UNISYS e-@ction
APPLICATION DEVELOPMENT
SOLUTIONS

ALGOL

Programming Reference Manual

Volume 1
Basic Implementation

ClearPath MICP 7.0

Printed in USA
November 2001 8600 0098-505

UNISYS e-@ction
APPLICATION DEVELOPMENT
SOLUTIONS

ALGOL

Programming Reference Manual

Volume 1
Basic Implementation

UNISYS

© 2001 Unisys Corporation.
All rights reserved.

ClearPath MICP 7.0

Printed in USA
November 2001 8600 0098-505

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys and e-@ction are registered trademarks of Unisys Corporation in the United States and other countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

Unisys e-@ction
Application Development
Solutions

ALGOL

Programming Reference
Manual

Volume 1
Basic Implementation

ClearPath MICP 7.0

8600 0098-505

Unisys e-@ction
Application
Development
Solutions

ALGOL

Programming
Reference
Manual

Volume 1
Basic
Implementation

ClearPath
MCP 7.0

8600 0098-505

Bend here, peel upwards and apply to spine.

Contents

Section 1.

Section 2.

Section 3.

8600 0098-505

Program Structure

About This Manual ..o, 1-1
PUIPOSE ..o 1-1
AUAIENCE ..o 1-1
Notation CONVENTIONSc.vvviiiiiiiiiciiiiee e 1-1
Overview of the Languageccoeeiiiiiiiiiiieeecee e 1-2
Program UNIT ... 1-2
Elements of an ALGOL Program..........coovviiiiiiiiiieiiieceeiee e 1-3
Scope of an ldentifier ... 1-5
Local l[dentifiers ... 1-6
Global Identifierscoovviiiiiiic e, 1-6

Language Components

Basic SYMDOL......oiiiiiiiii e 2-2

LAENTITIBT <. 2-5

N UM DT e 2-6

NUMDBEr RANGES ... 2-8

Compiler Number Conversioncccccovvvveeeiiiieeiiiieeeen, 2-9

EXPONENTS ..o 2-9

Remark ... 2-10

SHING LITEIAl e 2-12

Character SiZeccoiviiiiiiiii e 2-15

SHNG COE oot 2-15

SHNG LeNGth oo 2-16

ASCH STINGS v 2-16

QUOLAtION MATK c..ieiiiiiccc e, 2-16

DOlAr SIGN .o 2-16
Declarations

ALPHA DeClarationooioiiiiiiiiieeee e 3-2

ARRAY Declaration.........oooiiiiiiiiiie e 3-3

PRIVATE and PUBLIC Specifierscccoovvvviviiiiiiiiiieee, 3-3

LONG AITAYS ..ottt 3-3

OWVN ATTAYS ..ot 3-4

[AENTITIES ..o 3-4

Array Classooooiieeee e 3-5

Bound Pair LisSt.....oo i 3-6

Original and Referred Arrays........cccocevveeiiiieeeciiieee, 3-7

Contents

Dimensionalitycccooiiiiiiii 3-7
Array Row Equivalence.........cocoooiiiiiiii 3-8
Array ROW ..o 3-9
ROW SEIECTOT .uviiiiiiiiicci e, 3-10
Examples of ARRAY Declarationscccceeeviiieeiiiiieenn, 3-10
ARRAY REFERENCE Declaration..........cccccvviiiiiiiiiiiiiiieciee e, 3-12
[AENTITIBIS ..o 3-12
Lower Boundsoooiiiiiiiii 3-13
Examples of ARRAY REFERENCE Declarations 3-13
BOOLEAN DecClarationccoiviieiiiiiie e, 3-14
Equation Part ... 3-14
Boolean Simple Variable Valuescccccooiiiiiiiinn. 3-15
Examples of BOOLEAN Declarations...........cccccveeeviiieenne, 3-15
COMPLEX DECIAratioNcovviieiiiiiie e 3-16
Complex Variables ... 3-16
Examples of COMPLEX Declarations...........cccccceeevvieeenne, 3-17
CONNECTION BLOCK REFERENCE VARIABLE Declaration............. 3-18
CONNECTION BLOCK TYPE Declarationcccccccevvuvvieiiiiieeiiiiieeenn 3-19
Examples of CONNECTION BLOCK TYPE
DecClaration ..o 3-21
CONNECTION LIBRARY Declaration........ccccccccvviiieiiiiiieiiiiiee e 3-24
EXPIanation ... 3-25
DEFINE Declaration ... 3-26
Formal Symbol Partccccooiiiiiiiicee e, 3-27
Define INVOCaTIONuuiiiiiiiiiiii e 3-27
Examples of DEFINE Declarationsccccooeeiviinnen. 3-32
DIRECT ARRAY DecClaration..........ccooviiiiiiiiieiiiiiceecee e 3-33
Declaring DireCt Arrayscooooiiiiiiiiiieaeeeieeee e 3-34
Examples of DIRECT ARRAY Declarations 3-35
DOUBLE DECIarationcouvvieiiiiiie it 3-36
Declaration of Simple Variablesccocccoeeviiiiiiiiiie, 3-36
Examples of DOUBLE Declarationsccccccceiviieiiieennn. 3-36
DUMP Declarationoooiiiiiiiiieee e 3-37
CoNtrol Part.. ... 3-38
Label [dentifier ..o, 3-38
Label Identifier with Label Counter Modulus............ 3-39
Label Identifier with Dump Parameters.................... 3-39
Label Identifiers with Label Counter Modulus
and Dump Parameters........cccccoooviiiiiiiieii, 3-39
Form of OULPULooiiiiiiiiicc e, 3-40
Examples of DUMP Declarationscccccceovviiieiiiieeennn, 3-41
EPILOG PROCEDURE Declarationcccceevivieeeiiiiiieeiiiiee e, 3-42
Restrictions on Epilog Procedures...........cccccciiiiiii. 3-42
Example of an Epilog Procedure...........ccocveevviiiiiiiiiiccn, 3-44
EVENT and EVENT ARRAY Declarationscccccoovviieeiiiiiieeeiiieeee, 3-45
Event Designator ... 3-46
Examples of EVENT and EVENT ARRAY
DecClarationS......cooiiiiiiiiii e 3-47
EXCEPTION PROCEDURE Declarationccccccoovvviieiiiiiieeciiieee, 3-48
Restrictions on Exception Procedurescccccoooiiiiee. 3-49
Example of an EXCEPTION PROCEDURE
Declaration ..o 3-50

v 8600 0098-505

Contents

8600 0098-505

EXPORT DeClaration........ccccoiuiieeeiiiiiieeeie e, 3-51
Library Entry Point Types and Parameters............c............ 3-53
Conditions in Which Errors Can OCCUrcccovvvveeviiiennne, 3-b4
Examples of EXPORT Declarationsc.cccovveeeiiiiieeenne, 3-55

EXPORTLIBRARY Declaration..........ccoviuiieeiiiiiieeiiiieeeeeiiee e 3-56

FILE DeClaration ..ot 3-57
[AENTITIENS ..o 3-57
Attribute SpecificationS.......c..coiviiiiiiiiiiicecee e 3-57
Examples of FILE Declarationsccccocvveeeviiieeiiiieeeen, 3-59

FORMAT DECIarationcccuuviiiiuiiiiiiiiii e, 3-60
IN-OUL Part.......oiiiiiiiiiiic e 3-60
Format Part ... 3-60

Simple String Literalccccooviiiiiiiiiic e 3-62
Repeat Part. ..o 3-63
Editing Phrasesoooiiiiiiiie 3-64
Variable Editing Phrases.........ccccccoiiiiiiii 3-65
Editing Phrase Letters........coooviiiiii, 3-66

A and C Editing Phrase Lettersccccccoone.. 3-66

D Editing Phrase Letterccccccccoiiiiiiiiiin, 3-68

E Editing Phrase Letter.......ccccccciiiiiiiiiin, 3-70

F Editing Phrase Letter........cccoccciiiiiiiiiin, 3-71

G Editing Phrase Letterccoocveivviiiiiiiic, 3-71

H and K Editing Phrase Letterscccccvvvve. 3-72

| Editing Phrase Letter..........ccccoiiiiiiinne, 3-75

J Editing Phrase Letterccccoiiiii, 3-76

L Editing Phrase Letter.......ccccccciiiiiiiiiiin, 3-77

O Editing Phrase Lettercccccovviiiiiiiiieenne, 3-78

R Editing Phrase Letter........ccccccccciiiiiii. 3-79

S Editing Phrase Letter........ccooocoeeiviiiiiiinicene, 3-80

T Editing Phrase Letter.........ccccooiiiiiiiiie, 3-82

U Editing Phrase Lettercccccccoiiiiiiiin, 3-82

V Editing Phrase Letter..........ccccooiviiiiinne, 3-83

X Editing Phrase Letter..........cccooiviiiiinne, 3-84

Z Editing Phrase Letter.........cccccoiviiiinnne, 3-85

Editing Modifierseviiiiiii 3-86
P Editing Modifier..........ccccoiiiiiii 3-86

$ Editing Modifier..........oocooiiiiiiie e 3-86
Examples of FORMAT Declarationsccccooceiiiinieeennne. 3-86

FORWARD REFERENCE Declarationcccooevveeeiiiiieiiiieeeeiieee 3-87
Order of ReferenCingcocveeviiiiiiiiiiecceeeeeee e, 3-88
Examples of FORWARD REFERENCE Declarations 3-89

IMPORTED DeClarationccuuiiiiiiiiiiiiieeeie e 3-90
Examples of IMPORTED Declarationcccccceeeuvvneee... 3-91

INTEGER DeCIarationcovviiiiiiiiiieiiiiiiee e 3-92
Equation Part.........cooooiiiiiiii 3-92
Examples of INTEGER Declarationscccccoeevviiiieennn. 3-93

INTERLOCK and INTERLOCK ARRAY Declarationsccccveeeennnn. 3-94
Interlock Designator........ooi i 3-95

INTERRUPT Declarationc.uuveiiiiiiiiiiiiiie et 3-96
Interrupting a Program ... 3-96
Examples of INTERRUPT Declarations..........ccccccooevvvennne. 3-97

LABEL DECIarationccoiueiiiiiiiiiiiiiic e 3-98

v

Contents

Using Label ldentifiers..........ccoooooiiii 3-98
Examples of LABEL Declarations.........ccccceeeeviiiieiiiiieeennn, 3-98
LIBRARY Declarationccccoooii 3-99
Library Attribute Specifications...........ccocvveeiiiiiiieiiiieen, 3-100
Examples of LIBRARY Declarationscccccccceeeiiiiiiennn. 3-103
LIST DeClarationccoceeiiee e, 3-104
List Elements ... 3-104
Examples of LIST DeclarationS.........cccccoovvveeiiiiiieiiiieen, 3-105
MONITOR DeCIarationcueeeiiiiiiiiiiiiiie e 3-106
Monitor Elements...........coco 3-106
Monitor Element as a Simple Variable.................... 3-107
Monitor Element as a Label Identifier..................... 3-108
Monitor Element as an Array Identifier.................. 3-108
Examples of MONITOR Declarations...............ccccevvvee... 3-109
OUTPUTMESSAGE ARRAY Declaration.........ccoocvveivviireieiiieeeenes 3-110
OULPUL MESSAQEii i 3-111
Translators' Help TexXt ..o 3-113

Examples of OUTPUTMESSAGE ARRAY
DeclarationsS......ooooiiiiiiiii e 3-113
PENDING PROCEDURE Declarationccccoovveeiiiiiiiiiiiiieceiiien 3-115
PENDING PROCEDURE ACTUAL Declarationcccccccovveeeiiininnnn, 3-116
PICTURE Declarationcccooiiiiiiiiieeeeeeeeeeeee e, 3-117
SING LItEralS ... 3-118
INTrOAUCTION ...ttt 3-118
INtroduction COAES ...ooovivviiiiiiiiiecieeee e, 3-119
Characters Used by Picture Symbolscc.cccoovviiinnnnn. 3-120
Flip-Flops Used by Picture Symbolsc.ccccoovveiiiinen, 3-120
Character FIeldscooviiiiiiiicccie e 3-121
Picture SKip CharaCterscoovveiiiiiiiiiiiieeciee e 3-121
Control CharaCters.........ccovvviiiiiiiiicc e 3-122
Single Picture Charactersccoccvveivviiiiiiiiiiiiee 3-122
Picture Characterscovvviiiiiiiiiiiiee e 3-123
Examples of PICTURE Declarationscccocooeeeuvnne.... 3-125
POINTER Declarationccooeiiuiiieeeeee oo, 3-128
OWN POINTEIS. ..o, 3-128
Lex Level Restriction Part.........ccocccoiiiiiiii 3-129
Examples of POINTER Declarations............cccoecoeeuunnee... 3-130
PROCEDURE DECIArationcc..ceeiiiuiieeiiiiiiieeiiiiee e 3-132
[AENTIFIEIS ..t 3-133
Formal Parameter Part...........cccoooiiiiiii 3-133
SPECITICATION oot 3-135
Procedure Reference Array Specification............... 3-137
Structure Block Array Specificationc....ooue... 3-138
Procedure Body ... 3-138
Dynamic Procedure Specificationcccc.ccovee.n. 3-138
Library Entry Point Specificationcccccccovveenn 3-139
ISOLATED Procedure Specification........................ 3-139
Allowed Formal and Actual Parametersccccccoe... 3-141
Parameter Matchingcccooooiii 3-141
Array Parameters ..o 3-141
Procedure Reference Array Parameters 3-143
Procedure Parameterscccoociiiiiiiiii 3-144

