
Burroughs 

86700 
Information Processing Systems 

REFERENCE MANUAL 



Bu.rrou.ghs 

B 6700 

INFORMATION PROCESSING SYSTEMS 

Printed in U. S. America 

REFERENCE MANUAL 

Burroughs Corporation 
Detroit, Michigan 48232 

$7.50 

5-72 1058633 



COPYRIGHT@1969, 1970, 1972 BURROUGHS CORPORATION 
AA 119114, AA 190266 

The information contained herein is subject to change 
without notice. Revisions may be issued to advise of 

such changes and/or additions. 

Correspondence regarding this document should be forwarded using the Remarks Form at 
the back of the manual, or may be addressed directly to Systems Documentation, Sales 
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232. 



SECTION 

TABLE OF CONTENTS 

TITLE I PAGE 

INTRODUCTION xxi 

SYSTEMS DESCRIPTION ..................................................... 1-1 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Description of Units ........................................................ 1-1 
Systems Options and Requirements ............................................ 1-2 

Auxiliary Cabinet ........................................................ 1-2 
Disk File Optimizer ...................................................... 1-3 
System Power ......................... ,, ................................. 1-3 
Peripheral Control Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

System Organization ....................................................... 1-4 
Master Control Program ..................................................... 1-4 
Clocks .................................................................. 1-4 
Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

Processor States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Control State ........................................................... 1-4 
Normal State ........................................................... 1-5 
Features .................................................. · ............. 1-5 

Interrupt System .......................................................... 1-5 
Interrupt Handling ....................................................... 1-5 
Operator-Dependent Processor Interrupts ..................................... 1-8 
Operator-Independent Processor Interrupts .................................... 1-8 
External Interrupts ....................................................... 1-8 

Main Memory ............................................................. 1-8 
Memory Words .......................................................... 1-8 
Memory Cycle Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 

Second Level Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
Input/Output Processor ..................................................... 1-9 

Input/Output Processor Configuration ........................................ 1-9 
Data Switching Channels .................................................. 1-9 
Peripheral Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
System Expansion ....................................................... 1-9 
Peripheral Control Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
Processor-Initiated 1/0 Operations ........................................... 1-9 

Peripheral Controls ........................................................ 1-12 
Data Communications Processor (DCP) ........................................ 1-12 
Data Communications Adapters .............................................. 1-12 

Real-Time Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 

2 DATA REPRESENTATION ................................................... 2-1 
General .................................................................. 2-1 
Internal Character Codes .................................................... 2-1 
Number Bases ............................................................. 2-1 

Hexadecimal and Octal Notation ............................................ 2-1 
Number Conversion ........................................................ 2-2 

Coded to Decimal Conversion .............................................. 2-2 
Decimal to Coded ....................................................... 2-2 
Decimal and Hexadecimal Table Conversion ................................... 2-2 

Hexadecimal to Decimal ................................................. 2-2 
Decimal to Hexadecimal ................................................. 2-2 

iii 



TABLE OF CONTENTS (cont) 

SECTION TITLE PAGE 

Order of Magnitude ........................................................ 2-4 
Data Types and Physical Layout .............................................. 2-4 

Character Type .......................................................... 2-4 
Operands .............................................................. 2-5 
Mantissa Field .......................................................... 2-6 
Logical Operands ........................................................ 2-6 

Opera tors ........................ ~ ........................................ 2-6 

3 STACK AND POLISH NOTATION .............................................. 3-1 
The Stack .................. , ............................................. 3-1 

General ................................................................ 3-1 
Base and Limit of Stack ................................................... 3-1 
Bi-Directional Data Flow In the Stack ........................................ 3-1 
Double-Precision Stack Operation ........................................... 3-1 

Data Addressing ........................................................... 3- l 
Data Descriptor ......................................................... 3-2 

Presence Bit .......................................................... 3-2 
Index Bit .............. , ............................................. 3-2 

Invalid Index ............... , ............................................. 3-2 
Valid Index .............................................................. 3-2 

Read-Only Bit .......................................................... 3-2 
Copy Bit ............................................................... 3-2 

Polish Notation ........................................................... 3-3 
General ................................................................ 3-3 
Simplified Rules for Generation of Polish String ................................ 3-3 
Polish String ............................................................ 3-4 
Rules for Evaluating a Polish String .......................................... 3-4 
Simple Stack Operation ................................................... 3-4 
Program Structure In Memory .............................................. 3-5 

Memory Area Allocation ................................................ 3-6 
Stack-History and Addressing-Environment Lists ................................ 3-6 

Mark Stack Control Word Linkage ......................................... 3-6 
Stack Deletion ........................................................ 3-7 
Relative-Addressing .................................................... 3-7 

Base of Addressing-Level Segment ....................................... 3-8 
Absolute Address Conversion ........................................... 3-8 
Multiple Variable with Common Address Couples ........................... 3-8 
Address Environment Defined .......................................... 3-8 
Mark Stack Control Word Linkage ....................................... 3-8 

Stack History Summary ................................................. 3-9 
Multiple Stacks and Re-Entrant Code ......................................... 3-9 

Level Definition ....................................................... 3-9 
Re-Entrance .......................................................... 3-9 
Job-Splitting .......................................................... 3-9 
Stack Descriptor ....................................................... 3-9 
Stack Vector Descriptor ................................................ 3-10 
Presence Bit Interrupt ................................................. 3-1 O 

4 MAJOR REGISTERS AND CONTROL PANELS ................................... 4-1 
Processor Registers ......................................................... 4-1 

iv 



TABLE OF CONTENTS (cont) 

SECTION TITLE PAGE 

General ................................................................ 4-1 
Panel A ................................................................ 4-1 

P Register ............................................................ 4-1 
C Register ............................................................ 4-1 
A Register ........................................................... 4-1 
B Register ............................................................ 4-1 
X Register ........................................................... 4-1 
Y Register ........................................................... 4-1 

Panel B ................................................................ 4-1 
Row A .............................................................. 4-1 

IC Mem Read Select .................................................. 4-4 
IC Mem Write Select .................................................. 4-4 

Memory Interface ...................................................... 4-4 
Control/Response .................................................... 4-4 
Memory Address .................................................... 4-4 

Row B .............................................................. 4-4 
Row C .............................................................. 4-5 

Family A .......................................................... 4-5 
Arithmetic Control ...... ; ............................................ 4-5 

Row D .............................................................. 4-5 
Family B .......................................................... 4-5 
Family C .......................................................... 4-5 

Row E .............................................................. 4-6 
Family D ........................................................... 4-6 
Family E .......................................................... 4-6 

Row F .............................................................. 4-6 
Row G .............................................................. 4-7 

Interrupt Control .................................................. 4-7 
Stack Control ..................................................... 4-7 
Memory Control ................................................... 4-7 

Row H .............................................................. 4-7 
Program Control ................................................... 4-8 
Transfer Controller ................................................. 4-8 

General Maintenance Controls ................................................ 4-8 
Power Controls .......................................................... 4-8 
General Clear and Halt-Load Function ........................................ 4-9 
Processor Register Clear ................................................... 4-9 

Input/Output Processor Register Clear ...................................... 4-9 
MDL Register Clear ................................................... 4-10 
MDL Control Switches ................................................. 4-10 
Display Select Switches ................................................ 4-10 
Clock Controls ....................................................... 4-10 
Single Pulse Switch .................................................... 4-10 
Pulse Train Switch .................................................... 4-10 
Indicators BO, B 1, B2 .................................................. 4-10 
MDTR/Normal Switch ................................................. 4-10 
FF Reset Switch ...................................................... 4-10 
Halt Load and Load Select Switches ...................................... 4-10 

Processor Maintenance Controls (Panel E) .................................... 4-10 
Start Switch ......................................................... 4-11 

v 



TABLE OF CONTENTS (cont) 

SECTION TITLE PAGE 

Conditional Halt Switch ................................................ 4-11 
Stop Switches ........................................................ 4-11 

SECL Switch ...................................................... 4-11 
INT-I Switcl1 ...................................................... 4-11 
EXT-I Switch ...................................................... 4-11 
Normal/Control State Switches ........................ , ............... 4-11 
Parity Switch ...................................................... 4-11 

Unit Clear Switch ..................................................... 4-11 
Local/Remote Switch .................................................. 4-11 
ADJ (0,0) Switch ..................................................... 4-11 
Read IC Switch ...................................................... 4-12 

Read IC Operation ................................................... 4-12 
Write IC Switch . . ................................................... 4-12 

Write IC Operation .................................................. 4-12 
Read Proc Reg Switches ................................................. 4-12 

Input/Output Processor Registers and Flip Flops ................................ 4-13 
Row B ................................. · ............................ 4-13 
Row C ............................................................. 4-13 
Row D ............................................................. 4-13 
Row E ............................................................. 4-14 
Row F ............................................................. 4-14 
Row G ............................................................. 4-14 
Row H ............................................................. 4-14 
Input/Output Processor Maintenance Control Panel ........................... 4-14 
Write SPM .......................................................... 4-16 
Read SPM ........................................................... 4-16 
Write Main Memory ................................................... 4-16 
Read Main Memory ................................................... 4-16 
Executing 1/0 Descriptors .............................................. 4-17 

Single Cycle ....................................................... 4-17 
Recycle .......................................................... 4-1 7 

Logic Card Testing .................................................... 4-1 7 
Operators Control Console ................................................ 4-18 

Operator Panel ....................................................... 4-18 
Power On (Switch Indicator, White) ..................................... 4-18 
Power Off (Switch, Brown) ........................................... 4-18 
Halt (Switch/Indicator, Red) .......................................... 4-18 
Running (Indicator, Yellow) .......................................... 4-18 
Load Select (Switch/Indicator, Yellow) .................................. 4-18 
Load (Switch, Brown) ............................................... 4-18 

Card Load Operation .............................................. 4-18 
Disk Load Opera ti on .............................................. 4-18 

Visual Message Control Center ............................................. 4-19 
Keyboard Control Keys ................................................ 4-19 

Memory Tester ......................................................... 4-20 
Non-Test ........................................................... 4-20 
Test ............................................................... 4-21 

5 SYSTEM CONCEPT .......................................................... 5-1 
General .................................................................. 5-1 

vi 



SECTION 

TABLE OF CONTENTS (cont) 

TITLE PAGE 

Processor ................................................................ 5-1 
Operator Families ........................................................ 5-1 
Program Controller ....................................................... 5-1 
Transfer Controller ....................................................... 5-2 

Stack Registers ........................................................ 5-2 
Internal Data Transfer Section ............................................ 5-2 
Mask and Steering ..................................................... 5-3 
Mask and Steering Example .............................................. 5-3 

Arithmetic Controller ..................................................... 5-3 
High-Speed Adder ..................................................... 5-3 

Interrupt Controller ...................................................... 5-3 
Operator-Dependent Interrupts ........................................... 5-5 

Memory Protect ..................................................... 5-5 
Invalid Operand ..................................................... 5-6 
Divide by Zero ...................................................... 5-6 
Exponent Overflow and Underflow ...................................... 5-6 
Invalid Index ....................................................... 5-6 
Integer Overflow .................................................... 5-6 
Bottom of Stack ..................................................... 5-7 
Presence Bit ........................................................ 5-7 

Data-Dependent Presence Bit ......................................... 5-7 
Procedure-Dependent Presence Bit ..................................... 5-7 
Program Restart ................................................... 5-7 

Segmented Array .................................................... 5-7 
Programed Operator ................................................ 5-8 

Operator-Independent Interrupts .......................................... 5-8 
External Interrupts ..................................................... 5-8 

Processor to Processor ................................................ 5-9 
Interval Timer ...................................................... 5-9 
Stack Overflow ...................................................... 5-9 
Input/Output Processor Interrupts ....................................... 5-9 
Scan Bus Control .................................................... 5-9 
Priority Handling ................................................... 5-10 

Priority-Handling Example with IIHF Off .............................. 5-10 
Priority-Handling Example with IIHF On .............................. 5-10 
1/0 Finish and Data Communications Interrupts ......................... 5-10 
General Control Adapter ........................................... 5-10 
Alarm Interrupts ................................................. 5-10 
Loop ........................................................... 5-11 
Memory Parity ................................................... 5-11 
1/0 Processor Parity ............................................... 5-11 
Invalid Address ................................................... 5-12 
Stack Underflow ................................................. 5-12 
Invalid Program Word .............................................. 5-12 
Interrupt Handling ................................................ 5-12 

String Operator Controller .............................................. 5-12 
Control State/Normal State ............................................. 5-12 

Input/Output Processor .................................................... 5-14 
Scan Bus .............................................................. 5-14 
Command Data Register .................................................. 5-14 

vii 



TABLE OF CONTENTS (cont) 

SECTION TITLE PAGE 

Scratch Pad Memory .................................................. 5-14 
Tag Register ......................................................... 5-15 
Memory Exchange .................................................... 5-15 
Interrupt Network .................................................... 5-15 
Time of Day Register .................................................. 5-15 
Channel Assignment Control ............................................ 5-15 
Character Translator ................................................... 5-15 
Peripheral Control Interface ............................................. 5-16 
Data Communications Interface ........................................... 5-16 
System Clock Control and MDL Processor .................................. 5-16 

System Clock ...................................................... 5-16 
Maintenance Diagnostic Processor ...................................... 5-17 

Display Mode .................................................... 5-17 
Diagnose Mode ................................................... 5-17 
Detect Mode ..................................................... 5-17 

Information Flow from Card Reader to Main Memory ............................ 5-17 
Alpha Card Read ....................................................... 5-17 
Binary Card Read ....................................................... 5-17 
EBCDIC Card Read ...................................................... 5-17 

Memory and Input/Output Processor Controller ................................. 5-18 
Memory Bus ........................................................... 5-20 
Scan Bus .............................................................. 5-20 
Address Adder ......................................................... 5-20 
Integrated Circuit (IC) Memory ............................................ 5-20 

Main Memory ............................................................ 5-20 
Organization ........................................................... 5-20 
Memory Protection ..................................................... 5-21 
Cabinet Configuration ................................................... 5-21 
Interface .............................................................. 5-21 
Priority ............................................................... 5-21 
Memory Registers ....................................................... 5-22 
Memory Addressing ..................................................... 5-22 
Memory Interlacing ..................................................... 5-22 
Memory Testing ........................................................ 5-23 
Stack Controller ........................................................ 5-23 

6 PROGRAM OPERATORS ..................................................... 6-1 
General .................................................................. 6-1 
Syllable Addressing and Syllable Identification ................................... 6-1 

Syllable Format and Addressing ............................................. 6-1 
P and T Registers ........................................................ 6-1 
Operation Types ......................................................... 6-1 

Name Call ............................................................ 6-1 
Value Call ............................................................ 6-1 
Operators ............................................................ 6-2 

Word Data Descriptor ....................................................... 6-3 
String Descriptor .......................................................... 6-4 
Segment Descriptor ........................................................ 6-5 
Mark Stack Control Word .................................................... 6-5 
Program Control Word · ...................................................... 6-6 

viii 



SECTION 

TABLE OF CONTENTS (cont) 

TITLE PAGE 

Return Control Word ....................................................... 6-6 
Indirect Reference Word .................................................... 6-6 
Stuffed Indirect Reference Word .............................................. 6-7 
Step Index Word .......................................................... 6-8 

7 PRIMARY MODE OPERATORS ................................................ 7-1 
General .................................................................. 7-1 
Arithmetic Operators ....................................................... 7-1 

Add (ADD) 80 .......................................................... 7-1 
Subtract (SUBT) 81 ...................................................... 7-1 
Multiply (MULT) 82 ..................................................... 7-2 
Extended Multiply (MULX) 8F ............................................. 7-2 
Divide (DIVD) 83 ........................................................ 7-2 
Integer Divide (IDIV) 84 .................................................. 7-2 
Remainder Divide (RDIV) 85 ............................................... 7-2 
Integerize, Truncated (NTIA) 86 ............................................ 7-3 
Integerize, Rounded (NTGR) 87 ............................................ 7-3 

Type-Transfer Operators .................................................... 7-3 
Set to Single-Precision, Truncated (SNGT) CC .................................. 7-3 
Set to Single-Precision, Rounded (SNGL) CD .................................. 7-3 
Set to Double-Precision (XTND) CE ......................................... 7-3 

Logical Opera tors .......................................................... 7-4 
Logical And (LAND) 90 ................................................... 7-4 
Logical Or (LOR) 91 ..................................................... 7-4 
Logical Negate (LNOT) 92 ................................................. 7-4 
Logical Equivalence (LEQV) 93 ............................................. 7-4 

Relational Operators ....................................................... 7-4 
Logical Equal (SAME) 94 .................................................. 7-4 
Greater Than (GRTR) 8A ................................................. 7-4 
Greater Than or Equal (GREQ) 89 ........................................... 7-4 
Equal (EQUL) 8C ........................................................ 7-4 
Less Than or Equal (LSEQ) 8B ............................................. 7-4 
Less Than (LESS) 88 ..................................................... 7-4 
Not Equal (NEQL) 8D .................................................... 7-5 . 

Branch Operators .......................................................... 7-5 
Branch False (BRFL) AO .................................................. 7-5 
Branch True (BRTR) Al .................................................. 7-5 
Branch Unconditional (BRUN) A2 ........................................... 7-5 
Dynamic Branch False (DBFL) A8 ........................................... 7-5 
Dynamic Branch True (DBTR) A9 ........................................... 7-5 
Dynamic Branch Unconditional (DBUN) AA ................................... 7-5 
Step and Branch (STBR) A4 ............................................... 7-5 

Universal Opera tors ........................................................ 7-6 
No Operation (NOOP) FE ................................................. 7-6 
Conditional Halt (HALT) DF ............................................... 7-6 
Invalid Operator (NVLD) FF ............................................... 7-6 

Store Operators ........................................................... 7-6 
Store Destructive (STOD) B8 ............................................... 7-6 
Store Non-Destructive (STON) B9 ........................................... 7-6 
Overwrite Destructive (OVRD) BA .......................................... 7-6 

ix 



TABLE OF CONTENTS (cont) 

SECTION TITLE PAGE 

Overwrite Non-Destructive (OVRN) BB ....................................... 7-6 
Stack Operators ........................................................... 7-6 

Exchange (EXCH) B6 ..................................................... 7-6 
Delete Top Of Stack (DLET) BS ............................................ 7-6 
Duplicate Top Of Stack (DUPL) B7 .......................................... 7-6 
Push Down Stack Registers (PUSH) B4 ....................................... 7-6 

Literal Call Operators ....................................................... 7-7 
Lit Call Zero (ZERO) BO .................................................. 7-7 
Lit Call One (ONE) B 1 .................................................... 7-7 
Lit Call 8 Bits (LT8) B2 ................................................... 7-7 
LitCall 16Bits(LT16)B3 ................................................. 7-7 
Lit Call 48 Bits (LT48) BE ................................................. 7-7 
Make Program Control Word (MPCW) BF ..................................... 7-7 

Index and Load Operators ................................................... 7-7 
Index (INDX) A6 ........................................................ 7-7 
Index and Load Name (NXLN) AS .......................................... 7-7 
Index and Load Value (NXL V) AD .......................................... 7-7 
Load (LOAD) BD ........................................................ 7-8 

Scale Operators ........................................................... 7-8 
Scale Left (SCLF) CO ..................................................... 7-8 
Dynamic Scale Left (DSLF) C 1 ............................................. 7-8 
Scale Right Save (SCRS) C4 ................................................ 7-8 
Dynamic Scale Right Save (DSRS) CS ........................................ 7-8 
Scale Right Truncate (SCRT) C2 ............................................ 7-8 
Dynamic Scale Right Truncate (DSRT) C3 .................................... 7-8 
Scale Right Final (SCRF) C6 ............................................... 7-8 
Dynamic Scale Right Final (DSRF) C7 ....................................... 7-9 
Scale Right Rounded (SCRR) C8 ............................................. 7-9 
Dynamic Scale Right Round (DSRR) C9 ...................................... 7-9 

Bit Operators ............................................................. 7-9 
Bit Set (BSET) 96 ....................................................... 7-9 
Dynamic Bit Set (DBST) 97 ................................................ 7-9 
Bit Reset (BRST) 9E ..................................................... 7-9 
Dynamic Bit Reset (DBRS) 9F .............................................. 7-9 
Change Sign Bit (CHSN) 8E ................................................ 7-9 

Transfer Operators ......................................................... 7-9 
Field Transfer (FLTR) 98 ................................................. 7-9 
Dynamic Field Transfer (DFTR) 99 ......................................... 7-10 
Field Isolate (ISOL) 9A .................................................. 7-10 
Dynamic Field Isolate (DISO) 9B ........................................... 7-10 
Field Insert (INSR) 9C ................................................... 7-10 
Dynamic Field Insert (DINS) 9D ........................................... 7-10 

String Transfer Operators ................................................... 7-10 
Transfer Words, Destructive (TWSD) D3 ..................................... 7-10 
Transfer Words, Update (TWSU) DB ........................................ 7-11 
Transfer Words, Overwrite Destructive (TWOD) D4 ............................. 7-11 
Transfer Words, Overwrite Update (TWOU) DC ................................ 7-11 
Transfer While Greater, Destructive (TGTD) E2 ................................ 7-11 
Transfer While Greater, Update (TGTU) EA .................................. 7-11 
Transfer While Greater or Equal, Destructive (TGED) El ........................ 7-11 

x 



SECTION 

TABLE OF CONTENTS (cont) 

TITLE PAGE 

Transfer While Greater or Equal, Update (TGEU) E9 ............................ 7-11 
Transfer While Equal, Destructive (TEQD) E4 ................................. 7-11 
Transfer While Equal, Update (TEQU) EC .................................... 7-12 . 
Transfer While Less or Equal~ Destructive (TLED) E3 ........................... 7-12 , 
Transfer While Less or Equal, Update (TLEU) EB .............................. 7-12 
Transfer While Less, Destructive (TLSD) EO .................................. 7-12 
Transfer While Less, Update (TLSU) E8 ...................................... 7-12 · 
Transfer While Not Equal, Destructive (TNED) ES ............................. 7-12 
Transfer While Not Equal, Update (TNEU) ED ................................ 7-12 , 
Transfer Unconditional, Destructive (TUND) E6 ............................... 7-12 
Transfer Unconditional, Update (TUNU) EE .................................. 7-12 ,, 
String Isolate (SISO) DS .................................................. 7-12 . 

Compare Operators ....................................................... 7-12 · 
Compare Characters Greater, Destructive (CGTD) F2 ........................... 7-12, 
Compare Characters Greater, Update (CGTU) FA .............................. 7-13 
Compare Characters Greater or Equal, Destructive (CGED) FI .................... 7-13 
Compare Characters Greater or Equal, Update (CGEU) F9 ....................... 7-13 
Compare Characters Equal, Destructive (CEQD) F4 ............................. 7-13, 
Compare Characters Equal, Update (CEGU) FC ................................ 7-13 
Compare Characters Less or Equal, Destructive (CLED) F3 ....................... 7-13 
Compare Characters Less or Equal, Update (CLEU) FB .......................... 7-13 ~ 
Compare Characters Less, Destructive (CLSD) FO .............................. 7-13 
Compare Characters Less, Update (CLSU) F8 ................................. 7-13 c 

Compare Characters Not Equal, Destructive (CNED) FS ......................... 7-13 
Compare Characters Not Equal, Update (CNEU) FD ............................ 7-13 

Edit Opera tors ........................................................... 7-13 
Table Enter Edit, Destructive (TEED) DO .................................... 7-13. 
Table Enter Edit, Update (TEEU) D8 ....................................... 7-14 
Execute Single Micro, Destructive (EXSD) D2 ................................. 7-14, 
Execute Single Micro, Update (EXSU) DA .................................... 7-14, 
Execute Single Micro, Single Pointer Update (EXPU) DD . . . . . . . . . . . . . . . . . . . . . .. 7-14' 

Pack Operators ........................................................... 7-14, 
Pack, Destructive (PACD) DI .............................................. 7-14, 
Pack, Update (PACU) D9 ................................................. 7-14; 

Input Convert Operators ................................................... 7-14" 
Input Convert, Destructive (ICVD) CA ...................................... 7-14., 
Input Convert, Update (ICVU) CB .......................................... 7-15, 
Read True False Flip Flop (RTFF) DE ...................................... 7-15, 
Set External Sign (SXSN) D6 .............................................. 7-15, 
Read and Clear Overflow Flip Flop (ROFF) D7 ................................ 7-15,, 

Subroutine Operators ...................................................... 7-15. 
Value Call ( VALC) 00=>3F .............................................. 7-15. 
Name Call (NAMC) 40=>7F .............................................. 7-15. 
Exit Operator (EXIT) A3 ................................................. 7-15. 
Return Operator (RETN) A 7 .............................................. 7-17. 
Enter Operator (ENTR) AB ............................................... 7-1 i 
Evaluate (EV AL) AC .................................................... 7-20I 
Mark Stack Operator (MKST) AE .......................................... 7-2t 
Stuff Environment (STFF) AF ............. : ............................... 7-22, 
Insert Mark Stack Operator (IMKS) CF ...................................... 7-22, 

xi 



SECTION 

TABLE OF CONTENTS (cont) 

TITLE PAGE 

8 VARIANT MODE OPERATION AND OPERATORS ................................ 8-1 
General .................................................................. 8-1 

Escape to 16-Bit Instruction (VARI) 95 ....................................... 8-1 
Operators ................................................................ 8-1 

Set Two Singles to Double (JOIN) 9542 ...................................... 8-1 
Set Double to Two Singles (SPLT) 9 543 ...................................... 8-1 
Idle Until Interrupt (IDLE) 9544 ............................................ 8-1 
Set Interval Timer (SINT) 9545 (Control State Operator) ......................... 8-1 
Enable External Interrupts (EEXI) 9546 ...................................... 8-1 
Disable External Interrupts (DEXI) 954 7 ...................................... 8-1 

Scan Operators ............................................................ 8-1 
Scan In (SCNI) 954A ..................................................... 8-2 
Read Time Of Day Clock .................................................. 8-2 
Read General Control Adapter .............................................. 8-2 
Read Result Descriptor ................................................... 8-3 
Read Interrupt Mask ..................................................... 8-4 
Read Interrupt Register ................................................... 8-4 
Read Interrupt Literal .................................................... 8-5 
Interrogate Peripheral Status ............................................... 8-5 
Interrogate Peripheral Unit Type ............................................ 8-6 
Interrogate 1/0 Path ...................................................... 8-7 
Scan Out (SCNO) 954B ................................................... 8-8 
Set Time Of Day Clock ................................................... 8-8 
Set General Control Adapter ............................................... 8-9 
Initiate 1/0 (Control State Only) ............................................ 8-9 
Read Processor Identification (WHOI) 954E ....... · ........................... 8-10 
Interrupt Other Processor (HEYU) 954F ..................................... 8-10 
Occurs Index (OCRX) 9585 ............................................... 8-10 
Integerized, Rounded, Double-Precision (NTGD) 9587 .......................... 8-11 
Leading One Test (LOG2) 958B ............................................ 8-11 
Move To Stack (MYST) 95AF ............................................. 8-11 
Set Tag Field (STAG) 95B4 ............................................... 8-12 
Read Tag Field (RTAG) 95B5 ............................................. 8-12 
Rotate Stack Up (RSUP) 95B6 ............................................ 8-12 
Rotate Stack Down (RSDN) 95B7 .......................................... 8-12 
Read Processor Register (RPRR) 95B8 ...................................... 8-12 
Set Processor Register (SPRR) 95B9 ........................................ 8-13 
Read With Lock (RDLK) 95BA ........................................... 8-13 
Count Binary Ones (CBON) 95BB .......................................... 8-13 
Load Transparent (LODT) 95BC .......................................... 8-13 
Linked List Lookup (LLLU) 95BD ......................................... 8-13 
Masked Search for Equal (SRCH) 95BE ...................................... 8-13 
Unpack Absolute, Destructive (UABD) 95Dl ................................. 8-14 
Unpack Absolute, Update (UABU) 95D9 ..................................... 8-14 
Unpack Signed, Destructive (USND) 95DO ................................... 8-14 
Unpack Signed, Update (USNU) 95D8 ....................................... 8-14 
Transfer While True, Destructive (TWTD) 95D3 ............................... 8-14 
Transfer While True, Update (TWTU) 95DB .................................. 8-14 
Transfer While False, Destructive (TWFD) 9 5D2 ............................... 8-14 
Transfer While False, Update (TWFU) 95DA .................................. 8-14 

xii 



SECTION 

TABLE OF CONTENTS (cont) 

TITLE PAGE 

Translate (TRNS) 95D7 .................................................. 8-1~ 
Scan While Greater, Destructive (SGTD) 95F2 ................................. 8-lS 
Scan While Greater, Update (SGTU) 95FA ................................... 8-15 
Scan While Greater or Equal, Destructive (SGED) 95F 1 ......................... 8-15 
Scan While Greater or Equal, Update (SGEU) 95F9 ............................. 8-15 
Scan While Equal, Destructive (SEQD) 95F4 .................................. 8-1 S 
Scan While Equal, Update (SEQU) 95FC ..................................... 8-1~ 
Scan While Less or Equal, Destructive (SLED) 95F3 ............................ 8-15 
Scan While Less or Equal, Update (SLEU) 95FB ............................... 8-15 
Scan While Less, Destructive (SLSD) 95FO ................................... 8-1~ 
Scan While Less, Update (SLSU) 95F8 ........................................ 8-16 
Scan While Not Equal, Destructive (SNED) 95FS .............................. 8-16 
Scan While Not Equal, Update (SNEU) 95FD ................................. 8-16 
Scan While True, Destructive (SWTD) 95DS .................................. 8-16 
Scan While True, Update (SWTU) 9SDD ..................................... 8-16 
Scan While False, Destructive (SWFD) 95D4 .................................. 8-16 
Scan While False, Update (SWFU) 9SDC ..................................... 8-16 

9 EDIT MODE OPERATION AND OPERATORS .................................... 9-l 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
Edit Mode Operators ....................................................... 9-1 

Move Characters (MCHR) D7 ............................................... 9-1 
Move Numeric Unconditional (MVNU) D6 .................................... 9-1 
Move With Insert (MINS) DO ............................................... 9-1 
Move With Float (MFLT) DI ............................................... 9-l 
Skip Forward Source Characters (SFSC) D2 ................................... 9-2 
Skip Reverse Source Characters (SRSC) D3 .................................... 9-2 
Skip Forward Destination Characters (SFDC) DA ............................... 9-2 
Skip Reverse Destination Characters (SRDC) DB ................................ 9-2 
Reset Float (RSTF) D4 ................................................... 9-Z 
End Float (ENDF) DS .................................................... 9-:Z 
Insert Unconditional (INSU) DC ............................................ 9-2 
Insert Conditional (INSC) DD .............................................. 9-Z 
Insert Display Sign (INSG) D9 .............................................. 9-2 
Insert Overpunch (INOP) D8 ............................................... 9-3 
End Edit (ENDE) DE ..................................................... 9-3 

10 INPUT/OUTPUT PROCESSOR AND PERIPHERAL CONTROLS ..................... 10-J 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0- J 
Opera ti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-J 
Descriptor Formats ....................................................... 1 O-; 

Function Word ......................................................... IO-; 
Area Descriptor ........................................................ 1 o-: 
1/0 Control Word ....................................................... 10-~ 
Result Descriptor ....................................................... 1 o-: 

Peripheral Units and Associated Peripheral Controls .............................. l 0-! 
Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 0-?· 
Card Reader ........................................................... 10-4 
Card Punch ............................................................ 10-! 
Line Printers .......................................................... 10-t 

xiii 



TABLE OF CONTENTS (cont) 

SECTION TITLE PAGE 

Magnetic Tape Subsystem ............................................... 10-6 
Disk File Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11 
Paper Tape ........................................................... 10-14 
Disk Pack Drive Memory Systems ......................................... 10-15 

11 B6700 DATA COMMUNICATIONS SYSTEM ..................................... 11-1 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
Data Communications Processor (DCP) ........................................ 11-1 
Adapter Cluster .......................................................... 11-3 
Line Adapter ............................................................ 11-4 

12 DISK FILE OPTIMIZER ..................................................... 12-1 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 
Functional Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 

Functional Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 
Components ........................................................... 12-2 

Operational Characteristics .................................................. 12-2 
Accumulation of Control Words ............................................ 12-2 
Queuing the Control Words ............................................... 12-2 
Stack Operation ........................................................ 12-3 
Stack Erasure and Compression ............................................ 12-3 
Optimizer Dump ....................................................... 12-3 
Degraded Mode Operation ................................................ 12-3 
EU Conflict Resolution .................................................. 12-3 

Interface Requirements .................................................... 12-3 
Interface with the 1/0 Processor ........................................... 12-3 
Control Word .......................................................... 12-4 
Scan-Out ............................................................. 12-4 
Scan-In ............................................................... 12-5 
Scan Bus Data Format ................................................... 12-5 

Scan Address Lines (SA) ............................................... 12-5 
Scan-Out Information Lines ............................................. 12-6 
Scan-In Information Lines (SI) ........................................... 12-6 

Dynamic Interaction with the B 6700 ....................................... 12-6 
Optimized Control Word Request ........................................ 12-7 
Top-of-Stack-Control Word Request ...................................... 12-7 
Store the Control Word Request ......................................... 12-7 
Clear-the-Stack Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7 
First Stack Scan Cycle Incomplete ........................................ 12-7 
Arithmetic Address Converter (AAC) Busy ................................. 12-7 
No Access to OEX .................................................... 12-7 
SU Not Available ..................................................... 12-7 
Optimizer Stack (OS) Empty ............................................ 12-8 
Control Word Not Available ............................................. 12-8 
Scan Bus Parity Error .................................................. 12-8 
Optimizer Stack (OS) Parity Error ........................................ 12-8 
Disk Address Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8 
Optimizer Stack Full .................................................. 12-9 

Disk Interface ............................................................ 12-9 
Signals Sent Directly to the Disk File Subsystem ............................... 12-9 

xiv 



SECTION 

TABLE OF CONTENTS (cont) 

TITLE PAGE 

Signals Received Directly from the Disk File Subsystem . . . . . . . . . . . . . . . . . . . . . . . . 12-9 
Signals Sent to the Disk File Subsystem Via the Other Optimizer ................. 12-10 
Signals Received From the Disk File Subsystem Via the Other Optimizer ........... 12-10 
Signals Sent to the Other Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10 
Signals Received From the Other Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 

Functional Units . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 
I/O Interface Unit ..................................................... 12-11 

Drivers (DR) and Receivers (RX) ........................................ 12-11 
Scan Bus Controls ................................................... 12-11 
Control Word (CW) Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 
Status Controls ...................................................... 12-11 

Disk Address Unit ..................................................... 12-12 
Drivers and Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 

. EU Conflict Resolution ............................................... 12-13 
Actual Shaft Position Registers (ASPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 . 

Optimizing Unit ....................................................... 12-13 
Arithmetic Address Converter (AAC) ..................................... 12-13 
Optimizer Stack ..................................................... 12-13 . 
Optimizer Stack Register (OSR) ........................................ 12-13 
Stack Controls (TSR and OAR) ......................................... 12-13 

Stack Controls .................................................... 12-13 
Top-of-the-Stack Register (TSR) ...................................... 12-13 
Optimizer Address Register (OAR) .................................... 12-13 

Delta Generator and Comparator (DGC) .................................. 12-13 
Delta A Register and Delta B Register (DAR and DBR) ....................... 12-14 . 
Timing Controls ..................................................... 12-14 _ 

APPENDIX A - OPERATORS, ALPHABETICAL LIST ............................. A-1 . 

APPENDIX B - OPERATORS, NUMERICAL LIST PRIMARY MODE B-1 

APPENDIX C - CONTROL WORD FORMATS ................................... C-1 

APPENDIX D - SCAN FUNCTION CODE WORDS ................................ D-1 

APPENDIXE-DATAREPRESENTATION ..................................... E-1 

APPENDIX F - B 6700 EBCDIC/HEX CARD CODE ............................... F-1 

APPENDIX G - HEXADECIMAL-DECIMAL CONVERSION TABLE .................. G-1 

xv 



LIST OF ILLUSTRATIONS 

FIGURE TITLE PAGE 

1-1 Auxiliary Cabinets .................................................... 1-3 
1-2 B 6700 Power Supply .................................................. 1-3 
1-3 Peripheral Control Cabinet .............................................. 1-4 
1-4 B 6700 Representative Configuration (Two Sheets) ........................... 1-6 
1-5 Magnetic Tape Subsystem Relationships .................................. 1-10 
1-6 Disk File Subsystem Relationships ....................................... 1-11 
1-7 Input/Output Subsystem .............................................. 1-12 
1-8 Organization of Data Communications Processor Remote Lines ................ 1-13 

2-1 Basic Word Structure .................................................. 2-1 
2-2 Number Base Graphic Characters ......................................... 2-1 
2-3 Binary to Hexadecimal and Octal Conversion ........... ~ ...................... 2-2 
2-4 Relationship of Octal, Decimal and Hexadecimal Numbers ..................... 2-2 
2-5 Hexadecimal and Octal to Decimal ....................................... 2-2 
2-6 Decimal 10131 o to Hexadecimal and Octal ................................ 2-3 
2-7 HEX and DEC Table Conversion ......................................... 2-3 
2-8 Order of Magnitude Table .............................................. 2-4 
2-9 (-4259) in 8-, 6-, and 4-Bit Code .......................................... 2-5 
2-10 Single-Precision Operand (Hexadecimal) ................................... 2-5 
2-11 Single-Precision Operand (Octal) ......................................... 2-6 
2-12 Double-Precision Operand .............................................. 2-6 
2-13 Logical Operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 

3-1 Top of Stack and Stack Bounds Registers .................................. 3-1 
3-2 Polish Notation Flow Chart ............................................. 3-3 
3-3 Stack Operation ...................................................... 3-5 
3-4 Object Program in Memory ............................................. 3-7 
3-5 Stack History and Addressing Environment List ............................. 3-7 
3-6 Stack Cut-Back Operation on Procedure Exit. ............................... 3-7 
3-7 ALGOL Program With Lexicographica! Structure Indicated ..................... 3-8 
3-8 D Registers Indicating Current Addressing Environment ....................... 3-8 
3-9 Addressing Environment Tree of ALGOL Program ........................... 3-9 
3-10 Multiple Linked Stacks ................................................ 3-10 

4-1 Processor Display Panels ................................................ 4-1 
4-2 Processor Register Panel A .............................................. 4-2 
4-3 Processor Display Panel B ............................................... 4-3 
4-4 Power Control ....................................................... 4-9 
4-5 Address Register ..................................................... 4-12 
4-6 Panel E ............................................................ 4-13 
4-7 Input/Output Processor Display Panel B .................................. 4-15 
4-8 Panel D Input/Output Processor Maintenance Control Panel ................... 4-17 
4-9 Operators Control Console ............................................. 4-19 
4-10 Visual Message Control Center .......................................... 4-19 
4-11 Keyboard Format .................................................... 4-20 
4-12 Memory Tester ...................................................... 4-21 
4-13 Memory Tester Panel ................................................. 4-21 

5-1 B 6700 Processor Organization ........................................... 5-1 
5-2 B 6700 Processor Block Diagram ......................................... 5-2 

xvi 



LIST OF ILLUSTRATIONS (cont) 

FIGURE TITLE PAGE 

5-3 Internal Data Transfer Section ........................................... 5-4 
5-4 Mask and Steering .................................................... 5-5 
5-5 Arithmetic Control .................................................... 5-5 
5-6 Presence Bit Interrupt ................................................. 5-8 
5-7 B 6700 Scan Bus Priority Control ....................................... 5-11 
5-8 Stack Format ....................................................... 5-13 
5-9 String Op Controller .................................................. 5-14 
5-10 E Register Functions ................................................. 5-14 
5-11 Input/Output Processor Block Diagram ................................... 5-15 
5-12 Command Data Register and Scratch Pad Memory ........................... 5-16 
5-13 Data Information Flow ............................................... 5-18 
5-14 Memory Controller Decoding ........................................... 5-19 
5-15 Memory Organization ................................................. 5-21 
5-16 Information Transmission ............................................. 5-21 
5-17 B 6700 Memory Configuration .......................................... 5-22 
5-18 Memory Module Selection ............................................. 5-23 
5-19 Memory Registers .................................................... 5-23 
5-20 Interlace Addressing .................................................. 5-23 
5-21 Hardware Stack Adjustment ............................................ 5-24 

6-1 Program Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 
6-2 Program Word, Syllable Addressing ....................................... 6-2 
6-3 Syllable Decode Table ................................................. 6-2 
6-4 Word Data Descriptor .................................................. 6-3 
6-5 String Descriptor (Non-indexed) ......................................... 6-4 
6-6 Byte/Word Index Field ................................................. 6-4 
6-7 Segment Descriptor ................................................... 6-4 
6-8 Mark Stack Control Word ............................................... 6-5 
6-9 Program Control Word ................................................. 6-6 
6-10 Return Control Word .................................................. 6-6 
6-11 Indirect Reference Word ............................................... 6-7 
6-12 Stuffed Indirect Reference Word ......................................... 6-7 
6-13 Program Level Bit Assignment ........................................... 6-8 
6-14 Step Index Word ..................................................... 6-8 

7-1 Flow of Value Call Operator ........................................... 7-16 
7-2 Flow of Value Call Operator (cont) ...................................... 7-17 
7-3 Flow of Exit Operator ................................................ 7-18 
7-4 Flow of Return Operator .............................................. 7-19 
7-5 Flow of Enter Operator ............................................... 7-20 
7-6 Flow of Evaluate Operator ............................................. 7-21 
7-7 Flow of Stuff Environment Operator ..................................... 7-22 

8-1 Read Time-of-Day Function Word ........................................ 8-2 
8-2 Time-of-Day Word .................................................... 8-2 
8-3 Read General Control Adapter Function Word .............................. 8-2 
8-4 Read Result Descriptor Function Word .................................... 8-3 
8-5 Result Descriptor ..................................................... 8-3 
8-6 Read Interrupt Mask Function Word ...................................... 8-3 
8-7 Interrupt Mask Word .................................................. 8-4 

xvii 



FIGURE 

8-8 
8-9 
8-10 
8-11 
8-12 
8-13 
8-14 
8-15 
8-16 
8-17 
8-18 
8-19 
8-20 
8-21 
8-22 
8-23 
8-24 
8-25 
8-26 
8-27 
8-28 

10-1 
10-2 
10-3 
10-4 
10-5 
10-6 
10-7 
10-8 
10-9 
10-10 
10-11 
10-12 
10-13 
10-14 
10-15 
10-16 
10-17 
10-18 
10-19 
10-20 
10-21 
10-22 
10-23 
10-24 
10-25 
10-26 
10-27 
10-28 

LIST OF ILLUSTRATIONS (cont) 

TITLE PAGE 

Read Interrupt Register Function Word .................................... 8-4 
Interrupt Register Word ............................................ , ... 8-4 
Read Interrupt Literal Function Word ..................................... 8-5 
Interrupt Literal Word ................................................. 8-5 
Interrogate Peripheral Status Function Word ................................ 8-5 
Status Vector Word ................................................... 8-6 
Interrogate Peripheral Unit Type Function Word ............................. 8-6 
Unit Type Function Word .............................................. 8-6 
Interrogate 1/0 Path Function Word ...................................... 8-7 
1/0 Path Result Word .................................................. 8-7 
Set Time-of-Day Clock Function Word .................................... 8-8 
Time-of-Day Word .................................................... 8-8 
Set General Control Adapter Function Word ................................ 8-9 
Initiate 1/0 Function Word ............................................. 8-9 
Area Descriptor ...................................... ,, ............... 8-9 
1/0 Control Word .................................................... 8-10 
Index Control Word .................................................. 8-10 
Index Word ........................................................ 8-11 
Top-Of-Stack Control Word (TSCW) ..................................... 8-11 
Stack Rotation Up ................................................... 8-12 
Stack Rotation Down ................................................. 8-12 

Input/Output Subsystem .............................................. 10-1 
1/0 Descriptor Formats ............................................... 10-2 
Result Descriptor Format .............................................. 10-3 
Console Control Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 
Single Line Control Result Descriptor .................................... 10-4 
Single Line Control 1/0 Control Word .................................... 10-4 
Card Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 
Card Read 1/0 Control Word ........................................... 10-4 
Card Read Result Descriptor ........................................... 10-5 
Card Puncl1 ......................................................... 10-5 
Card Punch 1/0 Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
Card Punch Result Descriptor .......................................... 10-5 
Li11e Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 
Line Printer 1/0 Control Word .......................................... 10-6 
Line Printer Result Descriptor .......................................... 10-6 
Free Standing Magnetic Tape Units ...................................... 10-7 
Cluster Tape Unit .................................................... 10-7 
Magnetic Tape Configuration ........................................... 10-9 
1/0 Control Word Magnetic Tape ....................................... 10-10 
Magnetic Tape Result Descriptor ....................................... 10-10 
Basic Disk File Subsystem ............................................ 10-11 
Disk File Configurations .............................................. 10-12 
Disk File I/O Control Word ........................................... 10-13 
Disk File Result Descriptor ........................................... 10-14 
B 9120 Paper Tape Reader ............................................ 10-14 
B 9220 Paper Tape Punch ............................................ 10-14 
Paper Tape I/O Control Word and Operations ............................. 10-15 
Paper Tape Result Descriptor .......................................... 10-15 

xviii 



FIGURE 

LIST OF ILLUSTRATIONS (cont) 

TITLE PAGE 

10-29 Disk-Pack Drive and Disk-Pack Drive Controller ............................ 10-15 
10-30 Disk-Pack Subsystem Block Diagram .................................... 10-16 
10-31 Disk-Pack Recording Surfaces ......................................... 10-16 
10-32 Disk-Pack I/O Control Word (IOCW) .................................... 10-18 
10-33 Disk-Pack Result Descriptor Format .................................... 10-19 

11-1 B 6700 System Configuration Including Data Communications ................. 11-1 
11-2 DCP Block Diagram .................................................. 11-2 
11-3 Adapter Cluster ..................................................... 11-3 

12-1 The Optimizer in the B 6700 System ..................................... 12-1 
12-2 Optimizer Interface .................................................. 12-2 
12-3 Scan-Out Signal Sequence ............................................. 12-4 
12-4 Scan-In Signal Sequence .............................................. 12-5 
12-5 The Disk File Subsystem (DFS) Interface ................................. 12-9 
12-6 Optimizer Block Diagram with Interface Signals ........................... 12-12 

LIST OF TABLES 

TABLE TITLE PAGE 

1-1 B 6700 Central Units Chart ............................................. 1-1 
2-1 Negative Sign Configurations ............................................ 2-5 
3-1 Evaluation of Polish String A 7 BC+ x := .............. · .................... 3-4 
3-2 Description of Stack Operation .......................................... 3-6 
6-1 Sub-Field Lengths .................................................... 6-7 
10-1 F Field Codes ....................................................... 10-2 
10-2 Peripherals and Controls ............................................... 10-3 
10-3 Available Magnetic Tape Subsystems ..................................... 10-7 
10-4 Magnetic Tape Operations ............................................ 10-10 
10-5 Disk File Memory System Types ....................................... 10-13 
10-6 Disk-Pack Subsystem Characteristics .................................... 10-17 
11-1 Data Communications Terminal Compatibility ............................. 11-4 

)(I)( 





The Burroughs B 6700 is a medium to large, 
high-speed Information Processing System. The 
following are some of the features incorporated in 
this system: 

1. Monolythic Circuitry. 

2. Memory expandable to 1,048,5 7 6 words. 

3. Memory Cycle Times of 1. 2 m'icroseconds, 
1.5 microseconds, and 500 nanoseconds. 

4. Peripheral configuration ·expandable to 256 
units. 

5. Triple - Input/Output Processor system per­
mitting up to 36 simultaneous Input/Output 
(l/O) operations. 

6. Data Communication Software for remote 
computing and file manipulation. 

7. Disk File storage over 36 billion bytes (8-bit 
characters). 

A unique hardware design, developed from years 
of successful experience with the B 5000 series, has 
resulted in the parallel design of the B 6700 
hardware and software. Whereas hardware tradi­
tionally was designed prior to software develop­
ment, parallel design assures that the hardware 
contains all necessary logic for efficient software 
packages, which in turn optimizes hardware capa­
bilities. The B 6700 design affords a general 
"re-entrant" technique which permits multiple 
users to share a common object program. In 
addition, the systems further expand the use of 
hardware stack organization used in the B 5500. 
For example, the Segment Dictionary, a separate 
table for each program in the B 5 5 00, has been 
placed in the base of the program stack in the B 

)()(I 

INTRODUCTION 

6700. This part of the stack is used for multiple· 
executions of the same program, thus imple­
menting in the hardware many of the bookkeeping 
functions required to implement Master Control. 
Program (MCP) re-entrancy. 

To provide dynamic storage allocatjon, the B . 
6700 system employs and expands upon the 
Burroughs descriptor method of segmentation, first 
used on the B 5500, in lieu of some form of 
fixed-sized "paging" technique. 

Designed to bring the user simplified pro­
graming, operational ease, and complete freedom 
of system expansion, the B 6700 offers a choice of 
problem-oriented languages, some of these lan­
guages are: COBOL for business applications and 
ALGOL and FORTRAN for solution of mathe­
matical problems. Operator intervention is mini­
mized by the MCP, which provides for complete 
system management. 

The complete flexibility of programing and 
control of the processing pattern provides the B 
6700 with smooth growth potential. Starting with 
a minimum configuration, the user may expand his 
system in small increments to accommodate a· 
growing work-load. With each addition, the MCP 
-automatically adjusts to attain increased system 
production and efficiency, expanding system 
multiprograming capabilities. 

This reference manual describes the hardware 
characteristics of the B 6700 system. Because of 
the design concept of the B 6700, there exists a· 
strong interdependence between the hardware and 
the Master Control Program (MCP). This material· 
pertains only to the hardware considerations, . 
whereas the MCP is discussed in a separate manual. 





GENERAL 

This manual explains how the B 6700 Informa­
tion Processing System achieves flexibility and 
efficiency through a comprehensive system 
approach to problem solving without considering 
the areas of computer logic or circuit design. The 
program-independent modular system design 
efficiently uses available units to process programs 
and also permits system configuration changes 
without the need to reprogram or recompile. This 
approach also offers the user the advantages of 
simplified programing, ease of operation and a 
complete freedom of system expansion. The 
B 6700 is a compiler oriented system designed to 
accept the problem-oriented languages: ALGOL, 
COBOL, and FORTRAN. The systems auto­
matically handle memory assignments, program 
segmentation and subroutine linkages, eliminating 
many of the arduous programing tasks that are 

SECTION 1 
SYSTEMS DESCRIPTION 

likely to produce errors. The programs are 
debugged and corrected in the source language. 

DESCRIPTION OF UNITS 

The B 6700 system configuration varies with 
application and workload requirements. The 
minimum system includes one processor, one disk 
file storage unit, one magnetic tape unit, one 
input/output processor, one memory module, one 
console display unit, one card reader and one 
printer. The maximum system configuration 
includes 3 processors, 64 memory modules ( 16,384 
words each), 3 input/output processors, 60 
peripheral controls, 8 data communications 
processors, and 25 6 peripheral units. The central 
units are defined in table 1-1. The peripheral units 
available with this system, along with their 
characteristics, are listed in section 10. The Data 
Communications Sub-System is defined in section 
11. 

Table 1-1. 

B 6700 Central Units Chart 

Proces- No. Of 

Style sor Input/ 
Description Output 

No. Speed 
(MHz) Proces-

so rs 

B 6711 One processor 2.5/2.5 1 

B 6721 One processor (can have 2.5/2.5 1 
a B 6721-1 second 
processor) 

B 6712 One processor 2.5/5.0 1 

B 6722 Two processors 2.5/5.0 1 

B 6714 One processor 5.0/5.0 1 

B 6724 Two processors 5.0/5.0 1 

B 6734 Three processors 5.0/5.0 2 

1-1 

Add'l. 
Input/ 
Output 
Proces-

so rs 

0 

1 

1 or 2 

1 or 2 

1or2 

1 or 2 

1 

Notes 

Used only wi th 65k 
ules. memory mod 

Used only wi th 65k 
ules. memory mod 

Used with an y of the 
mory available me 

modules. 

Used with an y of the 
10ry available men 

modules. 

Used with an y of the 
mory available me 

modules. 

Used with an y of the 
10ry available men 

modules. 

Used with an y of the 
10ry available men 

modules. 



Table 1-1. (Cont'd.) 
B 6700 Central Units Chart 

Proces-
Style 

Description sor 
No. Speed 

(MHz) 

B 6780 Input/Output Processor 

B 6780-1 Data switching channel, -
up to 12 per input/ 
output processor 

B 6790 Maintenance Diagnostic -

Logic Processor for 
B 6722, B 6724, & 
B 6734 Systems (second 
input/output processor is 
required). 

B 6791 Power Supply -

B 6000 Memory control cabinet -

B 6004-1 98,304 bytes (16,384 -

words (1.2 µS memory 
module 

B 6005-1 393,216 bytes (65,536 -

words) 1.5 µS memory 
module 

B 6006-1 98,304 bytes ( 16,384 -

words) 500 ns memory 
module 

SYSTEM OPTIONS AND REQUIREMENTS 

The following lists the requirements and some of 
the available options for the B 6700 systems: 

1. A minimum of one special DC module is 
required in a B 6700 system. It can be 
installed in the following cabinets: 

a. Input/Output Processor. 

b. Processor. 

c. Peripheral Control. 

d. Data Communications. 

2. A minimum of one ± 12 volt inverter module 
is required in a B 6700 system. It can be 
installed in the following cabinets: 

a. Input/Output Processor. 

b. Processor. 

c. Peripheral Control. 

NOTE 

The use of this module in a cabinet 

No. Of Add'l. 
Input/ Input/ 
Output Output Notes 
Proces- Proces-

so rs so rs 

- - Optional. 

- - Optional. 

- - Optional. 

- - Optional. 

- - -

- - -

- - -

precludes the use of any other module in 
that same cabinet. 

3. A Flip Flop display supply module is required 
on the system and must be installed in the 
Input/Output Processor cabinet. 

4. The Memory cabinets each must contain a 
special Memory supply for developing the 
regulated voltages required for the memory 
operation. 

5. Each cabinet must contain an inverter for 
supplying power to its regulators. A 600 
ampere inverter is required in the Processor, 
Input/Output Processor and Data Communi­
cations cabinets. All other cabinets require a 
400 ampere inverter. 

Au xi I iary Cabinet 

Peripheral unit exchanges are located within 
auxiliary cabinets of the B 6700 system. These 
cabinets can accommodate varying combinations 
of exchanges. Two of the combinations that are 
possible are shown in figure 1-1. 



Figure 1-1. Auxiliary Cabinets 

The following exchanges are available for use on 
the B 6700 system: 

1. Tape Exchange 
2 x 10 
2x8 
4 x 16 

2. Disk File Exchange 
1 x 2 
2x5 
4 x 10 
4 x 20 

Disk File Optimizer 

The disk file optimizer functions to optimize the 
transfer of information between a processor of the 
B 6700 system and its associated disk file sub­
system in order to improve the transfer rate. A 
detailed description of the disk file optimizer is 
given in section 12 of this manual. 

System Power 

Main power is supplied to the system by 1 to 15 

PROC l OPROC ., 

POWERCABLNET'l 

.-::7"1 ~ 
~~ 

AC 
CONVERTER 

DCP ., PCC ., 

r-:;7"I l'OvNv"l 
~~ 

AC 
CONVERTER 

r---------
1 
I AUX AUX 

CA8'2 CA813 

free standing AC power cabinets. Each power 
cabinet can furnish enough power for eight B 6700 
cabinets. The power cabinets receive 3 phase AC 
from the wall breakers and convert it to 220 volt 
pulsating direct current. Each B 6700 cabinet 
contains an Inverter which supplies the regulated 
supply voltage required for use in its own com­
ponent sections. 

The AC module contains an AC control, the AC/ 
DC converter and a OV /UV ( overvoltage/undervolt­
age) indication panel. Refer to figure 1-2 for a 
typical B 6700 power supply configuration. 

Peripheral Control Cabinet 

The PC cabinet can accommodate up to 10 
peripheral controls. A maximum of five large 
controls can be used with up to five small controls. 
Some of the small controls may be used in place of 
the large controls. 

The following controls are available: 

1. Large 

a. Magnetic tape 

b. Disk file 

c. Console Display 

2. Small 

a. Card reader 

b. Card punch 

c. Line printer 

d. Paper tape reader 

e. Paper tape punch 

r-:;7"I l'OvNv"l 
~~ 

AC 
CONVERTER 

----------, 
I 
I 

.-::7"1 ~ 
~~ 

AC 
CONVERTER 

MEMORY MEMORY 
CAB CAB 

11 '2 
CIJ 

" 

Figure 1-2. B 6700 Power Supply 

1-3 



Some of the controls have a two-byte buff er and 
others contain a one-byte buffer; therefore, either 
8 or 16 bits may be transferred in parallel to the 
Input/Output Processor at a time. Local operations 
are performed by attaching a "Control switch" 
plug-on and "Indicators" plug-ons to various cards 
in the control. 

SMALL 
CONTROLS 

LARGE 
CONTROLS 

OR 
SMALL 
CONTROLS 

Figure 1-3. Peripheral Control Cabinet 

SYSTEM ORGANIZATION 

Computer systems are generally organized 
around a central system that controls memory 
accesses, establishes 1/0 priority, etc. In the 
B 6700 system this central control function has 
been distributed throughout the system by pro­
viding each peripheral unit with an associated 
control (figure 1-4). These peripheral controls, in 
conjunction with the input/output processor, pro­
vide independent but controlled access to main· 
memory for each peripheral unit. The peripheral 
activity is supervised by the MCP which assigns 
outgoing data to the proper units or calls for 
required input data from others. Because the MCP 
is constantly aware of the available environment, 
the user program is efficiently executed regardless 
of whether units have been deleted for preventive 
maintenance or added because of increased work 
loads. 

MASTER CONTROL PROGRAM 

The Master Control Program (MCP) provides 
overall system coordination and control of 
processing on the B 6700 system, thus minimizing 
operator intervention. The MCP obtains maximum 
use of the system conponents by controlling the 
sequence of processing, initiating all input/output 
operations and providing automatic handling 
procedures to meet virtually all processing 

1-4 

conditions. Because many functions are performed 
under MCP control, changes in scheduling, system 
configuration and program size are readily 
accommodated. 

CLOCKS 

The MCP for the B 6700 makes use of two 
hardware clocks: the real-time clock and the 
interval timer. The real-time clock has a 2.4 
microsecond resolution and counts up to 24 hours. 
It is used by the MCP logging routines to provide 
extremely accurate timing information and also 
can be read by application programs. This clock is 
associated with the input/output processor and 
runs continuously, even when the processors are 
halted. The interval timer is a clock (one in each 
processor) which provides a predetermined timed 
interrupt for "time-slicing," loop hang-up, etc. This 
interval varies from 512 microseconds to one 
second, in 51 2-microsecond intervals. 

PROCESSOR 

The B 6700 system accommodates either one, 
two or three processors, either capable of accessing 
any portion of total memory. 

All B 6700 processors are multiprocessing 
machines with available clock frequencies of 2. 5 
megahertz and 5 megahertz. (Refer to table 1-1.) 
Processors with different clock rates cannot be 
intermixed on the same system. The processor is 
basically word oriented, but has extensive multi­
word string manipulation capabilities for four-bit, 
six-bit, and eight-bit characters. 

Processor States 

The processor operates in either of two states: 
control state for the MCP or normal state for user 
programs and certain MCP functions. In a triple­
processor system either processor may handle 
external interrupts. All processors may be in 
control state at the same time. 

Control State 

Entry into a control state occurs when the 
processor enters or returns to a procedure marked 
as a control state procedure, or when it executes a 
Disable External Interrupts operator. In control 
state the handling of external interrupts is 
inhibited while the processor executes privileged 
instructions not available in normal state. Exit 



from control state to normal state occurs whenever 
the MCP initiates a normal state procedure,. exits 
back to a normal state procedure or executes an 
Enable External Interrupt operator. After an 
interrupt has occurred, return to the user's pro­
gram may or may not be to the program that was 
operating when the interrupt occurred. 

Normal State 

Normal state excludes use of privileged instruc­
tions required by the MCP but allows external 
interrupts. Exit from normal state occurs as a 
result of a Disable External Interrupt operator or 
by a call to a control state procedure; e.g., to 
initiate 1/0. Many MCP functions are executed in 
normal state. 

Features 

Some of the processor features are: 

1. Program code cannot be modified while in 
residence. 

2. Hardware stack features provide efficient 
handling of temporary storage and subroutine 
requirements. 

3. Control bits in each word provide efficient 
MCP or hardware action, depending upon the 
state of the control bits. 

4. Memory protection, which prevents one pro­
gram from affecting another, is provided by a 
combination of hardware and software fea­
tures. Hardware features include detection of 
program attempts to index beyond an 
assigned data area. Another feature includes 
the use of a memory protect bit in each word 
to prevent a user program from altering 
program segments, data descriptors, segment 
descriptors, memory links, MCP tables, etc. 
The memory protect bits are set by the 
software. Attempts to alter information with 
this protect bit set will inhibit the write 
operation and generate an interrupt. 

5. The B 6700 processor is designed to imple­
ment higher-level languages and to function 
under MCP control. 

6. Major registers and control flip flops in each 
of the processors contribute to system multi­
processing capabilities. 

INTERRUPT SYSTEM 

The method of detecting and servicing system 
interrupts contributes to the ability of the B 6700 

1-5 

to process a mix of independent programs in an 
efficient manner. Under the constant, automatic 
management of the MCP, multiprocessing is the 
normal mode of operation. With one processor in 
the system, multiprograming (interleaved pro­
cessing) is employed. A dual- or triple-processor 
B 6700 System combines both multiprograming 
and parallel processing. The ability to multi­
program, parallel process, or both is defined as 
multiprocessing. 

Extensive interrupt facilities initiate specific 
routines in the Master Control Program (MCP). 
Since the MCP maintains communications control, 
the interrupt transfers control to the MCP thereby 
initiating operations that can proceed simulta­
neously with computation. Some MCP functions 
are as follows: data transfer control, input/output 
control, error detection, etc. 

There are two interrupt conditions: Internal 
(Processor Dependent) or External (Processor 
Independent). Each processor in the B 6700 
system is provided with a private, internal interrupt 
network to handle processor-dependent interrupts. 
Interrupts generated within the processor are fed 
into this network and serviced by that processor. 
The processors also share the handling of external 
interrupts generated by input/output operations 
occurring on any input/output processor. The 
command structure, in conjunction with a stack, 
provides the implementation of string notation and 
automatic linking of subroutines. 

Interrupt Handling 

An interrupt causes the processor to perform the 
following sequence of operations: 

1. Mark the stack. 

2. Insert into the stack an Indirect Reference 
Word, which addresses a reserved location of 
the stack where a link to the MCP interrupt 
routine has been stored. 

3. Push all pertinent registers into the stack. 

4. Insert into the stack an integer value defining 
the interrupt. 

5. Insert a second parameter into the stack, 
giving other information about the interrupt. 

6. Execute an Enter Operator. 

The MCP processes the interrupt when it is 
entered by the Enter Operator. The MCP reacti­
vates the interrupted object program by returning 
through the normal subroutine mechanism. 



MEMORY 
MODULE 

1 

16,384 TO 524,288-WORDS 
(98,304TO3,145,728 BYTES) 

MEMORY 
MODULE 

2 

I 

UP TO 
32 

MODULES 

MEMORY 
MODULE 

32 

DATA 
~-----f COMMUNICATIONS 

PROCESSOR 

DATA 
~----1COMMUNICATIONS 

DATA 

ESSOR 

DATA 
COMMUNICATIONS 

ESSOR 

ATA 
COMMUNICATIONS 

PROCESSOR 

,~ 1- 16 ADAPTER 
CLUSTERS PER 

DCP 

DATA 
COMMUNICATIONS 
NETWORK 

DATA 
COMMUNICATIONS 
NETWORK 

INPUT/ 
OUTPUT 

PROCESSOR 
A ~~~~~IE~~ ··············••1•••··············-·---

PROCESSOR 

PROCESSOR 

PROCESSOR 
3 

INPUT/ 
OUTPUT 

PROCESSOR 
8 

INPUT/ 
OUTPUT 

PROCESSOR 
c 

4-1 

DATA 

~~~~~~~~--1111111111111111111111111111111111111111111••····--11~ 
4-10 

DATA 
COMMUNICATIONS 1-------------1 

PROCESSOR 

DATA 
COMMUNICATIONS 

PROCESSOR 

DATA 

1-16 ADAPTER 
CLUSTERS PER 

DCP 

DATA 
COMMUNICATIONS 
NETWORK 

~~~~~~~~--111111111111111111111111111111111111111111111111111111111111111111~~ 
4-10 

DATA 
COMMUNICATIONS 1------------1 

PROCESSOR 

DATA 
COMMUNICATIONS 

PROCESSOR 

1-16 ADAPTER 
CLUSTERS PER 

DCP 

ADAPTER 
CLUSTER 

NO. I 

I ADAPTER 
CLUSTER 
NO. 16 

DATA 
1-l6 COMMUNICATIONS 
LINES NETWORK 

Figure 1-4. B 6700 Representative Configuration (sheet 1 of 2) 

1-6 



MAGNETIC TAPE 
EXCHANGE 

UP TO 5 MORE 
PERIPHERAL CONTROLS 

UP TO 5 MORE 
PERIPHERAL CONTROLS 

UP TO 8 MORE 
PERIPHERAL CONTROLS 

Figure 1-4. B 6700 Representative Configuration (sheet 2 of 2) 

1-7 



Operator-Dependent Processor Interrupts 

The interrupts listed below are set only by the 
action of operators. 

1. Presence bit. 

2. Invalid index. 

3. Exponent underflow. 

4. Exponent overflow. 

5. Integer overflow. 

6. Divide by zero. 

7. Invalid operand. 

8. Bottom of stack. 

9. Sequence error. 

10. End of segment. 

11. Memory protect. 

12. Programed operator. 

13. Read-only array. 

Within a processor, only one operator-dependent 
interrupt is set at any one time. 

Operator-Independent Processor Interrupts 

The operator-independent interrupts include the 
following: 

1. Memory parity. 

2. Stack overflow. 

3. Invalid address. 

4. Interval timer. 

5. Instruction timeout. 

6. Scan bus parity. 

7. Stack underflow. 

8. Invalid program word. 

External Interrupts 

External interrupts are fed into the processor 
interrupt system. If the interrupt network is 
disabled on one processor, the external interrupt 
signal is routed to another, since all processors in a 
dual-processor or triple-processor system are able 
to respond and process external interrupts 
independently and simultaneously. The ability of 
any processor to handle interrupts is made possible 
because of a distributed interrupt network and the 
ability of all processors to be in control state at the 

1-8 

same time. The activities of all processors in 
control state are coordinated (interlocked) by the 
software through the use of the Read With Lock 
mechanism. If all processors are handling 
interrupts, additional interrupts are retained for 
future processing. 

A unique literal value is assigned to each 
external interrupt condition. This literal value is 
transmitted to the processor and placed into the 
stack as the processor acknowledges the external 
interrupt and enters the interrupt sequence. 

The external interrupts include the following: 

I. Processor to Processor. 

2. I/O Finish. 

3. Data Comm. Attention Needed. 

4. General Control Adapter. 

5. External Interrupt. 

6. Change of peripheral-unit status. 

MAIN MEMORY 

The main memory for the B 6700 is very 
flexible in that many configurations can be 
established to meet any requirement. The B 6711 
and B 6721 systems are restricted to the use of the 
B 6004-1 memory modules with a maximum 
storage of four memory modules. However, the B 
6712, B 6722, B 6714, B 6724 and B 6734 systems 
are available with any combination of the three 
types of memory modules with a maximum storage 
capacity of 1,048,576 words (6,291,456 bytes). 

Memory Words 

Each memory word contains 48 information 
bits, three control bits, and a parity bit. The three 
control bits are used to identify descriptors, 
provide memory protection, describe the type of 
data, and provide other control functions. The 
twenty-bit address field can provide up to 
1,048,576 memory addresses. Odd parity is used to 
check validity of information storage and transfers 
in the B 6700 system. 

Each system has a memory test facility used for 
fault detection and isolation. When the unit test 
facility is used to check one of the modules, the 
others are available to the system. 



Memory Cycle Times 

Three types of main memory modules are 
available for the B 6700 with the following cycle 
times: 

1. 1.5 microsecond cycle time with 65,536 
words of storage per module. 

2. 1. 2 microsecond cycle time with 16,384 
words of storage per module. 

3. 500 nanosecond cycle time with 16,384 
words of storage per module. 

Refer to table 1-1 for the B 6700 central units 
chart for additional information concerning main 
memory. 

SECOND LEVEL MEMORY 

Burroughs head-per-track disk file subsystems 
provide the user with virtually unlimited expansion 
capability. The 23- to 40-millisecond average access 
time of the various disk file models permits 
extremely large programs and data segments to be 
stored on the disk and brought into main memory 
by the MCP when required. 

INPUT/OUTPUT PROCESSOR 

The Input/Output Processor and associated 
peripheral control modules are used to control the 
transfer of data between memory and all peripheral 
equipment, independent of the processor. The 
input/output processor receives instructions from 
the processor and, with its associated peripheral 
controls, executes these instructions. One, two or 
three input/output processors may be used with 
the B 6700 System. Each input/output processor is 
capable of processing up to ten simultaneous 1/0 
operations with up to 20 peripheral units. 

Input/Output Processer Configuration 

Each Input/Output Processor provides four 
separate and independent units: 

1. Data switching channels which provide the 
necessary linkage between the peripheral 
device (excluding data communications) and 
main memory. 

2. Data communications processors which 
permit interfacing of remote devices to the 
B 6700. 

1-9 

3. Real-time adapters which permit interfacing 
of real time devices such as wind tunnels and 
rocket stands. 

4. The peripheral system configuration tables for 
software use. 

Data Switching Channels 

The number of data switching channels deter­
mines the number of simultaneous 1/0 operations 
that can be performed. The channels "float," and 
are assigned by the input/output processor to 
peripheral controls upon initiation of an operation 
and released to the input/output processor for 
reassignment upon completion. 

Peripheral Controls 

Two types of peripheral controls are available, 
large and small. The large controls are used with 
high-speed devices such as magnetic tape, disk files, 
and display consoles; the small controls are used 
with slower peripherals such as printers, card 
readers, and card punches. The large controls 
contain a two-byte buff er and the small a one-byte 
buffer. Each input/output processor can accom­
modate up to ten large and ten small controls. A 
small control may occupy a large control position. 

System Expansion 

The maximum configuration with three input/ 
output processors (20 controls per input/output 
processor) can be expanded further through use of 
exchanges. Figure 1-5 illustrates how the exchanges 
interact between the magnetic tape controls and 
the magnetic tape units. Figure 1-6 depicts how the 
exchanges interact between the disk file controls 
and the disk file units. 

Peripheral Control Bus 

A peripheral control (P.C.) bus extends from the 
input/output processor to the various peripheral 
controls (figure 1-7). Information in one- or 
two-byte groups can be sent along the bus to or 
from any peripheral control every 1.2 
microseconds. 

Processor-Initiated 1/0 Operations 

Any processor can initiate an 1/0 operation on 
any input/output processor (in a three processor/ 
three input/output processor configuration) by 



LARGE PERIPHERAL CONTROLS 

INPUT/O~ TAPE TAPE 
PC 

TAPE 
PC 

TAPE 
PC PROCES~ PC 

~--,r--_.....~-.~-'-~-,-~-'-~.--~.._~,----1~--,-~-'-~~~-L-~r-~-'---.,..-~'----r---' 

INPUT/OUTPUT 
PROCESSOR 

IN PUT /OUTPUT 
PROCESSOR 

1OR2 
TAPE 

CLUSTERS 

TAPE 
PC 

4 X 16 TAPE EXCHANGE 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

LARGE PERIPHERAL CONTROLS 

2 x 8 

TAPE EXCH. 

TAPE 
PC 

TAPE 
PC 

lXBCOMMON 
ELEC. EXCH. 

