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Effectiveness of Error Control in Data
Communication over the Switched

Telephone Network

By R. L. TOWNSEND and R. N. WATTS
(Manuscript reeeived September 24, 1963)

This article describes the results of a data communication experiment
destgned to tnvestigate the effectiveness of error detection and retransmission
in providing high-accuracy data transmission over the swilched telephone
network. Data were encoded into a Bose-Chaudhuri (31,21) error-detecting
code and transmitted at 2000 bits per second by a DATA-PHONE data
set 201A over a variety of dialed long-distance connections. Transmatted
and recetved data were compared to oblain error data which were analyzed
to obtain an estimate of the error performance of the data set and the effec-
tiveness of the code. The results of this analysis are presented.

During the test approximately 6.36 X 107 31-bit code words or 1.97 X
10° bits were transmatted. Of these, 63,002 bits appearing in 29,731 different
code words were received incorrectly. Thus, the over-all bit error rate was
3.19 X 107% and the word error rate 4.67 X 10~* The decoder was suc-
cessful tn detecting all but two of the erroneous code words, resulting in an
average undetected word error rate of 3.14 X 1078 or an average of 9.85 X
108 bits between undetected word errors. These results demonstrated that very
low undetected error rates can be obtained in practice using an error detection
and retransmission system of modest complexity.

I. INTRODUCTION

Much attention has been focused recently on the problem of trans-
mitting digital data over the switched telephone network with a high
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degree of accuracy. Selection and evaluation of error control schemes
by which the desired high accuracy can be achieved require detailed
information about the digital error statistics. Because of the complexity
of the switched telephone network, the only feasible way to obtain this
information is through the analysis of experimental data.

A method of error control which offers promise for use with telephone
facilities is error detection and retransmission. An experiment has been
performed to explore the feasibility of this type of error control and to
obtain useful statistical information about the switched telephone net-
work. In this experiment, a DATA-PHONE data set 201A,! which is a
4-phase unit designed for synchronous operation at 2000 bits per second,
was used to transmit data over a variety of connections in the direet
distance dialing network. The transmitted data were encoded into the
Bose-Chaudhuri? (31,21) code described in Appendix A, which had been
selected on the basis of a computer study. Transmitted and received
data were compared to obtain error data from which digital error sta-
tistics were derived.

The over-all results of the test are shown in Table 1. This indicates
that the decoder was successful in detecting all but two of the 29,731
words received containing transmission errors. These results demon-
strate the feasibility of providing high accuracy data transmission over
the direct distance dialing network by using an error detection and
retransmission system of modest complexity. A description of the error
control equipment is given in Appendix A.

A description of the test and an analysis of the numerical error data
are presented in the remainder of the article.

1I. DESCRIPTION OF THE TEST

The test was conducted between March 13 and August 31, 1962,
during which time approximately 1.97 X 10° bits were transmitted. A
portable transmitter was used to transmit data from various locations
throughout the Continental United States to a stationary receiver
located at Murray Hill, New Jersey from March 13, 1962 until May 1,
1962, and then at Holmdel, New Jersey for the remainder of the test.
All performance measurements were made at the receiving terminal.

At both Murray Hill and Holmdel three foreign exchange lines were
installed, one each to a No. 5 crossbar, No. 1 crossbar, and step-by-step
central office. The characteristics of these lines are outlined in Table II.
Dialed connections were originated from the receiving terminal, which
was so arranged that it could be connected to any of the three lines. At
both receiving stations calls were distributed equally, as nearly as pos-



ERROR CONTROL 2613

TaBLE I — ExpERIMENTAL RESULTS OF DaTa COMMUNICATION
OVER THE SWITCHED TELEPHONE NETWORK

Number of transmitter locations 28 '
Number of calls 548
Number of hours of transmission 273
Total bits transmitted 1.97 X 10°
Information bits transmitted 1.33 X 10°
Words transmitted 6.36 X 107
Number of bits in error (total) 6.30 X 10*
Number of words in error 2.97 X 104
Number of undetected word errors 2

Bit error rate 3.19 X 1075
Word error rate 4.67 X 10
Undetected word error rate 3.14 X 10°®
Factor of improvement (word) 1.49 X 10¢
Average bits between undetected word errors 9.85 X 108

sible, among the three foreign exchange lines. The duration of each call
was approximately 30 minutes.

The transmitting terminal was moved to the locations listed in Table
II1. These were selected on the basis of their distance from the receiving
terminal, types of connecting facilities and type of end switching office.
Since one objective of the experiment was to collect and to analyze data
transmitted over typical connections, the locations selected were in or
near large metropolitan areas where data traffic is likely to be heaviest.

A pseudo-random sequence generator was used to produce a repetitive
pattern of 511 distinet 31-bit code words. These were transmitted serially
at 1000 bauds or 2000 bits per second by a DATA-PHONE data set
201A. Received data were demodulated with another data set 201A
and then compared with the output of a synchronized, duplicate se-
quence generator. The output of the receiver and system performance
information were recorded on magnetic tape. Error data also were
recorded by means of electronic event counters. A test log was kept which

Tasre IT— Recerving Exp TeEst LINES

B, [0 peamarco | L, |Uinelgs o] Tmgottine
MH #5XB | New Providence, N. J. | 4641116 3.4db | H-88
MH #1XB | Plainfield, N. J. PLG8684 9.8db | H-88
MH SXS Carteret, N. J. 5414054 13 db | H-88
HO #5XB Holmdel, N. J. 04640674 5.3 db | H-88
HO ¥1XB Rahway, N. J. 3814270 10.4db | H-88 &

N carrier
HO SXS Monmouth Junction, DAYG550 | 11 db | H-88 &
N. J. N carrier
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TaABLE III —LocArioNs oF TRANSMITTING TERMINALS

Trans-

Trmsmiter Lot | €O | bate | oee Type | Ny | ion | Lol mite
(Hours)

Rahway, N. J. FU8 3/15/62 | ¥1XBAR| 11 5.5 3.96 X 107
Passaie, N. J. PR8 3/13/62 | ¥1XBAR 9 4.62 ] 3.32 X 107
Paterson, N. J. MU3 3/22/62 | #1XBAR 7 3.22 | 2.32 X 107
Ridgewood, N. J. 444 3/27/62 | ¥5XBAR| 10 4.88 | 3.52 X 107
Mr&nlsl{attan (N.Y.C.),| 349 4/18/62 | x1XBAR | 10 | 4.83 | 3.48 X 107
anh%ttan (N.Y.C.),| HA5 4/23/62 | #1XBAR | 13 6.5 4.68 X 107

N
MaNnhattan (N.Y.C.),} LT1 4/20/62 | ¥5XBAR| 12 6.17 | 4.44 X 107
Manhattan (N.Y.C.),| RI9 5/11/62 | #1XBAR | 14 7 5.04 X 107

N. .
Ml%nh%ttan (N.Y.C.),| UN1 | 5/10/62 | $5XBAR| 9 | 4.45| 3.20 X 107
Brooklyn, N. Y. JA2 5/16/62 | ¥1XBAR | 12 6 4.32 X 107
Queens, N. Y. 445 5/18/62 | #5XBAR | 12 6 4.32 X 107
Freeport N. Y. FR9 5/22/62 | ¥5XBAR | 13 6.5 4.68 X 107
Central Isllp, N.Y. | CE4 5/21/62 SXS 11 5.67 | 4.08 X 107
Trenton, N. J. LY9 3/29/62 SXS 9 4.53 | 3.27 X 107
Camden, N. J. WO1 4/2/62 #1XBAR 9 4.63 | 3.33 X 107
Manahawkin, N. J. LY7 3/20/62 SXS 10 5.02 [ 3.61 X 107
Atlantic City, N. J. | 823 4/6/62 SXS 11 5.64 | 4.06 X 107
Bridgeton, N. J. GL1 4/4/62 #5XBAR 7 3.68 | 2.65 X 107
Hartford, Conn. 247 6/25/62 SXS 10 4.97 | 3.58 X 107
Washington, D. C. | 232 7/20/62 | ¥1XBAR| 14 | 6.75 | 4.86 X 107
Washington, D. C. 333 7/18/62 | #5XBAR| 14 7.0 5.04 X 107
Washington, D. C. 392 7/19/62 SXS 12 6.08 | 4.38 X 107
Washington, D. C. 393 7/17/62 | ¥1XBAR | 12 6.0 4.32 X 107
Newton, Mass. 244 6/27/62 | ¥1XBAR| 11 5.65 | 4.07 X 107
Waltham, Mass. 899 6/26/62 | ¥5XBAR 8 3.95 | 2.84 X 107
Quincy, Mass. 773 6/28/62 | ¥1XBAR 9 4.63 | 3.33 X 107
South Boston, Mass. | 268 6/29/62 | ¥5XBAR | 14 7 5.04 X 107
Atlanta, Ga. 231 8/29/62

to 8/30/62 | ¥5XBAR | 32 16 11.52 X 107
Atlanta, Ga. 237 8/28/62 SXS 11 5.23 | 3.76 X 107
Atlanta, Ga. 457 8/31/62 SXS 13 6.42 | 4.62 X 107
Atlanta, Ga. 521 8/27/62 | #5XBAR | 13 6.5 4.68 X 107
Atlanta, Ga. 525 8/28/62 SX8S 13 6.5 4.68 X 107
Hammond, Ind. 844 8/24/62 | #5XBAR 9 4.5 3.24 X 107
Libertyville, 111, 686 8/21/62 | #5XBAR 8 4 2.88 X 107
Lafayette, I11. 247 8/23/62 | #1XBAR | 12 6 4.32 X 107
Wabash, I11. 431 8/22/62 | #5XBAR | 12 6 4.32 X 107
Superior, Ill. 467 8/20/62 | ¥1XBAR 7 3.25 | 2.35 X 107
Los Angeles, Calif. 234 8/7/62
to 8/8/62 SXS 22 10.33 | 7.44 X 107

Los Angeles, Calif. 273 8/6/62 | ¥5XBAR | 12 6 4.32 X 107
Los Angeles, Calif. | 385 8/8/62 SXS 10 | 4.91| 3.5t X 107
Los Angeles, Calif. 620 8/9/62 | ¥5XBAR | 22 | 11.57 | 8.33 X 107
Los Angeles, Calif. 655 8/10/62 | ¥5XBAR 6 3.06 | 2.21 X 107
San Francisco, Calif. | 399 8/16,/62 SXS 13 6.58 | 4.74 X 107
San Francisco, Calif. { 981 8/17/62 | #5XBAR 2 1 0.72 X 107
San Francisco, Calif. | YU1 8/14/62 | #5XBAR | 11 5.38 | 3.87 X 107
San Francisco, Calif. | 982 8/16/62 | #1XBAR | 12 5.67 | 4.08 X 107
San Francisco, Calif. | 982 8/15/62 | #1XBAR 4 2.06 | 1.48 X 107
San Francisco, Calif. | 982 8/13/62 | ¥1XBAR | 11 5.65 | 4.07 X 107
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summarized the results of each call. Included were descriptions of any
unusual transmission or operational conditions which caused the test
to be interrupted. Appendix A contains a description of the test system.
The complete test procedure is given in Appendix B.

During the test 548 calls were completed, each containing approxi-
mately 3.6 X 10° bits. The magnetic tape data were reduced and ana-
lyzed for the 412 completed calls which contained errors. The other 136
completed calls were error free. Fifty-nine attempted calls were not
completed for reasons which are summarized in Appendix C.

III. ERROR RATES

During the course of the test approximately 1.97 X 10° bits were
transmitted. Of these, 63,002 bits were received incorrectly, giving an
over-all bit error rate of 3.19 X 107° As has been mentioned earlier,
data were transmitted in 31-bit code words. Of the 6.36 X 107 code
words transmitted, 29,731 were found to contain one or more bit errors.
This gives an over-all word error rate of 4.67 X 10~* The decoder was
successful in detecting all but two of the erroneous code words, thus
yielding an average undetected word error rate of 3.14 X 1078. This is
equivalent to an average of 9.85 X 108 bits or 136 hours of transmission
between undetected word errors.

The over-all distribution of bit error rates per call is plotted in Fig. 1.
Also plotted in this figure are the corresponding distributions observed
by Alexander, Gryb, and Nast® for transmission rates of 600 bits per
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Fig. 1 — Bit error rate distribution for all calls: Alexander, Gryb, and Nast,
600 and 1200 bits/sec.
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second and 1200 bits per second in a different test. The distributions
for the Alexander, Gryb, and Nast 1200 bits per second data and the
201A-data (2000 bits per second) show a remarkable similarity in view
of the fact that the two tests employed different types of modulators
operating at different speeds.

_ A question of major interest is “What factors have the greatest effect
on error rate?”’ An attempt to answer this question was made by sorting
the call error rates by all of the known parameters of the call, such as
types of central offices at the transmitting and receiving ends, time of
day, day of week, ete. Since none of the calls was actually traced, fac-
tors such as types of carrier systems in the circuit, types of intermediate
central offices, ete., for any given call were generally not known. The
only call parameter examined which showed a clear relationship with
error rate was distance over which the call was made. Although none
of the other parameters showed a definitive effect on error rate, this
does not necessarily imply that these other parameters do not affect
performance. It is likely that the data recorded did not allow adequate
separation of the effects of these parameters.

Calls were classified into exchange, short-haul, and long-haul cate-
gories. Ifollowing the definitions used by Alexander, Gryb, and Nast,
exchange calls are those within a single dialing area; short-haul calls
are interarea calls between points separated by an airline distance of 400
miles or less; and long-haul calls are those exceeding 400 airline miles.
Distributions of bit and word error rates per call for these categories
are shown in Figs. 2 and 3. Again the bit error rate distributions of these

100
o« ‘\ Q,\
o
J 8o e \\
<
z \\\ N
EE 60 \‘
G N T F——
3 \\ EXCHANGE
[o]
OE 44 N N | ||
L N \\ 4(4\ SHORT HAUL
X \\ \{?Qﬁ
& 20 ALLS
14 LON
g_" GIHAUL\
)
03 2 4 6 8,4 46 8 2 4 6806 2 46 8,y

AVERAGE NUMBER OF BITS BETWEEN ERRORS

Fig. 2 — Bit error rate distribution for all calls: exchange, long-haul, and
short-haul.
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Fig. 3 — Word error rate distribution for all calls: exchange, long-haul, and
short-haul.

three categories are very similar to the corresponding distributions of
Alexander, Gryb, and Nast. As a rule, word error rates varied quite
uniformly with bit error rate, indicating that the parameters studied
had little effect on the density of error bits in an error word.

IV. CORRELATION BETWEEN ERRORS

It is well known that digital data errors in telephone circuits tend to
be bunched together,’ but little is known about the exact nature of their
correlation. One measure of the degree of correlation ketween errors
is the autocorrelation function of the bit error sequences of the calls.
Here we shall define the sequence {X;J, ¢ = 1,2, --- ,N; of call j to
be the binary sequence having 1’s in positions corresponding to the
positions of bits incorrectly received, and 0’s in positions corresponding
to error-free bits. The number N; of terms in the sequence is equal to
the number of bits transmitted in the call. We shall define the nor-
malized autocorrelation funection (k) of the bit error sequences of any
collection M of calls to be:

Nj—k
Y ¥ XX
o(k) = MV__IC*

UPIRY

jeM =l
As the number of terms in the above expression becomes large, (k)
will converge to the conditional probability that, given an error bit, the
bit k positions later will also be in error.
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The normalized bit error autocorrelation function for all calls con-
taining errors is plotted in Fig. 4. This curve shows the presence of a
very strong periodic component. The fact that the oscillations occur at
a rate of exactly 120 cycles per second strongly suggests 60-cycle power
line interference with the circuit. This periodic component was traced
to three calls from a single location. The bit error autocorrelation func-
tion for all calls except the three containing a 120-cycle component is
shown in Fig. 5. The general shape of this curve is similar to that ob-
served in other studies.! The three periodic calls are excluded from the
remaining distributions.

The autocorrelation function was also tabulated individually for each
call. Efforts to find relationships between the autocorrelation and the
known parameters of the calls were generally unsuccessful. It was
noticed, however, that the initial shapes of the autocorrelation functions
were similar for most calls, but the sizes of the tails varied widely.
For most individual calls the autocorrelation function decreased con-
siderably more rapidly than did the autocorrelation for all calls, which

1.0
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0.8
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0.4

0.3

NORMALIZED AUTOCORRELATION OF BIT ERROR SEQUENCES

o AMAAAAAN AN
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SHIFT IN BITS

Fig. 4 — Bit error autocorrelation for all calls.
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Fig. 5 — Bit error autocorrelation for all calls except those with a 120-cycle
component.

is shown in Fig. 5. As one would expect, those calls whose autocor-
relations had large tails were found to contain short periods of very
high error rates. Surprisingly, there wa$ not a very strong correlation
between the call error rate and the size of the tail, but there was an
apparent relationship between the variance of the error rate over one-
minute intervals within the call and the size of the tail. This suggests
that a long tail on the autocorrelation function probably was due to
short dropouts or very noisy periods which were more or less inde-
pendent of the over-all error rate.

The autocorrelation of the word error sequences was similarly com-
puted. Here the autocorrelation is defined analogously, with error bits
being replaced by error words. The word autocorrelation for all error
calls except the three previously mentioned 120-cycle calls is plotted in
Fig. 6. As one would expect, this curve is very much flatter than the
corresponding error bit autocorrelation.

Further insight into the nature of the bunching of the errors can be
obtained from the distribution of error-free bits between errors. The
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Fig. 6 — Word error autocorrelation for all calls except those with a 120-cycle
component.

empirical cumulative probability distribution function of the number of
error-free bits between bit errors is shown in Fig. 7. In this curve the
ordinate gives the fraction of the total number of bit errors whose
proximity to the previous bit error was equal to or less than the value
given on the abscissa. As the number of occurrences becomes large, the
empirical probability distribution function will converge to the true
probability distribution function. It is interesting to note that the curve
has a rather sharp knee at about ten bits on the abscissa and levels off
to an ordinate value of approximately 0.65. This suggests that roughly
one-third of the bit errors are separated by at least 200 bits (100 ms)
from the previous error and that the remaining two-thirds of the errors
are usually separated by not more than ten good bits. The errors are
therefore observed to be bunched together in groups. The distribution of
the lengths of these groups will be discussed in the next section.

The corresponding empirical probability distribution function for
error-free 31-bit words between word errors appears in Fig. 8. The fact
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that the derivative of this curve changes comparatively slowly implies
that small groups of errors are themselves bunched together, since the
separation of errors would be much greater if they were randomly
distributed.

V. ERROR BURSTS AND DROPOUTS

Knowledge of the duration and error density of a burst of errors is
important, since it is desirable to avoid combining bits into words in
such a way that a substantial fraction of the bits in a single word is
likely to be in error. Let us define an error burst of density 1/b to be
any sequence of bits starting with an error bit and at least b bits long
such that every block of b bits within the sequence will contain at least
one error bit. In other words an error burst is a sequence which begins
with an error bit and does not contain b or more consecutive correct
bits. We shall define the length of the burst to be the length of the
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Fig. 7 — Empirical probability distribution function for error-free bits between
errors.
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Fig. 8 — Empirical probability distribution function for error-free words be-
tween errors.

longest sequence consistent with the above definition. For example,
consider the following sequence:

000000000010110000010000000000.

Let us assume that the 0’s represent bits which were correctly received
and the 1’s represent bits which were incorrectly received. According
to the above definition this sequence contains two bursts of density
1/5. The first burst begins with the eleventh digit in the sequence and is
eight bits long. The second burst begins with the twentieth digit of the
sequence and is five bits long. The sequence could also be thought of as
containing a single burst of density 1/10 beginning with the eleventh
digit and 19 bits long.

The empirical probability distribution functions of the lengths of
bursts of densities 1/5, 1/10, and 1/31 were calculated and are plotted
in Figs. 9-11. It can be seen that most high-density bursts are fairly
short. We observe that the bursts become considerably longer for error
densities of less than 1/10, which is in agreement with Fig. 7.
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A dropout is a phenomenon whereby the connection is temporarily
interrupted and the line signal drastically attenuated or completely
lost for a fraction of a second. In the system tested a dropout caused
only 1’s to be received regardless of the transmitted message. Any
sequence containing at least ten bit errors and in which only 1’s were
received was deemed to be a dropout. On the basis of this definition,
about two per cent of the high-density bursts were found to be dropouts.
These were contained in 44 different calls.

The empirical probability distribution function of the lengths of the
observed dropouts is shown in Fig. 12. It should be pointed out that this
distribution may be biased, since some of the longer dropouts probably
caused the system to lose synchronization and were not included in the
distribution. The large jump in the curve in the neighborhood of 145
bits was contributed entirely by four transcontinental calls. One plausi-
ble explanation for the occurrence of dropouts of this length is that they
were caused by echo suppressors. Since the echo suppressors were not
disabled during transmission, a high-energy noise impulse in the reverse
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channel could momentarily activate an echo suppressor. This would
cause a dropout of approximately 145 bits duration.

The empirical probability distribution function of the number of bits
between dropouts is shown in Fig. 13. It can be seen that the dropouts
exhibit some tendency to be bunched together in time. This apparent
bunching suggests fading rather than other possible causes.

The error data exhibited some asymmetry. There were about 15
per cent more 0 — 1 errors than 1 — 0 errors, a result consistent with
the effect of dropouts. The fact that 1 — 0 errors were slightly more
prevalent than 0 — 1 errors in calls not containing dropouts supports
the conclusion that dropouts caused the asymmetry.

A more convenient distribution for some purposes is the distribution
of the number of error bits appearing within a block of a given length.
Following Elliott’s® notation we shall define the function P(m,n) to be
the probability that exactly m bits will be in error in a block of n bits.
The functions P(m,n) for n = 10, 15, 21, 23, 31, 63, 115, and 230 are
plotted in Fig. 14. These curves demonstrate quite vividly the effect of
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dropouts. Most of the curves exhibit a local maximum at about n/2.
This is due mainly to the occurrences of dropouts longer than n. On
the assumption that 0’s and 1’s were transmitted with approximately
equal probabilities, dropouts of at least n bits in length would contribute
a component in the form of a symmetrical binomial distribution to the
P(m,m) function. This is illustrated in Fig. 15, in which the function
P(m,31) is plotted with and without dropout components.

Elliott® has suggested that a good approximate evaluation of the
performance of a code can be made by assuming that all permutations
of any given number of error bits in a block are equally likely. Using
his methods and the function P(m,31) the estimated number of bits
between undetected errors was calculated to be 8.55 X 108 As stated
previously, an average of 9.85 X 108 bits between undetected errors was
actually observed. This is excellent agreement, although it should be
remembered that the number of observed undetected errors was too
small to assure good convergence of the observed average to a true
average.

The function P(m,n) changes radically as m becomes very much
larger. Calls were divided into 1-minute and 5-minute time intervals.
The cumulative empirical probability distribution functions of the
numbers of bit errors and word errors occurring within these time inter-
vals were calculated and are plotted in Figs. 16 and 17. It is interesting
to note that the distributions for 5-minute intervals are almost identical
to the corresponding distributions for 1-minute intervals except for a
scale factor. This suggests that the numbers of errors occurring in suc-
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cessive intervals as long as a minute are essentially independent. Also,
there is no noticeable effect of dropouts.

VI. SUMMARY

The test demonstrated that it is possible to provide data transmission
over the switched telephone network with extremely low undetected
error rates by means of a coding technique of moderate complexity.

The statistical properties of the error data appear to be similar to those
observed in other tests. Distributions of bit error rates without regard
to coding showed a strong similarity to the results of Alexander, Gryb,
and Nast, despite the fact that different modems operating at different
speeds were used in the two tests. The digital errors were strongly cor-
related with each other, and the error rates were highly nonstationary.
Bit errors were observed to occur in groups of two or three and generally
had a density of at least one error bit per ten good bits. These small
groups of errors were themselves bunched together. Dropouts occurred
frequently in certain calls, but it was difficult to determine their cause.
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APPENDIX A

The Error Detecting System and Performance Measuring Apparatus

A preliminary requirement on the code used for the error control
experiment was that it be capable of detecting approximately 99.9
per cent of all transmission errors occurring in data transmitted by means
of a DATA-PHONE data set 201A over switched, long distance tele-
phone connections. Ease and economy of implementation were other
factors affecting the selection of a code. Computer studies of a Bose-
Chaudhuri? (31,21) code indicated that this code, subsequently used in
the experimental system, had the desired error detecting ability. The
above notation indicates that data were transmitted in blocks 31 bits
long consisting of 21 information and 10 check bits.

The code is eyelic with a minimum distance of five* and is therefore
capable of detecting any four or fewer bit errors in a 31-bit block.
TFurthermore, all single-error burstst of length 10 bits or fewer, 511/512
of all 11-bit error bursts and 1023/1024 of all error bursts 12 to 31 bits
in length are detected. The generator polynomial of this code is h(X) =
X + X7 + X¢ 4 X 4 1, which is equivalent to saying that the code
is the null space of the matrix:

—1000000000100110101001000011111T
0100000000110101111101100010000
0010000000011010111110110001000
0001000000001101011111011000100
0000100000000110101111101100010
0000010000000011010111110110001
0000001000100111000010111000111
0000000100110101001000011111100
0000000010011010100100001111110
| 0000000001001101010010000111111 |

* Le., every code word (block) differs in at least five places from every other
code word.

t The length of a ‘‘burst’” in this context is the number of bits between and
including the first and last bits in error in a 31-bit block.
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Examination of row 10 of the H matrix (in its canonic form) reveals
that the first check bit transmitted is the modulo 2 sum of information
bits di, do, dy, ds, ds, ds, di1, dhs, dis, chs, and diy . Information bits
are numbered in the order of their transmission—i.e., d; is the first in-
formation bit in the block, d» the second, ete.

The encoder was implemented by the feedback shift register shown in
Trig. 18,% which operates as follows. With the feedback path closed
(i.e.,, S in position 1), 21 information bits were shifted from the data
source into the encoder and simultaneously transmitted. After the
twenty-first bit had been encoded and transmitted, the feedback path
was disabled by setting S to position 2, and the contents of the shift
register (i.e., the 10 check bits) were transmitted. Thus, each block con-
sisted of 21 information bits transmitted as a group in their original
order followed by the 10 associated check bits.

Decoding was accomplished by the same circuit. The decoder was
synchronized with respect to the received data and thus was able to
distinguish between information and check bits. To decode a 31-bit

EXCLUSIVE OR
GATE DATA OUT
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[

DATA IN

SHIFT REGISTER STAGE -
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* Fig. 18 — (31,21) encoder.
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block the information bits were shifted from the demodulator into the
encoder, which generated 10 check bits. These were compared to the 10
check bits received following the 21 information bits. Any difference
between the two sets of check bits indicated the occurrence of a trans-
mission error.

A Dblock diagram of the error detection system is shown in Fig. 19.
Both the source of data and the reference source are provided by a
pseudo-random sequence generator. The output of this device is a repeti-
tive 511-bit sequence containing every 9-digit binary sequence except
the all-0 sequence. Since these data are meaningless so far as information
content is concerned, a continuous chain of timing pulses shifts both the
encoder and sequence generator. The output of the source is disregarded
while check bits are shifted from the encoder. Since 31 and 511 are rela-
tively prime, all possible 21-bit sections of the 511-bit sequence are
transmitted as data. In practice the data source must stop after deliver-
ing 21 bits, while the 10 associated check bits are transmitted. For pur-
poses of the test this would be impractical, since 511 and 21 have a
common factor of 7, and therefore only 73 of the possible 511 21-bit

1 L WORD
20 1 GENER-
} ATOR
1 :s‘ ITIMING
|
‘N DATA
ENCODER|— | SET CHANNEL |
2 201A I
| |
: TIMING || |
| r |
SYNCH
CLOCK AND
|| CLogk A CIRCUIT
CIRCUIT SYNCH '———-—jl RE%OGRD-
| EQUIP-
o WORD ‘ MENT
GENER
RUN 53 ATOR |
|
|
|
CLOCK AND J
CONTROL |~———~—
CIRCUIT

Fig. 19 — The test system.
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sequences would be encoded. Timing is provided by the data set 201A,
which generates 2000 timing pulses per second. The function of the
clock and control circuit is to operate the encoding circuits at the trans-
mitting and receiving terminals in the manner described earlier. The
clock is driven by timing pulses from the data set and produces a periodic
output signal which is “on” for 21 bits and “off”” for 10. This signal is
used by the control circuit to operate S (see Fig. 18), S1, and S2.*

At the transmitting terminal S and S1 were set to position 1 while
information bits were shifted into the encoder and data set, then switched
to position 2 while check bits were shifted from the encoder. Switches S
and S1 then were reset to position 1 and the process was repeated for
the next block of information.

At the receiver S and S2 were set to position 1 while information bits
were received and encoded. During this time the received information
was examined for transmission errors by E1, which produced an output
whenever a received information bit differed from the output of the
synchronized reference sequence generator. (The method of synchroni-
zation will be described in the next paragraph.) After the 21 information
bits had been received and encoded, S and S2 were switched to position
2 while the check bits were received. Each of the 10 check bits in a block
was compared with the output of the local encoder by E2. An output
signal from E2 indicating the occurrence of detected errors was produced
whenever a received check bit differed from the corresponding locally
generated check bit. The outputs of E1 and E2, the received data, and
timing information from the clock and control circuit were delivered to
the recording equipment.

The clock and sequence generator at the receiving terminal were
synchronized with respect to the demodulated data by means of the
synch circuit. This circuit was activated manually by switching S3
to “synch.” With S3 set to “synch” the phase of the sequence generator
and clock was automatically shifted by one bit with respect to the re-
ceived data in response to each output pulse from E1. When the outputs
from E1 and E2 were observed to remain constant for one second or
more, S3 was switched manually to “run” and the recording equipment
started. Error data could not be recorded with S3 in the ‘“synch” posi-
tion.

The performance measuring apparatus was located at the receiving
terminal as indicated in Fig. 19. Signals from E1, E2 and the control
circuit were combined to indicate the occurrence and type of block errors.

* Switches S, S1, and S2 are implemented with solid-state circuits.
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If, for a given 31-bit block, an error indication was received from E2
then transmission errors occurred and were detected. Undetected errors
occurred in a block when errors were indicated in the information sec-
tion by E1 but not in the check section by E2.

The received data and the error information derived from the outputs
of E1 and E2 were recorded on dual-channel magnetic tape. The output
of the demodulator was transformed into a series of positive and nega-
tive pulses and recorded on one channel. Following each 31-bit block one,
two or three framing pulses were recorded on the second channel to
indicate that the preceding block contained no errors, detected errors or
undetected errors respectively. The inputs to both channels of the tape
for each of the three conditions arc shown in Fig. 20. Data were recorded
on channel 1 and block framing on channel 2. In each case only one
framing pulse follows block K — 1, which is assumed to be error free.

Cumulative error data for each call were recorded on five electronic
event counters. The two types of bit errors (0 — 1 and 1 — 0) occurring
in user information were derived from the output of E1 and recorded
separately on two counters. A third counter was incremented whenever
a block was received containing any errors in the information section.
The fourth and fifth counters recorded detected and undetected block
errors respectively. The counters were photographed automatically at
20-second intervals during each call. A clock was included at the camera’s

K—15T BLOCK — >‘[< ———————— K BLOCK——— ——— —— ’|<— K +15T BLOCK
1 0 0 o 1
CHANNEL 1 —ﬂ—u_u_ ___________ _L'_ﬂ_ _____
CHANNEL 2 I I
(a)
CHANNEL 1 —rL—u—L,—- —————————— —L,—n— —————
CHANNEL 2 g [
(b}
CHANNEL 1 —n—u—u— __________ _U_”_ _____
CHANNEL 2 I iy
(c) TIME —>

Fig. 20 — Block framing; three cases.
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field of view and the film dated so that photographic data could be
correlated with log book records.

APPENDIX B

Field Test Procedure

The purpose of this section is to deseribe the field test procedure in
some detail. To review briefly, the receiving error control terminal re-
mained fixed at Murray Hill or Holmdel and the transmitting terminal
was carried to the locations listed in Table III. One day was spent at
each location, during which time data were transmitted over a number
of dialed connections established from the receiving terminal and used
for approximately 30 minutes each.

Before initiating a series of calls between two locations, the line loss
from the transmitter to the central office was measured with a 12B
transmission measuring set. The data set’s transmission level then was
adjusted so that the signal strength at the central office was approxi-
mately —8 dbm and the data set then placed in the on-hook automatic
answer mode. The location, telephone number, local loop loss, trans-
mitting level, and type of central office serving the transmitting terminal
were recorded in the test log. The encoding equipment was started and
ran continuously throughout the series of calls (i.e., data were generated
and encoded continuously and transmitted automatically whenever a
connection was established from the receiving terminal).

After the transmitting terminal had been readied for the series of
calls as described in the preceding paragraph, the receiving terminal
was attached to a foreign exchange line. A connection was dialed to the
transmitting terminal, which answered the call automatically and started
transmitting encoded data immediately. Then the receiving error de-
tection system was synchronized with respect to the demodulated data
as described in Appendix A and the recording equipment started. Thirty
minutes later the recording equipment was stopped and the call termi-
nated from the receiving end. The data recorded on event counters,
the times (local) at which the call was started and terminated, and a
description of any unusual transmission or operating conditions were
entered into the test log. The recording equipment was reset and the
receiving terminal attached to a different foreign exchange line for the
next call.

The error control equipment, data sets, and error recording apparatus
were checked periodically throughout the test. This was done to insure
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that the data collected during the experiment would not be affected by
marginally operating test equipment.

APPENDIX C

Summary of Incomplete Calls

During the test, 59 calls could not be completed for reasons which
fall into three general categories. These are:

(1) long dropouts or fades resulting in loss of synchronism between
the transmitting and receiving data sets,

(2) the inability to achieve initial synchronization of the terminals
within a reasonable length of time, and

(3) lost connections.

These conditions will be more fully described in the following para-
graphs. In addition to these 59 calls, 6 calls were interrupted due to
human errors and two calls were lost as a result of local power failures.

Loss of synchronism between the transmitting and receiving data sets
during otherwise normal communication caused the interruption of 30
calls. This condition usually was caused by long dropouts, particularly
on long-haul connections. Dropouts lasting more than approximately
100 milliseconds generally caused the transmitting and receiving data
sets to lose synchronism, since timing in the demodulator was derived
from the line signal. Within 20 milliseconds of a loss of line signal the
timing reverted to the natural resonant frequency of the high-@ circuit
in the demodulator’s bit synch recovery circuit. The natural frequency
of this high-Q circuit was within one cycle of the transmitter frequency.
Thus, if the modulator and demodulator remained decoupled long
enough, synchronism between the two was lost. This situation was
detected easily but resulted in some loss of data, as the terminals had to
be resynchronized before data transmission could be resumed. Intense
channel noise was observed to have approximately the same effect as
dropouts.

Twenty-one dialed connections were sufficiently noisy that the test
apparatus could not be synchronized within a reasonable length of time.
To recapitulate, initial synchronization was obtained by automatically
shifting the phase of the receiving end clock and sequence generator by
one bit whenever the synchronization circuit was enabled and a re-
ceived bit differed from the corresponding locally generated information
bit. When the system was synchronized, but the synchronization circuit
was not yet disabled, any transmission errors occurring in the informa-
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tion section of a block caused the synchronization procedure to be re-
peated. Therefore, when the channel was unusually noisy the receiving
terminal would not remain synchronized long enough for the synchro-
nization circuit to be disabled manually. If synchronization could not be
established within 2 or 3 minutes after the call was placed the connec-
tion was dropped and the transmitting terminal called a second time
using the same foreign exchange line. The semiautomatic synchroniza-
tion procedure could have been fully automated. Had this been done,
synchronization might have been achieved over a few of the connections
for which the semiautomatic method described in Appendix A was un-
successful. However, since all 21 of these calls were exceptionally noisy
it appears doubtful that data set synchronism could be maintained for
a full 30-minute period.

Eight connections were lost entirely during data transmission and dial
tone was returned to both terminals. This situation was easily detected
by the test apparatus. On at least three of these occasions the lost con-
nections appeared to be associated with telephone maintenance opera-
tions.

The conditions described above are transmission impairments which
cannot be integrated directly into the error rate data. These are, how-
ever, situations with which the data communicator must contend and are
included here to provide an estimate of their frequency of occurrence.
These data are of importance in the design of error control systems which
must recognize such transmission impairments and allow for some type of
remedial action to be taken, such as manual intervention or automatic
resynchronization.
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A Simulation Study of Routing and
Control in Communications
Networks®

By J. H. WEBER
(Manuscript received March 23, 1964)

A sel of studies has been undertaken to develop guidelines for the design
and operation of communications networks with automatic alternate routing.
Comparisons are made of engineered costs and overload capability of net-
works using several alternate rouling configurations, and employing a num-
ber of different operating and control procedures. The traffic model selected
consists of a 34-node network abstracted from the U.S. telephone toll network,
with basic load levels obtained from field data. The overload evalualions were
made using a simulation program prepared for the IBM 7090 compuler.

I. INTRODUCTION

In a recent paper! the results of some preliminary comparisons of two
alternate routing configurations for communications networks were re-
ported. Those results indicated that for small networks (six or fewer
nodes) with low traffic densities a symmetrical or unrestricted routing
pattern is superior to a hierarchy similar to that in use in the U.S. toll
network, while for higher traffic densities there appeared to be little
difference in the network behavior in terms of economy and reaction to
overloads.

Subsequently, a new simulation program has been constructed? and
substantially larger networks have been examined to provide a more
meaningful guide to network design under various circumstances of
geography and load level. An additional configuration, called the ‘“gate-
way,” as well as several operating and control variations, has been
examined. The latter include stage-by-stage operation with and without
crankback (return of routing control to a previous node for rerouting
when blocking is encountered at an intermediate switching point), limita-
tion of number of links per call in symmetrical networks, and trunk
reservation for first-routed traffic only.

* Presented at the Fourth International Teletraffic Conference, London, July,
1964.
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The results show that:

(1) There is little difference in network cost or overload capability
between hierarchical and symmetrical networks at the load densities
considered.

(2) The gateway network (a two-level hierarchy with no interregional
high-usage groups) requires substantially more trunking and switching
than either the hierarchical or symmetrical networks and shows no sig-
nificant difference in overload performance.

(3) Restriction of alternate routing in symmetrical networks improves
performance at all levels of load.

(4) The use of crankback is a disadvantage for symmetrical networks
with a high traffic density, at all levels of overload. It offers a slight ad-
vantage for symmetrical networks with lower traffic intensities and does
not appear to have any significant effect on the performance of hierarchi-
cal networks.

(5) Trunk reservation for first-routed traffic on a dynamic basis im-
proves the performance of almost all networks examined, for all load
conditions, and displays no detrimental effects.

II. THE SIMULATION

The simulation program used in these studies is deseribed in Ref. 2. It
has many of the capabilities of the program described in Ref. 1, but
has been reprogrammed to accept networks with heavier loads and to
operate more efficiently. A number of additional features have also been
provided.

The program is basically capable of simulating networks of up to 63
nodes, with arbitrary alternate routing patterns and stage-by-stage call
forwarding. There is no congestion or delay allowed at switching points,
all congestion being assumed due to trunk shortages. Calls which fail to
complete initially may be abandoned with a fixed probability or retried
after a constant or exponentially distributed interval. Any prespecified
number of trunks can be reserved for first-routed traffic only, and calls
may “crank back” or return to a prior node if blocked at some point in
the network. The maximum-size network which can be accommodated
is largely determined by the number of simultaneous calls in progress,
which may have a maximum of about 6000. Traffic loads are specified
on a point-to-point basis, with arbitrary proportions in each direction,
and may be changed linearly at any time during the run. That is, mean
arrival rates can change linearly in time during the run at any rate and
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between any bounds. (Another modification of the program allows the
use of two priorities of traffic and mixtures of direct and store-and-for-
ward traffic, with trunk reservation by traffic type and priority. This
version was not used for the studies described herein, however.)

In order to accommodate larger networks more efficiently, the program
was written in several sections. The first of these accepts the basic load
inputs (mean point-to-point loads and holding times) and generates call
arrival times and holding times, which are then stored on magnetic tape.
This tape is then used as input to the simulation program, which proc-
esses the calls through the simulated system and prints out raw data on
trunk utilizations and call histories on two magnetic tapes. These tapes
are presented to the output processor programs, which provide the ap-
propriate reduced outputs.

For convenience in preparing the input data, the main section of the
program has been arranged to determine its own routing for symmetrical
and hierarchical networks, given the numbers of trunks and the distances
for symmetrical networks, or the homing arrangements for hierarchical
networks.

The output statistics are reported at prespecified time intervals, and
these subinterval results may then be used as samples for a final output
containing both means and standard deviations of all relevant quantities.
The quantities which are printed out are as follows: ,

(1) point-to-point traffic loads at the end of the run (input data).

(2) routing tables for all point-to-point traffic items.

(3) means and standard deviations of the following measured quanti-
ties for each point-to-point traffic item:

(a) blocking probability
(b) average delay and distribution of delays for retried calls
(c) average number and distribution of number of links per call.

(4) means and standard deviations of the following measured quanti-

ties for each trunk group (obtained by switch count measurements):

(a) number of trunks present in each group (input data)

(b) number of trunks reserved for first-routed traffic in each group
(input data)

(c) total carried load in erlangs on each group (and per cent occu-
pancy)

(d) first-routed carried load on each group (and per cent of total)

(e) alternaterouted carried load on each group (and per cent of total).

(5) means and standard deviations of measured over-all network
quantities as follows: i
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(a) over-all average blocking probability, B, given by

_ Z aijBij
B=X

2, ai
77

where

(2]
(b) average number and distribution of number of links per call
(c) weighted average delay and delay distribution for retried calls
(d) total number of trunks in the network (input data)
(e) total trunks reserved for first-routed traffic (input data)
(f) total carried load and over-all ocecupancy
(g) total carried first-routed load
(h) total carried alternate routed load.
(6) the “space dispersion,” D, of the blocking probability, delay
distribution and links per call distribution, given by

Dy = [(%; ai,-Bif'/;i ai;) — B

offered load between nodes ¢ and j, and
blocking probability of calls offered between nodes 7 and j

for the blocking probability, and similar expressions for the other quanti-
ties. This serves as a measure of the variation in grade of service pro-
vided to various traffic items in the network depending upon their origin
and destination.
(7) the following input parameters:

(a) maximum number of links allowed per call

(b) number of stages of crankback allowed (That is, the number of
steps a call is allowed to back up before progressing forward after having
reached a point of congestion.)

(e) percentage of calls to be retried

(d) retrial time distribution and mean value

(e) holding time distribution and mean value

(f) number of nodes

(g) number of reporting intervals and their lengths

(h) number of reporting intervals to be collected for final processing

(1) routing pattern (hierarchical or symmetrical)

() interval between switch counts for determination of trunk in-
formation.

The simulation runs quite rapidly, processing about 500,000 calls per

hour using the IBM 7090 computer for a 34-node network with a total
Joad of about 5000 erlangs, excluding the traffic generation. If traffic



ROUTING AND CONTROL 2643

generation time is included, the processing rate drops to about 375,000
calls per hour. If several networks are evaluated using the same traffic
input, as was done in these studies, however, the traffic need be generated
only once, and the same tape can be used as input to the simulation any
number of times. Several dozen simulation experiments were made for
the studies described below, but only eight traffic tapes were generated.

III. GENERAL PROCEDURE

The evaluation procedure encompasses the following steps:

(1) select a geographical area, including switching center locations;

(2) select a basic traffic model on which to base network engineering;

(3) engineer networks to a given grade of service using each of the
routing procedures to be considered;

(4) determine the costs of each of the networks so engineered;

(5) change the loads to correspond to reasonable patterns of overload
or shifting load;

(6) using simulation, measure the performance of each of the networks
under the load changes used in step (5);

(7) repeat steps (5) and (6) for each of the control and operating
variants considered.

These steps will be described in detail in the following sections.

3.1 The Geographical Region

Although it is not possible to select a geographical region (or regions)
which will be typical of all situations, it is desirable to find an area which
at least has the capability of accommodating a sufficient number of nodes
to adequately exercise the various routing patterns to be examined and
of reacting to realistic load fluctuations. The region should also contain
both densely and sparsely populated sectors, which to some extent must
exist in all real networks. (A uniform or arbitrarily variable traffic dis-
tribution would probably not be a valid test, since actual telephone
traffic varies with the population density, higher-density areas having
large amounts of traffic within and among them, and sparsely populated
areas being lower in traflic to all destinations.) Since the geographical
region will utimately require a traffic model to be superimposed upon it,
an area for which actual traffic data is obtainable is again more likely to
represent reality than one for which traffic quantities need to be invented.

A single region which appears to meet most of the criteria specified
above exists on the West Coast of the U.S.A. The states of California,
Washington, Oregon and Nevada are almost entirely administered by
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two local telephone operating companies for toll purposes and represent
a region which ranges from sparsely populated areas such as Nevada and
eastern Oregon to sections such as Southern California, which contains
the Los Angeles and San Diego metropolitan areas. Ifig. 1 is a map of
this region, showing the 34 switching centers used. Although there are
many more than 34 toll switching offices in this region, only the control
switching points (CSP’s), which make up the offices of the top three
levels of the U.S. toll network hierarchy,® are included. (Las Vegas,
though actually a toll center, is assumed to be a primary center.) All
traffic which both originates and terminates in the region, however, is
included, as will be discussed below.
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Fig. 1 — U.S. West Coast traffic region.
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3.2 The Basic Traffic Model

The basic traffic model used for engineering the various networks was
developed from actual message records of the Pacific Telephone and
Telegraph Company and the Pacific Northwest Bell Telephone Com-
pany. These records include the total messages for a period of ten con-
secutive business days during June 1962. They provide total messages
and message minutes from every toll switching center in the area to
every other. Traffic which originates or terminates in other than the
four-state area is not considered, nor is traffic which is not carried on the
toll (or long distance) network. Traffic originating and/or terminating
at offices of connecting companies, but which is carried on the toll net-
work, is included.

In order to obtain a busy hour traffic base from the ten-day records,
it was assumed that ten per cent of the total traffic was offered during
each day and ten per cent of the day’s traffic was presented during the
busy hour. Therefore the busy hour traffic load was assumed to be one
per cent of the total ten-day message load.

Traffic between toll centers of the fourth rank, which are not explicitly
included in the 34-node model, is handled in two ways, giving rise to two
networks with different traffic densities. In the first of these, called the
“full-traffic” or “full-load” network, all traffic between toll centers is
added to that between the centers on which they home. Traffic between
toll centers homing on the same control switching point is eliminated.
For example, referring to Fig. 2, traffic between toll centers A and B is
added to the traffic between control switching points D and E, as is the
traffic between A and E, and between B and D. Traffic between toll
centers B and C and between points A and D, and B and E is eliminated.

In the second network, called the “reduced-traffic” or “reduced-load”

CONTROL SWITCHING CONTROL SWITCHING
POINT POINT

(SECTIONAL CENTER) (PRIMARY CENTER)

D E

\\\\

~
\\
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_____________ C
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Fig. 2 — Disposition of toll center traffic.
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network, it is assumed that some of the traffic between toll centers is
carried on high-usage groups, and only the overflow is carried on the
groups between the CSP’s. Therefore traffic between toll centers such
as A and B, in which there may be two routes before the CSP-CSP trunk
group 1is reached, is assumed to overflow only 10 per cent to the D-I&
group. Traffic between a toll center and a CSP, such as that between A
and E, may have only one route before the CSP-CSP route is reached,
and 20 per cent of this traffic is then assumed to be offered to route D-I.
Traffic between toll centers such as B-C, or between toll centers and the
CSP on which they home, such as A-D, is again eliminated.

The net effect of these assumptions is to develop a total network load
of 4764 erlangs for the full-load case, and 2031 erlangs for the reduced-
load network. The maximum point-to-point load for the full traffic net-
work is 158 erlangs, and the maximum load originating and terminating
at any node is 848 erlangs. The minimum point-to-point load is 0.01
erlang, and the smallest node has 26 erlangs originating and terminating
at it. For the reduced network the maximum point-to-point load is 84
erlangs and the minimum is zero. The total traffic originating and termi-
nating at the largest node is 288 erlangs, and at the smallest is 15 erlangs.
A tabulation of the total loads originating and terminating at each point
in both networks is given in Table 1.

3.3 The Network Configuralions

Five specific networks of three configuration classes for the full-traffic
model and two networks in two classes for the reduced-traffic model
were examined. The first class of networks is hierarchical in structure,
similar to that in use in the Bell System toll network. In these networks,
trunk groups are defined as high-usage, which may overflow traffic to
alternate routes, or final, which may not. The apportionment of trunks
among high-usage and final routes is decided on an economic basis.*
Both two- and three-level hierarchies were examined in the full traffic
model, while only two levels were used for the reduced traffic case. The
routing for these networks is shown in Fig. 3.

In Fig. 3(a) the basic elements of a two-level hierarchy are shown.
Calls from node 1 to node 2 will, if unable to use the direct route, attempt
to reach node 4, from which the only allowable choice is the final route
4-2. If unable to reach node 4, calls will then attempt to reach node 3,
from which they will attempt the direct route 3-2, finally overflowing to
the final route 3-4. Calls from 2 to 1 will reverse the procedure, attempt-
ing to reach node 3 and overflowing to node 4. Calls initially routed
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TaBLe I —SwircHING CENTER LoADS

Total Originating and Terminating Trafhc
In Erlangs
Switching Center
Full Load Reduced Load
Bellingham, Wash. 94.17 34.81
Seattle, Wash. 533.25 272.59
Spokane, Wash. 141.89 71.96
Yakima, Wash. 175.17 59.73
Astoria, Oregon 26.92 16.87
Bend, Oregon 26.65 15.19
Klamath Falls, Oregon 33.12 19.60
Medford, Oregon 62.42 37.08
Pendleton, Oregon 51.35 21.11
Portland, Oregon 468.05 233.56
Roseburg, Oregon 37.37 17.85
Las Vegas, Nevada 116.74 82.04
Reno, Nevada 138.21 69.44
Fresno, Calif. 306.11 140.81
Modesto, Calif. 132.55 81.86
Stockton, Calif. 206.21 105.38
Redding, Calif. 87.94 30.88
Sacramento, Calif. 539.32 173.63
San Jose, Calif. 459.24 188.90
Oakland 4M, Calif. 848.22 288.14
Oakland Fr., Calif. 524.25 194.06
Palo Alto, Calif. 251.14 108.99
San Francisco, Calif. 375.40 198.45
San Rafael, Calif. 134.12 40.26
Santa Rosa, Calif. 386.08 107.64
Bakersfield, Calif. 167.84 93.56
San Luis Obispo, Calif. 109.15 45.59
Compton, Calif. 447.04 190.15
Los Angeles, Calif. 699.27 242.63
El Monte, Calif. 361.88 179.54
Van Nuys, Calif. 426.75 174.32
Anaheim, Calif. 158.45 73.78
San Bernardino, Calif. 576.81 202.72
San Diego, Calif. 424.33 248.71
Total (orig. plus term.) 9527.41 4061 .54

along the final route chains, such as those from 1 to 3, have only a single
choice of route. .

The three-level network, shown in Fig. 3(b), allows a somewhat more
complicated routing pattern. Calls from 1 to 2 in this network will at-
tempt to reach nodes 2, 4, 6, 5 and 3 in that order, and all other routes
will follow a similar pattern of hunting from low to high level in the
distant region, and from high to low level in the home region. In no event
can a call use more than one interregional trunk, and calls always travel
up the hierarchy in the home region and down in the distant region. A
fuller description of the process is given in Ref. 3. This restrictive routing
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Fig. 3 — Organization of hierarchical networks.

pattern allows alternate routing to proceed without fear of “ring-around-
the-rosie” or ‘“‘shuttling” (which are types of looping routes), even
though no information is carried with the call other than its destination
code. The two-level hierarchical networks actually used contained six
higher-level offices, located at Seattle, Portland, Sacramento, Oakland,
San Bernardino, and Los Angeles. The three-level network took Port-
land, Sacramento, and San Bernardino as highest-level, or regional,
centers; leaving Seattle, Oakland, and Los Angeles as middle-level, or
sectional, centers. A sketch of the Washington-Oregon section of the
full-load, two-level hierarchy is shown in Fig. 4.

The other network configuration examined for both load levels is the
symmetrical network, in which alternate routes are selected approxi-
mately according to their total length. In all such networks studied,
trunks are arbitrarily eliminated on links with less than 2 erlangs of
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directly offered traffic, and routing is then established using equipped
links. I'ig. 5 shows the trunk group layout for the Washington-Oregon
section of the full-load symmetrical network. A basic restriction in all
networks is that at most five outgoing choices are allowed from any node
to any other, it being considered that further choices would lead to
excessively circuitous routes. In addition, no route is allowed which is
more than 1.5 times as long as the shortest nondirect route, or exceeds
the shortest nondirect route by more than 2 links. These numbers were
arrived at by trial and error and produced the most economical network
for the full-load case, although they were not very critical in the deter-
mination of network cost or capability. Two symmetrical networks are
studied in the full-load case, one which matches the blocking performance
of the other networks at engineered loads, and one which has a higher
blocking, as described below. Only one symmetrical network is used for
the reduced-load model.

The method by which routes are selected is as follows. Initially, the
shortest route between each two points is found. The route to the nearest
neighbor node on this route is then listed as the first-choice route. The
link from the originating node to the nearest neighbor node along the
first-choice route is then made ineligible, and the shortest route again
found. The link to the nearest neighbor node along this route is then
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Fig. 4 — Full-load, two-level hierarchy — Washington-Oregon.
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Fig. 5 — Full—load symmetrical network — Washington-Oregon.

denoted the second-choice route, and the distance and number of links
calculated and compared with the first nondirect route. The entire pro-
cedure is repeated until no route falls within the distance ratio and link
difference criteria, or five routes are selected, whichever occurs first. At
this point the process is terminated and the routing table established.
TFor example, in ¥ig. 5, to go from Yakima to Medford, the first-choice
route is via Portland, the second is via Seattle, and the third is via
Pendleton.

The third network configuration, considered in the full traffic case
only, is the gateway network. This is essentially a two-level hierarchy
with the interregional high-usage groups removed, as shown in Fig. 6
for Washington and Oregon. Traffic and trunks are therefore concen-
trated along the access routes to the gateway switching center and on the
interregional finals. Although this kind of system clearly requires more
trunks and trunk miles than a hierarchy to carry the same loads, it has
been conjectured that savings in line and terminal equipment could be
effected because of the large trunk cross sections involved. It also has been
thought that this scheme might provide improved performance under
shifting loads, which hypothesis is examined in this study. The gateway
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network studied assumed the gateway switches to be located at the same
points as the higher-level offices in the two-level hierarchical networks.

In all of the above networks, stage-by-stage routing similar to that in
the U.S. toll network is used. That is, once a call has reached a certain
point in its path, its route selection is independent of its past history,
and it is unable to back up and find another route out of a prior node.
(This is not true if crankback is allowed, as will be discussed later.) In
the symmetrical networks, the previous route is considered to the extent
of preventing a call from returning to a node through which it has al-
ready been switched. In the hierarchy and gateway, this restriction is
implicitly provided by the logic of the routing structure.

In sum, the networks examined are as follows:

(1) Full-load model

(a) two-level hierarchy

(b) three-level hierarchy

(¢) symmetrical

(d) symmetrical with high blocking
(e) gateway.
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Fig. 6 — Gateway network — Washington-Oregon.
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(2) Reduced-load model

(a) two-level hierarchy
(b) symmetrical.

3.4 Engineering Procedures

The size and complexity of the networks considered are such that
manual engineering procedures or trial and error methods are not feasi-
ble. Accordingly, computer programs were prepared which established at
least an initial network, which could then be adjusted if required by
trial and error using the simulator. The objective for all networks was to
attain an over-all average blocking probability of 0.01, with as small a
dispersion of individual point-to-point probabilities as possible. This is a
somewhat different criterion than the one normally used in existing
hierarchical alternate routing systems, which specify the blocking proba-
bility observed on the final route, but it is closer in philosophy to local
systems and others in which blocking probabilities produced by the
system are the same to all customers.

The hierarchical networks were engineered with the aid of a computer
program which essentially follows the procedure outlined in Ref. 4.
Using this method, traffic is transferred from the direct to the alternate
route when the direct route becomes so inefficient that the cost of adding
a trunk to it is more than the cost of carrying the traffic on the alternate
route. No account was taken of the nonrandomness of overflow traffic
or of the nonindependence of different links in the network. The errors
resulting from these assumptions were not large and were corrected where
required by trial and error using the simulator.

The process for engineering a symmetrical network is less well de-
veloped, and no method for designing an optimal, or even necessarily a
very good network, exists. However, a program is in existence® which is
capable of designing networks which will closely meet a desired blocking
probability, using prespecified routes which are fully determined from
origin to destination. It was necessary, in order to use this program, to
convert the shortest route procedure described in Section 3.3 above to
one which provides the full route rather than simply the order of hunt
over the adjacent nodes. This resulted in networks which were engineered
using a slightly different routing arrangement than the simulator ac-
tually used, and this, in conjunction with the basic assumptions implicit
in the engineering program of random overflow traffic and independent
links, led to blocking probabilities in the final network which were some-
what higher than desired. These were corrected for the purposes of
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comparing network configurations, but for certain studies of various
methods of operating a symmetrical network, the networks with high
blocking were retained.

3.5 Load Changes

Three patterns of load changes were used to measure the performance
of the various networks under shifting load conditions. The two load
changes examined in Ref. 1, uniform overload and overload of all traffic
to and from a particular node, were avoided because of their limitations.
The first case, uniform overload, represents a situation which is thought
not to ordinarily occur in large real systems, and both load models are
likely to obscure differences in behavior of competing networks, since
the networks tend to be completely saturated or are limited by the
specific overloaded nodes. Instead, three patterns of shifting loads, in
which the total offered network load remained approximately unchanged,
were used.

The first of these, called the “Christmas load,” represents a type of
shifting load normally seen in the U.S. on Christmas Day and on a few
other special occasions. On these days, the normal long distance business
traffic disappears and is replaced by a large volume of residential traffic.
Typically, the increased traffic is of substantially longer haul than is
the normal day traffic, so the phenomenon observed is that short-haul
traffic decreases, but long-haul traffic increases. In order to represent this
in the sample Pacific network, the network was broken down into four
areas, consisting of Washington, Oregon, Northern California and
Southern California. (Northern Nevada was included with Northern
California and Southern Nevada with Southern California.) All intra-
area traffic was reduced to 60 per cent of its normal value, and inter-
area traffic was increased to from 150 to 275 per cent of its normal
value, depending upon the distance. The total network load was 94 per
cent of its normal value, as shown in Table II. Although these changes
may appear extreme, they are not thought to be out of line with what
actually occurs in the U.S. on Christmas and were applied to both full
and reduced traffic models.

The second load change examined is not typical of any actual situa-
tion, but was designed to evaluate the effectiveness of the various net-
works in shifting load from an overloaded trunk group to a simultane-
ously underloaded one. In order to do this for the full-load network,
all traffic items originating or terminating at the Oakland 4M machine,
the largest office in the network (33 traffic items, total load 848 erlangs
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TaBLE IT— Caristmas Loap CHANGES

Traffic % of Normal Day Busy Hour Load
Intraregional 60
Washington-Oregon 150
Washington-Northern Calif. 210
Washington-Southern Calif. 275
Oregon-Northern Calif. 175
Oregon-Southern Calif. 230
Northern Calif.-Southern Calif. 150
Network 94

representing about 20 per cent of the network load), were either halved
or doubled at random, although this was slightly modified so that the
total network load remained at 99.5 per cent of its normal value. The
normal and modified values of the Oakland loads are shown in Table III.
In the reduced traffic model no single office had enough traffic to cause
substantial changes in total network performance, so the halving and
doubling were done at Seattle, Oakland and Los Angeles, which have
total loads of 767 erlangs, representing about 40 per cent of the total
network load. In this case the total network load increased by about 8
per cent. It is to be emphasized that this set of loads does not represent
any expected realistic situation, but is a completely artificial test of the
effectiveness of automatic rerouting under most favorable conditions.

The third load change examined was actually a series of load changes
based on an assumed movement of the busy hour from north to south
during a four-hour period. It was further assumed that, relative to the
busy hour, an area’s load was reduced 5 per cent in the adjacent hour,
10 per cent in the second hour, and 20 per cent in the third. Traffic be-
tween two areas (defined in the same way as for the Christmas loads)
was taken to be the arithmetic mean of the levels of the terminal offices.
That is, a traffic item between an area which is in its busy hour and one
two hours distant is assumed to be reduced 5 per cent from its busy hour
value.

Since the networks were engineered based on a single over-all load
value, some normalization was done so that the over-all network load
remained approximately constant. There were also some limitations in
the simulation which prevented the desired changes from being reached
exactly, but the final loads were quite close to the desired value. The
sequence of changes is shown in Fig. 7. The first part of the line repre-
sents the basic engineered load, followed by the changes in each area’s
traffic as shown. The ordinate is a relative scale, so all loads are given
as multiples of the basic value. The ramps between the hours were
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actually simulated as shown, but no measurements were taken during
these periods. The inter-area traflic levels are not shown, but are arith-
metic means of the levels of the terminal nodes, as deseribed above.
This load change, which was applied to both full- and reduced-load
networks, is designed to analyze a situation similar to that in the entire
U.S.A., which has several time zones with a different busy hour in each.
Although such differences are, of course, not actually observable in the
network selected, which runs essentially north and south, we can, for
the purposes of modeling, assume it runs from east to west, and is ex-
panded in its dimensions. In this case, time zone changes like those
postulated for this “busy hour load” would in fact be observed.

TaBLE III— OakrAND VArIATION LoaDps (FurL-Loap NETWORKS)

Traffic Loads in Erlangs
Traffic between Oakland 4M and
Normal Loads Changed Loads

Bellingham, Wash. 3.58 7.16
Seattle, Wash. 26.64 13.32
Spokane, Wash. 3.31 6.62
Yakima, Wash. 2.39 1.20
Astoria, Oregon 0.23 0.46
Bend, Oregon 0.29 0.15
Klamath Falls, Oregon 1.08 2.16
Medford, Oregon 1.77 0.88
Pendleton, Oregon 0.50 1.00
Portland, Oregon 23.77 11.88
Roseburg, Oregon 0.50 1.00
Las Vegas, Nevada 3.78 1.89
Reno, Nevada 15.98 31.96
Fresno, Calif. 30.49 15.24
Modesto, Calif. 12.59 25.18
Stockton, Calif. 25.86 12.93
Redding, Calif. 8.68 17.36
Sacramento, Calif. 94.23 47.12
San Jose, Calif. 76.79 153.58
Oakland Fr., Calif. 122.95 61.47
Palo Alto, Calif. 45.47 90.94
San Francisco, Calif. 45.12 22.56
San Rafael, Calif. 26.18 52.36
Santa Rosa, Calif. 86.80 43.40
Bakersfield, Calif. 7.32 14.64
San Luis Obispo, Calif. 3.48 1.74
Compton, Calf. 33.57 67.14
Los Angeles, Calif. 60.73 30.36
El Monte, Calif. 26.74 53.48
Van Nuys, Calif. 28.77 14.38
Anaheim, Calif. 8.16 16.32
San Bernardino, Calif. 8.65 4.32
San Diego, Calif. : 11.81 23.62
Total 848.21 847.82
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Fig. 7 — Busy hour load changes.

3.6 Bvaluation Criteria

A communications network which must be engineered to meet a
specific set of demands for service without being excessively costly, and
which will then be subjected to demands for which it was never designed,
is not easily evaluated by a single figure of merit, or even by a small
number of parameters. The weight of overload performance versus engi-
neered economy, performance under overload A as opposed to that
under overload B, and service to traffic between points i and j as opposed
to that provided between points k and m, provide ample opportunity
for conflicting requirements. This is, of course, in addition to nontraffic
considerations such as survivability, ease of engineering, administration
and control, or ability to provide other services such as data and private
line.

Nevertheless, in order to make a comparative evaluation of various
network configurations, a set of criteria must be adopted which can be
evaluated for each network under study and which will reflect the basic
considerations of cost and service quality under all conditions.

The criteria which have been selected are four in number, two relating
to cost and two relating to grade of service. They are:
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(1) number of trunks required to provide the desired grade of service
[of P(0.01)] at engineered load

(2) number of trunk miles required to provide the desired grade of
service at engineered load

(3) the over-all weighted average blocking, B, as defined in Section IT
above

(4) the dispersion of blocking D5 (subsequently denoted simply D), as
defined in Section II above.

Ttems (1) and (2) above can be provided with costs to derive approxi-
mate network costs, which will vary depending upon the cost of switch-
ing, terminal equipment and line facilities. This has been done for a few
typical costs. The costs so derived are approximate because the trunk
miles are defined as point-to-point airline miles, which is not the way
actual facilities would normally be routed.

Items (3) and (4) are measures of service quality. B is by itself a meas-
ure of over-all network performance, and it is directly related to carried
load. However, there may be severe distortions in the point-to-point
blockings which would yield a low B but might still leave certain cus-
tomers with extremely poor service. The inclusion of D as a criterion
will help to identify such a situation and ensure that network service is
evaluated on a basis of balance as well as blocking level.

3.7 Operating and Conlrol Procedures

The variations in operating procedures and the control methods em-
ployed all have the effect of changing the amount of alternate routing,
normally also making different numbers of routes available to various
point-to-point traffic items. Two control procedures were investigated
for both the hierarchical and symmetrical networks. These were one-
stage crankback and trunk reservation for first-routed traffie only (sub-
sequently referred to simply as trunk reservation). One-stage crankback
allows a call which has reached a point from which it is unable to proceed
to back up one link along its previous route and attempt to complete via
another route. This has been proposed as both a traflic improvement
measure and as a means for allowing machine troubles to be circum-
vented without customer retrials. The investigation here relates, of
course, only to its effect on the traffic capacity of the network. Trunk
reservation allows only first-routed traffic to seize the last idle trunk in
a group. Alternate routed calls can be served only if at least m + 1
trunks are idle, where m is the number of trunks reserved. This procedure
tends to maximize the number of calls which are carried on direct links
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at the expense of those carried on alternate routes. It also reduces group
efficiencies somewhat, and the question is whether the reduction in
circuitous routing is enough to compensate for this.

Finally, for symmetrical networks only, the maximum number of
links per call was varied. In the case called “‘full routing,” a maximum
of five links was allowed for any call in the network. In the case called
“limited routing,” a maximum of only three or four links per call was
allowed, depending upon the connectivity between the originating and
terminating points of the call. This restriction, of course, reduces the
average number of links per call, at the same time reducing the number
of routes possible between any two points.

IV. ANALYSIS OF NETWORK CONFIGURATIONS

4.1 Facility Requirements

It is difficult to arrive at an accurate measure of the cost differential
between the various network configurations, since costs of trunk termi-
nations, switching, and trunk lines vary from place to place and from
network to network. However, it is expected that the relative costs of
the various network configurations can be deduced from the number of
trunks and the number of trunk miles by applying appropriate factors
related to the distribution of trunk lengths and the types of switching
and transmission equipment in general use in any given situation. If the
unit costs of switching equipment, or of control features inherent in the
routing plan, are significantly different for different networks, the mag-
nitudes of these differences can be balanced against the differences in
trunks and trunk miles to again deduce the total network relative costs.
It should also be noted that the distances used for the trunk length calcu-
lations are based on airline mileage between originating and terminating
points, which is ordinarily somewhat shorter than actual facility route
mileage. This discrepancy can be corrected by introducing multiplying
factors when determining network costs for any actual case.

Table IV shows the number of trunks and trunk miles required to
provide the noted grade of service for each of the networks under con-
sideration, both in absolute value and as per cent difference from the
two-level hierarchy, which was arbitrarily selected as the standard. Al-
though the blocking probabilities are not exactly the same for all net-
works due to inaccuracies in the engineering procedures and statistical
fluctuations in the simulations, they are quite close.

The differences in facilities required for the various networks, with the
exception of the gateway, are quite small, amounting to at most 4.1
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TAaBLE IV — CoMPARATIVE TRUNKING REQUIREMENTS

(a) Full-Load Networks

Trunk Miles ’ Trunks
B
Network .
. . . (Engineered)
B A 1 » Diff. { %» Diff.
ot AT fem | acwal |3 DI from
2-level hier. 1174 0 6659 0 0.007
3-level hier. 1154 —-1.7 6679 +0.3 0.008
Symmetrical 1129 —3.8 6727 +1.0 0.007
Gateway 1268 +8.8 9236 +38.6 0.010
(b) Reduced-Load Networks
Trunk Miles Trunks
B
Network .
enver Actual % Diff. from Actual % Diff. from (Engineered)
(00) 2-Level Hier. ctua 2-Level Hier.
2-level hier. 6047 0 3208 0 0.008
Symmetrical 5801 —1.1 3256 —-1.3 | 0.008

per cent difference in trunk miles and 1.3 per cent difference in trunks
between the symmetrical and hierarchical reduced-load networks.

The gateway network requires a much larger number of trunks and
trunk miles than any of the others, reflecting the fact that many calls
which in the other networks require only one link must use three in the
gateway, and the fact that there is much excessive routing, or “back-
haul” in traffic which is obliged to switch through gateways. In this
case the resulting cost difference represents the savings in switching and
line costs which would have to be achieved to offset the increased quanti-
ties of equipment required.

4.2 Costs

Table V gives the costs of the various networks, assuming a range of
ratios of line to terminal costs which should include most actual situa-
tions. The differences between the hierarchical and symmetrical networks
are quite small, as is that between the two- and three-level hier-
archies, leading to a tentative conclusion that in these cases cost differ-
ential is not a primary reason for selection of one network over another.
It mwust be remembered, however, that the hierarchy (two-level) was
engineered using a known and proven economical procedure, while no
such method is available for the symmetrical networks. Therefore, the
hierarchies are probably close to optimal, while some additional economies
might ultimately be realized for the symmetrical networks.
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TasLe V— NETWORK CoSTS

(a) Full-Load Networks

Using $1500 Trunk Termination and Switching Costs
Cost/Trunk Mile

$10/Trunk Mile $50/Trunk Mile $100/Trunk Mile
c % Diff. 7, Diff, { C Diff, f
Network s(oogféoo) L from s(ooc&%%o) L onay o s(oog,sotoo) o from
2-level hier. 21.72 —_ 68.69 — 127.39 —
3-level hier. 21.56 —-0.74 67.72 —1.34 125.42 —1.55
Sym. 21.38 —1.57 66.54 —3.13 122.99 —3.45
Gateway 26.53 +17.54 77.25 —+12.406 140.65 +10.41

(b) Reduced-Load Networks

2-level hier. 10.99 — 35.18 — 65.42 —
Sym. 10.69 —2.73 33.89 —3.67 62.89 —3.86

Using the $50 per trunk-mile line cost figure, the data shown in Table
V(a) indicate that there is about a 1.3 per cent savings in cost of trans-
mission and switching facilities for a network of this size with full loads
when a three-level rather than a two-level hierarchy is used, and another
1.8 per cent if a symmetrical network is considered. This, of course, does
not include any differences in signaling and control equipment which
might be required to implement a symmetrical network, nor can it take
account of the nonoptimality of the network engineering procedure now
in use.

The gateway network, as expected, costs about 12 per cent more than
a hierarchy to carry the same traffic, assuming that trunk and terminal
costs are the same for all networks. This difference will be somewhat
mitigated by the fact that trunk and facility routes are more likely to
be identical in the gateway than in the hierarchical configuration, and
therefore the multiplier to convert from airline miles to facility miles
may well be smaller. In addition, any savings in switching costs which
can be effected because of the large volumes of traffic flowing through
the gateway switches will of course work to the advantage of the gateway
plan.

Table V(b) indicates that the reduced-load symmetrical network is
about 3.7 per cent less expensive than the hierarchy. This is in agreement
with earlier results! which indicated that lightly loaded networks show
greater differences between configurations than do heavily loaded net-
works.
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4.3 Overload Performance

Fig. 8 shows the over-all average blocking probability, B, for four
different full-load network configurations (two-level hierarchy, three-
level hierarchy, symmetrical, and gateway), and for the load changes
discussed in Section 3.5 above. The “base” load under the “BH Runs”
heading represents the same average load as the “engineered” point. It
is a shorter run, however, and any difference in blocking between the
two points is due to statistical fluctuations. Only the points on the charts
are meaningful, but lines have been drawn connecting them for visual
clarity. Fig. 9 is a similar chart, showing the dispersion factor, D. Figs.
10 and 11 show the same factors for the reduced-load networks, where
only the two-level hierarchy and symmetrical networks were examined.

Although there are apparently some differences in performance be-
tween the various networks under various load change conditions, it is
clear from Figs. 8 and 9 that there is no single superior network configu-
ration in terms of traffic capacity and performance under shifting loads
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Tig. 8 — Over-all average blocking, B: comparison of network configurations,
full-load networks.
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Tig. 9 — Dispersion of blocking, D: comparison of network configurations,
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at full-load levels. Some small systematic differences are present, such
as the fact that the two-level hierarchy appears to give slightly lower
blocking than all other networks at all points except the Oakland varia-
tions case, where the gateway shows up best. This can, however, be a
result of the initial engineered blocking level, which is slightly lower for
the two-level hierarchy than for the three-level hierarchy or the gateway.
This initial point does not so much denote a difference in performance
under changed loads as it does the slight inaccuracies in engineering
level, which are then reflected at every point on the chart. Although the
simulation runs which produced these measurements used the identical
set of calls for all networks at each load, the standard deviation of the
results due to the finiteness of the simulation run is of the order of magni-
tude of the blocking probability at each point, and firm conclusions can
be drawn only if a distinct superiority of one configuration over another
manifests itself at almost all of the points considered. There are some
such uniform results, but the differences are quite small, and may be
offset by the differences in cost discussed above.
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Figs. 10 and 11, on the other hand, show a small advantage for re-
duced-load hierarchical networks under all changed load conditions. In
this case there is no initial error, and all evidence indicates that the
hierarchy is slightly superior. It must be remembered, however, that the
hierarchy costs somewhat more in this case, and this sensitivity to over-
loads may simply be the penalty paid for a more economical network at
engineered loads.

The conclusion which must be reached from these results is that, for
large networks with fairly high traffic densities, the performance of vari-
ous alternate routing configurations in terms of traffic capacity under
changing load conditions is quite similar. The reason for this is probably
that the very density of traffic in these networks causes many of the
trunk groups to be quite efficient, and the great bulk of the traffic is
carried on the direct routes. Differences in alternate routing configura-
tion, therefore, affect only a small proportion of the total traffic, with a
correspondingly small effect on the network performance. In more lightly
loaded networks, as has been observed, the differences are greater as
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Fig. 10 — Over-all average blocking, B: comparison of network configurations,
reduced-load networks.
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Tig. 11 — Dispersion of blocking, D: comparison of network configurations,
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more of the traffic is alternate routed. Even in these cases, however, the
differences are not large, and the comparison made here between sym-
metrical and hierarchical networks shows the slight superiority of one

in cost to be offset by better performance of the other under shifting
loads.

V. ANALYSIS OF OPERATING AND CONTROL PROCEDURES

5.1 Full versus Limited Rouling

As discussed earlier, symmetrical networks were operated in two ways.
In the first of these, called “limited routing,” a maximum of three or
four links per call was allowed, depending upon the connectivity avail-
able to the traffic parcel. In the second, called “full routing,” five links
per call were allowed for all calls. Fig. 12 shows a comparison of the
over-all average blocking for these two cases. It is clear from this figure
that operation with limited routing is superior in traffic handling capac-
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ity. Although the differences at any point are still small, and the statisti-
cal variability of the results large, the fact that there is an advantage for
the limited routing case for every point tested indicates that this is a
real effect, and not merely a result of chance observation. Furthermore,
since these two curves represent the same network in terms of trunk
layout, there is no possibility of complicating or compensating factors
due to cost differences or engineering errors. In fact, the difference in
blocking probability under engineered loads in this case does not repre-
sent an engineering error, but instead an additional verification of the
fact that operation with limited routing is superior. This result is further
evidence of the fact that excessive alternate routing can cause service
deterioration, even under light load conditions. (The routing used in
the symmetrical networks discussed earlier was limited routing, chosen
because it gave superior performance.)

The symmetrical network whose performance is plotted in Fig. 12
and in subsequent graphs is clearly not identical to that discussed previ-
ously, since the blocking probabilities at all points are somewhat higher.
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This network, however, is the one which originally resulted from the
engineering program, and it will be used for all studies concerned with
differences in operating method using the same network. The earlier
comparisons between network configurations on a basis of both cost and
performance required that the blocking probability be approximately
equal at engineered loads, and trial and error modifications were made
to the symmetrical network to bring its blocking probability down to
the proper level. The comparisons between different modes of operation
of the same network should not be significantly affected by exact level of
blocking at engineered loads and are expected to be valid for all networks
of approximately the traffic densities considered. In the investigation of
the effectiveness of crankback, however, symmetrical networks with
both low and high over-all blocking probabilities were examined.

5.2 Crankback

Comparisons of networks operating with and without crankback
were made for hierarchical and symmetrical networks using both the
full traffic and reduced traffic models. In the hierarchical networks, no
significant difference in behavior could be detected between the networks
operated with and without erankback. This is because the structure of
the hierarchical network is such that most of the blocking occurs on final
route links, which are impossible to avoid even with the crankback
option. For example, in Fig. 3(a) if a call from 1 to 2 is blocked at node
4, it may, with erankback, back up to node 1 and attempt to reach node
2. Even if this is possible, however, there is still a large probability of
being blocked on route 3-2, and hence rearriving at 4 at some later time.
In addition, those calls which do get through using the crankback option
tend to use relatively long routes, causing later calls between other points
to be blocked.

The over-all network blocking and dispersion of blocking for sym-
metrical networks with and without crankback are shown in Figs. 13 and
14 for full-load networks and in Figs. 15 and 16 for reduced-load net-
works. Figs. 13 and 14 have curves for both the symmetrical network as
originally engineered (hi-block) and the corrected symmetrical network
which was used for comparison with the hierarchy (lo-block). This was
done so that any differences introduced by the general level of blocking
would be apparent. The curves indicate that the level of blocking has,
at most, marginal significance at these loads, and that crankback de-
grades the network performance at all but the lowest blocking levels,
when it has virtually no effect. The networks here are operated with
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limited routing, but a similar test with full routing yields results which
are substantially identical to those shown.

Figs. 15 and 16 show that crankback does offer a small advantage for
less heavily loaded networks, although this advantage tends to disappear
as the load increases, regardless of its distribution.

These results indicate that for large networks, operation with crank-
back at best offers a slight improvement in service when the service is
good, and makes matters worse when the situation begins to deteriorate.
An examination of the trunk occupancies and number of links per call
shows that operation with crankback generally causes a larger number
of links per call to be used on the average, with a higher over-all trunk
occupancy. In effect, it therefore increases the amount of alternate

routing allowed, and not always in the best way, so that degradation
under overloads is a certainty. It therefore must be recommended that
this device not be incorporated into large switching networks unless
survivability, improved reliability, or other factors dictate it. If it is
incorporated into a network for reliability or other purposes, means
should be made available to disable it under overloads.
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5.3 Trunk Reservation for First-Routed Traffic

Figs. 17 through 22 show the effect of trunk reservation for first-routed
traffic on the blocking and dispersion of full- and reduced-load symmetri-
cal and hierarchical networks. This measure, which reduces the amount
of alternate routing on a selective basis, provides a uniform improvement
in performance for all networks shown, although the improvement is
more marked in the case of full-load than in reduced-load networks. The
two-level hierarchies were not noticeably affected by the introduction
of this measure.

In general, one trunk was reserved in each trunk group in the
network, although two trunks were reserved on every group in some
cases. It was generally found that reserving more trunks than
noted in the charts had little additional effect upon the network per-
formance. Figs. 17 and 18 show the effect of trunk reservation on sym-
metrical full traffic networks. It is interesting to note that the network
with full routing has almost identical performance to the network with
limited routing when trunk reservation is used. This is not illogical,



2670 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

0.2
—— LIMITED ROUTING
NO TRUNK RESERVATION
—— FULL ROUTING
NO TRUNK RESERVATION
o / —=—— LIMITED ROUTING WITH
A= /i j\\ 1 OR 2 TRUNKS RESERVED:
'/} \\ FULL ROUTING WITH
0.08 /]7 \\ 2 TRUNKS RESERVED
N \K
006 /! \\
0.05 A S /

0.04 £
/ S )/
-~ 0.03 /// /'/ \\\‘ ) —7
8 / / / \\ ; / /
0.02 j/ \ g J’ //

\
A )
7
V4 \ \/] Sy
/ VW 4
v \ ~—~_ |
~V //
~ 7
0.01 >~ z
- ~J7
0.008
0.006
0.005
0.004
ENG OAK XMAS BASE BHI BH2 BH3 BH4
VAR LOAD

BUSY HOUR RUNS
LOAD, CONDITION

Fig. 17 — Over-all average blocking, B: full-load, high-blocking symmetrical
network, effect of trunk reservation.

since trunk reservation has a gross effect similar to that introduced
by limiting the number of links per call.

Tigs. 19 and 20 show the effect of trunk reservation on a three-level
hierarchical network, and here we observe an improvement similar to
that seen in the examination of symmetrical networks.

Tigs. 21 and 22 show the blocking and dispersion for the reduced-
traffic symmetrical network, in which the effect is similar but of lesser
magnitude than that observed in the full-load networks.

It is quite likely that a selective application of trunk reservation to
those groups which are large and have a large proportion of alternate
routed traffic would be more effective than the across the board applica-
tion used here. However, this study suffices to show that there is an
advantage in the traffic handling capability of a network so equipped,
and more detailed analysis will be required to determine the best number
of trunks to be reserved in any given case.

Trunk reservation has essentially the opposite effect on the network
as crankback; it reduces the amount of alternate routing during periods
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of momentary congestion, preventing calls from being completed using
circuitous routes at such times. Subsequent calls are then not affected
and the over-all network performance is improved.

One test was made using both trunk reservation and crankback, but
the effect of trunk reservation appeared to dominate, and no difference
was observed whether erankback was or was not used.

VI. CONCLUSIONS

The first and most obvious conelusion to be drawn from the preceding
results is that for networks with a high traffic density the selection of
routing doctrine and control philosophy does not have any great effect
upon the traffic handling capability of the trunking network. This fact
is apparently due to the substantial trunk group size generally encoun-
tered in such networks, with the basic group efficiency sufficiently large
to obviate any spectacular improvements due to clever routing or control
schemes. Of course, these comments apply only to reasonable alterna-
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network, effect of trunk reservation.
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Fig. 19 — Over-all average blocking, B: three-level hicrarchical full-load net-
work, effect of trunk reservation.

tives, such as those examined here. It is possible to develop a routing
plan which would encourage circuitous routing at the expense of direct.
Such a scheme would almost certainly show significantly poorer behavior
than any of the networks investigated.

Planning for future networks should then be initially concerned with
other factors, such as economics, survivability, flexibility and so forth,
with a precise evaluation of traffic capacity to be determined after the
fundamental design considerations are well formulated.

Having once accepted the basic idea that all differences are small in
magnitude, we can nevertheless observe their direction, and, in the
event that there are no other significant factors, decisions can be made
on the basis of such small differences. A saving of one per cent in the toll
trunk plant in the U.S.A. alone, for example, would amount to many
millions of dollars, which is not insignifieant in magnitude, even though
it is a small fraction of the total network cost.

In the comparison of network configurations, the symmetrical net-
works have some cost advantages, particularly at lower load levels. This
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is to some extent offset by a tendency to deteriorate under overload
slightly more rapidly than hierarchical or gateway networks. Further-
more, there is likely to be a not insignificant additional cost connected
with the operation and control of such networks, and they are difficult
to engineer and administer. They do have the advantage of improved
survivability, however, since there is not so much concentration of facili-
ties at regional switching centers.