Vi 8600 0098-505

Contents

8600 0098-505

Simple Variable Parameterscccccoovviiiiiiinnnn.. 3-145
String Parameters........oovvvviiiiiiiie 3-146
File PArameters ... 3-146
Other Types of Parameters..........c.cocevvivviieiiinnnnn. 3-147
Examples of PROCEDURE Declarationscccc......... 3-148
PROCEDURE REFERENCE Declaration...........cccoeeeeeviiiieieeeeeeee 3-150
[AENTITIEIS Lottt 3-150
Example of a PROCEDURE REFERENCE

DeClaration......cooooieieie e 3-150
PROCEDURE REFERENCE ARRAY Declaration............c.cccoeeeeennn... 3-151
Placement of Procedure Reference Arrays 3-152

Example of a PROCEDURE REFERENCE ARRAY
DeClaration......cooooieieie e 3-153
PROLOG PROCEDURE Declaration........ccccvveeeeiieiiiiiiiceeeeeee 3-154
REAL Declaration ... 3-155
Declaration of Simple Variablesccccccoovviiiiiiiincn 3-155
Examples of REAL Declarationsccccccveeiiiiiiinenn. 3-156
SIMPLE VARIABLE Declarationccccoooiviiiiiieiiiiiiieeeeeeee 3-157
STRING DecClaration............ccoieiiiiieeeee e 3-158
STRING TYPE it 3-158
Examples of STRING Declarationscc.ccooeeeviiiinnene... 3-159
STRING ARRAY Declaration.......cc...ooveeiiiiiiiieeeeeeeee e 3-160
SHNG Array TYPE e 3-160
Examples of STRING ARRAY Declarations...................... 3-160
STRUCTURE BLOCK ARRAY Declaration...........cccceeeeviiiieeeeeeeeinn 3-161
STRUCTURE BLOCK REFERENCE VARIABLE Declaration.............. 3-163
STRUCTURE BLOCK TYPE Declarationcccccoeeeeviiiiiiieeeeeeeeee, 3-164
STRUCTURE BLOCK VARIABLE Declaration...........ccccccvveeiieneiinn... 3-167
SWITCH FILE Declarationcoooouuiieeeeiieeeeeeeeeee e, 3-168
SWItCh File LiSt. ..o 3-168
Example of a SWITCH FILE Declaration...........cccccveoeoe.... 3-169
SWITCH FORMAT Declarationocoeeeiiiiiieeeeeeeeeeeee e 3-170
Switch Format LiSt...ccuvvveeiieiiiiieeee e 3-170
Examples of SWITCH FORMAT Declarations 3-171
SWITCH LABEL Declaration........ccouuuveeeeiieiiiieeeeeee e, 3-172
Switch Label List. ... 3-172
Examples of SWITCH LABEL Declarations 3-173
SWITCH LIST Declarationcocouuiieeeeieeeiieeeeeeeeee e 3-174
List DeSigNator.....ccueeiiiiie i 3-174
Example of a SWITCH LIST Declaration...........ccovvvee.... 3-175
TASK and TASK ARRAY Declarationscccccoeeiiiiiieeiiiieiiiin 3-176
Task and Task Array Designatorcccccceieeiiiiineeenn. 3-176
Examples of TASK and TASK ARRAY Declarations......... 3-177
TRANSLATETABLE Declarationccouvveeiiiiiiiiii e 3-178
Translation SPeCIfier.........ccooviiiiiiiiiieiiee e 3-178
Translate Table Indexing ..o 3-179
Examples of TRANSLATETABLE Declarations................ 3-181
TRUTHSET Declarationccueeveiiiiieieieeeeee e 3-182
Membership EXpression ... 3-182
Truth Set Test .o 3-183
Examples of TRUTHSET Declarationscccccevvveee... 3-184
VALUE ARRAY Declarationcooooiiiiiiiiiii, 3-186
Vi

Contents

Section 4.

viii

CONSTANTSviiiiceiee e 3-186
Example of a VALUE ARRAY Declarationccc........ 3-187
Statements
ACCEPT StatemMent......coviiiiiiiiiii et 4-2
ACCEPT Parameters.........ccoovuiiiiiiiiii e 4-2
Examples of ACCEPT Statements.........cccccvvvviiiiiiiiiicnennn, 4-3
ASSIGNMENT Statementcvviiiiiiiiiicceec e 4-4
Arithmetic ASSIgNmMeNnt ... 4-5
Arithmetic Variable ... 4-5
Arithmetic Type Transfer Variable....................c........ 4-6
Arithmetic Attribute ... 4-7
Arithmetic Update Assignment..........cccccccoeiiiiinnn. 4-8
Examples of an Arithmetic Assignment 4-9
Array Reference Assignmentcccoviiiiiiiiiiiiiiiieeee 4-9
Array Reference Variable ... 4-10
Array Designatoroooiiiiiiiiiii e 4-10
Examples of Array Reference Assignments............. 4-11
Boolean ASSIGNMENToiiiiiiiiiiiee e 4-12
Boolean Variables..........cccoooiiiiii 4-12
Boolean Attributes ... 4-13
Boolean Update Assignmentccccooeiiiiiiiieiiiinnne, 4-14
Examples of Boolean Assignments.............cc.oceu. 4-14
Complex ASSIGNMENTcoiiiiiiiiiiiee e 4-15
Complex Update Assignment.........cocveeeiiiiieeiiineenn, 4-15
Examples of Complex Assignments.............cc..e..ee. 4-15
Connection Block Reference Assignment.........cc.ccoeveeen. 4-16
Mnemonic Attribute Assignmentcccccoiiiiiii. 4-16
Pointer AssigNmMeNntoiiiiiii 4-17
Pointer Variable ... 4-17
Examples of Pointer Assignments...............ccoeon 4-17
Procedure Reference Assignmentccccciiiiiiiiiiienn. 4-18
Procedure Reference Variablecccccoooo 4-18
Example of a Procedure Reference
ASSIGNMENT. ... 4-19
StHNG ASSIGNMENT ...vvviiiiiie e 4-20
String Concatenation Operatorccccccvvveeeiiiinennn 4-20
Examples of String Assignments..........ccccoeeevvieeennnn, 4-21
Structure Block Reference Assignmentcccceeevien. 4-21
Task ASSIGNMENT ...eiiiiiiiiii e 4-22
ATTACH STatemMENT ..oiiiiiiiiiicii e, 4-23
Attachment of Interrupts ..o, 4-23
Examples of ATTACH Statementscoccveeeviiiieeiiieeene, 4-23
AWAITOPEN Statementcoouviiiiiiiiiieciie e, 4-24
PARTICIPATE OptioN....coiiiiieiiiiie e, 4-25
CONNECTTIMELIMIT Option......ccccviiiieiiiiieeiiiieeeeeiee 4-25
Examples of AWAITOPEN Statements.............ccccevvveee... 4-25
CALL StatemMeNnt. . .cii i 4-26
COTOULINES vttt 4-26
Example of a CALL Statementcccooevieiiiiiieiiicce, 4-27

8600 0098-505

Contents

8600 0098-505

CANCEL Statement......ccoiiiiiiiiiiiice e 4-28

Delinking a Library from a Programcccoeeveeiiiiieeenn, 4-28

Example of a CANCEL Statementc..cccooevieeiiiieeeenn, 4-28

CASE STatemENT ...ooiiiiiiiiiiiie e 4-29

Unnumbered Statement Listccccoovviiiiiiiiiiieiiiceee 4-29

Numbered Statement Listcc.cooovviiiiiiiiiiiciiieeeece, 4-30

Examples of CASE Statementscccoovvviiviiiieiiiiieee, 4-30

CAUSE StatemeNt....c.vviiiiiiiic e 4-31

Causes Of EVENTSooviiiiiiiic e, 4-31

Examples of CAUSE Statements.........cccccooeeiiiiiiiinnn. 4-31

CAUSEANDRESET Statementcoovviiiiiiiiiiccciiee e 4-32

Relationship to CAUSE Statementccccooevvi. 4-32

Examples of CAUSEANDRESET Statements................... 4-32

CHANGEFILE Statement........coooimiiieicee e 4-33

Directory Element ..o 4-34

Example of a CHANGEFILE Statementcc.coceeveeennee. 4-35

CHECKPOINT Statementcciiiiiiiiiiiiiee e 4-36

Disposition OPtioNciviviiiiiiiiecciieeeee e, 4-36

Restarting a Job ... 4-37

LOCKING e 4-41

Rerunning Programs ..o 4-41

Example of a CHECKPOINT Statement............cccccvvvneee... 4-41

CLOSE Statement ...cvviiiiiiiicec e 4-42

CLOSE OPtioNS .viiiiiiiiiie et 4-43

PORT CLOSE Option ...oovvviiiiiiiiiecceeeeeee e, 4-44

Examples of CLOSE Statements.......ccccooeeeviiiiiciiineene. 4-45

CONTINUE Statementoooiiiiiieieee e 4-47

COTOULINES .., 4-47

Examples of CONTINUE Statementsccccooeeeevvnneee.n. 4-47

DEALLOCATE Statement......cc.vvviieiiieeeceeeeeeee e 4-48

Deallocation with Arrayscoccveeiiiiiiiiiee e 4-48

Examples of DEALLOCATE Statementsccceevveeennee. 4-48

DETACH Statementoooiiiiiie e 4-49

Detaching INterruptsooeeoiioiiiicee e 4-49

Example of a DETACH Statementccccoeeviiiieiiiiieee, 4-49

DISABLE Statement......coviiiiiiiiiiciiiec e 4-50

Disabling INterruptso 4-50

Examples of DISABLE Statements........ccccccoovvvieeiviiieeenne, 4-50

DISPLAY StatemMentcoiuviiiiiiiiie e 4-51

Pointer and String EXpressionsc..coovvvieeiiiiiee e, 4-51

Examples of DISPLAY Statements........cccccoevvvvieeiiiiieeenn, 4-51

DO StatemMeNnt ..o 4-52

Evaluation of Boolean Expression..........cccccccoiiiiiiiiinn. 4-52

Examples of DO Statementscoccveevviiiiiiiiiiieceieeee, 4-52

ENABLE Statementcooiviiiiiiiiiii e 4-53

Enabling INterrupts ... 4-53

Examples of ENABLE Statements........cccccoevviieeiiiieeeennn, 4-53

ERASE Statementuiiiiiiiiicciiiieee e 4-54

EVENT Statement ..ooooiieiiii e 4-55

EXCHANGE Statementooooviiiiiiiiieiie e, 4-56
Conditions for Execution of the EXCHANGE

STATEMENT .o 4-56

iX

Contents

Examples of EXCHANGE Statements...............ccoccovveee... 4-57

FILL STatemMent ..o 4-58

INITIAlIZATION L.ouiteii s 4-58

Examples of FILL Statementscc.cccoovviieiiiiiiiiiicc, 4-59

FIX Statement . .o 4-60

FIX Statement as a Boolean Functionccccoeeeviiiennne, 4-60

Examples of FIX Statements.........oocvveevviiiieiiiiicecec, 4-60

FOR Statementcoooeee e 4-61

Forms of the FOR Statementcccccoovviiiiiiiiiieicc, 4-62

FOR-DO LOOP vviiiiiiiiieiiiiieeeeee e, 4-62

FOR-STEP-UNTIL LOOP ... 4-63

FOR-STEP-WHILE LOOP....cciiiiiiiieeeeeeceeeeee, 4-64

FOR-WHILE LOOP ..vvveeiiiieeeeeeeeeeeeeee e, 4-65

Examples of FOR Statements........ccccccooviiiiiiiiiicccicc, 4-66

FREE Statement.. ... 4-67

FREE Statement as a Boolean Function................ccc......... 4-67

Examples of FREE Statementscccooeiiiiiiiiiiiiic, 4-67

FREEZE Statementooooiiiiii e 4-68

FREEZE Statements in Library Procedures....................... 4-68

Examples of FREEZE Statement..........cccccoevviiiiiiiiiicenn, 4-69

GO TO StateMEBNT ..o, 4-70

Bad GO TO ..o 4-70

Examples of GO TO Statements.........ccoocvvveieeieeiiiii 4-70

1/O StatemMENT. .o, 4-71

NOrMAL /O oo 4-71

DIreCt /O o 4-72

IF STateMENT L e 4-74

Forms of the IF Statementcooeiiiiiiiiiiii e, 4-74

Examples of IF Statementsccooovveiiiiiieiiiceec, 4-75

INTERRUPT Statement.....cc.uvviieiieeeeiieeeeee e 4-76

INVOCATION Statementovveiiieiiiieeeee e 4-77

LIBERATE Statement........cooiiiiiiiieeeee e 4-78

Execution of Implicit CAUSE Statementcccc....... 4-78

Examples of LIBERATE Statements.............cccoooevviininen... 4-78

LOCK File Statementcoooiiiieeeee e 4-79

LOCK OPLiONS...ceiiiieee e 4-79

Examples of LOCK File Statementsccccooeveiviinen.. 4-79

LOCK Interlock Statementovveiiiiiiii e 4-80

TIMEoUt OPLION ..ottt 4-81

Examples of LOCK Interlock Statements.............ccc.......... 4-81

MERGE Statement..........ooooiiiiiee e 4-82

Merge OPtioNS .. .ccciiuiiieiiiiiie et 4-82

Example of a MERGE Statementcccccoovviiiieiiieeen, 4-82

MESSAGESEARCHER Statement ... 4-83

Finding a Requested Messageccccoovvviiiiieiiiiiinenn. 4-84
MESSAGESEARCHER Statement as an Arithmetic

