/‘NV National
Semiconductor

User's Manual

NSC Tiny BASIC

Microcomputer Systems



Publication Number 420306319-001A
Order No. 420306319-001

November 1980

STARPLEX™

NSC Tiny BASIC
User's Manual

©1980 MNational Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051



REVISION

REVISION RECORD

RELEASE DATE SUMMARY OF CHANGES

11/80 First Release.
NSC Tiny BASIC, User's Manual
Publication Mo. 420306319-001

ii



Table of Contents
SECTION I

Page
Charter |

1.1 Brin01n0 UD The INSB@73'Systemooooooo.oaoc;oo.oo.o-oo‘*B
‘.2 Baud Rates'.........."'........................"...‘-3

Chapter 2
20' ““'IntrOdUCtionoooooooooooo-oooooooooo.ooouoooooo-eonao'l°5

Chapter 3

Introductionloiii.‘...ll..‘....‘0..0...........0000011-7
TrY/CRT Terminal..'....0....l..‘...........l..."....,—8
Beginning InstructionS.cceececceccrscsccscssossccsscceel =1
Start UD....000...0..‘.......‘....CO..'.0.0.......Q..'-la
The Print Instruction.eeeeececcosccccscoscscsasscnssncel=ll
Usinag The Computer As A CAlCllatOreieececvosscocccssssl=13
Use Of parenthesesoo........'.......O'......‘...l...."‘?
Migtakesooho0....‘0.....l..‘.Q..0.0....O..OO.....l...‘-?.w

Exercises.C...O.........."‘..‘..‘......'..‘..O'.....'-z‘

WWwWwww ww ww
o o o o o
VO ~NON DWN —

Chapter 4

variables......ﬂ.'.........‘.....0...‘.‘.‘..‘......."-23
ExerC1sesocoooooo-o.o-‘c.oloo;o.oo-.'oooccasootccoo-ol-zs
The Stored Proqram................'.....-...-.-......1-26
EX&?CiSeS..............-......................-......l*zo
The - GO TO - Statement....‘l....l'.'...‘.‘.l.‘.0.0‘.‘-Bﬂ
The - INPUT - Statementoooooo.oo.ooo--oo.ocao.ooooo.n‘-32
Exercise. .O....‘............'.........‘..Q....Q...‘..]—33
Informative Printinqooo-oo-coooo-ooo--ooooooo.-o-oo..‘-34
Multiole Statements Per Lineoooooooco-ooooooooo.ooo..l‘36
ExerCiSes....g..-......-..........-....-.-....--.....‘-38

* o L] . *

~OV~NOUV AW —

R

AbhdabdbpbbdbiAh

Chapter 5

Bits And Rytes.o-o-oo..o-.oooo.coo.to.ooooooo.-ooooooI—BQ

ExerC1seSQ.t..0.0000.000..000.000......000.0.-..000..1-4a
MemOTY Addressoonocoo.ooonooo..-.at.-ooo0..00.-.00000“4w
HexadeCI'nal Numb“!“ Syste"h...-...............o-......"’“q
More About Hexadecimal.eieseescsceccceccccoccscanssaal=43

errciSGOOC..‘Q........‘..'.‘.............Q..........'-48

(G200 NG G NG N0 LB e |
e o o & o o
OO WN —

Chapter 6

Thﬂ IF Statement..-..........o.-...............-.....'-49
Exercj'se...................“........“.'...’........"5'
A More Comoact prOQram..---..-....;............--...-'-56
Random Numbers And Comouter Games........-.........--1*60

Exercise..lii....t.ﬁ...I..'.........0..“...0......‘.‘_6‘

[o 3o We NNo o |
o o o ¢ o
DN A WN) -

]



TASL

Chanter 7

FE OF CONTENIS (Cont+d.) Paage

Proqram LOODSo.o.....oo-.o.bc.o...o...ouc..otoo.Qooo-‘-63
EXErCiSE...-....-........................-...........“66
IF LOODS.QQO.ooooo‘..ooooo.o.ooooo..ao.ol!'.o.oooo..o'-éé
EXPYC1535000ooouo-oooo-onooocooooo--..ooooo.-coo.oooo‘-éq
FOR NFXT LOODS’....'....................'............‘-68
ExerCiSes........."....'..................".....’..l—7?
Thp DO QtateMPnt.......-........................-....‘ 73

Subroutines........’......'..‘..‘...'.‘...........-..'-77
LINK Instr(JCtionO .4. ;;.,“..'....C...Q..'...'.‘..'.....'..“-79
DELAY.'..l....‘..............‘.......'.'....'...'....’-8m
The ON Statement......-.............-.....g..----....1-81
T’1e STAT Function...... ® & & &0 0 0O O OO O SO OO SO O ......|—82
Multiorocessing, INC (X), DEC (X) eeevoosescscssscsscsel =83

CLEAR..O‘.'.Q.O....‘..'...'O..OO.O............Q'.OIQ.l-83

Memory Orqanizationonooaoooooo-cocc.ooooooooooo0--000"85
Top Location. ...'...'.‘....‘......"...-.‘..'.‘....O.‘—R7
St rinqs Of CharaCt ers L B AR B BN BN L BY BN BN BN RE BN BN BE K BE BN BE N B BN B BN AR B BN BN N 3 ' —96

Exe'rc].-se.ooaooooooo.'.ou-o..o-....oo....ooo.ooo0000-01‘94

Chapter 10

1a.1
174.2
3.3
17,4
14.5

SECTION 11
Chapter |
lo1
Chanter 2
2.1

2.1.1
2.1.2

2.1.3

NN VNIV

NN NI N == ot e s

Interfacing Other Devices To NSC Tiny BASICeececocecoael =97
Hardware Interface.....'.‘.........'..........l.ll'...‘gg
Exalee System LED FlaSher...,..............o.o--....l“!ﬂ@
Proqrammino Thp Ci!’CUit...................-...-......l-lﬂ'

Exercises'...Q.............‘...I‘.......'............]-'ﬂ?

IntrOdUCtion...........‘............"...I'.....0000.2-3

Lanquaqp Fxnreqqinnso...QQ...O.............'.O....00.

variableS..- L IR BN IR IR R AKX BN BUBE BN 2R B 2R BN BN AR BE BN BRI IR BN BN BE B BN B B IR B BN BN BN B IR B R BN N 1

CongtanthOOOOQO000.".....'...-‘......O...........‘.
Relational Ooerators.................................
Arithmptic OnpratOYQQ..o.o.ooooooaa'ooa-to.oogooctooo
Loqical Ooerators..ioiﬁ..............O.....l....'....
Logical AND..........................................
Loqical OQI’l.lt........O..OI‘....Q“..'.......‘0..'.
Loqical NOTO...Ol‘i..l"....l......Q...l....“.......
FUﬂCtiOhS..................................-.........
MOD (a b) Function.....l..C.'OC.........'......OIOCO.
RND (a b) Function..l...l...l.‘.‘...................‘
STAT Functlon.....l....l....l..0............0...0.0..
Status Register Bit FUNCtIiONS e eeeeoooesncccccncssceenl™

M\JM\;\)M\)\)\)\J'\J\J\J\J
G)@CD~J<~4«JO\OKNUHﬁUWm

iv



o

et e GV JOND N -

W —3

e & & ¢ & o & ¢ & 0o o ¢ o

L] » L] [ ] * L] L ] L] L 2N [ ) L] L ] [ ] L ] [ ] . . L] L e o
L]

NN NNAJdOROR OO VAWWLERELWWWWLWWWW WWNN

.
.
BN -

NNV PONNDNVNNRONYN N LNV ON NN
DWN -

TABLE OF CONTENTS (Cont“d.)
Page

TOP FUHCtion.......-........-..........-.....-...-...2—‘“
[NC (X) And DEC (X) FunCtionS............-...........7°|m
Statements.........'..........-..'.....'............‘2-'a
INPUT Statement' ® @ & 0 00 O 0 5 SO OB NS O OO S OB OO s e S0 e s> .'.2“”
PRINT Statement (Outout) ® 06 60 00008 0O & 00O B OO SBSe eOS ..‘2-‘ '
LET Sta tement (A Ssianment) LN K BN BN BE N BN B R BN BE AR BRI BB BB R BN BE BN BN ...2-1 2
The GO TO Statement cceceesvccscvcosssecsccsccscscncsscel—l?
GOSUB,RETURN statements. e 6 6 860 0606000000 S0 ..i‘. ® oo e o» ...2-' ?—
IF/THEN Statement. ® 0 0000 005 tH NSO OSSO NI NS S0 00080 0B ...2-' 3
DOIUNTIL Statements 9 008 000 DO NP OO OO S OSSO POIOSSIBTE NS .'.2-‘ 3
FOR/NEXT Statmentq.. .".’..'........ LR B BN BE BN BN BN BN Y ) .'....2 |4
LINK Statpment'.. ® 600 00O G SO SO OO O OO O POVEE OSSP OOE S PGPS ...2-Id
ON Statempnt ® 0 0 05 005 GO OA SO SO0 OSSO OESEOSOSOTPSDE . LI RN A B BE BRI B Y N .2 ' 5
STOP Statement ® 0 @ 00 00 200 0O PE SR OO ONEEDP RO SR N ..; e o0 e ..2.’ 5
DELAY Statpment ® 0 0 28 0000 050" PSP OSSOSO LOS Ve NGS SN PSS ..’2-l6
CLFAR Statement. ® 5 0 6 05 00 00 G 8 PSO O OSSNSO N OOSSS O ...2-16
IndireCt Operator ® 5068 006 00 OO OO SO NE O SO OEs LSOO SESS SN ...2—‘ 6
Multiple Statements On A Line....cceeececcceccssccsee2=l?
Strinq Handlinq. ® 5 0 00 0T 0 9 O O OO SO SO LN OO eSO O ...2—'8
strinq Outnut @ @ ¢ 06 000 00O TGO OSSO0 N OO SO e 00RO NEEe e '..2'-'8
Strinq ASSiqnmentO ® 5 0 5 00 500 SO 8OO OO0 SN T OSSO0 O Se ...'.z-l R
Strinq Move............‘.........‘..'........"......2-]8
String EXaAmDleS.ceeeeececccecccoscsosnscssssacasnassel=l9
Comandq.......".....................’........'..".2—‘9
NEw pxpr............"‘....“‘...."........“.......2“9
RUN.....'...'....................‘...................2 19

(‘ONT..........Q.OICOCOQC.............".‘QC..OQ.....Iz-zw

LIST (exor)....'.....’.Q.I.‘...I..Q..‘............CC.Z-zﬂ

SECTION III

Chapter 1|
1.
1.
1
1

1.

. °
\10 n H W N)—

1.
e

Chapter 2

L ]

NN NN NN
DA BN —

IntYOdUCtion...........-...-........................3-3
An NSC Tiny BASIC Example System, Functional

.SpecificatioNiececcseeeea3=b
Hardware Design Of A Small INS8#73-Based System.....3-9
Addressing Requirements/Capabilities Of Each

System Component......3-12
Memory Maopina Constraints For All System

ComponentSeeeecesceceeeesld—13
System Generated InterruntS.eceeccccccsccccsscccsccsccseead—13
RS-23?/Current LOOD Interfaceo.-oooocoo0000.0-0000.03-'6

MM27'6 EPROM pquramminq Software...............-....3-‘7
COPY Command.....‘........'......'.......‘."........3.l7
PROGRAM Command'.oo.o.‘ot.ocoo.‘oltoo.n.oo'lo‘coa.o.o3-'8
VFRIFY Command...........-...........................3—'9
ERASE CHECK Command..............-.......-.-......‘..3‘|9
FILL Command.......‘.................................3*2“
DUMP Commando.oocobo.oooooooooccooooooo.ntvooco'ooo'o3-2w
[LOAD Command...........................-......-......3“21



TABLF OF CONTENTS (Cont“’d.)
Paage

Chapter 3

3.1 Loading The EPROM Programming Software Into FPROM,...3-23
o2 Loading NSC Tiny BASIC Programs Into PAM.ceececsssaosse3—23
3

3
3. Using The FPROM Programming Sof tware To Program
MM?716 FPROMS.eeeeeeee3=23

vi



Section 1



CHAPTER 1
l.1 Bringing Up The INS8A73 System

All the examples are based around the example system shown in Section
3, Figure (-4,

For those of you who have designed your own system, with heln from
Section 3 of this manual, it is assumed that vou have the experience

to internret the following instrucetions to suit your bwn system. The
sequence below tells how to hook the standard NSC Tiny BASIC card shown
in Section 3, Figure 1-4, to A power sunply and TIY or CRT to get it
running,

Things neededs

Power Supply? +5,
' . =}2V (For serial communications)

Optionally +25 (For PROM oroarammer)

A power supoly cable can be connected directly to the board at
the Pl mounting, or stake pins can be inserted and the power
suoply can be connected throuah a suitable connector, i.e.,
MOLEX MXI-9 6471, A cable or connector is attached to Power

Sunply in the following order:?

CONDUCTOR PIN# I 2 3 4

——— A S Y . — — . W D T ] S >  — > I . - . E Y W w—— -

VOLTAGE +5 -12 +25 GND

If you’re using a TTY, it must be connected for 2¢mA current
looo, as described in its own manual, and will connect to the
edge connector fingers in the following manner:

PIN# 1 2 3 4 5 6

oy o w— o —— - s > —— T - A > G Vo w——

SIGNAL XNT+| XNT-| RCV+| RCV- RD RLY+| RD RLY-

Pin numbers are etched onto the board, remember that Pin 6
is the one closest to the edge of the card on the side with

the comnonenets,

If you’re using a CRT terminal, you should hook it uo with a
standard MALE-MALE cahle, (National’s 641385491-9241 will do
fust fine), to the RS-232 (D-tyne) connector on the board.
Make sure your terminal is set to RS—=232 (if that’s a switch
selectable option, if not, just assume it is an RS5-232 termin-
al)s and make certain unper case and full duplex are selected.

1.2 Baud Rates
Generally, the higher the Baud Rate, the better, as it means less

waiting time for yous however, if you are using a TIY you have no
choice. The Baud Rate must be set to 11@,

1-3



The way you set the Baud Rate is with the two ilumners FI8=-FI9, F16-F17.
Ne can call EI18=-FE19 D, and FI16-F17 DI. Set the Baud Rate on a
terminal to the highest rate, or 4879, which- ever is lower, set the
jumpers to match it as shown in the diagram below. A ¥YI¥ gignifies
that the jumper is missing, a #@" means that it is installed,

Fl16-F17 Fi8-Fl9
N2 DI
1o 0 0
......... - -
300 0 1
| 200 1 0
4800 1 1

After you have done all of this, and double checked it, connect the
board to the CRT terminal or TTY, warm up the terminal, hook up the
power supnly, then turn on the power.

If all went well, you should aget a right pointing caret (>) promot.

Push the RESET button and the orompt (>) should annear again., You are
now reardy to begin using vour 8A73 system.

1-4



CHAPTER 2

2.1 Introduction

The INS8A73 is a single-chin computer that directly executes NSC Tiny
BASIC, a high—level language. Writing orograms in NSC Tiny BASIC
offers the following Advantages over writing orograms in assembly
language?t

e Programs written in NSC Tiny BASIC eliminate the need for memory
consuming Editor, Assembler Monitor/Debuc nrograms.. All of these
functions are built in,

® Programs may be written and dehuqgged using a small, inexpensive
system. Purchase of an exnensive development system is not
required,

® Program debuoaing is fast and simole. Program execution may be
susoended, variabhles and other parameters examined/altered, errors
corrected, and execution resumed at the point where it was
suspended = all without the need to reassemble or reload the
program, (NSC Tiny BASIC programs do not have to be assembled.)

® Programs can be written in one tenth the time of eaquivalent assembly
lanquage proarams due to the power of the NSC Tiny BASIC lanquage,
its English-like simplicity and built in edit/debug caoability.

Programs are also easy to maintain because they are self documenting.

e Programs are relocatablet they may be loaded and executed anywherp ir

memory without modification.

® Program memory can be quickly checked for valid code because NSC Tiny

BASIC proagrams are stored as a sequence of ASCII characters.
(Executable assembly language programs are considerably more

difficult to check because they are stored in memory as a sequence of

binary numbers),

NSC Tiny BASIC was designed for use on the INS8A#73 single-chio micro-
interpreter, a nroduct of National Semiconductor Corporation. NSC
Tiny BASIC is a simplified version of the computer lanquage, BASIC,
"Beginners All-nurpose Symbolic Instruction Code", develoned by

Dr. John Kemeny and Dr. Thomas Kurtz at Dartmouth College in 1963,
BASIC has become the "People’s Comnuter Language® because it is
easy-to-learn and easy~-to—-use by people who are not computer
scientists or professional brogrammers. The users of BASIC are
engineers, technicians, scientists, statisticians, business people,
hobbyists, teachers, college students, and a vast multitude of
young people in elementary and secondary schools.

"The original NSC Tiny BASIC was desianed for apbplications auch as
integer arithmetic oroblems, comnuter games and teachina beainners
how to nroaram computers. NSC Tiny BASIC has extended canabilities
that make it a nowerful desiqgn tool for developing control Aaoplica-
tions.

1-5



Information on NIBL upon which NSC Tiny BASIC was first published in
People’s Computer Company, Volume 3, Number 4 (March 1975) and Volume
4, Number | (July 1975), " The best source of information on Tiny BASIC
is Dr. Dobb“’s Journal of Computer Calisthenics and Orthodontia,
beginning with Volume |, Number | (January 1976) and continuina through

several issuesg,

This book is designed to help you teach yourself how to use NSC Tiny
BASIC and the INS8A731 it consists of three major sectionss

SECTION 1t A primer designed for self study. This self teaching
orimer presents the elements of NSC Tiny BASIC in a step-by-step
manner, It is assumed that the reader has access to an INS8A73-based
system and will try out the examples and exercises as thev are
oresented in the orimer. It is Also assumed that the -reader has no
orevious computer prooramming training or exoerience, but is
exnerienced in electronic hardware desian using non-computerized

technioues.

SECTION 2t A quide that nrovides quick reference to information for
people who _have worked through the primer, or, who Aalready know how to
program in some form of BASIC,

SFCTION 3t A descriotion of a typical INS8A73 system$ details on
setting uo the comouter system and gettina NSC Tiny BASIC running.
Section 3 assumes that the reader has a orior knowledge of digital
electronicss and, this section gives schematics and a descrintion
of an example RA73 NIRL-II demonstrator card.

1-6



CHAPTER 3

3.1 Introduction

The INS8A73 is a #task-oriented® microinteroreter, NSC Tiny BASIC is
the language that instructs the system to perform various and sundry
functions.

The use of microcomputers to control electronic, electrical and

elec tromechanical devices is very-much an enaineer?s dream come true.
A computer works from a written out specification of what the
completed device is supposed to do. This specification, written in
a very exact and unambiguous style, is called a proaram. As with
specifications and schematics there are conventions about exactly
how a program is to ampear. This set of conventions is called a
language. The language used on this computer is a version of

BASIC called NSC Tiny BASIC.

When setting out a schematic for someone who is not up to your back-
ground in electronics, you have to spell everything out in more detail -
than you would for a colleaque who is right with you. Until a computer
knows as much as you want it to know, everything must be spelled out

in a meticulous and precise manner. Once these instructions are
spelled out - that“s it: the computer will henceforth do it right

every time,

Figure 3.1, INS8273 Based System



3.2 TTY/CRT Terminal

You will probably be using a Model 33 Teletype or a CRT (Cathode-
Ray-Tube) terminal to communicate with your INS8873. In the follow-
ing text, TTY (Teletype) and CRT (Cathode-Ray-Tube) are used inter—
changeably.

The letters of the Roman alphabet and Arabic numerals were invented
long before computers when nobody cared that the letter #0¥ ]looked
Just like a zero. It is, howevery very important for-the computer to
tell them aparts therefore, the numeral zero is written as an "0O#
with a slash through it (@), The letter #0" i{s left alone. Most
Teletypes will print the zero character with a slash and an %0¥%
without a slasht check your teletype to make sure it observes this
convention, '

When programming, sometimes you will type to the computer, sometimes
the computer will type to you. When it is the computer’s .turn,

it Jjust goes ahead and types., When the comouter is ¥thinking¥ it
acts as if you were not there. When it is your turn to type the
computer prompts you by typing the character ">* on the left margin
of the paper/screen, The right pointing caret (») is called the
"prompt¥ character. After typing the prompt, the computer will

wait patiently until you type something.

NSC Tiny BASIC recognizes only CAPITAL LETTERSs lower case letters are
not used at all. (The Model 33 Teletype doesn’t have any lower case
letters.) Your CRT may or may not have lower case$ If it does, switch
the upper/lowercase switch to upper case.

1-8



Figure 3.3 A Typical TTY

Figure 3,2. A Tynical CRT

1-9



3.3 Beginning Instructions

Think of something you know how to do like bicycling, skiina, playing
Yiano or designing circuitry. One thina is certain: there are no
Jooks in the world that can teach someone how to do any of these

things. BRooks can heln, but without getting on a bike, putting on
skis, practicing scales, or designing hundreds cf circuits and trying

them out, 8 novice can’t do any of these things. Same way with
oroqgramming.

The only way to learn orogramming is by doing it. With bicycling or
skiing vyou may end up with skinned shinss with nrogramming you may
experience a dented ego, Peop asn’t like to be told they’re wrongs
unfortunately for the novice p¥ogrammer, error messages are what he/she
will cet most frequently from ghe computer,

For your reference, the NSC Tiny BASIC FRROR CODFE SUMMARY is listed
oelows what it means is that if NSC Tiny BASIC encounters an error
condition in RUN command mode, it will orint out ERROR followed by an
error number, FError numbers aret

‘Table 3-1. NSC Tiny BASIC Error Code Summary

ERROR NBR. EXPLANATION

Out of memory

Statement used improoerly

Unexpected character (after legal statement)
Syntax error

Value (format) error

Ending quote missing from string

GO target line does not exist

RETURN without orevious GOSUR

Fxoression or FOR=-NEXT or DO-UNTIL nested too deeply
NEXT without previous matching FOR

UNTIL without nrevious DO

Division by zero

—— = 0D IO D WN -

N -

3.4 Start Un

Refore vou power-up, be certain that your system is oroperly connected
and that the Baud Rate Selector is set. Once you have turned on your
INS8A73 system, the TTY or CRT will tyoe a orompt character (>) to
indicate that it is ready to beain. When vyou are ready to enter a
nroaram with line numbers, type the followings?

>NEW #address thexadecimal address location)
NEW

The above command (NEW #address, NEW) is useds

1. To prepare the computer for a new program with line numbers.

2. For initial oower-un.



3. If you RESET your system in the middle of a programming session
you may have to use this command. Try to avoid this because you can
easily lose all orograms in your system’s memory.

4., If you wish to store several oroarams in memorv. Fach orogram
will have a different hexadecimal address location, for examples

Program | - NEW #1060
NEW

Program 2 - NEW #4852
NEW

Tne NEW (carriage return) command érases an old programs the LIST
command lists your oroqram and the RUN command runs your program,

Importantt when you are finished typina/talking to the computer, vou

signal by oressing the RETURN key. This indicates that you are
finished with your turn. o

Tyoe your name and then press the RETURN keyt the following is what
should haoppent

ERROR 4 The computer responds with FRROR 4, FERROR 4 is
: listed in this chanter and in Apperdix C under the
Error Code Summary and is a *Syntax Error®. This
is because NSC Tiny BASIC does not rpcooni7e your
name as a command,

> NSC Tiny BASIC then types a orompt (>) to let you
know it is still listening and that it is still your
turn to communicate.

This is the first examnle of an error message. It is the one you will
see most often, and it means only that vou have typed somethinag that
NSC Tiny BASIC doesn’t understand. NSC Tiny BASIC does not understand
your name simply because it is not in its repertory of commands.
Fxamine the following legal commands.

3.5 The Print Instruction

The computer gets jobs done by following instructions. If an in-
struction is correctly tyoed, the comnuter will execute i1t immediate-
ly. (Nhen a computer follows an instruction it is said to obey,

or execute that instruction.) One of the most useful instructions is
the one that tells the computer to PRINT a desired result or message.



In English we say that antelones have four legs, but we say that
“antelopes" has nine letters., One of the things we do by putting words

into quotes is to indicate that we are referring to the words
.themselves and not their meanings. The computer uses auotes the same
wavy.

For example, suobpose, in a boiler installation that the computer is
monitoring the water level. If the level begins to get low (but not
low enough to warrant automatic shut down) you might want the comoputer
to orintt *"Warning, the water level ‘is low.". The instruction you
desire to give the comouter is?

>PRINT "WARNING, THE WATER LEVEL IS LOW#

Don’t forget to press the RETURN button to. make the computer execute
the instruction.

You typet PRINT #WARNING, THE WATER LEVEL IS LOW#
The microinterpreter typest WARNING, THE WATER LEVEL IS LOW

NSC Tiny BASIC tyoed what you told it to types note that the message
was enclosed in ouotation marks, but they were not printed.

Suppose that the operator in the boiler installation was away from the
terminal, or taking a nao, or having a coffee break. In any of these
instances he may not see the warning message. The TITY has a bell which
may be used as an alarm., (Other terminals may have different audible
aAlarms - a click, been, buzz etc.) To sound the bell, hold down the key
narked CTRL, CNTRL or CONTROL and, while holdinag it down, press the G
key. On most TTYs, the G key has the word BELL on it as a reminder.

s dedede g dede gk ke ke ek ke Ak dk ok ek ke Ak Ak khh kA dkk k Ak

* : *
* To ring the bell, hold CTRL down and *
* press G *
* *

kded ok Kok dek d kg ke dedekek kokk K ek Ak ok dededk kdedok ek k ok kkk

‘

Hold the CTRL key down and press the G key several timess this will
allow you to ring the bell several times. You will note that the
bells are heard yet nothing is printed on the TIYs (Aopendix shows
other non=-nrinting characters which may be useful.)



Bells (CONTROL/G) can be included in a PRINT instruction. Let’s
use the example of the boiler installation again and orint the same
warning message, only this time add the bell to be certain that the
operator knows there’s an important messaget

You type?
PRINT “WARNING, WATER LEVEL IS LOW (CTRL GGGGGG)"

Don’t forget to press the RETURN key so that NSC Tiny BASIC knows yo
are through with your instruction,

NSC Tiny BASIC tyonest
WARNING, WATER LEVEL IS LOW and then rings the bell six times.

3.6 Using The Computer As A Calculator
NSC Tiny BASIC can do integer arithmetic. Try the following example’

on your INS8@73. Remember to oress the RETURN to finish a line of
tyoing.,

ADDITION

You tynet PRINT 2+3 Use #+8 to add.
NSC Tiny BASIC typest 5

SUBTRACTION

You types PRINT 7-4 Use #-4 to subtract.
NSC Tiny BASIC tyoes: 3

MULTIPLICATION

You tynet PRINT 4x7 Use ##¥# to multioly.
NSC Tiny BASIC typess 28

DIVISION

You typet PRINT 48/58 ‘Use /% to divide.
NSC Tiny BASIC tyoest 8 :



If you made no typing errors, the above four examples should actually
apoear on your TIY page as followst

>PRINT 2+3 The promots (>) were typed by NSC Tiny BASIC
5

>PRINT 7-4
3

>PRINT 47
28

>PRINT 48/6
8

>
Now try the following divisions,

>PRINT 23/4
5

>PRINT 3/2
!

>PRINT 4/5
0

Is NSC Tiny BASIC qgiving wrong answers? No. It is simply doina
integer arithmetic. In division, NSC Tiny BASIC onroduces -the integer
oart of the quotient.

Using the first example above, >PRINT 2374, this is what happenst

5 Quotient. This is what you get when you
4 / 23 tell NSC Tiny BASICs PRINT 2374
20 L <
3 " Remainder., You will be instructed later
- on in this manual how to compute the
remainder., ' »

Most industrial control aoolications, as well as tasks such as word
nrocessing and even the nrograms that make this lanquage work, need
only integers, A valve in a refinery may need to be set to one of a
hundred nositions (many anpnlications only require resolution of two
positions - opened and closed). These hundred nositions can be
renresented by the inteders 3 to 15 with @ being closed, 57 being
half opened, and 1@ allowing full flow.



In NSC Tiny BASIC, integers can range between the limits of -32768

and +32767, inclusive., This allows any measurement or control to be
accurate to one part in over 65,733, Few electrical or mechanical
devices in control systems require more accuracy. Yet, by aoprooriate
orogramming, greater accuracy can be obtained if it is necessary.

A good way to learn more about how NSC Tiny BASIC does arithmetic is
to use it as an integer desk calculator. As with any desk
calculator, it is possible to overflow if you calculate a number too
large or small.

NSC Tiny BASIC handles the problem in two wayss

1. If you try to type, not calculate but tfpe, a number greater than
32767 or less than =32767, NSC Tiny BASIC will print an error
message, For examplet

>PRINT 32768
ERROR 5 Error 5 = Value (format) error

>PRINT -=32768
ERROR 5 Error 5 = Value (format) error

2. If you calculate a number outside of this range, no error messaqge
will be generated:s the numbers just ®wrap around", This method
of handling overflow is handy on some occasions, but distressinq
at other times. For examplet

>PRINT 32766+1
32767 This is the exoected answer

>PRINT 32767+
-32768 This is NOT the expected answer

PRINT =32767~1
-32768 - " This is the expected answer

>PRINT =32767-2
32767 This is NOT the expected answer

>PRINT -=32768-1
€RROR 5 ©  Remember, you can“’t tyne =32768



Think of NSC Tiny BASIC numbers being arranged in a circles

=1 a1
-2 2
-3 3
-4 4
-5 5
-32764 32764
-32765 32765
-32766 32766
=32767 . 32767
-32768

From the ciscvic rvw wdn see that 32765+7 = =32764, (Moving in a
clockwise direction start at 32765 and count off seven placess

you should end un at =32764.) Try it on your system.

>PRINT 32765+7
32764 Correct

To subtract, move in a counter-clockwise direction. For example,
-32766-5 = 32765. Again, verify this on your system.

NOTEs

>PRINT -32766-5
32765

NSC Tiny BASIC didn“’t print the "correct"” answer (-32771)
because =-3277! 1s less than =32768. Calculated values will be
correct only if the correct value is in the ranage of =-32768 to
32767, inclusive.

Up to this point you have been shown simple problems with one
ooeration. The following examples are a bit more complicated. The
formal rules for how exnressions are evaluated are in this chanter in
section 3.7t you will understand them better if you experiment on
these examples first.

>PRINT 2%3+4
57

>PRINT 2%3-4
2

>PRINT 2%3+4%5
26

>PRINT 2#43-4%5
-14

>PRINT 2%3%4x5%6
120



SPRINT 2#3%4%5%6%7
5040

SPRINT 2#3%4%5%6%7%8

-25216~ - The correct answer is 4328, too big
for NSC Tiny BASIC., NSC Tinv BASIC
does not tell you that an incorrect
answer has occurred,

If you use only 4+, - and %, NSC Tiny BASIC will give correct results
unless the true result is less than -32768 or agreater than 32767,
Try some division problemss
>PRINT 720/2/3/74/5/6
| Correct. 720/2 = 360, 360A/3 = 120,
. 12074 = 30, 3A/5 = 6, and 6/6 = 1,

“ >PRINT 1/2+1/3+1/4

] The integer cuotients are all zero.

>PRINT 2/3%|@e2

o} ~ Incorrect. Two thirds of 1033 does
not give zero. Try it a different
way,

>PRINT 10001%2/3
666 Correct.

3.7 The Use of Parentheses

The following examoples illustrate the use of parentheses in numerical
expressions. Verify them on your INS8373,

SPRINT 2%(3#4)
14

PRINT (243)%(4+45)
45

SPRINT (2%3¢3)#8+7
79

>PRINT (47-23)/6
4

PRINT (243)/(4+5)
(%]



NSC Tiny BASIC does not tell you that a computed answer is incorrect
because the true result is outside the range, -32768 to 32767. For

examples

>PRINT 1303 %(39-72)
-32536 - The correct answer is 33000

An incorrect result can occur even if the true result is in NSC Tiny
BASIC”s range., This will haopen if an intermediate calculation lies
outside the range =32768 to 32767. For examoples

>PRINT 201%200/2
-12668 The correct answer is 2710@.

In the above example you got an incorrect result beécause NSC Tiny
BASIC first comouted 201%20@ which has a true result of 4920# and
"this is outside its range. NSC Tiny BASIC obtained =-25336 for this

result, then divided by 2.

>PRINT ?Wl*(ZGGIZ)
20100 Correct.

Parentheses were used to cause NSC Tiny BASIC to first compute 200/2,
then to multiply by 2A1.

3.7 Rules For Evaluatina Exnressions
Division by zero (@) stops everything and gives the message:?
ERROR 12
Expressions are evaluated (in the absence of parentheses) by doing
all multiplications and divisions from left to right. After they are
comnleted all additions and subtractions are done, again, from left

to right., Any fractional results from a division are simoly ignored
(truncated). The results are not rounded. For examples

2/ 3% B70

is evaluated to zero, since the integer oart of 2/3 is zero, and zero
times 1920 is zevro. Ruts

1 A0@*2/ 3

evaluates to 666 because 1022*2 is 237% and 2000/3 is 666.66666, (the
fractional sixes to the right of the decimal point are dropoed).

The expression 4+6/2+3 evaluates to Ih because the division is done
first yielding 4+3+43, and then the additions are done from left to
right. In other words, 4+6/3+3 1is evaluated:

4+46/2+3 = 4+43+3 = 743 = 10



The order in which overations are done is shown below in still
another way. The numbers in the circles show the orders

446/2+3
Parentheses override the normal rules. Anything inside a pair of
parentheses gets evaluated before that which is outside. This is the
normal algebraic convention., Thuss ° '
(446)/7(2+3)
evaluates to 2, thuslyt (4+6)/(2+3) = 18/(2+3) .= 10/5 = 2

'Shown below is the order in which ooerations are done by the use of
numbers in circles.

(4+6)/(2+3)

Parentheses may be nested as needed. This means you can have paren-
theses within parentheses.

12/2%12/2%3 = 6%12/2%3 = 72/2%3 = 36% 3 = |08
12/7(2%(12/(2%3))) = 12/(2%(1276)) = 12/(2%2) = 12/4 = 3
Or, using the circlest

? 99 99 99

12/2%] 2/2%3 versus 127(2%(12/¢( )))

Check these in your head, and then on the computer,

Good programming practice avoids exnressions like 12/2%12/2*3 as they
are hard to read, It is clearer (and thus less error orone) to write
(C12/2%12)/2%3) using spacing and narentheses for clarity even if
they are not technically necessary.

Algebraic notation is used in NIBL, modified as necessary to fit on a
single line and, of course, to use proper NSC Tiny BASIC arithmetic
symbols.

ALGEBRAIC EXPRESSION NSC TINY BASIC FXPRESSION
36 " 36/(9+3)
9 + 3
12 x 58 (12%58) /(7425)
7 x 25
120 x 60 (120%63) /(1 20+60)

1200 + 60



There are 1imits to the orders of orecedence allowed in any one line.
These, however, are hard to exnlain, or even find. The rule of thumb
is that if you get an #ERROR 9% occurring after a varticularly long
exoression, try to break that exnression into two or more parts.

3.8 Mistakes

Perhaps the deadliest assumption in engineering desiagn is that any-
body usinag the equipment will use it correctly. NSC Tiny BASIC
orovides error messages after it is too late. If you &re working on
a TTY and are lucky enouah to catch yourself in the middle of a
statement, havinag just tyoed an incorrect character, you do not have
to throw away the good part and retype the whole thing.

The first mistake correcting facility is a sort of hackspace. Say

that you typed *PRINR® instead of MPRINT*, If, after the "R¥ you

held down the SHIFT key and nressed the letter "0 you would get a left
opointing arrow or underline. This means that the last letter you

typed (the "R®*) {s deleted and you can now type the correct letter
("T"), Try it a few times.