TAPE 
PC -

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

Figure 1-5. Magnetic Tape Subsystem Relationships 

1-10 

TAPE 
PC 

TAPE 
PC 



LARGE CONTROLS 

INPUT/OUTPUT 1---: - - DISK FILE DISK FILE - DISK FILE DISK FILE DISK FILE DISK FILE DISK FILE 
PROCESSOR PC PC PC PC PC PC PC PC PC PC 

I I I I 
2 x 10 EXCH. l NI x N2 EXCHANGE J 
llll l l l l l l l l l l 

1TO10 1 TO 20 ELECTRONICS UNIT ELECTRONICS UNITS 

I TO 5 1 TO 5 V'I 

DISK MODULES DISK FILE MODULES ...... 

PER ELECTRONICS PER :i z V'I 

UNIT ELECTRONICS UNIT v r--- :::> :) 
i':5 ~ ~u U"lQ 

N r--- o- oOffi 
z o-Z ...... ~ 0-

)( I---· -·~ -~ -r--- ...... 
z ~ 

0 

'--r-
I TO 5 

DISK 
MODULES 

1 ELECT. UNIT 

I LARGE CONTROLS 

INPUT /OUTPUT DISK FILE DISK FILE DISK FILE - - - - - - -
PROCESSOR I---' PC PC PC PC PC PC PC PC PC PC 

V'I 

~~ V'I 
-'Z v t----1 

""'150 ...... ~z ...... N
1 

x N
2 oo~- o~z t----1 

::~li:l5 ............ :::> t----1 EXCHANGE :..:: _, -li:l V'I UJ _, t----1 
Ci~ UJ 

LARGE CONTROLS 
( 

INPUT /OUTPUT t---1 - DISK FILE DISK FILE - - - - - - DISK FILE 
PROCESSOR PC PC PC PC PC PC PC PC PC PC 

----' 

Figure 1-6. Disk File Subsystem Relationships 

1-11 



**INPUT/OUTPUT 
PROCESSOR 

DATA 
SWITCH 
CHNLS. 

CARD LINE 
READER PRINT 

MODEL MODEL 
B 6110 B 6240 

P.C. 

APPROP. 
TAPE 
P.C. 

P.C. 

APPROP. 
TAPE 
P.C. 

1 TO 10 1/0 
UNITS OR SUB­
SYSTEMS REQ. 
SMALL 
PERIPH. CONTLS. 

1TO10 

* PERIPH. CONTLS. 

1TO10 

CONSOLE 
DISPLAY 

M/T TERMINAL 
CLUSTER B 9342-1 

* Totol per side is 10 with o 1TO101/0 UNITS OR 
maximum of 5 lorge per side SUBSYSTEMS REQ. LARGE 

**ONLY ONE 1/0 PROCESSOR PERIPH. CONTLS. 
ILLUSTRATED 

P.C. 

APPROP. 
TAPE 
P.C. 

CARD 
puNCH 

CARD 
PUNCH 

P.C. 

APPROP. 
DISK 
FILE 

P.C. 

Figure 1-7. Input/Output Subsystem 

executing an Initiate I/O command. This command 
transfers a Function Control Word and an Area 
Descriptor to the input/output processor via the 
scan bus. The input/output processor then fetches 
the I/O Control Word located at the Area Base 
Address (in the Area Descriptor) and initiates the 
peripheral operation. An I/O Finished Interrupt is 
set after the peripheral operation is completed. The 
Result Descriptor is returned when any processor 
executes a Read Result Descriptor command. 

PERIPHERAL CONTROLS 

Up to 20 peripheral controls can be used with 
each I/O processor. The peripheral controls are 
housed in one or two B 6700 peripheral control 
cabinets. Each cabinet can accommodate 10 con­
trols, five of which can be large controls and five 
small controls. The following peripheral controls 
are available: 

1. Magnetic Tape. 

2. Card Reader. 

3. Card Punch. 

4. Line Printer. 

5. Paper Tape Reader. 

6. Paper Tape Punch. 

7. Disk File. 

8. Console Monitor and Keyboard. 

9. Disk-Pack Drive. 

1-12 

DATA COMMUNICATIONS PROCESSOR (DCP) 

Because the B 6700 is designed for continuous 
multiprocessing, the systems readily accommodate 
applications and procedures requiring data com­
munications. Realtime operations, remote com­
puting, remote inquiry and on-line programing 
become additions to the multiprocessing job mix 
of the B 6700. The Data Communications 
Processor is the heart of the data communications 
network. 

The DCP is a small special-purpose computer 
which contains sufficient registers and logic to 
perform all basic functions associated with sending 
and receiving data. Up to four DCP' s can be 
connected to an input/output processor, with each 
DCP capable of accommodating from 1 to 256 
communication lines (figure 1-8). A triple­
input/output processor system can handle up to 
eight DCP's, which provide a maximum 
configurated B 6700 system with the ability to 
service 2048 data communication lines. In a triple 
input/output processor system the Maintenance 
Diagnostic Logic processor (MDL) and memory 
tester are interfaced to the system through the 
word interface of an input/ output processor. These 
devices each take one of the interface positions and 
thus preclude use of DCP' s on this input/ output 
processor. 

DATA COMMUNICATIONS ADAPTERS 

Each communications channel requires an 
adapter which provides the logic to interface with a 



1-16 1-16 1-16 
ADAPTER ADAPTER ADAPTER 
CLUSTERS CLUSTERS CLUSTERS 

1 1 1 
DATA DATA DATA 
COMMUN- COMMUN- COMMUN-
I CATIONS I CATIONS I CATIONS 
PROCESSOR PROCESSOR PROCESSOR 

I I l 
1/0 PROCESSOR 

....... - -

-- ---

DATA 
COMMUN-
I CATIONS 
PROCESSOR 

ADAPTER ... .. 
1 TO 16 

CLUSTER LINES 
NO. I - ~ 

) 

DATA 
COMM UNICATIONS 

RK NE TWO 

) ADDITIONAL ADAPTER 
I CLUSTERS 2 THROUGH 15 

} 
ADAPTER --l TO 16 -
CLUSTER LINES 
NO. 16 .. .... 

Figure 1-8. Organization of Data Communications Processor Remote Lines 

Data Set or to connect directly to a communica­
tions line. The following adapters are available: 

1. B 6650-1 with the following characteristics: 

a. Direct or modem connect. 

b. Asynchronous. 

c. Up to 600 BPS. 

d. Two wire or 100 series modem. 

e. Serial-by-bit transmission. 

f. Half-Duplex mode. 

2. B 6650-2 with the following characteristics: 

a. Direct or modem connect. 

b. Asynchronous. 

c. Up to 1800 BPS. 

d. Two wire or 202 series type Data Set. 

e. Serial-by-bit transmission. 

f. Half-Duplex mode. 

3. B 6650-3 with the following characteristics: 

a. Modem connect. 

b. Synchronous. 

1-13 

c. Up to 2400 BPS. 

d. 201 series type Data Set. 

e. Serial-by-bit transmission. 

f. Half-Duplex mode. 

4. B 6650-4: same as B 6650-3 except that it can 
handle up to 4800 BPS. 

5. B 6650-5: same as B 6650-3 except that it can 
handle up to 9600 BPS. 

6. B 6650-6: Touch-Tone® Telephone Input. 

7. B 6650-7: Audio Response. 

8. B 6650-8: Automatic Dial Out. 

Real-Time Adapter 

Real-time adapters may be attached to an 
input/output processor. Real-time· devices require 
custom engineering for interface with the real-time 
adapters and the software. 

®Registered Service Mark of A.T.T. Co. 





5 5 4 4 4 
l 0 9 8 7 

~\. 

L CONTROL FIELD 

p ARITY Bl T 

y 

SECTION 2 
DATA REPRESENTATION 

0 

~ 

DATA FIELD 

Figure 2-1. Basic Word Structure 

GENERAL 

Several data representations are used in the B 
6700 Information Processing Systems for word and 
character oriented data. Each word contains· 48 
information bits, three tag bits and one parity bit 
(figure 2-1 ). The data field may be a 48 bit 
single-precision operand, or a sequence of 
characters in eight-bit, six-bit or four-bit format. 
The tag bits in positions 50 through 48 are control 
bits which identify descriptors, provide memory 
protection, etc. The tag bits are inaccessible to 
normal state (user) programs. The parity bit in 
position 51 checks for correct information transfer 
between the processor and main memory or from 
the scratch pad memory to main memory. 

INTERNAL CHARACTER CODES 

Extended Binary Coded Decimal Interchange 
Code (EBCDIC) is the primary internal character 
code of the B 6700. EBCDIC is an eight-bit 
alphanumeric code containing four zone and four 
numeric bits. The American Standard Code for 
Information Interchange (ASCII) is the primary 
data communication code. In addition, the 
Burroughs Common Language Code (BCL) pro­
vides interface compatibility with peripheral units. 
Numeric EBCDIC and BCL codes may be packed 
into four-bit digits by internal commands which 
delete the zones and compress the numeric portion 
of the characters. 

NUMBER BASES 

Because the arithmetic operators are imple­
mented in octal (base 8) and data display in 
registers and certain printed forms is Hexadecimal 
(base 16), an understanding of both octal and 
hexadecimal numbering systems is useful. A brief 
discussion of binary and decimal numbering 
systems is also included. 

2-1 

The decimal system is based on the first ten 
digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and upon the· 
powers of ten. Similarly, the binary system is based 
upon the first two digits, 0 and 1, and the powers 
of two. Two raised to the third power (23 ) is 8, the 
base of the octal system. Likewise, 2 raised to the 
fourth power (24 ) is 16, the base of the Hexa- · 
decimal system. The decimal range for each 
number system is shown in figure 2-2. 

DECIMAL 

BINARY 

OCTAL 

DECIMAL 

HEXADECIMAL 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 8 9 

0123456789A BCD E F 

Figure 2-2. Number Base Graphic Characters 

The digits 0 through 9 and the alphabetic 
characters A through F com prise the 16 character 
requirement for the hexadecimal numbering 
system. The letter A is assigned a value of 10, B 
equals 11, etc., to F which equals 15. 

Hexadecimal and Octal Notation 

Since binary words are cumbersome to display, 
the more efficient methods of Hexadecimal and 
Octal notation are employed. The hexadecimal 
representation of a binary word is obtained by 
dividing the bits into groups of four with each 
group assigned a successive power of 16. A 
binary-to-octal conversion is obtained by dividing 
the bits into groups of three and assigning 
successive powers of 8 to each group (figure 2-3). 

The relationship between octal, decimal and 
hexadecimal is shown in figure 2-4 using the 
decimal number 1013 10 (equivalent to 17658 and 
3F5 16 where the subscript 8, 10, or 16 indicates 
the base). 



HEXADECIMAL 

BINARY 

OCTAL 

BINARY 

324 
288 

Nx85 Nx8
4 

Nx8
3 

Nx8
2 

Nx8
1 NxSO 

Figure 2-3. Binary-to-Hexadecimal and Octal Conversion 

17658 - 1x8
3 

+ 7 x 8
2 

+ 6 x 8
1 

+ 5 x 8° 
1 x 512 + 7 x 64 + 6x8 + 5 x 1 

512 + 448 + 48 + 5 

101310 = 1x10
3 

+ 0 x 10
2 

+ 1 x 10
1 

+ 3 x 1° 
1 x 1000 + 0 x 100 + 1x10 + 3 x 1 

1000 + 0 + 10 + 3 

\ 

0 x 16
3 

3 x 16
2 

+ 
1 0 

3F5
16 - + F x 16 + 5 x 16 = 

0 x 4096 + 3 x 256 + F x 16 + 5 x 1 
0 + 768 + 240 + 5 

Figure 2-4. Relationship of Octal, Decimal 
and Hexadecimal Numbers 

NUMBER CONVERSION 

Coded To Decimal Conversion 

101310 

101310 

101310 

The conversion to base 10 of the integral value 
of a number whose base is other than 10 may be 
accomplished by the addition of computed place 
positions as shown in figure 2-4. Another method 
of conversion is by repeated multiplications and 
additions as shown in figure 2-5. The multiplier is 
the decimal value of the desired number base when 
this system is used (figure 2-5 ). 

Decimal To Coded 

The conversion of a Decimal number to any 
other base is accomplished by repeatedly dividing 
the number by the desired number base and 
retaining the successive remainders (figure 2-6). 

2-2 

x t ~ ~ OCTAL CONVERSION - MULTIPLY BY 8) 

~ "l~ 1 
120 + 6 = 126 

x 8 
1 008 + 5 101310 

x :! ~ECIMAL CONVERSION - MULTIPLY BY 16) 

L x ~! J 
T008 + 5 = 101310 

Figure 2-5. Hexadecimal and Octal To Decimal 

Decimal and Hexadecimal Table Conversion 

Use figure 2-7 for following computations. 

HEXADECIMAL-TO-DECIMAL: 

Find the decimal value for each hexadecimal 
digit according to its position. Add these values to 
obtain the decimal equivalent. 

DECIMAL-TO-HEXADECIMAL: 

Find the next lower decimal number and its 
Hexadecimal equivalent. Subtract and use the dif­
ference to find the next decimal value and hexa­
decimal equivalent until the complete number is 
developed. 



126 63 
al 101310 - REMAINDER 5 161 101310 - REMAINDER - 5 

15 3 
al 126 - REMAINDER 6 161 63 - REM= 15=F~ 

0 
al 15 161 3 REMAINDER -1 - REMAINDER 7

1 0 
Bj 1 REMAINDER 1 

3 F 516 

HEX 

0 
1 

2 

3 

4 

5 
6 

7 
8 

9 

A 

B 

c 
D 
E 
F 

• 1 7 6 58 

Figure 2-6. Decimal 101310 To Hexadecimal and Octal 

6 -5 4 3 2 1 

DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX 

0 0 0 0 0 0 0 0 0 0 
1,048,576 1 65,536 1 4,096 1 256 1 16 1 
2,097,152 2 131,072 2 8,192 2 512 2 32 2 
3,145,728 3 196,608 3 12,288 3 768 3 48 3 
4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 
5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 
6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 
7,340,0~2 7 458,752 7 28,672 7 1,792 7 112 7 
8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 
9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 

10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 

11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 
12,582,912 c 786,432 c 49,152 c 3,072 c 192 c 
13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 
14,680,064 E 917 ,504 E 57,344 E 3,584 E 224 E 
15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 

HEXADECIMAL TO DECIMIAL DECIMAL TO HEXADECIMAL 

10131~ t3t F 516 

- 768~ 
245 

- 240 
-5 

Figure 2-7. HEX and DEC Table Conversion 

2-3 

DEC 

0 
1 

2 

3 
4 

5 
6 

7 
8 

9 
10 
11 
12 

13 
14 
15 



ORDER OF MAGNITUDE 

The order of number magnitude in the 39 bit 
mantissa, as decimal numbers and powers of base 
16, 8, and 2 is shown in figure 2-8. 

6-bit characters, or 4-bit digits. The 8-bit EBCDIC 
(Extended Binary Coded Decimal Interchange 
Code) is the primary B 6700 code. When 8- or 6-bit 
numeric characters are used, the sign of the 
number is in the zone bits of the least significant 
character. For 4-bit digits, the sign is the most 
significant digit of the number. The number 
(-4259) is represented as 8-, 6-, and 4-bit characters 
in figure 2-9. 

DATA TYPES AND PHYSICAL LAYOUT 

Character Type 

Character representation may be 8-bit bytes, 

REGISTER DECIMAL 
BIT SET DECIMAL RECIPROCAL 

0 1 1.0 
1 2 0.5 
2 4 0.25 
3 8 0.125 
4 16 0.062 5 
5 32 0.031 25 
6 64 0.015 625 
7 128 0.007 812 5 
8 256 0.003 906 25 
9 512 0.001 953 125 

10 1 024 0.000 976 562 5 
11 2 048 0.000 488 281 25 
12 4 096 0.000 244 140 625 
13 8 192 
14 16 384 
15 32 768 
16 65 536 
17 131 072 
18 262 144 
19 524 288 
20 l 048 576 
21 2 097 152 
22 4 194 304 
23 8 388 608 
24 16 777 216 
25 33 554 432 
26 67 108 864 
27 134 217 728 
28 268 435 456 
29 536 870 912 
30 l 073 741 824 
31 2 147 483 648 
32 4 294 967 296 
33 8 589 934 592 
34 17 179 869 184 
35 34 359 738 368 
36 68 719 476 736 
37 137 438 953 472 
38 274 877 906 944 
39 549 755 813 887 

549 755 813 888 

HEX. OCTAL BINARY 

16° 80 20 

81-t--3-
2 

161 

8 
2--1 l--·-6-

2 

16
2 

83 9---
2 

163 84 2 
12-

5-l--·-15-
8 2 

16
4 

1--218-86-

165 
7-l-·-21-

8 2 

166 - t----8-l--·-24-
8 2 

9-l--·-27-
8 2 

167 

8 
10-1----30-

2 

168 
11-+-·-33-

8 2 

t-al2-169 - f---236-----

813 2 
39-

Figure 2-8. Order of Magnitude Table 

2-4 



TAG 

z N 

0 

z 

8-BIT BYTE(EBCDIC CODE) 

NZ NZ NZ N 

0 4 2 5 

6-BIT CHARACTER (BCL CODE) 

N 

9 

!..A~--0---------2-----3_,.. __ 4 ____ 5 _____ 6 ____ 7-.... 

0 B 4 B~ B 4 B~ ~ 4 

0 A 2 A 2 A ~ A 2 A 2 

0 8 l 8 l 8 1 8 fXJ [)ij IX: 
0 0 0 0 4 2 5 9 

4-BIT DIGITS (PACKED BCD) 

TAG 

0 2 3 4 5 6 7 8 9 

8 

0 4 

0 2 

0 

0 0 0 0 0 0 0 4 2 5 9 
*See Table 2-1. 

Figure 2-9. (-4259) in 8-, 6-, and 4-Bit Code 

Operands 

Operands may be used to represent either 
numeric or logical information in the B 6700 
System. An operand may be single or double 
precision. When the tag bits of a memory word 
(bits 50, 49, 48) are 0 (000), they denote a 
single-precision operand. When the tag bits are 2 
(010), i.e., bit 49 set, they denote a double­
precision operand. The structure of a single­
precision operand is illustrated in figure 2-10, in a 
hexadecimal register format. Note that since the 
exponent is an octal power, the single-precision 
operand is also shown for reference purposes, in 
octal (figure 2-11 ). Figure 2-12 illustrates the 

double-precision operand in hexadecimal register 
format. 

An integer is a single-precision operand with an 
exponent of 0. The maximum value of an integer is 
+7777777777777 8 , 549755813887 10 or 
7FFFFFFFFF 16 . 

For example, the decimal number 12 (148 , 
C16 ,) might be represented in any of the following 
forms: 

1. In octal format: 
0000000000000014 (integer) 
1010000000000140 
1020000000001400 (floating point, or 
1131400000000000 real) 

2. In hexadecimal format: 

TAG -
50 

49 
1--

48 

OOOOOOOOOOOC (integer) 
208000000060 
210000000300 (floating point) 
259800000000 

EXPONENT MANTISSA 

--~ 
47 39 I 
~ 

46 38 

~ 
44 

5 

4 

-
3 

2 

l 

J 

OCTAL 
POINT 

Figure 2-10. Single-Precision Operand (Hexadecimal) 

[50: 3] Tag field = 0 for single-Precision Operand. 
[ 47: 1] Unused. 
[ 46: 1] Sign of operand= 1 for negative. 
[ 45: 1] Sign of exponent = 1 for negative. 
[ 44: 6] Exponent. 

The exponent is a binary number which, with its 
sign, is an octal scale factor for the mantissa. The 
exponent is used for automatic scaling of operands 
when arithmetic, comparison and integer opera­
tions are being performed. The range of the 
exponent is from +63 to -63 for single-precision 
operands. 

Table 2-1. Negative Sign Configurations 

SIZE SIGN LOCATION NEGATIVE POSITIVE 

8-bit Zone, least significant char. 1101 Any bit 

6-bit Zo:µe, least significant char. 10 configuration 

4-bit Most significant digit 1101 
other than the 
negative 
combinations. 

2-5 



Mantissa Field 

The mantissa is the significant part of the 
operand. The magnitude of the operand is obtained 
by multiplying the value contained in the mantissa 
by eight raised to the value of the exponent sign 
and exponent as follows: 

v = 
v = 
±M= 
±E = 

±Mx8±E 
Value of number 
Mantissa with sign 
Exponent with sign 

The range of numbers that can be expressed in 
single-precision is (8 13 -1) x 8+ 63 to 1 x 8-51 and 
zero; double-precision is ( 81 3 -1) x 8+ 3 2 ' 7 6 7 to 1 x 
8-32 •755 and zero. 

TAG EXPONENT MANTISSA 

,,-----------------""------------------

ti§tl 1111111111,l:l 

Figure 2-11. Single-Precision Operand (Octal) 

TAG EXPONENT MANTISSA _...._ ~ ______ .....,,.._ ______ _ 
47 39 3 

50 46 38 2 

49 45 1 

48 44 4 0 

OCTAL 
POINT 

FIRST 
WORD 

TAG EXPONENT (EXTENSION) MANTISSA ~~IT~; 
,._.,_.,_,~,,.---------------------~ 

47 39 3 

50 38 2 

49 1 

48 4 0 

Figure 2-12. Double-Precision Operand 

SECOND 
WORD 

[50:3] Tag field = 2 for double-precision 
operands. 

The first word of the operand is identical to 
the single-precision operand except for bit position 

2-6 

49, which indicates that this is one of a pair of 
words. 

The fractional part of the mantissa is con­
tained in the mantissa extension field of the second 
word. 

The 15-bit exponent of a double-precision 
operand is formed by the concatenation of the 
exponent extension with the exponent. The 
exponent extension is more significant than the 
exponent. 

Logical Operands 

Logical operands have one of two values: true 
(on) or false (off). Logical values are the result of 
Boolean operations or relational operations. 
Relational operators generate a logical value as the 
result of an algebraic comparison of two arithmetic 
expressions. Bit 0 contains the logical value. 
Relational operators set bit 0, where conditional 
operators use bit 0 for the decision. Logical 
(Boolean) operators consider each bit, from 4 7 to 
bit 0, as an individual logical value operating on the 
whole operand. A logical value is expressed in the 
following form, in figure 2-13 below: 

47 

50 46 

49 45 

49 44 

Figure 2-13. Logical Operand 

[50: 3] = 0 tag= Single-precision operand 
[ 0: 1 ] = 1 true, 0 false 

OPERATORS 

3 

2 

1 
0 

The operators used in the B 6700 systems are 
divided into three major categories: primary, 
variant and edit. Details regarding the formats and 
functions of these operators are found in sections 
6, 7, 8, and 9. 



r SECTION 3 
STACK AND POLISH NOTATION 

THE STACK 

General 

The stack is an area of memory assigned to a 
job; the stack provides storage for the basic 
program and data references for the job. It also 
provides for temporary storage of data and job 
history. When a job is activated, four high-speed 
registers (A, X, B, and Y) are linked to the job's 
stack (figure 3-1 ). This linkage is established by the 
stack-pointer register (S), which contains the 
memory address of the last word placed in the 
stack. The four top-of-stack registers (A, X, Band 
Y) extend the stack to provide quick access for 
data manipulation. 

INPUT/ 
OUTPUT 

T"OP-OF-sT'Ac KRf GTs'TE-R - -- -- I 
A x I PATH OF DATA I 

TO STACK 

I 
L_ 

STACK AREA 
ASSIGNED 
TO PROGRAM 

WORDntx 

TOS WORD 

I 
_ __ I 

TOS WORD 

STACK AREA t-----1 

CURRENTLY 
IN USE 

I STACK LIMIT REGISTER I 
LOS 

WORDn BOS I 
L ____ _J 

STACK -
MEMORY 

AREA 

Figure 3-1. Top-of-Stack and Stack Bounds Registers 

Data are brought into the stack through the 
top-of-stack registers in such a manner that the last 
operand placed into the stack is the first to be 
extrated. Total capacity of the top-of-stack register 
is two operands. Loading a third operand into the 
top-of-stack registers causes the first operand to be 
pushed from the top-of-stack registers into the 
stack. The stack-pointer register (S) is incremented 
by 1 before a word is placed into the stack and is 
decremented by 1 after a word is withdrawn from 
the stack and placed in the Top-of-Stack registers. 
As a result, the S register continually points to the 
last word placed into the job's stack. 

3-1 

Base And Limit Of Stack 

A job's stack is bounded, for memory protec­
tion, by two registers: the Base-of-Stack register 
(BOSR) and the Limit-of-Stack register (LOSR). 
The contents of BOSR define the base of the stack, 
and the contents of LOSR define the upper limit 
of the stack. The job is interrupted if the S register 
is set to the value contained in either LOSR or 
BOSR. 

Bi-Directional Data Flow In The Stack 

The contents of the top-of-stack registers are 
maintained automatically by the processor to meet 
the requirements of the current operator. If the 
current operator requires data transfer into the 
stack, the top-of-stack registers receive the 
incoming data, and the surplus contents, if any, of 
the top-of-stack registers, are pushed into the 
stack. Words are brought out of the stack into the 
top-of-stack registers. These words are used by 
operators which require the presence of data in the 
top-of-stack registers. These operators, however, do 
no explicitly move data into the stack. 

Double-Precision Stack Operation 

The top-of-stack registers are operand-oriented 
rather than word-oriented. Calling a double­
precision operand into the top-of-stack registers 
causes two memory words to be loaded into the 
top-of-stack registers. The first word is loaded into 
the A register, where its tag bits are checked. If the 
value indicates double-precision, the second word 
is loaded into the X register. The A and X registers 
are concatenated, or linked together, to form the 
double-precision operand. The B and Y registers 
concatenate when a double-precision operand 
reverts to single words as it is pushed from the B 
and Y registers into the stack. The concatenation is 
repeated when the double-precision operand is 
returned from the stack into the top-of-stack 
registers. 

DATA ADDRESSING 

The B 6700 processor provides three methods 
for addressing data or program code: 

1. Data Descriptor (DD)/Segment Descriptor 
(SD). 

2. Indirect Reference Word (IRW). 

3. Stuffed Indirect Reference Word (SIRW). 



The Data Descriptor (DD) and Segment 
Descriptor (SD) provide for the addressing of data 
or program segments located outside of the job's 
stack area. The Indirect Reference Word (IR W) and 
the Stuffed Indirect Reference Word (SIRW) 
address data located within the job's stack. The 
lRW and SIRW address components are both 
relative. The IRW addresses within the immediate 
environment of the job relative to a display register 
(described later in Non-local Addressing). The 
SIRW addresses beyond the immediate environ­
ment of the current procedure, the addressing 
being relative to the base of the job's stack. 
Addressing across stacks is accomplished with an 
SIRW. 

Data Descriptor 

In general, the descriptor describes and locates 
data or program code associated with a given job. 
The Data Descriptor (DD) is used to fetch data to 
the stack or to store data from the stack into an 
array located outside the job's stack area. The 
formats of the Data and Segment Descriptors are 
illustrated in Section 6. The ADDRESS field in 
each of these descriptors is 20 bits in length; this 
field contains the absolute address of an array in 
either system main memory or in the backup disk 
file, as indicated by setting of the Presence bit (P). 
The referenced data is in main memory when the 
presence bit is set. 

PRESENCE BIT 

A Presence Bit Interrupt occurs when the job 
references data by means of a descriptor in which 
the P-bit is equal to O; i.e., the data is located in a 
disk file, rather than in main memory. The Master 
Control Program (MCP) recognizes the Presence 
Bit Interrupt and transfers data from disk file 
storage to main memory. After the data transfer to 
main memory is completed, the MCP marks the 
descriptor present by setting the P-bit to 1, and 
places the new main memory address into the 
address field of the descriptor. The interrupted job 
is then reactivated. 

INDEX BIT 

A Data Descriptor describes either an entire 
array of data words, or a particular element within 
an array of data words. If the descr_iptor describes 
the entire array, the Index -bit (I-bit) in the 

3-2 

descriptor is 0, indicating that the descriptor has 
not yet been indexed. The length field of the 
descriptor defines the length of the data array. 

INVALID INDEX 

A particular element of an array is described by 
indexing an array descriptor. Memory protection is 
ensured during indexing operations by performing 
a comparison between the length field of the 
descriptor and the index value. An Invalid Index 
Interrupt results if the index value exceeds the 
length of the memory area defined by the 
descriptor, or if the index is less than 0. 

VALID INDEX 

If the index value is valid, the length field of the 
descriptor is replaced by the index value, and the 
I-bit in the descriptor is set to 1 to indicate that 
indexing has taken place. The address and index 
fields are added together to generate the absolute 
machine address whenever an indexed Data 
Descriptor in which the P-bit is set is used to fetch 
or store data. 

The Double-Precision bit (D) is used to identify 
the referenced data as single- or double-precision 
and directly affects the indexing operation. The 
D-bit equal to 1 signifies double-precision and 
causes the index value to be doubled before 
indexing. 

Read-Only Bit 

The Read-Only bit (R) specifies that the 
memory area described by the Data Descriptor is 
read-only area. If the R-bit of a descriptor is set to 
1, and the area referenced by that descriptor is 
used for storage purposes, an interrupt results. 

Copy Bit 

The Copy bit (C) identifies a descriptor as a 
copy of a master descriptor and is related to the 
presence-bit action. The copy bit links multiple 
copies of an absent descriptor (i.e., the presence bit 
is off) to the one master descriptor. The copy bit 
mechanism is invoked when a copy is made in the 
stack. If it is a copy of the original, absent 
descriptor, the processor sets the copy bit to 1 and 
inserts the address of the master descriptor into the 
address field. Thus, multiple copies of absent data 
descriptors are all linked back to the master 
descriptor. 



D.L. = DELIMITER LIST 
P.N.S. =POLISH NOTATION STRING 

EXAMINE FIRST 
ITEM OF 
SOURCE STATE· 
MENT STRING 

LEFT PARENTHESIS 
BRACKET 

PLACE 
"("OR"[" 
INTOD.L 

PLACE 
SYMBOL 
IN P.N.S. 

"("or" [ " 

MOVE 
LAST 
ENTERED 
D.L. SYM 
BOL FROM 
D.L TO 
p N . 

RIGHT PARENTHESIS BRACKET 

NO 

")"or"]" 

DELETE 
"("OR"(" 
FROM THE 
D. L. 

INSERT 
SOURCE 
SYMBOL IN 
D. L. 

SCAN 
NEXT 
SOURCE 
ITEM 

YES 

LA N 

OPERATOR 
(+, -, x, /, 

=, >, ") 

DL SYMBOL IS 
a) LOWER PRIORITY 
bl "("or"[" 
cl D.L. IS EMPTY 

NO 

MOVE LAST ENT­
ERED D. L. 
SYMBOL FROM 
D. L. TO P. N. S. 

Figure 3-2. Polish Notation Flow Chart 

POLISH NOTATION 

General 

Polish notation is an arithmetical or logical 
notational system using only operands and 
operators arranged in sequence or strings, thus 
eliminating the necessity for defining the 
boundaries of any terms. Figure 3-2 presents a flow 
chart for conversion to Polish notation. 

Simplified Rules For Generation Of Polish String 

The source of expression is as follows: 

Name 

Variable or constant 

0 p era tor-separator 
"(" or " [" 

Arithmetic or 
Boolean operator and 
last-entered delimiter 
list symbol were as 
follows: 

Action 

Place variable or 
constant in string 
being built and 
examine next symbol. 

Place in delimiter 
list and examine next 
symbol. 

Place opera tor in 
the delimiter list and 
examine next source 
symbol. 

3-3 

Name 

1. An operator of 
lower priority. 

2. A left bracket 
'' [" or paren-
thesis "(". 

3. A separator. 

4. Nothing (deli-
miter list empty). 

Arithmetic or 
Boolean operator and 
last-entered delimiter 
list symbol were as 
follows: an operator of 
priority equal to or 
greater than the 
symbol in the source. 

A right bracket "] " 
or parenthesis 
") ". 

End of expression. 

PRIORITIES OPERATORS 
3 
2 
l 
0 

X,/ 
+, -
>I <, = (BOOLEAN) 
: =(REPLACEMENT) 

MOVE LA TENT­
ERED D.L. 
SYMBOL FROM 
D. L. TO P. N. S. 

Action 

Remove the opera­
tor from the delimiter 
list and place it in the 
string being built. 
Then com pare the 
next symbol in the 
delimiter list against 
the source expression 
symbol. 

Pu 11 from de-
limiter list until cor­
responding left bracket 
or parenthesis. 

Move last-entered 
delimiter list symbols 
to Polish notation 
string un ti1 empty. 



Polish String 

The essential difference between Polish and 
conventional notation is that operators are written 
to the right of the operands instead of between 
them. For example, the conventional B + C is 
written B C + in Polish notation: A= 7 x (B + C) 
becomes A 7 BC+ x :=. 

Any expression written in Polish notation is 
called a Polish string. In order to fully understand 
this concept, the User should know the rules for 
evaluating a Polish string. 

Rules For Evaluating A Polish String 

The following is the procedure for evaluating a 
Polish string: 

1. Scan the string from left to right. 

2. Remember the operands and the order in 
which they occur. 

3. When an operator is encountered perform the 
following: 

a. Record the last two operands encountered. 

b. Execute the required operation. 

c. Disregard the two operands. 

d. Consider the result of (b) above as a single 
operand, the first of the next pair to be 
operated upon. 

Following this rule, the Polish string 
A 7 B C + x : = results in A assuming the value 7 x 
(B+C) (table 3-1). 

NOTE 

Because replacement operators vary depend­
ing upon the language used,*"-, =, and := are 
equivalent for this discussion. 

Simple Stack Operation 

All program information must be in the system 
before it can be used. Input areas are allocated for 
information entering the system and output areas 
are set aside for information exiting the system; 
array and table areas are also allocated to store 
certain types of data. Thus data is stored in several 
different areas: the input/output areas, data tables 
(arrays), and the stack. Since all work is done in 
the arithmetic registers, all information or data is 
transferred to the arithmetic registers and the 
stack. 

At this point, an ALGOL assignment statement 
and the Polish notation equivalent will be related 
to the stack concept of operation. The example is 
Z:=Y + 2x(W+V), where := means "is replaced 
by." In terms of a computer program, this assign­
ment statement indicates that the value resulting 
from the evaluation of the arithmetic expression is 
to be stored in the location representing the 
variable Z. 

Table 3-1 Evaluation of Polish String A 7 BC+ x := 

Operands Being 
Symbol Symbol 

Remembered and Operation Results of 
Step Being Type 

Their Order of Taking Place Operation 
Examined Occurrence (1 or 2) 

Before Operation 

1. B Operand 

2. c Operand 1 B 

3. + Add 2C B+C (B + C) 
Operator 1 B 

4. 7 Operand l(B + C) 

5. x Multiply 27 7 x (B + C) 7 x (B + C) 
Operator 1 x (B + C) 

6. A Name 1 7 x (B + C) 

7. - Replace 2A 
Operator 1 7 x (B + C) A :=7x(B + C) A=7x(B + C) 

3-4 



When Z:=Y + 2x(W+V) is translated to Polish 
notation, the result is ZY2WV+ x +:=. Each 
element of the example expression causes a certain 
type of syllable to be included in the machine 
language program when the source problem is 
compiled. The following is a detailed description of 
each element of the example, the type of syllable 
compiled, and the resulting operation (see figure 
3-3 and table 3-2). 

In the example statement, Z is to be the 
recipient of a value, the address of Z must be 
placed in to the stack just prior to the store 
command. This is accomplished 'by a name call 
syllable which places an Indirect Reference Word 
(IRW) in the stack. The IRW contains the address 
of Z in the form of an "address couple" that 
references the memory location reserved in the 
stack for the variable Z. 

Since Y is to be added to a quantity, Y is 
brought into the top of the stack as an operand. 
This is accomplished with a Value Call (V ALC) 
syllable that references Y. The value 2 is then 
brought to the stack, with an eight-bit literal 
syllable (LT8). Since W and V are to be added, the 
respective variables are brought to the stack with 
Value Call syllables. The ADD operator adds the 
two top operands and places the sum in the top of 

stack. This example assumes, for simplicity, 
single-precision operands not requiring use of the X 
and Y registers which are used in double-precision 
operations. 

The multiply operator is the next symbol 
encountered in the Polish string; when executed, it 
places the product "2x(W+V)" in the top of the 
stack. The next symbol, ADD, when executed, 
leaves the final result "7+2x(W+V)" in the top of . 
the stack. 

The store syllable completes the execution of 
the statement Z :=Y + 2x(W+V). The store 
operation examines the two top-of-stack operands 
looking for an IRW or Data Descriptor. In this 
example, the IRW addresses the location where the 
computed value of Z is to be stored. The stack is 
empty at the completion of this statement. 

Program Structure In Memory 

When a problem is expressed in a source 
language, portions of the source language fall into 
one of two categories. One describes the constants 
and variables that will be used in the program, and 
the other the computations that will be executed. ~ 

When the source program is compiled, variables are 
assigned locations within the stack whereas the 
constants are embeded within the code stream that 

ALGOL STATEMENT Z Y X (W + V) ; 

"A" REGISTER ~ 
"8" REGISTER ~ 
CORE STACK 

AREA 

CBIL N + 5 

CBIL N + 4 

CBIL N + 3 ii! 

CBIL N + 2 y 

CBIL N + 1 w 

CBIL N v 

..., 

NAMC 

;; 

IRW ii! 

INV 

ii! 

y 

w 

v 

1-J --1 

POLISH STRING NOTATION Z Y W V X + : = 

VALC 

y 

y 

IRW ii! 

ii! 

y 

w 

v 

:h 

i-J 

LT8 

2 

E8 

-I IRW ii! 

ii! 

y 

w 

v 

..... 

VALC 

w 

w 

2 

y 

IRW ii! 

ii! 

y 

w 

v 

"h 

+I 

1--1 

VALC 

v 

v 
w 

2 

y 

IRW ii! 

ii! 

y 

w 

v 

Figure 3-3. Stack Operation 

3-5 

.h 

ADD MULT ADD 

~ 
~ 

INV INV 

2x(W + V) ) Y + 2x(W + V 

+I 2 2 2 

y ~ y y 

IRW ii! IRW ii! +I IRW ii! 

ii! ii! ii! 

y y y 

w w w 

v v v 

SYLLABLE T'IPES 

VALC VALUE CALL 
NAMC NAME CALL 
LT8 LITERAL (8 BIT) 
STOD STORE DESTRUCTIVE 

p 

STOD 

~ 
~ 

2 

y 

IRW ii! 

~ Y•2(W+V\ 

y 

w 

v 



Table 3-2. Description of Stack Operation 

Execution 
Polish Syllable Function of ~yllable During 

Notation Type 
Sequence Element Compiled 

Running of the Program 

0 Stack location of program variables illustrated. 

1 z Name call Build an indirect reference word that contains the address of 
for Z. Zand place it in the top of the stack. 

2 y Value call Place the value of Y in the top of the stack. 
for Y. 

3 2 Literal 2. Place a 2 in the top of the stack. 

4 w Value call Place the value of W in the top of the stack. 
forW. 

5 v Value call Place the value of V in the top of the stack. 
for V. 

6 + Operator add. Add the two top words in the stack and place the result in B 
register as the top of the stack. 

7 x Operator Multiply the two top-of-the-stack operands. The product is 
multiply. left in the B register as the top of the stack. 

8 + Operator add. Add the two top words in the stack and leave the result in 
the B register as the top of the stack. 

9 - Operator store Store an item into memory. The address in which to store is 
destructive. indicated by an indirect reference word or a data descriptor. 

The address can be above or below the item stored. 

forms the computational part. A program residing 
in memory occupies separately allocated areas. 
"Separately allocated" means that each part of the 
program may reside anywhere in memory, and the 
actual address is determined by the MCP. In 
particular, the various areas are not assigned to 
contiguous memory areas. Registers within the 
processor indicate the bases of the various areas 
during the execution of a program. 

MEMORY AREA ALLOCATION 

The separately allocated areas of a program are 
as follows: 

1. Program Segments: These are sequences of 
instructions (syllables) that are performed by 
the processor in executing the program. Note 
that there is a distinction between program 
segments and data areas. The program seg­
ments contain no data, and are not modified 
by the processor as it executes the program. 

2. Segment Dictionary: This is a table con­
taining 9ne word for each program segment. 
This word tells whether the program segment 

3-6 

is in main memory or on the disk, and gives 
the corresponding main memory or disk 
address of the program segment. 

3. Stack Area: This is the pushdown stack 
storage, which contains all the variables 
associated with the program, including con­
trol words which indicate the dynamic status 
of the job as it is being executed. 

Stack-History And Addressing-Environment Lists 

One very important aspect of the B 6700 is the 
retention of the dynamic history for the program 
being processed. Two lists of program history are 
maintained in the B 6700 stack, the stack-history 
list and the addressing-environment list. The stack­
history list is dynamic, varying as the job proceeds 
along different program paths with changing sets of 
data. Both lists are generated and maintained by 
B 6700 hardware. 

MARK STACK CONTROL WORD LINKAGE 

The stack history is a list of Mark Stack Control 
Words (MSCW), linked together by their Displace-



D [4] -
D[3-

D [2] -

D [1] ~ 

D [OJ 

OBJECT 
PROGRAM 
STACK 
CONTAINING 
VARIABLES 

AND· 
DYNAMIC 
STATUS 

OBJECT 
PROGRAM 
SEGMENT 
DICTIONARY 

S. D. PROG. 

S. D. PROG. 

SEG. DEC. 0. B. 

MCP STACK 
AND 

SEGMENT 
DICTIONARY 

OBJECT 
PROGRAM 
CODE 
SEGMENT 

(n +I) 

OBJECT 
PROGRAM 
CODE 
SEGMENT 

(n) 

~ 

OBJECT 
PROGRAM 
CODE 
OUTER 
BLOCK 
CODE 
SEGMENT 

~ 

Figure 3-4. Object Program in Memory 

ment Fields (DP) (figure 3-5). An MSCW is 
inserted into the stack as a procedure is entered 
and is removed as that procedure is exited. 
Therefore, the stack history list grows and con­
tracts with the procedural depth of the program. 
Mark Stack Control Words identify the portion of 
the stack related to each procedure. When the 
procedure is entered, its parameters and local 
variables are entered in the stack following the 
MSCW. When the procedure is executed its para­
meters and local variables are referenced by 
addressing relative to the MSCW. 

~ :1TOSWORD-1 
ADDRESS 

.---=---.PROCEDURE B ,.., ,.., ENVIRONMENT 
F LIST 

MSCW 

PROCEDU~ MSC.W f::~;..;;;.;..__r=-:::::ii.... 
PROCEDURLD LJ_ 
~--

PROCEDU~--

fl MSC.W r-'---'--,.__ 
OUTER PROG BLOCK -I -1--

~. (MSCW) . - .:::D..:..::;l,..,..,S~:::_L-
- -

STA.CK 
HISTORY 

LIST 

Figure 3-5. Stack History and Addressing Environment List 

3-7 

STACK DELETION 

Each MSCW is linked to the prior MSCW 
through the contents of its DP field in order to 
identify the point in the stack where the prior 
procedure began. When a procedure is exited, its 
portion of the stack is discarded. This action is 
achieved by setting the stack-pointer register (S) to 
address the memory cell preceding the most recent 
MSCW (figure 3-6). This topmost MSCW, addressed 
by another register (F), is deleted from the 
stack-history list by changing F to address the prior 
MSCW, placing this MSCW at the head of the stack 
history. 

This is an efficient and convenient means of 
subroutine entry and exit. 

-DISCARDED 
PORTION 

r-~-,...i'4+'1~~11t-:;;TO"s:>.ww:o:;;;R:n1o OF STACK 

STACK 
HISTORY 

LIST 

Figure 3-6. Stack Cut-Back Operation on Procedure Exit 

RELATIVE-ADD RESS ING 

Analyzing the structure of an ALGOL program 
results in a better understanding of the relative­
addressing procedures used in the B 6700 stack. 
The addressing environment of an ALGOL pro­
cedure is established when the program is 
structured by the programmer and is referred to as 
the lexicographical ordering of the procedural 
blocks (figure 3-7). At compile time, the 
lexicographical ordering is used to form address 
couples. An address couple consists of two items: 

1. The addressing level {i..Q.) of the variable, 

2. An index value ( S) used to locate the specific 
variable within its addressing level. 

The lexicographical ordering of the program 
remains static as the program is executed, thereby 
allowing variables to be referenced via address 
couples as the program is executed. 



BEGIN -------- LEXICOGRAPHICAL LEVEL 2 

REAL Vl; 
REAL V2; 
PROCEDURE A; 

BEGIN 

REAL V3; 

PROCEDURE B; 

[ 

BEGIN 

V3 := 3; 
Vl :s V3; 

END; 

B 
END; 

PROCEDURE C; 

BEGIN -----­

REAL V4; 
PROCEDURE D; 

_,ao 2,8=2 
-a - 2, 8 = 3 
.-a= 2, a= 4 

LEXICOGRAPHICAL LEVEL 3 

_a= 3, 8 = 2 
_a= 3, 8 = 3 

LEXICOGRAPHICAL LEVEL 4 

.-a~' 2, s = 5 

LEXICOGRAPHICAL LEVEL 3 

.-a= 3, 8= 2 
~= 3, 8 = 3 

BEGIN --- LEXICOGRAPHICAL LEVEL 4 

C; 
END; 

D; 
END; 

RE AL v 5 ; ..LL -= 4 I 8 = 2 
V4 := 4; 
vs := 5; 
A; 
V2 := V4; 

END; 

Figure 3-7. ALGOL Program 
With Lexicographical Structure Indicated 

BASE 0 F ADDRESSING-LEVEL 
SEGMENT. The B 6700 processor contains an 
array of D Registers (DO through D31 ). These 
registers address the base of each addressing-level 
segment (figure 3-8). The local variables of all 
procedures are addressed relative to the D registers. 

ABSOLUTE ADDRESS CONVERSION. The 
address couple is converted into an absolute 
memory address when the variable is referenced. 
The addressing level portion of the address couple 
selects the D Register which contains the absolute 
memory address of the MSCW for the environment 
(addressing level) in which the variable is located. 
The index value of the address couple is added to 
the contents of the D Register to generate the 
absolute memory address. 

MULTIPLE VARIABLES WITH COMMON 
ADDRESS COUPLES. The address couples 
assigned to the variables in a program are not 

3-8 

ADDRESS 
ENVIRONMENT 

STACK LIST 

MEMORY I 
~----.~,o;::.01-- ==::==I= - -9 PROCEDURE B 

- MSCW -= DISP =-== ± 
PCW-B l 

V3 

.--~---...:-===I-_-_ --'1_o_cE URE A 
MSCW 

D REGISTERS 

D31 

- ===p~-'...JR_E_D 
D6 

D5 

D4 PCW-D 

D3 V4 PROCEDURE C 

-=4--D2 
DI MSCW 

DO 

PCW-C 

PCW-A 

1------t_=T- -ourJ_G_BLOCK 

V2 

VI 

MSCW 

Figure 3-8. D Registers 
Indicating Current Addressing Environment 

unique. This is true because of the ALGOL 
scope-of-definition rules, which imply that if there 
is no procedure which can address both of any two 
quantities, then these two quantities may 
unambiguously have the same address couple. This 
addressing system works because, whereas two 
variables may have the same address couples, there 
is never any doubt as to which variable is being 
referenced within any particular procedure. 

ADDRESS ENVIRONMENT DEFINED. There is 
a unique MSCW which each D Register must 
address during the execution of any particular 
procedure. The D Registers must be changed, upon 
procedure entry or exit, to address the correct 
MSCWs. The list of MSCWs which the D registers 
address is the addressing environment of the 
procedure. 

MARK STACK CONTROL WORD 
LINKAGE. The addressing environment of the 
program is maintained automatically by linking the 
MSCW s together in accordance with the lexico­
graphical structure of the program. This linkage is 
the Stack Number (Stack No.) and Displacement 
(DISP) fields of the MSCW, and is inserted into the 



MSCW whenever the procedure is entered. The 
addressing environment list is formed by linking 
each MSCW to the MSCW immediately below the 
declaration for the procedure being entered. This 
forms a tree-structured list which indicates the 
addressing environment of each procedure (figures 
3-8 and 3-9). This list is used to update the D 
Registers whenever a procedure entry or exit 
occurs. 

PROCEDURE 8 

- - LEXICOGRAPHICAL LEVEL 4 

PROCEDURE.A 
LEXICOGRAPHICAL LEVEL 3 

LEXICOGRAPHICAL LEVEL 2 

Figure 3-9. 
Addressing Environment Tree of ALGOL Program 

STACK HISTORY SUMMARY 

The entry and exit mechanism of the Processor 
hardware automatically maintains both the stack 
history and address-environment lists to reflect the 
current status of the program. Interrupt response is 
a procedure entry. Therefore, the system is able to 
conveniently respond to, and return from, 
interrupts. Upon recognition of an interrupt 
condition, the processor creates a MSCW, inserts an 
indirect reference word into the stack to address 
the interrupt-handling procedure, inserts a literal 
constant to identify the interrupt condition and a 
second parameter, and initiates an MCP interrupt­
handling procedure. The D Registers are updated 
upon entry into the interrupt-handling procedure, 
to display all legitimate variables. Upon return 
from this procedure, the D Registers are updated 
to display variables of the former procedure. 

Multiple Stacks And Re-Entrant Code 

The B 6700 stack mechanism provides a facility 
for handling several active stacks, which are 
organized in a tree structure. The trunk of this tree 
structure is a stack containing MCP global 
quantities. 

LEVEL DEFINITION 

A program is a set of executable instructions, 
and a job is a single execution of a program for a 
particular set of data. As the MCP is requested to 
run a job, a level-I branch of the basic stack is 
created. This level-I branch contains the 

3-9 

Descriptors pointing to the executable code and 
Read-only Data segments for the program. 
Emerging from this level-I branch is a level-2 
branch, containing the variables and data for this 
job. Starting from the job's stack and tracing 
downward through the tree structure, one finds 
first the stack containing the variables and data for 
the job (at level 2), the segment descriptor to be 
executed (at level I), and the MCP's stack at the 
trunk (level 0). 

RE-ENTRANCE 

A subsequent request to run another execution 
of an already-running program requires that only a 
level-2 branch be established .. This levcl-2 stack 
branch emerges from the level- I stack of the 
already-running program. Thus two jobs which are 
different executions of the same program have a 
common node, at level-I, describing the executable 
code. It is in this way that program code is 
re-entrant and shared. This results simply from the 
proper tree-structured organization of the various 
stacks within the machine. All programs within the 
system are re-entrant, including all user programs 
as well as the compilers and the MCP. 

JOB-SPLITTING 

The B 6700 stack mechanism also provides the 
facility for a single job to split itself into two 
independent jobs. A common use of this facility 
occurs when there is a point in a job where two 
relatively large independent processes must be 
performed. This splitting can be used to make full 
use of a multiprocessor configuration, or to reduce 
elapsed time by multiprograming the independent 
processes. 

A split of this type establishes a new limb of the 
tree-structured stack, with the two independent 
jobs sharing that part of the stack which was 
created before the split was requested. The process 
is recursively defined and can happen repeatedly at 
any level. 

STACK DESCRIPTOR 

Stack branches are located by an array of 
descriptors, the stack vector array (figure 3-10). 
There is a data descriptor in this array for every 
stack branch. This data descriptor, the stack 
descriptor, describes the length of the memory area 
assigned to a stack branch and its location in either 
main memory or disk. 



STACK 
VECTOR 

002 

001 

ODO 

STACK 
NO.n 

STACK 
TRUNK 

STACK 
N0.4 

r____J STACK 
~VECTOR 
,,,_ "' DESCRIPTOR 

MSCW 

STACK 
N0.3 

SEGMENT 
DESCRIPTORS 

~ 
I!" ,-':' 

SD 

MSCW 

TOSCW 

Figure 3-10. Multiple Linked Stacks 

STACK 
N0.2 

DISPLAY 
REGISTERS 

~ ,.,., 

05 

04 

03 

02 

01 

DO 

3-10 

A stack number is assigned to each stack branch. 
The stack number -is the index value of the stack 
descriptor in the stack vector array. 

STACK VECTOR DESCRIPTOR 

The array size of the stack vector and its 
location in memory is described by the stack 
vector descriptor, located in a reserved position of 
the trunk of the stack (figure 3-10). All references 
to stack branches are made through the stack 
vector descriptor, indexed by the stack number. 

PRESENCE BIT INTERRUPT 

A Presence Bit Interrupt results when an 
addressed stack is not present in memory. This 
Presence Bit Interrupt facility permits stack over­
lays and recalls under dynamic conditions. Idle or 
inactive stacks may be moved from main memory 
to disk as the need arises and, when a stack is 
subsequently referenced, a Presence Bit Interrupt is 
generated to cause the MCP to recall the non­
present stack from disk. 



SECTION 4 
MAJOR REGISTERS AND CONTROL PANELS 

PROCESSOR REGISTERS 

General 

The processor registers and flip flops are dis­
played in the display cabinet of the system as 
shown in figure 4-1. Panel A displays the stack 
registers. Panel B is shared with the input/output 
processor. Panels C, D, and E contain indicators 
and switches for the entire system. 

Figure 4-1. Processor Display Panels 

Panel A (figure 4-2). 

NOTE 

Although Panels A and B are shown 
separately in this manual, they are actually 
overlayed on one template. The lines and 
mnemonics are printed in two colors; one to 
identify processor registers and flip flops, and 
the other to identify those used in the 
input/output processor. 

P REGISTER 

The P register is a 5.1-bit instruction register. 

C REGISTER 

The C register is a 51-bit information register for 
general purpose use. It may contain an address, an 
IR W, an information word, a character or the 
"flash back" from a memory cycle. 

4-1 

A REGISTER 

The A register is a 51-bit information register 
that holds one complete word. This register is the 
top-of-stack when the A Register Occupied flip 
flop (AROF) indicates that it contains a valid 
word. It is used in many ways: arithmetic, 
Boolean, character string, addressing, indexing,: 
comparing, etc. 

B REGISTER 

The B register is a 51-bit information register 
considered as the second word in the stack when_ 
the A register is valid. It, too, has multiple usage 
such as: arithmetic, Boolean, character string, 
addressing, etc. The B register is valip when B 
Register Occupied flip flop (BROF) is on. 

X REGISTER 

The X register is a 51-bit information register , 
used basically as the second word of a double­
precision operand. 

Y REGISTER 

The Y register is the counterpart of the X 
register for double-precision operands. It is the 
second word of the B-register operand. 

Panel B (figure 4-3). 

Panel B indicators are shared by the processor 
and input/output processor flip flops. 

The PROC/MPX switches located on Panel C 
(figure 4-4) control the display mode of the panel. 

Panel B is divided into related family and 
control groups. The Maintenance Diagnostic Logic 
(MDL) Processor is common to both display 
modes, i.e., processor or input/output processor 
flip flops. 

ROWA 

This row contains the flip flops for addressing: 
the integrated circuit (IC) memories in the Memory 
Controller. 



~-DISP------
IRW 

E = 0 NORMAL 
E = 1 STUFFED 

OS 
0 E 

1 STK DISP DIFF 
1 

0 
1 
1 

0 
1 
1 

1 
0 
1 

1 
0 
1 

0 
1 
1 

0 
0/1 

MSCW 
OS = 1 DIFF STK 

E = 0 INACTIVE 
E = 1 ACTIVE 

x 
0 
TF 
F 

x 
0 
Tf 
F 

TSCW 
p 

s 
R PIR 

DIFF 
S-F 

SDI 

STK R PIR SDI 

RCW 

SIW 
p R 

MEM/ c 0 LENGTH 
~ 0 INDEX 

DISK 
ADD s D 

DATA DESC 
p R B 

f s y INDEX MEM/ 
I T WORD DISK 

~ z ADD s E E 
STRING DESC 

PJ 
MEM/ ~ LENGTH ·DISK 
ADD 

SEGMENT DESC 

MANTISSA 
0 EXF 

OPERAND 

p 00 00 00 
0 00 00 00 
0 00 00 00 
o~ ....... o o o o~_o o 
c 0000 000 

000 000 
0 000 0000 
00000 0000 

00 0000 
0 000 
0 000 

000 
000 

0000 
00 00000 0000 

x 

00 0000 
0 000 
0 000 
00000 

0000 

~ 

000 
000 

0000 
0000 

000 
000 000 

0 000 
, ............... 

0000 
00 00000 0000 
y 00 0000 000 

000 0 
00 
00 

0 000 
0 000 
00000 

Figure 4-2. Processor Register Panel A 

4-2 

/ ............... 
0000 
0000 



PROCESSOR 
---MEMORY NTERFACE---~ 

MEMORY ADDRESS CONTROL! 
RESPONSE IC MEM WRITE SELECT--.---rc MEM REA::l SELECT 

00000000000000000000 
MAl9 MA!'J !VAii MA07 MAO) Mf')I MAPL,, o ... -:d ),•,SJ 1.·.sJ B;.s; 8.«)J JA:~,J ill)' IRS.: SA:S~ 6R:)3 

00000000000000000000 
MAIB MAI• MAIO MAI)(, MA01 MPAC MAO, o-·,11 f.".16 i.·.11 8·".16 e· ... 11 Dltli !Alo JAi] BAio 8A1: 

00000000000000000000 
MAll MAI) MA09 MAQ'j MAOI M,',A.C MABX UVtSS OVt'SI l'.'.)5 1 ... s1 9,.,5) e.·.s1 DltSS ORSI IRS) fR:SI 81tS5 BA.SI 

00000000000000000000 
MAJ/, MAI] MAOB MAO< MAOO MAEO MADY Dv,1• ov.10 IW14 11.10 B''•I• 8>".10 Diii• ORIO JAi• IAIO BRI• BAIO 

00000000000000000000 
AEOF MAOF lACP INIF BOif 805f 

00000000000000000000 
AROF LPF AUXF Dllf MA08 MAOI MA02 B02f B06f AOIF ACMF A07F AIOF COJF C06F 

00000000000000000000 
Ellf CERF EARi LOIF MA07 MACM MAOI BOJF 807F A02F A05f A08F COIF CCMF C07F 

00000000000000000000 
TNFF FECH ERR1 L02f MAC!> MA06 MAOJ MAOO BCMF BOBf AOJf A06f Ar:t>F C01f COIF COBF 

ORE ADDRESS TEST CASE STRING 

------FAMILY A ARITH CONTROL-

00000000000000000000 
ANFF TAOJ GCBF JRAJ OROO•N1 Qlt()4 ORIO NCA4 EBRO MYRO ORll CCAA A2CA EAll QCAA 

00000000000000000000 
TRXI TR02 BBll JRA1 OR07 QROJ ORC!> NCRJ EARO MBR2 Qltll CTAA A2AA EAIZ OIAA 

00000000000000000000 
XXAI !ROI ORll JRAI OR06 OROI 0R08 NCR1 MYR2 MBRI ORIJ AKA ACAA AASZ•21 EA(A 

00000000000000000000 
ITRA TROO JRA4 JRAO OR05 OROO•AI NCR5 NCRI MYRi MBRO ORl4 A4AA ATAA AAIZ"11 EATA 

00000000000000000000 
OBJF TBJF J87F JBJF OCIF TROJ JC07 JCOJ QC7F LLOJ QC8F OROI/ E818 FSLC•6• FIRC12• AAIZ FCBC•21 

00000000000000000000 
081F 181f JB6f J82F SIRK TR02 JC06 JC01 QC6F Ll02 OC9F OC<F CINA EATB FILC·51 FIRC•ll ECBC FCBC•l1 

OOOOOOOOOOOOOOQOOOOO 
OBIF TBIF J85f JBIF ITRJ !ROI JC05 JCOI OC2F LLOI OCAF CRUN OROO•A1 BIBB FILC•21 FCBB•2• ECCB FC81•2• 

00000000000000000000 
184f TBOF J84F JBOF 51RC TROO JCCM JCOO LLCM LLOO OPJF NCIF AAll ATBB FSLC•I• FC88•11 EC88 FCBl•I• 

L---FAMILY B FAMILY C 

----FAMILY D---...---------FAMILY [-----------

·00000000000000000000 
ODJF TDJF JD7F JDJF OD!IF OD7f OPA4 OEOI JE08 KEO! CN08 D208 DB08 DI08 FC2A KE02 1CA8 DIGS 

00000000000000000000 
OD2F TD2F JD6F JD2F ODAF OD6F OPllJ OE02 JECM CNCO CNCM D2CM D8CM 0104 DICM 0204 OBCM ICR4 DIG4 

00000000000000000000 
ODIF TDIF JD5F JDIF QD9F OD5F OPA2 QEOJ JE02 CNOP CN02 D202 D802 0102 D102 0202 0802 1CR2 DIG2 

00000000000000000000 
TD4F TOOF JD4F JDOF OD6F OD4F OPAS OPlll JE16 JEOI CNl6 CNOI D201 DBOI 0101 DIOI 0201 0801 ICRI DIGI 

00000000000000000000 
VARF OPllS 1 FOF JFOJ JG08 0108 5108 EDIT QFOI OHOI XROF ER08 EXTF 

00000000000000000000 
ITBH OPll4 KFOJ JF02 KGOJ JG04 Dl04 SICM NVLf Of02 QH02 RPZF ER04 FLTF 

00000000000000000000 
STBG OPll2 KF02 JFOI KG02 JG02 DSZ2 llZ2 0102 5102 JGIF QFOJ QHOJ DGIF ER02 TFFF 

00000000000000000000 
ITBF OPlll kFOI JFOO KGOI JGOI DSZI llZI DIOI 1101 JFIF QFCM QH04 LHff EROI OFFF 

FAMILY U 

INTERRUPT CONTROL f"'c5~~~~L-r-----MEMORY CONTROL-----

00000000000000000000 
Ql2F JIOJ EXIA INVC ICC2 ll81 ACTS J02F TRIP MAOF CZAF PET2 1Ml9 IMIS IMll SM07 IMOJ 

00000000000000000000 
PTPI Jl02 lTAa EXll ICFF LTBO 012F JOIF !IMO IPEF IUBF Ml48 1M18 IMl4 SMIO IM06 SM02 

00000000000000000000 
SOIF JIOI IUfl OllF SCCI LOAD Ollf BROF TIMI MWRC PETO LPBF IMl7 IMIJ IMC!> IM05 IMOI 

00000000000000000000 
Jro< JIOO 1011 UHF HLTD ICll JOJF AROF TIM2 REQF PET! MPEF IM20 IMl6 1Ml2 1M08 SMCM IMOO 

00000000000000000000 
EDIT JPJF IECF !Nff OP2F OPIF TOAJ TOMJ 0113 XTZ6 Zo19 

00000000000000000000 
TEEF JP2F CllR PIR2 ISR2 CSR2 TOA2 IOM1 Dl12 CTZ6 l6L9 

00000000000000000000 
/ARF JPIF CPll PIRI llRI CIR! TOA5 IOAI IOMI IOMI Dl15 Diii 8TZ6 lore 

00000000000000000000 
PROF JPOf CPIO PIAO llRO CIRO IOA4 IOAO IOM4 !OMO 0114 ()llO YTZ6 All6 Z6LS 

PROGRAM CONTROL TRANSFER CONTROL------" 

Figure 4-3. Processor Display Panel B 

4-3 



IC Mem Read Select 

BRSO =::> BRS7 

IRSO =::> IRS? 

DRSO => DRSS 

IC Mem Write Select 

BWSO => BWS7 

IWSO =::> IWS7 

DWSO => DWSS 

MEMORY INTERFACE 

Control/Response 

MAPL/MTEX 

MAOX 

MABX 

MRDY 

MI51 

MPRC 

MWRC 

MREQ 

Memory Address 

MAOO =::> MA 19 

ROWB 

- Base read, select 0 
through 7. 

- Index read, select 0 
through 7. 

- Display read, select 0 
through S. 

- Base write, select 0 
through 7. 

- Index write, select 0 
through 7. 

- Display write, select 
0 through S. 

- Memory address 
level/Memory trans­
mission error. 

- Memory access 
obtained. 

- Memory access 
begun. 

- Memory ready. 

- Memory information 
parity bit. 

- Memory protect con­
trol flip flop. 

- Memory write con­
trol flip flop. 

- Memory request to 
memory control. 

- Memory address 
lines. 

This row contains the flip flops for the MDL 
processor. There are three registers associated with 
this processor: AO 1 through A 10, BO 1 through 
B08, and CO 1 through C08. These registers are 
used for system testing. The other flip flops in row 

4-4 

B are for MDL control. These flip flops are 
discussed later in this section, under INPUT/ 
OUTPUT PROCESSOR REGISTERS AND FLIP 
FLOPS (ROW B). 

AOIF =::> AIOF 

BOlF => B08F 

COIF => C08F 

MAOO =::> MA09 

REQF 

AROF 

ESTF 

TNFF 

MAOF 

LPF 

CERF 

FECH 

ERCP 

AUXF 

ERRl 

ERR2 

INTF 

- A register in the 
MDL processor; used 
for character/word 
buffer for tape input 
or as a command/data 
register for MDL 
processor execution. 

- B register in the 
MDL processor; used 
as control flip flops for 
tape input, or test case 
number for MDL pro­
cessor execution. 

- C register in the 
MDL processor; used 
as a word buff er to the 
tape input or as a 
command/data register 
for MDL processor 
execution. 

- Memory address 
register for the MDL 
processor. 

- Memory request flip 
flop. 

- A and C register 
occupied flip flop. 

- End of string flip 
flop. 

- Test not flip flop. 

- Memory access 
obtained flip flop. 

- Longitudinal parity 
flip flop. 

- Control parity error 
flip flop. 

- Control flip flop. 

- Error complement 
flip flop. 

- Auxiliary flip flop. 

- Solid error flip flop. 

- Intermittent error 
flip flop. 

- Enable display cycle 
flip flop. 



DISF - Discrepancy flip 
flop. 

LOIF - Sequence counter 
flip flop. 

L02F - Sequence counter 
flip flop. 

ROWC 

This row contains Family A flip flops and 
one-half of the Arithmetic Controller flip flops. 

Family A 

TROO ==> TR03 

JRAO => JRA4 

QROl 

QROO (A) 

QR02 

QR03 ==> QR07 

QR08 ==> QRlO 

QRll ==> QR14 

QR15 

QROO/QROl/ 

QROO(N) 

NCRl => NCRS 

MBRO => MBR2 

MYRO ::::::> MYR2 

BARO 

EBRO 

STRA 

XXAl 

TRXl 

- Contains the OP 
code 

- Sequence count 
used in the OP code 
flow 

- Pre-Carry into adder 

- Carry-in control for 
multiply 

- High-speed clock 
phase control 

- Logic control 

- Tern porary storage 

- Q Counter 

- Interrupt flip flop 

- Carry-in reset 
control 

- Multiply carry in 
flip flop 

- N counter 

- B-register mantissa 
field extension 

- Y-register mantissa 
field extension 

- Extension of A­
register exponent field 

- Extension of B­
register exponent field 

- Family A strobe flip 
flop (turned on by the 
Program controller 
through the Z 10 bus) 

- Function parallels 
STRA 

- Function parallels 
TROl 

4-5 

Arithmetic Control 

All other flip flops in the Arithmetic Controller 
are used for logic control. They are as follows: 

BBSZ 
AASl 
EBTT 
EATB 
BTBB 
ATBB 
FSLC (1) 
FSLC (2) 
FSLC (5) 
FSLC (6) 
FCBB (1) 

ROWD 

FCBB (2) 
FSRC (1) 
FSRC (2) 
AAlZ 
ECBC 
ECCB 
ECBB 
FCBC (1) 
FCBC (2) 
FCBS (1) 
FCBS (2) 

FCBC (1) 
QROO/A 
CINA 

QROOl/ 

This row contains the Family B and C flip flops. 

Family B 

TBOF ==> TB4F 

JBOF ==> JB7F 

QBlF ==> QB3F 

Family C 

TROO ==> TR03 

JCOO ==> JC07 

LLOO ==> LL04 

QP3F 

STRC 

STRJ 

STRK 

QCIF => QCBF 

ANFF 

NCSF 

- Contains the OP code 

- Sequence count 
used in the OP code 
flow 

- Logic control 

- Contains· the OP 
code 

- Sequence count 
used in the OP code 
flow 

- Lexicographical 
level flip flops for the 
Program flow 

- Extension of QP 1 F 
and QP2F 

- Strobe family C 
(subroutine) 

- Strobe family J 
(Value Call) 

- Strobe family K 
(Name Call) 

- Logic control 

- Logic control 

- Normal/control 
State flip flop: When 



this flip flop is reset, 
"off" signifies normal 
state; "on" signifies 
control state 

The Control State flip flop provides an 
extension to the operator set to include additional 
operators; it also disables external interrupt 
detection by the processor. 

CRUN Family C run flip flop 

ROWE 

This row contains the family D and E flip flops. 

Family D 

TOOF 

TDlF => TD4F 

JDOF => JD7F 

QD 1 F ==> QD9F, 
QDAF, 
QDBF 

Family E 

OPRS 

OPRl => 

.JEO 1 ==> 

DIGl ==> 

ICRl ==> 

OBOl ==> 

0101 ==:> 

0201 ==:> 

DBOl => 

0101 =;> 

0201 ==:> 

CNOl => 

QEO 1 ==> 

FC2A 

KEOl, KE02 

CNCO 

CNOP 

OPR4 

JE16 

DIG8 

ICR8 

OB04 

OB04 

0204 

DB08 

0108 

0208 

CN16 

QE03 

- Family D strobe 

- Contains the OP 
code 

- Sequence count 
used in OP code flow 

- Logic control flip 
flops 

- Family E strobe 

- Contain the OP code 

- Sequence count 
used in OP code flow 

- Length field 

- Input convert 

- Octal buff er bit 

- Octal 1 bit 

- Octal 2 bit 

- Digit buffer bit 

- Digit 1 bit 

- Digit 2 bit 

- Counter 

- Logical control 

- Transfer CC to AA 

- Logical control 

- Counter control 

- Counter 

4-6 

ROWF 

This row contains the family U (String OP) flip 
flops. Family U is the hardware logic for the string 
OP controller. 

OPR 1 =:> OPR8 

KFOI => KF03 

JFOO => JF03 

KGO 1 ==:> KG03 

JGOI => JG08 

VARF 

DSZl 

DXZ2 

SSZl 

SSZ2 

DIOI 

SIOl 

EDIT 

NVLF 

JGIF 

JFIF 

QFOl 

QF02 

QF03 

QF04 

QHOl 

XROF 

RPZF 

0108 

SI08 

QH04 

- Contains the OP 
code for this controller 
- Extension of 
sequence count for 
Family F 

- Sequence count 
used in family F OP 
code flow 

- Extension of 
sequence count for 
Family G or H 

- Sequence count 
used in family G or H 
OP code flow 
- Variant flip flop to 
alter the OP code 

- Destination size less 
significant bit 

- Destination size 
more significant bit 
- Source size less 
significant bit 

- Source size more 
significant bit 

- Destination 
character pointer 

- Source character 
pointer 

- Edit mode for string 
OPS 

- Invalid OP Code 

- JG interrupt state 

- JF interrupt state 

- Invalid OP interrupt 

- Presence bit 
interrupt 

- Memory protect 
interrupt 

- Segmented array 
interrupt 

- Logical control 

- Register occupied 

- Logical control 



DGSF 

LHFF 

EROI 

EXTF 

FLTF 

TFFF 

OFFF 

STBF 

STBG 

STBH 

ROWG 

EROS 

- Logical control 

- Logical control 

- E-Register flip flops 
(Used for memory 
cycle requests during 
string OP code flow.) 

- External sign 

- Float 

- True false 

- Overflow 

- Strobe for family F 

- Strobe for family G 

- Strobe for family H 

This row contains the flip flops used for 
Interrupt Control, Stack Control and Memory 
Control. 