FUNCHION ... 4-84

Example of a MESSAGESEARCHER Statement............... 4-85

MLSACCEPRT Statementcooiiiieeeeeee e 4-86

MLSACCEPT Used for Data Input........ccoceeeiviiiieiiiicee, 4-86

MLSACCEPT Used as a Boolean Function........................ 4-86

Additional MLSACCEPT OptionSccovvviiiiiiiiiieeiiieee, 4-86

8600 0098-505

Contents

8600 0098-505

Example of an MLSACCEPT Statement..............cccccco...... 4-87
MLSDISPLAY Statementcocvviieiiiieeeeeeeee e 4-88
MLSTRANSLATE Statement..........cooooiiiiiiiiie e 4-89

MLSTRANSLATE OptionS.....cccvvviiiiiiiieeeeieeeceeeee e, 4-90

MLSTRANSLATE as an Arithmetic Function 4-91

Example of an MLSTRANSLATE Statement 4-92
MULTIPLE ATTRIBUTE ASSIGNMENT Statement.........ccccccoevveeeennn. 4-93

Assignment of Values ... 4-93

Examples of MULTIPLE ATTRIBUTE ASSIGNMENT

STATEMENTS .o 4-93
ON StatemMEBNT ..o 4-94

Enabling ON Statementscccooioiiviieeccccee 4-94

Fault List.....ooooi 4-95

Fault Information Partccccoeeiiiiiii 4-96

Fault Stack HiSTOMYooooiviiiiiiiiicccceeccee e, 4-97

Fault ACtION ..o 4-98

Disabling ON Statementccccoeeviiiieiiiiiieecieeeeeee 4-99

Examples of ON Statementscocceevviiiiiiiiiiiieciceee, 4-99
OPEN Statement. ... 4-101

OPEN OptionS....ccooiiiiieee e 4-101

Examples of OPEN Statements...........ccccceeevviiieiiiiiinc, 4-102
POINTER Statementcooiiiiiiie e 4-104

POINTER Statement OptionsScccccevviivvieiiiiieeciiiieeen 4-104

Temporary STOragecouvveeiiuiieeeiiieeeeciiee e 4-104

Stack-Source-Pointer........cccccovvviiiiiiiiiiic 4-105
Stack-Destination-Pointer.........cccccccoeviiiiiiiiiinnn. 4-105
Stack-Auxiliary-Pointer...........ccovviiiiiiiiiiiec 4-105
Stack-Integer-Countercccoovviiiiiiiiiiie e 4-106
Stack-Test-Character.......ccoccovvviiiiiiiiiiiiece 4-106
Stack-Source-Operandcccooviviiiiieiiiiii 4-106
PROCEDURE INVOCATION Statement.........ccccveeiviiiiieiiiiieeeeiiiee 4-107
Calling Procedures with Parameters.........ccccc..ccccoeeennn.. 4-108

Examples of PROCEDURE INVOCATION
STATBMENTS ..o 4-109
PROCEDURE REFERENCE Statement.........ccccceoviiiiiiiiiiiiiiiiieee 4-110
Using Procedure References.........cccceevvvieiiiiiiiiciincn 4-110

Example of a PROCEDURE REFERENCE
STATBMENT .o 4-111
PROCESS Statementcoiiiieeeee e, 4-112

Initiation of an Asynchronous Process..........cccococieean. 4-112

Critical BIOCK ...vvviiiiiiec e 4-112

Examples of PROCESS Statements...........ccooevvvvienee.n. 4-113
PROCURE Statement........coooiiiiiiieeeeeeeeeeeeee e 4-114

Testing the Available Statecoccoeeviiiiiiiiieeee 4-114

Sharing Resources Among Programs...........cccceevveeevnn... 4-114

Examples of PROCURE Statementsccccoeeevvinnne.n. 4-114
PROGRAMDUMP Statement..........ccccooeiiiiiiieeeeeeeeeeceeee e 4-115

PROGRAMDUMP OptionScceeiiiiiieiiiiiieiiiiiee e 4-115

Programdump Destination Optionsccooeeveeiinnne... 4-118

Relation to OPTION Task Attribute.............coceveeeiiiienens 4-118

Retrieval of Binding Informationccccccoviiiiiincs 4-119

Examples of PROGRAMDUMP Statements 4-119

Xi

Contents

READ Statement.. ..o 4-121
File Part.....ooe 4-121
I/O Option or Carriage Control.........cccoceoveiiviiiiicieec, 4-122
Subfile Specificationcccccoiiiiiiiiii 4-123
Core-to-Core Part......cccccoiiviiiiiiiicc e 4-124
Core-to-Core Blocking Partcccccovviiiiiiiiiiiicce 4-124
Format and List Partcccoooiii 4-126

Formatted Read ..o 4-126
Binary Read..........ooooiiiiiiii 4-127
Array Row Read ... 4-128
Action Labels or Finished Eventcccccoiiiiin, 4-129
Data Format for Free-Field Inputcccoooo 4-130
Free-Field Data Formatccooooiiiii 4-130
FIeldS . oo 4-131
Unguoted String ...oovveeiviiiieciiieeccieeeceiee 4-131

NUMDET Lot 4-131

Quoted SNooeeiiiiiicecc e 4-132

HEeX StriNg ..o 4-132

SIASN (/) e 4-132

ASTEriSK (*) oo 4-132

Examples of Fieldscccoooiiii 4-133

Examples of READ Statements.........ccccoovveeiiiiieeiiiinnen, 4-134

REMOVEFILE Statementoocviiiiiiiiiiiciicee e 4-135
Directory Element.........cccooiiiiii 4-135
REMOVEFILE Statement as a Boolean Function............ 4-135
Family SUDSTITULIONoooiiiiiiiiccccee e 4-135
Example of a REMOVEFILE Statement.............cccc....... 4-136

REPLACE Statementoceeiiiiiiiiiiiie e 4-137
Source Part List c....oooiiiiiiiiiii i 4-138
Source Part Combinationsccoovieiiieeiii e 4-140
String Literal Source Parts........cccccveeieiiiiiiiiieeeee, 4-141

<string literal>......cooooii 4-142
<string literal> FOR <arithmetic expression> 4-143
<string literal> FOR <arithmetic expression>

WORDS ..o 4-144

Arithmetic Expression Source Parts...........cccccoeevvieeennn, 4-146

<arithmetic expression>ccccciiiieiiniie 4-146
<arithmetic expression> FOR <arithmetic

EXPIESSION 1.t 4-147
<arithmetic expression> FOR <arithmetic

expression> WORDS ..o 4-148
<arithmetic expression> FOR <arithmetic

expression> DIGITS ..o 4-149
<arithmetic expression> FOR * DIGITS 4-150
<arithmetic expression> FOR <arithmetic

expression> SDIGITS ... 4-150
<arithmetic expression> FOR * SDIGITS............... 4-151
<arithmetic expression> FOR <count part>

NUMERIC ..o, 4-152
<arithmetic expression> FOR * NUMERIC............ 4-153

Pointer Expression (<source>) Source Parts 4-153

<source> FOR <arithmetic expression>................ 4-153

Xii 8600 0098-505

Contents

8600 0098-505

<source> FOR <arithmetic expression>

WORDS ..o 4-154
<source> FOR <arithmetic expression> WITH
<translate table>.............ccccoiiiiiii 4-154
<intrinsic translate table>............................ 4-155
<translate table identifier> ... 4-155
<subscripted variable>cccccocc 4-155
<source> WITH <picture identifier>....................... 4-156
Source Parts with Boolean Conditionsccccceevvnnen. 4-156
<source> WHILE <relational operator>
<arithmetic expression>.........ccccccceeiiiiiiineenn. 4-157
<source> UNTIL <relational operator>
<arithmetic expression>.........ccccccceeiiiiiiineenn. 4-157
<source> WHILE IN <truth set table> 4-158
<source> UNTIL IN <truth set table>.................... 4-158

<source> FOR <count part> WHILE

<relational operator> <arithmetic

EXPIESSION .oiiiiiiiiiiie et 4-158
<source> FOR <count part> UNTIL

<relational operator> <arithmetic

EXPIESSION .oiiiiiiiiiiie et 4-159

<source> FOR <count part> WHILE IN <truth
settable> ... 4-159

<source> FOR <count part> UNTIL IN <truth
settable> ... 4-160
Other Source Partsccccoovviiiee e 4-160
<pointer-valued attribute>cccoooeeiiiiiiiiiiininnnnnn. 4-160
<StrNG EXPreSSION> ..ovviiiiiiiii e 4-161
Examples of REPLACE Statements.............ccceeeeevnnnne... 4-161
REPLACE FAMILY-CHANGE Statement.......cccceeiviieeeiiiiiiceiiiiee 4-163
Specification of Valid Stations..........cccccoeeviieieiiiei 4-163

Examples of REPLACE FAMILY-CHANGE
StAtEMENTS ..o 4-164
REPLACE POINTER-VALUED ATTRIBUTE Statementcc........ 4-165
Specification of the Simple Source..........ccccoovviiiiiinnn, 4-166
Examples of REPLACE POINTER-VALUED

ATTRIBUTE Statementscooovviiiiiiieiieeeeeeiee 4-167
RESET Statement........oooiiiiii e 4-168
WAIT and WAITANDRESET Statements...........ccc........... 4-168
Examples of RESET Statementsccccccooeeiiiiiiiiinnnn. 4-168
RESIZE Statement........ooeiiiiiiiieee e 4-169
Array Row Resize Parameters.........cccoooeiiiiiiiiiicc, 4-169
Special Array Resize Parameterscccocvveveeiieeiccnn.. 4-172
Multidimensional Array Designator......................... 4-173
Event Array Designator ..o 4-173
String Array Designatorcocovieiiieieiiii 4-173
Interlock Array Designator.......ccccoveiviiiiieiaeiiei 4-173
Run-Time Error Messagescvvvvvveieeiiiiiiiiieeeeee 4-174
Examples of RESIZE Statementsccccccoooeiiiiiiininn. 4-175
RESPOND Statement.......ccouviiiiiiieeeeeeeeeee e 4-176
RESPOND Statement OptionS.........ccovvvveeiiiiiieeaiiiieeeens 4-176
Examples of RESPOND Statementsccceevvvvinnnn... 4-177
xiii

Contents

REWIND Statementoooiiiiiieeeeee e, 4-178
Effects on Designated Files.........ccccoviiiiiiiii 4-178
Example of a REWIND Statement.........cccccoeoviiieeiiiinen, 4-178
RUN Statement......coooiiieeeeeeee e, 4-179
Initiating Procedures ..o 4-179
Examples of a RUN Statement.........ccccovvviiiiiiiiiiiee, 4-180
SCAN StateMENT .. .o 4-181
Scan Part Combinationscoocceviviiiiiiiiiiciiiie e 4-182
Scan Parts without Count Parts........cccccccovvviiiiiiiienn, 4-182
WHILE <relational operator> <arithmetic
EXPIESSION 1.t 4-182
UNTIL <relational operator> <arithmetic
EXPIESSION 1.t 4-182
WHILE IN <truth set table>............ccococi 4-183
UNTIL IN <truth settable> ... 4-183
Scan Parts with Count Parts..........cccoceviiiiiiiiiic, 4-183
FOR <count part> WHILE <relational
operator> <arithmetic expression>.................... 4-183
FOR <count part> UNTIL <relational
operator> <arithmetic expression>.................... 4-184
FOR <count part> WHILE IN <truth set
TADIE> ..o 4-184
FOR <count part> UNTIL IN <truth set table>....... 4-184
Examples of SCAN Statements..........ccocvvvviiiieiiiiiin. 4-185
SEEK Statement....ccoeeeecceeeeeee e 4-186
SEEK Statement as a Boolean Function..................c...... 4-186
Example of a SEEK Statementccooceeiviiiiiiiiee, 4-186
SET Statement . ..o 4-187
SET Statement OptioNS.......cooivivviiiiiiiiieciiie e 4-187
Examples of SET Statements........cccccoevviviieiiiiiieiiiee, 4-187
SETABSTRACTVALUE Statementcccccoovvviiiiiiiiiiiiiiiccce e 4-188
Setting the File Attributeoocviiiiiie 4-188
Examples of SETABSTRACTVALUE Statements............ 4-188
SORT StatemMentcoo i, 4-189
OULPUL OPLION ...eiiicici e 4-189
INPUL OPTION ..o 4-190
Number of Tapes ... 4-191
Compare Procedure.........coocveiiiiiiiiiiiiieciie e 4-191
Record Length ... 4-192
Size Specificationsoccvvii 4-193
Restart Specifications..........ccovviiiiiiiiii e 4-194
Arrays in Sort Procedures.........ccoovvveeiiiiieeiiiiieeeeieee, 4-196
Examples of SORT Statements..........ccoooiiiiieeiiiiin 4-196
SPACE Statement . ..o, 4-197
SPACE Statement as a Boolean Function 4-197
Examples of SPACE Statements..........ccocveeiviiieeiiiinenn, 4-197
SWAP Statement . ..o, 4-198
Variable Type Matchingccccooiiiiiii 4-198
Example of a SWAP Statement.........ccccoovveeiiiiieeciiineen, 4-199
THRU Statement.........oooiiiiiiiieeee e 4-200
Value of the Arithmetic Expressionccccccoevviiinnn. 4-200
Examples of THRU Statements...........ccoeveeiviiieeiiiieen, 4-200

