
PRODUCT DESCRIPTION

•1111~ ...
BRITTON LEE, INCORPORATED

IDM
INTELLIGENT DATABASE MACHINE

PRODUCT DESCRIPTION

Incorporated in 1978, Britton Lee
brought together the special talents of
relationa l database software experts,
engineers and software innovators to
produce a high performance database
computer which would function as an
attached processor for any host or
hosts. The product concept specified
that this database computer would:

• Put non-data processing managers
directly in touch with the vital infor
mation stored in their computers.

Preface/ Table of Contents

• Serve as an invaluable productivity
tool for the DP professional who was
overburdened with information
management tasks.

• Provide the flexibility necessary to
easily accommodate expansion in
host hardware as well as changes in
application software.

The Intelligent Database Machine
(IDM), our back-end relational
database management computer, is
Britton Lee's solution to the information
management challenge of the '80s.

1. The Intelligent Database Machine

Implemented in special-purpose hardware which executes its relational
DBMS software, the Intelligent Database Machine (IDM) offloads its mini,
micro, or mainframe host(s) by performing all of the relational DBMS
functions.

2. IDM Hardware Architecture

2.

6.

The design of the IDM is modular with each hardware module dedicated to
performing a specific function. Its chassis can be popu lated over time to
accommodate increasing performance requirements, additional users and
expanding databases. Its hardware design tolerates a variety of possible
hardware error conditions and includes self diagnostic and recovery
capabilities.

3. Software Architecture 10.

Since the IDM is fully programmed to perform all the relational DBMS
functions, host so ftware is required only to translate the user's DBMS request
to IDM format and pass it to the IDM. The IDM 's relational DBMS software
includes all of the functionality required of a DBMS as well as some unique
features. Add itiona lly, OBA functions faci litate optimizing performance as
w ell as estab lishing access pri vileges and setting up a contro lled DBMS
environment.

4. IDM Back-up and Recov ery 23.

The IDM provides facilities to protect and ensure the integrity of stored data
based upon its transaction log and its backup and recovery capabilities. Its
transaction management feature maintains database consistency and its
recovery procedures use the transaction log to restore the data in the
database to a consistent state in case of failure.

5. Appendices

This section summarizes the IDM specifications, IDL commands, and IDM
system re lations.

26.

1. The Intelligent Database Machine

The Intelligent Database Machine
(IDM) is a fully relational database
management computing system.
Implemented with specialized hard
ware to perform its relational DBMS
functions, the IDM is situated between
host and disks where it offloads the
host of all burdensome DBMS tasks.
Used with intelligent terminals, the IDM
can function as a stand-alone database
computer or as a back-end database
processor seNing one or more mini,
micro, or mainframe CPUs.

WITH SOFTWARE DBMS

D
D

D
• • •

WITH THE IDM

D

D

D
• • •

CPU

1 .1 Advantages of a specialized back-end processor

Designed for high-speed 1003

execution of its relational
DBMS software, the Intel- 75
li gent Database M achine w

('.)

o ffers the user significant ~
50

benefits: ~
a_
0

5 10

WITH RELATIONAL
DBMS SOFTWARE

WITH THE RS-310 BACKEND
DATABASE MACHINE

15 20

NUMBER OF USERS

It o ffloads the host CPU of the
resource-consuming database man
agement tasks.

2

DATABASE DISKS

IDM

DATABASE DISKS

IDM Facilities Software

'40

G
w
~ 30
w
2
i=
~ 20
z
0
a_

~ 10
a:

WITH
RELATIONAL DBMS

SOFTWARE

WITH RS-310

3

NUMBER OF USERS

4

It performs DBMS functions at high
speed because the hardware was spe
cifically designed to execute its rela
tional DBMS software.

The Britton Lee
Intelligent Database Machine

PERSONAL
COMPUTERS

OR
MICROCOMPU1ERS

MAINFRAME COMPUTERS
OR

LARGE MINICOMPUTERS

DATABASE
PROCESSOR

It accommodates on-going changes in
the host environment since it can be
used with more than 100 CPUs of any
type and with up to I 6 SMD disks of
most makes and capacities.

With the Intelligent Database Machine,
the user has a centralized database
resource that can be shared by a
variety of users from many different
hosts.

USER

PROGRAMMER

MEMORY
Integrated DBMS and OS

Host 1/0 Buffer
Disk Cache

User Query Buffer

DISK
CONTROLLER

DISK(S)

HOST COMPUTER

Query Language

Report Writer

DATABASE
ACCELERATOR

TAPE
CONTROLLER

IDM '"

Relational Data Management

Transaction Management

Security

Translated Query =B Optimized Access Path Selection

RAM Cache for Disk Blocks

Concurrency Control Disks

Audit Logs

Data Entry

Other Applications

Precompilers

Run Time Library

Results
Drivers

Crash Recovery

Dump & Load of Data

Random Access File System

TAPE
DRIVE(S)

3

4

1 .2 DBMS Functions
Performed by the IDM

The Intelligent Database Machine in
corporates all of the basic functions re
quired of a complete database
management system. These functions
are summarized be low.

• Transaction management facilities
ensure data integrity.

• Protection features el iminate un
authorized access to information.

• Integrated Data Dictionary facilitates
keeping track of what information is
contained in the database.

• The non-procedural, high-level
query capabi lity makes it easy to
access and update information.

• Automatic concurrency contro l per
mits mul ~ipl e users to access and
update data in the sa me database
at the sa me time.

• Data administration facilities assist
the OBA in optimizing throughput
and in restructuring and expanding
databases

• Crash/Recovery features include
checkpointing and transaction
journaling

• Data independence minimizes the
effect on application programs
when changes are made to the
database

• Virtual tables permit different
"views" of the same data

• Dynamic indexing allows creation
or deletion of up to 2 5 1 indices per
relation with up to 15 fields per
index.

• The Stored Command facility pro
vides an IDM macro definition
capability so that repetitive DBMS
functions can be preprocessed and
stored in the IDM for high-speed
execution .

• The Mirrored Disk option provides
highly effective protection against
catastrophic media failures and
crashes by duplicating critical
databases on a redundant set of disk
drives.

1 .3 Benefits of the
Relational Data Model

The most logica l way to represent data
is with tables much like ledger sheets.
Tables (or relations) consist of a variable
number of rows (tuples) and a fixed
number of columns (attributes). Both
can be added or deleted as information
grows and changes. A relational data
base is simply a collection of related
tables. The example below illustrates
two of many tables (relations) which
might be in a Personnel database.

EMPLOYEES TABLE

LAST
NAME INITIALS SOC_SEC_ NUM

BROWN TJ 776-30-4839
SMITH RS 123-79-1122
JONES AM 397-75-2628
MILLER RJ (463-55-1129)

D EPARTMENTS TABLE

DEPT MAIL
NAME MGR_ss_NUM STOP

TOYS 123-22-9750 11
SPORTS (463-55-112~ 20
GARDEN 796-40-3724 77

START DEPT
SEX SALARY DATE NAME

F 4000 070380 GARDEN
M 1012 020175 SPORTS
M 2080 121678 TOYS
F 3010 101680 SPORTS

~

PHONE
EXT. QUOTA YTD

570 300,000 198,000
268 350,000 201,000
853 500,000 314,000

WHO IS THE SPORTS DEPARTMENT MANAGER?

Because relational data is viewed as
rows and columns of information,
databases are easy to implement
and easy to use. The relational data
base structure allows the user to or
ganize, reorganize and acces-s data
in a simple and direct manner. Im
plementation of the relational
DBMS application can proceed
quickly and without the com
plicated analysis associated with im
plementing pointer-based DBMS
systems. Inevitable future changes in
the database structure are easily ac
commodated by the IDM 's relational
database facilities.

Users need not be highly skilled data
processing professionals in order to
extract information from the database.
Note in the above illustration how
simple it is to logically correlate the
data in two different tables to find out
the name of the Sports Department
manager: The non-data processing end
user can interact with his data through
IDL, the IDM ad hoc query facility,
or through SOL, the high- level query
language developed by IBM. These
languages simplify spontaneous
inquiries into the database.

