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This article describes the results of a data communication experiment 
designed to investigate the effectiveness of error detection and retransmission 
in providing high-accuracy data transmission over the switched telephone 
network. Data were encoded into a Bose-Chaudhuri (31,21) error-detecting 
code and transmitted at 2000 bits per second by aDA T A -PHONE data 
set 201A over a variety of dialed long-distance connections. Transmitted 
and received data were compared to obtain error data which were analyzed 
to obtain an estimate of the error performance of the data set and the effec­
tiveness of the code. The results of this analysis are presented. 

During the test approximately 6.36 X 107 31-bit code words or 1.97 X 
109 b'l·ts were transmitted. Of these, 63,002 bits appearing in 29,731 different 
code words were received incorrectly. Thus, the over-all bit error rate was 
3.19 X 10-5 and the word error rate 4.67 X 10-4• The decoder was suc­
cessful in detecting all but two of the erroneous code words, resulting in an 
average undetected word error rate of 3.14 X 10-8 or an average of 9.85 X 
108 bits between undetected word errors. These results demonstrated that very 
low undetected error rates can be obtained in practice using an error detection 
and retransmission system of modest complexity. 

I. INTRODUCTION 

lVluch attention has been focused recently on the problem of trans­
mitting digital data over the switched telephone network with a high 
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degree of accuracy. Selection and evaluation of error control schemes 
by which the desired high accuracy can be achieved require detailed 
information about the digital error statistics. Because of the complexity 
of the switched telephone network, the only feasible way to obtain this 
information is through the analysis of experimental data. 

A method of error control which offers promise for use with telephone 
facilities is error detection and retransmission. An experiment has been 
performed to explore the feasibility of this type of error control and to 
obtain useful statistical information about the switched telephone net­
work. In this experiment, a DATA-PHONE data set 201A,t which is a 
4-phase unit designed for synchronous operation at 2000 bits per second, 
was used to transmit data over a variety of connections in the direct 
distance dialing network. The transmitted data were encoded into the 
Bose-Chaudhuri2 (31,21) code described in Appendix A, which had been 
selected on the basis of a computer study. Transmitted and received 
data were compared to obtain error data from which digital error sta­
tistics were derived. 

The over-all results of the test are shown in Table 1. This indicates 
that the decoder was successful in detecting all but two of the 29,731 
words received containing transmission errors. These results demon­
strate the feasibility of providing high accuracy data transmission over 
the direct distance dialing network by using an error detection and 
retransmission system of modest complexity. A description of the error 
control equipment is given in Appendix A. 

A description of the test and an analysis of the numerical error data 
are presented in the remainder of the article. 

II. DESCRIPTION OF THE TEST 

The test was conducted between lVlarch 13 and August 31, 1962, 
during which time approximately 1.97 X 109 bits were transmitted. A 
portable transmitter was used to transmit data from various locations 
throughout the Continental United States to a stationary receiver 
located at Murray Hill, New Jersey from March 13, 1962 untillVlay 1, 
1962, and then at Holmdel, New Jersey for the remainder of the test. 
All performance measurements were made at the receiving terminal. 

At both Murray Hill and Holmdel three foreign exchange lines were 
installed, one each to a No.5 crossbar, No.1 crossbar, and step-by-step 
central office. The characteristics of these lines are outlined in Table II. 
Dialed connections were originated from the receiving terminal, which 
was so arranged that it could be connected to any of the three lines. At 
both receiving stations calls were distributed equally, as nearly as pos-
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TABLE 1-EXPEHlMEN'l'AL RESULTS OF DA'l'A COlVIlVIUNICA'l'ION 

OVEH, THE SWITCHED TELEPHONE NETWORK 

Number of transmitter locations 
Number of calls 
N umber of hours of transmission 

Total bits transmitted 
Information bits transmitted 
Words transmitted 

Number of bits in error (total) 
Number of words in error 
N umber of undetected word errors 

Bit error rate 
\V ord error rate 
Undetected word error rate 
Factor of improvement (word) 
Average bits between undetected word errors 

28 
.548 
273 

1.97 X 109 

1.33 X 10 9 

G.3G X 107 

G.30 X 1O! 
2.97 X 104 

2 

3.19 X 10- 5 

4.G7 X 10-4 

3.14 X lO-B 

1.49 X 104 

9.85 X lOB 

sible, among the three foreign exchange lines. The duration of each call 
was approximately 30 minutes. 

The transmitting terminal was moved to the locations listed in Table 
III. These were selected on the basis of their distance from the receiving 
terminal, types of connecting facilities and type of end switching office. 
Since one objective of the experiment was to collect and to analyze data 
transmitted over typical connections, the locations selected were in or 
near large metropolitan areas where data traffic is likely to be heaviest. 

A pseudo-random sequence generator was used to produce a repetitive 
pattern of 511 distinct 31-bit code words. These were transmitted serially 
at 1000 bauds or 2000 bits per second by a DATA-PHONE data set 
201A. Received data were demodulated with another data set 201A 
and then compared with the output of a synchronized, duplicate se­
quence generator. The output of the receiver and system performance 
information were recorded on magnetic tape. Error data also were 
recorded by means of electronic event counters. A test log was kept which 

TABLE II - RECEIVING END TEST LINES 

Recvr. Type of End Location of CO Line No. Line Loss to Type of Line 
Location Office CO to co 

---

MH 1f,5XB New Providence, N. J. 4G4111G 3.4 db H-88 
MH 1f,lXB Plainfield, N. J. PLG8G84 9.8 db H-88 
MH SXS Carteret, N. J. 5414054 13 db H-88 
HO 1f,5XB Holmdel, N .. J. 9-tG4G74 5.3 db H-88 
HO 1f,lXB Hahway, N. J. 3814270 10.4 db H-88 & 

N carrier 
HO SXS lVIonmouth Junction, DA9G550 11 db H-88 & 

N.J. N carrier 
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TABLE III -LocA'rIONs OF THANSMI'l'TING TEHMINALS 

Trans-
Transmitter Location CO Date Office Type No. of mission Total Bits 

City Prefix Calls Time Transmitted 
(Hours) 

Hahway, N. J. FU8 3/15/G2 fl,lXBAR 11 5.5 3.9G X 107 

Passaic, N. J. PH8 3/13/G2 fl,lXBAR 9 4.G2 3.32 X 107 

Paters:m, N. J. MU3 3/22/G2 fl,lXBAR 7 3.22 2.32 X 107 

Ridgewood, N. J. 444 3/27/G2 fl,5XBAR 10 4.88 3.52 X 107 

Manhattan (N.Y.C.), 349 4/18/G2 fl,lXBAR 10 4.83 3.48 X 107 

N.Y. 
Manhattan (N.Y.C.), 

N. Y. 
HA5 4/23/G2 fl,lXBAR 13 6.5 4.68 X 107 

Manhattan (N.Y.C.), 
N. Y. 

LT1 4/20/G2 fl,5XBAR 12 G.17 4.44 X 107 

Manhattan (N.Y.C.), 
N. Y. 

RI9 5/11/62 fl,lXBAR 14 7 5.04 X 107 

Manhattan (N.Y.C.), UN1 5/1O/G2 fl,5XBAR 9 4.45 3.20 X 107 

N. Y. 
Brooklyn, N. Y. JA2 5/lG/G2 fl,lXBAR 12 6 4.32 X 107 

Queens, N. Y. 445 5/18/62 fl,5XBAR 12 G 4.32 X 107 

Freeport, N. Y. FR9 5/22/62 fl,5XBAR 13 6.5 4.G8 X 107 

Central Islip, N. Y. CE4 5/21/G2 SXS 11 5.G7 4.08 X 107 

Trenton, N. J. LY9 3/29/G2 SXS 9 4.53 3.27 X 107 

Camden, N. J. WO! 4/2/62 fl,lXBAR 9 4.G3 3.33 X 107 

Manahawkin, N. J. LY7 3/20/G2 SXS 10 5.02 3.61 X 107 

Atlantic City, N. J. 823 4/G/G2 SXS 11 5.64 4.06 X 107 

Bridgeton, N. J. GL1 4/4/62 fl,5XBAR 7 3.G8 2.G5 X 107 

Hartford, Conn. 247 G/25/G2 SXS 10 4.97 3.58 X 107 

Washington, D. C. 232 7/20/G2 fl,lXBAH 14 G.75 4.8G X 107 

Washington, D. C. 333 7/18/G2 fl,5XBAR 14 7.0 5.04 X 107 

Washington, D. C. 392 7/19/G2 SXS 12 6.08 4.38 X 107 

Washington, D. C. 393 7/17/G2 fl,lXBAR 12 G.O 4.32 X 107 

Newton, Mass. 244 G/27/62 fl,lXBAR 11 5.G5 4.07 X 107 

Waltham, Mass. 899 G/2G/62 fl,5XBAR 8 3.95 2.84 X 107 

Quincy, Mass. 773 6/28/G2 fl,lXBAR 9 4.G3 3.33 X 107 

South Boston, Mass. 2G8 G/29/G2 fl,5XBAR 14 7 5.04 X 107 

Atlanta, Ga. 231 8/29/62 
to 8/30/G2 fl,5XBAR 32 1G 11.52 X 107 

Atlanta, Ga. 237 8/28/G2 SXS 11 5.23 3.76 X 107 

Atlanta, Ga. 457 8/31/62 SXS 13 6.42 4.G2 X 107 

Atlanta, Ga. 521 8/27/62 fl,5XBAR 13 6.5 4.G8 X 107 

Atlanta, Ga. 525 8/28/62 SXS 13 G.5 4.68 X 107 

Hammond, Ind. 844 8/24/G2 fl,5XBAR 9 4.5 3.24 X 107 

Libertyville, Ill. G8G 8/21/G2 fl,5XBAR 8 4 2.88 X 107 

Lafayette, Ill. 247 8/23/62 fl,lXBAR 12 6 4.32 X 107 

Wabash, Ill. 431 8/22/62 fl,5XBAR 12 G 4.32 X 107 

Superior, Ill. 467 8/20/62 fl,lXBAR 7 3.25 2.35 X 107 

Los Angeles, Calif. 234 8/7/62 
to 8/8/62 SXS 22 10.33 7.44 X 107 

Los Angeles, Calif. 273 8/6/G2 fl,5XBAR 12 G 4.32 X 107 

Los Angeles, Calif. 385 8/8/62 SXS 10 4.91 3.54 X 107 

Los Angeles, Calif. 620 8/9/62 fl,5XBAR 22 11.57 8.33 X 107 

Los Angeles, Calif. G55 8/10/62 fI,.5XBAR G 3.0G 2.21 X 107 

San Francisco, Calif. 399 8/16/62 SXS 13 G.58 4.74 X 107 

San Francisco, Calif. 981 8/17/62 fl,5XBAH 2 1 0.72 X 107 

San Francisco, Calif. YU1 8/14/62 fl,5XBAR 11 5.38 3.87 X 107 

8an Francisco, Calif. 982 8/lG/G2 fl,lXBAR 12 5.(i7 4.08 X 107 

San Francisco, Calif. 982 8/15/G2 fl,lXBAR 4 2.0G 1.48 X 107 

San Francisco, Calif. 982 8/13/G2 fl,lXBAR 11 5.65 4.07 X 107 
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summarized the results of each call. Included were descriptions of any 
unusual transmission or operational conditions which caused the test 
to be interrupted. Appendix A contains a description of the test system. 
The complete test procedure is given in Appendix B. 

During the test 548 calls were completed, each containing approxi­
mately 3.6 X 106 bits. The magnetic tape data were reduced and ana­
lyzed for the 412 completed calls which contained errors. The other 136 
completed calls were error free. Fifty-nine attempted calls were not 
completed for reasons which are summarized in Appendix C. 

III. ERROR RATES 

During the course of the test approximately 1.97 X 109 bits were 
transmitted. Of these, 63,002 bits were received incorrectly, giving an 
over-all bit error rate of 3.19 X 10-5• As has been mentioned earlier, 
data were transmitted in 31-bit code words. Of the 6.36 X 107 code 
words transmitted, 29,731 were found to contain one or more bit errors. 
This gives an over-all word error rate of 4.67 X 10-4• The decoder was 
successful in detecting all but two of the erroneous code words, thus 
yielding an average undetected word error rate of 3.14 X 10-8

• This is 
equivalent to an average of 9.85 X 108 bits or 136 hours of transmission 
between undetected word errors. 

The over-all distribution of bit error rates per call is plotted in Fig. 1. 
Also plotted in this figure are the corresponding distributions observed 
by Alexander, Gryb, and Nasta for transmission rates of 600 bits per 
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600 and 1200 bits/sec. 
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second and 1200 bits per second in a different test. The distributions 
for the Alexander, Gryb, and Nast 1200 bits per second data and the 
201Adata (2000 bits per second) show a remarkable similarity in view 
of the fact that the two tests employed different types of modulators 
operating at different speeds . 

. A question of major interest is "What factors have the greatest effect 
on error rate?" An attempt to answer this question was made by sorting 
the call error rates by all of the known parameters of the call, such as 
types of central offices at the transmitting and receiving ends, time of 
day, day of week, etc. Since none of the calls was actually traced, fac­
tors such as types of carrier systems in the circuit, types of intermediate 
central offices, etc., for any given call were generally not known. The 
only call parameter examined which showed a clear relationship with 
error rate was distance over which the call was made. Although none 
of the other parameters showed a definitive effect on error rate, this 
does not necessarily imply that these other parameters do not affect 
performance. It is likely that the data recorded did not allow adequate 
separation of the effects of these parameters. 

Calls were classified into exchange, short-haul, and long-haul cate­
gories. Following the definitions used by Alexander, Gryb, and N ast, 
exchange calls are those within a single dialing area; short-haul calls 
are interarea calls between points separated by an airline distance of 400 
miles or less;· and long-haul calls are those exceeding 400 airline miles. 
Distributions of bit and word error rates per call for these categories 
are shown in Figs. 2 and 3. Again the bit error rate distributions of these 
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Fig. 3 - Word error rate distribution for all calls: exchange, long-haul, and 
short-haul. 

three categories are very similar to the corresponding distributions of 
Alexander, Gryb, and Nast. As a rule, word error rates varied quite 
uniformly with bit error rate, indicating that the parameters studied 
had little effect on the density of error bits in an error word. 

IV. CORRELATION BETWEEN ERRORS 

It is well known that digital data errors in telephone circuits tend to 
be bunched together,3 but little is known about the exact nature of their 
correlation. One measure of the degree of correlation cetween errors 
is the autocorrelation function of the bit error sequences of the calls. 
Here we shall define the sequence {Xji}, i = 1,2, ... ,Nj of call j to 
be the binary sequence having l's in positions corresponding to the 
positions of bits incorrectly received, and O's in positions corresponding 
to error-free bits. The number N j of terms in the sequence is equal to 
the number of bits transmitted in the call. We shall define the nor­
malized autocorrelation function cp( k) of the bit error sequences of any 
collection ftl of calls to be: 

Ni-k 

L L XjiXji+k 
cp(k) iEM i=l 

As the number of terms in the above expression becomes large, cp( k) 
will converge to the conditional probability that, given an error bit, the 
bit k positions later will also be in error. 
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The normalized bit error autocorrelation function for all calls con­
taining errors is plotted in Fig. 4. This curve shows the presence of a 
very strong periodic component. The fact that the oscillations occur at 
a rate of exactly 120 cycles per second strongly suggests 50-cycle power 
line interference with the circuit. This periodic component was traced 
to three calls from a single location. The bit error autocorrelation func­
tion for all calls except the three containing a 120-cycle component is 
shown in Fig. 5. The general shape of this curve is similar to that ob­
served in other studies.4 The three periodic calls are excluded from the 
remaining distributions. 

The autocorrelation function was also tabulated individually for each 
call. Efforts to find relationships between the autocorrelation and the 
known parameters of the calls were generally unsuccessful. It was 
noticed, however, that the initial shapes of the autocorrelation functions 
w~re similar for most calls, but the sizes of the tails varied widely. 
For most individual calls the autocorrelation function decreased con­
siderably more rapidly than did the autocorrelation for all calls, which 
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Fig. 5 - Bit error autocorrelation for all calls except those with a 120-cycle 
component. 

is shown in Fig. 5. As one would expect, those calls whose auto cor­
relations had large tails were found to contain short periods of very 
high error rates. Surprisingly, there \vas not a very strong correlation 
between the call error rate and the size of the tail, but there was an 
apparent relationship between the variance of the error rate over one­
minute intervals within the call and the size of the tail. This suggests 
that a long tail on the autocorrelation function probably was due to 
short dropouts or very noisy periods which were more or less inde­
pendent of the over-all error rate. 

The autocorrelation of the word error sequences was similarly COlll­

puted. Here the autocorrelation is defined analogously, with error bits 
being replaced by error words. The word autocorrelation for all error 
calls except the three previously mentioned 120-cycle calls is plotted in 
Fig. 6. As one would expect, this curve is very much flatter than the 
corresponding error bit autocorrelation. 

Further insight into the nature of the bunching of the errors can be 
obtained from the distribution of error-free bits between errors. The 
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empirical cumulative probability distribution function of the number of 
error-free bits between bit errors is shown in Fig. 7. In this curve the 
ordinate gives the fraction of the total number of bit errors whose 
proximity to the previous bit error was equal to or less than the value 
given on the abscissa. As the number of occurrences becomes large, the 
empirical probability distribution function will converge to the true 
probability distribution function. It is interesting to note that the curve 
has a rather sharp knee at about ten bits on the abscissa and levels off 
to an ordinate value of approximately 0.65. This suggests that roughly 
one-third of the bit errors are separated by at least 200 bits (100 ms) 
from the previous error and that the remaining two-thirds of the errors 
are usually separated by not more than ten good bits. The errors are 
therefore observed to be bunched together in groups. The distribution of 
the lengths of these groups will be discussed in the next section. 

The corresponding empirical probability distribution function for 
error-free 31-bit words between word errors appears in Fig. 8. The fact 
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that the derivative of this curve changes comparatively slowly implies 
that small groups of errors are themselves bunched together, since the 
separation of errors would be much greater if they were randomly 
distributed. 

v. ERROR BURSTS AND DROPOUTS 

Knowledge of the duration and error density of a burst of errors is 
important, since it is desirable to avoid combining bits into words in 
such a way that a substantial fraction of the bits in a single word is 
likely to be in error. Let us define an error burst of density lib to be 
any sequence of bits starting with an error bit and at least b bits long 
such that every block of b bits within the sequence will contain at least 
one error bit. In other words an error burst is a sequence which begins 
with an error bit and does not contain b or more consecutive correct 
bits. We shall define the length of the burst to be the length of the 
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longest sequence consistent with the above definition. For example, 
consider the following sequence: 

000000000010110000010000000000. 

Let us assume that the O's represent bits which were correctly received 
and the 1 's represent bits which were incorrectly received. According 
to the above definition this sequence contains two bursts of density 
1/5. The first burst begins with the eleventh digit in the sequence and is 
eight bits long. The second burst begins with the twentieth digit of the 
sequence and is five bits long. The sequence could also be thought of as 
containing a single burst of density 1/10 beginning with the eleventh 
digit and 19 bits long. 

The empirical probability distribution functions of the lengths of 
bursts of densities 1/5, 1/10, and 1/31 were calculated and are plotted 
in Figs. 9-11. It can be seen that most high-density bursts are fairly 
short. We observe that the bursts become considerably longer for error 
densities of less than 1/10, which is in agreement with Fig. 7. 
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600 

A dropout is a phenomenon whereby the connection is temporarily 
interrupted and the line signal drastically attenuated or completely 
lost for a fraction of a second. In the system tested a dropout caused 
only 1's to be received regardless of the transmitted message. Any 
sequence containing at least ten bit errors and in which only 1's were 
received was deemed to be a dropout. On the basis of this definition, 
about two per cent of the high-density bursts were found to be dropouts. 
These were contained in 44 different calls. 

The empirical probability distribution function of the lengths of the 
observed dropouts is shown in Fig. 12. It should be pointed out that this 
distribution may be biased, since some of the longer dropouts probably 
caused the system to lose synchronization and were not included in the 
distribution. The large jump in the curve in the neighborhood of 145 
bits was contributed entirely by four transcontinental calls. One plausi­
ble explanation for the occurrence of dropouts of this length is that they 
were caused by echo suppressors. Since the echo suppressors were not 
disabled during transmission, a high-energy noise impulse in the reverse 
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channel could momentarily activate an echo suppressor. This would 
cause a dropout of approximately 145 bits duration. 

The empirical probability distribution function of the number of bits 
between dropouts is shown in Fig. 13. It can be seen that the dropouts 
exhibit some tendency to be bunched together in time. This apparent 
bunching suggests fading rather than other possible causes. 

The error data exhibited some asymmetry. There were about 15 
per cent more 0 ~ 1 errors than 1 ~ 0 errors, a result consistent with 
the effect of dropouts. The fact that 1 ~ 0 errors were slightly more 
prevalent than 0 ~ 1 errors in calls not containing dropouts supports 
the conclusion that dropouts caused the asymmetry. 

A more convenient distribution for some purposes is the distribution 
of the number of error bits appearing within a block of a given length. 
Following Elliott's5 notation we shall define the function P(m,n) to be 
the probability that exactly m bits will be in error in a block of n bits. 
The functions P(m,n) for n = 10, 15, 21, 23, 31, 63, 115, and 230 are 
plotted in Fig. 14. These curves demonstrate quite vividly the effect of 
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dropouts. Most of the curves exhibit a local maximum at about n/2. 
This is due mainly to the occurrences of dropouts longer than n. On 
the assumption that O's and l's were transmitted with approximately 
equal probabilities, dropouts of at least n bits in length would contribute 
a component in the form of a symmetrical binomial distribution to the 
P(m,n) function. This is illustrated in Fig. 15, in which the function 
P(m,31) is plotted with and without dropout components. 

Elliott 5 has suggested that a good approximate evaluation of the 
performance of a code can be made by assuming that all pennutations 
of any given number of error bits in a block are equally likely. Using 
his methods and the function P(m,31) the estimated number of bits 
between undetected errors was calculated to be 8.55 X 108• As stated 
previously, an average of 9.85 X 108 bits between undetected errors was 
actually observed. This is excellent agreement, although it should be 
remembered that the number of observed undetected errors was too 
small to assure good convergence of the observed average to a true 
average. 

The function P(m,n) changes radically as n becomes very much 
larger. Calls were divided into I-minute and 5-minute time intervals. 
The cumulative empirical probability distribution functions of the 
numbers of bit errors and word errors occurring within these time inter­
vals w.ere calculated an.c.l are plotted in Figs. 16 and 17. It is interesting 
to note that the distributions for 5-minute intervals are almost identical 
to the corresponding distributions for I-minute intervals except for a 
scale factor. This suggests that the numbers of errors occurring in suc-
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cessive intervals as long as a minute are essentially independent. Also, 
there is no noticeable effect of dropouts. 

VI. SUMMARY 

The test demonstrated that it is possible to provide data transmission 
over the switched telephone network with extremely low undetected 
error rates by means of a coding technique of moderate complexity. 

The statistical properties of the error data appear to be similar to those 
observed in other tests. Distributions of bit error rates without regard 
to coding showed a strong similarity to the results of Alexander, Gryb, 
and Nast, despite the fact that different modems operating at different 
speeds were used in the two tests. The digital errors were strongly cor­
related with each other, and the error rates were highly non stationary. 
Bit errors were observed to occur in groups of two or three and generally 
had a density of at least one error bit per ten good bits. These small 
groups of errors were themselves bunched together. Dropouts occurred 
frequently in certain calls, but it was difficult to determine their cause. 
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APPENDIX A 

The Error Detecting System and PeJjormance lH easuring Apparatus 

A preliminary requirement on the code used for the error control 
experiment was that it be capable of detecting approximately 99.9 
per cent of all transmission errors occurring in data transmitted by means 
of a DATA-PHONE data set 201A over switched, long distance tele­
phone connections. Ease and economy of implementation were other 
factors affecting the selection of a code. Computer studies of a Bose­
Chaudhuri2 (31,21) code indicated that this code, subsequently used in 
the experimental system, had the desired error detecting ability. The 
above notation indicates that data were transmitted in blocks 31 bits 
long consisting of 21 information and 10 check bits. 

The code is cyclic with a minimum distance of five* and is therefore 
capable of detecting any four or fewer bit errors in a 31-bit block. 
Furthermore, all single-error burstst of length 10 bits or fewer, 511/<112 
of all ll-bit error bursts and 1023/1024 of all error bursts 12 to 31 bits 
in length are detected. The generator polynomial of this code is h(X) = 
XIO + X7 + X6 + X + 1, which is equivalent to saying that the code 
is the null space of the matrix: 

H= 

1000000000100110101001000011111 
0100000000110101111101100010000 
0010000000011010111110110001000 
0001000000001101011111011000100 
0000100000000110101111101100010 
0000010000000011010111110110001 
0000001000100111000010111000111 
0000000100110101001000011111100

J 0000000010011010100100001111110 
0000000001001101010010000111111 

* I.e., every code word (block) differs in at least five places from every other 
code word. 

t The length of a "burst" in this context is the number of bits between and 
including the first and last bits in error in a 31-bit block. 
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Examination of row 10 of the H matrix (in its canonic form) reveals 
that the first check bit transmitted is the modulo 2 sum of information 
bits dl , d2 , d3 , d4 , d5 , d6 , du , dl4 , dI6 , dI8 , and dI9 • Information bits 
are numbered in the order of their transmission-i.e., dl is the first in­
formation bit in the block, d2 the second, etc. 

The encoder was implemented by the feedback shift register shown in 
Fig. 18,6 which operates as follows. With the feedback path closed 
(i.e., S in position 1), 21 information bits were shifted from the data 
source into the encoder and simultaneously transmitted. After the 
twenty-first bit had been encoded and transmitted, the feedback path 
was disabled by setting S to position 2, and the contents of the shift 
register (i.e., the 10 check bits) were transmitted. Thus, each block con­
sisted of 21 information bits transmitted as a group in their original 
order followed by the 10 associated check bits. 

Decoding was accomplished by the same circuit. The decoder was 
synchronized with respect to the received data and thus was able to 
distinguish between information and check bits. To decode a 31-bit 

] ) EXCLUSIVE OR 2 
GATE DATA OUT 

~ 

D SHIFT REGISTER STAGE 
DATA IN 
~ 

Fig. 18 - (31,21) encoder. 
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block the information bits were shifted from the demodulator into the 
encoder, which generated 10 check bits. These were compared to the 10 
check bits received following the 21 information bits. Any difference 
between the two sets of check bits indicated the occurrence of a trans­
mission error. 

A block diagram of the error detection system is shown in Fig. 19. 
Both the source of data and the reference source are provided by a 
pseudo-random sequence generator. The output of this device is a repeti­
tive 511-bit sequence containing every 9-digit binary sequence except 
the all-O sequence. Since these data are meaningless so far as information 
content is concerned, a continuous chain of timing pulses shifts both the 
encoder and sequence generator. The output of the source is disregarded 
while check bits are shifted from the encoder. Since 31 and 511 are rela­
tively prime, all possible 21-bit sections of the 511-bit sequence arc 
transmitted as data. In practice the data source 111.ust stop after deliver­
ing 21 bits, while the 10 associated check bits are transmitted. For pur­
poses of the test this would be impractical, since 511 and 21 have a 
common factor of 7, and therefore only 73 of the possible 511 21-bit 

CLOCK AND 
CONTROL 
CIRCUIT 

TIMING 

I 
I 
I 
I 
I ____ J 

Fig. 19 - The test system. 

RECORD­
ING 

EQUIP­
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sequences would be encoded. Timing is provided by the data set 201A, 
which generates 2000 timing pulses per second. The function of the 
clock and control circuit is to operate the encoding circuits at the trans­
mitting and receiving terminals in the manner described earlier. The 
clock is driven by timing pulses from the data set and produces a periodic 
output signal which is "on" for 21 bits and "off" for 10. This signal is 
used by the control circuit to operate S (see Fig. 18), Sl, and S2. * 

At the transmitting terminal Sand Sl were set to position 1 while 
information bits were shifted into the encoder and data set, then switched 
to position 2 while check bits were shifted from the encoder. Switches S 
and Sl then were reset to position 1 and the process was repeated for 
the next block of information. 

At the receiver Sand S2 were set to position 1 while information bits 
were received and encoded. During this time the received information 
was examined for transmission errors by E1, which produced an output 
whenever a received information bit differed from the output of the 
synchronized reference sequence generator. (The method of synchroni­
zation will be described in the next paragraph.) After the 21 information 
bits had been received and encoded, Sand S2 were switched to position 
2 while the check bits were received. Each of the 10 check bits in a block 
was compared with the output of the local encoder by E2. An output 
signal from E2 indicating the occurrence of detected errors was produced 
whenever a received check bit differed from the corresponding locally 
generated check bit. The outputs of E1 and E2, the received data, and 
timing information from the clock and control circuit were delivered to 
the recording equipment. 

The clock and sequence generator at the receiving terminal were 
synchronized with respect to the demodulated data by means of the 
synch circuit. This circuit was activated manually by switching S3 
to "synch." With S3 set to "synch" the phase of the sequence generator 
and clock was automatically shifted by one bit with respect to the re­
ceived data in response to each output pulse from El. When the outputs 
from E1 and E2 were observed to remain constant for one second or 
more, S3 was switched manually to "run" and the recording equipment 
started. Error data could not be recorded with S3 in the "synch" posi­
tion. 

The performance measuring apparatus was located at the receiving 
terminal as indicated in Fig. 19. Signals from E1, E2 and the control 
circuit were combined to indicate the occurrence and type of block errors. 

* Switches S, SI, and S2 are implemented with solid-state circuits. 
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If, for a given 31-bit block, an error indication was received from E2 
then transmission errors occurred and were detected. Undetected errors 
occurred in a block when errors were indicated in the information sec­
tion by El but not in the check section by E2. 

The received data and the error information derived from the outputs 
of El and E2 were recorded on dual-channel magnetic tape. The output 
of the demodulator was transformed into a series of positive and nega­
tive pulses and recorded on one channel. Following each 31-bit block one, 
two or three framing pulses were recorded on the second channel to 
indicate that the preceding block contained no errors, detected errors or 
undetected errors respectively. The inputs to both channels of the tape 
for each of the three conditions are shown in Fig. 20. Data were recorded 
on channel 1 and block framing on channel 2. In each case only one 
framing pulse follows block K - 1, which is assumed to be error free. 

Cumulative error data for each call were recorded on five electronic 
event counters. The two types of bit errors (0 ~ 1 and 1 ~ 0) occurring 
in user information were derived from the output of El and recorded 
separately on two counters. A third counter was incremented whenever 
a block was received containing any errors in the information section. 
The fourth and fifth counters recorded detected and undetected block 
errors respectively. The counters were photographed automatically at 
20-second intervals during each call. A clock was included at the camera's 

K-I ST BLOCK -T--- _____ KTH BLOCK--- -----T- K+1 ST BLOCK 

10001 

CHANNEL 1 ~-----------~ ____ _ 

CHANNEL 2 
-D~ ____________________ ~n~ __ __ 

(a) 

CHANNEL 1 ~----------r -----
CHANNEL 2 

-D~ ______________ ~~ 
(b) 

CHANNEL 1 ~----------r -----
CHANNEL 2 ~~--------------------------~ 

(e) T1ME-

Fig. 20 - Block framing; three cases. 
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field of view and the film dated so that photographic data could be 
correlated with log book records. 

APPENDIX B 

Field Test Procedure 

The purpose of this section is to describe the field test procedure in 
some detail. To review briefly, the receiving error control terminal re­
mained fixed at lVlurray Hill or Holmdel and the transmitting terminal 
was carried to the locations listed in Table III. One day was spent at 
each location, during which time data were transmitted over a number 
of dialed connections established from the receiving terminal and used 
for approximately 30 minutes each. 

Before initiating a series of calls between two locations, the line loss 
from the transmitter to the central office was measured with a 12B 
transmission measuring set. The data set's transmission level then was 
adjusted so that the signal strength at the central office was approxi­
mately -8 dbm and the data set then placed in the on-hook automatic 
answer mode. The location, telephone number, local loop loss, trans­
mitting level, and type of central office serving the transmitting terminal 
were recorded in the test log. The encoding equipment was started and 
ran continuously throughout the series of calls (i.e., data were generated 
and encoded continuously and transmitted automatically whenever a 
connection was established from the receiving terminal). 

After the transmitting terminal had been readied for the series of 
calls as described in the preceding paragraph, the receiving terminal 
was attached to a foreign exchange line. A connection was dialed to the 
transmitting terminal, which answered the call automatically and started 
transmitting encoded data immediately. Then the receiving error de­
tection system was synchronized with respect to the demodulated data 
as described in Appendix A and the recording equipment started. Thirty 
minutes later the recording equipment was stopped and the call termi­
nated from the receiving end. The data recorded on event counters, 
the times (local) at which the call was started and terminated, and a 
description of any unusual transmission or operating conditions were 
entered into the test log. The recording equipment was reset and the 
receiving terminal attached to a different foreign exchange line for the 
next call. 

The error control equipment, data sets, and error recording apparatus 
were checked periodically throughout the test. This was done to insure 
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that the data collected during the experiment would not be affected by 
marginally operating test equipment. 

APPENDIX C 

Summary of Incomplete Calls 

During the test, 59 calls could not be completed for reasons which 
fall into three general categories. These are: 

(1) long dropouts or fades resulting in loss of synchronism between 
the transmitting and receiving data sets, 

(2) the inability to achieve initial synchronization of the terminals 
within a reasonable length of time, and 

(3) lost connections. 
These conditions will be more fully described in the following para­

graphs. In addition to these 59 calls, 6 calls were interrupted due to 
human errors and two calls were lost as a result of local power failures. 

Loss of synchronism between the transmitting and receiving data sets 
during otherwise normal communication caused the interruption of 30 
calls. This condition usually was caused by long dropouts, particularly 
on long-haul connections. Dropouts lasting more than approximately 
100 milliseconds generally caused the transmitting and receiving data 
sets to lose synchronism, since timing in the demodulator was derived 
from the line signal. Within 20 milliseconds of a loss of line signal the 
timing reverted to the natural resonant frequency of the high-Q circuit 
in the demodulator's bit synch recovery circuit. The natural frequency 
of this high-Q circuit was within one cycle of the transmitter frequency. 
Thus, if the modulator and demodulator remained decoupled long 
enough, synchronism between the two was lost. This situation was 
detected easily but resulted in some loss of data, as the terminals had to 
be resynchronized before data transmission could be resumed. Intense 
channel noise was observed to have approximately the same effect as 
dropouts. 

Twenty-one dialed connections were sufficiently noisy that the test 
apparatus could not be synchronized within a reasonable length of time. 
To recapitulate, initial synchronization was obtained by automatically 
shifting the phase of the receiving end clock and sequence generator by 
one bit whenever the synchronization circuit was enabled and a re­
ceived bit differed from the corresponding locally generated information 
bit. When the system was synchronized, but the synchronization circuit 
was not yet disabled, any transmission errors occurring in the informa-
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tion section of a block caused the synchronization procedure to be re­
peated. Therefore, when the channel was unusually noisy the receiving 
terminal would not remain synchronized long enough for the synchro­
nization circuit to be disabled manually. If synchronization could not be 
established within 2 or 3 minutes after the call was placed the connec­
tion was dropped and the transmitting terminal called a second time 
using the same foreign exchange line. The semiautomatic synchroniza­
tion procedure could have been fully automated. Had this been done, 
synchronization might have been achieved over a few of the connections 
for which the semiautomatic method described in Appendix A was un­
successful. However, since all 21 of these calls were exceptionally noisy 
it appears doubtful that data set synchronism could be maintained for 
a full 30-minute period. 

Eight connections were lost entirely during data transmission and dial 
tone was returned to both terminals. This situation was easily detected 
by the test apparatus. On at least three of these occasions the lost con­
nections appeared to be associated with telephone maintenance opera­
tions. 

The conditions described above are transmission impairments which 
cannot be integrated directly into the error rate data. These are, how­
ever, situations with which the data communicator must contend and are 
included here to provide an estimate of their frequency of occurrence. 
These data are of importance in the design of error control systems which 
must recognize such transmission impairments and allow for some type of 
remedial action to be taken, such as manual intervention or automatic 
resyn chroniza tion. 
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Comparisons are made of engineered costs and overload capability of ne[.­
works using several alternate routing configurations, and employing a num­
ber of different operating and control procedures. The traffic model selected 
consists of a 3l,--node network abstractedf1'om the U.S. telephone toll network, 
with basic load levels obtained from field data. The overload evaluations were 
made using a simulation program prepared for the I Bill 7090· com puler. 

1. INTRODUCTION 

In a recent paper! the results of some preliminary comparisons of two 
alternate routing configurations for communications networks were re­
ported. Those results indicated that for small networks (six or fewer 
nodes) with low traffic densities a symmetrical or unrestricted routing 
pattern is superior to a hierarchy similar to that in use in the U.S. toll 
network, while for higher traffic densities there appeared to be little 
difference in the network behavior in terms of economy and reaction to 
overloads. 

Subsequently, a new simulation program has been constructed2 and 
substantially larger networks have been examined to provide a more 
meaningful guide to network design under various circumstances of 
geography and load level. An additional configuration, called the "gate­
way," as well as severa] operating and control variations, has been 
examined. The latter include stage-by-stage operation with and without 
crankback (return of routing control to a previous node for rerouting 
when blocking is encountered at an intermediate switching point), limita­
tion of number of links pel' call in symmetrical networks, and trunk 
reservation for first-routed traffic only. 

* Presented at the Fourth International Teletraffic Conference, London, July, 
1964. 
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The results show that: 
(1) There is little difference in network cost or overload capability 

between hierarchical and symmetrical networks at the load densities 
considered. 

(2) The gateway network (a two-level hierarchy with no interregional 
high-usage groups) requires substantially more trunking and switching 
than either the hierarchical or symmetrical networks and shows no sig­
nificant difference in overload performance. 

(3) Restriction of alternate routing in symmetrical networks improves 
performance at all levels of load. 

(4) The use of crankback is a disadvantage for symmetrical networks 
with a high traffic density, at all levels of overload. It offers a slight ad­
vantage for symmetrical networks with lower traffic intensities and does 
not appear to have any significant effect on the performance of hierarchi­
cal networks. 

(5) Trunk reservation for first-routed traffic on a dynamic basis im­
proves the performance of almost all networks examined, for all load 
conditions, and displays no detrimental effects. 

II. THE SIMULATION 

The simulation program used in these studies is described in Ref. 2. It 
has many of the capabilities of the program described in Ref. 1, but 
has been reprogrammed to accept networks with heavier loads and to 
operate more efficiently. A number of additional features have also been 
provided. 

The program is basically capable of simulating networks of up to G3 
nodes, with arbitrary alternate routing patterns and stage-by-stage call 
forwarding. There is no congestion or delay allowed at switching points, 
all congestion being assumed due to trunk shortages. Calls which fail to 
complete initially may be abandoned with a fixed probability or retried 
after a constant or exponentially distributed interval. Any prespecified 
number of trunks can be reserved for first-routed traffic only, and calls 
may "crank back" or return to a prior node if blocked at some point in 
the network. The maximum-size network which can be accommodated 
is largely determined by the number of simultaneous calls in progress, 
which may have a maximum of about GOOO. Traffic loads are specified 
on a point-to-point basis, with arbitrary proportions in each direction, 
and may be changed linearly at any time during the run. That is, mean 
arrival rates can change linearly in time during the run at any rate and 
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between any bounds. (Another modification of the program allows the 
use of two priorities of traffic and mixtures of direct and store-and-for­
ward traffic, with trunk reservation by traffic type and priority. This 
version was not used for the studies described herein, however.) 

In order to accommodate larger networks more efficiently, the program 
was written in several sections. The first of these accepts the basic load 
inputs (mean point-to-point loads and holding times) and generates can 
arrival times and holding times, which are then stored on magnetic tape. 
This tape is then used as input to the simulation program, which proc­
esses the calls through the simulated system and prints out raw data on 
trunk utilizations and call histories on two magnetic tapes. These tapes 
are presented to the output processor programs, which provide the ap­
propriate reduced outputs. 

For convenience in preparing the input data, the main section of the 
program has been arranged to determine its own routing for symmetrical 
and hierarchical networks, given the numbers of trunks and the distances 
for symmetrical networks, or the homing arrangements for hierarchical 
networks. 

The output statistics are reported at prespecified time intervals, and 
these subinterval results may then be used as samples for a final output 
containing both means and standard deviations of all relevant quantities. 
The quantities which are printed out are as follows: 

(1) point-to-point traffic loads at the end of the run (input data). 
(2) routing tables for all point-to-point traffic items. 
(3) means and standard deviations of the following measured quanti-

ties for each point-to-point traffic item: 
(a) blocking probability 
(b) average delay and distribution of delays for retried calls 
(c) average number and distribution of number of links per call. 

(4) means and standard deviations of the following measured quanti­
ties for each trunk group (obtained by switch count measurements): 

(a) number of trunks present in each group (input data) 
(b) number of trunks reserved for first-routed traffic in each group 

(input data) 
(c) total carried load in erlangs on each group (and per cent occu­

pancy) 
(d) first-routed carried load on each group (and per cent of total) 
(e) alternate routed carried load on each group (and per cent of total). 

(5) means and standard deviations of measured over-all network 
quantities as follows: 
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(a) over-all average blocking probability, B, given by 

where 

ail = offered load between nodes i and j, and 
Bij = blocking probability of calls offered between nodes i andj 

(b) average number and distribution of number of links per call 
(c) weighted average delay and delay distribution for retried calls 
(d) total number of trunks in the network (input data) 
(e) total trunks reserved for first-routed traffic (input data) 
(f) total carried load and over-all occupancy 
(g) total carried first-routed load 
(h) total carried alternate routed load. 

(6) the "space dispersion," D, of the blocking probability, delay 
distribution and links per call distribution, given by 

DB = [(~ aijBd/~ aij) - B2p 
iii i 

for the blocking probability, and similar expressions for the other quanti­
ties. This serves as a measure of the variation in grad e of service pro­
vided to various traffic items in the network depending upon their origin 
and destination. 

(7) the following input parameters: 
(a) maximum number of links allowed per call 
(b) number of stages of crankback allowed (That is, the number of 

steps a call is allowed to back up before progressing forward after having 
reached a point of congestion.) 

(c) percentage of calls to be retried 
(d) retrial time distribution and mean value 
(e) holding time distribution and mean value 
(f) number of nodes 
(g) number of reporting intervals and their lengths 
(h) number of reporting intervals to be collected for final processing 
(i) routing pattern (hierarchical or symmetrical) 
(j) interval between switch counts for determination of trunk in­

formation. 
The simulation runs quite rapidly, processing about 500,000 calls per 

hour using the IBM 7090 computer for a 34-node network with a total 
load of about 5000 erlangs, excluding the traffic generation. If traffic 
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generation time is included, the processing rate drops to about 375,000 
calls per hour. If several networks are evaluated using the same traffic 
input, as was done in these studies, however, the traffic need be generated 
only once, and the same tape can be used as input to the simulation any 
number of times. Several dozen simulation experiments were made for 
the studies described below, but only eight traffic tapes were generated. 

III. GENERAL PROCEDURE 

The evaluation procedure encompasses the following steps: 
(1) select a geographical area, including switching center locations; 
(2) select a basic traffic model on which to base network engineering; 
(3) engineer networks to a given grade of service using each of the 

routing procedures to be considered; 
(4) determine the costs of each of the networks so engineered; 
(5) change the loads to correspond to reasonable patterns of overload 

or shifting load; 
(6) using simulation, measure the performance of each of the networks 

under the load changes used in step (5); 
(7) repeat steps (5) and (6) for each of the control and operating 

variants considered. 

These steps will be described in detail in the following sections. 

3.1 The Geographical Region 

Although it is not possible to select a geographical region (or regions) 
which will be typical of all situations, it is desirable to find an area which 
at least has the capability of accommodating a sufficient number of nodes 
to adequately exercise the various routing patterns to be examined and 
of reacting to realistic load fluctuations. The region should also contain 
both densely and sparsely populated sectors, which to some extent must 
exist in all real networks. (A uniform or arbitrarily variable traffic dis­
tribution would probably not be a valid test, since actual telephone 
traffic varies with the population density, higher-density areas having 
large amounts of traffic within and among them, and sparsely populated 
areas being lower in traffic to all destinations.) Since the geographical 
region will utimately require a traffic model to be superimposed upon it, 
an area for which actual traffic data is obtainable is again more likely to 
represent reality than one for which traffic quantities need to be invented. 

A single region which appears to meet most of the criteria specified 
above exists on the West Coast of the U.S.A. The states of California, 
Washington, Oregon and Nevada are almost entirely administered by 
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two local telephone operating companies for toll purposes and represent 
a region which ranges from sparsely populated areas such as Nevada and 
eastern Oregon to sections such as Southern California, which contains 
the Los Angeles and San Diego metropolitan areas. Fig. 1 is a map of 
this region, showing the 34 switching centers used. Although there are 
many more than 34 toll switching offices in this region, only the control 
switching points (CSP's), which make up the offices of the top three 
levels of the U.S. toll network hierarchy,3 are included. (Las Vegas, 
though actual1y a toll center, is assumed to be a primary center.) All 
traffic which both originates and terminates in the region, however, is 
included, as will be discussed below. 
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3.2 The Basic 'PrajJic 1-1odel 

The basic traffic model used for engineering the various networks was 
developed from actual message records of the Pacific Telephone and 
Telegraph Company and the Pacific Northwest Bell Telephone Com­
pany. These records include the total messages for a period of ten con· 
secutive business days during June 1962. They provide total messages 
and message minutes from every toll switching center in the area to 
every other. Traffic which originates or terminates in other than the 
four-state area is not considered, nor is traffic which is not carried on the 
toll (or long distance) network. Traffic originating and/or terminating 
at offices of connecting companies, but which is carried on the toll net­
work, is included. 

In order to obtain a busy hour traffic base from the ten-day records, 
it was assumed that ten per cent of the total traffic was offered during 
each day and ten per cent of the day's traffic was presented during the 
busy hour. Therefore the busy hour traffic load was assumed to be one 
per cent of the total ten-day message load. 

Traffic between toll centers of the fourth rank, which are not explicitly 
included in the 34-node model, is handled in two ways, giving rise to two 
networks with different traffic densities. In the first of these, called the 
"full-traffic" or "full-load" network, all traffic between toll centers is 
added to that between the centers on which they home. Traffic between 
toll centers homing on the same control switching point is eliminated. 
For example, referring to Fig. 2, traffic between toll centers A and B is 
added to the traffic between control switching points D and E, as is the 
traffic between A and E, and between Band D. Traffic between toll 
centers Band C and between points A and D, and Band E is eliminated. 

In the second network, called the "reduced-traffic" or "reduced-load" 
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Fig. 2 - Disposition of toll center traffic. 
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network, it is assumed that some of the traffic between toll centers is 
carried on high-usage groups, and only the overflow is carried on the 
groups between the esP's. Therefore traffic between toll centers such 
as A and B, in which there may be two routes before the CSP -CSP trunk 
group is reached, is assumed to overflow only 10 per cent to the D-E 
group. Traffic between a toll center and a CSP, such as that between A 
and E, may have only one route before the CSP-CSP route is reached, 
and 20 per cent of this traffic is then assumed to be offered to route D-E. 
Traffic between toll centers such as B-C, or between toll centers and the 
CSP on which they home, such as A-D, is again eliminated. 

The net effect of these assumptions is to develop a total network load 
of 4764 erlangs for the full-load case, and 2031 erlangs for the reduced­
load network. The maximum point-to-point load for the full traffic net­
work is 158 erlangs, and the maximum load originating and terminating 
at any node is 848 erlangs. The minimum point-to-point load is 0.01 
erlang, and the smallest node has 26 erlangs originating and terminating 
at it. For the reduced network the maximum point-to-point load is 84 
erlangs and the minimum is zero. The total traffic originating and termi­
nating at the largest node is 288 erlangs, and at the smallest is 15 erlangs. 
A tabulation of the total loads originating and terminating at each point 
in both networks is given in Table 1. 

3.3 The Network Configurations 

Five specific networks of three configuration classes for the full-traffic 
model and two networks in two classes for the reduced-traffic model 
were examined. The first class of networks is hierarchical in structure, 
similar to that in use in the Bell System toll network. In these networks, 
trunk groups are defined as high-usage, which may overflow traffic to 
alternate routes, or final, which may not. The apportionment of trunks 
among high-usage and final routes is decided on an economic basis. 4 

Both two- and three-level hierarchies were examined in the full traffic 
model, while only two levels were used for the reduced traffic case. The 
routing for these networks is shown in Fig. 3. 

In Fig. 3(a) the basic elements of a two-level hierarchy are shown. 
Calls from node 1 to node 2 will, if unable to use the direct route, attempt 
to reach node 4, from which the only allowable choice is the final route 
4-2. If unable to reach node 4, calls will then attempt to reach node 3, 
from which they will attempt the direct route 3-2, finally overflowing to 
the final route 3-4. Calls from 2 to 1 will reverse the procedure, attempt­
ing to reach node 3 and overflowing to node 4. Calls initially routed 
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TABLE I -SWITCHING CENTER LOADS 

Switching Center 

Bellingham, Wash. 
Seattle, Wash. 
Spokane, Wash. 
Yakima, Wash. 
Astoria, Oregon 
Bend, Oregon 
Klamath Falls, Oregon 
Medford, Oregon 
Pendleton, Oregon 
Portland, Oregon 
Roseburg, Oregon 
Las Vegas, Nevada 
Reno, Nevada 
Fresno, Calif. 
Modesto, Calif. 
Stockton, Calif. 
Redding, Calif. 
Sacramento, Calif. 
San Jose, Calif. 
Oakland {LVI, Calif. 
Oakland Fr., Calif. 
Palo Alto, Calif. 
San Francisco, Calif. 
San Rafael, Calif. 
Santa Rosa, Calif. 
Bakersfield, Calif. 
San Luis Obispo, Calif. 
Compton, Calif. 
Los Angeles, Calif. 
EI Monte, Calif. 
Van Nuys, Calif. 
Anaheim, Calif. 
San Bernardino, Calif. 
San Diego, Calif. 

Total (orig. plus term.) 

Total Originating and Terminating Traffic 
In Erlangs 

Full Load 

94.L7 
533.25 
141.89 
175.17 
26.92 
26.65 
33.12 
62.42 
51.35 

468.05 
37.37 

116.74 
138.21 
306.11 
132.55 
206.21 
87.94 

539.32 
459.24 
848.22 
524.25 
251.14 
375.40 
134.12 
386.08 
167.84 
109.15 
447.04 
699.27 
361.88 
426.75 
158.45 
576.81 
424.33 

9527.41 

Reduced Load 

34.81 
272.59 
71.96 
59.73 
16.87 
15.19 
19.60 
37.08 
21.11 

233.56 
17.85 
82.04 
69.44 

140.81 
81.86 

105.38 
30.88 

173.63 
188.90 
288.14 
194.06 
108.99 
198.45 
40.26 

107.64 
93.56 
45.59 

190.15 
242.63 
179.54 
174.32 
73.78 

202.72 
248.71 

4061.54 

along the final route chains, such as those from 1 to 3, have only a single 
choice of route. 

The three-level network, shown in Fig. 3(b), allows a somewhat more 
complicated routing pattern. Calls from 1 to 2 in this network will at­
tempt to reach nodes 2, 4, 6, 5 and 3 in that order, and all other routes 
will follow a similar pattern of hunting from low to high level in the 
distant region, and from high to low level in the home region. In no event 
can a call use more than one interregional trunk, and calls always travel 
up the hierarchy in the home region and down in the distant region. A 
fuller description of the process is given in Ref. 3. This restrictive routing 
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Fig. 3 - Organization of hierarchical networks. 

pattern allows alternate routing to proceed without fear of "ring-around­
the-rosie" or "shuttling" (which are types of looping routes), even 
though no information is carried with the call other than its destination 
code. The two-level hierarchical networks actually used contained six 
higher-level offices, located at Seattle, Portland, Sacramento, Oakland, 
San Bernardino, and Los Angeles. The three-level network took Port­
land, Sacramento, and San Bernardino as highest-level, or regional, 
centers; leaving Seattle, Oakland, and Los Angeles as middle-level, or 
sectional, centers. A sketch of the Washington-Oregon section of the 
full-load, two-level hierarchy is shown in Fig. 4. 

The other network configuration examined for both load levels is the 
symmetrical network, in which alternate routes are selected approxi­
mately according to their total length. In all such networks studied, 
trunks are arbitrarily eliminated on links with less than 2 erlangs of 
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directly offered traffic, and routing is then established using equipped 
links. Fig. 5 shows the trunk group layout for the Washington-Oregon 
section of the full-load symmetrical network. A basic restriction in all 
networks is that at most five outgoing choices are allowed from any node 
to any other, it being considered that further choices would lead to 
excessively circuitous routes. In addition, no route is allowed which is 
more than 1.5 times as long as the shortest nondirect route, or exceeds 
the shortest nondirect route by more than 2 links. These numbers were 
arrived at by trial and error and produced the most economical network 
for the full-load case, although they were not very critical in the deter­
mination of network cost or capability. Two symmetrical networks are 
studied in the full-load case, one which matches the blocking performance 
of the other networks at engineered loads, and one which has a higher 
blocking, as described below. Only one symmetrical network is used for 
the reduced-load model. 

The method by which routes are selected is as follows. Initially, the 
shortest route between each two points is found. The route to the nearest 
neighbor node on this route is then listed as the first-choice route. The 
link from the originating node to the nearest neighbor node along the 
first-choice route is then made ineligible, and the shortest route again 
found. The link to the nearest neighbor node along this route is then 
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Fig. 4 - Full-load, two-level hierarchy - Washington-Oregon. 
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Fig. 5 - Full-load symmetrical network - Washington-Oregon. 

denoted the second-choice route, and the distance and number of links 
calculated and compared with the first nondirect route. The entire pro­
cedure is repeated until no route falls within the distance ratio and link 
difference criteria, or five routes are selected, whichever occurs first. At 
this point the process is terminated and the routing table established. 
For example, in Fig. 5, to go from Yakima to Medford, the first-choice 
route is via Portland, the second is via Seattle, and the third is via 
Pendleton. 

The third network configuration, considered in the full traffic case 
only, is the gateway network. This is essentially a two-level hierarchy 
with the interregional high-usage groups removed, as shown in Fig. 6 
for Washington and Oregon. Traffic and trunks are therefore concen­
trated along the access routes to the gateway switching center and on the 
interregional finals. Although this kind of system clearly requires more 
trunks and trunk miles than a hierarchy to carry the same loads, it has 
been conjectured that savings in line and terminal equipment could be 
effected because of the large trunk cross sections involved. It also has been 
thought that this scheme might provide improved performance under 
shifting loads, which hypothesis is examined in this study. The gateway 
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network studjed assumed the gateway switches to be located at the same 
pojnts as the higher-level offices in the two-level hierarchical networks. 

In all of the above networks, stage-by-stage routing similar to that in 
the U.S. toll network is used. That is, once a call has reached a certain 
point in its path, its route selection is independent of its past history, 
and it is unable to back up and find another route out of a prior node. 
(This is not true if crankback is allowed, as will be discussed later.) In 
the symmetrical networks, the previous route is considered to the extent 
of preventing a call from returning to a node through which it has al­
ready been switched. In the hierarchy and gateway, this restriction IS 

impHcjtly provided by the logic of the routing structure. 
In sum, the networks examined are as follows: 

(1) Full-load model 

(a) two-level hierarchy 
(b) three-level hierarchy 
(c) symmetdcal 
(d) symmetrical with hjgh blocking 
(e) gateway. 
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Fig. 6 - Gateway network - Washington-Oregon. 
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(2) Reduced-load model 

(a) two-level hierarchy 
(b) symmetrical. 

3.4 Engineering Procedures 

The size and complexity of the networks considered are such that 
manual engineering procedures or trial and error methods are not feasi­
ble. Accordingly, computer programs were prepared which established at 
least an initial network, which could then be adjusted if required by 
trial and error using the simulator. The objective for all networks was to 
attain an over-all average blocking probability of 0.01, with as small a 
dispersion of individual point-to-point probabilities as possible. This is a 
somewhat different criterion than the one normally used in existing 
hierarchical alternate routing systems, which specify the blocking proba­
bility observed on the final route, but it is closer in philosophy to local 
systems and others in which blocking probabilities produced by the 
system are the same to all customers. 

The hierarchical networks were engineered with the aid of a computer 
program which essentially follows the procedure outlined in Ref. 4. 
Using this method, traffic is transferred from the direct to the alternate 
route when the direct route becomes so inefficient that the cost of adding 
a trunk to it is more than the cost of carrying the traffic on the alternate 
route. No account was taken of the nonrandomness of overflow traffic5 

or of the nonindependence of different links in the network. The errors 
resulting from these assumptions were not large and were corrected where 
required by trial and error using the simulator. 

The process for engineering a symmetrical network is less well de­
veloped, and no method for designing an optimal, or even necessarily a 
very good network, exists. However, a program is in existence6 which is 
capable of designing networks which will closely meet a desired blocking 
probability, using prespecified routes which are fully determined from 
origin to destination. It was necessary, in order to use this program, to 
convert the shortest route procedure described in Section 3.3 above to 
one which provides the full route rather than simply the order of hunt 
over the adj acent nodes. This resulted in networks which were engineered 
using a slightly different routing arrangement than the simulator ac­
tually used, and this, in conjunction with the basic assumptions implicit 
in the engineering program of random overflow traffic and independent 
links, led to blocking probabilities in the final network which were some­
what higher than desired. These were corrected for the purposes of 
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comparing network configurations, but for certain studies of various 
methods of operating a symmetrical network, the networks with high 
blocking were retained. 

3.5 Load Changes 

Three patterns of load changes were used to measure the performance 
of the various networks under shifting load conditions. The two load 
changes examined in Ref. 1, uniform overload and overload of all traffic 
to and from a particular node, were avoided because of their limitations. 
The first case, uniform overload, represents a situation which is thought 
not to ordinarily occur in large real systems, and both load models are 
likely to obscure differences in behavior of competing networks, since 
the networks tend to be completely saturated or are limited by the 
specific overloaded nodes. Instead, three patterns of shifting loads, in 
which the total offered network load remained approximately unchanged, 
were used. 

The first of these, called the "Christmas load," represents a type of 
shifting load normally seen in the U.S. on Christmas Day and on a few 
other special occasions. On these days, the normal long distance business 
traffic disappears and is replaced by a large volume of residential traffic. 
Typically, the increased traffic is of substantially longer haul than is 
the normal day traffic, so the phenomenon observed is that short-haul 
traffic decreases, but long-haul traffic increases. In order to represent this 
in the sample Pacific network, the network was broken down into four 
areas, consisting of Washington, Oregon, Northern California and 
Southern California. (N orthern Nevada was included with Northern 
California and Southern Nevada with Southern California.) All intra­
area traffic was reduced to 60 per cent of its normal value, and inter­
area traffic was increased to from 150 to 275 per cent of its normal 
value, depending upon the distance. The total network load was 94 per 
cent of its normal value, as shown in Table II. Although these changes 
may appear extreme, they are not thought to be out of line with what 
actually occurs in the U.S. on Christmas and were applied to both full 
and reduced traffic models. 

The second load change examined is not typical of any actual situa­
tion, but was designed to evaluate the effectiveness of the various net­
works in shifting load from an overloaded trunk group to a simultane­
ously underloaded one. In order to do this for the full-load network, 
all traffic items originating or terminating at the Oakland 4lVi machine, 
the largest office in the network (33 traffic items, total load 848 erlangs 



2654 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

TABLE II - CHRISTMAS LOAD CHANGES 

Traffic 

Intraregional 
Washington -Oregon 
Washington-N orthern Calif. 
Washington-Southern Calif. 
Oregon-N orthern Calif. 
Oregon-Southern Calif. 
Northern Calif. -Southern Calif. 
Network 

% of Normal Day Busy Hour Load 

60 
150 
210 
275 
175 
230 
150 
94 

representing about 20 per cent of the network load), were either halved 
or doubled at random, although this was slightly modified so that the 
total network load remained at 99.5 per cent of its normal value. The 
normal and modified values of the Oakland loads are shown in Table III. 
In the reduced traffic model no single office had enough traffic to .cause 
substantial changes in total network performance, so the halving and 
doubling were done at Seattle, Oakland and Los Angeles, which have 
total loads of 767 erlangs, representing about 40 per cent of the total 
network load. In this case the total network load increased by about 8 
per cent. It is to be emphasized that this set of loads does not represent 
any expected realistic situation, but is a completely artificial test of the 
effectiveness of automatic rerouting under most favorable conditions. 

The third load change examined was actually a series of load changes 
based on an assumed movement of the busy hour from north to south 
during a four-hour period. It was further assumed that, relative to the 
busy hour, an area's load was reduced .~ per cent in the adjacent hour, 
10 per cent in the second hour, and 20 per cent in the third. Traffic be­
tween two areas (defined in the same way as for the Christmas loads) 
was taken to be the arithmetic mean of the levels of the terminal offices. 
That is, a traffic item between an area which is in its busy hour and one 
two hours distant is assumed to be reduced 5 per cent from its busy hour 
value. 

Since the networks were engineered based on a single over-all load 
value, some normalization was done so that the over-all network load 
remained approximately constant. There were also some limitations in 
the simulation which prevented the desired changes from being reached 
exactly, but the final loads were quite close to the desired value. The 
sequence of changes is shown in Fig. 7. The first part of the line repre­
sents the basic engineered load, followed by the changes in each area's 
traffic as shown. The ordinate is a relative scale, so all loads are given 
as multiples of the basic value. The ramps between the hours were 
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actually simulated as shown, but no measurements were taken during 
these periods. The inter-area traffic levels are not shown, but are arith­
metic means of the levels of the terminal nodes, as described above. 

This load change, which was applied to both full- and reduced-load 
networks, is designed to analyze a situation similar to that in the entire 
U.S.A., which has several time zones with a different busy hour in each. 
Although such differences are, of course, not actually observable in the 
network selected, which runs essentially north and south, we can, for 
the purposes of modeling, assume it runs from east to west, and is ex­
panded in its dimensions. In this case, time zone changes like those 
postulated for this "busy hour load" would in fact be observed. 

TABLE III - OAKLAND VARIATION LOADS (FULL-LoAD NETWORKS) 

Traffic between Oakland 4M and 

Bellingham, Wash. 
Seattle, Wash. 
Spokane, Wash. 
Yakima, Wash. 
Astoria, Oregon 
Bend, Oregon 
Klamath Falls, Oregon 
Medford, Oregon 
Pendleton, Oregon 
Portland, Oregon 
Roseburg, Oregon 
Las Vegas, Nevada 
Reno, Nevada 
Fresno, Calif. 
Modesto, Calif. 
Stockton, Calif. 
Redding, Calif. 
Sacramento, Calif. 
San Jose, Calif. 
Oakland Fr., Calif. 
Palo Alto, Calif. 
San Francisco, Calif. 
San Rafael, Calif. 
Santa Rosa, Calif. 
Bakersfield, Calif. 
San Luis Obispo, Calif. 
Compton, Calif. 
Los Angeles, Calif. 
EI Monte, Calif. 
Van Nuys, Calif. 
Anaheim, Calif. 
San Bernardino, Calif. 
San Diego, Calif. 

Total 

Traffic Loads in Erlangs 

Normal Loads 

3.58 
26.64 
3.31 
2.39 
0.23 
0.29 
1.08 
1.77 
0.50 

23.77 
0.50 
3.78 

15.98 
30.49 
12.59 
25.86 
8.68 

94.23 
76.79 

122.95 
45.47 
45.12 
26.18 
86.80 
7.32 
3.48 

33.57 
60.73 
26.74 
28.77 
8.16 
8.65 

11.81 

848.21 

Changed Loads 

7.16 
13.32 
6.62 
1.20 
0.46 
0.15 
2.16 
0.88 
1.00 

11.88 
1.00 
1.89 

31.96 
15.24 
25.18 
12.93 
17.36 
47.12 

153.58 
61.47 
90.94 
22.56 
52.36 
43.40 
14.64 
1. 74 

67.14 
30.36 
53.48 
14.38 
16.32 
4.32 

23.62 

847.82 
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Fig. 7 - Busy hour load changes. 

3.6 Evaluation Criteria 

A communications network which must be engineered to meet a 
specific set of demands for service without being excessively costly, and 
which will then be subjected to demands for which it was never designed, 
is not easily evaluated by a single figure of merit, or even by a small 
number of parameters. The weight of overload performance versus engi­
neered economy, performance under overload A as opposed to that 
under overload B, and service to traffic between points i and j as opposed 
to that provided between points k and m, provide ample opportunity 
for conflicting requirements. This is, of course, in addition to nontraffic 
considerations such as survivability, ease of engineering, administration 
and control, or ability to provide other services such as data and private 
line. 

Nevertheless, in order to make a comparative evaluation of various 
network configurations, a set of criteria must be adopted which can be 
evaluated for each network under study and which will reflect the basic 
considerations of cost and service quality under all conditions. 

The criteria which have been selected are four in number, two relating 
to cost and two relating to grade of service. They are: 
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(1) number of trunks required to provide the desired grade of service 
[of P(O.01)] at engineered load 

(2) number of trunk miles required to provide the desired grade of 
service at engineered load 

(3) the over-all weighted average blocking, B, as defined in Section II 
above 

(4) the dispersion of blocking DB (subsequently denoted simply D), as 
defined in Section II above. 

Items (1) and (2) above can be provided with costs to derive approxi­
mate network costs, which will vary depending upon the cost of switch­
ing, terminal equipment and line facilities. This has been done for a few 
typical costs. The costs so derived are approximate because the trunk 
miles are defined as point-to-point airline miles, which is not the way 
actual facilities would normally be routed. 

Items (3) and (4) are measures of service quality. B is by itself a meas­
ure of over-all network performance, and it is directly related to carried 
load. However, there may be severe distortions in the point-to-point 
blockings which would yield a low B but might still leave certain cus­
tomers with extremely poor service. The inclusion of D as a criterion 
will help to identify such a situation and ensure that network service is 
evaluated on a basis of balance as well as blocking level. 

3.7 Operating and Control Procedures 

The variations in operating procedures and the control methods em­
ployed all have the effect of changing the amount of alternate routing, 
normally also making different numbers of routes available to various 
point-to-point traffic items. Two control procedures were investigated 
for both the hierarchical and symmetrical networks. These were one­
stage crankback and trunk reservation for first-routed traffic only (sub­
sequently referred to simply as trunk reservation). One-stage crankback 
allows a call which has reached a point from which it is unable to proceed 
to back up one link along its previous route and attempt to complete via 
another route. This has been proposed as both a traffic improvement 
measure and as a means for allowing machine troubles to be circum­
vented without customer retrials. The investigation here relates, of 
course, only to its effect on the traffic capacity of the network. Trunk 
reservation allows only first-routed traffic to seize the last idle trunk in 
a group. Alternate routed calls can be served only if at least m + 1 
trunks are idle, where m is the number of trunks reserved. This procedure 
tends to maximize the number of calls which are carried on direct links 
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at the expense of those carried on alternate routes. It also reduces group 
efficiencies somewhat, and the question is whether the reduction III 

circuitous routing is enough to compensate for this. 
Finally, for symmetrical networks only, the maximum number of 

links per call was varied. In the case called "full routing," a maximum 
of five links was allowed for any call in the network. In the case called 
"limited routing," a maximum of only three or four links per call was 
allowed, depending upon the connectivity between the originating and 
terminating points of the call. This restriction, of course, reduces the 
average number of links per call, at the same time reducing the number 
of routes possible between any two points. 

IV. ANALYSIS OF NETWORK CONFIGURATIONS 

4.1 Facility Requirements 

It is difficult to arrive at an accurate measure of the cost differential 
between the various network configurations, since costs of trunk termi­
nations, switching, and trunk lines vary from place to place and from 
network to network. However, it is expected that the relative costs of 
the various network configurations can be deduced from the number of 
trunks and the number of trunk miles by applying appropriate factors 
related to the distribution of trunk lengths and the types of switching 
and transmission equipment in general use in any given situation. If the 
unit costs of switching equipment, or of control features inherent in the 
routing plan, are significantly different for different networks, the mag­
nitudes of these differences can be balanced against the differences in 
trunks and trunk miles to again deduce the total network relative costs. 
It should also be noted that the distances used for the trunk length calcu­
lations are based on airline mileage between originating and terminating 
points, which is ordinarily somewhat shorter than actual facility route 
mileage. This discrepancy can be corrected by introducing multiplying 
factors when determining network costs for any actual case. 

Table IV shows the number of trunks and trunk miles required to 
provide the noted grade of service for each of the networks under con­
sideration, both in absolute value and as per cent difference from the 
two-level hierarchy, which was arbitrarily selected as the standard. Al­
though the blocking probabilities are not exactly the same for all net­
works due to inaccuracies in the engineering procedures and statistical 
fluctuations in the simulations, they are quite close. 

The differences in facilities required for the various networks, with the 
exception of the gateway, are quite small, amounting to at most 4.1 
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TABLE IV - COMPARATIVE TRUNKING REQUIREMENTS 

(a) FuU:Load Networks 

Trunk Miles Trunks 

Network B 
Actual % Dill. from % Diff. from 

(Engineered) 

(000) 2-Level Hier. Actual 2-Level Hier. 

2-level hier. 1174 0 6659 0 0.007 
3-level hier. 1154 -1.7 6679 +0.3 0.008 
Symmetrical 1129 -3.8 6727 +1.0 0.007 
Gateway 1268 +8.8 9236 +38.6 0.010 

(b) Reduced-Load Networks 

Trunk Miles Trunks 

Network B 
Actual % Diff. from % Diff. from 

(Engineered) 

(00) 2-Level Hier. Actual 2-Level Hier. 

2-level hier. 6047 0 3298 0 0.008 
Symmetrical 5801 -4.1 3256 -1.3 0.008 

per cent difference in trunk miles and 1.3 per cent difference in trunks 
between the symmetrical and hierarchical reduced-load networks. 

The gateway network requires a much larger number of trunks and 
trunk miles than any of the others, reflecting the fact that many calls 
which in the other networks require only one link must use three in the 
gateway, and the fact that there is much excessive routing, or "back­
haul" in traffic which is obliged to switch through gateways. In this 
case the resulting cost difference represents the savings in switching and 
line costs which would have to be achieved to offset the increased quanti­
ties of equipment required. 

4.2 Costs 

Table V gives the costs of the various networks, assuming a range of 
ratios of line to terminal costs which should include most actual situa­
tions. The differences between the hierarchical and symmetrical networks 
are quite small, as is that between the two- and three-level hier­
archies, leading to a tentative conclusion that in these cases cost differ­
ential is not a primary reason for selection of one network over another. 
It must be remembered, however, that the hierarchy (two-level) was 
engineered using a known and proven economical procedure, while no 
such method is available for the symmetrical networks. Therefore, the 
hierarchies are probably close to optimal, while some additional economies 
might ultimately be realized for the symmetrical networks. 



2660 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

Cost/Trunk Mile 

Network 

2-1evel hier. 
3-level hier. 
Sym. 
Gateway 

2-level hier. 
Sym. 

TABLE V - NETWORK COSTS 

(a) Full-Load Networks 

Using $1500 Trunk Termination and Switching Costs 

$lO/Trunk Mile $50/Trunk Mile 

Cost % Dil!. from Cost % Diff. from 
$(000,000) 2-Level Hier. $(000,000) 2-Level Hier. 

21.72 - 68.69 -
21.56 -0.74 67.72 -1.34 
21.38 -1.57 66.54 -3.13 
26.53 +17.54 77.25 +12.46 

(b) Reduced-Load Networks 

10.99 
10.69 -2.73 1 

35.18 
33.89 -3.67 

I $lOO/Trunk Mile 

Cost 
$(000,000) 

127.39 
125.42 
122.99 
140.65 

65.42 
62.89 

% Diff. from 
2-Level Hier. 

-
-1.55 
-3.45 

+10.41 

-3.86 

Using the $50 per trunk-mile line cost figure, the data shown in Table 
yea) indicate that there is about a 1.3 per cent savings in cost of trans­
mission and switching facilities for a network of this size with full loads 
when a three-level rather than a two-level hierarchy is used, and another 
1.8 per cent if a symmetrical network is considered. This, of course, does 
not include any differences in signaling and control equipment which 
might be required to implement a symmetrical network, nor can it take 
account of the nonoptimality of the network engineering procedure now 
in use. 

The gateway network, as expected, costs about 12 per cent more than 
a hierarchy to carry the same traffic, assuming that trunk and terminal 
costs are the same for all networks. This difference will be somewhat 
mitigated by the fact that trunk and facility routes are more likely to 
be identical in the gateway than in the hierarchical configuration, and 
therefore the multiplier to convert from airline miles to facility miles 
may well be smaller. In addition, any savings in switching costs which 
can be effected because of the large volumes of traffic flowing through 
the gateway switches will of course work to the advantage of the gateway 
plan. 

Table V(b) indicates that the reduced-load symmetrical network is 
about 3.7 per cent less expensive than the hierarchy. This is in agreement 
with earlier resultsl which indicated that lightly loaded networks show 
greater differences between configurations than do heavily loaded net­
works. 
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4.3 Overload Performance 

Fig. 8 shows the over-all average blocking probability, B, for four 
different full-load network configurations (two-level hierarchy, three­
level hierarchy, symmetrical, and gateway), and for the load changes 
discussed in Section 3.5 above. The "base" load under the "BH Runs" 
heading represents the same average load as the "engineered" point. It 
is a shorter run, however, and any difference in blocking between the 
two points is due to statistical fluctuations. Only the points on the charts 
are meaningful, but lines have been drawn connecting them for visual 
clarity. Fig. 9 is a similar chart, showing the dispersion factor, D. Figs. 
10 and 11 show the same factors for the reduced-load networks, where 
only the two-level hierarchy and symmetrical networks were examined. 

Although there are apparently some differences in performance be­
tween the various networks under various load change conditions, it is 
clear from Figs. 8 and 9 that there is no single superior network configu­
ration in terms of traffic capacity and performance under shifting loads 
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at full-load levels. Some small systematic differences are present, such 
as the fact that the two-level hierarchy appears to give slightly lower 
blocking than all other networks at all points except the Oakland varia­
tions case, where the gateway shows up best. This can, however, be a 
result of the initial engineered blocking level, which is slightly lower for 
the two-level hierarchy than for the three-level hierarchy or the gateway. 
This initial point does not so much denote a difference in performance 
under changed loads as it does the slight inaccuracies in engineering 
level, which are then reflected at every point on the chart. Although the 
simulation runs which produced these measurements used the identical 
set of calls for all networks at each load, the standard deviation of the 
results due to the finiteness of the simulation run is of the order of magni­
tude of the blocking probability at each point, and firm conclusions can 
be drawn only if a distinct superiority of one configuration over another 
manifests itself at almost all of the points considered. There are some 
such uniform results, but the differences are quite small, and may be 
offset by the differences in cost discussed above. 
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Figs. 10 and 11, on the other hand, show a small advantage for re­
duced-load hierarchical networks under all changed load conditions. In 
this case there is no initial error, and all evidence indicates that the 
hierarchy is slightly superior. It must be remembered, however, that the 
hierarchy costs somewhat more in this case, and this sensitivity to over­
loads may simply be the penalty paid for a more economical network at 
engineered loads. 

The conclusion which must be reached from these results is that, for 
large networks with fairly high traffic densities, the performance of vari­
ous alternate routing configurations in terms of traffic capacity under 
changing load conditions is quite similar. The reason for this is probably 
that the very density of traffic in these networks causes many of the 
trunk groups to be quite efficient, and the great bulk of the traffic is 
carried on the direct routes. Differences in alternate routing configura­
tion, therefore, affect only a small proportion of the total traffic, with a 
correspondingly small effect on the network performance. In more lightly 
loaded networks, as has been observed, the differences are greater as 
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more of the traffic is alternate routed. Even in these cases, however, the 
differences are not large, and the comparison made here between sym­
metrical and hierarchical networks shows the slight superiority of one 
in cost to be offset by better performance of the other under shifting 
loads. 

V. ANALYSIS OF OPERATING AND CONTROL PROCEDURES 

5.1 Full versus Limited Routing 

As discussed earlier, symmetrical networks were operated in two ways. 
In the first of these, called "limited routing," a maximum of three or 
four links per call was allowed, depending upon the connectivity avail­
able to the traffic parcel. In the second, called "full routing," five links 
per call were allowed for all calls. Fig. 12 shows a comparison of the 
over-all average blocking for these two cases. It is clear from this figure 
that operation with limited routing is superior in traffic handling capac-
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ity. Although the differences at any point are still small, and the statisti­
cal variability of the results large, the fact that there is an advantage for 
the limited routing case for every point tested indicates that this is a 
real effect, and not merely a result of chance observation. Furthermore, 
since these two curves represent the same network in terms of trunk 
layout, there is no possibility of complicating or compensating factors 
due to cost differences or engineering errors. In fact, the difference in 
blocking probabHity under engineered loads in this case does not repre­
sent an engineering error, but instead an additional verification of the 
fact that operation with limited routing is superior. This result is further 
evidence of the fact that excessive alternate routing can cause service 
deterioration, even under light load conditions. (The routing used in 
the symmetrical networks discussed earlier was limited routing, chosen 
because it gave superior performance.) 

The symmetrical network whose performance is plotted in Fig. 12 
and in subsequent graphs is clearly not identical to that discussed previ­
ously, since the blocking probabilities at all points are somewhat higher. 
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This network, however, is the one which originally resulted from the 
engineering program, and it will be used for all studies concerned with 
differences in operating method using the same network. The earlier 
comparisons between network configurations on a basis of both cost and 
performance required that the blocking probability be approximately 
equal at engineered loads, and trial and error modifications were made 
to the symmetrical network to bring its blocking probability down to 
the proper level. The comparisons hetween different modes of operation 
of the same network should not be significantly affected by exact level of 
blocking at engineered loads and are expected to be valid for all networks 
of approximately the traffic densities considered. In the investigation of 
the effectiveness of crankback, however, symmetrical networks with 
both low and high over-all blocking probabilities were examined. 

5.2 Crankback 

Comparisons of networks operating with and without crankback 
were made for hierarchical and symmetrical networks using both the 
full traffic and reduced traffic models. In the hierarchical networks, no 
significant difference in behavior could be detected between the networks 
operated with and without crankback. This is because the structure of 
the hierarchical network is such that most of the blocking occurs on final 
route links, which are impossible to avoid even with the crankback 
option. For example, in Fig. 3(a) if a call from 1 to 2 is blocked at node 
4, it may, with crankback, back up to node 1 and attempt to reach node 
2. Even if this is possible, however, there is still a large probability of 
being blocked on route 3-2, and hence rearriving at 4 at some later time. 
In addition, those calls which do get through using the crankback option 
tend to use relatively long routes, causing later calls between other points 
to be blocked. 

The over-all network blocking and dispersion of blocking for sym­
metrical networks with and without crankback are shown in Figs. 13 and 
14 for full-load networks and in Figs. 15 and 16 for reduced-load net­
works. Figs. 13 and 14 have curves for both the symmetrical network as 
originally engineered (hi-block) and the corrected symmetrical network 
which was used for comparison with the hierarchy (lo-block). This was 
done so that any differences introduced by the general level of blocking 
would be apparent. The curves indicate that the level of blocking has, 
at most, marginal significance at these loads, and that crankback de­
grades the network performance at all but the lowest blocking levels, 
when it has virtually no effect. The networks here are operated with 



2668 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

limited routing, but a similar test with full routing yields results which 
are substantially identical to those shown. 

Figs. 15 and 16 show that crankback does offer a small advantage for 
less heavily loaded networks, although this advantage tends to disappear 
as the load increases, regardless of its distribution. 

These results indicate that for large networks, operation with crank­
back at best offers a slight improvement in service when the service is 
good, and makes matters worse when the situation begins to deteriorate. 
An examination of the trunk occupancies and number of links per call 
shows that operation with crankback generally causes a larger number 
of links per call to be used on the average, with a higher over-all trunk 
occupancy. In effect, it therefore increases the amount of alternate 
routing allowed, and not always in the best way, so that degradation 
under overloads is a certainty. It therefore must be recommended that 
this device not be incorporated into large switching networks unless 
survivability, improved reliability, or other factors dictate it. If it is 
incorporated into a network for reliability or other purposes, means 
should be made available to disable it under overloads. 
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5.3 Trunk Reservation for First-Routed Traffic 

Figs. 17 through 22 show the effect of trunk reservation for first-routed 
traffic on the blocking and dispersion of full- and reduced-load symmetri­
cal and hierarchical networks. This measure, which reduces the amount 
of alternate routing on a selective basis, provides a uniform improvement 
in performance for all networks shown, although the improvement is 
more marked in the case of full-load than in reduced-load networks. The 
two-level hierarchies were not noticeably affected by the introduction 
of this measure. 

In general, one trunk was reserved in each trunk group in the 
network, although two trunks were reserved on every group in some 
cases. I t was generally found that reserving more trunks than 
noted in the charts had little additional effect upon the network per­
formance. Figs. 17 and 18 show the effect of trunk reservation on sym­
metrical full traffic networks. It is interesting to note that the network 
with full routing has almost identical performance to the network with 
limited routing when trunk reservation is used. This is not il1ogical, 
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since trunk reservation has a gross effect similar to that introduced 
by limiting the number of links per call. 

Figs. 19 and 20 show the effect of trunk reservation on a three-level 
hierarchical network, and here we observe an improvement similar to 
that seen in the examination of symmetrical networks. 

Figs. 21 and 22 show the blocking and dispersion for the reduced­
traffic symmetrical network, in which the effect is similar but of lesser 
magnitude than that observed in the full-load networks. 

It is quite likely that a selective application of trunk reservation to 
those groups which are large and have a large proportion of alternate 
routed traffic would be more effective than the across the board applica­
tion used here. However, this study suffices to show that there is an 
advantage in the traffic handling capability of a network so equipped, 
and more detailed analysis wil1 be required to determine the best number 
of trunks to be reserved in any given case. 

Trunk reservation has essentially the opposite effect on the network 
as crankback; it reduces the amount of alternate routing during periods 
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of momcntal'Y congestion, pl'eventing calls from being completed using 
circuitous routes at such times. Subsequent calls are then not affected 
and the ovel'-all network performance is improved. 

One test was made using both trunk reservation and crankback, but 
the effect of trunk reservation appeared to dominate, and no difference 
was observed whether crankback was or was not used. 

VI. CONCLUSIONS 

The first and most obvious conclusion to be drawn from the preceding 
results is that for networks with a high traffic density the selection of 
routing doctrine and control philosophy does not have any great effect 
upon the traffic handling capability of the trunking network. This fact 
is apparently due to the substantial trunk group size generally encoun­
tered in such networks, with the basic group efficiency sufficiently large 
to obviate any spectacular improvements due to clever routing or control 
schemcs. Of course, these comments apply only to reasonable alterna-
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tives, such as those examined here. It is possible to develop a routing 
plan which would encourage circuitous routing at the expense of direct. 
Such a scheme would almost certainly show significantly poorer behavior 
than any of the networks investigated. 

Planning for future networks should then be initially concerned with 
other factors, such as economics, survivability, flexibility and so forth, 
with a precise evaluation of traffic capacity to be determined after the 
fundamental design considerations are well formulated. 

Having once accepted the basic idea that all differences are small in 
magnitude, we can nevertheless observe their direction, and, in the 
event that there are no other significant factors, decisions can be made 
on the hasis of such small differences. A saving of one per cent in the toll 
trunk plant in the U.S.A. alone, for example, would amount to rnany 
millions of dollars, which is not insignificant in magnitude, even though 
it is a small fraction of the total network cost. 

In the comparison of network conf-igurations, the symmetrical net­
works have some cost advantages, particularly at lower load levels. This 
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is to some extent offset by a tendency to deteriorate under overload 
slightly more rapidly than hierarchical or gateway networks. Further­
more, there is likely to be a not insignificant additional cost connected 
with the operation and control of such networks, and they are difficult 
to engineer and administer. They do have the advantage of improved 
survivability, however, since there is not so much concentration of facili­
ties at regional switching centers. 

The gateway network behaves well under overloads, but requires too 
high an initial cost to warrant its use with existing technology. If tech­
nological advances radically change the patterns of costs for such a net­
work, then the gateway may be a suitable selection. The survivability 
aspects of these networks are particularly important, since sections of 
the network can be isolated by the destruction of a few critical points. 

The hierarchical networks, which were the first alternate routing net­
works to be put into service, show a competitive initial cost and a reason­
able reaction to shifting loads of all sorts. They are simple to engineer 
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and administer, and the logic associated with switching and routing 
control is relatively uncomplicated and economical. They pose an obvious 
survivability problem, since some traffic parcels have access to only a 
single route. This situation can be largely alleviated by dispersion of 
routes and liberal provision of high-usage groups. 

In short, if a high-density communications network is desired, and 
concentration of traffic along backbone routes is allowable, then a hier­
archical network is likely to be the best choice of network structure. As 
the traffic density declines, the symmetrical networks begin to show to 
advantage, and they are indispensable in some form if the survivability 
requirement rules out hierarchies. Symmetrical networks should, how­
ever, be implemented only in conjunction with an operating technique 
such as trunk reservation to maintain overload capability. 

The investigations of control measures demonstrate conclusively that 
crank back is ineffective or harmful in all networks except perhaps those 
with extremely light traffic densities. It offers at most a small gain at 
engineered loads, and aggravates undesirable overload effects. There 
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would therefore appear to be no reason for providing it other than the 
nontraffic one of improving the ability of a call to avoid an equipment 
malfunction. If it is used for this purpose it should be disabled under 
overload, when it shows the greatest traffic disadvantage. 

Trunk reservation, on the other hand, almost always improves the 
traffic carrying capacity of networks, and is never harmful. It is an inex­
pensive measure to implement which is unquestionably worth using, 
and further studies of the strategy and extent of its use should be under­
taken. 

In sum, the basic factors relevant to the design of communications 
networks are: 

(1) If there is a high density of traffic, and traffic concentration on 
backbone routes is allowed, then a hierarchical configuration probably 
should be selected, with the number of levels dependent upon the par­
ticular situation. 

(2) If the traffic density is lower and/or the hierarchy is unacceptable 
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for survivability reasons, then a symmetrical network may be more 
economical and can perform well if properly controlled. 

(3) Crankback should not be used, except possibly as a means of 
alleviating the effects of equipment troubles. If used, its traffic disad­
vantages under overloads should be taken into account. 

(4) Trunk reservation should be widely employed, since it is simplc 
to implement and has noticeable traffic advantages under all load condi­
tions with almost any network configuration. 

