

To order Intel Literature write or call:

INTEL LITERATURE SALES
P.O. BOX 58130
SANTA CLARA, CA 95052-8130

1988 HANDBOOKS

LITERATURE

TOLL FREE NUMBER:
(800) 548-4725'

Product line handbooks contain data sheets, application notes, article reprints and other design information ..

TITLE

COMPLETE SET OF 8 HANDBOOKS
Save $50.00 off the retail price of $175.00. (Price applicable to U.S. and Canadian
shipments only)

AUTOMOTIVE HANDBOOK, 1200 pages
(Not included in handbook set)

COMPONENTS QUALITY IRELIABILITY HANDBOOK, 288 pages
(Available in July)

EMBEDDED CONTROLLER HANDBOOK, 2016 pages
(2 volume set)

MEMORY COMPONENTS HANDBOOK, 528 pages

MEMORY COMPONENTS HANDBOOK SUPPLEMENT, 256 pages
(Available in July)

MICROCOMMUNICATIONS HANDBOOK, 1648 pages

MICROPROCESSOR AND PERIPHERAL HANDBOOK, 2224 pages
(2 volume set)

MILITARY HANDBOOK, 1776 pages
(Not included in handbook set)

OEM BOARDS AND SYSTEMS HANDBOOK, 880 pages

PROGRAMMABLE LOGIC HANDBOOK, 448 pages

SYSTEMS QUALITY IRELIABILITY HANDBOOK, 160 pages

PRODUCT GUIDE (No charge)
Overview of Intel's complete product lines

DEVELOPMENT TOOLS CATALOG (No charge)

INTEL PACKAGING OUTLINES .AND DIMENSIONS (No charge)
Packaging types, number of leads, etc.

LITERATURE PRICE LIST (No charge)
List of Intel Literature

LITERATURE
ORDER NUMBER

231003

231792

210997

210918

210830
230663

231658
230843

210461

280407
296083
231762
210846

280199
231369

210620

For U.S. and Canadian literature pricing, call or write Intel Literature Sales. In Europe and other international locations,
please contact your local Intel Sales Office or Distributor for literature prices. .

'Good in the U.S. and Canada.

In t e I ... L it era t u a
';::~I"·~UII?'rvi~te =====~:"'1111

Get Intel's Latest Technical
Literature, Automatically!

Exclusive, Intel Literature Update Service

Take advantage of Intel's year-long, low cost Literature Update Service and you will receive
your first package of information followed by automatic quarterly updates on all the latest
product and service news from Intel.

Choose one or all five product categories update
Each product category update listed below covers in depth, all the latest Handbooks,
Data Sheets, Application Notes, Reliability Reports, Errata Reports, Article Reprints,
Promotional Offers, Brochures, Benchmark Reports, Technical Papers and much more ...

I"'"" 1. Microprocessors

Product line handbooks on Microprocessors, Embedded Controllers and Component
Quality/Reliability, Plus, the Product Guide, Literature Guide, Packaging Information
and 3 quarterly updates. $70.00 Order Number: 555110

I"'"" 2. Peripherals ----------------------~
Product line handbooks on Peripherals, Microcommunications, Embedded Controllers,
and Component Quality/Reliability, Plus, the Product Guide, Literature Guide,
Packaging Information and 3 quarterly updates. $50.00 Order Number: 555111

I"'"" 3. Memories -----------------------""'\
Product line handbooks on Memory Components, Programmable Logic and
Components QualitylReliability, Plus, the Product Guide, Literature Guide, Packaging
Information and 3 quarterly updates. $50.00 Order Number: 555112

- 4. OEM Boards and Systems-----------------"'""

Product line handbooks on OEM Boards & Systems, Systems Quality/Reliability, Plus,
the Product Guide, Literature Guide, Packaging Information and 3 quarterly updates.

$50.00 Order Number: 555113

1"'""5.Software--~

Product line handbooks on Systems Quality/Reliability,. Development Tools Catalog,
Plus, the Product Guide, Literature Guide, Packaging Information and 3 quarterly
updates. $35.00 Order Number: 555114

To subscribe, rush the Literature Order Form in this handbook,
or call today, toll free (800) 548-4725. *

Subscribe by March 31, 1988 and receive a valuable free gift.

The charge for this service covers our printing, postage and handling cost only.

Please note: Product manuals are not included in this offer.

Customers outside the U.S. and Canada should order directly from the U.S. • "

Offer expires 12131/88. In+.-I
'Good in the U.S. and Canada. 'e-

inter
LITERATURE SALES ORDER FORM

NAME: ______________________________________ ~-----------------

COMPANY: ______________________________________ ~ __________ __

ADDRESS: __________________________________ ~~ ____________ ___

CITY: ___________________ ---'-_________ STATE: _____ ZIP: ____ _

COUNTRY: __ ~------

PHONE NO.: -'--__ ---''---__ _

ORDER NO

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other).

TITLE QTY. PRICE TOTAL

__ X ___ = __ _

__ X ___ = __ _

___ X ___ = __ _

__ X ____ = __ _

__ X ___ = __ _

__ X ____ = __ _

__ X_·_· _= __ _

____ X ____ = __ _

__ X ___ = __ _

__ X ___ = __ _

Subtotal ___ _

Must Add Your
Local Sales Tax ___ ...,-

-------------i.~ Postage ___ _

Total ___ _

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable to
Intel Literature Sales. Allow 2-4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date _______ _

Account No. ____________________________ ___

Signature _________ -,--___________________ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.

Call Toll Fre.e: (800) 548-4725 for phone orders
Prices good until 12/31/88.

Source HB

CG/LSOF/062188

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, and consulting services. For more information contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an inter­
national support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It includes factory repair services and worldwide field service offices
providing hardware repair services, software support services, cust9mer training classes, and consulting services.

HARDWARE SUPPORT SERVICES

Intel is committed to providing an international service support package through a wide variety of service offerings
available from Intel Hardware Support.

SOFTWARE SUPPORT SERVICES

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and COMMENTS
Magazine). Basic support includes updates and the subscription service. Contracts are sold in environments which
represent product groupings (i.e., iRMX® environment).

CONSULTING SERVICES

Intel provides field systems engineering services for any phase of your development or support effort. You can use
our systems engineers in a variety of ways ranging from assistance in using a new product, developing an applica­
tion, personalizing training, and customizing or tailoring an Intel product to providing technical and management
consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica­
tions, embedded microcontrollers, and network services. You know your application needs; we know our products.
Working together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation.
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, BITBUSTM and LAN applications.

CG/CUST /062188

376™
PROCESSOR

.. PROGRAMMER'S
REFERENCE

MANUAL

1988

Intel CQrporation makes no warranty ,for the 'use of its products and assumes no responsibility for any errors which may
appear In this document nor does It make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BiTBUS, COMMputer, CREDIT, Data Pipeline, ETOX, FASTPATH,
Genius, I, I, ICE, ICEL, iCS, IDBP, iDIS, I"ICE, iLBX, im, iMDDX, iMMX, Inboard,
Insite, Intel, intel, Intel376, Intel386, Intel486, intelBOS, Intel Certified, Intelevision,
intellgent Identifier, intellgent Programming, Inteliec, Intellink, iOSP, iPDS, iPSC,
IRMK, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAPNET,
MCS, Megachassls, MICROMAINFRAME, MULTIBUS, MULTICHANNEL,
MULTIMODULE, ONCE, OpenNET, OTP, PC BUBBLE, Plug-A-Bubble,
PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming,
Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube, UPI, and VLSiCEL,
and the combination of ICE, iCS, iRMX, iSBC, ISBX, iSXM, MCS, or UPI and a
numerical suffix, 4-SITE, 376, 386, 486.

MDS is an ordering code only and is not used as a product name or trademark. MDS" is a registered trademark of Mohawk
Data Sciences Corporation.

* MULTIBUS Is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

ClINTEL CORPORATION 1988

Intel Corporation
Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

ii

CG-3/10/88

TABLE OF CONTENTS

CHAPTER 1 Page
INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

1.1 Organization of this Manual ... 1-2
1 .1.1 Part I-Application Programming ... 1-2
1 .1.2 Part II-System Programming ... 1-3
1.1.3 Part III-Instruction Set 1-3
1 .1.4 Appendices•.......................•... 1-4
1.2 Related Literature .. 1-4
1.3 Notational Conventions ... 1-4
1.3.1 Bit and Byte Order .. 1-4
1.3.2 Undefined Bits and Software Compatibility........... 1-4
1.3.3 Instruction Operands 1-5
1.3.4 Hexadecimal Numbers 1-6

CHAPTER 2
BASIC PROGRAMMING MODEL

2.1 Memory Organization and Segmentation 2-1
2.1.1 Unsegmented or "Flat" Model... ·2-2
2.1.2 Segmented Model .. 2-3
2.2 Data Types .. 2-4
2.3 Registers ... 2-7
2.3.1 General Registers ... 2-9
2.3.2 Segment Registers 2-10
2.3.3 Stack Implementation 2-11
2.3.4 Flags Register ... 2-13
2.3.4.1 Status Flags .. 2-13
2.3.4.2 Control Flag ... 2-14
2.3.4.3 Instruction Pointer 2-14
2.4. Instruction Format ... ;............................. 2-14
2.5 Operand Selection 2-15
2.5.1 Immediate Operands ~ ... ;........... 2-17
2.5.2 Register Operands .. ,.................................. 2-17
2.5.3 Memory Operands 2-17
2.5.3.1 Segment Selection .. ,... 2-18
2.5.3.2 Effective-Address Computation ;.. 2-19
2.6 Interrupts and Exceptions 2-21

CHAPTER 3
APPLICATION INSTRUCTION SET

3.1 Data Movement Instructions 3-1
3.1.1 General-Purpose Data Movement Instructions 3-1
3.1.2 Stack Manipulation Instructions , :.................. 3-2
3.1.3 Type Conversion Instructions 3-4

iii

TABLE OF CONTENTS

Page

3.2 Binary Arithmetic Instructions 3-5
3.2.1 Addition and Subtraction Instructions ,.. 3-6
3.2.2 Comparison and Sign Change Instruction ... 3-7
3.2.3 Multiplication Instructions ,... 3-7
3.2.4 Division Instructions 3-8
3.3 Decimal Arithmetic Instructions ...•........... :............. 3-9
3.3.1 Packed BCD Adjustment Instructions 3-9
3.3.2 Unpacked BCD Adjustment Instructions 3-10
3.4 Logical Instructions ... ,......... 3-10
3.4.1 Boolean Operation Instructions 3-11
3.4.2 Bit Test and Modify Instructions ... 3-11
3.4.3 Bit Scan Instructions ..' 3-11
3.4.4 Shift and Rotate Instructions 3-12
3.4.4.1 Shift Instructions 3-12
3.4.4.2 Double-Shift Instructions 3-15
3.4.4.3 Rotate Instructions ... 3-16
3.4.4.4 Fast "BitBlt" Using Double-Shift Instructions .. 3-17
3.4.4.5 Fast Bit-String Insert and Extract .. 3-18
3.4.5 Byte-Set-On-Condition Instructions 3-21
3.4.6 Test Instruction .. 3-22
3.5 Control Transfer Instructions 3-22
3.5.1 Unconditional Transfer Instructions 3~22

3.5.1.1 Jump Instruction 3-22
3.5.1.2 Call Instruction 3-23
3.5.1.3 Return and Return-From-Interrupt Instructions 3-23
3.5.2 Conditional Transfer Instructions 3-23
3.5.2.1 Conditional Jump Instructions 3-24
3.5.2.2 Loop Instructions 3-24
3.5.2.3 Executing a Loop or. Repeat Zero Times ·3-25
3.5:3 Software Interrupts 3-25
3.6 String Operations .. ;......................... 3-26
3.6.1 Repeat Prefixes .. :..................... 3-27
3.6.2 Indexing and Direction Flag Control .. ;.................. 3-28
3.6.3 String Instructions 3-28
3.7 Instructions for Block-Structured Languages .;.. 3-29
3.8 Flag Control Instructions ... 3-35
3.8.1 Carry and Direction Flag Control Instructions 3-35
3.8.2 Flag Transfer Instructions 3-35
3.9 Coprocessor Interface Instructions ... 3-36
3.10 Segment Register Instructions 3-37
3.10.1 Segment-Register Transfer Instructions 3-38
3.10.2 Far Control Transfer Instructions 3-38
3.10.3 Data Pointer Instructions .. 3-39

iv

inter TABLE OF CONTENTS

Page

3.11 Miscellaneous Instructions 3-39
3.11.1 Address Calculation Instruction .. ;......... 3-40
3.11.2 No-Operation Instruction 3-40
3.11.3 Translate Instruction. 3-40
3.12 Usage Guidelines ... 3-40

PART II-SYSTEM PROGRAMMING

CHAPTER 4
SYSTEM ARCHITECTURE

4. t System Registers 4-1
4.1.1 System Flags ... , ,... 4-2
4.1.2 Memory-Management Registers 4-3
4.1.3 Control Registers .. ;......................... ' .4-4
4.1.4 Debug Registers ... :........................ 4-5
4.2 'System Instructions ... 4-6

CHAPTER 5
SEGMENTATION

5.1 Selecting a Segmentation Model............ 5-2
5.1.1 Flat Model .. ;........................... 5-2
5;1.2 Protected Flat Model. ... :.................... 5-3
5.1.3 Multi-Segment Model. ,............. 5-4
5.2 Address Translation .. ;;;......................... 5-5
5.2.1 Segment Registers ... ;............................ . 5-6
5.2.2 Segment Selectors .. ;............. . 5-7
5.2.3 Segment Descriptors ... ; .. : ;.. 5-10
5.2.4 Segment Descriptor Tables .. ; ;.. 5-13
5.2.5 Descriptor Table Base Registers .. 5-15
5.3 Protection ... ~ 5-'15
5.4 Protection Checks ... ,......................... 5-16
5.4.1 Segment Descriptors and Protection ;.................................... 5-16
5.4.1.1 Type Checking ... ;.............. 5-18
5.4.1.2 Limit Checking .. ';........................... 5-18
5.4.1.3 Privilege Levels ... '.......................... 5-20
5.4.2 Restricting Access to. Data ... 5..:21
5.4.2.1 Accessing Data in Code Segments ... 5-22
5.4.3 Restricting Control Transfers ... 5-23
5;4.4 Gate Descriptors ,.; ~.................... '5-24
5.4.4.1 Stack Switching .. '5-28
5.4.4.2 Returning From a Procedure 5-30
5.4.5 Instructions Reserved for the Operating System ,.....................5-31
5.4.5.1 Privileged Instructions .. :.... 5-32

TABLE OF CONTENTS

Page

5.4.5.2 Sensitive Instructions .. : , ,................... 5-32
5.4.6 Instructions for Pointer Validation .. :................ 5-32
5.4.6.1 .Descriptor Validation5-33
5.4.6.2 Pointer Integrity and RPL .. 5-34

CHAPTER 6
MULTITASKING

6.1 Task State Segment ... 6-2
6.2 TSS Descriptor ... 6-2
6.3 Task Register .. 6-4
6.4 Task Gate Descriptor .. 6-5
6.5 Task Switching ... 6-6
6,6 Task Linking .. , ... ,... 6-9
6.6.1 Busy Bit Prevents Loops ... ; ~.... 6-10
6.6.2 Modifying Task Linkages .. ;: ,....... 6-11
6.7 Task Address Space ... ·6-11.

CHAPTER 7
INPUT /OUTPUT

7.1' 1/0 Addressing 7-1
7.1.1 1/0 Address Space 7-1
7.1.2 Memory-Mapped 1/0 .. : ,........... . 7-2
7.2 1/0 Instructions ... ;............................... '. 7~3
7.2.1 Register 1/0 Instructions ... " ;................ 7~3
7.2.2 Block 1/0 Instructions .. : :....... 7-4
7.3 Protection.and 1/0 .. ; ; 7-5
7.3.1 1/0 Privilege Level 7-5
7.3.2 1/0 Permission Bit Map 7-6

CHAPTER 8
EXCEPTIONS AND INTERRUPTS

8.1 Exception and Interrupt Vectors ... ; ;.... 8-1
8.2 Instruction Restart .. : ;.... 8-2
8.3 Enabling and Disabling Interrupts ... ;;........... 8-3
8.3 .. 1 NMI Masks Further NMls ... ' 8-3
8.3.2 IF Masks INTR .. ~................................ 8;.3
8.3.3 RF Masks Debug Faults .. . 8-4
8.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts ;. 8-4
8.4 Priority Among Simultaneous Exceptions and Interrupts 8-4
8;5 Interrupt Descriptor Table .. ;...... ·8-5
8.6 .IDT Descriptors ... 8-6
8.7 Interrupt Tasks and Interrupt Procedures ... 8-6
8.7.1 Interrupt. Procedures ... ,.............. 8-6

vi

TABLE. OF CONTENTS

Page

8.7.1.1 Stack of Interrupt Procedure ... 8-7
8.7.1.2 Returning from an Interrupt Procedure .. 8-8
8.7.1.3 Flag Usage by Interrupt Procedure .. 8-8
8.7.1.4 Protection in Interrupt Procedures .. 8-9
8.7.2 Interrupt Tasks ... 8-10
8.8 Error Code .. '8-10
8.9 Exception Conditions 8-12
8.9.1 Interrupt O-Divide Error .. 8-12
8.9.2 Interrupt 1-Debug Exceptions ... 8-12
8.9.3 Interrupt 3-Breakpoint ... 8-13
8.9.4 Interrupt 4-0verflow .. 8-13
8.9.5 Interrupt 5-Bounds Check ... 8-13
8.9.6 Interrupt 6-lnvalid Opcode ... 8-13
8.9.7 Interrupt 7-Coprocessor Not Available , ,.............. 8-14
8.9.8 Interrupt 8-Double Fault ...•............................ ' 8-14
8.9.9 Interrupt 9-Coprocessor Segment Overrun ,......................... 8-15
8.9.10 Interrupt 1 O-Invalid TSS 8-15
8.9.11 Interrupt 11-Segment Not Present , "...................... 8-16
8.9.12 Interrupt 12-Stack Fault 8-17
8.9.13 Interrupt 13-General Protection ... 8-17
8.9.14 Interrupt 16-Coprocessor Error ... 8-18
8.10 Exception Summary ... ~.............. 8-19
8.11 Error Code Summary .. 8-20

CHAPTER 9
INITIALIZATION

9.1 Processor State after Reset .. 9-1
9.2 Software Initialization .. ~............... 9-3
9.2.1 Descriptor Tables ... 9-3
9.2.2 Stack Segment 9-3
9.2.3 Interrupt Descriptor Table .. 9-3
9.2.4 First Instruction ... :.................... 9-4
9.2.5 First Task .. ~.............. 9-4
9.3 Initialization Example .. ,........................ 9-5

CHAPTER 10
CO PROCESSING AND MULTIPROCESSING

10.1 Coprocessing ... ; ;... '10-1
10.1.1 The ESC and WAIT Instructions .. 10-1
10.1.2 The EM and MP Bits 10-2
10.1.3 The TS Bit .. 10-2
10.1.4 Coprocessor Exceptions 10-3
10.1.4.1 Interrupt 7-Coprocessor Not Available ... 10-3

vii

TABLE OF CONTENTS

Page

10: 1.4.2 Interrupt 9-Coprocessor Segment Overrun .. 10-3
10.1.4.3 Interrupt 16-Coprocessor Error .. 10-3
10.2 General-Purpose Multiprocessing .. , ... ,.................... 10-4
10.2.1 LOCK and the LOCK# Signal ; ~.....................10-4
·10.2.2 Automatic Locking .. :.' 10-5
10.2.3 Stale Data .. 10-5

CHAPTER 11
DEBUGGING

11.1 Debugging Support '... 11-1
11.2 Debug Registers· ;... 11-2
11.2.1 Debug Address Registers (DRO-DR3) ;.. 11-3
11 .2.2 Debug Control Register (DR7) 11-3
11.2.3 Debug Status Register (DR6) ~ :.................... 11-4
11.2.4 Breakpoint Field Recognition .. :..... 11-5
11.3 Debug Exceptions ' ~ .. ,............... 11-6
11.3.1 Interrupt 1-Debug Exceptions :.............................11-6
.11.3.1.1 Instruction-Breakpoint Fault ~'... 11-6
11.3.1.2 Data-Breakpoint Trap .. 11-7
11.3.1.3 General-Detect Fault ... 11-7
11.3.1.4 Single-Step Trap ... ,....................... 11-8
1,1.3.1.5 Task-Switch Trap .. , 11-8
11.3.2 Interrupt 3-Breakpbint Instruction , : ;........................ 11-8

CHAPTER 12
DIFFERENCES BETWEEN THE 316TM AND 386™ PROCESSORS

12.1 Summary of Differences :... ,12-1

CHAPTER 13
376™ PROCESSOR INSTRUCTION SET

13.1 Operand-Size and Address-Size Attributes ,13-1
13.2 Instruction Format 13-1
13.2.1 ModR/M and SIB Bytes .. 13-2
13.2.2 How to Read the Instruction Set Pages ... 13-7
13.2.2.1 Opcode ' ... ;....... 13-7
13.2.2.2 Instruction ... ' ;..................................... 13-8
13,.2.2.3 Clocks , , ... ;....... 13-9
13;2.2.4 Description ... : , 13-10
13.2.2.5 Operation ... ; ,13-11
13.2.2.6 Description , .. ,13-14
13.2.2.7 Flags Affected ... 13-14
13.2.2.8 Exceptions ... ; , 13-14

viii

TABLE OF CONTENTS

Figures

Figure Title Page

1-1 Bit and Byte Order 1-5
2-1 Segmented Addressing 2-3
2-2 Fundamental Data Types 2-4
2-3 Bytes, Words, and Doublewords in Memory 2-5
2-4 Data Types 2-6
2-5 Application Register Set 2-8
2-6 An Unsegmented Memory 2-10
2-7 A Segmented Memory .. 2-11
2-8 Processor Stacks ... 2-12
2-9 EFLAGS Register ... 2-13
2-10 Effective Address Computation .. 2-19
3-1 PUSH Instruction .. 3-2
3-2 PUSHA Instruction .. 3-3
3-3 POP Instruction .. 3-3
3-4 POPA Instruction .. 3-4
3-5 Sign Extension ... 3-5
3-6 SHLjSAL Instruction ... 3-13
3-7 SHR Instruction .. 3-14
3-8 SAR Instruction :.. 3-14
3-9 SHLD Instruction 3-15
3-10 SHRD Instruction 3-16
3-11 ROL Instruction .. 3-16
3-12 ROR Instruction 3-18
3-13 RCL Instruction 3-18
3-14 RCR Instruction .. 3-18
3~15 Formal Definition of the ENTER Instruction .. 3-30
3-16 Nested Procedures 3-31
3-17 Stack Frame after Entering MAIN 3-32
3-18 Stack Frame after Entering PROCEDURE A .. 3-33
3-19 Stack Frame after Entering PROCEDURE B .. 3-33
3-20 Stack Frame after Entering PROCEDURE C .. 3-34
3-21 Low Byte of EFLAGS Register ... 3-36
3-22 Flags Used with PUSHF and POPF 3-36
4-1 System Flags .. 4-2
4-2 Memory Management Registers ... 4-3
4-3 CRO Register .. 4-5
5-1 Flat Model ... 5-3
5-2 Protected Flat Model .. 5-4
5-3 Multi-Segment Model .. 5-5

ix

Figure

5-4
5-5
5-6
5-7
5~8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7~2:
8-1
8-2
8-3
8-4
8-5
8-6
9-1
9-2
11-1
13-1
13-2
13-3
13-4

TABLE OF CONTENTS

Title

TI Bit Selects Descriptor Table .. .
Address Translation
Segment Registers .. .
Segment Selector .. .
Segment Descriptors
Segment Descriptor (Segment Not Present) .. .
Descriptor Tables .. .
Descriptor Table Memory Descriptor
Descriptor Fields Used for Protection .. .
Protection Rings ... ;
Privilege Check for Data Access ,
Privilege Check for Control Transfer Without Gate
Call Gate .. .
Call Gate Mechanism
Privilege Check for Control Transfer with Call Gate
Initial Stack Pointers in a TSS
Stack Frame during Interlevel Call ... ;
Task State Segment ... ,
TSS Descriptor .. .
TR Register .. .
Task Gate Descriptor .. .
Task Gates Reference Tasks
Nested Tasks ... : .. .
Memory-Mapped I/O
I/O Permission Bit Map .. .
IDTR Register.Locates IDT in Memory .. .
IDT Gate Descriptors
Interrupt Procedure Call .. .
Stack Frame After Exception or Interrupt ~
Interrupt Task Switch .. .
Error Code .. .
Contents of the EDX Register After Reset .. .
Contents of the CRO Register After Reset
Debug Registers .. ,
376™ Processor Instruction Format
ModR/M and SIB Byte Formats .. .
Bit Offset for Bit [EAX,21]
Memory Bit Indexing .. .

x

Page

5-7
5-8
5-8
5-9

5-10
5-13
5-14
5-15
5-17
5-21
5-22
5-24
5-25
5-26
5-27
5-28
5-30

6-3
6-4
6-5
6-6
6-7

6-10
7-3
7-6
8-6
8-7
8-8
8-9

8-11
8-12

9-1
9-2

11-3
13-1
13-3

13-13
13-13

Table

2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
5-1
5-2
5-3
5-4
6-1
6-2
8-1
8-2

, 8-3
8-4
8-5
8-6
9-1
11-1
11-12
13-1
13-2
13-3
13-4

TABLE OF CONTENTS

Tables

Title

Register Names
Status Flags .. .
Default Segment Register Selection Rules .. .
Exceptions and Interrupts
Operands for Division
Bit Test and Modify Instructions .. .
Conditional Jump Instructions
Repeat Instructions
Flag Control Instructions
Application Segment Types
System Segment and Gate Types
Interlevel Return Checks
Valid Descriptor Types for LSL Instruction .. .
Checks Made During a Task Switch
Effect of a Task Switch on Busy, NT, and Link Fields
Exception and Interrupt Vectors .. .
Priority Among Simultaneous Exceptions and Interrupts
Interrupt and Exception Classes .. .
Invalid TSS Conditions .. .
Exception Summary .. .
Error Code Summary
Processor State Following Power-Up .. .
Breakpointing Examples .. .
Debug Exception Conditions
16-Bit Addressing Forms with the Mod RIM Byte and 67H Prefix
Normal (32-Bit) Addressing Forms with the Mod RIM Byte
Normal (32-Bit) Addressing Forms with the SIB Byte
376™ Processor Exceptions .. .

xi

Page

2-9
2-14
2-18
2-23

3-9
3-12
3-24
3-27
3-35
5-12
5-19
5-31
5-33

6-9
6-10

8-2
8-5

8-14
8-15
8-19
8-20
9-2

11-5
11-6
13-4
13-5
13-6

13-15

Introduction to the 376™ 1
Embedded Processor

CHAPTER 1
INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

The 376™ processor is an advanced 32-bit microprocessor based on the architecture of the
386™ processor. The 376 processor uses a subset of the Inte1386™ architecture optimized for
embedded applications. The performance, base of software development tools, capabilities,
and ease-of-use of the 386 microprocessor are available now for embedded applications at a
lower cost and in a smaller form factor. The 376 processor is one part of the Inte1376™
family.

The 376 processor is a derivative of the 386 microprocessor. It provides the full 32-bit
programming model of the Inte1386 architecture. Any program for the 376 processor will
run on the 386 microprocessor. The 376 processor has 32-bit registers and data paths to
support 32-bit addresses and data types. The processor can address up to 16 megabytes of
physical memory and 256 gigabytes (238 bytes) of virtual memory. The on-chip memory­
management facilities include address translation, protection, segmention, and multitasking.
Debugging registers provide code and data breakpoints, even in ROM-based software.

The Intel376 architecture described here applies to more than the 376 processor. Any 386
microprocessor embedded application should be designed to run also on the 376 processor.
This allows the 386 processor software to run on a smaller, lower cost system. Where appro­
priate, differences between the 376 processor and the 386 microprocessor are explained.

The 376 processor was developed to meet the needs of designers of embedded applications.
These needs are:

• Quick design

• Cost-effective performance

• Low maintenance cost

The 376 processor speeds development of embedded applications. A broad base of 32-bit
386 microprocessor software tools is available to develop a 376 processor application. With
the proper software, any personal computer based on the 386 microprocessor can be used to
debug a 376 processor application. The built-in debug registers of the 386 microprocessor
provide data breakpoint capabilities. Segmentation helps identify and isolate program bugs.
The ICETM-376 In-Circuit Emulator speeds hardware and software integration with real­
time instruction tracing, bus tracing, EPROM replacement, and breakpoint facilities.

Cost-effective performance is provided by combining the Intel386 architecture with a simpli­
fied memory architecture, a 16-bit data bus, and plastic packaging. The performance of the
376 processor approaches that of the 386 microprocessor in computation-bound applications.
A 376 processor executes a bit move at more than 90% of the speed of a 386 microprocessor.
For 32-bit string moves, the 376 processor executes at 50% of the speed of a 386 micropro­
cessor. In a typical application, the 376 processor should run at about 70% of the speed of a
386 microprocessor.

1-1

INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

Maintenance cost is minimized by the 376 processor through improved hardware reliability
and reduced program bugs. The 16-bit bus of the 376 processor reduces component count.
The on-chip debug registers and segmentation of the 376 processor find bugs quickly and
limit their potential impact on system integrity.

1.1 ORGANIZATION OF THIS MANUAL

This book presents the Intel376 architecture in four parts:

Part I
Part II
Part III
Appendices

-Application Programming
-System Programming
-Instruction Set

These divisions are determined by the architecture and. by the ways programmers will use
this book. The first two parts are explanatory, showing the purpose of architectural features,
developing terminology and concepts, and describing instructions as they relate to specific
purposes or to specific architectural features. The remaining parts are reference material for
programmers developing software for the 376 processor.

The first two parts cover the operating modes and protection mechanism of the 376 proces­
sor. The distinction between application programming and system programming is related
to the protection mechanism of the 376 processor. One purpose of protection is to prevent
applications from interfering with the operating system. For this reason, certain registers
and instructions are inaccessible to application programs. The features discussed in Part I
are those that are accessible to applications; the features in Part II are available only to
system software executing with special privileges, or software running on systems where the
protection mechanism is not used.

Unlike the 386 microprocessor, the 376 processor has only one processing mode. This mode
is equivalent to the protected mode of the 386 microprocessor. Protected mode is the native
32-bit environment. In this mode, all of the new instructions and features introduced with the
32-bit architecture are available.

1.1.1 Part I-Application Programming

This part presents the architecture used by application programmers.

Chapter 2-Basic Programming Model: Introduces the modelsof memory organization.
Defines the data types. Presents the register set used by applications. Introduces the stack.
Explains string operations. Defines the parts of an instruction. Explains address calculations.
Introduces interrupts and exceptions as they apply to application programming.

Chapter 3-Application Instruction Set: Surveys the instructions commonly used for appli­
cation programming. Considers instructions in functionally related groups; for example, string
instructions are considered in one section, while control-transfer instructions are considered
in another. Explains the concepts behind the instructions. Details of individual instructions
are deferred until Part III, the instruction-set reference.

1-2

INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

1.1.2 Part II-System Programming

This part presents the Inte1376 architectural features used by operating systems, device
drivers, debuggers, and other software which support application programs.

Chapter 4-System Architecture: Surveys the features of the 376 processor that are used by
system programmers. Introduces the remaining registers and data structures of the
376 processor that were not discussed in Part I. Introduces the system-oriented instructions
in the context of the registers and data structures they support. References the chapters
where each register, data structure, and instruction is considered in more detail.

Chapter 5-Segmentation: Presents details of the data structures, registers, and instructions
that support segmentation. Explains how system designers can choose between an unseg­
mented ("flat") model of memory organization and a model with segmentation. Discusses
protection as it applies to segments. Explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes. Protection aspects of multitasking
are deferred until the following chapter.

Chapter 6-Multitasking: Explains how the hardware of the 376 processor supports multi­
tasking with context-switching operations and intertask protection.

Chapter 7-InputjOutput: Reveals the I/O features of the 376 processor, including I/O
instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 8-Exceptions and Interrupts: Explains the basic interrupt mechanisms of the 376
processor. Shows how interrupts and exceptions relate to protection. Discusses all possible
exceptions, listing causes and including information needed to handle and recover from the
exception.

Chapter 9-Initialization: Defines the condition of the processor after RESET or power-up.
Explains how to set up registers, flags, and data structures. Contains an example of an
initialization program.

Chapter lO-Coprocessing and Multiprocessing: Explains the instructions and flags that
support a numerics coprocessor and multiple CPUs with shared memory.

Chapter ll-Debugging: Tells how to use the debugging registers of the 376 processor.

1.1.3 Part III-Instruction Set .

Parts I and II present the instruction set as it relates to specific aspects of the architecture,
while this part presents the instructions in alphabetical order, with the detail needed by
assembly-language programmers and programmers of debuggers, compilers, operating
systems, etc. Instruction descriptions include algorithmic description of operations, effect of
flag settings, effect on flag settings, effect of operand- and address-size attributes, and
exceptions which may be generated.

1-3

INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

1.1.4 Appendices

The appendices present tables of encodings and other details in a format designed for quick
reference by assembly-language and system programmers.

1.2 RELATED LITERATURE

The following books contain additional material related to the Intel376 family:

Introduction to the 80386, order number 231252
80386 Hardware Reference Manual, order number 231732
80386 System Software Writer's Guide, order number 231499
80376 High Performance 32-Bit CHMOS Microprocessor with J6-Bit External Data Bus
for Embedded Control (Data Sheet), order number 240182-001
Inte1376 Family Product Briefs, order number 240181-001
82370 Multifunction Peripheral Data Sheet, order number 290164-001

1.3 NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation will make the manual
easier to read.

1.3.1 Bit and Byte Order

In illustrations of da1a structures in memory, smaller addresses appear toward the bottom
of the figure; addresses increase toward the top. Bit positions are numbered from right to
left. The numerical value of a set bit is equal to two raised to the power of the bit position.
The 376 processor is a "little endian" machine; this means the bytes of a word are numbered
starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as undefined or reserved, it is essential for compatibility with future proces­
sors that software treat these bits as having a future, though unknown, effect. Software
should follow these guidelines in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers that
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously stored from the same
register.

1-4

INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

BYTE ORDER IN A 32-BIT REGISTER:

31 23 15 7 0

I BYTE 3 I BYTE 2 I BYTE 1 I BYTE 0 I
BYTE ORDER IN MEMORY:

15 7 0

BYTE 9 BYTE 8

BYTE 7 BYTE 6

BYTE 5 BYTE 4

BYTE 3 BYTE 2

BYTE 1 BYTE 0

8

6

4

2

o

BIT POSITIONS
ARE NUMBERED
FROM RIGHT TO
LEFT

MEMORY
ADDRESSES

. ARE NUMBERED
FROM BOTTOM
TO TOP

Figure 1-1. Bit and Byte Order

NOTE

G50235

Depending upon the values of reserved register bits will make software dependent
upon the unspecified manner in which the 376 processor handles these bits. Depend­
ing upon reserved values risks incompatibility with future processors. AVOID ANY
SOFTWARE DEPENDENCE UPON THE STATE OF RESERVED 376
REGISTER BITS.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for the
376 processor is used. In this subset, an instruction has the following format:

label: prefix mnemonic argument1, argument2, argument3

where:

• A label is an identifier that is followed by a colon.

• A prefix is an optional reserved name for one of the instruction prefixes.

• A mnemonic is a reserved name for a class of instruction opcodes that have the same
function.

• The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names
of registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example). When two operands are present in
an instruction that modifies data, the right operand is the source and the left operand is
the destination.

1-5

INTRODUCTION TO THE 376™ EMBEDDED PROCESSOR

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX
is the destination operand, and SUBTOTAL is the source operand ..

1.3.4 Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the character
H. A hexadecimal digit is a character from the set (0, 1, 2, 3, 4,5,6,7,8,9, A, B, C, D, E,
F). In some cases, especially in examples of program syntax, a leading zero is added if the
number would otherwise begin with one of the digits A~F. For example, OFH is equivalent
to the decimal number 15.

1-6

Basic Programming Model 2

CHAPTER 2
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment of the 376 processor as
seen by assembly language programmers. The chapter introduces programmers to those
features of the Inte1376 architecture that directly affect the design and implementation of
application programs. This model is identical to the 32-bit programming model of the 386
processor. Only a few details of system programming and initialization have changed. These
are discussed in other chapters.

The basic programming model consists of these parts:

• Memory organization and segmentation

• Data types

• Registers

• Instruction format

• Operand selection

• Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers may choose to make I/O instructions available to applications or may choose to
reserve these functions for the operating system. For this reason, the I/O features of the 376
processor are discussed in Part II.

This chapter contains a section for each feature of the architecture normally visible to
applications.

2.1 MEMORY ORGANIZATION AND SEGMENTATION

The memory on the bus of a 376 processor is called physical memory. It is organized as a
sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address,
that ranges from zero to a maximum of 224-1 (16 megabytes). The 386 microprocessor
allows up to 4 gigabytes of physical memory. An address issued by a program, consists of
several 32-bit values added together to form a 32-bit logical address. Memory management
hardware translates each logical address. into either a physical address or an exception. An
exception is a software interrupt that gives the operating system a chance to fix the condition .
which prevented the address from being translated to a physical address.

To an application programmer, memory may appear as a single, addressable space like
physical memory. Or, it may appear as one or more independent memory spaces, called
segments. Segments can be assigned specifically for holding a program's code (instructions),
data, or stack. In fact, a single program may have up to 16,383 segments of different sizes
and kinds. Segments can be used to increase the reliability of programs and systems. For
example, a program's stack can be put into a different segment than its code to prevent the
stack from growing into the code space and overwriting critical instructions or data.

2-1

BASIC PROGRAMMING MODEL

Whether or not multiple segments are used, logical addresses are translated into physical
addresses by treating the address as an offset into a segment. Each segment has a segment
descriptor, which holds its base address and size limit. If the offset does not exceed the limit,
and no other condition exists that would prevent reading the segment, the offset and base
address are added together to form the physical address. Because the 376 processor does not
have a paging mechanism (unlike the 386 processor, which does have paging), segments are
limited to the size of physical memory (up to 16 megabytes). Translated addresses are
truncated to 24 bits, the size of the address bus.

The architecture of the 376 processor gives designers the freedom to choose a different
memory model for each executing program (called a task). The model of memory organi­
zation can range between the following extremes:

• A "flat" address space where the code, stack, and data spaces can be addressed by a
data pointer.

• A segmented address space with separate segments for the code, data, and stack spaces.
As many as 16,383 linear address spaces of up to 16 megabytes each can be used.

Both models can provide memory protection. Models intermediate between these extremes
also can be chosen. Different tasks may use different models of memory organization. The
reasons for choosing a particular memory model and the manner in which system program­
mers implement a model are discussed in Part II-System Programming. One of the advan­
tages of a flat model is that data pointers can reference data constants in the code space, for
example when the system software is supplied in ROM.

2.1.1 Unsegmented or "Flat" Model

The simplest memory model is the flat model. All of the code, data, and stack space can be
accessed using a data pointer. Although there isn't a mode bit or control register which turns
off the segmentation mechanism, the same effect can be achieved by mapping all segments
to the same area in physical memory. This will cause all memory operations to refer to the
same memory space .

. A flat model can be simple or protected. In the simple flat model, the segments cover the
entire 16 megabyte range of physical addresses. In the protected flat model, the segments
cover only those physical addresses which correspond to physical memory. The advantage of
the protected flat model is it provides a minimum level of hardware protection against
software bugs; an exception will occur if any logical address refers to an address for which
no memory exists.

A pointer into this memory space is a 32-bit integer that may range from 0 to 224-1. On
the 386 processor a flat model can have addresses ranging from 0 to 232-1, but on the 376
processor there is no practical way to support addressing beyond the end of physical memory.

2-2

BASIC PROGRAMMING MODEL

2.1.2 Segmented Model

In a segmented model of memory organization, the logical address space consists of as many
as 16,383 segments of up to 16 megabytes each, or a total as large as 238 bytes (256 gigabytes).
The processor maps this 256 gigabyte logical address space onto the physical address space
(up to 16 megabytes) by the address translation mechanism described in Chapter 5. Appli­
cation progrl;lmmers do not need to know the details of this mapping.

Each segment is a section of memory that has been reserved as a separate address space.
The advantage of the segmented model is that offsets within each address space are separately
checked and access to each segment can be individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 2-0.

1. A segment selector, which is a 16-bit field that identifies a segment.

2. An offset, which is a 32-bit byte address within a segment.

During execution of a program, the processor uses the segment selector to find the physical
address of the beginning of the segment, called the base address. Code and data .can be
relocated at run time by changing the base address of their segments, while keeping offsets
within the segment constant. The size of a segment is defined by the programmer, so a
segment can be exactly the size of the module it contains. .

OFFSET WITHIN SEGMENT 1
SEGMENT SELECTOR/

I

OPERAND

I

-

-
--

-

15 0

ISEGMENT SELECTOR I

31 o
OFFSET WITHIN SEGMENT

Figure 2"1. Segmented Addressing

2-3

G50235

BASIC PROGRAMMING MODEL

2.2 DATA TYPES

Bytes, words, and doublewords are the principal data types (see Figure 2-2). A byte is eight
bits referenced by a logical address. The bits are numbered 0 through 7, bit 0 being the least
significant bit (LSB).

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits. The
bits of a word are numbered from 0 through 15, bit 0 again being the least significant bit.
The byte containing bit 0 of the word is called the low byte; the byte containing bit 15 is
called the high byte. On the 376 processor, the low byte is stored in the byte with the lower
address. The address of the low byte also is the address of the word. The address of the high
byte is used only when the upper half of the word is being accessed separately from the
lower half.

A doubleword is four bytes occupying any four consecutive addresses. A doubleword contains
32 bits. The bits of a doubleword are numbered from 0 through 31, bit 0 again being the
least significant bit. The word containing bit 0 of the doubleword is called the low word; the
word containing bit 31 is called the high word. The low word is stored in the two bytes with
the lower addresses. The address of the lowest byte is the address of the doubleword. The
higher addresses are used only when the upper word is being accessed separately from the
lower word, or when individual bytes are being accessed. Figure 2-3 illustrates the arrange­
ment of bytes within words and doublewords.

Note that words do not need to be aligned at even-numbered addresses and doublewords do
not need to be aligned at addresses evenly divisible by four. This allows maximum flexibility
in data structures (e.g. records containing mixed byte, word, and doubleword items) and
efficiency in memory utilization. Because the 376 processor has a 16-bit data bus, commu­
nication between processor and memory takes place as word transfers aligned to addresses
evenly divisible by two; however, the processor converts requests for words aligned to odd
addresses into multiple transfers. Such misaligned data transfers reduce speed by requiring
extra bus cycles. For maximum speed, data structures (especially stacks) should be designed

7 0

I BYTE I BYTE

15 7 0

HIGH BYTE LOW BYTE WORD

address n+ 1 address n

31 23 15 7 0

address n+3 address n+2

G50235

Figure 2·2. Fundamental Data Types

2-4

BYTE
ADDRESS

E

D

C

B

A

9

8

7

6

5

4

3

2

o

BASIC PROGRAMMING MODEL

MEMORY
VALUES

7A

FE

06

36

1F

23

OB

74

CB

31

}

I

}

}

WORD AT } DOUBLE WORD AT
ADDRESS B ADDRESS A
CONTAINS FE06 CONTAINS 7AFE0636

BYTE AT ADDRESS
9 CONTAINS 1F

WORD AT ADDRESS 6
CONTAINS 230B

WORD AT ADDRESS 2

)

CONTAINS 74CB

WORD AT ADDRESS 1
CONTAINS CB31

NOTE: ALL VALUES IN HEXADECIMAL

Figure 2-3. Bytes, Words, and Doublewords in Memory

G50235

in such a way that, whenever possible, word operands are aligned at even addresses and
doubleword operands are aligned at addresses evenly divisible by four. Although there is no
speed penalty for aligning doublewords on odd word boundaries when using the 376 proces­
sor, there is a penalty when using the 386 microprocessor because of its 32-bit data bus. For
maximum compatibility with the 386 processor, align doublewords on the even word bound­
aries (addresses evenly divisible by four).

Although bytes, words, and doublewords are the fundamental types of operands, the proces­
sor also supports additional interpretations of these operands. Specialized instructions recog­
nize the following operands (see Figure 2-4):

Integer:

Ordinal:

A signed binary number held in a 32-bit doubleword, 16-bit word, or
.8-bit byte. All operations assume a two's complement representation.
The sign bit is located in bit 7 in a byte, bit 15 in a word, and bit 31 in
a doubleword. The sign bit is set for negative integers, clear for positive
integers and zero. The value of an 8-bit integer is -128 to + 127; a·
16-bit in.teger from -32,768 to +32,767; a 32-bit integer from -231

to +231 -1.

An unsigned binary number contained in a 32-bit doubleword, 16-bit
word, or 8-bit byte. The value oran 8-bit ordinal is. 0 to 255; a 16-bit
ordinal from 0 to 65,535; a 32-bit ordinal from 0 to 232 -1.

2-5

BASIC PROGRAMMING MODEL

7 0
E!::::J
I-I

-11-
15 0'
1111("'I,II'ili'l

I' -I
-11-

31 0
1"'1"'1"""'1" '1"'1'" 1"'1
I' -I

-11-
7 0
~,
1-1,

15· 0
I Ii , i " , I ' , , i" i I
I' -I

31 0
I'i i it "I Ii' i'" Iii; ill' I' t i i" 'I
I • ~ I
N 0
~ ••• 1,111"'1'" 1'''1

..:-1 i=i I~
N o
~ ••• 1"'1"'1"'1"'1

-I I-
~ 1--'-

31 0
Ii' Ii '1'1.11,11 "'I' iii!i.'I' I",lil
I' -I

47 ' 31. ' 0
I'i ""'1 111,1' '1'[Ii iiil Ii ili"I' iil"'llli ilil'

I· -I
I' -I
l'lliii" iii I" 'Iii iiili'il iii!i,iiil'II',' Ii iiill

I' -I

I' "1"'1 "'I" 'I" '1"'1 ••• 1"'1"'1"; ""'1
I' -I

I' "1"'1 "'I" 'I'" ""1
, . '-I

'Figure2-4_ Data Types

2-6

'BYTE INTEGER
'7-BIT MAGNITUDE
1-BIT SIGN

WORD INTEGER
15-BIT MAGNITUDE
1-BITSIGN

" DOUBLEWORD INTEGER
31-BIT MAGNITUDE
1-BIT SIGN

BYTE ORDINAL
8-BIT MAGNITUDE

'WORD ORDINAL
16-BIT MAGNITUDE

DOUBLEWORD ORDINAL
32-BIT MAGNITUDE

BCD INTEGER
4-BIT DIGIT PER BYTE
4-BIT DIGIT PER BYTE

PACKED BCD INTEGER
4-BIT PER HALF-BYTE
4-BIT PER HALF-BYTE

NEA~ POINTER
32-BIT OFFSET

FAR POINTER
32-BIT OFFSET
16-BIT SELECTOR

BITFIELD' ..
UP TO 32 BITS.

BIT STRING
UP TO 128 MEGABITS

BYTE STRING
UP,TO 16 MEGABYTES

G50235

Near Pointer:

Far Pointer:

String:

Bit field:

Bit string:

BCD:

Packed BCD:

2.3 REGISTERS

BASIC PROGRAMMING MODEL

A 32-bit logical address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for
references within a segment in a segmented model.

A 48-bit logical address consisting of a 16-bit segment selector and a
32-bit offset. Far pointers are used in a segmented memory model to
access other segments.

A contiguous sequence of bytes, words, or doublewords. A string may
contain from zero to 224 -1 bytes (16 megabytes).

A contiguous sequence of bits. A bit field may begin at any bit position
of any byte and may contain up to 32 bits.

A contiguous sequence of bits. A bit string may begin at any bit position
of any byte and may contain up to 227 - 1 bits.

A representation of a binary-coded decimal (BCD) digit in the range
o through 9. Unpacked decimal numbers are stored as unsigned byte
quantities. One digit is stored in each byte. The magnitude of the
number is the binary value of the low-order half-byte; values 0 to 9 are
valid and are interpreted as the value of a digit. The high-order half­
byte must be zero during multiplication and division; it may contain
any value during addition and subtraction.

A representation of binary-coded decimal digits, each in the range 0 to
9. One digit is stored in each half-byte, two digits in each byte. The
digit in bits 4. to 7 is more significant than the digit in bits 0 to 3.
ValU(~s 0 to 9 are valid for a digit.

The 376 processor contains sixteen registers which may be used by an application program­
mer. As Figure 2-5 shows, these registers may be grouped as:

1. General registers. These eight 32-bit registers are free for use by the programmer.

2. Segment registers. These registers hold segment selectors associated with different forms
of memory access. For example, there are separate segment registers for access to code
and stack space. These six registers determine, at any given time, which segments of
memory are currently available.

3. Status and control registers. These registers report and allow modification of the state
of the 376 processor.

2-7

31

SEGMENT
REGISTERS

31

BASIC PROGRAMMING MODEL

GENERAL REGISTERS

23 15 7

EjX

AH
A1X

~r
DH

Dj

Er
CH r

T BH
Bj

Er BP

Er SI
, .

Er DI

r SP

15 7 o
CS (CODE SEGMENT)

SS (STACK SEGMENT)

DS (DATA SEGMENT)

ES (DATA SEGMENT)

FS (DATA SEGMENT)

GS (DATA SEGMENT)

STATUS AND INSTRUCTION REGISTERS

:N
15

:' EFLjGS
EIP (INSTRUC~ION POINTER)

Figure 2-5. Application Register Set

2-8

o

AL

DL

CL

BL

0

I

G50235

BASIC PROGRAMMING MODEL

2.3.1 General Registers

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and
ED!. These registers are used to hold operands for logical and arithmetic operations. They
also may be used to hold operands for address calculations (except that ESP cannot be used
as an index operand). The names of these registers are derived from the names of the general
registers on the 8086 processor, the AX, BX, CX, DX, BP, SP, SI, and DI registers in
Table 2-1. As Figure 2-5 shows, the low 16 bits of the general registers .can be referenced
using these names.

Operations which specify a general register as a destination can change part or all of the
register. If a destination register has more bytes than the operand, the upper part of the
register is left unchanged. Use of a l6-bit general register requires the l6-bit operand size
prefix before the instruction. The prefix is a byte with the value 67H. Instruction opcodes
use a single bit to select either 8- or 32-bit operands. Selection of l6-bit operands is infre­
quent enough that an 8-bit instruction prefix is a more efficient instruction encoding than
one in which an additional bit in the opcode is used. This, together with byte alignment of
instructions, provides greater code density than that of word-aligned instruction sets. The
376 processor has many one-, two-, and three-byte instructions which would be two- and
four-byte instructions in a word-aligned instruction set.

Each byte of the l6-bit registers AX, BX, CX, and DX also have other names. The byte
registers are named AH, BR, CR, and DR (high bytes) and AL, BL,' CL, and DL
(low bytes).

All of the general-purpose registers are available for addressing calculations and for the
results of most arithmetic and logical calculations; however, a few instructions assign specific
registers to hold operands. For example, string instructions use the contents of the ECX,
ESI, and EDI registers as operands. By assigning specific registers for these functions, the
instruction set can be encoded more compactly. The instructions using specific registers
include: double-precision multiply and divide, I/O, strings, translate, loop, variable shift and
rotate, and stack operations.

Table 2-1. Register Names

a·Bit 16·Bit 32·Blt

AL AX EAX
AH
BL BX EBX
BH
CL ex ECX
CH
OL OX EOX
OH

SI ESI
01 EOI
BP EBP
SP ESP

2-9

BASIC PROGRAMMING MODEL

2.3.2 Segment Registers

The segment registers of the 376 proc~ssor give system software designers the flexibility to
choose among .various models of memory organization. Implementation of memory models
is. the subject of Part II-System Programming. For unsegmented" memory models" appli"
cation programmers may skip this section.

The segment registers contain 16-bit segment selectors, which index into tables in memory:
The tables hold the base address for each segment, as well as other information regarding
memory access. An unsegmented model is created by mapping each segment to the same
place in physical memory, as shown in Figure 2-6.

At any instant, up to six segments of memory are immediately available. The segment regis­
ters CS, DS, SS; ES,FS, and, GS hold the segment selectors for these six segments. Each
register is associated with a particular kind of memory access ("code," "data," or "stack").
Each register specifies a segment, from among the segments used by the program, that is
used for its kind of access (see Figure 2-7). Other segments can be used by loading their
segment selectors into the segment registers.

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The 376 processor fetches instructions from the
code segment, using the contents of the EIP register as an offset into. the segment. The CS
register is loaded as the result of interrupts,exceptions, and instructions which transfer control
between segments (e.g. the CALL and IMP instructions).

When a procedure is called, it usually .is required that a region of memory be allocated for
a,stack. The stack is used to hold the return address, parameters passed by the calling routine,
and temporary variables allocated by the procedure. All stack operations use the SS register
to find the stack segment. Unlike the CS register, the SS register can be loaded explicitly,
which permits application programs· to set up stacks while executing.

DIFFERENT ONE PHYSICAL
LOGICAL SEGMENTS ADDRESS SPACE

CS.

D
SS.

~ DS.
ESI .,

FSI

J GS

~

=-
G50235

Figure 2-6. An Unsegmented Memory

2-10

BASIC PROGRAMMING MODEL

DIFFERENT ADDRESS SPACES
. DIFFERENT LOGICAL SEGMENTS IN PHYSICAL MEMORY

CS,
SS

~ DS, CODE
ES, SEGMENT

FS,

J GS ~
STACK

I- SEGMENT

=- DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

G50235

Figure 2-7. A Segmented Memory

The DS, ES, FS, and GS' registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of
data structures. For example, one data segment can have the data structures of the current
module, another can have data exported from a higher-level module, another can have a
dynamically-created data structure, and another can have data shared with another task. If
a program bug causes a task to run wild, the segmentation mechanism can limit the damage
to only the memory accessible by the task. An operand within a data segment is addressed
by specifying its offset either in an instruction or a general register.

Depending on the structure of data (i.e. the way data is partitioned into segments), a program
may require access to more than four data segments. To access additional segments, the DS,
ES, FS, and GS registers can be loaded by an application program during execution. The
only requirement is to load the appropriate segment register before accessing data in its
segment.

A base address is l<:ept for each segment. To address data within a segment, a 32-bit offset
is added to the segment's base address. Once a segment is selected (by loading the segment
selector into a segment register), an instruction only needs to specify the offset. Simple rules
define which segment register is used to form an address when only an offset is specified.

2.3.3 Stack Implementation

Stack operations are supported by three registers:

1. Stack Segment (S8) Register: Stacks reside in memory. The number of stacks in a system
is limited only by the maximum number of segments. A stack may be up to 16 megabytes

2-11

BASIC PROGRAMMING MODEL

long, the maximum size of physical memory on the 376 processor (on the 386 processor,
the maximum size is 4 gigabytes). One stack is available at a time-the stack whose
segment selector is held in the SSregister. This is the current stack, often referred to
simply as "the" stack. The SS register is used automatically by the processor for all
stack operations.

2. Stack Pointer (ESP) Register: The ESP register holds an offset to the top-of-stack (TOS)
in the current stack segment. It is used by PUSH and POP operations, subroutine calls
and returns, exceptions, and interrupts. When an item is pushed onto the stack (see
Figure 2-8, the processor decrements the ESP register, then writes the item at the new
TOS. When an item is popped off the stack, the processor copies it from the TOS, then
increments the ESP register. In other words, the stack grows down in memory toward
lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register: The EBP register typically is used to access
data structures passed on the stack. For example, on entering a subroutine the stack
contains the return address and some number of data structures passed to the subrou­
tine. The subroutine will grow the stack whenever it needs to create space for temporary
local variables. As a result, the stack pointer will move around as temporary variables
are pushed and popped. If the stack pointer is copied into the base pointer before anything
is pushed on the stack, the base pointer can be used to reference data structures with
fixed offsets. If this is not done, the offset to access a particular data structure would
change whenever a temporary variable is allocated or de-allocated.

When the EBP register is used as the base register in an offset calculation, the offset is
calculated for the current stack segment (Le. the segment currently selected by the SS
register). Because the stack segment does not have to be specified, instruction encoding
is more compact. The EBP register also can be used to index into segments accessed
using other segment registers.

Instructions, such as the ENTER and LEAVE instructions, are provided which
automatically set up the EBP register for convenient access to variables.

15
STACK SEGMENT

TOP OF STACK

! PUSHES PUT THE
TOP OF STACK AT
LOWER ADDRESSES

o ..

..

BOTTOM OF STACK
(INITIAL ESP VALUE)

I ESP

t POPS PUT THE
TOP OF STACK AT
HIGHER ADDRESSES

Figure 2-8. Processor Stacks

2-12

I

G50235

inter BASIC PROGRAMMING MODEL

2.3.4 Flags Register

Condition codes (e.g. carry, sign, overflow) and mode bits are kept in a 32-bit register named
EFLAGS. Figure 2-9 defines the bits within this register. The flags control certain opera­
tions and indicate the status of the 376 processor.

The flags may be considered in three groups: status flags, control flags, and system flags.
Discussion of the system flags occurs in Part II.

2.3.4.1 STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the execu­
tion of arithmetic instructions. The MOV instruction does not affect these flags. Conditional
jumps and subroutine calls are provided, which allow a program to sense the state of the
status flags and respond to them. For example, when the counter controlling a loop is decre­
mented to zero, the state of the ZF flag changes, and this can be used to break the condi­
tional jump back to the start of the loop.

The status flags are shown in Table 2-2.

x
x
x
S
C
x
x
S
S
S
S
S

S INDICATES A STATUS FLAG
C INDICATES A CONTROL FLAG
X INDICATES A SYSTEM FLAG

BIT POSITION$ SHOWN,AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE.

Figure 2-9. EFLAGS Register

2-13

G50235

BASIC PROGRAMMING MODEL

Table 2-2. Status Flags

Name Purpose Condition Reported

OF overflow Result exceeds positive or negative limit of number range
SF sign Result is negative (less than zero)
ZF zero Result is zero
AF auxiliary carry Carry out of bit position 3 (used for BCD)
PF parity Low byte of result has even parity (even number of set bits)
CF carry flag Carry out of most significant bit of result

2.3.4.2 CONTROL FLAG

The control flag DF of the EFLAGS register controls string instructions.

DF (Direction Flag, bit 10)

Setting the DF flag causes string instructions to auto-decrement, that is, to process strings
from high addresses to low addresses. Clearing the DF flag causes string instructions to
auto-increment, or to process strings from low addresses to high addresses.

2.3.4.3 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset into the current code segment for
the next instruction to execute. The instruction pointer is not directly available to the
programmer; it is controlled implicitly by control-transfer instructions (jumps, branches, etc.),
interrupts, and exceptions.

2.4 INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these operands.
If an operand is located in memory, the instruction also must select, explicitly or implicitly,
the segment which contains the operand.

An instruction may have various parts and formats. The exact format of instructions is shown
in Appendix B; the parts of an instruction are described below. Of these parts, only the
opcode is always present. The other parts mayor may not be present, depending on the
operation involved and the location and type of the operands. The parts of an instruction, in
order of occurrence, are listed below:

• Prefixes: one or more bytes preceding an instruction that modify the operation of the
instruction. The following prefixes can be used by application programs:

1. Segment override-explicitly specifies which segment register an instruction should
use, instead of the default segment register.

2. Address size-causes 16-bit address generation, rather than the default 32-bit.

2-14

inter BASIC PROGRAMMING MODEL

3. Operand size-causes l6-bit data manipulation, rather than the default 32-bit.

4. Repeat-used with a string instruction to cause the instruction to be repeated for
each element of the string.

• Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

• Register specifier: an instruction may specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the address­
ing-mode specifier.

• Addressing-mode specifier: when present, specifies whether an operand is a register or
memory location; if in memory, specifies whether a displacement, a base register, an
index register, and scaling are to be used.

• SIB (scale, index, base) byte: when the addressing-mode specifier indicates that an index
register will be used to calculate the address of an operand, an SIB byte is included in
the instruction to encode the base register, the index register, and a scaling factor.

• Displacement: when the addressing-mode specifier indicates that a displacement will be
used to compute the address of an operand, the displacement is encoded in the instruc­
tion. A displacement is a signed integer of 32, 16, or eight bits. The eight-bit form is
used in the common case when the displacement is sufficiently small. The processor
extends an eight-bit displacement to 16 or 32 bits, taking into account the sign.

• Immediate operand: when present, directly provides the value of an operand. Immediate
operands may be bytes, words, or doublewords. In cases where an 8-bit immediate
operand is used with a 16- or 32-bit operand, the processor extends the eight-bit operand
to an integer of the same sign and magnitude in the larger size. In the same way, a
16-bit operand is extended to 32-bits.

2.5 OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction is
the NOP instruction (no operation). An operand can be held in any of these places:

• In the instruction itself (an immediate operand).

• In a register (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP in the case of 32-bit
operands; AX, BX, CX, DX, SI, DI, SP, or BP in the case of 16-bit operands; AH, AL,
BH, BL, CH, CL, DH, or DL in the case of 8-bit operands; the segment registers; or
the EFLAGS register for flag operations). Use of l6-bit register operands requires use
of the l6-bit operand size prefix (a byte with the value 67H preceding the instruction).

• In memory.

• At an I/O port.

Immediate operands and operands in registers can be accessed more rapidly than operands
in memory because memory operands require extra bus cycles. Register and immediate
operands are available on-chip, the latter because they are prefetched as part of the
instruction.

2-15

BASIC PROGRAMMING MODEL

Of the instructions that have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of the
AX register.

Explicit operand: XCHG EAX, EBX

The operands to be exchanged are encoded in the instruction with the opcode.

Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the stack
(the implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for example,
update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions, such
as MOV, ADD, XOR, etc., generally overwrite one of the two participating operands with
the result. A distinction can thus be made between the source operand (the one unaffected
by the operation) and the destination operand (the one overwritten by the result).

For most instructions, one of the two explicitly specified operands-either the source or the
destination-can be either in a register or in memory. The other operand must be in a regis­
ter or it must be an immediate source operand. This puts the explicit two-operand instruc­
tions into the following groups:

• Register to register

• Register to memory

• Memory to register

• Immediate to register

• Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data from
memory to memory. Both operands of some string instructions are in memory and are speci­
fied implicitly. Push and pop stack operations allow transfer between memory operands and
the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the ECX register or supplied as an immediate.
Other three-operand instructions, such as the string instructions when used with a repeat
prefix, take all their operands from registers.

2-16

BASIC PROGRAMMING MODEL

2.5.1 Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of the
operands. Such an operand is called an immediate operand. It may be a byte, word, or
doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, OFFFFOOFFH

A doubleword of the instruction holds the mask that is used to test the variable PATTERN.

IMUL ex, MEMWORD, 3

A word in memory is mUltiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one byte
shorter than with the other general registers.

2.5.2 Register Operands

Operands may be located in one of the 32~bit general registers (EAX, EBX, ECX, EDX,
ESI, EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, DI,
SP, or BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, or
DL). Use of 16-bit register operands requires use of the 16-bit operand size prefix (a byte
with the value 67H preceding the instruction).

The 376 processor has instructions for referencing the segment registers (CS, DS, ES, SS,
FS, GS). These instructions are used by application programs only if segmentation is being
used.

The 376 processor also has instructions for referring to the EFLAGS register. Instructions
are available to change the commonly modified flags in the EFLAGS register. The flags
may be saved on the stack and restored from the stack. Flags that are seldom modified can
be changed by pushing the contents of the EFLAGS register on the stack, altering it while
there, and popping it back into the register.

,2.5.3 Memory Operands

Data-manipulation instruction~ with operands in memory must specify (either directly or by
default) the segment containing the operand and the offset of the operand within the segment.
For speed and compact instruction encoding, segment selectors are stored in dedicated regis­
ters. Data-manipulation instructions only need to specify the segment register and an offset.

2-17

BASIC PROGRAMMING MODEL

A data-manipulation instruction that accesses memory uses one of the following methods to
give the offset of a memory operand within its segment:

1. Most data-manipulation instructions that access memory contain a byte that explicitly
specifies the addressing method for the operand. The byte, called the modR/M byte,
comes after the opcode and specifies whether the operand is in a register or in memory.
If the operand is in memory, the address is calculated from a segment register and any
of the following values: a base register, an index register, a scaling factor, and a
displacement. When an index register is used, the modRjM byte also is followed by
another byte to specify the index register and scaling factor. This addressing method is
the most flexible.

2. A few data-manipulation instructions implicitly use specialized addressing methods:

A MOY instruction with the AL or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of the
MOY instruction allows no base register, index register, or scaling factor to be used.
This form is one byte shorter than the general-purpose form.

String operations address memory with the DS and ESI registers, (MOYS, CMPS,
OUTS, LODS, SCAS) or with the ES and ED! registers (MOYS, CMPS, INS, STOS).

Stack operations specify operands with the SS and ESP registers (i.e. PUSH, POP,
PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL,
RET, IRET, IRETD, exceptions, and interrupts).

2.5.3.1 SEGMENT SELECTION

Data-manipulation instructions do not need to specify explicitly the segment register to be
used. For all of these instructions, specification of a segment register is optional. For all
memory accesses, if a segment is not specified explicitly by the instruction, the processor
automatically chooses a segment register according to the rules of Table 2-3. (If a flat model
of memory organization is used, the segment registers and the rules for choosing one are not
apparent to application programs).

Table 2-3. Default Segment Register Selection Rules

Type of Reference Segment Used Default Selection Rule Register Used

Instructions Code Segment Automatic with instruction fetch.
es register

Stack Stack Segment All stack pushes and pops. Any memory reference
SS register that uses ESP or ESP as a base register.

Local Data Data Segment All data references except when relative to stack
DS register or string destination.

Destination Strings E-Space Segment Destination of string instructions.
ES register

2-18

BASIC PROGRAMMING MODEL

There is an association between the kind of memory operation and the segment in which
that operand resides. As a rule, a memory reference implies use of the current data segment
(Le. the segment selector is in the DS register). However, the ESP and EBP registers are
used to access items on the stack; therefore, when the ESP or EBP register is used as a base
register, the current stack segment is used (Le. the SS register contains the segment
selector).

Special instruction prefix elements may be used to override the default segment selection.
Segment-override prefixes allow an explicit segment selection. The 376 processor has a
segment-override prefix for each of the segment registers. Only in the following special cases
is there a default segment selection that a segment prefix cannot override:

• Using the ES register for destination strings in string instructions

• Using the SS register in stack instructions using ESP

• Using the CS register for instruction fetches

2.5.3.2 EFFECTIVE-ADDRESS COMPUTATION

The modRjM byte provides the most flexible of the addressing methods. Instructions requir­
ing a modRjM byte after the opcode are the most common in the instruction set. For memory
operands defined by a modRjM byte, the offset within the selected segment is the sum of
three components:

• A displacement

• A base register

• An index register (the index register may be multiplied by a factor of 2, 4, or 8)

The offset that results from adding these components is called an effective address. Each of
these components may have either a positive or negative value. Figure 2-10 illustrates the
full set of possibilities for modRjM addressing.

SEGMENT + BASE + (INDEX 'I- SCALE) + DISPLACEMENT

EAX EAX
CS ECX ECX
SS EDX EDX 2 NO DISPLACEMENT
OS + EBX + EBX 'I- + a-BIT DISPLACEMENT
ES ESP 4 32-BIT DISPLACEMENT
FS EBP EBP
GS ESI ESI a

EDI EDI

G50235

Figure 2-10. Effective Address Computation

2-19

BASIC PROGRAMMING MODEL

The displacement component, because it is encoded in the instruction; is useful.for relative
addressing by fixed amounts, such as:

• Location of simple scalar operands.

• Beginning of a statically allocated array.

• Offset to a field within a record.

The base and index components have similar functions. Both utilize the same set of general
registers. Both can be used for addressing that changes duri~g program execution, such as:

• Location of procedure parameters and local variables on the stack.

• The beginning of one record among several occurrences of the same record type or in
an array of records.

