
Electro 101

BULLETIN E175

Advanced
Programming

Copyright @ 1957

Burroughs Corporation

The ELECTRODATA 101 Desk Size Electronic Computer incorporates many of the

features found in larger general purpose computers, and yet it is easy to program and

operate. Many people with no prior computer experience have become skillful pro

grammers after a few days' instruction.

This manual contains the information necessary to program the ElOl. It is used

as a text in the Programming Courses conducted for ElOl users.

Part I describes in detail the function of each command in the ElOl's instruction

language, and tells how to operate the computer. Sample forms used in programming

and operating are included.

Part II covers the use of the optional features which are available as adjuncts to

the ElOl (the 220-word memory, the tape input unit, etc.).

Part III is entitled "Programming Aids." It contains information on scaling, de

bugging, timing and checking circuitry. A list of some of the subroutines (available to

all E 101 users) is included.

In Part IV you will find a discussion of programming strategy along with some

valuable programming tricks or techniques.

Throughout this manual are sample programs to illustrate the text, and practice

problems, to test your grasp of material. In the Appendix are answers to the practice

problems, and a summarized instruction list for quick reference.

Many EJOJ users contributed helpful suggestions for improving the Preliminary

Edition of the Programming Manual. ELECTRODATA wishes t() thank all who thus as

sisted in producing this manual in its present form.

If you have never programmed a digital computer before, you may find it helpful

to read You Can Program the ELECTRODATA 101 before starting this manual. It

explains in elementary terms just what programming is, and covers the rudiments

of the ElOl.

TABLE OF CONTENTS

PART I

PROGRAMMING INSTRUCTIONS FOR THE BASIC E101

Program Storage . 1
E101 Programming Instructions 2
Address Modification . 4
Sample Programs. 6
Practice Problems . 7
Operating the El 01 ... 7
Programming Forms .. 10

PART II

OPTIONAL ADJUNCTS TO THE E101

Punched Tape Input Unit ... 13
Punched Tape Output Unit ... 13
Expanded Memory ... 14
Accumulator Setting of E and F Switches 16
Extra Mechanical Registers ... 16
The V Switch ... 17

PART Ill
PROGRAMMING AIDS

Decimal Point Scaling ... 18
Debugging .. 19
Timing .. 20
Checking Circuitry .. 21
Programming and Operating Errors 21
Machine Malfunction .. 23
Checking Input Data .. 23
Programs Available to El 01 Users 24
Standard Operating Routines .. 24

PART IV

PROGRAMMING STRATEGY

General ... 26
Input-Output Ideas .. 26
Logical Subroutines ... 27
Special Information on Basic Instructions 29
Algebraic Manipulations .. 31

APPENDIX

Practice Problem Solutions ... 35
Complete List of Instructions .. 36

OPTIONAL
PAPER
TAPE

PUNCH

PANEL

PROGRAM

THE ELECTRODATA 101
ELECTRON IC COMPUTER

COMPUTING
COMPONENTS

DRUM
MEMORY

PART I

PROGRAMMING INSTRUCTIONS FOR THE BASIC El 01

PROGRAM STORAGE IN THE E101

The program of the ELECTRODATA 101 is externally
stored in removable pinboards. The machine instructions
are selected by the positions of pins in the pinboards.
There are 8 pinboards numbered from 1 to 8, each with
16 steps numbered from 0 to 15.

The illustration above shows a typical pinboard. Each
instruction in the program is selected by the pins placed
in a single horizontal row of holes of the pinboard. The
first instruction (step 0) is W 4 8 which means, "Write
the number now in the accumulator into memory address
48." Notice that there are three pins-one in each area
of the pinboard. The pin in Area 1 selects the operation,
while the pins in Areas 2 and 3 select the tens and units
digits, respectively, of the memory address.

The instructions for a program are usually marked
(with a pencil or ink stamp) on pre-punched paper tem
plates; then the templates are laid over the pinboards and
the pins dropped in place. This technique provides a
permanent file copy of the program, which can be re
pinned in a few minutes, and virtually eliminates pinning
errors.

E101 DATA FLOW

The ElOl Data Flow Diagram, as the name implies,
shows how data flows between the various parts of the
computer. It is not meant to be a complete computer
block diagram, as no mention is made of the pinboard
program which controls the flow of data as well as all
arithmetic operations. It is helpful to keep a picture of
the Data Flow Diagram in mind when learning the pro
gramming instructions.

KEYBOARD

11 digits

MEMORY
100 or220 12-digit numbers & sign

ACCUMULATOR

12 digits & sign

B. REGISTER
for X. + 11 digits & sign

PRINTER
12 digits & sign

INPUT

The keyboard is the means of input on the basic ElOl.
It is an 11-column full keyboard-the same type as used
on automatic accounting machines or desk calculators.
Punched tape may be used as an alternative means of
input (a description of the characteristics of the tape in
put unit is included in Part II).

ACCUMULATOR

As indicated in the above diagram, the accumulator is
the central clearing-house: all keyboard entries go into it,
all results are printed from it, and the memory is loaded
from it and read into it. Transfer of information from the
accumulator to the memory, printer, or B Register leaves
the number in the accumulator. It remains there until it is
erased by an arithmetic operation or by another number
coming into the accumulator from the keyboard or mem
ory. The capacity of the accumulator is 12 decimal digits
plus sign. The decimal point is located eleven places from
the right (between the first and second digits on the left).

OUTPUT

The output unit of the ElOl is a very flexible semi
ganged printer that prints the full 12-digit number in the
accumulator in one operation. The flexibility of the print
er enables reports to be prepared in almost any desired
form. The printer is equipped with a carriage control
panel that determines in what form reports will be
printed. The control panel is set up in accordance with
customers' specifications by an ELECTRODATA field engi
neer, making it unnecessary for the programmer to pro
gram format control. An optional tape punch provides an
additional means of output. (A description of the tape
output unit is included in Part II.)

MEMORY

The E 101 has a magnetic drum memory with 100
memory locations numbered from 00 to 99; the
capacity of each location is 12 decimal digits plus sign.
The memory is used for the storage of numerical data
only (the program is externally stored in the pinboards).
Transfer of information from a memory address to the
accumulator leaves the number in the memory, where it
remains until it is erased by another number written into
that address (from the accumulator, or as a result of a
division). A 220-word memory is available as an option
al feature (a description of the 220-word memory ad
junct appears in Part II).

B REGISTER

The B Register is an additional data storage location,
used for a multiplier or a divisor. Once a number is trans
ferred into the B Register, it remains there until it is
erased by another number coming into the B Register
from the accumulator.
NOTE: The B Register, like the keyboard, holds an 11-
digit number while the memory, accumulator, and printer
each hold 12-digit numbers. As will be explained later,
the B Register is limited to 11 digits in order to prevent
the loss of significant figures in multiplication. The key
board is limited to 11 digits in accordance with the cus
tomary procedure of having one less digit in the keyboard
than in the accumulator. In both cases, the 11 digits cor
respond to the 11 least significant (right hand) digits of
the accumulator, the printed number, or a memory lo
cation.

E101 PROGRAMMING INSTRUCTIONS

This section contains detailed descriptive information
on the programming instructions for the basic E 1 01. It is
generally helpful to refer to the data flow diagram on p. 1
when learning the instructions, especially K, W, R, B,
and P.

Most instructions consist of three characters corres
ponding to the three areas of the pinboard. The address
portion of the instruction is designated as "ab," "a"
standing for the tens digit of the memory address and "b"
for the units digit.
NOTE: Sometimes the programmer will mistakenly call
for an instruction which generates an overflow. When
this occurs, one of the E 101 's internal checking circuits
halts the program and lights the.ALARM signal. For a
detailed description of the ALARM condition, and what
the operator must do to continue computation, see the
section on Checking Circuitry beginning on page 21.

PROGRAMMING INSTRUCTIONS
FOR THE BASIC E101

PINBOARD
AREA

1 2 3 OPERATION CARRIED OUT

K Keyboard-Halt the program, and light the
KEYBOARD signal. When one of the four
motor bars is depressed,
(a) transfer the number in the keyboard into

the 11 least significant (right hand) digit
positions in the accumulator, making the
most significant (leftmost) digit zero;

(b) if the minus bar is depressed, make the
number negative;

(c) print the number in the present carriage
position; and

(d) move the carriage to the next printing
postition, depending upon which one of
the four motor bars has been depressed.

K 0 Keyboard Non-Print·-Same as "K" except do
not print the number in the keyboard.

2

PINIOARD
AREA

1 2 3 OPERATION CARRIED OUT

W a b Write-Write the contents of the accumulator
into memory address "a b" after first erasing
old contents of "ab". Accumulator remains
unchanged.

R a b Read-Read the contents of memory address
"ab" into the accumulator after first erasing
old contents of accumulator. "ab" remains
unchanged.

B B Transfer-Transfer the contents of the ac-
cumulator into the B Register after first eras
ing old contents of B Register. Accumulator
remains unchanged.

NOTE: The capacity of the B Register is 11
digits. If the number transferring from the
accumulator to the B Register exceeds 11
digits, i.e., exceeds 0.999 999 999 99, the
ElOl alarms. This is a safeguard built into
the machine to prevent loss of significant
digits in multiplication. In multiplication, the
number in the B Register (< 1.0 X 10°) is
multiplied by the number in a specified me
mory address (which can be as large as
9.999 999 999 99 X 10°) leaving the answer
in the accumulator which, like the memory,
has a capacity for 12 digits or a number as
large as 9.999 999 999 99 X 10°. Since the
number in the B Register is less than 1.0 in
absolute value, the product cannot possibly
exceed 9.999 999 999 99 X 10°. If this safe
guard were not built into the ElOl, the ElOl
might be called upon to multiply a number
such as 4.000 000 000 00 in the B Register
by a number such as 9.000 000 000 00
in the memory resulting in a product of
36.000 000 000 00. Since the accumulator
has capacity for 12 digits with the decimal
point 11 places from the right, the "3" in the
answer would be lost.

P a Print-Print contents of the accumulator, using
motor bar "a". The pin for "a" is set at 1, 2,
3, or 4, depending on the carriage motion de
sired after printing has occurred. If no pin is
inserted for "a" in a P instruction, or if a
number which is not 1, 3, or 4 is pinned for
"a", the printer will automatically activate
motor bar 2. (As in the case of a keyboard
entry, the choice of motor bar depends on
what format is desired. A fuller explanation
of the motor bars is included in the section on
Operating the ElOl.) The accumulator re
mains unchanged. ·

P a 0 Non-Print-Same as "Pa" except do not print.
This "dummy print" instruction is used to
move the carriage to another printing posi
tion, without first printing.

P a * Print and Halt-Same as "Pa". The ElOl
halts after the printing and carriage motion
have occurred. (For a complete description
of the HALT condition, see the section on
Operating the ElOl.)

PINBOARD
AREA

I 2 3

+ a b

- a b

X a b

a b

A 1 b

OPERATION CARRIED OUT

Add-Add the contents of memory location
"a b" to the contents of the accumulator. The
sum appears in the accumulator; the number
in "a b" remains unchanged.
NOTE: If the sum exceeds the 12-digit ca
pacity of the accumulator (for example, if
6.000 000 000 00 in "a b" is added to
7.000 000 000 00 in the accumulator, result
ing in a sum of 13.000 000 000 00), the
E!Ol alarms, indicating that a "!"has been
lost. The number 3.000 000 000 00 appears
in the accumulator.

Subtract-Subtract the contents of "ab" from
the contents of the accumulator. The remain
der appears in the accumulator; the contents
of "a b" remains unchanged.
NOTE: Here again there is an alarm
if the answer exceeds the 12-digit capac
ity of the accumulator. (For example
if 6.000 000 000 00 is subtracted from
-8.000 000 000 00 in the accumulator, the
answer -14.000 000 000 00 would appear
in the accumulator as 4.000 000 000 00,
and the alarm would sound, indicating an
overflow.)

Multiply-Multiply the contents of the B Regis
ter by the contents of memory location "ab".
The product appears in the accumulator; the
contents of the B Register and of memory lo
cation "a b" remain unchanged. (As previ
ously explained, in multiplication the number
in the B Register must be less than 1.0 X 10°
in absolute value. In order to prevent error,
an alarm occurs if a "B'' instruction calls for
transfer of a number greater than or equal to
1.0 into the B Register. Multiplication is con
sequently an 11 digit by 12 digit operation.
The most significant 12 digits of the product
appear in the accumulator; round off of the
product does not occur automatically; the
least significant 1 I digits are computed but
not retained.)

Divide-Divide the contents of the accumulator
by the number in the B Register and store the
quotient in memory location "a b". The un
divided remainder appears in the accumulator
one place to the left of the divisor; the con
tents of the B Register remain unchanged.
(An alarm occurs if the absolute value of the
quotient is ;:::;;; 10.0 X 10° resulting in the loss
of significant digits.)

Shift Left-Shift the contents of the accumula
tor "b" places to the left, filling in zeros from
the right. Pinning O~b~ 10 selects the num
ber of places shifted. A I 0, calling for a
"shift" of 0 places, is a dummy instruction,
used where a filler step is required. If the
third area is left blank, or if any other number
is pinned for "b", a shift of ten places will oc-

3

PINBOARD
AREA

I 2 3

A 2 b

A 3

A 4

A 5

A *

U a b

u 0 b

U a *

C a b

OPERATION CARRIED OUT

cur. (This is an off-end shift instruction used
in extracting, scaling, positioning numbers
prior to printing, and zeroizing the accumu
lator. When a number is shifted out of the
accumulator by an A instruction, the loss of
digits does not cause an alarm.)

Shift Right-Shift the contents of the accumu
lator "b" places to the right, filling in zeros
from the left. (Like A 1 b, A 2 bis an off-end
shift instruction, where an overflow to the
right results in the loss of digits, but does not
cause an alarm.)

Absolute Value-Make contents of the ac
cumulator positive (regardless of former
sign).

Negative of Absolute Value-Make the con
tents of the accumulator negative (regardless
of former sign).

Change Sign-Change the sign of the con
tents of the accumulator.

Halt-Halt the machine. (This instruction is
frequently used to allow the operator to over
ride the program at strategic points in the
problem. To resume operation, the operator
depresses one of the nine START buttons on
the control panel which are illustrated and
explained in the section on "Operating the
ElOI.")

Unconditional Transfer-Execute the instruc
tion on pinboard "a", step "b". (The uncondi
tional transfer is used most frequently to
transfer back to the beginning of a loop of in
structions in order to iterate within the loop
i.e., repeat the instructions. It is also the
standard means of going from the last instruc
tion in one pinboard to another pinboard. If
the instruction in step 15 of a pinboard is not
an unconditional transfer, the program will go
to the first instruction-step 0-in the same
pinboard.)

Unconditional Transfer Within a Pinboard
Execute instruction "b" on the same pinboard.
(This instruction is helpful in the case of any
one-pinboard routine-e.g., loading or clear
ing-that is used frequently. By pinning a "O"
in the second area instead of a definite pin
board number, the operator can use the pin
board in any of the 8 pinboard positions with
out first changing this pin.)

Unconditional Transfer to Next Step on Pin
board "a"-Execute the instruction on pin
board "a" immediately following the last in
struction previously executed in pinboard "a".

Conditional Transfer-Execute the instruction
on pinboard "a'', step "b", if the contents of
the accumulator is negative; if not, continue
with the next step in the program. (Zero is
considered positive. If "a" and "b" are left
blank, the "C- -" will function normally when

PINBOARD
AREA

1 2 3 OPERATION CARRIED OUT

the contents of the accumulator is positive,
but will stop the program if the accumulator
is negative.)

C 0 b Same as "Cab" except stay in same pinboard on
transfer.

C a * Same as "C a b" except execute the instruction
on pinboard "a" immediately following the
last instruction previously executed in pin
board "a".

H 0 b Home E Switch { These are the automatic ad-
H 1 b Home F Switch dress modification instruc-
H 2 b Home E and F tions.Before.proceedingwith
S 0 b Step E Switch) their description (which
S 1 b Step F Switch starts on p. 5), and explana-
S 2 b Step E and F tion of the E and F switches

is given.

ADDRESS MODIFICATION

Automatic Address Modification
Automatic address modification is accomplished in the

ElOl by means of the E andF switches, which are two in
ternal stepping switches. Basically, they are nothing more
than counters. Each one is a 16-position switch that can
count from 0 up through 15.