Although these guidelincs are, of course, qualitative in nature, this is 
necessary because of the large number of variables which exist in an 
actual network. Variations in traffic levels between and within networks, 
geographical distributions of switching offices and densities of traffic, 
equipment limitations and differing primary functions all lead to different 
constraints and weightings of various factors. It is the purpose of these 
studies to provide guides for the design of communications networks, 
with final choices dependent upon specific factors. 
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An Experimental Study of Near-Field 
Cassegrainian Antennas* 

By D. C. HOGG and R. A. SEMPLAK 

(Manuscript received May 30, 19G4) 

The near-field Cassegrainian antenna is a double-reflector system that 
employs, in its simplest form, confocal paraboloids. Unlike the standard 
Cassegrain which employs a hyperboloidal sub reflector illuminated by a 
spherical wave, the near-field device is fed by a uniform phase front. Experi­
mental data on noise peljormance, gain, and radiation patterns have been 
obtained at a frequency of 6 gc using two 16-foot paraboloids (jocallength­
to-diameter ratios of 0.375 and 0.25) in both standard and near-field con­
figurations. 

Using. the shallow antenna, zenith noise temperatures of 10°]( and 
6°]( were obtained for the standard and near-field systems, }'espectively; 
at an elevation angle of 10° the antenna temperatures were 50°]( and 20°](. 
U sing the deep secondary reflector, zenith noise temperatures of 4-°]( were 
obtained for both configurations; at 10° above the horizon, however, the 
standard Cassegrain has an antenna temperature of 30°]( and the near­
field device 13°](. ]n all cases, the antenna efficiencies are not far above 50 
per cent. Discussion of noise produced by various methods of mounting 
subreflectors is included. Since noise produced by transmission lines and 
antenna environment is closely related to these experiments, it is discussed 
in detail in appendices. 

r. INTRODUCTION 

Large microwave antennas of high efficiency and low noise are de­
sirable in radio astronomy, in tracking of space probes and in satellite 
communications. In all of these cases, convenient access to the asso­
ciated electronic equipment is also a desirable feature. The horn re­
flector l ,2 is an antenna which provides this access and also admirably 
satisfies the electrical requirements. Nevertheless, it is of interest to 

* Part of this material was presented to the URSI in Washington, D. C. (May, 
19(2) . 

2677 



2678 'l'HE BELL SYS'rEl\l 'l'ECHNICAL JOURNAL, NOVEMBER 1964 

examine other types of microwave antennas of more favorable ratio of 
geometrical aperture to total size with a view to improvement of their 
electrical performance toward that of the horn reflector. 

The purpose of this study is twofold: to evaluate the near-field Casse­
grain as a microwave antenna, and to compare its noise performance 
with that of other antennas. Actually, two 16-foot diameter paraboloids 
have been tested, one with an flD ratio of 0.375 and the other of 0.25. 
Measurements of antenna noise temperature, gain, and radiation pat­
terns were made at a frequency of G gc using various feeding arrange­
ments on both of these main reflectors. 

Most paraboloids have relatively low aperture efficiencies and exhibit 
poor noise performance. For example, paraboloids fed by a horn at the 
focal point typically have intrinsic (back lobe) noise temperatures of 
20 or 30 degrees Kelvin,3,4 whereas the equivalent noise for the horn 
reflector is about 2°K.5,6,7 This noise is due to thermal radiation from 
the environment of the antenna (mainly the ground) into the wide­
angle or back lobes of the antenna; in what follows, it is designated by 
Tb • 

Paraboloids fed by a source at the focus suffer frOln another deficiency: 
either the first circuit of the receiver must be mounted at the focal point 
(which is inconvenient), or a rather long transmission line (which re­
sults in a prohibitive increase in noise) must be provided. This unde­
sirable feature is overcome by use of the Cassegrainian configurationS ,9 

which, in the usual arrangement, has a point source feed at the apex of 
the main (secondary) reflector and a hyperboloidal (primary) subre­
flector near the focal plane. In this case, the receiving equipment may be 
situated at the apex of the secondary reflector, free space serving as the 
transmission medium to the subreflector. Often the location of equip­
ment near the apex is restrictive; depending on the arrangement, it 
mayor may not move with the main reflector. This type of feed is re­
ferred to here as the "standard" Cassegrain. 

The near-field Cassegrain combines some of the useful properties of 
the horn reflector with those of the standard Cassegrain. Rather than a 
point-source feed at the apex of the main reflector, a plane-wave feed 
of the same dimension as the subreflector is used. * Of course, the sub­
reflector blocks the field of the main aperture just as in the case of the 
standard Cassegrain configuration. The plane-wave feed used for the 
measurements to be discussed was a small horn-reflector antenna. This 
arrangement allows the electronic equipment to remain stationary while 

* Experiments on an antenna of this type were described recently by Profera 
et al,1o Some generalized antenna systems based on this concept are discussed by 
S. P. MorganY 
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the elevation angle of the antenna is changed, in much the same manner 
as with the horn-reflector antenna. 

It should be mentioned that the near-field feeding system is suited 
only to antennas that are very large compared to the wavelength. In 
the model that has been tested here, where the antenna diameter is less 
than 100A, this criterion is just met. However, it appears that the feed 
system is broadband, embracing all wavelengths shorter than that 
satisfying the criterion, and in this sense the near-field antenna is some­
what similar to the horn reflector. lVlethods for mode scanning12 a horn­
reflector antenna are equally applicable to a near-field Cassegrain. 

In Section II, the geometry of the near-field Cassegrainian antenna is 
discussed; the fields produced by the near-field feed are also given 
there. Section III describes the equipment, siting, and the methods used 
for measurement of antenna noise temperature and gain. Sections IV and 
V contain the noise and gain measurements on the shallow and deep 
sixteen-foot paraboloids using various types of feeds; the effect of subre­
flector mounting structures on noise performance is also given in those 
sections. ]\;Ieasurement of noise due to loss in transmission lines is dealt 
with in Appendix A. In Appendix B, the back-lobe noise temperature 
(Tb) for an antenna in a given environment is discussed, and in Appendix 
C, a quality factor which governs the signal-to-noise ratio in antennas 
is proposed. 

II. THE NEAR-FIELD CASSEGRAINIAN ANTENNA 

2.1 Comparison oj Standard and Near-Field Cassegrainian Antennas 

The standard and near-field Cassegrainian antennas are compared 
in the idealized sketches of Fig. 1. An extensive analysis of the standard 
Cassegrain antenna has been given8 and it will not be discussed further 
here; however, it should be noted that radiation from the point-source 
feed tends to spill over the rim of the hyperboloid. It has been demon­
strated recently13 that suitable beam shaping of the source pattern can 
reduce this spill-over. The receiving equipment is stationary as the 
antenna changes elevation, a right-angle circular waveguide bend and 
rotating joint being provided in the transmission line (see Fig. 1a). A 
simple right-angle bend would not be used in systems employing circular 
polarization since, due to unequal phase velocities of orthogonal com­
ponents, the circularity would be degraded. A simple bend was used in 
the measurements to be discussed since circular polarization was not 
involved. 

The near-field Cassegrain, shown in Fig. l(b), has a horn-reflector 
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Fig. 1 - Idealized standard and near-field Cassegrainian antennas. 

feed with an aperture of about the same diameter as that of the sub­
reflector. To a geometrical optics approximation, the near field of this 
feed is collimated and of uniform phase. 

2.2 Geometry of Near-Field Cassegrain 

A simple derivation shows that the surface of the subreflector in the 
near-field configuration should be paraboloidal. Assume that the sur­
face of the subreflector (see Fig. 2) is paraboloidal; it will then be suffi­
cient to show that the path length of any ray from the plane wave in 
the feed aperture EF to a reference plane in the secondary aperture is 
constant. Consider the ray of path length AB + BC + CD. Equating 
this path to the length of the axial ray, one has 

(1) 

where fl and f are the focal lengths of the primary and secondary re­
fiectors.* From Fig. 2, the line segments AB, BC, and CD are equal to 
f - Zo, r2 - rl, and r2 cos e respectively. Equation (1) then becomes 

(2) 

* Primary and secondary are used to designate the sub- and main reflectors 
respectively because the radiation patterns of the feed and main reflector are 
usually referred to as primary and secondary patterns. 
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where Zo = r1 cos (j, and from the equations of the paraboloids 

2f1 
r1 = --'----

I + cos (J 

2f 
and r2 = . 

1 + cos (J 

Making these substitutions, (2) becomes 

f _ 211(1 + cos (j) + 2f(1 + cos (j) 

1 + cos (j 1 + cos (j 
3f - 2f1 

which proves the equality. 
As in the case of the standard Cassegrain, the degree of illumination 

on the surface of the secondary reflector of a near-field Cassegrain can 
be varied by using subreflectors of various focal lengths. Optimum 
illumination, as determined by geometrical optics, is achieved by using 
a subreflector of f / D ratio identical to that of the secondary reflector. 

Fig. 3 is an idealized sketch of the near field along the axis of the 
source aperture, the relative positions of subreflectors used in the 
experiments being indicated by arrows. Note that the subreflectors are 
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Fig. 2 - Geometry of near-field Cassegrainian antenna. 
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well out in the near-field. As mentioned in the introduction, the antenna 
size and wavelength used for these tests are far from optimum for the 
near-field type of feed. Preferably one would choose dimensions as large 
as possible with respect to wavelength (a high-gain antenna) in which 
case geometrical optics would hold more rigorously; an immediate conse­
quence of this is that the subreflectorpositions (see Fig. 3) would be 
located where collimation and phase uniformity of the near-field are 
greatly improved. 

2.3 The Conical Horn-Reflector Feed 

A horn-reflector antenna14 was used as the near-field feed for both the 
shallow and deep dishes. Theoretical and experimental studies of the 
far-field characteristics of this antenna have been published;2 here, 
discussion is confined to its near-field characteristics. 

The first 16-foot diameter secondary reflector used in the near-field 
Cassegrainian configuration had a focal length of 6 feet; therefore 
measurements of amplitude and phase of the field were made six feet 
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in front of the aperture of the horn reflector, where the subreflector 
was to be mounted. The measurements "\vere made in an anechoic cham­
ber using a dipole probe. The data are plotted in Fig. 4 along with 
theoretical curves; these compare favorably in their general trend but 
not in detail. One notes that the phase departs from uniformity by 
about ± 10° in some cases and that it is unsymmetrical with respect to 
the axis. 

III. EQUIPMENT AND METHODS OF MEASUREMENT 

3.1 Equipment 

Fig. 5 shows a complete antenna mounted on a motorized turntable 
carriage for azimuthal rotation. The cab to the left of the antenna is 
shielded; it houses the necessary equipment for measuring noise tem­
perature, gain, and radiation patterns. The double A frame and cradle 
structure on which the secondary reflector is mounted is shown more 
clearly in Fig. 9 (p. 2691); it is a strong structural unit, no demand being 
made of the paraboloid for supplying rigidity. Elevation steering is 
provided by rotation of the cradle on bearings in the A frames. The 
transmission line, a circular waveguide of 2.8-inch diameter, is fed to 
the receiver in the cab through the bearing via a rotating joint. 

The antenna is sited in a relatively flat, clear area; however, the site 
is ringed with trees which limit the horizon to an average elevation angle 
of 1.5 degrees. 

The 6-gc maser receiver used for antenna noise temperature measure­
ments has been discussed previously. 5 ,7 

3.2 Method of Noise ill easurements 

The setup used for measuring noise performance is shown in Fig. 6. 
The noise temperature at the input to the converter "\vith the noise lamp 
off is given by 

(3) 

where Gm , T m are the maser gain and noise temperature, and Ta = 
Ts + Tz + Tb is the antenna temperature. Ts is the sky temperature 
observed by the main beam. Tz is the noise temperature of the trans­
mission line associated with the antenna. * Tb is the noise contribution 
from the earth and sky through the wide angle side and back lobes of 

* Here we neglect the actual attenuation due to transmission line loss; it is 
quite small. 
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Fig. 5 - A 16-foot diameter paraboloid (fID 
grainian feed. 

0.375) with near-field Casse-
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Fig. 6 - Noise contributors in the receiving system. 
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the radiation pattern. With the noise lamp fired, the noise input to the 
converter becomes 

( 4) 

where T L is the additional noise introduced by the calibrated noise lamp, 
To the ambient temperature and A the reciprocal of the additional loss 
introduced by a precision attenuator to equalize (3) and (4). 

Solving (3) and (4) for Ta , 

ATL To 
Ta = 1 _ A + G

m 
- T m· (5) 

Since the terms on the right of (5) are determined by independent 
measurement, the noise temperature due to the back lobes is obtained 
from 

(6) 

provided T sand T z are known. 
The sky temperature, T s , for an atmosphere of given humidity IS 

known from experience.* The transmission line contribution, T z , IS 

measured independently as discussed in Appendix A. 

3.3 Method of Gain and Radiation Pattern Measurement 

Gain measurements were made by comparing the power received by 
the antenna with that of a standard horn. A height run was made with 
this horn over the vertical extent of the main paraboloid for each gain 
measurement, the average of these data being taken as the reference 
value. Using the same equipment, azimuthal radiation patterns were 
obtained for the two principal polarizations. 

IV. MEASUREMENTS ON THE SHALLOW PARABOLOID Cf/D 0.375) 

4.1 Noise ]J!1 easurements Using V arious Feeds 

The 16-foot diameter spun-aluminum shallow paraboloid Cf / D = 
0.375) was first fed in a conventional manner using a cylindrical wave­
guide horn supported at the focal point by fiber glass struts, the feed 
waveguide running out from the apex. The radiation pattern of this 

* In assigning values to Ts , the absolute water vapor density at the ground is 
determined from humidity and temperature measurements at the receiving site. 
Based on the particular value of water vapor density obtained, theoretical sky 
temperatures which have been verified previously7 are calculated. 
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feed tapers to about -10 db at the rim of the paraboloid; this, in addi­
tion to an inverse distance effect of 3 db, results in a net illumination 
taper of 13 db. 

U sing the method for measuring noil:3e dil:3cul:3sed in Section ;~.2, the 
two llwasuremellts on the curve of Fig. 7 labeled A were obtained* 
for zenith angles (0) of zero and 45°. In spite of the relatively strong 
taper, this feed produces a noise temperature of 26°K at both angles. By 
removing the fiber glass mounting struts and supporting the feed with 
fine guy ropes, the point labeled B was obtained, Tb = 13.5°K. Com­
parison of the zenith point on curve A with point B shows that the fiber 
glass struts contribute 12.5° of noise. Strut noise can be produced both 
by reflection of noise radiated from the ground into the antenna and by 
loss in the material comprising the strut; this point is elaborated upon 
later. 

The second feeding arrangement measured on this paraboloid was a 
standard Cassegrain consisting of a precision hyperboloid (whose diam­
eter could be changed from 30 to 24 inches by removal of an outer ring) 
fed by a horn of 3.5A diameter located at the apex of the main dish. The 
transmission line from horn to maser was about six feet of oversized 
circular guide including a right-angle bend. 

With the hyperboloid mounted on fiber glass struts, noise measure­
ments (at the zenith) produce Tb = 24.5°, as shown by pointC in Fig. 7. 
The fiber glass struts were then covered with aluminum foil, essentially 
converting them to metal struts of the same geometry, and another 
measurement made, as indicated by the zenith value on curve D. At 
zenith the noise is now Tb = 11 oK. Comparing this value with the 24.5° 
obtained using fiber glass struts, one sees that a decrease in noise of 
13.5° has been effected. This result shows that most of the noise (at 
least for zenith orientation of the beam) is produced by loss in the di­
electric; this conclusion seems to be valid because the decrease of 13.5° 
compares very favorably with the 12.5° decrease in Tb obtained when 
the fiber glass struts were removed during the test using the waveguide 
feed. IVleasurements were also made versus zenith angle, as shown by 
the remainder of curve D in Fig. 7. As the horizon is approached, Tb 
reaches values of the order 50 oK. This noise is produced by spill-over 
beyond the rim of the hyperboloid and by reflection of noise from the 
earth by the sizable struts. 

The last feeding arrangement to be discussed is the near-field Casse­
grainian configuration. Fig. 5 shows a front view; mounted near the 

* It may be well to mention here again that Tb in Fig. 7 is the intrinsic antenna 
noise; sky and waveguide noise, etc. are not included. 
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Fig. 7 - The G-gc noise performance of IG-foot paraboloid (f ID = 0.375). 

focal plane is one of the several paraboloids used as primary reflectors. 
The mounting struts are of interest; they are metallic, light-weight, 
small, and extend to the rim of the secondary reflector, the latter being 
done so that the struts do not intercept direct radiation from the sub­
reflector. 

Noise data obtained for this feed using a primary reflector of 12-inch 
focal length are shown in Fig. 7 as curve E. Tb at the zenith for this 
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arrangement is less than 8°K. Equally important, however, Tb is less 
than 200K in the region of e = 80°, which is approximately the acquisi­
tion angle in a satellite communication system. At this angle the sky 
noise7 is relatively high compared to the zenith value and it is desirable 
to have Tb as low as possible. 

By using a subreflector of longer focal length (14.5 inches), much 
less spill-over of the secondary reflector occurs and a zenith temperature 
of 4 oK was achieved. For all elevation angles with this subreflector, 
Tb was of the order of one-half that obtained with the subreflector of 
12-inch focal length; of course, the secondary area illuminated is rather 
small and the gain is reduced by about 1.5 db; thus use of such sub­
reflectors is of questionable value. A discussion of the signal-to-noise 
ratio in antennas is given in Appendix C. 

To pursue the strut-noise effect further, a pressurized Mylar sheath 
support (similar to that shown in Fig. 9) with a wall thickness of 1.5 
mils and inflated with nitrogen to a pressure of 0.15 psi was devised; it 
provides a remarkably rigid support. Nichrome guy wires from the 
subreflector to the rim of the secondary reflector are used for centering. 
Noise data for this arrangement (curve F in Fig. 7) show that there is 
an improvement of about 2°K (compared with curve E) for all eleva­
tion angles. 

Curves G and H are included in Fig. 7 to serve as reference data. 
Curve G was obtained using the 27-inch horn-reflector feed (itself a 
low-noise antenna of respectable size with a far-field beamwidth of about 
5°) mounted on the 16-foot paraboloid, struts and subreflector being 
removed. The arrangement amounts to a well shielded horn reflector 
with a large baffle (the secondary reflector); as indicated in curve G, 
Tb is less than 10K at zenith. The rather rapid increase to Tb = 9°K 
at e = 80° is attributed in part to the limited horizon* mentioned in 
Section 3.1. Curve H was obtained using a five-foot horn reflector at 
the Crawford Hill site, which has a clear horizon.7 

4.2 Radiation Pattern, Gain, and Impedance 

The idealized near field of the conical horn feed was shown in Fig. 1 
as a plane wave perfectly collimated in the direction of the primary 
reflector. In reality this is not the case; as discussed in connection with 
Fig. 4, the phase varies as much as ± 10° in places and is unsymmetrical 
with respect to the Z axis, as is the amplitude. From an academic point 

* The decrease in noise very near the horizon shown by the curves in Figs. 7 
and 10 is also attributed to the environment; this effect was not observed using the 
Crawford Hill site (Refs. 5 and 7). 
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of view, a plane-wave source with a symmetrical aperture field (such as 
a horn-lens antenna) would be preferable as the feed, since the unsym­
metrical phase produced by the horn reflector produces unsymmetrical 
radiation patterns in the near field. Evaluation of the field distribution 
in the aperture of the main dish is also a near-field diffraction problem. 
Preliminary calculations, using idealized fields, indicate that this distri­
bution is toroidal; the secondary patterns produced therefore have 
relatively high immediate side lobes, similar to those of a heavily blocked 
aperture. 

Fig. 8(a) shows the measured pattern for longitudinal (horizontal) 
polarization, using the subreflector of 12-inch focal length. Note that the 
side lobes are unsymmetrical and that the highest one is only some 13.5 
db down from the main lobe. In Fig. 8(b), for transverse (vertical) 
polarization, the immediate side lobes are more than 20 db down. In 
both cases the half-power beamwidth is about 0.7°. For comparison, 
a calculated curve for constant amplitude distribution and 2 per cent 
aperture blocking is also shown in Fig. 8. The gain is 48.0 db for trans­
verse and 47.4 db for longitudinal polarization. The calculated full area 
gain of the 16-foot dish is 50.1 db at 6.3 kmc; thus the average effective 
area is 2.4 db down or, in other words, the efficiency is .57 .. 5 per cent. 

The SWR for the above configuration is 1.17, equivalent to a return 
loss of 22 db. A slight improvement in impedance is obtained by remov-
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ing a circular area from the subreflector and illuminating the concave 
surface of the subreflector in the proper phase. This supplementary 
feeding arrangement (shown clearly in Fig. 5) resulted in a VSWR of 1.15 
or a return loss of 23 db. 

Fig. 9 - 16-foot paraboloid (fiD = 0.25) with near-field Cassegrainian feed. 
Note Mylar support for subreflector. 

V. MEASUREl\IENTS ON THE DEEP PARABOLOID U/D 0.25) 

5.1 Noise 111 easurements Using V arious Feeds 

Performance was next examined using a deep paraboloid U / D = 0.25) 
as secondary reflector; Fig. 9 shows a front view. This paraboloid (diam­
eter 16 feet) was machined from urethane foam, a reflective surface of 
zinc being applied after machining. * Near the focal plane is one of the 

* Precision in reflecting surfaces is an important factor in determining the 
wide angle lobes 15 and therefore the noise performance of antennas. 



2692 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER H)G4 

paraboloids used as a primary reflector, in this case supported by a 
Mylar sheath. An alternative support used four half-inch struts extend­
ing perpendicularly from the mounting ring surrounding the feed 
aperture to the subreflector. 

Curve A of Fig. 10 shows data obtained using a 30-inch diameter 
subreflector of focal length 7.5 inches supported by metal struts; as 
indicated, the zenith temperature is about 4 oK. Next, a 24-inch diam­
eter subreflector with a focal length of 6 inches was used, the f / D ratio 
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Fig. 10 - The 6-gc noise performance of lo-foot paraboloid (f/D 0.25). 
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being the same as in case A. As indicated by curve B, this feed arrange­
ment displays very good charaeteristics, also achieving a zenith tem­
perature of 4: oK. Equally importallt, Tb remains less than lOoK until a 
zenith allgle of sixty-five degrees is reached. In the region of e = 80°, 
Tb is less than 15°K. 

Even though the struts supporting the subrefiector were of small size, 
it was of interest to see what the change in Tb would be if the struts 
were removed. Fig. 9 shows the nitrogen-filled IVlylar sheath (previously 
discussed in Section 4.2) supporting the 24-inch diameter subrefiector, 
and curve C in Fig. 10 shows the data obtained. There is no appreciable 
change in the zenith noise temperatures; however, there is improvement 
for angles approaching the horizon, indicating that the small struts were 
to some extent scattering the earth's radiation into the antenna. 

A standard Cassegrain feed consisting of a precision 30-inch diameter 
hyperboloid machined from styrofoam and suitably surfaced with zinc 
and a 3.5>-. diameter horn located at the apex of the secondary refiector 
was tested for comparison with the near-field feed; the noise measure­
ments are shown as curve D in Fig. 10. At zenith, the noise temperature 
is 4 OK, but spill-over effects quickly become apparent when the zenith 
angle exceeds sixty degrees. At e = 80°, Tb has increased to about 300 K; 
this is attributed mainly to spill-over beyond the rim of the subrefiector. 

Reference curves E and F are included in Fig. 10; similar data were 
discussed in connection with Fig. 7. 

5.2 Radiation Pattern, Gain and Impedance 

Fig. 11 shows the azimuth patterns for the deep dish using the 24-
inch diameter paraboloid as primary refiector. In Fig. 11 (a) (longitudi­
nal polarization) the immediate side lobes are unsymmetrical and the 
highest one is about 13.0 db down. Figure 11 (b) is the secondary pattern 
for transverse polarization in the feed. In both cases, the 3-db beamwidth 
is about 0.7°. 

During the measurements, the well known problem of properly 
illuminating a deep paraboloid became apparent; however, it was 
readily determined that deep refiectors may be illuminated more easily 
by Cassegrainian techniques than by focal point feeds. For example, 
using the near-field feed, the illumination at the rim of a 30-inch sub­
refiector is down about 13 db; including a 6 db inverse distance attenua­
tion, the resulting taper across the secondary refiector is approximately 
20 db. The measured gain was 4 db down from full area. By reducing 
the diameter of the subrefiector, the taper is also reduced, thereby in-
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creasing the gain (in this process, noise performance is often sacrificed 
for gain). A 24-inch subreflector was found to be a suitable compromise, 
measured gain for both polarizations being 47.3 db (2.8 db down from 
area). Somewhat surprisingly, as indicated by curve B of Fig. 10, there 
is no significant deterioration in noise performance. 

Average SWR measurement for the configuration last mentioned is 
1.11, which is equivalent to a return loss of 25 db, an improvement of 
3 db over that of the shallow dish. 

The gain of the standard Cassegrainian configuration was 47.4 db 
and 47.7 db for the vertical and horizontal polarizations, the average 
value being 0.24 db higher than that of the near-field device. 

VI. DISCUSSION 

The measurements discussed here have been directed toward evalua­
tion of the noise performance of several types of feeds for full paraboloidal 
reflectors. In particular, it is found that the near-field Cassegraiuian 
feed, a device whose design is based on simple geometrical optics, 
performs exceptionally well, its low-noise characteristics being as good 
or better than those of the standard Cassegrainian feed over all angles of 
elevation. This result holds true for both shallow and deep secondary 
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reflectors. The efficiency of the near-field Cassegrain is about 55 per cent, 
similar to that obtained using more conventional feeds; the radiation 
patterns are unsymmetrical due to lack of symmetry in the phase of the 
primary field. 

Deterioration in noise performance due to the struts (or spars) used 
for supporting feed structures has been examined. Dielectric struts, 
such as those of fiber glass, have been found to introduce noise because 
of loss in the material. A pressurized membrane has been tested as a 
support for subreflectors; it appears satisfactory mechanically and 
minimizes degradation in electrical performance. 
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APPENDIX A 

Transmission Line lJ![ easurements 

A.I Noise 111 easurements (Short Circuit) 

The noise that exists in a transmission line is caused by resistive losses 
in the line itself and by noise generators which may be at either or both 
ends of the line. Consider the infinite transmission line of Fig. 12 (a) , 
which for the moment is assumed to have a noise-free measuring device 
at terminal A. Let the thermodynamic temperature of the line be T z , 

and ex the power absorption coefficient. Since the line is of infinite length, 
the noise temperature measured at A is simply Ta = T z • Divide the line 
into segments 1 and 2 at point l. The contribution to the noise at A 
by segment 2 is Tze- al (since the line is infinite); therefore that con­
tributed by segment 1 is Tz(I - e -al). A series expansion gives 
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(c) 

which for small a is approximately Tzal. Naturally, if the total loss, al, 
is known, the noise produced is obtained immediately. * 

Fig. 12(b) shows a movable shorting piston, S, near the terminals A 
of the amplifier to be used for the noise measurements. The amplifier is 
not perfectly noise free, nor is it perfectly matched; therefore movement 
of the piston produces a cyclical variation in the noise at A. 

Let the effective temperature of the maser amplifier at terminals A 
in Fig. 12(b) be designated T m ; this represents the intrinsic noise, which 
amounts to about 3°K. Tz represents the effective temperature of the 
transmission line and Ts that of the shorting piston, S. The voltage 
reflection coefficient at A (the input mismatch of the maser) is p. The 

* This assumes that the thermodynamic temperature of the line is constant; 
if not, the effective noise temperature is given by 

l' ~ { T(x)a(x) ex]> ( - f a(x) dX) dx 

where T(x) is the temperature distribution along the line. 
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sources that give rise to noise T, traveling to the left (i.e., into the am­
plifier) at A are: 

T m1 - intrinsic amplifier noise; 
T m2 - amplifier noise traveling to the right, and reflected at S 

(uncorrelated with T mJ; 
TZI -line noise initially traveling to right and reflected by S, also 

that reflected by p at A and again by S; 
TZ2 -line noise initially traveling to left, also that reflected by p 

and by S (uncorrelated with TzJ; 
T s - shorting piston noise, traveling to left, also that reflected by p 

and by S. 

Thus, to first order the noise entering the amplifier at A is 

T = Tm1 + Tm2 + TZI + TZ2 + Ts. 

If the attenuating effects of line loss are neglected (since they are only 
of the order 0.1 db), the above sum to first order becomes 

T = rpm1 + (Tm.) + 2Tz + T H)(l + /) 
" (7) 

+ 2( T11l2 + 2Tz + TH)p cos 2{3l 

where 

2Tz = TZI + TZ2 

{3 being the propagation constant of the line. 
Measured data (noise versus short position) shown as crosses in Fig. 

12(c) were taken using a short circuit in round waveguide. Also shown 
(as a solid curve) are data calculated using the following constants in (7) : 
T m1 = 3°, T m2 = 3°, Tz = 10°, Ts = 2.5° (short circuit with a standing 
wave ratio of 250) and p = 0.075 (22-db return loss), the last two being 
measured values; these result in 

T = 28.6 + 3.8 cos 2{3l. (8) 

N ow let an additional length of transmission line be added to l such 
that the total length is II , and let the short S be moved to the end of 
this line. The data, shown as dots in Fig. 12( c), were obtained when 
approximately 6 feet of 2.8-inch diameter line* were added. The dashed 
curve is a plot of (7) with the following constants: 

p = 0.075, 

Tl = 36.7 + 5.0 cos 2{3l. (9) 

* The line actually comprised 45 inches of straight guide and a right-angle bend 
of I5-inch radius used in the standard Cassegrain feed. 
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If (8) is subtracted from (9), one has 

2( TZI - Tz) (1 + /) + 4( TZI - Tz)p cos 2{3l 

= 7.9 + 1.2 cos 2{3l. 
(10) 

From the first terms of both sides of (10),oneobtains2(Tzl - Tz) = 7.9, 
or an increased noise temperature TZI - Tz = 3.95° due to the addi­
tionallength of line. From the second terms one obtains 4( TZI - Tz)p = 
1.2 or TZI - Tz = 4°. The accuracy of the latter value is very dependent 
upon an accurate value for p (measured as 0.075), whereas the first 
value, 3.95° (which is really the difference between the average values 
of the plots in Fig. 12 ( c ), is good to order 1 + p 

2
• The value 3.95 oK 

is equivalent to a loss of 0.052 db in the additional length of line. 

A.2 SWR Measurements (Short Circw't) 

U sing the same shorting piston and transmission line as above but 
adding an additional 60-inch length of waveguide (diameter 2.8 inches), 
the measured VSWR was 85, which is equivalent to a loss of 0.0093 
db/foot. 

The loss per unit length derived from the noise measurement just 
discussed is 0.0092 db/foot, indicating close agreement between the two 
methods. 

APPENDIX B 

The Antenna Noise - Tb 

Since typical antenna patterns have significant levels in the side and 
back lobes, it is necessary to consider the effects of noise due to thermal 
radiation from the environment into the antenna. * This effective noise 
temperature is designated by Tb • 

Consider first the ideal radiation pattern shown in Fig. 13(a): it 
has a very narrow beam of width {x, the gain G being constant over the 
angle (X; it has no back lobes. The antenna is assumed to be lossless and 
to be mounted height h above the ground. Beamed at various angles 8 
with respect to zenith, this antenna sees the true brightness tempera­
ture, T(8), due to various noise sources. For 0 < 8 < n/2, T(8) = Ts(8) 
is the sky temperature. For n/2 < 8 < 71", the brightness temperature 
is due to both sky and earth, as shown in Fig. 13(b), since the sky 
noise from angle 71" - 8 is reflected at point P according to the reflection 

* This effect has been discussed recently in Ref. 16. 
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GROUND OR SEA 

Fig. 13 - Ideal antenna and its environment. 

coefficient of the earth, r(e), at P, whereas the earth generates noise that 
enters the antenna directly dependent upon the coefficient aCe), which 
represents absorption at P. Noise due to loss in the atmosphere along 
path length l also contributes to the brightness temperature. Since 
r(e) + aCe) = 1, the brightness temperature for 1r/2 < e < 7r is 

T( e) = r( e) Ts( 7r - e) + [1 - r( e) ]To + TSl (e - 7r/2) (11) 

where To, the temperature of the ground, is assumed to be 300oK. 
The term TSl(e - 7r/2) of (11) represents noise due to the path in 

the atmosphere between the antenna and the point P. Compared with 
other noise sources, it is found to be negligible, and therefore has been 
disregarded in what follows. 

The reflection coefficient 1'( e) is highly dependent upon the environ­
ment and to some extent on polarization; it usually varies with time, 
being a function of the ground conditions over vegetated areas and the 
wave conditions over water. Using representative data at 10 cm wave­
length for the reflection coefficient,17 the sky temperature, and (11), one 
can estimate the brightness temperature distribution for all angles e, as 
shown in Fig. 14. Curve B is for smooth sea water and curve A for a 
perfectly reflecting mirror (which images the sky noise), whereas the 
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Fig. 14 - Brightness temperature distributions for middle em-wave band. 

poorly reflecting ground environment, curve C, approximates a perfect 
absorber. 

An actual antenna has a finite radiation pattern G( e); assuming it 
to be symmetrical about the main axis of the antenna beam, the equa­
tion relating antenna temperature to radiation pattern and brightness 
temperature is 

117r Ts + Tb = 2 0 G(e)T(e) sin e de (12) 

for the antenna beamed vertically. If the antenna is beamed at angle 
e' with respect to the zenith, (12) becomes 

Ts(e') + Tb(e') = ~ L7r G(e - e') T(e) sin e de. (13) 
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As a simple application of (12), consider an isotropic antenna sur­
rounded by a noise-free sky and a perfectly absorbing earth. In this 
case G(e) = 1 and 'pee) = To for 7r/2 < e < 7r; thus 

Ts + Tb = -2
1 

111" To sin e de = T
2

0 = 150°1(, 
11" /2 

An idealized radiation pattern for a microwave antenna is shown in 
Fig. 15, where 

G(e) = Go, o < e < ex/2 

and 

G(e) = Gb, ex/2 < e < 7r, 

Gb being the average gain in the side and back lobes. Again assuming a 
noise-free sky and perfectly absorbing earth, 

Tb 2 = ~ f~2 GbTo sin e de = T;Gb = 150Gbo1(' 

Thus, for example, if Gb = 0.1 (10 db below isotropic), Tb2 = 15°K. 
Using the idealized antenna pattern of Fig. 15 and the data of Fig. 14, 

let us now integrate numerically according to (12). The noise contribu­
tion from the main beam (the so-called sky noise) is 

l1 cx
/

2 

Ts = 2 0 Go Ts(e) sin e de ~ 2.5° 

which is readily taken from Fig. 14. 

s 
~ 
Go 

I 
I 

Q 

B 

G = Go - % ~ (J :s ~ 

Fig. 15 - Idealized antenna pattern. 
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Using Gb = 0.1, the contribution due to sky noise in the far side lobes 
(a/2 < e < ~/2) is 

From the region ~/2 < e < ~ (ground, etc.), the contribution is 

Tb2 = G
2
b 171' T(e) sin e de 

71'/2 

which amounts to 0.7° for the antenna above a perfect reflector, 7.Go 
above sea water and 15° above a perfectly absorbing earth. 

Thus for an antenna with far side and back lobes 10 db below an 
isotropic radiator, the total antenna noise due to atmosphere and en­
vironment for zenith orientation of the beam is 

Ta = Ts + Tb 1 + Tb2 

which amount to 3.9 0 (perfect reflector) 
10.8° (calm sea water) 
18.2° (ground with vegetation which approximates 

a perfect absorber). 
Tb = Tbl + Tb2 for the above conditions is 

1.4 ° (perfect reflector) 
8.3° (calm sea water) 

15.7° (ground with vegetation) 
obtained simply by subtracting the sky noise (2.5°l{) fron1 the previous 
numbers. 

APPENDIX C 

The Signal-To-Noise Ratio and Quality Factor of an Antenna 

For the idealized antenna pattern of Fig. 15, the received power at the 
terminals of the antenna oriented toward a white noise signal source is 

P s = SAB = SGO(A2/4~)B 

where S is the incident signal flux, B the bandwidth, and A the effective 
area of the antenna. The total noise in the antenna is P N = kTaB, k 
being Boltzmann's constant and Ta = Ts + Tb + Tz . The contribution 
Ts is the sky noise in the main beam; it is essentially independent of 
the gain Go for high-gain antennas. Tb and Tz are the effective noise 
temperatures due to back lobes and line losses. The signal-to-noise ratio 
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for the antenna is therefore 

P s SA.2 Go _ SA.2 Go 
PN - 47rk Ta - 47rk (Ts + Tb + T l)' 

(14) 

This assumes that the noise figure of the receiving amplifier is negligible. 
Of course, the receiver noise and the antenna impedance must both be 
considered in calculating the system noise. 

Of the terms contributing to Ta in (14), Ts is unavoidable and only 
Tb and Tl can be attributed to deficiencies in the antenna. We can 
define a quality factor for the antenna in the following way: set rps equal 
to zero and multiply numerator and denominator of (14) by To; then 

P s SA.2 Go To SA.2 

PN - 47rkTo (Tb + T l) = 47rkTo Q 
(15) 

where Q = Go To/ (Tb + T l) is the quality factor. Examples of typical 
values of Q are: 

(1) An isotropic antenna completely surrounded by a perfect ab­
sorber at To = 3000 (T l = 0, no line losses), Q = 1. 

(2) An isotropic antenna surrounded by a perfectly absorbing earth 
and noise-free sky, (no line losses), Q = 2. 

(3) The antenna above ground as discussed in Appendix B with far 
side and back lobes 10 db below an isotropic radiator, (where Tb ~ 15 0

), 

Q = 20Go • 
(4) The near-field Cassegrain as discussed in Section V 

(Go = 5.4 X 10\ T l + Tb = 40 + 40 = 80
), Q = 2 X 10

6
• 

(5) A horn-reflector antenna with the same aperture area and trans­
mission line loss as in (4) above 

(Go = 7 X 10\ 

Similarly, one can define a quality factor for the total receiving system 
as 

Go To 
Q T = -=----=-

TR + Ta 

where T R represents all noise associated with the receiver proper, and 
Ta , all noise associated with the antenna. 
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A Two-Gyro, Gravity-Gradient Satellite 
Attitude Control System 

By J. A. LEWIS and E. E. ZAJAC 

(Manuscript received April 2·1, 1964) 

This article gives the results of an analytical and numerical study of a 
two-gyro, gravity-oriented communications satellite. The principal purpose 
of the study was to uncover and solve the analytical problems arising in the 
design of passive gravity-gradient attitude control systems. Although the 
study was directed at satellite orientation, it is felt that many of the tech­
niques developed have general use in the investigation of dynamical systems. 

We consider both small and large motions about the desired earth-pointing 
orientation. In the small-motion study, the goal is simultaneous optimization 
of the transient response and the forced response to perturbations caused by 
orbital eccentricity, magnetic torques, solar torques, thermal rod bending, and 
micrometeorite impact. In the large-motion study, we enumerate all possible 
equilibrium positions of the satellite and then consider initial despin after 
injection into orbit, inversion of the satellite from one stable equilibrium 
position to another by switching of gyro bias torques, and the decay of transi­
ent motions resulting from large initial angular rates. 

As a specific numerical example, we have treated a 300-lb satellite in a 
6000-nm orbit, stabilized by a 60-ft extensible rod with a 20-lb tip mass, 
and by two single-degree-of-freedom gyros, each with an angular momentum 
of 106 cgs units. VV ithout a detailed discussion of hardware, it is concluded 
that such a system, having a total weight of 50 to 75 pounds including pou'el' 
supply, will provide a settling time for small disturbances of less than one 
orbit and will hold the antenna pointing error within a few degrees. 
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It has been known for over two hundred years that the variation in the 
gravitational field over the length of an earth satellite generates torques 
which tend to keep the axis of minimum inertia of the satellite pointing 
toward the earth. In particular, this mechanism keeps one face of the 
moon earth-pointing. 

Such gravity-gradient orientation of communications satellites is very 
attractive because the simplicity of the effect leads to the possibility of 
simple attitude control and hence high reliability and long life. On the 
other hand, the tiny size of the gravity-gradient torques means formida­
ble mechanization problems, and although Pierce suggested its use as 
early as 1955,1 gravity-gradient stabilization has been widely held to be 
impractical. 

However, several recent analytical and hardware studies have resulted 
in proposals for practical, gravity-gradient controlled satellites. All the 
proposed schemes work on the same principle. Steady-state perturba­
tions, due, for example, to magnetic and solar torques, are kept within 
tolerable limits by making the satellite inertia sufficiently large, usually 
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with some sort of extensible rod-tip mass combination. Damping of 
transient perturbations is provided by connecting the satellite through a 
dissipative joint to an "anchor," that is, to some object that will allow 
energy dissipation by virtue of relative motion between itself and the 
sa tellite proper. The anchor may be one or more gyros, as in the schemes 
discussed by Ogletree, et al.,2,3,4 by Burt,S and by Scott;6 a second rigid 
body, either hinged to the satellite, as proposed by Kamm,7 by Paul, 
West, Yu, et al.;8 ,9 or a second rigid body at the end of a compliant dumb­
bell as discussed by Paul,!o by Newton,!l and by Fischell and Mobley;l2 
or a second, fluid body, as considered by Lewis.l3 

In this article we examine a gravity-gradient system anchored by two 
gyros. A schematic of the system is shown in Fig. 1, where also is indi­
cated the standard nomenclature for axes: the pitch axis is normal to the 
orbit plane, the yaw axis is along the local vertical, and the roll axis is 
along the orbital track. Each gyro rotor is contained in a gimbal can (not 
shown in the schematic), mounted on bearings, and immersed in a fluid 
bath. Thus, fluid shear produces the required energy dissipation. The 

PITCH 
AXIS 

GIMBAL---

SPIN 
VECTOR 

\ 
\ 
'GIMBAL 

AXIS 

YAW AXIS (LOCAL VERTICAL 
POINTING TOWARD EARTH) 

Fig. 1 - Schematic of two-gyro, roll-vee configuration. 
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gyros are single-axis gyros: that is, the spin vectors are constrained by 
the gimbal bearings to lie in a single plane within the satellite. In the 
position shown, this is the pitch-yaw plane. 

Because of the small physical dimensions of the gyro "anchor," this 
system has the virtue that the dissipative joints can be sealed within 
the satellite; the joints are not exposed to the space environment when 
the satellite is operating. Also, the required inertia augmentation is 
particularly simple: only a single extended rod-tip mass. 

A simple explanation of how single-axis gyros damp out an arbitrary 
motion can be given in terms of the rate or torque-seeking property of 
gyros. A torque applied to a gyro will cause it to precess. By conservation 
of angular momentum, the precession will try to line up the gyro spin 
vector with the applied torque or angular rate vector. 

Bearing this in mind, assume that the satellite is in orbit in its earth­
pointing orientation. It then is rotating at the rate of one revolution per 
orbit about the pitch axis. If the gyro gimbals were free, this pitch rate 
would cause the spin vectors to align themselves in the direction of the 
pitch axis. However, in order to obtain three-axis damping, the spin 
vectors are held in a vee position by equal and opposite constant torques 
(see Fig. 1), applied to the gimbals. 

Now, if the satellite is disturbed about the pitch axis, both gyros seek 
the disturbance, resulting in a scissoring motion of the gimbals relative 
to the satellite, damping out the pitch disturbance. A yaw disturbance 
causes an in-phase motion of the gyros and again energy is dissipated. 
Since the gyro spin vectors are constrained to move in the pitch-yaw 
plane, they are constrained from moving toward a disturbance about the 
roll axis. However, the roll and yaw motions are coupled. Hence in this 
case the gyros again try to line up with the yaw axis. Thus three-axis 
damping is obtained. 

Our work continues a study carried out by the Instrumentation Lab­
oratory2,3 of the Massachusetts Institute of Technology, under the 
sponsorship of Bell Telephone Laboratories, in which the particular two­
gyro configuration studied here was shown to be the most promising of 
several possible gyro-anchored systems. Our primary objective, however, 
was not to design a specific attitude control system, which in any case 
would have to be integrated with the design of a specific satellite, but 
rather to develop general guiding principles and analytical and numerical 
techniques useful in such a design problem. Thus, we consider only the 
broad hardware questions that affect the analysis - for example, the 
design of extensible rods necessary to augment satellite inertias - but 
we do not go into the detail of specific gyro hardware, as would be re­
quired in a complete design. 
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The organization of the article is as follows. Section II, for the general 
reader, summarizes the results of our study in some detail in nonmathe­
matical terms. Following some general remarks about inertia levels, ap­
plicable to all gravity-gradient systems, we more fully describe the two­
gyro system studied. We then summarize the system's small-angle per­
formance, stressing, in particular, the performance obtained when the 
inertia of the satellite is augmented by the erection of a single rod. Next 
we discuss the effects of the main small-angle perturbations: orbital ec­
centricity, magnetic torques, solar radiation pressure, micrometeorite 
bombardment and thermal rod bending. Finally, we consider large-angle 
motions, starting with initial despin upon orbital injection by a combina­
tion of rod erection and uncaging of the gyros. In the discussions of large­
angle motions, we indicate that there may exist equilibrium positions 
far removed from the desired, earth-pointing position; we also show how 
these may be avoided. 

Gravity-gradient systems are bistable: that is, associated with a sta­
ble, earth-pointing orientation is a second, equally stable orientation 
obtained by a 1800 rotation about the pitch axis. In the concluding sec­
tion of Section II we describe how the satellite can be flipped from one 
stable orientation to the other by means of a torque pulse applied to the 
gimbals. 

The results pertaining to the two-gyro system given in Section II serve 
as an outline of the analysis required for the design of any gravity-gradi­
ent attitude control system. They also serve as an introduction to the 
theory in Sections III and IV. In these parts we present several results 
and methods that we feel apply generally to the design of many-parame­
ter, linear dynamical systems (see Section III) and to large-angle mo­
tions of a satellite (see Section IV). 

Specifically, in Section III we develop various bounds on system set­
tling time, and then show how series expansions in terms of system 
parameters can be used to explore the behavior of a linear system as a 
function of its parameters. We next describe a computer program based 
on the Routh criteria, which allows very rapid computation of system 
response as a function of system parameters. By these means, we are able 
to survey system behavior over the entire range of six system parameters. 

In Section IV, we develop the equations of large-angle motion, includ­
ing the case of variable inertia, occurring during rod erection. Here we 
stress the superiority of direction cosines or Euler parameters as com­
pared to Euler angles in satellite kinematics, both from the point of view 
of computing speed and of ease in visualizing satellite motions. We then 
give the analysis of equilibrium positions, despin, and flipping or in­
version. 
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II. SYS'rEM DESCRIPTION AND SUMMARY OF RESULTS 

2.1 Gravity-Gradient Attitude Control Systems 

All gravity-gradient systems have one feature in common, namely the 
low magnitude of the gravity-gradient restoring torque, of the order of 
/rt,2, where I is a typical satellite moment of inertia and rt, is the orbital 
rate. The level of this torque is the main factor determining the steady­
state response to constant and periodic disturbing torques. In particular, 
in the case of a typical communications satellite at an altitude of 6000 
nm, the magnitude of the torque exerted by the geomagnetic field on the 
residual magnetic moment of the satellite is such that the satellite inertia 
must be increased by a factor of about forty to reduce the steady-state 
response to an acceptable level. 

The low level of the gravity-gradient restoring torque also implies 
low system natural frequencies, of the order of the orbital rate rt,. Corre­
sponding to this low natural frequency is a minimum 1/ e settling time 
of the order of a fraction of an orbit. Zajac14 has shown that all the sys­
tems mentioned above have pitch settling times no less than about one 
tenth of an orbit. This, of course, is a lower bound on minimum settling 
time for three-axis motion. 

Based on these simple considerations, we would expect that all well 
designed gravity-gradient attitude control systems would have about the 
same transient and steady-state performance, that they would all have 
settling times of a fraction of an orbit, and that they would all require 
some form of inertia augmentation to obtain acceptable steady-state 
response. Thus the choice of a particular gravity-gradient attitude con­
trol system should be based mainly on ease of mechanization and long­
time reliability, rather than system performance. 

In the present case, at least, requirements on the large-angle per­
formance of the system (despin, satellite inversion, etc.) preclude choos­
ing the system parameters to give minimum settling time, although the 
settling time is not greatly increased by meeting the other requirements. 
It is likely that such a compromise would be necessary for optimum over­
all performance of any gravity-gradient system, so that the minimum 
settling time is of academic interest only. Of more importance is the 
variation of system performance with variation in system parameters. 
We have thus taken the view that a broad survey of performance as a 
function of system parameters is of more interest than an optimization 
based on a single measure of system performance, e.g., settling time. 

In the following sections we describe the configuration and perform-
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ance of the two-gyro system in detail. The interested reader may find the 
corresponding theoretical analyses in Sections III and IV. 

2.2 System Description 

Fig. 2 shows the more important features of the typical single-axis 
gyro indicated schematically in Fig. 1. The basic element of the gyro is 
a rotor which spins rapidly about the spin axis and generates a certain 
angular momentum vector. 

The spinning rotor element is enclosed in a sealed gimbal can, mounted 
on bearings so that it can rotate about a single axis, the gimbal or output 
axis. A fluid-filled gap between gimbal can and gyro case provides damp­
ing as the gimbal rotates. 

In the system considered, the two gyros have their gimbal axes along 
the satellite roll axis. The gyro spin axes are disposed in a vee configura­
tion around the satellite pitch axis, which is also the axis about which the 
satellite rotates to remain aligned with the local vertical as it traverses its 
orbit. To distinguish this arrangement from other possible two-gyro con­
figurations,2-6 it will be called a "roll-vee" configuration. 

In the vee arrangement, torques must be supplied constantly to change 
the direction of the gyro angular momentum vectors, as the satellite 
traverses its orbit. These torques, constant in magnitude and exerted 
about the gimbal axes, are provided by a constant electrical signal into 
electromechanical torquers on the gimbal axes. 

It is also possible to inject a signal into the torquers on ground com-

CASE 

I 

tSPIN 
AXIS 

I I 
I GIMBAL I 

ROTOR DAMPING 
GAP 

Fig. 2 - Single-axis gyro. 
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mand. This can be used to invert the satellite if it should get into an un­
desirable equilibrium position. This possibility is discussed in the sequel. 

In order to spin the gyro motor, current must be brought into the gim­
bal can. This is done by means of highly compliant flex leads. In the pres­
ent application, the flex-lead spring constants, exerting a small restoring 
torque around the gimbal axis, can be neglected. However, for a typical 
communications satellite without inertia augmentation, the flex-lead 
torques can be of the same order as the gravity-gradient torques. 

In any case the gimbal excursions must be limited by suitably placed 
stops. The location and nature of these stops is an important design con­
sideration. In the first place, undesired equilibrium positions, with the 
gyro gimbals against the stops, may occur if the stop positions are not 
carefully chosen. In the second place, large tumbling rates may force the 
gimbals against the stops, where they are capable of only limited relative 
motion, depending on the stop elasticity. In both cases the available 
damping may be greatly reduced. The equilibrium positions may be 
dealt with analytically, while the large motion may be studied numeri­
cally with the stops simulated by hardening springs. 

2.2.1 Weight and Power Requirements 

For the attitude control of a typical communications satellite in a 
6000-nm altitude orbit, we require two single-axis gyros, each with a 
rotor angular momentum of about 106 cgs units, weighing about 10 
pounds and requiring from 7 to 10 watts power to drive the rotor motor. 
In addition we require some sort of inertia augmentation which we shall 
assume is supplied by a single extensible 60-foot rod of the STEM: 
(self-storing tubular extensible member) type, designed and developed 
by DeHavilland Aircraft of Canada, Ltd., and described in detail in 
Ref. 8, together with a 20-pound tip mass, which also serves as the tape 
storage drum. We then have the attitude control system weight break­
down given below: 

2 106 cm-gm-sec gyros 20 lbs 
1 tip mass 20 lbs 
1 extensible rod 4 lbs 
gyro power supply 

(2 lbs of solar cells/watt) 40 lbs 
total 84 lbs 

We have assumed that the satellite proper is a four-foot diameter sphere, 
weighing 300 pounds, with a moment of inertia of 20 slug-ft2. 

It is believed that the above estimates are quite conservative and sub­
ject to considerable reduction. The power is used to maintain the gyro 
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rotor speed constant mainly against bearing drag. In a zero-g environ­
ment the bearing drag might be substantially reduced. In any case there 
is probably a trade-off between gyro life, requiring heavily lubricated 
bearings, and minimum rotor power, requiring light lubrication. 

The rod length is chosen to increase the satellite pitch and roll inertias 
frOlll 20 to 2000 slug-ft2. This inertia augmentation sufficiently despins 
the satellite from currently estimated injection rates of 0.5-1.0 rpm to 
cause capture by the gravity-gradient field. The required inertia aug­
mentation varies roughly linearly with initial injection rates (see Section 
2.4.1). With a sufficiently small injection rate, the augmented inertia 
could be reduced to the 700 slug-ft2 level required to counter magnetic 
torques (see Section 2.3.4.1). Such a reduction in inertia would mean 
smaller gyros, and, again, less power. 

2.3 Small-Angle Performance 

In order to study the small-angle transient and steady-state response 
of the roll-vee gyro attitude control system, extensive tables giving decay 
rates, response to orbital eccentricity, and response to periodic torques 
at zero, one, and two times orbital frequency Q as functions of the system 
parameters were produced by an IBM 7090 computer in a running time 
of 0.04 hour by a procedure outlined in Section III. Figs. 3 through 15 
summarize this broad survey. For each pair of inertia ratios, B/ A, C / A, 

/ Ts= 10RBIT 

1.0 0.57 0.78 ~ 1.02 1.16 2.70 6.4 

// 

0.58 0.65 0.59 0.63 

/ 

0.9 
0.50 0.73 0.78 0.99 1.34 1.61 2.53 

0.8 
1.34 1.77 

<{ 
........... 

CD 
0.7 

1.19 2.49 

0.6 

0.5 
0 1.0 

Fig. 3 - Asymptotic settling time in orbits (reduction of lie). 
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where A,B,C, are the satellite pitch, roll, and yaw moments of inertia, 
satisfying the inequalities 

A ~ B ~ C, B + C ~ A, 

values of gyro parameters were chosen from these tables to minimize the 
asymptotic settling time, i.e., the time in which the most lightly damped 
mode of motion is reduced by 1/ c. Fig. 3 shows the corresponding 
settling times, while Figs. 4 and 5 give the gyro dimensionless parame­
ters 

h = (H/ An) cos a, h' = (HIC D ) cos a, 

where a is the vee half-opening angle, H the gyro angular momentum, 
and CD the gyro damping constant for both gyros. Since the small 1'011-
yaw motion depends only on H in the form H cos a, the above is a con­
venient choice of parameterization. In all cases, except those indicated, 
the best value of a was 60°, at least over the relatively coarse grid of 
Ah = 0.25, Ah' = 0.25 and Aa = 20° used in the tables. 

Figs. 6 through 15 give the steady-state response to an orbit eccen­
tricity € = 0.01 and to periodic torques of amplitude 0.01 An2 for the 
same values of gyro parameters. Note that the eccentricity response when 
E = 0.01 is of the order of 1 ° over the entire range of inertia ratios, hav­
ing a maximum value of less than 3°. Both the pitch offset, due to a con­
stant pitch torque, and the roll amplitude, due to a periodic roll torque 

1.0 0.75 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

0.9 
0.25 0.50 0.50 0.50 0.50 0.50 0.50 

0.25 0.25 0.50 0.50 0.50 0.50 
0.8 

« 
........... 
CD 0.25 

0.7 
0.25 0.25 0.50 

(0 = 600 EXCEPT AT 
• WHERE 0 = 400

) 

0.6 

0.5 
0 1.0 

Fig. 4 - Gyro parameter h = H cos alAn. 
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.......... 
CD 

0.7 
0.75 0.75 0.50 0.50 
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a 0.1 0.2 0.3 1.0 

Fig. 5 - Gyro parameter hi = H cos a/e D • 

at orbital frequency, depend only on the satellite inertias, being given in 
radians by the simple relations 

I C{Jx I 0 = 1J1j3(B - C)n:!, 

for a torque of amplitude 111. Similarly, for torques at frequency w» n, 
the pitch, roll, and yaw amplitudes tend to the values }J;1 j Aw2

, M j Bw2
, 

1VIICw2
, again independent of the gyro parameters. 
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Fig. 6 - Pitch amplitude (degrees) for eccentricity EO = 0.01 at orbital frequency. 
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Fig. 7 - Pitch offset (degrees) for constant pitch torque O.OlAn2. 

2.3.1 The Minimum Settling Time 

These plots do not show the values of inertia ratios and gyro parame­
ters which yield the smallest settling time. A search over a finer grid of 
parameter values gives a minimum value of settling time of 0.332 orbits, 
attained for B/A = 0.925, CIA = 0.175, h = 0.260, h' = 0'.688, ex = 64°. 
To attain this value, a slightly negative gimbal spring K = -0.15 HQ 
cos ex must be used. A negative spring constant may be realized by a sim­
ple feedback circuit between gimbal pickoff and gimbal torquer. This 
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Fig. 8 - Roll offset (degrees) for constant roll torque O.OlAn2. 
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Fig. 9 - Yaw offset (degrees) for constant yaw torque O.OlAn2• 

minimum settling time is useful as a lower bound, but of more practical 
interest is the broad range of system parameters over which settling 
times of less than one orbit can be obtained. 

2.3.2 The Spindle 

The figures also do not give performance values for a "dumbbell" or 
"spindle," i.e., a body for which A = B » C. This case is of particular 
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Fig. 10 - Pitch amplitude (degrees) for pitch torque amplitude O.OlAn2 at 
orbital frequency. 
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Fig. 11 - Roll amplitude (degrees) for roll torque amplitude O.OlAn2 at orbital 
frequency. 

interest, since it may be realized by the erection of a single rod-tip mass 
combination. To describe the spindle, as well as to give a sample of the 
tables made by the computer, we reproduce the computer output for 
B I A = 1, CIA = 0.01 in Table 1. Since the IBM printer has only a 
limited range of symbols, the following replacements were used: 

BB = b = BIA, CC = c = CIA, 

KAPPA = K = 1 + [KICHrt cos a)], 

where K is the gimbal spring constant, so that K = 1 means zero gimbal 
spring constant, 

HH = h, HP = h', 

ALPHA = a. 

The remaining quantities give the transient and steady-state responses. 
In particular, PO, PI, P2, RO, R1, R2, YO, Y1, Y2 are the pitch, roll, 
and yaw amplitudes in degrees for pitch, roll, and yaw torques of ampli­
tude 0.01 Art2 at zero, one, and two times orbital frequency. Note that 
PO and R1 are constant, since they depend only on band c, while RO,YO 
are fixed for fixed values of h. The quantity E is the pitch amplitude in 
degrees at orbital frequency for an orbit eccentricity E = 0.01. Finally 
the quantities labeled "QUINT" and "C" give the real parts of smallest 
magnitude of the characteristic roots of the roll-yaw quintic and the 
pitch cubic in terms of the orbital rate rt. The smallest of these values 
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Fig. 12 - Yaw amplitude (degrees) for yaw torque amplitude O.OlAQ2 at 
orbital frequency. 

D (say) determines the asymptotic settling time Ts = 1/(2 7rD). Inspec­
tion of the table reveals that, for h = 0.750, h' = 1.25, a = 40°, we have 
the smallest settling time, for QUINT = -0.340(2), -0.657(2), i.e., two 
roots with real parts -0.340 and two roots with real part -0.657, and 
one negative real root (not listed) of larger magnitude. Similarly, in this 
case C = -0.279(2), i.e., two roots of the cubic with real part -0.279 
and one unlisted negative real root of larger magnitude. The asymptotic 
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Fig. 13 - Pitch amplitude (degrees) for pitch torque amplitude O.OlAn2 at 
twice orbital frequency. 
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Fig. 14 - Roll amplitude (degrees) for roll torque amplitude O.OlAn2 at twice 
orbital frequency. 

settling time is then given by 1/[(27r) (0.279)] = 0.57 orbits. Despite 
the coarseness of the table, this is very close to the minimum value of 
0.50 orbits for a spindle, attained for h = 0.77, h' = 1.29, a = 38°. This 
minimum value may be calculated by an asymptotic expansion in the 
large quantity h/e = (H cos a)/CQ. 

Let us now attempt a specific "design." This design must be regarded 
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0.\4 0.07 0.11 0.\7 0.20 0.25 0.22 

0.8 0.27 0.\3 0.07 0.\0 

~ 
0.34 m 
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Fig. 15 - Yaw amplitude (degrees) for yaw torque amplitude O.OlAn2 at twice 
orbital frequency. 
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as illustrative, rather than definitive, since a real design must take into 
account the fine details of gyro hardware as well as requirements imposed 
by the use of the satellite in an actual communications system. For ex­
ample, it is not at all clear what limits on maximum settling time would 
be imposed by system requirements. We have tentatively set this maxi­
mum settling time at one orbit. 

2.3.3 Transient Response for a Spindle. 

Fig. 16 shows the asymptotic settling time in orbits as a function of 
the dimensionless gyro angular momentum HI AQ for a = 40°, h' = 1.25 
and for a = 60°, h' = 1.00. The former gives a minimum settling time 
very near the optimum value for a spindle for HI AQ nearly unity, but 
varies more rapidly with HI AQ than does the other system. Also, we are 
particularly interested in large values of HI AQ-i.e., HI AQ > 2-since 
we propose to use the gyros as inertia wheels in the initial despin of the 
satellite after injection into orbit. In this case the second system gives a 
considerably smaller settling time (0.85 orbits, compared with 1 orbit, 
at HI AQ = 2). We may actually increase HI AQ to about 2.4 in this case 
and stay within the maximum settling time of 1 orbit. Undoubtedly, by 
trimming the values of a and h', we may increase HI AQ even morc, but, 
since this is intended to be an illustrative design, we do not consider 
these questions further here; instead, we simply take as our "design" 
a = 60°, h' = h = 1.00 (HI AQ = 2.00). In the illustrative examples of 
the sequel, these parameter values will be assumed. From the table, they 
yield 

QUINT = -0.189(2), -1.318(2), 

C = -0.190(2). 

Given the real parts of 4 roots of the roll-yaw quintic and 2 roots of 
the pitch cubic, it is a simple matter to calculate all the characteristic 
roots completely, especially for a spindle. In the present case we find 
solutions of the form 

e -O.19Qt sin (0.64Qt) 
cos ' 

-6.62Qt e 

for the pitch motion, and 

e -O.19Qt sin (1.40Qt) 
cos ' 

e -1.32Qt SIn (0.53Qt) 
cos ' 

-200Qt e 



TABLE I - COMPUTER OUTPUT FOR SPINDLE SHAPE (A B» C) 

HH=0.250 
PO= 0.19 RO= 0.14 YO = 1.15 

HP=0.500,QUINT=-0.113(2), -0.576(1) 
ALPHA R1= 0.19,R2= 0.46, Y1= 1.48, Y2= 0.35 

20.0 P1= 0.29, P2= 0.55,E= 0.59,0=-0.015(2) 
40.0 0.30 0.49 0.65 -0.080(2) 
60.0 0.32 0.29 0.92 -0.337(2) 

t.:l SO.O 0.09 0.04 1.35 -0.170(2) 
~ HP=O. 750, QUINT= -0.150(2), -0.S63(2) 
N ALPHA R1= 0.19,R2= 0.56, Y1= 1.62, Y2= 0.35 

20.0 P1= 0.29, P2= 0.54,E= 0.60,0= -0.020(2) 
40.0 0.31 0.44 0.71 -0.109(2) 
60.0 0.36 0.22 1.22 -0.408(2) 
SO.O 0.07 0.02 1.37 -0.110(2) 

HP=1.000,QUINT= -0.159(2), -0.582(2) 
ALPHA R1= 0.19,R2= 0.69,Y1= 1.79,Y2= 0.35 

20.0 P1= 0.30, P2= 0.53,E= 0.61,0=-0.024(2) 
40.0 0.32 0.40 0.76 -0.124(2) 
60.0 0.40 0.17 1.52 -0.364(2) 
80.0 0.06 0.02 1.38 -0.082(2) 

HP=1.250,QUINT= -0.149(2), -0.437(2) 
ALPHA R1= 0.19,R2= 0.S2,Y1= 1.99,Y2= 0.35 

20.0 P1= 0.30, P2= 0.52,E= 0.62,0=-0.027(2) 
40.0 0.32 0.37 0.80 -0.130(2) 
60.0 0.45 0.15 1.83 -0.297(2) 
80.0 0.05 0.02 1.38 -0.066(2) 

BB = 1.000, CC = 0.010, KAPPA = 1.000 

HH=0.500 
PO= 0.19 RO= O.H YO= 0.57 

HP=0.500, QUINT= -0.118(2), -0.47·1(1) 
R1 = 0.19, R2= 0.23, Y1 = 0.S2, Y2= 0.18 
PI = 0.29, P2= 0.54, E= 0.61,0= -0.030(2) 

0.31 0.42 0.73 -0.160(2) 
0.31 0.17 1.26 -0.637(2) 
0.04 0.02 1.25 -0.088(2) 

HP=O. 750, QUINT= -0.184(2), -1.170(2) 
R1= 0.19,R2= 0.28, Y1= 0.88, Y2= 0.18 
P1= 0.30, P2= 0.52,E= 0.63,0=-0.041(2) 

0.33 0.35 0.85 -0.212(2) 
0.34 0.12 1.71 -0.456(2) 
0.03 0.01 1.25 -0.058(2) 

HP=1.000, QUINT= -0.250(2), -0.750(2) 
R1= 0.19,R2= 0.34,Y1= 0.96,Y2= 0.18 
P1= 0.30, P2= 0.50,E= 0.64,0=-0.049(2) 

0.35 0.29 0.97 -0.231(2) 
0.36 0.10 2.13 -0.309(2) 
0.03 0.01 1.26 -0.044(2) 

HP=1.250,QUINT=-0.277(2), -0.516(2) 
R1= 0.19,R2= 0.41,Y1= 1.06,Y2= 0.18 
P1= 0.30, P2= 0.48,E= 0.66,0=-0.052(2) 

0.36 0.26 1.07 -0.226(2) 
0.39 0.08 2.48 -0.237(2) 
0.02 0.01 1.26 -0.035(2) 

HH=0.750 
PO= 0.19 RO= 0.14 YO= 0.38 

HP=0.500,QUINT= -0.101(2), -0.410(1) 
R1= 0.19,R2= 0.16,Y1= 0.61,Y2= 0.12 
P1= 0.30, P2= 0.52,E= 0.62,C= -0.450(2) 

0.32 0.35 0.81 -0.239(2) 
0.27 0.12 1.43 -0.687(2) 
0.03 0.01 1.22 -0.059(2) 

HP=O. 750, QUINT= -0.161(2), -0.804(1) 
R1= 0.19,R2= 0.19,Y1= 0.65,Y2= 0.12 
P1= 0.30, P2= 0.49,E= 0.65,0= -0.061(2) 

0.34 0.28 1.01 -0.307(2) 
0.26 0.08 1.78 -0.336(2) 
0.02 0.01 1.22 -0.039(2) 

HP= 1.000,QUINT= -0.236(2), -1.017(2) 
R1= 0.19,R2= 0.23,Y1= 0.69,Y2= 0.12 
P1= 0.31, P2= 0.47,E= 0.68,C= -0.072(2) 

0.37 0.23 1.21 -0.312(2) 
0.25 0.07 2.00 -0.236(2) 
0.02 0.01 1.22 -0.029(2) 

HP= 1.250, QUINT= -0.340(2), -0.657(2) 
R1= 0.19,R2= 0.27,Y1= 0.75,Y2= 0.12 
P1= 0.31, P2= 0.44,E= 0.70,0=-0.076(2) 

0.40 0.20 1.39 -0.279(2) 
0.25 0.06 2.14 -0.184(2) 
0.02 0.01 1.22 -0.023(2) 



HH=1.000 
PO= 0.19 RO= 0.14 YO= 0.29 

HP=0.500,QUINT= -0.085(2), -0.365(1) 
ALPHA R1= 0.19,R2= 0.12,Y1= 0.50,Y2= 0.09 

20.0 P1= 0.30, P2= 0.51,E= 0.63,C=-0.061(2) 
40.0 0.32 0.30 0.90 -0.317(2) 
60.0 0.23 0.09 1.48 -0.465(2) 
80.0 0.02 0.01 1.20 -0.045(2) 

HP=O. 750, QUINT= -0.133(2), -0.645(1) 
ALPHA R1= 0.19,H2= 0.14, Y1= 0.53, Y2= 0.09 

20.0 P1= 0.30, P2= 0.47,E= 0.67, C= -0.082(2) 
40.0 0.36 0.23 1.17 -0.389(2) 
60.0 0.20 0.06 1.70 -0.26!1(2) 
80.0 0.02 0.01 1.20 -0.029(2) 

HP= 1.000, QUINT= -0.189(2), -1.318(2) 
ALPHA R1= 0.19,R2= 0.17,Y1= 0.56,Y2= 0.09 

ti 20.0 P1= 0.31, P2= 0.44,E= 0.71,C=-0.095(2) 
~ 40.0 0.40 0.18 1.46 -0.359(2) 

60.0 0.18 0.05 1.81 -0.190(2) 
80.0 0.01 0.00 1.20 -0.022(2) 

HP= 1.250, QUINT= -0.266(2), -0.933(2) 
ALPHA R1= 0.19,R2= 0.20,Y1= 0.60,Y2= 0.09 

20.0 P1= 0.32, P2= 0.41,E= 0.74,C=-0.101(2) 
40.0 0.44 0.16 1. 74 -0.296(2) 
60.0 0.17 0.04 1.87 -0.150(2) 
80.0 0.01 0.00 1.20 -0.017(2) 

TABLE I - continued 

HH=1.250 
PO= 0.19 RO= O.H YO= 0.23 

HP=0.500, QUINT= -0.071(2), -0.329(1) 
R1 = 0.19, R2= 0.09, Y1 = 0.44, Y2= 0.08 
P1= 0.30, P2= 0.50,E= 0.65,C=-0.076(2) 

0.32 0.26 0.99 -0.393(2) 
0.19 0.08 1.47 -0.361(2) 
0.02 0.01 1.19 -0.036(2) 

HP=O. 750, QUINT= -0.110(2), -0.556(1) 
H.1= 0.19,R2= 0.11, Y1= 0.46, Y2= 0.08 
P1= 0.31, P2= 0.45,E= 0.70,C=-0.102(2) 

0.36 0.19 1.33 -0.453(2) 
0.16 0.05 1.61 -0.218(2) 
0.01 0.01 1.19 -0.023(2) 

HP= 1.000, QUINT= -0.152(2), -0.990(1) 
R1 = 0.19, R2 = 0.14, Y1 = 0.48, Y2 = 0.08 
P1= 0.32,P2= 0.41,E= 0.74,C=-0.118(2) 

0.41 0.15 1. 70 -0.371(2) 
0.14 0.04 1.67 -0.159(2) 
0.01 0.00 1.19 -0.018(2) 

HP= 1.250, QUINT= -0.202(2), -1.199(2) 
R1= 0.19,R2= 0.16,Y1= 0.51,Y2= 0.08 
P1= 0.32, P2= 0.38,E= 0.78,C= -0.123(2) 

0.46 0.13 2.07 -0.291(2) 
0.13 0.03 1. 70 -0.126(2) 
0.01 0.00 1.19 -0.014(2) 

HH=1.500 
PO= 0.19 RO= 0.14 YO= 0.19 

HP=0.500, QUINT= -0.060(2), -0.301 (1) 
R1 = 0.19, R2= 0.08, Y1 = 0.40, Y2= 0.06 
P1= 0.30, P2= 0.48,E= 0.66,C=-0.091(2) 

0.32 0.23 1.08 --0.467(2) 
0.16 0.06 1.45 -0.298(2) 
0.01 0.01 1.18 -0.030(2) 

HP=O. 750, QUINT= -0.091(2), -0.494(1) 
R1= 0.19,R2= 0.1O,Y1= 0.41,Y2= 0.06 
P1= 0.31, P2= 0.43,E= 0.72,C=-0.122(2) 

0.36 0.17 1.47 -0.489(2) 
0.13 0.04 1.54 -0.186(2) 
0.01 0.00 1.18 -0.020(2) 

HP= 1.000,QUINT= -0.125(2), -0.786(1) 
R1 = 0.19, R2 = 0.11, Y1 = 0.43, Y2 = 0.06 
P1= 0.32,P2= 0.38,E= 0.78,C=-0.140(2) 

0.41 0.13 1.90 -0.361(2) 
0.11 0.03 1.58 -0.137(2) 
0.01 0.00 1.18 -0.015(2) 

HP= 1.250,QUINT= -0.161(2), -1.441 (2) 
R1= 0.19,H2= 0.14,Y1= 0.45,Y2= O.OG 
PI = 0.33, P2= 0.35,E= 0.83,C= -0.144(2) 

0.46 0.11 2.33 -0.278(2) 
0.10 0.03 1.00 -0.108(2) 
0.01 0.00 1.18 -0.011(2) 
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Fig. 16 - Asymptotic settling time in orbits versus gyro angular momentum. 

for the roll-yaw motion. Note that the period of the oscillatory solutions 
is comparable to the orbital period, as we would expect, and that both 
motions have rapidly damped exponential solutions. The latter feature, 
typical of spindle-shaped bodies, causes difficulties in numerical integra­
tion of the differential equations, both for small and large motion, for 
it implies that derivatives may be very much larger than the dependent 
variable itself. 

2.3.3.1 Micrometeorite Impact. One source of transient disturbance is 
the angular momentum imparted by micrometeorite impact. It was 
estimated in Ref. 8 that for a satellite of comparable inertia level, im­
pacts producing offsets greater than 5° would occur every two years and 
impacts large enough to tumble the satellite every 23 years, on the aver­
age. A more recent study24 of the present two-gyro system indicates 
similar times if Whipple's 1958 micrometeorite data are used. For 
Whipple's 1963 data, the corresponding 5° and tumbling times are 40 
years and 1000 years. From a systems point of view, the low frequency 
of occurrence of these disturbances suggests that a settling time of 1 
orbit is quite adequate. 
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2.3.4 Steady-State Response 

Disturhances producing constant or periodic pointing errors may he 
classified as either kinematic or dynamic. The rcsponse to the former, of 
which orbit eccentricity is a typical example, is essentially independent 
of satellite inertia; the response to the latter type of disturbance may 
be reduced simply by increasing the level of satellite inertia to a suitable 
value. The kinematic response limits the minimum attainable pointing 
error; the dynamic response to given disturbing torques sets the level 
of satellite inertia. 

In the case of the spindle, the table yields an eccentricity response 
amplitude at orbital frequency of E = 1.81 ° for an orbit eccentricity 
E = 0.01. We also find the steady-state response amplitudes due to 
torque amplitudes of 0.01An2 given by 

PO = 0.19°, 
RO = 0.14°, 
YO = 0.29°, 

PI = 0.18°, 
Rl = 0.19°, 
Yl = 0.56°, 

P2 = 0.05°, 
R2 = 0.17°, 
Y2 = 0.09°. 

vVe are particularly interested in the pitch offset PO, due to a constant 
pitch torque, and the roll amplitude Rl, due to a roll torque at orbital 
frequency. Both of these are independent of gyro parameters and equal 
in the case of a spindle. Together with a given disturbing torque, they 
serve to set the satellite inertia level. 

2.3.4.1 JV1 agnetic Torque - Satellite Inertia Level. In the case of a 
communications satellite, one of the principal disturbing torques is the 
torque exerted by the geomagnetic field on the residual magnetic mo­
ment of the satellite. It has been estimated in Ref. 8 that this torque 
might be as large as 5 X 10-6 ft-lb for a satellite like the Telstar satellite 
at an altitude of 6000 nm. At this altitude n = 2.73 X 10-4 rad/sec 
( ~ 1 rad/hr). Because of the steady rotation of the earth-pointing 
satellite, this torque does not have a constant pitch component, but it 
will have a roll component at orbital frequency. Thus Rl is the response 
amplitude of interest. To make Rl equal to the eccentricity response of 
1.81 ° requires a satellite pitch moment of inertia A such that An2 is ten 
times the above torque, yielding A = 670 slug-ft2. Since a typical 
moment of inertia for a satellite somewhat larger than the Telstar 
satellite is 20 slug-ft2, this calculation indicates that some sort of inertia 
augmentation is required. We shall assume that the satellite proper has 
equal moments of inertia Ao = Eo = Co = 20 slug-ft2 and that the pitch 
and roll moments of inertia are increased to 2000 slug-fe by the erection 
of a single GO-ft extensible rod and a tip mass of 20 pounds. As indicated 
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in Scction 2.2.1, wc makc the inertia somcwhat largcr than thc minimum 
requircd to countcr magnctic torque in ordcr that rod crection may be 
uscd for satcllite dcspin. 

2.3.4.2 Solar Radiation Pressure. When rods are erected to augment the 
satellite inertia, the perturbing torque due to incident solar radiation is 
in general increased, but not at the same rate as the inertia, if a thin rod 
and a dense tip mass are used. To give some idea of the order of mag­
nitude of this torque, let us consider a 2-foot radius, 300-pound satellite, 
joined to a 0.2-foot radius, 20-pound tip mass by a 58-foot-Iong, 0.04-
foot diameter rod. This yields a maximum solar torque of about 2 X 10-6 

ft-Ib (0.0075 AQ2 for A = 2000 slug-ft2) around the center of mass of the 
system, which lies about 4 feet from the center of the satellite proper. 
This low torque is the result of a partial balance between the resultant 
force on the satellite and the resultant force on the rod, both yielding 
torques of the order of 5 X 10-6 ft-Ib (0.019 AQ2). Even using this figure, 
the deflection due to solar pressure will be no larger than that due to 
magnetic torque. Thus such a satellite need not be especially designed to 
balance out solar torques. 

2.3.4.3 Bending Due to Solar Heating. In Ref. 8 the bending of an ex­
tensible rod of the STEM type, due to differential solar heating, was 
analyzed. Further unpublished work by P. Hrycak and by .J. G. Eng­
strom at Bell Telephone Laboratories leads to the formula 

d/L = (L/4r)7raTo/[K + 4 + IG{1/3], 

for the deflection d of a rod of length L, radius r, and expansion coeffi­
cient a, wherc 

To = (aoS/7reoo-)i, 

K = 7rkhTo/r2aoS, 

with ao and eo the rod external absorptivity and emissivity, ei the rod 
internal emissivity, 0- the Stefan-Boltzmann constant, S the flux of 
solar radiation through unit area in unit time, k the rod thermal con­
ductivity, and h the rod wall thickness. The dimensionless quantity K 

gives the ratio between heat transferred by conduction and by ra­
diation. Typical values of the above quantities are: 

L = 60 ft, 
S = 442 Btu/ft2 -hI', 
k = 65 Btu/ft-hr-OF, 

ao = 0.67, 

r = 0.02 ft, h = 2 X 10-4 ft, 
0- = 171 X 10-11 Btu/ft2-hr-(OR)4, 
a = 10-5

/
oF, 

Co = ei = 0.33, 



SATELLITE ATTITUDE CONTROL 2727 

the last five values being appropriate for beryllium copper. In this case 
To = 635°R, K = 219, {3 = 1, and d/L = 0.0656. Note that in this case 
K » 1, so that conduction effects dominate. Unless (3 » 1, i.e., the out­
side of the rod is highly reflecting and the inside "black," we may use 
the simpler formula 

d/ L = (L/4r) (ar2aoS/kh) , 

obtained by neglecting the remaining terms in the denominator of the 
previous formula in comparison with K. In the present case this yields 
d/ L = 0.0684, compared with the more exact value of 0.0656. 

The above displacement d is the displacement of the tip mass at the 
end of the rod and hence produces a corresponding rotation of the yaw 
principal axis of inertia through an angle of order d/L = 0.0656 = 3.7° 
and an antenna pointing error of the same size. Note that this angle 
increases linearly with L, so that thermal bending sets an upper limit 
on the length of a given type of rod which may be used for inertia aug­
mentation. In observations of the Applied Physics Laboratory 1963 
22A satellite/2 thermal bending manifested itself apparently as a high­
frequency oscillation of the satellite's attitude, attributed to the rapid 
heating of an extensible rod on passage from shadow into sunlight. 

2.4 Large-Angle }J![ otion 

We shall discuss various large-angle motions of the gravity-oriented, 
gyro-stabilized satellite in order of their occurrence. First we consider the 
injection, despin, and capture of the satellite in orbit and the equilibrium 
positions into which it may settle. Next we discuss the use of the gyros 
to flip the satellite in case it settles into the inverted equilibrium position. 
Finally we report the results of computer studies of various large motions. 

2.4.1 Satellite Despin 

We assume that the satellite is injected into a nearly circular, 6000-nm 
orbit with an initial spin rate of less than 1 rpm around an arbitrary axis. 
After injection, erection of a single 60-foot rod with a 20-pound tip mass 
then increases the moment of inertia around axes normal to the rod from 
20 slug-ft2 to 2000 slug-ft2 and decreases the spin rate around these axes 
by a corresponding factor, e.g., from 250 rpo (revolutions per orbit) to 2 
rpo. The component of spin around the rod axis is, of course, unaffected 
by rod erection. This component of spin is removed by uncaging the 
gyros from their nominal equilibrium position, in which they have a 
zero net component of angular momentum around the rod axis (the 
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body yaw axis) and allowing them to precess toward the spin rate vector. 
The net change of yaw angular momentum due to this precession is of 
the order of the gyro angular momentum H = 2 An, where A is the final 
moment of inertia (2000 slug-ft2) around the body pitch and roll axes 
normal to the rod, and the angular momentum due to the initial spin 
around the rod axis is 250 en = 250 Aon = 2.5 An, of the same order of 
magnitude. Note that this latter despin is in proportion to the difference 
of angular momenta, rather than their ratio, so that we might expect 
difficulties with the small differences of large numbers, leaving us with a 
sizeable angular velocity around the body yaw axis. However, the yaw 
component of angular velocity rapidly settles out; it is the yaw angular 
momentum, rather than the yaw angular velocity, which is of impor­
tance. 

This is shown in Figs. 17-18 where, for the design of Section 2.3.2, 
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yaw, pitch, and roll rate, obtained by a digital computer, are plotted 
against time. At t = 0, the satellite was assumed injected into the de­
sired orientation, with gyros at the null position, and with a yaw rate of 
250 rpo (approximately i rpm). The elapsed time of Fig. 17 is two min­
utes, corresponding to boom erection. In this time, the yaw rate de­
creases to 20 rpo, while pitch and roll first peak at -12 rpo and -6 rpo 
respectively and then decay to -2.5 rpo at the end of boom erection. 
Subsequently, as shown in Fig. 18, all three rates decrease to less than 1 
rpo at the end of 1 orbit. 

2.4.2 Equilibrium Positions 

Four equilibrium positions, in which the satellite is stationary with re­
spect to the rotating local vertical, may be found by inspection. Two of 
these, shown schematically in Fig. 19, are the stable roll-vee positions 
with the gyro angular momentum vectors making a symmetrical vee 
with the orbit pitch axis (normal to the orbit plane), the gyro gimbal 
axes along the orbit roll axis (tangent to the orbit track), and the rod 
along the local vertical. The satellite antenna in this case is either di­
rected toward the earth or away from the earth. We discuss the inversion 
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Fig. 19 - Equilibrium positions, stable roll-vee. 

of the satellite from the latter position in the sequel. Two other equi­
librium positions are yaw-vee positions, Fig. 20, with the gimbal axes 
along the orbit yaw axis, i.e., the local vertical, and the gyro angular 
momentum vectors again making a symmetrical vee with the orbit pitch 
axis, and the rod along the orbit roll axis. These two positions are un­
stable, however, just as they would be without the gyros. 

Other equilibrium positions occur because of the presence of the gyro 
gimbal stops. Suppose, for example, that the satellite is rotated around 
the local vertical through 1800 from its normal operating position. The 
gyro gimbal torquers which normally hold the gyro vee open against 
the 1 rpo steady precession of the satellite in orbit, now act with the 
precession to force the gyro gimbals against stops located near the body 
yaw axis. The resulting symmetrical reverse vee configuration (see Fig. 
21a) is a possible satellite equilibrium position. Although the satellite 
antenna is still directed toward the earth in this position, it is an unde­
sirable equilibrium position, because, when the gyro gimbals are against 
stops, their damping capability is severely reduced. This reversed equi­
librium position can be made unstable by moving the gimbal stops in 



SATELLITE ATTITUDE CONTROL 2731 

(b) 

Fig. 20 - Equilibrium positions, unstable yaw-vee. 

(a) 

Fig. 21 - Equilibrium positions, reverse-vee and skewed. 
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from the yaw axis and by choosing the gyro angular rllomentum to have 
a suitable value, as discussed in Section IV. The inversion of the position 
shown in Fig. 21(a) and the corresponding reversed yaw-vee positions 
are unstable as before. 

Finally we note the possibility of skewed equilibrium positions, in 
which the body principal axes do not coincide with the orbit axes and 
both gyro gimbals are against stops (see Fig. 21 b). Examples are dis­
cussed in Section 4.3. Such unsymmetrical equilibrimn positions may 
be easily eliminated by appropriate choices of stop positions and gyro 
angular momentum, but their occurrence suggests the necessity of a 
thorough investigation of equilibrium positions for any attitude control 
system, especially one in which constraints due to stops are present. 
The investigation of equilibrium positions also may serve as a guide in 
singling out lightly damped modes of large motion. 

2.4.3 Satellite Inversion 

As we have already noted, the satellite may be captured, after injec­
tion into orbit, in inverted position with its antenna pointing away from 
the earth. With sufficiently large gyros it may be flipped from this posi­
tion by changing the net gyro angular momentum by means of a simple 
signal injected by ground command into the gyro gimbal torquers. We 
simply reverse the polarity of the bias signals into the gyro torquers for 
a preset short time interval. The resulting change in angular momentum 
is just enough to cause the satellite to tumble, so that it is captured 
again in its normal operating position. Fig. 22 shows the result of such 
an inversion procedure, where the polarity is switched for! orbit. Here, 
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we have plotted the cosine of the error angle, i.e., the angle between the 
body yaw axis and the local vertical. 

2.4.4 Computer Runs for Large-Angle 111 otions 

Since only a limited amount of energy may be imparted by initial 
displacement of the satellite, computer studies were directed at the ef­
fects of high initial angular velocities. In Figs. 23-26 are shown some 
sample results of computer runs for the response of the satellite design 
of Section 2.3.2 to high initial rates, applied to the satellite in the stable 
roll-vee orientation. These may be regarded as responses to micro­
meteorite impacts, or as representative of initial transients following 
inadequate despin. 

To save space, we again plot, as a function of time, only the cosine 
of the error angle between the yaw axis and the local vertical. However, 
the orientation of the satellite and of the gyro spin vectors are shown 
every half orbit in computer-made perspective drawings of a rectangular 
parallelepiped representing the satellite. The view is along the orbital 
track in the rotating, earth-pointing reference frame, so that the local 
vertical and normal to the orbital plane are in the plane of the paper. 
Plus signs are placed on the faces of the parallelepiped to avoid optical 
illusions. The gyro stops are indicated by dots. The reader may find 
more details about these drawings, as well as a description of computer­
made movies showing large motions of the two-gyro satellite, in Ref. 15. 