• The beginning of one dimension of multiple dimension array.

• The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following respects:

• The ESP register cannot be used· as an index register;

• When the ESP or EBP register is used as the base register, the default segment is the
one selected by the SS register. In all other cases, the default segment is selected by the
DS register.

The scaling factor permits efficient indexing into an array when the array elements are 2, 4,
or 8 bytes wide. The scaling of the index register is done in hardware atthe time the /address
is evaluated and requires no additional time. This eliminates the need to use an extra shift
or multiply instruction.

The base, index, and displacement components may be used in any combination; any of these
components may be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high­
level languages and assembly language. Suggested uses for some combinations of address
components are shown below.

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is
used to access a statically allocated scalar operand. A byte, word, ordoubleword displace­
ment can be used.

BASE

The offset of the operand is specified indirectly in one of the general registers, as. for
"based" variables.

2-20

BASIC PROGRAMMING MODEL

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into static array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the offset of the beginning of the array. The register holds the
results of a calculation to determine the offset to a specific element within the array.

2. Access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an offset to the field.

An important special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame when a subroutine is
entered. In this case, the EBP register is the best choice for the base register, because it
automatically selects the stack segment. This is a compact encoding for this common
function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is
2,4, or 8 bytes. The displacement addresses the beginning of the array, the index register
holds the subscript of the desired array element, and the processor automatically converts
the subscript into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement
holds the address of the beginning of the array) or one of several instances of an array of
records (the displacement being an offset to a field within the record).

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the elements
of the array are 2, 4, or 8 bytes in size.

2.6 INTERRUPTS AND EXCEPTIONS

The 376 processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events that are responses of the CPU to certain conditions
detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily suspend
its present program execution in order to execute a program of higher priority. The major
distinction between these two kinds of interrupts is their origin. An exception is always
reproducible by re-executing with the program and data that caused the exception, while an
interrupt can have a complex, timing-dependent relationship with the program.

2-21

BASIC PROGRAMMING MODEL

Application programmers normally are not concerned with handling exceptions or inter.
rupts. The operating system, monitor, or device driver handles them. More information on
interrupts for system programmers may be found in Chapter 8. Certain kinds of exceptions,
however, are relevant to application programming, and many operating systems give appli·
cation programs the opportunity to service these exceptions. However, the operating system
itself will define the interface between the application program and the exception mecha·
nism of the 376 processor. Table 2·4 lists the interrupts and exceptions.

• A divide·error exception results when the DIY or IDlY instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (Refer
to Chapter 3 for a discussion of the DIY and IDlY instructions.)

• A debug exception may be reflected back to an application program if it results from
the TF (trap) flag.

• A breakpoint exception results when an INT3 instruction is executed. This instruction
is used by some debuggers to stop program execution at specific points.

• An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of INTO.

• A bounds·check exception results when the BOUND instruction is executed with an
array index that falls outside the bounds ofthe array. See Chapter 3 for a discussion of
the BOUND instruction.

• Undefined opcodes may be used by some applications to extend the instruction set. In
such a case, the invalid opcode exception presents an opportunity to emulate the instruc·
tion set extension. I

• The coprocessor·riot~avai1able exception occurs if the program contains instructions for
a coprocessor, but no coprocessor is present in the system.

• A coprocessor·error exception is generated when a coprocessor detects an illegal
operation. '

The INT instruction generates an interrupt whenever it is executed; the processor treats this
interrupt as an exception. Its effects (and the effects of all other exceptions) are determined
by exception handler routines in the application program' or the system software. ;The INT
instruction itself is discussed in Chapter 3. See Chapter 8 for a more complete description
of exceptions.

2-22

BASIC PROGRAMMING MODEL

Table 2-4. Exceptions and Interrupts

Vector Number Description

0 Divide Error
1 Debugger Call
2 NMllnterrupt
3 Breakpoint
4 INTO-detected Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Coprocessor Not Available
8 Double Fault
9 Coprocessor Segment Overrun
10 Invalid Task State Segment
11 Segment Not Present
12 Stack Fault
13 General Protection
15 (Intel reserved. Do not use.)
Hi Coprocessor Error
17-32 (Intel reserved. Do not use.)
32-255 Maskable Interrupts

2-23

Application Instruction Set 3

CHAPTER 3
APPLICATION INSTRUCTION SET

This chapter is an overview of the instructions which programmers can use to write appli­
cation software for the 376 processor. The instructions are grouped by categories of related
functions.

The instructions not discussed in this chapter are those normally used only by operating­
system programmers. Part II describes the operation of these instructions.

The instruction set description in Chapter 13 contains more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

3. 1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes, words, or doublewords of
data between memory and the registers of the base architecture. They fall into the following
catagories:

1. Gyneral-purpose data movement instructions.

2. Stack manipulation instructions.

3. Type-conversion instructions.

3.1.1 General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the destina­
tion operand. The MOV instruction is useful for transferring data along any of these paths:

• To a register from memory

• To memory from a register

• Between general registers

• Immediate data to a register

• Immediate data to a memory

The MOV instruction cannot move from memory to memory or from a segment register to
a segment register. Memory-to-memory moves can be performed, however, by the string
move instruction MOVS. A special form of the MOV instruction is provided for transferring
data between the AL or EAX registers and a location in memory specified by a 32-bit offset
encoded in the instruction. This form does not allow a segment override, index register, or
scaling factor to be used. The encoding of this form is one byte shorter than the encoding of
the general-purpose MOV instruction. A similar encoding is provided for moving an 8-,
16-, or 32-bit immediate into any of the general registers.

3-1

APPLICATION INSTRUCTION SET

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of
three MOV instructions. It does not require a temporary location to save the contents of one
operand while the other is being loaded. XCHG is especially useful for implementing
semaphores or similar data structures for process synchronization.

The XCHG instruction can swap two byte operands, two word operands, or two doubleword
operands. The operands for the XCHG instruction may be two register operands, or a regis­
ter operand with a memory operand. When used with a memory operand, XCHG automat­
ically activates the LOCK signal. (Refer to Chapter 10 for more information on bus locking).

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source operand
to the top of stack (see Figure 3-1). The PUSH instruction often is used to place parameters
on the stack before calling a procedure. Inside a procedure, it can be used to reserve space
on the stack for temporary variables. The PUSH instruction operates on memory operands,
immediate operands, and register operands (including segment registers). A special form of
the PUSH instruction is available for pushing a· 32-bit general register on the stack. This
form has an encoding which is one byte shorter than the general-purpose form. '

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack
(see Figure 3-2). This instruction simplifies procedure calls by reducing the number of
instructions required to save the contents of the general registers. The processor pushes the
general registers on the stack in the following order: EAX, ECX, EDX, EBX, the initial
value of ESP before EAX was pushed, EBP, ESI, and ED!. The effect of the PUSHA
instruction is reversed using the paPA instruction.

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD

15 0 15 o

• ESP

HIGH WORD

LOW WORD 1+ ESP

G50235

Figure 3-1. PUSH Instruction

3-2

APPLICATION INSTRUCTION SET

BEFORE PUSHA INSTRUCTION

15 o
_ESP

1--------1

AFTER PUSHA INSTRUCTION

15 0

EAX (HIGH WORD)

EAX (LOW WORD)

ECX (HIGH WORD)

ECX (LOW WORD)

EDX (HIGH WORD)

EDX (LOW WORD)

EBX (HIGH WORD)

EBX (LOW WORD)

OLD ESP (HIGH WORD)

OLD ESP (LOW WORD)

EBP (HIGH WORD)

EBP (LOW WORD)

ESI (HIGH WORD)

ESI (LOW WORD)

EDI (HIGH WORD)

EDI (LOW WORD)

Figure 3-2. PUSHA Instruction

~

BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD

15 o 15 o

ESP

.... ESP
1-------1

HIGH WORD

LOW WORD ESP
~------------~ ~------------~

Figure 3-3. POP Instruction

G50235

G50235

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by the
ESP register) to the destination operand, and then increments the ESP register to point to
the new top of stack. See Figure 3-3. POP moves information from the stack to a general
register, segment register, or to memory. A special form of the POP instruction is available
for popping a doubleword from the stack to a general register. This form has an encoding
which is one byte shorter than the general-purpose form.

3-3

APPLICATION INSTRUCTION SET

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the. action of reading
the stack (popping). See Figure 3-4.

3.1.3 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially useful
for converting signed integers, because they automatically fill the extra bits of the larger
item with the value of the sign bit of the smaller item. This results in an integer of the same
sign and magnitude, but a larger format. This kind of conversion, shown in Figure 3-5, is
called sign extension.

There are two kinds of type conversion instructions:

• The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the
EAX register.

• The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION

15 o 15 o
__ ESP

EAX (HIGH WORD) ~------------~

EAX (LOW WORD)

ECX (HIGH WORD)

ECX (LOW WORD)

EDX (HIGH WORD)

EDX (LOW WORD)

EBX (HIGH WORD) .

EBX (LOW WORD)

IGNORED

IGNORED

EBP (HIGH WORD)

EBP (LOW WORD)

ESI (HIGH WORD)

ESI (LOW WORD)

EDI (HIGH WORD)

EDI (LOW WORD) I-ESP
~------------~

G50235

Figure 3-4. POPA Instruction

3-4

APPLICATION INSTRUCTION SET

15 7 0

BEFORE SIGN EXTENSION--__ ISIN N N N N N N: N N N N N N N NI

AFTER SIGN EXTENSION +
31 23 15 7 0

lsi S S S S S S 5: 5 5 5 5 5 5 5 5:5 N N N N N N N :N N N N N N N N I

Figure 3-5. Sign Extension

G50235

CWD (Convert Word to Doubleword) and (Convert Doubleword to Quad-Word) double the
size of the source operand. The CWD instruction copies the sign (bit 15) of the word in the
AX register into every bit position in the DX register. The CDQ instruction copies the sign
(bit 31) of the doubleword in the EAX register into every bit position in the EDX register.
The CWD instruction can be used to produce a doubleword dividend from a word before a
word division, and the CDQ instruction can be used to produce a quadword dividend from a
doubleword before doubleword division.

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into every
bit position in the AX register.

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in the
AX register into every bit position in the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the sign to fill empty bits.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by filling empty bits with zero.

3.2 BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the 376 processor operate on numeric data encoded in binary.
Operations include the add, subtract, multiply, and divide as well as increment, decrement,
compare, and change sign (negate). Both signed and unsigned binary integers are supported.
The binary arithmetic instructions may also be used as steps in arithmetic on decimal integers.
Source operands can be immediate values, general registers, or memory. Destination operands
can be general registers or memory (except when the source operand is in memory). The
basic arithmetic instructions have special forms for using an immediate value as the source
operand and the AL or EAX registers as the destination operand. These forms are one byte
shorter than the general-purpose arithmetic instructions.

3-5

APPLICATION INSTRUCTION SET

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of result
which was produced. The kind of instruction used to test the flags depends on whether the
data is being interpreted as signed or unsigned. The CF flag contains information relevant
to unsigned integers; the SF and OF flags contain information relevant to signed integers.
The ZF flag is relevant to both signed and unsigned integers; the ZF flag is set when all bits
of the result are zero.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to reflect
the size of the operation. For example, an 8-bit ADD instruction sets the CF flag if the sum
of the operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic operations
to determine whether the operation required a carry or borrow to be propagated to the next
stage of the operation. The CF flag is set if a carry occurs (addition instructions ADD,
ADC, AAA, and DAA) or borrow occurs (subtraction instructions SUB, SBB, AAS, DAS,
CMP, and NEG).

The INC and DEC instructions do not change the state of the CF flag. This allows the
instructions to be used to update counters used for loop control without changing the reported
state of arithmetic results. To test the arithmetic state of the counter, the ZF flag can be
tested to detect loop termination, or the ADD and SUB instructions can be used to update
the value held by the counter.

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the
sign bit of the result. The most significant bit (MSB) of the magnitude of a signed integer
is the bit next to the sign-bit 6 of a byte, bit 14 of a word, or bit 30 of a doubleword. The
OF flag is set in either of these cases:

• A carry was generated from the MSB into the sign bit but no carry was generated out
of the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other
words, the result was greater than the greatest positive number that could be repre­
sented in two's complement form.

• A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG).
In other words, the result was smaller that the smallest negative number that could be
represented in two's complement form.

These status flags are tested by either kind of conditional instruction: Jee (jump on condition
ee) or SETee (byte set on condition).

3.2.1 Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and desti­
nation operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry) replaces the destination operand with the sum of the source
and destination operands, plus one if the CF flag is set. If the CF flag is clear, the ADC
instruction performs the same operation as the ADD instruction. An ADC instruction is

3-6

APPLICATION INSTRUCTION SET

used to propagate carry when adding numbers in stages, for example when using 32-bit
ADD instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF flags are
affected.

INC (Increment) adds one to the destination operand. The INC instruction preserves the
state of the CF flag. This allows the use of INC instructions to update counters in loops
without disturbing the status flags resulting from an arithmetic operation used for loop
control. The ZF flag can be used to detect when carry would have occurred. Use an ADD
instruction with an immediate value of one to perform an increment that updates the CF
flag. A one-byte form of this instruction is available when the operand is a general register.
The OF, SF, ZF, AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is set.
The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, ZF,
AF, PF, and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus one if the CF flag is
set. If the CF flag is clear, the SBB instruction performs the same operation as the SUB
instruction. An SBB instruction is used to propagate borrow when subtracting numbers in
stages, for example when using 32-bit SUB instructions to subtract one quad word operand
from another. The OF, SF, ZF, AF, PF, and CF flags are affected.

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction preserves
the state of the CF flag. This allows the use of the DEC instruction to update counters in
loops without disturbing the status flags resulting from an arithmetic operation used for loop
control. Use a SUB instruction with an immediate value of one to perform a decrement that
updates the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

3.2.2 Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates the
OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination operands.
A subsequent Jee or SETee instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG instruc­
tion is to change the sign of a two's complement operand while keeping its magnitude. The
OF, SF, ZF, AF, PF, and CF flags are affected.

3.2.3 Multiplication Instructions

The 376 processor has separate multiply instructions for unsigned and signed operands. The
MUL instruction operates on unsigned integers, while the IMUL instruction operates on
signed integers as well as unsigned.

3-7

APPLICATION INSTRUCTION SET

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source operand
and the AL, AX, or EAX register. If the source is a byte, the processor multiplies it by the
value held in the AL register and returns the double-length result in the AH and AL regis­
ters. If the source operand is a word, the processor multiplies it by the value held in the AX
register and returns the double-length result in the DX and AX registers. If the source
operand is a doubleword, the processor multiplies it by the value held in the EAX register
and returns the quad word result in the EDX and EAX registers. The MUL instruction sets
the CF and OF flags when the upper half of the result is non-zero; otherwise, the flags are
cleared. The state of the SF, ZF, AF, and PF flags is undefined.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. IMUL has three
variants:

1. A one-operand form. The operand may be a byte, word, or doubleword located in memory
or in a general register. This instruction uses the EAX and EDX registers as implicit
operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the other
may be in a general register or memory. The result replaces the general-register operand.

3. A three-operand form; two are source operands and one is the destination. One of the
source operands is an immediate value supplied by the instruction; the second may be
in memory or in a general register. The result is stored in a general register. The
immediate operand is a two's complement signed integer. If the immediate operand is a
byte, the processor automatically sign-extends it to the size of the second operand before
performing the multiplication.

The three forms are similar in most respects:

• The length of the product is calculated to twice the length of the operands.

• The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the upper half of the result is the sign­
extension of the lower half. The state of the SF, ZF, AF, and PF flags is undefined.

However, forms 2 and 3 differ because the product is truncated to the length of the operands
before it is stored in the destination register. Because of this truncation, the OF flag should
be tested to ensure that no significant bits are lost. (For ways to test the OF flag, refer to
the JO, INTO, and PUSHF instructions).

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

3.2.4 Division Instructions

The 376 processor has separate division instructions for unsigned and signed operands. The
DIV instruction operates on unsigned integers, while the IDIV instruction operates on both
signed and unsigned integers. In either case, a divide exception (interrupt vector 0) occurs if
the divisor is zero or if the quotient is too large for the AL, AX, or EAX register.

3-8

APPLICATION INSTRUCTION SET

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX regis­
ter by the source operand. The dividend (the accumulator) is twice the size of the divisor
(the source operand); the quotient and remainder have the same size as the divisor, as shown
in Table 3-1.

Non-integral results are truncated toward O. The remainder is always smaller than the divisor.
For unsigned byte division, the largest quotient is 255. For unsigned word division, the largest
quotient is65,535. For unsigned doubleword division the largest quotient is 232 -1. The state
of the OF, SF, ZF, AF, PF, and CF flags is undefined.

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source
operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is + 127, and the minimum negative
quotient is -128. For signed word division, the maximum positive quotient is 32,767, and
the minimum negative quotient is - 32,768. For signed doubleword division the maximum
positive quotient is 232-1, the minimum negative quotient is -231. Non-integral results are
truncated towards O. The remainder always has the same sign as the dividend and is less
than the divisor in magnitude. The state of the OF, SF, ZF, AF, PF, and CF flags is
undefined.

3.3 DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions (already
discussed in the prior section) with the decimal arithmetic instructions. The decimal arith­
metic instructions are used in one of the following ways:

• To adjust the results of a previous binary arithmetic operation to produce a valid packed
or unpacked decimal result.

• To adjust the inputs to a subsequent binary arithmetic operation so that the operation
will produce a valid packed or unpacked decimal result. These instructions operate only
on the AL or AH registers. Most use the AF flag.

3.3.1 Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed decimal
operands in the AL register. A DAA instruction must follow the addition of two pairs of

Table 3-1. Operands for DiviSion

Operand Size
Dividend Quotient Remainder (Divisor)

Byte AX register AL register AH register
Word OX and AX AX register OX register
Ooubleword EOX and EAX EAX register EOX register

3-9

APPLICATION INSTRUCTION SET

packed decimal numbers (one digit in each half-byte) to obtain a pair of valid packed decimal
digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, and CF flags are
affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid packed
decimal operands in theAL register. A DAS instruction must always follow the subtraction
of one pair of packed decimal numbers (one digit in each half- byte) from another to obtain
a pair of valid packed decimal digits as results. The CF flag is set if a borrow is needed. The
SF, ZF, AF, PF, and CF flags are affected. The state of the OF flag is undefined.

3.3.2 Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAAinstruction must follow the
addition of two unpacked decimal operands in the AL register. The CF flag is .set and the
contents of the AH register are incremented if a carry occurs. The AF and CF flags are
affected. The state of the OF, SF, ZF, and PF flags is undefined.

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow the
subtraction of one unpacked decimal operand from another inthe AL register~ The CF flag
is set and the contents of the AH register are decremented if a borrow is needed. The AF
and CF flags are affected. The state of the OF, SF, ZF, and PF flags is undefined.

/ ..

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two valid
unpacked decimal numbers. An AAM instruction must follow the· multiplication of two
decimal numbers to produce a valid decimal result. The upper digit is left in the AH register,
the lower digit in the AL r~gister. The SF, ZF, and PF flags are affected. The state of the
AF, OF, and CF flags is undefined.

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers to
prepare for the division of two valid unpacked decimal operands, so that the quotient produced
by the division will be a valid unpacked decimal number. The AH register should contain
the upper digit and the AL register should contain the lower digit. This instruction adjusts
the value and places· the result in the AL register. The AH registe:r will contain zero. The
SF, ZF, and PF flags are affected. The state of the AF, OF, and CF flags is undefined.

3.4 LOGICAL INSTRUCTIONS

The 10gica1 instructions have two operands. Source operands can be immediate values, general
registers, or memory. Destination operands can be general registers or memory (except when
the source operand is in memory). The logical instructions modify the state of the flags.

3-10

APPLICATION INSTRUCTION SET

Short forms of the instructions are available when the an immediate'source operand is applied
to a destination operand in the AL or EAX registers. The group of logical instructions
includes:

• Boolean operation instructions

• Bit test and modify instructions

• Bit scan instructions

• Rotate and shift instructions

• Byte set on condition

3.4.1 Boolean Operation Instructions

The logical operations are performed by the AND, OR, XOR, and NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one's complement of the operand.
The NOT instruction is a unary operation that uses a single operand in a register or memory.
NOT has no effect on the flags.

The AND, OR, and XOR instructions perform the standard logical operations "and", "or",
and "exclusive or." These instructions can use the following combinations of operands:

• Two register operands

• A general register operand with a memory operand

• An immediate operand with either a general register operand or a memory operand

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag
undefined, and update the SF, ZF, and PF flags. .

3.4.2 Bit Test and Modify Instructions

This group of instructions operates on a single bit which can be in memory or in a general
register. The location of the bit is specified as an offset from the low end of the operand.
The value of the offset either may be given by an immediate byte in the instruction' or may
be contained in a general register.

These instructions first assign the value ofthe selected bit to the CFflag. Then a new value
is assigned to the selected bit, as determined by the operation. The state of the OF, SF, ZF,
AF, and PF flags is undefined. Table 3-2 defines these instructions.

3.4.3 Bit Scan Instructions

These instructions scan a word or doubleword for a set bit and store the bit index (an integer
representing the bit position) of the first set bit into a register; The bit string being scanned
may be in a register or in memory. The ZF flag is set if the entire word is zero (no set bits

3-11

APPLICATION INSTRUCTION SET

:Table3-2. Bit Test and Modify Instructions
.;'

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag +- Selected Bit no effect
BTS (Bit Test and Set) CF flag +- Selected Bit Selected Bit +- 1
BTR (Bit Test and Reset) CF flag +- Selected Bit Selected Bit +- 0
BTC (Bit Test and Complement) CF flag +- Selected Bit Selected Bit +- - (Selected Bit)

are found), otherwise the ZF flag is cleared. In the former case, the value of the destination
register is left undefined. The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).

BSR (Bit Scan Reverse) scanslligh-to-Iow (from the uppermost bit toward bit 0).

3 .. 4.4 Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand.

These instructions fall into the following classes:

•
•
•

Shift instructions

Double shift instructions

Rotate instructions' .

3:4.4.1 . SHIFT INSTRUCTIONS

Shift instructions apply ari arithmetic or logical shift to bytes, words, and doublewords. An
arithmetic shift right copies the sign bit into empty bit positions on the upper end of the
operand, while a logical shift right fills the empty bits with zeroes. An arithmetic shift is a
fa,st way to perfoqna simple: calculation. For example, an arithmetic shift right by· one bit
position will. divide an integer by two. A logical shift right will divide an unsigned integer or
a pqsitive integer,but a signed negative integer ~ould lose its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their treat­
ment of the bit pos~tions emptied by shifting the contents of the operand. Note that there is
no difference between, ,an.arithmetic shift left and a logical shift left. Two names; SAL and
SHL, are supported for this :instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up to
31 places. A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The second form gives the count as an immedi­
ate operand. The third; form gives the. count as the value contained in theCL register. This
last .for.m allows the count to be a result from a calculation. Only the low five bits of the CL
register are used. ;

APPLICATION INSTRUCTION SET

The CF flag is left with the value of the last bit shifted out of the operand. In a single-bit
shift, the OF flag is set if the value of the uppermost bit (sign bit) was changed by the
operation. Otherwise, the OF flag is cleared. After a shift of more than one bit position, the
state of the OF flag is undefined. The SF, ZF, PF, and CF flags are affected. The state of
the AF flag is undefined.

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left by
one bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). Empty bit positions are filled with zeros. See
Figure 3-6.

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the
assembler.

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right by
one bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). Empty bit positions are filled with zeros. See
Figure 3-7.

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand to
the right by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register). The sign of the operand is preserved
by filling empty bit positions with zeros if the operand is positive or ones if the operand is
negative. See Figure 3-8.

Even though this instruction can be used to divide integers by an integer power of two, the
type of division is not the same as that produced by the IDIV instruction. The quotient from
the IDIV instruction is rounded toward zero, whereas the "quotient" of the SAR instruction
is rounded toward negative infinity. This difference is apparent only for negative numbers.

INITIAL STATE:

OF CF OPERAND

00 110001000100010001000100010001111 1

AFTER 1-BIT SHL/SAL INSTRUCTION:

[I] EJ----i 00010001000100010001000100011110 I- 0

AFTER 10-BIT SHL/SAL INSTRUCTION:

o 8.-1 001000100010001000111100000000001- 0

G50235

Figure 3-6. SHL/SAL Instruction

3-13

APPLICATION INSTRUCTION SET

INITIAL STATE:

OPERAND CF

1100010001000100010001000100011111 [!]

AFTER 1-BIT SHR INSTRUCTION:

0-1 01000100010001000100010001000111 r.E]

AFTER 10-BIT SHR INSTRUCTION:

0-1000000000010001000100010001000.10 I-G

Figure 3-7. SHR Instruction

INITIAL STATE (POSITIVE OPERAND):

OPERAND CF

1 010001000100010001000100010001111 ~

AFTER 1·BIT SAR INSTRUCTION:

00100010001000100010001000100011 [J[]

INITIAL STATE (NEGATIVE OPERAND):

OPERAND CF

111000100010001000100010001000111 1 ~

AFTER 1-BIT SAR INSTRUCTION:

11100010001000100010001000100011 ~

Figure 3-8. SAR Instruction

3-14

G50235

G50235

APPLICATION INSTRUCTION SET

For example, when the IDIV instruction is used to divide -9 by 4, the result is -2 with a
remainder of - 1. If the SAR instruction is used to shift - 9 right by two bits, the result is
- 3. The "remainder" of this kind of division is + 13; however, the SAR instruction stores
only the high-order bit of the remainder (in the CF flag).

3.4.4.2 DOUBLE-SHIFT INSTRUCTIONS

These instructions provide the basic operations needed to implement operations on . long
unaligned bit strings. The double shifts operate either on word or doubleword operands, as
~~: .

• Take two word operands and produce a one-word result (32-bit shift).

• Take two doubleword operands and produce a doubleword result (64-bit shift).

Of the two operands, the source operand must be in a register while the destination operand
may be in a register or in memory. The number of bits to be shifted is specified either in the
CL register or in an immediate byte in the instruction. Bits shifted out of the source operand
fill empty bit positions in the destination operand, which also is shifted. Only the destination
operand is stored.

The CF flag is set to the value of the last bit shifted out of the destination operand. The SF,
ZF, and PF flags are affected. The state of the OF and AF flags is undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 3-9). The result
is stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while filling
empty bit positions with bits shifted out of the source operand (see Figure 3-10). The result
is stored back into the destination operand. The source operand is not modified.

31 DESTINATION 0

~~r-~:::::M:EM:O:RY:O:R:RE:G:IST:E:R:::::I~J
SOURCE 0

REGISTER

G50235

Figure 3-9. SHLD Instruction

3-15

APPLICATION INSTRUCTION SET

31 SOURCE o
REGISTER'

31 DESTINATION 0

~ ____ M_E_MO_R_Y_OR_R_E_GI_ST_ER ____ ~~~

G50235

Figure 3-10. SHRD Instruction

31 DESTINATION o

~~L~~::::M:E:MO:R:Y:OR:R:E:GI:ST:ER::::~I::J __ J

G50235

Figure 3-11. ROL Instruction

3.4.4.3 ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits are
emptied during a rotation.

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension of
the operand in two of the rotate instructions, allowing a bit to be isolated and then tested by
a conditional,jump instruction (JC or JNC). The CF flag always contains the value of the
last bit rotated out of the operand, even if the instruction does not use the CF flag as an
extension of the operand. The state of the SF, ZF, AF, and PF flags is undefined.

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit (sign
bit) of the destination operand. If the sign bit retains its original value, the OF flag is cleared.
After a rotate of more than one bit position, the value of the OF flag is undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one bit
position or by the number of bits specified in the count operand (an immediate value or a
value contained in the CL register). For each bit position of the rotation, the bit that exits
from the left of the operand returns at the right. See Figure 3-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by one
bit position or by the number of bits specified in the count operand (an immediate value or
a value contained in the CL register). For each bit position of the rotation, the bit that exits
from the right of the operand returns at the left. See Figure 3-12.

3-16

APPLICATION INSTRUCTION SET

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destination
operand left by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on the
upper end of the destination operand. Each bit that exits from the left side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the right side. See
Figure 3-13.

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword destination
operand right by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower
end of the destination operand. Each bit that exits from the right side of the operand moves
into the CF flag. At the same time, the bit in the CF flag enters the left side. See
Figure 3-14.

3.4.4.4 FAST "BIT BL T" USING DOUBLE SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with arbitrary
misalignment of the bit strings. This is called a "bit bit" (BIT BLock Transfer). A simple
example is to move a bit string from an arbitrary offset into a doubleword-aligned byte
string. A left-to-right string is moved 32 bits at a time if a double shift is used inside the
move loop.

MOV
MOV
MOV
MOV
MOV
ADD

BI tLoop:
LODSD
SHRD
XCHG
STOSD
DEC

ESI,ScrAddr
EDI,DestAddr
EBX,WordCnt
CL,RelOffset
EDX,!ESII
E S I ,4

EDX,EAX,CL
EDX,EAX

E B X

relative offset Dest-Src
load first word of source
bump source address

new low order part in EAX
EDX overwritten with aligned stuff
Swap high and low words
Write out next aligned chunk
Decrement loop count

JNZ BltLoop

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest possible
performance. Without a double shift, the best that can be achieved is 16 bits per loop itera­
tion by using a 32-bit shift, and replacing the XCHG instruction with a ROR instruction by
16 to swap the high and low words of registers. A more general loop than shown ab-Q..ve would
require some extra masking on the first doubleword moved (before the main loop], and on
the last doubleword moved (after the main loop), but would have the same 32-bits per loop
iteration as the code above.

3-17

APPLICATION INSTRUCTION SET

I !~31 _______ D_ES~T~IN~U_IO_N _______ O~~ I ~CF

L..f MEMORY OR REGISTER l---l--~

G50235

Figure 3-12. ROR Instruction

DESTINATION o
MEMORY OR REGISTER I=-,

G50235

Figure 3-13. RCL Instruction

DESTINATION 0

MEMORY OR REGISTER

G50235

Figure 3-14. RCR Instruction

3.4.4.5 FAST BIT-STRING INSERT AND EXTRACT

The double shift instructions also make possible:

• Fast insertion of a bit string from a register into an arbitrary bit location in a larger bit
string in memory, without disturbing the bits on either side of the inserted bits

• Fast extraction of a bit string into a register from an arbitrary bit location in a larger
bit string in memory, without disturbing the bits on either side of the extracted bits

3-18

APPLICATION INSTRUCTION SET

The following coded examples illustrate bit insertion and extraction under various
conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e. spans four
bytes or less): .

j

In5ert a right-ju5tified bit 5tring from a regi5ter into
a bit 5tring in memory.

A55umptions:
1. The ba5e of the string array i5 doubleword aligned.
2. The length of the bit 5tring is an immediate value

and the bit off5et i5 held in a register.

The ESI regi5ter hold5 the right-jU5tified bit 5tring
to be in5erted.
The EDI regi5ter hold5 the bit off5et of the 5tart of the
5ub5tring.
The EAX register and ECX are al50 u5ed.

MOV ECX,EDI save original off5et
SHR EDI,3 divide offset by B (byte addr)
AND CL,7H get low three bit5 of off5et
MOV EAX,IEDllstrg_base move string dword into EAX
ROR EAX,CL right justify old bit field
SHRD EAX,ESI,length bring in new bits
ROL EAX,length right justify new bit field
ROL EAX,CL bring to final p05ition
MOV IED115trg_ba5e,EAX replace doubleword in memory

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e. spans five
bytes or less):

In5ert a right-justified bit string from a regi5ter into
a bit string in memory.

A55umptions:
1. The ba5e of the 5tring array i5 doubleword aligned.
2. The length of the bit 5tring i5 an immediate value

and the bit offset is held in a regi5ter.

The ESI register holds the right-justified bit 5tring
to be inserted.
The EDI register holds the bit off5et of the 5tart of the
5ubstring.
The EAX, EBX, ECX, and EDI regi5ter5 al50 are u5ed.

Mev
S H R
S H L
AND
Mev
Mev
MOV
SHRD

ECX,EDI
ED 1,5
ED 1,2
CL,1FH
E A X , lED I I 5 t r g_b a s e
ED X , lED I I 5 t r g_b a 5 e + 4
EBX,EAX
EAX,EDX,CL

3-19

temp storage for off5et
divide ofhet by 32 (dword5)
multiply by 4 (byte addre55)
get low five bits of offset
move low 5tring dword into EAX
other 5tring dword into EDX
temp storage for part of 5tring
shift by off5et within dword

APPLICATION INSTRUCTION SET

SHRb (AX,EBX,CL shift by offset within dword
SHRD EAX,ESl,length bring in new bits
ROL EAX,length right ju~tify new bit field
MOV EBX,EAX temp storage for strin.g
SHLD EAX,EDX,CL ; shift by offset within word
SHLD EDX,EBX,CL shift by offset within word
MOV IEDllstrg_base,EAX replace dword in ~emory
MOV IEDllstrg_base+4,EDX replace dword in memory

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e. spans
four or five bytes): .

Insert right-justified bit string from a register into
a bit string in me~ory.

Assumptions:
1. The base of the string array is doubleword aligned.
2. The length of the bit string is 32 bits

and the bit offset is held in a register.

The ESI register holds the 32-bit string to be inserted.
The EDI register holds the bit offset to the start of the
substring.

·The EAX, EBX, ECX, and EDI registers also are used.

OV EDX,EDI save original offset
SHR EDI,S divide offset by 32 (dwords)
SHL EDI,2 multiply by 4 (byte address)
AND CL,lFH isolate low five bits of offset
MOV EAX,IED11strg_base move low string dword into EAX
MOV EDX,IEDllstrg_base+4 other string dword into EDX
MOV EBX,EAX . temp storage for pa~t of string
SHRD EAX,EDX shift by offset within dw~rd
SHRD EDX,EBX shift by offset within dword
MOV EAX,ESI move 32~bit field into position
MOV EBX,EAX temp storage for p~rt of string
SHLD EAX,EDX shift by offset within word
SHLD EDX,EBX shift by offset within word
MOV IEDllstrg_base,E8X replace dword in memory
MOV IEDllstrg_base,+4,EDX replace dword in memory

4. Bit String Extraction from Memory (when the bit string is 1-25 bits long, i.e. spans four
bytes or less):

Extract a right-justified bit string into a register from
a bit string in memory.

Assumptions:
1) The base of the string array is doubleword aligned.
2) The length of the bit string is an immediate value

and the bit offset is held in a register.

, The EAX register hold the right-justified, zero-p~dded
bit string that was extracted.
The EDI register hold~ the bit offset of the ~tart ~f the
substring; .

3-20

APPLICATION INSTRUCTION SET

j The EDI, and ECX registen also are used.
j

MOV ECX,EDI
SHR EDI,3
AND CL,7H
MOV EAX,[EDIlstrg~base
SHR EAX,CL
AND EAX,mask

temp storage for offset
divide offset by 8 (byte addr)
get low three bits of offset
move string dword into EAX
shift by offset within dword
extracted bit field in EAX

5. Bit String Extraction from Memory (when bit string is 1-32 bits long, i.e. spans five
bytes or less):

j

Extract a right-justified bit string into a register from a
bit string in memory.

Assumptions:
1) The base of the string array is doubleword aligned.
2) The length of the bit string is an immediate

value and the bit offset is held in a register.

The E A X .. r e gi s t e rho Ids the rig h t - jus t i fie d, z e r 0 - pad d e d
bit string that was extracted.
The EDI register holds the bit offset of the start of the
substring.
The EAX, EEX, and ECX registers also are used.

MOV
SHR
SHL
AND
MOV
MOV
SHRD
AND

ECX,EDI
ED I ,5
ED I , 2
C L , 1 F H
E A X , [ED I 1st r g_b a s e
ED X , [ED lIs t r g_b a s e + 4
EAX,EDX,CL
EAX,mask

temp storage for offset
divide offset by 32 (dwords)
multiply by 4 (byte address)
get low five bits of offset in
move low string dword into EAX
other string dword into EDX
shift right by offset in dword
extracted bit field in EAX

3.4.5 Byte-Set-On-Condition Instructions

This group of instructions sets a byte to the value of zero or one, depending on any of the
16 conditions defined by the status flags. The byte may be in a register or in memory. These
instructions are especially useful for implementing Boolean expressions in high-level languages
such as Pascal.

Some languages represent a logical one as an integer with all bits set. This can be done by
using the SETcc instruction with the mutually exclusive condition, then decrementing the
result.

SETcc (Set Byte on Condition cc) set a byte to one if condition cc is true; sets the byte to
zero otherwise. Refer to Appendix D for a definition of the possible conditions.

3-21

APPLICATION INSTRUCTION SET

3.4.6 Test Instruction

TEST (Test) performs the logical "and" of the two operands, clears the OF and CF flags,
leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can be tested
by conditional control transfer instructions or the byte-set-on-condition instructions. The
operands may be bytes, words, or doublewords. '

The difference between the TEST and AND instructions is the TEST instruction does not
alter the destination operand. The difference between the TEST and BT instructions is the
TEST instruction can test the value of multiple bits in one operation, while the BT instruc­
tion tests a single bit.

3.5 CONTROL TRANSFER INSTRUCTIONS

The 376 processor provides both conditional and unconditional control transfer instructions
to direct the flow of execution. Conditional transfers are executed only for certain combi­
nations of the state of the flags. Unconditional control transfers are always executed.

3.5.1 Unconditional Transfer Instructions

The JMP, CALL, RET, INT and IRET instructions transfer execution to a destination in
a code segment. The destination can be within the same code segment (near transfer) or in
a different code segment (Jar transfer). The forms of these instructions that transfer execu­
tion to other segments are discussed in a later section of this chapter. If the model of memory
organization used in a particular application does not make segments visible to application
programmers, far transfers will not be used.

3.5.1.1 JUMP INSTRUCTION

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction is
a one-way transfer of execution; it does not save a return address on the stack.

The JMP instruction transfers execution from the current routine to a different routine. The
address of the routine is specified in the instruction, in a register, or in memory. The location
of the address determines whether it is interpreted as a relative address or an absolute address.

Relative Address. A relative jump uses a displacement (immediate mode constant used for
address calculation) held in the instruction. The displacement is signed and variable-length
(byte or doubleword). The destination address is formed by adding the displacement to the
address held in the EIP· register. The EIP register then contains the address of the next
instruction to be executed.

3-22

APPLICATION INSTRUCTION SET

Absolute Address. An absolute jump is used with a 32-bit segment offset in one of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard address­
ing modes. The operand is copied into the EIP register and execution continues.

3. A displacement can be added to the contents of the EIP register to perform a relative
jump. The displacement is a signed byte or doubleword.

3.5.1.2 CALL INSTRUCTION

CALL (Call Procedure) transfers execution and saves the address of the instruction following
the CALL instruction for later use by a RET (Return) instruction. CALL pushes the current
contents of the EIP register on the stack. The RET instruction in the called procedure uses
this address to transfer execution back to the calling program.

CALL instructions, like JMP instructions, have relative and absolute forms.

Indirect CALL instructions specify an absolute address in one of the fol~wing ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register, the return address is pushed on the stack, and execution continues.

2. The destination address can be a memory operand specified using the standard address­
ing modes. The operand is copied into the EIP register, the return address is pushed on
the stack, and execution continues.

3.5.1.3 RETURN AND RETURN-fROM-INTERRUPT INSTRUCTIONS

RET (Return From Procedure) terminates a procedure and transfers execution to the instruc­
tion following the CALL instruction which originally invoked the procedure. The RET
instruction restores the contents of the EIP register that were pushed on the stack when the
procedure was called.

The RET instructions have an optional immediate operand. When present, this constant is
added to the contents of the ESP register, which has the effect of removing any parameters
pushed on the stack before the procedure call.

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it also restores the EFLAGS register
from the stack. The contents of the EFLAGS register are stored on the stack when an inter­
rupt occurs.

3.5.2 Conditional Transfer Instructions

The conditional transfer instructions are jumps which transfer execution if the states in the
EFLAGS register match conditions specified in the instruction.

3-23

APPLICATION INSTRUCTION SET

3.5.2.1 CONDITIONAL JUMP INSTRUCTIONS

Table 3-3 shows the mnemonics for the jump instructions. The instructions listed as pairs
are alternate names for the same instruction. The assembler provides these names for greater
clarity in program listings.

A form of the conditional jump instructions is available which uses a displacement added to
the contents of the EIP register if the specified condition is true. The displacement may be
a byte or doubleword. The displacement is signed; it can be used to jump forward or
backward.

3.5.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps that use a value placed in the ECX register as a
count for the number of times to execute a loop. All loop instructions decrement the contents
of the ECX register on each repitition and terminate when zero is reached. Four of the five
loop instructions accept the ZF flag as condition for terminating the loop before the count
reaches zero.

Table 3-3. Conditional Jump Instructions

Unsigned Conditional Jumps

Mnemonic Flag States Description

JAfJNBE (CF or ZR) = 0 above/not below nor equal
JAE/JNB CF = 0 above or equal/not below
JB/JNAE CF = 1 below/not above nor equal
JBE/JNA (CF or ZF) = 1 below or equal/not above
JC CF = 1 . carry
JE/JZ ZF = 1 equal/zero
JNC CF = 0 not carry
JNE/JNZ ZF = 0 not equal/not zero
JNP/JPO PF = 0 not parity/parity odd
JP/JPE PF = 1 parity/parity even

Signed Conditional Jumps

JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/JNL (SF xro OF) = 0 greater or equal/not less
JL/JNGE (SF xor OF) = 1 less/not greater nor equal
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater
JNO OF = 0 not overflow
JNS SF = 0 not sign (non-negative)
JO OF = 1 overflow
JS SF'= 1 sign (negative)

3-24

APPLICATION INSTRUCTION SET

LOOP (Loop While ECX Not Zero) is a conditional jump instruction that decrements the
contents of the ECX register before testing for the loop-terminating condition. If contents
of the ECX register are non-zero, the program jumps to the destination specified in the
instruction. The LOOP instruction causes the execution of a block of code to be repeated
until the count reaches zero. When zero is reached, execution is transferred to the instruc­
tion immediately following the LOOP instruction. If the value in the ECX register is zero
when the instruction is first called, the count is pre-decremented to OFFFFFFFFH and the
LOOP executes 232 times.

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same
instruction. These instructions are conditional jumps that decrement the contents of the ECX
register before testing for the loop-terminating condition. If the contents of the ECX register
are non-zero and the ZF flag is set, the program jumps to the destination specified in the
instruction. When zero is reached or the ZF flag is clear, execution is transferred to the
instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms for
the same instruction. These instructions are conditional jumps that decrement the contents
of the ECX register before testing for the loop-terminating condition. If the contents of the
ECX register are non-zero and the ZF flag is clear, the program jumps to the destination
specified in the instruction. When zero is reached or the ZF flag is set, execution is trans­
ferred to the instruction immediately following the LOOPE/LOOPZ instruction.

3.5.2.3 EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the
ECX register holds a value of zero. The JECXZ instruction is used in combination with the
LOOP instruction and with the string scan and compare instructions. Because these instruc­
tions decrement the contents of the ECX register before testing for zero, a loop will execute
232 times if the loop is entered with a zero value in the ECX register. The JECXZ instruction
is used to create loops that fall through without executing when the initial value is zero. A
JECXZ instruction at the beginning of a loop can be used to jump out of the loop .if the
count is zero. When used with repeated string scan and compare instructions, the JECXZ
instruction can determine whether the loop terminated due to the count or due to satisfaction
of the scan or compare conditions.

3.5.3 Software Interrupts

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt service routine.

INTn (Software Interrupt) calls the service routine corresponding to the exception or inter­
rupt vector specified in the instruction. The INT instruction may specify any interrupt type.
This instruction is used to support multiple types of software interrupts or to test the opera­
tion of interrupt service routines. The interrupt service routine terminates with an IRET
instruction, which returns execution to the instruction following the INT instruction.

3-25

APPLICATION INSTRUCTION SET

INTO (Interrupt on Overflow) calls the service routine for interrupt vector 4, if the OF flag
is set. If the flag is clear, execution proceeds to the next instruction. The OF flag is set by
arithmetic, logical, and string instructions. This instruction supports the use of software
interrupts for handling error conditions, such as arithmetic overflow.

BOUND (Detect Value Out of Range) compares the signed value held in a general register
against an upper and lower limit. The service routine for interrupt vector 5 is called if the
value held in the register is less than the lower bound or greater than the upper bound. This
instruction supports the use of software interrupts for bounds checking, such as checking an
array index to make sure it falls within the range defined for the array.

The BOUND instruction has two operands. The first operand specifies the general register
being tested. The second operand is the base address of two words or doublewords at adjacent
locations in memory. The lower limit is the word or doubleword with the lower address; the
upper limit has the higher address. The BOUND instruction assumes that the upper limit
and lower limit are in adjacent memory locations. These limit values cannot be register
operands; if they are, an invalid opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts the
array bounds at a constant offset from the beginning of the array. Because the address of
the array already will be present in a register, this practice avoids extra bus cycles to obtain
the effective address of the array bounds.

3.6 STRING OPERATIONS

String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on I/O for information about the string I/O instruc­
tions (also known as block I/O instructions).

The string operations are made by putting string instructions (which execute only one itera­
tion of an operation) together with other features of the Inte1376 architecture, such as repeat
prefixes. The string instructions are:

MOVS-Move String
CMPS-Compare string
SCAS-Scan string
LODS-Load string
STOS-Store string

After a string instruction executes, the string source and destination registers point to the
next elements in their strings. These registers automatically increment or decrement their
contents by the number of bytes occupied by each string element. A string element can be a
byte, word, or doubleword. The string registers are:

ESI-Source index register
EDI-Destination index register

3-26

APPLICATION INSTRUCTION SET

String operations can begin at higher address and work toward lower ones, or they can begin
at lower addresses and work up. The direction is controlled by:

DF-Direction flag

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are
decremented. These instructions set and clear the flag:

STD-Set direction flag instruction
CLD-Clear direction flag instruction

To operate on more than one element of a string, a repeat prefix must be used, such as:

REP-Repeat while the ECX register not zero
REPEjREPZ-Repeat while the ECX register not zero and the ZF flag is set
REPNEjREPNZ-Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts which occur during a string instruction leave the registers in a state
that allows the string instruction to be restarted. The source and destination registers point
to the next string elements, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration. All that is necessary to
restart the opera~ion is to service the interrupt or fix the source of the exception, then execute
an IRET instruction.

3.6.1 Repeat Prefixes

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While Equal/
Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated operation
of a string instruction (see Table 3-4). This form of iteration allows string operations to
proceed much faster than would be possible with a software loop.

When a string instruction has a repeat prefix, the operation executes until one of the termi­
nation conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by an exception
or interrupt. After the exception or interrupt has been serviced, the string operation can
restart where it left off. This mechanism allows long string operations to proceed without
affecting the interrupt response time of the system.

Table 3-4. Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=Q none
REPE/REPZ ECX=Q ZF=Q
REPNE/REPNZ ECX=Q ZF=1

3-27

APPLICATION INSTRUCTION SET

All three prefixes cause the instruction to repeat until the ECX register is decremented to
zero, if no other termination condition is satisfied. The repeat prefixes differ in their other
termination condition. The REP prefix has no other condition. The REPE/REPZ and
REPNE/REPNZ prefixes are used exclusively with the SCAS (Scan String) and CMPS
(Compare String) instructions. The REPE/REPZ prefix terminates if the ZF flag is clear.
The REPNE/REPNZ prefix terminates if the ZF flag is set. The ZF flag does not require
initialization before execution of a repeated string instruction, because both the SCAS and
CMPS instructions affect the ZF flag according to the results of the comparisons they make.

3.6.2 Indexing and Direction Flag Control

Although the general registers are completely interchangable under most conditions, the
string instructions require the use of two specific registers. The source and destination strings
are in memory addressed by the ESI and EDI registers. The ESI register points to source
operands. By default, the ESI register is used with the DS segment register. A segment­
override prefix allows the ESI register to be used with the CS, SS, ES, FS, or GS segment
registers. The EDI register points to destination operands. It uses the segment indicated by
the ES segment register; no segment override is allowed. The use of two different segment
registers in one instruction permits operations between strings in different segments.

When ESI and EDI are used in string instructions, they automatically are incremented or
decremented after each iteration. String operations can begin at higher address and work
toward lower ones, or they can begin at lower addresses and work up. The direction is
controlled by the DF flag. If the flag is clear, the registers are incremented. If the flag is
set, the registers are decremented. The STD and CLD instructions set and clear this flag.
Programmers should always put a known value in the DF flag before using a string
instruction.

3.6.3 String Instructions

MOVS (Move String) moves the string element addressed by the ESI register to the location
addressed by the EDI register. The MOVSB instruction moves bytes, the MOVSW instruc­
tion moves words, and the MOVSD instruction moves doublewords. The MOVS instruction,
when accompanied by the REP prefix, operates as a memory-to-memory block transfer. To
set up this operation, the program must initialize the ECX, ESI, and ED! registers. The
ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written
back to memory. If the string elements are equal, the ZF flag is set; otherwise, it is cleared.
CMPSB compares bytes, CMPSW compares words, and CMPSD compares doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF flags.
The string and the register are not modified. If the values are equal, the ZF flag is set;
otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction scans
words; the SCASD instruction scans doublewords.

3-28

APPLICATION INSTRUCTION SET

When the REPEjREPZ or REPNEjREPNZ prefix modifies either the SCAS or CMPS
instructions, the value of the current string element is compared against the value in the
EAX register for doubleword elements, in the AX register for word elements, or in the AL
register for byte elements.

LODS (Load String) places the source string element addressed by the ESI register into the
EAX register for doubleword strings, into the AX register for word strings, or into the AL
register for byte strings. This instruction usually is used in a loop, where other instructions
process each element of the string as they appear in the register.

STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop,
where it writes to memory the result of processing a string element read from memory with
the LODS instruction. A REP STOS instruction is the fastest way to initialize a large block
of memory.

3.7 INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES

These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEA VE, which simplify proce­
dure entry and exit in compiler-generated code. They support a structure of pointers and
local variables on the stack called a stack frame.

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of block­
structured languages. In these languages, a procedure has access to its own variables and
some number of other variables defined elsewhere in the program. The scope of a procedure
is the set of variables to which it has access. The rules for scope vary among languages; they
may be based on the nesting of procedures, the division of the program into separately­
compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic storage
is the memory allocated for variables created when the procedure is called, also known as
automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the
procedure. The nesting level is the depth of a procedure in the heirarchy of a block­
structured program. The lexical level has no particular relationship to either the protection
privilege level or to the I j 0 privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access
the variables of a procedure. The set of stack frame pointers used by a procedure to access
the variables of other procedures is called the display. The first doubleword in the display is
a pointer to. the previous stack frame. This pointer is used by a LEAVE instruction to undo
the effect of an ENTER instruction by discarding the current stack frame.

3-29

APPLICATION INSTRUCTION SET

Example: E N TE R 2 0 4 8 , 3

Allocates 2048 bytes of dynamic storage on the stack and sets up pointers to two previous
stack frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic
(automatic) local variables for the procedure by decrementing the. contents of the ESP regis­
ter by the number of bytes specified in the first parameter. This new value in the ESP
register serves as the initial top-of-stack for all PUSH and POP operations within the
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because staqks grow down, this is actually
the doublewordwith the highest address in the display. Data manipulation instructions that
specify the EBP register as a base register automatically address locations within the stack
segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level
is 0, the non-nested form is used. The non-nested form pushes the contents of the EBP
register on the stack, copies the contents of the ESP register into the EBP register, and
subtracts the first operand from the contents of the ESP register to allocate dynamic storage.
The non-nested form differs from the nested form in that no stack frame pointers are copied.
The nested form of the ENTER instruction occurs when the second parameter (lexical level)
is not zero.

Figure 3-15 shows the formal definition of the ENTER instruction. STORAGE is the number
of bytes of dynamic storage to allocate for local variables, and LEVEL is the lexical nesting
level.

PU5h EBP
Set a temporary value FRAME_PTR := ESP
If LEVEL) 0 then

Repeat CLEVEL-1) time5:
EBP :=EBP - 4
PU5h the doubleword pointed to byEBP

End repeat .
PU5h FRAME-,--PTR

End if
EBP : = FRAME_PTR
ESP := ESP - STORAGE

Figure 3-15. Formal Definition of the ENTER Instruction

3-30

APPLICATION INSTRUCTION SET

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A
level 2 procedure can access the variables of the main program, which are at fixed locations
specified by the compiler. In the case of levell, the ENTER instruction allocates only the
requested dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing
a pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access
to its variables. In this case, the ENTER instruction copies only that part of the display
from the calling procedure which refers to previously nested procedures operating at higher
lexical levels. The new stack frame does not include the pointer for addressing the calling
procedure's stack frame.

The ENTER instruction treats a reentrant procedure as a call to a procedure at the same
lexical level. In this case, each succeeding iteration of the reentrant procedure can address
only its own variables and the variables of the procedures within which it is nested. A reentrant
procedure always can address. its own variables; it does not require pointers to the stack
frames of previous iterations. .

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels,
not those at parallel lexical levels (see Figure 3-16).

Block-structured languages can use the lexical levels defined by ENTER to control access
to the variables of nested procedures. In the figure, for example, if PROCEDURE A calls
PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C will have
access to the variables of MAIN and PROCEDURE A, but not those of PROCEDURE B

MAIN PROCEDURE (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

PROCEDURE B (LEXICAL LEVEL 3)

PROCEDURE C (LEXICAL LEVEL 3)

PROCEDURE D (LEXICAL LEVEL 4)

G50235

Figure 3-16. Nested Procedures

3-31

APPLICATION INSTRUCTION SET

because they are at the same lexical level. The following definition describes the access to
variables for the nested procedures in the figure.· .

1. MAIN has variables at fixed locations.

2. PROCEDURE A can access only the variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the varia.bles of PROCEDURE C oi-PROCEDURE D.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCEDURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, and
MAIN.·PROCEDURE D cannot access the variables of PROCEDURE R

In the following diagram, an ENTER instruction at the beginning of the MAIN program
creates three doublewords of dynamic storage for MAIN, but copies no pointers from other
stack frames (See Figure 3-17). The first d()ubleword in the display holds a copy of the last
value in the EBP register before the ENTER instruction was executed. The second double­
word (which, because stacks grow down, is stored at a lower address) holds a copy of the
contents of the EBP register following the ENTER instruction. After the instruction is
executed, the EBP register points to the first doubleword pushed on the stack, and the ESP
register points to the last doubleword pushed on the stack.

When MAIN calls PROCEDURE A, the ENTER instruction creates anew display (See
Figure 3-18). The first doubleword is the last value held in MAIN's EBP register. The
second doubleword is a pointer to MAIN's stack frame which is copied from the second
doubleword in MAIN's display. This happens to be another copy of the last value held in
MAIN's EBP register. PROCEDURE A can access variables in MAIN because MAIN is
at level 1. Therefore the base address for the dynamic storage used in MAIN is the current
address in the EBP register, plus four bytes to account for the saved contents of MAIN's
EBP register. All dynamic variables for MAIN are at fixed, positive offsets from this value.

·31 o·
0 0
I F

DISPLAY {

OLD ESP R EBP FOR
E E

MAIN'S EBP - MAIN
C P
T A
I N
0 S -.·1 N I STORAGE

P _ESP

• EBPM ~ EBP VALUE FOR MAIN

G50235

Figure 3-17. Stack Frame After Entering MAIN

3-32

APPLICATION INSTRUCTION SET

DISPLAY

DYNAMIC
STORAGE

OLD EBP
MAIN'S EBP

MAIN'S EBP _EBP

MAIN'S EBP
PROCEDURE A'S EBP

Figure 3-18. Stack Frame After Entering PROCEDURE A

DISPLAY

DYNAMIC \
STORAGE I

OLD EBP
MAIN'S EBP

MAIN'S EBP
MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE A'S EBP
MAIN'S EBP

PROCEDURE A'S EBP
PROC EDURE B S EBP

_ESP

Figure 3-19. Stack Frame After Entering PROCEDURE B

G50235

G50235

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new
display (See Figure 3-19). The first doubleword holds a copy of the last value in PROCE­
DURE A's EBP register. The second and third doublewords are copies of the two stack
frame pointers in PROCEDURE A's display. PROCEDURE B can access variables in
PROCEDURE A and MAIN by using the stack frame pointers in its display.

3-33

APPLICATION INSTRUCTION SET

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new
display for PROCEDURE C (See Figure 3-20). The first doubleword holds a copy of the
last value in PROCEDURE B's EBP register. This is used by the LEAVE instruction to
restore PROCEDURE B's stack frame. The second and third doublewords are copies of the
two stack frame pointers in PROCEDURE A's display. If PROCEDURE C were at the
next deeper lexical level from PROCEDURE B, a fourth doubleword would be copied, which
would be the stack frame pointer to PROCEDURE B's local variables.

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCEDURE
C is not intended to access PROCEDURE B's variables. This does not mean that PROCE­
DURE C is completely isolated from PROCEDURE B; PROCEDURE C is called by
PROCEDURE B, so the pointer to the returning stack frame is a pointer to PROCEDURE
B's stack frame. In addition, PROCEDURE B can pass parameters to PROCEDURE C
either on the stack or through variables global to both procedures (i.e. variables in the scope
of both procedures).

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEA VE instruction does not have any operands. The LEAVE instruction copies the contents
of the EBP register into the ESP register to release all stack space allocated to the proce­
dure. Then the LEAVE instruction restores the old value of the EBP register from the stack.

DISPLAY

DYNAMIC
STORAGE

OLD EBP
MAIN'S EBP

MAIN'S EBP

MAIN'S EBP
PROCEDURE A'S EBP

PROCEDURE A S EBP
MAIN'S EBP

PROCEDURE A'S EBP
PRuI.EuuHt:tn,t:I:lt'

PROCEDURE B'S EBP -EBP
MAIN'S EBP

PROCEDURE A'S EBP
PROCEDURE C'S EBP

_ESP

Figure 3-20. Stack Frame After Entering PROCEDURE C

3-34

G50235

inter APPLICATION INSTRUCTION SET

This simultaneously restores the ESP register to its original value. A subsequent RET
instruction then can remove any arguments and the return address pushed on the stack by
the calling program for use by the procedure.

3.8 FLAG CONTROL INSTRUCTIONS

The flag control instructions change the state of bits in the EFLAGS register, as shown in
Table 3-5.

3.8.1 Carry and Direction Flag Control Instructions

The carry flag instructions are useful with instructions like the rotate-with-carry instructions
RCL and RCR. They can initialize the carry flag, CF, to a known state before execution of
an instruction that puts the carry bit into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls the
direction of string processing. If the DF flag is clear, the processor increments the string
index registers, ESI and EDI, after each iteration of a string instruction. If the DF flag is
set, the processor decrements these index registers.

3.8.2 Flag Transfer Instructions

Though specific instructions exist to alter the CF and DF flags, there is no direct method of
altering the other application-oriented flags. The flag transfer instructions allow a program
to change the state of the other flag bits using the bit manipulation instructions once these
flags have been moved to the stack or the AH register.

The LAHF and SAHF instructions deal with five of the status flags, which are used primar­
ily by the arithmetic and logical instructions.

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register
bits 7,6,4,2, and 0, respectively (see Figure 3-20. The contents of the remaining bits 5, 3,
and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6,4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 3-21).

Table 3-5. Flag Control Instructions

Instruction Effect

STC (Set Carry Flag) CF ~ 1
CLC (Clear Carry Flag) CF ~ 0
CMC (Complement Carry Flag) CF ~ . (CF)
CLD (Clear Direction Flag) DF ~ 0
STD (Set Direction Flag) DF ~ 1

3-35

APPLICATION INSTRUCTION SET

THE BIT POSITIONS OF THE FLAGS ARE THE SAME,
WHETHER THEY ARE HELD IN THE EFLAGS REGISTER
OR THE AH REGISTER. BIT POSITIONS SHOWN AS
o OR 1 ARE INTEL RESERVED. DO NOT USE.

Figure 3-21. Low Byte of EFLAGS Register

I ;.__------PUSHFD/POPFD------_. ,

,.. PUSHF/POPF---l·~1

BIT"POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED.
DO NOT USE.

Figure 3-22. Flags Used with PUSHF and POPF

G50235

G50235

The PUSHFD and POPFD instructions are not only useful for storing the flags in memory
where they can be examined and modified, but also are useful for preserving the state of the
EFLAGS register while executing a subroutine.

PUSHFD (Push Flags) (see Figure 3-22). The PUSHFD instruction pushes the entire
EFLAGS register onto the stack (the RF flag reads as zero, however).

POPFD (Pop Flags) pops a doubleword from the stack into the EFLAGS register. Only bits
14, 11, 10, 8, 7, 6, 4, 2, and 0 are affected with all uses of this instruction. If the privilege
level of the current code segment is zero (most privileged), the 10PL bits (bits 13 and 12)
also are affected. If the I/O privilege level (IOPL) is zero, the IF flag (bit 9) also is affected.

3.9 COPROCESSOR INTERFACE INSTRUCTIONS

The 80387SX numerics coprocessor provides an extension to the instruction set of the base
architecture. It is completely software-compatible with the 80387 coprocessor used with the
386 processor; only its hardware interface is different. The 80387SX extends the instruction
set of the 376 processor to support high-precision integer and floating-point calculations.

3-36

APPLICATION INSTRUCTION SET

These extensions include arithmetic, comparison, transcendental, and data transfer instruc­
tions. The coprocessor also contains frequently-used constants, to enhance the speed of
numeric calculations.

The coprocessor instructions are embedded in the instructions for the 376 processor, as though
they were being executed by a single processor having both integer and floating-point
capabilities. But the coprocessor actually works in parallel with the 376 processor, so the
performance is higher.

The 376 processor also has features to support emulation of the numerics coprocessor when
the coprocessor is absent. The software emulation of the coprocessor is transparent to appli­
cation software, but much slower. Refer to Chapter 10 for more information on coprocessor
emulation.

ESC (Escape) is a bit pattern that identifies floating point numeric instructions. The ESC
bit pattern tells the processor to send the opcode and operand addresses to the 80387SX.
The numerics coprocessor uses instructions containing the ESC bit pattern to perform high­
performance, high-precision floating point arithmetic. When the 80387SX is not present,
these instructions generate coprocessor-not-present exceptions.

WAIT (Wait) is an instruction that suspends program execution while the BUSY # pin is
active. This input indicates that the coprocessor has not completed an operation. When the
operation completes, the processor resumes execution and can read the result. The WAIT
instruction is used to synchronize the processor with the coprocessor. Typically, a coproces­
sor instruction is launched, a WAIT instruction is executed, then the results of the copro­
cessor instruction are read. Between the coprocessor instruction and the WAIT instruction,
there is an opportunity to execute some number of non-coprocessor instructions in parallel
with the coprocessor instruction.

3.10 SEGMENT REGISTER INSTRUCTIONS

This category actually includes several distinct types of instructions. They are grouped
together here because, if system designers choose an unsegmented model of memory organi­
zation, none of these instructions are available. The instructions that deal with segment
registers are:

1. Segment-register transfer instructions.

MOV SegReg, ...
MOV ... , SegReg
PUSH SegReg
POP SegReg

2. Control transfers to another executable segment.

JMP far
CALL far
RET far

3-37

inter APPLICATION INSTRUCTION SET

3. Data pointer instructions.

LDS reg, 48-bit memory operand
LES reg, 48-bit memory operand
LFS reg, 48-blt memory operand
LGS reg, 48-blt memory operand
LSS reg, 48-blt memory operand

4. Note that the following interrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation is
used, this is transparent to the application programmer.

INT n
I NT 0
BOUND
IRETD

3.10.1 Segment-Register Transfer Instructions

Forms of the MOY, POP, and PUSH instructionsal~Q are used to load and store segment
registers. These forms operate like the general-i:egister forms, except that one operand is a'
segment register. The MOY instruction cannot copy the contents of a segment register into
another segment register. . .

Neither the POP nor MOY instructions can place a value in the CS register (code segment);
only the far control-transfer instructions affect the CS register. When the destination is the
SS register (stack segment), interrupts are disabled until after the next instruction.

When a segment register is loaded, the signal on the LOCK# pin of the processor is asserted.
This prevents other bus masters from modifying a segment descriptor while it is being read.

No 16-bit operand size prefix is needed when transferririgdata between a segment register
and a 32-bit general register.

3.10.2 Far Control Transfer Instructions

The far control-transfer instructions transfer execution to a destination in another segment
by replacing the contents of the CS register. The destination isspecified'bya far pointer,
which is a 16-bit segment selector and a 32-bit offset into the segment. The far pointer can
be an immediate operand or an operand in memory.

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP registers
from the stack.

3-38

APPLICATION INSTRUCTION SET

3.10.3 Data Pointer Instructions

The data pointer instructions load a far pointer into the processor registers. A far pointer
consists of a 16-bit segment selector, which is loaded into a segment register, and a 32-bit
offset into the segment, which is loaded into a general register.

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example: L D 5 E 5 I ,ST R I N G _ X

Loads the DS register with the segment selector for the segment addressed by STRING_X,
and loads the offset within the segment to STRING_X into the ESI register. Specifying
the ESI register as the destination operand is a convenient way to prepare for a string
operation, when the source string is not in the current data segment.

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the segment
selector is loaded into the ES register rather than the DS register.

Example: L ESE D I IDE 5 TIN A T ION _ X

Loads the ES register with the segment selector for the segment addressed by DESTIN­
ATION_X, and loads the offset within the segment to DESTINATION_X into the EDI
register., This instruction is a convenient way to select a destination for a string operation
if the desired location is not in the current E-data segment.

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register.

LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is especially
important, because it allows the two registers that identify the stack (the SS and ESP regis­
ters) to be changed in one un interruptible operation. Unlike the other instructions which can
load the SS register, interrupts are not inhibited at the end of the LSS instruction. The other
instructions, such as POP SS, turn off interrupts to permit the following instruction to load
the ESP register without an intervening interrupt. Since both the SS and ESP registers can
be loaded by the LSS instruction, there is no need to disable or re-enable interrupts.

3.11 MISCELLANEOUS INSTRUCTIONS

The following instructions do not fit in any of the previous categories, but are no less
important.

3-39

inter APPLICATION INSTRUCTION SET

3.11.1 Address Calculation Instruction

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory (rather
than its contents) into the destination operand. The source operand must be in memory, and
the destination operand must be a general register. This instruction is especially useful for
initializing the ESI or EDI registers before the execution of string instructions or initializing
the EBX register before an XLAT instruction. The LEA instruction can perform any index­
ing or scaling that may be needed.

Example: LEA E B X, E BCD I C _ TAB L E

Causes the processor to place the address of the starting location of the table labeled
EBCDIC TABLE into EBX.

3.11.2 No-Operation Instruction

NOP (No Operation) occupies a byte of code space. When executed, it increments the EIP
register to point at the next instruction, but affects nothing else.

3.11.3 Translate Instruction

XLATB (Translate) replaces the contents of the ALregister with a byte read from a trans­
lation table in memory. The contents of the AL register are interpreted as an unsigned index
into this table, with the contents of the EBXregister used as the base address. The XLAT
instruction does the same operation and loads its result into the same register, but it gets the
byte operand from memory. This function is used to convert character codes from one alpha­
bet into another. For example, an ASCII code could be used to lookup its EBCDIC
equivalent. .

3.12 Usage Guidelines

The instruction set of the 376 processor has been designed with certain programming practices
in mind. These practices are particularly relevant to assembly language programmers, but
may be of interest to compiler designers as well.

• Keep all 32-bit variables aligned on four byte boundaries to maximize 80386
performance.

• Use the EAX register when possible. Many instructions are one byte shorter when the
EAX register is used, such as loads and stores to memory when absolute addresses are
used, transfers to other registers using the XCHG instruction, and operations using
immediate operands.

• Use the D-data segment when possible. Instructions which deal with the D-space are
one byte shorter than instructions which use the other data segments, because of the
lack of a segment-override prefix.