>PRINR 243
ERROR 4 PRINT missoelled
>PRINR_T 2+3 After tyning R, type __(SHIFT 0), which

erases the R. Then type the rest of the
line. Everything is OK to NSC Tiny BAbIC.
although it looks wrona on your TTY.

The backspace feature can be used repeatedly. It is up to you to
keep track of just how many letters have been obliterated.

>PRINT 3+2__5%98__ 5
25

A true backspace feature is provided for use with CRT terminals.
Pressinag the backspace key (or Control H) will erase the last
character from the screen and memory,

If you want to cancel an incorrect line entry without having to wait
for the error message, hold the CTRL button and strike the letter "U",
NSC Tiny BASIC will type “U, do a carriage return line feed, then it
will tyne the prompt (>).

>TYPE AN INCORRRCT LINE FNTRY AND PRESS “RETURN"™ and get
ERROR 4

>
>TYPE AN INCORRECT LINE ENTRY AND PRESS CONTROL U™U

> <4— No syntax error.

If you are lucky enough to be using a CRT, just backspace and retyoe
the offending character.

1-20



3.9 Exercises
Complete the followings

1. In NSC Tiny BASIC, numbers are integers in the range
to s Inclusive.

2. If you typet PRINT MTURN SWITCH NO 3 ON»
NSC Tiny BASIC will type:

3. If you types PRINT 77
NSC Tiny BASIC will types

4. -1f you types COME ON NSC TINY BASIC. GET WITH IT!

NSC Tiny BASIC will types

Do the following in your head or with pamer and nencil, as you think
NSC Tiny BASIC would do them, Then, verify your answers.

5. 2%3+44546%7 =

6. 123%(42/127) =

T. 1000%1 0300

8., 22/7%1930a4

9. 1000%*22/7

You will find the answers to these exercise aquestions in Apbpendix A.

1-21



CHAPTER4

4,1 Variables
If, instead of typings
PRINT 12a/4/5
vou typed:
A=12074/5
the.result (which is 6, as the expression is evaluated from left
to right) would be given the name A, A is called a variable. The
instructiont
PRINT A
would “result in the value 6 being printed. The following is the en-
tire sequence of instructions as they might aonpear on your TIY page

or CRT screen.

>PRINT 12a/4/5
6

>A=|200/4/5

>PRINT A
6

Try another one.

>A=7 The value 7 was assigned to the variable
A and the value 5 to the variable B.
>B=5 Since A=7 and B=5, A+B will be 12.
>PRINT A+B
12

NSC Tiny BASIC now is instructed to know A=7 and B=5,

>PRINT A+B
35 A=7 times B=5 = 35

In NSC Tiny BASIC there are 26 variables, the letters of the alphabet

A through Z. Fach variable may be best considered as a pigeonhole in
which exactly one number can be stored, When it is stated that
K=4325, it means to replace any prior value that K may have had with
the new value 4325. The old value is lost. The instruction G=T
tells the computer to make a cooy of whatever value is in T and to
nlace that copy in nigeonhole G. In computer jargon the pigeonholes
are called "memory locations" because they can “remember" values.

1-23



Later you will see that hany more locations are available to store
data in, but for now there are only 26 variables in NSC Tiny BASICs

ABCDEFGHIJKLMNOPQRSTUVHNXYZ
Before a variable has been assigned a value (jargon for putting a
number into a pigeonhole), NSC Tiny BASIC qives it the value a. It
is as if just before you sat down to use the computer ,someone had
tyoeds ’
A=03 B=@AA C=01 etc.

When you first start NSC Tiny BASIC all the variables will contain
the value of zero (7).

Skeptical? Try it out on your system,

>PRINT A
?

>PRINT B
@

>PRINT C
?

and so on, if you wish, up to PRINT Z,

Up to now you have used PRINT statements that orint only one thing.

>PRINT 7 One thing (7).

7 One thing (7).
>PRINT 2+3 One thing (243).

5 One thing (value of 2+3).
>A=13
>PRINT A , One thing (A).

13 One thing (value of A).

The PRINT statement can print more than one thing:s

>PRINT 7,5 Two things (7 and 5).
7 5 Two things (7 and 5).
S>PRINT 7+5,7-5 Two things (7+5 and 7-5).
12 2 Two thinas (values of 745 and 7-5).,
>A=T7
>B=5

1-24



>PRINT A,.B Two things (A and B).
7 5 » Two things (values of A and B).

>PRINT 74#5,7=5,7%5,7/5 Four thinags.
12 2 3% 1 " Four things.

>

NOTEs PRINT 7+7,7-5,7%5:7/5

b A

COMMAS

You can orint two or more things orovided you separate each thing
to be printed with a comma in the PRINT statement.

4,2 Exercises

Pretend for a few minutes that you are the INSB@73 and that NSC Tiny
BASIC is the language you understand. Show what would hapoen if your
user typed the following?

ONE TWO

>A=7 >M=47

>B=5 ' >N=9

>PRINT A+B,A-B,AxB,A/B - >Q=M/N
>R=M=-N*Q

>PRINT M,N,Q,R

THREE | | FOUR

>A=2 >A=37

>B=3 >Q=A/ 1A
>C=4 | >R=A-10*Q
>D=5 : >B=17*R+Q
>PRINT A#B+C*D, (A+B)*(C+D) >PRINT A,B

1-25



FIVE

>RkR=32

>PRINT R*22/7,(R*R)*22/7

—— s w——

You will find the answers in Apnendix A

4,3 The Stored Program

Compute the souares of 23, 37, 53 and 88. Thét is, computes

2

23 , 37 , 53 and 88 .

>PRINT 23%23
529

>PRINT 37%37
1369

>PRINT 53%53
2809

>PRINT 88+88
7744

>

2

2 -

23 = 23 x 23
2

37 = 37 % 37
2

53 =53 % 53
2

88 = B8 * 88

You can give more of the work to NSC Tiny BASIC3 do this by storing
a orogram to compute the square of a number...don’t do it yet.

13 X=23
20 PRINT X#X

If you did type this is and got an ERROR
| message here, it’s because your RAM is
not At the default location. To remedy
this situation, vou must tell NSC Tiny
BASIC where your RAM is with a NEW
statement. If vour RAM is at
hexadecimal 1@423, then you would enter
NEW #1007% then NFWN again. For examolet

SNEW #1200
NEW

1-26



Notice that the above orogram consists of two statements and that
sach statement beains with a line number,

13 X=23

Line Number. A line number can be an integer from
A to 32767,

When statements with line numbers are typed, the statements are not
executed immediately. Instead, the statements are stored in memory
for later execution,

Refore you store the above program, clear out - or erase -~ any old
nrogram that might be in memory. To do this types

NEN #1000
NEW

NOTFt NEW #1003 sets the start of nroaram pointer at location #1207
hexadecimal. The number symbol (#) is important, this will
be fully discussed in Chapter 5.

It is important that the start of nprooram nointer is set to the
beginning of availabhle RAM, This allows the program lines to be
stored as they are typed in. If vour B@73 system differs from
the one described at length in Section 33 determine the start
address of the RAM in your system3 then, use that address in
your YNEW" command.

NSC Tiny BASIC will erase any old orogram in its memory and aget ready
to accept your new program. :

SNENW

> NSC Tiny BASIC is ready for a new
program.

Store the nrogram to compute the square of a number, Type the
following -(exceot for the promots - NSC Tiny BASIC does that for
you.).

>NEW

>10 X=23

>20 PRINT X=*X
>

_ The orogram is now stored in memory. To verify thist

Type LIST and press the RETURN key.

SLIST @ Khen you tyoe LIST, NSC Tiny BASIC
13 X=23 lists the program,

2A  PRINT X*X
>

1-27



To get a cony of the nrogram currently stored in the

memory, type LIST and press the RETURN key. RUN the
>RUN
529
>
First NSC Tiny BASIC did this 4;’10 X=23
Then ' »27 PRINT

That’s all, so the INS8#73 stoonned.

Look over:<the last few inches of TIY papers you'max

somethifnig like the following. (Line spaces have been
it easier to read.)

INS8@737’s
program,

X*X

find it looks
added to make

>NFEW First you erased any old orogram in the
: system,
>10 X=23 Then you tyoed in this two line nrogram.
>28 PRINT X*X
>LIST Then you asked NSC Tiny BASIC to tyoe
the bprogram out. .
14 X=23 NSC Tiny BASIC obliged. (Notes No
20 PRINT X*X prompts.)
>RUN Then you gave the RUN command.

529 NSC Tiny BASIC ran the programs this

was the result,

> Having done its appointed task, NSC
Tiny BASIC typed a prompt...ready for

more work.

Change the value of X. To do this, type in a new Line 14, This will
replace the old Line 1@ with the new Line 18. After making this

change, LIST the modified program. Don’t tyoe NEW,

>13  X=37
>LIST

13 X=37 This is the new Line 14,
29 PRINT X=X and the old Line 24,

>

1-28



You can replace any line in the program by typing a new line with the
same line number., To delete any line from a proaram, simoly type in
that line’s number followed by a carriage return. When the nroaram is
listed, that line will no longer remain. RUN the modified nrogram.

>RUN
1369

>
4.4 Exercises

1. Change Line 18 to 1# X=53 then LIST the modified program and HUN
ito h

2. Chanqge Line 1# to
it.

1?@ X=88 then LIST the modified program and RUN

If you did everything on the orevious two nages without making any
typing errors, the TIY page will look like the following. (Again,
line spaces have been added for readability.)

REMEMBER

NEW 1. To erase any old program and get NSC Tiny

BASIC ready for a new program, tyne NEW and

>10 X=23
>27 PRINT X#*X

press RETURN.

>LIST 2. To qget a tyoed copy of the nrogram currently
>10 X=23 in the INS8#73’s memory, type LIST and
27 PRINT X=X nress RETURN,
>RUN 3. To tell NSC Tiny BASIC to execute the program
529 in its memory, type RUN and press RETURN.
>10 X=37 4, To reolace any single line of a orogram in
>LIST memory, tyne a statement with the same
line number,
18 X=37
234 PRINT X=X
>RUN
1369
>l X=53
>LIST
17 X=53

20 PRINT X*X

1-29



>RUN
2809

>I1 X=88
>LIST

10 X=88
2% PRINT X#*X

>RUN
7744

>

4.5 The - GO TO - Statement
If you typed the instructions
SPRINT “THE BOAT IS SINKING. MAN THE PUMPS!®
and pressed the RETURN key, the computer would prints
THE BOAT IS SINKING, MAN THE PUMPS! '
and then stop. In a situation where a boat was actually sinking, the

computer should be more insistent and repeat the message (complete

with bells) until somebody pays attention. There is a way to do
this., Type in the following program. First tyoe NEWN, (Don’t RUN

the program yet.)
>NENW
>1# PRINT “THF BOAT IS SINKING. MAN THE PUMPS! (CTRL GGGGGGG)*"

>2¢ GO TO 14
>

Before you RUN this program - you must know how to stop it. When you
type RUN and press the RETURN key, the TTY will begin running the pro-
gram and ringing bells., To stop a runaway computer, press BREAK (or
any other key) until the computer stops.

Tyoe RUN and press RETURN.
>RUN _
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING, MAN THE PUMPS! Bells

THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING., MAN THE PUMPS! Bells

1-30



To STOP the program, press BREAK.

The following is a short analysis of the above program. Each line

has a number. The first line is numbered ten, the second twenty,

When you say "RUNY the computer starts to execute lines beainning

with the lowest numbered 1ine, In this case that is Line 14t the
computer orints “"THF BOAT IS SINKING. MAN THE PUMPS! Bells*" When it
is done with Line 172, it then executes the next highé€r numbered line,
In this case it is Line 20. Line 24 has a new instruction, the GO TO
instruction, it does the obvious thing and tells the comouter what line
to go to, i{.e., what line to execute next. The computer executes Line
13 again, then looks for the next higher niumbered line, and so forth.
The computer will not ston until it is either turned off or you stoo
it by. pressing the BREAK button.

If you are still unsure about how the GO TO proaram works, follow the
Arrowss

>RUN

1@ PRINT ®THE BOAT IS SINKING. MAN THE PUMPS. Bells"

28 GO TO 1@

This program is in the form of a loop. The computer goes around the
loon until you press the BREAK key.

After you’ve stopped the program by pressing the BREAK key, you can
start It again by typings

CONT (for continue) then press RETURN

The program starts where it left off and continues to orint the message
over and over again until the BREAK key is again pressed.

The implications of this little program are imoortant: It i1s a little
program, yet it produces a lot of output! Tell a computer to write,

"] will do my homework® a thousand times and it will do it uncomolain-
ingly. In an automobile, a microcomputer can be programmed to check
the air pressure in the tires, the manifold nressure, fuel flow,
hbattery voltage, the timing and so forth, a hundred times a minute,
every minute the car is in oneration. Repetitive jobs, however many
times they must be done, are usually no more difficult to oroqram than
jobs that must be done only once or twice.

1-31



4,6 The - INPUT - Statement

2
Revert back to the problem of computing the value of X for various

values of X. The INPUT statement is a handy method for feeding
values into variables, Follow along with the program to compute:

2 2 2 2 2
X . then use it to compute 23 , 37 , 53 , and 88 .

>NEW

>1?@ INPUT X (This is the INPUT statement)
3208 PRINT XX

>3 GO TO 1@

The above is a three statement program, including a new type of
statement called INPUT. RUN the progranmt

" >RUN
? (A new .kind of prompt.)

NSC Tiny BASIC is now doing the INPUT statement. It types a gquestion
mark, then waits. You must type a number and pbress RETURN. v

>RUN

? 23 {Tyoe 23 and press RETURN.)
529

? (NSC Tiny BASIC tyned another question mark to

show it“’s ready for more values of X. Continue

with 37, then 53, then 88,)
>RUN

? 23
529

? 37
1369

? 53
2809

v 88
7744

? NSC Tiny BASIC will keep prompting with ? until

you let it know that you are finished. To do
thiss

Press and hold CTRL and, while holding CTRL down, press C.

1-32



? CTRL/C NSC Tiny BASIC has stopped running the program

STOP at 19 and waits for the next command,
>

Remember, NSC Tiny BASIC statements are done in line order number,
unless a GO TO breaks that order. In the preceding orogram, the
statements are done in the order shown below, Again, follow the
arrowst

>RUN

14 INPUT X Program loops around until you stop it
' by typing CTRL arnd C together — CTRL/C

27 PRINT X#»X
3a TO 19

The following program computes the value of AX+B for INPUT values
of A, X, and B,

>NEW

>1% INPUT A

>27@ INPUT B

>33 INPUT X

>4¢) PRINT AxX+B ,

>57 PRINT uwn . This prints an *%empty line". You could also
>6¢ GO TO 10 use the expression without the quotes. They
>RUN only serve to make the output orettier,

SR

———— —B

—————

...... — A%X+B
~===—-~---Line space printed by Line 5@.

W) W W
VW WRWwN

LS IS RN ]

19
? CTRL (™) /C

STOP AT 10
>

4,7 Exercise

How would you modify the program so that, after typing RUN, you
could supply one set of values for A and B, followed by several
“values of X? \

See Anppendix A for the answers,

1-33



4,8 Informative Printing
A program to orint squares of numbers could print answers thusly:
>RUN

?7 23
529

7 37
1369

?7 53
2809

? 88
7744

? and so forth

The following would be more preferables
>RUN
COMPUTE X SQUARED

WHAT IS X? 23
X SQUARED = 529

WHAT IS X? 37
X SQUARED = 1369

WHAT IS X? 653
X SQUARED = 2809

WHAT IS X? 88
X SQUARED = 7744

WHAT IS X?
«ssand so on until someone types CTRL/C.

This program identifies the desired input and the comouted and orinted
output.

The following are the first two statementss

I1# PRINT "COMPUTE X SQUARED%
20 PRINT nu

Line 1@ causes NSC Tiny BASIC to print the message COMPUTE X SQUARFD.
Line 2@ orints a Line Feed,



The two statementss

3@ PRINT “WHAT IS X?¥3 ««<===—Note the semicolon.
49 INPUT X

Cause NSC Tiny BASIC to typet

WHAT IS X?
and wait for a value of X. The ‘question mark is thé promot from the
INPUT statement. Did you observe the semicolon at the end of the
PRINT statement? 1t prevents a carriaqge return and line feed from
occurrina. If vou don’t use a semicclon the following would hanpen:

3% PRINT “WHAT IS X" =mem———m —No semicélon.
4% INPUT X

Wi thout the semicolon, NSC Tiny BASIC tynest
WHAT IS X
?

For this porogram, remember to use the semicolon at the right end of
the PRINT statement.

53 PRINT X SQUARED =%} —======Semicolon.

674 PRINT X#»X
Together these two statements cause NSC Tiny BASIC to print the
message "X SQUARED =% followed by the value of X*X., For examole, if
X = 23, NSC Tiny BASIC will tyoes

X SQUARED = 529

Remember to note the semicolon on the right end of Line 52. Had it
been omitted the following is what would hanpent

5@ PRINT "X SQUARFD =" —==<~<~-—No semicolon,
64 PRINT XX

If X = 23, NIBL will type

X SQUARED =
529

One more statement:?

7% GO TO 20

1-35



The following is everything put together in a complete programs

1@ PRINT “COMPUTE X SQUARED*
20 PRINT wa

30 PRINT ®WHAT IS X%

49 INPUT X

5¢ PRINT #X SQUARED="j

60 PRINT XX

70 GO TO 2@

Load the above program into your INS8#73 and RUN it. Try it for
X = 23, 37, 53 and 88.

4.9 Multiple Statements Per Line

‘The following instructions explain how to put two or more statements
on one line, "

Instead ofs 374 PRINT MWHAT IS X¥3
- 4¢ INPUT X

You can out both statements on one linets

3@ PRINT “WHAT IS X ¢ INPUT X
(first statement) (second statement)

(The statements are seoarated by a colon)

To put more than two statements on a single line, follow the same
format as above and be certain to separate each statement with A
colon (8), ‘
Instead ofs

20 PRINT wu

39 PRINT ®WHAT IS X3

4@ INPUT X

Put all three statements on one lines

2@ PRINT w» s PRINT #WHAT IS X3 s INPUT X

Ist 2nd 3rd
statement statement statement

colon colon

1-36



The following is an examople of four statements on one line.
47 INPUT Xs PRINT ®X SQUARED=%3s INPUT X 2 PRINT X*X s GO TO 2%
Instead ofs

44 INPUT X

572 PRINT "X SQUARED=#g
65 PRINT XxX

7% GO TO 2@

2
. the following is a M“compact® program to comoute X , featurinc the use
of multinle statements per linet

12 PRINT “COMPUTE X SQUARFED¥

200 PRINT w& ¢ PRINT #WHAT IS X#3 s INPUT X
5@ PRINT “X SQUARFD ="3 s PRINT X*X t GO TO 20

Try it.on your INS84A73,
Follow the arrows to see how the program works.

RUN

1@ PRINT ®COMPUTE X SQUARFD#%

274 PRINT ™ ¢ PRINT ¥WHAT IS X*3 ¢ . INPUT X

59 PRfNT #Y SQUARED ="3 s PRINT XxX ¢ GO TO @

As per standard, NSC Tiny BASIC does lines in line number order,
first Line 18, then to Line 28, then Line 54. NSC Tinv RASIC does
all statements on a line in left to right order before movina on to
the next l'ine. Since Line 57 ends with a GO TO 20 statement, NSC
Tiny BASIC, indeed, goes to Line 20 and continues, after finishing

Line 5%,

In order to emphasize that multiple statements per line are separated
by colons (%), a space on each side of the colon has been addeds this
is optional and Line 2 could have been tyoeds

27 PRINT "“sPRINT "WHAT IS X"3:INPUT X

1-37



Some statements such as PRINT and INPUT can take multinle arguments.
This allows several statements to be added together into one, VFtor
examples

1OPAINT X3sPRINT 43:PRINT “DOMINO"sINPUT AsINPUT B
can be shrunk tot

18 PRINT X,Y, "DOMINO*$INPUT A,B

4,172 Exercises

l. Write two programs to compute the value of AX+B for input values
of A, X and B, as illustrated by the following RUN of our orogram,

>RUN
PROGRAM TO COMPUTE AxX+B

A=? 2
B=? 3
X=2 5
AxX+B = |3
X=2 8
AxX+B = 19
X=? 12
AxX+B = 27

X=? ...and so on...oress and@to abort program.

A. Program No. |. Do not use multiple statements pner line.

B. Program No. 2, Use multiple statements per line.

Answers are in Appendix A

1-38



CHAPTERS

5.1 Bits and Bytes

We assume that you are using an INS8273 with at least 256 memory
locationss this is the minimum confiquration to run NSC Tiny BASIC.

o Each memory location holds, or stores, one byte of
information,

o One byte consists of eight binary diagits commonly called
bits. BIT = BINARY DIGIT

o One byte = 8 bits.
o A binary digit (bit) is either # or 1.

You can think of a memory location as shown in the following diagram:

The number, 73, is stored
in binary.

| BYTE = 8 BITS = | MEMORY LOCATION

Each bit must be @ or 1. Below are some numbers shown stored in bytess:

NUMBER (DECIMAL) STORED AS A BYTE (BINARY)
1 njlaja|¢|la|a]|0 |7
! njiogl|la|la|la|lajla]l
2 alalaja|lala]ll | A
4 L I/ I O O O
8 alala|all |a|]a]|@
16 glo|jg|t|a|le|a]|a
32 2|1l |alo|0|@a|@
64 agli|o|a|e|o|o|o
128 | l1|dglajla|a|d|a]|9

1-39



5.2 Exercises

Figure out how 3, 6, 7 and 29 would be stbréd. What is the largest
that can be stored in one byte?

Answers are in Appendix A
5.3 Memory Address

Each memory location has a unique numeric address. The NSC Tiny
BASIC program in the INS8#73 system occupies locations with addresses
A to 2559, : '

An expanded INSB8A73 system might have more memory locations. For ex-
ample, your system may have 8192 locations, or 12288 locations... and
so on, up to a maximum of 65535 locations, which includes *locations?
that are really ports for peripoheral devices.

"Memory addresses might run from @ to 4495 or @ to 8191, or @ to 12287,
and so on,

o Memory locations @ to 2559 hold NSC Tiny BASIC in the
- on=chip ROM (Read Only Memory) of the INS8a73.

0 Addresses 256@ throuah 65471 are yours to use. When you
type in an NSC Tiny BASIC oroqram, you use some of these., The

longer your nroaram, the more you use. If you wire up some
interesting electronic gadgets to the system, you will most

likely use some of these addresses. Not all of these memorvy
locations will actually be there in a typical system.
5.4 Hexadecimal Number System
To understand the literature, you are going to have to learn hexa-
decimal. The hexadecimal (base sixteen) number system is a handy
shorthand for talking about bits and bytes and memory addresses.
In hexadecimal, addresses ranqge from #@0?@ to #FFFF,
The number sign (#) is used to tell you that the number is hexadecimal
instead of decimal. This is the notation used in NSC Tiny BASIC% other
notations exist in other literature.
This is a decimal number: 28673
This is a hexadecimal numbers #7001
The hexadecimal system has more digits than the decimal system.
Decimal digits:s 21 234567829

Hexadecimal diaitss @1 23456789 ABCDETF

1-40



Just as in the decimal system, each hexadecimal digit has a nositional
(or olace) value. The digit occuoying any oosition is multiplied by

the value of that particular onosition. These products are then added
together to obtain the value of the number.

Hexadecimal position values are expressed as powers of sixteen (rather
than 18 as in the decimal system). Positions are numbered from right
to left according to the increasing powerss

POSITION POSITION LPOSITION POSITION
3 2 ! »
3 2 N @
16 16 16 16

The decimal values of the powers of sixteer ares

0 | 2 3
16 =1 16 =16 16 = 256 16 = 4096 -

Check the decimal equivalents of the the following hexadecimal numbers.

3 2 1 o

#7091 = (7 x 16 ) + (3 x 16 ) + (@ x 16 ) + (1 x 16 )

= (7 x 4096) + @3 + 3 + |

= 28672 + A + A + | = 28673
#7002 = 28672 + @ + @ + 2 = 28674
#7074 = 28672 + A + B + 4 = 28676
#7018 = 28672 + @ + 16 + @ = 28688
#7020 = 28672 + 0 + 32 + A4 = 28704

(Remember, # in front of a number means it is hexadecimal.)

You will notice that in Section 3 a hexadecimal number is referred to
by preceding the number with an ®"X4* instead of the "#" sign, for ex-
amplet

X’8a09

This is a more standard notation for hexadecimal numbers, but NSC Tiny

BASIC does not like it.

1-41



If we ask the INSR@73 in NSC Tiny BASIC to print a hexadecimal number,
NSC Tiny BASIC orints the decimal equivalent.

>PRINT #7001
28673

>PRINT #A
19

>PRINT #8B
1

>PRINT #C
12

>PRINT #
13 -

>PRINT #E
14

>PRINT #F
15

>PRINT #1060
16

And so on...

The following is a table of hexadecimal digits vs. decimal values,

HEXADECIMAL DECIMAL
DIGIT VALUE
@ 2
) ]

2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 19
B i
Cc 12
D 13
E 14
F 15

1-42



You may-wish to use the following small program for further exoeriment-
ationt,

>NENW

>1 7% REMARK HEXADECIMAL TO DECIMAL

>11@ PRINT wu

>127 PRINT WHEXADECIMAL NUMBER"ssINPUT H

>133 PRINT ¥“DECIMAL FQUIVALENT IS*,H - This is a multiole PRINT

>4 GO TO 115 statement, see section
4.8,

>RUN

HEXADFCIMAL NUMBER? #7021
DECIMAL EQUIVALENT IS 28673

HEXADFCIMAL NUMBER?...And so on. If you type a decimal number
(without #), you will get
the decimal equivalent of
your decimal number,

You may have noticed something new in Line 18@. Any line that beagins
with the word YREMARK® is ignored by NSC Tiny BASIC, even {f it
contains another statement preceded by 3 colon., These REMARKS are used
to help document the orograms and, REMARK statements will be found in

great abundance in the programs that follow in this porimer,

5.5 More About Hexadecimal

The hexadecimal numbers #7 to #7FFF. inclusive, are equivalent to the
decimal numbers, # to 32767, inclusive, You can obtain the decimal
equivalent of any hexadecimal number in the above range bv usina the
proaram on this nage.

To find out about the hexadecimal numbers from #BAM@ to #FFFF, use the
program on this page. Enter that program and type RUN,

>RUN

HEXADECIMAL NUMBER? #8000
NECIMAL EQUIVALENT IS -32768

HEXADECIMAL NUMBFER? #8001
DECIMAL FQUIVALENT IS -32767

HEXADECIMAL NUMBER? #FFFF
DECIMAL EQUIVALENT IS -1

HEXADECIMAL NUMBFER? #FFFE
DFCIMAL EQUIVALENT IS -2

And sO ON...

1-43



Remember the number circle in Chaonter 3?2 It works in hexadecimal toot

#9
#FFFF #1
# FFFE #2
#FFFD #3
#FFFC #4
#FFFB #5
#8005 .
#8090 # TFFC
#8073 #7FFD
#8002 #7FFE '
#8001 #7FFF
#8000

- Compare the hexadecimal number circle with the decimal circle in Chap-
ter 3. Below is a table showing some of the equivalences between
decimal and hexadecimal NSC Tiny BASIC numberss

- POSITIVE NUMBERS NEGATIVE NUMBFERS
Hexadecimal Decimal Hexadecimal Decimal

#1 1 #8000 ~-32768
#2 2 #8001 -32767
#3 3 #8002 ‘ -32766
#4 4 #8007 3 ~-32765
#7FFD 32765 #FFED 23
#7FFE 32766 #FFFE -2
#7FFF 32767 ‘ #FFFF -}

NSC Tiny BASIC automatically converts numbers from hexadecimal to
decimal during orint outs however, there is no built-in method for
printing numbers directly in hexadecimal. The following examples
illustrate the method used to convert decimal numbers @ to 255 to
hexadecimal? '

o, |
16/ 73_—_—‘5\\31
64 = 49

Checks 4 x 16 + 9 = 73

9\__/
16/ 95’——_-\\\n
88 =  #5F Checkt 5 x 16 + 15 = 95
15 :
16/ 255——-—‘“‘\\§
16
—95 =  #FF Checks 15 x 16 + 15 = 255
89

15 #F = 15 #F = 15

1-44



You can convert any decimal number, # to 255, to hexadecimal as
followss

1. Divide the decimal number by 16, obtaining the quotient Q
and remainder R.

2. For decimal numbers in the range @ to 255, the aquotient Q
and the remainder R will each be numbers 1n the range 9 to
15, Inclusive.

3. The hexadecimal number is #Q“R’ where Q’ and R’ are the hexa-

gecimaé digits (@ through F) corresoonding to the values of
and R,

‘The following is a program to compute Q and R, this program features a
new function, called MOD, for comouting R.

>NEW

>1 97 REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
>112 PRINT "4:PRINT "YOUR NUMBER"3sINPUT N

>12A R=MOD(N, 16)

>1374 Q=N/16

>140 PRINT #HEXADECIMAL DIGIT VALUESs#+,Q,R

>154 GO TO 112

>RUN

YOUR NUMBER? 73

HEXADECIMAL DIGIT VALUES: 4 9 Therefore, 73 #49

"

YOUR NUMBER? 95
HEXADECIMAL DIGIT VALUESt 5 15 Therefore, 95 = #5F

YOUR NUMBFR? 255
HEXADECIAL DIGIT VALUES: 15 5 Therefore, 255 = #FF

In Line 123, the function MOD(N,16) computes the remainder on division
of N by 16,

The following illustrates the method used to convert decimal numbers

in the range @ to 32767 to four diait hexadecimal numbers. Check it
over very carefullys

16 fZ%%é' 3‘/‘27 /1_8/)234

146 l3l 2
| 44 128 .
20 3
_16 -

4

The above 1s the conversion for 4667 to #1234

1-45



1792 12—y ————~—--\\\’
16 28673 2 379? us/uz 28673 7001
112
l?é 19 \_/

112 16
147 32
144 32

33 2
32

The above is the conversion for 28673 to #7471

You try to convert 6844 to hexadecimal.

16/ 6844 16/ 16/ 6844 = #

(The check your conversion of 6844 to hexadecimal, look at the next
program,)

The following orogram will work for numbers in the range # to 32767,
inclusive.,

>LIST

137 REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
113 PRINT "“:PRINT "YOUR NUMBER*3sINPUT N

1200 X=MOD(N, i16)

130 N=N/16

14% W=MOD(N,16)

154 N=N/16

16 V=MOD(N,16)

174 U=N/16

183 PRINT “HEXADECIMAL DIGIT VALUES:"U,V,W,X

1960 GO TO 119
>RUN

YOUR NUMBER? 4669
HEXADECIMAL DIGIT VALUES: | 2 3 44—4667 = #1234

YOUR NUMBER? 28683
HEXADECIMAL DIGIT VALUESt 7 7 0 14—28673 = #7001

YOUR NUMBER? 6844
HEXADECIMAL DIGIT VALUES: 1| 19 11 124-6844 = #1ARC

YOUR NUMBER? 255
HEXADECIMAL DIGIT VALUES: @ @ 15 154—255 = #00FF = #FF

1-46



YOUR NUMBER? 32767
HEXADECIMAL DIGIT VALUESt 7 15 15 154-32767 = #7FFF

YOUR NUMBER? -1
HEXADECIMAL DIGIT VALUESs 0 9 @ -14—Beware of negative numbers!

YOUR NUMBER? -32767 ,
HEXADECIMAL DIGIT VALUES: -7 <15 =15 =15

YOUR NUMBFR? #7031

HEXADECIMAL DIGIT VALUES:t 7 @ @ | - Hexadecimal is converted to
hexadecimal, provided. the
number is in the range #2 to
.#1FFF.,

YOUR NUMBER #8009

HEXADECIMAL DIGIT VALUES? -8 @ @ @ Other hexadecimal numbers qgive
funny results. A complete ex—
planation will not be attemot-.
ed in this orimer.,

YOUR NUMBER? (No GO TO statement at end of pbrogram)

In case you haven’t figured out how the program works, follow along as
the program for N = 4669 is traced. The following trace shows the

values of variables after the statement on the same line has been
executed,

STATEMENT N ] v W X
114 INPUT N 4660
120 X=MOD(N,16) 4660 4
133 N=N/16 291 4
140 W=MOD(N,16) 291 3 4
15@ N=N/16 18 3 4
168 V=MOD(N,16) 18 2 3 4
178 U=N/16 18 | 2 3 4

180 Prints the values of U,V,N, and X

190 REPEAT THE PROGRAM AD INFINITUM

1-47



5.6 Exercise

Trace the program for N = 68441

1o
120
130
140
150
}éﬂ

170

STATEMENT
INPUT N
= MOD (N,16)

N/16
= MOD (N,16)
N/Z16

MOD (N,16)

ant < Z X Z X
"

N/16

Answers are in Anpendix A

1-48



CHAPTERG
6.1 The I1F Statement

The useful and powerful IF statement overmits programs to be written
in which the computer makes simole decisions.

The following is an IF statements
IF P=14 THEN PRINT “AIR PRESSURE IS NORMAL*"

This statement tells the computer #IF the value of P is equal to four-
teen, then print the message #AIR PRESSURE IS NORMAL.%, Not stated,

but implied, is that IF P is not equal to fourteen. the message is
not printed.

The following is an example of ‘the IF statement used in a short
nrograms

143 REM AIR PRESSURE MONITOR

113 PRINT uwwsPRINT #WHAT IS AIR PRESSURE"s$:INPUT P
1260 IF P = 14 THEN PRINT “AIR PRESSURE IS NORMAL*
132 GO TO 1o

You may have noticed that an abbreviated form of the "Remark" state-
ment was used Iin Line 183, NSC Tiny BASIC only needs the first three
letters to recoanize the words “REM® can be used as an abbreviation
for the word REMARK.

Next, run the program and suoply several values for air oressure,
P.

>RUN

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURE? 23
WHAT IS AIR PRESSURE? 20 —-No message is printed

WHAT IS AIR PRESSURE? 2

WHAT IS AIR PRESSURE? © C4—(Control/C was pressed)
STOP AT 110

>

1-49



It would be better to have NSC Tiny BASIC print messages and ring
bells when the air pressure is NOT normal. Repnlace Line 120 with the
following IF statement:?

120 IF P «> 14 THEN PRINT ®AIR PRESSURE IS NOT NORMAL bells*
In NSC Tiny BASIC, <> means...not equal to...
The following is the complete programs

107 REM AIR PRESSURE MONITOR AND ALARM
116 PRINT "#:PRINT “WHAT IS AIR PRFESSURE"3$¢INPUT P
124 IF P <> 14 THEN PRINT #AIR PRESSURE IS NOT NORMAL bells*

136 GO TO 1@

>RUN

WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRFSSURE? 14
WHAT IS AIR PRESSURE? 14

WHAT IS AIR PRESSURE? 50 (Trouble!)
AIR PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRFSSURE? 12
AIR PRESSURE IS NOT NORMAL Bells

And so on.

In a situation where air oressure was actually being monitored, Line
115 would be replaced with a a method for automatically acquiring the
value of the air pressure P$ probably by means of an analog to digital
converter wired into the INS8473’s memory. For now, however, you will
simulate the acquisition of data by means of INPUT statements and
concentrate on the structure of the orogram itself.