As is seen from Figs. 23-26, rates of the order of 4 rpo about pitch 
and roll damp out in about 10 orbits, whereas yaw rates of even 100 rpo 
settle out in about 5 orbits. In roll and yaw, the settling time and motion 
are similar if negative rather than positive rates are applied. The re­
sponses to positive and negative pitch rates are, however, different in 
character. A high positive pitch rate collapses the gyros toward the 
pitch axes, and a slowly decaying, essentially single-axis spin ensues. A 
high negative pitch rate opens up the gyros and drives them against the 
yaw stops. This sends the satellite into a complicated tumbling which 
eventually settles out. 

If a m.icrometeorite of linear momentum m strikes the satellite at a 
lever arm L from a principal axis with moment of inertia 1, the angular 
velocity w imparted around that axis will be w = mL/1. This velocity 
varies directly with L and inversely with 1. For the design of Section 
2.3.2, the yaw and pitch or roll lever arms are in the ratio 2/60, while the 
inertias are in the ratio 2000/20. A micrometeorite which imparts a pitch 
or roll rate of 4Q will impart a yaw rate of (2/60)· (2000/20) ·4Q = 
13.3Q. Therefore we see from Figs. 23-26 that the two-gyro spindle sate]-
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lite is considerably more resistive to micrometeorite impact about yaw 
than about pitch and roll. 

It is well known that gravity-gradient satellites will tumble if placed 
in a sufficiently eccentric orbit. Computer experiments showed that for 
the design of Section 2.3.2 this occurred at an eccentricity of about 0.2. 
Computer results for E = 0.225 are shown in Fig. 27. 

III. SMALL-ANGLE MOTION 

3.1 Satellite Configuration 

To settle the vexing questions of nomenclature and sign convention 
once for all, we commence with a brief description of the quantities char­
acterizing a gravity-oriented satellite moving in a circular orbit (in­
cluding the effect of small eccentricity later on) at the orbital angular 
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velocity n. A convenient number to remember, to fix the magnitude of 
n, is that an orbit at an altitude of about 6800 statute miles corresponds 
to an orbital rate n = 1 radian/hI' and an orbital period of 271" or about 
6 hours, 15 minutes. 

For our purposes the satellite is described by its principal moments 
A ~ B ~ C about principal axes x',y',z', along which the principal unit 
vectors i' ,j' ,k' lie. These principal axes form the body pitch, roll, and 
yaw axes, respectively. 

When the satellite is in a position of stable equilibrium, the x',y',z' 
body axes coincide with orbit pitch, roll, and yaw axes x,y,z as in Fig. 
19, with corresponding unit vectors i,j,k, normal to the orbital plane, 
along the orbit track, and along the local vertical toward the center of 
the earth. These orbit reference axes rotate at the orbital rate n (1 rpo) 
about the orbit pitch axis. It should be noted that, although a spindle­
shaped body, formed by the extension of a single rod and tip mass, is 
shown, for which B ~ A and C « B, the small-angle analysis which 
follows covers the whole range of inertias, given by the inequalities 

A > B> C, 

required for stability, and 

B + C > A, 

imposed by rigid-body geometry. 
For small perturbations from equilibrium the satellite orientation is 

specified by the small pitch, roll, and yaw angles <Px , <Pu , <Pz, through 
which the body axes x',y',z' are rotated from the orbit axes X,y,Z, as in 
Fig. 28. The corresponding satellite angular velocity vector <'>8, with 
respect to inertial space, is given by 

with respect to orbit axes, or 

with respect to body axes. 

3.2 Roll-Vee System Equations for Small Jl;[ otion 

By neglecting second-order terms in the dynamical equations of Sec­
tion IV, as indicated in Section 4.2.2, we obtain the satellite equations 
of motion 
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Fig. 28 - Definition of small pitch, roll, and yaw angles. 

AcPx + 3(B - C)n
2
cpX + 2Hs~0 = 0, 

BcPy + (4(A - C)n2 + 2Hen]cpy 

+ ((A - B - C)n + 2He]cPz + 2Hencpo = 0, (1) 

CcPz + ((A - B)n
2 + 2Hcn]cpz 

- ((A - B - C)n + 2Hc]cPY - 2HccPY = 0, 

for the satellite pitch, roll, and yaw angles cpx , CPy , cpz • The sum CPo 
!(CPYl + CP(2) and difference 1/;0 = !(CPOl - CP(2) of the two gimbal angles 
satisfy the equations 

C D~O + (l{ + Hcn )1/;u - HscPx = 0, 

C DcPo + (l( + Hcn)cpu + Hcncpy + HecPz = 0. 

Here He = H cos a and Hs = H sin a. This is an eighth-order linear 
system of equations for CPx, CPy , cpz , 1/;u , CPo, which splits immediately 
into a cubic pitch system for cpx and 1/;u and a quintic roll-yaw system 
for CPy , cpz , CPo , since the pitch motion depends only on the out-of-phase, 
or "scissoring," motion of the gyro gimbals, given by the difference 
angle 1/;0 , and the roll-yaw motion depends only on the in-phase gimbal 
motion, given by the sum angle CPu . 
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These equations can be reduced to dimensionless form by setting 

p = (l/n)d/dt, b = B/A, c = CIA, h = (H/AQ) cos a, 

h' = (H/C D ) cos a, 

yielding the two sets of equations: 

" = 1 + [K/(Hn cos a)], 

Pitch: 

Roll-Yaw: 

[p2 + 3(b - c)]rpx + (2h tan a)py;o = 0, 

- (h' tan a)prpx + (p + Kl/")y;o = 0, 

[bp2 + 4(1 - c) + 2h]rpy + (1 - b - c + 2h)prpz + 2hrpo = 0, 

- (1 - b - c + 2h)pcpy + [Cp2 + (1 - b) + 2h]rpz - 2hprpg = 0, 

h'rpy + h'prpz + (p + Kh')rpg = 0. 

If we insert appropriate terms on the right-hand sides of these equations 
to include the effect of given initial conditions and perturbing torques, 
we may regard the above systems as the Laplace transforms of the origi­
nal set of differential equations, with transform variable p. The solution 
is then found by solving this set of linear, algebraic equations for rpx , Y;o , 
etc., now interpreted as Laplace transforms, and calculating the residues 
at the poles of these functions of p. The transient response is entirely 
determined by the location of these poles and by the specific initial 
conditions. The steady-state response to a periodic perturbing torque 
at frequency Nn may be determined by inserting constant right-hand 
sides, in general complex, setting p = iN, and solving for the amplitudes 
1 rpx I, Iy;g I, etc. 

3.3 Transient Response 

For given initial conditions and zero perturbing torques, the trans­
forms are rational functions of p, with the characteristic pitch and 
roll-yaw polynomials as denominators, given by 

Pitch Cubic: 

(2) 

Roll-Yaw Quintic: 

!s(p) = p5 + alp4 + a2p3 + aap2 + a4p + as, (3) 
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where 

Cl = h'(K + 2h tan2 a), 

and 

C2 = 3(b - c), C3 = 3(b - c) Kh', 

2hh' 
al = Kh' +-­

C ' 

_ 1 - b + 2h + 4 (1 - c) + 2h + (1 - b - c + 2h) 2 

a2 - e b be' 

_ h' + 2hh' (2 + 2b - 3c - 2h) 
a3 - K a2 be ' 

(1 - b + 2h) (4 - 4c + 2h) 
bc 

a6 = Kh' a4 - 2hh' (1 ~cb + 2h) . 

For stability, it is necessary that all the roots of the above polynomials 
have negative real parts. In particular, the magnitude of the real part 
of the root nearest the imaginary axis determines the rate of decay of the 
most lightly damped mode of motion. If this real part is - D, we can 
define a lie asymptotic settling time Ts = l/27rD (in orbit periods) and 
use Ts as a measure of transient response, particularly suited for use with 
a digital computer. In Section 3.6 we discuss the determination of D as 
a function of b, c, a, h, h', and K. Once it is reduced to a suitably small 
value by some choice of system parameters, the short-time transient 
response can be determined by solution of the differential equations with 
specific initial conditions and the system parameters readjusted, if 
necessary. Actually systems chosen on the basis of minimum asymptotic 
settling time seem to have quite adequate short-time, as well as steady­
state, response. 

3.4 Steady-State Response 

The steady-state response to periodic perturbing torques at frequency 
Nn, determined as previously outlined, is given in various cases by the 
following relations: 

Pitch amplitude for pitch torque An2: 

(4) 
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Roll amplitude for roll torque A~i: 

1\".1 ~ [e - be + 2h,J,,' - a1N')' 

+ e -be + 2h N - N
3)'J / If.(iN) I, 

(5) 

Yaw amplitude for yaw torque A~i: 

I \". I ~ [( 4 
- 4~ + 2h Kh' _ 2:h' - Kh'N')' 

+ (4 
- 4~ + 2h N - N 3),J / e I MiN) /, 

(6) 

Roll amplitude for yaw torque A~i and yaw amplitude for roll torque A~i: 

I I I I [(
1 - b + 2h I )2 

'I'll = lPz = N c Kh - al 

+ e -b ~ e + 2h N) 'J / b I MiN) /, 

(7) 

where, by (2) and (3), 

1 fa(iN) 12 = (ca - clN2)2 + (c2N - Na)2, 

I f6(iN) 12 = (a6 - aaN2 + alN4)2 + (a~ - a2N
a + N 5)2. 

In particular, a constant pitch torque An2(N = 0) gives the constant 
pitch offset 

I CPx jo = 1/[3(b - c)], 

while, for a roll torque of amplitude An2 at the orbital frequency (N = 1) 

I CPy It = 1/[3(1 - c)]. 

These amplitudes, independent of the gyro parameters, limit the mini­
mum permissible satellite inertias for given perturbing torques. 

Finally, an elliptic orbit of small eccentricity E induces forced pitch 
vibrations at the orbital frequency n with amplitude 

1 cpx 1 E = 2 E (1 + C1
2)! / [ (C3 - Cl) 2 + (C2 - 1) 2]!. ( 8) 

By straightforward differentiation, it is easily shown that the eccentricity 
response I CPx 1 E has a single maximum as a function of the gyro opening 
angle a. For a larger than the value at which the maximum is attained, 
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the eccentricity response decreases monotonically, approaching 2€ as a 
approaches 90°. 

3.5 Bounds on the Asymptotic Damping Rate D 

As mentioned in Section 3.3, a convenient single measure of transient 
response is the parameter D, the distance from the imaginary axis of the 
right-most root of the characteristic equations. One would like to know 
D as a function of the system parameters, D = D(b,c,a,h,h',K). In gen­
eral, this function is impossible to determine analytically and must be 
computed numerically. In order to limit such computations to ranges of 
the parameters b,c,a,h,h',K that give reasonable values of D, it is con­
venient to have bounds on D. 

One set of bounds is given by the following theorem :16 

If the coefficients qo, ql, ... , of a polynomial P(p) are positive, 

P(p) = qopn + qlpn-l + ... + qn 

then D is bounded by 

lc > l, 
lc = 1,2, .. " n 

l = 0,1, .... 

We note that in bothf3(p) andf6(p), in (2) and (3), qo = 1. Hence by 
the above theorem with l = 0, if the system parameters are such that 
any of the coefficients Cl , C2 , C3 , al , . . . ,as is small, then D will be small. 

Likewise, if any coefficient in f3(P) or f6(P) is large compared to a 
subsequent coefficient, then the theorem tells us that D will again be 
small. 

We note also that b - c < 1, so that the theorem applied to C2 gives, 
in pitch, 

D2 ~ b - c ~ 1, 

i.e., the asymptotic settling time Ts in pitch for the roll-vee system is 
bounded by Ts ~ 1/271" = 0.159 orbit. (This is slightly larger than the 
corresponding bound Ts ~ 51/2V371" = 0.137 orbit obtained in Ref. 17 
for a two-body satellite.) 

From these bounds we conclude immediately that at best D can be 
of order unity, and to get a D of this order of magnitude the coefficients 
and ratios of coefficients in fa(p) and f6(P) must be at least of order 
unity. 
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Another useful bound is obtained by shifting the origin in the p plane 
to p = -D and applying the Routh criteria (see Section 3.7), to the 
shifted f3(P) polynomial. It is then found that one of the terms in the 
Routh array is 

r = -2Dx2 + [8D2 + 3(b - c)]x - 8D3 
- 6(b - c)D - 3(b - c)Kh', 

where 

x = Kh' + 2hh' tan2 
a. 

To have all roots to the left of the line Re p = - D, r must be positive. 
But it is easily verified that r > ° only if 

D < ~ (b - c) 
= 8 Kh' , 

which gives an additional bound on D. 

3.6 Determination of D by Series Expansions 

When the coefficients in h(p) or fs(p) are either large or small, D 
can sometimes be expanded in a power series around a known root. 
This again restricts the parameter ranges over which D must be deter­
mined numerically. For example, suppose h' is small. The roots of h(p) 
at h' = 0 are p = 0, p = ±iv'3(b - c). However, it is well known18 

that each of the three branches of the triple-valued function p = p(h') 
is analytic in h'. Expanding around h' = 0, say for p(o) = iv'3(b - c), 
we have 

p = iv'3(b - c) + h' (dP,) + ... 
dh h'=O 

= iv3(b - c) - h'h ta.n2 
a + "', 

with similar expressions easily obtained for the other two branches of 
p = p(h'). 

A particular case of interest is that of a spindle-shaped body. In 
this case, c ~ 0, b ~ 1, and the coefficients aI, "', as of f5(P) all be­
come large. One can then consider the equation cfs(p) , in which the 
leading coefficient is small. However at c = 0, this equation is singular 
because it is reduced in degree from a quintic to a quartic. The quar­
tic, with coefficients cal, ca2, "', ca5, gives only four of the limiting 
roots as c ~ 0. The fifth limiting root is however easily found by setting 
p = ulc, yielding fs*(a) = c

5
f5(erlc). Application of the expansion the­

orem to f5 *(u) then yields the fifth limiting root p ~ - 2hh' leas c ~ 0. 



2746 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

This root gives a highly damped mode, and has a real part far in the 
left half-plane. The roots of interest in finding D are thus those of 
the limiting quartic: 

where 

f4(P) = p4 + ({1dh')p3 + {12p2 + ({13/h')p + {14 = 0, 

{11 = 2h + 1, 

{12 = 2h + 4, 

{12 = K (2h + 1) + 4 - 2h, 

(14 = K(2h + 4) - 2h. 

The limiting quartic f4(p) is a function of the three parameters K,h,h', 
whereas, in this limiting case, the cubicf3(p) is a function of K, h, h', and 
a. It turns out that D = D(h,h',K,a) can be obtained graphically. Fur­
ther, Dm , the maximum D for all possible h,h',K,a, can be found and has 
the value Dm = 0.317, attained at the values 

0.77 < h < 0.78, h' = 1.29, K = 0.92, 

(The value Dm corresponds to an asymptotic settling time 

Ts = 1/27rDm = 0.502 

orbits.) However, the description of the graphical technique and the 
derivation of Dm are too lengthy for inclusion here. 

3.7 Computation of the Over-All Small-Angle Response 

The over-all small-angle performance of the satellite attitude control 
system is characterized by its steady-state response to constant and 
periodic disturbances (solar torques, magnetic torques, orbital eccen­
tricity) and by its transient response to sporadic disturbances (initial 
injection, micrometeorite impact). In proper design, one wants to 
diminish the response to all disturbances to below a suitably small level. 

The steady disturbances have their main components at zero, orbital, 
and twice orbital frequency. As indicated earlier, their amplitudes may 
be diminished by inertia augmentation with extensible rods. Fortunately, 
it is easy to write down the formulas, (4)-(8), for satellite response to 
steady disturbances, and also easy to program these formulas for digital 
compu ta tion. 

The computation of the transient response is not so straightforward, 
even in terms of the single measure D. An interesting theoretical problem 
is to find the maximum D as a function of all system parameters. Gradi­
ent or steepest descent methods, which first come to mind for the 
solution to this problem, seem to be difficult to apply, since the maxi-
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mum D usually occurs in the neighborhood of multiple roots where the 
function D = D(b,c,h,h',K,a) is singular. 

However, although this is a theoretically interesting problem, its solu­
tion is not of great practical importance, as indicated in Section 2.1. It 
is more important to have a cheap method of computing D. A method 
that we have found useful involves the Routh criteria as follows: 

Write the polynomial f(p) as 

f(p) = aopn + alpn-l + ... + ampn-m + ... + an = 0, 

and form the Routh array 

where 

and 

ao , a2 , a4, ... , 
bo , b2 , b4 , ••• , 

Co , C2 , C4, ••• , 

do , d2 , d4 , ••• , 

CZi = a2i+2 - (bZi+2aO/bo) , 

d2i = b2i+2 - (C2i+2bO/cO) , etc., i = 0, 1, 2, .... 

Then the number of sign changes in the sequence ao, bo , Co , do , etc. 
(providing no term is zero) is the number of roots in the right-half plane. 
Because of its recurrence structure, this scheme is easily programmed on a 
digital computer. 

To determine the real parts of the roots of f( P ) , one applies the scheme 
to a succession of translated half-planes as follows. If p = - D + r, then 

f(-D + r) 
= f( -D) + j'( -D)r + f"( -D)r

2 
+ 

2! 

= qorn + qlrn- l + ... + qn = 0, 

where it is easily verified that 

In)( -D) 
qo = n! = ao, 

In-l) ( -D) 
(n - I)! = - naoD + al , 
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In-k) ( -D) 
qk = (n - k)! 

= (~) uo(-D)' + (~ :::: D Ul( _D)k-l + ... + Uk. 

The Routh array applied to the coefficients qo, ql, ... , qn then indi­
cates the number of roots to the right of the line Re p = - D (Re r = 0). 
In order to locate the real parts of the roots to an arbitrary degree of 
accuracy, one applies this array on a sequence of nested intervals. For 
example, start with some large D = D* such that the Routh array ap­
plied on Re p = - D* indicates roots to its right. Take as the initial 
interval - D* < Re p < O. In a stable system there will be roots between 
the right boundary (Re p = 0), and the left boundary (Re p = -D*). 
N ext apply the Routh criteria on Re p = - D* /2. There are two possi­
bilites: (a) if there are no roots to the right of Re p = - D* /2, make 
this the new right boundary; the interval - D* < Re p < - D* /2 now 
has the same properties as the initial interval, (b) if there are roots to 
the right of Re p = - D* /2, make this line the left boundary of the new 
interval - D* /2 < Re p < 0, which again has the same properties as 
the initial interval. By applying this process n times, one ends up with 
an interval of width D* /2 n

, which contains roots but has no roots to its 
right. The accuracy of the location of the real parts of the roots closest 
to the imaginary axis can be set by prescribing the width of the final 
interval. Since the widths of the successive intervals go down as 1/2n

, 

the process converges rapidly. 
After the real parts of the roots closest to the imaginary axis are found 

within some interval of desired width, say Interval 1, the same procedure 
can be used to find the next closest roots to the imaginary axis. One 
starts again at some sufficiently large D*, such that some roots fall to 
the right of Re p = - D* and to the left of Re p = - D Ll, the left 
boundary of Interval 1. One makes these the left and right boundaries 
respectively, of an initial Interval 2, and applies the nested interval 
iteration again. The right boundary of Interval 2 in each iteration is 
characterized by having m roots to its right, where m is the number of 
roots contained in Interval 1. 

The starting value D* can be chosen in various ways. If one is inter­
ested only in the roots closest to the imaginary axis, he can pick D* as 
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for then (see Section 3.5) there will be at least one root to the right of 
Re p = - D*. If it is desired to find the real parts of all the roots, D* 
can be chosen as 

D * = max ( am ) , 
am-l 

since it is well known19 that this value of D* is a bound on the modulus 
of the maximum root and hence all the roots will be to the right of 
Rep = -D*. 

We remark that this procedure may be easily extended to a method 
for finding both the real and imaginary parts of the roots of a real 
polynomial. It is only necessary to use well-known relations between the 
imaginary parts of the roots and certain members of the Routh array. 

The above scheme goes rapidly on the IBlVI 7090 computer. For ex­
ample, if the widths of Interval 1, Interval 2, etc. are set at 0.005, the 
running time is about 1000 cases a minute to find the real parts of all 
the roots of both the quintic, !5(P), and the cubic, !3(P)' Tables calcu­
lated by this process were used in making the parameter ~mrvey whose 
results are summarized in Section 2.3. 

IV. LARGE-ANGLE MOTION 

4.1 Introduction 

The large-angle motion of the satellite is of course governed by non­
linear differential equations, which in general must be integrated numer­
ically. Nevertheless, a few analytical and intuitive insights are available. 
These are pointed out in the sections which follow. 

We begin with a discussion of the pertinent dynamical and kinematic 
equations, including the effect of variable inertia, due to rod erection. 
Then we enumerate the equilibrium positions of the satellite, in which it 
is at rest with respect to the orbiting reference frame in a circular orbit, 
and show that certain restrictions must be placed on gyro angular mo­
mentum to eliminate undesired positions. This is followed by a discus­
sion of satellite despin by the erection of a single rod and tip mass. 
Finally we show how the satellite may be inverted by ground command 
to the gyro torquers. 



2750 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

4.2 Large-Angle Equations of Motion 

In the following, we make an explicit distinction between dynamical 
equations, valid in any coordinate system when written in proper vector 
form, and kinematic relations between various specific coordinate sys­
tems. This allows us to introduce a minimum number of different co­
ordinate systems and to avoid a good deal of irrelevant algebraic com­
plexity. 

4.2.1 Dynamical Equations 

The rate of change of angular momentum L about the satellite center 
of mass, with respect to a reference frame rotating at the satellite angular 
velocity W 8 , is governed by the equation 

i + W8 X L = M, (9) 

where M is the resultant torque around the center of mass, the sum of 
the gravity-gradient torque Ma , the total gyro precession torque M H , 

and the external disturbing torque ME . For a rigid body 

L = I·ws (10) 

where I is the inertia dyadic, given in terms of the principal moments of 
inertia A > B > C and corresponding principal vectors i' ,j' ,k', by 

I = Ai'i' + Bj'j' + Ck'k'. (11) 

If w is the satellite angular velocity relative to orbit reference axes, 

Ws = i¢; + w, (12) 

where i is a unit vector normal to the orbit plane and 1/;(t) is the polar 
angle of the satellite center of mass, measured from orbit perigee in 
earth-centered coordinates and satisfying the orbit equation 

(13) 

where € is the orbit eccentricity and n = 27r/To , To being the orbit 
period. The gravity-gradient torque Ma is given by 

where k is a unit vector directed along the local vertical toward the 
center of the earth. Here and in the following, we consider only what 
Beletskii20 calls the "restricted problem" for which the motion of the 
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center of mass is given by (13) and is unaffected by the motion around 
the center of mass. Finally the resultant gyro torque for a two-gyro, 
roll-vee configuration is 

(15) 

where H/s are the gyro angular momenta, of fixed magnitude H, and 
the (')o/s are the gyro gimbal angular velocities. In terms of the gimbal 
angles 'POi and the nominal roll-vee half-opening angle a, we have 

WUi = (,)8 + j'CPlli , (16) 

HI = H[i' cos (a - 'Pill) + k' sin (a - 'POl)] (17) 

H2 = H[i' cos (a + 'P1l2) - k' sin (a + 'P1l2)]' (18) 

The set of dynamical equations is completed by the gimbal equations of 
motion. If the gyro gimbals are not against stops, these are 

(19) 

where CD is the gyro damping constant, K the gimbal spring constant, 
and the constant bias torques M Ili are given by M 02 = - Mill = HQ sin a. 
When the gimbals are against stops, the reaction torques from the 
stops on the gimbals must be added to (19). 

4.2.2 Kinematic Relations 

The orientation of the satellite body axes x',y',z', or the corresponding 
unit vectors i',j',k', with respect to the orbit axes x,y,z or corresponding 
unit vectors i,j,k, * may be specified in a number of ways. In classical 
dynamics, Euler angles have been traditionally used. They specify a 
rigid body's orientation with a minimum set of three numbers, and, in 
some of the soluble problems of rigid body dynamics, lead to straight­
forward analytical manipulations. 

From a computing point of view, Euler angles, however, have three 
serious disadvantages: (1) they involve trigonometric functions, which 
are expensive to compute, (2) they are singular when the nutation 
angle is zero, and (3) they are difficult to use in the visualization of 
complicated motions. We have chosen to use the so-called Euler parame­
ters, rather than the Euler angles. A set of variables, perhaps even more 
suitable for the matrix algebra typical of modern computer programming, 
might be the direction cosines a,{3,"y' , etc., satisfying the relations 

* See Section 3.1. 
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= i'a + j'a' + k'a", 

= i' {3 + j' {3' + k' (3" , (20) 

k = i'')' + j',),' + k',y". 

These a's should not be confused with the nominal vee opening angle, 
which we shall distinguish from the direction cosines, whenever they 
are used together, with a subscript. By using identities of the form 

k + (,) X k = 0, (21) 

satisfied by i, j, and k, we may obtain 9 equations giving the rates of 
change of the direction cosines in terms of the direction cosines and the 
components of (,). We would then have 15 equations, including 3 satel­
lite equations of angular motion, 1 equation of motion for the satellite's 
mass center, 2 gimbal equations of motion, and 9 equations for the 
direction cosine rates, yielding the 3 components of (,), the satellite polar 
angle 1/;, the 2 gimbal angles, and the 9 direction cosines. The identities 

a 2 + {32 + ')'2 = a 2 + a,2 + a,,2 = 1, etc., 

a{3 + a'{3' + a"{3" = aa' + (3{3' + ')'')'' = 0, etc., 

which must be satisfied initially, would then serve as checks on the 
numerical solution. Incidentally, it should be noted that the cosine of 
the antenna pointing error angle is given by the direction cosine ')''', 
between the local vertical and the body yaw axis. 

We shall use the direction cosines to study equilibrium positions, but 
Euler parameters in the study of general satellite motion, since they are 
simply related to the deflection angles for small motion. If we assume 
that the (x',y',z')-axes are formed by rotation of the (x,y,z)-axes through 
the angle 0 around an axis with direction cosines mx , my , m z , the Euler 
parameters ~x , ~y , ~z , X are defined by the relations 

(~x, ~y ,~z) = (mx, my, mz) sin (0/2), 

We now have21 

X = cos (0/2). 

i = i'(~/ - ~/ - ~z2 + i) + 2j'(~.r~y - x~z) + 2k'(~x~z + X~y), 
j = 2i'(~x~y + x~z) + j' ( _~x2 + ~/ - ~/ + i) 

+ 2k'(~y~z - x~x), 

k = 2i'(~~~y - X~y) + 2j'(~y~Z + x~z) 
+ k'( - ~x2 - ~y2 + ~/ + i), 

(22) 
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giving the direction cosines, and 

2~x = XW x' + ~yWZ' - ~zWy' , 

2~y = XWy' + ~zwx' - ~xwz" 

2kz = XW z' + ~xWy' - ~yWx' , 

- 2x = ~xwx' + ~yWy' + ~zwz, , 

(23) 

completing a set of 10 equations for the three components of angular 
velocity w, two gimbal angles, four Euler parameters, and the polar 
angle 1/1. Just as in the case of the direction cosines, the single identity 

~x2 + ~y2 + ~/ + X2 = 1 

serves as a check on the numerical solution. Also note that, for small 
rotation 0, 2~x ,......, <px , 2~y ,......, <py , 2~z ,......, <pz , X ,......, 1, Wx' ,......, CPx, Wy' ,......, cPy , 

W z' ,......, cpz , and 

,......, i' - j'<Pz + k'<py , 

,......, i' <Pz + j' - k' <Px , 

k r-..J -i'<py + j'<px + k', 

where <px , <py , <Pz are the small pitch, roll, and yaw angles. If these rela­
tions are inserted into the dynamical equations and second-order terms 
neglected, the linear equations for the small motion, (1), are obtained. 

In coding the differential equations for the digital computer, it was 
found cOllvenient to define cross-product and dot-product subroutines: 

AXB 

A·B 

(-A3B2 + A 2B 3 , A3BI - A IB 3 , -A2BI + A IB 2), 

AIBI + A2B2 + A3B 3 • 

This allowed the coding to follow closely the vector form of (9)-(11), 
which was useful from the standpoint of both coding simplicity and 
debugging. 

For nondumbbell satellite shapes, say b = 0.9, c = 0.5, the five-point 
predictor-corrector with ~ rule as given by Hamming (Ref. 22, Chapter 
15) was used. However, in the spindle case, b = 1.0, c = 0.01, the dif­
ferential equations become singular because the small number c multi­
plies a derivative, and the five-point, j rule scheme was found to be 
very slow. Following a suggestion of R. W. Hamming, a simple three­
point predictor-corrector scheme (Ref. 22, p. 186) was then tried. It 
turned out to be three to four times faster than the five-point scheme 
and to give about the same accuracy. 
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In the computer runs, the gyro stops were simulated by hardening 
springs. For example, for CPOI > (3, the normal spring restoring torque of 
KCPOI was replaced by 

C 
KCPOI + B(CPOI - (3) + -() -- , 

- CPo I 

where B, C, {3, and () are constants, to simulate the pitch stop of the first 
gyro. The same expression but with different constants was used for the 
yaw stop. Specifically, in all the computer runs for the spindle-shaped 
satellite reported here, K = 0 and the pitch-stop values for Gyro 1 were 

For the yaw stop, {3 and () above were replaced by {3 = - 20° and () = 
- 30°. Corresponding, symmetrical stop constants were used for 
Gyro 2. 

4.2.3 The Rate of Change of Energy 

For a circular orbit we can easily obtain a useful expression for the 
rate of change of kinetic and potential energy, relative to orbit axes. 
We take the scalar product of the satellite equation of motion (9) with 
the relative angular velocity wand combine it with the two gyro equa­
tions, (11), multiplied by CPOi • After some routine algebra, we obtain 
the relation 

where the relative kinetic energy 

T = !w'!'w, 

the potential energy 

and the gyro energy 

with 

Gi = !KCPOi
2 + MgiCPOi - ni·H i . 

This expression is useful in the estimation of various quantities, in par­
ticular the velocity required to tumble the satellite, and conditions 
necessary for capture.23 
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4.3 Satellite Equilibrium Positions 

When the satellite moves in a circular orbit in such a way as to remain 
stationary with respect to the local vertical, its motion satisfies the 
equilibrium equation 

~ii X (I·i) = 3Q2k X (I·k) + QH X i, 

where H is the resultant gyro angular momentum. For a symmetrical 
satellite 

I = A(i'i' + j'j') + Ck'k' 

and the above equation yields the relations 

(A - C){3""I" = 0 

H . j = H y = (A - C) Qei' {3" , 

H·k = Hz = 4(A - C) Qa",,/", 

(24) 

(25) 

with a" = i· k', {3" = j. k', "I" = k· k', as defined by the table of direction 
cosines, (20). Thus we have the following general result: 

I. The equilibrium positions of any symmetrical, gravity-oriented, gyro­
stabilized body in a circular orbit must be such that the principal axis of 
least inertia and the resultant angular momentum are perpendicular either 
to the orbit roll axis ({3" = H y = 0) or to the orbit yaw axis ("I" = Hz = 0). 

In the case of a roll gyro system, with all gimbal axes parallel to the 
body roll axis, the resultant gyro angular momentum must have the 
form 

H = i'Hx' + k'Hz" 

so that 

Hy = {3Hx' + {3"Hz" 

Hz = "1H z' + "I" Hz, . 

Thus, {3" = Hy = 0 implies {3Hz' = 0, and "I" = Hz = 0 implies "1Hz' = 
O. If we now assume that the motion of the gyro gimbals is restricted by 
stops along the body yaw axis, so that Hz, > 0, an assumption appropri­
ate for the case of the two-gyro roll-vee, we have the following result: 

II. The equilibrium positions of any symmetrical, gravity-oriented, roll­
gyro-stabilized body in a circular orbit must be such that the body roll axis 
is either parallel to the orbit roll axis ({3' = ± 1) or parallel to the orbit 
yaw axis ("I' = ±1). 
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So far we have not made use of the gyro gimbal equilibrium equations. 
If the gimbals are not against stops, from (19) for the roll-vee, these 
take the form 

Uj'· (Hl X i) - HU sin ao - KCPOI = 0, 

Uj'· (H2 X i) + HU sin ao - KCP02 = 0, 

where we now denote the nominal gimbal angle by ao to avoid confusion 
with the direction cosines. If the flex-lead constraint is negligible, i.e., 
K = 0, these two equations imply that 

"('Hy - (3'Hz = 0 

which in either case in II ((3' = ±1, Hy = 0 or "I' = ±1, Hz = 0) 
implies that Hy = Hz = 0, so that no torque is exerted on the satellite 
by the gyros. We then have: 

III. The equilibrium positions of a symmetrical, gravity-oriented, free 
roll-vee-gyro-stabilized body must be such that the resultant gyro torque 
vanishes (i X H = 0) and either the body pitch, roll, and yaw axes are 
parallel to the orbit pitch, roll, and yaw axes (i' = ±i, j' = ±j, k' = 
±k) or the body pitch, roll, and yaw axes are parallel to the orbit pitch, yaw, 
and roll axes, respectively (i' = ±i, j' = ±k, k' = ±j). 

The signs of course must be chosen so that the above represents a 
proper rotation. Note that the above applies to any roll gyro system for 
which the resultant torque around the body roll axis exerted by the 
gyros on the satellite vanishes. If i' = +i, the second set of equilibrium 
positions gives Fig. 20, with the gyro gimbal axes along the orbit yaw 
axis in a yaw-vee configuration. Small pitching n10tion around these 
equilibrium positions is governed by a characteristic equation of the 
same form as that for the roll-vee, (1), except that the coefficient 
3(B - C)/A > 0 is replaced by 3(C - B)/A < o. Thus these equi­
librium positions are unstable. 

The equilibrium position i' = i, j' = j, k' = k of the first set is shown 
in Fig. 19 (a). It corresponds to the normal operating position with the 
body yaw axis, on which the antenna is situated, directed toward the 
earth. The inverted position (see Fig. 19b) i' = i, j' = - j, k' = - k is 
also stable, since it merely corresponds to an interchange of the two 
gyros. This bistability is characteristic of gravity-oriented bodies and a 
gravity-oriented communications satellite must either use two antennas, 
with associated switching, or incorporate some means of flipping the 
satellite in response to ground command. The latter possibility is 
discussed in some detail in the sequel. 
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The reversed roll-vee equilibrium positions Fig. 21(a), with if = -i, 
remain to be investigated. The corresponding yaw-vee positions are still 
unstable. If the gyro gimbals were completely free, satellite precession 
and the bias torques, now acting together, would rotate the gyro gim­
bals from the reversed roll-vee until they formed a normal roll-vee 
around the orbit pitch axis. But with gimbal stops, making the angles 
±a* with the body pitch axis, the gimbals rotate until the stop reaction 
torque and the bias torque sustain the 1 rpo steady precession of the 
satellite in orbit. The stability of this reversed roll-vee position can be 
investigated by using the characteristic equations for the normal roll-vee, 
with H cos ao replaced by - H cos a * and a large spring constant ](*, 

introduced to take the stop compliance into account. In particular the 
coefficient 

a4 = [(A - B)Q + 2H cos ao][4(A - C)Q + 2H cos ao]/BCQ2, 

in the roll-yaw characteristic equation, is replaced by 

at = [(A - B)Q - 2H cos a*][4(A - C)Q - 2H cos a*]/BCQ2
• 

If 

(A - B)Q < 2H cos a* < 4(A - C)Q, 

this is negative and the equilibrium position is unstable. 
The instability of the reversed roll-vee when a* satisfies the above in­

equalities is shown in Fig. 29. In this case, the system parameters are 
the same as those of the sample design in Section 2.3.2 with a* = 80°. 
Initially the gyros are against the stops and the satellite has rates of 0.05 
rpo about all three axes. It is seen that the satellite turns around the 
yaw axis and settles down to rest in the desired orientation in less than 
five orbits. 

When the gyro gimbals are against stops, the gyros exert a torque on 
the body and in general there are other, skewed equilibrium positions. 
To investigate these positions without getting involved in the details of 
stop compliances, etc., which depend on the specific gyros used, we con­
sider only two idealized cases, the first with stops along the positive and 
negative body yaw axes but with no stops along the body-pitch axis, and 
the second with stops along the pitch axis as well as along the yaw axis. 

In both cases the gyro spin axes may be back-to-back along the yaw 
axis, but this is a case of zero net gimbal torque already treated and is 
easily eliminated by moving the gimbal stops in slightly. In the first case 
both spin axes may lie along the body yaw axis against stops, so that 

H = 2k'H 
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Fig. 29 - Instability of reversed roll-vee when gyro stops are suitably dis­
posed. 

From (24) and (25) we again have two cases to consider: (a) (3" = Hy = 
0, and (b) "I" = Hz = O. In case (a) we have 

Hz = 2"1"H = 4(A - C)fJa""I". 

The subcase (3" = Hy = 0; "I" = 0 is easily shown to be unstable, so 
there remains only the position given by 

ex" = H/(2(A - C)fJ]. 

Unless H > 2(A - C)fJ, this yields an equilibrium position which can 
be maintained by the stop reaction torques. These torques are of course 
one-sided, since the stop can only "push" and not "pull." This undesira­
ble skew equilibrium position can be eliminated by making 

H > 2(A - C)fJ. 
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A similar position for case (b) (,,/" = Hz = 0) can be eliminated by satis­
fying the less restrictive condition H > (A - C)fl/2. 

The corresponding situation with yaw and pitch stops finds one gyro 
against the yaw stop and the other against the pitch stop (see Fig. 21b). 
For example, suppose 

HI = k'H, H2 = i'H, H = H(i' + k'). 

Now in case (a), (3" = Hy = 0, we have 

Hz = H(,,/ + "/") = 4(A - C) flcl'''/'' , 

or, in terms of the angle 0 between the x and x' axes, 

sin 20 = -[H/2~(A - C)fl] sin [0 + (71"/4)]. 

The two roots of this equation in the interval -71"/4 < 0 < 71" are ex­
cluded, because they require stops which "pull" on the gimbals. On the 
other hand, the two roots in the interval 71" < 0 < 371"/2 yield possible 
equilibrium positions. These roots exist only if H < 2!(A - C)fl. Again 
the case (b) "/" = Hz = 0, yields no equilibrium positions of this type 
under the less restrictive condition H > 2-! (A - C) fl. Since an increase 
in gyro angular momentum tends to degrade the transient performance 
of the system, we shall assume in the following that the gyro gimbals are 
limited in excursion by both yaw and pitch stops, so that only the re­
striction H > 2!(A - C)fl need be satisfied. 

In the case of an unsymmetric satellite, a similar but more complicated 
analysis of the equilibrium positions can be carried out. 

4.4 Rod Extension and Satellite Despin 

We have already indicated the necessity of augmenting the satellite 
inertia to increase the gravity-gradient restoring torques to required 
levels. If this inertia augmentation is done after injection into orbit, it 
also reduces the satellite angular velocity to a level where the gravity­
gradient torques may become effective in aligning the satellite with the 
local vertical. One method of inertia augmentation is the extension of so­
called STEM rods described in detail in Ref. 8. These are beryllium 
copper tapes which form straight, tubular rods when unwound from a 
drum. If they are used together with dense tip masses, the satellite in­
ertia may be increased by several hundredfold without a proportional 
increase in solar torque. In the following sections we first consider the 
effect a variable inertia has on the general form of the satellite equation 



2760 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 19M 

of motion and then discuss satellite despin using a single extensible rod 
in combination with two gyros. 

4.4.1 Equations of Motion for Variable Satellite Inertia 

We may derive all of the dynamical equations for the motion of a 
gravity-oriented body by integration of the general equations of motion 
for a continuous medium. In fact this is perhaps the most direct way of 
calculating the gravity-gradient torque, which is due to the variable 
gravitational body force acting on each mass element of the body. The 
resulting equation of motion, (g), applies to rigid and flexible bodies 
alike, provided that the angular momentum L is calculated correctly. 
L is given in general by the integral 

L = i r X (ar/at + Ws X r)dm, (26) 

where r is the radius vector from the center of mass of the body B to the 
mass element dm. For a rigid body, r differs from its initial value ro only 
by a rotation and ar/at = 0, yielding the usual form 

L = L r X (w s X r)dm = I·ws , 

but in general r depends both on ro and t, so that 

L = I·ws + i r X (ar/at)dm, 

where the inertia dyadic I depends on t. 
Let us now consider the extension of a single massless rod with tip mass 

ma . If a( t) is the radius vector from the center of mass of the satellite 
proper to the tip mass, (26) yields 

L = I· W8 + ma X a, 
I X W8 = 10 X W8 + ma X (W8 X a), 

m = mam8/(ma + m8), 

for satellite mass m8 , and the inertia dyadic for the satellite around its 
center of mass 

10 = Aoi'i' + Boj'j' + Cok'k'. 

When the rod is erected parallel to itself, as would normally be the case, 
a X a = 0 and the effect of rod extension is entirely taken into account 
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by the time-dependent inertia I. If the rod is extended along the axis of 
minimum moment of inertia, a = k'a(t) and 

I = (Ao + ma
2 )i'i' + (Bo + ma

2
)j'j' + Cok'k'. 

4.4.2 Satellite Despin 

When the moments of inertia of a torque-free spinning body are in­
creased by a factor of N, conservation of angular momentum requires 
that the angular velocity of the body decrease by a factor of liN. On 
the other hand, if the spinning body contains a spinning rotor, an increase 
in the angular momentum of the rotor produces a corresponding decrease 
in the angular momentum of the body and hence a reduction in the 
angular velocity of the body. Both elements exist in the gravity-oriented, 
gyro-stabilized satellite. Inertia augmentation is required to obtain 
gravity-gradient torques of the proper level; rotation of the gyro gim­
bals provides a change in angular momentum. 

A single extensible rod-tip mass combination provides adequate 
gravity-gradient torques, if erected along the satellite yaw axis. How­
ever, erection of such a rod reduces only pitch and roll injection angular 
velocities; the yaw component is unaffected. This may be removed by 
using the gyros as reaction wheels. 

Suppose the gyros are caged at their null position during the rod erec­
tion phase. Then, neglecting gravity-gradient and external torques 
during the short erection time, we have a freely spinning body. If the 
initial components of angular momentum are all of the order of magni­
tude AoNn, where Ao is the moment of inertia about all three axes, we 
may reduce the pitch and roll components of angular velocity to order 
n (1 rpo), with respect to inertial space, by extending a single rod that 
increases the pitch and roll moments of inertia from Ao to A = N Ao . 
The yaw angular velocity remains equal to Nn. 

The yaw angular momentum, AoNn, however, is of the order An, the 
same order of magnitude as the angular momentum H of each gyro. The 
gyros then are large enough to absorb the residual angular momentum. 
If the gyro gimbals are now released, the spin axes will tend to line up 
with the residual angular velocity around the yaw axis. One gyro spin 
axis rotates until constrained by the yaw axis gimbal stop; the other ro­
tates until constrained by the pitch axis gimbal stop. There is thus a net 
change in yaw gyro angular momentum of order H and, furthermore, 
because of the rate-seeking property of the gyro, it always occurs in the 
correct sense to reduce the satellite angular momentum. 

This qualitative argument has been supported by computer runs for 
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given parameter values and initial rates. In particular one may determine 
the gyro size needed to despin from a given initial yaw rate. Actually it 
is not necessary to separate the erection and uncaging phases of injec­
tion, so long as the gyros are not uncaged before erection. 

The result of such a computer run was given in Figs. 17-18. In one 
orbit the angular rates are reduced to less than 1 n and capture occurs. 

4.5 Satellite Inversion 

As we have already noted, gravity-oriented bodies are bistable, i.e., 
they are in stable equilibrium with the axis of least inertia, on which the 
antenna would be mounted, both directed toward the earth and away 
from the earth. In this section we discuss a method of flipping the satellite 
by means of a simple ground command injected into the gyro gimbal 
torquers. 

When the satellite is in either of the above stable equilibrium positions, 
its total angular momentum is An + 2H cos ao around the pitch axis. 
If we could somehow rotate the two gyro gimbals instantaneously, so 
that both spin axes pointed along the pitch axis, the total angular mo­
mentum would become A(n + w) + 2H, where w is the pitch angular 
velocity with respect to the orbit frame. Since the gimbal rotation is 
assumed instantaneous, the total angular momentum is conserved, i.e., 

An + 2H cos ao = A(n + w) + 2H, 

or 

w = -2H(1 - cos ao)/A. 

Thereafter, the single-axis, pitching motion is governed by an equation 
of the form 

AcP + 3(B - C)n2 sin cp cos cp = 0, 

where cp is the pitch angle around the orbit pitch axis. A first integral of 
this equation is 

Acp2 + 3(B - C)n2 sin2 cp = Aw2, 

since cp(O) = 0, cp(O) = w. In order that cp be one-signed, i.e., in order 
that tumbling occur, we must have 

Aw2 > 3(B - C)n2 

or 

(H/ An)2 > 3(B - C)/4A(1 - cos ao)2. (27) 
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For a gyro angular momentum satisfying this condition we can excite a 
tumbling motion by collapsing the gyro spin axes toward the pitch axis. 
Actually, since we only want to rotate the satellite through a half revolu­
tion, the gyro angular momentum need barely exceed this minimum 
value. Furthermore, we may collapse the gyro spin axes toward the 
pitch axis by simply reversing the bias torques applied to the gimbals for 
a suitable length of time. For a spindle satellite with (B - C) / A = 
0.99, computer runs (see Fig. 22) show that the satellite may be inverted 
by applying this reversed bias for about a half orbit. For a satellite with 
(B - C)/ A = 0.4 it turns out that it is only necessary to remove the 
bias torques for a fraction of an orbit. For any satellite a suitable com­
bination of bias torque and time can always be found to flip the satellite 
into its desired operating position, providing the relation (27) is satis­
fied. 

We remark that bias torques could also be used to rotate the gyro gim­
bals against the yaw stops. A similar, single-axis argument then gives an 
expression like (27). However, with the gyros back-to-back against yaw 
stops, the satellite has negligible yaw stiffness, and is vulnerable to yaw 
disturbances. This possibility of inversion was therefore not pursued. 
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APPENDIX 

List of Symbols 

A,B,C 
b = B/A, c = CIA 
CD 
D = 1/27rTs 

H I ,H2 

H = I HI I = I H2 I 
H = HI + H2 
Hx , H y , Hz 

principal moments of inertia 
dimensionless principal inertias 
gyro damping constant 
damping rate, inversely proportional to set-

tling time 
angular momentum vectors of gyros 1 and 2 
magnitude of gyro angular momentum 
resultant gyro angular momentum vector 
orbital pitch, roll, and yaw components of 

total gyro momentum 
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h = (H/An) cos a 

h' = (H/e D ) cos a 

I 
i,j,k 

i',j',k' 

K 
L 
Ma 
MIl 
ms ,ma 
m = mams/(ma + ms) 

1 d 
p=-­n dt 

Ts 
X,Y,Z 

x',y',z' 

a 

a,a',a" 
(3,(3' ,(3" 
"( ,"(' ,"(" 
E 

K = 1 + [K/(Hn cos a)] 
~x , ~y , ~z , X 

C{Jx , C{Jy , C{Jz 

C{Jo = !(C{JOl + C{J(2) 

I/; 
1/;0 = !(C{JOl - C{J(2) 

n 
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Optimum Reception of Binary 
Gaussian Signals 

By T. T. KADOTA 

(Manuscript received May 4, 1964) 

The problem of optimum reception of binary Gaussian signals is to 
specify, in terms of the received waveform, a scheme for deciding between 
two alternative covariance functions with minimum error probability. 
Although a considerable literature already exists on the problem, an opti­
mum decision scheme has yet to appear which is both mathematically 
rigorous and convenient for physical application. In the context of a general 
treatment of the problem, this article presents such a solution. The optimum 
decision scheme obtained consists in comparing, with a predetermined 
threshold k, a quadratic form (of function space) in the received waveform 
x(t), namely, 

choose 

choose 

ro(s,t) if II x(s)h(s,t)x(t) ds dt < k, 

rl(s,t) if II x(s)h(s,t)x(t) ds dt ~ k, 

where ro(s,t) and rl(s,t) are the covariance functions while h(s,t) is given 
as a solution of the integral equation, 

II ro(s,u)h(U,v)rl(V,t) du dv = rl(S,t) - ro(s,t). 

This may be regarded as a generalization of the "correlation detection" in 
the case of binary sure signals in noise. 

Section I defines the problem, reviews the literature, and, together with 
certain pertinent remarks, summarizes principal results. A detailed mathe­
matical treatment follows in Section II and the Appendices. 

I. INTRODUCTION AND SUMMARY 

1.1 Definition and Nature of Problem 

The problem of optimum reception of binary Gaussian signals arises 
as a mathematical idealization of a common communication problem. 

2767 
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Consider a radio communication link containing a random medium. 
The transmitter sends one of two possible signals with known frequency 
rates (a priori probabilities), and the receiver decides which one of the 
two has been transmitted. Even if the transmitted signals are deter­
ministic, the observable waveforms at the receiver appear to be random 
owing to effects of the random medium and the ever-present thermal 
noise at the receiver. The task of the so-called optimum (or ideal) 
receiver is to decide, upon observation of the received waveform for a 
finite time, which one of the two signals has been transmitted in such a 
way as to minimize the so-called probability of error. Thus, the problem 
of optimum reception amounts to specifying in terms of the received 
waveform such an optimum decision scheme for given a priori proba­
bilities. 

It is assumed that the values of the received waveforms at arbitrary 
instants of time during the observation interval, say 0 ~ t ~ 1, are 
jointly Gaussian distributed with means zero and a covariance matrix 
which is determined by either one of two known covariance functions, 
depending upon which one of the two signals is transmitted. Then, the 
above problem may be stated as one of testing simple hypotheses as 
follows: Suppose there are two ensembles of real functions of time t, 
o ~ t ~ 1, which are statistically characterized as being Gaussian dis­
tributed with identically vanishing mean functions and two distinct 
covariance functions. A sample (function) x(t) is drawn either from 
the first ensemble with probability a (the null hypothesis: Ho) or from 
the second with probability 1 - a (the alternative hypothesis: HI)' 
Determine a "critical region" AOI (a subset of a space of real functions 
Q) for rejecting Ho (or accepting HI) if x(t) belongs to AOI and accepting 
Ho if x(t) does not, in such a way that the associated error probability, 

(1) 

is no greater than P e(A) for an arbitrary A C Q; where Po and PI are 
two Gaussian (probability) measures defined on (measurable) subsets 
of Q by the two zero mean functions and two covariance functions. 
Thus, the problem of optimum reception amounts to dividing the func­
tion space into two parts in such a way that the weighted probabilities 
on them specified by (1) are minimum among all possible divisions. 

There are two features worth noting in this formulation. One is the 
lack of uniqueness of the optimum division as a consequence of adopting 
the minimum error probability as the optimality criterion. Namely, it 
is immaterial whether a certain set N (of functions) with both proba­
bilities zero, i.e., Po(N) = 0 = PI(N), should be a part of AOI or Q -
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Aa , since it does not contribute to the error probability P 8 • Thus, those 
sets upon which Po and PI vanish can effectively be ignored. The other 
feature is a stipulation that the division be specified in terms of the 
general sample (function), namely, the general element w of the func­
tion space [2, so that each sample (a received waveform) can be classi­
fied as a member of Aa or [2 - Aa. From the probability theoretical 
point of view, these features dictate specification of the division (or the 
decision scheme) to be made in terms of the "almost all sample func­
tions" (or "almost surely," "with probability one," etc.) proposition. 
While this offers flexibility in one sense, it presents a restriction in 
another. For example, anticipating the forthcoming results, if the 
division of [2 is made by means of a certain w function on [2, this function 
can be arbitrary or even undefined on the sets of w upon which Po and 
PI vanish. Yet, if the function is defined as a certain limit (or, obtained 
by a limit operation), then the sense of convergence must be at least 
"for almost all sample functions," but not "in quadratic mean (in the 
mean)," "in probability," and "in distribution," which are in general 
weaker. 

The problem of optimum reception of binary Gaussian signals may 
be regarded as a generalization of an almost classical problem in com­
munication theory, namely, optimum detection of binary sure signals 
in Gaussian noise. It is well known that such detection consists in com­
paring, with a preassigned threshold, the correlation integral of the 
received waveform and a certain function determined by the two signals 
and noise characteristics.. lVlore precisely, let {x t, 0 ~ t ~ 1} be a 
Gaussian process whose covariance function is r(s,t), 0 ~ s,t ~ 1, con­
tinuous and positive-definite, and whose mean function is either moCt) 
or ml (t), both continuous, corresponding to the two sure signals. Denote 
the sample function of the process by x (t) and the threshold by c > o. 
Then Grenander1 shows that if the integral equation 

i1 

r(s,t)g(s) ds = ml (t) - mo(t) (2) 

has a square-integrable solution, the optimum decision scheme under the 
N eyman-Pearson criterion is the following: 

choose moCt) if i 1 

x(t)g(t) dt < c, 

choose ml (t) if i1 

x(t)g(t) dt ;;; c. 

(3) 

Suppose the two sure signals in the above problem are replaced by two 
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stochastic (Gaussian) signals and the additive noise is included in these 
signals so that the decision between two sure signals becomes now the 
decision between two Gaussian signals. Furthermore, suppose the 
optimality criterion is changed from the N eyman-Pearson's to the 
error-probability minimization. Then, the problem becomes optimum 
reception of Gaussian signals under the minimum error-probability 
criterion. More precisely, let {x t, 0 ~ t ~ I} be a Gaussian process 
whose mean function is identically zero and whose covariance function 
is either ro( s,t) or rl (s,t), continuous and positive-definite, with the 
accompanying a priori probabilities a and 1 - a respectively. Then 
what are the counterparts of (2) and (3)? That is, under what condi­
tions can the optimum decision scheme be specified in terms of a corre­
lation integral involving the sample function, and what is the decision 
scheme itself? 

1.2 Review of Literature 

Despite momentous foundations laid by Grenander in 1950, little 
progress was made toward rigorous solution of the above problem during 
the succeeding decade, due primarily to restrictions of the mathematical 
scope to elementary probability theory. The majority of the work is 
characterized by two features: (i) use (and misuse) of the classical 
method of likelihood ratio and (ii) attempts to specify the decision 
scheme in terms of some integrals involving the sample function. In 
order to use the classical method, however, the continuous (parameter) 
process must first be "represented" by a (finite) sequence of random 
variables. Thus Middleton2 and Price 3 sample {x t , 0 ~ t ~ I} to obtain 
the representing sequence x tl , ••• , X tn and form their likelihood ratio 
In : 

l ( ) I Ro(n) (Rl(n) )-1 I! n Xtl , ••• ,Xtn = 

(4) 
exp g t. t. [(Ro(n')-' - (R,'n,)-,]""",x,,} 

where Ro (n) and Rl (n) are two alternative covariance matrices of x tl , 

••• , Xtn given respectively by (RO(n)ij = ro(t i ,tj) and (R1(n)ij = 

rl (ti ,t j); i, j = 1, ... , n. Then, as n ~ 00 and each sampling interval 
becomes infinitesimal, the decision scheme is specified in terms of the 
limits of the exponent and the factor before the exponential in (4), 
provided these limits exist. Middleton argues on a formal basis that the 
exponent of (4) becomes an integral 
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where the ncw process lVt, 0 ~ t ~ I} is given as one of the solutions 
of a pair of certain simultaneous "stochastic integral equations." Price 
also formally argues that the exponent convergcs to an integral 

where go and gl are given as solutions of a certain pair of ordinary in­
tegral equations. 

Davis,4 Bell05 and Turin,6 on the other hand, make orthonormal 
expansions of the process and use the Fourier coefficients as the repre­
senting sequence. However, the formulation of Davis and Bello is based 
upon a ratio of probability density functions of two sequences of Fourier 
coefficients corresponding to two separate orthonormal expansions, 
which is not a likelihood ratio; while the fundamental notion in Turin's 
formulation is "probability density functions of processes," which are 
unbounded functions in general. 

One difficulty common among all the papers is the total absence of 
convergence proofs for series of random variables. As mentioned in 
Section 1.1, the sense of convergence must be "for almost all sample 
functions." Yet, for example, it is not clear on what ground the ex­
ponent of (4) should converge for almost all sample functions to those 
stochastic integrals, nor is the existence of the integrals themselves 
shown. 

The other common difficulty, of a more fundamental nature, is the 
lack of optimality proofs. Considering the process as an ensemble of 
"well behaved" functions of time, it is intuitively plausible that such 
an ensemble should be "adequately" described by the distributions of 
the "infinitely densely" sampled values of the member functions or by 
the distributions of the Fourier coefficients of some orthogonal expan­
sions in £2 (the space of square-integrable functions) . Namely, the 
continuous (parameter) process should somehow be "representable" by 
a sequence (infinite in general) of random variables. However, the 
optimality of the resultant decision scheme should in general be affected 
by selection of the representing sequence. Obviously, there are in­
numerable ways of sampling the process, resulting in innumerable 
decision schemes. Similarly, there are as many sequences of Fourier 
coefficients to represent the process as orthonormal bases of £2 . Yet, 
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should all the representing sequences eventually yield the decision 
schemes with the same error probability, the minimum? If not, which 
sequences are the best representations? Even if the best sequence is 
chosen, on what grounds will the error probability remain minimum in 
the limit as n ~ 00, since, after all, the classical method is valid only 
for a finite n? 

Note that there is no a priori need for the use of either likelihood 
ratios or representations, so long as the proposed decision scheme is 
shown to have the minimum error probability. In fact, Slepian7 shows 
interesting special examples (of the singular case) where minimality 
of the error probability is explicitly proved. From a different point of 
view, Parzen recently restores Grenander's basic formulation, where 
what is called the Radon-Nikodym derivative plays the role of the 
likelihood ratio in the classical theory, and puts the sampling method 
on a more rigorous basis. 

1.3 Summary of Main Results and Remarks 

Solution of the problem of optimum reception stated in Section 1.1 
rests on the following two fundamental (measure theoretical) facts: 

(a) If Po and PI are two Gaussian (probability) measures, they 
must be either (i) "equivalent," i.e., Po == PI, or (ii) "orthogonal" 
(or "singular"), i.e. , Po 1. PI . 

(b) If Po and PI are equivalent, there exists a certain nonnegative 
random variable f(w), called the Radon-Nikodym derivative of PI 
,,,ith respect to Po, and a set of w points in n such that f( w) ~ al (1 - a) 
can be taken as the desired critical region, denoted by Aa in Section 1.1. 
On the other hand, if Po and PI are orthogonal, there exists a set H 
of w points in n such that Po(H) = 0 and PI(H) = 1, and the critical 
region/jcan be taken to be such a set H. In short, the following set Sa 
serves as the. critical region: 

.... S~ ~ {~("'l ;;; al(l - all if Po == PI, 

if Po 1. Pl. 
(5) 

Thus, the problem of determining the critical region now becomes 
the problem of finding such a random variable and a set H. 

Next, through the use of theory of martingales, the following facts 
can be established: 

For almost all sample functions, 
(i) if (and only if) 
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then 

lim In(Xtl , ... , Xtn ) = few) under both hypotheses;* (7) 
n_oo 

(ii) if (and only if) (6) is not satisfied, then 

( 0 under null hypothesis, 
lim In ( X t 1 , ••• , X t ) = ~ 
n_oo n l 00 under alternative hypothesis, 

(8) 

provided that the sequence {td is dense in the interval 0 ~ t ~ 1, where 
"tr" stands for "trace" and the likelihood ratio In, together with 
Ro (n) and RI (n), is previously defined in (4). t 

Examina tion of (7) and ( 8) in conj unction with (5) immedia tely 
leads to the conclusion that, irrespective of the hypotheses, 

Sa = {lim In(Xtl , ... , Xtn) ~ a/(1 - a)}. (9) 
n_oo 

Thus, if X(tl), ... , x(tn) are the values of the sample function (the 
received waveform) x(t), 0 ~ t ~ 1, sampled arbitrarily but with the 
restriction that each sampling interval becomes infinitesimal as n ~ 00, 

then the optimum decision scheme becomes the following: 

choose ro(s,t) if limln[x(t1 ),···, x(tn)] < a/(1 - a), 

choose rl(s,t) if lim In[x(t1 ), ••• , x(tn)] ~ a/(1 - a). 
(10) 

n_oo 

Furthermore, according to (i), if the given covariance functions roe s,t) 
and rl(s,t) are such that (6) is satisfied by their covariance matrices 
Ro(n) and Rl (n) obtained through sampling, then, regardless of whether 
ro(s,t) or rl(s,t) is the true covariance function, the above limit is finite 
for almost all sample functions, and the error probability associated 
with the decision scheme (10) is minimum. According to (ii), on the 
other hand, if ro(s,t) and rl(s,t) are such that Ro(n) and R1(n) do not 
sa tisfy (6), then for almost all sample functions the limit vanishes 
if ro(s,t) is true, while the limit diverges if rl(s,t) is true; and, inde­
pendent of the given a priori probabilities, the associated error proba­
bility simply vanishes, resulting in the case of "perfect reception." 

* Recall that the null hypothesis is the hypothesis that ro(s,t) is the true 
covariance function of the process while the alternative is the hypothesis that 
rl(s,t) is the true covariance function. 

t (6) and (7) are also found in Parzen.8 
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It should be noted, first of all, that the sequence of sampled values is 
not used to represent the continuous process but to obtain the crucial 
random variable f and set H through formation of the likelihood ratio. 
Secondly, under the assumption of the covariance functions being 
continuous, it can be proved that, regardless of the sampling manner, 
the limit of the likelihood ratio satisfies either (7) or (8), thus yielding 
the same error probability, so long as each sampling interval becomes 
infinitesimal as n ~ 00.* Lastly, negation of condition (6) can be re­
garded as a necessary and sufficient condition for perfect reception. 

Having obtained the optimum decision scheme (10), the question 
of possible simplification naturally arises next. Examination of the 
form of the likelihood ratio (4) suggests that, if the limits of the ex­
ponent and the factor before the exponential exist separately, decision 
scheme (10) may be rewritten in terms of these limits. Such an attempt 
already appears in the literature, as mentioned in Section 1.2. However, 
the crucial mathematical consideration hinges upon the condition under 
which such a procedure can be justified. Here, the following condi­
tion is shown to be necessary and sufficient: 

lim tr [(Ro(n)-l R/n) - J] < 00 

n .... oo 
(11) 

Note that this condition implies (6), as it should, and excludes the 
case of perfect reception. In fact, condition (11) states not only that 
the sum of two traces converge as condition (6) requires, but also that 
the two traces converge individually. In conclusion: If condition (11) 
is satisfied, then there exist a positive constant (3 and a random vari­
able e such that 

(3 = lim 1 Ro(n) (R1(n)-1 I, (12) 

n n 

e = lim L L [(Ro(n)-l - (Rl(n)-I]ijXtiXtj (13) 
n .... oo i=1 i=1 

for almost all sample functions under both hypotheses; and the optimum 
decision scheme (10) is reduced to the following: 

choose ro(s,t) if e(x) < log (1/(3)[a/(1 - a)]2, 

choose rl(s,t) if e(x) ~ log (1/(3)[a/(1 - a)]2, 
(14) . 

* This does not imply that two different decision schemes yield the same de­
cision for every sample function; rather, a set N of sample functions, for which 
two decisions differ, give no contribution to the error probability, i.e., Po(N) = 
o = P 1 (N). 
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where e(x) is the value of e for the sample function x(t), which is ob­
tained by simply replacing Xti and Xtj in (13) by x(tJ and x(tj). 

Although the above decision scheme is certainly a step toward sim­
plification compared with (10), it is still inconvenient, if not unfeasible, 
for physical application, since it requires limit operations for each 
received waveform. Yet, so long as the likelihood ratio is formed in 
terms of the sampled values, elimination of the limit operation appears 
to be impossible. Recall, however, the problem of optimum detection 
of sure signals in noise mentioned in Section 1.1. There, the likelihood 
ratio is formed in terms of the Fourier coefficients of the so-called 
Karhunen-Loeve expansion of the process instead, thus resulting in the 
decision scheme specified in terms of an integral in place of an infinite 
series, as shown by (3). Needless to say, in the present problem where 
there are two covariance functions instead of one, additional mathe­
matical complications should be inevitable. Nevertheless, an optimum 
decision scheme which is essentially comparable to (3) can be obtained, 
as will now be shown. 

Let Al ~ A2 ~ ... and 1/;1 (t), 1/;2 (t), ... be the eigenvalues and the 
orthonormal eigenfunctions associated with the covariance function 
ro(s,t), and, similarly, let Jll ~ Jl2 ~ ... and <Pl(t), <P2(t), ... be those 
associated with rl(s,t). Then, it can be shown that, under the assump­
tion of roe s,t) and rl (s,t) being continuous and positive-definite, the 
integrals 

1, = 1,2, ' .. , (15) 

exist for almost all sample functions under both hypotheses, and are 
Gaussian distributed with means zero. Furthermore, the covariance 
matrix determining the joint distribution of ~l , ••• , ~n is given by either 

(QO(n)ij = AiOij, or 

00 

(Ql (n) ij = aij = L f../,kUkiUkj , 
k=l 

(16) 

depending upon which one of ro(s,t) and rl(s,t) is the true covarIance 
function of the process. 

Thus the likelihood ratio of ~l , ••• , ~n becomes 

In = I QO(n'(Ql(n,)-1 II exp g t, t; [(Qo'n,)-1 - (Q"n')-llii~i~;}' (17) 

which corresponds to (4). It turns out that, under the previous assump­
tion on the covariance functions, there is a complete parallel between the 
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two formulations, one based upon x tl' ••• , X tn and the other based 
upon ~1, '" , ~n • Thus, for almost all sample functions, 

(i) if (and only if) 

lim tr [(QoCn)-l Q1 Cn ) - 21 - Qo(n) (Q1 Cn)-1] < 00, (18) 
n-+oo 

then 

lim In (~1, "', ~n) = f ( w ) under both hypotheses; (19 ) 
n-+oo 

(ii) if (and only if) (18) is not satisfied, then 

A {O under null hypothesis, 
lim In(~l , ... ,~n) = 
n-+oo 00 under alternative hypothesis. 

Then, the optimum decision scheme corresponding to (10) becomes: 

choose fo(S,t) if lim In[~l(X), " . ,~n(X)] < a/(1 - a), 

choose fl(S,t) if lim fn[~l(X), .•. ,~n(X)] ~ a/(1 - a), 

(20) 

(21) 

where ~i( x), i = 1, .. , , n, are the values of the random variables 
~i for the sample function x(t), namely, 

~i(X) = i1 

X(t)if;i(t) dt. 

Again, note first the role of {~i}, which is not a representing sequence 
of the process but a means for obtaining the crucial random variable f 
and set H by forming the likelihood ratio. Secondly, it can be shown 
that, under the assumption of the two covariance functions being con­
tinuous and positive-definite, {<Pi(t)} can be used in place of {if;i(t)} 
to form {~i}, but not any orthonormal basis of £2. Lastly, as before, 
negation of (18) can be interpreted as a necessary and sufficient condi­
tion for perfect reception. Completing the parallel, if (and only if) 

lim tr [( Qot n) )-1 QICn ) - 1] < 00, 

(22) 

then there exist Sand 8 such that 

S = lim I QoCn) (Q1 Cn)-II, (23) 
n-+oo 
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n n 
• 10 

'" '" [(Q (11) )-1 (Q (n) )-1] e = lIn L...J L...J 0 - 1 ij ~i~j (24) 
n-+oo i=1 i=1 

for almost all sample functions under both hypotheses; and decision 
scheme (21) is reduced to the following: 

choose ro(s,t) if {}(x) < log (1/~)[a/(1 - a)t, 
(25) 

choose rl(s,t) if {}(x) ~ log (1/~)[a/(1 - a)t 

Returning to the original goal of eliminating the limit operation, 
examination of (24) immediately suggests the possibility of rewriting 
o as a quadratic form in x t 0 That is, if one defines 

n n 

h(n)(s,t) = L L h)n)tf;i(S)tf;j(t) , (26) 
i=1 i=1 

where 

then, from (15), 

(27) 

and hij (n),. i,j 
equation 

1, 0 •• , n, can be given as a solution of the matrix 

Qo(n) (h i/
n» Ql(n) = Q/n) _ Qo(n), 

or, more directly, h(n\s,t) can be given as a solution of the integral 
equation 

i 1 i 1 
To (n) (s,u)h (n) (u,v )1'/n) (V,t) du dv = 1'1 (n) (S,t) - 1'0 (n) (s,O, (28) 

where 

n n n 

L "Ai1!l i(S)tf;i(t), rl(n)(S,t) = L L aijtf;i(s)tf;j(t). (29) 
i=1 i=1 i=1 

Then, the following conjecture should be imminent: 

1 (I 
{} = 10 10 xsh(s,t)xt ds dt, (30) 

where h( s,t) is a solution of 
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i1 i1 
1'O(S;U)h(U,V)I'I(V,t) du dv = J'1(S,t) - 1'o(S,t), (31) 

which are fOl'mally the limits of (27) and (28) respectively, The essen­
tial part of the above conjecture can be shown to be correct. That is, 
if (31) has a solution h(s,t) such that 

1
1 1 

( h2(s,t) ds dt < 00, then 
o .10 

r1 rl n n 

10 10 xsh(s,t)xt ds dt = ~i':1~ t; t; hi/n)~i~j 
(32) 

for almost all sample functions under both hypotheses, provided that, 
for all i, j = 1, 2, 

00 

aii > 2:::' I aij I, 
i=l 

I ~i: - 5i; I 

--~-oo~----~-- ~ I{, 

1 - 2::: I Ojk - ajk I 
k=1 

where J{ is a positive constant independent of i and j. 

(33) 

Then the optimum decision scheme (25) is immediately reduced to the 
following desired form: 

choose 1'0 (s,t) 

ehoose 1'1 ( s ,t) 

if r
1 11 x(s)h(s,t)x(t) ds dt < log'; (_a_)2, 

10 0 /3 1 - a 
(34) 

if {I (I x(s)h(s,t)x(t) ds "dt ~ log'; (_a_)2. 
10 Jo {:J 1 - a 

Difficulty of the proof lie.s mainly in the fact that, as n increases, the 
coefficients h)n) themselves vary with n as well as the number of the 
terms of the SUIll, yet h(n) (s,t) must approach h( s,t) in such a way that 

(
1 (1 (1 1 

lim '0 xsh(n)(s,t)xtds dt = '0 r xsh(s,t)xtdsdt 
n~oo '0 . 0 • 0 . 0 

for almost all sample functions under both hypotheses. This accounts 
for need of the auxiliary conditions (33). The first condition is not a 
restriction in physical application since 

00 00 11 tt aii = ~ J-Li = 0 1'l(t,t) dt 

is the average energy of the waveform in the interval 0 ~ t ~ 1, which 
can always be normalized to assure aii < 1. Although the remaining two 
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conditions are restrictive, current knowledge of infinite systems of 
equations does not seem to allow their removal. Thus this calls for a 
future investigation of the degree of restriction imposed by them in 
physicial application. 

As anticipated, there is an apparent correspondence between the 
classical case of sure signals in noise mentioned in Section 1.1 and the 
present case of stochastic signals, namely, between (2)-(3) and (31)-(34), 
except for the fact that the constituent functions in the latter case are 
functions of two variables instead of one. As the integral of the decision 
scheme (3) has a simple physical interpretation (the output of a linear 
filter with g(t) as its impulse response), so does the integral in (34). 
Namely, it is the output of a quadratic filter whose impulse response is 
h(s,t). The advantage of this scheme over the others - namely, (10, 
(14), (21) and (25) - is obvious. Given two covariance functions, the 
impulse response of the filter is uniquely determined by the integral 
equation (31) if a solution exists, and decision is made by comparing, 
with a preassigned threshold, the appropriately sampled output of the 
filter with the received waveform as its input, instead of having to per­
form the limit operation for each received waveform. 

Finally, it should be remarked that the optimum decision scheme 
above differs formally from those previously obtained by others. * A 
further, and more significant, distinction lies in the assured optimality 
of this scheme, inherent in its derivation, while the optimality of the 
others has yet to be proved separately. t 

II. MATHEl\IA'l'lCAL 'l'HEOHY 

2.1 Gaussian Processes 

Let {x t, t E T} be a real Gaussian process with a parameter set 
T = [0,1] and a finite dimensional distribution function F tl,"', In , which 
is determined by given mean function and covariance function where 
t1 , ••• , tn are an arbitrary finite subset of 'P. It is assumed that the 
mean function is identically zero on T while the covariance function 
is positive-definite and continuous on TXT. In the present problem 
it is desirable to have an explicit representation of the given process 
{x t , t E T} on a function space. t 

Let n be a space of real-valued functions of t E T. Let xs(w) be the 

* Although their work is briefly reviewed in Section 1.2, their decision schemes 
are not stated explicitly in this paper. 

t This excludes Parzen'sB case where the decision scheme is essentially (10). 
t The next paragraph follows closely Example 2.3 in Supplement, Doob,9 pp. 

609-610. 
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W function with the value res) if W is the function r(·), so that xs(w) 
r( s). If the t function w has values r(tl), ... , r(tn) at t1 , ••• , tn, 
the condition 

r(t l ) ~ PI, ... ,r(tn) ~ Pn 

defines an w set, which is denoted by 

i = 1, ... , n} (35) 

where PI, ... , Pn are arbitrary real numbers. Next, let 5= be the class 
of all w sets obtained in this way for arbitrary n, t1 , ••• , tn , and let 
CB T be the Borel field generated by 5=, and lastly let P be a probability 
measure defined on the sets of CB T whose value is given by 

P{Xti(W) ~ Pi, i = 1, ... ,n} = Ft1,···,t n (PI, ... ,Pn). (36) 

Then, {x t ( w ), t E T} is a represen ta tion of the given process {x t, t E T} 
on the function space Q, and (Q, CB T , P) is the explicit probability meas­
ure space for the representation. * 
(Remark) By virtue of the choice of representation space, the general 
elements of the space Q coincide with the general sample functions of 
the process {Xt(w), t E T}. Thus, the phrases, "almost everywhere (or 
almost surely)" and "for almost all samp]e functions," have the same 
meanmg. 

The assumption of continuous covariance function has the following 
significant consequences: 

(i) {Xt(w), t E T} has an equivalent (with respect to P) separable 
and measurable process on the same w space. t Hence, so long as the 
almost-everywhere valid properties of a given process are of interest, 
as in the case of this paper, the given process may as well be taken 
to be separable and measurable. Therefore, the Gaussian process 
{x t (w ), t E T} is henceforth assumed to be separable and measurable. 

(ii) {Xt(w), t E T} is sample (Lebesgue) square-integrable on T 
almost everywhere with respect to P.t 
This immediately implies that a Lebesgue integral 

* Symbolic distinction between the given process and its representation on the 
function space is made by explicitly writing the argument w for the latter. 

t Note continuity of the covariance function of a process is equivalent to con­
tinuity in quadratic mean of the process (Loeve,lO p. 470), and hence it implies 
continuity in probability of the process. Then, according to Theorem 2.6 in Doob,9 
pp. 61-62, there exists an equivalent separable and measurable process on the 
same space. 

t See Loeve,lo pp. 520-521. 
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exists almost everywhere, in which 1/;(t) is any continuous function on T. 
Furthermore, since the sample Lebesgue integral of a process coincides 
almost everywhere with the Riemann integral in quadratic mean cri­
terion, * and also the Riemann integral in quadratic mean criterion of a 
Gaussian process is a Gaussian (random) variable, t Hw) is a Gaussian 
variable. 

2.2 Formulation of Problem 

Let FO;tl, ... ,tn and FI;tl, ... ,tn be two alternative Gaussian finite di­
mensional distribution functions of a real separable and measurable 
process {Xt(w), t E T}, whose mean functions are identically zero and 
whose covariance functions, denoted respectively by ro(s,t) and rI(s,t), 
are positive-definite and continuous on TXT. Let Po and PI be the 
Gaussian probability measures defined respectively by Fo; tl , ••• , tn and 
F I ; tl"'" tn on the Borel field (B T of subsets of Q as defined previously. 
It is well known that Po and PI are either equivalent, Po == PI, or 
orthogonal, Po .1 Pl. t 

Define a set function P e by 

A E (BT, (37) 

where a is a constant, 0 < a < 1.§ Let Aa E (BT be such a set that 

for all A E (BT. (38) 

Then, the problem of interest is to specify such a set Aa in terms of 
Xt(w)·11 

Now, if Po == PI, let few) be a Radon-Nikodym derivative of PI 
with respect to Po ; while, if Po .1 PI, let H E (BT be a set such that 
Po(H) = 0 and PI(H) = 1. Then, it can be shown that the following 

* Henceforth, the "sample Lebesgue integral of a process" will simply be called 
the "integral of a process," unless otherwise specified. A definition of Riemann 
integral in quadratic mean criterion is in Loeve,lo pp. 471-474. 

t See Loeve,l° p. 485. 
t See Hajek. ll ,l2 

§ P e is the so-called error probability. Although 0 ~ P e ~ 1 for all A E ffiT , 
P e is not a probability measure, and its full meaning is given in Section 1.1. 

II Equivalence between this problem and that of "optimum reception of binary 
Gaussian processes" is discussed in detail in Section 1. 
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set Sa satisfies condition (38):* 

if Po == PI, 

if Po 1.. PI , 

Sa = {f(W) ~ a/(l - a)}, 

Sa = H. 

Thus the above stated problem is reduced to that of finding 

(39) 

(i), if Po == PI, a function of Xt(w) equal tof(w) almost everywhere 
with respect to Po and PI, and 

(ii), if Po 1.. PI, some such set H expressible in terms of x t (w) . 

2.3 Solutions - I 

2.3.1 General Solution 

Let {n} be a sequence of points in T = [0,1], which is dense in T. 
Let CBn be a Borel field generated by a class of w sets of the form 

i = 1, .,. , n}, (40) 
00 

and let CBoo be the minimal Borel field containing U CBn • Obviously, 
n=I 

(41) 

Then, since {x t( w), t E T} is a separable process, continuous in proba­
bility (with respect to Po and PI), and the sequence {Tk} is dense in T, 
it follows that, for an arbitrary set A E CB T , there exists a set A' E CBoo 

such that 

Po(AtJ.A') = ° = PI(AtJ.A'). (42)t 

Now, through the use of the covariance functions ro(s,t) and rI(s,t) 
and the fact that the mean functions are identically zero, the density 
functions po and PI of the random variables XTi(W), i = 1, ... ,n, 
corresponding to Po and PI respectively, are obtained as follows: 

Pm( VI, '" , Vn ) = (271"') -(n/2) I Rm (n) I-! 

X exp {-~ t. t. [(Rm<n')-I];;ViV;}, m = 0,1, 
(43) 

where the Ti , i = 1, ... , n, are a finite subset of {Tk}, and Rm (n), m = 0. 
1, are n X n symmetric, positive-definite matrices defined by 

m = 0,1; i, j = 1, ... ,n. (44) 

* See Appendix A. The first assertion of (39) follows from Corollary 1 in this 
appendix, while the second assertion is self-evident. 

t See Doob,9 pp. 51-55; in particular, Theorem 2.2 (i). 
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Then define a random variable In (w) by 

In(w) = PI[Xq (w), ... , XTn(w)] = I Ro(n) (R/n»)-I I! 
po[Xq (w), ... , XTJW)] 

X exp {~t; t. [(Ro'n')-' - (R,'n')-'j;;X,'(w)X,,(w)}. 

(45) 

Note that 

In(w) ~ 0 for all n. (46) 

Furthermore, since Rm (n), m = 0, 1, are positive-definite, PI = 0 when­
ever po = 0 and vice versa. Then, it can be shown that the processes 
{In(w), n ~ I} and {l/ln(w), n ~ I} are martingales with respect to 
Po and PI respectively. * 

(i) Po == PI : Let Eo{f(w) I CBn }, n = 1, 2, ••. , be a conditional 
expectation of few), given CBn , with respect to Po. Namely, 

f Eo{f(w) I (En} dPo = (f(w) dPo for any A E CBn • 
A ·A 

Then, 

a.e. (Po),t (47) 

and, from (41) t 

a.e. (Po). (48) 

Yet, from the definition of Eo{f( u:) I CB oo } and (42), 

a.e. (Pc). (49) 

Hence, 

lim In(w) = few), a.e. (Po). (50) 

Since Po == PI , the above implies 

lim In(w) = few), a.e. (P1 ). (51) 

Thus, the desired function, which is equa] to few), a.e. (Po, P 1 ), is 

* See Doob,9 pp. 91-93. 
t "a.e. (Pm)," m = 0, 1, is used as a shorthand notation of "almost everywhere 

with respect to Pm ." Similarly, "a.e. (Po, PI)" will be used to denote "almost 
everywhere with respect to both Po and PI." 

i See Doob,9 p. 331. 
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lOCJ (w ), which is defined by 

(52) 

(ii) Po 1. PI : From (4G), lim In(w) < 00, a.e. (Po).* In fact, it can 
be shown that n-+OCJ 

a.e. (Po). t 

By using the same argument, it follows that 

lim [1/ln(w)] = 0, 

Hence, for an arbitrary constant c > 0, 

Thus, the desired set H, with Po(H) = ° and P1(H) = 1, is 

H = {lim In(w) ~ a/(l - a)}. 

(53 ) 

(.54) 

(55) 

In summary, upon combination of (52) and (55) in conjunction with 
(39), the desired set Sa is 

(56) 

irrespective of whether Po == PI or Po 1. PI . 

2.3.2 Special Solutions and Summary 

Under certain restrictive conditions, the set Sa can be specified in 
terms of well defined functions of Xt(w). It is the purpose of this sub­
section to obtain such specifications as well as the accompanying con­
ditions in terms of the given covariance functions ro( s,t) and rl (s,t). 

(i) If Po == PI , it has already been shown that 

Thus, it is of interest to obtain a condition for Po == PI . t 
Define 

* See Doob,9 p. 319; Theorem 4.1 (i). 
t See Doob,9 pp. 345-346. 

n = 1,2, (57) 

t Such conditions are already available (e.g., Parzen,8 Shepp13). For more de­
tail, see Yaglom. 14 
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Then, since (p - 1) log p, p > 0, is a real, continuous and convex 
function of p and Eo{l(ln(w) - 1) log In(w)l} < 00, n = 1,2, ... ; 
{l1n(W), n ~ I} constitute a semi-martingale (with respect to Po).* 
Hence, EO{l1n(W)}, n = 1, 2, "', forms a monotone nondecreasing 
sequence 

Eo{ 111(W)} ~ Eo{ 112(w)} ~ •.• , 

which nlust either converge or diverge. Then, according to (53), 

if Po ..1 PI , then 

lim Eo{ l1n (w )} = 00. 

(58) i' 

(59) 

Hence, since Po and PI can be either equivalent or orthogonal, it follows 
that 

Po == PI, if 

(60) 
n-+oo 

It can be shown that the converse of (59) is also true,t i.e., 

then Po ..1 PI . (61) 
n-+oo 

This implies that the condition of (60) is also necessary. Thus, through 
substitution of (45) into (57) and application of (43) for expectation 
calculation, § 

Po == PI, if and only if 

(62) /I 
n-+oo 

where Ro(n) and RI(n) are defined in terms of ro(s,t) and rl(s,t) by (44). 
(ii) Examination of (45), (50) and (51) indicates that, in addition to 

condition (62), if 

lim I Ro(n) (R/n»-I I = (3, 0<{3< 00, (63) 
n-+oo 

then 

* See Doob,9 pp. 295-296, Theorem 1.1 (iii). "Eo" denotes expectation with 
respect to Po, namely, an integration over n with respect to Po . 

t See Doob,9 p. 324, Theorem 4.18. 
~ See Hajek;12 in particular, Lemma 2.1. 
§ Por this calculation, use the following equality: Eo/1J,,(w) ) = Edlog In(w)} -

EOflOg In(w) J, n = 1, 2, .... 
I "tr" denotes "trace," and I is the n X n identity matrix. 
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n n 

lim L: L: [(Ro(n))-1 - (R1(n))-I]ij XTi(W)XTi(W) < 00, 

n ..... oo i=1 i=l (64) 

a.e. (~o, ~1). 

Thus, by defining o( w) as the above limit, i.e., 
n n 

O(w) = lim L: L [(Ro(n))-1 - (Rt(n))-I]ijXTi(W)XTo(w), (6,1'» 
n ..... oo i=l i=l 1 

the set Sa E CB r can be specified as follows: 

Sa = {O(W) ~ log (l/jJ)(a/(1 - a))2}. (66) 

It will now be shown that two conditions (62) and (63), required 
for the above specification of Sa , are equivalent to the following pair 
of conditions: 

and (67) 

Define 

t n ( w) = -log In ( W ) , 

tn' (W) = In (W) log In (W) n = 1,2, .... 
(68) 

Thus, 

n = 1,2, .... (69) 

Again, just as in the case of 1]n(W), both {tn(W), n ~ I} and {tn'(W), 
n ~ I} are semi-martingales with respect to ~o , and 

EO{tl(W)} ~ EO{t2(W)} ~ '" , 

EO{tl'(W)} ~ EO{t2'(W)} ~ 
(70) 

Furthermore, from (53), 

if ~o..l PI, then lim Eo{tn(W)} = 00. (71) 

However, from (69) and (70), divergence of Eo{tn(w)} implies that of 
EO{1]n(w)}. Hence, according to (61), the converse of (71) holds. Then. 
again from (70) and the equivalence-or-orthogonality dichotomy of 
Po and 1\, 
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Po == PI if and only if lim EOf~n(W)} < 00. (72) 

Thus, upon substitution of (45) into (68) and application of (43) 
for expectation calculation, an alternative necessary and sufficient 
condition for Po == PI is obtained as follows: 

lim {log I (RO(n»)-I RI(n) I + tr [Ro(n) (R/n»)-l - I]) < 00. (73) 

Now, under the condition (63), the above condition implies that 

lim tr [Ro(n) (RI(n»)-1 - I] < 00. (74) 

Then, upon combination of conditions (62) and (74), condition (67) 
immediately follows. 

The result of this section may be summarized as follows: 
( i) In general, 

Sa = {lim In(w) ~ al(l - a)}, 

where In(w) is defined by (45). 
(ii) If Po == PI , which is true if and only if 

lim tr [(Ro(n»)-l R/n) - 21 + Ro(n) (R1(n»)-I] < 00, 

n~oo 

then linlln(w) = few), a.e. (Po, PI); thus by defining tJw) = lim In(w), 

(iii) if 

then 

Sa = {8(w) ~ log (l/tJ) (a/(l - a))2} 

where 8(w) and tJ are defined by (65) and (63) respectively. 