0

There are two programming instructions used to con
trol each switch, one to set it at some initial position, and
another to step it ahead one position at a time. To differ
entiate between the E and F switches in these instruc
tions, we use the digit "O" to indicate the E switch and the
digit "1" to indicate the F switch: E = 0, F = 1. Each
switch can be set initially, or "homed," to any of its 16
positions by the "H" instruction, which is referred to as
the "homing" instruction. "H 0 4" for example, homes

509 s 1 3

4

the E switch to 4, while "H 1 6" homes the F switch to 6.
Each switch can be stepped ahead one position at a

time and told at what position to stop its counting by the
"S" instruction which is referred to as the "stepping"
instruction. "S 0 9," for example, steps the E switch once
each time the instruction is executed, stopping when E
passes 9. "S 1 3" steps the F switch one position at a
time stopping when F passes 3.

H 04 H16

The "S" instruction stops the counting by means of a
kind of conditional transfer. Recall that in the case of the

' unconditional transfer, "U," the ElOl always goes to
whatever program step is pinned along with the "U"
(e.g., U 8 12). In the case of the conditional transfer,
"C," the ElOl automatically goes on with the next in
struction in the program unless the number in the ac
cumulator is negative. It transfers to the program step
pinned along with the "C" (e.g., C 6 3) if, and only if,
the accumulator is negative.

The "S" instruction is similar to the "C" in that it, to<?,
is a conditional transfer. But the "S" instruction is more
complex: first it advances the switch one position, then
it looks at the pin in its third area to see if the switch has
just passed the value pinned. As long as the switch has
not just passed the limit pinned at "b," the program goes
on to the next instruction in the pinboard. However, when
the execution of the "S" instruction steps the switch past
the limit which is pinned, the EI 01 skips the next instruc
tion in the program and transfers instead to the instruc
tion after the next instruction.

The "S" instruction is normally used in a block of steps
which are repeated, called a "loop." The step after the
"S" instruction is generally a "U" instruction which
transfers back to the beginning of the loop to repeat the
instructions (or to "iterate"). Each time through the
loop, the "S" instruction steps the E or F switch (depend
ing on which is called for) one position. The "U" instruc
tion then takes the E 101 back to the beginning of the loop
to repeat the instructions. When E (or F) reaches the
limit that is pinned (for example, when E reaches 9 in the
case of the instruction "S 0 9"), the ElOI again proceeds
to the "U" instruction which takes the El 01 back to re
peat the loop. However, the next time the ElOl comes to
the "S" instruction, it steps E from 9 to JO; at this point
it skips the "U" instruction and goes on with the rest of
the program.

Although the E and F switches are sometimes used
simply as counters, their most powerful feature is the fact

that the ElOl can use the numbers at which the switches
are set as the address in an instruction. In referring to the
switch settings, we use the symbols "E" and "F." They
can be used singly or in combination. The instruction
"REF," for example, tells the ElOl to read into the ac
cumulator the number which is stored in the memory
location whose tens digit is to be found at the E switch
setting, and whose units digit is the position of the F
switch. The instruction "W 6 F" tells the ElOl to write
the contents of the accumulator into memory location
6 F, where F is the position at which the F switch is set.
While E is generally used in the tens position and F in the
units position, E can be used in either or both positions
(e.g., WE F, - E 8, R 9 E, x EE).

The primary use of the E and F switches is to modify
the addresses of instructions in a program automatically.
The "H" instruction allows us to begin our address se
quencing where we wish (usually at zero), and the "S"
instruction enables us to advance through the sequence
one step at a time. Although the E and F switches are 16-
position counters, only the first ten positions (0 through
9) are used for automatic address modification. The next
section, "Sample Programs," contains several illustra
tions of the use of the E and F switches in automatic ad
dress modification.

E and F, while generally used to denote an address in
the memory, are not confined to this function. They may
be used in the second and third areas of any instruction
in place of specific numbers. The ElOl will automatically
substitute the setting of the switch for the symbol "E" or
"F." As an example, the instruction, "U E *," is frequent
ly used to return from a pinboard containing a subroutine
to the main part of the program. Before transferring to
the subroutine from one of several pinboards, the E
switch is homed to the position corresponding to that
pinboard number. The last instruction in the subroutine,
"U E *,"automatically returns the ElOl to the next in
struction on pinboard E, which is the pinboard from
which the transfer to the subroutine was made. "CE*,"
can be used in a similar fashion.

MANUAL ADDRESS MODIFICATION

Manual address modification is accomplished in the
El 01 by means of the X and Y keys on the left side of the
keyboard (illustrated in the section on Operating the
ElOl). Pinning "X" for "a" or "Y" for "b" in any in
struction (similar to pinning "E" or "F") sends the ElOl
to the appropriate keyboard setting of the X or Y keys for
that particular value of "a" or b." One of the principal
uses of the X and Y keys is to allow the operator random
access to any location in the memory.

Just as in the case of the E and F switches, "X" and
"Y" are used primarily for address modification but may
be used with any instruction as variables in the second
and third areas of the pinboard. Remember that there are
ten X and ten Y keys: 00 ~ XY;;;; 99.

5

PIN BOARD
AREA ADDRESS MODIFICATION INSTRUCTIONS

1 2 3

H 0 b Home E Switch-Home the E switch to posi
tion "b".

H 1 b Home F Switch-Home the F switch to posi
tion "b".

H 2 b Home E and Move i:-Home the E switch to
"b'', advancing F in tandem with E. (This in
struction advances E and F an equal number
of steps but does not necessarily home them
to the same location unless they were both at
the same location initially.)

S 0 b Step E Switch-Step the E switch once; then if
the switch setting E =I= b + 1, execute the next
instruction; if E = b + 1, skip the next in
struction, and instead execute the instruction
after the next instruction. (Since E is a 16-
position switch, if stepped while in position 15,
it will go to its position 0. If b is left blank, the
S instruction will step the switch, but will
never skip the next instruction; that is, in the
absence of a "b" pin, it will always execute
the next instruction.)

S 1 b Step F Switch-Same, but using F switch.
S 2 b Step E and F-Same using E and F switches.

Skip the next instruction when E passes "b".
E F Execute the instruction pinned in the first area

(for example, W, R, +, -), using the E
switch setting as the tens digit and the F
switch setting as the units digit of the address.

_ E b Execute the instruction pinned in the first area,
using the E switch setting as the tens digit of
the address.

a E Execute the instruction pinned in the first area,
using the E switch setting as the units digit of
the address.

_ E E Execute the instruction pinned in the first area,
using the E switch setting as both the tens and
units digits of the address.

_ a F Execute the instruction pinned in the first area,
using the F switch setting as the units digit of
the address.

_ X Y Execute the instruction pinned in the first area
(for example, W, R, +, -) , using the key
board setting for X as the tens digit, and the
keyboard setting for Y as the units digit of the
address.

X b Execute the instruction pinned in the first area,
using the keyboard setting for X as the tens
digit of the address.

a Execute the instruction pinned in the first area,
using the keyboard setting for Y as the units
digit of the address. ·

U E * Execute the instruction on pin board E (corre
sponding to the E switch setting) immediately
following the last instruction previously exe
cuted there.

C E * Execute the instruction on pin board E (corre
sponding to the E switch setting) immediately
following the last instruction previously exe
cuted there if the contents of the accumulator

is negative. If not, go to the next instruction
in the program.

SAMPLE PROGRAMS
This section contains sample programs which the read

er can use as a means of reviewing the programming in
structions given in the preceding section. We have in
cluded a few "homework" problems at the end for anyone
who wants additional practice. The "answers" can be
found in the Appendix.

1) y=ax2 +b

0 K
1 w 0 0
2 K
3 w 0 1
4 K
5 B
6 x 0 0
7 w 0 2
8 x 0 2
9 + 0 1

IO P 1
11 u 0 4

Enter a in keyboard
Write a into memory location 00
Enter b in keyboard
Write b into memory location 01
Enter x in keyboard
Store x in B Register
Multiply a by x
Write ax into memory location 02
Multiply ax by x
Add b to ax2

Print ax2 + b (using motor bar 1)
Transfer back to step 4 of this pinboard

a
2) Y = x - x2

0 K
1 K 0 0
2 K
3 WO
4 B
5 x 0 1
6 B
7 R 0 0

8 0 2

9 R 0 1

Enter a in keyboard
Write a into memory location 00
Enter x in keyboard
Write x into memory location 01
Store x in B Register
Multiply x by x
Store x2 in B Register
Read a out of memory location 00 into

accumulator
Divide a by x2 ; store quotient in memory

location 02
Read x out of memory location 01 into

accumulator

10 0 2 Subtract __!!___ from x
x2

11 P 1 Print x - __!!___ (using motor bar 1)
x"

12 U 0 2 Transfer back to step 2

3) Clear (i.e., erase contents of) memory locations 14,
16, 23 and 39:

0 R 9 9 Read contents of memory location 99.into
accumulator

1 - 9 9 Subtract contents of memory location 99
from accumulator (leaving zero).

2 W 1 4 Write contents of accumulator (zero)
into memory location 14

3 W 1 6 Write contents of accumulator into
memory location 16

4 W 2 3 Write contents of accumulator into
memory location 23

5 W 3 9 Write contents of accumulator into
memory location 39

6

6 NOTE: The choice of location 99 in steps 0
and 1 is arbitrary: any location will do
as well.

Another way of programming this problem is as follows:

0 A 2 6 Shift contents of accumulator 6 places to the
right (leaving zeros in the 6 digit positions
at the left).

A 2 6 Shift contents of accumulator 6 places to the
right (leaving zeros in all 12 digit posi
tions).

2 w 1 4 } 3 w 1 6
4 W 2 3 Same as above
5 w 3 9
6

Steps 0 and 1 could just as easily have been A 1 6 and
A 1 6 (shift left). Still another way of programming this
problem is as follows:

0 K Enter zero in keyboard. (This is done by
touching a motor bar without indexing a
number on the keyboard.)

1 w 1 4 } 2 w 1 6
3 W 2 3 Same as above
4 w 3 9
5

This method uses one foss step than the others, but re-
quires operator participation.

4) Print contents of memory locations 40 to 49 without
using the E or F switch:

Pinboard #1

0 R 4 0 Read contents of memory location 40
into accumulator.

p 2 Print contents of accumulator using
motor bar 2.

2 R 4 Read contents of 41 into accumulator.
3 p 2 Print.
4 R 4 2 Read contents of 42 into accumulator.
5 p 2 Print.
6 R 4 3 Read contents of 43 into accumulator.
7 p 2 Print.
8 R 4 4 Read contents of 44 into accumulator.
9 p 2 Print.

IO R 4 5 Read contents of 45 into accumulator.
11 p 2 Print.
12 R 4 6 Read contents of 46 into accumulator.
13 p 2 Print.
14 R 4 7 Read contents of 47 into accumulator.
15 u 2 0 Transfer to pinboard 2, step 0.

Pinboard #2

0 p 2 Print.
1 R 4 8 Read contents of 48 into accumulator.
2 p 2 Print.
3 R 4 9 Read contents of 49 into accumulator.
4 p 2 Print.
5

(Total of 21 steps.)

5) Print contents of memory locations 40 to 49 using
F switch.

0 H 1 0
1 R 4 F

2 p 2

3 s 1 9

4 u 0 1
5

Home the F switch to zero.
Read out contents of memory location 4F

where F is the setting on the F switch.
(The first time through the routine F will
be O; the next time it will be 1, then 2, etc.)

Print the contents of accumulator using motor
bar 2.

Step the F switch. As long as F doesn't pass 9,
go to the next instruction; when F passes 9,
skip the next instruction and go on to in
struction 5. (The first time through the
routine S 1 9 will step F from 0 to 1 ; the
next time from 1 to 2, etc.)

Transfer back to step 1.

(Total of only 5 steps compared to 21 steps in pre
vious routine.)

6) Load 50 constants into memory locations 00 to 49:

0 H 0 0
1 H 1 0
2 K
3 WEF

4 s 1 9

5 u 0 2
6 s 0 4

7 u 0 1

8

Home the E switch to zero.
Home the F switch to zero.
Enter constant in keyboard.
Write into memory location EF (where

E = setting of E switch and F = setting of
F switch).

Step the F switch; if F =I= 10, go to next in
struction. When F = 10, skip the next in
struction and go to step 6. (Each time the
ElOl reaches the S 1 9 instruction, F is
increased by 1. Notice that E does not
change as long as the program remains in
the F loop. The first time through the rou
tine the . constant will be written into 00;
the next time in 01, then in 02, etc. After
the 10th constant has been written into 09,
the El 0 l will skip the U instruction in
step 5 and go on to step 6.)

Transfer back to step 2.
Step the E switch once each time the El 0 I

comes to this instruction (once every I 0
keyboard entries). After E passes 4, skip
to instruction 8.

Transfer back to step 1 where F switch is
again homed to zero.

(Eis homed only at the beginning.)

PRACTICE PROBLEMS
I. Load 10 constants into memory locations 70 to 79 as

follows:
a) without using E or F switch
b) using F switch
c) using E switch

2. Enter a constant through the keyboard and store it in
the B Register. Enter 10 numbers through the key
board and store them in memory locations 00 to 09.
Divide each one by the constant stored in the B Regis-

7

ter and store the quotients in memory locations 20 to
29. Do this problem two ways:

a) without using E or F switch
b) using F switch

3. Enter 10 numbers through the keyboard and store
them in-memory locations 80 to 89. As they are en
tered, accumulate their total in memory location 99.
Print out the final total.

4. Clear memory locations 00 to 39.

Answers

There are sometimes several ways in which a problem
can be programmed. One method suggested for program
ming each one of the above problems can be found in the
Appendix at the back of the Manual.

OPERATING THE E101
Anyone who has operated a desk calculator or ac

counting machine can be taught to operate the ElOl with
just a few hours of instruction. In some ElOl installa
tions, the computer is operated by personnel with little or
no programming experience. A manual entitled Hand
book of Operating Instructions for the ELECTRODATA
101 explains in detail how to run problems off on the
machine, and yet assumes no knowledge of programming.

But although the ElOl programmer need never be
come an expert operator, he must be able to debug his
own programs, and to specify clearly to others how his
problems must be run. The more he knows about the
ElOl 's input, manual control, and output features, the
better will he be able to save program steps and minimize
running time. For these reasons, a thorough reading of
Handbook of Operating Instructions for the ELECTRO
DATA 101 is recommended. For the purposes of this
Manual, however, the following remarks will suffice.

The ElOl stops for a keyboard entry at each "K" in
struction in the program. The operator enters the number
through the 11-column full keyboard as if he were oper
ating an adding machine. If the number is negative, he
depresses the minus bar at the extreme right of the key
board. To complete the operation, he touches one of the
four motor bars located on the right of the 11 digits.
Touching the motor bar does three things: puts the num
ber into the ElOl accumulator, prints it on the report (in
red if negative), and moves the carriage to the next print
ing position. The position to which the carriage moves
depends on which motor bar is touched.

The operator must use a motor bar every time the
EIOl calls for a keyboard entry. The programmer must
not only specify to the operator which motor bars he is to
use, but must also tell the EJOJ which motor bar to em
ploy each time it prints out a number from its accumu
lator.

When a motor bar is activated, the EIOl prints. In
general, the carriage motions which occur after printing
are as follows :

MOTOR BAR

1

2
3
4

CARRIAGE MOTION

space vertically and return to
left (to column 1)
move to next tab stop to the right
space vertically
tab to the right, skipping one or

more columns

These basic functions can be altered to meet the vary
ing format requirements of each problem: one motor bar
can produce the carriage motion typical of another, the
carriage can be made to move to the left, and so forth. An
interchangeable control panel, which fits into the moving
carriage, is set mechanically to call for four different col
umnar arrangements, and to override the basic motor bar
functions in those columns where needed. A general pur
pose control panel is supplied with each EIOl; it can be
changed, or additional control panels can be kept on hand
for unlimited format flexibility.