Requiring P to be exactly 14 is a tight controls loosen things uo a
little and let normal oressure be anythinag from 13 to 15, inclusive.
Ygu want a warning orinted whenever P is less than 13 or greater than
15,

127 REM AIR PRESSURF MONITOR AND ALARM

11@ PRINT "w:PRINT #WHAT IS AIR PRESSURE*ssINPUT P

124 IF P < 13 THEN PRINT “AIR PRESSURE IS NOT NORMAL Bells"
1332 IF P > 15 THEN PRINT “AIR PRESSURE IS NOT NORMAL Bells®
149 GO TO 1@

If P is less than 13, Line 1200 will cause a warning/Zalarm to be

printeds and, if P is agreater than 15, Line 137 will cause the
messaae to be printed. If P is 13, 14 or 15, no message will occur.

1-50



>RUN
WHAT IS AIR PRESSURE? 14
WHAT 1S AIR PRESSURE? 13

WHAT IS AIR PRESSURE? 15

WHAT IS AIR PRESSURE? 124—(Pressure is less than 13)
AIR PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRESSURE? 164—(Pressure is more than 15)
AIR PRESURE IS NOT NORMAL Bells

And so on.,..
6.2 Exercise

Modify the ahove program, with just two small changes, so that when air
pressure is not normal NSC Tiny BASIC will tell you whether it is too
high or too low. A RUN might look like the following, change the last
orogram to do this. Answers are in Aopendix A

>RUN
WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 13

WHAT IS AIR PRESSURE? 15

WHAT IS AIR PRESSURE? 16
WARNING! AIR PRESSURE TOO HIGH

WHAT IS AIR PRESSURE? 12
WARNING! AIR PRESSURE TOO LOW

And SO0 ON,..

Since you are monitoring air pressure between limits, change the
program to give yourself a little more flexibility in setting the
limitss

103 REM AIR PRESSURE MONITOR AND ALARM

11 REM L=LOWFR LIMIT, U=UPPER LIMIT FOR NORMAL PRESSURE
1260 L=13

130 U=15

1443 REM ACQUIRE ACTUAL AIR PRESSURE, P

15 PRINT "wsPRINT ®WHAT IS AIR PRESSURE"s s INPUT P

164 REM IF P IS OUTSIDE NORMAL LIMITS, PRINT MESSAGE
173 IF P<L THEN PRINT "WARNING! AIR PRESSURE TOO LOW"
133 IF P>U THEN PRINT “WARNING! AIR PRESSURE TOO HIGH"
199 REM GO GET ANOTHER VALUE OF P

299 GO TO 150

1-51



Try the'precedinq programs then, change the lower limit (L) and upoer
limit (U) in Lines 120 and 13?% and try the program again.

Also try thist Combine Lines 1980 and 273 as follows?
19 GO TO 15AsREM GO GET ANOTHER VALUE OF P

Line 192 now contains two statements, a GO TO which tells NSC Tiny
BASIC what to do, and a REM (remark) which tells you what is haooening.

You may wish to change Lines 129 and 137 to INPUT statements. In that
case, a RUN might look like the followingt

>RUN

LOWER LIMIT FOR NORMAL AIR PRESSURE? |
UPPER LIMIT FOR NORMAL AIR PRESSURE? 1

3
5
WHAT IS AIR PRFSSURE? 14
WHAT IS AIR PRESSURE? 13

WHAT IS AIR PRFSSURE? 16
WARNING! AIR PRESSURE T0OO HIGH

WHAT IS AIR PRFSSURE? 12
WARNING! AIR PRESSURE TOO LOW

And so on...
In general, the IF statement has the form of THFNs
IF condition - THEN statement

For examnle, the following are two IF statements you’ve already seent

IF P = 14 THEN PRINT "AIR PRESSURE IS NORMAL®
—_—

Condition Statement

IF P<L THEN PRINT ®“WARNING! AIR PRESSURE TOO LOW"
| I
Condition Statement
The following is an IF statement that you will be using soon.
IF F>23 THEN GO TO 514 -
S T
Condition Statement

1-52



The condition is frequently a comparison between two quantities. Here
is a handy table of comparisons that can be used in IF statements:?

NIBL Symbol - Meaning Math Symbol

Is equal to

Is less than

Is greater than

Is less than or equal to

= Is greater than or equal to

> Is not equal to, i.e., greater’
or less than

AVAVAL
]
 MMiavau

The auantities being compared can be numbers.'variables or algebraic
expressions, The comparison can be TRUE or FALSE.

Below -are comparisons and their trutH-Values. TRUE or FALSE:

3 +5 > 6 is TRUF, always.

If A =8 and B = 33, then 4%A <= B is FALSE
‘If A =8 and B = 32, then 4%A <= B is TRUE
If A =8 and B = 40, then 4%«A <= B is TRUE

If the comparison is TRUE, then the next statement on the same line as
the IF is executed. It can be any kind of statement: A PRINT, a GO
TO, another IF, or even those kinds of statements yet to be introduced,.
If the comoarison is FALSE, then the statement following the comparison
is ignored and the next highest numbered statement is executed.,

IF P<L THEN PRINT ®#WARNING! AIR PRESSURE TOO LOW"

Do this if the condition P < L is TRUE.
Don’t do this if P <« L is FALSE.

That’s all there is to IF statements, except that the word THEN may
be omitted if you wish, For example, instead of writings

IF P=14 THEN PRINT ®"AIR PRESSURE IS NORMAL™"
you can omit the word THEN and write?
IF P=14 PRINT ¥AIR PRESSURE IS NORMAL"

Sometimes the word THEN makes the program easier to read. Use it if
it feels comfortable, ) :

Be careful to avoid making multiple statements separated by colons

on a line with an IF statement. Remember that when an IF condition
is found to be FALSE, the entire rest of the line is ignored. There-
fore, for the following program, a zero will be nrinted.

1-563



19 A=01B=99
27 IF B> 1000 THEN PRINT %BIG B#sA=|
30 PRINT A

The following orogram has several REM’s to help you read and under-
stand it

7@ REM DIALYSIS FLON MONITOR PROGRAM

11@ REM GET FLOW RATE, F
1200 PRINT "MsPRINT "FLOW*§3®INPUT F

13 REM CHECK IF FLOW RATE CRITICALLY HIGH
14 1F F>20 THEN GO TG 51@

I15A REM CHECK IF FLOW RATE CRITICALLY LOW
164 IF F<1a THEN GO TO 510

17% REM CHECK IF FLOW RATE ABNORMALLY HIGH
183 IF F>17 THEN GO TO 71@

19 REM CHECK IF FLOW RATE ABNORMALLY LOW
200 IF F<13 THEN GO TO 719

217 REM IF FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
220 PRINT "FLOW OK%":GO TO 120

500 REM FLOW RATE CRITICALLY HIGH OR LOW, SOUND BELLS
517 PRINT "DANGER! FLOW RATE CRITICAL BellssGO TO 124

703 REM FLOW RATF IS ABNORMALLY HIGH OR LOW, PRINT MFSSAGE
710 PRINT “WARNINGt FLOW RATE ABNORMAL":GO TO 120

Try this nrogram, make sure it works for all oossible conditions. Try
the following flow rates as test cases.

FLOW OKs 13, 14, 15, 16, 17
ABNORMAL: 144, 11, 12, 18, 19, 2@
CRITICAL® 7, 8, 9, 21, 22, 23

After you have convinced yourself that this orogram works, read the
following analysis of it.

Follow along and trace through the program for a few specific values of
F. First, suppose F = 25, The condition in Line 140 (F>20) is TRUE$
therefore, NSC Tiny BASIC will ao to 514. Line 519 directs NSC Tiny
.BASIC to print the message ¥DANGER! FLOW RATE CRITICAL", ring the TTY
bell several times, then GO TO 127 for A new value of F. This will
continue to happen for as lona as F remains aqreater than 20.

1-54



Suppose F = 9, The condition in Line 148 (F>20) is FALSE, so NSC Tiny
BASIC qoes on to Line 168, In Line 160, the condition (F<¢1@) is TRUE,
so NSC Tiny BASIC will go to 510, print the danger message, ring the
bell, then GO TO 127 for still another value of F.

Suppose F = 18, The condition in Lines 140 and 169 are both FALSE.,
(Check them yourself,) Therefore, NSC Tiny BASIC arrives at Line |84,
The condition in Line 184 (F>17) is TRUE, so NSC Tiny BASIC does GO TO
714 and, as directed by Line 718 prints the message, "WARNING: FLOW
RATE ABNORMAL®, then goes back to Line 12 for another value of F,

The above has traced three nossible paths throuah the orogramt there
are two more, try these for F = 12 and F = 15, As there are five
nossible paths in all, you may wish to choose your favorite colors of

felt tip pens and actually draw the paths.

Flowchart

START

140 |
GO TO 519
510
DANGER! FLOW
1 »| RATE CRITICAL —>
(BELLS)
GO TO 120
163
GO TO 518 [
180 |
GO TO 719 ,
710

WARNING! FLOW | o
> RATE ABNORMAL

GO TO 2@

200
GO TO 714 |—

220 .
FLOW OK »
GO TO 128

1-55



In the flowchart, or logic diagram, of the Dialysis Flow Monitor Pro-

ram, the diamond shaned boxes corresnond to the IF statements.

The numbers at the top of each box corresoond to line numbers in the
proaram. Compare the flowchart with the program. Trace through the
flowchart for several values of F., Make sure you trace each of the

five possible naths through the nrogram. For example, try it for F =
25, 9, 18, 12 and 15. (Again, please note that it would be heloful to

mark each path with a different color,)

6.3 A More Comnact Program

In looking over the Dialysis Flow Monitor Program, we note the
followings

1. If F>20 or F<l@, the program should have a danger message olus
alarm, ,

2. If the above is not true, and if F>17 or F<i3, then the orogram
should have an "abnormal" message, but not an alarm.

3. [If neither of the above are true and everything is OK, a "FLOW
OK" message will suffice.

NSC Tiny BASIC permits the use of logical operators AND, OR and NOT.
Use is made of the OR operator in the following revision of the

dialysis nrogram.

|99 REM DIALYSIS FLOW MONITOR PROGRAM

11@ REM GET FLOW RATE
1200 PRINT "#: PRINT "FLOW™3sINPUT F

133 REM CHECK IF FLOW RATE CRITICALLY HIGH OR LOW
4@ IF (F>28) OR (F<1@) THEN GO TO 514

17 REM CHECK IF FLOW RATE ABNORMALLY HIGH OR LOW
182 IF (F>17) OR (F<13) THEN GO TO 719

217 REM IF FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
220 PRINT "FLOW OK*:GO TO 12a

503 RFM FLON RATE CRITICALLY HIGH OR LOW, SOUND BFLLS
512 PRINT ®DANGFR! FLOW RATE CRITICAL Rells:GO TO 120

790@ REM FLOW RATE IS ABNORMALLY HIGH OR LOW, PRINT MESSAGE
718 PRINT WWARNING: FLOW RATE ABNORMAL":GO TO 120

1-56



Suppose F=25, Then the compound condition (F>2A) OR (F<iA) in Line 1479
is TRUE. In this case NSC Tiny BASIC will GO TO 518. If F=9, the
compound condition is also TRUE and NSC Tiny BASIC will GO TO 514,

Suppose F=18. The compound condition (F>2@) OR (F<1A) in Line 149

is FALSE, so NSC Tiny BASIC continues on to Line 184. Remember, F is
now equal to 18, so the condition (F>17) OR (F<13) in Line 130 is TRUE,
NSC Tiny BASIC does a GO TO 71@.

* * *The parentheses enclosing F>20, F<1# and so on,
are necessary$ without them, the orogram will
not work, because logical ooerators, as arithmetic
operators, are evaluated. from the left side of the
expression to the rioht. Parentheses are used to give
precedence.,* % %

The following is a flowchart of the condensed dialysis oroqram.

START
( 120 \
INPUT </}

140
F>2@ OR

510
DANGER! FLOW
RATE CRITICAL
{BELLS)

GO TO 120

710
WARNING! FLOW |

RATE ABNORMAL »
GO TO 120

F>17 OR
<13

220
FLOW OK . >
GO TO 120

1-57



Have you noticed that both programs tested for the most danger-
ous condition first? Then tested for the second most dangerous,
simply as a matter of life-saving priorities. In this case, a few
milliseconds nrobably won’t make much differencet however, in many
real time applications, a few milliseconds do make a difference,

To illustrate to you that programs usually can be improved upon, the
following is a suoer-condensed Dialysis Flow Monitor Program:

120 PRINT "wsPRINT #FLOW"3sINPUT F
148 IF (F>20) OR (F<1@) PRINT ”DANGFR' FLOW RATE CRITICAL"s
GO TO 12m
1680 IF (F>17) OR (F<13) PRINT “WARNINGs FLOW RATE ABNORMAL*3
GO TO 12a
. 220 PRINT ™FLOW OK*$50 “TO: 120

The AND, OR and NOT operators need not he limited to use in IF state-
ments. They are loagical onerators and onerate Bit-by-Bit on any con-
stant or variable. This will be illustrated later on in this manual
with an example on some 1/0 bits.

-

The following program implements the function indicated in the graph
beneath it:

127 REM HASTILY CONSTRUCTED PROGRAM TO ILLUSTRATE USE OF "AND"
113 PRINT #wsPRINT #X=432INPUT X

120 IF (@<=X) AND (X<=103) PRINT "Y=",XsGO TO 110

130 IF (13A<X) AND (X<=203) PRINT “Y=4,10a:G0 TO i

149 IF (20@@<X) AND (X<=409) PRINT "Y=%,15A:G0 TO 119

153 PRINT ®#Y IS NOT DEFINED FOR X=%,X

NOTE*t The parentheses around A<=X, X<=10A, and so on in the
IF statement are necessary. Without them, the program
will not work. This is because of the multlolicity in the
conditions being checked.

Y = f(x)

150

100

Iﬂﬁl 26%‘ 400

X for O < X < 109
= f(x) = 1074 for 100 < X < 200

153 for 200 ¢ X < 490

1-58



The following is a RUN of the precedina nrogram. All critical points
have been checked.

RUN

X=? =i
Y IS NOT .DEFINED FOR X=-1

X=2 0
Y= @

X=? 37
Y= 37

X=7 99
Y= 99

X=2 109
Y= 100

X=2? 141
Y= 101

X=2? 199
Y= 100

X=? 200
Y= 100

X=2 291
= 150

X=2 299
Y= 150

X=?7 300
Y= 150

X=? 301
Y- 158

X=? 399
Y- 150

X=?7 490
Y- 150

X=? 47|
Y IS NOT DEFINED FOR X = 40l

And SO ON...

1-59



6.4 Random Numbers and Comoputer Games
Another useful feature in NSC Tiny BASIC is a random generator.

Sometimes it is useful to generate random numbers between. specific
limits. A trivial use is to imitate a pair of dice. The statementt

D = RND(1,6)
will make D some number between | and 6 inclusive, with equal
orobability for each of the possibilities. The following program
simulates a pair of dice: :

12 PRINT RND(1,6), RND(1,6)
2% GO TO 10

RUN the program for a while:

RUN

WWw=w=—WwWwWwObWww=—wWN by
NWOWBBEBNUIN =N == N =

TOP AT 10

v W

In general, the expressions

RND(A,B)
is a random integer between A and B, inclusive. A and B may be
algebraic exoressions, simple variables or constants. RND may be
used wherever a variahle may be used,

Random numbers are widely used to test nrograms, and to do Monte Carlo
method solutions to probhlems. Many games use a random number genera—

tor.

1-60



13 REM GUESS THE NUMBER GAME

20 X=8ND (1,100)sREM X IS THE SECRET NUMBER FROM | TO 109
3@ PRINT#W:PRINT #WHAT IS YOUR GUESS*"3

49 INPUT GsREM G WILL BE THE GUESS

5@ IF G<X THEN PRINT "YOUR GUESS IS TOO SMALL#

68 IF G>X THEN PRINT “YOUR GUESS IS TOO BIG*

79 1G G=X THEN GO TO 94

82 GO TO 3@tREM NOT A CORRECT GUESS, GET NEXT GUESS

97 PRINT #YOU WIN, LET“S PLAY AGAIN.®

1080 GO TO 2A:REM GET A NEW SECRET NUMBER

>RUN

WHAT IS YOUR GUESS? 5@
YOUR GUESS IS TOO BIG

WHAT IS YOUR GUESS? 25
YOUR GUESS IS TOO BIG

WHAT IS YOUR GUESS? 12
YOUR GUESS IS TOO SMALL

WHAT IS YOUR GUESS? 18
YOUR GUESS IS TOO SMALL

WHAT IS YOUR GUESS? 24
YOU WIN. LET~“S PLAY AGAIN.

And so on.,,.

6.5 Exercise

Rewrite Line 7% to combine the functions of Lines 7@ and 87 making the
program one statement shorter.

Answers are in Anpendix A

1-61



CHAPTER 7

7.1 Program Loops

This section of the primer deals with Proaram Loopns. The following
orogram causes NSC Tiny BASIC to orint out the first ten positive
integers and the saquares of those integers. While not exactly
intriquing in its mathematical subtlety, it helps point out a few
useful techniques Iin nrogramming.

The following is an example of a.cumbersome way to achieve the results
described aboves:

>PRINT 1
1.

>PRINT x|
1

>PRINT 2
2

SPRINT 2%2
4

>PRINT 3
3

>PRINT 3+3
9

And so on until...

>PRINT 10
19

>PRINT 10*10
1 07

>

The foregoing would get the results, interspersed with PRINT state-
mentst or, a orogram could be written as follows?

13 REM PRINT THE FIRST TEN NUMBERS AND THEIR SQUARES
27 PRINT 1

37 PRINT 1#l

49 PRINT 2

53 PRINT 2%2

63 PRINT 3

7% PRINT 3%3

1-63



And so on until...

188 PRINT 9

190 PRINT 9%9
200 PRINT 19
213 PRINT 1010

RUN the programs the following is what your RUN should look likes

>RUN

Not a very readable chart, is it? Results that are hard to read or
interpret decrease the value of the outnut. The answer must be
communicated to those who need the results. By using a comma to keep
the number and its square on the same line, and by using a PRINT
statement you can write a much imoroved orogram,

Note, in the followina, the use of a comma in PRINT statements to
separate the number and the number sauared:?

1% REM TABLF OF NUMBERS AND THEIR SQUARFES
2 PRINT # N N SQUARED ®
37 PRINT 1, 1%l

40 PRINT 2,2+2

57 PRINT 3,3%3

67 PRINT 4,4%4

70 PRINT 5,5%5

874 PRINT 6,6%6

9% PRINT 7,7%7

190 PRINT B,8%8

119 PRINT 9,9%9

127 PRINT 10,1010

If vou store the above nrogram in the INS8873“s memory and RUN it,
the results would bet

1-64



v
[t
4

=V PVNdONDUWN—=ZD

N SQUARED
|

4
9

1.6
25

36
49

64
81
3 109

v

The above program is much easier to read than the first two presented
in this chapter,.#Each number' is printed side by side with its squdfe
in the order they -apnear inthe PRINT statement. "For examplet

The statement, PRINT 7,7%7

Causes NSC Tiny BASIC to orint, 7 49
You now have enough tools to write a very short program to print
numbers and their squares. The idea is to write short oroarams that do
a lot of work. Read the following noroaram, and then try it on your
computer., Type in all of the RFEMarks as they will help to explain what

is haopening. Remember, REMarks are for peonlet$ the computer simnly
ignores them.

1@ REM A PROGRAM TO PRINT SUCCESSIVE INTEGERS AND THEIR SOUARES
15 REM PRINT A HFEADING

17 PRINT » T I SQUARED*

27 REM USE A VARIABLE, I, TO HOLD THE VALUE OF THE NUMBER

3% REM TO BF SQUARED. START THE VALUE AT ONE

49 1=

5@ REM NOW THAT I HAS A VALUE, PRINT IT AND ITS SQUARE

6@ PRINT I, IxI
74 REM ADD ONE TO THE VALUF OF I, TO CREATE THE NEXT LARGER

80 REM INTEGER, SO THAT IT AND ITS SQUARE CAN BE PRINTED
97 REM UP IN LINE 60

1298 I=1+1

11@ REM NOWN THAT THF VALUE OF I IS ONE LARGER, GO TO LINE 69

120 GO TO 64

1-65



After yolus understand how it works, type in the program (or at least
this abbreviated form) without the RFEMarks.

Try the following short form of the program on your INS8473t

17 PRINT # I I SQUARED*

47 =1

674 PRINT 1,1l
1900 I=1+1

126 GO TO 69

Do you see what is going to happen? Did you remember to clear out any
old program with NEW?

Do you have the program fiqured out®**¥f not, follow the arrows?

>RUN
17 PRINT » I I SQUARFD®

49 1=1 Lines 17 and 49 are done once.

60 PRINT I,Ix] Lines 60, 132 and 120 are "in the
‘looo’*, They are repeated again
and again ...(until you press the

106 I=1+1 BREAK key).

126 GO TO 6@

7.2 Exercises

le If Line 17 is changed to read 17 PRINT % N N SQUAREDY" how would
this change the results?

2. When you RUN the program, does NSC Tiny BASIC automatically stoo
after printinag the first ten positive integers and their squares?

3. What is the largest value of I for which the proagram will qgive the
correct answers?

Answers are in Appendix A

7.3 IF Loops

The program does not satisfy the initial requirements, that is, to
orint the squares of the first ten positive integers. Agreed, it does
oprint the ten positive integers and their squarest but then it just
keens on going. You want it to stoo automatically after printing 10
and 10 squared. The IF statement will heln you to achieve your goal.

1-66



Instead of 120 GO TO 6@
Use 120 IF 1 < 11 GO TO 6@

17 PRINT » I T SQUARED#
49 I=1

67 PRINT I,II
108 I=1+1
123 IF I<11 GO TO 69

The IF statement (Line 120) can be readt MIf I is less than eleven
then GO TO Line 60." Not stated, but implied, is that if [ is not less
than 11, in particular.if it is 1l or more, then DO NOT GO to Line 64,
but just go-on to the¥™next line. There is no next line, so-.the program
will stop.. o

To make the program more complete, add the STOP statement. This
statement, when executed, stops the program. Of course, as you have
seen, the program stops if there is nothing else to do. Occasionally
it is necessary to deliberately stoo a program. It is also useful to
nut a STOP statement at the end of a program just to mark the end of
that program., Add a STOP statement to the end of the orogram to
compute sgquares.

17 PRINT # I I SQUARED%

49 PRINT I=I

6@ PRINT I,I*I
100 I=1+]
128 1F I<11 GO TO 6%
999 STOP L, . The STOP statement.

Any line number from 12! to 32767 could have been used for the STOP
statement, 999 was arbitrarily chosen. It is often used to save the
programmer’s having to retype the entire ¥STOPY statement if he wants
to add to the bottom of the existing oroaoram. The following is a RUN
of the above program.

>RUN

I SQUARED

|

4

% NSC Tiny BASIC computed and printed I and I squared
16 for I=1, 2, 3...18 and then stopped automatically.
25

36

49

64

81

16 109

STOP At 999

VD NN WN) —~

1-67



7.4 Exercises

|. What will hapoen if you change Line 120 to 1200 IF I < = 18 GO TO 60
and RUN the porogram again? (Try it on your system.)

2. Nhat will haooen if you change Line 120 to 1244 IF I < 17 GO TO 6@
and RUN the program again? :

3. WKhat will haooen if you mistyoe Line 120 as 1200 IF I < 11 GO TO
44 and ran the program again?

4, What would be ;ﬁe results of RUNning the following orogram?

18 I=1
20 PRINT I,IxIsI=1%#{sIF I<1l GO TO 2@
.99 SToP

For answers, see Appendix A

7.5 FOR NEXT Loops

When a nrogram contains a statement that is executed more than once,
then that program contains a LOOP. Nearly all the orograms in this
book contains loons. In fact, it is the loop that makes orogramming
so powerful, If each statement could only be used once,.then pro-
gramming would be exceedingly tedious. As has been seen, proagrammers
tend to write statements that can be used reoeatedly rather than only
once.

The very simple loop:

12 PRINT 4
20 GO TO 1@

will run and print 44s indefinitely. Most loops have some facility for
endina aracefully. What does the following brogram do?

10 1=0

20 I=I+1

3@ PRINT I3

47 IF I < 1» THEN GO. TO 24

The following nrogram does the same thingt
10 1=| ’
2% PRINT I3

30 I=I+I
49 IF I < 11 THEN GO TO 2@

1-68



Loobs are so common that NSC Tiny BASIC provides a shorthand for
writing them., The next program does exactly the same thing as the

previous twos

16 FOR I=! TO 1@ STEP
20 PRINT It :]—-This is a FOR NEXT looo.
30 NEXT I

RUN the FOR NEXT loop:

>RUN
1 23456789 1@ The FOR NEXT loop caused NSC Tiny

> . BASIC to print values of I for:s
I equals one. (1) to
I&;ouals ten,(lﬂ)
in steos. or increments, of cne.

The numbers go across the paae instead of down because the PRINT
statement ends with a semicolon (3). Try the program with a PRJANT
statement that doesn’t end with a semicolon and you will get the
followings

>RUN

NONA WN -

- O 0

>

The FOR statement sets up the loop. It soecifies what tne variable
(often called the control variable for the loop) is to have for its
initial value, then the final value and finally how much it is to be

incremented each time through the loobo.

The NEXT statement is the bottom of the loop, and says to find the next
value of the control variable and continue execution at the statement

immediately AFTER the corresponding FOR statement, if the control
variable has not yvet passed the final value,

To print the odd numbers from | to 18 (obviously 1@ itself will not be
one of them) the following looo could he used.

I FOR I=1 TO {» STEP 2 ;
Semicolon causes numbers to be printed

20 PRINT It <« Se ¢ ; ¢
3% NEXT 1 ‘r’////,/f///"across the line,
1 3656789 < NSC Tiny BASIC 1is STEPning by 2.

>

1-69



The step §ize can be neqgatives

14 FOR I=56 TO 42 STEP -3

20 PRINT I3
3?3 NEXT I

Before running this proaram, figure what its outout should be. The

rule iss the FOR NEXT

loop always starts exactly at the first value,

and will not go beyond the second. FEach time through the loopn the STEP

is added to the index,.

In these simple orograms the variable I has

been the index. (0Of course, if the STEP is negative, adding it to the
index makes the index smaller.)

The last orogram printss

56 53 50 47 44

You don’t always have to use I. You can use any variable in a FOR
‘statement as long as you use the same variable in the corresoonding

NEXT statement.

18 FOR K=1 TO 3 STEP 1
27 PRINT #HIP HIP HOORAY"®

33 NEXT K

>RUN

HIP HIP HOORAY
HIP HIP HOORAY
HIP HIP HOORAY

>

If the STEP size 1is one,
12 FOR A=@ TO 7
2% PRINT ags
32 NEXT A
>RUN

@1 2345617
>

the STFP clause can be omitted.

The FOR NEXT loon makes it easy to run off tables, such as the table

of 1 and [ SQUARED.

1# PRINT » T I SQUARED"

20 FOR I=1 TO 5
30 PRINT I, I*I
40 NEXT I

------ ——=Since STEP size is |, it’s omitted.

1-70



>RUN

I I SQUARED

11 To get a table for I=1, 2, 3,ce¢.,10,

2 4 change Line 22 tot 2@ FOR I=1 TO 1@

3 9

4 16 To get a table running from 103 to 129
5 25 change Line 20 tos 2@ FOR I=10@ TO 120

>

Additionally, the starting and endina values can be variables or
expressions., Here are two examplest

19 A=| 18 L=2
2# B=5 26 U=3
- 3@ FOR X=A TO B 3@ FOR S=L*L TO UsU
474 PRINT X3 49:PRINT Ss.
5@ NEXT X 5@ NEXT S
>RUN ' >RUN
1 2345 456789
> ' > ‘

The STEP can also be a variable or an expressiont

12 A={

27 B=13

3@ C=2

49 FOR X=A TO B STEP C
54 PRINT X3

60 NEXT X

>RUN
1 3579 1113
> .

Al though the applications may not be readily apparant, FOR NEXT looos
may be "nested" up to four levels. This means that you can have four
layers of loops within loops. An example of this is shown below. The

loops interact to orint the numbers & to 99 in a square arid.

14 REM SQUARFE MATRIX GRID. NUMBERS | TO 9 ARE PRINTED
23 REM ACROSS THF PAGE, THEN A CARRIAGE RETURN,

3% REM THEN NUMBERS 14 TO 19 ETC.

474 FOR I=9 TO 9@ STEP 1#tREM TENS LOOP

52 FOR J=0 TO 9:REM UNITS LOOP

64 PRINT I + Jt:REM PRINT ACROSS PAGE

73 NEXT JtREM END OF "INNERY LOOP

874 PRINT:REM CARRIAGE RETURN

9@ NEXT IsREM END OF OUTER LOOP

999 STOP



>RUN

0

13
20
39
40
50
69
13
80
o0

>

l 2

12
21 22
31 32
41 4?2
51 52
61 62
7 712
81 82
91 92

3

13
23
33

53
63

83
93

4

14
24
34
44
54
64
74
84
94

6
16
26

36

46
56
66
76
86

96

;
17
27
37
47
57
67
<77
87
97

8

18
28
38
48
58
68
78
88
o8

Loons cannot cross“éach other fot obvious reasonss therefore, if yow

writes
1@ FOR I=1 TO 1@
200 FOR J=1 TO 1
3@ NEXT I
4% NEXT J

you will get a FOR NEXT error message (ERROR 14) upon execution of

Line 3@4.

7.6 Exercises

For each program, first figure out what you think NSC Tiny BASIC will
do, then RUN the orogram and verify your thinking.

e

10 S=9

20 FOR K=l

3@ S=S

+K

TO 5

4% PRINT K,S

5 NEX

13 S-0

TK

2% FOR K=1 TO 5

30 S=S
40 NEX

+K
TK

50 PRINT S

2.

10
20
30
40
5@

19
20
30
40
5%

P=1

FOR K=1 TO 5
P=P%K

PRINT K,P
NEXT K

n=1

FOR K=t TO 5
P=PxK

NEXT K

PRINT P

Each of the following bprcgrams requires an INPUT value for the

variable, N.-

your results,

5.

19 INPUT N

20 S=0)

33 FOR K=1 TO N

49 S=S
50 NEX

+K
TK

6@ PRINT N,S

Try it for N=7

6.

1-72

19
20
3a
40
50
60

For the values outguess NSC Tiny RASIC then verify

INPUT N
P=1

FOR K=1 TO N
P=P*K

NEXT K

PRINT N,P

Try it for N=7 and N=9



7. Write a short nrogram to compute and print the value ofs

2 2 2 2
I +2 +3 + ,,. +N

for an INPUT value of N.
>RUN

N=2 5
SUMSQUARED = 55

>
Answers are in Appendix A

7.7 The DO Statement

This is a simple statement that instructs NSC Tiny BASIC to DO a
function UNTIL another condition is met. It has only one forms

340 DO

Nothing ever comes after the word "DO%$ somewhere later on in the
program there is a statement UNTIL, for examoles

>50@% UNTIL (some arithmetic instruction acoes here)

The line numbers are only examoles. The UNTIL statement acts just
like a GO TO which causes execution to proceed from the DO state-
ment — whenever the value of the arithmetic expression ejuals zero.
The following program:

>1a DO

>20 PRINT YHELLO%
25 N=|

>33 UNTIL N=@

orints the word HELLO over and over until you stoo the orogram.
If instead, you had saids

>1@ N=5

>2A DO

>33 PRINT ¥THIS ONE STOPS SOON*
>40) N=N-=|

>5¢ UNTIL N=0

the message is orinted out five times. 1t is interesting to try this
program with Line 3@ changed to PRINT N. To understand how it works
you must remember that an exoression such as N=@ has a numerical value.
It is @ as long as it is false. Thus, when N is not zero it is false
to say that N=AA, So the expression N=7 has the numerical value @.

The UNTIL acts like a GO TO back to Line 20, but when N is indeed zero
then the expression N=@ is true, When an exoression is true its value
is not zero, but -1. So the UNTIL does not act like a GO TO and the
program ends.

1-73



NSC Tiny BASIC uses the notationt
X=6

in two different ways., If it is a statement, where the X is the first
item on the line it means "let the value of X be 6% but if the notation
X=6 is uséd as part of an exoression - that is, not as the first item
on the line - then it means "see if X is equal to six" and if X is
equal to six then the whole expression (X=6) takes on the value -1,
This is similar to the test in an IF statement.

[

The converse of this is also usabie. that is, a DO...UNTIL loop can
terminate in any of the following with the same effect?

UNTIL K=N

UNTIL K-N=@ °

UNTIL a=K-N A

UNTIL K-N (which automatically has a value of zero allowing
the loop to be terminated)

For reasons of clarity, only the first and third examples should be
used. In the following:

>10 G=3
>24 G=G=3
>30 PRINT G

(would be a very confusing thing to write and not at all recommended)
the value -1 would be onrinted, as Line 22 would make the value of G
equal to (G-3) which is true, and thus has the value -1,

For the most part, the ambigquity mentioned can be safely ignored,

and the UNTIL statement taken at ®face value® where you know that the
loop will be done over and over again until the indicated condition is
satisfied. The pair of statementss

DO

L4

L

UNTIL K > (N/2)

will execute whatever is between them until it hapnens that K is qreat-
er than half of N, (Remember that NSC Tiny BASIC only does integer
arithmetic so that N/2 means the integer nart only, any remainder or
fractional part is ignored.,) DO UNTIL looos, like FOR NEXT looos, can
be nested, but where FOR NEXT loons can go four deen, (four lavers of
of looos) DO UNTIL is allowed eight levels of nesting.

7.8 Powers Of Two

Ihe following are three programs to compute and orint the powers of 2
from | to 64, inclusive.



Proaram number one uses an IF loon.

1 2%
15
120
137
149
999

REMARK POWERS OF TWO, PROGRAM ONE
P=1

PRINT Ps

P=2%P

IF P<-64 GO TO 120

STOP

Program number two uses a FOR NEXT looon.

1 2%
10
120
13a
140
159
999

SEMARK POWERS OF TWO, PROGRAM TWO
=1

FOR K=@ TO 6

PRINT P

P=2#pP

NEXT K

STOP

Program number three uses a DO UNTIL loop.

1 A%
112
120
130
140
157A
999

REMARK POWERS OF TWO, PROGRAM THREE

P=1

DO

PRINT Ps

P=2%p

UNTIL P>64 = - - (Also try UNTIL P=128 here.)
STOP

These three programs oroduce exactly the same results. If you enter

any of the

>RUN

above and tyne RUN, here is what hanpens:

I 248 16 32 64

>

Try to modify each proqgram to aet oowers of 2 from | to 128. Then do
it backwards, aet nowers of two from 64 to |,

IF Looo

120

e
127
139
1404
999

RFYARK POWERS OF TWO, PROGRAM FOUR
P=64

PRINT P3

P=p/2

IF P<i GO TO129

STOP

FOR NEXT Looo

| AR
1A
129
139
140
150
999

REMARK POWERS OF TWO, PROGRAM FIVE

P=64

FOR K=6 TO @ STEP -1 ——==(or FOR K=00 TO 6)
PRINT P3

P=pP/2

NEXT K

STOP

1-75



DO UNTIL Looo

127 REMARK POWERS OF TWO, PROGRAM SIX
113 P=64 .

128 DO

132 PRINT Py

140 P=pP/2

154 UNTIL P<l —--—{(Also try UNTIL P=@ here)
999 STOP .

The three programs all produce the same results.

>RUN .
64 32 16 8 4 2 |
>

Modify each orogram so that NSC Tiny BASIC types powers of 2 from 128
to 1.

1-76



'CHAPTER 8

8.1 Subroutines

As you learn to orogram, you will find that your programs will in-
crease in size until they become unmanageable. When that hanoens,
it’s time to break them up into functional blocks., Often, you will
find that some of those functional blocks are used in several nlaces
in your nrogram. Rather than repeat them each time, a "subroutine#®

can be used,

A subroutine is just a section of NSC Tiny BASIC

statements performing some ooeration required at more than one place in

the oroqgram,

The GOSUB statement is used to transfer control to the

subroutine and the RFTURN statement is used to return control to the

place where

the subroutine was called.