2.4 Solutions - I I 

2.4.1 General and Special Solutions 

Let Al ~ A2 ~ ... and Y;I (t), Y;2( t), ... be the eigenvalues and the 
corresponding orthonormal eigenfunctions associated with the covari-
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ance function ro(s,t).* Similarly, let J.LI ~ J.L2 ~ •.• and 'PI(t) , 'P2(t), 

be such eigenvalues and eigenfunctions associated with rl(s,t). Then, 
according to the discussion in 2.1 (ii), continuity on T of each l/1i(t) 

implies that the integrals 

~i(W) = IT Xt(W)t/;i(t) dt, ~ = 1,2, ... , (75) 

exist a.e. (Po, PI), and are Gaussian random variables. In fact, it 
can be shown that the density functions po and PI of ~l (w), ... , ~n (w) 
corresponding to Po and PI are given by t 

Pm( VI , ••• , Vn ) = (27r) -(n/2) I Qm (n) I-! 

exp {-~ t. t. [(Qm(n»)-l];; ViV} m = 0,1, 
(76) 

where Qm(n), m = 0, 1, are n X n symmetric and positive-definite 
matrices defined by 

where 

00 

(QI(n»ii = L J.Ll;'Uki'Ukj, 
k=l 

Let cBn be a Borel field generated by a class of w sets of the form 

{~i(W) ~ Pi, i = 1, ... , n}, 

00 

(77) 

(78) 

(79) 

and let cBoo be the minimal Borel field containing U run . Obviously, 
n=1 

(80) 

It can be shown that, for an arbitrary A E CRT, there exists some A E cBoo 
such that 

Po(A6.A) = o. (81)t 

N ow define a random variable In (w) by 

* More precise definitions of these eigenvalues and eigenfunctions are given 
in Appendix B. 

t See Appendix C. 
t See Appendix D. 
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i ( ) = Ih[h(w), ... , ~n(w)] 
n W Po[~](w), ... , ~n(w)] 

~ I Qo {n, ( Q.'n, ) -, II exp H t. t. [( Q.'n')-' (82) 

- (Q,{n')-'li;Mw)Mw)}, 

where (76) is substituted for the second equality. Again, note that 
In (w) is nonnegative for all n and also the fact that PI = 0 whenever 
po = 0 and vice versa since Qm (n), m = 0, 1, are positive-definite. Thus, 
again the processes {In(w), n ~ I} and {llln(w), n ~ I} are martingales 
with respect to Po and PI respectively. 

By following step-by-step the same procedure as the one in the 
preceding section, * the following results are obtained: 

(i) In general, 

Sa = {lim in(w) ~ al(I - a)}. (83) 
n-+oo 

(ii) If Po == PI , which is true if and only if 

lim tr [(Qo(n))-l QI(n) - 21 + Qo(n) (Q/n))-l] < 00, (84) 
n-+oo 

then 

lim in ( w) = f ( w ) , (85) 
n-+oo 

thus by defining 

(86) 
n-+oo 

(87) 

(iii) If 

n-+oo 
(88) 

n-+oo 

then there exists a constant $, 0 < $ < 00, such that 

* In effect, it amounts to replacing CBn and [neW), n = 1, 2, ... n, by ill and 
[new) respectively. 
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and, from (85) and (82), it follows that 
n n 

lim 2: 2: [(Qo(n»)-l - Q(I(n»)-l]ij~i(W)~j(w) < 00, 

n-+oo i=1 i=1 

thus, by defining O( w) as the above limit, 

Sa = {O(w) ~ log (I/S)(a/(1 - a))2}. 

2.4.2 Integral Expression for O( w) 

(89) 

(90) 

(91) 

For the purpose of physical application, it is desirable to express the 
random variable (jew) as a simpler function of Xt(w), in particular, with­
out involving limit operation. Examination of the definition of (jew), 
i.e., 

n n 

(jew) = lim 2: 2: [(QO(n»)-l - (Ql(n»)-I]ij~i(W)~j(w), (92) 
n-+oo i=1 i=1 

indicates that (jew) might be expressible as a quadratic form in Xt(w), 
i.e., 

fTfT x8 (w)h(s,t)xt(w) ds dt 

if such a square-integrable function h(s,t), (s,t) E TXT, exists and 
can be determined uniquely. It is the purpose of this subsection to make 
the above statement more definite and precise. 

Define an n X n symmetric matrix H(n) by 

H(n) = (Qo(n»)-l _ (Ql(n»)-l. 

Then, 

Qo(n)H(n)QICn) = QI Cn) _ QoCn), 

or, through (77), the equation for the i-jth element becomes 
n 

L.: Ai(HCn»)ik(QICn)hj = (QI Cn\j - AiOij; i, j = 1, ... , n. 
k=1 

In other words, every ith row of H Cn ) satisfies the following system of 
equations: * 

n 

L.: ajkhik (n) = bj(i) 
k=1 

j = 1, '" ,n, 

* Note that the solution is unique, since the matrix (aii) is positive-definite. 
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where 
00 

L J..LkUkiUkj, 
k=l 

bj(i) (aij/Ai) - Dij, 

or its standard form 
n 

h)n) = L cjkhik (n) + bj ( i), 
k=l 

where 

i, j = 1, 2, ... , (93)* 

j = 1, ... ,n, (94) 

Now, for each i = 1, 2, ... , consider the following infinite system of 
equations: 

00 

h ij = L cjkhik + bj ( i), j = 1,2, .... (95) 
k=l 

According to the theory of infinite systems of equations, t if (95) has a 
solution (h il , hi2 , ... ) for each i = 1,2, ... ,such that 

00 00 

L L hif < 00, 
i=l i=l 

then (hi! , hi2' ... ) is unique and 

h ij = lim hij(n), j = 1,2, ... , 

(96) 

(97) 

for each i = 1,2, ... , where (h i1(n), ••• , hin(n», i = 1, ... , n, is 
the solution of (94); provided that (95) satisfies the following condi­
tions: for each i = 1, 2, 

00 

L I Cij I < 1, (98) 
i=l 

and there exists a constant Ie > 0, independent of j, such that 

1 b;(ill ;;; ](.(1 - t. 1 C;k I), j = 1,2, .... (99) 

On the other hand, if (h il , hi2' ... ) is a solution of (95) for each 
i = 1,2, ... , satisfying (96), then the following integral equation 

liT ro(s,u)h(U,v)rl(v,t) du dv = r1(S,t) - ro(s,t) (100) 

* Note that (Ql(n»ii = aii; i, j = 1, ... ,n. 
t See Kantorovich and Krylov,15 pp. 20-33. 
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has a square-integrable solution h(s,t), 

fTfT h
2
(s,t) ds dt < 00, (101) 

such that 
00 00 

h(s,t) = L L hijY;i(S)Y;j(t), in the mean. * (102) 
i=l j=l 

Conversely, if ii(s,t) is a square-integrable solution of (100), then (95) 
has a unique solution (hi l , hi2' ... ) for each i = 1, 2, ... , satisfying 

00 00 

'\..~ """ - 2 L.J L.J hij < 00, such that 
i=l j=1 

(103) 

Now, extend the definition of hij(n), i = 1, 2, ... , n,t by adding 

i, j = n + 1, n + 2, (104) 

Then, (90) and (92) can be rewritten as 
00 00 

lim L L hi /
n

) ~i(W)~j(w) < 00, a.e. (Po, PI), (105) 
n-+oo i=1 j=I 

and 

00 00 

{jeW) = lim L L h)n) ~i(W)~j(w). (106) 
n=oo i=1 j=1 

According to the theory of coordinate and projective limits in sequence 
spaces,§ (97) and (105) imply that 

00 00 

{jew) = L L hij~i(W)~j(w), (107) 
i=1 j=1 

sll1ce 

00 00 

L L ~/(w)~/(w) < 00, (108) 
i=l j=1 

On the other hand, from (102) and square-integrability, a.e. (Po, PI), 

* See Appendix E.!. 
t See Appendix E.2. 
t Namely, (h i1 , '" , hin) is the solution of (94) for each i = 1, '" , n. 
§See Cookc,16 pp. 282-289; in particular, Theorem (10.3, II), extended to the 

case of double sequences. 
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of {Xt(w), t E T}, 

Hence, 

fTfT xs(w)h(s,t)xt(w) ds dt = ~1 ~1 hij~i(W)~j(w), 

a.e. (PO,Pl)' 

(109) 

a.e. (PO ,P1). (lIO) 

2.4.3 Discussion and Summary 

Recall that, in order to specify the set Sa E CB T for given a as (91), 
it is sufficient to assume (88), which assures existence of () (w) and ~ 
defined by (89) and (92) respectively. Moreover, in order to express 
(jew) as (110), it requires the additional assumptions that (i) the 
integral equation (100) have a square-integrable solution and (ii) 
the conditions (98) and (99) be satisfied. 

It can be shown, however, under the assumptions (i) and the fol­
lowing: 

aii < 1, i = 1,2, ... , 

the conditions (ii) and (88) can be replaced by the following: 
00 

aii > L' 1 aij I, 
i=1 

i = 1,2, ... , 

(Ill) 

(112)* 

and that there exists a constant K > 0, independent of i, j = 1, 2' 
... , such that 

00 

l(aijAi) - Oiil ~ K(aii - L'laikl), (113) 
k=1 

where aij is defined by (93). t It is quite possible that, once the condi­
tion (i) is assumed, the conditions (Ill), (112) and (113) may be 
superfluous. That is to say, in some special cases, if the integral equa­
tion (100) admits a square-integrable solution h(s,t) it may be pos­
sible to prove directly that 

00 00 

h(s,t) = lim L L h)n),h(s)t/;iCt), (114) 
n-+oo i=1 i=1 

in the mean, which immediately implies (97) and (105), thus establish-

* The prime on the summation sign symbolizes omission of the term j = i. 
t See Appendix D. 
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ing (107) and leading to (110). However, in the general case, establish­
ment of (114) does not seem possible, nor does finding a sufficient 
condition for (114), without making the resultant condition excessively 
implicit and complex. 

2.5 Summary 

If 

fTfT 1'o(s,u)h(U,V)1'l(V,t) du dv = 1'l(S,t) - ro(s,t) 

has a solution h(s,t), 

then the set Sa E ill T , given a (0 < a < 1), can be specified as 

where 

and 

and 

s. = {fJT x.(w)h(s,t)x, (w) ds dt ?; log ~ (1 ~ a)'} , (115) 

S = lim 1 Qo(n) (Ql(n)-l I, 
n ..... <:JJ 

<:JJ 

aij = 2:: J.LkUkiUkj; 
k=l 

i, j = 1, ... ,n, 

i,j = 1, 2, "', 

where Al ~ A2 ~ •• , ; '/It(t), 1/;2(t) , ... , and J.Ll ~ J.L2 ~ ••. ; <PI(t), 

<P2(t), "', are the eigenvalues and the corresponding orthonormal 
eigenfunctions associated with the given covariance functions 1'0 ( s ,t) 
and rl (s,t), which are positive-definite and continuous on TXT; 
provided that 

(1) aii < 1, i = 1,2, 
<:JJ 

(2) aii > 2::' 1 aij I, ~ = 1, 2, ... , 
i=l 

(3) the following is bounded uniformly in i, j = 1, 2, ... 
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1 
aij - 0··1 Ai ~1 

00 

1 - L I Ojk - ajk I 
k=l 
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APPENDIX A 

Theorem on Optimality 

Let Po and PI be probability measures defined on a Borel field (B 

of subsets of an abstract space Q. Through the use of Lebesgue decom­
position theorem and Radon-Nikodym theorem:* for a nonempty set 
H E (B with Po(H) = 0, there exists a nonnegative function few) lll­

tegrable over Q with respect to Po such that 

PI(A) = [f(w)dPo + PI(A n H) (116) 

for an arbitrary A E (B. t 

Theorem: For an arbitrary constant k > 0, define a set S E (B by 

S = {few) ~ k} U H. (117) 

Then, 

(118) 

for an arbitrary set A E (B where SC and AC are the complements of Sand 
A with respect to Q. 

Proof" 
Put p = kPo(S) + PI(SC) - kPo(A) - PI(A C

). By adding and 
subtracting kPo(S n A) and PI(SC n AC

), 

* See Loeve,lO pp. 130-132. 
t This paragraph closely parallels Grenander,l pp. 209-210. 
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p = k[Po(S) - Po(S n A)] + PI(SC) - PI(SC n AC
) 

- k[Po(A) - Po(S n A)] - T\(AC) + PI(SC n AC
) 

= kPo(S n AC
) - PI(S n AC

) + PI(SC n A) (119) 

- kPo(SC n A). 

From (116) and (117), with k > 0 and Po(H) = 0, 

PI(S n AC
) - PI(SC n A) 

= 1 f(w)dPo -1 f(w)dPo 
SnAC sen A (120) 

+ PI(S n AC n H) - PI(SC nAn H) 

~ kPo(S n AC
) - kPo(SC n A), 

since 

PI(SC nAn H) 

=PI({f(w) < k} n H C nAn H) ~ PI(HC n H) = o. 
By sUbstituting (120) into (119), 

p ~ 0, 

which proves (118). (Q.E.D.) 

Corollary 1. Suppose Po == PI, and let k = [a/(l - a)], 0 < a < 1. 
Then, a set Sa defined by 

Sa = {few) ~ al(l - a)} 

has the property expressed by (118), i.e., 

(121) 

aPo(Sa) + (1 - a)P1(SaC) ~ aPo(A) + (1 - a)PI(AC) (122) 

for an arbitrary A E (B. 

Proof: 
Note that Po == PI implies PI(H) = O. Hence, in (118), 

kPo(S) + PI(SC) = [a/(l - a)]Po(Sa U H) + PI(Sa U H) 

= [a/(l - a)]PO(Sa) + PI(Sa). 

Thus, substitution of the above into (118) and multiplication by 1 - a 

proves (122). 

Corollary 2. Take n to be Rn , an n-dimensional Euclidean space, and (B 
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to be Borel field of right semi-closed, semi-infinite intervals in Rn , denoted 
by fr"n. Let Pm(XI, ... ,xn), m = 0,1 and (Xl, ... ,Xn) E R n , be Baire 
density functions corresponding to Pm, m = 0, 1; i.e., 

= I P1 

-00 

(123) 

Suppose PI(XI, ... ,Xn) = ° whenever PO(XI, ... ,Xn) = 0. Then 
Sa,n defined by 

S = {PI(XI, ... , xn) ex} 
a,n PO(XI, ... , Xn) ~ 1 - ex 

has the property expressed by (122). * 
Proof: 

Note that Po == PI, thus PI(H) = 0. Then, from (116), 

( ) PI(XI, ···,xn ) f Xl, ... ,Xn = ----,,-------,-
PO(XI, ... , Xn) , 

Hence, apply Corollary 1. 

APPENDIX B 

Preliminaries on Integral Operatorst 

Let L be an integral operator with a real, symmetric, continuous and 
positive-definite kernel r(s,t) defined on the rectangle TXT where 
T is the closed interval [0,1]. That is, 

Lf(t) == i res, t)f(s) ds , (124) 

where f(t) is an arbitrary real-valued function in the space of square­
integrable functions on T, which is symbolically denoted by £2(0,1), 
or simply by £2 . 

Then, according to the theory of linear operators, all the eigenvalues 
of L are positive, of finite multiplicity, and finite or denumerably in­
finite in number. Thus, counting each eigenvalue as many times as its 
multiplicity, we can construct an ordered sequence of eigenvalues, 

* This replaces the Neyman-Pearson theorem in the classical theory of testing 
simple hypotheses when the criterion changes from the Neyman-Pearson's to 
the minimum error probability. See Cramer,1s pp. 529-530. 

t See Riesz-Nagy,17 pp. 227-246. 
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(125) 

and the corresponding sequence of orthonormal eigenfunctions (using 
the Gram-Schmidt orthonormalization process if necessary), 

(126) 

Then, according to Mercer's theorem, 
00 

r(s,t) = L Ail/;i(S)l/;i(t) , (127) 
i=l 

where the series converges uniformly on T. Consequently, I/;i(t) is 
continuous on T for all i, and 

~ Ai = i r (t,t) d t < 00 , 

namely, the sum of all eigenvalues is finite. 

(128) 

Furthermore, because of the positive definiteness of the kernel r( s,t), 
the set of the eigenfunctions {I/; i ( t )} forms an orthonormal basis of £2. 

Let {epi( t)} be another orthonormal basis of £2 . Then, 
00 

I/;j(t) = L Uijepi(t) , in the mean, 
i=1 

where 

which satisfies the following orthogonality conditions: 

f UikUjk = i epi(t)epj(t) dt = Oij , 
k=1 

APPENDIX C 

Density Functions of ~i(W), i = 1, ... , n 

(129) 

(130) 

(131) 

It has been established in Section 2.4.1 that the random variables 
defined by (75), i.e., 

i = 1,2, "', (132) 
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are Gaussian variables with respect to Po and PI , where 

Em{XtCW)} = 0, t E T, m = 0,1, and L x/Cw) dt < 00, 

a.e. CPo, PI) • 

C.1 With respect to Po 

Through repeated use of Fubini's theorem, 

i = 1,2, ... , (133) 

and 

EO{~iCW) ~iCW)} = LL Eo{xsCw)XtCw) }l/IiCS)l/IiCt) ds dt 

= fTi roCs,t)l/Ii(S) I/Ii(t) ds dt 
(134) 

where Mercer's theorem is used for the third equality. Then, since 
~i(W), i = 1, ... , n, are Gaussian variables. (133) and (134) immedi­
ately give (76) and (77) with m = 0. 

C.2 With respect to PI 

By substituting (129) into (132), 
00 

~i(W) = L Uki1]k(W), (135) 
k=I 

where 

i = 1,2, ... ,* (136) 

which exist a.e. (Po ,PI), and Gaussian variables just as ~i(W), i = 
1, 2, ... , are. Then, the results in C.1 imply that 

i,j = 1,2, .... (137) 

Define 
m 

t.}.c
m

) (w) = "" () <; L...J Uki1]k W , 7· = 1 ... n . , " (138 ) 
k=I 

* Note 'H(W) here must not be confused with the one in Section 2.3.2. 
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and let F/
m

) be the distribution function of ~/m)(w), ••• , ~n(m)(W), 
and letIl(m)(Tl, ... ,Tn), - 00 < Tj < oo,j = 1, ... ,n, be its char­
acteristic function with respect to PI , i.e., 

f.(m,( 71, ... , Tn) = E. {exp [i t. T;i:r'(W) J}. (139) 

Then, according to Levy's continuity theorem, * lim Fl (m) exists if and 
m-+oo 

only if lim II (m) (T} , ••• , Tn) exists for every T j, - 00 < T j < 00, and 
m-+OO 

continuous at T j = 0, j = 1, ... , n; and, furthermore, when lim Fl (m) = 
m-+oo 

Fl exists, its characteristic function II (Tl, ••• , Tn) is equal to lim II (m) 
m-+oo 

(Tl, ••• , Tn) for all Tj, - 00 < Tj < oo,j = 1, ... , n. Hence, 
it suffices to obtain lim .fl(m) (Tl' ••• , Tn), namely, the limit of (139) 

m-+oo 

as m --7 00, and to assure its continuity at the origin. 
By sUbstituting (138) into (139), 

'. (m, (71, .. " Tn) = E. {exp [i t. T; t. u,;~,(W) J} 
= E. {exp [t. i~k(W) t. T;l'k;J 

rn [1 ( n )2J = II cxp - -2 J.Lk ?: TjUkj 
k=1 3=1 

Note that 
00 00 00 

L I J.LkUkiUkj I L J.Lk I UkiUkj I ~ L J.Lk < 00, (138) 
k=l k=1 k=1 

smce 

I U"U'; I = If 'I',(O>/l,(t) dt II J 'I',(O>/l;(t) dt I 

~ J '1','(0 dt [J >/I;'(t) dt J >/1;'(0 dlJ 
1. 

* See Cramer,18 p. 102. 
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Hence, 
n n 00 

L L TiTj L J.LkUkiU/cj. 
i=1 j=1 k=1 

Then, putting 
00 

(Ql (n» ij = L J.LkUkiUkj ; 
k=1 

i, j 

continuity of exponential functions implies 

1, ... ,n, 

lim lm)( Tl, ••• , Tn) = exp [-! t t (Ql(n»iiTiTj] , 
m~oo 2 i=1 i=1 

2801 

which is obviously continuous at Ti = 0, i = 1, ... , n. Note that the 
right-hand side above is the characteristic function of the Gaussian 
distribution function with the density function (76) and (77) with 
m=1. 

APPENDIX D 

Po - Equivalence between <Ih and cBoo 

It is to be proved that, for an arbitrary set A E CB T , there exists a 
nonempty set A E cBoo such that Po(A.1A) = O. Note, however, that 
the above statement is equivalent to the following: 

Let fr'T C CB T be a class of all sets A E CB T such that A E fr'T implies 
existence of a nonempty set A E cBoo with poe A.1A) = O. Then, fr'T = 
CB T.* 

The second statement will be proved. 
D.l For every t E T, 

00 

L ~k(W)lh(t), 
k=1 

Proof: 

a.e.(Po). (139) 

According to the discussion in Section 2.1, (ii), ~k( w), k = 1, 2, ... , 
are equal, a.e. (Po), to the Riemann integrals in quadratic mean cri­
terion of Xt(w)lh(t) on T. Hence, from the proper orthogonal decomposi-

* It must be proved first that such an 5'T is not empty. This will be done in 
Section D.2. 
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tion theorem, * the series of (139) converges in quadratic mean with 
respect to Po to Xt(w) uniformly on T. Furthermore, ~k(W), k = 1, 2, ... , 
are mutually independent Gaussian variables with means zero and vari­
ances Ak , k = 1, 2, ... ,with respect to Po. t Hence, the series converges, 
a.e. (Po), to a limit for every t E T since the series of its variances con­
verges for every t E T, i.e., 

00 00 

L EO{~k2(w)}l/Ik2(t) L Akl/lk(t)l/Ik(t) = ro(t,t) < 00, 
k=l k=l 

from lVlercer's theorem. Yet, since both the convergence in quadratic 
mean and the convergence almost everywhere imply the convergence 
in probability measure, this limit must be equal, a.e. (Po), to Xt(w) 
for every t E T. (Q.E.D.) 

D.2 Let AT E ffiT be defined by 

AT = {Xt/w) ~ pi,i = 1, ... ,n}. 

Then there exists a nonempty set AT E cBoo such that 

P O(A T 6.A T ) = o. 
Proof: 

Consider a set defined by 

AT = {t, !;.(w),j,,(t,) < . = Pi, ~ = 1, ... ,n}. 
Clearly, AT E cB oo . Define r t E ffiT by 

r t = {Xt(w) = :t h(w)l/Ik(t)} , 
k=l 

t E T. 

Note that (139) implies 

po(r t ) = 1, t E T. 

Then it is self-evident that, for ti E T, i = 1, ... , n, 

AT = AT n C~, r.o) + AT n C~, l'.,'). 
AT = AT n C~, r.,) + AT n CQ, l'.,') , 

where r t / is the complement of r ti • Note that, from (142), 

* See Loeve,lO pp. 478-479. 
t See Appendix C.l. 

(140) 

(141) 

(142) 

(143) 

(144) 



RI~CEP'l'ION OF BINARY GAUSSIAN SIGNALS 2803 

(145) 

and, from (143), 

Hence, upon combination of 144, 145, and (146), 

Po(AT~AT) = O. (Q.E.D.) 

D.3 5=T = (BT. 

Proof: 
First, it is easily seen that the class 5=T is a field. lVIoreover, it will now 

be shown that 5=T is a Borel field. Let Ai E 5=T, i = 1, 2, Then, 
from the definition of 5= T , there exists Ai E cEco such that 

i = 1,2, .. , . 

Define two sequences of null sets Mi and N i , i = 1,2, .,. , by 

Then, 

Hence, 

which implies 

Thus, 

namely, 

111 i = Ai - Ai , 

1, = 1,2, 

co co 

U Ai - U Ai C U Ni, 
i=1 i=1 i=1 

co co co 

U Ai - U Ai C U lkL. 
i=1 i=1 i=l 

co 

U Ai E 5=T. 
i=l 

(147) 

(148) 
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Furthermore, since 

and also 5' T is a field, 

Hence, 5' T is a Borel field. 

00 

n Ai E 5'T. 
i=l 

Secondly, note that 5'T contains the generating class of CB T as shown 
by (140) and (35). Hence, 

Yet, from the definition of 5' T , 

5' T CCB T • 

Therefore, 

5'T = CB T • 

APPENDIX E 

Equivalence between Two Equations 

E.l Preliminary 

Through Mercer's theorem, 
00 

ro(s,t) = L 'Ai1!l i(S)Y;i(t) , 
i=l 

00 

L ~k~k(S)~k(t), 
k=l 

Then, 

Hence, 
00 00 

rl(s,t) = L L aijY;i(s)Y;j(t), in the mean. 
i=l i=l 

(Q.E.D.) 

(149) 

uniformly. 

(150) 

(151)* 

* This is a trivial extension of well-known results in the case of functions of one 
variable. A special case of (151) is found in Courant and Hilbert,19 pp. 73-74. 
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E.2 Equivalence between Two Equations 

Equation (95) can be rewritten as 
00 

.L: Aihikakj = aij - AiOij , 
k=1 

where i = 1,2, .... Repeating (100), 

j = 1,2, ... , (152) 

1 f ro(s,u)h(u,v)rl(V,t) du dv = rl(S,t) - ro(s,t) . (153) 
T T 

(a) If (hi!, hi2' ... ) is a solution of (152) for each i = 1, 2, ... , 
with 

00 00 

then a square-integrable function h(s,t) with 

satisfies (153). 

Proof: 

(154) 

in the mean, (155) 

The left-hand side of (153) is clearly square-integrable. Hence, it 
has the following expansion: 

i i ro(s,u)h(u,v)rl(v,t) dudv = ~ ~ ~ A1-hikakjY;i(S)Y;j(t) , 

in the mean, 

since, through substitution of (149), (150), and (155), 

00 

= .L: Aihikakj ; 
k=1 

i,j = 1,2, .. , . 

(156) 

(157) 

Yet, by virtue of (hil, hi2 , ... ) being a solution of (152) for each 
i = 1,2, ... , the right-hand side of (156) becomes 

00 00 00 00 00 

.L: L .L: AihikakjY;i(S)Y;j(t) = .L: .L: (aij - A,:Oij)Y;i(S)Y;j(t) , (158) 
i=1 j=1 k=l i=1 j=l 

the right-hand side of which in turn becomes, from (149) and (150), 
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1'l(S,t) - 1'O(S,t) 

in the mean. (159) 

Thus, upon combination of (156), (158), and (159),* 

i i ro(s,u)h(u,v)rl(v,t) du dv = rl(s,t) - To(S,t) . (160) 

(Q.E.D.) 

(b) If h(s,t) is a square-integrable solution of (153), then 
(h i1 , hi2' ... ) satisfies (152) for each i = 1, 2, ... , where 

(161) 

Proof: 
Since h( s,t) is square-integrable, it has the expansion of (155) where 

hij ; i,j = 1,2, ... ,are defined by (161); thus (157) is established. 
Meanwhile, from (149) and (150), 

i i [1'1 (s,t) - ro(s,t) ]~i(S)~j(t) = aij - AiOij; 
(162) 

i,j = 1,2, .... 

Then, combination of (160), (157) and (162) establishes 

APPENDIX F 

Alternative Conditions 

Assume 

00 

L Aihikakj = aij - AiOij. 
k=1 

~ = 1,2, 

and the integral equation (100) 

(Q.E.D.) 

(163) 

i i To(s,u)h(u,v)rl(v,t) du dv = rl(s,t) - To(S,t) (164) 

has a square-integrable solution. t Then, the conditions that 

* Note that, if a sequence of functions converges in the mean to two limits, the 
limits are equal almost everywhere. Furthermore, if the limits are continuous, 
they are equal everywhere. Note also that continuity of the left-hand side of 
(156) can easily be seen through the use of the Schwartz inequality. 

t Recall from Appendix E that this implies Li=l Li=l hd < 00. 
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00 

aii > L' I aij I , 
i=1 

2807 

(165) * 

and there exists a constant K > 0, independent of i,j = 1, 2, ... , such 
that 

I (aijAi) - Cij I ~ K (a jj - 'tt' I ail, I) , (166) 

imply the conditions (98), (99) and (88); namely, for each i = 1, 2, 

00 

L I Cij I < 1, 
i=1 

and there exists a constant Ki > ° such that 

j = 1,2, 

and finally 

lim tr [( Qo (n») -lQl (n) - IJ < 00, 

lim tr [Qo (n) (Q1 (n») -1 - I] < 00. 

Proof: 
First, note that 

i = 1,2, 

and 

00 00 

L aii = L fJ.i· 
i=l i=l 

For, from (93) and the fact that fJ.k > 0, k = 1, 2, 

and, from (131), 

00 

aii = L fJ.kUkl > 0, 
k=1 

00 00 00 00 00 00 

L aii = L L fJ.kUkl = L fJ.k L ukl = L fJ.k.t 
i=1 i=1 k=1 k=1 i=1 k=1 

* The prime symbolizes omission of the term j = i in the summation. 

(167) 

(168) 

(169) 

(170) 

(171) 

t For justification of interchange of order of summation, see Apostol,20 pp. 
374-375. 
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Second, through (93) and (94) with (163), (165) and (166), 

and 

00 00 

1 - L I Cii I = 1 - L I Oii - aii I 
i-I i-I 

00 

1 - L I Cik I 
k=I 

00 

1 - I 1 - aii I - L' I aii I 
i=I 

00 

= aii - L' I ail I > 0, 
i=I 

i,j = 1,2, 

which prove (167) and (168). 
Last, note from the definition of hii (n), i,j = 1, 2, ... ,* 

n n 00 00 

tr [(Qo\n)-IQI(n) - I] = LLhi/n)aii = LLhi/n)aii, 
i-I i-I i-1 i=1 

00 00 00 

- tr [Qo (n) (Ql (n) -1 - I] = L L hi/n\iOii = L hi/n\i . 
i=I i-I i=1 

Yet, according to the theory of infinite systems of equations, for each 
i = 1,2, 

I hi /
n

) I ~ IC, j = 1, 2, .... t 
By putting IC = K, i = 1, 2, ... , 

I hi /
n

) I ~ K; i,j = 1, 2, 

Then, 
00 00 00 00 

L L I hi/
n
) a':i I ~ K L L I aij I < 00, 

i-I j=1 i=I j-l 

00 00 

L I hi/n)Ai I ~ K L Ai < 00, 
i-I i-I 

sInce 

* Recall: 

(Qo(n»-lQl(n) - I = [(Qo(n»-l - (Ql(n»-l]Ql(n), 

hi/n) = {[ (.Qo(n»~l. -=- (Ql(n»-l]ii ; !~~ = 1, ... , n, 
0, 1"J - n + 1, n + 2, . 

t See Kantorovich and Krylov,15 pp. 26-27. 
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t. ~ I aij I = t. (ali + fr' I aij I ) < 2 t. aii 2 L J.Li < 00. 

Hence, from (97), 

lim I tr [(Qo(n»)-l Q/n) - I] I 
n-+oo 

lim I tr [Qo (n) (Ql (n»)-l - I] I 
n-+oo 
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~!:! I t. t, hi;'n) aij I 

I t. t. hijaij I 
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< 00 , 

lim I t hi/n)Ai I 
n-.oo t=l 

< 00, 
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On the Spectral Properties of Single­
Sideband Angle-Modulated Signals 

By R. D. BARNARD 

(Manuscript received May 11, 1964) 

The representation of single-sideband angle-modulated carriers as origi­
nally given by Bedrosian is generalized through the functional and spectral 
notions of distribution theory. In this treatment the class of related modulat­
ing signals is extended to rather general types of distributions, and spectral 
criteria and iteration algorithms are established by which such modulating 
signals can be recovered from bandlimited components of the modulated 
carriers. 

r. INTRODUCTION 

Among the more recent signal transmission techniques for conserving 
spectral bandwidth is single-sideband angle modulation, first proposed 
and investigated by Bedrosian.1 In this scheme a carrier wave is simul­
taneously angle modulated by an appropriate baseband (bandlimited) 
signal and amplitude modulated (multiplied) by the negative exponential 
of the Hilbert transform of the baseband signal, the combined modulation 
process resulting in an RF spectrum which vanishes identically on the 
low-frequency side of the carrier frequency and carrier axis crossings 
which coincide exactly with those of a conventional angle-modulated 
carrier modulated by the same baseband signal. The single-sideband and 
axis-crossing properties, although suggesting means with which to ob­
tain ideal bandwidth reduction and compatible detection, are only par­
tially applicable to physical systems. * In general, the RF spectra under 
the combined and conventional modulation schemes are of infinite ex­
tent, and the nonvanishing portion of the spectrum under the former can 
have, according to anyone of several common definitions, a larger effec­
tive bandwidth than that under the latter; consequently, single-sideband 
angle modulation does not necessarily lead to bandwidth reduction, and 

* Detection compatibility is suggested by the fact that the output of an ideal 
limiter depends only on the axis crossings of the input. 

2811 
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the axis-crossing patterns of filtered versions of single-sideband and con­
ventional angle-modulated carriers can differ appreciably. Nevertheless, 
Bedrosian has shown that the combined form of modulation, as pre­
scribed, offers the possibility of both a reduction in the effective band­
width over limited ranges of the angle-modulation index and detection 
compatibility. It is therefore of practical and theoretical interest to es­
tablish criteria relating either directly or indirectly to the spectral prop­
erties of such carrier waves. In the present paper we specify rather general 
signal conditions under which the Bedrosian scheme and the associated 
single-sideband property obtain, and determine spectral conditions un­
der which knowledge of the RF spectrum over a frequency interval 
slightly wider than half the signal bandwidth provides enough informa­
tion to recover the baseband signal up to an additive constant. * Signal 
recovery in this second category is effected by an iterative computation 
that cannot be carried out exactly in real time; however, the possibility 
of pure mathematical recovery based on a finite portion of the spectrum 
constitutes an important spectral property, indicating that the RF spec­
trum, although infinite in extent, can be viewed theoretically as having 
an effective bandwidth equal to half the signal bandwidth. t These quali­
tative results are now restated somewhat more explicitly. 

In precise terms, single-sideband angle-modulated carriers are gener­
ally assumed to have the form 

Yc(t) = exp [-x(t)] cos [27rjct + x(t)] 

where x, X, and Yc represent respectively a specified angle-modulating 
signal, its Hilbert transform, and the modulated carrier, the first two 
functions being periodic or square-integrable, bounded, and bandlimited 
to some frequency interval [-jo ,jo]. Modulated under these conditions, 
Ye exhibits the two previously mentioned properties with respect to band­
width and detection; viz., the corresponding amplitude spectrum (Four­
ier transform) vanishes over (-je ,je), and the axis crossings as well as 
the effects that they produce at the output of an ideal limiter coincide 
exactly with those of the usual angle-modulated carrier 

* Contrary to established usage, the term "bandwidth" refers here and through­
out to the total frequency spread of the spectrum of the baseband signal over 
both positive and negative frequencies (cf. Section 2.2). 

t Other problems and criteria pertaining to the recoverability of signals subject 
to nonlinear and bandlimiting operations have received considerable attention 
recently.2.3 Beurling's theorem, directly applicable to instantaneous compandors, 
is perhaps the principal result along these lines.4 In unpublished work, H. O. Pollak 
shows by means of Fredholm equation methods that under special conditions the 
baseband signal of a conventional FM carrier can be recovered mathematically 
from knowledge of the RF spectrum over an interval of twice the signal bandwidth. 
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Yl = cos [27rfet + x(t)].* 

To deal with more general modulating signals, i.e., signals which are 
neither periodic nor square-integrable yet to which the spectral concepts 
of Fourier transforms and the results above still apply, requires the 
theory of temperate distributions (generalized functions).5.6.7 In this 
paper \ve treat both x and Ye as special types of distributions and in­
vestigate the feasibility of recovering the former from bandlimited 
components of the latter. Specifically, we: (i) generalize the definitions, 
concepts, and methods of classical Hilbert transform theory to incor­
porate arbitrary distributions (cf. Section II, Definition 2 and Theorem 
3);t (ii) extend the class of modulating signals to include all bounded, 
bandlimited distributions with bounded generalized Hilbert transforms 
(cf. Section III, Theorem 4); and (iii) establish through a standard 
fixed-point theorem related subclasses for which the spectrum of Ye 
over any open interval containing [fe, fe + fo] furnishes sufficient infor­
mation for reconstructing derivative x'(t) by iteration (cf. Section IV, 
Theorems 7-9).t It is intended also that this development illustrate the 
distribution-theoretic approach to be generally employed in connection 
with other modulation schemes. 

II. PRELIMINARIES 

As noted above, characterizing the amplitude spectra and spectral 
properties of the signals considered in this paper requires the theory of 
temperate distributions. 6 We discuss here four aspects of this theory: 
notation and terminology, bandlimited distributions, convolution, and 
generalized Hilbert transforms. 

2.1 Temperate Distributions - Notation and Terminology 

Let I denote a specified, open interval on the real line with 100 , 1+00 , 
and I -00 signifying respectively the intervals (- CX) , CX) ), (0, CX) ), and 
( - CX) ,0); i, the closure of I; Ck (I), the space of scalar functions of which 
the derivatives up to and including order k are continuous on I; and 
Cd, the space of "rapidly decaying" functions, viz., the linear vector 
space 

* In the first case the nonvanishing portion of the spectrum of y c is generally 
so smeared out as to have an effective bandwidth greater than that of Yl . 

t For detailed examples of Hilbert transform applications in modulation theory, 
the reader is referred to the expositions of Rowe,8 Bennett,9 and Dugundji.lo 

i Landau,2 Miranker,2 Sandberg,3 and BenesH have recently made extensive 
use of fixed-point theorems in a variety of system-theoretic problems relating to 
recovery and stability. 
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Cd = {cp I cP E Coo(l~J, f~(k)(t) ~ O( I t I ~ 00 )Vj,k ~ OJ. (1) 

Also, a topology in Cd is introduced by means of the metric 

Pd(CPl,CP2) = f t 2-
k 

f..L(CPl - CP2 ,j,k.- j) . 
k=O 1=0 (k + 1) [1 + f..L (CPl - CP2,],k - ])] (2) * 

CPl ,CP2 E Cd 

where 

For convenience the convergence of a sequence {CPn} relative to this metric 
is expressed as cpn ~ CP(CPn, cP E Cd). Since the series in (2) converges 
uniformly over such sequences, it follows that 

CPn ~ 0 {=} sup I ticpn (k) (t) I ~ 0 Vj,k. 
tEl"" n ..... oo 

As generally defined, temperate distributions are merely the elements 
of the conjugate space of Cd, i.e., the space of linear, continuous func­
tionals on Cd .5,12 In the treatment below we represent this space by D 
and the corresponding elements by x(· ). Although mathematically dis­
tinct, a distribution x(· ) and an ordinary function x( . ) for which 

L: x(t)cp(t)dt = x(cp) (3) 

are regarded as characterizing one another, either form being essentially 
determined by the other. t To extend this notion, we associate every ele­
ment xED with a "generalized function" x( .) (cf. Ref. 6), viz., the 
totality of sequences {xn ( • ) } in Cd such that 

~i~ 1: xn(t)cp(t)dt = x(cp) (4)t 

As distributions and generalized functions are in one to one correspond­
ence, it is common to employ all related terms and symbols interchange­
ably. Also, the ordinary and generalized functions relating to (3) are 
considered to be equivalent in that both define the same element of D. 

In connection with the equality of distributions, let N[cp] signify the 
null set of cP E Cd, viz., 

* Space Cd constitutes a complete linear topological space in Pd(',') (cf. Ref. 
12, p. 49). 

t "Essentially" is used here to indicate that x(·) determines x ( .) almost 
everywhere on I~ (cf. Ref. 5, pp. 1645-1646). 

~ Sequences satisfying this condition can be shown to exist for an arbitrary 
distribution (cf. Ref. 6, p. 183). 
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N[cp] = {t I t E U fa; cp( t) = 0 Vt E fa}, 
a 

and S[cp], the support of <p, viz., 

S[cp] = f co - N[cp]. 

Similarly, let N D[X] signify the null set of xED, viz., 

ND[X] = {t I t E U fa; x(cp) = 0 Vcp :1 S[cp] c i a , cp E Cd}, 
a 

and SD[X], the support of x, viz., 

SD[X] = f co - N D[X]. 

Accordingly, if for an interval f C f co and two elements x and y of D, 
f C N »[x - V], we say x(·) = y(.) and x( .) = y(.) on f. This defini­
tion also allows one to equate generalized and ordinary functions on 
arbitrary intervals; that is, if 

x(cp) = i v (t)cp (t) dt (5) 

for some v and all cp E Cd such that S[cp] C i, then f C N D[X - v] and 
x = von I. 

Among the standard operations associated with distributions, five re­
quire special notation: 

(i) Products. With respect to any two distributions x and y of which 
at least one, say y, characterizes an ordinary function y( .) such that 
y( . )cp E Cd Vcp E Cd, let xy(· ) (and yx(· » denote the product of x and 
y given by 

xy(cp) = yx(cp) == x(ycp) (6) 

and let x( . )y( .) (and y( . )x( . » denote the related generalized func­
tion. 6 

(ii) Derivatives. For any xED, let pnx (· ) denote the nth order deriva­
tive of x given by 

and pnx (·), or (dnjd(·)n)x(·), the related generalized function. 6 

(iii) Antiderivatives. For any xED, let 

i x(·) 

(7) 
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denote any nth order antiderivative of x satisfying 

It i x(<p) = x(<p) 

and 

i x('), 

the related generalized function. All nth order antiderivatives of a par­
ticular element xED can differ by only additive polynomials of degree 
n - 1 (cf. Ref. 7, p. 8). 

(iv) Limits. Distribution limits of the form 

are represented in terms of generalized functions by 

lim(D) xx(') = x(·). 
x 

(v) Fourier Transforms. For any xED, let x(· ) denote the generalized 
Fourier transform of x, viz., the distribution given by 

(8) 

where 

F·<p = L: <p(~) e-27rif~d~ i = V-I, 

and let x ( . ), or F· x ( . ), denote the related generalized function (cf. 
Ref. 6, p. 188). For the right-hand functional in definition (8) to exist, 
it is required that F· <p E Cd, a condition which holds for all <p E Cd. 
Rewriting this relation yields the more suggestive form 

(9) 

Similarly, 

where 

F-1.<p = L: <p(~)e27rit~d~. 
One property pertaining to operators lim(D), pn, and F is of paramount 

importance in applications of distribution theory: the last two commute 



SINGLE-SIDEBAND ANGLE-MODULATED SIGNALS 2817 

with the first.6 The reader is referred to the previously mentioned litera­
ture for a detailed discussion of these and other operations as we1l as the 
various terms outlined above. 

2.2 Bandlimited Distributions 

Let f and J denote respectively a point and a compact set on the real 
frequency line 100 . A distribution x fonvhich SD[F· x] c J (i.e., F·x = 0 
on any I disjoint from J) is defined to be bandlimited to J, the space of 
such elements being designated as 

B(J) = {x I xED, SD[F·x] c J}. 

Defining, in addition, the space 

Co = {v I v E Coo (l00);Vk3j 3 (1 + t2)-jV(k)(t) ~ O( I t I ~ oo)}, (10) 

we establish the fo1lowing 

Lemma 1: If x E B(J), then x(·) E Co. 

Proof: Construct a real, positive function f(f) E Cd satisfying the con­
ditions 

,(f) = {~ f E II ~ J 
j EE 12 ~ II , 12 C 100 , 

and set 

(11) 

We consider first representing F· x( . ) on 12 by an integral. For this it is 
necessary to employ the well known result that on any finite interval 
an arbitrary distribution can be characterized by a multiple derivative 
of sonle ordinary, continuous function; more specifically, there exist 
both a function if; E C (12 ) and an integer N ~ 0 such that 

(12) 

for a1l cp E Cd for which S[cp] c 12 (cf. Ref. 7, pp. 11-12). Inasmuch as 
S[t] C 12 , expression (11) becomes 

vet) = L2 (-I)Nif;(f) :;N [f(f)e2lrift]dj, 

which in turn gives 
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(Ill~ (0) 

for all le; therefore, v E C<Xl (I <Xl). In order to identify v further, observe 
that for any le 

(Itl~oo) 

for some integer j; consequently, by (10), v E Co. 
Regarding the relationship between v and x we note that since 

l: v(t)cp(t)dt = L: i2 (-l)Nif;(f) :;N [s(f)cp(t)e2~ift]df dt 

= (_l)N f [<Xl if; (f) aNN [s(f)cp(t)e21rift]dt df 
12 L<Xl af 

and since S[(s - 1 )0] n SD[F· x] is empty for all () E Cd, 

x(cp) = F· x(F-1.cp) + F· x«(s - l)F-1 .cp) 

= F·x(sF-1.cp) = L: v(t)cp(t)dt. 

Hence, in accordance with (3) et seq., v(·) = x(·) with v E Co . 

2.3 Convolution 

* 

A convolution operation sufficiently general for most applications in 
signal theory is given by 

Definition 1,' For any two distributions x and y of which at least one, 
say y, is such that F .y( .) E Co we define a distribution x*y, termed the 
convolution of x and y, by the relation 

x *y = y *x = F-1
• [ (F· x) (F· y) ]. (13) 

As to the consistency of this definition, observe that with F·y(·) E Co, 
cpF· y ( .) E Cd for all cp E Cd ; therefore, according to (6) et seq., both 
the product (F· x) (F· y) and corresponding convolution exist as dis-

* Interchanging the order of integration in this relation is justified by means 
of the Tonelli-Hobson theorem (cf. Ref. 13, p. 3). 
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tributions, and their factors commute. The associative and distributive 
properties of this operation depend in general on the factors involved, 
the results in any given case being determined directly from (13). One 
important consequence of Definition 1 is stated as 

rPlworem 1: For any two distributions x and y of which at least one, say y, 
is such that y( .) E Cu 

F· (xy) = (F· x) * ( F . y) . 

Proof: From 

x(cp(t» = x(F·F·cp(-t» = F·F·x(cp(-t» 

(6), and (13) it follows that 

'Vx E D, 'Vcp E Cd, 

F·(xy) (cp(f» = xy(F·cp) = x(y(t)F·cp) 

= F·F·x(y( -t)F-1.cp) = F·F·x( [F.F·y(t)]F-1.cp) 

[ (F·F·x) (F·F·y) ] (F-1.cp) = F-1[(F·F·x) (F·F·y) ] (cp) 

[(F·x)*(F·y)] (cp). 

We show at this point that Definition 1 relates to a more common but 
less general form of convolution (cf. Ref. 7, p. 31). 

Theorem 2: If at least one of two distributions x and y, say y, has a finite 
support (i.e., SD[y] c i c IoJ, then x*y exists, and 

x*y(cp) = x(y(cp( t + t») 'Vcp E Cd. 

Proof: Reversing the roles of t and f in Lemma 1 demonstrates that with 
SD[y] finite, i.e., with y time-limited to 1, F· y( .) E Cu ; hence, by Defini­
tion 1, x*y exists. In addition, from (13), (9), and (6) there obtains 

~*y(cp(t» = F· (x*y) (F-1.cp) = [(F·x) (F·y) ] (F-1.cp) 

= F·x( (F·y) (F-1.cp) ) = x(F·[ (F.y) (F-1.cp)]) 

/ r~ -271"it~(F ) (F-1 ) d \ = x \L~ e f • Y ~ . cp t ~ / 

where the subscripts indicate a function of ~. As the integral of this last 
functional proves to be linear and continuous on Cd, i.e., as 

then 
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x*y(cp(t) = x(F·y«(F-l·cp)~e-27rit;» 

= x(y(F. [( F-1 • cp); e -21rit;]» 

= x(y(cp( t + t)). 
If defined by this expression instead of (13), convolution would not 
necessarily have commuting factors; e.g., with y( . ) and x( . ) equal to a 
Dirac delta function o( .) and a constant, respectively, y(x(cp(t + t)>> 
is not defined because for this choice of x, x(cp(t + t) is constant and not 
an element of Cd .*'t 

2.4 Generalized Hnbert Transforms 

In this subsection we extend the applicability of classical Hilbert 
transform properties and techniques to arbitrary distributions. Required 
initially are two lemmas relating to antiderivatives. 

Lemma 2: Corresponding to all antiderivatives of an element F· xED 
the distribution limits 

lim (D) [tan -1 Xf 1 F· x] 
},.-+oo N 

(14) 

exist for some N ~ O. 

Proof: Set lEt = (-€1, €1) and If2 = (- €2, €2) with 0 < €1 < €2 < 00, 

and construct a real, positive function TJ(f) E Cd satisfying the condi­
tions 

f E lEt 
f E£ I f2 ::J tl . 

It is convenient to consider first the same type of integral representation 
as was used in Lemma 1 [cf. (12)]; namely, there exist both a function 
tf; E C(I f2 ) and an integer N ~ 0 such that 

(15) 

* The Dirac distribution is given formally by the equation 0(",) = ",(0). 
t Commutativity can be forced in such cases by defining the convolution ac­

cording to the form 

x*y(",) = x(y(roCt)",(t + t») 

where t corresponds to the distribution of finite support and where roE Cd equals 
unity over an open interval containing this support and vanishes outside some 
finite interval. 
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for all cP E Cd for which S[cp] C t2 . In agreement with (7) and (5) et 
seq., relation (15) merely asserts that 

dN 

J!'. x = dfN 1/1 (f) on It2 

and that for all antiderivatives, 

(16) 

where constants an are arbitrary. Since S[17CP] C t2 for all cP E Cd, Eq. 
( 16) can be written as 

L F·x(~<p) ~ i., [y,(f) + ~: anr] ~(fl<P(f)df· 
Therefore, by the Lebesgue convergence theorem13

,14 

lim f F·x«tan-1 Af)17CP) 
A N 

with 

sgnf ~ {_~: f>O 
f < o. 

On the other hand, since 

[ 
. d

k 
] lEI ~ N t djk (1 - 17)CP 

for all j, k, and cP E Cd, 

(tan-IAj) (1 - 17)CP~ (7T"/2) (sgnf) (1 - 17)CP 

and 

(17) 

li~ L F·x«tan-1 
Af) (1 - 17)CP) = ~ L F·x«sgn f) (1 - 17)CP). (18) 

Finally, adding limits (17) and (18) yields 

~ L F·x«sgn f) (1 - 17)CP) + ~ 1 .. (sgn f) [1/1 + ~ an f
n

J17CP df 
(19) 

= lim f P·x«tan-1 "A!)cp). 
A N 
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As both terms on the left are elements of D, the distribution limits given 
by (14) exist. 

Lemma 3: Corresponding to element x, integer N, and all antiderivatives 
of Lemma 2 the generalized functions 

~.lim(D) [(tan-1 'Af) 1 F.X] 
dfN x-co N 

differ by only the additive combinations 
N-1 

7r :L ann! oU) (N-n-1) 
n=O 

where o(!) (n) represents the nth order derivative of the Dirac function. Fur­
thermore, o (f) (N-I) is the highest-order Dirac component which can exist at 

= o. 
Proof: From (19) and (7) there results 

pN .lir;: (D) • L F· x( (tan-1 'Af)cp) = ~ F· x( (sgn f) (I - '1])cp) 

+ (_I)N ~ i
h 

(sgn J)t/;(j) ['1] (j)cp (J)](N)dj (20) 

+ (_l)N ~ i," [(sgn f) ~ anF]['1]cp](N)df, 

the last, only nonunique term reducing to 

7r :L annIe -I) N-n-1cp(0) (N-n-1) = 7r :L ann!o(cp /N-n-1). 
n n 

Inspection of the two remaining distributions on the right of (20) shows, 
in addition, that o(f) (N-I) is the highest-order Dirac function possible at 
f = 0; for the support of the first does not include the origin, and the 
second represents the Nth derivative of an ordinary, sectionally con­
tinuous function. 

The preceding two lemmas lead immediately to 

Definition 2: For any distribution x we define a distribution X, termed 
the generalized Hilbert transform of x, by the relation 

x ( .) = - i ~ F-1
• { d

N 0 

• lim (D) [( tan -1 A j) 1 F· x] 
7r dfNO x-co No 

(21) 
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where No designates the smallest integer for which Lemma 2 holds and 
where constants f3n are constrained so as to eliminate from F· x (or to pre­
scribe) all Dirac distributions at f = O. 

As regards ordinary Hilbert transforms it is noted that if 

then 

F·x(·) E L2(Ioo ) (square-integrable), 

lim (D) (tan-l Xf)F·x = (7r/2) (sgnf)F·x. 
>. 

Consequently, No = 0 and 

x(·) = -iF-l·r (sgnf)F·x}, 

a formula which is in agreement with classical theory (cf. Ref. 15, pp. 
119-120) . 

Denoting the linear mapping of (21) by H (i.e., H: D ~ D), we list 
a few of the more significant properties of generalized Hilbert transforms: 

(i) H· H . x = - x provided there exist in F· x no Dirac components 
atf = O. 

(ii) H· x is real provided x is real. 
( iii) S n [F· H . x] C S n[ F . x]. 

These results follow directly from (20) and Definition 2. Of importance 
in single-sideband theory is the property given by 

Theorem 3: For any distribution x, 

Sn[F· (x + ix) ] C 1+00 

and 

Sn[F· (x - ix) ] C 1_00 • 

That is, F· (x + ix) and F· (x - ix) vanish on 1_00 and 1+00, respectively· 

Proof: Consider all ~ such that S[~] C 1_00 ; then, 

and from (20) and (21) there obtains 

F·x(~> + iF·x(~> = F·x(~> - F·x«(l - 1J)~> - F·x(l]~> O. 

Similarly, with S[~] C 1+00 , F·x(~> - iF·x(~> = o. 
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III. SINGLE-SIDEBAND ANGLE MODULATION (sSB8M) 

The notions and results of the previous section apply directly to signals 
classified as single-sideband angle-modulated, namely, time functions of 
the form 

Ye(t) = exp [-x(t) ] cos [2'7T-jet + x(t) ]. 

It is the intent here to show that if the modulating signals x correspond 
to elements of the space 

So = {xix E B(lo),Io = (-fo,fo); Ixl,lxl < oo,xreal}, 

functions Ye characterize distributions, and have, as the term SSB8M 
suggests, amplitude spectra (Fourier transforms) which vanish on the 
interval ( - fe , fe). We begin with three lemmas pertaining to exponen­
tials and convolution. 

Lemma 4: Elements of the spaces 

SI = {y I Y = eiZ, z = x + ix, x E So}, 

S2 = {v I v = ZN, Z = X + ix, x E So, N ~ O} 

are equivalent to generalized functions [cf. (4) et seq.]. 

Proof: Clearly, since Sn[F·x] C Sn[F·x], both x and x are bandlimited 
as well as bounded, and are, by Lemma 1, elements of Cg; hence, Y is 
bounded on 100 and integrable over finite intervals, and 

I 1: y(t)",(t)dt I ;;; ~~f. I (1 + t')",(t) I 1: 11Y~\' I dt (22) 

This latter condition, however, implies that i: y(t)q;n (t)dt ~ 0 

Vq; E Cd. 

(23) 

for q;n ~ O. Therefore, the left-hand integral of (22) constitutes a con­
tinuous, linear functional on Cd, i.e" a distribution, and Y is equivalent 
to a generalized function. Precisely the same argument applies to 
ZN (N ~ 0), showing that this function is also bounded, integrable 
over finite intervals, and equivalent to a generalized function. 

Lemma 5: For x E So and z = x + ix 
N (')n 

iz Z' (n) "" ~z e = ~m .L.J -- • 
N-+oo n=O n! 

(24) 
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Proof: Set 

Then, by Darboux's formula,16 

( .)N+l

1
1 

Y - YN = ~zNr eiAZ (1 - X)Nd'A, 
• 0 

and inasmuch as Y and YN represent generalized functions (cf. Lemma 4), 

I Y("') - YN("') I = I L: [yet) - YN(t)J",(t)dt I 
= I ~ [rYJ ZN+l({) 11 eiAZ (1 - X)Nd'A dt I 

N!LrYJ 0 

~ ~! s~r I zN+le
iAz I L: I ({)(t) I dt 

~ N1 
r (sup I z I ) N+l exp (sup I x I) 
• t t 

a result corresponding to (24). 

Lemma 6: If two distributions g and h are such that 

then 

SD[P·g] c [O,iI]' 

SD[P, h] C [0,f2], 

SD[P·(gh)] C [0,11 +f2]. 

Proof: With respect to any (() E Cd for which S[({)] C i_rYJ , set 

(()o(t) = P ·h«({)(t + t». 

As defined, (()o(t) = 0 for all t > 0; i.e., I +rYJ C N[({)o] and S[({)o] C i-rYJ . 
Hence, by Theorems 1 and 2 

[p. (gh)]«({) = [(P·g)*(P·h)]«({) 

= P·g(P·h«({)(t + t») = p·g«({)o(t» = 0, 
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which yields 

(25) 

In a similar manner, consider any cp E Cd for which S[cp] C ffl + f2' (0), 
and set 

CPI(t) = F·h(cp(t + t». 
It follows that CPI(t) = 0 for all t E (- 00 ,fI) , i.e., that S[CPl] C [fI' (0). 
Therefore, 

which yields 

SD[F· (gh)] C (- 00 ,fl + f2]' 

Conditions (25) and (26) prove that 

SD[F· (gh)] C [0'/1 + f2]. 

The main result of this section is stated as 

Theorem 4: The amplitude spectra of generalized functions 

Ye(t) exp [-x(t)] cos [27l'fet + x(t)] 

vanish on the interval ( - fe , fe) . 

x E So 

(26) 

Proof: Again, for x E So and z = x + ix, SD[F· z] C 10 and, by Theorem 
3, SD[F· z] C 1 +rfJ ; consequently, SD[F· z] C [O,fo]. This condition com­
bined with Lemmas 5 and 6 leads to 

SD[F. eiz] 

= SD [F.lim(D) t (iZ~n] = SD [lim(D) t ~ F.[(iZ)n]] (27) 
N n=O n. N n=O n! 

C U SD[F· [(iz)n]] C 1+rfJ . 
n 

On the other hand, for z = x - ix 

SD[F'e-iz] C 1_rfJ • (28) 

Finally, since F· [e±21rifcty(t)] = fj(f =r= fe) for F·y == fj, then (27) and 
(28) give 

8 D[F 'Ye] = 8 D[F· (eize27rifct + e -ize-21rifct)] C ffe, (0) U (- 00 ,-fe], 

or, equivalently, F· Yc = 0 on (-fe, Ie). 
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IV. SIGNAL. RECOVERY FOR SSB8M REPRESENTATIONS 

In this section we treat the problem of reconstructing signals x E So 
from bandlimited versions of the associated SSB8kf functions Ye. 
Specifically, it is demonstrated that for a large subclass of So , knowledge 
of the amplitude spectrum of Ye over any open interval containing 
[fe ,fe + fa] proves sufficient to recoverx up to an additive constant. As 
in the previous section, several lemmas involving the exponential eiz are 
developed first. To collect notation, we set 

z = x + if; x E So 

g = iz', Ya = 1 - eiz
, Yb = (1 - 27T'it)-I Ya 

Yd = F-1'[(AYa)*k], Yn = F-1'[(AF'Ya')*(Tn] 

(Tn = n(T(nf) (n = 1,2, ... ) 

Y == F·y Vy E D 

{ 

-j 

k(f) = F· (1 - 27T'it)-1 = .~ f>O 
f~O 

where A and (T are any frequency functions of Cd such that 

XU) = {~ f E t, Ie = (0,10 + e), 
f EE [- e,fo + 2e] 

S[(T(f)] c [O,e], ~E (T(f)df = 1. 

(29) 

In addition, let BV(]) and UL denote respectively the space of scalar 
functions of bounded variation on a closed interval ] and the space of 
scalar functions satisfying a first-order uniform Lipschitz condition on 
some closed neighborhood of the origin. Finally, define the following sub­
class of signal space So : 

Lemma 7: Elements Ya , Yb , Yd, Yn , gn , k, A, and (Tn are in D. 

Proof: This result follows immediately from the corresponding defini­
tions and the test employed in Lemma 4 [cf. (22) and (23)]. 

Lemma 8: S D[Yb] C ]+00 . 

Proof: Clearly, by (27) 
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SD[Ya] = SD[O] U SD[F· eiZ
] C i +~ . (30) 

Also, taking any 'I' E Cd for which S[cp] C i_~ , one obtains 

F-l . [ (pr-l.k) (F·cp) ] = 0 Vi > 0, 

or 

S[pr-l.[ (F-l .k) (F·cp)]] C i_~. 

Hence, for all such 'I' 

P·Yb(cp) = Yb(P·cp) = Ya«p-l .k) (p.cp» 

= P·Ya(p-l . [(pr-l.k) (P .'1')]) = 0, 

a condition implying that Yb = 0 on I-~ . 

Lemma 9: On Ie ,Yb = ('AYa)*k = Ydand (F·Ya')*ffn = ('AP·Ya')*ffn = Yn. 

Proof: Take any 'I' E Cd for which S[cp] C ic . With regard to the first 
relation 

and by (30) 

P·Yb(CP) = Yb(P·cp) = Ya«p-l .k) (F·cp» 

= F·Ya(p-l .[(P-l ·k) (p.cp)]) = P·Ya('Ap-l ·[(F-l .k) (p.cp)]) 

= p.[(F-l ·k)P-l ·('AP·Ya)](CP) = [('AYa)*k](cp). 

As to the second relation 

L: ffn(J)cp(f + J)dJ = ffn(cp(f + J», 

S[(27rif)ffn(cp(j + J)] C [-e,jo + e], 

and by (30) and Theorem 1 

[(F·Ya')*ffn](CP) = F·Ya(27rifffn(cp(f + J») 

= F·Ya(27rif'A(J)ffn(cp(J + J)>> = [('AF·Ya') *ffn] ('1'). 

Proof: On the basis of the Tonelli-Hobson theorem 
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= 1: Ya(T) {L: e -""'A(j) U: e2r
,,\,(t)dt] df} dT 

= 1: Ya ( T) {L: U: e'rif' '-"A (j)dJ] I' (t) dt} dT 

Vcp E Cd. 

Therefore, as indicated operationally, 

F-1
• ("AF'Ya) = (F-1,X)*Ya = L: Ya(r) (F-1'"A)t_rdr, 

and 

IF-I. ("AF'Ya) I ~ ~~~: I Ya(t) I) L: I (F-1'"A)r I dr < 00, 

which indicates that Yd , Yd E L 2(] C>J)' Lastly, since 

by Lemma 1 

(XF'Ya') E B([-e,fo + 2e]), 

F- 1 
'Un 

rl. (XF'Ya') E Co, 

Yn = (F-1·un) [F-1
• (XF'Ya')] E Cd, 

Yn E Cd. 

Lemma 11: lim(D) gn = g, gn E Cd, and SD[gn] ct. 
n~C>J 

Proof: As 

Ii,!" i: n~(nf)I'(j)df = Ii,!" i: ~(j)1' W df = 1'(0) 

then 

and 

lim gn(CP) = lim (gF-1·un)(cP) = lim un(F-I
• (gcp» 

n n n 
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Furthermore, with crn E Cd, all three elements F-1
• crn , gn, and gn are 

also of Cd. Finally, from Lemmas 6 and 7 it follows that 

SD[gn] = SD[g] U S[crn] ct. 
Theorem 5: For x E Soo, elements gn satisfy the functional equations 

iin (j) = 'Y U: On (j - j) dfi;(j) - fin (j) ] 

where 

f E t; 

Yi(f) = Yd(f) - Yb(O+) + fo' Yd(J) dJ 

Yi(O) = Yi(fO + e) = 0 

l' = [1 - Yb(O+) ]-1. 

Proof: According to definitions (29) 

n = 1,2, ... , 

f E Ie 

(31) 

Ya'r1 ·crn = (1 - 27rit)gnYb - gn (32) 

with Yb E L2 (I<I:J), Ya'r1·crn E Cd, and (1 - 27rit)Yn E Cd. Expression 
(32) and Parseval's relation combine to give 

which by Lemmas 8 and 11 reduces to 

(F·Y.')·"n = { fibm [iin(f - j) - :jiin(f - j) Jaj - iin(j). 

However, if considering f on Ie, one need specify (F· Ya') *cr nand Yb on 
this interval only; consequently, Lemmas 9, 10, and 11 apply, yielding 

fin(j) = { y.(J) [Un(f - J) - :fYn(f - j) ] dj - gn(f) f E I,. 

Clearly, in this equation, Yd(O) and (for the development below) 
Yd(fO + e) can be set equal to zero without affecting the associated in­
tegrals; hence, on integrating by parts, we get (31). To be noted in this 
theorem is that with respect to signal information, Yn , Yd, and'Y derive 
solely from the bandlimited signal spectrum AY = AF· eU

; i.e., 

Yd = (A - AY) *k, 

Yn = - (27rifAY) *crn , 

Yb(O+) = Yd(O+). 
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It is necessary to consider next some general properties of the integral 
operators in (31), viz., the mappings 

f E t 
(33) 

vEC(t); n = 1,2, .... 

Relative to the domain of Tn , define the norm 

II v Ilr = sup I v (f) I v E C(t) 
1 E Ie 

and metric 

Pe(V,W) = /I v - W /Ie V,W E C(ic). (34) 

Under this scheme the pair [C ( t), Pc] == Re (more precisely, the pair 
consisting of C (t) and the metric topology in C (t)) forms a metric 
space which is complete.12 We then have 

Theorem 6: Corresponding to any modulating signal x E Soo, operators 
Tn constitute continuous mappings of the complete metric space Re into 
itself· 

Proof: To show that the range as well as the domain of Tn is in C(t), 
take any v E C (t) and set w = Tn· v for an arbitrary n. With x E Soo, 
'Ob E BV(t), and by Lemma 10, 'On E Cd C c(t); moreover, since 
'Od = 'Ob on Ie (cf. Lemma 9), and since 

Yi = Yd - Yb(O+) + il 

Yd d] f E Ie 

function 'Oi E BV(io). Therefore, by the Lebesgue convergence theorem 

lim [w(h) - w(fl)] = lim~'Ylh [V(f2 -J) - V(fl -J)]d'Oi(J) 
12-/1 ~ 0 

+ 'Y t v(f, - j) dfj;(j) - 'Y[Yn(f,) - Yn(f,)l} ~ 0 'fIJ,,!, E 1,. 

That is, w E C(t)(Tn : C(t) ~ C(t)). For establishing the con­
tinuityof Tn, consider any two functions VI, V2 E C(t), and set WI = 
Tn·VI, W2 = Tn·V2, and Vo = V2 - VI for an arbitrary n. It follows from 
(33) and (34) that 



2832 'l'Hl<J BELL SYS'l'EM 'l'ECHNICAL JOURNAL, NOVEMBER 1964 

= I'Y I Vi(JO + E)PC(V2, VI) 

~ I 'Y I Vi(fo + E) SUp I VO(j) I 
f {ic 

where ViC!) signifies the total variation of Yi on the interval [O,j]. Con­
sequently, Pc(W2, WI) ~ 0 if Pc(V2, VI) ~ 0; i.e., Tn is continuous. 

A basic result relating to the reconstruction of SSB8M signals can 
now be stated as 

Theorem 7: Corresponding to any modulating signal x E Soo, each of the 
equations 

n = 1,2, 

has a unique solution given by 

gn = lim gn,m n,m = 1,2, ... 
m-+oo 

Vn,m 

gn,l == 0 f E t Vn 

where convergence is uniform on t. Furthermore, 

ddX 
= 1m [F-I·lim(D) . lim gn,m] = 1m [lim·lim·gn,m] 

t n m n m 

gn, gn,m == 0 Vn,m 

where 1m[·] indicates the imaginary part of the quantity in brackets. 

Proof: We employ here a standard fixed-point contraction-mapping 
theorem (cf. Ref. 17, p. 50): If p( ., .) and T represent respectively a 
metric in a complete metric space R = [C,p] and a continuous mapping 
of R into itself, and if for some k and any two elements v,w E C 

p(Tk·v,Tk·w) ~ exp(v,w) ex < 1, 

then there exists a unique solution to the equation T· Vo = Vo. Also, for 
an arbitrary element V E C this solution is given by 

Vo = lim Tm·v, 
1n-+oo 

where convergence is taken relative to p. In view of Theorem 6 we need 
only demonstrate in the present proof that for some k and any two 
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elements v,w E C(t) each mapping Tn satisfies the contraction condi­
tion 

II T/·v - T/·w lie ~ a II v - w lie a<1. 

First, set 

v-w=U 

M = sup I u(f) I = II u lIe. 
f EIc 

With Yi E BV(t) (cf. Theorem 6) 

I Tn' V - Tn' w I = I"Y J.' u (j - J) dfj;(J) I 

~ M I 'Y Ilf dViC]) = lll{ I 'Y I VJf) f E t, 

where Vi(f) again denotes the total variation of Yi on [O,j]. However, 
inasmuch as 

Yi = flb - flb(O+) + If flb dJ 

fli(O) = Yi(fO + €) = 0, 

r E Ie, 

then Yi E UL n BV(t); hence, there exists a positive constant ao such 
that 

From this last condition it follows that 

I Tn' V - Tn' w I ~ M I 'Y I aof 

I Tn2·v - Tn2·w I ~ M I'Y 12ao If (j - J) dVi(J) = M I'Y 12ao If ViC]) dJ 

~ M I 'Y 12ao2 l
f 
J dJ = lll{ I 'Y212ao2l f E t, 

and, in general, 

M I Ik k-1

1
f 

I
T k. - T k. I < 'Y ao (f - f-)(k-l) dV'(f-) 

n v n W = (Ie _ 1) ! 0 t 

M I Ik k-
1 1f 

= _ 'Y ao ViC]) d(! - J) (k-l) 

(Ie - 1) ! 0 
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~ _ M \ 'Y \kaO
k 1f Jd{f _ J) (k-l) 

(Tc - 1) I 0 

= M \ 'Y \kaO
k 1f Pk-l) dJ = M \ 'Y \kaOkt 

(k - 1) lokI 

'Therefore, for k sufficiently large 

M \ 'Y \kaok(fo + e)k = < 1 
kI a, 

and 

a<l. 

f E ie. 

The contraction principle as outlined then yields the main statement 
of the theorem, the last result being an immediate consequence of 
Lemma 11. 

Treated next are two important classes of modulating signals which 
prove to be contained in Sao : periodic functions of So and integrable 
(L1(IrJJ) functions of So having integrable Hilbert transforms. In the 
following development we represent the space of periodic functions by 
P and the intersection H· (L1(IrJ) n LI(IocJ by L1(I,J. 

Theorem B: So n P c Sao. 

Proof: Elements x E So n P must have the form 
N 

'" b 27rinfp t 
X = ~ ne 

n=-N 

where b signifies the conjugate of b. Consequently, in accordance with 
Definition 2 

N 

Z = X + ii; = L bne27rinfpt. 

n=O 

Putting Zp = Z - bo , we obtain 

or 
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Sn[F· (izp) nJ ~ [nfp, 00) 

SD[F'~I CiZp)nJ,,;; [fp, 00), 

SD[Yb - (1 - eibO)k] C rIp, 00), 

Yb(O+) = (1 - eibO ) ~ 1, 

[Yb - Yb(O+)] E UL n BV(ic). 

Theorem 9: So n Ll(loo) C Sao, and for all x in this intersection 

dd
X = 1m [lim hm] 
t m-->-oo 

where 

hI == 0 

AOU) = {~ 

m = 1,2, ... , 

tE100 

f E Ic 
f ~ ic. 

Proof: Considering that x E So n L1(100 ) , z is a bounded element of 
L 1(1 00); hence, by Darboux's formula 

I Ya(t) I = 11 - e
iz I ~ I Z 111 i 1xl d'A ~ I z(t) I exp (sup I x I), (35) 

a tEl 00 

and 

1 YbCf,) - YbCf,) 1 ;S; 1 J, - JI 1 exp (s~p I;;; I) 1: I z(t) C :7r~7rit) 
.sin 7r(j2 - f1)t I dt 

7r (f2 - II) t 

:£ I h - h I exp (s~p I x J) 1: I z(t) I dt 
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the latter condition indicating that Yb(O+) = Yb(O-) = 0 (cf. Lemma 8) 
and that Yb E U L n B V (t) . * In order to prove the second part of the 
theorem, we note first that with x E So n L1(1 00)' z E L2(100) and z E 
L2 n G(loo); moreover, as 8 D [z] c t, z E L 1(100 ) and g = 27riJ(iz) E 
Ll n L2 n G(loo). Similarly, by (35), Ya E Ll n L2(100) and Ya E L2 n 
G (100). As a result, 

I gn I = I g*O" n I 

= I 1: g(f - J),,(nj)n d] I 

~ sup I g(J) liE I O"(J) I dJ ~ constant Vn, 
f E Ie 0 

lim (D) gn = lim gn = g, 
n n 

lim(D) Yn = lim [(21T"ifYa~)*O"n] = (21T"ifYa~), 
n n 

and by the Lebesgue convergence theorem 

g = lim (D) Tn ·gn = if g(J - J) dYieJ) - 21T"iff)a~ == A·g 
n 0 

f E t. 

This expression asserts that g is a fixed point of the mapping A: Get) ~ 
G ( t). Precisely the same arguments as were used in Theorems G and 
7 apply here to show that A is continuous with respect to norm II . II c , 

and tlmt 

dx 
dt 

- 1m [lim. hm] 
m ..... oo 

m = 1,2, ... 

Vm 

JEt 

Vm 

where convergence is uniform on t . On writing Yi as 

* A similar calculation employing the Schwarz inequality shows that Yb (0+) = 0 
for x E L 2 (I",,) also. Most square-integrable signals of practical interest satisfy 
the appropriate Lipschitz and bounded variation conditions, and are therefore 
contained in Soo . 
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we get 

lim+l = if lim (j - J) Ya (J) A (J) dJ - 27rifYaA 

or, more compactly, 

lim+l = AD (j) if lim (j - J) Ya (J) AD (J) dJ - 27rifYaAO f E I~. (36) 

(Since Sn[g] C [0, fo], AD could be defined to have the same support.) 
Taking the inverse Fourier transform of both sides of (36) yields the 
second part of the theorem. 

v. SUMMARY 

Definition 2 and Theorems 3 through 9, which constitute the principal 
results of the preceding sections, provide both a distribution-theoretic 
basis for the spectral representation of single-sideband angle-modulated 
carriers and a recurrence formulation for reconstructing most of the as­
sociated modulating signals of practical interest. It is important to 
emphasize again that the approach employed in this development applies 
also to other modulation schemes. 
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APPENDIX 

Index of Symbols 

A 
BeJ) 
BVei) 
CkeI), Cd 
Cu 
D 

-p.2836 
-p.2817 
-p.2827 
- p. 2813 
-p.2817 
-p.2814 

fe, fo 
F 

-p.2824 
-p.2816 
-p.2827 
-p.2823 
-p.2813 
-p.2827 
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kU) -p.2827 fli -p.2830 
L1 -p.2834 z -p.2824 
N,ND - p. 2814-2815 'Y -p.2830 
P -p.2834 0 - p. 2820 
8,8D -p.2815 A -p.2828 
So, 81, 82 - p. 2824 Pe( " . ) -p.2832 
Soo -p.2827 U -p.2827 
Tn -p.2831 Un -p.2827 
UL -p.2827 pnx -p.2815 
x(· ), x(·) -p.2814 fn X -p.2815 
X -p.2823 x*y -p.2818 
X -p.2816 limeD) - p. 2816 
Ya , Yb , Yd , Yn -p.2827 ~ -p.2814 
Ye -p.2824 II V lie - p. 2831 
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On the Properties of Nonlinear Integral 
Equations That Arise in the Theory 

of Dynamical Systems 

By I. W. SANDBERG and V. E. BENES 

(Manuscript received May 4, 1964) 

This paper reports on some results concerning the properties of integral 
equations that govern the behavior of a large class of control systems or 
electrical networks containing linear time-invariant elements and an arbi­
trary finite number of nonlinear til1w-varying elements. 

In particular, for networks containing linear time-invariant elements 
and an arbitrary finite number of positive-slope nonlinear resistors, it is 
proved, under reasonable conditions, that the response to a periodic exdta­
tion applied at t = 0 is ultimately periodic with the same period as the 
excitation, regardless of the initial state of the network. 

1. NOTATION AND DEFINITIONS 

Let IvI denote an arbitrary matrix. vVe shall denote by lvI', i.VI*, and 
i.VI-\ respectively, the transpose, the complex-conjugate transpose, and 
the inverse of 111. The positive square-root of the largest eigenvalue of 
IvI*~l is denoted by A{lll}, and IN denotes the identity matrix of order 
N. 

The set of real, measurable N-vector-valued functions of the real 
variable t defined on ( - 00,00) [ [0,00 )] is denoted by :feN [:feN+], and 

{ 100 , l 
oC2N = f I f c :feN, -00 f f dt < 00 f 

£'N+ ~ {f If' JCN+, f f' f dt < oo}. 
The norm of f = (fl, f2' ... ,iN)' c oC2N [£2N+] is denoted by 

/I i /I [ // i //+]; 

it is defined by 

2839 
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and the norm of a linear transformation T defined on £2N [£2N+] is 
denoted by II T II [ /I T 11+]· 

Let y c (0,00), and, if f c X N , let 

if f c X N + , let 

fy = f for I t I ~ y 

= 0 for I t I > y; 

fy = f for t c [O,y] 

= 0 for t > y. 

The sets 0N and 0N+ are defined as follows 

0N = {f I f c X N , fy c £2N for 0 < y < oo} 

0N+ = {f If c X N+, fy c £2N+ for 0 < y < oo}. 

With ill the set of N-vector-valued functions of t which have the prop­
erty that each component is uniformly bounded on its domain of defi­
nition, let 

£~N = ill n X N, and £~N+ = ill n X N+. 

Let T be a real positive constant and let 

JCN = {t I 1 e JCN , 1(t) = 1(t + 7') for all t, f 1'1 dt < oo}. 
Throughout the paper, k denotes a measurable, real N X N matrix­

valued function of t defined on (- 00 ,00 ), with elements {kmn } such 
that 

(m,n = 1, 2, ... , N), 

and If[f(t),t], withf c X N or f c X N+ , denotes the N vector 

(lfrfh(t),t],lf2[f2(t),t], ... ,lfN[fN(t),t])' 

where lfl(W,t),lf2(W,t), ... , lfN(W,t) are real-valued functions of the 
real variables wand t for - 00 < w < 00 and - 00 < t < 00 such that 

(i) there exist real numbers a and (3 with the property that 

a ~ lfn(Wl,t) -lfn(W2,t) ~ (3 (n = 1,2, ... ,N) 
- Wl - W2 
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for all t E ( - 00,00) and all real WI and W2 such that WI ~ W2 , and 
(ii) ~n[W(t),t] is a measurable function of t wheneverw(t) is measura­

ble (n = 1,2, ... , N). 
The symbol s denotes a scalar complex variable with () = Re[s] and 

w = Im[s]. 

II. INTRODUCTION 

Equations of the form 

get) = J(t) + it lc(t - r )~[J( r) ,r]dr, O~t< 00 (1) 

in which f E GN+ and U E .,cooN+ , are frequently encountered in the study 
of physical systems containing linear time-invariant elements and an 
arbitrary finite number of time-varying nonlinear elements. Typically, 
f represents the system response and g takes into account both the 
independent energy sources and the initial conditions at t = o. For 
example, (1) governs the behavior of (a) an important type of control 
system containing linear time-invariant elements and an arbitrary finite 
number of memoryless time-varying nonlinear amplifiers, or (b) an im­
portant type of electrical network containing linear time-invariant 
elements and an arbitrary finite number of time-varying nonlinear 
resistors. 

The related equation 

get) = J(t) + L: lc(t - r )~[J( r) ,r]dr, -00 <t< 00 (2) 

is also often encountered. It arises when it is convenient for mathe­
matical reasons to formulate a model of the system such that the re­
sponse and excitation are defined for all t E (- 00,00 ). In (2), usually 
g E .,cOON and only solutions belonging to .,cooN are of interest. 

One of the classic problems in the analysis of nonlinear physical 
systems is the determination of the properties of the response of a sys­
tem, governed by an equation of the form (1), to a periodic input 
applied at t = O. Usually, the functions ~n( w,t), which enter into the 
definition of ~[. , . ], are independent of t; g can be written as g = gl + g2 
in which gl E X N n .,cooN+ , g2 E £2N+ , and g2(t) ~ 0 as t ~ 00; and (in 
accordance with the usual Volterra integral equation theory) it is known 
that there exists a solutionf E GN+ . In a great many cases of engineering 
interest it is simply assumed that there exists a unique response and 
that it is ultimately periodic with the period of the input. This is a 
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central assumption associated, for example, with the well-known de­
scribing-function technique for the approximate determination of the 
steady-state response of nonlinear systems. 

In connection with the actual determination of the steady-state 
response, two common engineering assumptions are (in effect) that 
there exists a unique element of £OON n x N ,J, that satisfies 

gl(t) = J(t) + l~ k(t - 7)~[j(7)]d7, -oo<t<oo 

and that the solution of (1), with g = gl + g2, approaches J( t) as 
t ~ 00, the principal ideas evidently being that if the physical system is 
stable in some suitable sense, then the effect of the initial conditions at 
t = 0 should eventually "die out," and, moreover, that the steady-state 
response of the system should be obtained "at once" if the periodic 
excitation is applied at "t = - 00." 

The purpose of this paper is to report on some mathematical results 
concerning the properties of (1) and (2) that are pertinent, to a con­
siderable extent, to engineering questions of the type discussed. In 
particular, as an application of our first theorem, we establish the 
mathematical validity of the engineering assumptions described above 
under what amount to reasonable conditions for the case in which 
k( . ) is the matrix-valued weighting function of a passive network and 
~[. , .] represents N positive-slope nonlinear resistors (see Theorem 3 
and associated remarks). 

Under similar conditions, it is proved that an equation of the type 
(2) possesses at most one £OON solution. This type of result is of direct 
interest with regard to the qualitative nature of the solutions of (2), 
for if our conditions are met, and, as is often the case, (a) g in (2) is 
periodic with period T, (b) the ~n (w,t) are periodic in t with period T, 
and (c) f is an £OON solution of (2), then [sincef(t + T) is also a solu­
tion of (2)] it is clear that f must be periodic with period T. 

III. RESULTS 

Theorem 1, below, focuses attention on a relation between the solu­
tions of (1) and (2) . This theorem is later used in order to obtain 
conditions under which the solution of (1) approaches a periodic steady 
state as t ~ 00, when g approaches a periodic steady state as t ~ 00 

Theorem 1: Let 

h1(t) = /let) + l~ k(t - 7)~[jl(7),7]d7, -00 <t< 00 
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in which hI c JCN ,fI c JCN n 8N+ , h2 c JCN+ , and f2 c 8N+ . Suppose that 

(i) (hI - h2) c £2N+ 

(ii) 1: k(t - T)1/t[jI(T),T]dT c £2N+ 

and that, with 

I((s) = lr.o k(t)e-stdt for (j ~ 0, 

(iii) det [IN + !(a + (3)K(s)] ~ 0 for (j ~ 0 
(iv) !({3 - a) sup A{[IN + !(a + (3)K(iw)rIK(iw)} < 1. 

-r.o<w<r.o 

Then (fl - f2) c £2N+ , and, with 

PI = sup A{[IN + !(a + (3)K(iw)r 1
} 

-r.o<w<r.o 

P2 = sup A{[IN + !(a + (3)K(iw)]-lK(iw)}, 
-r.o<w<r.o 

II fl - f2 11+ ~ PI[I - !({3 - a)P2rI 

·11 hI - h, - L k(t - T lMI (r),T]dT t 
If, in addition to the hypotheses stated above, 

hI(t) - h2(t) - L°r.o k(t - T)1/t[fI(T),T]dT ~ 0 

as t ~ 00, and 

(m,n = 1,2, "', N), 

then [fI(t) - f2(t)] ~ 0 as t ~ 00. 

Our next result is concerned with the character of the change in the 
solution of (2) when 9 is altered by the addition of an element of £2N . 

Theorem 2: Let 

hI(t) = fI(t) + L: k(t - T)1/t[JI(T),T]dT, 

h2 (t) = f2(t) + L: k(t - T)1/t[h(T),T]dT, 

-oo<t<oo 

-oo<t<oo 
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in which: hI , h2 c X N ; fl , f2 c £OON ; and (hI - h2) c £2N . Suppose that 
(i) 

fl f I kmn(X) I dXl' dt + (I ( I kmn(X) I dXI' dt < <Xl, 

(m,n = 1,2, ... , N) 

and that, with 

K(iw) = L: k(t)e-iwtdt, 

(ii) det [IN + !(a + /3)K(iw)] ~ o for all w 
(iii) !(/3 - a) sup A{[IN + !(a + /3)K(iw)]-lK(iw)} < l. 

-oo<w<oo 

Then (fl - f2) c £2N , and, with 

PI = sup A{[lN + !(a + /3)K(iw)]-l} 
-oo<w<oo 

P2 = sup A{[lN + !(a + /3)K(iW)]-IK(iw)}, 
-oo<w<oo 

II it - f2 II ~ pd1 - !(/3 - a)P2]-1 II hI - h2 II· 

Observe that Theorem 2 implies that if (i), (ii) and (iii) are satisfied, 
then (2) possesses at most one £OON solution. 

As indicated earlier, in many cases of engineering interest g, in (1), 
can be written as g = gi + g2, in which gi c X N n £<XlN+ , g2 c £2N+ , 
and g2(t) ~ 0 as t ~ 00. In such cases it is often of considerable import­
ance to determine whether f(t) approaches a steady-state response that 
is periodic with period T as t ~ 00. As a specific application of Theorem 
1, the following result is proved. 

Theorem 3: Let gi c X N n £<XlN+ ,g2 c £2N+ ,g2(t) ~ 0 as t ~ 00, 1/;n( w,t) = 
1f;n( w,t + T) for all wand t and n = 1, 2, ... , N, and 1f;[O,t] c X N . Let 
f c 0N+ satisfy 

Suppose that 

(i) fit I kmn (x) I dx I' dt < <Xl 

(ii) 1<Xl 1 (1 + t) kmn (t) 12 dt < 00 

O~t< 00. 

(m, n = 1, 2, ... , N) 

(m, n = 1,2, ... , N) 
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and that, with 

!{(s) = 1~ k(t)e-Sfdt for (J ~ 0, 

(iii) det [IN + !(a + fj)K(s)] ~ 0 for (J ~ 0 
(iv) !(fj - a) sup A{[IN + !(a + fj)K(iw)]-lK(iw)} < 1. 

-~<w<~ 

Then there exists a unique J t: X N such that 

Yl(t) = J(t) + it~ k(t - r) 1/t[J(r) ,r]dr, 

AI ()re()ver, J E £~N, (f - J) E £2N + , and 

-oo<t<oo. 

[J(t) - 1(0] ~ 0 as t ~ 00. 

2845 

With regard to the hypotheses of Theorems I and 3, it can be shown 
that* 

det [IN + !(a + fj)K(s)] ~ 0 for (J ~ 0 

and 

!(fj - a) sup A{[IN + !(a + fj)K(iw)r1K(iw)} < I 
-~<w<~ 

provided that a ~ 0 and [K(iw) + K(iw)*] is nonnegative definite for 
all w. For this reason our results are particularly relevant to the theory 
of passive nonlinear electrical networks. 