3-AO

APPLICATION INSTRUCTION SET

• Emphasize short one-, two-, and three-byte instructions. Because instructions for the
376 and 386 processors begin and end on byte boundaries, it has been possible to provide
many instruction encodings which are more compact than those for processors with word­
aligned instruction sets. An instruction in a word-aligned instruction set must be either
two or four bytes long (or longer). Byte alignment reduces code size and increases
execution speed.

• Access 16-bit data with the MOVSX and MOVZX instructions. These instructions sign­
extend and zero-extend word operands to doubleword length. This eliminates the need
for an extra instruction to initialize the high word.

• For fastest interrupt response, use the NMI interrupt when possible.

• In place of using an ENTER instruction at lexical level 0, use a code sequence like:

PUSH EBP
MOV EBP, ESP
SUB ESP, BYTE_COUNT

This will execute in six clock cycles, rather than ten.

The following techniques may be applied as optimizations to enhance the speed of a system
after its basic functions have been implemented:

o The jump instructions come in two forms: one form has an eight-bit immediate for relative
jumps in the range from 128 bytes back to 127 bytes forward, the other form has a full
32-bit displacement. Many assemblers use the long form in situations where the short
form can be used. When it is clear that the short form may be used, explicitly specify
the destination operand as being byte length. This tells the assembler to use the short
form. If the assembler does not support this function, it will generate an error. Note that
some assemblers perform this optimization automatically.

o Use the ESP register to reference the stack in the deepest level of subroutines. Don't
bother setting up the EBP register and stack frame.

o For fastest task switching, perform task switching in software. This allows a smaller
processor state to be saved and restored. The built in task switch is necessary when no
assumptions may be made regarding the state of the registers. See Chapter 6 for a
discussion of multitasking.

• Use the LEA instruction for adding registers together. When a base register and index
register are used with the LEA instruction, the destination is loaded with their sum. The
contents of the index register may be scaled by 2, 4, or 8.

• Use the LEA instruction for adding a constant to a register. When a base register and
a displacement is used with the LEA instruction, the destination is loaded with their
sum. The LEA instruction can be used with a base register, index register, scale factor,
and displacement.

• Use integer move instructions to transfer floating-point data.

• Use the form of the RET instruction which takes an immediate value for byte-count.
This is a faster way to remove parameters from the stack than an ADD ESP instruction.
It saves three clock cycles on every subroutine return, and 10% in code size.

3-41

APPLICATION INSTRUCTION SET

• When several references are made to a variable addressed with a displacement, load the
displacement into a register. This is especially important on the 376 processor, because
it reduces the bandwidth required from its 16-bit bus.

• Shifts and rotate instructions of any number of bits are very fast (3 clocks) due to a
64-bit barrel shift.

3-42

System Architecture 4

CHAPTER 4
SYSTEM ARCHITECTURE

Many of the architectural features of the 376 processor are used only by system program­
mers. This chapter presents an overview of these features. Application programmers may
need to read this chapter, and the following chapters which describe the use of these features,
in order to understand the hardware facilities used by system programmers to create a relia­
ble and secure environment for application programs. This is especially true of embedded
systems, where the distinction between the operating system and the application program
may be blurred or non-existent. The system-level architecture also supports powerful debug­
ging features which application programmers may wish to use during program development.

The system-level features of the Intel376 architecture include:

Memory Management
Protection
Multitasking
Input/Output
Exceptions and Interrupts
Initialization
Coprocessing and Multiprocessing
Debugging

These features are supported by registers and instructions, all of which are introduced in the
following sections. The purpose of this chapter is not to explain each feature in detail, but
rather to place the remaining chapters of Part II in perspective. When a register or instruc­
tion is mentioned, it is accompanied by an explanation or a reference to a following chapter.

4.1 SYSTEM REGISTERS

The registers intended for use by system programmers fall into these categories:

EFLAGS Register .
Memory-Management Registers
Control Registers
Debug Registers
Test Registers

The system registers control the execution environment of application programs. Most system
software will restrict access to these facilities by application programs (although systems
can be built where all programs run at privilege level in. which case application programs
will·be allowed to modify these facilities).

4-1

SYSTEM ARCHITECTURE

4.1.1 System Flags

The system flags of the EFLAGS register control I/0, maskable interrupts, debugging, and
task switching. An application program should ignore the states of these flags. An applica­
tion program should not attempt to change their state. In most systems, an attempt to change
the state of a system flag by an application program results in an exception. The 386 proces­
sor makes use of some of the bit positions which are reserved on the 376 processor. An 376
processor program should not attempt to change the state of these bits. These flags are
shown in Figure 4-1.

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug exceptions so that an instruction can be restarted
after a debug exception without immediately causing another debug exception. When the
debugger is entered, this flag allows it to execute normally (rather than recursively calling
itself until the stack overflows). The RF flag is affected by the POPFD and IRETD
instructions. See Chapter 11 for details.

NT (Nested Task, bit 14)

The processor uses the nested task flag to control chaining of interrupted and called tasks.
The NT flag affects the operation of the IRET instruction. The NT flag is affected by
the POPFD, and IRET instructions. Improper changes to the state of this flag can gener­
ate unexpected exceptions in application programs. See Chapter 6 and Chapter 8 for
more information on nested tasks.

10PL (I/0 Privilege Level, bits 12 and 13)

The I/0 privilege level is used by the protection mechanism to control access to the I/O
address space. The CPL and 10PL determine whether this field can be modified by the
POPF, POPFD, and IRETD instructions. See Chapter 7 for more information.

RESUME FLAG (RF)
NESTED TASK (NT)
1/0 PRIVILEGE LEVEL (IOPL)
INTERRUPT ENABLE FLAG (IF)-------'
TRAP ENABLE FLAG (TF)

Figure 4-1. System Flags

4-2

G50235

SYSTEM ARCHITECTURE

IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode where it responds to maskable interrupt
requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF flag
has no effect on either exceptions or nonmaskable interrupts (NMI interrupts). The CPL
and IOPL determine whether this field can be modified by the CLI, STI, POPFD, and
IRETD instructions. See Chapter 8 for more details about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this mode,
the processor generates a debug exception after each instruction, which allows a program
to be inspected as it executes each instruction. Single-stepping is just one of several
debugging features of the 376 processor. If an application program sets the TF flag using
the POPFD or IRETD instructions, a debug exception is generated (exception O. See
Chapter 11 for additional information.

4.1.2 Memory-Management Registers

Four registers of the 376 processor specify the location of the data structures which control
segmented memory management, as shown in Figure 4-2. Special instructions are provided
for loading and storing these registers. The GDTR and IDTR registers may be loaded with
instructions which get a six-byte block of data from memory. The LDTR and TR registers
may be loaded with instructions which take a 16-bit segment selector as an operand. The
remaining bytes of these registers are then loaded automatically by the processor from the
descriptor referenced by the operand.

Most systems will protect the instructions which load memory-management registers from
use by application programs (although a system could be put together where no protection
is used).

SELECTOR BASE ADDRESS LIMIT
15 0 31 0 15 0

t::::::::=:::J1 ~~I ~I TR c::==:=::J I LDTR

I IDTR

I GDTR

Figure 4-2. Memory Management Registers

4-3

G50235

inter SYSTEM ARCHITECTURE

GDTR Global Descriptor Table Register

LDTR

IDTR

This register holds the 32-bit base address and 16-bit segment limit for the global
descriptor table (GDT). When a reference is made to data in memory, a segment
selector is used to find a segment descriptor in the GDT or LDT. A segment
descriptor contains the base address for a segment. See Chapter 5 for .an expla­
nation of segmention.

Local Descriptor Table Register

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit
segment selector for the local descriptor table (LDT). The segment which contains
the LDT has a segment descriptor in the GDT. There is no segment descriptor
for the GDT. When a reference is made to data in memory, 'a segment selector
is used to find a segment descriptor in the GDT or LDT. A segment descriptor
contains the base address for a segment. See Chapter 5 for an explanation of
segmention.

Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the inter­
rupt descriptor table (IDT). When an interrupt occurs, the interrupt vector is
used as an index to get a gate descriptor from this table. The gate descriptor
contains a far pointer used to start up the interrupt handler. Refer to Chapter 8
for details of the interrupt mechanism.

TR Task Register

This register holds the 32-bit base address, 16-bit segment limit, and 16-bit
segment selector for the task currently being executed. It references a task state
segment (TSS) in the global descriptor table. Refer to Chapter 6 for a descrip­
tion of the multitasking features of the 376 processor.

4. 1.3 Control Registers

Figure 4-3 shows the format of the control register CRa. Most system software will prevent
application programs from loading the CRa register (although an unprotected system might
allow this). Application programs can read this register to determine if a numerics copro­
cessor is present. Forms of the MOV instruction allow the register to be loaded from or
stored in general registers. For example:

MOV EAX, CRO
MOV CR3, EBX

CRa contains system control flags, which control modes or indicate states which apply
generally to the processor, rather than to the execution of an individual task. The 386
processor makes use of bit positions which are reserved on the 376 processor. A program for
the 376 processor should not attempt to change any of these reserved bit positions.

4-4

SYSTEM ARCHITECTURE

TASK SWITCHED FLAG
EMULATE COPROCESSOR FLAG ____I
MONITOR COPROCESSOR FLAG ---,....----'

G50235

Fig~re 4-3. CRO Register

TS (Task Switched, bit 3)

The processor sets the TS bit with every task switch and tests it when interpreting copro­
cessor instructions. Refer to Chapter 10 for details.

EM (Emulation, bit 2)

The EM bit indicates whether coprocessor functions are to be emulated. Refer to Chapter
10 for details.

MP (Math Present, bit 1)

The MP bit controls the function of the WAIT instruction, which is used to synchronize
with a coprocessor. Refer to Chapter 10 for details.

4.1.4 Debug Registers

The debug registers bring advanced debugging abilities to the 376 processor, including data
breakpoints and the ability to set instruction breakpoints without modifying code segments
(useful in debugging ROM-based software). Only programs executing with the highest level
of privileges may access these registers. See Chapter 11 for a complete description of their
formats and use.

4-5

SYSTEM ARCHITECTURE

4.2 SYSTEM INSTRUCTIONS

System instructions deal with functions such as:

1. Verification of pointer parameters (refer to Chapter 5):

Instruction Description Useful to Protected from
Application? Application?

ARPL Adjust RPL No No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No

2. Addressing descriptor tables (refer to Chaper 5):

LLDT Load LDT Register Yes No
SLDT Store LDT Register Yes No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No

3. Multitasking (refer to Chapter 6):

LTR Load Task Register .No Yes
STR Store Task Register Yes No

4. Coprocessing and Multiprocessing (refer to Chapter 10):

CLTS Clear TS bit in CRO No Yes
ESC Escape Instructions Yes No
WAIT Wait U ntH Co- Yes No

Processor Not Busy
LOCK Assert Bus-Lock No Can Be

4-6

SYSTEM ARCHITECTURE

5. Input and Output (refer to Chapter 7):

IN Input Yes Can be
OUT Output Yes Can be
INS Input String Yes Can be
OUTS Output String Yes Can be

6. Interrupt control (refer to Chapter 8):

CLI Clear IF flag Can be Can be
STI Set IF flag Can be Can be
LIDT Load lOT Register No Yes
SlOT Store lOT Register No No

7. Debugging (refer to Chapter 11):

MOY Load and store debug No Yes
registers

8. System Control:

SMSW Store MSW No No
LMSW Load MSW No Yes
MOY Load And Store CRO No Yes
HLT Halt Processor No Yes

The SMSW and LMSW instructions are provided for compatibility with the 80286. A
program for the 376 processor should not use these instructions. A program should access
the CRO register using forms of the MOY instruction. The HLT instruction stops the
processor until receipt of an INTR or RESET signal.

In addition to the chapters cited above, detailed information about each of these instructions
can be found in the instruction reference chapter, Chapter 13.

4-7

Segmentation 5

CHAPTER 5
SEGMENTATION

The 376 processor has a mechanism for organizing memory, called segmentation. This
mechanism allows memory to be completely unstructured and simple, like the memory model
of an eight-bit processor, or highly structured with address translation and protection. The
memory management features apply to units called segments. Each segment is an indepen­
dent address space. Access to segments is controlled by data which describes its size, the
privilege level required to access it, the kinds of memory references which can be made to it
(instruction fetch, data fetch, read operation, write operation, etc.), and whether it is present
in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is used
to simplify the linkage of object code modules. There is no reason to write position-indepen­
dent code when full use is made of the segmentation mechanism, because all memory refer­
ences can be made relative to the base addresses of a module's code and data segments.
Segmentation can be used to create ROM-based software modules, where fixed addresses
(fixed, in the sense that they cannot be changed) are offsets from a segment's base address,
Different software systems can have the ROM modules at different physical addresses because
the segmentation mechanism will take of directing all memory references to the right place.

In a simple memory architecture, all addresses refer to the same address space. This is the
memory model used by eight-bit microprocessors, such as the 8080, where the logical address
is the physical address. The 376 processor can be used in this way by mapping all segments
into the same physical address space. This might be done where an older design is being
updated to 32-bit technology without also adopting the new architectural features.

An application also could make partial use of segmentation. A frequent cause of software
failures in embedded computers is the growth of the stack into the instruction code or data
of a program. Segmentation can be used to prevent this. The stack can be put in an address
space separate from the address space for either code or data. Stack addresses always would
refer to the memory in the stack segment, while data addresses always would refer to memory
in the data segment. The stack segment would have a maximum size enforced by hardware.
Any attempt to grow the stack beyond this size would generate an exception.

For example, an embedded computer might have a faulty sensor. Each time this sensor is
activated, an interrupt service procedure is started. This causes a return address and some
amount of processor state information to be pushed on the stack. If the sensor suddenly
sends interrupts to the processor at a rate far above the level anticipated by the application
programmer, the stack of the machine would grow until it hit a limit. In the case of a
completely unsegmented system, this limit occurs when the stack overwrites critical memory.
An instruction or a jump destination address might get replaced by data pushed on the stack,
or a subroutine return address might be executed as though it were an instruction. The
random effects of this kind of interference can be expected to disable critical system functions,
such as the servicing of interrupts.

5-1

SEGMENTATION

In the case of a system using a separate stack address space, the application program would
receive a stack-fault exception when the stack overruns the end of its segment. On receiving
a exception, the computer can re-boot itself. If its initialization software can detect the faulty
sensor, the source of the interrupts can be ignored. The computer then could resume opera­
tion, minus one sensor.

If the system used separate stack segments for the operating system and the programs
monitoring each sensor, it simply could remove the crashed program from the execution
queue and de-allocate the memory used by its segments. In this case, the system also would
give each program its own code and data segments, to keep unreliable programs from
overwriting code or data in other programs. A computer like this would not crash, it only
would pause until the source of interrupts is suppressed.

5.1 SELECTING A SEGMENTATION MODEL

A model for the segmentation of memory is chosen on the basis of reliability and perform­
ance. For example, a system which has several programs sharing data in real-time would get
maximum performance from a model which checks memory references in hardware. This
would be a multi-segmented model.

At the other extreme, a system. which has just one program may get higher performance
from an unsegmented or "flat" model. The elimination of "far" pointers and segment override
prefixes reduces code size and increases execution speed. Context switching is faster, because
the contents of the segment registers no longer have to be saved or restored.

5.1.1 Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the entire
physical address space. To the greatest extent possible, this model removes the segmentation
mechanism from the architecture seen by either the system designer or the application
programmer.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. Whenever
memory is accessed, the contents of one of the segment registers are used to select a segment
descriptor. The segment descriptor provides the base address of the segment and its limit, as
well as access control information (see Figure 5-1).

ROM usually is put at the top of the physical address space, because the processor begins
execution at FFFFFFFOH. RAM is placed at the bottom of the address space because the
initial base address in the DS segment register after power-up is o.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4 gigabytes.
Although the 376 processor can address up to 16 megabytes, the 386 processor can address
up to 4 gigabytes. The 376 processor can accept addresses beyond 16 megabytes, because
the upper eight bits of the address are ignored. This lets programs for the 386 processor run
on the 376 processor without modification. For maximum compatibility with the 386 proces­
sor, these address bits should be given values appropriate for the 386 processor.

5-2

SEGMENTATION

SEGMENT SEGMENT
REGISTERS DESCRIPTORS

CS ~
SS

~ DS

Figure 5-1. Flat Model

PHYSICAL
MEMORY

,.------,16M
EPROM

DRAM __ 1 ____ ..1 0

G50235

By setting the segment limit to 4 gigabytes, the segmentation mechanism is kept from gener­
ating exceptions for memory references that fall outside of a segment. Exceptions could still
be generated by the protection mechanism, but these also can be removed from the memory
model (see Section 5.3).

5.1.2 Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to include
only the range of addresses for which memory actually exists. A general-protection excep­
tion will be generated on any attempt to access unimplemented memory.

This model represents the minimum use of segmentation. In this model, the segmentation
hardware prevents programs from addressing non-existent memory locations. The conse­
quences of being allowed access to these memory locations are hardware-dependent. For
example, if the processor does not receive a READY # signal (the signal used to acknowledge
and terminate a bus cycle), the bus cycle does not terminate and execution stops.

Although no program should make an attempt to access these memory locations, this may
occur as a result of program bugs. Without hardware checking of addresses, it is possible
that a bug could suddenly stop program execution. With hardware checking, programs will
fail in a controlled way. A diagnostic message can appear, and recovery procedures can be
executed.

An example of a protected flat model is shown in Figure 5-2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. A secorid data segment has
been created to cover EPROM. This allows EPROM to be referenced as data. This would
be done, for example, to access constants stored with the instruction code in ROM.

Segmentation also protects against address wraparound. Addresses beyond 16 megabytes
wrap around to the beginning of the address space because the 376 processor ignores the

5-3

SEGMENTATION

SEGMENT SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY

CS
EPROM

16M

ES J-
SS

DRAM

DS
0

G50235

Figure 5-2. Protected Flat Model

upper eight address bits. This is done to allow programs for the 386 processor to run unmodi­
fied on the 376 processor. To catch attempts to use addresses beyond 16 megabytes, a segment
limit can be set.

5.1.3 Multi-Segment Model

The most sophisticated model is the multi-segment model. Here, the full capabilities of the
segmentation mechanism are used. Each program is given its own table of segment descrip­
tors, and its own segments. The segments can be completely private to the program, or they
can be shared with specific other programs. Access between programs and particular segments
can be individually controlled.

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by loading
their segment selectors into the segment registers (see Figure 5-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents of
one segment by reading beyond the end of another. Every memory operation is checked
against the limit specified for the segment it uses. An attempt to address memory beyond
the end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified In the segment
descriptor. It is the responsibility of system software to allocate separate address ranges to
each segment. There may be situations where it is desirable to have segments which share

. the same range of addresses. For example, a system may have both code and data stored in
a ROM. A code segment descriptor would be used when the ROM is accessed for instruction
fetches. A data segment descriptor would be used when the ROM is accessed as data.

5-4

SEGMENT
REGISTERS

CS

SS

OS

ES

FS

GS

SEGMENTATION

SEGMENT
DESCRIPTORS

Figure 5-3. Multi-Segment Model

5.2 ADDRESS TRANSLATION

PHYSICAL
MEMORY

r------. 16M

G50235

The process by which a logical address becomes a physical address is called address trans­
lation. A logical address consists of the 16-bit segment selector for its segment and a 32-bit
offset into the segment. An address is translated by adding the offset to the base address of
the segment. The base address comes from the segment descriptor, a data structure in memory
which provides the size and location of a segment, as well as access control information. The
segment descriptor comes from one of two tables, the Global Descriptor Table (GDT) or the
Local Descriptor Table (LDT). There is one GDT for all programs in the system, and one
LDT for each separate program being run. If the system software allows, different programs
can share the same LDT. The system also may be set up with no LDTs; all programs may
use the GDT.

Every logical address is associated with a segment (even if the system maps all segments
into the same physical address space). Although a program may have thousands of segments,
only six may be available for immediate use. These are the six segments whose segment
selectors are loaded in the processor. The segment selector holds information used to trans­
late the logical address into the corresponding physical address.

5-5

SEGMENTATION

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, data space). They hold the segment selectors for the segments currently
in use. Access to other segments requires loading a segment register using a form of the
MOV instruction. Up to four data spaces may be available at the same time, so there are a
'total of six segment registers.

When a segment selector is loaded, the base address, segment limit, and access control infor­
mation also are loaded into the segment register. The processor does not reference the
descriptor tables again until another segment selector is loaded. The information retained in
the processor allows it to translate addresses without making extra bus cycles. In systems
where multiple processors have access to the same descriptor tables, it is the responsibility
of software to reload the segment registers when the descriptor tables are modified. If this
is not done, an old segment descriptor cached in a segment register might be used after its
memory-resident version has been modified.

The segment selector contains a I3-bit index into one of the descriptor tables. The index is
scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit base
address of the descriptor table. The base address comes from either the Global Descriptor
Table Register (GDTR) or the Local Descriptor Table Register (LDTR). A bit in the
segment selector specifies which table to use, as shown in Figure 5-4.

The translated address is truncated to 24 bits, the size of the physical address bus (see
Figure 5-5). Truncation means the upper eight bits of the address are taken off. No excep­
tion will be generated if any of these bits are non-zero, unless the segment limit is exceeded.
For maximum compatibility with the 386 processor, which has a 32-bit address bus, these
upper address bits should be set to values reasonable for the 386 processor (Le. all ones for
EPROM-based code and all zeroes for DRAM-based data.

5.2.1 Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and stack
references each access the segments specified by the contents of their segment registers.
More segments can be made available by loading their segment selectors into these registers
during program execution.

Every segment register has a "visible" part and an "invisible" or hidden part, as shown in
Figure 5-6. There are forms of the MOV instruction to access the visible part of these segment
registers. The invisible part is managed by the processor.

The operations that load these registers are instructions for application programs (described
in Chapter 3). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LSS, LGS, and LFS instructions.
These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP instruc­
tions. These instructions change the contents of the CS register as an incidental part of
their function.

5-6

I

SEGMENT
SELECTOR

HI
I

GDTR

I

SEGMENTATION

GLOBAL
DESCRIPTOR

TABLE

T1 = 0

+

I LIMIT I LDTR

LOCAL
DESCRIPTOR

TABLE

T1 = 1

+

I

ISELECTOF

I LIMIT

I BASE ADDRESS I I BASE ADDRESS

Figure 5-4. TI Bit Selects Descriptor Table

G50235

When these instructions are used, the visible part of the segment register is loaded with a
segment selector. The processor automatically fetches the base address, limit, type, and other
information from the descriptor table and loads the invisible part of the segment register.

Because most instructions refer to segments whose selectors already have been loaded into
segment registers, the processor can add the offset into the segment to the segment's base
address with no performance penalty.

5.2_2 Segment Selectors

A segment selector points to the information which defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors occupy
segment registers. When this is true, forms of the MOY instruction are used to change the
contents of these registers while the program executes.

5-7

SEGMENTATION

I "" .. -----48-BIT LOGICAL ADDRESS-----.. ~II

15 0 31 o

I SET" i
OFFSET WITHIN SEGMENT

SCALE BY ~ EIGHT BYTES 31 0

GOT OR LOT BASE ADDRESS

31 ~ o

SEGMENT
DESCRIPTOR
IN PROCESSOR SEGMENT BASE ADDRESS

Figure 5-5_ Address Translation

16-BIT VISIBLE
SELECTOR HIDDEN DESCRIPTOR

CS
~--------~-------------------i

5S
~--------~-------------------i

OS

~--------~-------------------i
ES

~--------~-------------------i
F5
~--------~-------------------i

GS

~------~----------------~

Figure 5-6_ Segment Registers

5-8

G50235

G50235

SEGMENTATION

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a part
of a pointer variable, but the values of selectors are usually assigned or modified by link
editors or linking loaders, not application programs. Figure 5-7 shows the format of a segment
selector.

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the
base address of the descriptor table (from the GOTR or LOTR register).

Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GOT; a set
bit selects the current LOT.

Requested Privilege Level: When this field contains a privilege level having a greater value
(i.e. less privileged) than the currently executing program, it overrides the program's privi­
lege level. When a program uses a segment selector obtained from a less privileged program,
this makes the memory access take place with the privilege level of the less privileged program.
This is used to guard against a security violation, where a less privileged program uses a
more privileged program to access protected data.

For example, system utilities or device drivers must execute with a high level of privilege in
order to access protected facilities, such as the control registers of peripheral interfaces. But
they must not interfere with other protected facilities, merely because a request to do so was
received from a less privileged program. If such a program requested reading a sector of disk
into memory occupied by a more privileged program, such as the operating system, the RPL
can be used to generate a general-protection exception when the segment selector obtained
from the less privileged program is used. This exception will occur even though the program
using the segment selector would have a sufficient privilege level to perform the operation
on its own.

Because the first entry of the GOT is not used by the processor, a selector that has an index
of zero and a table indicator of zero (i.e. a selector that points to the first entry of the GOT),
is used as a "null selector." The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It will, however,
generate an exception when a segment register holding a null selector is used to access
memory. This feature can be used to initialize unused segment registers with a value that
signals an error.

15

INDEX

TI TABLE INDICATOR (0 = GOT, 1 = LOT)
RP REQUESTED PRIVILEGE LEVEL

(00 = MOST PRIVILEGED, 11 = LEAST PRIVILEGED)

G50235

Figure 5-7. Segment Selector

5-9

SEGMENTATION

5.2.3 Segment Descriptors

A segment descriptor is a data structure in memory which provides the processor with the
size and location of a segment, as well as control and status information. Descriptors typically
are created by compilers, linkers, loaders, or the operating system, not by application
programs. Figure 5-8 illustrates the two general descriptor formats. The system segment
descriptor is described more fully in Chapter 6. All types of segment descriptors take one of
these formats.

Base: Defines the location of the segment within the 16 megabyte physical address space.
The processor puts together the three base address fields to form a single 32-bit value.

Note that for the 376 processor, bits 24 through 31 of the segment base address are not
used. There are no processor outputs which support these address bits. But for maximum
compatibility with the 386 processor, these bits should be loaded with values which would
be appropriate for that environment. For example, a stack segment intended to grow down
from the top of memory may be assigned a base address of FFFFFFFFH rather than
OOFFFFFFH.

DESCRIPTORS USED FOR APPLICATIONS CODE AND DATA SEGMENTS

31 7 0

BASE 31 •. 24 BASE 23 •• 16 4

o

DESCRIPTORS USED FOR SPECIAL SYSTEM SEGMENTS

31 7 o

BASE 31 •• 24 BASE 23 •• 16 4

SEGMENT BASE 15 .. 0 SEGMENT LIMIT 15 .• 0 o

A - ACCESSED
AVL - AVAILABLE FOR USE BY SYSTEMS PROGRAMMERS
DPL - DESCRIPTOR PRIVILEGE LEVEL
G - GRANULARITY
P - SEGMENT PRESENT

G50235

Figure 5-8. Segment Descriptors

SEGMENTATION

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (212). When the bit
is clear, the segment limit is interpreted in units of one byte; when set, the segment limit is
interpreted in units of 4 kilobytes. Note that the twelve least significant bits of the address
are not tested when scaling is used. A limit of zero with the Granularity bit set results in
valid offsets from 0 to 4095. Also note that only the Limit field is affected. The base address
remains byte granular. .

Limit: Defines the size of the segment. The processor puts together the two limit fields to
form a 20-bit value. The processor interprets the limit in one of two ways, depending on the
setting of the Granularity bit:

1. If the Granularity bit is clear, the Limit has a value from 1 byte to 1 megabyte, in
increments of 1 byte.

2. If the Granularity bit is set, the Limit has a value from 4 kilobytes to 4 gigabytes, in
increments of 4 kilobytes. .

For most segments, a logical address may have an offset ranging from zero to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they may be addressed with any offset except those from zero to the limit (see the
Type field, below). This is done to allow segments to be created where increasing the value
held in the Limit field allocates new memory at the bottom of the segment's address space,
rather than at the top. Expand-down segments are intended to hold stacks; however it is not
necessary to use them. If a stack is going to be put in a segment which does not need to
change size, it can be a normal data segment.

DT field: The descriptors for application segments have this bit set. This bit is clear for
system segments and gates.

Type: The interpretation of this field depends on whether the segment descriptor is for an
application segment or a system segment. System segments have a slightly different descrip­
tor format, discussed in Chapter 6. The type field of a memory descriptor specifies the kind
of access that may be made toa segment, and its direction of growth (see Table 5-1).

For data segments, the three lowest bits of the type field can be interpreted as expand-down
(E), write enable (W), and accessed (A). For code segments, the three lowest bits of the
type field can be interpreted as conforming (C), readenable (R), and accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments which
must be read/write. Loading the SS register with a segment selector for any other type of
segment generates a general-protection exception. If the stack segment needs to be able to
change size, it can be an expand-down data segment. The meaning of the segment limit is
reversed for an expand-down segment. While an offset in the range from zero to the segment
limit is valid for other kinds of segments (offsets outside this range generate general-protec­
tion exceptions), in an expand-down segment it is these offsets which generate exceptions.
The valid offsets in an expand-down segment are those which generate exceptions in the
other kinds of segments. Other segments must be addressed by offsets which are equal or
less than the segment limit. Offsets into expand-down segments always must be greater than
the segment limit. This interpretation of the segment limit causes memory space to be
allocated at the bottom of the segment when the segment limit is increased, which is correct

5-11

SEGMENTATION

Table 5-1. Application Segment Types

Number E W A Type Description

0 0 0 0 Data Read-Only
1 0 0 1 Data Read-Only, accessed
2 0 1 0 Data Read/Write
3 0 1 1 Data Read/Write, accessed
4 1 0 0 Data Read-Only, expand-down
5 1 0 1 Data Read-Only, expand-down, accessed

·6 1 1 0 Data Read/Write, expand-down
7 1 1 1 Data Read/Write, expand-down, accessed

Number C R. A Type Description

8 0 0 0 Code Execute-Only
9 0 0 1 Code Execute-Only, accessed

10 0 1 0 Code Execute/Read
11 0 1 1 Code Execute/Read, accessed
12 0 0 0 Code Execute-Only, conforming
13 0 0 1 Code Execute-Only, conforming, accessed
14 0 1 0 Code Execute/Read-Only, conforming
15 0 1 1 Code Execute/Read-Only, conforming, accessed

for stack segments because they grow toward lower addresses. If the stack is given a segment
which does not change size, it does not need to be an expand-down segment.

Code segments can be execute-only or execute/read. An execute/read segment might be
used, for example, when constants have been placed with instruction code in a ROM. In this
case, the constants can be read either by using an instruction with a CS override prefix or
by placing a segment selector for the code segment in a segment register for a data segment.

Code segments can be either conforming or non-conforming. A transfer of execution into a
more privileged conforming segmerit keeps the current privilege level. A transfer into a non­
conforming segment at a different privilege level results in a general-protection exception,
unless a task gate is used (see Chapter 6 for a discussion of multitasking). System utilities
which do not access protected facilities, such as data-conversion functions (e.g. EBCDIC/
ASCII translation, Huffman encoding/decoding, math library, etc.) and some types of
exceptions (e.g. Divide Error, INTO-detected overflow, and BOUND range exceeded), may
be loaded in conforming code segments.

The Type field also reports whether the segment has been accessed. Segment descriptors
initially report a segment as havihg been accessed. If the Type field then is set to a value for
a segment which has not been accessed, the processor will change the value back if the
segment is accessed. By clearing and testing the low bit of the Type field, software can
monitor segment usage (the low bit of the Type field is also called the Accessed bit).

For example, a program development system might clear all of the Accessed bits for the
segments of an application. If the application crashes, the states of these bits can be used to
generate a map of all the segments accessed by the application. Unlike the breakpoints
provided by the debugging mechanism (Chapter 11), the usage information applies to
segments rather than physical addresses.

5-12

SEGMENTATION

Note that the processor updates the Type field when a segment is accessed, even if the access
is a read cycle. If the descriptor tables have been put in ROM, it will be necessary for the
hardware designer to prevent the ROM from being enabled onto the data bus during a write
cycle. It also will be necessary to return the READY # signal to the processor when a write
cycle to ROM occurs, otherwise the cycle would not terminate.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used to
control access to the segment, using the protection mechanism described in Section 5.3.

Segment Present bit: If this bit is clear, the processor will raise a segment-not-present excep­
tion when a selector for the descriptor is loaded into a segment register. This is used to detect
access to segments that have become unavailable. A segment canpecome unavailable when
the system needs to create free memory. Items in memory, such as character fonts or device
drivers, which currently are not being used are de-allocated. An item is de-allocated by
marking the segment "not present" (this is done by clearing the Segment-Present bit). The
memory occupied by the segment then can be put to another use. The next time the
de-allocated item is needed, the segment-not-present exception will indicate the segment
needs to be loaded into memory. When this kind of memory management is provided in a
manner invisible to application programs, it is called virtual memory. A system may maintain
a total amount of virtual memory far larger than physical memory by keeping only a few
segments present in physical memory at anyone time.

Figure 5-9 shows the format of a descriptor when the Segment Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to store
its own data, such as information regarding the whereabouts of the missing segment.

5.2.4 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

• The global descriptor table (GDT)

• The local descriptor tables (LDT)

31 23 15 o

AVAILABLE AVAILABLE 4

AVAILABLE o

G50235

Figure 5·9. Segment Descriptor (Segment Not Present)

5-13

SEGMENTATION

There is one GOT for all tasks, and an LOT for each task being executed. A descriptor table
is an array of segment descriptors, as shown in Figure 5-10. A descriptor table is variable in
length and may contain up to 8192 (213) descriptors. The first descriptor in the GOT is not
used by the processor. A segment selector to this "null descriptor" does not generate an
exception when loaded into a segment register, but it always generates an exception when
an attempt is made to access memory using the descriptor. By initializing the segment regis­
ters with this segment selector, accidental reference to unused segment registers can be
guaranteed to generate an exception.

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE

I I
+ 38 + 38

I I
+ 30 + 30

I I
+ 28 + 28

I
,

I
+ 20 + 20

I I
+ 18 + 18

I I
+ 10 + 10

I I
+8 +8

FIRST DESCRIPTOR IN GDT I
IS NOT USED +0 +0

LDTR REGISTER

GDTR REGISTER
SELECTO~

I LIMIT LIMIT

I BASE ADDRESS I--- I BASE ADDRESS -

NOTE: ADDRESSES SHOWN IN HE>\ADECIMAL

G50235

Figure 5-10. Descriptor Tables

5-14

SEGMENTATION

5.2.5 Descriptor Table Base Registers

The processor finds the global descriptor table (GDT) and interrupt descriptor table (IDT)
using the GDTR and IDTR registers. These registers hold descriptors for tables in the physi­
cal address space. They also hold limit values for the size of these tables (see Figure 5-11).

The limit value is expressed in bytes. Because segment descriptors are always eight bytes,
the limit should always be one less than an integral multiple of eight (Le. 8N - 1). The
LGDT and SGDT instructions read and write .the GDT register (GDTR); the LIDT and
SIDT instructions read and write the IDT register (IDTR).

A third descriptor table is the local descriptor table (LDT). It is found using a 16-bit segment
selector held in the LDT register (LDTR). The LLDT and SLDT instructions read and
write the segment selector in the LDT register (LDTR). The LDTR register also holds the
base address and limit for the LDT, but these are loaded automatically by the processor
from the segment descriptor for the LDT.

5.3 PROTECTION

Protection is an aid to program development and a safeguard for the reliability of embedded
systems. During program development, the protection mechanism can give a clearer picture
of program bugs. When a program makes an unexpected reference to the wrong memory
space, the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of software
failures caused by undetected program bugs. If a program fails, its effects can be confined
to a limited domain. The operating system can be protected against damage, so diagnostic
information can be recorded and automatic recovery may be attempted.

Although there is no control register or mode bit for turning off the protection mechanism,
the same effect can be achieved by assigning privilege level zero to all segment selectors and
segment descriptors.

47 16 15 0 BITS
r�-------B-As~E-A~D~D~RE~S~S------~I~--~L1~M~IT----~1
5 2 1 0

BYTE
ORDER

Figure 5-11. Descriptor Table Memory Descriptor

5-15

G50235

SEGMENTATION

5.4 PROTECTION CHECKS

The protection mechanism of the 376 processor is part of the memory management hardware.
It provides the ability to limit the amount of interference a. malfunctioning program can
inflict on other programs and their data. Protection is a valuable aid in software develop­
ment because it allows software tools (operating system, monitor, debugger, etc.) to survive
in memory undamaged. When the application program fails, the system software is available
to report diagnostic messages, and the debugger is available for post-mortem analysis of
memory and registers. In production, protec1ion can make software more reliable by giving
the system software an opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. All checks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address trans­
lation, there is no performance penalty. There are five protection checks:

1. Type check

2. Limit check

3. Restriction of addressable domain

4. Restriction of procedure entry points

5. Restriction of instruction set

A protection violation results in an exception. Refer to Chapter 8 for an explanation of the
exception mechanism. This chapter describes the protection violations that lead to
exceptions. .

5.4.1 Segment Descriptors and Protection ,

Figure 5-12 shows the fields of a segment descriptor that are used by the protection mecha­
nism. Individual bits in the Type field also are referred to by the names of their functions.

Protection parameters are placed in the descriptor when it is created; In general, application
programmers do not need to be concerned about protection parameters.

When a program loads a segment selector into a segment register, the processor loads both
the base address of the segment and the protection information. The invisible part of each
segment register has storage for the base, limit, type, and privilege level. While this infor­
mation is resident in the segment register, subsequent protection checks on the same segment
can be performed with no performance penalty.

Note that for the 376 processor, bits 24 through 31 of the segment base address are not
used. There are no processor outputs which support these address bits. But for maximum
compatibility with the 386 processor, these bits should be loaded with values which would
be appropriate for that environment. For example, a stack segment intended to grow down
from the top of memory/ may be assigned a base address of FFFFFFFFH rather than
OOFFFFFFH.

5-16

SEGMENTATION

DATA SEGMENT DESCRIPTOR

31 o

BASE 31:24 BASE 23:16 + 4

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 + 0

CODE SEGMENT DESCRIPTOR

31 o

BASE 31:24 BASE 23:16 + 4

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 + 0

A ACCESSED
C CONFORMING
DPL DESCRIPTOR PRIVILEGE LEVEL
E EXPAND-DOWN
R READABLE
LIMIT SEGMENT LIMIT
W WRITABLE

G50235

Figure 5-12. Descriptor Fields Used for Protection (part 1 of 2)

SYSTEM SEGMENT DESCRIPTOR

31 o

BASE 31:24 BASE 23:16 + 4

SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 + 0

DPL DESCRIPTOR PRIVILEGE LEVEL
LIMIT SEGMENT LIMIT

G50235

Figure 5-12. Descriptor Fields Used for Protection (part 2 of 2)

5-17

SEGMENTATION

5.4.1.1 TYPE CHECKING

In addition to the descriptors for application code and data segments, the 376 processor has
descriptors for system segments and gates. These are data structures used for managing
tasks (Chapter 6) and exceptions and interrupts (Chapter 8). Table 5-2 lists all the types
defined for system segments and gates. Note that not all descriptors define segments; gate
descriptors hold pointers to procedure entry points.

The Type fields of code and data segment descriptors include bits which further define the
purpose of the segment (see Figure 5~12):

• The Writable bit in a data-segment descriptor controls whether programs can write to
the segment.

• The Readable bit in an executable-segment descriptor specifies whether programs can
read from the segment (e.g. to access constants stored in the code space). A readable,
executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES,
FS, or GS registers).

Type checking can be used to detect programming errors that would attempt to use segments
in ways not intended by the programmer. The processor examines type information on two
kinds of occasions:

1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

• The CS register only can be loaded with a selector for an executable segment.

• Selectors of executable segments that are not readable cannot be loaded into datas­
egment registers.

• Only selectors of writable data segments can be loaded into the SS register.

2. Certain segments can be used by instructions only in certain predefined ways; for
example: .

• No instruction may write into an executable segment.

• No instruction may w,rite into a data segment if the writable bit is not set.

• No instruction may read an executable segment unless the readable bit is set.

5.4.1.2 LIMIT CHECKING

The limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity
bit.) For data segments, the limit also depends on the E bit (Expansion-Direction bit). The
E bit is a designation for one bit of the Type field, when referring to data segment descrip-
tors. When the E bit is' set, the G bit must be set. '

5-18

SEGMENTATION

Table 5-2. System Segment and Gate Types

Type Description

0 reserved
1 reserved
2 LOT
3 reserved
4 reserved
5 Task Gate
6 reserved
7 reserved
8 reserved
9 Available 376 processor TSS

10 reserved
11 Busy 376 processor TSS
12 376 processor Call Gate
13 reserved
14 376 processor Interrupt Gate
15 376 processor Task Gate

When the G bit is clear, the limit is the value of the 20-bit limit field in the descriptor. In
this case, the limit ranges from 0 to OFFFFFH (220 - 1 or 1 megabyte). When the G bit is
set, the processor scales the value in the limit field by a factor of 212. In this case the limit
ranges from OFFFH (212 - 1 or 4 kilobytes) to OFFFFFFFFH (232 --'- 1 or 4 gigabytes).
Note that when scaling is used, the lower twelve bits of the address are not checked against
the limit; when the G bit is set and the segment limit is zero, valid offsets within the segment
are 0 through 4095.

For all types of segments except expand-down data segments (stack segments), the value of
the limit is one less than the size, in bytes, of the segment. The processor causes a general­
protection exception in any of these cases:

• Attempt to access a memory byte at an address> limit

• Attempt to access a memory word at an address > (limit - 1)

• Attempt to access a memory doubleword at an address> (limit - 3)

For expand-down data segments, the limit has the same function but is interpreted differ­
ently. In these cases the range of valid offsets is from (limit + 1) to 232 -1. An expand­
down segment has maximum size when the limit is zero.

Limit checking catches programming errors such as runaway subscripts and invalid pointer
calculations. These errors are detected when they occur, so identification of the cause is
easier. Without limit checking, these errors could overwrite critical memory in another
module, and the existence of these errors would not be discovered until the damaged module
crashed, an event which may occur long after the actual error. Protection can block these
errors and reporttheir source.

5-19

SEGMENTATION

In addition to limit checking on segments, there is limit checking on the descriptor tables.
The GDTR and LDTR registers contain a 16-bit limit value. It is used by the processor to
prevent programs from selecting a segment descriptor outside the descriptor table. The limit
of a descriptor table identifies the last valid byte of the table. Because each descriptor is
eight bytes long, a table that contains up to N descriptors should have a limit of 8N - 1.

A descriptor may be given a zero value. This refers to the first descriptor in the GDT, which
is not used. Although this descriptor may be loaded into a segment register, any attempt to
reference memory using this descriptor will generate a general-protection exception.

5.4.1.3 PRIVILEGE LEVELS

The protection mechanism recognizes four privilege levels, numbered from zero to three.
The greater numbers mean lesser privileges. If all other protection checks are satisfied, a
general-protection exception will be generated if a program attempts to access a segment
using a less privileged level (greater privilege number) than that applied to the segment.

Although no control register or mode bit is provided for turning off the protection mecha­
nism, the same effect can be achieved by assigning all privilege levels the value of zero.

Privilege levels can be used to improve the reliability of operating systems. By giving the
operating system the highest privilege level, it is protected from damage by bugs in other
programs. If a program crashes, the operating system has a chance to generate a diagnostic
message and attempt recovery.

Another level of privilege can be established for other parts of the system software, such as
the programs which handle peripheral devices, called device drivers. If a device driver crashed,
the operating system should be able. to report a diagnostic message, so it makes sense to
protect the operating system against bugs in device drivers. A device driver, however, may
service an important peripheral such as a disk. If the application program crashed, the device
driver should not corrupt the directory structure of the disk, so it makes sense to protect
device drivers against bugs in applications. Device drivers should be given an intermediate
privilege level between the operating system and the application programs. Application
programs are given the lowest privilege level.

Figure 5-13 shows how these levels of privilege can be interpreted as rings of protection. The
center is for the segments containing the most critical software, usually the kernel of an
operating system. Outer rings are for less critical software.

The following data structures contain privilege levels:

• The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being executed. The lowest two bits of the SS
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level
of the code segment from which instructions are being fetched. The CPL changes when

. control is transferred to a code segment with a different privilege level.

• Segment descriptors contain a field called the descriptor privilege level (DPL). The DPL
is the privilege level applied to a segment.

5-20

SEGMENTATION

PROTECTION RINGS

OPERATING SYSTEM --......

DEVICE DRIVERS

APPLICATIONS

G50235

Figure 5-13. Protection Rings

• Segment selectors contain a field called the requested privilege level (RPL). The RPL
is intended to represent the privilege level of the procedure that created the selector. If
the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program, the RPL
causes the memory access take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor is loaded into a segment regis­
ter. The checks used for data access differs from that for transfers of control among execut­
able segments; therefore, the two types of access are considered separately in the following
sections.

5.4.2 Restricting Access to Data

To address operands in memory, a segment selector for a data segment must be loaded into
a into a data-segment register (the DS, ES, FS, GS, or SS registers). The processor checks
the segment's privilege levels. The check is performed when the segment selector is loaded.
As Figure 5-14 shows, three different privilege levels enter into this type of privilege check.

The three privilege levels that are checked are:

1. The CPL (current privilege level) of the program. This is held in the two lowest bit
positions of the CS register.

2. The DPL (descriptor privilege level) of the segment descriptor of the segment contain­
ing the operand.

3. The RPL (requestor's privilege level) of the selector used to specify the segment
containing the operand. This is held in the two lowest bit positions of the segment regis­
ter used to access the operand (the SS, DS, ES, FS, or GS registers). If the operand is
in the stack segment, the RPL is the same as the CPL.

5-21

SEGMENTATION

OPERAND SEGMENT DESCRIPTOR

31 o

+4

+0

CURRENT CODE SEGMENT REGISTER

CPL t------, ------_ ..
OPERAND SEGMENT SELECTOR

~ ____ ~I_R_PL_I~------~

CPL CURRENT PRIVILEGE LEVEL
DPL DESCRIPTOR PRIVILEGE LEVEL
RPL REQUESTED PRIVILEGE LEVEL

G50235

Figure 5-14. Privilege Check for Data Access

Instructions may load a segment register only if the DPL of the segment is the same or a
less privileged level (greater number) than the lesser of the CPL and the selector's RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is zero, data
segments at all privilege levels are accessible; when CPL is one, only data segments at privi­
lege levels one through three are accessible; when CPL is three, only data segments at privi­
lege level three are accessible.

5.4.2.1 ACCESSING DATA IN CODE SEGMENTS

It may be desirable to store data in a code segment, for example when both code and data
are provided in ROM. Code segments may legitimately hold constants; it is not possible to
write to a segment defined as a code segment. The following methods of accessing data in
code segments are possible:

I. Load a data-segment register with a segment selector for a nonconforming, readable,
executable segment. .

2. Load a data-segment register with a segment selector for a conforming,· readable,
executable segment.

3. Use a code segment override prefix to read a readable, executable segment whose selec­
tor already is loaded in the CS register.

5-22

SEGMENTATION

The same rules for access to data segments apply to case 1. Case 2 is always valid because
the privilege level of a code segment with a set Conforming bit is effectively the same as the
CPL, regardless of its DPL. Case 3 is always valid because the DPL of the code segment
selected by the CS register is the CPL.

5.4.3 Restricting Control Transfers

With the 376 processor, control transfers are provided by the JMP, CALL, RET, INT, and
IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions and
interrupts are special cases discussed in Chapter 8. This chapter only discusses the JMP,
CALL, and RET instructions.

The "near" forms of the JMP, CALL, and RET instructions transfer program control within
the current code segment, and therefore only are subject to limit checking. The processor
checks that the destination of the JMP, CALL, or RET instruction does not exceed the limit
of the current code segment. This limit is cached in the CS register, so protection checks for
near transfers require no performance penalty.

The operands of the "far" forms of JMP and CALL refer to other segments, so the processor
performs privilege checking. There are two ways a JMP or CALL can refer to another
segment:

1. The operand selects the descriptor of another executable segment.

2. The operand selects a call gate descriptor. This gated form of transfer is discussed in
Chapter 6.

As Figure 5-15 shows, two different privilege levels enter into a privilege check for a control
transfer that does not use a call gate:

1. The CPL (current privilege level).

2. The DPL of the descriptor of the destination code segment.

Normally the CPL is equal to the DPL of the segment that the processor is currently execut­
ing. The CPL may, however, be greater (less privileged) than the DPL if the current code
segment is a conforming segment (as indicated by the Type field of its segment descriptor).
A conforming segment executes at the privilege level of the calling procedure. The processor
keeps a record of the CPL cached in the CS register; this value can be different from the
DPL in the segment descriptor of the current code segment.

The processor only permits a JMP or CALL directly to another segment if one of the follow­
ing privilege rules is satisfied:

• The DPL of the segment is equal to the current CPL.

• The segment is a conforming code segment, and its DPL is less (more privileged) than
the current CPL.

5-23

SEGMENTATION

DESTINATION CODE SEGMENT DESCRIPTOR

31 o

+4

+0

CURRENT CODE SEGMENT REGISTER

~ ____ ~I~C_PLJrI------~

C CONFORMING BIT .
CPL CURRENT PRIVILEGE LEVEL
DPL DESCRIPTOR PRIVILEGE LEVEL

G50235

Figure 5-15. Privilege Check for Control Transfer Without Gate

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, which support applications, but do not require access to protected system
facilities. When control is transferred to a conforming segment, the CPL does not change.
This is the only circumstance where the CPL may be different than the DPL of the current
code segment.

Most code segments are not conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. This is accomplished with
the CALL instruction using call-gate descriptors, which is explained in Chapter 6. The JMP
instruction may never transfer control to a nonconforming segment whose DPL does not
equal the CPL.

5.4.4 Gate Descriptors

To provide protection for control transfers among executable segments at different privilege
levels, the 376 processor uses gate descriptors. There are four kinds of gate descriptors:

• Call gates

• Trap gates

• Interrupt gates

• Task gates

5-24

SEGMENTATION

Task gates are used for task switching, and are discussed in Chapter 6. Chapter 8 explains
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is
concerned only with call gates. Call gates are a form of protected control transfer. They are
used for control transfers between different privilege levels. They only need to be used in
systems where more than one privilege level is used. Figure 5-16 illustrates the format of a
call gate.

A call gate has two main functions:

1. To define an entry point of a procedure.

2. To specify the privilege level required to enter a procedure.

Call gate descriptors are used by CALL and JUMP instructions in the same manner as code
segment descriptors. When the hardware recognizes that the segment selector for the desti­
nation refers to a gate descriptor, the operation of the instruction is determined by the contents
of the call gate. A call gate descriptor may reside in the GDT or in an LDT, but not in the
interrupt descriptor table (IDT).

The selector and offset fields of a gate form a pointer to the entry point of a procedure. A
call gate guarantees that all control transfers to other segments go to a valid entry point,
rather than to the middle of a procedure (or worse, to the middle of an instruction). The
operand of the control transfer instruction is not the segment selector and offset within the
segment to the procedure's entry point. Instead, the segment selector points to a gate
descriptor, and the offset is not used. Figure 5-17 shows this form of addressing.

As shown in Figure 5-18, four different privilege levels are used to check the validity of a
control transfer through a call gate.

The privilege levels checked during a transfer of execution through a call gate are:

1. The CPL (current privilege level).

2. The RPL (requestor's privilege level) of the segment selector used to specify the call
gate.

3. The DPL (descriptor privilege level) of the gate descriptor.

4. The DPL of the segment descriptor of the destination code segment.

31 23 15 7 o

OFFSET 31 .. 16 1 DPLI TYPE 0001 DWORD
o 1 1 0 0 COUNT

4

SELECTOR OFFSET 15 .. 0 o

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT

G50235

Figure 5-16. Call Gate

5-25

SEGMENTATION

I ... --DESTINATION ADDRESS_I

15 o 31 o
I SELECTOR I

\
+

PROCEDURE
ENTRY POINT

,---

OFFSET WITHIN SEGMENT

NOTtSED

DESCRIPTOR TABLE

I DPL COUNT

OFFSET
SELECTOR OFFSET

I I

BASEl DPL I BASE

I I
BASE

I I

GATE
DESCRIPTOR

CODE SEGMENT
DESCRIPTOR

Figure 5-17. Call Gate Mechanism

G50235

The DPL field of the gate descriptor determines from which privilege levels the gate may be
used. One code segment can have several procedures that are intended for use from different
privilege levels. For example, an operating system may have some services that are intended
to be used by both the operating system and application software, such as routines to handle
character I/O, while other services may be intended only for use by system software, such
as routines which create new tasks.

Gates can be used for control transfers to higher privilege levels or to the same privilege
level (though they are not necessary for transfers to the same level). Only CALL instruc­
tions can use gates to transfer to less privileged levels. A JMP instruction may use a gate
only to transfer control to a code segment with the same privilege level, or to a conforming
code segment with the same or a more privileged level.

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satisfied; otherwise, a general-protection exception is generated.

MAX (CPL,RPL) -< gate DPL
destination code segment DPL = CPL

5-26

SEGMENTATION

CALL GATE

31 15 7 o

I ~ I I I +4

I +0

DESTINATION CODE SEGMENT DESCRIPTOR

31 15 7 0

IIIII I ~ I I +4

I +0

CURRENT CODE SEGMENT REGISTER

I I CPL :

CALL GATE SELECTOR

I I RPL :

~
CPL CURRENT PRIVILEGE LEVEL

I PRIVILEGE DPL DESCRIPTOR PRIVILEGE LEVEL
RPL REQUESTED PRIVILEGE LEVEL CHECK

G50235

Figure 5-18. Privilege Check for Control Transfer with Call Gate

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general-protection exception is
generated.

MAX (CPL,RPL) -< gate DPL
destination code segment DPL -< CPL

5-27

SEGMENTATION

5.4.4.1 STACK SWITCHING

A procedure call to a more privileged level does the following:

1. Changes the CPL.

2. . Transfers control (execution).

3. Switches stacks.

All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiving
calls from less privileged levels. If the caller were to provide the stack, and the stack was too
small, the called procedure might crash as a result of insufficient stack space. Instead, less
privileged programs are prevented from crashing more privileged programs by creating a
new stack when a call is made to a more privileged level. The new stack is created, param­
eters are copied from the old stack, the contents of registers are saved, and execution proceeds
normally. When the procedure returns, the contents of the saved registers restore the origi~
nal stack. A complete description of the task switching mechanism is provided in Chapter 6.

The processor finds the space to create new stacks using the Task State Segment or TSS
(see Figure 5-19). Each task has its own TSS. The TSS contains initial stack pointers for
the inner protection rings. System software is responsible for creating each TSS and initial­
izing its stack pointers. An initial stack pointer consists of a segment selector and an initial
value for the ESP register (an initial offset into the segment). The initial stack pointers are
strictly read-only values. The processor does not change them while the task executes. These
stack pointers are used only to create new stacks when calls are made to more priVileged
levels. These stack pointers disappear when the called procedure returns. The next time the
procedure is called, a new stack is created using the initial stack pointer.

32-BIT TASK STATE SEGMENT

31 15

I SS2

ESP2

I SS1

ESP1

I SSO

ESPO

I
NOTE: ADDRESSES ARE IN HEXADECIMAL

o
64

1 8

14

10

OC

8

4

o

Figure 5-19. Initial Stack Pointers in a TSS

5-28

G50235

SEGMENTATION

When a call gate is used to change privilege levels, a new stack is created by loading an
address from the Task State Segment (TSS). The processor uses the DPL of the destination
code segment (the new CPL) to select the initial stack pointer for privilege level 0, 1, or 2.

The DPL of the new stack segment must equal the new CPL; if not, a stack-fault exception
occurs. It is the responsibility of system software to create stacks and stack-segment descrip­
tors for all privilege levels that are used. The stacks must be read/write as specified in the
Type field of their segment descriptors. They must contain enough space, as specified in the
Limit field, to hold the contents of the SS and ESP registers, the return address, and the
parameters and temporary variables required by the called procedure.

As with calls within a privilege level, parameters for the procedure are placed on the stack.
The parameters are copied to the new stack. The parameters can be accessed within the
called procedure using the same relative addresses that would have been used if no stack
switching had occurred. The count field of a call gate tells the processor how many double­
words (up to 31) to copy from the caller's stack to the stack of the called procedure. If the
count is zero, no parameters are copied.

If more than 31 doublewords of data need to be passed to the called procedure, one of the
parameters can be a pointer to a data structure, or the saved contents of the SS and ESP
registers may be used to access parameters in the old stack space.

The processor performs the following stack-related steps in executing a procedure call between
privilege levels.

1. The stack of the called procedure is checked to make certain it is large enough to hold
the parameters and the saved contents of regiSters; if not, a stack-fault exception is
generated.

2. The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32-bits; the
zero-extended upper word is Intel reserved; do not use).

3. The parameters are copied from the stack of the caller to the stack of the called
procedure~ ..

4. A point~r to the instruction after the CALL instruction (the old contents of the CS and
EIP registers) is pushed onto the new stack. The contents of the SS and ESP registers
after the call point to this return pointer on the stack.

Figure 5-20 illustrates the stack frame before, during, and after a successful interlevel proce~
dure call and return.

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure at
privilege level 3 cannot be called by a less privileged procedure. The stack for privilege level
3 is preserved by the contents of the SS and EIP registers which have been saved on the
stack of the privilege level called from level 3.

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses how
the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check pointer values.

5-29

OLD STACK
BEFORE CALL:

PARM 1

PARM2

PARM3 --ESP

SEGMENTATION

NEW STACK,
AFTER CALL,
BEFORE RETURN:

OLDSS

OLD ESP

PARM 1

PARM2

PARM3

OLDCS

OLD EIP _ESP

OLD STACK,
AFTER RETURN:

_ESP
1----1

Figure 5-20. Stack Frame Duringlnterlevel Call

5.4.4.2 RETURNING FROM A PROCEDURE

G50235

The "near" forms of the RET instruction only transfer control within the current code
segment therefore are subject only to limit checking. The offset to the instruction following
the CALL instruction is popped from the stack into the EIP register. The processor checks
that this offset does not exceed the limit of the current code segment.

The "far" form of the RET instruction pops the return address that w:as pushed onto the
stack by an earlier far CALL instruction. Under normal conditions, the return pointer is
valid, because it was generated by a CALL or INT instruction. Nevertheless, the processor
performs privilege checking because of the possibility that the current procedure altered the
pointer or failed to maintain the stack properly. The RPL of the code segment selector
popped off the stack by the return instruction should have the privilege level qf the calling
procedure.·

A return to another segment can change privilege levels, but only toward less privileged
levels. When a RET instruction encounters a saved CS value whose RPL is numerically
greater than the CPL (less privileged level),a return across privilege levels occurs. A return
of this kind performs these steps:

1. The checks shown in Ta,ble 5-3 are made,and theCS, EIP, SS, anq ESP registers,are
loaded with their former values, which were saved on the stack. .

2. The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP
value is not checked against the limit of the stack segment. If ESP is beyond the limit,
that fact is not recognized until the next stack operation. (The contents of the SS and

5-30

SEGMENTATION

Table 5-3. Interlevel Return Checks

Type of Check Exception Type Error Code

top-of-stack must be within stack segment limit Stack 0
top-of-stack + 7 must be within stack segment limit stack 0
RPL of return code segment must be greater than the CPL protection Return CS
Return code segment selector must be non-null protection Return CS
Return code segment descriptor must be within descriptor protection Return CS
table limit
Return segment descriptor must be a codesegment protection Return CS
Return code segment is present segment not present Return CS
DPL of return non-conforming code segment must equal protection Return CS
RPL of return code segment selector, or DPL of return
conforming code segment must be less than or equal to
RPL of return code segment selector
ESP + N + 15' must be within the stack segment limit stack fault Return CS
segment selector at ESP + N + 12' must be non-null protection Return CS
segment descriptor at ESP + N + 12' must be within protection Return CS
descriptor table limit
stack segment descriptor must be read/write protection Return CS
stack segment must be present stack fault Return CS
old stack segment DPL must be equal to RPL of old code protection Return CS
segment

I,

old stack segment selector must have an RPL equal to the protection Return CS
DPL of the old stack segment

, N is the value of the immediate operand supplied with the RET instruction

ESP registers for the returning procedure are not preserved; normally, their values are
the same as those contained in the TSS).

3. The contents of the DS, ES, FS, and GS segment registers are checked. If any of these
registers refer to segments whose DPL is greater than the new CPL (excluding conform­
ing code segments), the segment register is loaded with the null selector (Index = 0,
TI = 0). The RET instruction itself does not signal exceptions in these cases; however,
any subsequent memory reference using a segment register containing the null selector
will cause a general-protection exception. This prevents less privileged code from access­
ing more privileged segments using selectors left in the segment registers by a more
privileged procedure.

5.4.5 Instructions Reserved for the Operating System

Instructions that can affect the protection mechanism or influence general system perform­
~lllce can only be executed by trusted procedures. The 376 processor has two classes of such
instructions:

1. Privileged instructions-those used for system control.

2. Sensitive instructions-those used for I/0 and I/O related activities.

5-31

SEGMENTATION

5.4.5.1 PRIVILEGED INSTRUCTIONS

The instructions that"affect protected facilities only can be executed when the CPL is zero
(most privileged). If one of these instructions is executed when the CPL is not zero, a general­
protection exception is generated. These instructions include:

CLTS
HLT
LGDT
LIDT
LLDT
LMSW
LTR
MOV to/from CRO
MOV to/from DRn
MOV to/from TRn

5.4.5.2 SENSITIVE INSTRUCTIONS

-Clear Task-Switched Flag
-Halt Processor
-Load GDT Register
-Load IDT Register
-Load LDT Register
~Load Machine Status Word
-Load Task Register
-Move to Control Register 0
-Move to Debug Register n
-Move to Test Register n

Instructions that deal with I/O need to be protected, but they also need to be executed by
procedures executing at privilege levels other than zero (the most privileged level). The
mechanisms for protection oU/O operations are covered in detail in Chapter 7. .

5.4.6 Instructions for Pointer Validation

Pointer validation is an important part of detecting programming errors. Pointer validation
is necessary for maintaining isolation between privilege levels. Pointer validation consists of
the following steps: . . ,

1. Check if the supplier ofthepointer is allowed to access the segment.

2. Check if the segment type is compatible with its use ..

3. Check if the pointer offset exceeds the segment limit.

Although the 376 processor automatically performs checks 2 and 3 during instruction execu­
tion, software must assist in performing the first check. The ARPL instruction is provided
for this purpose. Software also can invoke steps 2 and 3 to check for potential violations,
rather than waiting for an exception to be generated. The LAR, LSL, VERR, and VER W
instructions are provided for this purpose.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a compatible
privilege level and type. The LAR instruction has one operand:-a segment selector for a
descriptor whose access rights are to be checked. The segment descriptor must be readable
at a privilege level which is numerically greater (less privileged) than the CPL and the selec­
tor's RPL. If the descriptor is readable, the LAR instruction gets the second doubleword of
the descriptor, masks this value with. OOFxFFOOH,· stores the result into the specified 32-bit
destination register, and sets the ZF flag. (The x indicates that the corresponding four bits
of the stored value are undefined.) Once loaded, the access rights can be tested. All valid

5-32

SEGMENTATION

descriptor types can be tested by the LAR instruction. If the RPL or CPL is greater than
the DPL, or if the segment selector would exceed the limit for the descriptor table, no access
rights are returned, and the ZF flag is cleared. Conforming code segments may be accessed
from any privilege level.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If the
descriptor referenced by the segment selector (in memory or a register) is readable at the
CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte granular
limit calculated from the concatenated limit fields and the G bit of the descriptor. This only
can be done for descriptors which describe segments (data, code, task state, and local
descriptor tables); gate descriptors are inaccessible. (Table 5-4 lists in detail which types are
valid and which are not.) Interpreting the limit is a function of the segment type. For example,
downward-expandable data segments (stack segments) treat the limit differently than other
kinds of segments. For both the LAR and LSL instructions, the ZF flag is set if the load
was successful; otherwise, the ZF flag is cleared.

5.4.6.1 DESCRIPTOR VALIDATION

The 376 processor has two instructions, VERR and VERW, which determine whether a
segment selector points to a segment that can be read or written using the CPL. Neither
instruction causes a protection fault if the segment cannot be accessed.

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that segment
is readable using the CPL. The VERR instruction checks the following:

• The segment selector points to a segment descriptor within the bounds of the GDT or
an LDT.

• The segment selector indexes to a code or data segment descriptor.

• The segment is readable and has a compatible privilege level.

Table 5·4. Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?

0 reserved no
1 reserved no
2 LDT yes
3 reserved no
4 reserved no
5 Task Gate no
6 reserved no
7 reserved no
8 reserved no
9 Available 376 TSS yes
A reserved no
B Busy 376 TSS yes
C 376 Call Gate no
D reserved no
E 376 Interrupt Gate no
F 376 Trap Gate no

5-33

SEGMENTATION

The privilege check for data segments and nonconforming code segments verifies that the
DPL must be a less privileged level than either the CPL or the selector's RPL. Conforming
segments are not checked for privilege level.

VERW (Verify for Writing) provides the same capability as the VERR instruction for
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag if
the segment can be written. The instruction verifies the descriptor is within bounds, is a
segment descriptor, is writable, and has a DPL which is a less privileged level than either
the CPL or the selector's RPL. Code segments are never writable, whether conforming or
not.

5.4.6.2 POINTER INTEGRITY AND RPL

The Requested Privilege Level (RPL) can prevent accidental use of pointers that crash more
privileged code from a less privileged level.

A common example is a file system procedure, FREAD (file_id, n_bytes, buffeLptr). This
hypothetical procedure reads data from a disk file into a buffer, overwriting whatever is
already there. It services requests from programs operating at the application level, but it
must execute in a privileged mode in order to read from the system I/O buffer. If the appli­
cation program passed this procedure a bad buffer pointer, one that pointed at critical code
or data in a privileged address space, the procedure could cause damage that would crash
the system.

Use of the RPL can avoid this problem. The RPL allows a privilege override to be assigned
to a selector. This privilege override is intended to be the privilege level of the code segment
which generated the segment selector. In the above example, the RPL would be the CPL of
the application program which called the system level procedure. The 376 processor
automatically checks any segment. selector loaded into a segment register to determine
whether its RPL allows access.

To take advantage of the processor's checking of the RPL, the called procedure need only
check that all segment selectors passed to it have an RPL for the same or a less privileged
level as the original caller's CPL. This guarantees that the segment selectors are not more
privileged than their source. If a selector is used to access a segment that the source would
not be able to access directly, i.e. the RPL is less privileged than the segment's DPL, a
general-protection exception will be generated when the selector is loaded into a segment
register.

ARPL (Adjust Requestor's Privilege Level) adjusts the RPL field of a segment selector to be
the larger (less privileged) of its original value and the value of the RPL field for a segment
selector stored in a general register. The RPL fields are the two least significant bits of the
segment selector and the register. The latter normally is a copy of the caller'sCS register
on the stack. If the adjustment changes the selector's RPL, the ZF flag is set; otherwise, the
ZF flag is cleared.

5-34

Multitasking 6

CHAPTER 6
MULTITASKING

The 376 processor provides hardware support for multitasking. A task is a program which
is executing, or waiting to execute while another program is executing. A task is invoked by
an interrupt, exception, jump, or call. When one of these forms of transferring execution is
used with a destination specified by an entry in one of the descriptor tables, this descriptor
can be a type which causes a new task to begin execution after saving the state of the current
task. There are two types of task-related descriptors which can occur in a descriptor table:
task state segment descriptors and task gates. When execution is passed to either kind of
descriptor, a context switch occurs.

A context switch is like a procedure call, but it saves more processor state information. A
procedure call only saves the contents of the general registers, and it might save the contents
of only one register (the EIP register). A procedure call pushes the contents of the saved
registers on the stack, in order that a procedure may call itself. When a procedure calls
itself, it is said to be re-entrant.

A context switch must transfer execution to a completely new environment, the environment
of a task. This requires saving the contents of nearly all the processor registers. Unlike
procedures, tasks are not re-entrant. A context switch does not push anything on the stack.
The processor state information is saved in a data structure in memory, called a task state
segment.

