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Capabilities of the Telephone Network

for Data Transmission

By A. A. ALEXANDER, R. M. GRYB and D. W. NAST
(Manuseript received January 22, 1960)

This paper presents the results of a nationwide data transmission field
testing program on the telephone switched message network. Error perform-
ance using the FM digital subset is described and basic transmission char-
acteristics such as net loss, bandwidth, envelope delay and noise are given.

I. INTRODUCTION

The telephone industry has a long history of providing data transmis-
sion services. Over the years many varieties of service offerings making
use of the range from narrow-band telegraph' channels up to 4-me video
channels have been provided. Such services usually have been provided
on a private line basis by adapting regular telephone facilities to the
particular data service requirement.

The increased use of computers and automatic data processing sys-
tems in the commercial, industrial and military areas has substantially
increased the demand for greater varieties of data services and data
transmission channels. This expansion, with its attendant requirement
for a variety of speeds and channel usage time, has encouraged develop-
ment of service offerings that use the regular switched message telephone
network in establishing the communication channels. In the Bell System
this service concept has been given the name of Data-Phone,* which

* Data-Phone is a trademark of the American Telephone and Telegraph Com-
pany identifying Bell System equipment used in this Bell System service.
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envisions not one, but a whole family of data transmission systems oper-
ating on the regular switched network. It will encompass a broad range
of speed capabilities and meet a variety of performance requirements.

Operationally, the Data-Phone service is quite simple. A regular tele-
phone call is made to establish a connection between two points. Usually,
regular voice communication may be carried on if required. Operation
of a pushbutton associated with the telephone set at each end of the con-
nection disconnects the telephone instruments and connects data subsets
to the telephone lines. The subset, depending upon the type, accepts
analog or digital (usually binary) information at the transmitting end
and, if necessary, modulates the baseband signal to a frequency band
suitable for use over telephone circuits. At the receiving end the data
subset demodulates the line signal and returns it to baseband. At the
end of the transmission regular voice communication can be resumed, if
required, or the connection can be terminated by hanging up the tele-
phone set.

Additional operational features can, of course, be built into the Data-
Phone service as may be required. For example, machines may be used
to dial up the connection, answer back, intercommunicate and disconnect
entirely independent of human assistance. These and other similar fea-
tures are obvious extensions of the Data-Phone concept.

The switched telephone network is designed primarily to handle voice
communication. Many of the design criteria are based upon talker and
listener habits and preferences. The resulting characteristics, while suit-
able for data transmission are not as optimized as they are when a com-
munication channel is designed specifically for data use. Frequently it
is possible to take advantage of certain speech or human ear character-
istics to provide better or more economical service. The uses of com-
pandored? carrier systems and echo suppressors® are typical examples.
When the telephone network is used to provide communication channels
for systems having nonhuman characteristics the advantages of these
special devices are lost.

In order to use the telephone network for the variety of uses contem-
plated under the Data-Phone concept, it is necessary to know the follow-
ing:

i. What is contained in the telephone network and how it operates.

ii. What are the voice and data transmission characteristics of con-
nections in the message network and to what extent they limit the
transmission of data ‘sjgnals.

Once these are detérmined an objective evaluation of the switched
message network can be made, and data systems can be designed with -
a reasonable degree of assurance for successful application.
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II. SWITCHED TELEPHONE NETWORK

A great deal of information describing the component parts and operat-
ing characteristics of the switched message network has been published.
Refs. 2 through 11 describe some of the significant operating and engi-
neering features.

The connections that are established in completing telephone calls
show a very large variation in characteristics that are of importance to
the transmission of data signals. This stems primarily from two factors:

i. There are a large variety of transmission systems used in the tele-
phone plant (see Refs. 12 through 22). Table I lists some of the more
important ones used in the Bell System today.

ii. The number of switched links (trunks) that are used to make up
a given connection is quite variable. It is significant that a given long
distance call may have as many as nine trunks switched in an over-ali
connection, or it may have as few as three. Two telephone calls betwe:n
the same places may go over entirely different routes, pass through differ-
ent offices and use different numbers of switched trunks.

The system characteristics usually of interest for data transmission
include amplitude-frequency response, envelope delay-frequency charac-
teristic, net loss, noise and echo suppressor turnaround time. In the case
of voice-frequency cable, loaded or nonloaded, the characteristics are a
function of length of loop or trunk. In a carrier system, the noise per-
formance is a function of length and repeater spacing. As a practical
matter, attenuation, envelope delay and noise also vary somewhat be-
tween channels of the same carrier system.

There are many cases where, for one reason or another, a particular
trunk between switching offices is made up of a number of different
transmission systems. The resultant trunk characteristics are then a
combination of the characteristics of several systems.

In order to relieve the Data-Phone customer of the responsibility for
engineering to accommodate the variability in transmission characteris-
ties, subsets (usually modems with various control features) are provided.
These act as buffers between customer data-generating or data-using
equipment and telephone line characteristics, and provide well-defined
interface arrangements.

III. DESCRIPTION OF THE FIELD MEASUREMENT PROGRAM

Data transmission characteristics of telephone connections have a wide
range of variability. On the same basis, the error performance of Data-
Phone systems might be expected to be quite variable and dependent on
a large variety of conditions. An evaluation of data performance in the
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TaBLE I —BrLL SysTEM TRANSMISSION SYSTEMS USED ON

MEessaceE TRUNKS

Type of Transmission
System

Transmission
Medium

" Primary Application

Degree of
Use

Remarks

Voice, open wire

Nonloaded voice
cable

Loaded voice ca-
ble, all types!?

Type C carrier'
Type H carrier'®

J carrier!®

M carrier

K carrier'?
L carrier!®

N carrier!?

O carrier??

ON carrier?!

TD system??
TJ system

TH system

Wire

Cable

Cable

Open wire

Open wire

Open wire
Open wire
orpower
line
Cable
Coaxial

cable
Cable

Open wire

Cable

Radio
Radio

Radio

Interlocal  office
trunks and class
5 to higher class
offices
Interlocal office
trunks and class
5 to higher class
offices
Interlocal office
trunks and class

offices
Between  higher
class office
Class 5 to higher
class offices and
short haul be-
tween higher
class offices
Between  higher
class offices
Class 5 to higher
offices

Between  higher
class offices
Between  higher
class offices
Interlocal offices,
class 5 to higher
class offices and
short haul be-
tween higher
class offices
Between  higher
class offices
Interlocal  office
trunks, class 5 to
higher class of-
fices and short
haul between
higher class of-
fices
Between  higher
class offices
Between  higher
class offices,
short haul
Between  higher
class offices

5 to higher class

Small

Large

Large

Medium
Small

Small
Small

Large
Large
Large

Large
Large

Large
Small

Mostly rural ap-
plication

In most cases
lengths are
short (few
thousand feet)

Also used for
telephone
loops in rural
areas

Large degree of
use expected

Not yet in serv-
vice — large
degree of use
expected
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face of such variability leads inevitably to the use of sampling techniques
and descriptions in terms of statistical distributions and probabilities.
A field testing program designed to sample this variety of conditions and
situations has been undertaken.

The objectives of the field testing program on the switched message
network were to determine the following:

i. the statistics of error performance, permitting evaluation of error
detection and error correction techniques where necessary;

ii. the factors that cause error to occur;

iii. the data speed capabilities and practical operating conditions, and
the factors that limit them;

iv. the statistics concerning basic transmission characteristics — this
is invaluable in designing new or improved data transmission systems.

Arrangements were made to place calls, send data signals and measure
transmission parameters and error performance. Teams equipped with
mobile testing terminals made telephone calls between varieties of loca-
tions throughout the country. The locations selected were places where
potential Data-Phone customers were most likely to be found—in
business districts, commercial areas and suburban industrial sites. Test-
ing was carried out within, around and between New York, Chicago,
Dallas, San Francisco and Los Angeles. These areas were selected as
representative of the variety of conditions and facilities that exist in
the present telephone network.

In the program about 1100 test calls were made. About 25 per cent
of these were local calls not involved with the long distance switching
plan. About 25 per cent were short-haul long distance calls, of up to
about 400 miles airline distance. The remaining 50 per cent were long
haul, 400 to 3000 miles long.

In order to keep the testing program within manageable size, a single
data transmitting system known as the FM digital subset? was used for
the higher-speed data performance tests. In this system the modulator
accepts baseband binary information in serial form and provides a fre-
quency-modulated output. The marking condition is one frequency, the
spacing condition another. A single oscillator swings between the two
frequencies and transmits the binary information to the demodulator.

The demodulator is a zero-crossing detector, pulse generator and inte-
grator, which provides serial binary baseband signals at its output: The
output signals are reproductions of the modulator input signals modified
by distortion effects of the telephone facility and modulation-demodula-
tion process.

The error statistics of the telephone network that were determined
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TABLE II—TRANSMISSION MEASUREMENTS

Type of Measurement

Conditions of Measurement

Measuring Equipment

Amplitude-frequency
response

Envelope delay-fre-
quency response

Steady noise

Impulse noise — two
methods

Noise recording

Between 600-ohm termi-
nations at intervals of
about 200 cps

Between 600-ohm termina-
tions at intervals of
about 200 cps.

F1A weighting

Counts in 30 minutes
above given power levels,
144 weighting

Counts in 30 minutes
above given power levels,
data system band filter
weighting

Unweighted 5-ke band

Western Electric Co. 21A
transmission  measuring
set

Acton Laboratories 451 &
452 envelope delay set

Western Electric Co. 2B
noise measuring set
Western Electric Co. 2B

noise measuring set and
General Radio 1556-A im-
pact noise analyzer

LElectronic slicer and counter

Ampex Model 307 magnetic
tape recorder

with the FM modem reflect the characteristics of that data system.
Measurements taken with some other type of modulation system would
probably be somewhat different. In order to minimize the need for test-
ing other types of systems under the conditions encountered during the
tests, basic transmission characteristic measurements were also made on

TRANSMITTING TERMINAL

RECEIVING TERMINAL

______________________ 1 i - = |
' |
30-BIT i M
FM COMPA~— PULSE
WORD H=Om = =OLt—{ DEMOD — .
GENERATOR MODULATOR 1" | ULATOR RATOR SHAPER
[ syne TIMING
TIMING c o T |
GENERATOR RECOVERY GENERATOR i
: 30-BIT
I WORD
GENERATOR
PULSE 2-CHANNEL
SHAPER MAGNETIC TAPE

Fig. 1 — Block diagram of transmitting and receiving data terminals.
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I | | FULSES

TIMING
PETEEE TR r et e b e e i =— solses

Fig. 2 — Method of error recording on magnetic tape.

each connection. At a later time these conditions may be simulated in
the laboratory and comparisons made between the I'M system and other
modulation systems. A list of the more significant measurements is shown
in Table II.

A block diagram showing the transmitting and receiving data termi-
nals with associated circuitry is shown in Fig. 1. A 30-bit word generator,
timed by a tuning fork clock,? was used to drive the FM subset modula-
tor at the transmitting end. At the receiving end the line signal was de-
modulated and fed into a comparator. There the binary signal was com-
pared bit by bit with a locally generated 30-bit word. A sync-deriving
circuit provided timing information for the receiving terminal clock.
The comparator circuit provided an output voltage spike whenever the
demodulated 30-bit word and the locally generated 30-bit word did not
compare on a bit-by-bit basis. This error indication was recorded on one
track of a two-channel magnetic tape; the other channel recorded the
locally generated timing signal. This method of recording the time and
error information as bits in error and good bits between bits in error (see
Fig. 2) permitted later analysis of error statistics by machine methods.
The coding of the 30-bit word that was used for the error rate tests is
shown in Fig. 3. This coding was selected to provide representative limit-
ing conditions.

Additional circuitry and equipment were provided to permit varying
the operating conditions of the data terminals. One of the limiting factors
on data performance is the signal-to-noise ratio at the receiving end.
Other things being constant, this is directly proportional to the signal
level at the transmitting end. The transmitting level should, of course, be
as high as is consistent with satisfactory operation on the telephone facil-
ity.

The maximum level permissible on telephone facilities is limited by
two considerations:

[ Ul L LT

S SSSMSSSSMMSMSSMMMMSMMMMSS MS S M

Fig. 3 — Coding of 30-bit word.
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i. the coupling loss to other circuits operating in the same cable, open
wire or carrier system;

ii. the power-handling capacity of carrier or radio system grouping
amplifiers or modulators — overloading may cause modulation products
to be generated that will fall in other channels of the same system.

For the tests, a level of —6 dbm at the transmitting terminal was se-
lected to meet established criteria for interference and overloading.
Means were provided to reduce the output level in discrete steps, so that
relationships between error rate and transmitting level might be deter-
mined.

Based upon previous studies and experience, it was determined that
the most satisfactory operating region was likely to be centered some-
where between 1200 and 1800 cps and that, at least initially, a speed of
600 bits per second should be used for these tests. Provision was made
to operate the data terminals at three pairs of mark-space frequencies:
900(M)-1400(S), 1400(M)-1900(S) and 1100(M)-1900(S).

Information gathered during the early part of the program indicated
that sufficient margin was available to permit increasing the speed if the
effect of amplitude and delay distortion could be reduced. Compromise
amplitude and delay equalizers were designed, and the latter part of
the program was carried out using a speed of 1200 bits per second, with
mark-space frequency pairs of 1100(M)-2100(S), 1200(M)—2200(S) and
1300(M)—2300(S).

In order to accommodate the increased frequency spectrum, the digital
subject was modified with a more optimum bandpass filter and integrat-
ing filter.

Error rate information was taken at 600 bits per second using the
900(M)-1400(8) frequency pair. At 1200 bits per second, the 1100(M)—
2100(S) pair was used. The three frequency pairs at each speed were used
to determine the best operating region for each connection. This was
done by measuring maximum repetitive jitter in the transitions of the
30-bit word binary signal as received at the output of the demodulator.
(Jitter is the total variation in time of the binary transitions from what
they should be; the timing standard is supplied by the receiving clock.)
The peak jitter may be expressed in terms of per cent peak distortion
in accordance with the following (as shown on Fig. 4):

max. variation in transition time
time of two bits

per cent peak distortion = X 100.
(The maximum possible distortion is 50 per cent.)

The per cent peak distortion (repetitive jitter) was used as the criteria
for determining the best pair of operating frequencies.
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r—A»I TIME =—>

PER CENT DISTORTION = -é%— X 100

MAXIMUM POSSIBLE = 50 PER CENT

Fig. 4 — Measurement of peak jitter in terms of per cent peak distortion.

The following paragraphs discuss the effect of present telephone facil-
ity transmission characteristics on binary data signals and summarize
the results of some of the basic transmission measurements that were
made during the field testing program.

IV. BASIC TRANSMISSION CHARACTERISTICS

Considerable progress is being made in establishing the relationships
between data system performance and the transmission parameters
characterizing the telephone network. A general presentation is not
within the scope of this paper and, indeed, would be premature at this
time. However, the field sampling of such channel characteristics as am-
plitude and delay distortion, noise and net loss, together with a limited
theoretical study, have made possible a first-order description of the data
transmission capabilities of the telephone plant. The measured data are
presented herein on a statistical basis.

4.1 General

Nyquist?® theorizes that a channel should be capable of transmitting
binary digital information at a rate numerically equal to twice the chan-
nel bandwidth, e.g., 6000 bits per second, assuming a bandwidth of 3000
cps. This requires a channel having flat loss and no delay distortion
within the passband and infinite loss outside — conditions not met by
the switched telephone network. Telephone bandwidths have been de-
signed to accommodate speech frequencies from about 300 eps to about
3300 cps. It is therefore necessary to translate the data signal spectrum
into this nominal passband by such means as the FM digital subset. If
the resulting sidebands are transmitted symmetrically, the allowable bit
speed is reduced by one-half.




440 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960

Another factor limiting data speeds involves an effect of nonlinear
distortion. It is frequently called “Kendall effect’’?® because its occur-
rence was first predicted by B. W. Kendall in connection with studies of
telephoto transmission. Nonlinear distortion results in second-order
modulation products that may fall within the baseband spectrum of the
data signal. If this overlaps the line signal, distortion will result. There-
fore the lower portions of the telephone band cannot always be used
efficiently and the frequency space available for the data signal is re-
duced.

Practically speaking, then, data speeds of binary signals on the
switched telephone network are certainly less than 3000 bits per second,
although higher speeds may be achieved by other than binary systems.
For a given speed, the rate at which errors occur will depend on the
method of modulation and transmission characteristics of the channel.
The basic transmission phenomena of interest are:

i. effective channel bandwidth, characterized by the attenuation and
delay distortion parameters of the telephone network, which imposes an
upper bound on transmission speed and reduces the noise margin to
error generation;

ii. circuit net loss, which affects signal-to-noise margins and hence
margin to error;

iii. noise.

4.2 Transmission Characteristics of the Telephone Plant

The characteristics described herein represent the cumulative effects
of the different transmission systems and switching equipment required
to complete each particular connection. Consider initially the effects of
individual transmission and switching facilities.

The attenuation of typical nonloaded wire pairs is proportional to the
square root of frequency within the voice band and only for short lengths
is this distortion across the band tolerable. Cable pairs longer than about
three miles are loaded at uniform intervals with inductance to reduce
attenuation frequency distortion and the over-all loss. With this added
inductance, the line looks like a low-pass filter and exhibits a cutoff.
Fig. 5 is a plot of the attenuation per mile for 22-gage pairs, both loaded
and nonloaded, as a function of frequency normalized to the loaded pair
cutoff frequency. The cutoff of the loaded facility also introduces addi-
tional phase or delay distortion over the nonloaded pair, as shown in
Fig. 6.

Carrier systems exhibit cutoffs both at high and low frequencies, as
shown in Fig. 7. For clarity, the reference flat loss values are displaced
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Fig. 5 — Attenuation characteristics, nonloaded and loaded cable.
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Fig. 6 — Envelope delay characteristics, nonloaded and loaded cable.
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Fig. 7 — Representative attenuation characteristics, carrier systems.

vertically. Typical delay distortion characteristics for these systems are
shown in Fig. 8.

Because of multiple connections and cabling runs within switching
offices, shunt capacitance is added to a switched connection. This, of
course, has the greatest effect at the upper end of the voice band on both
attenuation and delay characteristics. Associated with switching points
are the repeating coils, series capacitors and shunt inductors used for
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Fig. 8 — Relative envelope delay, carrier systems.
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Fig. 9 — Cumulative distributions of 20-db bandwidths, showing percentage
of cireuits having bandwidths greater than that shown on abscissa.

signaling and supervisory purposes. These have their greatest effect at
low frequencies. Therefore, even if the transmission facilities are voice-
frequency wire lines, switched connections will show lower-end cutoffs.

At switching points a considerable amount of impulse noise is gen-
erated by the switches themselves, relays, dialing pulses, and the like.
This noise is coupled in varying degrees, either directly or as cable cross-
talk between pairs, to all channels switched by the office.

4.2.1 Effective Channel Bandwidth

It is convenient to consider attenuation and envelope delay distor-
tions as occurring between two cutoff frequencies at which signal fre-
quency components will be so severely attenuated by the transmission
medium as to be relatively insignificant. For the purpose of this presenta-
tion, a 20-db bandwidth is defined as the interval between those fre-
quencies at which the circuit loss is 20 db greater than the minimum loss
of the circuit. Accordingly, Tig. 9 is a plot of cumulative distributions
of 20-db bandwidths for the three classes of calls, showing the per-
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centage of calls having bandwidths greater than the corresponding ab-
scissa value. Note that the average 20-db bandwidth is on the order of
3000 cps. However, distortions to be desceribed within this band are
such that considerably less than 3000 cps may be usable for data trans-
mission purposes.

4.2.2 Attenuation Distortion

A careful examination of all the characteristics taken during the field
measurement program has revealed that, in general, the relative attenua-
tion characteristics assume the form shown in Fig. 10. That is, the circuit
loss rises rapidly below f; eps and above f; ¢cps, is relatively flat from fi
cps to f2 cps and rises linearly with frequency from f» cps to f; ¢cps. These
average frequencies and loss roll-offs are described in Table TII.

Tor exchange calls, sharp lower roll-offs are not to be expected on the
average, since many such connections are short, use voice facilities and
cut off only because of the signaling and supervisory networks. Some
longer calls use carrier facilities showing a sharper cutoff. Long distance
calls, in particular, use single carrier systems extensively so that the
average lower roll-off is fairly sharp.

The upper end roll-offs are much sharper for all classes of calls because

il trdiiadiconley Taadad a1,
of the combined CffC(‘t/u of carricr S8y stems and inductiv 1y 10ataeh Canit

pairs.
Since data signals in most cases tend to be placed in the band from

LOW END HIGH END
CUTOFF CUTOFF

LINEAR

ATTENUATION IN DECIBELS =—>

FLAT LOSS
F1 FZ F3
FREQUENCY =——>

Fig. 10 — Relative attenuation characteristic of telephone circuits.
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Iixchange 15 240 1100 3000 80
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Short-haul 24 300 1075 2950 90
Long-haul 27 280 1150 2850 80

1000 to 2600 cps, it is particularly desirable to describe the linear portion
of the relative loss curve between these two frequencies. Fig. 11 is a
plot of cumulative distributions for the loss differences between 1000
and 2600 cps for the three classes of calls. Note that, on the average, this
difference is about 8 db but that, in about 5 per cent of the cases, 15 db
is exceeded. In general, long distance connections show greater slopes,
as a result, in part, of the shunt eapacitance added by the switching
points. Exchange calls usually are switched only twice, whereas long
distance calls may be switched at four or more points.

With transmission at 1200 bits per second with the FM digital subset,
it was found advantageous to use an attenuation equalizer designed to
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Fig. 11 — Difference in decibels between 1 ke and 2.6 ke — percentage of cir-
cuits having decibel difference greater than that shown on abscissa.
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compensate for a 4-db slope between 1100 and 2100 cps, which are the
mark and space data frequencies respectively. Between 1000 and 2600 cps
this network equalized a loss slope of about 7 db.

4.2.3 Envelope Delay Distortion

The ear is relatively insensitive to minor phase distortions, so that the
telephone message plant, designed for speech transmission, has not re-
quired the extremely low distortions demanded by data transmission.
Since there is no reason to assume that the telephone network is mini-
mum phase, knowledge of attenuation characteristics must be supple-
mented by a characterization of the phase variations. It is most practical
to measure the derivative of phase with respect to frequency, d(6)/dw,
which has the dimension of time and is referred to as envelope delay.

Curves of envelope delay versus frequency tend to be concave upward
as a result of the upper and lower cutoffs of the telephone network.
Average envelope delay characteristics are plotted in Iig. 12 for the
three classes of calls, with the minimum envelope delays normalized to
zero. They were derived by drawing smooth curves through the follow-
ing five points: the average frequency of minimum delay (IFMD), the
average upper and lower frequencies at which the envelope delay is 1.0
millisecond greater than the minimum, and the average upper and
lower 0.5-millisecond frequencies.
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Fig. 12 — Average envelope delay characteristics.



TELEPHONE NETWORK FOR DATA TRANSMISSION 447

Three facts are noteworthy: (a) the average 'MD is on the order of
1700 cps; (b) distortion for exchange calls is less than for long distance
calls and (c¢) all the curves appear to be fairly symmetrical about their
respective F'MD’s.

It is mildly surprising that the exchange delay characteristics do not
show more dissymmetry around an 'MD somewhat lower than meas-
ured. Such a result is to be expected if the lower cutoff is determined by
signaling and supervisory circuits. The explanation lies in the fact that
almost 50 per cent of the exchange connections measured used carrier
facilities with typically symmetrical delay curves. Deleting the data
from calls using exchange carrier systems gives rise to the curve shown
on Ifig. 13, which is somewhat more representative of wire line char-
acteristics.

Of interest are the variations from these average curves that are
shown in Fig. 14. For each point used to draw the average characteristics
desecribed above, limits were found so that about 90 per cent of the
measured points fell within these limits. By systematically joining respec-
tive limit points, the plots in Fig. 14 were derived. Careful sampling of
the actual data confirms that approximately 90 per cent of the measured
curves do fall within the shaded areas of the diagram, even though the
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limit points were determined independently. Dotted lines indicate typ-
ical measured curves.

Note that all curves are tangent to the abscissa representing mini-
mum delay (zero microseconds) at frequencies varying from 1200 to
2000 cps. More detailed information on the variations of this frequency
of minimum delay is shown in Fig, 15.

Statistics on the delay distortion at the band edges are presented in
Figs. 16 and 17 in terms of 0.5-millisecond and 1.0-millisecond ‘‘band-
widths.” Delay bandwidth is here defined as the difference between
those frequencies at which the envelope delay distortion is 0.5 or 1.0
millisecond.

A comparison is made in Fig. 18 of the measured delay characteristics
with the compromise delay equalizer used during the tests with trans-
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mission at 1200 bits. The inverse of the equalizer characteristic is shown
superposed on a diagram indicating the locus of 90 per cent of the delay
curves including all three classes of calls. Hindsight indicates that lower
frequencies probably would have been better equalized on the average
had the compromise favored those circuits utilizing carrier facilities.

The combined effect of amplitude and delay distortion on the FM
digital subset shows up as jitter on the transitions of the demodulated
signal and can be described in terms of peak distortion (repetitive jitter).
Peak distortions of less than 20 per cent are considered quite aceeptable.
Fig. 19 shows that more than 99 per cent of the calls met this 20 per cent
limit while transmitting at 600 bits at mark-space frequencies of 1400-
1900 cps. Although the percentage of calls exceeding the limit did not
vary widely for the three frequency pairs used, the over-all distribution
for the 1400-1900 cps was considerably better. This was probably due
to a better match of the resultant data spectrum to the average envelope
delay characteristic. A correlation of peak distortion and error per-
formance showed that the error statistics would not have been sig-
nificantly changed if the 1400-1900 cps frequency pair had been used in
this test.

Upon changing to a speed of 1200 bits per second, the measured peak
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that shown on abscissa.

distortion, without either attenuation or delay equalization, was beyond
practical limits. After the compromise equalizer was inserted, the jitter
was considerably improved. Fig. 20 plots the cumulative distributions of
peak distortion for the three pairs of frequencies used. Note that, for
pair #1 (1100-2100 cps), over 20 per cent of all calls exceeded the 20
per cent limit, whereas for pairs %2 (1200-2200 cps) and %3 (1300~
2300 cps) less than 10 per cent of the calls exceeded the limit. Pair %3
shows the lowest distortion for two possible reasons: (a) these frequencies
best match the average compromise equalized connection and (b) the
number of carrier cycles per signal element is greatest for this pair.

4.2.4 Ripples in Dustortion Characteristics

The attenuation and delay characteristics described herein were de-
rived by discounting ripples in the raw measured data. These ripples,
mainly the result of echos (reflected energy), can be appreciable and
must not be ignored. The source of echoes is varied and includes all
points of impedanee mismatch in bilateral circuits, and hybrid unbalance
at the junction of two- and four-wire circuits. If multiple echoes exist,
ripples in the attenuation and delay characteristics of the same circuit
are not necessarily correlated. However, for each characteristic the ripple
period on a frequency scale tends to be inversely proportional to the
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electrical length of the path from the observer to the source of echo.
That is, close-in echoes give rise to long sweeping ripples, while remote
echoes cause fine structure ripples.

Due to incereased reflected energy at the band edges, where impedances
deteriorate, the ripple amplitudes tend to increase in these areas. In the
main, the ripple in the amplitude characteristic is significant (i.e., greater
than one to two db) only above about 2000 cps. An appreciation of the
amount of ripple likely to be encountered can be gained by referring to
Fig. 21, where a bar chart indicates the percentage of circuits having a
maximum peak-to-peak ripple in decibels. For the most part, this maxi-
mum ripple occurs in the frequency range of 2000 to 3000 cps.

Both the amplitude and period of the ripples vary across the band,
probably due to the existence of multiple echo points. Such variations
are difficult if not impossible to describe statistically.

It has been pointed out® that close-in echoes result in ripples in trans-
mission characteristics that can be equalized, whereas remote echoes
cannot. The reason for this is that an individual transmitted pulse will
be affected mainly by its own echo if the source of the echo is close in,
and can be equalized to eliminate this distortion. Remote echoes tend
to affect subsequent transmitted pulses, and the effect is random for an
information bearing train. Hence ripple equalization will not be effective
in general.

70

PER CENT

(o] 2 4 6 8 10 12
MAXIMUM PEAK—-TO-—-PEAK RIPPLE IN DECIBELS

Fig. 21 — Percentage of circuits with maximum peak-to-peak amplitude ripple.
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4.2.5 Circuit Net Loss

It is common practice to specify the net loss of telephone circuits at
1000 cps, but the actual loss for a complex frequency signal may be
somewhat different, depending on the attenuation frequency character-
istic of the circuit. An example of this difference will be given. Consider
first the cumulative distribution of 1000-cps circuit net loss (CNL) for
the three classes of calls in Fig. 22. Note that, on the average, exchange
calls are a few decibels better than long distance calls. This is to be ex-
pected, since loss tends to be a function of the physical length of the
connections. Since long distance connections can be thousands of miles
longer than exchange calls, it is gratifying to note that this relatively
small difference in loss between the two types has been achieved in
practice.

Consider the loss experienced by the M digital subset signal operat-
ing at 1200 bits per second. For mark-space frequencies of 1100-2100
cps the apparent carrier frequency is 1600 cps. Reference to Section
4.2.2 shows that the average loss at 1600 cps is about 3 db above the
1000-cps value. Taking into account the entire average attenuation
characteristic across this data band — 500 to 2700 cps — an excess loss
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Fig. 22 — Percentage of circuits with 1000 cps net loss greater than that shown
on abscissa.
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of less than 3 db over 1000-cps CNL is to be expected. Fig. 23 is a plot
in the cumulative sense of the 1000-cps CNL and the data signal net
loss for all calls. Note that the average data signal loss is only 2 db
greater than the average 1000-cps CNL, confirming the prediction.

4.2.6 Noise

Two types of noise are of interest in the telephone plant: (a) steady
line noise and (b) impulse noise. Steady noise is important for its inter-
fering effect on speech transmission. Impulse noise, characterized by
relatively high peaks of short duration pulses, has the greatest effect on
the transmission of pulses.

To see that, in general, steady noise is not of great importance in
pulse transmission, consider its cumulative distribution in Fig. 24. Note
that only about 1 per cent of all the calls exceed noise values of 40 dba.
This is equivalent to an average of about —42 dbm of white noise in a
3-ke band. Referring again to Fig. 23, note that in only about 5 per cent
of the calls did the —6-dbm data signal exceed losses of 26 db for a
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received level of —32 dbm. Even without determining the degree of
interdependence of the two distributions, it is apparent that very few
calls exhibited less than a 10-db average signal-to-noise ratio.

Impulse noise, on the other hand, frequently has peaks comparable to
the received data signal level. The incidence of impulse noise tends to
follow the traffic fluctuations in the switched network. That is, busy
periods generate considerably more impulse bits than do quiet periods.
In fact, in the field test about 40 per cent of the calls failed to show any
impulse counts regardless of the measured level. This is to be expected,
since calls were placed at random during both the busy and quiet periods
of the day.

The average number of counts of impulse noise above given slice levels
for 15-minute measurement periods is plotted in Tig. 25. These data
give a general indication of impulse noise conditions within the message
plant even though they do not correlate well with error rates on the same
calls. In many instances in which errors occurred, no impulse noise was
measured, and vice versa. As a result, the correlation of impulse noise
and error generation was poor. Drop-outs and interruptions that do not
show up as impulse noise counts limit the uscfulness of noise measure-



TELEPHONE NETWORK FOR DATA TRANSMISSION 457

-1 40

LEVEL IN DBM
.

[ 8 10 20 40 60 80 100 200 400
AVERAGE IMPULSE NOISE COUNTS IN 15 MINUTES

Fig. 256 — Average impulse noise counts in 15 minutes above level shown on
ordinate.

ments in predicting error performance on the switched message net-
work.

The error performance actually experienced during the field testing
program is described and discussed in the following paragraphs.

V. ERROR RATES

The primary purpose of the investigation described herein was to
provide statistics of the error rate and the time distribution of errors at
bit rates that have a high probability of success for transmission over any
facility between any two telephone stations in the United States. There would
be little value in designing data systems that had such high bit rates
that they would work on only half of the circuits encountered. We are
interested in the performance at data rates where satisfactory trans-
mission can be achieved on practically all of the connections.

Success in data communication does not mean that the communica-
tion must be completely error-free. The terms ‘“successful” or ‘‘satis-
factory” are as difficult to define for data as they are for speech com-
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munication. Very few people carry out a conversation — even in the
same room, much less over a communication facility — without the
necessity of repetition or the deliberate insertion of redundancy in vital
parts of the message because of distraction on the part of the listener.
This distraction is often extraneous noise or reverberation in the room.
On a communication facility, this distraction might be noise on the
circuit or distortion of the signal resulting in nearly the same effect as
noise on the circuit. Therefore, a request is made on the part of the
listener to repeat. The communication is usually considered successful
or satisfactory until the point is reached where the distraction becomes
high enough to require an annoying amount of requests for repetition.
This will vary with the articulation and modulation of the speaker, the
text of the message and the patience of the communicators, as well as the
transmission characteristics of the circuit. For Data-Phone equipment
the same philosophy applies. The evaluation of performance is more
easily defined in data because of the binary nature of the information
and because the so-called distraction results in a recognizable error.
However, redundancy either in the form of repetition or check digits, or
both, can be used to improve the acecuracy, and the need for it is a func-
tion of the same variables. By the proper use of redundancy it is possible
to achieve any desired degree of accuracy.

In order to obtain a better understanding of error rate as a function of
transmitting level, some measurements were made at a number of levels.
The bulk of the data, which includes the distribution of errors as a func-
tion of time, was collected with a transmission level of —6 dbm at the
sending station.

The method of recording clock pulses and error pulses on magnetic
tape, as previously described, permits a computer to count the number
of good bits between error bits and present the distribution of errors.
This distribution is obtained in a printed output similar to that shown
below, and is also available on cards and on magnetic tape, which can
then be used for later evaluation of various types of error-control schemes
or for more detailed analysis of error bursts:

Zeros Ones
25,226 1
222,866 1
14,692 6
8,971 1

The first column designated ‘“zeros” is the number of good bits be-
tween errors. The second column designated “ones’” is the number of
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errors. Thus, this printed output is interpreted as follows: 25,226 good
bits were transmitted and then one error was encountered; then 222,866
good bits were transmitted and another error was encountered, then
14,692 good bits were transmitted and six consecutive errors were en-
countered, etc. Thisis the basic information from which various types of
analysis have been made.

The particular distributions and relations presented herein have been
selected on the basis of what is thought to be most significant in the
planning of data communication systems. The first statistic essential in
the planning or evaluation of a data system is the cumulative distribution
of average error rates.

5.1 Average Error Rates at 600 Bits Per Second

Tigs. 26 through 29 indicate the probability of obtaining a circuit that
produces an average error rate better than that shown on the abscissas.
These probabilities are shown for the three types of calls. It is at the
receiving central office where the introduction of switching noise is most
critical due to the lower level of the signal. Fig. 26 indicates that 85 per
cent of the exchange calls can handle 600 bits per second with an error
rate of one bit in error for every 105 bits or more transmitted. A slightly
lower percentage, 82 per cent, of the short-haul calls performed as well,
and 75 per cent of the long-haul circuits met this accuracy figure. On the
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centage of calls with average error rate equal to or better than that shown on
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on abscissa — crosshar office receiving, rcceive level —25 db.

average, exchange calls have less attenuation than short-haul or long-
haul calls. Since all stations are transmitting at the same levels, this
means that the signal-to-noise ratio at the receiving station is greater
for the exchange calls.

In order to eliminate the effect of the higher losses on the longer con-
nections, Fig. 27 compares error rates at a common receive level of —25
dbm, the transmitting levels being adjusted so that signals of —25 dbm
were received at the receiving station line. Here the exchange calls and
the short-haul calls are virtually the same, but on the long-haul calls at
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Fig. 28 — Long-haul toll calls — percentage of circuits with error rates better
than that shown on abscissa as transmitting level is reduced.
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centage of calls with average error rate better than that shown on abscissa.

the same receive level the performance is somewhat inferor. This should
be expected, since on long circuits there is a greater probability of ex-
posure to noise and interference.

