¢ 3 \HA
[4 P |
® 3 u i
Qe
fdw3 * o
WYS X1 2d
ng
ax1 - LINOXS
dwg [081| [taL]| |eai| |eai| |vai| |sai| [odL| [z8L]| Tujug
W g SRR
4Ng1xs

A1284-0A

Figure 11-3. TX Machine

11-5

SERIAL COMMUNICATIONS UNIT Intel®

The Transmit machine can be disabled by an external source by using the Clear-to-Send feature.
When the Clear-to-Send feature is enabled, the TX machine will not transmit until tha@rCTS

is asserted. The CT8n is level sensitive. Asserting the Cpl before a pending transmission

for at least 1% clock cycles ensures that the entire frame will be transmitted. SeRitCTli®-

ings” on page 11-18 for detalils.

The TX machine can also transmit a break character. Setting the SBRK bit forces the TXD pin
immediately low. The TXD pin remains low until the user clears SBRK. The TX machine will
continue the transmission sequence even if SBRK iblsetcautionwhen setting SBRK or char-
acters will be lost.

11.1.1.3 Modes 1, 3 and 4

The three asynchronous modes of the serial ports, Modes 1, 3 and 4, operate in approximately the
same manner. Mode 1 is the 8-bit asynchronous communications mode. Each frame consists of
a start bit, eight data bits and a stop bit, as shown in Figure 11-4. When parity is used, the eighth
data bit becomes the parity bit. Both the RX and TX machines use this frame in Mode 1 with no
exceptions.

Mode 3 is the 9-bit asynchronous communications mode (see Figure 11-5). Mode 3 is the same
as Mode 1 except that a frame contains nine data bits. The ninth data bit becomes the parity bit
when the parity feature is enabled. When parity is disabled, the ninth data bit is controlled by the
user. (See “Modes 2 and 3 for Multiprocessor Communications” on page 11-14.) Mode 3 can be
used with Mode 2 for multiprocessor communications or alone for “8 data bits + parity” frames.

Mode 4 is the 7-bit asynchronous communications mode. Each frame consists of a start bit, seven
data bits and a stop bit, as shown in Figure 11-6. Parity is not available in Mode 4. Both the RX
and TX machines use this frame in Mode 4 with no exceptions.

1 1

1 1

1 1
TXD/ \ Start ¥ _. VA V
XD }I o /< Bit 0 X Bit 1 X

1 1

Figure 11-4. Mode 1 Waveform

4

1 1 1

1 1 1

1 1 1

1 1 1
Bit2XBit3XBit4XBit5X

1 1 1 1

1 1 1

@©
z
(o]

T
los]
2os

—
o
=8

A1285-0A

11-6 I

Intel® SERIAL COMMUNICATIONS UNIT

9 10'

1
1
|
! Parlt
O/ Start Bito X Bit1 X Bit2) Bit3) Bit4 Y Bit5) Bit6) Bit7 Smp
RXD Bit Blt8 Bit

A1286-0A

Figure 11-5. Mode 3 Waveform

2 1 3 1 4 6 b8t

1 1 I
TXD/ \" Start Stop
RXD Bit KBHOXBH1XBlt2XBlt3XB|t4XB|t5XBlt6 Bit

Figure 11-6. Mode 4 Waveform

A1287-0A

11.1.1.4 Mode 2

Asynchronous Mode 2 is referred to as the “address recognition mode.” Mode 2 is used together
with Mode 3 for multiprocessor communications over a common serial link.

In Mode 2, the RX machine will not complete a reception unless the ninth data bit is a one. Any
character received with the ninth bit equal to zero is ignored. No flags are set, no interrupts occur
and no data is transferred to SXRBUF. In Mode 3, characters are received regardless of the state
of the ninth data bit. The following is brief example of using Modes 2 and 3. See “Master/Slave
Example” on page 11-24 for more information.

Assume one master serial port connects to multiple slave serial ports over a serial link. The slaves
are initially in Mode 2, and the master is always in Mode 3. The master communicates with one
slave at a time. The CPU overhead of the serial communications burdens only the master and the
target slave device.

1. The master transmits the “address” of the target slave, with the ninth bit set, over the serial
link.

2. All slaves receive the character and check whether that address is theirs.
3. The target slave switches to Mode 3; all other slaves remain in Mode 2.

4. The master and the target slave continue the communication with all ninth data bits equal
to zero. The other slave devices ignore the activity on the serial link.

11-7

SERIAL COMMUNICATIONS UNIT Intel®

5. At the end of the communication, the target slave switches back to Mode 2 and waits for
another address.

The parity feature cannot be used when implementing multiprocessor communications with
Modes 2 and 3, as the ninth data bit is a control bit and cannot be used as the parity bit.

11.1.2 Synchronous Communications

The synchronous mode (Mode 0) is useful primarily with shift register-based peripheral devices.
The device outputs a synchronizing clock on TXD and transmits and receives data on RXD in 8-
bit frames (Figure 11-7). The serial port always provides the synchronizing clock; it can never
receive a synchronous clock on TXD. Communication in the synchronous mode is half-duplex.
The RXD pin cannot transmit and receive data at the same time. Because the serial port always
acts as the master in Mode 0, all transmissions and receptions are controlled by the serial port. In
Mode 0, the parity functions and break character detection functions are not available.

I;\<BitOXBit1XBitZXBit3XBit4XBit5XBit6XBit7>/
Mode 0 Transmit
e A A DA R e A

Mode 0 Receive

A1289-0A

Figure 11-7. Mode 0 Waveforms

11-8

Intel® SERIAL COMMUNICATIONS UNIT

11.2 PROGRAMMING

This section describes how to program the serial port using the appropriate registers. The Serial
Receive Buffer Register (SXRBUF) is shown in Figure 11-8 and the Serial Transmit Buffer Reg-
ister (SXTBUF) is shown in Figure 11-9. These registers have the same functions in any serial
port mode.

Register Name: Serial Receive Buffer Register
Register Mnemonic: SXxRBUF
Register Function: Received data bytes are stored in SXRBUF.
15 0
RIR|R]R RIR|R]R
B|B|B|B B|B|B]|B
716|5]| 4 312|1]|0
A1290-0A
Bit . Reset .
Mnemonic Bit Name State Function
RB7:0 Received 0 Received data byte.
Data
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 11-8. Serial Receive Buffer Register (SXRBUF)

11-9

SERIAL COMMUNICATIONS UNIT Intel®

Register Name: Serial Transmit Buffer Register
Register Mnemonic: SXTBUF
Register Function: Bytes are written to SXTBUF to be transmitted.
15 0
T|IT|T|T T|IT|T|T
B|B|B]|B B|B|B]|B
716 |5] 4 312|1]0
A1291-0A
Bit . Reset)
Mnemonic Bit Name State Function
TB7:0 Transmit 0 Data byte to be transmitted.
Data Field
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 11-9. Serial Transmit Buffer Register (SXTBUF)

11.2.1 Baud Rates

The baud rate generator is composed of a 15-bit counter register (BXCNT) and a 15-bit compare
register (BXCMP). BXCNT (Figure 11-10) is a free-running counter that is incremented by the
baud timebase clock. The baud timebase clock can be either the internal CPU clock or an external
clock applied to the BCLK pin. BXCMP (Figure 11-11) is programmed by the user to determine
the baud rate. The most-significant bit of BXxCMP (ICLK) selects which source is used as the baud
timebase clock.

BXCNT is incremented by the baud timebase clock and compared to BXxCMP. When BXxCNT and
BxCMP are equal, the baud rate generator outputs a pulse and resets BXCNT. This pulse train is
the actual baud clock used by the RX and TX machines. The baud clock is eight times the baud
rate in the asynchronous modes because of the sampling requirements. The baud clock equals the
baud rate in the synchronous mode.

11-10

Intel® SERIAL COMMUNICATIONS UNIT

Register Name: Baud Rate Counter Register
Register Mnemonic: BXCNT
Register Function: 15-bit baud rate counter value.

15 0
B|B|B Bl B| B| B B|B|B|B B|B|B|B
c|C]|C c|C|C|C c|c|cj|c c|Ccj|c|CcC
11111 1]11] 9] 8 716|5]| 4 312)11]0
41312 110

A1275-0A
Bit . Reset .
Mnemonic Bit Name State Function
BC14:0 Baud rate 0 Reflects current value of the baud rate counter.
counter field NOTE: Writing to this register while the serial
port is transmitting causes indeterminate
operation.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 11-10. Baud Rate Counter Register (BXCNT)

11-11

SERIAL COMMUNICATIONS UNIT

Register Name:

Register Mnemonic:

Register Function:

Baud Rate Compare Register
BxCMP

Determines baud rate for the serial port.

15 0
| B|B|B B|B|B|B B|B|B]|B B|B|B]|B
C|R|R]|R R|IR|R|R RIR|IR|R RIR|R]|R
L|]1]1]1 111]19]|S8 716]|5]| 4 3|1]2]11]0
Kl14]3]2 1]0
A1276-0A
Bit . Reset .
Mnemonic Bit Name State Function
ICLK Internal 0 Selects the input clock:
Clocking 0 = BCLK is input to baud clock.
1 = CPU clock is input to baud clock.
BR14:0 Baud Rate 0 Sets the compare value for the baud rate clock.
Compare
Field

The equations in Figure 11-12 show how to calculate the proper BXCMP value for a specific baud

Figure 11-11. Baud Rate Compare Register (BXCMP)

rate (where f,, = CPU operating frequency = % CLKIN frequency).

If CPU clock is baud timebase clock:

If BCLK is baud timebase clock:

Mode 0
F
BXxCMP = —="Y 1 BxCMP
baudrate
BXCMP = ﬂ BxCMP
baudrate

Mode 1-4

_ Feru
baudrate x 8

BCLK
baudrate x 8

Figure 11-12. Calculating the BXCMP Value for a Specific Baud Rate

11-12

Intel® SERIAL COMMUNICATIONS UNIT

Due to internal synchronization requirements, the maximum input frequency to BCLK is one-half
the CPU operating frequency. See “BCLK Pin Timings” on page 11-18 for more information. Ta-
ble 11-1 shows the correct BXCMP values for common baud rates.

Table 11-1. BxCMP Values for Typical Baud Rates and CPU Frequencies

CPU Frequency

Baud 25 MHz 20 MHz 16 MHz 8 MHz
Rate
BxCMP % BxCMP % BxCMP % BxCMP %
Value Error Value Error Value Error Value Error
19,200 80A2H | -0.14 | 8081H 0.16 | 8067H 0.16 | 8033H 0.16
9,600 8145H | -0.14 | 8103H 0.16 | 80CFH 0.16 | 8067H 0.16
4,800 828AH 0.00 | 8208H | -0.03 | 81AOH | -0.08 | 80CFH 0.16
2,400 8515H 0.00 | 8411H | —0.03 | 8340H 0.04 | 81A0H | -0.08
1,200 8A2BH 0.00 | 8822H 0.01 | 8682H | —0.02 | 8340H 0.04
NOTE

A zero or one value for BXCMP is illegal and results in unpredictable
operation. Programming BXCMP during a transmission or reception causes
indeterminate operation.

11.2.2 Asynchronous Mode Programming

The serial port operation is controlled by two registers. The Serial Port Control (SXCON) Register
controls the mode of operation of the serial port (see Figure 11-13). The Serial Port Status
(SxSTS) Register acts as the flags register, reporting on errors and the state of the RX and TX
machines (see Figure 11-14). Depending on the serial port mode, these registers can have differ-
ent functionality. This section outlines how to use SXCON and SxSTS to obtain the desired op-
eration from the serial port.

11.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial Communications

When using these modes for their respective seven, eight or nine bit data modes, operation is fair-
ly straightforward. The serial port must be initialized correctly (through SXCON), then SxSTS
needs to be interpreted.

To configure the serial port, first program the baud rate through the BXCMP register, then pro-
gram SxCON (Figure 11-13 on page 11-15) as follows.

1. Determine the values for M2:0 for the desired serial port mode.

2. If parity is used, enable it with the PEN bit. Set the sense of parity (even or odd) with the
EVN bit. Note that parity is not available in Mode 4 (seven bit data).

11-13

SERIAL COMMUNICATIONS UNIT Intel®

3. If the Clear-to-Send feature is used, set the CEN bit to enable it.

4. If receptions are desired, set the REN bit to enable the RX machine. Note the TX machine
neednot be explicitly enabled.

At this point, you will be able to transmit and receive in the mode specified. Now that the serial
port is operating, you must correctly interpret its status. This is done by reading the SxSTS reg-
ister (Figure 11-14 on page 11-16) and interpreting its contents. Reading SxSTS clears all bits
except the CTS and TXE bits. SXSTS must first be saved in memory and then each bit can be
interpreted individually.

The RI, Tl and TXE bits indicate the condition of the transmit and receive buffers. Rl and Tl are
also used with the Interrupt Control Unit for interrupt-based communications. The OE, FE and
PE bits indicate any errors when a character is received. Once an error occurs, the appropriate bit
remains set until SXSTS is read. For example, assume a character is received with a parity error
(PE set) and a subsequent error-free character is received. If the SxSTS register was not read be-
tween the two receptions, the PE bit remains set.

11.2.2.2 Modes 2 and 3 for Multiprocessor Communications

Programming for multiprocessor communications is much the same as the stand-alone operation.
The only added complexity is that the ninth data bit must be controlled and interpreted correctly.

The ninth data bit is set for transmissions by setting the TB8 bit in SXCON. TB8 is cleared after
everytransmission. TB8 is not double-buffered. This is usually not a problem, as very few bytes
are actually transmitted with TB8 equal to one. When writing TB8, make sure that the other bits
in SXCON are written with their appropriate value.

In Modes 2 and 3, the state of the ninth data bit can be determined by the RB8 bit in SxSTS. RB8
reflects the ninth bit for the character currently in SXRBUF. Note that the RB8 bit shares func-
tionality with the PE bit in SXSTS. When parity is enabled, the PE bit has precedence over RB8.

11.2.2.3 Sending and Receiving a Break Character

The serial port can send as well as receive BREAK characters. A BREAK character is a long
string of zeros. To send a BREAK character, set the SBRK bit in SXCON. SBRK drives the TXD
pin immediately low, regardless of the current serial port mode. The user controls the length of
the BREAK character in software by controlling the length of time that SBRK remains set. When
writing SBRK, make sure the other bits in SXCON retain their current states.

11-14 I

Intel® SERIAL COMMUNICATIONS UNIT

Register Name: Serial Port Control Register
Register Mnemonic: SxXCON
Register Function: Controls serial port operating modes.
15 0
S TIC|R]E PIMIM|M
B BI|E|E]|V El]2|1]|O0
R 8| N|NJ|N N
K
A1277-0A
Bit . Reset .
Mnemonic Bit Name State Function
SBRK Send Break 0 Setting SBRK drives TXD low. TXD remains low
until SBRK is cleared.
TB8 Transmitted 0 TB8 is the eighth data bit transmitted in modes 2
Bit 8 and 3.
CEN Clear-to- 0 When CEN is set, no transmissions will occur until
Send Enable the CTS pin is asserted.
REN Receive 0 Set to enable the receive machine.
Enable
EVN Even Parity 0 When parity is enabled, EVN selects between even
Select and odd parity. Set for even, clear for odd parity.
PEN Parity 0 Setting PEN enables the parity generation/checking
Enable for all transmissions/receptions.
M2:0 Serial Port 0 Operating mode for the serial port channel.
Mode Field M2 M1 MO Mode
0 0 0 Synchronous ModeO
0 0 1 10-Bit Asynch Model
0 1 0 11-Bit Asynch Mode2
0 1 1 11-Bit Asynch Mode3
1 0 0 9-Bit Asynch Mode4
1 0 1 Reserved
1 1 0 Reserved
1 1 1 Reserved

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to ensure compatibility with future Intel products.

Figure 11-13. Serial Port Control Register (SxCON)

11-15

SERIAL COMMUNICATIONS UNIT Intel®

The serial port receives BREAK characters of two different lengths. If a BREAK character longer
than M bit-times is detected, the DBRKO bit in SXSTS is set. If the BREAK character is longer
than 2M+3 hit-times, DBRK1 in SXSTS is set. M is equal to the total number of bits in a frame.
For example, M is equal to 11 (decimal) in Mode 3.

Register Name: Serial Status Register
Register Mnemonic: SXSTS
Register Function: Indicates the status of the serial port.
15 0
D|D RIRI|TI|F T|O|C
B|B B I I | E X|E|T
R|R 8/ E S
K| K P
110 E
A1278-0A
Bit . Reset .
Mnemonic Bit Name State Function
DBRK1 DetectBreakl | O Set when a break longer than 2M+3 bits occurs.
DBRKO Detect Break 0 | O Set when a break longer than M bits occurs.
RB8/PE Received 0 Contains the 9th received data bit in modes 2
Bit8/Parity and 3. PE is set when a parity error occurs. PE
Error is valid only when parity is enabled in Mode 1,
2or 3.
RI Receive 0 Rl is set when a character has been received
Interrupt and placed in SXRBUF. Note that Rl need not
be explicitly cleared to receive more characters.
Writing a one to this bit will not cause an
interrupt.
Tl Transmit 0 Tl is set when a character has finished trans-
Interrupt mitting. Tl determines when one more
character can be transmitted. Writing a one to
this bit will not cause an interrupt.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 11-14. Serial Port Status Register (SxSTS)

11-16

Intel® SERIAL COMMUNICATIONS UNIT

Register Name: Serial Status Register
Register Mnemonic: SXSTS
Register Function: Indicates the status of the serial port.
15 0
D|D RIR|T|F T|O|C
B |B B | I | E X|E|T
R|R 8/ E S
KK P
110 E
A1278-0A
Bit . Reset .
Mnemonic Bit Name State Function
FE Framing Error 0 FE is set when a framing error occurs. A
framing error occurs when a valid stop bit is not
detected.
TXE Transmitter 1 TXE is set when both SXTBUF and the transmit
Empty shift register are empty. TXE determines when
two consecutive bytes can be written to
SXTBUF for transmission. Accessing SxSTS
does not clear TXE.
OE Overrun Error 0 OE is set when an overrun error occurs. An
overrun error occurs when the character in
SxRBUF is not read before another complete
character is received. SXRBUF always contains
the most recent reception.
CTS Clear ToSend | O CTS is the complement of the value on the CTF
pin. Accessing SxSTS does not clear CTS.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 11-14. Serial Port Status Register (Continued)

When either BREAK character is detected, an overrun error occurs (OE is set). SXRBUF will con-
tain at least one null character.

11-17

SERIAL COMMUNICATIONS UNIT Intel®

11.2.3 Programming in Mode 0

Programming is much easier in Mode 0 than in the asynchronous modes. Configuring SxCON
(Figure 11-13 on page 11-15) for Mode O requires only two steps:

1. Program M2:0 with the correct combination for Mode O.

2. If the Clear-to-Send feature is desired, set the CEN bit.

The serial port is now configured for Mode 0. To transmit, write a character to SXTBUF. The TI
and TXE bits reflect the status of SXTBUF and the transmit shift register. Note that the SBRK bit
is independent of serial port mode functions in Mode 0.

Receptions in Mode 0 are controlled by software. To begin a reception, set the REN bit in Sx-
CON. The RI bit must be zero or the reception will not begin. Data begins shifting in on RXD as
soon as REN is set. The asynchronous error flags (OE, FE and PE) and break flags (DBRKO and
DBRK1) are invalid in Mode 0.

11.3 HARDWARE CONSIDERATIONS FOR THE SERIAL PORT

There are several interface considerations when using the serial port.

11.3.1 CTS Pin Timings

When the Clear-to-Send feature is enabled, transmissions will not begin until th@nds as-
sertedwhile a transmission is pendingigure 11-15 shows the recognition of a valid CTS

The CTSpin is sampled by the rising edge of CLKOUT. The CLKOUT high time synchronizes
the CTSsignal. On the falling edge of CLKOUT, the synchronized Gig8al is presented to the
serial port. CTSs an asynchronous signal. The setup and hold times are given only to ensure rec-
ognition at a specific clock edge. When Cig&synchronously, it should be asserted for at least
1% clock cycles to guarantee that the signal is recognized.

CTSis not latched internally. If CTiS asserted before a transmission starts, the subsequent trans-
mission will not begin. A write to SXTBUF “arms” the CE8nse circuitry.

11.3.2 BCLK Pin Timings

The BCLK pin can be configured as the input to the baud timebase clock. The baud timebase
clock increments the BXCNT register. However, the BCLK signal does not run directly into the
baud timebase clock. BCLK is first synchronized to the CPU clock (Figure 11-16.) The internal
synchronization logic uses a low-to-high level transition on BCLK to generate the baud timebase
clock that increments the BXCNT register. The CPU recognizes a low-to-high transition by sam-
pling the BCLK pin low, then high.

11-18 I

Intel® SERIAL COMMUNICATIONS UNIT

The CPU samples BCLK on the rising edge of CLKOUT. The CLKOUT high time synchronizes
the BCLK signal. On the falling edge of CLKOUT, the synchronized BCLK signal is presented
to the baud timebase clock.

CTS Resolved
During CLKOUT
High Time

3= = TCHIH
TCHIS 3 i

CTS

CTS

(Internal) \ ,

Figure 11-15. CTS Recognition Sequence

RvAvATE

A1279-0A

[\

5~ «TCHIH
TCHIS > =&

> ==TCHH
TCHIS > =i

BCLK

Increment BCNT , \

(Internal)

A1280-0A

Figure 11-16. BCLK Synchronization

I 11-19

SERIAL COMMUNICATIONS UNIT Intel®

BCLK is an asynchronous input. However, the pin does have setup and hold times, which guar-
antee recognition at a specific CLKOUT. If the BCLK input signal has high and low times that
are both at least 1v2 CLKOUT periods, than synchronization to CLKOUT is not necessary. How-
ever, when the BCLK signal has a high or a low time of less than 1%2 CLKOUT periods, meeting
the setup and hold times to CLKOUT is necessary to avoid missing BCLK transitions. The max-
imum input frequency to BCLK is one-half the frequency of CLKOUT (CPU operating frequen-

cy).

11.3.3 Mode 0 Timings

This section shows the timings of the TXD and RXD pins in Mode 0. In Mode 0, TXD never
floats. When not transmitting or receiving, TXD is high. RXD floats except when transmitting a
character.

11.3.3.1 CLKOUT as Baud Timebase Clock

The behavior of the transmit/receive clock (on TXD) is governed by the value of BXCMP. When
the BXCMP value igreater than or equal to twa The TXD pin is low for two CLKOUT periods

and is high for (BXCMP — 1) CLKOUT periods (see Figure 11-17). BXxCMP cannot be equal to a
one, otherwise the serial port buffer registers (SXRBUF) will not receive the correct data.

Low For High For
TXD 2 Clocks N-1 Clocks

RXD * BITO >< BIT 1

Figure 11-17. Mode 0, BXCMP > 2

A1282-A

For transmissions, the RXD pin changes on the next CLKOUT falling edge following a low-to-
high transition on TXD. Therefore, the data on the RXD pin is guaranteed to be valid on the rising
edges of TXD. Use the rising edge of TXD to latch the value on RXD. For receptions, the incom-
ing serial data must meet the setup and hold timings with respect to the rising edge of TXD. These
timings can be found in the AC timings section of the data sheet.

11-20 I

Intel® SERIAL COMMUNICATIONS UNIT

11.3.3.2 BCLK as Baud Timebase Clock

BCLK does not run directly into the baud timebase clock, but is first synchronized to the CPU
clock. BCLK causes the baud timebase clock to increment, but transitions on TXD and RXD (for
transmissions) still occur relative to CLKOUT.

A low-to-high transition on BCLK increments BXCNT. If BXCNT is equal to BXxCMP, TXD goes
low approximately 4% CLKOUTSs later. TXD will always remain low for two CLKOUT periods
and then go high. TXD will go low again 4%2 CLKOUTs after BXCNT equals BXCMP. Therefore,
the output frequency on TXD is roughly equal to the input frequency on BCLK multiplied by Bx-
CMP. There will be some clock jitter, as the output on TXD will always be some multiple of
CLKOUTs. This is due to the internal synchronization.

11.4 SERIAL COMMUNICATIONS UNIT INTERRUPTS

Serial communication is usually interrupt-driven. An interrupt needs to occur on each reception
and on each transmission of a character. The Rl and Tl flags in the SxSTS register (Figure 11-14
on page 11-16) provide the interrupt mechanism for the serial ports. The two serial ports, or chan-
nels, have different interrupt circuitry. Serial channel 0 is directly supported by the integrated In-
terrupt Control Unit. Serial channel 1 is supported by the RXI1 and TXI1 outputs. RXI1 and TXI1
go active during the stop bit of receive and transmit sequences, respectively. These outputs can
be connected to external interrupt pins. .

11.5 SERIAL PORT EXAMPLES

This section contains examples that show ways to use the serial port.

NOTE
The examples assume that the Peripheral Control Block is located in 1/O space.

11.5.1 Asynchronous Mode Example

Example 11-1 contains sample code to initialize Serial Port 0 for 9600-baud operation in asyn-
chronous Mode 4.

I 11-21

SERIAL COMMUNICATIONS UNIT Intel®

$mod186
name scu_async_example

Example initialization code for the Serial Communications Unit.

ASYNC_CHANNEL_SETUP sets up channel 0 as 9600 baud, full duplex, 7 data bits
; plus parity, with CTS# control.

We assume serial port registers have been correctly defined and
; the PCB is located in 1/O space.

BOCMP EQU Oxxxx ; Channel 0 Baud Rate Compare
SOCON EQU Oxxxx ; Channel 0 Control

S0STS EQU Oxxxx ; Channel 0 Status

SORBUF EQU Oxxxx ; Channel 0 Receive Buffer
SOTBUF EQU Oxxxx ; Channel 0 Transmit Buffer
code_seg segment public

assume cs:code_seg

ASYNC_CHANNEL_SETUP proc near

; Now set up channel 0 options

mov ax, 8067H ; for 9600 baud from 16MHz CPU clock
mov dx, BOCMP

out dx, al ; set baud rate

mov ax, 0059H ; CEN=1 (CTS enabled)

; REN=0 (receiver not enabled yet)
; EVN=1 (even parity)
; PEN=1 (parity turned ON)
; MODE=1 (10 bit frame)
mov dx, SOCON
out dx, al ; write to Serial Control Reg.

; Clear any old pending RI or Tl, just for safety's sake.
mov dx, SOSTS
in ax, dx ; clear any old Rl or Tl

; Turn on the receiver
mov dx, SOCON

in ax, dx ; Read SOCON
or ax, 0020H ; Set REN bit
out dx, al ; Write SOCON

; Now receiver is enabled and sampling of the RXD line begins.
; Any write to SXTBUF will initiate a transmission.

ret
ASYNC_CHANNEL_SETUP endp

code_seg ends
end

Example 11-1. Asynchronous Mode 4 Example

11-22

Intel® SERIAL COMMUNICATIONS UNIT

11.5.2 Mode 0 Example

Example 11-2 shows a sample Mode 0 application.

$mod186
name example_SCU_mode_0

FUNCTION: This function transmits the user's data, user_data, serially
; over RXD1. TXD1 provides the transmit clock. The transmission frequency
; is calculated as follows:

tran_freq = (0.5*CLKIN/BAUDRATE)-1

A 0-1-0 pulse on P1.0 indicates the end of transmission.

; SYNTAX: extern void far parallel_serial(char user_data,int tran_freq)

; INPUTS: user_data - byte to send out serially

; tran_freq - baud rate compare value

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as required by high-level
; languages.

B1CMP equ xxxxH ;Channel 1 Baud Rate Compare
S1CON equ xxxxH ;Channel 1 Control

S1STS equ xxxxH ;Channel 1 Status

S1TBUF equ xxxxH ;Channel 1 Receive Buffer

;XXXX - substitute register offset

;Example assumes that all the port pins are configured correctly and
;PCB is located in I/O space.
lib_80186 segment public ‘code’

assume cs:lib_80186

public _parallel_serial
_parallel_serialproc far

push bp ;save caller's bp

mov bp, sp ;get current top of stack
user_data equ word ptr [bp+6];get parameters off the stack
tran_freq equ word ptr [bp+8]

push ax ;save registers that

push dx ;will be modified

mov dx, S1STS ;clear any pending exceptions

Example 11-2. Mode 0 Example

11-23

SERIAL COMMUNICATIONS UNIT

mov dx, PLCON

in ax, dx
and ax, Ofeh
out dx, al

mov dx, BILCMP
mov ax, tran_freq
or ax, 8000h
out dx, ax

mov dx, P2CON
mov ax, Offh
out dx, al

mov dx, SITBUF
mov ax, user_data
out dx, al

mov dx, SICON
Xor ax, ax

out dx, ax

mov dx, S1STS

Check_4_TI: in ax, dx
test ax, 0020h
jz Check_4_TI

mov dx, PILTCH
Xor ax, ax

out dx, al
not ax
out dx, al
not ax
out dx, al
pop dx
pop ax
pop bp

ret

_parallel_serial endp
lib_80186 ends
end

;Get state of port 1 controls

;make sure P1.0 is port

;set internal clocking bit
;Mode 0, 1 million bps

;set Port 2.1 for TXD

;send user's data

;Mode 0, No CTS, Transmit

:check for TI bit

;pulse P1.0

;set P1.0 high

;set P1.0 low

;restore saved registers

;restore user's bp

Example 11-2.

11.5.3 Master/Slave Example

This section shows an example of a Mode 2 and 3 master/slave network. Figure 11-18 shows the
proper connection of the master to the slaves. The buffer is necessary to avoid contention on the
receive line. Alternatively, an open-collector buffer could be used and the port pin function could

be deleted.

11-24

Mode 0 Example (Continued)

Intel® SERIAL COMMUNICATIONS UNIT

MASTER

186 Core
Device

Master Transmit Line
TXD L 4 >

RXD <€ Master Receive Line
Y

TXD RXD TXD RXD TXD RXD

Port Port Port

Pin Pin Pin

186 Core

80C51 80C196 Device

SLAVES

A1273-0A

Figure 11-18. Master/Slave Example

Example 11-3 demonstrates how to implement a master/slave network in a typical system. The
remaining three examples show the routines used in the implementation. Example 11-4 is a mas-
ter routine that addresses a slave and waits for it to respond. Example 11-5 is a slave routine that
responds to commands sent by the master. Equation 11-6 is the master routine that sends com-
mands to the slave.

11-25

SERIAL COMMUNICATIONS UNIT

$mod186
name example_master_slave
FUNCTION: This function demonstrates how to implement the three

; master/slave routines (_slave_1, _select_slave, and _send_slave_command)
; in a typical setup.

NOTE: It is assumed that the network is set up as shown in
; Figure 11-18, that the slave unit is running the
; _slave_1 code, and that the PCB is located in I/O space.

Slavel equ O1h ;address assigned to slave unit 1
Flash equ Oih ;command to flash EVAL board LEDs
Disc equ Ofh ;command to disconnect from network
False equ 00h
lib_80186 segment public ‘code’ ;declare external routines
extrn _select_slave:far
extrn _send_slave_cmd:far
lib_80186 ends
code segment public ‘code’
assume cs:code
public _main
_main proc near
push Slavel ;get slave unit 1 address

;send the address over the network
call far ptr _select_slave

add sp, 2 ;adjust sp

cmp ax, false ;was slave 1 properly selected ?
je SlaveExit ;no: then exit

push Flash ;yes: then send Flash command

;send it
call far ptr _send_slave_cmd
add sp,2 ;adjust sp

;insert a delay routine to allow completion of last command

push Disc ;prepare to disconnect slave
;send it
call far ptr _send_slave_cmd
add sp,2 ;adjust sp
SlaveExit: ret
_main endp
code ends
end _main

Example 11-3. Master/Slave — Implementing the Master/Slave Routines

11-26

Intel® SERIAL COMMUNICATIONS UNIT

$mod186
name example_master_select_slave

’ i

; select_slave

; FUNCTION: This function transmits a slave address, _slave_addr, over the
; serial network, with data bit 9 set to one. It then waits for the addressed

; slave to respond with its (slave) address. If this address does not match

; the originally transmitted slave address, or if there is no response within

; a set time, the function will return false (ax = 0). Otherwise, the function

; will return true (ax <> 0).

SYNTAX: extern int far select_slave(int slave_addr);

INPUTS: _slave_addr - address of the slave on the network

OUTPUTS: True/False

NOTE: Parameters are passed on the stack as required by high-level

languages. Example assumes that PCB is located in I/O space.

substitute register offset in place of xxxxh

P1CON equ xxxxh ;Port 1 Control register
P2CON equ xxxxh ;Port 2 Control register
S1CON equ xxxxh ;Serial Port 1 Control register
S1STS equ xxxxh ;Serial Port 1 Status register
S1TBUF equ xxxxh ;Serial Port 1 Transmit Buffer
S1RBUF equ xxxxh :Serial Port 1 Receive Buffer
lib_80186 segment public ‘code’

assume cs:lib_80186
public _select_slave
_select_slave proc far

push bp ;save caller's bp

mov bp, sp ;get current top of stack

;get slave address off the stack
_slave_addr equ word ptr [bp+6]

push cx ;save registers that will be

push dx ;modified

mov dx, PLCON ;Get state of port 1 controls

in ax, dx

and ax, 0fOh ;make sure P1.0:3 is port

out dx, al

mov dx, P2CON ;set Port 2.1 for TXD1, P2.0 RXD1
mov ax, Offh

out dx, al

Example 11-4. Master/Slave — The _select_slave Routine

11-27

SERIAL COMMUNICATIONS UNIT Intel®

mov dx, SISTS ;clear any pending exceptions
in ax, dx

mov dx, SICON ;prepare to send address
mov ax, 0083h ;d9=1, mode 3

out dx, ax

mov dx, SITBUF ;select slave

mov ax, _slave_addr
;get slave address
out dx, al ;send it

mov dx, SICON

mov ax, 0023h ;Set REN

out dx, ax ;enable receiver

Xor cX, cX ;reset time-out counter

mov dx, S1ISTS ;check to see if data is waiting
Check_4_RI: dec cx ;decrement time-out counter

jnz NoTimeOut ;time-out=false:then continue

Xor ax, ax ;time-out=true:set return

;value false (0)
jmp short SlaveExit

NoTimeOut: in ax, dx
test ax, 0040h ;test for RI bit
jz Check_4_RI ;keep checking till data received
mov dx, SIRBUF ;get slave response
in ax, dx
and ax, Offh ;mask off unwanted bits

xor ax, _slave_addr;did addressed slave respond?
;ax=0:true else false

not ax ;invert state of ax to be consistent
;with false(0) and true(non zero)
SlaveExit: pop dx ;restore saved registers
pop cx
pop bp ;restore caller's bp
ret

_select_slave endp

lib_80186 ends
end

Example 11-4. Master/Slave — The _select_slave Routine (Continued)

11-28

intel.