The registers and data structures which support multitasking are:

o Task state segment

o Task state segment descriptor

o Task register

o Task gate descriptor

With these structures the 376 processor can switch execution from one task to another, with
the context of the original task saved to allow the task to be restarted. In addition to the
simple task switch, the 376 processor offers two other task-management features:

1. Interrupts and exceptions can cause task switches (if needed in the system design). The
processor not only performs a task switch to handle the interrupt or exception, but it
automatically switches back when the interrupt or exception returns. Interrupts may
occur during interrupt tasks.

2. With each switch to another task, the 376 processor also can switch to another LDT.
This can be used to give each task a different logical-to-physical address mapping. This
is an additional protection feature, because tasks can be isolated and prevented from
interfering with one another.

6-1

MULTITASKING

Use of the multitasking mechanism is optional. In some applications, it may not be the best
way to manage program execution. Embedded systems often need extremely fast response
to interrupts. The time required to save the processor state may be too great. A possible
compromise in these situations is to use the task-related data structures, but perform task­
switching in software. This allows a smaller processor state to be saved. This technique can
be one of the optimizations used to enhance system performance after the basic functions of
a system have been implemented.

6.1 TASK STATE SEGMENT

The processor state information needed to restore a task is saved in a type of segment, called
a task state segment or TSS. Figure 6-1 shows the format of a TSS. The fields of a TSS are
divided into two main categories:

1. Dynamic fields the processor updates with each task switch. These fields store:

• The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI).

• The segment registers (ES, CS, SS, DS, FS, and GS).

• The flags register (EFLAGS).

• The instruction pointer(EIP).

• The selector for the TSS of the previous task (updated only when a return is
expected).

2. Static fields the processor reads, but does not change. These fields are set up when a
task is created. These fields store:

• The selector for the task's LDT.

• The logical address of the stacks for privilege levels 0, 1, and 2.

• The T-bit (debug trap bit) which, when set, causes the processor to raise a debug
exception when a task switch occurs. (See Chapter 11 for more information on
debugging).

• The base address for the I/O permission bit map. If present, this map is stored in
the TSS at higher addresses. The base address points to the beginning of the map.
(See Chapter 7 for more information about the I/O permission bit map).

6.2 TSS DESCRIPTOR

The task state segment, like all other segments, is defined by a descriptor. Figure 6-2 shows
the format of a TSS descriptor.

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently
executing or waiting to execute. A Type field holding a value of 9 indicates an inactive task;
a value of 11 indicates a busy task. Tasks are not re-entrant. The 376 processor uses the
Busy bit to detect an attempt to call a task whose execution has been interrupted.

6-2

MULTITASKING

31 23 15 7

1/0 MAP BASE o 0 0 0 0 0 o 000 o 0 0 I
o 0 0 0 0 000 0 0 0 0 0 0 0 0 LDT

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GS

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FS

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DS

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ss
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cs
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

INSTRUCTION POINTER (EIP)

CR3 (PDPR)

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SS2

ESP2

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 SSl

ESP1

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 SSO

ESPO

o 0 0 000 0 0 0 0 0 0 0 0 0 0 BACK LINK TO PREVIOUS TSS

NOTE: 0 MEANS INTEL RESERVED. DO NOT DEFINE.

Figure 6-1. Task State Segment

o
64

60

5C

58

54

50

4C

48

44

40

3C

38

1

1

34

30

2C

28

24

20

1C

8

4

10

OC

8

4

o

G50235

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions
similar to their use in data-segment descriptors. The Limit field must have a value equal to
or greater than 67H, the minimum size of a task state. An attempt to switch to a task whose
TSS descriptor. has a limit less than 67H generates an exception. A larger limit is required
if an I/0 permission map is b~ing used. A larger limit also may be used for system software,
if the system- stores additional data in the TSS.

Note that for the 376 processor, bits 24 through 31 of the segment base address are not
used. There are no processor outputs which support these address bits. But for maximum
compatibility with the 386 processor, these bits should be loaded with values which would

6-3

MULTITASKING

TSS DESCRIPTOR

31 o

BASE 31:24 BASE 23:16 I 4

BASE ADDRESS 15:00 .. SEGMENT LIMIT 15:00 -\- 0

AVL AVAILABL.E FOR USE BY SYSTEM SOFTWARE
B BUSY BIT
BASE SEGMENT BASE ADDRESS
DPL DESCRIPTOR PRIVILEGE LEVEL
DT DESCRIPTOR TYPE

(0 = SYSTEM; 1 = APPLICATION)
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
TYPE SEGMENT TYPE

G50235

Figure 6-2. TSS Descriptor

be appropriate for· that environment. For example, a stack segment intended to grow down
from the top of memory may be assigned a base address of FFFFFFFFH rather than
OOFFFFFFH. ~

A procedure with access to a TSS descriptor can cause a tasK switch. In most systems, the
DPL fields of TSS descriptors should ,be set to zero, so only privileged software can perform
task switching.

Access to a TSS descriptor does not give a procedure the ability to read or modify the
descriptor. Reading and modification only can be accomplished with a data descriptor mapped
to the same location in physical memory. Loading a TSS descriptor into a segment register
generates an exception. TSS descriptors only may reside in the GDT. An attempt to access
a TSS using a selector with a set TI bit (which indicates the current LDT) generates in an
exception.

6.3 TASK REGISTER

The task register (TR) is used to find the current TSS. Figure 6-3 shows the path by which
the processor accesses the TSS.

The task register has both a "visible" part (i.e. a part that can be read and changed by
software) and an "invisible" part (Le. a part maintained by the processor and inaccessible
to software). The selector in the visible portion indexes to a TSS descriptor in the GDT. The
processor uses the invisible portion of the TR register to retain the base and limit values
from the TSS descriptor. Keeping these values in a register makes execution of the task
more efficient, because the processor does not need to fetch these values from memory to
reference the TSS of the current task.

MULTITASKING

TASK STATE
SEGMENT

l6-BIT VISIBLE
REGISTER HIDDEN REGISTER

TR I SELECTOR I (BASE) .I (LIMT) I

GLOBAL DESCRIPTOR TABLE

I I
I I
I

TSS DESCRIPTOR
I

I I

I I I I
L.I I I--

G50235

Figure 6-3. TR Register

The LTR and STR instructions are used to modify and read the visible portion of the task
register. Both instructions take one operand, a 16-bit segment selector located in memory or
a general register.

LTR (Load task register)loads the visible portion of the task register with the operand,
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the
invisible portion with information from the TSS descriptor. The LTR instruction is a privi­
leged instruction; it may be executed only when the CPL is zero. The LTR instruction gener­
ally is used during system initialization to put an initial value in the task register; afterwards,
the contents of the TR register are changed by events that cause a task switch.

STR (Store task register) stores the visible portion of the task register in a general register
or memory. The STR instruction is not privileged.

6.4 TASK GATE DESCRIPTOR

A task gate descriptor provides an indirect, protected reference to a task. Figure 6-4
illustrates the format of a task gate.

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is not
used.

6-5

MULTITASKING

7 0

(NOT USEO) 4

SELECTOR (NOT USED) o

G50235

Figure 6~4. Task Gate Descriptor

The DPL of a task gate controls access to the descriptor for a task switch. A procedure may
not select a task gate descriptor unless the selector's RPL and the CPL of the procedure are
numerically less than or equal to the DPL of the descriptor. This prevents less privileged
procedures from causing a task switch. (Note that when a task gate is used, the DPL of the
destination TSS descriptor is not used for privilege checking.)

A procedure with access to a task gate can cause a task switch, as can a procedure with
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy three
needs:

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the TSS
descriptor, each task should have only one such descriptor. There may, however, be
several task gates which select a single TSS descriptor.

2. The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL that is different from the TSS descriptor's DPL.
A procedure that does not have sufficient privilege to use the TSS descriptor in the GDT
(which usually has a DPL of 0) can still call another task if it has access to a task gate
in its LDT, With task gates, system software can limit task switching to specific tasks.

3. The need for an interrupt or exception to cause a task switch. Task gates also may reside
in the IDT, which allows interrupts and exceptioris to cause task switching. When an
interrupt or exception supplies a vector to a task gate, the 376 processor switches to the
indicated task.

Figure 6-5 illustrates how both a task gate in an LDT and a task gate in the IDT can
identify the same task. .

6.5 TASK SWITCHING

The 376 processor transfers execution to another task in any of four cases:

1. The current task executes a JMP or CALL to a TSS descriptor.

2. The current task executes a JMP or CALL to a task gate.

6-6

MULTITASKING

LOCAL DESCRIPTOR TABLE INTERRUPT DESCRIPTOR TABLE

I,'
I
I
I

GU;BAL DESCRiPTOR TABLE

I
I
I'
I

I I
I
I

.1
"'"',, i

, TASK STATE' '
SEGMENT '

I

Figure 6-5. Task. Gates Reference Tasks

3. An interrupt or exceptioll,indexes toa taskga.te inth~ IDT.

4. The current task executes an IRETD when the NT flag is set.

,j

.. J'

G50235

The JMP, CALL, and IRETD instructions, as well as interrupts and exceptions, are all
ordinary mechanisms of the 376: processor that can be used in circumstances where no task
switch occurs. The descriptor type (when a task is called) or the NT flag (when the task
returns) make the difference between the standard mechanism and the form which causes a
task switch.

' .. ;'

To cause a task switch, a JMP or CALL instruction can transfer· execution to either a TSS:
descriptor or a task gate. The'effect is the same in either case: the 376 processor· transfers
execution to the specified task.

An exception or interrupt causes a task switch when it indexes to a task gate in ,the IDT. If
it indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See Chapter
8 for more information on the interrupt mechanism. ' ,

6-7

MULTITASKING

An interrupt' serviCe routine afways retunis execution to the interrupted procedure, which
may be in another task. If the NT flag is clear, a normal return occurs. If the NT flag is
set, a task switch occurs. The task receiving the task switch is, specified by the TSS selector
in the TSS of the interrupt service routine.

A task switch has these steps:

1. Check that the current task is allowed to switch to the new task. Data-access privilege
rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and the
task gate must be less than or equal to both the CPL and the RPL of the gate selector.
Exceptions, interrupts, and IRETD instructions are permitted to switch tasks regardless
of the DPL of the destination task gate orTSS descriptor.

2. Check that the TSS descriptor ofthe new task is marked present and has a valid limit
(greater than or equal to 67H). Any errors up to this point occur in the context of the
current task. These errors restore any changes made in the processor state when an
attempt is made to execute the. error"generating instruction. This lets the return address
for the exception handler point to, the error-generating instruction, rather than the
instruction following the error-generating instruction. The exception handler can fix the
condition which caused the error, and restart the task. The intervention of the exception
handler can be completely transparent to the application program.

3. Save the state of the current task. The processor finds the base address of the current
TSS in the task register. The processor registers are copied into the current TSS (the
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, and EFLAGS
registers). The EIP field of the TSS holds the offset to the next instruction to execute.

4. Load the TR register with the selector to the new task's TSS descriptor, set the new
task's Busy bit, and set the TSbit in the CRO register. The selector is either the operand
of a JMP or CALL instruction, or it is taken from a task gate.

5. Load the new task's state from its TSS and continue execution. The registers loaded are
the LDTR register; the EFLAGS register; the general 'registers EIP, EAX, ECX, EDX,
EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS, FS, and GS.
Any errors detected in this step occur in the context of the new task. To an exception
handler, the first instruction of the new task will appear not to have executed.

Note that the state of the old task is always saved when a task switch occurs. If execution
of the task is resumed, execution starts with the instruction which normally would be the
next to execute. The registers: are restored to the values they held when the task stopped
executing.

Every task switch sets the TS (task switched) bit in the CRO register. The TS flag is useful
to systems software when a coprocessor (such as a numerics coprocessor) is present. The TS
bitindicatesthat the context ofthecoprocessor may be different from that of the current
task Chapter 10 discusses the TS bit and coprocessors in tnoredetaiL

Exception service routines for exceptions caused by task switching (exceptions resulting from
steps 5 through 17 shown in Table 6-1) may be subject to recursive calls if they attempt to
reload the segment selector which generated the exception. The cause of the exception (or
the first of multiple causes) should be fixed, before· reloading the selector.

MULTITASKING

Table 6-1. Checks Made During a Task Switch

Step Condition Checked Exception' Error Code Reference

1 TSS descriptor is present in memory NP New Task's TSS
2 TSS descriptor is not busy GP New Task's TSS
3 TSS segment limit greater than or equal to 103 TS New Task's TSS

4 Registers are loaded from the values in the TSS

5 LOT selector of new task is valid2 TS New Task's TSS
6 LOT of new task is present in memory TS New Task's TSS
7 CS selector is valid2 TS New Code Segment
8 Code segment is present in memory NP New Code Segment
9 Code segment OPL matches selector RPL TS New Code Segment

10 SS selector is valid2 GP New Stack Segment
11 Stack segment is present in memory SF New Stack Segment
12 Stack segment OPL matches CPL SF New Stack Segment
13 Stack segment OPL matches selector RPL GP New Stack Segment
14 OS, ES, FS, and GS selectors are valid2 GP New Oata Segment
15 OS, ES, FS, and GS segments are readable in memory GP New Oata Segment
16 OS, ES, FS,.and GS segments are present NP New Data Segment
17 OS, ES, FS, and GS segment OPL greater than or equal GP New Data Segment

toCPL

1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS excep­
tion, SF = Stack-fault exception.

2. A selector is valid if it is in a compatible type of table (e.g., an LOT selector may not be in any table
except the GOT), occupies an address within the table's segment limit, and refers to a compatible type
of descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a.code
segment; the descriptor type is specified in its Type field).

The privilege level at which the old task was executing has no relation to the privilege level
of the new task. Because the tasks are isolated by their separate address spaces and task
state segments, and because privilege rules control access to a TSS, no privilege checks are
needed to perform a task switch. The new task begins executing at the privilege level indicated
by the RPL of new contents of the CS register, which are loaded from the TSS.

6.6 TASK LINKING

The Link field of the TSS and the NT flag are used to return execution to the previous task.
The NT flag indicates whether the currently executing task is nested within the execution
of another task, and the Link field of the current task's TSS holds the TSS selector for the
higher-level task, if there is one (see Figure 6-6).

When an interrupt, exception, jump, or call causes a task switch, the 376 processor copies
the segment selector for the current task state segment into the TSS for the new task and
sets the NT flag. The NT flag indicates the Link field of the TSS has been loaded with a
saved TSS selector. The new task releases control by executing an IRETD instruction. When
an IRET instruction is executed, the NT flag is checked. If it is set, the processor does a
task switch to the previous task. Table 6-2 summarizes the uses of the fields in a TSS which
are affected. by task switching.

6-9

MULTITASKING

TOP LEVEL NESTED MORE DEEPLY CURRENTLY
TASK TASK NESTED EXECUTING

TASK TASK

TSS TSS TSS EFLAGS
NT = 1

NT = 0 NT = 1 NT = 1

G50235

Figure 6·6. Nested Tasks

Table 6·2. Effect of a Task Switch on Busy, NT, and Link Fields

Field Effect of Jump Effect of CALL Effect of IRET
Instruction or Interrupt Instruction

Busy bit of new task Bit is set. Must have Bit is set. Must have No change. Must be set.
been clear before. been clear before.

Busy bit of old task Bit is cleared. No change. Bit is Bit is cleared.
currently set.

NT flag of new task Flag is cleared. Flag is set. No change.

NT flag of· old task No change. No change. Flag is cleared.

Link field of new No change. Loaded with selector for No change.
task. old task's T88.

Link field of old task. No change. No change. No change.

Note that the NT flag may be modified by software executing at any privilege level. It is
possible for a program to set its NT bit and execute an IRETD instruction, which would
have the effect of invoking the task specified in the Link field of the current task's TSS. To
keep spurious task switches from succeeding, system software should initialize the Link field
of every TSS it creates ..

6.6.1 Busy Bit Prevents Loops

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one
saved task context, the context saved in the TSS, therefore a task only may be called once
before it terminates. The chain of suspended tasks may grow to any length, due to multiple
interrupts, exceptions, jumps, and calls. The Busy bit prevents a task from being called if it

6-10

MULTITASKING

is in this chain. A re-entrant task switch would overwrite the old TSS for the task, which
would break the chain.

The processor manages the Busy bit as follows:

1. When switching to a task, the processor sets the Busy bit of the new task.

2. When switching from a task, the processor clears the Busy bit of the old task if that
task is not to be placed in the chain (Le. the instruction causing the task switch is a JMP
or IRETD instruction). If the task is placed in the chain, its Busy bit remains set.

3. When switching to a task, the processor generates a general-protection exception if the
Busy bit of the new task already is set.

In this way, the processor prevents a task from switching to itself or to any task in the chain,
which prevents re-entrant task switching.

The Busy bit may be used in multiprocessor configurations, because the processor asserts a
bus lock when it sets or clears the Busy bit. This keeps two processors from invoking the
same task at the same time. (See Chapter 10 for more information on multiprocessing).

6.6.2 Modifying Task Linkages

Modification of the chain of suspended tasks may be needed to resume an interrupted task
before the task which interrupted it. A reliable way to do this is:

1. Disable interrupts.

2. First change the Link field in the TSS of the interrupting task, then clear the Busy bit
in the TSS descriptor of the task being removed from the chain.

3. Re-enable interrupts.

6.7 TASK ADDRESS SPACE

The LDT selector of the TSS can be used to give each task its own LDT. Because segment
descriptors in the LDTs are the connections between tasks and segments, separate LDTs for
each task can be used to set up individual control over these connections. Access to any
particular segment can be given to any particular task by placing a segment descriptor for
that segment in the LDT for that task.

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient
way to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed
through segment descriptors in this table.

6-11

Input/Output 7

CHAPTER 7
INPUT / OUTPUT

This chapter explains the I/O architecture of the 376 processor. I/O is accomplished through
I/0 ports, which are registers connected to peripheral devices. An I/0 port can be an input
port, an output port, or a bidirectional port. Some I/O ports are used for carrying data, such
as the transmit and receive registers of a serial interface. Other I/O ports are used to control
peripheral devices, such as the control registers of a disk controller.

The I/0 architecture is the programmer's model of how these ports are accessed. The
discussion of this model includes:

• Methods of addressing I/O ports.

• Instructions which perform I/O operations.

• The I/0 protection mechanism.

7.1 1/0 ADDRESSING

The 376 processor allows I/O ports to be addressed in either of two ways:

• Through a separate I/O address space accessed using I/O instructions.

• Through memory-mapped I/O, where I/O ports appear in the address space of physical
memory.

7.1.1 1/ 0 Address Space

The 376 processor provides a separate I/O address space, distinct from the address space
for physical memory, where I/O ports can be placed. The I/0 address space consists of 216

(64K) individually addressable 8-bit ports; any two consecutive 8-bit ports can be treated as
a 16-bit port, and any four consecutive ports can be a 32-bit port. The processor will access
a 32-bit port in two 16-bit bus cycles if it is aligned to the even addresses, three cycles if it
is not.

The M/IO# pin on the 376 processor indicates when a bus cycle to the I/O address space
occurs. When a separate I/O address space is used, it is the responsibility of the hardware
designer to make use of this signal to select I/O ports rather than memory. In fact, the use
of the separate I/0 address space simplifies the hardware design because these ports can be
selected by a single signal; unlike other processors, it is not necessary to decode a number of
upper address lines in order to set up a separate I/O address space.

7-1

INPUT /OUTPUT

A program can specify the address of a port in two ways. With an immediate byte constant,
the program can specify:

• 256 8-bit ports numbered 0 through 255.

• 128 16-bit ports numbered 0, 2, 4, ... , 252, 254.

• 64 '32-bit ports numbered 0, 4, 8, ... , 248, 252.

Using a value in the DX register, the program can specify:

• 8-bit ports numbered 0 through 65535.

• 16-bit ports numbered 0,2,4, ... , 65532, 65534.

• 32-bit ports numbered 0, 4, 8, ... , 65528, 65532.

The 376 processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like words in
memory, 16-bit ports should be aligned to the even addresses so that all 16 bits can be
transferred in a single bus cycle. For maximum compatibility with the 386 processor, 32-bit
ports should be aligned to the addresses which are multiples of four. Both processors support
data transfers to unaligned ports, but there is a performance penalty because an extra bus
cycle must be used.

The IN and OUT instructions move data between a register and a port in the I/O address
space. The instructions INS and OUTS move strings of data between the memory address
space and ports in the I/O address space.

7.1.2 Memory-Mapped 1/0

I/O devices may be placed in the address space for physical memory. This is called memory­
mapped I/O. As long as the devices respond like memory components, they can be used with
memory-mapped I/O.

Memory-mapped I/O provides additional programming flexibility. Any instruction that
references memory may be used to access an I/O port located in the memory space. For
example, the MOY instruction can transfer data between any register and a port. The AND,
OR, and TEST instructions may be used to manipulate bits in the control and status regis­
ters of peripheral devices (see Figure 7-1). Memory-mapped I/O can use the full instruction
set and the full complement of addressing modes to address I/O ports.

Memory-mapped I/O, like any other memory reference, is subject to access protection and
control. See Chapter 5 for a discussion of memory protection.