Since IDL and SOL are non-procedural
languages, the user need only concern
himself with what data he wants,
never with how the computer should
get it. Unlike procedural languages that
force the user to understand the com
puter, nonprocedural languages force
the computer to understand the user.
The freedom from having to contend
with the complexities of structural
database details results in produc-
tivity increases and improved
communication.

5

2. IDM Hardware

2 . 1 The IDM Accommodates Expansion

There are several configurations in the
Britton Lee family of database manage-
ment systems. They vary in performance
and database capacity All configura-
tions are upwardly and downwardly
compatible, and all machines are field
upgradable.

Our entry- level database system, the
500X, is designed for smaller applica
tions. The 500X has 2 Megabytes of
random access memory (RAM), 680
Megabytes of mirrored disk (two 340
Megabyte Winchester disk drives), a
500 M egabyte cartridge tape drive for
data backup, and a high-performance
tape controller. It is equipped with
Britton Lee's 500/I Database Processor
and standard disk contro ller. Expansion

!uanttonLee~

slots allow the user to configure the
500X with RS-232, IEEE-488, IBM block
multiplexer, or Ethernet loca l area
network (LAN) interfaces.

The 500XL is Britton Lee's intermediate
database solution. It comes standard
with the company's new SMDE disk
controller and 500/2 Processor, which

6

o ffers the user twice the performance
of the 500X The 500XL comes with
I .03 Gigabytes of mirrored disk (two
515 Megabyte Winchester disk drives),
a 500 Megabyte cartridge tape database
backup unit 3 M egabytes of main
memory, and Britton Lee's high
performance tape controller.

The 500XLE is Britton Lee's ultimate
database management solution. The
standard XLE comes with 2 SMDE disk
contro llers and 500/4 Processor, which
offers the user a 40 percent increase
in performance over the 500XL It
comes standard with 2.06 Gigabytes
of mirrored disks (four 515 Megabyte
Winchester disk drives), a 500 M egabyte
cartridge tape drive for information
arch iving, 4 M egabytes of main
memory, and Britton Lee's higher
performance tape controller. Like
the 500X and 500XL, the 500XLE offers
the flexibility of any mix of seria l 1/0,
IEEE-488, IBM block multiplexer or
Ethernet LAN interfaces.

The IDM is organized around a central
high-speed bus. The design is modular
with each module ded icated to per
forming a specia lized function . A
module is a single PC board that plugs
into the /OM bus. The base configura
tion includes the standard 7 card set.
The boards include a host interface
module, a database processor module,
a memory timing and control module,
2 memory modules, a disk controller
module and a high performance tape
controller. The modular design of the
/OM, with a function per board, con
tributes to the ease of maintenance by
permitting problem diagnosis on a per
board basis.

THE INTELLIGE NT DATABASE MACHINE

DATABASE
PROCESSOR

HOST
INTERFACE

Additional modules (boards) can be
added to the chassis to accommodate
more users, to increase disk storage
capacity or to optimize performance,
making the entire line field upgradable.

The IDM 500 products can be expanded
to include:
J. Up to 8 host interface modules that

will support more than JOO mini,
micro or mainframe hosts.

2. Up to 4 disk controllers to support
up to J6 SMD or SMDE disks of any
capacity

3. One tape controller to support
2 tape drives

4. Up to 6 megabytes of IDM memory
5. A database accelerator module that

will increase performance by a factor
of 2- JO times depending on the
DBMS operation being performed

In addition, Britton Lee offers packaged
systems complete with host interface
and user software including an inter
active query language, a report writer,
data entry facilities, and application
programmer facilities. At present, the
IDM system products are designed
for DEC VAX computers running VMS
or UNIX, AT&T Series 38 computers
running UNIX System\/, Apollo com
puters running Aegis, IBM System 370
computers running VM/SP, and PCs
supporting MS/PC-DOS.

DATABASE
ACCELERATOR

2.2 The IDM Supports a Multi-host Environment

The IDM and its host(s) communicate
via the IDM's host interface module
(board) . The host interface module ac
cepts commands from a host or hosts,
checks to ensure that all information
sent to and from the hosts has been
correctly transmitted and received,
coordinates retransmission in case of
error, and notifies the Database Pro
cessor that it is transferring the request
into IDM main memory for processing.

Host interface modules are available
with up to 64 RS-232 ports, 4 IEEE 488
channels, 4 Ethernet LANs or 4 IBM
block multiplexers.

The seria l host interface modules have
programmable baud rates of up to
J 9,200 baud.

HARDWARE ARCHITECTURE

HOST
INTERFACE

Modem control can be enabled or dis
abled by the host. The parallel host
interface module has a maximum data
capacity of J 70 Kbytes/second. In high
transaction rate environments, separate
parallel host interface modules can be
assigned to each host. This increases
parallelism-two hosts can commu
nicate with the IDM simultaneously In
addition, the Ethernet host interface
supporting the XNS (Xerox Network
Standard) protocol and the IBM block
multiplexer interfaces are also available.
The Ethernet interface is the IEEE 802.3
specification using the XNS protocol.
Britton Lee utilizes Sequence Packet
Protocol (SPP) as the communications
level in XNS.

DATABASE
ACCELERATOR

TAPE
CONTROLLER

7

2.3 The IDM Includes
Multiple Processors

HOST
INTERFACE

The Database Processor f DBP)
translates among different hosts' data
types, manages all system resources
and executes most of the software in
the system. It evaluates the /OM con
figuration when the /OM is turned on
and takes advantage of all ava ilab le
modules. A high performance DBP
option provides 60% higher process ing
throughput than the standard DBP
In addition, the optional Database
Accelerator can greatly enhance
throughput of either DBP

The Database Accelerator is a very high
speed processor with an instruction set
specifica lly designed to perform rela
tional database functions. Addition of
the Accelerator to the /OM can improve
throughput for a factor of 2 to 10
depending on the database opera
tion being performed. This 8 MIPS
processor can search memory far more
rapid ly than the DBP The Accelerator
and the /OM system software are
structured so that most of the time
consuming work is performed by the
Accelerator under the direction of
the Database Processor.

8

DATABASE
ACCELERATOR

2.4 IDM Cache Memory
Improves Throughput

DATABASE
PROCESSOR

HOST
INTER FACE

The /OM memory is used to hold system
information, its relational DBMS soft
ware, most frequently used database
pages, user work space and stored
commands. The amount of IDM
memory can be expanded to optimize
/OM throughput. The /OM can address
up to 6 megabytes of dynamic RAM
memory

TAPE
CONTROLLER

The IDM memory subsystem consists
of a M emory Timing and Control
module and at least one memory
module. Memory modules are ava ilable
in 1 megabyte increments. The M emory
Timing and Control module f MTC)
manages the main memory subsystem.
It provides sing le bit error correction
and double bit error detection. The
MTC controls one or more memory
storage boards. The board is p ipelined
to supply data at the process ing speed
of the Database Accelerator.

2.5 The IDM Uses Britton Lee SMD and SMDE Disk Controllers

The IDM Disk Controllers move data
between external disks and the IDM
main memory They perform burst error
detection and correction. The disk con
troller interface is industry standard
SMD compatible. This allows disk drives
made by many different vendors to be
directly connected to the IDM.

Two types of controllers are available
for the IDM; one for SMD disks and one
for Extended SMD (SMDE) disks. One
controller manages from I to 4 disk
drives. Each drive can have a different
capacity New drives can be added at
any time. Drives used for the database
must be dedicated to the IDM and can
only be accessed through the IDM.

The IDM can have a maximum of 4 disk
controllers. Thus it can accommodate
up to 16 SMD or SMDE disks of any
capacity Both SMD and SMDE disks can
be accommodated on the same IDM.