SERIAL COMMUNICATIONS UNIT

$mod186

name example_slave_1_routine

: slave_1 '

FUNCTION: This function represents a slave unit connected to a multi-

; processor master/slave network. This slave responds to two
; commands:

; Flash the LEDs on the EVAL Board, and

; Disconnect from the Network.

; Other commands are easily added.

SYNTAX: extern void far slave_1(void);

“INPUTS: None

. OUTPUTS: None

NOTE: Parameters are passed on the stack as required by high-level

languages. The slave should be running this code before the
master calls the slave. Example assumes PCB is in I/O space.

P1CON
P1LTCH
P2CON
S1CON
S1STS
S1TBUF
S1RBUF

lib_80186

My_Address
TriStateEna
TriStateDis
FlashLEDs
Disconnect
public
_slave_1

;substitute register offsets in place of xxxxh

equ xxxxh ;Port 1 Control register

equ xxxxh ;Port 1 Latch register

equ xxxxh ;Port 2 Control register

equ xxxxh ;Serial Port 1 Control register
equ xxxxh ;Serial Port 1 Status register
equ xxxxh ;Serial Port 1 Transmit Buffer
equ xxxxh ;Serial Port 1 Receive Buffer

segment public ‘code’
assume cs:lib_80186

equ O1h ;slave 1 network address
equ 08h ;Tri-state buffer enable
equ 00h ;Tri-state buffer disable
equ O1h ;list of commands unit 1 responds to
equ Ofh
_slave_1
proc far
push ax ;save registers that will be modified
push bx
push cx
push dx

Example 11-5. Master/Slave — The slave_1 Routine

11-29

SERIAL COMMUNICATIONS UNIT

DisconnectMode:
mov dx, SISTS
in ax,dx
mov dx, PLCON
in ax, dx
and ax, 0f0h
out dx, ax
mov dx, P2CON
mov ax, Offh
out dx, ax
mov dx, PILTCH
mov
out dx, ax
dx, SICON
ax, 0022h
dx, ax

mov
mov
out

SelStatus: mov
Check_4_RI: in

dx, S1STS
ax, dx

test ax, 0040h

jz Check_4_RI

mov dx, SISRUF
in ax, dx

cmp
jne SelStatus
mov
mov
out

dx, SICON
ax, 0003h
dx, ax

mov
mov
out
mov
mov
out

dx, P1LTCH

dx, ax
dx, SITBUF

dx, ax
mov

mov
out

dx, SICON

ax, 0023h
dx, ax
Wait_4_Cmd: mov dx, S1ISTS

in ax, dx

test ax, 0040h

jz Wait_4_Cmd

mov dx, SIRBUF
in ax, dx

cmp

; clear any pending exceptions
; get state of port 1 controls
; make sure P1.0:P1.3 is port
; set P2.1 for TXD1, P2.0for RXD1

; make sure TXD latch is tristated

ax, TriStateDis

; set P1.7 to zero

; select control register
; receive, Mode 2

; select status register
; get status
; data waiting?
; no: then keep checking

; yes: then get data

al, My_Address ; is slave_1 being addressed?

; no: then ignore

; yes: then switch to Mode 3, transmit
; Mode 3

; enable tristate buffer

ax, TriStateEna

; gate TXD onto master's RXD
; echo My_Address to the master

ax, My_Address

; switch to receive mode
; Mode 3, receive

; select status register
; get status
; command waiting?
; no: then keep checking

; yes: then get command

al, Disconnect ; Disconnect command?
je DisconnectMode ; yes: then disconnect RXD from network

Example 11-5. Master/Slave — The slave_1 Routine (Continued)

11-30

Intel® SERIAL COMMUNICATIONS UNIT

cmp al, FlashLEDs ; Flash LEDs command
jne Wait_4_Cmd ; no: then ignore

mov dx, PLLTCH ; yes: then flash LEDs 10 times
mov cx, 20
Xor ax, ax

Send: not ax
out dx, ax
mov bx, Offffth
Dly1: dec bx
jnz Dlyl
dec cx
jnz Send

jmp short Wait_4_Cmd

pop dx

pop cx

pop bx

pop ax

ret
_slave_1 endp
lib_80186 ends

end

Example 11-5. Master/Slave — The slave_1 Routine (Continued)

11-31

SERIAL COMMUNICATIONS UNIT Intel®

$mod186

name example_master_send_slave_command

send_slave_cmd

; FUNCTION: This function transmits a slave command, _slave_cmd, over
; the serial network to a previously addressed slave.

i SYNTAX: extern void far send_slave_cmd (int slave_cmd)

INPUTS: _slave_cmd (command to send to addressed slave)

- OUTPUTS: None

NOTE: Parameters are passed on the stack as required by

; high-level languages. Example assumes PCB is in I/O space.

substitute register offsets in place of xxxxh

S1STS equ xxxxh ; Serial Port 1 Status register
S1CON equ xxxxh ; Serial Port 1 Control register
S1TBUF equ xxxxh ; Serial Port 1 Transmit Buffer register
iib_80186 segment public ‘code’
assume cs:lib_80186
public _send_slave_cmd
_send_slave_cmd proc far
push bp ; save caller's bp
mov bp, sp ; get current top of stack
; get slave command off the stack
_slave_cmd equ word ptr [bp+6]
push ax ; save registers that are modified
push dx
mov dx, S1STS ; clear any pending exceptions
in ax, dx
mov dx, SICON ; prepare to send command
mov ax, 0003h ; Mode 3
out dx, ax
mov dx, SITBUF ; select slave
mov ax, _slave_cmd ; get command to send to slave
out dx, al ; send it
pop dx ; restore saved registers
pop ax
pop bx ; restore caller’s bp
ret

_send_slave_cmdendp

lib_80186 ends
end

Example 11-6. Master/Slave — The _send_slave_command Routine

11-32

intel. 1 2

Watchdog Timer Unit

intel.

CHAPTER 12
WATCHDOG TIMER UNIT

System upsets can come from a variety of sources. Errant software can work its way into an end-
less loop, waiting for an event that never occurs. An unanticipated radiation source can couple
into improperly shielded circuitry. Not all sources of system upsets can be anticipated and guard-
ed against. The Watchdog Timer Unit provides a graceful method for recovery from unexpected

hardware and software upsets.

Watchdog timers are designed to reset the system unless the timer is periodically reloaded with a
new value (this is also known as “kicking the watchdog”). The system software is responsible for
reloading the watchdog timer. It is assumed that errant code or a system lockup will prevent the
watchdog timer from being reloaded, resulting in a system reset. A special instruction sequence,
a sequence that errant code would be very unlikely to produce, is typically used to reload the tim-
er.

The Watchdog Timer Unit (WDT) can function either as a system watchdog or as a general-pur-
pose timer, or it can be disabled for systems that do not wish to use it.

12.1 FUNCTIONAL OVERVIEW

A block diagram of the Watchdog Timer Unit is shown in Figure 12-1. The 32-bit down counter
decrements every CLKOUT cycle. The WDTOWih is driven low for four CLKOUT cycles
when the down counter reaches zefd/@T timeout The WDTOUTsignal may be used to reset
the device or as an interrupt request.

The down counter is reloaded with the 32-bit reload value under two conditions:

* when a special LOCKed instruction sequence is issued to the Protection and Control
Circuitry

¢ when the down counter reaches zero

The Protection and Control Circuitry is responsible for enabling and disabling the Watchdog
Timer as well as preventing unauthorized modification of count values.

12.2 USING THE WATCHDOG TIMER AS A SYSTEM WATCHDOG

There are two methods for recovery following a software upset: a full system reset or an interrupt
request. Both methods can be implemented with the Watchdog Timer Unit.

I 12-1

WATCHDOG TIMER UNIT Intel®

Figure 12-2 shows the circuit necessary to reset the processor when a WDT timeout occurs. The
power-on reset signal and the WDTOBignals are ANDed together to produce the RES{N
nal for the processor.

Internal Data Bus (F-BUS)

] ~ - ~
= -~ >

) <> 32-BIT Reload Value
Protection LL
And Control T —
Circuitry WDTQUT
—>{ 32-BIT Down Counter p——>
CLKOUT: T

A1302-0A

Figure 12-1. Block Diagram of the Watchdog Timer Unit

Processor
WDTOUT

RESIN Power-On-Reset
(Active Low)

Figure 12-2. Watchdog Timer Reset Circuit

A1303-0A

The circuit in Figure 12-3(a) is used to interrupt the processor when a WDT timeout occurs. Since
WDTOUT is normally high, the Interrupt Control Unit must be programmeddge sensitivity
to prevent continuous interrupts from occurring.

12-2

Intel® WATCHDOG TIMER UNIT

Figure 12-3(b) shows the circuit necessary to generate an NMTfrom WDTI@MITis edge sen-
sitive and level latched. The inverter is needed to prevent an NMI immediately upon reset.

When using interrupts to recover from a system upset, pay close attention to “Using the Watch-
dog Timer as a General-Purpose Timer” on page 12-6.

@) (b)

Processor Processor
WDTOUT WDTOUT
INTX |e— NMI

A1304-0A

Figure 12-3. Generating Interrupts with the Watchdog Timer

When the Watchdog Timer Unit is used as a system watchdog, the goal of the system software is
to prevent the 32-bit down counter from ever reaching zero. This is accomplished by periodically
reloading the down counter with the Watchdog Timer Reload Value.

12.2.1 Reloading the Watchdog Timer Down Counter

A special LOCKed byte write instruction sequence to the Watchdog Timer Clear (WDTCLR)
Register reloads the down counter. The WDTCLR Register expects a sequence of two bytes,
which must be written within the same LOCKed instruction. The first byte must be 0AAH and
the second must be 55H. Writing any other data values or using two separate LOCKed instruc-
tions will not reload the down counter. Examples 12-1 and 12-2 show the code necessary to re-
load the down counter when the Peripheral Control Block is located in I/O and memory space,
respectively.

In embedded control systems, the Watchdog Timer is typically reloaded at the end of the control

loop. For systems that do not execute a single looped program, the Watchdog Timer is usually
reloaded during the system timer “tick” service.

I 12-3

WATCHDOG TIMER UNIT Intel®

12.2.2 Watchdog Timer Reload Value

The Watchdog Timer Reload Value is controlled by the WDTRLDL and WDTRLDH registers
in the Peripheral Control Block. These two registers make up the 32-bit reload value.

The Watchdog Timer Reload Value cannot be modified after the Watchdog Timer is reloaded us-
ing the reload instruction sequence. Locking the WDT Reload Value prevents errant code from
affecting Watchdog Timer operation.

The WDT Reload Value should be calculated based on the design of the system software. If the
system is executing a simple control loop, the Reload Value should be slightly longer than the
longest path through the loop. If the Watchdog Timer is reloaded during the timer tick service,
the Reload Value should be slightly longer than the timer tick interval. In general, determining
the Reload Value involves analysis of the system software and some amount of experimentation.

wdt_data segment

wdt_key DB OAAH, 055H
wdt_data ends

wdt_code segment

assume cs:wdt_code

mov ax, wdt_key
mov ds, ax
mov si, offset wdt_key
;ES:SI points to reset value for

'WDTCLR
mov dx, WDTCLR ;1/O address of WDTCLR
cld ;clear direction flag (autoincrement)
mov cx, 2 ;2 bytes will be written
lock rep outsb es:[si] ;LOCKed reload sequence

:The WDT down counter
:has been reloaded.

wdt_code ends

Example 12-1. Reload Sequence (Peripheral Control Block Located in I/O Space)

12-4

intel.

WATCHDOG TIMER UNIT

wdt_data
wdt_key
wdt_data
pcb_image
WDTCLR
WDTCLR
pcb_image

wdt_code

lock rep

wdt_code

segment
DB OAAH, 055H
ends
segment
EQU XXXXH
DW ?
ends

segment
assume cs:wdt_code

mov ax, seg wdt_key
mov ds, ax

mov si, offset wdt_key
mov ax, seg WDTCLR
mov es, ax

mov di, offset WDTCLR

cld
mov cx, 2

movshb

ends

;image of PCB

;replace “XXXX" with appropriate
;offset from PCB+0.

;DS:SI = address of WDT reset value

;ES:DI = address of WDTCLR register
;clear direction flag (autoincrement)
;2 bytes in key

;LOCKed reload sequence

;The WDT down counter
;has been reloaded.

Example 12-2. Reload Sequence (Peripheral Control Block Located in Memory Space)

12.2.3 Initialization

The Watchdog Timer Unit isnabledfollowing a reset. The initial value in the down counter is
OFFFFH. The system software must program or reload the Watchdog Timer within 65,535 clock

cycles of a reset to prevent the WDTOBignal from being asserted.

Use the following sequence to initialize the Watchdog Timer:
1. Program the upper 16 bits of the WDT Reload Value (in the WDTRLDH register).
2. Program the lower 16 bits of the WDT Reload Value (in the WDTRLDL register).

3. Execute the appropriate LOCKed instruction sequence to reload the down counter and

lock accesses to the WDT Reload Value.

12-5

WATCHDOG TIMER UNIT Intel®

12.3 USING THE WATCHDOG TIMER AS A GENERAL-PURPOSE TIMER

Systems that do not require a watchdog timer can program the Watchdog Timer Unit to function
as a general-purpose timer. In reality, itiack of programming that allows the Watchdog Timer
Unit to perform general-purpose timer tasks.

Recall that write access to the WDT Reload Value is prohibited only after the LOCKed reload
sequence is executed. If this sequence is not performed, then access to the WDT Reload Value is
unrestrained. Systems that require a general-purpose timer simply never execute the LOCKed re-
load sequence, thus allowing reprogramming of the WDT Reload Register.

Arbitrary duty cycle pulse trains can be generated by the Watchdog Timer when it is configured
as a general-purpose timer. The WDTOSIgnal is driven low for four CLKOUT cycles when

the down counter reaches zero. The down counter is reloaded with the WDT Reload Value during
the CLKOUT cycle immediately after the counter reaches zero. Figure 12-4 shows the WDTOUT
signal waveforms when the Watchdog Timer is configured as a general-purpose timer.

The WDTOUTSsignal can be used to generate interrupts like any of the timers (remember that it

must be edge triggered). Because the WDT reloads itself (five cycles after time-out), it acts as a
timer in continuous mode. Unlike the timers, however, the WDT count is decrenawetgd

clock cycle (rather than every four clock cycles, as with the timers). For this reason, when the
WDT is used as a general-purpose timer, it can achieve a higher resolution than is possible with
the timers.

|<_ Four CLKOUT Cycles _>|

CLKOUT ff |

WDTOUT &A
WDTCOUNT:X 1 X 0 X N X N-lX N-2X N-3X N-4X

A1305-0A

Figure 12-4. WDTOUT Waveforms

12.4 DISABLING THE WATCHDOG TIMER
Systems that do not use the Watchdog Timer can disable the entire circuit during system initial-

ization. When the Watchdog Timer is disabled, all clocks to the unit are shut off and the circuit
consumes no power.

12-6 I

Intel® WATCHDOG TIMER UNIT

A LOCKed instruction sequence that is similar to the reload sequence disables the Watchdog
Timer. The Watchdog Timer Disable (WDTDIS) Register expects a sequence of two bytes,
which must be written by a single LOCKed instruction. The first byte must be 55H and the second
must be 0AAH (the reverse of the reload sequence). Writing any other data values or using two
separate LOCKed instructions wilbt disable the WDT. The Watchdog Timer cannot be dis-
abled once it has been reloaded by the system software. Similarly, it cannot be enabled once it
has been disabled.

Examples 12-3 and 12-4 show the code necessary to disable the Watchdog Timer Unit when the
Peripheral Control Block is located in I/O and memory space, respectively.

wdt_data segment

wdt_off DB 055H, OAAH
wdt_data ends

wdt_code segment

assume cs:wdt_code

mov ax, seg wdt_off

mov es, ax

mov si, offset wdt_off

mov dx, WDTDIS ;ES:SI points to wdt_key
;disable value of WDT

cld ;clear direction flag (autoincrement)
mov cX, 2 ;2 bytes will be written
lock rep outsb es:[si], dx ;LOCKed disable sequence.

;The WDT is disabled
wdt_code ends

Example 12-3. Disabling the Watchdog Timer (Peripheral Control Block in I/O Space)

12-7

WATCHDOG TIMER UNIT

wdt_data
wdt_off
wdt_data
pcb_image
WDTDIS
WDTDIS
pcb_image

wdt_code

lock rep

wdt_code

segment

DB 055H, OAAH

ends

segment;image of PCB

EQU
DW
ends

segment

XXXXH

?

assume cs:wdt_code

mov
mov
mov

mov
mov
mov

cld
mov

movsb

ends

ax, seg wdt_off
ds, ax
si, offset wdt_off

ax, seg WDTDIS
es, ax
di, offset WDTDIS

cx, 2

;replace “XXXX" with appropriate
;offset from PCB+0.

;DS:SI = address of disable
;value for the WDT

;ES:DI = address of WDTDIS register
;clear direction flag(autoincrement)
;2 bytes in sequence

;LOCKed disable sequence
;The WDT down counter
;has been disabled.

Example 12-4. Disabling the Watchdog Timer (Peripheral Control Block in Memory Space)

12.5 WATCHDOG TIMER REGISTERS

Six Peripheral Control Block Registers control the Watchdog Timer Unit. The Watchdog Timer
Reload Value is held in two 16-bit registers: WDTRLDH (Figure 12-5) and WDTRLDL (Figure
12-6). The value in the 32-bit down counter can be read from the count registers, WDTCNTH

(Figure 12-7) and WDTCNTL (Figure 12-8). The count registers are read only.

The WDT Clear (WDTCLR) and WDT Disable (WDTDIS) registers are not shown, as their func-
tions are described in the text and are not tied to specific bit positions. “Reloading the Watchdog
Timer Down Counter” on page 12-3 describes the WDT Clear register, and “Disabling the

Watchdog Timer” on page 12-6 discusses the WDT Disable register.

12-8

intel.

WATCHDOG TIMER UNIT

Register Name:

Register Function:

Register Mnemonic:

Watchdog Timer Reload Value (High)
WDTRLDH

Contains the upper 16 bits of the Watchdog Timer
Reload Value.

15 0
WIW|WIW[[WIWIW|WI[|W|WIW|W|IW|W|W]|W
Rl R| R| R RIRIR|R R RIR|R RIR|IR]|R
313122 21212] 2 212]12]) 2 111]11]1
110918 716]15]| 4 312|1]60 918 7]6
A1308-0A
Bit . Reset !
Mnemonic Bit Name State Function
WR31:16 Watchdog 0000H WR31:16 are the high-order bits of the
Timer Reload Watchdog Timer Reload Value.
Value

Figure 12-5. WDT Reload Value (High)

12-9

WATCHDOG TIMER UNIT

intel.

Register Name:

Register Mnemonic:

Register Function:

Watchdog Timer Reload Value (Low)
WDTRLDL

Contains the lower 16 bits of the Watchdog Timer
Reload Value.

15 0
WIW|W|W[I[IWIWIWIWI[IWIW|IW|WI|IWIW]|W|W
RIRIR|R RIRIR]R RIRIR|IR RIR|IR]R
1111111 1111918 716]5] 4 110
514]13]| 2 110

A1309-0A

Bit . Reset .

Mnemonic Bit Name State Function
WR15:0 Watchdog FFFFH | WR15:0 are the low-order bits of the Watchdog
Timer Reload Timer Reload Value.
Value

12-10

Figure 12-6. WDT Reload Value (Low)

intel.

WATCHDOG TIMER UNIT

Register Name:

Register Mnemonic:

Register Function:

Watchdog Timer Count Value (High)

WDTCNTH

Contains the upper 16 bits of the Watchdog Timer

Count Value.
15 0
WIW|IW|W|IWIWI[W[W[|W]W]W]W||W|W]|W|W
c|Cc|C|C c|c|cjc c|cjl|c|c c|cjcj|c
313|2]2 212122 212121 2 1111111
1]1]0]19]8 716|514 312|110 91 8| 7| 6
A1306-0A
Bit . Reset "
Mnemonic Bit Name State Function
WC31:16 Watchdog 0000H WC31:16 are the high-order bits of the
Timer Reload Watchdog Timer Counter Value.
Value

Figure 12-7. WDT Count Value (High)

12-11

WATCHDOG TIMER UNIT Intel®

Register Name: Watchdog Timer Count Value (Low)
Register Mnemonic: WDTCNTL
Register Function: Contains the lower 16 bits of the Watchdog Timer
Count Value.
15 0
WIW|WIW[[WIWIW|WI[IW|WIW|W|IW|W|W]|W
c|cCc|C|C c|c|cj|c c|c|cj|c c|jc|c|c
1111111 111191 8 716|5] 4 3|12]11]|0
51413]| 2 110
A1307-0A
Bit . Reset .
Mnemonic Bit Name State Function
WC15:0 Watchdog FFFFH | WC15:0 are the low-order bits of the Watchdog
Timer Reload Timer Counter Value.
Value

Figure 12-8. WDT Count Value (Low)

12.6 INITIALIZATION EXAMPLE

Example 12-5 shows example code for Watchdog Timer initialization. Note that this code must
be executed within the first 65,535 clock cycles of a reset.

12-12

Intel® WATCHDOG TIMER UNIT

wdt_data segment
wdt_key DB 0AAH, 055H
wdt_data ends

; The following code must be executed within the first 64K clock cycles.

boot_code segment
assume cs:boot_code

; For this example, we want a delay of 2 seconds for the Watchdog
; Timer. The following calculation is for a 16 Mhz processor.

(2 seconds) / (62.5E-9 seconds per clock) = 32,000,000 cycles
; 32,000,000 decimal = 1E847FF Hex
Y mov ax, 47FFH ;Low order bits

mov dx, WDTRLDL

out dx, ax

mov ax, 01E8H ;High order bits
mov dx, WDTRLDH
out dx, ax

; Now we have to reload the WDT

mov ax, seg wdt_key
mov es, ax
mov si, offset wdt_key
mov dx, WDTCLR ;DS:SI points to wdt_key
;1/O address of WDTCLR register

cld ;clear direction flag (autoincrement)
mov cx, 2 ;2 bytes will be written
lock rep outsb es:[si],dx ;LOCKed reload sequence.

;The WDT down counter
;has been reloaded.

boot_code ends

Example 12-5. Initializing the Watchdog Timer
(Peripheral Control Block Located in I/0O Space)

12-13

intel.

13

Input/Output Ports

intel.

CHAPTER 13
INPUT/OUTPUT PORTS

Many applications do not require full use of all the on-chip peripheral functions. For example, the
Chip-Select Unit provides a total of ten chip-select lines; only a large design would require all
ten. For smaller designs that require fewer than ten chip-selects, these pins would be wasted.

The input/output ports give system designers the flexibility to replace the functions of unused pe-
ripheral pins with general-purpose 1/O ports. Many of the on-chip peripheral pin functions are
multiplexed with an I/O port. If a particular peripheral pin function is unnecessary in an applica-
tion, that pin can be used for I/0. The 80C186EC/80C188EC has three types of ports: bidirection-
al, output-only and open-drain bidirectional.

13.1 FUNCTIONAL OVERVIEW

All port pin types are derived from a common bidirectional port logic module. Unidirectional and
open-drain ports are a subset of the bidirectional module. The following sections describe each
port type. The bidirectional port is described in detail, as it is the basis for all of the other port
types. The descriptions for the unidirectional and open-drain ports only highlight their specific
differences from the common bidirectional module.

13.1.1 Bidirectional Port

Figure 13-1 shows a simplified schematic of a bidirectional port pin. The overall function of a
bidirectional port pin is controlled by the state of the Port Control Latch. The output of the Port
Control Latch selects the source of output data and the source of the control signal for the three-
state output driver. When the port is programmed to act as a peripheral pin, both the data for the
pin and the directional control signal for the pin come from the associated integrated peripheral.
When a bidirectional port pin is programmed as an I/O port, all port parameters are under soft-
ware control.

The output of the Port Direction latch enables (or disables) the three-state output driver when the
pin is programmed as an |/O port. The three-state output driver is enabled by clearing the Port
Direction latch. The data driven on an output port pin is held in the Port Data latch. Setting the
Port Direction latch disables the three-state output driver, making the pin an input.

The signal present on the device pin is routed through a synchronizer to a three-state latch that

connects to the internal data bus. The state of the pin can be read at any time, regardless of wheth-
er the pin is used as an I/O port or for a peripheral function.

I 13-1

INPUT/OUTPUT PORTS Intel®

From Integrated '\ Port/Peripheral
Peripheral
P / Data Multiplexer
Read Port
Data latch Output Driver
Q
o—D 11
A v
Write Port > |
Data Latch Port Data Latch
Read Port >
Pin State
SYNC
Read Port >_
Direction Control Ii
Internal Data D Q
Bus (F-Bus) _
A Q 10
Write Port |
Direction . . Q
Port Direction Latch
Read Port > 11
Direction]: ‘ S
Q
D
A Q i
Write Port >—|
Control Port Control Latch
To Integrated
Peripheral

Peripheral
Direction Control

Figure 13-1. Simplified Logic Diagram of a Bidirectional Port Pin

A1247-0A

13-2

Intel® INPUT/OUTPUT PORTS

13.1.2 Output Port

Figure 13-2 shows the internal construction of an output port pin. An internal connection perma-
nently enables the three-state output driver. The Port Control latch selects the source of data for
the pin, which can be either the on-chip peripheral or the Port Data latch. The Port Direction bit
has no effect on an output-only pin; it can be used for storage.

13.1.3 Open-Drain Bidirectional Port

Figure 13-3 shows the internal control logic for the open-drain bidirectional port pin. The logic
is slightly different from that for the other port types. When the open-drain port pin is configured
as an output, clearing the Port Data latch turns on the N-channel driver, resulting in a “hard zero”
being present at the pin. A one value in the Port Data Latch shuts off the driver, resulting in a high
impedance (input) state at the pin. The open-drain pin can be floated directly by setting its Port
Direction bit.

The open-drain ports are not multiplexed with on-board peripherals. The port/peripheral data
multiplexer exists for open-drain ports, even though the pins are not shared with peripheral func-

tions. The open-drain port pin floats if the Port Control latch is programmed to select the non-
existent peripheral function.

13.1.4 Port Pin Organization

The port pins are divided into three functional groups: Port 1, Port 2 and Port 3. Most of the port
pins are multiplexed with peripheral functions.

I 13-3

INPUT/OUTPUT PORTS

intel.

From Integrated \

Peripheral /

Read Port
Data latch

Write Port
Data Latch

Read Port
Pin State

Read Port
Direction Control

Internal Data
Bus (F-Bus)

TT

1

A Q

L

Port Data Latch

]

(Permenantly Disabled)

Output Driver

Ol

SYNC

A
Write Port |
Direction L
Port Direction Latch
Read Port >
Direction
Q
D
A Q
Write Port > |
Control Port Control Latch
To Integrated
Peripheral

A1248-0A

Figure 13-2. Simplified Logic Diagram of an Output Port Pin

13-4

intel.

INPUT/OUTPUT PORTS

From Port

Direction
Latch /

Read Port
Data Latch

Internal
Data Bus

Write Port '\

Port Data
Latch

®—D Q

[

| Data Latch /

Read Port
Pin State

From Port

Pin

SYNC

Control
Latch /

A1249-0A

Figure 13-3. Simplified Logic Diagram of an Open-Drain Bidirectional Port

13-5

INPUT/OUTPUT PORTS Intel®

13.1.4.1 Port 1 Organization

Port 1 consists of eiglautput-only port pins. The Port 1 pins are multiplexed with the general-
purpose chip-selects (GCSY.:0able 13-1 shows the multiplexing options for Port 1.

Table 13-1. Port 1 Multiplexing Options

Pin Name Peripheral Function Port Function
P1.7/GCS7 GCS7 P1.7
P1.6/GCS6 GCs6 P1.6
P1.5/GCS5 GCS5 P1.5
P1.4/GCS4 GCS4 P1.4
P1.3/GCS3 GCsS3 P1.3
P1.2/GCS2 GCs2 P1.2
P1.1/GCS1 GCS1 P1.1
P1.0/GCS0 GCs0 P1.0

13.1.4.2 Port 2 Organization

Port 2 consists of eigbidirectional port pins. Port 2 is multiplexed with the two serial channels.
Table 13-2 shows the multiplexing options for Port 2.

Table 13-2. Port 2 Multiplexing Options

Pin Name Peripheral Function Port Function
P2.7/CTS1 CTS1 (Input) P2.7
P2.6/BCLK1 BCLK1 (Input) P2.6
P2.5/TXD1 TXD1 (Output) P2.5
P2.4/RXD1 RXD1 (I/0) P2.4
P2.3/CTSO CTSO (Input) P2.3
P2.2/BCLKO BCLKO (Input) p2.2
P2.1/TXDO TXDO (Output) P2.1
P2.0/RXDO0 RXD (I/0) P2.0

13-6

Intel® INPUT/OUTPUT PORTS

13.1.4.3 Port 3 Organization

Port 3 consists of six pins: four output-only pins and two open-drain bidirectional pins. The four
output-only port pins are multiplexed with DMA and serial communications interrupt requests.
The two open-drain bidirectional pins are not multiplexed with a peripheral function. The multi-
plexing options for Port 3 are shown in Table 13-3.

Table 13-3. Port 3 Multiplexing Options

Pin Name Peripheral Function Port Function

P3.5 None (Note) P3.5 (Open-drain)
P3.4 None (Note) P3.4 (Open-drain)
P3.3/DMAIL1 DMAI1 P3.3

P3.2/DMAIO DMAIO P3.2

P3.1/TXI1 TXI1 P3.1

P3.0/RXI1 RXI1 P3.0

NOTE: P_3.5 and P3.4 float when configured as peripheral

pins.

13.2 PROGRAMMING THE I/O PORT UNIT

Each port is controlled by a set of four Peripheral Control Block registers: the Port Control Reg-
ister (PxCON), the Port Direction Register (PxDIR), the Port Data Latch Register (PxLTCH) and
the Port Pin State Register (PxPIN).

13.2.1 Port Control Register

The Port Control RegistéFigure 13-4) selects the overall function for each port pin: peripheral

or port. For I/O ports, the Port Control Register is used to assign the pin to either the associated
on-chip peripheral or to a general-purpose 1/O port. For output-only ports, the Port Control Reg-
ister selects the source of data for the pin: either an on-chip peripheral or the Port Data latch.

13-7

INPUT/OUTPUT PORTS

intel.

Register Name:
Register Mnemonic:

Register Function:

Port Control Register

PxCON (P1CON, P2CON, P3CON)

Selects port or peripheral function for a port pin.

pin direction and pin data. Clearing the PC bit
makes the pin a general-purpose I/O port.

NOTE: PC7 and PC6 do not exist for Port 3.

15 0
PIP|P]|P PIPIP|P
c|c|cj|c c|c|c|c
71654 31211]0

A1312-0A
Bit . Reset .
Mnemonic Bit Name State Function
PC7:0 Port Control FFH When the PC bit for a specific pin is set, the
7:0 associated integrated peripheral controls both

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 13-4. Port Control Register (PxCON)

13.2.2 Port Direction Register

The Port Direction RegistéFigure 13-5) controls the direction (input or output) for each pin pro-
grammed as a general-purpose I/O port. The Port Direction bit has no effect on output-only port
pins. These unused direction control bits can be used for bit storage.

The Port Direction Register is read/write. When read, the register returns the value written to it

previously. Pins with their direction fixed return the value in this registéra value indicating

their true direction. The direction of a port pin assigned to a peripheral function is controlled by

the peripheral; the Port Direction value is ignored.

13-8

Intel® INPUT/OUTPUT PORTS

Register Name: Port Direction Register
Register Mnemonic: PxDIR (P1DIR, P2DIR, P3DIR)
Register Function: Controls the direction of pins programmed as 1/O
ports.
15 0
PIP|P]|P PIPIP]P
D|D|D|D DID|D]|D
716]|5]|4 3|12|1]|0
A1313-0A
Bit . Reset .
Mnemonic Bit Name State Function
PD7:0 Port FFH Setting the PD bit for a pin programmed as a
Direction 7:0 general-purpose I/O port selects the pin as an
input. Clearing the PD bit selects the pin as an
output.
NOTES:
1) PD7 and PD6 do not exist for Port 3.
2) The PD bits for Port 1 and P3.0 through P3.3
are ignored and can be used as storage.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 13-5. Port Direction Register (PxDIR)

13.2.3 Port Data Latch Register

The Port Data Latch Register (Figure 13-6) holds the value to be driven on an output or bidirec-
tional pin. This value appears at the pin only if it is programmed as a port.

The Port Data Latch Register is read/write. Reading a Port Data Latch Register returns the value
of the latch itself andot that of the associated port pin.

13-9

INPUT/OUTPUT PORTS Intel®

Register Name: Port Data Latch Register
Register Mnemonic: PXLTCH (P1LTCH, P2LTCH, P3LTCH)
Register Function: Contains the data driven on pins programmed as

output ports.

15 0
PIP|P]|P PIP]IP]P

LiL|L|L LIL|JL]L

716|514 312|110

A1314-0A
Bit . Reset .
Mnemonic Bit Name State Function
PL7:0 Port Data FFH The data written to a PL bit appears on pins
Latch 7:0 programmed as general-purpose output ports.