As an example of how the motor bars are used, con
sider a problem in which the operator indexes values of x
through the keyboard and the ElOl computes the corres
ponding values of y and prints them next to the values of
x: we want to end up with two vertical columns, "x" and
"y." The operator would touch motor bar 2 after enter
ing each value of x, thereby moving the carriage horizon
tally to the next column. When y has been calculated, the
struction for its print-out would be pinned as P 1 _; this
would print the value of y next to the corresponding value
of x, space vertically and return the carriage to the left so
that it is in position for a new value of x.

ZERO SUPPRESSION

The "Full Print" lever at the back of the keyboard on
the right is used by the operator to suppress zeros in key
boards entries and printed results when desired. As long
as the lever is in the forward position (marked "Full
Print") the complete 12-digit number in the accumulator
prints on the report (e.g., 0 000 000 638 20). When the
operator moves the lever to the rear position (away from
the operator), all zeros to the left of the first significant
digit are suppressed (e.g., 638 20).

X ANDY KEYS

The small dark keys in the first two columns on the left
of the keyboard are the X and Y keys used primarily for
manual address modification. When X and Y are pinned

8

in a program instead of a definite memory address, the
operator determines which memory address the El 01
should use by depressing a key in the X column (at the
extreme left) and one in the Y column. The EIOl uses
these values in the program wherever X and Y are called
for until the operator sets up new values in the X and Y
keys-usually at the time of a keyboard entry or halt in
struction. The X and Y keys remain set through all key
board entries and printings; they·can be cleared only from
their own individual clear keys at the top of each column.

CROSS FOOTERS

Included as standard equipment in each EIOl key
board-printer are two mechanical crossfooters which can
be used to accumulate input data and printed results inde
pendent of the E 101 accumulator and pin board program.
They are discussed uncler the headi11g. of. "Extra. Regis
ters" in part II of this Manual. The two rows of keys be
tween the four motor bars and the ElOl minus bar are
used to total (*),sub-total (·),non-add (#),and sub
tract from (-) the crossfooters, under manual control.

START BUTTONS

The ElOl has been designed so that computation can
be stopped at any point to allow human judgment to be
brought to bear on the problem where required. At such
points, the operator can decide what part of the problem
the ElOl should solve next, enter new numbers, etc.
Trial-and-error problems are especially well-suited to
the ElOl because of this feature.

When programming a problem of this nature, the pro
grammer calls for halt instructions (A_ * or P a *) at
strategic points in the problem. When the EIOl reaches
a halt instruction, the program stops while the operator
examines the results up to that point and decides what
action to take. To resume operation, the operator touches
one of the nine ST ART buttons on the left of the neon
lights. The first eight buttons are numbered from 1 to 8
and correspond to the eight pinboards. Touching any one
of these buttons sends the E 101 to the first instruction on
the corresponding pinboard for its next instruction. The
9th START button, marked "R," is called the REGU
LAR START button; it sends the EIOl to the next in
struction in the program following the halt instruction.

As an example of how this feature may be used, an
engineer might be running a trial-and-error design prob
lem involving a number of design parameters. By pro
gramming a halt instruction at the proper place, he can
examine the results at that point and decide whether to
go on with the computation (in which case he would
probably touch the REGULAR ST ART button), wheth
er to go back to the beginning of the problem and try a
new parameter (in which case he might touch START
button 1) or whether to skip ahead to the final print-out
instructions on the last pinboard (in which case he would
touch ST ART button 8) .

CD ALARM LIGHT

START 0 BUTTONS
1-8

(,;\ REGULAR
\.V START BUTTON

STEPPING
SWITCH

INDICATOR
BUTTONS

NEON PINBOARD
AND STEP LIGHTS

MANUAL INSTRUCTION
DIALS

@OFF-ON KEY

(;\ NORMAL-SINGLE
\.::_; TOGGLE SWITCH

f?\ PIN-MAN
\.V TOGGLE SWITCH

E101 CONTROL PANEL

1. ALARM light-lights up when ElOl stops under
certain conditions such as accumulator overflow.

2. START buttons l to 8-send ElOl to first instruc
tion on pinboards 1 to 8 respectively.

3. REGULAR START button:
under PINBOARD control, NORMAL operation,

it restarts the program at the next pinboard step;
under PINBOARD control, SINGLE operation,

it executes the next pinboard step;
under MANUAL control, it executes whatever in

struction has been set up in the Manual Instruc
tion dial switches.

4. NORMAL/SINGLE toggle switch-in NORMAL
position, ElOl executes each pinboard step in se
quence automatically; in SINGLE position, ElOl
executes one pinboard instruction at a time; used
to stop automatic computation.

5. PIN/MAN toggle switch-In PIN position, EIOI
takes its instructions from the pinboards; in MAN
position, ElOl executes the instructions set up in
Manual Instruction dials.

6. HALT light-lights up when EI 0 I stops at a halt
instruction or an alarm.

9

7. KEYBOARD light-lights up when ElOl stops at a
keyboard instruction.

8. Neon pinboard and step lights-Indicate pinboard
number (left column) and step number (right col
umn) of instruction being followed.

9. CLEAR button-halts the machine, clears the in
struction flip-flop, and turns on the HALT light;
used to allow operator to re-start computation
after ALARM (it turns off the ALARM light and
gong), or machine standstill.

I 0. Manual Instruction dials-allow operator to execute
instructions manually, (i.e., independent of the
pinboard).

11. READY light-indicates ElOl is ready for opera
tion.

12. OFF-ON key-turns ElOl "on" and "off."
13. WAIT light-indicates ElOl is "on," but is warm

ing up.
14. STEPPING SWITCH INDICATOR BUTTONS

permit operator to read E or F switch positions
from neon step lights when machine has momen
tarily halted; depressing both E and F buttons to
gether reads out band switch setting.

15. CHECK CIRCUIT INDICATORS-light up when
circuit malfunction occurs.

Single Step and Manual Operation
Sometimes, especially when checking out, or debug

ging, a program, it is helpful to run through the instruc
tions in the program one step at a time, stopping after
each one before going on to the next. It is also helpful at
times to execute instructions manually that are not called
for in the program. Both of these operations-Single
Step and Manual--can be performed on the ElOl with
out disturbing the pinboard program. The controls used
for these operations are the REGULAR START button,
the toggle switches on the lower left of the control panel,
and the Manual Instruction dials in the center. The three
Manual Instruction dials correspond to the three areas of
the pinboards and can be used to execute manually any
instruction that can be pinned in the pinboards. They are
particularly helpful in printing out intermediate results
not called for in the original program. Because Single
Step and Manual operations are used primarily in debug
ging a program, they are discussed in detail in the section
on debugging in part III.

PROGRAMMING FORMS
In programming a problem for the E 101, it is helpful

to use the forms in this section. The first of these is the
ElOl Programming Sheet on which the programmer lists
the instructions. It contains three columns for each pin
board: one for the instructions, one for scaling factor,
and one for brief descriptive information.

When the program is complete, the programmer usu
ally prepares a pre-punched paper template for each pin
board. Using a pencil or ink stamp, he marks the positions
where the pins are to be placed. (The eraser end of a
pencil inked on a stamp pad does the job nicely.) The
templates are then laid over the pinboards and the pins
dropped in place. The templates serve a dual purpose:
they provide a permanent file copy of the program, which
can be re-pinned in a few minutes, and they virtually
eliminate p\nning errors.

The EJOJ 100-Word Memory Map is a 10 x 10 array
of blocks, one for each memory location. When program
ming a problem, especially one of any complexity, it is
helpful to record on the memory map what is to be stored
in each memory location. In addition to the actual num
ber stored, information on scaling, initial clearing, inter
mediate changes, etc., is often included.

The EJOJ 220-Word Memory Map is used with the
220-word optional expanded memory. It shows the 22 X

1 O blocks divided into the various bands.
An essential form filled out by the programmer is the

Operating Instructions Sheet which explains in detail to
any operator exactly what to do when running the prob
lem. It includes the motor bar to be used with each key
board entry, the START button to be depressed after
each halt instruction, settings for the X and Y keys, etc.
The Operating Instructions Sheet is indispensable to any
one attempting to run the problem without assistance
from the person who programmed it originally.

0 I Z 3 4 5 6 7 I 9 E X 0 I 2 3 4 5 & 7 I 9 10 II 12 13 14 15 E F Y ~:· V

15

Template

10

0

I

z
3
4
5

6
7

•
9

............... ~ +-4 t-4~+-4p-4...,...+-4~ 10
II

..... ~ -+t ~ ~ +-4t4 +-4P'-12
13

..... .-<!l ~ ~ +.-4 +-4,... 14

15
0 I

Problem _________ _

3

E 101 1DD WORD MEMORY MAP

FbY

Paga No·--------p.....,,...,.._ ____________ _

6

E101 100-Word Memory Map

ELECTRODATA 101 Problem Progromm.er Dato Page No.

Program Sheet

PB PB PB PB

10 IO 10

II 11 II 11

12 12 12 ,.
13 13 13

14 14 14 14

15 15 " 15

PB PB PB PB

..
10 10 10 10

II II II II

12 12 12 12

13 13 13 13

14 ..
IS 15 15

E 101 Programming Sheet

11

OPERATING INSTRUCTIONS SHEET

ELECTRODATA 101

PROBLEM PROGRAMMED BY

PIN BOARDS PRINTING SPECIAL INSTRUCTIONS START
SET- SCHEDULE BUTTON

UP

PIN BOARD KEYBOARD ENTRY
SIGNAL

AND PINBOARD CHANGES, MANUAL INSTRUCTIONS, ETC.
START

(K, H) STEP BUTTON x y NUMBER MOTOR
BAR

ED-1278 1-117

PART II-OPTIONAL ADJUNCTS TO THE E101

Here in Part II we discuss the optional adjuncts to the
ElOl, emphasizing the additional programming instruc
tions that are involved in using the adjuncts.

PUNCHED TAPE INPUT UNIT
The ElOl Tape Input Unit is an optional accessory to

the ElOl for reading and decodiqg punched paper tape.
Both data and program instructions can be punched into
the tape, thus providing a means of automatic data input,
and a supplement to the pinboard program. The Tape
Input Unit is housed in a small cabinet that normally
stands in front of the ElOl toward the left side. Jn this
position a person sitting at the ElOl can change tapes
and operate the Tape Unit as conveniently as changing
pinboards on the computer itself.

8-Channel tape is considered to be standard with the
El 01. It offers convenience in tape preparation and pro
vides a parity-check channel which checks the reading of
each tape character into the ElOl. 5-Channel tape can
also be handled, and special arrangements can be made
for handling 6 or 7 channel tape.

The Tape Input Unit extends the capabilities of the
El 01 in several ways. First of all, it supplements or re
places keyboard entry by providing an .automatic means
of loading constants into the memory and entering vari-:
able data. Secondly, it augments the capacity of the mem
ory by making data available in those situations where
constants can be used in a fixed sequence. Thirdly, it sup
plements the capacity of the pinboards. And fourthly, it
supplies data, constants and instructions from the same
tape.

When the Tape Input Unit is to be used for automatic
entry of data, the tape is prepared by punching each num
ber on tape in sequence. A number may be of any length
between 1 and 12 digits. The ElOl automatically fills in
with zeros to make each number a 12-digit word. Notice
that the tape unit permits filling the entire 12 digits of the
accumulator while keyboard input permits filling 11
digits. The number is read into the ElOl accumulator
with the least significant digit all the way to the right of
the accumulator.

When the Tape Input Unit is to be used for supple
mentary program steps, the tape is prepared using essen
tially the same instruction code as used in the pinboards.
The only difference is that every tape instruction must
consist of 3 characters. Where necessary, "ones" are filled
in (for example, "K11" and "B11 "). Instruction tapes
are frequently spliced to form a continuous loop.

The details of preparing tapes for the ElOl and oper
ating the Tape Input Unit are covered in a separate bro
chure devoted to the Tape Input Unit-here we shall
cover only those aspects of the Tape Input Unit that affect
programming.

In programming a problem that involves tape input,
the programmer has available two additional pinboard

13

instructions: one for reading data only into the ElOl,
and one for reading instructions only or instructions
mixed with data.

PINBOARD
AREA TAPE INPUT INSTRUCTIONS

1 2. 3

T 12 Tape Read-Read the next number on tape
into the accumulator and then continue with
the next pinboard instruction. (Control re
mains in the pinboards.)

T 11 Tape Transfer-Transfer control to tape, exe-
cuting each instruction on tape in sequence
until control is returned to the pinboards by
a "U" or "C" instruction on tape. (At any
step in the pinboards control can be trans
ferred to the tape. When a data word is en
countered among the instructions, it is auto
matically read into the ·accumulator without
leaving tape control; no additional instruc
tions need be programmed for this to occur.
After reading in a data word, the program
simply continues to execute the instructions
on the tape. Control is returned to the pin
boards only by a "U" or "C" transfer on the
tape, to any step in any pinboard.)

PUNCHED TAPE OUTPUT UNIT
The ElOl Tape Output Unit is the newest adjunct to

the ElOl line. It is an extremely flexible unit that works
in conjunction with the ElOl printer, punching whatever
information is desired. The punched paper tapes pro
duced by the Tape Output Unit can be used in any of the
following ways:

1. Re-entry into the ElOl,
2. Re-entry into any standard electronic computer

with punched tape input, and
3. Conversion to punched cards on any standard tape

to-card equipment.

The Tape Output Unit can be activated at the time of
any print ("P") or keyboard ("K") instruction. The
number in the accumulator can be printed without punch
ing, it can be punched without printing, or printing and
punching can occur simultaneously. One or more identi
fying characters can be punched along with the number
if desired. These characters can be fixed information such
as "Begin Word" codes designating the beginning of a
number, special codes required for tape-to-card conver
sion, characters needed for punching program instruc
tions, etc. The characters are controlled by a "plug-in"
feature of the tape unit that permits the incorporation of
a number of choices of fixed information to be punched
in any punching operation.

In programming, alternative punch programs are se
lected by a pin in the 3rd area on "P" and "K" instruc
tions in the pinboards. The programmer calls for a

"P a b" or "K _ b" instruction that ties in with the "plug
in" feature of the tape unit and determines what character
or characters, if any, will punch into the tape along with
the contents of the accumulator. Further details on pro
gramming this new unit will be available in the near
future.

EXPANDED MEMORY

The expanded memory adjunct to the ElOl provides
for 220 words of data storage instead of the standard 100
(each number consisting of 12 decimal digits plus sign).

The 220-word memory may be thought of as consist
ing of 5 bands on the drum: one permanent or "heart"
band of 60 memory locations, and four "switchable"
bands, each of 40 memory locations, which are selected
by the program as needed. The permanent band is always
available for use at any point in the program; only one of
the four switchable bands, however, can be selected for
use at one time. This may be compared to two storage
cabinets standing side by side, the first with one large
compartment and the second with four separate drawers.
Since there are no drawers to open or close in the first
cabinet, all parts of it can be reached at one time. In the
second cabinet, however, only one drawer is accessible at
any one time. All four drawers, of course, can be used for
storage, but material can be placed in or removed from
only one drawer at a time.

The four 40-word bands are designated 0, 1, 2 and 3.
Each one contains memory addresses 00 to 39. Data,
therefore, can be stored in memory address 23, band 0,
or in memory address 23, band 1, band 2 or band 3. The
memory locations in the heart band are numbered from
40 to 99 without reference to band number.

When programming a problem for the expanded mem
ory E 101, the programmer uses the same instructions as
for the 100-word memory ElOl: "W ab," Rab,"
"+ab," etc. When memory addresses 40 to 99 are called
for, the ElOl automatically uses the heart band. When
00 to 39 are called for, it uses the band corresponding to
the setting of the band switch. · This is an automatic
switch, called the M switch, similar to the E and F switch
es. It can be set initially by the instruction "H 3 b" which
homes M to position "b" (0, 1, 2 or 3) and can be
stepped automatically (in the same manner as E and F)
by the instruction "S 3 b," where "b" is the upper limit.

As long as a problem requires no more than
l 00 memory locations, there is no need to se
lect one of the four bands; the band selector
switch is always set at one of its four positions,
and which band is being used is irrelevant as
long as the program does not call for a change
in the band switch setting. It follows that any
program which can be run on the 100-word
ElOl can be run without change on a 220-
word ElOl.

14

When utilizing more than 100 locations, the "H 3 b"
and "S 3 b" instructions are used to start in the proper
band and to go from one band to the next.