Fig. 28 indicates the change in error rate distribution as the trans-
mitting level is reduced in 5 db steps. Note that if the transmitting
level is lowered from —6 dbm to —11 dbm the error rate is ap-
proximately doubled.

5.2 Average Error Rate at 1200 Bits Per Second

The curves in Fig. 29 are plots of the results at 1200 bits per second
for the various types of calls. They are shown on the same axis with the
curve of all calls at 600 bits per second. Note that, for a given percentage
of the circuits, the error rate at 1200 bits per second is two or three times
greater than that for 600 bits per second. In other words, 70 per cent of
the calls at 600 bits per second will produce an error rate better than
about one error in 200,000 bits, but at 1200 bits per second 70 per cent
of the calls will produce an error rate better than one in 70,000 bits.

VI. ERROR DISTRIBUTIONS AND ERROR-CONTROL EVALUATION

A data transmission system should be designed to provide for the
optimum useful bits of information with the minimum cost. Cost in-
cludes the cost of data equipment such as the data originating and re-
ceiving equipment and the cost of providing a communication channel,
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as well as that of the modulators and the demodulators. In many cases,
this resolves into the design for optimum line efficiency for a specified
accuracy objective. Many studies have been made to relate this ef-
ficieney in terms of various error correcting and error detecting methods.
Wood?* derives optimum block lengths for retransmission methods, and
Brown and Meyers?® describe the efficiency of various error-control
systems, including forward-acting codes and retransmission methods.
However, in all these evaluations the probability of errors and the dis-
tribution of errors in time are fundamental in arriving at the proper
solution. The selection of optimum codes and optimum block lengths in
error-control schemes is a complex subject. The information contained
in the statistics herein is provided to aid in the derivation of better
control systems. However, the over-all system concept for data trans-
mission, including error control, should be cognizant of the following
considerations:

i. How serious is an error that is produced? Is error control neces-
sary in view of the accuracy of the origin of the data or the final disposi-
tion of the data?

ii. Is the relationship of the line transmission cost to equipment cost
including error control such that optimum line efficiency may not result
in the most economical solution for the system?

iii. Is the format of the data such that optimum blocking must be in
terms of lines of characters or numbers of cards where mechanical limita-
tions are an important factor in the optimum arrangement?

iv. Isthere storage and logic circuitry already provided in the system,
such as in a computer or in buffer storage of other data machines, which
can also be used for error control purposes?

The above factors are functions of the data machinery and how it is
employed. In addition, the functions of the transmission medium, such
as error probability, propagation time and turn-around time of echo
suppressors, must be considered to resolve the optimum data trans-
mission system. If it were not necessary to consider all these factors,
then the error-control function could become a basic feature of the
transmission medium. Therefore, it is not the purpose of this paper to
make an evaluation of the many specific error-control methods that have
been proposed, but it is desired to provide the fundamental error dis-
tributions and indicate the relative orders of magnitude of improvement
that might be expected from the error-control schemes. The following
curves are arranged to facilitate evaluation of optimum block lengths
for retransmission methods, to evaluate error detection schemes, and to
evaluate forward-acting single-error and multiple-error correction codes,
including burst-correcting codes.
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The error-rate distribution curves (Figs. 26 through 29) describe the
probability of getting an error per number of bits transmitted. An im-
portant statistic is the probability of getting succeeding errors within
various time intervals after the first error, for it is the dependency of one
error on another that must be considered in error-detection or error-
correction codes. If a cumulative distribution is made of the numbers
shown in the previous table under the “zero” column, which represents
the good bits between errors, a curve is obtained which shows the prob-
ability of getting an error as a function of time since the previous error.
Tigs. 30 and 31 show these distributions for 600 bits per second and 1200
bits per second, respectively. The results have been analyzed and plotted
for exchange calls, short-haul calls and long-haul calls, and another curve
for all calls together has been drawn.

These curves provide statistics that are useful in the planning and
evaluation of error-control schemes. For example, after an error has
occurred, the probability of having one or more good bits following that
error before getting another error is 0.70 considering all types of calls.
This means that the probability of having zero good bits, which is the
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Fig. 30 — Error-free transmission time between successive errors, 600 bits per
second — percentage of errors having as many as or more error-free bits between
them as that shown on abscissa.
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Fig. 31 — Error-free transmission time between successive errors, 1200 bits per
second — percentage of errors having as many as or more error-free bits between
them as that shown on abscissa.

same as having two or more consecutive errors, is 0.30. In other words,
30 per cent of all errors are immediately followed by one or more errors.
Tor 1200 bits per second the comparable figure is 0.74, which is approxi-
mately the same as the 0.70 for 600 bits per second. If there is particular
interest in eight-bit characters, for example, on long-distance calls at
600 bits per second, the curve shows that approximately 40 per cent of
the erroneous characters are likely to contain single bit errors because
four or more good bits will follow the erroneous bit. This assumes that,
on the average, the erroneous bit is in the middle of the character. How-
ever, this means that 60 per cent of the erroneous characters will have
more than one bit in error.

Each forward-acting correction code, whether it be a Hamming code,?
a Hagelbarger code,® or a square matrix code, is limited in the number
of errors it can correct within a given number of total bits. Also, some
codes require that a period of error-free transmission exist for specific
lengths of time between errors or bursts of errors in order to clear out
the memory and logic of the circuitry to have it ready for the next burst
of errors. The number of correctable errors in a burst and the clear-out
period required is a function of the redundancy of the code and the
amount of storage and logic provided in the system.
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To define these bursts let us assume the sequence of good bits and
error bits shown by zeros and ones below:

sequence: 00001010000000001101010000001000100000
bursts of four: | < | || |e] el e

A burst is defined as a sequence of bits that starts with an error bit
and extends for N — 1 additional bits whether they be error bits or not,
where N is the length of the burst. For example, assume we are interested
in burst sizes of length 4. The first bit in error and the next three bits
following are considered as the burst. The succeeding burst of size 4
starts at the next error that occurs after the first burst, and so on until
the entire message is analyzed by bursts of size 4 and the quantity of
good bits between bursts. Thus, in the illustration above there are nine
good bits between the first two bursts of 4, one good bit between the
second and third burst, six good bits between the third and fourth burst,
and three good bits between the fourth and fifth burst. The number of
good bits between bursts, as illustrated, is counted from the last error in
one burst to the beginning of the next burst. The density of the burst is
the ratio of good bits in a burst to total bits. For example, in the illustra-
tion two out of a total of four bits in the first burst are in error, and the
density is 50 per cent, whereas in the second burst three bits are in error,
and the density is 25 per cent.

An analysis of the 600-bit-per-second transmission and the 1200-bit-
per-second transmission on this basis is deseribed in Figs. 32 through 39.
A range of burst sizes from bursts of one, which facilitate the evaluation
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Fig. 32 — Error-free transmission time between successive bursts of various
sizes, all calls, 600 bits per second — percentage of bursts having as many as or
more error-free bits between them as that shown on abscissa.
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of single-error correction codes, to bursts of 20 is shown. This range is
provided because it is felt that burst-correcting codes for larger bursts
than 20 become quite complex and would be of such high cost that there
would be little application for such systems. The curves are shown for
all calls and for only the exchange calls, showing how the effectiveness of
error-correcting schemes may vary for different types of calls.

To illustrate the improvement that can be expected from a Hagel-
barger code, which is designed for correcting bursts of eight bits in dura-
tion and which requires a clear-out interval of 26 bits between bursts,
an approximation is made. Such a code would have a redundancy of 50
per cent. In Fig. 32, 69 per cent of the bursts for burst length 8 have 26
or more good bits between them. This means these are correctible bursts.
If it is assumed that the uncorrected bursts have the same error density
as the corrected bursts — namely, that shown by Fig. 33 — then an
improvement or reduction in average error rate of about 3.2 to 1 can be
expected. The only reason why this is an approximation rather than an
exact evaluation is because of the previously stated assumption regard-
ing density of uncorrectible bursts, and also because the coding scheme
may introduce additional errors when the bursts are too close. For ex-
change calls, based on the information shown in Fig. 34, approximately
96.5 per cent of the bursts are correctible by an eight-bit burst-correcting
code with 50 per cent redundancy, which should result in an improve-
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ment of about 28 to 1. This is because on exchange calls there are fewer
uncorrectible bursts, since there are fewer bursts that extend beyond
eight bits and fewer bursts that are closer together than 26 bits. It is
interesting to note that, if an evaluation is made of a single-error-cor-
recting code that requires, say, 10 good bits between errors (a Hamming
code would accomplish this), then it is found that on these exchange
calls the single-bit errors predominate. Thus, a substantial amount of
theimprovement made with an eight-bit burst-correcting code could have
been made with a single-error-correcting code.

Now we shall examine all the calls to explore the amount of improve-
ment that may be expected by increasing the error-correcting capabilities
from 8 to 20 bits. This means that for the same redundancy the clear-out
interval must be extended from 26 to 62 bits. The curves indicate that
there is very little additional improvement. Fig. 32 shows that the 20-bit
bursts with a clear-out interval of 62 bits represent 79 per cent of the
total burst instead of 69 per cent. Therefore, little advantage is ob-
tained compared to the increased circuit complexity that must be pro-
vided. These bursts may seem long for data transmission, since they
may effect many bits, but for speech the circuits are very satisfactory
and such interruptions are rarely noticeable.

Information is provided for determining the effectiveness of these
codes for different types of calls. However, the relative value of these
coding schemes can better be illustrated on cumulative-error-rate dis-
tribution curves similar to those previously described in Figs. 26 and 29.
A computer was programmed to correct those errors that were single
errors with more than 10 good bits between them, and also was pro-
grammed to correct those bursts that did not exceed 8 bits in duration
and had at least 26 good bits between them. These values were chosen
since they are thought to represent coding systems that can be imple-
mented with relative ease and illustrate order of magnitude improve-
ments that might be expected. The cumulative distributions of uncor-
rectible errors are shown in Figs. 40 and 41 for speeds of 600 and 1200
bits per second, respectively. Also, plotted on the same axes are the
identical curves previously shown in Figs. 26 and 29, which are distribu-
tions for these calls without error correction of any type. Thus, it is
shown that at 600 bits per second 80 per cent of the circuits achieve an
error rate better than one error in more than 100,000 bits, without any
error correction. With single-error correction, 85 per cent of the circuits
perform this well, and with burst correction the percentage is increased
to 91 per cent. It is necessary to keep in mind that, with error correction,
redundancy is added and, in the case of burst’ correction, 50 per cent of
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the bits are check bits. Therefore, a comparison is made of one in 10°
bits with no correction, to one in 1.7 X 102 bits with single-error cor-
rection, and one in 2 X 10° bits with the burst correction.

At 1200 bits per second the improvement in performance with single-
error correction and burst correction is somewhat better than at 600
bits per second. Actually, the addition of error control tends to make the
performance at 600 and 1200 bits per second very close. For example,
at 600 bits per second with burst correction, 94 per cent of the circuits
produce an error rate better than one bit per 50,000 transmitted. At
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1200 bits per second with the same error control, 90 per cent of the
circuits gave the same performance. The sets of curves in Figs. 40 and
41 are for all calls made in the investigation, and therefore include ex-
change, short-haul and long-haul connections. It is emphasized that if
such curves were shown for only exchange calls the improvement would
be greater, whereas if they were shown for only long-haul calls the
improvement would be less.

These error statistics indicate that, where a high degree of accuracy
is required, retransmission of data is also required. Forward-acting error-
correcting codes by themselves do not at present appear to be the com-
plete solution. Undoubtedly, progress will be made in the direction of
achieving large volumes of storage at low cost, which will facilitate more
economical design of forward-acting error-control schemes. Also, as new
transmission systems are developed and improvements are made to
existing systems, the probability of large bursts of errors will be reduced.

The previous curves have provided the information necessary to aid
in making decisions as to whether error control is necessary and what
type is most effective. If retransmission is necessary the question then
arises as to the optimum block length. An important factor adding to
the complexity of this problem is the turnaround of the echo suppressors,
the propagation time, and the physical and electrical design of the data
input and output machinery. Retransmission methods can cover a vast
range of possibilities. For example, one method might be to send blocks
of data of just a few bits in duration three times consecutively and take
the best two out of three. Another scheme, which might represent the
opposite extreme, would be to transmit entire messages, say 10 minutes
in duration, and when an erroris encountered retransmit the whole message
over again. To evaluate the effectiveness of these schemes it is necessary
to know the probability of error-free transmission as a function of
message length. Also, if this latter scheme were used with single-error
correction, so that retransmission would not be required on the single
errors but only on the long bursts, this method of error control might be
considerably more promising.

Figs. 42 and 43 describe the probability of error-free transmission for
no-error correction, single-error correction and eight-bit burst correc-
tion. Because of the vast time scales that may be of interest for error-
control purposes, the curves are plotted on two different scales. The
probability scale on the left permits accurate evaluation for message
lengths of less than 1000 bits and the scale on the right is used for longer
message lengths. These curves are shown for both 600-bit-per-second
and 1200-bit-per-second tests.
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For example, Fig. 42 indicates that, with 1000-bit blocks at 600 bits
per second with no error correction the probability of error-free trans-
mission is 0.993. With single-error correction this probability increases
to 0.9984, and with burst correction this probability further increases to
0.9988. Thus, it is quite obvious that in this application there is very
little advantage in forward-acting error-correction codes. A forward-
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acting error-control scheme may not by itself appear very promising
when it provides for a reduction in error rate by a factor, say, of 5 to 1.
But if this error-correction scheme is used along with a retransmission
method and the forward-acting code reduces the number of retrans-
missions, then this code may have proved itself by increasing the ef-
ficiency in the use of the telephone circuit. Many more interesting
examples of error control could be discussed on the basis of these curves,
but the objective herein is to illustrate the engineering value of the
statistics and let individual ingenuity go to work.

VII. CONCLUSION

The evaluation program has demonstrated that speeds as high as 1200
bits per second with an FM modem using a zero-crossing detection sys-
tem are entirely practicable on the regular switched telephone network.
The error performance on the connections is variable, depending upon a
number of factors. In many cases, the probability of error in transmission
may be so much lower than the probability of error from other sources
that error control may not be necessary. When very high accuracy is re-
quired, error-control techniques can be used effectively.

Error-detection and block-retransmission methods appear necessary

in order to obtain h deo
in order to obtain a high degree of accuracy on long distance transmis-

sion. Forward-acting error-correcting codes may be used to improve the
line efficiency when such methods are used.

It is possible to design around many of the data limiting character-
istics of the network — the compandors and echo suppressors, for ex-
ample. The variability in circuit characteristics can also be compensated
for somewhat by corrective devices associated with either the data
terminal equipment or, in some cases, the telephone channel itself. The
compromise equalizers used for the 1200-bit-per-second tests are typical
examples of what can be done in this direction.

For some applications, arrangements may be made to bypass certain
facilities that limit the transmission of data signals. These may take the
form of controlled access to the long distance switching network or
perhaps the use of only certain telephone facilities and offices in the data
service offering. In any case, the final decision as to the engineering design
will be determined by the over-all economics.

The Bell System has a continuing effort to achieve higher speeds and
greater accuracy, to provide more effective means for handling the
variety of data transmission requirements and to broaden the scope of
data processing applications by reducing the cost of transmitting in-
formation.
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High-Frequency Negative-Resistance
Circuit Principles for Esaki
Diode Applications

By M. E. HINES

(Manusecript received January 21, 1960)

Certain fundamental principles are presented for analyzing and design-
ing high-frequency amplifiers and oscillators utilizing simple negative re-
sistance elements such as the Esaki or tunnel diodes. The first part of the
paper covers the conditions necessary for oscillation and amplification with
a single negative-resistance diode, including stability criteria, gain and
bandwidth. It s shown that the highest-frequency circuils require diodes with
very small dimensions, so that a single-spot diode will have a very low power
capacity. In order to obtain higher power at high frequencies, distribuled
circuits must be used, either with narrow-strip diodes or a multiplicity of
small spot diodes. Such circuils present special stabilization problems in
suppressing unwanted modes of oscillation. Methods of avoiding such diffi-
culties are presented for one-port oscillator circuits and for traveling-wave
amplifier circuits. In the latter case, nonreciprocal attenuation of the gyro-
magnetic type ts recommended.

I. INTRODUCTION

The Esaki' diode (or tunnel diode) exhibits a negative-resistance
characteristic in the forward-biased region as shown in Fig. 1. Thisis a
“voltage-controlled”’ type of characteristic in that the current is a single-
valued function of voltage. Fig. 1 is a static curve, but the negative
resistance is believed to remain effective at extremely high frequencies.
Oscillation in the microwave range has been observed by several work-
ers.”®* Tt is suspected that useful negative-resistance effects will also
become obtainable in the millimeter wave range as our technology im-
proves.

There is also a capacitance across the junction. This is quite high by
comparison with other junction diodes, when measured per unit area

477
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Fig. 1 — The current-voltage characteristic of an Esaki diode. The general
curve shape is variable to a small degree, and the current density to a large de-
gree, depending upon the semiconductor materials and processing, The total cur-
rent is also proportional to diode junction area.

of the junction. The negative conductance, however, is also high, so
that the negative time constant (negative R times C) is usually sub-
stantially less than 10™° seconds. Negative time constants on the order
of 107 to 107 seconds are believed to be obtainable in special diodes
using intermetallic semiconductor compounds such as indium antimo-
nide.’

The basic purposes of this paper are to evaluate the Esaki diode prin-
ciple as a useful element in practical microwave devices, to show its limi-
tations and capabilities and to present certain elementary device design
methods for microwave oscillators and amplifiers. We will discuss only
the circuit aspects of Esaki diodes as negative-resistance devices at high
frequency. The solid state physies of the tunneling process applicable to
these diodes has been described by others."®" Microwave devices must
include substantial parts of the high-frequency circuits, in a manner simi-
lar to that of microwave electron tubes. Suitable circuit geometries will
be described and analyzed, taking into account the junction capacitance,
negative resistance, parasitic resistance, load coupling, ete. This work
is mostly theoretical and little experimental work is described.

The paper begins with a discussion of the stability criteria for simple
negative-resistance circuits, which presents the appropriate relation-
ships among the circuit parameters for amplification, oscillation and
switching. The analysis includes the limiting effects of circuit and load
resistance, diode capacitance and negative resistance. It is shown that
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Fig. 2 — A simple equivalent circuit of an Esaki diode connected to a battery.
Analysis for stability must include the lead inductance L, the parasitic resistance
R, and the capacitance C, as well as the negative resistance R,, .

very small diode dimensions will be required for high microwave fre-
quencies.

If appreciable microwave power is to be obtained, distributed circuits
will be required. These can take the form of extended narrow-strip diode
junctions or a multiplicity of small-spot diodes in a filter-type structure.
Such circuits pose difficult problems in device design and fabrication,
and special precautions are necessary to avoid oscillation in spurious
resonant modes. A substantial part of this paper is devoted to the latter
problem, and several circuit possibilities are described.

II. SIMPLE NEGATIVE-RESISTANCE CIRCUITS

2.1 Basic Stability Criteria

We will begin with the simplest possible circuit, which is simply a
diode connected to the terminals of a battery. This circuit, shown in
Fig. 2, also may be interpreted to include a number of practical circuits
in which additional inductance and resistance have been added. A
meaningful analysis must include the finite lead inductance, the induct-
ance of the battery loop, and at least the inherent passive resistance of
the battery and diode.

R. L. Wallace has derived (4) below in unpublished work. We will
repeat this and give a concise interpretation in the form of a stability
diagram.

The VI curve of Fig. 1 is nonlinear. We use a linearizing approxima-
tion valid in the immediate vicinity of the operating point V.., I,
shown in Fig. 1,
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. V - Vm
1 = Im _ T, (1)
where 7 and V are the instantaneous current and voltage, and the nega-
tive resistance R, is the inverse of the V-I slope at the operating point.
In a straightforward manner, one can write two loop equations and make
appropriate elementary substitutions to obtain a differential equation
for the current 7, in the battery loop. This is
d (23 L de R —_ Rn .
_r %% i s — lin
@t (R -k ) @ T TRC ®

) (2)
= = -V
RnC (Vm -{ b + Rnln>-
The general solution of the above equation is
iy = A 4 Ayt 4 Vo= Vm = Baln (3)

R, — R, ’

where the third term is the de bias current and p; and ps are the two
values (taking the + and — signs) given below.

pa =1L \:!:7/1/1(1—— Yo L(B_ 1Y,

2\R,.C vV LC\ K. 4\L R.C/

In (3), 4; and A, are arbitrary constants depending upon the initial
current in the inductor and charge on the capacitor. The exponential
factors p; and p; may be real, complex or imaginary, depending upon
the choice of circuit parameters. If either value has a positive real part,
the circuit will be unstable. If the p’s are real, an initial disturbance will
either grow or decay exponentially to the steady bias condition. If
the p’s are complex, the transient waves will be growing or decaying
sinusoids.

Equation (4) has four parameters. We can reduce this to a two-param-
eter function by the substitutions

7—‘ (5)

and

These yield

p ]' _E__ 2 /‘/ Rs
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Fig. 3 shows a set of curves for the above function, and Fig. 4 is a stabil-
ity diagram suggested by W. W. Anderson. These show that the circuit
will be unstable if the ratio of B, to R, is either too small or too large, or
if the ratio of inductance to eapacitance is too large. For many Isaki
diodes, the negative conductance is so large that the inductance of the
shortest pigtail leads is sufficient to cause oscillations, and a special low-
inductance case is necessary to allow stable biasing at the operating
point. FFor operation at var or lower frequencies, it is usually necessary
to add capacitance in order to permit a lower inductance, and thereby
get a value for @, that is large enough to obtain sinusoidal operation as
opposed to exponential or “blocking” type oscillations. A typical value
for the product R.C' might be 2 X 107 in a germanium Esaki diode.
Tor such a diode the maximum allowable inductance for sinusoidal os-
cillations would resonate with the capacitance at about 400 me. If a
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Fig. 3 — Exponential transient characteristics for the circuit of Fig. 2. Tran-
sient currents vary as er:. Here w, is the resonant frequency of L and C, and @,
is defined as woR.C.
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Fig. 4 — A regional stability chart for the circuit of Fig. 2, showing the allowed
ranges of the parameters for particular types of transient waves. For curve a,
RJ/R, = 2/Q, — 1/Q.2; for curve b, R./R, = 1/Q.2.

stable condition is required, the resonant frequency must be at least
twice this value, and preferably several times higher. If extra capacitance
is to be added, it must be connected without adding appreciable induct-
ance between the diode and the capacitor. One method would be to
include the capacitance in the diode case or to mount the diode between

fhp nl&tes Cf Q& Capu,ultul

2.2 An RF Circuit with External Battery

It is seldom possible or desirable to include the battery or power sup-
ply in the high-frequency portion of an R circuit. It is possible to isolate
the RF region through the use of a bypass capacitor and an ®rr choke,
but special precautions are necessary to avoid instabilities because of
the inductance of the choke or of power leads alone. The use of capaci-
tance to stabilize negative-resistance circuits has been described by
Thomas.®

Fig. 5 shows a simple and useful RF circuit with such isolation; the
parts drawn with heavier lines are the RF region, with C; being a large
bypass eapacitor and L, the inductance of the power leads and any added
choke coil. The load resistance Ry should be inductively coupled, either
as shown or by mutual inductance through a transformer. A stabilizing
resistance, R , may simply be the internal impedance of the battery or
power supply. The ranges of values for L., C; and R, are strictly lim-
ited; otherwise we may expect instabilities at low frequencies.

To analyze the circuit of Fig. 5, we assume that Cs is very large and
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Tig. 5 — An rr Esaki diode circuit in which the rr and power supply are iso-
lated at high frequencies. The bypass capacitor C: serves to confine the rF cur-
rents to the part of the circuit drawn with heavier lines. It is also helpful in sta-
bilizing the circuit against instabilities involving the inductance of the powerleads.
Low-frequency stabilization can be further helped by shunting a low resistance
across the capacitor C; .

break the circuit into separate high-frequency and low-frequency equiv-
alents as seen from the rF and dc terminals respectively. These are
shown in Fig. 6. The circuits are in the same form as in Fig. 2, and we
may use the criteria of Fig. 4 and (7) to determine the stability of each
circuit and the nature of the transient waves involved. In the RF equiva-
lent circuit we have replaced the load resistance by its series equivalent
and assumed that C. is an rF short circuit. For the low-frequency equiva-
lent eircuit, we have assumed that L, is a short circuit. Four transient
wave types will be obtained from these two circuits, and four would be
obtained by an exact analysis of the complete circuit. We can presume
that the results from the two equivalent circuits are close approxima-

L, R/ La Rsa

—-Rn CitCz
"Rn C( J

(a) (b)
HIGH-FREQUENCY LOW-FREQUENCY
EQUIVALENT EQUIVALENT

Fig. 6 — Two equivalent circuits applicable to Fig. 5. These may be separately
analyzed by the criteria of Fig, 4 to determine the four transient wave types for the
circuit of Fig. 5.
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tions, provided that the values of p obtained are consistent with the
assumptions about the low- and high-frequency impedance of L, and C,
that allowed us to separate the circuits. For the low-frequency equiva-
lent, the criteria for stability are

/‘/01 +tCy 8)

L, 1
R. >Rs2>01+02 (9)
It is possible to use a small stabilizing resistance R provided that C,
can be sufficiently large compared to L.

Fig. 7 shows a coaxial cavity version of the circuit we have been dis-
cussing in this section. An actual circuit of this type has been used by
A. Yariv and E. Dickten at Bell Telephone Laboratories to obtain osecil-
lation at frequencies above 8000 me, using a germanium Esaki diode.

2.3 Oscillation Conditions

The conditions for obtaining oscillations can be deduced from the
stability eriteria; this requires a transient wave with a positive real part
for p. If p is also complex, a growing sinusoidal transient is indicated.

TP
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Fig. 7 — A schematic sketch of a coaxial cavity microwave cireuit utilizing the
isolation principle of Fig. 5. Oscillations at frequencies above 8000 mc have been
obtained by A. Yariv and E. Dickten in a circuit of this type using a germa-
nium Esaki diode.
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Nonlinearities must limit the maximum growth of such a transient be-
cause large voltage swings will extend into the positive resistance region
of the diode. Under these conditions, we may usually expect a steady
oscillation, The region of growing sinusoidal transients is clearly shown
in Fig. 4. Useful oscillations are also obtainable for low values of R,/R,
and low @ in the lower left part of Fig. 4, where growing exponential
transients are indicated. Because of the nonlinearity, we can expect the
voltage to “switch” back and forth at high speed. Steady oscillations
will not be obtained, however, for B, > R, . In that case, the circuit
tends to stabilize at a voltage either above or below the region of maxi-
mum negative conductance. This condition is useful for logic circuitry.

2.4 Amplification

For amplification, a number of circuit configurations are possible.
TFig. 8 shows the circulator method of obtaining useful gain with the
negative resistance circuit of Fig. 5 or Fig. 7. The input wave passes
through the circulator to the amplifier, and the reflected wave is diverted
by the circulator to pass out by another port. When the impedances are
properly adjusted, the circuit will be stable, but the reflected wave will
be greater than the incident wave, resulting in a net power gain. Another
method of obtaining amplification has been described and analyzed by
Chang.’ His scheme uses input and output lines separately coupled to
the negative-resistance circuit.

A third method is to use a 3-db directional coupler or a hybrid junction
(magic tee) with two negative-resistance circuits. This method is shown
in Fig. 9. The waveguides connecting the tee to the amplifiers are un-
equal in length, with an additional one-fourth wavelength in one arm.
This causes the reflections from the two amplifiers to be out of phase
at the tee and pass out by the fourth port. Of the three methods, the
circulator approach gives unilateral gain, and multiple stages can be
used without increasing the danger of oscillation. The hybrid and two-
port amplifiers are more sensitive to mismatches at input and output,
and isolators are essential if a high total gain is obtained.

In order to analyze the reflection-type amplifier, we may conveniently
use a shunt equivalent form, as shown in Fig. 8. Here we have a parallel-
resonant combination and have replaced — R, by its inverse —G.. We
also include a shunt positive conductance G, to account for parasitic
losses in the diode and circuit.

The power gain of the cireuit is given by the square of the magnitude
of the voltage reflection coefficient T. This is the familiar expression
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Fig. 8 — The circulator method of connecting a negative-resistance circuit to
give useful amplification. The circuit of Fig. 7 is suitable for this kind of amplifier.
An equivalent circuit in shunt form is shown for the amplifier in this figure.

G -Y
G+ Y’
where G}, is the characteristic admittance of the connecting transmission
line and Y is the admittance of the ‘“amplifier” circuit that forms the
terminating admittance of the line. For the circuit of Iig. 8,

r (10)

Y =G, — Gu + juC — -, (11)
wlL
so that the power gain g, will be
.2
Gr — Gy 4 G — juC + L
(12)

wL
g = .
Gu — Gy + Gp + juC — L
wl
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AMPLIFIER

HYBRID JUNCTION
(MAGIC TEE)

INPUT >

AMPLIFIER

Fig. 9 — The hybrid-junction (magic-tee) method of obtaining amplification
using two negative-resistance circuits. The extra length in the lower arm reverses
the phase of one reflected signal so that the two reflected waves will combine in
the output line of the hybrid junction. A 3-db directional coupler may be used as
an alternative to the hybrid, but the proper phase conditions will depend upon the
particular coupler used.

The gain will be greater than unity if @G, is greater than G, and will
approach infinity at resonance if @, approaches G, plus G, . Oscillations
will oceur if @, is greater than G, plus Gy, .

As in other negative-resistance amplifiers, the bandwidth decreases as
the gain is increased. If a simple resonant circuit is used and the gain
is high, the product of voltage gain and bandwidth is more or less in-
variant as the gain is changed over a wide range. At high gain, Gy, is ap-
proximately equal to G, — @, , so that at resonance the voltage gain is
approximately

2(Gn - GP)
» = 13
"= &= (G = G (13)
and the 3-db bandwidth is
B3db — f0 _ fO G2 - (Gn - GP). (14)

Qnet B OJ()C
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The gain-bandwidth product, therefore, is

goB3ap = u (15)
wC
In the special case of negligible parasitic resistance,
G 1
wBaap = — = . 16
JvD3ab -C 7R.C ( )

As shown by Seidel and Herrmann,'® however, this limitation does not
apply for eircuits of greater complexity.

2.5 Maximum Frequency and Diode Geometry

At present there are no indications of frequency limitations in the
microwave range in the negative resistance of the diode junction itself.
We assume here that the only significant frequency limitations are those
resulting from diode capacitance and parasitic resistance. These are quite
sufficient. In this section we shall derive an expression for the maximum
frequency and show how it depends upon the characteristics of the diode
junction and upon the diode geometry.

Let us assume that we are successful in obtaining a very small value
for the series parasibic resistance B and that we are attempting to work
at a high frequency where @, is also large. In this case, we can assume
that

1
R.> —>R,. (17)
wilC

Tor this condition, we can redraw the circuit as a shunt combination of
a capacitor, a positive resistor and a negative resistor. To a close approxi-
mation, —R, and C will remain the same and we can take account of
R, by adding a shunt resistor of value (wo’C’R,)™". Thus, w'C’R, is the
value of G, in the circuit of Fig. 8. There is a value of w, for which G,
is equal to G, or R, and at higher frequencies G, will be greater. This
is the maximum frequency for negative resistance effects, given by

Vi a5

Jmax = g

The denominator of this expression is dependent upon the properties
of the junction and is independent of geometry. The numerator can be
affected by the mechanical and electrical design of the diode mount and
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by the size and shape of the junction. In small alloy-junction diodes
(most Esaki diodes have been of this type) most of the parasitic resist-
ance will be found in the semiconductor material in the vicinity of the
junction. This is the familiar “spreading-resistance” of point-contact
diode theory.

In order to compare the useful types of diode geometry, we assume
that this spreading-resistance is the only significant contributor. Aec-
tually, skin-effect is also important in many cases, but it can be treated
by standard methods. Fig. 10 shows two widely divergent types of diode
construction, idealized in shape in order to permit a simple analysis.
For these cases we assume that the radius r; is smaller than the skin
depth in the semiconductor material, and that the metallic parts have
negligible resistance. The junction has a capacitance of Cy farads per
square meter and a negative conductance of — Gy mhos per square
meter. The semiconductor material has a resistivity of p ohm-meters.
From these parameters, it is a straightforward matter to derive expres-
sions for the maximum frequency for the two geometries of Fig. 10.

SPOT GEOMETRY LINE GEOMETRY

. -

SECTION DETAIL

Fig. 10 — Two idealized types of Esaki diode geometry suitable for microwave
applications. The circular cross section of the semiconductor is not likely to be a
practical structure, but it has been assumed here to simplify the analysis and allow
direct comparisons.
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For the spot,

o = Gat 1 H
max 27TCd1P% ry <1 _ Q) ) (19)
Ts
and for the strip,
f — Gdl% __._1_. !
max 27er1P% ,’.d ln 7;3_ . (20)
T

The first term in each expression is the same, and is dependent upon
the semiconductor and junction properties only. The second term de-
pends upon geometry only. It is clear that 7, must be small for both cases
if the semiconductor is of appreciable thickness. If r4/r. — 1, the fre-
quency limits are equal, but for small r4/7, the spot geometry has a higher
limit. For example, if r4/7, = 0.1, the frequency limit for the spot case
will be 1.6 times that for the strip case.

III. DISTRIBUTED CIRCUITS — GENERAL CONSIDERATIONS

In Section II the conditions for obtaining useful negative-resistance
effects were presented. It was shown that single-spot diodes must be of
small area if the highest frequencies are to be usable. It was also shown
that narrow-strip diodes can be utilized at high frequencies and that
these can have substantially greater power capacity. If significant
amounts of power are to be obtained, it will be necessary to use a large
number of single-spot diodes or to use narrow-strip diodes of appreciable
total length. The remainder of this paper will be devoted to such dis-
tributed circuits.

A basic characteristic of distributed circuits in this sense is that more
than one resonant mode is possible in the general frequency range of
interest. With negative-resistance elements distributed along such a
structure, spurious oscillations are a major hazard. This is the familiar
moding problem which has plagued the development of multicavity
magnetrons since the early days of World War II. If we attempt to
design ordinary Esaki-diode distributed circuits of equivalent complex-
ity, the problems are likely to be even more serious, because of the
broadband nature of the Esaki-type negative resistance. There appear
to be two methods of avoiding such difficulties. One is to use circuits of
essential simplicity with few diodes, so that the modes are clearly distinct
in character and/or frequency and can be separately damped by resist-
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ance. The other is to use traveling-wave circuits combined with a non-
reciprocal (gyrator) type of attenuation. These are the methods to be
discussed here.

IV. TWO-DIODE CIRCUITS

Fig. 11 shows a two-diode circuit for push-pull operation. This circuit
has two resonant modes, which we will call the push-pull mode and the
unison mode. In the former, the ac voltages are out of phase at the diodes
and an ac voltage null is found at the center between the two inductors.
The resistance R. does not affect the @ of this resonance, but the load
resistance R, is energized instead. In the unison mode, the load resistance
is not effective, but the alternating currents combine and pass through
the resistor R;. Thus, we have a kind of orthogonality distinguishing
the two modes so that they are loaded separately. Fig. 11 shows two

(@) COMPLETE CIRCUIT

Rs/a
%2'— —+Lz§
-2Rp
(b) PUSH-PULL MODE UNISON MODE
EQUIVALENT CIRCUIT EQUlVALENT CIRCUIT

Fig. 11 — A simple push-pull circuit using two Esaki diodes, Two resonant
modes are possible, and it is necessary to stabilize the unison mode that involves
the power connections. The stability conditions may be determined from the two
equivalent eircuits shown.
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equivalent circuits for the two modes. In Fig. 11(c¢) the load resistance
L1 has been replaced by its series equivalent R,’. As before, these equiva-
lents can be analyzed for stability by the diagram of Fig. 4. The unison
mode must be stable, and the push-pull mode should give a growing
sinusoidal transient if oscillations are desired.