NOTE: PL7 and PL6 do not exist for Port 3.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be writ-
ten to a logic zero to ensure compatibility with future Intel products.

Figure 13-6. Port Data Latch Register (PXLTCH)

13.2.4 Port Pin State Register

The Port Pin State Regis{giigure 13-7) is a read-only register that is used to determine the state
of a port pin. When the Port Pin State Register is read, the current state of the port pins is gated
to the internal data bus.

13-10

Intel® INPUT/OUTPUT PORTS

Register Name: Port Pin State Register
Register Mnemonic: PxPIN (P1PIN, P2PIN, P3PIN)
Register Function: Reads the logic state at a port pin.
15 0
PIP|IP]|P PIP|P|P
PIP|IP]|P PIP|P|P
716|5]|4 312|110
A1315-0A
Bit . Reset .
Mnemonic Bit Name State Function
PP7:0 Port Pin XXXXH Reading the Port Pin State register returns the
State 7:0 logic state present on the associated pin.
NOTE: PP7 and PP6 do not exist for Port 3.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 13-7. Port Pin State Register (PxPIN)

13.2.5 Initializing the 1/O Ports

The state of the 1/O ports following a reset is as follows:
* Port 1 is configured for peripheral function (general-purpose chip-selects, GCS7:0

* Port 2 is configured for peripheral function. The direction of each pin is the default direction
for the peripheral function (e.g., P2.5/TXD1 is an output, P2.2/BCLKO is an input). See
Table 13-2 on page 13-6 for details.

* Ports P3.0 through P3.3 are configured for peripheral function (interrupt requests). Ports
P3.4 and P3.5 are configured as inputs (they are floating). See Table 13-3 on page 13-7 for
details.

There are no set rules for initializing the I/O ports. The Port Data Latch should be programmed
before selecting a pin as an output port (to prevent unknown Port Data Latch values from reaching
the pins).

13-11

INPUT/OUTPUT PORTS Intel®

13.3 PROGRAMMING EXAMPLE

Example 13-1 shows a typical ASM86 routine to configure the 1/0O ports. GE€&rgh GCS4

are routed to the pins, while P1.0 through P1.4 are used as output ports. The binary value 0101 is
written to P1.0 through P1.3. The states of pins P3.5 and P3.4 are read and stored in the AL reg-
ister.

$MOD186
NAME I0_PORT_UNIT_EXAMPLE

;This file contains an example of programming code for
;the 1/0 Port Unit on the 80C186EC.

EPCB EQUates in an include file.
#INCLUDE PCBMAP.INC

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG

IO_UNIT_EXMPL PROC NEAR

;Write 0101B to data latch for pins P1.3 through P1.0
MOV DX, P1LTCH
MOV AL, 0101B
ouT DX, AL

;Gate latch data to output pins.
;P1.3 to P1.0 are port pins

MOV DX, P1CON

MOV AL, OFOH

ouT DX, AL
;Route DMA interrupts to package pin...

MOV DX, P3CON

MOV AX, 001100B

ouT DX, AL

;Read P3.4, P3.5. We assume they have not been changed to output
;pins since reset.

MOV DX, P3PIN

IN AX, DX

AND AX, 3H ;Strip unused bits
;AL now holds the state of the P3.5 and P3.4 pins
I0_UNIT_EXMPL ENDP

CODE_SEG ENDS
END

Example 13-1. 1/O Port Programming Example

13-12

intel.

14

Math Coprocessing

intel.

CHAPTER 14
MATH COPROCESSING

The 80C186 Modular Core Family meets the need for a general-purpose embedded microproces-
sor. In most data control applications, efficient data movement and control instructions are fore-
most and arithmetic performed on the data is simple. However, some applications do require
more powerful arithmetic instructions and more complex data types than those provided by the
80C186 Modular Core.

14.1 OVERVIEW OF MATH COPROCESSING

Applications needing advanced mathematics capabilities have the following characteristics.
* Numeric data values are non-integral or vary over a wide range
¢ Algorithms produce very large or very small intermediate results
¢ Computations must be precise (i.e., calculations must retain several significant digits)
¢ Computations must be reliable without dependence on programmed algorithms

¢ Overall math performance exceeds that afforded by a general-purpose processor and
software alone

For the 80C186 Modular Core family, the 80C187 math coprocessor satisfies the need for pow-
erful mathematics. The 80C187 can increase the math performance of the microprocessor system
by 50 to 100 times.

14.2 AVAILABILITY OF MATH COPROCESSING

The 80C186 Modular Core supports the 80C187 with a hardware interface under microcode con-
trol. However, not all proliferations support the 80C187. Some package types have insufficient
leads to support the required external handshaking requirements. The 3-volt versions of the pro-
cessor do not specify math coprocessing because the 80C187 has only a 5-volt rating. Please refel
to the current data sheets for details.

The core has an Escape Trap (ET) bit in the PCB Relocation Register (Figure 4-1 on page 4-2) to
control the availability of math coprocessing. If the ET bit is set, an attempted numerics execution
results in a Type 7 interrupt. The 80C187 will not work with the 8-bit bus version of the processor
because all 80C187 accesses must be 16-bit. The 80C188 Modular Core automatically traps ESC
(numerics) opcodes to the Type 7 interrupt, regardless of Relocation Register programming.

I 14-1

MATH COPROCESSING Intel®

14.3 THE 80C187 MATH COPROCESSOR

The 80C187’s high performance is due to its 80-bit internal architecture. It contains three units:
a Floating Point Unit, a Data Interface and Control Unit and a Bus Control Logic Unit. The foun-
dation of the Floating Point Unit is an 8-element register file, which can be used either as indi-
vidually addressable registers or as a register stack. The register file allows storage of
intermediate results in the 80-bit format. The Floating Point Unit operates under supervision of
the Data Interface and Control Unit. The Bus Control Logic Unit maintains handshaking and
communications with the host microprocessor. The 80C187 has built-in exception handling.

The 80C187 executes code written for the Intel387™ DX and Intel387 SX math coprocessors.
The 80C187 conforms to ANSI/IEEE Standard 754-1985.

14.3.1 80C187 Instruction Set

80C187 instructions fall into six functional groups: data transfer, arithmetic, comparison, tran-
scendental, constant and processor control. Typical 80C187 instructions accept one or two oper-
ands and produce a single result. Operands are usually located in memory or the 80C187 stack.
Some operands are predefined; for example, FSQRT always takes the square root of the number
in the top stack element. Other instructions allow or require the programmer to specify the oper-
and(s) explicitly along with the instruction mnemonic. Still other instructions accept one explicit
operand and one implicit operand (usually the top stack element).

As with the basic (non-numerics) instruction set, there are two types of operands for coprocessor
instructions, source and destination. Instruction execution does not alter a source operand. Even
when an instruction converts the source operand from one format to another (for example, real to
integer), the coprocessor performs the conversion in a work area to preserve the source operand.
A destination operand differs from a source operand because the 80C187 can alter the register
when it receives the result of the operation. For most destination operands, the coprocessor usu-
ally replaces the destinations with results.

14-2

Intel® MATH COPROCESSING

14.3.1.1 Data Transfer Instructions

Data transfer instructions move operands between elements of the 80C187 register stack or be-
tween stack top and memory. Instructions can convert any data type to temporary real and load it
onto the stack in a single operation. Conversely, instructions can convert a temporary real oper-
and on the stack to any data type and store it to memory in a single operation. Table 14-1 sum-
marizes the data transfer instructions.

Table 14-1. 80C187 Data Transfer Instructions

Real Transfers

FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

Integer Transfers

FILD Integer load
FIST Integer store
FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store and pop

14.3.1.2 Arithmetic Instructions

The 80C187’s arithmetic instruction set includes many variations of add, subtract, multiply, and
divide operations and several other useful functions. Examples include a simple absolute value
and a square root instruction that executes faster than ordinary division. Other arithmetic instruc-
tions perform exact modulo division, round real numbers to integers and scale values by powers
of two.

Table 14-2 summarizes the available operation and operand forms for basic arithmetic. In addi-
tion to the four normal operations, “reversed” instructions make subtraction and division “sym-
metrical” like addition and multiplication. In summary, the arithmetic instructions are highly
flexible for these reasons:

¢ the 80C187 uses register or memory operands
* the 80C187 can save results in a choice of registers

14-3

MATH COPROCESSING

Available data types include temporary real, long real, short real, short integer and word integer.

intel.

The 80C187 performs automatic type conversion to temporary real.

Table 14-2. 80C187 Arithmetic Instructions

14-4

Addition Division
FADD Add real FDIV Divide real
FADDP Add real and pop FDIVP Divide real and pop
FIADD Integer add FIDIV Integer divide
Subtraction FDIVR Divide real reversed

FSUB Subtract real FDIVRP Divide real reversed and pop
FSUBP Subtract real and pop FIDIVR Integer divide reversed
FISUB Integer subtract Other Operations
FSUBR Subtract real reversed FSQRT Square root
FSUBRP Subtract real reversed and pop FSCALE Scale
FISUBR Integer subtract reversed FPREM Partial remainder

Multiplication FRNDINT Round to integer
FMUL Multiply real FXTRACT Extract exponent and significand
FMULP Multiply real and pop FABS Absolute value
FIMUL Integer multiply FCHS Change sign

FPREMI Partial remainder (IEEE)

Intel® MATH COPROCESSING

14.3.1.3 Comparison Instructions

Each comparison instruction (see Table 14-3) analyzes the stack top element, often in relationship
to another operand. Then it reports the result in the Status Word condition code. The basic oper-
ations are compare, test (compare with zero) and examine (report tag, sign and normalization).

Table 14-3. 80C187 Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Integer compare

FICOMP Integer compare and pop
FTST Test

FXAM Examine

FUCOM Unordered compare

FUCOMP Unordered compare and pop
FUCOMPP | Unordered compare and pop twice

14.3.1.4 Transcendental Instructions

Transcendental instructions (see Table 14-4) perform the core calculations for common trigono-
metric, hyperbolic, inverse hyperbolic, logarithmic and exponential functions. Use prologue code
to reduce arguments to a range accepted by the instruction. Use epilogue code to adjust the result
to the range of the original arguments. The transcendentals operate on the top one or two stack
elements and return their results to the stack.

Table 14-4. 80C187 Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x—1

FYL2X Y log, X
FYL2XP1 Y log, (X+1)
FCOS Cosine

FSIN Sine

FSINCOS Sine and Cosine

14-5

intel.

MATH COPROCESSING

14.3.1.5 Constant Instructions

Each constant instruction (see Table 14-5) loads a commonly used constant onto the stack. The
values have full 80-bit precision and are accurate to about 19 decimal digits. Since a temporary
real constant occupies 10 memory bytes, the constant instructions, only 2 bytes long, save mem-
ory space.

Table 14-5. 80C187 Constant Instructions

FLDZ Load + 0.1
FLD1 Load +1.0
FLDPI Load
FLDL2T Load log, 10
FLDL2E Load log, e
FLDLG2 Load log,, 2
FLDLN2 Load log, 2

14.3.1.6 Processor Control Instructions

Computations do not use the processor control instructions; these instructions are available for
activities at the operating system level. This group (see Table 14-6) includes initialization, excep-
tion handling and task switching instructions.

Table 14-6. 80C187 Processor Control Instructions

FINIT/ENINIT Initialize processor FLDENV Load environment
FDISI/FNDISI Disable interrupts FSAVE/FNSAVE | Save state

FENI/FNENI Enable interrupts FRSTOR Restore state

FLDCW Load control word FINCSTP Increment stack pointer
FSTCW/FNSTCW Store control word FDECSTP Decrement stack pointer
FSTSW/FNSTSW Store status word FFREE Free register
FCLEX/FNCLEX Clear exceptions FNOP No operation
FSTENV/FNSTENV | Store environment FWAIT CPU wait

Intel® MATH COPROCESSING

14.3.2 80C187 Data Types

The microprocessor/math coprocessor combination supports seven data types:

¢ Word Integer — A signed 16-bit numeric value. All operations assume a 2's complement
representation.

¢ Short Integer — A signed 32-bit numeric value (double word). All operations assume a 2's
complement representation.

* Long Integer — A signed 64-bit numeric value (quad word). All operations assume a 2’'s
complement representation.

* Packed Decimal — A signed numeric value contained in an 80-bit BCD format.

¢ Short Real — A signed 32-bit floating point numeric value.

* Long Real — A signed 64-bit floating point numeric value.

* Temporary Real — A signed 80-bit floating point numeric value. Temporary real is the
native 80C187 format.

Figure 14-1 graphically represents these data types.

14.4 MICROPROCESSOR AND COPROCESSOR OPERATION
The 80C187 interfaces directly to the microprocessor (as shown in Figure 14-2) and operates as

an I/O-mapped slave peripheral device. Hardware handshaking requires connections between the
80C187 and four special pins on the process@SMBUSY, PEREQ and ERROR

I 14-7

MATH COPROCESSING Intel®

Word
Integer

Short
Integer

Long
Integer

Packed
Decimal

Short
Real

Long
Real

Temporary
Real

- Increasing Significance

S| Magnitude | (Two's Complement)

15 0
S Magnitude (Two's Complement)
31 0
; (Two's

S Magnitude Complement)
63 0
s| x Magnitude

d17/9161%151%141%3 1 9121919 %10] 99 | 95 [97} %6 %5 941 % | %27 917 %
79 72

Biased i

S Exponent Significand
31 23 A 0
S EEE)%Sr%dnt Significand
63 52 %__ N 0

Biased N

Exponent I—l Significand

79 64 63 & 0
NOTES:

S = Sign bit (0 = positive, 1 = negative)
dn = Decimal digit (two per byte)
X = Bits have no significance; 80C187 ignores when loading, zeros when storing.
A = Position of implicit binary point
| = Integer bit of significand; stored in temporary real, implicit in short and long real
Exponent Bias (normalized values):

Short Real: 127 (7FH)

Long Real: 1023 (3FFH)

Temporary Real: 16383 (FFFH)

A1257-0A

14-8

Figure 14-1. 80C187-Supported Data Types

Intel® MATH COPROCESSING

External I'_at_ch
Oscillator :>
Al A2
v 2y
AD15:0 K > at a :
s s
ALE > EN || o ©
CKM !
] o> CLK =
CLKOUT O <2
80C187
80C186
Modular
Core
RESOUT > RESET
WR > NPWR
RD > NPRD
BUSY |« BUSY
ERROR ERROR
PEREQ PEREQ
NCS NPS1
NPS2 _%
D15:0 >

A1254-01

Figure 14-2. 80C186 Modular Core Family/80C187 System Configuration

14-9

MATH COPROCESSING Intel®

14.4.1 Clocking the 80C187

The microprocessor and math coprocessor operate asynchronously, and their clock rates may dif-
fer. The 80C187 has a CKM pin that determines whether it uses the input clock directly or divided
by two. Direct clocking works up to 12.5 MHz, which makes it convenient to feed the clock input
from the microprocessor's CLKOUT pin. Beyond 12.5 MHz, the 80C187 must use a multiply-
by-two clock input up to a maximum of 32 MHz. The microprocessor and the math coprocessor
have correct timing relationships, even with operation at different frequencies.

14.4.2 Processor Bus Cycles Accessing the 80C187

Data transfers between the microprocessor and the 80C187 occur through the dedicated, 16-bit
I/0O ports shown in Table 14-7. When the processor encounters a numerics opcode, it first writes
the opcode to the 80C187. The 80C187 decodes the instruction and passes elementary instruction
information (Opcode Status Word) back to the processor. Since the 80C187 is a slave processor,
the Modular Core processor performs all loads and stores to memory. Including the overhead in
the microprocessor’s microcode, each data transfer between memory and the 80C187 (via the mi-
croprocessor) takes at least 17 processor clocks.

Table 14-7. 80C187 I/O Port Assignments

1/0 Address Read Definition Write Definition
00F8H Status/Control Opcode
O0OFAH Data Data
00FCH Reserved CS:IP, DS:EA
OOFEH Opcode Status Reserved

The microprocessor cannot process any numerics (ESC) opcodes alone. If the CPU encounters a
numerics opcode when the Escape Trap (ET) bit in the Relocation Register is a zero and the
80C187 is not present, its operation is indeterminate. Even the FINIT/FNINIT initialization in-
struction (used in the past to test the presence of a coprocessor) fails without the 80C187. If an
application offers the 80C187 as an option, problems can be prevented in one of three ways:

* Remove all numerics (ESC) instructions, including code that checks for the presence of the
80C187.

¢ Use a jumper or switch setting to indicate the presence of the 80C187. The program can
interrogate the jumper or switch setting and branch away from numerics instructions when
the 80C187 socket is empty.

¢ Trick the microprocessor into predictable operation when the 80C187 socket is empty. The
fix is placing pull-up or pull-down resistors on certain data and handshaking lines so the
CPU reads a recognizable Opcode Status Word. This solution requires a detailed knowledge
of the interface.

14-10 I

Intel® MATH COPROCESSING

Bus cycles involving the 80C187 Math Coprocessor behave exactly like other I/O bus cycles with
respect to the processor’s control pins. See “System Design Tips” for information on integrating
the 80C187 into the overall system.

14.4.3 System Design Tips

All 80C187 operations require that bus ready be asserted. The simplest way to return the ready
indication is through hardware connected to the processor’s external ready pin. If you program a

chip-select to cover the math coprocessor port addresses, its ready programming is in force and
can provide bus ready for coprocessor accesses. The user must verify that there are no conflicts
from other hardware connected to that chip-select pin.

A chip-select pin goes active on 80C187 accesses if you program it for a range including the math
coprocessor I/O ports. The converse is not true — a non-80C187 access cannot &8yate N
merics coprocessor select), regardless of programming.

In a buffered system, it is customary to place the 80C187 on the local bus. Sinea@®DEN

function normally during 80C187 transfers, you must qualify D#td NCS (see Figure 14-3).
Otherwise, contention between the 80C187 and the transceivers occurs on read cycles to the
80C187.

The microprocessor’s local bus is available to the integrated peripherals during numerics execu-
tion whenever the CPU is not communicating with the 80C187. The idle bus allows the processor
to intersperse DRAM refresh cycles and DMA cycles with accesses to the 80C187.

The microprocessor’s local bus is available to alternate bus masters during execution of numerics
instructions when the CPU does not need it. Bus cycles driven by alternate masters (via the
HOLD/HLDA protocol) can suspend coprocessor bus cycles for an indefinite period.

The programmer can lock 80C187 instructions. The CPU asserts the pi@ @K the entire du-
ration of a numerics instruction, monopolizing the bus for a very long time.

I 14-11

MATH COPROCESSING Intel®

External I;ﬂ A15:0
Oscillator ﬂ
Buffer
Al‘ AZ‘ D15:8
N =1 N
AD15:0 8 8l
V| s = -/
O O
ALE > EN [
CKM o
— [———° T OE
CLKOUT o K § |
+2
80C186 80C187
Modular
Core
RESOUT >»|RESET Buffer
D7:0
WR > NPWR LN @
RD > NPRD 4
BUSY | BUSY OE T
ERROR [ERROR
PEREQ |=& PEREQ
NCS NPS1
. _%
DEN NPS2
DT/R A
i I
o
D15:0 >
A1255-01

14-12

Figure 14-3. 80C187 Configuration with a Partially Buffered Bus

Intel® MATH COPROCESSING

14.4.4 Exception Trapping

The 80C187 detects six error conditions that can occur during instruction execution. The 80C187
can apply default fix-ups or sighal exceptions to the microprocessor's ERROFhe processor

tests ERRORat the beginning of numerics instructions, so it traps an exception oexhat-
tempted numerics instruction after it occurs. When ERR&E active, the processor executes a
Type 16 interrupt.

There is no automatic exception-trapping on the last numerics instruction of a series. If the last
numerics instruction writes an invalid result to memory, subsequent non-numerics instructions
can use that result as if it is valid, further compounding the original error. Insert the FNOP in-
struction at the end of the 80C187 routine to force an ERE&@RBK. If the program is written in

a high-level language, it is impossible to insert FNOP. In this case, route the error signal through
an inverter to an interrupt pin on the microprocessor (see Figure 14-4). With this arrangement,
use a flip-flop to latch BUSY upon assertion of ERRORe latch gets cleared during the excep-
tion-handler routine. Use an additional flip-flop to latch PEREQ to maintain the correct hand-
shaking sequence with the microprocessor.

14.5 EXAMPLE MATH COPROCESSOR ROUTINES
Example 14-1 shows the initialization sequence for the 80C187. Example 14-2 is an example of

a floating point routine using the 80C187. The FSINCOS instruction yields both sine and cosine
in one operation.

I 14-13

MATH COPROCESSING

ERROR
RESET

80C186
Modular Core
ERROR j
RESOUT LD—-
csx — >
INTX fe————— \/
Latch susy [«—_ &
PEREQ |
ENfee——/]ALE NCS
<:> A19:A16 —
T AD15:0 RD
WR L
A CLKOUT ® c o
D 74
D *—— - 6
R > D150 S
E
S
S :,) D15:0 CLK
A2 -
—> CMD1 NPWR |-
A19:0 AL
—>{CMDO0 NPRD |e— ¢
vV 80C187 l
-
}__ NPS1 N C 0
CKM PEREQ 74
| _
}-_ BUSY S
NPS2 |> I}
<

A1256-01

Figure 14-4. 80C187 Exception Trapping via Processor Interrupt Pin

14-14

intel.

MATH COPROCESSING

lib_80186ends

end

$mod186
name example_80C187_init
;FUNCTION: This function initializes the 80C187 numerics coprocessor.
;SYNTAX: extern unsigned char far 187_init(void);
INPUTS: None
;OUTPUTS: unsigned char - 0000h -> False -> coprocessor not initialized
; ffftfh -> True -> coprocessor initialized
;NOTE: Parameters are passed on the stack as required by
; high-level languages.
iib_80186 segment public 'code’
assume cs:lib_80186
public _187_init
_187_initproc far
push bp ;save caller’s bp
mov bp, sp ;get current top of stack
cli ;disable maskable interrupts
fninit ;init 80C187 processor
fnstcw [bp-2] ;get current control word
sti ;enable interrupts
mov ax, [bp-2]
and ax, 0300h ;mask off unwanted control bits
cmp ax, 0300h ;PC bits = 11
je Ok ;yes: processor ok
xor ax, ax ;return false (80C187 not ok)
pop bp ;restore caller’s bp
ret
Ok: and [bp-2], Offfeh ;unmask possible exceptions
fldew [bp-2]
mov ax,0ffffh ;return true (80C187 ok)
pop bp ;restore caller’s bp
ret
_187_initendp

Example 14-1. Initialization Sequence for 80C187 Math Coprocessor

14-15

MATH COPROCESSING Intel®

$mod186
$modc187

name example_80C187_proc

:DESCRIPTION: This code section uses the 80C187 FSINCOS transcendental
; instruction to convert the locus of a point from polar

; to Cartesian coordinates.

;VARIABLES: The variables consist of the radius, r, and the angle, theta.
; Both are expressed as 32-bit reals and 0 <= theta <= pi/4.

;RESULTS: The results of the computation are the coordinates x and y
; expressed as 32-hit reals.

;NOTES: This routine is coded for Intel ASM86. It is not set up as an
; HLL-callable routine.

This code assumes that the 80C187 has already been initialized.

assume cs:code, ds:data

data segment at 0100h

r dd X.xXxX ;substitute real operand
theta dd x.xxxx ;substitute real operand
X dd ?
y dd ?

data ends

code segment at 0080h

convert proc far

mov ax, data

mov ds, ax

fid r ;load radius

fld theta ;load angle

fsincos ;st=cos, st(1)=sin

fmul st, st(2) ;compute X

fstp X ;store to memory and pop

fmul ;compute y

fstp y ;store to memory and pop
convertendp

code ends
end

Example 14-2. Floating Point Math Routine Using FSINCOS

14-16

intel. 1 5

ONCE Mode

intel.

CHAPTER 15
ONCE MODE

ONCE (pronounced “ahnce”) Mode provides the ability to three-state all output, bidirectional, or
weakly held high/low pins except OSCOUT. To allow device operation with a crystal network,
OSCOUT does not three-state.

ONCE Mode electrically isolates the device from the rest of the board logic. This isolation allows

a bed-of-nails tester to drive the device pins directly for more accurate and thorough testing. An
in-circuit emulation probe uses ONCE Mode to isolate a surface-mounted device from board log-
ic and essentially “take over” operation of the board (without removing the soldered device from

the board).

15.1 ENTERING/LEAVING ONCE MODE

Forcing A19/0ONCHow while RESINis asserted (low) enables ONCE Mode (see Figure 15-1).
Maintaining A19/0ONCEand RESINIow continues to keep ONCE Mode active. Returning
A19/ONCEhigh exits ONCE Mode.

However, it is possible to keep ONCE Mode always active by deasserting Ri#liiNkeeping
A19/0ONCElow. Removing RESINIatches” ONCE Mode and allows AT9/ONG& be driven
to any level. A19/ONCHEnust remain low for at least one clock beyond the time RESdNven
high. Asserting RESINxits ONCE Mode, assuming AI9/0NGBes not also remain low (see
Figure 15-1).

RESIN Q @

A19/0ONCE / /

All output,

bidirectional,

weakly held /
pins except
oscouT

NOTES: 1. Entering ONCE Mode.
2. Latching ONCE Mode.
3. Leaving ONCE Mode (assuming 2 occurred).
A1260-0A

Figure 15-1. Entering/Leaving ONCE Mode

I 15-1

intel.
A

80C186 Instruction
Set Additions and
Extensions

APPENDIX A
80C186 INSTRUCTION SET
ADDITIONS AND EXTENSIONS

The 80C186 Modular Core family instruction set differs from the original 8086/8088 instruction
set in two ways. First, several instructions that were not available in the 8086/8088 instruction set
have been added. Second, several 8086/8088 instructions have been enhanced for the 80C18¢
Modular Core family instruction set.

A.1 80C186 INSTRUCTION SET ADDITIONS

This section describes the seven instructions that were added to the base 8086/8088 instruction
set to make the instruction set for the 80C186 Modular Core family. These instructions did not
exist in the 8086/8088 instruction set.
¢ Data transfer instructions
— PUSHA
— POPA

* String instructions
— INS
— OUTS

¢ High-level instructions
— ENTER
— LEAVE
— BOUND

A.1.1 Data Transfer Instructions
PUSHA/POPA

PUSHA (push all) and POPA (pop all) allow all general-purpose registers to be stacked and un-
stacked. The PUSHA instruction pushes all CPU registers (except as noted below) onto the stack.
The POPA instruction pops all registers pushed by PUSHA off of the stack. The registers are
pushed onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI, DI. The Stack Pointer
(SP) value pushed is the Stack Pointer value before the AX register was pushed. When POPA is
executed, the Stack Pointer value is popped, but ignored. Note that this instruction does not save
segment registers (CS, DS, SS, ES), the Instruction Pointer (IP), the Processor Status Word or
any integrated peripheral registers.

I A-1

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS Intel®

A.1.2 String Instructions
INS source_string, port

INS (in string) performs block input from an I/O port to memory. The port address is placed in
the DX register. The memory address is placed in the DI register. This instruction uses the ES
segment register (which cannot be overridden). After the data transfer takes place, the pointer reg-
ister (DI) increments or decrements, depending on the value of the Direction Flag (DF). The
pointer register changes by one for byte transfers or by two for word transfers.

OUTS port, destination_string

OUTS (out string) performs block output from memory to an I/O port. The port address is placed
in the DX register. The memory address is placed in the Sl register. This instruction uses the DS
segment register, but this may be changed with a segment override instruction. After the data
transfer takes place, the pointer register (Sl) increments or decrements, depending on the value
of the Direction Flag (DF). The pointer register changes by one for byte transfers or by two for
word transfers.

A.1.3 High-Level Instructions
ENTER size, level

ENTER creates the stack frame required by most block-structured high-level languages. The first
parametersize specifies the number of bytes of dynamic storage to be allocated for the procedure
being entered (16-bit value). The second paramletas| is the lexical nesting level of the pro-
cedure (8-bit value). Note that the higher the lexical nesting level, the lower the procedure is in
the nesting hierarchy.

The lexical nesting level determines the number of pointers to higher level stack frames copied
into the current stack frame. This list of pointers is calledif@ay. The first word of the display
points to the previous stack frame. The display allows access to variables of higher level (lower
lexical nesting level) procedures.

After ENTER creates a display for the current procedure, it allocates dynamic storage space. The
Stack Pointer decrements by the number of bytes speciftiddsll PUSH and POP operations
in the procedure use this value of the Stack Pointer as a base.

Two forms of ENTER exist: non-nested and nested. A lexical nesting level of 0 specifies the non-
nested form. In this situation, BP is pushed, then the Stack Pointer is copied to BP and decrement-
ed by the size of the frame. If the lexical nesting level is greater than 0, the nested form is used.
Figure A-1 gives the formal definition of ENTER.

A-2 I

Intel® 80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

The following listing gives the formal definition of the
ENTER instruction for all cases.
LEVEL denotes the value of the second operand.

Push BP

Set a temporary value FRAME_PTR: = SP

If LEVEL > 0 then
Repeat (LEVEL - 1) times:
BP:=BP - 2
Push the word pointed to by BP
End Repeat
Push FRAME_PTR

End if

BP:=FRAME_PTR

SP:=SP - first operand

Figure A-1. Formal Definition of ENTER

ENTER treats a reentrant procedure as a procedure calling another procedure at the same lexical
level. A reentrant procedure can address only its own variables and variables of higher-level call-
ing procedures. ENTER ensures this by copying only stack frame pointers from higher-level pro-
cedures.

Block-structured high-level languages use lexical nesting levels to control access to variables of
previously nested procedures. For example, assume for Figure A-2 that Procedure A calls Proce-
dure B, which calls Procedure C, which calls Procedure D. Procedure C will have access to the
variables of Main and Procedure A, but not to those of Procedure B because Procedures C and B
operate at the same lexical nesting level.

The following is a summary of the variable access for Figure A-2.

1.
2.
3.

Main has variables at fixed locations.
Procedure A can access only the fixed variables of Main.

Procedure B can access only the variables of Procedure A and Main.
Procedure B cannot access the variables of Procedure C or Procedure D.

Procedure C can access only the variables of Procedure A and Main.
Procedure C cannot access the variables of Procedure B or Procedure D.

Procedure D can access the variables of Procedure C, Procedure A and Main.
Procedure D cannot access the variables of Procedure B.

A-3

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS Intel®

Main Program (Lexical Level 1)

Procedure A (Lexical Level 2)

Procedure B (Lexical Level 3)

Procedure C (Lexical Level 3)

Procedure D (Lexical Level 4)

A1001-0A

Figure A-2. Variable Access in Nested Procedures

The first ENTER, executed in the Main Program, allocates dynamic storage space for Main, but

no pointers are copied. The only word in the display points to itself because no previous value
exists to return to after LEAVE is executed (see Figure A-3).

15 0
Old BP
BP —» Display Main
BPM
Dynamic
Storage
Main

SP

Y

*BPM = BP Value for MAIN

A1002-0A

Figure A-3. Stack Frame for Main at Level 1

After Main calls Procedure A, ENTER creates a new display for Procedure A. The first word
points to the previous value of BP (BPM). The second word points to the current value of BP
(BPA). BPM contains the base for dynamic storage in Main. All dynamic variables for Main will
be at a fixed offset from this value (see Figure A-4).

A-4

Intel® 80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

15 0
Old BP
BPM
BP BPM
BPM Display A
BPA*
Dynamic
Storage A
SP —
*BPA = BP Value for Procedure A
A1003-0A

Figure A-4. Stack Frame for Procedure A at Level 2

After Procedure A calls Procedure B, ENTER creates the display for Procedure B. The first word
of the display points to the previous value of BP (BPA). The second word points to the value of
BP for MAIN (BPM). The third word points to the BP for Procedure A (BPA). The last word
points to the current BP (BPB). Procedure B can access variables in Procedure A or Main via the
appropriate BP in the display (see Figure A-5).

After Procedure B calls Procedure C, ENTER creates the display for Procedure C. The first word
of the display points to the previous value of BP (BPB). The second word points to the value of
BP for MAIN (BPM). The third word points to the value of BP for Procedure A (BPA). The
fourth word points to the current BP (BPC). Because Procedure B and Procedure C have the same
lexical nesting level, Procedure C cannot access variables in Procedure B. The only pointer to
Procedure B in the display of Procedure C exists to allow the LEAVE instruction to collapse the
Procedure C stack frame (see Figure A-6).

I A-5

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

15

Old BP

BPM

BPM

BPM

BPA

BPA

BP

SP —>

BPM

BPA

BPB

[@

g

r

Display B

Dynamic
Storage B

A1004-0A

A-6

Figure A-5. Stack Frame for Procedure B at Level 3 Called from A

Intel® 80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

15 0
Old BP
BPM

BPM
BPM
BPA

BPA
BPM
BPA
BPB

BPB
BPM
BPA
BPC

BP —>

t Display C

1 Dynamic
Storage C

A1005-0A

Figure A-6. Stack Frame for Procedure C at Level 3 Called from B
LEAVE

LEAVE reverses the action of the most recent ENTER instruction. It collapses the last stack
frame created. First, LEAVE copies the current BP to the Stack Pointer, releasing the stack space
allocated to the current procedure. Second, LEAVE pops the old value of BP from the stack, to
return to the calling procedure's stack frame. A RET instruction will remove arguments stacked
by the calling procedure for use by the called procedure.

A-7

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS Intel®

BOUND register, address

BOUND verifies that the signed value in the specified register lies within specified limits. If the
value does not lie within the bounds, an array bounds exception (type 5) occurs. BOUND is useful
for checking array bounds before attempting to access an array element. This prevents the pro-
gram from overwriting information outside the limits of the array.

BOUND has two operands. The firgtgister, specifies the register being tested. The seaahd,
dress contains the effective relative address of the two signed boundary values. The lower limit
word is at this address and the upper limit word immediately follows. The limit values cannot be
register operands (if they are, an invalid opcode exception occurs).

A.2 80C186 INSTRUCTION SET ENHANCEMENTS

This section describes ten instructions that were available with the 8086/8088 but have been en-
hanced for the 80C186 Modular Core family.