Interrupt Control 

JIOO => 1104 

SOIF 

PTPI 

QIIF, QI2F 

EXIA 

EXIB 

ITAR 

SUFL 

SDIS 

SCCl, SCC2 

ICFF 

HLTD 

LOAD 

SCIL 

LTBO,LTBl 

INVC 

- Sequence count for 
controller flow 

- Stack overflow 

- Processor to 
processor interrupt 

- Logical control 

- External interrupt A 
(MPX-A) 

- External interrupt B 
(MPX-B) 

- Interval timer armed 

- Stack underflow 

- Syllable dependent 
interrupt 

- Scan Counter Bit 1 
and 2 

- Interrupt controller 
run 

- Halted 

- Load 

- Scan interlock 

- Load timer Bit 

- Invalid code (Tag in 
P:f 3) 

4-7 

IIHF 

Stack Control 

JOIF ~ J03F 

ACTS 

QSIF, QS2F 

AROF 

BROF 

Memory Control 

SMOO => SM20 

TRIP 

TIMO ::::::::> TIM2 

MAOF 

SPEF 

MWRC 

REQF 

CZAF 

SUBF 

PETO => PET2 

MI4S 

LPBF 

MPEF 

ROWH 

- Set 
matically 
external 
handling 
processor. 

program­
to inhibit 
interrupt 
by the 

- Sequence count for 
controller flow 

- Address couple to 
ZS bus 

- Logical control 

- The A register con-
tains a valid word 

- The B register con­
tains a valid word 

- Address adder out­
put flip flops. These 
are for display only. 
(No manual set or 
reset controls) 

- Trip control invalid 
address 

- Invalid address timer 

- Memory address 
obtained 

- Scan bus parity 
error 

- Memory write 
control 

- Memory request 

- Carry zero control 

- Address adder 
subtract 

- Information parity 
test control register 

- Memory protect bit 

- Line parity bit from 
memory 

- Memory parity error 

This row contains the flip flops used for 
Program Control and Transfer Control. 



Program Control 

JPOF => JP3F 

PROF 

VARF 

TEEF 

EDIT 

CPIO, CPll 

CTIR 

SECF 

INFF 

PSRO => PSR2 

QPIF, QP2F 

SSRO SSR2 

CSRO => CSR2 

Transfer Controller 

TOAO => TOAS 

- Sequence count for 
controller flow 

- The P register con­
tains a valid word 

- Variant mode flip 
flop (Used to enter the 
variant mode; see Sec­
tion 8.) 
- Table enter edit 

- Edit mode 

- A two-bit counter 
used to back up the 
PIR (program index 
register) 

- A one-bit counter 
used to back up the 
TIR (table index 
register) 

- SECL (syllable 
execute complete 
level) saved 

- Inhibit fetch flip 
flop (used to inhibit 
bringing a new 
program word to the P 
register) 

- Program syllable 
register 0 => 5 pointer 
(points to next syllable 
to be executed from 
the P register) 

- Logic control 

- Syllable saved 
register 0 (Used to 
save the current posi­
tion of PSR when in 
table mode.) 

- Command Syllable 
register 0 => 5. (Used 
to save the current 
position of PSR.) 

- Top-of-Aperture 
Register (Used to 
select top bit of 48-bit 
field to be transferred 
through the steering 
and mask network.) 

4-8 

TOMO => TOMS 

DISO => DISS 

YTZ6 
XTZ6 
CTZ6 
BTZ6 
ATZ6 

Z6L8 

Z6T8 

Z6L9 

Z6T9 

- Top-of-mask register 
(used to select top bit 
of 48-bit field to be 
inhibited through the 
steering and mask 
network) 

- Displacement 
register (Used in 
steering network to 
logically displace bits 
of a 48-bit field.) 

- Gating flip flops to 
the Z6 bus. (Allows 
the contents of the 
various registers to be 
gated to this bus.) 

- Z6 bus lower to Z8 
bus (Allows bits 13: 14 
to be transferred.) 

- Z6 bus top to Z8 
bus (Allows bits 39: 20 
to be transferred.) 

- Z6 bus lower to Z9 
bus (Allows bits 35: 16 
to be transferred.) 

- Z6 bus top to Z9 
bus (Allows bits 39:20 
to be transferred.) 

GENERAL MAINTENANCE CONTROLS 

The maintenance control panel shown in figure 
4-4 is panel C. It contains the indicators and 
necessary controls for maintenance of the B 6700 
system. Units which cannot be controlled from this 
panel have their own local maintenance controls. 

Power Controls 

The power supplied to the B 6700 system is 
controlled by sequence control circuits located in 
the MDL display cabinet. There are two sequence 
control circuits (sequence control circuits A and B) 
in one MDL display cabinet; a maximum of two 
MDL display cabinets can be used per system. 
There are two sets of power control switches 
located on the upper-right corner of panel C on the 
MDL display cabinet (see figure 4-4A). One set of 
these switches controls sequence control circuit A, 
and the other controls sequence control circuit B. 

In addition, there is also a set of three toggle 
switches labeled CONNECT-DISCONNECT A, B, 



or C. These switches can connect the selected 
sequence control circuit to one common control 
(see figure 4-4B). If these three switches are in 
position DISCONNECT, each sequence control 
circuit is controlled by its corresponding set of 
power control switches. If toggle switches A and B 
are in position CONNECT, sequence control 
circuits A and B are placed on a common bus, and 
both can be controlled by one set of power on-off 
switches. When toggle switch C is in position 
CONNECT, it will tie the designated sequence 
control circuits to the second MDL display cabinet. 

Lamp indicators 1, 2, 4, and 8 indicate the 
failure of one of 15 AC modules. For example, if 
AC module #7 has failed, indicators labeled 1, 2, 
and 4 will turn "on." 

General Clear And Halt-Load Function 

On the upper-right corner of control panel C, 
there are two pushbutton switches labeled GEN 
CLEAR A and GEN CLEAR B. The domain of 
each of these switches depends on the position of 
the three CONNECT-DISCONNECT switches 
(explained above under POWER CONTROLS). 

There is no direct clear switch located at the 
operator's console; however, the system's general 
clear from this unit is provided through the LOAD 
switch. Whenever the LOAD switch is depressed, 
the system is automatically cleared before the load 
command is executed. 

10 0 d~QTR~I 
8 4 2 I OFF ON GEN CLEA 6 6 6 CONNECT~ 

10-0-0~8~0 6 GO)i' 

io-~
0

~0Y10r~s·oi 
0 C T TOD AC 8 MC ,0 0 ~MoL(5TRoL~ () 01 

LOAD STOP RUN DIAGNOSE HALT CYCLE LOCK CLEAR 

r511 ~ ~~OCK~NTROO @ 1r~1 
HALT OFF NORMAL SYST PROC-1 MPX-1 ~FF 

0 0 ~ ~ 0 0 p~~ff 
LO SLCT PULSE MDL DISPLAY PROC-2 MPX-2 PROC-2 

g Q Q Q 01Q,1 i~· 
PULSE 

. . . . 
AC MOD LOC 

(FAILURE LIGHTS) 

. . . 
ON OFF CLR 

8 

J-10 

The HALT, LOAD, and LD SLCT switches are 
duplicated at the maintenance panel (panel C) for 
convenience of operation. These switches are 
located in the lower-left corner of panel C. 

The system can be cleared by means of the 
LOAD switch. When the LOAD switch is depressed 
at either the console or the maintenance panel, a 
clear signal is generated. Both sections A and B are 
cleared. When the LOAD switch is released, the 
load logic generates the load command which is 
transmitted to the data processors. 

Processor Register Clear 

A set of six pushbutton switches is provided for 
individually clearing registers A, B, C, X, Y and P 
of the data processor selected by the display select 
switch. 

Input/Output Processor 

The Input/Output Processor registers may be 
individually cleared with the switches listed below: 

1. Switch D clears the data register. 

2. Switch C clears the command register. 

3. Switch T clears the tag register. 

4. Switch TOD clears the time-of-day register. 

SEQ BD B 

TO AC 
MOD 

TO AC 
MOO 

r------
• . . 
ON OFF CLR 

A 

.... 
AC MOD LOC 

(FAILURE LIGHTS) 

. . . 
ON OFF CLR 

B 

J-10 

I 
SEQ BD A I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SEQ BD B I 

___ _J 

I 
I 

_____ _J 

J-11 - J-11 

TO AC 
MOD 

TO AC 
MOD 

1''----'-t'----=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=-~t___,J 
Figure 4-4A. Panel C General Controls 

Figure 4-48. 

Figure 4-4. Power Control 

4-9 



MDL Register Clear 

The MDL registers may be individually cleared 
with the switches listed below: 

1. Switch MC clears the core address. 

2. Switch B clears the TC no. 

3. Switch AC clears the string no. 

MDL Control Switches 

This group of switches is used for loading and 
controlling the MDL. 

Display Select Switches 

This group of switches is composed of three 
toggle switches located in the lower-right corner of 
the panel. The function of these switches is as 
follows: 

1. On-Off Switch: When this switch is in posi­
tion ON, the display logic is enabled; when 
the switch is in position OFF, the display 
logic is disabled. 

2. Processor select switch: This three-position 
toggle switch selects which of two processors 
is to be scanned by the MDL. 

3. 1/0 Processor (MPX) select switch: This 
three-position toggle switch selects which of 
two 1/0 Processors is scanned by the MDL. 
The MPX select switch overrides the processor 
select switch. 

Clock Controls 

The clock control switches provide the means of 
inhibiting the system clock to the various com­
ponents of the system. 

Clock toggle switches when activated in the 
"up" position inhibit the following. 

1. SYST - Entire system 

2. PROC-1 - Processor # 1 

3. MPX-1 - 1/0 Processor # 1 

4. MDL - Maintenance 
Diagnostic Processor 

5. Display - Display Logic 

6. PROC-2 - Processor #2 
7. MPX-2 - 1/0 Processor #2 

4-10 

Single Pulse Switch 

This switch is used to produce a single clock 
pulse when the clock has been inhibited. 

Pulse Train Switch 

This switch is used to produce a train of pulses. 
Each depression produces all the clock pulses that 
normally appear within a 500-nanosecond period. 

Indicators BO, 81, 82 

These indicators indicate the logical time 
division of the pulse train. 

MDTR/Normal Switch 

This switch is used to change the system from a 
normal mode of operation to that of MDL. 

FF Reset Switch 

This switch when depressed indicates that a flip 
flop in the unit selected is to be reset. 

HALT, LOAD, and LOAD SELECT SWITCHES 

The functions of these switches are the same as 
their corresponding switches at the console. The 
HALT switch is used to halt the system without 
clearing it. The LOAD switch is used to perform a 
load opera ti on from either the card reader or disk 
file, depending upon the setting of the LD SLCT 
switch indicator. This indicator is lit when card 
load is selected. 

NOTE 

For a detailed description of the load opera­
tion, refer to the description of the Operators' 
panel (see figure 4-9). 

PROCESSOR MAINTENANCE CONTROLS 
(Panel E) 

Each processor is provided with an independent 
maintenance control panel. These controls are 
additions over and above the console controls 
(HALT, LOAD, POWER ON/OFF -, etc.) and the 
general systems controls (Panel C). 

The IC memory registers of the processor are 
not displayed by the display unit of the system; 
however, certain switch controls located on the 



processor control panel allow control and display 
of these registers. 

The control switches provided on the processor 
control panel and their related functions are 
described in this section. Refer to figure 4-6, which 
shows a front view of Panel E. 

Start Switch 

The START switch is a pushbutton switch 
which functions to start a halted processor and to 
execute the next operator syllable pointed to by 
PSR, PIR, and PBR. This switch is active only 
when the clock of the processor is enabled and 
when this switch is depressed it generates a 
sequence complete level (SECL) to cause the 
execution of the next operator syllable to be 
initiated in the normal manner. 

Conditional Halt Switch 

This is a two-position toggle switch which 
enables the conditional halt operation to stop the 
data processor. The conditional halt operator 
functions as a NO-OP when executed with the 
CONDITIONAL HALT switch in position "down" 
and functions to stop the data processor when in 
position"up" (off). 

Stop Switches 

The following set of stop switches enables the 
data processor to stop upon the occurrence of 
specified conditions. The exact action of these 
switches is modified by the position of the STOP 
MODE switches. 

SECL SWITCH 

The SECL switch when in position "up" (off), 
causes the processor to stop after the execution of 
each· operator syllable. It activates the INFL 
(inhibit fetch level). 

INT-I SWITCH 

· When in position "up", the stop on internal 
interrupt switch (INT-I) causes the data processor 
to stop upon the occurrence of an internal 
interrupt condition. The data processor stops 
displaying both the P 1 and P2 interrupt parameters 
in the A and B registers just prior to entering the 
interrupt procedure. 

4-11 

EXT-I SWITCH 

The stop-on-external interrupt switch (ECT-I), 
when in position "up" causes the data processor to 
stop upon the occurrence of an external interrupt. 
The data processor stops displaying the Pl and P2 
interrupt parameters in the A and B registers, just 
prior to entering the interrupt procedure. 

NORMAL/CONTROL STATE SWITCHES 

These are two-position toggle switches used to 
enable the STOP switches to function when the 
data processor is in control state or normal state or 
both. 

PARITY SWITCH 
This switch enables the processor to stop on 

a memory parity error. 

Unit Clear Switch 

The UNIT CLEAR switch is a pushbutton type 
switch which when depressed, functions to clear 
the flip flops of the related data processor. 

Local/Remote Switch 

This is a two-position toggle switch which when 
placed in the LOCAL position, places the data 
processor in a local state. The processor unit 
functions normally when in the LOCAL state 
except for the following: 

I. The scan bus is isolated from the system 
functionally, so that manual intervention 
within the processor will not interfere with 
the rest of the system. 

2. The facilities of the READ PROC REG 
switches are enabled. 

ADJ (0, 0) Switch 

This is a pushbutton switch which activates the 
push-down stack register operator to cause all TOS 
registers to be stored in memory, thereby saving 
the contents of the A and B registers so that these 
registers may be used to subsequently manipulate 
the data processor's IC memory via the 
maintenance panel switches (READ-IC and 
WRITE-IC). The ADJ (0, 0) switch is active only 
when the processor's clock is enabled. 



Read IC Switch 

This is a pushbutton switch which initiates a 
read processor register operator to read the con­
tents of a processor IC memory register into the A 
register (19: 20). The address of the selected IC 
memory register must be placed into the B register 
prior to depressing this switch. The "READ IC" 
switch is active only when the clock of the 
processor is enabled. 

READ IC OPERATION 

To perform the read IC operation, do the 
following: 

1. Adjust 0, 0. 

2. Load the address in the B register. 

3. Set BROF. 

4. Depress the READ IC pushbutton; the con­
tents of the addressed cell will appear in the A 
register. 

Write IC Switch 

This switch is a pushbutton switch which 
activates a set processor register operator to cause 
the contents of a processor IC memory register to 
be replaced by the contents of the A register. 
(19:20). The address of the selected IC memory 
register must be placed into the B register prior to 
depressing this switch. The "WRITE IC" switch is 
active only when the processor's clock is enabled. 

WRITE IC OPERATION 

To perform the write IC operation, do the 
following: 

1. Adjust 0, 0. 

2. Load the address in the B register. 

3. Load the information to be written in the A 
register. 

4. Set AROF and BROF. 

5. Depress the WRITE IC pushbutton; the con­
tents of the A register will be written in the 
eell addressed. 

Read Proc Reg Switches 

These switches enable the read out and display 
of the related processor register (IC memory 

4-12 

register). The contents of the register are displayed 
only while the switch is depressed; releasing the 
switch allows the processor to revert to its prior 
state. The READ PROC REG switches activate a 
DC read out of the IC memory cells and as a result 
are enabled only when the processor is in LOCAL. 
The READ PROC REG switches and their 
functions are listed below: 

1. Switch S is the read S register switch. 

2. Switch Fis the read F register switch. 

3. Switch PBR is the read PBR register switch. 

4. Switch PIR is the read PIR register switch. 

5. Switch BOSR is the read BOS register switch. 

6. Switch LOSR is the read LOS register switch. 

NOTE 

These IC memories are displayed in the SM 
register. 

BINARY 
WEIGHT ~:~3 

5 
2 

1 

DECODE FOR DESIRED 
REGISTER -----

4 
1 

0 
L----~----.J~-----., 

Register 
Name 

DOO 

D31 

PIR 

SIR 

DIR 

TIR (BUF 3) 

LOSA 

BOSR 

F 

BUF 

PBR 

SBR 

DBR 

TBR (BUF 2) 

s 
SNR 

PDR 

TEMP 

0 = DISPLAY REG 0 - 15 
1 = DISPLAY REG 16 - 31 
2 = INDEX REG 0 - 7 
3 = BASE REG 0 - 7 

Usage Decimal 
Address 

0 => 
Display 31 

Program index 32 

Source index 33 

Destination index 34 

Table index 35 

Limit of stack 36 

Base of stack 37 

MSCW address 38 

Used for temporary 39 
storage 

Program base 48 

Source base 49 

Destination base 50 

Table base 51 

Top-of-Stack address 52 

Stack number 53 

Program segment 54 
descriptor index 

Temporary storage 55 

Figure 4-5. Address Register 

Hexadecimal 
Address 

00 => 
1F 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 



r;p READ PROC REG ~ 

000 
PBR 

000 
PIR BOSR LOSR 

r--5TOP MODE-j 

0 ~ 
jADJ-O.O CONDITIONAL 

HALT 

0 ~ ~ 
READ-IC PARITY INT-I 

0 ~ ~ 
WRITE-IC CONTROL EXT-I 

STATE 

0 0 0 
START NORMAL SECL 

STATE 

l(Q) LOCAL I 
~ 

CLEAR REMOTE 

Figure 4-6. Panel E 

FLIP FLOP 

PECH 

AROF 

ESTF 

TNFF 

MAOF 

LPF 

CERF 

ERRl 

ERR2 

L01F,L02F 

MAOO=> MA09 

BOlF=> B08F 

AOlF=> AlOf 

COIF=> C08F 

Input/Output Processor Registers and Flip Flops 

The Input/Output Processor registers and flip 
flops are displayed on Panel B as shown in figure 
4-7. This panel is shared with the Processors for 
display mode. 

RowB 

This row contains the logical elements for MDL. 
Each flip flop may be used in one of two ways: I/O 
testing or data processor testing. 

Rowe 

This row contains the 51-bit data register used in 
I/O operations, along with the following control 
flip flops: 

PSYF - Processor sync 

PSRF - Processor scan request 

SAOF - Scan access obtained 

MATF - Mark access time 

STEP - Scan transmission error 

RowD 

This row contains the 60-bit command register 
used in I/O operations. Refer to figure 4-7. 

USE ON I/O TEST USE ON MDL TEST 

Off for I/O On for DP 

Not used A, C register occupancy 

Tape vertical parity End-of-string flip flop 

"Test not" flip flop "Test not" flip flop 

Memory access obtained Memory access obtained 

Bad record memory Memory info parity bit 

Control parity error Control parity error 

Solid error Solid error 

Intermittent error Intermittent error 

Sequence count Sequence count 

Memory address Memory address 

Tape read control Data 

Character buff er word Command-data 
buffer 

Card address register Card address register 

4-13 



Row E 

This row contains the 10 sets of associative tag 
register flip flops used for scratch-pad memory 
assignment. Also within each set of flip flops is the 
corresponding read scratch-pad memory (RSPM) 
flip flop. 

Row E also contains five MTRI flip flops, one 
for each pair of Tag registers. 

Row F 

This row contains the following 1/0 Processor 
control flip flops: 

IC 1 

KY 1 

LK 1 ~ 

Al ::::>-

Bl ~ 

Cl => 

DI ~ 

ESCF 

EICF 

RRDF 

PCTF 

RCDF 

MTOF 

AP2F 

LSAF 

MINF 

ROAF 

RowG 

8 

5 

5 

A8 

B8 

C8 

08 

Initiate count cycle for 
operational sequence 
flow. 

Key register used as com­
pari tor selection of 
scratch-pad memory 
slots. 

Link register used on 
initiate cycle for key 
register selection. 

Input translator digit bits 

Enable service cycle 

Enable initiate cycle 

Read result descriptor 

Service priority control 

Read SPM to command 
data register 

Memory time zero 

Address plus 2 store 

Least significant address 

Minus level store 

Result descriptor access 

This row contains the time-of-day register and 
the interrupt status bit flip flops. 

TIME OF DAY 0 => 43 - This register 
contains 44 flip flops of which 36 are used for 

4-14 

time-of-day. The other eight are used when the 
entire register is being used during maintenance 
test routines (MTR) logic card test. 

IS 0 9 - Interrupt status bits. 

Row H 

This row contains the following control flip 
flops: 

MAPL - Memory address parity error 
level. 

MIPL - Memory information parity 
error. 

SPEL - Scan parity error. 

SIPL - Scan bus information parity. 

CRF - Clear flip flop. 

SIF2 - Scan in flip flop. 

MANF - Memory access needed. 

MROF - Memory read obtained. 

MAOF - Memory access obtained. 

ANXF -Allow next service cycle 
control. 

IOCB - Input/output complete bus. 

STCB - Start channel bus. 

ADP2 - Address even bus. 

RDAB - Result descriptor available bus. 

LSAL - Least significant address. 

MINS - Minus bus level 

SI06 ~ Sil 7 

Input/Output Processor Maintenance Control Panel 

Panel D (figure 4-8) is used for local main­
tenance operations with the 1/0 Processor. Four 
types of operations can be accomplished using this 
panel: 

1. Reading and writing the 1/0 Processor 
scratch-pad memory. 

2. Reading and writing main memory. 

3. Executing 1/0 descriptors. 

4. Logic card testing. 

The requirements for these operations are two­
fold: the 1/0 Processor Local/Remote switch must 
be in position LOCAL and the 1/0 Processor 
display mode must be active as well as system 
clock. 



--MEMORY INTERFACE-~ 1/0 PROCESSOR 
~MEMORY AOORESS~~~~~~~t -

00000000000000000000 
/I/Ali ,_.Al, MAii ""A),' f<.AAJ! Ml',I MAfl/ 

00000000000000000000 
f.l.A18 MAI• ,,,.Al 11 M/,)•, tvtA.J/ MPl!l MAl·~ 

00000000000000000000 
MAI' MAii MA?-/ MAJ, MAUI M;.R( MAS.II.. 

00000000000000000000 
MAI,, MAI] MA08 MAQ.t MAOO MA:l'.J Mlil.U'f 

00000000000000000000 
ll:lQF MAL-F ll<.P 11'.JTf BOif 90)f 

QQQQOQQQQQQQQQQQOOOO 
00000000000000000000 
lllf ClRf lAAI lOll MAO/ MAO• MAOI BOJf BOlf AO/f AO\f A08f COlf (J.lf COlf 

00000000000000000000 
H~ff HCH lll:R; lO]f MA1}'' MA06 MAOJ MAOO 804F 808F AO H A06f A09F C01F LO'.if COBF 

L--CORE ADDRESS- TEST CASE STRING 

'--------MDL DISPLAY'--------' 

00000000000000000000 
MA!f DATA REGISTER·----------. 

o Q o 9 9 ps~ 9 9~919 r~ 9 6?J9] 9 ro~o o ro 
O Q O 9 9 Pb.3 g 9 !9i 9 9J9j Q :9 ~ Q !Qi Q 9JQ 
o o o o o --~o o o o Q_a o[Qfo olQ o b_o 
lllf PIYf 0011 '8 '1 •1 39 36 33 JO ll 1• ll 18 I\ ll 9 o J u 

00000000000000000000 
o o o o o o o o o o o o o o 6 oro-016 6 
0 0 0 0 0 0 0 0 0 6 0 0 0 0 618 6 6i 6 6 

109 10) 101 Y/ 93 81 80 79 18 ti9 : b6 oJ oO : Jo J} 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 OlQ 0 QJO·O 
~Aoo~~ss~ L ,., ,.,, ~~NGT,~ 73 

n JL 
08 0

" -- ~ON~~~L " 
1 

J1 

L--------COMMANO REGISTER---------' 

--------TAG REGISTER----------. 

00000000000000000000 
MUI MUI MUI MIA:I MIA.I 

00000000000000000000 
RSPM 10) R\PM YJ ll:1PM SJ 11\PM I) 11:\PM 6J R>PM '1J R)PM 4'.l R'JPM J3 RlPM .'J R>PM 13 

00000000000000000000 
105 107 9'1 97 8'1 8:? l', !'} 6., 6} '>'1 '1] 4''1 4'] J', 3] '}S n I• I:? 

00000000000000000000 
ICM 101 94' Y1 84' 81 14 ,'I 1'14' r,1 '14 'd 44' .a1 H JI :;>4' :?1 14 11 

00000000000000000000 
8 RRDF MJN~ 08 CB 88 A8 

00000000000000000000 
4 J J P<.Tf APlf D4 C.t 8.( A-4 

00000000000000000000 
1 'l 1 ' 1 l ':.U RC Pf I \Af 01 (.\ 6;' A.1 

ROW 

A 

8 

c 

0 

E 

00000000000000000000 f 
I • I • I EICf M10f ROAF 01 Cl Bl Al 

IC KY LK MW 

IS 

00000000000000000000 
7 3 TIME Of DAY I CARO TEST REGISTER---~ 

00000000000000000000 
6 1 .i11v 38/1\ JVIP Jl/ll 19/11 16/lf 13/IC 10/Q\'. ll/01 i'/OU II/OM 18/lJ 0'>/0to ul/Ol> 

o o 9 o o QIQ Q Q Q Q Q Q Q Q Q Q Q Q ;;;. 
OQQQOQQQQQQQQQQQQQQQ 

G 

00000000000000000000 
'>11 l ':ill J '>101 RAD& ANXF .jPl 

00000000000000000000 
·,(16 >111 'JI06 AOP/ MAl..·J )Pll 

00000000000000000000 
lll'i 1:.111 MlN', ~IC& MR:l'f !.IF.' M:r1 

H 

00000000000000000000 
>114 \110 L' .. \l ll ll\ MM,1 \11:1 .._,,\P 

Figure 4-7. Input/Output Processor Display Panel B 

4-15 



The following paragraphs deal with the opera­
tional use of these maintenance switches to accom­
plish the above four 1/0 Processor modes. 

Write SPM 

Single or Continuous writing into a scratch-pad 
memory (SPM) location addressed by the tag word 
is accomplished as follows: 

1. Put 1/0 Processor in local mode. 

2. Scan-in tag word into the tag register. 

3. Scan-in the same tag word into the key 
register. 

4. Scan-in the desired contents into the 
command and data registers (112 bits). 

5. Put READ/WRITE switch on the 1/0 
Processor maintenance control panel to 
the position WRITE. 

6. Put MEMORY/SPM switch on the 1/0 
Processor maintenance control panel to 
the position SPM. 

7. Activate MAINT MEM/SPM ENABLE 
switch on the 1/0 Processor maintenance 
control panel. 

8. If single-cycle operation is desired, press 
START button for each SPM write cycle. 

9. If continuous recycling is desired, activate 
the RECYCLE switch and press START 
button to commence recycling. 

10. To stop recycling, set RECYCLE switch 
to position OFF. 

Read SPM 

Single or Continuous reading of a SPM location 
is accomplished as in WRITE SPM, above, except 
for the following two steps. 

Step 4 - Omit 

Step 5 - Put the READ/WRITE switch to posi­
tion READ and proceed as in WRITE 
SPM mode. 

Write Main Memory 

Single words can be written to main memory 
from the Data Register in the following manner: 

1. Put I/O Processor in local mode. 

2. Scan-in memory address into command 
register. 

4-16 

3. Scan-in any desired bit pattern into the data 
register. (Pattern will clear out of the data 
register after each write operation unless bit 
66 in the command register is set.) 

4. Put READ/WRITE switch on the 1/0 
Processor maintenance control panel to posi­
tion WRITE. 

5. Put MEMORY/SPM switch on the I/O 
Processor maintenance control panel to the 
position MEM. 

6. Activate MAINT. MEM/SPM ENABLE 
switch. 

7. Press START button for each memory write 
cycle. 

NOTE 

Activating memory request inhibit switch will 
disable all logic that might set MANF, 
including local maintenance. 

Read Main Memory 

Main memory cells may be read either singly or 
continuously from one address or consecutive 
addresses in the following manner: 

1. Put I/O Processor in local mode. 

2. Scan-in memory address into command 
register. 

3. If recycling is desired, use "Write SPM" 
maintenance logic to write contents of 
command/data Register into SPM (highest 
priority tag word with zero's). 

4. Put READ/WRITE switch on the I/O 
Processor maintenance control panel to posi­
tion READ. 

5. Put MAINT MEMORY/SPM switch on the 
I/O Processor maintenance control panel to 
position MEM. 

6. Activate MAINT. MEM/SPM ENABLE 
switch. 

7. If single-read cycle operation is desired, press 
START button for each memory read cycle. 

8. If continuous recycling is desired, activate the 
RECYCLE switch and press START button 
to commence recycling. 

9. To manually stop recycling place RECYCLE 
switch in position OFF. 

10. If stop on error is desired during recycling, 



activate the ERROR STOP switch. If a 
memory parity error or time out occurs, 
recycling will stop with the error flip flop set. 
Pressing the ST ART button will clear the 
error and restart the cycling. 

11. Note that activating MEM INHIBIT 
REQUEST switch will disable all logic that 
might set MANF including local maintenance. 

12. Activating the INHIBIT Mem ADRS COUNT 
switch, if so desired, will cause retention of 
the original memory address with each cycle. 
Otherwise, the memory address will be up­
dated with each memory cycle. 

Executing 1/0 Descriptors 

SINGLE CYCLE 

A single execution of an I/O descriptor found in 
the command/data register is defined below: 

1. Put I/O Processor in local mode. 

2. Scan-in area and I/O descriptors into 
command/data registers. The specified unit 
designate field selects the channel on which 
the descriptor is to be executed. 

3. Utilize single "Write SPM" procedure for any 
SPM location using a code of 00001 in key 
and tag Registers. 

NOTE 

There must be at least one other tag word 
available at the beginning of the test. 

4. Place MAINT MEM/SPM ENABLE switch in 
position OFF. 

5. Place MAINT DESCRIPTOR ENABLE switch 
in position ENABLE. 

6. Press START button once to execute a single 
maintenance descriptor once for each 
depression of the START button. 

RECYCLE 

Continuous executions of I/O descriptor found 
in the command data register are accomplished as 
follows: 

1. Steps 1 through 5 are the same as the 
maintenance descriptor (single) procedure. 

6. Activate RECYCLE switch. 

4-17 

7. Press START button to commence recycling · 
of the same maintenance descriptor. A new· 
cycle will be intitiated upon completion of · 
the previous I/O operations defined by the 
maintenance descriptor. 

8. To manually stop the recycling, set 
RECYCLE switch to position OFF. 

9. If stop on error is desired during recycling, . 
activate the ERROR STOP switch. Upon : 
detection of a result descriptor error from the 
peripheral control or an error in initiating the ·· 
channel, recycling will stop with the error flip 
flop set. Pressing the START button will clear 
the error and restart the cycling. 

I ENABLE CARD TEST START I 
~ ~ 
~MEM INHIBIT~ 
r-ij-T ADRS-~NT 1 
NORMAL NORMAL 

r-- MAINT DESCRIPTO_R---, 
ENABLE 

~ 
OFF 

000 
IMCF RECF ERRF 

0 
RE5LE ER@STOP 

RT OFF O~F 
MAINT MEM/SPM 

BLE MEM WRITE 

~ ~ ~ 
OFF SPM READ 

'~'I 
CLEAR REMOTE 

Figure 4-8. Panel D Input/Output Processor 

Maintenance Control Panel 

Logic Card Testing 

Logic card testing is accomplished by using a 
MDL test case tape, the time-of-day (TOD) register = 

and a special single card slot located on the I/O 
Processor backplane. The testing procedure is ' 
activated by putting the CARD TEST ENABLE . 
switch to position "up", loading the TOD with the 
appropriate test code and activating the CARD 
TEST START switch. The output of the card 
under test will be displayed in the 44 flip flops that 
represent the TOD register. 



OPERATORS CONTROL CONSOLE 

The operators control console (figure 4-9) con­
tains an operators panel and a visual message 
control center for communicating with the 
operating system. A total of eight devices, such as 
Input Display or TC 500, may be used for this 
communication. 

Operator Panel 

The operator panel includes the following 
switches and indicators. 

POWER ON (Switch/indicator, white) 

This switch/indicator initiates the power-on 
cycle for all central system units. The indicator is 
lit and remains lit as long as power remains on. 

NOTES 

1. The power of the peripheral units must be 
turned on and off at each peripheral unit. 

2. When power is turned on, CARD LOAD is 
selected. 

POWER OFF (Switch, brown) 

This switch initiates the power off cycle for all 
central system units. 

HALT (Switch/indicator, red) 

Halts the system stopping all I/O operations in 
an orderly manner. The indicator is lit when all 
processors have been halted. 

RUNNING (Indicator, yellow) 

This indicator is lit when the system is running. 
The Run state is established by two-second run 
timers, in each processor. Each processor timer is 
triggered when that processor executes an 
interrogate peripheral unit status operator. The run 
indicator is lit when the timer in any processor 
which is in remote is ON. If all processors are in 
local mode, the run indicator will also be lit. 

LOAD SELECT (Switch/Indicator, yellow) 

This switch selects between DISK LOAD and 
CARD LOAD. Each time the switch is depressed, 
the selection is changed. The indicator is lit when 
CARD LOAD is selected. 

4-18 

LOAD (Switch, brown) 

The LOAD button is used to perform a load 
operation of the system. Two types of load can be 
perf~rmed as follows: 

CARD LOAD OPERATION. The card load opera­
tion is used for initiating the system via the card 
reader. This type of initiation is used for reading a 
cold start deck or test routine decks. The follow­
ing actions occur when the button is depressed and 
then released: 

1. The load timer in the processor-interrupt 
controller is triggered to produce an 
800-nanosecond (LSIG) signal which is sent 
to I/O Processor - A. 

2. Address registers LOSR, BOSR, F, STKNR, 
and Display 0 are set to zero. 

3. Register S is set to 8192. 

4. PDR (program dictionary index) is set to a 
value of 4. 

5. PIR (program index register) is set to a value 
of 1. 

6. The processor is forced into an idle state to 
await an expected I/O finished interrupt. 

7. The I/O Processor responds to the load signal 
by jamming the appropriate unit number into 
the command/data register. The I/O Processor 
sequence control logic is set to IC 02, and the 
card read cycle is started. 

8. The information (a bootstrap program) on the 
EBCDIC punched card is read into the first 
twelve memory locations. This information 
contains tag fields. (Seven characters per 
word .. ) 

9. At the end of the successful card read, the I/O 
Processor sends an I/O finish interrupt to the 
processor. It responds by entering a hardware 
interrupt handling procedure. Memory cell 
DO + 3 contains the PCW of the bootstrap 
program subsequently used to handle the 
interrupt and then causes the remaining card 
deck to be loaded. 

DISK LOAD OPERATION. The disk load opera­
tion is used for initiating the system by reading 
8192 words from the first segments of disk 
memory. This type of an operation is used to bring 
the first portion of the operating system into core 
memory. 



The same hardware functions take place as for 
card read except for the following: 

1. A disk unit number is placed in the 
command/data register because the LOAD 
select switch selected a DISK LOAD. 

2. The I/O finish interrupt reflects a disk opera­
tion instead of a card operation. 

3. 8192 words are read instead of 12. 

VISUAL MESSAGE CONTROL CENTER (Refer 
to Figure 4-10) 

The visual message control center consists of one 
or more input display modules, each of which 
contains an input keyboard and a video output 
screen. 

Figure 4-9. Operators Control Console 

Figure 4-10. Visual Message Control Center 

Keyboard Control Keys 

The following is a list of the keyboard control 
keys and their function. (Refer to figure 4-11.) 

Key 

LOC 

Function 

Places the system in the 
local mode, which lights the 
LOCAL indicator. 

REC 

XMIT 

Z. ETX 

~HOME 

LINE ERASE 

~CLEAR 

ERASE LOCK 

TAB 

4-19 

Places the system in the 
receive mode, which lights 
the RECEIVE indicator. 

Places the system in the 
transmit mode, which lights. 
the TRANSMIT indicator. 

End-of-text 
Places the 
character at 
location. 

character. 
end-of-text . 

the cursor. 

Causes the cursor to be · 
moved to the home (upper -
left) position. 

1. LINE ERASE erases all 
data in the line except 
tab flags. Data is erased 
from the cursor position . 
(including the cursor -
position) up to and 
including the last 
character in the line. 

2. Line Erase will not func- . 
tion unless Erase Lock is 
depressed simultaneously _ 
with Line Erase. 

1. Unshifted CLEAR 
erases all data on the 
screen except tab flags; 
and, with Forms Option, 
data bracketed by 
Shift-In/Shift-Out. 

2. Shifted - CLEAR erases 
all data on the screen and. 
all tab flags. 

3. CLEAR will not function. 
unless ERASE LOCK is 
depressed at the same 
time as CLEAR. 

ERASE LOCK is used as an : 
interlock for CLEAR and~ 
LINE ERASE. ERASE 
LOCK must be depressed to 
permit operation of the: 
CLEAR or LINE ERASE. 

1. Unshifted - TAB causes' 
the cursor to move for-. 
ward to the next tab stop' 
location. If no tab stop is~ 



TAB CLEAR 

w (Line Feed) 

t (Reverse Line 
Feed) 

~ (Backspace) 

-;)>(Forward Space) 

XMIT ETX 

x 
ERROR 

REPT 
RESET 

LOC 

REC 

:?: 

found on a line, the 
cursor moves to the left 
edge of the next line. 

2. Shifted - Shifted tab is 
tab set. Tab set causes a 
tab stop flag to be 
entered at the cursor 
position in all lines. 

Unshifted - TAB CLEAR 
causes the removal of the 
tab stop flag located at the 
cursor position in all lines. 

Line Feed (LF) moves the 
cursor down one line. When 
the cursor is in the bottom 
line, Line Feed causes it to 
reappear in the top line. 

Reverse Line Feed (RLF) 
moves the cursor up one 
line. When the cursor is in 
the top line, RLF causes it 
to reappear in the bottom 
line. 

Backspace (BS) cursor one 
character. When the cursor 
is at left edge of page, back­
space causes it to reappear 
at right edge of page in the 
same line. 

Forward Space (FS) moves 
the cursor one space to the 
right. If the cursor is at 
right edge of page, Forward 
Space causes it to reappear 

# $ % & 
2 3 4 5 6 

E R 

F 

~ 

7 

REPT 

MEMORY TESTER 

at the left edge down 
shifted one line. If the 
cursor is located in last 
position of bottom line, 
Forward Space causes it to 
reappear in the "home" 
position. 

If the Repeat key (REPT) is 
depressed along with any 
other key except LOC, 
REC, XMIT, TAB CLEAR, 
or CLEAR, that other key 
will be repeated at a rate of 
about 15 Hertz. When 
depressed in conjunction 
with LOC, REC, XMIT, 
TAB CLEAR or CLEAR 
Repeat has no effect. 

The B 6700 includes a Memory Tester for 
diagnosing and testing any of the memory modules 
attached to the system. 

The Memory Tester is located in a small cabinet 
with its display panel as shown in figure 4-12. Th~ 
NON-TEST /TEST switch places the Memory 
Tester in one of two modes: test or non-test, which 
is in the following discussion. (See figure 4-13.) 

Non-Test 

There are three types of operations used in the 
non-test mode: 

1. Single-cycle read or read/write. 

HOME CLEAR 

' "' 
ERASE BACK 

8 9 Rf SPACE 

LINE ERASE 
p ERASE LOCK 

TAB 
TAB 

CLEAR 
x 

J L 

SHIFT =I= ] < > SHIFT i 1 x c v B N M 

SPACE BAR ~ ----.. 

Figure 4-11. Keyboard Format 

4-20 



Figure 4-12. Memory Tester 

pattern will run in the order given below: 

1. Test-pattern MANUAL INSERT selected 
enables a fixed test pattern. 

2. Test-pattern ALL-1 selected runs an 
all-"one" test. 

3. Test-pattern ALL-0 selected runs an 
all-"zero" test. 

4. Test-pattern CHECKERBOARD selected runs 
a checkerboard pattern, writing two O's, then 
two l's. 

5. Test-pattern CHK'BD COMPL selected runs 
the checkerboard complement pattern test. 

2. Search memory(s) for specific data; search for 
equal or unequal. 

6. Test-pattern BIT COMPLEMENT selected 
runs the bit complement pattern test. 

3. Sample a given address for changes. 7. Test-pattern COMPL - BIT COMPL selected 
runs the complement bit complement pattern 
test. Test 

The following operations are perfor.med when the 
corresponding test pattern switches are in position 
"up" (on). None of the patterns selected checks 
for parity errors when the WRITE ONLY /NORM/ 
READ ONLY switch is in position READ ONLY. 
More than one test pattern can be selected, and the 

8. Test-pattern WALKING- I selected runs the 
full walking "one" pattern test. 

9. Test-pattern WALKING-0 selected runs the 
full walking "zero" pattern test. 

10. Test-pattern MEM CLEAR selected runs the 
memory clear pattern master reset test. 

© © © © © 
M(M NOT READY TEST COMPL PARITY ERR COMPARE MEM ERROk 

WRl~CLEAR 
© © © © © © ©1© © © © © © 
© © © © © © ©J© © © © © © 
© © © © © ©f:© © © © © © © 
©©©©©©©©©©©©© 
48 44 40 36 32 28 24 20 16 12 8 4 0 

COMPARE READ/COMPARE/LOCK-OUT BIT 
0

_
25 

Loet:;n R;~~6~R ~;~~E AL~'--51 
o © o ©©©I©© o © a © 

© © © © © © ©J© © © © © © 
© ©> © © © ©r© © © © © © © 
©©©©©©I©©©©©©© 
48 44 40 36 32 28 24 20 16 12 8 4 

cvcL•J""'"Tio ""• cO<MT~

1 
..... s.
1 © © ©© 

© © ©© © 
© © © © © © WR00N~;M 
MROF 16 I 16 I I REAO'f ONLY 

©~WALKING-I 

© 
AO@LE©i©© © 

© ©j© © © 
©r©©© © 
©I©©©© 

1s 12 e 4 o 

IREOUEST DELAY I 
~ 
sYs 

©®cHEill © @MEMCLEAR 
© ®WALKING-OTF 

© @WALKING-I TF 

© ~ALKING-0 

© @<:OMPL-BIT COMPL 
© (@e1TCOMPL 

© ®ALL-0 

© ®"LL·I 

© @cHK'BO COMPL © @i<AN.IALINSERT 

Figure 4-13. Memory Tester Panel 

4-21 





GENERAL 

The B 6700 system consists of a maximum of 
three Processors, a maximum of three 1/0 Pro­
cessors, Main Memory, a Memory Tester, one or 
more Power modules, an Operators Console, one 
or two Maintenance Diagnostic Processors (MDL), 
one or two Display Panels, one to six Peripheral 
Control cabinets and the associated Peripheral 
equipment for Input/Output. This section 
generally defines the overall system hardware 
operation. 

PROCESSOR 

The Processor produces the objective results of a 
program by performing the necessary arithmetic 
and logical functions of the program flow. 

The Processor contains two major divisions: the 
Functional Resources and Operator Algorithms 
(figure 5-1 ). The Functional Resources are referred 
to as the "hardcore" of the Processor. 

Operator Families 

The Functional Resources are the Arithmetic 
Unit, Data Registers, Address Processor Unit and 
Seven Functional Controllers. The operator 
algorithms provide the logic required to control the 
functional flow of the program. The ten groups of 
these operators are cal1ed the Operator Family 
Con tro Hers. 

The Operator Family Controllers and Functional 
Controllers are linked by 13 busses (ZO through 
Z 12). These busses provide for data movement and 
signal routing within the processor (figure 5-2). 

FUNCTIONAL RESOURCES 

ADDRESS 

SECTION 5 
SYSTEM CONCEPT 

A bus is a group of wires used to transmit signals 
from one place to another. The busses within the 
transfer controller are etched on a single card 
connecting the same bit of all "hard registers" 
together, i.e., Bit 1 of Registers A, B, C, X and Y 
are all on the same physical card. 

The operators are grouped into 10 groups called 
the Operator Families (figure 5-1 ). The grouping of 
related operators into families minimizes the logic 
required in the processor. The 10 families of 
operators with a brief purpose for each are: 

1. Family A OPS - Arithmetic Operators 

2. Family BOPS - Logical Opera tors 

3. Family COPS - Subroutine Operators 

4. Family D OPS - B 6700 Word Oriented 
Operators 

5. Family E OPS - Scaling Operators 

6. Families F ,G,H, OPS - String Opera tors 

7. Family J OPS - Value Call 

8. Family KOPS - Name Call 

PROGRAM CONTROLLER (Refer to Figure 5-2) 

This controller controls the program flow in the 
following manner. First, it controls the transfer of 
a program word to the P register via the Memory 
Controller and Z3 bus in the Transfer Controller. 
This word contains six 8-bit instruction syllables. 
The Program Controller also selects and decodes 
the syllable to be executed, and furnishes this OP 
code to all the Family Controllers through the Z 10 
bus. The Program controller strobes the proper OP 
family, allowing that OP family to proceed through 
its logical steps of performing the function of that 

'I' 
OPERATOR ALGORITHMS 

MEMORY OP. FAMILY OP FAMILY 
ARITHMETIC PROC UNIT CONTROLLER CONTROLLER - A CONTROLLER - F 

UNIT (960 BIT I .C. 
(48 BIT ADDER) MEMORY & 20 PROGRAM OP. FAMILY OP. FAMILY 

BIT ADDER) SEQUENCE CONTROLLER - B CONTROLLER - G 

CONTROLLER OP. FAMILY OP. FAMILY 

DATA REGISTERS STACK CONTROLLER - C CONTROLLER - H 

(A, B, c I X, y AND p ADJUST OP. FAMILY OP. FAMILY 
51 BITS EACH) CONTROLLER CONTROLLER - D CONTROLLER - J 

INTERRUPT OP. FAMILY OP. FAMILY 
CONTROLLER CONTROLLER - E CONTROLLER - K 

ARITHMETIC STRING TRANSFER OPERATOR 
CONTROLLER CONTROLLER CONTROLLER 

Figure 5-1. B 6700 Processor Organization 

5-1 



operator. At the completion of the operator, an 
SECL (syllable execute complete level) is sensed by 
the Program Controller which then decodes the 
next syllable of the P register. 

TRANSFER CONTROLLER (Refer to figure 5-2) 

The Transfer Controller has two major sections: 
a hard register section, referred to as stack 
registers, for data and program information, and an 
internal data transfer section. Six busses, Z 1 
through Z6, are used for the normal data 
movement to and from the hard registers. Z 1, Z2 
and Z3 are input busses to these registers and Z4, 
ZS and Z6 are output busses. The capacity of each 
bus is 51 bits. 

Two special busses are used for arithmetic 
operations. Z7 is used for transferring data from 
the A, B or Y registers to the AA register of the 
high speed adder. ZO is used for transferring data 
from the CC register of the high speed adder to the 
B, C or Y registers as shown in figure 5-5. 

STACK REGISTERS. Each information register 
has 51 bit positions. Registers A, B, C, X and Y are 
for information handling during program flow. 
Register P contains one B 6700 program word. The 
P register contents are never written into Main 
Memory. 

The Z3 and Z4 busses provide for bi-directional 
data flow between the hard registers and Main 
Memory or the 1/0 Processor. 

The A and B registers are the Top of Stack 
registers, and X and Y are normally second-word 
information registers for double-precision 
operands. Register C is a general purpose register 
which provides temporary storage during syllable 
execution. 

INTERNAL DATA TRANSFER SECTION (Refer 
to figure 5-3). The internal transfer section permits 
the following data transfers between stack 
registers: 

ARITHMETIC 
CONTROLLER 

PROGRAM CONTROLLER 
(SYLLABLE DECODE! 

STRING 
OPERATOR 

CONTROLLER 

.. I 
FAMILY A FAMILY B 

ARITHMETIC LOGICAL 
OPS OPS 

T l 

I 

FAMILY C 
SUBROUTINE 

OPS 

l 

I 

FAMILYD 
WORD ORIENTED 

·oPs 

I 

V llO BUS 

FAMILY E 
SCALING 

OPS 

I 

T 

FAMILY J 
VALUE CALL 

OP 

T 

OPERATOR DEPENDENT INTERRUPTS l 11 BUS 

EXTERNAL 
INTERRUPTS 

INTERRUPT 
CONTROLLER 

ALARM 
INTERRUPTS 

MEMORY INFO 

STACK 
ADJUST 

CONTROLLER 

DISPLAY 
REG 

0-31 

IC 
MEM 
0 -7 

IC 
MEM 
o-7 

MEMORY CONTROLLER 

Figure 5-2. B 6700 Processor Block Diagram 

5-2 

I 

FAMILY K 
NAME CALL 

OP 

l 

FAM IL y F' GI H 
STRING 

OPS 

l 

FROM CONTROLLERS 
AND FAMILY OPS 

~//l12 BUS 

(MEMORY CYCLE) 

MEM 
INTER~ TO MEMORY 
FACE 

1/0 PROC TO 1/0 PROC 
INTER-
FACE 

MEM TO MEMORY 

ADD RE SS , OR 1/0 PROC 



I. A direct, full-word transfer path using the ZS 
and Z2 busses. 

2. A logical transfer path to create the results of 
the Family B (logical) operators, using the Z4 
and Z3 busses. The logical transfer path also 
provides one additional full word transfer 
pa th between registers. 

3. A steering Network and Mask network 
providing a field displacement between stack 
registers using the Z6 and Z 1 busses. 

4. An Insert Matrix providing character-handling 
operators with the ability to store into any of 
the 4, 6 or 8-bit fields using the ZS and Z 1 
busses. 

S. A transfer path to the address adder of 
Memory/MPX Controller via the Z6 to Z8 or 
Z9 busses. This path extracts one of four 
fields, (39:20), (3S:l6), (19:20) or (13:14), 
from a stack register during execution of 
operator syllables. 

6. A data movement path to and from the high 
speed adder via the ZO and Z7 busses. 

MASK AND STEERING. The mask and steering 
network moves bit fields from register to register, 
via the Z6 and Z 1 busses. All bits are transferred to 
and from the busses in parallel. Two pointers set 
up a "window" defining the upper and lower limit 
of the bits being transferred to the accepting data 
register. A displacement register shifts the bits to 
the right, 0 to 4 7 bits from the position previously 
held in the sending data register. The three controls 
used to steer and mask are as follows: 

1. TOA (TOP OF APERTURE) - the highest bit 
position of the accepting field (highest bit of 
the window). 

2. TOM (TOP OF MASK) - the highest bit 
position to be inhibited on the transfer 
(lowest bit of the window). 

3. DIS (DISPLACEMENT) - a right shift of the 
bits through the steering matrix. 

Registers TOA, TOM, and DIS are set by the 
operator families or other controllers. 

MASK AND STEERING EXAMPLE. Assume the 
C register contains a stuffed indirect reference 
word (SIR W) and it is necessary to extract the 
STKNR (stack number) field (bits 4S: 10) and 
place these bits into the index field of the C 
register. The logic sets the window TOA := 29, 

. TOM :=19, as shown in figure S-4. The displace­
ment register is set to 16: DIS : = 16. The actual 
starting bit of the field is calculated as: TOA+ DIS 
= 29 + 16 = 4S. 

5-3 

All Bits in the C register are gated to the Z6 bus. 
The bits (except tag) are then shifted 16 places to 
the right with only the bits that align with the 
window appearing on the Z 1 bus. The Z 1 bus is 
then gated to the C register, with the masked fields 
destroyed or retained, depending on the operation 
performed. 

ARITHMETIC CONTROLLER (Refer to figure 
S-2) 

· The Arithmetic Controller is a Functional Con­
troller between the Stack Registers (A, B, C, X and 
Y) and the Mantissa Adder. This Controller is 
enabled by the Arithmetic Family Operators and 
other operator families that require the use of 
these facilities. 

HIGH-SPEED ADDER. Figure S-S depicts the 
logical flow of data to and from the high-speed 
adder. The adder is made up of three 48-bit 
registers: AA, BB, and CC and the associated add 
logic. The add logic receives its input from the AA 
and BB registers. The add logic output is fed into 
the CC register, which feeds either the BB register 
or the hard registers via the ZO bus. 

INTERRUPT CONTROLLER (Refer to figure S-2) 

The Interrupt Controller provides a method of 
intervening in the program flow when a 
predetermined condition arises. 

This controller sets up the necessary control 
words in the stack for entry into the Interrupt­
handling procedure. Two identifying words are 
placed in the stack by the operator or the Interrupt 
controller. Internal interrupts are divided into two 
groups, operator-dependent and operator­
independent interrupts. 

The operator-dependent interrupts arc divided 
into two classes. Bit 24 of the interrupt ID 
identifies the interrupt as class 1, where the values 
of PIR, PSR, PBR and PDR were not modified by 
the operator. Bit 23 identifies class 2 interrupts, 
where the values were changed by the operator 
before the interrupt. 



4 BIT (PACKED NUMERIC) 
6 BIT (BCL) 

INSERT L 1 8 BIT (EBCDIC) 

INSERT ~ 

MATRIX 

1 ~6 

L MASK L { STEERING l TO 
~ ~1 ~ J r ~ 

NETWORK NETWORK ~8 

OR 
~9 

DIRECT TRANSFER L !CONTROL 
J r2 NETWORK ~5 

r6 

LOGICAL TRANSFER L 
~3 NETWORK I ~4 

~ ~ L /l J c 1 
1 J v 

"" ~ ~ .~ L L /l { } A 

~ ~ ~ L L L /l J 1 
1 B J 

~ ~ ~ ~ L /l 1 x L 
1 J 

~ ~ ~ L ~ L J y } L 

~ J p J l 

J MEMORY 
INTERFACE 

ADDRESS 
ADDER 

-. 

HIGH 
SPEED 

i-. 

ADDER 

figure 5-3. Internal Data Transfer Section 

5-4 



I~ 145
1 u 

STKNR 

T 
A 
G 

45 

l 

i 

l 

1 

J 

l 

C REG 

1 l l 
Z6 BUS 

1 1 1 
STEERING (DIS= 16) 

TOM= 19 

19 

MASK 
20 

WINDOW 

Zl BUS 

1 1 
C REG 

STKNR 

Figure 5-4. Mask and Steering 

STACK REGISTERS 

REG C 

REG A 

REG 6 

REG X 

REG Y 

zo 
BUS 

l 

1 

A 
R 
I 
T 
H 
M 
E 

c 
0 
N 

T 
R 
0 
L 

OPERATOR-DEPENDENT INTERRUPTS. These 
interrupt conditions are sensed by the operator and 
normally result in a premature termination of the 
operator under control of the logic of the operator. 
The operator inserts both P 1 and P2 parameters 
into the TOS and activates the interrupt controller. 
PIR and PSR are reset to the beginning of the 
current operator before the interrupt; thus the 
operator is restarted upon return to the interrupted 
procedure. 

The operator-dependent interrupts are: 

1. Memory Protect 

2. Invalid Operand 

3. Divide by Zero 

4. Exponent Overflow 

5. Exponent Underflow 

6. Invalid Index 

7. Integer Overflow 

8. Bottom of Stack 

9. Presence Bit 

10. Sequence Error 

11. Segmented Array 

12. Programed Operator 

Memory Protect. 

This interrupt occurs under the following 
conditions: 

1. A store, overwrite, read/lock or string transfer 
is attempted using a Data Descriptor that has 
the read only bit on (bit 43). The operation is 

,- - - - - - - ADDER - - - - - -1 

I 

AA 

66 

R 
E 
G 

L __ -

ADD 
LOGIC 

cc 
R 
E 
G 

I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

_______ J 

Figure 5-5. Arithmetic Control 

5-5 



terminated prior to the memory access, 
leaving the descriptor in the A register. 

2. A store is attempted into a word in memory 
that has a tag field representing program code, 
RCW, MSCW, or Segment Descriptor. The 
memory write is aborted when bit 48 is 
detected in the "flashback" word that is 
placed into the C register. The operation is 
terminated leaving the original addressing 
word in the A register. 

·-----r-2-4..,--_______ o_ BIT 

C lxl lxl 
Memory Protect Interrupt ID 

Invalid Operand 

This interrupt occurs when operators attempt to 
use the wrong types of control words or data. 
When control words and data are accessed, they are 
checked to ensure that they meet the necessary 
requirements of the operator being executed. When 
the interrupt occurs, the operator is terminated 
prematurely. 

24 1 BIT 

L. _ ___._I x__._l __ __..l___.x l----1 
Invalid Operand Interrupt ID 

Divide by Zero 

This interrupt results when a division operator is 
attempted with the divisor equal to zero. This 
interrupt terminates the operation prematurely, 
leaves the A register cleared, the interrupt ID in the 
B register, and PSR and PIR backed up to point to 
the initiating operator. 

,...-------r-24~------..-2--BIT 
Ix I Ix I I 

Divide by Zero Interrupt ID 

Exponent Overflow and Underflow 

These interrupts occur when the capacity of the 
exponent field is exceeded for either single- or 
double-precision arithmetic results. The interrupt 
ID is dependent on the exponent sign, and both 
interrupts clear the A register. 

------, ..... :-4 T"""I ____ 

1

_:_

1 

__ BIT 

Exponent Overflow Interrupt ID 

5-6 

r----------.-24---r-------r-4-.....----. BIT 

Ix I Ix I 
Exponent Underflow Interrupt ID 

Invalid Index 

This interrupt is caused by an attempt to index 
by less than zero or not less than the upper bound 
(length) in the operations: 

Family 

1. Occurs Index (A) 

2. Link List Lookup (B) 

3. Index (C) 

4. Move Stack (C) 

5. Display Update (C) 

6. Dynamic Branch (C) 

7. Stuffed IRW (pseudo) (C) 

8. Index and Load Name (C) 

9. Index and Load Value (C) 

If an index outside the prescribed bound is 
attempted, the operator is terminated. When the 
PSR is being decremented, the PIR is decremented 
only during the first two operators. 