IV. PROOFS 

4.1 Proof of Theorem 1 

Let K denote the bounded linear mapping of £2N+ into itself defined 
by 

Kf = it k(t - r)f(r)dr, 

With y an arbitrary positive number, and f an arbitrary element of 
JCN + , let P denote the mapping of JCN + into itself defined by Pf = fy , 
and let 1/;f denote the N-vector-valued function of t with values 

1/t[fCt),t] for 0 ~ t < 00. 

* The validity of the first assertion can be established with a standard argument 
involving the analyticity of K (s) for u > o. The second statement is a direct ex­
tension of a result proved in Ref. 1. In particular, the greatest lower bound (over 
n) of the smallest eigenvalue of the term [IN + Rn]-l* [IN + Rn + Rn *][IN + Rn]-l, 
which appears in (7) of Ref. I, can easily be shown to be positive. Thus, the con­
clusion of Theorem 2 of Ref. I remains valid if the condition a > 0 is replaced 
by a ~ O. 
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Then from 

h1 (t) - h2 (t) - LOCI:) k(t - T)~rfl(T),T]dT 

= h(t) - h(t) + Ia
t 

k(t - T)(~[h(T),T] - ~[j2(T),T])dT, (3) 

O~t< 00 

and the fact that 

P it k(t - T) (~[h(T),T] - ~[h(T),T])dT 

= P it k(t - T) (~[jly(T),T] - ~[hy(T),T])dT, 

we obtain 

in which 1 denotes the identity operator on £2N+ and 

hy = h1y - h2y - P LOCI:) k(t - T)~[h(T),T]dT. 

In order to proceed we need the following result.2 

Lemma 1: Let det [IN + tea + ,B)K(s)] ~ 0 for (J ~ O. Then 
[I + tea + ,B)K] possesses a bounded inverse on £2N+ , and 

II [I + tea + ,B)K]-l 11+ ~ sup A{[IN + tea + ,B)K(iw)]-l} 
-CI:)<W<CI:) 

II [I + tea + ,B)KrlK 11+ ~ sup A{[IN + tea + ,B)K(iw)]-lK(iw)}. 
-CI:)<W<CI:) 

Furthermore, 

P[I + tea + ,B)K]-l = P[I + tea + ,B)K]-lp for all y > o. 
Thus, since 

P[I + tea + ,B)K]-lp[1 + tea + ,B)K] (fly - f2Y) = fly - f2y, 

we obtain from (4) 

fly - f2y = P[I + tea + ,B)K]-lhy 

- P[I + tea + ,B)KrlpK{~flY - ~f2Y - tea + fJ)(fly - f2Y)}' 
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Using the fact that 

1/1/;!IY - 1/;f2y - !(a + (1) (fly - f2Y) 11+ ~ !(/1- a) II fly - !2Y 11+, 
it follows that 

1/ fly - !2Y 11+ ~ II P[I + !(a + (1)Kr
l
hy 11+ 

+ !(/1 - a) II P[I + !(a + (1)K]-lpK 11+ 

. II fly - f2y 11+ 

~ II [I + ! (a + (1) Kr
l 

1/ + 1/ hy 1/ + 

+ !(/1 - a) 1/ [I + !(a + (1)Kr
I
K 1/+ 

. 1/ fly - hy 1/ + . 

U sing the inequalities of the lemma, 

II fly - hy 1/+ ~ Pl[l - !(/1 - a)P2r
l 

1/ hy 1/+ 

~ Pl[l - ! ({3 - a) P2r
l 

(5) 

for all y > o. Therefore, (fl - f2) E £2N+ and" fl - f2 11+ possesses the 
upper bound stated in the theorem. 

We now show that (fl - !2) E £2N+ , 

hl(t) - h2(t) - 1° k(t - r)1/;(Jl(r),r]dr ~ 0 as t~ 00, (6) 
-00 

and 

(m, n = 1, 2, ... , N) (7) 

imply that [fl(t) - !2(t)] ~ 0 as t ~ 00. 

Assume that (fl - f2) E £2N+ and that (6) and (7) hold. Then, from 
(3) it is evident that [!t(t) - f2(t)] ~ 0 as t ~ 00 if 

~t k(t _ r) (~{!l(r),r] - 1/;[h(r),rDdr ~ 0 as t ~ 00 • (8) 

To prove that (8) is satisfied, observe first that (fl - !2) E £2N+ implies 
that (1/;fr - 1/;!2) E £2N+ . Thus it suffices to show that if g E £2N+ , then 

10 t k (t - r) g ( r ) dr ~ 0 as t ~ 00 • 
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Let 

G(iw) = l.i.m. 10"" g(t)e-iwtdt, 

Then, in view of assumption (7), the modulus of any element of the 
N -vector K (iw) G( iw) is integrable on the w-set (- 00 , 00 ), and hence 
by the Riemann-Lebesgue lemma 

which is equal to 

2
1 r"" K(iw)G(iw)eiwtdw, 
7r J_"" 

approaches zero as t ~ 00. This completes the proof of Theorem 1. 

4.2 Proof of Theorem 2 

In this section, K denotes the bounded linear mapping of £2N into 
itself defined by 

Kf = l:k(t - T)f(T)dT, 

With y an arbitrary positive number and f an arbitrary element of 
X N , P denotes the mapping of X N into itself defined by Pf = fy , and 
tf;f denotes the N -vector-valued function of t with values 

tf;[fCt),t] for - 00 < t < 00. 

From the fact that 

hI (t) - h2(t) = ft (t) - h(t) 

we obtain 

+ f"" k(t - T)(tf;[ft(T),T] - tf;[h(T),T])dT, 
-"" 

hy = fty - hy + K(tf;fty - tf;hy) 

[I + !(a + /1)K](fly - f2Y) 

+ K{tf;flY - tf;f2y - !(a + /1) (fly - f2Y)}, 

in which I denotes the identity operator on £2N , and 

(9) 

(10) 

(11) 
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hy(t) = hlll (t) - h2y (t) + foo k(t - r)(1/t[/Iy(r),r] -1/t[hy(r),rDdr 
-00 

- p foo leU - r)(1/t[Jl(r),r] -1/t[h(r),rDdr. 
-00 

At this point we need2 't 

Lemma 2: If det [IN + !(a + ,B)K(iw)] ~ 0 for all w, then 

[I + !(a + ,B)K] 

possesses a bounded inverse on £2N , and 

II [I + !(a + ,B)Krl 
1/ ~ sup A{[IN + !(a + ,B)K(iw)r

l
} 

-oo<w<oo 

1/ [1 + !(a + ,B)KrIK 1/ ~ sup A{[IN + !(a + ,B)K(iw)rlK(iw)}. 

Thus from (11), 

fly - f2y 

-oo<w<oo 

= -[1 + !(a + ,B)KrlK{1/tflY -1/tj2Y - !(a + ,B)(iIy - f2Y)} 

+ [1 + !(a + ,B)K]-lhy • 

Using the fact that 

1/ 1/tfly - 1/tf2y - !(a + ,B) (iIy - f2Y) 1/ ~ !(,B - a) 1/ fly - f2y 1/, 

we have 

1/ fly - f2Y 1/ ~ !(,B - a) 1/ [1 + !(a + ,B)KrlK " . 1/ fly - f2y 1/ 

+ 1/ [I + !(a + ,B)Kr
l 

" . " hy 1/. 

In view of the inequalities of the lemma, 

II fly - f2y" ~ Pl[l - !(,B - a)P2]-I" hy 1/. (12) 

Assume now that there exists a constant c such that 1/ hy 1/ ~ c for all 
y > O. Then, from (12), it is clear that (fl - f2) E £2N . This implies 
that (1/tfl - 1/tf2) E £2N. Hence, (9) can be written as 

hI - h2 = fl - h + K(1/tfl - 1/th), 

from which it follows, by essentially the same argument as that used to 
obtain (12) from (10), that 

t With no more than a reinterpretation of the functions involved, the proofs of 
the inequalities of Lemma 1 suffice to establish the inequalities of Lemma 2. 
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Therefore to complete the proof of Theorem 2, it suffices to prove 

Lemma 3: If (hI - h2) E £2N, it, f2 E £~N , and assumption (i) of The­
orem 2 is satisfied, then there exists a constant c such that II hy II ~ c for all 
y > o. 

4.2.1 Proof of Lemma 3 

Let q = (ql, q2, ... , qN)' = (1/;fl - 1/;f2), 

O(t) = 1 for I t I ~ y 

= 0 for I t I > y, 

and 

Then, since (hI - hz) E £2N , it is sufficient to prove that there exists a 
constant Cl such that II u II ~ Cl for all y > O. Further, since 

N r~ 
II u 112 = L L I um(t) 12 dt 

m=1 -~ 

N r~ 1 N J~ \2 = ~1 J_~ ~1 _~ kmn(t - r)[O(r) - O(t)]qn(r)dr dt 

N N r~ 1 r~ 12 ~ N ~1 ~1 J_~ ._~ kmn(t - r)[O(r) - O(t)]qn(r)dr dt 

N N J~ 1 r~ 12 ~ 17N ~1 ~1 _~ J_~ 1 kmn(t - r) 1 • IO(r) - O(t) 1 dr dt, 

in which 

17 = max sup 1 qn(t) 1
2

, 
n t 

it suffices to show that there exists a constant C2 such that for all y > 0 

(m,n = 1,2," ·,N). 

Fsing the fact that 
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i: I kmn(T) I I O(t - T) - o(t) I dT 

= fOO I kmn (T) I dT + J t-y I kmn (T) I dT for I t I ~ y 
t+y -00 

I
t+y 

= t-y I kmn ( T) I dT for I t I > y, 

it is a simple matter to verify that 

from which it is evident that our assumptions imply that there exists 
a C2 with the required property. This proves the lemma and completes 
the proof of Theorem 2. 

Remark: 

Assumption (i) of Theorem 2 is satisfied if 

i: I t/{;mn (t) I dt < 00, (n,m = 1,2, "', N), 

for then the (bounded) functions 

ioo 

I kmn(x) I dx and i: I kmn(x) I dx 

are integrable on (0,00) and ( - 00 ,0), respectively. 

4.3 Proof of Theorem 3 

We need two lemmas. 

Lemma 4: Let 1/;[. , .] satisfy the conditions of Theorem 3, gl c: X N , and 

K(iw) = 100 

k(t)e-iwtdt. 
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Suppose that, with ~ the set of integers, 

(i) det [h + t(a + p) I( (i21':") ] r< 0 for n, m: 

(ii) t(p - a) ~':~ A {[ IN + q(a + p)I( (i2;n) r I( (i2;)} < 1. 

Then there exists a unique J E: x'N such that 

-oo<t<oo 

Proof of Lemma 4: 

Theorem 4 of Ref. 1 and the remarks relating to its proof imply 
that the conclusion of Lemma 4 is valid if the hypotheses of the lemma 
are satisfied and the condition 

is met. However, since every element of K (i27rn/ T) approaches zero 
as I n I ~ 00, assumption (i) of Lemma 1 implies that 

Therefore, in view of the fact that the elements of I{(i27rn/T) are 
uniformly bounded for n E ~, it follows that (13) is satisfied. This 
proves the lemma. 

Lemma 5: Let ~[.,.] satisfy the conditions of Theorem 3, let J E x'N , and 
suppose that assumption (ii) of Theorem 3 is satisfied. Then 

Proof of Lemma 5: 

Let q(t) = ~[J(t),t], and 

u = (Ul,U2,·· ·,UN)' = L: k(t - r)q(r)dr. 

Then q E x'N, and 
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Furthennore, 

1 f 1 /emn ( T) 1 1 qn (t - T) 1 dT I' 

:::> f [(1+ T)kmnH]'dT f 1 qn~t.; :) I'dT, 

and the last integral can be bounded as follows 

100 1 qn(t - r) 12 dr = i: r(m+l)T 1 qn(t - r) 12 dr 
o 1 + r m=O J m T 1 + r 

:::> (1 + nt. (ml')-') (I qn(t) I'dt. 

Thus, the U m (t) are uniformly bounded on (- 00 , 00 ) , which proves the 
lemma. 

Theorem 3 follows at once from Lemmas 4 and 5, Theorem 1, and 
the fact that assumption (i) of Theorem 3 and j E £ooN imply that 

L:k(t - r)if;[](r),r]drE£2N+. 
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Applications of a Theorem of Dubrovskii 
to the Periodic Responses of 

Nonlinear Systems 

By V. E. BENES and I. W. SANDBERG 

(Manuscript received May 14, 19(4) 

Dubrovskii's theorem on completely continuous operators that are aSy1r~p­
totic to zero is applied to the study of the existence and uniqueness of periodic 
responses of nonlinear systems to periodic driving signals. Examples of 
nonexistence and nonuniqueness are given, a relGtionship between non­
uniqueness and subharmonics is noted, and some general existence theorems 
are proven, giving estimates on the magm·tudes of the harmonics. 

I. INTRODUCTION 

In 1939 V. lVi. Dubrovskii1 proved the following result: 

'Pheorem 1: If A is a completely continuous operator which maps a Banach 
space X into itself, with the property that 

lim II Ax II = 0 
II X II-+CXl II x II ' XeX, 

then for each scalar A and y e X, the equation x = y + AAx has at least 
one solution x e X. 

Dubrovskii's theorem was stated in the long review article of l\1. A. 
Krasnoselskii2 on problems of nonlinear analysis, but except for a recent 
application,3 it seems to have gone largely unnoticed. It is the purpose 
of this paper to indicate some applications of the basic idea in the 
theorem to integral equations (and systems thereof) that arise in the 
study of nonlinear electrical networks and automatic control systems. 

The applications to be made all center around the existence and 
uniqueness of periodic responses of nonlinear systems to periodic driving 
signals. These properties of the equations governing nonlinear systems 
are frequently taken for granted. The fact is, though, that these are 
by no means universal properties of such equations, as simple examples 

2855 
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(to be given) will show. Often, the nonexistence of periodic responses 
is related to instability of the nonlinear system, while their lack of 
uniqueness is closely connected with the possibility of responses with 
subharmonic components. Thus it is important, in control and circuit 
theory, to be able to distinguish nonlinear equations that have unique 
periodic solutions for periodic inputs from those that possess several 
such solutions. With the aid of the idea underlying Dubrovskii's theorem, 
we examine this problem in the present paper for systems described by 
the nonlinear integral equation 

x(t) = yet) + L: k(t - u)1/;(x(u),u) du, (1) 

(and by a vector analog thereof,) where y( .) is an input, k(·) is an 
integrable (L1 ) impulse response of a linear system, and 1/;( . , .) repre­
sents a periodically time-varying nonlinear element. Periodic solutions 
of (1 ) have already been considered in previous work of one of the 
authors;4 almost periodic solutions of (1) have been studied in previous 
joint work5 of the authors. In both these papers a basically different 
assumption about the growth of the element 1/;( . , .) (from that to be 
made here) was used. 

II. SUMMARY 

A discussion of the abstract Banach space setting for Dubrovskii's 
theorem appears in Section III. It includes a quick proof of the theorem 
from Schauder's fixed-point principle. There follows in Section IVan 
account of mathematical preliminaries, assumptions, definitions, etc., 
requisite for our remarks about (1). These remarks begin, in Section V, 
with a simple example showing that (1) may have no periodic solution 
and continue in Section VI with an existence theorem, for periodic 
solutions of (1), based on the principle of Dubrovskii's theorem. In 
Section VII we apply this result in discussing an example of nonunique­
ness due to existence of subharmonic solutions. In Section VIII it is 
shown how the bound on the norm of the solutions obtained in Section 
VII can be improved. In Section IX, finally, a vector analog of the 
existence theorem of Section VII is stated and its proof sketched. 

III. BACKGROUND DISCUSSION 

We recall 6 that an operator A taking one Banach space into another 
is termed completely continuous if and only if it is continuous and carries 
every bounded set into a compact one. Dubrovskii's theorem for such 
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operators is a straightforward consequence of Schauder's fixed-point 
principle:7 Let S be a bounded, closed, convex set of a Banach space X. 
Let A be a continuous transformation of S into a compact subset of 
itself. Then there exists at least one point xeS such that x = Ax. 

An operator A satisfying Dubrovskii's condition 

lim II Ax II = 0 

IIxll~CX) "x" 
is said to be asymptotically close to zero; explicitly, the condition is that 
for every € > 0 there is an r such that" x " ~ r implies II Ax II < € II x II . 
To prove Dubrovskii's theorem we seek a closed ball, of radius R to be 
determined, that is mapped into itself by the (completely continuous) 
operator G defined by 

Gx = y + AAx 

with A and y c X fixed. Let € be a number such that 0 < I A I € < 1, 
and pick (by Dubrovskii's condition) an r > 0 such that II x II ~ r 
implies II Ax II < €" X " • If now s is a positive number such that 

s ~ "y " -l-€!AI 

then for r ~ "x" ~ s 
II Gx II ~ II y II + I A I . " Ax II 

~ "y II + I A I € /I x II 
~ s. 

Since A is completely continuous, the set 

{Ax: II xl/ ~r} 

is compact. Thus the continuous function /I Ax " defined on { /I x" ~ r} 
is bounded. If R is chosen as 

R = max {I ~ I ~ I " II y II + I A In ~~~) Ax II} 

then" x II ~ R implies II Gx " ~ R. The closed ball of radius R is convex, 
and the existence of a fixed point of G in the ball follows from Schauder's 
fixed-point principle. To establish the result for a particular value of A 
it is not necessary that A be asymptotically close to zero; clearly, it 
suffices that there be € such that 0 < € < ! A ! -1 and r such that 1I x II > r 

implies II Ax II < E " x " . 
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IV. PRELIMINARIES 

We shall be concerned throughout with the case in which the functions 
x( .) and y(.) of interest are periodic and square-integrable over a 
period. By L 2( - T,T) we denote the Banach space of all functions x( . ) 
of period 2T that are real-valued, measurable on [- T,T], and for which 
the norm 

II x II = GT L: I x(t) 12dty 

is finite. According to standard results in the theory of Fourier series, 
such a function is represented in the mean by its Fourier series 

N 

( ) 1 . "'" 7rimt/T X t = .l.m. L." xme 
N ..... oo m=-N 

with Fourier coefficients 

= ~ iT (t) -7rimt/T dt 
Xm 2T -T X e , -oo<m<oo. 

The norm of x( . ) and its Fourier coefficients are related by the Parseval 
identity 

00 

II x II 2 = 2: I Xn I 2. 
n=-oo 

We shall need the following two facts from the theory of Fourier 
series: (1) If Z(·), W(·) E L 2 ( -T,T), with respective Fourier coeffi­
cients {Zn}, {wn}, then 

1 iT (t ) ( ) d "'" i7rnt/T 2T -T Z - U W U U = ~ ZnWne , 

the series on the right converging absolutely and uniformly; (2) the 
Fourier coefficients of z( . + e) are {e7rinE/T Zn}. 

The notation 

1 iT /I Z /11 = 2T -T I Z(t) I dt 

is used occasionally. 
For a periodic function z( . ) E L2( - T,T) we define the functional 

1 iT f.L(z,e) = 4T -T I z(t + e) - z(t) I dt, 
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proportional to an "integral modulus of continuity," and we remark 
that one of the usual arguments for the Riemann-Lebesgue lemma gives, 
for n ~ 0, the inequality 

I Zn I = 12~' L: z(t)e-'int'T dt I 
= I ~ iT z(t)[l - e1l"i]e-1I"intIT dt I 

4T -T 

1 iT ~ 4T -T I z(t) - z(t + Tin) I dt = }.t(z,Tln). 

We shall make two assumptions about the nonlinear element 1/;( . " ), 
one about its growth and one about its continuity: 

(a) there is a function X(·) nondecreasing on [0,00) such that for 
all v, t 

I I/;(v,t) I ~ X( I v I), (2) 

(b) the function 1/;( . , . ) is continuous in the first variable uniformly 
in both variables. Then its modulus of continuity w(· ), defined by 

w(o) = sup II/;(u,t) - I/;(v,t) I for I u - v I ~ 0, (3) 
u,v.t 

is a continuous monotone function, and approaches zero with 0 ~ 0. 
When I/;(v, . ), considered as a function of t, has a modulus of continuity 
woe . ), so that 

I I/; ( v, t + E) - I/; ( v, t) I ~ Wo ( E) 

for all v and t, we set 

qn = {~o(T/n) n=O 
n ~ 0. 

Jensen's inequality for a concave function cp( • ) reads 

cp ( { i;X)P(X) dX) ;>; { 'P(~(X) )p(x) dx 
i p(x) dx i p(x) dx 

(4) 

where cp( • ) is concave in an interval containing the range of f( . ) over 
[a,b], p(x) ~ 0, p ~ 0, and all the integrals in question exist. 

We now return to k(·) in (1). Since k(·) belongs to L 1 , it has a 
bounded Fourier transform 
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K(w) = (27r)-l i: e-iwtk(t) dt. 

The convolution operator K on L2( - T,T) defined by 

Kx(t) = i: x(t - u)k(u) du 

is described in terms of its effect on Fourier coefficients by the identity 

(Kx)m = (z...)'K (;) x,., 

and takes L2 ( - T, T) into itself continuously. 

V. NONEXISTENCE OF SOLUTIONS 

It is easy to see that in some very simple cases (1) has no periodic 
solution. An example is furnished by 

Remark 1: If ",(v,t) = v for all v and t, and if, for some integer n, both 
the nth Fourier coefficient Yn of y( . ) does not vanish and 

hn = (2".)'K (;) = 1, 

then (1) has no periodic solution x(·) belonging to L2 (-T,T). For if 
there were such a solution, the left side of (1) would have nth Fourier 
coefficient Xn , while the right-side would have Yn + Xn :;C Xn • 

VI. EXISTENCE OF SOLUTIONS 

Theorem 2: If X( . ) and w( . ) are concave, y( . ) c L2 ( - T,T), 

and if the scalar equation 

r = II y 1/ + KX (r ) (5) 

has a positive solution r, then there exists a solution x(·) of (1), with 
period 2T, and such that 

II x II ~ r, 

I Xm I ~ I Ym 1+ (Z".)IK (;) X(r) 

where Xm , Y m are the respective mth Fourier coefficients of x, y. 
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Proof: In the complex sequence space l2 of Fourier coefficients, isometric 
to L 2 ( - T,T), consider the set s of sequences x = {Xn, - CIJ < n < oo} 
such that, with the overbar denoting the complex conjugate, 

By Minkowski's inequality, x E: S implies 

/I x /I = (L I Xm 12)~ ~ II y II + KA(r) = r. 

The set S is compact, being an analog of the Hilbert cube or parallelotope. 
It is easily verified that S is convex. 

Now let x(·) E: L2 ( - T,T), and consider the magnitudes of the 
Fourier coefficients of the function w ( . ) defined by 

wet) = 1/;(x(t),t) = 1/;(x(t + 2T), t + 2T). 

We find 

I Wn I = I iT i: >!(x(t),t)e-,'n"T dt I ~ 2~ 1: I >!(x(t),t) I dt 

1 iT ~ 2T -T A( I x(u)l) dt (6) 

~ AC~ i: I x(u)1 dU) 
~ A(II x II), 

where the second inequality follows from the fact that A(·) bounds 
the growth of 1/;( . ,t), the third inequality follows from the concavity 
of A ( . ) by the Jensen inequality (4), and the fourth inequality follows 
from Schwarz's and the monotone nature of A( . ). Hence if II x II ~ r, 
then I Ym + (I{w)m I ~ I Ym I + (27r)! K(m7r/T) A(r), and it follows 
that the operator A defined on L2 ( - T,T) by 

Ax(t) = yet) + [rJJ k(t - u)1/;(x(u),u)du, 
-rJJ I t I ~ T 

maps the ball II x II ~ r into the compact, convex, isometric image of S, 
that is, into a compact, convex subset of itself. Continuity of A on the 
imagf. follows from that of K and from the inequality 
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provable by the same method as (6). Existence of a fixed point of A 
in the isometric image of S follows from Schauder's theorem. 

We remark that if }..(u) = o(u) as u ~ 00, then a solution r to the 
scalar equation (5) always exists. This occurs, for example, if 

(3 > 0, O~a<1. 

VII. NONUNIQUENESS AND SUBHARl\WNICS 

It is known that a solution of (1) may have Fourier components, 
called "subharmonics," of period greater than 2T. Our purpose is to 
remark that if this occurs, then (1) does not have a unique solution, 
and in fact, the greater the period of the subharmonic, the more distinct 
solutions exist. We start with a simple example: Let T = 7r /2, set 

let 

1f;(u,t) = sgn U· I u I !l 
yet) = -& - ! cos 2tJ' 

x(t) = ~ + 4 sin t - ! cos 2t, 

(7) 

and for K ( .) take any Fourier transform of an integrable function 
with K(O) = 0 and K(1) = 4(27r)-!. For example, the fourth-order 
filter 

K( ) = (27r)-!16(iw)2 
w (1 + iw)4 

will do. Actually, since we need to prescribe only the two parameters 
K(O) and K(1), the second-order filter 

(27r )-!iw 
K(w) = C )2 + l' + 1 (8) 

'/,w 4'/,W 

would do as well. 
That x( .) as defined is a periodic solution of (1) of period 27r can 

be verified from the identity 

2 + sin t = (~ + 4 sin t - ! cos 2t)!. 

This example, in which the solution x(·) contains the subharmonic 
component 4 sin t, is adapted from Hughes,8 and has been used earlier4 

by the authors merely to illustrate the real possibility of subharmonics 
in relatively simple systems. 
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Now since the input y( . ) has period 7r, while the response x( .) has 
period 27r, it can be seen that by shifting x( . ) by ±7r, that is, by changing 
the sign of (all) the odd components of x( . ), another solution of (1) 
for this ..p( . ) and y( . ) is obtained, because 

x(t ± 7r) = yet) + 1: sgn xU ± 7r - u) I x(t ± 7r - u) I!k( u)du. 

Thus, there are at least two solutions of (1) for this example; the two 
we have identified so far differ only in phase. As an application of 
Theorenl 2 we show that there is at least one more solution, one that 
has period 7r. The following lemma establishes a Holder condition for 
the nonlinearity of the example: 

Lemma 1: If 

..p ( v) = sgn v I v I ~. 

then for all v and t 

I t/; (v + t) - t/; ( v) I ~ 2! I t I !. 

Proof: First suppose that sgn (v + t) ~ sgn v. Then I t I 
I v I , and concavity gives, by Jensen's theorem, 

I t/;(v + E) - t/;(v) I = I v + E I! + I v I! 

~ 2 (I v + , ~ + I v Iy = 21 I ' II, 

If sgn (v + E) = sgn v, there is no loss of generality in supposing that 
v + E > V ~ 0, because t/;( . ) is odd. Then using concavity again 

Hence in this case 

t/;(v) ~ _v_ t/;(v + E) 
v + E 

° ~ t/;(v + E) - t/;(v) ~ t/;(E) = I E I !. 

A direct application of Theorem 2 shows that (1) for the example 
(7), (8) has a solution of period 7r. The scalar equation 

II y II + Kr! = r 

is appropriate, and has a positive root r. 
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The example just discussed illustrates the following general principle 
regarding su bharmonics : 

Theorem 3: If (1) has a solution x( . ) with (minimal) period 2nT, n > 1, 
then each of the functions 

x(t + 2kT) 

is a (distinct) solution of (1). 

k = 1, .. , ,n 

Proof: Since y( . ), and the time-dependence of 1/;( . , .) have period 2T, 
we have 

x(t + 2kT) = yet) + 1: 1J;(x(t + 2kT - u), t + 2kT - u)k(u)d1l 

= yet) + 1: 1/;(x(t + 2kT - u), t - u)k(u)du. 

VIII. CLOSER BOUNDS ON FOURIEH COEFFICIEN'rs 

By a more penetrating analysis it is possible to strengthen the bounds 
on the norm and on the Fourier coefficients given by Theorem 2. For 
example, the inequality (6) merely establishes a uniform bound X(r) 
for all Fourier coefficients of functions 

wet) = 1/;(x(t),t) 

for II x II ~ r. However, since the argument for (6) shows that w(·) is 
absolutely integrable over a period, its Fourier coefficients actually go 
to zero at infinity, and it should be possible substantially to improve 
the estimate (6). This can be done with the help of the quantities 
{qm, - 00 < m < oo}, and the functional J..t, defined in Section IV. 

Throughout this section, it is assumed that 1/;(v,' ) has the modulus 
of continuity woe . ) as a function of t, and that 

(9) 

It follows from (9) that there is a function h( . ) c L2 ( - T,T) such that 
for any x(·) c L2 ( - T,T) 

1 rT r~ 
2T LT h(t - u)x(u)du = L~ k(t - u)x(u)du; 

the Fourier coefficients of h( . ) are 

h.. ~ (2".)IK (m;) , - 00 < m < 00. 
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For each positive number s, and m ~ 0, we define 

ames) = J.L(y,T/m) + 'A(s)J.L(h,T/m). 

Since for x(·) c L2( - T,T), J.L(x,€) ~ 0 as € ~ 0, the numbers ames) 
are bounded in m ~ 0 for each fixed s. By the Riesz-Fischer theorem 
there is for each s > 0 a function us(·) c L2 ( - T,T) whose Fourier 
coefficients are 

( ) _ {! I hm I {w(am(s» + qm}, 
U

m 
S - I ho I 'A ( s ) 

with (cf. Section IV) 

q" = eo( 7'/n) 
n=O 
n ;:C O. 

m ~ 0 
m = O. 

Theorem 4: Let 'A ( • ), w ( .) be concave, and let r be a positive number 
satisfying the inequality 

/I y /I + /I ur " ~ r. 

Then there exists a solution x(·) c L 2( -T,T) of (1), such that 

II x II ~ r, 

J.L(x,T/m) ~ am(r), 

I xm! ~ I Ym I + I um(r) I, all m. 

Proof: Let the operator A be defined on the ball f /1 x /I ~ r} in L 2 ( - 'P,T) 
by 

Ax(t) = yet) + i: k(t - u)1f;(x(u),u)du 

1 iT = yet) + 2T -T h(t - u)1f;(x(u) ,u)du. 

The argument of Theorem 2 shows that A maps { // x II ~ r} COll­

tinuously into L 2 ( - T,T). Further, by Fubini's theorem and the con­
cavity of 'A( • ), 

1 iT iT 8T2 -T dt -T I h(t + € - u) - h(t - u) 1·11f;(x(u),u) I du 

1 iT = p,(h,€)· 2T -T 11f;(x(u) ,u) I du 

~ p,(h,€)'A(1I xiI), 
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and we find that Ilxil ~ r implies J..L(Ax,T/m) ~ am(r) for m ~ O. 
Moreover 

I ,p ( x (u + e), U + e) - ,p (x ( u ) ,u) I ~ w ( I x (u + e) - X ( u) I ) + Wo ( e) , 

so that the concavity of w( . ) implies 

2J..L(,p(x),e) ~ w(J..L(x,e)) + wo(e). 

It follows that II x \I ~ r implies 

I (Ax)m I ~ I Ym I + t I hm I {w(am(r)) + qm}, m ~ 0 

and also 

I (Ax)o I ~ I Yo \ + \ ho I A(r). 

Let S be the compact set of l2 sequences 

x = {Xn, - 00 < n < oo} 

such that 

I Xm \ ~ I Ym I + I um(r) \. 

It can be seen that A maps the ball { 1\ x 1\ ~ r} into the isometric 
image in L2( - T,T) of S. This image is compact and convex, and The­
orem 4 follows from Schauder's fixed-point principle, as did Theorem 2. 

Theorem 5: Let A('),W(') be concave, let y(.) E L 2(-T,T), and let 
there exist a positive number r and a real bounded sequence b = {bm , m ~ O} 
satisfying the inequalities 

II Y III + II h IIlA(r) ~ r 

J..L(y,T/m) + L I sin 2
n7r II hn \ {w(bn) + qn} ~ bm, 

n~O m 
m ~ O. 

Then there exists a solution x(·) E L2 ( - T,T) of (1) such that 

\ Xm I ~ I Ym I + t I hm I {w(bn) + qn}, 

1\ x lit ~ r 

m ~O. 

Proof: Let R be the compact, convex subset of L 2 ( - T,T) consisting of 
functions z( . ) such that 

\I z lit ~ r 

2J..L(z,T/m) ~ bm , m ~O. 
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Let x( .) E R, and let {t/;n, - 00 < n < oo} be the Fourier coefficients 
of the function w ( . ) defined by 

wet) = t/;(x(t),t), all t. 

Then the concavity of A( . ) implies that 

1 % 1 ~ X (2~' 1: 1 x(t) 1 dt) ~ X(,.) 

and that of w( . ) implies that for m ~ 0 

1 iT I t/;m I ~ 2T -T w(1 x(t + Tim) - x(t)l)dt + qm 

~ w(2j1.(x,T 1m» + qm. 

Now 

Ax(t + e) - Ax(t) 

= yet + e) - yet) + 1: {h(t + e - u) - h(t - u) }t/;(x(u),u)du 

and the second term on the right is 

.L: hn(e7rinfIT - l)t/;ne7rint, 
nr"O 

the series converging absolutely and uniformly to a quantity of modulus 
at most 

2 ~o 1 hn 1 I sin ;;:[1 0/ n 1 . 

Hence, with e = Tim, m ~ 0, 

2j1.(Ax,Tlm) ~ bm. 

At the same time 

1 iT 1 iT 1 iT 
2T -T I Ax(t) I dt ~ 2T -T I yet) I dt + 4T2 -T I h(t - u) II t/;(x(u),u) Idu dt 

~ II y Ih + II hill A(r) 

Thus Ax( .) belongs to R. The result follows by Schauder's theorem, 
as before. 
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Remark: Let w(·) be concave, with w( u) = o( u) as u ~ 00. 

Let {Zn , n ~ O} belong to l2 , and let {hn ,n ~ O} belong to II n l2 . Then 
there exists a minimal bounded sequence {bn , n ;;;e O} satisfying 

n ~ O. (10) 

The sequence {b n } is minimal in the sense that its components are less 
than or equal to the corresponding components of any other sequence 
satisfying (10). 

Let B be the set of sequences v satisfying (10). To prove B is non­
empty, let 

Un = {~o I sin '; II hm I, 

n=O 

n ~ 0, 

and let r satisfy II Z II + II u II w(r) ~ r. Define W = {wn, n ~ O} by 

Wn = I Zn I + unw(r) ~ r. 

Then 

so that W [; B and is bounded. Now set bn = inf Vn • For any v [; B 
vcR 

Thus b [; B and is minimal. 

IX. THE VECTOR EQUATION 

In this final section, we consider a vector form of the integral equa­
tion (1). Let k( . ) be an N X N matrix of real functions of L1 , and for 
each t, let \f( . ,t) be a real N-vector valued function of a real N-vector. 
Let y( .) be a real N-vector valued function of time t. With these re­
interpretations of the notations in mind, we can leave (1) unchanged. 

With M a complex matrix, we let M',M, and M* denote the trans­
pose, the complex-conjugate, and the complex-conjugate-transpose, 
respectively, of M. The positive square-root of the largest eigenvalue 
of M* M is denoted by A{ M} . 
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If v is a real or complex N-vector, its norm is defined as the "Euclid­
ean" norln 

2 1 * 1 

(
N ) II v /I = i~ I Vi I "= (v v)". 

It is well-known that 

A2{.LVI} = sup v*M*i.VIv 
IIv[[=1 

and hence that II ivIv II ~ A{iVI} /I v II for complex N-vectors v. 

(11) 

As previously, L 2 ( - T,T) is the space of real-valued, measurable, 
functions x( . ) of the real variable t which satisfy 

(i) x(t + 2T) = x(t), 

(ii) 2~ L: I x(t) 12 dt < 00. 

We take as our basic space the Nth power of L2 ( - T,T), i.e., 

L2N( - T,T), 

and think of it as composed of column N-vector valued functions of 
time. A norm for L2 N ( - T, T) can be defined by the formula 

1 iT 
IlxI/

2 
= 2T _Tx'xdt 

1 iT N 2 

= 2T -T ~ I xi(t)1 dt 

where x = (Xl, ... , XN)' E L2N( - T,T). This norm makes L2N( - T,T) 
a Banach space. Further, an element x(·) of L2N( - T,T) has the Fourier 
representation 

n 

x(t) = l.i.m. L 
n_oo m=-n 

7rimt/T 
Xm e 

where the N-vector Xm of mth Fourier coefficients is given by 

1 iT -7rimt/T 
Xm = 2T -T x(t) e dt, 

and the Parseval identity 
00 00 

L Xm*X m = L /I Xm W = /I X W 
m=-oo m=-oo 

for x [: L2 N ( - T, T) holds. 
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The matrix convolution operator K is defined on Lt ( - T,T) by 

Kx(t) = I: k(t - U)X(U)dlt 

and the operator 1/; by 

1/;X(t) = 1/;(x(t),t), all t. 

Equation (1) assumes the concise form 

x = y + K1/;x. 

The matrix len, m = 0, ±1, ... is defined by the condition 

Km = (kit) = I: e-rrimtlT k (t) dt. 

It is assumed that L A2{Km} < 00. This condition is met, e.g., if 
m 

L I kij
m 

12 < 00. 
m 

for 1 ~ i,j ~ N. The matrix convolution operator K takes a function 
x(·) E L2N( - T,T) with (vector) Fourier coefficients Xm into the func­
tion z( . ) whose coefficients are 

m = 0, ±1, '" , 

and the Riesz-Fischer theorem guarantees that z(·) E L2 N ( - T, T). 
Further, by formula (11) we have 

II Zm II ~ A{Km} II Xm II· 

An analog of Hilbert's cube in Lt( -T,T) is described by 

Lemma 2: Let {cn , - 00 < n < oo} be nonnegative real numbers with 

L cn
2 < 00. 

n 

Then the set 

{x E Lt( - T,T): II Xn II ~ cn , all n} 

is compact. 
This result is a consequence of a known theorem. (See p. 136 of Ref. 

5.) 
Analogs of the growth condition (2) and of the uniform continuity 

condition (3) will be used. These are 
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(i) "1/;( u,t" ~ A ( II u " ), for all t and all real N -vectors 'U where 
A ( . ) is a monotone function. 

(ii) 1/;(.,.) is continuous in the first variahle uniformly in both 
variables; its modulus of continuity w( . ), defined by 

w(o) = sup 111/;( u,t) - 1/;(v,t) II for II u - v II ~ 0, 
u,v,t 

is a continuous monotone function that approaches zero with o. 
Theorem 6: If A(·) and w(·) are concave, y belongs to L/( - T,T), 

K2 L A2{J(m} < 00, 

m 

and if the scalar equation 

r = II y II + KNA (r) 

has a positive solution r, then there exists an element x E: L/ ( - T, T) satis­
fying 

x = y + J(1/;x 

1/ x 1/ ~ r 

II Xm II ~ II Ym II + A{J(m}NA(r), 

with Xm , Y m the respective mth (vector ) Fourier coefficients of x,y. 
The proof of Theorem 6 is an exact analog of that of Theorem 2, 

using the compact set 

{x E: L2N( - T,T): 1/ Xm II ~ II Ym II + A{J(m}A(r), all m} 

and with wet) = 1/;(x(t),t), the inequality, (analogous to (6),) 

1/ Wm II ~ NA(" x /I), 
provable by observing first that for all t 

N 

L I w j ( t) I ~ N! II w (t) 1/ 
i=1 

SO that trivially 

and by concavity of A( . ), 

2~ L: I Wj(t) I dt ~ N}A(/I x II)· 
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Squaring both sides and summing over j = 1, ... ,N we obtain 
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Equivalence Relations among Spherical 
Mirror Optical Resonators 

By J. P. GORDON and H. KOGELNIK 

(Manuscript received May 11, 1964) 

The frequencies, field patterns, and losses of the resonant modes of spheri­
cal mirror optical resonators can be obtained to good accuracy as the solu­
tions of the integral equations of Fresnel diffraction theory. By a simple 
transformation of the variables and parameters of the integral equations, 
we have found certain families of resonators which have the same diffrac­
tion loss at each mirror, and whose field patterns are scaled versions of 
each other. In the case of the infinite strip resonator, this reduces from five 
to three the number of parameters necessary to specify the losses and mode 
patterns. 

I. INTRODUCTION 

The resonant frequencies, field patterns, and losses of the modes of 
spherical mirror optical resonators can be obtained to good accuracy as 
the solutions of the integral equations of Fresnel diffraction theory.! 
The equations are particularly applicable when the separation between 
the two mirrors forming the resonator is large compared with the di­
mensions of the mirrors. Unfortunately, the equations are usually not 
soluble analytically, and require numerical (machine) computation. 
There are many parameters involved: the dimensions and curvatures 
of the mirrors and their separation. By a simple transformation of the 
variables and parameters of the integral equations, we have found 
certain families of resonators which have the same diffraction loss at 
each mirror, and whose field patterns are scaled versions of each other. 
In the case of the infinite strip resonator, this reduces from five to three 
the number of parameters necessary to specify the losses and mode 
patterns. 

II. THE TRANSFORMATION 

The equations which determine the field patterns, resonant fre­
quencies, and losses of an infinite strip resonator (see Fig. 1) are! 

2873 
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Fig. 1 - Spherical mirror resonator with mirrors of curvature radii Rl and 

R2 , and of widths 2al and 2a2. Mirror spacing is d. 

(Ia) 

(Ib) 

with the complex symmetric kernel 

K(XI, X2) = K(X2 ,Xl) = exp [-j(-n-!Xd)(gIXI2 + g2X22 - 2XIX2)]. (lc) 

Here 

i = 1,2, 

the mirror separation is d, RI and R2 are the radii of mirror curvature, 
2al, 2a2 are the corresponding mirrors widths, and X is the wavelength 
in the resonator medium. Also, UI(XI) is the (generally complex) nor­
malized field distribution on the left-hand mirror of Fig. 1, while U2(X2) 
is the normalized field distribution on the right-hand mirror. If the two 
functions are normalized so that 

I:: I UI (Xl) 12 dXI = I:: I U2(X2) 12 dX2 (2) 

then one notes* that the power reflection coefficient of the left mirror 

* According to (Ib) a light beam with a field distribution Ul(Xl) across the left 
mirror causes a field ')'2U2(X2) across the right mirror. Therefore, the power re­
flected from this latter (perfectly reflecting) mirror is proportional to 
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is 1 1'1 12 and the reflection coefficient of the right mirror is 1 1'2 12. There­
fore the loss at the left mirror is 1 - 11'1 1

2
, the loss at the right mirror 

is 1 - 11'2 1
2

, and the round-trip loss is 1 - 11'11'2 12. The condition for 
resonance is that 1'11'2 exp [-j27l"(dl;\)] be real and positive. 

We presume on the weight of much experimental and theoreti­
cal2

,3 evidence that a sequence of solutions to (1) does exist. Suppose 
now that we have found a mode of some resonator; i.e., we have found 
a solution for Ul(Xl) and U2(X2) which satisfies (1) for one set of values 
of the five resonator parameters a1 , a2 , gl , g2 and d, and have found the 
corresponding eigenvalues 1'1 and 1'2 . Our present concern is to find a 
family of resonators, each of which will have a similar mode; that is, 
a mode with the same values of 1'1 and 1'2 and with similar (scaled) 
eigenfunctions. For this purpose we rewrite (1) in terms of dimension­
less variables and eigenfunctions by substituting 

i = 1,2 (3) 

and 

~ = 1,2. (4) 

By this transformation we obtain a generalized set of integral equations 
for the modes of the resonator 

+1 

vjN 11 d~2 v2(6) K(~l, ~2) (Sa) 

+1 
ViR 11 d~l Vl(~l) K(~l, ~2) (Sb) 

with the kernel 

K(~l, ~2) = exp [-j7l"N( -2~1~2 + G162 + G2~22)]. (Sc) 

In (S) only three independent resonator parameters occur 

N == ala2/;\d, 

Gl == gl( all a2), 

1 1'2 12 I:: 1 U2(X2) 12 dX2 • 

(6a) 

(6b) 

The power of the beam as it left the left mirror was, of course, proportional to 
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(6c) 

N is the Fresnel number of the resonator, while G1 and G2 are generalized 
g factors which describe the mirror curvatures. * A geometrical interpre­
tation of the G's is shown in Fig. 2. 

Note that the above transformation maintains the normalization of 
the eigenfunctions 

(7) 

and therefore the physical meaning of the eigenvalues 1'1 and 1'2 • 

III. DISCUSSION 

The integral equations of any spherical mirror resonator can be 
transformed into the form of (5a, b, c), which describe completely the 

r---------------- R1---------------1 
-'------'"7--- ----1=i--__ I 

: (f -------- I /.J-------2g,a, 2a2 -===-=::-
I --t --I __ --

~---------- G1=g,a1 
a 2 

Fig. 2 - Geometrical interpretation of G1 • 

mode patterns, diffraction losses and resonant frequencies. It is clear 
that two resonators have the same scaled eigenfunctions, the same 
diffraction losses at each mirror and corresponding resonant frequencies 
whenever they are described by the same characteristic parameters 
N, G1 , and G2 • Two resonators are therefore equivalent if 

alad"Ad = aijd"Ad = N 

gl(aI!a2) fh(aI!a2) G1 

(8a) 

(8b) 

(8c) 

where the overbar indicates the dimensions of a resonator equivalent to 
the original resonator. 

* Note added in proof: in recently published perturbation analyses of optical 
resonators, Gloge4 and Strcifcr and Gamo 5 have arrived at the same three resona­
tor parameters. 
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Quantities which can be expressed in terms of N, G1 , and G2 also 
remain invariant when we change from one resonator to an equivalent 
one. Some of these are listed in Table 1. They are used in later computa­
tions. 

The set of characteristic parameters N, G1 , and G2 provides some 
insight into the behavior of resonators. The quantity 

(9) 

may be called the "stability number." One finds from its value whether 
the resonator is intrinsically of the "stable" or "unstable" type. 1

,6 To 
be stable the resonator must satisfy 

(1.1) 
(1.2) 
(1.3) 
(1.4) 
(1.5) 
(1.6)* 
(1. 7) * 

o < G
2 < 1. 

TABLE I - SOME INVARIANTS OF EQUIVALENT RESONATORS 

Resonator Parameters 
(See Section III and Fig. 1) 

(2.1) 
(2.2) 
(2.3) 
(2.4) 
(2.5) 
(2.6) 
(2.7) 
(2.8) 

Field Parameters 
(See Section X and Fig. 3) 

alx/"Az 
g1z(adx) 
y.(x/al) 
gzglz 
al2glz/x2gz 
gIZ(aI2/"Az) 
g.("Az/aI2) 
gz(x2/"Az) 

(10) 

* Quantities like 1.6-1.7 but with subscripts 1 and 2 interchanged are also in­
variants. 

The quantity N is the well-known "Fresnel number." For N » 1 the 
diffraction loss of stable resonators is typically very small indeed, and 
the increase of loss in crossing the boundary from a stable to an unstable 
type is abrupt. As N decreases toward unity, the loss of the stable 
resonators increases, and the boundary becomes less sharp until, as 
N « 1, all resonators have high loss. 

Finally, at least for stable resonators with not too small Fresnel 
numbers, we can see that the mirror with the larger G has the smaller 
diffraction loss. From Ref. 6, or from Section VIII of this paper, we 
know that the radii* Wi of the fundamental mode "spots" on the mirrors 
are related by 

(11) 

* We use the word "radius" here and later to mean half the width of the mode 
pattern, as defined in Section VIII. 
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We therefore have 

(w/ /a12) / (W22 /a22) = 02a22/01a12 = G2/G1 • (12) 

The ratio Wi/ ai between spot radius and mirror half-width can be taken 
as a measure for the diffraction loss at a mirror. According to (12) 
the mirror with the smaller Gi has the larger ratio wi/ai, and thus the 
larger loss. In the special case G1 = G2 , one sees that (5a) and (5b) 
become identical, and so the diffraction losses must be equal. 

IV. SPECIAL ADDITIONAL EQUIVALENCES 

There are two previously knownl ,6 special equivalences which exist 
in addition to the new ones we have been discussing. These are: 

(a) reversal of sign of both 01 and 02 
(b) interchange of both 01 and 02 , and a1 and a2 ; i.e., interchange of 

the mirrors. 
The first of these special equivalences changes the sign of both G1 and 
G2 and does not alter N. This equivalence results because the allowed 
field patterns split up into those of odd and even symmetry in the X'S.l 

The equivalent field patterns are complex conjugates of the old ones, 
bu t the losses are unchanged. 

The second special equivalence corresponds to an interchange of the 
two mirrors. It leaves G2 and N unchanged, but interchanges G1 and 
G2 • It also obviously interchanges the mode patterns and the losses 
of the two mirrors. Combined with the equivalence relations which we 
have discussed before, this interchanging of the two mirrors means that 
two resonators are also equivalent if 

N=N (13a) 

G1 = G2 (13b) 

and 

G2 = G1 • (13c) 

From these relations one deduces some rather curious equivalent resona­
tor pairs if one postulates that the mirror curvature should be left 
unchanged (01 = th and 02 = th) and only the apertures a1 and a2 varied 
to form an equivalent resonator. With (13) one finds that 

61 = a2(0t/02)! 

a2 = a1(0z/01)! 

(14a) 

(14b) 
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is necessary for equivalence. Note that the equivalent resonator was 
found simply by changing the mirror apertures. The mode pattern that 
appears on the left mirror of this new resonator is a scaled version of the 
pattern that appeared on the right mirror of the original resonator, 
and the pattern that was on the left is switched to the right mirror of 
the resonator. 

Similarly, one obtains a pair of resonators equivalent in the above 
sense when the mirror apertures are kept constant and the curvatures 
are changed in accordance with (13). 

V. THE CONFOCAL RESONATOR 

The resonator commonly known as "the" confocal resonator is 
actually a very special confocal * resonator for which Rl = R2 = d, 
and hence gl = g2 = 0, and G1 = G2 = O. All of the equivalence trans­
formations we have mentioned transform one confocal resonator into 
another. Our relations bring out the known fact that the losses and field 
patterns (apart from scale factors) of the confocal resonator depend 
only on the Fresnel number N and not at all on the ratio of the mirror 
apertures.6 

VI. RESONATORS WITH EITHER Gl OR G2 EQUAL TO ZERO 

When, in a system with mirrors of unequal curvature, the mirror 
spacing is equal to the radius of curvature of one of the mirrors, then 
one of the g's is zero and we have G1 = 0, or G2 = O. Let g2 = O2 = O. 
As a transformation to an equivalent resonator leaves G2 invariant, we 
have for the equivalent resonator {h = O. In the stability diagram/,6 
which shows the stable and unstable resonator regions versus gl and 
g2 , our transformation yields equivalent resonators that are represented 
by points on a straight line (in the general case, one has a branch of a 
hyperbola glg2 = const). 

The parameters of equivalent resonators with G2 = 0 are related by 

(15) 

This relation allows one to find for each resonator with g2 = 0 and 
unequal apertures an equivalent resonator with th = 0 and equal aper­
tures, which is discussed in Ref. 1. Resonators of the former type have 

* Any resonator whose mirrors have coincident foci may be termed confocal, 
whether or not the mirrors have equal curvature. As has been noted,6 only "the" 
confocal resonator is a low-loss resonator. 
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been of interest for the selection of transverse modes in optical maser 
oscillators.7 The mode selection properties of equivalent resonators are, 
of course, the same. For a resonator formed by a spherical mirror and 
a small plane mirror at its center of curvature7 (g2 = 0) one finds equiva­
lent resonators of equal mirror apertures which are the closer to the 
confocal resonator the smaller the flat mirror [compare (15)]. As it 
appears that the confocal resonator has the best mode selection prop­
erties of all spherical mirror resonators, the above behavior would imply 
that reducing the size of the flat mirror will improve the mode selectivity 
of the above system. T. Li7 has indeed found this to be so on the basis 
of computer calculations. 

VII. RESONATORS WITH RECTANGULAR OR CIRCULAR MIRRORS 

The integral equations which determine the modes of resonators with 
rectangular mirrors decompose into two sets of equations identical to 
(1), each set involving a single one of the two transverse Cartesian 
coordinates.1 ,6 Hence all of the above applies immediately to such 
resonators, including resonators with astigmatic mirrors, provided the 
principal directions of the astigmatism are parallel to the edges of the 
mirrors. 

Equivalent families of resonators with circular mirrors can also easily 
be found by a similar method, starting from the appropriate integral 
equations which are indicated in the Appendix. The resulting parameters 
are of the same form as (6), but with the ai now redefined as the radii 
of the mirrors. 

VIII. DETERMINATION OF SPOT RADII 

If the apertures of the mirrors are sufficiently large, i.e., if N » 1, 
and if G2 is not too close to 0 or 1, then the field patterns of the modes 
approach closely to Hermite Gaussian functions and lose their depend­
ence on the apertures. Then one can define a "spot size", or spot ra­
dius,6,8 where the Gaussian part of the function has dropped to e -1 of 
its maximum. In the transformations among equivalent resonators, the 
mode patterns scale in proportion to the apertures; hence two other 
invariants of equivalent resonators are obtained by replacing al and 
a2 in (6b) and (6c) with the spot radii WI and W2 • Now any quantity 
which is an invariant of equivalent resonators must be expressible as a 
function of the basic parameters N, G1 and G2 • But since the values of 
Nand GI/G2 , which depend on the apertures, do not influence the spot 
radii, these two invariants of the equivalence transformations can be 
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functionally dependent only on G2 
= G1G2 • Hence we obtain the rela­

tions 

wlwdAd = j( G2) 

(wllw2)2(01/02) = 1. 

(16a) 

(16b) 

Equation (16b) follows, since we know that for mirrors of equal curva­
ture (and hence with 01 = 02), the spot radii are also equal. The function 
j(G2

) on the right side of (16a) may be evaluated by comparison with 
a known result8 for mirrors of equal curvature 

WI = W2 = w). 

Equation (27) of Ref. 8 can be conveniently expressed in our present 
notation as 

w2 lAd = (11 7r ) (1 - l)-! 

which, on comparison with (16a), identifiesj(G2
) as 

j ( G2
) = (1 17r )( 1 - G2

) -!. 

(17) 

(18) 

Equations (16a) and (16b) can be rewritten with the help of (18) as 

Wt/W2 = (odol)! 

WIW2 = (Ad/Jr)(l - 0102)-!. 

(19a) 

(19b) 

These last equations are identical with (39) and (40) of Ref. 6 and 
together determine the two spot radii. Their derivation here is included 
because of its relative simplicity, and as an example of the use of the 
invariants. 

IX. FACTORS OF THE GENERAL TRANSFORMATION 

Given the parameters (dimensions and curvatures) of one resonator, 
specification of ih and fh for an equivalent resonator completely deter­
mines all parameters of the equivalent resonator, apart from the special 
equivalences discussed in Section IV. The general transformation from 
the original to the equivalent resonator can be factored into a succession 
(product) of two simpler transformations, in the first of which al is 
changed but 01 is not, followed by a second for which 01 is changed but 
al is not. 

The first of these simpler transformations effects a rather simple 
squeezing of all resonator dimensions, all transverse dimensions (aper-
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tures) being multiplied by the same factor E, say, while all longitudinal 
dimensions (radii of curvature, mirror separation) are multiplied by 
i. To see this we note that Rl and d must change proportionally to 
leave gl unchanged. R2 must change in proportion with these because 
of the invariance of glg2, i.e., of G2• Finally, al and a2 must change 
proportionally to leave G1 invariant, and they must change as ii to 
leave N invariant. 

The second simpler transformation leaves the aperture al unchanged. 
Suppose it changes the radius of curvature Rl in accordance with the 
relation 

(20) 

In practice a thin lens of focal length f inserted directly in front of the 
mirror can produce such a transformation. By using the invariants 
NG1 , NIG2 , and N [listed as (1.6), (1.7), and (1.1) of Table I] in suc­
cession, one can derive the following relations between the parameters 
of the transformed and original resonators 

lid = (lid) + (l/f) 

l/(d - R2 ) = [l/(d - R2 )] + (l/f) 

add = add. 

(21a) 

(21b) 

(21c) 

Equations (21a), (21b) and (21c) show respectively that the position, 
center of curvature, and aperture of the original second mirror are 
changed to those of the new one by imaging them through the lens. 
In this imaging process, objects on the side of the lens toward the second 
mirror are taken as virtual objects, while objects on the other side of 
the lens are taken as real objects. 

x. TRANSFORMATION OF THE FIELD INSIDE AND OUTSIDE THE RESONATOR 

The mode patterns on the mirrors of two equivalent resonators are 
scaled versions of each other, and one expects also a correspondence of 
the fields of a mode inside and outside the equivalent systems. This 
correspondence is studied in this section. 

With the assumptions of the diffraction theory of optical resonators 
the fields inside or outside the resonator structure can be expressed in 
terms of the field pattern on one of the mirrors via Fresnel's formula. 
For fields independent of y (this restriction can be removed easily; 
compare Appendix) we have for the field traveling to the right, say, 
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. exp [ - j ;z (g.,X,' + g,x' - 2xx,) ] 

(22) 

where Ul(Xl ,0) is the given field pattern on the left mirror and u(x, z) 
is the field on a spherical references surface that intersects the optics 
axis a distance z away from the mirror (see Fig. 3). The quantities 

glz = 1 - (z/Rd 

gz = 1 - (z/R) 

(23a) 

(23b) 

are again used to describe the curvatures of the mirror (curvature 
radius R1), and that of the reference surface (curvature radius R). 
The mirror width is 2al . 

The transformation to an equivalent resonator changes the aperture 
and curvature of the mirror under consideration, and scales the field 
pattern on it accordingly, i.e., if 

then 

where 

~--Rl 
I 
I 
I 

R\ RZ - f 
REFERENCE \ I 

SURFACE Z I 
2a 1 2a2 

I I 

I J I 

~--r----z--- I -----d-Z-----f---'i.. 
~------------d-----------

(24a) 

(24b) 

(24c) 

(24d) 

Fig. 3 - Reference surface for description of the fields inside the resonator. 
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We seek a new surface, described by z, {iz (or R), on which a scaled 
"image" u(x, z) of u(x, z) will be found. To do this we find, just as in 
Section II, a set of invariants necessary so that (22) retains its form in 
the transformed parameters. Essentially these invariants are the three 
terms in the exponential of (22), with the added fact that since Xl 

transforms like al we replace Xl in those terms by al . By manipulation 
we obtain the set of invariants listed as (2.1) through (2.8) in Table 1. 
The terms (2.6), (2.8), and (2.1) come directly from the three terms 
in the exponential of (22); the others may be derived from them. 
Finally, the transformed function is given by 

(z/al)!u(x, z) = (z/al)!u(x, z). (25) 

From this set of invariants one can find the new position (z), curvature 
((iz) and transverse scale factor (x/x) of the scaled function. First, 
consider the position. The invariant (2.6) may be expanded, using 
(23a), as 

(26) 

But now the term (al2gl/}"d) is itself an invariant (1.6, Table I) of the 
resonator transformation, and hence the remaining part of (26), i.e., 

al
2 

(~) 
d}.. z 

also forms an invariant. Finally we can simplify this a bit by dividing 
by N(1.l, Table I) to yield the invariant 

(27) 

We see that the ratio z/(d - z) transforms like aI/a2 . From (27), we 
obtain the equation from which the new position z may be derived 

(28) 

Once we have found the new position, the new transverse scale factor 
and curvature may be found most easily using the invariants (2.1) 
and (2.4), respectively, of Table I; i.e., 

(29) 

and 
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(30) 

and the scaled function is as given in (25). 
To provide a more physical picture of the field transformation, it is 

interesting to note that the simple squeezing and imaging transforma­
tions discussed in Section IX apply to the arbitrary reference surface 
and its field as well as to the second mirror and its field. 

Finally we note that the transformations of Fresnel's formula we have 
been discussing do not depend on the fact that Ul(Xl , 0) is an eigen­
function of a resonator. The preceding discussion, with the exception of 
the derivation of (26), all applies equally well to the fields generated 
by any prescribed field distribution over an aperture. 
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APPENDIX 

Resonators with Spherical 111 irrors of General Shape 

Within the assumptions of the theory of optical resonatorsl- 9 the 
modes of a resonator formed by two spherical mirrors of quite general 
shape are governed by the integral equations 

ulEl(Xl,Yl) = :~L2 dA 2·K(Xl,X2;Yl, Y2)·E2(X2, Y2) (31) 

and 

u2E 2(X2,Y2) = :~ il dA l ·K(Xl,X2; Yl, Y2)·El(Xl, Yl) (32) 

with the kernel 

K (Xl, X2 ; Yl , Y2) 

= exp {-j ~ [gl(X,' + Y,') + g2(X,' + Y,') - 2(XIX, + YIY2)J}. (33) 

Here (Xl, Yl) and (X2, Y2) are coordinates in planes perpendicular to 
the optic axis, d is the mirror separation, and g] and g2 describe the mirror 
curvatures as in Section II. Subscript "I" indicates quantities associated 
with the mirror on the left-hand side, and "2" refers to the mirror on 
the right. 0"1 and 0"2 are the eigenvalues corresponding to 1'1 and 1'2 dis-
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cussed in Section II. The integration has to be performed over the re­
flecting areas Al and A2 of the mirrors where dAI and dA2 are the area 
elements. No assumptions on the curves bounding the reflecting areas 
have been made, and the formulation (31) and (32) includes mirrors 
of quite general shape. Special cases are, of course, strip mirrors, square 
mirrors, rectangular mirrors, and mirrors of circular shape. These are 
of main practical interest. 

Let us compare (31), (132) and (33) with (1a), (1b), and (1e) of 
Section II. It is clear that the discussion of two-dimensional resonators 
systems given in Section II can be extended to the three-dimensional 
case in which we are interested now. The only difference is that we now 
have two transverse coordinates (x, y). If they are subjected to the 
transformation 

i = 1,2 (34) 

and the mirror areas and area clements are scaled like 

(35) 

then the mirror curvatures and the mirror separation of two equivalent 
resonators are related by the same invariants as before. All we have to 
do is to replace a/ by A i in the table of invariants. For the special case 
of circular mirrors, ai can be redefined as the mirror radius and retained 
in the invariance relations. 

Note that we have used the same scaling factors €i for the x and y 
coordinates. If different scaling factors are used one obtains, of couse, 
equivalent resonators with mirrors that are not spherical but astigmatic. 
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Modes in a Sequence of Thick Astigmatic 
Lens-Like Focusers 

By E. A. J. MARCATILI 

(Manuscript received June 1, 1964) 

111 axwell's equations are solved for a periodic sequence of lens-like focusers 
separated by gaps. Each focuser consists of an arbitrarily thick slab of 
dielectric in which the dielectric constant tapers off radially with different 
quadratic laws in two perpendicular directions. Since there are no limita­
tions on the thickness of the slabs, the solutions cover the complete gamut 
from a sequence of infinitely thin lenses with astigmatism to a continuous 
dielectric waveguide, and from spherical to cylindrical lenses. 

The field configurations of the modes and their propagation constants, as 
well as the transmission and cutoff bands, are calculated. Any arbitrary 
input field distribution can then be expanded in terms of the normal modes, 
and the expansion determines the field everywhere. 

Formulas derived for sequences of weak lenses turn out to give very good 
results even for lenses whose thickness and separation are equal to the focal 
length. 

I. INTRODUCTION 

One possible long distance transmission, . medium for optical waves 
consists of a periodic sequence of converging lenses. In order to negotiate 
unwanted but unavoidable bends of the axis of the sequence it is neces­
sary to space the lenses as closely as possible.! Nevertheless, ordinary 
dielectric lenses exhibit substantial surface scattering, and therefore 
the minimum spacing between lenses depends on the tolerable transmis­
sion loss. 

D. W. Berreman has shown that an effective lens can be made using 
gas with thermal gradients,2,3 thus avoiding the solid-to-gas transition 
problems. D. W. Berreman and S. E. l\Iiller4 proposed a gaseous lens 
consisting of a tube with hot walls through which a mild gas current at 
lower temperature is forced to flow. At any cross section the tempera­
ture increases from the center to the wall. The density and consequently 

2887 
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the dielectric constant is then maximum on the axis and decreases 
radially roughly with a square law. Without the problem of scattering 
at the interfaces, tubular gas lenses can be closely spaced and the gaps 
may be comparable to the thickness of the lenses. 

The advent of such a new transmission medium makes it opportune 
and important to generalize the theory of modes in a sequence of thin 
lenses by determining the normal modes in an idealized structure which 
consists of a periodic sequence of arbitrarily thick slabs of dielectric 
whose dielectric constant tapers off radially with quadratic law. 

The preferential direction of gravity creates convection currents that 
may introduce astigmatism in the gaseous lenses. Such an aberration 
is included in our model by making the radial quadratic law of the 
dielectric different in two perpendicular directions. 

We calculate the modes of propagation of the idealized structure 
without including the solid walls surrounding the medium. Taking them 
into account would perturb the modes only slightly, introducing diffrac­
tion losses. Just as in the case of a waveguide with perfect metallic 
walls, the idealized modes considered here are not attenuated, but their 
discussion is similarly expected to be useful in approximating: (a) the 
propagation constants: (b) the range of dimensions over which trans­
mission is permitted or forbidden; (c) the extent of mode conversion at 
discontinuities or imperfections; and (d) the field at any point due to an 
arbitrary input such as an off-axis or tilted beam. Of these, (a) and (b) 
are treated in this article. 

The calculations are general enough that by changing the lens param­
eters and the length of the gaps it is possible to cover uninterruptedly all 
the range from a sequence of thin lenses5 ,6,7,8 to a continuous dielectric 
guide,!,9,lo and from spherical to cylindrical lenses. Up to now only the 
extreme cases, that is, thin lenses or dielectric guide and spherical or 
cylindrical lenses, have been considered in the literature; this article 
bridges the gaps. 

II. DESCRIP'l'ION OF 'l'HE PROBLEM 

Consider a periodic sequence of dielectric slabs, shown in Fig. 1. 
The refractive index v of each slab is independent of z, but varies with 
different quadratic laws in the x and y directions as 

(1) 

The refractive index n on the z axis and the characteristic parameters 
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DIELECTRIC 
DISTRIBUTION 
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:0 =n2[-(~~r - (~;rJ 

GAP LENS GAP LENS 

Fig. 1 - Periodic sequence of arbitrarily thick and astigmatic lenses. 

2889 

of the lens-like medium, Ll and L2 , permit adjustment of the parabolic 
distributions. The physical significance of Ll and L2 will be treated 
below. 

In spite of the fact that it reaches negative values for large x or y, 
this dielectric distribution is useful because it matches the dielectric 
distribution of the gaseous lens, especially for small values of 7rx/L l 

and 7ry/L2 • Besides, it turns out that the field of most modes is negligi­
ble in the region where the dielectric constant is small or negative, and 
consequently that region does not contribute essentially to the guidance 
of the modes. 

In the Appendix we solve approximately Maxwell's equations. The 
sequence of lens-like focusers supports hybrid modes EHpq , charac­
terized by the indexes p and q. These integers indicate that the intensity 
of each transverse field component passes through p zeros in the x 
direction and q zeros in the y direction. 

The only approximation in the solution of Maxwell's equations 
consists in neglecting terms of the order of pAl Ll and qA/ L2 compared 
to unity. A is the free-space wavelength. Typically A/L l and A/L2 are 
of the order of 10-5

; therefore, except for very high-order modes (p 
and/or q very large), the results must be satisfactorily precise. 

The modes have no electric field in the y direction nor magnetic field 
in the x direction. The remaining components - Ex, Ez , Hy and Hz 
in the dielectric slabs and Exo , Ezo , Hyo and Hzo in the gaps - are found 
assuming as normal modes only those field configurations that repeat 
themselves periodically at each lens. Therefore the equiphase surfaces 
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of each mode are planes at z = 0 and t = 0, as shown in Fig. 1. We 
reproduce here only Ex (55) and Exg (58). 

All the other components can be deduced from them. with the help 
of (45). 

Ex ~ cxp {-i [kn (z - ~~1 - 2~,) - (p + D t.an~l (::' tan ~:) 

- (q + 4) tan~l (::: tan ~:) ] - (;.)' - (;,)'} (2) 

. Hp ( V2 ;.) H, ( V2 ;,) ; 

exp{-i[k(t -~ _L) - (p+!)tan-1 2t 
2Rg1 2Rg2 2 kSg1

2 

- (q + D tan ~1 Ie::"~ ] - C:J - (:'Y} (3) 

where [see (55) to (67)], k = wv foil = 27r/A is the free-space prop­
agation constant and HJL(a) is the Hermite polynomial of order Il. 

The physical significance of the symbols Sl , S2 , Sgl , Sg2 , R1 , R2 , etc. 
will be developed below. We give first their mathematical meaning and 
in order to avoid repetition, from now on the letter m will stand for 
either the subindex 1 or 2, depending on whether the symbol under 
consideration refers to a dimension in the plane y = 0 or x = 0 respec­
tively. Calling the thickness of each dielectric slab t, and the gap between 
them b, 

7r b 
em = n--

2 Lm 

7r t 
C{)m - 2" Lm 

(4) 

(5) 

(6) 

(7) 

(8) 
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Pm = 8m I~ {I + (;j' + [1 - (;j'] cos ~~} 
R = k

2

sgm
4 [1 + (~)2J 

om 4r kSom
2 

_ . / ( 2r )2 
Pgm - Sgm 11 1 + ks

gm
2 
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(9) 

(10) 

(11) 

(12) 

Let us find the physical significance of Rm , Rgm , Pm , Pgm , Sm , Sgm , 

Wm and Lm • Equating in (2) and (3) the imaginary parts of the expo­
nents to constants we obtain two equations of equiphase surfaces (wave­
fronts), one applicable within a lens and the other in a gap. At the z 
axis, each wavefront has a radius of curvature in the plane y = 0 which 
in general is different from that in the plane x = o. Within a lens those 
main radii of curvature are Rl and R2 [see (9)], while those in a gap are 
R gl and R g2 [see (11)]. If Ll = L 2 , then Rl = R2 and R gl = R g2 • 

For the fundamental mode p = q = 0, at a given abscissa z or r the 
field amplitudes (2) and (3) decrease with different Gaussian laws in 
the x and y directions. The distances at which the field is 1/ e of the 
maximum occurring on the z axis are the beam sizes PI and P2 [see (10)] 
within a lens, and Pgl and Pg2 [see (12)] in a gap. 

For z = 0 and r = 0 we find from (10) and (12) that Pm = Sm and 
pgm = Sgm. Therefore Sm and Sgm are the beam sizes at the planes of 
symmetry of each lens and each gap respectively. 

The physical significance of Wm becomes obvious on reducing the gaps 
between lenses to zero. Then instead of a sequence of lenses we have an 
uninterrupted dielectric waveguide and we derive from (7), (4), (5) 
(10) and (12) that 

Pm = Pgm = Sm = Sgm = w m • (13) 

Therefore in the continuous guide the propagating normal modes do 
not change size along z, and for the fundamental mode WI and W2 measure 
the beam sizes in the x and y directions. 

From (10) we find that within a lens the beam sizes PI and P2 in the 
y = 0 and x = 0 planes vary periodically along z; their periods are L1 
and L2 respectively. 

For the particular case in which Ll = L2 the field in the gap (3) 
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coincides with that found by Boyd and Gordon 6 for the resonator made 
with confocal mirrors of infinite aperture. 

III. TRANSMISSION AND CUTOFF CONDITIONS 

Both 8 m [see (4)] and 8gm [see (5)] must be real quantities, otherwise 
the fields given in (2) and (3) become infinite as x or y ~ 00. This 
establishes that a mode can propagate in the sequence of lenses either 
when 

Cm ~ ctn qJm (14) 

or when 

Cm ~ -tan 'Pm. (15) 

Their equivalents in explicit form are 

(16) 

and 

(17) 

Which equation must we use? Since band Lm are positive, (14) or (16) 
must be used when 'Pm = 7rt/2Lm falls in an odd quadrant and (15) or 
(17) when it falls in an even quadrant. Naturally, if these equations are 
satisfied for only one of the two indexes, that sequence of lenses cannot 
propagate any nonattenuating mode. 

If b = 0, the sequence of lenses is reduced to a continuous waveguide 
and transmission takes place, as it must, no matter what the values 
of 'Pl and 'P2 are. If now we increase the gap b, transmission will take 
place as long as (16) or (17) is satisfied. 

IV. DISCUSSION OF THE FIELD INSIDE AND OUTSIDE THE LENSES 

The sequence of lenses admits a complete set of modes. For each mode, 
the field inside (2) and outside (3) the lenses is a wave traveling in the 
z direction whose amplitude, period and equiphase surfaces (wave­
fronts) vary along z. 

The amplitude depends on x as a product of a Gaussian function and 
a Hermite polynomial (parabolic cylinder function) whose degree 
depends on the mode under consideration. A similar type of variation 
occurs along y. 

In Fig. 2 we plot qualitatively the beam sizes Pm and pgm for 'Pm = 
7rt/2Lm in the first, second and third quadrants. For 'Pm in an odd quad-
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rant, as in Figs. 2 (a) and 2 ( c), the maximum and minimum beam sizes 
within each lens are 

(
1 + Cm ctn cpm)i 

Pmmax = 8m = Wm 1 _ Cm tan cpm (18) 

and 

Wm
2 (1 - Cm tan cpm)* 

Pm min = - = Wm 1 + Ct' 
8m m C n cpm 

(19) 

The period between two successive maxima is Lm • The square root of 
the product of the maximum and minimum beam sizes in the dielectric 
is a constant 

1. 

(Pm max pm min)2 = Wm 

and coincides with the beam size Wm of the lens-like medium. 
In the gap, the only extremum for the beam size is a single minimum 

which occurs at s = 0 and, from (5) and (12), corresponds to 

pgm min = 8gm = wm(1 + Cm ctn cpm)l (1 - Cm tan CPm)i. (20) 

If CPm = 7rt/2Lm falls in an even quadrant, as in Fig. 2(b), the mini­
mum and maximum beam sizes interchanged from the odd quadrant 
are (18) and (19) respectively. Again (20) corresponds to the unique 
minimum in each gap. 

V. SPECIAL CASES 

Let us consider the field in a gap assuming 

Ll = L2 = L 

and 

tiL = 1] or CPl = CP2 = 1](7r/2) (21) 

where 1] is an integer. Then unless the gap b = 0, the minimum beam 
size in the gap Pgm min (20) becomes infinitely large and the electric 
field (3) is reduced to a plane wave travelling in the z direction. If more 
generally only CPl = 1]( 7r/2) , but CP2 is unrestricted, then the wave fronts 
are cylindrical surfaces parallel to the x axis. 

Consider again 

but 



k---t ---~----b----~--t ---~ 
LENS GAP LENS ,..III 

Pm 

(c) ----b----~-----t-----J 
LENS GAP LENS 

Fig. 2 - (a) Beam size for 'Pm = ~ I~m in first quadrant, tjLm < 1; (b) b~am 

size for 'Pm = ~ lm in second quadrant, 1 < tjLm < 2; (c) beam size for 'Pm = ~ lm 

in third quadrant, 2 < tjLm < 3. 
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CI = C 2 = ctn 'PI = ctn 'P2 

or 

CI = C 2 = -tan 'PI = -tan 'P2 . 

Then according to (20) the minimum beam size Pol mill 

and the field in the gap (3), for p = q = 0, becomes 

Ex, = exp -ik, (1 + X' ~2 Y'). 

2895 

(22) 

(23) 

P02 min = 0 

(24) 

The wavefronts close to the ~ axis are concentric spheres and their 
centers coincide with the point x = y = ~ = o. 

Therefore the two conditions indicated above correspond either to 
plane waves in the gap or to concentric waves (if one observes only the 
field in the region close to the ~ axis). They are equivalent to those in 
Fabry-Perot resonators with plane and concentric mirrors.5

,6,7 

The condition under which the beam is closely concentrated on the 
z axis is found by minimizing the maximum beam size within a lens, 
Sm [see (18)] or Wm

2
/S m [see (19)] depending on whether 'Pm is in an odd 

or even quadrant. 
If the gap b decreases, the value of Sm or Wm 2/ Sm also decreases; for 

b = 0 the sequence of lenses becomes a dielectric waveguide, the beam 
size does not vary with z, and its value is Sm = wm

2 
/ Sm = wm . On the 

other hand, if the thickness t of each lens is the only variable, the mini­
mum of Sm or Wm

2
/Sm is achieved by making 

aSm -- aSm -- 0 if· dd d t 'Pm IS an 0 qua ran 
at a 'Pm 

or (25) 

a 1 a 1 - - = - - = 0 if 'Pm is in an even quadrant. 
at Sm a'Pm Sm 

These conditions lead to the same requirement, namely: 

C m = ctn 2'Pm (26) 

or its equivalent 

(27) 

which, replaced in (18) or (19), determines the minimized value of the 
maximum beam size within each lens 

Sm min = (Wm
2
/Sm) min = wm[(1 + C m

2
)! + Cm]!. (28) 
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For the same condition (26) or (27), the beam size in the gap at any 
abscissa r is derived from (5), (12) and (26) 

[ C 2 (2f )2J! 
Pgm = wm(1 + Cm

2
)1 ] + 1 +mCm2 b (29) 

VI. SEQUENCE OF WEAK ASTIGMATIC LENSES 

Before considering weak lenses, let us relate the characteristic lengths, 
L1 and L2 of the lens-like focusers to their focal lengths in the planes 
y = 0 and x = O. To calculate the focal length in the y = 0 plane (see 
Fig. 3) the ray trajectory is determined from the equation 

d2xldl = (l/v) (dvldx). (30) 

Taking the refractive index v from (1) 

d2
x 

dz2 - VI (31) 

For paraxial rays 

(32) 

and within a lens the trajectory of a ray entering parallel to the z axis 
at a distance Xo is 

The angle of refraction at the output surface is 

(33) 

Fig. 3 - Ray trajectory in the plane y = 0 of a lens. 
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Then from simple geometric considerations in Fig. 3, the focal length 
fl results 

Ll 
fr = . ( jL)' 7rn sm 7r1 1 

(34) 

We assume now weak lenses. They are characterized by 

(35) 

and in all previous results each circular function can be replaced by its 
leading term. 

Because of the inequality (35) the characteristic length of the focusing 
mediunl Ll in (34) can be calculated explicitly by 

Ll = 7rvntJ; . (36) 

Similarly, for the plane x = 0 

L2 = 7r~. (37) 

The weak lens requirement (35) then becomes 

1. /-1 
'Pm = 2 11 nf m «1. (38) 

Using (36) and (37) together with the simplifying assumption (38) we 
re-evaluate the maximum and minimum beam sizes (18), (20) for 
weak lenses ('Pm in first quadrant), 

(39) 

(40) 

The distance h between the principal planes may be of interest. Using 
(33) and (34), this distance turns out to be 

2Lm 7rt 
hm =-tan

2L 
-to 

7rn m 

(41) 

Expanding the circular function in series, keeping only the first two 
terms and substituting Lm by their equivalents (36) and (37) we ob­
tain,I4 

(
1 ) t

2 

hm = t n - 1 + 12n2fm' (42) 
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6.1 Example 

Let us assume a sequence of gaseous lenses such that 

b = t = 11 = 12 = 0.25 m 

A = 0.6328 10-6 m 

n~l. 

For these dimensions 'P1 = 'P2 = 0.5, and therefore the weak lens in­
equality (38) is hardly satisfied. Nevertheless, let us go ahead and 
calculate extreme beam sizes Sl = S2 and Sol = S02 as well as the charac­
teristic length L1 = L2 of the lens using (39), (40) and (36) 

Sl = S2 = 0.286 mm 

SOl = 8 02 = 0.248 mm (43) 

L1 = L2 = 0.785 m. 

Let us calculate again the extreme beam sizes using the exact expres­
sions (18), (20), deriving L from (34) 

81 = S2 = 0.276 mm 

SOl = 8 02 = 0.224 BUll (44) 

L1 = L2 = 0.704 m. 

The two sets of results (43) and (44) are reasonably similar and show 
the usefulness of weak lens formulas even for lenses with comparable 
values of t and f. 

VII. CONCLUSIONS 

The properties of the modes in a sequence of thick, astigmatic and 
unbounded lens-like focusers are similar to those in a sequence of thin 
infinitely large lenses. 

The modes are hybrid and described by parabolic cylinder functions 
(product of Gaussians times Hermite polynomials). Transmission takes 
place as long as the gap between lenses is smaller than a value given in 
(16) or (17). 

The maximum beam size can be reduced by decreasing the distance 
between dielectric slabs. Nevertheless, if the gap is fixed, the minimiza­
tion of the maximum beam size can be obtained by selecting the dielec­
tric properties or the thickness of each focuser according to (27). 

Simplified formulas derived for sequences of weak lenses yield good 
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approximations even for lenses whose thickness, separation and focal 
length are comparable. 
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APPENDIX 

Solution of 1l1axwell's Equations in a Sequence of Thick Astigmatic Lenses 

We will obtain, first, a general enough solution of lVlaxwell's equations 
for one of the lenses; see Fig. 1. Then by making n = 1 and Ll = L2 -* 00, 

we will deduce a general solution for the uniform gap between lenses, 
and finally we will match the tangential fields to satisfy the boundary 
conditions. For modes with only four field components, Ex , Ez , Hy and 
Hz, lVlaxwell's equations become 

aEx _ aEz = jW}lH 
az ax y 

aEx = -jw}lHz ay 

aHy -jWE'Ex 

where }l, the magnetic permeability, is a constant; 

(45) 

(46) 

E', Ll and L2 are arbitrary constants; and wV E'o}l = 2'Jr/A = k is the 
free-space propagation constant. 

By eliminating variables and by neglecting terms of the order of 
AI Ll and xl L2 * as compared to unity we obtain identical equations for 
Ex and Hy . For Ex , 

a;:,. + a;~. + a;~. + (kn)' [1 - (~~)' - (~:),J E. O. (47) 

* In practice ';o../L l and AI L2 are of the order of 10-5• 
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This equation is separable and a general solution is 

E. ~ CXp [ -(;)' - (~JJ 

X f f ApI' exp [-iknz (1 - 2v
2
+ 1 LA - 2/-L 2+ 1 LA )!] 

p=o 1'=0 n 1 n 2 
(48) 

X 11, (~x) 11. (~Y). 
where v and /-L are integers, and A PI' is an arbitrary constant. Using m 
to indicate either subscript 1 or 2, 

Wm = ~ • /ALm. (49) 
7r 11 n 

The function 

H,,(~) = (-lre~2 (dPldr)e-~2 

is the Hermite polynomial12 of order v. Hermite polynomials of lowest 
degree are Ho(~) = 1; Hl(~) = 2~; H2(~) = 4~2 - 2; and H3(~) = 
8~3 - 12~. 

Expression (48) can be simplified provided that the important terms 
of the summation are those for which 

vAIL1 « 1 

and (50) 

Then the square root in the exponent can be replaced by the first two 
terms of a power series expansion and 

Ex 1"'.1 exp (-iO - X22 - y22) [fAp exp [i(7rVzI L1)]Hv(V2X)] 
WI W2 p=o WI 

(51) 

where 

() = knz [1 - ~ (! + ~)]. 
4n Ll L2 

We will look for a periodic field configuration that reproduces itself 
at each lens. For reasons of symmetry, then, the planes of symmetry of 
the lenses (z = 0) and gaps (r = 0) must be equiphase surfaces. 
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We choose the field at the plane Z = 0 to be 

where p and q are integers and 81 and 82 are arbitrary parameters for 
the time being. Therefore for z = 0, we obtain from (51) 

tAp exp (- X

2

2) IIp (V2X) = exp (- X22) Hp (V2X) (52) 
Jl=O WI WI 81 82 

and 

( 2) (_ /- ) (2) (_ r.; ) ~ y v 2y y v 2y _ L BJl exp - -2 lIJl -- = exp - 2 Hq -- . (~)3) 
Jl=O W2 W2 82 82 

Using the orthogonality properties of the Gaussian-Hermitian product,t2 
we obtain 

(54) 

and a similar expression for B Jl • Replaci~g the result in (51) and per­
forming, as in Ref. 13, first the summation in v and J..t and then the 
integration in ~, the transverse field component inside a lens expressed 
in closed form results 

-1 (W12 7rZ) ( 1) -1 (W22 7rZ)] . tan - tan - - q + - tan 2"" tan -
812 L1 2 82 L2 

(55) 

X exp [ - (~)' - (~)'] Iip ( V2;') Ii, ( v'2;,) 
where, for m = 1 or 2 

R = Lm 1 1 + (~ )' + ctn 271"Z) (56) 
m 7r [1 (Wm)4]. 27rz Lm 

- - S111-
8m Lm 

and 
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Pm = Sm IV ~ {I + (Wm)4 + [1 - (Wm)4] cos 27rZ lJ . (57) 
2 Sm Sm Lm 

The electric field in the uniform dielectric gap between two lenses 
can be derived from the previous expression by making 

n = 1 

and 

I/Lm = 0 

and by substituting another symbol, Som, for Sm • Again we demand the 
plane of symmetry of the gap, Z = (b + t)/2 (see Fig. 1), to be an 
equiphase surface. This is achieved by substituting r = Z - (b + t) /2 
for z. 

The electric field in the gap is then 

Exo = exp {-i [le(r - ~ - y2 ) - (p + !) tan-1 2r 2 
2Rol 2Ro2 2 lesol 

( 1) -1 2r] ( X )2 ( Y )2} - q +- tan - - - - -
2 leso2

2 Pol Py2 
(58) 

where 

(59) 

and 

P,m = ",m 11 + (k::m')'· (60) 

To match the fields (55) and (58) at the interfaces, the x and y 
dependences of the field at both sides must coincide. The fact that it 
can be matched guarantees that lVlaxwell's equations are satisfied 
simultaneously in lenses and gaps. It can be verified that if the tangential 
electric field continuity is satisfied, the tangential magnetic field con­
tinuity is also guaranteed. By considering waves propagating in both 
directions, it could be possible to take into account reflections at the 
interfaces, but we shall instead assume that at each interface there is a 
matching mechanism that prevents reflections. Notice that in the case of 
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gaseous lenses the small changes of dielectric constants automatically 
insure negligible reflection at the interfaces. 

The exact matching of the fields at the interfaces is achieved by 
making equal the coefficients of :c, y, :c2 and y2 in both expressions (55) 
and (58) at the boundary z = t/2 of the lens and r = -b/2 of the gap. 
Then 

Rm(z = t/2) = R om(! = -b/2) 

Pm(z = t/2) = Pom[! = -(b/2)] • 

(61) 

(62) 

From them, together with (56), (57), (59) and (60), we deduce the 
values of 8 m and 80m that guarantee the matching at the interfaces. 
They are: 

and 

where 

'Pm 
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Substitution of Laminated Low-Carbon 
Steel for Silicon Steel in the Cores 

of Wire Spring Relays 

By WILLIAM C. SLAUSON 

(Manuscript received May 13, 1964) 

This article describes the analytical and laboratory studies undertaken to 
determine if low-carbon steel could be substituted for the more expensive 
1 per cent silicon steel in the cores of general-purpose wire spring relays. Not 
only is this silicon steel more costly, but its hardness characteristics are such 
that tool maintenance for manufacture is an appreciable item. It was found 
that this substitution can be made without degrading the performance of 
these relays, provided the new core is made up of two laminations. When 
two laminations are used, the eddy current time constant of low-carbon 
steel matches that of the silicon steel. This is necessary to achieve the fast 
operate and release times now obtained and to permit satisfactory operation 
of present circuits when the substitution is made. 