¢ Data transfer instructions
— PUSH

¢ Arithmetic instructions
— IMUL

¢ Bit manipulation instructions (shifts and rotates)
— SAL
— SHL
— SAR
— SHR
— ROL
— ROR
— RCL
— RCR

A.2.1 Data Transfer Instructions

PUSH data

PUSH (push immediate) allows an immediate arguntztg, to be pushed onto the stack. The
value can be either a byte or a word. Byte values are sign extended to word size before being
pushed.

A-8 I

Intel® 80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

A.2.2 Arithmetic Instructions
IMUL destination, source, data

IMUL (integer immediate multiply, signed) allows a value to be multiplied by an immediate op-
erand. IMUL requires three operands. The fusistination is the register where the result will

be placed. The secomshurce is the effective address of the multiplier. The source may be the
same register as the destination, another register or a memory location. Tliathiid,an im-
mediate value used as the multiplicand. @amoperand may be a byte or wordd#tais a byte,

it is sign extended to 16 bits. Only the lower 16 bits of the result are saved. The result must be
placed in a general-purpose register.

A.2.3 Bit Manipulation Instructions

This section describes the eight enhanced bit-manipulation instructions.

A231 Shift Instructions

SAL destination, count

SAL (immediate shift arithmetic left) shifts the destination operand left by an immediate value.
SAL has two operands. The firgigstination is the effective address to be shifted. The second,
count is an immediate byte value representing the number of shifts to be made. The CPU will
AND countwith 1FH before shifting, to allow no more than 32 shifts. Zeros shift in on the right.

SHL destination, count

SHL (immediate shift logical left) is physically the same instruction as SAL (immediate shift
arithmetic left).

SAR destination, count

SAR (immediate shift arithmetic right) shifts the destination operand right by an immediate val-
ue. SAL has two operands. The fidgstination is the effective address to be shifted. The sec-
ond,count is an immediate byte value representing the number of shifts to be made. The CPU
will AND countwith 1FH before shifting, to allow no more than 32 shifts. The value of the orig-
inal sign bit shifts into the most-significant bit to preserve the initial sign.

SHR destination, count

SHR (immediate shift logical right) is physically the same instruction as SAR (immediate shift
arithmetic right).

I A-9

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS Intel®

A.2.3.2 Rotate Instructions
ROL destination, count

ROL (immediate rotate left) rotates the destination byte or word left by an immediate value. ROL
has two operands. The firgigstination is the effective address to be rotated. The secood;

is an immediate byte value representing the number of rotations to be made. The most-significant
bit of destinationrotates into the least-significant bit.

ROR destination, count

ROR (immediate rotate right) rotates the destination byte or word right by an immediate value.
ROR has two operands. The firdgstination is the effective address to be rotated. The second,
count is an immediate byte value representing the number of rotations to be made. The least-sig-
nificant bit of destinationrotates into the most-significant bit.

RCL destination, count

RCL (immediate rotate through carry left) rotates the destination byte or word left by an imme-
diate value. RCL has two operands. The filstination is the effective address to be rotated.
The secondgount is an immediate byte value representing the number of rotations to be made.
The Carry Flag (CF) rotates into the least-significant bitesftination The most-significant bit

of destinationrotates into the Carry Flag.

RCR destination, count

RCR (immediate rotate through carry right) rotates the destination byte or word right by an im-
mediate value. RCR has two operands. The fiesttinationis the effective address to be rotated.
The secondgount is an immediate byte value representing the number of rotations to be made.
The Carry Flag (CF) rotates into the most-significant biesdtination The least-significant bit

of destinationrotates into the Carry Flag.

A-10

intel.

Input
Synchronization

APPENDIX B
INPUT SYNCHRONIZATION

Many input signals to an embedded processor are asynchronous. Asynchronous signedgs do not
quire a specified setup or hold time to ensure the device does not incur a failure. However, asyn-
chronous setup and hold times are specified in the data sheet torensgretion. Associated

with each of these inputs is a synchronizing circuit (see Figure B-1) that samples the asynchro-
nous signal and synchronizes it to the internal operating clock. The output of the synchronizing
circuit is then safely routed to the logic units.

Asynchronous Synchronized
Input {] D Q D Q Output

First Second
Latch Latch

©—p @ —

NOTES: 1. First latch sample clock, can be phase 1 or phase 2 depending on pin function.

2. Second latch sample clock, opposite phase of first latch sample clock
(e.g., if first latch is sampled with phase 1, the second latch is sampled with phase 2).
A1007-0A

Figure B-1. Input Synchronization Circuit

B.1 WHY SYNCHRONIZERS ARE REQUIRED

Every data latch requires a specific setup and hold time to operate properly. The duration of the
setup and hold time definesnandowduring which the device attempts to latch the data. If the
input makes a transition within this window, the output may not attain a stable state. The data
sheet specifies a setup and hold window larger than is actually required. However, variations in
device operation (e.g., temperature, voltage) require that a larger window be specified to cover
all conditions.

Should the input to the data latch make a transition during the sample and hold window, the out-
put of the latch eventually attains a stable state. This stable state must be attained before the sec-
ond stage of synchronization requires a valid input. To synchronize an asynchronous signal, the
circuit in Figure B-1 samples the input into the first latch, allows the output to stabilize, then sam-
ples the stabilized value into a second latch. With the asynchronous signal resolved in this way,
the input signal cannot cause an internal device failure.

B-1

INPUT SYNCHRONIZATION Intel®

A synchronization failure can occur when the output of the first latch does not meet the setup and
hold requirements of the input of the second latch. The rate of failure is determined by the actual
size of the sampling window of the data latch and by the amount of time between the strobe sig-
nals of the two latches. As the sampling window gets smaller, the number of times an asynchro-
nous transition occurs during the sampling window drops.

B.2 ASYNCHRONOUS PINS

The 80C186EC/80C188EC inputs that use the two-stage synchronization circuit are TOIN, T1IN,
NMI, TEST/BUSY, INT7:0, HOLD, all port pins used as inputs, and DRQ3:0.

B-2 I

intel.

C

Instruction Set
Descriptions

This appendix provides reference information for the 80C186 Modular Core family instructic
set. Tables C-1 through C-3 define the variables used in Table C-4, which lists the instructi

APPENDIX C
INSTRUCTION SET DESCRIPTIONS

with their descriptions and operations.

Table C-1. Instruction Format Variables
Variable Description

dest A register or memory location that may contain data operated on by the instruction,
and which receives (is replaced by) the result of the operation.

src A register, memory location or immediate value that is used in the operation, but is not
altered by the instruction

target A label to which control is to be transferred directly, or a register or memory location
whose content is the address of the location to which control is to be transferred
indirectly.

disp8 A label to which control is to be conditionally transferred; must lie within —128 to +127
bytes of the first byte of the next instruction.

accum Register AX for word transfers, AL for bytes.

port An 1/O port number; specified as an immediate value of 0-255, or register DX (which
contains port number in range 0—64K).

src-string Name of a string in memory that is addressed by register SlI; used only to identify
string as byte or word and specify segment override, if any. This string is used in the
operation, but is not altered.

dest-string Name of string in memory that is addressed by register DI; used only to identify string
as byte or word. This string receives (is replaced by) the result of the operation.

count Specifies number of bits to shift or rotate; written as immediate value 1 or register CL

(which contains the count in the range 0-255).

interrupt-type

Immediate value of 0-255 identifying interrupt pointer number.

optional-pop-value

Number of bytes (0—64K, ordinarily an even number) to discard from the stack.

external-opcode

Immediate value (0-63) that is encoded in the instruction for use by an external
processor.

C-1

INSTRUCTION SET DESCRIPTIONS

Table C-2. Instruction Operands

Operand Description

reg An 8- or 16-bit general register.

reglé An 16-bit general register.

seg-reg A segment register.

accum Register AX or AL

immed A constant in the range 0—-FFFFH.

immed8 A constant in the range O—FFH.

mem An 8- or 16-bit memory location.

mem16 A 16-bit memory location.

mem32 A 32-bit memory location.

src-table Name of 256-byte translate table.

src-string Name of string addressed by register Sl.

dest-string Name of string addressed by register DI.

short-label A label within the —128 to +127 bytes of the end of the instruction.

near-label A label in current code segment.

far-label A label in another code segment.

near-proc A procedure in current code segment.

far-proc A procedure in another code segment.

memptrl6 A word containing the offset of the location in the current code segment to which
control is to be transferred.

memptr32 A doubleword containing the offset and the segment base address of the location in
another code segment to which control is to be transferred.

regptrl6 A 16-bit general register containing the offset of the location in the current code
segment to which control is to be transferred.

repeat A string instruction repeat prefix.

C-2

INSTRUCTION SET DESCRIPTIONS

Table C-3. Flag Bit Functions

Name

Function

AF

Auxiliary Flag:
Set on carry from or borrow to the low order four bits of AL; cleared otherwise.

CF

Carry Flag:
Set on high-order bit carry or borrow; cleared otherwise.

DF

Direction Flag:

Causes string instructions to auto decrement the appropriate index register
when set. Clearing DF causes auto increment.

Interrupt-enable Flag:

When set, maskable interrupts will cause the CPU to transfer control to an
interrupt vector specified location.

OF

Overflow Flag:

Set if the signed result cannot be expressed within the number of bits in the
destination operand; cleared otherwise.

PF

Parity Flag:

Set if low-order 8 bits of result contain an even number of 1 bits; cleared
otherwise.

SF

Sign Flag:
Set equal to high-order bit of result (O if positive, 1 if negative).

TF

Single Step Flag:

Once set, a single step interrupt occurs after the next instruction executes. TF
is cleared by the single step interrupt.

ZF

Zero Flag:
Set if result is zero; cleared otherwise.

C-3

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set

intel.

. . Flags
Name Description Operation Affected
AAA ASCII Adjust for Addition : if AF v
AAA ((AL) and OFH) > 9 or (AF) =1 CF v
. then DF —
Changes the contents of register AL to (AL) — (AL) +6 IF —
a valid unpacked decimal number; the (AH) — (AH) + 1 OF ?
high-order half-byte is zeroed. @AF) - 1 PE ”
Instruction Operands : (CF) « (AF) SF ?
none (AL) « (AL) and OFH TF -
ZF ?
AAD ASCII Adjust for Division : (AL) — (AH) x OAH + (AL) AF ?
AAD (AH) - 0 SE ?
Modifies the numerator in AL before IE :
dividing two valid unpacked decimal OF 2
operands so that the quotient PE v
produced by the division will be a valid SE v
unpacked decimal number. AH must TE -
be zero for the subsequent DIV to ZE v
produce the correct result. The
quotient is returned in AL, and the
remainder is returned in AH; both high-
order half-bytes are zeroed.
Instruction Operands
none
AAM ASCII Adjust for Multiply : (AH) —~ (AL)/ OAH AF ?
AAM (AL) < (AL) % OAH CF?
Corrects the result of a previous multi- ::I):F B
plication of two valid unpacked ;
decimal operands. A valid 2-digit OF 7
unpacked decimal number is derived PF v
from the content of AH and AL and is SF v
returned to AH and AL. The high-order TF —
half-bytes of the multiplied operands ZF v
must have been OH for AAM to
produce a correct result.
Instruction Operands
none
NOTE: The three symbols used in the Flags Affected column are defined as follows:

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name Description Operation Af'?cleigts d
AAS ASCII Adjust for Subtraction if AF v
AAS ((AL) and OFH) > 9 or (AF) =1 CF v
c h It of) then DF —
orrects_t eresulto aprevious AL < (AL) -6 IE —
subtraction of two valid unpacked (AH) (AH) -1 OF ?
decimal operands (the destination (AF) 1 PE ,,
operand must have been specified as (CF) — (AF) SE ,,
register AL). Changes the content of (AL) — (AL) and OFH TE _
AL to a valid unpacked decimal 7E 2
number; the high-order half-byte is)
zeroed.
Instruction Operands
none
ADC Add with Carry : if AF vV
ADC dest, src Ch=1 CFv
) then DF —
Sums the operands, which may be (dest) — (dest) + (src) + 1 IE —
bytes or words, adds one if CF is set else OF v
and replaces the destination operand (dest) - (dest) + (src) PE v
with the result. Both operands may be SE v
signed or unsigned binary numbers TE —
(see AAA and DAA). Since ADC incor- ZE v
porates a carry from a previous
operation, it can be used to write
routines to add numbers longer than
16 bits.
Instruction Operands
ADC reg, reg
ADC reg, mem
ADC mem, reg
ADC reg, immed
ADC mem, immed
ADC accum, immed
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-5

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

. . Flags
Name Description Operation Affected
ADD Addition : (dest) ~ (dest) + (src) AF v
ADD dest, src (D:E v
Sums two operands, which may be IE :
bytes or words, replaces the OF v
destination operand. Both operands PE v
may be signed or unsigned binary SE v
numbers (see AAA and DAA). TF —
Instruction Operands : 7ZF v
ADD reg, reg
ADD reg, mem
ADD mem, reg
ADD reg, immed
ADD mem, immed
ADD accum, immed
AND And Logical : (dest) — (dest) and (src) AF ?
AND dest, src (CF) -0 CF v
. (OF) -« 0 DF —
Performs the logical "and" of the two IF —
operands (byte or word) and returns OF v
the result to the destination operand. A PE v
bit in the result is set if both corre- SE v
sponding bits of the original operands TE -
are set; otherwise the bit is cleared.
ZF v
Instruction Operands
AND reg, reg
AND reg, mem
AND mem, reg
AND reg, immed
AND mem, immed
AND accum, immed
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-6

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
BOUND | Detect Value Out of Range : if AF —
BOUND dest, src ((dest) < (src) or (dest) > ((src) + 2) CF -
Provid bounds checking i then DF —
I’]roc\jn es agsy olunls cdec ing |rc1i (SP) — (SP) -2 IF —
hardware. The calcu ated array index (SP)+1: (SP)) — FLAGS OF —
is placed in one of the general purpose (F) < 0 PE _
registers, and the upper and lower (TF) < 0 SF —
bounds (:f the array alre pltgced |$htwo (SP) — (SP) -2 TE —
consecutive memory locations. The (SP) +1: (SP)) — (CS) 7E _
contents of the register are compared (CS) < (1EH)
with the memory location values, and if (SP) < (SP)—2
the rgglster value is less than the first (SP) +1:(SP)) — (IP)
location or greater than the second (IP) < (1CH)
memory location, a trap type 5 is
generated.
Instruction Operands
BOUND reg, mem
CALL Call Procedure : if AF —
CALL procedure-name Inter-segment CF -
. i d then DF —
Actllvat_esfan ou_t-o - |nehproce I(ure, (SP) (SP)-2 IE —
saving mF;)é?atlon on_t e sta(_: tq) ((SP) +1:(SP)) - (CS) OF —
permlga (retufrn) |nstru<it:)0n I|(nt e (CS) — SEG PE —
phrot_:e ure t_o trfar|1|s er conhtroCA?_cL E|?h (SP) < (SP) -2 SF —
tl elnstbrluctlon 0 owmg(tj_f&fe .The ((SP) +1:(SP)) - (IP) TE -
assembler genel_'ates adi grent type (IP) < dest 7F —
of CALL instruction depending on
whether the programmer has defined
the procedure name as NEAR or FAR.
Instruction Operands
CALL near-proc
CALL far-proc
CALL memptrl6
CALL regptrl6
CALL memptr32
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-7

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
CBW Convert Byte to Word : if AF —
CBW (AL) < 80H CF -
. . . then DF —
Extends the sign of the byte in register (AH) — 0 IF —
AL throughout register AH. Use to else OF —
produce a double-length (word) (AH) FFH PE —
dividend from a byte prior to SE —
performing byte division. TF —
Instruction Operands 7F —
none
CLC Clear Carry flag : (CF) -« 0 AF —
cLc SE v
Zeroes the carry flag (CF) and affects IE :
no other flags. Useful in conjunction OF —
with the rotate through carry left (RCL) PE —
and the rotate through carry right SF —
(RCR) instructions. TE —
Instruction Operands ZF —
none
CLD Clear Direction flag : (DF) <« 0 AF —
CLD CF —
. . DF v
Zeroes the direction flag (DF) causing IF —
the string instructions to auto- OF —
increment the source index (SI) and/or PE —
destination index (DI) registers. SE —
Instruction Operands TF —
none ZF -
NOTE: The three symbols used in the Flags Affected column are defined as follows:

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

Intel® INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
CLI Clear Interrupt-enable Flag : (IF) -0 AF —
cLi CF -
) DF —
Zeroes the interrupt-enable flag (IF). IE v
When the interrupt-enable flag is OF —
cleared, the 8086 and 8088 do not PE —
recognize an external interrupt request SF —
that appears on the INTR line; in other TF —
words maskable interrupts are 7E _
disabled. A non-maskable interrupt
appearing on NMI line, however, is
honored, as is a software interrupt.
Instruction Operands
none
CcMC Complement Carry Flag : if AF —
then DF —
Toggles complement carry flag (CF) to (CF) 1 IE —
its opposite state and affects no other else OF —
ﬂags. (CF) <0 PF —
Instruction Operands : SF —
none TF -
ZF -
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-9

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
CMP Compare : (dest) — (src) AF v
CMP dest, src g:z v
Subtracts the source from the desti- IE :
nation, which may be bytes or words, OF v
but does not return the result. The PE v
operands are unchanged, but the flags SE v
are updated and can be tested by a TE —
subsequent conditional jump 7E v
instruction. The comparison reflected
in the flags is that of the destination to
the source. If a CMP instruction is
followed by a JG (jump if greater)
instruction, for example, the jump is
taken if the destination operand is
greater than the source operand.
Instruction Operands
CMP reg, reg
CMP reg, mem
CMP mem, reg
CMP reg, immed
CMP mem, immed
CMP accum, immed
CMPS Compare String : (dest-string) — (src-string) AF v
CMPS dest-string, src-string if CF v
L (DF)=0 DF —
Subtracts the destination byte or word then IF —
Lrom_ the_ 50Lt1)rce byte ordvyordddThe . (SI) — (SI) + DELTA OF v
estmatlon_ yt_e or word is addresse (Dl) — (DI) + DELTA PE v
by the destination index (DI) register else SE v
agg the sm;)rcehbyte or wc_)rc(ij is 5 (SI) < (SI) - DELTA TE —
al _resses y the source index (SI) (Dl) « (DI) - DELTA ZE v
register. CMPS updates the flags to
reflect the relationship of the
destination element to the source
element but does not alter either
operand and updates Sl and DI to
point to the next string element.
Instruction Operands
CMP dest-string, src-string
CMP (repeat) dest-string, src-string
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-10

— the contents of the flag remain unchanged after the instruction is executed

? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name Description Operation Af'?cleigts d
CwWD Convert Word to Doubleword if AF —
CWD (AX) < 8000H CF -
. . . then DF —
Extends the sign of the word in register (DX) — 0 IF —
AX throughout register DX. Use to else OF —
produce a double-length (doubleword) (DX) — FFFFH PE _
dividend from a word prior to SF —
performing word division. TF —
Instruction Operands 7E —
none
DAA Decimal Adjust for Addition if AF vV
DAA ((AL) and OFH) >9 or AF) =1 CF Vv
) then DF —
Corrects the result of previously (AL) < (AL) +6 IE —
adding two valid packed decimal AF) 1 OF ?
operands (the destination operand if PE ‘/
must have been register AL). Changes (AL) > 9FH or (CF) = 1 SE v
the content of AL to a pair of valid then TE -
packed decimal digits. (AL) < (AL) + 60H ZE v
Instruction Operands (CF) « 1
none
DAS Decimal Adjust for Subtraction if AF v
DAS ((AL) and OFH) > 9 or (AF) =1 CF v
) then DF —
Corrects the result of a previous (AL — (AL) -6 IF —
subtraction of two valid packed AF) 1 OE 2
decimal operands (the destination if PE ‘/
operand must have been specified as (AL) > 9FH or (CF) = 1 SE v
register AL). Changes the content of then TE
AL to a pair of valid packed decimal (AL) « (AL) — 60H ZE v
digits. (CF) 1
Instruction Operands
none
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-11

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

. . Flags
Name Description Operation Affected
DEC Decrement : (dest) « (dest) -1 AF vV
DEC dest g:z -
Subtracts one from the destination IE :
operand. The operand may be a byte OF v
or a word and is treated as an PE v
unsigned binary number (see AAA and SE v
DAA). TF —
Instruction Operands: ZF v
DEC reg
DEC mem

NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

C-12

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
DIV Divide : When Source Operand is a Byte AF ?
DIV src (temp) ~ (byte-src) g:z ?
Performs an unsigned division of the if IE :
accumulator (and its extension) by the (temp) / (AX) > FFH OF 2
source operand. then (type O interrupt is generated) el 7
. . (SP) —~ (SP)-2 !
If the source operand is a byte, it is ((SP) + 1:(SP)) — FLAGS SF ?
divided into the two-byte dividend (F) < 0 ' TE —
assumed to be in registers AL and AH. (TF) < 0 ZF ?
The byte quotient is returned in AL, (SP) (SP)—2
and the byte remainder is returned in ((SP) + 1:(SP)) — (CS)
AR (CS) -)
If the source operand is a word, it is (SP) — (SP)-2
divided into the two-word dividend in ((SP) + 1:(SP)) ~ (IP)
registers AX and DX. The word (IP) < (0)
quotient is returned in AX, and the else
word remainder is returned in DX. (AL) — (temp) / (AX)
If the quotient exceeds the capacity of (AH) ~ (temp) % (AX)
its destination register (FFH for byte When Source Operand is a Word
source, FFFFH for word source), as
! ’ temp) ~ (word-src
when division by zero is attempted, a i(f P) - ()
type O interrupt is generated, and the (temp) / (DX:AX) > FFFFH
quot-lent and rem_amder are undefined. then (type 0 interrupt is generated)
Nonintegral quotients are truncated to (SP) - (SP)-2
integers. ((SP) + 1:(SP)) — FLAGS
Instruction Operands (IF) < 0
DIV reg (TF) -~ 0
DIV mem (SP) ~ (SP)-2
((SP) + 1:(SP)) ~ (CS)
Cs) -@
(SP) — (SP)-2
((SP) + 1:(SP)) « (IP)
(IP) ~ (0)
else
(AX) ~ (temp) / (DX:AX)
(DX) « (temp) % (DX:AX)
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-13

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
ENTER Procedure Entry : (SP) <« (SP)-2 AF —
ENTER locals, levels ((SP) + 1:(SP)) (BP) CF -
. (FP) ~ (SP) DF —
Executes the calling sequence for a if IF —
high-level Iangua_lge. IF saves the_z level > 0 OF —
current frame pointer in BP, copies the then PE _
frame pointers from procedures below repeat (level — 1) times SF —
the curre_nt call_(to allow access to (BP) — (BP) -2 TE —
local variables in these procedures) (SP) — (SP)—2 7E _
and aIIocate; space on the stack for ((SP) + 1:(SP)) — (BP)
the local va_nables‘ of the current end repeat
procedure invocation. (SP) — (SP) -2
Instruction Operands ((SP) + 1:(SP)) ~ (FP)
ENTER locals, level end if
(BP) — (FP)
(SP) ~ (SP) — (locals)
ESC Escape: if AF —
ESC mod # 11 CF -
. . . then DF —
Provides a mechanism by which other data bus - (EA) IF —
processors (coprocessors) may OF —
receive their instructions from the 8086 PE —
or 8088 instruction stream and make SE —
use of the 8086 or 8088 addressing TE
modes. The CPU (8086 or 8088) does 7E _
a no operation (NOP) for the ESC
instruction other than to access a
memory operand and place it on the
bus.
Instruction Operands :
ESC immed, mem
ESC immed, reg
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-14

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

Intel® INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
HLT Halt: None AF —
HLT CF -
DF —
Causes the CPU to enter the halt IE —
state. The processor leaves the halt OF —
state upon activation of the RESET PE —
line, upon receipt of a non-maskable SF —
interrupt request on NMI, or upon TE —
receipt of a maskable interrupt request 7E _
on INTR (if interrupts are enabled).
Instruction Operands :
none
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-15

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
IDIV Integer Divide : When Source Operand is a Byte AF ?
IDIV src (temp) ~ (byte-src) CF?
Performs a signed division of the if :?:F B
accumulator (and its extension) by the (temp) / (AX) > 0 and OF;
source operand. If the source operand (temp) / (AX) > 7FH or PE 2
is a byte, it is divided into the double- (temp) / (AX) < 0 and SF »
length dividend assumed to be in (temp) / (A)_Q <0- 7_FH -1 TF ’
registers AL and AH; the single-length | then (type O interrupt is generated) 25 .
quotient is returned in AL, and the (SP) ~ (SP) -2 ’
single-length remainder is returned in ((SP) + 1:(SP)) — FLAGS
AH. For byte integer division, the (IF) -0
maximum positive quotient is +127 (TF) - 0
(7FH) and the minimum negative (SP) ~ (SP) -2
quotient is 127 (81H). ((SP) + 1:(SP)) - (CS)
If the source operand is a word, it is Egﬁ)) : ((g)P) >
divided into the double-length dividend ((SP) + 1:(SP)) - (IP)
in registers AX and DX; the single- (IP) — (0)
Iength guotient is retur_ned ir_1 AX, and else
‘the S|ngle-length.rema|nd.er. |§ returned (AL) < (temp) / (AX)
in D?(. For wor'd. |nteger.d|V|§|on, the (AH) < (temp) % (AX)
maximum positive quotient is +32,767)
(7FFFH) and the minimum negative When Source Operand is a Word
quotient is —32,767 (8001H). (temp) ~ (word-src)
If the quotient is positive and exceeds if
the maximum, or is negative and is (temp) / (DX:AX) > 0 and
less than the minimum, the quotient (temp) / (DX:AX) > 7FFFH or
and remainder are undefined, and a (temp) / (DX:AX) < 0 and
type O interrupt is generated. In (temp) / (DX:AX) < 0 — 7FFFH — 1
particular, this occurs if division by 0is | then (type O interrupt is generated)
attempted. Nonintegral quotients are (SP) (SP) -2
truncated (toward 0) to integers, and ((SP) + 1:(SP)) — FLAGS
the remainder has the same sign as (IF) -0
the dividend. (TF) -0
) (SP) ~ (SP) -2
Instruction Operands: ((SP) + 1:(SP)) - (CS)
IDIV reg (CS) < (2)
IDIV mem (SP) - (SP)-2
((SP) + 1:(SP)) ~ (IP)
(P) - (0
else
(AX) ~ (temp) / (DX:AX)
(DX) < (temp) % (DX:AX)
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-16

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
IMUL Integer Multiply : When Source Operand is a Byte AF ?
IMUL src (AX) ~ (byte-src) x (AL) SE v
Performs a signed multiplication of the if)) IE :
source operand and the accumulator. (AH) = sign-extension of (AL) OF v
If the source is a byte, then it is then PE 7
multiplied by register AL, and the (CF) -0 SE >
double-length result is returned in AH else TE —
and AL. If the source is a word, then it (CF) -1 ZE 2
is multiplied by register AX, and the (OF) ~ (CF) ’
double-length result is returned in When Source Operand is a Word
registers DX and AX. If the upper half (DX:AX) — (word-src) x (AX)
of the result (AH for byte source, DX i
for word source) is not the sign (DX) = sign-extension of (AX)
extension of the lower half of the then
result, CF and OF are set; otherwise (CF) < 0
they are cleared. When CF and OF are else
set, they indicate that AH or DX (CF) < 1
contains significant digits of the result. (OF) — (CF)
Instruction Operands :
IMUL reg
IMUL mem
IMUL immed
IN Input Byte or Word : When Source Operand is a Byte AF —
IN accum, port (AL) ~ (port) g:z -
Transfers a byte or a word from an When Source Operand is a Word IF :
mpt_Jt port to the AL register or the AX (AX) — (port) OF —
register, respectively. The port number PE —
may be specified either with an SE —
immediate byte constant, allowing TE -
access to ports numbered 0 through 7F —
255, or with a number previously
placed in the DX register, allowing
variable access (by changing the value
in DX) to ports numbered from O
through 65,535.
Instruction Operands :
IN AL, immed8
IN AX, DX
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-17

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
INC Increment : (dest) — (dest) + 1 AF v
INC dest g:z -
Adds one to the destination operand. IE :
The operand may be byte or a word OF v
and is treated as an unsigned binary PE v
number (see AAA and DAA). SE v
Instruction Operands : TF —
INC reg ZF v
INC mem
INS In String : (dest) « (src) AF —
INS dest-string, port g:z -
Performs block input from an 1/0O port IE :
to memory. The port address is placed OF —
in the DX register. The memory PE —
address is placed in the DI register. SF —
This instruction uses the ES register TF —
(which cannot be overridden). After the ZF _
data transfer takes place, the DI
register increments or decrements,
depending on the value of the direction
flag (DF). The DI register changes by 1
for byte transfers or 2 for word
transfers.
Instruction Operands :
INS dest-string, port
INS (repeat) dest-string, port
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-18

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name Description Operation Af'?cleigts d
INT Interrupt : (SP) - (SP)-2 AF —
INT Im‘errupt—type ((SP) + l(SP)) ~ FLAGS CF -
Activates the interrupt procedure EII'FF)):OO :?:F v
specified by the interrupt-type (SP) (SP)—2 OF —
operand. Decrements the stack pointer ((SP) + 1:(SP)) - (CS) PE _
by two, pushes the flags onto the (CS) - (interrupt-type x 4 + 2) SF —
stack, and clears the trap (TF) and (SP) (SP) -2 TE v
interrupt-enable (IF) flags to disable ((SP) + 1:(SP)) — (IP) 7F —
single-step and maskable interrupts. (IP) < (interrupt-type x 4)
The flags are stored in the format used
by the PUSHF instruction. SP is
decremented again by two, and the CS
register is pushed onto the stack.
The address of the interrupt pointer is
calculated by multiplying interrupt-
type by four; the second word of the
interrupt pointer replaces CS. SP
again is decremented by two, and IP is
pushed onto the stack and is replaced
by the first word of the interrupt
pointer. If interrupt-type = 3, the
assembler generates a short (1 byte)
form of the instruction, known as the
breakpoint interrupt.
Instruction Operands :
INT immed8
NOTE: The three symbols used in the Flags Affected column are defined as follows:

— the contents of the flag remain unchanged after the instruction is executed

? the contents of the flag is undefined after the instruction is executed

v'the flag is updated after the instruction is executed

C-19

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
INTO Interrupt on Overflow : if AF —
’ . if th then DF —
Generates a so twgre |n.terrupt |_t e (SP) « (SP)—2 E —
overflow flag (OF) is set; othem|se ((SP) + 1:(SP)) — FLAGS OF —
control proceeds to the following (IF) < 0 PE —
instruction without activating an (TF) < 0 SE —
|rr1]terrupt p!'ocedure. INTOd addr_esses (SP) (SP)—2 TE —
F e target mterrupt procedure (its type ((SP) + 1:(SP)) - (CS) 7E _
is 4) through the interrupt pointer at (CS) < (12H)
location 10H; it clears the TF and IF
fl d otherwi e INT. | 5F) — (SP) =2
ags and ot erwise operatgs ike . ((SP) + 1:(SP)) - (IP)
INTO may be written following an (IP) < (10H)
arithmetic or logical operation to
activate an interrupt procedure if
overflow occurs.
Instruction Operands
none
IRET Interrupt Return : (IP) < ((SP) + 1:(SP)) AF v
IRET (SP) « (SP) +2 CFv
. (CS) « ((SP) + 1:(SP)) DF v
Transfer_s C(i)ntrol ba_ck to the pom(tj O}: (SP) — (SP) +2 IE v
|frterrtf1pt|onh y popEmg 1P, (;]S, anff the FLAGS < ((SP) + 1:(SP)) OF v
ags from tl estap . IRET t usg ects (SP) « (SP) + 2 PE v
all flags by restoring them to previously SE v
saved values. IRET is used to exit any TE v
interrupt procedure, whether activated ZE v
by hardware or software.
Instruction Operands :
none
JA Jump on Above : if AF —
JNBE Jump on Not Below or Equal ((CF)=0)or ((ZF) =0) CF -
JA disp8 then o | DPF-
JINBE disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PF —
if the tested condition ((CF=0) or SE —
(ZF=0)) is true. TE -
Instruction Operands : ZF —
JA short-label
JNBE short-label
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-20

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
JAE Jump on Above or Equal if AF —
JNB Jump on Not Below : (CF) =0 CF -
JAE disp8 then o | DPF-
JINB disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the tested condition (CF = 0) is true. SF —
Instruction Operands : TF —
JAE short-label ZF -
JNB short-label
JB Jump on Below : if AF —
JNAE Jump on Not Above or Equal CR=1 CF -
JB disp8 then))) DF —
JINAE disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the tested condition (CF = 1) is true. SF —
Instruction Operands : TF —
JB short-label ZF -
JNAE short-label
JBE Jump on Below or Equa I if AF —
INA Jump on Not Above : (CFH=1Dor(ZzF) =1 CF -
JBE disp8 then o | BF-
JINA disp8 (IP) « (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the tested condition ((C =1) or SF —
(ZF=1)) is true. TE -
Instruction Operands : ZF —
JBE short-label
JNA short-label
JC Jump on Carry : if AF —
JC disp8 (CFA=1 CF -
T ¢ lto th |) then DF —
Transfers contro _tpt e target_ ocation (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if the tested condition (CF=1) is true. OF —
Instruction Operands : PF —
JC short-label SF -
TF -
ZF -
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-21