+~Ag with FDR ‘and NEXT, and the DO and UNTIL statempntq. GOSUBZANd
RFTUPN are:a pair that are always together. The statements-

125

GOSUB 919

acts exactly like the statementt

-

125

exceot that

GO TO 91p

the computer remembers the line number (in this case 125)

of the statement that made it ao to Line 913, so that after the sub-
routine is finished the computer can resume where it left off. For
examole, when the program executes a RETURN statement:

329

RETURN

the computer knows to jump back to the statement immediately after
Line 125 - wherever it is.

The followinag is a short proaram to demonstrate the use of the GOSUB
and RFTURN statements. Try it on your INS8673.

|02
145
110
15
120
125
139
135
1407
145
150
155
160

200
212

Nzl |  eccccacca=a
GOosSuB 2a¢ . -
N=2 -
GOSUR 2048 -
N=3

GOSUB 20 -
N=4 -
GOSUR 2% ~
N=? -

Main Program

GOSUR 20
N=3

GOSUR 20

=117 R —

PRINT #THIS IS NUMBER ".N:r ------- —Subroutine
RETURN

1-77



2UN the above program, the results should look like thiss

>RUN
THIS IS NUMBER |
THIS IS NUMBER 2
THIS IS NUMBER 3
THIS IS NUMBER 4
THIS IS NUMBER 5
THIS IS NUMBER 6
>
The statements 112 GOSUB 20a
tells NSC Tiny BASIC? GO TO line 2@%. but remember that you
came from Line 11#,. _When you comemnofg
RETURN statement, return to the line
next after Line 112 (which is Line 115).
The statements: 123 GOSUR 229
tells NSC Tiny BASIC: GO TO Line 20@, but remember that you

came from Line 12Ad, When you come to a
RETURN statement, return to the line
next after Line 12@.

The rest of the GOSUBs onerate in a similar fashion. GOSUB, when

used properly, can eliminate the tedium of having to retype a routine
wherever it may be used in a large orogram. Subroutines may call other
subroutines, this is called nestina and may look like thiss

18 I=12

2% GOSUB 292

30 I=5

40 GOSUB 24¢

5@ A=2

64 k=3

74 GOSUB 37@

8% STOP

9@ REM FEND OF MAIN PROGRAM

277 REM SUBROUTINF TO COMPUTE NUMBFR OF STARS TO PRINT
210 B=1l

2204 A=]-2

23 GOSUB 30

242 RETURNsREM RETURN TO MAIN PROGRAM

379 REM SUBROUTINE PRINTS B-A STARS
313 FOR J=1 TO B-A

3200 PRINT "x"g

330 NEXT J

349 PRINTSREM PRINT A CARRIAGE RETURN
35# RETURN

1-78



Notice that sometimes the subroutine at location 300 is called by the

subroutine at location 2, and it is called once by the main orogram.
Whomever calls that subroutine i{s where the nrogram returns on a
RETURN statement.

Subroutines may be nested up to eight deep.

8.2 LINK Instruction

The LINK instruction allows vou to transfer control from an NSC Tiny
RASIC nrogram to an INS8A73 assembly (machine) lanquage subroutine.

Suppose Bill Counter has given you an assembly language subroutine that
is perfect for counting widaets. You could convert Bill’s orogram to
NSC Tiny BASIC3 but since vou-don’t undé¥stand Bill’s system for
counting the widgets, and since Bill“s system works, and since assembly
langimage runs faster than NSC Tiny BASIC, etc., all you have to do is
use the LINK instruction to transfer rontrol from your NSC Tinv BASIC
rrogram to an assemhly languaqe subroutine,

A statement such ast

“>10 LINK #1R(%

cAuses transfer control to the routine that starts at address location
hexadecimal 1807, There is a RET instruction at the end of the routine
that returns you to your NSC Tiny BASIC orogram, RET is an assembly
lang'iaae instruction that acts like the NSC Tinv BASIC RETURN
instructions it returns you to the line number followinq Line 19 (the
LINK statement).

Fxamples

>13 LINK #1800 < NSC Tiny BASIC trans-
20 1F A=¢ THFN PR MSENSE A IS LOW# fers to address #1330
>3 IF A=1 THFN PR MSENSE A IS HIGH#* to read sensor.
>09 STOP
>RUN —Program transfers back
SENSE A IS HIGH to NSC Tiny BASIC
STOP AT 99
>RUN
SENSF A IS LOW
STOP AT 99
| .TITLE SENSE Assembly Language
2 A .=A1807 $HEXADFCIMAL " "

3 1800 06 LD A,S " "
4 1841 D41 AND A,=16 ) " u
5 183 6CA2 RZ LOW " "
6 185 C41 LD A, =1 " "
7 1807 CAA@ ST A,@,P2 " "
B 1849 5C RET4—(This gets you back) n "
Q AANA . END n n

1-79



3.3 DELAY

Often, a program needs to give itself a pause to allow some external
event to occur, or fust to let you think for a moment.

For example, take the case where you have written a routine to ring
the bell when your results are back from another nrooram, If the nro-

gram is a long one, you can qgo talk on the telephone until it is fin-
ishpd and you can hear the bell ringina. If the brogram is ended in a
ooD?

982 PRINT WCNTRL G"3 tREM RING BELL
994 GO TO 98@1RFM DO IT AGAIN. -

the terminal will continue to ring the bell,kor the TTY will sound like
an alarm clock, until you get away from the ‘phone and stop the nro-
gram,

A better way to handle this situation is to waste some time before the'
bell is rung again. Many proqgrams do this with loons that waste time:

987 PRINT “CTRL G"3:REM RING BELL

99@ FOR I=1 TO 1A@2sNEXT ItREM WASTE TIME
1264 GO TO 980:RFM RING RELL AGAIN

udfortunately. this kind of time wasting is not orecise énd the number
of times you ago throuah the looo must be worked out bv trial ani error,

NSC Tiny BASIC has an inherently more orecise method of generating time ;
delays. This method is the use of the NELAY instruction, which can ‘
stop the processors oneration for | to 17424 time units, If your INS
8973 is clocked by a precise 4 MHz timebase, these time units will be
exact milliseconds, The examnle system in Section 3 of this manual

uses such a crystal.

I[f you wanted your end-of-proqram bell to rinag only once oper second,
as a gentle reminder for you to go to the system, all you need do is
to chanage the initial example programs

033 PRINT “CTRI. G®3sREM RING THE BFLL
985 DELAY |@@@tRFM WAIT ONE SECOND
999 GO TO 98AtREM DO IT AGAIN

Notice that the number (or exnression) that follows a DFLAY instruction
is equal to the number of milliseconds required. If, however, vou type
UDELAY a% the microinternreter will dpfault to the larooqt nossible de-
lay of 1249 milliseconds.

1-80



8.4 The ON Statement

Sometimes a program can’t resnond quickly enough to a stimulus through
normal program operation. For example, take a system which must count
widgets while calculating Pi to a million Adecimal places. The calcu-
lation of Pi will obviously take the "smartest® computer hours of cal-
culations of Taylor series nolynomials, The widgets are passing bv on
a conveyer belt at the rate of three oer minute, Should the orogram to
calculate Pi take a peek during every stage of its calculations just to
look for a widaet? The obvious answer is no as this would waste tono
much time$ and the hours-lona oroaram might end up taking a week to
execute. K

The INTERRUPT can break into a program, nerform some time intensive
function, then allow normal’ooeration to continue without any inter-
ference with the main oréqram. An interrunt ooerateq the sameaway you
would if you were reading a book and the “phone rang. First vou’d
save your place in the book, then you’d talk on the “phone until vour
business was done, then you would hang un and go back to your book to
the place where you left off.

The INS8%73 handles interrupts with the ON statement. When you say:?
13 ON 1 250

vou’re saying, "If something (widget detector) puts a @ on inout SENSA/
INTA on the INS8A73, act like you first encountered a GOSURB 2594,

There are two inputs on the INSB8#73, INTA and INTB. Corresnondingly,
there are two ON statements, ON1 and ON2. Unfortunately, the INTA in-
nut is Aalso used for serial innut for the RS-232 or TIY terminal., This
means that the ON statement can’t be used If you want to use A terminal
with an NSC Tiny BASIC system, The ON instruction is, however, very
useful in a ROM-based direct executing system.

An interrupt may be disabled at any time by executing the command:
ON | &

which acts only on INTA. This can be used to nut the microinterpreter
into a "Don’t bother me, [’m busy¥" state.

The following is a program that counts how much time has elansed until
an interrupt occurs, and, how many times it has been interrunteds

14 REM TURN ON INTB

20 ON 2 204

37 A=A+1tREM HOW LONG SINCE LAST INTERRUPT?
4% GO TO 3mtREM KEEP COUNTING

5% REM END OF MAIN PROGRAM
2% REM START OF INTERRUPT ROUTINF

212 REM A "GOSUR"™ TO THIS LOCATION IS GENERATFD

22M REM BY A HIGH TO LOW TRANSITION ON INTB

23% B=AtREM STORF TIME RETWEEN INTERRUPTS

24m C=C+1tREM COUNT HOW MANY INTERRUPTS HAVE OCCURRED.
254 A=#1RFm INITIALIZE THE COUNTER

26m RETURNSREM KFEP WATCHING THE TIME

1-81



Although this program has no oractical anmnlication, it should show you
how to use the ON statement well enough to enliaghten vou about the
basics of interrunts.

8.5 The STAT Function

There is a function in NSC Tiny BASIC which allows you to operate
directly on the Status Register of the CPU. The status register can be
loaded, or examined, through the use of the STAT function. This is
another way of settino the interrunt enable bits on the nrocessor, al-
though it does not allow the assignment of a line number for the inter-
runt service routine, Therefore, the STAT function is not recommended
for interrupnt servicing,

The bits of the Status Register ‘are defined as followst

BIT NUMBER FUNCTION

7 CARRY Not recommended for use

6 OVERFLONW in NSC Tiny BASIC

5 SENSE A/INTA \ May be examined as sense

4 SENSE B/Z/INTB. lines by the STAT onerator

3 FLAG 3 May be set usinag the

2 FLAG 2 STAT onervrator

1 FLAG 1

@ INTERRUPT Not recommended for use
ENABLE with NSC Tiny BASIC

The SENSE A and SENSE 8 lines may be used as inputs and are read-only,
If a serial terminal is being used to program the microinterpreter,
SENSE A will already be occupied and SFNSEB will have to be used.

The FLLAG 1, 2 and 3 outputs are write-only, and FLAG 2 and FLAG | are
used for the Read Relay and RS-232/TTY outputs respectively. There-
fore, only FLAG 3 is available, You can see how they operate if you
connect simple devices tn one SENSFE input and one FLAG outout.

Assume that you have a source of slowly changing "l“’s" and “"#“s" cominag
into SENSE B. A simple switch would bhe A fine examnle. Also assume
that an audio amplifier is attached to FLLAG 3 so that vou may hear the
cutput. With the following nrogram you can detect the switch omosition
with your ears:t '

127 REM SENSE B TO FLAG 3 PROGRAM

20 A=STAT AND #1:REM SENSE B BIT ONLY

374 IF A>? THFN GO TO 29tRFM SWITCH OPEN, NO SOUND
4m STAT=STAT OR #8tREM SFT FLAG 3

5% DELAY 5tRFM 107 HERTS HALF WAVELENGTH

6 STAT=STAT AND #F7:REM CLEAR FLAG 3

73 DELAY 53GO TO 27AsREM TEST SWITCH AGAIN

thus, vou can use the STAT function to control minimal I/0 in your
system, :

1-82



If you insist on using STAT to set the Interrupt Enable bit, be aware
that that bit will not be set until after the end of the next in-
struction. This gives you some time to prepare.

8.6 Multiorocessing, INC (X), DEC (X)

The INC and DEC, or Increment memory location and Decrement memory
location instructions are orovided to facilitate using NSC Tiny BASIC
in a multiprocessor environment.

Multiprocessing 1s an art in itself and is considerably beyond the
scope of this orimer. If you require more information on multiorocess-
ing, refer to the ™73 Series Micronrocessors. User’s Manual®",

IfT you are familiar with the techniques of multinrocessing with the
INSBATA series of microprocessors, then you are familiar with the
attributes of the ILD (Increment and Load) and DLD (Decrement and Load)
instructions. INC and DFEC provide the same function in NSC Tiny BASIC
format. The instructions are non-interruptable and can be used for
semachores between microprocessors,

If you choose to use the INS8373 in a bus-coupled microprocessor syst -
one orecautionary note is given3 the variable RAM at location X711 @#s-
X?1AFF must be separate for each processor on the bus. If this is not
observed, FOR loops, subroutines, and even the variables A through Z
will become hopelessly garbled. All other external memory may be
shared.

8.7 CLEAR

The CLEAR statement is used to zero all variables, and terminate all
pending interrupts and loons. This statement should be used with ex-
treme caution as it can terminate program execution. When proverly
used, it can be a boon in setting uo initial conditions within a pro-

qram,



CHAPTERS

9.1 Memory Organization

In order to use NSC Tiny BASIC, you must have an INS8A73 system with a
minimum of 256 read/write memory locations needed to store the
variables from A to Z and to accomplish other housekeeping functions.
In most cases more memory is needed$ a tyoical system should have at
least 2K (274R) bytes of RAM. Fach memory location stores one bvte,
and in a typical system with 2K (27448) bytes of RAM, each location has
a unique memory address runninag from 4296 to 6143, The microinteroreter
will only see RAM locations that are contiguous (non=-stoo with RAM

starting at the location 4795,
The memory is organized as followss

1. The first 256@ locations consist of NSC Tiny BASIC, in on-chio ROM
(Read Only Memory) on the INSB88#70 chip. In other words, NSC Tiny
BASIC consists of 2560 bytes of pre-programmed memory occupoying
locations @ to 2559,

2. The next 1536 locations are unassigned and can be used for ROM,
data RAM or [/0 devices.

3. The next 256 or more locations, with addresses from 4@96 to 65479
if desired consist of RAM (Random Access Memory, also called KHead/

Write Memory). This nart of memorv serves two nurnosess

a. locations 4096 to 4351 are used by NSC Tiny BASIC as a
Wscratchnad memory", They are not available for your use.

b. Locations 4352 to your last RAM location Aare yours to use,
Ahen you type:

NEW #1200
NEW

then store a porogram (with line numbers), your pnrogram is
stored in memory, beainning at location 4352,

4, If automatic ROM execution is desired after a RESET, the ROM oro-
gram must start at location 8192, and can extend uo to 65471,

5. 1/C Adevices may be memory-mapned in any unused memory locations in
the ranges 2560-479% and 4352-65474,

6. No RAM or [/0 device can occupy memory location 65471, 1[/0 devices
should not be maoned contiquous with RAM frorm 4096,



65,535

65,471 or -64

64,767 or -768

8192

2559

FFFF

ON-CHIP RAM

W

FFCO ©

MEMORY-MAPPED
10 DEVICES

(Any address locations
between 1100 and FFBE or
0AO00 and OFFF which are not

used by memory)
//

JFDO0 @

ROM
FOR AUTOMATIC
EXECUTION AFTER
A RESET

i

RAM (MINIMUM
= 256 BYTES)

i,
(UP-TC FFBF)

2000

(UP TO FFBE)

7.

NSC TINY
BASIC

NOTE 1. RAM or /0O devices must not occupy location

X'

FFBF.

NOTE 2. The microinterpreter will assume the only
available RAM is that which starts at location
X'1000 and ends at the first discontinuity en-
countered above that address.

NOTE 3. Location XFDOO mustbe used to set the baud
rate of the console device. If no console is
used. this location may be used as desired.

Figure 9-1, NIRL

1-86

Memory Diagram



Tne following table summarizes the memory organization in a minimum
NSC Tiny BASIC system.

Table NSC Tiny BASIC Memory Organization
LOCATIONS CONTENTS
A - 2559 NSC Tiny BASIC System (ROw)
4096 - 4351 Scratchpad Memory, (RAM)
4352 -~ 6143 | g:eg Space. Your programs are stored
re.

User space,. lotations 4352-6143 will hold 1792 bytess this is eﬁouqh to
store apnroximately sixty NSC Tiny BASIC statements. Additional memory
can be added: and, if vour system has 4096 bytes of RAM, the user soace
locations run from 4352 to 8I91,

The memory layout for the examnle board is given in Section 3.
9.2 TOP Location

The first location that is free for your use has a special name, it’s
called TOP., The statementt

>PRINT TOP
will cause the address of the first free location to be printed.

To see how TOP works, clear away any old orogram by typing NEW #1223
then NEW, print out the value of TOP, then store a line or two of any
oroaram and try printing TOP again.

SNEWN #1020
>NEW
>PRINT TOP
4353 &-------Remember 4352 is the beginning of "user space!",
A program (even with no lines) takes up one byte.

>1@ REM THIS TAKES UP SPACE

>PRINT TOP
4387 4 —==—~— Locations 4352 through 4379 are in "use", First
available is now 4389,

A longer proagram will use up more soace.

SNFN #1000
>NEN

>PRINT TOP
4353 4------- TOP points to the beginning of NSC Tiny BASIC“s

user space,

1-87



>1 77 REMARK POWERS OF TwWO
>118 P=1

>127 PRINT Pi

>1 30 P=2xP .

>1400 IF P=64 GO TO 129
>999 STOP

>PRINT TOP
4440 ¢----—Next available location is now 4440,

Remember, the value of TOP is the address of the next available memory
location beyond the last byte of your NSC Tiny BASIC nrogram,

Choose a safe location far{away from the small nrogram that you will
write shortly, for example location 52A%. You want to store a number
into location 5222, that is, you want to nut a number (say 55)i&t=5079, .

> 65 0M=55

The @ is the familiar "at" symbol and means "at the location®. Re-
member, location 5098 is an actual memory location and not an outout
oort, If you could peek into location 5099 you’d now find the number
55 resting theres however, since you cannot ¥see into® locations,
tell NSC Tiny BRASIC to print a copy of whatever is stored there.

>PRINT e5797
55

Try some more.
>H5001=37 €--——-—=Put 37 into location 5031

>PRINT 65001
37

>85007 2=65 A0A+a5 AR |

>PRINT @5972
92

NDid you follow the last examole? You previously had out 55 into lo-
cation 5000 and 37 into 5021, you can add them (850A¢+95%01) ami out
the result into 5022,

You can use €527, @503, 854042 and so on just as you use varliables
A through 7, exceot for one thing:

Numerically addressed locations can store one byte onlv.
They accept numerical values from 24 to 255, inclusive,
You cannot store negative numbers or numbers larager than
255 in these lecations.

1-88



As youmay suspect, the variahles A through Z each occuny two bytes
in the INSB?73“s memory.

The following illustrates what would hapnen if you tried to put a
nunber larger than 255 into a numerically addressed locationt

>050A4=256

>PRINT 65004
A

>05005=257 Try some negative numbers
and see the results.

>PRINT 65005
1

>85306=511
>PRINT @5096
255

Attempting to out a number into a memory location that is too large or
too small for that memory location will not result in an error message.
The number will be treated modulo 256 (that is, it will be divided by
256 and the remainder put into the location).

One trick to using memory locations is to call them TOP+i, TOP+2 and so
oni as your proagram changes size, a notation such as?

>a(TOP+23)=211

is always above your proaram. A check for the too of memory can be
done easily using the IF statement (assuming that M is the number of
the memory locAation you were about to use, and that your memorvy went uo
to location 5143):

>77# IF M>5143 THEN PRINT "OUT OF MEMORY"
In summary: to put a value "W" into a memory location M write
>aM=V
and the value of the memory location M is given by the exnression @M,

~ The at sign (@) should be used with caution. Placino a value in memory

used by your poroaram (at a location less than TOP) can cause the pro-
aram to "blow un"., This means that it refuses to work, and there may
be no way to LIST or otherwise preserve it. Fven if it doesn’/t blow
“up other insidious changes that can .be hard to find can occur. Be
careful.

1-89



The followjnq lists the locations that should not be useds

LOCATIONS

4 to 2559 : ROM (on-chip)

-64 to -1 RAM (on-chin)

4096 to (TOP-1) proaram in our tvpical system

9.3 Strings of Characters

An important feature of NSC Tiny BASIC is its ability to input, outnut
and manipulate characters as well as numbers. As you have already
seen, the statementt

>22¢% PRINT “FLOW OK%

will cause NSC Tiny BASIC to print the words:?
FLOW OK
The informgtion between quotes is called a string.

The computer can store strings, recall them and do other operations on
them as well. These abhilities are esnecially handy where the user of a
orogram should communicate in something resembling natural lanqguage.

It might be more convenient to have a user type YES as an answer to a
question rather than have the computer type "ENTER | IF YOU MEAN YES

OR @ IF YOU MEAN NOW,

To have A user of ynur program utilize string inout, you have to first
Adecide where the computer will put the strina. The previously de-
scribed TOP function aives the first location in memory that is avail-
able to the user, If the program assigns:

S=TOP

then S will be the address of the first location in memory that can be
used, In the following case it will be used for storing a strina.
Nhen you want to work with strinmas instead of numbers, use the dollar
sign ($) to tell NSC Tiny BASIC to exnect a strinag. The statement:

INPUT sS

stores whatever string the user tyoes beginning at location S. The
first character of the string goes right at location S, the next
character at location S+1 and so on. Input stops when the RETURN kev
ic pressed. The code for the RFTURN kev is stored at the last charac-
te2r of the string. This is important as it allows you to find the end
of the string later, :

1-90



Try the followihq orogram, note the $ sign in Lines 20 and 30,
SNEW
>1? S=TOP+1AAtREM SET S TO POINT AT A FREE SPOT IN MEMORY
>24 INPUT $SsREM GET SOME CHARACTFRS
>33 PRINT $StREM TYPE THFE CHARACTERS JUST OBRTAINED

>RUN

7ABC 4——AB(C is the inout string.

ABC ' :

>RUN ‘

? SAM 123 €——This is~a California license plate number.
SAM 123

>RUN

?2X0T#Q+%! 4————You can use {just about any TTY character in
%o T#Q+! a string.

> And so on. Try some of your own,

In the second RUN above, we tyoed SAM 123 and pressed RETURN.
Therefore, a string of eight characters will be stored, beaginning at
TOP+19?, Aas followst

LOCATION CONTENTS

TOP +1 00 S

TOP+121 A

TOP+172 M

TOP+143 space

TOP +104 1

TOP+1085 2

TOP +16 3

TOP+107 RETURN key code

Remember, each location stores one hyte, so each character or key code
is stored as one bvte code.

In the following nrogqram, we use a string variable $R:
SNENW
>67 R=TOP+123RFEM SET R TO POINT AT FREF SPOT IN MEMORY
>77 $R="ABCDFEFGHIJKLMNOPQRSTUVWXY74
>8A PRINT SR
>ikkUN
ABCDFFGHIJKLMNOPQRSTUVWXYZ

1-91



In the preceding nrogram, $R is a strina variable. In Line 77, vou
assign it a string value consisting of the 26 letters of the alohabet,
Note that these letters Aare enclosed in quntation markss however, the
quotation marks are not stored as part of $R, The strina in the $R
will be stored in TOP+)# through TOP+35 and a RFTURN key code will be
put Into TOP+36 to mark the end of the strina.

Add the following lines to the above program, (don’t type NEW!)

>0 SR="HFLLO#

>100 PRINT sR

>RUN ' :

ABCDE FGHI JKLMNOPQRSTUVHNXYZ
HELLO

[t is your responsibility, as a orogrammer, to see that there is enough
space for strings. For example, add the following lines to the orogram
we are develooings

>110 E=TOP+12

>120 $E="|23w
>13 PRINT sRsRFM YES WE DO MEAN s$R AND NOT S$E
>RUN

ABC'..Q‘

HELLO

E123

Note the strange result when this part of the program is RUN. This
demonstrates that you have to be able to auess about how long strings
are going to be when vou decide where to out them in memory,

Try other strings for $R and $E in this orogram, and see what con-
dAitions cause overlap, and by how much, Change the constant in Line

119 as well, A few experiments will teach more than a thousand words
of text.

S5tring characters are actually stored as numbers. There is a standard
numerical code for each TTY character, called ASCII (American Standard
Code for Information Interchange). This code is used by all manu-
facturers of computers and communication equioment, There are other
codes in use too, but only by a small number of manufacturers, and they
make ASCII available to their equioment, It is easy to write a orogram
that will show the ASCII code that NSC Tinv BASIC uses to store strina
characters., This obroaram will print the ASCII code for a character as
3 Adecimal numher after ycu have tyomed in the character and hit the
RETURN kevy.

>LIST

142 REM PROGRAM TO PRINT ASCII CODES FOR TTY CHARACTERS
110 A=TOP+50@sREM LOCATION TO PUT CHARACTERS

126 PRINT YFACH TIME I TYPE A OQURSTION MARK, YOU TYPE"
13% PRINT "A SINGLE CHARACTER AND HIT THF RETURN KEY*
14 PRINT "“sINPUT SAtRFEM GET A CHARACTFR

158 PRINT @AsRFM PRINT ASCII CODE

160 GO TO 140tREM DO IT AGAIN

1-92



SRUN
FACH TIMF I TYPE A QUESTION MARK, YOU TYPE A
SINGLE CHARACTER AND HIT THE RETURN KEY

?2A
65

78
66

2C
67

? @ —————This is CONTROL G (used ring the BFLL). It is a
7 non-printing character.

2%
37

%
48

?1
49

22
50

?2 ... YOur turn, exneriment.

Using this program, look at the ASCII codes of the letters, numerals,
and special characters on the TIY keyboard. Remember, NSC Tiny BASIC
stores the RETURN character at the end of each string. How would you
print out the ASCII code for the RETURN key? (See Anpeniix C)

Using the program as written, find the ASCII codes for CONTROL A, CON-
TROL B and so on. There is a problem trying to print the code for
CONTRCL C. Can you deduce its value? (See Appendix C)

The last string feature in NSC Tiny BASIC is string reolacement. If P
and Q are suitably defined (as pointing to memory) then a statement
such ass

>500 $P=%Q

will take the string starting at location Q and make a cooy string
starting at location P. Remember, it is un to the programmer to be
sure that there is enouah room for this to occur., A real disaster can
-occur if P=Q+1, For instance, when Line 5@ is executed, the character
at location N is placed in location P. But, location P is the second
location of Q! (Remember P=N+1,) This means that the first character
of Q is now also the second character of Q. Since this is a string
cooy instruction the next thing that haocens is that the second char-
acter of QO is conied into the second character of P, The second

1-893



character-of Q was just copied from the first character Q, so the
second character of P is the same as the first character of Q. Now,
since P=Q+1 the second character of P is the same as the third char-
acter of 9, And so it goes, with the first character of QO being copied
over and over again. The process will never stoos if there was a
RETURN somewhere in P it will be "clobbered¥ by the constantly cooied
character. Soon all memory will be filled by this one character,

your oroaram will be destroyed, and, NSC Tiny BASIC will come to a
grinding halt., Be careful to avoid round robin situations like this

~one, Try it once.

To compare strings in an IF statement you must compare the ASCII values
since NSC Tiny BASIC doesn’t allow direct comparison of strings. This
merely means using @ instead of $. and doina the comparison one memory
location at a time,

9.4 Exercise

Arite a program to compare two INPUT strings and orint #THE STRINGS ARE
FQUAL" if they are, and "THE STRINGS ARE UNEFQUAL® if that is the case,
The following is a nmart of the programt

>LIST

103 REM PROGRAM TO COMPARE TWO STRINGS

113 PRINT “"THIS PROGRAM COMPARES TWO STRINGS AND TELLS*
12 PRINT #YOU WNHFTHFR THEY ARF FQUAL OR UNEQUAL.#®

1300 A=TOP+10%

140 B=TOP+2m

15 PRINT %#:PRINT ¥FIRST STRINGU“3: INPUT SA

164 PRINT #SECOND STRING#s 2 INPUT sB

174 GOSUB 1412tREM GO COMPARE STRINGS

18 GO TO 15AsREM GET TWO MORE STRINGS

1920 REM SUBROUTINFE TO COMPARE STRINGS AND PRINT MFESSAGE
1212 Your work beains here...

Write the subroutine to compare the strinas and print the aopropriate
message. A RUN of the complete orogram might look like thist

>RUN
THIS PROGRAM COMPARES TWO STRINGS AND TELL YOU WHETHER THEY
ARE EQUAL OR UNEQUAL.

FIRST STRING? ABC
SECOND STRING? ABC
THE STRINGS ARE EQUAL

FIRST STRING? ABC

SECOND STRING? DEF
THE STRINGS ARE UNFQUAL

1-94



FIRST STRING? AB
SECOND STRING? ABC

THE STRINGS ARE UNEQUAL

FIRST STRING? ABCD

SECOND STRING? ABC

THFE STRINGS ARE UNEQUAL

FIRST STRING? A BC —===---The space is a part of tne string
SECOND STRING? ABC

THE STRINGS ARE UNEQUAL

FIRST STRING?

See Appendix A for answers

1-95



CHAPTER 10

I#.1 Interfacing Other Devices To NSC Tiny BASIC

Devices other than the TIY or terminal can be attached to the examole
system via the memory bus. The INSRA73 Data Sheet contains the nin
assignments and interfacing data needed to talk to it via the bus,
This chanter describes a simole circuit for you to wiyre un and nlug
into the INSB273., Then you will be aquided in writinag several simole
control nrograms to exercise the circuit. Our circuit is very
simnle, consisting of a switch and a LED, with the INS8#73 in
between. '

‘SNITCH ——| INS8273 ——| LED

An [/0 device looks like a memory location both in hardware and in
software. It decodes an address and accepts or sends a byte of data.

For this chanter, the reader is assumed to be familiar with diagital
logic, the various forms of binary and hexadecimal notation and the
other mental eauinment usuallv acquired bv those who desiqgn digital
electronic circuits,

In NSC Tiny BASIC the 16 bit address corresponds to the signed
numbers from -32768 to 32767. The high-order bhit, instead of being
treated as a sian bit, becomes simply the high order bit of the
address., The simnlest way to address locations above 32767 is to use
the hexadecimal format. 32767 = #7FFF. Neagative decimal numbers

in NSC Tiny BASIC where the high order hit is the siagn bit, are twos
complement 16 bit binary renresentations. Thus =! (in binary 1111
1Y 1111 1111) used as an address would access the same memory
location as #FFFF, All in all, it is clearer to use hexadecimal
notation in NSC Tiny BASIC for addressina high memory locations.

The timing considerations for address and data set un and strobes can
be found in the INSRA73 Data Sheet. Usually the NSC Tiny BASIC bnrogram
itself does not have to be concerned about outnut timing as NSC Tiny
RASIC is very slow with respect to TTL or any other semiconductor
technology. Almost any circuit can easily follow the outout from an
NSC Tiny BASIC program. On the other hand, it is easy to feed data to
the comnuter too aquckly for NSC Tiny BASIC to follow, for many control
aoplications, a response time on the order of a second is adeaquate, and
in those cases NSC Tiny BASIC can be used in an on-line device. Faster
response can be ohtained bv usinag interrunts or nrogramming in the
JINS8273 assembly lanauaqge. National Semiconductor Publication Number
UPG=-42M3R6255-A71 Aescribes the facilities of the assembler,

Fven if the assembler is to be used, NSC Tiny BASIC is still a aood
way to check out the algorithms and the interfaces quickly and
inexpensively, Use of the assembler is considerably more time
consuming and costly than writina in NSC Tiny BASIC.

1-97



7.2 Hardware Interface

The circuit, shown below, is in two parts, The first part lights an
LED when the apnropriate NSC Tiny BASIC command is given. Instead of
an LED the circuit could have a relay, or other device that is to be
controlled. The LED, of course, could also be part of an onto-isolator
or the inout to a solid state relay.

The NSC Tiny BASIC statements
S@#TFFF=1

outs the value | at location (in hexadecimal) #7FFF. This location,
instead. of¢ being a memory location, is used for 1/0. The hardware

you ar@Feonstructinag has to recognize when it is being:afdréssed. This
occurs when the number #7FFF aopears on the address lines, labelled A®
through AlS5 (nins 9 through 19 and 21 throuah 25 on the INS8A73 As it
haopens #7FFF in binary is attl 1111 1111 1111 so you want to recoanize
when all address lines are hiagh. There are a number of ways to do
this., Three DMR131 bus comparators would do, but you may choose the
more elementary method of ANDina the lines toaether. To do this two
DM74LS372 eight inpout NAND gates are used. The output of the DM74L.530
is low only when all eight inouts are high. Thus the address is
correct for the device when the outnuts from both DM74L.S33“S are low.

The two outouts from the DM74LS3%“S go into one NOR gate of the quad
NOR (a DM74LS722). This NOR is high when both inputs are low. You will
need a low when the outputs from the DM74LS3%“S are lows therefore,
ADM741.5@4 is used as an inverter,

Now the circuit can detect its address, but all kinds of signals apboear
on the address bus when a program is running. Therefore, another line
NWADS (pin 6) is on the bus. This line is normally high but goes low
when the CPU puts an address on the bus Aas part of a memory write in-
struction. This is the only time that you want the circuit to "look
3t" the address lines., Another section of the DM74LSA? detects when
the address is #7FFF at the same time NWNDS is low, At such times the
output of this NOR agate coes hiaogh. This signal clocks one of the flip-
flops of a NM74LS74, This is a D type flipo-floo so that when the clock
makes an uoward transition the logic level at the data input is conied
to the Q outputs it is held at that level until the next positive edge
on the clock triagers the flin-flop. Thus the I’M74L.574 captures the
data from the bus on data line D@ (pin 33). Any of the data bits could
have been used, this is an arbitrary choicet$ in fact, by using four
DM74L.S747s all eight bits could be used,

This half of the circuitry can be summarized as followst when the
nroner address anmnears on the address bus, and NWDS is active, the low

order data bit appears on the output, and is held there, This bit is
used to liaght an LFD.



A15

A4

DM74LS04

A13

DM74L830

A12

A1l

=

A10

A9

A8

DM74LS30

A

BB E2

B &

AQ

NRDS

DM74LS02  pm74Ls04

5K

DM74LS02

DM74L.5126

N>

NWDS

Vce

5K

DM74LS02

D

Fiqure 12-1.

CLK

PRE

Vce

(]

CLR

| S

DM74LS74

LED 1/0 Schematic Diagram



Inout to a computer is simnler. A pulluop resistor and a switch outs a
logic @ (switch closed) or a logic | (switch open) on the input of a
TRI-STATE buffer (DM74L.S126). This is the desired logic level we wish
to communicate to the comouter, The outnut of the buffer is fed to the
same bit 2 of the data bus, This demonstrates the bi-directional
nature of the bus. The same pin (oin 33 which was {just used for output
is now used for input. The comouter knows which is which by putting
another signal NRDS (nin 4) on the bus whenever it wants data.

fhen NRDS is low the computer expects the circuit vou are building to
nlace data on the data lines. The TRI-STATE huffer is in its high-
imoedance state, thus not affectimia-the bus, until a signali~aates it.
The sianal is the NOR of NRDS and®the address circuit already de-
scribed. Thus the value of the switch is out on the bus only when
NRDS 1s active and the correct address is on the address bus. Another
method is available to the user of the example system shown in Section

3.
17,3 Example System LED Flasher

An easy way to attach a switch and LED to the example board is shown
below., The LED is connected to the output of the 815445 1/0 oort,
and a switch is connected to a different nort.

connector P3‘5@“““*—} 5K \\'
@

connector P3—33:}__’ connector P3-48 | 7
connector P3-50 connector P3-1

Before any programs are ooerated, the INS8154, which controls these
nins, must be initialized. Reasoning behind this can be found in the
Data Sheet for that device, To set the INS8154 to outout to the LED,
tynes

>O#9 AA2=71

Changes will also have to be made in the preceding programs to reflect
thatt

1. The switch is now read as bit @ of Aaddress #9AA!

2. The LED is now bit @ of location #9AA]

3. The LFD now lights when given a # inout and goes dark when its bit
is set to a |.

Once these few changes have been made, the LED flasher problems can be
‘implemented for the circuit the same as the other.