The gateway network behaves well under overloads, but requires too
high an initial cost to warrant its use with existing technology. If tech-
nological advances radically change the patterns of costs for such a net-
work, then the gateway may be a suitable selection. The survivability
aspects of these networks are particularly important, since sections of
the network can be isolated by the destruction of a few critical points.

The hierarchical networks, which were the first alternate routing net-
works to be put into service, show a competitive initial cost and a reason-
able reaction to shifting loads of all sorts. They are simple to engineer
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Fig. 20 — Dispersion of blocking, D: three-level hierarchical full-load network,
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and administer, and the logic associated with switching and routing
control is relatively uncomplicated and economical. They pose an obvious
survivability problem, since some traffic parcels have access to only a
single route. This situation can be largely alleviated by dispersion of
routes and liberal provision of high-usage groups.

In short, if a high-density communications network is desired, and
concentration of traffic along backbone routes is allowable, then a hier-
archical network is likely to be the best choice of network structure. As
the traflic density declines, the symmetrical networks begin to show to
advantage, and they are indispensable in some form if the survivability
requirement rules out hierarchies. Symmetrical networks should, how-
ever, be implemented only in conjunction with an operating technique
such as trunk reservation to maintain overload capability.

The investigations of control measures demonstrate conclusively that
crankback is ineffective or harmful in all networks except perhaps those
with extremely light traffic densities. It offers at most a small gain at
engineered loads, and aggravates undesirable overload effects. There
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would therefore appear to be no reason for providing it other than the
nontraffic one of improving the ability of a eall to avoid an equipment
malfunction. If it is used for this purpose it should be disabled under
overload, when it shows the greatest traffic disadvantage.

Trunk reservation, on the other hand, almost always improves the
traffic carrying capacity of networks, and is never harmful. It is an inex-
pensive measure to implement which is unquestionably worth using,
and further studies of the strategy and extent of its use should be under-
taken.

In sum, the basic factors relevant to the design of communications
networks are:

(1) If there is a high density of traffic, and traffic concentration on
backbone routes is allowed, then a hierarchical configuration probably
should be selected, with the number of levels dependent upon the par-
ticular situation.

(2) If the traffic density is lower and/or the hierarchy is unacceptable
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Fig. 22 — Dispersion of blocking, D: reduced-load symmetrical network,
effect of trunk reservation.
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for survivability reasons, then a symmetrical network may be more
economical and can perform well if properly controlled.

(3) Crankback should not be used, except possibly as a means of
alleviating the effects of equipment troubles. If used, its traffic disad-
vantages under overloads should be taken into account.

(4) Trunk reservation should be widely employed, since it is simple
to implement and has noticeable traffic advantages under all load condi-
tions with almost any network configuration.

Although these guidelines are, of course, qualitative in nature, this is
necessary because of the large number of variables which exist in an
actual network. Variations in traffic levels between and within networks,
geographical distributions of switching offices and densities of traffic,
equipment limitations and differing primary functions all lead to different
constraints and weightings of various factors. It is the purpose of these
studies to provide guides for the design of communications networks,
with final choices dependent upon specific factors.
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An Experimental Study of Near-Field

Cassegrainian Antennas*®

By D. C. HOGG and R. A. SEMPLAK
(Manuscript received May 30, 1964)

The near-field Cassegrainian antenna is a double-reflector system that
employs, in its sumplest form, confocal paraboloids. Unlike the standard
Cassegrain which employs a hyperboloidal subreflector illuminated by a
spherical wave, the near-field device is fed by a uniform phase front. Experi-
mental data on noise performance, gain, and radiation patierns have been
obtained at a frequency of 6 gc using two 16-foot paraboloids (focal length-
to-diameter ratios of 0.875 and 0.25) in both standard and near-field con-
Jigurations.

Using the shallow antenna, zenith noise temperatures of 10°K and
6°K were obtained for the standard and near-field systems, respectively;
at an elevation angle of 10° the antenna temperatures were 50°K and 20°K.
Using the deep secondary reflector, zenith noise temperatures of 4°K were
obtained for both configurations; at 10° above the horizon, however, the
standard Cassegrain has an antenna temperature of 30°K and the near-
Jield device 13°K. In all cases, the antenna efficiencies are not far above 50
per cent. Discusston of noise produced by various methods of mounting
subreflectors is included. Since noise produced by transmission lines and
antenna environment s closely related to these experiments, it is discussed
i detail in appendices.

I. INTRODUCTION

Large microwave antennas of high efficiency and low noise are de-
sirable in radio astronomy, in tracking of space probes and in satellite
communications, In all of these cases, convenient access to the asso-
ciated electronic equipment is also a desirable feature. The horn re-
flector' 2 is an antenna which provides this access and also admirably
satisfies the electrical requirements. Nevertheless, it is of interest to

* Part of this material was presented to the URST in Washington, D. C. May,
1962).
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examine other types of microwave antennas of more favorable ratio of
geometrical aperture to total size with a view to improvement of their
electrical performance toward that of the horn reflector.

The purpose of this study is twofold: to evaluate the near-field Casse-
grain as a microwave antenna, and to compare its noise performance
with that of other antennas. Actually, two 16-foot diameter paraboloids
have been tested, one with an f/D ratio of 0.375 and the other of 0.25.
Measurements of antenna noise temperature, gain, and radiation pat-
terns were made at a frequency of 6 ge¢ using various feeding arrange-
ments on both of these main reflectors.

Most paraboloids have relatively low aperture efficiencies and exhibit
poor noise performance. IFor example, paraboloids fed by a horn at the
focal point typically have intrinsic (back lobe) noise temperatures of
20 or 30 degrees Kelvin?#* whereas the equivalent noise for the horn
reflector is about 2°K.5.87 This noise is due to thermal radiation from
the environment of the antenna (mainly the ground) into the wide-
angle or back lobes of the antenna; in what follows, it is designated by
Ty.

Paraboloids fed by a source at the focus suffer from another deficiency:
either the first circuit of the receiver must be mounted at the focal point
(which is inconvenient), or a rather long transmission line (which re-
sults in a prohibitive increase in noise) must be provided. This unde-
sirable feature is overcome by use of the Cassegrainian configurations-?
which, in the usual arrangement, has a point source feed at the apex of
the main (secondary) reflector and a hyperboloidal (primary) subre-
flector near the focal planc. In this case, the receiving equipment may be
situated at the apex of the secondary reflector, free space serving as the
transmission medium to the subreflector. Often the location of equip-
ment near the apex is restrictive; depending on the arrangement, it
may or may not move with the main reflector. This type of feed is re-
ferred to here as the “standard’” Cassegrain.

The near-field Cassegrain combines some of the useful properties of
the horn reflector with those of the standard Cassegrain. Rather than a
point-source feed at the apex of the main reflector, a plane-wave feed
of the same dimension as the subreflector is used.* Of course, the sub-
reflector blocks the field of the main aperture just as in the case of the
standard Cassegrain configuration. The plane-wave feed used for the
measurements to be discussed was a small horn-reflector antenna. This
arrangement allows the electronic equipment to remain stationary while

* Experiments on an antenna of this type were described recently by Profera

et al.19 Some generalized antenna systems based on this concept are discussed by
S. P. Morgan.1!
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the clevation angle of the antenna is changed, in much the same manner
as with the horn-reflector antenna.

It should be mentioned that the near-field feeding system is suited
only to antennas that are very large compared to the wavelength. In
the model that has been tested here, where the antenna diameter is less
than 100X, this criterion is just met. However, it appears that the feed
system is broadband, embracing all wavelengths shorter than that
satisfying the criterion, and in this sense the near-field antenna is some-
what similar to the horn reflector. Methods for mode scanning!? a horn-
reflector antenna are cqually applicable to a near-field Cassegrain.

In Section IT, the geometry of the near-field Cassegrainian antenns is
discussed; the fields produced by the near-field feed are also given
there. Section ITT describes the equipment, siting, and the methods used
for measurement of antenna noise temperature and gain. Sections IV and
V contain the noise and gain measurements on the shallow and deep
sixteen-foot paraboloids using various types of feeds; the effect of subre-
flector mounting structures on noise performance is also given in those
sections. Measurement of noise due to loss in transmission lines is dealt
with in Appendix A. In Appendix B, the back-lobe noise temperature
(T,) for an antenna in a given environment is discussed, and in Appendix
C, a quality factor which governs the signal-to-noise ratio in antennas
is proposed.

II. THE NEAR-FIELD CASSEGRAINIAN ANTENNA

2.1 Comparison of Standard and Near-Freld Cassegrainian Antennas

The standard and near-field Cassegrainian antennas are compared
in the idealized sketches of Fig. 1. An extensive analysis of the standard
Cassegrain antenna has been given® and it will not be discussed further
here; however, it should be noted that radiation from the point-source
feed tends to spill over the rim of the hyperboloid. It has been demon-
strated recently'® that suitable beam shaping of the source pattern can
reduce this spill-over. The receiving equipment is stationary as the
antenna changes elevation, a right-angle circular waveguide bend and
rotating joint being provided in the transmission line (see Fig. 1la). A
simple right-angle bend would not be used in systems employing circular
polarization since, due to unequal phase velocities of orthogonal com-
ponents, the circularity would be degraded. A simple bend was used in
the measurements to be discussed since circular polarization was not
involved.

The near-field Cassegrain, shown in Fig. 1(b), has a horn-reflector
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Fig. 1 — Idealized standard and near-field Cassegrainian antennas.

feed with an aperture of about the same diameter as that of the sub-
reflector. To a geometrical optics approximation, the near field of this
feed is collimated and of uniform phase.

2.2 Geometry of Near-Iield Cassegrain

A simple derivation shows that the surface of the subreflector in the
near-field configuration should be paraboloidal. Assume that the sur-
face of the subreflector (see Fig. 2) is paraboloidal; it will then be suffi-
cient to show that the path length of any ray from the plane wave in
the feed aperture EF to a reference plane in the secondary aperture is
constant. Consider the ray of path length AB + BC + CD. Equating
this path to the length of the axial ray, one has

AB+BC+CD=2(f—f) +f=3 —2h (1)

where f; and f are the focal lengths of the primary ani secondary re-
flectors.™ From Fig. 2, the line segments 4B, BC, and CD are equal to
f — z,r. — 11, and r, cos 6 respectively. Equation (1) then becomes

f—z2+r—r+rcosb =23 —2f (2)

* Primary and secondary are used to designate the sub- and main reflectors
respectively because the radiation patterns of the feed and main reflector are
usually referred to as primary and secondary patterns.
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where z, = r; cos 6, and from the equations of the paraboloids

___2A _ 2f
rl_l—l—cos() and 7A2_1—l—cost9’
Making these substitutions, (2) becomes

f_ 2/,(1 + cos 6) n 2f(1 + cos 8)
1+ cost 1+ cos @

= 3 — 2

which proves the equality.

As in the case of the standard Cassegrain, the degree of illumination
on the surface of the secondary reflector of a near-field Cassegrain can
be varied by using subreflectors of various focal lengths. Optimum
illumination, as determined by geometrical optics, is achieved by using
a subreflector of f/D ratio identical to that of the secondary reflector.

Fig. 3 is an idealized sketch of the near field along the axis of the
source aperture, the relative positions of subreflectors used in the
experiments being indicated by arrows. Note that the subreflectors are

{D
L ----- REFERENCE
PLANE

N ~
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PLANE WAVE . _
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Fig. 2 — Geometry of near-field Cassegrainian antenna.
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Fig. 3 — Idealized near-field along the axis of the feed.

well out in the near-field. As mentioned in the introduction, the antenna
size and wavelength used for these tests are far from optimum for the
near-field type of feed. Preferably one would choose dimensions as large
as possible with respect to wavelength (a high-gain antenna) in which
case geometrical optics would hold more rigorously; an immediate conse-
quence of this is that the subreflector positions (see Fig. 3) would be
located where collimation and phase uniformity of the near-field are
greatly improved.

2.3 The Conical Horn-Reflector Feed

A horn-reflector antennal* was used as the near-field feed for both the
shallow and deep dishes. Theoretical and experimental studies of the
far-field characteristics of this antenna have been published;? here,
discussion is confined to its near-field characteristics.

The first 16-foot diameter secondary reflector used in the near-field
Cassegrainian configuration had a focal length of 6 feet; therefore
measurements of amplitude and phase of the field were made six feet
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in front of the aperture of the horn reflector, where the subreflector
was to be mounted. The measurements were made in an anechoic cham-
ber using a dipole probe. The data are plotted in Fig. 4 along with
theoretical curves; these compare favorably in their general trend but
not in detail. One notes that the phase departs from uniformity by
about £10° in some cases and that it is unsymmetrical with respect to
the axis.

III. EQUIPMENT AND METHODS OF MEASUREMENT

3.1 Equipment

Fig. 5 shows a complete antenna mounted on a motorized turntable
carriage for azimuthal rotation. The cab to the left of the antenna is
shielded; it houses the necessary equipment for measuring noise tem-
perature, gain, and radiation patterns. The double A frame and cradle
structure on which the secondary reflector is mounted is shown more
clearly in Fig. 9 (p. 2691); it is a strong structural unit, no demand being
made of the paraboloid for supplying rigidity. Elevation steering is
provided by rotation of the cradle on bearings in the A frames. The
transmission line, a circular waveguide of 2.8-inch diameter, is fed to
the receiver in the cab through the bearing via a rotating joint.

The antenna is sited in a relatively flat, clear area; however, the site
is ringed with trees which limit the horizon to an average elevation angle
of 1.5 degrees. h

The 6-ge maser receiver used for antenna noise temperature measure-
ments has been discussed previously.5”

3.2 Method of Noise Measurements

The setup used for measuring noise performance is shown in Fig. 6.
The noise temperature at the input to the converter with the noise lamp
off is given by

T, = Gm( T, + TM) ) (3)

where G, , T are the maser gain and noise temperature, and 7, =
Ts + T: + T is the antenna temperature. 7T’ is the sky temperature
observed by the main beam. T, is the noise temperature of the trans-
mission line associated with the antenna.® 7, is the noise contribution
from the earth and sky through the wide angle side and back lobes of

* Here we neglect the actual attenuation due to transmission line loss; it is
quite small.
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Fig. 5 — A 16-foot diameter paraboloid (f/D = 0.375) with near-field Casse-
grainian feed.
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Fig. 6 — Noise contributors in the receiving system.
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the radiation pattern. With the noise lamp fired, the noise input to the
converter becomes

T'ic = GmA(Ta + Tm + TL) + (1 - A)TU (4:)

where T’ is the additional noise introduced by the calibrated noise lamp,
Ty the ambient temperature and A the reciprocal of the additional loss
introduced by a precision attenuator to equalize (3) and (4).
Solving (3) and (4) for T,
AT, -

Ta 1= A + ’_— T (0)
Since the terms on the right of (5) are determined by independent
measurenicnt, the noise temperature due to the back lobes is obtained
from

To=T,— T, — T, (6)

provided T and T; are known.

The sky temperature, T, for an atmosphere of given humidity is
known from experience.* The transmission line contribution, 7., is
measured independently as discussed in Appendix A.

3.3 Method of Gain and Radiation Pattern Measurement

Gain measurements were made by comparing the power received by
the antenna with that of a standard horn. A height run was made with
this horn over the vertical extent of the main paraboloid for each gain
measurement, the average of these data being taken as the reference
value. Using the same equipment, azimuthal radiation patterns were
obtained for the two principal polarizations.

IV. MEASUREMENTS ON THE SHALLOW PARABOLOID (f/D = 0.375)

4.1 Noise Measurements Using Various Feeds

The 16-foot diameter spun-aluminum shallow paraboloid (f/D =
0.375) was first fed in a conventional manner using a cylindrical wave-
guide horn supported at the focal point by fiber glass struts, the feed
waveguide running out from the apex. The radiation pattern of this

* In assigning values to 7, , the absolute water vapor density at the ground is
determined from humidity and temperature measurements at the receiving site.
Based on the particular value of water vapor density obtained, theoretical sky
temperatures which have been verified previously? are calculated.
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feed tapers to about —10 db at the rim of the paraboloid; this, in addi-
tion to an inverse distance effeet of 3 db, results in a net illumination
taper of 13 db.

Using the method for measuring noise discussed in Section 3.2, the
two measurements on the curve of Fig. 7 labeled A were obtained™
for zenith angles (8) of zero and 45° In spite of the relatively strong
taper, this feed produces a noise temperature of 26°I at both angles. By
removing the fiber glass mounting struts and supporting the feed with
fine guy ropes, the point labeled B was obtained, T, = 13.5°K. Com-
parison of the zenith point on eurve A with point B shows that the fiber
glass struts contribute 12.5° of noise. Strut noise can be produced both
by reflection of noise radiated from the ground into the antenna and by
loss in the material comprising the strut; this point is elaborated upon
later.

The second feeding arrangement measured on this paraboloid was a
standard Cassegrain consisting of a precision hyperboloid (whose diam-
eter could be changed from 30 to 24 inches by removal of an outer ring)
fed by a horn of 3.5\ diameter located at the apex of the main dish. The
transmission line from horn to maser was about six feet of oversized
circular guide including a right-angle bend.

With the hyperboloid mounted on fiber glass struts, noise measure-
ments (at the zenith) produce T, = 24.5° as shown by point C in Fig. 7.
The fiber glass struts were then covered with aluminum foil, essentially
converting them to metal struts of the same geometry, and another
measurement made, as indicated by the zenith value on curve D. At
zenith the noise is now 7% = 11°K. Comparing this value with the 24.5°
obtained using fiber glass struts, one sees that a decrease in noise of
13.5° has been effected. This result shows that most of the noise (at
least for zenith orientation of the beam) is produced by loss in the di-
electric; this conclusion seems to be valid because the decrease of 13.5°
compares very favorably with the 12.5° decrease in 7, obtained when
the fiber glass struts were removed during the test using the waveguide
feed. Measurements were also made versus zenith angle, as shown by
the remainder of curve D in Fig. 7. As the horizon is approached, 7%
reaches values of the order 50°K. This noise is produced by spill-over
beyond the rim of the hyperboloid and by reflection of noise from the
earth by the sizable struts.

The last feeding arrangement to be discussed is the near-field Casse-
grainian configuration. Fig. 5 shows a front view; mounted near the

* It may be well to mention here again that 7' in Fig. 7 is the intrinsic antenna
noise; sky and waveguide noise, ete. are not included.
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Fig. 7 — The 6-gc noise performance of 16-foot paraboloid (f/D = 0.375).

focal plane is one of the several paraboloids used as primary reflectors.
The mounting struts are of interest; they are metallic, light-weight,
small, and extend to the rim of the secondary reflector, the latter being
done so that the struts do not intercept direct radiation from the sub-
reflector.

Noise data obtained for this feed using a primary reflector of 12-inch
focal length are shown in Fig. 7 as curve E. T} at the zenith for this
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arrangement is less than 8°K. Equally important, however, 7% is less
than 20°K in the region of § = 80°, which is approximately the acquisi-
tion angle in a satellite communication system. At this angle the sky
noise’ is relatively high compared to the zenith value and it is desirable
to have 7% as low as possible.

By using a subreflector of longer focal length (14.5 inches), much
less spill-over of the secondary reflector occurs and a zenith temperature
of 4°I was achieved. For all elevation angles with this subreflector,
T, was of the order of one-half that obtained with the subreflector of
12-inch focal length; of course, the secondary area illuminated is rather
small and the gain is reduced by about 1.5 db; thus use of such sub-
reflectors is of questionable value. A discussion of the signal-to-noise
ratio in antennas is given in Appendix C.

To pursue the strut-noise effect further, a pressurized Mylar sheath
support (similar to that shown in Fig. 9) with a wall thickness of 1.5
mils and inflated with nitrogen to a pressure of 0.15 psi was devised; it
provides a remarkably rigid support. Nichrome guy wires from the
subreflector to the rim of the secondary reflector are used for centering.
Noise data for this arrangement (curve I in Fig. 7) show that there is
an improvement of about 2°K (compared with curve E) for all eleva-
tion angles.

Curves G and H are included in Fig. 7 to serve as reference data.
Curve G was obtained using the 27-inch horn-reflector feed (itself a
low-noise antenna of respectable size with a far-field beamwidth of about
5°) mounted on the 16-foot paraboloid, struts and subreflector being
removed. The arrangement amounts to a well shielded horn reflector
with a large baffle (the secondary reflector); as indicated in curve G,
Ty is less than 1°K at zenith. The rather rapid increase to 7, = 9°K
at § = 80° is attributed in part to the limited horizon™ mentioned in
Section 3.1. Curve H was obtained using a five-foot horn reflector at
the Crawford Hill site, which has a clear horizon.”

4.2 Radiation Patlern, Gain, and Impedance

The idealized near field of the conical horn feed was shown in Fig. 1
as a plane wave perfectly collimated in the direction of the primary
reflector. In reality this is not the case; as discussed in connection with
Fig. 4, the phase varies as much as 410° in places and is unsymmetrical
with respect to the Z axis, as is the amplitude. From an academic point

* The decrease in noise very near the horizon shown by the curves in Figs. 7

and 10 is also attributed to the environment; this effect was not observed using the
Crawford Hill site (Refs. 5 and 7).
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of view, a plane-wave source with a symmetrical aperture field (such as
a horn-lens antenna) would be preferable as the feed, since the unsym-
metrical phase produced by the horn reflector produces unsymmetrical
radiation patterns in the near field. Evaluation of the field distribution
in the aperture of the main dish is also a near-field diffraction problem.
Preliminary calculations, using idealized fields, indicate that this distri-
bution is toroidal; the secondary patterns produced therefore have
relatively high immediate side lobes, similar to those of a heavily blocked
aperture.

Fig. 8(a) shows the measured pattern for longitudinal (horizontal)
polarization, using the subreflector of 12-inch focal length. Note that the
side lobes are unsymmetrical and that the highest one is only some 13.5
db down from the main lobe. In Fig. 8(b), for transverse (vertical)
polarization, the immediate side lobes are more than 20 db down. In
both cases the half-power beamwidth is about 0.7°. For comparison,
a calculated curve for constant amplitude distribution and 2 per cent
aperture blocking is also shown in I'ig. 8. The gain is 48.0 db for trans-
verse and 47.4 db for longitudinal polarization. The calculated full area
gain of the 16-foot dish is 50.1 db at 6.3 kme; thus the average effective
area is 2.4 db down or, in other words, the efficiency is 57.5 per cent.

The SWR for the above configuration is 1.17, equivalent to a return
loss of 22 db. A slight improvement in impedance is obtained by remov-
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Fig. 8 — Radiation patterns of shallow paraboloid.
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ing a circular area from the subreflector and illuminating the concave
surface of the subreflector in the proper phase. This supplementary
feeding arrangement (shown clearly in I'ig. 5) resulted ina VSWR of 1.15
or a return loss of 23 db.

Fig. 9 — 16-foot paraboloid (f/D = 0.25) with near-field Cassegrainian feed.
Note Mylar support for subreflector.

V. MEASUREMENTS ON THE DEEP PARABoLoID (f/D = 0.25)

5.1 Noise Measurements Using Various Feeds

Performance was next examined using a deep paraboloid (f/D = 0.25)
as secondary reflector; I'ig. 9 shows a front view. This paraboloid (diam-
eter 16 feet) was machined from urethane foam, a reflective surface of
zine being applied after machining.* Near the focal plane is one of the

* Precision in reflecting surfaces is an important factor in determining the
wide angle lobes!s and therefore the noise performance of antennas.
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paraboloids used as a primary reflector, in this case supported by a
Mylar sheath. An alternative support used four half-inch struts extend-
ing perpendicularly from the mounting ring surrounding the feed
aperture to the subreflector.

Curve A of Fig. 10 shows data obtained using a 30-inch diameter
subreflector of focal length 7.5 inches supported by metal struts; as
indicated, the zenith temperature is about 4°XK. Next, a 24-inch diam-
cter subreflector with a focal length of 6 inches was used, the f/D ratio

TEMPERATURE, Tp, IN DEGREES KELV}
w b O ® O

HORIZON

] 90
1 2 3 4 56 8 10 20 30 40 50 60 80 100

TEMPERATURE, Tp, IN DEGREES KELVIN

. NEAR-FIELD CASSEGRAIN, SUBREFLECTOR f/D=0.25, D= 30"
. NEAR-FIELD CASSEGRAIN, SUBREFLECTOR f/D=o0.25, D=24"
. SAME As B, NO STRUTS, MYLAR SUPPORT

. STANDARD CASSEGRAIN

. CONICAL HORN REFLECTOR, 27" APERTURE

. HORN REFLECTOR, 5 APERTURE
(CRAWFORD HILL SITE, REFERENCE 7)

mTMooOow>»

Fig. 10 — The 6-ge noise performance of 16-foot paraboloid (f/D = 0.25).
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being the same as in case A. As indicated by curve B, this feed arrange-
ment displays very good characteristics, also achieving a zenith tem-
perature of 4°K. Equally important, 7% remains less than 10°I until a
zenith angle of sixty-five degrees is reached. In the region of 6 = 80°,
Ty is less than 15°K.

LEven though the struts supporting the subreflector were of small size,
it was of interest to see what the change in T, would be if the struts
were removed. I'ig. 9 shows the nitrogen-filled Mylar sheath (previously
discussed in Section 4.2) supporting the 24-inch diameter subreflector,
and curve C in Fig. 10 shows the data obtained. There is no appreciable
change in the zenith noise temperatures; however, there is improvement
for angles approaching the horizon, indicating that the small struts were
to some extent scattering the earth’s radiation into the antenna.

A standard Cassegrain feed consisting of a precision 30-inch diameter
hyperboloid machined from styrofoam and suitably surfaced with zine
and a 3.5\ diameter horn located at the apex of the secondary reflector
was tested for comparison with the near-field feed; the noise measure-
ments are shown as curve D in Fig. 10. At zenith, the noise temperature
is 4°K, but spill-over effects quickly become apparent when the zenith
angle exceeds sixty degrees. At § = 80°, T} has increased to about 30°K;
this is attributed mainly to spill-over beyond the rim of the subreflector.

Reference curves E and F are included in Fig. 10; similar data were
discussed in connection with Iig. 7.

5.2 Radiation Pattern, Gain and Impedance

Irig. 11 shows the azimuth patterns for the deep dish using the 24-
inch diameter paraboloid as primary reflector. In Fig. 11(a) (longitudi-
nal polarization) the immediate side lobes are unsymmetrical and the
highest one is about 13.0 db down. Figure 11(b) is the secondary pattern
for transverse polarization in the feed. In both cases, the 3-db beamwidth
is about 0.7°.

During the measurements, the well known problem of properly
illuminating a deep paraboloid became apparent; however, it was
readily determined that deep reflectors may be illuminated more easily
by Cassegrainian techniques than by focal point feeds. For example,
using the near-field feed, the illumination at the rim of a 30-inch sub-
reflector is down about 13 db; including a 6 db inverse distance attenua-
tion, the resulting taper across the secondary reflector is approximately
20 db. The measured gain was 4 db down from full area. By reducing
the diameter of the subreflector, the taper is also reduced, thereby in-
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TFig. 11 — Radiation patterns of deep paraboloid.

creasing the gain (in this process, noise performance is often sacrificed
for gain). A 24-inch subreflector was found to be a suitable compromise,
measured gain for both polarizations being 47.3 db (2.8 db down from
area). Somewhat surprisingly, as indicated by curve B of Fig. 10, there
is no significant deterioration in noise performance.

Average SWR measurement for the configuration last mentioned is
1.11, which is equivalent to a return loss of 25 db, an improvement of
3 db over that of the shallow dish.

The gain of the standard Cassegrainian configuration was 47.4 db
and 47.7 db for the vertical and horizontal polarizations, the average
value being 0.24 db higher than that of the near-field device.

VI. DISCUSSION

The measurements discussed here have been directed toward evalua-
tion of the noise performance of several types of feeds for full paraboloidal
reflectors. In particular, it is found that the near-field Cassegrainian
feed, a device whose design is based on simple geometrical optics,
performs exceptionally well, its low-noise characteristics being as good
or better than those of the standard Cassegrainian feed over all angles of
elevation. This result holds true for both shallow and deep secondary
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reflectors. The efficiency of the near-field Cassegrain is about 55 per cent,
similar to that obtained using more conventional feeds; the radiation
patterns are unsymmetrical due to lack of symmetry in the phase of the
primary field.

Deterioration in noise performance due to the struts (or spars) used
for supporting feed structures has been examined. Dielectric struts,
such as those of fiber glass, have been found to introduce noise because
of loss in the material. A pressurized membrane has been tested as a
support for subreflectors; it appears satisfactory mechanically and
minimizes degradation in electrical performance.
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APPENDIX A
Transmission Line Measurements

A.1 Noise Measurements (Short Circuit)

The noise that exists in a transmission line is caused by resistive losses
in the line itself and by noise generators which may be at either or both
ends of the line. Consider the infinite transmission line of Fig. 12(a),
which for the moment is assumed to have a noise-free measuring device
at terminal A. Let the thermodynamic temperature of the line be T,
and « the power absorption coeflicient. Since the line is of infinite length,
the noise temperature measured at A is simply 7, = T';. Divide the line
into segments 1 and 2 at point [. The contribution to the noise at A
by segment 2 is T *' (since the line is infinite); therefore that con-
tributed by segment 1 is 7(1 — ¢ *'). A series expansion gives

Tl — 1+ al — (F/2) + --+)
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Fig. 12 — Noise measurements on shorted transmission line.

which for small « is approximately T;al. Naturally, if the total loss, of,
is known, the noise produced is obtained immediately.*

Fig. 12(b) shows a movable shorting piston, S, near the terminals A
of the amplifier to be used for the noise measurements. The amplifier is
not perfectly noise free, nor is it perfectly matched; therefore movement
of the piston produces a cyclical variation in the noise at A.

Let the effective temperature of the maser amplifier at terminals A
in Fig. 12(b) be designated T, ; thisrepresents the intrinsic noise, which
amounts to about 3°K. T'; represents the effective temperature of the
transmission line and T, that of the shorting piston, S. The voltage
reflection coefficient at A (the input mismatch of the maser) is p. The

* This assumes that the thermodynamic temperature of the line is constant;
if not, the effective noise temperature is given by

1 z
7= fo T(@)alz) exp <_ fo (@) d:v> iz

where T'(z) is the temperature distribution along the line.
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sources that give rise to noise 7', traveling to the left (i.e., into the am-
plifier) at A are:

T.., — intrinsic amplifier noise;

T., — amplifier noise traveling to the right, and reflected at S
(uncorrelated with T.,);

T, — line noise initially traveling to right and reflected by S, also
that reflected by p at A and again by S;

T:, — line noise initially traveling to left, also that reflected by p
and by S (uncorrelated with 77,);

Ts — shorting piston noise, traveling to left, also that reflected by p
and by S.

Thus, to first order the noise entering the amplifier at A is
T=Tun+Tw + Ty, +T,+ Ts.
If the attenuating effects of line loss are neglected (since they are only
of the order 0.1 db), the above sum to first order becomes
T = Ty 4 (Ty + 271+ T) (1 + p°) )
+ 2(T, + 2Ty 4 Ts)p cos 261
where
2Ty =Ty, + Ty,
B being the propagation constant of the line.

Measured data (noise versus short position) shown as crosses in Fig.
12(c) were taken using a short circuit in round waveguide. Also shown
(as asolid eurve) are data calculated using the following constants in (7):
Ty = 38°% Thmy, = 3°% Ty = 10° Ts = 2.5° (short circuit with a standing
wave ratio of 250) and p = 0.075 (22-db return loss), the last two being
measured values; these result in

T = 28.6 + 3.8 cos 28!. (8)

Now let an additional length of transmission line be added to ! such
that the total length is [, , and let the short S be moved to the end of
this line. The data, shown as dots in Fig. 12(¢), were obtained when
approximately 6 feet of 2.8-inch diameter line® were added. The dashed
curve is a plot of (7) with the following constants:

Ty = Ty = 3°, Ty, =14°  Ts=25 p= 0075

T, = 36.7 + 5.0 cos 283l. (9)

* The line actually comprised 45 inches of straight guide and a right-angle bend
of 15-inch radius used in the standard Cassegrain feed.
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If (8) is subtracted from (9), one has
2(Ty, — TH)(1 + p°) + 4(Ty, — Ti)p cos 28l
= 7.9 4+ 1.2 cos 23l.

From the first terms of both sides of (10), one obtains 2(T,, — T:) = 7.9,
or an increased noise temperature T;, — T = 3.95° due to the addi-
tional length of line. From the second terms one obtains 4(7T;, — Th)p =
1.2 0r T;, — T; = 4°. The accuracy of the latter value is very dependent
upon an accurate value for p (measured as 0.075), whereas the first
value, 3.95° (which is really the difference between the average values
of the plots in Fig. 12(c), is good to order 1 + o’. The value 3.95°K
is equivalent to a loss of 0.052 db in the additional length of line.

(10)

A2 SWR Measurements (Short Circuit)

Using the same shorting piston and transmission line as above but
adding an additional 60-inch length of waveguide (diameter 2.8 inches),
the measured VSWR was 85, which is equivalent to a loss of 0.0093
db/foot.

The loss per unit length derived from the noise measurement just
discussed is 0.0092 db/foot, indicating close agreement between the two
methods.

APPENDIX B

The Antenna Noise — T,

Since typical antenna patterns have significant levels in the side and
back lobes, it is necessary to consider the effects of noise due to thermal
radiation from the environment into the antenna.™ This effective noise
temperature is designated by T .

Consider first the ideal radiation pattern shown in Fig. 13(a): it
has a very narrow beam of width «, the gain G being constant over the
angle «; it has no back lobes. The antenna is assumed to be lossless and
to be mounted height & above the ground. Beamed at various angles 6
with respect to zenith, this antenna sees the true brightness tempera-
ture, T'(6), due to various noise sources. For 0 < 8 < /2, T(6) = T,(6)
is the sky temperature. For 7/2 < 6 < m, the brightness temperature
is due to both sky and earth, as shown in Fig. 13(b), since the sky
noise from angle = — 6 is reflected at point P according to the reflection

* This effect has been discussed recently in Ref. 16.
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Fig. 13 — Ideal antenna and its environment,

coefficient of the earth, r(6), at P, whereas the earth generates noise that
enters the antenna directly dependent upon the coefficient a(6), which
represents absorption at P. Noise due to loss in the atmosphere along
path length [ also contributes to the brightness temperature. Since
r(0) + a(d) = 1, the brightness temperature for 7/2 < ¢ < = is

T(6) =r(0)Ts(x — 0) + [1 — r(0)]To + Toy(0 — «/2)  (11)

where 7', the temperature of the ground, is assumed to be 300°K.

The term T,(8 — =/2) of (11) represents noise due to the path in
the atmosphere between the antenna and the point P. Compared with
other noise sources, it is found to be negligible, and therefore has been
disregarded in what follows.

The reflection coefficient r(8) is highly dependent upon the environ-
ment and to some extent on polarization; it usually varies with time,
being a function of the ground conditions over vegetated areas and the
wave conditions over water. Using representative data at 10 cm wave-
length for the refiection coefficient,” the sky temperature, and (11), one
can estimate the brightness temperature distribution for all angles 6, as
shown in Fig. 14. Curve B is for smooth sea water and curve A for a
perfectly reflecting mirror (which images the sky noise), whereas the
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Fig. 14 — Brightness temperature distributions for middle em-wave band.

poorly reflecting ground environment, curve C, approximates a perfect
absorber.

An actual antenna has a finite radiation pattern G(8); assuming it
to be symmetrical about the main axis of the antenna beam, the equa-
tion relating antenna temperature to radiation pattern and brightness
temperature is

T+ Ty =5 | GOT6) sinodo (12)
0
for the antenna beamed vertically. If the antenna is beamed at angle
6’ with respect to the zenith, (12) becomes

T.06') + T(0') = % G0 — 6')T(6) sin 6 do. (13)
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As a simple application of (12), consider an isotropic antenna sur-
rounded by a noisc-free sky and a perfectly absorbing carth. In this
case G(0) = land 7(9) = Tofor /2 < 6 < =; thus

T+ 7=1 [ Tosinoa =2 = 150k
2 T/2 2

An idealized radiation pattern for a microwave antenna is shown in

Tig. 15, where

G(0) = Gy, 0<6<a/2

and
G(0) = Gy, a/2 < 0 <,
G, being the average gain in the side and back lobes. Again assuming a
noise-free sky and perfectly absorbing earth,
T()Gb
2

Thus, for example, if G, = 0.1 (10 db below isotropic), 75, = 15°K.

Using the idealized antenna pattern of I'ig. 15 and the data of Fig. 14,
let us now integrate numerically according to (12). The noise contribu-
tion from the main beam (the so-called sky noise) is

= 150G,°K.

T, = %f GyTo sin 6 d6 =
/2

a2
T, = ; f Go T.(0) sin 6 do & 2.5°
4]

which is readily taken from Fig. 14.

w__ Gp

Fig. 15 — Idealized antenna pattern.
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Using G, = 0.1, the contribution due to sky noise in the far side lobes
(a/2 < 0 < 7/2) is

— Gs e : _ o
Ty, = o fm T,(6) sin 6 do = 0.7°.

From the region 7/2 < 6 < = (ground, ete.), the contribution is

=gl.7

T, 5

[ 1@ sinoas
T/2
which amounts to 0.7° for the antenna above a perfect reflector, 7.6°
above sea water and 15° above a perfectly absorbing earth.

Thus for an antenna with far side and back lobes 10 db below an
isotropic radiator, the total antenna noise due to atmosphere and en-
vironment for zenith orientation of the beam is

Ta = Ts + Tbl + sz

which amount to 3.9° (perfect reflector)
10.8° (calm sea water)
18.2° (ground with vegetation which approximates
a perfect absorber).
Ty = Ty, + T, for the above conditions is
1.4° (perfect reflector)
8.3° (calm sea water)
15.7° (ground with vegetation)
obtained simply by subtracting the sky noise (2.5°K) from the previous
numbers.

APPENDIX C

The Signal-To-Noise Ratio and Quality Factor of an Antenna

For the idealized antenna pattern of Fig. 15, the received power at the
terminals of the antenna oriented toward a white noise signal source is

Ps = SAB = SGy(\/4r)B

where S is the incident signal flux, B the bandwidth, and A the effective
area of the antenna. The total noise in the antenna is Py = kT,B, k
being Boltzmann’s constant and 7, = T, + T + T';. The contribution
T, is the sky noise in the main beam; it is essentially independent of
the gain G, for high-gain antennas. T, and T, are the effective noise
temperatures due to back lobes and line losses. The signal-to-noise ratio
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for the antenna is therefore

Ps _ 8\N'Gy SN Go (14)
Py 4k T, 4ak (T, + To+ T0)°
This assumes that the noise figure of the receiving amplifier is negligible.
Of course, the receiver noise and the antenna impedance must both be
considered in calculating the system noise.

Of the terms contributing to T, in (14), T, is unavoidable and only
Ty, and T, can be attributed to deficiencies in the antenna. We can
define a quality factor for the antenna in the following way: set 7'; equal
to zero and multiply numerator and denominator of (14) by 7% ; then

Ps S\ Gl S\* -

Py 4xkT, (Ty + Th) = 4xk T, ¢ (15)

where Q@ = GoTo/(Ty + T;) is the quality factor. Examples of typical
values of @ are:

(1) An isotropic antenna completely surrounded by a perfect ab-
sorber at Ty = 300° (7"; = 0, no line losses), @ = 1.

(2) An isotropic antenna surrounded by a perfectly absorbing earth
and noise-free sky, (no line losses), @ = 2.

(3) The antenna above ground as discussed in Appendix B with far
side and back lobes 10 db below an isotropic radiator, (where 7%, =~ 15°),
Q = 20G, .

(4) The near-field Cassegrain as discussed in Section V

(Gy =54 X 10, T+ Ty=4°4+4°=8°, Q=2X 10"

(5) A horn-reflector antenna with the same aperture area and trans-
mission line loss as in (4) above

(Go=7X10, T+ Tp=4"+1°=5°, Q=42X 10"
Similarly, one can define a quality factor for the total receiving system
as
_ GoTo
Tr + Te

where T represents all noise associated with the receiver proper, and
T, , all noise associated with the antenna.

Qr
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A Two-Gyro, Gravity-Gradient Satellite
Attitude Control System

By J. A. LEWIS and E. E. ZAJAC
(Manuseript received April 24, 1964)

This article gives the results of an analytical and numerical study of a
two-gyro, gravity-orienled communications satellite. The principal purpose
of the study was to uncover and solve the analytical problems arising in the
design of passive gravity-gradient aititude control systems. Although the
study was directed al satellite orientation, it is felt that many of the tech-
niques developed have general use in the investigation of dynamical systems.

We consider both small and large motions about the desired earth-pointing
orientation. In the small-motion study, the goal is stmultaneous optimization
of the transient response and the forced response to perturbations caused by
orbital eccentricity, magnetic torques, solar torques, thermal rod bending, and
micrometeorite tmpact. In the large-motion study, we enumerate all possible
equilibrium positions of the salellite and then consider initial despin after
ingection into orbil, inversion of the satellite from one stable equilibrium
posttion to another by swilching of gyro bias torques, and the decay of transi-
ent motions resulting from large initial angular rates.

As a spectfic numerical example, we have treated a 300-lb satellite in a
6000-nm orbit, stabilized by a 60-ft extensible rod with a 20-Ib tip mass,
and by two single-degree-of-freedom gyros, each with an angular momentum
of 10° cgs units. Without a detailed discussion of hardware, it is concluded
that such a system, having a total weight of 50 to 75 pounds including power
supply, will provide a seltling lime for small disturbances of less than one
orbit and will hold the anlenna pointing error within a few degrees.
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I. INTRODUCTION

It has been known for over two hundred years that the variation in the
gravitational field over the length of an earth satellite generates torques
which tend to keep the axis of minimum inertia of the satellite pointing
toward the earth. In particular, this mechanism keeps one face of the
moon earth-pointing.

Such gravity-gradient orientation of communications satellites is very
attractive because the simplicity of the effect leads to the possibility of
simple attitude control and hence high reliability and long life. On the
other hand, the tiny size of the gravity-gradient torques means formida-
ble mechanization problems, and although Pierce suggested its use as
early as 1955, gravity-gradient stabilization has been widely held to be
impractical.

However, several recent analytical and hardware studies have resulted
in proposals for practical, gravity-gradient controlled satellites. All the
proposed schemes work on the same principle. Steady-state perturba-
tions, due, for example, to magnetic and solar torques, are kept within
tolerable limits by making the satellite inertia sufficiently large, usually
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with some sort of extensible rod-tip mass combination. Damping of
transient perturbations is provided by connecting the satellite through a
dissipative joint to an ‘‘anchor,” that is, to some object that will allow
energy dissipation by virtue of relative motion between itself and the
satellite proper. The anchor may be one or more gyros, as in the schemes
discussed by Ogletree, et al.,?** by Burt,? and by Scott;® a second rigid
body, cither hinged to the satellite, as proposed by Kamm,? by Paul,
West, Yu, et al.;#? or a second rigid body at the end of a compliant dumb-
bell as discussed by Paul,!® by Newton," and by Fischell and Mobley ;12
or a second, fluid body, as considered by Lewis.!?

In this article we examine a gravity-gradient system anchored by two
gyros. A schematic of the system is shown in Fig. 1, where also is indi-
cated the standard nomenclature for axes: the pitch axis is normal to the
orbit plane, the yaw axis is along the local vertical, and the roll axis is
along the orbital track. Each gyro rotor is contained in a gimbal can (not
shown in the schematic), mounted on bearings, and immersed in a fluid
bath. Thus, fluid shear produces the required energy dissipation. The

TORQUE ON
ROLL GIMBAL AXIS

~GIMBAL
ORBIT™~ /" BEARING

\
NGIMBAL
AXIS

PITCH ~
AXIS

“T™>Toraue oN

GIMBAL—— GIMBAL AXIS

/

SPIN
VECTOR

YAW AXIS (LOCAL VERTICAL
POINTING TOWARD EARTH)

Fig. 1 — Schematic of two-gyro, roll-vee configuration.
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gyros are single-axis gyros: that is, the spin vectors are constrained by
the gimbal bearings to lie in a single plane within the satellite. In the
position shown, this is the pitch-yaw plane.

Because of the small physical dimensions of the gyro “anchor,” this
system has the virtue that the dissipative joints can be sealed within
the satellite; the joints are not exposed to the space environment when
the satellite is operating. Also, the required inertia augmentation is
particularly simple: only a single extended rod-tip mass.

A simple explanation of how single-axis gyros damp out an arbitrary
motion can be given in terms of the rate or torque-seeking property of
gyros. A torque applied to a gyro will cause it to precess. By conservation
of angular momentum, the precession will try to line up the gyro spin
vector with the applied torque or angular rate vector.

Bearing this in mind, assume that the satellite is in orbit in its earth-
pointing orientation. It then is rotating at the rate of one revolution per
orbit about the pitch axis. If the gyro gimbals were free, this pitch rate
would cause the spin vectors to align themselves in the direction of the
pitch axis. However, in order to obtain three-axis damping, the spin
vectors are held in a vee position by equal and opposite constant torques
(sce Fig. 1), applied to the gimbals.

Now, if the satellite is disturbed about the pitch axis, both gyros seck
the disturbance, resulting in a scissoring motion of the gimbals relative
to the satellite, damping out the pitch disturbance. A yaw disturbance
causes an in-phase motion of the gyros and again energy is dissipated.
Since the gyro spin vectors are constrained to move in the pitch-yaw
plane, they are constrained from moving toward a disturbance about the
roll axis. However, the roll and yaw motions are coupled. Hence in this
case the gyros again try to line up with the yaw axis. Thus three-axis
damping is obtained.

Our work continues a study carried out by the Instrumentation Lab-
oratory?? of the Massachusetts Institute of Technology, under the
sponsorship of Bell Telephone Laboratories, in which the particular two-
gyro configuration studied here was shown to be the most promising of
several possible gyro-anchored systems. Our primary objective, however,
was not to design a specific attitude control system, which in any case
would have to be integrated with the design of a specific satellite, but
rather to develop general guiding principles and analytical and numerical
techniques useful in such a design problem. Thus, we consider only the
broad hardware questions that affect the analysis — for example, the
design of extensible rods necessary to augment satellite inertias — but
we do not go into the detail of specific gyro hardware, as would be re-
quired in a complete design.
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The organization of the article is as follows. Seetion II, for the general
reader, summarizes the results of our study in some detail in nonmathe-
matical terms. Following some general remarks about inertia levels, ap-
plicable to all gravity-gradient systems, we more fully describe the two-
gyro system studied. We then summarize the system’s small-angle per-
formance, stressing, in particular, the performance obtained when the
inertia of the satellite is augmented by the erection of a single rod. Next
we discuss the effects of the main small-angle perturbations: orbital ec-
centricity, magnetic torques, solar radiation pressure, micrometeorite
bombardment and thermal rod bending. Finally, we consider large-angle
motions, starting with initial despin upon orbital injection by a combina-
tion of rod erection and uncaging of the gyros. In the discussions of large-
angle motions, we indicate that there may exist equilibrium positions
far removed from the desired, earth-pointing position; we also show how
these may be avoided.

Gravity-gradient systems are bistable: that is, associated with a sta-
ble, earth-pointing orientation is a second, equally stable orientation
obtained by a 180° rotation about the pitch axis. In the concluding sec-
tion of Section II we describe how the satellite can be flipped from one
stable orientation to the other by means of a torque pulse applied to the
gimbals.

The results pertaining to the two-gyro system given in Section II serve
as an outline of the analysis required for the design of any gravity-gradi-
ent attitude control system. They also serve as an introduction to the
theory in Sections IIT and IV. In these parts we present several results
and methods that we feel apply generally to the design of many-parame-
ter, linear dynamical systems (see Section III) and to large-angle mo-
tions of a satellite (see Section IV).

Speecifically, in Section III we develop various bounds on system set-
tling time, and then show how series expansions in terms of system
parameters can be used to explore the behavior of a linear system as a
function of its parameters. We next describe a computer program based
on the Routh criteria, which allows very rapid computation of system
response as a function of system parameters. By these means, we are able
to survey system behavior over the entire range of six system parameters.

In Section IV, we develop the equations of large-angle motion, includ-
ing the case of variable inertia, occurring during rod erection. Here we
stress the superiority of direction cosines or Euler parameters as com-
pared to Euler angles in satellite kinematics, both from the point of view
of computing speed and of ease in visualizing satellite motions. We then
give the analysis of equilibrium positions, despin, and flipping or in-
version.
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II. SYSTEM DESCRIPTION AND SUMMARY OF RESULTS

2.1 Gravity-Gradient Atlitude Control Systems

All gravity-gradient systems have one feature in common, namely the
low magnitude of the gravity-gradient restoring torque, of the order of
IQ?, where T is a typical satellite moment of inertia and € is the orbital
rate. The level of this torque is the main factor determining the steady-
state response to constant and periodic disturbing torques. In particular,
in the case of a typical communications satellite at an altitude of 6000
nm, the magnitude of the torque exerted by the geomagnetic field on the
residual magnetic moment of the satellite is such that the satellite inertia
must be increased by a factor of about forty to reduce the steady-state
response to an acceptable level.

The low level of the gravity-gradient restoring torque also implies
low system natural frequencies, of the order of the orbital rate 2. Corre-
sponding to this low natural frequency is a minimum 1/e settling time
of the order of a fraction of an orbit. Zajac! has shown that all the sys-
tems mentioned above have pitch settling times no less than about one
tenth of an orbit. This, of course, is a lower bound on minimum settling
time for three-axis motion.

Based on these simple considerations, we would expect that all well
designed gravity-gradient attitude control systems would have about the
same transient and steady-state performance, that they would all have
settling times of a fraction of an orbit, and that they would all require
some form of inertia augmentation to obtain acceptable steady-state
response. Thus the choice of a particular gravity-gradient attitude con-
trol system should be based mainly on ease of mechanization and long-
time reliability, rather than system performance.

In the present case, at least, requirements on the large-angle per-
formance of the system (despin, satellite inversion, ete.) preclude choos-
ing the system parameters to give minimum settling time, although the
settling time is not greatly increased by meeting the other requirements.
It is likely that such a compromise would be necessary for optimum over-
all performance of any gravity-gradient system, so that the minimum
settling time is of academic interest only. Of more importance is the
variation of system performance with variation in system parameters.
We have thus taken the view that a broad survey of performance as a
function of system parameters is of more interest than an optimization
based on a single measure of system performance, e.g., settling time.

In the following sections we describe the configuration and perform-
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ance of the two-gyro system in detail. The interested reader may find the
corresponding theoretical analyses in Sections I1I and IV.

2.2 System Description

FFig. 2 shows the more important features of the typical single-axis
gyro indicated schematically in Iig. 1. The basic element of the gyro is
a rotor which spins rapidly about the spin axis and generates a certain
angular momentum vector.

The spinning rotor element is enclosed in a sealed gimbal can, mounted
on bearings so that it can rotate about a single axis, the gimbal or output
axis. A fluid-filled gap between gimbal can and gyro case provides damp-
ing as the gimbal rotates.

In the system considered, the two gyros have their gimbal axes along
the satellite roll axis. The gyro spin axes are disposed in a vee configura-
tion around the satellite pitch axis, which is also the axis about which the
satellite rotates to remain aligned with the local vertical as it traverses its
orbit. To distinguish this arrangement from other possible two-gyro con-
figurations,>S it will be called a ‘“‘roll-vee’” configuration.

In the vee arrangement, torques must be supplied constantly to change
the direction of the gyro angular momentum vectors, as the satellite
traverses its orbit. These torques, constant in magnitude and exerted
about the gimbal axes, are provided by a constant electrical signal into
electromechanical torquers on the gimbal axes.

It is also possible to inject a signal into the torquers on ground com-

—

GIMBAL
AXIS

|
TORQUER

|
PICKOFF

Fig. 2 — Single-axis gyro.
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mand. This ecan be used to invert the satellite if it should get into an un-
desirable equilibrium position. This possibility is discussed in the sequel.

In order to spin the gyro motor, current must be brought into the gim-
bal can. This is done by means of highly compliant flex leads. In the pres-
ent application, the flex-lead spring constants, exerting a small restoring
torque around the gimbal axis, can be neglected. However, for a typical
communications satellite without inertia augmentation, the flex-lead
torques can be of the same order as the gravity-gradient torques.

In any case the gimbal excursions must be limited by suitably placed
stops. The location and nature of these stops is an important design con-
sideration. In the first place, undesired equilibrium positions, with the
gyro gimbals against the stops, may occur if the stop positions are not
carefully chosen. In the second place, large tumbling rates may force the
gimbals against the stops, where they are capable of only limited relative
motion, depending on the stop elasticity. In both cases the available
damping may be greatly reduced. The equilibrium positions may be
dealt with analytically, while the large motion may be studied numeri-
cally with the stops simulated by hardening springs.

2.2.1 Weight and Power Requirements

For the attitude control of a typical communications satellite in a
6000-nm altitude orbit, we require two single-axis gyros, each with a
rotor angular momentum of about 10% cgs units, weighing about 10
pounds and requiring from 7 to 10 watts power to drive the rotor motor.
In addition we require some sort of inertia augmentation which we shall
assume is supplied by a single extensible 60-foot rod of the STEM
(self-storing tubular extensible member) type, designed and developed
by DeHavilland Aircraft of Canada, Ltd., and described in detail in
Ref. 8, together with a 20-pound tip mass, which also serves as the tape
storage drum. We then have the attitude control system weight break-
down given below:

2 10 cm-gm-sec gyros 20 Ibs
1 tip mass 20 1Ibs
1 extensible rod 4 lbs
gyro power supply
(2 Ibs of solar cells/watt) 40 lbs
total 84 lbs

We have assumed that the satellite proper is a four-foot diameter sphere,
weighing 300 pounds, with a moment of inertia of 20 slug-ft2.

It is believed that the above estimates are quite conservative and sub-
ject to considerable reduction. The power is used to maintain the gyro
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rotor speed constant mainly against bearing drag. In a zero-g environ-
ment the bearing drag might be substantially reduced. In any case there
is probably a trade-off between gyro life, requiring heavily lubricated
bearings, and minimum rotor power, requiring light lubrication.

The rod length is chosen to increase the satellite pitch and roll inertias
from 20 to 2000 slug-ft?. This inertia augmentation sufficiently despins
the satellite from currently estimated injection rates of 0.5-1.0 rpm to
cause capture by the gravity-gradient field. The required inertia aug-
mentation varies roughly linearly with initial injection rates (see Section
2.4.1). With a sufficiently small injection rate, the augmented inertia
could be reduced to the 700 slug-ft? level required to counter magnetic
torques (see Section 2.3.4.1). Such a reduction in inertia would mean
smaller gyros, and, again, less power.

2.3 Small-Angle Performance

In order to study the small-angle transient and steady-state response
of the roll-vee gyro attitude control system, extensive tables giving decay
rates, response to orbital eccentricity, and response to periodic torques
at zero, one, and two times orbital frequency Q as functions of the system
parameters were produced by an IBM 7090 computer in a running time
of 0.04 hour by a procedure outlined in Section III. Figs. 3 through 15
summarize this broad survey. For each pair of inertia ratios, B/4, C/A,

/T5= 1ORBIT
1.0.357 0.58  0.65  0.59 0.63 078 [ 102 116 270 6.4
. /V
0.350 /
. 4
0.9l 0.51 0.50 |0.73 |0.78 0.99 1.34 1.61 2.53
. y yid
/7
o8l 0.55 0.65 |0.99 1.34 1.77 2.49
< II
B /
0.7 0.80 'I 1.07 119 2.49
)
0.6 1.45 245
0.5 | 1 ) | ! | | {
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C/A

Fig. 3 — Asymptotic settling time in orbits (reduction of 1/¢).
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where A,B,C, are the satellite pitch, roll, and yaw moments of inertia,
satisfying the inequalities

AzBzC B+Cz=A4,

values of gyro parameters were chosen from these tables to minimize the
asymptotic settling time, i.e., the time in which the most lightly damped
mode of motion is reduced by 1/e. Fig. 3 shows the corresponding
settling times, while Figs. 4 and 5 give the gyro dimensionless parame-
ters

h = (H/AQ) cos a, K = (H/Cp) cos «,

where « is the vee half-opening angle, H the gyro angular momentum,
and Cp the gyro damping constant for both gyros. Since the small roll-
yaw motion depends only on H in the form H cos «, the above is a con-
venient choice of parameterization. In all cases, except those indicated,
the best value of a was 60°, at least over the relatively coarse grid of
Ah = 0.25, AW = 0.25 and Aae = 20° used in the tables.

Figs. 6 through 15 give the steady-state response to an orbit eccen-
tricity ¢ = 0.01 and to periodic torques of amplitude 0.01 AQ* for the
same values of gyro parameters. Note that the eccentricity response when
e = 0.01 is of the order of 1° over the entire range of inertia ratios, hav-
ing a maximum value of less than 3°. Both the pitch offset, due to a con-
stant pitch torque, and the roll amplitude, due to a periodic roll torque

0.75 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1.0
ool 025 |025 |oso [os0 o050 [050 |os0  oso
o8l 025 o025 050 |o.s0 [0.50 |o.50
<
~
@ 025 |0.25 0.25 0.50
0.7}
(a = 60° EXCEPT AT
0.25 025 ® WHERE & = 40°)
0.6} - -
0.5 L 1 1 1 I l | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C/A

Fig. 4 — Gyro parameter h = H cos a/AQ.
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Fig. 5 — Gyro parameter b’ = H cos a/Cp .

at orbital frequency, depend only on the satellite inertias, being given in
radians by the simple relations

lo: o = M/3(B — C)X,

oy |1 = M/3(A — ),

for a torque of amplitude A{. Similarly, for torques at frequency w > Q,
the piteh, roll, and yaw amplitudes tend to the values M/A«’, M/Bo’,

M /Co’, again independent of the gyro parameters.

1.0 1.4 2.2 2.2 2.0 2.0 1.9 1.8 1.6 1.7 1.4
A . . 7 . 1.5 1.5
0.9 1.7 2.1 2.0 1.9 1 1.6
. g 1.7 1.6 1.5 1.5
o8l 2.5 2
<
@
4 5 1. 1.
0.7k 2 2.0 8 5
0.6l 1.8 1.4
0.5 ! | 1 1 I ! 1 1
o [oR] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C/A

Fig. 6 — Pitch amplitude (degrees) for eccentricity ¢ = 0.01 at orbital frequency.
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Fig. 7 — Pitch offset (degrees) for constant pitch torque 0.01AQ2.

2.3.1 The Minimum Settling Time

These plots do not show the values of inertia ratios and gyro parame-
ters which yield the smallest settling time. A search over a finer grid of
parameter values gives a minimum value of settling time of 0.332 orbits,
attained for B/A = 0.925,C/A = 0.175, h = 0.260, i’ = 0.688, a = 64°.
To attain this value, a slightly negative gimbal spring K = —0.15 HQ
cos o must be used. A negative spring constant may be realized by a sim-
ple feedback circuit between gimbal pickoff and gimbal torquer. This
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ool 0.6 0.8 020 |0.24 0.29 0.36 |0.48 072
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<
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0.7}-
0.6}~ 0.24 0.29
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0 04 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cc/A

Fig. 8 — Roll offset (degrees) for constant roll torque 0.01A02.
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Fig. 9 — Yaw offset (degrees) for constant yaw torque 0.01AQ2,

minimum settling time is useful as a lower bound, but of more practical
interest is the broad range of system parameters over which settling
times of less than one orbit can be obtained.

2.3.2 The Spindle

The figures also do not give performance values for a “dumbbell” or
“spindle,” i.e., a body for which A = B > (. This case is of particular
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Fig. 10 — Pitch amplitude (degrees) ior pitch torque amplitude 0.01AQ? at
orbital frequency.
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Tig. 11 — Roll amplitude (degrees) for roll torque amplitude 0.01AQ? at orbital
frequency.

interest, since it may be realized by the erection of a single rod-tip mass
combination. To describe the spindle, as well as to give a sample of the
tables made by the computer, we reproduce the computer output for
B/A = 1,C/A = 0.01 in Table I. Since the IBM printer has only a
limited range of symbols, the following replacements were used:

BB =0b=B/A, CC=c¢=C/A,
KAPPA = «k = 1 + [K/(HQ cos a)],

where K is the gimbal spring constant, so that xk = 1 means zero gimbal
spring constant,

l

HH = h, HP = I,
ALPHA = a.

The remaining quantities give the transient and steady-state responses.
In particular, PO, P1, P2, R0, R1, R2, YO, Y1, Y2 are the pitch, roll,
and yaw amplitudes in degrees for pitch, roll, and yaw torques of ampli-
tude 0.01 AQ® at zero, one, and two times orbital frequency. Note that
P0 and R1 are constant, since they depend only on b and ¢, while R0,Y0
are fixed for fixed values of h. The quantity E is the pitch amplitude in
degrees at orbital frequency for an orbit eccentricity e = 0.01. Finally
the quantities labeled “QUINT” and “C” give the real parts of smallest
magnitude of the characteristic roots of the roll-yaw quintic and the
pitch cubic in terms of the orbital rate Q. The smallest of these values
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Fig. 12 — Yaw amplitude (degrees) for yaw torque amplitude 0.01AQ2 at
orbital frequency.

D (say) determines the asymptotic settling time 7, = 1/(2 =D). Inspec-
tion of the table reveals that, for A = 0.750, i’ = 1.25, o = 40°, we have
the smallest settling time, for QUINT = —0.340(2), —0.657(2), i.e., two
roots with real parts —0.340 and two roots with real part —0.657, and
one negative real root (not listed) of larger magnitude. Similarly, in this
case C' = —0.279(2), i.e., two roots of the cubic with real part —0.279
and one unlisted negative real root of larger magnitude. The asymptotic
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Fig. 13 — Pitech amplitude (degrees) for pitch torque amplitude 0.01AQ2 at
twice orbital frequency.
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Fig. 14 — Roll amplitude (degrees) for roll torque amplitude 0.01AQ? at twice
orbital frequency.

settling time is then given by 1/[(27) (0.279)] = 0.57 orbits. Despite
the coarseness of the table, this is very close to the minimum value of
0.50 orbits for a spindle, attained for h = 0.77, b’ = 1.29, « = 38°. This
minimum value may be caleulated by an asymptotic expansion in the
large quantity h/c = (H cos a)/CQ.

Let us now attempt a specific “design.” This design must be regarded

1oQl2 012 009 o 018 021 028 024 025 0.21
ool 0.32 o144  [007  jon 047|020 025 |o22
o8- 027 |o43  |oo7 loto  [o020 |o.24
<
~
e 024 {043 |034 |0.09
o6l 0.21 0.10
0.5 1 L 1 I | 1 1 1
o GX] 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c/A

Fig. 15 — Yaw amplitude (degrees) for yaw torque amplitude 0.01AQ? at twice
orbital frequency.
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as illustrative, rather than definitive, since a real design must take into
account the fine details of gyro hardware as well as requirements imposed
by the use of the satellite in an actual communications system. For ex-
ample, it is not at all clear what limits on maximum settling time would
be imposed by system requirements. We have tentatively set this maxi-
mum settling time at one orbit.

2.3.3 Transient Response for a Spindle.

Tig. 16 shows the asymptotic settling time in orbits as a function of
the dimensionless gyro angular momentum H/AQ for e = 40°, b’ = 1.25
and for « = 60° A’ = 1.00. The former gives a minimum settling time
very near the optimum value for a spindle for H/AQ nearly unity, but
varies more rapidly with H/AQ than does the other system. Also, we are
particularly interested in large values of H/AQ—i.e., H/AQ > 2—since
we propose to use the gyros as inertia wheels in the initial despin of the
satellite after injection into orbit. In this case the second system gives a
considerably smaller settling time (0.85 orbits, compared with 1 orbit,
at H/AQ = 2). We may actually increase H/AQ to about 2.4 in this case
and stay within the maximum settling time of 1 orbit. Undoubtedly, by
trimming the values of @ and &', we may increase H/AQ even more, but,
since this is intended to be an illustrative design, we do not consider
these questions further here; instead, we simply take as our “design”
a = 060°% A =h =100 (H/AQ = 2.00). In the illustrative examples of
the sequel, these parameter values will be assumed. From the table, they
yield

QUINT = —0.189(2), —1.318(2),
C = —0.190(2).

Given the real parts of 4 roots of the roll-yaw quintic and 2 roots of
the piteh cubie, it is a simple matter to calculate all the characteristic
roots completely, especially for a spindle. In the present case we find
solutions of the form

—0.19Q¢ SIN
e

(0.640t), ¢ >
COS

for the pitch motion, and

—0.199¢ SIN —1.320¢ 81N
e e

—200Q2¢
cog (1:4020), o (0-3320),
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TaBLE I — CompuTER OUTPUT FOR SPINDLE SHAPE (A = B > ()

BB = 1.000, CC = 0.010, KAPPA = 1.000

HH=0.250
P0=- 0.19 RO= 0.14 YO =1.15
HP=0.500,QUINT=—0.113(2), —0.576(1)

ALPHA Ri= 0.19,R2= 0.46,Y1= 1.48,Y2= 0.35
20.0 P1= 0.29, P2= 0.55, E= 0.59,C=—0.015(2)

40.0 0.30 0.49 0.65 —0.080(2)
60.0 0.32 0.29 0.92 —0.337(2)
80.0 0.09 0.04 1.35 —0.170(2)

HP=0.750, QUINT = —0.150(2), —0.863(2)

ALPHA R1= 0.19,R2= 0.56,Y1= 1.62,Y2= 0.35
20.0 P1= 0.29, P2= 0.54,E= 0.60,C=—0.020(2)

40.0 0.31 0.44 0.7  —0.109(2)
60.0 0.36 0.22  1.22  —0.408(2)
80.0 0.07 0.02  1.37  —0.110(2)

HP=1.000, QUINT = —0.159(2), —0.582(2)

ALPHA R1= 0.19, R2= 0.69,Yl= 1.79,Y2= 0.35
20.0 P1= 0.30, P2= 0.53, E= 0.61,C=—0.024(2)

40.0 0.32 0.40 0.76 —0.124(2)
60.0 0.40 0.17 1.52 —0.364(2)
80.0 0.06 0.02 1.38 —0.082(2)

HP=1.250, QUINT = —0.149(2), —0.437(2)

ALPHA R1= 0.19,R2= 0.82,Y1= 1.99,Y2= 0.35
20.0 P1= 0.30, P2= 0.52,E= 0.62,C=—0.027(2)

40.0 0.32 0.37 0.80  —0.130(2)
60.0 0.45 0.15 1.8  —0.207(2)
80.0 0.05 0.02  1.38  —0.066(2)

HH=0.500
P0= 0.19 R0O= 0.14 YO= 0.57
HP=0.500, QUINT =—0.118(2), —0.474(1)

Rl= 0.19,R2= 0.23,Y1= 0.82,Y2= 0.18
Pl= 0.29, P2= 0.54, E= 0.61,C=—0.030(2)
0.31 0.42 0.73 —0.160(2)
0.31 0.17 1.26  —0.637(2)
0.04 0.02 1.25  —0.088(2)
HP=0.750, QUINT = —0.184(2), —1.170(2)
R1= 0.19,R2= 0.28,Y1= 0.88, Y2= 0.18
Pl= 0.30, P2= 0.52, E= 0.63,C=—0.041(2)
0.33 0.35 0.85  —0.212(2)
0.34 0.12 171 —0.456(2)
0.03 0.01 1.25  —0.058(2)
HP=1.000, QUINT =—0.250(2), —0.750(2)
R1= 0.19,R2= 0.34,Y1= 0.96,Y2= 0.18
Pl= 0.30, P2= 0.50, E= 0.64,C=—0.049(2)
0.35 0.29 0.97  —0.231(2)
0.36 0.10 2.13  —0.309(2)
0.03 0.01 1.26  —0.044(2)
HP=1.250,QUINT=—0.277(2), —0.516(2)
Rl= 0.19,R2= 0.41,Y1= 1.06, Y2= 0.18
Pl= 0.30, P2= 0.48,E= 0.66,C=—0.052(2)
0.36 0.26 1.07 —0.226(2)
0.39 0.08 2.48  —0.237(2)
0.02 0.01 1.26  —0.035(2)

HH=0.750
PO= 0.19 R0O= 0.14 YO= 0.38
HP=0.500,QUINT =—0.101(2), —0.410(1)
R1= 0.19,R2= 0.16,Y1= 0.61,Y2= 0.12
Pl= 0.30, P2= 0.52,E= 0.62,C=—0.450(2)

0.32 0.35 0.81 —0.239(2)
0.27 0.12 1.43 —0.687(2)
0.03 0.01 1.22 —0.059(2)

HP=0.750, QUINT = —0.161(2), —0.804(1)
R1= 0.19,R2= 0.19,Y1= 0.65,Y2= 0.12
Pl= 0.30,P2= 0.49,E= 0.65,C=—0.061(2)

0.34 0.28 1.01 —0.307(2)
0.26 0.08 1.78  —0.336(2)
0.02 0.01 1,22 —0.039(2)

HP=1.000,QUINT = —0.236(2), —1.017(2)
R1= 0.19,R2= 0.23,Y1= 0.69,Y2= 0.12
Pl= 0.31,P2= 0.47,E= 0.68,C=—0.072(2)

0.37 0.23 1.21 —0.312(2)
0.25 0.07 2.00 —0.236(2)
0.02 0.01 1.22 —0.029(2)

HP=1.250, QUINT = —0.340(2), —0.657(2)
Rl= 0.19,R2= 0.27,Y1= 0.75,Y2= 0.12
Pl= 0.31, P2= 0.44, E= 0.70,C=—0.076(2)

0.40 0.20 1.39 —0.279(2)
0.25 0.06 2.14 —0.184(2)
0.02 0.01 1.22 —0.023(2)




TABLE I — continued

PO=
HP =0.500, QUINT = —0.085(2),

HH=1.000
0.19 R0= 0.14 YO= 0.29
—0.365(1)

ALPHA Ri= 0.19,R2= 0.12,Y1= 0.50,Y2= 0.09
20.0 P1= 0.30, P2= 0.51,E= 0.63,C=—0.061(2)

40.0

60.0
80.0

0.32 0.30 0.90 —0.317(2)
0.23 0.09 1.48 —0.465(2)
0.02 0.01 1.20 —0.045(2)

HP=0.750, QUINT = —0.133(2), —0.645(1)
ALPHA R1= 0.19,R2= 0.14,Y1= 0.53,Y2= 0.09
20.0 P1= 0.30, P2= 0.47, E= 0.67,C=—0.082(2)

40.0

60.0

80.0

0

0.

0

.36 0.23 1.17 —0.389(2)
20 0.06 1.70 —0.264(2)
.02 0.01 1.20 —0.029(2)

HP=1.000,QUINT=—0.189(2), —1.318(2)
ALPHA R1= 0.19,R2= 0.17,Y1= 0.56,Y2= 0.09
20.0 P1= 0.31,P2= 0.44,E= 0.71,C=—0.095(2)

5

8 40.0
60.0
80.0

HP=1.

ALPHA
20.0
40.0
60.0
80.0

R1
P1

0.40 0.18 1.46  —0.359(2)
0.18 0.05 1.81  —0.190(2)
0.01 0.00 1.20 —0.022(2)

250, QUINT = —0.266(2), —0.933(2)

= 0.19,R2= 0.20,Y1= 0.60,Y2= 0.09

1= 0.32, P2= 0.41,E= 0.74,C=—0.101(2)
0.44 0.16 1.74 —0.296(2)
0.17 0.04 1.87  —0.150(2)
0.01 0.00 1.20 —0.017(2)

HH=1.250
PO= 0.19 R0= 0.14 YO= 0.23
HP=0.500, QUINT = —0.071(2), —0.329(1)
R1= 0.19,R2= 0.09,Y1= 0.44,Y2= 0.08
P1= 0.30, P2= 0.50, E= 0.65,C=—0.076(2)

0.32 0.26 0.99  —0.393(2)
0.19 0.08 1.47  —0.361(2)
0.02 0.01 1.19  —0.036(2)
HP=0.750, QUINT = —0.110(2), —0.556(1)

Rl= 0.19,R2= 0.11,Y1= 0.46, Y2= 0.08
P1= 0.31, P2= 0.45, E= 0.70,C=—0.102(2)

0.36 0.19 1.33 —0.453(2)
0.16 0.05 1.61  —0.218(2)
0.01 0.01 1.19  —0.023(2)

HP=1.000, QUINT = —0.152(2), —0.990(1)

R1= 0.19,R2= 0.14,Y1= 0.48,Y2= 0.08

Pl= 0.32,P2= 0.41,E= 0.74,C=—0.118(2)
0.41 0.15 1.70 —0.371(2)
0.14 0.04 1.67 —0.150(2)
0.01 0.00 1.19  —0.018(2)

HP=1.250, QUINT = —0.202(2), —1.199(2)

R1= 0.19,R2= 0.16,Y1= 0.51,Y2= 0.08
P1= 0.32,P2= 0.38,E= 0.78,C=—0.123(2)

0.46 0.13 2,07 —0.291(2)
0.13 0.03 1.70  —0.126(2)
0.01 0.00 1.19  —0.014(2)

HH=1.500

PO= 0.19 R0= 0.14 YO= 0.19
HP=0.500, QUINT = —0.060(2), —0.301(1)
R1= 0.19,R2= 0.08,Y1= 0.40,Y2= 0.06

P1= 0.30, P2= 0.48, = 0.66,C=—0.091(2)
0.32 0.23 1.08  —0.467(2)
0.16 0.06  1.45  —0.298(2)
0.01 0.01 1.18  —0.030(2)

HP=0.750, QUINT = —0.001(2), —0.494(1)
R1= 0.19,R2= 0.10,Y1= 0.41,Y2= 0.06
P1= 0.31, P2= 0.43.E= 0.72,0=—0.122(2)

0.36 0.17 1.47  —0.480(2)
0.13 0.04 1.54  —0.186(2)
0.01 0.00 1.18  —0.020(2)
HP=1.000,QUINT =—0.125(2), —0.786(1)
Rl= 0.19,R2= 0.11,Y1= 0.43,Y2= 0.06
Pl= 0.32,P2= 0.38,E= 0.78,C=—0.140(2)
0.41 0.13 1.90°  —0.361(2)
0.11 0.03 1.58  —0.137(2)
0.01 0.00 1.18  —0.015(2)
HP=1.250, QUINT=—0.161(2), —1.441(2)
Rl= 0.19,R2= 0.14,Y1= 0.45,Y2= 0.00
Pl= 0.33, P2= 0.35,E= 0.83,C=—0.144(2)
0.46 0.11 2.33 —0.278(2)
0.10 0.03 1.60  —0.108(2)
0.01 0.00 1.18  —0.011(2)
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T'ig. 16 — Asymptotic settling time in orbits versus gyro angular momentum.

for the roll-yaw motion. Note that the period of the oscillatory solutions
is comparable to the orbital period, as we would expect, and that both
motions have rapidly damped exponential solutions. The latter feature,
typical of spindle-shaped bodies, causes difficulties in numerical integra-
tion of the differential equations, both for small and large motion, for
it implies that derivatives may be very much larger than the dependent
variable itself.

2.3.3.1 Micrometeorite I'mpact. One source of transient disturbance is
the angular momentum imparted by micrometeorite impact. It was
estimated in Ref. 8 that for a satellite of comparable inertia level, im-
pacts producing offsets greater than 5° would oceur every two years and
impacts large enough to tumble the satellite every 23 years, on the aver-
age. A more recent study®™ of the present two-gyro system indicates
similar times if Whipple’s 1958 micrometeorite data are used. For
Whipple’s 1963 data, the corresponding 5° and tumbling times are 40
years and 1000 years. From a systems point of view, the low frequency
of occurrence of these disturbances suggests that a settling time of 1
orbit is quite adequate.
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2.3.4 Steady-State Response

Disturbances producing constant or periodic pointing errors may be
classified as cither kinematie or dynamie. The response to the former, of
which orbit cccentricity is a typical example, is essentially independent
of satellite inertia; the response to the latter type of disturbance may
be reduced simply by increasing the level of satellite inertia to a suitable
value. The kinematic response limits the minimum attainable pointing
error; the dynamic response to given disturbing torques sets the level
of satellite inertia.

In the case of the spindle, the table yields an eccentricity response
amplitude at orbital frequency of £ = 1.81° for an orbit eccentricity
e = 0.01. We also find the steady-state response amplitudes due to
torque amplitudes of 0.01AQ* given by

PO = 0.19°, P1 = 0.18°, P2 = 0.05°,
RO = 0.14°, R1 = 0.19°, R2 = 0.17°,
Y0 = 0.29°, Y1 = 0.56°, Y2 = 0.09°.

We are particularly interested in the pitch offset PO, due to a constant
pitch torque, and the roll amplitude R1, due to a roll torque at orbital
frequency. Both of these are independent of gyro parameters and equal
in the case of a spindle. Together with a given disturbing torque, they
serve to set the satellite inertia level.

2.3.4.1 Magnetic Torque — Satellite Inertia Level. In the case of a
communications satellite, one of the principal disturbing torques is the
torque exerted by the geomagnetic field on the residual magnetic mo-
ment of the satellite. It has been estimated in Ref. 8 that this torque
might be as large as 5 X 107° ft-Ib for a satellite like the Telstar satellite
at an altitude of 6000 nm. At this altitude @ = 2.73 X 107 rad/sec
(~1 rad/hr). Because of the steady rotation of the earth-pointing
satellite, this torque does not have a constant pitch component, but it
will have a roll component at orbital frequency. Thus R1 is the response
amplitude of interest. To make R1 equal to the eccentricity response of
1.81° requires a satellite pitch moment of inertia A such that AQ” is ten
times the above torque, yielding A = 670 slug-ft’. Since a typical
moment of inertia for a satellite somewhat larger than the Telstar
satellite is 20 slug-ft*, this calculation indicates that some sort of inertia
augmentation is required. We shall assume that the satellite proper has
equal moments of inertia 4y = By = C, = 20 slug-ft” and that the pitch
and roll moments of inertia are increased to 2000 slug-ft* by the erection
of a single 60-ft extensible rod and a tip mass of 20 pounds. As indicated
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in Section 2.2.1, we make the inertia somewhat larger than the minimum
required to counter magnetic torque in order that rod erection may be
used for satellite despin.

2.3.4.2 Solar Radiation Pressure. When rods are erected to augment the
satellite inertia, the perturbing torque due to incident solar radiation is
in general increased, but not at the same rate as the inertia, if a thin rod
and a dense tip mass are used. To give some idea of the order of mag-
nitude of this torque, let us consider a 2-foot radius, 300-pound satellite,
joined to a 0.2-foot radius, 20-pound tip mass by a 58-foot-long, 0.04-
foot diameter rod. This yields a maximum solar torque of about 2 X 10-°
ft-1b (0.0075 AQ? for A = 2000 slug-ft?) around the center of mass of the
system, which lies about 4 feet from the center of the satellite proper.
This low torque is the result of a partial balance between the resultant
force on the satellite and the resultant force on the rod, both yielding
torques of the order of 5 X 10~¢ ft-1b (0.019 A©?). Even using this figure,
the deflection due to solar pressure will be no larger than that due to
magnetic torque. Thus such a satellite need not be especially designed to
balance out solar torques.

2.3.4.3 Bending Due to Solar Heating. In Ref. 8 the bending of an ex-
tensible rod of the STEM type, due to differential solar heating, was
analyzed. Further unpublished work by P. Hrycak and by J. G. Eng-
strom at Bell Telephone Laboratories leads to the formula

d/L = (L/4r)xaTo/[x + 4 + 168/3),

for the deflection d of a rod of length L, radius r, and expansion coeffi-
cient «, where

T[) = (aOS/weoa)%,
k = wkhTo/r"asS, B = e;/es,

with ao and e, the rod external absorptivity and emissivity, e; the rod
internal emissivity, o the Stefan-Boltzmann constant, S the flux of
solar radiation through unit area in unit time, & the rod thermal con-
ductivity, and A the rod wall thickness. The dimensionless quantity «
gives the ratio between heat transferred by conduction and by ra-
diation. Typical values of the above quantities are:

L = 60 ft, r=002ft, h=2%X10""ft,
S = 442 Btu/ft*-hr, o = 171 X 107" Btu/ft>-hr-(°R)*,
k = 65 Btu/ft-hr-°F, & = 107°/°F,

Qo = 067, € = €; = 033,
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the last five values being appropriate for beryllium copper. In this case
Ty = 635°R, k = 219, 8 = 1, and d/L = 0.0656. Note that in this case
k 3> 1, so that conduction effects dominate. Unless 8 >> 1, i.e., the out-
side of the rod is highly reflecting and the inside “black,” we may use
the simpler formula

d/L = (L/4r)(ar’aeS/kh),

obtained by neglecting the remaining terms in the denominator of the
previous formula in comparison with «. In the present case this yields
d/L = 0.0684, compared with the more exact value of 0.0656.

The above displacement d is the displacement of the tip mass at the
end of the rod and hence produces a corresponding rotation of the yaw
principal axis of inertia through an angle of order d/L = 0.0656 = 3.7°
and an antenna pointing error of the same size. Note that this angle
increases linearly with L, so that thermal bending sets an upper limit
on the length of a given type of rod which may be used for inertia aug-
mentation. In observations of the Applied Physics Laboratory 1963
22A satellite,” thermal bending manifested itself apparently as a high-
frequency oscillation of the satellite’s attitude, attributed to the rapid
heating of an extensible rod on passage from shadow into sunlight.

2.4 Large-Angle Motion

We shall discuss various large-angle motions of the gravity-oriented,
gyro-stabilized satellite in order of their occurrence. First we consider the
injection, despin, and capture of the satellite in orbit and the equilibrium
positions into which it may settle. Next we discuss the use of the gyros
to flip the satellite in case it settles into the inverted equilibrium position.
Finally we report the results of computer studies of various large motions.

2.4.1 Satellite Despin

We assume that the satellite is injected into a nearly circular, 6000-nmn
orbit with an initial spin rate of less than 1 rpm around an arbitrary axis.
After injection, erection of a single 60-foot rod with a 20-pound tip mass
then increases the moment of inertia around axes normal to the rod from
20 slug-ft? to 2000 slug-ft2 and decreases the spin rate around these axes
by a corresponding factor, e.g., from 250 rpo (revolutions per orbit) to 2
rpo. The component of spin around the rod axis is, of course, unaffected
by rod erection. This component of spin is removed by uncaging the
gyros from their nominal equilibrium position, in which they have a
zero net component of angular momentum around the rod axis (the
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body yaw axis) and allowing them to precess toward the spin rate vector.
The net change of yaw angular momentum due to this precession is of
the order of the gyro angular momentum H = 2 AQ, where A is the final
moment of inertia (2000 slug-ft?) around the body pitch and roll axes
normal to the rod, and the angular momentum due to the initial spin
around the rod axis is 250 CQ = 250 AQ = 2.5 AQ, of the same order of
magnitude. Note that this latter despin is in proportion to the difference
of angular momenta, rather than their ratio, so that we might expect
difficulties with the small differences of large numbers, leaving us with a
sizeable angular veloeity around the body yaw axis. However, the yaw
component of angular velocity rapidly settles out; it is the yaw angular
momentum, rather than the yaw angular velocity, which is of impor-
tance.

This is shown in Tigs. 17-18 where, for the design of Section 2.3.2,
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Fig. 17 — Despin during boom erection.
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Tig. 18 — Despin to capture following boom erection.

yaw, pitch, and roll rate, obtained by a digital computer, are plotted
against time. At ¢ = 0, the satellite was assumed injected into the de-
sired orientation, with gyros at the null position, and with a yaw rate of
250 rpo (approximately Z rpm). The elapsed time of Fig. 17 is two min-
utes, corresponding to boom erection. In this time, the yaw rate de-
creases to 20 rpo, while pitch and roll first peak at —12 rpo and —6 rpo
respectively and then decay to —2.5 rpo at the end of boom erection.
Subsequently, as shown in Fig. 18, all three rates decrease to less than 1
rpo at the end of 1 orbit.