Obviously, the expanded memory ElOl is a more
powerful computing tool than the 100-word machine.
But it is important to recognize that the superiority of the
220-word ElOl stems from two quite different sources:
memory capacity and control. While the extra bands on
the drum permit the solution of problems requiring in
creased storage capacity, the extra band switch provides
a third level of switch control. Experience has shown that
the logical structure of many problems requires the extra
control provided by the M switch of the 220-word ma
chine, even though the storage requirements are well
within the capacity of the 100-word E 101. For example,
when both the sine and cosine of an angle must be com
puted, a single loop can be used for both jobs, if the con
stants for the sine and cosine subroutines are stored in the
corresponding memory locations of two of the bands.

PINBOARD
AREA EXPANDED MEMORY INSTRUCTIONS

I 2 3

H 3 b Home Band Switch-Home the band switch to
position "b"; 0 :;;:;; b :;;:;; 3. (This instruction
may be used similar to "H 0 b" or "H I b" to
home the M switch prior to stepping it, or
it may be used merely to select one of the four
40-word bands. "Y" may be pinned in the 3rd
area instead of a definite number, allowing the
operator to select the band manually by means
of the Y keys on the keyboard.)

S 3 b Step Band Switch-Step the band switch once;
if M =I= b + I, then execute the next instruc
tion. If M = b + I, skip the next instruction
and execute the instruction after the next in
struction (0 :;;:;; b :;;:;; 3).

H 4 Accumulator Setting of E Switch-Increase
the E switch setting by the number in the least
significant digit position of the accumulator.
(Since "H 4" increases the setting of the E
switch, the .usual way of homing the E switch
to the least significant digit of the accumulator
is to first home it to zero by the instruction
"H 0 O" and then increase it to the number in
the accumulator by the instruction "H 4.")

H 5 Accumulator Setting of F Switch-Same using
F switch.

H 6 Accumulator Setting of E and F-Same using
EandF.

H 7 Accumulator Setting of Band Switch-Same
_using M switch.

Included as standard equipment with the 220-word
memory ElOl is the ability to home the band switch and
the E and F switches to a number in the ElOl accumu
lator. This ability to allow the program steps to make use
of numbers in the memory is not available in the basic
E101 except as an optional adjunct (see next section).

0

2

3

0

2

3

0

2

3

0

El 01 220-WORD MEMORY MAP Page No, _____ _

Problem Programmer __________ _

0 2 3 4
Band

Band

Band

Band

5 6 7 8 9

2
1------1------1------1-----1-----+-----1-------l!------+----+----~

3

4

5

6

8

9

15

ACCUMULATOR SETTING
OF E AND F SWITCHES

As explained in the section on the expanded memory,
the ability to set the E, F and band switches from the least
significant digit of the accumulator is standard with the
220-word memory ElOl. The same feature (without the
band switch) is available as an optional adjunct to the
l 00-word machine.

There are a number of places where this feature can be
used to advantage, particularly in those problems where
greater flexibility in the use of the E and F switches is de
sired. One important use is in distribution, both through
the keyboard and via punched tape.

When distributing data through the keyboard to ran
dom memory addresses, the programmer has a choice of
having the operator depress X and Y keys to designate
the address, or having the operator index the address in
the two right hand columns of the main keyboard along
with the data. In the latter case, the address would appear
in the accumulator all the way to the right with the units
digit in the least significant place and the tens digit one
place to the left. The F switch can be set to agree with the
units digit of the address immediately. Then the entire
number in the accumulator can be shifted one place to the
right and the E switch set to the tens digit. One advantage
of using this method of random address selection over the
use of X and Y is that the address, which frequently cor
responds to a code number, prints on the printed report
along with the data. A cipher split can be set up in the
carriage control panel so that there is space between the
number and the address in the desired column.

When ·data coming in on punched tape is distributed
to random memory addresses, the programmer has a
choice of following each piece of data with a "W a b"
instruction, or including the address as the right-hand
portion of the number and thereby setting the E and F
switches by means of this special feature. A complete
program for random distribution from tape appears in
Part III. This method is frequently used when the address
corresponds to a code number and thus forms a natural
part of the number itself. Tape preparation is also faster
when the address is included with the number rather than
in a separate "W ab" instruction.

PINBOARD
AREA

1 2 3

H 4

Instructions for Accumulator ~etting
of E and F Switches

Accumulator Setting of E Switch-Increase
the E switch setting by the number in the least
significant digit of the accumulator. (Since
"H 4" increases the setting of the E switch,
the usual way of homing the E switch to the
least significant digit of the accumulator is to
first home it to zero by the instruction "H O O"
and then increase it to the number in the ac
cumulator by the instruction "H 4".)

16

PINBOARD
AREA

[H

H

Instructions for Accumulator Setting
of E and F Switches

Accumulator Setting of F Switch-Same using
F switch.

Accumulator Setting of E and F-Same using
E and F.

EXTRA MECHANICAL REGISTERS

The basic ElOl contains two mechanical crossfooters,
described briefly in Part I, which are used to accumulate
input and output data under the control of the carriage
control panel (the same panel that controls columnar
spacing, and governs the functions of the four motor
bars). The control panel is set up in accordance with cus
tomers' specifications so that figures printing in each col
umn of the report add into, subtract from, or non-add
(have no effect on) one or both of the crossfooters. They
are designated as crossfooter A and crossfooter B and
operate independently of the ElOl accumulator and pro
gram instructions.

For those problems where it is helpful to have more
than two standard crossfooters, there are available as
optional adjuncts either four or nine registers in place of
crossfooter B. The three combinations, therefore, are
crossfooter A and crossfooter B (standard) , crossfooter
A and 4 registers (optional) , and crossfooter A and 9
registers (also optional) .

In each printing position, or column, crossfooter A
and any one of the registers can be selected for accumula
tion. It might be decided, for example, to add into cross
footer A and register 4 in column 1, to add into cross
footer A and subtract from register 3 in column 2, etc.
Whatever functions are decided on for the registers and
crossfooter in the various printing positions are set up in
the control panel by a Field Engineer. Accumulation of
input and output data is then automatic, occurring simul
taneously with printing and keyboard entry.

To print out the totals or sub-totals in the registers and
crossfooter, the operator depresses combinations of keys
on the right side of the keyboard. He has a choice of
whether or not to read the totals into the ElOl accumu
lator. To read them into the accumulator there must be a
keyboard instruction in the program for each total. When
the ElOl stops at the "K" instruction, the operator de
presses the appropriate keys on the right of the keyboard;
the register or crossfooter total prints on the report and is
read into the accumulator. If the operator desires, he can
set the PINBOARD DISCONNECT key before totaling
or sub-totaling and thereby print the totals without affect
ing the contents of the accumulator.

The extra registers are particularly helpful in commer
cial applications where they can be used in conjunction
with the ElOl accumulator to prove old balance pick
ups, sales-to-date accumulation, etc.

Since the crossfooters and registers are under the con
trol of the carriage control panel, they operate independ
ently of the pinboard program. There are no special pro
gram instructions involved.

THE V SWITCH
The V switch is an optional device which can be used

to relieve the operator of certain control responsibilities.
It is helpful in those problems where there is a strict cor
respondence between the kind of numbers computed and
the positions in which they are printed. The V switch is
located on the keyboard-printer underneath the carriage,
and its settings are controlled hr projecting pins located
in the carriage control panel. At any tab stop (columnar
position), V can be set to any of its ten (0-9) values.

The V switch setting is used iq. the program by pinning
V (located in pinboard area 3) in the desired instruction.
As such, V is simply another 3rd area variable like E, F
and Y, but whose value is a function of carriage position.

For example, if a problem requires keeping sums of
keyboard entries, and the sum of the entries made in col
umn 1 is to be stored in location 85, while the sum of the
entries in column 2 is kept in location 89, then the control
panel would be set so that V = 5 in column 1, and V = 9
in column 2. The instructions

K
+8V
W8V

could then be used to make and accumulate keyboard
entries.

17

The advantage of using V stems from the fact that to
position the carriage in the proper column for each key
board entry requires a motor bar selection anyway. If the
previous carriage motion was due to a print instruction,
P a _, then the motor bar was selected by the value of a.
If the previous carriage motion was due to a keyboard
entry, then the motor bar was selected by the operator. In
either case, using the V switch eliminates the need of any
further selection. The control required in the instruction
comes from V; the value for V is determined by carriage
position; and carriage position is determined by motor
bar selection.

Without the V switch, XY key settings are usually
employed to effect this kind of control.

PIN BOARD
AREA USING THE V SWITCH IN INSTRUCTIONS

1 2 3

- a V Using the V setting-Execute the instruction
pinned in the first area of the pinboard using
the carriage control panel setting of "V" in the
third area. Any value for V (0 ~ V ~ 9) can
be set up in the carriage control panel in any
column position.

NOTE: Since Vis set by mechanical pins located only at
tab stop positions, V has no value in between tab stops.
Therefore, an interlock circuit is used to prevent the E 101
program from starting after a P or K instruction until the
carriage reaches the next column position. Without the V
switch, the ElOl program continues while the carriage is
traveling to its next position.

PART Ill PROGRAMMING AIDS

DECIMAL POINT SCALING
The machine decimal point (.) on the E 101 is fixed at

the extreme left of the 11-column keyboard. However,
in the accumulator and memory, which have capacity for
12 digits, it is located at the left between the 1st and 2nd
digits (x.xxx xxx xxx xx).

In dealing with problems on the ElOl, one must dis
tinguish between the fixed point of the ElOl (.) and the
decimal point of the number itself CJ. When a number
is entered into the ElOl, it may or may not be entered
with its decimal point CJ coinciding with the machine
decimal point (.). An exponential type of notation is used
to show the relationship of the actual point with respect
to the machine point. For example, if the number 0.34
is entered in each of the following ways, it is said to be
scaled as follows:

0. 340 000 000 00-scaled x 10°
0. 000 000 000,)4-scaled X 10-9

0. 000"340 000 00-scaled x 10-3

"3. 400 000 000 00-scaled x 10 + 1

(Notice that in each case the exponent corresponds to the
number of places between the two decimal points. A
negative exponent indicates places to the right, and posi
tive exponents places to the left, of the machine decimal
point.)

A column is provided on the E 101 programming sheet
for keeping track of the scaling factor at each step of a
problem.

Numbers to be added or subtracted must be scaled at
the same power of ten. If they do not appear this way in
the problem, they must be shifted left or right ("A 1 b"
or "A 2 b") before being added or subtracted.

In multiplication, the exponent of the product is the
sum of exponents of the two factors. Thus if two numbers
each scaled x 10-3 are multiplied together, their product
will be scaled x 10-6 • If a uniform scaling is desired, the
product can then be shifted 3 places to the left so that it
will be scaled x 10-3 in alignment with the original
factors.

In division, the exponent of the quotient is the expon
ent of the dividend less the exponent of the divisor. Thus
if a number scaled x 10-3 is divided by a number also
scaled x 10-3 , the quotient will be scaled x 10°. Here
again the answer can be shifted 3 places, this time to the
right, so that it will be scaled x 10-3 , the same as the
dividend and divisor.

In some cases it is advisable to shift one of the terms
before multiplying or dividing to make sure significant
digits are not lost. For example, rather than divide a num
ber scaled x 10-3 by another scaled x 10-3 and shift
the answer 3 places to the right so that it also is scaled
x 10-3, it might be better to shift the dividend 3 places
to the right before dividing so that it is scaled x 10-6

18

The resulting quotient will then be scaled x 10-3 without
further shifting.

Care must be taken at all times to prevent the loss of
significant digits. In addition, subtraction, and division
an overflow ALARM results if the answer~ 10.0 x 10°.

An overflow to the left cannot occur in multiplication,
due to the location of the decimal point in the B Register.
Significant digits may be unintentionally lost on the right,
however, if care is not taken to have the numbers as far
left in the B Register and memory as necessary.

Examples:

(12 X 10-u) X (12 x 10-0)

0. 000 012 000 00 x 0. 000 12 0 000 00

(144 x 10-11)

0. 000 000 001 44 OK

(12 x 10-6) (12 x 10-")
0. 000 012 000 00 0. 000 12 0 000 00

(1x10-1)

0. 1 00 000 000 00 OK

(12 x 10-6) x 12 x 10-6)

0. 000 012 000 00 x 0. 000 012 000 00

(144 x 10-12)

0. 000 000 000 14(4) Digit lost (no ALARM)

(12 x 10-6) (5 x 10-1)

0. 000 012 000 00 0. 000 000 5 00 00

(2)4. 000 000 000 00
(2.4 x 10- 1) Digit lost (ALARM)

There are two basic methods of scaling problems on
the ElOl. The first is to enter all data through the key~
board with the decimal point in a fixed keyboard position
and shift the numbers internally as needed by means of
the A 1 b and A 2 b shift instructions. This method is
easy for the operator and provides uniformity of printing.
It is also simple for an inexperienced programmer to use.
A good starting point is to select a fixed keyboard posi
tion for the decimal point based on the range of the input
data. For example, if the quantities range from xx.xxx
to xxxx.xxx, it might be well to fix the decimal point arbi
trarily 4 or 5 places from the left of the keyboard so that
the quantities are scaled by a factor of 10-1 or 10-r..
Then as calculations take place, the results can be shifted
left or right as necessary. The programmer sometimes
finds it necessary to revise the position of the fixed
point to avoid loss of significant digits in subsequent
operations, but at least he has a good starting point from
which to work.

The second basic method of scaling is to scale key
board entries so that, for the most part, each number is
entered with the decimal point where needed. This
method of varying the position of the decimal point re
quires fewer program instructions than the fixed method
of scaling.

The programmer will find that many problems follow
typical patterns in which there are certain sequences of
operations performed. Generally, a pattern of scaling
can easily be worked out for such problems. As an ex
ample, consider the polynomial evaluatioiil Cux6 + C 5x"
+ C4x4 + C3x3 + C2x2 + C1x + Co which consists of a
series of successive multiplications and additions. If the
values of C and x are such that they can be scaled x 1 oo
without losing significant digits, there is no scaling in
volved at all.

If scaling is necessary, either of the two basic methods
can be used. If the fixed keyboard method of scaling is
used, all values of C and x are entered times a power of
ten other than zero with the decimal point in a fixed
keyboard position. The resulting products are therefore
scaled times different powers of ten and must be shifted
before being added. The programmer has a choice of
shifting each term immediately after multiplying or wait
ing until it is time to add them together. For example, if
x and all values of C are entered scaled x 10-1, then
Cnxfi will be scaled x 10-1 , c.,x" x 10-6 , C4x4 x 10-",
etc. Before adding them together, they must be shifted
right or left so that all of them are scaled at the same
power of ten.

The other method of scaling this problem is to enter
x scaled at a power of ten other than zero and enter the
constants scaled at varying powers of ten so that when the
constants are multiplied by the powers of x, the resulting
products are all scaled by the same power of ten and can
be added together without shifting. For example, if x is
scaled X 10-1, then x2 will be scaled x 10-2 x:i x 10-3
x1 x 10-4,x"X IO-",andx6 X 10- 0.Ifthe~onstantsar~
entered so that Co is scaled x I0-6, C1 x 10-5, C2 x
10-4,C:i x 10-3, C4 x 10-2, C5 x 10-1 and C6 x 10°,
the resulting products will all be scaled x 10-6.

The programmer will quickly become familiar with re-
. ab curring patterns such as-· Frequently scaling instruc-

c
tio~s are ~ot necessary due to the fact that while multipli
cation shifts the answer to the right, division can be
arranged to compensate by shifting it back to the left.
There are other patterns similar to this where scaling is
not necessary. Care must be taken at all times, however,
to make sure significant digits are not lost.

DEBUGGING
A program can be checked out or debugged on the

ElOl in a relatively short time. The process is simplified
by the externally stored program, and the easy-to-operate
control panel. Two features of the control panel that are

19

REGULAR START
BUTTON

MANUAL
INSTRUCTION DIALS

used in debugging are Single Step operation and Manual
control, both of which are described below.