Xiv 8600 0098-505

Contents

TRY Statement ... 4-201

UNLOCK Statementcooiiiiiiiiieeeeee e 4-203

Examples of UNLOCK Statements.........c.ccccoeeeveeininnnn.n. 4-203

WAIT StatemMENT ..o 4-204

Wait Option LiSt...ocviiiiiiiiiiiiiiec e, 4-205

WAIT Parameter LiSt.......oooiiiiiiiiiiee e 4-205

SEAM INAEX uviiiiiiiiii e 4-206

Direct Array ROW ... 4-206

Examples of WAIT Statementscccooovveeiviiieeiiiiinen 4-207

WAITANDRESET Statement......ccoeoviiiiiiiiiiiiieeeceeeeeeeeeee e 4-209
WAITANDRESET Statement as an Arithmetic

FUNCLION .o, 4-209

Examples of WAITANDRESET Statements..................... 4-210

WHEN Statement........cccooiiie e 4-212

Characteristics of the Time Optioncoocvveiiiiieiiien, 4-212

Examples of WHEN Statementscccccoeiviiiiiiiinenn 4-212

WHILE Statementoooiiiii e 4-213

Execution of the WHILE Statementccooeeiiiiinenn 4-213

Examples of WHILE Statementscccceeeiviiiiiiiiiinens 4-214

WRITE Statementoooiiiiii e 4-215

I/O Option or Carriage Controlcc.cooveeviiiiiiciiee. 4-216

Write Subfile Specification...........ccoceviviiiiiiiiicic, 4-217

Format and List Part.......c..cooiiii 4-218

Formatted Write ..., 4-219

Binary WIHte.....oooiiii 4-219

Array ROW W ... 4-220

Free-Field Part ... 4-221

Example of a Free-Field Partccoooos 4-221

Action Labels or Finished Eventccccccccoiiiiiiiiin, 4-222

Examples of WRITE Statementscccceeeiiiieiiiiinenn 4-222

ZIP StatemMeNnt ... 4-224

ZIP WITH <@rray rOW>oooiiiiiiiiiiiiiieeeeee e 4-224

ZIP WITH <file designators>ccoooeiiiiiiiiiiee 4-225

Examples of ZIP Statementscocceeeviiiiiiiiiiiecciiie 4-225

Section 5. Expressions and Functions

EXPIrESSIONS ..o 5-1
Arithmetic EXPression ... b-2
Precision of Arithmetic Expressionsc..ccccuee... 5-3
Arithmetic Operators.........covvvvveiiiiieeiiiiiee e 5-3
Precedence of Arithmetic Operators.................. 5-4

Types of Resulting Valuesccococeei. 5-6
Arithmetic Primaries. ... 57

Bit Manipulation EXpressioncccccooiiiiiiiiiin 5-8
Concatenation EXpression........ccccovvvveeiiiiece i, 5-8
Partial Word EXpressionccccooeiiiiiiiiiceee 5-12
Boolean EXPreSSion ... 5-13
Operators in Boolean EXpressions..........ccccccovvveen. 5-14
Logical Operatorscocvvvevivieeeiiiieeeeiiieee, 5-15

IS and ISNT Operators.........ccccoeeveevviieeeeeeeee, 5-15

8600 0098-505 XV

Contents

Relational Operators...........ccccccveeeviiiieiiiece, 5-16
Precedence in Boolean Expressions......................... 5-16
Boolean Primariesccccoiiiiiiiiiiie 5-17

Boolean Value........ccccociiiiiiii 5-17

Arithmetic Relation..........ocooee, 5-18

Complex Relationcccoovveiiiiiiiiiiccc 5-18

String Relation ..o 5-19

Pointer Relation ..o 5-19

String Expression Relationccccceeiiinen. 5-20

Table Membershipcooooiii, 5-21

Case EXPreSSION ..viiiiiiiiiiiiiiie e 5-23
CompleX EXPreSSIONciiiiiiiiiciiiec e 5-24
Conditional EXpressionccccooiviiiiiiiiiiiiiee e 5-26
Designational EXpressioncccccviieiiiiiiiiiiiiee 5-27
Function EXPression ... 5-28
Arithmetic Function Designator..........cccccceeeiiinnne. 5-29
Boolean Function Designator.........ccccoeoiiiieeianinne, 5-29
Complex Function Designatorcccceevvvvveeeiinienn, 5-29
Pointer Function Designatorcccccooviiiiieeiiiinnne, 5-30
String Function Designatorcccocvveeiiiiieeciiiee 5-30
NULL Value.....oooooiiiii 5-30
Pointer EXPresSSioniiiiiiiiicceee e 5-31
StHNG EXPreSSION . ..oiiiiiiiciiiiee e 5-34
TRY EXPreSSioN........ciiiiiiiiiiiceee e 5-37
INTFINSIC FUNCTIONS .. 5-38
Intrinsic Names by Type Returnedcccccooiiviiins 5-38
Arithmetic Intrinsic Names ..o 5-38
Boolean Intrinsic Namescccccoiiiiiii 5-42
Complex Intrinsic Names.........cccceeviiiiiiiiiiecciee, 5-42
Pointer Intrinsic Names.........cccocciiiiiiiii 5-42
String Intrinsic NamesS.........ooooviiiieieeiecieeeee 5-42
Intrinsic Function Descriptionscocovciiieiiiiiieeeee 5-43
ABS FUNCLION ..o, 5-43
ACCEPT Statement.........cooooiiiieieiieeeee, 5-43
ARCCOS FUNCLIONiiiiiiiiiccieeeeeee e, 5-43
ARCSIN FUNCHION .oviiiiiiiiiiccc e, 5-43
ARCTAN FUNCLION ..ot 5-43
ARCTANZ FUNCHION ..o, b-44
ARRAYSEARCH FuNnctionccoevviiiiiiiiieceicee, 5-44
ATANH Functioncccoiiiii e 5-45
AVAILABLE FUNCHION ...oooiiii e, 5-45
BOOLEAN FUNCHION ..o, 5-45
CABS FUNCHION ..eiiiiiiicc e b-46
CCOS FUNCHION ©1vviiiiiiiic e 5-46
CEXP FUNCLION ©.iiiiiiiiiccce e 5-46
CHANGEFILE Statementoccceeiviiieeiiiiiieciiiee 5-46
CHECKPOINT Statement........cccceevviviieeiiiiieeeiiiieen, 5-46
CHECKSUM FUNCLION ..o 5-47

CLN FUNCHION 1. 5-47
CLOSE Statement........ccovvviiiiiiiiieiiiiieeesiiee e 5-47
COMPILETIME Function........coocoiieiieiieeiiieeeee 5-48
COMPLEX FUNCHION ..viiiiiiiiic e 5-48

Xvi 8600 0098-505

Contents

8600 0098-505

CONJUGATE FUNCLION ..o 5-48
COS FUNCLION ..o, 5-48
COSH FUNCTION....cooiiieie e 5-49
COTAN FUNCLION oo 549
CSIN FUNCLION oo, 5h-49
CSQRT FUNCLION ...t 5-49
DABS FUNCHION ..ottt 5h-49
DALPHA FUNCLION ..o 5-49
DAND FUNCHION L.oveiiiccee e 5-50
DARCCOS FUNCHION ©.uiiiiiiiiiieeieeeee 5-50
DARCSIN FUNCLION ..ttt 5-50
DARCTAN FUNCHION ...t 5-50
DARCTANZ FUNCHION ... 5-51
DCOS FUNCHION. ..ttt 5-51
DCOSH FUNCHION ..t bh-51
DECIMAL FUNCTION.....i e 5-51
DELINKLIBRARY FUNCLIONvvvvviieeieiiii 5-52
DELTA FUNCHION ©.vveii e 5-53
DEQV FUNCHION ...t 5-54
DERF FUNCHION L.eveeice e 5-54
DERFC FUNCHION .o b-b4
DEXP FUNGLION ..o 5-54
DGAMMA FUNCHION ... b-b4
DIMP FUNCHION .o 5-55
DINTEGER FUNCHION ...vvviiiieee b-55
DINTEGERT FUNCHION ...t 5-56
DLGAMMA FUNCHION ...t 5b-56
DLN FUNCLION .o 5-56
DLOG FUNCHION . 5-56
DMAX FUNCHIONeiiie e 5-57
DMIN FUNCHON ... 5-57
DNABS FUNCHION ©.euviiiiiiieeeeeeee b-57
DNORMALIZE FUNCLION ... 5-57
DNOT FUNCHION ..ttt b-57
DOR FUNCHION ...ttt 5-58
DOUBLE FUNCHION ..t 5-58
DROP FUNCHION. ...t 5-59
DSCALELEFT FUNCTION ©.uviiiii 5-60
DSCALERIGHT FUNCLION ...vevcece 5-60
DSCALERIGHTT FUNCLION ..o 5-60
DSIN FUNCTION Lottt 561
DSINH FUNCHION. ...t 5-61
DSQORT FUNCHION. ..t 5-61
DTAN FUNCHON ..ot 561
DTANH FUNCHION ... 561
ENTIER FUNCLION ..ovei e 5h-62
ERF FUNCHION L oo 562
ERFC FUNCHION. ... 5-63
EXP FUNCHION ..o 5-63
FIRST FUNCHION .ot 5-63
FIRSTONE FUNCLION ©.vvveiiiiiiiieieeeee 5-63
FIRSTWORD FUNCTION ..uvviiiiiiiiiieiie b-64

Contents

XViii

FIX Statement ... b-64
FREE Statement ... b-64
GAMMA FUNCHION ... b-64
HAPPENED Functionccooeiiiiiiiiiie e 564
HEAD FUNGLION ..o 5-65
IMAG FUNCHION ..o b-65
INTEGER FUNCLION ..o 5-66
INTEGERT FUNCHION ..o 5-67
ISVALID FUNCLION ... 5-67
LENGTH FUNCHION ©.uiiii e 5-68
LINENUMBER FunCtion.......cooooiviiiiieeiiee e 568
LINKLIBRARY FUNCTION.......iiiiee 5-69
LISTLOOKUP FUNGLION ...vvvieiiiiiieiiiie 5-73
LN FUNCHION ..o 5-73
LNGAMMA FUNCLION ... b-73
LOCK Interlock FUNCHIONvvvvveiie b-73
LOCKSTATUS FUNCLION ©.vvviiiiii e 5-74
LOG FUNCTION ...t 5-75
MASKSEARCH FUNCLIONcvvieiiiiii b-75
MAX FUNCHION ..o 5-75
MESSAGESEARCHER Statement..........cccccccvvvvnnnnns b-75
MIN FUNCHON ..o 5-75
MLSACCEPT Statementccccveveeeiiiiiiens b-75
MLSDISPLAY Statementccccvvveeieiiiinnns bh-76
MLSTRANSLATE Statementccccccvvvvvveviiiiiiiiinnnns b-76
NABS FUNCHION. .. b-76
NORMALIZE FUNCLION ... b-76
OFFSET FUNCLION ..o 5-76
ONES FUNCLION ..o 5-77
OPEN Statementoooooviiiiiiii 5-77
POINTER FUNCHION ...t b-77
POT FUNCTION ©.et e 5-79
PROCESSID FUNCHION ©.vvviiiiiiic e b-79
RANDOM FUNCHION ..o 5-80
READ Statement.. ... 5-80
READLOCK FUNCTION ...vvii i 5-80
READYCL FUNCLION .. 5h-81
REAL FUNCHION ... 5-82
REMAININGCHARS Function.......ccccoeeeiiiiiiiiiiiinns 5-83
REMOVEFILE Statement........cccccvvveveviiiiiiiiiinens 5-83
REPEAT FUNCHION ... 5-83
SCALELEFT FUNCtioN ..o b-84
SCALERIGHT Function ... b-84
SCALERIGHTF Function ..., b-84
SCALERIGHTT Function ..., 5-85
SECONDWORD Function.......ccoooeeviiiiiii 5-85
SEEK Statement ... -85
SETACTUALNAME Function ..., 5-86
SIGN FUNCHION ... 5-87
SIN FUNCLION ..o 5-87
SINGLE FUNCHioN ... 5h-88
SINH FUNCLION ... 5-88