The IDM logic has been designed
to manage up to 32 billion bytes of
disk storage so that when available,
new SMDE disks with increased
capacity can be easily accommodated
by the IDM. Britton Lee has certified
a number of disks for use with the IDM
and guarantees their compatibility

HARDWARE ARCH ITECTURE

DATABASE
PROCESSOR

TAPE
CONTROLLER

2.6 The IDM Hardware is Built for Data Integrity

The IDM tolerates a variety of com
mon hardware error conditions
including uncorrectable memory er
rors, host-IDM communication
errors, disk read/write errors, and
intermittent IDM bus errors. Each
board, except the memory storage
boards, contains built-in diagnostics
and a self-test capability. The
memory storage boards are tested
from the Database Processor Board .
Single bit errors can be detected and
corrected and double bit errors can
be detected. In most cases, bad
memory can be mapped out of the
system.

To insure bus integrity, parity is used
throughout. The use of bus parity and
bus operation retry provides stable and
reliable interboard communication. The
IDM disk controllers have built-in burst
error corrrection and automatica lly retry
and correct disk pages. Before writing
to disk, the disk controller checks the
status of the AC power. If normal, the
write is committed. The IDM power
supply is able to maintain DC power
for the completion of the write in case
of AC power failure.

Every IDM has two special RS-232 ports
labeled "console" and "maintenance"
which can be used for monitoring the
system performance and for perform
ing remote diagnostics. The IDM writes
an error log and system status messages
to the console port. The maintenance
port is used to talk directly to the /OM
from a remote location such as the
Britton Lee service department. This
significantly simplifies problem diag
nosis and correction procedures.

The IDM reports errors through use of
the FAULT light on the front panel and
through a written log on the console.
When the IDM discovers that it can
not continue to execute, it will se lf
diagnose problems down to the board
level and report which of its boards
needs rep lacing.

Britton Lee offers several maintenance
plans which include on-site or depot
spare parts and the availab ility of
tra ined service personnel.

9

3. Software Architecture

Since IDM products are fully pro
grammed to perform relational DBMS
functions, the user never programs
the IDM itself. The user simply
describes what information he wants
i.e., the names of all employees in the
Shoe Department. The user never re
quests information in terms of how or
where to get it. The mini, micro, or
mainframe host translates the request
into IDM format and sends it to the
IDM. These two host functions
(translating and sending the request)
are referred to as the host parser and
host driver functions. After the IDM
has processed the request it buffers
the results until the host is ready to
receive them. The user does not in
tervene in the IDM's processing of the
request in any way.

10

3.1 Host Interface Software for the IDM

Host driver software is required to
handle the communication protocol
with the IDM.

A variety of host-dependent/ operating
system-dependent driver modules are
available from Britton Lee or our OEMs.
Multi -user parallel drivers are available
from Britton Lee for VAX/VMS, VAX/
ULTRIX, VAX/UNIX and Apollo Aegis.
XNS Ethernet SeNers or drivers for
VAX/VMS, AT&T Series 3B and IBM
PC/ DOS are also available. OEM prod
ucts include drivers for many other CPUs
and operating systems.

Host parser software is required to
translate user commands to I OM inter
nal format.

The following example illustrates two
different query languages (SOL and
IDL) being used to access the same in
formation. Both queries are parsed
(translated) by the host into the same
IDM internal format before they are
sent to the IDM for processing.

In order to get from the EMPLOYEES
(E) relation, the names and sa laries of
all employees who work in the Sports
Department a user could enter either
of the two commands below.

SOL Query:

select name, salary
from employees
where dept_ name = "sports"-

IDL Query (E refers to the
EMPLOYEES relation) :

retrieve (e.name,e.salary)
where
e.dept_ name = "sports"

The preferred query language deter
mines the choice of parser. A Britton
Lee sa les engineer can provide the
latest information about parser soft
ware ava ilable from Britton Lee and
our OEMs.

To simplify the task of describing the
powerful relational database software
facilities which are pre-programmed
into the IDM products, the examples
which follow use Britton Lee 's IDL
query language. However, it is not
necessary that the user choose IDL as
his query language or even that he
use a query language. When activity
within the databases from a particular
host is consistent and predictable, an
ad hoc query language is really not
necessary Hence parser software
would not be needed. Instead, /OM
stored commands could be used to
standardize the procedure for accessing
the data from that host.

3.2 The IDM Relational
Database Software

Although the relational data model is
relatively new, it has been acc laimed
as the most flexible and elegant of the
data models. Because it is based on a
rigorous mathematical structure, its
data can be easily described and
accessed. Until there was hardware
designed specifically to perform rela
tional DBMS functions, however, it ap
peared that relational database
systems would not be fast enough to
be commercially viable. Re lational
DBMS systems implemented as soft
ware running on a host under control
of a general purpose operating system
were plagued with performance prob
lems. The IDM satisfies the high per
formance criteria of DBMS systems
while offering all the benefits of the
relational data model.

EMPLOYEES TABLE

LAST_
NAME INITIALS soc_ SEC_ N UM

BROWN TJ 776-30-4839
SM ITH RS 123-79-1122
JONES AM 397-75-2628
MILLER RJ 463-55-1120

3.2. 1 The Relational Data Model

The /OM relational database manage
ment system organizes data into
one or more independent databases.
Each database is a collection of tables.
Generally all of the tables in one
database contain logically related
information. For example, a Personnel
database might include a table about
employees, another about departments
and a third aboutjob openings. The
user opens a database and then issues a
set of commands to access and manip
ulate the data in the various tables.

A table contains rows and columns.
Tables can also be thought of as files,
rows as records, and columns as fields.
The logical organization of a Personnel
database with two tables, Employees
and Departments, is illustrated below

To relate information in one table with
information in the other, we could use
the DEPT _NAME column.

START_ DEPT_
SEX SALARY DATE NAME

F 4000 070380 GARDEN
M 1012 020175 SPORTS
M 2080 121678 TOYS
F 3010 101680 SPORTS

DCPT_
NAME

TOYS
SPORTS
GARDEN

Additionally the IDM provides a
random access file system. /OM
random access files are a convenient
way to store non-database informa
tion such as text which might relate to
some tabular information in the data
base. Random access files can also be
used to store executable programs for
intelligent terminal hosts. /OM tables
can be created and used as file direc
tories and key-word indices into these
random-access files.

The IDM users experience virtually no
restriction on database capacity. The
IDM can support up to 50 databases.
A database can have up to 32,000
separate tables. Each table can hold
up to 2 billion rows (records) . Each row
can be up to 2000 bytes long, and can
have up to 250 columns. A column can
have up to 255 characters.

DEPARTMENTS TABLE
_\

MA IL_ PH~ MGR_ss NUM STOP EXT

123-22-9750 11

:~ 463-55-1120 20 2f
796-40-3724 77 p

l

I I

3.2.2 The IDM's Relational DBMS Command Set

Some of the basic functionality sup
ported by the /OM command set is
itemized below:

• Create/ destroy database

• Create/destroy relation

CREATING THE DATABASE

Once a logical analysis of the data
relationships has been performed, the
OBA can begin to create the database
and establish the tables.

• Permit/deny access to data in a table To create the hypothetical PERSONNEL
• Create/destroy indices on data database previously illustrated in section
• Insert data into a table 1.3 the user cou ld enter the following

command: • M odify or de lete data in a table

• Se lect data from a table or tables

• Create/read/write/destroy random
access fil es

• Create/destroy view

• Begin/end transaction

• Define stored command

• Audit changes to a table

Additional DBMS services which are
automatica lly handled by the IDM are :

• Controlling concurrent use of the
database

• Read/Write Locking of shared data

• Journaling (logg ing) of changes to
the data

• Managing transactions for degree
3 consistency

• Optimizing throughput

• Checking and enforcing security

• Maintain ing data dictionary
information

The following examples are given in
SOL (Structured Query Language). It is
important to note the user need be
concerned with only one language.
SOL is both a Data Definition Language
and a Data Manipulation Language.