7-2

7.2 I/O INSTRUCTIONS

INPUT /OUTPUT

PHYSICAL MEMORY
~~~~~----"'N 

ROM 

INPUT /OUTPUT PORT 

INPUT /OUTPUT PORT 

INPUT /OUTPUT PORT 

RAM 

~ ____________ ~o 

Figure 7·1. Memory·Mapped I/O 

G50235 

The I/O instructions of the 376 processor provide access to the processor's I/O ports for the 
transfer of data. These instructions have the address of a port in the I/O address space as 
an operand. There are two kinds of I/0 instructions: 

1. Those which transfer a single item (byte, word, or doubleword) to or from a register. 

2. Those which transfer strings of items (strings of bytes, words, or doublewords) located 
in memory. These are known as "string I/0 instructions" or "block I/O instructions." 

7.2.1 Register I/O Instructions 

The I/O instructions IN and OUT move data between I/0 ports and the EAX (32·bit 
I/0), the AX (16·bit I/O), or AL (8-bit I/O) registers. The IN and OUT instructions 
address I/O ports either directly, with the address of one of 256 port addresses coded in the 
instruction, or indirectly using an address in the DX register to select one of 64K port 
addresses. 

IN (Input from Port) transfers a byte, word, or doubleword from an input port to the AL, 
AX, or EAX registers. A byte IN instruction transfers 8 bits from the selected port to the 
AL register. A word IN instruction transfers 16 bits from the port to the AX register. A 
doubleword IN instruction transfers 32 bits from the port to the EAX register. 

OUT (Output from Port) transfers a byte, word, or doubleword from the AL, AX, or EAX 
registers to an output port. A byte OUT instruction transfers 8 bits from the AL register to 
the selected port. A word OUT instruction transfers 16 bits from the AX register to the 
port. A doubleword OUT instruction transfers 32 bits from the EAX register to the port. 

7-3 



INPUT /OUTPUT 

7.2.2 Block I/O Instructions 

The INS and OUTS instructions move blocks of data between I/O ports and memory. Block 
I/O instructions use an address in the DX register to address a port in the I/O address. 
space. These instructions use the DX register to specify: 

• 8-bit ports numbered 0 through 65535. 

• 16-bit ports numbered 0, 2, 4, ... , 65532, 65534. 

'. 32-bit ports numbered 0, 4, 8, ... , 65528, 65532. 

Block I/O instructions use either the SI or 01 register to address memory. For each transfer, 
the SI or 01 register is incremented or decremented, as specified by the OF flag. 

The INS and OUTS instructions, when used with repeat prefixes, perform block input or 
output operations. The repeat prefix REP modifies the INS and OUTS instructions to trans­
fer blocks of data between an I/O port and memory. These block I/O instructions are string 
instructions (see Chapter 3 for more on string instructions). They simplify programming and 
increase the speed of data transfer by eliminating the need to use a separate LOOP instruc­
tion or an intermediate register to hold the data. 

The string I/O instructions operate on byte strings, word strings, or doubleword strings. 
After each transfer, the memory address in the ESI or EDI registers is incremented or 
decremented by 1 for byte operands, by 2 for word operands, or by 4 for doubleword operands. 
The DF flag controls whether the register is incremented (the DF flag is clear) or decre­
mented (the DF flag is set). 

INS (Input String from Port) transfers a byte, word, or doubleword string element from an 
input port to memory. The INSB instruction transfers a byte from the selected port to the 
memory location addressed by the ES and EDI registers. The INSW instruction transfers a 
word. The INSD instruction transfers a doubleword. A segment override prefix cannot be 
used to specify an alternate destination segment. Combined with a REP prefix, an INS 
instruction makes repeated read cycles to the port, and puts the data into consecutive locations 
in memory. 

OUTS (Output String from Port) transfers a byte, word, or doubleword string element from 
memory to an output port. The OUTSB instruction transfers a byte from the memory location 
addressed by the ES and EDI registers to the selected port. The OUTSW instruction trans­
fers a word. The OUTSD instruction transfers a doubleword. A segment override prefix 
cannot be used to specify an alternate source segment. Combined with a REP prefix, an 
OUTS instruction reads consecutive locations in memory, and writes the data to an output 
port. 

7-4 



INPUT IOUTPUT 

7.3 PROTECTION AND 1/0 

The I/O architecture has two protection mechanisms: 

1. The 10PL field in the EFLAGS register controls access to the I/O instructions. 

2. The I/O permission bit map of a TSS segment controls access to individual ports in the 
I/O address space. 

7.3.1 1/0 Privilege Level 

In systems where protection is used, access to the I/O instructions is controlled by the 10PL 
field in the EFLAGS register. This permits system software to adjust the privilege level 
needed to perform I/O. In a typical protection ring model, privilege levels 0 and 1 have 
access to the I/O instructions. This lets the operating system and the device drivers perform 
I/O, but keeps applications and less privileged device drivers from accessing the I/O address 
space. Applications access I/O through the system software. 

The following instructions can be executed only if CPL -< 10PL: 

IN 
INS 
OUT 
OUTS 
CLI 
STI 

-Input 
-Input String 
-Output 
-Output String 
-Clear Interrupt-Enable Flag 
-Set Interrupt-Enable Flag 

These instructions are called "sensitive" instructions, because they are sensitive to the 10PL 
field. 

To use sensitive instructions, a procedure must execute at a privilege level at least as privi­
leged as that specified by the 10PL field. Any attempt by a less privileged procedure to use 
a sensitive instruction results in a general-protection exception. Because each task has its 
own copy of the EFLAGS register, each task can have a different 10PL. 

A task can change 10PL only with the POPFD instruction; however, such changes are privi­
leged. No procedure may alter 10PL (the I/O privilege level in the EFLAGS register) unless 
the procedure is executing at privilege level o. An attempt by a less privileged procedure to 
change the 10PL does not result in an exception; the 10PL simply remains unchanged. 

The POPFD instruction also may be used to change the state of the IF flag (as can the CLI 
and STI instructions); however, changes to the IF flag using the POPFD instruction are 
10PL-sensitive. A procedure may change the setting of the IF flag with a POPFD instruc­
tion only if it executes with a CPL at least as privileged as the 10PL. An attempt by a less 
privileged procedure to change the IF flag does not result in an exception; the IF flag simply 
remains unchanged. 

7-5 



INPUT /OUTPUT 

7.3.2 1/0 Permission Bit Map 

The 376 processor can trap references to specific I/O addresses. These addresses are speci­
fied in the I/O Permission Bit Map in the TSS segment (see Figure 7-2). The size of the 
map and its location in the TSS segment are variable. The processor finds the I/O permis­
sion bit map with the I/O map base address in theTSS. The base addr.ess is a 16-bit offset 
into the task state segment. This is an offset to the beginning of the bit map. The the limit 
of the TSS segment is the limit on the I/O permission bit map. 

If the CPL and IOPL allow I/O instructions to execute, the processor checks the I/O 
permission bit map. Each bit in the map corresponds to an I/O port byte address; for example, 
the control bit for address 41 (decimal) in the I/O address space is found at bit position 1 
of the sixth byte in the bit map. The processor tests all the bits corresponding to the I/O 
port being addressed; for example, a doubleword operation tests four bits corresponding to 
four adjacent byte addresses. If any tested bit is set, a general-protection exception is gener­
ated. If all tested bits are clear, the I/O operation proceeds. 

Because I/O ports which are not aligned to word and doubleword boundaries are permitted, 
it is possible that the processor may need to access two bytes in the bit map when I/O 
permission is checked. For maximum speed, the processor has been designed to read two 
bytes for every access to an I/O port. To prevent exceptions from being generated when the 
ports with the highest addresses are accessed, an extra byte needs to come after the table. 
This byte must have all of its bits set, and it must be within the segment limit. 

TASK STATE SEGMENT 

11111111 

1/0 PERMISSION 
BITMAP 

NOTE: BASE ADDRESS FOR 1/0 BIT MAP 
MUST NOT EXCEED DFFF (HEXADECIMAL) 

. LAST BYTE OF BIT MAP MUST BE 
FOLLOWED BY A BYTE WITH ALL 
BITS SET. 

Figure 7-2. I/O Permission Bit Map 

7-6 

G50235 



INPUT IOUTPUT 

It is not necessary for the I/0 permission bit map to represent all the I/O' addresses. I/O 
addresses not spanned by the map are treated as if they had set bits in the map. For example, 
if TSS segment limit is 10 bytes past the bit map base address, the map has 11 bytes and 
the first 80 I/0 ports are mapped. Higher addresses in the I/O address space generate 
exceptions. 

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is 
no I/O permission map, and all I/0 instructions generate exceptions. The base address must 
be less than or equal to DFFFH. 

Because the I/0 permission bit map is in the TSS segment, different tasks can have differ­
ent maps. This lets the operating system allocate ports to a task by changing the I/O permis­
sion map in the task's TSS. 

7-7 



\ 



Exceptions and Interrupts 8 





CHAPTER 8 
EXCEPTIONS AND INTERRUPTS 

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The 
task or procedure is called a handler. Interrupts occur at random times during the execution 
of a program, in response to signals from hardware. Exceptions occur when instructions are 
executed which cause errors or protection violations. Usually, the servicing of interrupts and 
exceptions is performed in a manner transparent to application· programs. Interrupts are 
used to handle events external to the processor, such as requests to service peripheral devices. 
Exceptions handle conditions detected by the processor in the course of executing instruc­
tions, such division by zero. 

There are two sources for interrupts and two sources for exceptions: 

1. Interrupts 

• Maskable interrupts, which are received on the INTR pin of the 376 processor. 

• Nonmaskable interrupts, which are received on the NMI (Non-Maskable Inter­
rupt) pin of the processor. 

2. Exceptions 

• Processor-detected exceptions. These are further classified as faults, traps, and 
aborts. 

• Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may 
trigger exceptions. These instructions often are called "software interrupts," but the 
processor handles them as exceptions. 

This chapter explains the features of the 376 processor which control and respond to 
interrupts. 

8.1 EXCEPTION AND INTERRUPT VECTORS 

The processor associates an identifying number with each different type of interrupt or 
exception. This number is called a vector. 

The NMI interrupt and the exceptions are assigned vectors in the range 0 through 31. Not 
all of these vectors are currently used in the Intel376 architecture; unassigned vectors in this 
range are reserved for possible future uses. Do not use unassigned vectors. 

The vectors for maskable interrupts are determined by hardware. External interrupt control­
lers (such as Intel's 8259A Programmable Interrupt Controller or 82370 multi-function 
peripheral) put the vector on the bus of the 376 processor during its interrupt~acknowledge 
cycle. Any vectors in the range 32 through 255 can be used. Table 8-1 shows the assignment 
of exception and interrupt vectors. 

8-1 



EXCEPTIONS AND INTERRUPTS 

Table 8-1. Exception and Interrupt Vectors 

Vector Number Description 

0 Divide Error 
1 Debugger Call 
2 NMI Interrupt 
3 Breakpoint 
4 INTO-detected Overflow 
5 BOUND Range Exceeded 
6 Invalid Opcode 
7 Coprocessor Not Available 
8 Double Fault 
9 Coprocessor Segment Overrun 
10 Invalid Task State Segment 
11 Segment Not Present 
12 Stack Fault 
13 General Protection 
15 (Intel reserved. Do not use.) 
16 Coprocessor Error 
17-32 (Intel reserved. Do not use.) 
32-255 Maskable Interrupts 

Exceptions are classified as faults, traps, or aborts depending on the way they are reported 
and whether restart of the instruction which caused the exception is supported. 

Faults 

Traps 

Aborts 

Faults are exceptions reported "before" the instruction which caused the 
exception. Faults are detected either before the instruction begins to execute, 
or during execution· of the instruction. If detected during the instruction, 
the fault is reported with the machine restored to a state that permits the 
instruction to be restarted. The return address for the fault handler points 
to the instruction which generated the fault, rather than the instruction 
following the faulting instruction. 

A trap is an exception which is reported at the instruction boundary 
immediately after the instruction in which the exception was detected. 

An abort is an exception that permits neither precise location of the 
instruction causing the exception nor restart of the program that caused 
the exception. Aborts are used to report severe errors, such as hardware 
errors and inconsistent or illegal values in system tables. 

8.2 INSTRUCTION RESTART 

For most exceptions and interrupts, transfer of execution does not take place until the end 
of the current instruction. This leaves the ElP register pointing at the next instruction to 
execute after servicing the interrupt or exception;· If the instruction has a repeat· prefix, 
transfer takes place at the end of the current iteration with the registers set to execute the 
next iteration. But if the exception is a fault, the processor registers are restored to the state 
they held before execution of the instruction began. This permits instruction restart. 

8-2 



EXCEPTIONS AND INTERRUPTS 

Instruction restart is used to handle exceptions which block access to operands. For example, 
a program could make reference to data in a segment which is not present in memory. When 
the exception occurs, the exception handler must load the segment (probably from disk) and 
resume execution beginning with the instruction which caused the exception. At the time 
the exception occurs, the instruction may have altered the contents of some of the processor 
registers. If the instruction read an operand from the stack, it will be necessary to restore 
the stack pointer to its previous value. All of these restoring operations are performed by the 
processor in a manner completely transparent to software. 

When a fault occurs, the EIP register is restored to point to the instruction which received 
the exception. When the exception handler returns, execution resumes with this instruction. 

8.3 ENABLING AND DISABLING INTERRUPTS 

Certain conditions and flag settings cause the processor to inhibit certain kinds of interrupts 
and exceptions. 

8.3.1 NMI Masks Further NMls 

While an NMI interrupt handler is executing, the processor ignores further interrupt signals 
at the NMI pin until the next IRET instruction is executed. This prevents calls to the handling 
procedure or task from stacking up. 

8.3.2 IF Masks INTR 

The IF flag can turn off servicing of interrupts received on the INTR pin of the processor. 
When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set, INTR 
interrupts are serviced. As with the other flag bits, the processor clears the IF flag in response 
to a RESET signal. The STI and CLI instructions set and clear the IF flag. 

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag (bit 9 
in the EFLAGS register) in a known state. These instructions may be executed only if the 
CPL is an equal or more privileged level than the IOPL. A general-protection exception is 
generated if they are executed with a less privileged level. 

The IF flag also is affected by the following operations: 

• The PUSHFD instruction stores all flags on the stack, where they can be examined and 
modified. The POPFD instruction can be used to load the modified form back into the 
EFLAGS register. 

• Task switches and the POPFD and IRETD instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the IF flag. 

• Interrupts through interrupt gates automatically clear the IF flag, which disables inter­
rupts. (Interrupt gates are explained later in this chapter). 

8-3 



EXCEPTIONS AND. INTERRUPTS 

8.3.3 RF Masks Debug Faults 

The RF flag in the EFLAGS register can be used to turn off servicing of debug faults. If it 
is clear, debug faults are serviced; if it is set, they are ignored. This is used to suppress 
multiple calls to the debug exception handler when a breakpoint occurs. 

For example, an instruction breakpoint may have been set for an instruction which refer­
ences data in a segment which is not present in memory. When the instruction is executed 
for the first time, the breakpoint will generate a debug exception. Before the debug handler 
returns, it should set theRF flag in'the copy of the EFLAGS register saved on the stack. 
This allows the segment-not-present fault to be reported after the debug exception handler 
transfers execution back to the instruction. If the flag is not set, another debug exception 
will occur after the debug exception handler returns. 

The processor sets this bit in the saved contents of the EFLAGS register when the other 
faults occur, so multiple debug exceptions are not generated when the instruction is restarted 
due to the segment-not-present fault. The processor clears its RF flag when the execution of 
the faulting instruction completes. This allows an instruction breakpoint to be generated for 
the following instruction. (See Chapter 11 for more information on debugging). 

8.3.4 MOV or POP to SS Masks Some Exceptions and Interrupts 

Software that needs to change stack segments often uses a pair of instructions; for example: 

MOV 55, AX 
MOV ESP, StackTop 

If an interrupt or exception occurs after the segment selector has been loaded but before the 
ESP register has been loaded, these two parts of the logical address into the stack space are 
inconsistent for the duration of the interrupt or exception handler. 

To prevent this situation, the 376 processor inhibits interrupts, debug exceptions, and single­
step trap exceptions after either a MOV to SS instruction or a POP to SS instruction, until 
the instruction boundary following the next instruction is reached. General-protection faults 
may still be generated. If the LSS instruction is used to modify the contents of the SS 
register, the problem will not occur. 

8.4 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 

If more than one exception or interrupts is pending at an instruction boundary, the processor 
services them in a predictable order. The priority among classes of exception and interrupt 
sources is shown in Table 8-2. The processor first services a pending exception or interrupt 
from the class that has the highest priority, transferring execution to the first instruction of 
the hahdler. Lower priority exceptions are discarded; lower priority interrupts are held 

8-4 



EXCEPTIONS AND INTERRUPTS 

Table 8-2. Priority Among Simultaneous Exceptions and Interrupts, 

Priority Description 

Highest Debug Trap Exceptions fromt he last instruction 
(TF flag set, T bit in TSS set, or data breakpoint) 
Debug Fault Exceptions for the next instruction 
(code breakpoint) 
Non-Maskable Interrupt 
Maskable Interrupt 
Faults from fetching next instruction (Segment-Not-
Present Fault or General-Protection Fault) 
Faults from instr,uction decoding (Illegal Opcode, 
instruction too long, or privilege violation) 
if WAIT instruction, Corprocessor-Not-Available 
Exception (TS and MP bits of CRO set) 
if ESC instruciton, Coprocessor-Nat-Available 
Exception (EM or TS bits or CRO set) 
if WAIT or ESC instruction, Coprocessor-Error 
Exception (ERROR# pin asserted) 

Lowest Segment-Nat-Present Faults, Stack Faults, and 
General-Protection Faults for memory operands 

pending. Discarded exceptions will be re-issued when the interrupt handler returns execution 
to the point of interruption. 

8.5 INTERRUPT DESCRIPTOR TABLE 

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a 
descriptor for the procedure or task which services the associated event. Like the GDT and 
LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of the IDT 
may contain a descriptor. To form an index into the IDT, the processor scales the exception 
or interrupt vector by eight, the number of bytes in a descriptor. Because there are only 256 
vectors, the IDT need not contain more than 256 descriptors. It can contain fewer than 256 
descriptors; descriptors are required only for the interrupt vectors which may occur. 

The IDT may reside anywhere in physical memory. As Figure 8-1 shows, the processor 
locates the IDT using the IDTR register. This register holds both a base address and limit 
for the IDT. The LIDT and SIDT instructions load and store the contents of the IDTR 
register. Both instructions have one operand: the address of six bytes in memory. 

LlDT (Load IDT register) loads the IDTR register with the base address and limit held in 
the memory operand. This instruction can be executed only when the CPL is zero. It normally 
is used by the initialization code of an operating system when creating an IDT. An operating 
system also may use it to change from one IDT to another. 

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory. This 
instruction can be executed at any privilege level. 

8-5 



EXCEPTIONS AND INTERRUPTS 

INTERRUPT DESCRIPTOR TABLE 

G50235 

Figure 8-1. IDTR Register Locates lOT in Memory 

8.6 IDT DESCRIPTORS 

The IDT may contain any of three kinds of descriptors: 

• Task gates 

• Interrupt gates 

• Trap gates 

Figure 8-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate in 
an IDT is the same as the task gate in the GDT or an LDT already discussed in Chapter 6). 

8. 7 INTERRUPT TASKS AND INTERRUPT PROCEDURES 

Just as a CALL instruction can call either a procedure or a task, so an exception or interrupt 
can "call" an interrupt handler as either a procedure or a task. When responding to an 
exception or interrupt, the processor uses the exception or interrupt vector to index to a 
descriptor in the IDT. If the processor indexes to an interrupt gate or trap gate, it invokes 
the handler in a manner similar to a CALL to a call gate. If the processor finds a task gate, 
it causes a task switch in a manner similar to a CALL to a task gate. 

8.7.1 Interrupt Procedures 

An int¢rrupt gate or trap gate indirectly references a procedure which executes in the context 
of the currently executing task, as shown in Figure 8-3. The selector of the gate points .to an 
executable-segment descriptor in either the GDT or the current LDT. The offset field of the 
gate descriptor points to the beginning of the exception or interrupt handling procedure. 

8-6 



EXCEPTIONS AND INTERRUPTS 

TASK GATE 

1111111 
31 6543210987 0 

RESERVED plDpLIO 0101 1 RESERVED +4 

TSS SEGMENT SELECTOR RESERVED +0 

INTERRUPT GATE 

2222211111111,11 
31 432 1 098 7 6 5 4 3210987654 0 

OFFSET 31:16 plDpLIO 1 10010101 RSRVD. +4 

SEGMENT SELECTOR OFFSET 15:00 +0 

TRAP GATE 

31 0 

OFFSET 31:16 RSRVD. +4 

SEGMENT SELECTOR OFFSET 15:00 +0 

DPL DESCRIPTOR PRIVILEGE LEVEL 
OFFSET OFFSET TO PROCEDURE ENTRY POINT 
P SEGMENT PRESENT BIT 
RESERVED DO NOT USE 
SELECTOR SEGMENT SELECTOR FOR DESTINATION 

CODE SEGMENT 

G50235 

Figure 8-2. lOT Gate Descriptors 

The 376 processor invokes an exception or interrupt handling procedure in much the saine 
manner as a procedure call; the differences are explained in the following sections. 

8.7.1.1 STACK OF INTERRUPT PROCEDURE 

Just as with a transfer of execution using a CALL instruction, a transfer to an exception or 
interrupt handling procedure uses the stack to store the processor state. As Figure 8-4 shows, 
an interrupt pushes the contents of the EFLAGS register onto the stack before pushing the 
address of the interrupted instruction. ' 

Certain types of exceptions also push an error code on the stack. An exception handler can 
use the error code to help diagnose the exception. 

8-7 



T_ INTERRUP 
VECTOR 

i......+ 

EXCEPTIONS AND INTERRUPTS 

IDT 

I 

I 

_ INTERRUPT OR 
TRAP GATE 

I 

I 

I 

SEGMENT SELECTOR 

GDTORLDT 

I 

I 

SEGMENT 
- DESCRIPTOR 

I 

I 

I 

OFFSET 

- ,~ 

DESTINATION 
CODE SEGMENT 

INTERRUPT 
PROCEDURE 

BASE ADDRESS 

Figure 8-3. Interrupt Procedure Call 

8.7.1.2 RETURNING FROM AN INTERRUPT PROCEDURE 
\ 

G50235 

An interrupt procedure differs from a normal procedure in the method of leaving the proce­
dure. The IRET instruction is used to exit from an interrupt procedure. The IRET instruc­
tion is similar to the RET instruction except that it increments the contents of the EIP 
register by an extra four bytes and restores the saved flags into the EFLAGS register. The 
IOPL field of the EFLAGS register is restored only if the CPL is zero. The IF flag is 
changed only if CPL :s; IOPL. 

8.7.1.3 FLAG. USAGE BY INTE~RUPT PROCEDURE 

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after its 
current value is saved on the stack as part of the saved contents of the EFLAGS register. In 
so doing, the processor prevents instruction tracing from affecting interrupt response. A 
subsequent IRETD instruction restores the TF flag to the value in the saved contents of the 
EFLAGS register on the stack. 

8-8 



EXCEPTIONS AND INTERRUPTS 

NO PRIVILEGE LEVEL 
CHANGE, NO ERROR CODE 

I-
OLD EFLAGS 

,OLD CS 

OLD EIP --
PRIVILEGE LEVEL 

CHANGE, NO ERROR CODE 

NO PRIVILEGE LEVEL 
CHANGE, WITH ERROR CODE 

OLD ESP ~, OLD ESP 

OLD EFLAGS 

,OLD CS 

NEW ESP OLD EIP 

ERROR CODE --NEW ESP 

PRIVILEGE LEVEL 
CHANGE, WITH ERROR CODE 

I OLD SS 

OLD ESP 
-ESP FROM 

TSS 
I OLD SS 

OLD ESP 

...-ESP FROM 
TSS 

OLD EFLAGS OLD EFLAGS 

'OLD CS 'OLD CS 

OLD EIP ~ NEW ESP OLD EIP 

ERROR CODE .-NEWESP 

Figure 8-4. Stack Frame After Exception or Interrupt 

G50235 

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An 
interrupt that uses an interrupt gate clears the IF flag, which prevents other interrupts from 
interfering with the current interrupt handler. A subsequent IRETD instruction restores the 
IF flag to the value in the saved contents of the EFLAGS register on the stack. An interrupt 
through a trap gate does not change the IF flag. 

8.7.1.4 PROTECTION IN INTERRUPT PROCEDURES 

The privilege rule that governs interrupt procedures is similar to that for procedure calls: 
the processor does not permit an interrupt to transfer execution to a procedure in a less 
privileged segment (numerically greater privilege level). An attempt to violate this rule results 
in a general-protection exception. 

8-9 



EXCEPTIONS AND INTERRUPTS 

Because interrupts generally do 'not occur at predictable times, this priviiege rule effectively 
'imposes restrictions on the privilege levels at which exception and interrupt handling proce­
dures can execute. Either of the following techniques can be used to keep the privilege rule 
from being violated. 

• The exception or interrupt handler ,can be placed in a conforming code segment. This 
technique can be used by handlers for certain exceptions (divide error, for example). 
These handlers must use only the data available on the stack. If the handler needs data 
from a data segment, the data segment would have to have privilege level three, which 
would make it unprotected. 

• The handler can be placed in a code segment with privilege level zero. This handler 
would always execute, no matter what CPL the programhas. 

8.7.2 Interrupt Tasks 

A task gate in the lOT indirectly references a task, as Figure 8-5 illustrates. The segment 
selector in the task gate addresses a TSS descriptor in the GOT. 

When an exception or interrupt calls a task gate in the lOT, a'task switch results. Handling 
an interrupt with a separate task offers two advantages: 

• The entire context is saved automatically. 

• The interrupt handler can be isolated from other tasks by giving it a separate address 
space. This is done by giving it a separate LOT. 

A task switch caused by an interrupt operates in the same manner as the other task switches 
described in Chapter 6. The interrupt task returns to the interrupted task by executing an 
IRETO instruction. 

Some exceptions return an error code. If the task switch is caused by one of these, the 
processor pushes the code onto the stack corresponding to the privilege level of the interrupt 
handler. 

When interrupt tasks are used in an operating system for the 376 processor, there are actually 
two mechanisms which can create new tasks: the software scheduler (part of the operating 
system) and the hardware scheduler (part of the processor's interrupt mechanism). The 
software scheduler needs to accommodate interrupt tasks which may be generated when 
interrupts are enabled. 

8.8 ERROR CODE 

With exceptions related toa specific segment, the processor pushes an error code onto the 
stack of the exception handler (whether it is a procedure or task). The error code has the 

8-10 



INTERRUP 
VECTOR 

T_ 

-

-

r 

EXCEPTIONS AND INTERRUPTS 

IDT TSS 

I 

I 

TASK GATE -
l-

I 

I 

I 

TSS SELECTOR 

GDT 

I 

I TSS BASE ADDRESS 

TSS 
DESCRIPTOR 

I 

I 

I 

G50235 

Figure 8-5. Interrupt Task Switch 

format shown in Figure 8-6. The error code resembles a segment selector; however instead 
of an RPL field, the error code contains two one-bit fields: 

1. The processor sets the Ext bit if an event external to the program caused the exception. 

2. The processor sets the IDT bit if the index portion of the error code refers· to a gate 
descriptor in the IDT. 

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT (TI 
bit clear) or to the LDT (TI bit set). The remaining 14 bits are the upper bits of the selector 
for the segment. In some cases the error code is null (i.e. all bits in the lower word are zero ). 

The error code is pushed on the stack as a doubleword. This is done to maintain compatibil­
ity with the 386 processor, which tries to keep its stack aligned on addresses which are 
multiples of four. The upper half of the doubleword is reserved. 

8-11 



EXCEPTIONS AND INTERRUPTS 

2 1 0 

G50235 

Figure 8-6. Error Code 

8.9 EXCEPTION CONDITIONS 

The following sections describe conditions which generate exceptions. Each description 
classifies the exception as a fault, trap, or abort. This classification provides information 
needed by system programmers for restarting the procedure in which the exception occurred: 

Faults 

Traps 

Aborts 

The saved contents of the CS and EIP registers point to the instruction 
which generated the fault. 

The saved contents of the CS and EIP registers stored when the trap occurs 
point to the instruction to be executed after the instruction which generated 
the trap. If a trap is detected during an instruction that transfers execution, 
the saved contents of the CS and EIP registers reflect the transfer. For 
example, if a trap is detected in a JMP instruction, the saved contents of 
the CS and EIP registers point to the destination of the JMP instruction, 
not to the instruction at the next address above the JMP instruction. 

An abort is an exception that permits neither precise location of the 
instruction causing the exception nor restart of the program that caused 
the exception. Aborts are used to report severe errors, such as hardware 
errors and inconsistent or illegal values in system tables. 

8.9.1 Interrupt O-Divide Error 

The divide-error fault occurs during a DIY or an IDlY instruction when the divisor is zero. 

8.9.2 Interrupt 1-Debug Exceptions 

The processor generates this interrupt for a number of conditions; whether the exception is 
a fault or a trap depends on the condition, as shown below: 

• Instruction address breakpoint fault. 

• Data address breakpoint trap. General detect fault. 

8-12 



EXCEPTIONS AND INTERRUPTS 

• Single-step trap. 

• Task-switch breakpoint trap. 

The processor does not push an error code for this exception. An exception handler can 
examintt the debug registers to determine which condition caused the exception. See 
Chapter 11 for more detailed information about debugging and the debug registers. 

8.9.3 Interrupt 3-Breakpoint 

The INT 3 instruction generates this trap. The INT 3 instruction is one byte long, which 
makes it easy to replace an opcode in a code segment in RAM with the breakpoint opcode. 
The operating system or a debugging tool can use a data segment mapped to the same 
physical address space as the code segment to place an INT 3 instruction in places where it 
is desired to call the debugger. Debuggers use breakpoints as a way to suspend program 
execution in order to examine registers, variables, etc. 

The saved contents of the CS and EIP registers point to the byte following the breakpoint. 
If a debugger allows the suspended program to resume execution, it replaces the INT 3 
instruction with the original opcode at the location ofthe breakpoint, and it decrements the 
saved contents of the EIP register before returning. See Chapter 11 for more information 
on debugging. 

8.9.4 Interrupt 4"";'Overflow 

This trap occurs when the processor executes an INTO instruction with the OF flag set. 
Because signed and unsigned arithmetic both use some of the same instructions, the proces­
sor cannot determine when overflow actually occurs. Instead, it sets the OF flag when the 
results, if interpreted as signed numbers, would be out of range. When doing arithmetic on 
signed operands, the OF flag can be tested directly or the INTO instruction can be used. 

8.9.5 Interrupt 5-Bounds Check 

This fault is generated when the processor, while executing a BOUND instruction, finds 
that the operand exceeds the specified limits. A program can use the BOUND instruction 
to check a signed array index against signed limits defined in a block of memory. 

8.9.6 Interrupt 6-lnvalid Opcode 

This fault is generated when an invalid opcode is detected by the execution unit. (The excep­
tion is not detected until an attempt is made to execute the invalid opcode; i.e. prefetching 
an invalid opcode does not cause this exception.) No error code is pushed on the stack. The 
exception can be handled within the same task. 

This exception also occurs when the type of operand is invalid for the given opcode. Examples 
include an intersegment JMP instruction using a register operand, or an LES instruction 
with a register source operand. 

8-13 



EXCEPTIONS AND INTERRUPTS 

A third condition which invokes this exception is the use of the LOCK prefix with an 
instruction which may not be locked. Only certain instructions maybe used with bus locking, 
and only forms of these instructions which write to memory may he used. All other uses of 
the LOCK prefix generate an invalid-opcode exception. 

8.9.7 Interrupt 7-Coprocessor Not Available 

This exception is generated by either of two conditions: 

• The processor executes an ESC instruction, and the EM bit of the CRO register is set. 

• The processor executes a WAIT instruction or an· ESC instruction, and both the MP bit 
and the TS bit of the CRO register are set. 

Refer to Chapter 10 for information about the coprocessor interface. 

8.9.8 Interrupt 8-Double Fault 

Normally, when the processor detects an exception while trying to invoke the handler for a 
prior exception, the two exceptions can be handled serially. If, however, the processor cannot 
handle them serially, it signals the double-fault exception instead. To determine when two 
faults are to be signalled as a double fault, the 376 processor divides the exceptions into two 
classes: benign exceptions and contributory exceptions. Table 8-3 shows this classification. 

When two benign exceptions or interrupts occur, or one benign and one contributory, the 
two events can be handled in succession. When two contributory events occur, they cannot 
be handled, and a double-fault exception is generated. 

Table 8-3. Interrupt and Exception Classes 

Class Vector Number Description 

1 Debug Exceptions 
2 NMI Interrupt 
3 Breakpoint 

Benign Exceptions 4 Overflow 
and Interrupts 5 Bounds Check 

6 Invalid Opcode 
7 Coprocessor Not Available 

16 Coprocessor Error 

0 Divide Error 
9 Coprocessor Segment Overrun 

Contributory 10 Invalid TSS 
Exceptions 11 Segment Not Present 

12 Stack Fault 
13 General Protection 

8-14 



EXCEPTIONS AND INTERRUPTS 

The processor always pushes an error code onto the stack of the double-fault handler; however, 
the error code is always zero. The faulting instruction may not be restarted. If any other 
exception occurs while attempting to invoke the double-fault handler, the processor enters 
shutdown mode. This mode is similar to the state following execution of a HLT instruction. 
No instructions are executed until an NMI interrupt or a RESET signal is received'. 

8.9.9 Interrupt 9-Coprocessor Segment Overrun 

This exception is generated if the 376 processor detects a segment violationwhiletransfer­
ring the middle portion of a coproces'sor operand to the NPX. This exception is avoidable. 
See Chapter 10 for more information about the coprocessor interface. 

8.9.10 Interrupt 10-lnvalid TSS 

Interrupt 10 is generated if a task switch to a segment with an invalid TSS is attempted. A 
TSS is invalid in the cases shown in Table 8-4. An error code is pushed onto the stack of the 
exception handler to help identify the cause of the fault. The Ext bit indicates whether the 
exception was caused by a condition outside the control of the program (e.g. if an .external 
interrupt using a taskgateattempted a task switch to an invalid TSS). 

This fault can occur either in the context of the original task or in the context of the new 
task. Until the processor has completely verified the presence of the new n;s, the exception 
occurs in the context of the original task. Once the existenc~ of the new TSS is verified, the 
task switch is considered complete;. i.e., the TR register is loaded with a selector for the new 
TSS and, if the switch is due to a CALL or interrupt, the Link field of the new TSS refer­
ences the old TSS. Any errors discovered by the processor after this point are handled in the 
context of the new task. 

To ensure a TSS is available to process the exception, the handler for an invalid-TSS excep-
tion must be a task invoked using a task gate.· . , ' 

Table 8-4. Invalid TSS Conditions 

Error Code Index Description 

TSS segment TSS segment limit less than 67H 
LDT segment Invalid LDT or LDT not present 
Stack segment Stack s~gment selector exceeds descriptor table limit 
Stack segment Stack segment is not writable 
Stack segment Stack segment DPL not compatible with CPL 
Stack segment Stack segment selector RPL not compatible with CPL 
Code segment Code segment selector exceeds descriptor table limit 
Code segment· Code segment is not executable 
Code segment Non-conforming code segment DPLnot equal to CPL. 
Code segment Conforming code segment DPL greater than CPL 
Data segment Data segment selector Elxceed~ descripto~ table limit 
Data segment Data segment not readable . 

8-15 



EXCEPTIONS AND INTERRUPTS 

8.9.11 Interrupt 11-Segment Not Present 

The segment-not"presentexception is generated when the processor detects that the present 
bit of a descriptor is clear. The processor can generate this fault in any of these cases: 

• While attempting to load the CS, DS, ES, FS, or GS registers; loading the SS register, 
however, causes a stack fault. 

• While. attempting to load the LDT register using an LLDT instruction; loading the LDT 
register during.a task switch operation, however, causes an invalid-TSS exception. 

• While attempting to use a gate descriptor which is marked segment-not-present. 

This fault is restartable. If the exception handler loads the segment and returns, the inter­
rupted program resumes execution. 

If a segment-rIot-present exceptiori occurs during a task switch, not all the steps of the task 
switch are' complete. During a task switch, the processor first loads all the segment registers, 
then checks their contents for valioity. If a segment-not-present exc~ption is discovered, the 
remaining segment registers have not been checked and therefore may not be usable for 
referencing memory. The segment-not-present handler should not rely on being able to use 
the segment selectors found in the CS, SS,DS, ES, FS, and GS registers without causing 
another' exception. The exception handler should check all segment registers before trying 
to resume the new task; otherwise, . general protection faults may result later under condi­
tions which make diagnosis more difficult. There are three ways to handle this case: 

1. Handle the segment-not-present fault with a task. The task switch back to the inter­
rupted task causes the processor to check the registers as it loads them from the TSS. 

2. Use the PUSH and POP instruCtions on all segment registers. Each POP instruction 
causes the processor to check the new contents of the segment register. 

3. Check the saved contents of each segment register in the TSS, simulating the test that 
the processor makes when it loads a segment register. 

This exception pushes an error code onto the stack. The Ext bit of the error code is set if an 
event external to the program caused an interrupt that subsequently referenced a not-present 
segment. The IDTbit is set if the error.code refers to an IDTentry (e.g. an INT instruction 
referencing a not~present gate). 

An operating system typically uses the segment-not-present exception to implement virtual 
memory. at the segment level. A not-present indication in a gate descriptor, however, usually 
does not indicate"that a segment is not present (because gates do not necessarily correspond 
to segments). Not-present gates may be. used by an operating system to trigger exceptions 
of special significance to the operating system ... ' 

8,..16 



EXCEPTIONS AND INTERRUPTS 

8.9.12 Interrupt 12-Stack Fault 

A stack-fault exception is generated in either of two general conditions: 

• As a result of a limit violation in any operation that refers to the SS register. This 
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as well 
as other memory references that implicitly use the stack (for example, MOV AX, 
[BP+16]). The ENTER instruction generates this exception when the stack is too small 
for the allocated space. 

• When attempting to load the SS register with a descriptor which is marked segment­
not-present but is otherwise valid. This can occur in a task switch, an interlevel CALL, 
an interlevel return, an LSS instruction, or a MOV or POP instruction to the SS 
register. 

When the processor detects a stack-fault exception, it pushes an error code onto the stack of 
the exception handler. If the exception is due to a not-present stack segment or to overflow 
of the new stack during an interlevel CALL, the error code contains a selector to the segment 
which caused the exception (the exception handler can test the present bit in the descriptor 
to determine which exception occurred); otherwise, the error code is zero. 

An instruction generating this fault is restartable in all cases. The return address pushed 
onto the exception handler's stack points to the instruction which needs to be restarted. This 
instruction usually is the one which caused the exception; however, in the case of a stack­
fault exception due to loading a not-present stack-segment descriptor during a task switch, 
the indicated instruction is the first instruction of the new task. 

When a stack-fault exception occurs during a task switch, the segment registers may not be 
usable for referencing memory. During a task switch, the selector values are loaded before 
the descriptors are checked. If a stack fault is discovered, the remaining segment registers 
have not been checked and therefore may not be usable for referencing memory. The stack 
fault handler should not rely on being able to use the segment selectors found in the CS, SS, 
DS, ES, FS, and GS registers without causing another exception. The exception handler 
should check all segment registers before trying to resume the new task; otherwise, general 
protection faults may result later under conditions where diagnosis is more difficult. 

8.9.13 Interrupt 13-General Protection 

All protection violations that do not cause another exception cause a general-protection 
exception. This includes (but is not limited to): 

• Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments. 

• Exceeding the segment limit when referencing a descriptor table. 

• Transferring execution to a segment that is not executable. 

• Writing to a read-only data segment or a code segment. 

• Reading from an execute-only code segment. 

8-17 



EXCEPTIONS AND INTERRUPTS 

• Loading the SS register with a selector for a read-only segment (unless the selector 
comes from a TSS during a task switch, in which case an invalid-TSS exception occurs). 

• Loading the SS, DS, ES, FS, or GS register with a selector for a system segment. 

• Loading the DS, ES, FS, or GS register with a selector for an execute-only code segment. 

• Loading the SS register with the descriptor of an executable segment. 

• Accessing memory using the DS, ES, FS, or GS register when it contains a null selector. 

• Switching to a busy task. 

• Violating privilege rules. 

• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant 
prefixes are placed before an instruction). 

The general-protection exception is a fault. In response to a general-protection exception, 
the processor pushes an error code onto the exception handler's stack. If loading a descriptor 
causes the exception, the error code contains a selector to the descriptor; otherwise, the error 
code is null. The source of the selector in an error code may be any of the following: 

1. An operand of the instruction. 

2. A selector from a gate that is the operand of the instruction. 

3. A selector from a TSS involved in a task switch. 

8.9.14 Interrupti 16-Coprocessor Error 

The 376 processor reports this exception when it detects a signal from the 80387SX numeric 
processor extension on the ERROR input pin. The 376 processor tests this pin only at the 
beginning of certain ESC instructions or when it executes a WAIT instruction while the EM 
bit of the CRO register is clear (no emulation). See Chapter 10 for more information on the 
coprocessor interface. 

8-18 



EXCEPTIONS AND INTERRUPTS 

8.10 EXCEPTION SUMMARY 

Table 8-5 summarizes the exceptions recognized by the 376 processor. 

Table a-5. Exception Summary 

Vector Return Address Exception Source of Description Points to Faulting 
Number Instruction? 

Type the Exception 

Division by Zero 0 Yes FAULT DIV and IDIV 
instructions 

Debug Exceptions 1 *1 *1 Any code or data 
reference 

Breakpoint 3 No TRAP INT3 instruction 
Overflow 4 No TRAP INTO instruction 
Bounds Check 5 Yes FAULT BOUND instruction 
Invalid Opcode 6 Yes FAULT Reserved Opcodes 
Coprocessor Not 7 Yes FAULT ESC and WAIT 
Available instructions 
Double Fault 8 Yes ABORT Any instruction 
Coprocessor 9 No ABORT ESC instructions 
Segment Overrun 
Invalid TSS 10 Yes FAULT2 JMP, CALL, IRET 

instructions, 
interrupts, and 
exceptions 

Segment Not 11 Yes FAULT Any instruction 
Present which changes 

segments 
Stack Fault 12 Yes FAULT Stack operations 
General Protection 13 Yes FAULT/ Any code or data 

TRAp3 reference 
Coprocessor 16 Yes FAULT' ESC and WAIT 
Error instructions 
Software Interrupt o to 255 No TRAP INT n instructions 

1. Debug exceptions are either traps or faults. The exception handler can distinguish between traps and 
faults by examining the contents of the DR6 register. 

2. An invalid-TSS exception cannot be restarted if it occurs within a handler. 
3. All general-protection faults are restartable. If the fault occurs while attempting to invoke the handler, the 

interrupted program is restartable, but the interrupt may be lost. 
4. Coprocessor errors are not reported until the first ESC or WAIT instruction following the ESC instruction 

which generated the error. 

8-19 



EXCEPTIONS AND INTERRUPTS 

8.11 ERROR CODE SUMMARY 

Table 8-6 summarizes the error information that is available with each exception. 

Table 8-6. Error Code Summary 

Description Vector Number Is an Error Code Generated? 

Divide Error 0 No 
Debug Exceptions 1 No 
Breakpoint 3 No 
Overflow' 4 No 
Bounds Check 5 No 
Invalid Opcode 6 

, 
No 

Coprocessor Not 7 No 
Available 
Double Fault 8 Yes (always zero) 
Coprocessor Segment 9 No 
Overrun 
Invalid TSS 10 Yes 
Segment Not Present 11 Yes 
Stack Fault 12 Yes 
General Protection 13 Yes 

-'Coprocessor Error 16 No 
Software Interrupt 0-255 No 

8-20 



Initialization 9 

\ 



>, ':. 

J 



CHAPTER 9 
INITIALIZATION 

The 376 processor chip has a pin, called the RESET pin, which invokes the power-up initial­
ization sequence. After receiving a signal on the RESET pin, some registers of the 376 
processor are set to known states. These known states, such as the contents of the EIP regis­
ter, are sufficient to allow software to begin execution. Software then can build the data 
structures in memory, such as the GDT and IDT tables, which are used by system and 
application software. 

Note the 386 processor has several processing modes. After power-up, it begins execution in 
a mode which emulates an 8086. If the 386 processor protected mode is to be used (the 
mode in which the 32-bit instruction set is available), the initialization software changes the 
setting of a mode bit in the CRO register. The 376 processor, however, has no mode bit. It 
only has one processing mode, which is equivalent to the protected mode on the 386 
processor. 

9.1 PROCESSOR STATE AFTER RESET 

A self-test may be requested at power-up. The self-test is requested by pulling the BUSY # 
pin low during the falling edge of the RESET # signal. It is the responsibility of the hardware 
designer to provide the request for self-test, if it is desired. A normal power-up sequence 
takes 350 to 450 CLK2 clock cycles. If the self-test is selected, it takes about 220 clock cycles. 
For a 16 MHz processor, this takes about 33 milliseconds. (Note chips are graded by their 
CLK frequency, which is half the frequency of CLK2.) 

The EAX register is clear if the 376 processor passed the test. A non-zero value in the EAX 
register after self-test indicates the processor is faulty. If the self-test is not requested, the 
contents of the EAX register after RESET are undefined (possibly non-zero). The DX regis­
ter holds a component identifier and revision number after RESET, as shown in Figure 9-l. 
The DH register contains 34H which indicates a 376 processor. The DL register contains a 
unique identifier of the revision level. 

t-ol-t------EDX REGISTER to I 
!-DX REGISTER_I 

31 16 15 8 7 0 

RESERVED DEVICE 10 I STEPPING 10 I 
G50235 

Figure 9-1. Contents of the EDX Register After Reset 

9-1 



/' 

INITIALIZATION 

The state of the CRO register following power-up is shown in Figure 9-2. Note that bit 
positions 0 and 31 have fixed values on the 376 processor. For an 376 processor program to 
have maximum compatibility with the 386 processor, it should load these bit positions as 
shown below. 

The state of the EBX, ECX, ESI, EDI, EBP,ESP, GDTR, LDTR, TR, and debug registers 
is undefined following power-up. Software should not depend on any undefined states. The 
state of the flags and other registers following power-up is shown in Table 9-i. .. . 

Note that the invisible part of the CS and DS segment registers are initialized to values 
which allow execution tobegin,even though segments have not been defined. The base address 
for the code segment is set to 64K below the top of the physical address space, which allows 
room for a ROM to hold the initialization software. The base address for RAM is set to the 
bottom of the physical address space{ address 0). To preserve these addresses, no instruction 
which loads the segment registers should be executed until a descriptor table. has been defmed 
and its base address and limit have been loaded into the GDTRiegister. 

CRO REGISTER 

31 

RESERVED 

TS = 0 NO TASK SWITCH 
EM = 0 DO NOT MONITOR COPROCESSOR 
MP = 0 COPROCESSOR NOT PRESENT 

Figure 9-2. Contents of the CRO Register After Reset· 

Table 9-1. Processor State Following Power-Up 

Register State (hexadecimal), 

EFLAGS XXXXOO02' 
EIP OOOOFFFO 
CS FOOO' 
OS 00003 

SS 0000 
ES 000()4 
FS 0000 
GS 0000 
IOTR (base) 00000000 
IOTR (limit) . 03FF 
OR7 0000 

G50235 

1. The upper fourteen bits of the EFLAGS register are undefined following power-up. All of the flags are 
clear. 

2. The invisible part of the CS register holds a base address of FFFFOOOOH and a limit of FFFFH. 
3. The invisible partys of the OS and ES registers hold a base address of 0 and a limit of FFFFH. 
4. Undefined bits are reserved. Software should not depend on the states of any of these bits, 

9-2 



INITIALIZATION 

9.2 SOFTWARE INITIALIZATION 

After power-up, software sets up data structures needed for the segmentation hardware to 
perform basic system functions, such as initializing the segment registers and handling 
interrupts. 

9.2.1 Descriptor Tables 

Before the segment registers can be loaded without generating exceptions, at least one 
descriptor table and two descriptors need to be set up. The GDT must exist, along with any 
number of LDTs. At a minimum, segment descriptors are needed for the code and data 
spaces (the stack space can be assigned to a read/write data segment; it does not have to be 
an expand-down segment). 

If an LDT is created, it must have an LDT descriptor. LDT descriptors are stored in the 
GDT. 

The descriptor tables can be created in RAM, with the GDTR and LDTR registers set to 
point to locations in RAM. The descriptor tables also can exist in ROM. Because the proces­
sor updates the Type field in descriptors for code, stack, and data segments, ROM-based 
descriptor tables must allow write cycles to complete (see the warning in Section 5.2.3). 

9.2.2 Stack Segment 

The initial stack has a base address of 0 and a limit of FFFFH. Any new stack segment 
must be a read/write data segment with both the RPL of the segment selector and the DPL 
of the segment must be O. If the protection ring model is used (see Section 5.4.1.3), stacks 
must be created for each privilege level used in the system. If a task switch is used to reload 
the privilege level of the new stack segment can be at any level as long as it matches that of 
the new code segment. 

9.2.3 Interrupt Descriptor Table 

The initial state of the 376 processor leaves interrupts disabled, but exceptions and nonmask­
able interrupts cannot be disabled. Initialization software should take one of the following 
actions: 

• Change the limit value in the IDTR register to zero. This will cause a shutdown if an 
exception or nonmaskable interrupt occurs. In shutdown, execution stops until a signal 
is received on the NMI or RESET pins. 

• Put pointers to valid exception and interrupt handlers in the initial IDT table. After 
power-up, the initial setting of the IDTR register puts this table at the bottom of the 
physical address space (base address O) with a limit sufficient for 256 descriptors. 

• Change the IDTR to point to a valid IDT table. This might be a table in ROM. 

9-3 



INITIALIZATION 

9.2.4 First Instruction 

The initial contents of the CSand EIP registers cause instruction execution to begin at the 
top of the ROM address space, at physical addressFFFFFQH. This leaves room at the top 
of the initial code space for a short JMP instruction. It is intended to be a jump to the 
beginning of the ROM initialization software. 

The 376 processor begins execution with a CPL of O. For a jump or call to be performed to 
another segment, the OPL of that segment must be o. . 

9.2.SFirst Task 

If all segments execute at privilege level 0 and the multitasking mechanism is not used, it is 
unnecessary to initialize the TR register. 

If mUltiple privilege levels are used, a task state segment must be set up to provide initial 
stack pointers for the stacks of privilege levels 0, 1, and 2. These initial values are used when 
transitions between privilege levels are made. To use these values, the task state segment 
must have a non-Busy TSS descriptor in the GOT. An LTR instruction may then be used 
to load the TR register with a selector for the TSS descriptor. The LTR instruction does not 
cause a task switch, nor does it update the TSS addressed by the old value held in the TR 
register, if any. 

If multitasking is used, the following conditions must be true before a task switch can occur: 

• There must be a descriptor for the new TSS. The descriptor is stored in the GOT. The 
TSS descriptor must not have its Busy bit set. 

• There must be a valid task state segment (TSS) for the new task. The stack pointers in 
the TSS for privilege levels numerically less than or equal to the initial CPL must point· 
to valid stack segments. The initial selectors in the new TSS for the CS, SS, OS, ES, 
FS, GS, and LOT registers must be valid. 

• The old value in the TR register must address a location in physical memory to which 
the current task state can be copied without generating an exception. After the first task 
switch, the information copied to this area is not needed. The selector for the new task 
will address a busy TSS descriptor in the GOT. . 

9-4 



INITIALIZATION 

9.3 INITIALIZATION EXAMPLE 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
376 Processor Initialization Code 

This code will initialize the 376 processor from a cold boot 
to a flat memory model. This code is only for the 376 
processor. 

Note that the GDT descriptors are in ROM. Becau5e the 376 
proce550r write5 the Acce55ed bit every time a 5elector is 

1 loaded into a 5egment register 1 the ROM mU5t not drive 
the d a t a b.u 5 d uri n g w r i t e c y c I e 5. T 0 a I low the 5 e w r i t e c y c I e s 
to terminate , the READY l 5ignai must be returned to the 
proce550r. 

Intel Corporation ....................................... " ...... ,""",.,., .. , 
name Init80376 

ProgramCode Segment er u5e32 

5 tar t 
org 
pro c 

OffffOOOOh 
far 

; •• Application Code goe5 here ,. 

hit 
5tart endp 

ProgramCode end5 

MainCode Segment er u5e32 

gdttbl 
org Offb4h 

global de5criptor table 
gdttbl label dword 

d w 0 
d w 0 
db 0 
db 0 
db 0 
db 0 

dw 
dw 
db 
db 
db 
db 

Offffh 
o 
o 
10011010b 
11 001111 b 
o 

9-5 

I at 0 

JMP to top of ROM 

, at FFFFOOOOH 

GDT 5tart5 here 

GDT entry 0 (null desc.) 

GDT entry 1 (Code Segment) 
Limit bit5 0 .. 15 
Base bits 0 .. 15 
Ba5e bit5 16 •• 23 
Type bit5 
Limit bits 16 •. 19 1 G bit 
Ba5e bit5 24 .. 31 



intel° INITIALIZATION 

GDT en try 2 ( D a t a Segment) 
dw Offffh li mit b 115 0 .. 15 
dw 0 Bas e bit s 0 .. 15 
db 0 Base bit s 16 .. 23 
db 10010010b Type bit s 
db 11 001111 b li mit bit s 16 .. 19, G bit 
db 0 Bas e bits 24 •• 31 

gdtaddr lab e 1 qword 
dw 23 length of GDT tab 1 e 
dd offset gdttbl offset address of GDT tab 1 e 

I nit pro c n ear 
1 9 d t cs:gdtaddr set GDT address 
mov a x , 10 h 
mov d s , a x set up f 1 a t mod e 1 
mov e s , a x 
mov f s , a x 
mov 9 s , a x 
mov s s , a x 
j m p far p t r s tar t selector t 0 index 1 of GDT 
db o e a h ope ode for JMP 
dd OffffOOOOh offset of s tar t 
dw OSh selector of s tar t 

i nit endp 

or 9 Off 0 h 
startup proc far 

j mp s h 0 r t I nit execution begins her e 
startup endp 
Malncode end s 

end 

9-6 



Coprocessing and 
Multiprocessing 

10 





CHAPTER 10 
COPROCESSING AND MULTIPROCESSING 

A common method of increasing system performance is to use multiple processors. The 
Inte1376 architecture supports two kinds of multiprocessing: 

• An interface for specific, performance-enhancing processors called coprocessors. These 
processors extend the instruction set of the 376 processor to include groups of closely­
related instructions which are executed, in parallel with the original instruction set, by 
dedicated hardware. These extensions include IEEE-format floating-point arithmetic and 
raster-scan computer graphics. 

• An interface for other processors. Other processors could be an 386 processor, 80286, 
or 8086/88 in a PC or workstation. Several 376 processors could be in the same system 
to control multiple peripheral devices. 

10.1 CO PROCESSING 

The features of the Inte1376 architecture which are the coprocessor interface include: 

• The ESC and WAIT instructions 

• The TS, EM, and MP bits of the CRO register 

• The Coprocessor Exceptions 

10.1.1 The ESC and WAIT Instructions 

The 376 processor interprets the bit pattern 11011 (binary) in the first five bits of an instruc­
tion as an opcode intended for a coprocessor. Instructions that start with this bit pattern are 
called ESCAPE or ESC instructions. The processor performs the following functions before 
sending these instructions to the coprocessor: 

• Test the EM bit to determine whether coprocessor functions are to be emulated by 
software. 

• Test the TS bit to determine whether there has been a context switch since the last ESC 
instruction. 

• For some ESC instructions, test the signal on the ERROR# pin to determine whether 
the coprocessor produced an error in the previous ESC instruction. 



CO PROCESSING AND MULTIPROCESSING 

The WAIT instruction is not an ESC instruction, but it causes the processor to perform 
some of the tests which are performed for an ESC instruction; The processor performs the 
following actions for aWAIT instruction: 

• Wait until the coprocessor no longer asserts the BUSY # pin. 

• Test the signal on the ERROR# pin (after the signal on the BUSY # pin is de-asserted). 
If the signal on the ERROR# pin is asserted; the 376 processor generates the coprocessor­
error exception (exception 16), which indicates that the coprocessor produced an error 
in the previous ESC instruction. 

The WAIT instruction can be used to generate a coprocessor-error exception if an error is 
pending from. a previous ESC instruction. . 

10.1.2·The EM and MPBits 

The EM and MP bits of the CRO register affect the 'operations which are performed in 
response to coprocessor instructions. 

The EM bit determines whether coprocessor functions are to be emulated. If the EM bit is 
set when an ESC instruction is executed, the coprocessor-not-available exception (exception 
7) is generated. The exception handler then can emulate the coprocessor instruction. This 
mechanism is,used to create software that adapts to tl1e hardware environment; installing a 
coprocessor for performance enhancement can be as simple as plugging in a chip. 

The MP bit controls whether the processor monitors the signals from the coprocessor. This 
bit is an enabling signal for the hardware interface to the coprocessor. The MP bit affects 
the operations performed for the WAIT instruction. If the MP bit is set when aWAIT 
instruction is executed, then the TS bit is tested; otherwise, it is not. If the TS bit is set 
under these conditions, the coprocessor-not-available exception is generated. 

The states of the EM and MP bits can be modified using a MOV instruction with the CRO 
register as the destination operand. The states can be read using a MOV instruction with 
the CRO register as the source operand. These forms of the MOV instruction can be executed 
only with privilege level zero (most privileged). 

10 .. 1.3 The T8 Bit 

The TS bit of the CRO register indicates that the context of the coprocessor does not match 
that of the task being executed by the 376 processor. The 376 processor sets the TS bit each 
time it performs a task switch (whether triggered by software or by a hardware interrupt). 
If the TS bit is set while an ESC instruction is executed, a coprocessor-not-available excep­
tion, is generated. The WAIT instruction also generates this exception, if both the TS and 
MP bits are set. This exception gives software the opportunity to switch the context of the 
coprocessor to correspond to the current task. 

The CL TS instruction (legal only' at privilege level zero) clears the TS bit. 

10-2 



COPROCESSING AND MULTIPROCESSING 

10.1.4 Coprocessor Exceptions 

Three exceptions are used by the coprocessor interface: interrupt 7 (coprocessor not avail­
able), interrupt 9 (coprocessor segment overrun), and interrupt 16 (coprocessor error). 

10.1.4.1 INTERRUPT 7-COPROCESSOR NOT AVAILABLE 

This exception occurs in either of two conditions: 

• The processor executes an ESC instruction while the EM bit is set. In this case, the 
exception handler should emulate the instruction that caused the exception. The TS bit 
also may be set. 

• The processor executes either the WAIT instruction or an ESC instruction when both 
the MP and TS bits are set. In this case, the exception handler should update the state 
of the coprocessor, if necessary: 

10.1.4.2 INTERRUPT 9-COPROCESSOR SEGMENT OVERRUN 

This exception is generated when a coprocessor operand exceeds the segment limit, or when 
the operand exceeds the address limit. The address limit is the point at which the address 
space wraps around; the numbering of addresses beyond FFFFFFFFH starts over at zero. 

The addresses of the failed numeric instruction and its operand may be lost; an FSTENV 
instruction will not return reliable numeric coprocessor state information. The coprocessor­
segment-overrun exception should be handled by executing an FNINIT instruction (i.e. an 
FINIT instruction without a preceding WAIT instruction). The return address. on the stack 
may not point to either the failed numeric instruction or the instruction following the failed 
numeric instruction. The failed numeric instruction is not restartable, however the inter­
rupted task may be restartable if it did not contain the failed numeric instruction. 

For the 80387SX coprocessor, the segment limit can be avoided by keeping coprocessor 
operands at least 108 bytes away from the end of the segment (108 bytes is the size of the 
largest 80387SX operand). 

10.1.4.3 INTERRUPT 16-COPROCESSOR ERROR 

The 80387SX coprocessor can generate a coprocessor-error exception in response to six 
different exception conditions. If the exception condition is not masked by a bit in the control 
register of the coprocessor, it will appear as a signal at the ERROR# pin of the processor. 
The processor generates a coprocessor-error exception the next time the signal on the 
ERROR# pin is sampled, which is only at the beginning of the next WAIT instruction or 
certain ESC instructions. If the exception is masked, the coprocessor handles the exception 
itself; it does not assert the signal on the ERROR# pin in this case. 

10-3 



COPROCESSING AND MULTIPROCESSING 

10.2 GENERAL-PURPOSE MULTIPROCESSING 

The 376 processor Jtas the basic features needed to implement a general-purpose multi­
processing system. While the system architecture of multiprocessor systems varies greatly, 
they generally have a need for reliable communications with memory. A processor in the 
middle of reading a segment descriptor, for example, should reject attempts to update the 
descriptor until the read operation is complete. 

It also is necessary to have reliable communications with other processors. For example, a 
doubleword in physical memory might serve as Ii mode register shared by two processors. It 
may have a setting of "19" with the" 1" held in the high word and the "9" held in the low 
word.· If one processor updated this mode to "20", it would be necessary to prevent the other 
processor from reading the register until the update is complete. If the register was sampled 
between the update of the low word and the update of the high word, it would appear to 
hold the value "10". . 

The 376 processor ensures the integrity of critical memory operations by asserting a signal 
called LOCK#. It is the responsibility of the hardware designer to use this signal for block­
ing memory access between processors when this signal is asserted. 

The processor automatically asserts this signal for some critical memory operations. Software 
can specify which other memory operations also need to have this signal asserted. 

The features' of the.general-purpose multiprocessing interface include: 

• The LOCK# signal, which appears on a pin of the processor. 

• The LOCK instruction prefix, which allows software to assert the LOCK# signal. 

• Automatic assertion of the LOCK# signal for some kinds of memory operations. 

10.2.1 LOCK and the LOCK# Signal 

The LOCK instruction prefix and its corresponding output signal LOCK# can be used to 
prevent other bus masters from interrupting a data movement operation. The LOCK prefix 
may be used only with the following instructions. An invalid-opcode exception results from 
using the LOCK prefix before any instructions except: 

• Bit test and change: the BTS, BTR, and BTC instructions. 

• Exchange: the XCHG instruction. 

• Two-operand arithmetic and logical: the ADD, ADC, SUB, SBB, AND, OR, and XOR 
instructions. 

• One-operand arithmetic and logical: the INC, DEC, NOT, and NEG instructions. 

A locked instruction is only guaranteed· to lock the area of memory defined by·the destina­
tion operand, but it may lock a larger memory area. The area of memory defined by the 
destination operand is guaranteed to be locked until the memory operation is completed. 

10-4 



COPROCESSING AND MULTIPROCESSING 

The integrity of the lock is not affected by the alignment of the memory field. The LOCK 
signal is asserted for as many bus cycles as necessary to update the entire operand. 

10.2.2 Automatic Locking 

There are some critical memory operations for which the processor automatically asserts the 
LOCK# signal. These operations are: 

• Acknowledging interrupts. 

After an interrupt request, the interrupt controller uses the data bus to send the inter­
rupt vector of the source of the interrupt to the processor. The processor asserts LOCK# 
to ensure no other data appears on the data bus during this time. 

• Setting the Busy bit of a TSS descriptor. 

The processor tests and sets the Busy bit in the Type field of the TSS descriptor when 
switching to a task. To ensure two different processors do not switch to the same task 
simultaneously, the processor asserts the LOCK# signal while testing and setting this 
bit. 

• Loading of segment descriptors. 

While copying the contents of a segment descriptor from a descriptor table to a segment 
register, the processor asserts LOCK# so the descriptor will not be modified by another 
processor while it is being loaded. For this action to be effective, operating-system 
procedures that update descriptors should adhere to the following steps: 

Use a locked operation when updating the access-rights byte to mark the descriptor 
not-present, and specify a value for the Type field which indicates the descriptor is 
being updated. 

Update the fields of the descriptor. (This may require several memory accesses; 
therefore, LOCK cannot be used.) 

Use a locked operation when updating the access-rights byte to mark the descriptor 
as valid and present. 

• Executing an XCHG instruction. 

The 376 processor always asserts LOCK during an XCHG instruction that references 
memory (even if the LOCK prefix is not used). 

10.2.3 Stale Data 

Multiprocessor systems are subject to conditions under which updates to data in one proces­
sor are not applied to copies of the data in other processors. This can occur with the 376 
processor when segment descriptors are updated. 

If multiple processors are sharing segment descriptors and one processor updates a segment 
descriptor, the other processors may retain old copies of the descriptor in the invisible part 
of their segment registers. 



COPROCESSING' AND MULTIPROCESSING 

An interprocessor interrupt can handle this problem. When one processor changes data which 
may be held in other processors, it can send an interrupt signal to them. If the interrupt is 
serviced by an interrupt task, the task switch automatically discards the data in the invisible 
part of the segment registers. When the task returns, the data is updated from the descriptor 
tables in memory. 

In multiprocessor systems that need a cache-ability signal from the processor, it isrecom­
mended that physical address pin A23 be used to indicate cache-ability. Such a system can 
then possess up to 8 megabytes of physical memory. 

10-6 



Debugging 11 





CHAPTER 11 
DEBUGGING 

The 376 processor has advanced debugging facilities which are particularly important for 
embedded computer systems. Embedded computers often must respond to interrupts gener­
ated by multiple, real-time events. The failure conditions for the software of embedded 
computers can be very complex and time-dependent. The debugging features of the 376 
processor give the application programmer valuable tools for looking at the dynamic state of 
the processor. 

The debugging support is accessed through the debug registers. They hold the addresses of 
memory locations, called breakpoints, which invoke the debugging software. An exception 
is generated when a memory operation is made to one of these addresses. A breakpoint is 
specified for a particular form of memory access, such as an instruction fetch or a double­
word write operation. The debug registers support both instruction breakpoints and data 
breakpoints. 

With other processors, code breakpoints are set by replacing normal instructions with break­
point instructions. When the breakpoint instruction is executed, the debugger is invoked. 
But with the debug registers of the 376 processor, this is not necessary. By eliminating the 
need to write into the code space, the debugging process is simplified (there is no need to set 
up a data segment mapped to the same memory as the code segment) and breakpoints can 
be set in ROM-based software. In addition, breakpoints can be set on reads and writes to 
data which allows real-time monitoring of variables .. 

11.1 DEBUGGING SUPPORT 

The features of the Intel376 architecture which support debugging are: 

Reserved debug interrupt vector 

Specifies a procedure or task to be called when an event for the debugger occurs. 

Debug address registers 

Specifies the addresses of up to four breakpoints. 

Debug control register 

Specifies the forms of memory access for the breakpoints. 

Debug status register 

Reports conditions which were in effect at the time of the exception. 

11-1 



DEBUGGING 

Trap bit of TSS (T -bit) 

Generates a debug exception when an attempt is made to perform a task switch to a task 
with this bit set in its TSS. 

Resume flag (RF) . 

Suppresses multiple exceptions to the same instruction. 

Trap flag (TF) 

Generates a debug exception after every execution of an instruction: 

Breakpoint instruction 

Calls the debugger (generates a debug exception). This instruction is an alternative way 
to set code breakpoints. It is especially useful when more than four breakpoints are desired, 
or when breakpoints are being placed in the source code. 

Reserved interrupt vector for breakpoint exception 

Invokes a procedure or task when a breakpoint instruction is executed. 

These features allow a debugger to be invoked either as a separate task or as a procedure in 
the context of the current task. The following conditions can be used to invoke the debugger: 

• Task switch to a specific task. 

• Execution of the breakpoint instruction. 

• Execution of any instruction. 

• Execution of an instruction at a specified address. 

• Read or write .of a byte, word, or doubleword at a specified address. 

• Write to a byte, word, or doubleword at a specified address. 

• Attempt to change the contents of a debug register. 

11.2 DEBUG REGISTERS 

Six registers are used to control debugging. These registers are accessed by forms of the 
MOV instruction. A debug register may be the source or desti'nation operand for one of 
these instructions. The debug registers are privileged resources; the MOV instructions which 
access them may be executed only at privilege level zero. An attempt to read or write the 
debug registers from any other privilege level generates a general-protection exception. 
Figure 11-1 shows the format of the debug registers. 

11-2 



DEBUGGING 

DEBUG REGISTERS 

3322222222221111111111 
10987654321098765432109876543210 

~I~I~I~I§I~I~U o 0 0 0 0 0 I~I*I~I~I~ G L GL 
NN NN 

0000000000000000 ~I~I~IO 0 0 0 0 0 0 0 0 
BB BB 
32 1 0 

RESERVED 

RESERVED 

BREAKPOINT 3 PHYSICAL ADDRESS 

BREAKPOINT 2 PHYSICAL ADDRESS 

BREAKPOINT 1 PHYSICAL ADDRESS 

BREAKPOINT 0 PHYSICAL ADDRESS 

BITS MARKED 0 ARE RESERVED. DO NOT USE. 

Figure 11-1. Debug Registers 

11.2.1 Debug Address Registers (DRO-DR3) 

DR7 

DR6 

DR5 

DR4 

DR3 

DR2 

DR1 

DRO 

G50235 

Each of these registers holds the physical address for one of the four breakpoints. Each 
breakpoint condition is specified further by the contents of the DR 7 register. 

11.2.2 Debug Control Register (DR7) 

The debug control register shown in Figure 11-1 specifies the sort of memory access associ­
ated with each breakpoint. Each address in registers DRO to DR3 corresponds to a field 
RjWO to RjW3 in the DR7 register. The processor interprets these bits as follows: 

OO-Break on instruction execution only 
o I-Break on data writes only 
10-undefined 
ll-Break on data reads or writes but not instruction fetches 

11-3 



DEBUGGING 

The LENO to LEN3 fields in the DR 7 register specify the size of the breakpointed location 
in memory. A size of 1, 2, or 4 bytes may be specified. The length fields are interpreted as 
~~: . 

OO-one-byte length 
OI-two-byte length 
IO-undefined 
II-four-byte length 

If RWn is 00 (instruction execution), then LENn should also be 00. The effect of using any 
other length is undefined. 

The lower eight bits of the DR7 register (fields LO to L3 and GO to G3) selectively enable 
the four address breakpoint conditions. There are two levels of enabling: the local (LO through 
L3) and global (GO through G3) levels. The local enable bits are automatically cleared by 
the processor on every task switch to avoid unwanted breakpoint conditions in the new task. 
They are used to breakpoint conditions in a single task. The global enable bits are not cleared 
by a task switch. They are used to breakpoint conditions which apply to all tasks. 

The LE and GE bits control the "exact data breakpoint match" mode of the debugging 
mechanism. If either LE or GE is set, the processor slows execution so that data breakpoints 
are reported for the instruction which triggered the breakpoint, rather than the next instruc­
tion to execute. One of these bits should be set when data breakpoints are used. The proces­
sor clears the LE bit at a task switch, but it does not clear the GE bit. 

11.2.3 Debug Status Register (DR6) 

The debug status register shown in Figure 11-1 reports conditions sampled at the time the 
debug exception was generated. Among other information, it reports which breakpoint 
triggered the exception. 

When the processor generates a debug exception, it sets the lower bits of this register (BO 
through B3) before entering the debug exception handler. Bn is set if the condition described 
by DRn, LENn, and RjWn occurs. (Note the processor sets Bn regardless of whether Gn 
or.Ln is set. If more than one breakpoint condition occurs simultaneously and if the break­
point occurs due to an enabled condition other than n, Bn may be set, even though neither 
Gn nor Ln is set). 

The BT bit is associated with the T bit (debug trap bit) of the TSS (see Chapter 6 forthe 
format of a TSS). The processor sets the BT bit before entering the debug handler if a task 
switch has occurred to a task with a set T bit in its TSS. There is no bit in the DR7 register 
to enable or disable this exception; the T bit of the TSS is the only enabling bit. 

The BS bit is associated with the TF flag. TheBS bit is set if the debug exception was 
triggered by the single-step execution mode (TF flag set). The single-step mode is the highest­
priority debug exception; when the BS bit is set, any of the other debug status bits also may 
be set. 

11-4 



DEBUGGING 

The BD bit is set if the next instruction will read or write one of the debug registers while 
they are being used by in-circuit emulation. 

Note that the contents of the DR6 register are never cleared by the processor. To avoid any 
confusion in identifying debug exceptions, the debug handler should clear the register before 
returning. 

11.2.4 Breakpoint Field Recognition 

The address and LEN bits for each of the four breakpoint conditions define a range of 
sequential byte addresses for a data breakpoint. The LEN bits permit specification of a 
one, two, or four-byte range. Two-byte ranges must be aligned on word boundaries (addresses 
that are multiples of two) and four-byte ranges must be aligned on doubleword boundaries 
(addresses that are multiples of four). These requirements are enforced by the processor; it 
uses the LEN bits to mask the lower address bits in the debug registers. Unaligned code or 
data breakpoint addresses will not yield the expected results. 

A data breakpoint for reading or writing is triggered if any of the bytes participating in a 
memory access is within the range defined by a breakpoint address register and its LEN 
bits. Table 11-1 gives some examples of combinations of addresses and fields with memory 
references which do and· do not cause traps. 

A data breakpoint for an unaligned operand can be made from two sets of entries in the 
breakpoint registers where each entry is byte-aligned, and the two entries together cover the 
operand. This breakpoint will generate exceptions only for the operand, not for any neigh­
boring bytes. 

Table 11-1. Breakpointing Examples 

Comment Address (hex) Length (in bytes) 

Register Contents ORO AOO01 1 (LENO = 00) 
Register Contents DR1 AOO02 1 (LENO = 00) 
Register Contents DR2 80002 2 (LENO = 01) 
Register Contents DR3 COOOO 4 (LENO = 11) 

AOO01 1 
AOO02 1 
AOO01 2 
AOO02 2 

Memory Operations Which Trap 80002 2 
80001 4 
COOOO 4 
COO01 2 
COO03 1 

AOOOO 1 

Memory Operations Which Don't Trap AOO03 4 
80000 2 
COO04 4 

11-5 



DEBUGGING 

Instruction breakpoint addresses must have a length specification of one byte (LEN = 00); 
the behavior of code breakpoints for other operand sizes is undefined. The processor recog­
nizes an instruction breakpoint address only when it points to the first byte of an instruction. 
If the instruction has any prefixes, the breakpoint address must point to the first prefix. 

11.3 DEBUG EXCEPTIONS 

Two of the interrupt vectors of the 376 processor are reserved for debug exceptions. Inter­
rupt 1 is the primary means of invoking debuggers designed for the 376 processor; interrupt 
3 is intended for responding to code breakpoints. 

11.3.1 Interrupt 1-Debug Exceptions. 

The handler for this exception usually is a debugger or part of a debugging system. The 
processor generates interrupt 1 for any of several conditions. The debugger can check flags 
in the DR6 and DR 7 registers to determine which condition caused the exception and which 
other conditions also might apply. Table 11-2 shows the states of these bits for each kind of 
breakpoint condition. 

Instruction breakpoints are faults; other debug exceptions are traps. The debug exception 
may report either or both at one time. The following sections present details for each class 
of debug exception. 

11.3.1.1 INSTRUCTION-BREAKPOINT FAULT 

The processor reports an instruction breakpoint before it executes the breakpointed instruc­
tion (i.e. a debug exception caused by an instruction breakpoint is a fault). 

The RF flag permits the debug exception handler to restart instructions which cause faults 
other than debug faults. When one of these faults occurs, the processor sets the RF flag in 
the copy of the EFLAGS register which is pushed on the stack. (It does not, however, set 
the RF flag for traps and aborts). 

When the RF flag is set, debug faults are ignored during the next instruction. (Note, however, 
the RF flag does not cause other kinds of faults or debug traps to be ignored). 

Table 11-2. Debug Exception Conditions 

Flags Tested Description 

BS = 1 Single-step trap 
BO = 1 and (GEO = 1 or LEO = 1) Breakpoint defined by DRO, LENO, and R/WO 
B1 = 1 and (GE1 = 1 or LE1 = 1) Breakpoint defined by DR1, LEN1, and R/W1 
B2 = 1 and (GE2 = 1 or LE2 = 1) Breakpoint defined by DR2, LEN2, and R/W2 
B3 = 1 and (GE3 = 1 or LE3 = 1) Breakpoint defined by DR3, LEN3, and R/W3 
BD = 1 Debug registers in use for in-circuit emulation 
BT = 1 Task switch 

11-6 



DEBUGGING 

The processor clears the RF flag at the successful completion of every instruction except 
after the IRET instruction, the POPF instruction, and JMP, CALL, or INT instructions 
which cause a task switch. These instructions set the RF flag to the value specified by the 
the saved copy of the EFLAGS register. 

The processor sets the RF flag in the copy of the EFLAGS register pushed on the stack 
before entry into any fault handler. When the fault handler is entered for instruction break­
points, for example, the RF flag is set in the copy of the EFLAGS register pushed on the 
stack; therefore, the IRET instruction which returns control from the exception handler will 
set the RF flag in the EFLAGS register, and execution will resume at the breakpointed 
instruction without generating another breakpoint for the same instruction. 

If, after a debug fault, the RF flag is set and the debug handler retries the faulting instruc­
tion, it is possible that retrying the instruction will generate other faults. The restart of the 
instruction after these faults also occurs with the RF flag set, so repeated debug faults 
continue to be suppressed. The processor clears the RF flag only after successful completion 
of the instruction. 

11.3.1.2 DATA-BREAKPOINT TRAP 

A data-breakpoint exception is a trap; i.e. the processor generates an exception for a data 
breakpoint after executing the instruction which accesses the breakpointed memory location. 

When using data breakpoints, it is recommended either the LE or GE bits of the DR 7 regis­
ter also be set. If either of the LE or GE bits are set, any data breakpoint trap is reported 
immediately after completion of the instruction which accessed the breakpointed memory 
location. This immediate reporting is done by forcing the 376 processor execution unit to 
wait for completion of data operand transfers before beginning execution of the next instruc­
tion. If neither bit is set, data breakpoints may not be generated until one instruction after 
the data is accessed, or they may not be generated at all. This is because instruction execu­
tion normally is overlapped with memory transfers. Execution of the next instruction may 
begin before the memory operations of the prior instruction are completed. 

If a debugger needs to save the contents of a write breakpoint location, it should save the 
original contents before setting the breakpoint. Because data breakpoints are traps, the origi­
nal data is overwritten before the trap exception is generated. The handler can report the 
saved value after the breakpoint is triggered. The data in the debug registers can be used to 
address the new value stored by the instruction which triggered the breakpoint. 

11.3.1.3 GENERAL-DETECT FAULT 

This exception occurs when an attempt is made to use the debug registers at the same time 
they are being used by in-circuit emulation. This additional protection feature is provided to 
guarantee emulators can have full control over the debug registers when required. The 
exception handler can detect this condition by checking the state of the BD bit of the DR6 
register. 

11-7 



DEBUGGING 

11.3.1.4 SINGLE-STEP TRAP 

This trap occurs after an instruction is executed if the TF flag was set before the instruction 
was executed. Note the exception does not occur after an instruction that sets the TF flag. 
For example, if the POPF instruction is used to set the TF flag, a single-step trap does not 
occur until after the instruction following the POPF instruction. 

The processor clears the TF flag before calling the exception handler. If the TF flag was set 
in a TSS at the time of a task switch, the exception occurs after the first instruction is 
executed in the new task. 

The single~step flag normally is not cleared by privilege changes inside a task. The INT 
instructions; however, do clear the TF flag. Therefore, software debuggers that single-step 
code must recognize and emulate INT n or INTO instructions rather than executing them 
directly. 

To maintain protection, system software should check the current execution privilege level 
after any single-step trap to see if single stepping should continue at the current privilege 
level. 

The interrupt priorities guarantee that if an external interrupt occurs, single stepping stops. 
When both an external interrupt and a single step interrupt occur together, the single step 
interrupt is processed first. This clears the TF flag. After saving the return address or 
switching tasks, the external interrupt input is examined before the first instruction of the 
single step handler executes. If the external interrupt is still pending, then it is serviced. The 
external interrupt handler does not execute in single-step mode. To single step an interrupt 
handler, single step an INTn instruction which calls the interrupt handler. 

11.3.1.5 TASK-SWITCH TRAP 

The debug exception also occurs after a task switch if the T bit of the new task's TSS is set 
The exception occurs after control has passed to the new task, but before the first instruction 
of that task is executed. The exception handler can detect this condition by examining the 
BT bit of the DR6 register. 

Note that if the debug exception handler is a task, the T bit of its TSS should not be set. 
Failure to observe this rule will put the processor in a loop. 

11.3.2 Interrupt 3-Breakpoint Instruction 

This exception is caused by execution of the INT 3 instruction. Typically, a debugger prepares 
a breakpoint by replacing the first opcode byte of an instruction with the opcode for the 
breakpoint .instruction. When execution of the INT 3 instruction invokes the exception 
handler, the return address points to the first byte of the instruction following the INT3 
instruction. . 

11-8 



DEBUGGING 

With older processors, this feature is used extensively for setting instruction breakpoints. 
With the 376 processor, this purpose is more easily handled using the debug registers. 
However, the breakpoint exception still is useful for breakpointing debuggers, because the 
breakpoint exception can invoke an exception handler other than itself. The breakpoint 
exception also can be useful when it is necessary to set a greater number of breakpoints than 
permitted by the debug registers, or when breakpoints are being set in the source code of a 
program under development. 

11-9 





Differences Between the 12 
376™ and 386™ Processors 





CHAPTER 12 
DIFFERENCES BETWEEN 

THE 376m AND 386m PROCESSORS 

12.1 SUMMARY OF DIFFERENCES 

The following list covers the hardware and software differences between the 376 and 386 
processors. 

1. The 376 processor has select lines BHE# and BLE# for the high and low bytes of its 
16-bit data bus, like the 8086 and 80286. The 386 processor has four separate select 
lines, BEO#, BE1#, BE2#, and BE3#, for each byte of its 32-bit data bus. 

2. The data bus of the 376 processor is fixed at 16 bits. The 386 processor has an input 
BS16#, which is used to select either 16- or 32-bit bus size. 

3. The NA# input on either the 376 processor or 386 processor is used to select pipelined 
addressing. On the 376 processor, pipelined addressing may be used on any bus cycle. 
On the 386 microprocessor, pipelined addressing only may be used when 32-bit bus size 
is selected. 

4. The contents of the DH register after power-up indicate the processor type. For the 386 
processor, this value is 3. For the 376 processor, it is 33H. 

5. The 376 processor uses MjIO# and A23 to select the numerics coprocessor. The 386 
processor uses MjIO# and A31 • 

6. The 386 processor prefetches instructions in 32-bit units. When operating with 16-bit 
bus size, the 386 processor performs two bus cycles to prefetch a unit of instruction 
code. Even if a read or a write can occur before the second bus cycle, the second cycle 
will occur immediately after the first. 

The 376 processor prefetches instructions in 16-bit units. Reads and writes never wait 
for the second cycle of a prefetch to complete. 

7. The 376 processor has no paging mechanism. The linear address of the 386 processor is 
used as the physical address in the 376 processor. The PG bit (bit 31 of the CRO regis­
ter) is always clear on the 376 processor. (It is not necessary for the programmer to 
maintain the state of this bit.) 

8. The 376 processor has one processing mode, which is equivalent to the 386 processor 
protected mode. The PE bit (bit 0 of the CRO register) is always set on the 376 proces­
sor. (It is not necessary for the programmer to maintain the state of this bit.) 

9. The 376 processor has nei virtual-86 mode, which is used to execute 8086 programs 
within the protected, multitasking, 32-bit environment. 

10. The 376 processor has a 24-bit physical address bus. The 386 processor has a 32-bit 
address bus. The upper eight bits of the on-chip address are not brought out to pins 
on the 376 processor. No exception occurs as a result of using these bits (except a 

12-1 



DIFFERENCES BETWEEN THE 376™ AND 386™ PROCESSORS 

general-protection exception, if the address violates the segment limit). Addresses 
appropriate for the 386 processor may be used on the 376 processor, so the same code 
will run on either processor. 

11. The 376 processor uses the 80387SX as its numerics coprocessor. The 386 processor 
uses the 80387. 

12. The 376 processor only may execute the 32-bit instruction set. The 386 processor may 
execute either the 16- or 32-bit instruction set. 

12-2 



376™ Processor Instruction Set 13 





CHAPTER 13 
376™ PROCESSOR INSTRUCTION SET 

This chapter presents instructions for the 376 processor in alphabetical order. For each 
instruction, the forms are given for each operand combination, including object code produced, 
operands required, execution time, and a description. For each instruction, there is an opera­
tional description and a summary of exceptions generated. 

13.1 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES 

When executing an instruction, the 376 processor normally addresses memory using 32-bit 
addresses. The internal encoding of an instruction can include two byte-long prefixes: the 
16-bit address-size prefix, 67H, and the 16-bit operand-size prefix, 66H. (A later section, 
"Instruction Format," shows the position of the prefixes in an instruction's encoding.) These 
prefixes override the default segment attributes for the instruction that follows. Use of the 
67H prefix limits addressing to the lower 64K of a segment. The 67H prefix is intended to 
support assembly language source compatibility with ASM86j286. 

13.2 INSTRUCTION FORMAT 

All instruction encodings are subsets of the general instruction format shown in 
Figure 13-1. Instructions consist of optional instruction prefixes, one or two primary opcode 