There are many other ways of implementing these functions, and this
manual is not intended to instruct in hardware design. This circuit is
oresented as material for a proagramming exercise only,

Placing an inverter between any of the address lines and the inouts to
the DM743727S will require that bit to be zero in order to address this
Aevice. Thus any address can be used if #EFFF is not ampropriate for
your system,



13,4 Prgqramminq‘the Circuit

It is assumed that you now have the circuit wired uo, ready to test.
To test the circuit, type the following NSC Tiny BASIC statements and
watch the results, ‘

Turn the LED ON

>O#TFFF=1 ~=====——The LED should come ON
Turn the LFD OFF .

>@#7FFF=9 ——=---—The LED should go OFF
Ooen the switch and tyne |

SPRINT @#7FFF |
| If the switch 1s onén, you should get |

Close the switch and tyoe

>PRINT @#7FFF
A eememcecceaa- If the switch is closed, you should get @

If the ahove didn’t hannen, double check your I1/0 circuit before
proceeding,

The following nrogram senses the position of the switch and makes the
light behave accordingly:

>1AA M=#T7FFF:REM PUT THF DEVICE ADDRESS IN M

>11@ S=60MsRFM SAVE THE VALUE OF THE SWITCH IN S

>13% @M=SsREM SEND THE VALUE OF THE SWITCH TO THE L IGHT

>140 GO TO 11AtRFM RFPFAT, KFEP CHECKING SWITCH
This orogqram could be shortened tot

>5% e#TFFF=a#7FFF

>0 GO TO 50 '
but it is not as clear that way. Going back to the first program, you
can see one of the advantages of software over hardware, If you want
to charge the sense of the switch, have it on when it used to be off
and vice versa, all vyou need to do is change Line 130 tot

>13% @M=NOT (S)
and the switch works the other way around, without changing a sinale
wire. Now the liaht is ON when the switch is closed and OFF when the
switch is open. While it is not hard to change a wire, if this were
part of a device committed to a printed circuit board, it miaht be

quite exoensive to either modify all the boards or have a3 new design
nut into nroduction., The software change is often far simoler.

1-101



Sunpose you want the liaht to be OFF when the switch is closed and
blink ON and OFF when the switch is ooen.

197 M=#7FFFsREM PUT THE DEVICE ADDRESS IN M

11® S=eMtREM SAVE THE VALUE OF THE SWITCH IN S

132 -REM IF SWITCH OPEN, BLINK LIGHT ON AND OFF

149 @M=S:GOSUB 217:RFM LIGHT FOLLOWS SWITCH ON AND DO A TIME DFLAY
154 aM=7232GOSUB 212sRFEM TURN LIGHT OFF AND DG A TIME DELAY

166 GO TO 114

20¢ REM TIMF DFLAY SUBROUTINE

210 T=1m3sREM MAKF T BIGGFR TO 'INCRFASE DELAY

220 DFELAY T :

234 RFETURN

1#.5 Exercises

Rewrite the above nrogram so that the lidh?»blinks when the switch is
closed and the light is OFF when the switch is open.

Write a nroaram so that the switch must be closed for several seconds
before the light comes ON, I[If the light is ON, ooening the switch
turns it OFF immediately. However, if the light is OFF and the switch
is closed, several seconds must elaose before the light comes ON., If
the switch is onened during this time, the light will not come on, or
even blink.

Answers are in Appendix A

1-102



Section 2



CHAPTER 1

1.1 Introduction

This reference quide is intended to provide you with information

on the use of NSC Tiny BASIC lanquage. This section will also
provide you with information on NSC Tiny RASIC commands, statements,
grammar, error messages, and control characters. A brief descrintion

of each is given along with a short examrle or two to demonstrate their
use, .

This reference aquide will nrovide a aquick method of locating basic
information on NSC Tiny BASIC. For a more detailed descrioticn, and
examples of NSC Tiny BASIC’s use, Section | should bhe consulted.

To learn how to use NSC Tiny BASIC, you will need aﬁ INS8AT73 system
and a teletyne or CRT terminal.

2-3



CHAPTER 2

2.1 Lanquage Exoressions

2.1.1 Variables

There are twenty-six variable names which can he used with NSC Tiny
BASIC. These are the letters of the Enalish lanauage Aalohabet, A
through Z. The values assianed to these variables are 16-bit signed
integers. There are no fractions or floating point numbers,

2.1.2 Constants

All numeric constants are decimal numbers excent when oreceded by a
oound sign ). If oreceded by #, the number is interoreted*gs a
trexadecimal number. The qymbolq 55 wnuld be treated as a decimal
Twumber, while #55 would he treated as a hexadecimal number (eaual to
85 in Adecimal value). Decimal constants may be in the range of
=32767 to 32767.

?.1.3 Relational Onerators

Pelational Onerators are the standard BASIC symbolst

egual to

> greater than

< less than

<= less than or eaual to

>= greater than or eagual to
<> not equal to

The relational onerators return either a @ (FALSF) or -1 (TRUE)
as a result. NOTEs >< 1is an illegal ooerator.

2.1.4 Arithmetic Ooerators

Standar& arithmetic onerators are nrovided for the four basic arith-
metic functions.

+ Aaddition
- subtraction
' s division

* multiolication



Arithmetic is accomolished by standard 16-bit twos-comnliment arith-
metic. Fractional quotients are truncated, not roundeds therefore,
16/3 will aqive 5, 17/3 will also give 5 as a3 result. Remainders re-
sulting from division Aare drooped., No attempt is made to round off

the quotient., As usual, division by zero is not permittedt it will
result in an error break.

The usual algebraic rules for order in evaluating expressions is
followed. The order of evaluation is controlled by narentheses, and
their liberal use is advised., They provide clarity and avoid confusion
in complicated exnressions.,

?.1.5 Logical Ooerators

NSC Tiny BASIC orovides Logical Operators AND, OR and NOT in addition
to the arithmetic onerators. Th9§¥ nerform bitwise loaical -onerations
on their 16-bit aroUmentq and produce 16-bit results. The"AND and QR
onerators are called binary onerators because they nerform an onPration
on TNO arquments (or ooerands). An examnle follows with binary inter-
oretationt

>LIST
18 A =75 A= 00098 a0 A1oa 1011
27 B = 99 B = 0000 0083 AL &A1
3 C = A AND B C = 0000 A0 2lea a1l
472 PRINT C

>RUN

67

?.I.Q Logical AND

>LIST

1@ INPUT A

2% INPUT B

30 IF (A>5@) AND (B>50) THEN GO T0O 6@
47 PRINT "ONF OR BOTH ARE SMALL"

52 GO TO 12

6 PRINT "BOTH ARE BRIG*

73 GO TO 1@

>RUN

?2 51

? 52

BOTH ARE BIG

? 51

? 49

ONE OR BOTH ARE SMALL
7 49

7 49

ONF OR BOTH ARE SMALL
72°C

STOP AT 12

>

2-6

._A,‘



2.1.7 Logical OR

>LIST

14 INPUT A

24 INPUT B

3% 1F (A>50) OR (B>5¢) THEN GO TO 60
4% PRINT “BOTH ARF SMALL®"

54 GO TO &

604 PRINT “ONE OR BOTH ARE BIG"

7% GO TO 1o

>RUN

? 51

?2 52

ONE OR BOTH ARE BIG
251

? 49 |

ONE OR BOTH ARE BIG

? 49

? 49

BOTH ARE SMALL

°C

STOP AT 10

>

2.1.8 Logical NOT

The third logical operator (NOT) is a unary operator., It performs
an operation on only ONF araument, as follows:?

SLIST
1% A = 11 A

ARG ANAA AR 1411

| 19
>3 B = NOT A |

>33 PRINT B B= 1111 1111 1111 @10 = =12
>RUN 1o
-12

2.2 Functions

There are several functions that may be used in arithmetic exnressions
in NSC Tiny BASIC., These are described below.

2.2.1 MOD (a,b) Function

Returns the absolute value of the remainder a/b, where a and b are
arbitrary expressions., If the value of b is zero, An error break will

occur As Iin anv division oneration., As an example:?

>180 A = 95 A 2

>2% B = 44 44/ 95

>3% PRINT MOD (A,BR) 83

>RUN 7 —==—==MOD (95,44)
7

2-7



2.2.2 RND (a,b) Function

Returns a pseudo-random integer in the range of a through b, inclusive,
For the function to perform correctly, a, should be less than, b, and
b-a must be less than or equal to 32767 (base 1#), A typical examole
iss

>1@ PRINT RND (1,109)
>RUN
27

2.2.3 STAT Function

Returns the 8-bit value of the INSAR273 Status Reaister, STAT may
appear on both sides of an Assianment Statement:t so, the programmer
can modify the Status Recister as well as read it. The Carry and
Overflow Flaas of the register are usually meaningless, sincte the
NSC Tiny BASIC interpreter itself is continually modifying these
flags. The Interrupt-Fnable Flaa may be altered by an assignment to
STAT these flags. The Interrunt-Enable Flaag may be altered by an
assignment to STAT (such ast STAT = #FF). Location of individual
flaas are shown below!

Most : Least
Significant Significant
Bit - Bit
7 6 5 4 3 ? 1 @
CY/L ov i SB SA F3 F2 F1 IE

Example of use?

>10 LET A = STAT

>20 PRINT A
>RUN
176 =—===«-=<The decimal number, 175, translates to?

131 1 @237 binarye.

2.2.4 Status Reagister Bit Functions
The function of each bit in the Status Reagister is described below?
BIT DESCRIPTION

7 CARRY/Z/LINK (CY/L)t This bit is set to | if a carry occurs
from the most siagnificant bit during an add, a comoliment-and-
add, or a decimal-add machine lanauage instruction. This bit
may also be set by the operations performed by the SHIFT RIGHT
WITH LINK (SRL) and the ROTATF RIGHT WITH LINK (RRL) machine
lanquage instructions. CY/L is input as a carry into the bit @
nosition of the add, compliment-and-add, and decimal-add machine
lanquage instructions,

2-8



»OVERFLOW (OV)t This bit is set if an arithmetic overflow occurs
during an add (ADD, ADI or ADE) or compliment-and-add (CAD,

CAI or CAF) machine languaage instructions., Overflow is not
affected by decimal-add (DAD, DAI or DAE) machine languaqe in-
structions.

NOTEt The above two hits mavy be of little or no use in an
NSC Tiny BASIC orogram.

SENSE BIT B (SB)t This bit is tied to an external connector
pin and may be used to sense external conditdons. This is

a "read-only" bitt therefore, it is not affected when the con-
tents of the accumulator are copied into the status reagister
by a STAT instruction. It is also the second interrunt inout
and may be examined by the ®"ON* comnand.

SENSE BIT A (SA): This bit is also tied to an external connect-
or nin. It serves, as does SENSE BIT B, to sense external con-
ditions. In addition, it acts as the interrunt inout when the
INTERRUPT FNABLF (see bit 3 of status reaister) is set. This
bit is also a "read-only" bit. The same "ON" command may be
used to sense this innut. This flag is used by NS5C Tiny BASIC
~as the serial input bit from the TTY or CRT.

USFR FLAG 3 (F3): This bit can be set or reset Aas a control
function for external events or for software status. [t is
available as an external outnut from the INSBA73,

USFR FLAG 2 (F2)t Same as F3. This flaag is used by NSC Tiny
BASIC to control the paner tape reader relay. '

USFR FLAG | (Fl1): Same as F3, This flag is used by NSC Tinv
BASIC as the serial outonut bit (with inverted Adata) to the
TTY or CRT.

NOTEs The flag 1, 2?2 and 3 outputs of the status register serve
as latched flags, They are set to the specified state
when the contents of the accumulator are copied into the
status reqgister. They remain in that states until the
contents of the status reaister are modified under oro-
gram control.

INTERRUPT FENABLF FLAG (IF): The processor recoanizes the inter-
runt innuts If this flag is set. This bit can be set and reset
under proaram control. When set, NSC Tiny BASIC recoanizes ex-
ternal interruot requests received via the SENSE A or B inouts.
When reset, it inhibits the INS82473 from recoanizing interrunt
requests.

2-9



2.2.5 TOP ,Function

Returns the address of the first byte above the NSC Tiny BASIC nrogram
in the current page which is available to the user. This will be the
address of the highest byte in the NSC Tiny BASIC oroaram plus 1. All
the memory in the RAM above and including TOP can be used by the NSC
Tiny BASIC orogram as scratchpad storage. As an examplet

>1a PRINT TOP
>RUN
4400 ----==4404 is the first address of unused RAM

2.2.6 INC (X) and DEC (X) Functions

T’ statements increment or decrement a memory location X.
Examnlest

>19 LET X=1¢32
»2¢ INC (X)

>5@ DEC (X)
>64 INC (6000)
>7% DEC (60A1)

These instructions are used for multinrocessing and are non-interrunt-
able. This means that if two 8A73“s are used on the same bus, when-
ever one executes an INC (X) or DEC (X) instruction, other brocessors
must remain idle. These instructions are used, generally, for commu-
nications between nrocessors in a multinrocessor system,

2.3 Statements
2.3.1 INPUT Statement

Data can be input to an NSC Tiny BASIC orogram by using the INPUT
statement., One or more items (variables, exoressions etc.), separa-—

ted by commas, may be entered according to the followinag formatst

& INPUT A
22 INPUT B,C

When the statement at Line 1@ is executed, NSC Tiny BASIC nromnts the
user with a question mark. The user types in a8 numbher which is assign—
ed to the variable A after the RETURN key is oressed. NSC Tiny BASIC
then promots the user with another question mark. The user tyoes in
two exnressions, senarated by commas, which will be assigned to B and

C in that order,

RUN

? 45
? 237, 4455

2-10



NSC Tiny BASIC would now continue with execution of the orogram,
String inout is also allowed. See the String Handling section in this
chapter for more information.

NSC Tiny BASIC accepts both numbers and expressions tyoed in resoonse
to an INPUT request. For examplet

>I7 A=1(
»>2¢ INPUT B,C
>3 PRINT B,C
>RUN
2A+] L AXD

1t 29

The comma between th®entered expressions is not mandatory and can b e sus
renlaced' by spaces 1f the second exnression does not start with a nlus
or minus sian. ~

There must be at least Aas many exoressions in the innut list as vari-
ables in the INPUT statement. If an error occurs when NSC Tiny BASIC
"tries to evaluate the tyned-in exnression, the message? :

-

RETYPF

"is orinted along with the error me ssage, and the question mark (?)
prompt will appear aoain so that the user can type the evpnressions
correctlv.

The correct response to an “INPUT s$factor’ statement is a string,
terminated by a carriage return. Quotation marks are not used for
1nnuto

INPUT may not be used in the command mode.
2.3.2 PRINT Statement (Output)

The PRINT Statement is used to output information from the orogram.
Quoted strings are displayed exactly as they anpear with the aquotes
removed. Numbers are orinted in decimal format. Positive numbers will
be preceded by a snace, and negative numbers will be preceded bv a
minus (-) sign. There is a trailing space for all numbers. A semi-
colon (1) at the end of a PRINT Statement sunoresses the usual carriage
return and line feed with which NSC Tiny BASIC terminates the outout,

Strings stored in memory (such as those aenerated by a String Inout
Statement) may also be nrinted., Refer to the String Handling Section
in this chapter for more information. Tynical example:

>PRINT "THIS IS5 A STRINGH
20 A=10

>37. B=27

>4@ PRINT %1@ PLUS 20=", A+B
>RUN

THIS I5 A STRING

180 PLUS 2¢=30

2-11



2.3.3. LET Stateméﬁt {Assiqgnment)

The word, LET, may be used or omitted in an Assignment Statement.
The execution of an assianment statement is faster if the word LET is
used, The left portion of an Assignment Statement may be a simole
variable (A=-Z), STAT or a memory location indicated by an @ followed
by a variable, number or an expression in parentheses, (refer to
Indirect Operator for more information), Fxamnlest

LET X=7

X=17

LET E=I#R
E=1#R
STAT=#70
LET @A=255
0(T+36)=#FF

Conditional assignments may be made without using an [F statement.
The method hinges on the fact that all predicates are actually evalu-

ated to yield -1 if true, and @ {f false., Thus, if a nredicate is
enclosed in parentheses, it may be used as a multiplier in a statempnt
ase

LET X= =AX(A>=A)+A*(A<)
which would assign the absolute value of A to X.
2.3.4 The GO TO Statement

NSC Tiny BASIC allows GO TO Statements to allow nrogram branches to a
specific line number or a line numbher called by an arbitrary ex-
nression. As examples:?

g GO TO 59
would cause the nroaram to fjumn from Line 14 directly to Line 52, but
10 GO TO X+5

would cause the program to jumo from Line 1@ to Line X+5. Thus, the
value of X is variable allowing dynamic control of program execution
at this point.

2.3.5 GOSUB/RFTURN Statements

These instruttlons are useful when a computation or oneration must be
performed at more than one pnlace in a program. Rather than write the
routine at each place where needed, a GOSUB instruction is used to

Ucall" the comnutation or operation (referred to as a SURROUTINF),
After the subroutine has been executed, a RFTURN instruction (the last
instruction of the subroutine) catises the nrogram to resume execution
at the next line number following the oriainal GOSUR instruction. As
an example:?

2-12



MAIN PROGRAM

17 LET X=5

20 B=X+R |

.. SUBROUT INE
54 GOSUB 209 200 Y=X+B/A
6% X=A/R ~ .,

L] [ ] / : [ ]

190 GOSUB 20@”  ____ _ 258 RETURN
117 X=X*B 4"

On the first GOSUB call, the order of execution follows the solid’
arrows. At the second GOSUB call (Line 10a), the order of execution
follows the dashed arrows.

NOTEt* GOSUBs may be nested up to B levels deep (including interruot
levels).

2.3.6 IF/THEN Statement

This instruction allows for oroqgram control to be modified by a logical
test condition., The test condition follows the IF clause of the state-
ment. When the test condition is true (non—-zero), the THEN portion of
the statement will he executed, When the test condition is false
(zero), the THEN oportion is ignored and execution continues at the next
numbered line of the oroqram.

52 IF X>J THEN GO TO 144

NSC Tiny BASIC allows the omission of the word THEN from an IF/THEN
Statement. This omission, also allowed on some larger BASICs, enhances
the clarity of the nrogram. The -above statements then become:

53 IF X>J GO TO 140
2.3.7 DO/UNTIL Statements

This instruction is not available in standard BASICs. This statement is
used to nrogram loops, keeoing GO TO statements to a minimum. The
overall effect is to greatly improve readability and clarity of NSC
Tiny BASIC nprograms. The followinag examrle shows the use of DO/UNTIL
Statements to print numbhers less than 10¢:



1@ _PRINT 1t PRINT

20 PRINT 2

34 1=3 tREM [ IS NUMBER TESTED
40 DO

53 J=1/2 : tREM J IS THE LIMIT

6@ N=| tREM N 1S THE FACTOR

73 DO tREM SEEKS A DIVISIBLE FACTOR OF I
80 N=N+2

o% UNTIL (MODCI,N)=a4 OR (N>J))

100 IF N>J PRINT I 1REM NO DIVISIBLF FACTOR
e =1+ ,

120 UNTIL (I>109) *REM 'ENDS THE SEARCH

Ry enclosfng a zero or more statements hetween the DO and the UNTIL
<condition> statement (where the <condition> i{s any arbitrary ex-
oression), tHe statements between will-be reoeated“as a group 'intil
‘the <condition> evaluates to a non-zero nimber (&% %true condition). DO/
UNTIL loops can be nested, and NSC Tiny BASIC will reoort an error if
the nesting level becomes too deen, (more than eight levels).

2.3.8 FOR/NEXT Statements

These statements Aare identical to the FOR/NEXT Statements in standard
"BASICs. The STEP in the FOR statement is ontional. If it is not in-
cluded, A STEP value of +1 is assumed. The value of the STFP may be
either positive or necative., Starting and ending values of the FOR/
NEXT looo are included in the FOR statement. The loop is repeated
when the NEXT statement has been executed nrovided the unper limit of
the FOR statement has not been reached. W®hen the upper limit is
reached, the nrogram will exist from the FOR/NEXT loop. NSC Tinvy
BASIC causes an error break if the variable in the NEXT statement is
not the same variable as that used in the FOR statement.

FAR/NEXT loons may be nested, and NSC Tiny BASIC will renort an error
if the nesting level becomes too deept a deoth of four levels of FOR
loop nesting is allowed. A FOR loon will be executed at least once,
even if the initial value of the control variable already exceeds its
hounds before startina. The following nrogram would do nothing but
orint the odd integers less than 104,

12 N=1| 27 $REM UPPER LIMIT

°A4 FOR I=I TO N STEP 2 sREM START AT t WITH STFP OF 2
33 PRINT 1 tREM PRINT A NUMBER

44 NEXT 1 $REM REPFAT (at l.ine 20)

2.3.9 LINK Statement

Control may be transferred from an NSC Tiny BASIC nrogram to an INS
R#A73 machine lanauage routine by means of a LINK Statement. This
allows the user to make use of routines which may be more efficientlv
nerformed in machine lanquage, A statement of the form LINK <address>
will cause control to be transferred to the INSRA73 machine lancuaqge
routine starting at <address>. Control is transferred by execution of
A JSR instruction. The nointers may be modified by the routine. P3“s
value is unnredictable, and P2 noints at the start of A-Z variable
storage, Variables are stored in alphabetically ascending order, two
bvtes each, low order byte first then hiagh-order byte.

2-14



Examplet

>17% LINK #1800 NSC Tiny BASIC transfers to
>27% IF A=@ THEN PR ®SENSE A IS LOw# address #1807 to read
>3% IF A=1 THEN PR "“SENSE A IS HIGH" sensor.,

»99 STOP ‘ Program transfers back to
>RUN NSC Tiny RASIC

SENSE A IS HIGH

STOP AT 99

>RUN

SENSE A IS LOW
STOP AT 99

.TITLE SENSE

!
2 000R =A18%3 L3HEYADECIMAL
. 3 1800 06 LD A,S -
4 1841 D4l AND A,=16
5 I18A3 6CA2 BZ  LOW
6 1845 C401 LD A,=I
7 1807 CA®@ ST  A,0,P? $ STORES ACCUMULATOR INTO LOCATION
8 1889 5C RET OF VARIABLE A
9 anmn L EMD

?2.3.18 ON Statement

This statement is used for processing interruots. The format of the
statement ist

ON interruot-#1, line-numbher

When numbered interruot (interrunt-#) occurs, NSC Tiny BASIC executes
a GOSUB statement beginning at line number *line-number®, If "line-
number® is zero, the corresponding interrupot is disabled at the soft-
ware level. Interruot numbers may be | or 2., Use of the ON statement
disables console interruots (BRFAK function). Interruots must also be
enabled at the hardware level by settina the Interrunt Enable bit in
the status register (for examnle, using STAT=1).

2.3.11 STOP Statement

Al thouagh tﬁe last 1line of a nrogram does not need to he a STOP state-
ment, it is a useful debuqgina tool for programs., The SIOP statement
may be inserted as breakpoints in an NSC Tiny BASIC orogram.

When NSC Tiny BASIC encounters a STOP statement, it orints a stoo
message and the current line number, It then returns to the edit mode,
Thus, the programmer can see whether his program reached the desired
point. Any number of STOP statements may annear in the program, By
‘removing the STOP statements, one by -one, a nprogram can be tested by
narts until the debuagina process is completed.

.



Fxecution of a stonned nrogram may be continued after the STOP by a
CONT (continue) command.

2.3.12 DELAY Statement

This statement delays NSC Tiny BASIC for #exnr® time units (nominally
milliseconds, 1-1349)., Delay @ gives the maximum delay of 1340 m{i]lli-
seconds, The format iss

DELAY exor
Examolet
>1@ DELAY 109 Delay 1% milliseconds.
2.3.13 CLEAR Statement
" This statement initializes all variables to @ %disables interruos, en-

ables BREAK capability from the console, and resets all stacks (GOSUR,
FOR-NEXT, DO-UNTIL).

Examples
>|#2 ON 2,250 Break is disabled, Interrupt 2 is enabled.
>30MA CLEAR Break is re-enabled, Interrunt 2 is disabled.

2.4 Indirect Operator

The Indirect Operator is an NSC Tiny BASIC exclusive, at least in the
realm of RASIC, It accomplishes the functions of PFFK and POKE with a
less cumbersome svntax., The Indirect Ooerator is a way to access abhso-
lute memory location althouaoh its annlications are not limited to that,
Its utility is esnecially significant for microorocessors, such as the
INSBRA73, where interfacing is commonlv narformed through memorv ad-

dressing.

An "at" sign (@) which preceeds a constant, a variable or an exnression
in parentheses causes that constant, variable or exnression to be userd
as an unsigned 16-bit address at which the value is to be obtained or
<tored. Thus, if an innut device has an address of #6RA% (hexadecimal),
the statement:

LET X=@#6Ra0
would input from that device and assign the value of the innut to the
variable X. If the address of an outout device was #63@1, the state-
ment?

a¥68a1=Y

woisld outnut the least significant byte of Y to the device.



The indirect ooerator accessino memory locations only one byte at a
time. 'An assianment such as @A=248 chanaces the memory lncation ooint-
ed to by A to 248 (1111 186A9%) binary, since 248 can be exnressed as one -
byte. However, an assignment such as 8A=258 chanqges the memnry location
vointed to by A to 2 because the value of 258 cannot be exoressed by a
single byte, as shown below:?

258 = | 002 AR

i |
extra bit one byte (storey into location to ghich A would onoint)

Only the least significant byte of 258 (which is 2) is stored at that
< location. The extra bit would be lost forever. :

Any- place that a variable, such as B, would be legal, the construct
o would also be legal. The meaning of 8B ist ithe byte located at
the memory location whose address is the value of B, Other examnles?

42 LET R=6007 : Asslgns 6003 to B.

53 LET @ B=140 Stores decimal 18 in memory location 6439,

674 LFT C=8B Sets C=to 197, : ’

.78 PRINT e6009 Prints 1029,

84 LET D=e(A+1a%D) Sets D=the value stored in memory location
(A+10*xD) .

Parentheses are required when anmnlying # to an exoression,
2.5 Multinle Statements On A Line

More than one statement can be placed on one orogram line. This is
~accomplished by placing a colon between the statements. Readability
of the program can he improved, and memory snace can he saved by using
this technique. As an example of the use of multiole statements:?

274 PRINT “MY GUFSS ISw,Y:PRINT #INPUT A POSITIVF NUMBRER#3:
INPUT XtIF X <=3 GO TO 20@

If X is negative or zero, the user will be instructed to enter a
nositive numbher, and the nroaram returns to Line 203 for a new quess,
If the user had entered a positive number correctly, the orogram
woulld have nroceeded to the next numbered line after Line 2049,

Care in use of multiple staterments per line must he exercised. The
ahove examnle shows that if the condition of the IF STATEMENT is false,
control is passed to the next program line. Anytnina else on the line
containing multinle statements will be icnored.

2-17



2.6 String Handling
7

String inout may be accomolished by executing A statement of the form
INPUT s F, where F is a Factor syntactically (see Grammar). When the
orogram reaches this statement during program execution, NSC Tiny BASIC
nrompts the user with a cuestion mark (2). All line editing characters
may be used (back space, line delete, etc.). If a control-U is tyoed
to delete an entered line, NSC Tiny BASIC will continue to promnt for a
line until a line is terminated by a carriage return., The line is
stored in consecutive locations starting at the address nointed to by
F. un to and includina the carriage return. Fxamplet

20 INPUT $ A may also be written 20 INPUT $A

and inputs a étrinq to successive memory locations'startinq
at A. / y

2.6.1 String Outout

An ftem in a PRINT statement can include a string variable in the form
of $B, where B is a factor, When the print statement is encountered
durina nrogram execution, the string will be nrinted beainning at the
address B up to, but not including, a carriage return. A keyboard
interrunt will also terminate the nrintina of the strina if detected
.before the carriage return. FExamples

574 PRINT sBR nrints the string beainning at the location
pointed to by Y“RY, .

2.6.,2 String Assignment

String variables can be assigned to characters in quotes just as other
variables are assigned numerical values. A statement of the form $C=
"THIS STRING IS A STRING" (when encountered during oroaram execution)
would cause the characters in quotes to be stored in memory starting at
the address indicated by C up to and including the carriage return.
Fxamoles

7 sD=®THIS IS A STRING WITH NO INPUT STATEMENT.®
A YTY is stored at location "D", andi H at location "D+I" etc.

2.6.3 StrinqlMove

Strings can be moved from one memory block to another memory block using
this feature, A statement of the form $A=$B (where A and B are Factors)
will transfer the characters in memory beainning with the address B to
the memory beginning with address A. The last character, normallv a
carriaage return, is also conied, Also. a statement such as S(A+])=$4A
wolrld he disasterous since it catises the entire contents of the RAM to
nhe filled with the first character of $A,

2-18



2.6.4 String Examples

12 A=TOP tREM A POINTS TO EMPTY RAM ABOVE TOP OF
: PROGRAM

28 C=TOP+10% tREM C POINTS TO RAM 142 BYTES ABOVE A

37 D=TOP +27% tREM D POINTS TO RAM 1@ BYTES ABOVE C

4 INPUT S$A tREM STORES CHARACTFRS WHERE A POINTS

57 PRINT sA

67 LET s$C= "IS THE STRING INPUT AT LINE 1o#%

77 sD=sC $REM STORES CHARACTERS WHERE D POINTS

8@ PRINT $D ’

2.7 Commands
2.7.1 NEW expr .

This commahd establishes a new start-of-program address equdTl "to the
value of "expor®, NSC Tiny BASIC then executes its initialization
seaquence which clears all variables, resets all hardware/software
stacks, disables interrupts, enables BRFAK capability from the console,
and nerforms the nondestructive RAM search described in nart one, If
the value of Yexpr" points to a ROM address, the NSC Tiny BASIC program
which beagins at this address will be automaticallv executed. Program
memory (includinag the end-of-nrogram oointer used by the editor) is not
altered by this command.

Examnlet
>NEW | 000
NEW used without an argument sets the end-of-program oointer equal to

the start-of-proagram pointer so that a new program may be entered. If
a orogram already exists at the start-of-nrogram address, it will be

lost.

Examples

SNEW 1300 Sets program pointer to 1000

NEW Sets end-of-program-pointer to 1349
2.7.2 RUN .

Runs the current program,
Examolet

>RUN Execution begins at lowest line number

2-18



?.7.3 CONT

Continues execution of the current proagram from the noint where
execution was suspended (via a STOP, console interruot, or reset).,
“n NSC Tiny BASIC program that is executing can be interrunted by

ressing the BRFAK or RESET keys on the keyboard. FExecution can
be resumed by enterina the CONT command.

Examplet

>RUN

THIS IS THE STRING INPUT AT LINE 10

THIS IS THE STRING INPUT AT LINE 1o

THIS IS THE STRING INPUT AT LINE 12

THIS IS THE STRING INPUT AT LINE 1# Press BRFAK or RESET.
>CONT
. THIS IS THF STRING INPUT AT LINFE 10

THIS IS THE STRING INPUT AT LINF 19

And SO ON...

2.7.4 LIST (exor)

Lists the current proaram (ootionally starting at the line number
specified by (exor)).

Examples
>LIST 1@
1% INPUT sA
20 PRINT sA
33 LET sC=%]S THE STRING INPUT AT LINE 1ou
40 $D=SC ’
572 PRINT D

2-20



Section 3



CHAPTER 1

1.1 Introduction

The desian of an INS8AA73-based system is quite straightforward. Figures
1-1 throuah 1-=3 illustrate this point, Fiqure I-1 shows A minimum size
RAM=based systemi: this is the kind of system used in enaineering labs
for software develobpment. For stand-alone proaram oneration a system
like the one shown in Figure 1-2 can be used, provided 256 bytes of RAM
are available for variahle storage. Figure 1-3 is arv exnansion of this
system to allow a 32-bit parallel 1/0 interface.

ouT — BUFFFR——\’ ADDRESS P | ooress
]

R5-232 * Isa/INTA
TERMINAL DATA [<QEPP{DATA
NRNS »{READ
IN ¢—|BUFFER |&— NWDS |—lWRITE
| EXTERNAL
INS8@73 PROGRAM RAM
{Includes the
ouT | 8UFFER 256 bytes used
_ by NSC Tiny BASIC)
Ty IN l¢—]BUFFER|&¢—F1 = sB/INTBj¢—
. LUSER [/0
F3 |
RDR N
RELAY |le¢—BUFFER |¢ Fi

NOTE: It is not necessary to have a TTY and an RS-232 terminal.
Either one may be omitted.

Fiqure t-1, Minimum RAM-Based System

3-3



PROGRAM

IN58473 ROM/EPROM
——»{SA/ INTA | ADDRESS
—»i{SB/INTB DATA
USER 1/0| €—F1 ENABLE
<4+—F?2
RAM
(256 BYTFS
 4—4F3 MINIMUM)
ADDRESS
DATA
| RFAD
NHWDS —P|WRITE

Figure 1-2. Minimum ROM/EPROM-Based System

3-4



INS8073

SB/INTR

Fi
F2

1Tt vy

F3

AG-ALS

NRDS

NWDS

MM2716

SA/INTA  DA=DT * DA-DT

AG-AIR
CS

OE

INSB154

AD=A6 -
M/10
CSe
CSi

Da-D7

—— @] NRDS

——“——————.INWDS

PAA-PAT

PRZA-PR7

$

<

|

INSB 154

32 1/0
LINES
—

AB—-A6
M/10
0851
CSi
Da-D7
NRDS

NWDS

PAZ-PAT

PRA-PB7

gt

>

Figure 1-3. 1/0 Expansion of the Minimum ROM-Based System

3-5



1.2 An NSC Tiny BASIC Examonle System, Functional Snecification

[t is obvious, from the nreceding examoles, that by usinag only A small
number of ICs, an extremely powerful and flexible system can be easilv
develoned. To illustrate this noint, we will design a system to
satisfy all of the following reauirements?

. To allow the user to enter, debug and execute RAM-based NSC
Tiny BASIC nroarams un to 133 lines in lenath.

2. To interface to a terminal or TIY for oroaram entry and
debuo. Multirle data rates (113, 3729, 1290 and 483472 Raud)

should be sunnorted.,

3. To allow the user to transfer RAM resident orograms into
EPROM,

4, To allow an FPROM nrogram to be run in a real-time control
aoolications where a terminal is not present.

5. To have ample I/0 canability flexible enough to interface to .
most user systems,

6. To orovide the user with “scratchpad" RAM for use when assem-
bly lanquage subroutines are invoked via the YLINK" statement

7. To suonort at least two interruots.
8., To fit the entire system on a sinale 5% x 7" PC card,

9. To satisfy all desian requirements usinag a minimum number of
IC’s., Fxpansion of the minimum system should be accomplished
by simnle addition of *"ontional" RAM, FPROM and [/0 devices
on the PC card,

Although meetinag all of the above requirements may at first seem diffi-
cult, these objectives are easily attainable, as the following oara-

granhs will show.



1.3 Hardware Desiaqgn of a Small INS8#73-Based System

A system that meets all of the ahove design requirements is shown in

Fioure 1-4,

followss
IC TYPE
INS8A73
MM2114

7415368

741502

IC DESIGNATOR

ul
uz, U3

4

U4B

u4c

uan

U4E, U4F

USA

uss

usc

usD

The tyne, desiagnation and function of each I shown is as

FUNCTION

NSC Tiny BASIC processor.