12

create database personnel

If appropriate, the user can specify in
the CREATE DATABASE command,
how much space should be allocated
on individual disks for this database.
Otherwise, the /OM w ill ass ign the
first available space.

Initially the database is empty except
for system relations that the /OM auto
matically maintains as part of its in
tegrated data dictionary. Th e data
dictionary tables will contain current
information about the following:

• The name of each table in the data
base and a description of it

• Each column of a given table. its type.
and a description of the co lumn

• All database users and groups of users
w ith their access privileges

• Any changes made to logged tables

• A cata log of all clustered and non
clustered indices associated with
any tables

The /OM also maintains a special
database which holds information
about each of the databases, user
specified parameters, the IDM's en
vironment and the /OM relational
DBMS software .

By using the ad hoc query language,
the user can retrieve data from these
system tables in exactly the same way
that he would access data from his own
tables. In addition, a set o f predefined
stored commands are supplied with
Britton Lee host software to simpli fy
access to these system tables.

As tables increase in size, they are
expanded in multiples of 2K-byte
pages. A page is a basic unit of alloca
tion. The /OM user may control how
much space a database or table will
occupy on each disk and how it grows.

CREATING TABLES
IN A DATABASE

Once created, the database must
be opened by the user who wi 11 be
issuing commands to that database.

open personnel

The result of an "OPEN" is that the
user is assigned a process ID by the
/OM so that all work done forthat user
can be identified uniquely as his.

To create tables in this opened database,
the "CREATE TABLE" command should
be used. If the OBA wishes to control
disk space allocation, he can use options
with the CREATE TABLE command to
specify:

• That the table being created should
be allocated an initial amount of
space

• That it should have a space quota
beyond which it is not allowed to
grow (This quota can be increased
at any time by the OBA.)

If all changes made to this table were
to be logged, the LOGGING operation
would also have to be specified as part
of the "CREATE TABLE" command.

There are also commands to extend
the size of the database and tables.
These "extend" commands have the
same options as the origina l CREATE
command.

The result of a "CREATE TABLE" com
mand is an empty table to which rows
(records) can be appended. IDM system
tables will be automatically updated to
indicate the existence of the new table,
its owner, its columns, and any other
pertinent information about it (indices,
protection, etc.)

In order to create the EMPLOYEES table
in the PERSONNEL database as exem
plified on page 11, the user would enter:

create table employees
(last_ name char(20),
initials char(2),
soc. sec_ num char(l l),
sex fixed char(l),
salary fixed bcd(2),
start_ date smallint,
dept_ name char(15))

The EMPLOYEES table was created
with the columns of LAST _NAME with
maximum of 20 characters, INITIALS
with a maximum of 2 characters,
SOC_SEC_NUM with a maximum
of 11 characters, SALARY which is a
2-byte BCD field, SEX with one charac
ter, START _DATE which is a 2-byte
integer, and DEPARTMENT _ NAME
with a maximum of 15 characters.

EXAMPLE OF DATA TYPES

Each column has a declared type
which must be given at the time of
the "CREATE TABLE" command. The
IDM supports nine data types:

RANK TYPE
1 char
2 binary
3 tinyint
4 small int
5 integer
6 bed
7 flt4
8 flt 8
9 bcdflt

Conversion is supported to and from
the datatypes: bed, bcdflt, string, tinyint,
small int and integer. Both 4 and 8 byte
floating point formats are treated
essentially as fixed-length binary
strings. A character field (column)
can be represented with from 1 to 255
characters. These are automatically in
compressed format unless "fixed"
is specified as the leading element in
the character type, i.e. "fixed char"
gives uncompressed character type for
fixed-length format.

TYPE DESCRIPTION

char(l5) A maximum J 5 byte character field
fixed char(15) A fixed length 1 5 byte character field
fixed bed (7) A fixed length bed field with 7 decimal digits

bcdflt(7) A floating point bed number with 7 significant digits

tinyint A l-byte field between - 128 and 127

smallint A 2-byte field between -32768 and 32767

integer A 4-byte field between -2, l 47,483,648 and 2, l 47,483,647

13

The "bcdflt" data type is a unique rep
resentation in the IDM which allows
decimal arithmetic to be performed
without the rounding problems of
normal floating point arithmetic. For
example, many hosts cannot store the
decimal number 0.3 and 0.7 precisely If
these numbers are multiplied and if a
decimal data type of at least "bcd(2)"
has been specified, the IDM will provide
the exact result, 0.21. With double pre
cision floating point, the multiplication
would have produced an approximate
result of 0.2099.

The range of numbers represented for
business/financial app lications is
realistically unrestricted. With the deci
mal format of the IDM, a company
would have to have revenues exceed
ing a million trillion times the size of
the U.S. gross national product with
accuracy to the penny to exceed the
numerical accuracy of the IDM.

The decimal data type also allows for
scientific representation by supporting
the use of exponents to achieve a
range of numbers from 10** (- 1024) to
10** 1024. The decimal notation is
stated in terms of a significant number
of digits from 1 to 31. For example the
multiplication 7.1x 10** 13 and 2 x
10** 12 will provide the result 1.42 x
10**26 provided the field was defined
as "bcdflt(3)'.'

14

PLACING DATA INTO TABLES

To place information into the rela-
tion, the user may take advantage of
the IDM bulk load facility FCOPY IN, or
he can enter information a row (record)
at a time using the SORT INTO com
mand. Assume that the user wants to
place a new employee row (record) into
the EMPLOYEES table. He would enter:

insert into employees
(last_ name,
initials,
soc__sec_ num,
sex)

values ("Brown",
"TJ",
"776-30-4839",
"F'J

The row is stored in the table
EMPLOYEES. The name, initials and
soc ial security fields have the values
specified. Since the sa lary start date,
and department name are not speci
fied, the IDM assigns to them the
default values of zero for the numeric
fields, and blank for the character
field s.

The IDM's COPY IN facility provides a
"bulk load" capability. It is useful for
initially loading a database as well as
to transfer data between the IDM and
a host between two IDMs or between
different databases on the same IDM.
A COPY OUT facility also exists which
can be used to write all tables or se lected
tables in a database to the host or to
an IDM fil e in a format readable by
COPY IN.

SELECTING DATA FROM
THE DATABASE

The relational data model provides
the user with three basic operators :
project, select and join. These
operators can be combined with
Boolean and comparison operators
and aggregation for a precise des
cription of the information desired. The
simple SOL command, SELECT, can be
used for all these operations.

SELECT

To retrieve data from the EMPLOYEES
table, the SELECT command is used as
illustrated below:

select last_ name, salary from
employees
where dept_ name = "sports"
order by last_ name

This command will display the names
and salaries of all employees who are
in the Sports Department. The ORDER
BY clause causes the results to be re
turned to the host in ascending order
by LAST_ NAME.

If the user had wanted to see all the
names and salaries, he would have
eliminated the WHERE clause from the
above command.

If the user had wanted to see only
the name and salary of the employees
whose names started with an "SM"
and ended with an "H;' he would have
entered:

select last_ name, salary from
employees
where last_ name = "sm*h"

The IDM supports 3 string manipula
tion functions: substring, concatenate
and pattern matching. In the above
pattern matching example, the '*' is a
wildcard that means that any number
of variable characters may appear in
its place. Additional pattern matching
features support a range of pattern
matching requirements.

Tile items following the SELECT key
word comprise the target list. This list
1cJmtifies the items to be displayed. The
qt1,1lification, WHERE, defines which
rows (records) are affected by the
c ornmand.

Both the qualification and target list
can refer to several relations. The fol
lowing query 'joins" the names and
initials from the EMPLOYEES table
with the mail stop and phone exten
sions in the DEPARTMENTS table based
on the same DEPT _NAME.