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
JCXZ Jump if CX Zero : if AF —
JCXZ disp8 (€x)=0 CF -
- ‘ Lo th |) then DF —
Transfers control to t etarget _ocatlon (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if CX is 0. Useful at the beginning of a OF —
loop to bypass the loop if CX has a PE —
zero value, i.e., to execute the loop SF —
zero times. TE
Instruction Operands : 7ZE —
JCXZ short-label
JE Jump on Equal : if AF —
Jz Jump on Zero : (ZzF) =1 CF -
JE disp8 then))) DF —
JZ disp8 (IP) « (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the condition tested (ZF = 1) is true. SE —
Instruction Operands : TF —
JE short-label ZF -
JZ short-label
JG Jump on Greater Than : if AF —
JNLE Jump on Not Less Than or Equal ((SF) = (OF)) and ((ZF) = 0) CF -
JG disp8 then o | DbF-
JINLE disp8 (IP) « (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the condition tested (SF = OF) and SE
ZF=0) is true -
(. TF —
Instruction Operands : ZF —
JG short-label
JNLE short-label
JGE Jump on Greater Than or Equal if AF —
JNL Jump on Not Less Than : (SF) = (OF) CF -
JGE disp8 then o | PF-
JINL disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the condition tested (SF=OF) is true. SF —
Instruction Operands : TF —
JGE short-label ZF -
JNL short-label
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-22

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
JL Jump on Less Than : if AF —
IJNGE Jump on Not Greater Than or Equal (SF) # (OF) CF -
JL disp8 then o | DPF-
INGE disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) gF —
Transfers control to the target location PE :
if the condition tested (SF£OF) is true. SF —
Instruction Operands : TF —
JL short-label ZF -
JNGE short-label
JLE Jump on Less Than or Equal if AF —
JING Jump on Not Greater Than ((SF) #(OF)) or ((ZF) = 1) CF -
JGE disp8 then o | DbF-
JINL disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) gF -
Transfers control to the target location PE :
If the condition tested ((SF#OF) or SF —
(ZF=0)) is true. TF —
Instruction Operands : ZF —
JGE short-label
JNL short-label
JMP Jump Unconditionally if AF —
IMP target Inter-segment CF —
) then DF —
Transfers control to the target location. (CS) — SEG IE —
Instruction Operands (IP) ~ dest OF —
JMP short-label PF —
JMP near-label SF -
JMP far-label TF -
JMP memptr ZF -
JMP regptr
INC Jump on Not Carry : if AF —
INC disp8 (CF =0 CF -
T ” lto th |) then DF —
Transfers contro _tpt e target_ ocation (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if the tested condition (CF=0) is true. OF —
Instruction Operands : PF —
JNC short-label SF -
TF -
ZF -
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-23

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
JINE Jump on Not Equal : if AF —
JINZ Jump on Not Zero : (zZF)=0 CF —
JINE disp8 then _ _ - |DbF-
INZ disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the tested condition (ZF = 0) is true. SE —
Instruction Operands : TF —
JNE short-label ZF -
JNZ short-label
JNO Jump on Not Overflow : if AF —
JINO disp8 (OF)=0 CF -
T ‘ Lo th |) then DF —
Transfers contro _tqt e target 9cat|on (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if the tested condition (OF = 0) is true. OF —
Instruction Operands PF —
JNO short-label SF -
TF -
ZF -
JINS Jump on Not Sign : if AF —
JINS disp8 (SF) =0 CF -
‘ Lo th |) then DF —
Trans ers contro _tgt e target 9cat|on (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if the tested condition (SF = 0) is true. OF —
Instruction Operands PF —
JNS short-label SF -
TF -
ZF -
JINP Jump on Not Parity: if AF —
JPO Jump on Parity Odd : (PF)=0 CF -
JINO disp8 then _ _ - |DbF-
JPO disp8 (IP) < (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PF —
if the tested condition (PF=0) is true. SE —
Instruction Operands TF —
JNO short-label ZF -
JPO short-label
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-24

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
JO Jump on Overflow : if AF —
JO disp8 (OF) =1 CF -
- ¢ | h |) then DF —
Transfers contro _tgt e target qcatlon (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if the tested condition (OF = 1) is true. OF —
Instruction Operands PE —
JO short-label SF -
TF —
ZF —
JP Jump on Parity : if AF —
JPE Jump on Parity Equal : (PR =1 CF -
JP disp8 then o | DbF-
JPE disp8 (IP) ~ (IP) + disp8 (sign-ext to 16 bits) | IF —
OF —
Transfers control to the target location PE —
if the tested condition (PF = 1) is true. SF -
Instruction Format : TF —
JP short-label ZF -
JPE short-label
JS Jump on Sign : if AF —
JS disp8 (SA=1 CF -
" | h |) then DF —
_Trans ers contro _tgt e target pcatlon (IP) — (IP) + disp8 (sign-ext to 16 bits) | IF —
if the tested condition (SF = 1) is true. OF —
Instruction Format : PF —
JS short-label SF -
TF —
ZF —
LAHF Load Register AH From Flags (AH) « (SF):(ZF):X:(AF):X:(PF):X:(CF) AF —
LAHF S,E -
Copies SF, ZF, AF, PF and CF (the E
8080/8085 flags) into bits 7, 6, 4, 2 and OF —
0, respectively, of register AH. The PE —
content of bits 5, 3, and 1 are SF —
undefined. LAHF is provided primarily TE -
for converting 8080/8085 assembly 7E
language programs to run on an 8086
or 8088.
Instruction Operands
none
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-25

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

. . Flags
Name Description Operation Affected
LDS Load Pointer Using DS : (dest) — (EA) AF —
LDS dest, src (DS) ~ (EA+2) CF -
DF —
Transfers a 32-bit pointer variable from IF —
the source operand, which must be a OF —
memory operand, to the destination PE —
operand and register DS. The offset SF —
word of the pointer is transferred to the TF —
destination operand, which may be 7E _
any 16-bit general register. The
segment word of the pointer is
transferred to register DS.
Instruction Operands
LDS regl6, mem32
LEA Load Effective Address : (dest) — EA AF —
LEA dest, src SE -
Transfers the offset of the source IF :
operand (rather than its value) to the OF —
destination operand. PE —
Instruction Operands : SF —
LEA reg16, mem16 TF -
ZF -
LEAVE Leave: (SP) ~ (BP) AF —
LEAVE (BP) ~ ((SP) + 1:(SP)) CF -
. (SP) « (SP)+2 DF —
Reverses the action of the most recent E —
ENTER instruction. Collapses the last OF —
stack frame created. First, LEAVE PE —
copies the current BP to the stack SE -
pointer releasing the stack space TE -
allocated to the current procedure. 7E
Second, LEAVE pops the old value of
BP from the stack, to return to the
calling procedure's stack frame. A
return (RET) instruction will remove
arguments stacked by the calling
procedure for use by the called
procedure.
Instruction Operands
none
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-26

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
LES Load Pointer Using ES : (dest) — (EA) AF —
LES dest, src (ES) - (EA+2) CF -
DF —
Transfers a 32-bit pointer variable from IE —
the source operand to the destination OF —
operand and register ES. The offset PE —
word of the pointer is transferred to the SF —
destination operand. The segment TF —
word of the pointer is transferred to 7E _
register ES.
Instruction Operands
LES regl6, mem32
LOCK Lock the Bus : none AF —
LOCK CF -
) . DF —
Causes the 8088 (configured in E -
maximum mode) to assert its bus OF —
LOCK signal while the following PE —
instruction executes. The instruction SE —
most useful in this context is an TE -
exchange register with memory. 7E
The LOCK prefix may be combined
with the segment override and/or REP
prefixes.
Instruction Operands
none
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-27

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
LODS Load String (Byte or Word) When Source Operand is a Byte AF —
LODS sre-string (AL) — (src-string) SE -
Transfers the byte or word string if IE :
element addressed by Sl to register AL (DF) =0 OF —
or AX and updates Sl to point to the then PE _
next element in the string. This (S) — (S) + DELTA SF —
instruction is not ordinarily repeated else TF _
since the accumulator would be (S) ~ (SI) - DELTA 7E _
overwritten by each repetition, and When Source Operand is a Word
only_ the last element would be (AX) < (src-string)
retained. if
Instruction Operands (DF) =0
LODS src-string then
LODS (repeat) src-string (SI) — (SI) + DELTA
else
(Sl) « (Sl) - DELTA
LOOP Loop : (CX) - (CX)-1 AF —
LOOP disp8 if CF -
(CX)#0 DF —
Decrements CX by 1 and transfers
Lo th | ion if CX i then IF —
control to the target location if CX is (IP) < (IP) + disp8 (sign-ext to 16 bits) | OF —
not O; otherwise the instruction PE —
following LOOP is executed. SE —
Instruction Operands TF —
LOOP short-label ZF -
LOOPE Loop While Equal : (CX) -« (CX)-1 AF —
LOOPZ Loop While Zero : if CF -
LOOPE disp8 (ZF)=1and (CX) %0 DF —
LOOPZ disp8 then _ _ _ IF -
(IP) — (IP) + disp8 (sign-ext to 16 bits) | OF —
Decrements CX by 1 and transfers PE _
control is to the target location if CX is SE —
not 0 and if ZF is set; otherwise the TF —
next sequential instruction is executed. 7E _
Instruction Operands
LOOPE short-label
LOOPZ short-label
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-28

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
LOOPNE | Loop While Not Equal : (CX) « (CX)-1 AF —
LOOPNZ | Loop While Not Zero : if CF -
LOOPNZ disp8 then o N
(IP) — (IP) + disp8 (sign-ext to 16 bits) | OF —
Decrements CX by 1 and transfers PE _
control to the target location if CX is SF —
not 0 and if ZF is clear; otherwise the TF —
next sequential instruction is executed. 7E _
Instruction Operands
LOOPNE short-label
LOOPNZ short-label
MOV Move (Byte or Word) : (dest) — (src) AF —
MOV dest, src SE -
Transfers a byte or a word from the IE :
source operand to the destination OF —
operand. PE —
Instruction Operands SF —
MOV mem, accum TF -
MOV accum, mem ZF -
MOV reg, reg
MOV reg, mem
MOV mem, reg
MOV reg, immed
MOV mem, immed
MOV seg-reg, regl6
MOV seg-reg, mem16
MOV regl6, seg-reg
MOV mem16, seg-reg
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-29

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

. . Flags
Name Description Operation Affected
MOVS Move String : (dest-string) — (src-string) AF —
MOVS dest-string, src-string g:z -
Transfers a byte or a word from the IE :
source string (addressed by Sl) to the OF —
destination string (addressed by DI) PE —
and updates Sl and DI to point to the SE —
next string element. When used in TF —
conjunction with REP, MOVS performs 7E _
a memory-to-memory block transfer.
Instruction Operands
MOVS dest-string, src-string
MOVS (repeat) dest-string, src-string
MUL Multiply : When Source Operand is a Byte : AF ?
MUL src (AX) « (AL) x (src) SE v
Performs an unsigned multiplication of if IE -
; (AH) =0 -
the source operand and the accumu OF v
lator. If the source is a byte, then it is then PE 2
multiplied by register AL, and the (CF) -0 SE ,,
double-length result is returned in AH else TF —
and AL. If the source operand is a (CF) « 1 ZE 2
word, then it is multiplied by register (OF) ~ (CF) ’
AX, and the double-length result is When Source Operand is a Word
returned in registers DX and AX. The (DX:AX) — (AX) (rc)
operands are treated as unsigned i
binary numbers (see AAM). If the (DX) =0
upper half of the result (AH for byte then
source, DX for word source) is non- (CF) < 0
zero, CF and OF are set; otherwise else
they are cleared. (CF) - 1
Instruction Operands : (OF) « (CF)
MUL reg
MUL mem
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-30

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name Description Operation A;Ligt(id
NEG Negate: When Source Operand is a Byte AF vV
NEG dest (dest) — FFH — (dest) SE v
Subtracts the destination operand, (dest) — (dest) + 1 (affecting flags) I B
which may be a byte or a word, from 0 | When Source Operand is a Word OF v
and returns the result to the desti- (dest) — FFFFH — (dest) PE v
nation. This forms the wo's (dest) — (dest) + 1 (affecting flags) | SF v
complement of the number, effectively TF —
reversing the sign of an integer. If the 7E v
operand is zero, its sign is not
changed. Attempting to negate a byte
containing —128 or a word containing —
32,768 causes no change to the
operand and sets OF.
Instruction Operands
NEG reg
NEG mem
NOP No Operation : None AF —
NOP CF -
. DF —
Causes the CPU to do nothing. IE —
Instruction Operands OF —
none PF —
SF -
TF -
ZF -
NOT Logical Not : When Source Operand is a Byte AF —
NOT dest (dest) — FFH — (dest) SE -
Inverts the bits (forms the one's When Source Operand is a Word IE :
complement) of the byte or word (dest) — FFFFH — (dest) OF —
operand. PE —
Instruction Operands SF —
NOT reg TF -
NOT mem ZF -
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-31

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

Name Description Operation A;(I;ISZ d
OR Logical OR : (dest) — (dest) or (src) AF ?
OR dest,src (CF) -0 CFv
. . . (OF) <0 DF —
Performs the logical "inclusive or" of IF —
the two operands (bytes or words) and OF v
returns the result to the destination PE v
operand. A bit in the result is set if SE v
either or both corresponding bits in the TF —
original operands are set; otherwise 7E v
the result bit is cleared.
Instruction Operands
OR reg, reg
OR reg, mem
OR mem, reg
OR accum, immed
OR reg, immed
OR mem, immed
ouT Output : (dest) — (src) AF —
OUT port, accumulator g:z -
Transfers a byte or a word from the AL IF :
register or the AX register, respec- OF —
tively, to an output port. The port PE —
number may be specified either with SE —
an immediate byte constant, allowing TE -
access to ports numbered 0 through 7F _
255, or with a number previously
placed in register DX, allowing variable
access (by changing the value in DX)
to ports numbered from O through
65,535.
Instruction Operands
OUT immed8, AL
OUT DX, AX
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-32

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

Intel® INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
OouTSs Out String : (dst) ~ (src) AF —
QUTS port, src_string g:z -
Performs block output from memory to IE :
an 1/0O port. The port address is placed
. . OF —
in the DX register. The memory PE _
address is placed in the Sl register. SF —
This instruction uses the DS segment TF —
register, but this may be changed with 7E _
a segment override instruction. After
the data transfer takes place, the
pointer register (Sl) increments or
decrements, depending on the value
of the direction flag (DF). The pointer
register changes by 1 for byte
transfers or 2 for word transfers.
Instruction Operands
OUTS port, src_string
OUTS (repeat) port, src_string
POP Pop: (dest) < ((SP) + 1:(SP)) AF —
DF —
Transfers the word at the current top of IE —
stack (pointed to by SP) to the OF —
destination operand and then PE —
increments SP by two to point to the SF —
new top of stack. TF —
Instruction Operands : ZF —
POP reg
POP seg-reg (CS illegal)
POP mem
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-33

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

. . Flags
Name Description Operation Affected
POPA Pop All : (Dl) ~ ((SP) + 1:(SP)) AF —
POPA (SP) « (SP) +2 CF -
Id . dind (SI) « ((SP) + 1:(SP)) DF —
Popsa ata, pointer, and index (SP) — (SP) +2 E —
reglste(;s_ og_of thg sdtack. The SP value (BP) « ((SP) + 1:(SP)) OF —
popped is discarded. (SP) < (SP) +2 PE —
Instruction Operands : (BX) — ((SP) + 1:(SP)) SF —
none (SP) « (SP) +2 TF —
(DX) « ((SP) + 1:(SP)) ZF -
(SP) —~ (SP) +2
(CX) < ((SP) + 1:(SP))
(SP) ~ (SP) +2
(AX) — ((SP) + 1:(SP))
(SP) ~ (SP) +2
POPF Pop Flags : Flags « ((SP) + 1:(SP)) AF v
POPE (SP) — (SP) +2 CFv
I DF v
Transfers specific bits from the word at IE v
the current top of stack (pointed to by OF v
register SP) into the 8086/8088 flags, PE v
replacing whatever values the flags SE v
previously contained. SP is then T v
incremented by two to point to the new ZE v
top of stack.
Instruction Operands
none
PUSH Push: (SP) —~ (SP)-2 AF —
PUSH src ((SP) + 1:(SP)) « (src) CF -
DF —
Decrements SP by two and then IF —
transfers a word from the source OF —
operand to the top of stack now PE —
pointed to by SP. SF —
Instruction Operands : TF —
PUSH reg ZF -
PUSH seg-reg (CS legal)
PUSH mem

NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

C-34

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
PUSHA Push All : temp ~ (SP) AF —
PUSHA (SP) —~ (SP)-2 CF -
.) ((SP) + 1:(SP)) « (AX) DF —
Pushes all data, pointer, and index (SP) (SP)-2 IF —
rer?_isrt]e:qs onto_ the stack . Th(e;i c_)r.der in ((SP) + 1:(SP)) ~ (CX) OF —
which the registers are saved is: A?, (SP) < (SP)-2 PE —
CX, DX, BX, SP, BP, SI, and DI. The ((SP) + 1:(SP)) - (DX) SE —
SP value pushed is the SP value
before the fi ister (AX) is pushed. | o) < (SP) =2 iy
efore the first register (AX) is pushed. ((SP) + 1:(SP)) — (BX) 7E _
Instruction Operands (SP) - (SP)-2
none ((SP) + 1:(SP)) ~ (temp)
(SP) —~ (SP)-2
((SP) + 1:(SP)) ~ (BP)
(SP) —~ (SP)-2
((SP) + 1:(SP)) —~ (SI)
(SP) —~ (SP)-2
((SP) + 1:(SP)) ~ (DI)

PUSHF Push Flags : (SP) « (SP)-2 AF —
Decrements SP by two and then IE :
transfers all flags to the word at the top OF —
of stack pointed to by SP. PE —

Instruction Operands SF —
none TF -
ZF —

NOTE: The three symbols used in the Flags Affected column are defined as follows:

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-35

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

Name Description Operation A;(I;ISZ d
RCL Rotate Through Carry Left : (temp) ~ count AF —
RCL dest, count do while (temp) #0 CFVv
o (tmpcf) ~ (CF) DF —
Rotgtes_the bits in the byte or word (CF) - high-order bit of (dest) IF —
destination qperand_t_o th_e left by the (dest) < (dest) x 2 + (tmpcf) OF v
number of bits specified in the count (temp) < (temp) — 1 PE _
operand. The carry flag (CF) is treated if SE —
as "part_ of" the d_estmatlon_operand; count = 1 TE —
that is, its value is rotated into the low- | . 7E _
order bit of the destination, and itself is if
repla_lce(_i by the high-order bit of the high-order bit of (dest) # (CF)
destination.
then
Instruction Operands : (OF) - 1
RCL reg, n else
RCL mem, n (OF) -0
RCL reg, CL else
RCL mem, CL (OF) undefined
RCR Rotate Through Carry Right : (temp) ~ count AF —
RCR dest, count do while (temp) #0 CFVv
) (tmpcf) ~ (CF) DF —
Oper_ates exactly Ilke_z RC_L except that (CF) - low-order bit of (dest) IE —
the bits are rotated right instead of left. (dest) « (dest) /2 OF v
Instruction Operands : high-order bit of (dest) — (tmpcf) PF —
RCR reg, n (temp) — (temp) —1 SF -
RCR mem, n if TF -
RCR reg, CL count=1 ZF -
RCR mem, CL th$n
i
high-order bit of (dest) #
next-to-high-order bit of (dest)
then
(OF) -~ 1
else
(OF) -0
else
(OF) undefined
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-36

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name

Description

Operation

Flags
Affected

REP
REPE
REPZ
REPNE
REPNZ

Repeat:

Repeat While Equal :
Repeat While Zero :
Repeat While Not Equal :
Repeat While Not Zero :

Controls subsequent string instruction
repetition. The different mnemonics
are provided to improve program
clarity.

REP is used in conjunction with the
MOVS (Move String) and STOS (Store
String) instructions and is interpreted
as "repeat while not end-of-string" (CX
not 0).

REPE and REPZ operate identically
and are physically the same prefix byte
as REP. These instructions are used
with the CMPS (Compare String) and
SCAS (Scan String) instructions and
require ZF (posted by these instruc-
tions) to be set before initiating the
next repetition.

REPNE and REPNZ are mnemonics
for the same prefix byte. These
instructions function the same as
REPE and REPZ except that the zero
flag must be cleared or the repetition is
terminated. ZF does not need to be
initialized before executing the
repeated string instruction.

Instruction Operands
none

do while (CX) #0
service pending interrupts (if any)
execute primitive string
Operation in succeeding byte
(CX) - (CX)-1
if
primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) %0
then
exit from while loop

AF —
CF -
DF —
IF -
OF -
PF —
SF -
TF -
ZF -

NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

C-37

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
RET Return : (IP) < ((SP) = 1:(SP)) AF —
RET optional-pop-value _(fSP) ~ (SP)+2 SE -
| -
Transfers cqntrol frpm a progedure inter-segment IF —
back to the instruction following the then OF —
%?\LL that agitlvated the procgdure. (CS) < ((SP) + 1:(SP)) PE _
e assembler generates an intra- (SP) < (SP) +2 SE —
segment RET if the programmer has if TE
Qeflned the procedgre near, or an add immeds to SP 7E _
intersegment RET if the procedure has then
been defined as far. RET pops the Sp SP) + data
word at the top of the stack (pointed to (SP) -~ (SP)
by register SP) into the instruction
pointer and increments SP by two. If
RET is intersegment, the word at the
new top of stack is popped into the CS
register, and SP is again incremented
by two. If an optional pop value has
been specified, RET adds that value to
SP.
Instruction Operands
RET immed8
ROL Rotate Left : (temp) ~ count AF —
ROL dest count do while (temp) #0 CF v
he destination b d (CF) < high-order bit of (dest) DF —
Rotates the est|nat|on yte or wore (dest) - (dest) x 2 + (CF) E —
left by the number of bits specified in (temp) « (temp) — 1 OF v
the count operand. if PE —
Instruction Operands count =1 SF —
ROL reg, n th_en TF —
ROL mem, n if ZF -
ROL reg, CL high-order bit of (dest) # (CF)
ROL mem CL then
(OF) -1
else
(OF) <0
else
(OF) undefined
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-38

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
ROR Rotate Right : (temp) ~ count AF —
ROR dest, count do while (temp) #0 . CF v
o imil ROL h (CF) « low-order bit of (dest) DF —
hpetl;gte_s s;]mlgr tq _ et;«:eptt at) (dest) - (dest) /2 IE —
T DS N {1e Hesinaton byIS Orword | high-order bit of (dest) - (CF) OF v
are rotated right instead of left. (temp) « (temp) — 1 PE _
Instruction Operands if SF —
RORreg, n count=1 TF —
ROR mem, n then ZF -
ROR reg, CL if
ROR mem, CL high-order bit of (dest) #
next-to-high-order bit of (dest)
then
(OF) « 1
else
(OF) <0
else
(OF) undefined
SAHF Store Register AH Into Flags (SF):(ZF):X:(AF):X:(PF):X:(CF) « (AH) AF v
SAHF gE v
Transfers bits 7, 6, 4, 2, and 0 from IE :
register AH into SF, ZF, AF, PF, and OF —
CF, respectively, replacing whatever PE v
values these flags previously had. SE v
Instruction Operands TE —
none ZF v
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-39

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

Name Description Operation A;(I;ISZ d
SHL Shift Logical Left : (temp) ~ count AF ?
SAL Shift Arithmetic Left do while (temp) #0 CF v

SHL dest, count (CF) « high-order bit of (dest) DF —
SAL dest, count (dest) ~ (dest) x 2 IF -
) L (temp) ~ (temp) — 1 OF v
Shifts the destination byte or word left if PE v
by the number of bits specified in the count = 1 SE v
count operand. Zeros are shifted inon | o TE —
the right. If the sign bit retains its if 7E v
original value, then OF is cleared. high-order bit of (dest) # (CE)
Instruction Operands then
SHLreg, n SAL reg, n (OF) -1
SHLmem,n SAL mem, n else
SHLreg, CL SALreg, CL (OF) -0
SHL mem, CL SAL mem, CL else
(OF) undefined
SAR Shift Arithmetic Right (temp) ~ count AF ?
SAR dest, count do while (temp) # 0 CF Vv
. o L (CF) ~ low-order bit of (dest) DF —
Shifts the bits in the destination (dest) — (dest) /2 IF —
operand (byte or word) to the right by (temp) < (temp) — 1 OF v
the number of bits specified in the if PE v
count operand. Bits equal to the count = 1 SE v
original high-order (sign) bit are shifted then TE —
in on the left, preserving the sign of the if ZE v
original value. Note that SAR does not high-order bit of (dest) #
prqduce the same rgsult as the next-to-high-order bit of (dest)
dividend of an "equivalent" IDIV then
instruction if the destination operand is (OF) « 1
negative and 1 bits are shifted out. For else
example, shifting -5 right by one bit (OF) < 0
yields —3, while integer division -5 by 2 else
yields —2. The difference in the instruc- (OF) — 0
tions is that IDIV truncates all numbers
toward zero, while SAR truncates
positive numbers toward zero and
negative numbers toward negative
infinity.
Instruction Operands
SARreg, n
SAR mem, n
SAR reg, CL
SAR mem, CL
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-40

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

intel.

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
SBB Subtract With Borrow : if AF vV
SBB dest, src (CF =1 CF v
Sub h ¢ he desti then DF —
u_tractst e source from t_ e desti- (dest) = (dest) — (src) — 1 IE —
nation, subtracts one if CF is set, and else OF v
returns the result to the destination (dest) - (dest) — (src) PE v
operand. Both operands may be bytes SE v
or words. Both operands may be TF —
signed or unsigned binary numbers 7E v
(see AAS and DAS)
Instruction Operands
SBB reg, reg
SBB reg, mem
SBB mem, reg
SBB accum, immed
SBB reg, immed
SBB mem, immed
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-41

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

Name Description Operation A;(I;ISZ d

SCAS Scan String : When Source Operand is a Byte AF vV
SCAS dest-string (AL) — (byte-string) CF v
Subtracts the destination string if :?:F -
element (byte or word) addressed by (bF)=0 OF ‘_,
DI from the content of AL (byte string) | then PE v
or AX (word string) and updates the (DI) - (DI) + DELTA SE v
flags, but does not alter the destination | €/S€ TE —
string or the accumulator. SCAS also (DI) - (DI) - DELTA 7F v
updates DI to point to the next string When Source Operand is a Word
element and AF, CF, OF, PF, SF and (AX) — (word-string)
ZF to reflect the relationship of the if
scan value in AL/AX to the string (DF) =0
element. If SCAS is prefixed with then
REPE or REPZ, the operation is (D) ~ (DI) + DELTA
interpreted as "scan while not end-of- | 450
string (CX not 0) and string-element = (DI) — (DI) — DELTA
scan-value (ZF = 1)." This form may be
used to scan for departure from a
given value. If SCAS is prefixed with
REPNE or REPNZ, the operation is
interpreted as "scan while not end-of-
string (CX not 0) and string-element is
not equal to scan-value (ZF = 0)."

Instruction Operands

SCAS dest-string
SCAS (repeat) dest-string

NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-42

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name Description Operation Af'?cleigts d
SHR Shift Logical Right : (temp) ~ count AF ?
SHR dest, src do while (temp) #0 _ CF v
. o L (CF) « low-order bit of (dest) DF —
Shifts the bits in the destination (dest) — (dest) /2 IF —
operand (byte or word) to the right by (temp) - (temp) — 1 OF v
the number of bits specified in the if PE v
count operand. Zeros are shifted in on count = 1 SE v
the left. If the sign bit retains its original then TE —
value, then OF is cleared. if 7E v
Instruction Operands high-order bit of (dest) #
SHR reg, n next-to-high-order bit of (dest)
SHR mem, n then
SHR reg, CL (OF) -1
SHR mem, CL else
(OF) <0
else
(OF) undefined
STC Set Carry Flag : (CF) « 1 AF —
STC CFv
DF —
Sets CF to 1. IE —
Instruction Operands OF —
none PF —
SF -
TF -
ZF -
STD Set Direction Flag : (DF) « 1 AF —
STD CF-
. L DF v
Sets DF to 1 causing the string instruc- IE —
tions to auto-decrement the S| and/or OF —
DI index registers. PE —
Instruction Operands SE —
none TF -
ZF -
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-43

INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

intel.

. . Flags
Name Description Operation Affected
STI Set Interrupt-enable Flag : (IF) « 1 AF —
STI CF -
. DF —
Sets IF to 1, enabling processor IE v
recognition of maskable interrupt OF —
requests appearing on the INTR line. PE —
Note however, that a pending interrupt SE —
will not actually be recognized until the TF —
instruction following STI has executed. 7E _
Instruction Operands
none
STOS Store (Byte or Word) String When Source Operand is a Byte AF —
STOS dest-string (DEST) « (AL) SE -
Transfers a byte or word from register if IF :
AL or AX to the string element (DF) =0 OF —
addressed by DI and updates DI to then PE —
point to the next location in the string. (DI) - (DI) + DELTA SE -
As a repeated operation. else TF
) (DI) —~ (DI) — DELTA -
Instruction Operands) 7ZF —
) When Source Operand is a Word
STOS dest-string
STOS (repeat) dest-string _(fDEST) = (AX)
i
(DF) =0
then
(DI) —~ (DI) + DELTA
else
(DI) ~ (DI) — DELTA
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-44

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

Intel® INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

- . Flags
Name Description Operation Affected
SUB Subtract : (dest) — (dest) — (src) AF v
SUB dest, src (D:E v
The source operand is subtracted from IE :
the destination operand, and the result OF v
replaces the destination operand. The PE v
operands may be bytes or words. Both SE v
operands may be signed or unsigned TF —
binary numbers (see AAS and DAS). 7E v
Instruction Operands
SUB reg, reg
SUB reg, mem
SUB mem, reg
SUB accum, immed
SUB reg, immed
SUB mem, immed
TEST Test: (dest) and (src) AF ?
TEST dest, src (CF) -0 CF v
. (OF) <0 DF —
Performs the logical "and" of the two IE —
operands (bytes or words), updates OF v
the flags, but does not return the PE v
result, i.e., neither operand is SE v
changed. If a TEST instruction is TE -
followed by a INZ (jump if not zero) ZE v
instruction, the jump will be taken if
there are any corresponding one bits
in both operands.
Instruction Operands
TEST reg, reg
TEST reg, mem
TEST accum, immed
TEST reg, immed
TEST mem, immed
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-45

INSTRUCTION SET DESCRIPTIONS Intel®

Table C-4. Instruction Set (Continued)

. . Flags
Name Description Operation Affected
WAIT Wait: None AF —
WAIT SE -
Causes the CPU to enter the wait state IE :
while its test line is not active. OF —
Instruction Operands : PF —
none SF -
TF —
ZF —
XCHG Exchange : (temp) ~ (dest) AF —
XCHG dest, src (dest) — (src) CF -
. (src) — (temp) DF —
Switches the contents of the source IF —
and destination operands (bytes or OF —
words). When used in conjunction with PE —
the LOCK prefix, XCHG can test and SF —
set a semaphore that controls access TF —
to a resource shared by multiple 7F —
processors.
Instruction Operands
XCHG accum, reg
XCHG mem, reg
XCHG reg, reg
NOTE: The three symbols used in the Flags Affected column are defined as follows:

C-46

— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed

Intel® INSTRUCTION SET DESCRIPTIONS

Table C-4. Instruction Set (Continued)

Name Description Operation Af'?cleigtz d
XLAT Translate : AL ~ ((BX) + (AL)) AF —
XLAT translate-table g:z -
Replaces a byte in the AL register with IE :
a byte from a 256-byte, user-coded OF —
translation table. Register BX is PE _
assumed to point to the beginning of SF —
the table. The byte in AL is used as an TF —
index into the table and is replaced by 7E _
the byte at the offset in the table corre-
sponding to AL's binary value. The first
byte in the table has an offset of 0. For
example, if AL contains 5H, and the
sixth element of the translation table
contains 33H, then AL will contain 33H
following the instruction. XLAT is
useful for translating characters from
one code to another, the classic
example being ASCII to EBCDIC or
the reverse.
Instruction Operands
XLAT src-table
XOR Exclusive Or : (dest) ~ (dest) xor (src) AF ?
XOR dest, src (CF) -0 CFv
. . (OF) <0 DE —
Performs the logical "exclusive or" of IE —
the two operands and returns the OF v
result to the destination operand. A bit PE v
in the result is set if the corresponding SE v
bits of the original operands contain TF —
opposite values (one is set, the other ZE v
is cleared); otherwise the result bit is
cleared.
Instruction Operands
XOR reg, reg
XOR reg, mem
XOR mem, reg
XOR accum, immed
XOR reg, immed
XOR mem, immed
NOTE: The three symbols used in the Flags Affected column are defined as follows:
— the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
v'the flag is updated after the instruction is executed
C-47

intel.

D

Instruction Set
Opcodes and Clock
Cycles

APPENDIX D
INSTRUCTION SET OPCODES
AND CLOCK CYCLES

This appendix provides reference information for the 80C186 Modular Core family instruction
set. Table D-1 defines the variables used in Table D-2, which lists the instructions with their for-
mats and execution times. Table D-3 is a guide for decoding machine instructions. Table D-4 is
a guide for encoding instruction mnemonics, and Table D-5 defines Table D-4 abbreviations.

Table D-1. Operand Variables

Variable Description

mod mod and r/m determine the Effective Address (EA).

r/m r/m and mod determine the Effective Address (EA).

reg reg represents a register.

MMM MMM and PPP are opcodes to the math coprocessor.

PPP PPP and MMM are opcodes to the math coprocessor.

TTT TTT defines which shift or rotate instruction is executed.

r/'m EA Calculation mod Effect on EA Calculation

000 (BX) + (SI) + DISP 00 if /m €410, DISP = 0; disp-low and disp-high are absent

001 (BX) + (DI) + DISP 00 if r/m = 110, EA = disp-high:disp-low

010 (BP) + (SI) + DISP 01 DISP = disp-low, sign-extended to 16 bits; disp-high is absent

011 (BP) + (DI) + DISP 10 DISP = disp-high:disp-low

100 (Sl) + DISP 11 r/m is treated as a reg field

101 (DI) + DISP DISP follows the second byte of the instruction (before any required data).