8600 0098-505

Contents

SIZE FUNCLION ... 5-88
SPACE Statement ..o, 5-89
SQRT FUNCLION ..o, -89
STRING FUNCLION ..., 5-89
TAIL FUNCTION ..o, 5-91
TAKE FUNCHION ..., 5-91
TAN FUNCHION....ooi e, 5-92
TANH FUNCHION ..o, 5-92
THIS FUNCTION ..ot 5-92
THISCL FUNCHION ..o 5-93
TIME FUNCHION ... 5-93
TRANSLATE FUNCLION ..vvvviiiiiiee 5-100
UNLOCK Statement..........ueveveeeeiiieieieiiiiieieiiiiiiiinns 5-100
UNREADYCL FUNCHION ... 5-100
USERDATA FUNCHION ... 5-101
USERDATALOCATOR Function.........ccccvvvvvvvvevnnnn. 5-102
USERDATAREBUILD Functionccccccvvvvvvvvennnnnn. 5-102
VALUE FUNCLION ..o, 5-103
WAIT Statement........uveeeieieeee 5-104
WAITANDRESET Statement..........cccoovvvvvviiiieiinn, 5-104
WRITE Statementveeeeeeiiieiie h-104

Section 6. Compiling Programs

Files Used by the COMPIIETcc.viiiiiiiiiiiiiiiicc e 6-1
INPUL FIlES. . e 6-3

CARD Fil€ .o, 6-3

SOURCE Fil& .o, 6-4

INCLUDE FileS.....ioiiiioiiice e 6-4

HOST File oo, 6-4

INFO File oo 6-4

OULPUL FIlES oo 6-5

CODE Fil@ v, 6-5

NEWSOQURCE File.....cooiiiiiiiiiiicceeeeeeeee 6-5

LINE File oo 6-6

ERRORS File ..o 6-6

XREFFILE File...voiiiiiioeiccceee e 6-7

INFO File oo 6-7

Source Record FOrMatoouviiiiiiiiic i 6-8
Compiler Control OPtioNS........iiiiiiiiiiiii e, 6-9
Compiler Control RECOrdS........couvviiiiiiiieiiiiiieiiiiie e 6-10

Option DESCHPLIONS ..vviiiiiiiieesiiiee et 6-16

ASCH OPtioN..ueviiiiiiii e 6-16

AUTOBIND Optionccocooiviiiiiiiiceeceeee e 6-16
BEGINSEGMENT Optioncooviiiiieiiiieiieceieee 6-18

BIND Option .ovveieiiiiiieciiieeeeee e 6-19

BINDER Option ..oooovviieiiiiieceiie e 6-19
BINDER_MATCH Option........ccceoviiiiiieiiieecieee 6-19

CHECK OPtION ... 6-20

CODE OptioN...coo e, 6-20

CODE_SUFFIX Option.....coooviiiiiiiiiieeeeeeeeeeee 6-20

8600 0098-505 Xix

Contents

XX

DONTBIND Option....ccccoiuiiieiiiiiieiiiieeecieee e, 6-21
DUMPINFO Optionccooviiiiiiiiiieiiieeeeciiee e, 6-21
ENDSEGMENT Option......cccovviieiiiiiieiiiiiieeeiieee, 6-22
ERRLIST Optioncvviiiieceeeeeeeeeee e 6-22
EXTERNAL Optioncoovviiiiiiiieeccecc e 6-22
FORMAT Option ...covvviiiiiiiiicciiiee e, 6-22
GO TO OPLION cviiiicciiiee e 6-23
HOST Option.. ..o, 6-23
INCLNEW Option.....ccooiiiiiiiiiiiiiceieeeeee e, 6-23
INCLSEQ OPtiON evveeeceeeeeeeeeeeee e, 6-24
INCLUDE Option......ccoiiiiiiiiiiiiicceieceeee e, 6-24
INITIALIZE Optioncooviiiiiiiiiiiceeeeeee e, 6-26
INSTALLATION Option ..cceiiieiiiiiiiiieeeeiieeeeieee, 6-26
INTRINSICS Option....coovvviiiiiiiiieiiieeeeee e, 6-27
LARGE_LINEINFO Option......ccccccoviiiiiiiiiiieciiieee, 6-27
LEVEL OptioN....ccoiviiieiiiiie e, 6-28
LIBRARY Option ...ovviieiiiiiiecciieeeeeeeee e, 6-29
LIMIT Option or ERRORLIMIT Option..........ccuveenee. 6-29
LINEINFO Optionc..cooovviiiiiiccieeceeeeecee e 6-29
LIST Option ..o, 6-30
LISTDELETED Optioncccoviiiiiiiiiieeeiiieee e, 6-30
LISTDOLLAR Option....ccouveeeiiiiiieeiiieeeeieeeeie e, 6-30
LISTINCL OptioNn ..ceveiiieceeeeeeeeeeee e 6-31
LISTOMITTED OPptioncoooveiiiiieecieeeee e 6-31
LISTP Option oo, 6-31
LI_SUFFIX Optioncooiiiiiiiiiiiiiieecieceeeeee e, 6-32
LOADINFO Optioncociiiiiieiiiiieeeceeeeeeee e, 6-32
MAKEHOST Option ...ccoovvvieiiiiiiecccieeeeeee e, 6-34
MCP OPHION oo, 6-36
MERGE OPLion ...coovviieiiiiiieceieee e, 6-37
NEW OPtioN ..cooiiiee e, 6-37
NEWSEQERR Option.....cccccoviiiieiiiiiieeeiieeeeee, 6-38
NOBINDINFO Option....cc.occeiiiiiieiiiieeeeciieee e, 6-38
NOSTACKARRAYS Option........cccovvviiiiiiiiiieciiieee, 6-38
NOXREFLIST OptioNncooiviieiiiiecieecee e 6-39
OMIT OPLiON ..ot 6-39
OPTIMIZE OPtioN....cvvviiiiiiiie e 6-40
PAGE Option ..o, 6-40
PARAMCHECK Option.......ccooviieiiiiiiieeiiiiee e, 6-41
PURGE Optioncoovviiiiiiiiicccceeeceeee e, 6-41
SEGDESCABOVE OptioN.....ccoovviieiiiiiieeciiieeeeciie 6-41
SEGS Option .ovvviiiiiiiiicc) 6-42
SEPCOMP OptioNncciiiiiiiiiiiiiiiieeie e 6-42
SEQ OPtioN ..o 6-44
SEQERR Option . ..o 6-44
SHARING Option ...covviieiiiiiie e 6-45

DONTCAREooiiiiiieiceeee e, 6-45

PRIVATE ..o 6-45

SHAREDBYALL ..ooooiiiiiiiiiieeccee e 6-45

SHAREDBYRUNUNIT ..., 6-45
SINGLE Option.....ccooviiiiiiiiiic e 6-46
STACK OPLioN ..ovviiiiiiiiie e 6-46

8600 0098-505

Contents

Section 7.

Section 8.

8600 0098-505

STATISTICS OPLioN .vvceiiiiiiiicciiee e 6-46
STOP OPtion covvviieiciiieeeeee e, 6-47
TADS OPLION w.oviiiiiiiiiiiie e 6-48
TARGET Option ..ovvvviiiiiiiiieciie e 6-49
TIME OPtioN .vvviiiiiiiccce e 6-50
USE OPtiON...cviieeiiee e 6-50
USER OPtioN cuvveeeiiiieccce e 6-50
VERSION Option ...ociiiiiiiiiiiiie e 6-51
VOID Option ... 6-52
VOIDT Option ...ceveiieeieeeeecece e 6-52
WAITIMPORT Option.....cociiiiiiiiiiiiiieeeciee e 6-53
WARNSUPR Option ...ccvvveiiiiiiciiieeeeieeeeee 6-53
WRITEAFTER Option ...vvvviiiiiiiiiiieeeieeeeeee 6-53
XDECS OPtiON ..o 6-54
XREF Option .oviiiiiiiiccee e 6-54
XREFFILES Optioncocvvviiiiiiiiciciiceeeiee e 6-56
XREFS Option....coovvviiiiiiiiccic e, 6-56

Compile-Time Facility

Compile-Time Variable. ..o, 7-2
Compile-Time 1dentifierccviiiiiiii e, 7-3
Compile-Time StateMENTS.......coiviiiiiiiiie e 7-3
BEGIN Statementooviiiiiiiiiii e 7-4
DEFINE Statement.......cocoviiiiiiiiiiieceeeeeee e 7-4
FOR Statementooviiiiiiiiiicecc e 7-5
[F StatemMeENt ..oooiiiiiiiii e 7-5
INVOKE Statementcc.ceeiiiiiiiiiiiiec e 7-6
LET Statement ... 7-6
THRU Statement........ccoooiiiie e 7-6
WHILE Statement.......occcoiiiiiiiiiiccc e 7-6
Extension to the Define Declarationcccccoiiiiiiiiiii 7-7
Compile-Time Compiler Control Optionsccovvviiiiiiiiieiiiieeeeiiee, 7-8
CTLIST OPtioN..vvieeeeiiiee e 7-8
CTMON OPLION c.eviiiiiiiiice e, 7-8
CTTRACE OPLioN .oooiviiieiiiiiee e 7-8
LISTSKIP Option ..oveeiiieiiiiiicciee e 7-9

Library Facility

Operating the Components of the Library Facilitycccooon 8-2
Library Programsooiioiiiiie e 8-2

Calling ProgramisSoouuviiiiiiii e, 8-2

Library Directories and Templatesccoceiviiiiiiennnn. 8-2

Library Initiation........cocoiii 8-3

Linkage ProvisSionsccccoiiiiiiiiiiiei e 8-4
Discontinuing Linkagecooiiiiiiiiiiiiie e 8-5

Error Handlingooooie e 8-5

Creating LIDrariesoovviiiiiii e 8-6
Referencing Libraries ... 8-7
Library Attributes ... 8-8

XXi

Contents

Entry Point Type Matchingccccccoiiiiiiiii 8-11
Parameter Passing.......cccooiiiiii 8-12
Library EXamples . ..coooiiiiiieie 8-13
Library: OBJECT/FILEMANAGER/LIBcccoeeiviiiiieiie, 8-13
Calling Program #71.....c..ooiiiiiiiiiii e 8-15
Library: OBJECT/SAMPLE/LIBRARYcooovvviiiiiiiiiiiiiee, 8-16
Library: OBJECT/SAMPLE/DYNAMICLIB...........cccovvviennne, 8-17
Calling Program #2..........ooiiiiiiiiiii e 8-19
Library: MCPSUPPORTcooiiiiiiiiiiicceeceeeeeee e, 8-20
CONVERTDATEANDTIME Procedurecouoe..... 8-20
TIMEZONENAME Procedure........cccccoovviiiieeiiiieenn, 8-21
TIMEZONEOFFSET Procedureccooovveeeiiiieeennn, 8-22
Using the EVENT_STATUS Entry Point 8-22

Section 9. Internationalization

Accessing the Internationalization Featurescoooeeiiiiiiiiciciinnnnns 9-2
Using the Ccsversion, Language, and Convention
Default SEttNGS....coiviiiiiiiee e 9-2
Understanding the Hierarchy for Default Settings 9-3
Understanding the Components of the MLS Environment.................. 9-4
Coded Character Sets and CCSVEISIONSceevvvvveeeiiieeennn, 9-4
Mapping Tables. ... 9-6
Data ClaSSeSoooiiiiiiiiie e 9-7
Text COMPAIISONSiiiiiiiiieiiiie et 9-7
Providing Support for Natural Languages..............ccccvveenee. 9-9
Creating Messages for an Application
Program ... 9-9
Creating Multilingual Messages for
Translation ... 9-10
Providing Support for Business and Cultural
CONVENTIONS ..oveieecieec e, 9-10
Using the Date and Time Features..........cccooeeeennnns 9-11
Using the Numeric and Currency Features............... 9-12
Using the Page Size Formatting Features 9-13
Summary of CENTRALSUPPORT Library Procedures...............c....... 9-13
Library Callsooviiiiiiiie e 9-23
Parameter Categoriesouuieiviiiieiiiiieecceeeeeeee e, 9-24
INpUt Parameterscccooviiiiiiiiieeeeee e 9-24
Input Parameters with Type Values.......................... 9-25
Output Parametersccooevviiieeeeeeceee e 9-25
ReESUIt ... 9-25
Procedure DesCriptioNS.........ooiiiiiiiiiiiee e 9-26
CCSINFO Lo, 9-26
CCSTOCCS_TRANS_TABLE ...t 9-31
CCSTOCCS_TRANS_TABLE_ALT ..o 9-33
CCSTOCCS_TRANS_TEXT ..iiiiiiiiiiiiiiiee e 9-35
CCSTOCCS_TRANS_TEXT_COMPLEXcoeeiiiiiiieiiiiee, 9-37
CCSVSN_NAMES_NUMS ...t 9-40
CENTRALSTATUS ..o, 9-42
CNV_ADD ..o, 9-44

XXii 8600 0098-505

Contents

Appendix A.

Appendix B.

Appendix C.