U2 and U3 provide 1K bytes of
static RAM., (Fach MM2 114 pro-~-
vides 1Kx4 bits.) '

Inverter for TTY inout inter-
face,

Inverter for TTY reader relay
interface,

Inverter for RAM address manping
logic.

Inverter for power-on reset of
INS8255A.

TRI-STATE inverters for selection
of multinle Baud rates.

Two input NOR gate. Used for
address manning of the FPROM
programmer.

Two input NOR gate. Used to
selact interrupt source(s) to
INSS®73.

Two input NOR gate. Used in BauAd
rate selection logic.

Two input NOR gate. Used for
address mapoing of the INSBI54,



LMT747 U6A
U6R
7415123 U74
U7R
74LS 0% UBA,B,C
usD
74LS139 u9
MM2114 u1e-U15
MM2716 Ut6,U17
INSB255A u18

The LM747 is a dual OP amc. U6A
buffers the nositive/negative
voltage levels received from the
RS-232 comnatible innut to the
TIL levels reauired by the
INSRA73.

UeB buffers the TIL levels gen-
erated by the INSB273 to the pos-
itive/negative voltage levels re-
quired to drive the RS5-232 com-
patible outnut,

The 74LS123 is a dual One-shot.
U7A orovides adequate address/

~data setuo time to orogram the

MM?2T716 FPROM,

U7B orovides the 54 msec oro-
arammina nulse reauired to write
data into the MM2716 EPROm.

U8 is a quad NAND gate, UBA, URR
and U8C are used in the Baud rate
selection logic.

Used in the RAM address maoping
logic. :

Dual 2 line to 4 line decoder

with active low outnuts., Pro-
vides address maopina for RAM,
EPROM and 1/0 ICs,

Provide an additional 3K bvtes
of optional RAM proaram memorvy.

Provide un to 4K bytes of ootion-
al EPROM program memory, (Each
MM2716 contains 2K bytes.)

Ontional Programmable Perinheral
Interface chio., Provides 24 [/0
lines that may be used to inter-
face with the user’s system, 1/0
oins may be programmed as inouts,
outnuts or bidirectional, in-
cluding the required handshake
signals. (Refer to the INSB255A
Data Sheet for additional infor-
mation,)

3-10



INS8154 uie

Ontional 128 byte RAM-1/0 chip.
Provides 178 bytes of scratch-
pad RAM for use in assembly
lanquage subroutines. Also nro-
vides 16 1/0 lines that may be
individually nroarammed as in-
put or outout, includina strobe
mode with handshake. (Refer to
INS8154 Data Sheet for addition-

al information.)

Note from the above tabulation that the minimum system consists of onlvy

nine IC’s Ul - U9, Together they nrovide IK bytes of RAM program mem-

ory, an RS-232/TTY interface, an MM2716 FPROM orogrammer, asutomatic
eRaud rate selection and complete decodina for - the<fullv exoanded
"system. The, fully exnanded system consists of 19 IC’s,

Figure 1-5 Photo of NSC Tiny BASIC Card

3-11



1.4 Addressing Requirements/Capabilities of Fach System Component

Each of the system comobnents shown in Fiqure 1-4 must be assiagned
to address locations in memory. The built-in address decoding cao-
ability of each system component can be summarized as follows?

4K Bytes of RAM

Fach of the four nairs of MM?2114 chips fully decodes ‘13 bits and
can be selected via one active low select per pair.

4K Bytes of EPROM

Each of the two MM2716 EPROMSS fully decodes 11 bits and provides
two active low select 1ine% per device for reading of data.

INS8255

The INSB8255 contains three 1/0 ports and one control word register,
all of which are decoded on chio via twn address inout lines. The
device is enabled via a sinale active low select line.

INS8154

The INS8154 contains 128 bytes of RAM, two 170 ports and two data
direction registers, all of which are decoded on chio via eiaht
address lines. The device is enabled via one active hiagh select
line and one active low select line.

Raud Rate Selection Logic

The INSB#73 selects the Baud rate by reading the contents of memory
location X/FDA@. To program the Baud rate, this location must be
decoded via external logic, and the aobroonriate logic levels supnlied
on data lines 1|, 2 and 7, (Refer to RS-232/Current lLoon Interface
section for Additional details.)

FPROM Prograrmer

To proaram an MM2716 EPROM, address/data are sunnlied by the INSB#73
to the 2716 socket Ul6 in Figure 1.4, When VPP = +25V and adiress/
Aata are valid, a sinale byte may be written by pnroviding a 52 msec
programming pulse to nin 18 while the chip is deselected via a logic
Il on nin 20. A byte which has been written may be subsequently read
by simply supolying the correct address and nroviding a logic @ on
nin 2%, (Refer to MM2716 Data Sheet for additional details.)

3-12



1.5 Memory Mappinag Constraints For All System Components

The components described above can be mapped into memory in a variety

of ways. The system constraints imnosed upon this manning are the
following:

1. The decodina hardware will be implemented using a minimum number
of ICs. This implies that the system components will be only
vartially decoded, resulting in multiole images of each com-
ponent in memory.

2. Althouaon multiple memory images of each system comoonent may be
oresent, the manning hardware will be designed such that it is
imoossible to enable more than one system component at a time.
This restriction eliminates the nossibility of causing data bus

~conflict as the result of a programming’ error. (AWata bus con-
+~flict could cause transmission/receiot of invalid data and chio
damage,)

3. NSC Tiny BASIC oroaram RAM will be decoded as a contiquous black
so that the INS8M73 can successfullv identify the beginning and
;he end of the nroaram RAM that is actually present,

4, The RAM and the [/0 norts of the INSB8154 will bhe located in the
adiress range X’FFA -~ X*FFBF., This allows INS87473 assembly
lanquage subroutines to address the INSR154 using the DIRFCT
addressing mode, (Use of DIRECT addressinag eliminates the need
to dedicate or multiolex a pointer in order to address the
INSB154, For additional details on DIRECT addressing, refer to
the INSR®%72 Data Sheet.)

5. When on-card FPROM is present, it will be located startina at
adiress X/8A7A4, This allows the system to be used in real-time
control anplications where a terminal is not present,

All of the above constraints are satisfied by the memory assianment
shown in Fiqure 1-5 and Fiqure -6, Figure 1-5 shows how the 44K
addressing space of the INS82473 is to be nartitioned. Figure 1-6
shows the address bits (in boldface) that are actually decoded by the
l.ardware shown in Fiqure 1-5, resulting in multiple (but not over-
lapping) memory images of each component. The locations of these mul-
tiole images are also shown, with address bits A12 - AlS soecifying
one of 16 npossible memory "nages", each of which contains 4K bytes,

1.6 System Generated Interrupts

NSC Tiny BASIC supports interruots via the "ON" statement. As shown
in Figure 1-5, interrupts generated by the INS8154 and/or INSR255 may
he connected, at the user’s discretion, to the SR/INTR pnin of the

INS8273. When this is done the INS8#73 SR/INTB pin may be used to

detect interrunts under control of the user’s nrogram., If interruots
are disabled, the SB/INTR pin mav be employed as A sense oin that can
be examined via the NSC Tiny BASIC "STAT" Function or the "ON" State-

ment,

3-13



HEX ADDRESS

MEMORY CONTENTS

2003 -39 FF

e e W - - —— - — - > ——— - -

INSBA73 ON-CHIP
NSC TINY BASIC
INTFRPRETER

—

s e o o ——— - —

-

RAM A (1K BYTES)

—ay

13@7 -1 3FF
......... — - e e e e e o e e
1400 -1 TFF RAM 1 (1K BYTFS)
1803~ BFF RAM 2 (1K BYTFS)
1CoA~1 FFF RAM 2 (1K BYTES)
20GA-27FF MM2716 EPROM
PROGR AMMFR

HEX ADDRESS

MEMORY CONTENTS

RANA-87FF ROM & (2K RYTES)
R84 -8 FFF ROM | (2K BYTES)
) .
F19%-F 763 INS8255A
FD@2 BAUD RATE SELECT
e e e e e - - ey
FFAA-FFE7F INS3154 RAM
(128 BYTES)
FFRA-FFA4 INSB154 170
PORTS/CONTROL
FFCA-FFFE INSS@73 ON-CHIP

RAM (64 BYTES)

Figure 1-6 Partitioning of the INS8273 64K Addressing Space

3-14



EPROM PROGRAMMFR
(X224A-X22TFF)

RM @ (X211 000-
X’13FF)

RAM | (X’1409-

X*1 TFF) ey

hAM'z (X21890-
X?1 XFF)

RMm 3 (X“1Caa-
X1 FFF)

ROM @ (X/8000-
X*87FF)

ROM 1 (X“8877 -
X*8FFF)

INSB255A (X’F794-
X’F7a3)

BAUD RATF SELECT
(X’FDa9)

INSB154 RAM
(X’ FFOA-X*FFTF)

INSB154 [/0 PORTS
(X’ FF8A-X/FFA4)

T ABDR FSS B I-TS o -
15 14 13 12 11 19 9_ 8 7 6 5 4 1 @
A -; X- 7] ? X ; X-w—X X X ‘;-‘ X X
a X X 1 P8 X X | X X X X X Xy
a X X 1 a7 1 X XX X X X X X
‘2 ox x 1}l a x x| x x x x X X
2 X X 1 1 X X | x X X X X X
I X-X @ a X X X X X X X X X
I X X o X X X X X X X X X
X X 1 X X X X X X X X X
X X 1 1 X & X X X X X X X
X X 1 X v X X X X ¥ X X
X X 1 X 1 X r X X X X X X
NOTES: nY" refers to an arddress bit that may be zero or one.

N =

Rits that are actually decoded by the hardware shown in

Figure 1-4 annear in boldface tyne.

Table |-1, Address Bits

3-15



Decoding only the indicated address bits results in the following
multiple memory images of each component. This list is organized in
three columns., The first column shows the comnonent, the seconi shows
the page in memory into which that component is mapoed, (page numbers
ranae from 4 to F, each nage beina 4K bytes)t and the third shows how
the elements of a shared oage are subdivided.

COMPONENT PAGES ADDI TIONAL
—_— CONDITIONS
EMPROM PRNGRAMMER A, 2, 4, 6

4K RAM | 1, 3, 5, 7

4K ROM 8, Ay Cy F

INS8255A 9, 8, D, F ALl = ¢

BAUD RATE SELECT 9, B, D, F AL =1, 9 =0
INS8154 | 9, B, D, F ALL = 1, A9 = 1

‘Figure |-6 Address Bit Decoding for the System
1.7 RS=232/Current Loop Interface

The described Baud rate is automatically selected when the INS8373 is
initialized, or when a "NEWY" command is issued. Initialization is
automatically accomolished at VCC nower-on by Rl and Ct in Figure 1-5.
(Pressing switch S! also causes the INSR#73 to be initiaslized.) The
BRaud rate is jumner selectable as followss

. BAUD El6=-F17 E18-FEl19
RATE JUMPER JUMPER D7 N2 D1
[RY% PRESENT PRESENT | i 1
300 PRESENT ABSENT i | )
1200 ABSENT PRESENT ] 2 I
4800 ABSENT ABSENT | 7 7

If only the 112 Baud rate is reauired, nullup resistors on data lines
N1, D2 and D7 reoresent the only external hardware required to select
this rate.

As shown in Figure 1.5, the INS8373 FI flag is double huffered to oro-
vide an RS-232 comnatible voltaae outnut and a ?@ma current outout.
Positive and negative RS-232 levels are generated by the LM 747 on
amn, The 27 ma current drive is produced by transistor switch Q1 and
Resistor RI15.

ihe IN58973'R2 flag is used to enable/disable the TTY reader relay via
transitor switch 902 and current limiting register R2, These components
will suooly 22 ma of current to a 12V (69A) relay.

The INS87273 will Accent serial ASCII innut data in its SA/ZINTA input,.
As shown in Figure .5, the RS-232 inout. signal is selected via a
iumner between E5-FE6, or the TTY innut sianal may be selected via a
jumper between E6-FE7.



CHAPTER 2

2.1 MM2716 EPROM Programming Sof tware

An NSC Tiny BASIC utility program that programs MM2716 EPROMs, and one
that will work with the system shown in Figure 1-4 is shown in Apoendix
D. A PROM with this proaram must be pluocged into socket Ul7 to onerate
these utility orograms, The proaramminag software is called from NSC
Tiny BASIC by tyningt

>NFW #8R0@
This proaram decodes and executes the followina ten commandst

CoPY
PROGRAM
VERIFY
FRASFE CHECK
FILL

DUMP

LOAD

ASCII LOAD
WRITE

READ

Fach cormand is designated by a single command letter followed by 1-3
address and/or data fields. The user is prompted for a command inout
by the message "COM?", In resnonse to this, a legal comand in the
oroper format must be entered. If an illecal command letter or im-
nroner format are employed, the user will be promoted to re-enter an-
other command by the messaget WINPUT FRROR. TRY AGAIN." Addresses
and data should be entered in hexadecimal, without the preceding ##n
sign, Address and data fields should bhe delimited by slashes (/) or
by commas (,). Sonaces are ontional and are iagnored. For convenience,
t'default" addresses and/or data are associated with each command.
These defaultvalues allow the user to enter only the command letter,
followed by a carriage return. When this is done the default values are
substituted for the address/data that was not entered. The default
values are preset to the most commonly used address/data for each
comrand. - When the default values are unsuitable, the desired address/
Aata must be entered.

Tne commands are discussed in detail in the following paragraohs.

2.7 COPY Command
FORMAT: C source-starting/source-endina/destination-starting
EXAMPLE: C RZOA/8200/14030

DEFAULT
VALUES? C N2az71100/1100



I'he COPY .command "C* copies the source to destination, which must be
RAM. The source is snecified by its starting and endina address. The
destination is specified by its startino address. To insure that the
source is correctly conied, each byte is read after it is written, If
a mismatch is detected between source and destination, an error messaqe
is printed for each incorrect byte. The messace format is similar to
that described for the PROGRAM command,

In order to prevent accidental destruction of RAM based nrograms, the
default values for the COPY command are oreset to conv the first byte
of available orogram RAM to itself.,

2.3 PROGRAM Command
FORMAT P source=sétarting/source-endina/destination-starting
EXAMPLE: P 11@0/1 204/ 20%73

DEFAULT
VALUES? P 1100/18FF/2000

The PROGRAM command "P" transfers an NSC Tiny BASIC source proaram to
the MM2716 EPROM (U16 in Figure 1-4), The source proaram is specified
by its starting and ending address. (The endina address of the source
may bhe easily obtained by examining the NSC Tiny BASIC TOP variable.)
The source remains unchanged by the programming oneration. Since the
FPRCM nroaramming hardware is mapoed into address 2, the starting
address of the Adestination must always beain with hexadecimal #2%", The
default values for the PROGRAM command fills Ul6 with the NSC Tiny
BASIC orogram located in the first 2K bytes of available orogram
memory (X/119@ - X218FF). If a oreviously programmed EPROM contains a
sufficient number of unprogrammed bytes, new programs may be added
without erasing the oroqram(s) previously written.

To insure that NSC Tiny BASIC nrograms are correctly written into
FPROM, the PRNOGRAM command automatically reads each byte after it is
written. If a mismatch is detected, the following error message will
be printed for each byte:

ADDRESS 8XXX SB XX IS XX

The X’s above renresent hexadecimal digits. The "SB" is an abbreviated
notation for "should be®, Since the Ul6 EPROM is mapped into address 2
for READ operations (refer to Fiqure 1.5), the first dicit of the EPROM
address will always begin with hexadecimal "8", (The address actually
nresented on the FPROM address lines is gqiven by the three least sig-
nificant address diaits in the error messaqe.,)

3-18



2.4 VERIFY Command

FORMAT s V reference-starting/reference-ending/destination-
starting

EXAMPLEs V 800A/87FF/880%

DEFAULT
VALUES? vV 1104/18FF/80300

The VERIFY command "V% verifies the destination against the reference.
The reference is specified by its starting and endina address. The
destination is specified by its starting address. The reference and
destination remain unchanged by the verify operation.

The default values for the VERIFY command cause the Ul6 FPROM to be
vexisffdred against the first 2K bytes of available RAM‘mémory (X/1100 -
X?18FF), If a mismatch is detected during verification, an error
message will be printed for each incorrect byte. The message format is
similar to that described for the PROGRAM command.

The VERIFY command is useful to check the contents of nrmgrammed PROMS
which may have lost their identification, or may otherwise contain data
of doubtful accuracy. It does not need to be used after a "COPY" or a
"PROGRAM" command because a verification is performed automatically at
the end of each of those functions,

2.5 FRASE CHECK Command
FORMAT F source-start1nd/source-endina/hexadecimal-Value
FXAMPLE: V 1193/11FF/0%

DEFAULT
VALUESt vV 800/87FF/FF

The FRASE CHFECK command "E¥ verifies that all bytes contained in the

source are equal to the two digit hexadecimal value specified in the

last field of the command. The source remains unchanged by the erase
check operation.

The “E" command may be used to test whether or not all or part of an
MM2716 EPROM is erased. The default values for this command are oreset
to test that the entire MM2716 FPROM (U16 in Figure 1-4) is erased, If
an incorrect byte is located, an error message is printed, The messaqge
~ format is similar to that described for the PROGRAM command.

The “E" command may also be used to locate a specified byte in a given
address range. In this case all bytes that are different from the
specified hexadecimal value will be flaagaed as errors.



2.6 FILL Command

FORMAT: F destination—startlnq/destination-endinc/hexadec1ma1~
value .

EXAMPLES F 1200/1490/00

DEFAULT Ll
VALUESs F 1190/18FF/FF

. The FILL command *F% writes the twd'dlqit hexadecimal v%lue specified

in the last field of the command to the destination. The destination
is specified by its starting and ending address. Since the FILL
~command reads each byte after it is written, an error message is print-
ed wherever the byte read does pot match the bvte written., The messaqge
format is similar to that degffibed for the PROGRAM command.

The FILL command may be used to fi{ll all or vart of avajlable orogram
RAM with the erased value (X“/FF) for the MM2716 EPROM. This would
normally be done prior to entering a orogram into RAM. The default
values for the FILL command fill the first 2K bytes of available RAM
with X/FF, If the FILL command is issued after a nrogram has entered,
care should be taken to correctly specify the proper address range or
-the proogram may be nartially or totally destroyed.

fhe FILL command may also be used to verify that the orogram RAM is
functioning. This can be accompnlished by executing this command sev-
eral times, using the hexadecimal values X’FF and X’2@. This nrocedure
will verify that a logic # and a logic | can be written to and read

f rom each memory bit.

2.7 DUMP Command
FORMAT 2 D starting/ending
EXAMPLE: D SAA/8AFF

DEFAULT
VALUES? D 11909718FF

The DUMP command #D" prints out the contents of the snecified address

ranae in hexadecimal and ASCII format. Nonorintable ASCII characters

are desianated by a period. The hexadecimal/ASCI] equivalents of six-
t een memory bytes are orinted out on each line, in the following for-

mats

SFAM 37 31 32 33 34 35 36 37 38 39 4] 42 43 44 45 46 (123456789ABCDEF
RF1®# OD 7F OA 51 54 59 11 12 2A 2B 2C 54 48 49 53 17 ,..QTY,..»+, THIS.

The four hexadecimal digits at the beginning of each line renresent
the address of the first (left-most) byte. Memory contents are not
affected by the DUMP comrand. The default values cause the first 2K
bvtes of available program RAM to be printed out,

3-20



2.8 LOAD Command~
FORMAT s L displacement
EXAMPLE: L 1099

DEFAULT
VALUES? La

The LOAD command "L¥* ]loads an assembly language load module (LM) into
memory from a paoer tape. (For a detailed descriptiom of the LM tape
format refer to Ampendix E,) The starting memory location where the LM
will be stored is specified on the LM tape. If a different starting
location is required, an ootional displacement (X/A@*3 - X’ FFFF) may -
be soecified in the LOAD command. In this casB<the starting address
will be equal to the address sp tff%d on the UM tape olus. €he dis-
nlacement snecified in the LOADZGoimand. The default value of the dis-
olacement is @.

The GET routing built into the NSC Tiny BASIC interpreter receives 7-
bit ASCII characters which are then stored in memory as 8-bit bytes.
These bytes have the most significant bit, B7, set to #., Since assem-
bly lanasiage LMs require receint/storage of 8-bit bytes, the GET rou-
tine cannot be used to receive assembly language LMs., This oroblem
can be easily overcome by writing an 8-bit GET subroutine in assembly
lanquage. This subroutine can then be called, when required, via the
NSC Tiny BASIC "LINK" statement. The subroutine requires less than
50 bytes and is shown in Appendix D. The bytes that comnrise this
routine may be entered into RAM, one byte at a time, using the "ou
onerator.

READ COMMAND
FORMAT: R DISPLACEMENT

EXAMPI.E: R 1000
DEFAULT VAILUES: R 0

The READ command "R" reads a cassette resident program and stores
it into memory. The memory locations at which the program will be
stored are specified on the tape as previously described. If it
is necessary to read a program into memory at locations other than
those specified on the tape, a optional displacement (X'0000 -
X'FFFF) may be specified in the "R" command. In this case the
starting address for each DATA record will be equal to the address
specified on the tape plus the displacement. The default value of
_the displacement is zero.

If a checksum error is detected when a cassette resident program

is read into memory, the user will be alerted by the nessage
"CHECKSUM ERR".

3-21



WRITE COMMAND

FORMAT: W STARTING / ENDING
ADDRESS / ADDRESS

EXAMPLE: W 8000/80FF
DEFAULT VAILUES: W 1100/1EFF

The WRITE command "W" writes the contents of the specified memory
address range onto audio.cassette tape. The memory address range
to' be writtenvis specified by its starting/ ending addresses. ..
NIBL2 sour@eiprograms and/or assembly language IM's may be,@%’gga
on casseétte. Stored programs begin with approximately 5 seébnds
of 0's which serve as leader so that the tape speed has time to
stabilize on playback. The leader also serves as an interprogram
gap and allows the receiving program to achieve synchronization
with the clock pulses.

The tape format consists of one or more DATA records followed by a
single END record. A DATA record is organized is as follows:

1) A single character (X'A5) which identifies the start
of each record.

2) A byte which specifies the record type. (DATA
record=X'01: END record=X'03).

3) A byte which identifies the total number of data
bytes in each record. The number of data bytes in a
single data record can range from 1 to 255.

4) The least significant byte of the starting address
where the data record is to be stored.

5) The most significant byte of the starting address
where the data record is to be stored.

6) 1 to 256 data bytes.
7) A single byte checksum (in 2's complement form) of
all bytes contained in the data record except for
the start of record character, X'AS5.
An END record simply consists of the start of record character

(X'A5), followed by the record type (X'03) and the 2's complement
checksum. :

3-22



CHAPTER 3
3.1 Loading the FPROM Programming Software Into EPROM

~The EPROM programming software shown in Appendix G may be transferred
to npaper tape so that it can be conveniently used without having to
retyoe it each time it is used. This can be accomplished by initially
tyning in the program and then turning on the TIY paper tane punch
after the LIST command has been entered. This procedure will oroduce
a nroagram listing nlus a paner tape version of the prpgram.

Since the EPROM programming software occunies less than 2K bytes, it
-can be readily nroarammed into a 2716 FPROM, Theresulting EPROM
could then be placged-into socket Ul7 in Fiqure 1-4, so that the FPROMas
rrocragmgnq software would always be available without agﬂnq to loat
Dier: If this is done, the contents of one FEROW 'can still be
cooied to another using socket Ul6 only. This can be accomoliehed by
rlacing the source FPROM into socket U166 and then using the COPY com-
mand to transfer the FPROM contents to the first half of RAM (X211 29—
X’18FF), Following this, the source EPROM may be removed from socket .
U6 AanD an erased EPROM put in its nlace. The erased FPROM may then be
programmed in the normal manner.

2.? Loading NSC Tiny BASIC Proarams Into RAM

Since the first 2K bytes of available nrogram RAM (X“ 1% - XZ18FF)
are not required by the FPROM orogrammina software, thev may be used

to store a user’s NSC Tiny BASIC nrogram.

Note from Appendix G that the NSC Tiny BASIC variables J, D, M and P
all ooint to scratchpad RAM, The RAM utilized in program memorv X“/1F37

X?1FFF. (Only a fraction of the bytes in this range are actually
used.,) If desired, the RAM which is oresent in the INS8154 may be sub-
stituted, making the entire nroaram RAM available for storage of user
oroqgrams, ‘

2.3 Using the FPROM Proaramming Software to Program MM2716 EPROMs

The FPROM nrogramming software allows NSC Tiny BASIC orograms to be
written into FPROM from the keybord, RAM, oapner tape, or from another
FPROM.

After the user has committed the FPROM nrogramming software to EPROM
and placed the latter into socket U17, this software may be executed
by entering the followinag commands

SNEN #8R0O7
After thls is done the Y"PRNOGRAM" command, P, may be entered to write

the user’s RAM resident nrogram into a blank FEPROM located in socket
Uté shown in Figure 1-4,

3-23



Appendices



APPENDIX A

Answers to Exercises
Page 1=21
1e =32767 to 32767, inclusive.
2. Turn switch No. 3 on.
3. 49
4, ERROR 4
He 2%3 + 4%5 & 6%x7 .= 6 + 200 + 42 = 68
6. 123;(42/|27) = i23 * 0 =0
7, 1696 The true result, 1,000,0M, is larger than 32767.
8. 22/7*1007 = 3x|A0A = 30300
9. 1200%22/7 = 22000/7 = 3142
Page 1-25
le 12 235 1
.2. 47 9 5 2
3. 26 45
4, 37 73
Page 1-26
5. 103 3218
Page 1-33

1. Simply change Line 6@ to read: 60 GO TO 30

A-3



Page 1-38
I (a).

18 PRINT “PROGRAM TO COMPUTE A*X+B“
15 PRINT na

20 PRINT o

3% PRINT A=y

49 INPUT A

53 PRINT #B=n3

6@ INPUT B

7@ PRINT wn

8@ PRINT "X=%3

94 INPUT X

107 PRINT “A*X+B =%j
1@ PRINT A+X#B, .
1286 GO TO 7¢

! (b).
1@ PRINT "PROGRAM TO COMPUTE AxX+B#
23 PRINT "#spPRINT “HspPRINT "A="3sINPUT A
30 PRINT "B=%3:INPUT B

40 PRINT W¥3 PRINT "X="3sINPUT X
52 PRINT “AxX+R ="3sPRINT AxX+B:GO TO 44

Line 5% can also be written as follows?
5@ PRINT “A+X+B =", A*X+B1GO TO 4@

The comma separates the string "A%X+B"
and the exnression AxX+B,

Page 1-4¢
Number (Decimal) Stored As A Byte (Binary)
3 ARG ML (2+41)
6 P07 @11 @ (4+2)
7 Aa0A Al (442 +1)
. 29 a2l 1191 (16+8+4+})

The largest number that can be renresented in a single byte
is the "all ones' statet ‘

SERE RN

(128464432+1648+442+) = 255 )



Page 1-48

STATEMENT N U \ L] X

113...INPUT N 6844

12 X = MOD (N,16) 6844 12
13 N = N/16 427 12
142 W = MOD (N,16) 427 R 12
158 N = N/16 26 R 12
163 V = MOC (N, 16) 26 19 , H 12
176 U = N/16 26 | 17 11 2

Therefore, NSC Tiny BASIC prints | IS 7 N I . )
In hexadecimal the number is #1ARC
Page 1-51 |

123 REM AIR PRESSURE MONITOR AND ALARM

11@ PRINT * wsPRINT “"WHAT IS AIR PRESSURE®$ s INPUT P

128 IF P<t3 THEN PRINT “WARNING! AIR PRESSURFE TOO HIGH"
133 IF P>15 THEN PRINT "WARNING! AIR PRESSURE TOO LOW*
142 GO TO 110

Page 1-61

7% 1F G<>X THEN GO TO 374:REM NOT A CORRECT GUESS, GET NEXT
GUESS

This replaces both Line 7 and Line 84 in the proaram.

The followina is an even shorter way to write the program.
Try it.

1% REM GUESS THE NUMBER GAME

27 X=RND (1,10%)sREM X IS THE SECRET NUMBFR FROM | TO 10a
34 PRINT "w:PRINT "WHAT IS YOUR GUESS"3

4% INPUT Ge¢REM G WILL BF THE GUESS

54 IF G<X THEN PRINT "YOUR GUESS IS TOO SMALL":GO TO 3m
6% IF G>X THEN PRINT "YOUR GUFSS IS TOO BIG®*:GO TO 3%

7% PRINT "YOU WIN, LETZS PLAY AGAIN.,":GO TO 24

A-5



Page |1-66
}. The results of the RUN will be the same as those shown on page 1-67,
2. No. Try it. See below.

RUN
SQUARED

o ¢ o O P o=t

>
I
|
2
3
f

6 256

L] [ 4
-
. -

3. 181
Page 1-68
le« The orogram will run the same as before.

2. The program will now print values and squares for numbers
from | to 16,

3. The orogram will not work. Fvery line will be | 1. Further-
more, the orogram will not stop by itself. You will have to
nress BREAK.

4, The results will be the same as‘for the program on page -69.

Page =72
1. >RUN 2. >RUN
1 1 (I |
2 3 2 2
3 6 3 6
4 10 4 24
5 15 5 129
3. 15 4, 120
5. 1 .28 6. 7 5045

8 =25216 Correct answer > 32767

A-6



Page 1-73
7.

>|@ PRINT #wspPRINT “N=¥ss INPUT N
27 S=01.

33 FOR K=1 TO N

4% S=S +K*K

5?4 NEXT K

6 PRINT ®SUMSQUARED =43:PRINT S

Line 64 can also be written as followst
6 PRINT “SUMSQUARED =*,S

Note the comma

Page 1-94
1719 REM STRING COMPARISON SUBROUTINE
14272 REM SET-UP STRING ELEMENT POINTERS, C AND D
1330 C=AtD=R
1343 REM COMPARE PRESFENT C & D LOCATIONS, IF UNFQUAL, FRROR
: RETURN
1053 1F@C<>AD PRINT MTHFE STRINGS ARF UNFQUAL":RFTURN
126 REM IS THIS THF LLAST CHARACTFR IN THF STRING (CR)?
1807 [FeC=#AD PRINT "THE STRINGS ARFE FQUAL*S$RFTURN
1287 REM NONE OF THE ABOVE, CHFECK NEXT LOCATION.
1729@ C=C+1:tD=D+1:GO T 1059
Page 1-1M12
1% A=#FFFF
27 @A=)etREM TURN LIGHT OFF
33 B=a
44 DO
57 IF @Aa=1 THEN GO TO 2#:SWITCH IS OFF
60 B=R+I
7% DELAY 1o
87 UNTIL B=20AtREM SWITCH MUSF BE CLOSFD 2 SEC

9% @A=31GO TO 3@tREM TURN LIGHT ON



Flowchart

G
lk

TURN LIGHT
OFF

T

PRESET
DELAY

ON

l SWITCH
INCREMENT
DELAY

l

| No

YES

TURN LIGHT
~ ON

A-8



Error Number

CO~NOUNHE W —

N -

APPENDIX B

Error Code Summary

Explanation

Out of memory
Statement used improoperly A
Unexnected character (after leqal
statement)

Syntax error
Value (format) error
FEnding quote missing from string
GO target line does not exist
RETURN without nrevious GOSUB
Expression, FOR-NEXT, DO-UNTIL

or GOSUB nested too deenly
NEXT without previous matchinag FOR
UNTIL without previous DO
Division by zero

B-1



APPENDIX C
ASCII Codes

The following table contains the 7-bit hexadecimal code for éach
character in the ASCII character set.

ASCII Character Set in Hexadecimal Representation

7-bit 7-bit 7-bit T=bit
Hexa- Char- Hexa- Char- Hexa- Char- Hexa- Char-
“decimal acter decimal acter decimal acter decimal acter
Number Number Number . Number
2 NUL 27 sP . 49 e 60
2l SOH 21 ! 41 A 6l a
a2 STX 22 " 42 B 62 b
723 ETX 23 # 43 C 63 c
24 EOT 24 $ 44 D 64 d
a5 ENQ 25 % 45 E 65 e
a6 ACK 26 & 46 F 66 f
at BEL 27 ’ 47 G 67 g
a8 BS 28 ( 48 H 68 h
79 HT 29 ) 49 I 69 i
AA LF 2A %* 4A J 6A i
fB vT 2B + 4B K 6B -k
acC FF 2C . 4C L 6C 1
2D CR 2D - 4D M 6D m
AE SO 2E . 4E N 6E n
aF SI 2F / 4F 0 6F o
10 DLE 33 (%} 50 P 70 o)
R DClI 31 | 51 Q 71 qQ
12 ne2 32 2 52 R 72 r
13 DC3 33 3 53 S 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 U 75 u
16 SYN 36 6 56 v 76 v
17 : ETB 37 7 57 ] 77 w
18 CAN 38 8 58 X 78 X
19 EM 39 Y 59 Y 79 Yy
1A Sus 3A t 54 Z TA z
IB ESC 3B L 5B { 7B
i1C FS 3C < 5C \ 7C
I1D GS 3D = 5D ] D ALT
1E RS 3E > 5E TE ESC
F us 3F ? - 5F TF DFL,

RUB




Definitions of Non-printing Characters

- o o — -

Character " Definition
NUL Null
SOH Start of Heading (also start of message)
STX Start of Text (also EOA-end of address)
ETX End of Text (also EOM-end of message)
FOT End of Transmission (aalso FND)
ENQ Fnquiry (also ENQRY, WRU)
ACK Acknowledae (also RU)
BFL Bell
BS Backspace .
HT Horizontal Tab
LF LTine Feed ’
vT Vertical Tab (VTAB)
FF Form Feed
CR Carriage Return
SO Shift Out
Sl Shift In
PLE Data Link Fscape
DCI Device Control |
pc2 Device Control 2
NC3 Device Control 3
pCca Device Control 4
NAK Negative Acknowledge
SYN Synchronous ldle
FTB End of Transmission Block
CAN Cancel (CANCL)
EM EFnd of Medium
SUB Substitute
ESC Escape
FS File Separator
GS Group Separator
RS Record Separator.
us Unit Separator
SP "~ Space
ALT Alt Mode
ESC Escape
DEL '
RUB Delete or Rubout




APPENDIX D

NSC Tiny BASIC Language Summary

STATEMENTS (excent for INPUT, maybbe used as commands)

NEW exor

NEN

RUN

CONT

LIST (exor)

REM anythina

CLEAR

[LET] var = exor

[LET) STAT = expr

{LET]) afactor = expr

Fstahlishes a new start-of-proqram address
equal to the value of “expr’. NSC Tiny
BASIC then executes its initialization se-
aquence which clears all variables, resets
all hardware/software stacks, disables in-
terruots, enables BRFAK capability from the
console, and performs the nondestructive
RAM search described in Chanter 2, Section
2. If the value of “expr/,points to a ROM
address, the NSC Tiny -BASIG proaram which
beqgins at this address will be automatic-
Ally executed. Program memory (includina
the end-of-program pointer used bv the ed-
ftor) is not altered by this command.

Sets the end-of-proaram pointer equal to
the start-of-program pointer so that a new
nrogram may be entered. If a program
already exists at the start-of-proaram
address, it will be lost.

Runs the current orogram.

Continues execution of the current program
from the noint where execution was sus-
oended (via a STOP, console interruot, or

reset).

Lists the current program (ootionally
starting at the line number soecified by

(exnr).
Hemark (no operation).

Initializes all variables to 4, disables
interrupts, enables BRFEAK capability
from the console, and resets all stacks
(GOSUB, FOR-NEXT, DO-UNTIL).

Assians exoression value to variable.

Sets the STATUS word equal to the least
significant byte of “expr’. When the
STATUS word is used to enable interruots
at the hardware, processing will be
deferred for one statement.