110 (sp) + DIS?' " mOd, €700 Physical addresses of operands addressed by the BP register are computed
disp-high:disp-low, if mod =00 using the SS segment register. Physical addresses of destination operands of

111 | @9+ 0P s prives (s b e D egite) e compued using e €6 s

reg 16-bit (w=1) 8-bit (w=0) TTT Instruction

000 AX AL 000 ROL

001 cX cL 001 ROR

010 DX DL 010 RCL

011 BP BL 011 RCR

100 SP AH 100 SHL/SAL

101 BP CH 101 SHR

110 S| DH 110 —

111 DI BH 111 SAR

D-1

INSTRUCTION SET OPCODES AND CLOCK CYCLES Intel®

Table D-2. Instruction Set Summary

Function Format Clocks Notes

DATA TRANSFER INSTRUCTIONS

MOV = Move
register to register/memory 1000100w mod reg r/m 2/12
register/memory to register 1000101w mod reg r/m 2/9
immediate to register/memory 1100011w mod 000 r/m data data if w=1 12/13 (1)
immediate to register 1011w reg data data if w=1 3/4 1)
memory to accumulator 1010000w addr-low addr-high 9
accumulator to memory 1010001w addr-low addr-high 8
register/memory to segment register 10001110 mod O reg r/m 2/9
segment register to register/memory 10001100 mod O reg r/m 2/11
PUSH = Push
memory 11111111 mod 110 r/m | 16
register 01010 reg 10
segment register 000reg110 9
immediate 011010s0 data | data if s=0 10
POP = Pop
memory 10001111 mod 000 r/m | 20
register 01011 reg 10
segment register 000reg111 (reg ?01) | 8
PUSHA = Push all 01100000 36
POPA = Pop all 01100001 51
XCHG = Exchange
register/memory with register 1000011w mod reg r/m 4117
register with accumulator 10010 reg 3
XLAT = Translate byte to AL 11010111 11
IN = Input from
fixed port 1110010w port | 10
variable port 1110110w 8
OUT = Output from
fixed port 1110010w port | 9
variable port 1110110w 7
NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.

2. Clock cycles are given for jump not taken/jump taken.

3. Clock cycles are given for interrupt taken/interrupt not taken.
4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-2

intel.

Table D-2. Instruction Set Summary (Continued)

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Function Format Clocks Notes

DATA TRANSFER INSTRUCTIONS (Continued)
LEA = Load EA to register 10001101 mod reg r/m 6
LDS = Load pointer to DS 11000101 mod reg r/m (mod ?11) 18
LES = Load pointer to ES 11000100 mod reg r/m (mod ?11) 18
ENTER = Build stack frame 11001000 data-low data-high L

L=0 15

L=1 25

L>1 22+16(n-1)
LEAVE = Tear down stack frame 11001001 8
LAHF = Load AH with flags 10011111 2
SAHF = Store AH into flags 10011110 3
PUSHF = Push flags 10011100 9
POPF = Pop flags 10011101 8
ARITHMETIC INSTRUCTIONS
ADD = Add

reg/memory with register to either 000000dw mod reg r/m 3/10

immediate to register/memory 100000sw mod 000 r/m data data if sw=01 4/16

immediate to accumulator 0000010w data data if w=1 3/4 (1)
ADC = Add with carry

reg/memory with register to either 000100dw mod reg r/m 3/10

immediate to register/memory 100000sw mod 010 r/m data data if sw=01 4/16

immediate to accumulator 0001010w data data if w=1 3/4 (1)
INC = Increment

register/memory 1111111w mod 000 r/m 3/15

register 01000 reg 3
AAA = ASCII adjust for addition 00110111 8
DAA = Decimal adjust for addition 00100111 4

NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.

4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-3

INSTRUCTION SET OPCODES AND CLOCK CYCLES Intel®

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

ARITHMETIC INSTRUCTIONS (Continued)

SUB = Subtract

reg/memory with register to either 001010dw mod reg r/m 3/10
immediate from register/memory 100000sw mod 101 r/m data data if sw=01 4/16
immediate from accumulator 0001110w data data if w=1 3/4)

SBB = Subtract with borrow

reg/memory with register to either 000110dw mod reg r/m 3/10
immediate from register/memory 100000sw mod 011 r/m data data if sw=01 4/16
immediate from accumulator 0001110w data data if w=1 3/4 [6h)

DEC = Decrement

register/memory 1111111w mod 001 r/m | 3/15
register 01001 reg 3
NEG = Change sign 1111011w mod reg r/m | 3
CMP = Compare
register/memory with register 0011101w mod reg r/m 3/10
register with register/memory 0011100w mod reg r/m 3/10
immediate with register/memory 100000sw mod 111 r/m data data if sw=01 3/10
immediate with accumulator 0011110w data data if w=1 3/4 (1)
AAS = ASCII adjust for subtraction 00111111 7
DAS = Decimal adjust for subtraction 00101111 4
MUL = multiply (unsigned) 1111011w mod 100 r/m
register-byte 26-28
register-word 35-37
memory-byte 32-34
memory-word 41-43
IMUL = Integer multiply (signed) 1111011w mod 101 r/m
register-byte 25-28
register-word 34-37
memory-byte 31-34
memory-word 40-43
integer immediate multiply (signed) 011010s1 mod reg r/m data data if =0 22-25/
29-32
NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.

2. Clock cycles are given for jump not taken/jump taken.

3. Clock cycles are given for interrupt taken/interrupt not taken.
4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-4

intel.

Table D-2. Instruction Set Summary (Continued)

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Function Format Clocks Notes
ARITHMETIC INSTRUCTIONS (Continued)
AAM = ASCI! adjust for multiply 11010100 00001010 19
DIV = Divide (unsigned) 1111011w mod 110 r/m
register-byte 29
register-word 38
memory-byte 35
memory-word 44
IDIV = Integer divide (signed) 1111011w mod 111 r/m
register-byte 29
register-word 38
memory-byte 35
memory-word 44
AAD = ASCII adjust for divide 11010101 00001010 15
CBW = Convert byte to word 10011000 2
CWD = Convert word to double-word 10011001 4
BIT MANIPULATION INSTRUCTIONS
NOT= Invert register/memory 1111011w mod 010 r/m 3
AND = And
reg/memory and register to either 001000dw mod reg r/m 3/10
immediate to register/memory 1000000w mod 100 r/m data data if w=1 4/16
immediate to accumulator 0010010w data data if w=1 3/4 (1)
OR=0r
reg/memory and register to either 000010dw mod reg r/m 3/10
immediate to register/memory 1000000w mod 001 r/m data data if w=1 4/10
immediate to accumulator 0000110w data data if w=1 3/4 (1)
XOR = Exclusive or
reg/memory and register to either 001100dw mod reg r/m 3/10
immediate to register/memory 1000000w mod 110 r/m data data if w=1 4/10
immediate to accumulator 0011010w data data if w=1 3/4 (1)

NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.

4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-5

INSTRUCTION SET OPCODES AND CLOCK CYCLES Intel®

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

BIT MANIPULATION INSTRUCTIONS (Continued)

TEST= And function to flags, no result

register/memory and register 1000010w mod reg r/m 3/10

immediate data and register/memory 1111011w mod 000 r/m data data if w=1 4/10

immediate data and accumulator 1010100w data data if w=1 3/4 (1)
Shifts/Rotates

register/memory by 1 1101000w mod TTT t/m 2/15

register/memory by CL 1101001w mod TTT r/m 5+n/17+n

register/memory by Count 1100000w mod TTT r/m count 5+n/17+n

STRING MANIPULATION INSTRUCTIONS

MOVS = Move byte/word 1010010w 14
INS = Input byte/word from DX port 0110110w 14
OUTS = Output byte/word to DX port 0110111w 14
CMPS = Compare byte/word 1010011w 22
SCAS = Scan byte/word 1010111w 15

STRING MANIPULATION INSTRUCTIONS (Continued)

LODS = Load byte/word to AL/AX 1010110w 12
STOS = Store byte/word from AL/AX 1010101w 10
Repeated by count in CX:
MOVS = Move byte/word 11110010 1010010w 8+8n
INS = Input byte/word from DX port 11110010 0110110w 8-8n
OUTS = Output byte/word to DX port 11110010 0110111w 8+8n
CMPS = Compare byte/word 1111001z 1010011w 5+22n
SCAS = Scan byte/word 1111001z 1010111w 5+15n
LODS = Load byte/word to AL/AX 11110010 0101001w 6+11n
STOS = Store byte/word from AL/AX 11110100 0101001w 6+9n
NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.

2. Clock cycles are given for jump not taken/jump taken.

3. Clock cycles are given for interrupt taken/interrupt not taken.
4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-6

Intel® INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

PROGRAM TRANSFER INSTRUCTIONS
Conditional Transfers — jump if:
JE/JZ= equallzero 01110100 disp 4/13 2)
JL/INGE = less/not greater or equal 01111100 disp 4/13)
JLE/ING = less or equal/not greater 01111110 disp 4/13)
JB/INAE = below/not above or equal 01110010 disp 4/13 2)
JC = carry 01110010 disp 4/13)
JBE/JNA = below or equal/not above 01110110 disp 4/13 2)
JP/JPE = parity/parity even 01111010 disp 4/13)
JO = overflow 01110000 disp 4/13)
JS = sign 01111000 disp 4/13 (2)
JNE/INZ = not equal/not zero 01110101 disp 4/13 @)
JNL/JGE = not less/greater or equal 01111101 disp 4/13 @)
JNLE/JG = not less or equal/greater 01111111 disp 4/13 2)
JNB/JAE = not below/above or equal 01110011 disp 4/13 2)
JNC = not carry 01110011 disp 4/13)
JNBE/JA = not below or equal/above 01110111 disp 4/13 2)
JNP/JPO = not parity/parity odd 01111011 disp 4/13)
JNO = not overflow 01110001 disp 4/13 2)
JNS = not sign 01111001 disp 5/15)

Unconditional Transfers
CALL = Call procedure

direct within segment 11101000 disp-low disp-high 15

reg/memory indirect within segment 11111111 mod 010 r/m 13/19

indirect intersegment 11111111 mod 011 r/m (mod ?11) 38

direct intersegment 10011010 segment offset 23

selector

NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.

2. Clock cycles are given for jump not taken/jump taken.

3. Clock cycles are given for interrupt taken/interrupt not taken.
4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-7

INSTRUCTION SET OPCODES AND CLOCK CYCLES Intel®

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

PROGRAM TRANSFER INSTRUCTIONS (Continued)
RET = Return from procedure

within segment 11000011 16

within segment adding immed to SP 11000010 data-low | data-high | 18

intersegment 11001011 22

intersegment adding immed to SP 11001010 data-low | data-high | 25
JMP = Unconditional jump

short/long 11101011 disp-low 14

direct within segment 11101001 disp-low disp-high | 14

reg/memory indirect within segment 11111111 mod 100 r/m 26

indirect intersegment 11111111 mod 101 r/m (mod ?11) 1117

direct intersegment 11101010 segment offset 14

selector

Iteration Control
LOOP = Loop CX times 11100010 disp 6/16)
LOOPZ/LOOPE =Loop while zero/equal | 11100001 disp 5/16)
LOOPNZ/LOOPNE = 11100000 disp 5/16 2)
Loop while not zero/not equal
JCXZ = Jump if CX = zero 11100011 disp 6/16)

Interrupts
INT = Interrupt

Type specified 11001101 type | 47

Type 3 11001100 45
INTO = Interrupt on overflow 11001110 48/4 3)
BOUND = Detect value out of range 01100010 mod reg r/m | 33-35
IRET = Interrupt return 11001111 28

NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.

2. Clock cycles are given for jump not taken/jump taken.

3. Clock cycles are given for interrupt taken/interrupt not taken.
4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

D-8

intel.

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

PROCESSOR CONTROL INSTRUCTIONS
CLC = Clear carry 11111000 2
CMC = Complement carry 11110101 2
STC = Set carry 11111001 2
CLD = Clear direction 11111100 2
STD = Set direction 11111101 2
CLI = Clear interrupt 11111010 2
STI = Set interrupt 11111011 2
HLT = Halt 11110100 2
WAIT = Wait 10011011 6 4)
LOCK = Bus lock prefix 11110000 2
ESC = Math coprocessor escape 11011MMM mod PPP r/m 6
NOP = No operation 10010000 3
SEGMENT OVERRIDE PREFIX

cs 00101110 2

SS 00110110 2

DS 00111110 2

ES 00100110 2
NOTES:

1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.

4. IfTEST=0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.

Table D-3. Machine Instruction Decoding Guide

Byte 1
- Byte 2 Bytes 3-6 ASM-86 Instruction Format

Hex Binary
00 0000 0000 mod reg r/m (disp-lo),(disp-hi) add reg8/mem8, reg8
01 0000 0001 mod reg r/m (disp-lo),(disp-hi) add regl6/mem16,reg16
02 0000 0010 mod reg r/m (disp-lo),(disp-hi) add reg8,reg8/mem8
03 0000 0011 mod reg r/m (disp-lo),(disp-hi) add reg16,reg16/mem16
04 0000 0100 data-8 add AL,immed8
05 0000 0101 data-lo data-hi add AX,immed16
06 0000 0110 push ES
07 0000 0111 pop ES
08 0000 0100 mod reg r/m (disp-lo),(disp-hi) or reg8/mem8,reg8

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format

Hex Binary
09 0000 1001 mod reg r/m (disp-lo),(disp-hi) or regl6/mem16,regl6
0A 0000 1010 mod reg r/m (disp-lo),(disp-hi) or reg8,reg8/mem8
0B 0000 1011 mod reg r/m (disp-lo),(disp-hi) or reg16,reg16/mem16
ocC 0000 1100 data-8 or AL, immed8
oD 0000 1101 data-lo data-hi or AX,immed16
OE 0000 1110 push Cs
OF 0000 1111 —
10 0001 0000 mod reg r/m (disp-lo),(disp-hi) adc reg8/mem8,reg8
11 0001 0001 mod reg r/m (disp-lo),(disp-hi) adc regl6/mem16,reg16
12 0001 0010 mod reg r/m (disp-lo),(disp-hi) adc reg8,reg8/mem8
13 0001 0011 mod reg r/m (disp-lo),(disp-hi) adc regl16,regl6/mem16
14 0001 0100 data-8 adc AL,immed8
15 0001 0101 data-lo data-hi adc AX,immed16
16 0001 0110 push SS
17 0001 0111 pop Ss
18 0001 1000 mod reg r/m (disp-lo),(disp-hi) sbb reg8/mem8,reg8
19 0001 1001 mod reg r/m (disp-lo),(disp-hi) sbb regl6/mem16,reg16
1A 0001 1010 mod reg r/m (disp-lo),(disp-hi) sbb reg8,reg8/mem8
1B 0001 1011 mod reg r/m (disp-lo),(disp-hi) sbb reg16,reg16/mem16
ic 0001 1100 data-8 shb AL,immed8
iD 0001 1101 data-lo data-hi shb AX,immed16
1E 0001 1110 push DS
1F 0001 1111 pop DS
20 0010 0000 mod reg r/m (disp-lo),(disp-hi) and reg8/mem8,reg8
21 0010 0001 mod reg r/m (disp-lo),(disp-hi) and regl6/mem16,reg16
22 0010 0010 mod reg r/m (disp-lo),(disp-hi) and reg8,reg8/mem8
23 0010 0011 mod reg r/m (disp-lo),(disp-hi) and reg16,reg16/mem16
24 0010 0100 data-8 and AL,immed8
25 0010 0101 data-lo data-hi and AX,immed16
26 0010 0110 ES: (segment override prefix)
27 0010 0111 daa
28 0010 1000 mod reg r/m (disp-lo),(disp-hi) sub reg8/mem8,reg8
29 0010 1001 mod reg r/m (disp-lo),(disp-hi) sub regl6/mem16,reg16
2A 0010 1010 mod reg r/m (disp-lo),(disp-hi) sub reg8,reg8/mem8
2B 0010 1011 mod reg r/m (disp-lo),(disp-hi) sub regl6,regl6/mem16
2C 0010 1100 data-8 sub AL,immed8
2D 0010 1101 data-lo data-hi sub AX,immed16

D-10

intel.

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary
2E 0010 1110 Ds: (segment override prefix)
2F 0010 1111 das
30 0011 0000 mod reg r/m (disp-lo),(disp-hi) xor reg8/mem8,reg8
31 0011 0001 mod reg r/m (disp-lo),(disp-hi) xor regl6/mem16,reg16
32 0011 0010 mod reg r/m (disp-lo),(disp-hi) xor reg8,reg8/mem8
33 0011 0011 mod reg r/m (disp-lo),(disp-hi) xor reg16,reg16/mem16
34 0011 0100 data-8 xor AL,immed8
35 0011 0101 data-lo data-hi xor AX,immed16
36 0011 0110 SS: (segment override prefix)
37 0011 0111 aaa
38 0011 1000 mod reg r/m (disp-lo),(disp-hi) xor reg8/mem8,reg8
39 0011 1001 mod reg r/m (disp-lo),(disp-hi) xor regl6/mem16,regl6
3A 0011 1010 mod reg r/m (disp-lo),(disp-hi) xor reg8,reg8/mem8
3B 0011 1011 mod reg r/m (disp-lo),(disp-hi) xor reg16,reg16/mem16
3C 0011 1100 data-8 xor AL,immed8
3D 0011 1101 data-lo data-hi xor AX,immed16
3E 0011 1110 Ds: (segment override prefix)
3F 0011 1111 aas
40 0100 0000 inc AX
41 0100 0001 inc CX
42 0100 0010 inc DX
43 0100 0011 inc BX
44 0100 0100 inc SP
45 0100 0101 inc BP
46 0100 0110 inc Sl
47 0100 0111 inc DI
48 0100 1000 dec AX
49 0100 1001 dec CX
4A 0100 1010 dec DX
4B 0100 1011 dec BX
4C 0100 1100 dec SP
4D 0100 1101 dec BP
4E 0100 1110 dec Sl
4F 0100 1111 dec DI
50 0101 0000 push AX
51 0101 0001 push CX
52 0101 0010 push DX

D-11

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

intel.

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary
53 0101 0011 push BX
54 0101 0100 push SP
55 0101 0101 push BP
56 0101 0110 push S|
57 0101 0111 push DI
58 0101 1000 pop AX
59 0101 1001 pop cX
5A 0101 1010 pop DX
5B 0101 1011 pop BX
5C 0101 1100 pop SP
5D 0101 1101 pop BP
5E 0101 1110 pop Sl
5F 0101 1111 pop DI
60 0110 0000 pusha
61 0110 0001 popa
62 0110 0010 mod reg r/m bound regl6,mem16
63 0110 0011 —
64 0110 0100 —
65 0110 0101 —
66 0110 0110 —
67 01100111 —
68 0110 1000 data-lo data-hi push immed16
69 0110 1001 mod reg r/m data-lo, data-hi imul immed16
70 0111 0000 IP-inc-8 jo short-label
71 0111 0001 IP-inc-8 jno short-label
72 0111 0010 IP-inc-8 jblinaeljc short-label
73 0111 0011 IP-inc-8 jnb/jaeljnc short-label
74 0111 0100 IP-inc-8 jeljz short-label
75 0111 0101 IP-inc-8 jneljnz short-label
76 0111 0110 IP-inc-8 jbeljna short-label
77 0111 0111 IP-inc-8 jnbe/ja short-label
78 0111 1000 IP-inc-8 is short-label
79 0111 1001 IP-inc-8 jns short-label
7A 0111 1010 IP-inc-8 iplipe short-label
7B 0111 1011 IP-inc-8 jnp/jpo short-label
7C 0111 1100 IP-inc-8 jlinge short-label
7D 0111 1101 IP-inc-8 jnlljge short-label

D-12

intel.

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format

Hex Binary

7E 0111 1110 IP-inc-8 jleling short-label

7F 0111 1111 IP-inc-8 jnlefjg short-label

80 1000 0000 | mod 000 r/m (disp-lo),(disp-hi), data-8 add reg8/mems,immeds
mod 001 r/m (disp-lo),(disp-hi), data-8 or reg8/mem8,immed8
mod 010 r/m (disp-lo),(disp-hi), data-8 adc reg8/mem8,immed8
mod 011 r/m (disp-lo),(disp-hi), data-8 sbb reg8/mem8,immed8
mod 100 r/m (disp-lo),(disp-hi), data-8 and reg8/mem8,immed8
mod 101 r/m (disp-lo),(disp-hi), data-8 sub reg8/mem8,immed8
mod 110 r/m (disp-lo),(disp-hi), data-8 xor reg8/mem8,immed8
mod 111 r/m (disp-lo),(disp-hi), data-8 cmp reg8/mem8,immed8

81 1000 0001 mod 000 r/m (disp-lo),(disp-hi), data-lo,data-hi add reg16/mem16,immed16
mod 001 r/m (disp-lo),(disp-hi), data-lo,data-hi or reg16/mem16,immed16
mod 010 r/m (disp-lo),(disp-hi), data-lo,data-hi adc reg16/mem16,immed16
mod 011 r/m (disp-lo),(disp-hi), data-lo,data-hi sbb regl6/mem16,immed16
mod 100 r/m (disp-lo),(disp-hi), data-lo,data-hi and regl6/mem16,immed16

81 1000 0001 | mod 101 r/m (disp-Io),(disp-hi), data-lo,data-hi sub reg16/mem16,immed16
mod 110 r/m (disp-lo),(disp-hi), data-lo,data-hi xor regl6/mem16,immed16
mod 111 r/m (disp-lo),(disp-hi), data-lo,data-hi cmp regl6/mem16,immed16

82 1000 0010 mod 000 r/m (disp-lo),(disp-hi), data-8 add reg8/mem8,immed8
mod 001 r/m —
mod 010 r/m (disp-lo),(disp-hi), data-8 adc reg8/mem8,immed8
mod 011 r/m (disp-lo),(disp-hi), data-8 sbb reg8/mem8,immed8
mod 100 r/m —
mod 101 r/m (disp-lo),(disp-hi), data-8 sub reg8/mem8,immed8
mod 110 r/m —
mod 111 r/m (disp-lo),(disp-hi), data-8 cmp reg8/mem8,immed8

83 1000 0011 | mod 000 /m (disp-lo),(disp-hi), data-SX add reg16/mem16,immeds
mod 001 r/m —
mod 010 r/m (disp-lo),(disp-hi), data-SX adc reg16/mem16,immed8
mod 011 r/m (disp-lo),(disp-hi), data-SX sbb regl6/mem16,immed8
mod 100 r/m —
mod 101 r/m (disp-lo),(disp-hi), data-SX sub regl6/mem16,immed8
mod 110 r/m —
mod 111 r/m (disp-lo),(disp-hi), data-SX cmp regl6/mem16,immed8

84 1000 0100 mod reg r/m (disp-lo),(disp-hi) test reg8/mem8,reg8

85 1000 0101 mod reg r/m (disp-lo),(disp-hi) test regl6/mem16,reg1l6

86 1000 0110 mod reg r/m (disp-lo),(disp-hi) xchg reg8,reg8/mem8

D-13

INSTRUCTION SET OPCODES AND CLOCK CYCLES Intel®

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary
87 1000 0111 mod reg r/m (disp-lo),(disp-hi) xchg regl6,regl6/mem16
88 1000 0100 mod reg r/m (disp-lo),(disp-hi) mov reg8/mem8,reg8
89 1000 1001 mod reg r/m (disp-lo),(disp-hi) mov regl6/mem16,reg16
8A 1000 1010 mod reg r/m (disp-lo),(disp-hi) mov reg8,reg8/mem8
8B 1000 1011 mod reg r/m (disp-lo),(disp-hi) mov reg16,reg16/mem16
8C 1000 1100 mod OSR r/m (disp-lo),(disp-hi) mov reg16/mem16,SEGREG
mod 1 - r/m —
8D 1000 1101 mod reg r/m (disp-lo),(disp-hi) lea regl6,memi16
8E 1000 1110 mod OSR r/m (disp-lo),(disp-hi) mov SEGREG,reg16/mem16
mod 1 -r/m —
8F 1000 1111 pop mem16
90 1001 0000 nop (xchg AX,AX)
91 1001 0001 xchg AX,CX
92 1001 0010 xchg AX,DX
93 1001 0011 xchg AX,BX
94 1001 0100 xchg AX,SP
95 1001 0101 xchg AX,BP
96 1001 0110 xchg AX,SI
97 1001 0111 xchg AX,DI
98 1001 1000 cbw
99 1001 1001 cwd
9A 1001 1010 disp-lo disp-hi,seg-lo,seg-hi call far-proc
9B 1001 1011 wait
9C 1001 1100 pushf
9D 1001 1101 popf
9E 1001 1110 sahf
9F 1001 1111 lahf
A0 1010 0000 addr-lo addr-hi mov AL,mem8
Al 1010 0001 addr-lo addr-hi mov AX,mem16
A2 1010 0010 addr-lo addr-hi mov mem8,AL
A3 1010 0011 addr-lo addr-hi mov mem16,AL
A4 1010 0100 movs dest-str8,src-str8
A5 1010 0101 movs dest-str16,src-strl6
A6 1010 0110 cmps dest-str8,src-str8
A7 1010 0111 cmps dest-str16,src-strl6
A8 1010 1000 data-8 test AL,immed8
A9 1010 1001 data-lo data-hi test AX,immed16

D-14

intel.

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary

AA 1010 1010 stos dest-str8

AB 1010 1011 stos dest-str16

AC 1010 1100 lods src-str8

AD 1010 1101 lods src-strl6

AE 1010 1110 scas dest-str8

AF 1010 1111 scas dest-str16

BO 1011 0000 data-8 mov AL,immed8

B1 1011 0001 data-8 mov CL,immed8

B2 1011 0010 data-8 mov DL,immed8

B3 1011 0011 data-8 mov BL,immed8

B4 1011 0100 data-8 mov AH,immed8

B5 1011 0101 data-8 mov CH,immed8

B6 1011 0110 data-8 mov DH,immed8

B7 1011 0111 data-8 mov BH,immed8

B8 1011 1000 data-lo data-hi mov AX,immed16

B9 1011 1001 data-lo data-hi mov CX,immed16

BA 1011 1010 data-lo data-hi mov DX,immed16

BB 1011 1011 data-lo data-hi mov BX,immed16

BC 1011 1100 data-lo data-hi mov SP,immed16

BD 1011 1101 data-lo data-hi mov BP,immed16

BE 1011 1110 data-lo data-hi mov Sl,immed16

BF 10111111 data-lo data-hi mov Dl,immed16

co 1100 0000 mod 000 r/m data-8 rol reg8/mem8, immed8
mod 001 r/m data-8 ror reg8/mem8, immed8
mod 010 r/m data-8 rcl reg8/mem8, immed8
mod 011 r/m data-8 rer reg8/mem8, immed8
mod 100 r/m data-8 shi/sal reg8/mem8, immed8
mod 101 r/m data-8 shr reg8/mem8, immed8
mod 110 r/m —
mod 111 r/m data-8 sar reg8/mem8, immed8

C1 1100 0001 mod 000 r/m data-8 rol reg16/mem16, immed8
mod 001 r/m data-8 ror regl6/mem16, immed8
mod 010 r/m data-8 rcl regl6/mem16, immed8
mod 011 r/m data-8 rcr regl6/mem16, immed8
mod 100 r/m data-8 shl/sal regl6/mem16, immed8
mod 101 r/m data-8 shr regl6/mem16, immed8
mod 110 r/m —

D-15

INSTRUCTION SET OPCODES AND CLOCK CYCLES

intel.

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary
mod 111 r/m data-8 sar regl6/mem16, immed8
c2 1100 0010 data-lo data-hi ret immed16 (intrasegment)
C3 1100 0011 ret (intrasegment)
Cc4 1100 0100 mod reg r/m (disp-lo),(disp-hi) les regl6,memi16
C5 1100 0101 mod reg r/m (disp-lo),(disp-hi) Ids regl6,memi16
C6 1100 0110 mod 000 r/m (disp-lo),(disp-hi),data-8 mov mem8,immed8
mod 001 r/m —
mod 010 r/m —
mod 011 r/m —
mod 100 r/m —
mod 101 r/m —
mod 110 r/m —
C6 1100 0110 mod 111 r/m —
Cc7 1100 0111 mod 000 r/m (disp-lo),(disp-hi),data-lo,data-hi mov mem16,immed16
mod 001 r/m —
mod 010 r/m —
mod 011 r/m —
mod 100 r/m —
mod 101 r/m —
mod 110 r/m —
mod 111 r/m —
c8 1100 1000 data-lo data-hi, level enter immed16, immed8
C9 1100 1001 leave
CA 1100 1010 data-lo data-hi ret immed16 (intersegment)
CB 1100 1011 ret (intersegment)
CcC 1100 1100 int 3
CD 1100 1101 data-8 int immed8
CE 1100 1110 into
CF 1100 1111 iret
DO 1101 0000 mod 000 r/m (disp-lo),(disp-hi) rol reg8/mem8,1
mod 001 r/m (disp-lo),(disp-hi) ror reg8/mem8,1
mod 010 r/m (disp-lo),(disp-hi) rel reg8/mems, 1
mod 011 r/m (disp-lo),(disp-hi) rer reg8/mems, 1
mod 100 r/m (disp-lo),(disp-hi) sal/shl reg8/mem8,1
mod 101 r/m (disp-lo),(disp-hi) shr reg8/mems,1
mod 110 r/m —
mod 111 r/m (disp-lo),(disp-hi) sar reg8/mems, 1

D-16

intel.

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary
D1 1101 0001 mod 000 r/m (disp-lo),(disp-hi) rol regl6/mem16,1
mod 001 r/m (disp-lo),(disp-hi) ror regl6/mem16,1
D1 11010001 | mod 010 r/m (disp-lo),(disp-hi) rcl regl6/mem16,1
mod 011 r/m (disp-lo),(disp-hi) rer regl6/mem16,1
mod 100 r/m (disp-lo),(disp-hi) sal/shl regl6/mem16,1
mod 101 r/m (disp-lo),(disp-hi) shr regl6/mem16,1
mod 110 r/m —
mod 111 r/m (disp-lo),(disp-hi) sar reg16/mem16,1
D2 1101 0010 mod 000 r/m (disp-lo),(disp-hi) rol reg8/mem8,CL
mod 001 r/m (disp-lo),(disp-hi) ror reg8/mem8,CL
mod 010 r/m (disp-lo),(disp-hi) rel reg8/mem8,CL
mod 011 r/m (disp-lo),(disp-hi) rer reg8/mem8,CL
mod 100 r/m (disp-lo),(disp-hi) sal/shl reg8/mem8,CL
mod 101 r/m (disp-lo),(disp-hi) shr reg8/mem8,CL
mod 110 r/m —
mod 111 r/m (disp-lo),(disp-hi) sar reg8/mem8,CL
D3 1101 0011 mod 000 r/m (disp-lo),(disp-hi) rol reg16/mem16,CL
mod 001 r/m (disp-lo),(disp-hi) ror reg16/mem16,CL
mod 010 r/m (disp-lo),(disp-hi) rcl reg16/mem16,CL
mod 011 r/m (disp-lo),(disp-hi) rer reg16/mem16,CL
mod 100 r/m (disp-lo),(disp-hi) sal/shl regl6/mem16,CL
mod 101 r/m (disp-lo),(disp-hi) shr reg16/mem16,CL
mod 110 r/m —
mod 111 r/m (disp-lo),(disp-hi) sar reg16/mem16,CL
D4 1101 0100 0000 1010 aam
D5 1101 0101 0000 1010 aad
D6 1101 0110 —
D7 1101 0111 xlat source-table
D8 1101 1000 mod 000 r/m (disp-lo),(disp-hi) esc opcode,source
D9 1101 1001 mod 001 r/m (disp-lo),(disp-hi) esc opcode,source
DA 1101 1010 mod 010 r/m (disp-lo),(disp-hi) esc opcode,source
DB 1101 1011 mod 011 r/m (disp-lo),(disp-hi) esc opcode,source
DC 1101 1100 mod 100 r/m (disp-lo),(disp-hi) esc opcode,source
DD 1101 1101 mod 101 r/m (disp-lo),(disp-hi) esc opcode,source
DE 1101 1110 mod 110 r/m (disp-lo),(disp-hi) esc opcode,source
DF 1101 1111 mod 111 r/m (disp-lo),(disp-hi) esc opcode,source
EO 1110 0000 IP-inc-8 loopne/loopnz short-label

D-17

INSTRUCTION SET OPCODES AND CLOCK CYCLES

intel.

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format

Hex Binary

El 1110 0001 IP-inc-8 loope/loopz short-label

E2 1110 0010 IP-inc-8 loop short-label

E3 1110 0011 IP-inc-8 jexz short-label

E4 1110 0100 data-8 in AL,immed8

E5 1110 0101 data-8 in AX,immed8

E6 1110 0110 data-8 out AL,immed8

E7 1110 0111 data-8 out AX,immed8

E8 1110 1000 IP-inc-lo IP-inc-hi call near-proc

E9 1110 1001 IP-inc-lo IP-inc-hi jmp near-label

EA 1110 1010 IP-lo IP-hi,CS-lo,CS-hi jmp far-label

EB 1110 1011 IP-inc-8 jmp short-label

EC 1110 1100 in AL,DX

ED 1110 1101 in AX,DX

EE 1110 1110 out AL,DX

EF 1110 1111 out AX,DX

FO 1111 0000 lock (prefix)

F1 1111 0001 —

F2 1111 0010 repne/repnz

F3 1111 0011 rep/repel/repz

F4 1111 0100 hit

F5 1111 0101 cme

F6 1111 0110 mod 000 r/m (disp-lo),(disp-hi),data-8 test reg8/mem8,immed8
mod 001 r/m —
mod 010 r/m (disp-lo),(disp-hi) not reg8/mem8
mod 011 r/m (disp-lo),(disp-hi) neg reg8/mem8
mod 100 r/m (disp-lo),(disp-hi) mul reg8/mem8
mod 101 r/m (disp-lo),(disp-hi) imul reg8/mem8
mod 110 r/m (disp-lo),(disp-hi) div reg8/mem8
mod 111 r/m (disp-lo),(disp-hi) idiv reg8/mem8

F7 1111 0111 mod 000 r/m (disp-lo),(disp-hi),data-lo,data-hi test regl6/mem16,immed16
mod 001 r/m —
mod 010 r/m (disp-lo),(disp-hi) not regl6/mem16
mod 011 r/m (disp-lo),(disp-hi) neg regl6/mem16
mod 100 r/m (disp-lo),(disp-hi) mul regl6/mem16
mod 101 r/m (disp-lo),(disp-hi) imul regl6/mem16
mod 110 r/m (disp-lo),(disp-hi) div regl6/mem16
mod 111 r/m (disp-lo),(disp-hi) idiv regl6/mem16

D-18

intel.