Single Step Operation-Normally the ElOl goes auto
matically from one pinboard instruction to the next with
out stopping. In checking out a program, it is often help
ful to execute a single instruction at a time, stopping after
each step before going on to the next. We call this Single
Step operation as opposed to Normal operation. When an
operator wishes to use Single Step operation, he moves
the NORMAL/SINGLE toggle switch from the NOR
MAL to the SINGLE position. Then he touches the
REGULAR START button which executes a single pin
board instruction. To execute the next instruction, he
must again touch the REGULAR START button. The
pr~cess is continued until the operator returns the toggle
switch to the NORMAL position.

Manual Control-Frequently when checking out a
pr~g~am--:-particularly when using Single Step operation
-1t is de1rable to perform certain operations that have
not been pinned up in the pinboards. This is especially
true where the operator wishes to print out and examine
the contents of the accumulator. The operator can per
form any instruction he desires at any point in the prob
l~m without afjecting the pinboard program by first stop
pmg automatic operation (i.e., calling for SINGLE
operation), and then throwing the E 101 out of pin board
control and into manual control.

!o do this, he moves the PINboard/MANual toggle
switch from the PINboard to the MANual position. Then
he sets the three Manual Instruction Dials to correspond
to the instruction he wants to perform. The three dials
represent the three areas of the pinboard, and any in
structio~ that can be pinned in a pinboard can be set up
on the dials. In the case of a print instruction dial 1 should
be set at "P" for "Print," and dial 2 at 1, 2, 3 or 4 de
pending on which motor bar the programmer wants acti
vated. In an instruction which consists of only one or two
characters (e.g., A 3 _ or B __),the manual switch
(es) corresponding to the unused character (s) can be ig
nored. In the case of a manual Print instruction, the units
area switch setting is irrelevant except that a P a O will,
of course, effect a non-print. After the instruction is set
up on the dial, the operator executes it by touching the
REGULAR START button. To continue with the pin
bo~rd program, the operator returns the control toggle
switch to the PINboard position.

In summary, there are four aspects of control over the
ElOl that facilitate debugging: The first is the externally
stored program that makes it possible for the operator to
alter the program merely by rearranging one or more
pins in the removable pinboards. The second is Single
Step operation which allows the operator to run through
the program a step at a time. Next there is Manual opera
tion which enables the operator to perform any instruc
tion he desires without disturbing the pinboard program.
Finally there is the special case of manual operation
whereby the operator can print out the contents of the
accumulator without affecting the pinboard program.

A step by step procedure for checking out a program
follows. The first step should generally take place not at
the ElOl but at the programmer's desk. It consists of
"running through" the program on paper using sample
data and making a careful record of the intermediate and
final results. This procedure is important, as it can save
considerable time and effort later on. Experienced com
puter programmers agree that it is foolish to omit this
step in hopes of "short-cutting" the checking-out pro
cedure, since the steps that follow are much more diffi
cult and time-consuming without the results of the
"paper" run.

With the pinned-up program and the sample calcula
tions, the programmer is ready to try out the problem on
the ElOl. Using the sample data, he runs through the
problem on the ElOl and compares the answers with the
pre-calculated results. If, as is frequently the case, the
results do not agree, the programmer must debug, that is
find the source of error in his program.

Basically, debugging involves going through the pro
gram a step at a time and printing out the contents of the
accumulator after each step without disturbing the pin
board program:

1. Set the Manual Instruction dials to any of
the four print operations: Pl, P2, P3 or P4.

2. Set the NORMAL/SINGLE toggle switch
to the SINGLE position. (Leave the second
toggle switch in the PINboard position.)

3. Start the machine at the beginning of the
problem by depressing the appropriate
ST ART button (usually No. 1).

4. Using the same data as before, perform the
first pinboard instruction by depressing the
REGULAR ST ART button (marked
"R"). The neon lights indicate which pro
gram step has been executed. The entire
process can be followed by reading the in
structions from a program sheet or directly
from the pin settings in the pinboards.

5. Print out the result of the operation by:
a) Setting the PINboard/MANual toggle

switch to the MAN position and
b) Pressing the REGULAR START

button.

20

This takes the ElOl out of pinboard control
and performs whatever instruction has been
set up on the Manual Instruction dials-in
this case, a print operation.

6. Return the ElOl to pinboard control by set
ting the PINboard/MANual toggle switch
back to the PIN position.

7. Perform the next pin board instruction and
print out the new result by repeating steps
4, 5 and 6 above. Check each result with the
pre-calculated results. Continue until the
error or omission has been located and cor
rected.

With a little experience, the programmer will find that
it is not necessary to print out the contents of the ac
cumulator after every instruction. K and P instructions
print automatically anyway, and W, B, U, C, S, and H
instructions leave the accumulator unchanged. Some pro
grammers print out results only at selected points in the
program until they narrow down the portion of the pro
gram where the error is located. Then they print out the
contents of the accumulator after every instruction which
affects the accumulator until the error is tracked down.
When the error is located during the course of the "single
step" operation, it can frequently be corrected in a min
ute or two by rearranging one or more pins in the pin
boards.

As the program is checked out, the programmer can
tell which program step is being executed at any given
time by observing the neon pinboard and step lights on
the control panel. The first column of lights, numbered
from 1 to 8, indicates the pinboard number while the
second column, numbered from 0 to 15, indicates the
step number.

These same lights can be made to indicate the positions
of the E and F switches, allowing the programmer to
check his Hand S instructions. To determine the E switch
position at any given time, the operator depresses the
button on the left of the control panel marked "E." While
he holds down the E button, the "step" lights (0 to 15)
will indicate the E switch position. To determine the F
switch position, the operator depresses the button marked
"F." To determine the band switch setting (on a 220-
word memory ElOl), he depresses both buttons simul
taneously. As soon as the operator releases the button
(or buttons), the lights again indicate the step in the pin
board program.

TIMING
Sometimes programmers want a time appraisal of a

program. The reason might be to evaluate several ap
proaches to a problem, or to determine whether the prob
lem is an "economical" one for a computer. The follow
ing time parameters on various operations, although not
given in complete detail, are sufficient for making good
appraisals:

Addition type instructions (+, - , R, W, B, A)
-1/20 sec.

Average multiplication or division instruction
-~sec.

Average transfer instruction-~ sec. (vary-
ing with how large a "jump" is involved).

Stepping instruction-1/20 sec.
Average homing instruction-0.3 sec.
Print or Keyboard instruction-0.6 sec.
!instruction on tape-3/20 sec. in addition to

time for same instruction on pinboard.
Data entry from tape-20 characters per sec.
Tape output-20 characters per sec.

Unlike larger computing systems, every instruction
on the ElOl takes at least two drum revolutions. The
techniques of minimum access programming cannot be
applied to a machine like the ElOl.

The only place-but a significant one-where time
can be saved by arrangement of the program is the trans
fer operation. This is because transfers are carried out
by stepping switches. For example, each pinboard is con
trolled by its own 16-position stepping switch (these
switches are physically the same as the E and F switches,
but they are not accessible via instructions in the pro
gram). If a pin board switch is at step 11 and a transfer
operation calls for its going back to step 0, the switch
must step through positions 12, 13, 14 and 15 before
reaching step 0 to execute it.

Which pinboard is in control is also set by a switch,
and the same considerations hold: a transfer to the suc
ceeding pinboard takes about ~ the time required to
transfer to the previous pinboard

A discussion of the advisability of iterating within a
pinboard, and an example of saving time by eliminating
transfers appear in Part IV.

CHECKING CIRCUITRY

1. General

Like other general purpose digital computers, the
ElOl is provided with circuitry whose sole function is to
check the operation of the components which do the com
puting. When this checking circuitry detects a machine
malfunction, it stops the computation, and signals the
operator accordingly.

Although erroneous results are sometimes caused by
a component failure, they can also occur due to improper
operation or programming of a computer: the operator
may make an entry in the wrong columns of the keyboard,
a pin in the pinboards may be misplaced, the program
steps may g~nerate an overflow, etc. Computers usually
have circuitry which detects certain of these human fail
ures, also. The overflow alarm on the ElOl is an example
of this kind of checking circuit.

These sections are intended to help the E 101 user in
quickly diagnosing and correcting the various conditions

21

-internal and external-which may cause the checking
circuits to stop computation.

2. Trouble Symptoms-ALARM Light
The basic trouble signal on the ElOl is the ALARM,

whose occurrence is indicated by the following condi
tions:

a) The machine stops on the instruction being
executed; the HALT light comes on; the
neon pinboard and step lights indicate
where in the program the ALARM oc
curred.

b) The ALARM light comes on; touching the
CLEAR button will tum off the ALARM
light, permitting the START buttons to
function; if the operator doesn't touch the
CLEAR button within the first few sec
onds, a repeating gong sounds.

The condition which caused the ALARM is indicated
by other factors, which will be covered in detail later in
this section.

3. Trouble Symptoms-Machine Standstill

Another symptom of trouble is a computer stop or
standstill, in which the ElOl stops, although neither the
ALARM light nor the HALT light comes on. To get the
computer going again the operator usually touches the
CLEAR button (which turns on the HALT light), then
corrects the condition and continues by pressing one of
the START buttons. The various causes of a standstill
are discussed in detail below.

PROGRAMMING AND OPERA TING ERRORS

1. The Overflow Alarm

Overflow in the E 101 is signalled by the ALARM
condition occurring on one of the following instructions :

a) If the ALARM occurs on a+, - , or -;.. in
struction, the value of the sum, remainder,
or quotient, respectively, is ~ 10 (10 x
100).

b) If the ALARM occurs on a B instruction,
it means that the contents of the accumu
lator is ~ 1 (1 x 10°).

In either case, the overflow is due to improper scaling.
If the program has not been checked out, it must be

corrected to compensate for the error.
If the problem has been debugged, examine the entire

pinboard program thoroughly for a pinning error.
If no pinning errors are found, check the scaling of the

numbers entered through the keyboard.
If keyboard entries were made properly, print out the

contents of the memory (or those locations used in the
current problem) and check your stored constants and
initial input values.

If none of these steps reveals the trouble, repeat the
program leading up to the ALARM; if the ALARM re
curs, go into SINGLE operation and recheck those in
structions which generate the number causing the over
flow. If you cannot isolate the instruction(s) this way,
and the ALARM continues to occur, contact your
ELECTRODATA Field Engineer.

2. Machine Standstill
A machine standstill is the result of an attempt to

operate the ElOI without first putting it into proper
operating condition. There are two main causes of a
standstill:

a) Computer not prepared for operation-the
following check list will help correct any
such oversights:
1) Make sure that the READY light is on.

If not, check that both the ElOI key
switch and your circuit breaker are on.
If both switches are on, but there is no
READY signal, call your Field Engi
neer.

2) Make sure that the PINboard/MAN
ual toggle switch is in the PINboard
position.

3) See that the NORMAL/SINGLE
switch is in the NORMAL position.

4) Check that the right carriage control
panel is in the keyboard-printer; check
the Schedule knob setting; make sure
that the panel is seated correctly in the
carriage; operate the TAB and
RETurn keys on the keyboard-printer
to insure that the carriage is stopped
in one of its tabular column printing
positions.

5) Make sure that the PINBOARD DIS
CONNECT key in the extreme lower
right-hand corner of the keyboard
printer in its up, or released, position.

6) Check the position of the PROGRAM
lever in the upper right-hand corner of
the keyboard-printer; it should be for
ward, in its PROGRAM position.

7) Operate the carriage open-close key to
make sure the front insert is closed.

8) Check keyboard to see that keys are set
in their fully-depressed position; use
Error key to releast: stuck keys.

b) Attempt to execute an instruction with
missing pin(s).
1) If the missing pin is in the operation

area (#1)~ just insert the pin. The
ElOI will execute the instruction and
continue with the program.

22

2) If area 2 and/ or 3 has a pin missing,
touch the CLEAR button, insert the
missing pin(s), execute a MANual
transfer back to the instruction in ques
tion, return to PINboard control,
NORMAL operation, and touch the
REGULAR START button.

3) If the EIOI is sent to an instruction in
a pinboard, and the entire pinboard is
missing, simply insert the pinboard.

4) Note that in memory addresses, a pin
in area 3 placed between b = 10 and
b = 15 will act like a missing pin.

3. Double Pinning

The El 01 does not have circuits to check for the inser
tion of extra pins in an instruction (e.g., B 7 15, A 3 9).
It simply ignores such extra pins, and executes the in
struction as if the redundant pins weren't there (B __ ,
A 3 _). This feature is sometimes quite useful; to give
the operator the choice, using the X key, of whether or
not to carry out a left shift of 6 places, we could use an
A X 6 instruction. When the operator sets X = 1, the
shift is executed (A 1 6); when the operator sets X = 3,
an absolute value instruction is executed instead
(A 3 _).

But when more than one pin appears in the same area
of an instruction, trouble develops. The effect of a double
pinning is to short the two lines pinned, so that every in
struction in the pinboards calling for either of the shorted
lines is shorted, too. For example, if the program calls for
an R 7 9 instruction in step 11 of pinboard 8, and the
operator mistakenly double-pins R and U (giving
RU 7 9), then there is as good a chance of executing a
U 7 9 as there is an R 7 9.

Furthermore, any R instruction appearing any
where in the program is liable to be interpreted
as a U, and any U instruction as an R. Instruc
tions selected by the manual switches are sub
ject to the same conditions: a double pin will
disturb any instruction which calls for one of
the shorted lines.

Thus, although there is no circuitry to detect double
pinning directly, the presence of a double pin manifests
itself very quickly. Symptoms are overflow alarms, ma
chine standstill, skipping or repeating an instruction or
a whole sequence of instructions, iiiability to leave a pin
board, or to get out of a loop, inconsistent printing pat
terns, impossible printed results, failure to load or read
out properly, etc.

When faced with such symptoms, a visual check of the
pinboards will ususally reveal the double pins. If double
pinning cannot be found visually, remove all the pin
boards, and execute the instruction manually. If the
manual instruction won't work properly, call the Field
Engineer. If the manual instruction works with the pin-

boards removed, replace the pinboards one at a time,
testing the manual instruction after each replacement. If
trouble recurs, the error is in the last pinboard replaced.

MACHINE MALFUNCTION

1. Print ALARM
The E 101 has a print check circuit which translates the

type bar positions into pulses just after printing, and
i::choes these pulses back against the number in the ac
cumulator. If comparison does not occur, the machine
lights the ALARM signal. This is distinguished from an
overflow ALARM by the fact that it occurs on a print
instruction.

When a print ALARM occurs it can be assumed (in
the absence of other ALARMS) that the number in the
accumulator is correct. At worst, the printed results will
contain the incorrect number.

When the printing mechanism fails, it is very often a
temporary condition, which can be remedied by repeated
exercise of the mechanism. Executing several manual
Print instructions often clears up the mechanical diffi
culty, and printing will continue normally thereafter.

Whether or not the difficulty proves to be tem
porary, the Field Engineer should always be
notified of the occurrence of a machine mal
function condition.

2. Pulse Sequence Check
Information is stored on the drum of the E 101 in pulse

coded decimal form. Each digit consists of 9 bits. All 9
magnetic spots oriented one way is a 0, all nine the oppo
site way is a nine (if the digit is a 5, 5 magnets point one
way, the other 4 point in the opposite direction, etc.).
When the digit is not zero, definite rules apply as to the
position of the non-zero magnets: they must appear in a
dense sequence, and they must be adjacent to the end
digit control pulse. Any other configuration is forbidden,

BEGIN END
DIGIT DIGIT

I I I I I I I I I I I 0

. n.n.o.an.n.n.n.n.o. 9

I I I I I .o.o.n.nIJ. 5

and indicates a machine malfunction. A condition like a
sudden drastic change in line voltage can cause a pulse
to be Jost or picked up. Such an occurrence is checked by
having the initial pulse of each pulse sequence trigger an
independent pulse generator, whose output is gated
against the output of the pulse amplifier tube each clock
time, until the end digit control pulse resets the generator.
Failure of any of these outputs to compare sets the
ALARM circuit, and lights one or both of the amber
lights behind the ALARM signal.

23

When a Pulse Sequence ALARM occurs, the
operator should immediately notify the Field
Engineer. Have available as much information
as possible regarding the state of affairs when
the alarm occurred: the kind and location of
the instruction being executed, the memory
locations involved, the size of the numbers
being manipulated, etc. This information may
enable him to advise you of temporary steps
you can take to continue your computation
while the Field Engineer is on his way to your
installation.