EMPLOYEES TABLE

LAST_
NAME INITIALS SOC_ SEC_ NUM

BROWN TJ 776-30-4839
SMITH RS 123-79-1122
JONES AM 397-75-2628
MILLER RJ 463-55-1120

DEPARTMENTS TABLE

DEPT_ MAIL-
NAME MGR_SS NUM STOP

~k§2 123-22-9750 11
SPORTS 463-55-1120 20
GARDEN 796-40-3724 77

select last_name, initials,
mail__stop, phone_ ext from
employees, departments where
name= dept_ name

START_ DEPT_
SEX SALARY DATE NAME

F 4000 070380 GARDEN
M 1012 020175 _i)JORTS
M 2080 121678 (TOYS }-,
F 3010 101680 SP'OR'fs

PHONE_
EXT. QUOTA YTD

570 300,000 198,000
268 350,000 201,000
853 500,000 314,000

15

OPERATOR

>
>=
<
<=
! =

FUNCTION

COUNT

AVG

SUM

MIN

MAX

ANY

ORDER

IN

16

The processing of multi-table queries is
done completely by the IDM. Advanced
optimization techniques are used to
efficiently execute multi-table queries.

As illustrated the SOL language allows
the use of comparison operators as
follows:

DESCRIPTION

compares two expressions for equality
compares two expressions for greater than

compares two expressions for greater than or equal to
compares two expressions for less than

compares two expressions for less than or equal to

compares two expressions for NOT equal to.

Built- in functions which are com
pletely executed by the IDM can also
be spec ified in RETRIEVE statements.
They include:

DESCRIPTION

counts the number of tuples containing the values satisfying
some expression

calculates the average of some set of values satisfying some
expression

calculates the sum of a set of attribute values satisfying some

expression

calculates the minimum value of some set of values satisfying

some expression

calculates the maximum value of some set of attribute values
satisfying some expression

indicates if any records meet some qualification

orders the response to a query to be sorted by the IDM and

presented to the host in that order

set inclusion

To select a count of all employees
in the Sports Department, the user
would enter:

select count (last_name) from
employees where dept_name =
"sports"

To se lect the average sa lary in the Sports
Department the user would enter:

select avg (salary) from employees
where dept_ name = "sports"

Aggregate functions are different from
simple aggregates in that they return a
set of va lues instead of a single answer.
For example, to se lect the department
name and the average sa lary for every
department, the user would enter:

select dept_name, avg (salary)
from employees group by dept_name

DEPT AVG
NAME SALARY

GARDEN 2500
SPORTS 2750
TOYS 1980

The difference in syntax is evidenced by
the presence of the GROUP BY clause.

UPDATING INFORMATION

To hange data, the IDM supports
the UPDATE, DELETE FROM, and
DROP commands.

UPDATE

Th ' value for JONES' SALARY in the
EMPLOYEES table can be changed
through the UPDATE command as
follows:

update employees
set salary = 5000 where
name = 'Jones"

Thi changes the salary of all people
named JONES to 5000.

To increase only the salary of the specific
Mr A. M. Jones by 1000, the user could
have entered the following

update employees
set salary = salary+ I 000 where
name = 'Jones" and initials = "a.m'.'

DELETE FROM

The delete command can be used to
delete the JONES tuple (record) from
the EMPLOYEES relation as follows:

delete from employees where name =
'Jones" and initials= "a.m'.'

Thi command removes the tuple
(r cord) forthe employee named A.M.
JONES from the EMPLOYEES relation.

Rep titive updates which are composed
of several commands and require
st ndard input can most efficiently
b handled by using the IOM STORED
COMMAND facility Referto the section
on "Tuning the Database" for more
information on STORED COMMANDS.

DROP

To 1crnove the entire EMPLOYEES table
th<' command is: '

drop employees

PERFORMING mANSACTIONS

IDM transaction management main
tains database consistency over a set
of commands. Consistency means
that if two or more transactions affect
the same data, the results will appear
as if only one transaction at a time had
been operating on the data. The com
mand SET AUTOCOMMIT OFF is issued.
All following commands will be con
sidered part of a single transaction until
a COMMIT WORK command is issued.
Transactions always appear either to
have run to completion or never to have
started. This degree 3 consistency is
automatically guaranteed by the IOM.

Additionally when making changes
to information, it is often advisable to
evaluate the results of the transaction
before committing the transaction
changes to the database. The IDM
permits the user to do just that. Once
initiating transaction processing, the
user stores, accesses, or modifies data
base information as desired. When he is
satisfied with the results of his changes,
he can commit the transaction with a
COMMIT WORK command. Other
wise, he issues the ROLLBACK WORK
statement which will cause the IDM to
automatically back out all changes and
restore that data to the value it was just
prior to the beginning of the transaction.

In the preceding example the user
gave a new sa lary of 5000 to all people
named JONES. He could have avoided
this mistake in the following manner:
set auto commit off
update (salary= 5000}
where last_name = 'Jones"
select (all}

(He would now see the results of his
update).

rollback work

This series of commands would have
allowed him to evaluate the results of
his changes and rather than commit the
transaction, he aborted it.

Many commands could have been
included, and the entire group of com
mands would have been considered to
be a single transaction which would be
entirely performed or not performed at
all. Even if there were a power failure
in the middle of a transaction, when
the IDM comes back on line, it would
detect that the transaction had not
been completely performed and would
automatica lly roll-back the data to its
previous state.

17

3.3 Tuning the IDM Database

After the Database Administrator be
comes familiar with the access patterns
of the database users, he can optimize
the database for the typical types of
access and updates. To do this he would
use the IDM INDEX, VIEW, and STORED
COMMAND facilities.

USING INDICES

Data in tables can be accessed quickly
if pointers to the data exist; an index
is a pointer to the data. There are two
kinds of indices: clustered and non
clustered. A clustered index causes the
data to be maintained in physical sort
order on the clustered index field . This
allows a single clustered index entry to
pointto a range of rows (records). The
non-clustered index contains an entry
for each row in the table. The com
mand to create a clustered index is:

create clustered index on
employees (last_ name)

This causes the IDM to sort the
EMPLOYEES table on LAST _ NAME,
store in in that order. and to bui ld a
modified B* -tree index that contains
location identifiers for a range of
values of the LAST _ NAME attribute
in the EMPLOYEES table. When the
EMPLOYEES table is accessed with the
LAST _ NAME specified in the WHERE
clause, the index is searched first and
the access is made directly to the disk
location where that data resides.

There can only be one clustered
index per relation. If the table is to
be accessed by other columns as well ,
non-clustered indices may be created
on these columns as follows:

create nonclustered index on
employees (start_ date)

18

This command creates an index that
has one entry for each row in the
EMPLOYEES table. Each entry contains
the value of START_DATE forthe
employee, and a pointer to the disk
location that conta ins the row with that
START _ DATE.

At any time the access pattern to
information changes, old indices can
be destroyed and new ones created.
To remove an index, the command is:

drop clustered index on
employees (last_ name)
or
drop nonclustered index on
employees (start_ date)

CREATING VIEWS

In a well structured relational DBMS,
there should be almost no duplication
of data . This insures consistent up
dating and simplifies maintenance. In
the past, however, the same data
items would often be found in several
different files since each application
program required its own record lay
outs. This need to duplicate data is
eliminated by the IDM through its
VIEW capability. As the database ad
ministrator tunes the IDM database,
he will create VIEWS which conform
to the record-layouts required by
these application programs. Views are
hypo thetica l tables which combine
commonly related data from one or
more different tables. Views can also
be used to restrict access to sens i-
tive data because the user need not
be aw are that he is only "viewing" data
that has been materiali zed from under
lying tables.

Assume that a group of users need
to access the EMPLOYEES table but
should not see the salary information .
The IDM VIEW facility can be used to
give them a hypothetical relation from
which they can RETRIEVE information
but which does not contain the
SALARY field . A VIEW is materializ d
when the user retrieves information
from it. A view is created as foll ows:

create view emp
as select last_ name,

initials,
dept_ name,
start_ date

from employees

The view EMP created above will
contain the employee's name, his
department, and his starting date but
it will not contain salary information.
Data can be retrieved from and pro
tected in the VIEW as if it were a real
relation . All changes to the underlying
relation, EMPLOYEES, are auto
matically reflected in the view, EMP.