Figs. 12 and 13 show two possible microwave applications of the or-
thogonal mode-separation principle. In Fig. 12 we have two diodes in a
double-ended coaxial cavity operating in a ‘“half-wave-length” mode.
This circuit is similar to one suggested by R. L. Wallace. The desired
push-pull resonance is similar to that of a half-wavelength coaxial line
with the ends open-circuited. The actual cavity would be much shorter
than a half wavelength because of the excess capacitance at the ends
that would be provided by the diodes. Power is fed through a resistor to
the middle of the center conductor. This point is a voltage null for the
desired push-pull mode. The inductance of this resistor must be included
in the equivalent circuit [Fig. 11(c)], and we can analyze the unison
mode including the bypass capacitor and power leads in the manner of
Fig. 6. Coupling to a waveguide can be accomplished through a window
as shown.

Fig. 13 shows a strip-line type of circuit using two diodes, which are
mounted on short posts between the plates of the line. The strip line
should be sufficiently narrow that it will propagate only the TEM mode
at the frequency of interest. For the desired push-pull mode of operation
we will have a local resonant circuit involving the inductance of the two
posts and the capacitance of the diodes. This mode, if symmetrical,
cannot excite a wave in the strip line. The unison mode, however, is

—-—- WAVEGUIDE
e — COUPLING SLOT
/
DIODE
7

—

NN
AL
[&
>
s
WEN

1

& N BYPASS
CAPACITOR

Fig. 12 — A possible coaxial cavity arrangement for a push-pull microwave
cireuit. The window between the cavity and waveguide provides the loading resist-
ance. The resistance in the cavity stabilizes the unison mode without loading the
push-pull mode.
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directly coupled to waves on the line, and oscillations can be suppressed
by choosing an appropriate matching resistance at a suitable distance
from the diode. Also shown, in Fig. 13(b), is a method of mounting the
strip line across the end of a waveguide to provide a method of output
coupling. If the strip lines are terminated in resistive films at the corners

N ESAKI DIODE

“SRESISTIVE STRIP

(@) STRIP-LINE CIRCUIT

WAVEGUIDE

»

(b) METHOD OF MOUNTING

Fig. 13 — A possible push-pull circuit in strip-line form. The strip resistances
stabilize the unison mode, but the balanced push-pull mode cannot induce waves
along the strip line. The push-pull mode can be coupled to a waveguide if the strip
line 1s placed across the end as shown.

The Sharred Library

EAST TENNESSEE STATE UNIVERSITY
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of the waveguide, these resistive films will not be coupled to the wave-
guide fields. The degree of coupling of the desired mode to the waveguide
can be decreased or increased by using a wide or narrow strip line respec-
tively. An alternative method would be to place an iris or post in the
waveguide at some distance from the end, as shown.

V. TRAVELING-WAVE DISTRIBUTED CIRCUITS

Fig. 14 shows the simplest possible form of “smooth” distributed eir-
cuit. As drawn here, it would be unsuitable for practical use, since it
does not include a method of applying dc power and avoiding instability
in a uniform-phase mode. This is simply a block of semiconductor with
an Esaki-type p-n junction separating p and n regions in the block. The
barrier layer between the p and n sides can act as a gap, forming a kind
of strip-line.

R. L. Wallace has analyzed this case in an unpublished work, and we
will follow his line of attack, using MKS units. We will assume that the
junction will act as a parallel-plate transmission line with a very narrow
gap. This gap will be the barrier region of the diode, which may be as
narrow as 50-100 angstroms. We will simply assume that the gap has a
capacitance of Cy farads per square meter and a negative conductance
across the gap of — G mhos per square meter. Outside the gap on either
side we will have a region of poor positive conductance. Skin effect in
these regions will have a dominant effect on the transmission character-
istics of the line.

As shown in Fig. 14, we assume a strip of width w, and a resistivity of
p1 and p; for the two outer regions. We will be concerned with the prop-
agation of the TEM mode along the strip.

“~-DEPLETION LAYER GAP

Fig. 14 — An Esaki p-n junction “strip line’’ that has been analyzed for travel-
ing-wave type gain. This does not appear to be a practical geometry, but the re-
sults of the analysis are interesting in considering the stability of large-area Esaki
diode junctions.
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The familiar formula for skin-effect resistance is
Ry = /prfu ohms per square, (21)

where p is in ochm-meters and p is the free-space permeability (value:
47 X 1077 henrys per meter). There is also an inductive reactance asso-
ciated with skin effect, which, in planar geometry, has the same magni-
tude as the resistance:

iX; = jA/prfu  ohms per square. (22)

The inductance associated with the barrier-region gap itself can be ne-
glected, because this gap is very narrow compared to the skin depth. An
expression for the series impedance of the line is, therefore,

7 = 'le (1 + NDVafu(A/p1 + V/p:)  ohms per meter, (23)

where p; and p, are the semiconductor resistivities on either side of the
junction.

The shunt admittance of the gap as a transmission line is the sum of
the capacitive susceptance of the gap plus the negative conductance of
the region as an Esaki diode,

Y = (jwwCa — Gaw) mhos per meter, (24)

where Cs and Gy are the capacitance and negative conductance per
square meter respectively.

The propagation of waves along a transmission line is given by the
expression

V(zt) = Ve=ver:, (25)

and we are particularly interested in the propagation constant, /ZY.
If its real and imaginary parts have opposite signs, we can expect gain;
if they are of the same sign, we will have loss. From (23) and (24) we
obtain

VZY = [(1 4+ f)v Tfﬂ(\/;); + Vo) (oCay — Gdl)]%
Cdl . wcdl)ir
142 1— .
I: + Gu + ( Ga
We will obtain gain if the real and imaginary parts of v/ZY are of op-

posite sign, which requires the imaginary part inside the second brackets
to be positive. Thus, the highest frequency for gain is

_ Ga
fmax - 27|'Cd1.

(27)
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This frequency is independent of the strip width (for our assumed wide
strip) and depends only upon the properties of the junction and the
semiconductor materials involved. In comparison with the results of the
spot and narrow-line geometry cases, we are much more severely limited
here.

It is a straightforward matter to compute the wavelength, gain per
wavelength and “characteristic impedance” of this kind of structure as
a transmission line. These are given by the expressions

27
wavelength = Tmagimary part of N/Z7 meters, (28)
real part of \/ZY
imaginary part of \/ZY

54.7

gain per wavelength db, (29)

characteristic impedance = ,‘/ %, ohms (will be complex). (30)
A little computation will show that the wavelength will be much shorter
than that in free space, that the gain will be very high (for frequencies
below the maximum frequency) and that the characteristic impedance
will be very low if the strip has appreciable width.

This wide-strip diode geometry does not appear to be particularly
interesting at this time for a useful traveling-wave device. The frequency
limitation is relatively low, the impedance will be very low and there
will be serious stability problems in providing a suitable power feed.

A very-narrow-strip diode geometry appears to be more promising.
One method of using such a strip diode would be as shown in Fig. 15.
Here we have a long, narrow negative-resistance diode placed along the
center line of a metallic strip line of appreciable width. At high frequen-
cies, this will propagate a growing wave whose phase velocity will be
slower than the velocity of light because of the capacitance loading of
the diode. For such slow wave propagation, the magnetic and electric
fields in the gap will decay exponentially in the transverse direction away
from the diode strip. The field patterns are shown in Tig. 16. At high
frequencies, the fields will decay more rapidly with transverse distance
than at low frequencies. Thus, a resistive shunt can be placed continu-
ously along both outer edges of the strip line where the high-frequency
fields will be weak, and this will not cause a serious amount of high-
frequency attenuation. At low frequencies, however, this shunt can
cause very substantial attenuation, and if the net positive conductance
per unit length exceeds the net negative conductance there will be no
problem with low-frequency stability or in connecting the power leads.
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%

\

\
ESAKI DIODE
STRIP

\
\

RESISTIVE EDGE
STRIP

Tig. 15 — A possible traveling-wave Esaki diode amplifier using a narrow-line
junction diode. The edge resistances can stabilize the circuit at low frequencies
and allow the connection of power leads. At high frequencies, the ac fields are
confined to the region near the diode strip, so that transmission is little affected
by the resistance strips.

This mode of propagation will be substantially different from the
TEM mode of a simple strip line with a central metallic ridge with a
narrow gap, for which we would expect no velocity reduction. This
diode strip has a capacitance corresponding to the barrier gap that is
in the order of 10" ¢m, while the inductance for currents along the diode
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Fig. 16 — The ac magnetic field configuration in the gap region of the circuit
of Fig. 15. At high frequencies the ac fields decay exponentially with distance from
the center line.



498 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960

strip corresponds to a gap equal to the skin depth in the semiconductor
which is in the order of 107* to 10~ em. Thus, propagation would more
closely resemble that for a strip line loaded capacitively with a central
web of dielectric with a high dielectric constant.

The field pattern in the gap region outside the diode will be a TIE mode.
If we assume perfectly conducting walls, the field equations in MKS
units are

Hz — Aeiwt—‘yz+qy + Beiwl—'rz—qy, (31)
H, = 727:;{ iz (Ae;'f:t—wﬂy _ Beiwt—w—qy), (32)
E’z = 7-27""::qu2 (Aefwl—‘rz'l'qy _ Bejwt—'yz—qy)’ (33)

where 2 is the direction of propagation, x is perpendicular to the plane
of the strips and y is transverse in the plane of the strips. In the above,
v is the complex propagation constant we wish to determine, and

k= oue, (34)
¢ = £}V + R (35)

If there were little gain or attenuation in propagation, ¢ would be very
nearly purely real, and would be substantially greater than & at high
frequencies. The propagation constant v would be nearly purely imagi-
nary, and would have a magnitude nearly equal to ¢ at high frequency.

We wish to determine v and ¢ when we include the negative conduct-
ance along the center, the spreading resistance, the skin resistance of
the strip line and the positive conductance along the edges. These resist-
ances will modify v so that it will have a finite real part, indicating gain
or loss for traveling waves. The method of attack is to find the admit-
tance per unit length looking outward from the diode strip as a function
of ¢ and w. This admittance must be the negative of the admittance per
unit length of the diode strip, giving an equation for ¢ as a function of
frequency. This is based upon an argument that the current leaving the
diode must enter the strip line, and, if a voltage is to exist, the admit-
tances must be equal but of opposite signs. There is a hidden assumption
here that the longitudinal current under the diode junction is negligible.
This will be valid provided that the diode strip is very narrow compared
with a wavelength on the structure and the strip-line gap is quite thin
and of the same order of magnitude as the skin depth in the semicon-
ductor under the junction. In this case, there will be a low-impedance
current path from one part of the diode to another through the strip-line
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gap and only a small fraction of the total z-directed current will be in
the semiconductor material under the junction.

We can find the transverse admittance of the strip line by solving the
boundary-value problem for the outer edge, temporarily neglecting skin-
effect losses. At the outer edge we assume that the resistive film forms
the total terminating admittance and that there is no y-directed current
leaving the gap region. The wall resistivity at the boundary is taken as

—1
ps = (r 1/%) ohms per square, (36)

where 1/r is the dimensionless ratio of the free-space impedance v/u/e
to the actual resistivity p.. At the boundary where y = o, therefore,

Using (31) and (33), we can write the boundary equation as

2 2 qYo —aY0 -
(W + Ic)Ae + Be “‘/5. (38)
(Jouq) /) Ae™° — Be ¥° ©

We may substitute for (v* 4 &%) from (35) to obtain

4 62'1710 +1
B .k
-_— = —gr-, (39)
4 8241/0 -1 q
B
from which we may solve for A/B, obtaining
A jric -1
5= e“"m—]q——. (40)
jrg +1

The admittance at y = 0 is obtainable by substituting the above and
performing some algebra, giving

4

1(H, 7 € 1= rk tanh gyo mhos per
(Ys)y=0 = 7L E“ — = -}“L ;L oy g meter. (41)
e/y= 14+ j—a tanh gy,

We must also include the diode spreading resistance and the effect of
skin resistance in the strip-line region. The spreading resistance under
the diode can be taken as a long strip resistance with a conductivity
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(1 mhos per meter of length, and we may postulate another strip resist-
ance with a conductance of G, mhos per meter to account for the skin
resistance of the strip line. We include these terms to obtain the total
admittance for the circuit looking outward from the diode junction:

1
Y, = —1— _|_i_|__1_ mhos per meter. (42)
Gsl 2G52 2Ys

The factors of 2 in the above account for the two sides of the strip line.
We can now write the admittance equation, which is solvable for ¢,
the transverse propagation constant. This is

Yo= -Y, (43)
or ‘

1
1 1 1

G Vag, Tav

where C; and Gy are the capacitance and negative conductance per meter
of length.

= Gq — juCy, (44)

We need expressions for the terms G and G,z . The term G is the in-
verse of the spreading resistance for one meter of diode length,
1
Rai=+ ="m"> ohm-meters, (45)

Gu ™ Ta

where p is the resistivity of the semiconductor material. Both Gy, and Y,
are transcendental functions of wavelength and frequency and involve
the unknown ¢. We will have to make further simplifying assumptions
to obtain an equation which we can use readily. For this, we assume
that the strip line is sufficiently wide and the frequency is sufficiently
high that tanh ¢ye can be taken as equal to one. This is the same as tak-
ing A/B equal to zero in (31). This assumption is valid for the high-
frequency region, where we can expect substantial gain and where the
ac fields are weak at the edges of the strip line. This approximation gives

(Y )nigh frea. = —J hi . (46)
Wl
To determine 1/G;; we use the same high-frequency approximation. We
also assume that skin effect perturbs the field equations but little, and
compute the skin-effect power loss per unit length by an integral over
the two faces of the strip line,



PRINCIPLES FOR ESAKI DIODE APPLICATIONS 501

Yo (=)
P =2 fo Ra(HS+ H})dy  watts per meter, (47)

where R is the metallic skin resistance in ohms per square. We may
note that H, and H, have nearly equal magnitudes at high frequency
provided that ¢* >> &*. This allows us to integrate into a simple form:

_ 2H.(0) Ry

tt t 48
e () watts per meter, (48)

where Re (¢) is the real part of g. We postulate an equivalent strip resist-
ance Ry (or Gu ) at the inside edge adjacent to the diode. This would
give a power loss of

P = R,H}(0) watts per meter. (49)
Equating these powers gives an approximate value for R, :

1 2R

o Ry = Re (@) ohm-meters. (50)

Let us now write (44) in a complete form valid at high frequencies only:

1 .
£y ey o +j’E’£=Gd_]de' (51)
T 12 Re(g) 29

We may solve this for ¢ by using still another approximation — that ¢
is substantially a real quantity — and substitute ¢ for Re (¢). This is
a valid approximation because the term involving Re (¢) is small com-
pared with the one involving g¢:

2R de>
1 — JTd
_ow| (-5 (52
2 PinTe (P
Ll (7‘_ In Td) Gi+j <7r In Td) wC
At high frequencies, the imaginary quantities in the numerator of (52)
are small compared with one, and with low spreading resistance the sec-
ond and third terms in the denominator are also small compared with
one. If we bring up the denominator with a binomial expansion, mul-

tiply the result and drop terms involving the products of two or more
small quantities, we obtain an approximate first-order result:

wQCd,U.h ( de . 2Rsk . P < Ts> p 7'3> .
¢~ 1+;C—’_]wph_];r lnﬁ de—l-;_Gdlnr—d. (53)

(52)
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From ¢ we can obtain v by (35). This is
v = £iVE + K (54)

In the high-frequency region where (46) is valid, v° will be much larger
than &%, so that

v & +7q. (55)

We will obtain gain if the real and imaginary parts of ¥ have opposite
signs, and this requires a positive imaginary part in the expression for
q given in (563). The maximum frequency for this is

/1 2Rsde
G —
fmux = 27['8 —L(id'- (56)
d /‘/ Gd B In =
T Td

If we ignore skin-effect losses, this is the same limit we obtained in (20).
This can easily be shown by substituting Gy = #14Ga1, C1 = 774sCsy and
Ry = 0.

There are several drawbacks to this structure as a practical amplifier.
The major one is that the circuit will show gain in both directions and
there will be considerable difficulty in stabilization. Slight mismatches
will establish standing waves, and oscillations can occur if the total gain
is substantial. Gain will be found over a wide frequency range, and it
will be difficult to obtain a good match to input and output transmission
lines throughout this range. The impedance of the structure is approxi-
mately proportional to frequency over a wide range, and this increases
the matching difficulties.

A method of avoiding oscillations is to combine this eircuit with a
nonreciprocal attenuator to give a net loss in one direction and permit
gain in the other. One method of accomplishing this is illustrated in Fig.
17. (This proposal was made in collaboration with W. W. Anderson of
Bell Telephone Laboratories.) It involves the placement of thin ferrite
slabs in both sides of the strip-line gap. The ferrite material is magnetized
approximately in the 4z direction in a nonuniform manner by the shap-
ing and placement of the magnetic pole pieces. This field is strong near
the center and weaker near the edges of the strip line. This provides for
a region of high-frequency magnetic resonance near the diode strip, con-
tinuously graded to a lower frequency resonance at greater distances
from the center. It will be noted in (31) and (33) that the ratio of H,
to H, at high frequency is

s

v _ .Y
VoS G0

z
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provided that A/B can be taken as approximately zero. This indicates
that the magnetic field will be elliptically polarized. If the wave velocity
is so slow so that v°* >> k%, the polarization will be quite nearly circular.
The ellipticity will be pronounced only at low frequencies, where the
wave velocity is more nearly the velocity of light, and near the outer
boundary, where Ae?Y may be roughly equal to Be™*”. Asin other devices
of this type, the sense of rotation of the magnetic vector is reversed if
the direction of propagation is reversed. This is the condition for non-
reciprocal resonance absorbtion in ferrite materials that are magnetized
perpendicular to the plane of polarization.

A unique property of this circuit is that the circularity condition is
met over a wide frequency range and also over a large fraction of the
available space. This allows us to obtain broadband isolation by using
a nonuniform magnetization for the ferrite isolator, so that resonance for
the highest frequencies occurs near the center and, at lower frequencies,
at greater distances from the axis. The steady H, field is to be nonuni-
form and vary roughly as y'. This requires that H, be nonzero if La-
places’s equation is to be satisfied. However, if the slab is thin, the H,
component will be small and give little trouble.

A complete description and theory for this type of isolator is beyond
the scope of this paper. The author is not aware of any theoretical solu-
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Fig. 17 — A proposed method of obtaining unidirectional gain for the circuit
of Fig. 15. The ferrite acts as a broadband resonance isolator distributed along the
circuit, introducing substantial attenuation for only one direction of wave propa-
gation.
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tion to the wave propagation problem in a gyromagnetic medium that is
nonuniformly magnetized. However, initial experiments by W. W.
Anderson and the author are most encouraging. An isolation tester was
built using a closely-spaced array of passive capacitors of 7 uuf each,
spaced 0.065 inch apart along the axis of a thin waveguide 2 inches wide
and 0.025 inch high. This gave an upper cutoff frequency as a filter at
about 8 kme and a lower cutoff due to the metallic outer boundary at
about 1 kme. Through most of the intervening band, the wave propaga-
tion characteristics were similar to the continuously loaded strip line we
have been discussing. The insertion of a single type of ferrite material
into the 0.025-inch space on both side of the gap gave a maximum for-
ward additional attenuation of 0.5 db per inch and a minimum additional
reverse attenuation of 15 db per inch over the band from 1.5 kme to 6.0
kme. These measurements were made with a single setting of the mag-
netic field.

It is expected that the first practical traveling-wave amplifier of this
type may involve the use of a closely spaced array of spot diodes rather
than a continuous strip diode. If the gain per unit length is to be suf-
ficiently low that the ferrite material can suppress reverse gain, it may
be necessary to use relatively few active diodes, interspersed with passive
capacitors to keep the wave veloeity low.

VI. STRIP-DIODE OSCILLATOR CIRCUITS

The simplest method of obtaining oscillations with a narrow-strip
diode might be to use a short section of a circuit like that of Fig. 15.
The length AZ should be equal to one-half of a wavelength on the circuit
at the desired frequency. In this case, the circuit should be shorter than
one free-space wavelength at the maximum frequency of amplification as
given by (56) if we desire absolute stability in the next-order mode of
resonance. Probably, however, this limit can be exceeded to some extent
in a practical oscillator, as nonlinearities are sometimes effective in
allowing only one mode of oscillation at full power. Ifig. 18 shows such a
circuit, which can be mounted in a waveguide in a manner similar to the
circuit of Fig. 13.

Fig. 19 shows a possible arrangement utilizing two strip diodes, in-
tended to operate in a push-pull mode. This is still closer in concept to
the circuit of T'ig. 13 and could be mounted in the same way. It should
operate at substantially higher frequencies than that of Fig. 18, and
allow a greater total diode area. In this case, the current paths in the
desired mode are shorter, reducing the effects of skin-effect resistance in
the circuit.



Fig. 18 — A possible high-frequency oscillator circuit using a narrow-line Esaki
diode. This is simply a short section of the circuit of Fig. 15. The length AZ is one-
half wavelength at the desired frequency. This could be mounted in the same way
as the cireuit of Fig. 13.

In the desired mode of operation, each of the two diode strips should
have uniform phase along its length, but the two should be 180° out of
phase with respect to each other. The slot between the diodes acts as an
inductive chamber to resonate the capacitance of the diodes in series.
We must be concerned also with three spurious modes if we desire to use
the maximum possible diode strip length. The four lowest-order modes
are illustrated in Fig. 20. Here the surface current flow is shown on one
internal face of the strip line for each mode. In the desired push-pull
mode, substantially all of the current flows directly across the inductive
slot between the strips, but some small amount flows outward to charge
the capacitance between the plates on the “land’ regions on either side
of the strips. Transverse slots are placed at each end of the strips to
provide an induective impedance for currents attempting end-runs around

SEMICONDUCTOR,

Tig. 19 — A possible push-pull circuit using two narrow-line Esaki diodes.
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Fig. 20 — Four possible modes of oscillation for the circuit of Fig. 19. The
surface current flow is illustrated for the semiconductor side of the strip line.
The resistance strips ean suppress the unison mode of (b). The standing-wave
modes of (¢) and (d) can be suppressed by sufficiently short strips and using close
gap spacing in the “land’’ region of Fig. 19.

the ends of the strips from one side to the other. In the undesired unison
mode the two diodes are in equal phase and this mode would launch
waves along the strip lines, which must have very narrow gaps and low
impedaneces if this mode is to be suppressed. The two other undesired
modes involve standing waves along the diode junctions. In one, the
opposing diode strips are in phase, and in the other they are 180° out of
phase. ‘

The problems of analysis will be to determine the frequency for the
desired mode, to determine whether or not the desired oscillation will
occur, and to determine whether or not oscillations in the three listed
spurious modes will be troublesome. Of course, still higher-order stand-
ing-wave modes are possible, but these will be at still higher frequencies
and therefore less troublesome.

Tor the desired mode, we can determine the inductance of the central
cavity for a given length. At the desired frequency this inductive re-
actance should equal that of the capacitance of the two diodes in series.
If the “lands” have appreciable capacitances, these must be added to
the diode capacitances. The methods of accounting for spreading re-
sistance and circuit resistance are similar to that used for the traveling-
wave amplifier described in Section V.

For the undesired standing-wave modes we can determine the resonant
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frequencies by first considering that the circuit extends indefinitely in
the direction of the diode strips. We can find two propagation char-
acteristies of such a structure, one for the diodes operating in unison and
one for push-pull phase opposition. This can be done by an extension of
the methods of the last section, taking proper account of the central
cavity. The resonant frequencies for a limited diode length will be those
frequencies for which the diode strips are a half-wavelength in extent.
These frequencies must be above the maximum frequency for gain as a
traveling-wave device if there is to be no danger of oscillation in spurious
modes. This condition will establish a maximum length for the diode
strips. If the land regions have a very narrow gap, this will allow longer
strips but will also increase the circuit losses. A compromise can be
reached, however, which will allow a substantial diode length with only
slight degradation of the desired operation.

This type of circuit has been analyzed rather completely in un-
published work by the author, but the theory is too lengthy to include in
this paper. A particular fictitious example to operate at about 9000 me
would require an R,C product of 107, diode strips only 0.00016 inch
wide and strip-line and land gaps of 0.00016 inch. The resonant cavity
required would be approximately 0.003 X 0.003 inch in cross section!
However, diode strips on the order of 3 mm long would be allowable
without danger of standing-wave oscillations of the types shown in Fig.
20. For this example, the total diode direct current would be about 300
ma, and the power output might be a few milliwatts, compared to the
few microwatts that could be obtained from a single-spot diode small
enough to oscillate at this frequency. It is obvious that a practical utili-
zation of this principle will involve some difficult fabrication problems.

A third method of using a narrow strip diode as an oscillator is to use
an axially symmetric geometry with a ring-shaped diode. The structure
is illustrated in Fig. 21. The desired mode of operation involves no
angular variations of voltage around the ring, and the cavity is an
annular space adjacent to the ring. Outside of the cavity, there is a large
bypass capacitance.

In this structure, the ring diameter would be limited by the possi-
bility of oscillations in modes involving angular variations of voltage
around the ring. To assist in obtaining a larger ring diameter we can use
a very narrow gap spacing in the region inside the ring. In a manner
analogous to the action of the lands in the two-strip structure, this space
acts as a low inductance transverse current path for standing-wave pat-
terns around the ring, raising their resonant frequencies and inducing
extra loss. In the desired mode, the central cavity region acts as an addi-
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tional capacitance to be added to that of the diode. Current paths for
the lowest-order mode of this type are shown in Fig. 21.

Methods of analysis for this structure in the desired mode are quite
straightforward. The methods outlined in previous sections of this paper
should be adequate. For the undesired #-varying modes, we can use a
method analogous to that used for the traveling-wave ampilifier. A com-
plete analysis will not be given here, but a method of attack will be
described.

As before, we can determine the admittance per unit length along the
diode ring looking inward and outward. Looking outward, we simply
have the inductive reactance of the cavity plus the circuit losses. Look-
ing inward, we have a simple capacitance for the desired unison mode.
For the lowest-order standing-wave mode we can write the appropriate
field equations for the space, presuming that E, varies as

B, = AJy(k.r) cos 6, (58)

from which we can determine H, and Hy .

|

COAXIAL OUTPUT-~~_ ;i 1 ;; ~ANNULAR CAVITY
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Fig. 21 — A possible oscillator circuit using a narrow-line Esaki diode in ring
form. The desired mode involves uniform phase around the ring, as shown at the
lower left. The undesired modes will involve #-variations, as shown at the lower
right. The latter can be suppressed by keeping the ring diameter sufficiently small
and using a narrow gap in the inner cavity.
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This will give the reactance for a unit length along the circumference,

iX = hE, ohm-meters, (59)
H,

which will be inductive if the inner cavity is small compared to a wave-
length.

The ring structure and the two-strip structure are quite similar circuits
in many ways. The ring structure has a disadvantage in that it will be
more difficult to obtain low circuit losses at the highest frequencies in
the desired mode. The extra circuit losses will be found in the resonant
cavity because it must have a larger ratio of perimeter to cross-section
area, in the semiconductor material because the gap is not shared by
two diodes in series, and in the bypass condenser that is avoided in the
two-strip structure. It may also prove to be more difficult to arrange
suitable coupling to a waveguide or coaxial line output for the ring
structure. The coaxial output shown does not appear to be an entirely
satisfactory answer.

VII. NOISE FIGURE FOR A SMOOTH DISTRIBUTED AMPLIFIER

In this section we will derive an expression for the noise figure of a
rather generalized type of distributed amplifier in which isolation is not
used. Chang’ and Anderson and Hines" have derived expressions for
the single-stage amplifier. We assume that we have a transmission line
with a series reactance 7X; and a series passive resistance of E; ohms per
meter. The gain is provided by a distributed negative conductance of
— (G mhos per meter, and we have an additional passive shunt con-
ductance G; and a susceptance of jB; mhos per meter. We may use the
well-known equation for such a line, which states that waves propagate
as

V(zt) = V(0,0)e™ V" *

o (60)
— V(O,O)emt—ﬁz-}-az,
Z = Ry + jX1, (61)
Y =G+ Gy + jB:. (62)
The characteristic impedance is given by
_ —_— Z _ V(ap)
Zy = Ro + jXo = /‘/? = Em) . (63)

The noise figure of an amplifier system depends upon the termination
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-

Fig. 22 — A generalized type of negative-conductance traveling-wave trans-
mission line. Iixpressions have been derived for the noise figure of such a line.

presented at its source and in some cases at the load also. Ordinarily,
matched impedances are considered desirable. In this case, the im-
pedance of the amplifier line is complex, which presents a special prob-
lem, since we cannot match the amplifier impedance to the input and
output lines for both directions of propagation. To prevent internal
standing waves, a line with characteristic impedance Ry + jX, should
see an impedance Ry + jX, at either end. In a conventional network,
we would “match” by terminating with By — jX, to obtain maximum
power transfer; here, however, we wish to terminate with the character-
istic impedance rather than its complex conjugate. Let us terminate
our lines in this way, as shown in Fig. 22. This will cause some power
reflection at the input but will avoid internal standing waves and un-
desired regeneration effects.
A current 7 which enters the amplifier grows with distance as

i(z) = ilemz = gy Pt (64)
At the output
iy = e, (65)
where [ is the total length. We define the “internal gain” ¢, as
g: = L (66)

For the circuit of Fig. 22, the rms current source 7, for a sine-wave in-
put of available power p; is

] E
1, = 2 Ry (67)

which divides between R, and the input in proportion to the relative
admittances. The current 7 is easily determined to be
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ooy R
o= pi 2 . 6
"N R VRS ¥ Xo (68)
The output power is 7,°R, , which determines the net gain g, ,
R

G 2T o3 69
We will use the following expression as our definition of noise figure
F:

output noise power from internal sources

F=1+ (net gain) (kToB) ’

(70)

where & is Boltzmann’s constant, T’ is the noise reference temperature
(290°K) and B is the bandwidth of interest. Internal sources include
the shot noise of the diode direct current plus thermal noise in the in-
ternal passive resistance. We assume a direct current in the diode of I
amperes per meter. For the diode noise we might assume shot noise or
something proportional to shot noise. In an infinitesimal length dz, we
can assume a differential amount of mean-square noise current,

d(i) = v*2el\B dz amperes’, (71)

where ~* is our unknown factor of proportionality and e is the electronic
charge. This current from an infinitesimal section of line must divide
equally into a forward and a backward wave, with the backward wave
presumed to be lost. The forward waves from each length dz add at the
output with an appropriate gain factor depending upon the distance
from the point z and the output. We can find the total mean-square
current at z = [ by a simple integration:

2 l
- el,B
(122)shot noise — B 2 0 L 62‘M dz

2
- (’Y eZL’B ) <__g 1204 1> amperes’.

We can find the total mean-square current at z = [ for the thermal noise
in the shunt conductance G, in the same manner. For an infinitesimal
conductance, Ghdz, the noise can be considered to arise in a current
generator,

(72)

d(i%)e, = 4kTBG, dz, (73)

and we integrate as before to obtain
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(12")¢, = kTBG: gi2_O[ 1 amperes’. (74)

TFor the series resistance R; we assume the alternative Thevenin form of
a voltage source of noise for a length dz:

d(")r, = 4kTBR, dz. (75)
There is an impedance 2(2y + jX,) in series with this generator, giving
R ETBR,
d(/l/2)161 = IB_O2+—)(02 dZ, (76)
which we integrate as before to obtain
_2 _ ]CTBRl gz — 1
(7’2 )Rl - <R02 + X02> < 2a > . (77)

To obtain the total output noise power from internal sources we add the
three mean-square currents and multiply by Ro. I'rom (70) we obtain

o g — 1 R02 + X02> (Td> <R0Gd>
r- e () () () (5

(Tl R G1)
\2kTGq ~ Ga(Re* + Xot) Gd/

(78)

It is evident that we want R; and G; to be small. These are parasitic ele-
ments which are generally undesirable. We would also like to reduce the
magnitude of the term elo/2kToG; . This term depends upon the prop-
erties of the p-n junction itself and is independent of junction area or
circuitry. To obtain the lowest noise figure we should seek a diode which
has a high negative conductivity per unit of direct current.

Equation (78) can be simplified for the limiting case of no internal
passive resistance, that is for By = 0 and G; = 0. This allows us to drop
two of the three terms in the last factor. Also, the terms (Ry® + X¢')/Ry
and R¢G4/2a are reciprocals in this special case and cancel.

This leaves
_ gi — 1 ~v'elo >
(F)pimg =1 +< 7 )<2kT0Gd ' (79)

This is essentially the same expression obtained by Hines and Anderson™
for the case of a single diode amplifier without parasitic resistance.

VIII. GENERAL DISCUSSION AND CONCLUSIONS

In this paper at least some of the methods have been described by
which we may hope to obtain appreciable amounts of power in the micro-
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wave range with circuits using Esaki diodes. The circuits proposed would
utilize diodes in pairs, in narrow strip form, and in traveling-wave dis-
tributed circuits with ferrite nonreciprocal attenuation.

The situation appears very hopeful to the author. As our semicon-

“ductor technology improves, we should be able to develop useful solid
state amplifiers and oscillators for the high microwave and probably
for the millimeter-wave range as well.

The author suspects that solid state device research for the micro-
wave and millimeter-wave range will probably continue to advance
through the discovery of better methods of obtaining negative-resistance
effects. Esaki diodes are usable devices at high frequencies, and we must
exploit their possibilities. What we learn in the process about the useful
application of negative resistance will probably be helpful in designing
better devices to come.
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Theory of Current-Carrier Transport and
Photoconductivity in Semiconductors

with Trapping

By W. VAN ROOSBROECK
(Manuscript received September 30, 1959)

Fundamental differential equations are derived under the unrestricted ap-
proximation of electrical neutrality that admits trapping. Extension is
made for applied magnetic field. The transport equations derived hold
without explicit reference to detailed trapping and recombination statistics.
Modified ambipolar diffusivity, drift velocity and lLifetime function apply
in the steady state. The same diffusion length is shown to hold for both car-
riers, and a general ‘‘diffusion-length lifetime” s defined. Mass-aclion
statistics are considered for cases of (one or) two energy levels. Certain
“effective’” — rather than physically proper — electron and hole capture and
release frequencies or times that apply to concentration increments are de-
fined. Criteria are given for minority-carrier trapping, recombination and
majority-carrier trapping, and for “shallow’ and ‘“deep” traps. Applica-
tions of the formulation include: the diffusion-length lifetime for the Shock-
ley-Read electron and hole lifetvmes; linear and nonlinear steady-state and
transient photoconductivity; negative photoconductivity; the photoconductive
decay observed by Hornbeck and Haynes in p-type silicon; the photomagneto-
electric effect; and drift of an injected pulse. Photomagnetoelectric current ts
found to be decreased by minority-carrier trapping, through an increase in
diffusion length. A simple general criterion is given for the local direction
of drift of a concentration disturbance. With trapping, there may be “‘re-
verse drift,”’ whose direction is normally that for the opposite conductivity
type, and also local regions of carrier depletion that may extend in practice
over appreciable distances.
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I. INTRODUCTION AND OUTLINE

1.1 Introduction

Implications of the negligible space charge generally associated with
carrier injection in homogeneous semiconductors have been worked out
in some detail in phenomenological transport theory. However, the par-
ticular condition of electrical neutrality employed — that of constant
excess of one mobile-carrier concentration over the other — is a restricted
one that applies as an approximation in some cases. Upon injection,
changes generally occur in concentrations of fixed charges' associated
with various impurities or crystal imperfections, including those on
which equilibrium conduectivity and those on which equilibrium life-
time, as a rule, largely depend. In a general sense, these concentration
changes constitute trapping.

The literature on trapping is extensive,t and it is recognized that the
subject entails difficulties that seem at odds with fairly simple essentials.
The four processes of capture and release of electrons and holes for each
type of center proceed at rates that depend on the concentration, energy
level and capture cross sections of the centers, and also on concentrations

T Some general discussions of trappin% are given in chapters of Breckenridge,

Russell and Hahn,! Hoffman,? Fan3 and Shulman.* The last includes many refer-
ences as does the review of Bemski.?
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of trapped and mobile excess carriers and of carriers at thermal equilib-
rium. A given general model thus presents a variety of physical possibil-
ities, especially if multilevel centers or centers of more than one type
are involved. Centers at given temperature may, for example, give
mostly trapping or mostly recombination, depending on conductivity
and conductivity type.t Moreover, as will be shown, small-sighal non-
linearity with markedly nonconstant lifetimes usually occurs with
minority-carrier trapping unless the concentrations of centers or of added
electrons and holes are small compared with a concentration of the order
of the minority-carrier concentration at thermal equilibrium. Noncon-
stant lifetimes may occur in the transition to the large-signal range as
well. With trapping, familiar approximations relating only to the effect
on conductivity are not particularly useful, and the more easily obtained
approximate solutions very frequently do not apply. As these considera-
tions indicate, a general treatment is necessary. This paper] gives ambi-
polar theory based on the unrestricted neutrality condition, with appli-
cations to problems in transport and photoconductivity, including a
specific application to experiment. It extends results previously reported?
and places some emphasis on: rigorous phenomenological formulation;
classification with respect to types of physical behavior; conditions for
the validity of approximations; techniques for analysis of given models;
determination of capture cross sections and energy levels; and illustra-
tive cases, which, through identification of the physical processes, pro-
vide qualitative insight.