CHECKING INPUT DATA
In using the ElOl with keyboard input of data, it is

very important that there be a reliable method of detect
ing and correcting input errors. Some of the methods
being used successfully by various ElOl users are as
follows:

Visual Check
After entering the data, the operator checks visually to

make sure no errors have been made. A variation of this
method which one ElOl user has found effective is to
have the data pre-entered by hand or typewriter on the
report with space directly below each number for the
ElOl to print. After entering the data through the ElOl
keyboard, it is a very simple matter to compare the num
ber printed by the ElOl with the pre-printed and hand
written number directly aqove it.

Proof Totals
A popular way of checking the accuracy of keyboard

input, particularly in accounting applications, is to have
the ElOl total the data and compare the result to a pre
determined proof total. This operation can be pro
grammed in the ususal way, or if desired, the data can be
accumulated in the El 01 crossfooters and registers .

Correction of Errors

The correction of an input error can be done in a num
ber of different ways, depending mainly on when the
error is detected. If the operator realizes his mistake
before he touches the motor bar, he can remedy the situa
tion immediately by depressing the Error key (marked
"E") at the right of motor bar 2 and re-entering the num
ber correctly.

If he discovers the error after the motor bar has been
touched, the thing he must determine is whether the num
ber has merely been stored in the memory or has actually

been used in calculations. Frequently the error is de
tected after the number has been stored but before any
calculations have taken place. Having stopped the ma
chine by throwing the switch to SINGLE operate, the
operator can easily correct the situation by putting the
ElOl into MANUAL control, entering the correct num
ber, and writing it into the appropriate memory location.

If the error is detected after a series of calculations, the
results of the calculations can often be corrected by
means of a "correction program" consisting of pinboard
instructions which replace the incorrect results with cor
rect ones. Generally, the "correction program" runs
through the same calculations as before using the incor
rect quantity again but with the sign reversed. This has
the effect of compensating for the results produced by the
wrong numbers. Next the correct data is entered into the
keyboard and the calculations repeated.

PROGRAMS AVAILABLE TO E101 USERS
The programs for basic functions (such as square

roots, logarithms and trigonometric functions) which are
used freqeuntly in scientific, engineering and statistical
computations are generally called "subroutines" for elec
tronic digital computers. One can, to a considerable ex
tent, program these computations once and for all and
have them available for use as part of the program in any
problem in which basic functions are required.

For the convenience of our customers we have pro
grammed the most common of these basic functions and
have compiled the programs into a booklet entitled
Handbook of Subroutines and Subroutine Methods for
the ELECTRODATA 101, which is available to all ElOI
users. A list of the programs included in the subroutine
booklet appears below.

In addition, the ELECTRODATA Division Applied
Mathematics Department will advise E/01 users regard
ing their larger problems in mathematics, and has avail
able programs for the "standard" numerical analysis
problems, such as matrix inversion, roots of polynomials,
linear regression, and others.

Subroutines Available to El 01 Users

sin u (-~ ~ u ~ _::___, u in radians)
2 2

sin u (-90° ~ u ~90° or _ _::___ ~ u ~ _"'.__, u in radians
or degrees) 2 2

sin A (for large angles, A, in radians or degrees)

cos u (-_::___ ~ u ~ ~. u in radians)
2 2

cos u (-90° ~ u ~ 90° or-~~ u ~ ..::_, u in radians
or degrees) 2 2

cos A (for large angles, A, in radians or degrees)
7r 7r

tan u (- - ~ u ~ - or -1 < u < 1, u in radians)
4 4

arccos u and arcsin u (-2- ~ u ~ _2_ or
2 2

- Y2 ~ u ~ Y2 , result in radians)
2 2

arccos u and arcsin u (0 < u < l , result in radians)
arctan u (-1 < u < 1, result in radians)
arctan u (0 < u < 999, result in radians)
e"(-I~u~I)

e-"(O~u<lO)

10" (0 ~ u ~ 1)
log10 u (1 ~ u ~ 10)
loge u (1 ~ u ~ i 0)
sinh u (-4.5 ~ u ~ 4.5)
cash u (-4.5 ~ u ~ 4.5)
tanh u (-2 ~ u ~ 2)

\/u
Multiplication of complex numbers

(a+ bi) (c +di) for -0.9999 ~a, b, c, d ~ 0.9999
Division of complex numbers

(a+ bi) for -0.9999 ~ a, b, c, d ~ 0.9999
(c +di)

STANDARD OPERATING ROUTINES
The three most common operating routines are clear

ing, loading and printing the contents of the memory.
Because these routines are used so frequently, their pro
grams are given below. In each case the i;outine is pro
grammed for the maximum number of memory locations
(100 or 220) ; the same programs can be used for fewer
operations. The approach in all three cases is based on
programming the given problem in as few steps as pos
sible. While this is the most popular approach, other
methods (some of which are described in Part IV) may
be used.

The similarity among the three routines is immediately
apparent. Because of this similarity, it is possible to pro
gram a multipurpose routine that can be used inter
changeably for all three opeartions merely by moving a
few pins. This routine is also shown below.

1) Clearing Entire Memory
0 R 9 9 Read oonten" of memo<y Inoa- } 1

tion 99 into accumulator ~nerate
- 9 9 Subtract contents of memory lo- ~ero

cation 99 from accumulator
2 H 0 0 Home E switch to zero

[
H 1 0 Home F switch to zero
WEF Write contents of accumulator (zero) into

memory location E F
s 1 9 Step F switch once each time through routine

until F passes 9; then transfer to step 7.
u 0 4 Transfer back to step 4 and repeat routine

with new value for F.
7 s 0 9 Step E switch once each time E 101 reaches

this step (once every 10 times through rou-
tine); when E = 10, transfer to step 9.

24

9

u 0 3 Transfer back to step 3 and repeat routine
with new value for E.

2) Loading Entire Memory
0 H 0 0 Home E switch to zero.

H I 0 Home F switch to zero.
2 K Transfer contents of Keyboard into accumu-

lator when operator touches motor bar.
3 W EF Write contents of accumulator into memory

location E F.
4 s I 9 Step F switch once each time through routine

until F = IO; then transfer to step 6.
5 u 0 2 Transfer back to step 2 and repeat routine

with new value for F.
6 s 0 9 Step E .. switch once each time E IO I reaches

this step (once every 10 times through rou-
tme); when E = I 0, transfer to step 8.

7 u 0 Transfer back to step I and repeat routine
with new value for E.

8

Note: When the data to be loaded is on tape, step 2
is T _ 12 instead of K.

3) Printing Contents of Entire Memory
0 H 0 0 Home E switch to zero.
I H I 0 Home F switch to zero.

[4

2: R E F Read contents of memory location E F into
accumulator.

p 2
S I 9
U 0 2 Same as steps 4 to 7 in loading routine

6 s 0 9
7 u 0
8

4) Multipurpose Routine for Clearing,
Loading and Printing

By changing steps 4 and 5 for each operation, the fol
lowing routine can be used for clearing, loading and
printing the entire memory (100 words). Because all
three operations are used frequently, some programmers
find it convenient to keep a multipurpose pinboard
pinned up at all times. It is helpful to have a template
stamped in one color with the exception of steps 4 and 5
which could be stamped in three different colors, repre
senting the three operations.

0 R 9 9
I -- 9 9
2 H 0 0
3 H I 0 CLEAR LOAD PRINT

[~
w E F K p 2
W E F W E F R E F

s I 9
u 0 4

8 s 0 9
9 u 0 3

10

25

5) Loading the 220-Word Memory

0 H 3 0
I HOO
2 H I 0

[~
K
W EF
s 1 9
u 0 3

7 s 0 3
8 u 0 2
9 s 3 3

10 u 0 I
11 u o;:c_

The above routine will load the 160 locations of the
4 switchable bands of the 220-word memory (00-39 in
bands 0, 1, 2 and 3). The remaining 60 words of the
heartband (40-99) can also be loaded with the same
routine by pinning a U 0 2 in step 11 (after entering the
220th number, the operator would touch the CLEAR
button and then a START button going to the rest of
the program).

6) Loading from Punched Tape Input

When a data tape has been prepared to use with the
E 101, it can be read and loaded using any of the other
loading routines by simply substituting a T _ 12 instruc
tion for the keyboard instruction given.

When data in random sequence on tape is to be dis
tributed in the ElOl memory, the accumulator setting of
E and F switches can be used effectively. Assume that a
6-digit amount (xxxxxx), followed by its 2-digit classifi
cation or identification number (ab), appears in each
word on tape:

[xxxxxxab]

The program and its operation would be as follows:

SWITCH
CONTENTS OF SETTINGS

PROGRAM EXPLANATION ACCUMULATOR E F
0 T- 12 read tape word into OOOOxxxxxxab ? ?

accumulator
I H I 0 home F switch to 0 OOOOxxxxxxab ? 0
2 H5 add b to F OOOOxxxxxxab ? b
3 A2 shift accumulator OOOOOxxxxxxa ? b

right one place
4 HO 0 home E switch to 0 OOOOOxxxxxxa 0 b
5 H4 add a to E OOOOOxxxxxxa a b
6 A 2 shift accumulator OOOOOOxxxxxx a b

right one place
7 +E F add previous sum to new sum a b

xxxxxx
8 WE F store new sum in ab new sum a b
9 uo 0 repeat with next new sum a b

tape word

PART IV PROGRAMMING STRATEGY

GENERAL
Programming a problem for an electronic computer

consists of two basic parts: first, determining the proper
approach or strategy and second, coding. With the ELEc
TRODA TA 101, the coding part is quite straightforward
because the El 01 program language is so close to the
language of arithmetic itself. Determining what approach
or strategy to use requires somewhat more skill and imag
ination on the part of the programmer, and is an interest
ing and challenging experience. The main factors to con
sider are the nature of the problem and the capacity of
the computer. Each problem and each computer has its
own special features.

The job of the programmer is to fit the problem into the
computer. Where some aspect of the problem exceeds the
capacity of some feature of the machine, the programmer
must try to compensate for this by the use of the ma
chine's other features (e.g., if his first approach takes too
long for a solution to be reached, he may use more pro
gram steps to cut down running time).

In larger computer systems, the main machine limita
tions are storage capacity (data and program) , and oper
ating speeds. In an externally programmed computer like
the ElOl, the storage capacities for data and programs
are not interchangeable, and must be considered sepa
rately: the E 101 programmer must fit the stored data into
the drum, the instructions into the pinboards, within the
problem solution time requirements. He can use the 220-
word memory and/or the tape reader to increase data
storage, he can change pinboards, or use instruction
tapes to increase program capacity, etc.

How long is the problem? How often is it going to be
run? These questions are important since they give the
programmer an idea of how much time and effort to
spend on the problem. If it is a relatively short problem
that is going to be run only once or twice, there is not
much point in developing a highly sophisticated approach
that will save running time and perhaps reduce the num
ber of program steps. On the other hand, it makes sense
to concentrate on programming strategy that will save
running time if the problem is a fairly long one that will
be run many times.

Point of emphasis varies from problem to problem and
from program to program. Oftentimes, the most import
ant consideration is the reduction of the number of pro
gramming steps. Sometimes it is "increasing" the size of
the memory. In other cases, it is cutting down the running
time, while in still others, it is ease of operation. In many
problems it is a combination of two or more of these fac
tors. The most important part of the programmer's job is
placing the emphasis where it belongs. At all times a
reasonable balance between programming time and run
ning time should be maintained.

26

Part IV is devoted to programming ideas or techniques
that ElOl programmers have found helpful. Some save
on programming space, some running time, and others
on memory space. Many of them are merely means of
using certain instructions (or combinations of instruc
tions) in a way that is not too obvious. Some of the ideas
presented here were "developed" by our staff of Sales
Representatives, Sales Technical Representatives, and
Mathematical Analysts, while others were contributed by
our customers. Although we are thus depriving you of the
fun of discovering them for yourself, we hope they will
save you time, and make your programming job a more
interesting and profitable one.

The various ideas and techniques discussed here tend
to fall into fairly distinct categories:

A. Input-Output Ideas-The ideas in this section are
commonly used in input-output routines.

B. Logical Subroutines-The programming ideas in
cluded here are called "logical subroutines" since
they accomplish some frequently needed logical
manipulations. For example, although the ElOl
program language does not include an equality test
as a single instruction, one can be programmed with
two instructions, as described in this section. This
category also includes such topics as split register
storage and counting.

C. Special Information on Basic Instructions-This
section contains ideas on how some of the basic pro
gramming instructions can be used in important
ways. Because of the nature of the ideas, they are
better introduced here in a separate section rather
than as part of the concise descriptions given in
Parts I and II.

D. Algebraic Manipulations-Some aspects of ordi
nary manipulation of algebraic expressions are such
that a particular approach is better for computer
programming than any of the other possible ap
proaches. Some examples of this idea are given in
this section.

A. INPUT-OUTPUT IDEAS

1. Loading a number of amounts into the
memory where the total number is not
divisible by ten

Using the E or F switch, it takes 5 program steps
to load up to 10 amounts into the memory. Using
both E and F, it takes 8 steps to load 20, 30, 40, etc.,
up to 100 amounts into the memory. A normal way
of loading a number of amounts where the number
is not divisible by 10, for example 3 7, is to break the
problem into two parts: loading the first 30
amounts, and then the last 7. This would involve 8
steps for the first part, plus 5 for the second, making

a total of 13 program steps. The same problem can
be programmed in just 9 steps by loading the 7
amounts first and then the 30 amounts, leaving the
blank memory locations at the beginning instead of
at the end. The two routines are shown below for
comparison.

2
37 Amounts in 37 Amounh in

Memory Locations Memory Locations
OOto 36 03 to 39

0 H 0 0 0 H 0 0
1 H 1 0 1 H 1 3

G
K 2 K
WE F 3 WE F
s 1 9 4 s 1 9
u 0 2 5 u 0 2

6 s 0 2 6 H 1 0
7 u 0 1 7 s 0 3
8 H 1 0 8 u 0 2

o~
K
W 3 F

1 s 1 6
12 u 0 9

Another way of loading a number of amounts
where the number is not divisible by ten is to store
the numbers in a rectangular array. This approach
works whenever the number of amounts being
stored is a number that is not a prime (divisible only
by itself) and can be factored into two parts both
less than 10. If there are 59 amounts, for instance,
this approach cannot be used since 59 is a prime
number. If there are 68 amounts, the approach still
cannot be used, for even though 68 is divisible by 4,
the other factor, 17 (4 x 17 = 68), is larger than
10. An example of a situation where the approach
can be used is in loading 45 amounts (5 x 9 = 45.)
By loading the amounts in 5 rows of 9 each or 9
rows of 5 each, the routine can be programmed in
just 8 steps.

Although the discussion here has dealt with mem
ory loading, the same basic procedures can be used
in clearing, printing, and performing arithmetic op
erations: any approach which will load numbers
into the memory for you, will allow you to compute
with those numbers, read them out, etc.

2. Entering an indefinite number of
amounts tl)rough the keyboard

Some problems call for an indefinite number of
amounts to be entered through the keyboard, each
one used immediately in computation rather than
being stored. An example would be the evaluation
of the polynomial x:i - 2x2 + l 4x where x might be
assigned any number of values. The usual way of
programming such a problem is to form an iterative
loop starting with "K," followed by the steps in
volved in the computation, and ending with a "U"

27

that sends the ElOl back to the "K" instruction.
This type of loop works very nicely until the oper
ator reaches the point where there are no more key
board entries. Since the "U" instruction at the end
of the routine always sends the ElOl back to the
"K" instruction, the operator will find the ElOl
waiting for a keyboard entry, but will have no more
data to enter. The way to get out of the loop and into
the next part of the program is to touch the CLEAR
button. This turns off the KEYBOARD light and
lights the HALT signal. With the ElOl in the
HALT condition, the operator can touch the proper
START button which will take the ElOl to the
beginning of the pinboard where the rest of the
problem is programmed.

3. Replacing the contents of each memory
location with the contents of the succeed
ing memory location

Some problems require replacing the contents of
each memory location with the contents of the suc
ceeding memory location. Using row 5 as an ex
ample, the program for this operation is as follows:

0
1

[!
5

H 1 0 Home F to zero
H 0 1 Home E to one
R 5 E Read contents of 5E.
W 5 F Write into preceding memory location.
S 2 9 Step E and F together until E passes 9.
U 0 2 Transfer back to read next memory

location.