2.4.2 Equilibrium Positions

Four equilibrium positions, in which the satellite is stationary with re-
spect to the rotating local vertical, may be found by inspection. Two of
these, shown schematically in Fig. 19, are the stable roll-vee positions
with the gyro angular momentum vectors making a symmetrical vee
with the orbit piteh axis (normal to the orbit plane), the gyro gimbal
axes along the orbit roll axis (tangent to the orbit track), and the rod
along the local vertical. The satellite antenna in this case is either di-
rected toward the earth or away from the earth. We discuss the inversion
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Fig. 19 — Equilibrium positions, stable roll-vee.

of the satellite from the latter position in the sequel. Two other equi-
librium positions are yaw-vee positions, Fig. 20, with the gimbal axes
along the orbit yaw axis, i.e., the local vertical, and the gyro angular
momentum vectors again making a symmetrical vee with the orbit pitch
axis, and the rod along the orbit roll axis. These two positions are un-
stable, however, just as they would be without the gyros.

Other equilibrium positions occur because of the presence of the gyro
gimbal stops. Suppose, for example, that the satellite is rotated around
the local vertical through 180° from its normal operating position. The
gyro gimbal torquers which normally hold the gyro vee open against
the 1 rpo steady precession of the satellite in orbit, now act with the
precession to force the gyro gimbals against stops located near the body
yaw axis. The resulting symmetrical reverse vee configuration (see Fig.
21a) is a possible satellite equilibrium position. Although the satellite
antenna is still directed toward the earth in this position, it is an unde-
sirable equilibrium position, because, when the gyro gimbals are against
stops, their damping capability is severely reduced. This reversed equi-
librium position can be made unstable by moving the gimbal stops in
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Fig. 20 — Equilibrium positions, unstable yaw-vee.

[

(a (b)

Fig. 21 — Equilibrium positions, reverse-vee and skewed.
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from the yaw axis and by choosing the gyro angular momentum to have
a suitable value, as discussed in Section I'V. The inversion of the position
shown in Fig. 21(a) and the corresponding reversed yaw-vee positions
are unstable as before.

Finally we note the possibility of skewed equilibrium positions, in
which the body principal axes do not coincide with the orbit axes and
both gyro gimbals are against stops (see Fig. 21b). Examples are dis-
cussed in Section 4.3. Such unsymmetrical equilibrium positions may
be easily eliminated by appropriate choices of stop positions and gyro
angular momentum, but their occurrence suggests the necessity of a
thorough investigation of equilibrium positions for any attitude control
system, especially one in which constraints due to stops are present.
The investigation of equilibrium positions also may serve as a guide in
singling out lightly damped modes of large motion.

2.4.3 Satellite Inversion

As we have already noted, the satellite may be captured, after injec-
tion into orbit, in inverted position with its antenna pointing away from
the earth. With sufficiently large gyros it may be flipped from this posi-
tion by changing the net gyro angular momentum by means of a simple
signal injected by ground command into the gyro gimbal torquers. We
simply reverse the polarity of the bias signals into the gyro torquers for
a preset short time interval. The resulting change in angular momentum
is just enough to cause the satellite to tumble, so that it is captured
again in its normal operating position. Fig. 22 shows the result of such
an inversion procedure, where the polarity is switched for § orbit. Here,
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_ Fig. 22 — Error angle versus time during satellite inversion. Torquer polarities
interchanged for 1/2 orbit.
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we have plotted the cosine of the error angle, i.c., the angle between the
body yaw axis and the local vertical.

2.4.4 Compuler Runs for Large-Angle Motions

Since only a limited amount of energy may be imparted by initial
displacement of the satellite, computer studies were directed at the ef-
fects of high initial angular velocities. In Figs. 23-26 are shown some
sample results of computer runs for the response of the satellite design
of Section 2.3.2 to high initial rates, applied to the satellite in the stable
roll-vee orientation. These may be regarded as responses to micro-
meteorite impacts, or as representative of initial transients following
inadequate despin.

To save space, we again plot, as a function of time, only the cosine
of the error angle between the yaw axis and the local vertical. However,
the orientation of the satellite and of the gyro spin vectors are shown
every half orbit in computer-made perspective drawings of a rectangular
parallelepiped representing the satellite. The view is along the orbital
track in the rotating, earth-pointing reference frame, so that the local
vertical and normal to the orbital plane are in the plane of the paper.
Plus signs are placed on the faces of the parallelepiped to avoid optical
illusions. The gyro stops are indicated by dots. The reader may find
more details about these drawings, as well as a deseription of computer-
made movies showing large motions of the two-gyro satellite, in Ref. 15.

As is seen from Figs. 23-26, rates of the order of 4 rpo about pitch
and roll damp out in about 10 orbits, whereas yaw rates of even 100 rpo
settle out in about 5 orbits. In roll and yaw, the settling time and motion
are similar if negative rather than positive rates are applied. The re-
sponses to positive and negative pitch rates are, however, different in
character. A high positive pitch rate collapses the gyros toward the
piteh axes, and a slowly decaying, essentially single-axis spin ensues. A
high negative pitch rate opens up the gyros and drives them against the
yaw stops. This sends the satellite into a complicated tumbling which
eventually settles out.

If a micrometeorite of linear momentum m strikes the satellite at a
lever arm L from a principal axis with moment of inertia I, the angular
velocity « imparted around that axis will be w = mL/I. This velocity
varies directly with L and inversely with /. For the design of Section
2.3.2, the yaw and pitch or roll lever arms are in the ratio 2/60, while the
inertias are in the ratio 2000/20. A micrometeorite which imparts a pitch
or roll rate of 4Q will impart a yaw rate of (2/60)-(2000/20)-4Q =
13.3Q. Therefore we see from Figs. 23-26 that the two-gyro spindle satel-
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Fig. 26 — Response to 100 rpo yaw rate.

lite is considerably more resistive to micrometeorite impact about yaw
than about pitch and roll.

It is well known that gravity-gradient satellites will tumble if placed
in a sufficiently eccentric orbit. Computer experiments showed that for
the design of Section 2.3.2 this occurred at an eccentricity of about 0.2.
Computer results for ¢ = 0.225 are shown in Fig. 27.

III. SMALL-ANGLE MOTION

3.1 Satellite Configuration

To settle the vexing questions of nomenclature and sign convention
once for all, we commence with a brief description of the quantities char-
acterizing a gravity-oriented satellite moving in a circular orbit (in-
cluding the effect of small eccentricity later on) at the orbital angular
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velocity ©. A convenient number to remember, to fix the magnitude of
Q, is that an orbit at an altitude of about 6800 statute miles corresponds
to an orbital rate @ = 1 radian/hr and an orbital period of 27 or about
6 hours, 15 minutes.

For our purposes the satellite is described by its principal moments
A = B = C about principal axes z’,3’,2’, along which the principal unit
vectors i’,j’,k’ lie. These principal axes form the body pitch, roll, and
yaw axes, respectively.

When the satellite is in a position of stable equilibrium, the ')y’ 2’
body axes coincide with orbit pitch, roll, and yaw axes z,y,z as in Fig.
19, with corresponding unit vectors i,j,k, normal to the orbital plane,
along the orbit track, and along the local vertical toward the center of
the earth. These orbit reference axes rotate at the orbital rate @ (1 rpo)
about the orbit pitch axis. It should be noted that, although a spindle-
shaped body, formed by the extension of a single rod and tip mass, is
shown, for which B &~ A and ¢ < B, the small-angle analysis which
follows covers the whole range of inertias, given by the inequalities

A>B>C,
required for stability, and
B+C> A4,

imposed by rigid-body geometry.

For small perturbations from equilibrium the satellite orientation is
specified by the small pitch, roll, and yaw angles ¢., ¢y, ¢., through
which the body axes «',y’,2’ are rotated from the orbit axes x,y,2, as in
Fig. 28. The corresponding satellite angular velocity vector ., with

respect to inertial space, is given by
o, = i(Q + @) + jou + ke:,
with respect to orbit axes, or
o, =1(2+ @) + §i'(—%: + &) + k(0 + ¢2),

with respect to body axes.

3.2 Roll-Vee System Equations for Small Motion

By neglecting second-order terms in the dynamical equations of Sec-
tion IV, as indicated in Section 4.2.2, we obtain the satellite equations
of motion
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Fig. 28 — Definition of small pitch, roll, and yaw angles.

Ag: + 3(B — O): + 2Hafy = 0,
Bg, + [4(4A — C) + 2H Qlp,
+ (4 — B = )2 + 2H)p. + 2HQe, = 0, (1)
Cé. + (4 — B)Y' + 2H .
— [(A — B —=C)2+ 2H]Jp, — 2H.¢, = 0,
for the satellite pitch, roll, and yaw angles ¢, , ¢y, ¢.. The sum ¢, =

3 (ps, + ¢4,) and difference ¢, = 3 (¢, — ¢q,) of the two gimbal angles
satisfy the equations

CD\[/H + (I< + Hcg)lpg - Hs¢1 = O,
CD¢0 + (I< + HCQ)‘PQ -+ HcQ%; + H,;(,bz = 0.

Here H, = H cos « and H, = H sin «. This is an eighth-order linear
system of equations for ¢., ¢, , 0., ¥y, ¢s, Which splits immediately
into a cubic pitch system for ¢. and ¥, and a quintic roll-yaw system
for ¢y , ., ¢y , since the pitch motion depends only on the out-of-phase,
or “scissoring,” motion of the gyro gimbals, given by the difference
angle ¥, , and the roll-yaw motion depends only on the in-phase gimbal
motion, given by the sum angle ¢, .
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These equations can be reduced to dimensionless form by setting
p = (1/Q)d/di, b = B/A, c=C/A, h = (H/AQ) cos «a,
W = (H/Cp) cos a, k=14 [K/(HQ cos a)],
yielding the two sets of equations:
Pitch:
[p* + 3(b — ¢)le= + (2h tan a)py, = 0,
— (M tan a)pe. + (p + «h' )Y, = 0,
Roll-Y aw:
[bp" + 4(1 — ¢) + 2hje, + (1 — b — ¢ + 2h)po. + 2hg, = 0,
= (1 = b — ¢+ 2h)pey + [ep’ + (1 — b) + 2hle. — 2hpy, = 0,
Wey 4+ Wpe. + (p + «h')e, = 0.

If we insert appropriate terms on the right-hand sides of these equations
to include the effect of given initial conditions and perturbing torques,
we may regard the above systems as the Laplace transforms of the origi-
nal set of differential equations, with transform variable p. The solution
is then found by solving this set of linear, algebraic equations for ¢, , ¥, ,
ete., now interpreted as Laplace transforms, and calculating the residues
at the poles of these functions of p. The transient response is entirely
determined by the location of these poles and by the specific initial
conditions. The steady-state response to a periodic perturbing torque
at frequency NQ may be determined by inserting constant right-hand
sides, in general complex, setting p = ¢V, and solving for the amplitudes

l¢2 l7 I ¥y l: ete.

3.3 Transtent Response

TFor given initial conditions and zero perturbing torques, the trans-
forms are rational functions of p, with the characteristic pitch and
roll-yaw polynomials as denominators, given by

Piteh Cubic:
fs(p) = "+ ep’ + op + s, (2)
Roll-Yaw Quintic:
fs(p) = " + ap' + ap’ + ap” + ap + a5, (3)
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where

¢ = W' (k + 2h tan® ), ¢ = 3(b—¢), c; = 3(b — c)kh/,

and
a1=xh'+2hh,
c
2
a2=1 b+2h+4(1 c)—|-2h+(1 b c+2h)’
c b be
a5 = Kh'a2+2hh (2+2b—3c—2h),
be
(1 —b+4 20)(4 — 4¢c 4 2h)
ay = ,
be
14
a5=:<h'a4—2hh(1—b+2h).

be

For stability, it is necessary that all the roots of the above polynomials
have negative real parts. In particular, the magnitude of the real part
of the root nearest the imaginary axis determines the rate of decay of the
most lightly damped mode of motion. If this real part is —D, we can
define a 1/e asymptotic settling time T, = 1/2xD (in orbit periods) and
use T, as a measure of transient response, particularly suited for use with
a digital computer. In Section 3.6 we discuss the determination of D as
a function of b, ¢, @, h, h’, and «. Once it is reduced to a suitably small
value by some choice of system parameters, the short-time transient
response can be determined by solution of the differential equations with
specific initial conditions and the system parameters readjusted, if
necessary. Actually systems chosen on the basis of minimum asymptotic
settling time seem to have quite adequate short-time, as well as steady-
state, response.

3.4 Steady-State Response

The steady-state response to periodic perturbing torques at frequency
N, determined as previously outlined, is given in various cases by the
following relations:

Pitch amplitude for pitch torque AQ*:
Loz | = (N 4 €0%)Y/| fo(il)), (4)
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Roll amplitude for roll torque AQ’:

_ 2
ol =[5 2 )

1—b+ 2k ik ®)
+ (22N - WY T /1
Yaw amplitude for yaw torque AQ":
lou| = [(4 4+ 2h 4o 20N Kh,N2>
b b
(6)

4 —dc 42 il .
+ (__Z_+£N - N"‘)] /clfa(zN) l
Roll amplitude for yaw torque AQ* and yaw amplitude for roll torque AQ:

2
ool = leel = N[ (A2 20 - )

+ <—————1 —boed 2hN> ]*/b 756N |,
where, by (2) and (3),
| 5(GN)* = (es — aN*)* + (N — NP7,
| fsGGN)F = (a5 — asN* + aiN*)* 4 (asN — auN® + N°)2

(7)

In particular, a constant pitch torque AQ*(N = 0) gives the constant
pitch offset

lezlo = 1/13(b — ¢)],
while, for a roll torque of amplitude AQ? at the orbital frequency (N = 1)
lev o = 1/B(1 = ¢)].

These amplitudes, independent of the gyro parameters, limit the mini-
mum permissible satellite inertias for given perturbing torques.

Finally, an elliptic orbit of small eccentricity e induces forced pitch
vibrations at the orbital frequency @ with amplitude

Lo le = 26(1 + e)/[(es — &) + (e — 1)L (8)

By straightforward differentiation, it is easily shown that the eccentricity
response | ¢, | has a single maximum as a function of the gyro opening
angle a. For « larger than the value at which the maximum is attained,
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the eccentricity response decreases monotonically, approaching 2¢ as «
approaches 90°,

3.5 Bounds on the Asymptotic Damping Rate D

As mentioned in Section 3.3, a convenient single measure of transient
response is the parameter D, the distance from the imaginary axis of the
right-most root of the characteristic equations. One would like to know
D as a function of the system parameters, D = D(b,c,a,h,h ,x). In gen-
eral, this function is impossible to determine analytically and must be
computed numerically. In order to limit such computations to ranges of
the parameters b,c,a,h,h’,x that give reasonable values of D, it is con-
venient to have bounds on D.

One set of bounds is given by the following theorem:"

If the coefficients qo, q1, -+ , of a polynomial P(p) are positive,

P(p) = qp" + a0 + -+ + ¢
then D is bounded by

n
qk/(> k=1,2mn
Pt LN s
/n l=0,1,---.
QI l

We note that in both f3(p) and f5s(p), in (2) and (3), ¢o = 1. Hence by
the above theorem with [ = 0, if the system parameters are such that
any of the cocfficients ¢, , ¢, ¢, 01, + ++ , asis small, then D will be small.

Likewise, if any coefficient in f3(p) or fy(p) is large compared to a
subsequent coefficient, then the theorem tells us that D will again be
small.

We note also that b — ¢ < 1, so that the theorem applied to ¢, gives,
in pitch,

DP<b—c¢

IIA

1,

ie., the asymptotic settling time 7', in pitch for the roll-vee system is
bounded by T, = 1/27x = 0.159 orbit. (This is slightly larger than the
corresponding bound T, = 5*/2+/3r = 0.137 orbit obtained in Ref. 17
for a two-body satellite.)

From these bounds we conclude immediately that at best D can be
of order unity, and to get a D of this order of magnitude the coefficients
and ratios of coefficients in f3(p) and fs(p) must be at least of order

unity.
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Another useful bound is obtained by shifting the origin in the p plane
to p = —D and applying the Routh criteria (see Section 3.7), to the
shifted f3(p) polynomial. It is then found that one of the terms in the
Routh array is

r = —2Da* + [8D* + 3(b — ¢)]x — 8D° — 6(b — ¢)D — 3(b — ¢)«l,
where
x = kb’ + 2k tan® o

To have all roots to the left of the line Re p = — D, r must be positive.
But it is easily verified that » > 0 only if

3 —c¢)
< - 77
D=8 P

which gives an additional bound on D.

3.6 Determination of D by Series Expansions

When the coefficients in f3(p) or fs(p) are either large or small, D
can sometimes be expanded in a power series around a known root.
This again restricts the parameter ranges over which D must be deter-
mined numerically. For example, suppose /' is small. The roots of f3(p)
ath’ = Oarep = 0, p = +iv/3(b — ¢). However, it is well known"
that each of the three branches of the triple-valued function p = p(h’)
is analytic in 2’. Expanding around &’ = 0, say for p(0) = i4/3(b — ¢),
we have

i
I

im—i-h'(%) T

h'=0
= i3 —¢) — Khtan®a + ---,

with similar expressions easily obtained for the other two branches of

p = p().
A particular case of interest is that of a spindle-shaped body. In
this case, ¢ — 0, b — 1, and the coefficients a:, - - -, as of f5(p) all be-

come large. One can then consider the equation ¢fs(p), in which the
leading coefficient is small. However at ¢ = 0, this equation is singular
because it is reduced in degree from a quintic to a quartic. The quar-
tie, with coefficients cai,cas, - -+, cas, gives only four of the limiting
roots as ¢ — 0. The fifth limiting root is however easily found by setting
p = o/c, yielding fs*(¢) = ¢*fs(s/c). Application of the expansion the-
orem to fs*(¢) then yields the fifth limiting root p — —2hh'/c as ¢ — 0.
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This root gives a highly damped mode, and has a real part far in the
left half-plane. The roots of interest in finding D are thus those of
the limiting quartic:

fup) = p* + B/B)p’ + Bp* + (Bs/k)p + Bs = 0,
where
Bi=2h+1, By=«k(2h+ 1)+ 4 — 2h,
B =2h +4, By = x(2h + 4) — 2h.

The limiting quartic fo(p) is a function of the three parameters «,h,h’,
whereas, in this limiting case, the cubic f3(p) is a function of «, k, i/, and
a. It turns out that D = D(h,h',x,e) can be obtained graphically. Fur-
ther, D., , the maximum D for all possible 2,h’,k,c, can be found and has
the value D,, = 0.317, attained at the values

0.77 < h < 0.78, B = 1.29, k= 0.92, a = 38°

(The value D,. corresponds to an asymptotic settling time
T, = 1/2aD,, = 0.502

orbits.) However, the description of the graphical technique and the
derivation of D,, are too lengthy for inclusion here.

3.7 Compulation of the Over-All Small-Angle Response

The over-all small-angle performance of the satellite attitude control
system is characterized by its steady-state response to constant and
periodic disturbances (solar torques, magnetic torques, orbital eccen-
tricity) and by its transient response to sporadic disturbances (initial
injection, micrometeorite impact). In proper design, one wants to
diminish the response to all disturbances to below a suitably small level.

The steady disturbances have their main components at zero, orbital,
and twice orbital frequency. As indicated earlier, their amplitudes may
be diminished by inertia augmentation with extensible rods. Fortunately,
it is easy to write down the formulas, (4)—(8), for satellite response to
steady disturbances, and also easy to program these formulas for digital
computation.

The computation of the transient response is not so straightforward,
even in terms of the single measure D. An interesting theoretical problem
is to find the maximum D as a function of all system parameters. Gradi-
ent or steepest descent methods, which first come to mind for the
solution to this problem, seem to be difficult to apply, since the maxi-
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mum D usually occurs in the neighborhood of multiple roots where the
function D = D(b,c,h,W,k,a) is singular.

However, although this is a theoretically interesting problem, its solu-
tion is not of great practical importance, as indicated in Section 2.1. It
is more important to have a cheap method of computing D. A method
that we have found useful involves the Routh criteria as follows:

Write the polynomial f(p) as

f(p) =ap" +ap" ™ 4+ - +ap"" + 0 F+a. =0,

and form the Routh array

Ao, Q2 , A4, *°°,
bo,bz,b4,"',
Coy, C2,yCay v,y
d07d2)d4;"',
where
bo=ai,b:=as, -+, by = Gaip1, "+,
and

Coy = Qgi42 — (b2i+2a0/b0),

dyi = byiys — (Caiyabo/co), ete., ©=0,1,2,---.

Then the number of sign changes in the sequence ao, bo, ¢o, do, etc.
(providing no term is zero) is the number of roots in the right-half plane.
Because of its recurrence structure, this scheme is easily programmed on a
digital computer.

To determine the real parts of the roots of f(p), one applies the scheme

to a succession of translated half-planes as follows. If p = —D - ¢, then
J(=D +¢)
/4 (n) __D n
— [=D) + =Dy + LERE L TTEDE

n!
="+ "+ =0

where it is easily verified that

(n) ¢ __
o=? (n!D) -,
_/"(=D)

783 —mz "‘“na()D—l_al,
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_f"(=D) _(n 2 n—1
Q2 m = 9 a()D 1 alD + a ,

_ " (=D)
L P Y

— (M aol=D) + (" " Ha(=D)" + -+ + a.
k k 1

The Routh array applied to the coefficients ¢o, ¢1, -+, ¢» then indi-
cates the number of roots to the right of the line Rep = —D (Re ¢ = 0).
In order to locate the real parts of the roots to an arbitrary degree of
accuracy, one applies this array on a sequence of nested intervals. For
example, start with some large D = D* such that the Routh array ap-
plied on Re p = —D™ indicates roots to its right. Take as the initial
interval —D* < Re p < 0. In a stable system there will be roots between
the right boundary (Re p = 0), and the left boundary (Re p = —D™*).
Next apply the Routh criteria on Re p = —D™*/2. There are two possi-
bilites: (a) if there are no roots to the right of Re p = —D*/2, make
this the new right boundary; the interval —D* < Re p < —D*/2 now
has the same properties as the initial interval, (b) if there are roots to
the right of Re p = —D*/2, make this line the left boundary of the new
interval —D*/2 < Re p < 0, which again has the same properties as
the initial interval. By applying this process n times, one ends up with
an interval of width D*/2", which contains roots but has no roots to its
right. The accuracy of the location of the real parts of the roots closest
to the imaginary axis can be set by prescribing the width of the final
interval. Since the widths of the successive intervals go down as 1/2%,
the process converges rapidly.

After the real parts of the roots closest to the imaginary axis are found
within some interval of desired width, say Interval 1, the same procedure
can be used to find the next closest roots to the imaginary axis. One
starts again at some sufficiently large D*, such that some roots fall to
the right of Re p = —D* and to the left of Re p = —Dyy, the left
boundary of Interval 1. One makes these the left and right boundaries
respectively, of an initial Interval 2, and applies the nested interval
iteration again. The right boundary of Interval 2 in each iteration is
characterized by having m roots to its right, where m is the number of
roots contained in Interval 1.

The starting value D* can be chosen in various ways. If one is inter-
ested only in the roots closest to the imaginary axis, he can pick D* as
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[ =/C) ]
[/ (20)

for then (see Section 3.5) there will be at least one root to the right of
Re p = —D*. If it is desired to find the real parts of all the roots, D*

can be chosen as
Am
D* = max —> ,
Ap—1

since it is well known' that this value of D* is a bound on the modulus
of the maximum root and hence all the roots will be to the right of
Rep = —D*

We remark that this procedure may be easily extended to a method
for finding both the real and imaginary parts of the roots of a real
polynomial. It is only necessary to use well-known relations between the
imaginary parts of the roots and certain members of the Routh array.

The above scheme goes rapidly on the IBM 7090 computer. For ex-
ample, if the widths of Interval 1, Interval 2, ete. are set at 0.005, the
running time is about 1000 cases a minute to find the real parts of all
the roots of both the quintic, fs(p), and the cubic, f3(p). Tables calcu-
lated by this process were used in making the parameter survey whose
results are summarized in Section 2.3.

D* = min

IV. LARGE-ANGLE MOTION

4.1 Introduction

The large-angle motion of the satellite is of course governed by non-
linear differential equations, which in general must be integrated numer-
ically. Nevertheless, a few analytical and intuitive insights are available.
These are pointed out in the sections which follow.

We begin with a discussion of the pertinent dynamical and kinematic
equations, including the effect of variable inertia, due to rod erection.
Then we enumerate the equilibrium positions of the satellite, in which it
is at rest with respect to the orbiting reference frame in a circular orbit,
and show that certain restrictions must be placed on gyro angular mo-
mentum to eliminate undesired positions. This is followed by a discus-
sion of satellite despin by the erection of a single rod and tip mass.
Finally we show how the satellite may be inverted by ground command
to the gyro torquers.
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4.2 Large-Angle Equations of Motion

In the following, we make an explicit distinetion between dynamieal
equations, valid in any coordinate system when written in proper vector
form, and kinematic relations between various specific coordinate sys-
tems. This allows us to introduce a minimum number of different co-
ordinate systems and to avoid a good deal of irrelevant algebraic com-
plexity.

4.2.1 Dynamical Equations

The rate of change of angular momentum L about the satellite center
of mass, with respect to a reference frame rotating at the satellite angular
velocity o, , is governed by the equation

il+(‘)3><L=M’ (9)

where M is the resultant torque around the center of mass, the sum of
the gravity-gradient torque Mg, the total gyro precession torque My ,
and the external disturbing torque M . For a rigid body

L=1Io (10)

where I is the inertia dyadie, given in terms of the prineipal moments of
inertia A > B > C and corresponding prineipal vectors i’,j’,k’, by

I = Ai'i' + Bj'j’ + CK'K'. (11)
If @ is the satellite angular velocity relative to orbit reference axes,
o = iy + o, (12)

where i is a unit vector normal to the orbit plane and ¥(t) is the polar
angle of the satellite center of mass, measured from orbit perigee in
earth-centered coordinates and satisfying the orbit equation

U= 21 + ecos )Y/ (1 — &), (13)

where ¢ is the orbit eccentricity and @ = 2x/T,, To being the orbit
period. The gravity-gradient torque Mg is given by

Me = 32°(1 + e cos )’k X (I'k)]/(1 — €)°, (14)

where k is a unit vector directed along the local vertical toward the
center of the earth. Here and in the following, we consider only what
Beletskii®® calls the “restricted problem” for which the motion of the
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center of mass is given by (13) and is unaffected by the motion around
the center of mass. Finally the resultant gyro torque for a two-gyro,
roll-vee configuration is

Mz = Hi X o, + H: X oy,, (15)

where H,’s are the gyro angular momenta, of fixed magnitude H, and
the ,,’s are the gyro gimbal angular velocities. In terms of the gimbal
angles ¢,, and the nominal roll-vee half-opening angle «, we have

Wy, = W + j,ﬁbgi ) (16)
H, = HIi’ cos (@ — ¢;,) + k' sin (a — ¢,)] (17)
H, = H[i’ cos (a + ¢,,) — K sin (o + ¢g,)]. (18)

The set of dynamical equations is completed by the gimbal equations of
motion. If the gyro gimbals are not against stops, these are

Copy; + Koy, = My, + §-(Hi X wy,), (19)
where Cp is the gyro damping constant, K the gimbal spring constant,
and the constant bias torques M, are given by M,, = — M, = HQsin a.

When the gimbals are against stops, the reaction torques from the
stops on the gimbals must be added to (19).

4.2.2 Kinematic Relations

The orientation of the satellite body axes @’,y’,2/, or the corresponding
unit veetors 1',j’,k’, with respect to the orbit axes x,y,z or corresponding
unit vectors i,j,k,* may be specified in a number of ways. In classical
dynamics, Euler angles have been traditionally used. They specify a
rigid body’s orientation with a minimum set of three numbers, and, in
some of the soluble problems of rigid body dynamics, lead to straight-
forward analytical manipulations.

From a computing point of view, Euler angles, however, have three
serious disadvantages: (1) they involve trigonometric functions, which
are expensive to compute, (2) they are singular when the nutation
angle is zero, and (3) they are difficult to use in the visualization of
complicated motions. We have chosen to use the so-called Euler parame-
ters, rather than the Euler angles. A set of variables, perhaps even more
suitable for the matrix algebra typical of modern computer programming,
might be the direction cosines «,8,y, ete., satisfying the relations

* See Section 3.1.
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i =1ia + j/a/ + klall,
=i+ +Kp, (20)
k = i + §% + K",

These «’s should not be confused with the nominal vee opening angle,

which we shall distinguish from the direction cosines, whenever they
are used together, with a subscript. By using identities of the form

k+oXk=0, (21)

satisfied by i, j, and k, we may obtain 9 equations giving the rates of
change of the direction cosines in terms of the direction cosines and the
components of . We would then have 15 equations, including 3 satel-
lite equations of angular motion, 1 equation of motion for the satellite’s
mass center, 2 gimbal cquations of motion, and 9 equations for the
direction cosine rates, yielding the 3 components of o, the satellite polar
angle ¢, the 2 gimbal angles, and the 9 direction cosines. The identities

o =+ ﬁ2 -+ 72 =d + o + o = 1, ete.,
af + B + "B = ad + B8 + vy = 0, ete,

which must be satisfied initially, would then serve as checks on the
numerical solution. Incidentally, it should be noted that the cosine of
the antenna pointing error angle is given by the direction cosine v”,
between the local vertical and the body yaw axis.

We shall use the direction cosines to study equilibrium positions, but
Euler parameters in the study of general satellite motion, since they are
simply related to the deflection angles for small motion. If we assume
that the (2',y’,2")-axes are formed by rotation of the (x,y,z)-axes through
the angle # around an axis with direction cosines m. , m, , m. , the Euler
parameters &, &, , &, x are defined by the relations

(k2,8 ,&) = (me, my, m;) sin (6/2),  x = cos (6/2).
We now have™
i=i(&"—& — & +x) + 2 (&4 — xk) + 2K (&£ + xb),
j= 246k +x) T (-8 E - & +X)
+ 2/ (EE — X&), (22)
k = 2i'"(£L& — x&) + 2§ (& + x&)
+ K (- & -8+ E X,
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giving the direction cosines, and
2%, = xwo + bow — Ly,
28 = xey + fwr — Lo,
26, = xwo + Ly — Er,
—2% = Liwr + Loy + Lo,

completing a set of 10 equations for the three components of angular
velocity o, two gimbal angles, four FEuler parameters, and the polar
angle ¢. Just as in the case of the direction cosines, the single identity

&4+ =1

serves as a check on the numerical solution. Also note that, for small
rotation 0, 2§ ~ ¢., 28 ~ @y, 26 ~ @, x ~ 1, 0 ~ @py 0y ~ @y,
wy ~ ¢, and

(23)

i~i = jo. + Koy,
j ~ il‘Pz + j, - klﬂ"x)
k ~ —i'p, + i'e: + K,

where ¢ , ¢, , ¢. are the small pitch, roll, and yaw angles. If these rela-
tions are inserted into the dynamical equations and second-order terms
neglected, the linear equations for the small motion, (1), are obtained.

In coding the differential equations for the digital computer, it was
found convenient to define cross-product and dot-product subroutines:

A X B = (—A3By + A:Bs, A3By — A\B;y, —AsBy + A\Bs),
A-B = A\B, + A:B, + A3B;.

This allowed the coding to follow closely the veetor form of (9)-(11),
which was useful from the standpoint of both coding simplicity and
debugging.

For nondumbbell satellite shapes, say b = 0.9, ¢ = 0.5, the five-point
predictor-corrector with % rule as given by Hamming (Ref. 22, Chapter
15) was used. However, in the spindle case, b = 1.0, ¢ = 0.01, the dif-
ferential equations become singular because the small number ¢ multi-
plies a derivative, and the five-point, % rule scheme was found to be
very slow. Following a suggestion of R. W. Hamming, a simple three-
point predictor-corrector scheme (Ref. 22, p. 186) was then tried. It
turned out to be three to four times faster than the five-point scheme
and to give about the same accuracy.

l
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In the computer runs, the gyro stops were simulated by hardening
springs. For example, for ¢,, > 8, the normal spring restoring torque of
Ko, was replaced by

Koy, + B(ﬂa(h - B) + 9 — o5’

where B, C, 3, and @ are constants, to simulate the pitch stop of the first
gyro. The same expression but with different constants was used for the
yaw stop. Specifically, in all the computer runs for the spindle-shaped
satellite reported here, K = 0 and the pitch-stop values for Gyro 1 were

B = 504®2, C = 00142, g =58, 0= 60°

For the yaw stop, 8 and 6 above were replaced by 3 = —20° and 6 =
—30° Corresponding, symmetrical stop constants were used for
Gyro 2.

4.2.3 The Rate of Change of Energy

For a circular orbit we can easily obtain a useful expression for the
rate of change of kinetic and potential energy, relative to orbit axes.
We take the scalar produet of the satellite equation of motion (9) with
the relative angular velocity o and combine it with the two gyro equa-
tions, (11), multiplied by ¢,, . After some routine algebra, we obtain
the relation

(@/d)(T +V + &) = —Col(es’ + ¢a),

where the relative kinetic energy

T = }oI o,
the potential energy

V = 3°(3k-I-k — i-I-i),

and the gyro energy

G =G + Gy,
with

G; = 1Ko, + M0, — Qi-H,

This expression is useful in the estimation of various quantities, in par-
ticular the velocity required to tumble the satellite, and conditions
necessary for capture.”
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4.3 Satellite Equilibrium Positions

When the satellite moves in a circular orbit in such a way as to remain
stationary with respect to the local vertical, its motion satisfies the
equilibrium equation

21 X (I'i) = 30k X (I'k) + @H X i,
where H is the resultant gyro angular momentum. FFor a symmetrical
satellite

I=A3G1T +J7) + CkK
and the above equation yields the relations
(4 =0y =0
H-j =H, = (4 - C)2", (24)
H-k=H, =44 — C)%"Y", (25)
with «” = 1-K', 87 = j-K,v” = k-K/, as defined by the table of direction
cosines, (20). Thus we have the following general result:

1. The equilibrium positions of any symmetrical, gravity-oriented, gyro-
stabtlized body tn a circular orbit must be such that the principal axis of
least inertia and the resultant angular momentum are perpendicular either
to the orbit roll axis (8”7 = H, = 0) or to the orbit yaw azis (v" = H, = 0).

In the case of a roll gyro system, with all gimbal axes parallel to the
body roll axis, the resultant gyro angular momentum must have the
form

H =iH,+ KkKH,,
so that

H, = pH. + B"H..,

H,=~H, +~"H. .
Thus, 8”7 = H, = 0 implies BH,» = 0, and v” = H, = 0 implies vH, =
0. If we now assume that the motion of the gyro gimbals is restricted by

stops along the body yaw axis, so that H.- > 0, an assumption appropri-
ate for the case of the two-gyro roll-vee, we have the following result:

II. The equilibrium positions of any symmetrical, gravity-oriented, roll-
gyro-stabilized body in a circular orbit must be such that the body roll axis
18 either parallel to the orbit roll axis (B = =1) or parallel to the orbil
yaw axis (v = +£1).
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So far we have not made use of the gyro gimbal equilibrium equations.
If the gimbals are not against stops, from (19) for the roll-vee, these
take the form

Qj'- (Hy X i) — HQsin ap — Kg,, = 0,
Qj' - (H, X i) + HQsin ap — Koy, = 0,

where we now denote the nominal gimbal angle by «, to avoid confusion
with the direction cosines. If the flex-lead constraint is negligible, i.c.,
K = 0, these two equations imply that

vYH, — 8H, =0

which in either case in II (' = &1, H, = Oor+’ = *x1, H, = 0)
implies that H, = H, = 0, so that no torque is exerted on the satellite
by the gyros. We then have:

ITII. The equilibrium positions of a symmetrical, gravity-oriented, free
roll-vee-gyro-stabilized body must be such that the resultant gyro torque
vanishes (1 X H = 0) and either the body pitch, roll, and yaw axes are
parallel to the orbit pitch, roll, and yaw axes (i' = =i, j/ = *j, k' =
+k) or the body pitch, roll, and yaw axes are parallel to the orbit pitch, yaw,
and roll axes, respectively (i’ = +i, j' = xk, k' = =£j).

The signs of course must be chosen so that the above represents a
proper rotation. Note that the above applies to any roll gyro system for
which the resultant torque around the body roll axis exerted by the
gyros on the satellite vanishes. If 7 = -4, the second set of equilibrium
positions gives Fig. 20, with the gyro gimbal axes along the orbit yaw
axis in a yaw-vee configuration. Small pitching motion around these
equilibrium positions is governed by a characteristic equation of the
same form as that for the roll-vee, (1), except that the coefficient
3(B — C)/A > 0is replaced by 3(C — B)/A < 0. Thus these equi-
librium positions are unstable.

The equilibrium position i’ = i, j = j, kK’ = k of the first set is shown
in Fig: 19(a). It corresponds to the normal operating position with the
body yaw axis, on which the antenna is situated, directed toward the
earth. The inverted position (see Fig. 19b) i’ =1, = —j, k¥’ = —kis
also stable, since it merely corresponds to an interchange of the two
gyros. This bistability is characteristic of gravity-oriented bodies and a
gravity-oriented communications satellite must either use two antennas,
with associated switching, or incorporate some means of flipping the
satellite in response to ground command. The latter possibility is
discussed in some detail in the sequel.
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The reversed roll-vee equilibrium positions Fig. 21(a), with i’ = —i,
remain to be investigated. The corresponding yaw-vee positions are still
unstable. If the gyro gimbals were completely free, satellite precession
and the bias torques, now acting together, would rotate the gyro gim-
bals from the reversed roll-vee until they formed a normal roll-vee
around the orbit pitch axis. But with gimbal stops, making the angles
4-a” with the body pitch axis, the gimbals rotate until the stop reaction
torque and the bias torque sustain the 1 rpo steady precession of the
satellite in orbit. The stability of this reversed roll-vee position can be
investigated by using the characteristic equations for the normal roll-vee,
with H cos ap replaced by —H cos & and a large spring constant K*,
introduced to take the stop compliance into account. In particular the
coefficient

as = [(A — B)Q + 2H cos ag[4(4 — C)Q + 2H cos a]/BCL,
in the roll-yaw characteristic equation, is replaced by
ai’ = [(A — B)Q — 2H cos a*][4(4 — C)Q — 2H cos o*]/BCS’.
If
(A4 — B)Q < 2H cos o™ < 4(4 — C)Q,

this is negative and the equilibrium position is unstable.

The instability of the reversed roll-vee when o satisfies the above in-
equalities is shown in Fig. 29. In this case, the system parameters are
the same as those of the sample design in Section 2.3.2 with «* = 80°.
Initially the gyros are against the stops and the satellite has rates of 0.05
rpo about all three axes. It is seen that the satellite turns around the
yaw axis and settles down to rest in the desired orientation in less than
five orbits.

When the gyro gimbals are against stops, the gyros exert a torque on
the body and in general there are other, skewed equilibrium positions.
To investigate these positions without getting involved in the details of
stop compliances, etc., which depend on the specific gyros used, we con-
sider only two idealized cases, the first with stops along the positive and
negative body yaw axes but with no stops along the body-pitch axis, and
the second with stops along the pitch axis as well as along the yaw axis.

In both cases the gyro spin axes may be back-to-back along the yaw
axis, but this is a case of zero net gimbal torque already treated and is
easily eliminated by moving the gimbal stops in slightly. In the first case
both spin axes may lie along the body yaw axis against stops, so that

H =H =KH, H=2H
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Fig. 29 — Instability of reversed roll-vee when gyro stops are suitably dis-
posed.

From (24) and (25) we again have two cases to consider: (a) ¥ = H, =
0,and (b) v” = H, = 0. In case (a) we have

H, = 2¢"H = 4(4 — C)Qa"y".

The subcase 87 = H, = 0;v” = 0 is easily shown to be unstable, so
there remains only the position given by

o = H/[2(A — C)ql.

Unless H > 2(A — ()4, this yields an equilibrium position which can
be maintained by the stop reaction torques. These torques are of course
one-sided, since the stop can only “push” and not “pull.” This undesira-
ble skew equilibrium position can be eliminated by making

H>2(4A - 0)Q.
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A similar position for case (b) (y” = H, = 0) can be eliminated by satis-
fying the less restrictive condition H > (4 — C)Q/2.

The corresponding situation with yaw and pitch stops finds one gyro
against the yaw stop and the other against the pitch stop (see Fig. 21b).
TFor example, suppose

H, = kK'H, H,=i{H, H=H({+k).
Now in case (a), 87 = H, = 0, we have
H,=H(y +7") = 44 — 0)Q"",
or, in terms of the angle § between the x and &’ axes,
sin 260 = —[H/2Y(A — C)Q] sin [0 + (x/4)].

The two roots of this equation in the interval —z/4 < 6 < 7 are ex-
cluded, because they require stops which “pull” on the gimbals. On the
other hand, the two roots in the interval = < 6 < 37/2 yield possible
equilibrium positions. These roots exist only if H < 254 — 0)Q. Again
the case (b) v” = H, = 0, yields no equilibrium positions of this type
under the less restrictive condition H > 273(4 — €)Q. Since an increase
in gyro angular momentum tends to degrade the transient performance
of the system, we shall assume in the following that the gyro gimbals are
limited in excursion by both yaw and pitch stops, so that only the re-
striction H > 2}(4 — ()2 need be satisfied.

In the case of an unsymmetric satellite, a similar but more complicated
analysis of the equilibrium positions can be carried out.

4.4 Rod Extension and Satellite Despin

We have already indicated the necessity of augmenting the satellite
inertia to increase the gravity-gradient restoring torques to required
levels. If this inertia augmentation is done after injection into orbit, it
also reduces the satellite angular velocity to a level where the gravity-
gradient torques may become effective in aligning the satellite with the
local vertical. One method of inertia augmentation is the extension of so-
called STEM rods described in detail in Ref. 8. These are beryllium
copper tapes which form straight, tubular rods when unwound from a
drum. If they are used together with dense tip masses, the satellite in-
ertia may be increased by several hundredfold without a proportional
increase in solar torque. In the following sections we first consider the
effect a variable inertia has on the general form of the satellite equation
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of motion and then discuss satellite despin using a single extensible rod
in combination with two gyros.

4.4.1 Equations of Motion for Variable Satellite Inertia

We may derive all of the dynamical equations for the motion of a
gravity-oriented body by integration of the general equations of motion
for a continuous medium. In fact this is perhaps the most dircet way of
calculating the gravity-gradient torque, which is due to the variable
gravitational body force acting on each mass element of the body. The
resulting equation of motion, (9), applies to rigid and flexible bodies
alike, provided that the angular momentum L is calculated correctly.
L is given in general by the integral

L = fBr X (3r/dt + o, X r)dm, (26)

where r is the radius vector from the center of mass of the body B to the
mass element dm. For a rigid body, r differs from its initial value r;, only
by a rotation and dr/dt = 0, yielding the usual form

L =[x (& X 0dm =T,
B
but in general r depends both on r, and ¢, so that
L=To+ f r X (9r/0)dm,
B

where the inertia dyadic I depends on ¢.

Let us now consider the extension of a single massless rod with tip mass
mg . If a(t) is the radius vector from the center of mass of the satellite
proper to the tip mass, (26) yields

L =10+ maX4,
IX o =T X o +maX (o Xa),

MM/ (Ma + M),

li

m

for satellite mass m, , and the inertia dyadic for the satellite around its
center of mass

L = Aol + Bojj’ + Ck'K'.

When the rod is erected parallel to itself, as would normally be the case,
a X d = 0 and the effect of rod extension is entirely taken into account
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by the time-dependent inertia I. If the rod is extended along the axis of
minimum moment of inertia, a = k’a(¢) and

I= (do + mad)ii’ + (Bo + ma)j'j + Ck'k'.

4.4.2 Satellite Despin

When the moments of inertia of a torque-free spinning body are in-
creased by a factor of N, conservation of angular momentum requires
that the angular velocity of the body decrease by a factor of 1/N. On
the other hand, if the spinning body contains a spinning rotor, an increase
in the angular momentum of the rotor produces a corresponding decrease
in the angular momentum of the body and hence a reduction in the
angular velocity of the body. Both elements exist in the gravity-oriented,
gyro-stabilized satellite. Inertia augmentation is required to obtain
gravity-gradient torques of the proper level; rotation of the gyro gim-
bals provides a change in angular momentum.

A single extensible rod-tip mass combination provides adequate
gravity-gradient torques, if erected along the satellite yaw axis. How-
ever, erection of such a rod reduces only pitch and roll injection angular
velocities; the yaw component is unaffected. This may be removed by
using the gyros as reaction wheels.

Suppose the gyros are caged at their null position during the rod erec-
tion phase. Then, neglecting gravity-gradient and external torques
during the short erection time, we have a freely spinning body. If the
initial components of angular momentum are all of the order of magni-
tude AoNQ, where A4, is the moment of inertia about all three axes, we
may reduce the pitch and roll components of angular velocity to order
@ (1 rpo), with respect to inertial space, by extending a single rod that
increases the pitch and roll moments of inertia from A, to A = NA,.
The yaw angular velocity remains equal to NQ.

The yaw angular momentum, 4,NQ, however, is of the order A4Q, the
same order of magnitude as the angular momentum H of each gyro. The
gyros then are large enough to absorb the residual angular momentum.
If the gyro gimbals are now released, the spin axes will tend to line up
with the residual angular velocity around the yaw axis. One gyro spin
axis rotates until constrained by the yaw axis gimbal stop; the other ro-
tates until constrained by the pitch axis gimbal stop. There is thus a net
change in yaw gyro angular momentum of order H and, furthermore,
because of the rate-seeking property of the gyro, it always occurs in the
correct sense to reduce the satellite angular momentum.

This qualitative argument has been supported by computer runs for
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given parameter values and initial rates. In particular one may determine
the gyro size needed to despin from a given initial yaw rate. Actually it
is not necessary to separate the erection and uncaging phases of injec-
tion, so long as the gyros are not uncaged before erection.

The result of such a computer run was given in Figs. 17-18. In one
orbit the angular rates are reduced to less than 1 © and capture occurs.

4.5 Satellite Inversion

As we have already noted, gravity-oriented bodies are bistable, i.e.,
they are in stable equilibrium with the axis of least inertia, on which the
antenna would be mounted, both directed toward the earth and away
from the earth. In this section we discuss a method of flipping the satellite
by means of a simple ground command injected into the gyro gimbal
torquers.

When the satellite is in either of the above stable equilibrium positions,
its total angular momentum is AQ + 2H cos a around the pitch axis.
If we could somehow rotate the two gyro gimbals instantaneously, so
that both spin axes pointed along the pitch axis, the total angular mo-
mentum would become A(Q + ) 4+ 2H, where w is the pitch angular
velocity with respect to the orbit frame. Since the gimbal rotation is
assumed instantaneous, the total angular momentum is conserved, i.e.,

AQ + 2H cos ap = A(Q + w) + 2H,
or
w= —2H(1 — cos ag)/A.

Thereafter, the single-axis, pitching motion is governed by an equation
of the form

Ap +3(B—C)Fsinpcose = 0,

where ¢ is the pitch angle around the orbit pitch axis. A first integral of
this equation is

A¢' + 3(B — O)sin’ o = Ad,

since ¢(0) = 0, #(0) = w. In order that ¢ be one-signed, i.e., in order
that tumbling occur, we must have

Ao’ > 3(B — )@
or

(H/AQ)* > 3(B — C)/4A(1 — cos o)’ (27)
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For a gyro angular momentum satisfying this condition we can excite a
tumbling motion by collapsing the gyro spin axes toward the pitch axis.
Actually, since we only want to rotate the satellite through a half revolu-
tion, the gyro angular momentum need barely exeeed this minimum
value. Furthermore, we may collapse the gyro spin axes toward the
piteh axis by simply reversing the bias torques applied to the gimbals for
a suitable length of time. For a spindle satellite with (B — C)/A =
0.99, computer runs (see Fig. 22) show that the satellite may be inverted
by applying this reversed bias for about a half orbit. For a satellite with
(B — C)/A = 04 it turns out that it is only necessary to remove the
bias torques for a fraction of an orbit. For any satellite a suitable com-
bination of bias torque and time can always be found to flip the satellite
into its desired operating position, providing the relation (27) is satis-
fied.

We remark that bias torques could also be used to rotate the gyro gim-
bals against the yaw stops. A similar, single-axis argument then gives an
expression like (27). However, with the gyros back-to-back against yaw
stops, the satellite has negligible yaw stiffness, and is vulnerable to yaw
disturbances. This possibility of inversion was therefore not pursued.
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APPENDIX

List of Symbols

A,B,C principal moments of inertia

b=B/A,c=C/A dimensionless principal inertias

Co gyro damping constant

D = 1/2xT, damping rate, inversely proportional to set-
tling time

H,,H, angular momentum vectors of gyros 1 and 2

H=|H,|=|H,| magnitude of gyro angular momentum

H=H, +H: resultant gyro angular momentum vector

H.,H,,H, orbital pitch, roll, and yaw components of

total gyro momentum
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Optimum Reception of Binary
Gaussian Signals

By T. T. KADOTA
(Manuscript received May 4, 1964)

The problem of optimum reception of binary Gaussian signals is to
specify, in terms of the received waveform, a scheme for deciding between
two alternative covariance functions with minimum error probability.
Although a considerable literature already exists on the problem, an opti-
mum decision scheme has yet to appear which is both mathematically
rigorous and conventent for physical application. In the context of a general
treatment of the problem, this article presents such a solution. The opttmum
deciston scheme obtained consists in comparing, with a predetermined
threshold k, a quadratic form (of function space) in the received waveform
z(t), namely,

choose ro(st) o ff z(s)h(s,t)x(t) ds dt < k,

choose r(s,t) if ff:c(s)h(s,t)x(t) ds dt = F,

where ro(s,t) and ri(s,) are the covariance functions while h{s,\) is given
as a solution of the integral equation,

ff ro(s;u)h(up)ri(vt) du dv = ri(st) — ro(s,t).

This may be regarded as a generalization of the “correlation detection” in
the case of binary sure signals in noise.

Section I defines the problem, reviews the literature, and, together with
certain pertinent remarks, summarizes principal results. A detailed mathe-
matical treatment follows in Section I1 and the Appendices.

I. INTRODUCTION AND SUMMARY

1.1 Definition and Nature of Problem

The problem of optimum reception of binary Gaussian signals arises
as a mathematical idealization of a common communication problem.

2767
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Consider a radio communication link containing a random medium.
The transmitter sends one of two possible signals with known frequency
rates (a priori probabilities), and the receiver decides which one of the
two has been transmitted. Even if the transmitted signals are deter-
ministie, the observable waveforms at the receiver appear to be random
owing to effects of the random medium and the ever-present thermal
noise at the receiver. The task of the so-called optimum (or ideal)
receiver is to decide, upon observation of the received waveform for a
finite time, which one of the two signals has been transmitted in such a
way as to minimize the so-called probability of error. Thus, the problem
of optimum reception amounts to specifying in terms of the received
waveform such an optimum decision scheme for given a priori proba-
bilities.

It is assumed that the values of the received waveforms at arbitrary
instants of time during the observation interval, say 0 < ¢ < 1, are
jointly Gaussian distributed with means zero and a covariance matrix
which is determined by either one of two known covariance functions,
depending upon which one of the two signals is transmitted. Then, the
above problem may be stated as one of testing simple hypotheses as
follows: Suppose there are two ensembles of real functions of time ¢,
0 < ¢t £ 1, which are statistically characterized as being Gaussian dis-
tributed with identically vanishing mean functions and two distinct
covariance functions. A sample (function) z(¢) is drawn either from
the first ensemble with probability « (the null hypothesis: Hy) or from
the second with probability 1 — « (the alternative hypothesis: H,).
Determine a “critical region” A, (a subset of a space of real functions
Q) for rejecting H, (or accepting H;) if x(¢) belongs to A, and accepting
H, if z(t) does not, in such a way that the associated error probability,

Pe(Aa) = aPO(Aa) + (1 - a)PI(Q - Aa); (1)

is no greater than P.(A) for an arbitrary A C Q; where P, and P; are
two Gaussian (probability) measures defined on (measurable) subsets
of @ by the two zero mean functions and two covariance functions.
Thus, the problem of optimum reception amounts to dividing the func-
tion space into two parts in such a way that the weighted probabilities
on them specified by (1) are minimum among all possible divisions.
There are two features worth noting in this formulation. One is the
lack of uniqueness of the optimum division as a consequence of adopting
the minimum error probability as the optimality criterion. Namely, it
is immaterial whether a certain set N (of functions) with both proba-
bilities zero, i.e., Po(N) = 0 = Py(N), should be a part of A, or @ —
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A, , since it does not contribute to the error probability P, . Thus, those
sets upon which P, and P, vanish can effectively be ignored. The other
feature is a stipulation that the division be specified in terms of the
general sample (function), namely, the general element w of the func-
tion space @, so that each sample (a received waveform) can be classi-
fied as a member of A, or & — A,. From the probability theoretical
point of view, these features dictate specification of the division (or the
decision scheme) to be made in terms of the “almost all sample fune-
tions” (or “almost surely,” “with probability one,” etc.) proposition.
While this offers flexibility in one sense, it presents a restriction in
another. For example, anticipating the forthcoming results, if the
division of © is made by means of a certain w function on Q, this function
can be arbitrary or even undefined on the sets of w upon which Py and
P, vanish. Yet, if the function is defined as a certain limit (or, obtained
by a limit operation), then the sense of convergence must be at least
“for almost all sample functions,” but not “in quadratic mean (in the
mean),” “in probability,” and “in distribution,” which are in general
weaker.

The problem of optimum reception of binary Gaussian signals may
be regarded as a generalization of an almost classical problem in com-
munication theory, namely, optimum detection of binary sure signals
in Gaussian noise. It is well known that such detection consists in com-
paring, with a preassigned threshold, the correlation integral of the
received waveform and a certain function determined by the two signals
and noise characteristics. More precisely, let {z,, 0 = ¢ < 1} be a
Gaussian process whose covariance function is r(s,t), 0 = st < 1, con-
tinuous and positive-definite, and whose mean function is either mg(¢)
or my(t), both continuous, corresponding to the two sure signals. Denote
the sample function of the process by x(¢) and the threshold by ¢ > 0.
Then Grenander' shows that if the integral equation

[ (00 ds = m(® = mo(o )

has a square-integrable solution, the optimum decision scheme under the
Neyman-Pearson criterion is the following:

choose my(t) if fol z(t)g(t) dt < ¢,
. (3)
choose my(t) if fo z(t)g(t) dt = .

Suppose the two sure signals in the above problem are replaced by two
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stochastic (Gaussian) signals and the additive noise is included in these
signals so that the decision between two sure signals becomes now the
decision between two Gaussian signals. Furthermore, suppose the
optimality criterion is changed from the Neyman-Pearson’s to the
error-probability minimization. Then, the problem becomes optimum
reception of Gaussian signals under the minimum error-probability
criterion. More precisely, let {z,, 0 < ¢t = 1} be a Gaussian process
whose mean function is identically zero and whose covariance function
is either ro(s,t) or ri(s,t), continuous and positive-definite, with the
accompanying a priori probabilities @ and 1 — « respectively. Then
what are the counterparts of (2) and (3)? That is, under what condi-
tions can the optimum decision scheme be specified in terms of a corre-
lation integral involving the sample function, and what is the decision
scheme itself?

1.2 Review of Literature

Despite momentous foundations laid by Grenander in 1950, little
progress was made toward rigorous solution of the above problem during
the succeeding decade, due primarily to restrictions of the mathematical
scope to elementary probability theory. The majority of the work is
characterized by two features: (¢) use (and misuse) of the classical
method of likelihood ratio and (77) attempts to specify the decision
scheme in terms of some integrals involving the sample function. In
order to use the classical method, however, the continuous (parameter)
process must first be ‘“represented” by a (finite) sequence of random
variables. Thus Middleton® and Price * sample {z,,0 < t < 1} to obtain
the representing sequence z,, , - -+, z,, and form their likelihood ratio
ln:

ln(xtl y Ty xt,,) — IRO('H)(RI(n))-l l%
exp {% Z Z [(Ro("))—l - (Rl("))—l]iﬂ?tﬂt,},

i=1 j=

(4)

where R, and R, are two alternative covariance matrices of Zy,

-, ., given respectively by (Ro™):; = ro(t: t;) and (R\™)y; =
r1(ti,t5); %, § = 1, - -+, n. Then, as n — « and each sampling interval
becomes infinitesimal, the decision scheme is specified in terms of the
limits of the exponent and the factor before the exponential in (4),
provided these limits exist. Middleton argues on a formal basis that the
exponent of (4) becomes an integral
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1
f et dt,
0

where the new proecess {y:, 0 = ¢t = 1} is given as one of the solutions
of a pair of certain simultaneous ‘“‘stochastic integral equations.” Price
also formally argues that the exponent converges to an integral

j;l fol zlgi(s,t) — gols,D]ae ds dt,

where g, and g¢; are given as solutions of a certain pair of ordinary in-
tegral equations.

Davis,* Bello® and Turin,’ on the other hand, make orthonormal
expansions of the process and use the Fourier coefficients as the repre-
senting sequence. However, the formulation of Davis and Bello is based
upon a ratio of probability density functions of two sequences of Fourier
coefficients corresponding to two separate orthonormal expansions,
which is not a likelihood ratio; while the fundamental notion in Turin’s
formulation is ‘“probability density functions of processes,”” which are
unbounded functions in general.

One difficulty common among all the papers is the total absence of
convergence proofs for series of random variables. As mentioned in
Section 1.1, the sense of convergence must be “for almost all sample
functions.” Yet, for example, it is not clear on what ground the ex-
ponent of (4) should converge for almost all sample functions to those
stochastic integrals, nor is the existence of the integrals themselves
shown.

The other common difficulty, of a more fundamental nature, is the
lack of optimality proofs. Considering the process as an ensemble of
“well behaved” functions of time, it is intuitively plausible that such
an ensemble should be “adequately’” described by the distributions of
the “infinitely densely” sampled values of the member functions or by
the distributions of the Fourier coeflicients of some orthogonal expan-
sions in £, (the space of square-integrable functions). Namely, the
continuous (parameter) process should somehow be “representable’ by
a sequence (infinite in general) of random variables. However, the
optimality of the resultant decision secheme should in general be affected
by selection of the representing sequence. Obviously, there are in-
numerable ways of sampling the process, resulting in innumerable
decision schemes. Similarly, there are as many sequences of Fourier
coefficients to represent the process as orthonormal bases of £;. Yet,
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should all the representing sequences eventually yield the decision
schemes with the same error probability, the minimum? If not, which
sequences are the best representations? Ifven if the best sequence is
chosen, on what grounds will the error probability remain minimum in
the limit as n — <0, since, after all, the classical method is valid only
for a finite n?

Note that there is no a priori need for the use of either likelihood
ratios or representations, so long as the proposed decision scheme is
shown to have the minimum error probability. In fact, Slepian’ shows
interesting special examples (of the singular case) where minimality
of the error probability is explicitly proved. From a different point of
view, Parzen recently restores Grenander’s basic formulation, where
what is called the Radon-Nikodym derivative plays the role of the
likelihood ratio in the classical theory, and puts the sampling method
on a more rigorous basis. :

1.3 Summary of Main Results and Remarks

Solution of the problem of optimum reception stated in Section 1.1
rests on the following two fundamental (measure theoretical) facts:

(a) If Py and P; are two Gaussian (probability) measures, they
must be either (7) ‘“equivalent,” ie., Py = P, or (i) “orthogonal”’
(or “singular”), i.e.,, Py L P;.

(b) If Py and P; are equivalent, there exists a certain nonnegative
random variable f(w), called the Radon-Nikodym derivative of P,
with respect to Py , and a set of w points in @ such that f(w) = /(1 — )
can be taken as the desired critical region, denoted by A, in Section 1.1.
On the other hand, if Py and P, are orthogonal, there exists a set H
of w points in @ such that Py(H) = 0 and P;(H) = 1, and the critical
region can be taken to be such a set H. In short, the following set S
serves as the critical region:

g {{f(w) > o/(1 —a)] if Py= Py,

. (5)
H if Py L Pi.

Thus, the problem of determining the critical region now becomes
the problem of finding such a random variable and a set H.

Next, through the use of theory of martingales, the following facts
can be established:

For almost all sample functions,
(¢) if (and only if)
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lim tr [(Re™) ™ R\ — 21 — R™ (R\")7] < w, (6)
then
lim Lo(24, +++, %4,) = f(0) under both hypotheses;* (7)

(42) if (and only if) (6) is not satisfied, then

. (0 under null hypothesis,
lim L(ze, -, 2) = ' (8)
no0  under alternative hypothesis,

provided that the sequence {¢,} is dense in the interval 0 £ ¢ = 1, where
“tr” stands for “trace” and the likelihood ratio I,, together with
Ro'™ and R,'™, is previously defined in (4).f
Examination of (7) and (8) in conjunction with (5) immediately
leads to the conclusion that, irrespective of the hypotheses,
Se = {im L(zy, -+, 2e,) = o/(1 — a)}. (9)
Thus, if x(4), ---, x(f,) are the values of the sample function (the
received waveform) x(¢), 0 < ¢t < 1, sampled arbitrarily but with the
restriction that each sampling interval becomes infinitesimal as n — o«
then the optimum decision scheme becomes the following:
choose 7o(s,t) if lim L[e(d), -, 2(k)] < a/(1 — @),

n->0

choose ri(s,t) if limL[z(4), - - ,2(t)] 2 a/(1 — ). (10)
Furthermore, according to (7), if the given covariance functions ro(s,t)
and r(s,t) are such that (6) is satisfied by their covariance matrices
R¢™ and R, obtained through sampling, then, regardless of whether
ro(s,t) or ri(s,t) is the true covariance function, the above limit is finite
for almost all sample functions, and the error probability associated
with the decision scheme (10) is minimum. According to (4z), on the
other hand, if ro(s,t) and r;(s,t) are such that R, and R;"” do not
satisfy (6), then for almost all sample functions the limit vanishes
if ro(s,t) is true, while the limit diverges if r(s,t) is true; and, inde-
pendent of the given a priori probabilities, the associated error proba-
bility simply vanishes, resulting in the case of “perfect reception.”

* Recall that the null hypothesis is the hypothesis that ro(s,t) is the true
covariance function of the process while the alternative is the hypothesis that

ri(s,t) is the true covariance function.
f (6) and (7) are also found in Parzen.’
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It should be noted, first of all, that the sequence of sampled values is
not used to represent the continuous process but to obtain the crucial
random variable f and set H through formation of the likelihood ratio.
Secondly, under the assumption of the covariance functions being
continuous, it can be proved that, regardless of the sampling manner,
the limit of the likelihood ratio satisfies either (7) or (8), thus yielding
the same error probability, so long as each sampling interval becomes
infinitesimal as n — «.* Lastly, negation of condition (6) can be re-
garded as a necessary and sufficient condition for perfect reception.

Having obtained the optimum decision scheme (10), the question
of possible simplification naturally arises next. IExamination of the
form of the likelihood ratio (4) suggests that, if the limits of the ex-
ponent and the factor before the exponential exist separately, decision
scheme (10) may be rewritten in terms of these limits. Such an attempt
already appears in the literature, as mentioned in Section 1.2. However,
the crucial mathematical consideration hinges upon the condition under
which such a procedure can be justified. Here, the following condi-
tion is shown to be necessary and sufficient:

lim tr [(R™) ™ Ry — I] < oo

lim tr [Re™ (R,™)™ — I] < . (v
Note that this condition implies (6), as it should, and excludes the
case of perfect reception. In fact, condition (11) states not only that
the sum of two traces converge as condition (6) requires, but also that
the two traces converge individually. In conclusion: If condition (11)
is satisfied, then there exist a positive constant 8 and a random vari-
able 6 such that

B = lim | Ry (R\™)7"|, . (12)
6 = lim », Z (Re™)™ = (R Ty (13)

noow =1 j=1

for almost all sample functions under both hypotheses; and the optimum
decision scheme (10) is reduced to the following:

choose 7o(s,t) if 6(x) < log (1/8)[a/(1 — )T,

choose 7,(s,t) if 6(x) = log (1/8)[e/(1 — a)l%,
* This does not imply that two different decision schemes yield the same de-
cision for every sample function; rather, a set N of sample functions, for which

two (gcisions differ, give no contribution to the error probability, i.e., Po(N) =
0 = Py(N).

(14) -
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where 6(zx) is the value of 6 for the sample function z(¢), which is ob-
tained by simply replacing ., and z; in (13) by 2(¢;) and x(¢;).

Although the above decision scheme is certainly a step toward sim-
plification compared with (10), it is still inconvenient, if not unfeasible,
for physical application, since it requires limit operations for each
received waveform. Yet, so long as the likelihood ratio is formed in
terms of the sampled values, elimination of the limit operation appears
to be impossible. Recall, however, the problem of optimum detection
of sure signals in noise mentioned in Section 1.1. There, the likelihood
ratio is formed in terms of the Fourier coefficients of the so-called
Karhunen-Loéve expansion of the process instead, thus resulting in the
decision scheme specified in terms of an integral in place of an infinite
series, as shown by (3). Needless to say, in the present problem where
there are two covariance functions instead of one, additional mathe-
matical complications should be inevitable. Nevertheless, an optimum
decision scheme which is essentially comparable to (3) can be obtained,
as will now be shown.

Let Ay = X = --- and ¢i(t), ¥e(), - -- be the eigenvalues and the
orthonormal eigenfunctions associated with the covariance function
ro(s,t), and, similarly, let w1 = pe = --- and i(t), ¢2(¢), - -+ be those

associated with r,(s,t). Then, it can be shown that, under the assump-
tion of 7e(s,t) and ri(s,t) being continuous and positive-definite, the
integrals

1
§i = j(; xt‘»bi(t) di, 1=1,2-- (15)

exist for almost all sample functions under both hypotheses, and are
Gaussian distributed with means zero. Ifurthermore, the covariance
matrix determining the joint distribution of & , - - - , £, is given by either

(@™)i; = Nibij, or

16)
(Ql(n))ij

0 1
ai; = kz; EEUkiUej Ugj = /; e: (1), (1) dt,

depending upon which one of ro(s,t) and ri(s,t) is the true covariance
function of the process.

Thus the likelihood ratio of &, - - - , £ becomes

=1

[ =1Q™ Q)" |Fexp {% gl: i (@)™ — (Ql("))_l]wfi&}, (17)

which corresponds to (4). It turns out that, under the previous assump-
tion on the covariance functions, there is a complete parallel between the
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two formulations, one based upon z;,, ---, &, and the other based
upon £, -+, £ . Thus, for almost all sample functions,

(¢) if (and only if)
lim tr [(Q™)™ @ — 2I — @™ (@)™ < =, (18)

n->0

then
lim 1,(&, -+, &) = f(v) under both hypotheses; (19)

n—->0

(¢7) if (and only if) (18) is not satisfied, then

lim {,(&, -+

n-»0

0 under null hypothesis,
) En) = (20)

« under alternative hypothesis.
Then, the optimum decision scheme corresponding to (10) becomes:

choose 7o(st) if lim[.[&(2), -, & ()] < /(1 — a),

n-»o0

\ (21)
choose ri(s,t) if lim[,[&(2), - -, &(2)] 2 «/(1 — @),
where £(z), 7 = 1, ---, n, are the values of the random variables
&; for the sample funetion x(¢), namely,

£:(x) =f0 z(8)y:(2) dt.

Again, note first the role of {£;}, which is not a representing sequence
of the process but a means for obtaining the crucial random variable f
and set H by forming the likelihood ratio. Secondly, it can be shown
that, under the assumption of the two covariance functions being con-
tinuous and positive-definite, {¢;(¢)} can be used in place of {y:(t)}
to form {&}, but not any orthonormal basis of £,. Lastly, as before,
negation of (18) can be interpreted as a necessary and sufficient condi-
tion for perfect reception. Completing the parallel, if (and only if)

lim tr (@) @ — 1] < =,

n-—>00

lim tr [Q™ (™)™ — 1] < oo,

n->00

then there exist 3 and 8 such that
B =1im | Q™ (™)7, (23)

n-»oo

(22)
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6 = lim Z Z [(Q)™ — (@) ™,; &t (24)
n-sw i=1 j=1

for almost all sample functions under both hypotheses; and decision
scheme (21) is reduced to the following:

choose ro(st) if O(z) < log (1/B)a/(1 — ),
choose n(st) if 6(z) 2 log (1/8)le/(1 — )",

Returning to the original goal of eliminating the limit operation,
examination of (24) immediately suggests the possibility of rewriting
fasa quadratic form in z, . That is, if one defines

(25)

R (st) = ZZMW@M& (26)

i=1 j=1

where
hii™ = [(Q'™)™ — (@) Nis,
then, from (15),
1 1
b = Iimf f 2, (s,t) 2, ds dt, 27)
n->0 v0 0

and h;;;4j = 1, --+, n, can be given as a solution of the matrix
equation

Q™ (hii”) G = " — Q'

or, more directly, h™”(s,t) can be given as a solution of the integral
equation

1 1
f f 70 (8;u) B (up)r™ (vt) dudy = r, (st) — 0™ (s,), (28)
0 0

where

m%@=gwmwmnWm ZZ%Mwm<m

i=1 j=1

Then, the following conjecture should be imminent:

1 1
= f f xh(st)x, ds dt, (30)
0 i}

where h(s,t) is a solution of
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fl fol ro(s;u)h(up)ri(vt) dudv = 1n(st) — ro(spt), (31)

which are formally the limits of (27) and (28) respectively. The essen-
tial part of the above conjecture can be shown to be correct. That is,
if (31) has a solution A(s,t) such that

1 1
[ /. B*(s,t) dsdt < «, then

0 Yo

1 1 n n (32)
f f wh(st)a dsdt = lim Y, D hij™EE;

0 [} J:

n->0 =1 j=1

for almost all sample functions under both hypotheses, provided that,
forallz,j =1,2, -+,

aw <1,  au> 2 |ail, o = K, (33)
=1
] 1— 2 |6 — anl
k=1
where K is a positive constant independent of ¢ and ;.

Then the optimum decision scheme (25) is immediately reduced to the
following desired form:

1 1 1 p 2
choose 7o(st) if f f z(s)h(st)z(t) ds dt < log 7< ),
o Jo B\l — «a (30)
3
2

1 —o/°

vt 1 @
choose n(st) if f f 2(s)h(s)x(t) dsdt = log7< >
o Jo B

Difficulty of the proof lies mainly in the fact that, as n increases, the
cocflicients h;;\™ themselves vary with n as well as the number of the
terms of the sum, yet 1 (s,t) must approach A(s,t) in such a way that

1 1 1 1
lni_rg [0 [0 xsh(")(s,t)xt dsdt = (; /; xsh(st)x;, ds dt

for almost all sample functions under both hypotheses. This accounts
for need of the auxiliary conditions (33). The first condition is not a
restriction in physical application since

) 0 1
Y= D= [ np
=1 =1 0

is the average energy of the waveform in the interval 0 < ¢ < 1, which
can always be normalized to assure a;; < 1. Although the remaining two
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conditions are restrictive, current knowledge of infinite systems of
equations does not seem to allow their removal. Thus this calls for a
future investigation of the degree of restriction imposed by them in
physicial application.

As anticipated, there is an apparent correspondence between the
classical case of sure signals in noise mentioned in Section 1.1 and the
present case of stochastic signals, namely, between (2)—(3) and (31)-(34),
except for the fact that the constituent functions in the latter case are
functions of two variables instead of one. As the integral of the decision
scheme (3) has a simple physical interpretation (the output of a linear
filter with g¢(f) as its impulse response), so does the integral in (34).
Namely, it is the output of a quadratic filter whose impulse response is
h(s,t). The advantage of this scheme over the others — namely, (10,
(14), (21) and (25) — is obvious. Given two covariance functions, the
impulse response of the filter is uniquely determined by the integral
equation (31) if a solution exists, and decision is made by comparing,
with a preassigned threshold, the appropriately sampled output of the
filter with the received waveform as its input, instead of having to per-
form the limit operation for each received waveforn.

Finally, it should be remarked that the optimum decision scheme
above differs formally from those previously obtained by others.* A
further, and more significant, distinction lies in the assured optimality
of this scheme, inherent in its derivation, while the optimality of the
others has yet to be proved separately.}

II. MATHEMATICAL THEORY

2.1 Gaussian Processes

Let {x,, ¢t € T} be a real Gaussian process with a parameter set
T = [0,1] and a finite dimensional distribution function /..., , which
is determined by given mean function and covariance function where
tv, -+, t, are an arbitrary finite subset of 7. It is assumed that the
mean function is identically zero on 7' while the covariance function
is positive-definite and continuous on 7' X 7. In the present problem
it is desirable to have an explicit representation of the given process
{x., ¢t € T} on a function space.}

Let Q be a space of real-valued functions of ¢ € 7. Let x,(w) be the

* Although their work is briefly reviewed in Section 1.2, their decision schemes
are not stated explicitly in this paper.

t This excludes Parzen’s® case where the decision scheme is essentially (10).

1 The next paragraph follows closely Example 2.3 in Supplement, Doob,? pp.
609-610.
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w function with the value ¢{(s) if w is the function ¢(-), so that z;(w) =
¢(s). If the ¢ function w has values {(t), --+, (&) at &, -+, ta,
the condition

g‘(tl) épl,"'yg‘(tn) = pa

defines an w set, which is denoted by

{xti(w) = Pz, 1= 17 Tt n} (35)
where p;, -+, p, are arbitrary real numbers. Next, let & be the class
of all w sets obtained in this way for arbitrary =, t;, -+, t., and let

®r be the Borel field generated by F, and lastly let P be a probability
measure defined on the sets of B+ whose value is given by

P{xti(w) =< pi,i = 1, e ,n} = Ftl,--',t" (pl, e ,pn). (36)

Then, {z:(w), t € T} is a representation of the given process {x;, t € T}
on the function space @, and (2, ®r, P) is the explicit probability meas-
ure space for the representation.™

(Remark) By virtue of the choice of representation space, the general
elements of the space @ coincide with the general sample functions of
the process {z,(w), ¢ € T}. Thus, the phrases, “almost everywhere (or
almost surely)” and “for almost all sample functions,” have the same
meaning.

The assumption of continuous covariance function has the following
significant consequences:

(1) {z(w), t € T} has an equivalent (with respect to P) separable
and measurable process on the same w space.f Hence, so long as the
almost-everywhere valid properties of a given process are of interest,
as in the case of this paper, the given process may as well be taken
to be separable and measurable. Therefore, the Gaussian process
{x,(w), t € T} is henceforth assumed to be separable and measurable.

(77) {x(w), t € T} is sample (Lebesgue) square-integrable on T
almost everywhere with respect to P.}

This immediately implies that a Lebesgue integral

* Symbolic distinction between the given process and its representation on the
function space is made by explicitly writing the argument » for the latter.

T Note continuity of the covariance function of a process is equivalent to con-
tinuity in quadratic mean of the process (Loéve,1® p. 470), and hence it implies
continuity in probability of the process. Then, according to Theorem 2.6 in Doob,?
pp. 61-62, there exists an equivalent separable and measurable process on the
same space.

{ See Loéve,!® pp. 520-521.
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i) = [l d

exists almost everywhere, in which ¢(¢) is any continuous funection on 7.
Furthermore, since the sample Lebesgue integral of a process coincides
almost everywhere with the Riemann integral in quadratic mean cri-
terion,” and also the Riemann integral in quadratic mean criterion of a
Gaussian process is a Gaussian (random) variable,t £(w) is a Gaussian
variable.

2.2 Formulation of Problem

Let Fo.,,...,;, and Fyy, ..., be two alternative Gaussian finite di-
mensional distribution functions of a real separable and measurable
process {x:(w), t € T}, whose mean functions are identically zero and
whose covariance functions, denoted respectively by ro(s,t) and ri(s,t),
are positive-definite and continuous on 7 X 7. Let P, and P; be the
Gaussian probability measures defined respectively by Fi.y,,...,s, and
Fi;4,,....t, on the Borel field ®r of subsets of Q@ as defined previously.
It is well known that P, and P; are either equivalent, Py = P,, or
orthogonal, Py 1 P;.1

Define a set function P, by

“vln

P.(A) = aPo(A) + (1 — a)Pi(2 — 4A), A€ @By, (37)
where « is a constant, 0 < o < 1.§ Let A, € ®r be such a set that
P.(A,) = PA) forall A € ®r. (38)

Then, the problem of interest is to specify such a set A, in terms of
()|

Now, if P, = P, let f(w) be a Radon-Nikodym derivative of P,
with respect to Py ; while, if P, | Py, let H € &7 be a set such that
Po(H) = 0 and P(H) = 1. Then, it can be shown that the following

* Henceforth, the ‘“‘sample Lebesgue integral of a process’’ will simply be called
the “integral of a process,”” unless otherwise specified. A definition of Riemann
integral in quadratic mean criterion is in Loéve,1° pp. 471-474.

t See Loéve,!0 p. 485.

I See Hajek.11:12

§ P. is the so-called error probability. Although0 < P, <1 for all A € &y,
P, is not a probability measure, and its full meaning is given in Section 1.1.

|| Equivalence between this problem and that of “optimum reception of binary
Gaussian processes’ is discussed in detail in Section I.
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set S, satisfies condition (38):*
ifPUEPly S {f(w)éa/(l—a)},
lf Po _L P] y Sa = H

Thus the above stated problem is reduced to that of finding

(¢), if Py = P, a function of z,(w) equal to f(w) almost everywhere
with respect to Py and P, and

(), if Py L Py, some such set H expressible in terms of z,(w).

(39

2.3 Solutions — I

2.3.1 General Solution

Let {7} be a sequence of points in 7" = [0,1], which is dense in 7.
Let ®, be a Borel field generated by a class of w sets of the form

{x‘ri((") = Pi, 1= 1) T ,n}’ (40)
and let &, be the minimal Borel field containing U ®, . Obviously,
n=1

B CT®BC - C B C By (41)

Then, since {x:(w), t € T} is a separable process, continuous in proba-
bility (with respect to Py and P;), and the sequence {7} is dense in T,
it follows that, for an arbitrary set A € ®r, there exists a set A’ € ®,
such that

Po(AAN') = 0 = Pi(AAN). (42)t

Now, through the use of the covariance functions r¢(s,t) and ri(s,t)
and the fact that the mean functions are identically zero, the density
functions po and p; of the random variables z,(w), 2 = 1, -+, n,
corresponding to Pyand P; respectively, are obtained as follows:

Pu(vr, -y w) = (20)" P | R, ™ |7

n n 43
X exp {_% Z Z [(Rm(n))_llﬁ Vi”i}y m = Oy 1) ( )

where the 7;,¢ = 1, - - - , n, are a finite subset of {7}, and R, m = 0.
1, are n X n symmetric, positive-definite matrices defined by
(Rm(n))“ = Tm(Ti y ‘rj); m = 0, 1, 1,j = 1, cer g, N (44:)

* See Appendix A. The first assertion of (39) follows from Corollary 1 in this
appendix, while the second assertion is self-evident.
t See Doob,? pp. 51-55; in particular, Theorem 2.2 (¢).
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Then define a random variable [, (w) by

ln w) = pl[x71<w>) Tty x‘rn(w)] — Ro(n) Rl(n) ~-1 (3
() polar, (@), -+ -, 7, (w)] | B

(45)

n

t [(RO("))_I - (Rl(n))_l]ijxri(w)xfi(w)}-

n
=1 j=

D] =

X exp{

Note that
li(w) = 0 forall n. (46)

Furthermore, since R,,', m = 0, 1, are positive-definite, p; = 0 when-
ever po = 0 and vice versa. Then, it can be shown that the processes
{l.(w), n = 1} and {1/l.(w), n = 1} are martingales with respect to
Py and P, respectively.*

(1) Py = Py : Let Eo{f(w)| ®,}, n = 1, 2, ---, be a conditional

expectation of f(w), given ®&, , with respect to Py . Namely,

fAEo{f(w) | ®,} dPy = /;f(w) dP, forany A € ®&,.

Then,
Liw) = Eoff(0)| &},  ae (Po),t (47)
and, from (41)f
lim Eo{f(w)| @) = Eolf(«)| &), ae. (Po). (48)
Yet, from the definition of Eoff(«)| .} and (42),
Eoff(w)| B = f(w), a.e. (Po). (49)
Hence,
lim l,(w) = f(w), a.e. (Po). (50)

Since Py = P;, the above implies

lim l(w) = f(w), a.e. (P1). (51)

n-»w

Thus, the desired funection, which is equal to f(w), a.e. (Po, Pi1), is

* See Doob,? pp. 91-93.

T “a.e. (Pn),” m = 0, 1, is used as a shorthand notation of ‘““almost everywhere
with respect to Pn .”” Similarly, ““a.e. (Po, P1)”’ will be used to denote ‘‘almost
everywhere with respect to both P and P, .”

I See Doob,? p. 331.
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l.(w), which is defined by
l.(w) = lim [,(w). (52)

n-»00

(#) Py L Py : From (46), lim I,(w) < o, a.e. (Po).* In fact, it can
be shown that nee

lim [,(w) = 0, a.e. (Po).t (53)

By using the same argument, it follows that

lim [1/l.(w)] = 0, a.e. (Py). (54)

n-—>0

Hence, for an arbitrary constant ¢ > 0,

Po{lim I,(w) = ¢} = 0, Pi{lim [, (w) = ¢} = 1.

Thus, the desired set H, with Po(H) = 0 and P,(H) = 1, is
H = {lim ,(«0) 2 a/(1 — a)}. (55)

n—->w

In summary, upon combination of (52) and (55) in conjunetion with
(39), the desired set S, is
Se = {lim [,(0) =2 o/(1 — a)}, (56)

n->00

irrespective of whether Py = Pyor Py L Py .

2.3.2 Spectal Solutions and Summary

Under certain restrictive conditions, the set S, can be specified in
terms of well defined functions of z,(w). It is the purpose of this sub-
section to obtain such specifications as well as the accompanying con-
ditions in terms of the given covariance functions ro(s,t) and r(s,t).

(¢) If Py = P., it has already been shown that

Sa = {lo(w) 2 /(1 — a)}.

Thus, it is of interest to obtain a condition for Py = P; .1
Define

m(w) = [lh(w) — logl(w), n=12---. (57)

* See Doob,? p. 319; Theorem 4.1 (7).

t See Doob,? pp. 345-346.

1 Such conditions are already available (e.g., Parzen,® Shepp!?). For more de-
tail, see Yaglom."
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Then, since (p — 1) log p, p > 0, is a real, continuous and convex
function of p and Eof|(l.(w) — 1) log L(w)|} < o, n =1,2, -+ ;
{m(w), n = 1} constitute a semi-martingale (with respect to P,).*
Hence, Eo{n.(w)}, n = 1, 2, ---, forms a monotone nondecreasing
sequence

Efm(w)} £ Efm(w)} < ---, (58) %
which must either converge or diverge. Then, according to (53),
if Py L Py, then
lim Eofna(w)} = . (59)

Hence, since Py and P; can be either equivalent or orthogonal, it follows
that

Po = P1 , lf
lim FEofnpa(w)} < . (60)

n-—>»%0

It can be shown that the converse of (59) is also true,] i.e.,

if lim Eo{?’)n(w)} = @, then Po 1 P1 . (61)
This implies that the condition of (60) is also necessary. Thus, through
substitution of (45) into (57) and application of (43) for expectation
calculation, §

Py, = P, if and only if
lim tr [(Ro™) ™ By — 2T + R (/™)) < . (62)]

where Ro™ and R, are defined in terms of ro(s,¢) and r,(s,t) by (44).
(#7) Examination of (45), (50) and (51) indicates that, in addition to
condition (62), if

lim | R™ (R\)7 =8 0<B< o, (63)

n-»0

then

* See Doob,? pp. 295-296, Theorem 1.1 (iii). “E,”’ denotes expectation with
respect to Py, namely, an 1ntegra.t10n over @ with respect to P, .