In Section II, the first of two main sections, fundamental differential
equations are derived that take into account diffusion, drift, recombina-
tion and trapping. This section also includes: a specialization to the
steady state, which exhibits how trapping (of arbitrary statistics) modi-
fies recombination and the transport processes; definitions of certain
“effective” frequencies and times that properly characterize trapping
and recombination as they apply to concentration increments above
thermal equilibrium; certain fundamental relations from detailed bal-
ance; and criteria for classifying centers with respect to their trapping
and recombination properties.

In Section I1I, the second main section, the general ambipolar formula-
tion is applied to investigate trapping in various connections. From the
theory for the steady state, diffusion lengths and lifetime functions are
evaluated, and the photomagnetoelectric effect is analyzed. Transient

t With change in temperature, capture cross sections (as well as conductivity)
may change appreciably. See Shulman,* Bonch-Bruevich® and Sandiford.?

1 It is expected that a supplementary abridgement of the present paper will
be published.8
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photoconductivity also is analyzed critically and in some detail, a pro-
cedure facilitated by results from the present formulation of comparative
formal simplicity. This analysis involves a formalism that recurs in
theory of time-dependent transport. A detailed treatment of the drift
with trapping of an injected pulse is given. These applications of the
formulation constitute an illustrative selection.

In Section 1.2 is assembled descriptive material intended to be read
for further preliminary orientation as to the contents of the paper, and
also to be read piecemeal with corresponding portions of the main sec-
tions.

1.2 Outline of Procedures and Results

The formulation is accomplished in two stages. By treating concentra-
tions of added electrons and holes formally as unrelated variables, differ-
ential equations for the transport are derived in Section 2.1 along the
lines of previous treatments.!?1't Extension for applied magnetic field
is included.!! These equations involve no specific reference to the detailed
trapping and recombination statistics. Specialized to the steady state,
the ambipolar continuity equation is formally the no-trapping equation,
but with the sum of fixed and mobile positive (or negative) charges as
dependent variable, and with suitably moditied ambipolar diffusivity,
drift velocity, and lifetime function, which depend in general on two
(concentration-dependent) phenomenological differential ‘trapping
ratios.” The same diffusion length is shown to apply for both electrons
and holes, and a general “diffusion-length lifetime,” 7o, based on the
unmodified ambipolar diffusivity, is defined. The formulation is com-
pleted in Section 2.2 with equations for the time rates of change of con-
centrations of carriers trapped in centers of each type.

These rates are written in accordance with mass action, which provides
a simplef and general§ basis for trapping and recombination.| Two

t In Ref. 11 small Hall angles are assumed, in part because appreciable mag-
netoresistance is otherwise involved. As indicated in this reference, arbitrary
Hall angles (and injection levels) could suitably be taken into account by theory
involving the phenomenological magnetoresistance without added carriers.

1 See Hoffmann,? The mass-action approach, now widely used in semiconductor
theory, is essentially that used in early theory of metal-semiconductor junctions:
see Schottky and Spenke.!2

§ Boltzmann statistics, assumed for the transport equations, imply mass-action
relationships at equilibrium: see Spenke.!* But, with definitions of equilibrium
parameters suitably extended, mass-action equations apply also for degenerate
semiconductors: see Rose.!

|| A treatment based on Fermi statistics that allows for degeneracy and includes
dependence of occupation probabilities on applied magnetic field has been given
by Landsberg.!?
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energy levels (as well as a single one) are considered; equations are
written in Section 2.2.1 for two types of trapping centers and, through
simple formal modification, in Section 2.2.2 for two levels from centers of
a single type.t Partly by way of notational convention, the levels are
taken as acceptor and donor levels, which give negative and positive
fixed charges. This case is the simplest for which both steady-state trap-
ping ratios occur, these ratios being the respective changes in concentra-
tion of all fixed negative charges and all fixed positive charges divided
by the change in concentration of all negative or positive charges. With
suitable interpretation of the notation, the equations apply to one- or
two-level cases in general; results written for centers of the acceptor
type, for example, are not restricted to this type. Moreover, it will ap-
pear that, in the analysis of transient (or steady-state) photoconductivity
for a given multilevel model, the trapping at a given time need usually
be considered in detail in no more than two successive levels. Levels
appreciably lower and higher than these may contribute to recombina-
tion, but will not contribute to trapping, in the sense that the lower levels
may be assumed to remain completely full (or else saturated) and the
higher levels completely empty.

To facilitate analysis and interpretations, in Section 2.2.1.2 “effec-
tive” capture and release frequencies and times that apply to concen-
tration increments are defined a priori from the mass-action equations.
The four effective frequencies or times for each energy level differ from
the physically proper ones, which depend on the trapped concentrations
and thus on the detailed solution of the particular problem. They satisfy
a fundamental restriction, used extensively in the theory, which is de-
rived from thermal-equilibrium relationships involving detailed balance.
With this restriction, quantitative criteria are established in Section
2.2.1.3 for ranges of minority-carrier trapping, recombination and major-
ity-carrier trapping. These ranges may be specified in terms of the
location of the equality level§ relative to the Fermi level & and the
“reflected Fermi level” &/, the reflection of &r about &, its location for
intrinsic material. If spins are taken into account, quantities of the mass-
action theory serve to locate the trapping level relative to €. It is shown

t Theory for multilevel centers is given in Landsberg,'s:16 Champness,'?
Okada,® Shockley and Last,'® Mercouroff,2® Khartsiev,2? Sah and Shockley,??
Bernard,2?® Kalashnikov and Tissen,?* and Kalashnikov.2?

1 The influence of trapping at a given level on recombination at another has
been calculated for the near-equilibrium steady state by Kalashnikov.2¢ See also
Mashovets.??

§ This is the Fermi level for which the (equilibrium) rates of electron and hole
capture and release are all equal.??:2® The equality level is similar in purport to
the demaircation level of Rose,?:30 which is the trapping level for which the rates
are equal.
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that a proper criterion for “shallow” or “deep” minority-carrier trapping
levels is that & separates these levels. Thus, levels in extrinsic material
considerably shallower than the midgap may still be “deep” levels.
Detailed theory is given in Section III through various applications
of the general formulation, and consequences of the mass-action statistics
are examined. In Section 3.1.1 diffusion length and diffusion-length life-
time, as well as the trapping ratios, are evaluated from equations written
for the limiting linear small-signal steady state. A “capture concentra-
tion” is introduced, use of which is found to simplify formally much of
the detailed theory, including that for time-dependent cases. This con-
centration is the concentration of (single-level) centers multiplied by the
respective equilibrium {ractions of centers occupied and unoccupied.
Values of it that are small or large result, respectively, in negligible cap-
ture frequencies or in large capture frequencies with negligible release
frequencies. For the case of a single energy level, the general (equilib-
rium) Shockley-Read electron and hole lifetimes® are obtained in forms
involving the capture concentration. These lifetimes are shown to cor-
respond to a diffusion-length lifetime 7o whose general expression is
formally the same as that for the common (equilibrium) lifetime?!-32 in
the limit of small concentration of centers. This common lifetime other-

wise annlies as such onlv nnder a condition restrictine the canture con-
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centration, which is frequently severe: In the minority-carrier trapping
range, it is that this concentration be small compared with the equilib-
rium minority-carrier concentration. From conditions for the neglect of
quadratic terms in the mass-action equations, the linear approximation
is shown to imply a restriction of injection level that may be much more
severe than the familiar small-signal condition'® based on the conductiv-
ity change.

The general single-level trapping ratios and lifetime functions for the
nonlinear steady state are obtained in Section 3.1.2. These and the
mobile-carrier concentrations, as well as the volume recombination rate,
can be expressed in terms of trapped-carrier concentration as single
concentration variable. The lifetime functions reduce to the Shockley-
Read lifetimes in the linear small-signal limit and to a single limiting
large-signal value. The familiar common lifetime function® for small
concentration of centers usually does not apply in the small-signal range
unless it is substantially constant in this range. The differing general
lifetime functions otherwise usually apply, and small-signal minority-
carrier trap saturation obtains. The apparent diffusion-length lifetime
then inecreases to a small-signal saturation-range value equal to the
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majority-carrier release time.T Further increase occurs in the approach
to a large-signal lifetime, which, in this case, is also the (small-signal)
lifetime in the limit of strongly extrinsic material of the opposite con-
ductivity type. Such increases of lifetime can account for certain cases
of superlinearity, or the more-rapid-than-linear increase of photoconduc-
tivity with injection level, on the basis of a single trapping level.i
Transient decay of photoconductivity is analyzed in Section 3.2. In
the linear small-signal case, the decay is given by a sum of exponential
modes with (real and positive) decay constants whose number exceeds
by one the number of types of centers present.?-.97-4§ For nonrecom-
binative trapping by centers of two types, the decay constants and
equilibrium concentrations after injection are evaluated in Section 3.2.1
for electron and hole traps present together and for electron (or hole)
traps only. With the latter, carriers released from one type may be
captured in the other. The general linear case for centers of one type,
including recombination, is analyzed in detail. The two time constants
are given in forms involving the capture concentration. If one is large
compared with the other, then the larger may be identified as the lifetime,
while the smaller represents a trapping transient during which approach
to the steady-state trapping ratio takes place. This transient has small
amplitude for small concentration of centers, for which capture rates in
the ratio of capture frequencies and release rates in the ratio of release
frequencies decay with the concentration in the lifetime mode. It does
not occur if the steady-state trapping ratio obtains initially, or if “criti-
cal recombination’ obtains, with which, because of equal capture fre-
quencies, trapped concentration does not change from initial value zero.
Sufficiently small capture concentration gives, with the comparatively
short trapping transient, a lifetime substantially equal to®:3%4 the
common steady-state electron, hole and diffusion-length lifetime. The
required condition is frequently severe: In the minority-carrier trapping
range, it is the same as the common-lifetime condition. Capture con-
centration large results in decay times equal to®:4 the steady-state
electron and hole lifetimes and given by the electron and hole capture
times. If one of these is large compared with the other, then the smaller
represents the transient for practically complete trapping of the carriers
of one kind, and the larger represents the recombinative decay of the
t Approximate steady-state solutions which exhibit small-signal nonlinearity
have been given by Tolpygo and Rashba.33
1 A multilevel model for superlinearity has been given by Rose,2:3¢:35 (and

Ref. 1, Ch. 1A). See also Bube.?
§ See also Ref. 1, Ch. 3A. This chapter also includes some nonlinear cases.
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carriers in traps and of the carriers of the other kind as these are cap-
tured. In all these cases, the lifetime decreases monotonically as con-
centration of centers increases. Under a condition that is usually met
in the minority-carrier trapping range, this decrease occurs primarily in
two ranges of concentration of centers, with approximate constancy of
lifetime in an intermediate range.{

The photoconductive decay is governed in the general case by non-
linear differential equations. These are considered for centers of a single
type in Section 3.2.2. The general single-level problem is rather intractable
analytically.i Solutions of the nonlinear equations are given for two
special cases, namely, nonrecombinative trapping and sufficiently small
concentration of centers or large concentrations of mobile excess carriers
such that the steady-state lifetimes are substantially equal. The latter
solution§ has the rather restricted general application of the common
steady-state lifetime function,® since it is the integrated form correspond-
ing to this function.|| By solving suitably linearized equations, the decay
times associated with a small-amplitude pulse of added carriers above a
steady generation level are evaluated. If, as is often permissible, direct
recombination may be neglected,:4°:5 then the decay in the general
large-signal limit is exponential with lifetime equal to the steady-state
Iarge-signal lifetime. During this decay, the concentrations of earriers in
traps remain constant. This lifetime and the corresponding concentra-
tions in traps are evaluated for centers of a single type and for the two-
level cases. A differential equation that is invariant under interchange of
quantities pertaining to electrons and to holes is derived for centers of a
single type. It provides a first integral under a condition that holds for
sufficiently large concentration of centers or concentrations of mobile
carriers. With this first integral, the decay problem may be formulated
as a first-order (rather than second-order) nonlinear differential equa-
tion. The large-signal condition, obtained in this connection, differs from
the familiar one'® in that, as a condition for equal electron and hole
lifetimes, it entails not only relatively large change in conductivity but

1 The approach to constancy with increasing concentration of centers is dis-
cussed by Wertheim.4!

} Certain analytical approximations have been considered by Isay.* A treat-
ment which includes numerically computed solutions has been given by Nomura
and Blakemore.4

§ It is equivalent to ones given by Rittner, in Ref. 1, Ch. 3A, and by Guro.*

|| The decay lifetime has been evaluated as this function by Okada.*® That the
nonlinearity according to this function does not account for (small-signal) decay
in silicon has been observed by Blakemore.® This author has fitted dependences
of lifetime on injection level and temperature assuming two-level recombination
from one type of center or from two types. The common lifetime function has been

employed for centers in germanium by Iglitsyn, Kontsevoi and Sidorov.7 It
appears that these centers were in the recombination range.
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also requires saturation of centers, which may be present in relatively
large concentration.

Conditions are obtained for centers that give recombination with
substantially constant lifetime for minority carriers and inappreciable
trapping. Constant lifetime that applies in the small-signal range also
applies in the large-signal range, provided the energy level of the centers
is not too far from the Fermi level towards the majority-carrier band.
It requires, however, sufficient strongly extrinsic material. In material
of mixed conductivity type, the recombination rate cannot, in general,
be specified in terms of a minority-carrier lifetime. But ‘“linear re-
combination’ may apply, characterized by a two-lifetime recombination
rate that is the sum of contributions respectively proportional to the
added minority- and majority-carrier concentrations. The assumption of
general linear recombination is also a convenient notational device: In
the analysis of models involving nonrecombinative traps in conjunction
with the recombination centers, it permits deriving results in forms that
apply for any conductivity of either type.

The phenomenon of negative photoconductivity, or the decrease in
conductivity below the equilibrium value upon optical injection,{ re-
sults essentially from excitation of minority carriers from traps with
recombination in other centers. Theory for this effect is given in Section
3.2.3, a general expression for mobile-carrier concentrations being derived
for the linear small-signal case. This result is of comparative formal
simplicity and shows that the effect tends to be offset by recombination
in the traps and to be enhanced with deep traps of small capture cross
section.

A general procedure is outlined in Section 3.2.4 for analysis of trapping
models with a number of discrete energy levels, which relates the various
decay times to capture cross sections and these energy levels. This
procedure is applied to observations of Hornbeck and Haynes* on elec-
tron trapping in p-type silicon.§ For the sample on which the most
extensive measurements were made, the decay times ranged from 20
microseconds to 260 seconds. Their model, that of two kinds of non-
recombinative traps with recombination in other centers, is found to
imply a hole-capture cross section of the deep traps and of the shallower

t This has been analyzed by Stéckmann.®! It has recently been observed in
silicon by Collins.5 Infrared quenching of photoconductivity or luminescence
from short-wavelength excitation, discussed by Rose?3¢:35 and others, is a closely
related effect.

1 Excitations involving trapping levels may increase normal photoconduc-
tivity.5?

§ See also Ref. 1, Ch. 3F.
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(but still “deep”) traps that is small compared with about 10~2¢ and
10-2° cm?, respectively.

These cross sections are calculated from expressions for the decay
times for nearly empty traps. Recombination in the deep traps cannot
account for the observed decay: The hole-capture cross section that
gives the decay time of 260 seconds for the nearly empty traps would
give a considerably larger decay time, rather than the observed value
of 1 second, for the traps nearly full. Recombination in the shallower
traps, however, can account for the observed decay: The hole-capture
cross section calculated from the decay time for these nearly empty traps
is in close agreement with that which fits the entire decay in the deep
traps. The lifetime with traps filled of 20 microseconds may then be
ascribed to recombination in the higher level of two-level shallower
traps. A recalculation of cross sections and energy levels on the basis of
this model gives hole-capture cross sections large compared with 1.2 X
10~ cm?, equal to 2.4 X 1072° em? and small compared with 10-2¢ cm?,
respectively, for the recombination level and the shallower and deep
trapping levels. The corresponding electron-capture cross sectionst
are 2.3 X 10715, 1.1 X 10-¥ and 2.9 X 10~ cm?, the last two being
half an order of magnitude smaller than the ones calculated by Horn-
beck and Haynes. The shallower and deep trapping levels are found to
lie 0.007 ev above and 0.23 ev below the Fermi level for intrinsic ma-
terial; the latter trapping level is 0.78 ev below the conduction band.f
Use is made of the observed straggle effect from the shallower traps,
comparison being made with the theoretical expression derived in
Section 3.4.3 for the limiting decay time at fixed location for the tail of
the distribution from a pulse injected under applied field after the
maximum has drifted past. It is shown that a model for which the
trapping levels are levels of centers of a single type cannot account for
the observations. While the levels found are close to two levels of
gold,®8:5 it is thus unlikely that they result from a single metallic im-
purity. This conclusion bears on the indications that the deep traps are
associated with the presence of oxygen as an impurity.

The steady-state photomagnetoelectric (PME) effect with trapping
is analyzed in Section 3.3 on the basis of the general formulation with
applied magnetic field.§ Equations formally similar to those for no trap-
ping apply in terms of redefined quantities that involve the trapping

t Theory to account for such large cross sections has been given by Lax.55

1 An energy gap of 1.10 ev at 300°K is used rather than 1.00 ev as in Ref. 54.

§ A treatment of photoconductance and PME voltage with trapping under ac

illumination is included in: Lashkarev, Rashba, Romanov and Demidenko.5%
Mironov?? deals with the transient decays after removal of steady illumination.
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ratios. The effect may exhibit small-signal nonlinearity with nonuniform
lifetime if recombinative deep traps in the minority-carrier trapping
range are involved. The influence of trapping as such is investigated.
It is found that nonrecombinative minority-carrier traps (in conjunction
with recombination centers) increase diffusion-length lifetime by an
amount proportional to the capture concentration.t Thus, minority-
carrier trapping decrcases PME current. A comparatively slight de-
crease in 7o and increase in PME current results from majority-carrier
trapping.

Detailed illustrative procedures and related theory are given for the
determination of capture cross sections, concentrations and energy
levels from suitable PME and photoconductivity measurements at given
temperature. With trapping in recombinative traps of a single type, the
PME current-conductance ratio involves light intensity implicitly
through its dependence on the lifetime 7. that is defined in terms of the
change in conductivity for a given steady, uniform volume-generation
rate. The ratio, however, determines a relationship between 7 and 7,
a transcendental relationship with the preferred method" of the high-
recombination-velocity dark surface. This relationship, in conjunction
with suitable additional conductance measurements also independent of
light intensity, suffices to determine both 74 and 7., then the capture
(and release) frequencies and capture concentration, and finally the
quantities sought. The linear small-signal theory{ is given for recombina-
tive traps of a single type and also for nonrecombinative traps with
recombination centers, for which the results are essentially similar
though somewhat simpler.

Preliminary to analysis of transport problems, the general ambipolar
continuity equation is specialized to the linear small-signal case in
Section 3.4.1. Then, for trapping (and recombination) in centers of a

T Jonscher®® gives an increase of diffusion length with trap concentration which
is bounded and always essentially negligible, a result at variance with that given
here. In Jonscher’s nonambipolar treatment, the continuity equation does not
include a term in the second space derivative of trapped-carrier concentration.
Though this term is relatively small for sufficiently strongly extrinsic material,
its neglect significantly affects the higher-order differential equation for concen-
tration of mobile minority carriers, obtained by eliminating trapped-carrier con-
centration, in that it gives a coeflicient of the term in the second space derivative
that is oo small by just the factor by which diffusion-length lifetime is increased.

1 Zitter®! discusses the phenomenological dependence for any model of electron
and hole lifetimes on 7. and lifetime derived from the PME effect (in the thick
slab). The latter is the same as 7o, and Zitter relates it to a diffusion length.
Amith,% 6 has presented the effect of nonrecombinative traps on the PME cur-
rent-conductance ratio, and has pointed out that the predominant effect is usually
on conductance. That on PME current is generally negligible in comparison if the

traps are minority-carrier traps and are present in not too large concentration in
sufliciently strongly extrinsic material.
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single type and linear recombination in other centers, the respective
concentrations are shown to satisfy certain third-order partial differential
equations, which are of the second order in time. These reduce to the
same equation if there is no volume generation. They otherwise each
contain a term proportional to the volume generation function, the
equations for the mobile-carrier concentrations containing the time
derivative of this function as well.

The case analyzed in Section 3.4.2, that of injection into a filament
in the steady state with applied field, yields qualitative information of
interest. If a certain frequency », , the “straggle constant,” is positive,
then the field-opposing and field-aiding solutions in the regions separated
by the point of injection are sharply varying and gradually varying
exponentials, as in the no-trapping case.® But with negative », , grad-
ually varying field-opposing and sharply varying field-aiding solutions
obtain. In the limit of no diffusion, these give added carrier concentra-
tions only in the direction opposite to the direction of drift normally
determined by conductivity type. This “reverse drift” is explained by a
simple and entirely general criterion, obtained from the fundamental
equations, for the local direction of drift of a concentration disturbance:
Normal or reverse drift oceurs according to whether injection results in
proportionately more or fewer minority carriers than there are at thermal
equilibrium. For no trapping, for example, the concentrations are in-
creased locally by the same increments, so that proportionately more
minority carriers result if the material is extrinsic; and zero drift!® ¢
obtains if the material is intrinsic. Conditions for the sign of », are given.
It is shown from these that reverse drift, which occurs for sufficiently
large trap concentration in not too strongly extrinsic material, occurs
with nonrecombinative trapping if minority carriers are trapped so that
the fraction of the time they are free is smaller than the equilibrium
minority-carrier to majority-carrier concentration ratio.

Drift of a pulse of carriers injected into a filament, with trapping by
centers of a single type,T is analyzed in detail in Section 3.4.3. Bilateral

1 Fan®.%% has given a solution of this drift problem which applies for negligible
majority-carrier capture frequency. Clarke?® has, in effect, pointed out this re-
striction, to which solutions for the decay of photoconductlwty given by Fan¥
and Rittner! are also subject. Jonscher®® has given solutions for drift of minority
carriers with recombination and nonrecombinative trapping at variance with solu-
tions given here. The otherwise plausible neglect by Jonscher, in a nonambipolar
treatment for strongly extrinsic material, of a term in the contmulty equation
involving the gradient of trapped-carrier concentration is apparently not justified.
In the differential equation for concentration of mobile minority carriers, it re-
sults in minority-carrier release frequency only as a factor in the concentration-
gradient term instead of », , which, for this case, is substantially the sum of the

capture and release frequencies. This neglect of "the capture frequency is tanta-
mount to neglect of the capture concentration compared to the equilibrium minor-
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or two-sided Laplace transforms derived in Appendix A are used to
obtain solutions of the differential equation for negligible diffusion. These
solutions are of two main types, according to whether a frequency unit,
v, connected with the introduction of dimensionless variables and
parameters, is real or imaginary. From theory concerning » and the
parameters, it is found that real » implies either the minority-carrier
trapping range or the recombination range.t Illustrative solutions of
real » for which nonrecombinative trapping is assumed are presented
graphically. These show that carriers that remain untrapped appear in a
comparatively rapidly attenuated pulse that drifts at the ambipolar
velocity. This remnant of the initial pulse leads a continuous distribu-
tion, which, as a result of multiple trapping, ultimately spreads as a
time-dependent gaussian distribution and exhibits a maximum that
drifts at a fraction of the ambipolar velocity. For nonrecombinative
trapping, this fraction approaches comparatively slowly a limiting value
that does not exceed the fraction of the time the carriers are free,i and
(for imaginary » as well) the fraction of carriers trapped, obtained by
integrating over the drift range, approaches comparatively rapidly the
fraction of the time carriers are trapped. Recombination in other centers
reduces the distance for a maximum at given time and thus the ap-
parent mobility of the distribution. The decay constant for the straggle
effect is found to be the (positive) straggle constant, accordingly so
named.

Imaginary » obtains over the majority-carrier trapping range and, for
nonrecombinative trapping, over the reverse-drift range. With re-
combinative trapping, it obtains also for zero drift and over a normal-
drift range other than that of majority-carrier trapping. Illustrative
solutions, for which nonrecombinative trapping is assumed, are presented
graphically for reverse drift and for majority-carrier trapping. It appears
that in the reverse-drift range an attenuated pulse of untrapped carriers,
which drifts at the ambipolar velocity, leads a continuous distribution

ity-carrier concentration. It presumably leads, for example, to the conclusion of
this reference that a very short pulse is transmitted without distortion and is only
attenuated. Also, the solution given for the steady state of continuous injection
should properly include the fraction of the time minority carriers are free as a
factor in the exponent. That is, trapping results in a more gradual decay with
distance; for this case of no diffusion, a lifetime applies thatis equal to the sum of
the lifetime proper and the (generally much larger) lifetime for multiple trapping,
which is discussed in Section 3.2.4.

1 As shown in Section 2.2.1.2, these ranges in their entirety together constitute
the “minority-carrier capture range,” for which the equilibrium minority- to
majority-carrier capture frequency ratio exceeds unity. It is shown in Section
3.4.3 that there is a minority-carrier capture range of imaginary » which includes
the reverse-drift range.

1 Fan® has shown from his solution that this limiting value is, for relatively
small trap concentration, equal to the free-time fraction.
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of added mobile minority carriers, which crowds towards the injection
point as its maximum excursions both above and below the axis increase
with time. There is local carrier depletion, the distribution being nega-
tive over part of the drift range after a certain time. The distribution
approaches a pulse at the injection point of strength equal, for non-
recombinative trapping, to the initial strength times the free-time
fraction. It does not exhibit essentially unidirectional drift: The drift of
added carriers, initially in the direction of the ambipolar velocity, is
largely in the opposite direction after some trapping has taken place.
A numerical estimate of the effect of diffusion indicates that negative
added-carrier concentrations can occur over appreciable distances under
conditions that can be realized in practice.t The illustrative solution
for majority-carrier trapping shows that negative added-carrier con-
centrations occur in this case also. Majority-carrier trapping, however,
results essentially in drift at the ambipolar veloeity and, if it is nonre-
combinative, the fraction of carriers trapped approaches the trapped-
time fraction.

The solution is given for “critical trapping,” the borderline case be-
tween cases of real and imaginary ». For nonrecombinative trapping, it
is the same as that for zero drift and gives exponential continuous dis-
tributions that are established progressively as the drift range in-
creases and otherwise do not change with time. For trapping in intrinsic
material without diffusion, drift does not start, and the initial pulse re-
sults simply in pulses for the concentration increments that remain at
the injection point, where they change as trapping and recombination
proceed. With diffusion, ambipolar drift occurs, since the condition for
zero drift no longer holds in the intrinsic material as carriers are trapped
away from the injection point. Further physical interpretations for the
various cases are obtained by evaluating the current density of added
carriers, which represents the equal departures for given total current
density of the electron and hole flow densities from their values for no
added carriers.

1.3 Last of Symbols

The following list includes most of the symbols to be employed, and
is largely consistent with previous notation.10:11.8

t Kaiser®” has suggested that negative added-carrier concentrations that
were observed with localized optical injection in silicon under applied field may
be accounted for through these results. A theoretical discussion of carrier deple-
tion is included in Ref. 10.
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parameter in distribution of (153).

capture cross sections for electrons and holes for the
Jth energy level or type of center.

B/ , drift mobility ratio.

coefficient for direct electron-hole recombination given
in (37).

electron and hole capture coefficients for the jth energy
level or type of center.

kTwpupp(n 4 p)/o = (n + p)/(n/D, + p/D,), ambi-
polar diffusivity for no trapping.

modified ambipolar diffusivity, defined in (31).

diffusivity for intrinsic material.

diffusion constants for electrons and holes.

diffusivities defined in (133).

value of D at thermal equilibrium.

value of D’ at thermal equilibrium.

electronic charge.

electrostatic field.

Fermi level for intrinsic material.

Fermi level.

“reflected Fermi level,” the reflection of &7 about &.

electron energy for the jth energy level or type of
center.

fractions of mobile electrons, trapped electrons, and
mobile holes for drift of a pulse, given by (164).

rate of volume generation of electron-hole pairs.

g — go.

value of g at thermal equilibrium.

quantity defined by (9).

conductance increase of slab per unit width, given by
(116), (118) and (129).

dark conductance of slab per unit width.

I, + I, total current density.

current density of added carriers, defined by (19).

diffusion current density, defined by (7).

electron and hole current densities.

modified Bessel functions, in the notation of Watson.

Bessel functions, in the notation of Watson.

Boltzmann’s constant.

unit vector in the direction of magnetic field.
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K = quantity defined by (10).

K¢ = factor in (129) for conductance change of illuminated
slab, evaluated in (130).

K, = factor defined in (119) by which diffusion-length life-
time with nonrecombinative trapping exceeds re-
combination lifetime.

L = wor, length unit defined in (143).
£ = surface rate of generation of electron-hole pairs from
strongly absorbed radiation.
Lo = (Dyro)?, diffusion length.
{ = operator symbol for two-sided Laplace transform.
m=op-+4+p=mn-+.
Am =m — myp.
my = value of m at thermal equilibrium.
n = electron concentration.
Mm=n—mn.
An = two-sided Laplace transform of An.
AN = An/(®/L).
AN = An/(®/L).
7. = concentration of fixed negative charges.
A’I’L =9 — ’flg .
AR = two-sided Laplace transform of As.
AN = Ad/(®/L).
N, 9; = total concentrations of centers.
nj; = electron concentration for the Fermi level at the jth
trapping level.
n;* = equality density, defined in (54).
N;* = “capture concentration,” defined (for 7 = 1) in (63).
Ns = Mo — Po .
ny = value of » at thermal equilibrium.
79 = value of 7% at thermal equilibrium.
N:, N = dimensionless decay constants defined by (147).
p = hole concentration.
Ap=p— po.
Ap = two-sided Laplace transform of Ap.
AP = Ap/(®/L).

AP = Ap/(®/L).
D = concentration of fixed positive charges.

Ap =D — po.



CURRENT-CARRIER TRANSPORT AND PHOTOCONDUCTIVITY

®

Di
pi*
Po
Do
Tn

Tuj s Tpi

Vp

Vgnj 5 Vgpi

1 1

i

T 1 1 1 e 1 1

531

number per unit area of carrier pairs injected over
cross section of filament.

hole concentration for the Fermi level at the jth trap-
ping level.

equality density, defined in (54).

value of p at thermal equilibrium.

value of p at thermal equilibrium.

dni/dm, steady-state trapping ratio.

trapping ratios for transient photoconductive decay
modes, evaluated in Section 3.2.1; also similar quan-
tities that are given in (149).

dp/dm, steady-state trapping ratio.

functions specifying rates of decrease of m, n and p
through trapping and recombination.

Laplace transform variable.

surface recombination velocities for m, » and p, re-
lated by (115).

temperature in degrees absolute.

¢/ 7, dimensionless time variable.

ambipolar drift velocity, defined by (8).

modified ambipolar drift velocity, defined in (31).

velocities defined in (133).

value of v at thermal equilibrium.

value of v/ at thermal equilibrium.

electrostatic potential.

a/L, dimensionless distance. -

quantities defined in (78).

ne/M1 = Pi/Po .

Do/P2 = Ma/No .

quantity defined by (62).

dimensionless parameter defined in (145).

dimensionless parameter defined by (152).

0, — 6, = 6, + | 0.].

Hall angles for electrons and holes.

variable defined by (157).

dimensionless parameter defined in (145).

drift mobilities for electrons and holes.

frequency unit (real or imaginary) defined in (143).

quantity defined in (136).

“effective’” release frequencies for electrons and holes,
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defined for acceptor-type (7 1) and donor-type
(7 = 2) centers in (50), and for two-level centers in
Section 2.2.2.

decay constants defined by (47).

decay constants for ‘‘linear recombination,” defined in
Section 3.2.2.

sum of hole and electron capture and release frequencies
defined by (83).

“‘effective” capture frequencies for electrons and holes,
defined for acceptor-type (j = 1) and donor-type
(7 = 2) centers in (50), and for two-level centers in
Section 2.2.2.

“straggle constant,” defined in (136).

decay constants for photoconductivity.

dimensionless parameter defined by (151).

on + o, , total conductivity.

partial conductivities for electrons and holes.

time unit defined in (143).

conductivity lifetime, defined by (117).

“effective’” release times for electrons and holes, the
reciprocals of v, vops .

steady-state lifetime or lifetime function for Am.

lifetime for Am with recombination centers as well as
traps, evaluated in Section 3.3.

steady-state electron and hole lifetimes or lifetime
functions.

(Co) 7Y, (Cp91;) ™ for a particular j.

apparent lifetime from PMI current-conductance ratio,
evaluated in Section 3.3.

“effective’” capture times for electrons and holes, the
reciprocals of v, vipj -

“diffusion-length lifetime,” evaluated in (385) and (65).

“diffusion-length lifetime”” with nonrecombinative traps
and recombination centers, given by (119).

= time constants for photoconductive decay, the re-

(M

ciprocals of »; , v, .
lifetime for decay through recombination centers, the
reciprocal of v,3 or v,3 .
photoconductive decay time for nearly empty traps.
—1
—e 6.
potential defined by (15).
—1
—e &;.
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1I. GENERAL FORMULATION

2.1 The Transport Equations

The general neutrality condition may be written as
m=p+p=n+i, (1)

which states that the total concentration of positive charges, the sum
of the concentrations of mobile holes and fixed positive charges, is equal
to the corresponding total concentration of negative charges. It is, as
will appear, of advantage to deal with the total concentration m of
charges of either kind.

By way of extension of the familiar (nonambipolar) continuity equa-
tions for holes and for electrons that apply for no trapping, two forms
of the continuity equation for m may be written:

am/ot = ap/at + op/dt = —e tdiv, + g — Q.
an/ot + anjot = ¢ " divl, + g — R . (2)

Il
il

Here, for simplicity, the same volume-generation-rate function ¢ is as-
sumed for both holes and electrons; generalization to include excitation
to or from trapping levels (as well as interband excitation) is given in
Section 2.2.3. The volume rate ®. is associated with trapping and
recombination. It depends directly on the various concentrations and
not explicitly on coordinates and time; dp/d¢ and 874/9¢ contribute only
to ®., and, if these are respectively subtracted from (2), then con-
tinuity equations for holes and electrons, namely,

ap/at = —¢ ' divl, 9 — Ry, Ry
an/at

R + 0D/,
etdivl, + g9 — R, R = Rp + 871/0t

l

result. The same volume rate ®., is properly used in each of the equa-
tions (2) since it depends directly only on concentrations; it must
apply, in particular, in the case of zero current densities. As (2) shows,
this use of ®,, is consistent with the neutrality condition and with the
condition®

divi=0 I=1I,+1I, (4)

which applies in regions containing no sources or sinks of current.
Differing volume rates for p + p and n + 7 are properly introduced
only if there is appreciable space charge.