bytes, possibly an address specifier consisting of the ModRjM byte and the SIB (Scale 
Index Base) byte, a displacement, if required, and an immediate data field, if required. 

16 BIT 16 BIT 

INSTRUCTION I ADDRESS· I OPERAND- I SEGMENT 
PREFIX SIZE PREFIX SIZE PREFIX OVERRIDE 

O~1 O~1 O~1 O~1 

r- - - -"--- - ----- - ---- --------
NUMBER OF BYTES 

OPCODE I MODR/M I SIB I DISPLACEMENT I IMMEDIATE 

10R2 OOR1 OOR1 O,1,20R4 O,1,20R4 
------'----- - -- -- - - - ----

NUMBER OF BYTES 

G30117 

Figure 13-1. 376™ Processor Instruction Format 

13-1 



376™ PROCESSOR INSTRUCTION SET 

Smaller encoding fields can be defined within the primary opcode or opcodes. These fields 
define the direction of the operation, the size of the displacements, the register encoding, or 
sign extension; encoding fields vary depending on the class of operation. 

Most instructions that can refer to an operand in memory have an addressing form byte 
following the primary opcode byte(s). This byte, called the ModR/M byte, specifies the 
address form to be used. Certain encodings of the ModR/M byte indicate a second address~ 
ing byte, the SIB (Scale Index Base) byte, which follows the ModR/M byte and is required 
to fully specify the addressing form. 

Addressing forms can include a displacement immediately following either the ModR/M or 
SIB byte. If a displacement is present, it can be 8-, 16- or 32-bits. 16-bit displacements will 
require a 67H prefix (which limits access to the lower 64K of a segment). 

If the instruction specifies an immediate operand, the immediate operand always follows 
any displacement bytes. The immediate operand, if specified, is always the last field of the 
instruction. 

Instructions can also be modified through the use of prefixes. Prefixes will only affect the 
instruction immediately following them and can be combined in any order. 

The following are the allowable instruction prefix codes: 

F3H REP prefix (used only with string instructions) 
F3H REPE/REPZ prefix (used only with string instructions 
F2H REPNE/REPNZ prefix (used only with string instructions) 
FOH LOCK prefix 

The following are the segment override prefixes: 

2EH CS segment override prefix 
36H SS segment override prefix 
3EH DS segment override prefix 
26H ES segment override prefix 
64H FS segment override prefix 
65H GS segment override prefix 
66H Operand-size override 
67H Address-size override 

13.2.1 ModR/M and SIB Bytes 

The ModR/M and SIB bytes follow the opcode byte(s) in many of the 376 processor 
instructions. They contain the following information: 

• The indexing type or register number to be used in the instruction 

• The register to be used, or more information to select the instruction 

• The base, index, and scale information 

13-2 



376™ PROCESSOR INSTRUCTION SET 

The ModRjM byte contains three fields of information: 

• The mod field, which occupies the two most significant bits of the byte, combines with 
the rjm field to form 32 possible values: eight registers and 24 indexing modes 

• The reg field, which occupies the next three bits following the mod field, specifies either 
a register number or three more bits of opcode information. The meaning of the reg 
field is determined by the first (opcode) byte of the instruction. 

• The rim field, which occupies the three least significant bits of the byte, can specify a 
register as the location of an operand, or can form part of the addressing-mode encoding 
in combination with the mod field as described above 

The based indexed and scaled indexed forms of 32-bit addressing require the SIB byte. The 
presence of the SIB byte is indicated by certain encodings of the ModR/M byte. The SIB 
byte then includes the following fields: 

• The ss field, which occupies the two most significant bits of the byte, specifies the scale 
factor 

The index field, which occupies the next three bits following the ss field and specifies 
the register number of the index register 

• The base field, which occupies the three least significant bits of the byte, specifies the 
register number of the base register 

Figure 13-2 shows the formats of the ModRjM and SIB bytes. 

MODR/M BYTE 

7 6 5 4 3 2 0 

MOD I REG/OPCODE I RIM 

SIB (SCALE INDEX BASE) BYTE 

7 6 5 4 3 2 0 

SS INDEX BASE 

G30117 

Figure 13-2. ModR/M and SIB Byte Formats 

13-3 



376™ PROCESSOR INSTRUCTION SET 

The values and the corresponding addressing forms of the ModR/M and SIB bytes are 
shown in Tables 13-1, 13-2, and 13-3. The 16-bit addressing forms specified by the 
ModR/M byte are in Table 13-1. The 32-bit addressing forms specified by ModR/M are in 
Table 13-2. Table 13-3 shows the 32-bit addressing forms specified by the SIB byte. 

Table 13-1. 16-Bit Addressing Forms with the ModR/M Byte and 67H Prefix 

r8(fr) AL CL DL BL AH CH DH BH 
r16(fr) AX CX DX BX SP BP SI DI 
r32(fr) EAX ECX EDX EBX ESP EBP ESI EDI 
/digit (Opcode) 0 1 2 3 4 5 6 7 
REG = 000 001 010 011 100 101 110 111 

Effective 
Mod R/M ModR/M Values in Hexadecimal Address 

[BX +SI] 000 00 08 10 18 20 28 30 38 
[BX + DI] 001 01 09 11 19 21 29 31 39 
[BP + SI] 010 02 OA 12 1A 22 2A 32 3A 
[BP + DI] 00 011 03 OB 13 1B 23 2B 33 3B 
[SI] 100 04 OC 14 1C 24 2C 34 3C 
[01] 101 05 OD 15 10 25 2D 35 3D 
disp16 110 06 OE 16 1E 26 2E 36 3E 
[BX] 111 07 OF 17 1F 27 2F 37 3F 

[BX + SI] + disp8 000 40 48 50 58 60 68 70 78 
[BX+DI]+disp8 001 41 49 51 59 61 69 71 79 
[BP+SI]+disp8 010 42 4A 52 5A 62 6A 72 7A 
[BP + DI] + disp8 01 011 43 4B 53 5B 63 6B 73 7B 
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C 
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D 
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E 
[BX]+disp8 111 47 4F 57 5F 67 6F 77 7F 

[BX+SI]+disp16 000 80 88 90 98 AO A8 BO B8 
[BX + DI] + disp16 001 81 89 91 99 'A1 A9 B1 B9 
[BX+SI]+disp16 010 82 8A 92 9A A2 AA B2 BA 
[BX+DI]+disp16 

10 
011 83 8B 93 9B A3 AB B3 BB 

[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC 
[01]+disp16 101 85 8D 95 9D A5 AD B5 BD 
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE 
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF 

EAX/AX/AL 000 CO C8 DO D8 EO E8 FO F8 
ECX/CX/CL 001 C1 C9 01 D9 E1 E9 F1 F9 
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA 
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD 
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE 
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF 

NOTES: disp8 denotes an 8-bit displacement following the ModR/M byte, to be sign-extended and added 
to the index. disp 16 denotes a 16-bit displacement following the ModR/M byte, to be added to the 
index. Default segment register is SS for the effective addresses containing a BP index, DS for 
other effective addresses. When Mod is 11 the 67 prefix has no effect. 

13-4 



376™ PROCESSOR INSTRUCTION SET 

Table 13-2. Normal (32-Bit) Addressing Forms with the ModR/M Byte 

r8(fr) AL CL OL BL AH CH OH BH 
r16(fr) AX CX OX BX SP BP SI 01 
r32(fr) EAX ECX EOX EBX ESP EBP ESI EOI 
jdigit (Opcode) 0 1 2 3 4 5 6 .7 
REG = 000 001 010 011 100 101 110 111 

Effective Mod RjM ModRjM Values in Hexadecimal Address 

[EAX] 000 00 08 10 18 20 28 30 38 
[ECX] 001 01 09 11 19 21 29 31 39 
[EOX] 010 02 OA 12 1A 22 2A 32 3A 
[EBX] 00 011 03 OB 13 1B 23 2B 33 3B 
H[--] 100 04 OC 14 1C 24 2C 34 3C 
disp32 101 05 00 15 10 25 20 35 3D 
[ESI] 110 06 OE 16 1E 26 2E 36 3E 
[EDI] 111 07 OF 17 1F 27 2F 37 3F 

disp8[EAX] 000 40 48 50 58 60 68 70 78 
disp8[ECX] 001 41 49 51 59 61 69 71 79 
disp8[EOX] 010 42 4A 52 5A 62 6A 72 7A 
disp8[EPX]; 01 011 43 4B 53 5B 63 6B 73 7B 
disp8[--] H 100 44 4C 54 5C 64 6C 74 7C 
disp8[ebp] 101 45 40 55 50 65 60 75 70 
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E 
disp8[EOI] 111 47 4F 57 5F 67 6F 77 7F 

disp32[EAX] 000 80 88 90 98 AO. A8 BO B8 
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9 
disp32[EOX] 010 82 8A 92 9A A2 AA B2 BA 
disp32[EBX] 10 011 83 8B 93 9B A3 AB B3 BB 
disp32[--] [_oj 100 84 8C 94 9C A4 AC B4 BC 
disp32[EBP] 101 85 80 95 90 A5 AD B5 BO 
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE 
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF 

EAXjAXjAL 000 CO C8 DO 08 EO E8 FO F8 
ECXjCXjCL 001 C1 C9 01 09 E1 E9 F1 F9 
EOXjDXjDL 010 C2 CA 02 OA E2 EA F2 FA 
EBXjBXjBL 11 011 C3 CB 03 DB E3 EB F3 FB 
ESPjSPjAH 100 C4 CC 04 DC E4 EC F4 FC 
EBPjBPjCH 101 C5 CD 05 DD E5 ED F5 FO 
ESljSljOH 110 C6 CE 06 DE E6 EE F6 FE 
EOljOljBH 111 C7 CF D7 OF E7 EF F7 FF 

NOTES: [_oj [_oj means a SIB follows the ModRjM byte. disp8 denotes an 8-bit displacement following the 
SIB byte, to be sign-extended and added to the index. disp32 denotes a 32-bit displacement 
following the ModRjM byte, to be added to the index. 

13-5 



376™ PROCESSOR INSTRUCTION SET 

Table 13-3. Normal (32-Bit) Addressing Forms with the SIB Byte 

r32 EAX ECX EOX EBX ESP [*] ESI EOI 
Base = 0 1 2 3 4 5 6 7 

,. Base = 000 001 010 011 100 101 110 111 

Scaled Index SS Index ModR/M Values in Hexadecimal 

[EAX] 000 00 01 02 03 04 05 06 07 
[ECX] 001 08 09 OA OB OC 00 OE OF 
[EOX] 010 10 11 12 13 14 15 16 17 
[EBX] 00 011 18 19 1A 1B 1C 10 1E 1F 
none 100 20 21 22 23 24 25 26 27 
[EBP] 101 28 29 2A 2B 2C 20 2E 2F 
[ESI] 110 30 31 32 33 34 35 36 37 
[EOI] 111 38 39 3A 3B 3C 30 3E 3F 

[EAX'2] 000 40 41 42 43 44 45 46 47 
[ECX'2] 001 48 49 4A 4B 4C 40 4E 4F 
[ECX'2] 010 50 51 52 53 54 55 56 57 
[EBX'2] 01 011 58 59 5A 5B 5C 50 5E 5F 
none 100 60 61 62 63 64 65 66 67 
[EBP'2] 101 68 69 6A 6B 6C 60 6E 6F 
[ESI'2] 110 70 71 72 73 74 75 76 77 
[EOI'2] 111 78 79 7A 7B 7C 70 7E 7F 

[EAX'4] 000 80 81 82 83 84 85 86 87 
[ECX'4] 001 88 89 8A 8B 8C 80 8E 8F 
[EOX'4] 010 90 91 92 93 94 95 96 97 
[EBX'4] 10 011 98 89 9A 9B 9C 90 9E 9F 
none 100 AO A1 A2 A3 A4 A5 A6 A7 
[EBP'4] 101 A8 A9 AA AB AC AO AE AF 
[ESI'4] 110 BO B1 B2 B3 B4 B5 B6 B7 
[EON] 111 B8 B9 BA BB BC BO BE BF 

[EAX'8] 000 CO C1 C2 C3 C4 C5 C6 C7 
[ECX'8] 001 C8 C9 CA CB CC CO CE CF 
[EOX'8] 010 00 01 02 03 04 05 06 07 
[EBX'8] 11 011 08 09 OA OB OC 00 OE OF 
none 100 EO E1 E2 E3 E4 E5 E6 E7 
[EBP'8] 101 E8 E9 EA EB EC EO EE EF 
[ESI'8] 110 FO F1 F2 F3 F4 F5 F6 F7 
[EOI'8] 111 F8 F9 FA FB FC FO FE FF 

NOTES: ['] means a disp32 with no base if MOO is 00, [ESP] otherwise. This provides the following 
addressing modes: 
disp32[index] 
disp8[EBP][index] 
disp32[EBP][index] 

(MOO=OO) 
(MOO=01) 
(MOO=10) 

13-6 



376™ PROCESSOR INSTRUCTION SET 

13.2.2 How to Read the Instruction Set Pages 

The following is an example of the format used for each 376 processor instruction descrip­
tion in this chapter: 

CMC-Complement Carry Flag 

Opcode Instruction Clocks Description 

F5 CMC 2 Complement carry flag 

The above table is followed by paragraphs labelled "Operation," "Description," "Flags 
Affected," "Exceptions," and, optionally, "Notes." The following sections explain the 
notational conventions and abbreviations used in these paragraphs of the .instruction 
descriptions .. 

13.2.2.1 OPCODE 

The "Opcode" column gives the complete object code produced for each form of the instruc­
tion. When possible, the codes are given as hexadecimal bytes, in the same order in which 
they appear in memory. Definitions of entries other than hexadecimal bytes are as follows: 

Idigit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction uses 
only the rim (register or memory) operand. The reg field contains the.digit that provides an 
extension to the instruction's opcode. 

Ir: indicates that the ModR/M byte of the instruction contains both a register operand and 
an rim operand. 

cb, cw, cd, cp: a I-byte (cb), 2-byte (cw), 4-byte (cd) or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code segment 
register. 

ib, iw, id: a I-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction that 
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the 
operand is a signed value. All words and doublewords are given with the low-order byte first. 

+rb, +rw, +rd: a register code, from 0 through 7, added to the hexadecimal byte.given at 
the left of the plus sign to form a single opcode byte. The codes are-

rb 
AL =0 
CL = I 
DL = 2 
BL = 3 
AH=4 

rw 
AX = 0 
CX= I 
DX =·2 
BX = 3 
SP = 4 

rd 
EAX =0 
ECX=·I 
EDX = 2 
EBX = 3 
ESP = 4 

13-7 



376™ PROCESSOR INSTRUCTION SET 

rb 
AH=4 

·CH;= :s 
DH=6 
BH = 7 

rw 
SP = 4 
BP = 5 
SI = 6 
DI = 7 

13.2.2.2 INSTRUCTION 

rd 
ESP = 4 
EBP=·5 
ESI = 6 
EDI = 7 

The "Instruction" column gives the syntax of the instruction statement as it would appear 
jn an ASM386 program. The following is a list of the symbols used to represent operands in 
the instruction statements:: ., . 

rel8: a relative address in the range from 128 bytes before the end of the instruction to 
127 bytes after the end of the instruction . 
. .,.": '. " 

re132: a 32-bit signed relative address within the same code segment as the instruction 
assembled. . 

ptrl6:32: a FAR pointer, typically in a code segment different from that of the instruction. 
The notation 16:32 indicates that the value of the pointer has two parts. The value to the 
left· of the colon is a 16-bit selector or value destined for the code segment register. The 
value to the right corresponds to t,he 32-bit offset within the destination segment. 

r8: one of the byte registers AL, CL, DL, BL, AH, CH, DH, or BH. 

rl6: one of the word registers AX, CX, DX, BX, SP,BP, SI, or DI. 

r32: one of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI. 

imm8: an immediate byte value. imm8 is a signed number between -128 and + 127 inclu­
sive. For instructions in which imm8 is combined with a word or doubleword operand, the 
immediate value is sign.extended to form a word or doubleword. The upper byte of the word 
is filled with the topmost bit of the immediate value~ . 

imml6: an immediate word value used for instructions whose operand-size attribute is 
16 bits (a 66H prefix must 'be used). This is a number between -32768 and +32767 
inclusive. 

imm32: an immediate doubleword value used for instructions whose operand-size attribute 
is 32-bits. It allowsctheuse ora number between +2147483647 and -2147483648. 

r/m8: a one-byte operand that is either the contents of a byte register (AL, BL, CL, DL, 
AH, BH, CH, DH), or a byte from memory. 

r Im16: a word register or memory operand used for instructions whose operand-size attrib­
ute is 16 bits (a 66H prefix must be used). The word registers are: AX, BX, CX,DX; SP, 
BP, SI, DI. The. contents of memory are found at the address provided by the effective 
address computation. 

13"':8 



376™ PROCESSOR INSTRUCTION SET 

r jm32: a doubleword register or memory operand used for instructions whose operand-size 
attribute is 32-bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, EBP, ESI, 
ED!. The contents of memory are found at the address provided by the effective address 
computation. 

m8: a memory byte addressed by DS:ESI or ES:EDI (used only by string instructions). 

m16: a memory word addressed by DS:ESI or ES:EDI (used only by string instructions). 
The 66H prefix must be used. 

m32: a memory doubleword addressed by DS:ESI or ES:EDI (used only by string 
instructions ). 

mI6:32: a memory operand containing a far pointer composed of two numbers. The number 
to the left of the colon corresponds to the pointer's 16-bit segment selector. The number to 
the right corresponds to its 32-bit offset. The selector is first in memory. 

m16 & 32, m16 & 16, m32 & 32: a memory operand consisting of data item pairs whose sizes 
are indicated on the left and the right side of the ampersand. All memory addressing modes 
are allowed. m16& 16 and m32&32 operands are used by the BOUND instruction to provide 
an operand cOIltaining an upper and lower bounds for array indices. m16 & 32 is used by 
LIDT and LGDT to provide a word with which to load the limit field, and adoubleword 
with which to load the base field of the corresponding Global and Interrupt Descriptor Table 
Registers. 

moffs8, moffsl6, moffs32: (memory offset) a simple memory variable of type BYTE, WORD, 
or DWORD used by some variants of the MOV instruction. The actual address is given by 
a simple offset relative to the segment base. No ModRjM byte is used in the instruction. 
The number shown with moffs indicates its size, which is determined by the address-size 
attribute of the instruction. 

Sreg: a segment register. The segment register bit assignments are ES=O, CS= 1, SS=2, 
DS=3, FS=4, and GS=5. 

13.2.2.3 CLOCKS 

The "Clocks" column gives the number of clock cycles the instruction takes to execute. The 
clock count calculations makes the following assumptions: 

• The instruction has been prefetched and decoded· and is ready for execution. 

• Bus cycles do not require wait states. 

• There are no local bus HOLD requests delaying processor access to the bus. 

• No exceptions are detected during instruction execution. 

• Memory operands are aligned. 

13-9 



376™ PROCESSOR INSTRUCTION SET 

Clock counts for instructions that have an r/m(register or memory) operand are'separated 
bya slash. Thecountto the left is used for a register,operand; the count to the right is used 
fora memory operand., 

The following symbols are used in the clock count specifications: 

n,; which rep~e~ents' a number of repetitions . • 
• m, whi"h represents the number of components. in the next instruction executed, where 

the entire displacement (if any) counts as one component, the entire immediate data (if 
any) counts as one component, and every other byte of the instruction and prefix(es) 

. each counts as one component. 
, , 

When an exception occurs during the execution of an instruction, the instruction execution 
time is increased by the number of clocks to handle the exception. This parameter depends 
on several factors:, ' ' 

. ,.. . 

• Whether a TSS or trap/interrupt gate is used. 

• Privilege l~wel of new code segment. 

The alignment of a memory operand can affect execution time. The execution time for 
instructions with byte operands is unaffected by the memory address. A 16"bit word operand 
must be on an even address to be aligned. If a word operand is misaligned, the execution 
time of the instruction increases by two clocks for each access made to the oper/lnd. Some 
instructions like INC memory will access the same operand twice. 

Since the 376 processor has a 16-bit data bus, a 32-bit double word is considered aligned if 
it. is at an even address. However, all 32-bit operands should be aligned on 4 byte boundaries 
to .maximizeperformance, of accesses to them if .the, program is run ()n an 386 microproces­
sor. Ifa double, word is 011 an odd boundary, add four clocks to 376 processor execution time 
for each access to the operand. 

All descriptor tables should be on a 4-byte multiple address. The clock counts assume all 
descriptor tables are aligned. 

The actual clock counts will vary from the calculated count due to factors like instruction 
alignment, faster instruction execution than prefetch, and data alignment. Adding 10% to 
the calculated counts should account for these factors. 

13.2.2.4 DESCRIPTION 

The "Description" column following the "Clocks" column briefly explains the various forms 
of the instruction. Tl;le "Operatio~" and "Description" sections contain more details of the 
instruction's operation. ' 

13-10 



376™ PROCESSOR INSTRUCTION SET 

13.2.2.5 OPERATION 

The "Operation" section contains an algorithmic description of the instruction which uses a 
notation similar to the Algol or Pascal language. The algorithms are composed of the follow­
ing elements: 

Comments are enclosed within the symbol pairs "(*" and "*)". 

Compound statements are enclosed between the keywords of the "if' statement (IF, THEN, 
ELSE, FI) or of the "do" statement (DO, OD), or of the "case" statement (CASE ... OF, 
ESAC). 

A register name implies the contents of the register. A register name enclosed in brackets 
implies the contents of the location whose address is contained in that register. For example, 
ES:[EDI] indicates the contents of the location whose ES segment relative address is in 
register ED!. [ESI] indicates the contents of the address contained in register ESI relative 
to ESI's default segment (DS) or overridden segment. 

Brackets also used for memory operands, where they mean that the contents of the memory 
location is a segment-relative offset. For example, [SRC] indicates that the contents of the 
source operand is a segment-relative offset. 

A +- B; indicates that the value of B is assigned to A. 

The symbols =, <>, >, and -< are relational operators used to compare two values, 
meaning equal, not equal, greater or equal, less or equal, respectively. A relational expres­
sion such as A = B is TRUE if the value of A is equal to B; otherwise it is FALSE. 

CPL refers to two low order bits of CS or SS. 

The following identifiers are used in the algorithmic descriptions: 

• OperandSize represents the operand-size attribute of the instruction, which is either 
16 or 32 bits. AddressSize represents the address-size attribute, which is either 16 or 
32 bits. For example, 

IF instruction = CMPSW 
THEN OperandSize ... 16; 
ELSE 

FI; 

IF instruction = CMPSD 
THEN OperandSize ... 32; 
FI; 

indicates that the operand-size attribute depends on the form of the CMPS instruction 
used. Refer to the explanation of address-size and operand-size attributes at the begin­
ning of this chapter for general guidelines on how these attributes are determined. 

• SRC represents the source operand. When there are two operands, SRC is the one on 
the right. 

13-11 



376™ PROCESSOR INSTRUCTION SET 

• DEST represents the destination operand. When there are two operands, DEST is the 
one on the left. 

• LeftSRC, RightSRC distinguishes between two operands when both are source operands. 

The following functions are used in the algorithmic descriptions: 

• Truncate to 16 bits(value) reduces the size of the value to fit in 16 bits by discarding the 
uppermost bits as needed. 

• Addr(operand) returns the effective address of the operand (the result of the effective 
address calculation prior to adding the segment base). 

• ZeroExtend(value) returns a value zero-extended to the operand-size attribute of the 
instruction. For example, if Operand Size = 32, Zero Extend of a byte value of 
-10 converts the byte from F6H to doubleword with hexadecimal value 000000F6H. 
If the value passed to ZeroExtend and the operand-size attribute are the same size, 
Zero Extend returns the value unaltered. 

• SignExtend(value) returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if OperandSize = 32, Sign Extend of a byte containing the 
value -10 converts the byte from F6H to a doubleword with hexadecimal value 
FFFFFFF6H. If the value passed to Sign Extend and the operand-size attribute are the 
same size, Sign Extend returns the value unaltered. 

• Push(value) pushes a value onto the stack. The number of bytes pushed is determined by 
the operand-size attribute of the instruction. The action of Push is as follows: 

IF Operand Size = 16 
THEN 

ESP +- ESP - 2; 
SS:[ESP] +- value; (* 2 bytes assigned starting at 

byte address in ESP*) 
ELSE (* OperandSize = 32 *) 

FI; 

ESP +- ESP - 4; 
SS:[ESP] +- value; (* 4 bytes assigned starting at 

byte address in ESP*) 

• Pop(value) removes the value from the top of the stack and returns it. The statement 
EAX +- pope ); assigns to EAX the 32-bit value that Pop took from the top of the stack. 
Pop will return either a word or a doubleword depending on the operand-size attribute. 
The action of Pop is as follows: 

IF Operand Size = 16 
THEN 

ret val +- SS:[ESP]; (* 2 bytes value *) 
ESP +- ESP + 2; 

ELSE (* OperandSize = 32 *) 

FI; 

ret val +- SS:[ESP]; (* 4 bytes value *) 
ESP +- ESP + 4; 

RETURN(ret val); (*returns a word or doubleword*) 

13-12 



376™ PROCESSOR INSTRUCTION SET 

• Bit[BitBase, BitOffset] returns the address of a bit within a bit string, which is a sequence 
of bits in memory or a register. Bits are numbered from low-order to high-order within 
registers and within memory bytes. In memory, the two bytes of a word are stored with 
the low-order byte at the lower address. 

If the base operand is a register, the offset can be in the range 0 .. 31. This offset addresses 
a bit within the indicated register. An example, liB [ T [ E A X, 2 1 I ," is illustrated in 
Figure 13-3. 

If BitBase is a memory address, BitOffset can range from - 2 gigabits to 2 gigabits. 
The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + 
(BitOffset DIY 8», where DIY is signed division with rounding towards negative infin­
ity, and MOD returns a positive number. This is illustrated in Figure 13-4. 

31 21 0 

II t 

G30117 

Figure 13-3. Bit Offset for BIT[EAX, 21] 

BIT INDEXING (POSITIVE OFFSET) 

7 6 543 2 1 0 7 6 543 2 1 0 7 6 543 2 1 0 

I I I I I 
I BITBASE + 1 I BITBASE 

• OFFSET ~ 13--..J 

BITBASE - 1 

BIT INDEXING (NEGATIVE OFFSET) 

7 6 5 4 3 2 1 0 7 65 4 3 2 1 0 7 6 5 4 3 2 1 0 

I I I J 
I BITBASE BITBASE - 1 I BITBASE 2 I 

---- OFFSET ~ -11--.J 

G30117 

Figure 13-4. Memory Bit Indexing 

13-13 



376™ PROCESSOR INSTRUCTION SET 

• I-O-Permission(I-O-Address, width) returns TRUE or FALSE depending on the I/O 
permission bitmap and other factors. This function is defined as follows: 

Ptr +- [TSS + 66]; (* fetch bitmap pOinter *) 
BitStringAddr +- SHR (I-a-Address, 3) + Ptr; 
MaskShift +- I-a-Address AND 7; 
CASE width OF: 

ESAC; 

BYTE: nBitMask +- 1; 
WORD: nBitMask +- 3; 
DWORD: nBitMask +- 15; 

mask +- SHL (nBitMask, MaskShift); 
CheckString+- [BitStringAddr] AND mask; 
IF CheckString = 0 
THEN RETURN (TRUE); 
ELSE RETURN (FALSE); 
FI; 

• Switch-Tasks is the task switching function described in Chapter 6. 

13.2.2.6 DESCRIPTION 

The "Description" section contains further explanation of the instruction's operation. 

13.2.2.7 FLAGS AFFECTED 

The "Flags Affected" section lists the flags that are affected by the instruction, as follows: 

• If a flag is always cleared or always set by the instruction, the value is given (0 or 1) 
after the flag name. Arithmetic and logical instructions usually assign values to the 
status flags in the uniform manner described in Appendix C. Nonconventional assign­
ments are described in the "Operation" section. 

• The values of flags listed as "undefined" may be changed by the instruction in an 
indeterminate manner. 

All flags not listed are unchanged by the instruction. 

13.2.2.8 EXCEPTIONS 

This section lists the exceptions that can occur when the instruction is executed. The excep­
tion names are a pound sign (#) followed by two letters and an optional error code in paren­
theses. For example, #GP(O) denotes a general protection exception with an error code of O. 
Table 13-4 associates each two-letter name with the corresponding interrupt number. 

Chapter 8 describes the exceptions and the 376 processor state upon entry to the exception. 

Application programmers should consult the documentation provided ,with their operating 
systems to determine the actions taken when exceptions occur. 

13-14 



376™ PROCESSOR INSTRUCTION SET 

Table 13·4. 376™ Processor Exceptions 

Mnemonic Interrupt Description 

#UD 6 Invalid opcode 
#NM 7 Coprocessor not available 
#DF 8 Double fault 
#TS 10 Invalid TSS 
#NP 11 Segment or gate not present 
#SS 12 Stack fault 
#GP 13 General protection fault 
#MF 16 Math (coprocessor) fault 

13-15 



376™ PROCESSOR INSTRUCTION SET 

AAA - ASCII Adjust after Addition 

Opcode 

37 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

AAA 4 ASCII adjust AL after addition 

IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL +- (AL + 6) AND OFH; 
AH +- AH + 1; 
AF +- 1; 
CF +- 1; 

ELSE 
CF +- 0; 
AF +- 0; 

FI; 

Execute AAA only following an ADD instruction that leaves a byte result 
in the AL register. The lower nibbles of the operands of the ADD 
instruction should be in the range 0 through 9 (BCD digits). In this case, 
AAA adjusts AL to contain the correct decimal digit result. If the 
addition produced a decimal carry, the AH register is incremented, and 
the carry and auxiliary carry flags are set to 1. If there was no decimal 
carry, the carry and auxiliary flags are set to 0 and AH is unchanged. 
In either case, AL is left with its top nibble set to O. To convert AL to 
an ASCII result, follow the AAA instruction with OR AL, 30H. 

AF and CF as described above; OF, SF, ZF, and PF are undefined 

None 

13-16 



376™ PROCESSOR INSTRUCTION SET 

AAD-ASCII Adjust AX before Division 

Opcode 

D5 OA 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

AAD 19 

AL +- AH * 10 + AL; 
AH +- 0; 

Description 

ASCII adjust AX before division 

AAD is used to prepare two unpacked BCD digits (the least-significant 
digit in AL, the most-significant digit in AH) for a division operation 
that will yield an unpacked result. This is accomplished by setting AL 
to AL + (10 * AH), and then setting AH to O. AX is then equal to the 
binary equivalent of the original unpacked two-digit number. 

SF, ZF, and PF as described in Appendix C; OF, AF, and CF are 
undefined 

None 

13-17 



~76TM PROCESSOR INSTRUCTION SET 

AAM - ASCII Adjust AX after Multiply 

Opcode 

04 OA 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

AAM 17 ASCII adjust AX after multiply 

AH +- AL /10; 
AL +- AL MOD 10; 

Execute AAM only after executing a MUL instruction between two 
unpacked BCD digits thatJeaves the result inthe AX register. Because 
the result is less than 100, it is contained entirely in the AL register. 
AAM unpacks the AL result by dividing AL-byl0, leaving the quotient 
(most-significant digit) in AH and the remainder (least-significant digit) 
in AL. 

SF, ZF, and PF as described in Appendix C; OF, AF, and CF are 
undefined 

None 

13-18 



376™ PROCESSOR INSTRUCTION SET 

AAS-ASCII Adjust AL after Subtraction 

Opcode 

3F 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

AAS 4 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL +- AL - 6; 
AL +- AL AND OFH; 
AH +- AH - 1; 
AF +- 1; 
CF +- 1; 

ELSE 
CF +- 0; 
AF +- 0; 

FI; 

Description 

ASCII adjust AL after subtraction 

Execute AAS only after a SUB instruction that leaves the byte result in 
the AL register. The lower nibbles of the operands of the SUB instruc­
tion must have been in the range 0 through 9 (BCD digits). In this case, 
AAS adjusts AL so it contains the correct decimal digit result. If the 
subtraction produced a decimal carry, the AH register is decremented, 
and the carry and auxiliary carry flags are set to 1. If no decimal carry 
occurred, the carry and auxiliary carry flags are set to 0, and AH is 
unchanged. In either case, AL is left with its top nibble set to O. To 
convert AL to an ASCII result, follow the AAS with OR AL, 30H. 

AF and CF as described above; OF, SF, ZF, and PF are undefined 

None 

13-19 



376TI>1 PROCESSOR INSTRUCTION SET 

ADC-Add with Carry 

Opcode 

14 ib 
15 iw 
1015 id 
80 /2 ib 
6681 /2 iw 
81 /2 id 
6683 /2 ib 

83/2 ib 

10/r 
6611 /r 
11 /r 
12 /r 
6613 /r 
13/r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

ADCAL,imm8 2 
ADCAX,imm16 2 
ADC EAX,imm32 2 
ADC rlm8,imm8 2/7 
ADC rlm16,imm16 2/7 
ADC rlm32,imm32 2/11 
ADC rlm16,imm8 2/7 

ADC rlm32,imm8 2/11 

ADCrlm8,r8 2/7 
ADC rlm16,r16 2/7 
ADC rlm32,r32 2/11 
ADC r8,rlm8 2/6 
ADC r16,rlm16 2/6 
ADC r32,rlm32 2/8 

DEST +- DEST + SRC + CF; 

Description 

Add with carry immediate byte to AL 
Add with carry immediate word to AX 
Add with carry immediate dword to EAX 
Add with carry immediate byte to rim byte 
Add with carry immediate word to rim word 
Add with CF immediate dword to rim dword 
Add with CF sign-extended immediate byte 
to rim word 
Add with CF sign-extended immediate byte into 
rlmdword 
Add with carry byte register to rim byte 
Add with carry word register to rim word 
Add with CF dword register to rim dword 
Add with carry rim byte to byte register 
Add with carry rim word to word register 
Add with CF rim dword to dword register 

ADC performs an integer addition of the two operands DEST and SRC 
and the carry flag, CF. The result of the addition is assigned to the first 
operand (DEST), and the flags. are set accordingly. ADC is usually 
executed as part . of a multi-byte or multi-word addition 
operation. When an immediate byte value is added to a word or double­
word operand, the immediate value is first sign-extended to the size of 
the word or doubleword operand. 

OF, SF, ZF, AF, CF, and PF as described in Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-20 



ADD-Add 

Opcode 

04 ib 
6605 iw 
05 id 
80 /0 ib 
6681 /0 iw 
81 /0 id 
6683 /0 ib 
83 /0 ib 
00 /r 
6601 /r 
01 /r 
02 /r 
6603 /r 
03 /r 

Operation 

Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

Instruction 

ADDAL,immB 
ADD AX,imm16 
ADD EAX,imm32 
ADD r/mB,immB 
ADD r/mI6,immI6 
ADD r/m32,imm32 
ADD r/mI6,immB 
ADD r/m32,immB 
ADD r/mB,rB 
ADD r/mI6,rI6 
ADD r/m32,r32 
ADD rB,r/mB 
ADD rI6,r/mI6 
ADD r32,r/m32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11 
2/7 
2/11 
2/7 
2/7 
2/11 
2/6 
2/6 
2/8 

DEST +- DEST + SRC; 

Description 

Add immediate byte to AL 
Add immediate word to AX 
Add immediate dword to EAX 
Add immediate byte to r/m byte 
Add immediate word to r/m word 
Add immediate dwordto r/m dword 
Add. sign-extended immediate byte to r/m word 
Add sign-extended immediate byte to r/m dword 
Add byte register to r/m byte 
Add word register to r/m word 
Add dword register to r/m dword 
Add r/m byte to byte register, 
Add r/m word to word register 
Add r/m dword to dword register 

ADD performs an integer addition of the two operands (DEST and 
SRC). The result of the addition is assigned to the first operand (DEST), 
and the flags are set accordingly~ 

When an immediate byte is added to a word or doubleword operand, the 
immediate value is sign-extended to the size of the word or doubleword 
operand. 

OF, SF, ZF, AF, CF,and PFasdescribed in Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-21 



376™PROCESSOR INSTRUCTION SET 

AND-Logical AND 

Opcode 

24 ib 
6625 iw 
25 id 
80 14 ib 
6681 14 iw 
81 14 id 
6683 14 ib 
83 14ib 
20lr 
6621 Ir 
21 Ir 
22 Ir 
6623 Ir 
23 Ir 

Instruction 

ANDAL,imm8 
AND AX,imm16 . 
AND EAX,imm32 
AND rlm8,imm8 
AND rlm16,imm16 
AND rlm32,imm32 

. ·AND rlm16,imm8 
AND rlm32,inim8 
AND rlm8,r8 
AND rlm16,r16 
AND rlm32,r32 
AND r8,rlm8 
AND r16,rlm16 
AND r32,rlm32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11'. 
2/7 
2/11 
2/7 

·2/7 . 
2111 
.2/6 .. 
216 
'2/8.~ 

Operation DEST ~ DEST AND SRC; 
CF ~ 0; 
OF ~ 0;. 

Description 

AND immediate byte to AL 
AND immediate word to AX 
AND immediate dword to EAX 
AND immediate byte to rim byte 
AND immediate word to rim word 
AND immediate dword to rlmdword 
AND sign-extended immediate byte with rim word 
AND sign-extended immediate byte with rim dword 
AND byte register to rim byte 
AND word register to rim word 
AND dword register to rim dword 
AND rim byte to byte register 
AND rim word to word register 
AND rim dword to dword register 

Description Each bit of the result of the AND instruction is a 1 if both correspond­
ing bits of the operands are 1; otherwise, it becomes a O. 

Flags Affected . CF = 0, OF ==0; PF, SF, and ZF as described in Appendix C 

Exceptions #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operaIld effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-22 



376™ PROCESSOR INSTRUCTION SET 

ARPL-Adjust RPL Field of Selector 

Opcode 

63 /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

ARPL r/m16,r16 20/21 Adjust RPL of r/m16 to not less than RPL of r16 

IF RPL bits(O,1) of DEST < RPL bits(O,1) of SRC 
THEN 

ZF +- 1; 
RPL bits(O,1) of DEST +- RPL bits(O,1) of SRC; 

ELSE 
ZF +- 0; 

FI; 

The ARPL instruction has two operands. The first operand is a 16-bit 
memory variable or word register that contains the value of a selector. 
The second operand is a word register. If the RPL field ("requested 
privilege level"-bottom two bits) of the first operand is less than the 
RPL field of the second operand, the zero flag is set to 1 and the RPL 
field of the first operand is increased to match the second operand. 
Otherwise, the zero flag is set to 0 and no change is made to the first 
operand. 

ARPL appears in operating system software, not in application programs. 
It is used to guarantee that a selector parameter to a subroutine does 
not request more privilege than the caller is allowed. The second operand 
of ARPL is normally a register that contains the CS selector value of 
the caller. 

ZF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-23 



376™ PROCESSOR INSTRUCTION SET 

BOUND-Check Array Index Against Bounds 

Opcode 

6662 Ir 
62 Ir 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

BOUND r16,m16&16 10 
BOUND r32,m32&32 14 

Description 

Check if r16 is within bounds (passes test) 
Check if r32 is within bounds (passes test) 

IF (LeftSRC < [RightSRC] OR LeftSRC > [RightSRC + OperandSize/8]) 
(* Under lower bound or over upper bound *) 

THEN Interrupt 5; 
FI; 

BOUND ensures that a signed array index is within the limits specified 
by a block of memory consisting of an upper and a lower bound. Each 
bound uses one word for an operand-size attribute of 16 bits and a 
doubleword for an operand-size attribute of 32 bits. The first operand (a 
register) must be greater than or equal to the first bound in memory 
(lower bound), and less than or equal to the second bound in memory 
(upper bound). If the register is n()t within bounds, an Interrupt 5 occurs; 
the return ElP points to the BOUND instruction. 

The bounds limit data structure is usually placed just before the array 
itself, making the limits addressable via a constant offset from the begin­
ning of the array. 

None 

Interrupt 5 if the bounds test fails, as described above; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment. 

The second operand must be a memory operand, not a register. If 
BOUND is executed with a ModRM byte representing a register as the 
second operand, #UD occurs. 

13-24 



inter 376™ PROCESSOR INSTRUCTION SET 

BSF -Bit Scan Forward 

Opcode 

66 OF BC 
OF BC 

Notes 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

BSF r16,rjm16 
BSF r32,rjm32 

Clocks 

10+3n 
14+3n 

Description 

Bit scan forward on rjm word 
Bit scan forward on rjm dword 

n is the number of leading zero bits. 

IF rim = 0 
THEN 

ZF +- 1; 
register +- UNDEFINED; 

ELSE 
temp +- 0; 
ZF +- 0; 
WHILE BIT[rlm, temp = 0] 
DO 

temp +- temp + 1; 
register +- temp; 

00; 
FI; 

BSF scans the bits in the second word or doubleword operand starting 
with bit O. The ZF flag is cleared if the bits are all 0; otherwise, the ZF 
flag is set and the destination register is loaded with the bit index of the 
first set bit. 

ZF as described above 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS( 0) for an illegal address in the SS segment 

13-25 



376™ PROCESSOR INSTRUCTION SET 

BSR-Bit Scan Reverse 

Ope ode 

66 OF BD 
OF BD 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

BSR r.16.r/m16 
BSR r32.r/m32 

IF r/m = 0 
THEN 

ZF +- 1; 

Clocks 

10+3n 
14+3n 

register +- UNDEFINED; 
ELSE 

temp +- OperandSize - 1; 
ZF +- 0; 
WHILE BIT[r/m, temp] = 0 
DO 

temp +- temp - 1; 
register +- temp; 

00; 
FI; 

Description 

Bit scan reverse on r/m word 
Bit scan reverse on r/m dword 

BSR scans the bits in the second word or doubleword operand from the 
most significant bit to the least significant bit. The ZF flag is cleared if 
the bits are all 0; otherwise, ZF is set and the destination register is 
loaded with the bit index of the first set bit found when scanning in the 
reverse direction. 

ZF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-26 



376™ PROCESSOR INSTRUCTION SET 

BT-Bit Test 

Opcode 

66 OF A3 
OF A3 
66 OF BA /4 ib 
OF BA /4 ib 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction 

BT r/m16,r16 
BT r/m32,r32 
BT r/m16,immB 
BT r/m32,immB 

Clocks 

3/12 
3/14 
3/6 
3/8 

CF +- BIT[LeftSRC, RightSRC]; 

Description 

Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 
Save bit in carry flag 

BT saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag. 

CF as described above 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 are supported by using the immediate bit offset field in 
combination with the displacement field of the memory operand. The 
low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 376 processor may access four 
bytes starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIY 32)) 

for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + (2 * (BitOffset DIY 16)) 

for a 16-bit operand size. It may do so even when only a single byte 
needs to be accessed in order to reach the given bit. You must therefore 
avoid referencing areas of memory close to memory boundaries. In 
particular, avoid references to memory-mapped I/O registers. Instead, 
use the MOY instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 

13-27 



376™ PROCESSOR INSTRUCTION SET 

BTC-Bit Test and Complement 

Opcode 

66 OF BB 
OF BB 
66 OF BA /7 ib 
OF BA /7 ib 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction Clocks 

BTC r/m16,r16 6/13 
BTC r/m32,r32 6/17 
BTC r/m16,immB 6/8 
BTC r/m32,immB 6/12 

CF +- BIT[LeftSRC, RightSRC); 

Description 

Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 
Save bit in carry flag and complement 

BIT[LeftSRC, RightSRC) +- NOT BIT[LeftSRC, RightSRC); 

BTC saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag and then complements 
the bit. 

CF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 are supported by using the immediate bit offset field in 
combination with the displacement field of the memory operand. The 
low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 376 processor may access four 
bytes starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

13-28 



376™ PROCESSOR INSTRUCTION SET 

for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + (2 * (BitOffset DIY 16)) 

for a 16-bit operand size. It may do so even when only a single byte 
needs to be accessed in order to reach the given bit. You must therefore 
avoid referencing areas of memory close to memory boundaries. In 
particular, avoid references to memory-mapped I/O registers. Instead, 
use the MOY instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 

13-29 



376™ PROCESSOR INSTRUCTION SET 

BTR-Bit Test and Reset 

Opcode 

66 OF B3 
OF B3 
66 OF BA /6 ib 
OF BA /6 ib 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction 

BTR r/m16,r16 
BTR r/m32,r32 
BTR r/m16,immB 
BTR r/m32,immB 

Clocks 

6/13 
6/17 
6/8 
6/12 

CF +- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] +- 0; 

Description 

Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 
Save bit in carry flag and reset 

BTR saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag and then stores 0 in 
the bit. 

CF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 (or 15) are supported by using the immediate bit offset 
field in combination with the displacement field of the memory operand. 
The low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the 376 processor may access four 
bytes starting from the memory address given by: 

Effective Address + 4 * (BitOffset DIV 32) 

13-30 



376™ PROCESSOR INSTRUCTION SET 

for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + 2 * (BitOffset DIV 16) 

for a 16-bit operand size. It may do so even when only a. single byte 
needs to be accessed in order to reach the given bit. You must therefore 
avoid referencing areas of memory close to memory boundaries. In 
particular, avoid references to memory-mapped I/O registers. Instead, 
use the MOV instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 

13-31 



376™ PROCESSOR INSTRUCTION SET 

BTS-Bit Test and Set 

Opcode 

66 OF AS 
OF AS 
66 OF SA /5 ib 
OF SA /5 ib 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction 

STS r/m16,r16 
STS r/m32,r32 
STS r/m16,immB 
STS r/m32,immB 

Clocks 

6/13 
6/17 
6/8 
6/12 

CF f- BIT[LeftSRC, RightSRC]; 
BIT[LeftSRC, RightSRC] f- 1; 

Description 

Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 
Save bit in carry flag and set 

BTS saves the value of the bit indicated by the base (first operand) and 
the bit offset (second operand) into the carry flag and then stores 1 in 
the bit. 

CF as described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

The index of the selected bit can be given by the immediate constant in 
the instruction or by a value in a general register. Only an 8-bit immedi­
ate value is used in the instruction. This operand is taken modulo 32, so 
the range of immediate bit offsets is 0 .. 31. This allows any bit within a 
register to be selected. For memory bit strings, this immediate field gives 
only the bit offset within a word or doubleword. Immediate bit offsets 
larger than 31 are supported by using the immediate bit offset field in 
combination with the displacement field of the memory operand. The 
low-order 3 to 5 bits of the immediate bit offset are stored in the 
immediate bit offset field, and the high order 27 to 29 bits are shifted 
and combined with the byte displacement in the addressing mode. 

When accessing a bit in memory, the processor may access four bytes 
starting from the memory address given by: 

Effective Address + (4 * (BitOffset DIV 32)) 

for a 32-bit operand size, or two bytes starting from the memory address 
given by: 

Effective Address + (2 * (BitOffset DIV 16)) 

for a 16-bit operand size. It may do this even when only a single byte 
needs to be accessed in order to get at the given bit. Thus the program­
mer must be careful to avoid referencing areas of memory close to 
memory boundaries. In particular, avoid references to memory-mapped 
I/O registers. Instead, use the MOV instructions to load from or store 
to these addresses, and use the register form of these instructions to 
manipulate the data. 

13-32 



376™ PROCESSOR INSTRUCTION SET 

CALL-Call Procedure 

Opcode 

EB cd 
FF /2 
9A cp 
9A cp 
9A cp 
9A cp 
9A cp 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 

Instruction 

CALL rel32 
CALL r/m32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr16:32 
CALL ptr32:32 
CALL ptr16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 
CALL m16:32 

Clocks 

9+m 
9+m/12+m 
42+m 
64+m 
9B+m 
106+Bx+m 
ts 
46+m 
6B+m 
102+m 
110+Bx+m 
5 + ts 

Description 

Cali near, displacement relative to next instruction 
Cali near, indirect 
Cali intersegment, to fuli pOinter given 
Cali gate, same privilege 
Cali gate, more privilege, no parameters 
Cali gate, more privilege, x parameters 
Cali to task 
Cali intersegment, address at rim dword 
Cali gate, same privilege 
Cali gate, more privilege, no parameters 
Cali gate, more privilege, x parameters 
Cali to task 

NOTE: Values of ts are 392 for a direct cali and 404 via a task gate. 

Operation IF rel32 type of call 
THEN (* near relative call *) 

Push(EIP); 
EIP +- EIP + re132; 

FI; 

IF r/m32 type of call 
THEN (* near absolute call *) 

Push(EIP); 
EIP+- [r/m32]; 

FI; 

IF instruction = far CALL 
THEN 

If indirect, then check access of EA doubleword; 
#GP(O) if limit violation; 

New CS selector must not be null else #GP(O); 
Check that new CS selector index is within its 

descriptor table limits; else #GP(new CS selector); 
Examine AR byte of selected descriptor for various legal values; 

depending on value: 
go to CONFORMING-CODE-SEGMENT; 
go to NONCONFORMING-CODE-SEGMENT; 
go to CALL-GATE; 
go to TASK-GATE; 
go to TASK-STATE-SEGMENT; 

ELSE #GP(code segment selector); 
FI; 

13-33 



inter 376™ PROCESSOR INSTRUCTION SET 

CONFORMING-CODE-SEGMENT: 
DPL must be :5 CPL ELSE #GP(code segment selector); 
Segment must be. present ELSE #NP(code segment selector); 
Stack must be big enough for return address ELSE #SS(O); 
Instruction pointer must be in code segment limit ELSE #GP(O); 
Load code segment descriptor into CS register; 
Load CS with new code segment selector; 
Load EIP with new offset; 

NONCONFORMING-CODE-SEGMENT: 
RPL must be.:5 CPL ELSE #GP(code segment selector) 
DPL must be = CPL ELSE #GP(code segment selector) 
Segment must be present ELSE #NP(code segment selector) 
Stack must be big enough for return address ELSE #SS(O) 
Instruction pointer must be in code segment limit ELSE #GP(O) 
Load code segment descriptor into CS register 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load EIP with new offset; 

CALL-GATE: 
Call gate DPL must be 2:: CPL ELSE #GP(call gate selector) 
Call gate DPL must be 2:: RPL ELSE #GP(call gate selector) 
Call gate must be present ELSE #NP(call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null ELSE #GP(O) 
Selector must be within its descriptor table 

limits ELSE #GP(code segment selector) 
AR byte of selected descriptor must indicate code 

segment ELSE #GP(code segment selector) 
DPL of selected descriptor must be :5 CPL ELSE 

#GP(code segment selector) 
IF non-conforming code segment AND DPL < CPL 
THEN go to MORE-PRIVILEGE 
ELSE go to SAME-PRIVILEGE 
FI; 

MORE-PRIVILEGE: 
Get new SS selector for new privilege level from TSS 

Check selector and descriptor for new SS: 
Selector must not be null ELSE #TS(O) 
Selector index must be within its descriptor 

table limits ELSE #TS(SS selector) 
Selector's RPL must equal DPL of code segment 

ELSE #TS(SS selector) 
Stack segment DPL must equal DPL of code 

segment ELSE #TS(SS selector) 
Descriptor must indicate writable data segment 

ELSE #TS(SS selector) 
Segment present ELSE #SS(SS selector) 

13-34 



376™ PROCESSOR INSTRUCTION SET 

New stack must have room for parameters plus 16 bytes 
ELSE #SS(O) 

EIP must be in code segment limit ELSE #GP(O) 
Load new SS:ESP value from TSS 
Load new CS:EIP value from gate 
Load CS descriptor 
Load SS descriptor 
Push long pOinter of old stack onto new stack· 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack .. 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

SAME-PRIVILEGE: 
Stack must have room for 6-byte return address (padded to 8 bytes) 

ELSE #SS(O) 
EIP must be within code segment limit ELSE #GP(O) 
Load CS:EIP from gate· . 
Push return address onto stack 
Load code segment descriptor into CS register 
Set RPL of CS to CPL . 

TASK-GATE: 
Task gate DPL must be 2:: CPL ELSE #TS(gate selector) 
Task gate DPL must be 2:: RPL ELSE #TS(gate selector) 
Task Gate must be present ELSE #NP(gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE#TS(TSS selector) 
Index must be within GDT limits ELSE #TS(TSS selector) 
TSS descriptor AR byte must specify non busy TSS 

ELSE #TS(TSS selector) 
Task State Segment must be present ELSE #NP(TSS selector) 

SWITCH-TASKS (with nesting) to TSS 
EIP must be in code segment limit ELSE #TS(O) 

TASK-ST ATE-SEGM ENT: 
TSS DPL must be 2:: CPL else #TS(TSS selector) 
TSS DPL must be 2:: RPL ELSE #TS(TSSselector) 
TSS descriptor AR byte must specify available TSS 

ELSE #TS(TSS selector) 
Task State Segment must be.present ELSE #NP(TSS selector) 
SWITCH-TASKS (with nesting) to TSS . 
EIP must be in code segment limit ELSE #TS(O) 

13-35 



Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

The CALL instruction causes the procedure named in the operand to be 
executed. When the procedure is complete (a return instruction is 
executedwithiil the procedure), execution continues at the instruction 
that follows the CALL instruction. 

The action of the different forms of the instruction are described below. 

Near calls are those with destinations of type r/m32, rel32; changing or 
saving the segment. register value is not necessary. The CALL rel32 form 
adds a signed . offset to the address of the instruction following CALL to 
determine the destination. The result is stored in the 32-bit EIP register. 
CALL r/m32 specifies a register or memory location from which the 
absolute segment offset is fetched. The offset of the instruction following 
CALL is pushed onto the stack. It will be popped by a near RET 
instruction within the procedure. The CS register is not changed by this 
form of CALL. 

. The far call,CALL ptf16:32, uses. a six-byte operand as a long pointer 
to.the procedure called. The:c:;ALL m16:32 form fetches the long pointer 

. from the memory ldcation specified (indirection). These forms of the 
instruction push both CS and EIP as a return address. Both long pointer 
forms consult the AR·.byte.in the descriptor indexed by the selector part 
of the long pointer. Depending on the value of the AR byte, the call will 
perform one of the following types of control transfers: 

• A far call to the same protection level 

• An inter-protection level far call 

• A task switch 

F,or mOre. information on Protected Mode control transfers, refer to 
Ch5lPter6 an4 Cha pter7. 

All flags' are affected if a task switCh occurs; no flags are affected if a 
task switch does not occur . 

For far calls:#GP, #NP,#SS, and #TS, as indicated in the list above 

For near direct calls: #GP(O) if procedure location is beyond the code 
segment limits; #SS(O) if pushing the return address exceeds the bounds 
of the stack segm~nt 

For a near indirect call: #GP(O) for an illegal memory operand effective 
address in theCS;'DS, ES, FS, or GS segments; #SS(O) for an illegal 
address in the SS segment; #GP(O) if the indirect offset obtained is 

.. beyond the code segment lil11its 

13-36 



inter 376™ PROCESSOR INSTRUCTION SET 

CBW /CWDE-Convert Byte to Word/Convert Word to Doubleword 

Opcode 

6698 
98 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

CBW 
CWDE 

Clocks 

3 
3 

Description 

AX +- sign-extend of AL 
EAX +- sign-extend of AX 

IF OperandSize = 16 (* instruction = CBW *) 
THEN AX +- SignExtend(AL); 
ELSE (* OperandSize = 32, instruction = CWDE *) 

EAX +- SignExtend(AX); 
FI; 

CBW converts the signed byte in AL to a signed word in AX by extend­
ing the most significant bit of AL (the sign bit) into all of the bits of 
AB. CWDE converts the signed word in AX to a doubleword in EAX 
by extending the most significant bit of AX into the two most significant 
bytes of EAX. Note that CWDE is different from CWD. CWD uses 
DX:AX rather than EAX as a destination. 

None 

None 

13-37 



376™ PROCESSOR INSTRUCTION SET 

CLC-ClearCarry Flag 

Opcode 

Fa 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

CLC 

CF +- 0; 

Clocks 

2 

Description 

Clear carry flag 

CLC sets the carry flag to zero. It does not affect other flags or registers. 

CF = 0 

None 

13-38 



376™ PROCESSOR INSTRUCTION SET 

CLD-Clear Direction Flag 

Opcode 

FC 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

CLD 

DF +- 0; 

Clocks 

2 

Description 

Clear direction flag; 81 and DI will increment during 
string instructions 

CLD clears the direction flag. No other flags or registers are affected. 
After CLD is executed, string operations will increment the index regis­
ters (SI and/or DI) that they use. 

DF = 0 

None 

13-39 



376™ PROCESSOR INSTRUCTION SET 

eLi-Clear Interrupt Flag 

Opcode 

FA 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

CLI 8 Clear interrupt flag; interrupts disabled 

IF +- 0; 

CLI clears the interrupt flag if the current privilege level is at least as 
privileged as 10PL. No other flags are affected. External interrupts are 
not recognized at the end of the CLI instruction or from that point on 
until the interrupt flag is set. 

IF = 0 

#GP(O) if the current privilege level is greater (has less privilege) than 
the 10PL in the flags register. 10PL specifies the least privileged level 
at which I/O can be performed. 

13-40 



376™ PROCESSOR INSTRUCTION SET 

CL TS-Clear Task-Switched Flag in CRO 

Opcode 

OF 06 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

CLTS 5 Clear task-switched flag 

TS Flag in CRO +- 0; 

CLTS clears the task-switched (TS) flag in register CRO. This flag is 
set by the processor every time a task switch occurs. The TS flag is used 
to manage processor extensions as follows: 

• Every execution of an ESC instruction is trapped if the TS flag is 
set. 

• Execution of a WAIT instruction is trapped if the MP flag and the 
TS flag are both set. 

Thus, if a task switch was made after an ESC instruction was begun, 
the processor extension's context may need to be saved before a new 
ESC instruction can be issued. The fault handler saves the context and 
resets the TS flag. 

CLTS appears in operating system software, not in application programs. 
It is a privileged instruction that can only be executed at privilege 
levelO. 

TS = 0 (TS is in CRO, not the flag register) 

#GP(O) if CLTS is executed with a current privilege level other than 0 

13-41 



376™ PROCESSOR INSTRUCTION SET 

CMC-Complement Carry Flag 

Opcode 

F5 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

CMC _ 

CF +- NOT CF; 

Clocks 

2 

Description 

Complement carry flag 

CMC reverses the setting of the carry flag. No other flags are affected. 

CF as described above 

None 

13-42 



inter 376™ PROCESSOR INSTRUCTION SET 

CMP-Compare Two Operands 

Opcode 

3C ib 
663D iw 
3D id 
80 /7 ib 
6681 /7 iw 
81 /7 id 
6683 /7 ib 
83 /7 ib 

38 /r 
6639 /r 
39 /r 
3A /r 
6636 /r 
36 /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

CMPAL,immB 
CMPAX,imm16 
CMP EAX,imm32 
CMP rlmB,immB 
CMP rlm16,imm16 
CMP rlm32,imm32 
CMP rlm16,immB 
CMP rlm32,immB 

CMP rlmB,rB 
CMP rlm16,r16 
CMP rlm32,r32 
CMP rB,rlmB 
CMP r16,rlm16 
CMP r32,rlm32 

Clocks 

2 
2 
2 
2/5 
2/5 
2/7 
2/5 
2/7 

2/5 
2/5 
2/7 
2/6 
2/6 
2/8 

Description 

Compare immediate byte to AL 
Compare immediate word to AX 
Compare immediate dword to EAX 
Compare immediate byte to rim byte 
Compare immediate word to rim word 
Compare immediate dword to rim dword 
Compare sign extended immediate byte to rim word 
Compare sign extended immediate byte to rim 
dword 
Compare byte register to rim byte 
Compare word register to rim word 
Compare dword register to rim dword 
Compare rim byte to byte register 
Compare rim word to word register 
Compare rim dword to dword register 

LeftSRC - SignExtend(RightSRC); 
(* CMP does not store a result; its purpose is to set the flags *) 

CMP subtracts the second operand from the first but, unlike the SUB 
instruction, does not store the result; only the flags are changed. CMP 
is typically used in conjunction with conditional jumps and the SETcc 
instruction. (Refer to Appendix D for the list of signed and unsigned 
flag tests provided.) If an operand greater than one byte is compared to 
an immediate byte, the byte value is first sign-extended. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-43 



376™ PROCESSOR INSTRUCTION SET 

CMPS/CMPSB/CMPSW ICMPSD-Compare String Operands 
Opcode 

A6 

66 A? 

A? 

A6 
66 A? 
A? 

Operation 

Description 

Instruction Clocks Description 

CMPSmB,mB 10 Compare bytes ES:[EDI] (second operand) with 
[ESI] (first operand) 

CMPS m16,m16 10 Compare words. ES:[EDI] (second operand) with 
[ESI] (first operand) 

CMPS m32,m32 14 Compare dwords ES:[EDI] (second operand) with 
[ESI] (first operand) 

CMPSB 10 Compare bytes ES:[EDI] with DS:[ESI] 
CMPSW 10 Compare words ES:[EDI] with DS:[ESI] 
CMPSD 14 Compare dwords ES:[EDI] with DS:[ESI] 

IF (instruction = CMPSD) OR 
(instruction has operands of type DWORD) 

THEN OperandSize ... 32; 
ELSE OperandSize ... 16; 
FI; 
IF byte type of instruction 
THEN 

[ESI] - [EDI]; (* byte comparison *) 
IF DF = 0 THEN IncDec ... 1 ELSE IncDec ... -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[ESI] - [ED I]; (* word comparison *) 
IF DF = 0 THEN IncDec ... 2 ELSE IncDec ... -2; FI; 

ELSE (* OperandSize = 32 *) 
[ESI] - [EDI]; (* dword comparison *) 
IF DF = OTHEN IncDec ... 4 ELSE IncDec ... -4; FI; 

FI; 
FI; 
ESI =ESI + IncDec; 
EDI = EDI + IncDec; 

CMPS compares the byte, word, or doubleword pointed to by the source­
index register with the byte, word, or doubleword pointed to by the 
destination-index register. 

ESI and EDI will be used for source- and destination-index registers. 
The correct index values must be loaded into ESI and EDI before 
executing CMPS. 

The comparison is done by subtracting the operand indexed by the 
destination-index register from the operand indexed by the source-index 
register. 

Note that the direction of subtraction for CMPS is [ESI] - [EDI]. The 
left operand, ESI, is the source and the right operand, EDI is the desti­
nation. This is the reverse of the usual Intel convention in which the left 
operand is the destination and the right operand is the source. 

13-44 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

The result of the subtraction is not stored; only the flags reflect the 
change. The types of the operands determine whether bytes, words, or 
doublewords are compared. For the first operand (ESI), the DS register 
is used, unless a segment override byte is present. The second operand 
(ED!) must be addressable from the ES register; no segment override is 
possible. 

After the comparison is made, both the source-index register and desti­
nation-index register are automatically advanced. If the direction flag is 
o (CLD was executed), the registers increment; if the direction flag is 1 
(STD was executed), the registers decrement. The registers increment 
or decrement by 1 if a byte is compared, by 2 if a word is compared, or 
by 4 if a doubleword is compared. 

CMPSB, CMPSW and CMPSD are synonyms for the byte, word, and 
doubleword CMPS instructions, respectively. 

CMPS can be preceded by the REPE or REPNE prefix for block 
comparison of ECX bytes, words, or doublewords. Refer to the descrip­
tion . of the REP instruction for more information on this 
operation. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-45 



376™ PROCESSOR INSTRUCTION SET 

CWO / COQ-Convert Word to Doubleword/Convert Doubleword to 
Quadword 

, Opcode 

6699 
99 

Operation' 

Instruction 

CWO 
COQ 

Clocks 

2 
2 

Description 

OX:AX +- sign-extend of AX 
EOX:EAX +- sign-extend of EAX 

IF Operand Size = 16 (* CWO instruction *) 
THEN ' 

IF AX < 0 THEN OX 4- OFFFFH; ELSE OX 4- 0; FI; 
ELSE (* OperandSize = 32, coa instruction *) 

IF EAX < 0 THEN EOX 4- OFFFFFFFFH; ELSE EOX ~ 0; FI; 
FI; 

Description CWD converts the signed word in AX to a signed doubleword in DX:AX 
by extending the most significant bit of AX ,into all the bits of DX. CDQ 
converts the signed doubleword in EAX to a signed 64-bit integer in the 
register pair EDX:EAX by extending the most significant bit of EAX 
(the sign bit) into all the bits of EDX. Note that CWD is different from 
CWDE. CWDE uses EAX as a destination, instead of DX:AX 

Flags Affected None 

Exceptions None 

13-46 



376™ PROCESSOR INSTRUCTION SET 

DAA-Decimal Adjust AL after Addition 

Opcode 

27 

Operation 

Description 

Flags Affected 

Exceptions 

InstructIon Clocks DescrIption 

DAA 4 Decimal adjust AL after addition 

IF ((AL AND OFH) > 9) OR (AF = 1) 
THEN 

AL +- AL + 6; 
AF +- 1; 

ELSE 
AF +- 0; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL +- AL + 60H; 
CF +- 1; 

ELSE CF +- 0; 
FI; 

Execute DAA only after executing an ADD instruction that leaves a 
two-BCD-digit byte result in the AL register. The ADD operands should 
consist of two packed BCD digits. The DAA instruction adjusts AL to 
contain the correct two-digit packed decimal result. 

AF and CF as described above; SF, ZF, PF, and CF as described in 
Appendix C. 

None 

13-47 



376™ PROCESSOR INSTRUCTION SET 

DAS-Decimal Adjust AL after Subtraction 

Opcode 

2F 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

DAS 4 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL +- AL - 6; 
AF +- 1; 

ELSE 
AF +- 0; 

FI; 
IF (AL > 9FH) OR (CF = 1) 
THEN 

AL +- AL - 60H; 
CF +- 1; 

ELSE CF +- 0; 
FI; 

Description 

Decimal adjust AL after subtraction 

Execute DASonly after a subtraction instruction that leaves a two-BCD­
digit byte result in the AL register. The operands should consist of two 
packed BCD digits. DAS adjusts AL to contain the correct packed two­
digit decimal result. 

AFand CF as described above; SF, ZF, and PF as described in 
Appendix C. 

None 

13-48 



376™ PROCESSOR INSTRUCTION SET 

DEC-Decrement by 1 

Opcode 

FE 11 
66 FF 11 
FF/1 
6648+rw 
48+rw 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

DEC r/m8 2/6 
DEC r/m16 2/6 
DEC r/m32 2/10 
DEC r16 2 
DEC r32 2 

DEST +- DEST - 1; 

Description 

Decrement rIm byte by 1 
Decrement rIm word by 1 
Decrement rIm dword by 1 
Decrement word register by 1 
Decrement dword register by 1 

DEC subtracts 1 from the operand. DEC does not change the carry flag. 
To affect the carry flag, use the SUB instruction with an immediate 
operand of 1. 

OF, SF, ZF, AF, and PF as described in Appendix C. 

#GP(O) if the result is a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-49 



376™ PROCESSOR INSTRUCTION SET 

DIV -Unsigned Divide 

Opcode 

F6/6 

66 F7 /6 

F7 /6 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

DIVAL,rjm8 

DIV AX,rjm16 

DIV EAX,rjm32 

Clocks 

14/17 

22/25 

38/43 

temp +- dividend I divisor; 
IF temp does not fit in quotient 
THEN Interrupt 0; 
ELSE 

quotient +- temp; 

Description 

Unsigned divide AX by rjm byte (AL=Quo, 
AH=Rem) 
Unsigned divide DX:AX by rjm word (AX=Quo, 
DX=Rem) 
Unsigned divide EDX:EAX by rjm dword 
(EAX=Quo, EDX=Rem) 

remainder +- dividend MOD (rim); 
FI; 

Note: Divisions are unsigned. The divisor is given by the rim operand. 
The dividend, quotient, and remainder use implicit registers. Refer to 
the table under "Description." 

DIV performs an unsigned division. The dividend is implicit; only the 
divisor is given as an operand. The remainder is always less than the 
divisor. The type of the divisor determines which registers to use as 
follows: 

Size Dividend Divisor Quotient Remainder 

byte AX rjmB AL AH 
word DX:AX rjm16 AX DX 
dword EDX:EAX rjm32 EAX EDX 

OF, SF, ZF, AR, PF, CF are undefined. 

Interrupt 0 if the quotient is too large to fit in the designated register 
(AL, AX, or EAX), or if the divisor is 0; #GP(O) for an illegal memory 
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(O) 
for an illegal address in the SS segment 

13-50 



376™ PROCESSOR INSTRUCTION SET 

ENTER-Make Stack Frame for Procedure Parameters 

Opcode 

CB iwOO 
CB iw01 
CBiwib 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

ENTER imm16,O 
ENTER imm16,1 
ENTER imm16,immB 

Clocks 

10 
14 
17+B(n-1) 

level ~ level MOD 32 

Description 

Make procedure stack frame 
Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

Push (ESP) (* Save stack pointer *) 
frame-ptr ~ ESP 
IF level> 0 
THEN (* level is rightmost parameter *) 

FOR i ~ 1 TO level - 1 
DO 

IF OperandSize = 16 
THEN 

SP ~ SP - 2; 
Push[SP] 

ELSE (* OperandSize = 32 *) 
ESP ~ ESP - 4; 
Push[ESP]; 

OD; 
Push(frame-ptr) 

FI; 
ESP ~ frame-ptr; 
ESP ~ ESP - ZeroExtend(First operand); 

ENTER creates the stack frame required by most block-structured high­
level languages. The first operand specifies the number of bytes of 
dynamic storage allocated on the stack for the routine being entered. 
The second operand gives the lexical nesting level (0 to 31) of the routine 
within the high-level language source code. It determines the number of 
stack frame pointers copied into the new stack frame from the preceding 
frame. EBP is the current stack frame pointer. 

If the second operand is 0, ENTER pushes the frame pointer EBP onto 
the stack; ENTER then subtracts the first operand from the stack pointer 
and sets the frame pointer to the current stack-pointer value. 

For example, a procedure with 12 bytes of local variables would have an 
ENTER 12,0 instruction at its entry point and a LEAVE instruction 
before every RET. The 12 local bytes would be addressed as negative 
offsets from the frame pointer. 

None 

#SS(O) if ESP would exceed the stack limit at any point during instruc­
tion execution 

13-51 



HLT-Halt 

Opcode 

F4 

Operation 

Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

Instruction Clocks Description 

HLT . 5 Halt 

Enter Halt state; 

HALT stops instruction execution and places the 386 microprocessor in 
a HALT state. An enabled interrupt, NMI, or a reset will resume execu­
tion. If an interrupt (including NMI) is used to resume execution after 
HLT, the saved CS:EIP value points to the instruction following HLT. 

None 

HLT is a privileged instruction; #GP(O) if the current privilege level is 
not 0 

13-52 



376™ PROCESSOR INSTRUCTION'SET 

IDIV -Signed Divide 

Opcode' 

F6 17 
66 F7 17 

F7 17 

Operation 

Description 

Instruction 

IDIV rlmB 
IDIV AX,rlm16 

IDIV EAX,rlm32 

. Clocks 

19/22 
27/~O 

45/48 

temp +- dividend I divisor; 
IF temp does not fit in quotient" 
THEN Interrupt 0; 
ELSE . 

quotient+- temp; 

. pescriptlon 

Signed divide AX by rim byte (AL=Quo, AH=Rem) 
'. Signed divide DX:AX by EA word (AX=Quo, 
~=~~. . .... , 
Signed divide EDX:EAX . by DWORD: byte 
(EAX=Quo, EDX:"Rem) . 

I:' 

~.,. ',! , ""':! 

,''.. 

remainder +. dividend MOQ (rim);. 
-'il 

FI; . 

Notes: Divisions are signed;.Th~.~~r~,s~tis·given :bythe r/tpppe,rahct;:The 
dividend, quotient,. and rem:airiderll~ej.Dl'plicit· regi~ters. Ref~r::t(Fthe table 
under "Description." ,. ·:j..l'. "';)' 

'''', 

IDlY performs a signed division: Th~dividend; quotie~t,~~d:remainder 
are implicitly allocated to fixed registers. Only.the divisords:given as an 
explicit rim operand. The type of the divisor determines which registers 
to use as follows: 

Size Divisor Quotient Remainder Dividend 

,,; , .,' 
byte rlmB AL AH AX 
word rlm16 AX ",. .. ,','DX' DX:AX 
dword' rlm32' EAX· . EDX EDX:EAX 

If the resulting quotient is too large to' fit in the destination, or if the 
division is 0, an Interrupt 0 is generated .. Nonintegral quotients are 
truncated toward O. The remainder has the same sign as the dividend 
and the absolute value of the .!emainder is always less than the absolute 
.value .of the divisor. : .'_,';' .... 

Flags Affected OF, SF,ZF, AR,PF, CF are undefined. ':, . 

·Exceptions .Interrupt 0 if the quotient is too large 'to fit in the designated register 
(AL or AX), odOhe divisor is 0; #GP(O) for an illegal memory operand 
effective address in the CS, ~S,.ES, .. r~; or as segJ:I;lents; #SS(O) for an 
illegal address in the SS segment 

13-53 



376™ PROCESSOR INSTRUCTION SET 

IMUL--Signed Multiply 

Opcode 

F6' /5 
66 F7 /5 
F7 i /5, 
660F AF /r 
OF AF /r 
6666 /fib 

66 /r ib 

6666/rib 

66 /rib 

6669/riw 
69 /rid 
6669 riw 
69 /r id 

Instruction Clocks 
,", 

IMULrlmB , 12-17/15-20 
IMUL rlm16 12-25/15-28 
IMUL rlm32 12-41/17-46 
IMUL r16i r/m1.6 12-25/15-28 
IMUL'r32,rlm32 12-41/17-46 

. IMUL r16,rlm16,immB 12-26/14-27 

IMUL r32,rlm32,immB 13-42/16-45 

IMUL r16,immB 12-26/14-27 

IMUL r32,immB 13-42/16-45 

IMUL r16,rlm16,imm16 12-26/14-27 
IMUL r32,rlm32,imm32 13-42/16-45 
IMUL r16,imm16 12-26/14-27 
IMUL r32,imm32 13-42/16-45 

Description 

AX+- AL· rim byte 
DX:AX +- AX • rim word 
EDX:EAX +- EAX • rim dword 
word register +- word register· rim word 
dword register +- dword register· rim dword 
word register +- rim 16 • sign-extended immediate 
byte 
dword register +- rlm32· sign-extended immediate 
byte 
word register +-. word register· sign-extended 
immediate byte 
dword register +- dword register • sign-extended 
immediate byte 
word register +- rim 16 • immediate word 
dword register +- r/m32· immediate dword 
word register +,' r/m16· immediate word 
dword register +- r/m32· immediate dword 

NOTES: The p~ocessor uses an early-out multiply algorithm. The actual number of clocks depends on the position of the 
most significant bit in the optimizing ,niultiplier; shown underlined above. The optimization occurs for positive and 
negative values, 6ecause cif the early~out algorithm,clock counts given are minimum to maximum. To calculate 
the actual clocks, use the following formula: 

Actual clock = if m <> 0 then max(ceiling(log2 1 m 1),3) + 9 clocks 
Actual clock = if m = 0 then 12 clocks 
,(where in is"the multiplier)" 

Addthree .clocksif the multiplier isa memory operand. 

Operation 

Description 

Flags Affected 

result +- multiplicand * multiplier; 

IMyL performs signed multiplication. Some forms of the instruction 
useimplicit register operands. The operand combinations for all forms 
of the instruction are shown in the "Description" column above. 

IMUL 'clears th,e overflow and, carry flags under the following 
conditions: ",-

. 

Instruction Form Condition for Clearing CF and OF 

rlmB AL = sign-extend of AL to 16 bits 
rim 16 AX = sign-extend of AX to 32 bits 
rlm32 EDX:EAX = sign-extend of EAX to 32 bits 
r16,rlm16 Result exactly fits within r16 
r132,rlm32 Result exactly fits within r32 
r16,rlm16,imm16 ' Result exac:tly fits within r16 

~ 
r32,r/m32,imm32 Result exac:tly fits within" r32 '- ' "" . .. 

OF and CF as described above; SF, ZF, AF, and PF are undefined 

13-54 



Exceptions 

Notes 

376™ PROCESSOR INSTRUCTION SET 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SSsegment 

When using the accumulator forms (IMUL rlmB, IMUL rlm16, or IMUL 
rlm32), the result of the multiplication is available even if the overflow 
flag is set because the result is two times the size .of the multiplicand and 
multiplier. This is large enough to handle any possible result. 

" ..... . 

13-55 



376™ PROCESSOR INSTRUCTION SET 

IN-Inputfrom Port· 

Opcode 

E4 ib 
66 E5 ib 
E5 ib« 
EC 
66 EO 
EO 

Instruction 

INAL,immB 
IN AX,imniB 
INEAXJmmB 
IN AL,OX 
IN AX,OX 
IN EAX,OX 

Clocks 

6*/26" 
. 6*/26** 

8*/28** 
7*/27** 
7*/27** 
9*/29** 

Description 

Input byte from immediate port into AL 
Input word trom immediate port into AX 
Input dword from immediate port into EAX 
Input byte from port OX into AL 
Input word from port OX into AX 
Input dword from port OX into EAX 

NOTES: *If CPL :s IOPL 
**If CPL > IOPL 

Operation 

Description 

Flags Affected 

Exceptions 

IF (CPL > 10PL) 
THEN 

IF NOT I-a-Permission (SRC, width(SRC)) 
THEN #GP(O); 
FI; 

FI; 
DEST +- [SRC]; (* Reads from I/O address space *) 

IN transfers a data byte or data word from the port numbered by the 
second operand into the register (AL, AX, or EAX) specified by the first 
operand. Access any port from 0 to 65535 by placing the port number 
in the DX register and using an IN instruction with DX as the second 
parameter. These I/O instructions can be shortened by using an 8-bit 
port I/O in the instruction. The upper eight bits of the port address will 
be 0 when 8-bit port I/O is used. 

None 

#GP(O) if the current privilege level is larger (has less privilege) than 
IOPL and any of the corresponding I/O permission bits in TSS 
equals 1 

13-56 



376™ PROCESSOR INSTRUCTION SET 

INC-Increment by 1 

Opcode 

FE /0 
66 F170 
FF /6 
6640+ rw 
40+ rd 

Op'eration 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

INCr/mB 2/6 , 
INC r/m16 2/6 
INCr/m32 2/10 
INC r16 2 
INC r32 2 

DEST +- DEST + 1; 

Description 

Increment rim byte by 1 
Increment rim word by 1 
Increment rim dword by 1 
Increment word register by 1 
Increment dword register by 1 

INC adds 1 to the operand. It does not change the carry flag. To affect 
the carry flag, use the ADD instruction with a second operand of 1. 

OF, SF, ZF, AF, and PF as described in Appendix C 

#GP(O) if the operand is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-57 



376™ PROCESSOR INSTRUCTION SET 

INS/INSB/INSW IINSO-Input from Port to String 

Opcode Instruction Clocks Description 

6C INS rlmB,OX 9*/29** Input byte from port OX into ES:(E)OI 
6660 INS rlm16,OX 9*/29** Input word from port OX into ES:(E)OI 
60 INS rlm32,OX 13*/33** Input dword from port OX into ES:(E)OI 
6C INSB 9*/29** Input byte from port OX into ES:(E)OI 
6660 INSW 9*/29** Input word from port OX into ES:(E)OI 
60 INSO 13*/33** Input dword from port OX into ES:(E)OI 

NOTES: *If CPL ::5 IOPL 
**If CPL > IOPL 

Operation 

Description 

IF (CPL > 10PL) 
THEN . 

IF NOT I-a-Permission (SRC, width(SRC» 
THEN #GP(O); 
FI; 

FI; 
IF byte type of instruction 
THEN 

ES:[EDI] +- [DX]; (* Reads byte at DX from I/O address space *) 
IF DF = 0 THEN IncDec +- 1 ELSE IncDec +- -1; FI; 

FI; 
IF Operand Size = 16 
THEN 

ES:[EDI] +- [DX]; (* Reads word at DX from I/O address space *) 
IF DF = 0 THEN IncDec +- 2 ELSE IncDec +- -2; FI; 

FI; 
IF OperandSize = 32 
THEN 

ES:[EDI] +- [DX]; (* Reads dword at DX from I/O address space *) 
IF DF = 0 THEN IncDec+- 4 ELSE IncDec +- -4; FI; 

FI; 
EDI +- EDI + IncDec; 

INS transfers data from the input port numbered by the DX register to 
the memory byte or word at ES:EDI. The memory operand must be 
addressable from ES; no segment override is possible. The destination 
register is EDI. 

INS does not allow the specification of the port number as an immediate 
value. The port must be addressed through the DX register value. Load 
the correct value into DX before executing the INS instruction. 

The destination address is determined by the contents of the destination 
index register. Load the correct index into the destination index register 
before executing INS. 

13-58 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

After the transfer is made, EDI advances automatically. If the direction 
flag is 0 (CLD was executed), ED! increments; if the direction flag is 1 
(STD was executed), EDI decrements. EDI increments or decrements 
by 1 if a byte is input, by 2 if a word is input, or by 4 if a doubleword is 
input. 

INSB, INSW and INSD are synonyms of the byte, word, and double­
word INS instructions. INS can be preceded by the REP prefix for block 
input of ECX bytes or words. Refer to the REP instruction for details 
of this operation. 

None 

#GP(O) if CPL is numerically greater than IOPL and any of the corre­
sponding I/0 permission bits in TSS equals 1; #GP(O) if the destination 
is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS( 0) for an 
illegal address in the SS segment 

13-59 



376™ PROCESSOR INSTRUCTION SET 

INT I INTO-Call to Interrupt Procedure 

Opcode 

CC 
cc 
CC 
CD ib 
CD ib 
CD ib 
CE 
CE 
CE 
CE 

Operation 

Instruction Clocks Description 

INT3 
INT3 
INT3 
INT immB 
INTimmB 
INTimmB 
INTO 
INTO 
INTO 
iNTO 

71 
111 
30B 
71 
111 
467 
3 
71 
111 
413 

Interrupt 3-same privilege 
Interrupt 3-more privilege 
Interrupt 3-via task gate 
Interrupt-same privilege 
Interrupt-more privilege 
Interrupt-via task gate 
Interrupt 4-if overflow flag is 1 
Interrupt 4-same privilege 
Interrupt 4-more privilege 
Interrupt 4-via task gate 

NOTE: The following operational description applies not only to the 
above instructions but also to external interrupts and exceptions. 

Interrupt vector must be within IDT table limits, 
else #GP( vector number * 8 + 2 + EXT); 

Descriptor AR byte must indicate interrupt gate, trap gate, or task gate, 
else #GP( vector number * 8 + 2 + EXT); 

IF software interrupt (* i.e. caused by INT n, INT 3, or INTO *) 
THEN 

IF gate descriptor DPL < CPL 
THEN #GP(vector number * 8+2+EXT); 
FI; 

FI; 
Gate must be present, else #NP( vector number * 8 + 2 + EXT); 
IF trap gate OR interrupt gate 
THEN GOTO TRAP-GATE-OR-INTERRUPT-GATE; 
ELSE GO TO TASK-GATE; 
FI; 

TRAP-GATE-OR-INTERRUPT -GATE: 
Examine CS selector and descriptor given in the gate descriptor; 
Selector must be non-null, else #GP (EXT); 
Selector must be within its descriptor table limits 

ELSE #GP(selector+ EXT); 
Descriptor AR byte must indicate code segment 

ELSE #GP(selector + EXT); 
Segment must be present, else #NP(selector+ EXT); 

IF code segment is non-conforming AND DPL < CPL 
THEN GOTO INTERRUPT -TO-INNER-PRIVILEGE; 
ELSE 

IF code segment is conforming OR code segment DPL = CPL 
THEN GOTO INTERRUPT -TO-SAME-PRIVILEGE-LEVEL; 
ELSE #GP( CS selector + EXT); 
PI; 

FI; 

13-60 



376™ PROCESSOR INSTRUCTION SET 

INTERRUPT -TO-INNER-PRIVILEGE: 
Check selector and descriptor for new stack in current TSS; 

Selector must be non-null, else #GP(EXT); 
Selector index must be within its descriptor table limits 

ELSE #TS(SS selector + EXT); 
Selector's RPL must equal DPL of code segment, else #TS(SS 

selector + EXT); 
Stack segment DPL must equal DPL of code segment, else #TS(SS 

selector + EXT); 
Descriptor must indicate writable data segment, else #TS(SS 

selector + EXT); 
Segment must be present, else #SS(SS selector + EXT); 

New stack must have room for 20 bytes else #SS(O) 
Instruction pointer must be within CS segment boundaries else #GP(O); 
Load new SS and ESP value from TSS; 
CS:EIP ~ selector:offset from gate; 
Load CS descriptor into invisible portion of CS register; 
Load SS descriptor into invisible portion of SS register; 
Push (long pointer to old stack) (* 3 words padded to 4 *); 
Push (EFLAGS); 
Push (long pointer to return location) (* 3 words padded to 4*); 
Set CPL to new code segment DPL; 
Set RPL of CS to CPL; 
IF interrupt gate THEN IF ~ 0 (* interrupt flag to 0 (disabled) *); FI; 
TF ~ 0; 
NT ~ 0; 

INTERRUPT -TO-SAME-PRIVILEGE-LEVEL: 
Current stack limits must allow pushing 10 bytes, else #SS(O); 
IF interrupt was caused by exception with error code 
THEN Stack limits must allow push of two more bytes; 
ELSE #SS(O); 
FI; 
Instruction pointer must be in CS limit, else #GP(O); 
Push (EFLAGS); 
Push (long pointer to return location); (* 3 words padded to 4 *) 
CS:EIP ~ selector:offset from gate; 
Load CS descriptor into invisible portion of CS register; 
Set the RPL field of CS to CPL; 
Push (error code); (* if any *) 
IF interrupt gate THEN IF ~ 0; PI; 
TF ~ 0; 
NT ~ 0; 

TASK-GATE: 
Examine selector to TSS, given in task gate descriptor; 

Must specify global in the local/global bit, else #TS(TSS selector); 
Index must be within GDT limits, else #TS(TSS selector); 

13-61 



Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

AR byte must specify available TSS (bottom bits 00001), 
else #TS(TSS selector; 

TSS must be present, else #NP(TSS selector); 
SWITCH-TASKS with nesting to TSS; 
IF interrupt was caused by fault with error code 
THEN 

Stack limits must allow push of two more bytes, else #SS(O); 
Push error code onto stack; 

FI; 
Instruction pointer must be in CS limit, else #GP(O); 

The INT n instruction generates via software a call to an interrupt 
handler. The immediate operand, from 0 to 255, gives the index number 
into the Interrupt Descriptor Table (IDT) of' the interrupt routine to be 
called. The IDT consists of an array of eight-byte descriptors; the 
descriptor for the interrupt invoked must indicate an interrupt, trap, or 
task gate. The base linear address of the IDT is defined by the contents 
of the IDTR. 

The INTO conditional software instruction is identical to the INT n 
interrupt instruction except that the interrupt number is implicitly 4, 
and the interrupt is made only if the processor overflow flag is set. 

The first 32 interrupts are reserved by Intel for system use. Some of 
these interrupts are use for internally generated exceptions. 

INT n generally behaves like a far call except that the flags register is 
pushed onto the stack before the return address. Interrupt procedures 
return via the IRET instruction, which pops the flags and return address 
from the stack. 

None 

#GP, #NP, #SS, and #TS as indicated under "Operation" above 

13-62 



376™ PROCESSOR INSTRUCTION SET 

IRETD-Interrupt Return 

Opcode 

CF 
CF 
CF 

Operation 

Instruction 

IRETO 
IRETO 
IRETO 

IF NT = 1 

Clocks 

42 
86 
328 

Description 

Interrupt return (far return and pop flags) 
Interrupt return to lesser privilege 
Interrupt return, different task (NT = 1) 

THEN GOTO TASK-RETURN; 
ELSE GOTO STACK-RETURN; 

FI; 

TASK-RETURN: 
Examine Back Link Selector in TSS addressed by the current task 

register: 
Must specify global in the local/global bit, else #TS(new TSS selector); 
Index must be within GOT limits, else #TS(new TSS selector); 
AR byte must specify TSS, else #TS(new TSS selector); 
New TSS must be busy, else #TS(new TSS selector); 
TSS must be present, else #NP(new TSS selector); 

SWITCH-TASKS without nesting to TSS specified by back link selector; 
Mark the task just abandoned as NOT BUSY; 
Instruction pointer must be within code segment limit ELSE #GP(O); 

STACK-RETURN: 
Third word on stack must be within stack limits, else #SS(O); 
Return CS selector RPL must be ~CPL, else #GP(Return selector); 
IF return selector RPL = CPL 
THEN GOTO RETURN-SAME-LEVEL; 
ELSE GOTO RETURN-OUTER-LEVEL; 
FI; 

RETURN-SAM E-LEVEL: 
Top 12 bytes on stack must be within limits, else #SS(O); 
Return CS selector (at ESP+4) must be non-null, else #GP(O); 
Selector index must be within its descriptor table limits, else #GP 

(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment OPL must = CPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment OPL must be .::::;CPL, else #GP(Return selector); 
Segment must be present, else #NP(Return selector); 
Instruction pointer must be within code segment boundaries, else #GP(O); 
FI; 

13-63 



376™ PROCESSOR INSTRUCTION SET 

Load CS:EIP from stack; 
Load CS-register with new code segment descriptor; 
Load EFLAGS with third doubleword from stack; 
Increment ESP by 12; 

RETURN-OUTER-LEVEL: 
Top 20 bytes on stack must be within limits, else #SS(O); 
Examine return CS selector and associated descriptor: 

Selector must be non-nUll, else #GP(O); 
Selector index must be within its descriptor table limits; 

ELSE #GP(Return selector); 
AR byte must indicate code segment, else #GP(Return selector); 
IF non-conforming 
THEN code segment DPL must = CS selector RPL; 
ELSE #GP(Return selector); 
FI; 
IF conforming 
THEN code segment DPL must be > CPL; 
ELSE #GP(Return selector); 
FI; 
Segment must be present, else #NP(Return selector); 

Examine return SS selector and associated descriptor: 
Selector must be non-nUll, else #GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(SS selector); 
Selector RPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
AR byte must indicate a writable data segment, else #GP(SS selector); 
Stack segment DPL must equal the RPL of the return CS selector 

ELSE #GP(SS selector); 
SS must be present, else #NP(SS selector); 

Instruction pOinter must be within code segment limit ELSE #GP(O); 
Load CS:EIP from stack; 
Load EFLAGS with values at (ESP+8); 
Load SS:ESP from stack; 
Set CPL to the RPL of the return CS selector; 
Load the CS register with the CS descriptor; 
Load the SS register with the SS descriptor; 
FOR each of ES, FS, GS, and DS 
DO; 

IF the current value of the register is not valid for the outer level; 
THEN zero the register and clear the valid flag; 
FI; 
To be valid, the register setting must satisfy the following properties: 

Selector index must be within descriptor table limits; 

13-64 



Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, 
THEN DPL must be ;::: CPL, or DPL must be ;::: RPL; 

00; 

The action of IRET depends on the setting of the nested task flag (NT) 
bit in the flag register. When popping the new flag image from thesta!;k, 
the IOPL bits in the flag register are changed only when CPL equals O. 

If NT equals 0, IRET returns from an interrupt procedure without a 
task switch. The code returned to must be equally or less privileged than 
the interrupt routine (as indicated by the RPL bits of the CS selector 
popped from the stack). If the destination code is less privileged, lRET 
also pops the stack pointer and SS from the stack. 

If NT equals 1, IRET reverses the operation ofa CALL or INT,that 
caused a task switch. The updated state of the task executing IRET is 
saved in its task state segment. If the task is reentered later, the,code 
that follows IRET is executed. ' , 

All; the flags register is popped from stack 

#GP, #NP, or #SS, as indicated under "Operation" above 

13-65 



376™ PROCESSOR INSTRUCTION SET 

JCC-Jumpif Condition is Met 

Opcode 

77 cb 
73 cb 
72cb 
76 cb 
72 cb 
66 E3 db' 
E3 cb 
74 .. cb 
74 cb 
7F cb 

.7Dcb 
7C cb 
7Ecb 
76 cb 
72 cb 
73 cb 
77 cb 
73 cb 

. 75 .. cb 
7Ecb 
7C cb 
7D cb 
7F cb 
71 cb 
7Bcb 
79 cb 
75 cb 
70 cb 
7A cb 
7A cb 
7B cb 
78 cb 
74 cb 
OF 87 cd 
OF 83 cd 
OF 82 cd 
OF 86 cd 
OF 82 cd 
OF 84 cd 
OF 84 cd 
OF 8F cd 
OF 8D cd 
OF 8C cd 
OF 8E cd 
OF 86 cd 
OF 82 cd 
OF 83 cd 
OF 87 cd 
OF 83 cd 
OF 85 cd 
OF 8E cd 
OF 8C cd 
OF 8D cd 
OF 8F cd 
OF 81 cd 
OF 8B cd 
OF 89 cd 
OF 85 cd 
OF 80 cd 
OF 8A cd 

Instruction 

JA rel8 
JAE rel8 
JB reI8 .. 
JBE rel8 
JC rel8 
JCXZ rel8 
JECXZ rel8 
JErel8 
JZ rel8 
JG rel8. 

'JGE rel8 
JLrel8 
JLE rel8 ' 
JNA rel8 
JNAE rel8 
JNB rel8 
JNBErel8 
JNCrel8 

. JNE rel8 . 
JNG rel8 
JNGE rel8 
JNL rel8 
JNLE rel8 
JNO rel8 
JNP rel8 
JNS rel8 
JNZ rel8 . 
JO rel8 
JP rel8 
JPE rel8 
JPO rel8 
JS rel8 
JZ rel8 
JA rel32 
JAE rel32 
JB rel32 
JBE rel32 
JC rel32 
JE rel32 
JZ rel32 
JG rel32 
JGE rel32 
JL rel32 
JLE rel32 
JNA rel32 
JNAE rel32 
JNB rel32 
JNBE rel32 
JNC rel32 
JNE rel32 
JNG rel32 
JNGE rel32 
JNL rel32 
JNLE rel32 
JNO rel32 
JNP rel32 
JNS rel32 
JNZ rel32 
JO rel32 
JP rel32 

Clocks 

7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
9+m,5 
9+m,5 
7+m,3 
7+m,3 

. 7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 . 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 
7+m,3 

13-66 

Description 

Jump short if above (CF=O and ZF=O) 
Jump short if above or equal (CF=O) 
Jump short if below (CF=1) 
Jump short if below or equal (CF=1 or ZF=1) 
Jump short if carry (CF = 1) 
Jump short if CX register is 0 
Jump short if ECX register is 0 
Jump short if equal (ZF=1) 
Jump short if 0 (ZF=1) 
Jump short if greater (ZF=O and SF=OF) 
Jump short if greater or equal (SF=OF) 
Jump short if less (SF<>OF) 
Jump short if less or equal (ZF=1 and SF<>OF) 
Jump short if not above (CF = 1 or ZF = 1) 
Jump short if not above or equal (CF=1) 
Jump short if not below (CF=O) 
Jump short if not below or equal (CF=O and ZF=O) 
Jump short if not carry (CF = 0) 
Jump short if not equal (ZF=O) 
Jump short if not greater (ZF=1 or SF<>OF) 
Jump short if not greater or equal (SF<>OF) 
Jump short if not less (SF=OF) 
Jump short if not less or equal (ZF=O and SF=OF) 
Jump short if not overflow (OF=O) 
Jump short if not parity (PF=O) 
Jump short if not sign (SF=O) 
Jump short if not zero (ZF=O) 
Jump short if overflow (OF=1) 
Jump short if parity (PF=1) 
Jump short if parity even (PF=1) 
Jump short if parity odd (PF=O) 
Jump short if sign (SF=1) 
Jump short if zero (ZF = 1) 
Jump near if above (CF=O and ZF=O) 
Jump near if above or equal (CF=O) 
Jump near if below (CF=1) 
Jump near if below or equal (CF=1 or ZF=1) 
Jump near if carry (CF=1) 
Jump near if equal (ZF=1) 
Jump near if 0 (ZF=1) 
Jump near if greater (ZF=O and SF=OF) 
Jump near if greater or equal (SF=OF) 
Jump near if less (SF<>OF) 
Jump near if less or equal (ZF=1 and SF<>OF) 
Jump near if not above (CF=1 or ZF=1) 
Jump near if not above or equal (CF=1) 
Jump near if not below (CF=O) 
Jump near if not below or equal (CF=O and ZF=O) 
Jump near if not carry (CF=O) 
Jump near if not equal (ZF=O) 
Jump near if not greater (ZF=1 or SF<>OF) 
Jump near if not greater or equal (SF<>OF) 
Jump near if not less (SF=OF) 
Jump near if not less or equal (ZF=O and SF=OF) 
Jump near if not overflow (OF=O) 
Jump near if not parity (PF = 0) 
Jump near if not sign (SF=O) 
Jump near if not zero (ZF=O) 
Jump near if overflow (OF=1) 
Jump near if parity (PF = 1) 



Opcode 

OF 8A cd 
OF 88 cd 
OF 88 cd 
OF 84 cd 

Instruction 

JPE rel32 
JPO rel32 
JS rel32 
JZ rel32 

376™ PROCESSOR INSTRUCTION'SET 

Clocks 

7+m,3 
7+m,3 
7+m,3 
7+m,3 

Description ' 

Jump near if parity even (PF=1) 
Jump near if parity odd (PF=O) 
Jump near if sign (SF=1) 
Jump near if 0 (ZF=1) 

NOTES: The first clock count is for the true condition (branch taken); the second clock count is for the false condition 
(branch not taken). rel32 indicates 32-bit relative offset. 

Operation 

Description 

IF condition 
THEN 

EIP +- EIP + SignExtend(reIB/32); 
FI; 

Conditional jumps (except JCXZ) test the flags which have been set by 
a previous instruction. The conditions for each mnemonic are given in 
parentheses after each description above. The terms "less" and "greater" 
are used for comparisons of signed integers; "above" and "below" are 
used for unsigned integers. 

If the given condition is true, a jump is made to the location provided as 
the operand. Instruction coding is most efficient when the target for the 
conditional jump is in the current code segment and within -128 to 
+ 127 bytes of the next instruction's first byte. The jump can also target 
- 231 thru + 231 -1 relative to the next instruction's first byte. When the 
target for the conditional jump is in a different segment, use the opposite 
case of the jump instruction (Le., JE and JNE), and then access the 
target with an unconditional far jump to the other segment. For example, 
you cannot code-

JZ FARLABEL; 

You must instead code-

JNZ BEYOND; 
JMP FARLABEL; 

BEYOND: 

Because there can be several ways to interpret a particular state of the 
flags, ASM386 provides more than one mnemonic for most of the condi­
tional jump opcodes. For example, if you compared two characters in 
AX and want to jump if they are equal, use JE; or, if you ANDed AX 
with a bit field mask and only want to jump if the result is 0, use JZ, a 
synonym for JE. 

13-67 



Flags Affected 

Exceptions 

. , . \ : i.. " • ,: ~, , 
:;' 

, ..... 
" '~ .. 

,'. ' 

376™'PROCESSOR INSTRUCTION SET 

JCXZ differsfromcother conditional jumps because it tests the contents 
. of the ex. or EC:x, register for 0, not the flags. JCXZ is useful lit the 

begiJ;uiirtg' 9{~~'~9n4itional loop that terminates. with a conditio~alloop 
instruCtion': (such-as L 0 0 P N ETA RG E T LAB E L). The JCXZ prevents 
entering'the loop \vith ECX equal to zero, which would cause the loop 
to execute 4294967296tirhes instead of zero times: .., 

" 1 •• ~:,; .' • .'::.' .'r· .• ,: .,,' ;;\ ": 

None 

#GP(O) if the offset jumped to is beyond the limits of the code segment 

I,:, 

.c'. "':" . :i' 

; n: 

. ... '. .,':,: ", 

',":, 

',:': , ~ ! 

13-68 



376™ PROCESSOR INSTRUCTION SET 

JMP-Jump 

Opcode Instruction Clocks Description 

EB cb JMP refB 7+m Jump short 
E9 cd JMP ref32 7+m· Jump near, displacement relative to next instruction 
FF /4 JMP rlm32 9+m/14+m Jump near, indirect 
EA cp JMP ptr16:32 pm=37+m Jump intersegment, 6-byte immediate address 
EA cp JMP ptr16:32 53+m Jump to call gate, same privilege 
EA cp JMP ptr16:32 ts Jump via task state segment 
EA cp JMP ptr16:32 ts Jump via task gate 
FF /5 JMP m16:32 37+m Jump intersegment, address at rim dword 
FF /5 JMP m16:32 59+m Jump to call gate, same privilege 
FF /5 JMP m16:32 6 + ts Jump via task state segment 
FF /5 JMP m16:32 6 + ts Jump via task gate 

NOTE: Values of ts are 395 for direct jump and 407 via a task gate. 

Operation IF instruction = relative JMP 
(* i.e. operand is refB, ref32 *) 

THEN . 
EIP +- EIP + refB/32; 

FI; 

IF instruction = near indirect JMP 
(* i.e. operand is r/m32 *) 

THEN 
EIP +- [r/m32]; 

FI; 

IF instruction = far JMP 
THEN 

IF operand type = m16:32 
THEN (* indirect *) 

check access of EA dword; 
#GP(O) or #SS(O) IF limit violation; 

FI; 
Destination selector is not null ELSE #GP(O) 
Destination selector index is within its descriptor table limits ELSE 

#GP(selector) 
Depending on AR byte of destination descriptor: 

GOTO CONFORMING-CODE-SEGMENT; 
GOTO NONCONFORMING-CODE-SEGMENT; 
GOTO CALL-GATE; 
GOTO TASK-GATE; 
GOTO TASK-STATE-SEGMENT; 

ELSE #GP(selector); (* iIIegalAR byte in descriptor *) 
FI; 

CONFORMING-CODE-SEGMENT: 
Descriptor DPL must be :::; CPL ELSE #GP(selector); 

13-69 



376™ PROCESSOR INSTRUCTION SET 

Segment must be present ELSE #NP(selector); 
Instruction pointer must be within cOde-segment limit ELSE #GP(O); 
Load CS:EIP from destination pointer; 
Load CS register with new segment descriptor; 

NONCONFORMING-CODE-SEGMENT: 
RPL of destination selector must be .:::;; CPL ELSE #GP(selector); 
Descriptor DPLmust be = CPL ELSE #GP(selector); 
'Segment must be present ELSE #.NP(selector); 