Sets the memory location pointed to by
*factor’ equal to the least significant
byte of “Zexpr”’,



{LET] sfactor = Wstring®

{LET] factor = factor
PRINT exopr
PRINT %string®

PRINT sfactor

IF expr [THEN]
‘statement(s)

FOR var = expr TO exor
{STEP exprl

NEXT var
DO

UNTIL exnr

GO TO expr

GOSUB expr

RETURN
INPUT var

INPUT sfactor

LINK expr

ON exprl, expr?2

Assigns a strina in RAM starting at the
address “factor’. Strings are terminated
by a carriage return.

Memory to memory string assignment,(cooy),
Prints the value of “expr”.

Prints the string.

. L3
Prints the string starting at the memory
address “factor”.

Remainder of the program line is executed
if exor is true (non-ze¥o).

FOR looo initialization. FOR loops may be
nested up to four levels deep.

FOR looo termination.

DO loop initiation. DO loops may be nested
up to eight levels deep.

DO loop termination.

Transfer control to statement number
“Zexpr’, :

Call subroutine at statement number “expr”’.
Subroutine (including those servicing in-
terruots) may be nested up to eight levels
deen,

Return from subroutine,
Read value from console into variable.

Read string from console into memory be-
ginmning at address “factor’.

Links to an assembly languaage subroutire
which begins at the address “exor”.

Interrunt processing definition. When
interrupt number exor! occurs, NSC Tiny
BASIC will execute a GOSUB beginnina at
line number exor2. If exor 2 is zero, the
corresponding interruot is disabled at the
software level., Interrupt numbers may be
1 or 2. Use of the ON statement disables
console interrunts (BREAK function). In-
terruots must also be enabled at the hard-
ware level by setting the Interrupt Enable
bit in the status register (using STAT=I,
for examble).



DELAY exor

STOP

OPERATORS

Arithmetic operators?

Relational operatorss

Loaical opneratorss
éfactor

FUNCT IONS
STAT
Top

INC (X), DEC (X)

MOD (X,Y)
RND (X,Y)

Delay for expr time units (nominally milli-
seconds, 1-1347A), Delay @ gives the max-
imum delay of 19040 milliseconds.

Terminate program execution. A messaqe is
nrinted and NSC Tiny BASIC returns to
COMMAND mode.

addition
subtraction

multiclication
division

CN% L+

less than

oreater than

equal to

no equal to

less than or equal
to <=

A tlva

>

areater than or
equal to »>=

logical AND AND
logical OR OR
logical NOT NOT

Read a byte from memory/perinheral, or
write a byte to memory/oerioheral.
Factor is the memory/peripheral Aaddress,

Status Reaister contents.

Too-0f-Proaram address (first available
memory address after end-of-nproqgram byte).

Increment or decrement a memory location
(non-interruptable for multiorocessing).

Modulus function (remainder of x/v).

Random number qgenerator (in interval x,v).

D-3



COMMANDS (cannot be used as statements)

NEW expr

NEW

RUN
CONT

LIST exor

Establishes a new start-of-program address
equAal to the value of expr., NSC Tinv

BASIC then executes its initialization
sequence which clears all variables, resets
all hardware/software stacks, disables in-
terrupts, enables BREAK capability from the
console, and performs the non-destructive
RAM search described in Section II. If

the value of expr noints to a ROM address,
the NSC Tiny BASIC orogram which begins at
this address will be automatically executed
and orogram memory (including the ;epd-of-
program pointer used by the editox) is not
altered by this command, -

NEW followed only by a carriage return sets
the end-of-proaram pointer equal to the
start-of-program nointer so that a new
oroaram may be entered, If a orogram
already exists at the start-of-proqram
address, it will be lost,

Runs the current oroaram,

Continues execution of the current nrogram
from the point where execution was sus-
pended (via a STOP, console interruot or

reset).

Lists the current orogram (ootionally
starting at the line number specified by

exor).

D-4



APPENDIX E

NSC Tiny BASIC Grammar

All items in single quotes are actual symbols in NSC Tiny BASICs all
other identifiers are symbols in grammar. The equals sign #="_, peans

"is defined as¥i

parentheses are used to group several items to-

gether as one item$ the exclamation roint, #!"*, means an exclusive -
or choice between the ftems on either side of its the asterisk, ",
means zero or more occurrences of the item to its lefts the plus
sign, ¥+*, means one or more repetitionss the question mark, #2,
and the semicolon, "1¥, marks the end

means zZero Oor one occurrencest

of a definition.

NSC Tiny BASIC - line = Immediate-statement

Immediate-statement = (Command

Program-line

Command

. e v |

’NEWZ Decimal=number?

! Program=line

! Statement-list) Carriage-returns

= [Decimal-number}l Statement-list Carriage-return)s

“LIST’” Decimal=-number?
IRU N.l
-*CONT~

Statement-list = Statement

Statement

=
[
H
]
.
]
H
!
.
]
.
!
.
!
.
]
.
!
.
1
.
'
.
!
H
]
.
]
H
1
H
!
.

(787 Statement) *%

’LETZ” ? Left—part /=’ Rel—-exp
?LET? ? #$7 Factor =7 (String ! “’$~7 Factor)

*G0’ (“T0O” ' “SUB”) Rel-exp

/RETURN”

(’PR7 -t PRINT”’) Print-list

?IFZ Rel—-expr “THEN”’ ? Statement-list

DO~
ZUNTIL” Rel-exn

FOR“” Variable /=7 Rel-exp

NEXT” Variable

’TO+ Rel-exp (*STFP’ Rel-exp)?

2INPUT” #$7 Factor ! Variable-list

2L INK” Rel-exp

+STOP~
YCLFAR”
*DFLAY” Rel-exn

’ON’ Rel-exn 7,7 ? Rel-exo

E-1

REM“ Any-Character-Fxceot—Carriage-Return *



Factor = (Variable t* Number ! Function ! “(< Rel-exp ”)’)%

[eft-part = (Variable ! 28/ Factor ' “STAT”) 1
REL-EXP = Term rel-on term
STRING = #%/ aAnv-character-except="-or-CR/%~7
\ IABLE = A7 ! 287 . ...7Z7
VARIABLE-LIST = Variable (/,7 Variable)*
PRINT-ITEM = (Rel-exp ! ’$“factor ! String)
PRINT-LIST = PRINT-ITEM (7,2 PRINT-ITEM)*(“37)?
Function = ZMOD”’” “(7 Rel-exp 7,7 Rel—exp 7)7
t RND” #(’ Rel-exp 7,” Rel-exp 7)7
! 2INC?” “2{(“’ Rel-exn “)7
! /DEC? 7{” Rel-exp *)’

3

Term = Factor Termop Factor

£-2



APPENDIX F

1U=7934: $J="0123456789ABCDEF "1 D=J+17: M=[+81 P=M+20t PR"CMQO" 3 .
ZINPUT$P: X=4352: Y=4£39%: Z=#FF : G=27 1 GOSUBS 01 C=T:GOSUBSO:F=T:P=P-1:5=73
BIFC=67Y=4352: 7=YIGOTO1LS ‘
4IFC=367=#8000:GOTOLS
SIFC=469X=#2000: Y=#87FF: G=31: GOTO1S
AIFC=70G=3231:60TO1S
7IFC=807Z=8192:G=25:GOTO1S
SIFC=76X=0:Y=1:7=0:5=1:G=238: GOTO1S5
PIFC=4SX=0: Y=0: 7=0:8=1:G=239: GOTO1S
1OIFC=688=2:G=42:G0TO15

11IFC=87Y=8191:5=2: G=44:60TO1S
12IFC=82X=0:7=0:5=1:G=47: GOTO1S

1ZPR"INFUT ERR":GOTO1

14PR"DONE" : GOTOL

1SN=1: IFF=#0GOTOG

16R=0

17GOSURS0: IF(T=#[NOR(T=47)0R(T=44)G0OT021
18T=T=42: IF(T<O)OR(T222)OR((T?)AND(T<17))GOTOLS
19IFT>9T=T-7
2OR=16#R+T:GOTOL17
Z21IFN=1X=R: GOTCO24
Z2IFN=2Y=R: GOTOZ24
2372=R
Z4N=N+1: IFN>SGOTOG
Z29IFT=#DGOTOLZ
26GOTOL A
P7FORI=XTOY: IFC=467@Z=R]
28IFeZ=RIGATARO
Z9A=7:1RB=@I: C=RZ: GOSLIB4S
F0Z=7Z+1:NEXTI:GOTO14
Z1IFORI=XTAQY: IFC=70@RI=Z
AZIF@T=Z50TOZ4

S3A=I11R=7:C=RI: GOSUR4S

ZANEXTI:GOTO14

SSFORI=0TO(Y~X)t@(Z+] )= @(X+I) IFR(H&L000+Z+])=@(X+1)GOTOZ7
BLA=H#HE000+Z+ 11 B= @(X+I) C=@(HE000+Z+1) 8 GD°UB4~
SA7NEXTI::GOTO14

ZEPR"TURN READER ON":LINK#SLD21:GOTO40
ZOPRYCONNECT RES-222":LINK#2L22

4O0TIFZ=1FR"CKSUM ERR":GOTOL

41GOTO14
4ZFORI=XTOYSTERP 1 &t H=I: L INK#ZEAE I EM=". . . . v e e venancnas"
43FORL=ITOI+15: H=@L s L INK#ZE3F
ABA4TIF (H>Z1)YAND(H#7B)@ (M+L~1I)=H
ASNEXTLePRSMINEXTI GQTOLS

ALLINKHSESF: GOTO14

7L INE®#EFLS: GOTO40
42PR"ADDRESS "3 tH=A: LINK#SE4E: PR"SB "s i H=B:LINK#SESF: PR IS "5 iH=C
AL INKHIERF ¢ PR""'RETURN

S50T=@F: P=PF+1: IFT=22G0TOS0
S1RETURN

F-1



APPENDIX G

REM
REM

#x#x 8070 UTILITY PROGRAM
##ux BY RDN PASGUALLINI, NS

REM
REM
REM
REHM
REM

This version
leaibilitw.

of the pProaram
It will not ru
lines do not have lime numb
version of the eroaram is
and will run properiv.

REM Initialize variables and Fr

J=7936 1 $J="0123456787ABCDEF "

CB=J4+17 2 M=0+4300 P42

FR "CMD"s

INFUT &P

X=4352 ¢ Y=4399 : ZI=#FF : G=27
C=T ¢ GOIUB S0 = F=T : P=P-1 @
REM Test command letter. settin
REM as needed for the entered c

1z
14

15
16
17
12
19
=0
21
24
25

26
-

it

=,
o

IF =47 Y=4352 @ ZI=Y @ GOATO 1S

IF C=8& Z=#2000 ¢ GOTO 15

IF C=6&% X=#3000 & Y=H2T7FF & G=3
IF C=70 G=31  GOTO 15

IF C=20 7=81%22 ¢ G=35 : GOTO 15
IF C=76 X=0 & Y=1 & ZI=0 & S=1 3
IF C=&5 X=0 & Y=0 & 7Z=0 & S=i :
IF C=48 S=2 ¢ G=42 : GOTO 15

IF $=587 ¥Y=8191 @ G=2 @ G=44 ¢ G
IF C=82 X=0 : I=0 & S=1 : G=47

REM Error messagses

FR "INFUT ERR" ¢ GOTO t

FR "DONE"™ & GOTO 1

REM Frocess command orerands

IF F=#D GOTO G

N=1 :
R=0
GOSUR S0 ¢ IF (T=#0) OR (T=47)

T=T-4& = IF (T<0) OR (Tra22)
IF 729 T=T-7

OR

R=1&%¥R+T ¢ GOTOQ 17
IF H=1 X=R : GOTO 24
IF N=2 Y=R : GOTOQ 24
Z=R

N=N+1 : IF N>Z GOTO G
IF T=#D GOTO 13
GOTO 14
REM Frocess "C", "V" Commands
FOR I=X TO Y

IF C=4A7 @ZI=@]

IF @Z=e1 GOTO 320

33646 3% 3
O s

tias heen expanded ftor
as shown since some
The compressed
identical

I
ers.
unctionally

ampt for command

! GOSUR S0
=32 :
a3 default values
ammand.
: REM "C"
: REM "y
1 ¢ GOTO 15 : REM "E"
: REM "F"
: REM " Fu (1]
G=38 @ GOTO 15 ¢ REM "L
G=32% @ GOTO 1% ¢ REM “AY
: REM 17 [l "
oTo 15 : REM "W"
T GOTO 1S : REM "R"

OrR (T=44) GOTO 21
((T>Z) AND (TI17)) GOTO 13



32
33
34

)
Q

40

43

44
45

a¢

47

A=7 : R=@] : C=@Z : GOSUER 48
Z=7+1

NEXT I

GOTO 14

REM Proacess "E", "F" Commands

FOR I=X TO Y

IF C=70 el=Z

IF eI=Z GOTO 34

A=] : B=7Z : C=€I1 : GOSUE 48
NEXT I
GaTa-14

REM Process "P" Command

FOR I=0 T (Y-X)
e(Z+I)=e(X+I)
IF @(#4000+7Z+1)=@(X+1) GOTOQ 37
A=#L000+Z+1 : B=@(X+I)
C=@( #L000+Z+]I) : GOSUE 48
NEXT I
GOTO 14

REM Froacess "I." Command

FR "TURN READER ON" : LINK #8D31 : GOTO 40

REM Froacess "A" Command

PR "CONNECT RS-232" ¢ LINE #&Dhaz

REM Fost processineg for "L", "A" Commands

IF Z=1 PR "CES3UM ERR" = GOTO 1
GOTO 14

REM Frocess "D" Command

FOR I=X T Y STEF 16

H=T ¢ LINK #8E4E ¢ $M="... .o nnnunan

FOR L=1 T I+15
H=eL : LINK #2EZF
IF (H>31) AND (HI#7H) e(M+L~I1)=H
NEXT L
FR M
NEXT I
GOTO 14

REM Frocess "W" Command
LINK #ZESF ¢ GOTO 14
REM Frocess "R" Command

LINE #2F&5 @ GOTO 40

REM Subroutine: Frint verification error

G-2



4% PR "ADDRESS "3 @ H=A : LINK #SE4E
FR "SE "3 : H=R : LINK #SESF
PR "I5 "3 @ H=C

49 LINK #SE3F : PR " : RETURN

REM Subroutine: Get next character from input buffer

S0 T=eF : P=P+1 : IF T=32 GOTO SO
51 RETURN



2070 ASSEMELER REV-A O0&/0&/79
AZE070 2070 UTILITY suBrouTines ~ APPENDIXH

R R R

[ars
n)
-

OO00

2F

o un w8 u

. un

LTITLE ASR070, 7 8070 UTILITY SUBROUTINES”
SLIST Q2ZF

TASSYLANG” FROGRAM
BY
RON FPASCIIALINI
NATTONAL SEMTICONDUCTOR

TASTEYLANG S INCLUDES ALL OF THE ASSEMBLY  LANGUAGE .
SUBROUTINES REGQUIRED BY THE NIBLY PROGRAM “UTILITY".

. =0E0E

« INCLL ASCILD



2070 AZSEMBLER REV-A " Q&/04L/79

ASSO70 2070 UTILITY SUBROUTINES
ASCILD

.PAGE  “ASCILD"

“ASCILDY DOWNLDADS AN ASSEMBLY LANGUAGE LM OR NIBLEZ SOURCE
PROGRAM AT 4200 BAUD IN RESPONSE TO THE COMMAND “A“. IT 1=
ALSO ENTERED TO LOAD AN ASSEMBLY LANGUAGE LM FROM FAFER
TAPE AT 110 BALD IN RESFONSE TO THE COMMAND “L“. FOR BOTH
COMMANDZ  THE DOWNLCOADEDN PROGRAM  MUST  RE IN THE FORM OF
ASCIT  CTHARACTERS. THIS SUBROUTINE CALLE THE NIBLZ
SUBROUTINE “GECO-, ‘

VE MR G WR UP R g

TWO ASCII  CHARACTERS EGWALT ONE  BYTE., WITH THE MOET
SIGNTFICANT NIBBLE (MSN) LOCATED AT THE LOWER MEMORY
ADDRESS. THE-LEAST SIGNIFICANT NIBRLE (LSN) IS LOCATED AT
THE HIGHER MEMORY ADDRESS.

L P T RRVT VT ]

THE FILE FORMAT FOR A DATA RECORD IS AS FOLLOWS:

1) START OF RECORD CHARACTER (X702)
2) RECORD LENGTH, X 01-X"FF, (2 ASCII CHAR)
2) MESR OF RECORD LOALDN ADDRESS (2 ASCII CHAR)
4) LER OF RECORD LOAD ADDRESE (2 AZCIT CHAR)
S) RECORD TYFE (2 ATZCII CHAR)
(DATA RECORD=X 00, END RECORDO=X"01)
&) 1-23% DATA BYTES (2 ASCII CHAR FER BYTE)
7) RECORD CHECKSUM OF THE HEXADECIMAL
EQUIVALENT OF ALL BYTES IN 2) THRU &)
IN 2% COMPLEMENT FORM

NE G ME UE NE NG NE UR &R uR e ue

THE BALID RATE FOR DOWNLOADING CAN BE 110 OR OR 4200  BALID,
DEPENDING UPON THE SUBRROUTINE ENTRY POINT.

[CT VT

5 THE “ASCILD SUBROUTINE RESUIRES € BYTES OF STACEKE MEMORY &
5 DESTROYS A, E, P2 & P3. THE NIBLZ SUBROUTINE “GECO 1%
3 CALLED.

NISFLACEMENTS RELATIVE T P3:

0000 NEBYTEZ = O 5 NUMBER OF DATA RYTES IN

3 DATA RECORD
OO0t MCESUM = 1 5 CHECKESUM FORMED IN MEMORY
0002 RECTYF = 2 3 RECORD TYFE
0003 MEN = s HMOST SIGNIFTICANT NIBELE

s OF & BIT RYTE IN “"GETRYT-

5 SUBROUTINE
0004 CTR = 4 5 CTR FOR DELAY € END OF SUEBR
OO0 BYTCTR = @ 5 BYTE CTR FOR "HEXZAS” ZLIBR

s DISFLACEMENTS RELATIVE TO P2:

CONTENTS OF NIBL: VARIABLE
0 POINTS TO MEMORY LOCATION
WHERE AZCII EQUIV OF /4

DIGIT HEX NUMBER I3 STORED.

O00A SET . &

N8 e uE uR



S5070

ASSEMBLER  REV-A

OL/04L/77

AZS070 8070 UTILITY SUBROUTINES

AZCTILD

anel
2034

2024
shaa
SDeR
snsn
SDEF
snez
sSnos
= (R
ahes
2094

S09R

0O0O0E

0032

FFOO

FFEC

<
=0
Lt
(V]

2435202
SBDEC

7405
240400
SOEC:

ZYFE

04
0410
&CFER
40

E40Z

ASCILD:
B110:

B4300:

NEXT:

(W N

NSTOF1:

FDELAY

GECO

LI
57

BRA
(1]
ST
AN
Lo
JER
Lo
AND
Bz
(A

XOR

H. 14

ZRAM, OFF 00

OFFELC

EA,=X"232
EA, FDELAY

NEXT

EA, =04
EA,FDELAY

n

2 =0FE

(%)

P2, =SRAM
GECO

A»S
A»=010
NSTOF1
A-E

A, =02

“e uR uR s

4R YE wa <98

~E Je. eR. N8 um

ME NE VB G ue uE un ue “e e

-

-u

- C LT

ue us um

ue -s

TR e us e -8

e

M= CHAR IS AT LOWEST MEMORY
ADDRESZ, TO WHICH D POINTS
CONTENTS OF NIELZ VARIABLFE
H EQUAL STARTING ADDRESS OF
EACH DATA RECORD
DISPLACEMENT FOR RECORI
STARTING ADDRESS

(NIBLZ? VARIABLE X)

BAUD RATE INDICATOR FLAG
WHICH ALLOWS PRINTOUT OF
STARTING ADDRESS OF EA&CH
RECORD AT!H10 BAUD ONLY.
(NIBL2-VAFIABLE Y) @
CHECKSIIM ERROR FLAG

(NIBLZ2 VARIARLE 7)

STARTING LOCATION
OF SCRATCH RAM TO
WHICH P2 POINTS

LOCATION WHERE DLY CONST
FOR 1 BIT DLY IS STORED
(REGUIRED BY NIRBLZ “GECO”
SLUBROUTINE)

ENTRY POINT FOR

NIBLZ -“GECO” SUBROUTINE

BAUD RATE =110
STORE DELAY COUNT FOR 1 BIT
DELAY @ 110 BAUD

CONT INUE

BAUD RATE =4800

STORE DELAY COUNT FOR 1 BIT
LELAY @ 4800 BALD

DISABLE INTERRUPTS

FOINT F3 TO SCRATCH RAM
SCII CHAR--2A REG & E REG
SAMPLE SA & WAIT UNTIL
ZA=1. (PARITY BIT=1 OR

STOP BIT=1 HAS OCCURRELD)

A=
50

SA=1
ASCII CHAR-->A REG

LOOF IF CHAR & X702



807QkASSEMBLER REV~A 0&/0&/7%
AS8070 2070 UTILITY SURROUTINES

H-4

o8 we s

ASCILD

8non 7CF3 ENZ LOOF1 3 (START 0OF RECORD)

3 X702 FOUND
SO9F Z0168E JSR GETBYT : GET RECORD LENGTH (IN HEX)
80AZ CROO ST A.NEYTES.P3 3 AND SAVE IT
S0A4 CBO1 ST A, MCKSUM,P3 5 INITIALIZE MEMORY CHECKSUM
80A& -20168E JSR GETRYT : GET MSE OF LOAD ADDRESS
anaFon PUSH A ;. (ADDRH) &S&AVE ON THE STACK
SDAA F301 ADD A, MCESUM, FE 3 UPDATE MEMORY CHECKSUM
SnAC CBOL =T A, MCKSUM, P2
EDAE ZO14SE JSR GETBYT : GET LSE OF LOAD ADDRESS

; (ADDRL) IN A REG % E REG
Z0B1 F301 ADD A, MCESUM, P2 5 UPDATE MEMORY CHECKSUM
SOBRS CRO1 ST A, MCESLIM, F3
SORS 32 POP A s ADDRH--3A REG
SOR& 01 XCH A.E s ADDRH-->E REG. ADDRL-->A REG
2DBR7 240010 LI F2,=01000 : POINT P2 TO NIBL2 VARIABLES
SORA BIZZE AL EA, X.FZ2 s ADD DISPL (NIBLZ VAR X)
ENRC SA0E =T EA.H, P2 s SAVE RECORD STARTING ADDR

s IN NIELZ VARIABLE H
SOBE 201638E JER GETEYT s GET RECORD TYPE IN A REG
soici1 CROZ =T A RECTYF,FZ 5 & E REG & SAVE IT
BN FRO1 ADD s UPDATE MEMORY CHECKSLM
BNCS CROL ST
2007 40 LD AE s RECORD TYPE--2A REfG
sOCs 7020 BNZ NOTODTA s IF RECORD TYPE = O

s IT IS5 A DATA RECORD

: A REG=0. RECORD IS

: A DATA RECORD

: IF BAUD RATE=110 PRINT

$ OUT RECORD STARTING

: ADDRESS
Snca 2230 LD EA,Y,F2 s+ IF Y=1 BAUD RATE=110
2OCr E401 XOR A, =01
ZOCE 7C0A BNZ DTAREC

BALII RATE=110
PRINT QUT RECORD
STARTING ADDRESS



2070 ASSEMBLER REV-A  0&/0&/7%9
ASE0O70 2070 UTILITY SUBROUTINES

SCILD
S0 18 CALL & 5 FRINT CR/LF TO FUT RECORD
5 ADDRESE ON A NEW LINE.
$ (NECESSARY BECAUSE “GECOH ,
$ NOT “GETC”, MUST BE USELD.
SRl ZZ112E FLI FZ2,=A0RMSG $ POINT PZ TO 15T CHAR OF
, $ ADDR MSG & SAVE OLD PZ
=ph4 1E ' CAaLL 14 5 PRINT OQUT THE MESSAGE:
5 "ADDR=X-"" u;JHQUT CR/LF
enns 204DEE JER FRT4 % FRINT ouT 4@EHAR ASCTIT
‘ s=ERUIV OF 1464 BRIT HEX
5 STARTING ADDRESS,
s WITHOUT CR/LF
zineg 12 ALl = $ PRINT CR/LF
sShw Sk FPOF F2 H RESTDRE oLD PZ
=20DA 82Z0E DTAREC: LI EA.H.F2 5 RECORD =TART ADDR--ZEA REG
=S0DC 44 LI FZ,EAR 5 RECORD START ADDR~-3F2
D000 Z0168E NXTBYT: ISR GETBYT 3 GET DATA BYTE
SDED CEO1 ST A.@+1,FZ 3 STORE BYTE & INCR PTR
SOEZ F301 ALD A-MCESUM.FZ2 5 UFDATE MEMORY CHECKSUM
2DE4 CRO1 ST A, MCEkSUM, F2
SLES 9BOO Lo "ASNBYTES.F2 3 DECREMENT BYTE COUNT
SDES 7CF2 BNZ NXTEYT 5 & LOOP IF COUNT <> O
BOEA ZO163E NOTDTA: JER GETBYT $ GET RECEIVED CHECKSUM
sDED OA FLISH A 3 SAVE CHECESUM ON STACK
SDEE 18 CALL & s PRINT CR/LF
SDEF 28 FOF A 5 RESTORE CHECKSWUH TO A REG
aOF0 F301 ADD A, MCKSUM, P2 5 ADD MEMORY CHECKSZUM
sSDFZ 6003 EZ RECTST 5 TEST SUM FOR ZERO
5 SUM <> 0. CHECKSUM
s ERROR HAS OCCURRED
BOF4 Z&0010 LD Fz,=01000 $ FOINT P2 TO NIBLZ VARIABLES
SOF7 240100 LD EA, =01 $ SET NIBLZ VARIABLE Z=1
20FA SAZZ =T EA,Z.F2 5 TO INDICATE CHECKSUM ERROR
SDFC C302 RECT=T: LD A-RECTYF.FZ 3 LOAD RECORD TYFE & TEST
SIFE E401 XOR A,=01 s FOR END RECORD = X701
SEQQ 7020 BNZ LOOF1 GET NEXT RECORD IF CURRENT

“e um

RECORD IS NOT AN END RECORD



70 ASSEMBLER REV-A

QbL/OESTY

2070 8070 UTILITY SUBROUTINES

“ILD

EOQO2
EOQ4

SEOA
SEOS

BEOB
SEOD

2EOF

EE10 &

SE11
2E14

C49é
CRO4

CAFF  L1:
ZOF78F

FBO4
7CF7

12

b1 I

4144 ADRMEG:
A7

(M
5T

Lo
SR

oo
ENZ

CALL

RET

-ASCTI
.BYTE

RN, =150
A,CTR.FZ

A, =0FF
DELAY

A, CTR,F2
L1

=

“ADDR="

<+ 020

H-6

NP ME UE BT uE VME 9B WS uE

uE ue wp us

~E un

LY )

“e ww

1]

CURRENT RECORD = END RECORD.
DELAY APPROX .54 SEC IN ORDER
TO SLEW OFF NULLS AT END OF
END RECORD. THIS WILL INSURE
THAT SA=1 UFON RETURN TO NIBLZ
PROGRAM @ 4800 BAUD. THIS
DELAY IS ONLY REQUIRED AT 4800
BAUD, BUT DOES NOT HAVE ANY
DETRIMENTAL EFFECT AT 110
BALD, USING & TTY WITH A s
READER RELAY. e
SAVE # OF TIMES “DELAY”

WILL BE CALLED

LOAD DELAY COUNT
DELAY FOR 3609 LUSEC

DECREMENT & LOAD LOOF COUNT
& REPEAT IF LOOP COUNT < O

FRINT CR/LF @ END OF RECORD
(FOR 110 BALD USING TTY)

RETURN

ADDRESS MG FOR 110 BALID



3070 ASSEMBLER REV-A 04704/
AZEO70 2070 UTILITY SUBROUTIN
ASCILD - GETBYT

SEL17

ZEL1A
SE1EB
SELD

SELF

203209

Qb
D410
LHOFB
40
2Doz
7402
FC37
OE
QE
OE

OE

CBO3

'L 20320V

SEZQ

I
2E32

C) él
0410
ACFR

.F'A

“GETBYT”
SINGLE 8

- ue

“s uw

OF STACK

-e

THE BYTE
THE E REG

~u s

e

[
2

GETBYT: JSR

NSTOFPZ: LD
AND
BZ
LD
BWNID
BRA

ATOF1: SUB

SHIFT1: 5L

NETOFZ:s LD
ANI
BZ
Lo
BNII

BRA

79
ES

GE “ASCILD - GETBYT”

GETS TWO ASCII CHARACTERS AND COMBINES THEM INT

BIT BYTE.

MEMORY, CALLS THE NIBLZ SUBROUTINE ~GECO-,

DESTROYS REGISTER A ANDI REGISTER E.

WHILE 15 GOTTEN IS5 RETURNED IN -THE A REGISTER

ISTHR.

A5
A,=010
NZTOFZ2
A.E
ATOF1
SHIFTIL

A, =X"37

ORNIBL

H-7

SUBROUTINE PARAMETERS INCLUDE:

DISFLACEMENT RELATIVE TO F2

-e

-e ue ae -y ue un 1]

-y

ua aw

us us wR LT} e NS wE e ub

-

-

I

GET ASCII EGUIV OF MSN
IN A REG & E REG

SAMFLE 2A & WAIT UNTIL
SA=1. (PARITY EBIT=i OR
STOF BIT=1 HAS OCCURRED)

SA=1 :
ASCII EQUIV OF MSN-->A REG

TEST FOR X7 30<=MSN«<I=X"Z%
X 00<=A REGL=X"0%. CONTINUE

CONVERT ASCII A THRU F
TO HEX A THRU F

SHIFT MSN 4 BITS

TO THE LEFT. PLACING
ZEROS INTO LSN
FOSITION

SAVE MSN

GET ASCII EQUIV OF LSN
IN A REG & E REG

SAMPLE SA & WAIT UNTIL
SA=1. (FARITY EIT=1 OR
STOF BIT=1 HAZ OCCURRED)

SA=1
ASCII EQUIV OF LSN-->A REG

TEST FOR X 20{=LENI=X"3%

X~ 00:<=A REG:=X"0%. CONTINUE

1A

“GETBYT” REQUIRES 1 BYTE OF SCRATCH RAM (MSN), USES 4 BYTES

AND

AND



070 ASSEMBLER » REV-A

Q&/706/777

EB8070 8070 UTILITY SUBRROUTINES

ISCILD

19

- GETBYT

8EZY FC37

E3E DBOZ

8E3D 43

S8E3E SC

ATOF2:

ORNIBL.:

SUR

OR

LD

RET
. INCLD

A, =X"37

HEX2ASCT

-e

-n

uE e

e

CONVERT ASCII A THRU F
TO HEX A THRU F

OR MSN WITH LSN TO
FORM & BIT CHARACTER

PUT CHAR INTO E REG

RETURN



2070 ASSEMEBLER REV-A 0&4/06/7%
ASS070 TO70 AJTILITY

HEXZASCI

SEZF
SE42
=E44
=E47

SE4S
ZE4A

SE4C
SE4E
SES]
SEDD
SERA

2ES7
SESY

SESRE
SESD

SESF

260010
22064
B40Z00
46

401
CRO>

7400
260010
g20L
B40500
4¢

C402
CROY

C4A0
CEFF

220010

. FAGE

NE WuE e

AFPFENDED.
DEFENDING

REGISTERE
"CONBYT ",

T LT )

NIBLZ

NME AR NI g8 we

“s we ug

STRING.
HEXZASCT ¢
FRTZ: LD
LD
ADD
LD

L0

BRA
FRT4: LD
.o
AL
Lh

LI
&7

INIT: L0

FLI

SUBROUT INES

THEX2ASCT 7
EGUIVALENT AND

WILL

“CONNIE"»

THE NIBLZ
NUMBER IS STORED

"HEXZASCI”

E: T, &

WHICH

FZ,=01000
EA.TL.F2
EA, =2
F2Z.EA

A, =1
A, BYTCTR, P2

INIT

P2, =01000
EA. LI, F2
EA,=5
Fz.EA

A=z

A BYTCTR,P=

A, =0A0
Av @."1 ? F'.:.'

PZ,=01000

CONVERT A  HEX
FRINT THE NUMBER WITH A TRAILING SFACE
2 DIGIT & 4 DIGIT HEX WNUMBERS MAY BE CONVERTED
UPON THE ENTRY POINT.

THE SUBROUTINE REGUIRES 6 BYTES OF STACE MEMORY,

R
La ?

& NIBLZ CALL 14 (PRTLN).

THE HEX NUMBER T3 BE CONVERTED IS ASSUMED TO BE
VARIAELE H,

THE OUTPUT STRING CONSISTS OF &
CHARACTERZ FOR A 2 DIGIT HEX NUMBER,
FOR A 4 DIGIT HEX NUMRER.

MEMORY LOCATIGN, 1=

-

u% Ja

'ty

-

“e un uw ~n

-

e

-

o um W

NUMEBER TGO IT=

AND CALLS THE

STORED  IN

AND “THE ASCII EQUIVALENT OF THE HEX
IN THE MEMORY LOQCATION FOINTED TO
VARIAELE @

THE

POINT P2 TO NIBLZ VARIABLES
LOAD CONTENTE OF NIBL2Z VAR I
ADD DISFL TO END OF STRING

+ 1
END OF STRING LOC + 1--3FZ2

STORE # OF BYTES TO CONVERT

CONT INUE
FOINT F2 TO NIBLZ VARIABLESD

LOAL CONTENTS OF NIBLZ VAR L
ADD DISPL TO END OF STRING
+ 1

END OF STRING LOC + 1—-32F2

STORE # OF BYTES TO CONVERT

STORE ASCIT "SPY WHICH WILL
AFFEAR AT END OF FRINTED

STRING, WITH EB7=1 TO DENOTE
END OF STRING. DECREMENT F2

FIOINT Fz2 TO NIBLZ VAR ¥
SAVE oD F2

ASCIT

DESTROYS
SUBROUT INES

BY THE
ASCTT
AN S AZCTII CHARACTERS
THE Ms=D IS STORED AT THE LOWEST
BEGINNING OF THE OUTRFUT



2070 ASSEMBLER REV-A 06706777
ASEO70 8070 UTILITY SUBROUTINES

HEX2A5CT
QE4S S20E LD EA-H,FZ i LOAD HEX # TO EE CONVERTED
GELE 09 LD T.EA : TO ASCII &% SAVE IT IN T
SELS SE POF Pz s RESTORE OLD F2
8E46 ZOTZSE CONVLI:  JSR CONBYT s CONV HEX BYTE IN A REG TO

. $ 2 ASCII /CHARACTERS, STORE
: THEM IN THE OUTPUT STRING
: & DECREMENT P2 BY 2
BELY FBOY DLD A,BYTCTR.P3 5 DECREMENT BYTE COUNT
SE4E 4C04 . BZ « PRINT s & EXIT IF COUNT = O
EELD OB CONVZ2: LD EA.T s TRANSFER 14 BIT HEX
SELE 40 LD A E 3 # TO BE CONVERTED TO
s TO EA REG,» % PLACE
: MSB IN THE A REG
BELF ~74F5 BRA CONV1 $ CONTINUE
SE71 1E PRINT: CALL 14 : PRINT OUT ASCII EQUIV
: OF HEX # WITH TRAILING
s SPACE AND NO CR/LF
SE72 SC RET s RETURN

H-10



5070 ASSEMBLER REV-A 0&/04/7%
ASE070 8070 UTILITY SUBROUTINES
HEXZASCT - COMBYT

. FAGE "HEXZASCI — CONBYT-

“CONBYT” CONVERTE THE HEX BYTE PRESENT IN THE A REGISTER TO
ITS ASCII EQUIVALENT. AND STORES THE TWO ASCII  CHARACTERS
CREATED IN THE MEMORY LOCATIONS POINTED TO BY F2. P2 MUST
BE SET TO AVAILABLE RAM BEFUORE THE SUBRODUTINE IS ENTERED.