The familiar current-density equations,
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I, = ¢,E — eD, grad p
and (5)
I, = 0,E + eD, grad n,

apply under the assumption of Boltzmann statistics, which imply also
proportionality of the hole and electron mobilities u, and u, to the
corresponding diffusion constants D, and D, in accordance with Ein-
stein’s relation. By use of these equations and the neutrality condition,
(1), a continuity equation for m of ambipolar form may be derived:
The hole and electron current densities I, and I, are eliminated from
(2); the electrostatic field E is also eliminated by means of the expression
for E involving the total current density I that is obtained by adding
the equations in (5) ; and use is made of (4), the condition of solenoidal
I. This procedure is similar to that previously employed in the no-trap-
ping case™ except that, for the required generality, p and n are treated
formally as unrelated variables. The single continuity equation for m
that results from (2) may be written in various forms as follows:t

am/ot — g + R, = —¢tdivi, — v-G
= —¢'(divI, + K-I)
—¢ ™" div I¥, (6)

I

where
I, = —ec (0,D, grad n + o,D, grad p)

= —e[D grad m — ¢ '(o,D, grad # + o,D, grad p)]

= —eD(n + p) ' grad np = — ekTuapuyo " grad np, (7)
V = epapp(n — p)o 1, (8)
G = (n— p)'(ngrad p — p grad n)

= grad m — (n — p) " (n grad p — p grad 1), (9)
K = (D, — D,) ' grad D = u,u,0 *(n grad p — p grad n)

=e(uy " — p )7 grad [0 (n + )]

= —e(py '+ p )7 grad [0 (n — p)], (10)
and

IF=ol +6I”, a+8=1, (11)

_ T This equation specialized to the case of Ap = 0 can be shown to be consistent
with a continuity equation for Ap derived by Rittner! under the assumption of
a common lifetime function for electrons and holes.
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I'=I, —elpy  + p )70 H(n — p)I

= —e(uy ' 4 ) 7'[(n — P)E + (kT/e) grad (n + p)]

=+ 170, - L) (12)
" =1, + e(uy ' — pa )70 (0 + p)I ,

= e(gy ' — mw )7 l(n + p)E + (kT/e) grad (n — p)]

= (b — )7L, + L,).

The diffusivity D, a definition of which is contained in the last of the
equations in (7), is the general ambipolar concentration-dependent
diffusivity, which occurs in the theory for no trapping. It is used here
simply for notational convenience. The velocity v of (8) is properly
interpreted in the continuity equation as two velocities, nv/(n — p)
for drift of Ap and pv/(p — n) for drift of An. It is otherwise formally
similar to the ambipolar velocity of the theory for no trapping, except
that now n — p is not a constant concentration. The first two right-
hand forms of the continuity equation, (6), exhibit terms associated
with diffusion and drift, respectively, as comparison with the continuity
equation for the no-trapping case shows. The current density I*, as given
by (11), is introduced for generality; with solenoidal I, the divergences
of I' and I” are equal.t From the expressions for these current densities
in terms of I,, I, and the drift mobility ratio b given in (12), it may be
verified that I* may be chosen as I, or —I,, as in (2). Indeed, as is
otherwise evident, I* may be written simply as a linear combination of
I, and —I,, normalized as in (11), since a linear combination, so nor-
malized, of any two I* is also an I*. The current densities I’ and I” are
introduced because their use is frequently convenient.

The mobile-carrier concentrations n and p are, in accordance with
(1), properly written as m — 7 and m — p where they occur explicitly
and in the diffusivity D, in the electron and hole conductivities o, =
eu,n and o, = eu,p and in the total conductivity ¢ = o, + o, . For ac-
ceptor and donor centers of single types, 87/0¢t and dp/9¢ in terms of
the various concentrations provide, with the continuity equation, three
simultaneous differential equations in the dependent variable m, % and
p. For more than single types of acceptor and donor centers, # and p
are sums of fixed-charge concentrations. Equations are then written for
the rates of increase of each of these concentrations, and the number of

T Note that these divergences equal that of I, and (—1I,); also, I” — I’ equals
2b(b? — DI
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simultaneous differential equations exceeds by one the total number of
types of centers present. These are the differential equations for the
general transport problem with trapping and recombination provided I
is a known function of the space coordinates and time.

In some cases, I must be determined from boundary conditions. Use
is then made of the fundamental differential equation, (4), which may
be written to involve the electrostatic potential V as additional de-
pendent variable. With

oE = —ograd V =1 — e grad (D,n — D,p), (13)
it follows that (4) may be written in the form
div [o grad V — (kT /e) grad (e, — op)] = 0, (14)

in which o, , ¢, and o are to be expressed in terms of m, 7 and $. In this
formulation, V is introduced into the continuity equation through the
elimination of I by means of (13). Another procedure, of advantage in
some connections, involves use of the potential

V=V — (kT/e)(b — 1)(b+ 1)""In (¢/a0) (15)

instead of V as dependent variable. Then I is given by
I= —ggrad ¥ + eD; grad(p — #), (16)
where D; = 2(D, " + D,”)7" is the diffusivity in intrinsic material.
Aside from the effect of trapping on I, as given by the second term of
(16), ¥ is the potential that ‘“drives” the total current density. This
may be described as the electrostatic potential modified by the Dember
potential. The latter gives the field associated with diffusion of carriers

of differing diffusion constants.
Electrostatic field given by

E=¢"'(n+p) n/in + L/uy — kT grad(p — &), (17)

an equation somewhat analogous to (16), is a result obtained by solving
for E in the equations for I” in (12). As (17) shows, E in the absence of
trapping (and of appreciable space charge) may be written in a form
that does not involve concentration gradients explicitly.

In the ambipolar form of the present treatment, the equations of (5)

are
L, = (0p/0)] + Ip = (op/00)I + AI

and (18)
I, = (oa/0)I — Ip = (one/c0)I — Al
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in which zero subscripts denote values at thermal equilibrium; Al is
defined by

Al = uupo0 o (ngp — pon)I + 1p
= oo [(tn + 1) (0 + P + (pn — pp) (0 — po)I”]
= O'G_I(UnOIp - O'pOIn)- (19)

Application of one or more of (13) or (17) and (18) is frequently re-
quired in connection with boundary conditions. The ambipolar dif-
fusion current density I, includes the effect of the Dember field and
contributes the same particle flow density to both I, and I, . Use of the
expressions for I, and I, that involve Al is of particular advantage for
physical interpretations and in small-signal cases, since Al is the current
density of excess mobile carriers.”” For given total current density I,
it represents the equal electron and hole flow densities, that are the
departures from the thermal-equilibrium flow densities and that "do
not contribute to I. Note that I* may also be chosen as Al

2.1.1 Extension for Applied Magnetic Field

The current densities for Hall angles 6, and 6, small are given in
general by Equations (10) and (13) of a previous paper.'’ These result
in

e(dm/dt — g + Rn) —divI, = divI,
—div(e,E) + eD, div grad p

— O,]grad ¢, , E, k]
= div(s,E) + eD, div grad n

+ 6.Jgrad o, , E, K}, (20)

[

in which k is a unit vector in the direction of the magnetic field and the
heavy brackets denote scalar triple products. With » and p treated
formally as unrelated variables, multiplying respectively by o, and o, ,
adding and simplifying gives
am/dt — g + R = —e '(divI, + K-I)

— Eutpo [0 (1op" grad n + wn” grad p),Lk]

+ (0,00 + 0u0p) (Dun — Dyp){grad n, grad pk}], (21)

where I, and K are defined in (7) and (10) and 6 is the sum of the
magnitudes of the Hall angles, 6, — 6,. In deriving this continuity
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equation, use is made of curl E = 0, which holds for steady applied
magnetic field; time dependence of I generally has a quite negligible
effect.” Use is also made of the relationships

cE =1 — ¢ grad(D,n — D,p)
— ¢ (005 + 00) I X k — 01, X Kk (22)
and
[(0,n grad p — 6,p grad n),Ek]} =
o '[(6,n grad p — 6,p grad n),Lk] (23)
+ e N (0,Dun — 6,D,p)[grad n, grad pkl,

which hold with the neglect of terms quadratic in Hall angles. Equation
(23) is obtained in a straightforward manner from (22), which is ob-

tained by writing total current density as
I = oE + ¢ grad(D.n — Dyp) + (0,05 + 0u0u)E X k (24)
— e grad(6,D,p — 0.D.,n) X k

and then solving for E. The terms on the right-hand side of (24) repre-
sent, respectively, drift, Dember, Hall and PME contributions.

A differential equation that expresses the solenoidal property of I is,
from (24),

div[¢cE + (kT/e) grad(e, — o,)] 25)
+ [grad(8,0, + 6,0,),Ek} = 0. (

If direct use must be made of this fundamental equation, then it is well
to eliminate I from (21) by means of (24), and to employ the electro-
static potential V as one of the dependent variables.

The current densities are given in ambipolar form by

I = (op/0)] + T
and (26)
L = (02/0)I — I5,

where, if terms quadratic in Hall angles are neglected,
I= = I + 0(0u0p/0" )T X k — 0 (6,00 + 0uop)Ip X k. (27)

Components of total current density perpendicular to the applied
magnetic field are
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Ix = O'Ex + 4 (Ti—v (Dnn - Dpp) + U_l(opo'p -+ ono'n)Iy + oIDy (28)

and I,, which is given by a similar expression obtained by inter-
changing 2’s and #’s and (to retain a right-handed coordinate system by
effectively reversing the direction of the z axis) changing the signs of
the Hall angles. One way of deriving (28) is to substitute the expression
obtained by solving for I, in the equation for I, , for E, in the equation
for I, obtained from (24), and to neglect terms quadratic in Hall angles.

2.1.2 Formulation for the Steady State in Terms of Trapping Ratios

A number of results for the steady state can be established from the
general differential equations without specifying in detail the trapping
and recombination statistics. Differential “trapping ratios”

rn = di/dm, r, = dp/dm (29)

are introduced. These apply since, in the steady state, %# and $ each
depend directly only on total concentration m of negative or positive
charges. In the immediate context, r, and 7, will be considered simply
as factors that depend in general on m, which, multiplying grad m, give
grad # and grad P, respectively. They apply, of course, for any number
of types of centers present. Their evaluation for particular models is
given in Section 3.1 in connection with the more detailed analysis of
the steady state.

With (29), it follows from (6) through (9) that the continuity equa-
tion for the steady state may be written as

div (D' grad Am) — v'-grad Am + Ag — Am/7, = 0, (30)

in which D’ and v’ are modified ambipolar diffusivity and drift velocity
that are given by

D' = kTpappo (1 = rp)n + (1 = 7))
= [l = (r;n + mp)/(n + p)ID,
euapye (1 — 1) — (1 — r)pll

= [l = (rsn — mp)/(n = p)lv,

(31)

v/

and in which the net generation rate ¢ — ®. has been written as the
increment in this rate over thermal equilibrium, Ag — Am/7, , with
Ag and Am being the corresponding increments in ¢ and m and 7. a
lifetime function for Am. The modified diffusivity and velocity do not
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apply to time-dependent cases; v/ would, for example, give the effect of
applied field on apparent diffusion length, but is not, as will appear in
Section 3.4.3, drift velocity for an injected pulse.

Expressing the concentration gradients for the steady state in terms
of r, or 7, and grad Am also formally simplifies (14), the differential
equation that must also be used if the current-flow geometry is not
known. In connection with (18), the current-density equations, the
procedure results in ambipolar diffusion current density given by

I, = —eD' grad Am (32)

for the steady state.

The trapping ratios defined by (29) can assume negative as well as
positive values: If centers of a given type trap mostly carriers of the
opposite charge, then a negative trapping ratio obtains. Consider, for
example, trapping in centers of the acceptor type, which are neutral or
negatively charged. For these, positive 7, cannot exceed unity; it nearly
equals unity if electron trapping is the predominant process, so that the
excess trapped electron and mobile hole concentrations are substantially
equal. If, however, hole trapping is the predominant process, then r,
is a large negative number, the increment in concentration of fixed
negative charges being negative and balanced by the excess mobile
electron concentration, so that m retains substantially its thermal-equi-
librium value. Similar considerations apply to r, for centers of the donor
type. Thus, the trapping ratio is close to unity or a large negative num-
ber according to whether the centers predominantly trap carriers of the
same charge or of the opposite charge.t

For a large negative trapping ratio, the comparatlvely small incre-
ments in m are associated with large magnltudes of D' and v/, as (31)
shows. A concentration variable other than Am may then be more suit-
able. The equation in the linear combination 4 An 4 BAp (with constant
A and B) of the excess mobile-carrier concentrations that results from
(30) has diffusivity and velocity equal to D’ and v’ each divided by
Al — r,) + B(1 — r,), since, from (29), grad Am is [A(1 — 7r,) +
B(1 — r,)] ' grad (AAn + BAp). In general, they are bounded in magni-
tude for all values of the trapping ratios that can occur.f In this equa-

TFor acceptor centers, say, of total concentration 97:, the trapping ratio

d — #)/d(p + E)‘Ll — #) for holes may be deﬁned The two ratios are

symmetncally related: They may be interchanged in r,’ = r./(r. — 1) and, as
one increases to unity, the other becomes negatively infinite.

i Note that A(1 — ’I‘n) + B(1 — 1) equals 7, — r,for 4 = 1 and B = —1 and,
if r, and 7, are constants (as obtains under suitable small-signal restriction), also
for A = rp, and B = —r,. It follows that » — p and r,n — r,p are (under this re-
striction) "both subject to diffusivity Do’/ (r, — r,,) and velocity vo'/(rp — ).
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tion, the recombination term is properly written as —(AAn + BAp)/
(A7, 4 Br,), where 7, and 7, are lifetime: functions for An and Ap.
These functions are respectively equal to An/®.. and Ap/®., since, from
(3), ®» = &, = B, holds for the steady state.

The equilibrium lifetimes for electrons and holes differ in general, but
are nevertheless always associated with the same diffusion length. This
result follows readily from (30), whose linear small-signal form is

Dy div grad Am — v -grad Am + Ag — Am/7, = 0, (33)

the zero subscripts denoting thermal-equilibrium values.t The lifetime
function 7., is here constant; and, since An and Ap equal (1 — 7,)Am
and (1 — r,) Am, with r, and r, the thermal-equilibrium trapping ratios,
(33) implies

(1 — 7,)7'Dy div grad an — (1 — 7,) 7'’ -grad An
(34)
+ Ag — An/(1 — 1) =0

for electrons and a similar equation for holes. Thus, for An the lifetime
is 7., multiplied by (1 — r,), while — as may be established in greater
generality from (29) and (30) — the diffusivity and velocity are those
for Am multiplied by the reciprocal of this factor, and similarly for Ap.
It follows, in particular, that the product of equilibrium diffusivity and
lifetime, which is the square of Ly, the diffusion length, is the same for
An, Ap and Am, independently of the particular trapping and recombina-
tion statistics.? A “diffusion-length lifetime” 7o, based on the unmodi-
fied ambipolar diffusivity Do, may accordingly be defined by™

70 = L’/Do = (Dy'/Do)tm = [L — (1m0 + 7ap0)/(n0 + Po)]7m (35)
= (notp + porn)/ (N0 + o),

in which 7, and r, are the equilibrium lifetimes for Ap and An. The more
detailed analysis of Section 3.1.1 includes evaluation of the single diffu-
sion length and lifetime ro that correspond to the (equilibrium) Shoek-
ley-Read electron and hole lifetimes. Diffusion-length lifetime for re-
combination in the presence of nonrecombinative traps is evaluated in
Section 3.3.

For the steady-state formulation that includes applied magnetie field,
it 1s readily shown that (21), the continuity equation, assumes the form
of (30) if v’ is redefined in accordance with

t As shown in Section 3.1.1, the required small-signal restriction may be more
severe than that given in Ref. 10 for the no-trapping case.
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V' = epappo {I(1 — rp)n — (1 — r,)pll
+ 0(e/o)[(1 — rp)uan® + (1 — 7)1 X K.

Note that the second scalar produet in (21) vanishes, since steady-state
concentration gradients are collinear vectors. I'or this case, use of the
trapping ratios formally simplifies (25), as well as (27) and (28), which
involve the form for I, of (32).

(36)

2.2 Mass-Action Theory

2.2.1 Single-Level Centers of Two Types

In this section, centers of both the acceptor and donor types are as-
sumed to be present, namely centers that can have respectively single
negative or positive charges or be neutral. By use of a suitable conven-
tion, the equations apply, in effect, to the more general model of two
types of centers each of which has two states of charge (which differ
by one electronic charge). On the basis of equations of this section,
theory for centers of a single type but with two energy levels or three
states of charge is given in Section 2.2.2.

Under the assumption of mass-action interactions, the equations

g— ®n =g — Cnp — Culpit — p1(9 — 7)]
— Culnp — n2(9: — D)),
ot = Ry — Rm = Cua[n(Iu — A) — i) (37)
— Culph — pu(Iu — A)],
®p — Om = —Cranp — na(9 — D)l
+ Crlp(9. — p) — pp]

hold. The first equation gives ®, , and it (as well as the other two) is
obtained by considering the photoconductive case of uniform concen-
tration and no transport, g — ®,, being the contribution to dm/dt that
does not involve transport. Four processes are taken into account for
each type of center. In the second equation, for example, the term C,pn
is the volume rate of neutralization of fixed negative charges by holes;
C,1 is a phenomenological capture coefficient,t which depends in general
on temperature and not on concentration. The second term in the same
brackets gives the rate for the inverse process, Cpip1 being the emission

8p/ot

t In the terminology of Sah and Shockley?? this quantity is called a capture
probability.
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coefficient for hole emission from a neutral acceptor center. Here 9, is
the total concentration of the acceptor centers, and the concentration
P1, constant at given temperature, is defined by the condition that the
quantity in brackets vanishes at thermal equilibrium, in accordance with
detailed balance. The preceding brackets relate to the interactions of
the same centers with electrons, the term C,,n (91 — %) being the volume
rate of capture of electrons by the neutral acceptor centers and C,imy
being the coefficient for electron emission from the charged ones. The
concentrations n; and p; are those of the Hall-Shockley-Read theory,
and are here introduced without explicit reference to Boltzmann statis-
ties.”"*™ The third equation expresses the dependence of 9p/dt on the
analogous processes for the donor centers. In the first equation, which
includes the rate Cinp of direct electron-hole recombination, only inter-
actions that change the total concentration m are involved.

The sign or magnitude of the charge that a center can assume is not
of material significance in the analysis of this section; although written
symmetrically for fixed charges of both signs, (37) may formally be
transformed so as to apply to two types of donor or acceptor centers.
This possibility is related to the circumstance that the fixed charges are
not properly considered as trapped carriers, since the trapping processes
are manifest through changes in fixed-charge concentrations rather than
in these concentrations themselves. For example, centers of the acceptor
type function as electron or hole traps according to whether the concen-
tration of the charged centers increases or decreases with carrier injec-
tion. Consistent with the discussion in Section 2.1.2 of the steady-state
trapping ratios, either type of center may be considered alternatively as
an electron trap or a hole trap, under the convention that a change in
fixed-charge concentration resulting from trapping may be negative as
well as positive. To establish this result from (37), write the two equa-
tions that apply for, say, aceeptor centers only. Then transform these so
that the concentration 91; — 7% of neutral centers becomes concentration
of fixed positive charges p, and the concentration 7 of charged centers
becomes concentration 9%, — P of neutral centers; note that a given in-
crease in the original % is equivalent to the corresponding decrease in
the new p. New equations then result that (with the replacement of
C.1 and O respectively by C,. and C,.) are the ones that follow directly
from (37) for donor centers only.

2.2.1.1 Thermal-Equilibrium Relationships. The definitions
ny = no(My — 7o) /Mo,  P1 = potie/ (T — 7o),

) ) N (38)
N = nepo/ (T2 — Po), D2 = po(Iy — Po)/Po
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are required by detailed balance. It is evident from these equations that
MP1 = NP2 = NoPo = N (39)

holds, where n; is the thermal-equilibrium electron or hole concentration
in intrinsic material. Note that (39) states, in effect, that the product
— (Cm1) (Cpapr) or (Crgnz) (Cpaps) — of the electron and hole emission
coefficients equals n;” times the product of the corresponding capture
coefficients.”**

If the concentrations in the right-hand members of (38) are known,
then n,, p1, n, and p. are, of course, determined. Certain relationships
hold between the concentrations. Since ne — po = n, equals Py — 1o
from (1), the neutrality condition, this condition and the last equation
of (39) give

no = (Do — 70)® + 40P + (Do — o)}
and (40)
po = H[(Po — 10)* + 40T — (P — 1h0)}.

It is readily found from (38) that fractions of charged aceeptor and donor
centers are given respectively by

T v T\ —1

7o/ = (1 4+ a0 )7, DPo/My = (1 + @ ), (41)
with

aw = no/m = pi/po = I (0 + 4nd) + nl, (42)
a0 = Po/P2 = Ne/No = %I);l[(nsz + 4"1'2)% — s

the final expressions on the right follow by use of (40). For given semi-
conductor material at given temperature, n; is known and =, is deter-
mined by conductivity type and conductivity oo, and n; and n, (and
hence p, and p; also) are accordingly determined by the fractions of
charged centers. Expressing the thermal-equilibrium concentrations of
mobile carriers and fixed charges in terms of each other (with other
concentrations as parameters) thus involves roots of quadratic equations.
The relationships given apply regardless of the number of kinds of centers
present, since (40) contains no quantities pertaining to particular cen-
ters, and each equation of (41) and (42) contains quantities pertaining
only to a single kind of center.

On the other hand, the fixed-charge and mobile-carrier concentrations
for centers of two kinds are obtainable in general in terms of 9, 9 , 7y,
ng and ;. Tt will suffice to indicate that the concentrations are roots of
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biquadraties that follow readily from the equations

my = Mo + nlflo/(m1 - 75»0) = f?o -+ 271(311 — ﬁo)/flo,

. N , (43)
Mo = 7o + na(Ma — Po)/Po = Do + Pao/ (T2 — Do)
for 7o and P and
mo = agp[ns + N/ (1 + aw)] = awlps + Mo/ (1 + an)l, (44)

awom = No/My = P1/Pe

for aip and ey, and hence ny and p, . Equations (43) and (44) are ob-
tained from (38) by eliminating, respectively, the concentrations of
mobile carriers and fixed charges by use of the neutrality condition.t
They are equivalent to combining (40) with (41) and (42), which are
accordingly subject to a requirement of mutual consistency. For exam-
ple, temperature determines n;° for a given semiconductor; specifying
conductivity also then determines no and po ; specifying further », and
1y determines 7/91; and Po/91. from (41) and (42), but only one of 9,
and 9% can now be independently specified, since po — 7, must equal
Ny — Po.

Through familiar considerations involving equilibrium Boltzmann
statistics, the concentration n; or p; (and #ns or p.) has been shown to
equal electron concentration in the conduction band or hole concentra-
tion in the valence band for the Fermi level coincident with the energy
level of the centers.” The relationship

m o= nd/p = @O = g L@t (45)
for acceptor centers is here employed, and a similar one is used for donor
centers. Here ¥; = —¢'6; and ® = —e¢'6 are the equivalent electro-

static potentials of the energy level &; of the centers and the Fermi energy
& for intrinsic material. This relationship is more phenomenological than
those involving the energies of the conduction-band and valence-band
edges and which give n; and p; in units of the effective densities of states
in the bands. Note that the temperature dependence of the energy gap
is involved through n,, while the difference between the effective densi-
ties of states or the effective masses with nonspherical energy surfaces
in momentum space is reflected simply in a difference between ® and the
midgap potential. If statistical weights associated with spin degeneracy
are taken into account, then the definitions of (38) are of course retained,
but (45) is modified. The right-hand members (for n;) are multiplied

T It is easily seen that cubics result for centers of one kind only, or if complete
ionization obtains for one of two kinds of centers.
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by two; the exponentials for p; are multiplied by one-half. In the similar
result for donor centers, the exponentials for n; and p, are multiplied
by one-half and two, respectively. For given n; and n. , these modifica-
tions ** produce comparatively minor changes in & and & or ¥,
and ¥

2.2.1.2 Kquations in Concentration Increments; Trapping and Release
Frequencies and Times. For detailed analysis, it is advantageous to re-
place (37) by equations in the increments Am, A7 and Ap in m, # and P
over their thermal-equilibrium values. By subtracting from (37) the cor-
responding thermal-equilibrium equations, in which the time derivatives
and the quantities in the various square brackets are zero, the result

Ag — AR, = Ag + vuAm + vpAR 4+ visAp — C;AnAp
— CpApAn — CrpeAnAp,
AN/t = ARy — ARy = vaAm + vl + vyuAD
— (Codn + Cplp) A,
AP/t = ARy — ARy = vudm + vpdii + vihp
— (ChoAn + Cp2Ap)AD

follows, in which the decay constants of what will be referred to as the
“y,; notation’ are given by

= —Ci(no + po) — Coto — Chspo,

vz = Cipo — Cpu(po + p1) + Cuzio,

vz = Cing — Cus(no + n2) + Cpiio,

vy = Co(9 — o) — Cpifo,

vp = —Cu(9 — 10 + no + m) — Cu(po + p1),

(46)

vy = Cpatlo (47)
v = Cpa(M2 — Do) — Crapo,

vso = Chsfo

vz = —Cra(no + m2) — Cpa(Me — Po + po + p2).

Zero subseripts denote thermal equilibrium values. Note that AR.. , A&,
and A®, are respectively ®,., ®, and &, minus gy = Cmi. In (46), in
which Am, A7 and Ap are to be considered as dependent variables, the
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quadratic terms have been written compactly with An and Ap, which
may be replaced by Am — A and Am — Ap; and np and po in (47) may
be replaced by mqy — 7o and my — Po .

It is desirable to supplement the v;; notation with another notation,
which, although it often results in less compact expressions, facilitates
physical interpretations. If volume generation and direct recombination
are neglected for the present, the respective contributions to dAn/dt and
dAp/dt other than the terms involving transport processes as such may
be written as

—ARy = —ARp — AR/t = — rmAn 4 vmAR

— VAN + veA(I — D),
— vipAp + vy A9 — 1)
— VipAp + vypAD. |

(48)
— AR, = —ARn — dAP/Ot

The top and bottom rows of the forms on the right give the respective
contributions of the acceptor and donor centers. The decay constants
may be identified as certain capture and release frequencies by com-
parison with the equations

—'A(Rn = — 0"1[(5)11 - 'flo)An — noA’l"L - AnAﬁ,] + Cnl’nlA”‘L
- Cn?[;i)oAn + ’I’LoAf) + AnAi)] + C,,anA(f)’lg —_ f)), (49)
—A(Rp = — pl[’floAp + poA’ﬁ/ + ApA’ﬁz] + CplplA(iYLl — ’ﬁz)

— Cpal (92 — Do) Ap — podp — ApAP] + CrepaAP,

which follow from (37). In (49), the magnitudes of the contributions
involving brackets are capture rates, while the other terms on the right
are release rates.

Expression of the capture rates in terms of capture frequencies would
require writing them with An or Ap as a factor, and would thus necessi-
tate solution of the particular problem. These physical capture frequen-
cies would depend in general on coordinates and time. The contributions
to the capture rates that contain A7 and Ap as factors are associated,
however, with trap saturation: These contributions, for carriers of given
charge, represent the decreases and increases in capture rate with the
filling of centers that assume, respectively, the same and the opposite
charges. They may, in a phenomenological sense, be deleted from the
capture rates and assigned to the release rates. The “effective” capture
and release rates that result from this procedure are clearly rates in
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terms of which the capture and release frequencies of (48) and related
times may be defined as follows:

Electron capture by neutral acceptors:

vl = Towr = Cot(90 — o) = Cudl/ (1 + o),
Llectron release from charged acceplors:

v = Tyn1 = Cu(n + mi),
Hole capture by charged acceptors:

Vipt = T?;1 = Cuie = CpiWan/(1 + an),
Hole release from neutral acceptors:

Vgp1 = Tg_;l = Cpu(p + p1), (50)
Electron capture by charged donors:

vz = Tina = Chao = CosIlaane/ (1 + o),
Llectron release from neutral donors:

Vgna = 7'32 = Ca(n + n2),
Hole capture by neutrol donors:

Vipe = T?;z = sz(mz - f?o) = szcﬂz/(l + 0120)»
Hole release from charged donors:

vopr = Topr = Cpa(p + p2).

The second forms given for capture frequencies follow by use of (41).
Note, for example, that »,,: is an average frequency per electron of
electron capture by a neutral acceptor -center and hence the reciprocal
of the corresponding electron capture or trapping time, 74, ; and that
ven1 18 an average frequency per charged center of electron release from
a charged acceptor center and hence the reciprocal of the corresponding
electron release time, 7,.: . The saturation terms that originate from the
true capture rates appear as the contributions from n and p in the
“effective” release frequencies, while the “effective’ capture frequencies
do not depend on the injection level.

It is readily seen that, if direct recombination is neglected, then an
alternative proceduret for including the quadratic terms in (46) is to

t Another alternative procedure is to replace i, by # and P, by % or, more
generally, by increasing 7o and $o by a fraction v of A% and of Ap and n, and p,
by the fraction 1 — ~ of An and of Ap. The definitions of (50), which correspond

to ¥ = 0, are then modified, and depend on v, the fraction of the quadratic terms
assigned to capture.
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generalize the »;; by replacing ng and p, in (47) by n and p. The formal
equivalence of (46) and (48) that results then permits expressing these
generalized »;; in terms of the effective capture and release frequencies
of (50), as follows:

i1 = TVl — Ve,
Vig = —Vgp1 + Vin2
V13 = Vipl — Vgn2,
Vor = Vil — Vipt,
V22 = — Vil — Vgn1 — Vgpl, (51)
Vo3 = Vipl
Vil = — Ve + Vip2
V32 = V2,
V33 = T Vgn2 — Vip2 — Vgp2 .
Note that
v v F v =0 (52)

holds for this case of no direct recombination.
The four effective trapping and release times or frequencies for each
type of center satisfy a fundamental restriction, namely:

ToniTtpi _ Vini¥gpi _ Do 1+ AP/(PO + pi) .7 — 1’2' (53)

TiniTopi  Veni¥ipi Mo 1+ An/(ne + nj)’

Thus, only three are independent. As will appear, this restriction is
widely useful for calculations and physieal interpretations. It is essen-
tially a consequence of detailed balance: For thermal equilibrium, it
follows readily from relationships tantamount to this principle, such as
(41) and (42) or the definitions of (38). The factor on the right that
depends on An and Ap results simply from the concentration dependence
of the effective release frequencies.

A property easily established from (42) and (50) is the following:
For centers of given capture coeflicients and energy level, if the electron
and hole capture frequencies are equal for a given conductivity, then
the equilibrium release frequencies are equal for material of the opposite
conductivity type and the same value of | np — po |, that is, for material
such that the values of ng and p, are, in effect, interchanged.
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2.2.1.3 Trapping and Recombination Ranges; Shallow and Deep Traps.
Three linear small-signal ranges, characterized respectively primarily by
minority-carrier trapping, recombination and majority-carrier trapping,
may be defined for each type of center by use of (53). The “minority-
carrier trapping range” is defined by the condition that the equilibrium
minority-carrier to majority-carrier release frequency ratio exceeds unity.
In p-type material, this ratio, v,.;/vep;, 8 Cuin;/Cpipe = Cujne/Crip;,
from (39), (41), (42) and (50); and, from (53), vu;/vep; is larger by
the factor po/no . The “majority-carrier trapping range” is defined by the
condition that the majority- to minority-carrier capture frequency ratio
exceeds unity, for which the equilibrium majority- to minority-carrier
release frequency ratio is larger by the factor po/ne for p-type material,
or by no/po for n-type. The “recombination range” is defined as that not
included in either trapping range. Thus, the recombination range is
given by no/n; = p;/po = Crj/Cp; = pi/no = po/nj for p-type material,
the electron-trapping range by C,;/Cp; > pi/ne = po/n;, and the hole-
trapping range by C,.;/Cp; < Pi/Po = no/n;. A “minority-carrier capture
range”, which includes the trapping and recombination ranges, may be
defined by vin;/vip; > 1. Similar results, obtainable by interchanging n
and p, hold for n-type material. Ranges of minority-carrier-dominated
and majority-carrier-dominated transitions™®
trapping ranges here considered for which strong inequalities hold.
Equal capture frequencies, which occur at the boundary between the
recombination and majority-carrier trapping ranges, result in what will
be termed “critical recombination”, with which, as will be seen, A% or
Ap is zero.

The three ranges may be specified in terms of the equality densities.
These are the equilibrium carrier concentrations for the Fermi level
coincident with the equality level. They are defined in the present
context by

are those parts of the

f J— — —_
n* = Cpipi/Cuni = DVipi/Vini = NoVypi/ Voni
and ' (54)
pi* = Cani/Cpi = Novini/vipi = DPVoni/ Vi »

in which the release frequencies are equilibrium values. Thus, the re-
combination range is given by ng < p;* £ po or po = n;* = n, for p-
type material, the electron-trapping range by n,;* < ng or p;* > po and
the hole-trapping range by n;* > o or p;* < no, and similarly for n-
type material. The ranges may evidently also be specified in terms of
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the equality level, the Fermi level & for intrinsic material, the actual
Fermi level & and the “reflected Fermi level,” &' = 28 — &y, the re-
flection of &r about &: For the recombination range, the equality level
is between &r and &;; for the minority-carrier trapping range, it is be-
tween &7 and the edge of the majority-carrier band; and for the major-
ity-carrier trapping range, it is between &z and the edge of the minority-
carrier band. Note that, if the capture coefficients are equal, then n;* =
p; (or p;* = n;) holds and the respective trapping ranges are given by
conditions on the trapping level &; obtained by interchanging those on
the equality level.

The volume rates of electron and of hole transitions at equilibrium
are respectively Como(9U — 7o) = Cutiie = Nevim and Cppetie =
Coupi(9 — %) = pwvya for acceptor-type centers. From (53), these
rates are proportional tot v,,; and »,,; . Hence each definition given for
a trapping range insures that the transition rate at equilibrium for the
particular carriers is the larger, and also that the transition rate vy or
vip1 per mobile carrier is the larger too. The asymmetrical relationship
between the definitions for minority- and majority-carrier trapping re-
flects the circumstance that a transition rate will be the larger if either
the cross section or the concentration of the particular carriers is suffi-
ciently large. The recombination range is that for which a larger transi-
tion rate per mobile minority carrier is associated with a total transition
rate for majority carriers which is the larger.

For shallow minority-carrier traps, since relatively few are occupied
by minority ecarriers at equilibrium so that they can capture majority
carriers, the condition for the minority-carrier trapping range may be
met even though the capture coefficients are comparable in magnitude.
For deep traps, since relatively few can capture minority carriers, the
minority-carrier trapping generally requires a minority-carrier capture
coefficient considerably the larger. Suitable condition for “shallow” and
“deep’’ traps are, in view of the condition on C,;/C,; for the electron-
trapping range, respectively p; < ny (or n; > po) and n; < po (or
p; > ng) in p-type material. That is, “shallow’” and “deep” traps for
minority carriers are appreciably removed from the reflected Fermi
level &, towards the edges of the minority- or majority-carrier band.
Similarly, for majority-carrier trapping, ‘“shallow’’ and ‘““deep” traps are
appreciably removed from the Fermi level & , towards the edges of the
majority- or minority-carrier band, respectively.

t They equal vgn and vy, times the capture concentration, as shown by (63)
in Section 3.1.1.
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2.2.2 Centers with Two Energy Levels

The formalism for centers of two types is readily modified to yield
equations for one type of center with two energy levels. With the assump-
tion that the centers can each assume single negative or positive charge
or be neutral, % and p denote concentrations of centers in the respective
charged states. It is thus clear that the fundamental mass-action equa-
tions for this case are formally the same as (37), with the modification
that both 91, — 7 and 9T; — p are replaced by X — 4 — p, where 9T is the
total concentration of the centers.

For thermal equilibrium, definitions of n;, p;, 7. and p. apply that
are equations of (38) with both 9, — 7, and 9, — P, replaced by 9 —
7o — Pa . Tt follows that the restriction

n02/ nNy = PiPa/ P02 = 7o/Po (55)
holds for this two-level case. As is easily verified, (39) and (40) still
apply, while the fractions of charged centers are

Ao/ = (1 -+ my/no + ’I’Ll’ﬂg/noz)_l
(1 + po/p1+ po’/pip2) ™
= oo/ (1 + a0 + am),

Jor — (1 o S A mm [y 2)7L
L T P2/ Po o PP Po’)

= (1 + no/ne + ng’ /nms) ™
Olzo/(l + ap + 020),
with a0 and az given by (42). The modifications of (43) and (44) for
the biquadratics are the replacement of 91, — 7o and 9y — Po by N —
ﬁo —_ Z‘)o and of m1/<1 + Oll()) and fﬂg(l + (1(20) bYM/(l + a0 + 0(20).
Note that (55) is not an independent equation, in that it is implicit in
the modified (43).1 Relationships formally identical with (45) give my
and 7, in terms of the two energy levels.