This substitution will result in substantial annual manufacturing savings 
for the general-purpose relays. These savings could be further increased if 
use of the new core could be extended to other, more special, relays of the 
wire spring relay family. These applications are now under study. 

I. INTRODUCTION 

The wire spring family of relays (see Fig. 1) was designed to serve as 
the basic components of modern switching circuits. It was first intro­
duced in the No.5 crossbar switching system and later in other systems, 
including a wide variety of switching applications for the Bell System. 
The design provides an electromagnetic device of high efficiency and re­
liability with excellent operating characteristics and suited to a high 
degree of automation in manufacture. The relays are obtainable in a wide 
variety of codes with different coil resistances and are capable of con­
troJling from 1 to 24 contact sets per relay in various combinations of 
makes, breaks, transfers, and operating and releasing time intervals, 
ranging from a few milliseconds to longer than one-half second in slow-

2905 
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SPRING CLAMP 

E PLATE 

Fig. 1 - Wire spring relay. 

release applications. The operating life of these relays approaches ap­
proximately one billion operations. In view of these considerations and 
the outstanding performance record of the relays now in use, the demand 
has been continually rising over the past years. Since the production of 
general-purpose wire spring relays began in 1950, more than one hundred 
million have been manufactured, and approximately twenty million of 
these were produced in 1963. 

One per cent silicon steel was chosen originally as the magnetic core 
material for these relays because of its high resistivity, good magnetic 
properties, low aging characteristics, and its ability to achieve fast, 
efficient and stable operating characteristics. This material has proven 
satisfactory but over the years has presented some manufacturing and 
procurement problems. Therefore, consideration has been given to the 
use of alternate materials, particularly low-carbon steel for the relay 
cores. This article will discuss the theoretical and the manufacturing 
aspects involved in sUbstituting laminated low-carbon steel for the 1 
per cent silicon steel cores. Only the general run of fast-operate and 
fast-release relays will be considered, since the major effect of the ma­
terial substitution is due to the difference in the eddy current time con-
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stants (because of the low resistivity of low-carbon steel). The slow­
release relays will not be discussed, since they have built-in eddy current 
inducers, such as short-circuited windings or copper sleeves, which re­
duce the eddy current conductance of the magnet core to secondary 
importance. 

II. PRESENT CORE DESIGN 

When the general-purpose wire spring relay was developed in the late 
1940's, the best material available for magnetic cores was 1 per cent sili­
con steel. As a result, the magnetic design of the relay was based on the 
use of this material. One per cent silicon steel has relatively high electrical 
resistivity, which keeps the eddy current time constant of the structure 
to a minimum, thus permitting fast operate and release times. The ma­
terial has good magnetic properties with relatively high flux densities, 
which permit the development of ample pull forces between the relay 
armature and core. Also, it is a stable magnetic material that does not 
exhibit any significant change in properties with time. As a result, gen­
eral-purpose wire spring relays with silicon steel cores have delivered re­
liable performance with good operating margins for the past fourteen 
years. 

The disadvantages of silicon steel have been in the manufacturing and 
procurement areas. This steel is relatively difficult to fabricate by punch­
ing, because it has an abrasive action on punches and dies which necessi­
tates frequent tool maintenance. Also, it is not as readily available and 
is more expensive than the low-carbon steels, such as S.A.E. 1010 steel. 
As a result of these considerations, there has been a continuing effort to 
find or adapt a substitute magnetic material for cores of general-purpose 
wire spring relays. This has led to the development described in the sub­
sequent sections of this article. 

III. LAMINATED CORE PROPOSAL 

Recently a new and relatively inexpensive method of annealing low­
carbon steel to obtain good and stable magnetic characteristics has been 
developed using "wet forming" gas. This annealing technique produces 
in low-carbon S.A.E. 1010 steel magnetic properties comparable to those 
obtained with 1 per cent silicon steel. Thus, low-carbon steel, which is 
much less expensive, could be considered as a substitute for silicon steel 
in the cores of general-purpose wire spring relays. However, S.A.E. 1010 
steel has a nominal electrical resistivity of 12 microhm em-I, whereas 
the comparable value for 1 per cent silicon steel is 25 microhm cm-I. 
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The eddy current conductance of a material is inversely proportional to 
the electrical resistivity; hence, the eddy current conductance of S.A.E. 
1010 steel is about twice as great as that for 1 per cent silicon steel. Since 
the operate and release times of a relay are directly affected by the eddy 
current conductance, a direct substitution of S.A.E. 1010 steel for 1 per 
cent silicon steel would materially increase these times in general-purpose 
wire spring relays. Such a change in performance would be intolerable, 
since many switching circuits are designed to take full advantage of the 
fast operate and release times obtainable with the present relays. An 
increase in these times would result in circuit-race conditions or add to 
circuit holding times, thereby increasing the number of common control 
units needed in a central office. 

Theoretically, if the volume and shape of a piece of magnetic material 
are not changed but the material is laminated with equal-size lamina­
tions, the effective eddy current conductance is reduced by an amount 
which is inversely proportional to the number of laminations. Also, if 
the cross-sectional area is rectangular, the eddy current conductance is 
further reduced as the ratio of width to thickness is increased. Thus, 
laminating a rectangular cross-section magnetic part reduces the effec­
tive eddy current conductance to between liN and liN! of the un­
laminated value, where N is the number of equal-size laminations. 

Taking advantage of the recent development in annealing and the 
concept of laminations, it was therefore proposed that the 1 per cent 
silicon steel core of the general-purpose relay be replaced with a core 
made up of two equal laminations of S.A.E. 1010 low-carbon stee1. The 
effect of this material change on the operation of the relay will be dis­
cussed from both the practical and theoretical aspects, with a view to 
showing that the change results in a relay equal in performance to those 
produced during the past several years, at a considerable cost saving. 

IV. PRACTICAL ASPECTS OF THE PROPOSAL 

In order to introduce a substitute design for a functional part of the 
relay, the following factors must be considered: 

4.1 Operational Factors 

(1) time characteristics 
(a) electrical operate time 
(b) electrical release time 

(2) magnetic pull vs ampere turns 
(3) heating (watts input vs temperature rise) 
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(4) life 
(a) wear vs number of operations 
(b) wear effect on operate and release characteristics 

(5) core plate tightness (due to staking efficiency of softer 1010 steel 
material) 

(6) corrosion protection (effectiveness of plating along laminated seam 
if the laminations are welded before plating). 

4.2 Manufacturing Factors 

(1) Shape of laminations 
(a) economic considerations (punching properties and tool life) 
(b) assembly considerations (dimensional considerations for spool­

head and core plate areas) 
(2) cost of material 
(3) loose vs attached laminations 

(a) handling ease 
(b) assembly ease 

(4) method of punching 
(a) single (one at a time) 
(b) double (two at a time, i.e., one on top of the other) 

(5) welding or mating of laminations 
(a) before punching 
(b) after punching 
(c) location of welds. 

To have the laminated S.A.E. 1010 steel core accepted for use in the 
relay, the new design must perform as wen as the old design with regard 
to all of the operational factors and should have definite advantages with 
regard to the manufacturing factors. In order to obtain the maximum 
improvement in the manufacturing area without affecting the over-all 
relay, it was necessary to introduce the minimum number of changes to 
the structure. As a result, the object of the laminated core proposal was 
to match, as nearly as possible, all of the characteristics of the present 
general-purpose wire spring relay having a silicon steel core with a new 
core of the same physical outside dimensions. 

Analysis of the magnetic properties of S.A.E. 1010 steel annealed by 
the wet forming gas method indicated that sufficient magnetic pun would 
be developed with this material provided the efficiency of the relay's 
magnetic circuit was maintained. However, as indicated previously and 
analyzed in detail in the next section, laminating the core was necessary 
in order to reduce the eddy current conductance to tolerable levels. To 
be assured that the benefits of laminating the core would always be 
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present, it was at first believed necessary to physically separate the 
laminations by depressions or an insulating film to prevent the flow of 
eddy currents between the laminations. From a manufacturing stand­
point, it was decided that if this were necessary, it would be more prac­
tical to depress a large section of one of the laminations instead of using 
an insulating finish. As a result, the first sample cores were made this 
way. For comparison, a standard core is shown in Fig. 2 and laminated 
cores of the first design in Figs. 3 and 4. 

Fig. 4, a side view of the laminations, shows the recessed section in the 
upper lamination to provide an air gap over the greater portion of the 
length of the core. The two laminations are in intimate contact at the 
two ends to provide a low-reluctance path for the magnetic flux to pass 
from the bottom lamination through the upper to the relay armature. 
However, timing tests of various combinations of recessed laminations, 
as well as flat laminations, in relays have shown that it is not necessary 
to create a positive or visual air gap between the parts. Apparently, the 
surface resistance of the laminations due to normal oxide films is suffi­
cient to keep the eddy currents of the laminations from combining. 

Fig. 2 - Standard one-piece core. 

x = WELD POINTS (4) 

x 

x 

(;r·Ft2~lZtt:tt~~~~r;~IZ;:::tt~~~~I.~i 
TOP 

LAMINATION 
BOTTOM ./ 

LAMINATION 

Fig. 3 - Laminated core. 
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TOP 

LAMIN)J-I~T~IO~N~~~.:=i-,-H8R.L..r-=..L-~i----,-+I~::::::~::::~_A=_I=R::G~A~P::'_'<d*~'-=-~:: __ ;;;~--';;:r-=;;;_~_;:;;;:_~_~_~_~~_~_j~ 
BOTTOM CLOSE CLOSE 

LAMINATION DIMENSIONAL DIMENSIONAL 
AREA FOR AREA FOR 

SPOOLHEAD CORE PLATE 

Fig. 4 - Side view of laminated core. 

In Fig. 3, a slant view of the laminations, four welds are shown at 
points marked (X). The welding was done before magnetic annealing or 
plating of the parts. The welds are located at the front and rear, where 
they have the least effect on the eddy currents in each lamination. The 
welds are proposed only to associate the two laminations punched to­
gether and to facilitate the assembly of the relay. Relays were assembled 
and tested and satisfactory results obtained when the two laminations 
were not welded together. The laminations in this case were held to­
gether by the core plate at the front end and the spring clamp at the rear 
end after the relay had been assembled (see Fig. 1). 

V. THEORETICAL ASPECTS OF THE PROPOSAL 

5.1 Symbols 
,. "/\ 

The following is a list of the symbols.used in the theoretical discussions 
presented in the balance of this article. Where variant forms of these 
symbols, as distinguished by subscripts, are used in the text, they are 
defined in connection with the specific use. 

al - inner surface area of coil 
a2 - outer surface area of coil 
E - applied voltage 
F - magnetic pull 
G - total equivalent single-turn conductance 
Gc - equivalent single-turn conductance of coil- N2/R 
Ge - equivalent single-turn eddy current conductance 
He - coercive force (oersteds) 
I - steady-state current 
i-instantaneous current 
J( - total thermal conductance 
kl - thermal conductance per unit area of coil inner surface 
k2 - thermal conductance per unit area of coil outer surface 
Ll - single-turn inductance - (4'n/(fh) or (¢/NI) 
N - number of turns in coil 



2912 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

NI -- steady-state ampere turns 
Ni - just operate or just release ampere turns 
N1c - ampere-turn coercive force - (Hcl/O.47r) 
R - coil resistance 

-time 
tl - waiting time 
v - ratio of flux at time t to steady-state flux 
W -power-I2R 
~ - magnetomotive force - 47rNI or fficJ> 
l -length of magnetic path 
ffi - reluctance of relay 
ffie - reluctance of core 
ffir - initial incremental reluctance 

cJ> -flux 
cJ>1 - steady-state flux 
cJ>" - saturation flux 
cJ>o - residual flux 
eo - ambient temperature 
(j - mean coil temperature. 

5.2 General 

Since the only change proposed in the relay is the core material, the 
armature, contact springs, balance spring and other operating parts will 
be unchanged. The mass and spring forces of these parts control the 
travel time of the relay in both the operate and release directions. The 
change in core material will, because of a different eddy current con­
ductance, affect only the electrical waiting time of the relay. Therefore, 
the electrical waiting time on the operate and then on the release of the 
relay will be considered first. 

5.2.1 Electrical Waiting Time - Operate 

The electrical waiting time on operate of a relay is defined as the time 
from the application of potential to the relay coil until the magnetic pull 
on the armature equals the back force on the armature and it starts to 
move. During this period the flux development in the structure follows 
the relationship: 

(1) 

where ~8 is the steady-state magnetomotive force (mmf) or 47rNI, ~ 
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is the effective mmf and is equal to ffiep, and G is equal to the coil con­
ductance (G c) plus the eddy current conductance (G e). The reluctance 
(ffi)is a function of the armature-core air gap (X) and the flux (ep). With 
the armature at rest against the back stop and using the initial condi­
tions Xl and ffil, (1) can be rewritten in the integral form with eplffil 
substituted for iJs as follows: 

tl = 47rG 1'" dep 
ffil 0 epl - ep 

which on integration gives: 

tl = 47rG In _1_ . 
ffil 1 - v 

(2) 

(3) 

Since v, the ratio of flux attained at time t to the steady-state flux, can 
be written as the ratio of the just operate ampere turns to the steady­
state ampere turns Ni/NI, and 47r/ffil is equal to L l , the single-turn 
inductance, (3) may be rewritten as follows: 

(4) 

which is the general form of the equation for the electrical waiting time 
of a relay on operate. 

5.2.2 Electrical Waiting Time - Release 

The release waiting time of a relay is defined as the time from the 
opening of the coil circuit to the beginning of motion of the armature 
from the operated position. The opening of the circuit results in a de­
caying magnetic field which is sustained only by eddy currents. The 
release waiting tinle is described by the same relationship as the operate 
waiting time except that since iJs = 0 with the coil circuit open (1) be­
comes: 

(5) 

The normal-release waiting time of a relay without copper sleeves can 
only be determined approximately because of the variable distribution 
of the magnetic field sustained only by eddy currents (Ge). However, if 
the flux decay is retarded by the introduction of a conductance much 
larger than G e, such as a copper sleeve or short-circuited coil turns, 
the decaying field is nearly uniform and a relatively close approximation 
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to (5) can be made. Equations thus derived for the slow-release case can 
be used for the approximate analysis of the normal-release time case. 
Then (5) can be written in the integral form: 

i 'P1def> 
t1 = 477"G -

cp lJ 
(6) 

where t1 is the waiting time for the flux to decay from the steady-state 
value (ef>1) to the value (ef» at which the magnetic pull is equal to the 
retractile force. 

For reliable and repetitive release times, the steady~state flux (ef>1) 
of a relay should be in the region of flux saturation (ef>"). Therefore, re­
lease times will only be considered from this condition. Since lJ = (Ref> 

and the relationship between ef> and lJ is in the demagnetization curve, 
the following equation results: 

~ = (ef>" - ef>o) (ef> - ef>o) (R 
U (ef>" _ cP) r 

(7) 

where (Rr is the incremental reluctance when lJ = O. 
If (7) is substituted in (6), the expression for release waiting time 

becomes: 

i1 = 477"G _1_ _ ,,1 def>. <pit ( ) 

(Rr ~ ef> - ef>o ef> - ef>o 

Integration of this equation results in: 

where 

tl = 4;~ [In Z - 1 + (liZ)], 

z ef>" - cPo 
ef> - cPo 

(8) 

(9) 

To have a more readily usable relationship for release waiting time, 
it is necessary to obtain an expression for Z in terms of lJ or 477" N i. 
Equation (7) can be rewritten to give the following expression for: 

ef>" - ef>o 
Z = 1 + 477" N i (RT' (10) 

Substituting the expression for CRT as obtained from (10) in (9), and 
recognizing that with the coil circuit open and no sleeves or short-cir­
cuited turns the only conductance involved is the eddy current con-
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ductance (G e), the following expression for release waiting time is ob­
tained: 

t = Ge(ej/' - ¢o) ( In Z _!.-) 
1 Ni Z - 1 Z' 

(11) 

VI. EVALUATION OF OPERATI~ AND RELEASE WAITING 'riME 

Equations (4) and (11), for operate and release waiting times respec­
tively, can be evaluated by obtaining values for the variables experi­
mentally and graphically. In this section the procedures for the establish­
ment of the relay parameters will be discussed. 

The first data needed are magnetization curves of flux vs ampere turns 
with the armature in the unoperated position for the evaluation of op­
erate waiting time and in the operated position for release waiting time. 
Typical curves are shown in Figs. 11 through 16 (see Section VIII). 
With measured values of just operate, just release and steady-state cur­
rent, all of the flux values for (4) and (11) can be read from the curves. 
The inductance per turn (L1) may be found by drawing a line through 
the origin of the unoperated magnetization curve tangent to the nearly 
flat or linear portion of the curve (see Fig. 5). The slope of the tangent is 
a reliable value for Ll if the just operate flux falls on the linear portion of 
this curve. 

Since G in (2) and (6) is equal to the sum of Ge and Gc , the effective 
eddy current conductance G e can be determined reasonably well graphi­
cally and experimentally by holding the values of the integrals of the two 
equations fixed and making timing measurements as Gc , which is equal 

t 
~ 
x 
::> 
...J 
lL 

AMPERE TURNS, NI -.. 

Fig. 5 - Inductance per turn (L1) from magnetization curves. 



2UIG 'l'HE BELL SYS'l'EM 'l'ECHNICAL JOURNAL, NOVEMllEH 19G4 

R,OHMS (VARIABLE) 

F (CONSTANT) 
E , VOLTS (VARIABLE) 

Fig. 6 - Circuit for varying Gc or N2jR by changing R (coil in operate condi­
tion). 

to N2 / R, is varied. A fixed value for either integral can be assured by 
having the relay adjusted so that its steady-state current and either just 
operate or just release current are maintained constant throughout the 
experiment. Gc or N2/R can then be varied by changing the resistance 
in series with the coil as shown in Fig. 6 for the operate condition and 
Fig. 7 for the release condition. Since all factors except Gc are held con­
stant, a plot of Gc versus waiting time will be linear, and when extrap­
olated to t = 0 wiI] have a negative intercept on the Gc axis equal to 
Ge as shown in Fig. 8. 

Values for all of the variables in (4) and (11) were determined for both 
one-piece 1 per cent silicon steel cores and laminated S.A.E. 1010 steel 
cores and the waiting time for operate and release computed. The com­
puted values are compared to measured values in a later section. 

VII. EXPERIMENTAL DETERMINATION OF OPERATE AND RELEASE TIMES 

In production, permissible dimensional tolerances of the parts and 
differences in the magnetic characteristics of the cores due to material 

'----~III o--e;----' 
E,VOLTS (CONSTANT) 

SECONDARY 
WINDING 

I 
F (CONSTANT) 

R,OHMS 
(VARIABLE) 

Fig. 7 - Circuit for varying Gc or N2jR by changing R (coil in release condi­
tion). 
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and annealing variations will result in variations in the operational char­
acteristics of the relays. To evaluate these effects, two sample groups of 
relays with each core material were constructed. Group SP was made 
with minimum-dimension parts having a poor anneal and group LG had 
maximum-dimension parts with a good anneal. Fig. 9 shows the operate 
time of these relays as a function of coil conductance with an unoperated 
air gap of 0.032 inch and with input powers of 2 and 10 watts. It will be 
noted that the laminated S.A.E. 1010 steel core relays are approximately 
1.3 to 3.4 per cent faster than the 1 per cent silicon steel core relays. 

Fig. 10 shows the release times and release pull values for the same 
groups of relays. Here, it is noted that the laminated S.A.E. 1010 steel 
core relays release from 13 to 27 per cent faster than the 1 per cent silicon 
steel core relays. 

VIII. COMPARISON OF CALCULATED AND MEASURED TIMES 

The measured times shown in Figs. 9 and 10 all include some armature 
movement. However, all of the relays had essentially the same mechani­
cal adjustments, and the same SP and LG armatures were used on both 
the laminated S.A.E. 1010 steel and 1 per cent silicon steel cores. There­
fore, it can be assumed that the mechanical armature travel times of the 
relays were essentially the same. As a result, a comparison of like sets of 
relays, i.e., SP laminated versus SP one-piece, etc., should reflect the 
difference in electrical waiting time of the groups being compared. 

A comparison of the calculated times for the like sets of relays was 
also made using the values of L, G e , C/>, c/>o , etc., obtained from Figs. 11 
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Fig. 9 - Change in relay operate time due to variation in relay dimensions 
and quality of anneal. Relays had cores of either laminated 1010 steel or 1 % silicon 
steel. 

through 16 as described earlier. Tables I and II show the comparison 
between the laminated S.A.E. 1010 core relays and the 1 per cent silicon 
steel core relays as determined by measurement and by calculation. In 
all cases good agreement was found between the measured and calculated 
values. 

IX. COMPARISON OF EDDY CURRENT CONDUCTANCE 

In Tables I and II are listed the values of eddy current conductance 
obtained for the SP and LG groups of relays. 7.20 and 8.25 kilomhos 
respectively were found for the 1 per cent silicon steel cores and 5.55 and 
6.65 ki10mhos respectively were found for the laminated S.A.E. 1010 
steel cores. Since the S.A.E. 1010 steel has approximately twice the con-
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Fig. 11 - Magnetization curves of cores with small dimensions and poor 
anneal (0.000 air gap). 

ductivityof 1 per cent silicon steel, the eddy current conductance of the 
S.A.E. 1010 cores would have been about 14.4 and 16.5 kilomhos for 
the SP and LG groups respectively if the cores had not been laminated. 
Thus laminating reduced the eddy current conductance of the cores by 
the ratios of 5.55/14.4 or 38.5 per cent for the SP group of relays and 
6.65/16.5 or 40.3 per cent for the LG group of relays. Since it was ex­
pected that the use of two laminations would reduce the effective eddy 
current conductance by a ratio of between l/N and liN! or between 50 
and 35.4 per cent, good agreement with the theoretical analysis is indi­
cated. 

x. COIL HEATING (POWER INPUT VS TEMPERATURE RISE) 

Another major consideration is the effect of using a laminated core 
and a new material on the dissipation of heat from the relay coil. The 
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Fig. 12 - Magnetization curves of cores with large dimensions and good 
anneal (O.OOG air gap). 

allowable mean temperature rise of a relay coil is limited by two factors. 
The first of these is that in normal operation the temperatures should 
not rise to a point that is dangerous to personnel in case of physical 
contact. This limit has been established for many years in the Bell Sys­
tem at 225°F. The temperature rise in normal operation is a function of 
the duty cycle of the relay and is influenced, therefore, by its circuit 
application. The secolld limitation 011 temperature rise - that the relay 
shall llot become a fire hazard in case of indefinite energizatioll - is of 
more direct interest from an apparatus standpoint. With the normal 
wire insulations and coil insulating materials used in Bell System relays, 
it has been found that a maximum mean coil temperature of 360°F can 
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Fig. 13 - Magnetization curves of cores with small dimensions and poor 
anneal (0.032 air gap). 

be allowed with essentially no risk of insulation breakdown which would 
produce a fire hazard. It is recognized, though, that prolonged exposure 
of a relay to such a temperature could result in permanent damage. 

The dissipation of heat from a relay coil occurs mainly from the inner 
and outer surfaces by a combination of conduction, convection and 
radiation, with negligible dissipation at the coil ends. Convection and 
radiation are principal factors at the outer surface and conduction 
through the insulation and core is the principal factor at the inner sur­
face. 

The dissipation of heat is therefore through parallel paths which 
can be represented by the electrical circuit analogy shown in Fig. 17. 
The imposed voltage is equivalent to the temperature difference between 
the coil and ambient, the electrical current is equivalent to the heat 
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Fig. 14 - Magnetization curves of cores with large dimensions and good 
anneal (0.032 air gap). 

flow in the branches, and the electrical conductance is equivalent to the 
heat conductance. As shown in Fig. 17, there is a circuit of two branches: 
one fronl the coil through the outer core surface to ambient and the 
other from the coil through the inner coil surface and the core to ambient. 

From this analogy it has been found that a good approximation of 
the mean coil temperature can be obtained from the relationships: 

1 
(12) 

and 

(13) 
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TABLE I - EFFECT OF USING LAl\IINA'rED CORES ON EDDY 

CURRENT CONDUCTANCE AND OPERATE Tll\iES 

Per Cent Decrease in Operate Times - I L (laminated 
core) vs I. (1% silicon core) 

Core 
L Go 2 watts 2 watts 10 Watts 10 watts 

J.l.Il Kmho Gc = 25 Gc = 40 Gc = 25 Gc = 40 
Kmho Kmho Kmho Kmho 

Material Type Calc. Meas. Calc. Meas. Calc. Meas. Calc. Meas. 
---------------I-----

SAE 1010 lam. 0.267 5.55) 3.7% 3.3% 2.5% 2.8% 3.4% 3.4% 2.3% 2.1% 1% silicon solid 0.264 7.20 
SAE 1010 lam. 0.298 6.65 2.3% 2.8% 1.1% 1.3% 2.3% 2.7% 3.5% 3.3% 1% silicon solid 0.291 8.25 

TABLE II - EFFECT OF USING LAMINATED CORES ON EDDY 

CURRENT CONDUCTANCE AND RELEASE TIMES 

Per Cent Decrease in Release Times - I L 
(laminated core) vs 18 (1% silicon core) 

Core 
Relay Go 

Dimension Kmho 20 Ni Release 60 Ni Release 

Material Type Calc. Meas. Cal. Meas. 
---------

SP SAE 1010 lam. 555) 24% 25% 27% 27% SP 1 % silicon solid 7.20 
LG SAE 1010 lam. 6.65 16% 13% 19% 14% LG 1% silicon solid 8.25 

where Rc = the thermal resistance of the core in "Fahrenheit ohms," 
Ro = the coil resistance at ambient temperature, 
eo and e are expressed in degrees Fahrenheit 

and other symbols are as defined earlier. 
The exact thermal conductance of complete relay structures will vary 

(SOURCE OF HEAT) 

+------------IIII---------t 

Rc (CORE) 

R,=I/k,a,(CORE SPACE) 

Fig. 17 - Electrical circuit analogy of dissipation of heat. 
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considerably from unit to unit because of variations in relay assembly, 
such as the tightness of fit of the coil on the core. However, nominal 
values for al , a2 , kl , k2 , and Re have been established for general-pur­
pose wire spring relays with 1 per cent silicon steel cores. These values 
along with the theoretical difference in Re for laminated S.A.E. 1010 
steel cores can be used to calculate mean coil temperatures. The estab­
lished mean values are as follows: 

kl = 0.01 watt/Fo/in.2 

k2 = 0.0055 watt/Fo/in.2 

al = 2.32 in.2 

a2 = 5.54 in.2 

Rcs = 35 Fahrenheit ohms (solid 1 per cent 
silicon steel core). 

Then with an applied voltage of 100 volts dc, a coil resistance of 1451 
ohms, and an ambient temperature of 77°F, the mean coil temperature 
of a relay with a 1 per cent silicon steel core was calculated as follows: 

and 

1 

klal = 0.0232 watt/Fa 

k2a2 = 0.0304 watt/Fa 

1 
= 0.0304 + 1 

35 + 0.0232 

!: ~ [(,(lJ - 00) (1 + 3~O-:00.) 

0.04:32 watts/Fa 

(100) 2 - ( 8 - 77 ) 
1451 = 0.0432(0 - 77) 1 + 390 + 77 

8s = 204°F (1 per cent silicon steel core). 

The mean thermal conductivity of S.A.E. 1010 is 53 watts/CO/cm2 while 
the mean thermal conductivity of 1 per cent silicon steel is 28 watts/ 
CO/cm2, so that they are in a ratio of 53/28 or 1.89. 

35 
:. ReI 

1.89 
18.5 Fahrenheit ohms 
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for S.A.E. 1010 steel cores. With the value of Rcl for S.A.E. 1010 steel 
cores and the other constants with the same as above, except that with 
this core the coil resistance was 1443 ohms, the mean coil temperature 
was calculated as follows: 

and 

](1 = 0.0304 + 1 
1 

18.5 + 0.0232 

0.0467 watt/Fe 

(100)2 
1443 ( 

0 - 77 ) 
0.0467(0 - 77) 1 + 390 + 77 

7h 19.5°F (laminated S.A.E. 1010 steel core). 

For confirmation, heat tests were conducted on sample relays with 
both types of cores using applied voltages of 50 and 100 volts dc. Fig. 
18 shows the mean coil temperature as a function of time. With an 
applied potential of 100 volts dc the calculated mean coil temperatures 
are 204°F and 195°F for the 1 per cent silicon steel and S.A.E. 1010 
steel cores respectively, while the measured values are 205.5°F and 
199.5°F in the same order. Thus the measured values are found to be 
in close agreement with the calculated values. Although there is nearly 
a two-to-one ratio between the thermal conductances of the two mate­
rials, there is only a 3 to 4 per cent difference in the mean coil tempera­
tures. However, this small difference is in favor of the relays with lam­
inated S.A.E. 1010 steel cores. 
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Fig. 18 - Mean coil temperature vs time. 
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XI. OPERATING LIFE 

Since S.A.E. 1010 steel is softer than 1 per cent silicon steel, life tests 
were conducted to determine whether relays with laminated low-carbon 
steel cores have at least as long an operating life as currently manufac­
tured relays. In operation, the armature stop disks and the hinge spring 
at the heel of the armature wear or pound into the core (see Fig. 19). 
If significant wear occurs at either of these points, it will cause a cor­
responding reduction in the release current and an increase in release 
time. 

Fig. 20 shows the measured wear at the armature heel and the change 
in release time as a function of the number of operations. It is noted 
that the wear of the laminated S.A.E. 1010 steel cores is about equal 
to or less than that of the 1 per cent silicon steel cores. This is probably 
due to the lack of abrasiveness of the low-carbon steel as compared to 
the silicon steel after the finish has been worn through. 

XII. CORE PLATE ASSEMBLY 

The core plate of the relay (see Figs. 1 and 19) serves as a back stop 
for the armature, a positioning stop for the fixed contact molded block, 
an aligning fixture for the three core legs and a means of mass adjust­
ment of the contacts. Therefore, it is essential that the core plate be 
securely fastened in place. The core plate is held in place by staking the 
ends of the two outer legs of the core as shown in Fig. 19. Tests show 
that the pull-off force of the core plate on the laminated low-carbon steel 
cores is approximately twice that of the pull-off force from silicon steel 
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Fig. 19 - Wear areas of stop disks and hinge spring. 
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cores. The softer S.A.E. 1010 steel is upset more by the staking opera­
tion than the harder 1 per cent silicon steel. 

XIII. CORROSION PROTECTION 

If the two laminations were to be welded together immediately after 
punching, it was deemed necessary to establish the reliability of corro­
sion protection, along the laminated seam, obtained with the standard 
zinc-chromate finish on such an assembly. Therefore, a number of lam­
inated core assemblies of S.A.E. 1010 steel were punched and welded 
together, magnetically annealed and then plated in the normal manner. 
The laminated assemblies, along with standard zinc-chromate plated 
1 per cent silicon steel cores, were subjected to extensive corrosion studies 
under extremes of temperature and humidity. The extent of corrosion 
on both materials was within tolerable limits. 

XIV. MANUFACTURING FACTORS 

'The manufacture of a relay with a two-piece laminated core presents 
a number of problems of dimensional cont.rol and parts handling which 
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must be overcome before its introduction is economically feasible. Close 
dimensional control of core thickness is necessary in the areas where 
the front coil spoolhead and core plate are mounted, to assure tight and 
stable assemblies (see Figs. 4 and 19). With the one-piece core the thick­
ness dimensions in these areas are controlled accurately by a squeezing 
operation on the part as the last step of the fabrication. With two sep­
arate laminations these areas would require closer control of the material 
thickness and the depressed areas, since with two parts fabricated sep­
arately the thickness tolerances would be additive on assembly. 

A proposal to overcome this problem was suggested (see Fig. 21) 
in which one lamination is undercut so that only the thickness of one 
lamination appears in the critical areas. This would require a redesign of 
the core plate and spoolhead to fit the new core. Tests of sample relays 
with cores of this design revealed an appreciable degradation in pull 
and time characteristics. 

An alternate proposal was suggested whereby two strips of S.A.E. 
1010 steel are welded together at prearranged locations and then punched 
simultaneously as a single part. The welds between the two sheets are 
located so that after punching they appear on the core at the locations 
shown in Fig. 3. With this method of welding and punching, the two 
laminations of a core remain together throughout the fabrication proc-

Fig. 21 - SAE 1010 steel laminated cores for general-purpose relays (rejected 
design). 
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ess, and the assembly is flattened and squeezed to size in the same oper­
ation as is now used with the one-piece core. Fig. 22 shows the two 
lam.inations without welding in the upper view, and a welded laminated 
core compared to a one-piece core in the lower view. Fig. 23 shows a 
schematic layout of the proposed process of welding the strip and punch­
ing the cores. 

There is no appreciable difference in the operational quality of these 

(d) 

(b) 

Fig. 22 - (a) Two core laminations before welding; (b) a welded laminated 
core compared to a one-piece core. 
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relays whether the core laminations are welded or not. Therefore, the 
ultimate design in this respect will be determined by manufacturing 
considerations. 

XV. SUMMARY AND CONCLUSIONS 

(1) Wire spring relays made with laminated 1010 steel cores are at 
least as good as and in some respects better than the present standard 
1 per cent silicon steel core relays. 

(2) Operate times of the proposed laminated 1010 steel core relays 
are in general slightly faster than those of the present one-piece silicon 
steel core relays (1.3-3.4 per cent). 

(3) Release times of the proposed laminated low carbon steel core 
relays are considerably faster than those of the present silicon core 
relays (13-27 per cent). 

(4) Heat studies indicate slightly better heat dissipating qualities in 
the laminated core relays than in the present silicon steel core relays. 

(5) Core plates are tighter on the laminated 1010 steel core relays 
than on the present silicon steel core relays. 

(6) Resistance to corrosion with the present finish (zinc chromate) 
is as good on the laminated 1010 steel core design as on the one-piece 
silicon steel core design. 

(7) Life tests show that the laminated low carbon steel cores are at 
least as resistant to wear as the present silicon steel cores. 

(8) Substantial manufacturing savings can be realized by changing 
to the laminated 1010 steel core for the general-purpose wire spring 
relay. 
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Fluctuations in received signal amplitude occur during mobile com­
munications because of the motion of the mobile station through the spatial 
standing-wave pattern resulting from the interaction of direct and reflected 
signals. A model is presented whz"ch permits a theoretical calculation of the 
power spectrum of these fluctuations and satisfactorily predicts the features 
of spectra computed from experimental fading data except for an observed 
rise at low frequencies. 

The model is based on the geometry of the reflections from nearby ran­
domly placed vertical plane reflectors. Vertical polarization is assumed. 
Both the standing-wave pattern and the Doppler shift view of fading are 
used to obtain nearly identical results. The detailed shape and in particular 
the shw'p cutoff frequency of the spectrum are shown to depend crucially on 
the angle a between the direction of vehicle motion and the direction to the 
fixed station. Detailed comparisons are made of theoretical spectra with 
experimental spectra representing a range of the angle a. 

The collection, digitization, calibration, plotting, and digital processing 
to obtain power spectra of actual recorded fading waveforms are described. 

1. INTRODUCTION AND SUMMARY 

The 1110bile radio fading phenomenon discussed herein is the fluctua­
tion in the received signal amplitude during mobile communication due 
to the motion of the mobile station through the spatial standing-wave 
pattern resulting from the interaction of direct and reflected signals. 
Knowledge of the statistical behavior of such fading signals can permit 
more meaningful mobile communication system studies and design 
effort. For example, it can aid in the choice and design of automatic 

2935 
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gain control systems and systems involving data transmission. The par­
ticular statistical description of fading to be discussed is the power 
spectrum of the signal amplitude. 

First, this article presents a theoretical model for mobile radio fading 
due to building reflections, which permits a theoretical calculation of the 
power spectrum of the fading waveform. Second, the collection, digital 
processing, and power spectral analysis of actual fading waveforms are 
described. Then detailed comparisons are made between the theoretical 
and experimental spectra. Limitations and extensions of the model are 
explored. 

Historically, the evolution of the model followed a study of the power 
spectra of fading waveforms recorded on one particular street. These 
spectra had an unexpected and interesting shape. The model indicated 
that the shape of the spectrum and particularly the frequency at which 
the power density fell abruptly would depend on the vehicle's direction 
of travel with respect to the direction toward the fixed station. Subse­
quent fading waveforms, recorded on other streets having various rela­
tive directions, produced power spectra which collectively exhibited all 
the features predicted by the model. 

1.1 Characteristics of Experimental Power Spectra 

Fading waveforms were recorded on 13 streets in New Providence, 
N .. J. on Sept. 13, 1962, using a carrier frequency of 838 mc and a nomi­
nal vehicle speed of 15 mph. Vertical polarization was used. The fade 
rate corresponding to motion through standing-wave minima a half­
wavelength apart is 37.5 cps. After digitization, calibration, and smooth­
ing, power spectra were computed. Almost all of these spectra exhibited: 
(1) a very sharp cutoff at a frequency somewhere between 20 and 40 
cps, followed, after a drop of between 10 and 20 db, by a 12 db/octave 
fall-off; (2) a narrow peak between 3 and 10 db high just prior to the 
sharp fall; (3) a broader, shorter intermediate peak; and (4) a rise at the 
low-frequency end of 10-15 db. Many spectra exhibited a shelf in the 
frequency range between the sharp fall and the gradual fall-off which 
extended to about twice the sharp-fall frequency. Other sometimes 
subtle features were noted which will be mentioned later. 

1.2 The l}! odel 

The simple model to be described predicts a theoretical power spec­
trum for the fading waveform having all the features of a corresponding 
experimental spectrum except a low-frequency rise. In particular, the 
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frequency, shape, and size of two peaks, the sharp fall, the following 
shelf, and the subsequent gradual fall-off are satisfactorily predicted. 

The model is based 011 the geometry of the reflections from nearby 
ralldomly placed, vertical, plane, good reflectors. Vertical polal'iz;atioll 
is assumed (the use of horizontal polarization is discussed in Section 
XIV). The vehicle is assumed to move through the standing-wave 
pattern caused by the reflections. A virtually identical result obtains if 
the vehicle is assumed to encounter appropriate Doppler shifts for each 
reflected signal. The computed spectrum depends on: (1) the radio 
carrier frequency, (2) the vehicle speed, and (3) the angle a between 
the vehicle direction of motion and the direction to the fixed station. 

If f m is the fade frequency which would be experienced by the vehicle 
moving directly across standing-wave minima spaced "Xc/2 apart ("Xc = 
carrier wavelength), the model indicates that the spectrum will peak 
and then fall sharply at some frequency fp betweenfm/2 andfm and that 
an intermediate peak will occur at a frequency f m - fp . In terms of the 
angle a defined in the previous paragraph, fp is equal to the larger of 
f m sin2 a/2 or f m cos2 a/2. As a varies between 0 (or 180°) and 90°, fl) 
varies between fm and fm/2. 

1.3 Comparison between Experimental and Theoret'ical Spectra 

Because the angle a varies during a typical data run along any street, 
theoretical spectra were determined by averaging spectra computed 
for sample a'S along the run. The agreement between experimental and 
theoretical spectra is generally quite good. The sharp-fall frequency 
agrees perfectly in almost all cases. Other details are in good agree­
ment in nlany cases. The main discrepancy is the absence of a theoretical 
forecast of the rise in the observed spectral density at low frequencies. 
One street which, unlike all the others, had few buildings produced 
experimental spectra only vaguely similar to theoretical expectations. 
lVlechanisms not considered in the theoretical model which would con­
tribute low-frequency energy include: (1) shadowing by buildings, 
(2) variations in and the shadowing of ground reflections, (3) the inter­
modulation of concurrent reflections and (4) nonrandom reflector 
orientation. 

1.4 Usefulness of AIodel 

The model in the form offered successfully predicts fading waveform 
power spectra in a suburban residential environment. The possibility 
certainly exists that an extension of the model can be made to work 
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elsewhere. The usefulness of power spectra is not unlimited, and many 
statistical properties of fading cannot easily be deduced from spectra. 
One of the main values of the agreement between these theoretical 
and experimental spectra is its verification of the physical basis of the 
model. 

II. THE MODEL 

We will begin by considering the fading experienced by a m.obile 
receiver moving through a standing-wave pattern due to a single reflec­
tor when the transmission is vertically polarized. Reciprocity will insure 
application of the results to the case where the receiver is fixed and the 
transmitter is moving. First, the fade rate will be related to the vehicle 
trajectory. Then the same result will be obtained using the Doppler 
point of view. Then the relative contribution from reflectors in differ­
ent directions will be determined. Next, a theoretical spectrum will be 
constructed for the case of many reflectors; its shape will depend strongly 
on the vehicle direction relative to the fixed station. 

III. S'l'ANDING-WAVE PATTERN DUE TO A SINGLE REFLECTOR 

If the mobile antenna is a fixed height above the ground, only the 
larger (many wavelengths) vertical plane reflectors in the vicinity of the 
mobile station are of major importance in determining the local standing­
wave pattern fluctuations. Reflectors of ordinary size which are not in 
the vicinity of either the mobile or fixed stations are of lesser importance 
because their reflected signals will be of smaller amplitude. Reflectors 
near the fixed station can contribute large amplitude reflections, but 
their effect is more that of modifying the directivity pattern of the 
fixed antenna; their effect is to put slow mUltiplicative trends into the 
standing-wave pattern at the mobile station. Furthermore, fixed station 
antennas are usually mounted above local obstacles that would not only 
reflect but shield some direction. 

We will assume that the transmitting and receiving antennas are 
vertically polarized. Then the local standing-wave pattern due to a 
single vertical plane conducting reflector is as shown in Fig. 1 where: 

cp = angle between the direction to the fixed station and the direc­
tion to the reflector as seen from the mobile antenna, 

a = angle between the direction to the fixed station and the direc­
tion of vehicle travel, 

e = angle of incidence at the reflector, 
d = perpendicular distance between null planes, 
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Fig. 1 - Vehicle moving through standing-wave pattern due to single reflector. 

d' = spacing between null planes observed along direction of mobile 
station travel, 

L length of reflector, 
L' length of vehicle path in reflected beam, and 
Ac carrier frequency wavelength. 

The fixed station is assumed to be far enough away to permit taking 
the incident waves on the mobile antenna and on the reflector as parallel. 
The reflector is assumed to be large compared to a wavelength (L » Ac) 
and close enough to the mobile station to neglect divergence of the 
reflected beam. 

3.1 Null Plane Spacing 

Note that a reflector in a direction cp must be oriented such that 

e + (cp/2) = 90° (1) 

for the reflected beam to be directed toward the mobile station (for the 
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angle of reflection to equal the angle of incidence). To determine the 
spacing d between null planes, refer to Fig. 2 and observe that 

a - b = Ac , 

b/a = cos cp, 

and 

d/a = sin (cp/2). 

From (2) and (3), a is found to be 

Ac Ac 
a = - -----

1 - cos cp cp 
2 sin2 -

2 

Then (4) and (5) yield 

or, using (1) 

d . cp Ac = aSlll- =--
2 ' 

2 sin ~ 

d=_A_c _. 

2 cos e 
This is of course a common result (see Ref. 1, p. 293 ff.). 

9+!£..= 90° 
2 

a+b=A 
b/a = cos!p 

d/a= SIN!£.. 
2 

TO FIXED 
STATION 

Fig. 2 - Portion of Fig. 1 in vicinity of reflector. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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3.2 Fading Rate 

Because of its direction of travel, the mobile antenna observes a 
null spacing d', which from Fig. 3 is 

d 
d' =-----

sin (a - ;)' (8) 

which by using (6) becomes 

. cp . ( cp) , 
sm 2 sm ex - 2 

d' 
(9) 

which holds for the case where ex > cp/2. Consideration of various values 
for ex and cp/2 leads to the general relation 

, Xcl2 
d = . 

I sin; sin (a - ;) I 
If the vehicle speed is V, the fading frequency is 

)" V 2 V I . cp . ( cp) I = (1' = Tc sm 2 sm ex - 2 . 

Then f' has the maximum value f m' = 2V IXc , where cp 

d'= d 
sIN{a-f) 

~ _ SIN rp/2 
L - SIN (a-rp) 

TO FIXED 
STATION 

----

Fig. 3 - Portion of Fig. 1 in vicinity of receiver. 

(10) 

(11) 

1800 and 
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a = 0° or 180°, when the vehicle moves perpendicularly across null 
planes spaced Ac/2 apart. For fe = 838 mc and V = 15 mph, f m' = 37.5 
cps. For convenience, we will usually usc a normalized fading frequency 
f = f'/fm'. When a ~ 0° or 180°, f is zero at cp = 0, 2a, and :360°, and 
has the maximum valuesfI = sin2 (cp/2) atcp = aandf2 = cos2 (cp/2) 
at cp = 180 + a; note that fl + f2 = 1. Thus, for a particular a, the 
maximum possible fade rate is fmax = max (jl , f2) * and is due to a ve­
hicle motion either toward or away from a reflector. The minimum 
possible value for fmax occurs when fI = f2 = t, which corresponds to 
a = 90°. The variation of f with cp is shown in Fig. 4 for a = 0°, 30°, 
CO°, and 90°. 

3.3 Fading Waveform 

If the reflector is perfectly conducting as assumed above, the actual 
waveform observed at the output of an envelope detector in the mobile 
vehicle would be the familiar result of beating two frequencies of equal 
amplitude - a full-wave rectified sine wave. Thus, in addition to the 
fundamental fade rate discussed above, significant harmonics will also 
be present. If the reflector is not perfectly conducting or is only a 
dielectric, minima will occur instead of nulls; the spacing between them 
will remain the same as for the nulls, and the waveform will tend to be 
more nearly sinusoidal. 

IV. THE DOPPLER POINT OF VIEW 

We can instead consider fading as due to the beating within the 
receiver of different carrier frequencies arising from the different Dop­
pler shifts occurring for the directly incident and reflected waves. The 
carrier frequency observed at the vehicle will in general be 

(12) 

where fe and Ac are the transmitted carrier frequency and wavelength 
and v is the relative velocity of closure between the two stations. From 
Fig. 1, the observed frequency of the directly incident signal is 

f . = f + V cos a 
t C Ae' (13) 

where V is the vehicle speed. 

* Max (a,b,c, ... ) = the algebraically largest of the sequence a,b,c, .... Simi-
larly, min (a,b,c, ... ) = the algebraically smallest of a,b,c, .... 
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Fig. 4 - Variation of fade frequency f and weighting function TV with relative 

vehicle direction a and relative reflector direction cpo 

The observed frequency of the reflected signal is 

r = f + V cos (a - ~) 
r c Ac . 

The fading rate will then be the beat frequency between Ji and j,.: 

V J = IT - Ji = ~ [cos (a - ~) - cos a] 

= ~ [sin a sin ~ - cos a(1 - cos ~)] 
Ac 

~ ~ (2 sin ~) [sin a cos ~ - cos a sin ~J 

2 V [. ~ . ( cp) ] 
= >:: sm '2 sm ,a - '2 . 

(14) 

(15) 

(16) 

After absolute value signs are added to (16) to account for the various 
relative values of a and ~, the result is identical to (11). 

The Doppler point of view has one important advantage over the 
standing-wave pattern point of view. It is easier to see what fade rates 
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will occur when more than one reflector is involved; when n reflectors 
are simultaneously effective, n(n + 1) /2 beat frequencies are possible. 

V. THEOUE'fICAL POWEH SPECTUUl\1 

Since the observed fading rate is a function of the parameters ex and ({J 

discussed above, the power spectrum of the fading waveform at the 
output of an envelope detector in the mobile vehicle will evidently be a 
function of time, even if the vehicle speed is constant. In this section, 
we will develop an approximation to the power spectrum of a finite 
duration of fading waveform. We will assume: (1) the vehicle speed is 
constant; (2) the transmission is vertically polarized; (3) an unmodulated 
carrier is being transmitted; (4) the reflectors are large, stationary, 
vertical, plane conductors: and (5) only reflectors in the vicinity of the 
mobile vehicle are important. Other assumptions inherent in the de­
velopment will be stated when appropriate. 

5.1 1110re Than One Reflector 

A major step in simplifying the analysis is to assume that, although 
many reflected beams will be encountered by the vehicle during the 
finite run, only one such beam is important at anyone time. This elimi­
nates the necessity of considering beats between reflections. The effect 
of this assumption on the theoretical spectrum will be discussed later. 
Actually, there is a strong tendency for this assumption to be true in a 
suburban residential environment because the houses are well spread out. 

5.2 The Relative Importance of Different Reflectors 

The energy in a particular small frequency band in the finite sample 
of fading waveform will be proportional to the time that frequencies 
in that band are present. The corresponding power spectral density 
will be proportional to the corresponding fraction of the total run time. 
Thus the contribution of a particular reflector to the appropriate fre­
quency band will be proportional to the time it takes the vehicle to 
cross the reflected beam or, if the vehicle speed is constant, proportional 
to the length of its path through the beam, which is the length L' in 
Fig. 1. 

If we assume that all the reflectors are the same size (L in Fig. 1), 
then the contribution of a particular reflector to the power spectrum 
will be proportional to a weighting function W = L' / L. The assump­
tion of equal-size reflectors is another assumption that has a strong 
tendency to be true in suburban residential areas, where all the houses 
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in a given locale tend to be the same size. From Fig. 3 it is evident that 

W = L' sin (cp/2) (17) 
L sin (a - cp) . 

Consideration of the various values of a and cp yields the general result 

W = L' = I sin cp /2 I 
L sin (a - cp) . 

(18) 

Because L' cannot exceed the total run length LT , the physical maximum 
value of W is W max = LT/ L. Fig. 4 shows the variation of W with cp 
for a = 0°,30°,60°, and 90° ; the plots of W, which are in db (10 loglo W) 
are shown directly below corresponding plots of the fade rate f. W has 
the value zero (- 00 db) at cp = 0° (and 360°), except when a = 0 
where W = 0.5 (-3 db) at cp = 0°. TV = 1 (0 db) at cp = 2a. And TV 
is truncated to TV max at cp = a and 180° + a; the peaks of Ware coin­
cident with the peaks of the fade rate f. Not only do the reflectors 
directly ahead or behind the vehicle cause the most rapid fades, but 
they are the most important contributors to the power spectrum. 

It is interesting to note that the weighting function W can be arrived 
at in another way. Consider the portion of the f vs cp curve between 
cp = 0° and cp = a. The small range of reflector directions dcp contribut­
ing to a small frequency band df can be found by differentiating (11) 
to get 

df / dcp = ! sin (a - cp). (19) 

The projected length of a reflector in a direction cp is Lp = L cos () = 
L sin cp/2 (assuming L constant). Suppose that the contribution to the 
power in a band df due to the reflectors in a range dp is 

P(J)df= C~~·7, (20) 

where C is a constant. Substituting for dcp/dl and Lp/L then gives 

pC!) = q . sin cp/2 , 
7r sm (a - cp) 

(21) 

which except fer the constant is identical to (17). 

5.3 The Theoretical Spectrum ill ethod 

Consider again the plots of fade rate 1 vs cp shown in Fig. 4. For any 
particular f < 1 max = max (11, f2), there are either two or four cor­
responding values of reflector directions cpo For each of these cp's the 
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corresponding value of the weighting function can be found from (18) 
and is seen on the W vs <P plot directly under the f vs <p plot. We will 
assume that the mobile station is under the influence of one reflector at 
a time; this condition has a strong tendency to be true in suburban 
residential areas. Then, if we further assume that all reflector directions 
are equally likely, the power density at the frequency f will be propor­
tional to the sum of the two or four values of W. 

The basic procedure for generating a theoretical spectrum for com­
parison with a spectrum computed from experimental data is, if a is 
constant: 

(i) Select a list of frequencies f = n~f, where ~f = (frold/Iv!)/ 
(2V /Ac) and n = 0,1,2 ... ; froId is the folding frequency (Ref. 2, p. 
117 ff.) of the experimental data, M is the number of lags (Ref. 2, p. 
120 ff.) used in computing its spectrum, and (2V /Ac) is the correspond­
ing f m'. In other words, select the same frequencies, normalized by di­
viding by fm', at which spectral estimates were computed for the ex­
perimental data. The reason for this matching of frequencies will be 
discussed below. 

(ii) For each frequency, determine the two or four reflection direc­
tions <p, using (11) or Fig. 4. Then for each frequency determine the 
corresponding two or four weighting functions W from (18); each W 
should of course be limited to W max • 

(iii) At each frequency, sum the two or four corresponding values 
of the weighting function W to get the spectral power density. 

The solution of (11) in step (ii) above can be accomplished by Newton's 
iteration procedure. Also, the symmetry of the f vs <p function about 
<p = a and 180 + a can be used; if <Pl < a is a solution, <P2 = 180 - <Pi ; 

and, if 2a < <P3 < 180 + a is another solution, <P4 = 360 + 2a - <P3 • 

In the case where a = 0 (or 180°) an explicit so]ution for the two cp's 
and the sum of the two W's can be obtained. Setting a = 0 in (11) gives 

L = f = sin2 
'!!.. 

fm' 2' 
(22) 

and the solution cp/2 arcsin t. Setting a o in (18) gives 

w = 12 co~ '1'/21· (23) 

Because (23) is symmetrical about <p = 7r/2, the two W's are equal, and 
(22) and (23) combine to give the spectral density as 
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(24) 

where the physical1imit on lV is included. 
Implicit in the procedure thus far is the assumption that fading 

waveform contributed by each reflector is sinusoidal. The resulting 
power spectrum is zero above fmax. Actually, the fading waveform due 
to a single reflector has an harmonic content which depends on the 
relative amplitudes of the direct and reflected signals; when one is much 
smaller than the other the fading tends to be sinusoidal, and when they 
are equal the fading waveform is a full-wave rectified sine wave. This 
can be seen by superposing the incident and reflected electric field com­
ponents; in terms of the z coordinate of Fig. 1, the resultant electric 
field of a vertically polarized wave has the form (see Ref. 1, p. 296) 

(25) 

where I( is a constant and e is the angle of incidence. The spectra of the 
experimental data all exhibit fall-offs subsequent to the fall corresponding 
to fmax. The harmonic content of the fading can be included in the 
theoretical spectrum by determining the harmonic power corresponding 
to each original theoretical spectral estimate and adding this power in 
at the corresponding set of harmonic frequencies. Arbitrarily, the coeffi­
cients for a full-wave rectified sine wave were used to determine the 
relative power at the harmonic frequencies; this will provide a maximum 
of harmonic power. It is an interesting fact that inclusion of harmonic 
power does not significantly alter the shape of the theoretical spectrum 
at frequencies below fmax . 

The final step in generating the theoretical spectrum is to smooth 
it in an appropriate way. Because the spectra computed from experi­
mental data are estimates of smoothed versions of the true power spectra 
(see Ref. 2), the theoretical spectra should be smoothed in a correspond­
ing way. Therefore the theoretical spectra to be shown will have been 
smoothed by hanning.2 This is the reason for matching the theoretical 
and experimental spectral estimate frequencies. 

Finally, if the relative path angle a varies during the run, its varia­
tion can be represented by a weighted list of sample a'S. The spectrum 
for each a can be determined and the resulting spectra averaged. The 
smoothing can be done after averaging. 
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5.4 Theoretical Spectra for Various Constant a's 

Fig .. 5 shows theoretical spectra for a'= 0°, 30°, 60°, and 90°, V = 

15 mph, fe = 838 mc, and W max = 15. The corresponding f m' = 37.5 
cps. Consider first the curve for a = 60°. The peaks corresponding to 
the relatively heavily weighted frequencies in the vicinity of fl and f2 
U/ = 9.4 cps, f2' = 28.1 cps) are clearly evident. Following f2" the 
power density falls sharply and levels off abruptly to form a shelf. The 
shelf, which arises primarily from second-harmonic power, peaks around 
56 cps prior to a second sharp fall. Following the second-harmonic shelf 
is one due primarily to third harmonics which ends at about 84 cps. 
Because the points in the fundamental frequency portion of the spectrum 
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were computed at I-cps spacings, the harmonic shelves get increasingly 
jagged-looking at higher frequencies. The dashed line sloping down 
through the shelves is a least squares straight-line fit to the portion of 
the spectrum following the first sharp fall. The falloff line in the a = COo 
case has a slope of -13.0 db/oct. 

The peaks in the a = 30° case correspond to h' = 2.5 cps and h' = 
35.0 cps. When a = 0, h' = 0 and f2' = 37.5 cps. And when a = 90° 
the peaks unite at fl' = f2' = 18.75 cps. The least square fall-off lines 
have slopes that generally fall between 12-13 db/oct. 

5.5 Theoretical Spectra for a Uniformly Eistributed 

Fig. 6 shows the result of averaging the spectra for a'S uniformly 
distributed 0-360° (spectra for a = n2°, n = 0, 1, ... , 45, were aver­
aged). The spectral density is quite flat out to 37.5 cps, where it drops 
abruptly about 16 db to the second-harmonic shelf. The harmonic 
shelves in this case are also quite flat. The least squares fall-off line is 
shown and has a slope of -13.2 db/oct. 

VI. DATA COLLECTION 

The fading waveforms due to vehicle motion were recorded (on FlVI 
tape with an Ampex FRI00) for 17 runs on 13 different streets (runs on 
some streets were made in both directions) in New Providence, N. J., 
on Sept. 13, 1962. Transmission at 838.032 mc was from the mobile 
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vehicle (a Volkswagen Kombi) traveling nominally 15 mph, to a fixed 
station at the l\1urray Hill Laboratories. The range was between 1 and 2 
miles and varied little during any run. The duration of the recorded 
waveforms ranged from about 20 to 150 seconds. Values obtained for 
the parameter angle a ranged from 6 ° to 90°. All of the streets were in 
suburban residential areas except Central Avenue, which serves open 
fields and a few single-story industrial and commercial buildings. The 
weather was clear and dry. 

The vertically polarized transmitting antenna atop the vehicle was a 
stack of 2! coaxial dipoles with a net gain of about 4.5 db. The interac­
tion with a second similar antenna several wavelengths away is not 
known, but is believed to be small. The receiving antenna was a verti­
cally polarized 13-element coaxial array mounted atop a rooftop ele­
vator house. It had about 11 db gain and a 3-db beamwidth of about 
GO. 

A voice channel was recorded simultaneously with the fading signal 
on a second F.l\1 tape channel. This channel carried a running com­
mentary describing the data and included start- and end-of-data an­
nouncements. Also recorded on this same channel were tone bursts 
triggered every nominal 0.01 mi by a cam attached to the speedometer 
cable. The exact vehicle speed was ultimately recovered from these 
bursts. 

To permit over-all calibration of the static transfer characteristic 
of the system, calibration levels 3 db apart over a GO-db range were 
recorded both prior and subsequent to the recording of the fading sig­
nals. The two stations were directly connected by coax for calibration. 
Each level was recorded for a few seconds along with appropriate voice 
announcements. 

A complete set of Visicorder records were then made from the F1VI 
magnetic tape of both the fading signals and the tone bursts for a pre­
liminary examination of the data and for later determination of the 
vehicle speeds. 

The pertinent parameters for data runs whose power spectra are shown 
in this article are given in Table 1. The system bandwidth was limited 
by the receiver, which was 3 db down at 310 cps. The angular elevation 
above the horizon of the fixed station as viewed from the mobile station 
was usually between] ° and 3°. 

G.1 Vehicle Speed 

Four timed test runs were made in the vehicle over a fixed, level 
course of 1443 ft., to determine typical speed variations during a run and 
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COMPARISONS ARE SHOWN BETWEEN THEORETICAL 

AND EXPERIMENTAL SPECTRA * 

Avg. Alpha (deg) I I 
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Case No. Street Speed fmax fm Fig. No. 
mph 

min max avg. 
cps cps 

---------
I Common weal th 15.8 82.2 84.5 83.3 22.4 3\).5 10 
2 Charnwood 15.8 73.0 75.8 74.4 25.5 3\).5 11 
3 Whitman 15.2 G7.8 80.4 74.2 2G.2 3S.0 12 
4 Elkwood 1().2 41.0 42.G 41.S 35.4 40.4 13 
5 Ridgeview 15.S lG7.S IGS.4 lGS.l 3\).2 3\).G 14 
G Ridge 15.\) 15.0 15.S 15.4 3S.\) 3\).7 15 
7 Central lG.O GS.7 72.\) 70.S 27.2 39.9 lG 

* All spectra were computed using 5000 sample points (20 sec at 250 points/sec). 

to calibrate the tone burst rate. The nominal speed for each run was 
15 mph = 22 ft./sec. Visicorder recordings were made of the bursts 
from the Fl.'vI tape to enable counting them and measuring their spacing; 
the Visicorder paper speed was determined to be 1.019 in.jsec using a 
10-cps square wave (set by frequency counter). The tone burst rate 
was found to be 51.98 ± 0.16 ft. between beginnings of bursts. Using 
this burst rate, the averages and standard deviations of the speed during 
these four runs are shown in Table II. 

The actual average vehicle speed during each data run or part of a 
run was determined from the Visicorder records which have the tone 
bursts plotted alongside the fading signal. Let N B be the number of 
bursts occurring during a part of the run and DR (inches) be the corre­
sponding length of Visicorder paper. The average vehicle speed SR 
for that part of the run was then computed from SR = 53.0 N B/DR 
ft.jsec. 

6.2 Location of Data Runs 

The precise location of each run was carefully marked on a set of 
topographic maps (100 ft = 1 inch) which showed actual street and 
house shapes. Typically, street intersections and poles were used as 
starting and ending points. Except in the case of Whitman Road, 
which is slightly S-shaped, the vehicle was driven in a straight line. 

VII. PATH TRAJECTORY DATA 

The set of topographic maps referred to previously have a common 
coordinate grid. By determining the coordinates of the starting and 
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TABLE II - AVERAGES AND STANDARD DEVIATIONS OF SPEEDS 
DURING FOUR TEST RUNS 

Test Run 

1 
2 
3 
4 

Average 

Avg. Speed (ft./sec) 

23.15 
23.08 
23.1G 
23.43 

23.21 

Std. Dev. (ft./sec) 

0.G3 
1.0D 
0.54 
0.41 

0.G7 

ending points of each run, and the coordinates of the fixed station, it is 
possible to compute the vehicle azimuth (path azimuth), the azimuth 
of the direction from the fixed station to the mobile station (fixed azi­
muth), the angle a between the direction of the vehicle and the direction 
to the fixed station (positive if fixed station is to the left of the vehicle), 
and the range at various points along the run. Except in the case of 
Whitman Road, the end points were connected with a straight line 
which was then divided into 50-ft. intervals (the last interval usually 
extending past the original end point). The value of a was then tabu­
lated for the distances n50 ft. (n = 0,1,2, ... ) along each run. It 
should be noted that even with a straight path a varies because of the 
finite distance to the fixed station. 

In the case of Whitman Road, where the path trajectory follows the 
shape of the road and is not straight., a larger map (50 ft. = 1 in.) was 
used which showed the actual azimuth variation along the street. 

VIII. DIGITAL PROCESSING 

Following digitization of the fading data, the calibration, plotting, 
filtering and spectral analysis were accomplished on an IBM 7094. 
Many computer programs and subroutines were written for these 
purposes as well as for such auxiliary purposes as calibration curve 
fitting, magnetic tape searching (subroutines that can conveniently 
retrieve requested data pieces), spectra equalizing and plotting, and 
vehicle path angle determination. An available set of time series process­
ing subroutines3 was extensively used; this set included subroutines 
for tapering and detrending data, and for computing auto- and cross­
covariances and Fourier transforms. A large arsenal of subroutines was 
eventually amassed, and writing a program for some particular task 
became the relatively simple job of writing a program to call appropriate 
subprograms. 
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IX. INl'l'IAL DATA PROCESSING 

9.1 Digitization 

Both the fading waveforms and the recorded fixed calibration levels 
were digitized on an analog-to-digital converter within the Laboratories,4 
using 11 bits/sample and sampling at 500 cps. The procedure for digitiz­
ing consisted of playing back the analog tape, listening to the voice­
channel announcements, and manually triggering the digitizer on and 
off at the indicated times. Approximately 2-second intervals of each 
calibration level were digitized. The signals were filtered prior to sam­
pling by a passive filter which was 3 db down at 250 cps, 10 db down at 
300 cps, and subsequently fell 36 db/octave. The folding or Nyquist 
frequency (see Ref. 2, p. 30 ff.) of 500/2 = 250 cps was chosen to safely 
contain the expected power spectra. 

9.2 ]11 icrofilm Plotting 

The digital data was read into the 7094 and completely plotted on 
microfilm on a peripheral General Dynamics 4020 microfilm printer. 
This provided a good visual record of the raw data as well as a check 
on the digitizing process. A computer subroutine was developed which 
generates a long continuous plot down the length of the microfilm. 
Such plots were produced for monitoring after every step in processing 
or transcribing the data. The comparative ease with which large quanti­
ties of digital data can be monitored by viewing microfilm considerably 
reduces the chance of the accidental processing and use of data con­
taining errors. The 17 runs of recorded fading waveforms, which totaled 
over 920 seconds, yielded over 460,000 data points when digitized at 
500 cps. When plotted at 480 points per 35 mm frame, the complete 
data comprising 960 frames could be viewed in detail on a roll film viewer 
in about an hour. Fig. 7, which exhibits a typical data section, was traced 
from a print from one frame of microfilm. 

9.3 Calibration 

The communication system nonlinearities, including that of the 
linear-to-Iog converter used during analog recording, had to be removed 
to obtain true signal amplitude. The before and after (the data) sequences 
of calibration level records were read on the 7094, and each record was 
averaged to remove noise and obtain a calibration point. Any system 
net drift during original data recording or during digitization would 
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make the before and after curves different. Fortunately, they were 
quite similar and they were averaged to obtain the adopted calibration 
curve. A suitable function was then fitted, using a least squares criterion, 
to the list of calil?ration points. The adopted calibration function is 

Y = -60.255 + 0.8282 (X - 170.6)! - 0.01614 (X - 170.6) 

+ 8.474.10-6 (X - 170.6)2 - 9.658.10-10 (X - 170.6)3, 
(26) 

where X is the digital sample value and Y is the true signal in relative 
db. This function, which has a maximum error of 0.47 db near Y = -3 
db and rms error of 0.21 db, is shown in Fig. 8 plotted along with the 
original calibration points. Input values outside expected limits of 
X = 170.60 and 4041.06 were clipped to these values. The calibration 
program kept a statistical history of any clipped regions. The signal 
amplitude is then exp (0.11512926Y). 

X. INITIAL ANALYSIS AND SECOND-STAGE PROCESSING 

10.1 Preliminary Power Spectra 

These were computed for several pieces of the data to determine 
whether any smoothing and decimating [Ref. 2, pp. 129-135] was 
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necessary or desirable. The power spectra computation will be dis­
cussed later. Being sure to pick runs expected to have the widest band 
spectra, it was determined that the significant portions of the spectra 
were safely below one-half the folding frequency of 250 cps. Decimation 
by two (retaining every other point), which would reduce the folding 
frequency to 125 cps, would be safe and would reduce computation 
time. Suitable smoothing prior to decimating can also remove or reduce 
the 120-cps and higher hum peaks which were observed. Removing this 
hum is not essential for the spectral analysis, but doing so makes the 
data more suitable for level crossing analysis. 

10.2 Smoothing and Decimating 

The decimation of data retaining every Jth point, symbolically indi­
cated by F J , multiplies the folding frequency by 1/ J. To prevent power, 
including noise power and hum power, at frequencies above the new 
lower folding frequency from folding over and appearing below this 
frequency, the data must be smoothed (or filtered) before decimation 
(see Ref. 2, pp. 129-135). 

The most economical type of smoothing in digital analysis is to com­
pute straight running means of L consecutive values. Usually, simple 
sums which differ from the means by a factor are used to obviate division 
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by L. This smoothing, symbolically indicated by SL , is then 
i 

Y i = LXi, 
j=i-L+! 

and has the power transfer function 

SL(j) ~ s~n!f ' 
[

. L7rf]2 

SIn 2JF 

(27) 

(28) 

where J is the frequency and JF is the folding frequency. SL(f) has 
periodic transmission nulls at (f/JF) = 2n/L, where n = 1, 2, .... 
Because the loss between nulls is usually not too great, a common proce­
dure is to smooth twice with SL followed by SL±l (indicated by SL±lSd; 
the second smoothing will have nulls tending to fall between those of 
the first. 

The processing chosen for the present data was F 2S3F 4 - smoothing 
by threes and fours and then retaining every other point. The new 
folding frequency is 250/2 = 125 cps. The smoothing loss is plotted in 
Fig. 9 as a function of the fraction of the new folding frequency; the 
folded portion of the loss curve is also shown. Maximum loss occurs at 
125 (near 120), 167 (near 180), and 250 cps. The loss peak at 125 will 
make it impossible to obtain accurate spectral estimates close to the 
folding frequency, but this is not serious. Spectra can now be computed 
with the same resolution, stability and duration of data, for one-fourth 
of the computer time. 

XI. POWER SPECTRA 

The method employed in determining power spectral estimates is that 
described by Blackman and Tukey;2 another good reference is Ref. 5. 

11.1 Spectral Computation Parameters 

The spectra to be shown were computed using 5000 points (20 seconds 
at 250 samples/second). The mean and a least squares linear trend was 
removed from the data sections used, and the first and last 5 per cent of 
each section were raised cosine tapered to zero. The autocovariances 
(mean lagged products) were determined for 100 lags (i.e. for lags of 
nD.t, where n = 0, 1, ... , 100, and D.t is the sample spacing). A finite 
cosine transform of the autocovariances then provides spectral estimates 
125/100 = 1.25 cps apart from zero to the folding frequency. The spectra 
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were smoothed by hanning (see Ref. 2, p. 98). Under these conditions, 
each estimate has a 90 per cent chance of being within about a 2-db 
range of the true spectrum. Or, the difference between the estimate and 
the true spectra has a variance of about (0.3 db )2. 

11.2 Computed Spectra 

Almost fifty different spectra were computed from the data collected. 
A representative set of these are plotted (circles) on Figs. 10-16, where 
they may be compared to corresponding theoretical spectra. The com­
parison will be discussed later. All of the plotted spectra were equalized 
for the smoothing loss before plotting. It may be noted that most of 
the curves are not plotted beyond some frequency between 80-100 cps. 
The smoothing and decimating (F2SaS4 ) produced an infinite-loss notch 
in the spectrum at 125 cps. When the spectrum is subsequently computed 
this hole is filled in by computation noise. The plot was automatically 
ended at the frequency where equalization of this noise started to pro­
duce a meaningless result. Even so, the last few points plotted are 
inaccurate and tend to be lower than they should be. 
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Fig. 10-Experimental fading waveform spectrum compared with corresponding 
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text. 

11.3 Spectral Density Curve Shapes 

The spectra all exhibit significant power density out to some frequency 
between about 20 to 40 cps, where the density falls sharply between 10 
and 15 db and then more gradually at about 12 db/oct. Many show a 
distinct shelf between the sharp-fall frequency and the subsequent slow 
fall-off. The shelf generally ends with a noticeable sharp drop at a fre­
quency about twice the earlier sharp-fall frequency. The shelf in Fig. 14 
has a noticeable peak prior to its fall at about 75 cps. The peak at 60 
cps in all the plots is power supply hum. Another significant common 
feature is the relatively narrow peak immediately preceding the sharp­
fall frequency. Many of the spectra exhibit a noticeable broad peak 
below the narrow one. All of the spectra rise 10 to 15 db at low frequen­
cies. 

XII. COMPARISON OF THEORETICAL AND EXPERIMENTAL SPECTRA 

To compute a theoretical spectrum corresponding to a particular 
experimental spectrum, it is necessary to know the carrier frequency 
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and vehicle speed in order to compute f m , and to know the variation 
in the parameter angle a. For the present comparisons, the carrier fre­
quency is 838.032 mc, and the average vehicle speed and corresponding 
1m' are shown in Table r. The range of a's represented in the comparisons 
is from about 12° to 83°; remember that the spectrum for a = 90° + X 

is the same as one for a = 90° - x. The weighting function W was 
limited to W rna). = 15 (compatible with the typical run length of 450 
feet and typical house side length of 30 feet). 

For each theoretical spectrum, the corresponding list of a's was used. 
Spectra were computed for each a and the final spectrum was the hanned 
weighted average. Harmonic power was includcd in each a'S spectra 
before averaging. A value of W max = 15 was used in all cases. Table I 
also lists the f max' corresponding to the value of a occurring during run 
that is nearest to 0° or 180°. As an example of how the list of a'S was 
used, consider Commonwealth Avenue (case 1). These data are actually 
points 1-5000 (250 pts/sec) of a longer piece. The vehicle speed accord­
ing to Table I was 15.8 mph; thus the run was (20 sec)(15.8 mph) (22 
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Fig. 12 - Experimental fading waveform spectrum compared with corresponding 
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text. 

ft./sec)/(15 mph) = 463 ft. in length. The angles an are values com­
puted for distances dn = 50 n ft., where n = 0, 1, 2, ... and may be 
considered to represent the distance ranges dn ± 25 ft. Thus the relative 
weights for the an and the corresponding spectra are WI = 0.5, W2 to 
W9 = 1.0, and WIO = 0.76; the latter is (463 - 25 - 8.50)/50. When 
the data section does not begin at sample 1, the distance between sample 
1 and the starting sample must be determined using the proper average 
vehicle speed for that interval. 

The change in a during the data section is small enough in many cases 
to permit using the average a to compute the spectrum. For example, 
during the run of case 4 the angle a varies only from 41.0 0 to 42.6°; a 
spectrum computed from the average value of about 41.8 0 differs little 
from one determined by averaging. In other cases - Whitman Road 
for example - the spectrum determined by averaging has much broader 
peaks than one corresponding to the average a. All the theoretical 
spectra to he shown were determined by averaging, whether this was 
necessary or not. 
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Fig. 13 - Experimental fading waveform spectrum compared with corresponding 
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text. 

12.1 Comparing Theoretical and Experimental Curves 

Figs. 10-16 show theoretical spectra (solid curves) superimposed on 
experimental spectra (circles); Table I lists the data sections involved 
and gives corresponding figure numbers. The only thing arbitrary in 
comparing the theoretical and experimental spectra is their relative 
amplitude. Thus the theoretical curve has been shifted vertically to 
produce some sort of fit. In all cases a transition is shown from the basic 
theoretical spectrum to a fall-off line fitted by least squares to the portion 
of the theoretical spectrum above f max'; this fall-off typically has a slope 
of -12 to -13 db/oct. The last few points of each experimental curve 
are not very accurate and tend to be low, as previously discussed. 

12.2 General Results of the Comparison 

Before reading further, the reader should make a superficial scan of 
Figs. 10-16. The agreement between the theoretical and experimental 
spectra is generally quite good. The main discrepancy is that the ob-
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served rise in spectral density at low frequencies is not predicted by the 
theory. The sharp-fall frequency agrees very well in almost all cases. 
The peak prior to this sharp fall fits well in many cases. In cases where 
intermediate peaks are predicted (ex not too close to zero), the experi­
mental spectra usually exhibit them. The second harmonic shelf is 
well formed in many cases. The following are some comments on specific 
comparisons: 

12.2.1 Case 1; F,t'g. 10 

This street had an average ex of about 83°. The two peaks have nearly 
merged and have formed a double peak which the experimental spectrum 
exhibits in agreement. The second-harmonic shelf is higher than pre­
dicted and ends somewhat early; more will be said about this later. 

12.2.2 Case 2; Fig. 11 

Here ex averages about 74°. The upper peak and the sharp fall agree 
welL The intermediate peaks are in only fair agreement. Because of 
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Fig. 15- Experimental fading waveform spectrum compared with corresponding 
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text. 

the absence of a second-harmonic shelf in the experimental spectrum, 
the theoretical fall-off line is plotted beginning with its intersection 
with the first fall. A slight rise above this line occurs out to nearly 40 
cps; a second-harmonic shelf would have to extend to about 50 cps. 

12.2.3 Case 3; Fig. 12 

The comparison here is similar to that discussed for case 2. This street, 
however, has an a which varies between 67.8° and 80.40 and averages 
74.7°. The comparatively broader theoretical and experimental peaks 
may be noted. 

12.2.4 Case 4; Fig. 13 

This street has a averaging about 42°. The intermediate peak at 
about 5 cps is discernible. The sharp fall occurs at about the right fre­
quency but is not as steep as expected. The second-harmonic shelf is not 
noticeable. The theoretical fall-off line is picked up at its intersection 
with the theoretical shelf. 
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Fig. 16 - Experimental fading waveform spectrum compared with corresponding 
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text. 

12.2.5 Cases 5 and 6; Figs. 14 and 15 

These streets have a small a (about 12° and 15° respectively) and the 
intermediate peak is too close to zero frequency (below 1 cps) to show up 
with the present resolution. The main peak and the sharp fall agree 
exceptionally well and the second harmonic shelves are well exhibited. 
Furthermore, the predicted peak on the shelf appears in the experi­
mental spectrum of Fig. 15 (and to a lesser extent in Fig. 14). 

12.2.6 Case 7; Fig. 16 

The agreement between the theoretical and experimental curves is 
in this case relatively poor. This street, however, is not in a suburban 
residential area, and has only a few low industrial buildings spaced well 
back from the curb. The section of the street corresponding to Fig. 16 
had an average of a of about 71°. It was observed that, if experimental 
spectra were computed for other portions of the street with different 
a's, these spectra were quite similar if their ripples were ignored. 
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12.3 Additional Observations 

It has been observed that the streets having the best agreement be­
tween experimental and theoretical spectra in the vicinity of the higher 
peak, sharp fall, and harmonic shelf are those with a near 0° or 180°. 
A good reason why this is not too surprising is offered in Section XIII 
under a discussion of nonrandom reflector orientation. 

A cause for the small but discernible drop in Figs. 10, 11, 12 and 16 
at the frequency corresponding to 1m' is offered in Section XIII under a 
discussion of simultaneous reflections. 

vVhen the harmonic content was included in the theoretical spectra 
it was assumed that the reflectors were perfect conductors. The obser­
vation of second-harmonic shelves at the predicted amplitude level in 
many cases indicates that the assumption was reasonable. The use of an 
aluminum foil vapor barrier integral with outside wall insulation is 
common In current house construction and may explain their good 
reflectivity. 

XIII. LIMITATIONS OF THE MODEL 

In the preceding section it was seen that a major deficiency of the 
theoretical model is its failure to forecast the rise in spectral density at 
the low-frequency end of the spectrum. Some of the mechanisms that 
can contribute low-frequency energy are discussed in the following 
paragraphs. 

13.1 Shadowing by Buildings 

The shadowing of the direct signal by buildings introduces into the 
fading waveform a low-frequency multiplicative function (likely with 
some harmonic content) with a fundamental spectrum probably not 
extending much beyond about 3-4' cps (houses spaced 80-100 ft. apart 
and a vehicle speed of about 15 mph). The resulting fading waveform 
spectrum would be the convolution of the spectrum without shadowing 
with that of the low-frequency function. Such a low-frequency multi­
plicative function was observable in some portions of microfilm plots 
of recording fading waveforms. It is not likely that this effect explains 
the entire extent and shape of the low-frequency rise. 

13.2 Ground Reflections 

These cause standing-wave patterns which normally vary only in a 
vertical direction. But as the vehicle moves the point on the ground 
causing the ground reflection moves and the reflectivity will vary. This 
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and the shadowing of ground reflections by buildings introduce low­
frequency variations in the direct signal. 

13.3 Simultaneous Reflections 

An assumption inherent in the construction of the theoretical spectra 
was that the mobile vehicle was under the influence of one reflector at 
a time. The simultaneous presence of more than one reflected signal 
will give rise to additional beat frequencies in the fading waveform 
between the reflected signals (see Section IV). Here the Doppler point 
of view is useful. From (14) the Doppler-shifted reflected signal is seen 
to lie in the frequency range fT = fc ± V lAc; thus, if all possible reflec­
tions are always present, the radio frequency spectrum would have a 
bandwidth 2V lAc = f m'. The Doppler shifted direct signal has from 
(13) a frequency of fi = fc + (V lAc) cos a. The shape of the spectrum 
is not symmetrical about fc. This shape can be obtained by picking 
frequencies f1 between f c - V lAc and f c + V lAc, solving (14) for the 
two values of <p corresponding to each frequency, and then summing the 
two corresponding values of the weighting function TV obtained from 
(18). The result is a spectrum having a broad minimum at f1' = fi = 
fc + (V lAc) cos a and peaks at fT = fi ± V lAc. Thus, as a varies from 
a = 0 to 90° to 180°, the direct signalfi moves from the upper-frequency 
end of the spectrum to the center and to the lower end. Fig. 17 shows 
the radio-frequency spectrum as a function of a (the peaks appear sharp 
because no smoothing has been applied). If the direct signal is large in 
amplitude compared to all the reflected signals, the spectrum of the 
envelope would essentially be that obtained previously (Section V), 
except for the lack of harmonic content. If the direct signal is ignored, 
the spectrum of the envelope would be the convolution of the radio­
frequency spectrum with itself (see Ref. 6, Chap. 12); this spectrum, 
which would vary from a maximum at zero frequency to zero at 2V lAc, 
would be virtually independent of a. The fact that the convolution 
would carry the spectra only out to 2V lAc suggests that beats between 
reflections may be responsible for the partial filling in of the second­
harmonic shelf when a is not near 0 or 180°. This effect is noticeable to 
various degrees in Figs. 10, 11, 12 and 16, where a perceptible drop 
occurs at f m' independent of any termination of the second-harmonic 
shelf at 2fmax'. Similarly, this effect probably decreased the steepness of 
the observed steep fall in Fig. 13. It remains a fact that in a suburban 
residential environment, the spacing of houses is such that there is a 
very strong tendency for a mobile vehicle to experience only one domi-
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nant reflection at a time. There certainly is some continual overlap of 
reflected beams and this may in part be responsible for the low-frequency 
rise in the experimental spectra. 

13.4 Nonrandom Reflector Orientation 

Houses are generally built with their larger flat sides parallel and 
perpendicular to the street. It has been shown from (11) that a zero 
fade rate obtains when <p = 0°, 2a, and 180°; low-frequency fades obtain 
when <p is near these values. The weighting function W is zero for <p = 0° 
and 180° (except when a = 0° or 180°), but is unity at <p = 2a. Clearly, 
it is the reflectors whose flat sides are roughly parallel to the direction 
of vehicle travel that contribute the low-frequency fade rates; each such 
reflector makes its contribution when the vehicle position is such that 
its <p ~ 2a. Conventional house orientation obviously increases the 
supply of reflectors causing low-frequency fades above that under ran­
dom conditions. It is felt that this effect may be the most important 
reason for the low-frequency rise in experimental fading spectra. 

The same nonrandomness will affect the experimentally observed 
spectral peaks. These peaks occur when <p = a and a + 180°; the corre­
sponding required reflector orientations, relative to the direction a, 

are a/2 and 90 - ex/2. When ex is small or near 180°, these required 
relative orientations are near 0° and 90° - i.e., near parallel and per­
pendicular to the direction of travel. When a is near 90°, the required 
relative orientations are both near 45°. Thus observed peaks for a'S 

near 90° may be relatively subdued by the relative absence of required 
reflectors. This effect has been observed in several comparisons of 
theoretical and experimental spectra. 

13.5 Other Low-Frequency Effects 

N onuniformity of the fixed station antenna pattern and reflectors in 
the vicinity of the fixed antenna can produce some very low-frequency 
variations in the standing wave pattern. Motion of the fixed antenna 
and trees due to wind are additional sources of low frequencies in the 
standing wave pattern. 

XIV. ADDITIONAL TOPICS 

14.1 Moving Reflectors 

All of the preceding discussion was concerned with fixed reflecting 
objects. The experimental data were taken with the streets devoid of 
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other moving vehicles. vVhat effect will the motion of other vehicles have 
on the spectrum? Let us limit this discussion to vehicles moving in the 
same or opposite direction on the same street as the mobile station; 
let VI and V.! be the speeds of the mobile station and moving reflector 
respectively with a positive V 2 corresponding to closure between the 
vehicles. The moving reflector encounters and reflects a frequency 

f = j. - V 2 cos a 
2 c Ac' (29) 

where fe, Ac , and a have their previous meanings, and V2 has a com­
ponent away from the fixed station. The mobile station encounters a 
reflected beam of frequency 

(30) 

where A2 corresponds to f2, and encounters a Doppler shifted direct 
signal of frequency h given by (13). The beat frequency f between fi 
and h is then 

(31) 

VI + V2 ( ) ~ 1 - cos a , 
Ac 

where c is the velocity of light. This result corresponds to (16) with 
cp = a. Thus an oncoming vehicle with V 2 = VI could double the maxi­
mum observed fade rate. 

14.2 Horizontal Polarization 

In terms of the x and z coordinates of Fig. 1, the electric field com­
ponents in the reflected beam region will take the form (see Ref. 1, p. 
295) 

E 'K . (27rZ ) (. 27rX sin e) 
1 x = J cos e 15m ~ cos e exp - J Ac (32) 

. (27rZ) (. 27rX sin e) E z = K 15m e cos Tc cos e exp - J Ac ' (33) 

where I{ is a constant and e is the angle of incidence. If a nondirectional 
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receiving antenna is used, such as is approximated by a "turnstile" 
consisting of two perpendicular dipoles connected together by a Ac/4 
stub, the received signal can be shown to be proportional to 

I E I = I K sin e;,z cos 0 - 0) I (34) 

irrespective of the angular orientation of the turnstile. This result has 
the same form as (25) except for the spatial phase shift e. Thus the use 
of horizontal polarization together with the assumed antenna produces 
an effective standing-wave pattern that is identical to that for vertical 
polarization except for the spatial translation. Thus the fading situation 
would also be identical. 

14.3 Field Component Diversity 

Equations (32) and (33) show that Ez is a maximum where Ex is 
zero and conversely. Suppose the two dipoles of the turnstile antenna 
are not connected together with a stub but are offered simultaneously 
to the receiver. Then, if the receiver electronically switched to the dipole 
offering the greater signal, the receiver would in many cases never experi­
ence a null. However, when the direction to the reflector cp approaches 
1800

, e approaches 00 and the component Ez becomes smaller and van­
ishes; likewise, Ex vanishes when cp approaches O. Thus any diversity 
scheme dependent on choosing between Ex and Ez would be most suc­
cessful near cp = 90 0 (e = 45 0

) and unsuccessful near cp = 00 or 1800 

(e = 900 or 00
). 