AND P2z I35 DECREMENTED BY 1 WHEN EACH ASCII CHARACTER IS
STORED.

L L]

“s wE uu uh e

THE SUBROUTINE DESTRQYS REGISTERS A AND E,» AND IS EXITED
WITH F2 FOINTING TO° HE MS ASCII DIGIT, WHICH IS STORED AT
THE LOWER MEMORY LOCATION. ‘

~8 wuE uw

BE7Z 42 CONBYT: LD E.A 3 SAVE BYTE TO BE
: s CONVERTED IN E REG
SE74 ZO7FEE JER CONNIEB 3 CONVERT & STORE ASCII
s EQUIV OF LS NIBELE
BET77 40 LD AYE s RESTORE HEX BYTE TO A REG
SE73 3C SR A 3 SHIFT MS NIEEBLE TO LS
SE7Y 30 SR A 3 NIBBLE POSITION
SE7A 2C SK A
SE7B 3G SR A
SE7C Z07FSE JER CONNIB s CONVERT & STORE ASCII
o s EGUIV OF M5 NIEBRBLE
&E7F SC RET s RETURN
SES0 DAOF CONNIE: AND A, =0F s MASKE OFF LS 4 BITS
ZESZ FLOA SUR A, =0A s SUBTRACT X"A=10
SER4 A404 BF GELO 3 TEST RESULT
5 NIBRLE WAS O THRU 9
BESE FA43A LT1O: ALD A=X"3A s CONV NIBBLE TO ASCII
2ESS 7402 BRA STORE $ CONTINUE
s NIBELE WAS 10 THRU 15
SESA F441 GE10: ADD A,=X"41 s CONV NIBBLE TQ ASCII
SERC CEFF STORE: ST A.@-1,F2 s STORE ASCII EQUIV OF
s NIEBRBL.E & DECR F2Z EY 1
SERE BC RET 3 RETURN
20 CINCLD WRTAFE

H-11



8070 ASSEMBLER REV-A 0&/06&6/72
ASE070 8070 UTILITY SUBRRCUTINES

WRTAPE

ODO0

OO0z
0003=

0004

0005

O0ZE

Q0320

“e we as

S NE dE S UE ST GE NS NE NE B SR UB N ME MR NE NS U VR us ¥R uE ue

~n

. FAGE “"WRTAPE ~

"WRTAFE“ INTERFACES THE INS2073 TO A CASSETTE RECORDER FUOR
STORAGE/RETRIEVAL OF USER PROGRAM=. FROGRAMS WHICH MAY BE
SAVED INCLUDE NIELZ FROGRAMS AND ASSEMBLY LANGUAGE LM~ S,

WHEN THE “WRTAPE” SUBROUTINE IS USED IN CONJUNCTION WITH
THE NIBLZ2 FROGRAM “UTILITY” ., THE USER CAN SPECIFY THE BLOCEK
OF RAM TO BRE WRITTEN ON THE TAPE. THE TAPE FORMAT IS5 AS
FOLLOW=:

1) AFPROXIMATELY S SECONDS OF 0% WHICH SERVE AS LEALER
S0 THAT THE TAPE SPEED HAS TIME TO STABILIZE ON
FLAYRACK. THE LEADER ALZD ALLOWS THE RECEIVING
FROGRAM TO PROPERLY SYNC TO THE CLOCK PULSES.

2) ID CHARACTER=X"AT WHICH IDENTIFIES THE START OF
EACH RECORD.

3) A BYTE WHICH SPECIFIES THE RECORD TYFE:

DATA RECORD=X"01 ENDO RECORDO=X"0Z

4 A BYTE WHICH IDENTIFIES THE TOTAL NUMBER
OF DATA BYTES IN EACH RECORID, N.

N CAN RANGE FROM 1 TO 254&. (0 - 255)

5) THE LSB OF THE STARTING ADDRESS WHERE THE DATA
RECORD IS TO BE STORED.

&) THE MSE OF THE STARTING ADDRESS WHERE THE DATA
RECORD IS TO BE STORED.

7) 1 - 256 PROGRAM BRYTES

8) A SINGLE BYTE CHECKSUM (IN 2% COMPLEMENT FORM)
OF ALL BYTES CONTAINED IN THE RECORD EXCEFT FOR
THE ID CHARACTER

DISPLACEMENTS RELATIVE TO P3:

NE=REMAINING # OF PGM BYTES
TO BE WRITTEN (2 BYTES)

N=# DATA BYTES IN DATA REC
CESUM IS THE RECORD CHECKSUM
ACCUMULATED IN MEMORY

BIT COUNTER FOR

THE “WRCHAR™" SUBROUTINE
LEADER COUNTER FOR THE
SNOLDR ROUTINE (2 BRYTES)

.SET NE, O

. SET N> 2
.SET CKELM, 2

<BET WRCTR, 4

UE NE U MR uE uE ue ue

LBET LODRCTR. S

e

DISPLACEMENTE RELATIVE TQ P2:

LOC OF NIBLZ VARIABLE X
(MEMORY STARTING ADDR)
LOC OF NIBLZ VARIABLE Y
(MEMORY ENDING ADDR)

CSET X> 46

JSET 1.4

~e R uR ue



2070 ASSEMBLER REV-A 06/0&/79
AZZO70 2O70 UTILITY SUBROLITINES
WRTAFE

FFOO LSET ERAM, OFF00 3 SCRATCH RAM TCQ WHICH FZ
3 POINTES FOR THE “WRTAPE*
3 SUBROUTINE
2ESF 2%FE  WRTAPE: AND %, =0FE s DISABLE INTERRUFTS
SE®1 2700FF LD FZ, =5RAM 3 FPOINT PE TO SCRATCH RAM
BET4 IYFR AND S, =0FB 3 SET Fz=0
RED6 2RO OR s, 208 1 SET Fa=1
5 CALCULATE AND STORE NB = # OF DATA BYTES TO BE WRITTEN
SEPS 2230 Lo EA.Y.PZ2 ; LOAD ENDING ADDRESS
_ 3 (NIBL2 Y) INTO EA REG
SEYA BAZE SR EA.X.P2 5 SUBTRACT STARTING
$ ADDRESS (NIBLZ X)
2E9C B40O100 AL EA,=01 s ADD 1
ZEPF SBOO =T EA.NE. P32 3 SAVE NE
3 SET PTR F2 = STARTING ADDRESS WHERE DATA IS5 TO BE STORED
SZEAL BZ2ZE LDF2: Lo EA. X, F2 3 LOAD STARTING ADDRESS
s INTO EA REG
SEA3 46 Lo FZ,EA 7 SET P2Z=5TARTING ADDRESS
$ SEND LEADER ROUTINE
$ THIS ROUTINE TRANSHMITS APPROXIMATELY S SECONDS OF 0%
3 (APPROX 2500 @ S00 BAUD) T4 ACT AS LEADER. ALLOW THE TAFE
3 TO SETTLE ON PLAYBACK, AND T ALLOW FROPER SYNC TO THE
5 CLOCK PULSES.
3 SNDLDR ROUTINE PARAMETERS:
04 - SET LORCNT, 2500 3 # OF CLE PULSES IN LEADER
QOSE «SET BITOLY, %4 3 DELAY COUNT TO PRODUCE 1
5 BIT DELAY
ZEA4 .24C40% SNDLDR: LD EA, =L DRCNT 3 LOAD LEADER COUNT
BEA7 SROS ST EA. LDRCTR.FZ 3 AND STORE IT
SEAY 2OT33F LOOPA: ISR PULZE 3 WRITE CLE PULSE
SEAC C45E LI A, =RITDLY $ LOAD DELAY COLUNT
SEAE 20F72F JER DEL.AY 5 DELAY 1 BIT TIME
RERL 8305 LI EA,LDRCTR,F2Z 3 LOAD LEADER COLINT
SEB3Z RCOLO0 SR EA, = 5 DECR LEADER COUNT

H-13



2070 ASSEMBLER REV-A "06/70&/7%
ASZ070 8070 UTILITY SUBROUTINES

WRTAPE

SEBé&

SEBE
8EBY

SERB
SEBRE
SECO
SEC1

BECZ
SECS
SECT
BECA
RECC

SECE
SEDO

sehz
SENS
BED7

SEDw
SEDR
SEDD

SEDF
BEE1

SEE4
SEEA

SEED
SEER

SEEE
SEEF

SEF
SEF 4

SEF&
- EEF7
SEFS

2EFR
SEFD

=2EFF
SFO03
arFo4

8BOS

tt]
7CEE

S84FF00 RECORD:

BBOO
3F
L40B

2300
CROZ
240000
SROO
7408

460
CROZ

8300
RBCOOOL
2ROO

CRoz
F4a01
CRO3

CAAL
20298F

C401
20298F

Ca02
2O29EF

e
P

2029EF

F203
CBO3

-y
S

40
20298F

Fzoz
CBROZ

Cée0l
20298F
F203

LEZES:

GT255

NXT1:

&T

OR
BNZ

LD
SUB
RRL
| 33

LD
=T
LD
=

BRA

LD

Lo
SUB
8T

Lo
AnnD

Pd
o}

LD
JER

(A
JER

Ln
JER

LD
J5R

ADL
=T

Ln
LD
JER

ADD
ST

Lo
JSR

ADD

EA,LDRCTR,F&

ASE
LOOPA

EA,=255
EA.HNE.F3
A

GT255

EA.NB,P3
A.N,PZ
EA"=0
EA.NE,F3
NXT1

A=0
AN, P32

EA.NE,F3
EA,=256
EA.NE,P3 -

AN.F3
A, =01
A, CKEUM,P3

A,=X"AS
WRCHAR

A.=01
WRCHAR

AN F2
WRCHAR

EA.FZ2
WRCHAR

A CESUM, FS
A, CESUM, F3

ER.FP2
AE
WRCHAR

A, CESLIM, P2
A, CKSUM, F3

A,e+1,F2
WRCHAR
A,CESIM, F3

e

e ue

MR NE vE e

e v va ~8 e ~a un o un -e g LT RERNY 'L Y SN ~u oy s - LT BT BT ]

TR )

EYT SRR BN 1

STORE NEW LEADER COUNT

TEST FOR LEADER COUNT
=0.

LOAD 255
SUBTRACT NB
GET CY INTO A7
ANL TEST IT

CY=1. NB<=255
SET N=NE
SET NE=0

CONTINUE

CY=0. NBR:>2355
SET N=0O

SET NB=NB-25&

LOAD N INTO A REG
ADD REC TYFPE=X"01
STORE INTO CHESUM

LOAD ID CHAR=X"AS
WRITE CHAR ON TAPE

LOGAD DATA REC TYFE
=X"01 & WRITE ON TAFE
LOAD # OF RYTES IN DATA REC
2 WRITE ON TAFE

LD STARTING ADRDR INTO EA
WRITE LSB GN TAPE

STARTING
CHEUM

ADD CKSUM TO LSE OF
ADDRESS & STORE NEW

LD STARTING ADDR INTO EA
MZEB OF STARTING ADDR--ZA REG
WRITE MZBR ON TAFE

ADD CEZUM TO MSE OF STARTING
ADDRESS & STORE NEW CHESUM

L. DATA BYTE & INCR FTR
WRITE DATA BYTE ON TAFE
ADD CHAR TO CESUM



BO70 ASSEMBLER 'REV-A 0&/0&/79
ASE070 75070 UTILITY SUBROUTINES

WRTAFE

BFOL

BFO=
SFOA

arFoc
SFOE
8F10
8F12

8F15
8F17
gFla

GF 1A
SfiC

aF1F
aF21

EF 24
BF 26
EF2%

o

CBO

[

YROZ
7CF3

C3203
E4FF
F401
20293F

8300
S&
7CAL

3 WRITE

C4AT
20298F

C40=
20298F

C4FD
20298F
sC

DLD
BNZ

Lo

XOR
ADD
JSR

LD
OR

BNZ

END

LD
JSR

LD
JSR

LI -
JER
RET

‘A, CKSUM, P2

ANLP32
LQOFD

A, CKSUM,.P3
* A, =0FF

A,=01

WRCHAR

EA.NB, P2
A.E
RECORD

RECORD ON THE TAPE

A, =X"AS
WRCHAR

A.=03
WRCHAR

A, =X"FD
WRCHAR

oe b -

ue e

~NE uR “s we e uE ue “e  wn

e NE  ws

STORE NEW CKESUM

SET N=N-1
& LOOF IF N0

LOAL CKSUM INTO A
TAKE 2°S COMFLEMENT
OF CKSUM AND

WRITE IT ON THE TAFE

LOAD NB & TEST FOR O
WRITE NEXT RECORD IF
NB<30

NB=0
WRITE ID CHAR ON TAFE

WRITE END RECORD TYPE
=X“03 ON TAFE

WRITE 275 COMFPLEMENT OF
CKSuUM ON TAFE
RETURN



Y70 ASSEMBLER REV-A OX/04/79
070 8070 UTILITY SUBROUTINES
'TAPE ~ WRCHAR

.FAGE  “WRTAPE - WRCHAR-~

-a

"WRCHAR” WRITES THE 8 BIT CHAR PRESENT IN THE A REG ON THE
TAPE. THE FPROGRAM DESTROYS REGISTER E. ASSUMES THAT
FOINTER P3 I35 POINTING TO 1 BYTE OF AVAILABLE RAM (WRCTR).
ANLD CALLS THE “DELAY” SUBROUTINE.

~E ue

s

SUBROUTINE PARAMETERS INCLUDE:

-a

s WRCTR LOC WHERE BIT COUNT WILL
: BE STORED REEATIVE TO P3
Q01A .SET HLFDLY, 26 s COUNT FOR 1/2 BIT DELAY
- 001A - LSET ENDDLY.26 3 COUNT FOR END OF BIT DELAY
O0SF ' .SET FULDLY, 95 s COUNT FOR 1 BIT DELAY
SF2A 43 WRCHAR: LD E,>A $ SAVE CHAR IN E REG
SFZE C40S LD A, =08 3 SET RIT COUNT=&
SFZ0 CROA a7 A> WRCTR, P
SFZF 40 SHIFT: LD AE : XFER CHAR TO A REG
BFR0 2E RR A i ROTATE LSB TG BIT 7
3 WHERE IT CAN BE SENSED
EF31 4% Lo EsA 5 SAVE ROTATED CHAR IN E
SF3Z 6412 EBF SENDO s TEST RIT TO BE WRITTEN
SF34 Z0528F SENDM: JSR FULSE 3 BIT=1. SEND CLOCK PULSE
SFE7 C41A L' A,=HLFOLY 3 SET DLY COUNT=1/2 RIT TIME
8F3% ZOF7&F JER DELAY 3 DELAY TO MIDODLE OF BIT
BF 30 ZOSIEF JER FLIL SE : WRITE DATA BIT=1
SFEF Cala LI A, =ENDDLY i DELAY TO END OF
2F41 ZOF7SF SR DELAY : BIT TIME
aF44 7408 BRA DECCNT : CONTINUE
AF46 20538F SENDO:  JSR FULSE 3 BIT=0. SEND CLOCK FULSE
SF4% CA4SF LD A, =FULTLY : SET DLY COUNT=1 RIT TIME
SF4E ZOF78F JER DELAY : DELAY 1 RIT TIME
SF4E YRO4  DECONT: DLD A, WRCTR,P2 5 DECREMENT EBIT COUNT
SFS0 7000 ENZ SHIFT. : REPEAT UNTIL EIT COLINT=0
EFSZ 40 LI AE ; RESTORE ORIG CHAR TO A REG
SFSZ S RET : RETURN



2070 ASSEMBLER REV-A 0&/0&/79
ASZO70 SO70° UTILITY SUBROUTINES
WRTAFE - FULSE

.PAGE  “WRTAFE - FULSE~’
“PULSE” WRITES 1 CLOCK OR DATA PULSE ON THE TAFE. CALLS THE

“"DELAYY SUBROUTINE. AND ASSUMEZ THAT FLAGS F2 & F3  HAVE
BEEN INITIALIZED TO THE STATE F2=0 AND F3=1.

e

~ N e

-s

SUBROUTINE PARAMETERS INCLUDE:

COOF .SET D1,15 ; DELAY WHICH SETS DURATION
- i OF POSITIVE EXCURSION

O00F .SET 02,15 “3 DELAY WHY¥GH:SETS DURATION
i OF NEGATIVE EXCURSION

OUTPUT PULLSE GENERATED BY COMBINING
F2 & F3 CUTPUTS AFPEARS AS FOLLOWS:

5 ++4+++

H + D1 +

H ++++++ + +++++++

5 + D2 +

H +4+++++
SFS4 ZBO4 FULSE: OR 5,=04 3 SET F2=1. (F3=1)
BFS&6 C40F LD A.=[11 s SET DELAY COUNT=D1
AFS2 ZO0F78F JER DELAY s DELAY FOR D1
SFSB 3%9F3 AND £, =0F3 3 SET F2=F3=0
SFS0 C40F LD A, =02 $ SET DELAY COUNT=DO2
SFSF ZOF75F JER DELAY s DELAY FOR D2
2F&2 3BOS aR S, =08 5 SET F3=1. (F2=0)
SF&4 SC RET 3 RETURN

21 < INCLD RDTAPE



\SSEMBLER REV-A 0&4/04L/79
) BO70 UTILITY SUBROUTINES

.PAGE  ‘RDTAPE-’

“"RDTAFPE” INTERFACES THE INSR0732 TO A CASSETTE RECORDER FOR

5
5 STORAGE/RETRIEVAL OF USER PROGRAMS.

PROGRAMS WHICH MAY BE

SAVED AND RETRIEVED INCLUDE NIBLZ PROGRAMS AND  ASSEMELY

5 LANGUAGE LM %S,

$ THE “ROTAPE“ SUBROUTINE REGUIRES & BYTES OF %CRATCHPQH RAM
5 AND CALLES THE SUBROUTINES “GETRIT- AND “RCVCHRS.

WHEN A TAPE RETSIDENT FROGRAM IS READ

i
R
3,

INTO RAM, THE USER MAY

STARTING = ADDRESS OF EACH DATA RECORD. THIS FEATURE ALLOWS
ASSEMBLY LANGUAGE LM“S AND NIBLZ PROGRAMS TO BE LOADED INTO
MEMORY AT LOCATIONS SPECIFIED AT LOAD TINE.

4

NB NE Qe N AR GE ue

OF EACH RECORD.

OF DATA BYTES IN EACH RECORD, N.
N CAN RANGE FROM 1 TO 254, (O -~

5) THE LEB 0OF THE STARTING ADDREZS
RECORD IS TO BRE STORED.

&) THE MEB OF THE STARTING ADDREZS
RECORD IS ToO RE STORED.

7y + - 256 PROGRAM BYTES

T N T N B L B LR LY I )

<8 N as

TR ]

EXCEPT FOR THE ID' CHARACTER

3 DISFLACEMENTS RELATIVE TO PTR F3:

YTEPECIFY AN OFTIONAL DISPEACEMENT WHICH IS ADDED TO  THE

THE FORMAT OF THE DATA WRITTEN ON THE TAFPE IS AS FOLLOWS:

1) AFFROXIMATELY S SECONDS OF 072 WHICH SERVE AS LEADER
S0 THAT THE TAPE SPEED HAS TIME TQ STABILIZE ON
FLAYBACE. THE LEADER ALSO ALLOWS THE RECEIVING
PROGRAM TGO PROPERLY SYNC TO THE CLOCK PULSES.

2) ID CHARACTER=X"AS WHICH IDENTIFIES THE START

) A BYTE WHICH SPECIFIES THE RECORD TYFPE:
DATA RECORD=X"01 END RECORD=X"03Z
4) A RBRYTE WHICH IDENTIFIES THE TOTAL NUMBER

TG

g b

WHERE THE DATA
WHERE THE DATA

2) A ZINGLE BYTE CHECKESUN (IN 2% COMPLEMENT FORF)
OF ALL BYTES CONTAINED IN THE RECORD

CHECESUM FORMED IN MEMORY
# OF CHAR BITS RECEIVED
IN “RCVCHRY SUBROUTINE
RECORDO STARTING ADDRESSE

# OF DATA BYTES IN DATA RED

QOO0 . WSET CESLM, O H
Q001 RCVCTR = 1 H
Q002 ZTADR = 2 H
5 (2 BYTES)
0004 CSET N, 4 H
O00NS SCOUNT = 5

LT

s DISPLACEMENTS RELATIVE TO PTR FZ:

O0ZE LSET X, 44 3 SETARTING

SAMFLE COUNT (# OF SAMPLES
IN “GETRIT® SUBROUTINE)

ANDR DISPLACEMENT



2070 ASSEMBLER REVM-A

QO6/ Q679

ASE070 8070 UTILITY SUBROUTINES

ROTAFE

BF &5
aF&7

EF6A
SF&C
BF &I
SF&F
BF7z
SF74
BF76

SF7%
&F7B

BF7D

SF7E
8F=Z0

are7
aFoY

SFEE
EFBE

SFEF
BF91
SF93
EF 9L
BF93

BFYA

o
Q-
ad
()

FFOO

3PFE - _ RDTAFPE:
2700FF

C400
4=
CROGO

REFEAT:

<0C18F SYNCLF:

ZOET7SF

F200
CROO

40
E401
7023

ZOE72F DREC:

CRO4

=00
CROO
SOE7EF
OA
F200
CEOO
ZOE7SF
F300

CBOO

ICTx

AN
LD

LD
LI
ST
JER

XOR
ENZ

deR

AL

5T
Lo
XOR
BNZ

JER

=T

ADD
5T

I

FUSH

ALD
=T

JER
ATID
ST

FOP

Z,50

ERAM, OFF00

%, =0FE
"3, =SRAM

A,=0

E.A

A, CKSUM,. P3
GETEIT

A, =X"AS
SYNCLFP
RCVCHR

A, CKSUM, FP3

AE

f,=01
EREC

RCVCHR

ALN-F3

A, CHSUM, P2
A, CKSUM, P32

RCVCHR
A

A» CESUM, B3
A ] CP':E;‘..”" ? F'3

RCVCHR
A, CKELIM, F3
A, CESUM, B3

“s “s we

-

-

“ e gs e

“e ws us wn us

“e w8 um ¥ ua

e

ou NN we “e  um

~n

~E e

aw

NE ws s -e e ']

-

(NIBLZ VARIAELE X)

CHECKSUM ERROR FLAG
(NIBLZ VARIABLE 2Z)

SCRATCH RAM TO WHICH F3
FOINTS

DISABLE INTERRUPTS
POINTYE TO SCRATCH RAM

LOAD © |
SET CHAR=0 IN E REG
SET CKSUM=0

SHIFT BIT INTO CHAR
WHICH I% RETURNED IN

A REG AND E REG

TEST FOR CHAR=X AS

GOTO SYNCLF JF CHARCHX“AS

CHAR=X A5
GET RECORD TYFE IN

A REG & E REG

ADD CKS5UM TO RECORD TYPE
STORE NEW CHSUM

LOAD RECORD TYFE INTO A REG

TEST A REG FOR DATA RECORD
DATA RECORD XMITTED IF A=01

A=01. DATA RECORD BEING RECD
GET N=# 0OF DATA BYTES IN

THE RECORD IN THE A REG

SAVE N

ADD CKSUM TO N
STORE NEW CKSUM

ADDRL——}A REG
SAVE ADDRL ON STACK

TO ADDRL
CEsuUM

ADD CESUM
STORE NEW

REG & E REG
T3 ADNRH
CESUM

ANDRH-->A
ALD CKSUM
STORE NEW
(ADDRH

ADDRL.-->A REG.



2070 ASSEMELER REV-A
AS8070 8C70 UTILITY SUBROUTINES

RIOTAPE

eF9B

8F7Dh
8FYE

8F9F
8FAZ
8FA4
SFAL
SFAZ

eFAA

SFAC
SFAD
ZFRO

2FR2

EFBA
SFFR7
SFBY

ZFBA
SFED

SFEBF

8FC1

0L/0&/79

B22E ADD
56 PUSH
44 o
2Z0E72F GETDTA: JSR
CEO1 ST
F300 ADD
CBOO ST
YBO4 nLo
7CFz2 BNZ
SE POP
20E732F JER
F200 ADD
ACBé R7
240100 SERR: LD
ARz 5T
sC RET
Z0E78F EREC: JER
FZ00 ADD
TCF3 BNZ
5 RET

EA,X.P2

P2
P2, EQ

RCVCHR
A @+1,FZ
A, CKSUM, P3

A, CKSUM, P3,

A.N.P2

GETDTA

P2
RCVCHR
A, CKEUM, P23

REFPEAT

EA,=01
ER.Z.F2

RCVCHR
A, CKSUM, P2

SERK

H-20

g uE ue

ve  uR

-a

ME SE UB «E BB e uE

NE MR JE Ul NE ue Y

~e

LT ] el ]

B MR we uR uE

~E ue

IS ALREADY IN E REG)
ADD IN DISPLACEMENT
(NIRLZ VARIABLE X)

SAVE NIBLZ VARIABLE FTR
XFER REC STARTING ADDR TO FZ2

DATA BYTE-->A REG
STORE BYTE & INCR FTR
ADD CKSUM TG DATA BYTE
STORE NEW CKSUM .
DECR CHAR COUNT,N. %
LOAD INTO A REG

GET NEXT DATA BYTE IF
COUNT,.N, IS NOT O

CHAR COLUNT=N=0

RESTORE NIBLZ VARIABLE PTR
TAFPE CESUM-->REG A

ADD CKSUM STOGRED IN

MEMORY TO TAFE CKSUM

IF A REG=0 BOTH CHECEZUME
MATCH; GET A NEW RECORD

A REG <> 0. CHECKSUME DIFFER
SET ERRDR FLAG,

NIBLZ VARIABLE Z, = 1

RETLIRN

A REG < 0. END RECORD
TAFE CKSUM—--2A REG

ADD CKSUM STORED IN
MEMORY TO TAPE CKSUM
IF A REG=0 CHECKZIIME

RECD

MATCH

A REG=0.
RETURN

CHECKSUMS MATCH



8070 ASSEMBLER REV-RA 0&/04/79
ASE070 20707 UTILITY SUBROUTINES
ROTAFE — GETRIT

aFC7
SFCY

ZFCE
SFCD

SFDS
SF07

oFD?

Oi
Q‘
Lt
O

: C400

CBOS

04

p4zo
7CFE

ca3%
20F7&8F

06

0D4zo0

GCOE

FBOS
7CF7

40

ME NME B Y “E GE us

-s un

-h

GETEIT: LD Ar=12

» FAGE “ROTAPE - GETBIT”

“GETBIT” RECEIVES 1 BIT INTO BIT 7 OF THE E REGISTER. (THF
E REGISTER MUST BE SET TO 0 BEFORE A CHARACTER CAN BE
FORMED) . “GETBIT” IS CALLED & TIMES BY THE “ROVCHR-
SUBROUTINE IN ORDER TO RECIEVE AN 3 BIT CHARACTER INTO  THE
E REGISTER. ‘GETBIT” IS ALS0 REPEATEDLY CALLED BY THE
“ROTAFE“ FROGRAM SYNCHRONIZATION LOOP IN ORDER TO LUOCATE
THE START OF RECORD CHARACTER (X“AS7).

INVERT@U DATA AND CLOCK PULSES‘ARE RECEIVED .ON THE SB._ INFUT
(WHEN SB=0 DATA/CLOCK ARE FRESENT),

‘GETRBIT” ASSUMES THAT FZ IS POINTING TO 1 BYTE OF AVAILABLE
SCRATCHFAD RAM (SCOUNT). AND CALLS THE SUBROUTINE “DELAY-.

GETBIT SUBROUTINE FARAMETERS:
HOLY1 = 57 s DELAY TGO S3TART OF FIRST SAMFLE

SCOUNT IS THE SAMPLE COUNT (# OF SAMFLES
TAKEN BEFORE A <07 DATA BIT IS5 RETURNED)

-a s

3 SET SAMPLE COUNT=Y
T A, SCOUNT. P
GETCLEK: LD A,S $ WAIT FOR CLOCK PULZE ON
: $ SB INPUT
$33% OR 5,=04 3 ###PULSE F2%####eEs
53338 AN &, =0FE 3 I H I IR
ANII A, =020 s MASKE OFF SB
BNZ GETCLK s WAIT UNTIL SE GUOES LOW
Lo A,=HIOLY1 s CLOCK PULSE 15 PRESENT
JSR LELAY s DELAY TO START OF
5 SAMPLE TIME
SMFL.s Lo AS s SAMPLE INVERTED BIT ON SR
53%3 OR S,=03 s ###FULSE F3s#stsenn
13358 AN 5, =0F7 T T I TR e 2
ANLD A, =020
BZ RET1 s TEST SAMPLED BIT =0 OR 1
s SAMPLED RIT=0
SMFLO:  DOLD A, SCOUNT, P33 DECREMENT SAMPLE COUNT &
BNZ SMFL s CONTINUE IF COUNTZ0
s FINAL VALUE OF DATA BIT=0
RETO: LG AYE s LOAD CHARACTER

H-21



2070 ASSEMBLER REV-A 04/04/79
ASE070 8070 UTILITY SUBROUTINES
ROTAPE — GETEIT

eFpa 3¢ &R A ; INTO THE A REG & SHIFT
$ IT RIGHT BY 1 BIT.

s BIT 7 =0 BY DEFAULT
8FDB 48 LD E.A s PUT CHAR INTO E REG
8FDC SC RET + RETURN

i FINAL VALUE OF DATA RIT=t
SFDD 06& RET1: LD A, 5 s WAIT UNTIL SB=1
SFDE D420 . AND A, =020 3 (DATA PULSE GOES AWAY)
8FEO 6CFB BZ RET
SFEZ 40 LD AE i LOAD CHARACTER
SFE3 3C SR A 3 INTO THE A REG % SHIFT
SFE4 DCEO oR A, =080 i IT RIGHT BY 1 BIT

s SET BIT 7 =1
SFEA 42 LI E,A s PUT CHAR INTO E RE®
8FE7 S0 RET t RETURN



Z0O70 ASSEMBLER REV-A 04/06/7%
ASEO70 8070 UTILITY SUBROUTINES
ROTAFE -~ ROVCHR

k)

oFES
SFEA

EFEC
SFFE

SFEF
BFFZ
SFF4

SFF&

BFF7 &

-y e o wus

o g

. PAGE “ROTAPE - ROVCHR”

“ROVCHR RECEIVES ONE 8 BIT CHARACTER INTO THE A REGIZTER
AND THE E REGISTER.

“RCVCHR” ASSUMES THAT FTR P2 IS POINTING TO 1 BYTE OF
AVAILABLE SCRATCHFAD RAM (RCVCTR). AND CALLS THE SUBROUTINE
“GETBIT” &8 TIMES IN ORDER TO -RECEIVE A COMPLETE & BIT

CHARACTER.

PARAMETERS FOR “RCVCHR” INCLUDE:

5 RCVCTR IS THE COUNTER WHICH COUNTE
s THE WUMBER OF BITS RECEIVED

RCVCHR: LD A,=03 $ SET BIT COUNT =&
ST A, RCVCTR,P3
LD A,=0 5 CLEAR THE E REG WHERE
LD E-A 3 CHAR WILL BE FORMELD
LOoOpPz: JSR GETBIT 3 GET 1 BIT INTO E REG
DLﬁ A.RCVCTR.P3 3 DECREMENT RIT COUNT
BNZ LOOP 2 5 CONTINUE UNTIL COUNT=0
LD ~ - ALE 3 PUT CHAR INTO A REDG
RET $ RETURN

. INCLD DELAY

H-23



2070 ASSEMBLER REV-A  0&/046/79
ASRO70 8070 UTILITY SUBROUTINES
DEHAY

M
g\

BFFS
8FFA

- 8FFC

N8 v

s

MR NE G NE uUE ve S

. FAGE “DELAY”

“DELAY " GENERATES A DELAY BY DECREMENTING A DELAY COUNT
WHICH HAS BEEN PREVIOUSLY LOADED INTO THE A REGISTER.

WHEN EXECUTED FROM EXTERNAL MEMORY. THE, TOTAL TIME DELAY
(UCYCLES) GENERATED ERY THE SUBROUTINE. INCLUDING THE
PREVIOQUISLY EXECUTED INSTRUCTIONS “JSR LELAY” & “Ln
A, =DELAYCOUNT, IS AS FOLLOWS:

"TOTAL DELAY =+39 + 14 # DELAYCOUNT
‘WHERE DELAYCOUNT RANGES FROM 1 TO 255.

DECREMENT PREVIOUSLY

DELAY: SiUB A,=01 3
3 LOADED DELAY COUNT
BNZ DELAY $ LOOP UNTIL COUNT = O
RET $ RETURN
. END

H-24



8070 ASSEMBLER REV-A 06/0&/79
AS8070 8070 UTILITY SUBROUTINES

ADRMSG
B110
CKSUM
CONVZ
D2
DTAREC
FULDLY
GETBYT
H .
INIT
LORCTR
LOOPA
MEN
NEXT
NSTOF2
PRINT
RCVCHR
RECTST
RET1
SERR
SMPLO
STORE
WRTAPE

8E11
sn31 %
0000
BE&D #
000F
2nonA
005F

B8E17

000E
SESB
0005
2EAT
o000z
snan
SE2F
SE71
SFES
anFC
SFLOD
oFB4
SFDS =
2E2C
SESF

ASCILD 8D8il
B4300O QDas
CONBYT 8E73
CTR 0004
DECCNT 8FAE
ENDDOLY O0Q1A
GE10.-. BESA
GETCLK @FC&
HDLY1 0039
L1 8EQL
LE2SS BEC3
LOOFD 8EFF
N 0004
NOTOTA ZDEA
NXT1 SED?
FPRTZ SEZF
RCVCTR 0001
RECTYP Q002
SCOUNT 0005
SHIFT &F2F
SNILDR SEA4
SYNCLF 2F&F
X 00ZE

NO ERROR LINES
S0URCE CHECKSUM = FEFZ2

OBJECT CHECKSUM

INFPUT FILE
LISTING FILE

OBRJECT

FILE

QLAS

ATOF 1
BITDLY
CONNIE
D
DELAY
EREC
GECQO
GETDTA
HEX2AS
LDP2
LOOP1
LT10O
NB
NETOP1
NXTERYT
PRT4
ROTAFE
REPEAT
SENDO
SHIFT1
SRAM
WRCHAR
Y

1: ASSYLANG. SRC ON UT2070
12 ASSYLANG.LST ON UTR2070
1: ASSYLANG.LM ON UTS070

H-25

SE24
005k
8E80
0004
8FFe
8FBA
0932
8F9F
8E3F
S8EA1L
anyz
SES6
0000
an9s
snnn
8E4E
8F &5
8F&A
8F 44
3E26
FFOQQ
aFzA
00320

ATOFZ2
BYTCTR
CONV1
D1
DREC
FDELAY
GETEBIT

© BT255

HLFDLY
LDRCNT
LOOPZ
MCKSUM
NRYTES
NSTOPZ
ORNIRL.
PULSE
RECORD
RETO
SEND
SMPL
STADR
WRCTR
Z

8E3Y
0Q0%
SE&LL
OOOF
aFez
FFEC
SFC2
SECE
Q01A
0904
8FEF
0001
0000
SE1A
SEZR
eF%4
SERE
aFn%
SF=4
SFDO
0002z
0004
0032



	000
	001
	002
	003
	004
	005
	006
	1-001
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	2-01
	2-03
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-00
	3-03
	3-04
	3-05
	3-06
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	A-00
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25