The fundamental two-level mass-action equations for no direct re-
combination yield the equations in concentration increments
Ag — AR = Ag — (vip1 + vi2) Am + (ving — vyp1 — Crana) AR

+ (vip1 — vgn2 — Crapr) AP,
AR/t = (D1 — Pep1) AM — (Pin1 + Yo + Vop1) A0

+ (vir — Can — Cpipr) AP,
aAi)/at = (thZ e th?)Am + (th2 - Cp2p - CnZ“Q)Aﬁ
— (vip2 + vyp2 + V0n2)Ai7y

t The corresponding restriction for two types of centers has (fo/o) (e — Ho)/
(JU1 —%w0) as right-hand member.

(56)

3
IS5

<.

€

(57)
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from which appropriate »;; can immediately be identified. Effective cap-
ture and release frequencies are here employed whose definitions are
provided by (50) if 91, — 7% and 91a — Po are replaced by 9 — 7% — Do,
and 9‘61/(1 + alo) and fﬂg/(l + 0(20) replaced by 912/(1 + a0 + (‘l2o).
Aside from these modified definitions, the equations of (57) are formally
identical with equations for two kinds of centers except for the additional
terms in which the capture coefficients appear. These are ‘““constraint’
terms. The ones in d A7/t represent the decrease in this rate that results
from the decrease in the concentration of neutral centers associated
with an increase in P; neutral centers capturing electrons and emitting
holes are the two processes that increase 7. The rate decrease C.nAp
is that associated with the electron capture, while CppiAp is that asso-
ciated with the hole emission. The condition that the rate decreases for
these two processes be the same is clearly n,;* = n. Similarly, the con-
straint terms in dAp/dt represent the respective decreases CppAn and
Crone A% in the neutral-center hole capture and electron emission rates
associated with an increase in 7; these decreases are equal if p,* = p
holds. The third forms of (54) show that a pair of equal constraint terms
implies an equilibrium hole-to-electron release-frequency or transition-
rate ratio for the acceptor or donor levels equal, respectively, to n/ne
or po/p, which are substantially unity near thermal equilibrium.

For this two-level case, the four effective trapping and release times
or frequencies associated with each energy level satisfy the fundamental
restriction that is formally identical with (53). It is also easily verified
that the various conditions given for the recombination and trapping
ranges and for shallow and deep traps apply without formal modifica-
tion.

By suitable notational generalization of the fundamental mass-action
equations, the results of this section can be shown to apply to two-level
centers in general, whose states (differing successively by one electronic
charge) may include ones that are multiply charged, either positively
or negatively. Through use of the phenomenological capture coefficients,
statistical weights associated with multiply charged states do not enter
explicitly. For example, the concentration 9T — # — p of neutral centers
may be replaced by concentration P of centers with single positive charge,
and P used to denote concentration of centers with double positive
charge. Then 7 is replaced by the new concentration 9t — # — P of neu-
tral centers.t Thus, with obvious modifications in the physical descrip-

1 Note that these transformations applied to (1) give Am = An — AD — AP =
Ap + Ap. While the correct neutrality condition holds, Am is no longer the incre-
ment in concentration of total negative or positive charges.
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tion of capture and release frequencies and other quantities, the theory
is essentially unchanged.

2.2.3 Volume Generalion with Excitations Involving Trapping Levels

The excitations associated with the absorption of radiation of wave-
lengths beyond the limit of intrinsic absorption may be taken into ac-
count phenomenologically through suitable generation terms in the
differential equations. To the volume rate g of interband excitations in
the differential equation for n is added ga + ge2 , Where ge; is the volume
rate of hole excitations from the conduction band to centers of type 1
— that is, electron excitations from these centers to the conduction
band — and g, is the similar quantity for centers of type 2. Similarly,
in the differential equation for p, to ¢ is added g. -+ g2, each term of
which is the volume rate of electron excitations from the valence band
to the centers or hole excitations from the centers to the valence band.
To ¢ in the differential equation for m is added g1 + ¢.2, and not gy
Or ¢»2 , since g1 increases n as it decreases 7, while g¢,» increases p as it
decreases P. The generation terms Agn , Ag, and Ag, in the differential
equations for Am, An and Ap are thust

Agm = Ag + Aga + Ages,
Agn = Ag + Agcl + Agc2’ (58)
Agy, = Ag + Aga + Agar,
and the generation terms that the equations for A% and Ap now contain
are respectively Agn — Agn = Agu — Agaand Agn — Agp = Ager — Agos -

The additional generation terms clearly represent the same processes
as do the emission terms of (37). The distinction implicit in the notation
is valid, however, consistent with zero values of these additional genera-
tion terms at thermal equilibrium. Each generation rate of (37) is de-
termined at equilibrium by the phonons and radiation associated with
the equal corresponding capture rate. Since detailed balance applies also
to the radiative part separately, there is no net radiation at equilibrium
from any given process of capture and the corresponding generation.

III. DETAILED THEORY AND APPLICATIONS
3.1 Diffusion Length and Steady-State Lifetime Functions

3.1.1 Linear Theory

The equations of (46) for two types of centers, when written for the
steady state and linearized by neglect of the quadratic terms, give con-

t The excitations involving trapping levels only, which may occur for large
concentrations of centers (presumably with concomitant impurity-band conduc-
tion), are here neglected.
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centration increments that are proportional, and solving for A%/Am and
Ap/Am provides the thermal-equilibrium trapping ratios. These and the
corresponding lifetime 7,, are thus given by

©_ VasVs1 — Varvss
Tn - —_’
VaoVgs — VagVar
_ Vavss — Vb3
Tp = ’
VogVgs — Vaslig
-1
Tm = _(Vu -+ v, + V137'p) ’ (59)

"‘(V22V33 - V23Vs2)
1'11(1'221/33 - Vzal’sz) + V12(V23V31 - V21V33) + V13(V21V32 - V22V31)’

in terms of which, with the thermal-equilibrium diffusivity Dy’ from
(31), the diffusion length can be expressed and the diffusion-length life-
time evaluated. These results apply also for two-level centers if equilib-
riums »;; are defined in accordance with (57).

The case of single-level centers of one type lends itself to more detailed
analysis. Results from the linearized equations for, say, acceptor centers
only, for which r, is zero, are:

Vinl — Vipl
Vinl + Vgnl + Vop1

Tn = —V21/V22 =
Tpo(ml - flo) — Tn()’fLo
mp0{T — fo -+ 10 + n1) + 7uo(po + p1)

— ml*(Ttpl - Ttnl)
(9U* + M) Tip1 T DoTem

=1- Tn/Tp )
Tn = (1 - Tn)Tm = —(V21 + V22)/A1

= (thl + Vgpl + Vgnl)/Al

— Tno(flo + po + pl) + TpO(n(] + nl)

IL* + no + po ‘ (60)
— (ml* + ZJO)Ttnl + N7
IG* + ne + Do
Tp = Tm = —Va/ly
(le + Vgnl + Vgpl)/Al
m0(Iu — 7o + 1o 4 M) 4 Tao(po + p1)
I* + noe + po
_ (90* + o) T + DoTem
Iu* + no + po '

Il




556 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960
The »;; and release frequencies are equilibrium values; 7,0 and 7,0, given
by
Tao = (Cuad) ™ = (L — Ao/) 7 = (1 + pi/Po) '7ma
and (61)
0 = (Cp9) ™" = (Bo/I) 7im = (1 + ny/m0) e,

are the respective limiting lifetimest in strongly extrinsic p- and n-type
materials (in which they are also 74 and 74:); A, given by

Ap = vivee — Viva = ViaVpl + PeaVipr + VeprVgm

= CuaCpdU(94* + no + po),

is always positive if neither C,; nor C,; is zero; and 9;*, which will be
referred to as the “capture concentration,” is given variously by

I = vivep/CuaCpdl = ni2911/(710 + ) (po + p1)

(62)

= NoVin1/Vyn1 = PVews/ Vo1 = Ni( TgmiTp1/ Ttnl'rtpl)%

= aw(I — 70)/(1 + aw) = fio/(1 + ) (63)
= 9 (7R/90) (1 — 7o/Iy)

= e/ (1 + an)™.

The different forms for these results are obtained by use of (51) for the
v;; , definitions of (50) for the capture and release frequencies, and
equilibrium relationships of (38), (41), (42) and (53). The middle term
of the second form for A; is the one that gives rise to 91,*, and it follows
from (53) that the first term is large or small compared with the third
according to whether p, is large or small compared with n,. Capture
concentration 91,* large compared with ny + po is, as will be shown in
Section 3.2.1, the condition that capture frequencies predominate over
release frequencies. The volume rates of electron and hole transitions
at equilibrium (see Section 2.2.1.2), ngvm; and poves , are equal to 9*
times the corresponding release frequencies. The equations of (63) show
that 7, and 91, — 7, may be written in terms of 90* and a;0 . The concen-
tration 91,* is small if the centers are nearly all ionized or un-ionized; the
last form shows that its largest value is 97, , which it assumes for ayo = 1
or 7io/M; = %, that is, for the Fermi level coincident with the energy level
of the centers. Entirely similar results, for which obvious notational
changes are required in some forms, hold for donor centers only.

1 Conditions for these lifetimes are po >> I0* + p1 4+ pi*, 70> I * + n1 + ny*.
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The diffusion length Ly and lifetime 7o corresponding to the electron
and hole lifetimes of (60), which are the Shockley-Read lifetimes, may
be evaluated from (31) or (35) and (60). These equations give

ng = DQITm = DoTo = Do[l - Tnpo/(n(l + pO)]TP
= kTﬂnﬂpUO—l(nOTtpl -I_ pOTtnl) (64)
= Uﬂ—l(o'pODnTtnl + U'nODthpl)y

where ¢, and o0 are ep,mo and ep,po . Other forms may be written by
expressing 7,1 and 7,5 in terms of 7,0 and 7, by use of (61). The diffu-
sion-length lifetime for this case,

To = (Vgnl + Vgpl)/(”tnl”gpl + thlvanl)
= [rp0(n0 + 1) + 7uo(Po + P1))/ (M0 + Do) (65)
= (noTepr + Porim)/ (Mo + o),

is formally similar to the familiar common lifetime®™® for both electrons
and holes for the limiting case of 9%; small, as inspection of (60) serves
to verify.t Thus, Ly and 7o are, for given 7.0 and 7,0 or 741 and 74,
independent of 9, . For given energy level and capture coefficients, o
is proportional to 9. The true Lo and =, apply, of course, in the linear
part of the small-signal range, in which no appreciable trap saturation
occurs. With small-signal trap saturation, diffusion length and lifetime
that are usually considerably larger apply in the saturation range.
These are evaluated in Section 3.1.2.

It can be shown that the electron and hole lifetimes of (60) are sub-
stantially equal to 7o if

| Vil — thl' = l Vgnl/no - Vgpl/p()l 911* < (1 + 6)(Van1 + Vgpl) (66)

holds, in which e is the smaller of (9G,* + n,)/p0 and (9% + po) /N0, as
given by the respective conditions | 7, — 7o [/7o K land | 7. — 7o [/70 K
1. For extrinsic material, ¢ may usually be neglected; including it pro-
vides an appreciably weaker condition only if 97;* is larger than the
equilibrium majority-carrier concentration. The condition of (66) may
be severe: It is essentially 91,* small compared with the equilibrium
minority-carrier concentration for the minority- to majority-carrier re-
lease frequency ratio of order unity or larger in extrinsic material, that
is, for the minority-carrier trapping range defined in Section 2.2.1.2.

1 This formal similarity holds for any number M of kinds of centers, 7o being
given by [Z¥;, (norip; + Pormi) I}/ (no + Do), as may be shown from the first
form for ®,, of (71) and the observation that, if two or more different kinds of
centers are present, then ®R,, is the sum of similar terms for each kind.
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General conditions for the validity of this linear analysis may be for-
mulated as conditions for the neglect of the quadratic terms. For this
purpose, assume uniform concentrations and volume-generation rate.
Then (46) and (51) yield

dAn/dt = Ag - VmAn + VgnlA'fb + CnlAnAﬁ =0
and (67)
dAp/dt S Ag — vmlp — VgplA’fL - CplApA'ﬁ =0

for acceptor centers only in the steady state and no direct recombination.
The conditions may be derived in a self-consistent manner by first ob-
taining, with the neutrality condition, the concentrations from the
linearized forms of (67). These concentrations, namely

An = (vp1 + v + Vanl)Ag/Al s
A = (i1 — vip) Ag/ A1, (68)
AP = (thl + Vgn1 + ngzl)Ag/Al s

are then substituted in (67), so that conditions for negligible quadratic
terms may be obtained as restrictions on (positive) Ag and, by use of
(68), as corresponding restrictions on the concentrations. It will suffice
to give the former restrictions, which for the neglect of C,;AnA7n and
C1ApA7 are, respectively,

Ag/A K vt/ Cor(vims — vip1) = (W — 1%0)/ (Vo1 — Vip1)
and - (69)
Ag/Al < Al/Cpl(thl - thl) (thl + Vgn1 + Vgpl)

for veu > vipr - If vipr > v, the restriction for neglect of one of the
quadratic terms turns out to be that of (69) for the other one, but with
subscripts » and p interchanged — an interchange that does not affect
A; . This distinction arises because the signs of the approximate linear
terms in An depend on the sign of v;,; — v . It is easily shown thatf
for this quantity zero, or the case of “critical recombination,” An is
identically zero and (67) are linear for all Ag. For trapping without
recombination, (68) does not apply because 4, is zero, but the conditions
may properly be written as the restrictions on the concentrations ob-
tained by use of these equations. For example, for electron trapping
with C,; zero, the condition An <K ng -+ n; results, which may be a se-
vere condition for p-type material.

1 A solution is excluded that does not admit thermal equilibrium, for which
Ag or Afi is zero for certain negative values of An and Ap or Ap and Ag, respectively.



-

CURRENT-CARRIER TRANSPORT AND PHOTOCONDUCTIVITY 559

3.1.2 Nonlinear Theory

For added carrier concentrations resulting from arbitrary injection
levels, steady-state lifetime functions 7, and 7, may be evaluated from
R . For acceptor centers only and no direct recombination, ®., is given
by

R = 07,1[11(911 - ’ﬁ) —_ TLIﬂ]
. . (70)
= Culpt — p(9u — )],

which results in

2
np — n;

Tpo({n + n1) + 7ao(p + D)

Mo — 7)) + (no + n)it + (po 4+ pu) (94 — 4) AR
(T — N) — 7ot B4} (71)

A(1 — #/9) + (ne + 1 — po — PLAR/I + no + Po
TpO(E)Zl - n) — Tal

= An/t, = Ap/Tp.

Cﬂvm =

Eliminating 7 by means of the second equation of (70) and the use of (61)
results in the first formt for @&, of (71). This familiar form® furnishes
T, OF 7, in terms of An or Ap alone if one of these concentrations is elimi-
nated by solving the second equation of (70) written with 7 replaced by
p — n; and An or Ap may at the same time be related to, say, the
generation rate Ag = ®.. for steady-state photoconductivity. The algebra
involves radicals. A better procedure for such analysis employs the
second or the third form for ®,, ; these result from (70) by elimination
of n and p with the neutrality condition. Then An and Ap are, with &, ,
written in term of 7 or A7 as independent parameter in accordance withi

Tpo(no + nl) + Tno(n + po + pl)
Tpo(ml - n) - Tn()n

and (72)
ToolPo + p1) + 700(9u — A + no + 711)

Tpo(Ia — M) — Tuolt

An =

Ap = Am =

so that the lifetime functions are given by

1 If two or more different kinds of centers are present, then ®,, is the sum of
similar terms for each kind. For the corresponding lifetimes in terms of An and
Ap, see Okada.s

1 Note that A7 has the sign of the denominator, which is proportional to v —
vip1 for A7 small,
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Tpo(’no + n1) 4 ol + Do -+ 1)
ﬁ(l — ﬁ/ml) + (no + m — po — pl)Aﬁ/ml + ne + Po

and (73)

mao(Do + 1) + 70(9 — A + no + M)
n(l — /) + (no + m — po — P)AR/Iu + no + po”

The functions reduce to the Shockley-Read lifetimes of (60) for the
equilibrium value 7 of 7, as may be verified by use of (41) and (42).
The range of 7 is from 7, to the limiting large-signal value given by
7/ = 7p0/(no + 7m), for which the denominator in (72) vanishes,
and for which 7, and r, both equal® 7., + 7,.

The trapping ratio r, corresponding to the lifetime functions of (73)
is given by

-1 _ 700(9 — A + 1+ m) + 70(p + p1)

7p0(Iu — %) — Tph

I:l + TpOAn + TnOAp :| é}l
7p0(M — %+ no + m) + Tho(po + 1)

oo (Mo + M) + a0 (Po + 1)
_4p + + Tpomn0(IU + Mo + 11 4 Do + P1) Af
An [Tpﬁ(ml - n) - Tnon]

which is obtained from (72) by differentiating with respect to Am. The
equilibrium value of r, , which is that of A74/Ap, is the r, given in (60),
while the limiting large-signal value is zero, as may be expected. By
means of (72) and (74), the steady-state continuity equation, (30), may
be written (for acceptor centers only), with A% as independent variable
and the components of grad A% as dependent variables. The second or
third form for r,”* of (74), with Ap/Ad given by (72), lends itself to
this purpose; note that dAn/dA7 and dAp/dAf equal r, ' — 1 and 7,7,
respectively.
The lifetime function™ for | A7 | < An ~ Ap = Am,

~ mp0(no + 11 + Ap) + 7m0(po + p1 + Ap)
r no + po + Ap ’

may be derived most directly from the first form for ®,, of (71). By solv-
ing the second equation of (70) for A%, the condition | A% | << An
~ Ap may be written as

Tn =

Tp =

n

(74)

T ™~ T

(75)

Vo1 + Vopt le— thl [an/nO—Vapl/p()'
A g gpo. . g *. 76
T O ¥ 0 Cu ¥ 0a Cn ¥ O 2u" (16
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Equilibrium release probabilities are here employed. Equation (76) with
Ap set equal to zero is the condition that A% be relatively small for all
Ap. Since this condition is (66) with e set equal to zero, it subsumes the
condition for equilibrium lifetimes substantially o , to which it is usually
equivalent.

It is readily shown from (75) that, witht Ap < no + po (and equilib-
rium lifetimes 7¢), the lifetimes are substantially 7o if Ap is small com-
pared with (v 4+ vgp1)/(Cu1 + Cp1). This condition and the one of
(66) may be severe conditions under essentially the same circumstances.
That is, in the minority-carrier trapping range defined in Section 2.2.1.2,
lifetimes are 7o for 94,* small compared with minority-carrier concentra-
tion mg or pg ; and then, consistent also with the condition of Section
3.1.1 for the neglect of C,;AnAR or CApAf suitably specialized, for Ap
small compared with ny + 7, or po + p: . If the condition on Ap is not
met, then, with the condition on 9,,*, (75) gives a lifetime that increases
rapidly with injection level at low injection levels.i But such observed
behavior with extrinsic material, as these considerations indicate, can-
not usually be properly analyzed by use of (75). The steady-state life-
times in the small-signal range generally either result primarily from
recombination or majority-carrier trapping and are both 7o and sub-
stantially constant, or else have distinct equilibrium values given by (60)
with dependences on (small-signal) injection level obtainable by
the general procedure described. It will be shown that, in the latter case,
substantially constant apparent diffusion-length lifetimes given by 7,
for n-type material or 7,,; for p-type generally apply in the small-signal
range above a certain injection level. Thus, unless trap concentration
is quite small, (75) has significant application in the former case only
to the transition from 7, to the lifetime 7,c 4+ 7,0 for the large-signal
range. :

Nonconstant small-signal lifetime functions are associated with deep
traps in the minority-carrier trapping range. Such traps will be saturated
(in the steady state) even in the presence of a concentration of mobile
minority carriers that is relatively quite small. From (67), by equating
dAn/dt and dAp/dt (which are zero also in the immediate context), A%
may be written as

AR = (leAn - VgplAp)/(Vgnl + Vgpl + CnlAn "I— CplAp), (77)

T The more general condition without this restriction includes 7o ~ 70 + 750
for large values of Ap.

1 As a result of saturation of centers available for minority-carrier capture,
this lifetime increases essentially linearly in the small-signal range from the
equilibrium value ry0(no + n1)/po Or 7a0(po -+ p1)/no and asymptotically to the
large-signal value 7p0 OF 750 .
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in which the concentration-dependent contributions to the release fre-
quencies are exhibited separately. Suppose that the transitions in p-type
material are electron-dominated, so that vy > v, . For deep traps, as
defined in Section 2.2.1.2, n; < po (or p; >> me) holds, which gives
Ny 4+ ny K po + p1 and therefore implies Cy 5> Cpy OF 70 D3> 740 for the
present case. Then, for An > ny + n:, the denominator in (77) is
C.aAn. Furthermore, vy = Cou(9U — 7o) 2> vip = Cuitie holds from
(53). Hence A% ~ 91, — iy followst for An large compared with ne + n;
and not too small compared with Ap. If trap concentration is not too
large, small-signal saturation evidently occurs under the conditions as-
sumed. If it is large, then a large conductivity increase is associated with
the majority-carrier concentration corresponding to the saturated traps.
Nonconstant small-signal lifetime functions apply in either case, whether
saturation occurs in the small-signal range or not.

The lifetime functions in the saturation range approach the limiting
large-signal lifetime, 7.0 + 7,0, substantially equal to 7,0 . Though 7,
is otherwise the minority-hole-capture-limited hole lifetime in strongly
extrinsic n-type material, in this case it is a lifetime limited by majority-
carrier capture. IFfor small-signal saturation, A7 changes relatively
slightly from the small-signal saturation range to its limiting value,
(V_l;ql —_ Vgp1>'/(\0,,1 + C;n!) = 911 - ftn - Tnﬂfﬂd/(Tnn + T_no), fOI' the large-
signal range. This circumstance might suggest that 7,0 applies over both
ranges. In general, it does not: The denominators in (73) are compara-
tively small (reducing, for example, to ny + n; for A% = 9 — #) and
are sensitive to very small changes in A7%; a very small change in con-
centration of unsaturated traps can affect lifetimes appreciably. As will
be shown in Section 3.2.2, large-signal lifetime implies relatively large
increase in conductivity. The equations of (67) for the steady state,
simplified for relatively small departure of A7 from 91 — 7 still (neces-
sarily) nonlinear, may be solved, in terms of An and for the saturation
range, for the lifetime functions ., = An/Ag and 7, = Ap/Ag. With
Vgt > Vgt + 7o', which will still apply in the present case even if 914
is of order po + p1, it is found that 7, ~ 7,0/[1 4+ (po + 9 — #o)/An]
holds for the saturation range, specified by An >> ny 4+ n;. Thus,

T ~ Tldn/(po + I — 7o),
proportional to An, holds for the saturation range of relatively small An.
An apparent diffusion-length lifetime, 7y’, may be found by evaluating

t The equivalent condition Ap > Iy — A + no + n, from (72) takes into ac-
count Ap > An. The small-signal saturation value of I, — # may be appreciably
larger than no 4+ 7, , but its limiting large-signal value is small compared with
no + ny if My K (wgn1/vgp1) (Po + p1) holds.



CURRENT-CARRIER TRANSPORT AND PHOTOCONDUCTIVITY 563

(D'/D)r, = (1 — r,) 71y for small-signal saturation.t With ra =14
dAn/dAd, the expression 1 + (ng + ny) (9 — 7o)/ An’ is found for
1 — r, ; and dividing Ap ~ An + 9 — 7, by Ag gives

T~ [L' 4 (9 — %0)/An]z,
~ 1po[l + (0 — %)/ An]/[1 + (po + 9 — %) /An].

It is easily seen that, for small 91; — 7, of order ny + n; or less, the life-
time function for 7o’ so obtained is r,An/po, as are 7, and 7.. As may
be expected, this result is consistent with (75). For 91, — 7i¢ >>> no + g,
however, the lifetime function gives =/ ~ 7,/(1 + 7p0/7ym) for
(9 — 7%0)° > An* > (ng + ) (9 — #y). The condition 9y <K po + Py
then gives 7 ~ 7,,1 for small-signal saturation. If this inequality is
reversed, then 7 ~ 7. results, and saturation occurs with relatively
large increase in hole concentration.

From (60), the equilibrium electron, hole and diffusion-length life-
times are, for these cases, generally small compared with 7,, . They are
given by TN Ty [(no + nl)/].o]Tpo = [(no + ’I’L])/(Eﬂ,l - ’ﬁo)]’rgpl and
Tp ~ [(9U — %) /PolTpo = Ty, if small-signal saturation occurs, for
which 74 is also small compared with 7o' = 74,1 . The minority-carrier
and apparent diffusion-length lifetime functions increase with injection
level, most rapidly as An becomes comparable with ne + n; and the
traps fill. These results clearly provide a simple model, based on a single
trapping level, for superlinearity,”*****® the more-rapid-than-linear in-
crease of photoconductivity with injection level.  With small-signal satu-
ration, two superlinear ranges may occur, the first as diffusion-length
lifetime increases from 7o to 74,1 , and the second as it increases from
7,p t0 Tpo in the large-signal range. With large-signal saturation result-
ing from large concentration of traps, only one superlinear range occurs,
since a nearly linear intermediate range is absent. Only one range oc-
curs also under the condition of (66) for small trap concentration. It is
evident, however, that with superlinearity this condition is generally
quite severe.

For the majority-carrier-dominated case of vep > vinr (0T vyp1 D3> Vyu1)
in p-type material, there can be no small-signal saturation. With small
trap concentration, lifetime 7o ~ (1 + pi/po) Ta0 = 7em , Which is limited

1 The second form follows since An/(no + n1) > (I — #o)/(po + I — 7o)
holds a fortiori.

1 For small concentration of centers, Ap may exhibit a less-rapid-than-linear,
a linear, or a superlinear dependence on Ag, as Rittner! has shown using a lifetime
function tantamount to that of (75). From this equation, superlinearity results,
as may be expected, if 7,0 + 750 €xceeds 7o , so that the numerator increases more

rapidly with Ap than the denominator. See also Ridout,” Newman, Woodbury
and Tyler™ and Sandiford.?
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by minority-carrier capture and obtains over the entire small-signal
range, then changes in accordance with (75) to 7,0 + 7,0 in the large-
signal range. This change is a decrease to 7.0 >> 7,0 if the trapping level
is near the Fermi level or higher.

The steady-state fractions of ionized centers can be represented by
simple formal generalizations of the equilibrium relationships of (41)
and (56). In these equations, 7i, and P, are replaced by # and p and e
and ay by '

o = Cmn T Copr 1+ An/(no + m*)
P Cap + Cant U T+ Ap/(pe + i) (78)
Cpep + Crang _ 1+ Ap/(po + pz*)

BT F Copr . T F dnf(ne + ng%)’
as can readily be shownt by solving for the ionized fractions from (37)
and also from the corresponding two-level equations of Section 2.2.2.

3.2 Photoconductivity

A number of results for steady-state photoconductivity being implicit
in Section 3.1, the present section will deal principally with the transient
decay.

3.2.1 Lanear Theory

For two types of centers in the linear small-signal case the time de-
rivatives of Am, A7 and Ap for photoconductive decay are given respec-
tively by (46) without Ag and the quadratic terms. The general solution
is accordingly

3
Am = D A,
i=1
3
AR = er,.,-A,»e"”", (79)
p

3
&b = 2 ryd 6,

in which the A4 ; are constants determined by the initial eonditions, and
the 7,; and r,; are trapping ratios for the respective decay modes deter-
mined by

t The equation given in the abstract of the paper of Sah and Shockley?? re-
written in the present notation yields /(90 — 7 — §) = erand (0 — A — 9)/p =

;1) from which the ionized fractions for the two-level case here given follow as
solutions of simultaneous linear equations.
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(v + »;) 4+ vigrng + vigrp; = 0,
v+ (va 4 ;)70 + vegrp; = 0, (80)
vsi + varn; + (vas 4+ vi)1p; = 0,

with the decay constants »; being the roots of the equation obtained by
equating to zero the determinant of (80). The A; are found in terms of
the trapping ratios and the initial concentrations Am; , An; and Ap; by
setting ¢ equal to zero in (79) and solving. The solution so obtained ap-
plies as well to the two-level case, for which the »;; are defined in accord-
ance with (57). The decay constants »; , which are roots of a cubic, are
always real and (since the coefficients alternate in sign) positive, except
that one of them may be zero. Establishing these properties involves ex-
pressing the coeflicients in terms of the capture and release frequencies
by means of (51) or (57) and making use of (53).

The constant term of the cubic and one decay constant are zero if there
is trapping only and no recombination. This case can occur essentially
in two ways: The two types of center may trap, respectively, the two
kinds of carriers, or they may both trap only one kind. If, say, the ac-
ceptor centers trap only electrons and the donor centers trap only holes,
then the »; are readily found to be zero, vimi + vy and vye + vype.
The last two decay constants characterize the respective exponential in-
creases with time of A7 and Ap to new equilibrium concentrations after
injection that correspond to the zero decay constant. These equilibrium
concentrations are fractions of Am (which remains constant) equal to the
fractions of the time the electrons and the holes are trapped. Indeed,
since the two types of centers trap independently in this case, the solu-
tion consists of solutions written independently for each. But if, for ex-
ample, electrons only are trapped by both types of centers, then this in-
dependence does not obtain; electrons released from centers of one type
may be trapped by centers of the other type. With the convention here
employed, concentration of electrons trapped by donor centers may then
be written as negative Ap. The decay constantsare found to be zero and
Hvwm + vomt + vz + Von2 £ [(Vem + Vomt — vinz — vgu2)” + 4thlutn2]%}7
with an equilibrium value after injection of total trapped electron concen-
tration equal to Ap/[1 4+ vymvgne/ (Vint¥gns + Vengvgni)].

The general linear small-signal case for one type of center is readily
evaluated in detail. For acceptor centers only, the solution is given by
the first two equations of (79), all terms with ;7 = 3 being omitted. The
trapping ratios are given by

To; = —va/(ve2 + v;) = (vi1 — vip1)/ (Vim1s + Vym1 + Vo1 — v;)
— (v + v;)/ve = (v; — vip1)/Vom (81)
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and the »; are the roots of

v — i+ A =0, j=1,2, (82)
where v, is defined by
vs = —(vu + v2) = vim + Yo + v + vy (83)
and A; by (62). The decay constants are thus
vi= (=D ], j=12 (84)

with
Ve = (”32 - 4A1)% = [(thl + Vyn1 — Vipt — Vopl)2 + 4”r/angpl]%- (85)

The corresponding time constants r; = »land 7, = » " are also equal
respectively to »/A; and »;/A; . Nonoscillatory decay is easily verified
for this case: The second form for », shows that the v; are real; and, since
v, < v, the v; are positive.

A subcase that provides some physical interpretations is that of 91
sufficiently small so that capture frequencies are small compared with
release frequencies. As (62) and (83) show, the condition »,’ >> 4A, then
holds, and expansion of the radical in (85) gives

17 ] \
Ty ™ Vs = Tgn1Typl/ \Tgnl T Tygp1)

<<'7'2 ~ Vs/Al ~ To. (86)

Thus, for this subcase, 7 is the steady-state lifetime 7o of (65). It is
large compared with 7, , the time constant for the adjustment of A% to a,
fixed fraction of Ap substantially equal to the equilibrium trapping ratio,
r, . This interpretation of 7, follows from solutions for the concentra-
tions: The last form for the r,; of (81) and r, from (60) give

Tar ~ 1+ vynt/vop
Tuz ~ (Vo — Vep1) [/ (Wgmt + vgp) ~ 7 3 (87)
and the result
An/Apy = [ravgnt/ (Pgms + vop)]e™ ™
+ L = ravp/ (vgm 4 ve1)le "™,
Aft/Apy = ra(—e T+ &7, (88)
Ap/ApPy = —[Pavept/ (Vgn1 + vopr)]e ™
+ [+ ravgp/ (vgm + vop)]e” '™
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holds for initial concentration A#; zero. Since 7, is small, the mobile-
carrier concentrations are mostly in the second or lifetime decay mode
and differ only slightly. For this subcase, if the initial trapping ratio is
r, rather than zero, then the first decay modes are not present and A7 is
rAp = rApie ™. The first decay modes do not occur either for “criti-
cal recombination,” with which A% remains identically zero as a result
of equal capture frequencies vy, and v, or, for this subcase, equal cap-
ture rates for An and Ap. For small 97, , the capture ratesare in all cases
substantially in the ratio vi,1/ven . In linear cases, they also decay in
the lifetime mode after this mode predominates. The release rates be-
have similarly, their ratio being equal t0 v4u1/ vy , O to (10/Po) (Vent/ vent)
in accordance with (53).

The condition for neglect of the capture frequencies may be severe.
The approximate form of v, applies if vy + v K vy + vy, holds,
which implies that

¥ K (Vgnl + Vgpl)/(”qnl/no + Vapl/pﬁ)

= (novtnl + pOthl)/(thl + Vm);
a condition which subsumes

E)'Ll* << V) + To (90)

for neglect of vy in A; . The conditions of (89) and that for steady-
state lifetimes equal to 79 of (66) are the same for the minority-carrier
trapping range defined in Section 2.2.1.2, for which they are 9,* small
compared with the equilibrium minority-carrier concentration. The con-
dition »,* >> 44, is

f)ll* < %nf(?’lo + po)—l(ng/Vgpl + Vgpl/”gnl + 2)
= %nf(ﬂo + po)_l(Tgm + Tgp])2/Tgangp1

if (89) holds, and it can be shown to be weaker than (89) in general if
the minority- to majority-carrier release frequency ratio exceeds a num-
ber that is about three for extrinsic material and about six for intrinsic
material.t Equations (89) and (91) are both subsumed a fortior: by
N,* K ni’/(ne + po), which is 9 < (no 4+ n) (po + p1)/ (o + Do)-

The release frequencies may be neglected under the condition of (90)
but with the inequality signs reversed. The solution is then simplyf
An/An, = ¢ " and Ap/Ap, = ¢ ™*. For 94 * large, (60) shows that

1 Equation (91) gives a stronger or weaker condition according to whether
Novgpt/ven1 -+ Povgn1/vep 18 smaller or larger than 3(no + po).

This result easily follows directly from the differential equations. Or, note
that the radicand in (85) is (vem — wip1)?.

(89)

(91)
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7m and 74 are respectively the steady-state lifetimes 7, and 7, . The
condition »,” 3> 44, is accordingly 2( 7./, + 75/7s) + %> 1 — namely,
that one of 7, or 7, be small compared with the other. If =, or 7, is the
smaller, then substantially all of An or Ap, respectively, is transformed
comparatively rapidly into positive or negative A7, after which a slower
recombinative decay of A% and the concentration of the other mobile
carriers takes place as these carriers are captured.

The condition »,’ 3> 44, implies r; K 7, , with 7; essentially a charac-
teristic time for trapping and 7. essentially a lifetime. This interpreta-
tion does not apply if », and 44, are comparable so that ; and 7. do not
differ by much. For small 9% and the majority-carrier trapping range,
for example, 71 ~ 72 may hold; (89) may apply, but not (91) (see foot-
note on previous page). The case of », ~ 4A, for 9, large, for which
Ti, T2, T, Tept, Tn a0nd 7, are all substantially equal, is a case of re-
combination with but slight trapping.

The general trapping time and lifetime obtained from (84) and related
equations are

-1

Ty = Vs = Tgangm/[(fnl*/po + 1)Tgn1 + (ml*/no + 1)Tﬂp1]
=TT/ [(1 + po/I*) 71 + (1 4+ 10/I0*) 7431]
Kry = vo/A = (9* + no + po) ™

(92)
‘[no‘f'anl + PoTop + ni2(7'an1 + Tapl)/ml*]

= (9% + no + o)~ ‘
OU* + po) T + (IUF F n0) Tipdl

Comparison with (60) and (65) shows that this lifetime 7 is larger than
the steady-state lifetimes 7, , 7, and 7o ; all are equal in the limit of 97,
small. For 9; large in intrinsic material, 7, equals 27, . Furthermore,
these lifetimes all decrease monotonically to zero as 91; increases in-
definitely.