1 See Doob,? p. 324, Theorem 4.1s.

I See Hajek;™? in de‘tIOUIaI‘ Lemma 2.1.

§ For this calculatlon use the following equality: Eo{n.(w)} = Ei{log l.(w)} —
Eollog la(w)}, n = 1, -

| “tr”’ denotes “trace,” and 7 is then X n identity matrix.
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lim Zn Zn [(Ro(n))_l - (Rl(n))_l]ij xri(w)xw(“’) < o,
n—>0 i=1 j=1 (64)

a.e. (Py, Py).
Thus, by defining 6(w) as the above limit, i.e.,
0(w) = lim 2 2 [(R™)™ — (Ra) i (w)as (@), (65)
n—>o0 1=1 j=1

the set So € B¢ can be specified as follows:
Sa = {0(w) = log (1/8)(a/(1 — a))}. (66)
It will now be shown that two conditions (62) and (63), required
for the above specification of S, , are equivalent to the following pair
of conditions:
lim tr [(Re™) " R, — I] < oo,

and (67)
lim tr [Re™ (R,\™)™ — I < 0.

n-—>roo

Define
fa(w) = —log lu(w),
(68)
G/ (w) = L(w) log l.(w) n=12 -
Thus,
17"(“") = g‘nl(w) + fn(w)y n = 1: 2; T (69)

Again, just as in the case of 7.(w), both {{.(w), n» = 1} and {{,/(w),
n 2 1} are semi-martingales with respect to Py, and

Eolti(w)} = Eolie(w)} = -+,

(70)
Eo{t)' (@)} = Boft'(w)} = --- .
Furthermore, from (53),
if Py L Py, then lim Eo{¢.(w)} = «. (71)

n—>0

However, from (69) and (70), divergence of Eo{{.(w)} implies that of
Eo{n.(w)}. Hence, according to (61), the converse of (71) holds. Then,
again from (70) and the equivalence-or-orthogonality dichotomy of
Poand Py,
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Py =P, ifandonly if lim B¢, (w)} < . (72)

Thus, upon substitution of (45) into (68) and application of (43)

for expectation calculation, an alternative necessary and sufficient
condition for Py = P, is obtained as follows:

lim {log | (Re™)™ R, | + tr [Re'™ (R,)™ — 1)} < . (73)

Now, under the condition (63), the above condition implies that

lim tr [Re™ (R,")™ — I] < . (74)
Then, upon combination of conditions (62) and (74), condition (67)
immediately follows.
The result of this section may be summarized as follows:
(z) In general,

Se = {lim [,(w) = o/(1 — a)},

n-»>00

where [,(w) is defined by (45).
(#¢) If Py = Py, which is true if and only if
lim tr [(Re™) ™ B™ — 2I + R (R,"")7] < oo,

n-—>o0

then lim /,(w) = f(w), a.e. (Py, P1); thus by defining [ (w) = lim /,(w),

n->o n—>w

Sa = {ly(w) 2 a/(1 — a)}.

(41) if
lim tr [(Re™) ™ R — 1] < oo,
lim tr [R™ (R\™)™ = I] < oo,

then

Sa = {6(w) 2 log (1/8)(a/(1 = ))*}
where 6(w) and 8 are defined by (65) and (63) respectively.

2.4 Solutions — II

2.4.1 General and Special Solutions

Let A1 = A = --- and Y4(2), ¥u(¢), --- be the eigenvalues and the
corresponding orthonormal eigenfunctions associated with the covari-
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ance function ro(s,t).” Similarly, let uy = po = -+ and (), @2(¢), - - -
be such eigenvalues and eigenfunctions associated with r;(s,t). Then,
according to the discussion in 2.1 (47), continuity on 7' of each y;(¢)
implies that the integrals

8 = [aw@a,  i=12 (75)
T
exist a.e. (Py, P;), and are Gaussian random variables. In fact, it

can be shown that the density functions o and #; of & (w), -+, £u(w)
corresponding to Py and P; are given by T

Pu(r, oy ) = (207 Q[
exp {—_ Zl ; [(@n™) s u,u,}, m =0, 1, (76)
where Q,.”, m = 0, 1, are n X n symmetric and positive-definite
matrices defined by
(@) = Nibij (@) = ; MUl (77)
where
= fT¢i(t)¢j(t) dt. (78)

Let &, be a Borel field generated by a class of w sets of the form
{£:(w) = pi, i =1, , i, (79)

and let &, be the minimal Borel field containing U &, . Obviously,
n=]

&}k B oCBr. (80)

It can be shown that, for an arbitrary A € ®r , there exists some A € &,
such that

Po(AAR) = 0. (81)%

Now define a random variable {,(w) by

* More precise definitions of these eigenvalues and elgenfunctlons are given
in Appendix B.

T See Appendix C.

1 See Appendix D.
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7 — ﬁl[fl(w), Y En(w)]
l"<w) 730[21(‘*’)) C En(w)]

= Q™ Q™) [exp {1 2 Q™)™ (82)

203

— @) Misti(w) E:‘(w)} )

where (76) is substituted for the second equality. Again, note that
2,,(w) is nonnegative for all n» and also the fact that p, = 0 whenever
Po = 0 and vice versa since Q,.\™, m = 0, 1, are positive-definite. Thus,
again the processes {7"(w), n = 1} and {1/2,,(40), n = 1} are martingales
with respect to Py and P; respectively.

By following step-by-step the same procedure as the one in the
preceding section,™ the following results are obtained:

(z) In general,

Se = {lim l(w) = /(1 — a)}. (83)

(#1) If Py = P, , which is true if and only if
lim tr [(Q'™) ™ Q'™ — 2T + Q™ ()] < oo, (84)

n—>o0

then
lim I,(w) = f(w), ae (Po, P); (85)
thus by defining
I () = lim [,(w), (86)
Sa = {l,(w) = a/(1 — a)}. (87)

(¢i7) If
lim tr [(Qe™) ' @ — I] < =,

n—>cwo

lim tr [Q™ (@)™ — 1] < oo,

n—>o0

(88)

then there exists a constant 8, 0 < 8 < =, such that

ok In effect, it amounts to replacing ®, and l,(w), n = 1, 2, --- n, by ® and
l.(w) respectively.
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lim | Q™ (@) | = B; (89)

n->00

and, from (85) and (82), it follows that

lim Z Z (™)™ — QG™) iti(w)Ei(w) < o,
nrw =1 j=1 (90)
a.e. (Pa, Py);
thus, by defining 6(w) as the above limit,
Sa = {8(w) 2 log (1/8)(a/(1 — ))¥. (91)

2.4.2 Integral Expression for 0(w)

For the purpose of physical application, it is desirable to express the
random variable §(w) as a simpler function of ,(w), in particular, with-
out involving limit operation. Examination of the definition of (),
ie.,

b(v) = lim Z Z Q™) — (&™) hki(w)Ei(w), (92)

n>w =1 j=1

indicates that #(w) might be expressible as a quadratic form in 2,(w),
ie.,

fr/; Te(w)h(s,)a(w) ds dt

if such a square-integrable function h(s,t), (s;t) € T X T, exists and
can be determined uniquely. It is the purpose of this subsection to make
the above statement more definite and precise.

Define an n X n symmetric matrix H™ by

H(n) — (Qo(n))—l _ (Ql(n))—l-
Then,
Qo(n)H(n)Ql(n) — Ql(n) _ Qo(n)
or, through (77), the equation for the ¢-jth element becomes
Z N (@ s = (@7 = Ndisy i =1, -, m.

In other words, every ith row of H™ satisfies the following system of
equations:*

Z aJ’khik(n) = b,(i) .7 = 17 e, M,
k=1

* Note that the solution is unique, since the matrix (a;;) is positive-definite.
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where
a;; = Z MEUriUr 5
1 7 j=1,2 -, (93)*
bj(?) = (ai/N:) — 84,
or its standard form
b = 3 eaha® £ 0i(0),  G=1e,m(94)
where
Cij = 5,',' - Q5.
Now, foreachz = 1, 2, - - -, consider the following infinite system of
equations:
= k;cjkh,-k +bi(d), Jj=1,2---. (95)
According to the theory of infinite systems of equations,t if (95) has a
solution (A , ki, -+-) foreachz = 1,2, -+« | such that

> (96)

=1 J=

then (ki1 , ki, +--) is unique and

hij = lim b,  j=1,2,---, (97)
for each ¢ = 1, 2, ---, where (ha™, -+, hn'™), 4 = 1, -++, n, is

the solution of (94); provided that (95) satisfies the following condi-
tions: foreach¢ = 1,2, - -+ |

2o les| <1, (98)
=1
and there exists a constant K; > 0, independent of j, such that
| b;(2)] = K(l—ZIc]kl> i=15L2 ... (99)

On the other hand, if (hi, ki, ---) is a solution of (95) for each
i=1,2, ---, satisfying (96), then the following integral equation

ff ro(s;u)h(up)r(vt) du dv = ri(st) — ro(sit) (100)

* Note that (@1™);; = a:j ;1,7
t See Kantorovich and Krylov, 15 pp 20—33
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has a square-integrable solution h(s,t),

foTh“’(s,t) dsdt < =, (101)

such that

hist) = Z Z hijbi(s)¥;(t),  in the mean.* (102)

i=1 j=1
Conversely, if /(s,t) is a squ?,re—integrable solution of (100), then (95)
has a unique solution (%%, , hw, -++) for each 7 = 1,2, .-+, satisfying

L Z hif < o, such that

= =

fis = [ [ 9:@hs0v0 ds vt (103)
™vT
Now, extend the definition of k:;™, ¢ = 1,2, - -+ , n,1 by adding
hii™ =0; di=n+1,n+2 . (104)

Then, (90) and (92) can be rewritten as

lim > 3k @) < @, ae (P, P, (105)

n>0 =1 j=

and

f(w) = lim Z‘, Z hii™ Ei(@)Ei(w). (106)
n=0w {=1 ]—

According to the theory of coordinate and projective limits in sequence
spaces,§ (97) and (105) imply that

60) = 3 3 b)),  ae (Po, Py,  (107)

=1 j=1

since

> 3w @) < »,  ac (P, P, (108)

=1 j=1

On the other hand, from (102) and square-integrability, a.e. (Py, Py),

* See Appendix E.1.

t See Appendix E. 2

1 Namely, (ki1 , -+, hin) is the solution of (94) for each ¢ = 1,

§See Cooke,¢ pp. 282—289 in particular, Theorem (10.3, II), extended to the
case of double’ sequences.
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of {z(w), t € T},
L[ a@htspze) dsd = 3 3 higile)es(e,

=1 j=

(109)
a.e. (Po,P1).

Hence,

B(w) = foij(w)h(s,t)x,(w) dsdt, ae (Py,P). (110)

2.4.3 Discussion and Summary

Recall that, in order to specify the set S, € ®r for given « as (91),
it is sufficient to assume (88), which assures existence of § (w) and 3
defined by (89) and (92) respectively. Moreover, in order to express
6(w) as (110), it requires the additional assumptions that () the
integral equation (100) have a square-integrable solution and (%)
the conditions (98) and (99) be satisfied.

It can be shown, however, under the assumptions () and the fol-
lowing:

aﬁ<1, i=1,2,"', (111)
the conditions (#7) and (88) can be replaced by the following:

ai > 2 |ay], =12, .-, (112)*
=1

and that there exists a constant K > 0, independent of ¢, j = 1, 2’
.-+, such that

[(ass/\) = b S Klay ~ 3 ), (113)

where a;; is defined by (93).1 It is quite possible that, once the condi-
tion (¢) is assumed, the conditions (111), (112) and (113) may be
superfluous. That is to say, in some special cases, if the integral equa-
tion (100) admits a square-integrable solution A(s,) it may be pos-
sible to prove directly that

o

Wst) = Tm 3 3 b wa(sWs(d), (114)

n—>0w i=1 j=1
in the mean, which immediately implies (97) and (105), thus establish-

* The prime on the summation sign symbolizes omission of the term j = 7.
t See Appendix D.
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ing (107) and leading to (110). However, in the general case, establish-
ment of (114) does not seem possible, nor does finding a sufficient
condition for (114), without making the resultant condition excessively
implicit and complex.

2.5 Summary

If
ff ro(s,u)h(up)ri(vt) du dv = ri(st) — ro(syt)
T T
has a solution h(s,t),

ff W (s) ds di < w,
v T

then the set S, € &7, given a (0 < a < 1), can be specified as

5= {[ [ m@htnat sz 005 (725)} a)

where
ﬁ = lim | Qo(") (Ql("))—l ],
and
(Qo (n)) i = Nibij, (Ql(”))ij = Qij ; Lj=1-,mn

and

aij = kZl MRl 5 L) = 1,2, 0

wi = [ 0w,
\Vhere Al g Az ; st y‘l’l(t)) ‘P?(t)) Y and M1 é M2 ; Tt ¢1(t)7
e(t), -+-, are the eigenvalues and the corresponding orthonormal

eigenfunctions associated with the given covariance functions ro(s,t)
and 7,(s,t), which are positive-definite and continuous on 77 X T;
provided that
Waex<1l,2=1,2, -+,
(z)a”ii>zllaﬁlv i=1’2)"'7
=

(3) the following is bounded uniformly inz, 7 = 1,2, --- :
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aij
)T hand 6if

\ < K.
1 — 2|6k — a|
k=1
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APPENDIX A

Theorem on Optimality

Let Py and P; be probability measures defined on a Borel field ®
of subsets of an abstract space Q. Through the use of Lebesgue decom-
position theorem and Radon-Nikodym theorem:* for a nonempty set
H ¢ ® with Py(H) = 0, there exists a nonnegative function f(w) in-
tegrable over @ with respect to P, such that

P(A) = fA f(@)dPy 4+ Py(A N H) (116)

for an arbitrary A € ®.1
Theorem: For an arbitrary constant k > 0, define a set S € ® by
S = {f(v) =2 k¥ UH. (117)
Then,
kPo(S) + P1(8°) — kPo(A) — Pi(A°) £ 0 (118)

for an arbitrary set A € & where S° and A° are the complements of S and
A with respect to Q.

Proaf:
Put p = kPo(8S) + Pi(8°) — kPo(A) — Pi(A°). By adding and
subtracting kPo(S N A) and Py(S° N A°),

* See Loéve,1° pp. 130-132.
+ This paragraph closely parallels Grenander,! pp. 209-210.
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p = Kk[Po(8) — Po(S N A)] + Pi(8°) — Py(8° N A%)
— K[Po(A) — Po(S N A)] — Pi(A°) + Py(8° N A°)

(119)
= kPo(S NA°) — P (SN A% + Pi(S°NA)
— kPo(S° N A).
From (116) and (117), with £ > 0 and Py(H) =
P, (SN A% — PS8 NA)
- LnAcf(w)dPO B -[qanf(w)dPO (120)

+P(SNANH) —P(S°NANH
kPo(S N A%) — kPo(S° N A),

v

since
P(S°NANH)
=Pi({flo) < B} NH NANH) <P(H°NH) =0.
By substituting (120) into (119),
p =0,
which proves (118). (Q.E.D.)

Corollary 1. Suppose Py = Py, and let kb = [a/(1 — a)], 0 < a < 1.
Then, a set S defined by

= {f(0) 2 /(1 — @)} (121)
has the property expressed by (118), i.e.,
aPo(8S.) + (1 — a)Pi(8.°) £ aPo(A) + (1 — a)Pi(A°)  (122)
for an arbitrary A € @®.

Proof:
Note that Py = P, implies P;(H) = 0. Hence, in (118),

kPo(8S) + Pi(8°) = [o/(1 — a)]Po(Sa UH) + Pi(S. UH)
= [0‘/(1 - a)]Po(Sa) + Pl(Sa)-

Thus, substitution of the above into (118) and multiplication by 1 — «
proves (122).

Corollary 2. Take Q to be R, , an n-dimensional Euclidean space, and &
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to be Borel field of right semi-closed, semi-infinite intervals in R, , denoted
by Fn . Let p(21, -+ ,22),m = 0, 1 and (21, - -+, x,) € R, , be Baire
density functions corresponding to P,, ,m = 0, 1; z.e.,

Pm{xl = pi,i = 1, Ty, d}

P1 Pn (123)
= f .o dxl "'dxnpm(xl,"',xn)-

Suppose pi(x1, -+ ,2.) = 0 whenever po(x1, -+ ,2,) = 0. Then

Sa,n defined by
o ) e |
' po(xly"',xn)_l—a

has the property expressed by (122).*

Proof:
Note that Py = P,, thus P(H) = 0. Then, from (116),

f(x1;°",xn):%§H, a.e. (Po,Pl)

Hence, apply Corollary 1.
APPENDIX B

Preliminaries on Integral Operatorst

Let L be an integral operator with a real, symmetrie, continuous and
positive-definite kernel r(s,t) defined on the rectangle 7 X T where
T is the closed interval [0,1]. That is,

L = [ 1(s,05) ds (124)

where f(¢) is an arbitrary real-valued function in the space of square-
integrable functions on 7, which is symbolically denoted by £.(0,1),
or simply by £, .

Then, according to the theory of linear operators, all the eigenvalues
of L are positive, of finite multiplicity, and finite or denumerably in-
finite in number. Thus, counting each eigenvalue as many times as its
multiplicity, we can construct an ordered sequence of eigenvalues,

* This replaces the Neyman-Pearson theorem in the classical theory of testing
simple hypotheses when the criterion changes from the Neyman-Pearson’s to

the minimum error probability. See Cramér,!® pp. 529-530.
1 See Riesz-Nagy,'” pp. 227-246.
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MZ M, (125)

and the corresponding sequence of orthonormal eigenfunctions (using
the Gram-Schmidt orthonormalization process if necessary),

zl’l(t): ‘l/2(t)’ e (126)
Then, according to Mercer’s theorem,
r(st) = Z:, Na(8)¥a(2), (127)

where the series converges uniformly on 7. Consequently, ¢.(¢) is
continuous on 7 for all 7, and

SN = f r(tt) dt < o, (128)

1=1

namely, the sum of all eigenvalues is finite.
Furthermore, because of the positive definiteness of the kernel r(s,t),
the set of the eigenfunctions {¥;(¢)} forms an orthonormal basis of £,.

Let {¢:(t)} be another orthonormal basis of £,. Then,
v;(t) = f; usjei(t), in the mean, (129)
where
ws = [ oi9s(0) at, (130)

which satisfies the following orthogonality conditions:

D Uiy = f ei(De;(t) dt = 85,

k=1 T

w (131)
2 Uik = f Yi()y; (1) dt = &y .

k=1 T

APPENDIX C

Density Functions of £i(w), 2 =1, <+, n

It has been established in Section 2.4.1 that the random variables
defined by (75), i.e.,

M@=LM@%®% i=1,2 - (132)
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are Gaussian variables with respect to Py and P,, where
Bnlz(w)} = 0,6€ T,m = 0,1, and frxf(w) dt < o,
a.e. (Py, P1) .

C.1 With respect to Py

Through repeated use of Fubini’s theorem,

Bolti(w)] = j;Eo{x,(w)} G dt=0, i=1,2--- (133)

and

Bl 5@) = [ [ Fala(@a(@) (900 ds at

- foT ro(s;)¥i(s) ¥;(1) ds dt (134)

= Mdij; 4J=1,2 -,
where Mercer’s theorem is used for the third equality. Then, since
¢(w),2 =1, -+, n, are Gaussian variables, (133) and (134) immedi-
ately give (76) and (77) with m = 0.
C.2 With respect to Py
By substituting (129) into (132),

E,(w) = ),=Zl ukmk(w), a.e. (Po , Pl) (135)
where
ni(@) = [ wlloit) dt,  i=1,2, (136)

which exist a.e. (Py,P;), and Gaussian variables just as £(w), 7 =
1,2, --- , are. Then, the results in C.1 imply that

Byfni(@)ni(@)} = pidiz;  Gj=1,2, - . (137)
Define
£ (w) = kz_:lukiﬂk(w); Jg=100,m, (138)

* Note 5;(w) here must not be confused with the one in Section 2.3.2.
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and let F,"” be the distribution function of & (w), -+, £™ (),
and let ;™ (71, -+, 1), —®0 < 7; < ©,j =1, .-, n, be its char-
acteristic function with respect to P, , i.e.,

A, oy ) = B {exp [z‘ilnz,-<"”<w)]}. (139)

Then, according to Levy’s continuity theorem,* lim F,"™ exists if and

only if im f,™ (71, - -+, 7a) exists for every 7;, —o < r; < «, and
continuous at r; = 0, = 1, - - -, n; and, furthermore, when lim F," =
F, exists, its characteristic function fy(r;, -+, r,) isequal to lim £,
(7'1) tty Tn) forall 7;, — o < 7; < w,j =1, ---, n. Hence,
it suffices to obtain lim £’ (7, -+ -, 7.), namely, the limit of (139)
as m — o, and to assure its continuity at the origin.
By substituting (138) into (139),
fl(m)(‘rl, s Tn) = E]_ {exp l: Z Tj ; ukjnk(w)]}
= E] {pr [ ’Lnk(w) Z r,uk,]
= I exp (Z Tjuki> ]
k=1 Jj=1
1 m n n
= exp l:—— Z Z Z TiTjI-Lkukiukj] .
2333
Note that
2 L | = 2 e | weany | < 20 m < oo, (138)
k=1 k=1 k=1
since

was | = | [ ex0:0) atl | [ extwsto a

s [et al [vi a [ o0 a]

= 1.
* See Cramér,® p. 102.
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Hence,
®w n n n w
Z: Z TiTjMrUkUr; = Z Z TiTj Z MEUkUss
k=1 i=1 j=1 i1 j=1 k=1
Then, putting
0
()i = kzlﬂkukiukj; L, j=1,+-+,m,

continuity of exponential functions implies

. m 1 n n "
lim f( )(Tl, Tty T'n,) = exp |:—-—2— 21 Zl (Q1( ))«ijTiTj:l,
m->co i=1 j=

which is obviously continuous at 7; = 0,7 = 1, ---, n. Note that the
right-hand side above is the characteristic function of the Gaussian
distribution function with the density function (76) and (77) with
m = 1.

APPENDIX D

Py — Equivalence between ®r and B,

It is to be proved that, for an arbitrary set A € B, there exists a
nonempty set A € &, such that PO(AAK) = 0. Note, however, that
the above statement is equivalent to the following:

Let §r C @y be a class of all sets A € B, such that A € F, implies
existence of a nonempty set A € &, with Po(AAA) = 0. Then, F, =
®r.*

The second statement will be proved.
D.1 Forevery t € T,

zy(w) = g&(w)g&k(i), a.e.(Py). (139)

Proof:

According to the discussion in Section 2.1, (%), &(w), k= 1,2, -+,
are equal, a.e. (P,), to the Riemann integrals in quadratic mean eri-
terion of x:(w)y¥«(t) on T. Hence, from the proper orthogonal decomposi-

* It must be proved first that such an F, is not empty. This will be done in
Section D.2.



2802 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

tion theorem,* the series of (139) converges in quadratic mean with
respect to Py to 2;(w) uniformly on T. Furthermore, &(w),k = 1,2, -+,
are mutually independent Gaussian variables with means zero and vari-
ances A, , k= 1,2, - -+, with respect to Py .1 Hence, the series converges,
a.e. (Py), to a limit for every ¢ € T since the series of its variances con-
verges for every ¢ € T, i.e.,

kX:; EU{Ekz(w)}‘l/kZ(t) = }; )\k\l/k(t)d/k(w = To(t,t) < w,

from Mercer’s theorem. Yet, since both the convergence in quadratic
mean and the convergence almost everywhere imply the convergence
in probability measure, this limit must be equal, a.e. (Py), to x,(w)
for every t € T. (Q.E.D.)

D.2 Let Ay € Br be defined by
Ar = {2y (w) £ piy2=1, -, m}. (140)
Then there exists a nonempty set A € &, such that
Po(ArdAg) = 0.
Proof:
Consider a set defined by

Ar= {kZ_)l o)ty = pi,i=1,---, 'n} (141)

Clearly, Ar € & . Define T, € ®r by

ry= {xt(w) = l; Ek(w)tl/k(t)}, teT. (142)
Note that (139) implies
Py(T,) =1, teT. (143)
Then it is self-evident that, fort; € 7,7 =1, --- , n,

AT = AT ﬂ (ﬁ rli) + AT n <G I‘gic>,
i=1 7=1 (144)

Az = Ar ﬂ(ﬁ rt,.) + Ar ﬂ(gl mf),

where T';,° is the complement of Ty, . Note that, from (142),

* See Loéve,!0 pp. 478-479.
t See Appendix C.1.
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4,0 (ﬁ r) ~i.N (ﬁ r) (145)
i=1

i=1

and, from (143),

P() [AM’W(&I Ft:)] == 0 = Po I:Kﬂ’](lijl FtiC)J. (146)

Hence, upon combination of 144, 145, and (146),

Po(AzALr) = 0. (QE.D.)
D3Fr = ®Br.
Proof:

First, it is easily seen that the class & is a field. Moreover, it will now
be shown that F, is a Borel field. Let AAi EA&—T’ i =1,2, ---. Then,
from the definition of Fr , there exists A: € & such that

Po(AiAR;) =0, §=1,2 ---. (147)
Define two sequences of null sets M; and N;,7 = 1,2, --- | by
M= A;—Ri,  Ni=Ki— A (148)
Then,
A-Ncrnch UMy, =12 .
Hence,
.Gl A — Gl N: C FJI A C <161 [\i) U (161 zm),

which implies

Thus,

namely,
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Furthermore, since

ios
=
If
{—\
ics
=
~=

and also Fr is a field,
N A €5z,
i=1

Hence, ¢ is a Borel field.
Secondly, note that Fr contains the generating class of ®r as shown
by (140) and (35). Hence,

Fr D Br.
Yet, from the definition of Fr,

FrC ®Br.
Therefore,

Fr = Gr. (Q.E.D.)
APPENDIX E

Equivalence between Two Equations
E.1 Preliminary

Through Mercer’s theorem,

P(sd) = 2 A, (149)
uniformly.
n(st) = 3 mor(s)en(0), (150)
Then,
{; fT r1(s,0)¢i(s)y;(t) ds dt = kz:; MU U = Qi .
Hence,

ri(st) = i Zj: a; s (s)p;(t), in the mean. (151)*

=1

* This is a trivial extension of well-known results in the case of functions of one
variable. A special case of (151) is found in Courant and Hilbert,!® pp. 73-74.
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E.2 Equivalence between Two Equations

Equation (95) can be rewritten as

Z )\ihikak,- = O;; — )\i(sij , ] = 1, 2, ey, (152)
k=1
where 7 = 1, 2, --- . Repeating (100),

[ [ nomhunn) duds = nsd = nls.  (5)

(a) If (ha,hiw, ) is a solution of (152) foreach 7 = 1,2, ---
with

Z Z hijz < o y (154)

then a square-integrable function hA(s,t) with

Wsg) = 3 3 hs(s)s(t),  inthemean,  (155)
i3 =

satisfies (153).

Proaf:
The left-hand side of (153) is clearly square-integrable. Hence, it
has the following expansion:

f f ro(s,u) h(up)r(v,t) dudv = i i i Nihatiipi (8)@;(t),
T Jr i=1 j=1 k=1 (156)

in the mean,

since, through substitution of (149), (150), and (155),

f,. fT [fT f1 ro(8,u) h(up)ri(vt) du dv] Yi(s)y; (1) ds dt
(157)

-]
Z 1kak17 i:j= 1’2: Tt
k=1

Yet, by virtue of (ha, ki, --+) being a solution of (152) for each
i=1,2, .-, the right-hand side of (156) becomes

0

iii&wwwmn—ZZm]Mmmwm,uw

i=1 j=1 k=1 =1 j=1

the right-hand side of which in turn becomes, from (149) and (150),
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Tl(S,t) - To(S,t)

s

(a,-j - )\ifij)l,bi(s)l//j(t), in the mean. (159)

00
=1

Thus, upon combination of (156), (158), and (159),*

<
]
A

f fTro(s,u)h(u,v)rl(v,t) dudyv = r(st) — ro(s,t). (160)
(Q.E.D.)

(b) If h(sit) is a square-integrable solution of (153), then
(hiry bz, - -) satisfies (152) foreach ¢ = 1,2, --- | where

his = .[Tfrh(s,t)tpi(s)\bj(t) ds dt. (161)

Proof:

Since h(s,t) is square-integrable, it has the expansion of (155) where
hij; 4, = 1, 2, ---, are defined by (161); thus (157) is established.
Meanwhile, from (149) and (150),

fT fT [r(st) — ro(s,)[Wi()¢; (1) = aij — Nibis;

(162)
6j=1,2 .

Then, combination of (160), (157) and (162) establishes
Z Nehar; = a5 — Nidsj . (Q.E.D.)
k=1

APPENDIX F

Alternative Conditions

Assume

CLM<1, 7:=1,2,"', (163)

and the integral equation (100)

f f ro(sa)h (up)rs(of) dudo = mlsf) — ro(st)  (164)

has a square-integrable solution.T Then, the conditions that

* Note that, if a sequence of functions converges in the mean to two limits, the
limits are equal almost everywhere. Furthermore, if the limits are continuous,
they are equal everywhere. Note also that continuity of the left-hand side of
(156) can easily be seen through the use of the Schwartz inequality.

1 Recall from Appendix E that this implies D ;o1 2oju1 i < .
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ai > 2 ai], (165)*
=1
and there exists a constant K > 0, independent of i,j = 1,2, --- , such
that
[ (aii/Ni) — & £ K (a:if - ;/ | @ |>, (166)

imply the conditions (98), (99) and (88); namely, for each ¢ = 1, 2,

I

> lesl <1, (167)

i=1

and there exists a constant K; > 0 such that

bJ(Z) éK{(I—ZIC;‘k I): j=172;"'7 (168)
k=1

and finally
lim tr (@) Q" — 1) < =,
},IB:, tr Qo™ (@)™ — 1] < . (169)
Proof:
First, note that
a; > 0, 1=1,2 -+, (170)

and
;aii= ;ﬂi- (171)

For, from (93) and the fact that u, > 0,k = 1,2, --- |
ai; = Z wi > 0,
k=1
and, from (131),

0 ] ) ) 0 ©
Z ai; = Z Z,Ukuki2 = Z#k Z uki2 = Z#kT
i=1 k=1 k=1 i=1 k=1

=1

* The prime symbolizes omission of the term j = ¢ in the summation.
37 TF70r Justification of interchange of order of summation, see Apostol,?® pp.
4-375.
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Second, through (93) and (94) with (163), (165) and (166),

0 o0
1—;|Cii|=1—;|5w—aﬁl

1—|1 —'aii[_J§’|aiJ’|

= a5 — 2 |ai;| >0,
=1

and

b;(7) _ | (@ii/Ns) — 835
1 - kg;lcﬂc[ afi—,;’lai’cl

which prove (167) and (168).

IIA

K; i’j=1’2"";

Last, note from the definition of k;;™, ¢,j = 1,2, -+ ¥
tr [(Qo(n))—lQl(n) _ I] — Z Z hij(n)aij — Z Z hij(n)aij,
i=1 j=1 =1 j=1
— tr [Qo(m(Ql(n))_l - I] = Z Z hij(n))\iaij = Z hii(")ki.
i=1 j=1 i=1

Yet, according to the theory of infinite systems of equations, for each
i=1,2,---,

|hif(n)|§1{i’ j=1y2y""T
By putting K; = K, = 1,2, ---,
|hff(n) I = I{y 7".7 = 17 27 et

Then, ,
Z Z l h/ij(")aijl é K Z Z ! a”l < oo’
i=1 j=1 i=1 j=1
SHhi™N | S KDY N < o,
i=1 1=1
since
* Recall:

Qo) QU™ — T = [(Qo) — (@u™)=1]Qut™,
B = (LQUO)E = @O G = L

0; t,j=n+1,n-42, ---

t See Kantorovich and Krylov,'5 pp. 26-27.
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=1

;;Mﬁl =Z(an+jz=;'[aij[><2;aii=2;m< .

Hence, from (97),

lim | tr [(Q™)™ @™ — I1| = lim

n-—-»0

o0
=12 2 hijay
i=1 j=1
0 0 1 0w ™ 1
=(Z2m) (T X )
i=1 j=1 =1 j=1
< =,

lim | tr [@™(@™)™ — I1] = lim

Nn—>x n-—->00

)
Z hii(n)}\i \
=1

> hiks
=

(En) (5)

< oo,

IIA

(QE.D.)
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On the Spectral Properties of Single-
Sideband Angle-Modulated Signals

By R. D. BARNARD
(Manuscript received May 11, 1964)

The representation of single-sideband angle-modulated carriers as origi-
nally given by Bedrosian is generalized through the functional and spectral
notions of distribution theory. In this treatment the class of related modulat-
ing signals is extended to rather general types of distributions, and spectral
criteria and tteration algorithms are established by which such modulating
signals can be recovered from bandlimited components of the modulated
carreers.

I. INTRODUCTION

Among the more recent sighal transmission techniques for conserving
spectral bandwidth is single-sideband angle modulation, first proposed
and investigated by Bedrosian.! In this scheme a carrier wave is simul-
taneously angle modulated by an appropriate baseband (bandlimited)
signal and amplitude modulated (multiplied) by the negative exponential
of the Hilbert transform of the baseband signal, the combined modulation
process resulting in an RF spectrum which vanishes identically on the
low-frequency side of the carrier frequency and carrier axis crossings
which coincide exactly with those of a conventional angle-modulated
carrier modulated by the same baseband signal. The single-sideband and
axis-crossing properties, although suggesting means with which to ob-
tain ideal bandwidth reduction and compatible detection, are only par-
tially applicable to physical systems.* In general, the RF spectra under
the combined and conventional modulation schemes are of infinite ex-
tent, and the nonvanishing portion of the spectrum under the former can
have, according to any one of several common definitions, a larger effec-
tive bandwidth than that under the latter; consequently, single-sideband
angle modulation does not necessarily lead to bandwidth reduction, and

* Detection compatibility is suggested by the fact that the output of an ideal
limiter depends only on the axis crossings of the input.

2811
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the axis-crossing patterns of filtered versions of single-sideband and con-
ventional angle-modulated carriers can differ appreciably. Nevertheless,
Bedrosian has shown that the combined form of modulation, as pre-
seribed, offers the possibility of both a reduction in the effective band-
width over limited ranges of the angle-modulation index and detection
compatibility. It is therefore of practical and theoretical interest to es-
tablish criteria relating either directly or indirectly to the spectral prop-
erties of such carrier waves. In the present paper we specify rather general
signal conditions under which the Bedrosian scheme and the associated
single-sideband property obtain, and determine spectral conditions un-
der which knowledge of the RF spectrum over a frequency interval
slightly wider than half the signal bandwidth provides enough informa-
tion to recover the baseband signal up to an additive constant.* Signal
recovery in this second category is effected by an iterative computation
that cannot be carried out exactly in real time; however, the possibility
of pure mathematical recovery based on a finite portion of the spectrum
constitutes an important spectral property, indicating that the RT spec-
trum, although infinite in extent, can be viewed theoretically as having
an effective bandwidth cqual to half the signal bandwidth.t These quali-
tative results are now restated somewhat more explicitly.

In precise terms, single-sideband angle-modulated carriers are gener-
ally assumed to have the form

Ye(t) = exp [—£(t)] cos [2nfct + ()]

where x, £, and y. represent respectively a specified angle-modulating
signal, its Hilbert transform, and the modulated carrier, the first two
funetions being periodic or square-integrable, bounded, and bandlimited
to some frequency interval [—fo , fo]. Modulated under these conditions,
Y. exhibits the two previously mentioned properties with respect to band-
width and detection; viz., the corresponding amplitude spectrum (Four-
ier transform) vanishes over (—f., f.), and the axis crossings as well as
the effects that they produce at the output of an ideal limiter coincide
exactly with those of the usual angle-modulated carrier

* Contrary to established usage, the term ‘‘bandwidth’’ refers here and through-
out to the total frequency spread of the spectrum of the baseband signal over
both positive and negative frequencies (cf. Section 2.2).

1 Other problems and criteria pertaining to the recoverability of signals subject
to nonlinear and bandlimiting operations have received considerable attention
recently.?? Beurling’s theorem, directly applicable to instantaneous compandors,
is perhaps the principal result along these lines.? In unpublished work, H. O. Pollak
shows by means of Fredholm equation methods that under special conditions the
baseband signal of a conventional FM carrier can be recovered mathematically
from knowledge of the RF spectrum over an interval of twice the signal bandwidth.
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Y1 = cos [2xft + x(4)].*

To deal with more general modulating signals, i.e., signals which are
neither periodic nor square-integrable yet to which the spectral concepts
of Fourier transforms and the results above still apply, requires the
theory of temperate distributions (generalized functions).5:6.7 In this
paper we treat both x and y. as special types of distributions and in-
vestigate the feasibility of recovering the former from bandlimited
components of the latter. Specifically, we: () generalize the definitions,
concepts, and methods of classical Hilbert transform theory to incor-
porate arbitrary distributions (ef. Section II, Definition 2 and Theorem
3);1 (¢2) extend the class of modulating signals to include all bounded,
bandlimited distributions with bounded generalized Hilbert transforms
(cf. Section III, Theorem 4); and (¢77) establish through a standard
fixed-point theorem related subclasses for which the spectrum of .
over any open interval containing [f. , f. + fo] furnishes sufficient infor-
mation for reconstructing derivative z’(f) by iteration (cf. Section IV,
Theorems 7-9).1 It is intended also that this development illustrate the
distribution-theoretic approach to be generally employed in connection
with other modulation schemes.

II. PRELIMINARIES

As noted above, characterizing the amplitude spectra and spectral
properties of the signals considered in this paper requires the theory of
temperate distributions.® We discuss here four aspects of this theory:
notation and terminology, bandlimited distributions, convolution, and
generalized Hilbert transforms.

2.1 Temperate Distributions — Notation and Terminology

Let I denote a specified, open interval on the real line with 7, I,
and 7_, signifying respectively the intervals (— «,), (0,%), and
(= =,0); I, the closure of I; C*(I), the space of scalar functions of which
the derivatives up to and including order % are continuous on [; and
Ca, the space of “rapidly decaying” functions, viz., the linear vector
space

* In the first case the nonvanishing portion of the spectrum of y,. is generally
so smeared out as to have an effective bandwidth greater than that of y; .

T For detailed examples of Hilbert transform applications in modulation theory,
the reader is referred to the expositions of Rowe,? Bennett,? and Dugundji.1?

{ Landau,? Miranker,? Sandberg,® and Bene§!! have recently made extensive
use of fixed-point theorems in a variety of system-theoretic problems relating to
recovery and stability.
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Ca=l{ele € C°(1,), 5e®@) - 0(|t] > ©)V¥jk = 0. (1)

Also, a topology in C, is introduced by means of the metric

#(sol - <p2,j,k .7)
paler, o) = Z:’» ;o (k+ 1) 1+ uler — e2,5k — DI (2)*
o1,02 € Cy

where
wlegik) = sup | @ (1) | .

For convenience the convergence of a sequence {¢,} relative to this metric
is expressed as ¢, = ¢(¢n, ¢ € Cy). Since the series in (2) converges
uniformly over such sequences, it follows that
on = 0 & sup | P, P (1) | — Yik.
ter, n-—>oc
As generally defined, temperate distributions are merely the elements
of the conjugate space of Cy, i.e., the space of linear, continuous func-
tionals on Cy.”" In the treatment below we represent this space by D
and the corresponding elements by z(-). Although mathematically dis-
tinet, a distribution z(-) and an ordinary function z(-) for which

[ 2oty = o) Vo € Ca (3)
are regarded as characterizing one another, either form being essentially
determined by the other.T To extend this notion, we associate every ele-
ment x € D with a “generalized function” x(-) (cf. Ref. 6), viz., the
totality of sequences {z,(-) } in Cq such that

tim [~ @(Dedt = o) Vo € Ca. OF:

n-—>o0

As distributions and generalized functions are in one to one correspond-
ence, it is common to employ all related terms and symbols interchange-
ably. Also, the ordinary and generalized functions relating to (3) are
considered to be equivalent in that both define the same element of D.

In connection with the equality of distributions, let N{¢] signify the
null set of ¢ € C4, viz.,
9 * S;:lac)e C; constitutes a complete linear topological space in pg(-, ) (cf. Ref.

, 9

t “Essentlally” is used here to indicate that x(-) determines z(-) almost
everywhere on [, (cf. Ref. 5, pp. 1645-1646).

1 Sequences satlsfymg this condition can be shown to exist for an arbitrary
distribution (cf. Ref. 6, p. 183).
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Nipl = {t|t € Ul.;o(t) =0Vt € 14,

and S[g], the support of ¢, viz.,
Slel = 1, — Nlgl.
Similarly, let N p[z] signify the null set of « € D, viz.,
Nola] = {t]t € Ulo;2(p) = 0 Ve 3 Sle) S 1, ¢ € Cdl,

and Sp[z], the support of z, viz.,
Splx] = I, — Nplz].

Accordingly, if for an interval I € 7_ and two elements « and y of D,
I C Nplx — yl, wesay a(-) = y(-)and a(-) = y(-) on I. This defini-
tion also allows one to equate generalized and ordinary functions on
arbitrary intervals; that is, if

we) = [ oo (5)

for some v and all ¢ € C, such that S[p] < I, then I C Nz — v] and
z =vonl.

Among the standard operations associated with distributions, five re-
quire special notation:

(2) Products. With respect to any two distributions « and y of which
at least one, say ¥, characterizes an ordinary function y(-) such that
y(-)p € Ca Vo € Cq, let zy(-) (and yx(-)) denote the product of x and
y given by

ayle) = ya(e) = 2{ye) Vo € Cu, (6)

and let z(-)y(:) (and y(-)z(-)) denote the related generalized func-
tion.

(#¢) Derivatives. For any z € D, let p"z(- ) denote the nth order deriva-
tive of « given by

p'ale) = (=1)"z('™) Ve € Ca, (7)

and p"z(-), or (d"/d(-)™z(-), the related generalized function.®
(#2) Antiderivatives. For any x € D, let

[ES:
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denote any nth order antiderivative of x satisfying

p" [ ale) = ale) Ve € Co

and

];x('),

the related generalized function. All nth order antiderivatives of a par-
ticular element £ € D can differ by only additive polynomials of degree
n — 1 (cf. Ref. 7, p. 8).

(7v) Limits. Distribution limits of the form

li){n ale) = x{p) € D Yo € Cq4

are represented in terms of generalized functions by
Hm® ay(+) = 2(-).
A
(v) Fourier Transforms. Foranyz € D,let Z(-) denote the generalized
Fourier transform of z, viz., the distribution given by
p) = x(F o) Yo € Cy (8)

where

F.o = ];wgo(é)e_MfEdE i=+/—1,

and let Z(-), or F-z(-), denote the related generalized function (ef.
Ref. 6, p. 188). For the right-hand functional in definition (8) to exist,
it is required that F-¢ € (4, a condition which holds for all ¢ € C;.
Rewriting this relation yields the more suggestive form
F-2{p) = 2(F o). (9)
Similarly,
F7a(p) = a(F-¢)

where
o = [ o(eea.

One property pertaining to operators lim'™, p”, and F is of paramount
importance in applications of distribution theory: the last two commute
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with the first.® The reader is referred to the previously mentioned litera-
ture for a detailed discussion of these and other operations as well as the
various terms outlined above.

2.2 Bandlimited Distributions

Let f and J denote respectively a point and a compact set on the real
frequency line I, . A distribution « for which Sy[F-z] € J (i.e., F-2 = 0
on any I disjoint from J) is defined to be bandlimited to J, the space of
such elements being designated as

B(J) = {x|2 € D, SplF-2] C J}.
Defining, in addition, the space
Cy = {v|v € C(1);VkTj 5 (14 )P () »0([t]— =)}, (10)
we establish the following
Lemma 1: If x € B(J), thenz(-) € C,.

Proof: Construct a real, positive function {(f) € Cy satisfying the con-
ditions

1 fen>oJ
¢ {0 f¢L>L, LI,
and set
o(t) = F-2{(f)ém™"). (11)

We consider first representing F-x(-) on I by an integral. For this it is
necessary to employ the well known result that on any finite interval
an arbitrary distribution can be characterized by a multiple derivative
of some ordinary, continuous function; more specifically, there exist
both a function ¢ € C(ZI;) and an integer N = 0 such that

Feale) = (=" [ 4(e™(Dar (12)

for all p € Cy for which S[p] € I, (cf. Ref. 7, pp. 11-12). Inasmuch as
S[¢] € I., expression (11) becomes

aN

2rift
G [c(e™ df,

o® = [ (=0

which in turn gives
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0 Ny O Ckg g oy RS gp
0 = [ (=DM S 1N Dy
= F-a(2ni)) (N = 0(™) (|t] = )
for all k; therefore, » € C*(1.). In order to identify v further, observe
that for any &
L+ -0 (|t]— )

for some integer j; consequently, by (10),v € C, .
Regarding the relationship between v and x we note that since

f_: (Do (1) dt

f_:fI (=)™ (N (%—N (e (t)e df dt

0" [ [0 35 Do ar ag

Nyop O ” arift ,
[ o 2o [ e a] a
=F-2(F ¢) Vo€ Cq *
and since S[(¢ — 1)0] N Sp[F-x] is empty forall § € Cy,
wle) = F-a(F ) + F-a((t — 1)F ")

= F-a((F -¢) = f v(De(t)dt.
Hence, in accordance with (3) et seq., »(-) = x(-) withv € C,.

2.3 Convolution

A convolution operation sufficiently general for most applications in
signal theory is given by

Definition 1: For any two distributions 2 and y of which at least one,
say ¥, is such that F-y(-) € C, we define a distribution x*y, termed the
convolution of z and y, by the relation

xxy = ysx = F-[(F-z) (F-y) ] (13)

As to the consistency of this definition, observe that with F-y(-) € C,,
oF -y(-) € Cqforall ¢ € Cy; therefore, according to (6) et seq., both
the product (F-z)(F-y) and corresponding convolution exist as dis-

* Interchanging the order of integration in this relation is justified by means
of the Tonelli-Hobson theorem (cf. Ref. 13, p. 3).



SINGLE-SIDEBAND ANGLE-MODULATED SIGNALS 2819

tributions, and their factors commute. The associative and distributive
properties of this operation depend in general on the factors involved,
the results in any given case being determined directly from (13). One
important consequence of Definition 1 is stated as

Theorem 1: For any two distributions x and y of which at least one, say 1,
is such that y(-) € C,

F-(zy) = (F-2)*(F-y).
Proof: From
alp(l)) = (F-F-p(—t)) = F-F-a{p(—t)) Vx €D, Voc€Cu,
(6), and (13) it follows that '
F-(zy) ((f)) = ay(F-¢) = x{y()F-¢)
= F-Faly(=t)F ") = F-F-a([F-F-y()]F o)
= [(F-F-z) (F-F-y)](F ) = F[(F-F-z) (F-F-y)]{e)
= [(F-2)*(F-y) ] {e).

We show at this point that Definition 1 relates to a more common but
less general form of convolution (cf. Ref. 7, p. 31).

Theorem 2: If at least one of two disiributions x and y, say y, has a finite
support (i.e., Sply] © I C I,), then x*y exists, and

zxye) = x(ylp(t +1))) Ve € Ca.

Proof: Reversing the roles of ¢ and f in Lemma 1 demonstrates that with
Sply] finite, i.e., with y time-limited to I, F-y(-) € C, ; hence, by Defini-
tion 1, z*y exists. In addition, from (13), (9), and (6) there obtains

waylp(l)) = F-(axy) Flg) = [(F-z) (F-y) ] F o)
Fea((F-y) (F7-) ) = aF-[(F-y) (F"¢)])

= o ([ ) )

I

where the subscripts indicate a function of £ As the integral of this last
functional proves to be linear and continuous on Cy, i.e., as

[ Fpde™™ F o) das = Py (o)) € D,

then
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axy(p(l)) = a(F-y{(F " 0) e "))
= aly(F-[(F )i 0))
= z(yle(t + ))).

If defined by this expression instead of (13), convolution would not
necessarily have commuting factors; e.g., with y(-) and x(-) equal to a
Dirac delta function 6(-) and a constant, respectively, y{(z{e(t + 1)))
is not defined because for this choice of x, z{p(¢t + 1)) is constant and not
an element of Cy.*'1

2.4 Generalized Hilbert Transforms

In this subsection we extend the applicability of classical Hilbert
transform properties and techniques to arbitrary distributions. Required
initially are two lemmas relating to antiderivatives.

Lemma 2: Corresponding to all antiderivatives of an element F-x € D
the distribution limats

A~>o0

lim® [tan-1 Aff F-x:l (14)

exist for some N = 0.

Proof: Set I, = (—ea,a)and I, = (—e,e) with0) < ¢ < & < o,
and construct a real, positive function 5(f) € C; satisfying the condi-
tions

_1 fely
n(7) _{0 fe1.o1L,.

It is convenient to consider first the same type of integral representation
as was used in Lemma 1 {c¢f. (12)]; namely, there exist both a function
¥ € C(I.,) and an integer N = 0 such that

Fea) = (=" [ 9(De™(naf (15)

* The Dirac distribution is given formally by the equation &) = ¢(0).
t Commutativity can be forced in such cases by defining the convolution ac-
cording to the form

z*ylp) = YL@t + DN

where 7 corresponds to the distribution of finite support and where € Cg4 equals
unity over an open interval containing this support and vanishes outside some
finite interval.
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for all ¢ € Cq for which S[g] C I, . In agreement with (7) and (5) et
seq., relation (15) merely asserts that
dN
s~

and that for all antiderivatives,

Iz =

v() onl,

fNF-x —v() + Z; wf”  onl, (16)

where constants a, are arbitrary. Since S[ne] C I., for all ¢ € Cq, Eq.
(16) can be written as

[Pt = | [¢<f> ) anf"]n(f)so(f)df-

€2

Therefore, by the Lebesgue convergence theorem™

]imf F-z((tan™ M) o)
» Iy an
= T o) W) + S el hDe(Dd

with

wi={ (20

On the other hand, since

I, C N[fjdi;c (1 - n)¢]

forallj, k,and ¢ € Cq4,
(tan™ Nf) (1 — n)o = (7/2) (sgnf) (1 — n)¢ N — oo,
and
lim [ Fea((tan™ A (1 = me) = § [ Foal(ogn N1 = o). (18)
Finally, adding limits (17) and (18) yields
s PN = o)+ 5 [ e v+ Tl df -
= likmf F-2{(tan™" Af)o).
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As both terms on the left are elements of D, the distribution limits given
by (14) exist.

Lemma 3: Corresponding to element x, integer N, and all antiderivatives
of Lemma 2 the generalized functions

ddi hm”’) [(tan ) f F. x:l

differ by only the additive combinations

N—1
T O am! s(f) N
n=0

where 5(f)™ represents the nth order derivative of the Dirac function. Fur-
thermore, 3(f) ™ is the highest-order Dirac component which can exist at
= 0.

Proof: From (19) and (7) there results

p"im®- [ Fea((tan™ Ae) = T Fa{(sgn 1) (1 = n)e)
+(-"] f (sen N (NN (20)

+ (D" [ w0 ) T el Ml

the last, only nonunique term reducing to

7 2 an!(—=1)" " e(0) VT = 1 30 annldlp) V.
Inspection of the two remaining distributions on the right of (20) shows,
in addition, that 8(f)“" is the highest-order Dirac function possible at
f = 0; for the support of the first does not include the origin, and the
second represents the Nth derivative of an ordinary, sectionally con-
tinuous function.

The preceding two lemmas lead immediately to

Definition 2: For any distribution = we define a distribution £, termed
the generalized Hilbert transform of x, by the relation

8(-) = —z’%F“-{dd;W ;D)[(tan ) [ F-x:l

+ f) B8 (f) ‘”"‘”‘”}

(21)
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where N, designates the smallest integer for which Lemma 2 holds and
where constants 3, are constrained so as to eliminate from F-# (or to pre-
scribe) all Dirac distributions at f = 0.

As regards ordinary Hilbert transforms it is noted that if

F-x(+) € Ly(I,) (square-integrable),
then
lin%(m (tan ' MN)F.x = (x/2) (sgnf)F-z.

Consequently, Ny = 0 and
&(-) = —iF'-{(sgnf)F-a},

a formula which is in agreement with classical theory (cf. Ref. 15, pp.
119-120).
Denoting the linear mapping of (21) by H (i.e., H:D — D), we list
a few of the more significant properties of generalized Hilbert transforms:
(¢) H-H-x = —a provided there exist in F -z no Dirac components
atf = 0.
(#7) H -z is real provided x is real.
(#51) Sp[F-H-x] € SplF-x].
These results follow directly from (20) and Definition 2. Of importance
in single-sideband theory is the property given by

Theorem 3: For any distribution z,
SplF-(x 4+ i2) | C I e
and
SplF-(z — i£) ] C I_o.
That ts, F- (z + 1£) and F-(x — i) vanish on I_. and I ..., respectively:
Proof: Consider all o such that Slg] < I__ ; then,

(=0 [ Gen DD + T onf (Do (D) Vdf

= —p”fNF-x<n<,o) = —F-z(yp),

and from (20) and (21) there obtains
F-ale) + iF-i{e) = F-a{p) — F-2((1 — n)¢) — F-a(np) = 0.
Similarly, with Sle] & I, , F-2(p) — iF-2{p) = 0.
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III. SINGLE-SIDEBAND ANGLE MODULATION (SSBOM)

The notions and results of the previous section apply directly to signals
classified as single-sideband angle-modulated, namely, time functions of
the form

Ye(t) = exp [—=2(1) ] cos [2afd + =(1) ].

It is the intent here to show that if the modulating signals 2 correspond
to elements of the space

So = {z |z € B(Lo), Io = (=fo,Jo); |z || &| < o, real},

functions y. characterize distributions, and have, as the term SSBoM
suggests, amplitude spectra (Fourier transforms) which vanish on the
interval (—f.,f.). We begin with three lemmas pertaining to exponen-
tials and convolution.

Lemma 4: Elements of the spaces
Si={yly=e"2=2a+1iz € S,
So={w|lv=2"2=a+it,2€ S, N = 0

are equivalent to generalized functions [c¢f. (4) et seq.].

Proof: Clearly, since SplFF-£] € SplF-z], both « and £ are bandlimited
as well as bounded, and are, by Lemma 1, elements of Cg; hence, y is
bounded on 7_ and integrable over finite intervals, and

’[:yUM%Dw'§§39|U»+tﬁ¢U)l[: fé?ﬁ i (22)
Yo € Cy.

This latter condition, however, implies that

[ v@etit—o (25)

for ¢, = 0. Therefore, the left-hand integral of (22) constitutes a con-
tinuous, linear functional on Cq4, i.e., a distribution, and y is equivalent
to a generalized function. Precisely the same argument applies to
2"(N = 0), showing that this function is also bounded, integrable
over finite intervals, and equivalent to a generalized function.

Lemma 5: For x € Soand z = x + £
N
6 = lim® 3

N—>w n=

= (24)
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Proof: Set
y = e

N . n
_ (12)
Yr = nz=: nl

Then, by Darboux’s formula,!®

(52) ¥ fl Az N
— = — A\
Y= Un NT S € (1 =07,

and inasmuch as y and y» represent generalized functions (ef. Lemma 4),

e = ue) | = | [ ) = @Ol
— 1 ® N+1 ! Y N
= ]—V—’[mz qofoe (1 =2\ dkdtl
1 N+1 iAz ©
§A—,!st1,1xp|z e |f_w|¢(t)[dt
< 1 (sup |2 )™ exp (sup | £])
. t H

f_ Iw(t)|dtN—>0 Yo € Ca,

a result corresponding to (24).
Lemma 6: If two distributions g and h are such that
SolF-g] < [0,f1],
So[F-h] € [0,f2],
then
SolF- (gh)] = [0,f1 + f2l.
Proof: With respect to any ¢ € Cy for which S[p] € I_, set
eo(t) = F-he(t + 1)).

As defined, ¢o(t) = 0 for all t > 0; ie., I, < Nleo] and Slpe] S I .
Hence, by Theorems 1 and 2

[F7- (gh))e) = [(F-g)+(F-1)Ke)
= F-g(F-Mp(t + 1)) = F-g{eo(t)) = 0,
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which yields
SolF - (gh)] € L4, . (25)

In a similar manner, consider any ¢ € C, for which Sfo] S [fi + f2, *),
and set

ei(t) = F-hlp(t + 1)).

It follows that ¢1(t) = O for allt € (— «,f), i.e., that Sle)] & [f1, «).
Therefore,

[7- (gh)e) = F-gler) = 0,
which yields

Spll'- (gh)] € (—,fi + fl. (26)
Conditions (25) and (26) prove that

SplF- (gh)] < [0.f1 + fal.

The main result of this section is stated as
Theorem 4: The amplitude spectra of generalized funciions
Ye(t) exp [—&(8)] cos 2nft + z(8)]  x € S

vanish on the interval (—f., fe).

Proof: Again, for z € Spand z = x + 1, Sp[F-2] C I, and, by Theorem
3, Sp[F-2] C I, ; consequently, Sp[FF-2] € [0,fo]. This condition com-
bined with Lemmas 5 and 6 leads to

SolF -]
=Sy [F-urg“’) f %’?T] =S, [lin;f” Ng %F-[(iz)"]:l (27

n=0

C U SplF-[(22)"]] C I

On the other hand, for 2 = © — @&
SplF-e™ S I.. (28)

Finally, since F-[e¥*" /%y ()] = j(f F f.) for F-y = §, then (27) and
(28) give

Soll -y = Sl ("¢ + I f,, ) U (=, i)
or, equivalently, F-y. = O on (—f., f.).
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IV. SIGNAL RECOVERY FOR SSBOM REPRESENTATIONS

In this section we treat the problem of reconstructing signals z € S,
from bandlimited versions of the associated SSBOM functions y, .
Specifically, it is demonstrated that for a large subclass of Sy , knowledge
of the amplitude spectrum of y, over any open interval containing
[fe , f- + fo] proves sufficient to recover « up to an additive constant. As
in the previous section, several lemmas involving the exponential ¢ are
developed first. To collect notation, we set

2=z + 1t x €8
g = iz, Yo =1— &% v = (1 — 2mit) 'y,
Yo = F [N *k], gy = F-[(NF -y ) %0,
gn = F"-[gxa,], on = no(nf)(n = 1,2, ---)
g=F-y Yy €D

—f
k(f) = F-(1 — 2nit)™ = {8 ;f Z 0 (29)

where A and ¢ are any frequency functions of C4 such that
}\(f)={1 fel, L=(0fi+e¢, 0<e<
0 fé&l[—efo+ 2
Slo()] S [0d, fo o(f)df = 1.

In addition, let BV (I) and UL denote respectively the space of scalar
functions of bounded variation on a closed interval I and the space of
scalar functions satisfying a first-order uniform Lipschitz condition on
some closed neighborhood of the origin. Finally, define the following sub-
class of signal space Sy :

Sw = {z|e € So; G ~ 5(0%)] € UL N BV(L); 5(0%) = 1}.
Lemma 7: Elements Yo , Yo, Yd » Yn » gn » by N, and o, are in D.

Proof: This result follows immediately from the corresponding defini-
tions and the test employed in Lemma, 4 [ef. (22) and (23)].

Lemma 8: SDWI)] Q j+ao .

Proof: Clearly, by (27)
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Solfal = Sole] U SolF-¢"] € I, (30)
Also, taking any ¢ € Cg for which Sfp] € I_.., one obtains
FU[(Fk) (F9)1=0  Yf>0,
or
SEL (k) (Fe) ) € T
Hence, for all such ¢
F-yie) = yoll-0) = ya((F k) (F-0))
= F-ya(F - [(F k) (F-9)]) = 0,
a condition implying that #, = 0 on /- .

Lemma 9: On I, = (Zja)*k = fJaand (F-y. ) %00 = (NF-y,') %0, = §, .

Proof: Take any ¢ € Cq4 for which Slg] & I.. With regard to the first
relation

SIF[(F' k) (F-9)]l © (—,fo + €,
and by (30)
Fyle) = yo(F-0) = yal(F k) (F-0))
= F-yu(F - [(F7k) (F-0)]) = F-ya\NF-[(F7'-K) (F-9)])
= F-[(F7-E)F'-(\F-y.)l) = [(Ma) #k](p).

As to the second relation
[ enDets +Dif = oule(s + 1),
S[(zﬂif)o'n<§0(f +f.)>] c [_€,f0 + G]s
and by (30) and Theorem 1
[(F'ya,)*an](§o> = F'?/a@“f%(‘ﬁ(f +f-)>>

FyarifA(Hanle(f + 1)) = [(AF -y ) *oule)-
Lemma 10: §q € Lo(I,) and §. € Cq.

Proof: On the basis of the Tonelli-Hobson theorem
F7-(AF-ya) (@) = yalF- (\F™-0))
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= f_: Ya(7) {f_: I (S) I:f—: eZni/t¢(t)dt:| df} i
= f_: Ya(7) {[: [f-: ezfi/(t—r)k(f)df:l go(t)dt} dr

= [[[ v |owa voec
Therefore, as indicated operationally,
PR = F N = [ ) ),
and
0P | 5 G (0@ 1) [, far < =,

which indicates that yq, §a € L.(I,). Lastly, since
(N\F-ya) € B([—efo + 2¢]),
F ', €Ca4,
by Lemma 1
F7-(\F-yd) € C,,
Yn = (Fqn) [F'-(A\F-y)] € Ca,
o € Ca.
Lemma 11: im™ g = g, gu € Ca, and Splg.] < I. .

Proaof: As
i [ not)e(ir = tim [ oo (D) ar = o0) Vo€ c

then

. (D)
Iim™ o, = §,

n

and

liin gulp) = lim (gF " 00) o) = liin o (F " (go))

P (go)) = gF 8(p) = glo) Vo€ C4.
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Furthermore, with ¢, € Cg, all three elements " *-q,, g,, and §, are
also of Cy. Finally, from Lemmas 6 and 7 it follows that

Solda) = Solg) U Sle,] € 1. .
Theorem 6: For x € Spo, elements §. satisfy the functional equations
f - -
3 = 7| [ 9.5 = D anihy = )|

fejc; n=1:2:"':

(31)

where
f - -
) = ) — 0 + [ @@ sel

§:0) = §i(fo+¢) =0
y =1 — 70"
Proof: According to definitions (29)
Yo'F o = (1 — 2mit)gayp — gn (32)

with 45 € Lo(1,), Ya'F -0, € Ca, and (1 — 2rit)g, € Cq.Expression
(32) and Parseval’s relation combine to give

(F-ys)kon = Gox(Gn + §u’) — G f € I,

which by Lemmas 8 and 11 reduces to
s
vywen = [ 0D |36 = D = Zanr = D) | — 0.

However, if considering f on I, , one need specify (F-y.’)*o, and §, on
this interval only; consequently, Lemmas 9, 10, and 11 apply, yielding

/
i) = [ 6|06 -D - Zat-D]d-an e

Clearly, in this equation, #3(0) and (for the development below)
7a(fo + €) can be set equal to zero without affecting the associated in-
tegrals; hence, on integrating by parts, we get (31). To be noted in this
theorem is that with respect to signal information, §. , ., and v derive
solely from the bandlimited signal spectrum Aj = AF-e*; i.e.,

gd = (>\ - kg)*k’
g” = - (2mf)\?7)*0n )
#(0F) = Fa(07).
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Itis necessary to consider next some general properties of the integral
operators in (31), viz., the mappings

w=Tyo=| [ o7 -Das® - 0] sel

(33)
UEC(Tc); n:1:2)”
Relative to the domain of T', , define the norm
lole = sup |o(f)] v € C(L)
féfc
and metric
pe(osw) = ||v —wl. vw € C(lc). (34)

Under this scheme the pair [C (1), p) = R, (more precisely, the pair
consisting of C'(I,) and the metric topology in C(I.)) forms a metric
space which is complete.”” We then have

Theorem 6: Corresponding to any modulating signal x € Sy, operators
T, constitute continuous mappings of the complete metric space R, into
iself.

Proof: To show that the range as well as the domain of T, is in C(1,),
takeany v € C(I,) andsetw = T,-v for an arbitrary n. With € Se,
7 € BV(I,), and by Lemma 10, #, € Cs < C(I,); moreover, since
Ja = i on I, (cf. Lemma 9), and since

g
o= 5e- 0O + [ @i sel
gl(o) = g‘i(fo + e) = 0’
function §; € BV (I,). Therefore, by the Lebesgue convergence theorem

f1
lim (%) — w()] = lim {7 [0 =9 = o =~ D anh)

fe=f1
S 2 =
+ 7[, v(fa — 1) dg(f) — v[G.(f2) — gn(fl)]} =0 Vf,f: € L.

That is, w € C(L)(T.: C(I,) — C(I,)). For establishing the con-
tinuity of T, , consider any two functions vy , v € C(I,), and set w, =
To-vy,ws = Tr-va,and vy = v2 — v for an arbitrary n. It follows from
(33) and (34) that
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pe(ws, w1) = sup
fer,

'
’on w(f — F) di:(f)

S|y Vilfo + ¢ sup | w(f) |

rele
= l‘Y l Vi(fo + é)pc(vz, vl)
where V;(f) signifies the total variation of §; on the interval [0,f]. Con-
sequently, p.(w. , w1) — 0 if p,(ve, »1) — 0; i.e., T, is continuous.

A basic result relating to the reconstruction of SSBOM signals can
now be stated as

Theorem 7: Corresponding to any modulating signal x € S, each of the
equations

Gn = Tugn gn € C(Ic)y n=12---,
has a unique solution given by

Gn = UM fn,m nm =12 --.

m—>o
Onomy1 = Tnm'gn.1 V’n,’m
gn.l =0 f E .Tc Vn
where convergence is uniform on I, . Furthermore,

El%c = Im [F7"-lim™ -lim o] = Im [lim-lim-g,.,,)

d aom n om
Gn,Gom =0 f&I, VYnm
where Im{-] indicates the tmaginary part of the quantity in brackets.
Proof: We employ here a standard fixed-point contraction-mapping
theorem (cf. Ref. 17, p. 50): If p(-, ) and T represent respectively a

metric in a complete metric space B = [C,p] and a continuous mapping
of R into itself, and if for some k and any two elements v,w € C

p(TF 0, T" - w) < ap(v,w) a <l

then there exists a unique solution to the equation T'-vo = v, . Also, for
an arbitrary element » € C this solution is given by

v = Hlm T™-v,

m—>00

where convergence is taken relative to p. In view of Theorem 6 we need
only demonstrate in the present proof that for some k and any two
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elements v,w € C(I,) each mapping 7', satisfies the contraction condi-
tion

Nrto—Trw|.allv—wl. a <1l
First, set

v —w=u

M = sup |u(f)] = [ull..

Jel,

With §; € BV (I,) (cf. Theorem 6)

f - -
[ Tov = Tow| = |7 [ ur = dyxf)}

f
§M|71[0 avii) = M|y | Vi) feL,

where V;(f) again denotes the total variation of §; on [0,f]. However,
inasmuch as

[ — §(0M)] € UL N BV(L,),
S
§i = 55 — §s(07) +f0 wpdf fE€ I,

7§i(0) = g.fo+ €) = 0,
then §; € UL N BV(1,); hence, there exists a positive constant ao such
that

Vif) Saf f€L.
From this last condition it follows that

| Tov — Thw| = M|v]|af
f _ _ f _ _
(T2 — Tlw| < M|y |‘*aof0 (=] avi(p) = Ml'ylzaoj; Vi) df

IA

;o M 20242 _
Ml'y|2ao2f0fdf=—-———|72| of fel,

liA

and, in general,

ko k=1 pf
| TFv — T w| ]K(]V[—ll—f;)T—f() = H*Pavy)

k_k—1 pf
= —% L Vi(f') d(f _f)(k_l)
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Ml’Ylao k—1
Mo [ gagr - e

_Ml"rlaof-(k—n = M|y [falf -
=w-nrh! V=T Fel.
Therefore, for k sufficiently large

M|y [fa" (fo + ©F
k!

A

=a <1,

and
| 750 — T wl|. < allv—wl. a < 1.

The contraction principle as outlined then yields the main statement
of the theorem, the last result being an immediate consequence of
Lemma, 11.

Treated next are two important classes of modulating signals which
prove to be contained in Sy : periodic functions of Sy and integrable
(Ly(I,)) functions of Sy having integrable Hilbert transforms. In the
following development we represent the space of periodic functions by
P and the intersection H-(L(I,)) N Ly(I,) by Li(I,).

Theorem 8: So NP < Spo .
Proof: Elements © € Sy N P must have the form

N .
— Z bn62 minfpt

n=—N
pr éf(}; bn = E—n

where b signifies the conjugate of b. Consequently, in accordance with
Definition 2

N

z=a 4t = D b
0

Putting 2, = z — by, we obtain
w= =2 | (=™ = 5 )],
n=1
or

G = (1 — &™)k — ™ [Z k*F-(izp)"],

n=1
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which, since

gives

and

where

SD[F'(iZ;D) n] - [nfz’: w)

S [rg (z‘z»"] S Uy, ©),

SD[gb - (1 - eibo)k] g [fp: oo),
#(0T) = (1 — ™) 5= 1,

[ — §(07)] € UL N BV(L,).
Theorem 9: Sy N Ly(1,)) C Sw, and for all  in this infersection

%=Im[limhm] m=1,2 -,

m-—>0Q

T = (F )l Al — L (urF ') t € I,

dt
hlzo IfE]w

N(f) = {(1) T

Proof: Considering that @ € S, N Ly(7,), z is a bounded element of
Ly(1,); hence, by Darboux’s formula

1
[0 | = [ 1= ¢ < [2] [ & an = 200 | exp (sup [£]), (35)
0 ter,

and

15 (12) — 5 (f0) |

=

iIA

| fo — fi| exp (SItlp E2)) f_: 2(t) (%)

'sin 7F(f2 - fl)t l
e =Tt |

1= i exp Gup | 21) [ 20 | at

Vi f € 1L,
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the latter condition indicating that 7,(0™) = #(07) = 0 (c¢f. Lemma 8)
and that 7, € UL N BV(I,)." In order to prove the second part of the
theorem, we note first that with @ € Sy N Ly(1,,), 2 € Ly(I,) and 2 €
Ly, N C(1,); morcover, as Sp(2] € I., 2 € Ly(I,) and §j = 2mif(32) €
L1 ﬂ LQ ﬂ C(Iw) Similarly, by (35), Ya € L1 ﬂ Lz(]w) and ‘77(, E Lg n
C(I,). As a result,

| 3n| = | g¥ou |
= ) ]: §(f — Do(nf)n df’

= sup | () | j: | o(f) | df < constant Yn,

rel,
lim™ g, = lim §, = §,
Em® 7, = lim [(27iffod) %ou] = (271fFa\),
and by the Lebesguc convergence theorem

f —
j = ™ 7,4, = fo §(f = D dg(P) — 2mifjh = A-5  f € L.

This expression asserts that § is a fixed point of the mapping A: C( I,) —
C(1.). Preeisely the same arguments as were used in Theorems 6 and

7 apply here to show that 4 is continuous with respect to norm || - [, ,
and that
%if = Im [il_{l;hm] m=12, -
fimer = A™ By Ym
hi=0 frel
hn=0 f¢1I, Ym

where convergence is uniform on I, . On writing 7, as

f —
G = (Gh) ¥k + f [(§\) k] dF

* A similar calculation employing the Schwarz inequality shows that 4, (0*) = 0
for x € L:(I,) also. Most square-integrable signals of practical interest satisfy

the appropriate Lipschitz and bounded variation conditions, and are therefore
contained in Se .
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e’ fo ’ jone' df + fo ’ e [ fo ¢ Jane’’ df’] df

S
[amaa seL,

we get

f -
s = [ B = DRAG) F — 2mifgr € T,
or, more compactly,

S
finss = No(f) fo lon(f = DFaPIN() &F — 2xifgare f € L. (36)

(Since Sp[g] € [0, fol, Ao could be defined to have the same support.)
Taking the inverse Fourier transform of both sides of (36) yields the
second part of the theorem.

V. SUMMARY

Definition 2 and Theorems 3 through 9, which constitute the principal
results of the preceding sections, provide both a distribution-theoretic
basis for the spectral representation of single-sideband angle-modulated
carriers and a recurrence formulation for reconstructing most of the as-
sociated modulating signals of practical interest. It is important to
emphasize again that the approach employed in this development applies
also to other modulation schemes.
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APPENDIX

Index of Symbols

A —p. 2836 ferSo —p. 2824
B(J) —p. 2817 F -—p. 2816
BV (I) —p. 2827 9,9n —p. 2827
CcH(I), Ca —p. 2813 H — p. 2823
c, —p. 2817 I,I,1., —p. 2813

D —p. 2814 I. — p. 2827
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E(f) — p. 2827 7s — p. 2830
1 —p. 2834 2 — p. 2824
N,Np — p. 2814-2815 v —p. 2830
P —p. 2834 B — p. 2820
S, Sp —p. 2815 A — p. 2828
So, Sl, S —Pp. 2824 pc(', ) —DPp. 2832
T. — p. 2831 On — p. 2827
UL — p. 2827 P — p. 2815
x{+), 2(+) — p. 2814 [n —p. 2815
£ —p. 2823 THY — p. 2818
i — p. 2816 lim® —p. 2816
Yas Yb, Yd s Yn — p. 2827 - — p. 2814
Ve — p. 2824 ol — p. 2831
REFERENCES
1. Bedrosian, ., The Analytic Signal Representation of Modulated Waveforms,
Proc. LR.E, 50, Oct., 1962, pp. 2071-2076.
2. Landau, H. J., and eranker W. L., The Recovery of Distorted Bandlimited
Slgnals J. Math. Anal. and Appl 2, Feb., 1961, pp. 97-104.
3. Sandberg, I. W., On the Properties of Some Systems that Distort Signals,
Parts I and 11, B.S.T.J., 42, Sept., 1963, p. 2033, and 43, Jan., 1964, p. 91.
4. Landau, H. J., On the Recovery of a Band-Limited Signal, After Instantancous
Comganding and Subsequent Band-Limiting, B.S.T.J., 39, March, 1960,
p. 363.
5. Dunford, N., and Schwartz, J. T., Linear Operators, Part II, Interseience,
1963.
6. Temple, G., Generalized Functions, Proc. Roy. Soc. (London), A228, 1955,
pp. 175-190.
7. Halpern, 1., Introduction to the Theory of Disiributions, University of Toronto
Press, Toronto, Canada, 1952.
8. Rowe, H. E., Signals and Noise in Communication Systems, to be published by
Van Nostrand and Company.
9. Bennett, W. R., Electrical Nozse MecGraw-Hill, New York, 1960.
10. Dugund]l J. Envelopes and Pre- Envelopes of Real Waveforms Trans. [.R.E.,
IT-4, No. 1 T‘}rj)p 53-57.
11. Benes, V. E., Ultimately Periodic Solutions to a Non-Lincar Integrodifferen-
tial Equzmon B.S.T.J., 41, Jan., 1962, p. 257.
12. Dunford, N., and Schwartz,J T. Lmear Operators, Part I, Interscience, 1958.
13. Goldberg, R. R., Fourter Transforms Cambridge Unlver81ty Press, London
1961.
14. Burkhill, J. C., The Lebesgue Integral, Cambridge University Press, London,
1961.
15. Titchmarsh, E. G., Theory of Fourier Integrals, Oxford University Press,
London, 1950.
16. Whittaker, E. T., and Watson, G. N., Modern Analysis, Cambridge University
Press, London, 1958.
17. Kolmagorov, A. N., and Fomin, 8. V., Functional Analysis, Vol. 1, Graylock

Press, Rochester, New York, 1957.



On the Properties of Nonlinear Integral
Equations That Arise in the Theory
of Dynamical Systems

By 1. W. SANDBERG and V. E. BENES
(Manuscript received May 4, 1964)

This paper reports on some results concerning the properties of integral
equattons that govern the behavior of a large class of control systems or
electrical networks containing linear time-invariant elements and an arbi-
trary finite number of nonlinear time-varying elements.

In particular, for networks containing linear time-invariant elements
and an arbitrary finite number of positive-slope nonlinear resistors, it is
proved, under reasonable conditions, that the response to a periodic excita-
tion applied at t = 0 s ultimately periodic with the same period as the
excitation, regardless of the initial state of the network.

I. NOTATION AND DEFINITIONS

Let M denote an arbitrary matrix. We shall denote by M’, M*, and
M™', respectively, the transpose, the complex-conjugate transpose, and
the inverse of M. The positive square-root of the largest eigenvalue of
M*M is denoted by A{M}, and 1y denotes the identity matrix of order
N.

The set of real, measurable N-vector-valued functions of the real
variable ¢ defined on (— «, ) [ [0, )] is denoted by 3Cy [3Cy.], and

Lon = {flfs RN,f_wf’fdt < oo}

Lovy = {flfeﬁcw+,j; fifdt < 00}.
The norm of f = (fi,fe, -+, fx)" € Lox [Lon] is denoted by

LAITIS 1D
it is defined by
2839
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1= [rsa usne = [ rral

and the norm of a linear transformation T defined on Loy [Loxy] is
denoted by || T || [ T {|4].
Let y € (0,), and, if f ¢ 3y, let

fo=f for [t| =y
=0 for |t|>y;
if f € 3Cwy , let
fu=Ff for tel0y]
=0 for t>y.
The sets &y and &y, are defined as follows
v =1{f|fesy, freLw for0 <y < oo}
Sve = {f|fed ey, fyeLoyypfor0 <y < oo},

With ® the set of N-vector-valued functions of ¢ which have the prop-
erty that each component is uniformly bounded on its domain of defi-
nition, let

Loy = B N 3y, and Lonvy = B N ICyy.

Let T be a real positive constant and let

5€N={f|f85CN, f@ =7+ 1) forallt,fDTf’fdt< 00}.

Throughout the paper, & denotes a measurable, real N X N matrix-
valued function of ¢ defined on (— «,®), with elements {k.,.} such
that

f lkmn(t)ldt<°° (m,n=172:°",N)’

and Y[f(2),t], with f & 3¢y or f £ 3Cy, , denotes the N vector
(¢1[f1(t)7t]:¢2[f2(t)7t]’ ) "//N[fN(t))tD,

where ¢i(w,t), $o(wyt), -+ -, ¥n(w,t) are real-valued functions of the
real variables w and ¢ for — < w < © and — o < { < o« such that
() there exist real numbers « and 8 with the property that

aéxbn(wlyt)_ll/n(w27t):_<_ﬁ (n=1’2’...’N)
w; — W
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forall ¢t ¢ (— »,%) and all real w;, and w, such that w, = w., and

(71) Yulw(t),t] is a measurable function of ¢ whenever w(¢) is measura-
ble (n = 1,2, ---,N).

The symbol s denotes a scalar complex variable with ¢ = Re[s] and
w = ImJs].

II. INTRODUCTION

Equations of the form

g(t) = f(t) + [ Kt — () ddr, 0=t<w (1)

in which f £ &y, and ¢ ¢ £wx, , are frequently encountered in the study
of physical systems containing linear time-invariant elements and an
arbitrary finite number of time-varying nonlinear elements. Typically,
f represents the system response and g takes into account both the
independent energy sources and the initial conditions at ¢ = 0. For
example, (1) governs the behavior of (a) an important type of control
system containing linear time-invariant elements and an arbitrary finite
number of memoryless time-varying nonlinear amplifiers, or (b) an im-
portant type of electrical network containing linear time-invariant
elements and an arbitrary finite number of time-varying nonlinear
resistors.
The related equation

00 =70 + [ ke — i, —m <t< o (2)

is also often encountered. It arises when it is convenient for mathe-
matical reasons to formulate a model of the system such that the re-
sponse and excitation are defined for all ¢ ¢ (— o, ). In (2), usually
g € £ and only solutions belonging to L.y are of interest.

One of the classic problems in the analysis of nonlinear physical
systems is the determination of the properties of the response of a sys-
tem, governed by an equation of the form (1), to a periodic input
applied at { = 0. Usually, the functions y,(w,t), which enter into the
definition of ¥[- , -], are independent of ¢; g can be written as g = g1 + ¢»
in which g1 ¢ &y 1 Lony , go € Lovy, and g2(¢) — 0 as t — «; and (in
accordance with the usual Volterra integral equation theory) it is known
that there exists a solution f ¢ &5, . In a great many cases of engineering
interest it is simply assumed that there exists a unique response and
that it is ultimately periodic with the period of the input. This is a
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central assumption associated, for example, with the well-known de-
seribing-function technique for the approximate determination of the
steady-state response of nonlinear systems.

In connection with the actual determination of the steady-state
response, two common engineering assumptions are (in effect) that
there exists a unique element of L.y M Ky , f, that satisfies

0@ =10 + [ M- G, —w <1<

and that the solution of (1), with ¢ = ¢, + g¢., approaches f(¢) as
t — oo, the principal ideas evidently being that if the physical system is
stable in some suitable sense, then the effect of the initial conditions at
t = 0 should eventually “die out,” and, moreover, that the steady-state
response of the system should be obtained ““at once” if the periodic
excitation is applied at “¢t = — «.”

The purpose of this paper is to report on some mathematical resuits
concerning the properties of (1) and (2) that are pertinent, to a con-
siderable extent, to engineering questions of the type discussed. In
particular, as an application of our first theorem, we establish the
mathematical validity of the engineering assumptions desecribed above
under what amount to reasonable conditions for the case in which
k() is the matrix-valued weighting function of a passive network and
Y[, -] represents N positive-slope nonlinear resistors (see Theorem 3
and associated remarks).

Under similar conditions, it is proved that an equation of the type
(2) possesses at most one L.y solution. This type of result is of direct
interest with regard to the qualitative nature of the solutions of (2),
for if our conditions are met, and, as is often the case, (a) g in (2) is
periodic with period T, (b) the ¥, (w,t) are periodic in ¢ with period T,
and (¢) f is an £,y solution of (2), then [since f(¢ 4+ T') is also a solu-
tion of (2)] it is clear that f must be periodiec with period T.

I1I. RESULTS

Theorem 1, below, focuses attention on a relation between the solu-
tions of (1) and (2). This theorem is later used in order to obtain
conditions under which the solution of (1) approaches a periodic steady
state as { — o, when ¢ approaches a periodic steady state as ¢t — «.

Theorem 1: Let

@) = () + f_;k(t — )Yl f(r),rldr, —w <t < ®
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ha(t) = f2(t) + /;t E(t — m)ylfe(r),7ldr, 05t< w

in which hy € 3y , f1 & 30y N 8y, b £ Hoxy , and f2 € Exy. . Suppose that
(2) (Ohl — h2) € Lony
@) [ kG = i) rldr e o

and that, with
K(s) =f k(t)e *'dt for o =0,
0

(72) det [1y + 3(a + B)K(s)] # 0 for ¢ =0
(i) 3(8 — @) sup Aflly + 3(a + BK(i0)] 'K (iw)} < 1.

—oolw<<oo

Then (fi — fs) € Lony , and, with
pp= sup A{[ly + 3a + B)K(iw)] )

—ool w0

pr = sup A{[ly + 3(a + B)K(iw)] K (iw)},

—ool w0

[fi = fell+ S mll — 28 — @)pal™

hi — hy — /_w k(t — 7)lfi(r) rdr

+

If, wn addition to the hypotheses stated above,

W) — 1@ — [ b~ DA e = 0
ast — o, and

[Thm@ra<s  mn=12-m,
then [fi(t) — fo(t)] = 0 ast— oo.