Instruction pOinter must be within code-segment limit ELSE #GP(O); 
Load CS:EIP from destination pointer; 
Load CS register with new segment descriptor; 
Set RPL field of CS register to CPL; 

CALL-GATE: 
Descriptor DPL must be ;::: CPL ELSE #GP(gate selector); 
Descriptor DPL must bei;::: gate selector RPL ELSE #GP(gate selector); 
Gate must be present ELSE #NP(gate selector); 
Examine selector to code segment given in call gate descriptor: 

FI; 

Selector must not be null ELSE #GP(O); , 
Selector must be within its descriptor table limits ELSE 

#GP(CS selector); 
Descriptor AR byte must indicate code segment 

ELSE #GP(CS selector); 
IF non-conforming 
THEN code-segment descriptor, DPLmust = CPL 
ELSE #GP(CS selector); 
FI; 
IF conforming 
THEN code-segment descriptor DPL must be .:::;; CPL; 
ELSE #GP(CS selector); 
Code segment must be present ELSE #NP(CS selector); 
Instruction pOinter must be within COde-segment limit ELSE #GP(O); 
Load CS:EIP from call.gate; 

Load CS register with new code-segment descriptor; 
Set RPL of CS to CPL ' 

TASK-GATE: 
Gate descriptor DPL must be ;::: CPL ELSE #GP(gate selector); 
Gate descriptor DPL must be ;::: gate selector'RPL ELSE #GP(gate 

selector); 
Task Gate must be present ELSE #NP(gate selector); 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit ELSE #GP(TSS selector); 
Index must be within GDT limits ELSE #GP(TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001); 

ELSE #GP(TSS selector); 

13-70 



Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

Task State Segment must be present ELSE #NP{TSS selector); 
SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP{O); 

TASK-STATE-SEGMENT: 
TSS DPL must be 2: CPL ELSE #GP{TSS selector); 
TSS DPL must be 2: TSS selector RPL ELSE #GP{TSS selector); 
Descriptor AR byte must specify available TSS (bottom bits 00001) 

ELSE #GP{TSS selector); 
Task State Se![Jment must be present ELSE #NP{TSS selector); 
SWITCH-TASKS (without nesting) to TSS; 
Instruction pointer must be within code-segment limit ELSE #GP{O); 

The JMP instruction transfers control to a different point in the instruc­
tion stream without recording return information. 

The action of the various forms of the instruction are shown below. 

Jumps with destinations of type rlm32, and rel32 are near jumps and do 
not involve changing the segment register value. 

The JMP rel32 form of the instruction add an offset to the address of 
the instruction following the JMP to determine the destination. The result 
is stored in the 32-bit EIP register. 

JMP rlm32 specifies a register or memory location from which the 
absolute offset from the procedure is fetched. The offset fetched from 
rim is 32 bits. 

The JMP ptr16:32 form of the instruction uses a six-byte operand as a 
long pointer to the destination. The JMP m16:32 form fetches the long 
pointer from the memory location specified (indirection). Both long 
pointer forms consult the Access Rights (AR) byte in the descriptor 
indexed by the selector part of the long pointer. Depending on the value 
of the AR byte, the jump will perform one of the following types of 
control transfers: 

• A jump to a code segment at the same privilege level 

• A task switch 

For more information on protected mode control transfers, refer to 
Chapter 6 and Chapter 7. 

All if a task switch takes place; none if no task switch occurs 

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the list above. 

Near direct jumps: #GP(O) if procedure location is beyond the code 
segment limits. 

13-71 



376™ PROCESSOR INSTRUCTION SET 

Near indirect jumps: #GP(O) for an illegal memory operand effective 
address in the CS,DS, ES, FS, or GS segments: #SS(O) for an illegal 
address in the SS segment; #GP if the indirect offset obtained is beyond 
the code segment limits 

13-72 



376™ PROCESSOR INSTRUCTION SET 

LAHF -Load Flags into AH Register 

Opcode 

9F 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

LAHF 2 Load: AH = flags SF ZF xx AF xx PF xx CF 

AH +- SF:ZF:xx:AF:xx:PF:xx:CF; 

LAHF transfers the low byte of the flags word to AH. The bits, from 
MSB to LSB, are sign, zero, indeterminate, auxiliary, carry, indetermi­
nate, parity, indeterminate, and carry. 

None 

None 

13-73 



376™ PROCESSOR INSTRUCTION SET 

LAR-Load Access Rights Byte 

Opcode 

66 OF 02/r 
OF 02/r 

Description 

Type 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Instruction 

LAR r16,r/m16 
LAR r32,r/m32 

Clocks 

17/18 
17/20 

Description 

r16 .. r/m16 masked byFFOO 
r32 ... r/m32 masked.by OOFxFFOO 

The LAR instruction stores a marked form of the second doubleword of 
the descriptor for the source selector if the selector is visible at the CPL 
(modified by the selector's RPL) and isa valid descriptor type. The 
destination registefis loaded with the high"order doubleword of the 
descriptor masked by OOFxFFOO, and ZF is set to L The x indicates that 
the four bits corresponding to the upper four bits of the limit are 
undefined in the value loaded by LAR. If the selector is invisible or of 
the wrong type, ZF is cleared. 

If the 32-bit operand size is specified, the entire 32-bit value is loaded 
into the 32-bit destination register. If the 16-bit operand size is specified, 
the lower 16-bits of this value are stored in the 16-bit destination 
register. 

All code and data segment descriptors are valid for LAR. 

The valid special segment and gate descriptor types for LAR are given 
in the following table: 

Name 
Valid/ 
Invalid 

Invalid Invalid 
Reserved Valid 
LDT Valid 
Reserved Valid 
Reserved Valid 
Task gate Valid 
Reserved Valid 
Reserved Valid 
Invalid Invalid 
Available TSS Valid 
Invalid Invalid 
Busy TSS Valid 
Call gate Valid 
Invalid Invalid 
Trap gate Valid 
Interrupt gate Valid 

13-74 



inter 
Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

ZF as described above 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-75 



376™ PROCESSOR INSTRUCTION SET 

LEA-Load Effective Address 

Opcode 

8D Ir 

Operation 

Description 

Operand Size 

16 

16 

32 

32 

Flags Affected 

Exceptions 

Instruction . Clocks Description 

LEA r32,m 2 Store effective address ·for m in register r32 

r32 -+ Addr(m) 

LEA calculates the effective address (offset part) and stores it in the 
specified register. For compatibility support, 16-bit addressing modes and 
16-bit destination register is supported. The operand-size attribute of the 
instruction can be set to 16-bit via 66H prefix. The address-size attribute 
can be set to 16-bit via 67H prefix. The address-size and operand-size 
attributes affect the action performed by LEA, as follows: 

Address Size Action Performed 

16 16-bit effective address is calculated and 
stored in requested 16-bit register 
destination. 

32 32-bit effective address is calculated. The 
lower 16 bits of the address are stored in 
the requested 16-bit register destination. 

16 16-bit effective address is calculated. The 
16-bit address is zero-extended and stored 
in the requested 32-bit register destination. 

32 32-bit effective address is calculated and 
stored in the requested 32-bit register 
destination. 

None 

#UD if the second operand is a register 

13-76 



376™ PROCESSOR INSTRUCTION SET 

LEAVE-High Level Procedure Exit 

Opcode 

C9 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

LEAVE 

ESP +- ESP; 
ESP +- PopO; 

Clocks Description 

6 Set ESP to ESP, then pop ESP 

LEA VE reverses the actions of the ENTER instruction. By copying the 
frame pointer to the stack pointer, LEAVE releases the stack space used 
by a procedure for its local variables. The old frame pointer is popped 
into EBP, restoring the caller's frame. A subsequent RET nn instruction 
removes any arguments pushed onto the stack of the exiting procedure, 

None 

#88(0) if BP does not point to a location within the limits of the current 
stack segment 

13-77 



376™ PROCESSOR INSTRUCTION SET 

LGDT ILIDT -Load Global/Interrupt .Descriptor Table Register 

Opcode 

OF 01/2 
OF 01/3 . 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

LGDT m16&32 
LlDJ m16&32 

Clocks 

15 
15 

IF instruction = LlDT 
THEN 

IDTR.Limit:Base +- m16:32 
ELSE (* instruction = LGDT *) 

GDTR.Limit:Base +- m16:32; 
FI; 

Description 

Load minto GDTR 
Load minto IDTR 

The LGDT imd LIDT instructions load it linear base address and limit 
value from a six-byte data operand in memory into the GDTR or IDTR, 
respectively. A 16-bit limit and a 32-bit base is loaded; the high-order 
eight bits of the six-byte operand are used as high-order base address 
bits. 

The SGDT and SlOT instructions always store into all 48 bits of the 
six-byte data operand. 

LGDT and LIDT appear in operating system software; they are not used 
in application programs. They are the only instructions that directly load 
a linear address (Le., not a segment relative address). 

None 

#GP(O) if the current privilege level is not 0; #UD if the source operand 
is a register; #GP(O) for an illegal memory operand effective address in 
the CS, DS, ES, FS, or GS segments; #SS(O) for an illegal address in 
the SS segment 

13-78 



376™ PROCESSOR INSTRUCTION SET 

LGS/LSS/LDS/LES/LFS-Load Full Pointer 

Opcode 

66 C5 Ir 
C51r 
66 OF 821r 
OF 821r 
66 C4 Ir 
C41r 
66 OF 841r 
OF 841r 
66 OF 851r 
OF 851r 

Operation 

Description 

Instruction Clocks Description 

L08 r16,m16:16 26 Load 08:r16 with pOinter from memory 
L08 r32,m16:32 28 Load 08:r32 with pOinter from memory 
L88 r16,m16:16 26 Load 88:r16 with pointer from memory 
L88 r32,m16:32 28 Load 88:r32 with pOinter from memory 
LE8 r16,m16:16 26 Load E8:r16 with pOinter from memory 
LES r32,m16:32 28 Load E8:r32 with pOinter from memory 
LFS r16,m16:16 29 Load F8:r16 with pOinter from memory 
LFS r32,m16:32 31 Load FS:r32 with pOinter from memory 
LGS r16,m16:16 29 Load G8:r16 with pointer from memory 
LGS r32,m16:32 31 Load GS:r32 with pOinter from memory 

CASE instruction OF 
LSS: Sieg is SS; (* Load SS register *) 
LOS: Sreg is OS; (* Load OS register *) 
LES: Sreg is ES; (* Load ES register *) 
LFS: Sreg is FS; (* Load FS register *) 
LGS: Sreg is OS; (* Load GS register *) 

ESAC; 
IF (OperandSize = 16) 
THEN 

r16 +- [Effective Address]; (* 16-bit transfer *) 
Sreg +- [Effective Address + 2]; (* 16-bit transfer *) 
(* Load the descriptor into the segment register *) 

ELSE (* Operand Size = 32 *) 
r32 +- [Effective Address]; (* 32-bit transfer *) 
Sreg +- [Effective Address + 4]; (* 16-bit transfer *) 
(* Load the descriptor into the segment register *) 

FI; 

These instructions read a full pointer from memory and store it in the 
selected segment register:register pair. The full pointer loads 16 bits into 
the segment register SS, DS, ES, FS, or GS. The other register loads 32 
bits if the operand-size attribute is 32 bits, or loads 16 bits if the operand­
size attribute is 16 bits. The other 16- or 32-bit register to be loaded is 
determined by the r16 or r32 register operand specified. 

When an assignment is made to one of the segment registers, the 
descriptor is also loaded into the segment register. The data for the 
register is obtained from the descriptor table entry for the selector given. 

A null selector (values 0000-0003) can be loaded into DS, ES, FS, or 
GS registers without causing a protection exception. (Any subsequent 
reference to a segment whose corresponding segment register is loaded 
with a null selector to address memory causes a #GP(O) exception. No 
memory reference to the segment occurs.) 

13-79 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

The following is a listing of the actions taken in the loading of a segment 
register: 

IF SS is loaded: 
IF selector is null THEN #GP(O); FI; 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); . 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
DPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS with selector; 
Load SS with descriptor; 

IF OS, ES, FS, or GS is loaded with non-null selector: 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
AR byte must indicate data or readable code segment ELSE 

#GP(selector); 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to DPL in 

AR byte; 
ELSE #GP(selector); 
Segment must be marked present ELSE #NP(selector); 

Load segment register with selector and RPL bits; 
Load segment register with descriptor; 

IF OS, ES, FS or GS is loaded with a null selector: 
Load segment register with selector; 
Clear descriptor valid bit; 

None 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
the second operand must be a memory operand, not a register; #GP( 0) 
if a null selector is loaded into SS 

13-80 



intel' 376™ PROCESSOR INSTRUCTION SET 

LLDT -Load Local Descriptor Table Register 

Opcode 

OF 00/2 

Operation 

Description 

Flags Affected 

Exceptions 

Note 

Instruction Clocks Description 

LLDT r/m16 24/28 Load selector r/m16 intoLDTR 

LDTR +- SRC; 

LLDT loads the Local Descriptor Table register (LDTR). The word 
operand (memory or register) to LLDT should contain a selector to the 
Global Descriptor Table (GDT). The GDT entry should be a Local 
Descriptor Table. If so, then the LDTR is loaded from the entry. The 
descriptor registers DS, ES, SS, FS, GS, and CS are not affected. The 
LDT field in the task state segment does not change. 

The selector operand can be 0; if so, the LDTR is marked invalid. All 
descriptor references (except by the LAR, VERR, VERW or LSL 
instructions) cause a #GP fault. 

LLDT is used in operating system software; it is not used in application 
programs. 

None 

#GP( 0) if the current privilege level is not 0; #GP(selector) if the selec­
tor operand does not point into the Global Descriptor Table, or if the 
entry in the GDT is not a Local Descriptor Table; #NP(selector) if the 
LDT descriptor is not present; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment 

The operand-size attribute has no effect on this instruction. 

13-81 



376™ PROCESSOR INSTRUCTION SET 

LMSW-Load Machine Status Word 

Opcode 

OF 01 /6 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction Clocks Description 

LMSW r/m16 10/13 Load r/m16 in machine status word 

MSW +- rim 16; (* 16 bits is stored in the machine status word *) 

LMSW loads the machine status word (part of CRO) from the source 
operand. 

LMSW is used only in operating system software. It is not used in appli­
cation programs: 

None 

#GP(O) if the current privilege level is not 0; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

The operand-size attribute has no effect on this instruction. This instruc­
tion is provided for compatibility with the 80286;376 processor or 386 
microprocessor programs should use MOV CRO, ... instead. 

13-82 



376™ PROCESSOR INSTRUCTION SET 

LOCK - Assert LOCK# Signal Prefix 

Opcode 

FO 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

LOCK o Assert LOCK# signal for the next instruction 

The LOCK prefix causes the LOCK# signal of the processor to be 
asserted during execution of the instruction that follows it. In a multi­
processor environment, this signal can be used to ensure that the proces­
sor has exclusive use of any shared memory while LOCK# is asserted. 
The read-modify-write sequence typically used to implement test-and­
set on the processor is the BTS instruction. 

The LOCK prefix functions only with the following instructions: 

BT, BTS, BTR, BTC 
XCHG 
XCHG 
ADD, OR, ADC, SBB, AND, SUB, XOR 
NOT, NEG, INC, DEC 

mem, regjimm 
reg, mem 
mem, reg 
mem, regjimm 
mem 

An undefined opcode trap will be generated if a LOCK prefix is used 
with any instruction not listed above. 

XCHG always asserts LOCK# regardless ofthe presence or absence of 
the LOCK prefix. 

The integrity of the LOCK is not affected by the alignment of the 
memory field. Memory locking is observed for arbitrarily misaligned 
fields. Other prefixes (i.e., seg override, 66H or 67H) can be combined 
with LOCK in any order. 

Locked access is not assured if another processor is executing an instruc­
tion concurrently that has one of the following characteristics: 

• Is not preceded by a LOCK prefix 

Is not one of the instructions in the preceding list 

• Specifies a memory operand that does not exactly overlap the desti­
nation operand. Locking is not guaranteed for partial overlap, even 
if one memory operand is wholly contained within another. 

None 

#UD if LOCK is used with an instruction not listed in the "Description" 
section above; other exceptions can be generated by the subsequent 
(locked) instruction 

13-83 



376™ PROCESSOR INSTRUCTION SET 

LODS/LODSB/LODSW ILODSD-Load String Operand· 

Opcode 

AC 
66AD 
AD 
AC 
66 AD 
AD . 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

LODS mB 5 
LODS m16 5 
LODS m32 7 
LODSB 5 
LODSW 5 
LODSD 7 

IF byte type of instruction 
THEN 

AL +- [ESI]; (* byte load *) 

Description 

Load byte [ESI) into AL 
Load word [ESI) into AX 
Load dword [ESI) into EAX 
Load byte DS:[ESI) into AL 
Load word DS:[ESI) into AX 
Load dword DS:[ESI) into EAX 

IF OF = 0 THEN IncOee +- 1 ELSE IncOec +- -1; FI; 
ELSE 

IF OperandSize = 16 
THEN 

AX +- [ESI]; (* word load *) 
IF OF =0 THEN IncOec +- 2 ELSE IncOec +- -2; FI; 

ELSE (* Operand Size = 32 *) 
EAX +- [ESI]; (* dword load *) 
IF OF = 0 THEN IncOec +- 4 ELSE IncOec. +- ,-4; FI; 

FI; 
FI; 
ESI +- ESI + IneOee 

LODS loads the AL, AX, or EAX register with the memory byte, word, 
or doubleword at the location pointed to by the source-index register . 

. After the transfer is made, the source-index register is automatically 
advanced. If the direction flag is 0 (CLD was executed), the source index 
increments; if the direction flag is 1 (STD was executed), it decrements. 
The increment or decrement is 1 if a byte is loaded, 2 if a word is loaded, 
or 4 if a d<mbleword is loaded. 

Load the correct index value into ESI before executing the LODS 
instruction. LODSB, LODSW, LODSD are synonyms for the byte, word, 
and doubleword LODS instructions. 

LODS can be preceded by the REP prefix; however, LODS is used more 
typically within a LOOP. construct, because further processing of the 
data moved into EAX, AX, orAL is usually necessary. 

None 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegaladdress in the SS segment 

13-84 



376™ PROCESSOR INSTRUCTION SET 

LOOP/LOOPcond-Loop Control with CX.Counter 

Opcode 

E2 cb 
E1 cb 
E1 cb 
EO cb 
EO cb. 

Operation 

Description 

Flags Affected 

Exceptions ' 

Instruction . Clocks . Description 

LOOP relB" 
LOOPE relB 

11+m 
',11+m 
11+m 

'11+m 
11+m 

D1;C.count; jump:shortifcQunt <> 0 

. LOOPZ relB 
LOOPNE relB 
LOOPNZ relB . 

DEC count; jump short if count <> 0 and ZF=1 
DEC count; jump,.shprtlf count <> 0 and ZFFt", 
DEC count; jump short if count <> 0 and ZF=O 
DEC ,count;. jump short if count. <>- 0 and ZF=O 

. .. .,' " • , ,'. '.!, i : . . -~ 

IF AddressSize = 16THEN CountReg is CX ELSE CountReg is ECX; FI; 
ECX .... ECX", .1;,;-' .' .' , . , .,:':i"':';:'" 

" . ~ 

.1 F instrLJction < >: Loop ,.' 
M' .;,:.t 

THEN .. ,.. ,.,',.,,: ... ' .. 
IF (instruction =;= ~OOPE).OR.(instructib/1Ij':;LOOPZ) 
THEN BrancnCond +- (zi= "'7'1) AND (Cou~tR.eg'<> 0); FI; . '. , ...., ..... 

IF (instruction. = Lo.OPNE) OR (instruption ,= LOOPNZ) 
THEN BranchCond ~ (iF ~ 0) ANb (CountReg' <> 0); 

FI; ..... .;;: .'.,::.... ,'" 
FI; 

IF BranchCond 
THEN,' 

EIP ... EIP +. SignExtend(reIB); 
FI; 

".: '0' ~ :. 

LOOP decrements the count regi~ter without changing an~:of the flags; 
Conditions are then checked for,the form of LOOP being used. If the 
conditions are met, a short jump ismilde to the label given by the operand 
to LOOP. The ECX registerisnor.mally used as the count :register. The 
operand of LOOP must be iii the range from 148 (deciman,bytes before 
the instruction to 127 bytes ahead of the instni.Ction. ., 

. : 
:. . 

The LOOP instructions provide itt:tliltion contrcil and combine loop index 
management with conditional bhlriching. Use the LOOP instruction by 
loading an unsigned iteration co~n~into the count register, then code the 
LOOP at the end of a series onnstructions to :be iterated. The destina~ 
tion of LOOP is 'a label that points to the beginning of the iteration. ' 

None . ;':" " ~" '. " ~ 'i 

#GP(O) if the offset jllmpedto is'b~yond:th~)hhits of the current·code 
.' segment ".'" .,.;'.: '.' , " -:"," .,.i, .r.- ',,:' <, ~ . .' 



376™ PROCESSOR INSTRUCTION SET 

LSL-Load Segment Limit· 

Opcode 

OF 03/r 

OF 03/r 

" 

Description 

Type 

5:" 
,6 
7. 
8 
9 
A 
B. 
C 
D 
E 
F 

Flags Affected 

Exceptions, 

Instruction 

. LSLr32,r/m32'L'! . 

'LSL f32,r/m32· 
,.,\ 

:, . 

Clocks 

24/27 

>,'29/32 

.. Description 

. 'Load: r32 +- segment limit, selector r/m32 (byte 

. granular) 
Load: r32 +- segment limit, selector r/m32 (page 
granular) 

The LSL instruction loads a register with an unscrambled segment limit, 
and sets ZF to 1 ,provided that the source selector is visible at the CPL 
weakened by RPL, and that the descriptor is a type accepted by LSL. 
Otherwise, ZF is cleared to 0, and the destination register is unchanged. 
The segment limit is loaded as it byte granular value. If the descriptor 
has a page granular segment limit, LSL will translate it to a byte limit 
before loading it in the destination register (shift left 12 the 20-bit "raw" 
limirfrom'descriptor, thenaR with OOOOOFFFH). 

'Cod,e and>d~ta segment descriptors are valid for LSL. 

The valid special segment and gate descriptor types for LSL are given 
in the following table: 

Name 

Invalid 
Reserved 
LOT 

· Reserved 
Reserved 

· Task gate 
Reserved 
Reserved 

. invalid 
Available TSS , 
Invalid 
BusyTSS 
CaUgate 

· Invalid 
: 'Trap gate 
. Interrupt gate 

ZF as described above 

Valid! 
Invalid 

Invalid 
Valid 
Valid 
Valid 
Invalid 
Invalid 
Invalid 
Invalid 
Valid 
Valid 
Invalid 
Valid 
Invalid 
Invalid 
Invalid 
Invalid 

#GP( O}fpr alJ.illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 



inter 376™ PROCESSOR INSTRUCTION SET 

L TR-Load Task Register 

Opcode 

OF 00/3 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction Clocks Description 

LTR r/m16 27/31 Load EA word into task register 

LTR loads the task register from the source register or memory locatiqn 
specified by the operand. The loaded task state segment is marked busy. 
A task switch does not occur. 

LTR is used onlyin operating system software;'itis not used in appli­
cation programs. 

None 

#GP(O) for an illegal memory operand effective address in the CS,DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment; 
#GP(O) if the current privilege level is not 0; #GP(selector ) if the' object 
named' by the source selector is 'not a TSS. ,or' is . already busy; 
#NP(selector) if the TSS is marked "not present" ' . ' 

The operand-size attribute has no effect o~ this instruction. 

13-87 



376™.PROCESSOR INSTRUCTION SET 

MOV-Move Data 

Opcode 

88 /r 
6689/r 
89 /r 
8A /r 
.66813 /r 
88 /r . 
8C /r 
8E/r 
AO 
66 A1 
A1 . 

A2 
66A3 
A3 
80+rb 
6688+ rw 
88+rd 
C6 .... 
66C? 

'C7 

Instruction 

. MOV rjm8,r8 
·MOV rjm16,r16 

MOV rjm32,r32 
MOV r8,rjm8 
MOV r16,rjm16 
MOV r32,rjm32. . 
MO\! rjm16,Sreg . 
MOV Sreg,rjm16 
MOV AL,moffs8 
MOV AX,moffs16 
MOV EAX,moffs32' 
MOV moffs8,AL 
MOV moffs16,AX 
MOV moffs32,EAX 
MOV reg8,imm8 
MOV reg16,imm16 
MOV reg32,imm32 
MOVrjm8,imm~ 
MOV rjm16,imm16 

". ,MOV rjm32,imm32 

. 

Clocks 

2/2 
2/2 
2/4 
2/4 
2/4 
2/6 
2/2 
22/23 
4 
4 
6 
2 
2 
4 
2 
2 
2 
2/2 
2/2 
2/4 

Description 

Move byte register to rjm byte 
Move word register to rjm word 
Move dword register to rjm dword 
Move rjm byte to byte register 
Move rjm word to word register 
Move rjm dword to dword register 
Move segment register to rjm word 
Move rjm word to segment register 
Move byte at (seg:offset) to AL 
Move word at (seg:offset) to AX 
Move dword at (seg:offset) to EAX 
Move AL to (seg:offset) 
Move AX to (seg:offset) 
Move EAX to (seg:offset) 
Move immediate byte to register 
Move immediate word to register 
Move immediate dword to register 
Move immediate byte to rjm byte 
Move immediate word to rjm word 
Move immediatedword to rjm dword 

NOTE~: moffs8and moffs32 all consist of a simple of1.set relativeto the segment base. The 8, 16, and 32 refer to the size 
. ,,' of the data. The address-size attribute of the instruction determines the size of the offset, either 16 or 32 bits. 

Operation 

Description 

DEST ~ SRC; . 

Mav copies the second operand to the first operand. 

If the destination operand is a segment register (DS, ES, SS, etc.), then 
data from a descriptor is also loaded into the register. The data for the 
register is obtained from the descriptor table entry for the selector given. 
A null selector (values 0000-0003) can be loaded into DS and ES regis­
ters without causing an exception; however, use of DS or ES causes a 
#GP(O), and no memory reference occurs. 

A MaV into SS inhibits all interrupts until after the execution of the 
next instruction (which is presumably a MaV into ESP). 

Loading a segment register results in special checks and actions, as 
described in the following listing: 

IF SS is loaded; 
THEN 

IF selector is null THEN #GP{O); FI; 
Selector index must be within its descriptor table limits else 

#GP{selector); 
Selector's RPL must equal CPL else #GP{selector); 

13-88 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

AR byte must indicate a writable data segment else #GP(selector); 
DPL in the AR byte must equal CPL else #GP(selector); 
Segment must be marked present else #SS(selector); 
Load SS with selector; 
Load SS with descriptor. 

FI; 
IF DS, ES, FS or GS is loaded with non-null selector; 
THEN 

Selector index must be within its descriptor table limits 
else #GP(selector); 

AR byte must indicate data or readable code segment else 
#GP(selector); 

IF data or nonconforming code segment 
THEN both the RPL and the CPL must be less than or equal to DPL in 

AR byte; 
ELSE #GP(selector); 
FI; 
Segment must be marked present else #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

FI; 
IF DS, ES, FS or GS is loaded with a null selector; 
THEN 

Load segment register with selector; 
Clear descriptor valid bit; 

FI; 

None 

#GP, #SS, and #NP if a segment register is being loaded; otherwise, 
#GP(O) if the destination is in a nonwritable segment; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-89 



376™. PROCESSOR INSTRUCTION SET 

MOV -Moveto/from Special Registers 

Opcode 

OF 20lr 
OF 221r 
OF 21 Ir 
OF 21 Ir 
OF 231r 
OF 231r 
OF 241r 
OF 261r 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction Clocks 

MOV r32,CRO/CR2/CR3 6 
MOV CRO/CR2/CR3,r32 10/4/5 
MOV r32,DRO - 3 22 
MOV r32,DR6/DR7 ·14 . 
MOV DRO - 3,r32 22 
MOV DR6/DR7,r32 16 
MOV r32,TR6/TR7 12 
MOV TR6/TR7,r32 12 

DEST +- SRC; 

Description 

Move (control register) to (register) 
Move (register) to (control register) 
Move (debug register) to (register) 
Move (debug register) to (register) 
Move (register) to (debug register) 
Move (register) to (debug register) 
Move (test register) to (register) 
Move (register) to (test register) 

The above forms of MOV store or load the following special registers in 
or from a general purpose register: 

• Control registers CRO, CR2, and CR3 

• Debug RegistersDRO, DRl, DR2, DR3, DR6, and DR7 

• Test Registers TR6 and TR 7 

32-bit operands are always used with these instructions, regardless of the 
operand-size attribute. 

OF, SF, ZF, AF, PF, and CF are undefined 

#GP(O) if the current privilege level is not 0 

The instructions must be executed at privilege level 0 or in real-address 
mode; otherwise, a protection exception will be raised. 

The reg field within the ModRM byte specifies which of the special 
registers in each category is involved. The two bits in the mod field are 
always 11. The rjm field specifies the general register involved. 

13-90 



inter 376™ PROCESSOR INSTRUCTION SET 

MOVS/MOVSB/MOVSW IMOVSD-Move Data from String to 
String 

Opcode 

A4 
66 AS 
AS 
A4 
66 AS 
AS 

Operation 

Description 

Instruction 

MOVSmB.mB 
MOVS m16.m16 
MOVS m32.m32 
MOVSB 
MOVSW 
MOVSD 

Clocks 

7 
7 
9 
7 
7 
9 

Description 

Move byte [ESI] to ES:[EDI] 
Move word [ESI] to ES:[EDI] 
Move dword [ESI] to ES:[EDI] 
Move byte DS:[ESI] to ES:[EDI] 
Move word DS:[ESI] to ES:[EDI] 
Move dword DS:[ESI] to ES:[EDI] 

IF (instruction = MOVSD) OR (instruction has doubleword operands) 
THEN OperandSize +- 32; 
ELSE Operand Size +- 16; . 
IF byte type of instruction 
THEN 

[EDI] +- [ESI]; (* byte assignment *) 
IF DF = 0 THEN IncDec +- 1 ELSE IncDec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

[ED I] +- [ESI]; (* word assignment *) 
IF DF = 0 THEN IncDec +- 2 ELSE IncDec +- -2; FI; 

ELSE (* Operand Size = 32 *) 
[EDI] +- [ESI]; (* doubleword assignment *) 
IF DF = 0 THEN IncDec +- 4 ELSE IncDec +- -4; FI; 

FI; 
FI; 
ESI +- ESI + Inc Dec; 
EDI +- EDI + IncDec; 

MOVS copies the byte or word at [ESI] to the byte or word at ES:[EDI]. 
The destination operand must be addressable from the ES register; no 
segment override is possible for the destination. A segment override can 
be used for the source operand; the default is DS. 

The addresses of the source and destination are determined solely by the 
contents of ESI and ED!. Load the correct index values into ESI and 
EDI before executing the MOVS instruction. MOVSB, MOVSW, and 
MOVSD are synonyms for the byte, word, and doubleword MOVS 
instructions. 

13-91 



Flags Affected 

Exceptions 

376™ PROCESSOR. INSTRUCTION SET 

After the data is moved, both ESI and EDlare.advanced automatically. 
If the direction flag is 0 (CLD was executed), the registers are incre­
mented;if the direction flag is 1 (STD was executed), the registers are 
decremented. The registers are incremented or decremented by 1 if a 
byte was moved, 2 if a word was moved, or 4 if a doubleword was moved. 

MOVS can be preceded by the REP prefix for block movement of ECX 
bytes or words. Refer to the REP instruction for details of this operation. 

None 

#GP(O) if the result is in a.nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-92 



376™ PROCESSOR INSTRUCTION SET 

MOVSX -Move with Sign-Extend 

Opcode 

66 OF BE Ir 
OF BE Ir 
OF BF Ir 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

MOVSX r16,r/mB 
MOVSX r32,r/mB 
MOVSX r32,r/m16 

Clocks 

3/6 
3/6 
3/8 

DEST ~ SignExtend(SRC); 

Description 

Move byte to word with sign-extend 
Move byte to dword, sign-extend 
Move word to dword, sign-extend 

MOVSX reads the contents of the effective address or register as a byte 
or a word, sign-extends the value to the operand-size attribute of the 
instruction (16 or 32 bits), and stores the result in the destination 
register. 

None 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS or GS segments; #SS(O) for an illegal address in the SS segment 

13-93 



376™ PROCESSOR INSTRUCTION SET 

MOVZX-Move with Zero-Extend 

Opcode 

66 OF B6lr 
OF B6lr 
OF B71r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

MOVZX r16,r/m8 
MOVZX r32,r/m8 
MOVZX r32,r/m16 

Clocks 

3/6 
3/6 
3/6 

DEST +- ZeroExtend(SRC); 

Description 

Move byte to word with zero-extend 
Move byte to dword, zero-extend 
Move word to dword, zero-extend 

MOVZX reads the contents of the effective address or register as a byte 
or a word, zero extends the value to the operand-size attribute of the 
instruction (16 or 32 .bits), and stores the result in the destination 
register. 

None 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-94 



376™ PROCESSOR INSTRUCTION SET 

MUL-Unsigned Multiplication of AL or AX 

Opcode 

F6 /4 
66 F7 /4 
F7/4 

Instruction 

MULAL,rjm8 
MUL AX,rjm16 
MUL EAX,rjm32 

Clocks 

12-17/15-20 
12-25/15-28 
12-41/17-46 

Description 

Unsigned multiply (AX ~ AL • rjm byte) 
Unsigned mUltiply (DX:AX ~ AX • rjm word) 
Unsigned multiply (EDX:EAX ~ EAX • rjm dword) 

NOTES: The processor uses an early-out mUltiply algorithm. The actual number of clocks depends on the position of the 
most significant bit in the optimizing multiplier, shown underlined above. The optimization occurs for positive and 
negative mUltiplier values. Because of the early-out algorithm, clock counts given are minimum to maximum. To 
calculate the actual Clocks, use the fOllowing formula: 

Actual clock = if m <> 0 then max(ceiling(log2 1 m 1),3) + 9 clocks; 

Actual clock = if m = 0 then 12 clocks 

where m is the multiplier. 

Operation 

Description 

Flags Affected 

Exceptions 

IF byte-size operation 
THEN AX +- AL * rlmB 
ELSE (* word or doubleword operation *) 

IF OperandSize = 16 
THEN DX:AX +- AX * rlm16 
ELSE (* OperandSize = 32 *) 

EDX:EAX +- EAX * rlm32 
FI; 

FI; 

MUL performs unsigned multiplication. Its actions depend on the size 
of its operand, as follows: 

• A byte operand is multiplied by AL; the result is left in AX. The 
carry and overflow flags are set to 0 if AH is 0; otherwise, they are 
set to 1. 

• A word operand is multiplied by AX; the result is left in DX:AX. 
DX contains the high-order 16 bits of the product. The carry and 
overflow flags are set to 0 if DX is 0; otherwise, they are set to 1. 

• A doubleword operand is multiplied by EAX and the result is left in 
EDX:EAX. EDX contains the high-order 32 bits of the product. The 
carry and overflow flags are set to 0 if EDX is 0; otherwise, they are 
set to 1. 

OF and CF as described above; SF, ZF, AF, PF, and CF are undefined 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-95 



376™ PROCESSOR INSTRUCTION SET 

NEG-Two's Complement Negation 

Opcode 

F6 /3 
66 F7 /3 
F7. /3 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

NEG rlmB 
NEG rlm1q 
NEG rlm32 

Clocks 

2/6 
2/6 
2/10 

Description 

Two's complement negate rim byte 
Two's complement negate rim word 
Two's complement negate rim dword 

IF rjm = 0 THEN CF f- 0 ELSE CF f- 1; FI; 
rjm f- - rjm; 

NEG replaces the value of a register or memory operand with its two's 
complement. The operand is subtracted from zero, and the result is placed 
in the operand. 

The carry flag is set to 1, unless the operand is zero, in which case the 
carry flag is cleared to O. 

CF as described above; OF, SF, ZF, and PF as described in 
Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; .#SS(O) for an illegal address in the SS segment 

13-96 



376™ PROCESSOR INSTRUCTION SET 

NOP-No Operation 

Opcode 

90 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

NOP 3 No operation 

NOP performs no operation. NOP is a one-byte instruction that takes 
up space but affects none of the machine context except EIP. 

NOP is an alias mnemonic for the XCHG EAX, EAX instruction. 

None 

None 

13-97 



376™ PROCESSOR INSTRUCTION SET 

NOT -One's Complement Negation 

Opcode 

F6 /2 
661':"7. /2 
F7 /2 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

NOT rlmB 
NOT rlm16 . 
NOT rlm32 

,-i-

Clocks 

2/6 
2/6 
2/10 

rjln ~··NOT rim; 
./ ::' 

Description 

Reverse each bit of rim byte 
Reverse each bit of rim word 
Reverse each bit of rim dword 

.. 

NOT inverts the operand; every 1 becomes a 0, and vice versa. 

None 

#GP(O) if the result is in a non writable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-98 



376™ PROCESSOR.INSTRUCTION SET 

OR-Logical Inclusive OR 

Opcode 

DC ib 
660D iw 
OD id 
80 /1 ib 
6681 /1 iw 
81 /1 id 
6683 /1 ib 
83 /1 ib 
08 /r 
6609 /r 
09 /r 
OA /r 
66 DB /r 
DB /r . 

Operation 

Description 

Flags Affected 

Exceptions 

InBtructlon 

ORAL,immB 
OR AX,imm16 
OR EAX,imm32 
OR rlmB,immB 
OR rim 16,imm 16 
OR rlm32,imm32 
OR rlm16,immB 
OR rlm32,immB 
OR rlmB,rB 
OR rlm16,r16 
OR rlm32,r32 
OR rB,rlmB 
OR r16,rlm16 
OR r32,rlm32 

· ClockB 

2 
2 
2 

· 2/7 
2/7 

· 2/11 
2/7 
2/11 
2/6 
2/6 
2/10 
2/7 
2/7 
2/11 

DEST +- DEST OR SRC; 
CF +- 0; 
OF +- 0 

Description 

. OR immediate byte to AL 
OR immediate word. to AX 
OR immediate dword.to EAX 
OR immediate byte to rim byte 
OR immediate word to rlm·word 
OR immediate dword to rim dword 
OR sign-extended immediate byte with rim word ... 
OR sign-extended immediate byte with rim dVi/ord , 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to rim dword 
OR byte register to rim byte 
OR word register to rim word 
OR dword register to. rim dword 

OR computes the inc1usive OR of its two operands and places the result 
in the first operand. Each bit of the result is 0 ifboth corresponding bits 
of the operands are 0; otherwise, each bit is L· 

OF +- O,CF +- 0; SF, ZF, and PF as described in Appendix C ; AF is 
undefined .. ... . . . . . . .. 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS( 0) for· an illegal address in the SSsegment 



376™ PROCESSOR INSTRUCTION SET 

OUT -Output to Port 

Opcode 

E6 ib 
66 E7 ib 
E7 ib 
EE 
66 EF 
EF 

Instruction 

OUTimmB,Al:. 
OUTimmB,AX 
OUTimmB,EAX 
'OUT.OXiAl. 

, OUT OX;AX,', 
OUTOX,EAX' 

Clocks 

"·.4*/24** 
'4*/24** 

" . ,,',4*/26** 
. ""'5*/26** 

5*/26** 
.5*/28** 

Description 

Output byte AL to immediate port number 
Output word AL to immediate port number 
Output dword AL to immediate port number 
Outp'ut byte ALto port number in OX 
Output word AL to port number in OX 
Output dword AL to port number in OX 

NoTES:*It'CPL :=;IOPL' ' 
**If CPL > IOPL , 

Operation 

Description 

Flags Affected 

Exceptions 

IF (CPL '>:iIQR!.-i 
.THEN .":C.'., ','" ' 

IF NOT I-O-Permission (DEST, width(DEST)) 
THEN #GP(O); 
FI; 

FI; 
[DEST] +- SRC; (* I/O address space used *) 

. OUT transfers a data byte or data/word from the register (AL, AX, or 
EAX) given asthe.se.cond operandto,the output port numbered by the 
first operand,Outputto any port from O.to 65535 is performed by placing 
the port number in the DX register and then using an OUT instruction 

. with DX as the first operand. If the instruction contains an eight-bit port 
10, that' ~alue is zero'-extendedto 16 bits.'" .' . 

,; ,#GP(O),jf thecurrenfprivilege level is higher .. (has less privilege) than 
IOPL and any of the corresponding I/O permission bits in TSS 
equals 1 

13-100 



376™ PROCESSOR INSTRUCTION SET 

OUTS/OUTSB/OUTSW IOUTSD-Qutput String to Port 

Opcode Instruction Clocks Description 

6E OUTS OX,rlmS 8'/28" Output byte [ESI] to port in OX 
666F OUTS OX,rlm16 8'/28" Output word [ESI] to port in OX 
6F OUTS OX,rlm32 8'/30" Output dword [ESI] to port in OX 
6E OUTSB 8'/28" Output byte OS:[ESI] to port in OX 
666F OUTSW 8'/28" Output word OS:[ESI] to port in OX 
6F OUTSO 8'/30" Output dword OS:[ESI] to port in OX 

NOTES: 'If CPL :s IOPL 
"If CPL > IOPL 

Operation 

Description 

IF (CPL > 10PL) 
THEN 

IF NOT I-O-Permission (OEST, width(OEST)) 
THEN #GP(O); 

FI; 
FI; 
IF byte type of instruction 
THEN 

[OX] ~ [ESI]; (* Write byte at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 1 ELSE IncOec ~ -1; FI; 

FI; 
IF OperandSize = 16 . 
THEN 

[OX] ~ [ESI]; (* Write word at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 2 ELSE IncOec ~ -2; FI; 

FI; 
IF OperandSize = 32 
THEN 

[OX] ~ [ESI]; (* Write dword at OX I/O address *) 
IF OF = 0 THEN IncOec ~ 4 ELSE IncOec ~ -4; FI; 
FI; 

FI; 
ESI ~ ESI + IncOec; 

OUTS transfers data from the memory byte, word, or doubleword at the 
source-index register to the output port addressed by the OX register. If 
the address-size attribute for this instruction is 16 bits, ESI is used for 
the source-index register. 

OUTS does not allow specification of the port number as an immediate 
value. The port must be addressed through the OX register value. Load 
the correct value into OX before executing the OUTS instruction. 

The address of the source data is determined by the contents of source­
index register. Load the correct index value into ESI before executing 
the OUTS instruction. 

13-101 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

After the transfer, source-index register is advanced automatically. If 
the direction flag is 0 (CLD was executed), the source-index register is 
incremented; if the direction flag is 1 (STD was executed), it is decre­
mented. The amount of the increment or decrement is 1 if a byte is 
output, 2 if a word is output, or 4 if a doubleword is output. 

OUTSB, OUTSW, and OUTSD are synonyms for the byte, word, and 
doubleword OUTS instructions. OUTS can be preceded by the REP 
prefix for block output of ECX bytes or words. Refer to the REP 
instruction for details on this operation. 

None 

#GP(O) if CPL is greater than IOPL and any of the corresponding I/O 
permission bits in TSS equals 1; #GP(O) for an illegal memory operand 
effective address in the CS, DS, or ES segments; #SS(O) for an illegal 
address in the SS segment 

13-102 



inter 376™ PROCESSOR INSTRUCTION SET 

POP-POp a Word from the Stack 

Opcode 

66 SF /0 
8F /0 
6658+ rw 
58+rd 
1F 
07 
17 
OF A1 
OF A9 

Operation 

Description 

Instruction 

POP m16 
POP m32 
POP r16 
POP r32 
POP OS 
POPES 
POPSS 
POP FS 
POPGS 

Clocks 

5 
9 
4 
6 
25 
25 
25 
25 
25 

IF OperandSize = 16 
THEN 

Description 

Pop top of stack into memory word 
Pop top of stack into memory dword 
Pop top of stack into word register 
Pop top of stack into dword register 
Pop top of stack into OS 
Pop top of stack into ES 
Pop top of stack into SS 
Pop top of stack into FS 
Pop top of stack into GS 

DEST ~ (SS:ESP); (* copy a word *) 
ESP ~ ESP + 2; 

. ELSE (* OperandSize = 32 *) 
DEST ~ (SS:ESP); (* copy a dword *) 
ESP ~ ESP + 4; 

FI; 

POP replaces the previous contents of the memory, the register, or the 
segment register operand with the word on the top of the stack, addressed 
by SS:ESP. The stack pointer ESP is incremented by 2 for an operand­
size of 16 bits or by 4 for an operand-size of 32 bits. It then points to 
the new top of stack. 

POP CS is not an instruction. Popping from the stack into the CS regis­
ter is accomplished with a RET instruction. 

If the destination operand is a segment register (DS, ES, FS, GS, or 
SS), the value popped must be a selector. Loading the selector initiates 
automatic loading of the descriptor information associated with that 
selector into the hidden part of the segment register; loading also initi­
ates validation of both the selector and the descriptor information. 

A null value (0000-0003) may be popped into the DS, ES, FS, or GS 
register without causing a protection exception. An attempt to reference 
a segment whose corresponding segment register is loaded with a null 
value causes a #GP(O) exception. No memory reference occurs. The saved 
value of the segment register is null. 

A POP SS instruction inhibits all interrupts, including NMI, until after 
execution of the next instruction. This allows sequential execution of POP 
SS and POP ESP instructions without danger of having an invalid stack 
during an interrupt. However, use of the LSS instruction is the preferred 
method of loading the SS and ESP registers. 

13-103 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

Loading a segment register while in protected mode results in special 
checks and actions, as described in the following listing: 

IF SS is loaded: 
IF selector is null THEN #GP(O); 
Selector index must be within its descriptor table limits ELSE 

#GP(selector); 
Selector's RPL must equal CPL ELSE #GP(selector); 
AR byte must indicate a writable data segment ELSE #GP(selector); 
OPL in the AR byte must equal CPL ELSE #GP(selector); 
Segment must be marked present ELSE #SS(selector); 
Load SS register with selector; 
Load SS register with descriptor; 

IF OS, ES, FS or GS is loaded with non-null selector: 
AR byte must indicate data or readable code segment ELSE 

#GP(selector); 
IF data or nonconforming code 
THEN both the RPL and the CPL must be less than or equal to OPL in 

AR byte 
ELSE #GP(selector); 
FI; 
Segment must be marked present ELSE #NP(selector); 
Load segment register with selector; 
Load segment register with descriptor; 

IF OS, ES, FS, or GS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in invisible portion of register 

None 

#GP, #SS, and #NP if a segment register is being loaded; #SS(O) if the 
current top of stack is not within the stack segment; #GP(O) if the result 
is in a non writable segment; #GP(O) for an illegal memory operand 
effective address in the CS; DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment 

13-104 



376™ PROCESSOR INSTRUCTION SET 

POPA/POPAD-Pop all General Registers 

Opcode 

6661 
61 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

POPA 
POPAD 

Clocks 

24 
40 

Description 

Pop 01, 51, BP, SP, BX, OX, ex, and AX 
Pop EOI, ESI, EBP, ESP, EOX, ECX, and EAX 

IF OperandSize = 16 (* instruction = POPA *) 
THEN 

01 +- Pop(); 
SI +- Pop(); 
SP +- Pop(); 
throwaway +- Pop (); (* Skip SP *) 
SX +- Pop(); 
OX +- Pop(); 
CX +- Pop(); 
AX +- Pop(); 

ELSE (* OperandSize = 32, instruction = POPAD *) 
EDI +- Pop(); 
ESI +- Pop(); 
ESP +- PopO; 
throwaway +- Pop (); (* Skip ESP *) 
ESX +- PopO; 
EDX +- Pop(); 
ECX +- Pop(); 
EAX +- Pop(); 

FI; 

POPA pops the eight 16-bit general registers. However, the SP value is 
discarded instead of loaded into SP. POP A reverses a previous PUSHA, 
restoring the general registers to their values before PUSHA was 
executed. The first register popped is D!. 

POPAD pops the eight 32-bit general registers. The ESP value is 
discarded instead of loaded into ESP. POPAD reverses the previous 
PUSHAD, restoring the general registers to their values before PUSHAD 
was executed. The first register popped is ED!. 

None 

#SS(O) if the starting or ending stack address is not within the stack 
segment 

13-105 



376™ PROCESSOR INSTRUCTION SET 

POPF /POPFD-Pop Stack into FLAGS o~ EFLAGS Register 

Opcode 

6690 
90 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

POPF 
POPFO 

Flags +- Pop(); 

Clocks 

5 
7 

Description 

Pop top of stack FLAGS 
Pop top of stack into EFLAGS 

POPF /POPFD pops the word or doubleword on the top of the stack and 
stores the value in the flags register. If the operand-size attribute of the 
instruction is 16 bits, then a word is popped and the value is stored in 
FLAGS. If the operand-size attribute is 32 bits, then a doubleword is 
popped and the value is stored in EFLAGS. 

Refer to Chapter 2 and Chapter 4 for information about the FLAGS 
and EFLAGS registers. Note that bit 16 of EFLAGS, called RF, is not 
affected by POPF or POPFD. 

The I/O privilege level is altered only when executing at privilege level 
O. The interrupt flag is altered only when executing at a level at least as 
privileged as the I/O privilege level. If a POPF instruction is executed 
with insufficient privilege, an exception does not occur, but the privi­
leged bits do not change. 

All flags except YM and RF 

#SS(O) if the top of stack is not within the ~tack segment 

13-:106 



376™ PROCESSOR INSTRUCTION SET 

PUSH-Push Operand onto the Stack 

Opcode 

66 FF /6 
FF /6 
6650+ /r 
50+/r 
6A 
6668 
68 
OE 
16 
1E 
06 
OF AO 
OF A8 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

PUSH m16 5 
PUSH m32 9 
PUSH r16 2 
PUSH r32 4 
PUSH immB 4 
PUSH imm16 4 
PUSH imm32 4 
PUSH CS 4 
PUSH SS 4 
PUSH DS 4 
PUSH ES 4 
PUSH FS 4 
PUSH GS 4 

IF OperandSize = 16 
THEN 

ESP +- ESP - 2; 

Description 

Push memory word 
Push memory dword 
Push register word 
Push register dword 
Push immediate byte 
Push immediate word 
Push immediate dword 
Push CS 
Push SS 
Push DS 
Push ES 
Push FS 
Push GS 

(SS:ESP) +- (SOURCE); (* word assignment *) 
ELSE 

ESP +- ESP - 4; 
(SS:ESP) +- (SOURCE); (* dword assignment *) 

FI; 

PUSH decrements the stack pointer by 2 if the operand-size attribute of 
the instruction is 16 bits; otherwise, it decrements the stack pointer by 
4. PUSH then places the operand on the new top of stack, which is 
pointed to by the stack pointer. 

The 386 microprocessor or 376 processor PUSH ESP instruction pushes 
the value of ESP as it existed before the instruction. This differs from 
the 8086, where PUSH SP pushes the new value (decremented by 2). 

None 

#SS(O) if the new value of SP or ESP is outside the stack segment limit; 
#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-107 



376™ PROCESSOR INSTRUCTION SET 

PUSHA/PUSHAD-Push all General Registers 

Opcode 

6660 
60 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

PUSHA 
PUSHAO 

, Clocks 

18 
34 

'Description 

Push AX, CX, OX, BX, original SP, BP, SI, and 01 
Push EAX, ECX, EOX, EBX, original ESP, EBP, ESI, 
and EOI 

IF OperandSize = 16 (* PUSHA instruction *) 
THEN 

Temp +- (SP); 
Push(AX); 
~ush(CX); 
Push(DX); 
Push(BX); 
Push(Temp); 
Push(BP); 
Push(SI); 
Push(DI); 

ELSE (* OperandSize = 32, PUSHAD instruction *) 
Temp +- (ESP); 
Push(EAX); 
Push(ECX); 
Push(EDX); 
Push(EBX); 
Push(Temp); 
Push(EBP); 
Push(ESI); 
Push(EDI); 

FI; 

PUSHA and PUSHAD save the 16-bit.or 32-bit general registers, 
respectively, on the stack. PUSHA decrements the stack pointer (SP) by 
16 to hold the eight word values. PUSHAD decrements the stack pointer 
(ESP) by 32 to hold the eight doubleword values. Because the registers 
are pushed onto the stack in the order in' which they were given, they 
appear in the 16 or 32 new stack bytes in reverse order. The last register 
pushed is Dr or ED!. 

None 

#SS(O) if the starting or ending stack address is outside the stack segment 
limit 

13-108 



376™ PROCESSOR INSTRUCTION SET 

PUSHF /PUSHFD-Push Flags Register onto the Stack 

Opcode 

669C 
9C 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

PUSHF 
PUSHFD 

Clocks 

4 
6 

IF OperandSize = 32 
THEN push(EFLAGS); 
ELSE push(FLAGS); 
FI; 

Description 

Push FLAGS 
Push EFLAGS 

PUSHF decrements the stack pointer by 2 and copies the FLAGS regis­
ter to the new top of stack; PUSHFD decrements the stack pointer by 
4, and the EFLAGS register is copied to the new top of stack which is 
pointed to by SS:ESP. Refer to Chapter 2 and to Chapter 4 for infor­
mation on the EFLAGS register. 

None 

#SS(O) if the new value of ESP is outside the stack segment boundaries 

13-109 



376™ PROCESSOR INSTRUCTION SET 

RCLI RCR I ROLl ROR-Rotate 

Opcode 

00/2 
02/2 
CO /21b 
6601 /2 
6603/2 
66 Cl /2 ib 
01 /2 
03/2 
C1 /2 ib 
00/3 
02/3 
CO /3 ib 
6601 /3 
66.03/3 
66 Cl /3 ib 
01/3 
03/3 
Cl /3 ib 
00/0 
02/0 
CO /0 ib 
6601 /0 
6603/0 
66 Cl /0 ib 
01 /0 
03/0 
Cl /0 ib 
00 /1 
02 /1 
CO /1 ib 
6601 /1 
6603 /1 
66 Cl /1 ib 
01 /1 
03 /1 
Cl /1 ib 

Operation 

Instruction 

RCLrlmB,l 
RCLrlmB,CL 
RCL rlmB,immB 
RCLrlm16,l 
RCL rim 16,CL 
RCL rlm16,immB 
RCL rlm32,l 
RCL rlm32,CL 
RCL rlm32,immB 
RCR rlmB,l 
RCR rlmB,CL 
RCR rlmB,immB 
RCR rlm16,l 
RCR rlm16,CL 
RCR rlm16,immB 
RCR rlm32,l 
RCR rlm32,CL 
RCR rlm32,immB 
ROL rlmB,l 
ROLrlmB,CL 
ROL rlmB,immB 
ROL rlm16,l 
ROL rlm16,CL 
ROL rlm16,immB 
ROLrlm32,l 
ROL rlm32,CL 
ROL rlm32,immB 
ROR rlmB,l 
ROR rlmB,CL 
ROR rlmB,immB 
ROR rlm16,l 
ROR rlm16,CL 
ROR rlm16,ImmB 
ROR rlm32,l 
ROR rlm32,CL 
ROR rlm32,ImmB 

Clocks 

9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/14 
9/14 
9/14 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 
9/14 
9/14 
9/14 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 

(* ROL -Rotate Left *) 
temp +- COUNT; 
WHILE (temp <> 0) 
DO 

Description 

Rotate 9 bits (CF,rlm byte) left once 
Rotate 9 bits (CF,rlm byte) left CL times 
Rotate 9 bits (CF,rlm byte) left immB times· 
Rotate 17 bits (CF,rlm word) left once 
Rotate 17 bits (CF,rlm word) left CL times 
Rotate 17 bits (CF,rlm word) left immB times 
Rotate 33 bits (CF,rlm dword) left once 
Rotate 33 bits (CF,rlm dword) left CL times 
Rotate 33 bits (CF,rlm dword) left immBtimes 
Rotate 9 bits (CF,rlm byte) right once 
Rotate 9 bits (CF,rlm byte) right CL times 
Rotate 9 bits (CF,rlm byte) right immB times 
Rotate 17 bits (CF,rlm word) right once 
Rotate 17 bits (CF,rlm word) right CL times 
Rotate 17 bits (CF,rlm word) right immB times 
Rotate 33 bits (CF,rlm dword) right once 
Rotate 33 bits (CF,rlm dword) right CL times 
Rotate 33 bits (CF,rlm dword) right immB times 
Rotate 8 bits rim byte left once 
Rotate 8 bits rim byte left CL times 
Rotate 8 bits rim byte left ImmS times 
Rotate 16 bits rim word left once 
Rotate 16 bits rim word left CL times 
Rotate 16 bits rim word left immB times 
Rotate 32 bits rim dword left once 
Rotate 32 bits rim dword left CL times 
Rotate 32 bits rim dword left immB times 
Rotate 8 bits rim byte right once 
Rotate 8 bits rim byte right CL times 
Rotate 8 bits rim word right immB times 
Rotate 16 bits rim word right once 
Rotate 16 bits rim word right CL times 
Rotate 16 bits rim word right immB times 
Rotate 32 bits rim dword right once 
Rotate 32 bits rim dword right CL times 
Rotate 32 bits rim dword right immB times 

tmpcf +- high-order bit of (rjm); 
rjm +- rjm * 2 + (tmpcf); 
temp +- temp - 1; 

OD; 
IF COUNT = 1 
THEN 

IF high-order bit of rjm <> CF 
THEN OF +- 1; 
ELSE OF +- 0; 
FI; 

ELSE OF +- undefined; 
FI; 

13-110 



Description 

376™ PROCESSOR INSTRUCTION SET 

(* ROR - Rotate Right *) 
temp +- COUNT; 
WHILE (temp <> 0) 
DO 

tmpcf +- low-order bit of (rim); 
rim +- rim /2 + (tmpcf * 2wldth(r/m»); 
temp +- temp - 1; 

DO; 
IF COUNT = 1 
THEN 

IF (high-order bit of rim) <> (bit next to high-order bit of rim) 
THEN OF +- 1; 
ELSE OF +- 0; 
FI; 

ELSE OF +- undefined; 
FI; 

Each rotate instruction shifts the bits of the register or memory operand 
given. The left rotate instructions shift all the bits upward, except for 
the top bit, which is returned to the bottom. The right rotate instructions 
do the reverse: the bits shift downward until the bottom bit arrives at 
the top. 

For the RCL and RCR instructions, the carry flag is part of the rotated 
quantity. RCL shifts the carry flag into the bottom bit and shifts the top 
bit into the carry flag; RCR shifts the carry flag into the top bit and 
shifts the bottom bit into the carry flag. For the ROL and ROR instruc­
tions, the original value of the carry flag is not a part of the result, but 
the carry flag receives a copy of the bit that was shifted from one end to 
the other. . 

The rotate is repeated the number of times indicated by the second 
operand, which is either an immediate number or the contents of the CL 
register. To reduce the maximum instruction execution time, the proces­
sor does not allow rotation counts greater than 31. If a rotation count 
greater than 31 is attempted, only the bottom five bits of the rotation 
are used. 

The overflow flag is defined only for the single-rotate forms of the 
instructions (second operand = 1). It is undefined in all other cases. For 
left shifts/rotates, the CF bit after the shift is XORed with the high­
order result bit. For right shifts/rotates, the high-order two bits of the 
result are XORed to get OF. 

13-111 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

OF only for single rotates; OF is undefined for multi-bit rotates; CF as 
described above 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SSsegment 

13-112 



376™ PROCESSOR INSTRUCTION SET 

REP IREPE/REPZ/REPNE/REPNZ-Repeat Following String 
Operation 

Opcode Instruction Clocks Description 

F3 6C REP INS r/mB, DX 7+6*ECX·'/ Input ECX bytes from port DX into ES:[EDI] 
27+6*ECX·' 

66 F3 6D REP INS r/m16,DX 7+6*ECX·'/ Input ECX words from port DX into ES:[EDI] 
27+6*ECK' 

F3 6D REP INS r/m32,DX 7+8*ECK'/ Input ECX dwords from pot DX into ES:[EDI] 
27+8*ECX·' 

F3 A4 REP MOVS mB,mB 7+4*ECX Move ECX bytes from [ESI] to ES:[EDI] 
66 F3 AS REP MOVS m16,m16 7+4*ECX Move ECX words from [ESI] to ES:[EDI] 
F3 AS REP MOVS m32,m32 7+8*ECX Move ECX dwords from [ESI) to ES:[EDI) 
F3 6E REP OUTS DX,r/mB 6+S*ECX·'/ Output ECX bytes from [ESI) to port DX 

26+S*ECK' 
66 F3 6F REP OUTS DX,r/m16 6+S*ECX·'/ Output ECX words from [ESI) to port DX 

26+S*ECK' 
F3 6F REP OUTS DX,r/m32 6+7*ECX·'/ Output ECX dwords from [ESI) to port DX 

26+ 7* ECX·' 
F3 AA REPSTOS mB S+S*ECX Fill ECX bytes at ES:[EDI) with AL 
66 F3 AS REP STOS m16 S+S*ECX Fill ECX words at ES:[EDI) with AX 
F3 AS REP STOS m32 S+7*ECX Fill ECX dwords at ES:[EDI) with EAX 
F3 A6 REPE CMPS mB,mB S+9*N Find non matching bytes in ES:[EDI) and [ESI) 
66 F3 A7 REPE CMPS m16,m16 S+9*N Find nonmatching words in ES:[EDI) and [ESI) 
F3 A7 REPE CMPS m32,m32 S+13*N Find nonmatching dwords in ES:[EDI) and [ESI) 
F3 AE REPESCAS mB S+8*N Find non-AL byte starting at ES:[EDI) 
66 F3 AF REPE SCAS m16 S+8*N Find non-AX word starting at ES:[EDI) 
F3 AF REPE SCAS m32 S+10*N Find non-EAX dword starting at ES:[EDI) 
F2 A6 REPNE CMPS mB,mB S+9*N Find matching bytes in ES:[EDI) and [ESI) 
66 F2 A7 REPNE CMPS m16,m16 5+9*N Find matching words in ES:[EDI) and [ESI) 
F2 A7 REPNE CMPS m32,m32 S+13*N Find matching dwords in ES:[EDI) and [ESI) 
F2 AE REPNE SCAS mB S+8*N Find AL, starting at ES:[EDI) 
66 F2 AF REPNE SCAS m16 S+8*N Find AX, starting at ES:[EDI) 
F2 AF REPNE SCAS m32 S+10*N Find EAX, starting at ES:[EDI) 

NOTES: *1 If CPL :$ IOPL 
*2 If CPL > IOPL 

Operation WHILE CountReg <> 0 
DO 

service pending interrupts (if any); 
perform primitive string instruction; 
CountReg +- CountReg - 1; 
IF primitive operation is CMPB, CMPW, SCAB, or SCAW 
THEN 

IF (instruction is REPjREPEjREPZ) AND (ZF=1) 
THEN exit WHILE loop 
ELSE 

IF (instruction is REPNZ or REPNE) AND (ZF=O) 
THEN exit WHILE loop; 
FI; 

FI; 
FI; 

aD; 

13-113 



Description 

Flags Affected 

Exceptions 

Notes 

376™ PROCESSOR INSTRUCTION SET 

REP, REPE (repeat while equal), and REPNE (repeat while not equal) 
are prefix that are applied to string operation. This prefix causes the 
string instruction that follows to be repeated the number of times 
indicated in the count register or (for REPE and REPNE) until the 
indicated condition in the zero flag is no longer met. 

Synonymous forms of REPE and REPNE are REPZ and REPNZ, 
respectively. Other prefixes (i.e., 67H and 66H) can be combined in any 
order with the REP prefix. 

The REP prefixes apply only to one string instruction at a time. To repeat 
a block of instructions, use the LOOP instruction or another looping 
construct. 

The precise action for each iteration is as follows: 

1. Check ECX or CX. If it is zero, exit the iteration, and move to the 
next instruction. 

2. Acknowledge any pending interrupts. 

3.· Perform the string operation once. 

4. Decrement ECX or CX by one; no flags are modified. 

5. Check the zero flag if the string operation is SeAS or CMPS. If 
the repeat condition does not hold, exit the iteration and move to 
the next instruction. Exit the iteration if the prefix is REPE and ZF 
is 0 (the last comparison was not equal), or if the prefix is REPNE 
and ZF is one (the last comparison was equal). 

6. Return to step 1 for the next iteration. 

Repeated CMPS and SCAS instructions can be exited if the count is 
exhausted or if the zero flag fails the repeat condition. These two cases 
can be distinguished by using either the JECXZ instruction, or by using 
the conditional jumps that test the zero flag (JZ, JNZ, and JNE). 

ZF by REP CMPS and REP SCAS as described above 

IUD if a repeat prefix is used before an instruction that is not in the list 
above; further exceptions can be generated when the string operation is 
executed; refer to the descriptions of the string instructions themselves 

Not all input/output devices can handle the rate at which the REP INS 
and REP OUTS instructions execute. 

13-114 



376™ PROCESSOR INSTRUCTION SET 

RET -Return from Procedure 

Opcode 

C3 
CB 
CB 
C2 iw 
CAiw 
CAiw 

Operation 

Instruction Clocks Description 

RET 
RET 
RET 

Return (near) to caller 
Return (far) to caller, same privilege 

RET imm16 
RET imm16 
RET imm16 

12+m 
36+m 
80 
12+m 
36+m 
80 

Return (far), lesser privilege, switch stacks 
Return (near), pop imm16 bytes of parameters 
Return (far), same privilege, pop imm16 bytes 
Return (far), lesser privilege, pop imm16 bytes 

IF instruction = near RET 
THEN; 

EIP +- Pop(); 
IF instruction has immediate operand THEN ESP +- ESP + imm16; FI; 

FI; 

IF instruction = far RET 
THEN 

Third word on stack must be within stack limits else #SS(O); 
Return selector RPL must be ;::: CPL ELSE #GP(return selector) 
IF return selector RPL ;= CPL 
THEN GOTO SAME-LEVEL; 
ELSE GOTO OUTER-PRIVILEGE-LEVEL; 
FI; 

FI; 

SAME-LEVEL: 
Return selector must be non-null ELSE #GP(O) 
Selector index must be within its descriptor table limits ELSE 

#GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector) 
IF non-conforming 
THEN code segment DPL must equal CPL; 
ELSE #GP(selector); 
FI; 
IF conforming 
THEN code segment DPL must be :$ CPL; 
ELSE #GP(selector); 
FI; 
Code segment must be present ELSE #NP(selector); 
Top word on stack must be within stack limits ELSE #SS(O); 
EIP must be in code segment limit ELSE #GP(O); 
Load CS:EIP from stack 
Load CS register with descriptor 
Increment ESP by 8 plus the immediate offset if it exists 

13-115 



376™ PROCESSOR INSTRUCTION SET 

OUTER-PRIVILEGE-LEVEL: 
Top (16+immediate) bytes on stack must be within stack limits 

ELSE #SS(O); 
Examine return CS selector and associated descriptor: 

Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits ELSE 
. #GP(selector) 
Descriptor AR byte must indicate code segment ELSE #GP(selector); 
IF non-conforming 
THEN code segment DPL must equal return selector RPL 
ELSE #GP(selector); 
FI; 
IF conforming 
THEN code segment DPL must be :5 return selector RPL; 
ELSE #GP(selector); 
FI; 
Segment must be present ELSE #NP(selector) 

Examine return SS selector and associated descriptor: 
Selector must be non-null ELSE #GP(O); 
Selector index must be within its descriptor table limits 

ELSE #GP(selector); 
Selector RPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Descriptor AR byte must indicate a writable data segment ELSE 

#GP(selector); 
Descriptor DPL must equal the RPL of the return CS selector ELSE 

#GP(selector); 
Segment must be present ELSE #NP(selector); 

EIP must be in code segment limit ELSE #GP(O); 
Set CPL to the RPL of the return CS selector; 
Load CS:EIP from stack; 
Set CS RPL to CPL; 
Increment ESP by 8 plus the immediate offset if it exists; 
Load SS:ESP from stack; 
Load the CS register with the return CS descriptor; 
Load the SS register with the return SS descriptor; 
For each of ES, FS, GS, and OS 
DO 

IF the current register setting is not valid for the outer level, 
set the register to null (selector +- AR +- 0); 

To be valid, the register setting must satisfy the following properties: 

00; 

Selecto(index must be within descriptor table limits; 
Descriptor AR byte must indicate data or readable code segment; 
IF segment is data or non-conforming code, THEN 

DPL must be 2:: CPL, or DPL must be 2:: RPL; 
FI; 

13-116 



Description 

Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

RET transfers control to a return address located on t'he stack. The 
address is usually placed on the stack by a CALL instruction, and the 
return is made to the instruction that follows the CALL. 

The optional numeric parameter to RET gives the number of stack bytes 
to be released after the return address is popped. These items are typically 
used as input parameters to the procedure called. 

For the intrasegment (near) return, the address on the stack is a segment 
offset, which is popped into the instruction pointer. The CS register is 
unchanged. For the intersegment (far) return, the address on the stack 
is a long pointer. The offset is popped first, followed by the selector. 

An intersegment· return causes the processor to check the descriptor 
addressed by the return selector. The AR byte of the descriptor must 
indicate a code segment of equal or lesser privilege (or greater or equal 
numeric value) than the current privilege level. Returns to a lesser privi­
lege level cause the stack to be reloaded from the value saved beyond 
the parameter block. 

The DS, ES, FS, and GS segment registers can be set to 0 by the RET 
instruction during an interlevel transfer. If these registers refer to 
segments that cannot be used by the new privilege level, they are set to 
o to prevent unauthorized access from the new privilege level. 

None 

#GP, #NP, or #SS, as described under "Operation" above 

13-117 



376™ PROCESSOR INSTRUCTION SET 

SAHF -Store AH into Flags 

Opcode 

9E 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

SAHF 3 Store AH into flags SF ZF xx AF xx PF xx CF 

SF:ZF:xx:AF:xx:PF:xx:CF +- AH; 

SAHF loads the flags listed above with values from the AH register, 
from bits 7, 6, 4, 2, and 0, respectively. 

SF, ZF, AF, PF, and CF as described above 

None 

13-118 



376™ PROCESSOR INSTRUCTION SET 

SAL/SARISHL/SHR-Shift Instructions 

Opcode 

DO /4 
02/4 
CO /4 ib 
6601 /4 
6603 /4 
66 C1 /4 ib 
01 /4 
03/4 
C1 /4 ib 
DO /7 
02/7 
CO /7 ib 
6601 /7 
6603 /7 
66 C1 /71b 
01 /7 
03/7 
C1 /7 ib 
DO /4 
02/4 
CO /4 ib 
6601 /4 
6603 /4 
66 C1 /4 ib 
01 /4 
03/4 
C1 /4 ib 
DO /5 
02 /5 
CO /5 ib 
6601 /5 
6603 /5 
66 C1 /5 ib 
01 /5 
03/5 
C1 /5 ib 

Instruction 

SAL rlmB,1 
SAL rlmB,CL 
SAL rlmB,immB 
SAL rlm16,1 
SAL rlm16,CL 
SAL rlm16,immB 
SAL rlm32,1 
SAL rlm32,CL 
SAL rlm32,immB 
SAR rlmB,1 
SAR rlmB,CL 
SAR rlmB,immB 
SAR rlm16,1 
SAR rlm16,CL 
SAR rlm16,immB 
SAR rlm32,1 
SAR rlm32,CL 
SAR rlm32,immB 
SHL rlmB,1 
SHL rlmB,CL 
SHL rlmB,immB 
SHL rlm16,1 
SHL rlm16,CL 
SHL rlm16,immB 
SHL rlm32,1 
SHL rlm32,CL 
SHL rlm32,immB 
SHR rlmB,1 
SHR rlmB,CL 
SHR rlmB,immB 
SHR rlm16,1 
SHR rlm16,CL 
SHR rlm16,immB 
SHR rlm32,1 
SHR rlm32,CL 
SHR rlm32,immB 

Clocks 

3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 
3/7 
3/7 
3/7 
3/7 
3/7 
3/7 
3/11 
3/11 
3/11 

Description 

Multiply rim byte by 2, once 
Multiply rim byte by 2, CL times 
Multiply rim byte by 2, immB times 
Multiply rim word by 2, once 
Multiply rim word by 2, CL times 
Multiply rim word by 2, immB times 
Multiply rim dword by 2, once 
Multiply rim dword by 2, CL times 
Multiply rim dword by 2, immB times 
Signed divide' rim byte by 2, once 
Signed divide' rim byte by 2, CL times 
Signed divide' rim byte by 2, immB times 
Signed divide' rim word by 2, once 
Signed divide' rim word by 2, CL times 
Signed divide' rim word by 2, immB times 
Signed divide' rim dword by 2, once 
Signed divide' rim dword by 2, CL times 
Signed divide' rim dword by 2, immB times 
Multiply rim byte by 2, once 
MUltiply rim byte by 2, CL times 
Multiply rim byte by 2, immB times 
Multiply rim word by 2, once 
Multiply rim word by 2, CL times 
Multiply rim word by 2, immB times 
Multiply rim dword by 2, once 
Multiply rim dword by 2, CL times 
Multiply rim dword by 2, immB times 
Unsigned divide rim byte by 2, once 
Unsigned divide rim byte by 2, CL times 
Unsigned divide rim byte by 2, immBtimes 
Unsigned divide rim word by 2, once 
Unsigned divide rim word by 2, CL times 
Unsigned divide rim word by 2, immB times 
Unsigned divide rim dword by 2, once 
Unsigned divide rim dword by 2, CL times 
Unsigned divide rim dword by 2, immB times 

Not the same division as 101V; rounding is toward negative infinity. 

Operation (* COUNT is the second parameter *) 
(temp) f- COUNT; 
WHILE (temp <> 0) 
DO 

IF instruction is SAL or SHL 
THEN CF f- high-order bit of rim; 
FI; 
IF instruction is SAR or SHR 
THEN CF f- low-order bit of rim; 
FI; 
IF instruction = SAL or SHL 
THEN rim f- rim * 2; 
FI; 
IF instruction = SAR 
THEN rim f- rim /2 (*Signed divide, rounding toward negative infinity*); 

13-119 



Description 

Flags Affected 

376™ PROCESSOR INSTRUCTION SET 

FI; 
IF instruction = SHR 
THEN rim +- rim / 2; (* Unsigned divide *); 
FI; 
temp +- temp - 1; 

00; 
(* Determine overflow for the various instructions *) 
IF COUNT = 1 
THEN 

IF instruction is SAL or SHL 
THEN OF +- high-order bit of rim <> (CF); 
FI; 
IF instruction isSAR 
THEN OF +- 0; 
FI; 
IF instruction is SHR 
THEN OF +- high-order bit of operand; 
FI; 

ELSE OF +- undefined; 
FI; 

SAL (or its synonym, SHL) shifts the bits of the operand upward. The 
high-order bit is shifted into the carry flag, and the low-order bit is set 
to O. 

SAR and SHR shift the bits of the operand downward. The low-order 
bit is shifted into the carry flag. The effect is to divide the operand by 2. 
SAR performs a signed divide with rounding toward negative infinity 
(not the same as IDlY); the high-order bit remains the same. SHR 
performs an unsigned divide; the high-order bit is set to O. 

The shift is repeated the number of times indicated by the second 
operand, which is either an immediate number or the contents of the CL 
register. To reduce the maximum execution time, the processor does not 
allow shift counts greater than 31. If a shift count greater than 31 is 
attempted, only the bottom five bits of the shift count are used. (The 
8086 uses all eight bits of the shift count.) 

The overflow flag is set only if the single-shift forms of the instructions 
are used. For left shifts, OF is set to 0 if the high bit of the answer is the 
same as the result of the carry flag (i.e., the top two bits of the original 
operand were the same); OF is set to 1 if they are different. For SAR, 
OF is set to 0 for all single shifts. For SHR, OF is set to the high-order 
bit of the original operand. 

OF for single shifts; OF is undefined for mUltiple shifts; CF, ZF, PF, 
and SF as described in Appendix C 

13-120 



Exceptions 

376™ PROCESSOR INSTRUCTION SET 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in· the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-121 



376™ PROCESSOR INSTRUCTION SET 

SBB-Integer Subtraction with Borrow 

Opcode 

1C ib 
6610 iw 
10 id 
80 /3 ib 
6681 /3 iw 

81 /3 id 

6683 /3 ib 

83 /3 ib 

18 /r 
66 19 /r 
19 /r 
1A /r 
661 B /r 
1S /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

SBBAL,immB 2 Subtract with borrow immediate byte from AL 
SBB AX,imml6 2 Subtract with borrow immediate word from AX 
SBB EAX,imm32 2 Subtract with borrow immediate dword from EAX 
SBS rjmB,immB 2/7 Subtract with borrow immediate byte from rjm byte 
SBB rjml6,imml6 2/7 Subtract with borrow immediate word from rjm 

word 
SBB rjm32,imm32 2/11 Subtract with borrow immediate dword from rjm 

dword 
SBB rjml6,immB 2/7 Subtract with borrow sign-extended immediate byte 

from rjm word 
SBB rjm32,immB 2/11 Subtract with borrow sign-extended immediate byte 

from rjm dword 
SBB rjmB,rB 2/6 Subtract with borrow byte register from rjm byte 
SBB rjml6,rl6 2/6 Subtract with borrow word register from rjm word 
SBB rjm32,r32 2/10 Subtract with borrow dword register from rjm dword 
SBS rB,rjmB 2/7 Subtract with borrow byte register from rjm byte 
SBB rl6,rjml6 2/7 Subtract with borrow word register from rjm word 
SBB r32,rjm32 2/11 Subtract with borrow dword register from rjm dword 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - (SignExtend(SRC) + CF) 
ELSE DEST +- DEST - (SRC + CF); 

SBB adds the second operand (DEST) to the carry flag (CF) and 
subtracts the result from the first operand (SRC). The result of the 
subtraction is assigned to the first operand (DEST), and the flags are 
set accordingly. 

When an immediate byte value is subtracted from a word operand, the 
immediate value is first sign-extended. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP(O) if the result is in a non writable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS( 0) for an illegal address in the SS segment 

13-122 



376™ PROCESSOR INSTRUCTION SET 

SCAS/SCASB/SCASW ISCASD-Compare String Data 

Opcode 

AE 
66AF 
AF 
AE 
66AF 
AF 

Operation 

Description 

Instruction Clocks 

SCAS mB 7 
SCAS m16 7 
SCAS m32 9 
SCASB 7 
SCASW 7 
SCASD 9 

IF byte type of instruction 
THEN 

Description 

Compare bytes AL-ES:[EDI]. update EDI 
Compare words AX-ES:[EDI]. update EDI 
Compare dwords EAX-ES:[EDI]. update EDI 
Compare bytes AL-ES:[EDI]. update EDI 
Compare words AX-ES:[EDI]. update EDI 
Compare dwords EAX-ES:(EDI]. update EDI 

AL - [EDI]; (* Compare byte in AL and dest *) 
IF DF = 0 THEN IndDec +- 1 ELSE IncDec +- -1; FI; 

ELSE 
IF OperandSize = 16 
THEN 

AX - [ED I]; (* compare word in AL and dest *) 
IF DF = 0 THEN IncDec +- 2 ELSE IncDec +- -2; FI; 

ELSE (* OperandSize = 32 *) 
EAX - [EDI];(* compare dword in EAX & dest *) 
IF DF = 0 THEN IncDec +- 4 ELSE IncDec +- -4; FI; 

FI; 
FI; 
EDI = EDI + IncDec 

SCAS subtracts the memory byte or word at the destination register 
from the AL, AX or EAX register. The result is discarded; only the flags 
are set. The operand must be addressable from the ES segment; no 
segment override is possible. ED! is used as the destination register. Load 
the correct index value into ED! before executing SCAS. 

After the comparison is made, the destination register is automatically 
updated. If the direction flag is 0 (CLD was executed), the destination 
register is incremented; if the direction flag is 1 (STD was executed), it 
is decremented. The increments or decrements are by 1 if bytes are 
compared, by 2 if words are compared, or by 4 if doublewords are 
compared. 

SCASB, SCASW, and SCASD are synonyms for the byte, word and 
doubleword SCAS instructions that don't require operands. They are 
simpler to code, but provide no type or segment checking. 

SCAS can be preceded by the REPE or REPNE prefix for a block search 
of ECX bytes or words. Refer to the REP instruction for further details. 

13-123 



Flags Affected 

Exceptions· 

376™ PROCESSOR INSTRUCTION SET 

OF, SF, ZF, AF, PF, and CFas described in Appendix C 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13;"'124 



376™ PROCESSOR INSTRUCTION SET 

SETCC-Byte Set on Condition 

Opcode 

OF 97 
OF 93 
OF 92 
OF 96 
OF 92 
OF 94 
OF 9F 
OF 9D 
OF 9C 
OF 9E 
OF 96 
OF 92 
OF 93 
OF 97 
OF 93 
OF 95 
OF 9E 
OF 9C 
OF 9D 
OF 9F 
OF 91 
OF 9B 
OF 99 
OF 95 
OF 90 
OF 9A 
OF 9A 
OF 9B 
OF 98 
OF 94 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

SETA rlmB 
SETAE rlmB 
SETB rlmB 
SETBE rlmB 
SETC rlmB 
SETE rlmB 
SETG rlmB 
SETGE rlmB 
SETL rlmp 
SETLE rlmB 
SETNA rlmB 
SETNAErlmB 
SETNB rlmB 
SETNBE rlmB 
SETNC rlmB 
SETNE rlmB 
SETNG rlmB 
SETNGE rlmB 
SETNL rlmB 
SETNLE rlmB 
SETNO rlmB 
SETNP rlmB 
SETNS rlmB 
SETNZ rlmB 
SETO rlmB 
SETP rlmB 
SETPE rlmB 
SETPO rlmB 
SETS rlmB 
SETZ rlmB 

Clocks 

4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 
4/5 

Description 

Set byte if above (CF=O and ZF=O) 
Set byte if above or equal (CF=O) 
Set byte if below (CF=1) 
Set byte if below or equal (CF = 1 or (ZF = 1) 
Set if carry (CF=1) 
Set byte if equal (ZF=1) 
Set byte if greater (ZF=O or SF=OF) 
Set byte if greater or equal (SF=OF) 
Set byte if less (SF<>OF) 
Set byte if less or equal (ZF=1 and SF<>OF) 
Set byte if not above (CF=1) 
Set byte if not above or equal (CF=1) 
Set byte if not below (CF=O) 
Set byte if not below or equal (CF=O and ZF=O) 
Set byte if not carry (CF = 0) 
Set byte if not equal (ZF = 0) 
Set byte if not greater (ZF=1 or SF<>OF) 
Set if not greater or equal (SF<>OF) 
Set byte if not less (SF=OF) 
Set byte if not less or equal (ZF=1 and SF<>OF) 
Set byte if not overflow (OF=O) 
Set byte if not parity (PF = 0) 
Set byte if not sign (SF=O) 
Set byte if not zero (ZF = 0) 
Set byte if overflow (OF=1) 
Set byte if parity (PF=1) 
Set byte if parity even (PF = 1) 
Set byte if parity odd (PF=O) 
Set byte if sign (SF = 1) 
Set byte if zero (ZF=1) 

IF condition THEN rlmB E- 1 ELSE rlmB E- 0; FI; 

SETcc stores a byte at the destination specified by the effective address 
or register if the condition is met, or a 0 byte if the condition is not met. 

None 

#GP(O) if the result is in a non-writable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-125 



376™ PROCESSOR INSTRUCTION SET 

SGDT /SIDT -Store Global/Interrupt Descriptor Table Register 

Opcode 

OF 01 /0 
OF 01/1 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

SGDTm 
SIDTm 

Clocks 

11 
11 

Description 

Store GDTR to m 
Store IDTR to m 

DEST +- 48-bit BASE/LIMIT register contents; 

SGDT jSIDT copies the contents of the descriptor table register the six 
bytes of memory indicated by the operand. The LIMIT field of the 
register is assigned to the first word at the effective address. The next 
four bytes are assigned the 32-bit BASE field of the register. 

SGDT and SIDT are used only in operating system software; they are 
not used in application programs. 

None 

Interrupt 6 if the destination operand is a register; #GP(O) if the desti­
nation is in a nonwritable segment; #GP(O) for an illegal memory operand 
effective address in the CS, DS, ES, FS, or GS segments; #SS(O) for an 
illegal address in the SS segment 

13-126 



376™ PROCESSOR INSTRUCTION SET 

SHLD-Double Precision Shift Left 

Opcode 

66 OF A4 
OF A4 
66 OF AS 
OF AS 

Operation 

Description 

Instruction Clocks Description 

SHLD r/m16,r16,immB 3/7 r/m16 gets SHL of r/m16 concatenated with r16 
r/m32 gets SHL of r/m32 concatenated with r32 
r/m16 gets SHL of r/m16 concatenated with r16 

SHLD r/m32,r32,immB 3/11 
SHLD r/m16,r16,CL 3/7 
SHLD r/m32,r32,CL 3/11 " r/m32 gets SHL of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the 
instruction, either an immediate byte or the byte in register CL *) 
ShiftAmt +- count MOD 32; 
in Bits +- register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt ~ OperandSize 
THEN (* Bad parameters *) 

rjm +- UNDEFINED; 
CF, OF, SF, ZF, AF, PF +- UNDEFINED; 

ELSE (* Perform the shift *) 
CF +- BIT[Base, OperandSize - ShiftAmt]; 

(* Last bit shifted out on exit *) 
FOR i +- OperandSize - 1 DOWNTO ShiftAmt 
DO 

BIT[Base, i] +- BIT[Base, i - ShiftAmt]; 
OF; 
FOR i +- ShiftAmt - 1 DOWNTO 0 
DO 

BIT[Base, i] +- BIT[inBits, i - ShiftAmt + OperandSize]; 
OD; 
Set SF, ZF, PF (rjm); 

(* SF, ZF, PF are set according to the value of the result *) 
AF +- UNDEFINED; 

FI; 
FI; 

SHLD shifts the first operand provided by the rjm field to the left as 
many bits as specified by the count operand. The second operand (r16 
or r32) provides the bits to shift in from the right (starting with bit 0). 
The result is stored back into the rjm operand. The register remains 
unaltered. 

The count operand is provided by either an immediate byte or the 
contents of the CL register. These operands are taken MODULO 32 to 
provide a number between 0 and 31 by which to shift. Because the bits 
to shift are provided by the specified registers, the operation is useful for 

13-127 



376™ PROCESSOR INSTRUCTION SET 

multiprecision shifts (64 bits or more). The SF, ZF and PF flags are set 
according to the value of the result. CS is set to the value of the last bit 
shifted out. OF and AF are left undefined. 

nFlags Affected OF, SF, ZF, PF, and CF as described above; AF and OF are undefined· 

Exceptions #GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-128 



376™ PROCESSOR INSTRUCTION SET 

SHRD-Double Precision Shift Right 

Opcode 

66 OF AC 
OF AC 
66 OF AD 
OF AD 

Operation 

Description 

Instruction 

SHRD r/m16,r16,imm8 
SHRD r/m32,r32,imm8 
SHRD r/m16,r16,CL 
SHRD r/m32,r32,CL 

Clocks 

3/7 
3/11 
3/7 
3/11 

Description 

r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 
r/m16 gets SHR of r/m16 concatenated with r16 
r/m32 gets SHR of r/m32 concatenated with r32 

(* count is an unsigned integer corresponding to the last operand of the 
instruction, either an immediate byte or the byte in register CL *) 

ShiftAmt +- count MOD 32; 
inBits +- register; (* Allow overlapped operands *) 
IF ShiftAmt = 0 
THEN no operation 
ELSE 

IF ShiftAmt 2: OperandSize 
THEN (* Bad parameters *) 

rim +- UNDEFINED; 
CF, OF, SF, ZF, AF, PF +- UNDEFINED; 

ELSE (* Perform the shift *) 
CF +- BIT[rlm, ShiftAmt - 1]; (* last bit shifted out on exit *) 
FOR i +- 0 TO OperandSize - 1 - ShiftAmt 
DO 

BIT[rlm, i] +- BIT[rlm, i - ShiftAmt]; 
00; 
FOR i +- OperandSize - ShiftAmt TO OperandSize-1 
DO 

BIT[rlm,i] +- BIT[inBits,i+ShiftAmt - OperandSize]; 
00; 
Set SF, ZF, PF (rim); 

(* SF, ZF, PF are set according to the value of the result *) 
Set SF, ZF, PF (rim); 
AF +- UNDEFINED; 

FI; 
FI; 

SHRD shifts the first operand provided by the rim field to the right as 
many bits as specified by the count operand. The second operand (r16 
or r32) provides the bits to shift in from the left (starting with bit 31). 
The result is stored back into the rim operand. The register remains 
unaltered. 

The count operand is provided by either an immediate byte or the 
contents of the CL register. These operands are taken MODULO 32 to 
provide a number between 0 and 31 by which to shift. Because the bits 
to shift are provided by the specified register, the operation is useful for 

13-129 



Flags Affected 

Exceptions· 

376™ PROCESSOR INSTRUCTION SET 

multi-precision shifts (64 bits or more). The SF, ZF and PF flags are set 
according to the value of the result. CS is set to the value of the last bit 
shifted out. OF and AF are left undefined. 

OF, SF, ZF, PF, and CF as described above; AF and OF are undefined 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 



376™ PROCESSOR INSTRUCTION SET 

SLOT -Store Local Descriptor Table Register 

Opcode 

OF 00/0 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction Clocks Description 

SLOT r/m16 2/2 Store LOTR to EA word 

r/m16 +- LDTR; 

SLDT stores the Local Descriptor Table Register (LDTR) in the two­
byte register or memory location indicated by the effective address 
operand. This register is a selector that points into the Global Descriptor 
Table. 

SLDT is used only in operating system software. It is not used in appli­
cation programs. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

The operand-size attribute has no effect on the operation of the 
instruction. 

13-131 



376™ PROCESSOR INSTRUCTION SET 

SMSW -Store Machine Status Word· 

Opcode 

OF 01/4 

Operation 

Description 

Flags Affe~ted 

Exceptions 

Notes 

Instruction Clocks Description 

SMSW r/m16 2/2 Store machine status word to EA word 

r/m16 +- MSW; 

SMSW stores the machine status word (part of CRO) in the two-byte 
register or memory location indicated by the effective address operand. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

This instruction is provided for compatibility with the 80286; 376 
processor and 386 microprocessor programs should use MOY ... , CRO. 

13-132 



376™ PROCESSOR INSTRUCTION SET 

STe-Set Carry Flag 

Opcode 

F9 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

STC 

CF ~ 1; 

Clocks 

2 

STC sets the carry flag to 1. 

CF = 1 

None 

13-133 

Description 

Set carry flag 



376™. PROCESSOR INSTRUCTION SET 

STD-Set Direction Flag 
.~ 

Opcode 

FD 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

STD 2 Set direction flag so (E)SI and/or (E)DI decrement 

OF +- 1; 

STD sets the direction flag to 1, causing all subsequent string operations 
to·decrement the index registers, ESl and/or EDl, on which they operate. 

OF = 1 

None 

13-134 



376™ PROCESSOR INSTRUCTION SET 

STI-Set Interrupt Flag 

Opcode 

F13 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

STI 8 

IF +- 1 

Set interrupt flag; interrupts enabled at the end of 
the next Instruction 

ST! sets the interrupt flag to 1. The processor then responds to external 
interrupts after executing the next instruction if the next instruction 
allows the interrupt flag to remain enabled. If external interrupts are 
disabled and you code ST!, RET (such as at the end of a subroutine), 
the RET is allowed to execute before external interrupts are recognized. 
Also, if external interrupts are disabled and you code ST!, CLI, then 
external interrupts are not recognized because the CLI instruction clears 
the interrupt flag during its execution. 

IF = 1 

#GP(O) if the current privilege level is greater (has less privilege) than 
the I/0 privilege level 

13-135 



376™ PROCESSOR INSTRUCTION SET 

STOS/STOSB/STOSW ISTOSD-Store String Data 

Opcode 

AA 
66AB 
AB 
AA 
66AB 
AB 

Operation 

Description 

Instruction Clocks 

STOSmB . 4 
STOS m16 4 
.STOS m32 6 
STOSB 4 
STOSW 4 
STOSD 6 

IF byte type of instruction 
THEN 

(ES:EDI) . +- AL; 
IF OF = 0 
THEN EDI +- EDI +' 1; 
ELSE EDI+- EDI -, 1; 
FI;' 

ELSE IF OperandSize = 16 
THEN 

(ES:EDI) +- AX; 
IF OF = 0 
THEN EDI +- EDI + 2; 
ELSE EDI+- EDI - 2; 
FI; 

ELSE (* OperandSize = 32 *) 
(ES:EDI) +- EAX; 
IF OF = 0 
THEN EDI +- EDI + 4; 
ELSE EDI +- EDI - 4; 
FI; 

FI; 
FI; 

Description 

Store AL in byte ES:[EDI]. update EDI 
Store AX in word ES:[EDI]. update EDI 
Store EAX in dword ES:[EDI]. update EDI 
Store AL in byte ES:[EDI]. update EDI 
Store AX in word ES:[EDI]. update EDI 
Store EAX in dword ES:[EDI]. update EDI 

STOS transfers the contents of all AL,' AX, or EAX register to the 
memory byte or word given by the destination register relative to the ES 
segment. The destination register is ED!. The destination operand must 
be addressable from the ES register. A segment override is not possible. 
Load the correct index value into the destination register before execut­
ing STOS. 

After the transfer is made, EDI is automatically updated. If the direc­
tion flag is 0 (CLD was executed), EDI is incremented; if the direction 
flag is 1 (STD was executed), EDI is decremented. EDI is incremented 
or decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 
if a doubleword is stored. 

STOSB, STOSW, and STOSD are synonyms for the byte, word, and 
doubleword STOS instructions, that do not require an operand. They are 
simpler to use, but provide no type or segment checking. 

13-136 



Flags Affected 

Exceptions 

376™ PROCESSOR INSTRUCTION SET 

STOS can be preceded by the REP prefix for a block fill of ECX bytes, 
words, or doublewords. Refer to the REP instruction for further details. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-137 



376™ PROCESSOR JNSTRUCTION SET 

STR-StoreTask Register 

Opcode 

OF 00/1 

Operation 

Description 

Flags Affected 

Exceptions 

Notes 

Instruction Clocks Description 

STR r/m16 2/2 Load EA word into task register 

rim +- task register; 

The contents of the task register are copied to the two-byte register or 
memory location indicated by the effective address operand. 

STR is used only in operating system software. It is not used in appli­
cation programs. 

None 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

The operand-size attribute has no effect on this instruction. 

13..;.138 



376™ PROCESSOR INSTRUCTION SET 

SUB-Integer Subtraction 

Opcode 

2C ib 
6620 iw 
20 Jd 
80 /5 ib 
6681 /5 iw 
81 /5 id 
6683 /5 ib 

83 /5 Jb 

28 /r 
6629 /r 
29 /r 
2A /r 
662B /r 
2B /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

SUBAL,imm8 
SUB AX,imm16 
SUB EAX,imm32 
SUB rlm8,Imm8 
SUB rlm16,imm16 
SUB rlm32,imm32 
SUB rlm16,imm8 

SUB rlm32,imm8 

SUB rlm8,r8 
SUB rlm16,r16 
SUB rlm32,r32 
SUB r8,rlm8 
SUB r16,rlm16 
SUB r32,rlm32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11 
2/7 

2/11 

2/6 
2/6 
2/10 
2/7 
2/7 
2/9 

Description 

Subtract immediate byte from AL 
Subtract Immediate word from AX 
Subtract immediate dword from EAX 
Subtract immediate byte from rim byte 
Subtract immediate word from rim word 
Subtract immediate dword from rim dword 
Subtract sign-extended immediate byte from rim 
word 
Subtract sign-extended immediate byte from rim 
dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dword register from rim dword 
Subtract byte register from rim byte 
Subtract word register from rim word 
Subtract dword register from rim dword 

IF SRC is a byte and DEST is a word or dword 
THEN DEST = DEST - SignExtend(SRC); 
ELSE DEST +- DEST - SRC; 
FI; 

SUB subtracts the second operand (SRC) from the first operand (OEST). 
The first operand is assigned the result of the subtraction, and the flags 
are set accordingly. 

When an immediate byte value is subtracted from a word operand, the 
immediate value is first sign-extended to the size of the destination 
operand. 

OF, SF, ZF, AF, PF, and CF as described in Appendix C 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, OS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-139 



376™ PROCESSOR INSTRUCTION SET 

TEST -Logical Compare 

Opcode 

A8 Ib 
66 A9 iw 
A9 id 
F6 /Olb 
66 F7 /0 iw 
F7 /0 id 
84 /r: 
6685 /r 
85 /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction Clocks 

TEST AL,immB 2 
TEST AX,imm16. 2 
TEST EAX,imm32 2 
TESTrlmB,immB ' 2/5 
TEST rlm16,imm16 2/5 
TEST rlm32,imm32 2/7 
TEST rlmB,rB 2/5 
TEST rlm16,r16 2/5 
TEST rlm32,r32 2/7 

, Description 

AND immediate byte with AL, 
AND immediate word with AX 
AND immediate dword with EAX 
AND Immediate byte with rim byte 
AND immediate word with rim word 
AND immediate dword with rim dword 
AND byte register with rim byte 
AND word register with rim word 
AND dword register with rim dword 

DEST:= LeftSRCAND RightSRC; 
CF ~ 0; 
OF ~ 0; 

TEST computes the bit-wise logical AND of its two operands. Each bit 
of the result is 1 if both of the correspondiIlg bits of the operands are 1; 
otherwise, each bit is O. The result of the operation is discarded and only 
the flags are modified. ' 

OF = 0, CF = 0; SF, ZF, and PF as described in Appendix C 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-140 



376™ PROCESSOR INSTRUCTION SET 

VERR, VERW-Verifya Segment for Reading or Writing 

Opcode 

OF 00/4 

OF 00/5 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

VERR r/m16 

VERW r/m16 

Clocks 

10/11 

15/16 

Description 

Set ZF = 1 if segment can be read, selector in 
r/m16 
Set ZF=1 if segment can be written, selector in 
r/m16 

IF segment with selector at (rjm) is accessible 
with current protection level 
AND «segment is readable for VERR) OR 

(segment is writable for VERW» 
THEN ZF .- 0; 
ELSE ZF .- 1; 
FI; 

The two-byte register or memory operand of VERR and VER W contains 
the value of a selector. VERR and VER W determine whether the 
segment denoted by the selector is reachable from the current privilege 
level and whether the segment is readable (VERR) or writable (VER W). 
If the segment is accessible, the zero flag is set to 1; if the segment is 
not accessible, the zero flag is set to O. To set ZF, the following condi­
tions must be met: 

• The selector must denote a descriptor within the bounds of the table 
(GDT or LDT); the selector must be "defined." 

• The selector must denote the descriptor of a code or data segment 
(not that of a task state segment, LDT, or a gate). 

• For VERR, the segment must be readable. For VERW, the segment 
must be a writable data segment. 

• If the code segment is readable and conforming, the descriptor 
privilege level (DPL) can be any value for VERR. Otherwise, the 
DPL must be greater than or equal to (have less or the same privi­
lege as) both the current privilege level and the selector's RPL. 

The validation performed is the same as if the segment were loaded into 
DS, ES, FS, or GS, and the indicated access (read or write) were 
performed. The zero flag receives the result of the validation. The selec­
tor's value cannot result in a protection exception, enabling the software 
to anticipate possible segment access problems. 

ZF as described above 

Faults generated by illegal addressing of the memory operand that 
contains the selector, the selector is not loaded into any segment register, 
and no faults attributable to the selector operand are generated 

#GP(O) for an illegal memory operand effective address in the CS, DS, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-141 



376™ PROCESSOR INSTRUCTION SET 

WAIT -Wait until BUSY# Pin is Inactive (HIGH) 

Opcode 

98 

Description 

Flags Affected 

Exceptions 

Instruction Clocks Description 

WAIT 6 minimum Wait until BUSY pin is inactive (HIGH) 

WAIT suspends execution of instructions until the BUSY # pin is inactive 
(high). The BUSY # pin is driven by the numeric processor extension. 

None 

#NM if the task-switched flag in the machine status word (the lower 16 
bits of register eRO) is set; #MF if the ERROR# input pin is asserted 
(i.e., the numeric coprocessor has detected an unmasked numeric error) 

13-142 



376™ PROCESSOR INSTRUCTION SET 

XCHG-Exchange Register IMemory with Register 

Opcode 

90+r 
6690+ r 
90+r 
90+r 
86 /r 
86 /r 
6687 /r 
6687 /r 
87 /r 
87 /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

XCHG AX,r16 
XCHG r16,AX 
XCHG EAX,r32 
XCHG r32,EAX 
XCHG rlmB,rB 
XCHG rB,rlmB 
XCHG rlm16,r16 
XCHG r16,rlm16 
XCHG rlm32,r32 
XCHG r32,rlm32 

temp +- DEST 
DEST +- SRC 
SRC +- temp 

Clocks 

3 
3 
3 
3 
3/5 
3/5 
3/5 
3/5 
3/9 
3/9 

Description 

Exchange word register with AX 
Exchange word register with AX 
Exchange dword register with EAX 
Exchange dword register with EAX 
Exchange byte register with EA byte 
Exchange byte register with EA byte 
Exchange word register with EA word 
Exchange word register with EA word 
Exchange dword register with EA dword 
Exchange dword register with EA dword 

XCHG exchanges two operands. The operands can be in either order. If 
a memory operand is involved, BUS LOCK is asserted for the duration 
of the exchange, regardless of the presence or absence of the LOCK 
prefix or of the value of the IOPL. 

None 

#GP(O) if either operand is in a nonwritable segment; #GP(O) for an 
illegal memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-143 



376™ PROCESSOR INSTRUCTION SET 

XLA T / XLA TB-Table Look-up Translation 

Opcode 

07 
07 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

XLATmB 
XLATB 

Clocks 

5 
5 

Description 

Set AL to memory byte OS:[EBX + unsigned ALl 
Set AL to memory byte OS:[EBX + unsigned ALl 

AL· ":(EBX·+ ZeroExtend(AL)); .• 

XLAT changes the AL register from the table index to the table entry. 
AL should be the unsigned index into a table addressed by DS:EBX. 

The operand to XLAT allows for the possibility of a segment override. 
XLAT uses the contents of EBX even if they differ from the offset of 
the operand. The offset of the operand should have been moved into 
EBX with a previous instruction. 

The no-operand fonTI, XLATB, can be used if the EBX table will always 
reside in theDS segment. 

None 

#GP(O) for an illegal memory operand effective address in the CS, tis, 
ES, FS, or GS segments; #SS(O) for an illegal address in the SS segment 

13-144 



376™ PROCESSOR INSTRUCTION SET 

XOR-Logical Exclusive OR 

Opcode 

34 ib 
6635 iw 
35 id 
80 /6 ib 
6681 /6 iw 
81 /6 id 
6683 /6 ib 
83 /6 ib 
30 /r 
6631 /r 
31 /r 
32 /r 
6633 /r 
33 /r 

Operation 

Description 

Flags Affected 

Exceptions 

Instruction 

XORAL,immB 
XOR AX,imm16 
XOR EAX,imm32 
XOR r/m8,imm8 
XOR r/m16,imm16 
XOR r/m32,imm32 
XOR r/m16,imm8 
XOR r/m32,immB 
XORr/mB,r8 
XOR r/m16,r16 
XOR r/m32,r32 
XOR rB,r/mB 
XOR r16,r/m16 
XOR r32,r/m32 

Clocks 

2 
2 
2 
2/7 
2/7 
2/11 
2/7 
2/11 
2/6 
2/6 
2/10 
2/7 
2/7 
2/11 

Description 

Exclusive-OR immediate byte to AL 
Exclusive-OR immediate word to AX 
Exclusive-OR immediate dword to EAX 
Exclusive-OR immediate byte to r/m byte 
Exclusive-OR immediate word to r/m word 
Exclusive-OR immediate dword to r/m dword 
XOR sign-extended immediate byte with r/m word 
XOR sign-extended immediate byte with r/m dword 
Exclusive-OR byte register to r/m byte 
Exclusive-OR word register to r/m word 
Exclusive-OR dword register to r/m dword 
Exclusive-OR byte register to r/m byte 
Exclusive-OR word register to r/m word 
Exclusive-OR dword register to r/m dword 

DEST ~ LeftSRC XOR RightSRC 
CF ~ 0 
OF ~ 0 

XOR computes the exclusive OR of the two operands. Each bit of the 
result is 1 if the corresponding bits of the operands are different; each 
bit is 0 if the corresponding bits are the same. The answer replaces the 
first operand. 

CF = 0, OF = 0; SF, ZF, and PF as described in Appendix C; AF is 
undefined 

#GP(O) if the result is in a nonwritable segment; #GP(O) for an illegal 
memory operand effective address in the CS, DS, ES, FS, or GS 
segments; #SS(O) for an illegal address in the SS segment 

13-145 





intJ 
.......... 
~~I~~ord Dr .. '2 
Huntsyille 35805 
Tel: (205) 830-4010 

ARIZONA 

CAUFORNIA 

I.co 

lb~'~:way. Suite 101 
Sacramento 95815 
Tel: (916) 920-8096 

COLORADO 

CONNEcnCUT 

1~n~M1~,7'1Ii Road 
2nd Roor 

$1j~~i:\\~ 
FLORIDA 

DOMESTIC SALES OFFICES 

GEORGIA 

l1n,:gI~8 Parkway 
$ul182oo 
Norcross 30092 
Tel: (404) 44~1 

ILUNDtS 