In the preceding example, the VIEW
was a subset of a single table. A
VIEW can also be used to define a
hypothetical table which combines
commonly related fields from several
different relations. For example, a
monthly business analysis might be a
combination of fields from the two
different relations, EMPLOYEES and
DEPARTMENTS. Assume the monthly
report lists the department names,
managers' last names and initials and
the quota and year-to-date (YTD) in
formation about each department.

EMPLOYEES TABLE

LAST_ START_ DEPT_
NAME INI TIALS soc_ SEC_ NUM SEX SALARY DATE NAME

BROWN TJ 776-30-4839 F 4000 070380 GARDEN
'.MITH RS 123-79-1122 M 1012 020175 SPORTS
JONES AM 397-75-2628 M 2080 121678 TOYS
MILLER RJ 463-55-1120 F 3010 101680 SPORTS

DEPARTMENTS TABLE

DEPT_ MAIL_
NAME MGR_ss _ NUM STOP QUOTA

123-22-9750 11 300 ,000
463-55-1120 20 350 ,000
796-40-3724 77 500,000

NAME INITIALS
DEPT

NAME QUOTA

WHITE
MILLER
BURNS

To JOin fields from the two different
tables EMPLOYEES and DEPARTMENTS
in order to form one table, the user
would enter:

create view monthly
as select last_name,

initials,
dept_ name,
quota,
ytd

from departments
where mgr __ss_num =
so _ sec_num

TR
RJ
SL

GARDEN
SPORTS
TOYS

Now the user has access to a virtual
table listing all departments with

300,000
350,000
500,000

their managers' names, quotas, and
YTD performance. He can retrieve
information from this view MONTHLY
as if it were an actual table.

select * from monthly
where ytd > quota

In the ad hoc query environment, use
of VIEWS simplifies accessing informa
tion from the database for the non-dp
professional. Additionally, use of the
VIEW capability makes programs more
independent of the data (record layout)
in the database and simplifies the
programming task.

YTD

198,000
201 ,000
314,000

YTD

198,000
201 ,000
314,000

19

USING STORED COMMANDS

An efficient way to execute a repetitive
group of dependent database com
mands is to store them as a group in
the IOM. If several commands are al
ways to be executed together, they
can be sent to the IOM as a command
group where they will be pre
processed and stored for later execu
tion. The IOM does all the necessary
pre-processing when the command
group is stored. Let's define and store
a command group in the IOM which
will automatically give a l 0% pay
increase to an employee who is
promoted to department manager
and will also update the DEPARTMENTS
table with the new manager's social
security number. We will name this
command group, PROMOTE, and
when w e invoke it w e will send two
parameters: the first will be the social
security number of the promoted em
ployee and the second wi 11 be the name
of the department he w ill manage.

20

store promote
update employees
set salary = salary + .10% salary
where soc_ sec_ num = S 1
update departments
set mgr _ss_ num = S 1
where dept_ name = $2
end store

The keywords STORE and END begin
and end the command definition
respectively The S 1 and 52 are the
'social security number' and
'department name' parameters whose
va lues will be passed to the /OM
when the stored command is invoked.

To invoke the PROMOTE command,
the statement is:

start promote
("123-11-4795", "garden")

The keyword START invokes the stored
command ca lled PROMOTE. The
two parameters will become the
va lues of S 1 and 52 respectively In
the EMPLOYEES table, the sa lary of the
employee with social security number
123- 11-4795 will be increased by
10% and his 'social security' number
will be entered as the manager's num
ber for the Garden department in the
DEPARTMENTS table.

The stored command feature is partic
ularly powerful. Once the command
group has been parsed and sent to
the /OM for storage, the host never
has to parse the group of commands
again. The host simply sends the com
mand name to the IOM with the ap
propriate parameters. This reduces the
amount of information that must be
transmitted to the /OM. It also signifi
cantly reduces the time it takes for the
/OM to execute the command set
since the IOM has preprocessed the
command. A side benefit of using
stored commands is that application
programs runn ing on the host are
sma ller, more efficient and easier to
maintain.

DATA VALIDATION

It is often important to insure that
data being entered into a table
satisfies integrity or data validation
constraints. Data validation can be
performed in several ways with th
IDM. Stored commands, unique indices
and the "select into" functions, can all
be used. For example, to insure that
updates to the SALARY field in the
EMPLOYEES table only occur with
appropriate data, the following STORED
COMMAND could be used:

store upsal
update employees
set salary = salary + S2
end store

To invoke this stored command, the
user would enter:

start upsal n 23-44 -4886", 150)

The result of this execution would be
to give a S 150 raise to the employee
with social security number 123-44-
4886. If the second parameter, 150,
had been a negative number, the em
ployee table would not have been
updated.

Assume that we have just read an
EMPLOYEES database from a tape
supplied from another division . W e
suspect that there may be employee
duplications, and that extraneous data
may have been stored in the marita l
status field of some record . Only "S"
for single and "M" for married should
be allowed. Also, we want to insure
that all salaries are non-negative. To
ensure the integrity of the data, we
could enter the following commands:

select distinct into newemp *
from oldtemp
where maritaf_ status = *
"[MS]" and sal > 0

In th target list the* indicates that
all th columns of each qualified row
should be retrieved.* eliminates the
neecJ to name each column separately
in the target list.

The SELECT DISTINCT INTO automati
cally deletes duplicate rows and the
qualifier (WHERE) forces a pattern
matching to ensure that only Mor S
will exist in the MARITAL_STATUS field
of NEWEMP Also, the SALARY field must
be greater than zero. Erroneous data
are ignored and not placed into the
NEWEMP table if the qualifications
are not met.

Additionally, the DISTINCT option can
be specified with the CREATE INDEX
command to ensure uniqueness on
a k y field. For example, employee
social security numbers can be guar
anteed to be unique by defining a
DISTINCT index on SOC_SEC_NUM
as follows:

create distinct clustered
index on employees
(soc_sec_ num)

EMPLOYEES TABLE

LAST_

RESTRUCTURING TABLES

As we have seen, the VIEW feature of
the /OM lets users and application
programs access "hypothetical" rela
tions which contain rows (records)
which are consistent with their record
requirements. For example, a COBOL
program needing NAME, SALARY and
HOURS_WORKED need not know
that the "materialized" rows it receives
from the /OM come from a view which
the /OM forms by combining fields from
several different relations. Thus views
can be seen as a passive way of restruc
turing the database.

Should you need to actually change
the width of a field or add a column
to a table, this can also be done. The
following example illustrates the
EMPLOYEES table before and after using
the SELECT INTO command to do a
significant amount of restructuring.

START_
NAME INITIALS soc_ SEC_ NUM SEX SALARY DATE

BROWN Tj 776-30-4839 F 4000 070380
SMITH RS 123-79-1122 M 1012 020175
JONES AM 397-75-2628 M 2080 121678
MILLER RJ 463-55-1120 F 3010 101680

START_
NAME TYPE SALARY DATE

• To combine the LAST_ NAME and
INITIALS fields into a new field called
NAME

• To change the name of the SEX
column to TYPE

• To expand the DEPT _NAME field
to 20 characters in length and call
it DEPT

• To add a new column ca lled "status"

• To eliminate the SOC_ SEC_
NUM field

select into new_ emp
name= concat

(last_ name, initials)
type= sex,
salary,
start_date,
dept= substring (l,20,dept_ name),
status= ,, "

After the SELECT INTO is complete,
the old EMPLOYEES table could be
destroyed and NEW _EMP could be
renamed to EMPLOYEES. Alternative
ly, a CREATE command followed by
an INSERT could be used to take
advantage of certain options
associated only with the CREATE
command.