The decrease of 7 with increasing 97; may, however, proceed essen-
tially in two ranges, with approximate constancy of . in an intermediate
range.”! From the first form for 75 of (92), this intermediate range occurs
provided there are capture concentrations 91,* that are small compared
with ny 4+ po and also large compared with

(Womt + v4p1)/ (Vgm1/N0 =+ ¥4/ Do) ;
that is, if the strong inequality

Ton1 F Top << (M0/P0) Tom1 + (Po/M0) 7o (93)
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holds. It can hold for sufficiently strongly extrinsic material if the ma-
jority-carrier release time is not too small. For small 97; , 7, varies in-
versely with 9% , as (65) for 7o shows. FFor large 91; such that 9u,* >
ng + po, 72 varies similarly, equalling the value (norgm + Porypm)/
(no + po) of approximate constancy divided by 90,*/(no + po). With the
third or fourth form for 91,* of (63), this 7, reduces to 741 + 74, - Since
71 for large 94,* is the harmonic mean of 74,3 and 7., , 71 is the smaller
of these capture times and 7, the larger, as previously discussed for this
case. It can be shown that, for the minority-carrier trapping range, the
inequalities that 91,* must satisfy for approximate constancy of 7, gen-
erally imply the condition », 3> 4A; on which the calculation is based.t
A similar situation has been shown to obtain with the inequality for the
case of negligible capture frequencies. But since this case involves a con-
dition for neglect of the capture frequencies that is usually severe in
the minority-carrier trapping range, it is the present case that would
usually apply in practice in this range.

3.2.2 Nonlinear Theory

Although the general problem of photoconductive decay is intractable
analytically, some special cases can be solved and certain techniques of
approximation are effective. From (46) and (51), general equations that
apply for centers of the acceptor type may be written as

dAn/dt = Ag + vguAi — (v — (Cup — Ci)Ad]An — C;AW,
dAR/dE = (v — v — (Car + Cp) Adi]An
= (v + Pou + vy1) M — CnAAi (94)
= [t — vip1 — (Cux + Cp) Ai)Ap
— (Vi1 + Vg1 + vep) AR C AR,
dAp/dt = Ag — vemAh — v + (Cp — Cadlap — Ciap’,

in which equilibrium values of release frequencies are employed. Since
| A% | is bounded (by a concentration that cannot exceed 9%;), it is clear
that, if the initial concentration Ap, is sufficiently large, then the decay
proceeds with A7 after a short transient substantially equal to

(thl - thl)/(Cnl + 0171)}

t One inequality is the reverse of that of (89); hence it is the condition for the
neglect of the release frequencies in », . The other inequality is (90). It follows
that »s2 > 4A; is I0* > 4ol + P Dvgnwvept/ @Pgn1/ne + vgp1/po)?. This condi-
tion is weaker than the reverse of (89) under the same circumstances that make
(91) a weaker condition than (89).
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for which the coefficient of An or Ap in dA7/di is zero. This value of A%
corresponds to maximum (but not necessarily complete) saturation or
neutralization in the traps. Although direct recombination, characterized
by the quasi-hyperbolic decay law

Ap/Apy = (Cipit + 1)~ (95)

predominates in principle for very large Ap; , it can frequently be neg-
lected.”®*"® The large-signal decay is then exponential with lifetime
(Car + Cp))/(Cotvips + Cpvin1) = 7Two + 70, the limiting large-signal
steady-state lifetime. With the limiting value of A7, this result follows
from, say, the last equation of (94), in which neglect of the release rate
vemA(9 — 7)) is consistent with Ap large.

Examination in further detail of the large- and small-signal decay is
facilitated by the equation for negligible direct recombination,

roAn "' dAn/dt + r0Ap 'dAp/dt
+ 1+ [(po + p) (1 — An/Ap) + (no + n1) (1 — Ap/An)]/oU
= (rudn™ + m0Ap~)Ag, (96)

which is readily obtained from (67) or (94) as a linear combination of
dAn/dt = d(Ap — A#)/dt and dAp/di that eliminates the quadratic
terms. I'or example, consistent with results for the linear case of small
N , assuming in this equation the steady-state trapping ratio r, of (87)
and (so that An and Ap are proportional) a single decay time, this time
is given as the lifetime 7, ~ 79 of (86). If either An ~ Ap or 9 is suf-
ficiently large, then the term with brackets, which arises from the terms
involving release frequencies, may evidently be neglected. It is other-
wise plausible that release does not appreciably affect large mobile car-
rier concentrations, while capture predominates with large trap concen-
tration. For no volume generation, (96) may then be integrated, with the
result

(AnAp)*(An/Ap)THEm = EI @t Co) g (om0l (g7)

in which A is a constant determined by the initial concentrations. It is
easily verified that, besides furnishing the large-signal lifetime, (97) is
consistent with the linear solution for large 97 , for which the release
frequencies may be neglected and the decay times are 7., and 7, .
This equation is a first integral of (94) for a case of large 97; , one which
can accordingly be formulated as a first-order (rather than second-order)
nonlinear differential equation.
The condition under which (97) holds is, from (96),
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9 > | Adf[(no + m)/An — (po + p1)/Ap] | . (98)

From (96) and (98), the large-signal lifetime 7,0 -+ 7,0 obtains if
An ~ Ap >> As holds and Ap >> 9| Ad(ne + m — po — p1) | also.
With the A7 for An ~ Ap from (77), these conditions are respectively
that of (76) and

Ap + (v + )/ (Cur + Cp1)
= Ap + 7o(no+ po)/(Tno + Tp0)
> [ no 4+ po — (Yom + 7m)/(Cox + Cp1) |
= (no+ po) | 1 — 70/(To + 7p0) | -

Since the left-hand sides of (76) and (99) are the same, comparison of
the right-hand sides will indicate which condition is the more restrictive
in any particular case.t The condition that corresponds to (99) obtained
from the lifetime for An ~ Ap of (75) is similar except that the constant
term on the left is replaced by no + po . Setting Ap equal to zero in either
gives the condition that 7., -+ 7,0 apply for all Ap, which is that it
equal 7.

The decay times associated with a small-amplitude pulse of added
carriers above a steady generation level Ag are readily evaluated. The
equations for dén/dt and dop/dt, linear in the concentration increments
dn and &p that result from the pulse, may be obtained from (67). Written
with capture and release frequencies that are concentration-dependent,
they are formally the same as the linear small-signal ones for dAn/d¢
and dAp/dt. For the release frequencies, the definitions of (50) apply;
for the capture frequencies, 7, in these definitions is replaced by 7. The
condition »,” 3> 44, of Section 3.2.1 generalized in this way is the condi-
tion for a lifetime 7, for 6n and ép equal to the generalized ratio v»./A;
and large compared with the corresponding time constant for trapping.
The lifetime 7, depends on the steady-state values of An, A7 and Ap;
(72) gives An and Ap in terms of A7, and (71) relates A% to Ag = R .
It reduces to 7, of (92) for the linear small-signal case and to 7.0 + 7p0
for Ag large.

The approximation An ~ Ap applied to (94) gives the differential
equation

(99)

[L+ (no + po)"Aplap
dAp/dt + - = 0, 100
p/ [1 4 (rno + Tpo)r0 H(no + po)AP]T0 ( )
t In the minority-carrier trapping range, for example, (76) and (99) may re-

quire approximately that Ap be large compared with trap concentration and with
equilibrium majority-carrier concentration, respectively.
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. 44 .
whose solution'* may be written as

Aﬁ 1 _I_ (nl) + po)—lAp [(rno+7po)/7ol—1 _ e~(¢/‘ro)
Apy L1 4 (no + po)~Ap, '

As may be expected, this solution is the integrated form that corresponds
to the lifetime of (75); the approximation results in the steady-state A%
of (77), and the condition required is that of (76). Casual inspection of
(101) might suggest that 7 and 7,0 + 7,0 apply respectively for Ap small
and large compared with ny + po . This conclusion is, of course, illusory:
For the minority-carrier trapping range, the exponent in (101) is large
and 7, applies only if Ap is restricted as explained in Section 3.1.2.

The limiting large-signal A7, Ap and lifetime for two kinds of centers
are easily evaluated from (46) and (51), and the extension to any num-
ber of kinds of centers is obvious. As may be expected, the values
(Vzn1 - thl)/(onl + Cpl) or (th2 -_ thg)/(onz + sz) Of Aﬁ or Ai) are
as if the acceptor or donor centers alone were present; and the lifetime
is the harmonic mean of lifetimes 7,0 + 7,0 for each kind of center, the
decay constant being the sum of the separate decay constants. This result
does not apply to the two-level case: From (57), At and Ap are found to
equal CCo/(CriCrs + CroCri + CaCre) — 7o and CpCpodt/(CriClra
4 Coelpt 1+ Crallr2) — o, with (1 + Cnt/Cpr + Cpe/Cr2)/(Crs + Cra)9
as the large-signal lifetime.

General solutions for trapping only and no recombination can be ob-
tained without difficulty. For, say, electron trapping by acceptor centers,
Ap maintains its initial value Ap;, and the nonlinear equation for An
that results from replacing A7 by Ap, — An in the first equation of (94)
has the solution

(101)

1 _ Ve + Vinl = Vgnl — CnlApl e—vtt

= — Vomt — Cuid
An — A?’L Ve + Vinl Vgn1 Cnl pl 102
: 1 — — v+ vim + Vgnl + CnlApl 6—v,t ( )
Ve + Vinl + Vgn1 + CnlApl

for initial value Ap; , if direct recombination is neglected, with
Ve = [(thl — VYgn1 — OnlApl)2 + 4vtnlvgn1]%,
Any, = %Cnl_l(lft — Vil — Vgul + CnlAZh)-

(103)

The concentration An, is the new equilibrium concentration which An

t The general form of this solution is not changed if direct recombination is
included.
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approaches asymptotically after injection. For Ap, large, these equations
give

An = l:Apl - (1 bl Tlo + nl) (E)‘Ll - ﬁo) :|
Apl

.<1 + Iy — to G—CMAplt> )
Apl

Thus, An = Ap, — An rapidly increases to the limiting value

[1 = (no 4+ n)/ApJ(F — 7o) ~ Ny — Mo = V41/Ca s

(104)

which corresponds to substantially all traps charged. For Ap, small, the
equations give

An/Apr = [vgatr/ (Venr + veu)] [1 + (vin1/vgn1) g i +v””1)t] , (105)

which may be obtained also by suitable specialization of results for the
general linear small-signal case. According to (105), An/Ap; decreases
from unity to 7ui/(7sm1 + 74.1), the fraction of the time electrons are
free, while A%/ Ap, increases to 7ga1/ (71 + 7ym), the fraction of the time
electrons are trapped. An effect of slight recombination on An would in
all cases be a comparatively slow decay from a value approximately
equal to the equilibrium value An, for trapping only.

It is sometimes relevant to deal with a model involving centers that
provide nonrecombinative trapping in conjunction with other centers,
of a suitably idealized type, that provide only recombination that can be
specified simply in terms of a constant lifetime. Such centers would in
general be present in comparatively small concentration, so that the
amplitude of their trapping transient is negligible. Furthermore, this
transient would be comparatively brief, so that steady-state lifetime
applies after negligible time.

With certain restrictions, the idealized centers may be centers that
function in the recombination range or in the majority-carrier trapping
range.t The A7l or Ap for these centers obtained by setting dA%/dt or
dAp/di equal to zero results in a contribution to both dAn/dt and dAp/dt
that is the negative of a steady-state recombination rate similar to that
of thefirst form for &, of (71). With subscripts 3"’ employed to denote the
recombination centers, this recombination rate may be written as
visAN/ (1 4 vyns/vops) + vesAp/ (1 4+ vyp3/vgns), In which the release
frequencies are concentration-dependent. If now v,,3 >> v,,; holds in p-

t For the minority-carrier trapping range, the lifetime function (ra0 + 7p0)Ap/
(no + po) would apply for An ~ Ap < no + po, as can be shown by use of (100).
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type material, it may be a consequence of the condition viy; > via3 for
hole trapping; or, with »;3 < w3, it may imply the recombination
range. In either case, from (53) the small signal recombination rate is
substantially »;.;An provided An is not too small because of strong elec-
tron trapping in the trapping centers. Lifetime 7, is then 7,3 ~ 7.
While the large-signal lifetime differs in principle, the assumed inequality
implies 7o ~ Tn0 3> 7,0 if the energy level of the recombination centers
is not too far from the Fermi level towards the valence band. In general,
Vops > Vgns gives a small-signal recombination rate equal to

Crsds(poAn + noAp)/(po + ps)

and thus a lifetime that cannot properly be associated with either An
or Ap alone. In intrinsic material, for example, it is An 4+ Ap with which
a lifetime may be associated.

These considerations suggest the formal representation of “linear re-
combination” by including in dAm/d¢ or in both dAn/dt and dAp/dt the
negative of a recombination rate v.;An -+ v,3Ap. This procedure is use-
ful in deriving results in forms that apply symmetrically without ref-
erence to conductivity type. For the p-type case here discussed, »,; and
Vp3 equal Vi3 a0d (Mo/Po) vz . The one that corresponds to the majority

AymIan oo 1allsr bhn and o 4~ wen £ 41cr odae

carrier can usuauny o€ sev pqu(u t0 ZEero 1ot buluCu,ﬂbly SUIoig extrinsic

material.

3.2.3 Negative Photoconductivity

Under certain conditions, optical generation with excitations involving
trapping levels will cause a decrease in conductivity below the thermal-
equilibrium value.”™ This negative photoconductivity will be con-
sidered for a simple model — that of two types of centers, of which one
gives trapping and the other only recombination. For traps of the ac-
ceptor type, (94) gives dAn/dt and dAp/dt, except that suitable genera-
tion and recombination terms must be included. From Section 2.2.3,
generation terms are respectively Ag, and Ag, ; and, from Section 3.2.2,
the linear recombination term — (v,3An + v,3Ap) may be included in
both equations. For simplicity, direct recombination and the quadratic
terms will be neglected, and the concentrations evaluated for the steady
state. The result is

(Vgpl - VnS)Agn + (Vlnl + Vgn1 + VnS)Agp (106)
Ay + (Vn3 + Vp3)(1’gn1 + Vupl) + Vn3Vip1l + Vp3th1’

with A; defined by (62); a similar expression for An is obtainable by

Ap =
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interchanging subscripts » and p, a transformation that does not change
the denominator.

This result verifies the conclusion that Ap may be negative as a result
of excitations from the traps to the conduction band in conjunction with
recombination, and similarly for An, with excitations from the valence
band to the traps. As a simple case, consider p-type material with »,;
zero. If there is also trapping only of electrons and excitation only of
electrons from traps to the conduction band, then C,; and Ag, are zero,
whence An is zero and Ap is — Ag./vym , With Ag, equal to Ag,; from (58).
Recombination, in this case, produces negative Ap, which compensates
the reduction by the excitation of the concentration of (negatively)
charged traps, and the effect tends to be enhanced with deep traps of
small capture cross section.

3.2.4 Further Theory with an Application to Experiment

Tlustrative application will be made to observations of Hornbeck and
Haynes on electron trapping in p-type silicon.* In this work, techniques
were devised to measure the various time constants in the decay of pho-
toconductivity, which, for certain samples, covered a range of about 107
in relative value. Evidence for two trapping levels was found, and elec-
tron capture cross sections and energy levels were estimated from the
data, the model employed being that of two types of traps that capture
only electrons, a lifetime being associated with recombination in cen-
ters of another type. The sampleT for which there is most detailed in-
formation exhibited a 20-microsecond photoconductive decay, attributed
to recombination, for sufficiently high injection levels; a decay of time
constant about 10 milliseconds, attributed to decay in comparatively
shallow traps that were initially filled in concentration of 2 X 10” em™;
and decay in deep traps that were initially filled in concentration of
10" em™® whose time constant varied from 1 second for the traps nearly
full to 260 seconds for the traps nearly empty. Both types of traps are
“deep” traps, as defined in Section 2.2.1.2. The present theory will be
used to calculate the upper limits for the hole-capture cross sections im-
plied by this model, and it will be shown how the conclusions are modi-
fied if an alternative model is assumed.

In outline, the general procedure here employed involves first assign-
ing trial values to the energy levels of the traps, and then calculating
expressions for decay constants from the equations, suitably linearized
for particular ranges. These decay constants are roots of algebraic equa-

t Data and results for sample 223B are given in the text and various figures of
the Hornbeck and Haynes paper.5
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tions and, assuming them well separated, may be obtained as the
magnitudes of ratios of successive coefficients. The coeflicients are homo-
geneous expressions in capture and release frequencies (and also “con-
straint frequencies,” if multiple-level traps are involved) — that of the
highest power being unity, followed by linear, quadratic and higher-
order forms for the successively lower powers. With assumed trapping
levels and known equilibrium concentrations of carriers and unoccupied
traps, the coefficients provide corresponding homogeneous forms in the
capture coefficients. These coefficients remain to be found from observed
decay constants. To each product of capture coefficients that occurs, a
number of products of frequencies generally contribute, but, for the par-
ticular semiconductor material and trapping model, these usually differ
by orders of magnitude and a single one predominates. With this con-
siderable simplification, decay constants can be expressed in terms of the
frequencies so that physical mechanisms involved can often be readily
identified. If a sufficient number of distinct decay constants are known
from experiment, the energies of the trapping levels may also be deter-
mined. The consistency of the assumed trapping model may then be
checked ; the energies found should clearly not differ from those assumed
by so much that the particular simplified expressions employed for the
decay constants do not apply.

Consistent with the notation here employed, the deep traps may be
assumed to be of the donor type and the shallower traps of the acceptor
type. Trial values of the energy levels will be taken as 0.23 ev below the
Fermi level & in intrinsic material and at & These levels are approxi-
mately 0.78 ev below the conduction band for an energy gap of 1.10 ev
and at midgap, substantially in accord with the locations determined
by Hornbeck and Haynest The values™™ at 300°K of 1500 and 570 cm’
volt™ sec™ for the electron and hole mobilities and 1.73 X 10% em™° for
n/ give no = 4.3 X 10°em™ and p, = 4.1 X 10" em™ for the 27-ohm-cm
p-type sample, with n; = p, = 1.32 X 10° em™, n, = 2.8 X 10° em™
and p» = 6.1 X 10® em™.

For the two kinds of traps with recombination at the rate v,3An =
An/73 only in other centers of the idealized type discussed in Section
3.2.2, the outlined procedure applied to the equations written for the
linear small-signal range gives the longest decay time 7., as

Tw = T3+ Tom + Tgnz + (Tgnt/Ten) 73 + (Tgne/Tem2) 5. (107)
The fourth and fifth terms represent recombination with multiple trap-
1 An energy gap of 1.10 ev at 300°K is employed rather than 1.00 ev as in Ref.

54. The trial values employed originated in a two-level analysis (which later
appeared inapplicable), the n, being that for I = 1.15 X 103, or $o/I = 0.87.
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ping in the shallower and deep traps, respectively, and the latter pre-
dominates for the case under examination.t In (107), 7,,1 and 7,.2 are,
of course, the “effective” equilibrium release times, and are not cor-
rectly interpreted as the physically proper ones,i namely (C,yn)~" and
(Cni!n:!)_l-

An upper limit for the coefficient C,, for the capture of holes by oc-
cupied deep traps may be obtained by assuming recombination in deep
traps only and then calculating 7, from the linear small-signal equations.
The result is

_ Vi T Vopr _ Dot ep/Cre ~ Ty (108)
gp

To = 7y
th2V0p2 p0V0P2

in the simplified form obtained by the outlined procedure. The final ap-
proximation on the right§ applies with o = 10® em™ and r, = 260
seconds, provided merely that Ce > 4 X 107*° cm® seconds ™ holds. Then
Cpe = 8 X 107" em® seconds™ follows, since py + s is 4.7 X 10" em™;
and the cross section for hole capture A4, , obtained by dividing by
mean thermal velocity, is 8 X 107*° e¢m®. Recombination in the deep
traps that gives 7, cannot account for the observed decay. It can be
shown|| that the decay time for the trapsnearly full would then be large
compared with 7, = 260 seconds rather than 1 second. The actual

o

A p» may thus be considered small compared with about 107 em®.

For an upper limit to C,; , recombination only in the shallower traps
is assumed. For this case, the rather lengthy general expression for 7
simplifies to give

Tw = Tgn2 + (Tyn2/7'tn2)[7'tnl(1 + Tapl/Tynl)]- (109)

The contribution 7., is the time constant for the initial decay in the
deep traps, obtainable as the longest decay time from the equations
linearized for nearly full deep traps and nearly empty shallower ones.
This release time represents recombination of electrons in the shallower

1 See footnote 20 of Ref. 54.

1 The 7, of Ref. 54 should be identified as r4n1 and 7g.2 . For the deep traps,
S, is accordingly (no + m2)~!, which increases with the p-type conduectivity and
is not a property of the traps alone. The formula employed for locating trapping
levels relative to a band edge holds if 7, in it is the physically proper release time.
With 7, the “effective’” release time, it holds only if n, is negligible compared with
ny or nz . In Equations (1) of Ref. 54, dn/dt lacks the term ChinoA,.

§ The equilibrium 7, of (60) and the lifetime 7, of (92) written for the deep
traps, for which 91;* ~ 0.197, ~ 0.1%, , also reduce to rgp2 if Cy2 is not too small.

@The lifetime 7, of Section 3.2.2 evaluated for the deep traps nearly saturated
is, by use of approximations for near-saturation of Section 3.1.2, found to be
given by 7o~ (Cpsd2)"1AN2/ (no + n2)po > rgpz fOr (mo + M2)po>> An2>> (o + n2) Po -
The inequality on the right is equivalent to An >> $; the one on the left is largely
consistent numerically with An < no + n1, for which the shallower traps are
substantially empty.
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traps without their recapture in the deep ones. The contribution (7,.2/
Tim2) Tiny Tepresents recombination in the shallower traps with multiple
trapping in the deep traps. The countribution with 74,1/75.1 as a factor
represents recombination in the shallower traps with multiple trapping
involving both levels.t This contribution predominates since, as shown
in Section 3.1.2, the small-signal saturation of the shallower traps implies
Typ1 > Tom - Theonly capture coeflicient it contains is €, , which is found
to equal 2.5 X 107" em® seconds™ for 7, = 260 seconds. The correspond-
ing hole-capture cross section A, is 2.4 X 107 em®. The actual cross
section is small compared with this value if recombination occurs pri-
marily in centers of a third kind.

Recombination in the shallower traps can account for the observed
deep-trap decay. Indeed, as may be expected, if the equations are lin-
earized for small departures from a concentration p; of unoccupied deep
traps, then a (longest) decay time

Td = Tgn2 + (TynZ/Ttn2>[7'tnl(]- + T([pl/'r(/nl)](ﬁl/ijo)

(110)
= Tgn2 + (T.,o - Tgn?) (i)l/i)ﬂ)

results, which increases from 7,., to 7. as P, increases from zero to Do
and is of the same form as that employed by Hornbeck and Haynes™ to
fit their data.f The observed decay in the shallower traps can also be
accounted for through C,;. The equations for nearly full deep traps
and nearly empty shallower ones give 7,,1(1 + 7w/ 7gn1) ~ 7gm fOr
decay in the shallower traps as intermediate time constant, 7., for elec-
tron capture being the shortest and 7, for the initial deep-trap decay
being the longest.§ The C,; obtained by setting r,,; equal to 10~ second
is 3 per cent smaller than the value obtained from 7, and is thus in rather
fortuitously close agreement.

If a model with this (), is to account for experiment, then the assump-
tion that the shallower traps are two-level traps, which gave the ob-
served lifetime|| of 20 microseconds through recombination in the higher

t The quantity in brackets in (109) ean be shown, from (53), to be the =, of (65)
for the shallower traps in the p-type material. Thus, 7, itself may be said to entail
multiple trapping through (7gp1/7gn1)7en1, the major contribution to 7o in the
minority-carrier trapping range.

1 The interpretation differs, since 74,2 is an “effective’ release time. In the nota-
tion of Hornbeck and Haynes, $1/Pois 1 — y.

§ Note that 74,1 results also from assuming filled deep traps and negligible
An, or Ap ~ Py + An.

“ For 33 microseconds, as given in Table I of Hornbeck and Haynes,** cal-
culated capture cross section for recombination would be smaller in proportion.
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level, seems necessary. Otherwise, a near-saturation lifetime much larger
even than 7, would obtain.f IFrom (60), (65) and (66) written for the
higher level, the recombination lifetime will be 7o ~ 7,0 throughout the
small-signal range and with no small-signal saturation if py >> Csns/
Cps = ps* and po > Cs/Chs = (Cp37mo)” " hold. The latter conditioni
is A, > 1.2 X 1077 em®. The coefficient C,3 and cross section A.,; for
electron capture in the higher level are found to equal 2.5 X 1078 em®
second ' and 2.3 X 107" cm®.

For the further analysis on the hypothesis that this model applies,
the energy levels are properly treated as unknowns. The contribution
Top1(Ten1/ Tgn1) to the time constant for decay in the shallower traps equals
Too(Ten2/ Tgn2) = To(Mo 4+ M2)/Po from the expression for 7, and will ac-
cordingly be small compared with 107 second for deep traps sufficiently
deep so that np 4 1. < 4 X 10° em™ holds.§ Then 7,1 is 107% second and,
with p1 < po, Cp1 has the value already found. An additional datum is
available from experiment, namely the decay constant for the straggle
effect: With the shallower traps nearly filled, multiple trapping results
in an extended tail in the distribution of carriers from an injected pulse
that are caused to drift past a fixed detector, at which the decay with
time is measured. As shown in Section 3.4.3, the decay constant is the
“straggle constant” »,, which is substantially vy + vim + v, for
Do >> Mo . Since v, is 10° second ™, the observed value, 2 X 10* second ™,
is to be equated to vy, ~ Cuny . With this result, the value for 7,
and 9, — 7o ~ 9 = 2 X 10" em™®, the equation for ., contains only
C.1 or n; and ne as unknowns. It fixes, say, ni/(no + n2) and thus approxi-
mately the separation between the energy levels, but there are not suf-
ficient data with the model assumed to determine each level separately.
It appears, however, from measurements relating to deep traps in sam-
ples of various conductivities,|| that the location considered for these
traps is substantially correct. With the trial value 2.8 X 10° em™ of n, ,
the value obtained for Cy; is 1.2 X 107° em® second ™, and the value for
nyis 1.7 X 10" em™, corresponding to an energy level for the shallower
traps 0.007 ev above the trial location at the Fermi level in intrinsic ma-
terial. With v, = 1 second ™, the value obtained for C,s is 3.1 X 1077
em® second™. The cross sections 4,; = 1.1 X 107 em® and 4., =

t With appropriate notational changes, the result in the footnote on page 577
for (recombinative) deep traps applies to the shallower traps.

1 This controls if the higher energy level is further than about 0.42 ev from the
conduction band.

§ This condition holds by a factor of about 102 for the trial value of n. .

|| See Fig. 13 of Ref. 54.
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2.9 X 107 cm® that result are half an order of magnitude smaller than
the ones calculated by Hornbeck and Haynes.t

It seems likely that the photoconductivity under illumination intense
enough to give the shorter decay times was quite appreciably offset as a
result of heating of the sample.{ Significant error from this source seems
unlikely, however: The time constant for cooling was very probably com-
parable with the longer decay times, and measurements concerning these
were made with considerably less intense initial illumination.§ There
were presumably no pronounced effects of nonuniform generation in the
thickness of the sample, the generation rate at the dark surface being at
least 40 per cent of that at the illuminated surface, as calculated from
the diffusion length for the shortest decay time.||

Work has been done towards the identification of the impurities in sili-
con that occasion these trapping effects.”®™” It might be noted that the
energy levels suggest gold.**” But there is evidence that gold gives a
single center with two (or possibly more) levels, and such a center can-
not account for the saturation of the shallower traps at a concentration
less than that of the deep traps. Consider the assumption that a two-level
model does apply, with shallow traps only partly filled in the experi-
ments. Then 7,,; applies for the decay at the shallower level and 74,/ =
1/C1 (9 — 1) for the time constant of 20 microseconds observed with
the spark source. Y It follows that C, is 4 X 107" cm® second ™ for the 9
of 1.15 P and the negligible 7, that the trial levels give. But, with this
C.1, the initial An immediately after the steady illumination that is shut

1 Compared with the value from ten samples that they calculated in connection
with Table I of their paper, A,; is one order of magnitude smaller.

} Perhaps this heating accounts for apparent concentrations of normally
empt)&traps determined from Fig. 4 of Ref. 54, which are about 0.7 of the values

uoted.

4 § Buck™ has found a positive temperature coeflicient of resistance in 38 ohm-cm
p-type and 350 ohm-cm n-type silicon of 0.8 per cent per °C at room temperature,
and has observed time constants for the cooling of the samples, similarly supported
by wire leads and of comparable size and geometry, of the order of 100 seconds.
The thermal time constant equals the heat capacity divided by the thermal dis-
sipation constant, or power input per unit temperature elevation. For the sample
here considered, 0.2 em square and 2 cm long, power input is 8.7 X 10~* watt for
106 photons per ecm2second absorbed, since 1 microwatt corresponds to (5.1 X 1016) A
photons per second of wavelength A, and effective A for the tungsten illumination
1s about 9 X 1075 cm. The dissipation constant for a temperature elevation of 1°C
with this power input in conjunction with the heat capacity of the sample of
0.14 joule per °C gives a thermal time constant of about 160 seconds. Haynes™
has estimated a temperature elevation of no more than a few degrees for the
more intense illuminations employed; heating of 3°C would decrease conductivity
by an amount comparable with the total photoconductivity of Fig. 4 of Ref. 54.

|| This diffusion length is 0.17 em. In measurements on n-type silicon, a silicon
filter and a constant-temperature enclosure were used.

9 Note that 7’ and 7w = 1/C.i (I — 7o — Po) are the times for electron
capture at the shallower level respectively for filled and empty deep traps.
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off by the shutter is two orders of magnitude smaller than the apparent
saturation value 2 X 10" em™ of A%, and thus appreciably smaller than
the initial value 6 X 10" em™ of An estimated from the initial con-
ductivity change.t Also, the apparent saturation value of A7 is propor-
tional to Ag, which is not the fairly well-defined saturation observed.}
Moreover, the value of C,; gives a decay constant for the straggle effect,
evaluated as vyn + v,m , equal to 157 second™ and the same two orders
of magnitude smaller than that observed. Inconsistencies largely similar
result from the assumption of two-level trapping with recombination
entirely in other centers.

No evidence has, indeed, been found that the observed trapping
effects result through metallic impurities or through lattice defects pro-
duced either by mechanical deformation or by bombardment with high-
energy electrons." """ Present indications are that the deep traps in
silicon are associated with the presence of oxygen as an impurity;**"™
but these traps, as well as the specific reactions instrumental in their
formation, have not yet been physically identified. Concentrations of the
traps and of certain donor centers due to oxygen”"® have been found to
be correlated.§ Both traps™ and donors™*®***" are much more numerous
in crystals grown (from quartz crucibles) with rotation of the seed than
in those grown without, may be considerably increased in concentration
by comparatively prolonged heating at 450°C, and may be largely re-
moved quite rapidly by heating at temperatures above 500°C.|| Concen-
trations of the shallower traps do not exhibit this dependence. The cor-
relation is qualitative in that donor concentration is the more dependent
on heating at 450°C; appreciable trap concentration may occur in an
untreated crystal grown with rotation, and may assume a value con-
siderably smaller than the donor concentration after heating at the lower
temperature.”*®q It should further be noted that, while these observa-
tions have been mostly confined to n-type silicon (because the donors
tend to convert p-type to n-type), observations concerning the deep
and shallow traps which oceur in p-type silicon indicate that a common
mechanism is operative.”®

t See Figs. 4 and 5 of Ref. 54.

1 The steady-state equations give initial concentrations An = 7/'(1 + 7op1/
7om1)Ag and A% = 7,,Ag. The apparent saturation value of A# is the sum of
these concentrations, since An is trapped rapidly, with time constant 7',

§ Determinations of oxygen content from infrared absorption at 9 microns in
combination with resistivity measurements on crystals heat treated at 450°C and
1000°C have shown that formation of these donors is associated with oxygen.®-8

|| There seems to be an indication that the trap concentration is increased by
water vapor but not by oxygen in the gaseous ambient.

9§ Deep traps originally present have been largely removed by heating only 5
seconds at 700°C and subsequently have been introduced in a concentration larger
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3.3 The Photomagnetoelectric Effect

The steady-state effect with trapping will be analyzed on the basis of
the general theory of Sections 2.1.1 and 2.1.2. For the PME field along
an infinite slab to the faces of which the applied magnetic field is parallel
and the y axis perpendicular, (28) and (32) give

E, = o '(I. — 0Ip,) = o ‘(I + 6eD'dAm/dy). (111)
The total short-circuit current per unit width of slab along the magnetic
field is accordingly given by

L= [ Ldy= —oef D’dA—m d, (112)

—Yo —Yo
and the field along the slab under the open-circuit condition is related to
I as previously derived.t To evaluate the integral in (112), Am is first
found from the continuity equation

d(D'dAm/dy)/dy — Am/1, = 0, (113)

which follows from (30) and (30) ; the drift term is either zero or of order
¢* for the short-circuit or open-circuit condition. Since, for the slab,
I,, = —1I,, = I, , boundary conditions are

£ — D'dAm/dy = sulAn = s Ap = smAm, ¥y = Y,

, (114)
D'dAm/dy = sndn = $pAp = Spelm, Y= —%o,

in which £ is the surface rate of generation of electron-hole pairs by
strongly absorbed radiation and the right-hand members give surface
recombination rates. For the linear small-signal case, the velocity func-
tions s, and s, (with second subseripts “1”” and 2” for the respective sur-
faces) are constants, with

= (1 = 1), = (1 —rp)sp (115)
the surface recombination velocity for Am.

The increase in conductance of the slab is given by

f (unln =+ pAp) dy = e(pn + pp) f (re/Tm)Am dy. (116)

—Yo

The second form follows from An/7, = Ap/7, = Am/7m = Rm, With

than the original one by heating 16 hours at 470°C.78 Tt is not yet known whether
prolonged heating at 1000°C, which prevents appreciable subsequent introduction
of donors at the lower temperatures?8.86.87 would similarly prevent the introdue-
tion of deep traps.

t See Ref. 11, Equation (39).
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Te = Aa/e(#n -+ ﬂp)Ag = (F"nTn + F'pr)/(l‘n + lJ'p) (117)

a lifetime function that determines the conductivity increase Ae for the
uniform volume generation rate Ag = &,, . For the linear small-signal
case, the lifetime functions are constants and

AG = e(pn + pp) 7D’ (dAm/dy) lg:ﬂ)yo
= e(pn + pp) (L — Smilm |y=yo — SmeAm lu=—yo)

follows by use of (113) and (114).

These results show how the theory previously given for the PME ef-
fect, without trapping" isreadily generalized to include trapping by writ-
ing equations in terms of Am and the diffusivity D’, lifetime function
n and surface recombination function s, , and employing suitably gen-
eralized AG. Experiment may determine Dy’, 7, and s, . In accordance
with (115) and the results of Section 2.1.2, each of these gives rise, as
determined by the trapping ratios, to corresponding quantities for elec-
trons and for holes.

In its dependence on trapping and recombination in centers of a single
type, the PME effect is generally nonlinear if deep traps in the minority-
carrier trapping range are involved. Then trap saturation occurs in the
small-signal range, as described in Section 3.1.2, and the lifetime may
be nonuniform: From the illuminated surface into the slab, it may de-
crease from a saturation value to a much smaller linear small-signal
value, a transition value at a given depth being sharply dependent on
light intensity.