Our next result is concerned with the character of the change in the
solution of (2) when g is altered by the addition of an element of Lox .

Theorem 2: Let

m@ = A0 + [ k¢ = WA, —e <1<

ha(t) = fa(t) + [_w Kt — Dlfale) Addr,  —w < i< o
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in which: by, he € x5 f1, f2 € Lwon ; and (b1 — he) € L£ox . Suppose that
(7)
) 2 0
[ a+ [
0 —c0

and that, with

fwlkmn(x)ldx f: Ikmn(x)ldx2dt< w,

(mm =1,2,---,N)

KGo) = [ B,
(@) det 1y + 3(a + B)K(iw)] # 0 for all w
(1) 3(B — «) sup A{[ly + 3(a + B)K(1w)] 'K (iw)} < 1.

—ol w<oo

Then (fi — f2) € Loy, and, with
po= sup A{lly + 3e + B)K (iw)] ™)

—oo w <o

pr= sup A{lly + 3(a+B)K(iw)] 'K (iw)},

—o<w<0

[fii=Fl £ ol =358 = a)pl " [l — ke .

Observe that Theorem 2 implies that if (¢), (42) and (247) are satisfied,
then (2) possesses at most one £« solution.

As indicated earlier, in many cases of engineering interest g, in (1),
can be written as ¢ = g1 + ¢., in which g1 ¢ Ky N Lony, g2 € Loy,
and ¢.(t) — 0 ast— . In such cases it is often of considerable import-
ance to determine whether f(¢) approaches a steady-state response that
is periodic with period 7' as ¢ — «. As a specific application of Theorem
1, the following result is proved.

IA

Theorem 3: Let gy € Ky N Loony , g2 € Lony , g2(1) > 0ast — o, Po(wyt) =
Yo(wt + T) forall wandt andn = 1, 2, --- , N, and ¢[0,t] ¢ Ky . Let
f & &yy satisfy
t

6O + 6 =10 + [ ke - D@ d,  05t< .

Suppose that
) kmn
(z)fo ft | k() | do

(12) f:|(1+t)kmn(t) > dt < oo (mymn =1,2, -+, N)

2
dt < oo (myn=1,2 ---,N)
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and that, with
KG) = [ voeta jor o zo0,
0

(#it) det [1y + 5(a 4 B)K(s)] #0 for ¢ =0
() 3(8 — @) sup A{[ly + ¥(a + B)K(iw)] K (i0)} < 1.

—wlwlo

Then there exists a unique f € Ky such that
t
0@ =70 + [ kG~ @A, —o <1< .

Moreover, f & Lon, (f — f) & Lony. , and
[F@) = f()] =0 as t— o,
With regard to the hypotheses of Theorems 1 and 3, it can be shown
that*
det [Iy + (o + B)K(s)] #0 for ¢ =0
and
38— a) sup A{lly + 3(a + B)K(iw)] 'K (iw)} < 1

—ool w0
provided that « = 0 and [K(iw) + K(iw)*] is nonnegative definite for
all w. For this reason our results are particularly relevant to the theory
of passive nonlinear electrical networks.

IV. PROOFS

4.1 Proof of Theorem 1
Let K denote the bounded linear mapping of Loy, into itself defined
by

Kf = j(; E(t — 7)f(r)dr, feLony.

With y an arbitrary positive number, and f an arbitrary element of
JCwns , let P denote the mapping of 3Cy.. into itself defined by Pf = f,,
and let ¢¥f denote the N-vector-valued function of ¢ with values

YII(0),Y] for 0 =<t < .

* The validity of the first assertion can be established with a standard argument
involving the analyticity of K(s) for & > 0. The second statement is a direct ex-
tension of a result proved in Ref. 1. In particular, the greatest lower bound (over
n) of the smallest eigenvalue of the term {1y + R,]7'* [1y + R, + R, *){1y + R.]™Y,
which appears in (7) of Ref. 1, can easily be shown to be positive. Thus, the con-
clusion of Theorem 2 of Ref. 1 remains valid if the condition « > 0 is replaced
by e« = 0.
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Then from
ha(t) — hat) — f_ k(t — )l () rldr

= L) — £ + fol k(t — ) (Wlfi(r) 7] — ¢lfe(r)rDdr, )

0=i< =
and the fact that

p [ Bt — ) W) ) = lfalr)d)dr

=P [ k(= D@l = Wi,
we obtain
hy = P[I + %(a + ﬁ)KKfly - f2y)
+ PK{Yf1, — ¥foy — 5(a + B) (fry — fu)}

in which I denotes the identity operator on £ov, and

(4)

hy = hiyy — hyy — P f_w k(t — m)ylfi(7),7ldr.

In order to proceed we need the following result.”

Lemma 1: Let det [y + (e + B)K(s)] # 0 for ¢ = 0. Then
I 4+ 3(a + B)K] possesses a bounded inverse on Lox, , and

I+ 3(a+ BK 7 [+ £ sup Allly + 3(a + BK ()]}

—owo<lw<0

I+ 3(a+ BKI K|, = sup A{[ly + 3(a + BEK (i) 'K (iw)}.

—
Furthermore,
PI + 3(a+ B)K]™ = PO+ }(a + B)KIT'P forall y > 0.
Thus, since
P+ 3(a+ 8K "PI+ 3(a + BK|(fyy — fo) = fiy — foy

we obtain from (4)
fiy = fa = PIL + 3(a + B)K] A,

— P + (e + BKIPK{Yfy — ¥foy — 3(a + B) (fu — fu)).
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Using the fact that
| ¥y — ¥foy — 3(a+ B) (fru — fou) I+ = 38 — @) | fry — fou [+
it follows that
11 = S ll+ = TP+ 3 + BK] Ay |1
+ 38 — &) | PI + 3(a + B)K]'PK ||,
N = S ll+
S A4 3(a+ BOKT 41l
+ 36— ) [+ e+ BHKITK I+
M = feu Il
Using the inequalities of the lemma,
[ fiv = fow 14 = pall — 5B — @)pal ™ || By ||+
< mll — 38 — a)pal ™ (5)

.

o= e = [ = DA A

+

for all y > 0. Therefore, (fi — f2) € Lovy. and || fi — f2 ||+ possesses the
upper bound stated in the theorem.
We now show that (fi — fo) € Lonvey,

() — ha(t) — f_w k(= DA Adr — 0 as (— =, (6)
and
f:uc,,m(t) Pt < (mn=12-N) (7)
imply that [fi(t) — fa(1)] — 0 as £ — co.

Assume that (fi — f2) € Lovy and that (6) and (7) hold. Then, from
(3) it is evident that [fi(¢) — fo(t)] = 0ast— o« if

fo bt = ) WA ] — Ylfa(r)Ddr — 0 as t— @, (8)

To prove that (8) is satisfied, observe first that (fi — f2) ¢ Loy implies
that (¢fi — ¥f) € Lany . Thus it suffices to show that if ¢ € Loy4, then

t
fk(t—r)g(r)d¢—>0 as {— .
0
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Let
0
. . p— t
G(iv) = 1.1.m.f0 g(t)e"“dt, g€ Lony.

Then, in view of assumption (7), the modulus of any element of the
N-vector K(iw)G(iw) is integrable on the w-set (— «,« ), and hence
by the Riemann-Lebesgue lemma

1 f K (i) G (i) ¢*'de |
27!' 0

which is equal to

t
[ &t = »g(ryar,
0
approaches zero as t — . This completes the proof of Theorem 1.

4.2 Proof of Theorem 2
In this section, K denotes the bounded linear mapping of £.r into
itself defined by
Kf = f k(¢ — 7)f(r)dr, fe Lon.

With y an arbitrary positive number and f an arbitrary element of
3Cy , P denotes the mapping of JCy into itself defined by Pf = f,, and
Yf denotes the N-vector-valued function of ¢ with values

Y[f(E),f] for —w <t < o,
TFrom the fact that

h(8) — ha(t) = f1(2) — fa(2)

0 9
[ = DA A - U Dar,

we obtain

hy = fiy — for + K(¥f1y — ¥fay)
= [I + 3(a + BK](fiy — fo)

+ K{¥fiy — ¥y — 3(a + 8) (1 — fu)}, (11)

in which I denotes the identity operator on £, and

(10)
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M) = hy(®) = (@) + [ G~ ) W) 7] = gl (0) D

= P [ b = D Wl = W) ADdr.
At this point we need®'}
Lemma 2: If det [1y + 3(a 4+ B)K(tw)] # 0 for all w, then

I+ 3(a+ BK]
possesses a bounded inverse on Lan , and

IX+3a+ AKX = _sup Allly + 3(a + HK )]
[I+ 3+ BHKIK]| = _sup My + 3(e + B K (iw)] 'K (i)}

Thus from (11),
fiy = foy
= —[I+ (e + BKI Ky, — ¥y — 5(a + 8) (fiy — fu)}
+ I+ 3(a + BK] Ay .
Using the fact that
| ¥fiy — ¥fow — (e + B) (fru — fu) I = 3B — @) [ fry — fau |,
we have
I fw = fou ll S 38— @) [T+ 3(a+ BKITK | - [ f1y — fuu |
+ M+ (e + BKIT |- [[ Ay -
In view of the inequalities of the lemma,
Sy = Full £ oull — 58 — a)pa] " || By || (12)

Assume now that there exists a constant ¢ such that || &, | < ¢ for all
y > 0. Then, from (12), it is clear that (fi — f.) &€ £ox . This implies
that (¥fi — ¢f:) € Lav . Hence, (9) can be written as

hl bl h2 = fl _f2 + K(‘//fl - l//f2),

from which it follows, by essentially the same argument as that used to
obtain (12) from (10), that

t With no more than a reinterpretation of the functions involved, the proofs of
the inequalities of Lemma 1 suffice to establish the inequalities of Lemma 2.
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[fi —Ffoll £ mll — 38 — a)pe] ™ || B — Ba|.
Therefore to complete the proof of Theorem 2, it suffices to prove

Lemma 3: If (hi — he) € Lan, J1, fo € Lwn, and assumption (2) of The-
orem 2 1s satisfied, then there exists a constant ¢ such that || by | £ ¢ for all
y > 0.

4.2.1 Proof of Lemma 3

Let ¢ = (q1, ¢, -, qv)' = (i — ¥fo),
6(t) =1 for |t| =y
=0 for |¢]| >y,

and

w= Gy, w) = [ R0 = D) — 0@lg(r)dr.

Then, since (A1 — ho) € Loy, it is sufficient to prove that there exists a
constant ¢; such that || « || £ ¢ for all y > 0. Further, since

|ul?® = WXIL}I f_w | w4, (2) |? dt
-2

m=1 ©

2

n=1

S [kt = D06 — 00

2

[ "t = DG — 00)gu()dr

IIA
=
[V]z
Mz
|\

2

IIA

=3

=
Mz
M=

l/cmn(t —7) |- |0(7') — 0(t) | dr

2

in which

7 = max 51t1p | g (2) |7,

it suffices to show that there exists a constant ¢, such that forally > 0

[

2

[wllcnn(t —7)|-|0(z) — o) |dr| dt £ c2

(m,n =1,2,---,N).
Using the fact that

~
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[ 1k 1 ot = ) = 00) | dr

© t—y
= [ k) e+ [ o) dr for (€] <
t+y —x
t+y
= [ k(o) | dr for [£]>y,
t—y
it is a simple matter to verify that
© © 2
f f | bnn(t — 7) | |6(z) — 6(2) | dr | dt
2y 0 2 0 z 2
ng f | T () | dr dx+2/ f | vn(7) | dr | do
0 z —2y —o0
0 z 2
+ [ k) r | e
—co z—2y
0 z+2y 2
kmn 3
+ [ Vo) lar | da

from which it is evident that our assumptions imply that there exists
a ¢, with the required property. This proves the lemma and completes
the proof of Theorem 2.

Remark:

Assumption (7) of Theorem 2 is satisfied if

0

f_wlﬂﬁmn(t)ldt< o, (n,m =1,2, -+, N),
for then the (bounded) functions

[k L o [ o) o
are integrable on (0,'00) and (— «,0), respectively.

4.3 Proof of Theorem 3
We need two lemmas.

Lemma 4: Let ¢, -] satisfy the conditions of Theorem 3, g1 ¢ Xy, and

K(iw) = fo ) k(t)e tdt.
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Suppose that, with 9T the set of inlegers,

@ det[1x + 1a + DK (Z2) [ 0 for nem

(6) (5 = @) sup A {[1 +ie+ ok ()] k (’%’f)} <.

Then there exists a unique f &€ Xy such that
t
0 = JO + [ k= @ A, —e <1< .

Proof of Lemma 4:

Theorem 4 of Ref. 1 and the remarks relating to its proof imply
that the conclusion of Lemma 4 is valid if the hypotheses of the lemma
are satisfied and the condition

sup A {[Lv + 3o + BK (ﬁj”")]_} < w (13)

n el

is met. However, since every element of K(727xn/T) approaches zero
as | n | — o, assumption () of Lemma 1 implies that

det [lN + Yo+ BK (%’;")] 1 > 0.

Therefore, in view of the fact that the elements of K(:27xn/7T) are
uniformly bounded for n ¢ 91, it follows that (13) is satisfied. This
proves the lemma.

inf
nedJ

Lemma 5: Let [-,-] satisfy the condittons of Theorem 3, let fexy, and
suppose that assumption (¢1) of Theorem 3 is satisfied. Then

[; k(t — m)lf(7),rldr & Lon -

Proof of Lemma &:
Let ¢(t) = ¥[f(1),t], and

u= (u, us, --',’LLN), = f_; k(t — 'r)q('r)d'r.

Then ¢ ¢ Ky, and
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N i
@ 12 2 [ halt = ) [ 0a(e) [ dr

N o
= 3 [ 1k | aalt = ) | dr.
m=1 Y0
Furthermore,

f: | T () | [ gat — 7) | dr

2

© ) 2
< 2 f Qn(t — T)
= [ 10+ Dhfar [ 22T —2Van,
and the last integral can be bounded as follows
0 Qn(t_T) 2 _ 0 (m+1) T qn(t_"') 2
fo 147 dr né) mT 1+ dr

< (1 + g (mT)‘2> fOT | ga(t) |* dt.

Thus, the u,(¢) are uniformly bounded on (— «,% ), which proves the
lemma.

Theorem 3 follows at once from Lemmas 4 and 5, Theorem 1, and
the fact that assumption (¢) of Theorem 3 and f ¢ Loy imply that

f_ k(L — )¢l F(r) ldr & Lovs. .
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Applications of a Theorem of Dubrovskii
to the Periodic Responses of
Nonlinear Systems

By V. E. BENES and 1. W. SANDBERG
(Manuseript received May 14, 1964)

Dubrovskii’s theorem on completely continuous operators that are asymp-
totic to zero is applied to the study of the existence and uniqueness of pertodic
responses of nonlinear systems to periodic driving signals. Examples of
nonexistence and nonuniqueness are given, a relctionship between non-
uniqueness and subharmonics 1s noted, and some general existence theorems
are proven, giving estimates on the magnitudes of the harmonics.

I. INTRODUCTION

In 1939 V. M. Dubrovskii! proved the following result:

Theorem 1: If A is a completely continuous operator which maps a Banach
space X into itself, with the property that

lim | Az | =
Nzl || 2]

0, zelX,

then for each scalar \ and y ¢ X, the equation * = y + NAx has at least
one solutton x ¢ X.

Dubrovskii’s theorem was stated in the long review article of M. A.
Krasnoselskii’ on problems of nonlinear analysis, but except for a recent
application,’ it seems to have gone largely unnoticed. It is the purpose
of this paper to indicate some applications of the basic idea in the
theorem to integral equations (and systems thereof) that arise in the
study of nonlinear electrical networks and automatic control systems.

The applications to be made all center around the existence and
uniqueness of periodic responses of nonlinear systems to periodic driving
signals. These properties of the equations governing nonlinear systems
are frequently taken for granted. The fact is, though, that these are
by no means universal properties of such equations, as simple examples

2855
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(to be given) will show. Often, the nonexistence of periodic responses
is related to instability of the nonlinear system, while their lack of
uniqueness is closely connected with the possibility of responses with
subharmonic components. Thus it is important, in control and circuit
theory, to be able to distinguish nonlinear equations that have unique
periodic solutions for periodic inputs from those that possess several
such solutions. With the aid of the idea underlying Dubrovskii’s theorem,
we examine this problem in the present paper for systems described by
the nonlinear integral equation

o) =y + [k — Wy du, )

(and by a vector analog thereof,) where y(-) is an input, k(-) is an
integrable (L;) impulse response of a linear system, and ¢(-:, ) repre-
sents a periodically time-varying nonlinear element. Periodic solutions
of (1) have already been considered in previous work of one of the
authors;' almost periodic solutions of (1) have been studied in previous
joint work® of the authors. In both these papers a basically different
assumption about the growth of the element ¥(-,-) (from that to be
made here) was used.

II. SUMMARY

A discussion of the abstract Banach space setting for Dubrovskii’s
theorem appears in Section III. It includes a quick proof of the theorem
from Schauder’s fixed-point principle. There follows in Section IV an
account of mathematical preliminaries, assumptions, definitions, etc.,
requisite for our remarks about (1). These remarks begin, in Section V,
with a simple example showing that (1) may have no periodic solution
and continue in Section VI with an existence theorem, for periodic
solutions of (1), based on the principle of Dubrovskii’s theorem. In
Section VII we apply this result in discussing an example of nonunique-
ness due to existence of subharmonic solutions. In Section VIII it is
shown how the bound on the norm of the solutions obtained in Section
VII can be improved. In Section IX, finally, a vector analog of the
existence theorem of Section VII is stated and its proof sketched.

ITII. BACKGROUND DISCUSSION

We recall® that an operator A taking one Banach space into another
is termed completely continuous if and only if it is continuous and carries
every bounded set into a compact one. Dubrovskii’s theorem for such
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operators is a straightforward consequence of Schauder’s fixed-point
principle:” Let S be a bounded, closed, convex set of a Banach space X.
Let A be a continuous transformation of S into a compact subset of
itself. Then there exists at least one point z ¢ S such that x = Ax.

An operator A4 satisfying Dubrovskii’s condition

po LAzl _

=0
Na)oo || 2]

is said to be asymptotically close to zero; explicitly, the condition is that
for every ¢ > 0 there is anrsuch that || z || = r implies || Az || < e[|z ] .
To prove Dubrovskii’s theorem we seek a closed ball, of radius R to be
determined, that is mapped into itself by the (completely continuous)
operator @ defined by

Gz = y + Nz

with N\ and y ¢ X fixed. Let ¢ be a number such that 0 < [A|e < 1,
and pick (by Dubrovskit’s condition) an r > 0 such that ||z ]| = »
implies || Az || < e[l 2| . If now s is a positive number such that

oyl
T 1—€|A]
thenforr < [z < s
[Gell =yl +IN]- [ Az
syl +Inlela]
< s.

Since A is completely continuous, the set
{Aaz: 2] = 7}

is compact. Thus the continuous function || Az || defined on { ||z || £ 7}
is bounded. If R is chosen as

- vl
R = max {m’ hyll+ 12 luflﬁl;” Az ”}
then || z || £ R implies || Gz || £ R. The closed ball of radius R is convex,
and the existence of a fixed point of @ in the ball follows from Schauder’s
fixed-point principle. To establish the result for a particular value of A
it is not necessary that 4 be asymptotically close to zero; clearly, it
suffices that there be e such that 0 < ¢ < | A | "and rsuch that || z || > r
implies || Az || < el x| .
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IV. PRELIMINARIES

We shall be concerned throughout with the case in which the functions
z(-) and y(-) of interest are periodic and square-integrable over a
period. By Ly(—T,T) we denote the Banach space of all functions = ()
of period 27T that are real-valued, measurable on [—T,T], and for which

the norm
1ol = (g [ 120 Pac)

is finite. According to standard results in the theory of Fourier series,
such a function is represented in the mean by its Fourier series

N
z(t) = lim. 2, zne™ ™"

N-»>w m=—N

with Fourier coefficients
T = 1 fT (e ™™ dt —0 <m< ®,
2T J_r ’

The norm of (- ) and its Fourier coefficients are related by the Parseval
identity

o0

Toll®= 20 l=l”

n=—c0

We shall need the following two facts from the theory of Fourier
series: (1) If 2(-), w(-) & Ly(—T,T), with respective Fourier coeffi-
cients {2,}, {wn}, then

T
——l—f 2t — ww(u) du = Y zw.e™ ",
2T J_r =
the series on the right converging absolutely and uniformly; (2) the

Fourier coefficients of z(- +¢) are {e™"/"z,}.
The notation

”z][1=§17jilz(t)ldt

is used occasionally.
Tor a periodie function z(-) ¢ Ly(—T,T) we define the functional

u(ze) = El?f_:]z(t + o —2(0) |dt,
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proportional to an “integral modulus of continuity,” and we remark
that one of the usual arguments for the Riemann-Lebesgue lemma gives,
for n 5 0, the inequality

1 (" ;
2T/ z(t)e—-mnt/T dt'
—T

2| =

_ 1 7 7i] —wint/T
_ ZL_Tf_Tz(z)[l e dt'

< ‘117 f_: | 2(t) — 2(t 4+ T/n) | dt = u(z,T/n).

We shall make two assumptions about the nonlinear element (- ,-),
one about its growth and one about its continuity:

(a) there is a function A(-) nondecreasing on [0, ) such that for
all v, ¢

[¥t) | = A(lv]), (2)

(b) the function ¢(-,-) is continuous in the first variable uniformly
in both variables. Then its modulus of continuity w(-), defined by

0(8) = sup [y (u)) —¢(vt) | for [u—v] =3 (3)
is a continuous monotone function, and approaches zero with § — 0.

When ¢/(v, - ), considered as a function of ¢, has a modulus of continuity
wo(+), so that

| (vt + €) — ¥(0t) | = wole)

for all » and ¢, we set

_Jo n=20
&= w(T/m) n 0.

Jensen’s inequality for a concave function ¢(-) reads
b b
[ 1@p@) de\ [ o(7@)p@) do

- =2 (4)
'[lp(x) dz j;p(x) dz

where ¢(-) is concave in an interval containing the range of f(-) over
[a,b], p(x) = 0, p # 0, and all the integrals in question exist,.

We now return to k(-) in (1). Since k(-) belongs to L;, it has a
bounded Fourier transform

©
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K(w) = @0 [ ) dt.

—00

The convolution operator K on Ly(—T,T') defined by

Ku(t) = fw ot — wh(w) du

—00

is described in terms of its effect on Fourier coefficients by the identity

(K2)w = (20)'K (’i,_;ﬁ) o)

and takes L,(—T7,T) into itself continuously.

V. NONEXISTENCE OF SOLUTIONS

It is easy to see that in some very simple cases (1) has no periodic
solution. An example is furnished by

Remark 1: If ¢(v,t) = v for all » and ¢, and if, for some integer n, both
the nth Fourier coefficient ¥, of y(-) does not vanish and

h, = (2r)'K (ﬁT’I> =1,

then (1) has no periodic solution z(-) belonging to L, (—T,T). For if
there were such a solution, the left side of (1) would have nth Fourier
coefficient x, , while the right-side would have y. + . # z..

VI. EXISTENCE OF SOLUTIONS

Theorem 2: If N(+) and w(-) are concave, y(-) € Ly(—T,T),
2
(7)<

r={yll + () (5)

has a positive solution r, then there exists a solution x(-) of (1), with
pertod 2T, and such that

[zl =7

[Zn| < |ym| + 0K (%”) A(r)

where Tm , Ym are the respective mth Fourier coefficients of z, y.

o0

K2=27I'Z

m=—0o0

and if the scalar equation
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Proof: In the complex sequence space I, of Fourier coefficients, isometric
to Lo(—T,T), consider the set § of sequences © = {x,, —o <n < =}
such that, with the overbar denoting the complex conjugate,

= Tp

lyml+‘1c<%)|x<r).

Tm

lIA

| @m |

By Minkowsk{’s inequality, « ¢ § implies

T2l = (Zlaal D = Myl + () =1,
The set § is compact, being an analog of the Hilbert cube or parallelotope.
It is easily verified that 8§ is convex.

Now let z(-) ¢ L,(—T1,T), and consider the magnitudes of the
Fourier coefficients of the function w(-) defined by

w(t) = ¥(@(0),t) = $(=(t + 27), t + 27).

We find
el = | g [0 nem el s L [T 1vao ol
S RGECTE .
= A(2—1T,[T | 2 (w)| du)
< (=),

where the second inequality follows from the fact that A(-) bounds
the growth of ¥(-,t), the third inequality follows from the concavity
of A(-) by the Jensen inequality (4), and the fourth inequality follows
from Schwarz’s and the monotone nature of A(-). Hence if ||z || < 7,
then | ym + (Kw)w| £ | ym | + (27) K(mx/T) A(r), and it follows
that the operator A defined on L.(—T,T) by

Ax®) =y + [ k¢~ W@y, (1] ST
maps the ball || # || < r into the compact, convex, isometric image of 8,

that is, into a compact, convex subset of itself. Continuity of A on the
image follows from that of K and from the inequality
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2LT /_T | (@ (u),u) — Pza(u)u)| du £ (]| 1 — = ),

provable by the same method as (6). Existence of a fixed point of A
in the isometric image of § follows from Schauder’s theorem.

We remark that if A(u) = o(u) as u — o, then a solution r to the
scalar equation (5) always exists. This occurs, for example, if

)\(u)='ﬁu°' g >0, 0=a<l.

VII. NONUNIQUENESS AND SUBHARMONICS

It is known that a solution of (1) may have Fourier components,
called “subharmonics,” of period greater than 27. Our purpose is to
remark that if this occurs, then (1) does not have a unique solution,
and in fact, the greater the period of the subharmonie, the more distinct
solutions exist. We start with a simple example: Let 7 = #/2, set

v(ut) = sgnu- ful?
y(t) = 3 — 1 cos 2’ ()

let
z(t) = ¢+ 4sint — % cos 2t

and for K(-) take any Fourier transform of an integrable function
with K(0) = 0 and K(1) = 4(2x)7". Tor example, the fourth-order
filter
(27) 16 (1w)*

1 + iw)t
will do. Actually, since we need to prescribe only the two parameters
K(0) and K(1), the second-order filter

(2#)_%&0

(fw)? + 310 + 1

K(w) =

K(w) = (8)
would do as well.

That z(-) as defined is a periodic solution of (1) of period 2r can
be verified from the identity

24 sint = (§+ 4sint — § cos 2t).

This example, in which the solution z(-) contains the subharmonic
component 4 sin ¢, is adapted from Hughes,® and has been used earlier*
by the authors merely to illustrate the real possibility of subharmonics
in relatively simple systems.
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Now since the input y(-) has period , while the response x(-) has
period 2, it can be seen that by shifting (- ) by ==, that is, by changing
the sign of (all) the odd components of x(-), another solution of (1)
for this ¢/(+) and y(-) is obtained, because

x(t = m) = y(t) + [w sgna(t £ 7 — u) |2t = 7 — w)|k(uw)du

Thus, there are at least two solutions of (1) for this example; the two
we have identified so far differ only in phase. As an application of
Theorem 2 we show that there is at least one more solution, one that
has period =. The following lemma establishes a Hélder condition for
the nonlinearity of the example:

Lemma 1: If
Y(v) = sgnov vl
then for all v and ¢
Y+ &) —v() | <2l

Proof: First suppose that sgn (v + ¢) # sgnov. Then | e| = [v + €| +
|v ], and concavity gives, by Jensen’s theorem,

[y 4+ —p@)| = [v+ el + ||
|v+€|+|vl>%_ S
2<—2——-— = 2| e’

If sgn (v + €) = sgn v, there is no loss of generality in supposing that
v 4+ € > v = 0, because () is odd. Then using concavity again

lIA

v

v+ €
€

v+ €

Y(v + €

() =

¥le) 2 Y+ o).

Hence in this case
0S¢+ e — P <¥le) = el

A direct application of Theorem 2 shows that (1) for the example
(7), (8) has a solution of period =. The scalar equation

lyll +wt=r

is appropriate, and has a positive root r.
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The example just discussed illustrates the following general principle
regarding subharmonics:

Theorem 3: If (1) has a solution x( - ) with (minimal) period 2nT, n > 1,
then each of the functions

x(t + 2kT) k=1,---,n
s a (distinct) solution of (1).

Proof: Since y(-), and the time-dependence of (- ,-) have period 2T,
we have

z(t + 2kT) = y(t) + f_w Y(x(t + 26T — u), t 4 2T — w)k(u)du
= y(t) + j_m v(z(t + 26T — w), t — u)k(u)du.

VIII. CLOSER BOUNDS ON FOURIER COEFFICIENTS

By a more penetrating analysis it is possible to strengthen the bounds
on the norm and on the Fourier coefficients given by Theorem 2. For
example, the inequality (6) merely establishes a uniform bound A(r)
for all Fourier coefficients of functions

w(t) = Y(x(t),t)

for || z || £ r. However, since the argument for (6) shows that w(-) is
absolutely integrable over a period, its Fourier coefficients actually go
to zero at infinity, and it should be possible substantially to improve
the estimate (6). This can be done with the help of the quantities
{qmn, —® < m < =}, and the functional p, defined in Section IV.
Throughout this section, it is assumed that ¥(v,-) has the modulus

of continuity we(-) as a function of ¢, and that

«(F)

It follows from (9) that there is a function A(-) £ L.(—T,T) such that
for any z(-) e Ly(—T,T)

2"1T f_i h(t — we(wdu = f_: k(t — w)z(u)du;

the Fourier coefficients of h(-) are

o0

L

m=—o0

"< . 9)

he = (20)K (%), —wo <m < oo,
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For each positive number s, and m = 0, we define
an(s) = p(y,T/m) + N(s)u(h,T/m).

Since for () & Lo( —T,T), u(x,e) — 0 as e — 0, the numbers a,,(s)
are bounded in m £ 0 for each fixed s. By the Riesz-Fischer theorem
there is for each s > 0 a function u,(-) ¢ L:(—7,T) whose Fourier
coefficients are

_ 3w | {e(an(s)) + qu}, m #= 0
Unls) = {Iho [ N(s) m = 0.

with (ef. Section I1V)

_Jo n =20
I = wo(T/n) n # 0.

Theorem 4: Let N(-), w(-) be concave, and let r be a positive number
satisfying the inequality

Tyl + ol =
Then there exists a solution x(-) ¢ Lo(—T,T) of (1), such that
Izl =
p(x,T/m) = an(r), : m #= 0
[Zn | = | ym| + [un(r) |,  allm
Proof: Let the operator A be defined on the ball { || z || < 7} in Ly(—T1,7")
by

Az(t)

y(8) + f_: k(t — wy(x(u),u)du

= y(t) + ;Tf [ Al = W) w)du

The argument of Theorem 2 shows that A maps { ||z ] < 7} con-
tinuously into L.(—7,7"). Further, by Fubini’s theorem and the con-
cavity of A(-),

81_T2 f_ dt f_ [h(t+ e — u) — h(t — )| [P (z(u)u)] du

= w09 g, [ 1¥(a()0)] du
S M(h,é))\(” T ”)7

|
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and we find that ||| < 7 implies u(Az,T/m) =< an(r) for m = 0.
Moreover

[W(x(u+ ute) —d(@(w)u) | = o(|z(u+e) —x(u)]) + wle),
so that the concavity of () implies
2u(¥(z),60) £ wlp(z,e)) + wole).
It follows that || z || < r implies
L(A2)m | = ym |+ 2 [ k| {o(an(r)) + gn},  m >0
and also
| (Ax)o| = [ yo| + [ ho | N(r).
Let 8 be the compact set of I, sequences
= {,, —o <n < o}
such that
Tom = Tm,
om | S Tym| 4 [ua(r) |.

[t can be seen that A maps the ball { ||z || £ r} into the isometric
image in L,(—7,T) of 8. This image is compact and convex, and The-
orem 4 follows from Schauder’s fixed-point principle, as did Theorem 2.

Theorem 5: Let N(-),w(-) be concave, let y(-) ¢ Lo(—T,T), and let
there exist a positive number r and a real bounded sequence b = {b,, , m 5 0}
satisfying the inequalities
Tyl + I AING) =7

nw

sin —

om \hﬂl {w(bn) + Qn} = bm, m # 0.

w(y,T/m) + ;ﬂ

Then there exists a solution (-) &£ L,(—T,T) of (1) such that
lm| S 1Yn |+ 3 hn[{ea) + b,  m =0.

Il [l

Proof: Let R be the compact, convex subset of L,(—7T,T) consisting of
functions 2(-) such that

lzlh =
2u(z,T/m) £ b, m # 0.

r

I\
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Let (-) ¢ R, and let {¢»,, —® < n < =} be the Fourier coefficients
of the function w(-) defined by

w(t) = Y(a(t),t), all ¢
Then the concavity of A(-) implies that

ol =2 (g [ 1201 @) £20)
and that of w(-) implies that for m = 0

¥l = o [ wlla(e + T/m) — 20Dt + g

w2u(x,T/m)) + qn.

IIA

Now
Azt 4+ €) — Az(t)

=yt =@ + [ B+ =0 = k= 0w

and the second term on the right is

Z#oh"(em'nelf' _ l)kbne“'nt,
n

the series converging absolutely and uniformly to a quantity of modulus
at most

ne

|

T
Slll

2Zlhl

Hence, with € = T/m, m = 0,

2u(Az,T/m) £ b

At the same time

2T[ | Az dt <o |y<t)|dz+4T2[ Rt = )| | o) ) it

IA

Tyl + 1A A

r.

IIA

Thus Az(-) belongs to R. The result follows by Schauder’s theorem,
as before.
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Remark: Let «(-) be concave, with w(u) = o(u) as v — o,
Let {2, , n 5 0} belong to I, , and let {h, , n > 0} belong to I; VI, . Then
there exists a minimal bounded sequence {b, , n # 0} satisfying

|2 | + 22
m#=0

sinl"f' b | 0(b) € by, n 0. (10)
2n

The sequence {b,} is minimal in the sense that its components are less
than or equal to the corresponding components of any other sequence
satisfying (10).

Let B be the set of sequences v satisfying (10). To prove B is non-
empty, let

0 n =20
U, =

2 sin7-"—n1|hm\, n # 0,

m#0 2T

and let r satisfy ||z || 4+ || v || w(r) = r. Define w = {w.,n # 0} by

Wo = | 20| + Unw(r) 7.
Then
EAEY Sinml!’lmlw(wm) < Wi,
m#0 2n
so that w ¢ B and is bounded. Now set b, = inf v, . I'or any v ¢ B
veB
. l’f.r_l, < . 1r_1’)_7,
lz. | + ;0 sin & | B | (b)) = |20 | + ;0 sin o | o | @2 (0m)
<

Up .

Thus b ¢ B and is minimal.

IX. THE VECTOR EQUATION

In this final section, we consider a vector form of the integral equa-
tion (1). Let k(-) be an N X N matriz of real functions of L, and for
each ¢, let ¢(-,t) be a real N-vector valued function of a real N-vector.
Let y(-) be a real N-vector valued function of time {. With these re-
interpretations of the notations in mind, we can leave (1) unchanged.

With M a complex matrix, we let M’ M, and M* denote the trans-
pose, the complex-conjugate, and the complex-conjugate-transpose,
respectively, of M. The positive square-root of the largest eigenvalue
of M*M is denoted by A{M}.
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If v is a real or complex N-vector, its norm is defined as the “Euclid-
ean’” norm

lol = (X 1) = 6o

It is well-known that
AY{M} = sup o*M*Mv (11)

llol=1

and hence that || Mv || < A{M} || v|| for complex N-vectors v.
As previously, L,(—T,T) is the space of real-valued, measurable,
functions z( - ) of the real variable ¢ which satisfy

(7)) x(t + 2T) = z(¢),
() L fTIx(t)[2dt < .
2T ¢
We take as our basic space the Nth power of L.(—T,T), i.e.,

L2N( - T7T):

and think of it as composed of column N-vector valued functions of
time. A norm for L,"(—T',T) can be defined by the formula

”x||2=2in_Tx'xdt

1 r N .
—on ], Tl

where @ = (21, -+-, ax)" € L"(—T,T). This norm makes L,"(—T,T)
a Banach space. Further, an element z(- ) of L,"(— 7,T) has the Fourier
representation

() = lim. D, zn.e™™"

n—-0 m=—n

where the N-vector x,, of mth Fourier coefficients is given by
_ 1 fT "
Tn = 57 . z(t)e dt,
and the Parseval identity

5 wntam= 3 fowl =l

m=—00

for z ¢ L,"(—T,T) holds.
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The matrix convolution operator K is defined on L,"(—T,T) by
Kz(t) = / E(t — wa(uw)du

and the operator ¢ by
Ya(t) = ¢(x(i),t), all 1.
Equation (1) assumes the concise form
z =y + Kyz.
The matrix K,, , m = 0, &1, - - - is defined by the condition

Ko=) = [ ™™ ke

—oc

Tt is assumed that Y A*K,} < . This condition is met, e.g., if

2 k"< oo,

m

for 1 £ 7,7 = N. The matrix convolution operator K takes a function
x(+) ¢ L"(—=T,T) with (vector) Fourier coefficients x,, into the fune-
tion z(-) whose coefficients are

2m = K, m =0, &1, ---,

and the Riesz-Fischer theorem guarantees that z(-) & L"(—T,T).
TFurther, by formula (11) we have

I zmll = MEm} | 2w [l
An analog of Hilbert’s cube in L,"(—T,T) is described by

Lemma 2: Let {c,, —© < n < «} be nonnegative real numbers with
Z e < o,
Then the set
(e LL(—=T,T): | % || £ ca, alln}

18 compact.

This result is a consequence of a known theorem. (See p. 136 of Ref.
5.)

Analogs of the growth condition (2) and of the uniform continuity
condition (3) will be used. These are
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() || ¢(ut|| £ N(|Jw] ), for all ¢ and all real N-vectors w where
A(-) is a monotone function.

(#) ¥(-,-) is continuous in the first variable uniformly in both
variables; its modulus of continuity w(-), defined by

w(s) = iuvpl o (ut) — Y(ot) || for [Ju—v] =4,

is a continuous monotone function that approaches zero with 4.
Theorem 6: If \(+) and w(-) are concave, y belongs to L,"(—T,T),
K= 2 AYK. < o,

and if the scalar equation

r=llyll + «Nr(r)

has a positive solution r, then there exists an element x € Ly" (—T,T) satis-
fying

y + Kyz

r

e
[@mll < 1 ymll + MERNN(T),

with Ty, , Ym the respective mth (vector) Fourier coefficients of x,y.
The proof of Theorem 6 is an exact analog of that of Theorem 2,
using the compact set

we L"(=T.7): [ anll = [[yn || + AKJA(), all m}
and with w(¢) = ¢(x(¢),t), the inequality, (analogous to (6),)
wn || = NN 2 1),
provable by observing first that for all ¢

IIA

S im0 s N e |

N[ z(2) D),

lIA

so that trivially

IA

| wi(0) | = NN([2() )
and by concavity of A(-),

oo [ 1m0t 5 N2 ).
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Squaring both sides and summing overj = 1, - -+ , N we obtain

Fwn [P = NN(| 2 ).
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Equivalence Relations among Spherical
Mirror Optical Resonators

By J. P. GORDON and H. KOGELNIK
(Manuscript received May 11, 1964)

The frequencies, field patterns, and losses of the resonant modes of spheri-
cal mirror optical resonators can be obtained to good accuracy as the solu-
tions of the integral equations of Fresnel diffraction theory. By a simple
transformation of the variables and parameters of the integral equations,
we have found certain families of resonators which have the same diffrac-
tion loss at each mirror, and whose field patterns are scaled versions of
each other. In the case of the infinite strip resonator, this reduces from five
to three the number of parameters necessary to specify the losses and mode
patterns.

I. INTRODUCTION

The resonant frequencies, field patterns, and losses of the modes of
spherical mirror optical resonators can be obtained to good accuracy as
the solutions of the integral equations of Fresnel diffraction theory.!
The equations are particularly applicable when the separation between
the two mirrors forming the resonator is large compared with the di-
mensions of the mirrors. Unfortunately, the equations are usually not
soluble analytically, and require numerical (machine) computation.
There are many parameters involved: the dimensions and curvatures
of the mirrors and their separation. By a simple transformation of the
variables and parameters of the integral equations, we have found
certain families of resonators which have the same diffraction loss at
each mirror, and whose field patterns are scaled versions of each other.
In the case of the infinite strip resonator, this reduces from five to three
the number of parameters necessary to specify the losses and mode
patterns.

II. THE TRANSFORMATION

The equations which determine the field patterns, resonant fre-
quencies, and losses of an infinite strip resonator (see Fig. 1) are!
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Fig. 1 — Spherical mirror resonator with mirrors of curvature radii R: and
R, , and of widths 2a; and 2a,. Mirror spacing is d.

yiun (@) = —\\/% f‘” K(xl, x2) Ux(@e)das (13)

—as

vaus(s) = fal K (a2, 21) w(w)da (1b)

Vi
VN Y-a
with the complex symmetric kernel
K(z1, %) = K(, @) = exp [—j(m/M) (g1 + g’ — 20135)). (1)

Here
gs=1—(d/R), =12,

the mirror separation is d, R, and R, are the radii of mirror curvature,
2a; , 2a, are the corresponding mirrors widths, and A is the wavelength
in the resonator medium. Also, u;(x;) is the (generally complex) nor-
malized field distribution on the left-hand mirror of Fig. 1, while u,(z,)
is the normalized field distribution on the right-hand mirror. If the two
functions are normalized so that

[ ha) Fdn = [ wt@) ! i (2)

a

then one notes™ that the power reflection coefficient of the left mirror

* According to (1b) a light beam with a field distribution u,(z:) across the left
mirror causes a field vaus(xs) across the right mirror. Therefore, the power re-
flected from this latter (perfectly reflecting) mirror is proportional to
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is | y1 |* and the reflection coefficient of the right mirror is |y [*. There-
fore the loss at the left mirror is 1 — |1 [*, the loss at the right mirror
is 1 — |v.[*, and the round-trip loss is 1 — |yry2 |. The condition for
resonance is that yyy, exp [—727(d/\)] be real and positive.

We presume on the weight of much experimental and theoreti-
cal®® evidence that a sequence of solutions to (1) does exist. Suppose
now that we have found a mode of some resonator; i.e., we have found
a solution for u;(x;) and us(a2) which satisfies (1) for one set of values
of the five resonator parameters a; , a2, g1, g2 and d, and have found the
corresponding eigenvalues v; and v, . Our present concern is to find a
family of resonators, each of which will have a similar mode; that is,
a mode with the same values of v; and v, and with similar (scaled)
eigenfunctions. For this purpose we rewrite (1) in terms of dimension-
less variables and eigenfunctions by substituting

x; = aiéi y 7 = 1, 2 (3)
and
1),'(&) = ui(x,-)'\/a, 1= 1, 2. (4)

By this transformation we obtain a generalized set of integral equations
for the modes of the resonator

+1

ywi(t) = VN [_l dg v2(82) K (%1, &) (5a)
+1

yava(£2) = VN dé (&) K&, &) (5b)

with the kernel
K(ti, &) = exp [—jaN(—2&& + Gi&” + Gta')]. (5¢)
In (5) only three independent resonator parameters occur
N = aa/\d, (6a)
G = gi(a/ar), (6b)

[ 72 [? fa2 | waax) |2 oz

The power of the beam as it left the left mirror was, of course, proportional to

8y
‘[ l ul(xl) I2 dx; .

ay
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G = ga(az/ar). (6¢)

N is the Fresnel number of the resonator, while G, and G are generalized
g factors which describe the mirror curvatures.* A geometrical interpre-
tation of the (s is shown in Fig. 2.

Note that the above transformation maintains the normalization of
the eigenfunctions

+1 \ +1
[, de [u(&) |" = f—1 dé | va(82) |° (7
and therefore the physical meaning of the eigenvalues v; and v. .

III. DISCUSSION

The integral equations of any spherical mirror resonator can be
transformed into the form of (5a, b, ¢), which describe completely the

T G,= 3
" a
2

Fig. 2 — Geometrical interpretation of G, .

mode patterns, diffraction losses and resonant frequencies. It is clear
that two resonators have the same scaled eigenfunctions, the same
diffraction losses at each mirror and corresponding resonant frequencies
whenever they are described by the same characteristic parameters
N, G1, and G, . Two resonators are therefore equivalent if

alaz/)\d = d]dz/)\(z =N (8&)
g(ai/az) = i(@/@) = G (8b)
g2(to/ar) = Go(@/G1) = Go (8¢c)

where the overbar indicates the dimensions of a resonator equivalent to
the original resonator.
* Note added in proof: in recently published perturbation analyses of optical

resonators, Gloge! and Streifer and Gamo® have arrived at the same three resona-
tor parameters.
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Quantities which can be expressed in terms of N, G;, and G, also
remain invariant when we change from one resonator to an equivalent
one. Some of these are listed in Table 1. They are used in later computa-
tions.

The set of characteristic parameters N, G,, and G, provides some
insight into the behavior of resonators. The quantity

G = GiG: = quge 9)

may be called the “stability number.” One finds from its value whether
the resonator is intrinsically of the “‘stable” or “unstable” type.'* To
be stable the resonator must satisfy

0< G <1, (10)

TaBLE I —SoME INVARIANTS OF EQUIVALENT RESONATORS

Resonator Parameters Field Parameters
(See Section III and Fig. 1) (See Section X and Fig. 3)
1.1) N = a1a:/Nd 2.1) arr/\z
(1.2) Gi = gi(ai/ay) (2.2) g12(a1/x)
(1.3) G: = g:(az/a1) (2.3) g:(z/a1)
(14:) . G? = gig: = eXen (2.4) J:012
(1 5) 0/1391/012292 = Gl/Gz (25) 111291;/23292,
1.6)* gi1(a:?/Nd) = G\N (2.6) g1z(a12/Az)
A7)* g:0d/ar?) = GoN @) 7. Oz ar?)
(2.8) g:(x?/Az)

* Quantities like 1.6-1.7 but with subscripts 1 and 2 interchanged are also in-
variants.

The quantity N is the well-known ‘‘Fresnel number.” For N >> 1 the
diffraction loss of stable resonators is typically very small indeed, and
the increase of loss in crossing the boundary from a stable to an unstable
type is abrupt. As N decreases toward unity, the loss of the stable
resonators increases, and the boundary becomes less sharp until, as
N <« 1, all resonators have high loss.

Finally, at least for stable resonators with not too small Fresnel
numbers, we can see that the mirror with the larger G has the smaller
diffraction loss. From Ref. 6, or from Section VIII of this paper, we
know that the radii* w; of the fundamental mode “spots” on the mirrors
are related by

wi'/ws’ = ga/gr - (11)

* We use the word ‘‘radius’ here and later to mean half the width of the mode
pattern, as defined in Section VIII.
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We therefore have
(wi'/ar’) [ (w'/as") = guas’/gras” = Go/Gh . (12)

The ratio w./a; between spot radius and mirror half-width can be taken
as a measure for the diffraction loss at a mirror. According to (12)
the mirror with the smaller G; has the larger ratio w;/a;, and thus the
larger loss. In the special case ; = G,, one sees that (5a) and (5b)
become identical, and so the diffraction losses must be equal.

IV. SPECIAL ADDITIONAL EQUIVALENCES

There are two previously known!'® special equivalences which exist
in addition to the new ones we have been discussing. These are:

(a) reversal of sign of both g; and g.

(b) interchange of both ¢, and ¢. , and @; and @, ; i.e., interchange of

the mirrors.
The first of these special equivalences changes the sign of both G, and
(., and does not alter N. This equivalence results because the allowed
field patterns split up into those of odd and even symmetry in the ’s.!
The equivalent field patterns are complex conjugates of the old ones,
but the losses are unchanged.

The second special equivalence corresponds to an interchange of the
two mirrors. It leaves G2 and N unchanged, but interchanges G; and
G, . It also obviously interchanges the mode patterns and the losses
of the two mirrors. Combined with the equivalence relations which we
have discussed before, this interchanging of the two mirrors means that
two resonators are also equivalent if

N=N (13a)

G = G, (13b)
and

G, = Gi. (13¢)

From these relations one deduces some rather curious equivalent resona-
tor pairs if one postulates that the mirror curvaturc should be left
unchanged (g; = g1 and ¢. = §2) and only the apertures a: and a, varied
to form an equivalent resonator. With (13) one finds that

ay = 02(91/02)% (14a)
Ay = al(gz/!h)% (14b)
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is necessary for equivalence. Note that the equivalent resonator was
found simply by changing the mirror apertures. The mode pattern that
appears on the left mirror of this new resonator is a scaled version of the
pattern that appeared on the right mirror of the original resonator,
and the pattern that was on the left is switched to the right mirror of
the resonator.

Similarly, one obtains a pair of resonators equivalent in the above
sense when the mirror apertures are kept constant and the curvatures
are changed in accordance with (13).

V. THE CONFOCAL RESONATOR

The resonator ecommonly known as ‘“‘the” confocal resonator is
actually a very special confocal* resonator for which B, = R, = d,
and hence g = ¢g. = 0, and G, = G, = 0. All of the equivalence trans-
formations we have mentioned transform one eonfocal resonator into
another. Our relations bring out the known fact that the losses and field
patterns (apart from scale factors) of the confocal resonator depend
only on the IFresnel number N and not at all on the ratio of the mirror
aper’cures.6

VI. RESONATORS WITH EITHER Gi; OR G2 EQUAL TO ZERO

When, in a system with mirrors of unequal curvature, the mirror
spacing is equal to the radius of curvature of one of the mirrors, then
one of the ¢’s is zero and we have G; = 0, or G; = 0. Let g = G, = 0.
As a transformation to an equivalent resonator leaves G, invariant, we
have for the equivalent resonator §, = 0. In the stability diagram,"’
which shows the stable and unstable resonator regions versus g; and
gz , our transformation yields equivalent resonators that are represented
by points on a straight line (in the general case, one has a branch of a
hyperbola gig. = const).

The parameters of equivalent resonators with G, = 0 are related by

G = G = gi(a/ay) = Gi(a@/as). (15)

This relation allows one to find for each resonator with g» = 0 and
unequal apertures an equivalent resonator with g, = 0 and equal aper-
tures, which is discussed in Ref. 1. Resonators of the former type have

* Any resonator whose mirrors have coincident foci may be termed confocal,
whether or not the mirrors have equal curvature. As has been noted f only ““the”’
confocal resonator is a low-loss resonator.
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been of interest for the selection of transverse modes in optical maser
oscillators.” The mode selection properties of equivalent resonators are,
of course, the same. For a resonator formed by a spherical mirror and
a small plane mirror at its center of curvature’ (g = 0) one finds equiva-
lent resonators of equal mirror apertures which are the closer to the
confocal resonator the smaller the flat mirror [compare (15)]. As it
appears that the confocal resonator has the best mode selection prop-
erties of all spherical mirror resonators, the above behavior would imply
that reducing the size of the flat mirror will improve the mode selectivity
of the above system. T. Li’ has indeed found this to be so on the basis
of computer calculations.

VII. RESONATORS WITH RECTANGULAR OR CIRCULAR MIRRORS

The integral equations which determine the modes of resonators with
rectangular mirrors decompose into two sets of equations identical to
(1), each set involving a single one of the two transverse Cartesian
coordinates.!®* Hence all of the above applies immediately to such
resonators, including resonators with astigmatic mirrors, provided the
principal directions of the astigmatism are parallel to the edges of the
mirrors.

Equivalent families of resonators with circular mirrors can also easily
be found by a similar method, starting from the appropriate integral
equations which are indicated in the Appendix. The resulting parameters
are of the same form as (6), but with the a; now redefined as the radii
of the mirrors.

VIII. DETERMINATION OF SPOT RADII

If the apertures of the mirrors are sufficiently large, ie., if N > 1,
and if G* is not too close to 0 or 1, then the field patterns of the modes
approach closely to Hermite Gaussian functions and lose their depend-
ence on the apertures. Then one can define a “spot size”, or spot ra-
dius,’® where the Gaussian part of the function has dropped to ¢ of
its maximum. In the transformations among equivalent resonators, the
mode patterns scale in proportion to the apertures; hence two other
invariants of equivalent resonators are obtained by replacing a; and
ap in (6b) and (6¢) with the spot radii w; and w, . Now any quantity
which is an invariant of equivalent resonators must be expressible as a
function of the basic parameters N, G and G, . But since the values of
N and G1/G,, which depend on the apertures, do not influence the spot
radii, these two invariants of the equivalence transformations can be
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functionally dependent only on G* = GyG,. Hence we obtain the rela-
tions

wwe/Nd = f(G?) (16a)
(wy/w2)*(g:/g2) = 1. (16b)

Equation (16b) follows, since we know that for mirrors of equal curva-
ture (and hence with g; = g.), the spot radii are also equal. The function
f(G*) on the right side of (16a) may be evaluated by comparison with
a known result® for mirrors of equal curvature

(0o =02 = g; W= wWe = W).

Equation (27) of Ref. 8 can be conveniently expressed in our present
notation as

w/N = (1/x)(1 — ¢ (17)

which, on comparison with (16a), identifies f(G°) as
J(&) = (1/m) (1 = &) (18)
Equations (16a) and (16b) can be rewritten with the help of (18) as
wi/wy = (ga/1)* (19a)
wawe = (Ad/7)(1 — giga) " (19b)

These last equations are identical with (39) and (40) of Ref. 6 and
together determine the two spot radii. Their derivation here is included
because of its relative simplicity, and as an example of the use of the
invariants.

IX. FACTORS OF THE GENERAL TRANSFORMATION

Given the parameters (dimensions and curvatures) of one resonator,
specification of @, and §, for an equivalent resonator completely deter-
mines all parameters of the equivalent resonator, apart from the special
equivalences discussed in Section IV. The general transformation from
the original to the equivalent resonator can be factored into a succession
(product) of two simpler transformations, in the first of which a, is
changed but g, is not, followed by a second for which g, is changed but
a, is not.

The first of these simpler transformations effects a rather simple
squeezing of all resonator dimensions, all transverse dimensions (aper-
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tures) being multiplied by the same factor e, say, while all longitudinal
dimensions (radii of curvature, mirror separation) are multiplied by
¢. To see this we note that R; and d must change proportionally to
leave g, unchanged. R, must change in proportion with these because
of the invariance of gig., i.e., of G°. Finally, a, and a, must change
proportionally to leave G invariant, and they must change as d* to
leave N invariant.

The second simpler transformation leaves the aperture a; unchanged.
Suppose it changes the radius of curvature R; in accordance with the
relation

1R = (1/R:) + (1/1). (20)

In practice a thin lens of focal length f inserted directly in front of the
mirror can produce such a transformation. By using the invariants
NGy, N/G:, and N [listed as (1.6), (1.7), and (1.1) of Table I] in suc-
cession, one can derive the following relations between the parameters
of the transformed and original resonators

1/d = (1/d) + (1/f) (21a)
1/(d — RB) = [1/(d — R2)] + (1/f) (21b)
a/d = ay/d. (21c)

Equations (21a), (21b) and (21¢) show respectively that the position,
center of curvature, and aperture of the original second mirror are
changed to those of the new one by imaging them through the lens.
In this imaging process, objects on the side of the lens toward the second
mirror are taken as virtual objects, while objects on the other side of
the lens are taken as real objects.

X. TRANSFORMATION OF THE FIELD INSIDE AND OUTSIDE THE RESONATOR

The mode patterns on the mirrors of two equivalent resonators are
scaled versions of each other, and one expects also a correspondence of
the fields of a mode inside and outside the equivalent systems. This
correspondence is studied in this section.

With the assumptions of the diffraction theory of optical resonators
the fields inside or outside the resonator structure can be expressed in
terms of the field pattern on one of the mirrors via Fresnel’s formula.
For fields independent of y (this restriction can be removed easily;
compare Appendix) we have for the field traveling to the right, say,
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u(x,z) = \\//;;z '[: dx1 ul(xl , 0)
(22)

*eXp I:—j %z (gxzx12 + gzxz - 2x:c1)]

where u1(21, 0) is the given field pattern on the left mirror and u(x, 2)
is the field on a spherical references surface that intersects the optics
axis a distance z away from the mirror (see Fig. 3). The quantities

d1; = 1 — (Z/Rl) (23&)
g: = 1 — (2/R) (23b)

are again used to describe the curvatures of the mirror (curvature
radius R;), and that of the reference surface (curvature radius R).
The mirror width is 2a; .

The transformation to an equivalent resonator changes the aperture
and curvature of the mirror under consideration, and scales the field
pattern on it accordingly, i.e., if

a4y — @ (24a)
91— 0 (24b)
then
Vaiui(z,0) = v/a, %%, 0) (24¢)
where
xl/al = 571/0-/1 . (24d)
®
\
T R, R R, ——
| \\ 2 i
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Fig. 3 — Reference surface for description of the fields inside the resonator.
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We seck a new surface, deseribed by 2, §, (or R), on which a scaled
“image” (&, £) of u(z, 2) will be found. To do this we find, just as in
Section II, a set of invariants necessary so that (22) retains its form in
the transformed parameters. Essentially these invariants are the three
terms in the exponential of (22), with the added fact that since a;
transforms like a;, we replace z; in those terms by @, . By manipulation
we obtain the set of invariants listed as (2.1) through (2.8) in Table 1.
The terms (2.6), (2.8), and (2.1) come directly from the three terms
in the exponential of (22); the others may be derived from them.
Finally, the transformed function is given by

(z/a)'u(z, 2) = (z/@)'a(z, 2). (25)

From this set of invariants one can find the new position (), curvature
(§.) and transverse scale factor (%/x) of the scaled function. First,
consider the position. The invariant (2.6) may be expanded, using

(23a), as
2 2
ay 1 _ 1 _ d .
T(E R:) “m(g 1+91>- (26)

But now the term (a,’gy/Ad) is itself an invariant (1.6, Table I) of the
resonator transformation, and hence the remaining part of (26), i.e.,

& ()

dx 2
also forms an invariant. Finally we ecan simplify this a bit by dividing
by N (1.1, Table I) to yield the invariant

ay d— =z

— . 27

[¢2] ( z ) ( )
We see that the ratio z/(d — 2) transforms like a;/a; . From (27), we
obtain the equation from which the new position Z may be derived

2 ()25 )

Once we have found the new position, the new transverse scale factor
and curvature may be found most easily using the invariants (2.1)
and (2.4), respectively, of Table I; i.c.,

(@/x) = (&/z)(a/ar) (29)

and
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g-z = gzglz/g-lz (30)

and the scaled function is as given in (25).

To provide a more physical picture of the field transformation, it is
interesting to note that the simple squeezing and imaging transforma-
tions discussed in Section IX apply to the arbitrary reference surface
and its field as well as to the second mirror and its field.

Finally we note that the transformations of IFresnel’s formula we have
been discussing do not depend on the fact that w,(z1, 0) is an eigen-
function of a resonator. The preceding discussion, with the exception of
the derivation of (26), all applies equally well to the fields generated
by any preseribed field distribution over an aperture.
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APPENDIX

Resonators with Spherical Mirrors of General Shape

Within the assumptions of the theory of optical resonators'™ the
modes of a resonator formed by two spherical mirrors of quite general
shape are governed by the integral equations

<T1E1(901,?/1) = XJE dA2'K($1,x23 1, y2)'E2(x2, 312) (31)
42

and

0’2E2(962 s 3/2) = ;f(—i ./; dA1'K(331 y X2y Y1, y2) 'El(l'l y yl) (32)

with the kernel

K(zy, 2591, 92)
= exp{ —J )\%[91%2 + 9’ + g(@ + ¥ — 2(xm + ylyz)]}. (33)

Here (21, y1) and (a3, ¥.) are coordinates in planes perpendicular to
the optic axis, d is the mirror separation, and ¢, and g. describe the mirror
curvatures as in Section II. Subscript “1” indicates quantities associated
with the mirror on the left-hand side, and 2" refers to the mirror on
the right. o1 and a» are the eigenvalues corresponding to v; and v, dis-
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cussed in Section II. The integration has to be performed over the re-
flecting areas A, and A, of the mirrors where dA; and dA, are the area
elements, No assumptions on the curves bounding the reflecting areas
have been made, and the formulation (31) and (32) includes mirrors
of quite general shape. Special cases are, of course, strip mirrors, square
mirrors, rectangular mirrors, and mirrors of circular shape. These are
of main practical intcrest.

Let us compare (31), (32) and (33) with (1a), (1b), and (1l¢) of
Section II. It is clear that the discussion of two-dimensional resonators
systems given in Section II can be extended to the three-dimensional
case in which we are interested now. The only difference is that we now
have two transverse coordinates (x, y). If they are subjected to the
transformation

X; = 611_7,;; Y = 61"‘17,;; 7 = 1, 2 (34)

and the mirror areas and arca clements are scaled like
Ai = effL' 5 dA1 = fiszi (35)
then the mirror curvatures and the mirror separation of two equivalent
resonators are related by the same invariants as before. All we have to
do is to replace a;* by A; in the table of invariants. For the special case
of circular mirrors, a; can be redefined as the mirror radius and retained

in the invariance relations.

Note that we have used the same scaling factors e; for the z and y
coordinates. If different sealing factors are used one obtains, of couse,
equivalent resonators with mirrors that are not spherical but astigmatic.
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Modes in a Sequence of Thick Astigmatic
Lens-Like Focusers

By E. A. J. MARCATILI

(Manuscript received June 1, 1964)

M azxwell’s equations are solved for a pertodic sequence of lens-like focusers
separated by gaps. Each focuser conststs of an arbitrarily thick slab of
dielectric in which the dielectric constant tapers off radially with different
quadratic laws in two perpendicular directions. Since there are no limita-
tions on the thickness of the slabs, the solutions cover the complete gamut
from a sequence of infinitely thin lenses with astigmatism to a continuous
dielectric waveguide, and from spherical to cylindrical lenses.

The field configurations of the modes and their propagation constants, as
well as the transmission and cutoff bands, are calculated. Any arbitrary
nput field distribution can then be expanded in lerms of the normal modes,
and the expansion determines the field everywhere.

Formulas derived for sequences of weak lenses turn out to give very good
results even for lenses whose thickness and separation are equal to the focal
length.

I. INTRODUCTION

One possible long distance transmission.medium for optical waves
consists of a periodic sequence of converging lenses. In order to negotiate
unwanted but unavoidable bends of the axis of the sequence it is neces-
sary to space the lenses as closely as possible.! Nevertheless, ordinary
dielectric lenses exhibit substantial surface scattering, and therefore
the minimum spacing between lenses depends on the tolerable transmis-
sion loss.

D. W. Berreman has shown that an effective lens can be made using
gas with thermal gradients,?* thus avoiding the solid-to-gas transition
problems. D. W. Berreman and S. I&. Miller* proposed a gaseous lens
consisting of a tube with hot walls through which a mild gas current at
lower temperature is forced to flow. At any cross section the tempera-
ture increases from the center to the wall. The density and consequently

2887
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the dielectric constant is then maximum on the axis and decreases
radially roughly with a square law. Without the problem of scattering
at the interfaces, tubular gas lenses can be closely spaced and the gaps
may be comparable to the thickness of the lenses,

The advent of such a new transmission medium makes it opportune
and important to generalize the theory of modes in a sequence of thin
lenses by determining the normal modes in an idealized structure which
consists of a periodic sequence of arbitrarily thick slabs of dielectric
whose dielectric constant tapers off radially with quadratic law.

The preferential direction of gravity creates convection currents that
may introduce astigmatism in the gaseous lenses. Such an aberration
is included in our model by making the radial quadratic law of the
dielectric different in two perpendicular directions.

We calculate the modes of propagation of the idealized structure
without including the solid walls surrounding the medium. Taking them
into account would perturb the modes only slightly, introducing diffrac-
tion losses. Just as in the case of a waveguide with perfect metallic
walls, the idealized modes considered here are not attenuated, but their
discussion is similarly expected to be useful in approximating: (a) the
propagation constants: (b) the range of dimensions over which trans-
mission is permitted or forbidden; (c) the extent of mode conversion at
discontinuities or imperfections; and (d) the field at any point due to an
arbitrary input such as an off-axis or tilted beam. Of these, (a) and (b)
are treated in this article.

The caleulations are general enough that by changing the lens param-
eters and the length of the gaps it is possible to cover uninterruptedly all
the range from a sequence of thin lenses®¢7-® to a continuous dielectric
guide,!-*19 and from spherical to cylindrical lenses. Up to now only the
extreme cases, that is, thin lenses or dielectric guide and spherical or
cylindrical lenses, have been considered in the literature; this article
bridges the gaps.

II. PESCRIPTION OF THE PROBLEM

Consider a periodic sequence of dielectric slabs, shown in Fig. 1.
The refractive index » of each slab is independent of z, but varies with
different quadratic laws in the « and y directions as

@@ o

The refractive index n on the z axis and the characteristic parameters
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Fig. 1 — Periodic sequence of arbitrarily thick and astigmatic lenses.

of the lens-like medium, L, and L., permit adjustment of the parabolic
distributions. The physical significance of L, and L, will be treated
below.

In spite of the fact that it reaches negative values for large x or y,
this dielectric distribution is useful because it matches the dielectric
distribution of the gaseous lens, especially for small values of =z/L,
and my/Ls . Besides, it turns out that the field of most modes is negligi-
ble in the region where the dielectric constant is small or negative, and
consequently that region does not contribute essentially to the guidance
of the modes.

In the Appendix we solve approximately Maxwell’s equations. The
sequence of lens-like focusers supports hybrid modes EH,,, charac-
terized by the indexes p and ¢. These integers indicate that the intensity
of each transverse field component passes through p zeros in the z
direction and ¢ zeros in the y direction.

The only approximation in the solution of Maxwell’s equations
consists in neglecting terms of the order of pA/L; and g\/L, compared
to unity. A is the free-space wavelength. Typically \/L; and \/L; are
of the order of 107°; therefore, except for very high-order modes (p
and/or ¢ very large), the results must be satisfactorily precise.

The modes have no electrie field in the y direction nor magnetic field
in the x direction. The remaining components — E,, K., H, and H,
in the dielectrie slabs and I, , E,, , H,, and H,, in the gaps — are found
assuming as normal modes only those field configurations that repeat
themselves periodically at each lens. Therefore the equiphase surfaces
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of each mode are planes at z = 0 and ¢ = 0, as shown in Fig. 1. We
reproduce here only E, (55) and E,, (58).

All the other components can be deduced from them with the help
of (45).

2 2 2
0 = i X v 1Y tan (YL (a0 ™
E, exp{ ) [lm (z SR, 2R2> (p + 2) tan <312 tan L1>
e (e )] -G -@)) @
17Ty 82? L, p1 P2
o, (ve D) (va )
P1 P2
@ iy 1 -1 2¢
B,y = exp {—1 [lc (; - % - §R—g;> - <p + §> tan T s
() 2]-G-)
- — ]t =] —{Z 3
<q t 2) an 768022 Pg1 Pg2 ( )

w(veg)m(ve)

where [see (55) to (67)], k = w\/eu = 2w/\ is the free-space prop-
agation constant and H,(a) is the Hermite polynomial of order w.

The physical significance of the symbols s, 82, Sp1, Sz, 1, B2, ete.
will be developed below. We give first their mathematical meaning and
in order to avoid repetition, from now on the letter m will stand for
either the subindex 1 or 2, depending on whether the symbol under
consideration refers to a dimension in the plane y = 0 or z = 0 respec-
tively. Calling the thickness of each dielectric slab ¢, and the gap between
them b,

B 1+ C, ctn ¢m)*
Sm = Wm (1 — Cp tan oy, (4)
Sgm = Wn(1 + Cp ctnon)i(1 — O, tan on)? (5)

wmzli/&n (6)
™ n

b

2 L,

t

Cn =n (7)
on =5 (8)
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()
14 (1
R, = %" : Sm + ctn 2m2 (9)

(@) e T
Sm L, J
4

o

1 W ! W ‘ 2wz (10)
+ 5 +11 - 5. cos +—

E*S g 2¢ '\

Rﬂm = iz_ [1 + (ksf 2) :l (11)

Pam = Som 4/ 1+ (ljf )2 (12)

Let us find the physical significance of B, , Rym s pm s Pom s Sms Sgm »
wn and L, . Equating in (2) and (3) the imaginary parts of the expo-
nents to constants we obtain two equations of equiphase surfaces (wave-
fronts), one applicable within a lens and the other in a gap. At the z
axis, each wavefront has a radius of curvature in the plane y = 0 which
in general is different from that in the plane x = 0. Within a lens those
main radii of curvature are R, and R, [see (9)], while those in a gap are
R, and Ry, [see (11)]. If L; = L, , then Ry = Ry and Ry = Ry .

For the fundamental mode p = ¢ = 0, at a given abscissa z or { the
field amplitudes (2) and (3) decrease with different Gaussian laws in
the z and y directions. The distances at which the field is 1/e of the
maximum occurring on the z axis are the beam sizes p; and p, [see (10)]
within a lens, and p,; and p,, [see (12)] in a gap.

For z = 0 and ¢ = 0 we find from (10) and (12) that p, = s, and
pgm = Sygm . Therefore s, and s;, are the beam sizes at the planes of
symmetry of each lens and each gap respectively.

The physical significance of w,, becomes obvious on reducing the gaps
between lenses to zero. Then instead of a sequence of lenses we have an
uninterrupted dielectric waveguide and we derive from (7), (4), (5)
(10) and (12) that

Pm = Pgm = Sm = Sgm = Wn . (13)
Therefore in the continuous guide the propagating normal modes do
not change size along z, and for the fundamental mode w; and w, measure

the beam sizes in the z and y directions.
From (10) we find that within a lens the beam sizes p; and p, in the
= 0 and z = 0 planes vary perlodlcally along z; their periods are L,

and L, respectively.

For the particular case in which L, = L, the field in the gap (3)



2892 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

coincides with that found by Boyd and Gordon® for the resonator made
with confocal mirrors of infinite aperture.

III. TRANSMISSION AND CUTOFF CONDITIONS

Both s, [see (4)] and s, [see (5)] must be real quantities, otherwise
the fields given in (2) and (3) become infinite as  or y — . This
establishes that a mode can propagate in the sequence of lenses either
when

Cn £ ctnom (14)
or when
Cn £ —tan on . (15)
Their equivalents in explicit form are
b £ (2L./nw) ctn (wt/2L,,) (16)
and
b £ —(2La/nw) tan (wt/2L,). 17)

Which equation must we use? Since b and L., are positive, (14) or (16)
must be used when ¢, = wt/2L,, falls in an odd quadrant and (15) or
(17) when it falls in an even quadrant. Naturally, if these equations are
satisfied for only one of the two indexes, that sequence of lenses cannot
propagate any nonattenuating mode.

If b = 0, the sequence of lenses is reduced to a continuous waveguide
and transmission takes place, as it must, no matter what the values
of ¢ and ¢, are. If now we increase the gap b, transmission will take
place as long as (16) or (17) is satisfied.

IV. DISCUSSION OF THE FIELD INSIDE AND OUTSIDE THE LENSES

The sequence of lenses admits a complete set of modes. For each mode,
the field inside (2) and outside (3) the lenses is a wave traveling in the
z direction whose amplitude, period and equiphase surfaces (wave-
fronts) vary along z.

The amplitude depends on z as a product of a Gaussian function and
a Hermite polynomial (parabolic cylinder function) whose degree
depends on the mode under consideration. A similar type of variation
occurs along y.

In Fig. 2 we plot qualitatively the beam sizes p,, and p,n. for ¢, =
wt/2L,, in the first, second and third quadrants. For ¢, in an odd quad-
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rant, as in Figs. 2(a) and 2(¢), the maximum and minimum beam sizes
within each lens are

o 1+ Cpctn o,
Pmmax = Sm = Wn <1—‘m> (18)

and

Wi (1 — C, tan gam)*
Pmmin = —m— = Wn m . (19)

The period between two successive maxima is L,, . The square root of
the product of the maximum and minimum beam sizes in the dielectric
is a constant

(Pm max Pm min)% = Wn

and coincides with the beam size w., of the lens-like medium,
In the gap, the only extremum for the beam size is a single minimum
which ocecurs at { = 0 and, from (5) and (12), corresponds to

Pommin = Sgm = Wn(1l 4 Cp ctn )} (1 — C,ptan pn)*.  (20)

If ¢ = wt/2L,, falls in an even quadrant, as in Fig. 2(b), the mini-
mum and maximum beam sizes interchanged from the odd quadrant
are (18) and (19) respectively. Again (20) corresponds to the unique
minimum in each gap.

V. SPECIAL CASES
Let us consider the field in a gap assuming
Li=L, =1
and
t/L =1n or ¢ =¢ = 9(r/2) (21)

where % is an integer. Then unless the gap b = 0, the minimum beam
size in the gap pym min (20) becomes infinitely large and the electric
field (3) is reduced to a plane wave travelling in the z direction. If more
generally only ¢, = 7(7/2), but ¢, is unrestricted, then the wave fronts
are cylindrical surfaces parallel to the z axis.

Consider again

Ll = L2 = L
but
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Cl b Cz = ctn 01 = ctn ©3 (22)
or
C,=0C; = —tang, = —tan ¢ . (23)
Then according to (20) the minimum beam size py1 min = Pg2 min = 0
and the field in the gap (3), for p = ¢ = 0, becomes
22 + o
B,y = exp —ik¢ (1 - 2§2J>. (24)

The wavefronts close to the ¢ axis are concentric spheres and their
centers coincide with the point z = y = ¢ = 0.

Therefore the two conditions indicated above correspond either to
plane waves in the gap or to concentric waves (if one observes only the
field in the region close to the ¢ axis). They are equivalent to those in
Fabry-Perot resonators with plane and concentric mirrors.”®’

The condition under which the beam is closely concentrated on the
z axis is found by minimizing the maximum beam size within a lens,
Sm [see (18)] or w,,"/sm [see (19)] depending on whether ¢,, is in an odd
or even quadrant.

If the gap b decreases, the value of s, or w, /s, also decreases; for
b = 0 the sequence of lenses becomes a dielectric waveguide, the beam
size does not vary with 2, and its value is sn = wn'/Sm = wn.On the
other hand, if the thickness ¢ of each lens is the only variable, the mini-
mum of S, Or w,,’/s, is achieved by making

9m _9sm _ o g om 1s an odd quadrant
ot 6§0m
or (25)
a1 a 1

- == =0 if ¢,, is in an even quadrant.

These conditions lead to the same requirement, namely:
C,. = ctn 2¢,, (26)
or its equivalent
b = (2L./n7) etn (wt/Ly) (27)

which, replaced in (18) or (19), determines the minimized value of the
maximum beam size within each lens

Sm min = (wm2/8m) min = ’wm[(1 + Cm2)% + Cm]%- (28)
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For the same condition (26) or (27), the beam size in the gap at any
abscissa ¢ is derived from (5), (12) and (26)

_ 2\ 1 Cm2 2.( 2]%
Pgm = wm(]- -+ Cm) l:] + m <—5> . (29)

VI. SEQUENCE OF WEAK ASTIGMATIC LENSES

Before considering weak lenses, let us relate the characteristic lengths,
Ly and L, of the lens-like focusers to their focal lengths in the planes

= 0 and x = 0. To calculate the focal length in the y = 0 plane (see
Fig. 3) the ray trajectory is determined from the equation

d’x/d?® = (1/v) (dv/dx). (30)
Taking the refractive index » from (1)
d’z _ 1 d

(—12_2 = ﬁ—__(—_—_m% V13— (7rx/L1)2. (31)

For paraxial rays
wx/Ly & 1 (32)

and within a lens the trajectory of a ray entering parallel to the z axis
at a distance x is

x = mp cos (mz/Ly).
The angle of refraction at the output surface is

= (nx/Ly)xo sin (wt/Ly). (33)

PRINCIPAL
X PLANE

\\\"

h— — — — _—

LENS

Fig. 3 — Ray trajectory in the plane y = 0 of a lens.
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Then from simple geometric considerations in Fig. 3, the focal length
f1 results

Ly

mn sin (wt/Ly) (34)

L=

We assume now weak lenses. They are characterized by
en = (7/2) (t/L,) K 1, (35)

and in all previous results each circular function can be replaced by its
leading term.

Because of the inequality (35) the characteristic length of the focusing
medium L; in (34) can be calculated explicitly by

L1=7rvnt1. (36)
Similarly, for the plane z = 0

L2 = 7TV nt 2. (37)
The weak lens requirement (35) then becomes

1.,/

Using (36) and (37) together with the simplifying assumption (38) we
re-evaluate the maximum and minimum beam sizes (18), (20) for
weak lenses (¢, in first quadrant),

w = () () @

N\ nb\: b >*
O R

The distance & between the principal planes may be of interest. Using
(33) and (34), this distance turns out to be

Sgm

hn = —tan — — L. (41)

Expanding the circular function in series, keeping only the first two
terms and substituting L,, by their equivalents (36) and (37) we ob-
tain,™

h =t(1—1>+—§— (42)
" n 1202, "
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6.1 Lxample
Let us assume a sequence of gaseous lenses such that
b=t=fi=f=02m
A = 06328 10"° m
n ~ 1.

For these dimensions ¢; = ¢, = 0.5, and therefore the weak lens in-
equality (38) is hardly satisfied. Nevertheless, let us go ahead and
calculate extreme beam sizes s; = s, and s;; = s, as well as the charac-
teristic length L; = L, of the lens using (39), (40) and (36)

81 = 8 = 0.286 mm
Sp = 8, = 0.248 mm (43)
L1 = Lg = 0785 m.

Let us calculate again the extreme beam sizes using the exact expres-
sions (18), (20), deriving L from (34)

81 = 8 = 0.276 mm
S;1 = 852 = 0.224 mm (44)
Ly = Ly = 0.704 m.

The two sets of results (43) and (44) are reasonably similar and show
the usefulness of weak lens formulas even for lenses with comparable
values of ¢ and f.

VII. CONCLUSIONS

The properties of the modes in a sequence of thick, astigmatic and
unbounded lens-like focusers are similar to those in a sequence of thin
infinitely large lenses.

The modes are hybrid and described by parabolic cylinder functions
(product of Gaussians times Hermite polynomials). Transmission takes
place as long as the gap between lenses is smaller than a value given in
(16) or (17).

The maximum beam size can be reduced by decreasing the distance
between dielectric slabs. Nevertheless, if the gap is fixed, the minimiza-
tion of the maximum beam size can be obtained by selecting the dielec-
tric properties or the thickness of each focuser according to (27).

Simplified formulas derived for sequences of weak lenses yield good
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approximations even for lenses whose thickness, separation and focal
length are comparable.
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APPENDIX

Solution of Maxwell’s Equations in a Sequence of Thick Astigmatic Lenses

We will obtain, first, a general enough solution of Maxwell’s equations
for one of the lenses; see Fig. 1. Then by makingn = land Ly = L; — o,
we will deduce a general solution for the uniform gap between lenses,
and finally we will match the tangential fields to satisfy the boundary
conditions. For modes with only four field components, E, , E. , H, and
H., , Maxwell’s equations become

0B, OE. .
dz or Jenty

LE:C = —jw#Hz

9y

(45)
0H, OH, .
— — = —jwek,

ay 9z

65; = —jwek,

where g, the magnetic permeability, is a constant;

€ 2 T ? Y 2
=) - ()] (40
e, L, and L, are arbitrary constants; and w\/eu = 27/A = k is the
free-space propagation constant.
By eliminating variables and by neglecting terms of the order of
N/L; and A/L," as compared to unity we obtain identical equations for
E.and H, . For E,,

O, | 9'E. | 9E. ) 2[ <7rx>2 (m)j _
o Tap Tz T -\g,) ~\g) B =0 D

* In practice N/L; and N\/L, are of the order of 1075,
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This equation is separable and a general solution is

= o -(5) - (2)]

= . _2v—|-1)\_2u+ll%]
X;,,;‘A”" expl: tknz <1 T 5 L2> (48)

0 (42) ().

where » and p are integers, and A4,, is an arbitrary constant. Using m
to indicate either subscript 1 or 2,

wm=—/‘/)‘L . (49)
T n

H,(§) = (=1)%e" (&'/dg)e™

is the Hermite polynomial*® of order ». Hermite polynomials of lowest
degree are Ho(¢) = 1; Hi(§) = 2& Ho(§) = 48 — 2; and Hy(%) =
8¢ — 12¢,

Expression (48) can be simplified provided that the important terms
of the summation are those for which

V)\/ L1 << 1

and (50)

ﬂ)\/Lg < 1.

8

The function

Then the square root in the exponent can be replaced by the first two
terms of a power series expansion and

E, = exp (—ia - _xi - y_2> [ZA exp [i(mve/ L) H, (‘z/fa):]
[io B, exp [i(wve/Ly)1H, <\/ 23/)] (51)

N 1 1
= ’W[l _E<E+E>]'

We will look for a periodic field configuration that reproduces itself
at each lens. For reasons of symmetry, then, the planes of symmetry of
the lenses (2 = 0) and gaps (¢ = 0) must be equiphase surfaces.

where
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We choose the field at the plane z = 0 to be
2 2 .~
Y (M i, (V2)
eXp< s1? 322> H,,( s1 )H,,( S2

where p and ¢ are integers and s; and s, are arbitrary parameters for
the time being. Therefore for z = 0, we obtain from (51)

o) 2 2
2x : 2

S (- )0 (42) - o0 (-)1(42). 0

p=0 w Sg

and

Using the orthogonality properties of the Gaussian-Hermitian product,”
we obtain

V2 / * I: 2 < 1 1 ):,
4, = ——— exp| —& (5 + =
W?’v!wl 0 p £ 8% + w;*
(2 ()
S1 W
and a similar expression for B, . Replacing the result in (51) and per-
forming, as in Ref. 13, first the summation in » and g and then the

integration in &, the transverse field component inside a lens expressed
in closed form results

2 2
_ —i _r ¥\ 1
E. = exp { i [lm (z 5E: 3 Rf) <P + 2)
L (w w2 1 L (ws me
-tan (8—12' tan I_41> — (q + §> tan <§ tan E)] (55)
2 2
o[- (- (] (veD)(22)
P1 P2 P1 P2
where, for m = 1 or 2

4
w,
()
%" S + ctn 272 (56)

I:l - (EU—'">4:I sin 2az Ln
Sm L,

(54)

R, =

and
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— 1 ! w, \* omz|
m = Sm / - _m. —_ _m b —_— (!’7
’ ‘/2 {1 + (Sm> + [1 (Sm > :| o8 Lm j ( ’ )

The cleetric field in the uniform dielectric gap between two lenses
can be derived from the previous expression by making

n =1
and
1/L., =0

and by substituting another symbol, s;m, for s. . Again we demand the
plane of symmetry of the gap, z = (b + t)/2 (see Fig. 1), to be an
equiphase surface. This is achicved by substituting ¢ = 2 — (b + t)/2
for z.

The electric field in the gap is then

B, = exp {—73 [lc(g‘ — i — ﬁﬁ—) — (p + 1) tan™! %
i 2R,y 2R, 2 ksgy®

R I AR E O

where
_ kzsgm“[ < 2¢ >2:|
Ry, = ic 1+ Top? (59)
and
2 2
Pgm = Sgm 14 ksfﬁ) . (60)

To match the fields (55) and (58) at the interfaces, the x and y
dependences of the field at both sides must coincide. The fact that it
can be matched guarantees that Maxwell’s equations are satisfied
simultaneously in lenses and gaps. It can be verified that if the tangential
electric field continuity is satisfied, the tangential magnetic field con-
tinuity is also guaranteed. By considering waves propagating in both
directions, it could be possible to take into account reflections at the
interfaces, but we shall instead assume that at each interface there is a
matehing mechanism that prevents reflections. Notice that in the case of
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gaseous lenses the small changes of dielectric constants automatically
insure negligible reflection at the interfaces.