DEPT_
NAME

GARDEN
SPORTS
TOYS
SPORTS

DEPT STATUS

BROWN TJ F 4000 070380 GARDEN
SMITH RS M 1012 020175 SPORTS
JONES AM M 2080 121678 TOYS
MILLER RJ F 3010 101680 SPORTS

21

SECURING THE DATABASE

It is common that some information in
the database is sensitive and should
only be available to a particular class
of user. In add ition to using views and
stored commands to control access as
discussed in the previous section, the
OBA can directly protect data from un
authorized access through the use of
two protection commands, GRANT and
REVOKE. These two protection com
mands are followed by keyword options
which specify what is being permitted
or denied and to whom. Activities which
can be granted or revoked include
read, write, execute, create index, create
database and create relation.

22

REVOKE

Users are denied access to a table
based upon their user identifier. The
command to deny changing the SALARY
field in the EMPLOYEES table to
JOHN is:

revoke write of employees
(salary) to john

The user identified by JOHN is denied
permission to change the SALARY field
in the EMPLOYEES table.

If the user had wanted to deny both
READ and WRITE f referred to as ALL)
on SALARY to JOHN, he would have
entered:

revoke all on employees
(salary) fromjohn

Now John could neither read nor write
to the SALARY fi eld of the EMPLOYEES
relation. If the user wanted to deny ALL
fboth READ and WRITE) to everyone,
he would have entered:

revoke all on employees from all

PERMIT

To permit READ access to all fields o f
the EMPLOYEES table just to John,
the user would enter:

grant read of employees to john

To permit a group of clerks to read
some fields of EMPLOYEES, the user
would enter:

grant read of employees
(last_ name, dept_ name) to clerks

In the above examples, let's assume
that ALL was revoked to ALL before th
GRANT commands were issued . The
result of the above GRANT commands
is that the entire EMPLOYEES table can
be read by the user identified as JOHN,
but the CLERKS group can only access
the LAST_ NAME and DEPT_NAME
fields.

For both REVOKE and GRANT, an entire
table or separate fields of a table can
be specified. Similarly, the use of STORED
COMMANDS, which perform restricted
functions, can be controlled as fo llows:

revoke start of promote from john

This prohibits JOHN from executing
the stored command, PROMOTE.

If the owner of a table protects any
field of information in his table, this
protection is extended to other users'
VIEWS or STORED COMMANDS which
try to use that protected field. Users or
groups of users can also be denied the
privilege of creating tables or data
bases, creating indices or executing
stored commands.

4.1 The IDM Transaction Log

The IDM provides facilities to protect
stored data from loss as well as un
authorized access. There are two ways
d<Jt<i could be potentially lost: hard
fa1lur s (such as disk head crashes)
and oft failures (such as power fail
ure) . The IDM protects data in one of
two ways depending on the type of
fcl1lure. Both ways involve use of the
IDM transaction log.

4 . IDM Back-up and Recovery

Each command to the IDM is a trans
action unless it is one of a group of
commands terminated by the COMMIT
WORK command. Then the entire group
of commands is treated as a single
transaction. Transactions always appear
either to have run to completion or never
to have started. To maintain database
consistency, the IDM must keep track
of all changes to the database. Then
the IDM can guarantee consistency by
using the before and after images of
the changed data to undo any partially
completed transactions and to insure
that all finished transactions are com
pletely reflected in the database. While
the IDM understands that the COMMIT
WORK command signals that the
transaction should be committed, the
IDM also understands that the
ROLLBACK WORK command means
that all changes to the data should be
backed out. A user (or a program) can
send a ROLLBACK command instead of
a COMMIT command to cause the IDM
to use its transaction log to automat
ically backout all changes made to the
database since the SET AUTOCOMMIT
OFF command was received.

Every time an event such as a change
to a relation takes place, enough
change information is automatically
recorded in the IDM transaction log to
both reconstruct the change and/ or to
back it out. The IDM transaction log is
written from IDM memory to disk
before the transaction is committed
from !OM memory to the database. A
transaction 'done' token is written to
the transaction log after the actual
transaction is committed to the disk
database. These transaction logs are
an essential part of the IDM's data
protection scheme.

4.2 Soft Crash/ Recovery

When the IDM detects a soft crash
condition such as a failure condition
due to loss of power. network failure,
or IDM hardware problems, it is capa
ble of maintaining database
consistency.

When the IDM is rebooted after a soft
crash, a recovery program is run
against each database. This program
maintains data integrity by looking
into the IDM transaction logs to deter
mine which transactions were only
partially complete. These are automati
cally backed out. This process is
speeded by the use of check points
noted in the transaction log. A check
point forces all data blocks which
have been modified to be written out
to disk. Check point intervals are set by
the OBA. The recovery program can
proceed from the log's most recent
checkpoint rather than from the
beginning of the transaction log.

EXAMPLE OF RECOVERY

Suppose our transaction is an UPDATE
that modifies several rows (records)
stored in several different disk blocks.
Each disk block will be brought into
memory and modified; but, for effi
ciency, these blocks will not be imme
diately written back to disk. The IDM
writes data blocks back to disk during
periodic checkpoints or when it must
make room in its memory for more
data. These modifications are also
being automatically recorded in IDM
transaction logs. As each row (record)
is changed, both the original data and
the new values are written into IDM
transaction log disk buffers. The IDM
guarantees that these transaction logs
will be written out before an actual
transaction is committed. The log of a
change is always written out to disk
ahead of the actual data.

23

In the event of a soft crash, the IDM
recovery routine may find transactions
in one of four states:

I . The transaction may have been
completed and the modified data
written out to disk before the crash.
Then everything is all right.

2. The transaction may not have been
completed, and the data was never
written out. Again everything is all
right.

3. The transaction was completed, but
the database changes were not
written out. In this case, the IDM
will find a "done" token in the trans
action log so it will update the
modified database data from infor
mation stored in the log.

4. The transaction might not have
been completed, but some of the
database changes were written out
to disk. In this case, the IDM will
not find a "done" token in the trans
action log. Thus, it will use the
before-images of the partially com
pleted transaction log to restore the
data to its original state.

In all instances, the transaction is ei
ther comp lete or not app lied at all .

24

4.3 Hard Crash/Recovery

The soft crash recovery procedure re
quires that the transaction logs are
intact. This may not be the case in the
event of a hard disk crash. To protect
against this, users should follow IDM
backup and recovery procedures.

Unlike most systems which do backup
and recovery by physical disk device,
the IDM performs backup and
recovery by database. This allows the
IDM to guarantee that the backup of
each database is consistent.

The IDM crash/recovery scheme re
quires occasional backup of the com
plete database and frequent backups
of the transaction logs. The transaction
log dump is ana logous to the in
cremental dump used in many operat
ing systems. If the database ever
needs to be restored the transaction
logs can be reloaded and applied
aga inst the complete dump of the
database via the ROLLFORWARD utility

BACKUP PROCEDURES

As previously discussed, the transac
tion log is updated whenever a
change is made to a logged table
(as specified at CREATE time). The pro
cedure for handling the poss ibility of
catastrophic loss of data is to:

I. Dump the entire database occasion
ally.

2. Dump the transaction log frequently
3. In case of loss of data, load the last

database dump.
4. Load and roll the transaction logs

forward.

The success of the above procedure
requires logg ing of all tables important
to the application.

To backup the PERSONNEL database
and its transaction log to the host, the
OBA would call the DUMP utility:

idmdump personnel working
I transaction = personnel . log
I database = personnel . db

However, if the user prefers to main
tain his backups under IDM control,
he cou ld create a special database
for th is purpose. Assume a data bas
ca lled BACKUP has been created to hold
his transaction dumps. Then to take
a backup of the PERSONNEL data bas
to IDM tape and its transaction log to
an IDM file, the OBA would enter:

idmdump personnel backup
/transaction= aug_ chg%ifile
I database = % itape

The database PERSONNEL is written to
IDM tape and the transaction log is writ
ten to the new log ca lled AUG_CHG
in the BACKUP database.

Both the database dump and the in
cremental dump can be sent to one of
three places: back to the host where it
is normally stored on disk or mag tape,
to a file in another database in the
IDM, or to the IDM tape drive .