The influence on the PME effect of trapping as such may be investi-
gated by assuming traps that may be nonrecombinative in conjunction
with recombination on the dark surface, or with recombination in the
volume of the idealized type discussed in Section 3.2.2. With the latter
procedure, the linear recombination term ( —wv,3An — vyAp) is included
in the continuity equation. For the linear small-signal case, 7., for the
traps is thus replaced by #m = [rm * 4 (1 — ) vas + (1 — 1) vps] -
Tor p-type material, »,3 is set equal to zero, and 75 = vng  is introduced.
Then, for nonrecombinative electron traps of the acceptor type, r, =
vind/ (Vi1 + 1), 7 = 0, D = [1 — 0™/ (o + Do) (9u* + mo) 1Dy
and 7, = (1 -+ vu/ven) 73 are obtained by use of the first of (31) and
(60). If the traps are of the donor type, then r, = 0, r, = —vime/vyn2,
Dy = [l 4+ 9t*/(no + po)]Do and 7,, = 73 are obtained. Essentially the
same diffusion-length lifetime associated with Dy, namely

Ty = [1 + mj*/(ng + po)]Ts = I<1T3, j = 1, 2, (119)

(118)



584 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960

results for both types of traps. Thus, minority-carrier trapping increases
the diffusion-length lifetime and hence decreases PME current. The ef-
fect is appreciable in cases for which the capture concentration 9t,;* is at
least comparable with the equilibrium concentration of majority car-
riers.t Similar analysis for nonrecombinative majority-carrier traps gives
a K, which is that of (119) modified by division by 1 4 91;*/n, for n-type
material or by 1 + 91;*/p, for p-type. Thus, majority-carrier trapping de-
creases the diffusion-length lifetime and increases PME current, but
this increase is only that for a K, no smaller than (1 + po/no)_l or
(1 4 no/po) ™", respectively.

Capture cross sections, concentrations and energy levels of traps may
be found from suitable PME and photoconductivity measurements at a
single temperature. Theory for trapping and recombination in traps of a
single type, which holds whatever the method be for determining diffu-
sion length Lo and lifetime 7, will be considered first; while the PME
method has certain advantages, any one of a number of other methods
may also be employed.f In view of the fundamental restriction of (53)
to which the four capture and release frequencies are subject, it will be
convenient to deal with the capture frequencies v and vy and the
capture concentration 91;* of (63) as independent parameters. To de-
termine these parameters, three quantities must be measured. Suppose,
for example, that from suitable linear small-signal measurements, 7o, 7.
and the lifetime 7, of (92) for decay of photoconductivity are known.
Solving (60) and (92) for 741 , 7, and 90 gives§

T = [(12 — 75) /(72 — 7a)]70,
T = [(12 — ) /(72 — 72)]70, (120)
W = (no + po) (2 — 7a)/(7n + 7 — 72),

in which 7, is defined by

7a = (Mot + Po75)/ (M0 + Po). (121)
Then, with

o = [(n + I-‘p)nl)'rc — up(n0 + po)rol/ (ka0 — wpPo),

(122)
7 = [pa(n0 + Do) 70 — (tn + wp)Poel/ (a0 — mPo),
1 It can be shown that, if different types of traps are present, the 37;* in (119)
is replaced by the sum of the respective capture concentrations.
i See, for example, van Roosbroeck and Buck.??
§ Note, from (60) and (92), that 7, is larger than r. , v, and 7., and smaller
than 7, + = .
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subject tot w.mo ¥ upPo, which are obtained by solving the equations
defining 7o and 7., (35) and (117), 7t , 74, and 9 * can befound from
experiment. It should be noted that (117) does not represent an advan-
tageous method for determining 7. ; an indirect method will be given
that obviates the necessity of knowing the intensity of absorbed radia-
tion.

An additional independent datum is required to determine C,;, Cp,
91 and 1y or . As (41), (42), (50) and (63) show, 7.0, 740 , O equi-
librium concentration of empty traps would serve.f Thus, a measure-
ment involving the saturation range is required in addition to those in
the linear small-signal range. It is, in fact, desirable that two such meas-
urements be made, for reasons that will be discussed. Suppose, for ex-
ample, that there is small-signal trap saturation in p-type material and
that the decay frequency Cp9l = 7,0 in the saturation range and 91, —
7y are known in addition to 7o and 7o . It follows then, from the first
equation of (63), that 91,;* is v, times a known constant:

N> =7(C;17tp1)f1,
Cor = 790 (9 — 70) " = (1 + 91/P0)Ci1 -

Eliminating norip + porwa from 72 of (92) by use of the third form for
70 of (65) results in an equation linear in 7 and 7., , after 94* has
been eliminated by use of (123). This linear equation and the one for
7o may be solved for 7:,; and 74 , and, with (50), this solution gives

o/ = (1 + nl/no)—l

( — no)/(po + no) - Cp1p0(7‘2 - To)
poT‘z/ (po + no) - To

(94 — 140) ™" o (124)

(po - no)/(po + no) — C;mo(ﬁ - 7'0)
T0 — noﬁ/(po + no) - C;l(Po -+ no)(n - To)To’

Cn = C;l - ‘rpoﬂ(f)h — ﬁo)—lﬁo/ml-

(123)

= Tpo

Cnl

I

With trapping, the PME current-conductance ratio does not deter-
mine 7o but depends also on 7, (which differs from 7, because of trapping),
and direct determination of 7. requires knowledge of light intensity.

t With the denominator u.no — uypo equal to zero, 7o = 7. follows, and the
numerators are also zero.

1 The neutrality condition would serve in cases of trapping by acceptors which
determine the (p-type) conductivity, for which Ao, = po — no holds; but 7, and
po — no that differ phenomenologlcally must generally be considered to ob-
tain.
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This circumstance need not, however, really vitiate what in the no-
trapping case is a primary motivation for dealing with this ratio: What
is determined independently of light intensity is a relationship between
7o and 7., and a further relationship between these lifetimes will serve
to determine both. For C’,; known, the relationship

C;l = (1m90*) " = (70 + 15 — 72)/(Po + M) (72 — )70 (125)

obtained from (120) is, with (122), linear in 7, and readily solved for
this lifetime.

The PME method of the high-recombination-velocity dark surface
is best employed, since it generally provides better accuracy for the con-
ductance change than does the thick-slab method which it otherwise
subsumes as a limiting case.f Optimum slab thickness is about one or
two diffusion lengths. For large dark-surface recombination velocity, the
small-signal results for no trappingf give, for the present case,

Isc = — 0€£L0(S1 + coth 2Yo)_1
= —0(pn + 1) (Lo/7c) (coth Yo)AG,
in which diffusion length Lo is (Dor0)?, Yo is yo/Lo and Sy is smilo/Dy';
note that AG now involves 7. as a factor. Thus, 7. is given by
_ 2Y, coth Y,
[9/(AG/Go)]

(126)

Te

To, (12%)

where
9/(AG/Gy) = —2yo(un + pp)Ise/8DAG (128)

is the dimensionless PME current-conductance ratio. In (127), =, enters
also through Y, , and, with (125), both 7y and 7, may be found. Note
that apparent lifetime 7, on the assumption of no trapping, obtained by
equating 9/(AG/Gs) to [2ye/ (Dor.)] coth [ye/ (Dor,)?], is related to o
and 7, by 7, tanh® [yo/ (Dor)?] = (/) tanh® ¥, , and equals 7.’/ 7o only
for the thick slab, for which the hyperbolic tangents are unity.

If the model that applies is that of nonrecombinative traps with re-
combination in other centers, then (119) gives the lifetime 7, upon which
the linear small-signal I, for minority-carrier trapping depends. For
AG, (116) holds for the linear small-signal case, for which 7./7, is
[(1 — r)me + (1 — 7))/ (e + w,). The solution for Am is readily
obtained by comparison with that for the corresponding no-trapping

1 See Ref. 11, Section 3.42.
I See Ref. 11, Equation (50).
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case.t With the factor Li’/Dy replaced by 7. , it is found that

Kgse(p, + pp)7m£(cosh 2V, — 1)

AG =
Si sinh 2Yy 4+ cosh 2V,

(129)

is the linear small-signal AG for large dark-surface recombination ve-
locity, in which Y, and S; are defined as above, but in terms of Ly =
(Dy7o)¥. The factor Ko = (7¢/7m) (Fm/73) I8 7c/7s in general for p-type
material, for which 7,, is 73/(1 — 7,); for n-type material, K¢ is 7./7, .
The expression that Ky multiplies also depends on trapping, since Ly
does. Equations (60) and (117) give, for p-type material,I

Ko =1+ (b+ 1)7'9%/n, (electron trapping)

—IN—loy %
K; = L+ (L +07) 9%/ (hole trapping). (130)

1+ 94*/po

For hole and electron trapping, respectively, in n-type material, ny and
Po in these equations are interchanged and b = u,/u, replaced by its
reciprocal.

With I, for this model given by the first form of (126) with the re-
defined Ly,

9/(AG/Gy) = (K./Kg) 2Y, coth Y, (131)

follows by use of (119), (128) and (129). Apparent lifetime 7, is ac-
cordingly given by 7, tanh® yo/(Dor,)! = (K¢'/K.)7s tanh® Yo, and
equals (K¢ /K.)r; for the thick slab. As trap concentration increases,
diffusion length increases and a slab of any given thickness becomes a
“thin” slab, for which Y, coth ¥y ~ 1; and 9/(AG/G,) approaches a
constant value that is independent of the thickness. For example, if
the half-thickness 7o is of order (Dors)}, then K, >> 1 or 91 3> ne + po
also gives small Y, . From the expressions for K, and (130) for Kg it is
found that 9(AG/G,) approaches 2(b + 1)ng/(no -+ po) for electron
trapping and 2(b 4+ 1)po/b(ne 4+ po) for hole trapping, regardless of
conductivity type. On the other hand, if the slab is so thick that y,* >
Dors91;*/(no + po) holds, then the condition 9t;* 3> no + po for large

T In Equation (44) of Ref. 11, Ap is replaced by Am; the D, that appears ex-
plicitly originates from the boundary conditions and is replaced by Dy’; and S,
and S are the velocities for Am multiplied by Lo/Dy’.

1 Note that K. and K¢ are equal (for electron or hole trapping) in p-type ma-
terial for which u.no = wppo holds
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trap concentration givest rs/r, equal to K,/K¢ or (b -+ 1)%ng/
(n0 + po)IT;* for electron trapping and (b + 1)*po/b*(no + po) for hole
trapping in p-type material, with similar results for n-type obtained as
in connection with (130).

With the aid of suitable saturation-range measurements, the cross
section, concentration and energy level of the nonrecombinative traps
are readily found. For traps of the acceptor type, Cni, 9 and n; or py
are to be determined, and these can easily be calculated from values from
experiment of 91; — 7y, saturation-range lifetime r;, lifetime 7, =
[Cai(no 4 ny)] " for the traps nearly full, and any one of 7o, 7., or 9,*.
These last three quantities are not independent; from (107), lifetime 7.,
for the traps nearly empty is [1 + (9 — #)/(ne + m)]m =
[1 4 91,*%/no)7s . Measurement of 9/(AG/Gy) serves to determine 7o : By
means of (119) and (130), K,/Ks may be written as (b -+ 1)nino 4
po — (po — bng)7s/7e] " for electron trapping in p-type material, or as
an analogous expression for hole trapping in n-type, so that (131) in-
volves only 7o as unknown.

3.4 Transport of Injected Carriers

3.4.1 The Linear Differential Equations

The general differential equations of Sections 2.1 and 2.2 are here
specialized to the linear small-signal case of trapping (and recombina-
tion) in centers of a single type, for which certain specific transport
problems will be considered. FFrom (6) through (9) and (46), the linear
continuity equation for centers of the acceptor type is

dAm/dt = D, div grad Ap + D, div grad An
—V,-grad Ap —¥,-grad An + Ag — R,

= dAp/dt = D, div grad Ap — D, div grad A%
— vo-grad Ap 4+ V,.-grad A% + Ag + vpAp + vipAd,

the first form being that which applies for the linear case in general. The
diffusivity and velocity with minority-carrier subseripts of those defined
by

T It has been shown by Amith¢2.63.9 that, for minority-carrier trapping in the
thick slab, 3/7, is proportional to ;72 for large 9; , if K is taken as unity. This
dependence obtains in the intermediate range in which 9;* is large compared
with minority-carrier concentration n, or po but small compared with p, or n, so
that the change in diffusion length may be neglected. For majority-carrier trap-
ping in general, r; and 7, are substantially equal in this range.

(132)
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?p = Do/ (1o + o), D.. = poDo/ (no + po), (133)
Vp

= nevo/ (N0 — Do), V. = —po/ (0 — o)

are, in sufficiently strongly extrinsic material, substantially the minority-
carrier diffusivity and velocity, as are Dy and v, ; while those with ma-
jority-carrier subseripts are comparatively small. The linear equation

aAﬁ/at = VQlAp + V22A'ﬁ» (134)

holds for interactions with the traps. Eliminating An from (132) and
(134), substituting from (133) and making use of (51), (62) and (63)
results in

8’ Ap/at — Dy, div grad(aAp/dt) + vo-grad(dAp/at) -+ v.dAp/at
— vpDo div grad Ap + »ve-grad Ap 4+ AAp (135)
= 0Ag/8t + (¥s — vip1) Oy,
with », defined by (83), and v, and », by
vp = [1 + 90*/(ne + po)l(mgu + vgp1) (136)
Vo = Vg1 T Vomr + (Wgmt — v0p1) 0¥/ (M0 — Po).

The frequency », will be referred to as the “straggle constant”. It is readily
shown that the linear differential equations that An and A% satisfy are
entirely similar to (135) except for suitable modifications of the right-
hand member; all the coneentrations satisfy the same equation if there
is no volume generation. For An it suffices to replace v;, where it occurs
explicitly by »:1 , while for A% only the generation term (i1 — i) Ag
oceurs, dAg/dt being absent. It is also readily shown that linear re-
combination in other centers can be taken into account by adding
vas -+ vp3 to the coeflicient », of dAn/0t and dAp/dt and (vs — vin1) vas +
(vs — i) vps to the coefficient A; of An and Ap.

3.4.2 Steady-State Transport; Reverse Drift

A simple case that yields qualitative information of interest is that
of injection into a filament in the steady state with applied field. For
this case,

voDod’ Ap/da’ — vudAp/de — MAp = 0 (137)

is to be solved for, say, Ap zero for distance z along the filament nega-
tively or positively infinite and continuous at the origin at which there



590 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1960

is carrier injection with zero injected total-current density. Equation
(137) is easily shown to be equivalent to (30) and (31) specialized for
no volume generation and acceptor centers only; vp and v, are (—vyn) =
vs — v times Dy /Dy and vo'/vo , respectively, and 7, , from (60), is
(vs — vep1)/Ar.

The solutions in the semi-infinite regions separated by the origin are

e"'" and ¢, where r; and r; are given by

(ﬁ) = %[VvUO/VDDn =+ [(Vva/VDDO)2 + 4A1/VDD()]%]

)
(Vva/ VDD0>
~ —Al/ o/,
as obtained from (137). The case of recombination without appreciable
trapping® presents no unfamiliar features; the approximation given,
which is that for A; small, as may result from one of the capture coeffi-
cients small, will accordingly be considered. The magnitude of r; is thus
large compared with that of r, . With the condition v, > 0, which may
be assumed without loss of generality, ¢* gives the familiar sharply
varying field-opposing solution to the left of the origin and €™° gives
the corresponding gradually varying field-aiding solution to the right,
provided v, is positive; then, r; and . are respectively positive and nega-
tive. But negative v, can occur, for which an anomalous behavior ob-
tains, the field-opposing and field-aiding solutions then being respectively
the gradually and sharply varying exponentials ¢ and ¢**. For this
case, in the limit of no diffusion, added carrier concentration appears
only in the direction opposite to that of the ambipolar drift velocity,
that is, opposite to the direction of drift normally determined by con-
ductivity type.

This “reverse drift” associated with trapping may be understood in
terms of properties of the current density AI of added carriers. From
(19), added carriers drift in the direction of the total current density,
or the contribution to AI from drift has the sign of I if neAp — pAn
or Ap/An — po/ne is positive; that is, if injection results in proportion-
ately more holes than electrons than is the case at thermal equilibrium.
This behavior is, of course, that which normally occurs in n-type mate-
rial; with no trapping, Ap/An equals unity and added carriers drift
with or opposite to I according to whether the semiconductor is n-type
or p-type, with no drift in intrinsic material.""* Thus, the normal be-
havior requires the conditions that Ap/An — po/no be positive in n-type
and negative in p-type. It is easily shown, by writing these conditions
by means of (60) for the steady-state value (1 — r,)”" of Ap/An, that

(138)
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both are tantamount in the steady state to the single condition, », > 0.
This condition clearly always holds for the majority-carrier trapping
range, while reverse drift results for sufficient minority-carrier trapping
in not too strongly extrinsic material. From (136), », > 0 gives

Po — Mo > (Vgnl - Vgpl)ml*/<Vgnl + Vﬂp’-) (139)

for p-type material, and a similar inequality for n-type is obtainable by
changing the sign of each side. Equating the two sides gives the condi-
tion for no drift, which, for no trapping, holds for intrinsic material.
From (54), the right-hand side of (139) may be written as
(no — n™)9u*/ (no + m*) = (p* — po)I*/(p* + o).

It reduces to 9u,* for electron trapping without recombination, since
then v, and n* are zero. For this case, since 90* equals novi/vgn from
(63), reverse drift obtains if 7no/po in p-type material exceeds 7./
(74m + 7gu1), the fraction of the time electrons are free. A similar result
holds for hole trapping in n-type material.

3.4.3 Drift of an Injected Pulse

The differential equation for drift with negligible diffusion and no
volume generation in one cartesian dimension with trapping by centers
of a single type is

8*Ap/dt* + v Ap/dxdt + v,dAP/dt + vpdAp/dx + AAp = 0, (140)

from (135). For a pulse of carriers injected into a doubly infinite fila-
ment, a suitable technique of solution is that of the bilateral or two-
sided Laplace transform® ™ with respect to the distance variable, for

which the notations

(X, U)} = f(X,U) (141)

F(s,U) = fw e\, U) dn

are here employed. Dimensionless independent variables
X =z/L, U=i/r (142)

are introduced, and with distance and time units given by

L = v,
r= (147
V2 = 4[1"71(1'8 - Vv) — A (143}

= 4ni2(1’tnl e th1)2(p0 - no)vz

A + vp)(Po — n0)/(ven — vep)IUF — 1],
T The second form for »2 follows by use of (52), (62) and (63).
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subject to the restrictions »* > 0 and ne # po , the reduced equation
8*Ap/aU* + 8°Ap/aXaU + raAp/oU

+ 3 + ©)98p/oX + 35" — ¥ F 1)ap = 0
results, where x and { are the parameters

(144)

k= (20, — vo)7
[Von1 + vt + (mo + po)(le - thl)/(n() - po)]T; (145>
i‘ VsT = (le + Vgni -+ Vip1 + Vgpl)’f > 0.
Coefficient unity for the second term of (144) results from the definition
of L. The double sign in the last term of the equation results from the
necessity of defining a real (and positive) 7, the upper and lower signs
applying respectively for positive and negative »".
Laplace transformation of (144) gives

dAp/dU* + (s + ¢)dAp/dU

+BE 4 s+ 1 — ¥ F Diap = 0.
As has governed the choices of L and 7, the roots (—N;) and (—N) of
the associated quadratic reduce to

(CN) = sl =P e 1F = G+ 001, (14)

Il

(146)

in which the double sign inside the radical here and in what follows
relates only to the sign of »*. Equation (146) holds for each of the trans-
formed concentrations, as does (140) for each of the original ones. Gen-
eral solutions are thus

2
Ap = Z Aje_NjU7
B (148)

2
AT = 2 A e i,
From these solutions in conjunction with the Laplace transform of
dAn/9U obtained from (134), it is found that the r,; are given by
Tay = —va/(ve2 + N;/7)
= (Yo — v4p1)/ (Vo1 + o1 + vpp — Nj/7),  § = 12

With »; replaced by N /7, these are formally the same as the trapping
ratios for the decay of photoconductivity given in the first line of (81).F

(149)

T Other forms for the r.; obtainable through Laplace transformation of dAp/dt
from (132) written for one dimension and no diffusion are not similarly related to
the forms of the second line of (81), though, for s = 0, the N;/7 reduce to the »;
and all r,; to those for photoconductivity.
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The A; are easily found in terms of the r.; and transforms Ap, and A,
of the initial distributions. For no carriers trapped initially, the case

that will be considered, (147) to (149) give

<A1/A_p1) =1{1F (s — 8&)/l(s — «)* % 11}, (150)

Ay/Ap,
in which the parameter £ is defined by
= (vu — va)T = (vs — 2vip1) 7. (151)

Corresponding coefficients for the solution for A% are (1 — 7.)4, and
(1 — rp2)ds, and these are similar to the ones for Ap if £ in (150) is
replaced by

n= (v — v — 2v1)7 = (¥ — 2vtm) 7. (152)

Solutions for an injected gaussian delta pulse are advantageously derived
as limiting forms as a approaches zero of solutions for the gaussian initial
distribution whose transform is given by

Ap/(®/L) = R{iata e ¥ = & (153)

for @ carrier pairs injected per unit area of cross section. From (147)
through (153), Ap for this initial gaussian distribution is given by

AP = Ap/(®/L) = ¢ "M (cosh {3UI(s — x)* £ 11} — (s — )
Qs — ©)? = 117F sinh {2U[(s — «)* == 11}), (154)

from which AN = An/(®/L) is obtained by replacing £ by 7.

Certain inverse Laplace transforms that are needed are derived in
Appendix A, and Appendix B includes some details of their use in cal-
culation of the solutions from (154). Solutions for the initial delta pulse
at the origin are found to be

AP = Ap/(®/L) = le 3@
'(‘“U - X) +§{<s — x) ﬁ[\/mf_-fm

MR (i o) P S ~
AN = Ad/(®/L) = (¢t — n)[e* 67
'QWWWTEHWW—XE

for AN = An/(®/L), £ in AP is replaced by 7. The modified Bessel
functions I, and I; apply for the upper sign in (144) and (146), that is,
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for » real, while the Bessel functions Jo and J; apply for » imaginary.
The term in AP and AN with the delta function (U — X) =
vord(vst — z) represents a contribution that drifts at velocity vy . The
continuous distributions are confined to the interval 0 = z = g,
1[X(U — X)] = 1[z(vet — z)] being the step function that is respec-
tively zero and unity for negative and positive values of its argument.
Note that x and

(& + &) = v,
F(E—x) = (1— ’ﬂo/po)_l(Vtm — V)T,

156
%('fl - K) = (170/710 - 1)—1(th1 - th1)7‘, ( )

3(E — 1) = (Vim — thl)"'

are not restricted as to sign. For numerical computation of solutions
and further analytical study, it is well to transform (155) by eliminating
X in accordance with

X = Usin® 16 = 1U(1 — cos 0), U >0, (157)

which gives

Ires

—iU [¢] —1
AP = WO e — o) (x — ©O)

3 —® §Z (AT sin 0) fﬁ‘l (30U sin 0) tan 10
1[6(r — 0)]} (158)

Y, —3 K cos 1
AR = 3 — e oy T

P
T (U sin 0)

1[e(r — O)].

For AN, £ in AP is replaced by 5. The use of 6 as a variable implies
the step function of (155), while the step function of (158) simply re-
stricts O as defined by (157) to the interval 0 = 6 < .

Interpretation in descriptive terms of cases of imaginary » requires fur-
ther analysis. Illustrative cases of minority-carrier trapping in strongly
extrinsic material, for which » is real and whose interpretation is com-
paratively straightforward, will be presented first. For strongly extrinsic
material, since the parameter £ or n for minority carriers is substantially
equal to k, the minority-carrier concentration does not include the term
with the Bessel function 7, . If, also, the trapping is nonrecombinative,
then ¢ = (v, + »)rand x = (v, — »,)7 hold with »* = 4v,5,, where
v and v, are v,y Or vy and vy Or v, , respectively, and refer to the
minority carrier. Figs. 1 and 2 show distributions of mobile minority
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Fig. 1 — Continuous concentration distributions at different times of mobile
minority carriers from an injected delta pulse for drift with trapping. A strongly
extrinsic semiconductor and ¢ = 1, x = 0 are assumed. For nonrecombinative
trapping, these assumptions imply trapping time 7, and release time 7, both equal
to twice the time unit 7. The pulse at the limit of the drift range is attenuated by
the factor ¢ #¢™9U = iU,

carriers for this case. For Fig. 1, ¢ is unity and « zero, as for trapping
and release times equal,{ and the continuous distributions are shown
for different times after injection at the origin of the neutral delta pulse.
These distributions are led by a delta pulse, which drifts at the ambi-
polar velocity v, . This remnant of the initial pulse is composed of un-
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Fig. 2 — Continuous concentration distributions of mobile minority carriers
from an injected delta pulse, for drift with trapping, all at time 107 and for re-
lease time respectively 4, 1 and { times trapping time. A strongly extrinsic semi-
conductor and nonrecombinative trapping are assumed; ¢ equals %, 1, %; « equals
—4,0,%; requals 7¢ , 37¢ = 374, 74, respectively.

t Fig. 1 applies more generally: The values of the parameters do not rule out
recombination, but imply merely » = v; = 2vi1 = 2[(vgu1/vin1) Fem? — vim?) ] for
minority electrons and similar relations for minority holes.
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trapped carriers and is rapidly attenuated by the exponential factor,
which is ¢V for the particular values of the parameters. The abrupt
fronts of the distributions for the shorter times result from most carriers
having been trapped only slightly — at least once, but not much more.
A relative maximumt appears in the case of the figure for times greater
than 2#r. For the longer times, the abrupt front disappears as a result
of multiple trapping. Furthermore, there is a reduction of apparent
mobility: The maximum ultimately drifts at veloeity vy, the fraction
of vy equal to the fraction of the time the carriers are free; this equality
will be shown to apply for nonrecombinative minority-carrier trapping
in strongly extrinsic material.’” This limiting behavior sets in rather
slowly, as the distribution for ¢ = 207 shows; its maximum occurs some-
what beyond the middle of the drift range.

Tig. 2 shows distributions all at time ¢ = 107 for release time respec-
tively 4, 1 and % times trapping time. The increasing areas under these
distributions are associated with decreasing fractions of carriers trapped;
it will be shown that, for nonrccombinative trapping, this trapped frac-
tion rapidly approaches the fraction of the time carriers are trapped.
The distributions have maxima appreciably beyond the respective values
for large U of one-fifth, one-half and four-fifths of the drift range, and
the distribution for the comparatively small release time still exhibits
a high abrupt front at the time 10+.

The parameters on which the solutions depend have certain general
properties. From the first forms for « and ¢ of (145) and the definitions
of 7 and »* of (143),

= (R x1 44072 (F =D} (159)

follows. The inequality sign is associated with recombination, A; being
zero for nonrecombinative trapping. The parameter ¢ is real and never
negative. For » imaginary, so that the lower sign applies, a similar calcu-
lation gives

=14+ Gl —4A)7 21, ¥ <O0; (160)

the condition »,, — 4A; = 0 implies real decay constants and holds from
(85). For » real, « is not restricted. For example, for nonrecombinative
trapping in strongly extrinsic material « is 3[(v,/ )t — (ve/ Vg)%] and
can be zero (as for Fig. 1) or have any positive or negative value. Thus,

¢ = 1 holds for v real and ¢ = 0 holds for » imaginary. With (151) and

T Ixpressions for dAN/dX = (3U sin ©)7'dAN/dO from the Maclaurin’s ex-
pansions for the modified Bessel functions reduce, for ¢ = 1 and x = n = 0, to e~V
andi(l —1U?) ¢*V at the origin and at the end of the drift range.
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(152), which define £ and », it is readily seen that £ ~ 5 ~ x holds under
the condition for the validity in general of the lifetime function 7, ~ 7,
of (75); and that £ or » is approximately « for ng >> po or py >> o , respec-
tively. These properties are consistent with the easily verified relation-
ship,

noE — Pon = (no - po)K. (161)
Also, for nonrecombinative trapping, the parameters do not depend on
the capture coefficient and ¢ = (¢ & 1) equals £ or n according to
whether electrons or holes are trapped.

Qualitative and physical distinctions are related principally to the
signs of »* and k. The general condition for real » is

(31 + vep) (Po — M0)/ (Vo1 — i) > ¥, (162)

from (143), and » is imaginary if the inequality is reversed. From (54),
the left-hand side may be written as (po + 7:.%) (po — 10)/(po — m*) =
(pr™ + 1) (po — no)/(p™ — mo). The condition « > 0 is, for p-type
material,

Do — Ny > (th1 - thl) (po + nO)/(Vgnl + Vgpl), (163)

from the first equation of (145); changing signs of both sides or reversing
the inequality gives x > 0 for n-type or ¥ < 0 for p-type. From (54)
and (63), the right-hand side may be written as

(1 + no/po) (po — ma*)9u,* _ (1 + po/no) (pr* — no)9*
no + m* pi* + po '

If recombinative trapping is excluded, then » is evidently real in the
limit of strongly extrinsic material. Note, for example, that as p, in-
creases indefinitely, v, approaches zero while »,,; approaches C,,91 =
7.0 |, S0 that » approaches ZCnl(nml)%. Also, since v,,1 increases indefi-
nitely and vy, approaches C,m;, « becomes positively infinite. If vy,
and v, are equal for given po, then v, > v holds for all larger po .
Suppose first that these capture frequencies are equal for some p, of the
n-type material. Then, as p, decreases from a large value, « does like-
wise. With v > v, (162) and (163) show that « decreases to zero
and becomes negative for » still real. Further decrease of p, results in «
becoming negatively infinite, since » approaches zero as po — no ap-
proaches (v — ve1)90*/(vi + vem), following which « increases to
—1 with » imaginary. While » is not defined for intrinsic material, the
equations show that, in the approach to the intrinsie limit, » is imaginary
and « approaches =1, the sign being that of (vi1 — wipm)/ (0 — o).
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It is evident from (162) and (163) that, for n-type material and »,,; >
vi;m — that is, in the majority-carrier trapping range — » is imaginary
and « positive, hence greater than unity. With increasing no, v and
v, ultimately approach equality, » approaches zero and x becomes
positively infinite. For p-type material and v;,; > vy, or the minority-
carrier capture range, it is likewise evident that positive « implies real
v and that imaginary v implies « < —1. This latter case includes reverse
drift. From a result of Section 2.2.1.2, since »,u equals v,y in n-type
material, »,,1 equals »,,; in p-type. Decrease of po from the value for
Vot = Vgp1 BIVES vy > vy, and, from (139), as po approaches no , neg-
ative », occurs. In the limit of negatively infinite «, for which » is zero
(with veu 2 vipr), v is in general positive. Thus, the reverse-drift range
is in general the portion of the minority-carrier capture range of imag-
inary » that results if a certain infinite range of large negative values of
¢ 18 excluded. For nonrecombinative trapping, (139) and (162) both
yield | po — no | < 9u*, so that the two ranges coincide.

If the capture frequencies are equal for some po of the p-type material,
the initial decrease of x as p, decreases from a large value still obtains;
but the po for equal capture frequencies is approached for » still real
and « positive, and x again becomes positively infinite as v approaches
zero. Imaginary » results with further decrease of o so that v > vim
results, « decreasing from large positive values to unity and then from
—1 to large negative values, the majority-carrier trapping and minority-
carrier capture ranges, respectively, being realized (for hole-capture
frequency the larger) in p- and n-type material. It is easily shown, as
before, that the reverse-drift range applies, with recombination, for a
finite range of negative values of « less than —1 in this minority-carrier
capture range of imaginary ». Increase of n, beyond the value for nega-
tively infinite « given (as before) by no — po = (vip1 — ven1)/(Vipt + vin1)
results in real », with which « ranges from large negative values and be-
comes positively infinite as the material becomes strongly n-type.

For nonrecombinative trapping, « for real » and strongly extrinsic
material is, as has been noted, a positive or negative constant. For elec-
tron trapping, for example, » is 20 (n90)} and « is i[(ny/90)} —
(90:/n1)*] in the limit of large po ; « is positively infinite in the limit of large
Ny . As po decreases in the minority-carrier capture range of real », k be-
comes negatively infinite as po — mo approaches 91,*. With further de-
crease of pg, x increases to —1 in the minority-carrier capture range of
imaginary », which (for nonrecombinative trapping) is the reverse-drift
range. In the majority-carrier trapping range in general, » is imaginary
and « greater than unity.
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Maxima for large U of each of the continuous distributions for cases
of real » occur substantially together. From (158), the 0 for a maximum
is found to be given byf tan © = —« ', which gives] X/U = z/vot =
11 + /(& + 1)}. For nonrecombinatiYe traps, real » implies minority-
carrier trapping with positive », and (¥* 4 1)} equal to ¢. From (63),
(136) and (145), X/U accordingly reduces to »,/(v. + »,), which is
[t — Moteni/ (Do — M)/ (Tem1 + 7401) for electron trapping or [, —
Porgpt/ (Mo — Po)1/ (Tip 4 74pm) for hole trapping. Hence X/ U, the factor
by which the apparent mobility is smaller than the magnitude of the
ambipolar pseudomobility,” is in general less than 7./(7; 4+ r,), the
fraction of the time minority carriers are free; but X/U is substantially
equal to this fraction®” under the condition | no — po | > 91*, obtained
by use of (63). As | no — po | approaches 91,* in the nonrecombinative
case, X/U approaches zero. Recombination reduces the distance for a
maximum at given time, and thus reduces the apparent mobility, since,
for nonrecombinative traps with recombination of lifetime r; in other
centers, the distribution of the mobile carriers subject to trapping is
simply that for no recombination multiplied by the decay factor ¢™*/"°".
This factor applies because the carriers which arrive at x at whatever
time have drifted in the conduction band for time /v, .

The decay constant for the straggle effect’™ is that of the limiting de-
cay of the tail of the distribution at fixed z after the maximum has passed.
It is given by the exponent in (158), and is accordingly », . This result
follows from (156), since, from (157), x < vt implies cos © ~ 1. Real
v and hence positive », obtain in this connection. By use of (63), it is
easily shown that », for strongly extrinsic material is substantially v,.; +
vyp1 Plus either vy, , for ng >> po, OF vy , for po > ne .

Integrals of the solutions of (158) over the drift range are evaluated
in Appendix C. These integrals give

vot U
Fps@‘lf Apdx=f AP dX
0 0

= ¢ ¥[e(x" 2 1) sinh 2(«° & 1)*U + cosh 3(x° = 1)U, (164)

A

vol U .
P, = @“f A dz = f AN dX
0 0

=¥ (g — ) £ 1) Fsinh 2(* £ 1)U

t Use is made of the approximations Io(z) ~ I.(2) ~ (272)7%e* for |2z| large.
The distributions for large U are substantially proportional and gaussian in
shape. For nonrecombinative minority-carrier trapping, they are as if the excess
majority carriers were subject only to drift and diffusion with diffusivity veL/4¢3.

1 Note that, for the maximum, © — /2 has the sign of k,.s0 that cos 6 has the
opposite sign.
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as mobile and trapped fractions at given time of carriers initially in-
jected. For

vt
mzvﬁ Mde = F, — Iy,
0

£in F, is replaced by 5. Equation (159) serves to verify that, with re-
combination, I, , , and F,, all approach zero as U increases indefinitely.
Tor nonrecombinative electron trapping, £ = ¢ = (¥ & 1)% gives F', = 1,
as may be expected, and F, = 3(1 — 7/¢) (1 — ¢7*Y). Thus, from (145)
and (152), the trapped fraction approaches 74/ (71 + 75m), the frac-
tion of the time electrons are trapped, with time constant 7,174/
(7tn1 + Tym); the mobile fraction approaches the fraction of the time
electrons are free. For hole trapping, entirely similar results apply. All
of these results evidently apply for » imaginary as well as real.

In Tig. 3 are shown continuous minority-carrier distributions for
imaginary », in particular, for nonrecombinative trapping of minority
carriers in the reverse-drift range and also of majority carriers. In the
former case, an attenuated delta pulse of untrapped mobile carriers,
which drifts at velocity v, , leads a continuous distribution of minority
carriers that crowds towards the origin as its maximum excursions
above and below the axis both increase with time. The distribution of
added minority carriers is negative over part of the drift range after a
certain time.{ In accordance with (164), it approaches a net positive
delta pulse at the origin of strength ®, the initial strength, times the
free-time fraction. In the case of majority-carrier trapping, the pulse of
untrapped carriers increases in strength as it drifts at velocity v, . This
augmentation is appreciable with appreciable equilibrium minority-
carrier concentration; it is negligible in strongly extrinsic material. The
pulse leads a largely or entirely negative continuous distribution of mi-
nority carriers, which crowds towards the pulse as its excursion below
the axis increases with time.i This distribution approaches a negative
delta pulse, which, with the minority