At every point in the reflected beam region it would be possible to 
rotate a dipole to a position where a maximum signal is picked up. This 
is not possible only when cp = 00 or 1800 exactly. It is possible, therefore, 
for a mobile dipole that is mechanically or electronically rotated con­
tinuously to receive a maximum signal, to reduce the amplitude of the 
fading due to vehicle motion, if horizontal polarization is employed. 
If the angular position of a mobile single dipole is fixed, the fundamental 
fading rate experienced is still the same function of a and cp as before, 
except that the amplitude of the fading will vary because of the direc­
tivity of the dipole. For example, if cp = 900 and the dipole is physically 
oriented perpendicular to the fixed station, the mobile dipole may be 
translated anywhere in the reflected beam region without any fading. 
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Digital Data Signal Space Diagrams 

By J. R. DAVEY 

(Manuscript received April 20, 19(4) 

Signal space diagrams are described which show the pattern of amplitude 
and phase variation for severallcinds of modulated carrier signals commonly 
used in digital data transm'ission. Such diagrams illustrate important 
similarities and differences among the various modulation methods. Oscil­
loscope pictures of actual data signal patterns are presented, and it is shown 
that these patterns can be used to detect the presence of amplitude and delay 
distortions in the transmission channel. 

I. INTRODUCTION 

lVIany different kinds of modulated carrier signals are being used in 
digital communication systems. All these various data signals can be 
expressed in the general form A (t) cos [Wet + ¢(t)] where a carrier cos wet 
is varied in amplitude by A (t) and in phase by ¢(t). The various modu­
lation methods impart different patterns of amplitude and phase varia­
tion. The characteristic pattern of a given modulation method can be 
portrayed by a polar plot of A and cp in which the angular reference is 
wet. This type of plot will be referred to as a "signal space diagram." 

Signal space diagrams will be described for several kinds of carrier 
modulation. Only synchronous signals consisting of sequences of evenly 
spaced symbols will be considered. In each case the received symbols 
can be thought of as a sequence of carrier pulses or bursts, each with an 
envelope shape determined by the channel characteristic. In such a view 
the differences among the types of modulation are due to the number of 
pulse amplitudes and phases which are used, the particular phase se­
quences used, and the spacing between pulses. In order to obtain the 
simplest signal space diagram it is desirable to choose the reference We 
as the center of the received pulse spectrum so that the phase variation 
of a single isolated pulse will be minimized. With a symmetrical pulse 
spectrum and a linear phase characteristic this reduces the pattern of 
a single isolated pulse to a radial line. vVhcn the phase of the carrier 
varies from pulse to pulse and the pulses overlap, more complicated 
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patterns are formed. By transmitting a random sequence, a pattern of 
all the permitted amplitude and phase variations of that particular type 
of modulation is obtained. 

Space diagrams will be presented for a number of commonly used data 
signals. In these examples the pulse envelope has been taken to have a 
raised-cosine shape in time in order to make the diagrams consist of 
circles and straight lines. This is a close approximation to the case of 
a raised-cosine pulse spectrum which is often typical in actual data 
systems. The pulse spacing, T, for the double-sideband examples is 
equal to the reciprocal of the half-amplitude width of the pulse spectrum. 
This corresponds to the maximum rate which avoids intersymbol inter­
ference as described by Nyquist. Pulse spacings of T /2 are used in FM 
and VSB methods where special conditions are established to avoid 
intersymbol interference. 

II. SIGNAL SPACE DIAGRAMS FOR VARIOUS TYPES OF MODULATION 

2.1 Amplitude NIodulation 

The first example is for on-off A1Vl where mark is represented by a 
pulse and space by no pulse. The carrier phase remains the same from 
pulse to pulse, thus resulting in a straight-line pattern as shown in Fig. 
1. The signal positions at the mid-symbol sampling instants are indi­
cated by points 111 and S which are separated by the pulse amplitude A. 
The shape of the pulses is indicated at the right in the figure. 

The diagram for suppressed-carrier AIVI or two-phase signals is shown 
in Fig. 2. In this case a pulse is sent for both mark and space, but the 
carrier phase for space is opposite to that for mark. Again the diagram 
is a straight line, but the mark and space sampling points are separated 
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Fig. 2 - Suppressed-carrier AM or binary PM with 0 0 and 180 0 changes. 

by twice the distance of the pulse amplitude. The positive half of the 
envelope and the carrier phase for each pulse are indicated at the right. 
A minimum separation of A is obtained with a pulse amplitude of A/2. 
As compared with the on-off case of Fig. 1, the same margin against 
noise is obtained with 3 db less average power and 6 db less peak power. 

2.2 Phase Jl![ odulation 

Binary phase modulation where the choice of phase change is 0° 
or 1800 results in the diagram of Fig. 2, as noted above. Alternatively, 
the choice of phase change can be ±90°. This has the advantage of 
symmetry and less amplitude variation. The diagram for this type of 
signal is a square, as shown in Fig. 3. The signal can move in either 
direction around the square and at the centers of the symbols is at one 
of the corners. Since there is always a 90° change between symbols, the 
signal alternates between corners marked with dots and those marked 
with circles. For a peak signal of A/2 there is a minimum separation 
between dot positions or circle positions of A, as was the case in Fig. 2. 

M M S M 

'TV\/V\/\ ±~ 
k--T--~ HALF ENVELOPE 

M=MARK 

S = SPACE 

Fig. 3 - Binary PM with ±90° changes. 
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Note that the separation of interest is that between alternative choices 
for a given pulse rather than that between successive pulses. 

Diagrams for two cases of quaternary phase modulation are presented. 
When the phase change between symbols is 0°, ±90° or 180° the diagram 
is a square with diagonals as shown in Fig. 4. The signal can progress 
around the square in either direction, go across a diagonal or remain at 
one corner with no restrictions. The four possible positions at the centers 
of the symbols are indicated by dots. For a minimum separation, A, 
between states the pulse peak becomes A/V2. This indicates that for 
this quaternary system to have the same noise margin per decision as 
the two-phase signal of Fig. 2 the power must be increased 3 db. This 
type of signal is equivalent to the sum of two AM suppressed-carrier 
signals at quadrature phase. 

When phase changes of ±45° or ±135° are used between symbols 
there are eight possible phases for the pulses. The possible positions of 
the signal vector at the symbol centers are shown as dots and small 
circles on the diagram of Fig. 5. There is always a phase change between 
symbols, and the signal must alternate between dot positions and circle 
positions. With a peak pulse amplitude of A/0 the minimum separa­
tion between dots or between circles is again A, as in the previous case. 

2.3 Vestigial Sideband 

It is assumed that the pulse spectrum for vestigial sideband has the 
same raised cosine shape used in the previous examples. It is also assumed 
that the pulse rate is twice the Nyquist rate for double-sideband opera­
tion and that the pulses originate from the modulation of a suppressed 
carrier higher in frequency than midband by an amount equal to one 
quarter of the pulse rate, as indicated in Fig. 6. This results in a phase 
change between adjacent pulses of ±90°. As shown in Fig. 6, the pulses 
overlap to the extent that at the peak of one pulse the adjacent pulses 
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are each at half amplitude. This severe interference is at quadrature 
phase to the wanted pulse and is eliminated by the use of coherent de­
tection. The signal phase at the center of a symbol is not affected if the 
two adjacent pulses are of opposing quadrature phases but is perturbed 
±45° if the adjacent pulses are of the same quadrature phase. For 
example, on the diagram of Fig. 6 the center of a marking symbol can 
occur at any of the three dot positions at the top of the diagram de-
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pending on the adjacent symbols as indicated. The phase of the coherent 
carrier used for detection advances around the diagram by 90° each 
symbol in the point sequence 1, 2, 3, 4. A continuous marking signal 
consequently follows this same sequence. A continuous spacing signal 
likewise advances 90° during each symbol but remains opposite in phase 
to the coherent reference. 

For continuous mark-space alternations each sym.bol pulse is retarded 
by 90° from the preceding pulse, and the signal moves around the circle 
in the opposite direction from steady mark or space. The signal always 
alternates between dot and small circle points. The corners of the square 
portion of the diagram are both dot and eircle points, and the signal 
may rest at such a point continuously and represent a MMSSMMSS 
sequence. All changes in direction of rotation about the diagram occur 
at the corners of the square; otherwise, the only restriction is for the 
alternation of the dot and small circle positions. Here again, with a peak 
signal of A/0, a minimum separation of A between mark and space 
dots or mark and space circles is obtained. Thus the speed is doubled at 
a cost of 3 db more power, as in the case of quaternary phase modulation. 
Note that the individual pulse amplitudes are A/2, as for the two-phase 
case, but that the pulse spacing is halved. For vestigial sideband opera­
tion these pulses are sent serially, while for the quaternary phase case 
of Fig. 4 the pulses can be considered to be of amplitude A/2 sent two 
at a time. 

2.4 Frequency Modulation 

The binary rectangular wave frequency modulation case to be pre­
sented here is the ideal one where the bit rate is equal to the frequency 
shift between mark and space. For a continuous mark or space signal 
this results in the signal changing phase 1800 between successive symbols. 
Again it is assumed that the signal is shaped to give a raised cosine 
pulse spectrum. Such an FM signal can be resolved into two components, 
a two-phase signal carrying the binary information and a quadrature 
component consisting of steady mark and space as indicated by the 
vector diagram of Fig. 7. This quadrature component can be con­
sidered to consist of alternating ±90° carrier pulses located between the 
0° and 1800 pulses carrying the information. The diagram for such an 
FM signal is shown in Fig. 7. A continuous mark condition (lower 
frequency) causes the signal to move around the circle clockwise. A 
continuous space causes a counterclockwise rotation. At the center of 
the symbols the signal is at either point A or B. A frequency transition 
causes the signal to swing out to one of the points "x" and reverse the 



SIGNAL SPACE DIAGRAl\IS 2979 

A :x: 

±A/2 A fM 
4' \ 

A 

~ "4 
s HALF ENVELOPE 

;r B ;r 

Fig. 7 - FM. 

direction of rotation. For continuous reversals the signal swings back 
and forth through point A or B along a horizontal line. For such a se­
quence of reversals the phase swing is ±45°. 

Although the steady mark and space frequency components which 
impart the horizontal component of motion in the diagram carry no 
information, they do permit the detection of the signal on a frequency 
basis. The mark and space conditions are indicated by the direction of 
rotation at points A and B. The quadrature component of the signal 
represents half of the total power. Consequently an FM signal requires 
twice the power of a two-phase signal to produce the same minimum 
separation of the points A and B. The two-phase component of the Fl'vI 
wave can be detected by a coherent carrier to determine whether the 
signal is at point A or B. It will be seen, however, that this leads to a 
polarity ambiguity because of the nature of the encoding. Reversals of 
either phase can be represented by the signal being at point A or at 
point B for successive symbols. A change from point A to point B indi­
cates no transition of the information wave. 

2.5 Duobinary Frequency M odulation1 

The duobinary technique developed by Lender is a means of doubling 
the rate of sending binary information. The data are first differentially 
encoded so that a transition is made for a space symbol and no transi­
tion for a mark symbol. The resulting double-speed binary signal is then 
passed through a frequency shift channel of the type just described for 
ordinary binary operation with no change in frequency shift or channel 
shaping. The signal can change phase a maximum of ±90° during these 
half-length intervals. This results in both the in-phase and quadrature 
pulses carrying information. The diagram of Fig. 7 applies in part, but 
because of the double rate we are interested in more points of the pat­
tern. For instance, for steady mark the signal moves around the circle 
in either direction and the receiver samples the signal not only at points 
A and B but also at points C and D as shown in Fig. 8. The occurrence 
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of a space symbol causes a frequency transition and the signal leaves the 
circle and reverses direction at one of the points labeled S. If there are 
two successive space symbols causing two frequency transitions, the 
signal pauses at an S point for one symbol interval and then continues 
on in the same direction of rotation. An odd number of successive space 
symbols leads to a reversal of rotation while an even number does not. 
The signal can thus proceed around the circle clockwise or counter­
clockwise or pause at one of the S points. The rotating conditions repre­
sent the high- and low-frequency states while the pausing represents 
the midband frequency. When the signal is detected on a frequency 
basis, a three-level baseband output is obtained, with the outer levels 
representing mark and the center level space. 

The complete duobinary diagram of Fig. 8 is seen to be the same as 
that of Fig. G for a vestigial sideband signal. This indicates that the two 
kinds of line signals are of the same form although the encoding is 
different. Experimental verification of this identity has been demon­
strated by transmitting a vestigial sideband signal to an F1\1 receiver 
and obtaining a three-level baseband signal such as received in duobinary 
FM. Fig. 9 shows a photograph of the received eye pattern. 

III. OSCILLOSCOPE PRESENTATION OF SIGNAL SPACE DIAGRAMS 

Signal space diagrams of actual data signals can be displayed by 
coherently detecting both the in-phase and the quadrature components 
with respect to a midband reference frequency and applying them to 
the X and Y deflection circuits of an oscilloscope. Such an arrangement 
was constructed in the laboratory and used to obtain the signal pattern 
photographs shown in Fig. 10. Three kinds of signals arc shown, (a) 
binary F1\1, (b) quaternary PIvI, (c) binary VSB. These were all voice­
band data signals within a band centered ncar 1800 cps. Appropriate 
filters were used to shape the pulse spectrum closely to a raised cosine. 

To appraise the possible value of such signal patterns as a measure of 
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Fig. 9 - Oscilloscope picture of three-level eye obtained by receiving a VSB 
signal on a 202B FM receiver. 

signal quality, the effects of amplitude slope and delay distortion were 
observed. Examples of the results are shown by the oscilloscope pictures 
of Fig. 11. The simulated line distortion characteristics which produced 
these patterns are given in Fig. 12. The effect of amplitude slope is 
readily apparent for FlYI and VSB, where portions of the transmitted 
sequence result in the signal resting at the high-loss end of the band. 
This accounts for the smaller inner circular portion of the patterns. 
In the case of PlYI the pattern is changed but not at the mid-symbol 
sampling points. The effect of high-end delay distortion shows up as a 
rotation of one part of the pattern with respect to others. This is readily 
seen in the PlYI examples, where the portion of the pattern formed by 
repeated phase advances is rotated with respect to the portion formed 
by repeated phase retardations. 

IV. CONCLUDING REl\IARKS 

Signal space diagrams have been described for a number of commonly 
used data signals. These diagrams are useful in comparing data signals 

iii 
(a) (b) (c) 

Fig. 10 - Oscilloscope pictures of signal space patterns for a 53-bit pseudo­
random sequence: (a) binary FM, 1000 bits/sec, (b) quaternary PM, 2000 bits/sec, 
(c) binary VSB, 2400 bits/sec. 
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Fig. 11 - Oscilloscope pictures of signal space patterns showing effect of 
amplitude slope and envelope delay distortion. 

on a common basis without regard to specific detection techniques. 
Similarities and differences are revealed which may not otherwise be 
apparent and various possible detection methods can be visualized. The 
margin against noise with ideal detection methods is also indicated by 
t.he spatial separation of the sampling points. The signal power is indi­
cated by the pulse amplitude and repetition rate. 1;'or example, the fore­
going diagrams illustrate that binary FlYI, quaternary P1VI and binary 
VSB signals all give the same margin against noise for a given trans­
mitted power. The binary FM system, however, operates at half the 
speed of the other two for a given bandwidth. It has also been shown 
that a duobinary F1VI signal has the same pattern as a binary VSB 
signal. The relative simplicity afforded by Fl\'I detection of such a signal 



SIGNAL SPACE DIAGRAMS 

1o.o.----------------------~ 
If) 
If)c/) 

gul 7.5 

w~ 
:::~ 5.0 
~O 
ill ~ 2.5 
a: 

o~ __ ~ __ ~~ __ ~ __ ~ __ ~ __ ~ 

z 2.0.--------------------------, 
22 
~5 1.5 
Ou 

~~ 1.0 
0:] 

>-:::! 
j::E 0.5 

~~ 0 
0~--5~0-0---10~0-0--~1~5LOO---20~0-0---25~0-0--3~000 

FREQUENCY IN CYCLES PER SECOND 

2983 

Fig. 12 - Amplitude and delay distortion characteristics used to distort the 
signal patterns shown in Fig. 11. 

as against coherent detection is accomplished at a loss of approximately 
6 db in margin against noise. 

Considerable information about the nature of the channel charac­
teristic iG also indicated by the signal diagrams. The use of signal dia­
grams as an indication of signal quality is primarily limited, however, to 
the laboratory. The required synchronization with the midband fre,­
quency and symbol rate of the signals to be observed tends to make the 
method unsuitable for field measurements. 
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Using Digit Statistics to Word-Frame 
PCM Signals 

By J. R. GRAY and J. W. PAN 

(Manuscript received June 5, 1964) 

Framing of PCNI signals can be accomplished by statistical means. For 
signal samples whose probability distribution tends to be concentrated at 
the center of the coding range, the second digit of the Gray code generated has 
a probability of mostly l's. This information can be used to frame PCM 
words. Three circuits are proposed that test this probability. Reliability and 
reframe time for each circuit are obtained either analytically or experi­
mentally. The first circuit uses a pair of racing counters: one counts O's in 
the second digit and the other 0' s in the third digit of the Gray code. When the 
system is in-frame, the first counter seldom reaches full count before the 
second, whereas during out-of-frame either counter can reach full count 
first with equal probability. The second circuit uses a reversible counter 
which advances on a 0 and retards on a 1. When connected to the second 
digit of the Gray code, the preponderance of l' s will keep the counter at or 
near zero count; when connected to any other digit, where the probability of 
a 1 is at most 0.5, the counter will reach full count in a finite time. The 
third circuit uses an RC integrator in place of the reversible counter: each 
o of the second digit generates a pulse to charge the capacitor and each 1 
permits the accumulated charge on the capacitor to decay. The action is 
similar to that of the reversible counter but is difficult to analyze. Experi­
mental framing performance is given for this circuit. 

I. INTRODUCTION 

When a signal is transmitted by PCM, the receiver must be able to 
group the serial pulse train into code words before it can properly re­
cover the original signal. This process is called "framing." It is also 
called "word synchronization," as distinguished from bit synchroniza­
tion where the time base of the individual pulses is sought. When the 
pulse train contains several PCl\I signals multiplexed together, there is 
also the task of multiplex framing or frame synchronization whereby 

2985 
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the individual channels must be identified. Word synchronization can 
be derived from frame synchronization if the words are always arranged 
in a definite order within a multiplex frame; otherwise, word synchroniza­
tion is acquired independently. This article will consider only the 
problem of word synchronization, hereafter simply called "framing." 

Framing is ordinarily accomplished by using supplementary framing 
pulses inserted among the information-bearing pulses at predetermined 
intervals. The receiver will then find these framing pulses by searching 
and testing for the unique pattern of these pulses. If the framing pulses 
are inserted between every word, a substantial loss of channel capacity 
will result; on the other hand, if framing pulses are inserted only oc­
casionally, the PCM words will not be uniformly spaced, which is 
inconvenient for a sampled-data system. 'Vhen the PCM signal contains 
known redundancies, it is possible to accomplish framing without the 
use of supplementary pulses. The signal is then said to be framed 
"statistically." The receiver now searches for the word grouping which 
will yield the expected statistics for the signal. A simple example of such 
a statistic is the intelligibility of voice. Voice transmitted by PCM is 
intelligible only when the PCM words are grouped correctly. Other 
criteria, easier to instrument than intelligibility, are available. Most 
signals have amplitude distributions other than the uniform distribution 
or have frequency spectra other than the flat spectrum. Both of these 
properties will be altered when framing is incorrect. One of the easiest 
statistics to measure is the average occurrence of l's and O's in the code 
words. Measurement of this statistic for the case of a linear coder operat­
ing on a Gaussian signal source will be the main theme of this article. 
The next section will elaborate on the digit probabilities, followed by 
descriptions and analyses of framing circuits which acquire framing by 
comparing the probabilities of 1 's and O's in the second digit of the 
Gray code. 

II. PROPERTIES OF THE GRAY CODE 

If the amplitude of the signal before PCM encoding is centrally dis­
tributed - Gaussian, for example - and the Gray code is used to convert 
this signal into PCM, then the individual digits of each code word will 
not have equal probability of being either a 1 or a O. This fact can be 
demonstrated by observing the Gray code assignments illustrated in 
Fig. 1. Because the signal amplitudes are centrally distributed, the center 
codes \vill be used more frequently than the codes at the extremes; the 
second digit, being a 1 for the center codes, will thus be dominated by 
l's. It should be noted that this redundancy is the result of a linear coder 
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Fig. 1 - Gray code digit assignments. 

operating on a Gaussian source. If a more efficient digitizer is used for 
this source, as for example (1) a nonlinear coder or (2) a linear coder 
followed by a digital processor to produce variable length codes or 
block codes, then this redundancy can be removed. The amount of 
redundancy in question is approximately one bit. Efficient coding would 
therefore exclude the use of statistical framing. 

Fig. 2 illustrates the probabilities of 1 's for all the digits; we can see 
that the probabilities of each digit being a 1 obey the following inequali­
ties: 

P(D3 = 1) < P(D 4 = 1) < ... < P(D t = 1) < P(D2 = 1) (1) 

or, equivalently, the probabilities of each digit being a 0 conform to 

P(D3 = 0) > P(D4 = 0) > ... > P(Dt = 0) > P(D2 = 0). (2) 

Any out-of-frame condition is represented by a cyclic permutation of 
the digits so that one of the inequality signs in (1) will be reversed and 
similarly for (2). Any circuit which examines the validity of (1) or (2) 
is therefore a framing detector. A few such circuits will be listed here. 
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Fig. 2 - Gray code digit probabilities. 

(1) Racing counters. In this scheme two counters are connected as 
shown in Fig. 3. When either counter reaches the full count of N, both 
counters are reset to zero. Now if the upper counter is connected in 
such a way that its count is advanced for every 0 in digit 2 and the lower 
counter is similarly connected for digit 3, then according to (2) the lower 
counter will reach full count and reset both counters most of the time. 
However, if the signal is out-of-frame, the counters will be actually 
counting the O's of the digit pairs 3-4, 4-5, ... or 1-2, and according to 
(2) the upper counter will now be able to reach full count and reset both 
counters much more frequently. The reset signal from the upper counter 
can thus be used as an out-of-frame signal. The probability of a false 
out-of-frame signal can be made small by increasing N, the size of the 
counters. 

(2) Reversible counters. A single reversible counter, shown in Fig. 4, 

PULSE WHEN 
DIGIT 2=0 

PULSE WHEN 
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RESET 

RESET 

Fig. 3 - Racing counters. 
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Fig. 4 - Reversible counter. 

can also be used to detect the framing status. The count is increased by 
a 0 and reduced by a 1. When digit 2 is connected to this counter, the 
preponderance of l's will keep the counter at or near the zero-count 
state and prevent it from reaching full count. When the receiver goes 
out of frame, this counter will be controlled by pulses of some other 
digit which, as can be seen from Fig. 2, has at least 50 per cent zeros; 
therefore full count will be reached within a finite time. Framing can be 
accomplished by searching for a word grouping such that the counter 
does not reach full count in a certain time interval. 

(3) RC circuit. If a random pulse train is connected to an RC circuit, 
shown in Fig. 5, then the presence of a pulse will charge the capacitor 
and the absence of a pulse will permit the accumulated charge on the 
capacitor to discharge somewhat. The process is similar to that of the 
reversible counter, except that the charge and discharge rate is now a 
function of the accumulated charge. A threshold circuit monitoring the 
voltage on the capacitor can be used to indicate the framing status. A 
pulse train derived from the received signal such that each pulse indi­
cates a 0 and each space indicates a 1 in the second digit of the Gray 
code is used as an input to the RC circuit. When the receiver is in frame, 
the pulse pattern at the input to the RC circuit will be sufficiently 

RANDOM PULSE TRAIN INPUT TO THE CIRCUIT BELOW 

~ ~I 
PULSE, WHEN 

DIGIT 2=0 

Fig. 5 - Framing with RC circuit. 
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sparse so that the accumulated charge will result in an output voltage 
that seldom builds up to the threshold. However, an out-of-frame con­
dition will result in at least 50 per cent pulses present at the input, and 
the output of the RC circuit will reach threshold in a finite time. 

III. FRAMING CIRCUIT CHARACTERIZATION 

Two figures of merit are commonly used to characterize framing circuit 
performance, (1) misframe rate and (2) reframe time. Misframe rate is 
measured in terms of the probability that the circuit will indicate an 
out-of-frame condition when in fact the receiver is in frame. Reframe 
time is characterized by the probability distribution of the time re­
quired for the receiver to achieve correct framing; this includes the time 
taken to detect the out-of-frame condition. In a conventional framing 
circuit, wherein a known framing pulse pattern is monitored, misframe 
rate and reframe time are sensitive only to the error rate of the trans­
mission medium. Performance is degraded due to masking of the fram­
ing pulses by noise. With statistical framing, performance is more de­
pendent on signal statistics. Let the probability of a 0 in digit 2 be 0.05 
at the transmitter; with an error rate of 10 per cent, the probability of 
a 0 will increase to about 0.14, which is still different enough from 0.5 to 
keep the circuit in frame. The signal itself, of course, will hardly be 
usable at this error rate. On the other hand, a significant change in signal 
statistics at the transmitter may cause a collapse of framing. Care must 
therefore be exercised when the performance of statistical framing 
circuits is to be compared with that of conventional circuits. 

To evaluate the misframe rate and the reframe time of the statistical 
framing circuits, the response of these circuits to random inputs must 
be determined. Unfortunately, the statistical properties of the transient 
response of analog circuits such as the RC circuit excited by a random 
signal have not yet been completely solved. Therefore analytical results 
for framing schemes using only digital counters will be presented here; 
even with these circuits the results are approximate. 

An experimental approach is used to determine the performance of 
the framing scheme using RC circuits. The instrumentation proves to 
be rather simple and some results will be given. 

IV. ANALYSIS OF THE RACING COUNTERS 

To lend some physical meaning to the analytical results, the analysis 
will be accompanied by numerical results for a typical application, 
namely, transmission of a mastergroup of telephone channels by PCM. 
A mastergroup carries 600 voice-grade channels frequency-multiplexed 
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together, and its amplitude distribution is very close to Gaussian if the 
signal load is predominantly message service. l With normal busy hour 
loading the rms value of the signal is approximately ;!-~ of the system 
overload voltage. Under extreme conditions the rms may rise to ;!--s of 
the overload voltage. These figures will be used to calculate the per­
formances of the framing circuits. A nominal sampling rate of 6 X 106 

samples per second is assumed for the mastergroup. This rate will be 
used to translate misframe rate into misframe interval, the mean time 
between misframes. 

We can consider the two racing counters as a sequential machine hav­
ing eN + 1)2 possible states. In Fig. 6 the eN + 1)2 states are depicted 
in a square array A; each of its elements aij represents a state where 
the upper counter has count i and the lower counter j. From aij transi­
tion is possible to 3 adjacent states ai+l,j , ai+l,HI , or ai,HI upon re­
ceiving as inputs 01, 00, or 10 respectively. In this notation the first 
digit represents the input to the upper counter and the second digit 
the input to the lower. Since the counters count only O's, an input of 11 
will not advance the counters and the state will remain at aij . Starting 
from the initial state aoo, the problems are (a) to find the probability 
of reaching the bottom row when digits 2 and 3 are connected to the 
counters (this yields the misframe rate) and (b) to find the probability 
distribution of the time required to reach either the bottom row or the 
right-hand column when other pairs of digits are connected to the 
counters; this leads to the distribution of reframe time when the result­
ing distributions are convolved. 

A convenient technique for finding these probabilities is to use signal 

o o 

o o 

o 0 

o 0 

Fig. 6 - State diagram for racing counters. 
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flow graphs.2 Using x = e-s as the time delay operator, the transitions 
indicated in Fig. 6 are as follows: 

down d = _x_P_(-=0--,-1)-.,-
1 - xP(11) 

xP(OO) 
diagonal g = -1---xP-(1-1-) 

xP(10) 
1 - xP(11) . 

and to the right r = 

(3) 

The denominator [1 - xP(11)] is due to self-loops at each state when 
neither counter advances. In principle, this flow graph can be solved for 
the transmission from the initial state to either the bottom row or the 
right-hand column as rational functions of the delay operator x. From 
these rational functions the total probability of reaching the bottom row 
can be calculated by letting x = 1, and the probability distribution of 
the waiting time can be obtained by a power series expansion of the 
rational functions. However, in a practical situation with counters 
counting up to 16, the calculations become extremely involved, and even 
with 20 decimal digits round-off errors become excessive. Approximations 
are therefore used to estimate the misframe rate and the framing time. 

To calculate the average misframe rate, the substitution x = 1 can 
be made before solving the flow graph of Fig. 6. This reduces complexity 
considerably and one can calculate the probability of reaching the bot­
tom row before the right-hand column. Information about time delay 
is lost and must be estimated independently. 

The flow graph can be solved by observing that 

Q(i,j) = dQ(i - 1,j) + gQ(i - 1,j - 1) + rQ(i,j - 1) (4) 

for 

1~i~N-1 and 1~j~N-1 

where Q(i,j) is the probability that the state aij is reached at any time 
starting from aoo. The d, g, and r are now numerical quantities calcu­
lated from (3) with x = 1. The above iteration formula is valid for all 
states except the border states of the array A. To complete the picture 
we have 

Q(OO) = 1 (5) 

since aoo is the initial state, and going straight down 

Q(i,O) = dQ(i - 1,0) 1 ~ i ~ N. (6) 
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To the right we have 

Q(O,j) = rQ(O,j - 1) (7) 

For the bottom row we have 

Q(N,j) = dQ(N - 1,j) + gQ(N - 1,j - 1) 1 ~ j ~ N - 1 (8) 

and the rightmost column 

Q(i,N) = gQ(i - 1,N - 1) + rQ(i,N - 1) 1 ~ i ~ N - 1 (9) 

and, finally, the lower right state has probability 

Q(N,N) = gQ(N - 1,N - 1) (10) 

since it can be reached only by way of aN-l,N-l • The special treatment 
given the bottom row and right-hand column is necessary because they 
are the end states; from here we start anew at aoo • 

The probability of reaching the bottom row is the sum 
N 

U = L Q(N,j) (11) 
i=O 

which is the probability of an output pulse from the upper counter be­
fore the lower counter reaches count N. This is the probability of a false 
out-of-frame signal when digits 2 and 3 are connected to the counters. 
The recurrence formulas are valid for signals that are independent with 
respect to the past, so that d, g, and r are the same for all states. Statis­
tical dependence of the two digit inputs is considered in their joint 
probabilities. This iterative procedure has been carried out, and some 
numerical results are presented below. 

Assuming a Gaussian distributed input signal the joint probabilities 
of digits 2 and 3 can be determined for normal loading with an rms input 
at >i of the system overload and for extreme loading with an rms input 
at V3 of the overload. The various probabilities are shown in Table I: 

TABLE J - PROBABILITIES OF DIGITS 2 AND 3 

01 00 10 

RMS 3-::1 overload 0.0428 0.0026 0.6826 
RMS .Y3 overload 0.1092 0.0244 0.5468 

substituting these numbers into (3), we have for x 
probabilities shown in Table II. 

11 

0.2720 
0.3196 

1 the transition 
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TABLE II -- TRANSITION PROBABILITIES 

Transition Down Diagonal To the Right 
d g r 

RMS 74 overload 0.0588 0.0037 0.9375 
RMS ~ overload 0.1605 0.0359 0.8036 

The strong tendency to go to the right is quite evident here. The 
probabilities of reaching the bottom row before the right-hand column 
can be calculated from these data using the iteration formulas developed 
above. To translate these probabilities into mean time between misframes 
we proceed as follows. When the signal is in-frame, the lower counter 
almost always attains full count before the upper. For counters of size 
N, the lower counter resets both counters on the average of every N j P 
PCM words, where p is the probability of a 0 in digit 3. The mean time 
between misframes is then N jpU. The results are shown graphically in 
Fig. 7 for various counter sizes. At normal loading and N = 16, the 
mean time between misframes is 1.2 X 1012 words which, at a sampling 
rate of 6 X 106 per second, amounts to 2 X 105 seconds or a little more 
than 2 days. When the rms signal is increased to Ys of overload, this 
mean time deteriorates rapidly to fractions of a second, so that the 
counter size has to be more than 32 to insure adequate reliability under 
severe overload conditions. 

To complete the picture on the racing counters, the framing time will 
be estimated. During search for the correct framing we observe that the 
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Fig. 7 - Reliability of the racing counters. 
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upper counter will be advanced, with O's occurring with probability at 
least 7~, and that it will be able to reach full count without first being 
reset by the lower with probability at least Y2. Thus with M digits in 
each PGM word and assuming the worst case of searching through all 
M - 1 positions, the counters will be reset on the average of 2(M - 1) 
times. Each reset requires on the average of 2N words to either the upper 
or lower counter. A conservative estimate of the average framing time 
for the worst case is therefore 4N (M - 1) words. 

As mentioned earlier, the exact distribution of the framing time is 
difficult to obtain; however, the variance of this distribution can be 
estimated. The framing time distribution can be considered as a com­
pound distribution, where the number of times n either counter reaches 
full count during framing is governed by one distribution and the wait­
ing time t for each reset is governed by another distribution. It is known 
that such a distribution has mean E(n)E(t) and Variance E(n)Var(t) 
+ Var (n)E2(t).3 The distribution of the number of times either 
counter reaches full count before the upper counter reaches full count 
.NI - 1 times is governed by the negative binomial distribution. * With 
the upper counter having probability 7~ of reaching full count, n has 
average 2(111 - 1) as mentioned before and variance 2(lVI - 1). The 
waiting time for each reset is similarly governed by the negative bi­
nomial distribution. With probability 7~ of receiving a 0, the waiting 
time t has mean 2N and variance 2N. The variance of the framing time 
is therefore 2(111 - 1 )(2N) + 2(1l1 - 1) (2N)2; for large N this is ap­
proximately 8(111 - I)N2

• 

For a 9-digit PCM system Jl;I = 9, and if we use N = 32, the average 
framing time for a sampling rate Fs = 6 X 106 per second is 

8 (ll! - 1) N _ 4 X 8 X 32 - 171 
Fs - 6 X 106 - psec 

the standard deviation is 

[8(1l! - 1)N2]! 
Fs 

(8 X 8)! X 32 
6 X 106 

43 psec. 

Since the distribution is the result of many convolutions, it can be ap­
proximated by a normal distribution; with this assumption we can use 
three standard deviations as the confidence limit and estimate the maxi­
mum framing time as 300 psec. During out-of-frame conditions the upper 

* See Ref. 3, p. 253. Actually the negative binomial distribution governs the 
number of times the lower counter reaches full count. This average is Al - 1; 
the total average waiting time is therefore (M - 1) + (M - 1) = 2(M - 1). 
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counter actually receives O's with probability greater than 72, so that 
the estimates are conservative. 

V. ANALYSIS OF 'rIlE HIDVIDW:HllLlD UOUN'rIDH 

The use of a reversible counter allows greater reliability without re­
sorting to large-capacity counters as is necessary for the racing counters. 
The analysis is also simpler, since only one counter is involved. The flow 
graph for a reversible counter is shown in Fig. 8. The probability of a 0 
which increases the count is p, and q = 1 - p is the probability of a 1 
which decreases the count. The count cannot go below zero. The gain 
of the graph for any counter size N can be obtained by standard tech-

q:x: o p:x: p:x: p:x: p:x: p:x: . p:x: 
o~~~ .------?V,-~ 

1 2 3 4'- /~N-l 
q:x: q:x: q:x: q:x: N-2 q:x: 

Fig. 8 - Flow graph for reversible counter. 

niques. The result can be expressed conveniently in the form of a re­
cursion formula for the denominator polynomial 

DN(X) = DN- 1(X) - pqiDN- 2 (X) 

where 

Do(x) = 1 and 

The numerator is simply N N(X) 
are 

pNXN. Some representative results 

and 

Qs(X) 

4 4 px 

s s px 
1 - qx - 7 pqx2 + 6pq2x3 + 15p2q2x4 

- 10p2q3x5 - 10p3q3x6 + 4p3q4x7 + p4q4x8 

(12) 

(13) 

The average time between misframes can be determined from the 
above by differentiation. Thus* 

(14) 

* See Ref. 4. 
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when p and q are for the second digit of the Gray code. The results for 
various counter sizes and for system overload at 4 and 3 times rms are 
shown in Fig. 9. It is seen that with a counter of size 16 and worst-case 
loading the misframe interval is still sufficiently long, 1000 hours at a 
6-mc sampling rate. 

One disadvantage of using the reversible counter is the slow reframing 
process. When the receiver is out of frame the counter can be assumed 
to receive l's and O's with equal probability. Using formulas developed 
above for N = 16 but SUbstituting 0.5 for p and q, one obtains an 
average of 272 words to reach full count. For a 9-digit PCIVI system 
sampled at 6 mc, this amounts to 360 }1sec for the average framing time. 
To shorten the framing time a dual-mode scheme applied frequently in 
conventional framing circuits can be used. The scheme is described in 
more detail below. 

The framing circuit is designed to have two modes of operation. In 
the in-frame mode, the counter size is set at 16 for maximum reliability; 
once the out-of-frame signal is received the counter size is reduced to 8 
to secure fast framing. The logic is depicted in Fig. 10. 

The flip-flop determines the mode of operation. When in frame, the 
flip-flop is reset and the counter must reach count 16 excess O's over l's 
of the second-digit Gray code. When the system goes out of frame, the 
probabilities of l's and O's are equal, and an output from the N = 16 
lead of the binary counter chain sets the flip-flop to the out-of-frame 
mode. In this mode the output from the N = 8 lead of the binary chain 
is used. At the same time a timer is turned on to reset the flip-flop after 

rn w 

10 20 r-----r-------,---.,....----r--. 

~ rn 101St-----+-----.---r-+----l 
a:w 
u.:::E 
u.<{ 
O~ 
a: rn . 
~ ~ 10101-----t----A------:,.jL----1 
:::Ez 
=>w 
Zw 
w3: 
(!)I-
~ ~ 10 5 t-------,A-~""--___+----,------t 
W 

~ 

10~--~4---~8---1~2---7.1( 

N-SIZE OF REVERSIBLE COUNTER 

Fig. 9 - Reliability of the reversible counter. 
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DIGIT 2=0 rA-D-V-AN-C-E--------~N--=-16~r_----------~~ 

DIGIT 2=1 

REVERSIBLE 
COUNTER 

RETARD 

OUT-OF-FRAME 
SIGNAL 

RESET 

N=8 

RESET 

Fig. 10 - Dual-mode reversible counter framer. 

a certain elapsed time. This elapsed time is selected such that it is longer 
than the maximum time required to get an output from the N = 8 
lead when the system is searching but shorter than the minimum time 
required to get an output from this same stage when the correct frame 
is found. "lVlaximum" and "minimum" are used here in a probabilistic 
sense to be defined later. Thus during recovery the timer is reset before 
it reaches the preset time, thereby preventing the flip-flop from resetting 
back to the in-frame mode. When the system cycles back into frame, 
the timer will return the system to the in-frame mode. Each time a 
signal appears at the counter output, the framing counter is inhibited 
one time slot in order to examine the next bit position; the reversible 
counter is also reset automatically to zero. With the proper preset time, 
the system is almost always prevented from cycling past the true in­
frame position. 

To estimate the framing time for this scheme, we again use the exam­
ple of a 9-digit PC1Vl system sampled at 6 X 106 per second. For the 
worst case of searching through all 9 digits the average framing time 
is given by 

(15) 

The effect of incorrect decisions by the timer which cause recycling is 
ignored here. The first term corresponds to detection and the second 
term corresponds to the search through the next 7 positions. The time 
spent in verifying that the last position is the correct one is not included, 
because the system will already be in frame. The above equation is 
evaluated for p = q = Yz and yields the worst-case average framing 
time of 130 fJ.sec. This estimate is again conservative, since O's occur with 
probability greater than Yz in some digits of the Gray code. 
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The exact distribution of the framing time for the worst case may be 
determined by expanding Q16(X )Qs7 (x) in a power series. Again, this is 
difficult to do accurately. To get around this problem an approximation 
to the inverse transform of Qs(x) is determined by noting that the decay 
in the tail of the distribution is dependent mainly on the singularity of 
Qs(x) closest to the unit circle (1.01728 in this case). On this basis the 
inverse transform is approximately 

and 

1.6986 X 10-2 

qs (Ie) = (1.01728 )k-S 
for 

qs(k) = 0 0~k<8 

where 1.6986 X 10-2 is selected so that 
ao 

L qs(le) = 1. 
k=S 

U sing the result and returning to the x domain 

Qs (x) ~ 1.6986 X 10-
2
x

s 

( 1 - 1.0~728) 

k ~ 8 

(16) 

We now make the further approximation of replacing Q16(X) by Qs(x) 
in the product mentioned above. We can therefore deal with the simple 
result given by (16) raised to the 8th power. On this basis a somewhat 
optimistic expression for the distribution of the framing time can be 
readily obtained: 

(1.6986 X 10-2)S(n - 57)! 
pen) = 7!(n _ 64)!(1.01728)n-64 

pen) = 0 0 ~ n < 64. 

The upper tail of p (n) is shown in Fig. 11. 

for n ~ 64 
(17) 

Taking the 10-3 point as the confidence limit and multiplying by the 
sampling period, we get 200 ,usee as the maximum framing time. Since 
the framing process is dominated by the Qs\x) term, the error intro­
duced by the substitution of Qs(x) for the Q16(X) term should not be 
significant. 

Finally, we note that an optimum time must be chosen for the timer 
in Fig. 10 to reset the flip-flop back to the in-frame mode. Selection of 
this time is based on the distributions of waiting time5 for an output 
from the N = 8 lead of the counter, first under the out-of-frame condi-
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Fig. 11 - Distribution of framing time for reversible counter. 

tion and second under the in-frame condition. Summing the first two 
columns of Table I we obtain 0.13 as the probability of a 0 for the second 
digit when the rms input is at Ys of the system overload. For the other 
digits a probability of 0.5 is assumed. Expanding Q8(X) in a power series 
when p = 0.5 and when p = 0.13 yields the desired result. This is plotted 
in Fig. 12. If the time is chosen to be 560 frames, the framing detector 
will be in the wrong operating mode only 0.01 per cent of the time, 

10-1 ~--+-~-+--+----+---~---l 

100 200 300 400 500 
n-NUMBER OF FRAMES 

Fig. 12 - Selection of optimum time for the timer. 
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which means that the framer will seldom cycle past the true frame 
position during the framing process. 

We note for future reference that the distribution of the waiting time 
in Fig. 12 for 1) = 0.5 is a straight line 011 semiiog paper, which indicates 
that it has an expollentiai tail. 

VI. MEASURED FRAMING PERFORMANCE FOR THE RC CIRCUIT 

vVe introduce this section by defining the problem. Illustrated in Fig. 5 
is a typical input to the RC circuit, a random pulse train 

00 

x(t) = L ang(t - nT) (18) 
n=O 

where an is a sequence of independent random variables assuming values 
1 or 0 with probabilities p and (1 - p), and get) is a rectangular pulse 
of height E and width w. When this pulse train is applied to the circuit 
of Fig. 5, the capacitor will charge when a pulse is present and discharge 
otherwise. The charging time constant is 

Te = RIR2 C 
RI + R2 

and the discharge time constant is 

Td = R2C. 

It is also convenient to refer to the attenuation constant 

K= R2 =1-~. 
RI + R2 Td 

(19) 

(20) 

(21) 

Weare interested in the transient response of the circuit y (t), particu-
1arly at times t = w, t = T + w, ... , t = MT + w because they are 
the local maxima. We can proceed step by step: 

y( w) = aoKE[l - exp (-wi Te)] (22) 

yeT) = aoKE[l - exp (-wITe)] exp [-(T - w)ITd]; (23) 

at t = T + w, the charge due to al is added, the charge due to ao de­
cays further with a time constant of either TeOI' T d depending on the 
value of al 

yeT + w) = alKE[l - exp (-wITe)] 

+ {aoKE[l - exp (-wITe)] exp [- (T - W)Td]) (24) 

[al exp (-wITe) + (1 - al) exp (-wITd)]i 
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in general 
lit 

y(AIT + w) = KE[l - exp (-wire)] L: an 
n=O 

exp [-(M - n)(T - w)/ra] (25) 
lit 

IT [am exp (-wire) + (1 - am) exp (-wlra)]. 
m=n+l 

The framing performance of this circuit is related to the probability 
distribution of the first time that the output of the circuit exceeds a 
certain threshold. It is the distribution of the smallest AI such that 

y(MT + w) > threshold. (26) 

To find the distribution analytically from (25) appears difficult. 
Some simplification can be obtained by assuming that the widths of the 
pulses are small or hy assuming that the charge and discharge time 
constants are the same. Under either of these conditions the product in 
(2t1) disappears and the output is essentially of the form 

M 
" (3(lIt- n l Z = L.-J an 0<(3<1. (27) 
n=O 

The behavior of the random variable z when AI ~ 00 has received some 
attention,4 but the distribution of the first passage time of z with respect 
to some threshold is still difficult to obtain. 

Here the experimental approach is taken; the circuit used is depicted 
in Fig. 13. The input is derived from an analog-to-digital converter with 
a Gaussian signal as input. The output of this converter is in Gray code. 
By adjusting the level of the input signal and by selecting the various 
digits of the Gray code, a pulse train with any desired pulse density may 
be obtained. The digital timer measures the waiting time; it is started 
at the closing of the input switch and stopped by the threshold circuit. 
The threshold circuit also opens the input switch and signals the re­
corder to write the timer 'output on tape. A delay circuit resets the digital 
timer and initiates the next cycle of measurement after the RC circuit 
has returned to the rest condition. Each timing and recording operation 
takes about one msec; about a million measurements were made and 
recorded in a matter of minutes. A simple computer program reads the 
data and compiles the cumulative distribution of these data as well as the 
mean and standard deviation. 

Some qualitative results concerning the effects of the various parame­
ters will be given below. First, for all of the combinations of the parame-
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Fig. 13 - Measuring distribution of first passage time. 

tel'S chosen, the measured distributions tend to have an exponential tail; 
they plot as straight lines on semilog paper (see, for example, Fig. 15 
below). An intuitive argument can be given for this result. If we suppose 
that the threshold is set very low compared to the average output of the 
circuit, at voltages below this threshold the circuit acts more like an 
integrator than an RC circuit because it charges almost linearly and 
discharges very little between pulses. The distribution should therefore 
be similar to the distribution of the waiting times for the nth success in 
a sequence of Bernoulli trials, which has an exponential tail. Now we 
suppose that the threshold is set high compared to the average output 
of the circuit. Near this threshold, the circuit decays rapidly between 
pulses, so that a succession of many pulses in a row is necessary to drive 
the circuit over the threshold. The problem is now similar to the first 
occurrence of n consecutive successes in a sequence of Bernoulli trials, 
which again has an exponential tail. Finally, we can suppose that the 
threshold is set about equal to the average output of the circuit when the 
probability of a pulse at the input is 0.5. Near this threshold the decay 
due to an absence of a pulse is about equal to the charge contributed by 
a presence of an input pulse. The circuit therefore behaves much like a 
reversible counter in this region. In the previous section this has been 
shown to have an exponential tail. All of these arguments are of course 
approximate, but, lacking a complete theory, they serve to provide some 
insight. Knowledge that the distribution of the waiting time has an 
exponential tail enables us to use the techniques developed for the re­
versible counter to estimate the framing time distribution of this circuit. 



3004 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964 

The second qualitative result is that the measured distributions of the 
first passage time for the various circuits are very much the same as long 
as their composite time constants and relative threshold settings are the 
same. By "composite time constant" is meant the time required for the 
output to reach (1 - e-1

) of the maximum output when all pulses are 
present at the input. By "relative threshold" is meant the threshold as 
a fraction of the aforementioned maximum output. The different situa­
ations are illustrated in Fig. 14. 

The composite time constant and the maximum output can te com­
puted from (25), setting all an's to 1. 

y(l'JI[T + w) 

= KE[l - exp (-wl'Tc)] t exp - [(111 - n) (T - w + ~)J. (28) 
n=O Td Te 

Letting 111 approach infinity we obtain the maximum output 

Ymax = KE [1 - exp (-wITe)] . 

[1 - exp - (T ~ w + ~) ] (29) 

The expression inside the summation in (28) can be rewritten as 

exp - [T(M - n) C ~d W' + ~J ] (30) 

where w' = T Iw, the duty cycle of the pulses. From this we can see that 
the composite time constant is 

(
1 - w' Wl)-l --+- . 

Td Te 
(31) 

The third qualitative result is the following. For circuits and threshold 
settings such that with equal probability of pulses and spaces at the 
input the distributions of the first passage time are the same, the average 
first passage time for low probability of input pulses is longer when the 
relative threshold is higher. Relative threshold is defined as above. 
This result can be explained by using arguments similar to the first re­
sult. At low threshold settings, the circuit acts as an accumulator so 
that the average first passage time is inversely proportional to the aver­
age pulse density. On the other hand, for high threshold settings, the 
first passage time depends on the occurrence of many consecutive pulses; 
the probability of this occurrence decreases exponentially with the 
average pulse density. This result is directly applicable to the framing 
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MAXIMUM OUTPUT WITH ALL PULSES PRESENT 

MAXIMUM OUTPUT WITH ALL PULSES PRESENT 

TIME~ 

Fig. 14 - Two situations depicting different parameter settings but with sub­
stantially the same distribution of the waiting time to first passage of the thresh­
old voltage. 

problem. For the RC circuit, the dual-mode operation controlled by a 
timer used for the reversible counter is not necessary. With appropriate 
choice of circuit parameters and threshold, one can achieve fast framing 
and low misframe rate at the same time. To what extent the threshold 
can be adjusted to improve framing performance depends on the stability 
of the circuit. When the threshold is set near the level corresponding to 
all pulses present, a small drift in any of the parameters will cause a 
large change in reliability. 

The framing performance of a typical RC circuit will be given here. 
Again we assume a 9-digit PC1VI system with 6-mc sampling rate. The 
parameters are as follows: 

pulse width = 50 per cent duty cycle 
charging time constant = 0.44 Itsec 

discharge time constant = 1.2 Itsec 
composite time constant = 0.64 Itsec. 

With the probability of a pulse set at 72, the variation of the distribu­
tion of the waiting time with threshold setting is illustrated in Fig. 15. 
The variation of the misframe interval and average framing time with 
threshold setting is illustrated in Fig. 16. If the threshold is chosen such 
that the misframe interval is 105 seconds (about one day), the average 
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FIRST PASSAGE TIME IN MICROSECONDS 

Fig. 15 -- Distribution of the first passage time. 
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Fig. 16 -- Performance variation of the RC framer with threshold settings. 
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first passage time is about 20 tLsec. This yields an average framing time 
of 160 tLsec if 8 positions are to be cycled through. Using the results of 
the reversible counter as a guide, the maximum framing time with 99.9 
per cent confidence is about 250 tLsec. 

VII. SUMMARY 

This paper has considered the possibility of framing a PCM signal 
by utilizing the statistics of the code digits. Three schemes for testing 
digit statistics have been proposed and their performances analyzed or 
measured. Statistical framing is shown to be feasible and effective 
whenever the signal statistics satisfies cert.ain weak conditions. 

The authors wish to acknowledge the help of H. H. Henning and 
F. P. Rusin for design and construction of equipment used and assistance 
given in obtaining the experimental results. The encouragement of M. 
R. Aaron is also appreciated. 
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Prolate Spheroidal Wave Functions, 
Fourier Analysis and Uncertainty 

-IV: Extensions to Many 
Dimensions; Generalized 

Prolate Spheroidal 
Functions 
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In two earlier papers* in this series, the extent to which a square-integra­
ble function and its Fourier transform can be simultaneously concentrated 
in their respective domains was considered in detail. The present paper 
generalizes much of that work to functions of many variables. 

In treating the case of functions of two variables whose Fourier transforms 
vanish outside a circle in the two-dimensional frequency plane, we are led 
to consider the integral equation 

')'cp(x) = 10
1 

J N(CXY) Vcxycp(y)dy. 

It is shown that the solutions are also the bounded eigenfunctions 
diiJ erential equation 

( 
2) d

2
cp dcp ( 2 2 i - N

2
) I-x --2x-+ x-cx +--- cp=O 

dx2 dx x2
' 

(i) 

of the 

(ii) 

a generalization of the equation for the prolate spheroidal wave functions. 
The functions cp (called "generalized prolate spheroidal functions") and the 
eigenvalues of both (i) and (ii) are studied in detail here, and both analytic 
and numerical results are presented. 

Other results include a general perturbation scheme for differential equa­
tions and the reduction to two dimensions of the case of functions of D > 2 
variables restricted in frequency to the D sphere. 

* See Refs. 1 and 2. 

3009 
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1. INTRODUCTION 

In two earlier papers1
,2 in this series, the extent to which a square-in­

tegrable function and its Fourier transform can be simultaneously con­
centrated was considered in detail. In that analysis, the eigenfunctions 
and eigenvalues of the finite Fourier transform played a key role. These 
functions, defined for 1 x 1 ~ 1 by the integral equation 

aj1/1i(x) = L: eiCXlI1/;j(y)dy, (1) 

can be continued analytically throughout the complex plane. They 
possess a number of special properties that make them most useful for 
the study of bandlimited functions. The functions are complete in the 
class of bandlimited functions; they are orthogonal in (- 1,1) and also 
in (- 00,00 ); the 1/;j are also the eigenfunctions of the integral equation 

X1/;(x) = r1 
sin c(x - y) 1/;(y)dy 

Ll 7I"(x - y) 

X = ~ 1 a 12 
271" 

(2) 

whose kernel is positive definite; 1/;0, the eigenfunction of (2) belonging 
to the largest eigenvalue, is in an appropriate sense most concentrated 
among bandlimited functions of given energy. These and other proper­
ties are discussed in detail in Refs. 1 and 2. Some familiarity with these 
papers will be assumed in the following. 

In the present paper we consider certain aspects of the generalization 
of this earlier work to functions of many variables. Many of the structural 
results of Refs. 1 and 2 (as was pointed out there) depend only on the 
fact that the operator defined by the right of (2) is completely con­
tinuous and positive definite. The generalizations to D dimensions are 
perfectly straightforward: we comment briefly on some of them in Sec­
tion II, but do not belabor them. Our main concern here is with details 
of the explicit solution of some of the integral equations that are multi­
dimensional generalizations of (1). An unexpected dividend of this work 
is that one of these equations is of interest in the theory of masers. 

In Section III, we point out some general features of the integral equa­
tions to be considered. Section IV treats the case of functions of two 
variables whose Fourier transforms vanish outside a circle in the two­
dimensional frequency plane. The analog of (1) is shown to be the in­
tegral equation 
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O~r~1. (3) 

This integral equation also describes the modes in a maser interferometer 
with confocal spherical mirrors of circular cross section (Ref. 3, p. 488). 
The eigenfunctions of (3) are shown to be the bounded solutions of 

2 d
2
cp dcp ( 2 2 .1 - N

2
) (1 - x ) - - 2x - + X - c x - 4 cp = 0 

dx2 dx X2 
(4) 

that vanish at x = O. 
We call the solutions of (4) generalized prolate spheroidal functions. 

Section V is devoted to their study: 5.1 treats the case of small c; 5.2 
and 5.3 treat various asymptotic cases. * 

In Section VI, the results of Section V are used to discuss the eigen­
values of (3). Various asymptotic forms for these quantities are derived. 

Section VII treats the case of functions of D > 2 variables whose 
Fourier transforms vanish outside a sphere in the D-dimensional fre­
quency space. It is shown that this more general problem can be reduced 
completely to the case already treated in Sections IV, V and VI. 

Finally, in Section VIII we present some numerical detail about some 
of the eigenfunctions and eigenvalues encountered. Applications of these 
results will be presented elsewhere.9

• 10 

II. GENERALIZATIONS OF EARLIER WORK 

We denote points in Euclidean space of D dimensions, ED, by vectors, 
x = (Xl, X2 , ••• ,XD). A square-integrable function of D variables, 
lex), is said to be R-limited if it can be represented as a Fourier integral 

lex) = (27r)-D L exp (ix·y)F(y)dy (5) 

over the bounded region R. Here X· Y = L XiYi is the usual scalar 
product and we write dy for II dy i . If f is of total energy A, then by 
Pal'seval's theorem 

A = r l.r(x) 12dx = (27r)-D r I F(y) 12dy, 
'MD 'R 

whereas the energy of f in the bounded region S is 

* Some of the results of Sections IV and V have been developed independently 
by J. C. Huertley,ll who was led to consider (3) from its laser applications. 
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i \ fez) \2dz 

= Is dz(27r)-2D L dx exp (iz·x)F(x) L dy exp (-iz·y)F(y) 

= (27r)-D JR dx L dy Ks(x - y)F(x)F(y) 

where 

Ks(x - y) = (27r)-D Is exp [iz· (x - y)]dz (6) 

and an overbar denotes complex conjugate. The largest fraction of energy 
that an R-limited function can have in the region S is therefore the 
maximum value of the fraction 

taken over all functions F square-integrable through R. This maximum 
is the largest eigenvalue of the integral equation 

Aif;(x) = f Ks(x - y)if;(y)dy, 
R 

x E R, (7) 

which is the analog of (2). 
The kernel (6) of (7) is positive definite, since 

JR dx JR dy Ks(x - y)f(x)J(y) 

= (2.T
D is dz I 1. dx cxp (izox)f(x) r > 0 

whenever 

By well-known theorems (see Ref. 4, Chap. 6), the eigenvalues of (7) 
are real and positive and the eigenfunctions, orthogonal on R, are com­
plete in the class of functions square-integrable in R. A complete dis­
cussion of the silnultaneous concentration of square-integrable functions 
in ED and their Fourier transforms can be given in terms of the largest 
eigenvalue of (7) as in Hef. 2, Theorem 2. 

The right member of (7) can be used to extend the domain of defini-
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tion of if;. vVe define 

if;(x) = ~ In Ks(x - y)if;(y)dy, x E ED. 

Then for two different eigenfunctions of (7) 

= "\ ~, . f dx f dy if;i(X)if;i(y) f dz Ks(z - x)l?'s(z - y). 
I\tl\J R R ED 

To evaluate the innermost integral here, we observe from (6) that J{s is 
given as a Fourier transform, so that from Parseval's theorem, 

f !{s(z - x)l?'s(z - y)dz 
ED 

= (27r)-D Is du exp [-iu· (x - y)] = Ks(x - y). 

One then finds 

The orthogonality of the if;i over R thus implies orthogonality over ED 
as well. 

Other results of the one-dimensional case extend as easily to D di­
mensions, but we do not dwell further here on this general structure. 

III. SYMMETRY CONSIDERATIONS 

In what follows, we shall be concerned with the explicit solution of a 
number of instances of (7). Considerable simplification occurs when the 
region R is symmetric, i.e., when x E R implies -x E R, and when S is a 
scaled version of R. We write S = cR where x E cR if and only if xl c E R 
with c a positive constant. We restrict our attention henceforth to this 
case. 

Somewhat simpler than (7) is the integral equation 

aif;(x) = In exp (icx· y)if; (y)dy, xER (8) 
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which is a natural generalization of (1). We shall show in this section 
that solution of this equation is completely equivalent to solution of (7) 
when the symmetries just discussed maintain. We shall accordingly here­
after take (8) as our equation of fundamental concern. 

From the symmetry of R, it readily follows that if 1/J(x) is a solution of 
(8), so also is 'if; ( -x), so that both 'if;e(X) = 1/J(x) + 1/J( -x) and 
'if;o(x) = 'if;(x) - 'if; ( -x) are solutions as well. The eigenfunctions of (8) 
can be chosen to be either even or odd functions of x. 

The complex conjugate of (8) is 

ex~(X) = i exp (-icx·y)~(y)dy, x E R. (9) 

Multiply (8) by ~(x) and integrate over R. Multiply (9) by 1/J(x) and 
integrate over R. Combining these equations, one finds on using the sym­
metry of R that 

(a ± ex) L 'if;(x)~(x)dx 
= i dx i dy exp (icx·y)~(x)['if;(y) ± 'if; ( -y)]. 

If then 'if; is even, by choosing the negative sign in this equation, one 
obtains a - ex = 0, whereas if 'if; is odd, by choosing the plus sign, one 
finds a + ex = O. The eigenvalues of (8) associated with even eigenfunctions 
are real: the eigenvalues of (8) associated with odd eigenfunctions are pure 
imaginary. It follows then that (8) is equivalent to the pair of equations 

(3e'if;e(x) = L cos CX,y'if;e(y)dy 

(3o'if;o(x) = L sin cx·y'if;o(y)dy 

(10) 

(11) 

in which (3e and (30 are real. These equations have real symmetric kernels 
and we can fall back on the extensive theory in the literature treating 
such equations. We observe that the eigenfunctions of (10) must be 
even and that (3e = 0 cannot be an eigenvalue of this equation, for by 
Fourier theory the only even square-integrable function in R for which 

L cos cx·y'if;(y)dy = 0, xER 

is'if;(y) == O. It follows then from the theorem on page 234 of Ref. 4 that 
the eigenfunctions of (10) are complete in the class of even functions 
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square-integrable in R. A similar argument shows that the solutions of 
(11) are complete in the class of odd functions square-integrable in R. 
The solutions of (10) can be chosen real and orthogonal in R, as can the 
solutions of (11). Solutions of (10) are automatically orthogonal to solu­
tions of (11) by symmetry. 

We have now shown that the solutions of (8) are complete in the class 
of functions square-integrable in R. The eigenfunctions can be chosen 
real, orthogonal, and either even (in which case the eigenvalue a is real) 
or odd (in which case a is pure imaginary) . We henceforth assume the 
'if; so chosen. 

By iterating (8), one finds that the 'if; also satisfy 

A'if;(X) = L Kc(x - y)'if;(y)dy (12) 

A = UJ lal' (13) 

with 

K,(x) = c:r L exp (icz'x) dz = (2,1T
D L ,"'x dz (14) 

which is (7) in slightly altered notation and is the D-dimensional ana­
log of (2). Since the solutions 'if; of (8) are complete, it follows that they 
are also a complete set of solutions of (12). As was asserted, to solve (12), 
it suffices to solve (8). 

The eigenfunctions of (8) can be extended by demanding that equa­
tion to hold for all x E ED . It is then easy to show that the extended 'if; 
are orthogonal in ED and that they are complete in the class of cR-limited 
functions. 

IV. THE CASE D = 2, R A CIRCLE 

We now treat in detail the equation 

a'if;(xl ,X2) = L eic (XIYl+X2Y2)'if;(Yl ,Y2)dy1dY2 (15) 

where R is the unit circle y12 + y22 ~ 1. Change to polar coordinates 
gives 

(16) 
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on making the usual Bessel function expansion. Here 1/;(r,O) is exhibited 
as a Fourier series in o. A simple argument then gives for the eigenfunc­
tions of (15) and their corresponding eigenvalues 

where 

cos NO, 
1/;N,n(r,() = RN,n(r) . NO 

sm , 

N = 1,2, ... , 

lXo,n = 27r{3o,n 

n = 0,1,2, ... 

1 

(3N,nRN,n (r) = 10 J N(crr')RN,n (r')r' dr', o ~ r ~ 1, 

n, N = 0,1,2, .... 

(17) 

(18) 

All the eigenvalues of (15), except possibly the lXo,n have at least a two­
fold degeneracy inherited from the symmetry of the circle. 

Our task now is to study the integral equation 
1 

(3R(r) = 10 J N(crr')R(r')r' dr', 0 ~ r ~ l. 

It is convenient to make the substitutions 

"I = VC{3, ep(r) = v'TR(r) 

to obtain the symmetric equation 

"Iep(r) = 10
1 

J N(crr') Vcrr'ep (r') dr', O~r~l. 

(19) 

(20) 

Note that ep(O) = o. We shall show that the eigenfunctions epN,n(r) of 
(20) can be obtained as the solution of a Sturm-Liouville differential 
equation. 

Let 

](N(X) = IN(x)v'x 

and let the operator M be defined by 

[M1/;](x) = 10
1 

KN(CXY)1/;(y)dy. 

Denote by Lx the differential operator 

d 2 d (1. - N
2 2 2) Lx = dx (1 - x ) dx + 4 x2 - ex. 

(21) 



PHOLA'l'E SPHEHOIDAL WAVE .FUNC'l'lONS -IV 3017 

Consider now 

. K/ (Cxy)"'(y)l:~o + J.' ",(y) [C'X'(l - y')KN"(cxy) 

- 2cxyK'(cxy) + (t ~,N' - C'y') KN(CXY) ] dy 

(22) 

where the right member is obtained by integration by parts. Here primes 
denote differentiation of the function in question with respect to its 
argument. The integrated expression vanishes if 1/;(0) = 0, since from 
(21), KN(O) = O. Also from (21) and the differential equation satisfied 
by Bessel functions, one has the identity 

( 
1 N

2
) KN"(CXY) = - 1 + 4 :2 2 KN(CXY). 

cxy 

Substitute this expression in (22) to yield 

[111L1/;](x) = 11 1/;(y)[ -2cxyK' (cxy) 

(23) 

+ Ci - N 2 + c2x2y2 - C2X2 ~ c2y2)K(cxy)]dy, (24) 

1/;(0) = O. 

On the other hand, by direct calculation and use of (23), one has 

[LL111/;] (x) = Lx 11 KN(CXY)1/;(y)dy 

~ J.' ",(y) [(1 - x')c'y'K/(cxy) 2xcyK/ (cxy) 

(
1. - N

2 2 2) J' + 4 x2 - ex KN(CXY) dy 

~ { "'(11) [ - 2xcllK / (CTY) + { - (1 - x')c'y' 

( 
1. - N

2
) 1. - N

2 2 2} ] . 1 + 4c2X2y2 + 4 x2 - ex KN(CXY) dy 
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= fo
l

1f;(y)[-2CXYK/(cxy) + (1- N 2 + c2x2y2 

_ C2X2 - c2y2)KN(CXy)]dy 

[ML1f;] (x) 

on comparison with (24). 
Let C be the class of functions square-integrable in (0,1) and twice 

differentiable there that vanish at the origin. Operating on functions in 
C, the operators M and L commute. It follows that solutions of 

Lxcp(x) = - xcp(x) 

in C are also solutions of (20). Consequently, we next turn our attention 
to the differential equation. 

( 2) d
2
cp dcp (1 - N

2 
2 2) ( ) 1 - X dx2 - 2x dx + x2 - C X + X cp = O. 25 

V. GENERALIZED PROLATE SPHEROIDAL FUNCTIONS 

When N = ! in (25), this equation reduces to the equation for pro­
late spheroidal functions of order zero. We shall refer to bounded solu­
tions of (25) for arbitrary values of N as generalized prolate spheroidal 
functions. These functions are similar in many respects to prolate sphe­
roidal functions, as the development that follows shows. Bounded solu­
tions of (25) exist only for discrete values of X, say XN,n , n = 0,1,2, ... 
which we label so that XN,o ~ XN,l ~ XN,2 ~ .... We denote the corre­
sponding eigenfunctions by CPN,n(X). 

5.1 Expansions in Powers of c 

Consider first the case when c = O. Substitution of the series 
00 

"'" a+2j cp = L...J ajX 
o 

into (25) shows that we must have 0: = ! ± N. If N ~ 0, the negative 
sign leads to solutions having a singularity at x = O. If N = 0, a second 
solution can be found, but it has a logarithmic singularity at x = o. 
We must have therefore 

0: = ! + N. 

The coefficients are given by the recurrence 

(0: + 2J) (0: + 2j + 1) - X 

aj+1 = aj (0: + 2 j + 2)( 0: + 2 j + 1) + 1 - N2' 
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For large j, ai+l/ai ~ 1, so unless the series terminates, this solution 
becomes unbounded as x ~ 1. Choosing X to terminate the series at 
x a +2n, we have 

X = XN ,n (0) = (N + 2n + !) (N + 2n + V (26) 

for the eigenvalues of (25) when e = O. The series solution now becomes 
(when ao is set equal to unity) * 

N+.l 
cp = TN,n(x) = X 2RN,n(x) 

RN,n(x) = F(-n,n + N + l;N + 1;x
2
) 

(27) 

where 

F (a b· e' z) = 1 + ab ~ + a (a + 1) b (b + 1) Z2 + ... 
" , e 11 e(e + 1) 2! 

is the usual Gaussian hypergeometric function. The polynomial RN ,n (x) is 
readily expressed in terms of Jacobi polynomials Pn (a,f3\x) (Ref. 5, 
Chap. IV). Adopting the notation of Szego, we have 

RN,.(x) = (n ~ Nr1 

p.(N,O) (I - 2x') , (28) 

From (27), (28) and the known properties of the Jacobi polynomials, 
one finds 

TN,.W = (-1)" (n ~ Nf 
{ 7'N,.(x)TN, •• (x)dx = 0".' ( + N) 
° 2 (2n + N + 1) n 

n 

2(n + N + 1)2(2n + N)RN,n+l 

(2n + N + 1) [( 2n + N) (2n + N + 2) (1 - 2X2) 

+ N 2
]RN,n- 2n2(2n + N + 2)RN,n-l 

(2n + N)x(1 - x
2
) d~ RN,n (x) 

= n[(2n + N) (1 - 2X2) - N]RN,n(x) - 2n2RN,n_l(X) 

(29) 

(30) 

x2TN,n(X) = 'YN,/TN,n+1(x) + 'YN,noTN,n(X) + 'YN,n-1TN,n_l(X) (31) 

* It has been called to our attention that our TN,n(x) are closely related to the 
Zernike polynomials. These latter arise in the diffraction theory of aberrations. 12 
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1 "(N,n = 
(n + N + 1)2 

(2n + N + 1 )(2n + N + 2) 

° 1 ( N
2 

) 
"(N,n = 2 1 + (2n + N)(2n + N + 2) 

-1 
"(N.n 

2 n 
(2n + N) (2n + N + 1) 

I TN,n(X) I ~ 1 for 0 ~ x ~ 1. 

(32) 

The function TN,n(x) has n zeros in (0,1]. We define TN,n(x) = 0 if 
n < o. 

Returning now to (25) for arbitrary values of c, we attempt a power 
series solution in c2 by writing 

(33) 

00 

'"' 2j X = XN,n(C) = XN,n(O) + L...J C aj(N,n), (34) 
i=1 

where the Q's and a's are independent of c. When this latter quantity is 
zero, this solution reduces to that already found. As is shown in Appendix 
A, the Q's and a's can be determined recursively in an elementary man­
ner. We have 

i 

Qj(N,n,x) L: A/(N,n)TN,n+k(X) (35) 
k=-i 

with 
1 

ai(N,n) = L: A_/-1(N,n)"(N,n_/, j = 1,2, ... (36) 
k=-1 

i 1 

= L: ak(N,n)Amj-k(N,n) L: A_k+mj-\N,n)"(N,n-k+m\ (37) 
k=l k=-1 

m = -j, -j + 1, ... ,j; j = 1,2, .... 

Here A/(N,n) is defined to be zero if I k I > j, or k < -n or k = 0 
and j ~ O. In addition we have Am\N,n) = 0, m ~ 0, Aoo(N,n) = 1, 
ao(N,n) = O. For use in (36) and (37), the ,,('s of (32) must be defined 
so that for n < 0, "(N,n1 = "(N,n ° = "(N,n+1-1 = O. 

To terms of order c2 the eigenfunctions and eigenvalues of (25) are 
explicitly 
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XN,n(C) = (2n + N + 0 (2n + N +~) 
1 ( N

2 

) 2 ( 4) + 2" 1 + (2n + N) (2n + N + 2) e + 0 e 

(38) 

'PN,n (x) T () + ( n
2
TN,n_l(X) 

N,n X 4(2n + N)2(2n + N + 1) 

(n + N + 1)2TN,n+l(X) ) 2 ( 4) 
- 4 (2n + N + 1) (2n + N + 2) 2 e + 0 e . 

(39) 

In view of (35), the series (33) can be formally regrouped to give 
co 

'PN,n(X) = L d/,n(e)TN,j(x). (40) 
o 

Substitution in (25) yields the three-term recurrence 

This recurrence can be used to determine the d j N, n and the eigenvalues 
in a manner quite parallel to that used in the study of prolate spheroidal 
wave functions. The method of Bouwkamp6 can be adopted and used 
advantageously for the computation of the d/,n and the eigenvalues for 
values of e too large to permit effective use of (33) and (34). The d's 
can, of course, be expressed in terms of the A's of (35). One has 

co 

dn+/,n(e) = L A/(N,n)e2Z, j = -n, - n + 1, .... (42) 
l=liI 

The series solutions (40) or (33), (35) for the generalized prolate 
spheroidal function are, of course, valid only for 0 ~ x ~ 1. To obtain 
a series valid for x > 1, we use (20) and the fact (established in Appendix 
B) that 

J,' IN(cxy) Vexy TN,n(y)dy = (N : nf IN+~:;CX), (43) 

The solution (40) then extends for all x by the series 

( ) _ 1 t d.N , n J N Hi+! (ex) 
<{:N,n X - 'YN,n ;~o' (N : j) Vex (44) 
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which is obtained by inserting (40) in the right of (20) and integrating 
term by term. 

The eigenvalue 'YN,n can be expressed in terms of the d/,n. Divide 
both sides of the equation 

'YN,nCPN,n(X) = 11 IN(exx') yexx' CPN,n(x')dx' (45) 

by xN +! and take limits as x ~ O. From (27) and (40), we see that the 
left member of (45) becomes 

'YN,n L: d/,nRN,n(O) = 'YN,n L d/,n. 
i i 

Since IN(x)Yx,-.v (X/2)Nyx/ r (N + 1), the right of (45) becomes 

1 [1, NH " 
r (N + 1) 2N 10 (ex) CPN,n (x )dx 

N+! 1 
_ e '" N ,n ['N+! (')' 
- r(N + 1)2N f=o dj 10 X TN,j X dx 

N+! 1 

= r(N
e+ 1)2Nkodt,n i TN,o(x')TN,j(x')dx 

r (N+ 2)2N+1 

where we have used successively (40), (27) and (30). The combined 
result is 

'YN,n = 2N+1r(N + 2) L d/,n' 
1=0 

(46) 

The integral equation (45) is also useful for obtaining the asymptotic 
behavior of CPN,n(X) as x ~ CI'J. We have 

( ) _ 1 l cX 

d N+IJ ( ) CPN,n(u/ex) 'YN,nCPN,n X - - u U N U N+ 1 

~ 0 u • 
(47) 

on letting exx' = u. Now (UN+1JN+l)' = (UN+1J N) , so that (47) can be 
integrated by parts to yield 

'YN,nCPN,n (x) = ~ [UN+1J N+1(U) CPN,n S~ex) ICX 
ex u 2 0 

_l CX 

d N+1J ()!!:... CPN,n(u/ex)] U U N+l U d NH 
o u u 
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1 
= - vex CPN,n (1)J N+l (ex) - R. 

ex 

For large x, this becomes 

12 cos [ex - (N + 1) (77"/2) - (77"/4)] 
"(N,nCPN,n (x) = CPN,n (1) 11 ;. ex 

(48) 

This of course is consistent with (44). If now we define CPN ,/ (x) to be a 
generalized prolate spheroidal function normalized so that for large x 

cpN,n * (x) I""'<o.J _co_s_k_x_-_(_N_+_l_)_( 77"_/_2_) __ (77"_/_4_)] 
ex 

( 48) gives us 

"(N,n = ~ CPN,n *(1) 

a relation that will be useful to us later. 

5.2 Asymptoties for Fixed n and Large e 

(49) 

(50) 

The behavior of generalized prolate spheroidal functions for large c 
can be determined by methods quite parallel to those used in Ref. 7 in 
discussing the prolate spheroidal functions. Five different asymptotic 
forms for CPN,n(X) are found, depending on the x range under considera­
tion. These are properly joined to furnish a solution for all x. For most of 
these regions, we content ourselves here with writing only the leading 
term of the asymptotic development. 

In (25) we make the substitution t = xyc. There results 

Lcp - (1/c)Mcp + (x/c)cp = 0 (51) 

where the operators are given by 

d2 
1 N 2 

L=_+4- _t2 

dt2 t2 

2 d2 d 
M = t dt2 + 2t (it • 

(52) 

Now the equation 

LU + AU = 0 
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has solutions 

An = 4n + 2N + 2, n = 0,1,2, ... 
(53) 

(see Ref. 5, p. 99) where Ln (a) (x) is the Laguerre polynomial of degree n 
in Szeg6's notation. The function UN ,n (t) has n zeros in (0,00). This 
suggests attempting solution of (51) for large c by the series 

00 

({IN,n l = UN,n(t) + L (l/ci )Si(N,n,t) (54) 
i=1 

00 

XN,n(C)/C = 4n + 2N + 2 + L (l/c i)bi (N,n). (55) 
i=1 

We now note that 

MUN,n(t) = }.LN,1/UN,n+2 + }.LN,noUN,n + }.LN,n-1UN,n_2 (56) 

where 

}.LN,n1 = (n + 1) (n + 2) 

}.LN,no = -[(2n + 1) (n + N + !) + 1] (57) 

}.LN,n-1 (n + N) (n + N - 1), 

a fact which can be readily derived from (52), (53) and the properties 
of Laguerre polynomials. The perturbation scheme of Appendix A applies 
therefore, and we find at once that 

i 

Sj(N,n,t) = L: B/(N,n) UN,n+2k(t) 
k=-i 

where the B's and b's are given by the recurrence 
1 

bi(N,n) = L: B_/-\N,n)}.LN,n-2k\ j = 1,2, ... 
k=l-1 

i 
8mBm

i (N,n) L bk(N,n)Bmi-k(N,n) 
k=1 

1 

L B_k+mi-\N,n)}.LN,n+2k(m - k) 
k=-1 

m = -j, -j + 1, ... ,j; j = 1,2, ... 

(58) 

(59) 

with the convention B/(N,n) == 0 if I k I > j, or k < -n or k = 0 
andj =F- O. We take Bmo(N,n) = 0, m =F- 0, Boo(N,n) = 1, bo(N,n) = O. 
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In this manner we obtain explicitly 

XN,n(e) = (4n + 2N + 2)e - [(2n + l)(n + N +!) + 1] 

_ (N + 2n + 1) [2n2 + 2n(N + 1) + N + 2] + 0 (~) 
4e e2 

(60) 

which gives the behavior of XN,n for large c. 
We write the solution just found as 

00 1 i . 
C{'N,n

1
(X) = UN,n(t) + L i L B'/(N,n) UN,n+2k(t) , 

i=1 e k=- i ( 61 ) 

t = xVc. 

The right side of (61) is ordered in powers of e -1 when expressed in terms 
of the variable t. However, if t = xVc is substituted, the terms are no 
longer so ordered since UN,m+2(XVc)/UN,m(XVc) = O(c). The range 
of x values for which the first few terms of (61) furnish information 
about C{'N,n vanishes as e gets large. We shall use (61) only for 0 ~ x ~ 
l/cl . 

To obtain an asymptotic form for C{'N,n(X) for e-l ~ x ~ 1 - (l/e) 
it is convenient to write C{'N,n(X) = xN+!if;N,n(X) and set y = ~. 
Equation (25) now becomes 

(1 - 12) d
2
if; + [~ - (2N + 3) ] dif; 

y dy2 Y Y dy 

+ [XN,n - C' - (N + ~)( N + ~) + cVJ,p = 0, 

(62) 

Into this equation, substitute XN,n(C) as given by (60) and set 

eCY (1 - y) n 

One finds then for v, 

dv +0 (~)= O. 
dy e 

Accordingly we write 

2 XN+~ (1 - y) necy 

C{'N,n (x) I"'-' yy(l + y)N+n+l (63) 
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To obtain an asymptotic form for CPN,n(X) valid near x = 1, set 
y = sic in (62) and again use (60) for XN,n • There results 

d
2

1/; + ! d1/; _ 1/; + 0 (!) = o. 
dy2 S ds c 

Accordingly we write 

cP N} ( x) t-v xN +! I 0 ( cy ) 

y = V1 - X2, 1 - (l/c) ~ x ~ 1 
(64) 

where Io(x) is the modified Bessel function. (See Ref. 8, Vol. II, p. 5). 
When x > 1, we set z = ~, and have y = iz. The solutions 

CPN,n
2 and CPN,n

3 then give rise to two more asymptotic forms. We write 

(65) 

N+! eicz (1 - iz) n 

CPN,n
5
(X) = x Re 0z(1 + iz)N+n+I , 1 +! ~ x, 

c 
(66) 

z=~l. 

We now determine the joining factors for these five solutions. In 
1 2 1 d 0 CPN,n and cpN,n we set x = ulc' and let c become large for fixe u. ne 

finds 

( ) n (2n+N+~)!4 
I( I i) -1 c 2n+N+~ -u2 yc/2 

CPN,n U C t-v ! U e 
n. 

c -(2n+N+!)/4 _ 
2( I ,\.) e c 2n+N+~ -u2 yc/2 

cpN,n X = U c' t-v 2N+2n+I U e 

where we have used the fact that 

Ln
N

(U
2
Vc) t-v (_1)nu

2n
c

n
/
2InL 

When y = vlVc, one finds for fixed v and large c 

CPN,n 2(y = vlVc) t-v clevY"Clvv 

3( 1_ r.) _1_ VycI_ r. 
CPN,n Y = V V C t-v V27rc1 e v v 

where to obtain this last expression we have used the known asymptotic 
formula Io(x) t-v eX IV27rx (see Ref. 8, Vol. II, p. 86). Finally, when 
z = vlVe we find 
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4( /_ r) 12 -i cos (vVc - 71"/4) <(IN,n Z = v -v C t-...J - C 
71" Vv 

s( /_ r..) i cos (vVc - 71"/4) 
<(IN,n Z = v v C t-...J C Vv 

where we have made use of the formula (see Ref. 8, Vol. II, p. 85) 
Ju(z) t-...J (7I"z/2)-~ cos (z - 71"/4). 

All these results can be summarized in the following statement: 

where 

e-t2/2tN+!Ln (N) (t2), 

xN+!eCY (1 _ y) n 

k2 yy(1 + y)N+n+l' 

N+.! 
k3X 2 10 ( cy ) , 

N+.! ( k4x 'Jo cz), 

N+l eicz (1 - iz) n 

ksX 2 Re viM(1 + iZ)N+n+l , 

t = xyc, y = v'1=X2, 
( -1) n2N+2n+lcn+NI2+1e-c 

k2= -----------------n! 

1 - C-
1 ~ X ~ 1 

1 ~ x ~ 1 + c-1 

1 + c-1 ~ x (67) 

z = yx2 - 1 

( -1) ny;2N+2n+3/2cn+NI2+!e-C 
k3 = k4 = -----------------­

n! 
( -1) n2N+2n+2cn+NI2+1e-C 

ks = -----------------
n! 

is the asymptotic form for large c of a bounded continuous solution of 
(25) belonging to the eigenvalue (60). 

We next calculate the normalization constant 

N
1 2 = [1 [$N,n(X)]2 dx. 
N,n • 0 



3028 THE BELL SYSTEM TECHNICAL .JOURNAL, NOVEMBER 19G4 

where we have used the fact that 

roc> ,-:r,.'1[1 a(,.)]:! z,. = r(n + a + 1) Joe .l: ,In X ( X r (n + 1) 

(see Ref. 5, p. 99). It is not hard to show that the contribution to liN N,n
2 

from integration over the region c-i ~ x ~ 1 is O(cpe-Vc ) for some p > 
O. We have then 

N 2 2vcr(n + 1) 
N,n /'-Jr(n+N+1)' 

5.3 Asymptotics for nand c Both Large 

(68) 

The techniques employed here again follow very closely those used 
in Ref. 7 . We accordingly give a minimum of detail. 

We assume that when nand c are both large X can be written 

XN,n r-..J c2 + 28c + bo + bt/c + ... . (69) 

The ranges of nand c for which this is valid will appear in the analysis 
to follow. 

In (25) make the su bstitu tion x = t / c and replace X by (69). One 
finds 

d
2

cp + (1 + i - N
2

) + 0 (~) = 0 
dt2 t2 cp C 

and hence for large c, cp(t) r-..J ytJ N(t). We write 

(70) 

Returning to (25) with X replaced by (69), we observe that the sub­
stitution 

exp [i (ex - ~ log ~ ~ ~) ] 
cp = v VI - X2 

yields : + 0 (~) = 0, so that for large e, v becomes constant. After 

multiplying this solution by a complex constant, we take its real part 
for the next section of cpo Explicitly we define 

'PN.:(X) = • / ~ cos [ex - ~ log m - (N + D ~J (71) 

1!7rC v'f--=-X2 
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Note that when x = ulvc and c is large (71) becomes 

'PN.: (;;c) ~ ,(!c cos [uvc - (N + t) ~J. 
The asymptotic formula for J N (see Ref. 8, Vol. II, p. 85) shows that 

'PN.n'(X ~ u/VC) ~ ,( ;c cos [ uvc - (N + t) ~J 
also, so that CPN,n

6 and CPN,n
7 agree for large c in the neighborhood of 

x = live. 
To find an appropriate asymptotic form for cp valid near x = 1, 

substitute cp = xN+1eic(1-x)u into (25) with X given by (69). Now make 
the substitution x = 1 - i~/2c. There results 

~ ~; + (1 - ~) ~~ - G - i D u + 0 G) = O. 

Accordingly, we are led to define 

8( ) N+! ic(l-x),T,. [~ - . ~ l' -2' (1 - )J CPN,n X = X e 'J:' 2 1, 2" 1,C X (72) 

where 

a x a(a + 1) x
2 

cp (a,b;x ) = 1 + b 1! + b (b + 1) 2! + ... 

is the confluent hypergeometric function in the notation of Ref. 8, Vol. 
I, Chap. 6. 

The solution (72) is real. Its asymptotic form for large c when x = 1 ± 
v I Vc can be found from the known t asymptotics for the cp function. 
One finds 

V2e±5(-lr/4) 

1± vlvc) t'J vv 1 () 
vc"R 0 

cos [vVc =F ~ log (2vVc) ± (J(o) - iJ 
where the real functions R(o) and (J(o) are defined by 

r (~ + i~) = R(o)eiO
(5). 

(73) 

(74) 

This latter definition is made precise by requiring (J(o) to be continuous 
with (J(O) = O. 

Now when x = 1 - vlvc, (71) shows that 

t See Ref. 8, Vol. I, p. 278, Eq. (2). 
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7 _ r. 1 
'PN,n (x = v/ve) I"'V L 12 

e v 7rV 
(75) 

cos [vvc + ~IOg 2~C + (N + !) ~ - cJ. 
Comparison of this expression with (73) shows that 'PN,n7 and (-I)Q· 
R(o)eOrr/4'PN,n8/2V;' are asymptotically the same for x = 1 v/Ve 
provided 

e + 0 log(2VC) - e(o) = (N + 1)(7r/2) + 7rq (76) 

with q an integer to be determined shortly. 
Quite analogous to (71) is the solution for x > 1, 

, _ e"./2) cos [ ex - ~ log: ~ ~ - (N + 1) ~ -~] (77) 
'PN,n (x) - - 1- V . 