24 23 5 BIT 

==========l=o=L..j.--o=======l=x=l====I 
0 

~~~FF 
Invalid Index Interrupt ID 

NOTE 

If bit 23 is on, bit 24 is off. 

Integer Overflow 

This interrupt occurs when an attempt is made 
to integerize operands which have a greater than 
maximum integer. In general, the checking is 
performed before the operand is converted into an 
integer by reducing the exponent field. The 
following are some of the operators that may 
invoke this interrupt. 

1. Integer Divide (both single and double 
precision) 

2. Integerize Truncated 

3. Integerize Rounded 

4. Occurs Index 



5. Integerize Rounded, Double Precision 

If the interrupt is invoked, the operator is 
terminated. 

r-------r-2-4...,-----..-6 -.------. BIT 

Ix I Ix I 

Integer Overflow Interrupt ID 

Bottom of Stack 

This interrupt is used to inform the Operating 
System that a Return or Exit Operator has caused 
the program stack to be returned to its base. If this 
condition arises, the operator will terminate with 
the last accessed RCW (Return Control Word) left 
in the A register. 

24 7 BIT 
,.-----.....--, x--.--1 ------r--, x ......--I ---. 

Bottom of Stack Interrupt ID 

Presence Bit 

This interrupt is used to inform the system that 
an attempt has been made to access a quantity not 
present in main memory. All operators that access 
memory with descrip.tors have the ability to set 
this interrupt. Special consideration is given to this 
type of an interrupt for data or procedure­
dependent descriptors. 

..-----r-46-,-__,._24-...-2_3...,...----..-:-8-..----~ BIT 

.______.__I _0 .._I __.__I 0 ....... l'--0__..l __ __._l x__,__I _ _____,I 
0 
;Ro; FF 

Presence Bit Interrupt ID 

Special Consideration-Presence Bit Interrupts 

There are two classes of presence bit interrupt 
conditions: 

1. Data-Dependent 

2. Procedure-Dependent 

Each class requires that the PIR and PSR value 
for the RCW be manipulated differently. 

Data-Dependent Presence Bit. The Data­
Dependent Presence Bit Interrupts are incurred 
while the processor is seeking data from within its 
current procedural environment. Recovery is 
achieved by re-executing the operator upon return 
from the "P-bit" interrupt-handling procedure. 

5-7 

The P-bit procedure makes the non-present 
reference present prior to returning to the 
interrupted program. The PIR and PSR setting for 
the current operator are saved in the RCW for 
data-dependent presence-bit interrupts. 

Procedure-Dependent Presence Bit. The 
Procedure-Dependent Presence Bit Interrupts are 
incurred when the processor attempts to enter a 
new procedural environment or to return to an old 
procedure. These interrupts occur during display 
update and when the processor is trying to access a 
non-present segment descriptor. Recovery is 
achieved by the exit operator mechanism after the 
P-bit procedure has made the referenced area 
present. The processor has not yet fetched the first 
operator of the new procedure when this presence 
bit interrupt occurs; therefore, the PIR and PSR 
settings from the PCW or RCW, depending on 
whether an entry or exit was being performed, are 
saved when fabricating the RCW upon entry into 
the P-bit interrupt procedure. 

Program Restart. In order to restart some 
operators after a presence bit interrupt. it is 
necessary for the P-bit procedure to return either 
an IRW or Data Descriptor. The "RT-bit" in the 
presence bit ID (Pl) indicates to the P-bit 
procedure whether to perform an exit or return 
operator when returning to the interrupt program. 
The "RT-bit" is manipulated by the hardware prior 
to honoring the presence bit interrupt. Figure 5-6 
(Presence Bit Interrupt Table) illustrates the (PSR 
and PIR), exit/return and "RT-bit" relationship to 
the various presence bit interrupt conditions . 

Segmented Array 

This interrupt is used by the string operators as 
an upper limit boundary detection. Arrays in main 
memory may be segmented into groups of 25 6 
words each, bounded on both ends by memory 
link words. Each word read from memory during 
string operator executions is checked for the 
presence of bit 48 (memory protect). If the bit is 
on, the segmented-array interrupt is set. String 
operator interrupts leave a special parameter in the 
A register. This parameter indicates how many 
words in the stack, below the parameter, will be 
needed to restart the operation after the new 
segment of data has been brought to main 
memory. 

2 1 0 BIT 

lo l0 joj 0
;Ro;FF 

A-Register Parameter 



24 10 

Segmented Array Interrupt ID 

Programed Operator 

This interrupt is used for the detection of invalid 
operator codes. Primary codes BC, E7, EF, F6, and 
F7 are detected and cause this interrupt. Each 
family controller detects these codes. Any invalid 
code not detectable will result in a loop timer 
interrupt. The programed operator interrupts are 
used as communicate operators to the system. 

Presence Bit 
Interrupt Condition 

Stack Vector 
Stack Vector D .D. 
during data 
reference (1) IRW 

(stuffed) 

Data (2) IRW 
Dependent 

Data Descriptor (1) D.D. 
during data (copy) 
reference 

(2) D.D. 
(copy) 

Stack Vector - D.D. 
Stack Vector D.D. (copy) 
during display 

Procedure update 

Dependent 
Segment 
Descriptor - S.D. 

(copy) 

( 1) Value Call or Enter 

Int. 
I.D. 

Int. 

Int. 
I.D. 

Int. 
I.D. 

Int. 
I.D. 

Int. 
I.D. 

10 0 BIT 

lololojojojolololololol 

Programed Operator Interrupt ID 

OPERATOR INDEPENDENT INTERRUPTS. 
These interrupts are induced by conditions outside 
the operator or processor logic. They are divided 
into two groups, External Interrupts and Alarm 
Interrupts. 

EXTERNAL INTERRUPTS. These interrupt 
conditions are anticipated and inform the system 
of some change in the external environment. They 

RT Bit Returning PIR, PSR Software 
(3) 

(bit 46) Operator New RCW Function 

Make stack 
or stack 
vector 

0 Exit Sn (4) present. 

1 Return Sn (4) 

0 Exit Sn (4) Search stack 
for copies of 
not present 

1 Return Sn (4) D.D., make 
Mom and 
copies pre-

0 Exit From sent, return 
RCW/PCW D.D. where 

noted. 

0 Exit From Locate S.D. 
RCW/PCW (Mom) via 

copy in P2, 
AD Field of 
Copy points 
to Mom. 

(2) All operators except Value Call, Enter, or Move Stack 

(3) RT bit is packed in the Int. I.D. (P1) 

(4) Sn indicates the PIR and PSR point to current operator syllable 

(5) Move Stack operators 

Figure 5-6. Presence Bit Interrupt 

5-8 



normally result in a momentary interruption of a 
program process which will be continued after 
handling or recording of the interrupt condition. 
The external interrupts are recognized by the 
hardware operators. The program sequence con­
troller senses the interrupt condition, inhibits 
activation of the next operator, and initiates an 
interrupt pseudo-operator in its place. PIR and 
PSR fields of the RCW address the next operator 
syllable so that the program will be restarted with 
the execution of the next syllable upon 
continuation. The external interrupts are as 
follows: 

1. Processor to Processor interrupt 

2. Special Control interrupts 
a. Interval timer 
b. Stack overflow 

3. 1/0 Processor interrupts 
a. 1/0 finish 
b. Data Communications 
c. General Control Adapter 
d. Change of Peripheral Status 

Processor to Processor 

This interrupt is used to interrupt another 
Processor on the system. When a Processor 
executes a HEYU operator, an external interrupt is 
sent to all other system processors. When the 
interrupt is recognized by a Processor, its interrupt 
controller clears the A register and sets the B 
register equal to the ID. The normal Interrupt 
Procedure entry is then executed. 

21 BIT 

Processor to Processor Interrupt ID 

This interrupt also is used to initiate an Idle 
Processor on the system. It could also cause 
another Processor to suspend its operation on a 
program whose stack is about to be overlayed. 

Interval Timer 

This interrupt is used for programmatic time 
slicing. The interval timer is activated by the SINT 
(Set Interval Timer) operator. The timer is set to 
the value of bits 10: 11 of the B register and 
decrements every 512 microseconds until equal to 
zero. At this time, if the timer is still armed, the 
interrupt is set, leaving the ID in the B register and 
A register cleared. The maximum interval is one 
second. The timer is disarmed whenever the 
Processor handles an External interrupt. 

5-9 

22 0 BIT ..------.....,---.x 1-----.j---.xj 

Interval Timer Interrupt ID 

Stack Overflow 

This interrupt is used to inform the operating 
system that the Stack Controller has sensed the use , 
of the highest address allotted for the stack of this : 
program (LOSR, limit-of-stack register). The : 
program is halted to allow the Operating System 
the option of allocating a larger stack area or 
aborting the program. The interrupt controller 
leaves the A register cleared, the interrupt ID in the 
B register, and PIR backed up if PROF is "on." 

22 

Ix I 
1 BIT 

Ix I J 
Stack Overflow Interrupt ID 

Input/Output Processor Interrupts 

The Input/Output Processor interrupts may be 
handled by any system processor. A priority is 
established between 1/0 Processors and Processors .. 
to determine which Processor responds when an 
interrupt is present. This is necessary when 
multiple Processors and 1/0 Processors are present 
because they all share a common scan bus .. 

Since the scan bus allows for only two 1/0 
Processor external interrupt paths (EIMA and · 
EIMB), provisions have been made to allow 1/0 
Processor C to use the interrupt path of 1/0 
Processor B (EIMB ). When 1/0 Processor C com­
pletes an I/O operation, an 1/0 finished interrupt is 
sent, via a separate coaxial cable, to the external : 
interrupt card in 1/0 Processor B. 1/0 Processor . 
B sends this interrupt to the appropriate processor 
by means of the 1/0 Processor B interrupt path, on 
the scan bus (EIMB). The processor that accepts 
the interrupt scans-in a read interrupt literal from : 
1/0 Processor B. The interrupt literal from 1/0 
Processor B denotes to the designated processor 
that the external interrupt originated in 1/0 
Processor C. 

Scan-Bus Control 

Scan-bus control is established by a closed loop · 
circuit in which a control bit is passed from one 
Processor to another on every third clock pulse. 



A Processor may initiate a scan-bus operation 
when it has the control bit "on" and IIHF (inhibit 
external interrupt flip flop) is "off." 

Priority Handling 

The priority is established with left-to-right 
priority (LTRP) for 1/0 Processor A and right-to­
left priority (RTLP) for 1/0 Processor B, which 
allows the appropriate 1/0 Processor to place its 
interrupt in the appropriate processor. Figure 5-7 is 
a hypothetical system configuration used for 
explanatory purposes. 

L TRP is true for processor # 1 and R TLP is true 
for processor #3. The priorities are passed to 
another processor when IIHF is set. If IIHF is set 
in processor # 1, L TRP is passed to processor #2; 
and if IIHF is set in processor #2, L TRP is passed 
to processor #3. The same principle applies for 
RTLP, with the exception that it is true for 
processor #3 and is passed to processor #2. The 
priorities in a processor are reestablished when 
UHF is reset in any processor. Only the processor 
that has LTRP true and IIHF false can accept 
interrupts from 1/0 Processor A, and only the 
processor that has RTLP true and IIHF false can 
accept interrupts from I/O Processor B. 

Priority-Handling Example With IIHF Off 

Assume I/O Processors A and B have I/O 
finished interrupts occurring at the same time and 
all three processors are in the normal state (IIHF 
"off"). LTRP will be true for processor #1, which 
gates the external interrupt from I/O Processor A 
to processor# 1, and RTLP is true for processor #3, 
which gates the external interrupt from I/O 
Processor B to processor #3. Since only one 
processor can communicate on the scan bus at any 
given time, the processor with the scan bit on will 
have priority and communicates on the scan bus 
first. 

Priority Handling Example With IIHF On. 

Assume I/O Processors A and B have I/O 
finished interrupts occurring at the same time, and 
processor # 1 and processor #2 are both in control 
state (IIHF "on"). LTRP and RTLP will both be 
true for processor #2 and the external interrupts 
from I/O Processor A and I/O Processor B are both 
gated to processor #2. The hardware in the 
interrupt controller of all processors assigns 1/0 

5-10 

Processor A the highest priority; processor #2 will 
subsequently scan in the interrupt literal from I/O 
Processor A, while I/O Processor B will hold its 
interrupt since I/O Processor interrupts are not 
reset until a scan-in is performed. RTLP can still be 
passed to processor # 1 or returned to processor #3 
if either should re.turn to normal state while 
processor #2 is still in control state; thus, each 
system processor is capable of handling external 
interrupts from any 1/0 Processor. 

1/0 Finish And Data Communications Interrupts 

Both interrupts are handled by the Interrupt 
Controller as follows: 

1. An SCNI (SCAN-IN) operator is forced into 
the Processor at the next SECL to read the 
interrupt literal into the B Register. 

2. The normal operation of entry to the 
Interrupt Handling Procedure is then 
executed. 

20 

Ix I 
7 6 5 4 3 2 1 0 BIT 

1°1°1° lol .jojo lol 0 ~Ro~FF 
*LEFT OPEN FOR FURTHER EXPANSION 

External Interrupt ID 

NOTE 

Bits 2: 3 identify which I/O Processor the 
literal was read from. 
1/0 Processor A=OOl, I/O Processor B=OlO, 
I/O Processor C= 100. 
Bits 7 :4 identify type of interrupt. 
1001 = I/O finished 
OOOl=DCP #1 
OOlO=DCP #2 
001 l=DCP #3 
1111 =Change of status 

General Control Adapter 

This interrupt indicates that a special control 
device such as an Analog device, a plotter, or some 
machine being controlled by the system requires 
communication with the Processor. 

Alarm Interrupts 

These interrupt conditions are not anticipated 
and inform the system of some detrimental change 
in environment. They normally result from either a 
programing error or hardware failure. The alarm 
interrupt conditions are recognized upon 



occurrence by the interrupt controller. The 
interrupt controller assumes control of the 
machine, clears the activated operator family, 
marks the TOS registers full and activates the 
pseudo interrupt operator. In either case (pro­
graming error or hardware failure) the current 
operator is terminated prematurely. The alarm 
interrupts are: 

1. Loop 

2. Memory Parity 

3. I/O Processor Parity 

4. Invalid Address 

5. Stack Underflow 

6. Invalid Program Word 

Loop 

This interrupt is invoked if the Processor hard­
ware fails to provide a SECL (Syllable execute 
complete level) at least every 2 seconds. This could 
occur if an attempt is made to execute an invalid 
operator. If the interrupt occurs, the ID remains in 
the ·B register, the A register is cleared and PIR is 
backed up. 

1/0 
PROC. 

"A" 

-

'------

-
E1MA -------

25 0 BIT __ __.;;;,I x;;,..___I --~,.......:.--x I 
Loop Interrupt ID 

Memory Parity 

This interrupt is invoked if the Memory Con­
troller detects an even number of bits being 
transmitted between the Processor and Memory. 
Should the interrupt occur, the ID is left in the B 
register, the A register is cleared and PIR is backed 
up. 

25 1 BIT 

Ix I I x l I 
Memory Parity Interrupt ID 

I/O Processor Parity 

This interrupt is the same as Memory Parity 
above, except that it is used for Processor/1/0 
Processor transfer. 

25 2 BIT 

Ix I Ix I I 
1/0 Processor Parity Interrupt ID 

INTERRUPT 
LINES 

- - ----- -- --
EIMB 

1/0 
PROC. 
"e" 

' 

/ 

' \ 
\ 
I 

I 
I 

/ 

SCAN BUS 
CONTROL 

"BIT" 

ONLY ON 
IN ONE 

PROCESSOR 
AT A 

Ti ME 
EXTERNAL INTERRUPT 
COAXIAL CABLE 

EXTERNAL INTERRUPT 
PRIORITY 

1/0 
PROC. 
"c" 

DCP 
tl:I 

DCP 

#3 

SCAN BUS - COMMON TO ALL CABINETS 

Figure 5-7. B 6700 Scan Bus Priority Control 

5-11 

DCP 

#2 



Invalid Address 

This interrupt is set by the Memory Controller 
when it fails to obtain an acknowledgement to a 
memory request within eight clock periods. This 
indicates that an attempt has been made to access a 
non-existent memory module. The Memory 
Controller initiates the interrupt and the Interrupt 
Controller leaves the ID in the B register with the 
A register clear and PIR backed up. 

25 3 BIT 

L, ___ I x_l __ l_x I_ 
Invalid Address Interrupt ID 

Stack Underflow 

This interrupt is invoked if the Stack Controller 
detects an attempt to move the S register to an 
address less than F during stack adjustment. If this 
interrupt occurs, the ID remains in the B register, 
the A register is cleared and PIR backed up. 

25 4 BIT 

L, __ I x_l __ l_x I __ 
Stack Underflow Interrupt ID 

Invalid Program Word 

This interrupt is invoked if one of the following 
conditions is encountered: 

1. A word with a tag not equal to 3 is placed in 
the P register for execution (except in Table 
mode). 

2. The Variant operator syllable (95) is followed 
by another variant operator syllable (95). 

3. The Processor is in Edit mode and a family 
strobe is emitted for another operator family. 
Should the interrupt occur, the ID is left in 
the B register, the A register is cleared and 
PIR is backed up. 

25 5 BIT 

L 
Invalid Program Word Interrupt ID 

Interrupt Handling 

The occurrence of an interrupt condition causes 
the processor to enter an interrupt handling 
procedure after marking the stacks and inserting 
two interrupt parameters into the stack. The 

5-12 

procedure entered is called from a reserved loca­
tion (DO + 3), relative to the base (trunk) of the 
MCP stack. Figure 5-8 depicts the stack format just 
prior to and after entering the interrupt procedure. 

The two interrupt parameters, Pl and P2, 
inserted into the stack as the interrupt condition 
are recognized, and supply information describing 
the interrupt condition. The P 1 parameter 
identifies the interrupt type and instructs the 
interrupt procedure how to return to the 
interrupted program. The P2 parameter supplies 
supplementary information about the interrupt 
condition (e.g., in the case of some presence bit 
interrupts P2 is a copy of the non-present 
descriptor). 

The interrupt procedure is entered by intro­
ducing an enter operator with an IRW pointing to 
DO + 3 at F + 1. The hardware expects to find a 
PCW at DO+ 3; however, either an IRW or an IRW 
chain pointing to a PCW is a legitimate condition. 

STRING OPERATOR CONTROLLER 

The String Controller controls the character 
handling operators. It is integrated with the F, G, 
and H family hardware (figure 5-9). This controller 
is unique in many ways. One is by having the E 
register initiate memory cycle requests, via the 
memory controller, during logical stepping of the 
operator flow. This allows simultaneous logic flow 
with memory cycles, to accelerate the logic flow. 
Decoding of the E register is shown in figure 5-10. 

The String OP Controller contains one OP code 
register for all three families. There are two 
sequence registers. The JF registers are used for the 
Family F sequence flow, together with a sequence 
extension register KF. The JG registers are used for 
the Family G and H sequence flow, together with a 
sequence extension register KG. 

CONTROL STATE/NORMAL STATE 

Any of the B 6700 Processors has the ability to 
perform in either normal or control state. In 
control state, all external interrupts are inhibited 
and a few privileged operators are enabled. Both 
the normal and control state flip flop (NCSF) and 
the inhibit interrupt flip flop (IIHF) must be set 
for processing to occur in control state. 

The Processor switches to control state upon 
entering a procedure via a control state program 



OBJECT 
PROGRAM 

STACK 

MCP 
STACK 

OBJECT 
PROGRAM 

STACK 

MCP 
STACK 

BOSR 

DO 

ry 

DO 

P2 

Pl 

IRW DO+ 3 

MSCW 

OBJECT 
PROGRAM 

DATA 

TSCW 

SEG DESC. 

PCW 

RCW 

MSCW 

OBJECT PROGRAM CODE 

~ I I I I I I I TI -I f I I f CTI~ 
PBR PIR PSR 

INTERRUPT HANDLING PROCEDURE CODE 

---l I I I I I I I I I I I I IIti 

STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE. 

'V 

P2 

Pl 

RCW 

MSCW 

TSCW 

MSCW 

J 
l 

j 
PBR 
PIR 
PSR 

INTERRUPTED OBJECT PROGRAM CODE 

I 1 

INTERRUPT HANDLING PROCEDURE CODE 

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE 

Figure 5-8. Stack Format 

5-13 

? 
-i 

-? 
·---r 



control word or by the execution of disable 
external interrupt operator. The Processor switches 
to normal state when it enters a procedure via a 
normal state program control word or by the 
execution of the enable external interrupt 
operator. 

The following Operators are enabled in Control 
State: 

1. Scan Out/Interval Timer 

2. Scan Out/Initiate I/O 

STRING OP CONTROLLER 

I OPBF I OP4F I OP2F I OPlF 

OP CODE REG. 

8 4 2 

E REG. 

FAMILY F 

JF3 JF2 JFl JFO 

FAMILY G, H 

JG3 JG2 JGl JGO 

Figure 5-9. String OP Controller 

E 
REG 

1 

2 

3 

4 

5 

9 

10 

11 

12 

13 

14 

15 

FUNCTION REG 

READ y 
II B 
II c 
II x 
II A 

WRITE-PROTECT y 
II B 
II c 
II x 
II A 

OVER-WRITE x 
II A 

Figure 5-10. E Register Functions 

KF3 

KF2 

KFl 

KG3 

KG2 

KGl 

5-14 

INPUT/OUTPUT PROCESSOR 

The Input/Output Processor and associated 
peripheral control modules are used to control 
independently of the processor, data transfers 
between memory and all peripheral equipment. 
The I/O Processor receives instructions from the 
processor and, together with its associated 
peripheral controls, executes them. Each I/O 
Processor is capable of processing up to ten 
simultaneous I/O operations from up to 20 
peripheral controls, thus handling a combined 
maximum of 256 peripheral devices (figure 5-11). 

Scan Bus 

The Scan Bus is the communications link 
between various components as shown in figure 
5-11. It consists of 20 Address lines, 48 data 
Information lines, one Parity line and 11 Control 
lines. I/O Processor or Data Communications 
operations are initiated via the Scan Bus. 

Command Data Register 

This 113-bit register is used with the Scratch Pad 
Memory (SPM) for the control of Input Output 
data flow. The command portion of this register 
accepts an I/O Command from the Processor via 
the SCAN BUS and uses the data portion to accept 
or send information to the 1/0 devices via the 
peripheral control cabinets. Commands and partial 
data words are shuttled to and from the scratch 
pad memory between data character times. Full 
words are read or written to Main Memory without 
Processor intervention. An expanded Command 
Data word is shown in figure 5-12. 

Scratch Pad Memory 

The Scratch Pad Memory contains 120 bits of IC 
memory per word. The I/O Processor may contain 
from four thru 1 0 such words. These words 
provide temporary storage locations between 
command data word character collection times. In 
this way one Command Data register can service up 
to 10 simultaneous I/O operations. A fixed 
assignment (1 through 10) is given during the 
initiation of the I/O request and remains as such 
until the end of the I/O operation. The unit 
designate field as shown in figure 5-12 will contain 
this assignment. 



DATA 
COMM 

PROCESSORS 

4 WORD 
INTERFACE 

u 
s 

MAIN 
MEMORY 

MEMORY INTERFACE 

MEMORY EXCH. 

COMMAND/DATA REG 

SCRATCH PAD 
MEMORY 

120 BITS/WO 
4 •10 WDS 

SYSTEM CLOCK AND 
MDL PROCESSOR 

TRANSLATOR 

I 0 PROC 
INTERRUPT 
NETWORK 

16 INFO 

LINES 

PERIPHERAL 
CONTROL 
INTERFACE 

PERIPHERAL 
DEVICES 

Figure 5-11. Input/Output Processor Block Diagram 

Tag Register 

The Tag Register (five flip flops per Scratch Pad 
Memory Word) associates a Scratch Pad Memory 
word with a specific I/O channel. This assignment 
is made when the I/O request is received from the 
Processor. 

Memory Exchange 

The Memory Exchange allows sharing of the 
Memory Interface lines between the I/O Processor 
and Data Communications Processors. The Mem­
ory Exchange has eight control lines, 20 address 
lines, 51 data lines and one parity line to the 
Memory interface. 

Interrupt Network 

The 1/0 Processor Interrupt Network informs 
the Processors of an interrupt condition in the I/O 
Processor. This indication remains true until one of 
the Processors reads the interrupt by a Scan-in 
command. 

5-15 

Time Of Day Register 

The Time of Day Register is comprised of 36 
flip flops used to accumulate increments (2.4µ s) of 
time. The system Processors set or read these 
registers via the SCAN BUS. 

Channel Assignment Control 

The Channel Assignment Control assigns a 
priority to specific I/O devices. This is a fixed 
physical assignment with respect to system 
requirements. 

Character Translator 

Data flow between the I/O Processor and 
Peripheral devices is translated in one of three 
ways: 

1. Direct (no translation in the I/O Processor) 

2. Six-bit internal to BCL or vice versa 

3. Eight-bit EBCDIC to BCL or vice versa 



COMMAND REGISTER DATA REGISTER 
TAG 

CHARACTER POSITIONS (6BIT FORMAT) 
111 91 81 0 1 2 3 4 5 6 7 

MEMORY 90 80 
t--+-....P--..-..~~~ ...... ....----.__. 

ADDRESS 89 
..---t---+---+--t,___+-....._~ .... ---

92 88 78 77 76 75 74 

50 47 

I I I I J 
BUFFER LENGTH PARITY FOR DATA WORD 

STANDARD 
TAG FIELD ERROR FIELD 

CONTROL BIT 

CONTROL/UNIT (59,. 66) 
ERROR FIELD 

SCRATCH PAD MEMORY 

119 111 
SAME AS ABOVE 

112 0 

~ 
1---UNIT 

DESIGNATE FIELD 

..... - - - --Figure 5-12. Command Data Register and Scratch Pad Memory 

Peripheral Control Interface 

The Peripheral Control Interface consists of 16 
information lines and 12 Control lines which are 
bussed to all of the Peripheral controls. Four 
additional control lines are sent to e;ich Peripheral 
Control for a total of 80. The additional control 
lines are: 

1. BUSY/ - PCn 
2. ARL - PCn (Access Request Level) 

3. AGL - PCn (Access Granted Level) 

4. CDL - PCn (Channel Designate Level) 

The 16 
bi-directionally 
transmission. 

information lines are used 
for 8-bit byte or byte pair 

5-16 

Data Communications Interface 

The Data Communications Interface consists of 
four, 20-wire cables sharing two word interfaces. 
Busses 2 and 4, 1 and 3 share the same memory 
request logic. Data Communications information is 
routed through the I/O Processor only to utilize 
the Memory Exchange of the I/O Processor. 

System Clock Control and MDL Processor 

The I/O Processor cabinet contains hardware 
that makes up the MDL Processor and System 
Clock. 

SYSTEM CLOCK 

The system clock is generated by a 10 megahertz 
crystal oscillator and shaped into 25 and 45 



nanosecond width pulses. A Central Control 
divides and controls the basic clock for distribution 
to the entire system as follows: 

1. Processor: 
Type Basic Clock 

B 5 megahertz 
C 2. 5 megahertz 

Arithmetic Clock 
5 megahertz 

2. 5 megahertz 

2. I/O Processors: 5 megahertz, 25 nanosec pulse 
width 
1.67 megahertz, 25 nanosec pulse width 

3. Memory: 
5 megahertz, 25 nanosec pulse width 

4. Peripheral Control: 
1.67 megahertz 45, nanosec pulse width 

5. Data Communications Processor: 
5 megahertz, 25 nanosec pulse width 

6. MDL Processor: 
1.67 megahertz, 25 nanosec pulse width 
5 megahertz, 25 nanosec pulse width 

MAINTENANCE DIAGNOSTIC PROCESSOR 

The Maintenance Diagnostic Logic processor 
(MDL) is. a main frame cabinet that consists of one 
I/O channel and has its own data processing 
capabilities. It is used for fault detection and 
isolation in the B 6700 Processors, I/O Processors, 
and Peripheral Controls. The MDL Processor 
provides for three modes of operation: display, 
diagnose, and detect. 

DISPLAY MODE. In this mode, the MDL scan-out 
of eight flip flops per word processes continuously 
in a loop under control of the display logic. It is 
used for indication and control of processor and 
I/O Processor flip flops. 

DIAGNOSE MODE. In this mode the MDL 
Processor reads test cases from a tape unit, through 
an I/O Channel, to memory. The MDL uses this 
information for logical testing of system 
components and halts at the end of a string of test 
cases when a failure is diagnosed. 

DETECT MODE. This mode of operation is 
initiated in the same manner as diagnose mode; 
however, the test procedure is halted after the first 
failure of a test case. 

INFORMATION FLOW FROM CARD READER 
TO MAIN MEMORY 

The information flow between a Card Reader 
and main memory is shown in figure 5-13. Three 

5-17 

types of cards may be read from the card reader: 
alpha, binary, and EBCDIC. 

Alpha Card Read 

Cards punched in the Alpha mode are decoded 
in the card reader from Card Code to six-bit BCL 
external code. The character is transmitted to the 
information register in the Card Reader Control in 
the Peripheral Control Cabinet. The information 
(one character) is held until the I/O Processor 
honors an access request and places the appropriate 
Scratch Pad Memory (SPM) word in its 
Command/Data register. I/O descriptor control bits 
42 (translate) and 41 (six-or eight-bit) steer the 
character through the appropriate translator and 
place the character in the next character position 
of the Data register. The data register can store 6 
or 8 characters depending on the translator used. 
When the data register receives the last character of 
a word, a memory request cycle is initiated to 
write this full 52-bit word in memory. A tag field 
read is optional on this type of a card read, with 
any tag code (the first character of a word) 
allowable in this mode of operation. 

Bi nary Card Read 

Cards punched in the binary mode contain twice 
as much information as those punched in Alpha 
mode. Each card column contains two characters. 
Positions 12, 11, 0, 1, 2 and 3 provide for one row 
of characters on the upper half while positions 4, 
5, 6, 7, 8, and 9 provide for another row of 
characters on the lower half. When control bits 42 
and 41 are equal to zero, this causes the translator, 
to be bypassed and causes a direct transfer of 
information into the Data Register. The informa­
tion contained in one card column in strobed twice 
(once for each half of the card) and presented to 
the I/O Processor as two 6-bit characters. Tag read 
is not permitted in this mode. 

EBCDIC Card Read 

Cards punched in the EBCDIC mode are read in 
a similar fashion as binary mode, upper and lower 
half. However, the actions within the Peripheral 
Control are quite different. Three translations are 
required within the control before an 8 bit 
EBCDIC code is presented to the I/O Processor 
data register. The first two occur as the upper and 
then lower halves of the card are strobed into the 
information register. The Information register at 
this point represents the 12-, 11-, 0-, 9- and 8-card 



punches directly and a binary configuration of 
punches 1 through 7 as shown in figure 5-13. The 
contents of the information register are decoded 
into EBCDIC code before being transferred over 
the information lines to the Data register. When six 
bytes are collected in the data register, a memory 
request cycle is initiated to write the full 52-bit 
word. Tag read is optional in this mode with any 
tag code being permissible. 

NOTE 

Two other codes are available for use on the 
B 6700 system. They are ICT and BULL 
codes. Both are decoded by a special decoder 
in the Card Reader. 

CARD READER 

ALPHA/ 
BINARY 

D 
E 
c 
0 
D 
E 
R 

CHR. A= 12·1 

ALPHA CARD READ 

UPPER 

CARD READ CONTROL 
<IN PC CABINET) 

16 BIT BCL 
EXTERNAL 

1
6 BIT UPPER HALF 
OR LOWER 
HALF BINARY 

INFO 
REG 

6 BIT BINARY71 

HALF-=c=HR=.=A===1=1 ·=J ===II ~x 
_ BINARY CARD READ rn 

MEMORY AND INPUT/OUTPUT PROCESSOR 
CONTROLLER 

The Memory Controller responds to 21 com­
mands decoded from nine input lines. Figure 5-14 
shows the four types of Memory Controller cycles 
that respond to these input lines. During a core 
memory write, the contents of the cell being 
written are "flashed" back to the Processor. 
Certain Write operations are aborted by the 
memory if the memory protect bit ( 48) is set. 

1/0 PROCESSOR I MEMORY 

l/C DESCRIPTOR l9 
BIT 42 = 1 (TRANSLATE) I 

41 = 0 (6 BITl 
= l (8 BIT) 

~-------. 
DATA REGISTER 

(1) 52 BIT WORD 8-6 BIT CHARACTERS 

1/0 DESCRIPTOR 

BIT 42 = 0 t DIRECT 
BIT41 =O\ 

(1) 52 BIT WORD 

PLUS ANY TAG CODE 
OR 

6-8 BIT CHARACTERS 
PLUS ANY TAG CODE 

12-4 BIT DIGITS 
(6 BYTES) 

PLUS PROGRAM 
TAG ONLY 

6 TO 8 BIT 
U /'TRANSLATE 

J 
GBcD1c DECODER 1/0 DESCRIPTOR 

BIT 42 = 0 
l, 

EBCDIC CARD READ 

Figure 5-13. Data Information Flow 

5-18 

BIT 41 = 1 

I I 
J I .. 

(1) 52 BIT WORD 1----+--
6
-_9_B_IT (BYTE) 

I 
CHARACTERS 
PLUS ANY 
TAG CODE 



Z12 
BUS 
INPUT 
LINES 

TYPE OF 
REQUESTING 

OPERATOR 

READ 

OVERWRITE, 
STACK ADJ., 
READ WITH 

LOCK 

0 
1 

-2. 
]_ 
:-! 
5 
6 
z 
8 

MEMORY 
CONTROLLER 

FUNCTION 

READ ONLY 

MEMORY 
CONTROLLER 

RESPONDS TO 
21 COMMANDS 

MPRC TO MEMORY --
(PREVENTS MEMORY WRITE WHEN 

s Z12-6 IS TRUE AND BIT (48) I 
DETECTED IN WORD BEING 
WRITTEN INTO) 

MEMORY CONTROLLER 
Z 12 LEVELS PROCESSOR REGISTERS 

8 7 6 5 4 3 2 1 0 
USED 

1 0 0 1 A 
1 0 0 1 B 
1 0 0 1 c 
1 0 0 1 x 
1 0 0 1 y 
1 0 0 1 p 

1 1 A 
1 1 B 

OVERWRITE• 1 1 c 
1 1 x 
1 1 y 

NOTE 

When the Overwrite function is used the 
Memory write is not aborted if the addressed 
area has the protect bit on. 

The Read With Lock and MVST operators 
exchange the contents of the A register with 
the contents of memory addressed by the B 

PROTECTED 
WRITE 

(PSEUDO) 

STORE 
OPERATORS 

register. 

Figure 5-14. Memory Controller Decoding 

1 1 1 
1 1 1 

PROTECTED·•• 1 1 1 
WRITE 1 1 1 

1 1 1 

1 1 
PROTECTED 1 1 
WRITE/READ 1 1 

••• 1 1 
1 1 

NOTE 

When this function is used Memory write is 
aborted by detection of Protect bit. (No 
indication of abort is given.) 

Figure 5-14. Memory Controller Decoding (cont) 

5-19 

A 
B 
c 
x 
y 

A 
B 
c 
x 
y 



The Memory /I/O Processor Controller contains 
the following sections: 

1. B 6700 Memory and I/O Processor interface. 

2. Address Adder. 

3. Integrated Chip Memory. 

The interface consists of two sections: a 
memory bus and a scan bus. 

MEMORY BUS 

The Memory Bus contains 20 address lines, 51 
data (information) lines, 1 parity line and eight 
control lines. It transmits information bi­
directionally between Memory and Processor "hard 
registers" A, B, C, X, Y and P. 

Control of the memory interface is through the 
Z 12 bus which is produced by Functional Con­
trollers and Family Operator Controllers when a 
memory cycle is desired. 

SCAN BUS 

The Scan Bus contains 20 address lines, 48 data 
information lines, one parity line and 11 control 
lines. It provides an asynchronous communication 
path between the B 6700 Processors and B 6700 
1/0 Processors or B 6700 Data Communications 
Processors. 

Address Adder 

The Address Adder is a 20-bit parallel adder 
with inputs from the Z8 and Z9 busses, the Carry 
flip flop and the Subtract flip-flop. The busses 
derive their addressing information from the 48 IC 
memories or from the "hard registers" via the Z6 
bus in the transfer controller. The Carry flip flop 
and Subtract flip flop are used to modify the 
output address. 

The output of the Address Adder is an input to 
the Memory Address register for memory selection 
or an input to one of the 20 bit IC memories. 

Integrated Circuit (IC) Memory 

The Memory Controller contains 48 IC 
memories, each containing 20 bits. Thirty-two of 
these display the current address of an object 
program. These D registers (DO thru D31) provide 
for multiple levels of addressing. The D registers 
are controlled by Display Read/Write Select logic. 

5-20 

The other 16 IC memories are divided into two 
groups, base and index (0 through 7). Each is a 
20-bit memory used by Family Operator logic and 
Program sequence flow for base and index 
addressing: 

1. PBR (0) Program Base 

2. SBR (1) Source Base 

3. DBR (2) Destination Base 

4. TBR (BUF2) (3) Table Base 

5. s (4) Top-Of-Stack Address 

6. SNR (5) Stack Number 

7. PDR (6) Program Dictionary 

8. TEMP (7) Temporary Storage 

9. PIR (0) Program Index 

10. SIR (1) Source Index 

11. DIR (2) Destination Index 

12. TIR (BUF3) (3) Table Index 

13. LOSR (4) Limit of Stack 

14. BOSR (5) Base of Stack 

15. F (6) Points to Top MSCW 

16. BUF (7) Temporary Storage 

MAIN MEMORY 

Organization 

Main memory in the B 6700 is organized so that 
any memory module can send information to, or 
receive information from all processors and all I/O 
Processors over any one of four information busses 
(see figure 5-15). 

The modules examine each word that is placed 
on the bus to determine whether that particular 
module is being addressed; if it is, linkage is set to 
receive the word. This eliminates the need for a 
central control to establish a linkage directing the 
word to the proper module. Two hundred 
nanoseconds after the memory cycle is initiated, 
the module grants access. In another 200 
nanoseconds, the word is available to the bus; 200 
nanoseconds later, the word is in the processor or 
1/0 Processor register. Operation of each memory 
module is independent of the operation of any 
other memory module. Memory cycles can occur 
simultaneously within all four modules. 

Information is transmitted along the bus in 
parallel, as illustrated in figure 5-16. 



MEMORY MEMORY MEMORY 
MODULE MODULE MODULE 

1 2 n 

1/0 
PROCESSOR ~~ l't'\ -(D 

A ~v '-!/ 

PROCESSOR th A\ ~D 1 '¥ '¥ 

1/0 

PROCESSOR Lh._ fb_ $ 
B 'l" '¥ 

PROCESSOR .d~ l'h_ -$ 2 'l7 '¥ 

1/0 
_Lh__ 1'h_ (D PROCESSOR 

c 'l '¥ 

PROCESSOR _Lb._ _Lh_ _LJ 
3 >;;;;;T -0-

Figure 5-15. Memory Organization 

20 BIT ADDRESS 
6 BITS FOR 0-63 MODULES 

14 BITS FOR MEMORY ADDRESSES 0-16,383 

INFORMATION BUS 6 CONTROL BITS 
(READ I WRITE I BUSY I ETC.) 

52 INFORMATION BITS 

Figure 5-16. Information Transmission 

Memory Protection 

Memory protection prevents one program from 
affecting another by means of a combination of 
hardware and software features. One of the 
hardware features is automatic detection of an 
attempt by a program to index beyond its assigned 
data area. Another is a memory protect bit in each 
word to prevent user programs from writing into 
memory words which have the protect bit set. (The 
protect bit is set by the software.) Any attempt to 
alter protected data is inhibited and an interrupt is 
generated. Thus a user program, during execution, 
cannot change program segments, data descriptors, 
or any program words or MCP tables. 

5-21 

Cabinet Configuration 

The B 6700 Main Memory consists of one to 64 
memory modules each of which contains 16,384 
words each. Up to three modules and associated -
hardware can be housed in one Memory Cabinet 
( 49, 152 words). Each cabinet has a memory 
controller which responds to six requestors for 
memory accesses. Also available are 65,536 word -
memory modules. (Refer to table 1-1.) The 
req uestors are: 

1. Processor #1, #2, or #3 

2. 1/0 Processors A, B, or C 

3. Memory Tester 

4. MDL Processor A or B 

Interface 

The memory interface of the requesting unit 
contains five hubs (except for the MDL Processor)_ 
Each hub has 80 bus lines for bi-directional 
communication with memory. Each memory 
cabinet has six hubs, one hub for each possible 
requestor. A typical maximum size system is 
shown in figure 5-17. Note that the hubs within 
the requestors are all tied to the same address and 
information flow lines. Assume, for example, a 
Processor requesting access to memory module 
zero in cabinet zero. The Processor places the 
address and information on the busses. The address 
is decoded by all of the memory controls, but is 
only accepted by module zero in Memory Cabinet 
zero. This means that each Memory Control must 
have the ability to accept addresses from six 
different requestors and connect them to one of 
three memory ,modules. This is accomplished by a 
crosspoint control located within the memory 
control (figure 5-18). There are three sets of 
crosspoint controls for each requestor within each 
memory control. Three requestors may gain 
simultaneous access to the same memory cabinet if 
they are addressing separate memory modules. 

Priority 

A priority system, which is activated prior to the 
crosspoint controls, prevents conflicts when more 
than one requestor is addressing the same memory 
module. 

Request hub #I has the highest priority and any 
of the six requesting units can be attached to this 
point by the Field Engineer. 



MEM 
CAB 

0 

80 LINE 
BUS 

PROC 
# l 

MEM 
CAB 

3 

MEM 
CAB 

3 

MDL PROC A, MDL 
PROC B, AND 
MEMORY TESTER 
ARE PIGGYBACKED 
TO 1/0 PROCESSORS 
IF ALL MEMORY 
HUBS ARE USED UP 
BY OTHER REQUESTORS 

MEM 
CAB 

6 

MDL 
PROC 

A 

ADDRESS 
DECODER 
UNIT DESIGNATE 
AND DAT A FLOW 

* MEMORY CONTROL 

MDL ONLY CONTAINS 
ONE HUB 

MEMORY 
BUS 

~ 
6 HUBS 

INTERFACE 

A MAXIMUM MEMORY 
CONFIGURATION (32 MODS) 

REQUIRES CABINET NO. 

ADDRESS 
AND 
DATA 
LINES 

10 TO HAVE 2 MODS. 
(32 MODS = 524,288 WORDS.) ** REQUESTOR 

UNIT 

Figure 5-17. B 6700 Memory Configuration 
~ 

5 HUBS 

Memory Registers 

Each Memory module contains two core stacks, 
an MIR (a 52-bit memory information register), 
and the appropriate timing and control logic 
necessary for reading and writing (figure 5-19). The 
memory cycle is divided into two parts: a 
destructive read, in which the information is read 
into the MIR's, and a write into the cores from the 
MWR's. The MWR's are loaded from one of the six 
requesters. When a memory protect bit ( 48) is on 
during the read portion of the cycle, and the 
operation is not overwrite, the information is 
rewritten from the MIR's. 

Memory Addressing 

Memory modules are addressed by 20 bits 
(figure 5-20). Bits 0 through 13 are used for word 

5-22 

selection, and bits 14 through 1 9 are used for 
module selection. 

Memory Interlacing 

Each memory module has the ability to interlace 
every other word to the next consecutive module. 
Interlacing is controlled by a pluggable jumper 
located on each module and provides the advantage 
of faster memory accesses when consecutive words 
are addressed. 

Interlacing saves time because the next 
consecutive access may be requested in an adjacent 
module while the first module is finishing its cycle. 
Bit 14 of the module select address is exchanged 
with bit zero when interlacing is used. Examples of 



REQ 
N 1 

REQ 
N2 

REQ 
N3 

REQ 
N4 

REQ 
#5 

CROSSPOINT 
CONTROL 

CROSSPOINT 
CONTROL 

CROSSPOINT 
CONTROL 

MEMORY 
MODULE 

MEMORY 
1----------1 MODULE 

REQ _ _ci====.=t-::-
_ MEMORY 

MODULE *6---=-
L MEMORY CABINET _J I --~igure 5-18. Memory Module~electio:--

REQ l 

REQ 2 

REQ 3 

REQ 4 

REQ 5 

REQ 6 

r-------.. 
I 

MWR I 
I ...-----i I 

I STACK I 
I I 
I I 
I MEMORY I 

MCDULE I 
------~ 

Figure 5-19. Memory Registers 

module and word selection, using the interlace 
option, are shown in figure 5-20. This feature can 
be quickly enabled or disabled by a field engineer. 

5-23 

HEXADECIMAL INTERLACE MODULE WORD ADDRESS ADDRESS 
00000 00000 0 0 
00001 04000 1 0 

04000 00001 0 
04001 04001 l 

08000 08000 2 0 
08001 ocooo 3 0 

ocooo 08001 2 l 
ocooo ocooo 3 1 

10000 10000 4 0 
10001 14000 5 0 

MODULE WORD 
SELECT SELECT 

19 15 11 7 3 

18 14 10 6 2 

17 13 9 5 1 

16 12 8 4 0 

Figure 5-20. Interlace Addressing 

Memory Testing 

Each system includes a facility which can test 
any of the memory modules. When the test facility 
is being used with one of the memory modules, the 
other modules can be used by the system, provided ~ 
the module being tested is not interlaced. If it is, 
the option must be disabled before testing can take 
place. 

Stack Controller 

The B 6700 provides automatic stack 
adjustment as required by the operators. These 
requirements are supplied to the Stack Controller 
on the Z 11 bus from the Operator Families and 
other Functional Controllers. 

The Stack Controller manipulates data between 
Main Memory and the A and B registers during 
both the pop-up and push-down cycles. The X and 
Y registers are included in the adjustment cycles 
when double-precision operands are involved. 

A typical program stack is shown in figure 5-21. 
The Stack Controller determines whether a pop-up 
or push-down cycle will be initiated. All other 
Controllers remain idle until an ADJC (Adjust 
Complete) is sent to the Controller that initiated 
the adjustment. 



AROF 

BROF 

LOSR 

s 

F 

BOSR 

PUSH­
UP 

MSCW 

TSCW 

A REG 

B REG 

D 
SOFTWARE 

ALLOCATE 
MEMORY 

AREA 

ADJ(FLOW) 
NOTATION 

(0,0) 
(O, 1) 
(1,0) 
(1, 1) 
(0,2) 
(1,2) 

Figure 5-21. Hardware Stack Adjustment 

5-24 

X REG 

Y REG 

STACK CONTROLLER FUNCTIONS 

COMMAND OPERATION RESULT 

AROF BROF 

Zl 10 EMPTY A AND B 0 0 
z 111 EMPTY A, FILL B 0 1 
Zl 12 EMPTY B, FILL A 1 0 
Zl 13 FILL BOTH 1 1 
Z114 EMPTY A 0 -
Z115 FILL A 1 -

NOTE: 

0 = UNOCCUPIED 
1 =OCCUPIED 
- = STATUS WILL NOT BE USED BY 

THE OPERATOR CAUSING THE 
ADJUSTMENT 



GENERAL 

The machine language operators are composed 
of syllables in a program string. The operators are 
divided into three major classes, Primary, Variant 
and Edit. 

SYLLABLE ADDRESSING AND SYLLABLE 
IDENTIFICATION 

Syllable Format And Addressing 

A machine language program is a string of 
syllables which are normally executed sequentially. 
Each word in memory contains six eight-bit 
syllables. The first syllable of a program word is 
labeled syllable 0 and is formed by bits 47 through 
40 (figure 6-1 ). 

P And T Registers 

The P Register contains the currently active 
program word. The T Registers are the control 
(instruction) registers. There is one four-bit T 
register in each operator family. These registers 
contain the operation to be executed in a 
particular operator family. The four high-order bits 
of the operator syllable are decoded to select the 
operator family to receive the strobe pulse 
(execute pulse). The PSR (Program Syllable 
Register) points to the next syllable to be used and 
also determines when a new program word is 
required in the P register. 

When a new program word is required it is 
brought from the memory location indicated by 
the sum of PBR (Program Base Register) and PIR 
(Program Index Register). This program word is 
placed in the P register and PSR is set to the first 

SYLLABLE 
0 

47 43 

46 42 

45 41 

44 40 

SYLLABLE 
l 

39 35 

38 34 

37 33 

36 32 

SYLLABLE 
2 

31 27 

30 26 

29 25 

28 24 

SECTION 6 
PROGRAM OPERATORS 

syllable of the next operator. PIR is incremented 
by 1 to address the next required program word 
(figure 6-2). 

Operation Types 

Operations are grouped into three classes: Name 
Call, Value Call, and operators. The two high-order 
bits (bits 7 and 6) determine whether a syllable 
begins a Value Call, Name Call or operator (figure 
6-3). 

NAME CALL 

Name Call builds an Indirect Reference Word in 
the stack. Stack adjustment takes place so that the 
A register is empty. The six low-order bits of the 
first syllable of this operator are concatenated with 
the eight bits of the following syllable to form a 
14-bit address couple. The address couple is placed, 
right-justified, into the A register, with the 
remainder of the A register filled with O's. The 
TAG field of the A register is set to 001 and the 
register is marked full. 

VALUE CALL 

Value Call loads into the top of the stack the 
operand referenced by the address couple. The 
operator is formed in the same manner as in the 
Name Call operator. If the referenced Memory 
Location is an Indirect Reference Word or a Data 
Descriptor, additional memory accesses are made 
until the operand is located. The operand is then 
placed in the top of stack registers. The operand 
may be either single- or double-precision, causing 
either one or two words to be loaded into the 
stack. 

SYLLABLE 
3 

23 l 9 

22 1 8 

2 l l 7 

20 l 6 

SYLLABLE 
4 

l 5 11 

l 4 10 

l 3 

l 2 8 

SYLLABLE 
5 

7 3 

2 

0 

Figure 6-1. Program Word 

6-1 



PROGRAM 
SEGMENT 

l PROGRAM WORD ... n d, PROGRAM INDEX REGISTER 

PROGRAM WORD 3 PROGRAM BASE REGISTER r--- --~ 
I ~-----------.~-_, 

PROGRAM WORD 2 I 
PROGRAM WORD I 

_ _J 

PROGRAM WORD 0 

0 2 3 

"P" REGISTER 

3 3 
2 2 

1 1 

0 0 

I 

4 5 

PS R 

ADDRESS 
ADDER 

3 3 

2 2 

1 

0 0 

OPERATOR FAMILY "T" REGISTERS 

Figure 6-2. Program Word, Syllable Addressing 

(BITS 7 
Syllable No. of and 6) Function 

Ident. 
Type Syllables 

00 Value Call 2 Brings an oper-
and into the 
stack. 

01 Name Call 2 Brings an IRW 
in to the stack. 

IX Other I=:> 7 Performs the 
Operators specified 

operation. 

Figure 6-3. Syllable Decode Table 

OPERATORS 

Operators vary from one to seven syllables in 
length. The first syllable of each operator deter­
mines the number of additional syllables forming 
the operator. Upon completion of each operator, 
the program counter addresses the first syllable 
beyond all of the syllables comprising the operator. 

Operators work on data as either full words (48 
data bits plus tag bits), or as strings of data 

6-2 

characters. Word operators work with operands 
(single- or double-precision) in the top of the stack. 

String operators are used for transferring, com­
paring, scanning, and translating strings of digits, 
characters, or bytes. In addition, a set of micro­
operators provides a means of formatting data for 
input/output. 

The string operators use source and destination 
pointers which are located in the stack. These 
pointers set for following hardware registers: 

1. Source Base Register - (SBR). 

2. Source Word Index Register - (SIR). 

3. Source Byte Index Register - (SIB). 

4. Source Size Register - (SSZ). 

5. Destination Base Register - (DBR). 

6. Destination Word Index Register - (DIR). 

7. Destination Byte Index Register - (DIB). 

8. Destination Size Register - (DSZ). 

In some of the string operators the source 
pointer may not be used. In this case, an operand 
may be in the stack; its characters are circulated as 
it is being used. 



String operators have an optional Update func­
tion, i.e., producing updated source and 
destination pointers and count. At completion of 
an operation the source and destination pointers 
are updated as follows: 

1. If the source is an operand it remains in the 
stack. 

2. If the pointer is a descriptor, the Word Index 
fields and Byte Index fields are updated from 
SIR/DIR and SIB/DIB. The String Size fields 
are updated from SSZ/DSZ. 

3. If the pointer is a Data Descriptor or a 
non-indexed String Descriptor, it is converted 
to an Indexed String Descriptor and updated. 

If both the source and destination descriptors 
have size fields equal to 0, the size registers 
indicate 8-bit character size. When both a source 
and destination are required and the size field of 
one is equal to 0 and the other is not, then the size 
field of the non-zero descriptor is used. 

If neither size field is equal to 0 and the size 
fields are not equal and the operator is not 
Translate, the invalid operand interrupt is set and 
the operator is terminated. The size field is 
considered equal to 0 when the source is an 
operand. 

WORD DATA DESCRIPTOR 

Word Data descriptors refer to data areas, 
including input/output buffer areas. The Word data 
descriptor defines an area of memory starting at 
the base address contained in the descriptor. The 
size of the memory area in operands is contained in 
the length field of the descriptor. Word Data 
descriptors may directly reference any memory 
word address from 0 through 1,048,576. The 
structure of the Word Data descriptor is illustrated 
in figure 6-4 and contains the following: 

1. Bits 50:3, a tag of 101. 

2. Bit 47: 1, the presence bit, indicates the 
presence or absence of data in main memory .. 
A 0 causes a presence bit interrupt whenever ·· 
the descriptor is used by a processor to obtain · 
non-present data. A 1 indicates that the data 
described is in main memory. 

3. Bit 46: 1, the copy bit. A 0 indicates that this 
is the original descriptor for the particular 
data area. A 1 indicates that this descriptor is 
a copy of the original descriptor (MOM). 

4. Bit 45: 1, the indexed bit. A 0 indicates that 
an indexing operation is required before the 
descriptor may be used to obtain data. A 1 
indicates that indexing has already taken 
place and the index value is stored in bit 
positions 39: 20 (Length/Index). 

5. Bit 44: 1, the segmented bit. A 0 indicates 
that the data is not segmented. A 1 indicates 
that the data is divided into segments. 

6. Bit 43: 1, the read-only bit. A 0 indicates that 
the data may be referenced for reading or 
writing. A 1 indicates that the area cannot be 
used for data storage. 

7. Bits 42:2, a 0 indicates a word data 
descriptor. 

8. Bit 40: 1, the double-precision bit. A 0 
indicates single-precision operands, a 1 
indicates double-precision operands. 

9. Bits 39:20, contain either the length of the 
memory area (If bit 45 = 0) or an index value 
(if bit 45 = 1 ). If bit 45 equals 0, the 
descriptor has not been indexed. This field is 
used for size checking during the indexing 
operation. If bit 45 equals 1, the descriptor 
has been indexed. For a double-precision 
operation, the index is doubled after index 
size checking, and the result is stored in the 
index field. 

39 35 31 27 1-91 15 11 7 3 

LENGTH/INDEX 
38 34 30 26 

37 33 29 25 

36 32 28 24 

Figure 6-4. Word Data Descriptor 

6-3 

MEM/DISK ADDRESS 
-1 

18 14 10 6 ~ 
17 13 9 5 

~ 

16 12 8 4 0 



39 35 31 27 23 :::::::::::::::::::: 19 15 11 7 3 
'~~+---___,~--+~-+---t 

LENGTH IN CHARACTERS ;;;:::;::;:~;}; MEM/DISK ADDRESS 
38 34 30 26 22 tl\lf:t---18-+-_l_ 4-+-_1_0+---6-+-2-t 

37 33 29 25 21 :;:;:;:::;:;:::;:;:: 17 13 9 5 
·.J--~t--·~1---+--+---t 

36 32 28 24 20 ::::::::::::::::::::~ 16 12 8 4 0 

Figure 6-5. String Descriptor (Non-indexed) 

10. Bits 19:20, contain either a main memory or 
disk address. If the presence bit (bit 4 7) 
equals 1, this field contains the memory 
address of data. If the presence bit equals 0 
and the copy bit (bit 46) equals 0, this field 
contains the disk address of the data. If the 
presence bit equals 0 and the copy bit equals 
1, this field contains the memory address of 
the original descriptor. 

STRING DESCRIPTOR 

String Descriptors refer to strings of 4-bit digits, 
6-bit characters or 8-bit bytes. The String 
Descriptors defines an area of memory starting at 
the base address contained in the descriptor. The 
size of the memory area in characters is contained 
in the length field of the descriptor. The structure 
of the String Descriptor is illustrated in figure 6-5 
and contains the following information: 

1. Bits 50: 3, a tag of 101. 

2. Bit 4 7: 1 the presence bit. A 0 causes a 
presence bit interrupt if the descriptor is used 
to access data. A 1 indicates the data is 
present in main memory. 

3. Bit 46: 1, the copy bit. A 0 indicates that this 
is the original descriptor for the particular 
data area. A 1 indicates that this descriptor is 
a copy of the original descriptor. 

4. Bit 45: 1, the indexed bit. A 0 indicates 
indexing is required. A 1 indicates that 
indexing has taken place and the word and 

39 35 31 
LENGTH 

38 34 30 

37 33 29 

36 32 28 

character index are in the length/index field 
(see figure 6-6). 

5. Bit 44: 1, the segmented bit. A 0 indicates 
that the data area is not segmented. A 1 
indicates that the date is segmented. 

6. Bit 43: 1, the read only bit. A 0 indicates that 
the data may be referenced for reading or 
writing. A 1 indicates that the data can be 
read only. 

7. Bits 42:3, character size field. 100 indicates 
8-bit bytes, 011 indicates 6-bit characters, and 
010 indicates 4-bit digits. 

8. Bits 39: 20, contain either the length of the 
memory area (bit 45==0) or an index value (bit 
45=1 ). When bit 45 equals 0, this field 
contains the length of the area in digits, 
characters or bytes. During indexing opera­
tions this field is used for size checking. When 
bit 45 is equal to 1, bits 39:4 contain a byte 
index and bits 35: 16 contain a word index as 
illustrated in figure 6-6. 

35 31 27 23 

woRD
1

1NDE
1
x 

34 30 26 22 

33 . 29 25 21 

32 28 24 20 

Figure 6-6. Byte/Word Index Field 

27 19 15 11 7 3 

MEM/DISK ADDRESS 
26 18 14 10 6 2 

25 17 13 9 5 

24 16 12 8 4 0 

Figure 6-7. Segment Descriptor 

6-4 



9. Bits 19: 20, contain either a main memory or 
a disk address. If the presence bit (bit 47) is 1, 
the field contains a memory address of the 
data. If both the presence bit and the copy bit 
(bit 46) are equal to 0, the field contains the 
disk address of the non-present data. If the 
presence bit is 0 and the copy bit is 1, the 
field contains the memory address of the 
original descriptor. 

SEGMENT DESCRIPTOR 

The segment descriptor (figure 6-7) describes a 
program segment and contains the following 
information: 

1. Bits 50:3, a tag of 011. 

2. Bit 47: 1, the presence bit. A 0 indicates that 
the segment is absent from main memory. 

3. Bit 46: 1, the copy bit. A 0 bit indicates that 
this is the original segment descriptor. A 1 
indicates that this is a copy of the original 
segment descriptor. 

4. Bit 45: 1, unused. 

5. Bits 44:5, unused. 

NOTE 

Unused bits may be either 0 or 1. 

6. Bits 39: 20, specify the length of the program 
segment in words. 

7. Bits 19:20 contain either the main memory 
address or the disk file address. If the 
presence bit (bit 4 7 equals 1, the field 
contains the main memory address of the 
program segment. If both the presence bit and 
the copy bit (bit 46) equal 0, the field 
contains .the disk address of the non-present 
program segment. If the presence bit equals 0 
and the copy bit equals 1, the field contains 
the absolute memory address of the original 
program segment descriptor. 

41 33 29 

44 40 32 28 

25 

24 

MARK STACK CONTROL WORD 

The Mark Stack Control Word (MSCW), together 
with the Return Control Word (RCW), provides a 
linking mechanism for the history of previous 
control-register settings through the stack. 

The MSCW is placed in the stack by the Mark 
Stack operator. The MSCW is organized as. 
illustrated in figure 6-8 and provides the following 
data: 

1. Bits 50: 3, a tag of 011. 

2. Bit 4 7: 1, the different-stack bit. A 0 indicates . 
that the stack-number field refers to the 
current stack. A 1 indicates that the stack­
num ber field refers to a different stack. 

3. Bit 46: 1, the environment bit. A 0 indicates 
an inactive MSCW, generated directly by the 
Mark Stack operator. The procedure entry has 
not been performed. A 1 denotes an active 
MSCW generated upon entry into a 
procedure, at which time the environment 
fields (stack number, displacement, value, and 
LL fields) are stored into the MSCW. 

4. Bits 45: 10, the stack-number field, contain 
the number of the stack from which the PCW 
was obtained at procedure-entry. 

5. Bits 35: 16, the displacement field, which, _ 
when added to the stack base address, locate 
the MSCW of the prior lexicographic level. 

6. Bit 19: 1, the value bit. A 0 indicates that the . 
MSCW was generated during any operation 
that will be restarted from the beginning. A 1 
indicates that the operator must continue · 
after the Exit or Return which refers to this 
MSCW (e.g., an accidental entry by a Value 
Call). 

7. Bits 18: 5, the LL field denote the lexico­
graphical level at which the program will run 
when the procedure is entered. 

8. Bits 13: 14, denote the stack history. This 
field is used to locate in the stack, the 
preceding MSCW (i.e., the previous "F" 
register setting). 

1---11 __ 7.........__3 ~ 

2 

12 8 4 0 

Figure 6-8. Mark Stack Control Word 

6-5 



PROGRAM CONTROL WORD 

The Program Control Word (PCW), and the 
MSCW are used during entry into a procedure. The 
organization of the PCW is illustrated in figure 6-9 
and contains the following: 

1. Bits 50: 3, a tag of 111. 

2. Bit 47: 1, unused. 

3. Bit 46: 1, unused. 

4. Bits 45: 10, stack number containing the PCW. 

5. Bits 35: 3, define the program syllable within 
the word located by PIR. 

6. Bits 32: 13, an index to the Program Base 
Register. 

7. Bit 19: 1, normal state (0) or control state (1). 

8. Bits 18:5, the level of the procedure being 
entered. 

9. Bits 13: 14, the segment descriptor index. Bits 
12 through 0 specify the value to be added to 
the address located by either D-register 0 or 1. 
When bit 13 equals 0, D-register 0 is selected; 
when bit 13 equals 1, D-register 1 is selected. 

RETURN CONTROL WORD 

The Return Control Word (RCW) and the MSCW 
are used for subroutine handling. The Return 
Control Word stores the environment to which the 
subroutine will return. The organization of the 
RCW is illustrated in figure 6-10 and contains the 
following: 

32 28 

1. Bits 50: 3, a tag of 011. 

2. Bit 4 7: 1, External Sign flip flop. 

3. Bit 46: 1, Overflow flip flop. 

4. Bit 45: 1, True/False flip flop. 

5. Bit 44: 1, Float flip flop. 

6. Bit 43: 1 is TFOF, True/False flip flop 
occupied flip flop. 

7. Bits 35:3, the program syllable of the 
operator to be executed after return from the 
subroutine. 

8. Bits 32: 13, the PIR setting of the operator to 
be executed next in the calling routine. 

9. Bit 19: 1, a normal state (0) or control state 
(1) procedure. 

10. Bits 18:5, the level of the calling procedure 
when the RCW was generated (at procedure 
entry). 

11. Bits 13: 14, the segment descriptor index. Bits 
12 through 0 specify the value to be added to 
the address located by either D-register 0 or 1. 
When bit 13 = 0, D-register is selected; when 
bit 13 = 1, D register 1 is selected. 

INDIRECT REFERENCE WORD 

Referencing a variable within the current 
addressing environment of a procedure is 
accomplished through the address couple in the 
Indirect Reference Word (IRW). References are 
relative to the D register specified by the address 
couple. The bit format of the IRW is shown in 
figure 6-11 . 

3 ~-~""-'+--::--t 1111/!iiill· :~ : 
2 

nnnnnn s. o. 1 NoEx 
13 9J 5 

24 12 8 4 0 

Figure 6-9. Program Control Word 

31 27 
P.t.R. 

30 26 

29 25 

28 24 

Figure 6-10. Return Control Word 

6-6 

:~U/? 
~......,...~,....__15-Ernmmrn 11 7 3 

14 rnm:iii:i lo 6 2 
~~~~~~~HW 's. D. NDEX 

13j ~ 5J l 

12 8 4 0 



STUFFED INDIRECT REFERENCE WORD 

Reference to variables outside the current 
environment is accomplished by a Stuffed Indirect 
Reference Word. This addressing is relative to the 
base of the stack in which the variable is located. 

The SIRW contains the stack number, the 
location (DISP) of the MSCW, and the index to the 
variable relative to the MSCW. The absolute 
memory location of the variable is formed by 
adding the contents of DISP and index to the base 
address of the referenced stack from the stack 
descriptor. The contents of the SIRW (with the 
exception of index) are dynamic and are 
accumulated as the program is executed. The stack 
number and DISP fields are entered into the SIRW 
)y the Stuff Environment (STFF) operator. The 
)it format of the SIRW is shown in figure 6-12. 

1. Bits 50:3, tag of 001. 

2. Bit 4 7: 1, unused. 

3. Bit 46: 1, the environment bit. A 1 indicates a 
Stuffed IRW. A 0 indicates an IRW. 

4. Bits 45: 10, stack number. When bit 46 equals 
1, it specifies the num her of the stack 
containing the address. 

5. Bits 45: 26, unused, when bit 46 equals 0. 

6. Bits 35: 16, displacement field. When bit 46 
equals 1, this value added to the stack base 
address locates a Mark Stack Control Word. 

7. Bits 19:6, unused. 

8. Bits 12: 13, index field. When bit 46 equals 1, 
the memory address is computed by adding 
the index field to the address of the MSCW 
specified by the stack number and displace­
ment fields. Bit 13 is always 0. 

9. Bits 13: 14, when bit 46 equals 0, are divided 
into two functional fields (figure 6-13). Each 
field is variable in length. The first subfield, 
designated LL, selects one of the D registers. 
The second subfield is an index value which is 
added to the contents of the selected D 
register to form an absolute address. The 
lengths of the subfields are defined by the 
current program level as shown in table 6-1. 

Program 
Level 

0-1 
2-3 
4-7 
8-15 

16-31 

Table 6-1 
Sub-Field Lengths 

Length of LL 
Field (Bits) 

1 
2 
3 
4 
5 

!l!l!li!!lil 

13 9 5 

12 8 4 

Length of 
Index 

Field (Bits) ----
13 
12 
11 
10 
9 

0 

Figure 6-11. Indirect Reference Word 

o: !J!iili!lli\\::m~~' -~ 'i·''ili::iliiliiiiilii---4-3

-t---

~ :: 1/li!l/\!\!\!\!l\lil!lll!lll!lillll··i 44 40 

111111111111 

11 

INDEX FIELD 
10 6. 2 

9 5 

12 8 4 0 

Figure 6-12. Stuffed Indirect Reference Word 

6-7 



PROGRAM LEVEL 
0-1 

INDEX 
FIELD 

13 12-0 
1 

2 

PROGRAM LEVEL 
2-3 

13 

12 

INDEX 
FIELD 
11-0 

2 

PROGRAM LEVEL 
4-7 

4 

13 

12 

11 

INDEX 
FIELD 
10-0 

1 

PROGRAM LEVEL 
8-15 

4 
11 

1---
8 

10 INDEX 
FIELD 

.._J1_ 9-0 
2 

12 

Figure 6-13. Program Level Bit Assignment 

l 

2 

PROGRAM LEVEL 
16-31 

4 
11 
~ 
8 

10 INDEX 
16 FIELD 

13 9 8-0 

12 

~!:i·i:!il,:il--.;,,,;,_+-....;;.+---C 
~ ll!l!l!lllll1-----+--+----I 

35 31 27 15 11 7 3 

: :: IJ!!IJ!!ll!I :: 

"T T 

FINAL VALUE CURRENT VALUE 
34 30 26 14 10 6 2 

41 33 29 25 13 

40 32 28 24 12 

Figure 6-14. Step Index Word 

NOTE 

The bit order of the LL field is inverted. 

STEP INDEX WORD 

The Step Index Word (SIW) (figure 6-14) is used 
by the Step and Branch operator, to increase 
efficiency in iteration loops. This word contains 
the following information: 

1. Bits 50:3, a tag of 100. 

2. Bits 4 7: 12, the value of the increment to be 
added to the current value field. 

3. Bits 35: 16, the final value, used to terminate 
the iteration loop. 

4. Bits 19:4, must contain all O's. 

S. Bits 15: 16, the current value or count. 

6-8 

9 5 

8 4 0 



SECTION 7 
PRIMARY MODE OPERATORS 

GENERAL 

This section defines the functions of the primary 
operators. In each case, the name of the operator, 
corresponding mnemonic, and hexadecimal code 
are shown. 

The universal operators are also included in this 
section. 

ARITHMETIC OPERATORS 

The arithmetic operators usually require two 
operands in the top of stack registers. These 
operands are combined by the arithmetic process 
specified with the result placed in the top of the 
stack. The operands may be either single-precision, 
double-precision, or intermixed. The specified 
arithmetic process adapts automatically to the data 
environment, with the single-precision process · 
invoked if both operands are of the single-precision 
type and the double-precision process invoked if 
either operand is of the double-precision type. 

Each double-precision operand occupies two 
words. The second word of the operand is an 
extension of the first word of the operand, i.e., the 
mantissa of the first word of the operand may be 
an integer but the mantissa of the second word is 
always a fraction. When the top of stack registers 
are full, the first word of the first operand is in the 
A register; the second word of the first operand 
occupies the X register. The first word of the 
second operand resides in the B register; the second 
word of the second operand occupies the Y 
register. Therefore, double-precision arithmetic 
processes operate on four words in the stack, 
instead of two as in single-precision operations. 
Double-precision arithmetic leaves a two-word 
result in the top of the stack. 

Add, Subtract, and Multiply operations which 
use two integer operands yield an integer result if 
no overflow occurs. If one or both operands are 
non-integer, or if the result generates an overflow, 
the result is non-integer. 

When an operator has been entered, the hard­
ware stack-adjust function fills or empties the top 
of stack register as required by the operator. If 
either register contains an incorrect word, the 
operator is terminated by an invalid operand 
interrupt. 

Add (ADD) 80 

The operands in the A register and the B register 
are added algebraically, with the sum left in the B 

7-1 

register. At the end of the operation, the A register 
is marked empty, and the B register is marked full. 

If only one of the operands is double-precision, 
the single-extension register containing the single­
precision operand is set to all O's. The B register is 
marked as a double-precision operand at com­
pletion of the opera ti on. 

If the mantissa signs and the exponents are 
equal, the mantissas are added andthe sum placed 
in the B register. If the sum exceeds 13(26) octal 
digits, the mantissa of the sum is shifted right one 
octade, rounded, and the exponent is algebraically 
increased by 1. 

If the exponents are equal but the manitssa signs 
are unequal, the difference of the mantissas plus 
the appropriate sign are placed in the B register. 

If the exponents are unequal, the operands are 
first aligned. If the alignment causes the smaller _ 
operand to be shifted right 14(27) octal places, the 
larger operand is the result. 

If the alignment causes the smaller operand to be 
shifted right, but less than 14(27) octal places, the 
digits of the smaller operand shifted out of the 
register are saved and used to obtain the rounded 
result. 

If the signs of the operands are equal, the 
mantissas are added and the sum placed in the B 
register. If the sum does not exceed 13(26) octal 
digits, the last digit shifted out of the register is 
used to round the result. If the sum is 14(27) 
octades, the mantissa in B (Y) is rounded to 13 · 
(26) digits. 

If the signs of the operands are unequal, an 
internal subtraction takes place, with the rounded 
result placed in the B register. 

If the result has an exponent greater than +63 
(+32, 767), the exponent overflow interrupt is set. 
If the result has an exponent less than -63 
(-32, 767), the exponent underflow interrupt is set. 

Subtract (SUBT) 81 

The operand in the A register is algebraically 
subtracted from the operand in the B register with 
the difference left in the B register. The operation _ 
is the same as for the Add operator except for 
initial sign comparisons. 



Multiply (MUL T) 82 

The operand in the A register is algebraically 
multiplied by the operand in the B register. The 
rounded product is left in the B register. 

If the mantissa of either operand is 0, the B 
register is set to all O's. 

If both mantissas are non-zero, the product of 
the mantissas is computed. If the product contains 
more than 13(26) digits, it is normalized and 
rounded to 13(26) digits. A mantissa of all 7's is 
not rounded. 

If the result has an exponent greater than +63 
(+32,767), an exponent overflow interrupt is set. If 
the result has an exponent less than -63 (-32,767), 
an exponent underflow interrupt is set. 

Extended Multiply (MULX) BF 

The operands in the A and B registers are 
algebraically multiplied and a double-precision 
product is placed in the B and Y registers. The A 
register is marked empty and the B register marked 
full. 

The actions outlined for Multiply operations 
also apply to this operator. 

If either or both operands are double-precision, 
then a normal double-precision operation occurs. 

Divide (DIVD) 83 

The operand in the B register is algebraically 
divided by the operand in the A register, with the 
quotient left in the B register. After the operation 
the A register is marked empty, and the B register 
is marked full. 

If the mantissa of the B register is 0, the B 
register is set to all O's. If the A register mantissa is 
equal to 0, the divide by zero interrupt is set. In 
either case the operation is terminated. 

If the mantissas of both operands are non-zero, 
they are normalized and the operand in the B 
register is divided by the operand in the A register. 
The quotient is developed to 14(27) digits, 
rounded to 13(26) digits, and remains in the B 
register. 

7-2 

If the result has an exponent greater than +63 
(32,767) the exponent overflow interrupt is set. If 
the result has an exponent less than -63 (-32,767) 
the exponent underflow interrupt is set. 

Integer Divide (IDIV) 84 

The operand in the B register is algebraically 
divided by the operand in the A register and the 
integer part of the quotient is left in the B register. 
After the operation the A register is marked empty 
and the B register is marked full. 

If the mantissa of the B register is 0, the B 
register is set to all O's. If the mantissa of the A 
register is 0, the divide-by-zero interrupt is set. The 
operation is terminated in either case. 

If the mantissas of both operands are non-zero, 
they are normalized. If the exponent of the B 
register is algebraically less than the exponent of 
the A register after both operands have been 
normalized, the B register is set to all O's. If the 
exponent of the B register is algebraically equal to 
or greater than the exponent of the A register, the 
divide operation proceeds until an integer quotient 
or a quotient of 13(26) significant digits is 
calculated. 

If an integer quotient is developed, the quotient 
is left in the B register with a 0 exponent for single 
precision and the exponent set to 13 for double 
precision. If a non-integer quotient is developed, 
the integer overflow interrupt is set. 

Remainder Divide (RDIV) 85 

The operand in the B register is algebraically 
divided by the operand in the A register to develop 
an integer quotient. The remainder of this Division 
stays in the B register. 

If the mantissa of the B register is 0, the B 
register is set to all O's. If the mantissa of the A 
register is 0, the divide by zero interrupt is set. In 
either case the operation is terminated. 

If both mantissas are non-zero, both operands 
are normalized. If the exponent of the B register is 
algebraically less than the exponent of the A 
register after both operands have been normalized, 
the operand in the B register is the result. If the 
exponent of the B register is algebraically equal to 
or greater than the exponent in the A register, the 
divide operation proceeds until an integer quotient 



is developed; the remainder is then placed in the B 
register. 

If a non-integer quotient is developed, the 
integer overflow interrupt is set and the operation 
is terminated. · 

lntegerize, Truncated (NTIA) 86 

The operand in the B register is converted to 
integer form without rounding and remains in the 
B register. 

If the operand in the B register cannot be 
integerized, i.e., the exponent is greater than the 
number of leading zeros in the operand, the integer 
overflow interrupt is set and the operation is 
terminated. 

lntergerize, Rounded (NTGR) 87 

The operand in the B register is converted to 
integer form. Rounding takes place if the absolute 
value of the fraction is greater than 4. The rounded 
result is left in the B register. 

If the operand in the B register cannot be 
integerized, i.e., the exponent is greater than the 
number of the leading zeros. in the operand, the 
integer overflow interrupt is set and the operation 
is terminated. 

The operand is rounded, if necessary, by adding 
to the mantissa. If a non-integer results from this 

operation, the integer overflow interrupt is set. 

TYPE-TRANSFER OPERATORS 

Set To Single-Precision, Truncated (SNGT) CC 

The operand in the B register is normalized and 
set to a single-precision operand; or in the case of a 
data descriptor, the double-precision bit is set to 0. 

If the word in the B register is a non-indexed, 
double-precision data descriptor, the double­
precision bit is cleared to 0 and the length field 
multiplied by 2. 

If the double-precision operand in the B register 
has an exponent. greater than +63 after 
normalization, the exponent overflow interrupt is 
set. If the exponent is less than -63 after 
normalization, the exponent underflow interrupt is 
set, and the operation is terminated. 

7-3 

If the operand in the B register is a double­
precision operand with an exponent less than +63 
or greater than -63; the operand is normalized, and 
the tag field in the B register is set to 
single-precision. 

If the word in the B register is neither an 
operand nor a Data Descriptor, the invalid operand 
interrupt is set and the operation terminated. 

If the operand is single-precision, it is 
normalized and the operation is terminated. 

Set To Single-Precision, Rounded (SNGL) CD 

The operand in the B register is changed to a 
rounded, single-precision operand. 

If the double-precision operand in the B register 
has an exponent greater than +63 the exponent 
overflow interrupt is set. If the exponent is less 
than -63, the exponent underflow interrupt is set. 
In either case, the operation is terminated. 

If the operand in the B register is a double­
precision operand with an exponent less than +63 
or greater than -63, the operand is normalized; the 
tag field in the B register is set to single-precision, 
the operand in the B register is rounded from the Y 
register, and the Y register is set to all O's. 

If a carry is developed during the rounding 
operation, the operand is adjusted and the new 
exponent is checked in the manner discussed in the 
preceding paragraph. 

If the operand is a single-precision operand, it is 
normalized and no rounding occurs. 

Set To Double-Precision (XTND) CE 

The word in the B register is set to a double­
precision operand and the Y register is set to all 
O's. If a single-precision data descriptor is present 
in the B register, the double precision bit is set to 
1. 

If the word in the B register is a data descriptor 
with both the index bit and double-precision bit 0, 
the double-precision bit is set to 1 and the length 
field is divided by 2. 

If the operand in the B register is a double- _ 
precision operand, the operation is com.plete. If it 
is a single-precision operand, the tag field in the B 



register is set to double-precision and the Y register 
is set to all O's. 

If the word in the B register is neither an 
operand nor a Data Descriptor, the invalid operand 
interrupt is set and the operation terminated. 

LOGICAL OPERATORS 

If only one of the operands LAND, LOR, or 
LEQV is in double-precision form, the other 
operand is considered as double-precision with the 
least significant 13 octades equal to all O's. 

Logical And (LAND) 90 

Each bit of the B operand, except for the tag 
bits, is set to 1 where a 1 appears in the 
corresponding bit positions in both the A operand 
and the B operand. The other information bits of 
the B operand are set to 0. The tag of the B 
operand is not disturbed, unless the tag of the A 
operand specifies double-precision; in that case, the 
B operand tag is set to double-precision. 

Logical Or (LOR) 91 

Each bit position of the B operand except for 
the tag bits, is set to 1 if the corresponding bit 
position in either the A operand or the B operand 
is 1, otherwise, the bit is set to 0. The tag bits are 
set to the value of the second item in the stack 
except when the A operand is double-precision; in 
which case, the B register tag is set to 
double-precision. 

Logical Negate (LNOT) 92 

Each bit in the A operand is complemented 
except for the tag bits, which remain unchanged. 

Logical Equivalence ( LEQV) 93 

Each bit of the B operand is set to 1, except for 
the tag bits, when the corresponding bits· of the A 
operand and the B operand are equal. Each bit of 
the B operand is set to 0 except for the tag bits, 
when the corresponding bits of the A and B 
operands are not equal. The tag field is normally 
set to the value of the second item in the stack 
except when the A operand is double-precision; in 
that case, the B-register tag is set to 
double-precision. 

7-4 

RELATIONAL OPERATORS 

The relational operators perform an algebraic 
comparison on the operands in the A register and 
the B register. The single precision result is left in 
the B register and the B register is marked full. The 
result is an operand in integer form with the value 
1 if the relationship has been met or an operand 
with all information bits set to 0 if the relationship 
was not met. All relational operations compare the 
B operand to the A operand. 

Logical Equal (SAME) 94 

All bits, including tag bits, of the A operand and 
B operand are compared. If all bits are equal, a 
single-precision operand with bit 0 set to 1 and all 
other information bits set to 0 is stored in the B 
register. Otherwise, a single-precision operand with 
all information bits set to 0 is stored in the B 
register. 

Greater Than (GRTR) BA 

If the B operand is algebraically greater than the 
A operand, the B register is set to an integer form 
1. Otherwise, all bits in the B register are set to 0. 

Greater Than Or Equal (GREQ) B9 

If the B operand is algebraically greater than or 
equal to the A operand, the B register is set to an 
integer form 1. Otherwise, all bits in the B register 
are set to 0. 

Equal (EQUL) BC 

If the operands in the B and A registers are 
algebraically equal, the B register is set to an 
integer form 1. Otherwise, all bits in the B register 
are set to zero. 

Less Than Or Equal ( LSEQ) BB 

If the B operand is algebraically less than or 
equal to the operand in the A register, the B 
register is set to an integer form 1. Otherwise, all 
bits in the B register are set to 0. 

Less Than (LESS) BB 

If the operand in the B register is algebraically 
less than the operand in the A register, the B 
register is set to an integer form 1. Otherwise, all 
the bits in the B register are set to zero. 



Not Equal (NEQL) 8D 

If the operand in the B register is not 
algebraically equal to the operand in the A register, 
the B register is set to an integer form 1. 
Otherwise, all the bits in the B register are cleared 
to 0. 

BRANCH OPERATORS 

Branch instructions break the normal sequence 
of serial instruction fetches. Branching may be 
either relative to the base address of the current 
program segment or to a location in another 
program segment. Branch operators may be 
conditional or unconditional. 

Branch False (BRFL) AO 

If the low order bit of the A register is 0, the 
Program Index Register (PIR) and Program 
Syllable Register (PSR) are set from the next two 
syllables in the program string. Otherwise, PIR and 
PSR are advanced three syllable positions. 

The two syllables following the actual operator 
syllable form the new PIR and PSR settings as 
follows. The three high order bits are placed into 
PSR and the next 13 low order bits are placed in 
the PIR. The Program Register (P) is marked 
empty to cause an access to the new program 
word. 

Branch True (BRTR) A 1 

If the low order bit of the A register is one, the 
PIR and PSR are set from the next two syllables in 
the program string. Otherwise, PIR and PSR are 
advanced three syllable positions. The Branch True 
Operator uses the two syllables as described for the 
Branch False operator (BRFL), above. 

Branch Unconditional (BRUN) A2 

The PIR and PSR are set from the next two 
syllables of the program string. The Branch 
Unconditional operator uses the two syllables as 
described for the Branch False operator (BRFL). 

Dynamic. Branch False (DBFL) A8 

If the low order bit of the B register is 0 and the 
word in the A register is a Program Control Word 
(PCW) or an indirect reference to one, a branch is 
made to the specified syllable of that program 
segment. 

7-5 

If the low order bit of the B register is 0 and the 
word in the A register is an operand, PIR and PSR 
are set from this operand. 

If the word in the A register is an operand, it is 
used in the following manner. The operand is made 
into an integer. If it is negative or is greater than 
16,384, the invalid index interrupt is set and the 
operation is terminated. If bit zero of the operand 
is 0, PSR is set to 0, otherwise PSR is set to 011. 
The next higher order 20 bits are placed in the 
PIR. The Program Register is then marked empty 
to cause access to the new program word. 

Dynamic Branch True (DBTR) A9 

If the low order bit of the B register is 1 and the 
word in the A register is a PCW, or an indirect 
reference to one, a branch is made to the specified 
syllable of the program segment. 

If the low order bit of the B register is 1 and the 
word in the A register is an operand, PIR and PSR 
are set from this operand. 

The operand in the A register is used in this 
operator in the manner described for the Dynamic 
Branch False operator (DBFL). 

Dynamic Branch Unconditional (DBUN) AA 

If the word in the A register is a PCW or an 
indirect reference to one, a branch is made to the 
specified syllable of the program segment. 

If the word in the A register is an operand, PIR 
and PSR are set from this operand. 

The operand in the A register is used in this 
operator in the same manner described for the 
Dynamic Branch False operator (DBFL). 

Step And Branch (STBR) A4 

The increment field of the step-index word 
(SIW) addressed by the contents of the A register is 
added to its current-value field. If the current-value 
field is. then greater than the final-value field, the 
PIR and PSR are set from the next two syllables in 
the program string. Otherwise, the PIR and the 
PSR are advanced three syllables. The SIW is 
replaced in memory. 

If no SIW is in memory, and if an operand is 
found, it is left in the stack. The A register is set to 



all O's, the PIR and PSR are advanced and the next 
operator is executed. If no operand is encountered, 
the invalid operand interrupt is set. 

UNIVERSAL OPERATORS 

No Operation (NOOP) FE 

No operation takes place when this syllable is 
encountered. PIR and PSR are advanced to the 
next operator. This operator is also valid in the 
Variant and Edit modes. 

Conditional Halt (HALT) OF 

This operator halts the processor if the condi­
tional halt switch is in the ON position. If the 
conditional halt switch is OFF, the operator is 
treated as a NOOP. This operator is also valid in 
the Variant and Edit modes. 

Invalid Operator (NVLD) FF 

This operator sets the invalid operand interrupt. 
This operator is also valid in Variant and Edit 
modes. 

STORE OPERATORS 

The store operators use the words in the A 
register and B register. The operand in the B 
register is stored in memory at the location 
addressed by an Indirect Reference Word (IRW) or 
a Data Descriptor. If the A register contains an 
operand, a hardware interchange takes place so 
that the operand is transferred to the B register. 