~~~~inB8~~:oad, Sulle 400 
Tel: (312) afO-8031
INDIANA

:7' ~~ue Road
Suite 125

~~~~~~~= 
IOWA 

Intel Corp. • 
1930 SI. Andrews Drive N.E. 
2nd Floor 
Cedar R8f:l1ds 52402 
Tel: (319) 393-5510 

KANSAS 

MARYLAND 

Jml~~y Drive South 
SuneC 
Hanover 21076 

~~f~b?:2?I\~ 

IlASSACHUSEns 

MICHIGAN 

MINNESOTA 

MISSOURI 

NEW JERSEY 

OHiceCenle1 
7~~rings Road 

-2233 

l~~=:ate Center 
~~~~~~ton Avenue 
Roseland 07068

~:'~~~~.~:~.ruA

NEW MEXICO

'~~1~~~~1 Boulevard N.E.
Suite B 295

~~~:U(~~~)\U9~~lJJ: 
NEW YORK 

NORTH CAROUN" 

!~JgI ix~~utiya Drive 
Suite 213 
Charlona 28212 
Tet: (704) 568-8966 

OHIO 

~nJ1' ~a~benter Ortve 
Sune220 

~~;b~5~l~208 

OKLAHOMA 

I Corp. 
N. Broadway 
115 

Dr., Suite 100 

~~62 

OREGON 

PENNSYLVANIA 

Intel Corp.· 
400 Penn Center Blvd., Suite 610 

~:M~h8~:70 
PUERTO RICO 

t~: ~~~~tri'iic;~~~r Corp. 
P.O. 80.11.910 
Las Piedras 00671 
Tel: (809)733-8616 

TEXAS 

!~~~.~gerson Lane 
Suite 314 
Austin 78752 
Tel: (S12) 454-3626 

t~~ ~C::~'~08d 
Suite 400 
0811e875234 

~~l~1~-~:l:~~g~ 

t~ni~Ii.~~;reew8Y 
Sultet490 
Houston 77074 

~~!J~~::;~469~ 
UTAH 

l~~~;~rG40o South 
Suite 104 

~~[(~lri~L80S1 
VIRGINIA 

WASHINGTON 

tbnJ~o~~PAvenue N.E. 
Suite 366 
Bellevue 98004 

~J~~~~3~ 

l~Je~~~~ian Road 
Suite 102 
Spokane 99206 
Tel: (509) 926-8086 

WISCONSIN 

tnote~.c~:fcutlve Dr. 
Suite 102 
Brookfield 53005 
Tel: (414) 784-6087 
FAX: (414) 796-2115 

CANADA 
BRITISH COLUMBIA 

ONTARIO 

aUEBEC 

CG/SAL 11070788 



inter 
DOMESTIC DISTRIBUTORS 

AlABAMA 

AJrow Electronics, Inc. 
1015 Henderson Road 
Huntsville 35805 
Tel: (205) 837-6955 

ARIZONA 

CALIFORNIA (Conl'd.1 

or7111 

w,lgp~~~b~~t~~6~~ 
Rancho Cordova 95670 
Tel: (916) 638-5282 

tMlcrocomputer syste~ Technical Distributor Center 

FLORIDA (Conl'd.1 

GEORGIA 

fArrow Electronlcs,lnc. 
3155 Northwoods Parkway 
Suite A 
Norcross 30071 

~~~l~i6~JN9 

MARYLAND

Arrow Electronics, Inc.
8300 Guilford Drive
Suite H, River Center.
Columbia 21046

~~~n~35s.= 
~:~I~:l~~~t!e;tronICS 
Columbia 21045 

~~~~b~6~~~06~ . 

MASSACHUSETTS

Arrow EleCtronics, Inc.
25 Upton Dr.

~~~~fYl~~~~ 

MTI Systems Sales 

:~~~~~ctale8f~' 
Pioneer Electronics 
44 Hartwell Avenue 
LeXI~ton 02173 

~:Hb~~~7. 
MICHIGAN 

Arrow Electronics, Inc. 
755 PhoenIx Drive 
Ann Arbor 48104 

~~J~b?12~~o 

~~~As:~nT.·n'cs 
Space AS
Grand Rapids 49508

~~Jn~21ts~~

tHamilton/Avnet Electronics
32487 Schoolcraft Road
Uvonfa 48150

~~~J~W~~7% 

MINNESOTA 

t~~~~ft:~~~~:nics 
Minnetonka 55434 
Tel: (612) 932-0600 

J~~&~d~~~a~~~ Dr. 
SuReG 
Eden Prafrl 55343 
Tel: (612) 944-3355 

MISSOURI 

NEW HAMPSHIRE 

NEW JERSEY 

t:[i,~~~~~~a~nc. 
Unit 11 
Marhon08053 

~~Wb~9~~9 

l=~=1cs 
~~Ir.r,"13~~o 

1 

tMTI Systems Sales 
37 Kulick Rd. 
Fairfield 07006 
Tel: (201) 227-5552 

NEW MEXICO 

NEW YORK 

Haml1ton/Avnet. 
933 Motor Parkway 

~:,~fft~3~¥:O 
TWX: 51t1-224-6166 

tMTI Systems Sales 
38 Harbor Park Drive 

~(~~h~~~~050 

CG/SAL2/070788 



DOMESTIC DISTRIBUTORS (Cont'd.) 

NEW YORK (Cont'd.) OKLAHOMA TeXAS (Cont'd., WISCONSIN ONTARIO (Cont'd.) 

tPiOneer Electronics Arrow Electronics, Inc. ~HnmiltOn/Avnet ~Iectronlcs Arrow Electronics, Inc. tHamliten/Avnet Electronics a Crossway Park West 1211 E. 51stStreei 111 W. Walnut HIli Lane 200 N. Patrick Blvd., Sle. 100 190 Colonnade Road South 

~j~b?2~~~1~and 11797 
Suite 101 Irvi}75038 Brookllald 53005 Nepean K2E 7LS 
Tulsa 74146 Tel: 14) 550-6111 Tel: (414) 767·6600 ~~~6~!if9~:,'l00 Tel: (918) 252·7537 TW : 910·860·5929 TWX: 910-262-1193 

~Ioneer ElectroniCS t~f2'lil~~~~s~ng:'.E~eu~:~orb~~ If!£~}~}!~d.~ ~~i~:~~Ws 
Hamilton/Avnet Electronics tzentronlCS 

o Fairport Park 2975 Moorland Road Tilbury Court 
Fairport 14450 Tulsa 74146 New Berlin 53151 

~Jii~~~ll:~~ ~~nn~:5~?llo~ Tel: (918) 252·7297 ~~;Jn~8t,?t~i3 ~lJn?2S:2~1511°2 
OREGON 

NORTH CAROLINA tPloneer Electronics 
CANADA 

tZentronlcs 
18260 Kramer 155 Colonnade Road 

~Arrow Electronics, Inc. Austin 78758 Unit 17 
240 Greensdalry Road ~~~J~b~83f4~DJl203 ALBERTA Nepean K2E 7Kl 

~~~r~r8j~~135~ 
Tel: (613) 226·8840

tPioneer Electronics
Hamilton/Avnet Electronics

Zentronics 2816 21st Street N.E.
~Hamilion/Avnet Electronics b!rl~~ ?5~~a Road ~:II?(~~3n~0~5~86

60·1313 Border SI.
lHamilton/Avnet Electronics 024 S.w. Jean Road r~r(~~ ~~4~70J~7 R~1~ Stf~i~2~orest Drive Bldg. C, Suite 10 ~~~J1b~6~60?5350603 TWX: 03·627·642

~~mW8-~'.ri'6
Lake OSWgjO 97034

Zentronics QUEBEC ~~~n.4555:8~7~ ~Pioneer Electronics
~jOON,04t~ Avenue N.E. 853 Point West Drive tArrow Electronics Inc.

~~~~ex~lfo~~~~~~:~: gr~J.p, Inc. 
Wyle Distribution Group Houston 77036 

~:II?{~~3n~2~~~21 
4050 Jean Talon Quest 

5250 N.E. Elam Young Parkway ~lJrb~6888;:,5tt6 Montreal H4P lWl 
Charlotte 28210 Suite 600 ~i~J~~l5~59g51 1 
~~Jn:6),;~01f:6 HilisbOr097124 BRITISH COLUMBIA 

~:~~~rb~4~OO~202og3 'fJ,lg g~~t~i~~i:l~'A~;~~~ 
l~~~~I~~ne~~g~~ectronlcs 

Arrow Electronics, Inc. 
OHIO Richardson 75081 909 Charest Blvd. 

PENNSYLVANIA Tel: (214) 235·9953 Quebec Jl N 2C9 
Arrow Electronics, Inc. Tel: (604r 437·6667 ~~~J~~16N8:231 7620 McEwen Road Arrow Electronics, Inc. UTAH 
Centerville 45459 650 Seco Road Zentronics 

~~~Jn~3rs:,56~ Monroeville 15146 Arrow Electronics 
~?~h~o4~ ~6~~~~ort Road

Hamilton/Avnet Electronics
Tel: (412) 856·7000 1946 Parkw.ay Blvd. 2795 Halpern

i:l~ MM ~7~.~~~9 ~~~g:~52lii~65;5
5t. laurent H2E 7Kl

~Arrow Electronics, Inc. HamiltonfAvnet Electronics Tel: (514) 335·1000
238 Cochran Road ~~~~b~i~h"5~3~' TWX: 610·421·3731

Solon 44139 tHamilton/Avnet Electronics MANITOBA

~lJn~~i~9949~ Tel: (41~ 281·4150 1585 West 2100 South Zentronics

~~~~1i~~Ya~JB9 Zentronlcs ~r~~~~~exT1M3 Pioneer Electronics 60.1313 Border Unit 60 
tHamiiton/Avnet Electronics 259 Kappa Drive 

~~(~d~~ ~~~109~~ 
Tel: (514) 737·9700 

54 Senate Drive 

~)~~1b\\t~~~ 
TWX: 05·827·535 

~:~~Q ~j:.6733 Wyle Distribution Group 
1325 West 2200 South ONTARIO 

TW : 81 50·2531 Suite E 

Hamilton/Avnot Electronics 
tPioneerfTechnologies Group, Inc. ~e~~~8~~~e;7~~~~3 Arrow Electronics, Inc. 
Delaware Valley 36 Antares Dr. 

~:r~e~~~~ ~~~~t[!a1~~2ft 261 Glbralter Road Nepean K2E 7W5 
Horsham 19044 WASHINGTON Tel: (613) 226-6903 

~~~Jfb::29i~9~0Jl2 ~~~Jib~l6t~07~~ tAlmac Electronics Corp. Arrow Electronics, Inc. 

tHamilton/Avnet Electronics TEXAS
14360 5.E. Eastgate Way 1093 Meyerslde
Bellevue 98007

~~f:(~it)u~13:~i61 M4 ~:s~:~~s:a'~, Blvd. ~Arrow Electroni.::s, Inc. ~~:2~~~S:4~~2~96~
Tel: (614) 882·7004 220 Commander Drive

TWX: 06·218213

Carrollton 75006 Arrow Electronics, Inc. ~Hamilton/Avnet Electronics
tPioneer Electronics ~i:2Jtb:88600~3~~ 19540 68th Ave. South 845 Rexwood Road
4433lnterpoint Boulevard Kent 98032 Units 3·4·5

~~~;&'i:1960202 tArrow Electronics, Inc. 
Tel: (206) 575·4420 

~~f:(~ig)u217:ir31R2 
10899 Klnghurst t~:~I:f.W. ~;~~ts~~~~~onics TWX: 610·492·8867 
Suite 100 

lPioneer Electronics Houston 77099 Bellevue 98005 Hamilton/Avnet Electronics 
800 E. 131st Street ~lJn:;~01:9 ~~~~fb~l3:i45609 6845 Rexwood Road 

Clevoland 44105 Unit6 

~lJ~~BJ2~:2~01 ~Arrow Electronics, Inc. 'f~gJ'~.~~b~~~nS~:~~p ~~~(~ig)u~17:~r~R2 
227 W. Braker Lane 

Austin 76758 Redmond 98052 

~~~Jn~l4~~08 Tel: (206) 881·1150 

tHammon/Avnet ElectroniCS
1807 W. Braker Lane
Austin 76756

~~~Jn~~14~9d,~ 

tMicrocomputer System Technical Distributor Center CG/SAL3/070768 



DENMARK 

Intel .. 
GlenteveJ 61, 3rd Floor 

~~~~~ln~~n NV 

FINLAND'

Intel
Ruosllantle2
00390 Helsinki
Tel: +358 0 544 644
TLX: 123332

FRANCE

Inlel
4, Quai des Etrolts

~~~~ '-12o~OC:gex 05 
TLX: 305153 

EUROPEAN SALES OFFICES 

WEST GERMANY 

. Intel 
, HOhenzollern StraSle 5 
.. 3000 Hannover 1 

+~:Oi_wm081 
Intel . 
Abraham Uncoln Strasse 16-18 
6200 Wiesbaden 

+~~:~28¥[gg5-0 

ISRAEL 

ITALY 

Intel' 

NETHERLANDS 

Intel' 

Park-Neve Sheret ' 

~rr~vM~:&~3 
~~~wa'0-421.23.n 

NORWAY

I
Hvsmvelen 4-PO Box 92

~~1~~0

SPAIN

Intel
Zurbaran,28
28010 Medrld
Tel: 410 40 04
TLX: 46880

SWEDEN

Intet'

~1~v:rs"or!
Tel: +46 8 734 0100
TLX: 12261

SWITZERLAND

• Intel'
Talackerstrasse 17
8065 Zuerich

+~~J~ft' 29 71

UNITED KINGDOM

Iitshire 8N3 1 RJ
696000

TLX: 444 47/8

. EUROPEAN DISTRIBUTORS/ REPRESENTATIVES

AUS;rRIA

BELGIUM

Inelca Belgium S.A.
Av, des Croix de Guerre 94
1120 Bruxelles
?f2ho~~~~~~lenlaBn, 94

+~:(~4~16 0160

DENMARK

FINLAND

FRANCE

~:~O~~~leres
4, avo Laurent-Cely
92606 Asnieres Cectex

+~~U, ~~:g 62 40

Tekelec-Alrtronlc
Rue Carle Vernet - BP 2
92315 Sevres Cedex

+~~~~~g: 75 35

'Field Application location

'WEST GERMANY

IRELAND

~:;~=~e~c;~irk
Glanageary
Co. Dublin

+~~~V5~ 6325

ISRAeL

EastronlcsUd.
11 RozanlsBtreet
P.O.B.393OO
Tel-Aviv 61392
Tel: 03-475151
TLX: 33638

ITALY

Intesl

NETHERLANDS

NORWAY

~='f!~~onlkk (Norge) "IS
Bmeclsvlngen 4
1364 Hvalstad

+~f~~6210

PORTUGAL

Ditram
"wnlda Marques de Tomar, 46-A
1000 Usboa
Tel: (1) 73 48 34
TLX: 14182

SPAIN

ATD Electronica, B.A.
Plaza Cludad de Vlena, 6
28040 Madrid
Tel: 234 40 00
TLX:42754

SWEDEN

Nordlsk E1ektronlk AB
~:u,~J;gat8n 1
17127801na
Tel: 0B-734 97 70
TLX: 1054.1

SWITZERLAND

TURKEY

EMPAElectronlc
Undwurmstrasse 9SA
8000 Muenchen 2

+~~:~:0570

UNITED KINGDOM

Jermyn
VeslryEstate
OtfordAoad
Sevenoaks
KentTN145EU

+~fsfJ2450144

MMD
Unit 8 Southview Park

RapidSlliccn
Rapid House
Denmark Btreet

Rapid Systems
Rapid House
Denmark Street

YUGOSlAVIA

IectronlcsCorp.
Cruz Blvd., Ste. 223
• CA95050

1ti: ~4:8.Q286

CG/SAL4/070788

inter

AUSTRALIA

BRAZIL

CHINA/HONG KONG

Intel Semiconductor Ltd,·

~':!:l~:~~~er
Q ,Central

-555
TLX: ISHLHK HX
FAX: '·989

INTERNATIONAL SALES OFFICES

JAPAN

~:~~it~~~g~~ld9.
'·8889 Fuchu-cho

~~~~~~!eX~W1 183 
FAX: 0423-60-0315 

W:,~~~ ~h~~maChl Bldg. 
'·23-9 Shlnmachl 
~::a~2~~2~~kYO 154 
FAX: 03-427·7620 

Intel Japan K.K: 
~~'.r~~~goaya 
~~Si:l$:~Ja~~tama 360 
FAX: 0485-24-7518 

~~~~:,':n~i~~lalhi.koSUgl Bldg. 
915 Shinmaruko, Nakahara·ku
Kawasakl·.hl, Kanagawa 211
Tal: 044-733·7011
FAX: 044·733·7010

JAPAN ICon,'d.)

~i:~~~~'~isu91 Bldg.
'·2·' Asahi·machi
~::ua4-:~~~~~~awa 243
FAX: 0462·29-3781

InteIJapanK.K."
R~kUChI·EkI Bldg.
2+1 Terauchl
~~r:~~~~~h~saka 560
FAX: 06·863·1084

Intel Japan K.K.
Shlnmaru Bldg.
'·5-1 Marunouchl

~~lrra~~~:a~~YO 100
FAX: 03·201·6850

~~:~~g:~~'
Naka·ku, Nagoya·shl
AIc:h1450
Tel: 052-2()4.1261
FAX: 052-204-1265

KOREA

SINGAPORE

~'m'lf~~~ri~:~h~~I~ Ltd.

TAIWAN

INTERNATIONAL
DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

DAFSVS S.R.L.
Chacabuco, 90-4 Plsa
1OB9-Buenoa Aires
Tel: 54-1·334·1871

64-1·334-7726
TLX:25472

AUSTRALIA

BRAZIL

Elebr. Mlcroelectronlca
R. Garaldo Flauslna Gomas, 78
SAndor
04675· Sao Paulo· S.P.
Tel: 011-55·11-534·9837
TLX: 3911125131 ELBR BR
FAX: 55-11·534-9424

CHILI!

CHINA/HONG KONG

-Field Application location

INDIA

Mlcronlc Devices ,

~~!~~~2,;a.6216
JAPAN

IN

C. ltoh TechnOoSclence Co., Ltd.
C. ltoh BI~, 2-5-1 Klta-Aoyama
~~~aJg!~7_4~ 107 
FAX: 03-497-4879 

JAPAN (CoIII'd.) 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12·22 TaUkijl 

~~I~ga~~~~~Jr, 104 
FAX: 03-546-6044 

KOREA 

MEXICO 

~::tfu'~~j:raoc. Ind. San Antonio 

r::8f!i~l~ff' D.F. 
TLX: 1773790 DICOME 

NEW ZeALAND 

Northrup Instruments & Systams Ltd. 

~7~."EJ::~~::~ ~=arkat 
Auckland 1 
Tel: 64-9-501·219,501·801 

. TLX: 21570THERMAL 

SINOAPORe 

SOUTH AFRICA 

TAIWAN 

VENEZU!LA 

P. Benavides S.A. 
Avllanes a Rio 

a Syatema Lid. 

Ltd. 

CG/SALSJ070788 



ALABAMA 

Intel Corp. 
5015 Bradford Dr., #2 
Huntsville 35805 
Tel: (205)830·4010 

ARIZONA 

Intel Corp. 
11225N.281h Dr, 
Suite 0·214 
Phoenix 85029 
Tel: (602)869·4980 

Intel Corp, 
500 E. Fry Blvd., Sulle M·15 
Sierra Vista 85635 . 
Tel: (602) 459·5010 

~nll~~ c~r~i Dorado Place 
Suite 301 
Tucson 85715 
Tel: (602) 299·6815 

CALIFORNIA 

InlelCorp. 
21515 Vanowen Street 
SuRe116 

~:I~(a,a8r%~~8\3Jlg 

Intel Corp. 

~~~o~~I~~3~~~5~~' 
Tel: (916) 351·6143

~~!~~:ra ~~a1~ulte 101
Tel: (916)920·8096

IntetCorp."
400 N. Tustin Avenue
Suite 450
Santa Ana 92705

~:gJn~!:5~614l4

COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100

~~II:obao~) ~C~~6~~g0907

CONNECTICUT

~nJ%~O~~in Road
2nd Floor

~I~~~{i~I?909

CALIFORNIA

915

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 970·1700

CALIFORNIA

2700 San Tomas Express"!ay
Santa Clara 95051
Tel: (408) 988·8086

DOMESTIC SERVICE OFFICES
FLORIDA

~nJ~ ~~te: 6th Way
Sullel00
Ft. Lauderdale 33309

~~~n?;5~~40g7 
FAX: 305·772·8193 

W:~~~~~'Streel North 
Suite 170 

~:~~&~!~~~3~!i 6 
GEORGIA 

Intel Corp. 
3280 POinte Parkway 
Suite 200 
Norcross 30092 
Tel: (404) 449-0541 

ILLINOIS 

~~t~~~lngale Road 
Suite 400 

~;r(M~~~po~gJJl 
INDIANA 

Intel Corp, 
8777 Purdue Road 
Sulle 125 

~~~~g~W~~t~~~~ 
IOWA

Intel Corp.
1930 SI. Andrews Drive N.E.
2nd Floor
Cedar Rapids 52402
Tel: (3t9) 393-5510

KANSAS

Intel Corp.
8400W.l10thStreet
Suite 170
Overland Park 66210
Tel: (913)345·2727

MARYLAND

, Intel Corp.'
7321 Parkway Drive South
SulleC
Hanover 21078

~J~~~ b?~662?,59~~

MASSACHUSETTS

tc:~;o':~C;orp. Canter
3 Carlisle Road
2nd Floor
Westford 01886

rn~~jfb~:3~l-Jl3

, MICHIGAN

tntelCorp.
7071 Orchard Lake Road
Suite 100
West Bloomfield 48033
Tel: (313) 851·8096

MINNESOTA

MISSOURI

NEW JERSEY

~!~!t~~~8za III
Raritan Center
Edison 08817
Tel: (201)225-3000

InlelCorp.
385 Sylvan Avenue

~~~~r~96~~~~2X632 
Intel Corp.' 
Parkway 109 Office Center 
328 Newman Springs Road 
Red Bank 07701 
Tel: (201) 747·2233 

~knJ~£~~8te Center 
75 Livingston Avenue 
First Floor 
Roseland 07068 

~~IX~~~V.~ !g:g~~~ 
NEW MEXICO 

NEW YORK 

NORTH CAROLINA 

Intel Corp. 
5700 Executive Drive 
Suile213 
Charlotte 28212 
Tel,: (704) 568-8966 

Intel Corp, 
2306 W. Meadowview Road 
Suite 206 
Greensboro 27407 
Tel: (919) 294·1541 

Intel Corp. 

~~?t~ ~6illff Road 

~:II:eI8~9rl8~~8022 
OHIO 

Intel Corp" 
3401 Park Center Drive 
Sulle220 

~~J;i~~5i~l552~ 
Or. 

OKLAHOMA 

k~g~ c~rG;'oadway 
Suite 115 

~~I~a(~~~a8~k~8~~~62 
OREGON 

\nJ~~~~~, Greenbrier Parkway 

~nig~ ~~~'Elam Young Parkway 
Hillsboro 97123 
Tel: (503)681.8080 

PENNSYLVANIA 

PUERTO RICO 

Intel Microprocessor Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

Intel Corp. 
313 E. Anderson Lane 
Sulle314 
Austin 78752 
Tet:(512)454·3628 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

~~a~~~~in~g\e73#300 
Tel: (312) 3fo.5700 

MASSACHUSETTS 

3 Carlisle Road 
Westford 01886 
Tel: (617) 692·1000 

MARYLAND 

7833 Walker Dr., 4th Floor 
Greenbelt 20770 
Tel: (301)220-3380 

SYSTEMS ENGINEERING OFFICES 
ILLINOIS NEW YORK 

~~~!'u~~~lnRg\e7a*300 
Tel: (312) 3fo.8031

300 Motor Parkway

~:I~~fla~g:3~ ~J~go

TEXAS (Cont'd.)

~~~~ ~~re:'Freeway 
Suite 1490 
Houston 77074 

~iJ~~~'~2~89~ 
UTAH 

Intel Corp. 
428 East 6400 South 
Suite 104 

~~[(&~~J£7.8051 
VtRGINIA 

WASHINGTON 

~~;ll~~~~'Avenue N.E. 
Suite 386 
Bellevue 980D4 

~~~~b~l3~30~~ 

WISCONSIN

e:(
FAX: (414)796·2115

CANADA
BRITISH COLUMBIA

Intel Semiconductor of Canada, Ltd.

~~~a~~nJ3~ ~~l' Sulle 202 
Tel: (604) 298·0387 
FAX: (604)298·8234 

ONTARIO 

Intel Semiconductor of Canada, Ltd. 
2850 Queensvlew Drive 
Suite 250 
Ottawa K2B 8H6 

~~~~1~1~i59714 
torofCanada, Ltd.

, 4
FAX: (416) 675·2438

QUEBEC

Intel Semiconductor of Canada, Ltd.
620 st. John Boulevard
POinte Claire H9R 3K2

rnJ~J1~~i9~~91?~

CO/SAL6/070788

Request For Reader's Comments

Intel attempts to provide publications that meet the needs of all Intel product users. This form
lets you participate directly in the publication process. Your comments will help us correct
and improve our publications. Please take a few minutes to respond.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make
suggestions for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types
of publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _____ _

NAME ________________________________ __ DATE ____________ _

TITLE __ __

COMPANY NAME/DEPARTMENT ____________ -'-___ _

ADDRESS __ _

CITY ____________ _ STATE ____________ _ ZIP CODE __________ _
(COUNTRY)

eG·8/88

WE'D LIKE YOUR COMMENTS ...
This document is one of a series describing Intel products. Your comments on the back of
this form will help us produce better manuals. Each reply will be carefully reviewed by the
responsible person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
SMD Technical Mktg. SC4-40
P.O. Box 58122
Santa Clara, CA 95052-8122

11.1 ••• 1.1. 1111 111.1 ••• 1.11.1 •• 1.1 •• 111. " .1.111.1.1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