Users should normally do a full data
base dump shortly after their initi al
database load or creation . Additional
full database dumps should be per
formed at regular intervals.

Between full database dumps, users
shou ld do periodic dumps of the
transaction log . The frequency of
these dumps depends on how
dynamic the databases are, and how
valuable the data is . Should a
database ever need to be restored,
the OBA need only LOAD the most
recent full dump and then LOAD and
ROLLFORWARD all subsequent trans
action log dumps. Dumps of transaction
logs and databases can occur while
users are actively retrieving and updating
the database. After a database dump
or transaction log dump, the IDM auto
matically truncates the transaction log
and begins logging anew

Sine only logged objects are backed
up by a transaction log dump, /OM
u r need to know which objects are
logged. Users can check the /OM system
tal) /C called RELATION to see whether
or not an object is logged. The "rels"
stor d command will also report logging
status. Tables can be designated as
Jogged or not logged when they are
crra ted, or logging may be turned on
or o ff with the ALTER command. The
!OM recovery scheme assumes that
only logged objects are important.

RECOVERY PROCEDURES

A<isume that we are dealing with a
mull! -disk, multi-database configura
tion. Assume also that an entire disk is
rend red unusable by a disk crash.
F1r ~ t, the damaged pack must be
rcplcJced. Then the new pack is
for matted by the IDM. Any database
th,lt partially resided on the crashed
d1 c., k will be offline and must be re
stored. The other databases will be
onl1ne and available while the OBA
follows the IDM recovery procedure.

F11 c., t rie recreates the destroyed data
L), 1c.,cc.,. Then he loads the most recent
full cJcl tabase dump. In our example,
a copy of the PERSONNEL database
w, 1c.,) tored on tape. The following
commands will load this copy into the
n(w/y created PERSONNEL database.

idmload personnel
working% itape

Tl icn he loads and rolls forward any sub
scqucnt dumps of the transaction logs.

idmrollf personnel backup awg_chg

AUG_CHG was the copy of the
transaction log in the BACKUP
database. Our example loads the con
tents of AUG_CHG into the AUG
relation created in the new PERSON
NEL database. The ROLLFORWARO
command applies these changes to
the restored PERSONNEL database. A
date and time option can be included
with the ROLLFORWARO command
if only transactions committed by the
specified date and time are to be
reapplied.

As soon as this is completed, the data
base is ready to be used. Any updates
to the database that were made after
the last transaction log dump and
before the crash will have been lost.
The OBA should define procedures to
provide for re-entry of data un
avoidably lost between the last trans
action log backup and a crash.

25

APPENDICES

APPENDIX 1

The IDM products represent a first in
the evo lution of database manage
ment systems. Our back-end re lational
DBM S processors, installed in a net
w ork or behind heterogeneous hosts,
re lieve the other units of the
burdensome DBM S tasks. Because the
/OM products are implemented in spe
cialized hardware, they provide an at
tractive price/ performance ra tio when
compared with software DBMS prod
ucts running on general-purpose CPUs.

26

IDM SYSTEMS products that combine
an /OM w ith host - resident interface
softwa re are designed for DEC VAX
computers running VM S or UNIX, AT& T
Series 3B computers running UNIX,
Apollo workstations running Aegis, IBM
System 370 computers running VM/ SP,
and PCs supporting MS/ PC- DOS.

IDM CAPACITIES

Insta llation service, hardware and soft
w are warranty and maintenance ar
all offered by Bri t ton Lee in support of
its /OM products.

SPECIFICATION BASE CONFIGURATION EXPAN DABLE TO

IDM M emory
Disk Storage
Host Interface

1 M byte 6 M byte
supports up to 4 SMD drives 16 SMD or SMDE drives
supports up to 8 Hosts 100+ Hosts

Tape
D atabase A ccelerator

Number of databases
Tables per database
Co lumns per tab le
Row s per tab le
Indices per tab le
Co lumns per index
Index type

not included
not included

50 +
32,000 +
250
2 billion +
25 1
15
B* tree

Number o f Users 128 + +
+ D epends on ava ilable disk storage
+ + D epends on ava ilable memory

support 2 transports
1 Accelera tor

50 +
32,000 +
250
2 bi ll ion +
251
15
B* tree

400 + +

APPENDIX2

SUMMARY OF QUERY COMMANDS

SOL/ IDL COMMAND

Ro llback work

Ins rt

Connect

Audit

Set autocommit off/
commit work

Create

Store

Delete

Revoke

Drop

Start

Alter

Open

Granl

Ran9

UpcJ,-i te

Sele>Cl

DESCRIPTION

Causes transaction to be aborted

Adds tuples to a relation

Used to add information in the description cata logue

Creates audit report from transaction log

Marks beginning and end of multiple IDL commands to be
considered one transaction

Used to create databases, relations, IDM random access files,
indices, and views

Defines a stored command

Used to remove tuples from a relation

Denies access to information in a relation by user or group

Used to eliminate databases, relations, files, views, stored
commands, and indices

Executes a stored command

Increases or decreases space allocation for a relation or
database

Opens a database or IDM file for activity

Permits access to a relation or attribute(s) by user or group

Associates a variable name with a relation or view

Replaces one or more attributes in zero or more tuples of
a relation

Retrieves data from a relation and sends it to the host or puts
it 'into' a new relation

27

APPENDIX 3

28

SUMMARY OF DATA DICTIONARY RELATIONS

TABLE NAME

Relation

Attribute
Indices

Protect

Query
Cross ref

Batch

Users
Blockalloc

Disk_Usage
Databases
Disks
Lock
Configure

Db in stat
Transact
Host_Users
Descriptions
Monitor

Devmonitor
Account

DESCRIPTION

The Relation table is a catalog of all objects in the data
base: tables, views, files and stored commands
Lists the attributes of each relation and their data definitions
Catalog of indices that exist in a database, the relation being
indexed, and the attributes included in the index
Contains protection information including type of access, for
which attributes of what object (relation, view, stored
command, or file) for which user or group
Used by IDM to hold precompiled queries and views
Catalog of dependencies among relations, views and stored
commands
Temporary transaction 's logging relation for transaction
management
Mapping of user and group names to IDM user id
Catalog of disk blocks showing relations assigned and free
space
Shows relation and database allocation
Catalog of databases on the system
Lists of disks known to the system
Used by IDM for 'read ' and 'write' lock protection
Contains information about 1/0 interfaces, checkpoint intervals,
and monitor intervals
Contains information about users currently " signed on " .
Permanent transaction log/audit trail
Mapping of host identification number to IDM user id
Stores comments about relations and attributes
System monitor, shows CPU usage, memory use, and 1/0
activity
System monitor, shows 1/0 activity for each device
Accounting data

Britton
Lee, Inc.

™Intelligent Database Machine, IDM
Intelligent Database Language and IDL
are trademarks of Britton Lee, Inc.

* DEC, V/'\X, PDP- 11 and VMS are registered trademarks of
Digital Equipment Corporation.
** UNIX is a registered trademark of AT&T Bel l Laboratories.
***SOL is a registered trademark of IBM Corporation.

•11~~ Britton
.. Lee,lnc.
14600 Winchester Boulevard
Los Gatos, California 95030
(408)378-7000
Telex: 172-585

	broch0031_a
	broch0032_a
	broch0032_b
	broch0033_a
	broch0033_b
	broch0034_a
	broch0034_b
	broch0035_a
	broch0035_b
	broch0036_a
	broch0036_b
	broch0037_a
	broch0037_b
	broch0038_a
	broch0038_b
	broch0039_a
	broch0039_b
	broch0040_a
	broch0040_b
	broch0041_a
	broch0041_b
	broch0042_a
	broch0042_b
	broch0043_a
	broch0043_b
	broch0044_a
	broch0044_b
	broch0045_a
	broch0045_b
	broch0046_a
	broch0046_b
	broch0047_a
	broch0047_b
	broch0048_b