B. LOGICAL SUBROUTINES

The ideas included in this section are as follows:

1. Counting using the "C" instruction
2. Counting using the "S" instructions
3. Split register storage
4. Split register storage used in conjunction with X

and Y keys for random access
5. Equality test

1. Counting using the 11C11 instruction
The "C" instruction is frequently used to keep

count of the number of operations performed. To
illustrate, assume that the instructions in pinboard 1
are to be performed 75 times. The numbers 0, 1,
and 75 are stored in three memory locations (as
sume in this case locations 97, 98 and 99, respec
tively). Each time the counting routine is repeated,
the "l" in memory location 98 is added to the num
ber in 97 and the total written back into 97. Then
the 7 5 stored in memory location 99 is subtracted
from the total. The next instruction is a "C." If the
answer is negative, indicating the routine has not.
been performed 75 times as yet, the C 1 0 sends the
ElOl back to pinboard 1 to repeat the routine. If

the answer is positive (or zero) indicating that the
routine has been performed the required number of
times, the "C" instruction goes on to the next step
in the problem, where operation is continued.

The program steps required for the "count and
compare" operation are as follows:

Pinboard Step

1 0

15 U20
2 0 R 9 7

1 + 9 8
2 w 9 7
3 - 9 9

c.~ c 1 0

Another way of programming this problem, start
ing with 74 in 97 and 1 in 98, is as follows:

Pinboard Step

1 0

15 u 2 0
2 0 R 9 7

1 --- 9 8
2 w 9 7
3 c 2 5
4 u 1 0
5

In the above case the answer is always positive
until the routine has been performed 75 times. Each
time the ElOl reaches the "C" instruction, it auto
matically goes on to the next instruction in the pro
gram, U 1 0, which transfers back to repeat the rou
tine. After the 75th performance, when the answer
becomes negative, the ElOl transfers to step 5 in
pinboard 2. Other variations include starting with
a negative number in 97 and adding "1" to it until
the total, which starts negative, passes through zero
and becomes positive.

2. Counting using the 11$ 11 instruction

Many programmers use the "S 0 b" and "S 1 b"
instructions exclusively for address modification.
While this is theii: main fuw;tion, they can also be
used for counting. Since both E and F switches are
16-position counters, either switch can be used to
count up to 16, or together they can be used to count
up to 256.

In the following examples, a given routine is to
be performed the number of times indicated:

28

65 Times 110 Times 96 Times 256Times

HO HO 1 HO 1 HO 0
H 1 1 H 1 1 H 1 1 H 1 0

[outine rutine rutme r·-to be to be to be to be
repeated repeated repeated repeated
s 1 13 s 1 11 s 1 12 s 1 15
u 0 2 u 0 2 u 0 2 u 0 2
s 0 5 s 0 10 s 0 8 s 0 15
uo uo 1 uo 1 uo 1

Notice in the first three examples, where we start
with "H 0 1" and "H 1 1," that the total number of
times the routine is to be performed is equal to m
x n where m = the upper limit of the E switch and
n = the upper limit of the F switch. (For example,
65 = 5 x 13.)

When programming for the 220-word memory
El 01, the band switch can also be used for counting.
When used in conjunction with the E and F switch
es, the three switches can count up to 4 x 256,
or 1024.

3. Split register storage

It is sometimes desirable to use split register stor
age-i.e., to store two or more items in each mem
ory location. One reason for using split register stor
age is to keep related information such as code num
ber and quantity together. The four digit positions
on the right might be used for code number and the
other eight digit positions for quantity. Another im
portant reason for using split register storage is to
increase the capacity of the memory. A table of 180
6-digit rates or 270 4-digit rates can be stored in 90
memory locations. The only restriction is that all
items stored in one location be of the same sign. This
does not hold true if the quantities are always of
opposite sign or if only one item has a sign and
others (such as code number) are neither positive
or negative. Another way of keeping track of the
sign is to code it in as part of the number-"O,"' for
example, standing for "plus" and "l" for "minus."

When more than one number is stored in a mem
ory location, the programmer extracts the number
he wants by using shift instructions. To illustrate,
consider the case where 3 4-digit rates are stored in
location 99. Assuming rate 1 is the one on the left,
rate 2 is the one in the center, and rate 3 is the one
on the right, the programmer would call for them
in the program as follows:

Rate 1
R99
A 2 8

99 I 11t122223333 I

Rate 2
R99
A 1 4
A 2 8

Rate 3
R99
A 1 8
A 2 8

In each case the rate selected would appear all the
way to the right of the accumulator, with zeros in
the other 8 digit positions. The original 12-digit
number would remain in the memory unchanged.

4. Split register storage used in coniunction
with X and Y keys for random access.

The X and Y keys on the left side of the key
board are frequently used when random access is
made to the memory. The programmer refers to
memory location X Y in the program and has the
operator depress the proper X and Y keys when
running the problem.

When split register storage is used in conjunction
with random access, the programmer must malce
provision for selecting not only the proper memory
location but also the proper part of the memory lo
cation in which the particular number he wants is
stored. He might well be faced with a problem in
volving 90 memory locations, each storing 3 4-digit
rates. One solution to this problem is to enter a digit
into the keyboard which designates the position of
the rate ("l" for left, "2" for center, and "3" for
right) at the time the X and Y keys designating the
proper memory location are depressed. Then, by
using the "C" instruction combined with a few sub
traction instructions, the proper rate can be selected.

To use this approach, a "2" and a "1" are stored
in memory locations 99 and 98 respectively. The
first instruction in the routine is a "K" instruction,
at which point the operator depresses the proper
X and Y keys and enters a 1, 2, or 3 into the key
board depending on whether he wants rate 1 (on the
left), rate 2 (in the center), or rate 3 (on the right) .
The next instruction is -99. It subtracts the "2"
stored in 99 from the 1, 2, or 3 just entered through
the keyboard. The answer will be positive if a 2 or 3
was entered but negative if a 1 (indicating the rate
at the left) was entered. This enables the program
mer to extract rate 1 by means of a "C" instruction.
In order to extract rate 2 or 3, there might be an
other subtraction instruction, -98, followed by an
other "C" instruction. The program for this routine
is as follows:

0 K

- 9 9

2 c 0 11

Set X and Y. Enter a 1, 2 or 3
for rates "l," "2," or "3" re
spectively.

If rate 1, acc. will be neg.
(1-2=-1)

If rates 2 or 3, acc. will be pos.
(2-2=0,3-2=1)

Transfer to step 11 if rate 1.
Continue with next step if rates

2 or 3

29

3 - 9 8

4 c 0 8

5 RXY
6 A 1 8
7 u 0 12
8 RXY
9 A 1 4

10 u 0 12
11 RXY

12 A 2 8
13 - - -

5. Equality Test

}
}

If rate 2, acc. will be neg.
(0-1=-1)

If rate 3, acc. will still be pos.
(1-1=0)

Transfer to step 8 if rate 2.
Continue with next step if rate 3

Rate 3-Shift to left; transfer to
step 12

Rate 2-Shift to left; transfer to
step 12

Rate I-Already at left; con
tinue with step 12

Shift all the way to right, leaving
zeros in the other 8 digit posi
tions.

This is a simple routine for determining whether
two numbers are equal. It is based on the fact that
the ElOl always considers zero as positive when
making a conditional transfer. The equality test con
sists of three instructions: the first step subtracts one
of the two numbers from the other (the order is un
important); the second instruction is "A 4" which
makes the difference negative; the third instruction
is a "C." If the difference between the two numbers
is anything but zero, it will be negative as a result of
the A4 instruction and will cause the ElOl to trans
fer to another part of the problem. If the difference
between the two numbers is zero, indicating they are
equal, the ElOl will not transfer on the "C" instruc
tion but will go oh to the next instruction in the
program.

This technique of using A 4 and C to distinguish
between zero and non-zero numbers in the accumu
lator could have been employed in the coded extrac
tion routine above. Instruction 3 could have been
A4, thus saving memory location 98.

C. SPECIAL INFORMATION ON BASIC IN
STRUCTIONS

The ideas included in this section are as follows:

1. Use of last instruction on pinboard to go back to
beginning of pinboard.

2. Iterating within a pinboard where possible.
3. Uses of X and Yother than address modification.
4. Subroutine exit.
5. Setting one switch from the other.

1. Use of last instruction on pinboard to go
back to beginning of pinboard

The usual way of going from one pinboard to
another is to have the last step on each pinboard a

"U" instruction. If step 15 is the last step used and
is not a transfer instruction, the ElOl automatically
goes back to the beginning of the same pinboard for
its next instruction. This is because each pinboard
is scanned by a stepping switch. The position after
15 is 0, just as it is on the E and F switches.

There are times when this can be used to advan
tage. For example, in a successive approximation
routine to obtain the square root of a number, one of
the available programs uses exactly 16 steps, filling
one complete pinboard. The last step on the pin
board is a "C" instruction. If the approximation to
the square root is sufficiently close at that point, the
number in the accumulator is negative, and the
C __ is pinned to go to another pinboard. If, how
ever, (as is usually the case in the first few itera
tions) the approximation is not sufficiently close,
the number in the accumulator is positive, and the
ElOl goes directly from the "C" instruction pinned
in step 15 to the next instruction, step 0, of the same
pinboard for another iteration, which will bring the
approximation closer to the actual square root.

2. Iterating within a pinboard where pos
sible

Generally, it takes less time to transfer to a step
in the same pinboard than to a step in a different
pinboard. When the transfer is to the next adjacent
pinboard, the time involved is slight. The slowest
transfer is from a given pinboard to the one preced
ing it. For example, to transfer from pinboard 4 to
pinboard 3, the machine's pinboard control stepping
switch must step from position 4 to 5 to 6 to 7 to 8
to 1 to 2, and then to 3. If a transfer such as this oc
curs only a few times in a problem, the time involved
is negligible.

If, however, it is part of an iterative routine that
is repeated many times in the course of a problem,
the milliseconds can add up to valuable minutes.
For example, consider a 13-step iterative loop start
ing in pinboard 5 and ending in pinboard 6, that is
repeated ninety or more times. The transfer from
pinboard 5 to pinboard 6 takes little time, but each
time the iteration is repeated, it is necessary to
return from pinboard 6 to pinboard 5'ior the next
iteration. This involves stepping the pinboard con
trol switch from position 6 to 7, 8, 1, 2, 3, 4, and
finally to 5-not just once or twice, but ninety or
more times. Since there are only 13 steps in the iter
ation, it would be better in this case to include all 13
steps in a single pinboard, cutting out unnecessary
transfers to other pinboards and reducing running
time. There are many problems like this one where
running time on the ElOl can be substantially re
duced with a little forethought in programming.

30

3. Uses of X and Yother than address modi
fication

Although the X and Y keys are generally used for
manual address modification, either as a supplement
to E and F, or as a means of random access, they are
not limited to this function. X may be pinned in the
second area of the pinboard and Y in the third area
in any instruction. Some specific cases where they
have been used to advantage are as follows:
a. Dispatching-V X Y-Using X and Y to denote

pinboard and step number, respectively, in a
transfer instruction, thus allowing the transfer to
be made to any step (between 0 and 9) on any
pinboard by depressing the proper X and Y keys.

b. Shifting-AX 4, A 2 Y, etc.-Pinning X instead
of "l" for left or "2" for right enabling the oper
ator to select direction of shift (helpful when used
with split register storage) . Also, programming
Y instead of a specific number of places to be
shifted (helpf~l when scaling a problem with
numbers that vary in size over a wide range) .

c. Printing-PX_, P 3 Y, etc.-Using X to desig
nate motor bar number, allowing operator to ex
ercise a greater control over format. Setting Y =
0 allows operator to suppress printing.

d. Changing Limit of "S" Instructions-S 0 Y, etc.
-Pinning Y instead of a definite limit in any S
instruction when working with an indefinite or
variable number of amounts.
In addition to the above examples, X has also

been used in special cases in the second area of "S"
and "H" instructions.

4. Subroutine Exit

The instruction, "U a*," where "a" is any num
ber from 1 to 8, sends the ElOl to the step on pin
board "a" immediately following the last step per
formed on that pinboard. For example, if the ElOl
transfers from pinboard 3, step 6, to a subroutine in
pinboard 5 where the last step is U 3 *, at the end of
the subroutine the ElOl will return to pinboard 3
and go on with step 7.

This technique works because of the nature of
pinboard scanning: recall that each pinboard is
scanned by its own stepping switch. The execution
of an instruction in a pinboard automatically steps
that pinboard switch to the following instruction.
(This is true even if the instruction executed is a
transfer to some other pinboard.) Thus, each of the
8 pinboard switches is always set at the step follow
ing the step last executed in that pinboard. Pinning
a"*" in the third area of a transfer instruction sim
ply uses the present setting of the pinboard switch
selected in the second area.

By modifying this instruction somewhat, making

0

2

3

4

5

6

7

8

9

it "U E *,"greater flexibility can be obtained. It is
very useful where, after transferring to a given sub
routine from several different pinboards in a prob
lem, one must return in each case to the pinboard
from which the transfer was made. Before leaving
each pinboard to go into the subroutine, the E
switch is set to agree with the number of that partic
ular pinboard (e.g., in pinboard 3, H 0 3). The last
step in the subroutine is "U E * ," returning the
ElOl to the step following the last step executed on
pinboard "E," where E was set to designate the pin
board from which the last transfer was made.

5. Setting one switch from the other

There are times when it is helpful to set one switch
to the setting of the other using the instruction "H
1 E" or "H 0 F." One place where "H 1 E" can be
used to advantage is in developing a triangular ma
trix of squares and cross-products with the squares
along the diagonal. Assuming there are nine vari
ables designated as Xo, xi, ..••• Xs stored in mem
ory locations 00 to 08 respectively, their squares
and cross-products can be computed and stored in
the following array with the use of the "H 1 E"
instruction:

0 2 3 4 5 6 7 8 9

XO xi x2 x3 x4 XS x6 x1 xs

x2
0 XOXI XoX2 XoXs

Xi x1x2 x 1x 8

x2 2 lx2x3 x2xs

~ x3x4 x3xs

~ X4XS x4xs

~ XSX6 XSXB

X2
6 x6x1 x6xs

~ x.,xs

Xi

0 H 1 0
1 H 0 1

By homing F to E at the beginning 2 R 0 F

of each row, each cross-product is 3 B

developed only once, thus saving 0
x OF
WE F

both running time and memory s 1 8
space. The program for this rou- u 0 4
tine shown at the right. 8 H 1 E

9 s 0 9
10 u 0 2

31

In this particular problem it works out well to .
store the matrix in upper right triangular form. In
some problems it is more convenient to store the
matrix in upper left triangular form or lower left
triangular form.

D. ALGEBRAIC MANIPULATIONS
The ideas included in this section are as follows:

1. Polynomial evaluation.
2. Forced iteration.
3. Programming a problem in linear fashion to save

running time.
4. Multi-purpose subroutine.
5. Angle reduction.
6. Matrix structure.

1. Polynomial evaluation

There is a special type of factoring used in evalu
ating polynomials that is considered almost stand
ard with electronic digital computers. Sometimes
referred to as "synthetic division," it permits the
computer to evaluate the polynomial in a minimum
of program steps consisting of successive multipli
cations and additions.

To illustrate, consider the series approximation
fore:

x2 xs x4 x5 x6 x1 xs
e = l+x+ -+-+-+-+-+-+-+····

2! 3! 4! 5! 6! 7! 8!

When carried out to the 9th term, this problem can
be programmed for the ElOl in only 10 program
steps provided the special type of factoring is used.

The first step is to multiply the coefficient of the
highest power of x by x:

1
-X.
8!

Then the coefficient of the second highest power of
x is added and the sum again multiplied by x:

(~! x + ~!) x = ;, + =:·.
Next, the coefficient of the third highest power of x
is added and the sum again multiplied by x:

(x x2 1) x x2 x3
7! + 8! + 6! x = 6! + 7! + 8!"

The process is continued, each time adding the co
efficient of the next power of x and multiplying the
sum by x. At the end of the iteration, the polynomial
is in the form :

x2 x 3 .x4 x 5 x6 x 1 x 8

x + 2! + 3T + 4! + 5! + 6! + 7! +8!.