Store Destructive (STOD) 88 

If the word in the A register is an operand, the A 
and B operands are interchanged. The Data 
Descriptor or IR W in the A register is the address 
in memory where the operand in the B register (B, 
Y registers for double-precision) is stored. After 
the operand is stored, the A register and B register 
are marked empty and the operation is complete. 

If the word addressed by the IR W is a Program 
Control Word, accidental procedure entry occurs. 
The spontaneously created Return Control Word 
(RCW) causes the Store Destructive (STOD) 
operator to be re-executed upon return from the 
procedure. 

7-6 

If the word addressed by the Data Descriptor 
has the memory protect bit on (bit 48), the 
memory protect interrupt is set and the operation 
is terminated. 

If the presence bit in the Data Descriptor is 0, 
the presence bit interrupt is set. After the informa­
tion has been made present, the operation is 
restarted. 

Store Non-Destructive (STON) 89 

This operator functions in virtually the same 
way as the STOD operator, however, at the 
completion of this operator, the BROF remains 
set, and the operand is retained in the B register. 

Overwrite Destructive (OVRD) BA 

This operator functions in the same way as the 
STOD operator, except that the OVRD operator 
overrides memory protection checks. 

Overwrite Non-Destructive (OVRN) BB 

This operator functions in the same way as the 
STON operator, except that the OVRN operator 
overrides memory protection checks. 

STACK OPERATORS 

Exchange (EXCH) B6 

The operands in the A register and the B register 
are exchanged. The A and B registers may contain 
either operands or control words. The control 
words are treated as operands by this operator. 

Delete Top Of Stack (DLET) 85 

This operator marks the Top-of-Stack register 
empty. 

Duplicate Top Of Stack (DUPL) B7 

The operand found in the B register is copied 
into the A register. The A register is marked full. 

Push Down Stack Registers (PUSH) 84 

This operator stores the valid word(s) from the 
A register and/or B register into the memory 
portion of the stack. The A and B registers are 
marked empty. 



LITERAL CALL OPERATORS 

Lit Call Zero (ZERO) BO 

This operator sets the A register to all O's and 
marks the register full. The result is a 
single-precision operand. 

Lit Call One (ONE) B 1 

This operator sets the A register low order bit 
(bit 0) to 1, leaving all other bits set to 0. The A 
register is marked full. The result is a single­
precision operand. 

Lit Call 8 Bits ( L TB) B2 

The syllable following the operator is the literal 
value to be placed in bits 7: 8 of the A register. The 
rest of the A register is set to all O's. The A register 
is marked as full and the PSR is set to the syllable 
following the literal. 

Lit Call 16 Bits (L T16) B3 

The next two syllables following the operator 
are a 16-bit literal value that is placed in bits 15: 16 
of the A register. The rest of the register is set to 
all O's. The A register is marked full and PSR is 
advanced past the 16-bit literal. 

Lit Call 48 Bits (L T48) BE 

The next program word is placed in the A 
register, and the A register tag is set to all O's. The 
A register is marked full, and the PIR and PSR are 
advanced to the program syllable following the 
48-bit literal value. This operator requires that the 
48 bit literal in the program string be word 
synchronized. If the operator syllable is in any 
syllable position other than syllable 5, the 
intervening syllables are not executed. 

Make Program Control Word (MPCW) BF 

This operator performs a "Lit Call 48 Bits" 
(LT48) as described above; however, the tag is set 
to a PCW (111) and the Stack Number Register is 
placed in bits 45: 10. The A register is marked full. 

INDEX AND LOAD OPERATORS 

Index (INDX) A6 

The Index operator places the integerized value 
of the B register into the 20-bit length/index field 

7-7 

of the Descriptor in the A register. The Descriptor 
is marked indexed (bit 45 is set to 1 ). 

If the word in the A register is an operand, the A 
operand is exchanged with the B operand. If the 
word in the A register is neither a Descriptor nor 
an IRW pointing to a Descriptor, the invalid 
operand interrupt is set and the operation is 
terminated. 

If the indexing value is negative or greater than 
or equal to the length field of the descriptor, the 
invalid index interrupt is set and the operation is 
terminated. 

If the descriptor represents an array which is 
segmented, the index is partitioned into two 
portions by dividing it by the proper divisor which 
is determined by the type of data referenced by 
the descriptor, (double-precision word-128, single­
precision word-256, four-bit digit-3072, six-bit 
character-2048, or eight-bit byte-1536). The 
quotient is used as an index to the given descriptor 
to fetch the array-row descriptor. The remainder is 
used to index the row descriptor. 

If the double-precision bit (bit 45) in the 
descriptor is 1, the index value in the B register is 
doubled. The balance of the operation is as 
described in the first paragraph of the description 
of this operator (INDX). 

Index And Load Name (NXLN) A5 

This operator performs an index operation; after 
the word in the A register has been indexed, the 
Data Descriptor pointed to by this word is brought 
into the A register. The copy bit (bit 46) of the 
Data Descriptor is set to 1 and the A register is 
marked full. If the presence bit (bit 47) is off, the 
address of the original descriptor is placed in the 
address field of the stack copy. If the word 
accessed by the indexed word in the A register is 
not a Data Descriptor, the invalid operand 
interrupt is set and the operation is terminated. 

If the Data Descriptor accessed by the indexed 
word in the A register has the Index bit (bit 45) set 
to 1, the invalid operand interrupt is set and the 
operation is terminated. 

Index And Load Value (NXLV} AD 

This operator performs an index operation; after 
the word in the A register has been indexed the 



operand pointed to by this descriptor is brought to 
the A register. The A register is marked full. 

If the word accessed is other than an operand, 
the invalid operand interrupt is set and the 
operator is terminated. 

Load (LOAD) BO 

The Load operator places the word addressed by 
the IRW or Indexed Data Descriptor in the A 
register. 

If at the start of this operator the A register 
contains other than a Data Descriptor or an IRW 
pointing at a Data Descriptor, the invalid operand 
interrupt is set and the operation is terminated. 

If the word pointed at by the Data Descriptor is 
another Data Descriptor, the latter is marked as a 
copy (copy bit [bit 46] is set to 1 ), and if the 
presence bit (bit 4 7) is off, the address of the 
original is placed in bits 19: 20 of the copy in the 
stack. 

SCALE OPERATORS 

Higher-level languages such as COBOL require 
integer arithmetic. The Scale Operators provide the 
means of aligning decimal points prior to the time 
that the arithmetic operations are performed. In 
addition, the Scale Right operators provide for 
binary-to-decimal conversions. 

Scale Left (SCLF) CO 

This operator uses the second syllable as the 
scale factor. The operand to be scaled is placed in 
the B register and integerized. The resulting integer 
is then multiplied by 10 raised to the power 
specified by the scale factor. 

If scaling of a single-precision operand results in 
overflow, the single-precision operand is converted 
to a double-precision integer. A double-precision 
integer is defined as a double-precision operand 
with an exponent equal to 13. 

If scaling of the operand results in an exponent 
greater than 13, (double-precision operand), the 
overflow flip flop is set to 1. 

Dynamic Scale Left (DSLF) C1 

This operator performs virtually the same 

7-8 

operation as the Scale Left (SCLF) operator; 
however, the scale factor is taken from the A 
register rather than from the program syllable 
following the operation syllable. The operand in 
the A register is integerized before scaling takes 
place. 

Scale Right Save (SCRS) C4 

This operator uses its second syllable as the scale 
factor. The operand to be scaled is placed in the B 
register and is then integerized. The resultant 
integer is divided by 10 raised to the power 
specified by the scale factor. 

The quotient resulting from the division is left in 
the A register. The operand in the B register is the 
remainder which is converted to decimal (four-bit 
digits) and is left-justified. The A and B registers 
are both marked full. 

If the scale factor is greater than 12, the invalid 
operand interrupt is set and the operation is 
terminated. 

Dynamic Scale Right Save (DSRS) CS 

This operator performs virtually the same 
operation as the Scale Right Save (SCRS) operator; 
however, the scale factor is obtained from the A 
register rather than from the program syllable 
following the operation syllable. The operand in 
the A register is integerized before being used. 

Scale Right Truncate (SCRT) C2 

This operator performs a Scale Right function 
using its second syllable as the scale factor. The B 
register is marked as empty at the conclusion of 
this operator. 

Dynamic Scale Right Truncate (DSRT) C3 

This operator performs the same operation as 
the Scale Right Truncate except that the scale 
factor is found in the A register and is first 
integerized by the operator. 

Scale Right Final (SCRF) C6 

This operator performs a Scale Right operation 
except that the quotient in the A register is deleted 
by marking the A register empty. The sign of the 
quotient is placed in the external sign flip flop. 



If the quotient was non-zero at the conclusion 
of the operation, the overflow flip flop is set. 

Dynamic Scale Right Final (DSRF) C7 

This operator performs a Scale Right Final 
operation with the scale factor found in the A 
register which is integerized by the operator before 
use. 

Scale Right Rounded (SC RR) CB 

This operator performs a Scale Right operation 
and the quotient is rounded by adding one to it if 
the most-significant digit of the remainder is equal 
to or greater than five. The remainder is deleted 
from the stack by marking the B register empty. 

Dynamic Scale Right Round (DSRR) C9 

This operator performs a Scale Right Rounded 
operation using the scale factor found in the A 
register. 

BIT OPERATORS 

The Bit operators are concerned with a specified 
bit in the A register and/ or B register. 

Bit Set (BSET) 96 

This operator sets a bit in the A register. The bit 
that is set is specified by the program syllable 
following the operation syllable. 

If the program syllable defining the bit to be set 
has a value greater than 47, the invalid-operand 
interrupt is set and the operation is terminated. 

Dynamic Bit Set (OBST) 97 

This operator performs a Bit Set Operation upon 
the bit specified by the operand in the top of stack 
register. This word is integerized before it is used as 
a bit number. 

If the word in the top of stack register is not an 
operand, an invalid operand interrupt is set and the 
operation is terminated. 

If after being integerized the operand is less than 
0 or greater than 47, an invalid operand interrupt is 
set and the operation is terminated. 

7-9 

Bit Reset (BAST) 9E 

This operator resets a bit in the A register. The 
bit that is reset is specified by the syllable 
following the operation syllable. 

If the program syllable defining the bit to be 
reset has a value greater than 4 7, an invalid­
operand interrupt is set and the operation is 
terminated. 

Dynamic Bit Reset (DBRS) 9F 

This operator performs a Bit Reset operation 
upon the bit specified by the operand in the 
top-of-stack register. 

If the word in the top-of-the-stack register is not 
an operand, an invalid operand interrupt is set and 
the operation is terminated. 

If after being integerized the operand is less than 
0 or greater than 4 7, an invalid operand interrupt is 
set and the operation is terminated. 

Change Sign Bit (CHSN) BE 

The sign bit (bit 46) of the top-of-stack operand 
is complemented, i.e., if it is a 1, it is set to O; if it 
is a 0, the bit is set to 1. 

TRANSFER OPERATORS 

The Transfer Operators transfer any field of bits 
from one word in the stack to any field of another 
word in the stack. 

Field Transfer (FL TR) 9B 

This operator uses its following three syllables to 
establish the pointers used in the field transfer. 
This is done in the following manner. The second 
syllable of the operator is K. The third syllable of 
the operator is G. The fourth syllable of the 
operator is L. 

The field in the A register, starting at the bit 
position addressed by G, is transferred into the B 
register, starting at the bit position addressed by K. 
The length of the field in the A and B registers is 
defined by L. When the specified number of bits 
have been transferred, the A register is set to 
empty, the B register is marked full and the 
operation is complete. 



If the second or third syllables of the operator 
are found to be greater than 4 7, or the fourth 
syllable is greater than 48, the invalid operand 
interrupt is set and the operation is terminated. 

Dynamic Field Transfer (DFTR) 99 

This operator performs a Field Transfer 
operation with the exception that the B register 
operand is L. The B register is then reloaded from 
the stack and this operand is G. The B register is 
again loaded from the stack and this operand is K. 

If any of the three operands is a non-integer, it is 
first integerized. Each is checked for a value less 
than zero or greater than 4 7 or 48, as specified in 
Field Transfer above. If either of these conditions 
exists in any one of the three operands, an invalid 
operand interrupt is set and the operation is 
terminated. 

Field Isolate (ISOL) 9A 

This operator isolates a field of the word in the 
A register, placing it right-justified in the B register. 
The balance of the B register is cleared to O's. The 
A register is marked empty and the B register is 
marked full. 

This operator uses its second and third syllables 
as the BIT pointers. The second syllable of the 
operator addresses the starting bit of the field in 
the A register. The third syllable of the operator 
specifies the length of the field to be isolated. 

If the value of the second syllable is greater than 
4 7 or the value of the third syllable is greater than 
48, an invalid operand interrupt is set and the 
operation is terminated. 

Dynamic Field Isolate (DISO) 98 

This operator performs a Field Isolate operation 
except that the first item in the stack specifies the 
length of the field to be isolated. The second 
operand in the stack addresses the bit in the word 
of the third item in the stack that is to be isolated. 

If after being integerized the value of the first 
item in the stack is less than 0 or greater than 4 7, 
an invalid operand interrupt is set and the 
operation is terminated. 

If after being integerized the value of the second 
item in the stack is less than 0 or greater than 48, 

7-10 

an invalid interrupt is set and the operation is 
terminated. 

Field Insert (INSR) 9C 

This operator inserts a field from the A register 
into the B register word. The field in the A register 
is right justified with the length of the field 
specified by the third syllable of the operator. The 
second syllable of the operand addresses the 
starting bit of the field in the B register. At 
completion the A register is marked empty and the 
B register is marked full. 

If the value of the second syllable of the 
operator is greater than 47, an invalid operand 
interrupt is set and the operation is terminated. 

If the value of the third syllable of the operator 
is greater than 48 an invalid operand interrupt is 
set and the operation is terminated. 

Dynamic Field Insert (DINS) 9D 

This operator performs a Field Insert operation 
except the first item in the stack is used as the 
insert field data. The second item in the stack is 
used to specify the length of the field. The third 
item in the stack is used to address the starting bit 
in the receiving field in the B register. When the 
operation is complete the A register is marked 
empty and the B register is marked full. 

If after being integerized the value of the second 
item in the stack is less than 0 or greater than 48, 
an invalid operand interrupt is set and the 
operation is terminated. 

If after being integerized the value of the third 
item in the stack is less than 0 or greater than 4 7, 
an invalid operand interrupt is set and the 
operation is terminated. 

STRING TRANSFER OPERATORS 

String Transfer operators give the system the 
ability to transfer characters or words from one 
location in memory to another location in 
memory. The source and destination pointers are 
set from String Descriptors in the stack. 

Transfer Words, Destructive (TWSD) D3 

This operator requires three items in the top-of­
the-stack: an operand, a String Descriptor or 



operand, and a String Descriptor. The first operand 
is integerized and used as the count or repeat field. 
The second item is either the source data or a 
descriptor which points at the source string and the 
third item is used to address the destination string. 
The number of words specified by the repeat field 
are transferred from the source to the destination. 
At completion of the operation, the A and the B 
registers are marked empty. 

If the memory protect bit is found on during the 
execution of the Transfer Words operator, the 
segmented array interrupt is set and the operation 
is terminated. 

Transfer Words, Update (TWSU) DB 

This operator performs the Transfer Words 
operator except that at the completion of the 
transfer of data, the source and destination 
pointers are updated to point to the location in 
memory where the transfer ended. The A and B 
registers are both marked full. 

Transfer Words, Overwrite Destructive (TWOD) D4 

This operator performs a Transfer Words, 
Destructive operation, except that it overrides the 
memory protection checks. 

Transfer Words, Overwrite Update (TWOU) DC 

This operator performs a Transfer Words, 
Update operation, except that it overrides the 
memory protection checks. 

Transfer While Greater, Destructive (TGTD) E2 

This operator transfers characters from a loca­
tion in memory pointed to by the source pointer, 
to a location in memory pointed to by the 
destination pointer, until the number of characters 
specified has been transferred or the comparison 
fails. 

The first item in the stack is used as the 
delimiter. The second item in the stack, bits 19: 20, 
is the maximum number of characters to be 
transferred. The third item in the stack is the 
source data or a source pointer, and the fourth 
item in the stack is the destination pointer. 

The source and destination strings are checked 
for memory protection. The source character is 
then compared with the delimiter. The result of 

7-11 

the comparison is set in the True/False flip flop 
(TFFF). If the condition is met the TFFF is set to 
1, if it is not met it is set to 0. 

If the number of characters transferred was, 
equal to the repeat field the TFFF will remain set 
to 1. The A and B registers are marked empty and_ 
the operation is complete. 

If the comparison fails, the TFFF is set to 0. 

If the first operand in the stack is not a 
single-precision operand, an invalid operator 
interrupt is set and the operation is terminated. 

If either the source or destination word has a: 
memory protect bit on (bit 48= 1 ), the segmented, 
array interrupt is set and the operation is: 
terminated. 

If the second item in the stack is a descriptor, it 
is used as the source pointer and the length field or 
repeat field is set to 1,048,575. All comparisons 
are binary (EBCDIC collating sequence). 

Transfer While Greater Update (TGTU) EA 

This operator performs a Transfer While Greater,: 
operation and updates the source pointer anch 
destination pointer to point at the next characters 
in the source and destination strings. The repea~ 
count is updated to give the number of characters 
not transferred. If the operation is terminated 
because the relationship is not met, the source 
pointer points at the character that failed the 
comparison. 

Transfer While Greater Or Equal, Destructive 
(TGED) E1 

This operator performs a Transfer While opera.;; 
tion using the relation greater than or equal to 
comparison. 

Transfer While Greater Or Equal, Update (TGEU) 
E9 

This operator performs a Transfer While Greatet 
or Equal operation. The source pointer, destination 
pointers, and count are updated at the conclusion 
of the operation. 

Transfer While Equal, Destructive (TEOD) E4 

This operator performs a Transfer While 
operation with the relation used in the comparison 
being equal. 



Transfer While Equal, Update (TEQU) EC 

This operator performs a Transfer While Equal 
operation. The source pointer, the destination 
pointer and count are updated at the conclusion of 
the operation. 

Transfer While Less Or Equal, Destructive (TLED) 
E3 

This operator 
operation, using 
comparison. 

performs a Transfer While 
the Less than or Equal 

Transfer While Less Or Equal, Update (TLEU) EB 

This operator performs a Transfer While Less or 
Equal operation. The source pointer, destination 
pointer and count are updated at the conclusion of 
the operation. 

Transfer While Less, Destructive (TLSD) EO 

This operator performs a Transfer While opera­
tion using the Less than comparison. 

Transfer While Less, Update (TLSU) ES 

This operator performs a Transfer While Less 
operation. The source pointer, destination pointer 
and count are updated at the conclusion of the 
operation. 

Transfer While Not Equal, Destructive (TNED) ES 

This operator performs a Transfer While opera­
tion, using the not equal comparison. 

Transfer While Not Equal, Update (TNEU) ED 

This operator performs a Transfer While Not 
Equal operation. The source pointer, the 
destination pointer and count are updated at the 
conclusion of the operation. 

Transfer Unconditional, Destructive (TUND) E6 

This operator performs a Transfer While Greater 
or Equal, Destructive operation forcing a zero 
delimiter. This causes all characters to be equal or 
greater than the delimiter, thus transfer will 
continue for the length of the repeat field. 

Transfer Unconditional, Update (TUNU) EE 

This operator performs a Transfer Unconditional 
operation. The source pointer and the destination 

7-12 

pointer are updated at the conclusion of the 
operation. 

String Isolate (SISO) D5 

This operator places :in the top-of-the-stack, 
right justified, the number of characters specified 
by the repeat field. The first item in the stack is 
the number of characters in the repeat field. The 
second item in the stack is either an operand or a 
descriptor used as the source pointer. 

If the number of bits to be transferred is greater 
than 48, the item is double-precision. 

If the number of bits is greater than 96, an 
invalid operand interrupt is set and the operation is 
terminated. 

If the source data has the memory protect bit 
(bit 48) set to I, the segmented array interrupt is 
set and the operation is terminated. 

COMPARE OPERATORS 

The Compare Operators perform the specified 
comparison of two strings of data. The TFFF is 
conditioned by the results of the comparison. 

Compare Characters Greater, Destructive (CGTD) 
F2 

This operator compares the characters of the 
two character strings. If the characters in the B 
string are greater than the characters in the A 
string, the TFFF is set to I. If not, the TFFF is set 
to 0. 

The first item in the stack is an operand which 
contains the length of the fields being compared. 
The second item in the stack is an operand or a 
descriptor pointing at the character string to be 
compared against. The third item in the stack is a 
descriptor pointing at the character string to be 
compared. 

Thus the operator compares characters until it 
encounters a pair which are unequal. If the B string 
character is greater than the A string character, the 
TFFF is left set, otherwise it is reset. Memory 
access then continues until the repeat count is 
exhausted. 

If the repeat count is less than or equal to 0, the 
TFFF is reset. 



If either of the data strings has the memory 
protect bit on (bit 48= 1 ), the segmented array 
interrupt is set and the operation is terminated. 

All comparisons are by the binary character 
position in the collating sequence. 

Compare Characters Greater, Update (CGTU) FA 

This operator performs a Compare Characters 
Greater operation. The source pointer and 
destination pointer are updated at the conclusion 
of the operation. 

Compare Characters Greater Or Equal, Destructive 
(CGED) F1 

This operator performs the Compare Characters 
operation with the comparison being greater than 
or equal. If the repeat count ::;; 0, the TFFF is set 
to 0. 

Compare Characters Greater Or Equal, Update 
(CGEU) F9 

This operator performs a Compare Character 
Greater or Equal operation. The source pointer and 
destination pointer are updated at the conclusion 
of the operation. 

Compare Characters Equal, Destructive (CEQD) F4 

This operator performs the Compare Characters 
operation using the Equal comparison. If the 
repeat count ::;; 0, then TFFF is set to 1. 

Compare Characters Equal, Update (CEQU) FC 

This operator performs a Compare Characters 
Equal operation. The source pointer and 
destination pointer are updated at the conclusion 
of the operation. 

Compare Characters Less Or Equal, Destructive 
(CLED) F3 

This operator performs the Compare Characters 
operation with the Less than or Equal comparison. 
If the repeat count ::;; 0, then TFFF is set to 0. 

Compare Characters Less Or Equal, Update 
(CLEU) FB 

This operator performs a Compare Characters 
Less or Equal operation. The source pointer and 
destination pointers are updated at the conclusion 
of the operation. 

7-13 

Compare Characters Less, Destructive (CLSD) FO 

This operator performs the Compare Characters 
operation using the Less than comparison. If the 
repeat count ::;; 0, the TFFF is set to 0. 

Compare Characters Less, Update (CLSU) F8 

This operator performs a Compare Characters 
Less operation. The source pointer and the 
destination pointer are updated at the conclusion 
of the operation. 

Compare Characters Not Equal, Destructive 
(CNED) F5 

This operator performs the Compare Characters 
operation using the Not equal relation. If the 
repeat count::;; 0, then TFFF is set to 0. 

Compare Characters Not Equal, Update (CN EU) 
FD 

This operator performs a Compare Characters: 
Not Equal operation. The source pointer and the 
destination pointer are updated at the conclusion 
of the operation. 

EDIT OPERATORS 

Table Enter Edit, Destructive (TEED) DO 

This operator is used to control edit micro .. 
instuctions. These edit micro-instructions are con~ 
tained in memory as a table and not as part of the 
normal program string. When this operator is 
entered, program execution is transferred to a table 
of micro-instructions. The last micro-instruction in 
this table must be the End Edit operator (see 
section 9). The table contains Edit Mode operators. 

The first item in the stack is a descriptor 
pointing to the table of Edit Micro-Instructions~ 
The second item in the stack is a single-precision 
operand or a descriptor pointing at the source 
string. The third item in the stack is a descriptor 
pointing at the destination. 

If the first item in the stack is not a descriptor, 
the invalid operand interrupt is set and the 
operation is terminated. 

If the second item in the stack is a singlei. 
precision operand, it is the source string. 



If the third item in the stack is not a descriptor, 
the invalid operand interrupt is set and the 
operation is terminated. 

Table Enter Edit, Update (TEEU) DB 

This operator performs a Table Enter Edit 
operation and updates the source pointer and 
destination pointer at the completion of the 
operation. 

Execute Single Micro, Destructive (EXSD) 02 

This operator performs the same function as the 
Table Enter Edit operator with the following 
exceptions: There is only one micro-operator and 
it follows this syllable. The first item in the stack is 
a single-precision operand that defines the length 
field. 

Execute Single Micro, Update (EXSU) DA 

This operator performs the same functions as an 
Execute Single Micro operator, except that it 
updates the source pointer and destination pointer 
at the completion of the operation. 

Execute Single Micro, Single Pointer Update 
(EXPU) DD 

This operator performs the same functions as an 
Execute Single Micro Update operator, except that 
one pointer is used as both source and destination 
pointer. The destination pointer is updated at the 
completion of the operation. 

PACK OPERATORS 

Pack, Destructive (PACO) 01 

This operator packs data, addressed by the 
source pointer, into the top of the stack in four-bit 
(digit) format. The TFFF is set to 1 if the source 
data is negative. A negative number for an eight-bit 
(byte) format has a zone bit configuration of 1101 
in the least significant byte. The six-bit (BCL) 
format for a negative number has a configuration 
of 10 in the least significant character position. 
The four-bit (digit) format has a 1101 con­
figuration in the most-significant digit position. 
Data is right-justified as it is placed in the 
top-of-stack. 

The operand in the top-of-the-stack is used as 
the length field. The second item is the source 

7-14 

pointer. The operation then continues until the 
number of digits specified by the length/repeat 
field have been packed. 

If the length is less than 13, the operand in the 
top-of-the-stack is a single··precision operand. If the 
operand is 13 or greater, the result is a double­
precision operand. 

If the length is not less than 25, an invalid 
operand interrupt is set and the operation 
terminated. 

If the second item in the stack is an operand, it 
is the source string and is comprised of eight-bit 
bytes. 

If the source data has the memory protect bit 
(bit 48) set to 1, the segmented array interrupt is 
set and the operation is terminated. 

Pack, Update (PACU) 09 

This operator performs a Pack operation, up­
dating the source pointer at the completion of the 
operation. 

INPUT CONVERT OPERATORS 

Input Convert, Destructive (ICVD) CA 

This operator converts either six-bit BCL code, 
eight-bit EBCDIC or four-bit digit code to an 
operand for internal arithmetic operations. 

The first item in the stack is an operand that is 
integerized to form the repeat field. The second 
item in the stack is a descriptor used as a source 
pointer. 

The Input Convert operator calls on the Pack 
operator. After this operation is complete, the 
four-bit digit operand is converted to an operand 
of the equivalent binary value. 

The sign of the converted operand is then set 
from the TFFF. If the converted operand is a 
single-precision operand, the TFFF is then set to 1. 
If the converted operand is a double-precision 
operand, the TFFF is set to 0. 

At the completion of the operation the B 
register is marked full. The tag field is set to 
indicate either a single- or a double-precision 
operand. 



If after being integerized, the item in the 
top-of-stack is greater than 23, the invalid operand 
interrupt is set and the operation is terminated. 

Input Convert, Update (ICVU) CB 

This operator performs an Input Convert 
operation. The source pointer is updated at the 
completion of the operation. 

Read True False Flip Flop (RTFF) DE 

This operator places the status of the TFFF into 
the low-order bit position of the A register. The 
rest of the A register is set to all O's. The A register 
is marked full at completion of this operation. 

Set External Sign (SXSN) 06 

This operator places the mantissa sign of the top 
word of the stack in the External Sign flip flop. 
This operand is not deleted from the stack at the 
end of the operation. 

Read And Clear Overflow Flip Flop (ROFF) 07 

This operation places the status of the Overflow 
flip flop in the least-significant bit of the A 
register, sets the rest of the A register to all O's, 
marks the register full, and sets the Overflow flip 
flop to 0. 

SUBROUTINE OPERATORS 

Value Call (VALC) 00 => 3F 

This operator loads into the A register the 
operand addressed by the address couple formed 
by the concatenation of the six low order bits of 
the first syllable and the eight bits of the following 
syllable. The A register is marked full. Figures 7-1 
and 7-2 are simplified flow charts of the Value Call 
operator. 

This operator makes multiple memory accesses 
if the word accessed is either an indexed 
descriptor, PCW, or an IRW. 

If the word accessed is an indexed data 
descriptor, the word addressed by the data 
descriptor is brought to the top-of-the-stack. If the 
double-precision bit (bit 40) in the Data Descriptor 
is equal to 1, the other half of the double-precision 
operand is brought to the X register. 

7-15 

If the word accessed is a non-indexed word data 
descriptor, the word is indexed using the second 
word in the stack for the index value. The word 
addressed by the non-indexed Data Descriptor is 
brought to the top-of-the-stack. If the double­
processor bit ( 40) in the Data Descriptor is equal 
to 1, the other half of the double-processor 
operand is brought to the X register. 

If the word accessed by the Data Descriptor is 
another indexed Data Descriptor, the word 
addressed by the Data Descriptor is brought to the 
top-of-the-stack, and one of the two above para­
graphs is repeated. 

If a Data Descriptor does not address an 
operand, SIRW, or a word descriptor or indexed 
string descriptor, an invalid operand interrupt is set 
and the operation is terminated. 

If the word accessed by the value call is an 
Indirect Reference Word (IRW) the word addressed 
by the IRW is accessed and evaluated. If the word 
is an operand, it is placed in the top-of-the-stack. 

If the word accessed by the IRW is another IRW, 
the operation continues as described above. 

If the word accessed by the IRW is an indexed 
or non-indexed Data Descriptor, the operator 
proceeds as described above for Data Descriptors. 

If the word accessed by the IR W is a Program 
Control Word (PCW), an accidental entry into the 
subroutine addressed by the PCW is initiated. A 
Mark Stack Control Word (MSCW) and a Return 
Control Word (RCW) are placed in the stack and an 
entry is made into the program. Upon completion 
of the program, a return operator will re-enter the 
flow value call at the label IRW, (figure 7-1). 

Name Call (NAMC) 40 => 7F 

This operator builds an IRW in the A register. 
The address couple is formed by concatenating the 
six low-order bits of the first syllable and the eight 
bits of the following syllable. The A register is 
marked full and the operation is complete. 

Exit Operator (EXIT) A3 

This operator returns to a calling procedure 
from a called procedure resetting all control 
registers from the RCW and the MSCW. The Exit 
operator does not return a value to the calling 



REMEMBER 
ALL 

VALUE 
CALL 
DATA 

PLACE 
OPERAND 

IN 
"A" REGISTER 

OBTAIN OTHER 
HALF OF OPERAND 

IN 
"X" REGISTER 

OP. 
COMPLETE 

YES 

ADJ. 
(0,2) 

NORMAL 

OBTAIN 
WORD ADDRESSED 

BY IRW 

NO 

Figure 7-1. Flow of Value Call Operator 

7-16 

"ACCIDENTAL 
ENTRY" 

(CALL ON A 
PROCEDURE) 



routine. Figure 7-3 shows a simplified flow chart of 
the Exit opera tor. 

Return Operator (RETN) A7 

This operator performs the same functions as an 
Exit operator with the exception that an operand 
or name in the B register is returned to the calling 
procedure. If a name is returned, and the V bit (bit 
19) in the MSCW is on, the name is evaluated to 
yield an operand as described in the V ALC 
operator. Figure 7-4 shows a simplified flow chart 
of the Return operator. 

ADJ. 0, 1 

NO 

Enter Operator (ENTR) AB 

This operator is used to cause an entry into a 
procedure from a calling procedure. Entry is to the 
program segment and syllable addressed by the 
PCW. Figure 7-5 shows a simplified flow chart of 
the Enter operator. 

The Enter operator accesses the IRW at F + 1, 
which points to the PCW. The operator then builds 
a RCW into the stack at F + 1. 

OBTAIN 
STACK VECTOR 

DESC. 

OBTAIN WORD 
ADDRESSED 

BY 
SIRW 

NO 

YES 

Figure 7-2. Flow of Value Call Operator (Cont) 

7-17 



ADJ (0, 0) 

OBTAIN 
RCW 

AT (F + 1) 

SET UP 
REGISTERS TO RETURN 
TO PRIOR PROCEDURE, 
SAVE BOSR AND CUT 

BACK THE STACK 

OBTAIN WORD 
ADDRESSED 

BY (F) 

COMPUTE 
ADDRESS OF 

PREVIOUS 
MSCW 

NO 

OBTAIN PREVIOUS 
MSCW AND 

SAVE ADDRESS 

NO 

OBTAIN SEG. DESC. 
ADDRESSED BY PDR. 

SET PBR TO ADDRESS 

ADDRESS 

YES UPDATE D(.l.t] 
AND 

OBTAIN NEW 
MSCW 

IN S.D. &CAUSE A FETCH 

OPER. 
COMPLETE 

Figure 7-3. Flow of Exit Operator 

7-18 



ADJ (0, l) 

(SAVE RETURNED VALUE) 

OBTAIN 
RCW 

AT (F + l) 

SET UP 
REGISTERS TO RETURN 
TO PRIOR PROCEDURE I 

SAVE BOSR AND CUT 
BACK THE STACK 

OBTAIN WORD 
ADDRESS 

BY (F) 

COMPUTE ADDRESS 
OF PREVIOUS 
MSCW AND 

SAVE VALUE BIT 

OBTAIN PREVIOUS 
MSCW AND 

SAVE ADDRESS 

NO 

OBTAIN SEG. DESC. 
ADDRESSED BY PDR 

SET PBR TO ADDRESS IN 
S.D. & CAUSE FETCH 

OPER. 
COMPLETE 

Figure 7-4. Flow of Return Operator 

7-19 

ADDRESS 

UPDATE D[-U] 
,\ND OBTAIN 
NEW MSCW 

GO TO EVAL 
OPERATOR 

& 
SET "T" REG. 
TO VALC OP. 



NO 

NO 

ADJ (0, 0) 
AND OBTAIN WORD 

ADDRESSED BY 

OBTAIN WORD 
ADDRESSED BY 

IRW 

YES 

SAVE OFF PRESENT 
REGISTER SETTINGS 

(RCW) 

DISTRIBUTE 
PCW 

REGISTER SETTINGS 

STORE 
RCW AT 
(F + 1) 

STUFFED 

Evaluate (EVAL) AC 

This opera tor loads the A register with an 
indexed Data Descriptor or an IRW that addresses 
A "target," which may be an SIW, an Un-Indexed 
Data Descriptor, a String Descriptor, or an 
operand. The "target" may be referenced through 
a chain of accidental entries, or IRW. In any case 
memory accesses will continue to be made until 
the target is located. The A register is left 
containing the Data Descriptor or the IRW which 
addresses the target. Figure 7-6 is a simplified flow 
chart of the Evaluate operator. 

OBTAI~ MSCW 
AT 

.__ ___ (F~) 

COMPLETE THE MSCW 
AND STORE IT BACK 

AT (F) 

OBTAINW~RD 
ADDRESSED BY 

NEW PDR 

PLACE PROGRAM 
ADDRESS IN 

PBR AND FORCE 
A FETCH 

OPERl 
COM PU~ 

NO 

Figure 7-5. Flow of Enter Operator 

7-20 



ADJ (1, 2) 

OBTAIN 
STACK VECTOR 
DESCRIPTOR AT 

DO+ 2 

OBTAIN WORD 
ADDRESSED BY 

SIRW 

An indexed Data Descriptor is left in the A 
register when the target is referenced by an 
indexed Data Descriptor; a stuffed IRW is left in 
the A register when the target is referenced by 
IR W's. 

If the A register does not contain a Data 
Descriptor or an IRW at the start of this operator, 
an invalid operand interrupt is set and the opera­
tion is terminated. 

"A 11 REGISTER 

OBTAIN WORD 
ADDRESSED BY 

SIRW 

IN THE "A" 
REGISTER 

OPERATION 
COMPLETE 

Mark Stack Operator (MKST) AE 

This operator places a Mark Stack Control Word 
in the B register which contains a pointer to the 
previous MSCW in the stack. It adjusts the stack to 
push the MSCW into Memory. 

This operator is used to mark the stack when 
entry into a procedure is anticipated. 

Figure 7-6. Flow of Evaluate Operator 

7-21 



ADJ(l,2) 

OBTAIN 
WORD 
ADDRESSED BY 
"D" REGISTER 

SAVE STACK 
NUMBER OF 

MSCW 

OBTAIN STACK 
VECTOR AT 

[00+2] 

OBTAIN WORD 
NO ADDRESSED BY 

ADDRESS OF 
THIS MSCW­
MSCW. DF 

COMPUTE DISP 
FIELD SET LL FIE LO 
TO ZERO AND 
MARK AS STUFFED 

OPERATION 

COMPLETE 

Stuff Environment (STFF) AF 

This operator changes a normal IRW to a stuffed 
IRW so that a quantity may be referenced from a 
different addressing environment. The displace­
ment field locates the MSCW below the quantity 
and the index field locates the quantity relative to 
the MSCW. Figure 7-7 shows a simplified flow 
chart of the Stuff Environment operator. 

If the word in the A register at the start of the 
operation is not an IRW, an invalid operand 
interrupt is set and the operation is terminated. 

If, when creating this stuffed IRW, other than an 
MSCW is accessed, a sequence error interrupt is set 
and the operation is terminated. 

Insert Mark Stack Operator (IMKS) CF 

This operator builds an MSCW and places it 
..___. ___________ __.,. below the two top-of-stack quantities. 

Figure 7-7. Flow of Stuff Environment Operator 

7-22 



SECTION 8 
VARIANT MODE OPERATION AND OPERATORS 

GENERAL 

Escape To 16-Bit Instruction (VARI) 95 

The Variant Mode of operation extends the 
number of operation codes. These operators are 
not used as often and require two syllables; the 
first is the "Escape to 16-Bit Instruction" (VARI) 
operator. When the VARI operator is encountered, 
the following syllable is the actual operation and 
the syllable pointer is positioned beyond the two 
syllables. The VARI operator is valid only for the 
syllables covered in this section. 

Variant codes EO through EF are detected and 
cause a programed operator interrupt. All other 
unassigned variant codes cause no action and result 
in a loop timer interrupt. 

Variant Mode operations are both word- and 
string-oriented operators. 

OPERATORS 

Set Two Singles To Double (JOIN) 9542 

The operands in the A and B registers are 
combined to form a double-precision operand that 
is left in the B and Y registers. 

The operand in the A register is placed in the Y 
register. The A register is marked empty and the B 
register tag field is set to double-precision. 

Set Double To Two Singles (SPL T) 9543 

The SP(DP) operand in the B register is changed 
to two single-precision operands which are placed 
in the A and the B registers; both registers are 
marked full. 

If the operand in the B register is a single­
precision operand, the A register is set to all O's 
and the A and B registers are marked full. Both the 
A and the B register tag fields are set to 
single-precision. 

If the operand in the B register is a double­
precision operand, the Y register operand is placed 
in the A register and the tag fields of both the A 
and B registers are set to single-precision. 

8-1 

Idle Until Interrupt (IDLE) 9544 

This operator suspends processor program 
execution until the program is restarted by an 
external interrupt. The Normal Control State flip 
flop (NCSF) and the Inhibit Interrupt flip flop 
(IIFF) are unconditionally set to allow external 
interrupts. 

Set Interval Timer (SINT) 9545 (Control State 
Operator) 

This operator places the 11 low-order bits of the 
B register into the Interval Timer register, and arms 
the timer. The Interval Timer decrements each 512 
microseconds. The processor is interrupted when 
the timer reaches 0 and is still armed. The Interval 
Timer is disarmed when the processor is 
interrupted by an external interrupt. 

The operand used to set the Interval Timer is 
integerized before the 11 low-order bits are used. If 
the o"perand can not be integerized, an integer 
overflow interrupt is set and the operation is 
terminated. 

Enable External Interrupts (EEXI) 9546 

This operator causes the processor to enter 
normal state, allowing it to respond to external 
interrupts. This is accomplished by setting the 
NCSF and the (UHF) flip flops to O's. 

Disable External Interrupts (DEXI) 9547 

This operator causes the processor to ignore 
external interrupts. This is accomplished by setting 
the IIHF to 1 and entering control state. 

SCAN OPERATORS 

The Scan operators communicate between the 
processor and the Input/Output, Data 
Communications or General Control Subsystems 
via the scan bus. The scan bus consists of 20 
address lines, 12 control lines, and 48 data lines. 
The Scan-In functions read information from the 
subsystem to the top-of-stack register in the 
processor. The scan-out functions write informa­
tion from the top-of-stack registers in the processor 
to the given subsystem. 

Parity is checked during transmission of both 
address and information and a scan-bus parity error 
interrupt is generated if the check fails. 



~111111111 
48 ~=1=>~ 

Figure 8-1. Read Time-Of-Day Function Word 

Figure 8-2. Time-of-Day Word 

: : : : : : : : ~11111111111~-111111111111!:: : ~1111111111111 
16 

0 
12 f !llllllllll. 

0 
a lllllllllllll z 4 111111111111

1 
o 

Figure 8-3. Read General Control Adapter Function Word 

Scan In (SCN I) 954A 

Scan In uses the A register to specify the type of 
input required and the I/O Processor that is to 
respond. The input data is placed in the B register. 
The A register is empty and the B register full at 
the completion of the operation. 

Read Time-Of-Day Clock 

This operation transfers the contents of the 
time-of-day register from the I/O processor to the 
B register. Note that if the system has more than 
one I/O processor, only one time-of-day clock is 
active. I/O Processor A responds when an I/O 
processor is not designated. 

As this operation is initiated, the A register 
contains the function word shown in figure 8-1. 

The time-of-day word resulting from this opera­
tion is shown in figure 8-2. The B register is 
marked full and the A register marked empty at 
the completion of this operation. 

8-2 

Read General Control Adapter 

This operation places the contents of one of the 
four general control registers into the B register. 
Figure 8-3 shows the format of the function word 
present in the A register as the operation is 
initiated. 

There are four General Control designations: 

1. Z = 0001, GCA A 

2. Z = 0010, GCA B 

3. Z = 0100, GCA C 

4. Z = 1000, GCA D 

The N field is used to address or read one of 
four, 48-bit general control adapter registers. The 
following are these registers and their addresses: 

1. N = 00, Input register. 

2. N = 01, Interrupt mask. 

3. N = 10, Interrupt register. 

4. N = 11, Output register. 



I 

The A register is marked empty; the B register 
contains the word read from the general control 
adapter and is marked full as this operation is 
completed. 

Read Result Descriptor 

This operation places a result descriptor into the 
B register from the 1/0 Processor specified. The A 
register contains the function word shown in figure 
8-4. 

1/0 Processor designations are as follows: 

1. Z = 0001, 1/0 Processor A. 

2. Z = 0010, 1/0 Processor B. 

3. Z = 0100, 1/0 Processor C. 

At the completion of this operation, the B 
register contains the result descriptor shown in 
figure 8-5. The B register is marked full and the A 
register is marked empty. The result is undefined if 

l~::,lli!!!'!il 

the 1/0 processor has no result descriptor. 

The result descriptor error field is divided into a 
STANDARD error field and unit error field. The 
STANDARD error field bit assignments are defined 
individually for each peripheral control: 

1. Bit 0: Exception. 

2. Bit 1: Attention. 

3. Bit 2: Busy. 

4. Bit 3: Not ready. 

5. Bit 4: Descriptor error. 

6. Bit 5: Memory address. 

7. Bit 6: Memory parity error. 

8. Bit 16: Memory protect. 

The unit error field (U.N.) in figure 8-5 is the 
unit number field. The C.C. represents the 
character count field. 

Figure 8-4. Read Result Descriptor Function Word 

15 11 7 3 
STANDARD 

14 10 6 2 
ERROR FIELD 

13 9 5 

:: :: :: :: tFl !!il\111\!~~~: ~:~ llli!!ii 
EMORY ADDRESS ................. C.C. :::::::::: U.N. U.N ::::::::: 
41 37 33 29 :/:/::::: 25 :<<: 21 17 /:}; 

'.//):/:/:/:: U.N. U.N. Ht: 
40 36 32 28 ::::::/:\:/:\:/: 24 20 >>: 16 12 8 4 0 

Figure 8-5. Result Descriptor 

.... 

:::1!!1111!! oJ 
Figure 8-6. Read Interrupt Mask Function Word 

8-3 



0 

Figure 8-7. Interrupt Mask Word 

Figure 8-8. Read Interrupt Register Function Word 

8 4 0 

Figure 8-9. Interrupt Register Word 

Read Interrupt Mask 

This operation places the interrupt mask word 
into the B register from the 1/0 processor 
specified. The A register contains the function 
word shown in figure 8-6. 

1. Z = 0001, 1/0 Processor A. 

2. Z = 0010, 1/0 Processor B. 

3. Z = 0100, 1/0 Processor C. 

At the completion of this operation, the B 
register contains the interrupt mask word as shown 
in figure 8-7. The B register is marked full, the A 
register is marked empty. 

The following are the mask bit assignments: 
(D.C.P. is Data Communications Processor) 

1. Bit 0: Status change. 

2. Bit 1: D.C.P. - 1. 

3. Bit 2: D.C.P. - 2. 

4. Bit 3: D.C.P. - 3. 

5. Bit 4: D.C.P. - 4. 

6. Bit 9: 1/0 finished. 

The bit is set in the interrupt mask if recognition 
of the interrupt is inhibited. 

8-4 

Read Interrupt Register 

This operation places an interrupt register word 
from the 1/0 Processor specified into the B 
register. The A register contains the function word 
shown in figure 8-8. 

1. Z = 0001, 1/0 Processor A. 

2. Z = 0010, 1/0 Processor B. 

3. Z = 0100, 1/0 Processor C. 

At the completion of this operation, the B 
register contains the interrupt register word as 
shown in figure 8-9, and is marked full; the A 
register is marked empty. 

The interrupt register bit assignments are shown 
below: 

1. Bit 0: Status change. 

2. Bit 1: D.C.P. - 1. 

3. Bit 2: D.C.P. - 2. 

4. Bit 3: D.C.P. - 3. 

5. Bit 4: D.C.P. - 4. 

6. Bit 9: 1/0 Finish. 

The bit is on in the Interrupt Status Register if 
the interrupt is pending. 



Read Interrupt Literal 

This function places the interrupt literal word 
from the 1/0 Processor specified into the · B 
register. The A register contains the function word 
shown in figure 8-10. 

1/0 Processor designations are as follows: 

1. Z = 0001, 1/0 Processor A. 

2. Z = 0010, I/O Processor B. 

3. Z = 0100, I/O Processor C. 

At the completion of this operation the B 
register contains the interrupt literal ~ord as 
shown in figure 8-11 and is marked full· the A 
register is marked empty. ' 

The following are the interrupt literal bit 
assignments: 

1. Bits 3:4, 0001 = I/O Processor A. 

0010 = I/O Processor B. 

0100 = I/O Processor C. 

2. Bits 7:4, 0001 = D.C.P. - 1. 

0010 = D.C.P. - 2. 

0011 = D.C.P. - 3. 

: ::!111!1111 

0100 = D.C.P. - 4. 

1001 = I/O Processor I/O finished. 

1111 = Status change. 

0000 =No external device. 
0101 = I/O Processor external 
interrupt. 

Interrogate Peripheral Status 

This operation places one of eight status vector~ 
words from one of the I/O Processors into the B 
register. A B 6700 may have up to 256 peripheral' 
units designated in the system. This configuration: 
requires eight status vector words, each indicating. 
the ready status of 32 units. Vector-word O _ 
displays the status of units O through 31, -
vector-word 1 the status of units 32 through 63, 
etc. The A register contains the function word• 
shown in figure 8-12. -

1/0 Processor designations are as follows: 

1. Bit 0: 

2. Bits 4:4: 

M = 0, All 1/0 Processors are to 
respond. 

M = 1, I/O Processor designated by .. 
Z to respond. 

Z = 0001, 1/0 Processor A. 

0 

Figure 8-10. Read Interrupt Literal Function Word 

Figure 8-11. Interrupt Literal Word 

::::::::::::::::::::: 0 

lil!l:..-o-1-91--0--1 

\UH o ·:·:·:·:·:·:·:·:·:·:· 0 

:\:;:\:\:;M. 
4 :::::::::::::::::::::: 0 llliil II i!I : : '. 

0 

Figure 8-12. Interrogate Peripheral Status Function Word 

8-5 



a-l/llllli/1//1 

': ::Illlillillll ~111111111111 
lli!llllllli1 

32 

31 27 

30 26 

29 25 

28 24 

23 l 9 

STATUS 
22 l 8 

21 l 7 

20 l 6 

l 5 l l 

BITS 
14 l 0 

l 3 9 

...... 

: : !111111111111 

l 2 8 

Figure 8-13. Status Vector Word 

::::;:::::;:: :::::::::::::::::::::: 0 :/:/)/ l :::;:;:;::;: z ::.:.-:::::: 

: :: ;111111111111 : :::: : : : : : : :::::: ::: N ~ ~: ~: ;: : FI : : 
1

/i!//l/i///i : . : l///1///1//10 

•0_.±~,...:~--.·.!:o.:.;.:~-.~.::!.:_1.;...~.·.·.!=;_~.;.:,;,!.·:!.:.i'--_____________ _......v: .... ::::::;w:::::: .... :::::: .... :::::: .... :::::::;w:::::::.;.;.i:::: _ ____JL-_~2~:·;.;.;.;_:.::.·.:~.-:;.;.;.~.-::.·.:~.-: .... ~.-::.·.:: .. ::.;,;,. .. :.::.:.·:.:'-o-~&.:..:.:-".:i:i.:1:1 ::.·.:·:i.:!:i_:i:!_:i.:i 0 

4 l: .. :!_~:=~_:l:~_::!_:::.:,.~_::[,.l_,=::[ __ M · 0 - . :::::::::::::::::::::::::::::::::::::::::::::: 16 

Figure 8-14. Interrogate Peripheral Unit Type Function Word 

Figure 8-15. Unit Type Function Word 

Z = 0010, 1/0 Processor B. 

Z = 0100, 1/0 Processor C. 

3. Bits 11 :3: N =Status vector number, 0 
through 7. 

N = Status change vector, 8. 

At completion of this operation, the B register 
contains the status vector word addressed by the 
value of N with the status vector word in a format 
shown in figure 8-13. The B register is marked full 
and the A register is marked empty. 

A status-change bit is assigned to each line 
printer or display unit and indicates completion of 
paper-motion or input request. Only bits 1 :¢ 30 
are used for status change vector result. 

The X-bit in the status vector word is on if the 
word is valid. 

8-6 

Interrogate Peripheral Unit Type 

This operation places the peripheral-unit­
type-word into the B register from one of the 1/0 
Processors. The A register contains the function 
word shown in figure 8-14. 

1. M = 0, 

2. M = 1, 

All 1/0 Processors to respond. 

1/0 Processor designated by Z to 
respond. 

When M = 1, the Z field MPX designations are: 

L Z = 0001, 1/0 Processor A. 

2. Z = 0010, 1/0 Processor B. 

3. Z = 0100, 1/0 Processor C. 

Upon completion of this operation, the B 
register contains the peripheral-unit-type function 
word as shown in figure 8-15 and is marked full; 
the A register is marked empty. 



The codes shown below identify the following 
units: 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

Code 

00 
01 

02 

04 

05 

06 

07 

09 

Unit 

No unit. 
Disk file. 

Display. 

Paper-tape reader. 

Paper-tape punch. 

Buffered line-printer, 
BCL drum. 

Unbuffered line-printer, 
BCL drum. 

Card reader. 

9. OB ( 11) Card punch. 

10. 

11. 

12. 

OD (13)Magnetic tape (7 
channel). 

With status vec­
tor information. 

OE (14) Magnetic tape (9 channel 
N.R.Z.). 

With status vec­
tor information. 

OF (15) Magnetic tape (9 channel 
P.E.). 

With status vec­
tor information. 

13. 

14. 

15. 

16. 

17. 

1D(29)Magnetic tape (7 
channel). 

No status vector 
information. 

IE (30) Magnetic tape (9 channel 
N.R.Z.). 

No status vector 
information. 

1 F (31) Magnetic tape (9 channel 
P.E.). 

No status vector 
information. 

26 (38) Buffered line-printer, _ 
EBCDIC-subset drum. 

27 (39) Unbuffered line-printer, 
EBCDIC-subset drum. 

Interrogate I /0 Path 

This operation determines the availability or 
absence of an access to a specified unit. The result 
word is placed in the B register. The A register 
contains the function word shown in figure 8-16. 

Primary I/O Processor designations are as _ 
follows: 

1. M = 0, All I/O Processors . 
respond. 

2. M = 1, I/O Processor designated 
by Z to respond. 

,.,,,.,.,.,.,.>--:-:-: 1111111111111. 

0 :/)/:/ M. 
16 4 \:/:/:) 0 

Figure 8-16. Interrogate 1/0 Path Function Word 

0 

0 }? :·:· 
49 :-:· 

0 
48) 

Figure 8-17. 1/0 Path Result Word 

8-7 



I/O Processor designations with M= 1 are shown 
below: 

1. Z = 0001, I/O Processor A. 

2. Z = 0010, I/O Processor B. 

3. Z = 0100, I/O Processor C. 

At the completion of this operation, the B 
register contains the result word shown in figure 
8-1 7 and is marked full; the A register is marked 
empty. 

The A-bit indicates path availability: 

1. A = 0, No path available. 

2. A = 1, Path is available. 

The Z field identifies the 1/0 processor when a 
path is available. 

1. 

2. 

3. 

4. 

5. 

0 
50 ::::::\:\:'.::' 

0 

0 49 :!:.II':i 
49:::::\:\:\ 

Z = 0001, Path is via I/O 
Processor A. 

Z=OOlO,Path is via 1/0 
Processor B. 

Z = 0011, Path is via either 
1/0 Processor A or 
B. 

Z = 0100, Path is via 1/0 
Processor C. 

Z = 0101, Path is via 1/0 
Processor A and C. 

6. 

7. 

Z = 0110, Path is via 1/0 
Processor B and C. 

Z = 0111, Path via all 1/0 
Processors. 

A data path consists of a data switching channel 
and a peripheral control. 

Scan Out (SCNO) 9548 

Scan-out places bits 0 through 19 of the 
top-of-stack word on the scan-bus address lines, 
and also places the second stack word on the 
scan-bus information lines. An Invalid Address 
interrupt results if the address word is invalid. The 
A and B registers are empty upon successful 
completion of a Scan-Out. 

Set Time-Of-Day Clock 

This operation transfers the time of day infor­
mation from the B register to the time-of-day 
register in the 1/0 Processor (figure 8-19). The 
function word shown in figure 8-18 is in the A 
register. 1/0 Processor responds when an 1/0 
Processor is not designated. An invalid operand 
interrupt results if the processor is not in control 
state. 

At the completion of this operation, the A and 
B registers are marked empty. 

\:\)/O 

:/:/:\:: 0 

:::::::::::::::::::: 0 

:\:\:/:: 0 

0 0 
19 15 

0 0 
18 14 

0 0 
17 13 

0 

16 12 0 

Figure 8-18. Set Time-of-Day Clock Function Word 

.------ ::::::::::::::::::::::: 35 31 27 23 1 9 l 5 1 1 7 3 
0 :;:::::::::::::::::::: 

r--2Q.. })}}} 34 30 26 22 l 8 14 10 6 2 
0 }}\:}} TIME OF DAY 

~:}/}}} 33 29 25 21...L l 7 ...L l 3 9 5 
0 }:}:}:\ 

·········· 32 28 48 ?\:\;\' 24 20 l 6 l 2 8 4 0 

Figure 8-19. Time-of-Day Word 

8-8 



?!}{!I l 0 0 ................................ :-:-.-: .. -: .... 1 .·.·.·.·.·.·. z 

!:! :t-:-:-: ....... :-:-:-+1Jll 11l~ll 1 II t~ I I lil!lliilL-:-:~:!..i=·:·=-:·:-: 
·''.lo ·······.··· ·.···· ··········· ..... . 
:f:\?h 16 ° 12 \\\\\\\\\\\)}\\\{\\:)}\{\} \\\\ 

0 
8 ;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.;'.; 

0 
4111111111111

1 o~ 
Figure 8-20. Set General Control Adapter Function Word 

Figure 8-21. Initiate 1/0 Function Word 

39 35 31 27 19 15 11 7 3 

0 BUFFER AREA 
38 34 1 30 26 

I 
2 18 14 10_._ 6 

T 
0 LENGTH BASE ADDRESS 

37 33 29 25 17 13..J. 9 5 
0 

36 32 28 24 16 12 8 4 0 

Figure 8-22. Area Descriptor 

Set General Control Adapter 

This operation sets one of three addressable 
general control adapter registers from the word in 
the B register. The three general control adapter 
registers that can be set are the output register, 
interrupt mask register and the interrupt register. 

The A register contains the function word 
shown in figure 8-20, and the B register contains 
the output, the interrupt mask or the interrupt 
word. 

I/O Processor designations are as follows: 

1. 

2. 

3. 

Z = 0001, I/O Processor A. 

Z = 0010, I/O Processor B. 

Z = 0100, I/O Processor C. 

Output, interrupt mask, or interrupt register 
designations are as follows: 

8-9 

1. N= 00, Output. 

2. N = 01, Interrupt mask 
register. 

3. N= 10, Interrupt register. 

At the completion of this operation, both the A 
and B registers are marked empty. 

Initiate 1/0 (Control State Only) 

This operation initiates an I/O unit specified by 
the function word in the A register. The code word 
format is shown in figure 8-21. 

The B register holds the area descriptor and has 
the format shown in figure 8-22. The area 
descriptor points to the base address of the I/O 
area where the I/O control word is located (figure 
8-23). 

At completion of this operator the A and B 
registers are marked empty. 



47 43 39 :\:/:\:/: 
'--+-----+---~ 

0 STANDARD 

50 ::;:;::::::: 4;0NT:~L 38 :m::;:-;:;-:::: 0 

49 ::::::\:\:\:: 45 41 37 :\:\:/:\: ----+---t.' 
0 

48 ::/:\:\:\ 44 FIE~~ 36 \l\\\\\\\\\11 

Figure 8-23. 1/0 Control Word 

0 

:::::::::::::::::: 

:::::::::::::::::: 
}{ ?::'.: 47 43 39 35 /:/:/:/: 31 27 23 l ~::::::::::::::::::::::::::: 

r---+:-:-:-:-:·:·:·:-:,:+---+---+--1-----f +--....._--1---+----1- -------+-------
::::::::: ::::::::: 
(/::::/: 

1---5_0 ........ ::::: .... :,:: ..... :: .. ::·.: .. : .. -1--..:...:46:::.+-------..:.4=...j2 '---==3::.::::8-+-_3:::...4: ... , .. :::::?/\/ 30 26 22 1 _§:}{}}:} __ 14 __ 1 ...... o __ 6 ___ 2 ...... 

3 15 11 7 

0 LENGTH SIZE OFFSET 
49 ::::: 45 41 37 33 :::::::::::::::::::::::: 29 25 21 1 ~?\{}}} 13 9 5 

1---~::: ... ·::::::.1---+-----+-~1--~, ---~-----------

48 44 40 36 32 :::::::::::::::::::::::: 28 24 20 l~:t:/}}\ 12 8 4 0 

Figure 8-24. Index Control Word 

The 1/0 control word pointed to by the area 
descriptor is transferred to the 1/0 Processor. This 
word is divided into a standard control field and a 
unit control field. The unit control field bit 
assignments are defined individually for each 
control. For additional information concerning 
unit control field bit assignments for each control, 
refer to section 5 of the B 6700 System Handbook. 

Bit 

47 

46 

45 

44 

43 

42 

41 

40 

39 

38 

Assignment 

Reserved 

Reserved 

Attention 

Read/write 

Memory inhibit 

Translate 

Frame length 

Memory protect 

Backward transfer 

Test 

37-36 Tag field transfer 

37-36 Store program tag 

Bit=O 

No 

write 

No 

No 

6-bit 

No 

No 

No 

37=1 

37=0 

37-36 Store single-precision tag 37=0 

37-36 Store double-precision tag 37= l 

Bit=l 

Yes 

read 

Yes 

Yes 

8-bit 

Yes 

Yes 

Yes 

36=1 

36=1 

36=0 

36=1 

8-10 

Read Processor Identification (WHOI) 954E 

This operator places in the A register a single­
precision operand containing the value of the 
processor ID register. The A register is marked full. 

Interrupt Other Processor (HEYU) 954F 

This operator sets the processor interrupt flip 
flop of the other processor(s). 

Occurs Index (OCRX) 9585 

This operator places the following in the B 
register: a new index value calculated from the 
Index Control Word (ICW) in the A register (figure 
8-24) and the operand in the B register (figure 
8-25). 

The index word in the B register is integerized. 
If the index is greater than the maximum integer 
value (549,755,813,887), the integer overflow 
interrupt is set and the operation terminated. 

The LENGTH field of the ICW [ 4 7: 16] is 
multiplied by the index value [ 15: 16] minus 1, 
and that value is added to the OFFSET field of the 
ICW. This result is the new index. The A register is 
marked empty and the B register is marked full. 



.............. 

47 43 39 35 31 27 23 l 9 l 5 l 1 7 3 

50 46 42 38 34 30 26 22 l 8 l 4 l 0 6 2 

INDEX 
49 45 41 37 33 29 25 21 l 7 l 3 9 5 

48 ·············· 44 40 36 32 28 24 20 l 6 l 2 8 4 0 

Figure 8-25. Index Word 

~---

N <::·11 ES 
47 )::: 19 ?\ 

0 
0 50 :: 46 LL 
~ DSF OFF 

1 T 
49 45 

l ::::;: F 
48 44 

ES - EXTERNAL SIGN FLIP FLOP DSF - DELTAS-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR 
0 - OVERFLOW FLIP FLOP N - NORMAL-CONTROL STATE FLIP FLOP 
T - TOGGLE, TRUE-FALSE FLIP FLOP LL - ADDRESSING LEVEL 
F - FLOAT FLIP FLOP DFF - DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TO rS 

Figure 8-26. Top-of-Stack Control Word (TSCW) 

If either the ICW or the operand has a value of 
0, the invalid index interrupt is set and the 
operation is terminated. 

If the index value is less than 0 or greater than 
the SIZE field [ 31: 16] of the ICW, the invalid 
index interrupt is set and the operation is 
terminated. 

lntegerized, Rounded, Double-Precision (NTGD) 
9587 

This operator creates from the o'perand in the B 
register a double-precision, rounded integer in the 
B register. The B register is marked full. If the 
word in the B register at the start of this operator 
is not an operand, the invalid operand interrupt is 
set and the operation is terminated. 

If the operand in the B register is larger than 8 t 

26-1 in absolute value, the integer overflow 
interrupt is set and the operation is terminated. 

The B register is marked as a double-precision 
operand (tag bits set to 010) and the exponent is 
set to 13. 

8-11 

Leading One Test (LOG2) 9588 

This operator locates the most significant one­
bit of the word in the B register and places the 
location of that bit into the B register (bit number 
+ 1 ). 

If a one-bit is not sensed, the B register is set to 
all O's. 

The B register is marked full. 

Move To Stack (MVST) 95AF 

This operator causes the environment of the 
processor (or addressing space) to be moved from 
the current stack to the program stack specified by 
the operand in the B register. 

The operator builds a Top-of-Stack Control 
Word (TSCW) (figure 8-26) and places it at the 
base of the current stack as addressed by the 
Base-of-Stack Register. 

The operand in the B register is integerized and 
checked against the stack vector for invalid index. 
The value in the B register is added to the address 
field of the stack vector Descriptor (at D[OJ +2), to 
address the descriptor for the new stack. 



The Data Descriptor for the requested stack is 
accessed. If the presence bit is "on," the address 
field is placed into the Base-of-Stack Register. The 
TSCW is brought up and the stack is marked 
"active" by storing the processor ID at the base of 
the stack. The TSCW is distributed and the D 
registers are updated. 

If during the integerization the operand in the B 
register is too large, the integer overflow interrupt 
is set and the operation is terminated. 

If the index value is less than 0 or greater than 
the length field of the Data Descriptor for the 
stack vector array, an invalid index interrupt is set 
and the operation is terminated. 

Set Tag Field (STAG) 9584 

This operator sets the tag field (bits 50: 3) in the 
B register to the value of bits 2: 3 of the operand in 
the A register. At the completion of the operation, 
the A register is marked empty and the B register is 
left full. 

Read Tag Field (RTAG) 9585 

This operator replaces the word in the A register 
with a single-precision operand equal to the tag 
field of that word. The tag bits are placed in bits 
2: 3. The A register is marked full. 

Rotate Stack Up (RSUP) 9586). 

This operator permutes the top three operands 
of the stack so that the first operand has become 
the second, the second has become the third, and 
the third has become the first (see figure 8-27). 

BEFORE ROTATION 

rA WORD ONE 

rB WORD TWO 

S----+ WORD THREE 

AFTER ROTATION 

rA WORD THREE 

rB WORD ONE 

s--.. WORD TWO 

Figure 8-27. Stack Rotation Up 

. Rotate Stack Down (RSDN) 9587 

8-12 

This operator permutes the top three operands 
of the stack so that the first has become the third, 
the second has become the first, and the third has 
become the second (see figure 8-28). 

BEFORE ROTATION 

rA WORD ONE 

rB WORD TWO 

S---+ WORD THREE 

AFTER ROTATION 

rA WORD TWO 

rB WORD THREE 

S----+ WORD ONE 

Figure 8-28. Stack Rotation Down 

Read Processor Register (RPRR) 9588 

This operator reads the contents of one of the 
eight Base registers, eight Index registers or one of 
the 32 D registers into the A register. 

The six low order bits of the A register selects 
the processor register to be read. 

The decoding of these six bits is as follows: 

Bits 5:2 =10 =Index register 

Bits 2: 3 = 0, = PIR 
= 1, =SIR 
= 2, =DIR 
= 3, = TIR, BUF 3 
= 4, =LOSR 
= 5, =BOSR 
= 6, =F 
= 7, =BUF 

Bits 5 :2 =11 =Base register 

Bits 2: 3 = 0, =PBR 
= 1, = IBR 
= 2, =DBR 
= 3, =TBR, BUF 2 
= 4, =S 
= 5, =SNR 
= 6, =PDR 
= 7, =TEMP 



If bit 5 is 0, bits 4:5 select the D register equal 
to the binary value of the bits; i.e., bits 4:5 = 
00101 select D register 5. 

At the completion of this operation the A 
register contains the contents of the selected 
register, and is marked full. 

Set Processor Register (SPRR) 9589 

This operator places the contents of the address 
field of the A register into one of the eight Base 
registers, eight Index registers or 32 D registers 
selected by the six low-order bits of the word in 
the B register. 

The decoding of the six low-order bits is the 
same as in the Read Processor Register operator 
(RPRR) discussed under the previous heading. 

The A and B registers are marked empty. 

Read With Lock (RDLK) 95BA 

This operator performs the same operation as 
the Overwrite operator (see section 7), with the 
exception that the word which was in memory 
before the overwriting is left in the A register. 

Count Binary Ones (CBON) 95BB 

This operator counts the number of one-bits in 
the single-precision (double-precision) operand in 
the A register. At the completion of the operation, 
the total count is left in the A register with the 
register marked full. 

Load Transparent (LOOT) 95BC 

This operator performs a Load operator (see 
section 7) if the word in the A register is a Data 
Descriptor or an Indirect Reference Word. If it is 
neither of these, bits 19: 20 of the A register are 
used as the address to bring an operand to the A 
register. Copy bit action does not occur. 

Linked List Lookup (LLLU) 9580 

This operator searches a linked list of words. 

The operator starts with an operand in the top 
of the stack as the index pointer. The second word 
in the stack is a non-indexed Data Descriptor to 
the array containing the linked list. The third word 
in the stack is an operand that is the argument. 

8-13 

The base address of the linked list, the length of 
the list and the argument value are saved through­
out the entire operator process. 

The word addressed by the base address plus the 
index value are read and checked for a value of 0 in 
the address (Link) portion of the word (0 denotes 
the end of the linked list). If the link is non-zero, 
bits 4 7: 28 are com pared to the argument value. If 
the argument of the linked-list word is less than the 
argument value, the actions described in this 
paragraph are repeated using the link as the new 
index. 

When the value of the argument field of the 
linked-list word is equal to or greater than the 
argument value, the operation is complete. The 
index pointing to the word whose link points to 
the argument which satisfies the test is left in the A 
register and is marked full. 

If the value of the link portion of the linked-list 
word is equal to 0, the A register is set to minus 
one (-1 ), and marked full as the operation is 
completed. 

If the index value in the linked list word is 
greater than the length value from the descriptor, 
an invalid index interrupt is set and the operation 
is terminated. 

When the first word in the stack at the start of 
this operator is not an operand an invalid-operand 
interrupt is set and the operation is terminated. 

If the Data Descriptor has been indexed, the 
invalid-operand interrupt is set and the operation is 
terminated. 

Masked Search For Equal (SRCH) 95BE 

At the start of this operator, the word in the A 
register must be a Data Descriptor. The operand in 
the B register is a 51-bit mask. The Data Descriptor 
in the A register and the mask in the B register are 
saved, and the 51-bit argument word is placed into 
the B register. If the descriptor is indexable (bit 45 
equal to 0), the index bit (bit 45) is set and 1 is 
subtracted from the length field. If bit 45 is equal 
to 1, the data descriptor is already indexed; 
therefore, that index is the starting value. 

The word addressed by the descriptor is placed 
in the A register and ANDed with the mask word. 
The result of this AND function is tested to 
determine if it is identical to the argument word. 



If the comparison is not equal, the index field of 
the descriptor is decreased by 1 and the operation 
is repeated. If the index field is equal to 0, the A 
register :is set to a minus one value and marked full. 
The B register is marked empty. 

If an equal comparison is made, the A register 
contains the index pointing at the last word 
compared and :is marked full. The B register is 
marked empty. 

Unpack Absolute, Destructive (UABD) 95D1 

This operator unpacks a string of 4-bit digits 
into 6-bit characters or eight-bit bytes. At the start 
of the operator, the word in the A register defines 
the length of the operand in the B register; i.e., the 
string of digits to be unpacked. 

The third word in the stack is a string descriptor 
addressing the destination of the string. 

As the specified number of digits are transferred 
to the destination, zone fill is as follows: 

1. If the destination size is six-bit (BCL) format, 
the characters are transferred to the 
destination with the two zone bits set to 0. 

2. If the destination size is eight-bit (EBCDIC) 
format, the bytes are transferred to the 
destination string with the four zone bits set 
to 1111. 

3. If the destination size is 0, it is set to eight-bit 
format and handled as in (b) above. 

Unpack Absolute, Update (UABU) 95D9 

This operator performs an Unpack Absolute 
operation; at the completion of the operation, the 
destination pointer is updated and left in the stack. 

Unpack Signed, Destructive (USND) 95DO 

This operator performs an Unpack operation, 
plus an added function if the External Sign flip 
flop is set, then a zone of 10 is set in the last 
character for six-bit or a zone of 1101 is set in the 
last byte for eight-bit. 

If the destination size is four-bit, the first digit 
position of the destination string is set to 1101 
provided the External Sign flip flop :is set. If the 
External Sign flip flop is 0, the first digit is set to 
1100. 

8-14 

Unpack Signed, Update (USNU) 95D8 

This operator performs an Unpack Signed 
operation; at the completion of the operation, the 
destination pointer is updated. 

Transfer While True, Destrnctive (TWTD) 95D3 

This opera tor transfers characters from the 
source string to the destination string for the 
number of characters specified by the length 
operand while the stated relationship is met. If the 
relationship is not met, the transfer is terminated 
at that point. The relationship is determined by 
using the source character to index a table. If the 
bit indexed is a 1, the relationship is true. 

The operator uses the top four words in the 
stack as follows. The top word addresses the table; 
the second word is the length of the string to be 
transferred; the third word in the stack is an 
operand or a descriptor addressing the source string 
or a single-precision operand which is the source 
string; and the fourth word in the stack is a 
descriptor pointing at the destination string. 