8600 0098-505

CNV_CONVERTCURRENCY_STAR oot 9-47
CNV_CONVERTDATE_STAR ..o 9-49
CNV_CONVERTNUMERIC_STARooiiiiiiiiiiiiecciee 9-52
CNV_CONVERTTIME_STARooiiiiiiiiieciiiee e 9-54
CNV_CURRENCYEDIT ...t 9-57
CNV_CURRENCYEDIT_DOUBLEc.coooviiiiiiiiiiiiiiii 9-59
CNV_CURRENCYEDITTMP ..ot 9-61
CNV_CURRENCYEDITTMP_DOUBLEcoooiiiiiiii 9-63
CNV_DELETE ..ottt 9-65
CNV_DISPLAYMODEL ...c.vvviiiiiiiieciieeeeeeeeee e, 9-66
CNV_FORMATDATE ..ot 9-68
CNV_FORMATDATETMP ...oiiiiiiiiiiiiieeceee e 9-70
CNV_FORMATTIME ...iiiiiiiiiiiiieeeeeeeee e, 9-72
CNV_FORMATTIMETMPoiiiiiiiiiiiiiieciee e 9-74
CNV_FORMSIZE ... 9-76
CNV_INFO .o 9-78
CNV_MODIFY Lo 9-81
CNV_NAMES ... o 9-84
CNV_SYMBOLS ...t 9-86
CNV_SYSTEMDATETIMEooiiiiiiiiiiie e 9-91
CNV_SYSTEMDATETIMETMPooiiiiiiiiiiiiiiiiieceee 9-94
CNV_TEMPLATE ...t 9-97
CNV_VALIDATENAMEoiiiiiiiiiiiiiee e 9-99
COMPARE_TEXT_USING_ORDER_INFO.......ccc0eeeviinnnn, 9-100
GET_CS_MSG . ..ot 9-102
MCP_BOUND_LANGUAGES ... 9-105
VALIDATE_NAME_RETURN_NUM ..., 9-107
VALIDATE_NUM_RETURN_NAMEccccccoiiii, 9-109
VSNCOMPARE_TEXT ..ot 9-111
VSNESCAPEMENT ..o, 9-114
VSNGETORDERINGFOR_ONE_TEXT....cccoiiiiiiiiiiieee, 9-116
VSENINFO ..o, 9-119
VSNINSPECT_TEXT ..iiiiiiiiiieeeeeeeeeeeeeeeeeee, 9-123
VSNORDERING_INFOoooiiiiiiiiiiiieeeeeeeee 9-126
VSNTRANSTABLE ... 9-129
VSNTRANS_TEXT ..iiiiiiiiiiiiieee e, 9-131
VSNTRUTHSET ..o 9-134
Explanation of Error Values ... 9-136

Run-Time Format-Error Messages

Free-Field INpuUt ... A-1
Formatted OULPUL........oiiiiiiiiiiii e A-2
Formatted INPUL. ... A-3

Reserved Words

Reserved Words LiSt. ... B-3

Data Representation

XXiii

Contents

XXIV

Appendix D.

Appendix E.

Index

Field NOTATIONooiiii e C-1
Character Representationcoivviiiiiiieeeiiiieeeee e C-2
Character Values and GraphiCsS.........cccccoevviviieeviiiieeciiieee, C-4
Default Character TYPE.....ooviviviiiiiiiiieeeeeeeeee e, C-12
Signs of Numeric Fields............cccooiiiiiiiii C-13
One-Word Operand.............oeeiiiiiiii e C-14
Real Operand........ccoceiiiiiiiieiiiiee e, C-14
INteger OPErand.........ciiiuiiiiiiiii e C-15
Boolean Operand.........ccooviiiiiiiiieiiieeee e, C-16
TWO-Word Operandcooiiiiiiiiiie e C-17
Double-Precision Operand...........ccoocveeeiviiiieiiiiiiceeiie e, C-17
Complex OPErand...........ccovvviiiiiiiiiieiiiie e C-19
Type Coercion of One-Word and Two-Word Operands...................... C-20
Data Descriptors and POINTer ... C-20

Understanding Railroad Diagrams

Railroad Diagram CONCEPTS.....coiviiiiiiiiie et D-1
PaAtNS ..o D-1
Constants and Variablescccceeviiiiiiiiiiee e, D-2
CONSIIAINTS ... D-3
Following the Paths of a Railroad Diagramccccooiiiiiiiiiii, D-6
Railroad Diagram Examples with Sample Input........cccccooeviiiiiiiiieenne, D-7

Related Product Information

8600 0098-505

Figures

w w
| ’I\)_\

###Jﬁ#bb
NooabkhwN =

o oo
roN =

OOOOCPOOOO
OCoOoO~NoOohr,wWN -

8600 0098-505

Translate Table IndeXing...........ccoo 3-180
TrUTD ST TOST oo 3-184
DO-UNTIL LOOP ottt 4-52
FOR-DO LOOP w1 4-62
FOR-STEP-UNTIL LOOD .eeeeeeeeeiie e 4-63
FOR-STEP-WHILE LOOP ..eeieiiiieeeee e 4-64
FOR-WHILE LOOP .. it 4-65
THRU LOOP -ttt 4-200
WHILE-DO LOOP ... iiiiiiiiiii et 4-213
Exponentiation: Meaning of Y**Z ... 5-4
Mathematical Notation ... b-5
Types of Values Resulting from Arithmetic Operations.........ccccccccoovvviiiee. 5-6
Results of Logical Operatorsoviuviiiiiiiiei e 5-15
Field NOtation, [29:0] ..o, C-1
EBCDIC Characters (8-Bit Fields)ooooiiiiieeeeeeee e C-2
ASCII Characters (8-Bit FIelds)oooiiiii e C-3
Hexadecimal Characters (4-Bit Fields)........cccooviioiiiiii e C-3
Real OPEIand........oooiii e C-14
INteger OPEIaNd ..o C-15
B0olean Operand.............oeii oo C-16
First Word, Double-Precision Operand..............c.cooooiiiiiiiiiecieeeeeee C-17
Second Word, Double-Precision Operand..............ccccoooiiiiiiiiiiiiieee, C-18

XXV

Figures

XXVi 8600 0098-505

Tables

8600 0098-505

AITay ParameEterS......ue e 3-141
Procedure Reference Array Parameterscccooeiiiiiiiiiiiiie e 3-143
Procedure Parameters. ... 3-144
Simple Variable Parametersccooiviiiiiiiiicccee e 3-145
SHING ParamEterS. ..o 3-146
File Parameters ... 3-146
Other Types of Parametersoovviiiiiiiii e 3-147
Arithmetic Intrinsic FUNCTIONS......ueiiiiii e 5-38
Compiler Input and OULPUL FIlESoiiiiiiiiiiiic e 6-2
Parameter Passing RUIES ... 8-12
Functional Grouping of CENTRALSUPPORT Library Procedures 9-14
Error Results for Internationalizationcccooiiiii 9-137
Reserved Words LiSt........ooooi B-3
Elements of a Railroad Diagram ..ot D-2

XXVIi

Tables

XXViii 8600 0098-505

Section 1
Program Structure

About This Manual

Purpose

This language reference manual provides the programmer with information on the
language components, declarations, statements, expressions, and program units of
Extended ALGOL.

To assist application programmers in using ALGOL, the programming reference material
is divided into two volumes. Volume 1 contains the Extended ALGOL developed for
general use. Volume 2 contains extensions to ALGOL that are intended for specific
products.

To use this manual, a programmer should be familiar with the general concepts of
ALGOL programming or of another high-level structured programming language, such as
Pascal.

This manual also describes the language components and program units of Extended
ALGOL. Unless otherwise stated, the word ALGOL refers to Extended ALGOL.
Audience
This manual is intended for the applications programmer or systems analyst who is
experienced in developing, maintaining, and reading ALGOL programs.
Notation Conventions
This manual contains reference information for each ALGOL feature, which can be
accessed either through the index or the table of contents. Cross references are

provided within each section. Declarations, statements, expressions, functions, and
compiler control options are each presented in alphabetical order within their sections.

8600 0098-505 1-1

Program Structure

Overview of the Language

Extended ALGOL is a high-level, structured progralmming language. Extended ALGOL
has provisions for communication between programs and input/output (I/O) devices, the
editing of data, and the implementation of diagnostic facilities for program debugging.

The fundamental constituents of ALGOL are the language components. These are the
building blocks of the language and include, among other things, letters, digits, and
special characters such as the semicolon (;).

At a level of complexity higher than language components are declarations, statements,
and expressions. These are the building blocks of ALGOL programs. A declaration
associates identifiers with specific properties. For example, an identifier can be
associated with the properties of a real number. A statement indicates an operation to be
performed, such as the assignment of a numerical value to an array element or the
transfer of program flow to a location in the program out of the normal sequence. An
expression describes operations that are performed on specified quantities and return a
value. For example, the expression SQRT(100) returns 10.0, the square root of 100.

At the highest level are program units. A program unit is any group of ALGOL constructs
that can be compiled as a whole by the ALGOL compiler. An ALGOL program is, by
definition, a program unit.

Program Unit

1-2

A program unit is a group of ALGOL constructs that can be compiled as a whole. The
following diagram shows the elements that can be included in an ALGOL program.

<program unit>

—r—=<block . |
—<compound statement>
—<Tevel 2 procedure>

a | separate Brocedure>J—[.
—<global part> ;

L

<block>
— BEGIN —=<declaration list>—; —<statement list>— END 4|

<declaration list>

—|—<dec1 aration | |

<statement list>

; .
—L<statement |

8600 0098-505

Program Structure

<compound statement>
— BEGIN —<statement Tist>— END {

<level 2 procedure>

—<procedure declaration |

<global part>

— [—<declaration list>—] {

<separate procedure>

—<procedure declaration |

Elements of an ALGOL Program

The simplest valid ALGOL program is a BEGIN/END pair. The BEGIN/END pair can
enclose a list of declarations, a list of modules, or a list of statements. If the
BEGIN/END pair is preceded by a procedure heading, the entire program is a procedure,
which can be typed or untyped and can have one or more parameters.

Program units can be blocks, compound statements, level 2 procedures, or separate
procedures that have a lexical (lex) level of three or greater and that can have global
declarations.

A block is a statement that groups one or more declarations and statements into a
logical unit by using a BEGIN/END pair. A compound statement is a statement that
groups one or more statements into a logical unit by using a BEGIN/END pair. A
compound statement is a block without any declarations.

The definitions of a compound statement and a block are recursive: both compound

statements and blocks are made, in part, of statements. A statement can itself be a
compound statement or a block, as you can see in the following sample.

8600 0098-505 1-3

Program Structure

Compound Statements

BEGIN BEGIN
<statement>; <statement>;
<statement>; <statement>;
BEGIN
<declaration>;
. BEGIN
<statement>; <statement>;
END <statement>;
END;
END;
<statement>;
END
Blocks
BEGIN BEGIN

<declaration>;
<declaration>;

<declaration>;
<statement>;
<statement>;

<statement>;
END

<declaration>;

<declaration>;

<statement>;

BEGIN
<declaration>;
<statement>;

END;

BEGIN
<statement>;
<statement>;
<statement>;

END;

END

A program unit that is a separate procedure is typically bound to a host program to
produce a more complete program.

The <global part> construct allows global identifiers to be referenced within a separate
procedure. Any program unit that has a global part is valid only for binding to a host.

A program unit can be preceded, but not followed, by a remark.

A compound statement is executed in-line and does not require a procedure entrance
and exit. A block, however, is executed like a procedure and requires a procedure
entrance and exit. Entering a block requires extra processor resources; entering a
compound statement does not.

Examples

Compound Statement

BEGIN

DISPLAY ("HI THERE");

DISPLAY ("THAT'S ALL FOLKS");
END.

1-4 8600 0098-505

Program Structure

Block
BEGIN
REAL X;
X := 100;
END.

Level 2 Procedure
PROCEDURE S;

BEGIN

REAL X;

X := SQRT(4956);
END.

Separate Procedure with Global Part

[REAL S;

ARRAY B[0:255];
FILE LINE;]
REAL PROCEDURE Q;

BEGIN
Q := S*B[4];
WRITE(LINE,/,"DONE");
END.

According to the syntax, the last statement of a block or compound statement is not
followed by a semicolon (;). However, in the above examples (and throughout this
manual), the last statement is always followed by a semicolon. This is valid because the
statement before the END is the null statement.

Scope of an Identifier

The scope of an identifier is the portion of an ALGOL program in which the identifier can
successfully be used to denote its corresponding values and characteristics.

In one part of an ALGOL program, an identifier can be used to denote one set of values
and characteristics, while in another part of the program, the same identifier can be used
to denote a different set of values and characteristics.

For example, in one block the identifier EXAMPLE_IDENT can be declared as a REAL
variable. That is, the identifier can be used to store single-precision, floating-point
arithmetic values. Such an identifier could be assigned the value 3.14159. In another
block of the same program, EXAMPLE_IDENT can be declared as a STRING variable. In
this block, EXAMPLE_IDENT could be assigned the value ALGOL IS A HIGH-LEVEL,
BLOCK-STRUCTURED LANGUAGE.

Although EXAMPLE_IDENT can be of type real and of type string in the same program,
within a specific block EXAMPLE_IDENT has only one type associated with it. In general,
the scope of an identifier is always such that within a given block, the identifier has
associated with it at most one set of values and characteristics.