V 7re x2 
- 1 

When x = 1 + v / Ve and e is large, this solution becomes 
eO(1r/2) 

'PN,n
9
(X = 1 + v/VC) I"'V l-VZ;V e 7rV 

cos[c + vvc - ~log2~ - (N + 1) ~ - iJ. 
Comparison with (73) shows that this is the same as (-1)Q(R(o)e° 1r /4/2. 
V;)CPN,n8(X = 1 + v/VC) when account is taken of (76). 

Our results thus far can be summarized as follows; 

o ~ x ~ e-! 

1
- cos [ex - ~ log 1 - x - (N + !) ~2J 
2 2 1 + X 

7re VI - x2 ' 

j 
(-I)QR(o)eO(1r/4) N+! ic(l-x) 

_ 1 X e 
2v 7r 

'PN,n (x) I"'V (78) 

I <I> [! - i~ l' -2ie(1 - x)J 2 2" , 

I x-I I ~ e-! 

eoC1r/2) cos [ex - ~ log ~ - (N + 1) ~ - iJ 
y.;;:c V x2 - 1 

x ~ 1 + e-! 
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is the asymptotic form for large nand c of a continuous solution of 
(25) provided 0 and q are chosen to satisfy (76) and the requirement 
that 'P as given by (78) has n zeros in the open x-interval (0,1). The 
corresponding eigenvalue is given by XN,n r-..J c2 + 20c + 0(1). Higher­
order terms can be found by methods analogous to those presented in 
Ref. 7. 

When c becomes large and 0 remains fixed, i.e., 0 = 0 (1), the number 
of zeros of 'PN,n(X) in 0 < x ~ 1 can be estimated roughly from (78). 
Using the asymptotic expansion for J N, we find that <PN,n6(X) contributes 

Z6 = Cvc/71") + 0(1) 

zeros as x ranges from zero to liVe. From 'PN,/(X) we find 

Z7 = (l/71")[c - 2-vc + (0/2) log ve] + 0(1) 

zeros for l/Ve ~ x ~ 1 - l/ve. Finally, by using the asymptotic 
form (73) for 'PN}, the number of zeros of 'P for 1 - 1/-vc ~ x ~ 1 
is estimated as 

Zs = (1/71" )[VC + (0/2) log Ve] + 0(1). 

Since we must have n = Z6 + Z7 + Zg , the last three equations show 
that 

n71" = C + 0 log 2-vc + 0 (1). 

Combined with (76) this implies that as C ~ C(), 

0(0) + (N + 1)(71"/2) + 71"q - n71" = 0(1). (79) 

The equation just established can be used to obtain a limiting result. 
Let N be fixed and suppose that n grows with c according to 

n = (l/71")[c + b log (2ve)] (80) 

where b is a fixed number (independent of c). Multiply this equation 
by 71", add to (76) and rearrange to obtain 

(0 - b) log (2Vc) = 0(0) + (N + 1)(71"/2) + 71"q - n71" = 0(1) (81) 

where the last equality comes from (79). Divide (81) by log(2VC). We 
then obtain the limit result: if n grows with c according to (80), then 

lim 0 = b. (82) 
c-+oo 

VI. ASYMPTOTICS OF "IN ,n AND AN ,n 

6.1 Fixed Nand n. Large c 

The asymptotic solution ~N ,n (x) given in (67) has the values 
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rPN,n(1) = k3 

"( ) (1)n7 cos [ex - (N + 1) (7r/2) - (7r/4) cpN,n X ~ 00 ,......., - /{;5 • 
X 

On recalling the definition given in (49), we see that for large e 

so that for fixed nand N as e becomes large 

*(1),......., (-l)nk3 = (_l)n V7r 
CPN,n 7. I 2· 

e~6 c 
(83) 

Equation (50) then gives 

(84) 

We now proceed to use (84) and the useful formula (to be established) 

a'YN,n = 'YN,n [.I-. 2(1) - 1] 
ac 2c o/N,n (85) 

where 

(86) 

to get a much stronger statement regarding the asymptotic behavior 
of 'YN,n . First we establish (85)-(86). 

For simplicity of notation let us write (45) as 
1 

'YnCPn(X) = i K(cxx')CPn(X') dx' (87) 

where we have suppressed dependences on N. Differentiating, we find 

[1 (1 a (') 
= J

o 
xx'K'(cxx')CPn(X') dx' + J

o 
K(exx') CP~cx dx'. 

Differentiating (87) with respect to x gives 

'YnCPn' (x) = £ 11 xx'K' (CXX')CPn (x') dx', 
x 0 

so that (88) becomes 

(88) 
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a"ln (,.) + aCPn(X) = ~ '( .) + 11 T.(( ",1) aCPn(X') d" 
a CPn'C "In a "I IICP " x l' ex.!; x . e e e u ac 

IVlultiply this equation by CPn (;c) and iutegrate. One finds 

a"ln (1 2() (1 () aCPn(X) ac 10 CPn x dx + "In 10 CPn X -ac- dx 

(1 X d 2 ( ) d + (1 (') acpn (X') d ' 
= "In Jo 2c dx CPn X X "In Jo CPn X aC X , 

where the last term has been obtained by interchange of orders of inte­
gration and use of (87). Equation (85) then follows by integrating the 
first term on the right by parts and by using (86). 

To use effectively (85)-(86) it is convenient to introduce KN,n == (-1) n. 
YC"IN,n' We then have 

_1_ aKN,n = ! CPN.n2(1) 
KN,n ae 2c 

(89) 

lim KN,n = 1 (90) 
C-+OO 

from (85) and (84) respectively. From (67) and (68) we see that 

22N+4n+4 N+2n+2 -2c 
2( ) 2 2 7r e e 

CPN,n 1 r-.J le3 N N,n = r(n + l)r(n + N + 1) . 

Using this expression in (89) and integrating, we obtain 

00 7r22N+4n+3 100 N+2n+l -2t 
10gKN,nic = r(n+ l)r(n+N+ 1) c t edt. 

Integrating by parts and using (90), we finally find 

_ (_1)n _ (_1)n7r22N+4n+2cN+2n+!e-2c [ (l)J 
"IN.n - vIC r(n + l)r(n + N + 1) 1 + 0 C . (91) 

In terms of A of (13), we find from (17) and (19) 

(92) 

so that 

1 - 7r22N+4n+3eN+2n+le -2c [1 0 (.!)J . 
AN,n = r(n + l)r(n + N + 1) + c 

(93) 

6.2 Fixed Nand n. Small c. 

We use (46) to obtain an expression for "IN,n for small c. From (42), 
it follows that 
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00 

d/,n(c) = L A_nl(N,n)c21 = A_nn(N,n)c2n [1 + O(C2)] 
l=n 

= (_1)nr(n + 1)r(n + N + l)r(N + 2) 2n[1 + O( 2)] 
22nr(2n + N + 1)r(2n + N + 2) c c 

where we have used (124), (26) and (32). From (42) one has 

L d/,n = dnN,n + O(c2) = 1 + O(c2). 
1=0 

Equations (94), (95) and (46) now give 

(_1)nr(n+ 1)r(n+N+ 1) 2n+NH 
"(N,n = 22n+N+1r(2n + N + 1 )r(2n + N + 2) c . 

(94) 

(95) 

(96) 

Higher-order terms could be obtained in a similar manner. An alterna­
tive route, however, is to use (85) and (86). From (39) and (30), one 

sees that [2(2n + N + 1)]~ (n ~ N) (-1) n [1 + O(e4)] is the normaliza­

tion factor for (39). Using (39) one then finds for a normalized solution 

<PN,n(1) = (-1) ny2(2n + N + 1) 

[ N
22 

] 
1 + 4(2n + N)2(2~ + N + 2)2 + O(e

4
). 

Inserting this expression in (85) and integrating, we find 

(-1) nr(n + l)r(n + N + 1)e2n+N+~ 
"(N,n = 22n+N+1r(2n + N + 1)r(2n + N + 2) 

[ N
22 

] 
. 1 + 4(2n + N)2(2~ + N + 2)2 + O(e

4
) . 

6.3 Asymptoties for nand c Both Large 

(97) 

To obtain an expression for "(N,n valid for nand e both large, we use 
(77) and (49-50). For the asymptotic solution (77) we have 

R(o)eO(7r/4)( -l)q 
<PN,n(1) /"o.J 2y 7r (98) 

and for very large x 

eO(7r/2) cos [ex - (N + 1)(7r/2) - (7r/4)1 
<P N ,n (x ---7 00) /"o.J _ /-

~7re x 

Comparison with (49) shows that <PN,n* = Y7r/ee-O(7r/2)<PN,n, and (98) 
and (50) now give 
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( - 1 ) q R ( 0 ) e-o (11" / 4) 

"/N,n'"" _ / 
V 211"c 

(99) 

Now (91) and (97) show that for large and small c the sign of ,,(N,n 

is the same as the sign of (-1) n. As c varies, "( N ,n cannot change sign, 
for by (92) if "(N,n were to vanish for some value of c ~ 0, so would 
AN,n. Since, as we have noted in Sections II and III, the kernel Kc of 
( 12) is positive definite, this is impossible. We can therefore replace 
q by n in (99) and we have 

q = n(mod 2). (100) 

From the definition (74) of R ( 0), one has 

[R(o)]' = r G + i~) r G - i~) = cosh ;(1r/2) . (101) 

Here we have used the functional relation [Ref. 8, Vol. I, p. 3, Eq. (7)] 
for the gamma function 

r (! + z) r (! - z) = 11" sec 1I"Z. 

Equations (99), (100), (101) and (92) combined are 

( -1) n 1 
"/N,n '"" V c (1 + e1l"o) , AN,n'"" 1 + e7ro , (102) 

Finally from (80), (82) and (102) we have the limiting result: if 

n = [(1/11") (c + b log 2VC)] 

where the brackets denote "largest integer in" and b is a fixed number, 
then 

1
. 1 
1m AN,n = 1 7rb' 

c-+oo + e 
(103) 

VII. THE CASE D > 2, R THE UNIT SPHERE 

In the previous sections, we have treated the important special case 
D = 2, R the unit circle in considerable detail. lVIost of the analysis there 
was concerned with solving the integral equation (20). Fortunately, as 
we shall now see, the solution of that equation also affords a complete 
solution of the case R the unit sphere centered at the origin in ED , 
D = 3, 4, ., .. In treating this general case, we shall draw freely on the 
theory of D-dimensional spherical harmonics as given, for example, in 
Ref. 8, Vol. II, Chap. XI. We follow the notation of this work and set 

D = p + 2, p = 1,2, .... (104) 
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Let x = r~ and y = r'n where ~ and n are unit vectors in E p +2 • Equa­
. tion (8) now becomes 

ay;(r,~) = i1 

dr'r,p+l In exp (ierr'~'n)y;(r',n) drl(n) (l05) 

where rl is the surface of the unit sphere in Ep +2 • 

Now let 

h (N p) = (2N + ) (N + p - 1)! 
, P pIN! ' N = 0,1,2, ... , (106) 

and let SNl(~), l = 1,2, ... , h(N,p), be a complete set of orthonormal 
surface harmonics of degree N. The Funk-Hecke theorem (Ref. 8, Vol. 
II, pp. 247-248) asserts that 

where 

HN(err') 

In exp (ierr'~'n)SNl(n) drl(n) = HN(crr')SNl(~) (107) 

27r(p+!)/2NI (p - 1) I {I . . L eicrr'uCNP/2(u)(l_u2)(P-O/2du (l08) 
r (p ~ 1) (N + p - 1)! -1 

is independent of land CN"(u) is a Gegenbauer polynomial (Ref. 8, Vol. 
II, p. 235). By expanding 1/I.insurface harmonics, 

00 h(N,p) 
y;(r,~) = 2: 2: RN,I(r)SNl(~), 

N=O 1=0 

we find from (l05) and (107) 
1 

aN,lRN,1 (r) = i dr'r'P+lH N(err')RN,I(r') , (l09) 

from which it is seen that RN,I(r) and aN,1 are independent of l. We have 
the expected degeneracy of eigenvalues due to spherical symmetry. 

Now [Ref. 8, Vol. II, p. 236, Eq. (25)] 

C N P
/' (u) - (-;;) N (~) N N! (1 - u') -(p-l)/2 ::N (1 - u') N+(p--l) /, , 

where (a)N = a(a + 1) (a + N - 1), so that from (108) 

H N(err') 
(P+O/2( l)N .1 dN 

r (~) 2N (~\ L du e,m' u duN (1 - u') N+(p--l)/2 . 
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Integration by parts gives for the integral here 

(_I)N 11 d'U,(I _ 'U,2)N+(P-l)/2 ~ eicrr'u 

-1 duN 

(-i)NV;;:r (N + p ~ 1) 2N
+P/'(crl',)-p/2J N+P/'(CI'I") 

where we have used the Poisson formula 

[Ref. 8, Vol. II, p. 81, Eq. (7)]. We have then, finally 

HN(err') = iN (27r) Hp/2 J N+P/2( err') / (err'y/2. 

We see now from (lOY) that the eigenfunctions and eigenvalues of 
(105) are 

where 

1/;N,l,n(r,~) = RN,n(r)SN\~)' l = 1,2, ... ,h(N,p) 

aN,n = iN (27r) HP/2{3N,n 

N,n = 0,1,2, ... 

(110) 

(3 R ( .) = 11 J N+p/2(err') .,p+lR (.,) d" (111) N,n N,n 1 ( ') p/2 1 N,n 1 1. 
o err 

These equations are the analogues of (16), (17) and (18). Set 

(112) 

Equation (111) becomes 
1 

'Yso(r) = i J N+p/2(err')yerr'so(r') dr'. (1I:~) 

This, however, is (20) with N replaced by N + p/2. The formulae of 
Section IV for the solutions of (20) can be taken over exactly replacing 
N by N + p/2 throughout. (Expressions involving factorials must be 
replaced by the appropriate ones in terms of r functions when p is an 
odd integer.) Together with (110), (111) and (112), they provide solu­
tion of (105) for all D ~ 2. 

It is interesting to note that the one-dimensional case treated in Refs. 
1 and 2 can be obtained as a special case of the present theory by ap-
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propriate interpretation. The parameter N of this section is the degree 
of the homogeneous polynomial solution to Laplace's equation in D 
dimension afforded by the spherical harmonic SNl when expressed in 
rectangular coordinates. When D = 1, Laplace's equation d2tf;/dx2 

= 0 
has only two homogeneous solutions, tf; = k and tf; = x, respectively of 
degrees zero and one. For D = 1, i.e., p = -1 from (104), we have 
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only two allowed values, N = ° and N = 1. The quantity N + p /2 
occurring in (113) then has values -! and !. The kernel becomes 
vi 2/ 7r cos err' and vi 2/ 7r sin err' respectively in these two cases, and we 
retrieve the integral equations for the even and odd prolate spheroidal 
functions of zero order. Note that when N = ±!, (25) reduces to the 
prolate spheroidal equation. 

VIII. NUMERICAL RESULTS 

A program for the IBlVI 7090 has been written to compute generalized 
prolate spheroidal functions using formulae (40) and (44). Trial values 
for the XN,n were obtained from (34) and (55) and the recurrences 
(36)-(37) and (59). The method of Bouwkamp6 was then used to cor­
rect these estimates and obtain the dt,n. Values of "(N,n were obtained 
from (46) and these were converted to values of A by AN ,n = e"( N ,n 

2
• 

Fig. 1 shows plots of XN,n versus e. Fig. 2 gives the behavior of the 
first few AN,n • By definition of the labe]s, XN,n+l ~ XN,n for N,n = 0, 1, 
... and if e > ° the inequality is strict. From Sturmian theory, it follows 
that XN+l,n > XN,n' For the A's, one can show correspondingly that 
AN,n+l < AN,n and AN+l,n < AN,n for N,n = 0, 1, '" . The problem of 
ordering the A's and x's for all Nand n appears to be a difficult one. Some 
values are listed on Table 1. 

Figs. 3 and 4 show plots of l{JN,n(X) versus x for N = 0,2, n = 0,1,2,3 
and e = 2,10. Values of the l{JN,n for a larger set of parameter values are 
given in Table II. Normalization is as in (86). 
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TABLE I - NUMERICAL VALUES OF XN,n AND AN,n 

c X ~ c X ~ 

N = 0 n=O N = 1 n = 0 
0.1 7 .5499895 - 1 2 .4968775 - 3 0.5 3.9163765 + 0 9 .4982658 - 4 
0.5 8.7434899 - 1 6 .0585348 - 2 1.0 4.4119661 + 0 1.3986168 - 2 
1.0 1.2395933 + 0 2.2111487 - 1 2.0 6.3394615 + 0 1.6123183 - 1 
1.5 1.8225178 + 0 4.2951906 - 1 3.0 9.3427678 + 0 4.8326866 - 1 
2.0 2.5857968 + 0 6 . 2963045 - 1 4.0 1.3086855 + 1 7.8473505 - 1 
3.0 4 .4622709 + 0 8 .8705036 - 1 5.0 1.7170130 + 1 9.3671678 - 1 
4.0 6.5208586 + 0 9.7495117 - 1 6.0 2.1310500 + 1 9 .8534266 - 1 
5.0 8.5869176 + 0 9 .9534230 - 1 10.0 3.7555900 + 1 9.9998314 - 1 

10.0 1.8690110 + 1 9.9999957 - 1 

N = 0 n = 1 N = 1 n = 1 
1 9 .2562398 + 0 1.0829815 - 4 1 1.6255011 + 1 7.4672551 - 7 
2 1.0847476 + 1 6.7214485 - 3 2 1:7912353 + 1 1. 8549511 - 4 
3 1.3698728 + 1 6.6745424 - 2 4 2 .4832293 + 1 3.8313651 - 2 
4 1.7898720 + 1 2.6742780 - 1 5 3.0401459 + 1 1.6818804 - 1 
5 2.3241561 + 1 5.7877057 - 1 6 3.7326440 + 1 4.2912557 - 1 
6 2.9277622 + 1 8.3060712 - 1 7 4.5219234 + 1 7.1473948 - 1 
7 3 . 5550580 + 1 9 .4973850 - 1 8 5.3565692 + 1 8.9618892 - 1 
8 4.1805821 + 1 9 .8782700 - 1 9 6.1976089 + 1 9.7041388 - 1 
9 4.7985976 + 1 9 .9738554 - 1 10 7.0297509 + 1 9.9279210 - 1 

10 5.4108072 + 1 9.9947801 - 1 

N = 0 n = 2 N = 1 n = 2 
1 2.5751488 + 1 1.8834675 - 9 1 3.6265101 + 1 4.6976877 - 12 
2 2.6773866 + 1 1.9235204 - 6 2 3.7820310 + 1 1 .9082396 - 8 
5 3.8241737 + 1 1.6017987 - 2 5 4.9160037 + 1 1.0305314 - 3 
6 4.4846367 + 1 8.1254764 - 2 6 5.5464880 + 1 8. 3652966 - 3 
7 5.3021146 + 1 2.5847455 - 1 7 6.3286568 + 1 4.4641026 - 2 
8 6.2527715 + 1 5.3544699 - 1 8 7.2759605 + 1 1.6080875 - 1 
9 7.2854528 + 1 7.8635574 - 1 9 8.3789365 + 1 3. 9082845 - 1 

10 8.3461406 + 1 9 .2600949 - 1 10 9.5955815 + 1 6.6399691 - 1 
11 9.4019226 + 1 9.7915064 - 1 11 1.0867089 + 2 8.6120123 - 1 
12 1.0443896 + 2 9 . 9484586 - 1 12 1.2145589 + 2 9 . 5495434 - 1 
13 1.1474313 + 2 9 .9882732 - 1 13 1 .3409696 + 2 9.8759852 - 1 
14 1.2496987 + 2 9.9974793 - 1 14 1.4657506 + 2 9 .9692509 - 1 
15 1.3514611 + 2 9 . 9994820 - 1 
16 1.4528810 + 2 9 .9998984 - 1 

N = 0 n=3 N = 1 n = 3 
1 4 .9250694 + 1 6.0066949 - 15 1 6.4258409 + 1 7 .6540787 - 18 
2 5.0761114 + 1 9.8333952 - 11 2 6.5789319 + 1 4.9988893 - 13 
5 6.1688709 + 1 3 . 5422330 - 5 5 7.6749767 + 1 1.1190662 - 6 
7 7 .4995083 + 1 3 . 5278392 - 3 9 1.0834214 + 2 1.0298512 - 2 
8 8.3823340 + 1 2.0130790 - 2 10 1.2001776 + 2 4.5573797 - 2 
9 9 .4336396 + 1 8.2918248 - 2 11 1.3350648 + 2 1.5017502 - 1 

10 1. 0659367 + 2 2.4212641 - 1 12 1.4872078 + 2 3.5789707 - 1 
11 1.2034708 + 2 4 .9658387 - 1 13 1.6522672 + 2 6.1969392 - 1 
12 1 .3504432 + 2 7 .4660703 - 1 14 1.8237982 + 2 8.2818634 - 1 
13 1.5007176 + 2 9 .0244395 - 1 15 1.9961900 + 2 9 .3866345 - 1 
14 1 .6502439 + 2 9.6944048 - 1 16 2.1666412 + 2 9.8150785 - 1 
15 1.7977291 + 2 9.9165294 - 1 17 2.3347382 + 2 9 .9500835 - 1 
16 1 .9433894 + 2 9.9791376 - 1 
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TABLE I - Continued 

x x 

N=2 n=O N=2 n=2 

1 9.4976317 + 0 3.9517707 - 4 
2 1.1710916 + 1 1.9088335 - 2 
3 1.5291960 + 1 1.3627864 - 1 
4 2.0048498 + 1 4.0298411 - 1 
5 2.5667098 + 1 7.0317221 - 1 
6 3.1747966 + 1 8.9417071 - 1 
7 3.7952889 + 1 9.7092917 - 1 
8 4.4125829 + 1 9.9324606 - 1 

1 4.9292042 + 1 1.0614368 - 14 
2 5.0922802 + 1 1.7074109 - 10 
5 6 . 2566028 + 1 5.5396960 - 5 
7 7.6509011 + 1 5.0165514 - 3 
8 8.5676381 + 1 2.7077307 - 2 
9 9.6519700 + 1 1.0455606 - 1 

10 1.0904728 + 2 2.8443961 - 1 
11 1. 2295597 + 2 5.4626700 - 1 
12 1.3768257 + 2 7.8216583 - 1 
13 1.5265435 + 2 9.1919613 - 1 
14 1.6752489 + 2 9.7528766 - 1 
15 1.8220066 + 2 9.9334500 - 1 

10 5.6324064 + 1 9.9972026 - 1 

N=2 n=l N=2 n=3 

1 2.5333581 + 1 4.1659113 - 9 
2 2.7088321 + 1 4.0530517 - 6 
5 3.9788041 + 1 2.5787154 - 2 
6 4.6842565 + 1 1.1592915 - 1 
7 5.5371030 + 1 3.2573165 - 1 
8 6.5067655 + 1 6.0754452 - 1 
9 7.5425367 + 1 8.3161633 - 1 

1 8.1275289 + 1 9.2115325 - 21 
2 8.2854667 + 1 2.3940665 - 15 
5 9 .4065006 + 1 3 .2594658 - 8 

10 1 .3679420 + 2 5.8064778 - 3 
11 1 .4973956 + 2 2 . 6682390 - 2 
12 1.6450899 + 2 9.5057491 - 2 
13 1.8113152 + 2 2.5380401 - 1 
14 1.9931616 + 2 4.9785798 - 1 
15 2.1846670 + 2 7.3845601 - 1 
16 2.3793070 + 2 8.9389256 - 1 
17 2.5727411 + 2 9.6462917 - 1 
18 2.7635393 + 2 9.8968676 - 1 

10 8.5969115 + 1 9.4455397 - 1 
11 9.6442775 + 1 9.8484078 - 1 

TABLE II-VALUES OF 'PN,n(X) 

x 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

c = 1 

4.74638 - 1 
6.68776 - 1 
8.14070 - 1 
9.31948 - 1 
1.03044 + 0 
1.11351 + 0 
1.18341 + 0 
1.24157 + 0 
1.28896 + 0 
1.32627 + 0 
1.35405 + 0 
1.37278 + 0 
1.38285 + 0 
1.38464 + 0 
1.37853 + 0 
1.36489 + 0 
1.34410 + 0 
1.31655 + 0 
1.28264 + 0 

N=O n=O 

c = 2 

5.55421 - 1 
7.74706 - 1 
9.27095 - 1 
1.03607 + 0 
1.11011 + 0 
1.15353 + 0 
1.16921 + 0 
1.15957 + 0 
1.12695 + 0 
1.07383 + 0 ' 
1.00285 + 0 
9.16840 - 1 
8.18791 - 1 
7.11797 - 1 
5.98995 - 1 
4.83499 - 1 
3.68328 - 1 
2.56332 - 1 
1.50130 - 1 

c = 5 

9.15662 - 1 
1.22032 + 0 
1.35165 + 0 
1.35103 + 0 
1.24626 + 0 
1.06660 + 0 
8.43474 - 1 
6.07845 - 1 
3.86969 - 1 
2.01532 - 1 
6.38588 - 2 

-2.24980 - 2 
-6.18395 - 2 
-6.43066 - 2 
-4.32142 - 2 
-1.22744 - 2 

1.68342 - 2 
3.61314 - 2 
4.20554 - 2 

c = 10 

1.31455 + 0 
1.62247 + 0 
1.57689 + 0 
1.30428 + 0 
9.31637 - 1 
5.70325 - 1 
2.91331 - 1 
1.17077 - 1 
3.19741 - 2 
3.00159 - 3 

-1.09501 - 3 
4.23236 - 4 
6.58696 - 4 

-2.21883 - 4 
-5.95391 - 4 
-1.21194 - 4 

4.20886 - 4 
3.79898 - 4 

-8.00341 - 5 
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x 

2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

c = 1 

1.24281 + 0 
1.19748 + 0 
1.14713 + 0 
1.09221 + 0 
1.03322 + 0 
9.70655 - 1 
9.05010 - 1 
8.36800 - 1 
7.66537 - 1 
6.94735 - 1 
6.21906 - 1 

x c = 1 

0.1 7.57682 - 1 
0.2 1.00189 + 0 
0.3 1.08562 + 0 
0.4 1.02660 + 0 
0.5 8.24694 - 1 
0.6 4.76162 - 1 
o . 7 - 2 . 29984 - 2 
0.8 ' -6.75867 - 1 
0.9 -1.48414 + 0 
1.0 -2.44790 + 0 
1.1 -3.56556 + 0 
1.2 -4.83382 + 0 
1.3 -6.24769 + 0 
1.4 -7.80051 + 0 
1. 5 -9.48401 + 0 
1.6 -1.12884 + 1 
1. 7 -1.32026 + 1 
1.8 -1. 52139 + 1 
1. 9 - 1. 73086 + 1 
2 .0 -1. 94720 + 1 
2 .1 - 2 . 16882 + 1 
2.2 -2.39406 + 1 
2.3 -2.62120 + 1 
2.4 -2.84846 + 1 
2.5 -3.07405 + 1 
2.6 -3.29612 + 1 
2.7 -3.51286 + 1 
2.8 -3.72245 + 1 
2.9 - 3 .92310 + 1 
3 .0 - 4 . 11308 + 1 

x 

0.1 
0.2 

c = 1 

9.39351 - 1 
1.08208 + 0 

TABLE II - Continued 

N=O n=O 

c = 2 

, 5.20429 - 2 
-3.59472 - 2 
-1.12245 - 1 
-1.75666 - 1 
-2.25459 - 1 
-2.61300 - 1 
-2.83289 - 1 
-2.91927 - 1 
"':"2 :88082 - 1 
-2.172956 - 1 
~2.48005 - 1 

N=O n=l 

c = 2 

7.49125 - 1 
9.78062 - 1 
1.03485 + 0 
9.38690 - 1 
6.94825 - 1 
3.08610 - 1 

-2.11235 - 1 
-8.51754 - 1 
-1.59571 + 0 
-2.41297 + 0 
-3.30607 + 0 
-4.22107 + 0 
-5.13836 + 0 
-6.02868 + 0 
-6.86308 + 0 
-7.61390 + 0 
-8.25574 + 0 
-8.76628 + 0 
-9.12711 + 0 
-9.32424 + 0 
-9.34869 + 0 
-9.19674 + 0 
-8.87007 + 0 
-8.37588 + 0 
-7.72616 + 0 
-6.93789 + 0 
-6.03209 + 0 
-5.03334 + 0 
-3.96899 + 0 
-2.86785 + 0 

N=O n=2 

c = 2 

9.35161 - 1 
1.06262 + 0 

c = 5 

3.52268 - 2 
1.94309 - 2 
1;30129 - 4 

-1:71274 - 2 
-2.80628 - 2 
-3.05323 - 2 
-2.47697 - 2 
-1.30522 - 2 

1.07933 - 3 
1.38275 - 2 
2.20781 - 2 

c = 5 

7.51850 - 1 
8.84348 - 1 
7.51864 - 1 
4.08540 - 1 

-7.50154 - 2 
-6.10130 - 1 
-1.10302 + 0 
-1.47075 + 0 
-1.65550 + 0 
-1.63388 + 0 
-1.41956 + 0 
-1.05901 + 0 
-6.20954 - 1 
-1.82563 - 1 

1.85537 - 1 
4.31871 - 1 
5.32289 - 1 
4.92313 - 1 
3.43349 - 1 
1.34214 - 1 

-8.02848 - 2 
-2.51019 - 1 
-3.44099 - 1 
-3.46476 - 1 
-2.66729 - 1 
-1.31077 - 1 

2.39279 - 2 
1.60443 - 1 
2.48208 - 1 
2.70290 - 1 

c = 5 

8.84844 - 1 
9.01678 - 1 

c = 10 

-3.67577 - 4 
-2.42458 - 4 

1.44876 - 4 
3.08117 - 4 
1. 76068 - 4 

-1.11428 - 4 
-3.05239 - 4 
-6.14275 - 5 

1.53741 - 4 
6.59394 - 5 
1.15331 - 4 

c = 10 

1.11517 + 0 
9.64135 - 1 
2.39045 - 1 

-6.68891 - 1 
-1.35733 + 0 
-1.58691 + 0 
-1.36404 + 0 
-8.87374 - 1 
-4.07419 - 1 
-9.25172 - 2 

2.63841 - 2 
2.11679 - 2 

-1.29202 - 2 
-2.10428 - 2 
-2.91179 - 3 

1.47146 - 2 
1.36618 - 2 

-1.33175 - 3 
-1.28433 - 2 
-9.24495 - 3 

2.21756 - 3 
1.09934 - 2 
7.19680 - 3 

'-2.21224 - 3 
-6.65003 - 3 
-7.12403 - 3 

8.00041 - 4 
8.27644 - 3 
1.58822 - 3 

-1.20582 - 3 

c = 10 

9.05937 - 1 
5.16232 - 1 
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TABLE II - Continued 

N = 0 n = 2 

x c = 1 c = 2 c = 5 c = 10 

0.3 8.66349 - 1 8.22287 - 1 5.05390 - 1 -3.42126 -
0.4 3.64401 - 1 2.96652 - 1 -1.35886 - 1 -9.82679 -
0.5 -3.05506 - 1 -3.80932 - 1 -7.81957 - 1 -8.93819 - 1 
0.6 -9.56032 - 1 -1.00914 + 0 -1.16120 + 0 -7.44970 - 2 
0.7 -1.32240 + 0 -1.31928 + 0 -1.03567 + 0 9.85253 - 1 
0.8 -1.05832 + 0 -9.83017 - 1 -2.G4525 - 1 1.65961 + 0 
0.9 2.65717 - 1 3.74968 - 1 1.15147 + 0 1.60911 + 0 
1.0 3.16217 + 0 3.16046 + 0 3.05638 + 0 9.7010G - 1 
1.1 8.22453 + 0 7.79020 + 0 5.16083 + 0 2.03097 - 1 
1.2 1.61238 + 1 1.46703 + 1 7.09600 + 0 -2.55403 - 1 
1.3 2.76035 + 1 2.41735 + 1 8.48753 + 0 -2.G8864 - 1 
1.4 4.34731 + 1 3.661G6 + 1 9.03589 + 0 . -2.22585 - 2 
1.5 6.46001 + 1 5.22386 + 1 8.58154 + 0 1.83653 - 1 
1.6 9.19010 + 1 7.11812 + 1 7.14579 + 0 1. 76198 - 1 
1.7 1.26331 + 2 9.34716 + 1 4.93120 + 0 9.12279 - 3 
1.8 1.68874 + 2 1.19010 + 2 2.28768 + 0 -1.36988 - 1 
1.9 2.20527 + 2 1.47564 + 2 -3.55354 - 1 -1.39402 - 1 
2.0 2.82291 + 2 1.78757 + 2 -2.57167 + 0 -1.18170 - 2 
2.1 3.55155 + 2 2.12083 + 2 -4.02160 + 0 1.05884 - 1 
2.2 4.40084 + 2 2.46904 + 2 -4.51700 + 0 1.18832 - 1 
2.3 5.38002 + 2 2.82468 + 2 -4.05482 + 0 1.72440 - 2 
2.4 6.49779 + 2 3.17933 + 2 -2.81239 + 0 -8.73616 - 2 
2.5 7.76218 + 2 3.52375 + 2 -1.10632 + 0 -7.36407 - 2 
2.6 9.18038 + 2 3.84832 + 2 G.76904 - 1 -2.63630 - 2 
2.7 1.07586 + 3 4.14324 + 2 2.16111 + 0 3.13871 - 2 
2.8 1.25021 + 3 4.39892 + 2 3.05658 + 0 9.47047 - 2 
2.9 1.44146 + 3 4.60641 + 2 3.21902 + 0 7.91312 - 3 
3.0 1.64988 + 3 4.75731 + 2 2.66304 + 0 -5.44166 - 2 

N = 0 n = 3 

x c = 1 c = 2 c = 5 c = 10 

0.1 1.04335 + 0 1.03904 + 0 1.00396 + 0 8.16002 -
0.2 9.41806 - 1 9.22225 - 1 7.82101 - 1 2.80879 -
0.3 2.91804 - 1 2.54987 - 1 1.09411 - 2 -5.85742 -
0.4 -5.66503 - 1 -6.04220 - 1 -8.1961G - 1 -9.01249 -
0.5 -1.16122 + 0 -1.17035 + 0 -1.15387 + 0 -2.96465 -
0.6 -1.04537 + 0 -1.00493 + 0 -6.55699 - 1 7.15663 - 1 
0.7 -6.94405 - 2 3.87818 - 3 5.00576 - 1 1.12898 + 0 
0.8 1.23639 + 0 1.27745 + 0 1.45426 + 0 2.99477 - 1 
0.9 1.17030 + 0 1.12044 + 0 6.85065 - 1 -1.44767 + 0 
1.0 -3.74163 + 0 -3.74119 + 0 -3.72277 + 0 -2.98825 + 0 
1.1 -1.94508 + 1 -1.86263 + 1 -1.36118 + 1 -3.23654 + 0 
1.2 -5.51898 + 1 -5.13331 + 1 -3.01767 + 1 -1.98417 + 0 
1.3 -1.24365 + 2 -1.12506 + 2 -5.34231 + 1 -6.65948 - 2 
1.4 -2.45530 + 2 -2.15895 + 2 -8.18229 + 1 1.27315 + 0 
1.5 -4.43417 + 2 -3.78480 + 2 -1.12269 + 2 1.31011 + 0 
1.6 -7.50023 + 2 -6.20420 + 2 -1.40431 + 2 3.14866 - 1 
1.7 -1.20572 + 3 -9.64812 + 2 -1.61419 + 2 -7.44769 - 1 
1.8 -1.86039 + 3 -1.43724 + 3 -1. 70733 + 2 -1.00264 + 0 
1.9 -2.77451 + 3 -2.06513 + 3 -1.65204 + 2 -4.10716 - 1 
2.0 -4.02027 + 3 -2.87683 + 3 -1.43828 + 2 4.24001 - 1 
2.1 -5.68257 + 3 -3.90062 + 3 -1.08200 + 2 8.04224 - 1 
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x 

2.2 
2.3 
2.4 
2.5 
2.G 
2.7 
2.8 
2.9 
3.0 

x 

0.1 
0.2 
0.3 
0.4 
0.5 
O.G 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.G 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

x 

0.1 
0.2 

c = 1 

-7.85998 + 3 
-1.0GG5G + 4 
-1.4227G + 4 
-1.8G902 + 4 
-2.42135 + 4 
-3.09743 + 4 
-3.9lG55 + 4 
-4.899G2 + 4 
-6.0G911 + 4 

c = 1 

G.67799 - 2 
1.88413 - 1 
3.44707 - 1 
5.27637 - 1 
7.31901 - 1 
9.53337 - 1 
1.18837 + 0 
1.43380 + 0 
1.68661 + 0 
1.94398 + 0 
2.20321 + 0 
2.46172 + 0 
2.71702 + 0 
2.96675 + 0 
3.20863 + 0 
3.44053 + 0 
3.66041 + 0 
3.86640 + 0 
4.05675 + 0 
4.22984 + 0 
4.38426 + 0 
4.51871 + 0 
4.63210 + 0 
4.72350 + 0 
4.79216 + 0 
4.83753 + 0 
4.85923 + 0 
4.85708 + 0 
4.83107 + 0 
4.78140 + 0 

c = 1 

1. 78797 - 1 
4.81623 - 1 

TABLE II - Continued 

N=o n=3 

c = 2 

-5.lG340 + 3 
-G.G8939 + 3 
-8.49881 + 3 
-1.0GOGO + 4 
-1.30186 + 4 
-1.57357 + 4 
-1.874G9 + 4 
-2.20322 + 4 
-2.55591 + 4 

N=l n=O 

c = 2 

7.82376 - 2 
2.19147 - 1 
3.96102 - 1 
5.96043 - 1 
8.08G92 - 1 
1.02496 + 0 
1.23G55 + 0 
1.4358G + 0 
1.61605 + 0 
1. 77112 + 0 
1.89606 + 0 
1.98689 + 0 
2.04079 + 0 
2.05612 + 0 
2.03244 + 0 
1.97051 + 0 
1.87221 + 0 
1.74049 + 0 
1.57927 + 0 
1.39322 + 0 
1.18771 + 0 
9.68543 - 1 
7.41814 - 1 
5.13706 - 1 
2.90272 - 1 
7.72847 - 2 

-1.19954 - 1 
-2.96762 - 1 
-4.49226 - 1 
-5.74265 - 1 

N=l n=l 

c = 2 

1.86209 - 1 
4.98465 - 1 

c = 5 

-G.2470G + 1 
-1.27832 + 1 

3.37407 + 1 
7.02754 + 1 
9.1559G + 1 
9.4922G + 1 
8.08334 + 1 
5.29lGO + 1 
1.70562 + 1 

c = 5 

1.75066 - 1 
4.70668 - 1 
7.93680 - 1 
1.08116 + 0 
1.28498 + 0 
1.37488 + 0 
1.34097 + 0 
1.19359 + 0 
9.60016 - 1 
6.78651 - 1 
3.91685 - 1 
1.37762 - 1 

-5.42516 - 2 
-1.69153 - 1 
-2.06531 - 1 
-1.79111 - 1 
-1.08794 - 1 
-2.14572 - 2 

5.85005 - 2 
1.12680 - 1 
1.31527 - 1 
1.15060 - 1 
7.15483 - 2 
1.46127 - 2 

-4.05001 - 2 
-8.05860 - 2 
-9.73081 - 2 
-8.86612 - 2 
-5.89386 - 2 
-1.69513 - 2 

c = 5 

2.26456 - 1 
5.77313 - 1 

c = 10 

4.53989 - 1 
-2.40332 - 1 
-G.90334 - 1 
-3.30234 - 1 

1.3G373 - 1 
2.58923 - 1 
4.73302 - 1 

-7.99752 - 3 
-4.71948 - 1 

c = 10 

3.92683 - 1 
9.77051 - 1 
1.44397 + 0 
1.62479 + 0 
1.49159 + 0 
1.13769 + 0 
7.13592 - 1 
3.52409 - 1 
1.21545 - 1 
1.73276 - 2 

-6.46094 - 3 
-6.17021 - 4 

4.3G117 - 3 
1.77204 - 3 

-2.50040 - 3 
-2.92887 - 3 

5.03281 - 5 
2.47164 - 3 
1.94403 - 3 

-5.40072 - 4 
-2.13282 - 3 
-1.41516 - 3 

6.26047 - 4 
1.92158 - 3 
7.95172 - 4 

-6.86022 - 4 
-7.63503 - 4 
-9.86627 - 4 

1.47764 - 4 
1.50302 - 3 

c = 10 

4.69291 - 1 
1.01396 + 0 
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TABLE II - Continued 

N = 1 n = 1 

x c =1 c = 2 c = 5 c = 10 

0.3 8.11322 - 1 8.30625 - 1 8.81124 - 1 1.10226 + 0 
0.4 1.09167 + 0 1.09943 + 0 1.01214 + 0 5.69582 - 1 
0.5 1.24498 + 0 1.22371 + 0 8.87650 - 1 -3.54754 - 1 
0.6 1.19004 + 0 1.12484 + 0 4.82831 - 1 -1.21477 + 0 
0.7 8.42479 - 1 7.29666 - 1 -l.63619 - 1 -l.61645 + 0 
0.8 1.15744 - 1 -2.61055 - 2 -9.56512 - 1 -1.44879 + 0 
0.9 -1.07772 + 0 -l.19460 + 0 -l.76308 + 0 -9.06520 - 1 
1.0 -:-2.82516 + 0 -2.81285 + 0 -2.43994 + 0 -3.26420 - 1 
1.1 -5.21224 + 0 -4.90037 + 0 -2.86233 + 0 3.12685 - 2 
1.2 -8.32175 + 0 -7.45742 + 0 -2.94990 + 0 1.08983 - 1 
1.3 -1.22323 + 1 -l.04640 + 1 -2.68284 + 0 2.38728 - 2 
1.4 -1.70172 + 1 -l.38798 + 1 -2.10636 + 0 -6.19490 - 2 
1.5 -2.27431 + 1 -l.76444 + 1 -1.32097 + 0 -6.25964 - 2 
1.6 -2.94693 + 1 -2.16792 + 1 -4.62707 - 1 -l.89305 - 4 
1.7 -3.72461 + 1 -2.58893 + 1 3.24280 - 1 5.11365 - 2 
1.8 -4.61145 + 1 -3.01663 + 1 9.15552 - 1 4.39191 - 2 
1.9 -5.61051 + 1 -3.43921 + 1 1.22972 + 0 -3.52397 - 3 
2.0 -6.72374 + 1 -3.84424 + 1 1.24232 + 0 -3.87077 - 2 
2.1 -7.95192 + 1 -4.21912 + 1 9.87598 - 1 -3.49613 - 2 
2.2 -9.29459 + 1 -4.55151 + 1 5.48435 - 1 2.81473 - 3 
2.3 -1.07501 + 2 -4.82978 + 1 3.67863 - 2 3.09193 - 2 
2.4 -1.23154 + 2 -5.04353 + 1 -4.30799 - 1 3.14921 - 2 
2.5 -1.39863 + 2 -5.18371 + 1 -7.57370 - 1 -6.17863 - 4 
2.6 -1.57573 + 2 -5.24330 + 1 -8.84163 - 1 -2.95268 - 2 
2.7 -1.76214 + 2 -5.21739 + 1 -8.00250 - 1 -1.28822 - 2 
2.8 -1.95708 + 2 -5.10350 + 1 -5.41499 - 1 -1.34150 - 3 
2.9 -2.15961 + 2 -4.90184 + 1 -1.79916 - 1 6.07715 - 3 
3.0 -2.36871 + 2 -4.61486 + 1 1.95783 - 1 2.63666 - 2 

N = 1 n = 2 

x c = 1 c = 2 c = 5 c = 10 

0.1 3.17572 - 1 3.23375 - 1 3.58452 - 1 4.61327 - 1 
0.2 7.89038 - 1 7.98456 - 1 8.45034 - 1 8.84405 - 1 
0.3 1.13929 + 0 1.13924 + 0 1.10027 + 0 6.93291 - 1 
0.4 1.16268 + 0 1.13700 + 0 9.09831 - 1 -8.13386 - 2 
0.5 7.46367 - 1 6.88194 - 1 2.60402 - 1 -8.60192 - 1 
0.6 -6.41935 - 2 -1.40156 - 1 -6.18349 - 1 -9.72981 - 1 
0.7 -9.90830 - 1 -1.04501 + 0 -1.27959 + 0 -2.01002 - 1 
0.8 -1.44413 + 0 -1.42980 + 0 -l.15587 + 0 1.02436 + 0 
0.9 -4.43333 - 1 -3.60476 - 1 2.92752 - 1 1.92471 + 0 
1.0 3.46336 + 0 3.46067 + 0 3.41429 + 0 1.94059 + 0 
1.1 1.22761 + 1 1.16998 + 1 8.22613 + 0 1.12202 + 0 
1.2 2.86165 + 1 2.63729 + 1 1.43419 + 1 5.54149 - 2 
1.3 5.57952 + 1 4.98022 + 1 2.09872 + 1 -5.92374 - 1 
1.4 9.78715 + 1 8.45483 + 1 2.71147 + 1 -5.45072 - 1 
1.5 1.59705 + 2 l.33319 + 2 3.15908 + 1 -5.23392 - 2 
1.6 2.46994 + 2 1.98856 + 2 3.34313 + 1 3.78477 - 1 
1.7 3.66308 + 2 2.83810 + 2 3.20166 + 1 4.06284 - 1 
1.8 5.25100 + 2 3.90597 + 2 2.72591 + 1 7.68751 - 2 
1.9 7.31713 + 2 5.21256 + 2 1.96583 + 1 -2.68863 - 1 
2.0 9.95363 + 2 6.77296 + 2 1.02468 + 1 -3.08683 - 1 
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TABLE II - Continued 

N=1 n = 2 

x c = 1 c = 2 c = 5 c = 10 

2.1 1.32612 + 3 8.59566 + 2 4.17984 - 1 -9.67834 - 2 
2.2 1.73484 + 3 1.06812 + 3 -8.32684 + 0 1.95130 - 1 
2.3 2.23316 + 3 1.30213 + 3 -1.46613 + 1 2.53304 - 1 
2.4 2.83336 + 3 1.55981 + 3 -1.76896 + 1 1.16918 - 1 
2.5 3.54832 + 3 1.83831 + 3 -1.71224 + 1 -9.81521 - 2 
2.6 4.39138 + 3 2.13379 + 3 -1.33267 + 1 -2.49959 - 1 
2.7 5.37625 + 3 2.44140 + 3 -7.25156 + 0 -5.82649 - 2 
2.8 6.51688 + 3 2.75538 + 3 -2.34462 - 1 9.65074 - 2 
2.9 7.82726 + 3 3.06921 + 3 6.27542 + 0 5.32562 - 2 
3.0 9.32135 + 3 3.37554 + 3 1.10027 + 1 1.36992 - 1 

N = 1 n=3 

x c = 1 c = 2 c = 5 c = 10 

0.1 4.70292 - 1 4.74792 - 1 5.03663 - 1 5.60653 - 1 
0.2 1.03640 + 0 1.03944 + 0 1.05094 + 0 9.52509 - 1 
0.3 1.15261 + 0 1.13873 + 0 1.02612 + 0 4.75116 - 1 
0.4 5.87098 - 1 5.49119 - 1 2.80849 - 1 -5.29321 - 1 
0.5 -4.34815 - 1 -4.78943 - 1 -7.50431 - 1 -1.03082 + 0 
0.6 -1.22557 + 0 -1.23658 + 0 -1.23879 + 0 -3.74929 - 1 
0.7 -9.49593 - 1 -9.03408 - 1 -5.28507 - 1 8.87232 - 1 
0.8 5.95761 - 1 6.5G832 - 1 1.04428 + 0 1.26903 + 0 
0.9 1.58393 + 0 1.56393 + 0 1.35005 + 0 -3.80514 - 1 
1.0 -3.99973 + 0 -3.99876 + 0 -3.98415 + 0 -3.66768 + 0 
1.1 -2.94218 + 1 -2.82967 + 1 -2.13760 + 1 -6.63805 + 0 
1.2 -9.93028 + 1 -9.31025 + 1 -5.82859 + 1 -7.12958 + 0 
1.3 -2.54877 + 2 -2.33198 + 2 -1.21470 + 2 -4.48170 + 0 
1.4 -5.60512 + 2 -5.00166 + 2 -2.14807 + 2 -1.91044 - 1 
1.5 -1.11157 + 3 -9.66261 + 2 -3.37164 + 2 3.09018 + 0 
1.6 -2.04369 + 3 -1.72812 + 3 -4.80966 + 2 3.47603 + 0 
1.7 -3.54344 + 3 -2.91000 + 3 -6.31861 + 2 1.24407 + 0 
1.8 -5.86049 + 3 -4.66630 + 3 -7.70049 + 2 -1.54042 + 0 
1.9 -9.32112 + 3 -7.18302 + 3 -8.72930 + 2 -2.73125 + 0 
2.0 -1.43431 + 4 -1.06778 + 4 -9.19104 + 2 -1.43583 + 0 
2.1 -2.14517 + 4 -1.53984 + 4 -8.92696 + 2 7.02031 - 1 
2.2 -3.12971 + 4 -2.16194 + 4 -7.87269 + 2 2.14894 + 0 
2.3 -4.46725 + 4 -2.96368 + 4 -6.08384 + 2 1.44329 + 0 
2.4 -6.25326 + 4 -3.97614 + 4 -3.74068 + 2 -1.90745 - 1 
2.5 -8.60136 + 4 -5.23076 + 4 -1.12896 + 2 -1.17683 + 0 
2.6 -1.16452 + 5 -6.75841 + 4 1.40286 + 2 -1.61055 + 0 
2.7 -1.55406 + 5 -8.58796 + 4 3.50030 + 2 -7.92157 - 2 
2.8 -2.04672 + 5 -1.07450 + 5 4.86619 + 2 1.29119 + 0 
2.9 -2.66305 + 5 -1.32504 + 5 5.32282 + 2 3.73378 - 1 
3.0 -3.42633 + 5 -1.61182 + 5 4.83375 + 2 4.32692 - 1 

N = 2 n ='0 

x c = 1 c = 2 c = 5 c = 10 

0.1 8.11214 - 3 9.30928 - 3 2.21477 - 2 8.00048 - 2 
0.2 4.58035 - 2 5.22724 - 2 1.20067 - 1 4.01321 - 1 
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TABLE II - Continued 

N = 2 n=O 

x c = 1 c = 2 c = 5 c = 10 

0.3 1.25827 - 1.42274 - 1 3.07992 - 1 9.01985 - 1 
0.4 2.57171 - 1 2.87029 - 1 5.71015 - 1 1.38094 + 0 
0.5 4.46741 - 1 4.90296 - 1 8.72575 - 1 1.62971 + 0 
0.6 6.99877 - 1 7.52394 - 1 1.16320 + 0 1.54932 + 0 
0.7 1.02059 + 0 1.07049 + 0 1.39112 + 0 1.19392 + 0 
0.8 1.41171 + 0 1.43889 + 0 1.51294 + 0 7.25292 - 1 
0.9 1.87493 + 0 1.84932 + 0 1.50259 + 0 3.16554 - 1 
1.0 2.41089 + 0 2.29129 + 0 1.35656 + 0 6.79148 - 2 
1.1 3.01924 + 0 2.75254 + 0 1.09462 + 0 -2.02873 - 2 
1.2 3.69863 + 0 3.21944 + 0 7.56039 - 1 -1.46045 - 2 
1.3 4.44678 + 0 3.67758 + 0 3.91913 - 1 1.04085 - 2 
1.4 5.26054 + 0 4.11222 + 0 5.55434 - 2 1.52034 - 2 
1.5 6.13588 + 0 4.50887 + 0 -2.07467 - 1 1.29918 - 3 
1.6 7.06802 + 0 4.85377 + 0 -3.67156 - 1 -1.11917 - 2 
1.7 8.05139 + 0 5.13443 + 0 -4.13815 - 1 -9.67213 - 3 
1.8 9.07977 + 0 5.34008 + 0 -3.58514 - 1 1.55354 - 3 
1.9 1.01463 + 1 5.46205 + 0 -2.29434 - 1 9.62330 - 3 
2.0 1.12436 + 1 5.49406 + 0 -6.51947 - 2 6.50298 - 3 
2.1 1.23637 + 1 5.43250 + 0 9.35338 - 2 -2.03792 - 3 
2.2 1.34985 + 1 5.27657 + 0 2.12220 - 1 -8.19124 - 3 
2.3 1.46391 + 1 5.02833 + 0 2.68832 - 1 -5.06774 - 3 
2.4 1.57769 + 1 4.69273 + 0 2.57171 - 1 1.94735 - 3 
2.5 1.69026 + 1 4.27721 + 0 1.86697 - 1 4.94597 - 3 
2.6 1.80072 + 1 3.79179 + 0 7.90086 - 2 5.04030 - 3 
2.7 1.90816 + 1 3.24856 + 0 -3.78705 - 2 -7.03146 - 4 
2.8 2.01167 + 1 2.66139 + 0 -1.36199 - 1 -6.15552 - 3 
2.9 2.11036 + 1 2.04550 + 0 -1.94874 - 1 -1.13042 - 3 
3.0 2.20337 + 1 1.41675 + 0 -2.03218 - 1 1.09442 - 3 

N = 2 n = 1 

x c = 1 c = 2 c = 5 c = 10 

0.1 3.01525 - 2 3.18266 - 2 4.36114 - 2 1.10168 -
0.2 1.63412 - 1 1. 71721 - 1 2.27802 - 1 5.09403 - 1 
0.3 4.17552 - 1 4.35481 - 1 5.46215 - 1 9.75159 - 1 
0.4 7.63468 - 1 7.87547 - 1 9.08386 - 1 1.10096 + 0 
0.5 1.12468 + 0 1.14274 + 0 1.16775 + 0 6.37139 - 1 
D.6 1.37439 + 0 1.36734 + 0 1.16137 + 0 -2.87398 - 1 
0.7 1.33292 + 0 1.28261 + 0 7.56169 - 1 -1.22293 + 0 
0.8 7.66020 - 1 6.71043 - 1 -1.09012 - 1 -1.69212 + 0 
0.9 -6.15776 - 1 -7.14755 - 1 -1.39595 + 0 -1.50113 + 0 
1.0 -3.15683 + 0 -3.14077 + 0 -2.96182 + 0 -8.45332 - 1 
1.1 -7.25498 + 0 -6.87847 + 0 -4.57844 + 0 -1.47679 - 1 
1.2 -1.33591 + 1 -1.21904 + 1 -5.97349 + 0 2.35668 - 1 
1.3 -2.19659 + 1 -1.93150 + 1 -6.88402 + 0 2.24248 - 1 
1.4 -3.36151 + 1 -2.84518 + 1 -7.11308 + 0 3.10851 - 3 
1.5 -4.88847 + 1 -3.97466 + 1 -6.57336 + 0 -1.65861 - 1 
1.6 -6.83847 + 1 -5.32791 + 1 -5.31243 + 0 -1.46461 - 1 
1.7 -9.27502 + 1 -6.90514 + 1 -3.50808 + 0 2.53438 - 3 
1.8 -1.22634 + 2 -8.69800 + 1 -1.43922 + 0 1.23063 - 1 
1.9 -1.58698 + 2 -1.06891 + 2 5.66677 - 1 1.16626 - 1 
2.0 -2.01606 + 2 -1.28518 + 2 2.19548 + 0 3.46739 - 3 
2.1 -2.52012 + 2 -1.51503 + 2 3.20680 + 0 -9.50870 - 2 
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TABLE II - Continued 

N = 2 n = 1 

x c = 1 c = 2 c = 5 c = 10 

2.2 -3.10555 + 2 -1.75404 + 2 3.47937 + 0 -1.00215 - 1 
2.3 -3.77844 + 2 -1.99703 + 2 3.03214 + 0 -1.01271 - 2 
2.4 -4.54453 + 2 -2.23824 + 2 2.01698 + 0 7.86142 - 2 
2.5 -5.40910 + 2 -2.47136 + 2 6.84586 - 1 6.25620 - 2 
2.6 -6.37687 + 2 -2.68987 + 2 -6.69192 - 1 1.86542 - 2 
2.7 -7.45191 + 2 -2.88715 + 2 -1.76387 + 0 -2.83514 - 2 
2.8 -8.63756 + 2 -3.05673 + 2 -2.39029 + 0 -8.09642 - 2 
2.9 -9.93633 + 2 -3.19263 + 2 -2.45263 + 0 -6.05693 - 3 
3.0 -1.13498 + 3 -3.28923 + 2 -1.97549 + 0 4.94337 - 2 

N = 2 n = 2 

x c = 1 c = 2 c = 5 c = 10 

0.1 6.92988 - 2 7.12673 - 2 8.51196 - 2 1.31062 - 1 
0.2 3.52496 - 1 3.60980 - 1 4.18221 - 1 5.67604 - 1 
0.3 8.01544 - 1 8.14659 - 1 8.93117 - 1 9.45356 - 1 
0.4 1.20746 + 0 1.21237 + 0 1.21221 + 0 7.67342 - 1 
0.5 1.27474 + 0 1.25311 + 0 1.05255 + 0 -3.76902 - 2 
0.6 7.57995 - 1 7.02242 - 1 2.84685 - 1 -9.13196 - 1 
0.7 -3.27092 - 1 -3.94312 - 1 -8.22806 - 1 -1.05173 + 0 
0.8 -1.41364 + 0 -1.43709 + 0 -1.49256 + 0 -7.12440 - 2 
0.9 -1.01239 + 0 -9.55456 - 1 -4.82515 - 1 1.57998 + 0 
1.0 3.74003 + 0 3.73507 + 0 3.69332 + 0 2.86776 + 0 
1.1 1.76108 + 1 1.68770 + 1 1.23963 + 1 2.91426 + 0 
1.2 4.78738 + 1 4.45904 + 1 2.64247 + 1 1.66265 + 0 
1.3 1.04979 + 2 9.51393 + 1 4.56130 + 1 -6.78936 - 2 
1.4 2.03280 + 2 1.79119 + 2 6.85921 + 1 -1.18788 + 0 
1.5 3.61809 + 2 3.09537 + 2 9.27854 + 1 -1.12986 + 0 
1.6 6.05086 + 2 5.01768 + 2 1.14715 + 2 -2.05881 - 1 
1.7 9.63954 + 2 7.73357 + 2 1.30538 + 2 7.08003 - 1 
1.8 1.47641 + 3 1.14368 + 3 1.36797 + 2 8.79453 - 1 
1.9 2.18846 + 3 1.63343 + 3 1.31147 + 2 3.17527 - 1 
2.0 3.15489 + 3 2.26396 + 3 1.12984 + 2 -4.11104 - 1 
2.1 4.44006 + 3 3.05647 + 3 8.37540 + 1 -7.13268 - 1 
2.2 6.11858 + 3 4.03107 + 3 4.68923 + 1 -3.71699 - 1 
2.3 8.27598 + 3 5.20576 + 3 7.34290 + 0 2.40288 - 1 
2.4 1.10092 + 4 6.59547 + 3 -2.92519 + 1 6.17233 - 1 
2.5 1.44270 + 4 8.21064 + 3 -5.75607 + 1 2.78319 - 1 
2.6 1.86502 + 4 1.00565 + 4 -7.35509 + 1 -1.46009 - 1 
2.7 2.38122 + 4 1.21320 + 4 -7.52754 + 1 -2.33031 - 1 
2.8 3.00582 + 4 1.44287 + 4 -6.32751 + 1 -4.05877 - 1 
2.9 3.75458 + 4 1.69309 + 4 -4.05587 + 1 1.20902 - 2 
3.0 4.64442 + 4 1.96136 + 4 -1.18748 + 1 4.27288 - 1 

N = 2 n=3 

x c = 1 c = 2 c = 5 c = 10 

0.1 1.26968 - 1 1.29109 - 1 1.44081 - 1 1.94166 - 1 
0.2 5.91772 - 1 5.99200 - 1 6.48662 - 1 7.75163 - 1 
0.3 1.13308 + 0 1.13787 + 0 1.15991 + 0 1.06828 + 0 
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TABLE II - Continued 

N = 2 n = 3 

x c = 1 c = 2 c = 5 c "" 10 

0.4 1.22242 + 0 1.20735 + 0 1.08268 + 0 4.42410 - 1 
0.5 5.02125 - 1 4 .61442 - 1 1. 72834 - 1 -7.08002 - 1 
0.6 -7.28650 - 1 -7.67417 - 1 -9.99672 - 1 -1.12281 + 0 
0.7 -1.34994 + 0 -1.33947 + 0 -1.20442 + 0 -6.35200 - 2 
0.8 -1.55815 - 1 -9.78895 - 2 3.13440 - 1 1.38983 + 0 
0.9 1.72855 + 0 1.73119 + 0 1.69507 + 0 6.83573 - 1 
1.0 -4.24197 + 0 -4.23990 + 0 -4.22216 + 0 -4.05639 + 0 
1.1 -4.29825 + 1 -4.14973 + 1 -3.22563 + 1 -1.17483 + 1 
1.2 -1.69966 + 2 -1.60436 + 2 -1.05765 + 2 -1.81766 + 1 
1.3 -4.92189 + 2 -4.54612 + 2 -2.55016 + 2 -1.86221 + 1 
1.4 -1.19761 + 3 -1.08177 + 3 -5.12503 + 2 -1.15388 + 1 
1.5 -2.59483 + 3 -2.28970 + 3 -9.05339 + 2 -3.41475 - 1 
1.6 -5.16494 + 3 -4.44652 + 3 -1.44608 + 3 8.52760 + 0 
1.7 -9.62735 + 3 -8.07479 + 3 -2.12354 + 3 1.01259 + 1 
1.8 -1.70216 + 4 -1.38880 + 4 -2.89670 + 3 4.31901 + 0 
1.9 -2.88067 + 4 -2.28281 + 4 -3.69313 + 3 -3.63918 + 0 
2.0 -4.69805 + 4 -3.61016 + 4 -4.41450 + 3 -7.22580 + 0 
2.1 -7.42193 + 4 -5.52126 + 4 -4.94883 + 3 -5.31249 + 0 
2.2 -1.14040 + 5 -8.19885 + 4 -5.18833 + 3 8.57079 - 1 
2.3 -1. 70988 + 5 -1.18598 + 5 -5.05014 + 3 5.14940 + 0 
2.4 -2.50841 + 5 -1.67557 + 5 -4.49592 + 3 5.60742 + 0 
2.5 -3.60853 + 5 -2.31714 + 5 -3.54624 + 3 5.87060 - 1 
2.6 -5.10005 + 5 -3.14232 + 5 -2.28432 + 3 -4.18090 + 0 
2.7 -7.09289 + 5 -4.18531 + 5 -8.50402 + 2 -2.39443 + 0 
2.8 -9.72020 + 5 -5.48229 + 5 5.76599 + 2 -1.90159 + 0 
2.9 -1.31415 + 6 -7.07072 + 5 1.80814 + 3 6.87950 - 1 
3.0 -1. 75464 + 6 -8.98762 + 5 2.67521 + 3 4.80391 + 0 

I am indebted to Mrs. E. Sonnenblick for programming and carrying 
out the computations reported here. 

APPENDIX A 

A Perturbation Scheme 

We treat briefly the following problem. Eigenfunctions Un and eigen­
values An of an operator L are assumed known. That is, we have 

n = 0,1,2, .... (114) 

It is desired to find eigenfunctions 1/In and eigenvalues Xn of the perturbed 
equation 

(L - eM)1/I + x1/I = o. (115) 
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It is assumed that the Un satisfy the boundary condition to be imposed 
on the 1/I's and that the Un are complete in some appropriate sense. We 
proceed further in a purely formal manner. 

Substitute the series 

Xn = An + L: €iaj 
j=l 

(116) 

(117) 

into (115). Here in the notation we have suppressed the dependence of 
the Qj and aj on n. By equating to zero the coefficients of distinct powers 
of €, we find 

(118) 

i 

LQj + AnQj = MQj-l - L: akQj-k , (119) 
k=l 

j = 1,2, ... 

whcre we define Qo = 'l,l'n • 

Now it frcquently happens that the operator M is such that MUn can 
be expressed as a finite linear combination of the u's with constant coef­
ficients. We assume this to be the case and write 

l 

MUn = L: 'YniUn+ia , 
i=-l 

n = 0,1,2, .... 

(120) 

Here ex is a positive integer, l a nonnegative integer, and the superscript 
ion'Y is not an exponent, but a label. 

If the Un are linearly independent, formal solution of system (119) 
is now straightforward. Set 

A/ = 0 
(121) 

j = 1,2, 

The A's of course depend on n, but for simplicity we have suppressed 
this fact in the notation. Again the superscript is a label, not an ex­
ponent. Substitute (121) and (120) into (119). Setting the coefficient 
of Un equal to zero in the resultant expression yields 
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I 

"" A j-I k aj = L...J -k 'Yn-ka, j = 1,2, 
k=-l 

Requiring the coefficient of Un+ma to vanish gives 
i I 

( " " )A j "" A j-k "" A j-I k I\n+ma - I\n m = L...J ak m - L...J m-k 'Yn+(m-k)a 
k=l k=-l 

m = -jl, -jl+ 1, ... , jl; j = 1,2, .... 

Here we have adopted the conventions 

A/ == 0 

if either 

I k I > jl, or (Xk < -n, or k = 0 and j = 1, 2, 

Aoo = 1, A ko = 0, k ~ 0, a o = O. 

(122) 

(123) 

Equations (122) and (123) together with these conventions permit 
successive determination of the a's and A's. The case l = 1 occurs fre­
quently. The first few coefficients for this case are given below where 
we have set 

h j = [An+j - An]-I. 

° al = 'Yn 

A_/ = -ILa'Yn-
I 

A/ = -ha'Yni 

a2 = - [ha'Yn\n+a -1 + lLa'Yn-I'Yn_a
I
] 

A_22 = h-2ah-a'Yn -\n_a-
I 

A-l = (h_a)2'Yn -I[ -'Yn ° + 'Yn-aO] 

A12 = (ha)2'YnI[-'YnO + 'Yn+ao] 

A22 = h2aha'YnI'Yn+a
I 

a3 = (ha)\nI'Yn+a-
I
( -'Yno + 'Yn+lo) + (h_a)2'Yn-I'Yn_a

I
( -'Yno + 'Yn-ao) 

A I3 = ha[A/( 'Yn ° - 'Yn+a 0) + a2A/ - 'Yn+2a -IA22] 

A_I3 = h_a[A_a2('YnO - 'Yn-ao) + a2A_I2 - 'Yn_2a1A_22] 

More generally for this case one finds 
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i 
j j IT ±l 

A±j = (-1) h±ka'Yn±(k-l)a , 
k=1 

i-I 

A±U-l/ = A±U_l)j-l L: h±ka[al - 'Yn±ka 0], 
k=1 

i-2 
A j A j-2 '"' h 

±(i-2) = ±U-2) L..J ±la 
l=1 

X [a2 + h±(l+I)a'Yn±(l+I)a'F
1
'Yn±la±1 

l 

j = 1,2, ... 

j = 2,3, ... 

+ (al - 'Yn±laO) L: h±ka(al - 'Yn±kaO)], 
k=l 

j = 3,4, .... 

APPENDIX B 

Evaluation oj an Integral 

We establish here the formula (43). Let 

FN,n(x) = i 1 

J N(xy)VXYTN,n(y)dy 

= i 1 

KN(xy)TN,n(y)dy 

on using the notation of (21). Then 

[X2 :;2 + 2x :X + (X2 - x) ] FNn(X) 

= Ial 

TN,n(Y)[X2y2K/'(xy) + 2xyK/(xy) + (X2 - X)KN(Xy)]dy 

= Ia1 

TN,n(Y)[( _x2y2 - 1 + N 2 + X2 

- X)KN(XY) + 2xyK/(xy)]dy 

(124) 

(125) 

(126) 

by (23). Here primes denote differentiation with respect to the argu­
ment indicated. 

Now 

~ (1 - 2) dTN.n(Y) + (1 - N
2 
+ ) T () = 0 

dy Y dy y2 X N ,n y 
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with x given by (26). Multiply this equation by KN(XY) and integrate 
from zero to one. There results 

11 [ d 2 dT N (.1 - N
2 

) ] o = 0 KN(XY) dy (1 - y) dy,n + 4 y2 + X TN,n dy 

11 [ d d (1 N
2

) ] = 0 TN,n(y) dy (1 - y2) dy!{N(XY) + 4; ~2 + X KN(XY) dy 

where we have integrated by parts and made use of the fact that 
KN(O) = 'TN,n(O) = O. Carrying out the indicated differentiation, we 
find 

o ~ { TN,.(Y) [(I - ll)x'K/'(xy) - 2xyK/(xy) 

+ (t ~,N' + X) KN (XV) ] dy (127) 

-i1 
TN,n(y)[( _x2y2 - i + N 2 + X2 - X)KN(XY) 

+ 2xyK/(xy)1dy. 

Equations (126) and (127) give 

[x' :;, + 2x :x + {x' - (N + 2n + ~)( N + 2n + D } ] F N,n (x) ~ o. 

The only solution of this equation that vanishes for x = 0 is 

1 J N+2n+1 (X) 
I~ Vx 

Using (125), we then have 

Ie JN4':J';,(X) ~ {IN(xyh/xyTN,n(y)dll. (128) 

To determine k, we have only to compare the coefficients of X
N +2nH 

on both sides of (128). In this way we find 

k 

2N+2n+1 r (N + 2n + 2) 

(_I)n (N+2n+!T ()d 
= 2N+2nr (N + n + l)n! Jo y N,n Y y. 

(129) 
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The integral here can be evaluated by using (27), (28) and known 
properties of the Jacobi polynomials. We have 

i1 N+2nHT ()d Y N,n Y Y 
o 

= (n ! Nr l 

{ y'N+,n+tp.(N.O) (1 _ 2y')dy 

= 2-(N+n+2l (n ! Nr l 1: (1 - u)N(l - u)np.(N.o'(u)du. 

Now the coefficient of un in (1 - u) n is (-1) n and the coefficient of 

un in Pn(N.O,(u) is en ~ N) / 2n [Ref. 8, Vol. II, p. 169, Eq. (5)], 

so 

( 1) n2n n-1 

(1 - u)n = (2: ~ N) p.(N.O'(U) + ~ A;pr·o,(u). 

It follows, then, that 

~1 (1 _ U)N(1 _ u)npn(N,o)(u)du 

( -1) n2n {I en ~ N) -I 

(1 - U)Npn (N,O) (U)Pn (N,O) (u)du 

(2n ~ N) (2n + N + 1) 

where we have used the orthogonality of the Jacobi polynomials and 
the known normalization integral [see Ref. 5, page 68, Eq. (4.3.3), for 
example]. Combining these results, (129) yields 

(
n + N)-l 

k= , n 

and together with (128) this establishes (43). 
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A Note on a Signal Recovery Problem 

By I. W. SANDBERG 

(Manuscript received July 17, 1964) 

In a recent studyl of the recoverability of square-integrable band­
limited signals that are distorted by a frequency-selective time-varying 
nonlinear system and subsequently are bandlimited to the original bands, 
certain assumptions were made concerning three of the four functions 
of frequency that characterize the linear time-invariant part of the sys­
tem. These assumptions, which are stated in Section 3.4 of Ref. 1, are 
satisfied in most, but not all, cases of engineering interest. The purpose 
of this note is to report on an extension of Theorem I of Ref. 1 that covers 
cases in which the conditions of Section 3.4 of Ref. 1 are not met. l\10re 
specifically, a proof of the following result is outlined. 

Theorem: Let £2Il and CB(Q) be as defined in Section II of Hef. 1. Let A, 
B, C, D, a, 1f;( ',' ), and P be as defined in Sections 3.1, 3.2 and 3.3 of 
Ref. 1, and, for any f E £2R, let 1f;[f] denote the function with values 
1f;(f(t),t) (- 00 < t < (0). 

With Q* the complement of Q with respect to ( - 00, 00 ), and 

E(w) = D(w) for w E: Q 

= 1 for wE: Q*, 

let 

ess sup I [E(C - 1) - PABrl I < 00, 

-oo<w<oo 

and 

(1 - a) ess sup I E[E(C - 1) - PABrl I < 1. 
-oo<w<oo 

Let 83 be an arbitrary element of CB(g). Then CB(Q) contains a unique 
element 81 , and £2Il contains unique elements w, v, and 82 such that 

v = A8l + Cw, 

83 = P82, and v = 1f;[w] 
[i.e., such that (1), (2), (3), and (4) of Hef. 1 are satisfied]. Further­
more, there exists a positive constant k, that depends only on A, B, C, 

3065 
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D, and a, such that if 

v = A81 + Cw, 

and v = ,p[w] 

where w, v, 82 C £2R and 81 , 83 c <B(n), then 

II S1 - 81 II ~ k II S3 - 83 II· 
Outline of Proof: 

Let the mapping of £2R into itself represented in the frequency domain 
by multiplication by E (w) be denoted by E, and let x( n) denote the 
Banach space of two-vector-valued functions of t belonging to 

£2R X <B(n), 

with norm 11·11' defined by 

II f [I' = (L: I !JCt) I' dt + 1: !f,(t) II dtY, 

Assume that the hypotheses of the theorem are satisfied. To prove the 
first part of the theorem, it clearly suffices to show that <B(n) contains 
a unique element SI , and £2R contains a unique element w, such that 

if;[w] = ASI + Cw, (1) 

and 

S3 = DS1 + PBw, (2) 

in which P is defined in Section 3.2 of Ref. 1. For this purpose, we may 
replace D in (2) by E and write (1) and (2) as 

[OJ = [(C - I) rAJ[ ~ J .:...- [~[W]J 
S3 PB rE r SI ° (3) 

in which ~[w] = ~[w] - w, r is an arbitrary positive constant, and I is 
the identity operator. 

The operator 

L = [( C - I) rAJ 
PB rE 

is a bounded mapping of X(n) into itself. In view of the first inequality 
of the theorem, it possesses an inverse on X(n), and L-I can be repre­
sented in the frequency domain by the matrix-valued function 

-I( ) 1 [E -A J 
L w = E(C _ 1) _ PAB -r-IpB r-I(C - 1) . 
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In particular, (3) can be written as 

L-!sJ = L-INL-!sJ + L-'[~,] (5) 

in which N is the operator defined on X(O) by 

f = [~:J e Je(IJl-

The second inequality of the theorem implies that there exists a posi­
tive number to such that L -IN is a contraction mapping of X(O) into 
itself for all t > to . In fact, using Parseval's identity and the frequency 
domain representation of L-I, we find that for allf, g c X(O), 

II L -INf - L -lNg 1/' ~ max (CI' C2) /I Nf - Ng II' 

~ (1 - a) max (c] , C2) /I f - g 1/' 

in which 

c] = ess sup I E[E(C - 1) - PABrl I, 
w 

and 

C2 = t-1 ess sup 1 PB[E(C - 1) - PABr l I. 
w 

In view of the contraction-mapping fixed-point theorem, this establishes 
the existence and uniqueness of the functions wand 81 (as well as the 
important fact that these functions can be determined by an iteration 
procedure that converges at a geometric rate). 

The second part of the theorem follows directly from (5), the relation 

and the fact that L -IN is a contraction for t > to. 
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Detection of Weakly Modulated Light 
at Microwave Frequencies 

By M. G. COHEN and E. I. GORDON 

(Manuscript received August 10, 1964) 

Studies of the photo elastic, electro-optic or magnetic-optic properties 
of materials at high frequencies often require the detection of microwave 
modulated light. In many cases, the modulation depth is sufficiently 
small that quantitative measurement becomes difficult if not impossible. 
The purpose of this brief is to describe a homodyne-superheterodyne 
technique which allows measurement of modulation depths of consider­
ably less than 10-6

• 

At such small modulation depths, the light-associated shot noise can 
be large compared to the modulation signal. Under these circumstances, 
it is customary to use synchronous detection techniques following a 
sensitive superheterodyne receiver and to chop the modulation signal at 
some low frequency. This requires extremely good RF shielding between 
the modulation source and the receiver to avoid pickup. The variations 
in amplitude and phase of the pickup produce an unsteady output signal. 
Alternately, one can chop both the light and the modulation and per­
form the synchronous detection at a sum or difference frequency. In 
any case, the limiting sensitivity is determined by noise originating in the 
photodetector and the receiver. 

The technique described here is considerably simpler and more sensi­
tive. Fig. 1 indicates the usual synchronous detection scheme using a 
photodetector feeding a microwave receiver with a 30-mcs IF strip. A 
reference signal for the synchronous detector is derived from the light 
chopping wheel. The added feature is the injection into the line incident 
on the receiver of a small fraction of the CW modulating signal, taken 
from the input line to the interaction region or modulator and passed 
through a variable attenuator and phase shifter. The amplitude of the 
injected signal is kept at least 30 db larger than that of the pickUp. Thus 
the amplitude and phase of the total injected signal, including pickup, 
are essentially independent of fluctuations in the phase and amplitude 
of the pickUp. The mixer and IF strip are operated in their linear regions. 
Thus the signal output Vo from the final stage of the IF amplifier, which 
is an envelope detector, can be written 

Vo = I viCl + r) + Vm + Vs + Vr I time average· (1) 

Here Vi is the injected signal and r < < < 1 represents that part of the 
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Fig. 1 - Block diagram of the homodyne-superheterodyne detection scheme. 

injected signal which, because of imperfect isolation, is incident on the 
photodetector and is reflected with a component at the chopping fre­
quency (because the photodetector RF impedance is dependent on the 
light intensity as, for example, in a photodiode) Vm is the modulation 
signal from the light, Vs is the light-associated shot noise from the 
photodetector and Vr is the receiver equivalent input noise. The tilde 
over some of the quantities indicates that they are chopped at the refer­
ence frequency of the synchronous detector. By far the largest signal is 
Vi, so Va can be written to a very good approximation 

Va = I v£ I [1 + 2 Re f + 2( I Vm III Vi I ) COS () + terms of order 

I Vs 12/1 Vi 12, I Vr 12/1 Vi 12 and higher] 

I Vi I (1 + 2 Re f) + 2 I Vm I cos () + terms of order 

I Vs 12/1 Vi I, I Vr 12/1 Vi I etc. 

(2) 

in which () is the phase angle between Vm and Vi, and Re indicates the 
real part. All other cross terms have a time average of zero; the only 
signals which are coherently related are Vi and Vm . Thus all noise terms 
can be made arbitrarily small compared to I Vm I by making I Vi I large. 
The contribution from the chopped term containing r can be made 
arbitrarily small by using more isolation in the line immediately follow-
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ing the photodetector. In the case of a photomultiplier, this is not nor­
mally necessary. Even when these terms are not completely negligible 
compared to Vm cos 0, their effect can be eliminated by varying the phase 
of the injected signal so that cos e takes on the value ± 1. The only out­
put which depends on 0 is the desired modulation signal. Thus one need 
only take the algebraic difference between the extreme deflections of the 
synchronous detector as 0 is varied. The fact that there is a synchronous 
detector deflection which depends on the phase of the injected signal is 
an unambiguous indication of microwave modulation on the light. 

All aspects of (2) have been verified in the course of photo elastic and 
electro-optic modulation experiments above 150 mc by placing variable 
attenuators in various parts of the circuit to see if the variation of each 
term had the proper dependence. l\1:odulation depths of 10-6 could be 
easily and accurately determined with integration times following the 
synchronous detector of less than one second. No special shielding was 
required. It should also be noted that the output of the synchronous 
detector is proportional to the RF amplitude rather than the square of 
the amplitude as in most other radiometer detection schemes. Thus, the 
output is proportional to the amplitude of the light modulation rather 
than its square. 

An Improved Error Bound 
for Gaussian Channels 

By A. D. WYNER 

(Manuscript received August 18, 1964) 

I. INTRODUCTION 

The problem considered here is that of coding for the time-discrete 
amplitude-continuous memoryless channel with additive Gaussian noise, 
the code words lying on the surface of an n-dimensional hypersphere 
with center at the origin and radius V nP. 

We define a code as a set of lVl real n-vectors x = (Xl, X2 , • • • ,xn ) 

satisfying the ("energy") constraint, 

n 

Lx/=nP. (1) 
k=l 

The transmission rate R is defined by lYI = enR
, so that R = (lin) In M. 
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The code words are transmitted through a channel in which they are 
corrupted by noise, the received word fj = (YI, Y2 , ... , Yn) being the 
vector sum of the transmitted word x and a noise vector Z, i.e., 

fj = (Yl, Y2 , ... ,Yn) = (Xl + Zl , X2 + Z2 , ... ,Xn + zn) = x + Z. (2) 

The components of the noise vector zk(k = 1, 2, ... , n) are assumed 
to be statistically independent Gaussian random variables with mean 
zero and variance N. 

n 

The sl'gnal "energy" IS "" X 2 nP and the expected no s L..J k = , Ie 
k=l 

"energy" is E[Lk z/] = nN, so that the signal-to-noise energy ratio is 
P IN. This quantity is also the signal-to-noise "average power." 

I t is the task of the decoder to examine the received vector y and de­
cide which code word x was actually transmitted. If P ei is the probability 
that the decoder makes an incorrect choice when code word i is trans­
mitted (i = 1, 2, 3, ... , M), and if each of the M code words is equally 
likely to be transmitted, then the over-al1probability of a decoding error 
is 

1 M 

Pe = M LPei . 
i=l 

(3) 

It is not hard to show that the decoding scheme which minimizes P e for 
a given code is the minimum-distance decoder, where the decoder selects 
that code word which has smallest Euclidean distance from the received 
vector and announces that word as the one which was transmitted. 
Thus if y = (Yl, Y2, ... ,Yn) is the received vector, the decoder an­
nounces that code word x which minimizes (with respect to x) 

n 

d(x,y) = L (Xk - Yk)2 = L Xk
2 + L Yk2 - 2 L XkYk. 

k=l k k k 

Since Lk x/ = nP, d(x,y) is minimized when Lk XkYk is maximized. 
Hence minimum-distance decoding is equivalent to selection of that 
code word x which minimizes the angle in n space a(x,y) between x and 
fj, where 

cos a(x,y) (4) 

The behavior of codes for this channel has been investigated in detail 
by Shannon/,2 who has shown the following: 
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Fundamental Coding Theorem: Let R be any number such that 

R < C = !In [1 + (PIN)]. 

For each n, there exists an n-dimensional code with rate R(M = enR
) such 

that the error probability is 

P -nE(R) +o( n) 
e = e , (5) 

where the exponent E (R) (called the "reliability") is positive when R < C 
(so that P e ~ 0). 

Shannon2 also obtained estimates of the best possible exponent 

E(R) = lim - (lin) In Pe • 
n ..... C>J 

In this note we establish the following upper bound on E(R) (i.e., a 
lower bound on P e) : 

(6) 

For small rates R, (6) is sharper than the bounds of Ref. 2. Inequality 
(6) is plotted together with the estimates on E(R) in Ref. 2 in Fig. 1. 

1.0 --,----------------. 
•.• _L __ E e-2R 

0.6 

0.4 

0.2 ,~ 

'\., 
' ...... 

............ C= 0.805 ......... / 

°0~-~~--~--~~-~~-~1.0 

R 

Fig. 1 - New upper bound on E(R) vs R for PIN = 4 (solid line). The bounds 
on E(R) of Ref. 2 are in dotted lines. E(R) lies in the shaded area. 
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II. DERIVATION OF THE BOUND 

Consider an n-dimensional code with J.11 code words Xl , X2, .•. , XM . 

Let 0 be the minimum angle between pairs of code words a(ii' Xj) 
(i ~ j). Denote by On(Al) the largest possible minimum angle 0 in an n­
dimensional code with AI code words, and by 

sn(J1I) = 2y nP sin [On (AI) /2], 

the largest possible minimum distance between pairs of code words in an 
n-dimensional code with M code words. Paralleling an argument of 
Shannon [Ref. 2, pp. 647-648] it is not hard to show that the error prob­
ability satisfies 

P > .!<I> (_ • InP . On(J11/2)) 
e = 2 V N sm 2 ' (7) 

where 

( 1 IX u 2 /2 <I> x) = --= e- du y27r -00 

is the cumulative error function. 
We now employ the following result of Rankin3 to obtain an upper 

bound on On (J.ll ) : 

7r!r (n ~ 1) sin {3 tan {3 

NJ ~ --~~~~~-------------------
2r (~) f (sin '" )n-2( cos", - cos (3)d",' 

(8) 

where (3 = sin- l y2 sin (0/2), and 0 is the minimum angle in an n-di­
mensional code with Nl code words. Taking logarithms of (8) yields 

1 R = - In ]1,1 
n 

I! 1 r (n ~ 1) 
:::::; - In ~ sin {3 tan {3 + - In --....:.....--:----7---'-

- n 2 n r (~) (9) 

1 I if' (. )n-2( (3)d - - n sm cp cos cp - cos cp • 
n 0 

It is shown in the appendix that for large n we may approximate the 
upper bound of (9) by -In y2 sin (0/2), yielding 

. 0 < 1 -R 
sm 2 = y2 e . (10) 
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Since for large n, a code with M /2 points has the same rate as one 
with M points (10) and (7) yield (for large n) 

> 1. _ nP e ( 1- -R) 
Pe = 2<P N y2 . (11) 

Using the well known asymptotic form of the cumulative error func­
tion cp( -x) f"'J (1/xV27r)e-X2/2 (large x) we obtain 

( ) 1 < ~ -2R 
E R = ~i:r! - n In P e = 4N e . (12) 

APPENDIX 

We must show that the limit of the right-hand member of inequality 
(9) as n tends to infinity is - In V2 sin (e /2). The first two terms of 
this quantity both tend to zero as n becomes large, so that we must 
show the following: 

Let 

then 

E = lim! In In = In sin ,8 . 
n-+OO n 

Proof: 

(a) In ~ foP sinn
-

2 ,8 (cos cp - cos ,8)dcp = sinn
-

2,8 [sin ,8 - ,8 cos,8], 

so that 

! In In ~ n - 2 In sin,8 + ! In [sin,8 - ,8 cos (3] ~ In sin {3. 
n n n 

(b) In ~ i P 
sinn

-
2 cp (cos cp - cos ,8)dcp 

p-(Pln) 

~ sin n-2 (,8 - f!.) i P 
(cos cp - cos (3 )dcp . 

n p-(Pln) 

(13) 

Now 
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I = r/3 (COS cp - cos (3) dcp = sin {3 - sin ({3 - ~) - f!.. cos (3 
J/3-(/3/n) n n 

= sin {3 - sin {3 cos ~ + cos {3 sin ~ - ~ cos B . 
n n n 

Expanding sin ({3/n) and cos ({3/n) into power series in ({3/n), we ob­
tain 

• [ {32 ( 1 )] {32. I = sm {3 2n2 + 0 n2 = 2n2 sm (3[1 + 0(1)]. 

Thus 

~ In I = ~ In 2{322 sin {3 + ! In (1 + 0 ( 1)) -2:. o. 
n n n n 

From (13) we have 

! In In;?; n - 2 In sin ({3 - ~) + ! In I ~ In sin {3 • 
n n n n 

Therefore E = In sin {3, which completes the proof. 
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