The table is indexed as follows to obtain the 
decision bit. The source character is expanded to 
eight bits, if necessary, by appending two or four 
leading 0 bits. The three high-order bits of these 
eight select a word from the table, indexing the 
table pointer. The remaining five bits of the 
expanded source character select a bit from this 
word by their value. 

Transfer While True, Update (TWTU) 95DB 

This operator performs a Transfer While True 
operation, but uppates t~e source pointer, the 
destination pointer and repeat count. 

If all the characters specified by the length field 
are transferred, the True/False flip flop (TFFF) is 
set to 1 (true); otherwise, it is set to 0 (false). 

Transfer While False, Destructive (TWFD) 95D2 

This opera tor performs a Transfer While 
operation and tests for a zero bit in the table. 

Transfer While False, Update (TWFU) 95DA 

This operator performs a Transfer While False 
operation, but updates the source pointer, the 
destination pointer, and the repeat count. 



If all the characters specified by the length field 
are transferred, the True/False flip flop (TFFF) is 
set to 1 (true); otherwise, it is set to 0 (false). 

Translate (TR NS) 95D7 

This operator translates the number of 
characters specified as they are transferred from 
the source string to the destination string. 

The translation uses a table containing the 
translated characters. The word in the top of the 
stack is a descriptor that addresses the translation 
table. The second operand in the stack specifies the 
length of the string. The third word in the stack is 
a descriptor addressing the source string (or an 
operand which is the source string), and the fourth 
word in the stack is a descriptor addressing the 
destination string. The source and destination are 
updated at the end of the operation. 

The translation occurs as follows. The specified 
string character is used as an index into the table to 
locate a character. The located character is 
transferred to the destination string. 

The least significant 32 bits of each table word 
provide four eight-bit characters. The table sizes 
are as follows: 

1. Four-bit digits provide a 4-word table length. 

2. Six-bit characters provide a 16-word table 
length. 

3. Eight-bit bytes provide a 64-word table 
length. 

Scan While Greater, Destructive (SGTD) 95F2 

This operator scans a string while the characters 
in the source string are greater than a delimiter 
character or until the number of characters 
specified have been scanned. 

If all the characters have been scanned at the 
completion of this operation, TFFF is set to 1. If 
the scan was stopped by the delimiter test before 
the end of the string, the TFFF is set to 0. 

At the start of this operator the delimiter 
character is right justified in the top word of the 
stack. The length of the string to be scanned is the 
second word of the stack. The source pointer is the 
third word in the stack. 

8-15 

If the second word in the stack is a descriptor, it 
is the source pointer and the length of the 
character string is set to 1,048,575. 

Scan While Greater, Update (SGTU) 95FA 

This operator performs a Scan While Greater 
operation and also updates the count and the 
source pointer. The updated source pointer locates 
the character that stopped the scan. The number of 
characters not scanned is placed in the A register, 
and the register is marked full. 

Scan While Greater Or Equal, Destructive (SGED) 
95F1 

This operator performs a Scan While operation 
while the characters in the source string are equal 
to or greater than the delimiter character. 

Scan While Greater Or Equal, Update (SGEU) 
95F9 

This operator performs a Scan While Greater or 
Equal operation, but also updates the count and 
the source pointer. 

Scan While Equal, Destructive (SEOD} 95F4 

This operator performs a Scan While operation 
while the characters in the source string are equal 
to the delimiter character. 

Scan While Equal, Update (SEOU} 95FC 

This operator performs a Scan While Equal 
operation, but also updates the count and the 
source pointer. 

Scan While Less Or Equal, Destructive (SLED} 
95F3 

This operator performs a Scan While operation 
while the characters in the source string are equal 
to or less than the delimiter character. 

Scan While Less Or Equal, Update (SLEU} 95FB 

This operator performs a Scan While Less or 
Equal operation, but also updates the count and 
source pointer. 

Scan While Less, Destructive (SLSD} 95FO 

This operator performs a Scan While operation 



while the characters in the source string are less 
than the delimiter character. 

Scan While Less, Update (SLSU) 95F8 

This operator performs a Scan While Less 
operation, but also updates the count and the 
source pointer. 

Scan While Not Equal, Destructive (SNED) 95F5 

This operator performs a Scan While operation 
while the characters in the source string are not 
equal to the delimiter character. 

Scan While Not Equal, Update (SNEU) 95FD 

This operator performs a Scan While not Equal 
operation, but also updates the count and the 
source pointer. 

Scan While True, Destructive (SWTD) 95D5 

This operator uses each source character as an 
index into a table to locate a bit in the same 
fashion as the transfer while True operators. If the 
bit located contains the value of 1, the relationship 
is true and the scan continues. 

8-16 

The first word in the stack is a descriptor 
addressing the table. The second and third words in 
the stack are the same as for all Scan While 
operators. 

Scan While True, Update (SWTU) 95DD 

This operator performs a Scan While True 
operation, but also updates the count and the 
source pointer. The number of characters not 
scanned is placed in the A register. 

Scan While False, Destructive (SWFD) 95D4 

This operator performs a Scan While False 
operation, except the relation is true if the bit 
found by indexing into the table contains the value 
of zero. 

Scan While False, Update (SWFU) 95DC 

This operator performs a Scan While False 
operation, but also updates the count and the 
source pointer. 



g 
SECTION 

EDIT MODE OPERATION AND OPERATORS 
GENERAL 

The purpose of the Edit Mode operators is to 
perform editing functions on strings of data. The 
editing functions are those which are normally 
involved in preparing information for output. They 
include such operators as Move, Insert, and Skip, in 
the form of micro-operators in· either the program 
string or in a separate table. In the program string, 
they are single micro-operators and are entered by 
use of the Execute Single Micro or Single Pointer 
operators (see section 7). If the micro-operators are 
in a table, the table becomes the program string 
that is to be executed. This table is entered by 
means of the Table Enter Edit operators (see 
section 7), and is exited through the End Edit 
micro-operator as defined later in this section. 

If the source or destination data has the memory 
protect bit (bit 48) equal to one, the segmented­
array interrupt is set and the current 
micro-operator is terminated. 

EDIT MODE OPERATORS 

The Edit Mode operators are described in the 
following paragraphs of this section. 

Move Characters (MCH R) D7 

This micro-operator transfers characters from 
the source string to the destination string. 

If this micro-operator is entered by the Table 
Enter Edit operator (see section 7), the number of 
characters to be transferred is specified by the 
syllable following the operator syllable. 

If this micro-operator is entered by the Execute 
Single Micro operator (see section 7), the number 
of characters to be transferred is specified by the 
operand in the top of the stack. 

Move Numeric Unconditional (MVNU) D6 

This micro-operator transfers the four low-order 
bits of the characters of the source string to the 
destination string. If the destination string 
character size is 6 bits (BCL) the zone bits are set 
to 00. If the destination string character size is 8 
bits (EBCDIC), the zone bits are set to 1111. 

If this micro-operator was entered by use of the 
Table Enter Edit operator (see section 7), the 

9-1 

number of characters to be transferred is specified 
by the syllable following the micro-operator 
syllable. 

If this micro-operator is entered by executing 
the Execute Single Micro operator (see section 7), 
the number of characters to be transferred is 
specified by the operand in the top of the stack. 

Move With Insert (Ml NS) DO 

This micro-opera tor performs a Move Numeric 
Unconditional or an insert operation under the 
control of the Float flip flop. 

In Table Edit mode the second syllable is the 
repeat value and the third syllable is the character 
to be inserted under control of the Float flip flop. 

In Execute Single Micro mode the repeat field 
value is the top word of the stack and the insert 
character is in the syllable following the micro­
operator syllable. 

If the Float flip flop equals 0 and the numeric 
portion of the source characters equals zero, the 
insert character is moved to the destination string. 

If the Float flip flop equals 0, or if the Float flip 
flop is "on," the Float flip flop is set and the 
source character, with numeric zone, is moved to 
the destination. 

The number of characters transferred from the 
source string to the destination string is defined by 
the repeat value. 

Move With Float (MFL T) D1 

In Table Edit mode the second syllable is the 
repeat value (the number of characters to transfer). 
The third, fourth, and fifth syllables are the three 
insert characters. In single-micro mode, the three 
insert characters are in the second, third, and 
fourth syllables. 

If the Float flip flop equals 0 and the numeric 
portion of the character in the source string equals 
0, the first-insert character is transferred to the 
destination string. 

If the Float flip flop equals 0 and the numeric 
portion of the character in the source string is not 
0 the Float flip flop is set. If the External Sign flip 



flop equals 1, the second-insert character is trans­
ferred to the destination string. If the External 
Sign flip flop equals 0, the third-insert character is 
transferred to the destination string. The numeric 
version of the source character is then transferred. 

If the Float flip flop equals 1, the numeric 
equivalent of the source character is transferred to 
the destination. 

This operation continues for the number of 
characters defined by the repeat field value. 

This operator can be entered by the Execute 
Single Micro operator, with the repeat field value 
in the top word of the stack. 

Skip Forward Source Characters {SFSC) D2 

This micro-operator increments the source 
pointer registers. 

If this micro-operator or any of the following 
Skip micro-operators is entered by the execution 
of the Execute Single Micro operator, the number 
of characters to be skipped is specified by the 
operand in the top of the stack. If entry is by the 
execution of the Table Enter Edit operators, the 
number of characters to be skipped is specified by 
the syllable following the micro-operator syllable. 

Skip Reverse Source Characters {SRSC) D3 

This micro-operator decrements the source 
pointer registers. 

Also see Skip Forward Source Characters 
micro-operator, second paragraph. 

Skip Forward Destination Characters {SFDC) DA 

This micro-operator increments the destination 
pointer registers. 

Skip Reverse Destination Characters {SRDC) DB 

This micro-operator decrements the destination 
pointer registers. 

Reset Float {RSTF) D4 

This micro-operator sets the Float flip flop to 0. 

9-2 

End Float {ENDF) DS 

This micro-opera tor transfers the character in 
the second syllable of this operator to the 
destination string if the Float flip flop contains a 0 
and the External Sign flip flop is 1. 

If the Float flip flop contains a 0 and the 
External Sign flip flop also equals 0, then the 
character in the third syllable of this operator is 
transferred. 

If the Float flip flop contains a I, then it is reset 
and no characters are transferred. 

Insert Unconditional {INSU) DC 

This micro-operator places an insert character 
into the destination string for the number of times 
specified by the repeat value. When entered by a 
Table Enter Edit operator, the repeat value is in 
the syllable following the micro-operator syllable, 
and the insert character is in the next syllable. 

If this micro-operator is entered by an Execute 
Single Micro operator, the character to be inserted 
is in the second syllable and the repeat value is 
specified by the operand in the top of the stack. 

Insert Conditional {INSC) DD 

This micro-operator inserts a string consisting of 
one of two characters into the destination string. 
The length of the string is given by the repeat value 
from the table or the stack. 

If the Float flip flop contains a 0, the first insert 
character is inserted into the destination string. 

If the Float flip flop contains a 1, the second 
insert character is inserted into the destination 
string. 

The insert characters follow the repeat value 
syllable in Table Enter Edit operation or the 
micro-operator syllable in Execute Single Micro 
operations. 

Insert Display Sign {INSG) D9 

This micro-operator places in the destination 
string the character defined by the syllable 
following the micro-operator syllable, if the 
External Sign flip flop is equal to 1. 



If the External Sign flip flop is equal to 0, this 
operator places in the destination string the 
character defined by the third syllable of this 
operator. 

Insert Overpunch (INOP) DB 

If the External Sign flip flop is equal to 1, this 
micro-operator places a sign overpunch in the 
destination string character of either 10 for BCL or 
1101 for EBCDIC. 

9-3 

If the External Sign flip flop is equal to 0, the 
operator leaves the destination string character 
unaltered. 

End Edit (ENDE) DE 

This operator terminates a string of Edit micro­
operators in Table Enter Edit operation mode. 

The micro program string in the table must end 
with the End Edit operator. 





SECTION 10 
INPUT I OUTPUT 

PROCESSOR AND PERIPHERAL CONTROLS 

GENERAL 

The internal processing speed of the B 6700 is 
complemented by equally powerful input/output 
(1/0) hardware to achieve a well-balanced com­
puting system. Transfer of all data between 
memory and all peripheral devices is controlled 
independently of the processor by the I/O pro­
cessor. A maximum of three I/O processors may be 
attached to a B 6700, each one capable of pro­
cessing up to 12 I/O operations simultaneously, 
from any of 1 28 peripheral devices. 

OPERATION 

A peripheral control bus extends from the I/O 
processor to the various peripheral devices. 
Attached along this bus are from one to 20 
peripheral controls (figure 10-1 ). Information in 

•*INPUT/OUTPUT DATA 
PROCESSOR SWITCH 

CHNLS. 

one or two-byte groups can be sent along the bus 
to or from any peripheral control, every 1. 2 
microseconds. 

Any processor can initiate an operation on any 
I/O processor in a three processor/three I/O pro­
cessor configuration, by executing a Scan Out 
instruction. This instruction transfers a function 
word and a data word to an I/O processor. If the 
function word specifies an Initiate I/O operation, 
then the data word is an Area Descriptor. The 1/0 
processor fetches the I/O Control Word located at 
the Area Base Address (from the Area Descriptor) 
and initiates the peripheral operation. Upon com­
pletion of this operation, the 1/0 Finish Interrupt 
is set. The Result Descriptor is returned when the 
processor executes a Read Result Descriptor 
command. 

1 TO 10 1/0 CARD CARD LINE UNITS OR SUB- PUNCH READER PRINT SYSTEMS REQ. 
SMALL 
PERI PH. CONTLS. 

MODEL MODEL CARD 
B 6110 B 6240 PUNCH 

l TO 10 P.C. 
P.C. P.C. P.C. 

• PERI PH. CONTLS. 

APPROP. APPROP. APPROP. APPROP. 
l TO 10 

TAPE DISK TAPE TAPE 
P.C. P.C. P.C. FILE 

P.C. 

CONSOLE 
DISPLAY 

M/T TERMINAL 
CLUSTER B 9342-1 

Total per side is lOwitha l TO 10 1/0 UNITS OR 
maximum of 5 large per side SUBSYSTEMS REQ. LARGE 

ONLY ONE 1/0 PROCESSOR PE RIPH. CO NTLS. 
ILLUSTRATED 

Figure 10-1. Input/Output Subsystem 

10-1 



DESCRIPTOR FORMATS 

The formats of the function word, area 
descriptor, and I/O control word, respectively, are 
illustrated in figure 10-2. 

47 0 0 

-UNIT 
0 NO. F z 

0 

[lY M 
44 20 16 12 8 4 0 

FUNCTION WORD 

k 1 19 ] 
..___ ______ HA BUFFER 1 AREA 

~__.__·---+- R ~LENGTH_-+----+- BASE ___....__..-...---1 
S W0

1
RDS ADDRESS 

_l _l 

1 20 l 0 

AREA DESCRIPTOR 

43 39 35 

45 

44 40 36 32 0 

1/0 CONTROL WORD 

Figure 10-2. 1/0 Descriptor Formats 

Function Word 

When M of the function word equals 0, all active 
I/O processors respond to the descriptor. When M 
equals 1, the I/O processor specified by the Z field 
responds to the command. (The three-bit Z field 
designates a specific I/O processor.) When Z equals 
001 and M is 1, I/O processor A is selected. When 
Z equals 010 and M is 1, I/O processor B is 
selected. When Z equals 100 and M is 1, I/O 
processor C is selected. All other bit combinations 
in the Z field are not used. F-field codes are listed 
in table 10-1. 

Area Descriptor 

The area base address specifies the base address 
of the memory area. Buffer length indicates the 
size of the area. The first word of the area is the 
I/O Control Word. 

10-2 

1/0 Control Word 

The I/O Control Word contains a standard 
control field and a unit control field. Bits 35 
through 0, the unit control field, are unique for 
each peripheral control. Bits 45 through 36, the 
standard control field, are defined as follows: 

Bit 

45 
44 
43 
42 
41 
40 
39 
38 
37 
36 

Scan 
Oper. 

OUT 

IN 

Assignment Bit= 0 Bit= 1 

Attention No Yes 
Read/write Write Read 
Memory inhibit No Yes 
Translate in unit No Yes 
Frame length 6-bit 8-bit 
Memory protect No Yes 
Backward No Yes 
Test No Yes 
1001 (tag bit 
0101 field) l§ Store double-precision. 

Store single-precision. 
Store program tags. 
Tag field transfer. 

Table 10-1 F Field Codes 

F Bits 
8765 

0000 

0011 

0100 

0000 

0001 

0010 

0011 

0100 

0110 

1111 

I/O Processor 
Operation 

Designated I/O Processor to 
initiate an I/O operation. Bits 
16 through 9 contain Unit 
Designate. 
Set the time-of-day-register. 

Set the interrupt mask 
register. 

Interrogate I/O path for up­
coming initiate I/O 
operation. 

Interrogate peripheral status 
of the designated status 
vector. 

Read result descriptor. 

Read time-of-day register. 

Read interrupt register or 
interrupt mask register. 

Interrogate peripheral unit 
type. 

Read interrupt literal. 



Resu It Descriptor 

The format of the Result Descriptor is shown in 
figure 10-3. 

Bits 47:20 indicate the final memory address at 
which the 1/0 operation terminated. Bits 16: 17, 
the error field, are subdivided into a standard error 
field and a unit error field. The unit error field bit 
assignments, bits 15: 9, are unique for each peri­
pheral control. The standard error field bit assign­
ments, bits 6:7 and 16, are as follows: 

Bit 

16 
6 
5 
4 
3 
2 
1 
0 

44 

T T 
MEMORY 
ADDRESS 

28 

Assignment 

Memory Protection Error 
Memory Parity Error 
Memory Address Error 
Descriptor Error 
Not Ready 
Busy 
Attention 
Exception 

jcHAR l c 
0 UNIT 

ERRIOR u NO. 
N FIELD 
T l 

24 16 1 
Figure 10-3. Result Descriptor Format 

0 

PERIPHERAL UNITS AND 
ASSOCIATED PERIPHERAL CONTROLS 

Up to 256 1/0 devices may be attached to a dual 
or triple 1/0 processor system. These devices 
communicate with the 1/0 processor through a 
maximum of 20 peripheral controls. One 
peripheral control cabinet houses 10 controls, five 
large and five small. Table 10-2 lists the peripheral 
controls available, excluding the magnetic tape and 
disk file controls which are listed separately. 

Console 

The Console Control Center (figure 10-4) 
includes the Operator Display Terminal, which 
allows the operator to communicate with the 
system. The B 6341 Control connects the Console 
Control Center and the 1/0 processor. Up to eight 
Operator Display Terminals may be included in a 
system. Figures 10-5 and 10-6 depict the result 
descriptor and the 1/0 Control word for the Single 
Line Control. 

Figure 10-4. Console Control Center 

Table 10-2. Peripherals and Controls 

PC PC 
Style Peripheral Units Style Type Peripheral Controls 

B 9111 800 CPM Card Reader B 6110 Small Card Reader Control 
B 9112 1400 CPM Card Reader B 6110 Small Card Reader Control 

B 9120 500-1000 CPS Paper Tape Reader B 6120 Small Paper Tape Reader Control 

B 9213 3 00 CPM Punch B 6212 Small Card Punch Control 

B 9220 100 CPS Paper Tape Punch B 6220 Small Paper Tape Punch Control 

B 9242-11 860 LPM Printer ( 120 Prt. Pos.) B 6240 Small Line Printer Control 
B 9243-11 1100 LPM Printer ( 120 Prt. Pos.) B 6240 Small Line Printer Control 

B 9342-1 Operator Display Terminal B 6341 Large Operator Display Control 

10-3 



47 27 15 11 7 

14 10 6 

25 17 13 9 

28 24 16 12 0 

6:7 Standard error field 

7 Memory access error 

7&9 Information parity error 

10 Control message 

11 NoETX 

12 Unit ID - B 9342-11 

15 Time out 

16 Memory protect error (read only) 

24 : 8 Unit designate 

27 :3 Character count 

47:20 Memory address 

Figure 10-5. Single Line Control Result Descriptor 

43 39 

42 38 

41 37 

44 40 36 

45 =Attention 
44 = 1 read 

= 0 write 
43 = 0 
42 = 0 
41 = 1 8 bit 

40 = 0 
39 = 0 
38 = 0 
37 = O } tag-bit field 
36 = 0 

Figure 10-6. Single Line Control 1/0 Control Word 

Card Reader 

The B 6110 Card Reader Control can be used 
with either the B 9111 (800 cpm) or B 9112 (1400 
cpm) card readers (figure 10-7). The input hopper 
and the output stacker have a capacity of 2400 
cards each. The card readers accept alpha, binary 
or EBCDIC card codes. The card reader converts 
alpha card code to BCL, which is then converted 
into internal BCL or EBCDIC by translators in the 
1/0 Processor. EBCDIC card code is converted to 
internal EBCDIC by the B 6110 card reader 
control. When binary punched cards are read no 
translation is made. 

10-4 

The card readers can read 51-, 60-, or 80-column 
punched cards. Optional features include the 
ability to read 40-column Treasury checks and 
round holes in Postal Money Orders. Cards of 
varying thickness are acceptable; however, card 
thickness and length must be consistent during any 
one run. Figures 10-8 and 10-9 depict the I/O 
control word and the result descriptor for card 
reader operations. 

Figure 10-7. Card Reader 

42 

41 37 

44 40 36 

44 = 1 
40 = 1 Memory protect 
39 = 0 
38 = 0 

Alpha 
42 = 1 
41 =O 6bit 
41 = 1 8 bit 

Binary 
42 = 0 
41=0 
37 = 0 

EBCDIC 
42 = 0 
41 = 1 

37 tag bit 
36 field 

Figure 10-8. Card Read 1/0 Control Word 



47 27 7 

10 6 

25 17 9 

28 24 16 8 0 

6:7 Standard error field 

7 Memory access error 

8 Read check 

7&9 Validity error 

10 Control card (alpha only) 

16 Memory protect error 

24:8 Unit designate 

27:3 Character count 

47:20 Memory address 

Figure 10-9. Card Read Result Descriptor 

Card Punch 

The B 6212 Card Punch Control is used with the 
B 9213 Card Punch (figure 10-10), which can 
punch either binary, alpha, or EBCDIC code at a 
rate of 300 cards per minute. Pre-punched cards 
may be used, but previously punched columns 
cannot be repunched. The card punch has a 

Figure 10-10. Card Punch 

10-5 

1000-card capacity input hopper, and three output 
stackers (primary, auxiliary and error) which have 
a capacity of 1200 cards each. Stacker selection is 
accomplished programmatically. Figures 10-11 and 
10-12 depict the I/O control word and the result 
descriptor for the card punch operation. 

44 

44= 0 
38 = 0 

42 

41 

38 

37 

36 32 

32 = 1 Auxiliary stacker 

BCL 
42 = 1 

37 
36 = 0 

41 = 0 (6-bit internal frame size) 

Binary 
42 = 0 
41=0 
37 = 0 

EBCDIC 
42 = 0 
41 = 1 (8-bit internal frame size) 

tag bit 
field 

Figure 10-11. Card Punch 1/0 Control Word 

47 27 

25 

28 24 

6 :7 Standard Error Field 

7 Punch Check 

17 

7 & 10 Memory Access Error 

24: 8 Unit Designate 

27: 3 Character Count 

41 : 20 Memory Address 

7 

10 6 

Figure 10-12. Card Punch Result Descriptor 

0 



Line Printers 

Two basic line printers (figure 10-13) are avail­
able for use on the B 6700 system. The B 9242-11 
prints 860 lines per minute (LPM) and the 
B 9243-11, 1100 LPM. Both printers are available 
with either 120 or 132 print positions. OCR 
printers are also available with printing speeds of 
725 LPM and 900 LPM. All printers have vertical 
skipping and end-of-page formatting controlled by 
a punched paper tape and include the forms 
self-align feature. The B 6240 Line Printer Control 
connects the printer to the I/O Processor. Trans­
lators in the I/O Processor convert internal BCL or 
EBCDIC into BCL for transmission to the printer 
control. Figures 10-14 and 10-15 show the Printer 
I/O control word and the printer result descriptor. 

Figure 10-13. Line Printer 

43 35 31 

42 38 34 30 

41 37 33 

44 36 32 

44= 0 

43 = 0 Print 

= 1 

42 = 1 

41=0 
= 1 

38 = 0 

Space - Inhibit data transfer 

Translate to BCL 

6 bit { Internal frame size 
8 bit\ 

10-6 

37 { tag bit 

36 = 0 \ field 

35 :4 Skip to Channel 1 =) 11 

31 = 1 Double space { only if 35: 5 
30 = 1 Single space \ equals zero 

Figure 10-14. Line Printer 1/0 Control Word 

47 27 7 

6 

25 17 9 

28 24 12 8 

6:7 Standard error field 

8:2 Bit transfer error 

10: 1 Print check 

11 : 1 Low paper 

12: 1 End of page 

24:8 Unit designate 

27:3 Character count 

47:20 Memory address 

Figure 10-15. Line Print1!r Result Descriptor 

Magnetic Tape Subsystem 

0 

A magnetic tape subsystem can include from 
one to four tape controls servicing from one to 16 
magnetic tape units. Within a single tape system all 
tape units must be used at the same speed, and all 
controls must be of the same type. 

A magnetic tape exchange is required when 
more than one control or more than six magnetic 
tape units are used. 

The number of magnetic tape units on a system 
is limited orily by the number of exchanges and 
peripheral controls employed. The user may 
choose either 7-channel or 9-channel tape. These 
may be intermixed, provided this is not attempted 
on the same subsystem. The user may also select 
any of four packing densities up to 1600 bits per 
inch and transfer rates from 9000 to 400,000 bytes 
per second. 



A choice of physical construction may be made 
between free standing device~ which house one 
tape unit per cabinet (figure 10-16), or the cluster 
unit (figure 10-17), which houses up to four tape 
units per cabinet. The magnetic tape units are 

capable of reading and spacing in either a forward 
or reverse direction. Table 10-3 lists the available 
magnetic tape subsystems. Figure 10-18 shows 
possible configurations of these subsystems. 

Figure 10-16. Free-Standing Magnetic Tape Units Figure 10~17. Cluster Tape Unit 

Table 10-3 
Available Magnetic Tape Subsystems 

Style Description 

Magnetic Tape Units 

B 9381-12 
B 9381-13 
B 9381-14 

18 KB Cluster, 2 Station, NRZ, 9-Channel, 800 BPI 
18 KB Cluster, 3 Station, NRZ, 9-Channel, 800 BPI 
18 KB Cluster, 4 Station, NRZ, 9-Channel, 800 BPI 

B 9381-22 36 KB Cluster, 2 Station, NRZ, 9-Channel, 800 BPI 
B 9381-23 36 KB Cluster, 3 Station, NRZ, 9-Channel, 800 BPI 
B 9381-24 36 KB Cluster, 4 Station, NRZ, 9-Channel, 800 BPI 

B 9382-12 36 KB Cluster, 2 Station, PE, 9-Channel, 1600 BPI 
B 9382-13 36 KB Cluster, 3 Station, PE, 9-Channel, 1600 BPI 
B 9382-14 36 KB Cluster, 4 Station, PE, 9-Channel, 1600 BPI 

B 9382-22 72 KB Cluster, 2 Station, PE, 9-Channel, 1600 BPI 
B 9382-23 72 KB Cluster, 3 Station, PE, 9-Channel, 1600 BPI 
B 9382-24 72 KB Cluster, 4 Station, PE, 9-Channel, 1600 BPI 

B 9383-12 
B 9383-13 
B 9383-14 

18/36 KB Cluster, 2 Station, NRZ/PE, 9-Channel, 800/ 1600 BPI 
18/36 KB Cluster, 3 Station, NRZ/PE, 9-Channel, 800/ 1600 BPI 
18/36 KB Cluster, 4 Station, NRZ/PE, 9-Channel, 800/ 1600 BPI 

10-7 



Style 

Table 10-3 (Cont'd.) 
Available Magnetic Tape Subsystems 

Description 

Magnetic Tape Units (cont.) 

B 9383-22 36/72 KB Cluster, 2 Station, NRZ/PE, 9-Channel, 800/ 1600 BPI 
B 9383-23 36/72 KB Cluster, 3 Station, NRZ/PE, 9-Channel, 800/ 1600 BPI 
B 9383-24 36/72 KB Cluster, 4 Station, NRZ/PE, 9-Channel, 800/ 1600 BPI 

B 9391 18/50/72 KC, Free-Standing Unit, 7-Channel, 200/556/800 BPI 

B 9392 72 KB, Free-Standing Unit, 9-Channel, 800 BPI 

B 9393-1 144 KB, Free-Standing Unit, 9-Channel, 1600 BPI 

B 9393-3 240 KB, Free-Standing Unit, 9-Channel, 1600 BPI 

B 9394-1 24/66/96 KC, Free-Standing Unit, 7-Channel, 200/556/800 BPI 

B 9394-2 96 KB, Free-Standing Unit, 9-Channel, 800 BPI 

B 9495-5 320 KB, Free-Standing Unit, 9-Channel, 1600 BPI 

B 9495-6 400 KB, Free-Standing Unit, 9-Channel, 1600 BPI 

Magnetic Tape Subsystem Controls, Exchanges and Features 

B 6381-11 18/36 KB NRZ Control, 9-Channel (For B 9381-12, 13, 14, 22, 23, 24) 

B 6381-12 36/72 KB PE Control, 9-Channel (For B 9382-12, 13, 14, 22, 23, 24) 

B 6381-14 18/36 KB DUAL NRZ Control, 9-Channel (Includes 2 Controls and 2 x 8 Exchange) (For B 
9381-12, 13, 14, 22, 23, 24) 

B 6381-15 36/72 KB DUAL PE Control, 9-Channel (Includes 2 Controls and 2 x 8 Exchange) For 
B9382-12, 13, 14,22, 23,24) 

B 6381-16 DUAL NRZ/PE Control, 9-Channel (Includes 2 Controls and 2 x 8 Exchange) (For B 9383-12, 
13, 14, 22, 23, 24) 

B 6391-3 
B 6391-4 
B 6393-1 
B 6393-2 
B 6393-3 
B 6395-5 
B 6490 
B 6492 
B 6493-1 
B 6493-2 
B 6495-1 
B 6495-2 
B 6680-1 
B 9989-1 

72KC Control, 7-Channel, (For B 9391) 
96KC Control, 7-Channel, (For B 9394-1) 
72KB Control, 9-Channel, (For B 9392) 
144/240 KB Control, 9-Channel, (For B 9393-1,-3) 
96KB Control, 9-Channel, (For B 9394-2) 
320/400 KB Dual Control, 9-Channel, (For B 9495-5, -6) 
2 x 10 Exchange (For B 9391, B 9392, B 9394-1, -2) 
4 x 16 Exchange (For B 9391, B 9392, B 9394-1, -2) 
1 x 8 Common Electronics Exchange (For B 9393-1, -2) 
2 x 8 Common Electronics Exchange (For B 9393-1, -2) 
Basic Electronics/Exchange, 2 x 8 (For B 9495 Series Only) 
Electronics/Exchange Extension, up to 4 x 16 (For B 6495-1) 
7-Channel NRZ Control Adapter (1 required Qer 7-Channel Port) (For B 6381-11, 14) 
7-Channel NRZ Station Adapter (For B 9381-12, 13, 14, 22, 23, 24) 

10-8 



INPUT/OUTPUT 
PROCESSOR 

INPUT/OUTPUT 
PROCESSOR 

INPUT /OUTPUT 
PROCESSOR 

TAPE 
PC 

I OR 2 
TAPE 

CLUSTERS 

TAPE 
PC 

LARGE PERIPHERAL CONTROLS 

4 X 16 TAPE EXCHANGE 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

LARGE PERIPHERAL CONTROLS 

2x8 

TAPE EXCH. 

TAPE 
PC 

TAPE 
PC 

1X8COMMON 
ELEC. EXCH. 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

Figure 10-18. Magnetic Tape Configuration 

10-9 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 

TAPE 
PC 



Figure 10-19 shows the B 6700 magnetic tape 
I/O control word used to depict the various types 
of magnetic tape operations listed in table 10-4. 
When an operation is finished, the result descriptor 
returned is shown in figure 10-20. 

OPERATION 

READ BCL 

READ BINARY 

READ EBCDIC 

SPACE 

WRITE BCL 

WRITE BINARY 

WRITE EBCDIC 

ERASE 

WRITE TM 

REWIND 

TEST 

43 39 

42 38 

41 37 

44 40 36 

44 = 1 
=O 

43 = 1 

42 = 1 

41=0 

40 = 1 

39 = 0 

38 = 0 

37:2 

35:2 

Table 10-4 
Magnetic Tape Operations 

STANDARD CONTROL FIELD 

44 43 42 41 40 39 38 

1 0 1 (]) (]) (]) 0 

1 0 0 0 (]) (]) 0 

1 0 0 1 (]) (]) 0 

1 1 (]) 0 

0 0 1 (]) 0 0 

0 0 0 0 0 0 

0 0 0 1 0 0 

0 l 0 (]) 0 0 

0 0 0 0 

0 l l 0 

1 

BIT 35 = 0 AND 34 = 1 

0 = 1or0 

35 31 27 23 

34 30 26 

33 29 

32 28 16 

Tape read 

Tape write 

Memory inhibit 

Translate 

6 bit;= 1 8 bit 

Mell1ory protect 

Forward; = 
backward 

Tag bit field 

Equal to zero 

37 

(]) 

(]) 

(]) 

(]) 

0 

0 

(]) 

Figure 10-19. 1/0 Control Word Magnetic Tape 

36 

(]) 

(]) 

(]) 

10-10 

33:4 Format 
1000 800 BPI 
1010 555 BPI (7-track only) 
1100 200 BPI 
1111 1600 BPI (9-track only) 
0000 Unit-selected density 

30 = 0 (even parity) 
= 1 (odd parity) 

0 = 1 or 0 

9 Track Read only 

CRC Correction 29 = 1 
28:2 If 29 = 1 then track to be corrected. 

Space Only 

23 : 8 decimal value of number of records to 
be spaced, 100 max. 

figure 10-19. 1/0 Control Word Magnetic Tape (cont.) 

47 27 15 11 7 

14 10 6 

25 17 13 9 

28 24 16 12 8 0 

6: 7 Standard error field 

7 Memory access error 

8 End of tape or beginning of tape 

9 Read - end of file; write - lock out 

10 Incomplete record 

11 Oversized record 

11: 2 Density (test only) 
00 - 800 BPI 
01 - 200 BPI 
10 - 555 BPI 
11 - 1600 BPI 

7 & 10 & 11 Mag tape parity error 

12 CRC correction possible, bits 15: 3 
defines track 

13 Non-present option 

14 Unit is in a rewind when bit 12 is off 

Figure 10-20. Magnetic Tape Result Descriptor 



15 Six-ft. blank tape 

16 Memory protect error (read only) 

24:8 Unit designate 

2 7: 3 Character counter 

47:20 Memory address 

Figure 10-20. Magnetic Tape Result Descriptor (cont) 

Disk File Memory Systems 

The Disk File Memory Systems are extremely 
high-speed, modular, random information storage 
systems. A basic system consists of one electronics 
unit and from one to five storage units (see figure 

10-21 ). If more than one basic subsystem is used, 
then an exchange may be installed to connect the 
two subsystems to a disk file control. Figure 10-22 
shows various disk file configurations allowed on a 
B 6700 system. The exchanges involved are located 
within the auxiliary cabinets that are attached to 
the peripheral control cabinets. All of the disk file 
controls are the large size controls; therefore, they 
must be located only in positions 0 through 4 in 
the peripheral control cabinet. 

The various types of disk file memory systems 
and their capacities and speeds are indicated in 
table 10-5. Figures 10-23 and 10-24 indicate the 
disk file 1/0 control word and the disk file result · 
descriptor. 

I I 
ELECTRONICS UNIT 

STORAGE MODULES 

Figure 10-21. Basic Disk File Subsystem 

10-11 



PC 

1 TO 5 
DISK 

MODULES 

1 ELECT. UNIT 

-
PC 

LARGE CONTROLS 

DISK FILE DISK FILE -
PC PC PC 

I 
2 x 10 EXCH. l 
IIII I 

1TO10 
ELECTRONICS UNITS 

1 TO 5 
DISK MODULES 

PER ELECTRONICS 
UNIT 

LARGE CONTROLS 1 
INPUT/OUTPU}- DISK FILE DISK FILE DISK FILE 

PROCESSOR PC PC PC PC PC 

u ~ 
~z ..... ~ 
o~z 
::g=>~ 
u::~ 

Nl x N2 
EXCHANGE 

~~---.~~~-...-~~-

LARGE CONTROLS 

DISK FILE DISK FILE 
PC PC PC PC PC 

DISK FILE DISK FILE DISK FILE 
PC PC PC 

I I I 
N l x N 2 EXCHANGE 

I I l l 1 l 1 l 
1 TO 20 ELECTRONICS UNIT 

1 TO 5 
DISK FILE MODULES 

PER 
ELECTRONICS UNIT 

PC PC 

PC PC PC 

Figure 10-22. Disk File Configurations 

10-12 

DISK FILE 
PC 

I 
J 

l 

PC 

DISK] 
PC 

DISK f:i 
PCJ 

VI 
1-

:i z 
~ t---o:::> 
LU 1---"'u 
z"' t--------i 2 z 
x t-----1 - ~ 
- t-----1 o-

z ~ 
.....,........ ~----~~~~~ 



Table 10-5 
Disk File Memory System Types 

Description 

Head-Per-Track Disk Files 

B 9379-20 20 Million Byte, 23 ms Disk File (Includes 1 DFEU) 

B 9379-21 20 Million Byte, 23 ms Increment for B 9379-20 ( 4 max. per B 9379-20) 

B 9379-30 20 Million Byte, 40 ms Disk File (Includes 1 DFEU) 

B 9379-31 20 Million Byte, 40 ms Increment for B 9379-30 ( 4 max. per B 9379-30) 

Head Per-Track Memory Banks 

B 9375-1 100 Million Byte, 23 ms (Includes 1 DFEU) 

B 9375-2 20 Million Byte, 23 ms Increment for B 9375-1 

B 9375-4 100 Million Byte, 40 ms (Includes 1 DFEU) 

B 9375-5 20 Million Byte, 40 ms Increment for B 9375-4 

Disk File Electronics Units 

B 9371-8 Optional Additional DFEU for B 9379-20, B 9375-1 

B 9371-9 Optional Additional DFEU for B 9379-30, B 9375-4 

Disk File Controls, Exchanges and Features 

B 6373 Disk File Control 

B 64 71 N 1 x N2 Disk File Exchange (Up to 4 x 20) 

B 6471-5 

B 6471-6 

B 6471-7 

B 6473 

Control Adapter (N 1 Side, up to 4 per B 64 71) 

EU Adapter (N2 Side, up to 20 per B 64 71) 

Exchange Extension (For over 10 DFEU's) 

1 x 2 Disk Exchange 

Disk File Optimizer and Features 

B 6375 Basic Disk File Optimizer (DFO) (Includes 8 Words of DFO Memory) 

B 6675-1 DFO Memory Increment of 8 Words (32 Words Maximum) 

B 9971-11 DFSU Adapter for DFO (1 required per DFSU controlled by DFO) 

43 39 31 

42 

41 37 

44 40 36 

44 = 1 ! 
43 = 0 

Disk file read 

44 = 1 ! Read check 
43 = 1 

0 

44 = 0 l 
43 = 0 \Write 

42 = 0 No translation 

41 = 1 8-bit characters 

40 = 1 

39 = 1 
37 

36 

Memory protect 

Maintenance segment 

{ Tag bit 

\ Field 

31 : 24 Disk file address (decimal) 

Figure 10-23. Disk File 1/0 Control Word 

10-13 



47 27 15 11 7 

6 

25 17 9 

28 24 16 8 0 

6: 7 Standard error field 

7 Memory access error or read error or write 
lockout 

8 Unit busy 

9 Write lock out 

7 & 9 Disk read error 

11 Went not ready 

15 Time out 

16 Memory protect (read only) 

24:8 Unit designate 

27:3 Character counter 

4 7: 20 Memory address 

Figure 10-24. Disk File Result Descriptor 

Figure 10-25. B 9120 Paper Tape Reader 

10-14 

Paper Tape 

The B 9120 Paper Tape Reader (figure 10-25) is 
capable of reading punched paper tape at a rate of 
1000 characters per second and metalized mylar 
tape or fanfold tape at a rate of 500 characters per 
second. Baudot and BCL to EBCDIC code trans­
lation is automatic. All other codes are read 
directly into memory and may be translated 
programmatically. The reader can accommodate 5-, 
6-, 7-, or 8-channel tape as selected by the 
operator. Tape widths of 11/16, 7 /8, or 1 inch are 
interchangeable. 

Figure 10-26. B 9220 Paper Tape Punch 

The B 9220 Paper Tape Punch (Figure 10-26) is 
capable of punching a standard paper tape format 
in either BCL or Baudot code. The punch accom­
modates 5-, 6-, 7-, or 8-channel tape at a maximum 
rate of 100 characters per second, punching 10 
characters to the inch. Standard tape widths of 
11I16, 7 /8, and 1 inch may be used in either the 
oiled paper tape, dry paper tape, metalized mylar 
tape, or laminated mylar tape. 

Each paper tape 1/0 control, reader or punch, 
can accommodate only one paper tape unit. The 
controls are the small-size controls which can be 
set into a PCC cabinet as either a right hand or a 
left hand control. 



Figure 10-27 indicates the paper tape control 
word and the various paper tape operations 
possible on the B 6700. Figure 10-28 indicates the 
paper tape result descriptor. 

43 39 35 

42 38 34 

37 

44 36 

44 = 1 Tape read 

= 0 Tape punch 

43 = 1 Inhibit data transfer 

42 = 1 Translate 

39 = 0 Forward;= 1 backward 

38 = 1 Test 

37:2 Tag field bits 

35 & 36 Formats: 
10 - 8 bit no parity bit 
00 - 7 bit information plus 1 parity bit 
01 - 6 bit information plus 1 parity bit 

44 43 42 41 40 39 38 37 36 35 

READ BCL 1 0 l 0 0 0 0 0 0 0 

READ BINARY 1 0 0 0 0 0 0 0 0 0 

WRITE BCL 0 0 1 0 0 0 0 0 0 0 

WRITE BINARY 0 0 0 0 0 0 0 0 0 0 

PUNCH LEADER 0 1 0 0 0 0 0 0 

FWD SPACE 1 1 0 0 0 0 

BKWD SPACE l l 0 1 0 0 

REWIND 0 1 l 0 

34 

1 

0 

1 

0 

Figure 10-27. Paper Tape 1/0 Control Word and Operations 

47 27 7 

10 6 

25 17 9 

28 24 16 8 0 

6: 7 Standard error field 

7 Memory access error or tape read parity 
error 

8 Read - EOT or BOT 

10-15 

Punch - low tape 

7 & 9 Read - tape parity error 

10 Incomplete record 

16 Memory protect error 

Figure 10-28. Paper Tape Result Descriptor 

Disk-Pack Drive Memory System 

The Magnetic Actuator Disk-Pack Drive Memory 
Systems are extremely high-speed, modular, 
random information storage systems. A basic disk­
pack drive memory subsystem includes the 
disk-pack drive controller, dual disk-pack drive, 
and the interconnecting cables. (See figure 10-29.) 

Figure 10-29. 
Disk-Pack Drive and Disk-Pack Drive Controller 

The controller acts upon 1/0 instructions from 
the B 6700 1/0 processor, powers the disk-pack 
drive, and transfers information between disk-pack 
drives and the B 6700 1/0 processor. The con­
troller performs the operation specified by the OP 
code (and variants) of the 1/0 descriptor, and, at 
the completion of the operation, generates a result 
descriptor which contains operation and/or error 
status information. 



The disk-pack drive controller with single access 
capabilities may be used with eight disk-pack 
spindles (four dual drives) in a one-by-eight con­
figuration, or two groups of eight disk-pack 
spindles (eight dual drives) in a one-by-16 
configuration. Selection of each group is ·deter­
mined by a variant in the I/O descriptor. The 
disk-pack drive controller with dual access 
capability may be used in a two-by-eight configura­
tion in which the disk-pack drive controller con­
tains two internal control units. This allows the I/O 
processor to execute two simultaneous operations 
(two reads, two writes, or a read and a write). This 
configuration can be expanded to a two-by-16 
configuration. See figure 10-30 for a subsystem 
block diagram. 

BASIC 
CONTROLLER 

1---- --~ 
I I 
I I 
1 I 
L----r-' 

1 ___ _ 

SINGLE DISK-PACK DRIVE CONTROLLER 

DUAL DISK-PACK DRIVE CONTROLLER 

--.,..-- -., 
.,..1., ,,~.1.. ... 

/ ' I \ 
I 1 I I 
\ I \ I 

-~--:r:. __ '.:.r/ 

Figure 10-30. Disk-Pack Subsystem Block Diagram 

Each disk pack contains 11 disks and 20 
recording surfaces, each surface accessed by an 
individual arm from the actuator. Each disk surface 
contains 406 tracks. (See figure I 0-31 for details of 
the recording surfaces.) 

AEADIWAIT£ 

Figure 10-31. Disk-Pc:1ck Recording Surfaces 

The data transfer is bit-serial. The maxim um 
byte capacity, transfer rate, and other pertinent 
information for the various disk-pack subsystems 
are presented in table 10-6. Figures 10-32 and 
10-33 delineate the disk pack I/O control word and 
the disk-pack result descriptor, respectively. 

10-16 



Table 10-6. 
Disk-Pack Subsystem Characteristics 

STORAGE 
DISK CAPACITY PER PACK DATA 
PACK AVERAGE DISK-PACK DRIVE DATA MAX. DISK-
DRIVE ACCESS AVERAGE MULTI- FULL TRANS- RECORDING TRACK PACK 
STYLE DESCRIP- TIME LATENCY SECTOR TRACK FER DENSITY DENSITY STYLE 

NO. TION (MS) (MS) MODE* MODE* RATE (BPI) (TPI) NO. 

B 9484-3 Dual drive 30 12.5 95 .5 121.0 312.5 KB 2200 200 B 9974-1 
with single 
access disk-
pack drive 
controller 
(B 6380-1) 

B 9485-3 Dual drive 30 12.5 95.5 121.0 312.5 KB 2200 200 B 9974-1 
with simul-
taneous 
access disk-
pack drive 
controller 
(B 6380-2) 

B 94~6-3 Dual drive 30 12.5 95.5 121.0 312.5 KB 2200 200 B 9974-1 
add on 
increment 
without 
disk-pack 
drive 
controller 

B 94844 Dual drive 30 12.5 174.4 242.0 625.0 KB 4400 200 B 99744 
wtih single 
access disk-
pack drive 
controller 
(B 6383-1) 

B 94854 Dual drive 30 12.5 174.4 242.0 625.0 KB 4400 200 B 99744 
with simul-
taneous 
access disk-
pack drive 
controller 
(B 6383-2) 

B 94864 Dual drive 30 12.5 174.4 242.0 625.0 KB 4400 200 B 99744 
add on 
increment 
without 
disk-pack 
drive 
controller 

B 948645 Add on 30 12.5 87.2 121.0 625.0 KB 4400 200 B 99744 
increment 
without 
disk-pack 
drive 
controller 

*Million eight-bit bytes 
10-17 



WRITE 

READ 

TEST 

INITIALIZE 

VERIFY 

RELOCATE 

44 

0 

1 

0 

0 

1 

0 

43 

0 

0 

0 

0 

0 

1 

42 41 40 

0 1 0 

0 1 (/J 

0 0 0 

0 1 0 

0 1 C/J 

0 1 0 

39 38 37 36 35 

0 0 (/J 0 0 

0 0 C/J C/J 0 

0 l 0 0 0 

0 0 0 0 1 

0 0 0 0 1 

0 0 ·o 0 0 

34 33 32 31 30 29 28 27 26 25 24 

F1 Vg V4 V2 V1 0 0 Sg S4 S2 S1 

F1 Vg V4 V2 V1 0 0 Sg S4 S2 S1 

F1 0 0 0 0 0 0 Vg V4 V2 V1 

F1 Vg V4 V2 V1 0 0 S1 S4 S2 S1 

F1 Vg V4 V2 V1 0 0 S1 S4 S2 S1 

F1 Ng N4 N1 Ni 0 0 Sg S4 S2 S1 

F=O standard format (33 sectors per track) F=l single sector per track format 

WRITE: 
S 1 = 1 Initiate conditional seek 

S 1 = 0 Initiate unconditional seek 

S2 = 1 Disable automatic restore function 
following a seek run condition 

S4 = 1 Execute a parity check on all sectors 
written upon completion of write 
operation 

V 4 = 1 Reserved for file protect memory 
(FPM) 

Vs= 1 Enable EBCDIC-ASCII translator 

READ: 
S 1 = 1 Initiate conditional seek 

Ss = 1 

V1=1 

V2 = 1 

Vs= 1 

TEST: 
V1 =I 

Initiate unconditional seek 

Read binary address field only into 
memory address specified· by begin 
memory address (A). 

Initiate normal read 

Disable automatic restore function 
following a seek error condition 

Disable error correction 

Reserved for FPM 

Enable EBCDIC-ASCII translator. 

Power down (take off line) the 
selected drive for pack removal 

INITIALIZE: 
V 4 = 1 Write test data pattern in each sector 

as specified at the begin address 

V 1 = O l Initialize en tire pack 
V2 = 0 f 
V 1 = 1 Initialize designated cylinder 

VERIFY: 
V1 = o{ 
V2 =of 

Initialize designated track 

Verify entire pack and terminate 
on first error encountered 

VI = 1 Verify and report all errors within the 
designated cylinder 

VI = 0 ( Verify and report all errors within the 
V 2 = 1 ~ designated track 

V 4 = I Verify data bits by comparing ~ith 
16-bit data pattern beginning at the 
begin address 

VS = I l Verify test data pattern within an 
V 4 = o ~ initialize 

S2 = 1 Disable automatic restore function 
following a seek error condition 

RELOCATE: 
N = I=¢- 5 Spare sector in 2S through 32 on the 

designated cylinder 

Figure 10-32. Disk~Pack 1/0 Control Word (IOCW) 

10-18 



Result Descriptor 

A result descriptor is generated by the controller 
at the completion of each I/O operation. This de­
scriptor is stored in a fixed location of reserved 
memory dependent on the I/O channel that is being 
used. 

NOTE 

An automatic restore function (restore 
heads to cylinder 000) is normally per­
formed on all I/O operations when either 
a seek time-out or seek error condition 
occurs. 

The format of the result descriptor is: 

The bit assignments for the result descriptor are: 

BITS SET 

1 

2 

3 

3, 4 

4 

4, 5 

4, 5, 9 

4, 8 

4, 9 

4, 10 

5 

5, 6 

5, 7 

5, 8 

5, 9 

5, 10 

6 

6, 7 

6, 8 

7, 8 

8 

8, 9 

9 

9, 10 

10, 11, 12 

15, 16 

13, 14, 15, 
16 

DESCRIPTION 

Operation complete 

Exception condition 

Disk-pack not ready or "unsafe" 

Control cleared during operation 

Data error (data error on read, or 
memory parity error on write) 

Memory access error 

Transmission parity error 

Memory interface parity error 

Speed error 

Reserved (FPM) 

Address parity error 

First action with drive 

Write lockout 

Sector time-out (see note above) 

Address position error (verify) 

Reserved (FPM) 

Drive seeking 

Invalid command descriptor 

Seek initiated 

Single bit error correction 

Seek error (see note above) 

Seek time-out 

Disk-pack drive busy (time-out) 

Reserved (FPM) 

Disk-pack drive identification 
during test operations 

Processor identification (test) 

Unit designate (all operations 
except test) 

F.igure 10-33. Disk-Pack Result Descriptor Format 

10-19 





SECTION 11 
B 6700 DATA COMMUNICATIONS SYSTEM 

GENERAL 

The B 6700 Data Communications System is 
comprised of one or more of each of the following 
units: 

1. Data Communications Processor (DCP). 
Each B 6700 1/0 Processor accommodates up 
to four DCP's through the word interfaces. 
The word interfaces provide access to the 
B 6700 main memory. 

2. Adapter Cluster. 
One Adapter Cluster services up to 16 Line 
Adapters which may have dissimilar character­
istics. A maximum of 16 Adapter Clusters 
may be connected to one DCP. It is also 
possible to connect an Adapter Cluster 
between two DCP's. This allows the Adapter 
Cluster to be serviced from either DCP. 

MEMORY 
MODULE 

l 

MEMORY MEMORY 
MODULE MODULE 

.___2 _ __,--1 ._.....,3,......2 ____, 
DATA 

3. Line Adapter. 
Each communication line requires at least one 
Line Adapter. With some types of terminals 
two Line Adapters may be required. Up to 16 
Line Adapters are accommodated by one 
Adapter Cluster. 

The B 6700 Data Communications System can 
service a maximum of 2048 communications lines. 
A typical system configuration with only two 
processors and two 1/0 processors illustrated is 
shown in figure 11-1. 

DATA COMMUNICATIONS PROCESSOR (DCP) 

The Data Communications Processor (DCP) is a 
special purpose processor. It handles the trans­
mitting and receiving of messages over the many 
data communications lines. A part of that task is 
answering calls, terminating calls, observing the 
formal line disciplines, polling operations and the 
formatting of messages. 

I 1/0 
PROCESSOR 

SWITCHING PERIPHERAL CONTROL BUS 

I 
UPTO 

32 
MODULES 

PROCESSOR 

PROCESSOR 
2 

CHANNELS 
4-10 

DATA 

1-16 ADAPTER CLUSTERS 

1-16 ADAPTERS 1-16 ADAPTERS 1-16 ADAPTERS 

1/0 SWITCHING PERIPHERAL CONTROL BUS 
PROCESSOR CHANNELS 

-1 

DATA 
...._ ____ -i COMMUNICATIONS 1-----+------ti-----~ 

PROCESSOR 

DATA 
L.....--------t COMMUNICATIONS 

PROCESSOR 

DATA 
......_ _____ -'!COMMUNICATIONS 

PROCESSOR 

DATA 
L---------1 COMMUNICATIONS 

PROCESSOR 

1-16 ADAPTER CLUSTERS 

1-16 ADAPTERS 1-16 ADAPTERS 1-16 ADAPTERS 

Figure 11-1. B 6700 System Configuration Including Data Communications. 

11-1 



INTERRUPT 
BRANCH TO BEGIN-. - - i AND SCAN INTERRUPT 

CONTROL TO MPX r----, 
r - IBA - - 1 B 6700 
L - l - - J 

1 SCAN BUS I 
L_ -- J 

,J_, 
,. - - - - - - - - - - -~ - - - - - - - - - -I ADD L -l_ 

( L--~ 

I -------------.- -
I ~ 

B 6700 ..-- - - - 1 
ADDRESS _ 8..,. ~ B 6700 I 

REGISTER ,.~ I MEMORY BUS I 

'/ I INTERFACE I ,.•, 
y ~L (~A-MPX)_ ~ 

I 

t i1~~~:;!~ED~l~l IA1 I Ix II v II o I l1Ailll1Aol ~in.:;-An~:i- hEMoRYl=-4· i ~ llc~c~~ib, 
~ L ___ _J 
....II 
....II 

N l l t t \ e~:: g \ t I t ( ( I 1 / B1E' SELECT :: g I ::: I r I r~!>_:_S.!!l!!~.Q 
N "tJ I A ~ ~ _.!:_q_G~_<2..f>...:. 

S2 
0 
~ REGISTER 

c ;· 
c.c 
-.: 

~ I OPERATION•--;QP[AI B I C I I I WORD REGISTER 

I 
I 
\ 

-- - - - - - - - - - - - - - -1 I J I PARITY I I DISPLAY 

MEMORY 2 

HALF WORD TRANSFERS I 
rh r6l 1 HALF#OR~ r1 1 

I I I I I I I I I INSTRUCTIONS AA AC Al I lo Y xi I 1A I ~ l ....... ,..,ov 1 I I I iwoRD REG 



The DCP is a stored program computer which 
obtains its program instructions either from 
B 6700 main memory or from an optional local 
memory. Through the use of the local memory the 
throughput of the DCP is significantly increased 
due to the reduction in instruction fetch time. 

If the optional local memory is not present, the 
DCP shares the B 6700 system main memory with 
the other units of the B 6700. Memory allocation 
for the DCP is controlled by the B 6700 Master 
Control Program. Data exchanges occur when the 
B 6700 processor initiates a DCP operation and 
when the DCP finishes an operation, i.e., 1/0 
complete signal from the DCP. 

The internal form of the DCP is shown in figure 
11-2. The DCP is an elementary micro-programed 
processor. Two-address and three-address instruc­
tions, operating on eight-bit bytes, are used by the 
DCP. The byte organization fits into a basic 
half-word (three byte) structure permitting 
efficient half-word transfers within the DCP. The 
functions of the DCP are accomplished with a 

small array of intercommunicating registers, a 
simple arithmetic-logical unit and an eight-word 
scratch pad memory. 

For complete information on all DCP registers 
and memories, refer to the Data Communications 
Processor Reference Manual (form 1054384). 

ADAPTER CLUSTER 

The Adapter Cluster is the interface between the 
DCP and the data-communication Line Adapters. 
Each Adapter Cluster services up to 16 Line 
Adapters. Data transmission rates of from 45.5 to 
4800 BPS are handled simultaneously by the 
Adapter Cluster. 

Figure 11-3 shows a block diagram of the 
Adapter Cluster. The Adapter Cluster basic func­
tions are: 

1. Line termination: scanning, clocking and 
temporary storage. 

SUBSYSTEM 
CLOCK (5 MHz), 

IC MEMORY= 48 BITS/ ADAPTER 

REAL TIME 
CLOCK AND 
DESIGNATE 
CONTROL 

0 2 

0 l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

t' CROSSPOINTS 

.....-.----------1 R 

3 4 5 6 7 8 9 10 11 12 13 

ADAPTER INTERFACES TO AND FROM 16 DATA COMMUNICATION LINES 

Figure 11-3. Adapter Cluster. 

11-3 

,.....__.. 
DCP #1 

~ 

MAINTENANCE 

14 15 



2. Character assembly and disassembly. 

3. Synchronization attainment and maintenance. 

4. Timer operation to maintain line discipline. 

5. Some character recognition. (Mainly synchro­
nization characters for the various line 
disciplines.) 

6. Information exchange with one or two DCP's. 

The Adapter Cluster functions in a manner that 
makes it appear transparent to most characters and 
message formats. However, as stated in item (5) 
above it does recognize the synchronization 
characters in order to attain and retain synchroni­
zation when operating in the synchronous mode. 

LINE ADAPTER 

The Line Adapter types that are provided allow 
the DCP to interface with data sets, Voice 
Response Systems and the direct connection to 
remote devices. Each Line Adapter terminates one 
line. The Line Adapter handles the exchange of 
bits or characters between the Adapter Cluster and 
the data communication line. The buffer of each 
Line Adapter contains either one bit or one 
character, depending on the type. Table 11.-1 
shows a table of terminal compatibility. 

For more detailed information on all phases of 
the Data Communications Processor, refer to the 
Data Communications Processor Reference Manual 
(form 1054384). 

Table 11-1 
Data Communications Terminal Compatibility 

Dir. Modem 
Leased Switched Conn. A synch. Synch. Type Speed Range 

TWX Service x x 811B Up to 150 BPS 

W. E. Model 33 x x x x 103 Up to 110 BPS 

W. E. Model 35 (also 8Al x x x x 103 Up to 110 BPS 
Sel Calling) 

W. E. Model 37 x x x x 103 Up to 165 BPS 

B 93 5 3 Series Display x x x x x 103, Up to 2400 BPS 
202 or 

201 

B 9352 Series Display x x x x x 103, Up to 2400 BPS 
202 or 

201 

Model 28/83B3 (or equiv. x x x Up to 110 BPS 
Western Union Service) 

TC 5 00 Terminal x x x x 202 Up to 1200 BPS 

B 300/B 340/B 500 x x x x 201 Up to 2400 BPS 

B 2500/B 3500/B 4700 x x x x 201 Up to 2400 BPS 

B 5500/B 5700 x x x x 201 Up to 2400 BPS 

Honeywell 120 x x 201 Up to 2400 BPS 

IBM 1030 x x x 202 Up to 14.8 CPS 

Automatic Calling Unit x 801 

11-4 



GENERAL 

This section describes the functional 
characteristics for the Disk File Optimizer used 
with the B 6700 Information Processing Systems. 
The optimizer functions to optimize the transfer of 
information between a processor of the B 6700 
System and its associated disk file subsystem in 
order to improve the transfer rate. The optimizer 
communicates with the B 6700 via the scan bus, 
and with the disk file subsystem directly, or 
indirectly via another optimizer. Figure 12-1 shows 
the relationship of the optimizer to the other units 
in the B 6700 System. 

DFC 
r---

#o 

DP K= ~ 

DfC 
#o -~ #1 

~ 

r--1 

DEX 
A 

1/0 
.... D FC 

4 x 20 
#2 t---i 

PROC K: #o 
DFC '---1 

#3 

PCc#O 

PCC#1 

D FC 
r---'i 

DP 

k: #o 
.....__, i--i 

#1 

DFC DEX 

-~ ~t i....i B 

1/0 .JI 
4 x 20 

PROC K #1 4~ OFC ~ 
#2 

DFC 
"--- #3 

SECTION 12 
DISK FILE OPTIMIZER 

FUNCTIONAL CHARACTERISTICS 

Functional Performance Characteristics 

The basic functions of the optimizer are: 

1. Accumulate control words from the B 6700 
with each control word representing a disk 
transfer operation. 

2. Select the optimum control word from among 
the accumulated control words to minimize 
access time to the disk file (queuing). 

3. Transmit the optimum control word to the 
B 6700 upon request. 

EU 

Lrl #o 
r--

OPTIMIZER v .. 
~ #o 

rL E LT 

..tt19 
~ 

EU 

Ui #O 
r-

~ OPTIMIZER 
i... #1 ~ 

n_ EU 
#19 r--

NOTE: For illustrative purposes only, a two processor, two 1/0 processor system is shown. 

figure 12-1. The Optimizer in the B 6700 System. 

12-1 



The function of the optimizer is to optimize 
access time for the disk file controllers sharing the 
B 6700. Figure 12-2 depicts all of the devices that 
interface with the optimizer. 

Components 

The optimizer consists of the following func­
tional units: 

1. Input/Output (1/0) Interface Unit. 

2. Disk Address Unit. 

3. Queuing Unit. 

4. MDL Interface Unit. 

OPERATIONAL CHARACTERISTICS 

Accumulation of Control Words 

The B 6700 sends a control word to the 
optimizer by performing a scan-out operation. The 
optimizer checks the control word function code; 
if the code is acceptable, the desired disk starting 
address portion of the control word is converted 
from binary-coded decimal format to the time 
equivalent of the desired starting segment address 
(desired shaft position). After this conversion, the 
control word is stored in the optimizer stack 
memory. The optimizer stack is of sufficient size 
to accumulate 32 control words. The following 
depicts the format of a control word in the 
optimizer stack: 

47 28 27 22 21 20 16 15 13 12 l 0 

ML I SP I E EU SU DSP s I FIELD 

where: 

ML [47:20] 

SP [27:6] 

E [21:1] 

EU [20:5] 

SU [15:3) 

DSP (12:12] 

s (0: 1] 

= 

= 

Memory link. 

Spare bits. Not used. 

1 Exchange designate disk 
exchange B. 
O Exchange designate disk 
exchange A. 

Electronics unit number (EU). 

Storage unit number (SU). 

Desired shaft position. 

Shaft bit. (Differentiates the 
two shafts of a storage unit, 
when applicable.) 

B 6700 
DP 

DIAGNOSTIC I 
PROCESSOR __J 

MDL INTERFACE UNIT 

-------r---

I/0 

1 

I 
I 
I 

EU# 0 

., 

EU# 9 

EU#IO 

INTER­
~------< FACE 

ouEu1NG I AC>D~;~ss 
UNIT I UNIT 

EU# 19 

12-2 

B 6700 
1/0 

PROC 

UNIT 

OPTIMIZER# 0 

OPTIMIZER # I 

I 
I 
I 
I 
I 
I 

Figure 12-2. Optimizer Interfaces. 

Queuing The Control Words 

EU #0 

EU# 9 

EU# 10 

EU# 19 

A search for the optimum control word stored 
in the optimizer stack begins when the first control 
word from the bottom of the optimizer stack is 
read. The EU and SU numbers and the exchange 
bit of the control word, are used to gate actual 
shaft position information of the addressed storage 
unit from the desired EU into the optimizer. A 
comparison between the desired and actual shaft 
positions is then made. If the actual shaft position 
subtracted from the desired shaft position is a 
positive number greater than a certain minimum 
value, called the threshold'., the difference, called 
delta, and the optimizer stack address of the 
control word are inserted into the Delta A or the 
Delta B register, as specified by the control word 
exchange bits. (Threshold value will be determined 
by the total MCP/hardware subsystem response 
time, which starts with the receipt of the control 
word from the optimizer and extends through the 
disk starting segment number comparison by the 
controller.) The other control words stored in the 
optimizer stack undergo the same process 



sequentially from the bottom of the stack. As each 
word is processed, if a delta is generated which is 
smaller than the contents of the appropriate Delta 
register, and greater than the threshold, the smaller 
delta replaces the larger one in the register. The 
optimizer continuously scans through its stack of 
accumulated control words, when it is not engaged 
in control word transfers at the 1/0 processor 
interface. A complete pass through the list of 
accumulated control words constitutes a stack scan 
cycle. 

Stack Operation 

A control word suitable for execution by the 
disk system (a queued control word) is not sent to 
the. 1/0 processor until . the optimizer has 
completed at least one full scan through its 
memory stack since the last scan-in or scan-out 
operation. If, during the middle of a scan cycle, a 
scan-in operation (referencing an exchange) occurs, 
the optimizer restarts the scan cycle at the 
beginning and does not send a queued control 
word (referencing the same exchange) until at least 
one full scan cycle has been completed. If, 
however, during the middle of a scan cycle, a 
scan-out operation (referencing an exchange) 
occurs, the optimizer continues that scan cycle and 
does not send a queued control word (referencing 
the same exchange) until at least that scan cycle 
has been completed. 

Stack Erasure And Compression 

'when a control word is transmitted to the 1/0 
processor, this word is erased from the optimizer 
stack. Erasure is accomplished by transferring the 
word at the top of the optimizer stack into the 
location marked for erasure. The top-of-the-stack 
pointer is then decremented by one. 

Optimizer Dump 

The optimizer has the capability of executing a 
read top-of-the-stack instruction. The Optimizer 
Dump function is implemented by successive 
applications of this instruction. When the function 
code defines a read top-of-stack instruction, this 
then becomes the next operation. Then, whether 
the referenced EU is busy or not, the command 
word located at the top of the optimizer stack is 
transmitted to the 1/0 processor, unless a 
malfunction is to be reported. 

12-3 

Degraded Mode Operation 

If one optimizer or 1/0 processor fails, 
optimizing responsibility for the disk file sub­
system will be assumed by the remaining optimizer 
and 1/0 processor. Thus, the following situation 
may prevail: 

1. Access to any disk file will still be possible via 
the remaining optimizer/1/0 processor pair 
(optimizer or 1/0 processor failure). 

2. The remaining optimizer will be able to queue 
jobs involving any of the disks (optimizer 
failure). 

3. The remaining 1/0 processor will continue to 
be able to transfer control words to and from 
either optimizer (1/0 processor failure). 

EU Conflict Resolution 

Logic exists to prevent both optimizers of an 
optimizer pair from accessing the same EU bus 
simultaneously. The optimizer-to-optimizer signals 
required to implement this conflict resolution are 
described later in this section. 

INTERFACE REQUIREMENTS 

Interface With The 1/0 Processor 

The 1/0 processor communicates with the 
optimizer for the following reasons: 

1 . To send a control word to the optimizer 
(store control word request). 

2. To request a control word selected by the 
optimizing process to govern the execution of 
the next disk transfer (optimized control · 
word request). 

3. To receive an optimized control word from 
the top of the optimizer stack (top-of-the­
stack control word request). 

4. To clear the optimizer stack (clear-the-stack . 
request). 

The 1/0 processor interface communications are 
accomplished with a scan-out sequence for output 
operations and with a scan-in sequence for input 
operations. 



Control Word 

Each control word sent to the optimizer 
contains the following information: 

1. Desired Disk Starting Address. Eight bits of 
the desired disk starting address are used to 
define the desired exchange and EU. The 
remaining 26 bits are used to define the 
desired SU, shaft (if applicable), face, zone, 
track and segment. 

2. Function Code. The function code, together 
with the Scan Write Control (SWRC) signal, is 
used to define one of the operations. 

3. Memory Link. The memory link points to an 
address in main memory wherein the disk 
operation is defined. This address is returned 
to the 1/0 processor and identifies the next 
disk operation to be performed. 

Scan-Out 

When the MCP has a control word for the 
optimizer, the MCP initiates the scan-out sequence 
by making the Scan Write Control (SWRC) line 
come true, and it then sends a Scan Request 
(SREQ) signal to the optimizer as indicated in 
figure 12-3. If the optimizer stack is not full, the 
optimizer responds by making its Scan Ready 
(SRDY) signal come true. At this time, the 
information being sent to the optimizer is available 
on the interface lines: 20 bits are transferred on 
the Scan Address SA (00 thru 19) lines, and 48 bits 
are transferred on the Scan Information SI (00 
thru 47) lines. Two odd parity bits accompany the 
signals received from the 1/0 processor: Scan 
Address Parity Level (SAPL) for· signals SA (00 
thru 19), SREQ, and SWRC; and Scan Information 
Parity Bit (SIS 1) for signals SI (00 thru 47). The 
optimizer indicates receipt of the signal by making 

SCAN ·OUT SIGNAL SEQUENCE 

SIGNAL 

SREQ 

'"(_ L 
~ v 71 

~ 

NEW SCAN 

_[(_ 

SRDY ~ 
/) ti 
_{( 

SA(OO · 19) lL 7/ ~ 
f {_ 

~ II ~ SAPL 

l 

SWRC ll JJ ~ 

SAOX v [\ 

STEX ~ [\ 

Sl(00-47) 

f ( v /} 
~ 

.{{___ 

v ]) ~ Sl51 

NOTE 

a. SREQ must be off at least one clock between scans (after the fall of SOAX). 

b. SRDY must be held on for at least one clock after SAOX is turned on. 

c. Since the system in asynchronous, the processor may recognize SAOX and drop its signals later than 
shown. 

Figure 12-3. Scan-Out Signal Sequence. 

12-4 



the Scan Access Obtained (SAOX) signal come 
true. If the optimizer detects a parity error during 
transmission of the control word, it will make the 
Scan Transmission Error (STEX) signal come true. 

Scan-In 

When the MCP requests a control word from the 
optimizer, the MCP initiates the scan-in sequence 
by keeping the Scan Write Control (SWRC) line 
low, while sending a Scan Request (SREQ) signal 
to the optimizer, as indicated in figure 12-4. The 
optimizer responds by raising its Scan Ready 
(SRDY) signal. At this time, control information is 
transferred to the optimizer over the 20 Scan 
Address lines SA (00 thru 19), and a Parity signal 
(SAPL) is sent to the optimizer to maintain odd 
parity on signals SA (00 thru 19), SREQ, and 
SWRC. The optimizer responds by generating a 
Scan-In word, the contents of which are 
determined by the status controls, together with an 
odd parity signal for this word (SIS 1) and raises 

the Scan Access Obtained (SAOX) signal to inform 
the I/O processor that the control word is available 
on the interface lines. In addition, if the optimizer 
detected a parity error during the transmission of 
control information over the 20 SA (00 thru 19) 
lines, it makes the Scan Transmission Error (STEX) 
signal come true at this time. 

Scan Bus Data For mat 

Data is transferred on the scan bus over the 
uni-directional (1/0 processor to optimizer) Scan 
Address lines and over the bi-directional Scan 
Information lines. 