The only remaining step is to add "one."

The same basic approach is used to evaluate a
polynomial such as the truncated series approxima
tion for cosine x:

x2 x4 x6 xs
cos x = 1 - - + ~ - - +- -

2! 4! 6! 8!
Instead of multiplying by x each time, x2 is used.

2. Forced Iteration

In most cases it is rather obvious when to iterate
in a problem. For instance, no programmer would
consider stretching out in linear fashion the pro
gram for loading 60 amounts into the memory. By
a simple iterative process the loading can be pro
grammed in just 8 steps while the same operation
in a non-iterative, linear fashion requires 120 steps
(not counting transfers between pinboards).

Sometimes the situation is not so obvious. At
times a problem with seemingly no apparent pat
tern of repitition can be forced into iterative form to
save program steps. One problem where a complete
pinboard was saved by using this technique con
tained the following summations.

lxyAx

1
--ly2 Ax

2
1
-l xy2 Ax
2
1

--ly3 Ax
3

lx2 yAx

For each set of entry values of x, y, and Ax, y Ax
was stored and computed in the B register. x, y, x y,
y2 and x2 were stored in memory locations 00 to 04
respectively. By setting up an iterative loop multi
plying the contents of 0 F by the contents of the
B register, summing and storing in 9 F, the summa
tions were obtained in only a few program steps.
After all values of x, y, and A x had been entered,
another iterative loop multiplied the contents of 9 F
(the summations) by the corresponding coeffi-

1 1 1
cients: 1, -2·2· -3and1 stored in 10, 11, 12,

13 and 14 respectively. In this particular case the
complete problem (of which this· is only a small
part) was programmed in 8 pinboards. This would
not have been possible without forced iteration.

3. Programming in a linear fashion to save
running time

Sometimes the opposite approach is called for
programming a repetitive type problem in linear
.fashion instead of iterating. This approach saves

32

running time since there are fewer operations for
the ElOl to perform even though there are more
program steps. The cosine routine when pro
grammed in an iterative loop uses 12 steps and takes
4 seconds while the same routine in linear fashion
uses 18 steps but takes less than 3 seconds running
time. Sometimes it pays to compromise-iterate
part of a routine but not all of it. For example, in
clearing the entire memory, there are three basic
ways of programming the problem: stretching out
the entire routine linearly without using either
switch, stretching out part of the routine using one
of the two switches, and iterating the entire routine
using both the E and F switches. The first approach
requires 200 steps and can hardly be considered
seriously. The second approach uses 15 program
steps and takes about 8 or 9 seconds of running time.
The third approach, presented in Part II as the
standard one, uses only 9 steps but takes about 60
seconds on the ElOl. The last two routines appear
below for comparison.

Clearing Clearing
Semi-iterative Iterative

15 Steps, 8 or 9 Seconds 9 Steps, Approx. 60 Secs.

0 R 9 9 0 R 9 9
1 - 9 9 1 - 9 9
2 H 1 0 2 H 0 0
3 W 0 F

~
H 1 0

4 W 1 F W BF
5 W 2 F s 1 9
6 W 3 F u 0 4
7 W 4 F s 0 9
8 W 5 F u 0 3
9 W 6 F

10 W 7 F
11 W 8 F
12 W 9 F
13 s 1 9
14 u 0 3

4. Multi-purpose subroutine

Since many mathematical routines are based on
approximating polynomials, it is fairly easy to in
corporate the programs for several of these routines
into one multi-purpose subroutine. Since the co
efficients and sometimes the structure of the poly
nomial itself are likely to differ from one polynomial
to another, both these factors must be taken into
consideration in programming any multi-purpose
subroutine.

The variance in coefficients can be taken care of
by storing the coeffic;.ients for each polynomial in a
different row or column of the memory and having
the ElOl operate on the appropriate row or
column.

The variance in polynomial structure (i.e., where
one is a polynomial in x, one is a polynomial in x2,

etc.) can be taken care of by using a forced iteration
technique. The multi-purpose subroutine would ac
tually be programmed for a polynomial in x with all
terms present: x, x2 , x3 , x\ etc. When used to evalu
ate a polynomial in x2 , zeros would be used as the
coefficients of the missing terms.

An example of a multi-purpose subroutine that
can be used to approximate sine, cosine, arc tangent
and e-u is given in the Handbook of Subroutines
and Subroutine Methods for the ELECTRODATA
101. In the example given in the subroutine manual,
the multi-purpose subroutine is pinned in pinboard
5. In pinboard 1 there is a transfer to the subroutine
for a sine approximation; in pinboard 2 there is a
transfer to the subroutine for a cosine approxima
tion; rn pinboard 3 a transfer for an arc tangent
approximation; and in pinboard 4 a transfer for an
e-11 approximation.

In each case the program calls for returning to
the original pinboard after each subroutine. The
last step in the subroutine therefore is "U E * ,"
and the step preceding the transfer instruction in
each of the four pinboards is "H 0 b" where "b" is
the number of the pinboard.

If the coefficients to be used in each approxima
tion can be stored in a row of the memory whose
number corresponds to the pinboard number from
which the transfer to the pinboard is made, the E
switch can perform a two-fold purpose: it can select
the appropriate coefficients to be used in the sub
routine, and also select the pinboard to be used in
the subroutine exit instruction "U E * ." The F
switch is then free for iterating within the subrou
tine. When programmed in this fashion, only 10
steps are required for the subroutine.

5. Angle reduction
In order to arrive at a close approximation to the

sine and cosine of an angle on the E 101 in a mini
mum length of time, the angle must be within acer
tain range. The programs given in Handbook of
Subroutines and Subroutine Methods for the ELEC
TRODATA 101 limit the range to between

71' 71'
-2- and 2·

In addition to the standard subroutines, there
are also included in the manual a sine and cosine
subroutine for large angles (up to 100 radians).
The "large angle" routines make use of a quick
method of angle reduction that "reduces" the size
of the angle before determining the sine or cqsine.
The procedure is quite simple and requires only a
few more steps than the standard routines: the
angle is first divided by 271' and the integer portion
of the quotient shifted off. Then the sine or cosine
of the remaining decimal portion is determined
using the same basic method as used in the standard

33

routines. Only the constants differ.
The method is based on the trigonometric iden

tity:

sin A= sin 271'y where A= 271'N + 271' y,
where N is an integer.

If 271' y is substituted for A in the sine series

I I 1
sinA=A-3TA3-+ 5! A 5 - 7!A 1 +,

we have:

sin A= (271' y - ((2~)3] y3 + (< 2~) 5] ys -

[<2;/'] y' +

If we let ai = (271')

(271'P
03 ':' - 3"!

(271') 5

05 = --, etc.
5!

then sin A = ai y + o:i y3 + a5 y" + a1 y7 +

To arrive at y, we divide A by 271' and shift off the
integer portion of the answer:

If A = 2 71' N + 2 71' y,

A
then 271' = N + y

With the integer portion, N, shifted off, the remain
ing decimal portion is equal to y. Substituting y in
the above sine series, we arrive at the approximation
for sine A. The cosine approximation uses the same
basic approach.
NOTE: In the form in which this routine is given in
Handbook of Subroutines and Subroutine Methods
for the ELECTRODATA 101, the constants ai, a3, etc.
include an expansion factor to improve the accuracy
of the approximation.

6. Matrix structure
In the field of matrix algebra, there are ElOl pro

grams for matrix inversion, solution of simultaneous
equations, computations of eigenvalues, etc. These
programs are written up as separate ElOl pam
phlets and are available from the ELECTRODATA
Division Applied Mathematics Department. It
seems worthwhile calling attention here to how the
E and F switches of the ElOl permit a kind of pro
gramming of matrix calculations that more natural
ly follows the mathematical character of matrix
algebra than one generally finds in other computers.

For example, consider the simple problem where
an N x N matrix is multiplied by a column vector.
A common way of formally expressing this opera
tion is as follows:

j =N
P,= I

j = 1
where:

(Ai; • B;) • = 1,2 ... N

Pi is the product column vector
A;; is the matrix, and
B;; is the multiplier column vector

Essentially the character of the ElOl program re
quires only the substitution of "E" and "F," repre
senting the El 01 switches, for the subscripts "i"
and "j":

F=Y
PB= I (AliJF • Bp)

F =·I

Assuming that B is stored in row zero of the
memory and that each element of the matrix is
stored in the memory location corresponding to its
subscript (for example, A3., in location 35), the
problem can be programmed as follows:

34

0 H 0 1 Home Eto 1
1 H 1 1 Home Fto 1
2 RE 0 } 3 - E 0 Clear a location for Pe
4 WE 0
5 REF AliJF
6 B
7 x 0 F I (ABF . BF)
8 + E 0
9 WE 0

10 s 1 y Step F once (limit of F is Y)
11 u 0 5
12 p 3
13 s 0 y Step E once (limit of Eis Y)
14 u 0 1
15 A Halt: Problem finished. PE has

been printed and stored in col-
umn zero.

NOTE: As programmed above, the Y keys are used
to indicate the order of the matrix. An alternative
method is to pin the value of N in the 3rd area of
steps 10 and 13, and change the pin whenever the
program is used for a matrix of a different order.

APPENDIX

PRACTICE PROBLEM SOLUTIONS

1. a. P.B. No.1 P.B. No. 2 b. P.B. No.1

0 K 0 w 7 7 0 K
1 w 7 0 1 K 1 B
2 K 2 w 7 8 2 H 1 0
3 w 7 1 3 K

D
K

4 K 4 w 7 9 W 0 F
5 w 7 2 5 A * + 2 F
6 K s 1 9
7 w 7 3 u 0 3
8 K 8 A *
9 w 7 4

10 K 3. P.B. No. 1

11 w 7 5 0 R9 9}
12 K 1 - 9 9 Clear mem. loc. 99
13 w 7 6 2 w 9 9
14 K 3 H 1 0
15 u 2 0

0
K
W 8 F

b. P.B. No. 1 + 9 9

0 H 1 0 w 9 9

u K s 1 9

W 7 F 9 u 0 4

s 1 9 10 A - *

u 0 1 4. P.B. No.1
5 A * 0 R 9 9} Clear acc.

1 - 9 9
c. P.B. No. 1 2 H 0 0

0 H 0 0

~l
H 1 0

D
K WE F
W 7 E s 1 9
s 0 9 u 0 4
u 0 1 s 0 3

5 A - * u 0 3
9 A * 2. a. P.B. No. 1 P.B. N. 2 P.B. No. 3

0 K 0 w 0 4 0 w 0 9
1 B 1 ...;- 2 4 1 ...;- 2 9
2 K 2 K 2 A - *
3 w 0 0 3 w 0 5
4 ...;- 2 0 4 ...;- 2 5
5 K 5 K
6 WO 6 w 0 6
7 ...;- 2 7 ...;- 2 6
8 K 8 K
9 w 0 2 9 w 0 7

10 ...;- 2 2 10 ...;- 2 7
11 K 11 K
12 w 0 3 12 w 0 8
13 2 3 13 2 8
14 K 14 K
15 u 2 0 15 u 3 0

35

ELECTRODATA 101 INSTRUCTIONS

Basic Computer

PIN BOARD
AREA

1 2 3

+ a b

a b

X a b

a b

R a b

w a b

A b

A 2 b

A 3
A 4
A 5

A *
B

K

"' ~-~~
p a

u a b
c a b

s 0 b

s 1 b
s 2 b

OPERATION CARRIED OUT

Add the contents of memory location ab to the
contents of the accumulator. (a= tens digit of
the memory address, b = units digit of the
memory address.)

Subtract contents of ab from contents of ac
cumulator.

Multiply the contents of the B register by the
contents of memory location ab (answer is in
the accumulator) .

Divide the contents of accumulator by the num
ber in the B register and store the answer in
memory location ab (remainder left in ac
cumulator) .

Read the contents of memory location ab into
the accumulator (leaving copy in ab).

Write the contents of the accumulator into mem
ory location ab, leaving copy in accumulator.

Shift the contents of the accumulator b places to
the left. (b ~ 10).

Shift the contents of the accumulator b places to
the right. (b ~ 10).

Make the contents of the accumulator positive.
Make the contents of the accumulator negative.
Change the sign of the contents of the accumu-

lator.
Halt the machine.
Transfer the contents of the accumulator into

the B register, leaving copy in accumulator.
Transfer the contents of the keyboard into the

accumulator when operator depresses a motor
bar.1

Print contents of the accumulator using Motor
Bar "a", leaving copy in accumulator.2 ·

Unconditionally transfer to pinboard a, step b.3
Conditionally transfer to pinboard a, step b;

i.e., if the contents of the accumulator is nega
tive execute the transfer; if the contents of the
accumulator is positive execute the next step
in the program. 3

Step the E switch once; then if E =I= (b + 1),
execute the next instruction; if E = (b + 1),
execute the instruction after the next instruc
tion.

E = (b + 1)

[s :_ b

Same as above, but using the F switch.
Step E and F switches once; then if E =I= b + 1,

execute the next instruction; if E = b + 1,
execute the instruction after the next instruc
tion.

36

PIN BOARD
AREA

1 2 3

H 0 b
H 1 b
H 2 b

OPERATION CARRIED OUT

Home the E switch, stopping at position b.
Home the F switch, stopping at position b.
Home the E switch, stopping at position b, and

advance the F switch the same number of
places as E moves.

Pinning E instead of a definite number for a, or E or F in
stead of b, sends the machine to the appropriate switch's
setting for that particular value of a or b.

Pinning X for a, or Y for b, sends the machine to the appro
priate keyboard setting of the X or Y keys for that particu-
lar value of a or b. ·

NOTES: 1Pinning the 0 in level 3 effects a non-print for this
operation.

2Pinning the 0 in level 3 gives a non-print, while
the * gives a print-and-halt.

3Pinning 0 in level 2 keeps the transfer (to instruc
tion b) in the same pinboard, while the * in level
3 transfers to whatever instruction was last exe
cuted (in pinboard a) + 1.

Basic Computer With Tape Input Unit

In addition to the instructions for the basic ElOl:

T - 11 Tape Transfer-Execute the next instruction
on Tape. Follow each instruction on tape in
sequence until control is returned to pinboard
by a "U" or "C" instruction on tape.

T - 12 Tape Read-Read the next number on tape
into the accumulator and then continue with
the next pinboard instruction.

All instructions on tape require 3 characters, e.g., the B in
struction on tape would be used as B 1 1. Numbers are of
variable word length, 1-12 digits starting with the most
significant digit. It is therefore necessary to have a begin
word character and an end word character. The minus sign
should precede the digits when present.

Basic Computer with 220·Word Memory

H 3 b

s 3 b

H 4 -

H 5
H 6
H 7

Home the M switch (expanded memory band
selector switch) to b. b may have only the val
ues 0, 1, 2 or 3.

Step - Step the M switch once; then if M =I=
b + 1, execute the next instruction; if M =
b + 1, execute the instruction after the next
instruction.

Increase the E switch setting by the number in
the least significant digit position of the ac
cumulator.

Same using F switch.
Same u~ing E and F.
Same using the M switch.

PINBOARD
AREA

1 I 2 1 3

OPERATION CARRIED OUT

Basic Computer with 220-word Memory and Tape Input Unit

Combines all the instructions of the basic El 01, Tape Input
Unit ElOl and 220-word Memory ElOI.

Basic Computer with Instructions H4, H5 and H6:

In addition to the instructions for the basic EI 01 :

H 4 -

H 5
H 6

Increase the E switch setting by the number in
the least significant digit position of the ac
cumulator.

Same using F switch.
Same using E and F.

Basic Computer with "V" Instruction

In addition to the instructions for the basic computer:

Pinning "V" instead of a definite number for b in the 3rd
area of the pinboard sends the machine to the appropriate
setting for "V" as determined by carriage position.

37

ElectroData
DIVISION OF BURROUGHS CORPORATION

DISTRICT OFFICES

4 6 0 SIERRA

PASADENA ,

LOS ANGELES

SAN FRANCISCO

NEW YORK

DALLAS

DETROIT

SEATTLE

MADRE VIL L A ,

CALIFORNIA

WASHINGTON, D . C.

BOSTON

CHICAGO

ROCHESTER

PHILADELPHIA

OTTAWA , CANADA

Printed in U.S.A.