The exact matching of the fields at the interfaces is achieved by
making cqual the cocflicients of x, v, 2° and »* in both expressions (55)
and (58) at the boundary z = ¢/2 of the lens and { = —b/2 of the gap.
Then

R = 199 = Romg = —t/9) (61)

Pm(z = t/2) = Pgm[t =—(®/2)] + (62)

From them, together with (56), (57), (59) and (60), we deduce the
values of s, and s;, that guarantee the matching at the interfaces.
They are:

and
Sym = Wn(1l 4+ Co ctn @)t (1 — O, tan gn)* (64)
where
Cr = n(x/2) (b/Lyn) (65)
on = (7/2) (¢/Lw) (66)
Wn = (1/7) A/ NLn/n. (67)
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Substitution of Laminated Low-Carbon
Steel for Silicon Steel in the Cores
of Wire Spring Relays

By WILLIAM C. SLAUSON
(Manuscript received May 13, 1964)

This article describes the analytical and laboratory studies undertaken to
determine if low-carbon steel could be substituted for the more expensive
1 per cent silicon steel in the cores of general-purpose wire spring relays. Not
only is thes silicon steel more costly, but its hardness characteristics are such
that tool maintenance for manufacture is an appreciable item. It was found
that this substitution can be made without degrading the performance of
these relays, provided the new core is made up of lwo laminations. When
two laminations are used, the eddy current time constant of low-carbon
steel matches that of the silicon steel. This is necessary to achieve the fast
operate and release times now obtained and to permit satisfactory operation
of present circuils when the substilution is made.

Thzs substitution will result tn substantial annual manufacturing savings
for the general-purpose relays. These savings could be further increased if
use of the new core could be extended to other, more special, relays of the
wire spring relay family. These applications are now under study.

I. INTRODUCTION

The wire spring family of relays (see Fig. 1) was designed to serve as
the basic components of modern switching circuits. It was first intro-
duced in the No. 5 crossbar switching system and later in other systems,
including a wide variety of switching applications for the Bell System.
The design provides an electromagnetic device of high efficiency and re-
liability with excellent operating characteristics and suited to a high
degree of automation in manufacture. The relays are obtainable in a wide
variety of codes with different coil resistances and are capable of con-
trolling from 1 to 24 contact sets per relay in various combinations of
makes, breaks, transfers, and operating and releasing time intervals,
ranging from a few milliseconds to longer than one-half second in slow-

2905
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SPRING CLAMP

Fig. 1 — Wire spring relay.

release applications. The operating life of these relays approaches ap-
proximately one billion operations. In view of these considerations and
the outstanding performance record of the relays now in use, the demand
has been continually rising over the past years. Since the production of
general-purpose wire spring relays began in 1950, more than one hundred
million have been manufactured, and approximately twenty million of
these were produced in 1963.

One per cent silicon steel was chosen originally as the magnetic core
material for these relays because of its high resistivity, good magnetic
properties, low aging characteristics, and its ability to achieve fast,
efficient and stable operating characteristics. This material has proven
satisfactory but over the years has presented some manufacturing and
procurement problems. Therefore, consideration has been given to the
use of alternate materials, particularly low-carbon steel for the relay
cores. This article will discuss the theoretical and the manufacturing
aspects involved in substituting laminated low-carbon steel for the 1
per cent silicon steel cores. Only the general run of fast-operate and
fast-release relays will be considered, since the major effect of the ma-
terial substitution is due to the difference in the eddy current time con-
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stants (because of the low resistivity of low-carbon steel). The slow-
release relays will not be discussed, since they have built-in eddy current
inducers, such as short-circuited windings or copper sleeves, which re-
duce the eddy current conductance of the magnet core to secondary
importance.

II. PRESENT CORE DESIGN

When the general-purpose wire spring relay was developed in the late
1940’s, the best material available for magnetic cores was 1 per cent sili-
con steel. As a result, the magnetic design of the relay was based on the
use of thismaterial. One per cent silicon steel has relatively high electrical
resistivity, which keeps the eddy current time constant of the structure
to & minimum, thus permitting fast operate and release times. The ma-
terial has good magnetic properties with relatively high flux densities,
which permit the development of ample pull forces between the relay
armature and core. Also, it is a stable magnetic material that does not
exhibit any significant change in properties with time. As a result, gen-
eral-purpose wire spring relays with silicon steel cores have delivered re-
liable performance with good operating margins for the past fourteen
years.

The disadvantages of silicon steel have been in the manufacturing and
procurement areas. This steel is relatively difficult to fabricate by punch-
ing, because it has an abrasive action on punches and dies which necessi-
tates frequent tool maintenance. Also, it is not as readily available and
is more expensive than the low-carbon steels, such as S.A.E. 1010 steel.
As a result of these considerations, there has been a continuing effort to
find or adapt a substitute magnetic material for cores of general-purpose
wire spring relays. This has led to the development described in the sub-
sequent sections of this article.

III. LAMINATED CORE PROPOSAL

Recently a new and relatively inexpensive method of annealing low-
carbon steel to obtain good and stable magnetic characteristics has been
developed using “wet forming” gas. This annealing technique produces
in low-carbon S.A.E. 1010 steel magnetic properties comparable to those
obtained with 1 per cent silicon steel. Thus, low-carbon steel, which is
much less expensive, could be considered as a substitute for silicon steel
in the cores of general-purpose wire spring relays. However, S.A.E. 1010
steel has a nominal electrical resistivity of 12 miecrohm cm™!, whereas
the comparable value for 1 per cent silicon steel is 25 microhm em™.
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The eddy current conductance of a material is inversely proportional to
the electrical resistivity; hence, the eddy current conductance of S.A.E.
1010 steel is about twice as great as that for 1 per cent silicon steel. Since
the operate and release times of a relay are directly affected by the eddy
current conductance, a direct substitution of S.A.E. 1010 steel for 1 per
cent silicon steel would materially increase these times in general-purpose
wire spring relays. Such a change in performance would be intolerable,
since many switching circuits are designed to take full advantage of the
fast operate and release times obtainable with the present relays. An
increase in these times would result in circuit-race conditions or add to
circuit holding times, thereby increasing the number of common control
units needed in a central office.

Theoretically, if the volume and shape of a piece of magnetic material
are not changed but the material is laminated with equal-size lamina-
tions, the effective eddy current eonductance is reduced by an amount
which is inversely proportional to the number of laminations. Also, if
the cross-sectional area is rectangular, the eddy current conductance is
further reduced as the ratio of width to thickness is increased. Thus,
laminating a rectangular cross-section magnetic part reduces the effec-
tive eddy current conductance to between 1/N and 1/N*% of the un-
laminated value, where N is the number of equal-size laminations.

Taking advantage of the recent development in annealing and the
concept of laminations, it was therefore proposed that the 1 per cent
silicon steel core of the general-purpose relay be replaced with a core
made up of two equal laminations of S.A.E. 1010 low-carbon steel. The
cffeet of this material change on the operation of the relay will be dis-
cussed from both the practical and theoretical aspects, with a view to
showing that the change results in a relay equal in performance to those
produced during the past several years, at a considerable cost saving.

IV. PRACTICAL ASPECTS OF THE PROPOSAL

In order to introduce a substitute design for a functional part of the
relay, the following factors must be considered:

4.1 Operational Factors

(1) time characteristics
(a) electrical operate time
(b) electrical release time
(2) magnetic pull vs ampere turns
(3) heating (watts input vs temperature rise)
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4) life
(a) wear vs number of operations
(b) wear effect on operate and release characteristics
(5) core plate tightness (due to staking efficiency of softer 1010 steel
material)
(6) corrosion protection (effectiveness of plating along laminated seam
if the laminations are welded before plating).

4.2 Manufacturing Factors

(1) Shape of laminations
(a) economic considerations (punching properties and tool life)
(b) assembly considerations (dimensional considerations for spool-
head and core plate areas)
(2) cost of material
(3) loose vs attached laminations
(a) handling ease
(b) assembly ease
(4) method of punching
(a) single (one at a time)
(b) double (two at a time, i.e., one on top of the other)
(5) welding or mating of Jaminations
(a) before punching
(b) after punching
(c) location of welds.

To have the laminated S.A.E. 1010 steel core accepted for use in the
relay, the new design must perform as well as the old design with regard
to all of the operational factors and should have definite advantages with
regard to the manufacturing factors. In order to obtain the maximum
improvement in the manufacturing area without affecting the over-all
relay, it was necessary to introduce the minimum number of changes to
the structure. As a result, the object of the laminated core proposal was
to match, as nearly as possible, all of the characteristics of the present
general-purpose wire spring relay having a silicon steel core with a new
core of the same physical outside dimensions.

Analysis of the magnetic properties of S.A.E. 1010 steel annealed by
the wet forming gas method indicated that sufficient magnetic pull would
be developed with this material provided the efficiency of the relay’s
magnetic circuit was maintained. However, as indicated previously and
analyzed in detail in the next section, laminating the core was necessary
in order to reduce the eddy current conductance to tolerable levels. To
be assured that the benefits of laminating the core would always be
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present, it was at first believed necessary to physically separate the
laminations by depressions or an insulating film to prevent the flow of
eddy currents between the laminations. From a manufacturing stand-
point, it was decided that if this were necessary, it would be more prac-
tical to depress a large section of one of the laminations instead of using
an insulating finish. As a result, the first sample cores were made this
way. For comparison, a standard core is shown in TFig. 2 and laminated
cores of the first design in Figs. 3 and 4.

Trig. 4, a side view of the laminations, shows the recessed section in the
upper lamination to provide an air gap over the greater portion of the
length of the core. The two laminations are in intimate contact at the
two ends to provide a low-reluctance path for the magnetic flux to pass
from the bottom lamination through the upper to the relay armature.
However, timing tests of various combinations of recessed laminations,
as well as flat laminations, in relays have shown that it is not necessary
to create a positive or visual air gap between the parts. Apparently, the
surface resistance of the laminations due to normal oxide films is suffi-
cient to keep the eddy currents of the laminations from combining,.

SLANT
VIEW

Fig. 2 — Standard one-piece core.

X=WELD POINTS (4)

i
TOP BOTTOM _
LAMINATION LAMINATION

Fig. 3 — Laminated core.
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Fig. 4 — Side view of laminated core.

In Fig. 3, a slant view of the laminations, four welds are shown at
points marked (X). The welding was done before magnetic annealing or
plating of the parts. The welds are located at the front and rear, where
they have the least effect on the eddy currents in each lamination. The
welds are proposed only to associate the two laminations punched to-
gether and to facilitate the assembly of the relay. Relays were assembled
and tested and satisfactory results obtained when the two laminations
were not welded together. The laminations in this case were held to-
gether by the core plate at the front end and the spring clamp at the rear
end after the relay had been assembled (see Iig. 1).

V. THEORETICAL ASPECTS OF THE PROPOSAL

5.1 Symbols

The following is a list of the symbols used in the theoretical discussions
presented in the balance of this article. Where variant forms of these
symbols, as distinguished by subscripts, are used in the text, they are
defined in connection with the specific use.

a1 — inner surface area of coil

as — outer surface area of coil

E — applied voltage

' — magnetic pull

@ — total equivalent single-turn conductance

(. — equivalent single-turn conductance of coil — N2?/R

G. — equivalent single-turn eddy current conductance

H. — coercive force (oersteds)

I — steady-state current

7 — instantaneous current

K — total thermal conductance

k1 — thermal conductance per unit area of coil inner surface
k2 — thermal conductance per unit area of coil outer surface

L; — single-turn inductance — (47/®;) or (¢/NI)
N — number of turns in coil
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NI — steady-state ampere turns

N7 — just operate or just release ampere turns
NI, — ampere-turn coercive force — (H.1/0.4x)
R — coil resistance
t — time
t1 — waiting time
v —ratio of flux at time ¢ to steady-state flux
W — power — I*R
§ — magnetomotive force —4xNI or R¢
I  —length of magnetic path
® — reluctance of relay
®. — reluctance of core
®, — initial incremental reluctance
¢ —flux
¢1 — steady-state flux
¢” — saturation flux
¢o — residual flux
6o — ambient temperature
§ — mean coil temperature.
5.2 General

Since the only change proposed in the relay is the core material, the
armature, contact springs, balance spring and other operating parts will
be unchanged. The mass and spring forces of these parts control the
travel time of the relay in both the operate and release directions. The
change in core material will, because of a different eddy current con-
ductance, affect only the electrical waiting time of the relay. Therefore,
the electrical waiting time on the operate and then on the release of the
relay will be considered first.

5.2.1 Elecirical Waiting Ttme — Operate

The electrical waiting time on operate of a relay is defined as the time
from the application of potential to the relay coil until the magnetic pull
on the armature equals the back force on the armature and it starts to
move. During this period the flux development in the structure follows
the relationship:

do _
%—'%s‘l“]:ﬂ'Ga—t'— (1)

where §, is the steady-state magnetomotive force (mmf) or 47NI, §
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is the effective mmf and is equal to ®¢, and @ is equal to the coil con-
ductance (G.) plus the eddy current conductance (G.). The reluctance
(6%)is a function of the armature-core air gap (X) and the flux (¢). With
the armature at rest against the back stop and using the initial condi-
tions X; and ®:, (1) can be rewritten in the integral form with ¢:®;
substituted for §, as follows:

_ 4G * deé

= — 2
' G Jo ¢1— @ 2)
which on integration gives:
4rG 1
tl = Wl' ln - (3)

Since v, the ratio of flux attained at time ¢ to the steady-state flux, can
be written as the ratio of the just operate ampere turns to the steady-
state ampere turns N¢/NI, and 47/®, is equal to L;, the single-turn
inductance, (3) may be rewritten as follows:

L = Ll(Gc + Ge) In (4)

1
1 — (Ni/NI)
which is the general form of the equation for the electrical waiting time
of a relay on operate.

5.2.2 Electrical Waiting Time — Release

The release waiting time of a relay is defined as the time from the
opening of the coil circuit to the beginning of motion of the armature
from the operated position. The opening of the eircuit results in a de-
caying magnetic field which is sustained only by eddy currents. The
release waiting time is described by the same relationship as the operate
waiting time except that since §; = 0 with the coil circuit open (1) be-
comes:

§ + 4nG o _ 0. (5)

di

The normal-release waiting time of a relay without copper sleeves can
only be determined approximately because of the variable distribution
of the magnetic field sustained only by eddy currents (G.). However, if
the flux decay is retarded by the introduction of a conductance much
larger than G., such as a copper sleeve or short-circuited coil turns,
the decaying field is nearly uniform and a relatively close approximation
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to (5) can be made. Equations thus derived for the slow-release case can
be used for the approximate analysis of the normal-release time case.
Then (5) can be written in the integral form:
o1
b= drG [ 22 )
s 3

where #; is the waiting time for the flux to decay from the steady-state
value (¢1) to the value (¢) at which the magnetic pull is equal to the
retractile force.

For reliable and repetitive release times, the steady-state flux (¢1)
of a relay should be in the region of flux saturation (¢”). Therefore, re-
lease times will only be considered from this condition. Since § = ®R¢
and the relationship between ¢ and § is in the demagnetization curve,
the following equation results:

5 _ 8 =) — g
(¢” — &)

where ®, is the incremental reluctance when § = 0.
If (7) is substituted in (6), the expression for release waiting time

becomes:
47@ ¢”( 1 1 )
o= =2 — de. 8
' cqus e g A ®)

Integration of this equation results in:

®Rr (7)

47 @G

T

t1:

lnZ — 1+ (1/2))], (9)
where

Z _ ¢II — ¢0.
¢ — o

To have a more readily usable relationship for release waiting time,
it is necessary to obtain an expression for Z in terms of § or 4«N<.
Equation (7) can be rewritten to give the following expression for:

_ ¢// — o
Z =1+ == G (10)
Substituting the expression for ®, as obtained from (10) in (9), and

recognizing that with the coil circuit open and no sleeves or short-cir-
cuited turns the only conductance involved is the eddy current con-
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ductance (G.), the following expression for release waiting time is ob-
tained:

_ Ge(¢>” - ¢o) In Z _ 1
b= Ni (Z -1 Z)' (11)

VI. EVALUATION OF OPERATE AND RELEASE WAITING TIME

Equations (4) and (11), for operate and release waiting times respee-
tively, can be evaluated by obtaining values for the variables experi-
mentally and graphically. In this section the procedures for the establish-
ment of the relay parameters will be discussed.

The first data needed are magnetization curves of flux vs ampere turns
with the armature in the unoperated position for the evaluation of op-
erate waiting time and in the operated position for release waiting time.
Typical curves are shown in Iigs. 11 through 16 (see Section VIII).
With measured values of just operate, just release and steady-state cur-
rent, all of the flux values for (4) and (11) can be read from the curves.
The inductance per turn (L;) may be found by drawing a line through
the origin of the unoperated magnetization curve tangent to the nearly
flat or linear portion of the curve (see Fig. 5). The slope of the tangent is
a reliable value for L if the just operate flux falls on the linear portion of
this curve.

Since @ in (2) and (6) is equal to the sum of G, and @., the effective
eddy current conductance G, can be determined reasonably well graphi-
cally and experimentally by holding the values of the integrals of the two
equations fixed and making timing measurements as G, , which is equal

8 O/
- &
@V

: P

- v

FLUX (8) —>
T

-
Ny
-/

1 l 1 1 ] L 1 I} ! ! |
AMPERE TURNS,NI =—>

Fig. 5 — Inductance per turn (L;) from magnetization curves.
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Fig. 6 — Circuit for varying G, or N?/R by changing R (coil in operate condi-
tion).

to N2/R, is varied. A fixed value for either integral can be assured by
having the relay adjusted so that its steady-state current and either just
operate or just release current are maintained constant throughout the
experiment. G, or N?/R can then be varied by changing the resistance
in series with the coil as shown in Fig. 6 for the operate condition and
Fig. 7 for the release condition. Since all factors except G, are held con-
stant, a plot of G, versus waiting time will be linear, and when extrap-
olated to t = 0 will have a negative intercept on the @, axis equal to
G. as shown in Fig,. 8.

Values for all of the variables in (4) and (11) were determined for both
one-piece 1 per cent silicon steel cores and laminated S.A.E. 1010 steel
cores and the waiting time for operate and release computed. The com-
puted values are compared to measured values in a later section.

VII. EXPERIMENTAL DETERMINATION OF OPERATE AND RELEASE TIMES

In production, permissible dimensional tolerances of the parts and
differences in the magnetic characteristics of the cores due to material

R,0HMS (CONSTANT)
s —(—
I=CONSTANT RELAY SECONDARY
WINDING

D
q
P R,OHMS
(VARIABLE)
{

il o !

E,VOLTS (CONSTANT) F (CONSTANT)

F;g. 7 — Circuit for varying G. or N2/R by changing I (coil in release condi-
tion).
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Fig. 8 — Waiting time vs coil conductance.

and annealing variations will result in variations in the operational char-
acteristics of the relays. To evaluate these effects, two sample groups of
relays with each core material were constructed. Group SP was made
with minimum-dimension parts having a poor anneal and group LG had
maximum-dimension parts with a good anneal. Fig. 9 shows the operate
time of these relays as a function of coil conductance with an unoperated
air gap of 0.032 inch and with input powers of 2 and 10 watts. It will be
noted that the laminated S.A.E. 1010 steel core relays are approximately
1.3 to 3.4 per cent faster than the 1 per cent silicon steel core relays.

Fig. 10 shows the release times and release pull values for the same
groups of relays. Here, it is noted that the laminated S.A.E. 1010 steel
core relays release from 13 to 27 per cent faster than the 1 per cent silicon
steel core relays.

VIII. COMPARISON OF CALCULATED AND MEASURED TIMES

The measured times shown in Figs. 9 and 10 all include some armature
movement. However, all of the relays had essentially the same mechani-
cal adjustments, and the same SP and LG armatures were used on both
the laminated S.A.E. 1010 steel and 1 per cent silicon steel cores. There-
fore, it can be assumed that the mechanical armature travel times of the
relays were essentially the same. As a result, a comparison of like sets of
relays, i.e., SP laminated versus SP one-piece, ete., should reflect the
difference in electrical waiting time of the groups being compared.

A comparison of the calculated times for the like sets of relays was
also made using the values of L, G., ¢, ¢o, etec., obtained from Figs. 11
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Fig. 9 — Change in relay operate time due to variation in relay dimensions
and quality of anneal. Relays had cores of either laminated 1010 steel or 19, silicon
steel.

through 16 as described earlier. Tables I and II show the comparison
between the laminated S.A.E. 1010 core relays and the 1 per cent silicon
steel core relays as determined by measurement and by calculation. In
all cases good agreement was found between the measured and calculated
values.

IX. COMPARISON OF EDDY CURRENT CONDUCTANCE

In Tables I and II are listed the values of eddy current conductance
obtained for the SP and LG groups of relays. 7.20 and 8.25 kilomhos
respectively were found for the 1 per cent silicon steel cores and 5.55 and
6.65 kilomhos respectively were found for the laminated S.A.IE. 1010
steel cores. Since the S.A.J. 1010 steel has approximately twice the con-
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Fig. 11 — Magnetization curves of cores with small dimensions and poor
anneal (0.006 air gap).

ductivity of 1 per cent silicon steel, the eddy current conductance of the
S.A.E. 1010 cores would have been about 14.4 and 16.5 kilomhos for
the SP and LG groups respectively if the cores had not been laminated.
Thus laminating reduced the eddy current conductance of the cores by
the ratios of 5.55/14.4 or 38.5 per cent for the SP group of relays and
6.65/16.5 or 40.3 per cent for the LG group of relays. Since it was ex-
pected that the use of two laminations would reduce the effective eddy
current conductance by a ratio of between 1/N and 1/N*? or between 50
and 35.4 per cent, good agreement with the theoretical analysis is indi-
cated.

X. COIL HEATING (POWER INPUT VS TEMPERATURE RISE)

Another major consideration is the effect of using a laminated core
and a new material on the dissipation of heat from the relay coil. The
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Fig. 12 — Magnetization curves of cores with large dimensions and good
anneal (0.006 air gap).

allowable mean temperature rise of a relay coil is limited by two factors.
The first of these is that in normal operation the temperatures should
not rise to a point that is dangerous to personnel in case of physical
contact. This limit has been established for many years in the Bell Sys-
tem at 225°F. The temperature rise in normal operation is a function of
the duty eyele of the relay and is influenced, therefore, by its circuit
application. The second limitation on temperature rise — that the relay
shall not become a fire hazard in case of indefinite energization — is of
more direct interest from an apparatus standpoint. With the normal
wire insulations and coil insulating materials used in Bell System relays,
it has been found that a maximum mean coil temperature of 360°F can
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Tig. 13 — Magnetization curves of cores with small dimensions and poor
anneal (0.032 air gap).

be allowed with essentially no risk of insulation breakdown which would
produce a fire hazard. It is recognized, though, that prolonged exposure
of a relay to such a temperature could result in permanent damage.

The dissipation of heat from a relay coil oceurs mainly from the inner
and outer surfaces by a combination of conduction, convection and
radiation, with negligible dissipation at the coil ends. Convection and
radiation are principal factors at the outer surface and conduction
through the insulation and core is the principal factor at the inner sur-
face.

The dissipation of heat is therefore through parallel paths which
can be represented by the electrical circuit analogy shown in Fig. 17.
The imposed voltage is equivalent to the temperature difference between
the coil and ambient, the electrical current is equivalent to the heat
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Fig. 14 — Magnetization curves of cores with large dimensions and good
anneal (0.032 air gap).

flow in the branches, and the electrical conductance is equivalent to the
heat conductance. As shown in Fig. 17, there is a circuit of two branches:
one from the coil through the outer core surface to ambient and the
other from the coil through the inner coil surface and the core to ambient.

From this analogy it has been found that a good approximation of
the mean coil temperature can be obtained from the relationships:

1

K = kQ(Ig + 1 (12)

Rc+_

k 101

and

Vou _ s 6 — 6 >
R, = KO =0 (1 T 390+ a6 (13)
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TaBrLeE I — Errect oF Using LamiNnaTED CorEs oN Eppy
CURRENT CONDUCTANCE AND OPERATE TIMES

Per Cent Decrease in Operate Times — ¢, (laminated
- core) vs g (1% silicon core)
é Core
g L Ge 2 watts 2 watts 10 Watts 10 watts
g uH Kmho Ge = 25 G, = 40 G, = 25 G, = 40
a Kmho Kmho Kmho Kmho
>
::’ Material Type Calc. | Meas. | Calc. [ Meas. | Calc, | Meas. | Calc. [ Meas.
SP | SAE 1010 | lam. {0.267] 5.55
SP | 1% silicon| solid [0.264 7.20f|3-7%3-3%|2-5%2.87)3-4%3.4%|2.3%2-1%
LG | SAE 1010 | lam. |0.298] 6.65 P
LG | 1% silicon| solid [0.201| 8.25(\%-3%|2-8%1-1% 1 -3%2-372.7703-570)3-37
TasLe II — ErrecT oF Using LaMINATED CoRES oN Eppy
CURRENT CONDUCTANCE AND RELEASE TIMES
Per Cent Decrease in Release Times—{ 1,
(laminated core) vs s (1% silicon core)
Core
Relay Ge
Dimension Kmho 20 Ni Release 60 Ni Release
Material Type Calc. Meas. Cal. Meas.
SpP SAE 1010 lam. 5.55
5P| 1% silicon | solid 7.20 1% | 2% | 2% | 2%
LG SAE 1010 lam. 6.65
LG | 19 silicon |  solid 8.25 16% | 13% | 19% | 14%
where R, = the thermal resistance of the core in ‘“Fahrenheit ohms,”
R, = the coil resistance at ambient temperature,

8, and § are expressed in degrees Fahrenheit
and other symbols are as defined earlier.
The exact thermal conductance of complete relay structures will vary

R,=1/K,a, (COVER)

AMA—

(SOURCE OF HEAT)

R¢ (CORE)

NV

Fig. 17 — Electrical circuit analogy of dissipation of heat.

VVV

R;=1/K,a; (CORE SPACE)
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considerably from unit to unit because of variations in relay assembly,
such as the tightness of fit of the coil on the core. However, nominal
values for a1, az, k1, k2, and R, have been established for general-pur-
pose wire spring relays with 1 per cent silicon steel cores. These values
along with the theoretical difference in R, for laminated S.A.E. 1010
steel cores can be used to calculate mean coil temperatures. The estab-
lished mean values are as follows:

k1 = 0.01 watt/F°/in.2
ks = 0.0055 watt/I°/in.?

a = 2.32 in.?
as = 5.54 in.2
R, = 35 Fahrenheit ohms (solid 1 per cent

silicon steel core).

Then with an applied voltage of 100 volts de, a coil resistance of 1451
ohms, and an ambient temperature of 77°FF, the mean coil temperature
of a relay with a 1 per cent silicon steel core was calculated as follows:

kg = 0.0232 watt/I°
keas = 0.0304 watt/I'°

1
T = 0.0304 + ——7 — = 0.0432 watts/I°

Ree + T 35 + 0.0232

K, = kea, +

and

) b — 6 )
R, = K0 = 60) (1 t 0T
(100)®

- o — 77
a5l 0.0432(6 — 77) <1 + ————)

390 4 77
8, = 204°F (1 per cent silicon steel core).

The mean thermal conductivity of S.A.E. 1010 is 53 watts/C°/em? while
the mean thermal conductivity of 1 per cent silicon steel is 28 watts/
C°/em?, so that they are in a ratio of 53/28 or 1.89.

35

=189 — 18.5 IFahrenheit ohms

" Rcl
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for S.A.E. 1010 steel cores. With the value of R, for S.A.E. 1010 steel
cores and the other constants with the same as above, except that with
this core the coil resistance was 1443 ohms, the mean coil temperature
was calculated as follows:

I = 0.0304 + 1 = 0.0467 watt/I'°
185 + 0.0232
and
(100)* . ( 0 — 77 )
6 = 195°F (laminated S.A.E. 1010 steel core).

For confirmation, heat tests were conducted on sample relays with
both types of cores using applied voltages of 50 and 100 volts de. Fig.
18 shows the mean coil temperature as a function of time. With an
applied potential of 100 volts de the calculated mean coil temperatures
are 204°F and 195°F for the 1 per cent silicon steel and S.A.E. 1010
steel cores respectively, while the measured values are 205.5°F and
199.5°F in the same order. Thus the measured values are found to be
in close agreement with the calculated values. Although there is nearly
a two-to-one ratio between the thermal conductances of the two mate-
rials, there is only a 3 to 4 per cent difference in the mean coil tempera-
tures. However, this small difference is in favor of the relays with lam-
inated S.A.E. 1010 steel cores.

240
220 1% SILICON CORE 205.5°F
100
= 200 VOLTS
zg 1010 STEEL LAMINATED CORE
180 °
wZ 199.5°F
@
2% 160}
<<
al 40l
) 1% SILICON CORE 118.4°F
5& 120 VOSI?TS
Fo
W 100 1010 STEEL LAMINATED CORE 115.2°F
80
60 ! ! 1 1 i i Il
0 15 30 45 60 75 90 105 120

TIME IN MINUTES

Fig. 18 — Mean coil temperature vs time.
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XI. OPERATING LIFE

Since S.A.E. 1010 steel is softer than 1 per cent silicon steel, life tests
were conducted to determine whether relays with laminated low-carbon
steel cores have at least as long an operating life as currently manufac-
tured relays. In operation, the armature stop disks and the hinge spring
at the heel of the armature wear or pound into the core (see Fig. 19).
If significant wear occurs at either of these points, it will cause a cor-
responding reduction in the release current and an increase in release
time.

Tig. 20 shows the measured wear at the armature heel and the change
in release time as a function of the number of operations. It is noted
that the wear of the laminated S.A.E. 1010 steel cores is about equal
to or less than that of the 1 per cent silicon steel cores. This is probably
due to the lack of abrasiveness of the low-carbon steel as compared to
the silicon steel after the finish has been worn through.

XII. CORE PLATE ASSEMBLY

The core plate of the relay (see Figs. 1 and 19) serves as a back stop
for the armature, a positioning stop for the fixed contact molded block,
an aligning fixture for the three core legs and a means of mass adjust-
ment of the contacts. Therefore, it is essential that the core plate be
securely fastened in place. The core plate is held in place by staking the
ends of the two outer legs of the core as shown in Fig. 19. Tests show
that the pull-off force of the core plate on the laminated low-carbon steel
cores is approximately twice that of the pull-off force from silicon steel

FRONT
SPOOL\HEAD

ARMATURE
BACK STOP
|

HINGE SPRING .~
WEAR AREA

IMPRESSIONS STOP DISK

WEAR AREA

MASS
ADJUSTING
SLOT (2)

Fig. 19 — Wear areas of stop disks and hinge spring.
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Fig. 20 — Heel wear and release time vs number of operations.

cores. The softer S.A.IE. 1010 steel is upset more by the staking opera-
tion than the harder 1 per cent silicon steel.

XIII. CORROSION PROTECTION

If the two laminations were to be welded together immediately after
punching, it was deemed necessary to establish the reliability of corro-
sion protection, along the laminated seam, obtained with the standard
zine-chromate finish on such an assembly. Therefore, a number of lam-
inated core assemblies of S.A.E. 1010 steel were punched and welded
together, magnetically annealed and then plated in the normal manner.
The laminated assemblies, along with standard zine-chromate plated
1 per cent silicon steel cores, were subjected to extensive corrosion studies
under extremes of temperature and humidity. The extent of corrosion
on both materials was within tolerable limits.

XIV. MANUFACTURING FACTORS

The manufacture of a relay with a two-piece laminated core presents
a number of problems of dimensional control and parts handling which
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must be overcome before its introduction is economically feasible. Close
dimensional control of core thickness is necessary in the areas where
the front coil spoolhead and core plate are mounted, to assure tight and
stable assemblies (see FFigs. 4 and 19). With the one-piece core the thick-
ness dimensions in these areas are controlled accurately by a squeezing
operation on the part as the last step of the fabrication. With two sep-
arate laminations these areas would require closer control of the material
thickness and the depressed areas, since with two parts fabricated sep-
arately the thickness tolerances would be additive on assembly.

A proposal to overcome this problem was suggested (see Fig. 21)
in which one lamination is undercut so that only the thickness of one
lamination appears in the critical areas. This would require a redesign of
the core plate and spoolhead to fit the new core. Tests of sample relays
with cores of this design revealed an appreciable degradation in pull
and time characteristics.

An alternate proposal was suggested whereby two strips of S.A.L.
1010 steel are welded together at prearranged locations and then punched
simultaneously as a single part. The welds between the two sheets are
located so that after punching they appear on the core at the locations
shown in Iig. 3. With this method of welding and punching, the two
laminations of a core remain together throughout the fabrication proc-

4 Eig.) 21 — SAE 1010 steel laminated cores for general-purpose relays (rejected
esign).
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ess, and the assembly is flattened and squeezed to size in the same oper-
ation as is now used with the one-piece core. Fig. 22 shows the two
laminations without welding in the upper view, and a welded laminated
core compared to a one-piece core in the lower view. Fig. 23 shows a
schematic layout of the proposed process of welding the strip and punch-
ing the cores.

There is no appreciable differcnce in the operational quality of these

Fig. 22 — (a) Two core laminations before welding; (b) a welded laminated
core compared to a one-piece core.
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relays whether the core laminations are welded or not. Therefore, the
ultimate design in this respect will be determined by manufacturing
considerations.

XV. SUMMARY AND CONCLUSIONS

(1) Wire spring relays made with laminated 1010 steel cores are at
least as good as and in some respects better than the present standard
1 per cent silicon steel core relays.

(2) Operate times of the proposed laminated 1010 steel core relays
are in general slightly faster than those of the present one-piece silicon
steel core relays (1.3-3.4 per cent).

(3) Release times of the proposed laminated low carbon steel core
relays are considerably faster than those of the present silicon core
relays (1327 per cent).

(4) Heat studies indicate slightly better heat dissipating qualities in
the laminated core relays than in the present silicon steel core relays.

(5) Core plates are tighter on the laminated 1010 steel core relays
than on the present silicon steel core relays.

(6) Resistance to corrosion with the present finish (zinc chromate)
is as good on the laminated 1010 steel core design as on the one-piece
silicon steel core design.

(7) Life tests show that the laminated low carbon steel cores are at
least as resistant to wear as the present silicon steel cores.

(8) Substantial manufacturing savings can be realized by changing
to the laminated 1010 stecl core for the general-purpose wire spring
relay.
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A Model For Mobile Radio Fading Due
to Building Reflections: Theoretical
and Experimental Fading
Waveform Power Spectra

By JOSEPH F. OSSANNA, Jr.
(Manusecript received May 20, 1964)

Fluctuations in received signal amplitude occur during mobile com-
munications because of the motion of the mobile station through the spatial
standing-wave pattern resulting from the interaction of direct and reflected
signals. A model is presented which permaits a theoretical calculation of the
power spectrum of these fluctuations and satisfactorily predicts the features
of spectra computed from experimental fading data except for an observed
rise at low frequencies.

The model is based on the geometry of the reflections from nearby ran-
domly placed vertical plane reflectors. Vertical polarization is assumed.
Both the standing-wave pattern and the Doppler shift view of fading are
used to obtain nearly identical results. The detailed shape and in particular
the sharp cutoff frequency of the spectrum are shown to depend crucially on
the angle o between the dirvection of vehicle motion and the direction to the
Jixed station. Detailed comparisons are made of theorelical spectra with
experimental spectra representing a range of the angle a.

The collection, digitization, calibration, plotting, and digital processing
to obtain power spectra of actual recorded fading waveforms are described.

I. INTRODUCTION AND SUMMARY

The mobile radio fading phenomenon discussed herein is the fluctua-
tion in the received signal amplitude during mobile communication due
to the motion of the mobile station through the spatial standing-wave
pattern resulting from the interaction of direet and reflected signals.
Knowledge of the statistical behavior of such fading signals can permit
more meaningful mobile communication system studies and design
effort. For example, it can aid in the choice and design of automatic

2935
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gain control systems and systems involving data transmission. The par-
ticular statistical description of fading to be discussed is the power
spectrum of the signal amplitude.

First, this article presents a theoretical model for mobile radio fading
due to building reflections, which permits a theoretical calculation of the
power spectrum of the fading waveform. Second, the collection, digital
processing, and power spectral analysis of actual fading waveforms are
described. Then detailed comparisons are made between the theoretical
and experimental spectra. Limitations and extensions of the model are
explored.

Historically, the evolution of the model followed a study of the power
spectra of fading waveforms recorded on one particular street. These
spectra had an unexpected and interesting shape. The model indicated
that the shape of the spectrum and particularly the frequency at which
the power density fell abruptly would depend on the vehicle’s direction
of travel with respect to the direction toward the fixed station. Subse-
quent fading waveforms, recorded on other streets having various rela-
tive directions, produced power spectra which collectively exhibited all
the features predicted by the model.

1.1 Characteristics of Experimental Power Spectra

FFading waveforms were recorded on 13 streets in New Providence,
N. J. on Sept. 13, 1962, using a carrier frequency of 838 mc and a nomi-
nal vehicle speed of 15 mph. Vertical polarization was used. The fade
rate corresponding to motion through standing-wave minima a half-
wavelength apart is 37.5 cps. After digitization, calibration, and smooth-
ing, power spectra were computed. Almost all of these spectra exhibited:
(1) a very sharp cutoff at a frequency somewhere between 20 and 40
cps, followed, after a drop of between 10 and 20 db, by a 12 db/octave
fall-off; (2) a narrow peak between 3 and 10 db high just prior to the
sharp fall; (3) a broader, shorter intermediate peak; and (4) a rise at the
low-frequency end of 10-15 db. Many spectra exhibited a shelf in the
frequency range between the sharp fall and the gradual fall-off which
extended to about twice the sharp-fall frequency. Other sometimes
subtle features were noted which will be mentioned later.

1.2 The Model

The simple model to be described predicts a theoretical power spec-
trum for the fading waveform having all the features of a corresponding
experimental spectrum except a low-frequency rise. In particular, the
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frequency, shape, and size of two peaks, the sharp fall, the following
shelf, and the subsequent gradual fall-off are satisfactorily predicted.

The model is based on the geometry of the reflections from nearby
randomly placed, vertical, plane, good reflectors. Vertical polarization
is assumed (the use of horizontal polarization is discussed in Section
X1IV). The vehicle is assumed to move through the standing-wave
pattern caused by the reflections. A virtually identical result obtains if
the vehicle is assumed to encounter appropriate Doppler shifts for each
reflected signal. The computed spectrum depends on: (1) the radio
carrier frequency, (2) the vehicle speed, and (3) the angle « between
the vehicle direction of motion and the direction to the fixed station.

If f.. is the fade frequency which would be experienced by the vehicle
moving directly across standing-wave minima spaced A,/2 apart (A, =
carrier wavelength), the model indicates that the spectrum will peak
and then fall sharply at some frequency f, between f,,/2 and f,, and that
an intermediate peak will occur at a frequency f,, — fp . In terms of the
angle « defined in the previous paragraph, f, is equal to the larger of
fm sin® a/2 or f,, cos® a/2. As a varies between 0 (or 180°) and 90°, £,
varies between f,, and f,./2.

1.3 Comparison between Experimenial and Theoretical Spectra

Because the angle « varies during a typical data run along any street,
theoretical spectra were determined by averaging spectra computed
for sample o’s along the run. The agreement between experimental and
theoretical spectra is generally quite good. The sharp-fall frequency
agrees perfectly in almost all cases. Other details are in good agree-
ment in many cases. The main diserepancy is the absence of a theoretical
forecast of the rise in the observed spectral density at low frequencies.
One street which, unlike all the others, had few buildings produced
experimental spectra only vaguely similar to theoretical expectations.
Mechanisms not considered in the theoretical model which would con-
tribute low-frequency energy include: (1) shadowing by buildings,
(2) variations in and the shadowing of ground reflections, (3) the inter-
modulation of concurrent reflections and (4) nonrandom reflector
orientation.

1.4 Usefulness of Model

The model in the form offered successfully predicts fading waveform
power spectra in a suburban residential environment. The possibility
certainly exists that an extension of the model can be made to work
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elsewhere. The usefulness of power spectra is not unlimited, and many
statistical properties of fading cannot easily be deduced from spectra.
One of the main values of the agreement between these theoretical
and experimental spectra is its verification of the physical basis of the
model.

II. THE MODEL

We will begin by considering the fading experienced by a mobile
receiver moving through a standing-wave pattern due to a single reflec-
tor when the transmission is vertically polarized. Reciprocity will insure
application of the results to the case where the receiver is fixed and the
transmitter is moving. First, the fade rate will be related to the vehicle
trajectory. Then the same result will be obtained using the Doppler
point of view. Then the relative contribution from reflectors in differ-
ent directions will be determined. Next, a theoretical spectrum will be
constructed for the case of many reflectors; its shape will depend strongly
on the vehicle direction relative to the fixed station.

ITI. STANDING-WAVE PATTERN DUE TO A SINGLE REFLECTOR

If the mobile antenna is a fixed height above the ground, only the
larger (many wavelengths) vertical plane reflectors in the vicinity of the
mobile station are of major importance in determining the local standing-
wave pattern fluetuations. Reflectors of ordinary size which are not in
the vicinity of either the mobile or fixed stations are of lesser importance
because their reflected signals will be of smaller amplitude. Reflectors
near the fixed station can contribute large amplitude reflections, but
their effect is more that of modifying the directivity pattern of the
fixed antenna; their effect is to put slow multiplicative trends into the
standing-wave pattern at the mobile station. Furthermore, fixed station
antennas are usually mounted above local obstacles that would not only
reflect but shield some direction.

We will assume that the transmitting and receiving antennas are
vertically polarized. Then the local standing-wave pattern due to a
single vertical plane conducting reflector is as shown in Fig. 1 where:

¢ = angle between the direction to the fixed station and the direc-
tion to the reflector as seen from the mobile antenna,

a = angle between the direction to the fixed station and the direc-
tion of vehicle travel,

6 = angle of incidence at the reflector,

d = perpendicular distance between null planes,
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Fig. 1 — Vehicle moving through standing-wave pattern due to single reflector.

d’ = spacing between null planes observed along direction of mobile
station travel,

L length of reflector,

L' = length of vehicle path in reflected beam, and

A. = carrier frequency wavelength.

The fixed station is assumed to be far enough away to permit taking
the incident waves on the mobile antenna and on the reflector as parallel.
The reflector is assumed to be large compared to a wavelength (L >> A.)
and close enough to the mobile station to neglect divergence of the
reflected beam.

3.1 Null Plane Spacing
Note that a reflector in a direction ¢ must be oriented such that
0 + (0/2) = 90° (1)

for the reflected beam to be directed toward the mobile station (for the
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angle of reflection to equal the angle of incidence). To determine the
spacing d between null planes, refer to I'ig. 2 and observe that

a—2b

e, (2)
b/a = cos o, (3)
and
d/a = sin (¢/2). (4)
TFFrom (2) and (3), a is found to be
Ne Ae
T T eose o (5)
¢ 2gin??
Then (4) and (5) yield
. Ae
d—asm%———z — ()
sin
2
or, using (1)
A
" 2cosf’ @)
This is of course a common result (see Ref. 1, p. 293 ff.).
TO FIXED
STATION
_ > 9’/2
6+ % = 90° /’9
a+b=»x N
b/a= cos¢ / REFLECTOR
- ? /
d/a=siN 3 o a _g

Fig. 2 — Portion of Fig. 1 in vicinity of reflector.
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3.2 Fading Rate

Because of its direction of travel, the mobile antenna observes a
null spacing d’, which from TFig. 3 is

o=
sin ( - f) ’ (8)
2
which by using (6) becomes
dl _ )\0/2
sin g sin (a - g) , ©)

which holds for the case where & > ¢/2. Consideration of various values
for « and ¢/2 leads to the general relation

Ae/2

d =
.o . _e (10)
sin 5 sin (a 2)
If the vehicle speed is V, the fading frequency is
r_ V2V e . e
S o= 7N s1n§sm< §> (11)

Then f’ has the maximum value f,' = 2V/A., where ¢ = 180° and

2
2
/o d />\
siN{a-2) ~ //
/
L _ sIN®f2 /
L SIN (a-9?) /
TO FIXED
STATION

DIRECTION
OF VEHICLE

Fig. 3 — Portion of Fig. 1 in vicinity of receiver.
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a = 0° or 180° when the vehicle moves perpendicularly across null
planes spaced \./2 apart. For f, = 838 mc and V' = 15 mph, f,,’ = 37.5
cps. For convenience, we will usually use a normalized fading frequency
f=f"/fx". When « # 0° or 180°, f is zero at ¢ = 0, 2«, and 360°, and
has the maximum values f; = sin® (¢/2) at ¢ = @ and f, = cos’ (¢/2)
at ¢ = 180 4+ «; note that fi + fo = 1. Thus, for a particular «, the
maximum possible fade rate is fiae = max (fi, f)* and is due to a ve-
hicle motion either toward or away from a reflector. The minimum
possible value for fi. occurs when f; = f, = %, which corresponds to
a = 90°. The variation of f with ¢ is shown in Tig. 4 for « = 0° 30°,
¢0° and 90°.

3.3 Fading W aveform

If the reflector is perfectly conducting as assumed above, the actual
waveform observed at the output of an envelope detector in the mobile
vehicle would be the familiar result of beating two frequencies of equal
amplitude — a full-wave rectified sine wave. Thus, in addition to the
fundamental fade rate discussed above, significant harmonics will also
be present. If the reflector is not perfectly conducting or is only a
dielectric, minima will occur instead of nulls; the spacing between them
will remain the same as for the nulls, and the waveform will tend to be
more nearly sinusoidal.

IV. THE DOPPLER POINT OF VIEW

We can instead consider fading as due to the beating within the
receiver of different carrier frequencies arising from the different Dop-
pler shifts occurring for the directly incident and reflected waves. The
carrier frequency observed at the vehicle will in general be

fo =fc+ (D/AC) (12)

where f, and A, are the transmitted carrier frequency and wavelength
and v is the relative velocity of closure between the two stations. I'rom
Fig. 1, the observed frequency of the directly incident signal is

V cos a

fi = fﬂ + y (13)
A
where V is the vehicle speed.
* Max (a,b,c, --+) = the algebraically largest of the sequence a,b,e, --- . Simi-

larly, min (a,b,c, - --) = the algebraically smallest of a,b,c, --- .
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fm = -7\? = MAXIMUM POSSIBLE FUNDAMENTAL FADE RATE

f/fn = NORMALIZED FADE RATE = 0 AT ¢= 0,2 a, 360°
AND HAS PEAKS fy, fa AT @=a, 180°+a, fi+fp=1
FOR 15MPH, 838.032MC, fm = 37.49 CPS.
W=LU/L= RELATIVE WEIGHT
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Fig. 4 — Variation of fade frequency f and weighting function W with relative
vehicle direction « and relative reflector direction ¢.

The observed frequency of the reflected signal is

V cos (@ — o)

f, = f, 14
ot 2 (14)
The fading rate will then be the beat frequency between f; and f, :
£ v 14 -
=== )\—[cos (e — ¢) — cos af (15)
V.. .
= [sin e sin ¢ — cos (1l — cos )]
= Y 2sin?) | sin @ cos® — cos @ sin @
Ao 2 2 2

_2V s P ( _e
= [51n2sm ‘a 2>:| (16)

After absolute value signs are added to (16) to account for the various
relative values of o and ¢, the result is identical to (11).

The Doppler point of view has one important advantage over the
standing-wave pattern point of view. It is easier to see what fade rates
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will ocecur when more than one reflector is involved; when n reflectors
are simultancously cffective, n(n 4+ 1)/2 beat frequencies are possible.

V. THEORETICAL POWER SPECTRUM

Since the observed fading rate is a function of the parameters « and ¢
discussed above, the power spectrum of the fading waveform at the
output of an envelope detector in the mobile vehicle will evidently be a
function of time, even if the vehicle speed is constant. In this section,
we will develop an approximation to the power spectrum of a finite
duration of fading waveform. We will assume: (1) the vehicle speed is
constant; (2) the transmission is vertically polarized; (3) an unmodulated
carrier is being transmitted; (4) the reflectors are large, stationary,
vertical, plane conductors: and (5) only reflectors in the vicinity of the
mobile vehicle are important. Other assumptions inherent in the de-
velopment will be stated when appropriate.

5.1 More Than One Reflector

A major step in simplifying the analysis is to assume that, although
many reflected beams will be encountered by the vehicle during the
finite run, only one such beam is important at any one time. This elimi-
nates the necessity of considering beats between reflections. The effect
of this assumption on the theoretical spectrum will be discussed later.
Actually, there is a strong tendency for this assumption to be true in a
suburban residential environment because the houses are well spread out.

5.2 The Relative Importance of Different Reflectors

The cnergy in a particular small frequency band in the finite sample
of fading waveform will be proportional to the time that frequencies
in that band are present. The corresponding power spectral density
will be proportional to the corresponding fraction of the total run time.
Thus the contribution of a particular reflector to the appropriate fre-
quency band will be proportional to the time it takes the vehicle to
cross the reflected beam or, if the vehicle speed is constant, proportional
to the length of its path through the beam, which is the length L’ in
Fig, 1.

If we assume that all the reflectors are the same size (L in Fig. 1),
then the contribution of a particular reflector to the power spectrum
will be proportional to a weighting function W = L’/L. The assump-
tion of equal-size reflectors is another assumption that has a strong
tendency to be true in suburban residential areas, where all the houses
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in a given locale tend to be the same size. From Fig. 3 it is evident that

W= L' _ sin (¢/2)

L sin (¢ — @) (a7

Consideration of the various values of & and ¢ yields the general result

L/

W = 7=
Because L’ cannot exceed the total run length Ly , the physical maximum
value of W is Wy = Lg/L. Fig. 4 shows the variation of W with ¢
for @ = 0°, 30°, 60°, and 90° ; the plots of W, which are in db (10 log: W)
are shown directly below corresponding plots of the fade rate f. W has
the value zero (—« db) at ¢ = 0° (and 360°), except when « = 0
where W = 0.5 (—3db)ate = 0°. W =1 (0db) at ¢ = 20. And W
is truncated to Wy at ¢ = « and 180° + «; the peaks of W are coin-
cident with the peaks of the fade rate f. Not only do the reflectors
directly ahead or behind the vehicle cause the most rapid fades, but
they are the most important contributors to the power spectrum.

It is interesting to note that the weighting function W can be arrived
at in another way. Consider the portion of the f vs ¢ curve between
¢ = 0°and ¢ = «. The small range of reflector directions de¢ contribut-
ing to a small frequency band df can be found by differentiating (11)
to get

sin ¢/2

|- (18)

df/de = 3 sin (a — ¢). (19)
The projected length of a reflector in a direction ¢ is L, = L cos 6 =
L sin ¢/2 (assuming L constant). Suppose that the contribution to the
power in a band df due to the reflectors in a range dyp is
de Ly
2r L’
where C' is a constant. Substituting for dy/df and L,/L then gives

P(pdf = C (20)

p() = _sine/2 (21)

7 sin (@ — @)’

which except fcr the constant is identical to (17).

5.3 The Theoretical Spectrum M ethod

Consider again the plots of fade rate f vs ¢ shown in Fig. 4. For any
particular f < fmax = max (fi, f2), there are either two or four cor-
responding values of reflector directions ¢. For each of these ¢’s the
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corresponding value of the weighting function can be found from (18)
and is seen on the W vs ¢ plot directly under the f vs ¢ plot. We will
assume that the mobile station is under the influence of one reflector at
a time; this condition has a strong tendency to be true in suburban
residential areas. Then, if we further assume that all reflector directions
are equally likely, the power density at the frequency f will be propor-
tional to the sum of the two or four values of W.

The basic procedure for generating a theoretical spectrum for com-
parison with a spectrum computed from experimental data is, if « is
constant: :

(¢) Select a list of frequencies f = nAf, where Af = (froa/M)/
@V/x) and n = 0,1,2 - - - ; fro1a is the folding frequency (Ref. 2, p.
117 ff.) of the experimental data, M is the number of lags (Ref. 2, p.
120 ff.) used in computing its spectrum, and (2V/X.) is the correspond-
ing f.'. In other words, select the same frequencies, normalized by di-
viding by f../, at which spectral estimates were computed for the ex-
perimental data. The reason for this matching of frequencies will be
discussed below., :

(72) For each frequency, determine the two or four reflection direc-
tions ¢, using (11) or Fig. 4. Then for each frequency determine the
corresponding two or four weighting functions W from (18); each W
should of course be limited to Winax .

(i21) At each frequency, sum the two or four corresponding values
of the weighting function W to get the spectral power density.

The solution of (11) in step (#2) above can be accomplished by Newton’s
iteration procedure. Also, the symmetry of the f vs ¢ function about
¢ = a and 180 4+ « can be used; if ¢; < «is a solution, g» = 180 — ¢ ;
and, if 2a < ¢; < 180 4+ « is another solution, ¢; = 360 + 2a — ¢;.
In the case where @ = 0 (or 180°) an explicit solution for the two ¢’s
and the sum of the two W’s can be obtained. Setting @ = 0in (11) gives

R Y
g f = sin® 2 , (22)
and the solution ¢/2 = arecsin f* Setting @ = 0 in (18) gives
1
= —0]. 23
w ‘ 2 cos /2 | (23)

Because (23) is symmetrical about ¢ = /2, the two W’s are equal, and
(22) and (23) combine to give the spectral density as



MOBILE RADIO FADING ‘ . 2047

P(f) = min (2Wmax, \/_I_L:—f> , (24)

where the physical limit on W is included.

Implicit in the procedure thus far is the assumption that fading
waveform contributed by each reflector is sinusoidal. The resulting
power spectrum is zero above fu.x . Actually, the fading waveform due
to a single reflector has an harmonic content which depends on the
relative amplitudes of the direct and reflected signals; when one is much
smaller than the other the fading tends to be sinusoidal, and when they
are equal the fading waveform is a full-wave rectified sine wave. This
can be seen by superposing the incident and reflected electric field com-
ponents; in terms of the z coordinate of Fig. 1, the resultant electric
field of a vertically polarized wave has the form (see Ref. 1, p. 296)

|E| = 'Ksin (2;zcos¢9>’, (25)

c

where K is a constant and 6 is the angle of incidence. The spectra of the
experimental data all exhibit fall-offs subsequent to the fall corresponding
t0 fmax . The harmonic content of the fading can be included in the
theoretical spectrum by determining the harmonic power corresponding
to each original theoretical spectral estimate and adding this power in
at the corresponding set of harmonic frequencies. Arbitrarily, the coeffi-
cients for a full-wave rectified sine wave were used to determine the
relative power at the harmonic frequencies; this will provide a maximum
of harmonic power. It is an interesting fact that inclusion of harmonic
power does not significantly alter the shape of the theoretical spectrum
at frequencies below fias .

The final step in generating the theoretical spectrum is to smooth
it in an appropriate way. Because the spectra computed from experi-
mental data are estimates of smoothed versions of the true power spectra
(see Ref. 2), the theoretical spectra should be smoothed in a correspond-
ing way. Therefore the theoretical spectra to be shown will have been
smoothed by hanning.” This is the reason for matching the theoretical
and experimental spectral estimate frequencies.

TFinally, if the relative path angle « varies during the run, its varia-
tion can be represented by a weighted list of sample a’s. The spectrum
for each « can be determined and the resulting spectra averaged. The
smoothing can be done after averaging.
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5.4 Theoretical Spectra for Various Constant o’s

Tig. 5 shows theoretical spectra for « -= 0°, 30°, 60°, and 90°, V =
15 mph, f. = 838 me, and Woax = 15. The corresponding f,.’ = 37.5
cps. Consider first the curve for « = 60°. The peaks corresponding to
the relatively heavily weighted frequencies in the vicinity of f; and f.
(fif = 94 cps, f = 28.1 cps) are clearly evident. Following f./, the
power density falls sharply and levels off abruptly to form a shelf. The
shelf, which arises primarily from second-harmonic power, peaks around
56 cps prior to a second sharp fall. Following the second-harmonic shelf
is one due primarily to third harmonics which ends at about 84 cps.
Because the points in the fundamental frequency portion of the spectrum
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Tig. 5 — Theorctical fading waveform power spectrum vs relative vehicle di-
rection «. Theoretical spectral estimates are 1-cps apart.
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were computed at 1-cps spacings, the harmonie shelves get increasingly
jagged-looking at higher frequencies. The dashed line sloping down
through the shelves is a least squares straight-line fit to the portion of
the spectrum following the first sharp fall. The falloff line in the « = €0°
case has a slope of —13.0 db/oct.

The peaks in the & = 30° case correspond to fi’ = 2.5 cps and fo’ =
35.0 cps. When o = 0, fyY = 0 and fy’ = 37.5 ¢ps. And when a« = 90°
the peaks unite at fy' = f’ = 18.75 cps. The least square fall-off lines
have slopes that generally fall between 12-13 db/oct.

5.5 Theoretical Spectra for o Uniformly Distributed

Fig. 6 shows the result of averaging the spectra for «’s uniformly
distributed 0-360° (spectra for &« = n2°, n = 0, 1, --- , 45, were aver-
aged). The spectral density is quite flat out to 37.5 cps, where it drops
abruptly about 16 db to the second-harmonic shelf. The harmonic
shelves in this case are also quite flat. The least squares fall-off line is
shown and has a slope of —13.2 db/oct.

VI. DATA COLLECTION

The fading waveforms due to vehicle motion were recorded (on M
tape with an Ampex I'R100) for 17 runs on 13 different streets (runs on
some streets were made in both directions) in New Providence, N. J.,
on Sept. 13, 1962. Transmission at 838.032 mc was from the mobile
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Fig. 6 — Average theoretical power spectrum for a uniform distribution of
relative vehicle direction .
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vehicle (a Volkswagen KKombi) traveling nominally 15 mph, to a fixed
station at the Murray Hill Laboratories. The range was between 1 and 2
miles and varied little during any run. The duration of the recorded
waveforms ranged from about 20 to 150 seconds. Values obtained for
the parameter angle o ranged from 6° to 90°. All of the streets were in
suburban residential areas except Central Avenue, which serves open
fields and a few single-story industrial and commercial buildings. The
weather was clear and dry.

The vertically polarized transmitting antenna atop the vehicle was a
stack of 2% coaxial dipoles with a net gain of about 4.5 db. The interac-
tion with a second similar antenna several wavelengths away is not
known, but is believed to be small. The receiving antenna was a verti-
cally polarized 13-clement coaxial array mounted atop a rooftop ele-
vator house. It had about 11 db gain and a 3-db beamwidth of about
6°.

A voice channel was recorded simultaneously with the fading signal
on a second FM tape channel. This channel carried a running com-
mentary describing the data and included start- and end-of-data an-
nouncements. Also recorded on this same channel were tone bursts
triggered every nominal 0.01 mi by a cam attached to the speedometer
cable. The cxact vehicle speed was ultimately recovered from these
bursts.

To permit over-all calibration of the static transfer characteristic
of the system, calibration levels 3 db apart over a 60-db range were
recorded both prior and subsequent to the recording of the fading sig-
nals. The two stations were directly connected by coax for calibration.
Each level was recorded for a few seconds along with appropriate voice
announcements.

A complete set of Visicorder records were then made from the FM
magnetic tape of both the fading signals and the tone bursts for a pre-
liminary examination of the data and for later determination of the
vehicle speeds.

The pertinent parameters for data runs whose power spectra are shown
in this article are given in Table I. The system bandwidth was limited
by the receiver, which was 3 db down at 310 cps. The angular elevation
above the horizon of the fixed station as viewed from the mobile station
was usually between 1° and 3°.

6.1 Vehicle Speed

Four timed test runs were made in the vehicle over a fixed, level
course of 1443 ft., to determine typical speed variations during a run and
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TABLE I — PARAMETERS OF RECORDED DaTA FOrR WHICH
COMPARISONS ARE SHOWN BETWEEN THEORETICAL
AND EXPERIMENTAL SPECTRA*

Av Alpha (deg) ’ ’
8. 1 .
Case No. Street Speed Tmax w Fig. No.
mph . cps cps
min max avg.

1 Commonwealth| 15.8 | 82.2 | 84.5 | 83.3 22.4 39.5 10
2 Charnwood 15.8 | 73.0 | 75.8 | 74.4 | 25.5 39.5 11
3 Whitman 15.2 | 67.8 | 80.4 | 74.2 | 206.2 38.0 12
4 Elkwood 16.2 | 41.0 | 42.6 | 41.8 | 35.4 40.4 13
5 Ridgeview 15.8 [167.8 |168.4 [168.1 | 39.2 39.6 14
6 Ridge 159 | 15.0| 15.8{15.4| 38.9 39.7 15
7 Central 16.0 | 68.7 ] 72.9|70.8 | 27.2 39.9 16

* All spectra were computed using 5000 sample points (20 sec at 250 points/sec).

to calibrate the tone burst rate. The nominal speed for each run was
15 mph = 22 ft./sec. Visicorder recordings were made of the bursts
from the FM tape to enable counting them and measuring their spacing;
the Visicorder paper speed was determined to be 1.019 in./sec using a
10-cps square wave (set by frequency counter). The tone burst rate
was found to be 51.98 4 0.16 ft. between beginnings of bursts. Using
this burst rate, the averages and standard deviations of the speed during
these four runs are shown in Table II.

The actual average vehicle speed during each data run or part of a
run was determined from the Visicorder records which have the tone
bursts plotted alongside the fading signal. Let Ny be the number of
bursts occurring during a part of the run and Dy (inches) be the corre-
sponding length of Visicorder paper. The average vehicle speed Sg
for that part of the run was then computed from Sz = 53.0 Ng/Dr
ft./sec.

6.2 Location of Data Runs

The precise location of each run was carefully marked on a set of
topographic maps (100 ft = 1 inch) which showed actual street and
house shapes. Typically, street intersections and poles were used as
starting and ending points. Except in the case of Whitman Road,
which is slightly S-shaped, the vehicle was driven in a straight line.

VII. PATH TRAJECTORY DATA

The set of topographic maps referred to previously have a common
coordinate grid. By determining the coordinates of the starting and
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TABLE Il — AVERAGES AND STANDARD DEVIATIONS OF SPEEDS
During Four Test Runs

Test Run Avg. Speed (ft./sec) Std. Dev. (ft./sec)
1 23.15 0.63
2 23.08 1.09
3 23.16 0.54
4 23.43 0.41
Average 23.21 0.67

ending points of each run, and the coordinates of the fixed station, it is
possible to compute the vehicle azimuth (path azimuth), the azimuth
of the direction from the fixed station to the mobile station (fixed azi-
muth), the angle « between the direction of the vehicle and the direction
to the fixed station (positive if fixed station is to the left of the vehicle),
and the range at various points along the run. Except in the case of
Whitman Road, the end points were connected with a straight line
which was then divided into 50-ft. intervals (the last interval usually
extending past the original end point). The value of a was then tabu-
lated for the distances »n50 ft. (n = 0,1,2, ---) along each run. It
should be noted that even with a straight path « varies because of the
finite distance to the fixed station.

In the case of Whitman Road, where the path trajectory follows the
shape of the road and is not straight, a larger map (50 ft. = 1 in.) was
used which showed the actual azimuth variation along the street.

VIII. DIGITAL PROCESSING

Following digitization of the fading data, the calibration, plotting,
filtering and spectral analysis were accomplished on an IBM 7094,
Many computer programs and subroutines were written for these
purposes as well as for such auxiliary purposes as calibration curve
fitting, magnetic tape searching (subroutines that can conveniently
retrieve requested data pieces), spectra equalizing and plotting, and
vehicle path angle determination. An available set of time series process-
ing subroutines® was extensively used; this set included subroutines
for tapering and detrending data, and for computing auto- and cross-
covariances and Fourier transforms. A large arsenal of subroutines was
eventually amassed, and writing a program for some particular task
became the relatively simple job of writing a program to call appropriate
subprograms.
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IX. INITIAL DATA PROCESSING

9.1 Digitization

Both the fading waveforms and the recorded fixed calibration levels
were digitized on an analog-to-digital converter within the Laboratories,*
using 11 bits/sample and sampling at 500 eps. The procedure for digitiz-
ing consisted of playing back the analog tape, listening to the voice-
channel announcements, and manually triggering the digitizer on and
off at the indicated times. Approximately 2-second intervals of each
calibration level were digitized. The signals were filtered prior to sam-
pling by a passive filter which was 3 db down at 250 cps, 10 db down at
300 cps, and subsequently fell 36 db/octave. The folding or Nyquist
frequency (see Ref. 2, p. 30 ff.) of 500/2 = 250 cps was chosen to safely
contain the expected power spectra.

9.2 Microfilm Plotting

The digital data was read into the 7094 and completely plotted on
microfilm on a peripheral General Dynamics 4020 microfilm printer.
This provided a good visual record of the raw data as well as a check
on the digitizing process. A computer subroutine was developed which
generates a long continuous plot down the length of the microfilm.
Such plots were produced for monitoring after every step in processing
or transcribing the data. The comparative ease with which large quanti-
ties of digital data can be monitored by viewing microfilm considerably
reduces the chance of the accidental processing and use of data con-
taining errors. The 17 runs of recorded fading waveforms, which totaled
over 920 seconds, yielded over 460,000 data points when digitized at
500 cps. When plotted at 480 points per 35 mm frame, the complete
data comprising 960 frames could be viewed in detail on a roll film viewer
in about an hour. Fig. 7, which exhibits a typical data section, was traced
from a print from one frame of microfilm.

9.3 Calzbration

The communication system nonlinearities, including that of the
linear-to-log converter used during analog recording, had to be removed
to obtain true signal amplitude. The before and after (the data) sequences
of calibration level records were read on the 7094, and each record was
averaged to remove noise and obtain a calibration point. Any system
net drift during original data recording or during digitization would
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make the before and after curves different. Fortunately, they were
quite similar and they were averaged to obtain the adopted calibration
curve. A suitable function was then fitted, using a least squares criterion,
to the list of calibration points. The adopted calibration function is

Y = —60.255 4+ 0.8282 (X — 170.6)* — 0.01614 (X — 170.6)
+ 8.474-10-° (X — 170.6)2 — 9.658-1071° (X — 170.6)3,

where X is the digital sample value and Y is the true signal in relative
db. This function, which has a maximum error of 0.47 db near ¥ = —3
db and rms error of 0.21 db, is shown in Fig. 8 plotted along with the
original calibration points. Input values outside expected limits of
X = 170.60 and 4041.06 were clipped to these values. The calibration
program kept a statistical history of any clipped regions. The signal
amplitude is then exp (0.11512926Y).

X. INITIAL ANALYSIS AND SECOND-STAGE PROCESSING

10.1 Preliminary Power Spectra

These were computed for several pieces of the data to determine
whether any smoothing and decimating [Ref. 2, pp. 129-135] was
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Fig. 7 — Typical section of data.
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necessary or desirable. The power spectra computation will be dis-
cussed later. Being sure to pick runs expected to have the widest band
spectra, it was determined that the significant portions of the spectra
were safely below one-half the folding frequency of 250 cps. Decimation
by two (retaining every other point), which would reduce the folding
frequency to 125 cps, would be safe and would reduce computation
time. Suitable smoothing prior to decimating can also remove or reduce
the 120-¢ps and higher hum peaks which were observed. Removing this
hum is not essential for the spectral analysis, but doing so makes the
data more suitable for level crossing analysis.

10.2 Smoothing and Decimating

The decimation of data retaining every Jth point, symbolically indi-
cated by F, , multiplies the folding frequency by 1/J. To prevent power,
including noise power and hum power, at frequencies above the new
lower folding frequency from folding over and appearing below this
frequency, the data must be smoothed (or filtered) before decimation
(see Ref. 2, pp. 129-135).

The most economical type of smoothing in digital analysis is to com-
pute straight running means of L consecutive values. Usually, simple
sums which differ from the means by a factor are used to obviate division
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by L. This smoothing, symbolically indicated by Sy , is then

Y, = 21: X, 27

J==i—L+1

and has the power transfer function
2
sin 1231rf
Sup = | —2x |, (28)
sin af
2fr
where f is the frequency and fr is the folding frequency. S.(f) has
periodic transmission nulls at (f/fr) = 2n/L, where n = 1, 2, -+ .
Because the loss between nulls is usually not too great, a common proce-
dure is to smooth twice with S, followed by S;41 (indicated by S;418.);
the second smoothing will have nulls tending to fall between those of
the first.

The processing chosen for the present data was F2S;F, — smoothing
by threes and fours and then retaining every other point. The new
folding frequency is 250/2 = 125 cps. The smoothing loss is plotted in
Fig. 9 as a function of the fraction of the new folding frequency; the
folded portion of the loss curve is also shown. Maximum loss occurs at
125 (near 120), 167 (near 180), and 250 cps. The loss peak at 125 will
make it impossible to obtain accurate spectral estimates close to the
folding frequency, but this is not serious. Spectra can now be computed
with the same resolution, stability and duration of data, for one-fourth
of the computer time.

XI. POWER SPECTRA

The method employed in determining power spectral estimates is that
described by Blackman and Tukey;? another good reference is Ref. 5.

11.1 Spectral Computation Parameters

The spectra to be shown were computed using 5000 points (20 seconds
at 250 samples/second). The mean and a least squares linear trend was
removed from the data sections used, and the first and last 5 per cent of
each section were raised cosine tapered to zero. The autocovariances
(mean lagged products) were determined for 100 lags (i.e. for lags of
nAt, where n = 0, 1, ---, 100, and At is the sample spacing). A finite
cosine transform of the autocovariances then provides spectral estimates
125/100 = 1.25 ceps apart from zero to the folding frequency. The spectra
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Fig. 9 — Smoothing loss for 8;8; vs fraction of folding frequency.

were smoothed by hanning (see Ref. 2, p. 98). Under these conditions,
each estimate has a 90 per cent chance of being within about a 2-db
range of the true spectrum. Or, the difference between the estimate and
the true spectra has a variance of about (0.3 db)®.

11.2 Computed Specira

Almost fifty different spectra were computed from the data collected.
A representative set of these are plotted (circles) on Figs. 10-16, where
they may be compared to corresponding theoretical spectra. The com-
parison will be discussed later. All of the plotted spectra were equalized
for the smoothing loss before plotting. It may be noted that most of
the curves are not plotted beyond some frequency between 80-100 cps.
The smoothing and decimating (72S3S;) produced an infinite-loss notch
in the spectrum at 125 ecps. When the spectrum is subsequently computed
this hole is filled in by computation noise. The plot was automatically
ended at the frequency where equalization of this noise started to pro-
duce a meaningless result. Even so, the last few points plotted are
inaccurate and tend to be lower than they should be.
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Fig. 10— Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

11.3 Speciral Density Curve Shapes

The spectra all exhibit significant power density out to some frequency
between about 20 to 40 cps, where the density falls sharply between 10
and 15 db and then more gradually at about 12 db/oct. Many show a
distinct shelf between the sharp-fall frequency and the subsequent slow
fall-off. The shelf generally ends with a noticeable sharp drop at a fre-
quency about twice the earlier sharp-fall frequency. The shelf in Fig. 14
has a noticeable peak prior to its fall at about 75 cps. The peak at 60
cps in all the plots is power supply hum. Another significant common
feature is the relatively narrow peak immediately preceding the sharp-
fall frequency. Many of the spectra exhibit a noticeable broad peak
below the narrow one. All of the spectra rise 10 to 15 db at low frequen-
cies.

XII. COMPARISON OF THEORETICAL AND EXPERIMENTAL SPECTRA

To compute a theoretical spectrum corresponding to a particular
experimental spectrum, it is necessary to know the carrier frequency
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Fig. 11— Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

and vehicle speed in order to compute f, , and to know the variation
in the parameter angle . For the present comparisons, the carrier fre-
quency is 838.032 mec, and the average vehicle speed and corresponding
f»' are shown in Table I. The range of o’s represented in the comparisons
is from about 12° to 83°; remember that the spectrum for « = 90° 4
is the same as one for o = 90° — z. The weighting function W was
limited to Wy = 15 (compatible with the typical run length of 450
feet and typical house side length of 30 feet).

For each theoretical spectrum, the corresponding list of o’s was used.
Spectra were computed for each « and the final spectrum was the hanned
weighted average. Harmonic power was included in each «o’s spectra
before averaging. A value of Wyax = 15 was used in all cases. Table 1
also lists the fmax corresponding to the value of « occurring during run
that is nearest to 0° or 180°. As an example of how the list of o’s was
used, consider Commonwealth Avenue (case 1). These data are actually
points 1-5000 (250 pts/sec) of a longer picce. The vehicle speed accord-
ing to Table I was 15.8 mph; thus the run was (20 sec)(15.8 mph) (22
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Fig. 12— Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

ft./sec)/(15 mph) = 463 ft. in length. The angles «, are values com-
puted for distances d, = 50 n ft., wheren = 0, 1, 2, --- and may be
considered to represent the distance ranges d, & 25 ft. Thus the relative
weights for the a, and the corresponding spectra are w, = 0.5, ws to0
wy = 1.0, and wye = 0.76; the latter is (463 — 25 — 8.50)/50. When
the data section does not begin at sample 1, the distance between sample
1 and the starting sample must be determined using the proper average
vehicle speed for that interval.

The change in « during the data section is small enough in many cases
to permit using the average « to compute the spectrum. For example,
during the run of case 4 the angle a varies only from 41.0° to 42.6°; a
spectrum computed from the average value of about 41.8° differs little
from one determined by averaging. In other cases — Whitman Road
for example — the spectrum determined by averaging has much broader
peaks than one corresponding to the average «. All the theoretical
spectra to be shown were determined by averaging, whether this was
necessary or not.
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Fig. 13— Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

12.1 Comparing Theoretical and Experimental Curves

Figs. 10-16 show theoretical spectra (solid curves) superimposed on
experimental spectra (circles); Table T lists the data sections involved
and gives corresponding figure numbers. The only thing arbitrary in
comparing the theoretical and experimental spectra is their relative
amplitude. Thus the theoretical curve has been shifted vertically to
produce some sort of fit. In all cases a transition is shown from the basic
theoretical spectrum to a fall-off line fitted by least squares to the portion
of the theoretical spectrum above fi.x ; this fall-off typically has a slope
of —12 to —13 db/oct. The last few points of each experimental curve
are not very accurate and tend to be low, as previously discussed.

12.2 General Results of the Comparison

Before reading further, the reader should make a superficial scan of
Figs. 10-16. The agreement between the theoretical and experimental
spectra is generally quite good. The main discrepancy is that the ob-
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Fig. 14— Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

served rise in spectral density at low frequencies is not predicted by the
theory. The sharp-fall frequency agrees very well in almost all cases.
The peak prior to this sharp fall fits well in many cases. In cases where
intermediate peaks are predicted (¢ not too close to zero), the experi-
mental spectra usually exhibit them. The second harmonic shelf is
well formed in many cases. The following are some comments on specific
comparisons:

12.2.1 Case 1; Fig. 10

This street had an average a of about 83°. The two peaks have nearly
merged and have formed a double peak which the experimental spectrum
exhibits in agreement. The second-harmonic shelf is higher than pre-
dicted and ends somewhat early; more will be said about this later.

12.2.2 Case 2; Fqg. 11

Here o averages about 74°. The upper peak and the sharp fall agree
well. The intermediate peaks are in only fair agreement. Because of
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Fig. 15— Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

the absence of a second-harmonic shelf in the experimental spectrum,
the theoretical fall-off line is plotted beginning with its intersection
with the first fall. A slight rise above this line oceurs out to nearly 40
eps; a second-harmonie shelf would have to extend to about 50 cps.

12.2.3 Case 3; I'ig. 12

The comparison here is similar to that discussed for case 2. This street,
however, has an o which varies between 67.8° and 80.4° and averages
74.7°. The comparatively broader theoretical and experimental peaks
may be noted.

12.2.4 Case 4; Fig. 13

This street has o averaging about 42°. The intermediate peak at
about 5 cps is discernible. The sharp fall occurs at about the right fre-
quency but is not as steep as expected. The second-harmonie shelf is not
noticeable. The theoretical fall-off line is picked up at its intersection
with the theoretical shelf.



2964 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

0

-5
o O
-10
o o
o 00
-5 ° N
T
n féo
@ -20
a
3 o
©-2s5 .
z
\
N
o CENTRAL x%b
o 16.0 MPH
P a= 7108
$_40l. © OBSERVED SPECTRUM
I —— THEORETICAL SPECTRUM
fuax = 27.2 CPS
s féx 39.9 CPS 2
me ®
-50 o
-55
o]
-60 oy [
1.25 2 3 4 5 6 8 10 20 30 40 50 60 80 100

FREQUENCY IN CYCLES PER SECOND

Fig. 16 — Experimental fading waveform spectrum compared with corresponding
theoretical spectrum. Relative amplitudes are arbitrary; see discussion in text.

12.2.5 Cases 5 and 6; Figs. 14 and 15

These streets have a small « (about 12° and 15° respectively) and the
intermediate peak is too close to zero frequency (below 1 ¢ps) to show up
with the present resolution. The main peak and the sharp fall agree
exceptionally well and the second harmonic shelves are well exhibited.
Furthermore, the predicted peak on the shelf appears in the experi-
mental spectrum of Fig. 15 (and to a lesser extent in Fig. 14).

12.2.6 Case 7; Fig. 16

The agreement between the theoretical and experimental curves is
in this case relatively poor. This street, however, is not in a suburban
residential area, and has only a few low industrial buildings spaced well
back from the curb. The section of the street corresponding to Fig. 16
had an average of « of about 71°. It was observed that, if experimental
spectra were computed for other portions of the street with different
o’s, these spectra were quite similar if their ripples were ignored.
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12.3 Additional Observations

It has been observed that the streets having the best agreement be-
tween experimental and theoretical spectra in the vicinity of the higher
peak, sharp fall, and harmonic shelf are those with o near 0° or 180°.
A good reason why this is not too surprising is offered in Section XIII
under a discussion of nonrandom reflector orientation.

A cause for the small but discernible drop in Figs. 10, 11, 12 and 16
at the frequency corresponding to f.' is offered in Section XIII under a
discussion of simultaneous reflections.

When the harmonic content was included in the theoretical spectra
it was assumed that the reflectors were perfect conductors. The obser-
vation of second-harmonic shelves at the predicted amplitude level in
many cases indicates that the assumption was reasonable. The use of an
aluminum foil vapor barrier integral with outside wall insulation is
common in current house construction and may explain their good
reflectivity.

XIII. LIMITATIONS OF THE MODEL

In the preceding section it was seen that a major deficiency of the
theoretical model is its failure to forecast the rise in spectral density at
the low-frequency end of the spectrum. Some of the mechanisms that
can contribute low-frequency energy are discussed in the following
paragraphs.

13.1 Shadowing by Buildings

The shadowing of the direct signal by buildings introduces into the
fading waveform a low-frequency multiplicative function (likely with
some harmonic content) with a fundamental spectrum probably not
extending much beyond about 14 cps (houses spaced 80-100 ft. apart
and a vehicle speed of about 15 mph). The resulting fading waveform
spectrum would be the convolution of the spectrum without shadowing
with that of the low-frequency function. Such a low-frequency multi-
plicative function was observable in some portions of microfilm plots
of recording fading waveforms. It is not likely that this effect explains
the entire extent and shape of the low-frequency rise.

13.2 Ground Reflections

These cause standing-wave patterns which normally vary only in a
vertical direction. But as the vehicle moves the point on the ground
causing the ground reflection moves and the reflectivity will vary. This
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and the shadowing of ground reflections by buildings introduce low-
frequency variations in the direct signal.

13.3 Stmultaneous Reflections

An assumption inherent in the construction of the theoretical spectra
was that the mobile vehicle was under the influence of one reflector at
a time. The simultaneous presence of more than one reflected signal
will give rise to additional beat frequencies in the fading waveform
between the reflected signals (see Seetion IV). Here the Doppler point
of view is useful. From (14) the Doppler-shifted reflected signal is seen
to lic in the frequency range f, = f. = V/X, ; thus, if all possible reflec-
tions are always present, the radio frequency spectrum would have a
bandwidth 2V /A, = f.". The Doppler shifted direct signal has from
(13) a frequency of f; = f. + (V/\:) cos a. The shape of the spectrum
is not symmetrical about f,. This shape can be obtained by picking
frequencies f, between f, — V/A, and f. + V/\., solving (14) for the
two values of ¢ corresponding to each frequency, and then summing the
two corresponding values of the weighting function TV obtained from
(18). The result is a spectrum having a broad minimum at f, = f; =
fe+ (V/X) eos @ and peaks at f, = f; &= V/X\.. Thus, as « varies from
a = 0t0 90° to 180°, the direct signal f; moves from the upper-frequency
end of the spectrum to the center and to the lower end. Fig. 17 shows
the radio-frequency spectrum as a function of « (the peaks appear sharp
because no smoothing has been applied). If the direet signal is large in
amplitude compared to all the reflected signals, the spectrum of the
envelope would essentially be that obtained previously (Section V),
except for the lack of harmonic content. If the direct signal is ignored,
the spectrum of the envelope would be the convolution of the radio-
frequency spectrum with itself (see Ref. 6, Chap. 12); this spectrum,
which would vary from a maximum at zero frequency to zero at 2V /.,
would be virtually independent of «. The fact that the convolution
would carry the spectra only out to 2V /A, suggests that beats between
reflections may be responsible for the partial filling in of the second-
harmonic shelf when « is not near 0 or 180°. This effect is noticeable to
various degrees in IMigs. 10, 11, 12 and 16, where a perceptible drop
occurs at f» independent of any termination of the second-harmonic
shelf at 2fuwax . Similarly, this effect probably decreased the steepness of
the observed steep fall in Fig. 13. It remains a fact that in a suburban
residential environment, the spacing of houses is such that there is a
very strong tendeney for a mobile vehicle to experience only one domi-
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nant reflection at a time. There certainly is some continual overlap of
reflected beams and this may in part be responsible for the low-frequency
rise in the experimental spectra.

13.4 Nonrandom Reflector Orientation

Houses are generally built with their larger flat sides parallel and
perpendicular to the street. It has been shown from (11) that a zero
fade rate obtains when ¢ = 0°, 2, and 180°; low-frequency fades obtain
when ¢ is near these values. The weighting function W is zero for ¢ = 0°
and 180° (except when a = 0° or 180°), but is unity at ¢ = 2a. Clearly,
it is the reflectors whose flat sides are roughly parallel to the direction
of vehicle travel that contribute the low-frequency fade rates; each such
reflector makes its contribution when the vehicle position is such that
its ¢ =& 2a. Conventional house orientation obviously increases the
supply of reflectors causing low-frequency fades above that under ran-
dom conditions. It is felt that this effect may be the most important
reason for the low-frequency rise in experimental fading spectra.

The same nonrandomness will affect the experimentally observed
spectral peaks. These peaks occur when ¢ = « and « + 180°; the corre-
sponding required reflector orientations, relative to the direction «,
are «/2 and 90 — «/2. When « is small or near 180°, these required
relative orientations are near 0° and 90° — i.e., near parallel and per-
pendicular to the direction of travel. When « is near 90°, the required
relative orientations are both near 45°. Thus observed peaks for o’s
near 90° may be relatively subdued by the relative absence of required
reflectors. This effect has been observed in several comparisons of
theoretical and experimental spectra.

13.5 Other Low-Frequency Effects

Nonuniformity of the fixed station antenna pattern and reflectors in
the vicinity of the fixed antenna can produce some very low-frequency
variations in the standing wave pattern. Motion of the fixed antenna
and trees due to wind are additional sources of low frequencies in the
standing wave pattern.