SCAN ADDRESS LINES (SA) 

The following is the B 6700 Scan Address line 
word format: 

19 16 15 8 7 6 5 4 3 0 

.__D_T_....._ __ Eu_o __ ~_s_P__J__F_c__J_ __ sP_ J FIELD 

SCAN- IN SIGNAL SEQUENCE NEXT SCAN 

SIGNAL 

SREQ 

SROY 

SA(00-19) 

SAPL 

SWRC 

SAOX 

STEX 

SI(00-47) 

SI51 

~ 

v 
v 
I/ 

'L 
H 

~ 
'L -u 

\ 
rL 

1/ 
~ 

'L 
7/ \ 

I ~ 

f ~ 

I ~ 

f l 
NOTE 

a. SREO must be off at least one clock between scans (after the fall of SOAX). 

b. SRDY must be held on for at least one clock after SAOX is turned on. 

/' 
v 

--~ 

c. Since the system is asynchronous, the processor may recognize SAOX and drop its signals later than 
shown. 

Figure 12-4. Scan-In Signal Sequence. 

12-5 



where: 

DT [ 19: 4] Device Code 1001 selects the 
Type optimizer. 

EUD [ 15: 8] Electronic Defines the exchange 
Unit and the EU number 
Designate associated with the 

job. 

SP 

FC 

[7:2] 
[3:4] 

[5:2] 

Spare 
Spare 

Function 
Code 

Not used. 
Not used. 

Defines the operation 
requested by the 1/0 
processor as follows: 

a. During a scan-out 
operation (SWRC 
signal is high), the 
coding of this field 
has the following 
significance: 

Code 01 defines a 
Store Control Word 
request. 

Code 10 defines a 
clear-the-stack 
request. 

b. During a scan-in 
operation (SWRC 
signal is low), the 
coding of this field 
has the following 
significance: 

Code 01 defines an 
Optimized Control 
Word request. 

Code 10 defines a 
Top-of-the-Stack 
Control Word 
request. 

SCAN-OUT INFORMATION LINES 

The word format of the B 6700 scan-out infor­
mation lines is as follows: 

47 28 27 26 25 0 

ML SP DA FIELD 

12-6 

where: 

ML [47:20] 

SP [27:2] 

DA [25:26] 

Memory 
link 

Spare 

Disk 
Address 

Defines the complete 
memory address. Bit 
4 7 is the most­
significant bit. 

Not used. 

Defines the six BCD 
characters plus the two 
expansion bits of the 
desired disk starting 
address, not including 
the desired EU or 
desired disk file 
exchange (DEX). 

SCAN-IN INFORMATION LINES (SI) 

The word format of the B 6700 scan-in informa­
tion lines is as follows: 
47 40 39 27 26 7 6 I 0 

SR SP ML SP I A I FIELD 

where: 

SR [47:8] 

SP [39: 13] 
[6:6) 

Status 
report 

Spare 
Spare 

Contains codes 
de scribing the 
nature of the op­
timizer response. 

Not used. 
Not used. 

ML [26:20] Memory The complete 
link 

A [0: 1] Attention 

memory address. 

When set to 1 alerts 
the MCP to examine 
the SR field. 

Dynamic Interaction With The B 6700 

During communications with the MCP while any 
one or more of the conditions listed below is 
applicable, the optimizer responds as described in 
the following paragraphs: 

1. Optimized Con tro:t Word request. 

2. Top-of-Stack Control Word request. 

3. Store Control Word request. 

4. Clear-the-Stack request. 

5. First stack scan cycle incomplete. 

6. Arithmetic Address Converter (AAC) 
busy. 



7. No access to the Optimizer Exchange 
(OEX). 

8. SU not available. 

9. Optimizer Stack (OS). 

10. Control Word (CW) not available. 

11. Scan bus parity error. 

12. OS parity error. 

13. Disk address error. 

14. OS full. 

OPTIMIZED CONTROL WORD REQUEST 

If the MCP requests a queued control word 
(referencing an exchange) during a scan-in 
operation and the optimizer has an optimized 
control word (referencing the same exchange) 
ready for transmission, the optimizer responds 
with the memory location of that control word 
and an appropriate status code. (The optimizer 
obtains the memory location by reading a control 
word from the OS, from the location determined 
by the appropriate Delta register at the topmost 
filled position of the memory stack and the stack 
scan-information (SI) register, DAR or DBR.) 

TOP-OF-STACK CONTROL WORD REQUEST 

If the MCP requests the control word located at 
the topmost filled position of the OS and the stack 
is not empty, the optimizer responds with the 
memory location of that control word and an 
appropriate status code. 

STORE THE CONTROL WORD REQUEST 

If the MCP requests a control word be loaded 
into the OS (via the scan-out operation), the 
optimizer responds by accepting that control word, 
sends the DA portion of the control word to the 
AAC section for processing (unless unable to do so 
because of an error condition), and then stores the 
control word in the OS in the format indicated 
above. 

CLEAR-THE-STACK REQUEST 

If the MCP requests the OS be cleared (via a 
scan-out operation), the optimizer sets TSR to the 
position indicating an empty optimizer stack 
location, thus effectively erasing the OS. All 
error-detecting flip flops previously set are reset. 

12-7 

FIRST STACK SCAN CYCLE INCOMPLETE 

If the MCP initiates an Optimized Control Word 
request (referencing an exchange) prior to the 
completion of a full stack scan cycle since the last 
scan bus operation (referencing the same exchange) 
with that optimizer, the optimizer answers the 
SREQ signal of the I/O processor with a SRDY 
signal, and then waits until completion of a scan 
cycle before sending an Optimized Control Word 
accompanied by an SAOX signal. 

ARITHMETIC ADDRESS CONVERTER 
(AAC) BUSY 

If the MCP performs a scan-out operation while 
the AAC section of the optimizer is still busy 
converting the control word it received during the 
previous scan-out operation, the optimizer 
responds to the SREQ of the 1/0 processor signal 
with an SRDY signal. The optimizer then waits 
until completion of the address conversion before 
accepting the new control word along with the 
SAOX signal. 

NO ACCESS TO OEX 

If the optimizer does not receive a strobe 
(accompanying the time equivalent of angular shaft 
position) from an EU, in response to a request for 
shaft position information, the optimizer 
immediately stops optimizing and responds in the 
following manner. If the next scan bus operation is 
a Store Control Word request, the optimizer will 
process the new control word in the normal 
manner and load it into the optimizer stack. 
Subsequent Store Control Word requests (if any) 
are similarly processed. A Clear-the-Stack request is 
also honored, if it occurs. However, when a request 
for an Optimized Control Word or a Top-of-Stack 
Control Word takes place (and a Clear-the-Stack 
request has not occurred), the optimizer responds 
with the memory location of the control word 
associated with the No-Access-To-OEX error and 
an appropriate status code. Optimizing then 
resumes. 

SU NOT AVAILABLE 

If, during optimizing, in response to a request 
for shaft position information, the optimizer does 
not receive an SU Ready level, the optimizer 
immediately halts and the following occurs. If the 
next scan bus operation is a Store Control Word 
request, the optimizer processes the new control 



word in the normal manner and loads it into the 
optimizer stack. Subsequent Store Control Word 
requests (if any) are similarly processed. A 
Clear-the-Stack request is also honored, if it occurs. 
However, when a request for an Optimized Control 
Word or a Top-of-the Stack Control Word takes 
place (and a Clear-the-Stack request has not 
occurred), the optimizer responds with the 
memory location of the control word associated 
with the SU Not Available error and an appropriate 
status code. Optimizing then resumes. 

OPTIMIZER STACK (OS) EMPTY 

If the MCP requests an optimized control word, 
referencing an exchange, and the OS does not 
contain control words referencing the same 
exchange; or if the MCP requests the control word 
from the top-of-the-stack and the OS is completely 
empty (contains no control words), the optimizer 
responds with a memory location of all O's and an 
appropriate status code. 

CONTROL WORD NOT AVAILABLE 

If, after completion of a full stack scan cycle, 
the MCP requests an optimized control word 
(referencing an exchange), and one is unavailable 
for transmission because all of the control words 
stored in the OS (referencing the requested 
exchange) reference EU's which are busy, the 
optimizer returns a memory link of all O's and an 
appropriate status code (unless an error condition 
is to be reported). 

SCAN BUS PARITY ERROR 

If, during a scan-out operation, the optimizer 
detects a parity error on either the Scan Address 
lines or the Scan Information lines, the optimizer 
responds with an SRDY signal and then an SAOX 
signal accompanied by an STEX signal. The 
optimizer loads the received control word into the 
OSR and ignores it; that is, the new control word 
will not be sent to the AAC for processing nor will 
it be loaded into the optimizer stack. If, during a 
Scan-In operation, the optimizer detects a parity 
error on the Scan Address lines, the optimizer 
responds with a SRDY signal, then an SAOX signal 
accompanied by a STEX signal, and by a memory 
link of all O's. 

12-8 

OPTIMIZER STACK (OS) PARITY ERROR 

The optimizer generates a parity bit for each 
control word loaded into the OS. Parity is checked 
whenever a control word is read from the OS. If an 
OS parity error is detected, optimizing is halted 
immediately and the optimizer responds in the 
following manner: If the next scan bus operation is 
a scan-out, the optimizer will process the new 
control word in the normal manner and load it into 
the OS. Subsequent scan-out operations, if any, are 
similarly processed. A Clear-the-Stack request will 
be honored, if it occurs. However, when a request 
for an Optimized Control Word or Top-of-Stack 
Control Word takes place (and a Clear-the-Stack 
request has not occurred), the optimizer responds 
with the memory link of the control word 
associated with the error and an appropriate status 
code. Optimizing then resumes. 

NOTE 

The memory link may not be valid at this 
time. 

DISK ADDRESS ERROR 

The AAC section of the optimizer checks if the 
EUD or DA portions of the last received control 
word contains one of the following error 
conditions: 

1. The Electronic Unit Designate (EUD) or Disk 
Address (DA) portion of the control word is 
not properly coded (BCD), either when it is 
received by the AAC or subsequently during 
the conversion process. 

2. During conversion, it is determined that the 
number of SU's exceeds five, or the number 
of faces exceeds eight, or the number of 
tracks exceeds 50. 

Then, the optimizer immediately halts address 
conversion and optimizing. Consequently this 
control word is not loaded into the optimizer 
stack, and the optimizer responds in the following 
manner: If the next scan bus operation is a Store 
Control Word request, the optimizer will not 
respond (that is, the SRDY signal is low). A 
Clear-the-Stack request will be honored, if it 
occurs. However, when a request for an Optimized 
Control Word takes place (and a Clear-the-Stack 
request has not occurred), the optimizer responds 
with the memory link of the control word 
associated with the Disk Address Error and an 
appropriate status code. 



OPTIMIZER STACK FULL 

If the MCP inaugurates a Store Control Word 
request scan-out operation (by sending the SREQ 
and SWRC signals with the appropriate function 
code), and the optimizer stack is full, the optimizer 
does not respond; that is, it keeps the SRDY signal 
low. 

DISK INTERFACE 

The disk file subsystem (DFS) consists of 
electronics units (EU's) and their associated storage 
units (SU's). Each optimizer has the capability to 
communicate directly with up to 20 EU's 
associated with one disk file exchange (by means 
of two 10-EU busses); each optimizer can also 
communicate indirectly with up to 20 EU's 
associated with another disk file exchange via 
another optimizer, as depicted in figure 12-5. In 
normal operation, each optimizer is restricted to 
direct communication with its associated 20 EU's 
but each optimizer does have the ability to access 
all 40 EU's (on a pair of disk exchanges), if 
necessary. 

OPTIMIZER #0 

I 
I 
I 
I D ~ u 
I I D N 

I s ~ ~ 
I K s 
I s 

I 
I 

OPTIMIZER# t 

A 

I D D 

I I 

I s 
K s I s 

I 
\ 

u 

I 

T 

Figure 12-5. The Disk File Subsystem (DFS) Interface. 

12-9 

The following signals, which the optimizer sends 
and receives on the disk file subsystem interface, 
are also shown in figure 12-6: 

1. Signals sent directly to the DFS. 

2. Signals sent to the DFS via the other 
optimizer. 

3. Control signals sent to the other optimizer. 

4. Signals received directly from the DFS. 

5. Signals received from the DFS via the other 
optimizer. 

Signals Sent Directly To The 
Disk File Subsystem 

The following signals are sent directly to the 
disk file subsystem: 

1. Select 1. This signal enables communication 
between the optimizer and the first set of 10 
EU's on the disk file exchange normally 
associated with this optimizer. The EU's use 
this signal to gate out information from the 
desired SU to the optimizer. 

2. Select 2. This signal enables communication . 
between the optimizer and the second set of 
10 EU's on the exchange normally associated 
with this optimizer. The EU's use this signal · 
to gate out information from the desired SU 
to the optimizer. 

3. EU select 1. These signals are transmitted over 
four lines to define one of 10 EU's designated 
by select 1. 

4. SU select 1. These signals are transmitted over 
four lines to define one of five SU's in the EU 
referenced by EU select 1, and one of two 
shafts, when applicable. 

5. EU select 2. These signals are transmitted over 
four lines to define one of 10 EU's designated 
by select 2. 

6. SU select 2. These signals are transmitted over 
four lines to define one of five SU's in the EU 
referenced by EU select 2, and one of two 
shafts, when applicable. 

Signals Received Directly From The 
Disk File Subsystem 

The following signals are received directly from_ 
the disk file subsystem: 

1. Shaft position 1. This is the output of a 12-bit 



counter containing the time equivalent of the 
angular shaft position of the desired SU 
referenced by SU select signal 1. 

2. Shaft position 2. This is the output of a 12-bit 
counter containing the time-equivalent of the 
angular shaft position of the desired SU 
referenced by SU select signal 2. 

3. Strobe 1. This signal indicates the existence of 
valid information on the 12 shaft position 1 
lines. 

4. Strobe 2. This signal indicates the existence of 
valid information on the 12 shaft position 2 
lines. 

5. Storage unit ready level 1. This signal 
indicates that the SU referenced by SU select 
1 has power up, is up to speed, is on-line, and 
is otherwise operational. 

6. Storage unit ready level 2. This signal 
indicates that the SU referenced by SU select 
2 has power up, is up to speed, is on-line, and 
is otherwise operational. 

7. EU busy 1. This signal indicates that the EU 
referenced by EU select 1 is busy. 

8. EU busy 2. This signal indicates that the EU 
referenced by EU select 2 is busy. 

Signals Sent To The Disk File Subsystem 
Via The Other Optimizer 

The following signals are sent to the disk file 
subsystem via the other optimizer of an optimizer 
pair: 

1. Select 3. This signal enables communication 
between the optimizer and the first set of 10 
EU's on the DFX not normally associated 
with this optimizer, via the other optimizer. 
The EU's use this signal to gate out 
information from the desired SU to the 
optimizer. 

2. Select 4. This signal enables communication 
between the optimizer and the second set of 
10 EU's on the disk file exchange not 
normally associated with this optimizer, via 
the other optimizer. The EU's use this signal 
to gate out information from the desired SU 
to the optimizer. 

3. EU select 3. These signals are transmitted over 
four lines and define one of 10 EU's 
designated by select 3. 

4. SU select 3. These signals are transmitted over 
four lines and define one of five SU's in the 
EU referenced by select 3, and one of two 
shafts, when applicable. 

5. EU select 4. These signals are transmitted over 
four lines and define one of 10 EU's 
designated by select 4. 

6. SU select 4. These signals are transmitted over 
four lines and define one of five SU's in the 
EU referenced by select 4, and one of two 
shaft, when applicable. 

Signals Received From The Disk File Subsystem 
Via The Other Optimizer 

The following signals are received from the disk 
file subsystem via the other optimizer: 

12·10 

1. Shaft position 3. This is the output of a 12-bit 
counter containing the time equivalent of 
angular shaft position of the desired SU 
referenced by SU select 3. 

2. Shaft position 4. This is the output of a 12-bit 
counter containing the time equivalent of 
angular shaft position of the desired SU 
referenced by SU select 4. 

3. Strobe 3. This signal indicates the existence of 
valid information on the 12 shaft position 3 
lines. 

4. Strobe 4. This signal indicates the existence of 
valid information on the 12 shaft position 4 
lines. 

5. Storage unit ready level 3. This signal 
indicates that the SU referenced by SU select 
3 has power up, is up to speed, is on-line, and 
is otherwise operational. 

6. Storage unit ready level 4. This signal 
indicates that the SU referenced by SU select 
4 has power up, is up to speed, is on-line, and 
is otherwise operational. 

7. EU busy 3. This signal indicates that the EU 
referenced by EU select 3 is busy. 

8. EU busy 4. This signal indicates that the EU 
referenced by EU select 4 is busy. 

Signals Sent To The Other Optimizer 

The following control signals are sent to the 
other optimizer: 

1. Access request. This signal requests access 



to an EU normally associated with the 
other optimizer. 

2. Access granted. This signal enables the 
other optimizer to access an EU not 
normally associated with it, if the bus to 
the requested EU is not being used. 

3. Shaft position 1. Identical to the signals 
described above. 

4. Shaft position 2. Identical to signals 
described above. 

5. Strobe 1. Identical to signals described 
above. 

6. Strobe 2. Identical to signals described 
above. 

7. Storage unit ready level 1. Identical to 
signals described above. 

8. Storage unit ready level 2. Identical to 
signals described above. 

9. EU busy 1. Identical to signals described 
above. 

10. EU busy 2. Identical to .signals described 
above. 

Signals Received From The Other Optimizer 

The following control signals are received from 
the other optimizer: 

1. Access granted. This signal enables the 
optimizer to access an EU not normally 
associated with it, if the bus to the requested 
EU is not being used by the optimizer 
normally associated with it (the other 
optimizer). 

2. Access request. This signal, from the other 
optimizer, requests access to an EU not 
normally associated with it. 

3. Select 1. This signal indicates a request to 
raise the signal described above. 

4. Select 2. This signal indicates a request to 
raise the signal described above. 

5. EU select 1. This signal indicates a request to 
raise the signal described above. 

6. SU select 1. This signal indicates a request to 
raise the signal described above. 

7. EU select 2. This signal indicates a request to 
raise the signal described above. 

8. SU select 2. This signal indicates a request to 
raise the signal described above. 

12-11 

FUNCTIONAL UNITS 

The optimizer consists of the components 
specified earlier. Figure 12-6 is a block diagram of 
the optimizer. It details the sections, (other than 
the MDL interface unit) which compose each 
functional unit, and illustrates their 
inter-relationship. 

1/0 Interface Unit 

The I/O Interface Unit communicates with the 
MCP; it accepts control words from the MCP and 
returns control words and status reports to the 
MCP. The following sections are included in this 
unit: 

1. Drivers and receivers (DR and RX). 

2. Scan bus controls. 

3. Control word (CW) checker. 

4. Status controls. 

DRIVERS (DR) AND RECEIVERS (RX) 

The lines involved in the optimizer/B 6700 
interface constitute the scan bus. The scan bus -
lines were discussed previously. The DR and RX 
sections provide the optimizer with the capability . 
of driving and receiving all of the optimizer/B 6700 . 
interface signals. 

SCAN BUS CONTROLS 

The receipt, processing and transmission of the -
control signals of the optimizer/B 6700 interface is 
performed under the supervision of the scan bus 
controls. 

CONTROL WORD (CW) CHECKER 

The CW Checker examines the scan interface -
lines in order to determine if the scan operation is 
addressed to the optimizer. If so, the CW Checker · 
then checks to see if a scan parity error exists. 

STATUS CONTROLS 

The Status Controls store information defining 
optimizer response to the request at the B 6700 
interface, and load the Status Report (SR) field of 
the Scan-In word with a code to describe the 
response. The Status Controls monitor the condi­
tions listed below, load the Memory Link (ML), 
field of the Scan-In word with the information 
indicated below, and set the indicated bit of the 
SR field: 



1110 INTERFACE1

1 
rl oPi-IMiZER UNIT - - - 1 lo1si<- - - - -1 

UNIT I I ADDRESS I 

SCAN-BUS 
SIGNALS 

11 
11 

I 

UNIT 

:::::E~: ~UJSIGNALS 
RECEIVED 

EU eusv I a 2 FROM DFS 
DIRECTLY 

SURl 18 2 

SIGNALS 
~--'-"""""--~-~ SENT 

TO OTHER 
OPTIMIZER 

OPTIMIZER/ 

DFS 
BUS 

OPTIMIZER/ 

OPTIMIZER 

BUS 

Figure 12-6. Optimizer Block Diagram With Interface Signals 
(Omitting The Maintenance Diagnostic Interface) 

Memory Status 
Status Condition Link Report 

No access to OEX ACW* 47 

SU not available ACW* 46 

OS parity error ACW* 45 

Disk address error ACW* 44 

Optimized control word ACW* 43 

Top-of-stack control word ACW* 42 

Stack empty Zeros 41 

Control word not available Zeros 40 

*Associated Control Word - control word 
associated with the generation of the status 
report. 

12-12 

Disk Address Unit 

The Disk Address Unit activates the Address 
Select lines to indicate the desired EU and SU, and 
receives shaft position and control signal informa­
tion from the selected EU. This unit includes the 
following: 

1 . Drivers and receivers (DR and RX). 

2. Electronics units conflict resolution. 

3. Actual shaft position register (ASPR). 

DRIVERS AND RECEIVERS 

Capability to address and receive signals from up 
to 20 EU's directly, and up to 20 EU's indirectly, 
is provided by the Drivers and Receivers discussed 
above. 



EU CONFLICT RESOLUTION 

The EU Conflict Resolution previously defined 
is used in the EU Conflict Resolution discussed 
above. 

ACTUAL SHAFT POSITION 
REGISTERS (ASPR) 

The time-equivalent of the angular shaft position 
of the desired SU of the desired EU is stored in the 
ASPR. 

Optimizing Unit 

The Optimizing Unit is capable of accumulating 
up to 32 control words and selecting the best one 
in terms of minimum access time. This unit 
includes the following: 

1. Arithmetic address converter (AAC). 

2. Optimizer Stack (OS). 

3. Optimizer Stack register (OSR). 

4. Stack Controls. Top-of-the Stack register 
(TSR), and Optimizer Address register 
(OAR). 

5. Delta Generator and Comparator (DGC). 

6. Delta A register (DAR) and Delta B register 
(DBR). 

7. Timing controls. 

ARITHMETIC ADDRESS CONVERTER (AAC) 

The AAC accepts the 26 bits of the disk address 
made available to the optimizer during a Scan-Out 
operation. This information is in BCD format and 
consists of the desired disk starting address other 
than the desired exchange number (A or B) and the 
desired EU number. The AAC converts this infor­
mation into the desired SU number, and a 12-bit 
binary number representing the desired starting 
segment number in terms of the time-equivalent of 
angular shaft position of the desired SU. The AAC 
perf arms the conversion by successively 
subtracting, from the number obtained from the 
OSR, constants obtained from a configuration card 
which defines the type of the SU and from 
parameter cards which define the storage capa­
bilities of the SU type. (The optimizer can accom­
modate disk systems consisting of a mix of up to 
four SU types: IC-3, IC-4, IC-5, and II-B; however, 
all SU's attached to a given EU must be of the 
same type.) In this manner, the AAC calculates the 

12-13 

desired segment number. The segment number is 
then converted into the corresponding shaft posi­
tion, expressed in segments of time, taking into 
account the SU type and the zone of the disk 
address. After conversion, the SU number (three 
bits) and the shaft position information ( 12 bits) 
are loaded into the OSR along with the EU number 
(five bits) and exchange bit. 

OPTIMIZER STACK 

The optimizer stack provides storage for up to 
32 control words. The disk starting address portion 
of these control words is compatible in format 
with the addresses received from the SU's. 

OPTIMIZER STACK REGISTER (OSR) 

The OSR acts as a link to the optimizer stack. 
Control words to be written into the stack are first 
loaded into the OSR. 

Control words stored in the stack may, when 
desired, be read into the OSR. The OSR also acts 
as the link to the scan bus by receiving and 
transmitting the data interchanged on that bus. 

STACK CONTROLS (TSR AND OAR) 

The stack controls and the TSR and OAR 
selections supervise writing into or reading from 
the optimizer stack, indicate the extent to which 
the stack is occupied, and find the stack location 
of the current interest. 

STACK CONTROLS. Overall supervision of 
writing into or reading from the optimizer stack is 
performed by the stack controls. 

TOP-OF-THE-STACK REGISTER (TSR). The 
TSR indicates the extent to which the optimizer 
stack is occupied by registering the topmost 
position of the stack which is occupied. As a 
control word is added to the optimizer stack, the 
TSR is incremented by 1. Whenever a control word 
is erased from the stack, the TSR is decremented 
by 1. 

OPTIMIZER ADDRESS REGISTER (OAR). The 
OAR points to the optimizer stack location 
currently being used. 

DELTA GENERATOR AND 
COMPARATOR (DGC) 

The DGC accepts the desired shaft position from 
the OSR and the actual shaft position from the 



ASPR. It then generates a delta, compares this 
delta with the delta stored in the appropriate Delta 
register, DAR or DBR, and stores the smaller of 
the two deltas in the proper Delta register, DAR or 
DBR. The DGC erases a stored delta when it 
becomes obsolete. 

DELTA A REGISTER AND DELTA B 
REGISTER (DAR AND DBR) 

The DAR contains the best control word (in 
terms of minim um access time) referencing 
Exchange A. Similarly, the DBR contains the best 

12-14 

control word referencing Exchange B. In either 
case, a control word is referenced by storing its 
optimizer stack address and its delta, in the DAR 
and DAB respectively. Each Delta register has a 
flag associated with it, indicating that an optimized 
control word is available. 

TIMING CONTROLS 

The Timing Controls of the optimizing unit 
provide the overall basic timing coordination for 
consistent operation and initiate operation of the 
various functional units at the proper time. 



APPENDIX A 

OPERATORS, ALPHABETICAL LIST 
HEXA-

NAME MNEMONIC DECIMAL PAGE 
CODE 

ADD ADD 80 7-1 

BIT RESET BRST 9E 7-9 

BIT SET BSET 96 7-9 

BRANCH FALSE BRFL AO 7-5 

BRANCH TRUE BRTR Al 7-5 

BRANCH UNCONDITIONAL BRUN A2 7-5 

CHANGE SIGN BIT CHSN SE 7-9 

COMPARE CHARACTERS EQUAL DESTRUCTIVE CEQD F4 7-13 

COMPARE CHARACTERS EQUAL, UPDATE CEQU FC 7-13 

COMPARE CHARACTERS GREATER OR EQUAL, 
DESTRUCTIVE CGED Fl 7-13 
COMPARE CHARACTERS GREATER OR EQUAL, 
UPDATE CGEU F9 7-13 
COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD F2 7-12 
COMPARE CHARACTERS GREATER, UPDATE CGTU FA 7-13 
COMPARE CHARACTERS LESS OR EQUAL, 
DESTRUCTIVE CLED F3 7-13 
COMPARE CHARACTERS LESS OR EQUAL, UPDATE CLEU FB 7-13 
COMPARE CHARACTERS LESS, DESTRUCTIVE CLSD FO 7-13 
COMPARE CHARACTERS LESS, UPDATE CLSU F8 7-13 
COMPARE CHARACTERS NOT EQUAL, 
DESTRUCTIVE CNED FS 7-13 
COMPARE CHARACTERS NOT EQUAL, UPDATE CNEU FD 7-13 
CONDITIONAL HALT (all modes) HALT DF 7-6 
COUNT BINARY ONES CBON 95BB 8-13 
DELETE TOP OF STACK DLET BS 7-6 
DISABLE EXTERNAL INTERRUPT DEXI 9547 8-1 
DIVIDE DIVD 83 7-2 
DUPLICATE TOP OF STACK DUPL B7 7-6 
DYNAMIC BIT RESET DBRS 9F 7-9 
DYNAMIC BIT SET DBST 97 7-9 
DYNAMIC BRANCH FALSE DBFL AB 7-5 
DYNAMIC BRANCH TRUE DBTR A9 7-5 
DYNAMIC BRANCH UNCONDITIONAL DBUN AA 7-5 
DYNAMIC FIELD INSERT DINS 9D 7-10 
DYNAMIC FIELD ISOLATE DISO 9B 7-10 
DYNAMIC FIELD TRANSFER DFTR 99 7-10 
DYNAMIC SCALE LEFT DSLF Cl 7-8 
DYNAMIC SCALE RIGHT FINAL DSRF C7 7-9 
DYNAMIC SCALE RIGHT ROUND DSRR C9 7-9 
DYNAMIC SCALE RIGHT SA VE DSRS cs 7-8 

A-1 



APPENDIX A (Cont'd.) 

HEXA-
NAME MNEMONIC DECIMAL PAGE 

CODE 

DYNAMIC SCALE RIGHT TRUNCATE DSRT C3 7-B 
ENABLE EXTERNAL INTERRUPTS EEXI 9546 B-1 
END EDIT (edit mode) ENDE DE 9-3 
END FLOAT (edit mode) ENDF DS 9-2 
ENTER ENTR AB 7-17 
EQUAL EQUL BC 7-4 
ESCAPE TO 16-BIT INSTRUCTION VARI 95 B-1 
EVALUATE EVAL AC 7-20 
EXCHANGE EXCH B6 7-6 
EXECUTE SINGLE MICRO, SINGLE POINTER 
UPDATE EXPU DD 7-14 
EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD D2 7-14 
EXECUTE SINGLE MICRO, UPDATE EXSU DA 7-14 
EXIT EXIT A3 7-15 
EXTENDED MULTIPLY MULX BF 7-2 
FIELD INSERT INSR 9C 7-10 

FIELD ISOLATE ISOL 9A 7-10 

FIELD TRANSFER FLTR 9B 7-9 

GREATER THAN GRTR BA 7-4 

GREATER THAN OR EQUAL GREQ B9 7-4 

IDLE UNTIL INTERRUPT IDLE 9544 B-1 

INDEX INDX A6 7-7 

INDEX AND LOAD NAME NXLN AS 7-7 

INDEX AND LOAD VALUE NXLV AD 7-7 

INPUT CONVERT, DESTRUCTIVE ICVD CA 7-14 
INPUT CONVERT UPDATE ICVU CB 7-15 
INSERT CONDITIONAL (edit mode) INSC DD 9-2 
INSERT DISPLAY SIGN (edit mode) INSG D9 9-2 

INSERT MARK STACK IMKS CF 7-22 
INSERT OVERPUNCH (edit mode) INOP DB 9-3 
INSERT UNCONDITIONAL (edit mode) INSU DC 9-2 
INTEGER DIVIDE IDIV B4 7-2 
INTEGERIZE, ROUNDED NTGR B7 7-3 
INTEGERIZE, TRUNCATED NTIA B6 7-3 
INTEGERIZE, ROUNDED DOUBLE-PRECISION NTGD 95B7 B-11 
INTERRUPT OTHER PROCESSORS HEYU 954F B-10 
INVALID OPERATOR (all modes) NVLD FF 7-6 
LEADING ONE TEST LOG2 95BB B-11 
LINKED LIST LOOKUP LLLU 95BD 8-13 
LESS THAN LESS BB 7-4 
LESS THAN OR EQUAL LSEQ BB 7-4 
LIT CALL ONE ONE Bl 7-7 

A-2 



APPENDIX A (Cont'd.) 

HEXA-
NAME MNEMONIC DECIMAL PAGE 

CODE 

LIT CALL ZERO ZERO BO 7-7 

LIT CALL 8 BITS LT8 B2 7-7 

LIT CALL 16 BITS LT16 B3 7-7 
LIT CALL 48 BITS LT48 BE 7-7 

LOAD LOAD BD 7-8 
LOAD TRANSPARENT LODT 95BC 8-13 
LOGICAL AND LAND 90 7-4 
LOGICAL EQUAL SAME 94 7-4 
LOGICAL EQUIVALENCE LEQV 93 7-4 
LOGICAL NEGATE LNOT 92 7-4 
LOGICAL OR LOR 91 7-4 
MAKE PROGRAM CONTROL WORD MPCW BF 7-7 
MARK STACK MKST AE 7-21 
MASKED SEARCH FOR EQUAL SRCH 95BE 8-13 
MOVE CHARACTERS (edit mode) MCHR D7 9-1 

MOVE NUMERIC UNCONDITIONAL (edit mode) MVNU D6 9-1 

MOVE TO STACK MYST 95AF 8-11 
MOVE WITH FLOAT (edit mode) MFLT Dl 9-1 
MOVE WITH INSERT (edit mode) MINS DO 9-1 

MULTIPLY MULT 82 7-2 
NAME CALL NAMC 40 =<>7F 7-15 
NO OPERATION (all modes) NOOP FE 7-6 
NOT EQUAL NEQL 8D 7-5 
OCCURS INDEX OCRX 9585 8-10 
OVERWRITE DESTRUCTIVE OVRD BA 7-6 
OVERWRITE NON-DESTRUCTIVE OVRN BB 7-6 
PACK DESTRUCTIVE PACD Dl 7-14 
PACK UPDATE PACU D9 7-14 
PUSH DOWN STACK REGISTERS PUSH B4 7-6 
READ AND CLEAR OVERFLOW FLIP FLOP ROFF D7 7-15 
READ PROCESSOR IDENTIFICATION WHOI 954E 8-10 
READ PROCESSOR REGISTER RPRR 95B8 8-12 
READ TAG FIELD RTAG 95B5 8-12 
READ TRUE/FALSE FLIP FLOP RTFF DE 7-15 
READ WITH LOCK RDLK 95BA 8-13 
REMAINDER DIVIDE RDIV 85 7-2 
RESET FLOAT (edit mode) RSTF D4 9-2 

RETURN RETN A7 7-17 
ROTATE STACK DOWN RSDN 95B7 8-12 

ROTATE STACK UP RSUP 95B6 8-12 

SCALE LEFT SCLF co 7-8 

SCALE RIGHT FINAL SCRF C6 7-8 

A-3 



APPENDIX A (Cont'd.) 

HEXA-
NAME MNEMONIC DECIMAL PAGE 

CODE 

SCALE RIGHT ROUNDED SCRR C8 7-9 
SCALE RIGHT SA VE SCRS C4 7-8 
SCALE RIGHT TRUNCATE SCRT C2 7-8 
SCAN IN SCNI 954A 8-2 
SCAN OUT SCNO 954B 8-8 
SCAN WHILE EQUAL, DESTRUCTIVE SEQD 95F4 8-15 
SCAN WHILE EQUAL, UPDATE SEQU 95FC 8-15 
SCAN WHILE FALSE, DESTRUCTIVE SWFD 95D4 8-16 
SCAN WHILE FALSE, UPDATE SWFU 95DC 8-16 
SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE SGED 95Fl 8-15 
SCAN WHILE GREATER OR EQUAL, UPDATE SGEU 95F9 8-15 
SCAN WHILE GREATER, DESTRUCTIVE SGTD 95F2 8-15 
SCAN WHILE GREATER, UPDATE SGTU 95FA 8-15 
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED 95F3 8-15 
SCAN WHILE LESS OR EQUAL, UPDATE SLEU 95FB 8-15 
SCAN WHILE LESS, DESTRUCTIVE SLSD 95FO 8-15 
SCAN WHILE LESS, UPDATE SLSU 95F8 8-16 
SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED 95F5 8-16 
SCAN WHILE NOT EQUAL, UPDATE SNEU 95FD 8-16 
SCAN WHILE TRUE, DESTRUCTIVE SWTD 95D5 8-16 
SCAN WHILE TRUE, UPDATE SWTU 95DD 8-16 
SET DOUBLE TO TWO SINGLES SPLT 9543 8-1 
SET EXTERNAL SIGN SXSN D6 7-15 
SET INTERVAL TIMER SINT 9545 8-1 
SET PROCESSOR REGISTER SPRR 95B9 8-13 
SET TAG FIELD STAG 95B4 8-12 
SET TO DOUBLE-PRECISION XTND CE 7-3 
SET TO SINGLE-PRECISION, ROUNDED SNGL CD 7-3 
SET TO SINGLE-PRECISION, TRUNCATED SNGT cc 7-3 
SET TWO SINGLES TO DOUBLE JOIN· 9542 8-1 
SKIP FORWARD DESTINATION 
CHARACTERS (edit mode) SFDC DA 9-2 
SKIP FORWARD SOURCE CHARACTERS (edit mode) SFSC D2 9-2 
SKIP REVERSE DESTINATION 
CHARACTERS (edit mode) SRDC DB 9-2 
SKIP REVERSE SOURCE CHARACTERS (edit mode) SRSC D3 9-2 
STEP AND BRANCH STBR A4 7-5 
STORE DESTRUCTlVE STOD BB 7-6 
STORE NON-DESTRUCTIVE STON B9 7-6 
STRING ISOLATE SISO DS 7-12 
STUFF ENVIRONMENT STFF AF 7-22 
SUBTRACT SUBT 81 7-1 

A-4 



APPENDIX A (Cont'd.) 

HEXA-
NAME MNEMONIC DECIMAL PAGE 

CODE 

TABLE ENTER EDIT, DESTRUCTIVE TEED DO 7-13 

TABLE ENTER EDIT, UPDATE TEEU D8 7-14 

TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND E6 7-12 

TRANSFER UNCONDITIONAL, UPDATE TUNU EE 7-12 
TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD E4 7-11 
TRANSFER WHILE EQUAL, UPDATE TEQU EC 7-12 

TRANSFER WHILE GREATER OR EQUAL, 
DESTRUCTIVE TGED El 7-11 

TRANSFER WHILE GREATER OR EQUAL, 
UPDATE TGEU E9 7-11 

TRANSFER WHILE GREATER, DESTRUCTIVE TGTD E2 7-11 
TRANSFER WHILE GREATER, UPDATE TGTU EA 7-11 
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE TLED E3 7-12 

TRANSFER WHILE FALSE, DESTRUCTIVE TWFD 95D2 8-14 

TRANSFER WHILE FALSE, UPDATE TWFU 95DA 8-14 

TRANSFER WHILE TRUE, DESTRUCTIVE TWTD 95D3 8-14 

TRANSFER WHILE TRUE, UPDATE TWTU 95DB 8-14 
TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU EB 7-12 
TRANSFER WHILE LESS, DESTRUCTIVE TLSD EO 7-12 
TRANSFER WHILE LESS, UPDATE TLSU E8 7-12 

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED ES 7-12 
TRANSFER WHILE NOT EQUAL, UPDATE TNEU ED 7-12 

TRANSFER WORDS OVERWRITE DESTRUCTIVE TWOD D4 7-11 
TRANSFER WORDS OVERWRITE UPDATE TWOU DC 7-11 
TRANSFER WORDS, DESTRUCTIVE TWSD D3 7-10 
TRANSFER WORDS, UPDATE TWSU DB 7-11 
TRANSLATE TRNS 95D7 8-15 
UNPACK ABSOLUTE, DESTRUCTIVE UABD 95Dl 8-14 
UNPACK ABSOLUTE, UPDATE UABU 95D9 8-14 
UNPACK SIGNED, DESTRUCTIVE USND 95DO 8-14 
UNPACK SIGNED, UPDATE USNU 95D8 8-14 
VALUE CALL VALC 00 => 3F 7-15 

A-5 





APPENDIX B 

PRIMARY MODE OPERATORS, NUMERICAL LIST 
HEXA-

DECIMAL NAME MNEMONIC PAGE 
CODE 

00 => 3F VALUE CALL VALC 7-15 

40 => 7F NAME CALL NAMC 7-15 

80 ADD ADD 7-1 

81 SUBTRACT SUBT 7-1 

82 MULTIPLY MULT 7-2 

83 DIVIDE DIVD 7-2 

84 INTEGER DIVIDE IDIV 7-2 

85 REMAINDER DIVIDE RDIV 7-2 

86 INTEGERIZE, TRUNCATED NTIA 7-3 

87 INTEGERIZE, ROUNDED NTGR 7-3 

88 LESS THAN LESS 7-4 
89 GREATER THAN OR EQUAL GREQ 7-4 
BA GREATER THAN GRTR 7-4 
8B LESS THAN OR EQUAL LSEQ 7-4 
BC EQUAL EQUL 7-4 
SD NOT EQUAL NEQL 7-5 
8E CHANGE SIGN BIT CHSN 7-9 
8F EXTENDED MULTIPLY MULX 7-2 
90 LOGICAL AND LAND 7-4 
91 LOGICAL OR LOR 7-4 
92 LOGICAL NEGATE LNOT 7-4 
93 LOGICAL EQUIVALENCE LEQV 7-4 
94 LOGICAL EQUAL SAME 7-4 
95 ESCAPE TO 16-BIT INSTRUCTION VARI 8-1 
96 BIT SET BSET 7-9 
97 DYNAMIC BIT SET DBST 7-9 
98 FIELD TRANSFER FLTR 7-9 
99 DYNAMIC FIELD TRANSFER DFTR 7-10 
9A FIELD ISOLATE ISOL 7-10 
9B DYNAMIC FIELD ISOLATE DISO 7-10 
9C FIELD INSERT INSR 7-10 
9D DYNAMIC FIELD INSERT DINS 7-10 
9E BIT RESET BRST 7-9 
9F DYNAMIC BIT RESET DBRS 7-9 
AO BRANCH FALSE BRFL 7-5 
Al BRANCH TRUE BRTR 7-5 

A2 BRANCH UNCONDITIONAL BRUN 7-5 
A3 EXIT EXIT 7-15 
A4 STEP AND BRANCH STBR 7-5 
AS INDEX AND LOAD NAME NXLN 7-7 

B-1 



APPENDIX B (Cont'd.) 

PRIMARY MODE 

HEXA-
DECIMAL NAME MNEMONIC PAGE 

CODE 

A6 INDEX INDX 7-7 
A7 RETURN RETN 7-17 
A8 DYNAMIC BRANCH FALSE DBFL 7-5 
A9 DYNAMIC BRANCH TRUE DBTR 7-5 

AA DYNAMIC BRANCH UNCONDITIONAL DBUN 7-5 
AB ENTER ENTR 7-17 
AC EVALUATE DESCRIPTOR EVAL 7-20 
AD INDEX AND LOAD VALUE NXLV 7-7 
AE MARK STACK MKST 7-21 
AF STUFF ENVIRONMENT STFF 7-22 
BO LIT CALL ZERO ZERO 7-7 

Bl LIT CALL ONE ONE 7-7 
B2 LIT CALL 8 BITS LT8 7-7 

B3 LIT CALL 16 BITS LT16 7-7 
B4 PUSH DOWN STACK REGISTERS PUSH 7-6 
BS DELETE TOP OF STACK DLET 7-6 
B6 EXCHANGE EXCH 7-6 
B7 DUPLICATE TOP OF STACK DUPL 7-6 
B8 STORE DESTRUCTIVE STOD 7-6 
B9 STORE NON-DESTRUCTIVE STON 7-6 
BA OVERWRITE DESTRUCTIVE OVRD 7-6 
BB OVERWRITE NON-DESTRUCTIVE OVRN 7-6 
BD LOAD LOAD 7-8 

BE LIT CALL 48 BITS LT48 7-7 

BF MAKE PROGRAM CONTROL WORD MPCW 7-7 
co SCALE LEFT SCLF 7-8 

Cl DYNAMIC SCALE LEFT DSLF 7-8 

C2 SCALE RIGHT TRUNCATE SCJRT 7-8 

C3 DYNAMIC SCALE RIGHT TRUNCATE DSRT 7-8 
C4 SCALE RIGHT SA VE SCRS 7-8 

cs DYNAMIC SCALE RIGHT SA VE DSRS 7-8 

C6 SCALE RIGHT FINAL SCRF 7-8 
C7 DYNAMIC SCALE RIGHT FINAL DSRF 7-9 
C8 SCALE RIGHT ROUNDED SCRR 7-9 
C9 DYNAMIC SCALE RIGHT ROUND DSRR 7-9 
CA INPUT CONVERT, DESTRUCTIVE ICVD 7-14 
CB INPUT CONVERT, UPDATE ICVU 7-15 
cc SET TO SINGLE-PRECISION, TRUNCATED SNGT 7-3 
CD SET TO SINGLE-PRECISION, ROUNDED SNGL 7-3 
CE SET TO DOUBLE-PRECISION XTND 7-3 
CF INSERT MARK STACK IMKS 7-22 
DO TABLE ENTER EDIT, DESTRUCTIVE TEED 7-13 

B-2 



APPENDIX B (Cont'd.) 

PRIMARY MODE 

HEXA-
DECIMAL NAME MNEMONIC PAGE 

CODE 

DI PACK DESTRUCTIVE PACD 7-14 
D2 EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD 7-14 
D3 TRANSFER WORDS, DESTRUCTIVE TWSD 7-10 
D4 TRANSFER WORDS OVERWRITE DESTRUCTIVE TWOD 7-11 
D5 STRING ISOLA TE SISO 7-12 
D6 SET EXTERNAL SIGN SXSN 7-15 
D7 READ AND CLEAR OVERFLOW FLIP FLOP ROFF 7-15 
D8 TABLE ENTER EDIT, UPDATE TEEU 7-14 
D9 PACK UPDATE PACU 7-14 
DA EXECUTE SINGLE MICRO, UPDATE EXSU 7-14 
DB TRANSFER WORDS, UPDATE TWSU 7-11 
DC TRANSFER WORDS OVERWRITE UPDATE TWOU 7-11 
DD EXECUTE SINGLE MICRO, SINGLE POINTER 

UPDATE EXPU 7-14 
DE READ TRUE/FALSE FLIP FLOP TRFF 7-15 
DF CONDITIONAL HALT HALT 7-6 
EO TRANSFER WHILE LESS, DESTRUCTIVE TLSD 7-12 
El TRANSFER WHILE GREATER OR EQUAL, 

DESTRUCTIVE TGED 7-11 
E2 TRANSFER WHILE GREATER, DESTRUCTIVE TGTD 7-11 
E3 TRANSFER WHILE LESS OR EQUAL, 

DESTRUCTIVE TLED 7-12 
E4 TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD 7-11 
ES TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED 7-12 
E6 TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND 7-12 
E8 TRANSFER WHILE LESS, UPDATE TLSU 7-12 
E9 TRANSFER WHILE GREATER OR EQUAL, 

UPDATE TGEU 7-11 
EA TRANSFER WHILE GREATER, UPDATE TGTU 7-11 
EB TRANSFER WHILE LESS OR EQUAL, UPDATE TLEU 7-12 
EC TRANSFER WHILE EQUAL, UPDATE TEQU 7-12 
ED TRANSFER WHILE NOT EQUAL, UPDATE TNEU 7-12 
EE TRANSFER UNCONDITIONAL, UPDATE TUNU 7-12 
FO COMPARE CHARACTERS LESS, DESTRUCTIVE CLSD 7-13 
Fl COMPARE CHARACTERS GREATER OR EQUAL, 

DESTRUCTIVE CGED 7-13 
F2 COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD 7-12 
F3 COMPARE CHARACTERS LESS OR EQUAL, 

DESTRUCTIVE CLED 7-13 
F4 COMPARE CHARACTERS EQUAL, DESTRUCTIVE CEQD 7-13 
FS COMP ARE CHARACTERS NOT EQUAL, 

DESTRUCTIVE CNED 7-13 
F8 COMPARE CHARACTERS LESS, UPDATE CLSU 7-13 

B-3 



APPENDIX B (Cont'd.) 

PRIMARY MODE 

HEXA-
DECIMAL NAME MNEMONIC PAGE 

CODE 

F9 COMPARE CHARACTERS GREATER OR EQUAL, 
UPDATE CGEU 7-13 

FA COMPARE CHARACTERS GREATER, UPDATE CGTU 7-13 
PB COMPARE CHARACTERS LESS OR EQUAL, UPDATE CLEU 7-13 
FC COMPARE CHARACTERS EQUAL, UPDATE CEQU 7-13 
FD COMPARE CHARACTERS NOT EQUAL, UPDATE CNEU 7-13 
FE NO OPERATION NOOP 7-6 
FF INVALID OPERATOR NVLD 7-6 

VARIANT MODE 

9542 SET TWO SINGLES TO DOUBLE JOIN 8-1 

9543 SET DOUBLE TO TWO SINGLES SPLT 8-1 
9544 IDLE UNTIL INTERRUPT IDLE 8-1 

9545 SET INTERVAL TIMER SINT 8-1 

9546 ENABLE EXTERNAL INTERRUPTS EEXI 8-1 
9547 DISABLE EXTERNAL INTERRUPTS DEXI 8-1 
954A SCAN IN SCNI 8-2 
954B SCAN OUT SCNO 8-8 

954E READ PROCESSOR IDENTIFICATION WHOI 8-10 
954F INTERRUPT OTHER PROCESSORS HEYU 8-10 
9585 OCCURS INDEX OCRX 8-10 
9587 INTEGERIZE, ROUNDED, DOUBLE-PRECISION NTGD 8-11 
958B LEADING ONE TEST LOG2 8-11 
95AF MOVE TO STACK MYST 8-11 
95B4 SET TAG FIELD STAG 8-12 
95B5 READ TAG FIELD RTAG 8-12 
95B6 ROTATE STACK UP RSUP 8-12 
95B7 ROTATE STACK DOWN RSDN 8-12 
95B8 READ PROCESSOR REGISTER RPRR 8-12 
95B9 SET PROCESSOR REGISTER SPRR 8-13 
95BA READ WITH LOCK RDLK 8-13 
95BB COUNT BINARY ONES CBON 8-13 
95BC LOAD TRAN SP ARENT LODT 8-13 
95BD LINKED LIST LOOKUP LLLU 8-13 
95BE MASKED SEARCH FOR EQUAL SRCH 8-13 
95DO UNPACK SIGNED, DESTRUCTIVE USND 8-14 
95Dl UNPACK ABSOLUTE, DESTRUCTIVE UABD 8-14 
95D2 TRANSFER WHILE FALSE, DESTRUCTIVE TWFD 8-14 
9503 TRANSFER WHILE TRUE, DESTRUCTIVE TWTD 8-14 
95D4 SCAN WHILE FALSE, DESTRUCTIVE SWFD 8-16 
95D5 SCAN WHILE TRUE, DESTRUCTIVE SWTD 8-16 
95D7 TRANSLATE TRNS 8-15 

B-4 



APPENDIX B (Cont'd.) 

VARIANT MODE 

HEXA-
DECIMAL NAME MNEMONIC PAGE 

CODE 

95D8 UNPACK SIGNED, UPDATE USNU 8-14 
95D9 UNPACK ABSOLUTE, UPDATE UABU 8-14 
95DA TRANSFER WHILE FALSE, UPDATE TWFU 8-14 
95DB TRANSFER WHILE TRUE, UPDATE TWTU 8-14 
95DC SCAN WHILE FALSE, UPDATE SWFU 8-16 
95DD SCAN WHILE TRUE, UPDATE SWTU 8-16 
95DF CONDITIONAL HALT HALT 7-6 
95FO SCAN WHILE LESS, DESTRUCTIVE SLSD 8-15 
95Fl SCAN WHILE GREATER OR EQUAL, 

DESTRUCTIVE SGED 8-15 
95F2 SCAN WHILE GREATER, DESTRUCTIVE SGTD 8-15 
95F3 SCAN WHILE LESS OR EQUAL, DESTRUCTIVE SLED 8-15 
95F4 SCAN WHILE EQUAL, DESTRUCTIVE SEQD 8-15 
95F5 SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED 8-16 
95F8 SCAN WHILE LESS, UPDATE SLSU 8-16 
95F9 SCAN WHILE GREATER OR EQUAL, UPDATE SGEU 8-15 
95FA SCAN WHILE GREATER, UPDATE SGTU 8-15 
95FB SCAN WHILE LESS OR EQUAL, UPDATE SLEU 8-15 
95FC SCAN WHILE EQUAL, UPDATE SEQU 8-15 
95FD SCAN WHILE NOT EQUAL, UPDATE SNEU 8-16 
95FE NO OPERATION NOOP 7-6 
95FF INVALID NVLD 7-6 

EDIT MODE 

DO MOVE WITH INSERT MINS 9-1 

Dl MOVE WITH FLOAT MFLT 9-1 

D2 SKIP FORWARD SOURCE CHARACTERS SFSC 9-2 

D3 SKIP REVERSE SOURCE CHARACTERS SRSC 9-2 

D4 RESET FLOAT RSTF 9-2 

D5 END FLOAT ENDF 9-2 

D6 MOVE NUMERIC UNCONDITIONAL MVNU 9-1 

D7 MOVE CHARACTERS MCHR 9-1 

DB INSERT OVERPUNCH INOP 9-3 

D9 INSERT DISPLAY SIGN INSG 9-2 

DA SKIP FORWARD DESTINATION CHARACTERS SFDC 9-2 

DB SKIP REVERSE DESTINATION CHARACTERS SRDC 9-2 

DC INSERT UNCONDITIONAL INSU 9-2 

DD INSERT CONDITIONAL INSC 9-2 

DE END EDIT ENDE 9-3 

DF CONDITIONAL HALT HALT 7-6 

FE NO OPERATION NOOP 7-6 

FF INVALID NVLD 7-6 

B-5 





P = PRESENCE BIT 

1 = PRESENT IN 
MAIN MEMORY 

0 = NOT PRESENT IN 
MAIN MEMORY 

READ ONLY BIT 

1 = READ ONLY 

0 = READ/WRITE 

APPENDIX C 

CONTROL WORD FORMATS 

39 35 31 27 19 15 11 7 3 

LENGTH/INDEX MEM/DISK ADDRESS 
38 34 30 26 18 14 10 6 2 

·37 33 29 25 17 13 9 5 

36 32 28 24 16 12 8 4 0 

DATA DESCRIPTOR 

C =COPY BIT 

1 =A COPY 

0 =ORIGINAL 

42 & 41 

MUST= 00 

I = INDEX BIT 

=INDEXED 

0 = NON INDEXED 

S = SEGMENTED 
BIT 

1 =AREA 
SEGMENTED 

0 =NOT 
SEGMENTED 

D = DOUBLE-PRECISION BIT 

1 = DOUBLE-PRECISION DATA 

FOR DATA DESC. 0 = SINGLE-PRECISION DATA 

:,:,:,:.:,:. 11 7 3 

llllllllllll ADDRESS COUPLE 
))) 10 6 2 

!l!i//!l!!!ll--:-:t---:t---:~-0-; 
NORMAL INDIRECT REFERENCE WORD 

C-1 



APPENDIX C (Cont'd.) 

35 31 27 23 11 7 3 
DISPLACEMENT INDEX FIELD 

34 30 26 22 10 6 2 

33 29 25 21 9 5 

32 28 24 20 ]fili1Mi 12 8 4 0 

STUFFED INDIRECT REFERENCE WORD 

...... 

.....,..,..,.,.,.,,,..~"'"+--1-'45 11ili!ll·lil--11-t----7--3..., 
2 

33 29 25 

32 28 24 12 8 4 0 

MARK STACK CONTROL WORD 

D.S. = DIFFERENT E. = ENVIRONMENT V. · = VALUE BIT 
STACK BIT 

1 = A NON-CURRENT 1 = ACTIVE MSCW = RETURN A VALUE 
STACK 

0 = THIS CURRENT 0 = INACTIVE MSCW 0 = RESTART FROM BEGIN 
STACK 

31 27 

,,.,.,..,. .......... ~...,.___-: 4·

5

-11111111111,_: -: ~~-6-7 -:--1 p. I. R. 
30 26 

····· ..... 1 ::::.::::·:.; .. :;::-·".·· 

~ lll J :::::..---+---+-----! 29 25 
S. D. INDEX 

131 9 5 

48 )))))j/ 44 40 32 28 24 12 8 4 0 

PROGRAM CONTROL WORD 

C-2 



APPENDIX C (Cont'd.) 

N = NORMAL/CONTROL STATE FF 

= CONTROL STATE 

SD = SEGMENT DESCRIPTOR 

0 = NORMAL STATE 

RETURN CONTROL WORD 

E.S. = EXTERNAL SIGN 0 = OVERFLOW FF 
BIT 

1 =NEGATIVE 

0 = POSITIVE 

F =FLOAT FF 

= FLOAT 

0 = NO FLOAT 

45 

44 

1 =OVERFLOW 

0 = NO OVERFLOW 

N = NORMAL/CONTROL FF 

= CONTROL STATE 

0 = NORMAL STATE 

33 29 25 

40 32 28 24 

STEP INDEX WORD 

C-3 

T = TRUE/FALSE FF 

=TRUE 

0 = FALSE 

TFOF = TRUE/FALSE FF 
OCCUPIED FF 

1 = TFFF VALID 

0 = TFFF NOT DETERMINED 

13 9 5 

12 8 4 0 



APPENDIX C (Cont'd.) 

P = PRESENCE BIT 

1 = PRESENT IN 
MAIN MEMORY 

0 = NOT PRESENT IN 
MAIN MEMORY 

R = READ ONLY BIT 

1 = READ ONLY 

0 = READ/WRITE 

P = PRESENCE BIT 

1 = PRESENT IN 
MAIN MEMORY 

0 = NOT PRESENT IN 
MAIN MEMORY 

R = READ ONLY BIT 

1 = READ ONLY 

0 = READ/WRITE 

39 35 31 27 23 ~tttt, ....... · _1_9 ___ 15-+--_11-+--_7 __ 3---4 

LENGTH IN CHARACTERS :::::::::::~::::::: MEM/DISK ADDRESS 
38 34 30 26 22 Jfifij.:-...... _1_0...f.----_14_.__1 o-+---6--+-_2~ 

37 33 29 25 21 ~?It? 17 13 9 5 
'.l----+---+---+----+----1 

36 32 28 24 20 :::::\::::::::::, 16 

STRING DESCRIPTOR (NON-INDEXED) 

C =COPY BIT I = INDEX BIT 

1 = A COPY 

0 = ORIGINAL 0 = NON-INDEXED 

SIZE = 4 => 8-BIT BYTE 

SIZE = 3 => 6-BIT CHARACTER 

SIZE = 2 => 4-BIT DIGIT 

STRING DESCRIPTOR (INDEXED) 

C =COPY BIT I = INDEX BIT 

1 = A COPY = INDEXED 

0 = ORIGINAL 

SIZE = 4 ==> 8-BIT BYTE 

SIZE = 3 => 6-BIT CHARACTER 

SIZE = 2 ==> 4-BIT DIGIT 

C-4 

12 8 4 0 

S = SEGMENTED 
BIT 

1 = STRING 
SEGMENTED 

0 =NOT 
SEGMENTED 

S = SEGMENTED 
BIT 

1 = STRING 
SEGMENTED 

0 =NOT 
SEGMENTED 



(SCAN IN) 

z = 
z = 
z = 
z = 

....-----::::::::::::::::::::::: 
0 /:/:/:/ 

~.:::::::::::::::::::::: 
0 /:/:/:\ 

~th/{{ 
0 /:/:/:/ 

48 {}}}\: 

~Jilllilll 
0 

48 ~mmm 

APPENDIX D 

SCAN FUNCTION CODE WORDS 

Function Word Read Time of Day Clock (0011) 

35 31 27 23 l 9 l 5 l 1 7 3 

34 30 26 22 l 8 l 4 l 0 6 2 
TIME OF DAY 

33 29 25 211 l 71 l 3 9 5 

.......... 32 28 24 20 l 6 1 2 8 4 0 

Time of Day (Binary) Word Returned 

0 

Function Word Read General Control Adapter (0101) 

0001, GCA A is to respond N = 00, Read GCA Input Register 
0010, GCA B is to respond N = 01, Read GCA Interrupt Mask Register 
0100, GCA C N = 10, Read GCA Interrupt Register 
1000, GCA D N = 11, Read GCA Output Register 

47 43 39 35 3 1 27 23 1 9 1 5 1 1 7 3 

50 46 42 38 34 30 26 22 1 8 1 4 1 0 6 2 

I NDEX 
49 45 41 37 33 29 25 2 l 1 7 1 3 9 5 

48 .............. 44 40 36 32 28 24 20 1 6 1 2 8 

a. G.C.A. Register Word Returned 

b. G.C.A. Register Word Sent To 1/0 Processor 

D-1 



APPENDIX D (Cont'd.) 

(SCAN IN) (Cont'd.) 

..... 
nT~T 

05 :\(j 
.... 

~::1111111 
Function Word Read Result Descriptor (0010) 

Bit Exception 0 = 
Bit Software Attention I = 
Bit Busy 2 = 
Bit Not Ready 3 = 
Bit Descriptor Error 4 = 
Bit 5 = Memory Address Error 

Bit 6 = Memory Parity Error 

Bit 16 = Memory Protection Error 

Result Descriptor Word Returned 

Bits 15: 9 are Unit Error Field (see 1/0 Processor section) 

... .. . 

::: i!llillii! 
0 

48 :~iii;c 

Function Word Read Interrupt Mask (10100) 

D-2 



(SCAN IN) (Cont'd.) 

Interrupt Mask Word Returned 

Bit 9 = 1/0 Processor 1/0 Finish 

Bit 1 = Data Communications Processor 1 

Bit 2 = Data Communications Processor 2 

Bit 3 = Data Communications Processor 3 

Bit 4 = Data Communications Processor 4 

Bit 0 = Status Change 

APPENDIX D (Cont'd.) 

3 

2 

0 

Function Word Read Interrupt Regis~er (0100) 

l!I ///iillililllllllli; : : 

:if!!;!ii!!!i: INh RE~:srEr 
.}}}\ 8 4 0 

Interrupt Register Word Returned 

0-3 



APPENDIX D (Cont'd.) 

(SCAN IN) (Cont'd.) 

Bit 9 = 1/0 Processor I/O Finish 

Bit 1 =Data Communications Processor 1 

Bit 2 = Data Communications Processor 2 

Bit 3 =Data Communications Processor 3 

Bit 4 = Data Communications Processor 4 

Bit 0 = Status Change Interrupt 

}ttt 0 
19 

::::::::::::::::::: 0 

Function Word Read Interrupt Literal ( 1111) 

0 50 tt?:. 
0 

49 lt:t 
0 48 t:t:t 

Bits 2: 3 = 001 = I/O Processor A 
010 = I/O Processor B 
100 = 1/0 Processor C 

Bits 7:4 = 0001=DCP1 
0010 = DCP 2 
0011=DCP3 
0100 = DCP 4 
1001 = I/O Finished 
1111 = Status Change 

Interrupt Literal Word Returned 

0-4 

0 



(SCAN IN) (Cont'd.) 

r----l :::::::::::::::::::: 

0 ::/:/:\: 

~V?I? 
0 ::/:\:/: 

~!IIii::: 
48 :::::::::::::::::::: 

::::::::::::::::::::: 0 

:/)/:\ 0 

::/:/:/:: 0 

:/:/:/::: 0 

Function Word Interrogate Peripheral Status (0001) 

M = 0 = All I/O Processors to respond 

M = 1 = I/O Processor designated by Z to respond 

Z = 001 = Designates I/O Processor A 

Z = 010 = Designates I/O Processor B 

Z = 100 = Designates I/O Processor C 

N = 0 => 7 Status Vector Number (in Binary) 

N = 8 Status Change Vector 

Unit Status Word Returned 

X = 0 = Status word not present 

X = = Status word present 

0-5 

APPENDIX D (Cont'd.) 

: : lll/![!/f lil1 

:}{/? x. 
4 \:/:/:::: 0 



APPENDIX D (Cont'd.) 

(SCAN IN) (Cont'd.) 

N~~:;:ii\lill\ilii!ii: : l//l/llllllf: : Ill/Ill/II~ 
l 2 lllif i{ O 8 111/il!l!iil O 41111111111!1! M . 0 

Function Word Interrogate Peripheral Type (0110) 

Type Code = 

Unit Type Word Returned 

00 = No Unit 

01 = Disk File 

02 = Display 

04 = Paper-Tape Reader 

05 = Paper-Tape Punch 

06 = Line-Printer, Buffered, BCL drum 

07 = Line-Printer, Unbuffered, BCL drum 

09 = Card Reader 

OB ( 11) = Card Punch 

OD(l3) = Magnetic Tape (7-track) 

OE (14) = Magnetic Tape (9-track NRZ) 

OF ( 15) = Magnetic Tape (9-track P .E.) 

1D(29) = Magnetic Tape (7-track) 

IE (30) = Magnetic Tape (9-track NRZ) 

lF (31) = Magnetic Tape (9-track P.E.) 

D-6 

} Exchange 

} Serial or Cluster 



APPENDIX D (Cont'd.) 

(SCAN IN) (Cont'd.) 

Type Code = 26 (38) = Line-Printer, Buffered, EBCDIC drum 
(Cont'd.) 27 (39) = Line-Printer, Unbuffered, EBCDIC drum 

Function Word Interrogate Input/Output Path (0000) 

0 

0 

0 

Input/Output Path Word Returned 

A = 0 = No Path Available 

A = 1 = Path is Available 

z = 001 = Path via 1/0 Processor A 

z = 010 = Path via 1/0 Processor B 

z = 011 = Path via Either 1/0 A or B 

z = 100 = Path via 1/0 Processor C 

z = 101 = Path via 1/0 Processor A and C 

z = 110 = Path via 1/0 Processor B and C 

z = 111 = Path via all 1/0 Processors 

D-7 



APPENDIX D (Cont'd.) 

(SCAN OUT) 

0 

;:::\:\:/o 

:\:/:\:: 0 

:::::::::::::::::::: 0 

:::::::::::::::::::: 0 

0 0 :::::::::::::::::::::: 0 

19 15 11 ::::::::::::::::::::: ...... : __ 7~·;:;.:-:-:-: .. :.:·1--3-1):\tf t\: 
0 0 :/}/:/ 1 ·::::::::::. 

l 8 l 4 1 0 :::::::::::::::::::::. 6 2 \.:\.::.:\,;,:\ .. \.:~:.:; .• 
0 0 /:/:/) 1 

17 1 3 9 :::::::::::::::::::::: s 1 ::\?L:< 
0 {}}}}· 0 :::::::::::::::::::::: 0 

16 1 2 ::::::::::/:/: 8 .::/:\:\::· 4 \:/:::::;::::: 0 

Function Word Set Time of Day Clock (0011) 

19 15 11 7 3 

10 6 2 

4 0 

Time of Day Word (Binary) To 1/0 Processor 

:::::::/:::;::::: 1 

::::;:::;:::::;::::: 0 
19 

18 

0 

0 

/:::\:/: 0 0 
17 

0 

1 2 :}}}}'{(?:?:?)?:~ 8 \{/}{ 4 l!ll\lllllll 1 0 

Function Word Set General Control Adapter (0101) 

D-8 



APPENDIX D (Cont'd.) 

(SCAN OUT) (Cont'd.) 

z = 0001 = GCA A is to Respond 

z = 0010 = GCA B is to Respond 

z = 0100 = GCA C 

z = 1000 = GCA D 

N = 00 = Set GCA Output Register 

N = 01 = Set GCA Interrupt Mask Register 

N = 10 = Set GCA Interrupt Register 

:: : :: : :: !11111111111~111111111111~111111111,lill 
16 ° 12 111111111111= 

0 
a lllllllllllll 

0 
4 11/111111111

1 

o 

Function Word Set Interrupt Mask (0100) 

Bit 9 = 1/0 Processor 

Bit 1 = Data Communications Processor 1 

Bit 2 = Data Communications Processor 2 

Bit 3 =Data Communications Processor 3 

Bit 4 = Data Communications Processor 4 

Bit 0 = Status Change Interrupt Interrupt Mask Word Sent To Multiplexor 

:: :;1111: :,illfr ;,If Ill 
1 2 IIII!) 0 

a lllllllllllll 
0 

4 !lll!llllllll 1 a 

Function Word Initiate 1/0 (0000) 

39 35 31 27 19 15 11 7 3 
0 BUFFER AREA 

38 34_1_ 30 26 
T T 

2 18 14 lO_j_ 6 
I 

0 LENGTH BASE ADDRESS 

37 33 29 25 17 13 9_j_ 5 
0 

36 32 28 24 16 12 8 4 0 

Area Descriptor Word Sent To 1/0 Processor 

D-9 



EBCDIC DECIMAL EBCDIC HEX. 
GRAPHIC BCL VALUE INTERNAL GRAPHIC 

BLANK 64 0100 0000 40 
[ 74 0100 1010 4A 

75 0100 1011 48 
< 76 0100 1100 4C 
( 77 0100 1101 40 
+ 78 0100 1110 4E 
I ~ 79 0100 1111 4F 

& 80 0101 0000 50 
] 90 0101 1010 5A 
$ 91 0101 1011 58 

* 92 0101 1100 5C 
) 93 0101 1101 50 
, 94 0101"1110 5E 

___, < 95 0101 1111 5F 

96 0110 0000 60 
I 97 0110 0001 61 
, 107 01101011 68 
% 108 0110 1100 6C 
- =/: 109 0110 1101 60 
> 110 01101110 6E 
? 111 01101111 6F 

122 01111010 7A 
# 123 01111011 78 
@ 124 0111 1100 7C 
, > 125 01111101 70 -
= 126 01111110 7E 
" 127 01111111 7F 

(+)PZ + 192 1100 0000 co 
A 193 1100 0001 C1 
B 194 1100 0010 C2 
c 195 1100 0011 C3 
D 196 1100 0100 C4 
E 197 1100 0101 C5 
F 198 1100 0110 C6 
G 199 1100 0111 C7 
H 200 1100 1000 C8 
I 201 1100 1001 C9 

MULT 
(!)MZ x 208 1101 0000 DO 

J 209 1101 0001 01 
K 210 1101 0010 02 
L 211 1101 0011 03 
M 212 1101 0100 04 
N 213 1101 0101 05 
0 214 11010110 06 
p 215 11010111 07 

*Al I other codes 

APPENDIX E 

DATA REPRESENTATION 

EBCDIC BCL BCL BCL 
CARD CODE CARD CODE OCTAL INTERNAL EXTERNAL 

No Punches No Punches 60 11 0000 01 0000 
12 8 2 12 8 4 33 01 1011 11 1100 
12 8 3 12 8 3 32 01 1010 11 1011 
12 8 4 12 8 6 36 01 1110 111110 
12 8 5 12 8 5 35 01 1101 11 1101 
12 8 6 11 1010 
12 8 7 12 8 7 37 01 1111 111111 

12 12 34 01 1100 11 0000 
11 8 2 0 8 6 76 111110 01 1110 
11 8 3 11 8 3 52 10 1010 10 1011 
11 8 4 11 8 4 53 10 1011 10 1100 
11 8 5 11 8 5 55 10 1101 10 1101 
11 8 6 11 8 6 56 10 1110 101110 
11 8 7 11 8 7 57 10 1111 101111 

11 11 54 10 1100 10 0000 
0 1 0 1 61 11 0001 01 0001 
0 8 3 0 8 3 72 11 1010 01 1011 
0 8 4 0 8 4 73 11 1011 01 1100 
0 8 5 0 8 2 74 11 1100 01 1010 
0 8 6 8 6 16 00 1110 00 1110 
0 8 7 * 14 00 1100 00 0000 

8 2 8 5 15 00 1101 00 1101 
8 3 8 3 12 00 1010 00 1011 
8 4 8 4 13 00 1011 00 1100 
8 5 8 7 17 00 1111 001111 
8 6 0 8 5 75 11 1101 01 1101 
8 7 0 8 7 77 111111 01 1111 

12 0 12 0 20 01 0000 11 1010 
12 1 12 1 21 01 0001 11 0001 
12 2 12 2 22 01 0010 11 0010 
12 3 12 3 23 01 0011 11 0011 
12 4 12 4 24 01 0100 11 0100 
12 5 12 5 25 01 0101 11 0101 
12 6 12 6 26 01 0110 11 0110 
12 7 12 7 27 01 0111 11 0111 
12 8 12 8 30 01 1000 11 1000 
12 9 12 9 31 01 1001 11 1001 

11 0 11 0 40 10 0000 10 1010 
11 1 11 1 41 10 0001 10 0001 
11 2 11 2 42 10 0010 10 0010 
11 3 11 3 43 10 0011 10 0011 
11 4 11 4 44 10 0100 10 0100 
11 5 11 5 45 10 0101 10 0101 
11 6 11 6 46 100110 10 0110 
11 7 11 7 47 10 0111 10 0111 

E-1 



APPENDIX E (Cont'd.) 