8600 0098-505 1-b

Program Structure

The scope of an identifier is described by rules that define which parts of the program
are included by the scope, which parts of the program are excluded by the scope, and
the requirements for uniqueness placed on the choice of identifiers. These general rules
are described as follows.

Local Identifiers

An identifier that is declared within a block is referred to as local to that block. The value
or values associated with that identifier inside the block are not associated with that
identifier outside the block. In other words, on entry to a block, the values of local
identifiers are undefined; on exit from the block, the values of local identifiers are lost. An
identifier that is local to a block is global to blocks occurring within the block. When a
block is exited, identifiers that are global to that block do not lose the values associated
with them. The properties of global identifiers are described more completely below.

Global Identifiers

1-6

An identifier that appears within a block and that is not declared within the block, but is
declared in an outer block, is referred to as global to that block. A global identifier retains
its values and characteristics as the blocks to which it is global are entered and exited.

As the following program illustrates, an identifier can be local to one block but global to
another block.

BEGIN
FILE PRTR(KIND = PRINTER);
REAL A;
A := 4.2 @ -1; % FIRST STATEMENT OF OUTER BLOCK
BEGIN
LIST L1 (A);
INTEGER A;
LIST L2 (A);
A := 3; % FIRST STATEMENT OF INNER BLOCK
WRITE (PRTR, */, L1);
WRITE (PRTR, */, L2);
END; % OF INNER BLOCK
A := A*A;
WRITE (PRTR, */, A);
END. % OF PROGRAM

In the preceding example, the identifier A that is declared REAL is global to the inner
block. The A declared as type INTEGER in the inner block is local to the inner block, so
when the inner block is exited, the integer A and its value, 3, are lost. Within the scope of
integer A, a reference to A is a reference to the integer A, not to the global, real A. At the
time the declaration for list L1 is compiled, the declaration for local A has not been seen,
so list L1 contains the global, real A. However, the list L2 contains the local, integer A.
The A referenced in the outer block is the A that was declared REAL and assigned the
value 4.2 @ -1. The result of the first WRITE statement is A=0.42. The result of the

8600 0098-505

Program Structure

second WRITE statement is A=3. The result of the third WRITE statement is A=0.1764,
which equals 4.2 @-1 * 4.2 @ -1.

Global identifiers are used in inner blocks for the following reasons:

To carry values that have been calculated in an outer block into the inner block
To carry a value calculated inside the block to an outer block

To preserve a value calculated within a block for use in a later entry to the same
block

To transmit a value from one block to another block that does not contain and is not
contained by the first block

8600 0098-505 1-7

Program Structure

1-8 8600 0098-505

Section 2
Language Components

Language components are the building blocks of ALGOL. They consist of basic symbols,

such as digits and letters, and symbol constructs, which are those groups of basic
symbols that are recognized by the ALGOL compiler.

<language component>

<basic symbol }
|:<symbo1 const\r‘uct>J

<symbol construct>

<define invocation

<identifier>
<number>
<remark>
<reserved word>
<string literal>

Basic symbols, identifiers, numbers, remarks, and string literals are described under
separate headings in this section.

Because the define invocation is closely linked to the DEFINE declaration, the define
invocation is explained under “DEFINE Declaration” in Section 3, “Declarations.”

Reserved words are described and listed in Appendix B, “Reserved Words."

8600 0098-505

2-1

Language Components

Basic Symbol

<basic symbol>
<Tetter I
E<d1'g1't>
<delimiter>—

<letter>

Any one of the uppercase (capital) letters A through Z, or any one of the lowercase
letters a through z.
<digit>

Any one of the Arabic numerals 0 through 9.

<delimiter>
<bracket |
E<oper‘ator‘>—
<space>

<bracket>

(|
—) —
— [—
—] ——

— BEGIN
— END —
B — |

<parameter delimiter>

—)"<letter string>"({

<letter string>

Any character string not containing a quotation mark (").

<operator>

<arithmetic operator

<logical operator
<relational operator>
<string concatenation operator>—

&

2-2 8600 0098-505

Language Components

<arithmetic operator>

+ |

*

— TIMES —

— MUX —

— DIV —

— MOD —
**

<logical operator>

NOT |
AND

OR

|

EQV
IMP

<relational operator>

<string relational operator {
IS
ISNT

<string relational operator>
LEQ |

I <= —]

— LSS —

< —]

— EQL]

— NEQ]
— GTR

> — |

L GEQ —

L >= |

<string concatenation operator>

CAT |
"

<space>

—|—<s1'ng1e space | '

<single space>

One blank character.

8600 0098-505 2-3

Language Components

The compiler does not make a distinction between uppercase and lowercase letters.
Individual letters do not have particular meanings except as used in pictures and formats.

Digits are used to form numbers, identifiers, and string literals.

Delimiters include operators, spaces, and brackets. An important function of these
elements is to delimit the various entities that make up a program. Each delimiter has a
fixed meaning, which, if not obvious, is explained in this manual in the syntax of
appropriate constructs. Basic symbols that are words, such as some delimiters and
operators, are reserved for specific use in the language. A complete list of these words,
called reserved words, and details of the applicable restrictions are given in Appendix B,
“Reserved Words."”

Reserved words and basic symbols are used, together with variables and numbers, to
form expressions, statements, and declarations. Because some of these constructs
place programmer-defined identifiers next to delimiters composed of letters, these
identifiers and delimiters must be separated. Therefore, a space must separate any two
language components of the following forms:

e Delimiter composed of letters

e I|dentifier

e Boolean value

e Unsigned number

Aside from these requirements, the use of a space between any two language
components is optional. The meanings of the two language components are not affected
by the presence or absence of the space.

8600 0098-505

Language Components

Identifier

<identifier>

—<letter |_L |
/62\—=<1etter |

—E<d1'g1't>—

Identifiers have no intrinsic meaning. They are names for variables, arrays, procedures,
and so forth. An identifier must start with a letter, which can be followed by any
combination of letters, digits, and underscore characters (_).

The scopes of identifiers are described in Section 1, “Program Structure.”

Examples

Valid Identifiers

A

|

B5

YSQUARE

EQUITY

RETURN_RATE

D2R271GL

TEST_1

Invalid Identifiers Reason

1776 Does not begin with a letter.
2BAD Does not begin with a letter.

$ $ is not an allowed character.
XY “-"is not an allowed character.
NET GAINS Blank spaces are not allowed.
NO. “." is not an allowed character.
_TEST Does not begin with a letter.
BEGIN Reserved word.

8600 0098-505 2-5

Language Components

Number

2-6

<number>

—L—_l—<uns1'gned number:
<sign>

<sign>

Cr

<unsigned number>

<decimal number B
<exponent part>—
<exponent part

<decimal number>

<unsigned integer
|:<dec1'ma1 fraction>—

<decimal fraction

<unsigned integer>

—L<digit

<decimal fraction>

— . —=<unsigned integer

<exponent part>

— 0 <integer
—l_—_|—@ g

<integer>

—L—_|—<uns1'gned integer
<sign>

8600 0098-505

Language Components

No space can appear within a decimal number. All numbers that do not contain the
double-precision exponent delimiter “@@" are considered to be single-precision

numbers.
Examples
Unsigned Integers Decimal Fractions Decimal Numbers
5 .5 69.
69 .69 546
.013 3.98
25
Integers Exponent Parts Unsigned Numbers
1776 @8 99.44
-62256 @-06 @-11
+548 @+54 1354.543@43
@@16 .1864@4
Valid Numbers
0
+545627657893
1.75@-46
-4.31468
-@2
375
Invalid Numbers Reason
50 00.5@8 8 Blank spaces are not allowed.
1,505,278 Commas are not allowed.
@63.4 Exponent part must be an integer.
1.667E-01 0 E is not allowed for exponent part.

8600 0098-505 2-7

Language Components

Number Ranges

The sets of numbers that can be represented in ALGOL are symmetrical with respect to
zero; that is, the negative number corresponding to any valid positive number can also be
expressed in the language and the object program.

The largest and smallest integers and numbers that can be represented are as follows
(decimal versions are approximate):

e Any integer between plus and minus 549755813887 = 8**13 - 1 = 4"007FFFFFFFFF",
inclusive, can be represented in integer form.
e For single-precision numbers:

— The largest, positive, normalized, single-precision number that can be
represented is 4.31359146674@68 = (8**13 - 1) * 8**63 = 4"1FFFFFFFFFFF".

— The smallest, positive, normalized, single-precision number that can be
represented is 8.75811540204@-47 = 8**(-561) =4"3F9000000000".

e Zero and numbers with absolute values between the largest and smallest values
given above can be represented as single-precision real numbers.

e For double-precision numbers:

— The largest, positive, normalized, double-precision number that can be
represented is 1.94882838205028079124467@@29603 = (8**13 - 8**(-13)) *
8**32767 = 4" FFFFFFFFFFFFFFFFFFFFFFF".

— The smallest, positive, normalized, double-precision number that can be
represented is 1.9385458571375858335564@@-29581 = 8**(-32755) =
4"3F9000000000FF8000000000".

e Zero and numbers with absolute values between the largest and smallest values
given above can be represented as double-precision numbers.

2-8 8600 0098-505

Language Components

Compiler Number Conversion

The ALGOL compiler can convert into internal format a maximum of 24 significant
decimal digits of mantissa in double-precision. The effective exponent, which is the
explicit exponent value following the “@@" sign minus the number of digits to the right
of the decimal point, must be less than 29604 in absolute value. For example, the final
fractional zero cannot be specified in the smallest, positive, normalized, double-precision
number shown above: —29581 —(23 fractional digits) = —29604. Leading zeros are not
counted in determining the number of significant digits. For example, 0.0002 has one
significant digit, but 1.0002 has five significant digits.

The compiler accepts any value that can be represented in double-precision (not more
than 24 significant decimal digits) as an unsigned number. If this unsigned number does
not contain an exponent part with “@@" (specifying a double-precision value), then the
single-precision representation of that value is used. If the value represented by the
significant digits of such an unsigned number, when disregarding the placement of the
decimal point, is greater than 549755813887, then some precision is lost if the unsigned
number is converted to single-precision.

In some internal computations, a double-precision integer might be required or enforced.
A double-precision floating point with exponent equal to 13 is used as the canonical
representation of a double-precision integer; an operand in this format is called a double
integer. The maximum magnitude that can be represented in this format is 2**78 -1, or
8**26 - 1, or 302,231,454,903,657,293,676,543.

Exponents

The exponent part is a scale factor expressed as an integer power of 10. The exponent
part @@ <integer> signifies that the entire number is a double-precision value.

If the form of the unsigned number used includes only an exponent part, a decimal
number of 1 is assumed. For example, @-11 is interpreted as 1@-11.

8600 0098-505 2-9

Language Components

Remark

<remark>

<end remark }
E<comment remark>
<escape remark>

<end remark>
Any sequence of letters, digits, and spaces not containing the reserved words END,
ELSE, or UNTIL.

<comment remark>

— COMMENT —=<comment characters>— ; I

<comment characters>

Any sequence of EBCDIC characters not containing a semicolon ;).

<escape remark>

— % —<escape text {

<escape text>

Any sequence of EBCDIC characters.

Remarks are provided as methods of inserting program documentation throughout an
ALGOL source file.

The end remark can follow the language component END. The compiler recognizes the
termination of the end remark when it encounters one of the reserved words END,
ELSE, or UNTIL, or any nonalphabetic, nonnumeric EBCDIC character. Defines are not
expanded within an end remark.

The comment remark is delimited by the word COMMENT at the beginning and a
semicolon (;) at the end. The comment remark can appear between any two language
components except within editing specifications.

Note: An apostrophe (') within a comment remark can cause a syntax error when the
compiler is within an area that the compile-time facility is skipping. You should avoid the
use of an apostrophe where possible.

Because remarks, string literals, and define invocations are language components, a
comment remark is not recognized within a string literal, a define invocation, or another
remark. Comment remarks can contain the dollar sign ($), but the comment remark must
not contain a dollar sign as the first nonblank character on a source record. If a dollar sign
is the first nonblank character on a source record, the compiler interprets the source
record as a compiler control record.

8600 0098-505

Language Components

The percent sign (%) preceding escape text in an escape remark can follow any language
component. The escape remark begins with the percent sign and extends to the
beginning of the sequence number field of the record. The compiler does not examine
the escape remark. When the percent sign that precedes an escape remark is
encountered, the compiler skips immediately to the next record of the source file before
continuing the compilation.

Examples

The following program illustrates some syntactically correct uses of the remark.

BEGIN
FILE F(KIND=PRINTER COMMENT;);
FORMAT COMMENT; FMT COMMENT; (A4,16);
PROCEDURE P(X,COMMENT;Y,Z);

REAL X,Y COMMENT; ,Z; % PERCENT SIGN CAN BE USED HERE
X :=Y + COMMENT; Z; % HERE T0O

IF COMMENT; 7 > 5 THEN
WRITE(F,<"0K">);
IF 4 COMMENT; > 2 THEN
WRITE(F,<"0K">);
IF 8 > 5 THEN
WRITE COMMENT; (F,<"0K">);
END OF PROGRAM.

The following program illustrates some invalid uses of the remark.