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3-6 ASM-86 Instruction Format
Hex Binary

F8 1111 1000 cle

F9 1111 1001 stc

FA 1111 1010 cli

FB 11111011 sti

FC 1111 1100 cld

FD 11111101 std

FE 1111 1110 mod 000 r/m (disp-lo),(disp-hi) inc mem16
mod 001 r/m (disp-lo),(disp-hi) dec mem16
mod 010 r/m —

FE 1111 1110 mod 011 r/m _
mod 100 r/m —
mod 101 r/m —
mod 110 r/m —
mod 111 r/m —

FF 1111 1111 mod 000 r/m (disp-lo),(disp-hi) inc mem16
mod 001 r/m (disp-lo),(disp-hi) dec mem16
mod 010 r/m (disp-lo),(disp-hi) call reg16/mem16 (intrasegment)
mod 011 r/m (disp-lo),(disp-hi) call mem16 (intersegment)
mod 100 r/m (disp-lo),(disp-hi) jmp regl6/mem16 (intrasegment)
mod 101 r/m (disp-lo),(disp-hi) jmp mem16 (intersegment)
mod 110 r/m (disp-lo),(disp-hi) push mem16
mod 111 r/m —

D-19

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-4. Mnemonic Encoding Matrix (Left Half)

X0 x1 X2 X3 X4 x5 X6 X7
ADD ADD ADD ADD ADD ADD PUSH POP
Ox
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,ia w,ia ES ES
ADC ADC ADC ADC ADC ADC PUSH POP
1x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i w,i SS SS
AND AND AND AND AND AND SEG DAA
2x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i w,i =ES
XOR XOR XOR XOR XOR XOR SEG AAA
3x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i W,i =SS
INC INC INC INC INC INC INC INC
4x
AX CX DX BX SP BP Sl DI
PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH
5x
AX CX DX BX SP BP Sl DI
PUSHA POPA BOUND
6x
w,f,r/m
Jo JNO JB/ JNB/ JE/ JINE/ JBE/ JINBE/
7X JINAE/ JAE/ Jz INZ INA JA
JC JNC
Immed Immed Immed Immed TEST TEST XCHG XCHG
8x
b,r/m w,r/m b,r/m is,r/m b,r/m w,r/m b,r/m w,r/m
NOP XCHG XCHG XCHG XCHG XCHG XCHG XCHG
9x (XCHG)
AX CX DX BX SP BP Sl DI
MOV MOV MOV MOV MOVS MOVS CMPS CMPS
AX
m-AL m-AX AL-m AX-m
MOV MOV MoV MOV MOV MOV MOV MOV
Bx
i-AL i-CL i-DL i-BL i-AH i-CH i-~DH i-BH
Shift Shift RET RET LES LDS MoV Mov
Cx
b,i W,i (i+SP) b,i,r/m w,i,r/m
Shift Shift Shift Shift AAM AAD XLAT
Dx
b w b,v w,v
LOOPNZ/ LOOPZ/ LOOP JCXZ IN IN ouT ouT
Ex LOOPNE LOOPE
LOCK REP REP HLT cMC Grpl Grpl
Fx
z b,r/m w,r/m

D-20

NOTE: Table D-5 defines abbreviations used in this matrix. Shading indicates reserved opcodes.

intel.

Table D-4. Mnemonic Encoding Matrix (Right Half)

INSTRUCTION SET OPCODES AND CLOCK CYCLES

x8 X9 XA xB xC xD xE xF
OR OR OR OR OR OR PUSH
0x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i W,i CS
SBB SBB SBB SBB SBB SBB PUSH POP
1x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i w,i DS DS
SuUB SuB SuB SuUB SuB SuB SEG DAS
2X
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i w,i =Cs
CMP CMP CMP CMP CMP CMP SEG AAS
3x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m b,i W,i =DS
DEC DEC DEC DEC DEC DEC DEC DEC
4x
AX CX DX BX SP BP Sl DI
POP POP POP POP POP POP POP POP
5%
AX CX DX BX SP BP Sl DI
PUSH IMUL PUSH IMUL INS INS ouTSs ouTSs
6x
w,i w,i b,i w,i b w b w
Js JINS JP/ INP/ Ju/ JINL/ JLE/ JNLE/
JPE JPO INGE JGE ING JG 7X
MoV MoV MoV MoV MoV LEA MoV POP
8x
b,f,r/m w,f,r/m b,t,r/m w,t,r/m sr.f,r/m sr.t,r/m r/'m
CBW CWD CALL WAIT PUSHF POPF SAHF LAHF
9X
L,D
TEST TEST STOS STOS LODS LODS SCAS SCAS
Ax
b,ia w,ia
MoV MoV Mov MoV MoV MoV MoV MoV
Bx
i-AX i-CX i~ DX i-BX i~ SP i-BP i-Sl i~ DI
ENTER LEAVE RET RET INT INT INTO IRET
Cx
1(i+SP) | type 3 (any)
ESC ESC ESC ESC ESC ESC ESC ESC
Dx
0 1 2 3 4 5 6 7
CALL JMP JMP JIMP IN IN ouT ouT
Ex
CLC STC CLI STI CLS STD Grp2 Grp2
Fx
b,r/m w,r/m

NOTE: Table D-5 defines abbreviations used in this matrix. Shading indicates reserved opcodes.

D-21

INSTRUCTION SET OPCODES AND CLOCK CYCLES

Table D-5. Abbreviations for Mnemonic Encoding Matrix

intel.

Abbr Definition Abbr Definition bbr Definition Abr Definition
b byte operation ia immediate to accumulator m memory to CPU register
d direct id indirect r/m EA is second byte variable
f from CPU register is immediate byte, sign extended si short intrasegment word operation
i immediate | long (intersegment) sr segment register zero
Byte 2 Immed Shift Grpl Grp2
mod 000 r/m ADD ROL TEST INC
mod 001 r/m OR ROR — DEC
mod 010 r/m ADC RCL NOT CALL id
mod 011 r/m SBB RCR NEG CALL I, id
mod 100 r/m AND SHL/SAL MUL JMP id
mod 101 r/m SuB SHR IMUL JMP i, id
mod 110 r/m XOR — DIV PUSH
mod 111 r/m CMP SAR IDIV —

mod and r/m determine the Effective Address (EA) calculation. See Table D-1 for definitions.

D-22

intel.

Index

intel.

80C187 Math Coprocessor, 14-2-14-8
accessing, 14-10-14-11
arithmetic instructions, 14-3-14-4
bus cycles, 14-11
clocking, 14-10
code examples, 14-13-14-16
comparison instructions, 14-5
constant instructions, 14-6
data transfer instructions, 14-3
data types, 14-7-14-8
design considerations, 14-10-14-11
example floating point routine, 14-16
exceptions, 14-13
1/0 port assignments, 14-10
initialization example, 14-13-14-16
instruction set, 14-2
interface, 14-7-14-13
and chip-selects, 6-14, 14-11
and PCB location, 4-7
exception trapping, 14-13
generating READY, 14-11
processor control instructions, 14-6
testing for presence, 14-10
transcendental instructions, 14-5

INDEX

programming, 8-20-8-35
sequence, 8-21-8-23
registers
addressing, 8-21
reading, 8-34
selecting Automatic EOl Mode, 8-26
selecting cascade mode, 8-24
selecting edge- or level-triggered interrupts,
8-24
selecting Poll Mode, 8-34-8-35
selecting Special Fully Nested Mode, 8-26—
8-29
selecting Special Mask Mode, 8-34-8-35
slave, 8-1
specifying base interrupt type, 8-25
specifying ICW4 requirement, 8-24
specifying slave connections, 8-26
specifying slave IDs, 8-26
See also Interrupt Control Unit

82C59A Programmable Interrupt Controller

interfacing with, 3-26-3-28, 8-44-8-47
timing constraints, 8-46-8-47

8259A Programmable Interrupt Controllers, 8-1— aqdress and data bus, 3-1-3-6

8-51
and factory test modes, 8-26
architectural overview, 8-4-8-20
assigning lowest priority, 8-30—-8-33
block diagram, 8-5
cascading, 8-14-8-18

and EOl commands, 8-17

and spurious interrupts, 8-18

configuring the master, 8-17

configuring the slave, 8-17

IR0 precautions, 8-17
connecting external devices, 8-44-8-47
executing EOl commands, 8-30-8-33
initializing, 8-21-8-29

sequence, 8-21-8-23
masking interrupts, 8-30-8-31
master, 8-1
master/slave connection, 8-14

16-bit, 3-1-3-5
considerations, 3-7
8-bit, 3-5-3-6
considerations, 3-7
See also Bus cycles, Data transfers

Address busSee Address and data bus
Address spac&ee Memory space, I/0 space
Addressing modes, 2-27-2-36

and string instructions, 2-34
based, 2-30, 2-31, 2-32
based index, 2-34, 2-35
direct, 2-29

immediate operands, 2-28
indexed, 2-32, 2-33
indirect, 2-36

memory operands, 2-28
register indirect, 2-30, 2-31
register operands, 2-27

Index-1

INDEX

AH register, 2-5
AL register, 2-5, 2-18, 2-23
ApBUILDER files, obtaining from BBS, 1-6
Application BBS, 1-5
Architecture
CPU block diagram, 2-2
device feature comparisons, 1-2
family introduction, 1-1
overview, 1-1, 2-1
Arithmetic
instructions, 2-19-2-20
interpretation of 8-bit numbers, 2-20
Arithmetic Logic Unit (ALU), 2-1
Array bounds trap (Type 5 exception), 2-43
ASCII, defined, 2-37
Automatic EOl modeSee Interrupts
Auxiliary Flag (AF), 2-7,2-9
AX register, 2-1, 2-5, 2-18, 2-23, 3-6

B
Base Pointer (BP)See BP register
Baud Rate Compare Register (BXxCMP), 11-12
Baud Rate Counter Register (BXCNT), 11-11
BBS, 1-5
BCD, defined, 2-37
Bit manipulation instructions, 2-21-2-22
BOUND instruction, 2-43, A-8
BP register, 2-1, 2-13, 2-30, 2-34
Breakpoint interrupt (Type 3 exception), 2-43
Bulletin board system (BBS), 1-5
Bus cycles, 3-20-3-47
address/status phase, 3-10-3-12
and 80C187, 14-11
and CSU, 6-14
and Idle mode, 5-13
and PCB accesses, 4-4
and Powerdown mode, 5-16
and T-states, 3-9
data phase, 3-13
HALT cycle, 3-29-3-36
and chip-selects, 6-4
HALT state, exiting, 3-32—-3-36
idle states, 3-18
instruction prefetch, 3-20
interrupt acknowledge (INTA) cycles, 3-6,
3-26-3-27, 8-3
and cascaded 8259As, 8-16-8-17

Index-2

intel.
and chip-selects, 6-4

and external 8259A devices, 8-45
and ICU, 8-44

operation, 3-7-3-20

priorities, 3-46-3-47, 7-2

read cycles, 3-20-3-22

refresh cycles, 3-22-3-23, 7-4, 7-5
control signals, 7-5, 7-6
during HOLD, 3-43-3-45, 7-13-7-14

wait states, 3-13-3-18

write cycles, 3-23-3-26

See also Data transfers

Bus hold protocol, 3-41-3-46

and CLKOUT, 5-6

and CSU, 6-15

and ldle mode, 5-14

and refresh cycles, 3-43-3-45, 7-13-7-14

and reset, 5-9

latency, 3-42-3-43

Bus Interface Unit (BIU), 2-1, 2-3, 2-11, 3-1-3-47

and DMA, 10-8

and DRAM refresh requests, 7-4
and TCU, 9-1

buffering the data bus, 3-37-3-39
modifying interface, 3-36-3-39, 3-39
relationship to RCU, 7-1

synchronizing software and hardware events,

3-39-3-40
using a locked bus, 3-40-3-41
using multiple bus masters, 3-41-3-46
BX register, 2-1, 2-5, 2-30

C

Carry Flag (CF), 2-7, 2-9

Cascade bus, 8-14

Chip-Select Unit (CSU), 6-1
and DMA, 10-9
and DMA acknowledge signal, 10-30
and HALT bus cycles, 3-29
and READY, 6-11-6-12
and wait states, 6-11-6-12
block diagram, 6-3
bus cycle decoding, 6-14
examples, 6-15-6-20
features and benefits, 6-1
functional overview, 6-2—-6-5
programming, 6-5-6-15

intel.

registers, 6-5-6-15
system diagram, 6-16
See also Chip selects

Chip-selects
activating, 6-4
and 80C187 interface, 6-14, 14-11
and bus hold protocol, 6-15
and DMA acknowledge signal, 10-30
and DRAM controllers, 7-1
and guarded memory locations, 6-20
and reserved |/O locations, 6-14
enabling and disabling, 6-11
initializing, 6-6—6-15
methods for generating, 6-1
multiplexed 1/O port pins, 13-6
overlapping, 6-12-6-14
programming considerations, 6-14
start address, 6-10, 6-14
stop address, 6-10
timing, 6-4

CL register, 2-5, 2-21, 2-22

CLKOUT
and bus hold, 5-6
and power management modes, 5-6
and reset, 5-6

Clock divider, 5-19
control register, 5-21

Clock generator, 5-6-5-10
and system reset, 5-6-5-7
output, 5-6
synchronizing CLKOUT and RESOUT, 5-6—

5-7

Clock sources, TCU, 9-12

Code (programs)See Software

Code segment, 2-5

CompusServe forums, 1-6

Counters,See Timer Counter Unit (TCU)

CPU, block diagram, 2-2

Crystal, See Oscillator

CS register, 2-1, 2-5, 2-6, 2-13, 2-23, 2-39, 2-40,

2-41
Customer service, 1-4
CXregister, 2-1, 2-5, 2-23, 2-25, 2-26

D
Data, 3-6
Data busSee Address and data bus

INDEX

Data segment, 2-5
Data sheets, obtaining from BBS, 1-6
Data transfers, 3-1-3-6
instructions, 2-18
PCB considerations, 4-5
PSW flag storage formats, 2-19
See also Bus cycles
Data types, 2-37-2-38
Dl register, 2-1, 2-5, 2-13, 2-22, 2-23, 2-30, 2-32,
2-34
Digital one-shot, code example, 9-17-9-23
Direct Memory Access (DMA) Unit, 10-1-10-38
and BIU, 10-8
and CSU, 10-9
and PCB, 10-3
and SCU, 10-26, 10-30
arming channel, 10-23
DMA acknowledge signal, 10-2, 10-30
DRQ timing, 10-29
examples, 10-30-10-38
HALT bit, 10-27
HALT bits, 10-27
hardware considerations, 10-28-10-30
initialization code, 10-30-10-38
initializing, 10-27
Interrupt Request Latch Register (DMAIRL),
8-40
interrupts, 10-8
generating on terminal count, 10-25
introduction, 10-1
latency, 10-29
modules, 10-9-10-10, 10-12-10-14
multiplexed I/O port pins, 13-7
overview, 10-1-10-15
pointers, programming, 10-15-10-19
priority
channel, 10-9-10-10, 10-26
fixed, 10-9-10-11
module, 10-26-10-28
rotating, 10-11
programming, 10-22-10-27
arming channel, 10-23
channel priority, 10-26
initializing, 10-27
interrupts, 10-25
module priority, 10-26
source, 10-24
suspending transfers, 10-27

Index-3

INDEX inte|®

synchronization, 10-23 Emulation mode, 15-1
transfer count, 10-24-10-25 End-of-Interrupt (EOI) command, 8-32
programming, pointers, 10-15-10-19 and polling, 8-35
requests, 10-3 automatic EOI, 8-13
external, 10-4 issuing in a cascaded system, 8-17
internal, 10-6-10-7 non-specific EOI, 8-13, 8-33
multiplexer, 10-11 rotate in automatic EOl mode, 8-33
SCu, 10-7 rotate on specific EOI, 8-33
software, 10-7 set priority, 8-33
Timer 2, 10-6 specific EOI, 8-13, 8-33
selecting source, 10-11, 10-22 ENTER instruction, A-2
serial transfer example, 10-30-10-38 ES register, 2-1, 2-5, 2-6, 2-13, 2-30, 2-34
synchronization Escape opcode fault (Type 7 exception), 2-43, 14-1
destination-synchronized, 10-5 Examples, codeSee Software
selecting, 10-23 Exceptions, 2-42-2-44
source-synchronized, 10-5 priority, 2-46—2-49
unsynchronized, 10-7 Execution Unit (EU), 2-1, 2-2

timed DMA transfer example, 10-30-10-38 Extra segment, 2-5
transfers, 10-1-10-15

count, 10-7 F

~ programming, 10-24-10-25 Fault exceptions, 2-42

direction, 10-3 FaxBack service, 1-4

rates, 10-29 F-Bus

size, 10-3 and PCB, 4-5

SeleCtlng, 10-19 Operation’ 4-5

suspending, 10-7, 10-8, 10-27 Flags, See Processor Status Word (PSW)
~ terminating, 10-7,10-8 Floating Point, defined, 2-37
Direction Flag (DF), 2-7,2-9, 2-23 Fully nested modeSee Interrupts
Display, defined, A-2
Divide Error trap (Type 0 exception), 2-42 H

DMA Control Register (DxCON), 10-20

DMA Destination Pointer Register, 10-18, 10-19
DMA HALT Register (DMAHALT), 10-28

DMA Source Pointer Register, 10-16, 10-17
Documents, related, 1-3

DRAM controllers I

HALT bus cycle,See Bus cycles
HOLD/HLDA protocol, See Bus hold protocol
Hypertext manuals, obtaining from BBS, 1-6

and wait state control, 7-5 I/O devices
clocked, 7-5 interfacing with, 3-6-3-7
design guidelines, 7-5 memory-mapped, 3-6
unclocked, 7-5 I/O ports, 13-1-13-12
See also Refresh Control Unit addressing, 2-36

DS register, 2-1, 2-5, 2-6, 2-13, 2-30, 2-34, 2-43 bidirectional, 13-1, 13-7

DX register, 2-1, 2-5, 2-36, 3-6 configuration example, 13-12

initializing, 13-11
E open-drain bidirectional, 13-3

output-only, 13-3
overview, 13-1
portl, 13-6

Effective Address (EA), 2-13
calculation, 2-28

Index-4

intel.

port 2, 13-6
port 3, 13-7
programming, 13-7-13-12
registers, 13-7-13-11
reset status, 13-11
1/0 space, 3-1-3-7
accessing, 3-6
reserved locations, 2-15, 6-14
|dle mode, 5-11-5-16, 5-16
bus operation, 5-13
control register, 5-12
entering, 5-11, 5-13
exiting, 5-14-5-15
exiting HALT bus cycle, 3-36
initialization code, 5-15-5-16
Idle states
and bus cycles, 3-18
Immediate operands, 2-28
IMUL instruction, A-9
Initialization Command Words (ICWs), 8-20
accessing, 8-21
ICW1, 8-22-8-24
ICW2, 8-25
ICW3, 8-26-8-28
ICW4, 8-26
initialization sequence, 8-21-8-22
Input/output ports, 13-1
Inputs, asynchronous, synchronizing, B-1
INS instruction, A-2
In-Service Register, 8-12-8-14
reading, 8-35
Instruction Pointer (IP), 2-1, 2-6, 2-13, 2-23, 2-39,
2-40, 2-41
reset status, 2-6
Instruction prefetch bus cycl&ee Bus cycles
Instruction set, 2-17, A-1, D-1
additions, A-1
arithmetic instructions, 2-19-2-20, A-9
bit manipulation instructions, 2-21-2-22, A-9
data transfer instructions, 2-18-2-20, A-1,
A-8
data types, 2-37-2-38
enhancements, A-8
high-level instructions, A-2
nesting, A-2
processor control instructions, 2-27
program transfer instructions, 2-23-2-24
reentrant procedures, A-2

INDEX

rotate instructions, A-10
shift instructions, A-9
string instructions, 2-22-2-23, A-2
INT instruction, single-byteSee Breakpoint
interrupt
INTO instruction, 2-43
INTA bus cycle,See Bus cycles
Integer, defined, 2-37, 14-7
Interrupt Control Unit (ICU), 8-1-8-51
and wait states, 8-44
and Watchdog Timer, 12-2
block diagram, 8-2
connecting external 8259A devices, 8-44
generating READY, 8-44
hardware considerations, 8-42—-8-47
initialization code, 8-47-8-49
integrated 8259A modules, 8-36-8-40
interfacing with an 82C59A Programmable
Interrupt Controller, 3-26-3-28
resetting edge-detection circuit, 8-43
Interrupt controller, 8-1
Interrupt Enable Flag (IF), 2-7, 2-9, 2-41
Interrupt Mask Register (OCW1), 8-30, 8-31
reading, 8-35
Interrupt Request Register, 8-9, 8-30, 8-36, 8-40,
8-41, 8-42
and debugging interrupt handlers, 8-40
clearing latch bit, 8-39
reading, 8-35
setting latch bit, 8-40
Interrupt Vector Table, 2-39, 2-40
Interrupt-on-overflow trap (Type 4 exception),
2-43
Interrupts, 2-39-2-42
and CSU initialization, 6-6
automatic EOI mode, 8-14
edge-sensitive, 8-9-8-10
fully nested mode, 8-4
internal sources, 8-36—8-39
with direct support, 8-37—8-38
with indirect support, 8-36, 8-38, 8-39
latency, 2-44-2-45, 8-43
reducing, 3-29
level-sensitive, 8-9-8-10
maskable, 2-42
masking, 8-14
multiplexed requests, 8-39
nesting, 8-4

Index-5

INDEX

NMI, 2-42
generating with WDT, 12-3
nonmaskable, 2-44
overview, 8-3
priority, 2-46-2-49, 8-4, 8-10-8-12
automatic rotation, 8-12
fixed, 8-11
specific rotation, 8-11
priority cell, 8-6
processing, 2-39-2-41, 8-3-8-4, 8-6
requests, 8-9
reserved, 2-39, 8-25
resetting edge-detection circuit, 8-9, 8-43
resolution time, 8-43
response time, 2-45, 8-43
software, 2-44
spurious, 8-10
and cascaded 8259As, 8-18
structure, 8-4
alternate modes, 8-13, 8-19-8-20
timer interrupts, 9-16
See also Exceptions, Interrupt Control Unit
INTn instruction, 2-44
Invalid opcode trap (Type 6 exception), 2-43
IRET instruction, 2-41

J
JMP $+2 instruction, 8-46, 8-47

L

Latency,See Bus hold protocol, Direct Memory
Access (DMA) Unit, Interrupts

LEAVE instruction, A-7

Local bus, 3-1, 3-41, 14-11

Long integer, defined, 14-7

Long real, defined, 14-7

M

Manuals, online, 1-6
Master Cascade Configuration Register (ICW3),
8-17, 8-26, 8-27
Math coprocessing, 14-1
hardware support, 14-1
overview, 14-1
Memory
addressing, 2-28—-2-36
operands, 2-28

Index-6

intel.
reserved locations, 2-15

Memory devices, interfacing with, 3-6—-3-7
Memory segments, 2-8
accessing, 2-5,2-10, 2-11, 2-13
address
base value, 2-10, 2-11, 2-12
Effective Address (EA), 2-13
logical, 2-10, 2-12
offset value, 2-10, 2-13
overriding, 2-11, 2-13
physical, 2-3, 2-10, 2-12
and dynamic code relocation, 2-13
Memory space, 3-1-3-6
MPICPO, 8-21, 8-24, 8-32, 8-34
MPICP1, 8-21, 8-25, 8-27, 8-29, 8-31

N

Normally not-ready sighabee READY

Normally ready signalSee READY

Numerics coprocessor fault (Type 16 exception),
2-44, 14-13

@)
ONCE mode, 15-1
One-shot, code example, 9-17-9-23
Operation Command Words (OCWSs), 8-20, 8-30
accessing, 8-21
addressing, 8-30
OCw1, 8-30-8-31
OCw2, 8-30-8-33
OCW3, 8-34-8-35
Ordinal, defined, 2-37
Oscillator
external
and powerdown, 5-19
selecting crystal, 5-5
using canned, 5-6
internal crystal, 5-1-5-10
controlling gating to internal clocks,
5-18
operation, 5-2-5-3
selecting G and Ly components, 5-3—
5-6
OUTS instruction, A-2
Overflow Flag (OF), 2-7, 2-9, 2-43

intel.

P
Packed BCD, defined, 2-37
Packed decimal, defined, 14-7
Parity Flag (PF), 2-7, 2-9
PCB Relocation Register, 4-1, 4-3, 4-6
and math coprocessing, 14-1
PDTMR pin, 5-18
Peripheral Control Block (PCB), 4-1
8259A register access ports, 8-21
accessing, 4-4
and DMA Unit, 10-3
and F-Bus operation, 4-5
base address, 4-6—4-7
bus cycles, 4-4
READY signals, 4-4
reserved locations, 4-6
wait states, 4-4
Peripheral control registers, 4-1, 4-6
Pointer, defined, 2-37
Poll Status Byte, 8-35
Polling
and 8259A initialization, 8-35
overview, 8-3
with the Poll command, 8-20, 8-34
POPA instruction, A-1
Port Control Register (PxCON), 13-8

Port Data Latch Register (PxLTCH), 13-10

Port Direction Register (PxDIR), 13-9
Port Pin State Register (PxPIN), 13-11

Power consumption, reducing, 3-29, 5-24

Power Control Register, 5-12
Power management, 5-10-5-24
Power management modes

and HALT bus cycles, 3-29, 3-32, 3-34

compared, 5-24
Powerdown mode, 5-16-5-19, 7-2
and bus cycles, 5-16
control register, 5-12
entering, 5-17
exiting, 5-18-5-19
exiting HALT bus cycle, 3-35
initialization code, 5-15-5-19
Power-Save mode, 5-19-5-23, 7-2
and DRAM refresh rate, 5-22
and refresh interval, 7-7
control register, 5-21
entering, 5-20

INDEX

exiting, 5-22
initialization code, 5-22-5-23
Power-Save Register, 5-21
Priority cell, See Interrupts
Priority Resolver, 8-10
Processor control instructions, 2-27
Processor Status Word (PSW), 2-1, 2-7, 2-41
bits defined, 2-7, 2-9
flag storage formats, 2-19
reset status, 2-7
Program transfer instructions, 2-23-2-24
conditional transfers, 2-24, 2-26
interrupts, 2-26
iteration control, 2-25
unconditional transfers, 2-24
Programming exampleS§ee Software
PUSH instruction, A-8
PUSHA instruction, A-1

R
RCL instruction, A-10
RCR instruction, A-10
Read bus cyclesSee Bus cycles
READY
and chip-selects, 6-11
and internal 8259A modules, 8-44
and normally not-ready signal, 3-16—3-18
and normally ready signal, 3-16-3-17
and PCB accesses, 4-4
and wait states, 3-13-3-18
block diagram, 3-15
implementation approaches, 3-13
timing concerns, 3-17
Real, defined, 14-7
Real-time clock, code example, 9-17-9-20
Refresh address, 7-4
Refresh Address Register (RFADDR), 7-10
Refresh Base Address Register (RFBASE), 7-8
Refresh bus cycleSee Bus cycles
Refresh Clock Interval Register (RFTIME), 7-7,
7-8
Refresh Control Register (RFCON), 7-9, 7-10
Refresh Control Unit (RCU), 7-1-7-14
and bus hold protocol, 7-13-7-14
and Powerdown mode, 7-2
and Power-Save mode, 5-20, 7-2, 7-7
block diagram, 7-1

Index-7

INDEX

bus latency, 7-7
calculating refresh interval, 7-7
control registers, 7-7-7-10
initialization code, 7-11
operation, 7-2
overview, 7-2-7-4
programming, 7-7-7-12
relationship to BIU, 7-1
Register operands, 2-27
Registers, 2-1
control, 2-1
data, 2-4,2-5
general, 2-1, 2-4, 2-5
H & L group, 2-4
index, 2-5,2-13, 2-34
P &I group, 2-4
pointer, 2-1, 2-5, 2-13
pointer and index, 2-4
segment, 2-1, 2-5, 2-11, 2-12
status, 2-1
Relocation RegisteiSee PCB Relocation Register
Reset
and bus hold protocol, 5-6
and clock synchronization, 5-6-5-10
cold, 5-7,5-8
RC circuit for reset input, 5-7
warm, 5-7,5-9
with Watchdog Timer, 12-1
ROL instruction, A-10
ROR instruction, A-10

S
SAL instruction, A-9
SAR instruction, A-9
Serial Communications Unit (SCU)
and DMA, 10-26
asynchronous communications, 11-1-11-8,
11-13-11-17
example, 11-21-11-24
mode 1, 11-6
mode 2, 11-7
mode 3, 11-6
mode 4, 11-6
baud rates, 11-10-11-13
baud timebase clock, 11-20, 11-21
BCLK pin timings, 11-18-11-20
break characters, 11-4,11-14

Index-8

intel.

CTS# pin timings, 11-18
examples, 11-21-11-32
features, 11-1
framing errors, 11-4
hardware considerations, 11-18-11-21
Interrupt Request Latch Register (SCUIRL),
8-41
interrupts, 11-21
master/slave example, 11-24-11-32
multiplexed I/O port pins, 13-6-13-7
multiprocessor communications, 11-14
overrun errors, 11-4
overview, 11-1-11-8
parity errors, 11-4
programming, 11-9-11-18
receiver, 11-2
RX machine, 11-2
stand-alone communications, 11-13
synchronous communications, 11-8, 11-18
example, 11-23
timings, 11-20
transmitter, 11-4
TX machine, 11-4
Serial Port Control Register (SXCON), 11-15
Serial Port Status Register (SxSTS), 11-16, 11-17
Serial ports See Serial Communications Unit
(SCuU)
Serial Receive Buffer Register (SXRBUF), 11-9
Serial Transmit Buffer Register (SXTBUF), 11-10
SHL instruction, A-9
Short integer, defined, 14-7
Short real, defined, 14-7
SHR instruction, A-9
Sl register, 2-1, 2-5, 2-13, 2-22, 2-23, 2-30, 2-32,
2-34
Sign Flag (SF), 2-7, 2-9
Single-step trap (Type 1 exception), 2-43
Slave ID, 8-17
register (ICW3), 8-26, 8-28
Software
code example
80C187 floating-point routine, 14-16
80C187 initialization, 14-13-14-15
digital one-shot, 9-17-9-23
DMA initialization, 10-30-10-38
DMA-driven serial transfers, 10-30
I/O port configuration, 13-12
real-time clock, 9-17-9-19

intel.

SCU asynchronous mode, 11-21-11-22 T

SCU master/slave network, 11-24—
11-32
initialization code, 11-26-11-28
_select_slave routine, 11-27-11-28
_send_slave_command routine,
11-32
_slave_1 routine, 11-29-11-31
SCU synchronous mode, 11-23
square-wave generator, 9-17-9-22
TCU configurations, 9-17-9-23
timed DMA transfers, 10-30-10-38
using the Poll command, 8-51
WDT disable, 12-7, 12-8
WDT initialization, 12-13
WDT reload sequence, 12-4, 12-5
data types, 2-37, 2-38
dynamic code relocation, 2-13, 2-14
interrupts, 2-44
overview, 2-17
See also Addressing modes, Instruction set
Special fully nested mode, 8-19
Special mask mode, 8-19, 8-34-8-35
selecting, 8-35
SPICPO, 8-21, 8-24, 8-32, 8-34
SPICP1, 8-21, 8-25, 8-28, 8-29, 8-31
Square-wave generator, code example, 9-17-9-22
SS register, 2-1, 2-5, 2-6, 2-13, 2-15, 2-30, 2-45
Stack frame pointers, A-2
Stack Pointer, 2-1, 2-5, 2-13, 2-15, 2-45
Stack segment, 2-5
Stacks, 2-15
START registers, CSU, 6-5, 6-7, 6-11
STOP registers, CSU, 6-5, 6-8, 6-12
String instructions, 2-22—2-23
and addressing modes, 2-34
and memory-mapped /O ports, 2-36
operand locations, 2-13
operands, 2-36
Strings
accessing, 2-13, 2-34
defined, 2-37
Synchronizing asynchronous inputs, B-1

INDEX

Technical support, 1-6
Temporary real, defined, 14-7
Terminology

"above" vs. "greater”, 2-26
"below" vs. "less", 2-26
device names, 1-2

Timer Control Registers (TxCON), 9-7, 9-8
Timer Count Registers (TXCNT), 9-10
Timer Counter Unit (TCU), 9-1-9-23

and Power-Save mode, 5-20
application examples, 9-17-9-23
block diagram, 9-2
clock sources, 9-12
configuring a digital one-shot, 9-17-9-23
configuring a real-time clock, 9-17-9-19
configuring a square-wave generator, 9-17—
9-22
counting sequence, 9-12-9-13
dual maxcount mode, 9-13-9-14
enabling and disabling counters, 9-15-9-16
frequency, maximum, 9-17
initializing, 9-11
input synchronization, 9-17
Interrupt Request Latch Register (TIMIRL),
8-42
interrupts, 9-16
overview, 9-1-9-6
programming, 9-6-9-16
considerations, 9-16
pulsed output, 9-14-9-15
retriggering, 9-13-9-14
setup and hold times, 9-16
single maxcount mode, 9-13, 9-14-9-16
timer delay, 9-1
timing, 9-1
and BIU, 9-1
considerations, 9-16
TxOUT signal, 9-15
variable duty cycle output, 9-14-9-15

Timer Maxcount Compare Registers (TXCMPA,

TxCMPB), 9-11

Timers,See Timer Counter Unit (TCU), Watchdog

Timer Unit

Training, 7

Index-9

INDEX inte|®

Trap exceptions, 2-42
Trap Flag (TF), 2-7, 2-9, 2-43, 2-48
T-state

and bus cycles, 3-9

and CLKOUT, 3-8

defined, 3-7

w

Wait states
and bus cycles, 3-13
and chip-selects, 6-11-6-14
and DRAM controllers, 7-1
and external 82C59A device, 8-46
and ICU, 8-44
and PCB accesses, 4-4
and READY input, 3-13
Watchdog Timer (WDT) Unit, 12-1-12-13
and Interrupt Control Unit, 12-2
block diagram, 12-2
disabling, 12-6-12-8
down counter, reloading, 12-1, 12-3, 12-4
generating interrupts, 12-3
initializing, 12-5
output waveforms, 12-6
overview, 12-1-12-2
registers, 12-8-12-13
reset circuit, 12-2
using as general-purpose timer, 12-6
using as watchdog, 12-1-12-5
WDT Count Value Register, 12-11, 12-12
WDT Reload Value Register, 12-9, 12-10
Word integer, defined, 14-7
World Wide Web, 1-6
Write bus cycle, 3-23

Z
Zero Flag (ZF), 2-7, 2-9, 2-23

Index-10

	Title Page
	Copyright Page
	Contents
	CHAPTER 1 Introduction
	1.1 How to Use This Manual
	1.2 Related Documents
	1.3 Electronic Support Systems
	1.3.1 FaxBack Service
	1.3.2 Bulletin Board System (BBS)
	1.3.2.1 How to Find ApBUILDER Software and Hyperte...