DATA REPRESENTATION 

EBCDIC DECIMAL EBCDIC HEX. EBCDIC BCL BCL BCL 
GRAPHIC BCL VALUE INTERNAL GRAPHIC CARD CODE CARD CODE OCTAL INTERNAL EXTERNAL 

Q 216 1101 1000 08 
R 217 11011001 09 

¢ 224 1110 0000 EO 
s 226 1110 0010 E2 
T 227 1110 0011 E3 
u 228 1110 0100 E4 
v 229 11100101 E5 
w 230 11100110 E6 
x 231 11100111 E7 
y 232 1110 1000 E8 
z 233 11101001 E9 

0 240 1111 0000 FO 
1 241 1111 0001 Fl 
2 242 1111 0010 F2 
3 243 1111 0011 F3 
4 244 1111 0100 F4 
5 245 1111 0101 F5 
6 246 11110110 F6 
7 247 11110111 F7 
8 248 1111 1000 F8 
9 249 1111 1001 F9 

NOTES 

1. EBCDIC 0100 1110 also translates to BCL 11 
1010. 

2. EBCDIC 1100 1111 is translated to BCL 
00 0000 with an additional flag bit on the most 
significant bit line (8th bit). This function is 
used by the unbuffered printer to stop scanning. 

3. EBCDIC 1110 0000 is translated to BCL 
00 0000 with an additional flag bit on the next 
to most significant bit line (7th bit). As the print 
drums have 64 graphics and space this signal can 
be used to print the 64th graphic. The 64th 
graphic is a "CR" for BCL drums and a"¢" for 
EBCDIC drums. 

4. The remaining 189 EBCDIC codes are translated 
to BCL 00 0000 (? code). 

11 8 11 8 50 10 1000 10 1000 
11 9 11 9 51 10 1001 10 1001 

0 8 2 00 0000 
0 2 0 2 62 11 0010 01 0010 
0 3 0 3 63 11 0011 01 0011 
0 4 0 4 64 11 0100 01 0100 
0 5 0 5 65 11 0101 01 0101 
0 6 0 6 66 11 0110 01 0110 
0 7 0 7 67 11 0111 01 0111 
0 8 0 8 70 11 1000 01 1000 
0 9 0 9 71 11 1001 01 1001 

0 0 00 00 0000 00 1010 
1 1 01 00 0001 00 0001 
2 2 02 00 0010 00 0010 
3 3 03 00 0011 00 0011 
4 4 04 00 0100 00 0100 
5 5 05 00 0101 00 0101 
6 6 06 00 0110 00 0110 
7 7 07 00 0111 00 0111 
8 8 10 00 1000 00 1000 
9 9 11 00 1001 00 1001 

5. The EBCDIC graphics and BCL graphics are the 
same except as follows: 

E-2 

BCL 
2 

x (multiply) 
~ 

:f 

EBCDIC 

' (single quote) 

(not) 

(underscore) 



'Tl 
~ 

NUM 

81 

1 

2 

J 

4 

s 
6 

7 

8 

81 

82 

SJ 

S4 

85 

86 

S7 

NUM 

z 
0 
N 
E 

HEX 

0 

1 

2 

J 

4 

s 
6 

7 

s 
9 
A 

B 

c 
D 

E 

F 

HEX 

z 
0 
N 
E 

+ 
-

9 9 

0 1 

NULJ DLE] 

SOH DCl 

STX DC2 

ETX DCJ 

HT 

BS 

DEL 

CAN 

EM 

FF FS 

CR GS 

so RS 

SI us 

0 1 

9 9 

-
+ 

+ + 
- -

0 0 0 

9 9 9 9 9 

2 J 4 s 6 

sp] &] -
ILJ 

SYN 

LF 

ETB 

ESC EOT 

[ J m 
• $ ' 

DC4 < * % 
ENQ NAK ( ) 

--I 

ACK + ; > 

BEL SUB I --, ? 

2 J 4 5 6 

9 9 
0 0 

-
+ 

+ + + + + 
- - - -
0 0 0 0 
9 

7 8 9 A B c 

l 1~1 
a j ;'V A 

b k s B 

c 1 t c 
d m u D 

e n v E 

f 0 w F 

g p x G 

h q y H 

i r z I 

: 

# 
@ 

I 

= 

" 

7 s 9 A B c 

9 
0 0 0 0 

- - -
+ + + + 

-
0 

D E F 

la_} ! " 0 

J 1 .._ 
K s 2 

L T J 

M u 4 

N v s 
¢ w 6 
p x 7 

Q y 8 

R z 9 

D E F 

9 9 9 
0 0 

- - -
+ + 

HEX NUM 

0 81 

1 1 

2 2 

J J 

4 4 

s 5 

6 6 

7 7 

8 8 

9 9 
A 82 

B SJ 

c 84 

D 85 

E S6 

F S7 

HEX NUM 

OJ 
O> 
---J 
0 
0 
m 
OJ 
0 
0 -0 

-....-..... 
I 
m 
x 
0 
)> 
:D )> 
0 '"U 

'"U om 
o5 
ox m,, 



APPENDIX F (Cont'd.) 

B 6700 EBCDIC/HEX CARD CODE 

Use of the B 6700 EBCDIC/HEX Card Code 
Chart. 

1. Locate the desired EBCDIC graphic code 
within the table. 

2. The two-part Hexadecimal Code is read as 
follows: 

a. The first part is found in the vertical 
column above or below the desired 
EBCDIC code. 

b. The second part is found in the horizontal 
row either to the right or left of the desired 
EBCDIC code. 

(1) Examples: 

SYN = 32 

F = C6 
3. The two-part Card Code is found in the same 

manner as HEX (2) except the zone and 
numeric bits are read from the very outer 
portion of the table. 

a. Examples: 

SYN = 9 2 

F = + 6 

b. The card code exceptions to the above 
procedure are enclosed in heavy lines on 
the chart and are defined below: 

(1) 00 = + 0981 (NUL) 
(2) 10 = + -981 (DLE) 
(3) 20 = - 0981 
(4) 30 = +-0981 
(5) 40 = BLANK 
(6) so=+(&) 
(7) 60 = - (-) 
(8) 70 = + - 0 
(9) co = + 0 ( { )(<5) 

(10) DO = - 0 <} )(o) 
(11) EO = 0 8 2 ( \ ) 
(12) FO = 0 (0) 
(13) 61=O1 (/) 
(14) E 1 = -09 1 
(15) 6A = + - <:> 

F-2 



APPENDIX G 

HEXADECIMAL-DECIMAL CONVERSION TABLE 

The table in this appendix provides for direct 
conversion of decimal and hexadecimal numbers in 
the ranges: 

Hexadecimal 

000 to FFF 

Decimal 

0 to 4095 

For numbers outside the range of the table, add 
the following values to the table figures: 

Hexadecimal Decimal 

1000 4096 

2000 8192 

3000 12288 

4000 16384 

5000 20484 

6000 24576 

7000 28672 

8000 32768 

9000 36864 

AOOO 40960 

BOOO 45056 

cooo 49152 

DOOO 53248 

EOOO 57344 

FOOO 61440 

G-1 



C) 

i'.J 

000 
010 

020 

030 

040 

050 

060 

010 

060 

090 

OAO 

080 

oco 
ouo 
OEO 

OFO 

' 

100 

110 

120 

130 

140 
150 

160 

170 

160 

190 

tAO 

180 

tea 
100 

1EO 

lFO 

0 

0 

16 

32 

48 

64 

80 

96 

112 

128 
144 

160 

176 

192 

208 

224 

240 

256 

272 

288 

304 

320 
336 

352 

368 

384 

400 

416 

432 

448 
464 

480 

496 

17 

33 

49 

65 

81 

91 

113 

129 
145 

161 

177 

193 

209 

225 

241 

257 

273 

289 

305 

321 
337 

353 

369 

365 

401 

417 

433 

449 

465 

481 

491 

2 

2 
18 

34 

50 

66 

82 

96 

114 

130 
146 

162 

178 

194 

210 

226 

242 

256 

274 

290 

306 

322 
338 

354 

370 

386 

402 

416 

434 

450 

466 

482 

498 

3 

3 

19 

35 

51 

61 

83 

99 

115 

131 
147 

163 

179 

195 

211 

227 

243 

259 

275 

291 

307 

323 
339 

355 

371 

381 

403 

419 

435 

451 
467 

483 

499 

4 

4 

20 

36 

52 

66 
84 

100 

116 

132 
148 

164 

180 

196 

212 

228 

244 

260 

276 

292 

308 

324 
340 

356 

372 

388 

404 

420 

436 

452 
468 

484 

500 

5 

5 

21 

37 

53 

69 

85 

101 

117 

133 
149 

165 

181 

197 

213 

229 

245 

261 

277 

293 

309 

325 
341 

357 

373 

389 

405 

421 

437 

453 

469 

485 

501 

6 

~ 
22 

3e 

54 

78 

86 

10~ 

111 

134 
151 

166 

182 

198 

214 

239 

246 

26! 

21e 
294 

318 

326 
34i 
358 

374 

390 

406 

42! 

438 

454 
478 

486 

502 

7 

1 

23 

39 

55 

71 
81 

103 

119 

135 
151 

167 

183 

199 

215 

231 

247 

263 

219 

295 

311 

327 
343 

359 

375 

391 

407 

423 

439 

455 

471 

487 

503 

8 

8 

24 

40 

56 

72 
88 

104 

120 

136 
152 

168 

184 

200 

216 

232 

248 

264 

280 

296 

312 

328 
344 

360 

376 

392 

408 

424 

440 

456 

472 

486 

504 

9 

9 

25 

41 

51 

73 
89 

105 

121 

131 

153 

169 

185 

201 

217 

233 

249 

265 

281 

291 

313 

329 
345 

361 

371 

393 

409 

425 

441 

451 
473 

489 

505 

A 

10 
26 

42 

58 

74 
90 

106 

122 

138 
154 

110 

166 

202 

218 

234 

250 

266 

282 

298 

314 

330 
346 

362 

378 

394 

410 

426 

442 

458 

414 

490 

506 

8 

11 
27 

43 

59 

75 
91 

107 

123 

139 
155 

111 

187 

203 

219 

235 

251 

261 
283 

299 

315 

331 
347 

363 

379 

395 

411 

427 

443 

459 
475 

491 

501 

c 

12 
28 

44 

60 

16 

92 

108 

124 

140 
156 

172 

188 

204 

220 

236 

252 

268 

284 

300 

316 

332 
348 

364 

380 

396 

412 

428 

444 

460 
476 

492 

508 

0 

13 
29 

4!i 

61 

71 

93 

109 

125 

141 
157 

113 

189 

205 

221 

231 

253 

269 
285 

301 

317 

333 
349 

365 

38! 

397 

413 

429 

445 

461 

477 

493 

509 

E 

14 
30 

46 

62 

78 

94 

110 

126 

142 
158 

114 

190 

206 

222 

238 

254 

210 

286 

302 

318 

334 

350 

366 

382 

396 

414 

430 

446 

462 
478 

494 

510 

F" 

15 
31 

47 

63 

79 
95 

111 

127 

143 
159 

175 

191 

201 

223 

239 

255 

271 

287 

303 

319 

335 
351 

367 

383 

399 

415 

431 

447 

463 
479 

495 

511 

)> 
""C 
""C 
m 
2 
0 
x 
G1 

() 
0 
:::J 
..+ c:: 



Cl w 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

2AO 

280 

2CO 
200 

2EO 

2f 0 

300 

310 
320 

330 

340 

350 

360 

370 

380 

390 

3A0 

360 

3CO 

300 

3EO 

3FO 

0 

512 

528 

544 

560 

576 

592 

608 

624 

640 

656 

672 

686 

704 

720 

736 

752 

768 

784 

800 

816 

832 

846 

864 

880 

896 

912 

926 

944 

960 

976 

992 

1008 

1 

513 

529 

545 

561 

577 

593 

609 

625 

641 

657 

673 

689 

705 

721 

131 

753 

769 

765 

801 

817 

833 

849 

865 

881 

897 

913 

929 

945 

961 

917 
993 

1009 

2 

514 

530 

546 

562 

578 

594 

610 

626 

642 

658 

674 

690 

706 

722 

738 

754 

710 

786 

802 

818 

834 

850 

866 

882 

898 

914 

930 

946 

962 

978 

994 

1010 

3 

515 

531 

547 

563 

579 

595 

611 

627 

643 

659 

675 

691 

701 
723 

739 

755 

771 

787 

803 

819 

835 

851 

867 

883 

899 

915 

931 

947 

963 

979 

995 

1011 

4 

516 

532 

548 

564 

580 

596 

612 

628 

644 

660 

676 

692 

708 

724 

740 

756 

712 

788 

804 

820 

836 

852 

868 

884 

900 

916 

932 

948 

964 

980 

996 

1012 

5 

517 

533 

549 

565 

561 

597 

613 

629 

645 

661 

617 

693 

709 

725 

741 

757 

773 
789 

805 

821 

837 
853 

869 

885 

901 

917 

933 

949 

965 

981 

997 

1013 

6 

51' 
53fl 

550 

566 

582 

598 

610 

630 

646 

662 

678 

690 

710 

726 

742 

758 

HQ 

790 

806 

822 

631 

es• 
870 

881 

902 

91' 

93• 

958 

968 

982 

998 

1014 

7 

519 

535 

551 

567 

583 

599 

615 

631 

647 

663 

679 

695 

711 

727 

743 

759 

775 

791 

807 

823 

839 

855 

871 

687 

903 

919 

935 

951 

967 

983 

999 

1015 

8 

520 
536 

552 

568 

584 

600 

616 

632 

648 

664 

680 

696 

712 

728 

744 

760 

776 

792 

808 

824 

840 

856 

872 

688 

904 

920 

936 

952 

968 

984 

1000 

1016 

9 

521 

SST 
553 

569 

5lJ5 
601 

617 

633 

649 

665 

681 

697 

713 

729 

745 

761 

777 
793 

809 

825 

841 

8i7 

873 

889 

905 

921 

9 37 

953 

969 

985 

1001 

1017 

A 

522 

538 

554 

510 

586 

602 

618 

634 

650 

666 

682 

698 

714 

730 

746 

762 

178 

794 

810 

826 

842 

858 

874 

890 

906 

922 

938 

954 

970 

9136 

1002 

1018 

B 

523 

539 

555 

571 

587 

603 

619 

635 

651 

661 

683 

699 

715 

731 

747 

763 

779 
795 

811 

827 

843 

859 

875 

891 

907 

923 

9 39 

955 

971 

987 

1003 

1019 

c 

524 

540 

556 

572 

588 

604 

620 

636 

652 

668 

684 

700 

716 

732 

748 

764 

780 

196 

812 

828 

844 

860 

876 

892 

908 

924 

940 

956 

972 

988 

1004 

1020 

D 

525 

541 

557 

573 

589 

605 

621 

637 

653 

669 

685 

701 

717 

733 

749 

765 

781 

797 

813 

829 

845 

861 

817 

893 

909 

925 

941 

957 

913 

989 

1005 

1021 

E 

526 

542 

558 

574 

590 

606 

622 

638 

654 
670 

686 

702 

718 

734 

750 

766 

782 

798 

814 

830 

846 

862 

876 

894 

910 

926 

942 

958 

974 

990 

1006 

1022 

r 

527 

543 

559 

575 

591 

607 

623 

639 

655 

671 

687 

703 

719 

735 

751 

767 

783 

799 

815 

831 

847 

863 

879 

695 

911 

927 

943 

959 

975 

991 

1007 

1023 

)> 
"'O 
"'O 
m 
2 
0 
x 
G> 

(") 
0 
:::i 
..+ 

c:: 



C) 

J=i. 

400 

410 

420 

430 

440 

450 

460 

470 

480 
490 

4AO 

480 

4CO 
400 

4EO 

4FO 

500 

510 

520 

530 

540 

550 

560 

570 

580 
590 

5AO 

580 

5CO 
500 

5EO 

5FO 

0 

1024 
1040 

1056 

1012 

1088 
1104 

1120 

1136 

n52 
lt68 

1184 

1200 

1216 
1232 

1248 

1264 

1280 
1296 

1312 

1328 

1344 
1360 

1376 

1392 

1408 
i424 

1440 

1456 

1472 
1488 

1504 

1520 

1025 
1041 
1057 

1073 

1089 
1105 

1121 

1137 

1153 
1169 

1185 

1201 

1217 
1233 

1249 

1265 

1281 
1297 

1313 

1329 

1345 
1361 

1377 

1393 

1409 
1425 

1441 

1457 

1473 
1489 

1505 

1521 

2 

1026 
1042 
1058 

1074 

1090 
1106 

1122 

1138 

1154 
1170 

1186 

1202 

1218 
1234 

1250 

1266 

1282 
1298 

1314 

1330 

1346 
1362 

1378 

1394 

1410 
1426 

1442 
1458 :' 

3 

1027 
1043 

1059 

1075 

1091 
1107 

1123 

1139 

1155 
1171 

1187 

1203 

1219 
1235 

1251 

1267 

1283 
1299 

1315 

1331 

1347 
1363 

1379 

1395 

1411 
1427 

1443 

1459 

147:4_:.- ' 1475 

1490 1491 

1506 1507 

1522 1523 

4 

1028 
1044 

1060 

1076 

1092 
1108 

1124 

1140 

1156 
1172 

1188 

1204 

1220 
1236 

1252 

1268 

1284 
1300 

1316 

1332 

1348 
1364 

1380 

1396 

1412 
1428 

1444 

1460 

1476 
1492 

1508 

1524 

5 

1029 
1045 

1061 

1077 

1093 
1109 

1125 

1141 

1157 
1173 

1189 

1205 

1221 
1231 

1253 

1269 

1265 
1301 

1317 

1333 

1349 
1365 

1381 

1397 

1413 
1429 

1445 

1461 

1477 
1493 

1509 

1525 

6 

1on 
104' 
1062 

1078 

1090 

1118 
1126 

1142 

use 
1174 

1198 

1206 

1222 
1236 

1254 

1270 

1286 
1302 

1318 

1334 

1350 
1366 

1362 

1398 

1414 
1430 

1446 

1462 

1478 
1494 

1510 
1526 

1 

1031 
1047 

1063 

1079 

1095 
1111 
1127 

1143 

1159 
1175 

1191 

1207 

.1223 
1239 

1255 

1271 

1287 
1303 

1319 

1335 

1351 
1367 

1383 

1399 

1415 
1431 
1447 

1463 

1479 
1495 

1511 

1527 

a 

1032 
1048 
1064 

1080 

1096 
1112 
1126 

1144 

1160 
1176 

1192 

1206 

1224 
1240 

1256 

1272 

1288 
1304 

1320 

1336 

1352 
1366 

1364 

1400 

1416 
1432 

1446 

1464 

1460 
1496 

1512 
1528 

9 

1033 
1049 

1065 

1081 

1097 
1113 

1129 

1145 

1161 
1177 

1193 

1209 

1225 
1241 

1257 

1273 

1269 
1305 

1321 

1337 

1353 
1369 

1385 

1401 

1417 
1433 
1449 

1465 

1481 
1497 

1513 
1529 

A 

1034 
1050 

1066 

1062 

1098 
1114 

1130 

1146 

1162 
1176 

1194 

1210 

1226 
1242 

1258 

1274 

1290 
1306 

1322 

1338 

1354 
1370 

1386 

1402 

1416 
1434 

1450 

1466 

1482 
1498 

1514 

1530 

B 

1035 
1051 
1067 

1083 

1099 

1115 

1131 

1147 

1163 
1179 

1195 

1211 

1227 
1243 

1259 

1275 

1291 
1307 

1323 

1339 

1355 
1371 

1387 

1403 

1419 
1435 

1451 

1467 

1463 
1499 

1515 

1531 

c 

1036 
1052 
1066 

1084 

1100 
1116 

1132 

1148 

1164 
1160 

1196 

1212 

1228 
1244 

1260 

1276 

1292 
1306 

1324 

1340 

1356 
1372 

1368 

1404 

1420 
1436 

1452 

1468 

1484 
1500 

1516 

1532 

0 

1031 
1053 
1069 

1085 

1101 
1117 

1133 

1149 

1165 
1161 

1197 

1213 

1229 
1245 

1261 

1277 

1293 
1309 

1325 

1341 

1357 
1373 

1389 

1405 

1421 
1431 

1453 

1469 

1485 
1501 

1517 

1533 

E 

1038 
1054 
1070 

1086 

1102 
1116 
1134 

1150 

1166 
1182 

1198 

1214 

1230 
1246 

1262 

1278 

1294 
1310 

1326 

1342 

1358 
1374 

1390 

1406 

1422 
1438 

1454 

1470 

1486 
1502 

1518 

1534 

r 

1039 
1055 

1071 

1087 

1103 
1119 

1135 

1151 

1167 
1183 

1199 

1215 

1231 
1247 

1263 

1279 

1295 
1311 

1327 

1343 

1359 
1375 

1391 

1407 

1423 

1439 

1455 

1471 

1467 
1503 

1519 

1535 

:t> 
\J 
\J 
m 
2 
0 
x 
G') 

n 
0 
:l .... 
c: 



G) 

en 

0 

600 1536 
610 1552 

620 1568 

630 1584 

640 1600 

650 1616 

660 1632 

670 1648 

680 1664 
690 1680 

6AO 1696 

680 1712 

6CO 
600 

6EO 

6f0 

1728 
1744 

1760 

1776 

1537 
1553 

1569 

1585 

1601 

1617 

1633 

1649 

1665 
1681 

1697 

1713 

1729 
1745 

1761 

1777 

100 

710 

720 

730 

1792 1793 
1808 1809 

1824 1825 

1840 1841 

740 

750 

760 

HO 

1856 1857 
1872 1873 

1888 1889 

1904 t905 

2 

1538 
1554 

1570 

1586 

1602 

1618 

1634 

1650 

1666 
1682 

1698 

1714 

1730 
1746 

1162 

1778 

1794 
1810 

1826 

1642 

1658 

1674 

1690 

1906 

780 
190 

7 AO 

780 

1920 1921 1922 
1936 1937 1938 

1952 1953 1954 

1968 1969 1970 

7CO 

700 

7EO 
7FO 

1984 1985 1986 
2000 2001 2002 

2016 2017 2018 

2032 2033 2034 

3 

1539 
1555 

1571 

1587 

1603 

1619 

1635 

1651 

1667 
1663 

1699 

1715 

1731 
1147 

1763 

1779 

1795 

1811 

1827 

1643 

1859 

1875 

1691 

1907 

4 

1540 
1556 

1572 

1568 

1604 

1620 

1636 

1652 

1668 
1684 

1700 

1716 

1732 
1748 

1764 

1780 

1796 

1'H2 

1628 

1844 

1860 

1876 

1892 

1908 

1923 1924 
1939 1949 

1955 1956 

1971 1972 

1967 1988 
1003 2004 

2019 2020 

2035 2036 

5 

1541 
1557 

1573 

1569 

1605 

1621 

1631 

1653 

1669 
1665 

1701 

1717 

1733 
1149. 

1765 

1781 

1797 
1813 

1629 

1845 

1861 

1877 

1893 

1909 

1925 

1941 

1957 

1973 

1989 
2005 

2021 

2037 

6 

1541 
1558 

157• 

1590 

1606 

1621 

1638 

16~U 

1610 
1685 

1702 

11te 

1730 
1751 

176• 

1781 

1791 
1614 

1830 

1846 

1862 
tare 
1894 

1918 

192• 
1942 

1958 

1914 

1991 

200• 

2022 

2038 

7 

1543 
1559 

1575 

1591 

1607 

1623 

1639 

1655 

1671 
1667 

1703 

1719 

1735 
1751 

1767 

1783 

1799 

1615 
1831 

1847 

1863 
1879 

1895 

1911 

1927 
1943 

1959 

1975 

1991 
2007 

2023 

2039 

e 

1544 
1560 

1576 

1592 

1608 

1624 

1640 

1656 

1672 
1688 

1704 

1720 

1736 
1752 

1768 

1784 

1800 

1816 

1832 

1848 

1664 
1680 

1696 

1912 

9 

1545 
1561 

1577 

1593 

1609 

1625 

1641 

1657 

16?3 
1689 

1705 

1721 

1737 
17S3 

1769 

1785 

18et 
1817 

1833 

1649 

1865 
1861 

1897 

1913 

1928 1929 

1944 1945 

1960 1961 

1976 1977 

1992 1993 
2008 2009 

2024 2025 

2040 2041 

A 

1546 
1562 

1578 

1594 

1610 

1626 

1642 

16'58 

1614 
1690 

1706 

1722 

1738 
17'54 

1770 

17f!6 

1602 
1818 

1834 

1650 

1866 
1882 

1898 

1914 

1930 

1946 

1962 

1978 

1994 
2010 

2026 

2042 

B 

1547 
1563 

1579 

1595 

1611 

1627 

1643 

1659 

1675 
1691 

1707 

1723 

1739 
1755 

1771 

1787 

1803 

1819 

1835 

1651 

1667 

1883 

1899 

1915 

1931 

1947 

1963 

1979 

1995 
2011 

2027 

2043 

c 

1548 
1564 

1580 

1596 

1612 

1628 

1644 

1660 

1676 
1692 

1708 

1724 

1740 
1756 

1772 

1788 

1604 
1620 

1836 

1852 

1668 
1884 

1900 

1916 

1932 
1948 

1964 

1980 

1996 
2012 

2028 

2044 

D 

1549 
1565 

1581 

1597 

1613 

1629 

1645 

1661 

1677 
1693 

1709 

1725 

1741 
1757 

1773 

1789 

1605 
1821 

1837 

1853 

1869 

1885 

1901 

1917 

1933 

1949 

1965 

1981 

1997 
2013 

2029 

2045 

E 

1550 
1566 

1582 

1598 

1614 

1630 

1646 

1662 

1678 
1694 

1710 

1726 

1742 
1758 

1774 

1790 

1806 
1822 

1838 

1854 

1810 

1886 

1902 

1918 

1934 
1950 

1966 

1982 

1996 
2014 

2030 

2046 

F 

1551 
1567 

1583 

1599 

1615 

1631 

1647 

1663 

1679 
1695 

1711 

1727 

1743 
1759 

1775 

1791 

1607 
1623 

1639 

1855 

1671 
1867 

1903 

1919 

1935 
1951 

1967 

1983 

1999 
2015 

2031 

2047 

)> 

"" "" m 
z 
0 
x 
C) 

(') 
0 
::l 
~ c: 



C) 
a, 

0 

600 2048 

e10 2064 

820 2080 

630 2096 

840 2112 

850 2128 

860 2144 

870 2160 

880 2176 

890 2192 

8AO 2208 

880 2224 

8co 
800 

8EO 
ero 

2240 
2256 

2272 

2288 

900 2304 

910 2320 

920 2336 

930 2352 

940 2368 

950 2384 

960 2400 

970 2416 

980 2432 

990 2448 

9AO 2464 

980 2480 

9CO 2496 

900 2512 

9EO 2528 

9f 0 2544 

2049 

2065 

2081 

2097 

2113 

2129 

2145 

2161 

2177 

2193 

2209 

2225 

2 

2050 

2066 

2082 

2098 

2114 

2130 

2146 

2162 

2118 

2194 

2210 

2226 

2241 2242 

2257 2258 

2273 2274 

2289 2290 

2305 

2321 

2337 

2353 

2369 
2385 

2401 

2417 

2433 

2449 

2465 

2481 

2497 

2513 

2529 

2545 

2306 

2322 

2338 

2354 

2370 
2386 

2402 

2418 

2434 

2450 

2466 

2482 

2498 

2514 

2530 

2546 

3 

2051 
2067 

2083 

2099 

2115 

2131 

2 t 41 

2163 

2179 

2195 

2211 

2221 

4 

2052 

206D 

2084 

2100 

2116 

2132 

2148 

2164 

2180 
2196 

2212 

2228 

2243 2244 

2259 2260 

2275 2276 

2291 2292 

2307 

2323 

2339 

2355 

2371 

2387 

2403 

2419 

2435 

2451 

2467 

2483 

2499 

2515 

2531 

2547 

2308 

2324 

2340 

2356 

2372 
2388 

2404 

2420 

2436 

2452 

2468 

2484 

2500 

2516 

2532 

2548 

5 

2053 
2069 

2085 

2101 

2117 
2133 

2149 

2165 

2181 

2197 

2213 

2229 

2245 

2261 

2217 

2293 

2309 

2325 

2341 

2357' 

2373 

2389 

2405 

2421 

2431 

2453 

2469 

2485 

2501 

2517 

2533 

2549 

6 

2054 
2078 

2086 

2102 

2118 

2134 

2150 

2166 

2182 
219e 

2214 

2230 

2246 

226! 

227'lt 

2294 

231Q 
2326 

2342 

2358 

2374 

2390 

2406 

2422 

2431 

2454 

2470 

2480 

2502 
2518 

2534 

2550 

7 

2055 
2071 

2087 

2103 

2119 

2135 

2151 

2167 

2183 

2199 

2215 

2231 

2247 

2263 

2279 

2295 

2311 

2327 

2343 

2359 

2375 

2391 

2407 

2423 

2439 

2455 

2471 

2487 

2503 
2519 

2535 

2551 

8 

2056 
2012 

2088 

2104 

2120 

2136 

2152 

2168 

2184 

2200 

2216 

2232 

2248 

2264 

2280 

2296 

2312 

2328 

2344 

2360 

2376 

2392 

2408 

2424 

2440 

2456 

2472 

2488 

2504 

2520 

2536 

2552 

9 

20,.7 

2073 

2089 

2105 

2121 
2137 

2U3 

21'9 

2185 
2201 

2217 

2233 

2249 

2265 

2281 

2297 

2313 

2329 

2345 

2361 

2377 

2393 

2409 

2425 

2441 

2457 

2473 

2419 

2505 

2521 

2537 

2553 

A 

20!i8 

2074 

2090 

2106 

2122 

2138 

2154 

2170 

21'56 

2202 

2218 

2234 

2250 
2266 

2282 

2298 

2314 

2330 

2346 

2362 

2378 

2394 

2410 

2426 

2442 

2458 

2474 

2490 

2506 

2522 

2538 

2554 

B 

2059 
2075 

2091 

2107 

2123 

2139 

2155 

2171 

2187 

2203 

2219 

2235 

2251 
2267 

2283 

2299 

2315 
2331 

2347 

2363 

2379 

2395 

2411 

2427 

2443 

2459 

2475 

2491 

2507 
2523 

2539 

2555 

c 

2060 
2076 

2092 

2106 

2124 

2140 

2156 

2172 

2188 

2204 

2220 

2236 

2252 
2268 

2284 

2300 

2316 

2332 

2348 

2364 

2380 
2396 

2412 

2428 

2444 

2460 

2476 

2492 

2508 

2524 

2540 

2556 

0 

2061 

207'7 

2093 

2109 

2125 

2141 

2157 

2173 

2189 

220'5 

2221 

2237 

2253 

2269 

2285 

2301 

2317 
2333 

2349 

2365 

2381 
2397 

2413 

2429 

2445 

2461 

2477 

2493 

2509 
2525 

2541 

2557 

E 

2062 
2078 

2094 

2110 

2126 
2142 

2158 

2174 

2190 
2206 

2222 

2236 

!254 
2270 

2286 

2302 

2318 
2334 

2350 

2366 

2382 
2398 

2414 

2430 

2446 

2462 

2478 

2494 

2510 

2526 

2542 

2558 

f 

2063 
2079 

2095 

2111 

2127 
2143 

2159 

2175 

2191 

2207 

2223 

2239 

2255 

2271 

2287 

2303 

2319 
2335 

2351 

2367 

2383 

2399 

2415 

2431 

2447 

2463 

2479 

2495 

2511 

2527 

2543 

2559 

)> 
-c 
-c 
m 
2 
c 
x 
C> 

n 
0 
::s ..... 
c: 



G) 

.:... 

AOO 

AtO 
A20 

A30 

A40 

A50 

A60 

A70 

A80 

A90 

AAO 

ABO 

ACO 

AUO 

AlO 

AFO 

BOO 

810 

820 

830 

840 

850 

860 

870 

0 

2560 

2576 

2592 

2608 

2624 

2640 

2656 

2672 

2688 

2704 

2720 

2736 

2752 

2768 

2784 

2800 

2816 

2832 

2848 

2864 

2880 

2896 

2912 

2928 

880 2944 

890 2960 

BAO 2976 

BBO 2992 

BCO 3008 

BOO 3024 

BEO 3040 

Bf O 3056 

2561 

2577 

2593 

2609 

2625 

2641 

2657 

2673 

2689 

2705 

2721 

2737 

2753 

2769 

2785 

2801 

2817 

2833 

2849 

2865 

2861 

2697 

2913 

2929 

2945 

2961 

2977 

2993 

3009 

3025 

3041 

3057 

2 

2562 
2578 

2594 

2610 

2626 
2642 

2658 

2674 

2690 

2706 

2722 

2738 

2754 

2770 

2786 

2802 

2818 

2834 

2850 

2866 

2882 

2898 

2914 

2930 

2946 

2962 

2978 

2994 

3010 

3026 

3042 

3058 

3 

2563 

2579 

2595 

2611 

2627 

2643 

2659 

2675 

2691 

2707 

2723 

2739 

2755 

2771 

2787 

2803 

2819 

2835 

2851 

2867 

2883 

2899 

2915 

2931 

2947 

2963 

2979 

2995 

3011 

3027 

3043 

3059 

4 

2564 

2580 

2596 

2612 

2628 

2644 

2660 

2676 

2692 
2708 

2724 

2740 

2756 

2772 

2788 

2804 

2820 

2836 

2852 

2868 

2884 

2900 

2916 

2932 

2948 

2964 

2980 

2996 

3012 

3028 

3044 

3060 

5 

2565 

2581 

2597 

2613 

2629 

2645 

2661 

2671 

2693 

2709 

2725 

2741 

2757 

2773 

2789 

2805 

2821 
2837 

2853 

2869 

2885 

2901 

2917 

2933 

2949 

2965 

2981 

2997 

3013 

3029 

3045 

3061 

6 

2566 

2582 

2596 

2614 

2630 

2646 

2662 

2678 

2694 

211• 

2726 

2742 

2758 

2714 

2790 

2806 

2822 

2838 

?854 

2870 

2886 
2902 

2918 

2934 

2959 

296• 

2982 

299e 

3014 

3030 

3046 

3062 

1 

2567 

2583 

2599 

2615 

2631 

2647 

2663 

2679 

2695 

2711 

2727 

2743 

2759 

2775 

2791 

2807 

2823 

2839 

2855 

2871 

2887 

2903 

2919 

2935 

2951 
2967 

2983 

2999 

3015 

30 31 

3047 

3063 

8 

2568 
2584 

2600 

2616 

2632 

2648 

2664 

2680 

2696 

2712 

2728 

2744 

2760 

2776 

2792 

2808 

2824 

2840 

2856 

2872 

2888 

2904 

2920 

2936 

2952 

2968 

2984 

3000 

3016 

3032 

3048 

3064 

9 

2569 

2585 

2601 

2617 

2633 

2649 

2665 

2681 

2697 

2713 

2729 

2745 

2761 

2777 

2793 

2809 

2825 

2841 

2857 

2873 

2889 

2905 

2921 

2937 

2953 

29,9 

29S5 

3001 

3017 
3033 

3049 

3065 

A 

2570 

2586 

2602 

2618 

2634 

2650 

2666 

26132 

26fl8 

2714 

2730 

2746 

2762 

2778 

2794 

2810 

2826 

2842 

2858 

2874 

2890 

2906 

2922 

2938 

2954 

2970 

2986 

3002 

3018 

3034 

3050 

3066 

B 

2571 
2587 

2603 

2619 

2635 

2651 

2667 

2683 

2699 

2715 

2731 

2747 

2763 

2779 

2795 

2811 

2827 
2843 

2859 

2875 

2691 

2907 

2923 

2939 

2955 

2971 

2987 

3003 

3019 

3035 

3051 

3067 

c 

2572 
2588 

2604 

2620 

2636 
2652 

2668 

2684 

2700 

2716 

2732 

2748 

2764 

2780 

2796 

2812 

2828 

2844 

2860 

2876 

2892 

2908 

2924 

2940 

2956 

2972 

2988 

3004 

3020 

3036 

3052 

3068 

D 

2573 
2589 

2605 

2621 

2637 
2653 

2669 

268!5 

2701 

2717 

2733 

2749 

2765 

2181 

2797 

2813 

2829 

2845 

2861 

2877 

2893 

2909 

2925 

2941 

2957 

2973 

2989 

3005 

3021 

3037 

3053 

3069 

E 

2574 

2590 

2606 

2622 

2638 

2654 

2670 

2686 

2702 

2718 

2734 

2750 

2766 
2782 

2798 

2814 

2830 

2846 

2862 

2878 

2894 

2910 

2926 

2942 

2958 

2974 

2990 

3006 

3022 

3038 

3054 

3070 

F 

2575 

2591 

2607 

2623 

2639 

2655 

2671 

2687 

2703 

2719 

2735 

2751 

2767 

2783 

2799 

2615 

2831 

2847 

2863 

2679 

2895 

2911 

2927 

2943 

2959 

2975 

2991 

3007 

3023 

3039 

3055 

3071 

l> 
iJ 
iJ 
m 
z 
0 
x 
G) 

("') 
0 
::J 
~ c:: 



C> 
cio 

coo 
C10 

C20 

C30 

C40 
C50 

C60 

CTO 

ceo 
C90 

CAO 

CBO 

0 

3072 
3088 

3104 

3120 

3136 
3152 

3168 

3184 

3200 
3216 

3232 

3248 

3073 
3089 

3105 

3121 

3137 
3153 

3169 

3185 

3201 
3217 

3233 

3249 

2 

3074 
3090 

3106 

3122 

3138 
3154 

3170 

3186 

3 

3075 
3091 

3t0T 

3123 

3139 
3155 

3171 

3187 

3202 9203 
3218 9219 

3234 9235 

3250 9251 

cco 3264 3265 3266 9267 

coo 3280 3281 3282 3283 

CEO 3296 3297 3298 J299 

CFO 3312 3313 3314 3315 

DOO 
010 

020 

030 

040 
050 

060 

070 

080 

D90 

DAO 
DBO 

DCO 
ODO 
DEO 

DFO 

3328 
3344 

3360 

3376 

3392 
3408 

3424 

3440 

3456 

3472 

3488 

3504 

3520 
3536 

3552 

3568 

3329 
3345 

3361 

3377 

3393 
3409 

3425 

3441 

3457 

3473 

3489 

3505 

3521 
3537 

3553 

3569 

3330 
3346 

3362 

3376 

3394 
3410 

3426 

3442 

3458 

3474 

3490 

3506 

3522 

3538 

3554 

3570 

3331 
3347 

3363 

3379 

3395 
3411 

3427 

3443 

3459 

3475 

3491 

3507 

3523 

3539 

3555 

3571 

4 

3016 
3092 

3108 

3124 

3140 
3156 

3172 

3188 

3204 
3220 

3236 

3252 

3268 
3284 

3300 

3316 

3332 
3348 

3364 

3380 

3396 
3412 

3428 

3444 

3460 

3416 

3492 

3508 

3524 

3540 

3556 

3572 

5 

3077 
3093 

3109 

3125 

3141 
3157 

3173 

3189 

3205 
3221 

3237' 

3253 

3269 

3285 

3301 

3317 

3333 
3349 

3365 

3381 

3397 
3413 

3429 

3445 

3461 

3477 

3493 

3509 

3525 

3541 

3557 

3573 

6 

3076 
3094 

3110 

312& 

314! 
3158 

3171 

3199 

3206 
3222 

3238 

3254 

3270 

3286 

3302 

3318 

3330 
3350 

3361 

3382 

3398 
3410 

34 31 

3446 

3462 

3478 

3496\ 

351'1 

3526 
3542 

3559 

3574 

7 

3079 
3095 

3111 

3127 

3143 
3159 

3175 

3191 

3207 
3223 

3239 

3255 

3271 

3287 

3303 

3319 

3335 
3351 

3367 

3383 

3399 
3415 

3431 

3447 

3463 

3479 

3495 

3511 

3527 

3543 

3559 

3575 

8 

3080 
3096 

3112 

3128 

3144 
3160 

3176 

3192 

3208 
3224 

3240 

3256 

3272 

3288 

3304 

3320 

3336 
3352 

3368 

3384 

3400 
3416 

3432 

3448 

3464 

3480 

3496 

3512 

3528 
3544 

3560 

3576 

9 

3081 
3097 

3113 

31ii9 

3145 
3161 

3177 

319 3 

3209 
3225 

3241 

3257 

3273 

3289 

3305 

3321 

3337 
3353 

3369 

33e5 

3401 
3411 

3433 

3449 

3465 

3481 

3497 

3513 

3529 

3545 

3561 

3577 

A 

3082 
3098 

3114 

3130 

3146 
3162 

3178 

3194 

3210 
3226 

3242 

3258 

3274 
3290 

3306 

3322 

3338 
3354 

3370 

33fl6 

3402 
3418 

3434 

3450 

3466 

3482 

3498 

3514 

3530 
3546 

3562 

3578 

B 

3083 
3099 

3115 

3131 

3147 
3163 

3179 

3195 

3211 
3227 

3243 

3259 

3275 

3291 

3307 

3323 

3339 
3355 

3371 

3387 

3403 
3419 

34 35 

3451 

3467 

3483 

3499 

3515 

3531 
3547 

3563 

3579 

c 

3084 
3100 

3116 

3132 

3148 
3164 

3180 

3196 

3212 
3228 

3244 

3260 

3276 

3292 

3308 

3324 

3340 
3356 

3372 

3388 

3404 
3420 

3436 

3452 

3468 
3484 

3500 

3516 

3532 
3548 

3564 

3580 

D 

3085 
3101 

3117 

3133 

3149 
3165 

3181 

3197 

3213 
3229 

3245 

3261 

3277 

3293 

3309 

3325 

3341 
3357 

3373 

3389 

3405 
3421 

3437 

3453 

3469 

3485 

3501 

3517 

3533 
3549 

3565 

3581 

E 

3086 
3102 

3118 

3134 

3150 
3166 

3182 

3198 

3214 
3230 

3246 

3262 

3278 

3294 

3310 

3326 

3342 
3358 

3374 

3390 

3406 
3422 

3438 

3454 

3470 

3486 

3502 

3518 

3534 
3550 

3566 

3582 

F" 

3087 
3103 

3119 

3135 

3151 
3167 

3183 

3199 

3215 
3231 

3247 

3263 

3219 
3295 

3311 

3327 

3343 
3359 

3375 

3391 

3407 
3423 

3439 

3455 

3471 

3487 

3503 

3519 

3535 

3551 

3567 

3583 

:t> .,, .,, 
m 
2 
0 
x 
G') 

n 
0 
::J .... c: 



G) 

cO 

0 

EOO 3584 

ElO 3600 

E20 3616 

E30 3632 

E40 3648 
E50 3664 

E60 3680 

E70 3696 

E80 3712 

E90 3728 

EAO 3744 

EBO 3760 

ECO 3776 

EDO 3792 

EEO 3808 

EFO 

FOO 

FlO 

F 20 

F 30 

f40 

F50 

F60 

f70 

F80 

F90 

F AO 

F~O 

FCO 
FOO 
FEO 
HO 

3824 

3840 

3856 

3872 

3888 

1904 

39?0 

3936 

3952 

3968 

3984 

4000 

4016 

4032 

l!O 48 

4064 

4080 

3585 
3601 

3617 

3633 

3649 

3665 

3681 

3697 

3713 
3729 

3745 

3761 

3777 

3793 

3809 

3825 

3841 
3857 

3873 

3889 

3905 

3921 

3937 

3953 

3969 

3985 

4001 

4017 

4033 
4049 

4065 

4081 

2 

3586 

3602 

3618 

3634 

3650 

3666 

3682 

3696 

3714 
3730 

3746 

3762 

3776 

3794 

3810 

3826 

3 

9587 
~603 

3619 

9635 

3651 

9667 

9683 

3699 

3715 

9731 

3747 

l763 

3779 
379'5 

3811 

9627 

3842 3643 

3858 3659 

3874 3875 

3690 3891 

3906 3901 

3922 9923 

39 36 3939 

3954 3955 

3970 

3986 

4002 

4018 

4034 

4050 

4066 

4082 

3971 

3967 

4003 

4019 

4035 

4051 

4067 

4083 

4 

3588 

3604 

3620 

3636 

3652 

3668 

3684 

3700 

3716 
3732 

3748 

3764 

3780 

3796 

3812 

3828 

3844 

3860 

3876 

3892 

3908 

3924 

3940 

3956 

3972 
3988 

4004 

4020 

4036 

4052 

4068 

4084 

5 

3589 
3605 

3621 

3637 

3653 

3669 

3685 

3701 

3717 
3733 

3749 

3765 

3781 
3797 

3813 

3829 

3845 

3861 

3871 

3893 

3909 

3925 

3941 

3957 

397 3 

3989 

4005 

4021 

4031 

4053 

4069 

4085 

6 

3598 
3600 

3622 

363~ 

3654 
3671 

3686 

3702 

3718 

373• 

3750 

3768 

3781 

3798 

3814 

3830 

3846 

3862 

3878 

3894 

391' 

3926 

3941 

3956 

3974 

3991 

4006 

4022 

4038 

4054 

401" 

4066 

7 

3591 

3607 

3623 

3639 

3655 

3671 

3667 

3703 

3719 

3735 

3751 

3767 

3783 

3799 

3U5 

3631 

3847 

3863 

3879 

3895 

3911 
3927 

3943 

3959 

3975 

3991 

4007 

4023 

4039 
4055 

4071 

4067 

6 

3592 
3608 

3624 

3640 

3656 

3672 

3688 

3704 

3720 

3736 

3752 

3768 

3784 

3800 

3816 

3832 

3848 
3864 

3880 

3896 

3912 
3928 

3944 

3960 

3976 

3992 

4008 

4024 

4040 
40'56 

4072 

4088 

9 

3593 
3609 

3625 

3641 

3657 
3673 

3689 

3705 

3721 

3137 

3753 

37'9 

3785 

3601 

3817 

3633 

3849 
3865 

3881 

3697 

3913 

3929 

3945 

3961 

3977 

3993 

4009 

4025 

4041 

4057 

4013 

4oe9 

A 

3594 

3610 

3626 

3642 

3656 
3674 

3690 

3706 

3722 

3738 

3754 

3770 

37e6 

3802 

3818 

3834 

3850 

3866 

3882 

3698 

3914 

3930 

3946 

3962 

3978 
3994 

4010 

4026 

4042 

4058 

4014 

4090 

B 

3595 

3611 

3627 

3643 

3659 

3675 

3691 

3701 

3723 
37 39 

3755 

3711 

3767 
3803 

3819 

3835 

3851 
3867 

3883 

3899 

3915 
39 31 

3947 

3963 

3979 

3995 

4011 

4027 

4043 

4059 

4075 

4091 

c 

3596 

3612 

3628 

3644 

3660 

3676 

3692 

3708 

3724 
3740 

3756 

3772 

3788 

3804 

3820 

3836 

3852 

3868 

3884 

3900 

3916 

3932 

3946 

3964 

3980 

3996 

4012 

4028 

4044 
4060 

4076 

4092 

D 

3597 

3613 

3629 

3645 

3661 

3677 

3693 

3709 

3725 
3741 

3757 

3773 

3769 

3805 

3821 

3637 

3853 

3869 

3885 

390! 

3917 

3933 

3949 

3965 

3981 

3997 

4013 

4029 

4045 

4061 

4077 

4093 

E 

3598 
3614 

3630 

3646 

3662 

3678 

3694 

3710 

3726 

3742 

3758 

3774 

3790 

3806 

3822 

3838 

3854 

3870 

3886 

3902 

3918 

3934 

3950 

3966 

3982 

3998 

4014 

4030 

4046 

4062 

4078 

4094 

F 

3599 

3615 

3631 

3647 

3663 

3679 

3695 

3711 

3727 

31'43 

3759 

3775 

3791 
3807 

3823 

3839 

3855 

3871 

3887 

3903 

3919 

3935 

395 l 

3967 

3983 
3999 

4015 

4031 

4047 

4063 

4079 

4095 

)> 
"'tJ 
"'tJ 
m 
2 
0 
x 
G') 

c=; 
0 
:l 
..+ c: 



Absolute Address Conversion, 3-8 
Accumulation of Control Words, 12-2 
Adapter Cluster, 11-3 
Add, 7-1 
Adder, High Speed, 5-3 
Address Adder, 5-20 
Address Environment Defined, 3-8 
ADJ (0,0) Switch, 4-11 
Alarm Interrupts, 5-10 
Alpha Card Read, 5-17 
Area Descriptor, 8-9, 10-2 
A Register, 4-1 
Arithmetic,Address Converter Busy, 12-7 
Arithmetic Address Converter, 12-13 
Arithmetic Controller, 5-3 
Arithmetic Operators, 7-1 
Auxiliary Cabinet, 1-2 
Base and Limit of Stack, 3-1 
Base of Addressing-Level Segment, 3-8 
Binary Card Read, 5-17 
Bit Operators, 7-9 
Bit Reset, 7-9 
Bit Reset Dynamic, 7-9 
Bit Set, 7-9 
Bit Set Dynamic, 7-9 
Bit Sign Change, 7-9 
Bottom of Stack, 5-7 
Branch False, 7-5 
Branch False Dynamic, 7-5 
Branch Operators, 7-5 
Branch True, 7-5 
Branch True Dynamic, 7-5 
Branch Unconditional, 7-5 
Branch Unconditional Dynamic, 7-5 
B Register, 4-1 
Card Load Operation, 4-18 
Card Punch, 10-5 
Card Reader, 10-4 
Channel Assignment Control, 5-15 
Character Codes, Internal, 2-1 
Character Translator, 5-15 
Character Type Data, 2-4 
Clear and Halt Load, 4-9 
Clear the Stack Request, 12-7 
Clock Controls, 4-10 
Clocks, 1-4 
Coded to Decimal Conversion, 2-2 
Command Data Register, 5-14 
Compare Characters Equal Destructive, 7-13 

INDEX 

Compare Characters Equal Update, 7-13 
Compare Characters Greater, Destructive, 7-12 
Compare Characters Greater or Equal, 

Destructive, 7-13 
Compare Characters Greater or Equal Update, 7-13 
Compare Characters Greater, Update, 7-13 
Compare Characters Less Destructive, 7-13 
Compare Characters Less or Equal 

Destructive, 7 ·:13 
Compare Characters Less or Equal Update, 7-13 
Compare Characters Less Update, 7-13 
Compare Characters Not EqualDestructive, 7-13 
Compare Characters Not Equal Update, 7-13 
Compare Operators, 7-12 
Conditional Halt, 7-6 
Conditional Halt Switch, 4-11 
Console, 10-3 · 
Control, Interrupt, 4-7 
Control, Memory, 4-7 
Controller, Memory and I/O Processor, 5-18 
Control, Program, 4-8 
Control, Stack, 4-7 
Controller, String Operator, 5-12 
Controller, Transfer 
Control Panels, 4-1 
Control State, 1-4 
Control State/Normal State, 5-12 
Control Word Checker, 12-11 
Control Word Not Available, 12-8 
Copy Bit, 3-2 
Count Binary Ones, 8-13 
C Register, 4-1 
Data Addressing, 3-1 
Data Communications Adapters, 1-12 
Data Communications Interface, 5-16 
Data Communications Interrupt, 5-10 
Data Communications Processor, 1-12, 11-1 
Data Communications System, 11-1 
Data-Dependent Presence Bit, 5-7 
Data Descriptor, 3-2 
Data Representation, 2-1 
Data Switching Channels, 1-9 
Data Types and Physical Layout, 2-4 
Decimal to Coded Number Conversion, 2-2 
Decimal and Hexadecimal Table Conversion, 2-2 
Degraded Mode Operation, 12-3 
Delete Top of Stack, 7-6 
Delta Generator and Comparator, 12-13 
Description of Units, 1-1 

one 



INDEX (cont) 

Descriptor Formats, 10-2 
Detect Mode (MDP), 5-17 
Diagnose Mode (MDP), 5-17 
Disable External Interrupts, 8-1 
Disk Address Error, 12-8 
Disk Address Unit, 12-12 
Disk File Optimizer, 1-3, 12-1 
Disk File Memory Systems, 10-11 
Disk Interface, 12-9 
Disk Load Operation, 4-18 
Disk Pack Subsystem 
Display Mode (MDP), 5-17 
Display Select Switches, 4-10 
Divide, 7-2 
Divide by Zero Interrupt, 5-6 
Drivers and Receivers, 12-11 , 12-12 
Duplicate Top of Stack, 7-6 
Dynamic Branch False, 7-5 
Dynamic Branch True, 7-5 
Dynamic Branch Unconditional, 7-5 
Dynamic Interaction with B 6700, 12-6 
EBCDIC Card Read, 5-1 7 
Edit Mode Operation, 9-1 
Edit Mode Operators, 9-1 
Enable External Inetrrupts, 8-1 
End Edit, 9-3 
End Float, 9-2 
Enter Operator, 7-17 
Equal, 7-4 
Escape to 16-bit instruction, 8-1 
EU Conflict Resolution, 12-3, 12-13 
Evaluate, 7-20 
Exchange, 7-6 
Execute Single Micro Destructive, 7-14 
Execute Single Micro Single Pointer Update, 7-14 
Execute Single Micro Update, 7-14 
Executing I/O Descriptors, 4-17 
Exit Operator, 7-15 
Exponent Overflow and Underflow Interrupt, 5-6 
EXT-I Switch, 4-11 
External Interrupts, 5-8 
Family A, 4-5 
Family B, 4-5 . 
Family C, 4-5 
Family D, 4-6 
Family E, 4-6 
Features, 1-5 
FF Reset Switch, 4-10 
Field Insert, 7-10 
Field Insert Dynamic, 7-10 

Field Isolate, 7-10 
Field Isolate Dynamic, 7-10 
Field Transfer, 7-9 
Field Transfer Dynamic, 7-10 
First Stack Scan Cycle Incomplete, 12-7 
Functional Performance Characteristics, 12-1 
Function Word, 10-2 
General Control Adapter Interrupt, 5-10 
Greater Than, 7-4 
Greater Than or Equal, 7-4 
Halt Load and Loan Select Switches, 4-10 
Halt Switch, 4-18 
Hexadecimal and Octal Notation, 2-1 
Hexadecimal to Decimal Table Conversion, 2-2 
Idle Until Interrupt, 8-1 
Index, 7-7 
Index and Load Name, 7-7 
Index and Load Operators, 7-7 
Index and Load Value, 7-7 
Index Bit, 3-2 
Index, Invalid, 3-2 
Index, Valid, 3-2 
Indicators BO, Bl, B2, 4-10 
Indirect Reference Word, 6-6 
Information Flow (Card Reader to Main Memory), 

5-17 
Initiate I/O, 8-9 
Input Convert Destructive, 7-14 
Input Convert Operators, 7-14 
Input Convert Update, 7-15 
Input/Output Processor, 1-9, 4-9, 5-14 
Input/Output Processor Configurator, 1-9 
Input/Output Processor Interrupts, 5-9 
Input/Output Processor Register Clear, 4-9 
Input/Output Processor Register and Flip Flops, 

4-13 
Input/Output Processor Maintenance Control 

Panel, 4-14 
Insert Conditional, 9-2 
Insert Display Sign, 9-2 
Insert Mark Stack Operator, 7-22 
Insert Overpunch, 9-3 
Insert Unconditional, 9-2 
Integer Divide, 7-2 
Integerized Rounded, D.P., 8-11 
Integerize Rounded, 7-3 
Integerize Truncated, 7-3 
Integer Overflow Interrupt, 5-6 
Integrated Circuit (IC) Memory, 5-20 
INT-I Switch, 4-11 

two 



Interface Requirements, 12-3 
Internal Character Codes, 2-1 
Internal Data Transfer Section, 5-2 
Interrogate 1/0 Path, 8-7 
Interrogate Peripheral Status, 8-5 
Interrogate Peripheral Unit Type, 8-6 
Interrupt Control, 4-7 
Interrupt Controller, 5-3 
Interrupt Handling, 1-5, 5-12 
Interrupt Network, 5-15 
Interrupt Other Processor, 8-10 
Interrupt System, 1-5 
Interrupts, Alarm, 5-10 
Interrupts, External, 1-8, 5-8 
Interrupts, Operator Dependent, 1-8, 5-5 
Interrupts, Operator Independent, 1-8 
Interval Timer Interrupt, 5-9 
Invalid Address Interrupt, 5-12 
Invalid Index Interrupt, 5-6 
Invalid Operand Interrupt, 5-6 
Invalid Operator, 7-6 
Invalid Program Word Interrupt, 5-12 
I/O Control Word, 10-2 
I/O Descriptor, Execute Recycle, 4-17 
1/0 Descriptor, Execute Single Cycle, 4-17 
1/0 Finish and Data Comm Interrupts, 5-10 
1/0 Operations, Processor Initiated, 1-9 
I/O Processor Parity, 5-11 
Job-Splitting, 3-9 
Keyboard Control Keys, 4-19 
Leading One Test, 8-11 
Less Than, 7 -4 
Less Than or Equal, 7-4 
Level Definition, 3-9 
Line Adapter, 11-4 
Line Printer, 10-6 
Linked List Lookup, 8-13 
Lit Call Zero, 7-7 
Lit Call One, 7-7 
Lit Call 8 Bits, 7-7 
Lit Call 16 Bits, 7-7 
Lit Call 48 Bits, 7-7 
Literal Call Operators, 7-7 
Load, 7-8 
Load Select Switch, 4-18 
Load Switch, 4-18 
Load Transparent, 8-13 
Local/Remote Switch, 4-11 
Logical And, 7-4 
Logical Equal, 7-4 

INDEX (cont) 

Logical Equivalence, 7-4 
Logical Negate, 7-4 
Logical Operands, 2-6 
Logical Operators, 7-4 
Logical Or, 7-4 
Logic Card Testing, 4-17 
Loop Interrupt, 5-11 
Magnetic Tape Subsystem, 10-6 
Main Memory, 1-8, 5-20 
Maintenance Controls General, 4-8 
Maintenance Diagnostic Processor, 5-17 
Make PCW, 7-7 
Mantissa Field, 2-6 
Mark Stack Control Word, 6-5 
Mark Stack Control Word Linkage, 3-6 
Mark Stack Operator, 7-21 
Mask and Steering, 5-3 
Mask and Steering Example, 5-3 
Masked Search for Equal, 8-13 
Master Control Program, 1-4 
MDL Control Switches, 4-10 
MDL Register Clear, 4-10 
MDTR/Normal Switch, 4-10 
Memory Addressing, 5-22 
Memory and Input/Output Processor Con-

troller, 5-18 
Memory Area Allocation, 3-6 
Memory Bus, 5-20 
Memory Cabinet Configuration, 5-21 
Memory Control, 4-7 
Memory Cycle Times, 1-9 
Memory Exchange, 5-15 
Memory Interface, 4-4, 5-43 
Memory Interlacing, 5-22 
Memory Organization, 5-20 
Memory Parity Interrupt, 5-11 
Memory Priority, 5-21 
Memory Protect Interrupt, 5-5 
Memory Protection, 5-21 
Memory Registers, 5-22 
Memory Second Level, 1-9 
Memory Stack Controller, 5-23 
Memory Tester, 4-20 
Memory Tester Non-Test Operation, 4-20 
Memory Tester Test Operation, 4-21 
Memory Testing, 5-23 
Memory Words, 1-8 
Move Characters, 9-1 
Move Numeric Unconditional, 9-1 
Move To Stack, 8-11 

three 



INDEX (cont) 

Move With Float, 9-1 
Move With Insert, 9-1 
Maintenance Control Panel, I/O Processor, 4-14 
Operation, 10-1 
Multiple Stacks and Re-Entrant Code, 3-9 
Multiple Variables (Common Address Couples), 3-8 
Multiply, 7-2 
Multiply (Extended) 7-2 
Name Call, 6-1, 7-15 
No Access to OEX, 12-7 
No Operation, 7-6 
Normal/Control State Switches, 4-11 
Normal State, 1-5 
Not Equal, 7-5 
Number Bases, 2-1 
Number Conversion, 2-2 
Occurs Index, 8-10 
Octal Notation, 2-1 
Operands, 2-5 
Operation Types, 6-1 
Operators Control Console, 4-18 
Operator Dependent Interrupts, 5-5 
Operator Families, 5-1 
Operator Independent Interrupts, 5-8 
Operator Panel, 4-18 
Operators, 2-6, 6-2, 8-1 
Optimized Control Word Request, 12-7 
Optimizer Control Word, 12-4 
Optimizer Control Word Checker, 12-11 
Optimizer Disk Address Unit, 12-12 
Optimizer Disk File, 1-3 
Optimizer Drivers & Receivers, 12-11 
Optimizer Dump, 12-3 
Optimizer EU Conflict Resolution, 12-3, 12-13 
Optimizer Functional Units, 12-11 
Optimizer Interface, 12-3 
Optimizer I/O Interface Unit, 12-11 
Optimzer Scan Address Line, 12-5 
Optimizer Scan Bus Controls, 12-11 
Optimizer Scan Bus Data Format, 12-5 
Optimizer Scan-In, 12-5 
Optimizer Scan Information, 12-6 
Optimizer Scan-Out, 12-4 
Optimizer Stack, 12-13 
Optimizer Stack, Empty, 12-8 
Optimizer Stack, Full, 12-9 
Optimizer Stack Parity Error, 12-8 
Optimizer Status Controls, 12-11 
Optimizer Address Register, 12-13 
Optimizing Unit, 12-13 

Options and Requirements for System, 1-2 
Order of Magnitude, 2-4 
Overflow FF, Read and Clear, 7-15 
Overwrite Destructive, 7-6 
Overwrite Non-Destructive, 7-6 
Pack Destructive, 7-14 
Pack Operators, 7-14 
Pack Update, 7-14 
Panel A. 4-1 
Panel B, 4-1 
Paper Tape, 10-14 
Parity, I/O Processor, 5-11 
Parity Switch, 4-11 
Peripheral Controls, 1-12 
Peripheral Control Bus, 1-9 
Peripheral Control Cabinet, 1-3 
Peripheral Control Interface, 5-16 
Peripheral Controls, 1-9, 1-12 
Peripheral Units, 10-5 
Polish Notation, 3-3 
Polish String, 3-4 
Polish String, Rules for evaluating, 3-4 
Polish String, Rules for generating, 3-3 
Power Controls, 4-8 
Power Off Switch, 4-18 
Power On Switch, 4-18 
Power, System, 1-3 
P Register, 4-1, 6-1 
Presence Bit, 3-2, 5-7 
Presence Bit Interrupt, 3-10, 5-7 
Primary Mode Operators, 7-1 
Priority Handling, 5-10 
Priority Handling with IIHF Off/On, 5-10 
Procedure-Dependent Presence Bit, 5-7 
Processor, 1-4, 5-1 
Processor Features, 1-5 
Processor Initiated I/O Operations, 1-9 
Processor Maintenance Controls (Panel E), 4-10 
Processor Register Clear, 4-9 
Processor States, 1-4 
Processor System Concept, 5-1 
Processor to Processor Interrupt, 5-9 
Program Control, 4-8 
Program Controller, 5-1 
Program Control Word, 6-6 
Programed Operator, 5-8 
Program Operators, 6-1 
Program Restart, 5-7 
Program Structure in Memory, 3-5 
Pulse Train Switch, 4-10 

four 



INDEX (cont) 

Push Down Stack Registers, 7-6 
Queuing Control Words, 12-2 
Read and Clear Overflow FF, 7-15 
Read GCA, 8-2 
Read IC Operation, 4-12 
Read IC Switch, 4-12 
Read Interrupt Literal, 8-5 
Read Interrupt Mask, 8-4 
Read Interrupt Register, 8-4 
Read Main Memory, 4-16 
Read Only Bit, 3-2 
Read Processor Identification, 8-10 
Read Processor Register, 8-12 
Read Processor Register Switches, 4-12 
Read Result Descriptor, 8-3 
Read SPM, 4-16 
Read Tag Field, 8-12 
Read Time of Day Clock, 8-2 
Read True False FF, 7-15 
Read with Lock, 8-13 
Real-Time Adapter, 1-13 
Receivers, 12-11 
Recycle Execution I/O Descriptor, 4-17 
Re-Entrance, 3-9 
Register, A, 4-1 
Register, B, 4-1 
Register, C, 4-1 
Register, P, 4-1 
Register, X, 4-1 
Register, Y, 4-1 
Relational Operators, 7-4 
Relative-Addressing, 3-7 
Remainder Divide, 7-2 
Reset Float, 9-2 
Result Descriptor, 10-3 
Return Control Word, 6-6 
Return Operator, 7-17 
Rotate Stack Down, 8-12 
Rotate Stack Up, 8-12 
Rules for Generating Polish String, Simplified, 3-3 
Running Indicator, 4-18 
Scale Left, 7-8 
Scale Left Dynamic, 7-8 
Scale Operators, 7-8 
Scale Right Dynamic Final, 7-9 
Scale Right Dynamic Save, 7-8 
Scale Right Dynamic Truncate, 7-8 
Scale Right Final, 7-8 
Scale Right Round Dynamic, 7-9 
Scale Right Rounded, 7-9 

Scale Right Truncate, 7-8 
Scan Bus, 5-14, 5-20 
Scan Bus Control, 5-9, 12-11 
Scan Bus Data Format, 12-5 
Scan Bus Parity Error, 12-8 
Scan In, 8-2, 12-5 
Scan Operators, 8-1 
Scan Out, 8-8, 12-4 
Scan While Equal, Destructive, 8-15 
Scan While Equal, Update, 8-15 
Scan While False, Destructive, 8-16 
Scan While False, Update, 8-16 
Scan While Greater, Destructive, 8-15 
Scan While Greater, Update, 8-15 
Scan While Greater or Equal, Destructive, 8-15 
Scan While Greater or Equal, Update, 8-15 
Scan While Less, Destructive, 8-15 
Scan While Less or Equal, Destructive, 8-15 
Scan While Less or Equal, Update, 8-15 
Scan While Less, Update, 8-16 
Scan While Not Equal, Destructive, 8-16 
Scan While Not Equal, Update, 8-16 
Scan While True, Destructive, 8-16 
Scan While True, Update, 8-16 
Scratchpad Memory, 5-14 
SECL Switch, 4-11 
Second Level Memory, 1-9 
Segmented Array, 5-7 
Segment Descriptor, 6-5 
Set Double to Two Singles, 8-1 
Set External Sign, 7-15 
Set GCA, 8-9 
Set Interval Timer, 8-1 
Set Processor Register, 8-13 
Set Tag Field, 8-12 
Set Time of Day Clock, 8-8 
Set to Double-Precision, 7-3 
Set to Single-Precision Rounded, 7 -3 
Set to Single-Precision Truncated, 7-3 
Set Two Singles to Double, 8-1 
Signal Handling, 12-9, 12-10 
Single Cycle Execution I/O Descriptor, 4-17 
Single Pulse Switch, 4-10 
Skip Forward Destination Characters, 9-2 
Skip Forward Source Characters, 9-2 
Skip Reverse Destination Characters, 9-2 
Skip Reverse Source Characters, 9-2 
Stack, 3-1 
Stack, Base and Limit, 3-1 
Stack, Bi-Directional Data Flow, 3-1 

five 



INDEX (cont) 

Stack Controller, 5-23 
Stack Controls, 12-13 
Stack Deletion, 3-7 
Stack Descriptor, 3-9 
Stack, Double-Precision Operation, 3-1 
Stack Erasure and Compression, 12-3 
Stack-History and Addressing- Environment 

Lists, 3-6 
Stack History, Summary, 3-9 
Stack Operation, 12-3 
Stack Operators, 7-6 
Stack Overflow Interrupt, 5-9 
Stack Registers, 5-2 
Stack, Simple Operation, 3-4 
Stack Underflow Interrupt, 5-12 
Stack Vector Descriptor, 3-10 
Start Switch, 4-11 
States, Processor, 1-4 
Status Controls, 12-11 
Step and Branch, 7-5 
Step Index Word, 6-8 
Stop Switches, 4-11 
Store Control Word Request, 12-7 
Store Destructive, 7-6 
Store, Non-Destructive, 7-6 
Store Operators, 7-6 
String Descriptor, 6-4 
String Operator Controller, 5-12 
String Transfer Operators, 7-10 
Stuff Environment, 7-22 
Stuffed Indirect Reference Word, 6-7 
Subroutine Operators, 7-15 
Subtract, 7-1 
SU Not Available, 12-7 
Syllable Addressing, 6-1 
Syllable Format, 6-1 
Syllable Identification, 6-1 
System Clock, 5-16 
System Clock Control and MDL Processor, 5-16 
System Concept, 5-1 
System Description, 1-1 
System Expansion, 1-9 
System Options and Requirements, 1-2 
System Organization, 1-4 
System Power, 1-3 
Table Enter Edit Destructive, 7-13 
Table Enter Edit Update, 7-14 
Tag Register, 5-15 
Time of Day Register, 5-15 
Timing Controls, 12-14 

Top-Of-Stack Control Word Request, 12-7 
Top-Of-Stack Register, 12-13 
Transfer Controller, 5-2 
Transfer Operators, 7-9 
Transfer Unconditional, Destructive, 7-12 
Transfer Unconditional, Update, 7-12 
Trasnfer While Equal, Destructive, 7-11 
Transfer While Equal, Update, 7-12 
Transfer While False, Destructive, 8-14 
Transfer While False, Update, 8-14 
Transfer While Greater, Destructive, 7-11 
Transfer While Greater or Equal, Destructive, 7-11 
Transfer While Greater or Equal, Update, 7-11 
Transfer While Greater Update, 7-11 
Transfer While Less, Destructive, 7-12 
Transfer While Less, Update, 7-12 
Transfer While Less or Equal, Destructive, 7-12 
Transfer While Less or Equal, Update, 7-12 
Transfer While Not Equal, Destructive, 7-12 
Transfer While Not Equal, Update, 7-12 
Transfer While True, Destructive, 8-14 
Transfer While True, Update, 8-14 
Transfer Words Destructive, 7-10 
Transfer Words, Overwrite Destructive, 7-11 
Transfer Worqs, Overwrite Update, 7-11 
Transfer Words, Update, 7-11 
Translate, 8-15 -
T Register, 6-1 
True False FF, Read, 7-15 
Type Transfer Operators, 7-3 
Unit Clear Switch, 4-11 
Universal Operators, 7-6 
Unpack Absolute Destructive, 8-14 
Unpack Absolute Update, 8-14 
Unpack Signed Destructive, 8-14 
Unpack Signed Update, 8-14 
Valid Index, 3-2 
Value Call, 6-1, 7-15 
Variant Mode Operation and Operators, 8-1 
Visual Message Control Center, 4-19 
Word Data Descriptor, 6-3 
Write IC Operation, 4-12 
Write IC Switch, 4-12 
Write Main Memory, 4-16 
Write SPM, 4-1<5 
X Register, 4-1 
Y Register, 4-1 

six 



Burroughs Corporation Remarks Form 
Title: B 6700 Information Processing Systems 

Reference Manual Form: 1058633 

Date: 

CHECK TYPE OF SUGGESTION 

D Addition D Deletion D Revision D Error 

GENERAL COMMENTS AND/OR SUGGESTIONS FOR 
llVIPROVEMENT OF PUBLICATION 

From: Name Date ------------
Title 

~----------~ 

Company -----------
Address -----------



I 
I 
12 
1--f 
~ 

I~ 
I en 

I~ 
Ir 
12 (, 
I 
I ) 
I 
I 

FOLD, STAPLE, AND MAIL I 
. r l 

.... .-.-..----------------------------------~------------; 

BUSINESS REPLY MAIL 

First Class Permit No. 381; City of Industry, Ca. 917 44 

Burroughs Corporation 
P.O. Box 1223 
City of Industry, Calif. 917 44 

attn: Publications Department 
Technical Information Center 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I • 

-~~-----~~-~---~~~~~~---~~-~---~~---~------~~--, 

FOLD, STAPLE, AND MAIL I 
I 
I -
I 
I 
I 
I 
I 



1058633 

Wherever There's 
Business There's 

5-72 Printed in U. S. America 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	E-1
	E-2
	F-1
	F-2
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB
	x_back