XIV. ADDITIONAL TOPICS

14.1 Moving Reflectors

All of the preceding discussion was concerned with fixed reflecting
objects. The experimental data were taken with the streets devoid of
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other moving vehicles. What effeet will the motion of other vehicles have
on the spectrum? Let us limit this discussion to vehicles moving in the
same or opposite direction on the same street as the mobile station;
let Vi and V, be the speeds of the mobile station and moving reflector
respectively with a positive Vy corresponding to closure between the
vehicles. The moving reflector encounters and reflects a frequency

Vs cos
fo=fo— 222, (29)
A
where f., A\., and « have their previous meanings, and ¥, has a com-
ponent away from the fixed station. The mobile station encounters a

reflected beam of frequency

Vit Ve

N (30)

fi=F+

where A\ corresponds to f., and encounters a Doppler shifted direct
signal of frequency f; given by (13). The beat frequency f between f;
and f; is then

f:fl—f¢=f2+ET+_V_2_fc_Y_1_;_0_S_a
2 c

- V1+V2_ (V1+V2) COS «

" o (31)
~ —I{%’—& (1 — cos a),

where ¢ is the velocity of light. This result corresponds to (16) with
¢ = a. Thus an oncoming vehicle with V, = ¥V; could double the maxi-
mum observed fade rate.

14.2 Horizontal Polarization

In terms of the x and 2 coordinates of Fig. 1, the electric field com-
ponents in the reflected beam region will take the form (see Ref. 1, p.
295)

E, = jK cos 0 sin <2}:rz cos 0> exp (—j 2—‘””%“1—% (32)

E. = K sin 6 cos (2;-2 cos 0) exp (—j 2—@:1—11(9) , (33)

where K is a constant and 6 is the angle of incidence. If a nondirectional
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receiving antenng is used, such as is approximated by a “turnstile”
consisting of two perpendicular dipoles connected together by a A./4
stub, the received signal can be shown to be proportional to

| E| =

K sin (Z;rz cos f — 0) ' (34)
irrespective of the angular orientation of the turnstile. This result has
the same form as (25) except for the spatial phase shift §. Thus the use
of horizontal polarization together with the assumed antenna produces
an effective standing-wave pattern that is identical to that for vertical
polarization except for the spatial translation. Thus the fading situation
would also be identical.

14.3 Field Component Diversity

Equations (32) and (33) show that E, is a maximum where E, is
zero and conversely. Suppose the two dipoles of the turnstile antenna
are not connected together with a stub but are offered simultaneously
to the receiver. Then, if the receiver electronically switched to the dipole
offering the greater signal, the receiver would in many cases never experi-
ence a null. However, when the direction to the reflector ¢ approaches
180°, 6 approaches 0° and the component £, becomes smaller and van-
ishes; likewise, If, vanishes when ¢ approaches 0. Thus any diversity
scheme dependent on choosing between E, and E, would be most suc-
cessful near ¢ = 90° (# = 45°) and unsuccessful near ¢ = 0° or 180°
(6 = 90° or 0°).

At every point in the reflected beam region it would be possible to
rotate a dipole to a position where a maximum signal is picked up. This
is not possible only when ¢ = 0° or 180° exactly. It is possible, therefore,
for a mobile dipole that is mechanically or electronically rotated con-
tinuously to receive a maximum signal, to reduce the amplitude of the
fading due to vehicle motion, if horizontal polarization is employed.
If the angular position of a mobile single dipole is fixed, the fundamental
fading rate experienced is still the same function of « and ¢ as before,
except that the amplitude of the fading will vary because of the direc-
tivity of the dipole. For example, if ¢ = 90° and the dipole is physically
oriented perpendicular to the fixed station, the mobile dipole may be
translated anywhere in the reflected beam region without any fading.
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Digital Data Signal Space Diagrams

By J. R. DAVEY
(Manuscript received April 20, 1964)

Signal space diagrams are described which show the pattern of amplitude
and phase variation for several kinds of modulated carrier signals commonly
used in digital data transmission. Such diagrams illustrate tmportant
stmilarities and differences among the various modulation methods. Oscil-
loscope pictures of actual data signal patterns are presented, and it s shown
that these patterns can be used to detect the presence of amplitude and delay
distortions in the transmession channel.

I. INTRODUCTION

Many different kinds of modulated carrier signals are being used in
digital communication systems. All these various data signals can be
expressed in the general form A () cos [wit + ¢(¢)] where a carrier cos w.t
is varied in amplitude by A (f) and in phase by ¢(¢). The various modu-
lation methods impart different patterns of amplitude and phase varia-
tion. The characteristic pattern of a given modulation method can be
portrayed by a polar plot of A and ¢ in which the angular reference is
w.t. This type of plot will be referred to as a “signal space diagram.”

Signal space diagrams will be described for several kinds of carrier
modulation. Only synchronous signals consisting of sequences of evenly
spaced symbols will be considered. In each case the received symbols
can be thought of as a sequence of carrier pulses or bursts, each with an
envelope shape determined by the channel characteristic. In such a view
the differences among the types of modulation are due to the number of
pulse amplitudes and phases which are used, the particular phase se-
quences used, and the spacing between pulses. In order to obtain the
simplest signal space diagram it is desirable to choose the reference w,
as the center of the received pulse spectrum so that the phase variation
of a single isolated pulse will be minimized. With a symmetrical pulse
spectrum and a linear phase characteristic this reduces the pattern of
a single isolated pulse to a radial line. When the phase of the carrier
varies from pulse to pulse and the pulses overlap, more complicated

2973



2974 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

patterns are formed. By transmitting a random sequence, a pattern of
all the permitted amplitude and phase variations of that particular type
of modulation is obtained.

Space diagrams will be presented for a number of commonly used data
signals. In these examples the pulse envelope has been taken to have a
raised-cosine shape in time in order to make the diagrams consist of
circles and straight lines. This is a close approximation to the case of
a raised-cosine pulse spectrum which is often typical in actual data
systems. The pulse spacing, T, for the double-sideband examples is
equal to the reciprocal of the half-amplitude width of the pulse spectrum.
This corresponds to the maximum rate which avoids intersymbol inter-
ference as described by Nyquist. Pulse spacings of T//2 are used in M
and VSB methods where special conditions are established to avoid
intersymbol interference.

II. SIGNAL SPACE DIAGRAMS FOR VARIOUS TYPES OF MODULATION

2.1 Amplitude Modulation

The first example is for on-off AM where mark is represented by a
pulse and space by no pulse. The earrier phase remains the same from
pulse to pulse, thus resulting in a straight-line pattern as shown in Fig.
1. The signal positions at the mid-symbol sampling instants arc indi-
cated by points M and S which are separated by the pulse amplitude 4.
The shape of the pulses is indicated at the right in the figure.

The diagram for suppressed-carrier AM or two-phase signals is shown
in Iig. 2. In this case a pulse is sent for both mark and space, but the
carrier phase for space is opposite to that for mark. Again the diagram
is a straight line, but the mark and space sampling points are separated
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Fig. 1 — On-off AM.
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TI'ig. 2 — Suppressed-carrier AM or binary PM with 0° and 180° changes.

by twice the distance of the pulse amplitude. The positive half of the
envelope and the carrier phase for each pulse are indicated at the right.
A minimum separation of 4 is obtained with a pulse amplitude of A /2.
As compared with the on-off case of Fig. 1, the same margin against
noise is obtained with 3 db less average power and 6 db less peak power.

2.2 Phase Modulation

Binary phase modulation where the choice of phase change is 0°
or 180° results in the diagram of Fig. 2, as noted above. Alternatively,
the choice of phase change can be 490°. This has the advantage of
symmetry and less amplitude variation. The diagram for this type of
signal is a square, as shown in Fig. 3. The signal can move in either
direction around the square and at the centers of the symbols is at one
of the corners. Since there is always a 90° change between symbols, the
signal alternates between corners marked with dots and those marked
with ecircles. For a peak signal of A/2 there is a minimum separation
between dot positions or circle positions of 4, as was the case in Fig. 2.

| M M S M
o +90° 180° +90° 180°
A/2 "
|
A|/2
|
X
I( )l HALF ENVELOPE
— _T__
M = MARK
S = SPACE

Fig. 3 — Binary PM with =90° changes.
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Note that the separation of interest is that between alternative choices
for a given pulse rather than that between successive pulses.

Diagrams for two cases of quaternary phase modulation are presented.
When the phase change between symbols is 0°, 2=90° or 180° the diagram
is a square with diagonals as shown in Fig. 4. The signal can progress
around the square in either direction, go across a diagonal or remain at
one corner with no restrictions. The four possible positions at the centers
of the symbols are indicated by dots. For a minimum separation, A4,
between states the pulse peak becomes A /+/2. This indicates that for
this quaternary system to have the same noise margin per decision as
the two-phase signal of Fig. 2 the power must be increased 3 db. This
type of signal is equivalent to the sum of two AM suppressed-carrier
signals at quadrature phase.

When phase changes of 445° or +135° are used between symbols
there are eight possible phases for the pulses. The possible positions of
the signal vector at the symbol centers are shown as dots and small
circles on the diagram of Fig. 5. There is always a phase change between
symbols, and the signal must alternate between dot positions and circle
positions. With a peak pulse amplitude of 4/4/2 the minimum separa-
tion between dots or between circles is again A, as in the previous case.

2.3 Vestigial Sideband

It is assumed that the pulse spectrum for vestigial sideband has the
same raised cosine shape used in the previous examples. It is also assumed
that the pulse rate is twice the Nyquist rate for double-sideband opera-
tion and that the pulses originate from the modulation of a suppressed
carrier higher in frequency than midband by an amount equal to one
quarter of the pulse rate, as indicated in Fig. 6. This results in a phase
change between adjacent pulses of 4-90°. As shown in Fig. 6, the pulses
overlap to the extent that at the peak of one pulse the adjacent pulses

A/Z
, PHASE DIFFERENCES
I AN OF 09 +90° 180°

v T

SRR SR

L . ,l HALF ENVELOPE

Fig. 4 — Quadrature AM or PM with 0°, 290°, or 180° changes.
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Fig. 5 — PM with +45° or #135° changes.

are each at half amplitude. This severe interference is at quadrature
phase to the wanted pulse and is eliminated by the use of coherent de-
tection. The signal phase at the center of a symbol is not affected if the
two adjacent pulses are of opposing quadrature phases but is perturbed
+45° if the adjacent pulses are of the same quadrature phase. For
example, on the diagram of Fig. 6 the center of a marking symbol can
occur at any of the three dot positions at the top of the diagram de-
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FREQUENCY =——> T
vSB
CARRIER

Fig. 6 — VSB: raised cosine pulse spectrum showing location of VSB carrier.
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pending on the adjacent symbols as indicated. The phase of the coherent
carrier used for detection advances around the diagram by 90° each
symbol in the point sequence 1, 2, 3, 4. A continuous marking signal
consequently follows this same sequence. A continuous spacing signal
likewise advances 90° during each symbol but remains opposite in phase
to the coherent reference.

For continuous mark-space alternations each symbol pulse is retarded
by 90° from the preceding pulse, and the signal moves around the circle
in the opposite direction from steady mark or space. The signal always
alternates between dot and small circle points. The corners of the square
portion of the diagram are both dot and circle points, and the signal
may rest at such a point continuously and represent a MMSSMMSS
sequence. All changes in direction of rotation about the diagram occur
at the corners of the square; otherwise, the only restriction is for the
alternation of the dot and small circle positions. Here again, with a peak
signal of A/+/2, a minimum separation of A between mark and space
dots or mark and space circles is obtained. Thus the speed is doubled at
a cost of 3 db more power, as in the case of quaternary phase modulation.
Note that the individual pulse amplitudes are A /2, as for the two-phase
case, but that the pulse spacing is halved. For vestigial sideband opera-
tion these pulses are sent serially, while for the quaternary phase case
of Fig. 4 the pulses can be considered to be of amplitude A/2 sent two
at a time.

2.4 Frequency Modulation

The binary rectangular wave frequency modulation case to be pre-
sented here is the ideal one where the bit rate is equal to the frequency
shift between mark and space. For a continuous mark or space signal
this results in the signal changing phase 180° between successive symbols.
Again it is assumed that the signal is shaped to give a raised cosine
pulse spectrum. Such an F'M signal can be resolved into two components,
a two-phase signal carrying the binary information and a quadrature
component consisting of steady mark and space as indicated by the
vector diagram of TFig. 7. This quadrature component can be con-
sidered to consist of alternating --90° carrier pulses located between the
0° and 180° pulses carrying the information. The diagram for such an
FM signal is shown in Fig. 7. A continuous mark condition (lower
frequency) causes the signal to move around the circle clockwise. A
continuous space causes a counterclockwise rotation. At the center of
the symbols the signal is at either point A or B. A frequency transition
causes the signal to swing out to one of the points “x”” and reverse the
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Fig. 7 — FM.

direction of rotation. For continuous reversals the signal swings back
and forth through point A or B along a horizontal line. For such a se-
quence of reversals the phase swing is +45°

Although the steady mark and space frequency components which
impart the horizontal component of motion in the diagram carry no
information, they do permit the detection of the signal on a frequency
basis. The mark and space conditions are indicated by the direction of
rotation at points A and B. The quadrature component of the signal
represents half of the total power. Consequently an FM signal requires
twice the power of a two-phase signal to produce the same minimum
separation of the points A and B. The two-phase component of the F'M
wave can be detected by a coherent carrier to determine whether the
signal is at point A or B. It will be seen, however, that this leads to a
polarity ambiguity because of the nature of the encoding. Reversals of
either phase can be represented by the signal being at point A or at
point B for suceessive symbols. A change from point A to point B indi-
cates no transition of the information wave.

2.5 Duobinary Frequency Modulation!

The duobinary technique developed by Lender is a means of doubling
the rate of sending binary information. The data are first differentially
encoded so that a transition is made for a space symbol and no transi-
tion for a mark symbol. The resulting double-speed binary signal is then
passed through a frequency shift channel of the type just described for
ordinary binary operation with no change in frequency shift or channel
shaping. The signal can change phase a maximum of 490° during these
half-length intervals. This results in both the in-phase and quadrature
pulses carrying information. The diagram of Fig. 7 applies in part, but
because of the double rate we are interested in more points of the pat-
tern. Ior instance, for steady mark the signal moves around the circle
in either direction and the receiver samples the signal not only at points
A and B but also at points C and D as shown in Fig. 8. The occurrence
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Fig. 8 — Duobinary FM.

of a space symbol causes a frequency transition and the signal leaves the
circle and reverses direction at one of the points labeled S. If there are
two successive space symbols causing two frequency transitions, the
signal pauses at an S point for one symbol interval and then continues
on in the same direction of rotation. An odd number of successive space
symbols leads to a reversal of rotation while an ecven number does not.
The signal can thus proceed around the eircle clockwise or counter-
clockwise or pause at one of the S points. The rotating conditions repre-
sent the high- and low-frequency states while the pausing represents
the midband frequency. When the signal is detected on a frequency
basis, a three-level baseband output is obtained, with the outer levels
representing mark and the center level space.

The complete duobinary diagram of I'ig. 8 is seen to be the same as
that of T'ig. 6 for a vestigial sideband signal. This indicates that the two.
kinds of line signals are of the same form although the encoding is
different. Experimental verification of this identity has been demon-
strated by transmitting a vestigial sideband signal to an FM receiver
and obtaining a three-level baseband signal such as received in duobinary
I'M. Fig. 9 shows a photograph of the received eye pattern.

III. OSCILLOSCOPE PRESENTATION OF SIGNAL SPACE DIAGRAMS

Signal space diagrams of actual data signals can be displayed by
coherently detecting both the in-phase and the quadrature components
with respect to a midband reference frequency and applying them to
the X and Y deflection circuits of an oscilloscope. Such an arrangement
was constructed in the laboratory and used to obtain the signal pattern
photographs shown in Fig. 10. Three kinds of signals are shown, (a)
binary FM, (b) quaternary PM, (c) binary VSB. These were all voice-
band data signals within a band centered near 1800 cps. Appropriate
filters were used to shape the pulse spectrum closely to a raised cosine.

To appraise the possible value of such signal patterns as a measure of
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_ Fig. 9 — Oscilloscope picture of three-level eye obtained by receiving a VSB
signal on a 202B FM receiver.

signal quality, the effects of amplitude slope and delay distortion were
observed. Examples of the results are shown by the oscilloscope pictures
of Fig. 11. The simulated line distortion characteristics which produced
these patterns are given in Fig. 12. The effect of amplitude slope is
readily apparent for FM and VSB, where portions of the transmitted
sequence result in the signal resting at the high-loss end of the band.
This accounts for the smaller inner circular portion of the patterns.
In the case of PM the pattern is changed but not at the mid-symbol
sampling points. The effect of high-end delay distortion shows up as a
rotation of one part of the pattern with respect to others. This is readily
seen in the PM examples, where the portion of the pattern formed by
repeated phase advances is rotated with respect to the portion formed
by repeated phase retardations.

1IV. CONCLUDING REMARKS

Signal space diagrams have been described for a number of commonly
used data signals. These diagrams are useful in comparing data signals

Fig. 10 — Oscilloscope pictures of signal space patterns for a 63-bit pseudo-
random sequence: (a) binary FM, 1000 bits/sec, (b) quaternary PM, 2000 bits/sec,
(e) binary VSB, 2400 bits/sec.
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Fig. 11 — Oscilloscope pictures of signal space patterns showing effect of
amplitude slope and envelope delay distortion.

on a common basis without regard to specific detection techniques.
Similarities and differences are revealed which may not otherwise be
apparent and various possible detection methods can be visualized. The
margin against noise with ideal detection methods is also indicated by
the spatial separation of the sampling points. The signal power is indi-
cated by the pulse amplitude and repetition rate. For example, the fore-
going diagrams illustrate that binary F'M, quaternary PM and binary
VSB signals all give the same margin against noise for a given trans-
mitted power. The binary M system, however, operates at half the
speed of the other two for a given bandwidth. It has also been shown
that a duobinary M signal has the same pattern as a binary VSB
signal. The relative simplicity afforded by M detection of such a signal
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Fig. 12 — Amplitude and delay distortion characteristies used to distort the
signal patterns shown in Fig. 11.

as against coherent detection is accomplished at a loss of approximately
6 db in margin against noise.

Considerable information about the nature of the channel charac-
teristic is also indicated by the signal diagrams. The use of signal dia-
grams as an indication of signal quality is primarily limited, however, to
the laboratory. The required synchronization with the midband fre-
quency and symbol rate of the signals to be observed tends to make the
method unsuitable for field measurements.

V. ACKNOWLEDGMENTS

The construction of circuitry for resolving data signals into quadra-
ture components and the photography of the oscilloscope patterns were
carried out by John Grason under the direction of F. I{. Becker.

REFERENCE

1. Lender, A., The Duobinary Technique for High-Speed Data Transmission
IEEE Trans. Comm. and Elect., 82, May, 1963, pp. 214-218.






Using Digit Statistics to Word-Frame
PCM Signals

By J. R. GRAY and J. W. PAN
(Manusecript received June 5, 1964)

Framing of PCM signals can be accomplished by stalistical means. For
signal samples whose probability distribution tends to be concentrated at
the center of the coding range, the second digit of the Gray code generated has
a probability of mostly 1’s. This information can be used to frame PCM
words. Three circuits are proposed that test this probability. Reliability and
reframe time for each circuit are obtained either analytically or experi-
mentally. The first circuit uses a pair of racing counters: one counts 0’s in
the second digit and the other 0’s in the third digit of the Gray code. When the
system 1s in-frame, the first counter seldom reaches full count before the
second, whereas during oul-of-frame either counter can reach full count
Jirst with equal probability. The second circuit uses a reversible counter
which advances on a 0 and retards on a 1. When connected to the second
digit of the Gray code, the preponderance of 1’s will keep the counter at or
near zero count; when connected to any other digit, where the probability of
a 1 1s at most 0.5, the counter will reach full count in a finite time. The
third circuit uses an RC integrator in place of the reversible counter: each
0 of the second digit generates a pulse to charge the capacitor and each 1
permits the accumulated charge on the capacitor to decay. The action s
simalar to that of the reversible counter but is difficult to analyze. Experi-
mental framing performance is given for this circuit.

I. INTRODUCTION

When a signal is transmitted by PCM, the receiver must be able to
group the serial pulse train into code words before it can properly re-
cover the original signal. This process is called “framing.” It is also
called “word synchronization,” as distinguished from bit synchroniza-
tion where the time base of the individual pulses is sought. When the
pulse train contains several PCM signals multiplexed together, there is
also the task of multiplex framing or frame synchronization whereby

2985
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the individual channels must be identified. Word synchronization can
be derived from frame synchronization if the words are always arranged
in a definite order within a multiplex frame; otherwise, word synchroniza-
tion is acquired independently. This article will consider only the
problem of word synchronization, hereafter simply called ‘“framing.”

Framing is ordinarily accomplished by using supplementary framing
pulses inserted among the information-bearing pulses at predetermined
intervals. The receiver will then find these framing pulses by searching
and testing for the unique pattern of these pulses. If the framing pulses
are inserted between every word, a substantial loss of channel capacity
will result; on the other hand, if framing pulses are inserted only oc-
casionally, the PCM words will not be uniformly spaced, which is
inconvenient for a sampled-data system. When the PCM signal contains
known redundancies, it is possible to accomplish framing without the
use of supplementary pulses. The signal is then said to be framed
“statistically.” The receiver now searches for the word grouping which
will yield the expected statistics for the signal. A simple example of such
a statistic is the intelligibility of voice. Voice transmitted by PCM is
intelligible only when the PCM words are grouped correctly. Other
criteria, easier to instrument than intelligibility, are available. Most
signals have amplitude distributions other than the uniform distribution
or have frequency spectra other than the flat spectrum. Both of these
properties will be altered when framing is incorrect. One of the easiest
statistics to measure is the average occurrence of 1’s and 0’s in the code
words. Measurement of this statistic for the case of a linear coder operat-
ing on a Gaussian signal source will be the main theme of this article.
The next section will elaborate on the digit probabilities, followed by
descriptions and analyses of framing circuits which acquire framing by
comparing the probabilities of 1’s and (’s in the second digit of the
Gray code.

II. PROPERTIES OF THE GRAY CODE

If the amplitude of the signal before PCM encoding is centrally dis-
tributed — Gaussian, for example — and the Gray code is used to convert
this signal into PCM, then the individual digits of each code word will
not have equal probability of being either a 1 or a 0. This fact can be
demonstrated by observing the Gray code assignments illustrated in
Frig. 1. Because the signal amplitudes are centrally distributed, the center
codes will be used more frequently than the codes at the extremes; the
second digit, being a 1 for the center codes, will thus be dominated by
1’s. It should be noted that this redundanecy is the result of a linear coder
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Fig. 1 — Gray code digit assignments.

operating on a Gaussian source. If a more efficient digitizer is used for
this source, as for example (1) a nonlinear coder or (2) a linear coder
followed by a digital processor to produce variable length codes or
block codes, then this redundancy can be removed. The amount of
redundancy in question is approximately one bit. Efficient coding would
therefore exclude the use of statistical framing.

Fig. 2 illustrates the probabilities of 1’s for all the digits; we can see
that the probabilities of each digit being a 1 obey the following inequali-
ties:

P(D;=1) < P(Ds=1)< -+ < P(D1=1) <P(D,=1) (1)
or, equivalently, the probabilities of each digit being a 0 conform to

P(Ds=0)>P(Ds=0)>--->P(D,=0)>P(D:y=0). (2)

Any out-of-frame condition is represented by a cyclic permutation of
the digits so that one of the inequality signs in (1) will be reversed and
similarly for (2). Any circuit which examines the validity of (1) or (2)
is therefore a framing detector. A few such circuits will be listed here.
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(1) Racing counters. In this scheme two counters are connected as
shown in Fig. 3. When either counter reaches the full count of N, both
counters are reset to zero. Now if the upper counter is connected in
such a way that its count is advanced for every 0 in digit 2 and the lower
counter is similarly connected for digit 3, then according to (2) the lower
counter will reach full count and reset both counters most of the time.
However, if the signal is out-of-frame, the counters will be actually
counting the 0’s of the digit pairs 3-4, 4-5, - - - or 1-2, and according to
(2) the upper counter will now be able to reach full count and reset both
counters much more frequently. The reset signal from the upper counter
can thus be used as an out-of-frame signal. The probability of a false
out-of-frame signal can be made small by increasing N, the size of the
counters.

(2) Reversible counters. A single reversible counter, shown in Fig. 4,

PULSE WHEN OUT-OF ~-FRAME
DIGIT 2=0 COUNT TO SIGNAL
RESET
RESET
PULSE WHEN
DIGIT 3=0 COUNT TO
N

Fig. 3 — Racing counters.
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Fig. 4 — Reversible counter.

can also be used to detect the framing status. The count is increased by
a 0 and reduced by a 1. When digit 2 is connected to this counter, the
preponderance of 1’s will keep the counter at or near the zero-count
state and prevent it from reaching full count. When the receiver goes
out of frame, this counter will be controlled by pulses of some other
digit which, as can be seen from Fig. 2, has at least 50 per cent zeros;
therefore full count will be reached within a finite time. Framing can be
accomplished by searching for a word grouping such that the counter
does not reach full count in a certain time interval.

(8) RC circuit. If a random pulse train is connected to an RC circuit,
shown in Fig. 5, then the presence of a pulse will charge the capacitor
and the absence of a pulse will permit the accumulated charge on the
capacitor to discharge somewhat. The process is similar to that of the
reversible counter, except that the charge and discharge rate is now a
function of the accumulated charge. A threshold circuit monitoring the
voltage on the capacitor can be used to indicate the framing status. A
pulse train derived from the received signal such that each pulse indi-
cates a 0 and each space indicates a 1 in the second digit of the Gray
code is used as an input to the RC circuit. When the receiver is in frame,
the pulse pattern at the input to the RC circuit will be sufficiently

3 T e
=0 w
-

RANDOM PULSE TRAIN INPUT TO THE CIRCUIT BELOW

Ry
o P—AN/ ' —o
PULSE WHEN R, l TO THRESHOLD

DIGIT 2=0

T c CIRCUIT
[o) ¢ O

Fig. 5 — Framing with RC circuit.
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sparse so that the accumulated charge will result in an output voltage
that seldom builds up to the threshold. However, an out-of-frame con-
dition will result in at least 50 per cent pulses present at the input, and
the output of the RC circuit will reach threshold in a finite time.

III. FRAMING CIRCUIT CHARACTERIZATION

Two figures of merit are commonly used to characterize framing circuit
performance, (1) misframe rate and (2) reframe time. Misframe rate is
measured in terms of the probability that the circuit will indicate an
out-of-frame condition when in fact the receiver is in frame. Reframe
time is characterized by the probability distribution of the time re-
quired for the receiver to achieve correct framing; this includes the time
taken to detect the out-of-frame condition. In a conventional framing
circuit, wherein a known framing pulse pattern is monitored, misframe
rate and reframe time are sensitive only to the error rate of the trans-
mission medium. Performance is degraded due to masking of the fram-
ing pulses by noise. With statistical framing, performance is more de-
pendent on signal statistics. Let the probability of a 0 in digit 2 be 0.05
at the transmitter; with an error rate of 10 per cent, the probability of
a 0 will increase to about 0.14, which is still different enough from 0.5 to
keep the circuit in frame. The signal itself, of course, will hardly be
usable at this error rate. On the other hand, a significant change in signal
statistics at the transmitter may cause a collapse of framing. Care must
therefore be exercised when the performance of statistical framing
circuits is to be compared with that of conventional circuits.

To evaluate the misframe rate and the reframe time of the statistical
framing circuits, the response of these circuits to random inputs must
be determined. Unfortunately, the statistical properties of the transient
response of analog circuits such as the RC circuit excited by a random
signal have not yet been completely solved. Therefore analytical results
for framing schemes using only digital counters will be presented here;
even with these circuits the results are approximate.

An experimental approach is used to determine the performance of
the framing scheme using RC circuits. The instrumentation proves to
be rather simple and some results will be given.

IV. ANALYSIS OF THE RACING COUNTERS

To lend some physical meaning to the analytical results, the analysis
will be accompanied by numerical results for a typical application,
namely, transmission of a mastergroup of telephone channels by PCM.
A mastergroup carries 600 voice-grade channels frequency-multiplexed
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together, and its amplitude distribution is very close to Gaussian if the
signal load is predominantly message service.! With normal busy hour
loading the rms value of the signal is approximately 14 of the system
overload voltage. Under extreme conditions the rms may rise to 14 of
the overload voltage. These figures will be used to calculate the per-
formances of the framing circuits. A nominal sampling rate of 6 X 10°
samples per second is assumed for the mastergroup. This rate will be
used to translate misframe rate into misframe interval, the mean time
between misframes.

We can consider the two racing counters as a sequential machine hav-
ing (N + 1)® possible states. In Fig. 6 the (N 4+ 1)° states are depicted
in a square array 4; each of its elements a;; represents a state where
the upper counter has count ¢ and the lower counter j. From a;; transi-
tion is possible to 3 adjacent states @;i1,;, @ij1,j41, OF @i ;41 UpON re-
ceiving as inputs 01, 00, or 10 respectively. In this notation the first
digit represents the input to the upper counter and the second digit
the input to the lower. Since the counters count only 0’s, an input of 11
will not advance the counters and the state will remain at a,; . Starting
from the initial state aq, the problems are (a) to find the probability
of reaching the bottom row when digits 2 and 3 are connected to the
counters (this yields the misframe rate) and (b) to find the probability
distribution of the time required to reach cither the bottom row or the
right-hand column when other pairs of digits are connected to the
counters; this leads to the distribution of reframe time when the result-
ing distributions are convolved.

A convenient technique for finding these probabilities is to use signal
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Tig. 6 — State diagram for racing counters.
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flow graphs.” Using « = ¢ as the time delay operator, the transitions
indicated in Fig. 6 are as follows:

_xP(01)
down d = 5711y
. _ zP(00)
diagonal ¢ = T—2PD) (3)
. _zP(10)
and to the I']ght r = T—jm .

The denominator [1 — xzP(11)] is due to self-loops at each state when
neither counter advances. In principle, this flow graph can be solved for
the transmission from the initial state to either the bottom row or the
right-hand column as rational functions of the delay operator z. From
these rational functions the total probability of reaching the bottom row
can be calculated by letting x = 1, and the probability distribution of
the waiting time can be obtained by a power series expansion of the
rational functions. However, in a practical situation with counters
counting up to 16, the caleulations become extremely involved, and even
with 20 decimal digits round-off errors become excessive. Approximations
are therefore used to estimate the misframe rate and the framing time.

To caleulate the average misframe rate, the substitution £ = 1 can
be made before solving the flow graph of Fig. 6. This reduces complexity
considerably and one can calculate the probability of reaching the bot-
tom row before the right-hand column. Information about time delay
is lost and must be estimated independently.

The flow graph can be solved by observing that

Q@) =dQ(E — 1,j) +9Q(¢ — 1,7 — 1) +7Q(7 — 1) (4)
for
14N -1 and 12N -1
where Q(4,7) is the probability that the state a.; is reached at any time
starting from ae . The d, ¢, and r are now numerical quantities calcu-
lated from (3) with « = 1. The above iteration formula is valid for all

states except the border states of the array A. To complete the picture
we have

Q(00) =1 (5)
since ag is the initial state, and going straight down

Q(,0) =dQ(t —1,0) 1=<=N. (6)
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To the right we have

Q(0,) =rQ0,j—1) 1=j=N (7)
For the bottom row we have
QIN,G) =dQ(N — 1) +9Q(N —-1,j—1) 1=j=N-1 (8)
and the rightmost column
QUN) =gQ(¢t — LN = 1) +rmQ(:EN —-1) 1=2¢=N-1 (9)
and, finally, the lower right state has probability

Q(N,N) = gQ(N — LN — 1) (10)

since it can be reached only by way of ay_1,y—1. The special treatment
given the bottom row and right-hand column is necessary because they
are the end states; from here we start anew at ag .

The probability of reaching the bottom row is the sum

which is the probability of an output pulse from the upper counter be-
fore the lower counter reaches count N. This is the probability of a false
out-of-frame signal when digits 2 and 3 are connected to the counters.
The recurrence formulas are valid for signals that are independent with
respect to the past, so that d, g, and r are the same for all states. Statis-
tical dependence of the two digit inputs is considered in their joint
probabilities. This iterative procedure has been carried out, and some
numeriecal results are presented below.

Assuming a Gaussian distributed input signal the joint probabilities
of digits 2 and 3 can be determined for normal loading with an rms input
at 14 of the system overload and for extreme loading with an rms input
at 14 of the overload. The various probabilities are shown in Table I:

TABLE I — PROBABILITIES OF DIGITS 2 AND 3

01 00 ) 10 ’ 11
RMS 14 overload 0.0428 0.0026 0.6826 0.2720
RMS 13 overload 0.1092 0.0244 0.5468 0.3196

substituting these numbers into (3), we have for x = 1 the transition
probabilities shown in Table II.
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TABLE II — TrANSITION PROBABILITIES

Transition D(:iwn Dia;ggonal To the,Right
RMS 14 overload 0.0588 0.0037 0.9375
RMS 14 overload 0.1605 0.0359 0.8036

The strong tendency to go to the right is quite evident here. The
probabilities of reaching the bottom row before the right-hand column
can be calculated from these data using the iteration formulas developed
above. To translate these probabilities into mean time between misframes
we proceed as follows. When the signal is in-frame, the lower counter
almost always attains full count before the upper. For counters of size
N, the lower counter resets both counters on the average of every N/p
PCM words, where p is the probability of a 0 in digit 3. The mean time
between misframes is then N/pU. The results are shown graphically in
TFig. 7 for various counter sizes. At normal loading and N = 16, the
mean time between misframes is 1.2 X 10" words which, at a sampling
rate of 6 X 10° per second, amounts to 2 X 10° seconds or a little more
than 2 days. When the rms signal is increased to 14 of overload, this
mean time deteriorates rapidly to fractions of a second, so that the
counter size has to be more than 32 to insure adequate reliability under
severe overload conditions.

To complete the picture on the racing counters, the framing time will
be estimated. During search for the correct framing we observe that the

1020 |
RMS OF SIGNAL /

=1/4 OVERLOAD

3
o

/
e
-

/|

AVERAGE NUMBER OF FRAMES
BETWEEN MISFRAMES

10°
///Rr;s OF SIGNAL
=1/3 OVERLOAD
, |
0 8 16 24 32

N-SIZE OF THE COUNTERS

Fig. 7 — Reliability of the racing counters.
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upper counter will be advanced, with 0’s occurring with probability at
least 14, and that it will be able to reach full count without first being
reset by the lower with probability at least 14. Thus with M digits in
each PCM word and assuming the worst case of searching through all
M — 1 positions, the counters will be reset on the average of 2(M — 1)
times. Each reset requires on the average of 2N words to either the upper
or lower counter. A conservative estimate of the average framing time
for the worst case is therefore 4N (M — 1) words.

As mentioned earlier, the exact distribution of the framing time is
difficult to obtain; however, the variance of this distribution can be
estimated. The framing time distribution can be considered as a com-
pound distribution, where the number of times n either counter reaches
full count during framing is governed by one distribution and the wait-
ing time ¢ for each reset is governed by another distribution. It is known
that such a distribution has mean E(n)E(¢) and Variance E(n)Var(t)
4 Var (n)E’(t).* The distribution of the number of times either
counter reaches full count before the upper counter reaches full count
M — 1 times is governed by the negative binomial distribution.” With
the upper counter having probability 14 of reaching full count, » has
average 2(M — 1) as mentioned before and variance 2(M — 1). The
waiting time for each reset is similarly governed by the negative bi-
nomial distribution. With probability 14 of receiving a 0, the waiting
time ¢ has mean 2N and variance 2N. The variance of the framing time
is therefore 2(M — 1)(2N) + 2(M — 1)(2N)?; for large N this is ap-
proximately 8(M — 1)N°.

For a 9-digit PCM system M = 9, and if we use N = 32, the average
framing time for a sampling rate F, = 6 X 10° per second is

8(M —1)N 4 X 8X 32

7 = 6 % 10° = 171 usec

the standard deviation is

[B(M — DN _ (8 X 8) X 32
P, 6 X 10°

= 43 usec.

Since the distribution is the result of many convolutions, it can be ap-
proximated by a normal distribution; with this assumption we can use
three standard deviations as the confidence limit and estimate the maxi-
mum framing time as 300 usec. During out-of-frame conditions the upper

* See Ref. 3, p. 253. Actually the negative binomial distribution governs the
number of times the lower counter reaches full count. This average is M — 1;
the total average waiting time is therefore (M — 1) + (M — 1) = 2(M — 1).
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counter actually receives 0’s with probability greater than 14, so that
the estimates are conservative.

V. ANALYSIS OF THE REVERSIBLE COUNTER

The use of a reversible counter allows greater reliability without re-
sorting to large-capacity counters as is necessary for the racing counters.
The analysis is also simpler, since only one counter is involved. The flow
graph for a reversible counter is shown in Fig. 8. The probability of a 0
which increases the count is p, and ¢ = 1 — p is the probability of a 1
which decreases the count. The count cannot go below zero. The gain
of the graph for any counter size N can be obtained by standard tech-

qz
Q px px px px ~ px_ . _P%
o} / N

Tig. 8 — Flow graph for reversible counter.

niques. The result can be expressed conveniently in the form of a re-
cursion formula for the denominator polynomial

Dx(z) = Dya(z) — P(l$2DN—2(9C)
where

Dy(z) =1 and Di(z) =1 — qu.

The numerator is simply Nx(z) = p"2". Some representative results
are

4 4
pr
i 1
Qu(x) 1 — gz — 3pgz® + 2pg%® + pigat (12)
and
prS
W) = T = T e + B - (19

— 10p2q3x5 —_ 10p3q3x6 _|_ 4p3q4x7 + p4q4x8

The average time between misframes can be determined from the
above by differentiation. Thus*

Tav = QNI(I) (14)
* See Ref. 4.
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when p and ¢ are for the second digit of the Gray code. The results for
various counter sizes and for system overload at 4 and 3 times rms are
shown in Fig. 9. It is seen that with a counter of size 16 and worst-case
loading the misframe interval is still sufficiently long, 1000 hours at a
6-me sampling rate.

One disadvantage of using the reversible counter is the slow reframing
process. When the receiver is out of frame the counter can be assumed
to receive 1’s and 0’s with equal probability. Using formulas developed
above for N = 16 but substituting 0.5 for p and ¢, one obtains an
average of 272 words to reach full count. For a 9-digit PCM system
sampled at 6 me, this amounts to 360 usec for the average framing time.
To shorten the framing time a dual-mode scheme applied frequently in
conventional framing circuits can be used. The scheme is described in
more detail below.

The framing circuit is designed to have two modes of operation. In
the in-frame mode, the counter size is set at 16 for maximum reliability;
once the out-of-frame signal is received the counter size is reduced to 8
to secure fast framing. The logic is depicted in Fig. 10.

The flip-flop determines the mode of operation. When in frame, the
flip-flop is reset and the counter must reach count 16 excess 0’s over 1’s
of the second-digit Gray code. When the system goes out of frame, the
probabilities of 1’s and 0’s are equal, and an output from the N = 16
lead of the binary counter chain sets the flip-flop to the out-of-frame
mode. In this mode the output from the N = 8 lead of the binary chain
is used. At the same time a timer is turned on to reset the flip-flop after

1020
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Fig. 9 — Reliability of the reversible counter.
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DIGIT 2=0 =
~————— ADVANCE N=16 S|t —
REVERSIBLE R|o
COUNTER —>
DIGIT 2=1 N=8
——————| RETARD
RESET
OUT—-OF -FRAME
SIGNAL
RESET
TIMER
TIMER ON

Fig. 10 — Dual-mode reversible counter framer.

a certain elapsed time. This elapsed time is selected such that it is longer
than the maximum time required to get an output from the N = 8
lead when the system is searching but shorter than the minimum time
required to get an output from this same stage when the correct frame
is found. “Maximum” and “minimum” are used here in a probabilistic
sense to be defined later. Thus during recovery the timer is reset before
it reaches the preset time, thereby preventing the flip-flop from resetting
back to the in-frame mode. When the system cycles back into frame,
the timer will return the system to the in-frame mode. Each time a
signal appears at the counter output, the framing counter is inhibited
one time slot in order to examine the next bit position; the reversible
counter is also reset automatically to zero. With the proper preset time,
the system is almost always prevented from cycling past the true in-
frame position.

To estimate the framing time for this scheme, we again use the exam-
ple of a 9-digit PCM system sampled at 6 X 10° per second. For the
worst case of searching through all 9 digits the average framing time
is given by

Tr = Qu(1) + 7Q(1). (15)

The effect of incorrect decisions by the timer which cause recycling is
ignored here. The first term corresponds to detection and the sccond
term corresponds to the search through the next 7 positions. The time
spent in verifying that the last position is the correct one is not included,
because the system will already be in frame. The above equation is
evaluated for p = ¢ = 14 and yields the worst-case average framing
time of 130 wsec. This estimate is again conservative, since 0’s oceur with
probability greater than 14 in some digits of the Gray code.
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The exact distribution of the framing time for the worst case may be
determined by expanding Qus(z)Qs' (z) in a power series. Again, this is
difficult to do accurately. To get around this problem an approximation
to the inverse transform of Qs(x) is determined by noting that the decay
in the tail of the distribution is dependent mainly on the singularity of
Qs(x) closest to the unit circle (1.01728 in this case). On this basis the
inverse transform is approximately

1.6986 X 10~°

(1oir2g)y— v K

QS(]C) =

v
™

and
(k) =0 0=k<8
where 1.6986 X 107 is selected so that

ng$(lﬁ) = 1.

Using the result and returning to the x domain

1.6986 X 107%°

(1—_%5' (16)

We now make the further approximation of replacing Qis(z) by Qs(x)
in the product mentioned above. We can therefore deal with the simple
result given by (16) raised to the 8th power. On this basis a somewhat
optimistic expression for the distribution of the framing time can be
readily obtained:

_ (16986 X 107°)%(n — 57)! -
p(n) = S enioresy—e or mE 6 arn

p(n) =0 0=n <64

Qs(z) =~

The upper tail of p(n) is shown in Fig. 11.

Taking the 107° point as the confidence limit and multiplying by the
sampling period, we get 200 usec as the maximum framing time. Since
the framing process is dominated by the Qs’(z) term, the error intro-
duced by the substitution of Qs(x) for the Qis(x) term should not be
significant.

Finally, we note that an optimum time must be chosen for the timer
in Tig. 10 to reset the flip-flop back to the in-frame mode. Selection of
this time is based on the distributions of waiting times for an output
from the N = 8 lead of the counter, first under the out-of-frame condi-
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Fig. 11 — Distribution of framing time for reversible counter.

tion and second under the in-frame condition. Summing the first two
columns of Table I we obtain 0.13 as the probability of a O for the second
digit when the rms input is at 14 of the system overload. For the other
digits a probability of 0.5 is assumed. Expanding Qs(x) in a power series
when p = 0.5 and when p = 0.13 yields the desired result. This is plotted
in Fig. 12. If the time is chosen to be 560 frames, the framing detector
will be in the wrong operating mode only 0.01 per cent of the time,

\\
N

PROB {N= ABSCISSA}
p=o0.5
1072
1073 \

1074 \

-
/
PROB {n < ABSCISSA}
/V p=0.13
1073~ | ! \
0 100 200 300 400 500 600

N-NUMBER OF FRAMES

Fig. 12 — Selection of optimum time for the timer.
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which means that the framer will seldom cyecle past the true frame
position during the framing process.

We note for future reference that the distribution of the waiting time
in Iig. 12 for p = 0.5 is a straight linc on semilog paper, which indicates
that it has an exponential tail.

VI. MEASURED FRAMING PERFORMANCE FOR THE RC CIRCUIT

We introduce this section by defining the problem. Illustrated in Fig. 5
is a typical input to the RC circuit, a random pulse train

2(t) = 3 aglt = nl) 18)

where a, is a sequence of independent random variables assuming values
1 or 0 with probabilities p and (1 — p), and ¢(¢) is a rectangular pulse
of height £ and width w. When this pulse train is applied to the circuit
of Fig. 5, the capacitor will charge when a pulse is present and discharge
otherwise. The charging time constant is

RiR,
L= 19
TRt R (19)
and the discharge time constant is
¢ = RyC. (20)
It is also convenient to refer to the attenuation constant
R, Te
K=—-—"">=1--—", 21
R+ R, T4 1)
We are interested in the transient response of the circuit y(¢), particu-
larly at times ¢t = w,t = T 4+ w, --- ,t = MT 4+ w because they are
the local maxima. We can proceed step by step:
y(w) = aKE[l — exp (—w/.)] (22)

y(T) = alKE[L — exp (—w/7.)] exp [ (T — w)/rd;  (23)

at t = T + w, the charge due to a; is added, the charge due to ao de-
cays further with a time constant of either 7, or 7, depending on the
value of a;

y(T 4+ w) = a,KE[1l — exp (—w/7.)]
+ {aoKE[l — exp (—w/7.)] exp [— (T — w)7al} (24)
las exp (—w/7.) + (1 — a1) exp (—w/7a)l;



3002 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964
in general

y(MT 4 w) = KE[1 — exp (—w/7.)] Zan

exp [— (M — n) (T — w)/7d] (25)
mg-l-l [am exp (—w/7c) + (1 — an) exp (—w/7a)l.

The framing performance of this circuit is related to the probability
distribution of the first time that the output of the circuit exceeds a
certain threshold. It is the distribution of the smallest M such that

y(MT + w) > threshold. (26)

To find the distribution analytically from (25) appears difficult.
Some simplification can be obtained by assuming that the widths of the
pulses are small or by assuming that the charge and discharge time
constants are the same. Under either of these conditions the product in
(25) disappears and the output is essentially of the form

M
2= > a8 0<pB<l. (27)
n=0

The behavior of the random variable z when M — « has received some
attention,’ but the distribution of the first passage time of z with respect
to some threshold is still difficult to obtain.

Here the experimental approach is taken; the circuit used is depicted
in Fig. 13. The input is derived from an analog-to-digital converter with
a Gaussian signal as input. The output of this converter is in Gray code.
By adjusting the level of the input signal and by selecting the various
digits of the Gray code, a pulse train with any desired pulse density may
be obtained. The digital timer measures the waiting time; it is started
at the closing of the input switch and stopped by the threshold circuit.
The threshold circuit also opens the input switch and signals the re-
corder to write the timer output ontape. A delay circuit resets the digital
timer and initiates the next cycle of measurement after the RC circuit
has returned to the rest condition. Each timing and recording operation
takes about one msee; about a million measurements were made and
recorded in a matter of minutes. A simple computer program reads the
data and compiles the cumulative distribution of these data as well as the
mean and standard deviation.

Some qualitative results concerning the effects of the various parame-
ters will be given below. First, for all of the combinations of the parame-



DIGIT STATISTICS 3003

SWITCH
> THRESHOLD
N oo >V CIRCUIT
PULSES IN
CLOSE OPEN
DELAY
CONTROL
DIGITAL PULSE
RESET AND | T!MER [sT0pP
START TO
I RECORDER
DATA

Fig. 13 — Measuring distribution of first passage time.

ters chosen, the measured distributions tend to have an exponential tail;
they plot as straight lines on semilog paper (see, for example, Fig. 15
below). An intuitive argument can be given for this result. If we suppose
that the threshold is set very low compared to the average output of the
circuit, at voltages below this threshold the circuit acts more like an
integrator than an RC circuit because it charges almost linearly and
discharges very little between pulses. The distribution should therefore
be similar to the distribution of the waiting times for the nth success in
a sequence of Bernoulli trials, which has an exponential tail. Now we
suppose that the threshold is set high compared to the average output
of the circuit. Near this threshold, the circuit decays rapidly between
pulses, so that a succession of many pulses in a row is necessary to drive
the circuit over the threshold. The problem is now similar to the first
occurrence of n consecutive successes in a sequence of Bernoulli trials,
which again has an exponential tail. Finally, we can suppose that the
threshold is set about equal to the average output of the circuit when the
probability of a pulse at the input is 0.5. Near this threshold the decay
due to an absence of a pulse is about equal to the charge contributed by
a presence of an input pulse. The circuit therefore behaves much like a
reversible counter in this region. In the previous section this has been
shown to have an exponential tail. All of these arguments are of course
approximate, but, lacking a complete theory, they serve to provide some
insight. Knowledge that the distribution of the waiting time has an
exponential tail enables us to use the techniques developed for the re-
versible counter to estimate the framing time distribution of this circuit.
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The second qualitative result is that the measured distributions of the
first passage time for the various circuits are very much the same as long
as their composite time constants and relative threshold settings are the
same. By “composite time constant’’ is meant the time required for the
output to reach (1 — ') of the maximum output when all pulses are
present at the input. By ‘“relative threshold” is meant the threshold as
a fraction of the aforementioned maximum output. The different situa-
ations are illustrated in TFig. 14.

The composite time constant and the maximum output can ke com-
puted from (25), setting all a,’s to 1.

y(MT + w)
; _ 28
= KB~ oxp (—u/=l S esp — [ =) (£ 4 1), (28)

Te

Letting M approach infinity we obtain the maximum output
KE n- exp;—w/rc)] . 29)
[ (5524 2)]
Td Te

The expression inside the summation in (28) can be rewritten as

exp — [T(M — n) (1 :d“’, + ﬂ)] (30)

Te

Ymax =

where w' = T/w, the duty cycle of the pulses. From this we can see that
the composite time constant is

(1 —w 9’>—1. (31)

Td Tc

The third qualitative result is the following. For circuits and threshold
settings such that with equal probability of pulses and spaces at the
input the distributions of the first passage time are the same, the average
first passage time for low probability of input pulses is longer when the
relative threshold is higher. Relative threshold is defined as above.
This result can be explained by using arguments similar to the first re-
sult. At low threshold settings, the circuit acts as an accumulator so
that the average first passage time is inversely proportional to the aver-
age pulse density. On the other hand, for high threshold settings, the
first passage time depends on the occurrence of many consecutive pulses;
the probability of this occurrence decreases exponentially with the
average pulse density. This result is directly applicable to the framing
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Fig. 14 — Two situations depicting different parameter settings but with sub-
stantially the same distribution of the waiting time to first passage of the thresh-
old voltage.

problem. For the RC circuit, the dual-mode operation controlled by a
timer used for the reversible counter is not necessary. With appropriate
choice of circuit parameters and threshold, one can achieve fast framing
and low misframe rate at the same time. To what extent the threshold
can be adjusted to improve framing performance depends on the stability
of the circuit. When the threshold is set near the level corresponding to
all pulses present, a small drift in any of the parameters will cause a
large change in reliability.

The framing performance of a typical RC circuit will be given here.
Again we assume a 9-digit PCM system with 6-mc sampling rate. The
parameters are as follows:

pulse width = 50 per cent duty cycle
charging time constant = 0.44 usec
discharge time constant = 1.2 usec
composite time constant = 0.64 usec.

With the probability of a pulse set at 14, the variation of the distribu-
tion of the waiting time with threshold setting is illustrated in Fig. 15.
The variation of the misframe interval and average framing time with
threshold setting is illustrated in Fig. 16. If the threshold is chosen such
that the misframe interval is 10° seconds (about one day), the average
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first passage time is about 20 usec. This yields an average framing time
of 160 usec if 8 positions are to be eycled through. Using the results of
the reversible counter as a guide, the maximum framing time with 99.9
per cent confidence is about 250 usec.

VII. SUMMARY

This paper has considered the possibility of framing a PCM signal
by utilizing the statistics of the code digits. Three schemes for testing
digit statistics have been proposed and their performances analyzed or
measured. Statistical framing is shown to be feasible and effective
whenever the signal statistics satisfies certain weak conditions.

The authors wish to acknowledge the help of H. H. Henning and
F. P. Rusin for design and construction of equipment used and assistance
given in obtaining the experimental results. The encouragement of M.
R. Aaron is also appreciated.
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Prolate Spheroidal Wave Functions,
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In two earlier papers™ in this series, the extent to which a square-integra-
ble function and its Fourier transform can be simultaneously concentrated
in thetr respective domains was considered in detail. The present paper
generalizes much of that work to functions of many variables.

In treating the case of functions of two variables whose Fourier transforms
vanish outside a circle in the two-dimensional frequency plane, we are led
to consider the integral equation

v0(@) = [ (o) Ve o)y, (i)

It is shown that the solutions are also the bounded eigenfunctions of the
differenizal equation

2 1 2
(1—x2)3—;—2x3—;+<x—02x2+4 x2N>ga=0, (%)
a generalization of the equation for the prolate spheroidal wave functions.
The functions ¢ (called “generalized prolate spheroidal functions”) and the
eigenvalues of both (1) and (i) are studied in detail here, and both analytic
and numerical results are presented.

Other results include a general perturbation scheme for differential equa-
tions and the reduction to two dimensions of the case of functions of D > 2
variables restricted in frequency to the D sphere.

* See Refs. 1 and 2,
3009
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I. INTRODUCTION

In two earlier papers"” in this series, the extent to which a square-in-
tegrable function and its Fourier transform can be simultaneously con-
centrated was considered in detail. In that analysis, the eigenfunctions
and eigenvalues of the finite Fourier transform played a key role. These
functions, defined for | | < 1 by the integral equation

1

ai(e) = [ =y, M
can be continued analytically throughout the complex plane. They
possess a number of special properties that make them most useful for
the study of bandlimited functions. The functions are complete in the
clags of bandlimited functions; they are orthogonal in (—1,1) and also
in (— ,); the y; are also the eigenfunctions of the integral equation

o) = [ AL ya "

2

A=

¢
- el
whose kernel is positive definite; ¢, , the eigenfunction of (2) belonging
to the largest eigenvalue, is in an appropriate sense most concentrated
among bandlimited functions of given energy. These and other proper-
ties are discussed in detail in Refs. 1 and 2. Some familiarity with these
papers will be assumed in the following.

In the present paper we consider certain aspects of the generalization
of this earlier work to functions of many variables. Many of the structural
results of Refs. 1 and 2 (as was pointed out there) depend only on the
fact that the operator defined by the right of (2) is completely con-
tinuous and positive definite. The generalizations to D dimensions are
perfectly straightforward: we comment briefly on some of them in Sec-
tion II, but do not belabor them. Our main concern here is with details
of the explicit solution of some of the integral equations that are multi-
dimensional generalizations of (1). An unexpected dividend of this work
is that one of these equations is of interest in the theory of masers.

In Section III, we point out some general features of the integral equa-
tions to be considered. Section IV treats the case of functions of two
variables whose Fourier transforms vanish outside a circle in the two-
dimensional frequency plane. The analog of (1) is shown to be the in-
tegral equation
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IIA
—

1
v0(r) = [ Julen)VerreG ), 0 (3)
1]
This integral equation also describes the modes in a maser interferometer
with confocal spherical mirrors of circular cross section (Ref. 3, p. 488).
The eigenfunctions of (38) are shown to be the bounded solutions of

2 1 2
(1 —x2)%;—2—2x3—:+<x—c2x2—4 x2N>¢ =0 (4)
that vanish at x = 0.

We call the solutions of (4) generalized prolate spheroidal functions.
Section V is devoted to their study: 5.1 treats the case of small ¢; 5.2
and 5.3 treat various asymptotic cases.*

In Section VI, the results of Section V are used to discuss the eigen-
values of (3). Various asymptotic forms for these quantities are derived.

Section VII treats the case of functions of D > 2 variables whose
Fourier transforms vanish outside a sphere in the D-dimensional fre-
quency space. It is shown that this more general problem can be reduced
completely to the case already treated in Sections IV, V and VI.

Finally, in Section VIII we present some numerical detail about some
of the eigenfunctions and eigenvalues encountered. Applications of these
results will be presented elsewhere.” ¥

II. GENERALIZATIONS OF EARLIER WORK

We denote points in Ttuclidean space of D dimensions, E, , by vectors,
X = (@1,2, - ,2p). A square-integrable function of D variables,
f(x), is said to be R-limited if it can be represented as a Fourier integral

1) = @0 [ e (kPG ©)

over the bounded region R. Here x-y = ) ¥, is the usual scalar
product and we write dy for [] dy. . If f is of total energy A, then by
Parseval’s theorem

A= [ 1560 fae = @0 [ 17G) Fay,

whereas the energy of f in the bounded region S is

* Some of the results of Sections IV and V have been developed independently
by J. C. Huertley,!* who was led to consider (3) from its laser applications.
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[ 15 ez
8
= fdz(?*rr)—wf dx exp (iz-x)F(x) f dy exp (—iz-y)I (y)
8 R R

= @0 [ dn [ dy Ks(x — PF@F()

where

Ks(x —y) = 2r)7" j; exp [iz- (x — y)ldz (6)

and an overbar denotes complex conjugate. The largest fraction of energy
that an R-limited function can have in the region S is therefore the
maximum value of the fraction

[a [ &y Kutx = prerG) /[ 170) Fay

taken over all functions F square-integrable through R. This maximum
is the largest eigenvalue of the integral equation

W@ = [ Kulx = ywdy,  xe R ™

which is the analog of (2).
The kernel (6) of (7) is positive definite, since

[R dz fk dy Ks(x — y)f®)(y)

2

— (2r)" fs dz fR dz exp (iz-x)f(x) | > 0

whenever

fR |/(x) [fdz > .

By well-known theorems (see Ref. 4, Chap. 6), the eigenvalues of (7)
are real and positive and the eigenfunctions, orthogonal on R, are com-
plete in the class of functions square-integrable in R. A complete dis-
cussion of the simultaneous concentration of square-integrable functions
in I/, and their Fourier transforms can be given in terms of the largest
cigenvalue of (7) as in Ref. 2, Theorem 2.

The right member of (7) can be used to extend the domain of defini-
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tion of ¥. We define
1
v = 3 [ Ka(x = ymdy,  x€ Iy

Then for two different eigenfunctions of (7)

[ 40w md

= o5 Lo [[arv0p) [ dKez = 0Ratz - y).

To evaluate the innermost integral here, we observe from (6) that K is
given as a Fourier transform, so that from Parseval’s theorem,

L Ks(z — x)Ks(z — y)dz

— (2r) fsdu exp [—iu- (x — y)] = Ks(x — ).

One then finds

[ 4ot = o [ asw [ ay Rox = 9o

-1 f do i (x)35(x).

The orthogonality of the y; over R thus implies orthogonality over k)
as well.

Other results of the one-dimensional case extend as easily to D di-
mensions, but we do not dwell further here on this general structure.

III. SYMMETRY CONSIDERATIONS

In what follows, we shall be concerned with the explicit solution of a
number of instances of (7). Considerable simplification occurs when the
region R is symmetric, i.e., when x € R implies —x € R, and when Sisa
scaled version of B. We write S = ¢cR wherex € cRifand only if x/c € R
with ¢ a positive constant. We restrict our attention henceforth to this
case.

Somewhat simpler than (7) is the integral equation

ap(x) = fRexp (iex-y)y(y)dy, x€R (8)
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which is a natural generalization of (1). We shall show in this section
that solution of this equation is completely equivalent to solution of (7)
when the symmetries just discussed maintain. We shall accordingly here-
after take (8) as our equation of fundamental concern.

Trom the symmetry of R, it readily follows that if ¥(x) is a solution of
(8), so also is ¥(—x), so that both ¢.(x) = ¢(x) + ¥(—x) and
Yo(x) = ¢(x) — ¢(—x) are solutions as well. The eigenfunctions of (8)
can be chosen to be either even or odd functions of x.

The complex conjugate of (8) is

W = [ ew (—ixyI@)d, xR ®

Multiply (8) by ¢(x) and integrate over R. Multiply (9) by ¢(x) and
integrate over R. Combining these equations, one finds on using the sym-
metry of R that

(@xa) [ Y@@

= _[Rdx/;dy exp (icx- Y)Y X)W (y) = ¢ (=l

If then ¢ is even, by choosing the negative sign in this equation, one
obtains « — @ = 0, whereas if ¥ is odd, by choosing the plus sign, one
finds & + & = 0. The etgenvalues of (8) associated with even eigenfunctions
are real: the eigenvalues of (8) associated with odd eigenfunctions are pure
tmaginary. It follows then that (8) is equivalent to the pair of equations

Babe(x) = f cos cx-yy.(y)dy (10)

i

Bt (®) = [ sin ex-4a(y)dy (11)
in which 8, and B, are real. These equations have real symmetric kernels
and we can fall back on the extensive theory in the literature treating
such equations. We observe that the eigenfunctions of (10) must be
even and that 8, = 0 cannot be an eigenvalue of this equation, for by
Fourier theory the only even square-integrable function in R for which

f coscxyy(y)dy =0, x€ER
R

is ¢(y) = 0. It follows then from the theorem on page 234 of Ref. 4 that
the eigenfunctions of (10) are complete in the class of even functions
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square-integrable in 2. A similar argument shows that the solutions of
(11) are complete in the class of odd functions square-integrable in R.
The solutions of (10) can be chosen real and orthogonal in R, as can the
solutions of (11). Solutions of (10) are automatically orthogonal to solu-
tions of (11) by symmetry.

We have now shown that the solutions of (8) are complete in the class
of functions square-integrable in R. The eigenfunctions can be chosen
real, orthogonal, and cither even (in which case the eigenvalue « is real)
or odd (in which case « is pure imaginary). We henceforth assume the
¥ so chosen.

By iterating (8), one finds that the y also satisfy

N = [ K- vy (12)
(& e o

with
K.(x) = <§c;_r>l’ L exp (icz-x) dz = (2x)° ];R ¢ dz  (14)

which is (7) in slightly altered notation and is the D-dimensional ana-
log of (2). Since the solutions ¢ of (8) are complete, it follows that they
are also a complete set of solutions of (12). As was asserted, to solve (12),
it suffices to solve (8).

The eigenfunctions of (8) can be extended by demanding that equa-
tion to hold for all x € E, . It is then easy to show that the extended ¥
are orthogonal in Ep and that they are complete in the class of cR-limited
functions.

IV. THE CASE D = 2, R A CIRCLE

We now treat in detail the equation

ap (o, ) = f Ty (4 dydyy (15)

where R is the unit circle 3,° + 7" < 1. Change to polar coordinates
gives

1 27
ay(rg) = fo dar’ v fo do’ gierm s 600y, (')
(16)

-]

5 1 27T .
= _Z:z""e"”g j; dr’ v'J . (err') /; de’ ¢ y(r' §")
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on making the usual Bessel function expansion. Here ¥(r,0) is exhibited
as a Fourier series in 6. A simple argument then gives for the eigenfunc-
tions of (15) and their corresponding eigenvalues

lﬁo,n("ﬂ) = Ro.n(r); Qo n = 27rﬁo,n
Uwm(r8) = Run(r) SN0 = omg (7)
RO ] N Sil’l N0, N,n N,n
N=1,2.., n=0012...

where

IIA

1
BBy (r) = f In(err )Ry )" dr', 071 =1,
0

(18)
n, N =0,1,2,....

All the eigenvalues of (15), except possibly the a, . have at least a two-
fold degeneracy inherited from the symmetry of the circle.
Our task now is to study the integral equation

IA
—

1
BR(r) = fo Jn(err YR )" dr, 0=r

It is convenient to make the substitutions
v=4/c8, o) =rR(r) (19)
to obtain the symmetric equation
1
1w0) = [ Iner) Vars (D af,  0srs1 (0

Note that ¢(0) = 0. We shall show that the eigenfunctions g .(7) of
(20) can be obtained as the solution of a Sturm-Liouville differential
equation.

Let

Ky(z) = Jx(2)Vz (21)
and let the operator M be defined by

(MYl (z) = fo K (cxy)y (y)dy.

Denote by L, the differential operator

d . . d %—N2_22>
Lz—%(l x)dx—l—( — cx ).
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Consider now

W) = [ Kaemy) [% 1- zf)diy

2

+ ( ;N - c2y2>] v(y)dy

= [Kn(cxy) (1 — )W (y) — ca(l — 3) (22)

[

K ey )l + [ 90| 0 = ) )

1 _ 2
— 2cayK’ (cay) + <4 y2N — c2y2> I{N(cxy)] dy

where the right member is obtained by integration by parts. Here primes
denote differentiation of the function in question with respect to its
argument. The integrated expression vanishes if (0) = 0, since from
(21), Kx(0) = 0. Also from (21) and the differential equation satisfied
by Bessel functions, one has the identity

1 2
Ky (cxy) = —(1 + ——]‘i) K (cxy). (23)

621;2?/2

Substitute this expression in (22) to yield
L .
LA () = [ 62K (exy)

4+ & =N+ &% — & — FYP)K(eay)ldy, (24)
¢v(0) = 0.
On the other hand, by direet calculation and use of (23), one has

1
[LMY)(z) = L. fﬂ K (cay)d (y)dy

1
f ¥ (y) [(1 — 2 YKy (cry) — 2acyKy'(cay)
0

l_‘]V2 2 2 ‘
+ <4 = cm> KN(cxy)]dy

fi
<
~
<
~
I
o
g
<
=
z ~
—~
S
&
~
—
I
~~
[
[
8
13
S—r
o
-
<
13-
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1
= fo () [—2cayKy' (cay) + 2 — N? + oi™y°

— ¢’" — ’y") Kn(cay)ldy
= [MLy](x)

on comparison with (24).

Let C be the class of functions square-integrable in (0,1) and twice
differentiable there that vanish at the origin. Operating on functions in
C, the operators M and L commute. It follows that solutions of

Lo(z) = —xe(x)

in C are also solutions of (20). Consequently, we next turn our attention
to the differential equation.
2 2
a2 do de i— N 2.2 =
(1—x)d_x2— 23%‘*‘(}—;2—‘—039"‘)( ¢ = 0. (25)

V. GENERALIZED PROLATE SPHEROIDAL FUNCTIONS

When N = 3 in (25), this equation reduces to the equation for pro-
late spheroidal functions of order zero. We shall refer to bounded solu-
tions of (25) for arbitrary values of N as generalized prolate spheroidal
Sfunctions. These functions are similar in many respects to prolate sphe-
roidal functions, as the development that follows shows. Bounded solu-
tions of (25) exist only for discrete values of x, say xv.»,n = 0,1,2, ...
which we label so that xx,, < xv1 =< xve < ... . We denote the corre-
sponding eigenfunctions by ¢x.(x).

5.1 Expansions tn Powers of ¢

Consider first the case when ¢ = 0. Substitution of the series
Qo = ZO a,janij

into (25) shows that we must have « = § &= N. If N 5 0, the negative
sign leads to solutions having a singularity at « = 0. If N = 0, a second
solution can be found, but it has a logarithmic singularity at z = 0.
We must have therefore

a=1%+N.
The coefficients are given by the recurrence

W a2t —x
@t +2)(at2+1) 31— N

Ajy1 =
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For large j, a;11/a; — 1, so unless the series terminates, this solution
becomes unbounded as  — 1. Choosing x to terminate the series at

2
™" we have

x = xva(0) = (N + 20+ %) (N + 2n + ) (26)

for the eigenvalues of (25) when ¢ = 0. The series solution now becomes

(when a, is set equal to unity)*
e = Tya(z) = xNHRN,n(x)
) (27)
Ryn(x) = F(—n,n+ N+ 1;N + 1;2)

where

2
Flape;2) =1+ %2 yalat DO+ D2

¢ 11 c(c + 1) gt

is the usual Gaussian hypergeometric function. The polynomial Ry () is
readily expressed in terms of Jacobi polynomials P,“”(z) (Ref. 5,
Chap. IV). Adopting the notation of Szegs, we have

Ryn(z) = (” j@ N >—1 PO (1 — 229). (28)

From (27), (28) and the known properties of the Jacobi polynomials,
one finds

n

Tyn(1) = (—=1)" (" + N)_l (29)

67m’
2(2n + N + 1) ("le) (30)

j: Twn (@) Ty (2)dz =

2(n + N + 1)°(2n + N)Ry s
= @2n+N+1)[(2n+N) (2n+ N +2) (1 — 22%)
+ N Ryn— 20°(2n + N + 2)Ry nes

(2n + N)a(l — %) d% R (2)

nl(2n + N) (1 — 22°) — N]Ry.(2) — 20°Ry 1 ()
xZTN,n(x) = 'YN,anN.n+l(x) + 'yN,nOTN,n(x) + FYN,n—lTN,n—l(x) (31)

* Tt has been called to our attention that our 7'y .(z) are closely related to the
Zernike polynomials. These latter arise in the diffraction theory of aberrations.!?
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L (n+ N+ 1)°
Y @+ N+ D@+ N +2)
o 1 N?
e =5 (1+ G F T D) 52)
-1 n2
')’N,n =

@+ M) AN+ 1)

| Tyn(z) | €1 for 022 = 1.
The function Tw.(z) has n zeros in (0,1]. We define Ty (z) = 0 if
n < 0. '

Returning now to (25) for arbitrary values of ¢, we attempt a power
series solution in ¢’ by writing

(@) = ewa(z) = Tralz) + gcﬁmzv,n,x) (33)
x = xwn(€) = xwa(0) + ;c“a,-uv,n), (34)

where the @’s and a’s are independent of ¢. When this latter quantity is
zero, this solution reduces to that already found. As is shown in Appendix
A, the @’s and a’s can be determined recursively in an elementary man-
ner. We have

Q;(Nnz) = Z AP (N ) Ty () (35)

k=—j

with
a;(N;n) = _Zl_‘,A_k"‘l(N,n)vN,n_k’“, i=1,2 ... (36
bovrm(0) = 0ra ()4 (N om)
= 3 M ATE ) — B A Nt (61

m=—j3, —j+1...,5; 7=12,....

Here A;’(N,n) is defined to be zero if | k| > j,ork < —nork =
and j # 0. In addition we have 4,,’(N,n) = 0, m % 0, A,°(N,n) = 1,
a,(N,n) = 0. For use in (36) and (37), the~y s of (32) must be defined
so that for n < 0, ‘)’an = ‘YNn = Yyvatq1 = 0.

To terms of order ¢ the eigenfunctions and eigenvalues of (25) are
explicitly
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v (€) = <2n + N+ ;) (2n + N+ g)

(38)
1 N2 2 4
+§<l+ (2n+N)(2"+N+2))C o
N nZTN,n—l(x)
ewn(®) = Twalz) + (4 @+ M@+ N+ 1) (39)

_ (n+ N+ 1)2TN,n+1(5U)
I2n +N ) @n + N +2)°

In view of (35), the series (33) can be formally regrouped to give

>f+OGX

ova(2) = 3 4 Ts(0). (40)

Substitution in (25) yields the three-term recurrence

2 1 N,n
YN, dia

+ v, + QAN+ @G+HN+EH — ™" (41)
+ Fyw,i di” " = 0.

This recurrence can be used to determine the d;¥'" and the eigenvalues
in a manner quite parallel to that used in the study of prolate spheroidal
wave functions. The method of Bouwkamp® can be adopted and used
advantageously for the computation of the ;""" and the eigenvalues for
values of ¢ too large to permit effective use of (33) and (34). The d’s
camn, of course, be expressed in terms of the A’s of (35). One has

dn+iN'"(c) = l;[ AJ’Z(NJ")CM: .7 =-n—-n+1.... (42)
=[7

The series solutions (40) or (33), (35) for the generalized prolate
spheroidal function are, of course, valid only for 0 < 2 < 1. To obtain
a series valid for z > 1, we use (20) and the fact (established in Appendix
B) that

1 -1
[ atezs) vV Taatray = (V) Lrmalen) )
0 n Vcz
The solution (40) then extends for all by the series

1 J w1251 (c2)

_ > N
ora(®) = o 2 (" +) va (49)
J
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which is obtained by inserting (40) in the right of (20) and integrating
term by term.

The eigenvalue vy,» can be expressed in terms of the d;*". Divide
both sides of the equation

1
Yymewn(T) = fo JIn(exx’) \ewad onn(a’)da' (45)

by 2z and take limits as £ — 0. From (27) and (40), we see that the
left member of (45) becomes
Yrm 2o i "Ry n(0) = yym 2 di""

7 7

Since Jy(x)Vz ~ (2/2)"/z/T(N -+ 1), the right of (45) becomes

IT(]V——I——I—)—Zﬁf (Cx )N+2¢N,n (x )dm,

N-+3

"o aY f o (') dof

N+

= ¢ N,n
B W,_ d; f To(2') Tw,;(2")da

CN+% doN n
T(N + 2)2~+
where we have used successively (40), (27) and (30). The combined

result is
CN-l-v';doN n

YN = 2N+IF(N _l__ 2) Z djN,'n°
7=0

(46)

The integral equation (45) is also useful for obtaining the asymptotic
behavior of ¢ .(2) as £ — ». We have

Vrmora(@) = & [ du ¥, () 2l e) (a7)
on letting cze’ = u. Now (v yy)’ = (u¥1'Jy), so that (47) can be
integrated by parts to yield

cr

YN, nPN,n (x) = uit

i[um Tos () £22(0/2)
cx

‘fmw“h<wd@A%ﬁ]

uN+t
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1
= c—x cT gpN,n(l)JN_f_l(Cx) — R

For large z, this becomes

/2 cos [cx — (N + 1) (x/2) — (x/4)]

cx
1
+o(%).

This of course is consistent with (44). If now we define ow .. () to be a
generalized prolate spheroidal function normalized so that for large =

cos [cx — (N + 1) (x/2) — (n/4)]

cr

Yo = /2 a1 (50)

a relation that will be useful to us later.

YN, nﬂoNn(x) = ¢nw, n(l) /1/
(48)

(49)

¢N.n*(x) ~

(48) gives us

5.2 Asymptotics for Fized n and Large ¢

The behavior of generalized prolate spheroidal functions for large ¢
can be determined by methods quite parallel to those used in Ref. 7 in
discussing the prolate spheroidal functions. Five different asymptotic
forms for ¢y, (2) are found, depending on the = range under considera-
tion. These are properly joined to furnish a solution for all . For most of
these regions, we content ourselves here with writing only the leading
term of the asymptotic development.

In (25) we make the substitution £ = 24/¢c. There results

Lo — (1/¢)Me + (x/c)e = 0 (51)
where the operators are given by
= f‘l_ N2 —
dg (52)
M = ffl—ﬁ + 2 g}‘

Now the equation

LU 4+ AU =0
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has solutions
U = UN,n(t) _ e—t2/2tN+%Ln(N)(t2) (53)
N = 4n + 2N + 2, n=20,12 ...

(seé Ref. 5, p. 99) where L,‘® (2) is the Laguerre polynomial of degree n
in Szegd’s notation. The function Uy .(¢) has n zeros in (0,0 ). This
suggests attempting solution of (51) for large ¢ by the series

oral = Unall) + 3 (168N, (54)
xvm(c)/c = 4n + 2N + 2 + Z:; (1/¢)b;(Nn). (55)

We now note that

MUN,n(t) = ﬂN,nlUN,n+2 + I-"N,nOUN,n + I-‘N,nk—lUN,n—2 (56)

where
pyva = (n 4+ 1) (n + 2)
pya = =20 +1) (n + N + %) + 3 (57)
pya = (n+N)(n+N—1),

a fact which can be readily derived from (52), (53) and the properties
of Laguerre polynomials. The perturbation scheme of Appendix A applies
therefore, and we find at once that

7. .
S;(N,n,t) =kZ,BkJ(N,") Ux nyax (1) (58)
=—1
where the B’s and b’s are given by the recurrence

1
bi(N)n) =kZ_1B—kJ—l(N7n)“N.n—2kka .7 = 11 2) .
j .
8mB, (Nn) = 2. be(Nn)B," (N mn)
k=1

1
— kle_Hm:'_l(N,n)meHk(m — k) (59)

m = _ja —J+1;'7.77 .7= 1727"

with the convention B/ (Nn) = 0if |k| > j,ork < —nork = 0
and j % 0. We take B,,"(N,n) = 0, m # 0, B"(N,n) = 1, bo(N,n) = 0.
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In this manner we obtain explicitly
xvne) = (4n +2N + 2D —[(2n + D)(n + N 4+ 1) + 3]

(N +2n + D[2n° + 20(N + 1) + N + 2 1\ (60)
- 4c +0 e :

which gives the behavior of x,. for large c.
We write the solution just found as

0 1 7 .
oxn'(x) = Una(t) + _Z; 5 2 BN ) Un (1),
= =7
t = 24/c.

The right side of (61) is ordered in powers of ¢ when expressed in terms
of the variable ¢. However, if { = x+/c is substituted, the terms are no
longer so ordered since Uy, mi2(2N/¢)/ Uy m(24/¢) = O(c). The range
of = values for which the first few terms of (61) furnish information
about ¢n,, vanishes as ¢ gets large. We shall use (61) only for0 = z =
1/¢%.

To obtain an asymptotic form for ¢y, (x) for ci=a
it is convenient to write oy n(z) = 2 Hz//N_,,,(:c) and set y
Equation (25) now becomes

(61)

=1—(1/e)

V1 — 2%

wdy |1 oy | dY
(1~y)@+[§—(2N+5)y]@

+ [xN.n - (N 4 %)(N n g) + cﬂ v =o.

Into this equation, substitute x».(c) as given by (60) and set

Y = ad Ch v
T Ayl 4 YT

® 4o <1>= 0.
dy c

N+E (1 — y) npcy

SDN,nz(x) ~ \/‘y‘(l + y)N+n+1 (63)

y=V1-—-2% ctza

(62)

One finds then for v,

Accordingly we write

IIA
IIA
I
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To obtain an asymptotic form for oy n.(z) valid near z = 1, set
y = s/cin (62) and again use (60) for xx . . There results

dy | 1dy 1>_
d—y2+§%_¢+0<5 = 0.

Accordingly we write

‘PN.ns(x) ~ xN-HIO(Cy)
64
y=+v1-2%, 1—-(/c)=sc=1 (64

where I,(z) is the modified Bessel function. (See Ref. 8, Vol. II, p. 5).
When ¢ > 1, we set 2 = /22 — 1, and have y = 7z. The solutions
o and oy’ then give rise to two more asymptotic forms. We write

own (@) = 2P, (c2), l<e=<1+ i (65)

5 _ N+ e (l — iz)" 1 _
ON,n (x) = Re \/'E:(l + iz)N+n+1, 1 +5 =z, (66)

z = 2 — 1.

We now determine the joining factors for these five solutions. In

1
ova and oy ,” we set £ = u/c’ and let ¢ become large for fixed u. One
finds
2n-+N+1) /4
(— 1)"0( N u2n+N+%e—u2\/_c/2

oNm' (u/ck) ~ n!

e Cn DI

ovnz =ufct) ~Z2 4

4N+ —u2+/¢/2
oN+2ntl €

where we have used the fact that
L. (u*/¢) ~ (—1)"u*"c¢"?/nl.
When y = v/4/c, one finds for fixed » and large ¢

ona(y = v/4/2) ~ Vv

N ~ T VN

‘PN,n3(y

where to obtain this last expression we have used the known asymptotic
formula I,(z) ~ €°//2xz (see Ref. 8, Vol. II, p. 86). Finally, when
z = v/+/c we find
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€9N,n4 (Z

/i) ~ 2 /e = =/

on 2z = 0/\/3) ~ &t <O (v\/\%— w/4)

where we have made use of the formula (see Ref. 8, Vol. II, p. 85)

Jo(2) ~ (1rz/2)_% cos (z — w/4).
All these results can be summarized in the following statement:

(¢ "N, (), 0<z=ct
xN+%eCZ/ (1 — y)" 2 -1

] - n 5 ¢ é é 1 -

T2 \/5(1 i y)N+ +1 c T c

Py () ~ lcstJr%I.,(cy), l—-c¢'=z=1
IchHJ,,(cz), 1Sz 14+c¢!
eicz (1 _ iZ)n _
ksvaH Re \/i_z(l n 2-z)1v+n+1 P 1+e¢ ! ==z (67)

\

where

t=x\/Ey y=vV1-—-2a4 z=\/$2_1

N+2n+1 N/2+} —
(_1)n2 +n+cn+ /+4e ¢

kzz
n!
N+2n+3/2 N/2 —
b = F = (_1)7"\/7:2 +n+/cn+/+%ec
3 4 n!
N+2n+2 N/2+} —
k (_1)n2 +n+cn+ /+‘6 ¢
5 —

n!

is the asymptotic form for large ¢ of a bounded continuous solution
(25) belonging to the eigenvalue (60).
We next calculate the normalization constant

1 / ! u 2
oz~ [@n.n(2)]" da.
For the contribution due to ¢x.," we find
i . 1 ot s
d —z2/2tN+an(N) t2 2 _ dt tt2N+1 Ln(N) )12
[ asle @OF = o [ @@, @)

L Ve -y N| (V) 2
—2\/(—;f0 due “uw L, (u))

_ I'(n + N + 1) N+2n = \/¢
VIO (14 0™ e V)l

of
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where we have used the fact that
” S ar N12 7., F(‘"/ + (&4 + 1)
v/(; c []Jn, (.L)] dv = W

(see Ref. 5, p. 99). It is not hard to show that the contribution to 1/Ny .’
from integration over the region ¢ * < z < 1is O(c?e—V*) for some p >
0. We have then

Ny L2VI(n + 1)

F(n+N+1) (68)

5.3 Asymptotics for n and ¢ Both Large

The techniques employed here again follow very closely those used
in Ref. 7. We accordingly give a minimum of detail.
We assume that when n and ¢ are both large x can be written

Xvm ~ ¢ 4 28¢ 4 by + bife + -+ . (69)

The ranges of » and ¢ for which this is valid will appear in the analysis
to follow.

In (25) make the substitution + = ¢/c and replace x by (69). One

finds
dﬂo 4_N2 1 _
dl2+<1+ >¢+0<E)—0

and hence for large ¢, o(t) ~ \ﬁJN(t). We write

1

ona' (@) = \Vay(ex), 0 vt (70)

IA
IIA

X

Returning to (25) with x replaced by (69), we observe that the sub-

stitution
ex [ (cw — i10 1 - x>]
_ p 2 1F 2 ,

\/1—902

ylelds — + 0 ( ) = 0, so that for large ¢, v becomes constant. After

¢

mu]tlplymg this solution by a complex constant, we take its real part
for the next section of ¢. Explicitly we define

_ 98 l1—x 1T
gcos [cx 2log1 T (N + % 2] 71)
TC A1 — 22 )

¢N.n7(x) =




PROLATE SPHEROIDAL WAVE FUNCTIONS — IV 3029

Note that when @ = u/+/c and ¢ is large (71) becomes
U ) -
onm (W) ~ A/ —, cos [ch - (N +3) g:l

The asymptotic formula for Ju (see Ref. 8, Vol. II, p. 85) shows that

7

orile = a0 ~ 4/ 2 cos [un/e = (0 + 1) ]

also, so that o’ and oy, agree for large ¢ in the neighborhood of
z = 1/4/c.

To find an appropriate asymptotic form for ¢ valid near v = 1,
substitute ¢ = ¥ ¢*" Py into (25) with x given by (69). Now make
the substitution x = 1 — ¢£/2c. There results

d*u du (1 .6 1
éd—.§2+ (1 - E)E_<§_7«'2—>U+O<E> = 0.

Accordingly, we are led to define

o () = 2" 70 [% - i%, 1; —2ic(1 — x):l (72)
where
ala + 1) 2*

ax
is the confluent hypergeometric funetion in the notation of Ref. 8, Vol.
I, Chap. 6.
The solution (72) is real. Its asymptotic form for large ¢ whenz = 1 4
v/A/¢ can be found from the knownt asymptotics for the & function.
One finds

45 (r/4)
"8 = 1:*: ~ _@*
onm (T v/A/¢) NETIO

(73)
cos I:v\/E F %log (20/¢) &= 6(8) — 77;:'
where the real functions R(8) and 6(8) are defined by
1 AN i6(5)
T <§ + z§> = R(8)e"". (74)

This latter definition is made precise by requiring 6(8) to be continuous
with 6(0) = 0.
Now when 2 = 1 — v/4/¢, (71) shows that

f See Ref. 8, Vol. I, p. 278, Eq. (2).
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1
ona (& = v/A/c) ~ 17—
c '\/271'1) (75)

5 v
cosl:v\/E+—2-logm+ (N+%)g—c].