	1.3.3 CompuServe Forums
	1.3.4 World Wide Web

	1.4 Technical Support
	1.6 Training Classes
	1.5 Product Literature

	CHAPTER 2 Overview of the 80C186 Family Architectu...
	2.1 Architectural Overview
	2.1.1 Execution Unit
	2.1.2 Bus Interface Unit
	2.1.3 General Registers
	2.1.4 Segment Registers
	2.1.5 Instruction Pointer
	2.1.6 Flags
	2.1.7 Memory Segmentation
	2.1.8 Logical Addresses
	2.1.9 Dynamically Relocatable Code
	2.1.10 Stack Implementation
	2.1.11 Reserved Memory and I/O Space

	2.2 Software Overview
	2.2.1 Instruction Set
	2.2.1.1 Data Transfer Instructions
	2.2.1.2 Arithmetic Instructions
	2.2.1.3 Bit Manipulation Instructions
	2.2.1.4 String Instructions
	2.2.1.5 Program Transfer Instructions
	2.2.1.6 Processor Control Instructions

	2.2.2 Addressing Modes
	2.2.2.1 Register and Immediate Operand Addressing ...
	2.2.2.2 Memory Addressing Modes
	2.2.2.3 I/O Port Addressing
	2.2.2.4 Data Types Used in the 80C186 Modular Core...

	2.3 Interrupts and Exception Handling
	2.3.1 Interrupt/Exception Processing
	2.3.1.1 Non-Maskable Interrupts
	2.3.1.2 Maskable Interrupts
	2.3.1.3 Exceptions

	2.3.2 Software Interrupts
	2.3.3 Interrupt Latency
	2.3.4 Interrupt Response Time
	2.3.5 Interrupt and Exception Priority

	CHAPTER 3 Bus Interface Unit
	3.1 Multiplexed Address and Data Bus
	3.2 Address and Data Bus Concepts
	3.2.1 16-Bit Data Bus
	3.2.2 8-Bit Data Bus

	3.3 Memory and I/O Interfaces
	3.3.1 16-Bit Bus Memory and I/O Requirements
	3.3.2 8-Bit Bus Memory and I/O Requirements

	3.4 Bus Cycle Operation
	3.4.1 Address/Status Phase
	3.4.2 Data Phase
	3.4.3 Wait States
	3.4.4 Idle States

	3.5 Bus Cycles
	3.5.1 Read Bus Cycles
	3.5.1.1 Refresh Bus Cycles

	3.5.2 Write Bus Cycles
	3.5.3 Interrupt Acknowledge Bus Cycle
	3.5.3.1 System Design Considerations

	3.5.4 HALT Bus Cycle
	3.5.5 Temporarily Exiting the HALT Bus State
	3.5.6 Exiting HALT

	3.6 System Design Alternatives
	3.6.1 Buffering the Data Bus
	3.6.2 Synchronizing Software and Hardware Events
	3.6.3 Using a Locked Bus

	3.7 Multi-master Bus System Designs
	3.7.1 Entering Bus HOLD
	3.7.1.1 HOLD Bus Latency
	3.7.1.2 Refresh Operation During a Bus HOLD

	3.7.2 Exiting HOLD

	3.8 Bus Cycle Priorities

	CHAPTER 4 Peripheral Control Block
	4.1 Peripheral Control Registers
	4.2 PCB Relocation Register
	4.3 Reserved Locations
	4.4 Accessing the Peripheral Control Block
	4.4.1 Bus Cycles
	4.4.2 READY Signals and Wait States
	4.4.3 F-Bus Operation

	4.5 Setting the PCB Base Location
	4.5.1 Considerations for the 80C187 Math Coprocess...
	4.4.3.1 Writing the PCB Relocation Register
	4.4.3.2 Accessing the Peripheral Control Registers...
	4.4.3.3 Accessing Reserved Locations

	CHAPTER 5 Clock Generation and Power Management
	5.1 Clock Generation
	5.1.1 Crystal Oscillator
	5.1.1.1 Oscillator Operation
	5.1.1.2 Selecting Crystals

	5.1.2 Using an External Oscillator
	5.1.3 Output from the Clock Generator
	5.1.4 Reset and Clock Synchronization

	5.2 Power Management
	5.2.1 Idle Mode
	5.2.1.1 Entering Idle Mode
	5.2.1.2 Bus Operation During Idle Mode
	5.2.1.3 Leaving Idle Mode
	5.2.1.4 Example Idle Mode Initialization Code
	Example 5�1. Initializing the Power Management Uni...

	5.2.2 Powerdown Mode
	5.2.2.1 Entering Powerdown Mode
	5.2.2.2 Leaving Powerdown Mode

	5.2.3 Power-Save Mode
	5.2.3.1 Entering Power-Save Mode
	5.2.3.2 Leaving Power-Save Mode
	5.2.3.3 Example Power-Save Initialization Code
	Example 5�2. Initializing the Power Management Uni...

	5.2.4 Implementing a Power Management Scheme

	CHAPTER 6 Chip-Select Unit
	6.1 Common Methods for Generating Chip-Selects
	6.2 Chip-Select Unit Features and Benefits
	6.3 Chip-Select Unit Functional Overview
	6.4 Programming
	6.4.1 Initialization Sequence
	6.4.2 Start Address
	6.4.3 Stop Address
	6.4.4 Enabling and Disabling Chip-Selects
	6.4.5 Bus Wait State and Ready Control
	6.4.6 Overlapping Chip-Selects
	6.4.7 Memory or I/O Bus Cycle Decoding
	6.4.8 Programming Considerations

	6.5 Chip-Selects And Bus Hold
	6.6 Examples
	6.6.1 Example 1: Typical System Configuration
	Example 6�1. Initializing the Chip-Select Unit
	6.6.2 Example 2: Detecting Attempts to Access Guar...

	CHAPTER 7 Refresh Control Unit
	7.1 The Role of the Refresh Control Unit
	7.2 Refresh Control Unit Capabilities
	7.3 Refresh Control Unit Operation
	7.4 Refresh Addresses
	7.5 Refresh Bus Cycles
	7.6 Guidelines for Designing DRAM Controllers
	7.7 Programming the Refresh Control Unit
	7.7.1 Calculating the Refresh Interval
	7.7.2 Refresh Control Unit Registers
	7.7.2.1 Refresh Base Address Register
	7.7.2.2 Refresh Clock Interval Register
	7.7.2.3 Refresh Control Register
	7.7.2.4 Refresh Address Register

	7.7.3 Programming Example
	Example 7�1. Initializing the Refresh Control Unit...

	7.8 Refresh Operation and Bus HOLD

	CHAPTER 8 Interrupt Control Unit
	8.1 Functional Overview: the Interrupt Controller
	8.2 Interrupt Priority and Nesting
	8.3 OVERVIEW of the 8259A ARCHITECTURE
	8.3.1 A Typical Interrupt Sequence Using the 8259A...
	8.3.2 Interrupt Requests
	8.3.2.1 Edge and Level Triggering
	8.3.2.2 The Interrupt Request Register
	8.3.2.3 Spurious Interrupts

	8.3.3 The Priority Resolver and Priority Resolutio...
	8.3.3.1 Default (Fixed) Priority
	8.3.3.2 Changing the Default Priority: Specific Ro...
	8.3.3.3 Changing the Default Priority: Automatic R...

	8.3.4 The In-Service Register
	8.3.4.1 Clearing the In-Service Bits: Non-Specific...
	8.3.4.2 Clearing the In-Service Bits: Specific End...
	8.3.4.3 Automatic End-Of-Interrupt Mode

	8.3.5 Masking Interrupts
	8.3.6 Cascading 8259As
	8.3.6.1 Master/Slave Connection
	8.3.6.2 The Cascaded Interrupt Acknowledge Cycle: ...
	8.3.6.3 Master Cascade Configuration
	8.3.6.4 Slave ID
	8.3.6.5 Issuing EOI Commands in a Cascaded System
	8.3.6.6 Spurious Interrupts in a Cascaded System

	8.3.7 Alternate Modes of Operation: Special Mask M...
	8.3.8 Alternate Modes of Operation: Special Fully ...
	8.3.9 Alternate Modes of Operation: The Poll Comma...

	8.4 Programming the 8259A Module
	8.4.1 Initialization and Operation Command Words
	8.4.2 Programming Sequence and Register Addressing...
	8.4.3 Initializing the 8259A Module
	8.4.3.1 8259A Initialization Sequence
	8.4.3.2 ICW1: Edge/Level Mode, Single/Cascade Mode...
	8.4.3.3 ICW2: Base Interrupt Type
	8.4.3.4 ICW3: Cascaded Pins/Slave Address
	8.4.3.5 ICW4: Special Fully Nested Mode, EOI Mode,...

	8.4.4 The Operation Command Words
	8.4.4.1 Masking Interrupts: OCW1
	8.4.4.2 EOI And Interrupt Priority: OCW2
	8.4.4.3 Special Mask Mode, Poll Mode and Register ...

	8.5 Module Integration: The 80C186EC Interrupt Con...
	8.5.1 Internal Interrupt Sources
	8.5.1.1 Directly Supported Internal Interrupt Sour...
	8.5.1.2 Indirectly Supported Internal Interrupt So...
	8.5.1.3 Using the Interrupt Request Latch Register...
	8.5.1.4 Using the Interrupt Request Latch Register...

	8.6 Hardware Considerations With the Interrupt Con...
	8.6.1 Interrupt Latency and Response Time
	8.6.2 Resetting the Edge Detector
	8.6.3 Ready Generation
	8.6.4 Connecting External 8259A Devices
	8.6.4.1 The External INTA Cycle
	8.6.4.2 Timing Constraints

	8.7 Module Examples
	Example 8�1. Initializing the Interrupt Control Un...
	Example 8�2. Template for a Simple Interrupt Handl...
	Example 8�3. Using the Poll Command

	CHAPTER 9 Timer/Counter Unit
	9.1 Functional Overview
	9.2 Programming the Timer/Counter Unit
	9.2.1 Initialization Sequence
	9.2.2 Clock Sources
	9.2.3 Counting Modes
	9.2.3.1 Retriggering

	9.2.4 Pulsed and Variable Duty Cycle Output
	9.2.5 Enabling/Disabling Counters
	9.2.6 Timer Interrupts
	9.2.7 Programming Considerations

	9.3 Timing
	9.3.1 Input Setup and Hold Timings
	9.3.2 Synchronization and Maximum Frequency
	9.3.2.1 Timer/Counter Unit Application Examples

	9.3.3 Real-Time Clock
	9.3.4 Square-Wave Generator
	9.3.5 Digital One-Shot

	Example 9�1. Configuring a Real-Time Clock
	Example 9�2. Configuring a Square-Wave Generator
	Example 9�3. Configuring a Digital One-Shot

	CHAPTER 10 Direct Memory Access Unit
	10.1 Functional Overview
	10.1.1 The DMA Transfer
	10.1.1.1 DMA Transfer Directions
	10.1.1.2 Byte and Word Transfers

	10.1.2 Source and Destination Pointers
	10.1.3 DMA Requests
	10.1.4 External Requests
	10.1.4.1 Source Synchronization
	10.1.4.2 Destination Synchronization

	10.1.5 Internal Requests
	10.1.5.1 Integrated Peripheral Requests
	10.1.5.2 Timer 2-Initiated Transfers
	10.1.5.3 Serial Communications Unit Transfers
	10.1.5.4 Unsynchronized Transfers

	10.1.6 DMA Transfer Counts
	10.1.7 Termination and Suspension of DMA Transfers...
	10.1.7.1 Termination at Terminal Count
	10.1.7.2 Software Termination
	10.1.7.3 Suspension of DMA During NMI
	10.1.7.4 Software Suspension

	10.1.8 DMA Unit Interrupts
	10.1.9 DMA Cycles and the BIU
	10.1.10 The Two-Channel DMA Module
	10.1.10.1 DMA Channel Arbitration
	10.1.10.1.1 Fixed Priority

	10.1.10.1.2 Rotating Priority
	10.1.10.1.3 The Internal DMA Request Multiplexer

	10.1.11 DMA Module Integration
	10.1.11.1 DMA Unit Structure

	10.2 Programming the DMA Unit
	10.2.1 DMA Channel Parameters
	10.2.1.1 Programming the Source and Destination Po...
	10.2.1.2 Selecting Byte or Word Size Transfers
	10.2.1.3 Selecting the Source of DMA Requests
	10.2.1.4 Arming the DMA Channel
	10.2.1.5 Selecting Channel Synchronization
	10.2.1.6 Programming the Transfer Count Options
	10.2.1.7 Generating Interrupts on Terminal Count
	10.2.1.8 Setting the Relative Priority of a Channe...

	10.2.2 Setting the Inter-Module Priority
	10.2.3 Using the DMA Unit with the Serial Ports
	10.2.4 Suspension of DMA Transfers Using the DMA H...
	10.2.5 Initializing the DMA Unit

	10.3 Hardware Considerations and the DMA Unit
	10.3.1 DRQ Pin Timing Requirements
	10.3.2 DMA Latency
	10.3.3 DMA Transfer Rates
	10.3.4 Generating a DMA Acknowledge

	10.4 DMA Unit Examples
	Example 10�1. Initializing the DMA Unit
	Example 10�2. DMA-Driven Serial Transfers
	Example 10�3. Timed DMA Transfers

	CHAPTER 11 Serial Communications Unit
	11.1 Introduction
	11.1.1 Asynchronous Communications
	11.1.1.1 RX Machine
	11.1.1.2 TX Machine
	11.1.1.3 Modes 1, 3 and 4
	11.1.1.4 Mode 2

	11.1.2 Synchronous Communications

	11.2 Programming
	11.2.1 Baud Rates
	11.2.2 Asynchronous Mode Programming
	11.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial C...
	11.2.2.2 Modes 2 and 3 for Multiprocessor Communic...
	11.2.2.3 Sending and Receiving a Break Character

	11.2.3 Programming in Mode 0

	11.3 Hardware Considerations for the Serial Port
	11.3.1 CTS Pin Timings
	11.3.2 BCLK Pin Timings
	11.3.3 Mode 0 Timings
	11.3.3.1 CLKOUT as Baud Timebase Clock
	11.3.3.2 BCLK as Baud Timebase Clock

	11.4 Serial Communications Unit Interrupts
	11.5 Serial Port Examples
	11.5.1 Asynchronous Mode Example
	Example 11�1. Asynchronous Mode 4 Example

	11.5.2 Mode 0 Example
	Example 11�2. Mode 0 Example

	11.5.3 Master/Slave Example
	Example 11�3. Master/Slave — Implementing the Mast...
	Example 11�4. Master/Slave — The _select_slave Rou...
	Example 11�5. Master/Slave — The slave_1 Routine
	Example 11�6. Master/Slave — The _send_slave_comma...

	CHAPTER 12 Watchdog Timer Unit
	12.1 Functional Overview
	12.2 Using the Watchdog Timer as a System Watchdog...
	12.2.1 Reloading the Watchdog Timer Down Counter
	12.2.2 Watchdog Timer Reload Value
	Example 12�1. Reload Sequence (Peripheral Control ...
	Example 12�2. Reload Sequence (Peripheral Control ...

	12.2.3 Initialization

	12.3 Using the Watchdog Timer as a General-Purpose...
	12.4 Disabling the Watchdog Timer
	Example 12�3. Disabling the Watchdog Timer (Periph...
	Example 12�4. Disabling the Watchdog Timer (Periph...

	12.5 Watchdog Timer Registers
	12.6 Initialization Example
	Example 12�5. Initializing the Watchdog Timer (Per...

	CHAPTER 13 Input/Output Ports
	13.1 Functional Overview
	13.1.1 Bidirectional Port
	13.1.2 Output Port
	13.1.3 Open-Drain Bidirectional Port
	13.1.4 Port Pin Organization
	13.1.4.1 Port 1 Organization
	13.1.4.2 Port 2 Organization
	13.1.4.3 Port 3 Organization

	13.2 Programming the I/O Port Unit
	13.2.1 Port Control Register
	13.2.2 Port Direction Register
	13.2.3 Port Data Latch Register
	13.2.4 Port Pin State Register
	13.2.5 Initializing the I/O Ports

	13.3 Programming Example
	Example 13�1. I/O Port Programming Example

	CHAPTER 14 Math Coprocessing
	14.1 Overview of Math Coprocessing
	14.2 Availability of Math Coprocessing
	14.3 The 80c187 Math Coprocessor
	14.3.1 80C187 Instruction Set
	14.3.1.1 Data Transfer Instructions
	14.3.1.2 Arithmetic Instructions
	14.3.1.3 Comparison Instructions
	14.3.1.4 Transcendental Instructions
	14.3.1.5 Constant Instructions
	14.3.1.6 Processor Control Instructions

	14.3.2 80C187 Data Types

	14.4 Microprocessor and Coprocessor Operation
	14.4.1 Clocking the 80C187
	14.4.2 Processor Bus Cycles Accessing the 80C187
	14.4.3 System Design Tips
	14.4.4 Exception Trapping

	14.5 Example Math Coprocessor Routines
	Example 14�1. Initialization Sequence for 80C187 M...
	Example 14�2. Floating Point Math Routine Using FS...

	CHAPTER 15 Once Mode
	15.1 Entering/Leaving Once Mode

	APPENDIX A 80C186 Instruction Set Additions and Ex...
	A.1 80C186 Instruction Set Additions
	A.1.1 Data Transfer Instructions
	A.1.2 String Instructions
	A.1.3 High-Level Instructions

	A.2 80C186 Instruction Set Enhancements
	A.2.1 Data Transfer Instructions
	A.2.2 Arithmetic Instructions
	A.2.3 Bit Manipulation Instructions
	A.2.3.1 Shift Instructions
	A.2.3.2 Rotate Instructions

	APPENDIX B Input Synchronization
	B.1 Why Synchronizers are Required
	B.2 Asynchronous Pins

	APPENDIX C Instruction Set Descriptions
	APPENDIX D Instruction Set Opcodes and Clock Cycle...
	Tables
	Table 1�1. Comparison of 80C186 Modular Core Famil...
	Table 1�2. Related Documents and Software�(Continu...
	Table 2�1. Implicit Use of General Registers
	Table 2�2. Logical Address Sources �
	Table 2�3. Data Transfer Instructions �
	Table 2�4. Arithmetic Instructions �
	Table 2�5. Arithmetic Interpretation of 8-Bit Numb...
	Table 2�6. Bit Manipulation Instructions �
	Table 2�7. String Instructions �
	Table 2�8. String Instruction Register and Flag Us...
	Table 2�9. Program Transfer Instructions �
	Table 2�10. Interpretation of Conditional Transfer...
	Table 2�11. Processor Control Instructions
	Table 2�12. Supported Data Types �
	Table 3�1. Bus Cycle Types �
	Table 3�2. Read Bus Cycle Types �
	Table 3�3. Read Cycle Critical Timing Parameters �...
	Table 3�4. Write Bus Cycle Types
	Table 3�5. Write Cycle Critical Timing Parameters ...
	Table 3�6. HALT Bus Cycle Pin States
	Table 3�7. Signal Condition Entering HOLD �
	Table 4�1. Peripheral Control Block
	Table 4�2.
	Table 4�3.
	Table 5�1. Suggested Values for Inductor L1 in Thi...
	Table 5�2. Summary of Power Management Modes �
	Table 6�1. Chip-Select Unit Registers �
	Table 6�2. Memory and I/O Compare Addresses �
	Table 6�3. Example Adjustments for Overlapping Chi...
	Table 7�1. Identification of Refresh Bus Cycles �
	Table 8�1. Operation Command Word Addressing
	Table 8�2. OCW2 Instruction Field Decoding (Contin...
	Table 9�1. Timer 0 and 1 Clock Sources
	Table 9�2. Timer Retriggering
	Table 10�1. DMA Unit Naming Conventions and Signal...
	Table 11�1. BxCMP Values for Typical Baud Rates an...
	Table 13�1. Port 1 Multiplexing Options
	Table 13�2. Port 2 Multiplexing Options �
	Table 13�3. Port 3 Multiplexing Options
	Table 14�1. 80C187 Data Transfer Instructions
	Table 14�2. 80C187 Arithmetic Instructions �
	Table 14�3. 80C187 Comparison Instructions �
	Table 14�4. 80C187 Transcendental Instructions �
	Table 14�5. 80C187 Constant Instructions
	Table 14�6. 80C187 Processor Control Instructions ...
	Table 14�7. 80C187 I/O Port Assignments
	Table C�1. Instruction Format Variables
	Table C�2. Instruction Operands
	Table C�3. Flag Bit Functions
	Table C�4. Instruction Set (Continued)
	Table D�1. Operand Variables
	Table D�2. Instruction Set Summary (Continued)
	Table D�3. Machine Instruction Decoding Guide (Con...
	Table D�4. Mnemonic Encoding Matrix (Left Half)�
	Table D�4. Mnemonic Encoding Matrix (Right Half)
	Table D�5. Abbreviations for Mnemonic Encoding Mat...

	Figures
	Figure 2�1. Simplified Functional Block Diagram of...
	Figure 2�2. Physical Address Generation
	Figure 2�3. General Registers
	Figure 2�4. Segment Registers
	Figure 2�5. Processor Status Word
	Figure 2�6. Segment Locations in Physical Memory
	Figure 2�7. Currently Addressable Segments
	Figure 2�8. Logical and Physical Address
	Figure 2�9. Dynamic Code Relocation
	Figure 2�10. Stack Operation
	Figure 2�11. Flag Storage Format
	Figure 2�12. Memory Address Computation
	Figure 2�13. Direct Addressing
	Figure 2�14. Register Indirect Addressing
	Figure 2�15. Based Addressing
	Figure 2�16. Accessing a Structure with Based Addr...
	Figure 2�17. Indexed Addressing
	Figure 2�18. Accessing an Array with Indexed Addre...
	Figure 2�19. Based Index Addressing
	Figure 2�20. Accessing a Stacked Array with Based ...
	Figure 2�21. String Operand
	Figure 2�22. I/O Port Addressing
	Figure 2�23. 80C186 Modular Core Family Supported ...
	Figure 2�24. Interrupt Control Unit
	Figure 2�25. Interrupt Vector Table
	Figure 2�26. Interrupt Sequence
	Figure 2�27. Interrupt Response Factors
	Figure 2�28. Simultaneous NMI and Exception
	Figure 2�29. Simultaneous NMI and Single Step Inte...
	Figure 2�30. Simultaneous NMI, Single Step and Mas...
	Figure 3�1. Physical Data Bus Models
	Figure 3�2. 16-Bit Data Bus Byte Transfers
	Figure 3�3. 16-Bit Data Bus Even Word Transfers
	Figure 3�4. 16-Bit Data Bus Odd Word Transfers
	Figure 3�5. 8-Bit Data Bus Word Transfers
	Figure 3�6. Typical Bus Cycle
	Figure 3�7. T-State Relation to CLKOUT
	Figure 3�8. BIU State Diagram
	Figure 3�9. T-State and Bus Phases
	Figure 3�10. Address/Status Phase Signal Relations...
	Figure 3�11. Demultiplexing Address Information
	Figure 3�12. Data Phase Signal Relationships
	Figure 3�13. Typical Bus Cycle with Wait States
	Figure 3�14. READY Pin Block Diagram
	Figure 3�15. Generating a Normally Not-Ready Bus S...
	Figure 3�16. Generating a Normally Ready Bus Signa...
	Figure 3�17. Normally Not-Ready System Timing
	Figure 3�18. Normally Ready System Timings
	Figure 3�19. Typical Read Bus Cycle
	Figure 3�20. Read-Only Device Interface
	Figure 3�21. Typical Write Bus Cycle
	Figure 3�22. 16-Bit Bus Read/Write Device Interfac...
	Figure 3�23. Interrupt Acknowledge Bus Cycle
	Figure 3�24. Typical 82C59A Interface
	Figure 3�25. HALT Bus Cycle
	Figure 3�26. Returning to HALT After a HOLD/HLDA B...
	Figure 3�27. Returning to HALT After a Refresh Bus...
	Figure 3�28. Returning to HALT After a DMA Bus Cyc...
	Figure 3�29. Exiting HALT (Powerdown Mode)
	Figure 3�30. Exiting HALT (Active/Idle Mode)
	Figure 3�31. DEN and DT/R Timing Relationships
	Figure 3�32. Buffered AD Bus System
	Figure 3�33. Qualifying DEN with Chip-Selects
	Figure 3�34. Timing Sequence Entering HOLD
	Figure 3�35. Refresh Request During HOLD
	Figure 3�36. Latching HLDA
	Figure 3�37. Exiting HOLD
	Figure 4�1. PCB Relocation Register
	Figure 5�1. Clock Generator
	Figure 5�2. Ideal Operation of Pierce Oscillator
	Figure 5�3. Crystal Connections to Microprocessor
	Figure 5�4. Equations for Crystal Calculations
	Figure 5�5. Simple RC Circuit for Powerup Reset
	Figure 5�6. Cold Reset Waveform
	Figure 5�7. Warm Reset Waveform
	Figure 5�8. Clock Synchronization at Reset
	Figure 5�9. Power Control Register
	Figure 5�10. Entering Idle Mode
	Figure 5�11. HOLD/HLDA During Idle Mode
	Figure 5�12. Entering Powerdown Mode
	Figure 5�13. Powerdown Timer Circuit
	Figure 5�14. Power-Save Register
	Figure 5�15. Power-Save Clock Transition
	Figure 6�1. Common Chip-Select Generation Methods
	Figure 6�2. Chip-Select Block Diagram
	Figure 6�3. Chip-Select Relative Timings
	Figure 6�4. UCS Reset Configuration
	Figure 6�5. START Register Definition
	Figure 6�6. STOP Register Definition
	Figure 6�6. STOP Register Definition (Continued)
	Figure 6�7. Wait State and Ready Control Functions...
	Figure 6�8. Overlapping Chip-Selects
	Figure 6�9. Using Chip-Selects During HOLD
	Figure 6�10. Typical System
	Figure 6�11. Guarded Memory Detector
	Figure 7�1. Refresh Control Unit Block Diagram
	Figure 7�2. Refresh Control Unit Operation Flow Ch...
	Figure 7�3. Refresh Address Formation
	Figure 7�4. Suggested DRAM Control Signal Timing R...
	Figure 7�5. Formula for Calculating Refresh Interv...
	Figure 7�6. Refresh Base Address Register
	Figure 7�7. Refresh Clock Interval Register
	Figure 7�8. Refresh Control Register
	Figure 7�9. Refresh Address Register
	Figure 7�10. Regaining Bus Control to Run a DRAM R...
	Figure 8�1. Interrupt Control Unit Block Diagram
	Figure 8�2. Interrupt Acknowledge Cycle
	Figure 8�3. 8259A Module Block Diagram
	Figure 8�4. Priority Cell
	Figure 8�5. Spurious Interrupts
	Figure 8�6. Default Priority
	Figure 8�7. Specific Rotation
	Figure 8�8. Automatic Rotation
	Figure 8�9. Typical Cascade Connection
	Figure 8�10. Spurious Interrupts in a Cascaded Sys...
	Figure 8�11. 8259A Module Initialization Sequence
	Figure 8�12. ICW1 Register
	Figure 8�13. ICW2 Register
	Figure 8�14. ICW3 Register — Master Cascade Config...
	Figure 8�15. ICW3 Register — Slave ID
	Figure 8�16. ICW4 Register
	Figure 8�17. OCW1 — Interrupt Mask Register
	Figure 8�18. OCW2 Register
	Figure 8�19. OCW3 Register
	Figure 8�20. Poll Status Byte
	Figure 8�21. Interrupt Request Latch Register Func...
	Figure 8�22. Default Slave 8259 Module Priority
	Figure 8�23. Multiplexed Interrupt Requests
	Figure 8�24. DMA Interrupt Request Latch Register
	Figure 8�25. Serial Communications Interrupt Reque...
	Figure 8�26. Timer Interrupt Request Latch Registe...
	Figure 8�27. Interrupt Resolution Time
	Figure 8�28. Resetting the Edge Detection Circuit
	Figure 8�29. Typical Cascade Connection for 82C59A...
	Figure 8�30. Software Wait State for External 82C5...
	Figure 9�1. Timer/Counter Unit Block Diagram
	Figure 9�2. Counter Element Multiplexing and Timer...
	Figure 9�3. Timers 0 and 1 Flow Chart
	Figure 9�3. Timers 0 and 1 Flow Chart (Continued)
	Figure 9�4. Timer/Counter Unit Output Modes
	Figure 9�5. Timer 0 and Timer 1 Control Registers
	Figure 9�5. Timer 0 and Timer 1 Control Registers ...
	Figure 9�6. Timer 2 Control Register
	Figure 9�7. Timer Count Registers
	Figure 9�8. Timer Maxcount Compare Registers
	Figure 9�9. TxOUT Signal Timing
	Figure 10�1. Typical DMA Transfer
	Figure 10�2. DMA Request Minimum Response Time
	Figure 10�3. Source-Synchronized Transfers
	Figure 10�4. Destination-Synchronized Transfers
	Figure 10�5. Two-Channel DMA Module
	Figure 10�6. Examples of DMA Priority
	Figure 10�7. Internal DMA Request Multiplexer
	Figure 10�8. 80C186EC/C188EC DMA Unit
	Figure 10�9. DMA Source Pointer (High-Order Bits)
	Figure 10�10. DMA Source Pointer (Low-Order Bits)
	Figure 10�11. DMA Destination Pointer (High-Order ...
	Figure 10�12. DMA Destination Pointer (Low-Order B...
	Figure 10�13. DMA Control Register
	Figure 10�13. DMA Control Register (Continued)
	Figure 10�13. DMA Control Register (Continued)
	Figure 10�14. DMA Module Priority Register
	Figure 10�15. Transfer Count Register
	Figure 10�16. DMA Module HALT Register
	Figure 11�1. Typical 10-Bit Asynchronous Data Fram...
	Figure 11�2. RX Machine
	Figure 11�3. TX Machine
	Figure 11�4. Mode 1 Waveform
	Figure 11�5. Mode 3 Waveform
	Figure 11�6. Mode 4 Waveform
	Figure 11�7. Mode 0 Waveforms
	Figure 11�8. Serial Receive Buffer Register (SxRBU...
	Figure 11�9. Serial Transmit Buffer Register (SxTB...
	Figure 11�10. Baud Rate Counter Register (BxCNT)
	Figure 11�11. Baud Rate Compare Register (BxCMP)
	Figure 11�12. Calculating the BxCMP Value for a Sp...
	Figure 11�13. Serial Port Control Register (SxCON)...
	Figure 11�14. Serial Port Status Register (SxSTS)
	Figure 11�14. Serial Port Status Register (Continu...
	Figure 11�15. CTS Recognition Sequence
	Figure 11�16. BCLK Synchronization
	Figure 11�17. Mode 0, BxCMP > 2
	Figure 11�18. Master/Slave Example
	Figure 12�1. Block Diagram of the Watchdog Timer U...
	Figure 12�2. Watchdog Timer Reset Circuit
	Figure 12�3. Generating Interrupts with the Watchd...
	Figure 12�4. WDTOUT Waveforms
	Figure 12�5. WDT Reload Value (High)
	Figure 12�6. WDT Reload Value (Low)
	Figure 12�7. WDT Count Value (High)
	Figure 12�8. WDT Count Value (Low)
	Figure 13�1. Simplified Logic Diagram of a Bidirec...
	Figure 13�2. Simplified Logic Diagram of an Output...
	Figure 13�3. Simplified Logic Diagram of an Open-D...
	Figure 13�4. Port Control Register (PxCON)
	Figure 13�5. Port Direction Register (PxDIR)
	Figure 13�6. Port Data Latch Register (PxLTCH)
	Figure 13�7. Port Pin State Register (PxPIN)
	Figure 14�1. 80C187-Supported Data Types
	Figure 14�2. 80C186 Modular Core Family/80C187 Sys...
	Figure 14�3. 80C187 Configuration with a Partially...
	Figure 14�4. 80C187 Exception Trapping via Process...
	Figure 15�1. Entering/Leaving ONCE Mode
	Figure A�1. Formal Definition of ENTER
	Figure A�2. Variable Access in Nested Procedures
	Figure A�3. Stack Frame for Main at Level 1
	Figure A�4. Stack Frame for Procedure A at Level 2...
	Figure A�5. Stack Frame for Procedure B at Level 3...
	Figure A�6. Stack Frame for Procedure C at Level 3...
	Figure B�1. Input Synchronization Circuit