Comparison of this expression with (73) shows that ¢n ., and (—1)%
R(3)e ™ ox .} /2/ T are asymptotically the same for z = 1 — v/+/c
provided
¢+ 8log(2v/c) — 0(3) = (N + 1)(n/2) + mq (76)

with ¢ an integer to be determined shortly.

Quite analogous to (71) is the solution for x> 1,

b x
e (e) Gl €08 l:ca: — —lo —_T—l — (N + 1) I:] 1)
N.n - — .
V7e Var =1

When z = 1 + v/4/¢ and c is large, this solution becomes
e5(m12)

ona (z =1+ v/A/c) ~ ~ o
cosI:c-l—v\/E—%logQ\v/E— (N + l)g—-g:l.

Comparison with (73) shows that this is the same as (—1)(R(8)e’""*/2.
vV m)ewa3(x = 1 4+ v/4/¢) when account is taken of (76).
Our results thus far can be summarized as follows:

Vzd x(cx), 0z=<c¢
T
zcos[cx - —log1 + - N+ 1 5
7C \/1 — ’

—1)® sy
(=1)'R(d)e e

27
(@) ~ i (78)
fb[% - z ,1; —2ic(1 — x):l
le —1] = ¢
6 r—1 T T
65(11'/2) COoS [C(I} - §logx-—_}:—1' —_ (N + 1) 5 _ AI]
Vme Vit —1

53
v
—
._I_.
o
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is the asymptotic form for large n and ¢ of a continuous solution of
(25) provided ¢ and ¢ are chosen to satisfy (76) and the requirement
that ¢ as given by (78) has n zeros in the open a-interval (0,1). The
corresponding eigenvalue is given by xx . ~ ¢* 4+ 26c + 0(1). Higher-
order terms can be found by methods analogous to those presented in
Ref. 7.

When ¢ becomes large and § remains fixed, i.e., 6 = O(1), the number
of zeros of gy .(2) in 0 < 2 = 1 can be estimated roughly from (78).

Using the asymptotic expansion for Jy , we find that ¢y .°(x) contributes
% = (Ve/m) + 0(1)
zeros as x ranges from zero to 1/4/¢c. From oy, () we find
z = (1/m)lc — 2v/c + (8/2) log V/c] + O(1)

zeros for 1/A/¢c < © £ 1 — 1/+4/c. Finally, by using the asymptotic
form (73) for oy ., the number of zeros of ¢ for 1 — 1/A/c <z <1
is estimated as

z = (1/m)[Ve + (8/2) log Vel + O(1).
Since we must have n = z; + 2 + 2, the last three equations show
that

nr = ¢ + 8 log 2+/c + O(1).

Combined with (76) this implies that as ¢ — «,

9(8) + (N + 1)(x/2) + wq — nx = O(1). (79)

The equation just established can be used to obtain a limiting result.
Let N be fixed and suppose that n grows with ¢ according to

n = (1/m)lc + b log (2v/¢)] (80)

where b is a fixed number (independent of ¢). Multiply this equation
by m, add to (76) and rearrange to obtain

(6 — b) log (2v/¢) = 6(8) + (N + 1)(x/2) + ¢ — nw = O(1) (81)

where the last equality comes from (79). Divide (81) by log(2+/¢). We
then obtain the limit result: Zf n grows with ¢ according to (80), then

lim 6 = b. (82)

c>w0
VI. ASYMPTOTICS OF Yy,n AND An,n

6.1 Fixed N and n. Large c

The asymptotic solution ¢y .(z) given in (67) has the values
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¢N,n(1) = ]\73

cos [ex — (N + 1) (#/2) — (x/4) .

gz — ) ~ (—1)"%s p

On recalling the definition given in (49), we see that for large ¢
ona*(x) ~ (—1)"@na(x)/cks ,
so that for fixed n and N as ¢ becomes large
(=1)"h e
* ~ ———— . = — —_—
oxa*(D) ~ iR = (—)y /2 (83)
Equation (50) then gives

(=
YN.n % . (84)

We now proceed to use (84) and the useful formula (to be established)

YN _ YN
dc 2c

lpn.a"(1) — 1] (85)
where

fol onn(x) dov = 1 (86)

to get a much stronger statement regarding the asymptotic behavior
of y~ . . First we establish (85)-(86).
For simplicity of notation let us write (45) as

1en(@) = [ K(caaon(a) ao’ (87)

where we have suppressed dependences on N. Differentiating, we find

O¢n (Cl})
ac

9Yn
E:' ﬂan(x) + Yn
(88)

1 1 12
= [ w'K (carYonle) o’ + [ Klera!) AN
0 0 dc

Differentiating (87) with respect to x gives

1
Yupu (@) =2 f zx'K' (cxx') o (2") da’,
T Jo

so that (88) becomes
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3Yn ” aﬁon(x) _ 1o fl ot a%(x/) o
—a_c— ¢n(~l‘) + Yn 3¢ - (_: YuPn (.’L) + . I{(C.L.L ) T d:l/ .

Multiply this equation by ¢, (x) and integrate. One finds

3. [P 2 ! 3¢, ()
%‘j{; Pn (1:) dx + 'Ynj; Son(x) ac dz

1 1
d NEPRCO
— v [ 2Lk de + v, [ o) 285 g,
o 2cdx 0 dc

where the last term has been obtained by interchange of orders of inte-
gration and use of (87). Equation (85) then follows by integrating the
first term on the right by parts and by using (86).

To use effectively (85)—(86) it is convenient to introduce xy,, = (—1)"-
v/cyn.n . We then have

Ldwn L ) (89)
Knn OC c
lim Kny,n = ]. (90)

>0

from (85) and (84) respectively. From (67) and (68) we see that

22N+4n+4cN+2n+2e—20
"I+ DIn+ N+ 1)°
Using this expression in (89) and integrating, we obtain

7r22N+4n+3 ] tontl —2
. _
f TR L
c

TTh FDI(n + N+ 1)
Integrating by parts and using (90), we finally find

B (_l)n _ (_1)n7r22N+4n+2cN+2n+ée-2c[ <1>:|

In terms of A\ of (13), we find from (17) and (19)

SON.nZ(l) ~ ]C32NN,n2

log kx|

>\N,'n, = 0"YN,n2 (92)
so that
B OINHnAS N4ntl —2e l: <1>:|
Mo = = e DT N 1) 1+o(z)|-  ©®

6.2 Fized N and n. Small c.

We use (46) to obtain an expression for vy , for small ¢. From (42),
it follows that B
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d,""(¢) = g: AN Np)E = A" (Np) ™1 + 0(D)]

(94)
_(=D'Tr 4+ DT+ N+ DTN + 2) 2
= e T N F D@ TN oy ¢ 1t 0]
where we have used (124), (26) and (32). From (42) one has
2 4" =d" - 0(¢) = 14 0(). (95)
1=0
Equations (94), (95) and (46) now give
YN = (_1) P(n + I)F(n + N + 1) 02"+N+%~ (96)

© 2T (2n + N + 1)T(2n + N + 2)

Higher-order terms could be obtained in a similar manner. An alterna-
tive route, however, is to use (85) and (86). From (39) and (30), one

sees that [2(2n + N + D] (n -; N) (—=1)"[1 + O(c"] is the normaliza-
tion factor for (39). Using (39) one then finds for a normalized solution

enva(l) = (=1)"v/2(2n + N + 1)

N°¢ s

Inserting this expression in (85) and integrating, we find
— (_1)"I‘(n + 1)I‘(n + N + 1)C2n+N+%
©2WHNHT (20 + N + 1)T(2n + N + 2)

2 2
.|:1 + N
4(2n + N)2(2n + N + 2)2

YN,n
(97)

+0(c“):|.

6.3 Asymptotics for n and ¢ Both Large
To obtain an expression for vy~ valid for n and ¢ both large, we use
(77) and (49-50). For the asymptotic solution (77) we have
R(8)es=i(—1)q
orall) ~ (98)

and for very large z

7 cos fex — (N + 1) (x/2) — (x/4)]

ona(x— o) ~ e .
wC X

Comparison with (49) shows that ey.,." = \/x/ce "™ Poxn, and (98)
and (50) now give
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(—1)2R(8)e-3x1»
YN Y )'\/(276 . (99)

Now (91) and (97) show that for large and small ¢ the sign of yw,
is the same as the sign of (—1)". As ¢ varies, v~ cannot change sign,
for by (92) if vy, were to vanish for some value of ¢ # 0, so would
A~ . . Since, as we have noted in Sections IT and III, the kernel K, of
(12) is positive definite, this is impossible. We can therefore replace
g by n in (99) and we have

g = n(mod 2). (100)
From the definition (74) of R(8), one has

RG] = r(% + 1%) T @ - z§> = e oD

Here we have used the functional relation [Ref. 8, Vol. I, p. 3, Eq. (7)]
for the gamma function

(3 + 2)T(3 — 2) = 7 sec 7z,
Equations (99), (100), (101) and (92) combined are
__nr .
YN m, Anv,n ~ 1+ emS. (102)
Finally from (80), (82) and (102) we have the limiting result: if
n = [1/7)(c + blog 24/¢)]

where the brackets denote “largest integer in”’ and b is a fixed number,
then '

hm )\N,n = ITI_G;Z

(103)

VII. THE CASE D > 2, R THE UNIT SPHERE

In the previous sections, we have treated the important special case
D = 2, R the unit circle in considerable detail. Most of the analysis there
was concerned with solving the integral equation (20). Fortunately, as
we shall now see, the solution of that equation also affords a complete
solution of the case R the unit sphere centered at the origin in Ej,,
D = 3,4, ... .In treating this general case, we shall draw freely on the
theory of D-dimensional spherical harmonics as given, for example, in
Ref. 8, Vol. II, Chap. XI. We follow the notation of this work and set

D=p+2 p=12.... (104)
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Let x = r€ and y = r'n where £ and n are unit vectors in £, . Equa-
“tion (8) now becomes

ap(rf) = j; dr'y'?* fn exp (ierr’&-n)Y (1" m) dQ(n) (105)

where Q is the surface of the unit sphere in E,,» .

Now let
h(N,p) = (2N + p) ﬂ%,——m, N=0,12 ..., (106)
and let Sy'(¥),l=1,2, ---, h(N,p), be a ecomplete set of orthonormal

surface harmonics of degree N. The IFunk-Hecke theorem (Ref. 8, Vol.
II, pp. 247-248) asserts that

/;Zexp (terr’E-n) Sy’ (n) d2(n) = Hy(err')Sy' () (107)
where
Hy(err')
2PN (p — 1)

=I‘<B%—l>(N+p—1)!

is independent of [ and Cy"(u) is a Gegenbauer polynomial (Ref. 8, Vol.
IT, p. 235). By expanding ¢.in.surface harmonics,

1
f eicrr’uCNpIZ(u)(l _ 'LL2) (p—D)/2 du (108)
—1

o  h(N,p)

Y(r§) = NZ:O l; Rya(r)Sx'(¥),
we find from (105) and (107)
1
axaRoa(r) = [ '™ Hy(on') Rl (109)
[

from which it is seen that Ry, i(r) and ax,; are independent of [. We have
the expected degeneracy of eigenvalues due to spherical symmetry.
Now [Ref. 8, Vol. II, p. 236, Eq. (25)]

pl2 _ (=" (Z’)N\ _ . 2\y=(eD/2 a’ 2N+ /2
Cy"*(u) = oN (p T 1) V1 (1 u) aur (1 u) ’
2 N

where (a)y = a(a + 1) «-- (6 + N — 1), so that from (108)
2ﬂ_(p+1)/2(_1)N

p+1 p+1
F( 2 )2N( 7 )N

’ 1 ierr’u dN 2\ N+ (p—1)/2
Hy(err') = du e — (1 —u) .
—1

du®
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Integration by parts gives for the integral here

(—1)* fl (i — uz)N+(p—1)/ziN_ gorr'e
-t du¥

1
(—’im‘r')”f du ewrr’u(l _ uz)N+(p*l)/2
-1

= (=i)"\/aT (N + p%“l) 2P (0 ) TP o (o)
where we have used the Poisson formula
1
T+ 1)J,(2) = ﬁ(z/z)”f (1 — ) du
~1

[Ref. 8, Vol. II, p. 81, Eq. (7)]. We have then, finally
Hy(err') = i%(2x) 2 T yypn(err’) [ (crr )2,

We see now from (109) that the eigenfunctions and eigenvalues of
(105) are

‘//N,l,n(r,'f) = RN,H(T)SNl<€)7 l = 1; 2’ cee s h(N;p)

AN ,n = iN(27r>1+p/2BN,n (110)
Nnm=0,1,2, ...
where
Y N- /2(07‘7”/) +1
By nBwa(r) = LARRENT L p PR () A (111)

o (err’)ri2
These equations are the analogues of (16), (17) and (18). Set
v = Bc(p+1)/2 0 = r(p+1)/2R. (112)

Equation (111) becomes

yo(r) = fo S vapper )N erro(r') dr'. (113)

This, however, is (20) with N replaced by N + p/2. The formulae of
Section IV for the solutions of (20) can be taken over exactly replacing
N by N + p/2 throughout. (Expressions involving factorials must be
replaced by the appropriate ones in terms of I' functions when p is an
odd integer.) Together with (110), (111) and (112), they provide solu-
tion of (105) for all D = 2.

It is interesting to note that the one-dimensional case treated in Refs.
1 and 2 can be obtained as a special case of the present theory by ap-
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propriate interpretation. The parameter N of this section is the degree
of the homogeneous polynomial solution to Laplace’s equation in D
dimension afforded by the spherical harmonic Sy’ when expressed in
rectangular coordinates. When D = 1, Laplace’s equation d’y/dz’ = 0
has only two homogeneous solutions, ¢ = k and ¢y = =z, respectively of

degrees zero and one. For D = 1, ie.,p = —1 from (104), we have
; /
/7,
NS
Veveay
120 N=2 ";V / /
X // 4 // / /
o0 /// //
e ' //23////5 pa
80 — A 2/ 2/ A pd 74
DAy 994 Pt
LA
A T
40 — zd ////2' / // ]
=T /’/ g ——
2ol P E= T
A I
o] //}//‘

[

Fig. 1 — Curves of xn,. of (25) vs c.
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only two allowed values, N = 0 and N = 1, The quantity N + p/2
oceurring in (113) then has values —% and 3. The kernel becomes
V/2/x cos err’ and \/2/x sin crr’ respectively in these two cases, and we
retrieve the integral equations for the even and odd prolate spheroidal
functions of zero order. Note that when N = =1, (25) reduces to the

prolate spheroidal equation.

VIII. NUMERICAL RESULTS

A program for the IBM 7090 has been written to compute generalized
prolate spheroidal functions using formulae (40) and (44). Trial values
for the xx,» were obtained from (34) and (55) and the recurrences
(36)-(37) and (59). The method of Bouwkamp® was then used to cor-
rect these estimates and obtain the d,;¥'". Values of vy, were obtained
from (46) and these were converted to values of X by Ayn = cynn .

Fig. 1 shows plots of xx., versus ¢. Fig. 2 gives the behavior of the
first few A, . By definition of the labels, xx 411 = x~ . for Nyn = 0, 1,
... and if ¢ > 0 the inequality is strict. From Sturmian theory, it follows
that xy41n > xw.n. For the \’s, one can show correspondingly that
Avngr < Avn and A1 < Ay for Nyn = 0, 1, ... . The problem of
ordering the Ms and x’s for all N and » appears to be a difficult one. Some
values are listed on Table I.

Tigs. 3 and 4 show plots of ¢y ..(x) versus x for N = 0,2, n = 0,1,2,3
and ¢ = 2,10. Values of the o~,, for a larger set of parameter values are
given in Table II. Normalization is as in (86).

A XA LT AT AT
0.8 // / /7 / /// // : / /'
VAW AV RVaV aviwi

06N = 1 2/ fo |1/ | 2/ifo |1
n= of of i | | i/fz |2

NEIAVIN/Av/N/AvRiw eV
R EAV/aaY aviy aviy
NS i

0/2////

4 6 8 10 12 14 16 18

>
~—|O0
I~
T~
~
NaLYY)
I

Fig. 2 — Curves of Ay,» of (13) and (15) vs c.
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4 0.02
N=o0,c=10 0.01’-\ n=o
3 0 P \
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—
TN T
. ~] =3\ /

-3 L
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Fig. 3 — Some generalized prolate spheroidal functions, ¢x,.(z).
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T I
’ N:z,c:z ) l// _ )
2 n=t{ 47 . ¢ » ;
T TN TN T
==K
_, SN
. A\
-3
-4
’ o[
6 0.02
. oot \ || TN
-o.01} n=o/
4 -0.02 /.
N=2,c=10
3
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X
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I
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Fig. 4 — More generalized prolate spheroidal funetions, g;},,:(x).
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TABLE I — NUMERICAL VALUES OF Xy, AND Ay

X

S

c

x

—

o::uno:m»—u—a'oo
COOOOMMO LT

OO HF N =

sy

kot ok ok ek ok ek
OB WN OO~ UTN =

Pt b ek et ek b et
SOOI W= O WO =IUTN =

N=0 n=0
7.5499895 — 1 2.4968775
8.7434809 — 1 6.0585348
1.2395933 + 0 2.2111487
1.8225178 + 0 4.2951906
2.5857968 + 0 6.2963045
4.4622709 4+ 0 8.8705036
6.5208586 + 0 9.7495117
8.5869176 4 0 9.9534230
1.8690110 + 1 9.9999957

N=0 n=1
9.2562398 4 0 1.0829815
1.0847476 + 1 6.7214485
1.3698728 - 1 6.6745424
1.7898720 4 1 2.6742780
2.3241561 + 1 5.7877057
2.9277622 -+ 1 8.3060712
3.5550580 + 1 9.4973850
4.1805821 + 1 9.8782700
4.7985976 4 1 9.9738554
5.4108072 4 1 9.9947801

N=0 n=2
2.5751488 4 1 1.8834675
2.6773866 -+ 1 1.9235204
3.8241737 + 1 1.6017987
4.4846367 4 1 8.1254764
5.3021146 4 1 2.5847455
6.2527715 4+ 1 5.3544699
7.2854528 4+ 1 7.8635574
8.3461406 4+ 1 9.2600949
9.4019226 + 1 9.7915064
1.0443896 + 2 9.9484586
1.1474313 + 2 9.9882732
1.2496987 + 2 9.9974793
1.3514611 + 2 9.9994820
1.4528810 + 2 9.9998984

N=0 n=3
4.9250694 + 1 6.0066949
5.0761114 4+ 1 9.8333952
6.1688709 + 1 3.5422330
7.4995083 4+ 1 3.5278392
8.3823340 + 1 2.0130790
9.4336396 + 1 8.2018248
1.06569367 4 2 2.4212641
1.2034708 + 2 4.9658387
1.3504432 + 2 7.4660703
1.5007176 + 2 9.0244395
1.6502439 + 2 9.6944048
1.7977291 + 2 9.9165294
1.9433804 + 2 9.9791376

o b ok o b e et DD GO

Pt b ek ek B bt DD OO

T T T T T I I

bk ek ok ok ok ek ek et ek etk DD DD D €O

I T T T A O Y O

et et b DD DD GO O

—
-

—

OO WO
ocCoocCcCoooOW;m

CORTIDOUHE N

—

[ el el e
IO UL O DD = OO U

N=1n

3.9163765 + 0
4.4119661 + O
6.3394615 + 0
9.3427678 +
1.3086855 +
1.7170130 +
2.1310600 +
3.7555900 -+

=]

N=1

1.6255011 +
1.7912353 +
2.4832293 +
3.0401459 +
3.7326440 +
4.5219234 +
5.3565692 +
6.1976089 +
7.0297509 +

o L e el - |

N=1

3.6265101 +-
3.7820310 +
4.9160037 +
5.5464880 4
6.3286568
7.2759605 +
8.3789365 +
9.5955815 +
.0867089 -
.2145589 +
.3409696 -
4657506 +-

DO DO DO DD bt b et o ek e et et S

[

N =1

6.4258409 +
.5789319 +
.6749767
.0834214
.2001776
.3350648
.4872078
.6522672
.8237982
.9961900
1666412
2.3347382 +

DO b bt b b ek b et = O

+ -+
NN = 3

=0

9.4982658
1.3986168
1.6123183
4.8326866
7.8473505
9.3671678
9.8534266
9.9998314

=1

7.4672551
1.8549511
3.8313651
1.6818804
4.29125657
7.1473948
8.9618892
9.7041388
9.9279210

=2

4.6976877
1.9082396
1.0305314
8.3652966
4.4641026
1.6080875
3.9082845
6.6399691
8.6120123
9.5495434
9.8759852
9.9692509

=3

7.6540787
4.9988893
1.1190662
1.0298512
4.5573797
1.5017502
3.5789707
6.1969392
8.2818634
9.3866345
9.8150785
9.9500835

I T T T T Y O B
s et et et DD

b et ot etk et DD ]

[ T T T T O O O |

et et e e DO G0 G0 00

RO B O

[ )

—
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c X A c X A
N=2 n=0 N =2 =2
1 9.4976317 4+ 0 3.9517707 — 4 1 4.9292042 + 1.0614368 — 14
2 1.1710916 + 1 1.9088335 — 2 2 5.0922802 + 1.7074109 — 10
3 1.52019060 + 1 1.3627864 — 1 5 6.2566028 + 5.5396960 — 5
4 2.0048498 + 1 4.0298411 — 1 7 7.6509011 4 5.0165514 — 3
5 2.5667098 + 1 7.0317221 — 1 8 8.5676381 + 2.7077307 — 2
6 3.1747966 + 1 8.9417071 — 1 9 9.6519700 + 1.0455606 — 1
7 3.7952889 + 1 9.7092917 — 1 10 1.0904728 + 2.8443961 — 1
8 4.4125829 + 1 9.9324606 — 1 11 1.2295597 + 5.4626700 — 1
10 5.6324064 + 1 9.9972026 — 1 12 1.3768257 + 7.8216583 — 1
13 1.5265435 + 9.1919613 — 1
14 1.6752489 + 9.7528766 — 1
15 1.8220066 + 9.9334500 — 1
N=2 n=1 N =2 =3
1 2.53335681 + 1 4.1659113 — 9 1 8.1275289 + 9.2115325 — 21
2 2.7088321 + 1 4.0530517 — 6 2 8.2854667 + 2.3940665 — 15
5 3.9788041 + 1 2.5787154 — 2 5 9.4065006 —+ 3.2594658 — 8
6 4.6842565 + 1 1.1592915 — 1 10 1.3679420 + 5.8064778 — 3
7 5.5371030 + 1 3.2573165 — 1 11 1.4973956 + 2.6682390 — 2
8 6.5067655 + 1 6.0754452 — 1 12 1.6450899 + 9.5057491 — 2
9 7.5425367 + 1 8.3161633 — 1 13 1.8113152 + 2.5380401 — 1
10 8.5969115 + 1 9.4455397 — 1 14 1.9931616 + 4.9785798 — 1
11 9.6442775 4+ 1 9.8484078 — 1 15 2.1846670 +- 7.3845601 — 1
16 2.3793070 + 8.9389256 — 1
17  2.5727411 + 9.6462917 — 1
18 2.7635393 -+ 9.8968676 — 1
TABLE IT — VALUES OF ¢y, (T)
N=0n=0
x c=1 c=2 c=35 ¢ =10
0.1 4.74638 — 1 5.55421 — 1 9.15662 — 1 1.31455 + 0
0.2 6.68776 — 1 7.74706 — 1 1.22032 + 0 1.62247 + 0
0.3 8.14070 — 1 9.27095 — 1 1.35165 + 0 1.57689 4+ 0
0.4 9.31948 — 1 1.03607 + 0 1.35103 + 0O 1.30428 + 0
0.5 1.03044 + O 1.11011 + 0 1.24626 + 0 9.31637 — 1
0.6 1.11351 + 0 1.15353 4+ 0 1.06660 4 0 5.70325 — 1
0.7 1.18341 + O 1.16921 4+ 0 8.43474 — 1 2.91331 — 1
0.8 1.24157 4+ 0 1.15957 4+ 0 6.07845 — 1 1.17077 — 1
0.9 1.28896 + 0 1.12695 + 0 3.86969 — 1 3.19741 — 2
1.0 1.32627 4+ 0 1.07383 + 0  2.01532 — 1 3.00159 — 3
1.1 1.35405 + 0 1.00285 + 0 - 6.38588 — 2 —1.09501 — 3
1.2 1.37278 + 0 9.16840 — 1 —2.24980 — 2 4.23236 — 4
1.3 1.38285 + 0O 8.18791 — 1 —6.18395 — 2 6.58696 — 4
1.4 1.38464 + 0 7.11797 — 1 —6.43066 — 2 —2.21883 — 4
1.5 1.37853 + 0 5.98095 — 1 —4.32142 — 2 —5.95391 — 4
1.6 1.36489 + 0 4.83499 — 1 —1.22744 — 2 —1.21194 — 4
1.7 1.34410 4+ 0 3.68328 — 1 1.68342 — 2 4.20886 — 4
1.8 1.31655 4+ 0 2.56332 — 1 3.61314 — 2 3.79898 — 4
1.9 1.28264 + 0 1.50130 — 1 4.20554 — 2 —8.00341 — 5
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N=0 n=0
x c=1 c=2 c=135 ¢ =10
2.0 1.24281 + 0 "' 5.20429 — 2 3.52268 — 2 —3.67577 — 4
2.1 1.19748 + 0 —3.59472 — 2 1.94309 — 2 —2.42458 — 4
2.2 1.14713 + 0 —1.12245 — 1 1.30129 — 4 1.44876 — 4
2.3 1.09221 4 0 —1.75666 — 1 —1:71274 — 2 3.08117 — 4
2.4 1.03322 + O —2.25459 — 1 —2.80628 — 2 1.76068 — 4
2.5 9.70655 — 1 —2.61300 — 1 —3.05323 — 2 —1.11428 — 4
2.6 9.05010 — 1 —2.83289 — 1 —2.47697 — 2 —3.05239 — 4
2.7 8.36800 — 1 —2.91927 — 1 —1.30522 — 2 —6.14275 — 5
2.8 7.66537 — 1 —2.88082 — 1 1.07933 — 3 1.53741 — 4
2.9 6.94735 — 1 —2172956 — 1 1.38275 — 2 6.59394 — 5
3.0 6.21906 — 1 —2.48005 — 1 2.20781 — 2 1.15331 — 4

N=0n=1
x : c=1 L c=12 c=35 ¢ =10
0.1 7.57682 — 1 7.49125 — 1 7.51850 — 1 1.11517 + 0
0.2 1.00189 + 0O 9.78062 — 1 8.84348 — 1 9.64135 — 1
0.3 1.08562 4+ 0 1.03485 + 0O 7.51864 — 1 2.39045 — 1
0.4 1.02660 + 0 9.38690 — 1 4.08540 — 1 —6.68891 — 1
0.5 8.24694 — 1 6.94825 — 1 —7.50154 — 2 —1.35733 4+ 0
0.6 4.76162 — 1 3.08610 — 1 —6.10130 — 1 —1.58691 + 0
0.7 —2.29984 — 2 —2.11235 — 1 —1.10302 + 0O —1.36404 + 0
0.8 - —6.75867 — 1 —8.51754 — 1 —1.47075 4+ 0 —8.87374 — 1
0.9 —1.48414 + 0 —1.59571 4- 0 —1.65550 + 0O —4.07419 — 1
1.0 —2.44790 + 0  —2.41297 4+ 0 —1.63388 + 0 —9.25172 — 2
1.1 —3.56556 + 0 —3.30607 4- O —1.41956 4 0 2.63841 — 2
1.2 —4.83382 + 0 —4.22107 4+ 0 —1.05901 4+ O 2.11679 — 2
1.3 —6.24769 + 0 —5.13836 + 0 —6.20954 — 1 —1.29202 — 2
1.4 —7.80051 4+ O —6.02868 4 0 —1.82563 — 1 —2.10428 — 2
1.5 —9.48401 + O —6.86308 + 0O 1.85537 — 1 —2.91179 — 3
1.6 —1.12884 + 1 —7.61390 + O 4.31871 — 1 1.47146 — 2
1.7 —1.32026 4+ 1 —8.25574 4+ 0 5.32289 — 1 1.36618 — 2
1.8 —1.52139 4+ 1 —8.76628 4- 0 4.92313 — 1 —1.33175 — 3
1.9 —1.73086 + 1 —9.12711 + 0 3.43349 — 1 —1.28433 — 2
2.0 —1.94720 4+ 1 —9.32424 + 0 1.34214 — 1 —9.24495 — 3
2.1 —2.16882 + 1 —9.34869 + 0 —8.02848 — 2 2.21756 — 3
2.2 —2.39406 4+ 1 —9.19674 4 0 —2.51019 — 1 1.09934 — 2
2.3 —2.62120 4+ 1 —8.87007 + 0 —3.44099 — 1 7.19680 — 3
2.4 —2.84846 4 1 —8.37588 + 0 —3.46476 — 1 —2.21224 — 3
2.5 —3.07405 + 1 —7.72616 + O —2.66729 — 1 —6.65003 — 3
2.6 —3.29612 4+ 1 —6.93789 4 0 —1.31077 — 1 —7.12403 — 3
2.7 —3.51286 4+ 1 —6.03209 4 O 2.39279 — 2 8.00041 — 4
2.8 —3.72245 4+ 1 —5.0333¢ + 0 1.60443 — 1 8.27644 — 3
2.9 —3.92310 4+ 1 —3.96899 + 0 2.48208 — 1 1.58822 — 3
3.0  —4.11308 + 1 —2.86785 4 0 2.70290 — 1 —1.20582 — 3

N=0 n=2
x c=1 c=2 c=35 c =10
0.1 9.30351 — 1 9.35161 — 1 8.84844 — 1 9.05937 —
0.2 1.08208 + 0 1.06262 + 0 9.01678 — 1 5.16232 —




PROLATE SPHEROIDAL WAVE FUNCTIONS — IV

TasLe II — Continued

3045

N=0 n=2

x c=1 c=2 c=3 ¢ = 10

0.3 8.66349 — 1 8.22287 — 1 5.05390 — 1 —3.42126 — 1
0.4 3.64401 — 1 2.96652 — 1 —1.35886 — 1 —9.82679 — 1
0.5 —3.05506 — 1 —3.80932 — 1 —7.81957 — 1 —8.03819 — 1
0.6 —9.56032 — 1 —1.00914 + O —1.16120 4+ 0 —7.44970 — 2
0.7 —1.32240 + 0O —1.31928 4 0 —1.03567 + 0 9.85253 — 1
0.8 —1.05832 + 0 —9.83017 — 1 —2.64525 — 1 1.65961 + 0
0.9 2.65717 — 1 3.74968 — 1 1.15147 + 0O 1.60911 4- 0
1.0 3.16217 4- 0 3.16046 + O 3.05638 + 0 9.70106 — 1
1.1 8.22453 + 0 7.79020 4+ 0 5.16083 + 0 2.03097 — 1
1.2 1.61238 4+ 1 1.46703 + 1 7.09600 4 0 —2.556403 — 1
1.3 2.76035 + 1 2.41735 4 1 8.48753 -+ 0 —2.68864 — 1
1.4 4.34731 + 1 3.66166 4 1 9.03589 + 0 . —2.22585 — 2
1.5 6.46001 4 1 5.22386 + 1 8.58154 + 0 1.83653 — 1
1.6 9.19010 4 1 7.11812 4 1 7.14579 + 0 1.76198 — 1
1.7 1.26331 + 2 9.34716 + 1 4.93120 4 0 9.12279 — 3
1.8 1.68874 + 2 1.19010 4+ 2 2.28768 -+ 0 —1.36988 — 1
1.9 2.20627 + 2 1.47564 + 2 —3.55354 — 1 —1.39402 — 1
2.0 2.82291 + 2 1.78757 4 2 —2.57167 + 0 —1.18170 — 2
2.1 3.556155 + 2 2.12083 + 2 —4.02160 4+ 0 1.05884 — 1
2.2 4.40084 + 2 2.46904 4 2 —4.51700 + 0 1.18832 — 1
2.3 5.38002 + 2 2.82468 4 2 —4.05482 4 0 1.72440 — 2
2.4 6.49779 + 2 3.17933 + 2 —2.81239 + 0 —8.73616 — 2
2.5 7.76218 + 2 3.52375 + 2 —1.10632 + 0 —7.36407 — 2
2.6 9.18038 + 2 3.84832 + 2 6.76904 — 1 —2.63630 — 2
2.7 1.07586 + 3 4.14324 + 2 2.16111 4+ 0 3.13871 — 2
2.8 1.25021 + 3 4.39892 4 2 3.05658 + 0 9.47047 — 2
2.9 1.44146 + 3 4.60641 + 2 3.21902 4+ 0 7.91312 — 3
3.0 1.64988 - 3 4.75731 + 2 2.66304 + 0 —5.44166 — 2

N=0 n=3

x c=1 c=2 c=3 c=10

0.1 1.04335 4+ 0O 1.03904 + 0 1.00396 + 0 8.16002 — 1
0.2 9.41806 — 1 9.22225 — 1 7.82101 — 1 2.80879 — 1
0.3 2.91804 — 1 2.54987 — 1 1.09411 — 2 —5.85742 — 1
0.4 —5.66503 — 1 —6.04220 — 1 —8.19616 — 1 —9.01249 — 1
0.5 —1.16122 4+ 0 —1.17035 4+ 0 —1.15387 4 0 —2.96465 — 1
0.6 —1.04537 4+ 0 —1.00493 + 0 —6.55699 — 1 7.15663 — 1
0.7 —6.94405 — 2 3.87818 — 3 5.00576 — 1 1.12898 + 0
0.8 1.23639 + 0 1.27745 + 0 1.45426 + 0 2.99477 — 1
0.9 1.17030 + 0 1.12044 + 0 6.85065 — 1 —1.44767 + 0
1.0 —3.74163 4 0 —3.74119 4+ 0 —3.72277 4+ 0 —2.98825 + 0
1.1 —1.94508 + 1 —1.86263 + 1 —1.36118 + 1 —3.23654 4 0
1.2 —5.51808 4+ 1 —5.13331 + 1 —3.01767 + 1 —1.98417 4 0
1.3 —1.24365 4 2 —1.12506 -+ 2 —5.34231 + 1 —6.65948 — 2
1.4 —2.45530 + 2 —2.15895 + 2 —8.18229 + 1 1.27315 + 0
1.5 —4.43417 4 2 —3.78480 + 2 —1.12269 + 2 1.31011 + 0
1.6 —7.50023 4 2 —6.20420 4 2 —1.40431 + 2 3.14866 — 1
1.7 —1.20572 4+ 3 —9.64812 + 2 —1.61419 + 2 —7.44769 — 1
1.8 —1.86039 4 3 —1.43724 4+ 3 —1.70733 + 2 —1.00264 4 0O
1.9 —2.77451 4+ 3 —2.06513 + 3 —1.65204 + 2 —4.10716 — 1
2.0 —4.02027 4+ 3 —2.87683 + 3 —1.43828 + 2 4.24001 — 1
2.1 —5.68257 + 3 —3.90062 4 3 —1.08200 + 2 8.04224 — 1
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N=0 n=23
x c=1 c=2 c=35 ¢ =10
2.2 —7.85998 + 3 —5.16340 + 3 —06.24706 + 1 4.53989 — 1
2.3 —1.06656 + 4 —6.68939 -+ 3 —1.27832 + 1 —2.40332 — 1
2.4 —1.42276 + 4 —8.49881 4+ 3 3.37407 + 1 —6.90334 — 1
2.5 —1.86902 4 4 —1.06060 + 4 7.02754 4+ 1 —3.30234 — 1
2.6 —2.42135 4 4 —1.30186 + 4 9.15596 + 1 1.36373 — 1
2.7 —3.09743 4- 4 —1.57357 + 4 9.49226 + 1 2.58923 — 1
2.8 —3.91655 + 4 —1.87469 + 4 8.08334 + 1 4.73302 — 1
2.9 —4.89962 4 4 —2.20322 + 4 5.29160 + 1 —7.99752 — 3
3.0 —6.06911 + 4 —2.55591 + 4 1.70562 + 1 —4.71948 — 1

N=1 =0
x c=1 c=2 c=35 ¢ =10
0.1 6.67799 — 2 7.82376 — 2 1.75066 — 1 3.92683 — 1
0.2 1.88413 — 1 2.19147 — 1 4.70668 — 1 9.77051 — 1
0.3 3.44707 — 1 3.96102 — 1 7.93680 — 1 1.44397 + 0
0.4 5.27637 — 1 5.96043 — 1 1.08116 4+ 0 1.62479 4+ 0
0.5 7.31901 — 1 8.08692 — 1 1.28498 4- 0 1.49159 + 0
0.6 9.53337 — 1 1.02496 + 0 1.37488 + 0 1.13769 + 0
0.7 1.18837 + 0 1.236556 + 0 1.34097 + 0 7.13592 — 1
0.8 1.43380 + 0 1.43586 + 0 1.19359 4+ 0 3.52409 — 1
0.9 1.68661 + 0 1.61605 + O 9.60016 — 1 1.21545 — 1
1.0 1.94398 + 0 1.77112 4+ 0 6.78651 — 1 1.73276 — 2
1.1 2.20321 4+ 0O 1.89606 + O 3.91685 — 1 —6.46094 — 3
1.2 2.46172 4+ 0O 1.98689 4- 0 1.37762 — 1 —6.17021 — 4
1.3 2.71702 4+ 0 2.04079 4+ 0O —5.42516 — 2 4.36117 — 3
1.4 2.96675 + 0 2.05612 4+ 0 —1.69153 — 1 1.77204 — 3
1.5 3.20863 4+ 0 2.03244 4+ 0 —2.06531 — 1 —2.50040 — 3
1.6 3.44053 4+ 0 1.97051 4- 0 —-1.79111 — 1 —2.92887 — 3
1.7 3.66041 4 0O 1.87221 + 0 —1.08794 — 1 5.03281 — 5
1.8 3.86640 4- 0 1.74049 + 0 —2.14572 — 2 2.47164 — 3
1.9 4.05675 4- 0 1.57927 + 0O 5.85005 — 2 1.94403 — 3
2.0 4.22984 + 0 1.39322 +- 0 1.12680 — 1 —5.40072 — 4
2.1 4.38426 4- 0 1.18771 + O 1.31527 — 1 —2.13282 — 3
2.2 4.51871 4+ 0 9.68543 — 1 1.15060 — 1 —1.41516 — 3
2.3 4.63210 4+ 0 7.41814 — 1 7.15483 — 2 6.26047 — 4
2.4 4.72350 4 0 5.13706 — 1 1.46127 — 2 1.92158 — 3
2.5 4.79216 4+ 0 2.90272 — 1 —4.05001 — 2 7.95172 — 4
2.6 4.83753 4 0 7.72847 — 2 —8.05860 — 2 —6.86022 — 4
2.7 4.85923 4+ 0 —1.19954 — 1 —9.73081 — 2 —7.63503 — 4
2.8 4.85708 + 0 —2.96762 — 1 —8.86612 — 2 —9.86627 — 4
2.9 4.83107 4 0 —4.,49226 — 1 —5.89386 — 2 1.47764 — 4
3.0 4.78140 + 0 —5.74265 — 1 —1.69513 — 2 1.50302 — 3

N=1n=1
x c=1 c=2 c=35 ¢c=10
0.1 1.78797 — 1 1.86209 — 1 2.26456 — 1 4.69291 — 1
0.2 4.81623 — 1 4.98465 — 1 5.77313 — 1 1.01396 + 0
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N=1n=1

x ¢ =1 c=2 c=3 ¢ =10

0.3 8.11322 — 1 8.30625 — 1 8.81124 — 1 1.10226 4+ 0
0.4 1.09167 + 0 1.09943 4 0 1.01214 + 0 5.69582 — 1
0.5 1.24498 + 0 1.22371 + 0 8.876560 — 1 —3.54754 — 1
0.6 1.19004 + O 1.12484 4 0 4.82831 — 1 —1.21477 4+ 0
0.7 8.42479 — 1 7.20666 — 1 —1.63619 — 1 —1.61645 4+ 0
0.8 1.15744 — 1 —2.61065 — 2 —9.56612 — 1 —1.44879 4 0
0.9 —1.07772 + 0 —1.19460 + 0 —1.76308 + 0 —9.06520 — 1
1.0 —2.82516 4+ 0 —2.81285 4+ 0 —2.43994 4+ 0 —3.26420 — 1
1.1 —5.21224 4+ 0 —4.90037 + 0 —2.86233 4+ 0 3.12685 — 2
1.2 —8.32175 + 0 —7.45742 + 0 —2.94990 + 0 1.08983 — 1
1.3 —1.22323 + 1 —1.04640 4+ 1 —2.68284 4+ 0 2.38728 — 2
1.4 —1.70172 4+ 1 —1.38798 + 1 —2.10636 + 0 —6.19490 — 2
1.5 —2.27431 4+ 1 —1.76444 + 1 —1.32097 + 0 —6.25964 — 2
1.6 —2.94693 4 1 —2.16792 +- 1 —4.62707 — 1 —1.89305 — 4
1.7 —3.72461 + 1 —2.58893 + 1 3.24280 — 1 5.11365 — 2
1.8 —4.61145 + 1 —3.01663 + 1 9.155562 — 1 4.39191 — 2
1.9 —5.61051 + 1 —3.43921 + 1 1.22972 + 0 —3.52397 — 3
2.0 —6.72374 4 1 —3.84424 4 1 1.24232 + 0 —3.87077 — 2
2.1 —7.95192 + 1 —4.21912 4 1 9.87598 — 1 —3.49613 — 2
2.2 —9.29459 + 1 —4.55151 4+ 1 5.48435 — 1 2.81473 — 3
2.3 —1.07501 + 2 —4.82978 + 1 3.67863 — 2 3.09193 — 2
2.4 —1.23154 + 2 —5.04353 + 1 —4.30799 — 1 3.14921 — 2
2.5 —1.39863 + 2 —5.18371 + 1 —7.57370 — 1 —6.17863 — 4
2.6 —1.57573 4 2 —5.24330 + 1 —8.84163 — 1 —2.95268 — 2
2.7 —1.76214 + 2 —5.21739 + 1 —8.00250 — 1 —1.28822 — 2
2.8 —1.95708 + 2 —5.10350 + 1 —5.41499 — 1 —1.34150 — 3
2.9 —2.15961 + 2 —4.90184 4 1 ~1.79916 — 1 6.077156 — 3
3.0 —2.36871 + 2 —4.61486 + 1 1.95783 — 1 2.63666 — 2

N=1n=2

x c=1 ¢ =2 c=35 ¢c=10

0.1 3.17572 — 1 3.23375 — 1 3.58452 — 1 4.61327 — 1
0.2 7.89038 — 1 7.98456 — 1 8.45034 — 1 8.84405 — 1
0.3 1.13929 + 0 1.13924 + 0 1.10027 + O 6.93291 — 1
0.4 1.16268 + 0 1.13700 + O 9.09831 — 1 —8.13386 — 2
0.5 7.46367 — 1 6.88194 — 1 2.60402 — 1 —8.60192 — 1
0.6 —6.41935 — 2 —1.40156 — 1 —6.18349 — 1 —9.72981 — 1
0.7 —9.90830 — 1 —1.04501 + 0O —1.27959 + 0 —2.01002 — 1
0.8 —1.44413 4+ 0 —1.42980 + 0 —1.15587 4+ 0 1.02436 + 0
0.9 —4.43333 — 1 —3.60476 — 1 2.92752 — 1 1.92471 + 0
1.0 3.46336 + 0 3.46067 + 0 3.41429 + 0O 1.94059 + 0O
1.1 1.22761 + 1 1.16998 + 1 8.22613 + 0 1.12202 + 0
1.2 2.86165 4 1 2.63729 + 1 1.43419 + 1 5.54149 — 2
1.3 5.57952 + 1 4.98022 + 1 2.00872 + 1 —5.92374 — 1
1.4 9.78715 + 1 8.45483 + 1 2.71147 4- 1 —5.45072 — 1
1.5 1.59705 + 2 1.33319 + 2 3.15908 + 1 —5.23392 — 2
1.6 2.46994 + 2 1.98856 + 2 3.34313 + 1 3.78477 — 1
1.7 3.66308 + 2 2.83810 + 2 3.20166 + 1 4.06284 — 1
1.8 5.25100 + 2 3.90597 + 2 2.725691 + 1 7.68751 — 2
1.9 7.31713 + 2 5.21256 + 2 1.96583 + 1 —2.68863 — 1
2.0 9.95363 + 2 6.77296 + 2 1.02468 + 1 —3.08683 — 1
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TaBLE II — Continued

N=11n=2
x c=1 c=2 ¢c=35 ¢ =10
2.1 1.32612 + 3 8.59566 + 2 4.17984¢ — 1 —9.67834 — 2
2.2 1.73484 + 3 1.06812 + 3 —8.32684 + 0 1.95130 — 1
2.3 2.23316 4 3 1.30213 + 3 —1.46613 4 1 2.53304 — 1
2.4 2.83336 + 3 1.55981 + 3 —1.76896 4 1 1.16918 — 1
2.5 3.54832 4 3 1.83831 + 3 —1.71224 4+ 1 —9.81521 — 2
2.6 4.39138 4 3 2.13379 4+ 3 —-1.33267 4+ 1 —2.49959 — 1
2.7 5.37625 + 3 2.44140 + 3 —7.25156 + 0 —5.82649 — 2
2.8 6.51688 -+ 3 2.75538 + 3 —2.34462 — 1 9.65074 — 2
2.9 7.82726 4 3 3.06921 + 3 6.27542 + 0 5.32562 — 2
3.0 9.32135 4 3 3.37554 + 3 1.10027 4+ 1 1.36992 — 1

N=1n=3
x c=1 c=2 c=35 c=10
0.1 4.70292 — 1 4.74792 — 1 5.03663 — 1 5.60653 — 1
0.2 1.03640 4- 0 1.03944 + 0 1.05094 + 0 9.52509 — 1
0.3 1.15261 4+ 0 1.13873 4 0 1.02612 4+ 0 4.75116 — 1
0.4 5.87098 — 1 5.49119 — 1 2.80849 — 1 —5.20321 — 1
0.5 —4.34815 — 1 —4.78043 — 1 —7.50431 — 1 —1.03082 + 0
0.6 —1.22557 4+ 0 —1.23658 + 0 —1.23879 4+ 0 —3.74929 — 1
0.7 —9.49593 — 1 —9.03408 — 1 —5.28507 — 1 8.87232 — 1
0.8 5.95761 — 1 6.56832 — 1 1.04428 + 0 1.26903 + 0
0.9 1.58393 + 0 1.56393 + 0 1.35005 + 0 —3.80514 — 1
1.0 —3.99973 + 0 . —3.99876 + O —3.98415 + 0 —3.66768 + 0
1.1 —2.94218 + 1  —2.82067 + 1 —2.13760 + 1 —6.63805 + 0
1.2 —9.93028 + 1 = —9.31025 + 1 —5.82859 + 1 —7.12958 + 0
1.3 —2.54877 + 2 —2.33198 + 2 —1.21470 4 2 —4.48170 4+ 0
1.4 —5.60512 + 2 —5.00166 + 2 —2.14807 4 2 —1.91044 — 1
1.5 —1.11157 4 3 —9.66261 + 2 —3.37164 4 2 3.09018 4+ 0
1.6 —2.04369 4+ 3 —1.72812 4 3 —4.80966 4 2 3.47603 + 0
1.7 —3.54344 4 3 —2.91000 + 3 —6.31861 + 2 1.24407 4+ 0
1.8 —5.86049 + 3 —4.66630 + 3 —7.70049 + 2 —1.54042 4 0
1.9 —9.32112 4 3 —7.18302 + 3 —8.72930 + 2 —2.73125 4+ 0
2.0 —1.43431 + 4 —1.06778 + 4 —-9.19104 + 2 —1.43583 4+ 0
2.1 —2.14517 + 4 —1.53984 + 4 —8.92696 + 2 7.02031 — 1
2.2 —3.12971 4 4 —2.16194 + 4 —7.87269 -+ 2 2.14894 4+ 0
2.3 —4.46725 + 4 —2.96368 4 4 —6.08384 + 2 1.44329 4 0
2.4 —6.25326 + 4 —3.97614 4 4 —3.74068 4- 2 —1.90745 — 1
2.5 —8.60136 + 4 —5.23076 + 4 —1.12896 + 2 —1.17683 + 0
2.6 —1.16452 + 5 —06.75841 -+ 4 1.40286 + 2 —1.61055 + 0
2.7 —1.55406 4- 5 —8.58796 + 4 3.50030 4 2 —7.92157 — 2
2.8 —2.04672 4+ 5 —1.07450 + 5 4.86619 + 2 1.29119 4 0
2.9 —2.66305 + 5 —1.32504 4+ 5 5.32282 + 2 3.73378 — 1
3.0 —3.42633 + 5 —1.61182 4 5 4.83375 + 2 4.32692 — 1

N=2 n=0
& c=1 c=2 c=35 c=10
0.1 8.11214 — 3 9.30928 — 3 2.21477 — 2 8.00048 — 2
0.2 4.58035 — 2 5.22724 — 2 1.20067 — 1 4.01321 — 1
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TasrLE II — Continued

N=2 n=0

x c=1 ¢ =2 c=5 ¢ =10

0.3 1.25827 — 1 1.42274 — 1 3.07992 — 1 9.01985 — 1
0.4 2.57171 — 1 2.87029 — 1 5.71015 — 1 1.38094 + 0O
0.5 4.46741 — 1 4.90296 — 1 8.72575 — 1 1.62971 4 0O
0.6 6.99877 — 1 7.523904 — 1 1.16320 + 0 1.54932 4+ 0
0.7 1.02059 + 0O 1.07049 + 0 1.39112 + 0 1.19392 4 0
0.8 1.41171 + O 1.43889 + 0 1.51294 4 0O 7.25292 — 1
0.9 1.87493 + 0 - 1.84932 + 0 1.50259 + 0O 3.16554 — 1
1.0 2.41089 + 0 2.29129 4+ 0 1.35656 + 0 6.79148 — 2
1.1 3.01924 4 0 2.75254 + 0 1.09462 + 0 —2.02873 — 2
1.2 3.69863 4+ 0 3.21944 4 0 7.56039 — 1 —1.46045 — 2
1.3 4.44678 + 0 3.67758 4 0 3.91913 — 1 1.04085 — 2
1.4 5.26054 4 0 4.11222 + 0 5.55434 — 2 1.52034 — 2
1.5 6.13588 + 0 4.50887 + 0 —2.07467 — 1 1.29918 — 3
1.6 7.06802 + O 4.85377 + 0 —3.67156 — 1 —1.11917 — 2
1.7 8.05139 4 0 5.13443 + O —4.13815 — 1 —9.67213 — 3
1.8 9.07977 4 0 5.34008 4 0 —3.58514 — 1 1.55354 — 3
1.9 1.01463 4 1 5.46205 4+ 0O —2.20434 — 1 9.62330 — 3
2.0 1.12436 + 1 5.49406 + O —6.51947 — 2 6.50298 — 3
2.1 1.23637 4+ 1 5.43250 + O 9.35338 — 2 —2.03792 — 3
2.2 1.34985 + 1 5.27657 4 0 2.12220 — 1 —8.19124 — 3
2.3 1.46391 4 1 5.02833 + 0 2.68832 — 1 —5.06774 — 3
2.4 1.57769 + 1 4.69273 + 0 2.57171 — 1 1.94735 — 3
2.5 1.69026 + 1 4.27721 + 0 1.86697 — 1 4.94597 — 3
2.6 1.80072 + 1 3.79179 4+ 0 7.90086 — 2 5.04030 — 3
2.7 1.90816 + 1 3.24856 + 0 —3.78705 — 2 —7.03146 — 4
2.8 2.01167 4- 1 2.66139 4~ 0 —1.36199 — 1 —6.15552 — 3
2.9 2.11036 4+ 1 2.04550 -+ 0 —1.94874 — 1 —1.13042 — 3
3.0 2.20337 4+ 1 1.41675 + 0 —-2.03218 — 1 1.09442 — 3

N=2 n=1

x c=1 ¢ =2 c=35 c=10

0.1 3.01525 — 2 3.18266 — 2 4.36114 — 2 1.10168 — 1
0.2 1.63412 — 1 1.71721 — 1 2.27802 — 1 5.09403 — 1
0.3 4.17552 — 1 4.35481 — 1 5.46215 — 1 9.75159 — 1
0.4 7.63468 — 1 7.87547 — 1 9.08386 — 1 1.10096 + 0
0.5 1.12468 + 0 1.14274 + 0O 1.16775 + 0 6.37139 — 1
3.6 1.37439 + 0 1.36734 + 0 1.16137 + 0 —2.87398 — 1
0.7 1.33292 + 0 1.28261 + 0O 7.56169 — 1 —1.22293 + 0
0.8 7.66020 — 1 6.71043 — 1 —1.09012 — 1 —1.69212 4 0
0.9 —6.15776 — 1 —7.14755 — 1 —1.39595 + O —1.50113 4+ 0
1.0 —3.15683 + O —3.14077 + 0 —2.96182 + 0O —8.45332 — 1
1.1 —7.25498 4+ 0 —6.87847 + 0 —4.57844 4 0 —1.47679 — 1
1.2 —1.33591 + 1 —1.21904 + 1 —5.97349 + 0 2.35668 — 1
1.3 —2.19659 + 1 —1.93150 4+ 1 —6.88402 + 0 2.24248 — 1
1.4 —3.36151 4+ 1 —2.84518 4+ 1 —7.11308 + 0 3.10851 — 3
1.5 —4.88847 4+ 1 —3.97466 + 1 —6.57336 + 0 —1.65861 — 1
1.6 —6.83847 + 1 —5.32791 + 1 —5.31243 + 0 —1.46461 — 1
1.7 —9.27502 4+ 1 —6.90514 + 1 —3.50808 + 0 2.53438 — 3
1.8 —1.22634 4 2 —8.69800 4+ 1 —1.43922 4+ 0 1.23063 — 1
1.9 —1.58698 + 2 —1.06891 + 2 5.66677 — 1 1.16626 — 1
2.0 —2.01606 + 2 —1.28518 + 2 2.19548 4 0 3.46739 — 3
2.1 —2.52012 + 2 —1.51503 + 2 3.20680 + 0 —9.50870 — 2
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TasrLE II — Continued

N=2 n=1
x c=1 ¢ =2 c=35 ¢ =10
2.2 —3.10555 + 2 —1.75404 + 2 3.47937 4+ 0 —1.00215 — 1
2.3 —3.77844 + 2 —1.99703 + 2 3.03214 4+ 0 —1.01271 — 2
2.4 —4.54453 + 2 —2.23824 + 2 2.01698 + 0 7.86142 — 2
2.5 —5.40910 + 2 —2.47136 + 2 6.84586 — 1 6.25620 — 2
2.6 —6.37687 4 2 —2.68987 + 2 —6.69192 — 1 1.86542 — 2
2.7 —7.45191 + 2 —2.88715 + 2 —1.76387 + 0 —2.83514 — 2
2.8 —8.63756 + 2 —3.05673 4- 2 —-2.39029 4 0 —8.09642 — 2
2.9 —9.93633 + 2 —3.19263 + 2 —2.45263 + 0 —6.05693 — 3
3.0 —1.13498 + 3 —3.28923 + 2 —1.97549 + 0 4.94337 — 2

N=2 n=2
x c=1 c=2 c=25 ¢ =10
0.1 6.92988 — 2 7.12673 — 2 8.51196 — 2 1.31062 — 1
0.2 3.52496 — 1 3.60980 — 1 4.18221 — 1 5.67604 — 1
0.3 8.01544 — 1 8.14659 — 1 8.93117 — 1 9.45356 — 1
0.4 1.20746 + 0 1.21237 + 0 1.21221 + 0 7.67342 — 1
0.5 1.27474 + 0 1.25311 + 0 1.05255 4 0 —3.76902 — 2
0.6 7.57995 — 1 7.02242 — 1 2.84685 — 1 —9.13196 — 1
0.7 —3.27092 — 1 —3.94312 — 1 —8.22806 — 1 —1.05173 + 0
0.8 —1.41364 + 0 —1.43709 + 0 —1.49256 4 0 —7.12440 — 2
0.9 —1.01239 + 0 —9.55456 — 1 —4.82515 — 1 1.57998 4 0
1.0 3.74003 4+ 0 3.73507 + O 3.69332 + 0 2.86776 + 0
1.1 1.76108 + 1 1.68770 + 1 1.23963 + 1 2.91426 + 0
1.2 4.78738 + 1 4.45904 + 1 2.64247 + 1 1.66265 4 O
1.3 1.04979 + 2 9.51393 + 1 4.56130 + 1 —6.78936 — 2
1.4 2.03280 + 2 1.79119 + 2 6.85921 4 1 —1.18788 + 0
1.5 3.61809 + 2 3.09537 + 2 9.27854 + 1 —1.12986 + 0
1.6 6.05086 + 2 5.01768 + 2 1.14715 4+ 2 —2.05881 — 1
1.7 9.63954 + 2 7.73357 + 2 1.30638 + 2 7.08003 — 1
1.8 1.47641 + 3 1.14368 + 3 1.36797 + 2 8.79453 — 1
1.9 2.18846 + 3 1.63343 4+ 3 1.31147 4 2 3.17527 — 1
2.0 3.15489 4 3 2.26396 + 3 1.12984 + 2 —4.11104 — 1
2.1 4.44006 4+ 3 3.05647 + 3 8.37540 + 1 —7.13268 — 1
2.2 6.11858 + 3 4.03107 + 3 4.68923 + 1 —3.71699 — 1
2.3 8.27598 + 3 5.20576 + 3 7.34200 + 0 2.40288 — 1
2.4 1.10092 + 4 6.59547 + 3 —2.92519 + 1 6.17233 — 1
2.5 1.44270 + 4 8.21064 4+ 3 —5.75607 + 1 2.78319 — 1
2.6 1.86502 + 4 1.005665 + 4 —7.35509 4+ 1 —1.46009 — 1
2.7 2.38122 + 4 1.21320 + 4 —7.52754 + 1 —2.33031 — 1
2.8 3.00582 + 4 1.44287 + 4 —6.32751 + 1 —4.05877 - 1
2.9 3.75458 + 4 1.69309 4 4 —4.05587 + 1 1.20902 — 2
3.0 4.64442 4- 4 1.96136 4 4 —1.18748 + 1 4.27288 — 1

N=2 n=3
x c=1 c=2 c=3 c=10
0.1 1.26968 — 1 1.290109 — 1 1.44081 — 1 1.94166 — 1
0.2 5.91772 — 1 5.99200 — 1 6.48662 — 1 7.75163 — 1
0.3 1.13308 + 0 1.13787 4+ 0 1.15991 + O 1.06828 + 0
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TaBLE IT — Continued

N=2 n=3

x ¢c=1 c=2 c=35 ¢ =10

0.4 1.22242 4 0 1.20735 + 0 1.08268 + 0 4.42410 — 1
0.5 5.02125 — 1 4.61442 — 1 1.72834 — 1 —7.08002 — 1
0.6 —7.28650 — 1 —7.67417 — 1 —9.99672 — 1 —1.12281 4+ 0
0.7 —1.3499%4 + 0 —1.33947 4 O —1.20442 4 0 —6.35200 — 2
0.8 —1.55815 — 1 —0.78895 — 2 3.13440 — 1 1.38983 + 0
0.9 1.72855 4+ 0 1.73119 + 0 1.69507 + 0 6.83673 — 1
1.0 —4.24197 + 0 —4.23990 + 0 —4.22216 + 0O —4.05639 + 0
1.1 —4.29825 4+ 1 —4.14973 + 1 —3.22563 + 1 —1.17483 + 1
1.2 —1.69966 + 2 —1.60436 + 2 —1.05765 + 2 —1.81766 + 1
1.3 —4.92189 4 2 —4.54612 4 2 —2.55016 + 2 —1.86221 + 1
1.4 —1.19761 4 3 —1.08177 + 3 —5.12503 + 2 —1.15388 4- 1
1.5 —2.59483 + 3 —2.28970 4+ 3 —9.05339 4 2 —3.41475 — 1
1.6 —5.16494 + 3 —4.44652 + 3 —1.44608 + 3 8.52760 + O
1.7 —9.62735 4 3 —8.07479 + 3 —2.12354 + 3 1.01259 4 1
1.8 —1.70216 + 4 —1.38880 + 4 —2.89670 + 3 4.31901 + O
1.9 —2.88067 + 4 —2.28281 + 4 —3.69313 + 3 —3.63918 4 0
2.0 —4.69805 4 4 —3.61016 4 4 —4.41450 + 3 —7.22580 + 0
2.1 —7.42193 + 4 —5.52126 4+ 4 —4.94883 + 3 —5.31249 4+ 0O
2.2 —1.14040 4+ 5 —8.19885 - 4 —5.18833 4+ 3 8.57079 — 1
2.3 —1.70988 - 5 —1.18598 + 5 —5.05014 + 3 5.14940 + 0
2.4 —2.50841 4 5 —1.67557 + 5 —4.49592 + 3 5.60742 4+ 0
2.5 —3.60853 + 5 —2.31714 + 5 —3.54624 + 3 5.87060 — 1
2.6 —5.10005 + 5 —3.14232 4+ 5 —2.28432 + 3 —4.18090 4+ 0
2.7 —7.09289 + 5 —4.18531 4+ 5 —8.50402 4 2 —2.39443 + 0
2.8 —9.72020 + 5 —5.48229 4+ 5 5.76599 + 2 —1.90159 4 0
2.9 —1.31415 4 6 —7.07072 + 5 1.80814 + 3 6.87950 — 1
3.0 —1.75464 4 6 —8.98762 + 5 2.67521 + 3 4.80391 + O

I am indebted to Mrs. E. Sonnenblick for programming and carrying
out the computations reported here.

APPENDIX A

A Perturbation Scheme

We treat briefly the following problem. Eigenfunctions u, and eigen-
values A\, of an operator L are assumed known. That is, we have

Lu, + Mu. = 0, n=0,1,2,.... (114)

1t is desired to find eigenfunctions ¢, and eigenvalues x, of the perturbed
equation

(L — eM)y 4 x¢ = 0. (115)
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Tt is assumed that the u, satisfy the boundary condition to be imposed
on the ¢¥’s and that the u, are complete in some appropriate sense. We
proceed further in a purely formal manner.

Substitute the series

\bn = Un + Z=:15ij (116)
Xn = M+ 2 €a; (117)

=

into (115). Here in the notation we have suppressed the dependence of
the @, and a; on n. By equating to zero the coefficients of distinet powers
of ¢, we find

Lu, + Nu, =0 (118)
7
LQJ’ + )\an = MQj—l - IZ; aij—k ) (]19)
ji=1,2, ...

where we define Q, = u, .

Now it frequently happens that the operator M is such that Muw, can
be expressed as a finite linear combination of the ’s with constant coef-
ficients. We assume this to be the case and write

l
Mun = Z 'Yniun ia
=T (120)
n=0,1,2,....
Here « is a positive integer, [ a nonnegative integer, and the superscript
7 on v is not an exponent, but a label.

If the u, are linearly independent, formal solution of system (119)
is now straightforward. Set

il ,
2 Akjun+ka

Qi = ‘
= —71
i=12 ....

The A’s of course depend on n, but for simplicity we have suppressed
this fact in the notation. Again the superseript is a label, not an ex-
ponent. Substitute (121) and (120) into (119). Setting the coefficient
of u, equal to zero in the resultant expression yields
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l
m=1Z;A4fH%Mﬁ i=12.... (122)

Requiring the coefficient of %,4me to vanish gives

7 1
7~k —1 k
Z a/kAm - Z 14m—kJ Yn+(m—k)a
k=1 k=—1

m= —jl,—jl+1, ..., 5L j=12 ...

()\n—{-ma - An)Amj

Il

(123)

Here we have adopted the conventions

if either
|[E| > jl, or ak < —n, or k=0 and j =1,2, ...
Al =1, A4'=0, k#0,a =0.

Equations (122) and (123) together with these conventions permit
successive determination of the a’s and A’s. The case I = 1 occurs fre-
quently. The first few coefficients for this case are given below where
we have set

B = azi — N7

0

ay = Yn
A,_ll = _h_a'yn_l
All = '—ha7n1
1 —1 —1 1
dg = — [ha')’n Yn+a + h—a’)’n Yn—a ]

A—22 = h—2 ah— a’Ynhl'Yn— a—l

AL = (hea)yn =¥ 4 Yne]
A" = (ha)ya' =7’ + Vnia'l
A22 = h2aha’)’nl’Yn+al
as = (ha)¥nVnpa (=7a" + Yat1) + (hea)a Vaca (—=¥n" + Voa')
halA (12" — Yatra') + @AY — vajea A7
heofA_L (10" — Vo)) + @A — vasa A

@y = A137ﬂ+a_1 + A——la'Yn—al-

o
Il Il

More generally for this case one finds
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. . ] :!:1
; .
A:l:f = (—1)J lclll hika“/n:l;(lc—l)a ’ 7=12,...
=1
j -1 0 .
Apiy’ = Agion kZl hiralar — Yuika ), J=23 ...

Apny’ = Ay’ :Zjh:tla (124)
X [a; + h:!:(l+1)a7nj:(l+l)a:‘:17n;{:la:tl
+ (@1 = Yngta) kiZl: hiral@s — Ynira)),
7=234,....
APPENDIX B

Lvaluation of an Integral

We establish here the formula (43). Let

Pyn(z) = f T (2y) /Ty T () dy
(125)

1
=j(; KN(xy)TN,n(y)dil/

on using the notation of (21). Then
d d
[ E v u it @ -0 |raw
1
= [ T @K @) + 2Ky ) + (@ = OKaldldy (o

1
= [ Tea@l=2 — 1+ N 4

— 2)Ky(zy) + 229Ky (xy))dy

by (23). Here primes denote differentiation with respect to the argu-
ment indicated.
Now

d e dTw,.(y) (i - N > =
@ (1 y) dy + 7 + x) Txn(y) =0
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with x given by (26). Multiply this equation by Ky(ay) and integrate
from zero to one. There results

1 1 __ A2
0= f Kny(zy) [i (1 -9 4T + (4 y2N + x) TN.n:l dy

dy
—f TNn(y)[ (1 - J) KN(ry) +( )KN(:UJ)]

where we have integrated by parts and made use of the fact that
Ky(0) = T'5.(0) = 0. Carrying out the indicated differentiation, we
find

0= fo Ty (y) [(1 — )K" (xy) — 2zyKy' (zy)

1
—/; Trya(=2 — 1 + N° 4+ 25 — x)Kn(zy)

+ 2ayKy' (zy)1dy.

Equations (126) and (127) give

[f£+mi+f—@+%+g@+%+%ﬂmubo
Az T “dx 2 2 * '

The only solution of this equation that vanishes for 2 = 0 is

I I vion41 (%)

FN,'n(x) =" _\/5

Using (125), we then have

/c'l]mi"/t1 = f In(zy) VayTya(y)dy. (128)

To determine &, we have only to compare the coefficients of 2" **"**

on both sides of (128). In this way we find

k
2Nt HD (N + 2n + 2)

- (—l)n fl yN+2n+%TN (y)dy
VT (N + n + D)nl Jo " '

(129)
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The integral here can be evaluated by using (27), (28) and known
properties of the Jacobi polynomials. We have

1
fo YTy A () dy

-1 p1
_ (n + N) j(; D 0 () %) dy

n
-1 5l

— o~ Wn) <" + N) f (1= w)"(1 = w)" P, (w)du.
n 1

Now the coefficient of %" in (1 — %)™ is (—1)" and the coefficient of
w® in Pa0(w) is (2" : N ) / 2" [Ref. 8, Vol. TI, p. 169, Eq. (5)],

S0

(1 _ u)n — _ﬂz_"_ P (N.ﬁ)(u) + SA'P-(N'O)( )
<2n + N> n —~ i u).
n

It follows, then, that

/11 (1 — w1 — )P, """ (w)du

- <;n 2"]2\:> f (1 = WP (W) Pu™” (w) du

(_1)n2n+N+l
<2":N> (2n + N + 1)

where we have used the orthogonality of the Jacobi polynomials and
the known normalization integral [see Ref. 5, page 68, Eq. (4.3.3), for
example]. Combining these results, (129) yields

= n+ N\
={

and together with (128) this establishes (43).
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A Note on a Signal Recovery Problem
By I. W. SANDBERG
(Manusecript received July 17, 1964)

In a recent study! of the recoverability of square-integrable band-
limited signals that are distorted by a frequency-selective time-varying
nonlinear system and subsequently are bandlimited to the original bands,
certain assumptions were made concerning three of the four functions
of frequency that characterize the linear time-invariant part of the sys-
tem. These assumptions, which are stated in Section 3.4 of Ref. 1, are
satisfied in most, but not all, cases of engineering interest. The purpose
of this note is to report on an extension of Theorem I of Ref. 1 that covers
cases in which the conditions of Section 3.4 of Ref. 1 are not met. More
specifically, a proof of the following result is outlined.

Theorem: Let Lo and B(Q) be as defined in Section I of Ref. 1. Let A,
B, C, D, o ¢¥(-,-), and P be as defined in Sections 3.1, 3.2 and 3.3 of
Ref. 1, and, for any f ¢ £.z, let ¥[f] denote the function with values

YAt (—o <t < o).
With @* the complement of € with respect to (— «,« ), and

E(w) = D(w) for weQ
=1 for e Q¥
let
esssup | [B(C — 1) — PAB]™| < =,

—ool w0
and .
(1 — &) esssup | B[E(C — 1) — PAB™"| < 1.

—o< w0
Let s3 be an arbitrary element of ®&(2). Then B(Q) contains a unique
element s; , and £2, contains unique elements w, v, and s; such that

v = AS] + C’w, 8o = DSI + B’LU,

83 = Pssy, and v = Y[w]
[i.e., such that (1), (2), (3), and (4) of Ref. 1 are satisfied]. Further-
more, there exists a positive constant %, that depends only on A, B, C,
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D, and «, such that if
7 = A& + Cw, 5, = D& + Bw,
§; = Ps,, and 7 = Y]
where 1, 7, S, € L2z and §;, §; ¢ ®(2), then

s =&l =k

83 — §3 ”

Outline of Proof:

Let the mapping of £s¢ into itself represented in the frequency domain
by multiplication by E(w) be denoted by E, and let () denote the
Banach space of two-vector-valued functions of ¢ belonging to

L2 X B(Q),
with norm |- ]|’ defined by
© 0 3
= ([inoras [Cinora), 5=[f]eenx oo,

Assume that the hypotheses of the theorem are satisfied. To prove the
first part of the theorem, it clearly suffices to show that ®&(Q) contains
a unique element s; , and £, contains a unique element w, such that

Y[w] = As, + Cuw, (1)

and

I

Ds; + PBuw, (2)

in which P is defined in Section 3.2 of Ref. 1. For this purpose, we may
replace D in (2) by E and write (1) and (2) as

L1 Bl e

in which $[w] = ¢[w] — w, ¢ is an arbitrary positive constant, and I is
the identity operator.
The operator

83

1= &

is a bounded mapping of X(Q) into itself. In view of the first inequality
of the theorem, it possesses an inverse on %($), and L™ can be repre-
sented in the frequency domain by the matrix-valued function

Sy 1 E "y
Le) = o=y = PAB[—;“PB e - 1)]'
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In particular, (3) can be written as

w —1 w —1 0
[ )= o ) ®

in which N is the operator defined on X(Q) by

w4} - [feo.

The second inequality of the theorem implies that there exists a posi-
tive number ¢, such that L'N is a contraction mapping of &(Q) into
itself for all { > ¢o. In fact, using Parseval’s identity and the frequency
domain representation of L™, we find that for all f, g ¢ K(2Q),

| L7'Nf — L7'Nyg ||' < max (¢, ¢) | Nf — Ng [}’
S (I—amax(a,e) | f—gll
in which
€1 = ess sup | E[E(C — 1) — PAB]™|,

and

I

ce = { ‘esssup | PBIE(C — 1) — PAB]™|.
In view of the contraction-mapping fixed-point theorem, this establishes
the existence and uniqueness of the functions w and s; (as well as the
important fact that these functions can be determined by an iteration
procedure that converges at a geometric rate).

The second part of the theorem follows directly from ( 5) the relation

S I [0
[f_lgl] =L N[S"_1§1:| +1L [53]’

and the fact that L™'N is a contraction for { > &.
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Detection of Weakly Modulated Light

at Microwave Frequencies

By M. G. COHEN and E. I. GORDON
(Manusecript received August 10, 1964)

Studies of the photoelastic, electro-optic or magnetic-optic properties
of materials at high frequencies often require the detection of microwave
modulated light. In many cases, the modulation depth is sufficiently
small that quantitative measurement becomes difficult if not impossible.
The purpose of this brief is to describe a homodyne-superheterodyne
technique which allows measurement of modulation depths of consider-
ably less than 105

At such small modulation depths, the light-associated shot noise can
be large compared to the modulation signal. Under these circumstances,
it is customary to use synchronous detection techniques following a
sensitive superheterodyne receiver and to chop the modulation signal at
some low frequency. This requires extremely good RF shielding between
the modulation source and the receiver to avoid pickup. The variations
in amplitude and phase of the pickup produce an unsteady output signal.
Alternately, one can chop both the light and the modulation and per-
form the synchronous detection at a sum or difference frequency. In
any case, the limiting sensitivity is determined by noise originating in the
photodetector and the receiver.

The technique described here is considerably simpler and more sensi-
tive. Fig. 1 indicates the usual synchronous detection scheme using a
photodetector feeding a microwave receiver with a 30-mcs IF strip. A
reference signal for the synchronous detector is derived from the light
chopping wheel. The added feature is the injection into the line incident
on the receiver of a small fraction of the CW modulating signal, taken
from the input line to the interaction region or modulator and passed
through a variable attenuator and phase shifter. The amplitude of the
injected signal is kept at least 30 db larger than that of the pickup. Thus
the amplitude and phase of the total injected signal, including pickup,
are essentially independent of fluctuations in the phase and amplitude
of the pickup. The mixer and IF strip are operated in their linear regions.
Thus the signal output v, from the final stage of the IF amplifier, which
is an envelope detector, can be written

Vo = lvt(l + f‘) + 5m + ﬁs + Uy I time average - (1)
Here v; is the injected signal and T' < < < 1 represents that part of the
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Fig. 1 — Block diagram of the homodyne-superheterodyne detection scheme.

injected signal which, because of imperfect isolation, is incident on the
photodetector and is reflected with a component at the chopping fre-
quency (because the photodetector RF impedance is dependent on the
light intensity as, for example, in a photodiode) #,, is the modulation
signal from the light, 7, is the light-associated shot noise from the
photodetector and v, is the receiver equivalent input noise. The tilde
over some of the quantities indicates that they are chopped at the refer-
ence frequency of the synchronous detector. By far the largest signal is
v, 80 ¥, can be written to a very good approximation

vo=|vi|[l +2ReTl 4 2(|5nl/|v:|) cos § + terms of order

EAVIEA S EAVIEE

=|v;| (1 +2Rel) + 2]|0,| cos 8 + terms of order
|8 [*/] 0i |, [or /] 0c] ete.

in which 6 is the phase angle between #,, and »;, and Re indicates the
real part. All other cross terms have a time average of zero; the only
signals which are coherently related are v; and #,, . Thus all noise terms
can be made arbitrarily small compared to | #,, | by making | v; | large.
The contribution from the chopped term containing I' can be made
arbitrarily small by using more isolation in the line immediately follow-

* and higher]

&)
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ing the photodetector. In the case of a photomultiplier, this is not nor-
mally necessary. Even when these terms are not completely negligible
compared to ., cos 6, their effect can be eliminated by varying the phase
of the injected signal so that cos 8 takes on the value 4=1. The only out-
put which depends on 6 is the desired modulation signal. Thus one need
only take the algebraic difference between the extreme deflections of the
synchronous detector as ¢ is varied. The fact that there is a synchronous
detector deflection which depends on the phase of the injected signal is
an unambiguous indication of microwave modulation on the light.

All aspects of (2) have been verified in the course of photoelastic and
electro-optic modulation experiments above 150 me by placing variable
attenuators in various parts of the circuit to see if the variation of each
term had the proper dependence. Modulation depths of 10-¢ could be
easily and accurately determined with integration times following the
synchronous detector of less than one second. No special shielding was
required. It should also be noted that the output of the synchronous
detector is proportional to the RT amplitude rather than the squarc of
the amplitude as in most other radiometer detection schemes. Thus, the
output is proportional to the amplitude of the light modulation rather
than its square.

An Improved Error Bound
for Gaussian Channels

By A. D. WYNER

(Manuscript received August 18, 1964)

I. INTRODUCTION

The problem considered here is that of coding for the time-discrete
amplitude-continuous memoryless channel with additive Gaussian noise,
the code words lying on the surface of an n-dimensional hypersphere
with center at the origin and radius \/nP.

We define a code as a set of M real n-vectors & = (x1, X2, * -+, Zs)
satisfying the (‘“‘energy””) constraint, ‘

kz_lxk2=nP. (1)

The transmission rate R is defined by M = "%, so that R = (1/n) In M.
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The code words are transmitted through a channel in which they are

corrupted by noise, the received word 4 = (y1, y2, - -+, ¥») being the

vector sum of the transmitted word Z and a noise vector Z, i.e.,

117: (!/1,212; )yn) = (9)1+Z1,x2+22, 7xn+zn) =§7+2 (2)
The components of the noise vector z.(k = 1,2, --- , n) are assumed

to be statistically independent Gaussian random variables with mean
zero and variance N.

The signal “energy” is z‘; i = nP, and the expected noise
k=
“energy” is E[D_x 2:7] = nN, so that the signal-to-noise energy ratio is
P/N. This quantity is also the signal-to-noise “average power.”

It is the task of the decoder to examine the received vector 4 and de-
cide which code word & was actually transmitted. If P,; is the probability
that the decoder makes an incorrect choice when code word ¢ is trans-
mitted (z = 1,2,3, --- , M), and if each of the 2 code words is equally
likely to be transmitted, then the over-all probability of a decoding error
is

1 M

P, = Wi ; P.;. (3)
It is not hard to show that the decoding scheme which minimizes P, for
a given code is the minimum-distance decoder, where the decoder selects
that code word which has smallest Euclidean distance from the received
vector and announces that word as the one which was transmitted.
Thus if § = (y1,y2, -, ya) is the received vector, the decoder an-
nounces that code word Z which minimizes (with respect to &)

d(z,y) = kZ{ (2 — y)* = ; o+ ; v — 2 Fk_‘, Tk -

Since Y v’ = nP, d(&,g) is minimized when Y.z is maximized.
Hence minimum-distance decoding is equivalent to selection of that
code word # which minimizes the angle in n space a(Z,7) between Z and
7, where

; TrYx
(; xzf)*(ZkZ y;f)*'

The behavior of codes for this channel has been investigated in detail
by Shannon,"* who has shown the following:

(4)

cos a(z,j) =
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Fundamental Coding Theorem: Let R be any number such that
R < C =3nl + (P/N)].

For each n, there exists an n-dimensional code with rate R(M = ") such
that the error probability is

Pe — G—WE(R)+o(n), (5>

where the exponent E(R) (called the “reliability’) is positive when R < C
(so that P, = 0).
Shannon? also obtained estimates of the best possible exponent
E(R) = lim — (1/n) In P,.
In this note we establish the following upper bound on E(R) (i.e., a
lower bound on P,):
P o
<

E(R) £ e (6)
For small rates R, (6) is sharper than the bounds of Ref. 2. Inequality
(6) is plotted together with the estimates on E(R) in Ref. 2 in Fig. 1.
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R

Fig. 1 — Newb upper bound on E(R) vs R for P/N = 4 (solid line). The bounds
on E(R) of Ref. 2 are in dotted lines. E(R) lies in the shaded area.
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II. DERIVATION OF THE BOUND

Consider an n-dimensional code with M code words &, &2, - -+, T -
Let 6 be the minimum angle between pairs of code words a(Z;, &;)
(z £ 7). Denote by 6,(M) the largest possible minimum angle 6 in an n-
dimensional code with M/ code words, and by

so(M) = 2+/nP sin [6,(M)/2),

the largest possible minimum distance between pairs of code words in an
n-dimensional code with M code words. Paralleling an argument of
Shannon [Ref. 2, pp. 647-648] it is not hard to show that the error prob-

ability satisfies
q) (_ nP . an(M/2)), e

> el

[N

where

1 z 2
d(x) = :/7_#[_ e du

is the cumulative error function.
We now employ the following result of Rankin® to obtain an upper
bound on 6,():

=i (" ; 1) sin @ tan 8
M <

= B
2r (g) [o (sin )" *(cos ¢ — cos B)dep

; (8)

where 8 = sin™' /2 sin (6/2), and ¢ is the minimum angle in an n-di-
mensional code with M code words. Taking logarithms of (8) yields

("_1>
1 T
1 T . 1 2
R="InM =-In—=sin8tanf + - In———~
n 2 n n
r(5) (©)

8
- 7% In f (sin )" *(cos ¢ — cos B)de.
0

S

It is shown in the appendix that for large n we may approximate the
upper bound of (9) by —In /2 sin (8/2), yielding

. 6 1
<< — 1
smz_\/2e ) (10)
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Since for large n, a code with M /2 points has the same rate as one
with M points (10) and (7) yield (for large n)

bz (og/T) -
e = 2 N \/Q .
Using the well known asymptotic form of the cumulative error func-
tion ®(—x) ~ (1/zv/2r)e =" (large =) we obtain
P

. 1 _oR
< __
E(R) _},l-»nolo_nlnpe =Sl - (12)

APPENDIX

‘We must show that the limit of the right-hand member of inequality
(9) as n tends to infinity is — In /2 sin (8/2). The first two terms of
this quantity both tend to zero as n becomes large, so that we must
show the following:

Let
8
I, = f sin" ¢ (cos ¢ — cos B)de,
0
then
B = lim%lnI,. = In sin 8.
Proof:

8
(a) In £ f sin" 2B (cos ¢ — cos B)dp = sin" 8 [sin B8 — B cos 8],
0

so that

llnI,. <™= 2lnsinB+lln[sinﬁ—ﬁcost}]i»lnsinﬁ.
n n n

8
(b) I, = f sin" % ¢ (cos ¢ — cos B)de
f—(B/n)
(13)
8\
= sin™’ (B — ~>f (cos ¢ — cos B)de.
n/ Joe—@rn)

Now
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8
I=f (COS¢—cosﬂ)d¢=sin6—Sin<ﬂ B)—écosﬁ
8 n

—(8/n) n
=gsinfB — sinf cosg + cosﬁsing ——g cos 8.

Ixpanding sin (8/n) and cos (8/n) into power series in (8/n), we ob-
tain

. g 1 8 .
I =sing [27»2 + 0 (7?)] = 53 5in Bl1 + o(1)].
Thus

1 1.8 1 n
7ElnI—ﬁln2—1%23111,6+7—bln(1+ o(1)) = 0.

From (13) we have

1lnI,.gn_-2lnsin< —[j)-l—llnl—"—»lnsinﬁ.
n n n n
Therefore E = In sin 8, which completes the proof.

REFERENCES

1. Shannon, C. E., A Mathematical Theory of Communication, B.S.T.J., 27,
July, 1948, pp. 379-424.

2. Shannon, C. Ii., Probability of Error for Optimal Codes in a Gaussian Channel
B.S.T.J., 38, May, 1959, pp. 611-656.

3. Rankin, R. A., The Closest Packing of Spherieal Caps in n Dimensions, Proec.
Glasgow Math. Soc., 2, 1955, pp. 139-144.