BEGIN
FILE F(KIND=PRINTER);
FORMAT FMT(13,F10.3 COMMENT; ,A4);
ARRAY A[0:99];
REAL X;
FORMAT ("ABC", % CANNOT BE USED. "DEE");
WRITE(F,<"INVALID USE" COMMENT;>);
REPLACE POINTER(A) BY "ABCD COMMENT;EFGHIJ";
X := "AB,COMMENT;C";
COMMENT CANNOT BE USED HERE COMMENT; EITHER;
END.

8600 0098-505 2-1

Language Components

String Literal

<string literal>

—|—<s1'mp1e string Titeral | {

<simple string literal>

——<binary code>— " —<binary string>— " {
—<quaternary code>— " —<quaternary string>— " —
—<octal code>— " —<octal string>— " —————
—<hexadecimal code>— " —<hexadecimal string>— " —

" —<EBCDIC string>— " —————

—<EBCDIC code>
L<ASCII code>— " —<ASCII string>— "

<binary code>

1 |
— 120 —
L 13 —|
— 130 —
14 —]
— 140 —
L 16 —|
— 160 —
17 —|
— 170 —
L 18 —|
L 180 -

<binary string>

f 0 |
L1

] |

<quaternary code>

2 |
L 20 —|
24 |
— 240 —|
— 260 —
— 270 —
L 280 -

2-12 8600 0098-505

Language Components

<quaternary string>
A |
1
2
3
<octal code>

3 |
30

36

360

<octal string>

—|—<0cta1 character | I

<octal character>

NooP~,wWwNhEH—,O

<hexadecimal code>
; |
40
47
470
48
480

<hexadecimal string>

—|—<hexadec1'ma1 character | }

8600 0098-505 2-13

Language Components

<hexadecimal character>
0

L1

[
)

|
TMMOOmIOWOONOOT~W
|

<EBCDIC code>

[5]

<EBCDIC string>

any <EBCDIC character> except quotation mark 1

<EBCDIC character>
Any one of the 256 possible EBCDIC characters.

<ASCII code>

C 7o

<ASCII string>

<ASCII character>
Any one of the 128 possible ASCII characters.

<printable character>

Any <letter>, any <digit>, any <special character>, or a blank.

any <ASCII character> except quotation mark J—4|

8600 0098-505

Language Components

<special character>

Any one of the following characters:

@ at (Teft parenthesis I exclamation point
number) right parenthesis ? question mark

$ dollar [Teft bracket ' apostrophe (single quote)
% percent 1 right bracket + plus sign

& ampersand { left brace - minus sign (hyphen)
* asterisk } right brace | split bar

= equal sign < less than ~ tilde

, comma > greater than ~ circumflex (carat)
; semicolon / slash ~ grave accent

: colon \ backslash " quotation mark

. period underscore

Character Size

Strings can be composed of binary (1-bit) characters, quaternary (2-bit) characters, octal
(3-bit) characters, hexadecimal (4-bit) characters, ASCII (7-bit in 8-bit format) characters,
or EBCDIC (8-bit) characters. The word formats of various character types are described
under “Character Representation” in Appendix C “Data Representation.”

String Code

The string code determines the interpretation of the characters between the quotation
marks (") of a string literal. The string code specifies the character set and, for strings of
less than 48 bits, the justification. The first digit of the string code specifies the character
set in which the source string is written. The next nonzero digit (if any) specifies the
internal character size of the string to be created by the compiler. If no nonzero digit is
specified, the internal size is the same as the source size. If the internal size is different
from the source size, the length of the string must be an integral number of internal
characters. For example, the string literal 48"C1C2C3C4" is an EBCDIC string expressed
in terms of hexadecimal characters.

If the string literal contains fewer than 48 bits, a trailing zero in the string code specifies
that the string literal is to be left-justified within the word and that trailing zeros are to fill
out the remainder of the word.

If the string literal contains fewer than 48 bits, the absence of a trailing zero in the string
code specifies that the string literal is to be right-justified within the word and that
leading zeros are to fill out the remainder of the word.

If the string literal contains 48 or more bits, the presence or absence of a trailing zero in
the string code has no effect.

If the string code is not specified, the source string and the internal representation of the

string are of the default character type. For more information, refer to “Default Character
Type" in Appendix C, “Data Representation.”

8600 0098-505 2-15

Language Components

String Length

The maximum length permitted for a simple string literal is 256 characters; the maximum
length permitted for a string literal is 4095 characters. However, when a string literal is
used as an arithmetic primary, it must not exceed 48 bits in length.

Internally, a string literal of 48 bits or less is represented in the object code as an 8-bit,
16-bit, or 48-bit literal. A string literal more than 48 bits long is stored in a pool array
created by the compiler. An internal pointer carries the character size and address of the
string within the pool array.

ASCII Strings

The ASCII string code can be used only with ASCII strings composed entirely of
characters that have corresponding EBCDIC graphics. This is because the compiler
recognizes only ASCII characters that have corresponding EBCDIC graphics.

The compiler translates each ASCII character into an 8-bit character. The rightmost seven
bits are the ASCII representation of that character; the leftmost bit is 0.

ASCII characters that are not in the EBCDIC character set must be written as a
hexadecimal string in which each pair of hexadecimal characters represents the internal
code of one ASCII character, right-justified with a leading 0 bit.

Quotation Mark

The quotation mark (") can appear only as the first character of a simple string literal.
Strings with internal quotation marks must be broken into separate simple strings by
using three quotation marks in succession. For example, the string literal "ABC"
represents the string "ABC, and the string literal"A"™"BC" represents the string A"BC.

Dollar Sign
String literals can contain the dollar sign ($). The dollar sign must not be the first nonblank

character on a source record. If a dollar sign is the first nonblank character on a source
record, the compiler interprets the source record as a compiler control record.

2-16 8600 0098-505

Section 3
Declarations

A declaration associates certain characteristics and structures with an identifier. In an
ALGOL program, every identifier must be declared before it is used. The compiler
ensures that subsequent usage of an identifier in a program is consistent with its
declaration.

In this section, the ALGOL declarations are listed and discussed in alphabetical order. In
many cases, the entire syntax diagram for a declaration is divided into smaller segments,
and each segment is discussed in turn. Each declaration is accompanied by examples of
its use.

8600 0098-505 3-1

ALPHA Declaration

ALPHA Declaration

The ALPHA declaration is semantically identical to REAL. ALPHA is used instead of REAL
when the identifier is used to hold six or fewer EBCDIC or ASCI| characters. For more
information, refer to the REAL declaration later in this section.

3-2 8600 0098-505

ARRAY Declaration

ARRAY Declaration

An ARRAY declaration declares one or more identifiers to represent arrays of specified
fixed dimensions. After an array has been declared in an ARRAY declaration, values can
be stored in and retrieved from the elements of the array by the use of subscripted
variables, which contain the array identifier and a subscript list.

<array declaration>

ARRAY —
— PRIVATEj L LONG L OWN l |—<ar‘r‘ay c]ass>J
L PUBLIC

E]

»—TL<1dent;f1er>J— [—<bound pair Tist>—] '
<

. |
array row equivalence |

PRIVATE and PUBLIC Specifiers

The PRIVATE and PUBLIC specifiers can only be used for arrays declared within a
structure block or a connection block. The PRIVATE specifier limits visibility of the array
to the scope of the structure block or a connection block. A PRIVATE array cannot be
accessed using a structure or connection block qualifier. The PUBLIC specifier allows the
array to be accessed using a structure or connection block qualifier. If neither PRIVATE
nor PUBLIC is specified, the default value is PUBLIC and access to the array using a
structure or connection block qualifier is allowed.

LONG Arrays

The LONG specification affects only array rows. It specifies that the array is not to be
paged regardless of its length. The maximum length of a LONG array is 65,535 words.
Attempting to allocate, or to use the RESIZE statement to create, an array larger than the
limit causes termination of the program at run time.

Normally, an array row longer than a certain threshold is automatically subdivided, or
segmented, at run time into pages. Each page is of a fixed length, except the last, which
can be shorter. The page size is a property of the machine on which the program is run; it
is always a power of two and is never less than 256 words. The paging threshold is
maintained by the operating system on which the program is run. The operating system
enforces a limit on the size of a LONG array; the maximum length of a LONG array is
65,535 words, and it is never less than max (page_size, 1024) words.

The array size at which an array row is automatically paged can be changed with the
system command SEGARRAYSTART. For more information on the SEGARRAYSTART
command, see the System Commands Operations Reference Manual. Arrays smaller
than 1024 words are never paged.

When LONG specification is designated, the maximum size of an array row is
determined by the overlay row size of the system, which is specified at cold-start time.

8600 0098-505 3-3

ARRAY Declaration

OWN Arrays

If an OWN array is declared, the array and its contents are retained on exit from the block
in which the array is declared and are available on subsequent reentry into the block.

OWN arrays are allocated only once, regardless of the number of times entry is made
into the block in which the array is declared. If the OWN array is declared with variable
bounds, these bounds are evaluated once when the array is allocated, and the affected
dimension retains these bounds for the remainder of the program execution. For
information on resizing the array, refer to “RESIZE Statement” in Section 4,
“Statements.”

An OWN array remains unreferenced from the time the program begins execution until
the first execution of a statement that references the array is encountered. Once such a
statement is encountered, the array is referenced, or touched for the remainder of the
program execution.

An array that is not an OWN array remains unreferenced from the time the program
enters the block in which the array is declared until the first execution of a statement that
refers to the array. Once such a statement is encountered, the array is touched until the
program exits the block.

Arrays not declared as OWN arrays are deallocated on exit from the block in which they
are declared and are reallocated on every entry into the block in which the arrays are
declared.

Identifiers

<array identifier>

An identifier that is associated with an array in an ARRAY declaration.

<character array identifier>

An array identifier, array reference identifier, direct array identifier, or value array identifier
that is declared with a character type.

<word array identifier>

An array identifier, array reference identifier, direct array identifier, or value array identifier
that is declared with a word type.

3-4 8600 0098-505

ARRAY Declaration

Array Class

<array class>

—E<w0r‘d type '
<character ’cype>J !

<word type>

BOOLEAN |
COMPLEX —

DOUBLE —
INTEGER
REAL ——

<character type>

Arrays declared in the same ARRAY declaration are of the same array class. If the array
class is omitted, a REAL array is assumed. Arrays not declared with a character type are
called word arrays. Arrays declared with a character type are called character arrays.
Word and character arrays can be passed as parameters and used as array rows.
Character arrays can be used as simple pointer expressions.

For character arrays, the actual storage area allocated is the number of whole words
sufficient to contain the specified number of characters. The last portion of the last word
in the storage area can be referenced by using pointer operations, even if this portion is
beyond the valid subscript range. For example, if array A is declared

EBCDIC ARRAY A[0:3], the characters corresponding to Al4] and A[5] can be referenced
by using a pointer operation.

Element Width

The element width of an array is the number of bits used to contain each element of the
array. The element width is determined by the array class, as follows:

Array Class Element Width

DOUBLE, COMPLEX 96 bits (double word)
INTEGER, REAL, 48 bits (single word)
BOOLEAN

EBCDIC, ASCII 8 bits (6 characters per word)
HEX 4 bits (12 characters per word)

8600 0098-505 3-5

ARRAY Declaration

Within the operating system, arrays are manipulated by means of descriptors; each
descriptor specifies an element width appropriate to the array class. Single-word and
double-word descriptors are used for word arrays; 4-bit and 8-bit descriptors are used for
character arrays.

Because complex and double array elements are composed of two 48-bit words, the two
words are allocated contiguously. The layout of a complex array is as follows: the real
part of the first element, the imaginary part of the first element, the real part of the
second element, the imaginary part of the second element, and so on. Similarly, the
layout of a double array is as follows: the first word of the first element, the second word
of the first element, the first word of the second element, the second word of the
second element, and so on.

For information on the internal representation of double and complex operands, refer to
"Two-Word Operand” in Appendix C, “Data Representation.”

Bound Pair List

<bound pair list>

—|—<bound’pa1' ro] '

<bound pair>

—<1lower bound>— : —<upper bound }

<lower bound>

—<arithmetic expression {

<upper bound>

—<arithmetic expression {

The subscript bounds for an array are given in the first bound pair list following the array
identifier. The bound pair list gives the lower and upper bounds of all dimensions, in order
from left to right. In all cases, upper bounds must not be less than their associated lower
bounds.

For arrays declared within a STRUCTURE BLOCK TYPE declaration, evaluations of the
arithmetic expressions in the bound pair list are done once for each structure block
instance (structure block variable or structure block array element) when the structure
block instance is first created. The structure block instance is created upon the execution
of the first reference to the structure block variable or structure block array element, that
is, when the activation record for the structure block instance is first made present.

8600 0098-505

ARRAY Declaration

Arithmetic expressions used as array dimension bounds are evaluated once (from left to

right) on entering the block in which the array is declared. These expressions can depend
only on values that are global to that block or passed in as actual parameters. The results
of the arithmetic expressions are evaluated as integers. Arrays declared in the outermost
block must use constant bounds or constant expression bounds.

The maximum value of the lower bound is 131,071; the minimum value of the lower
bound is =131,071.

Original and Referred Arrays

Every array identifier that is declared with a bound pair list is an original array, which is
distinct from all other original arrays.

There are three other ways to associate an identifier with an array: array row
equivalence, array reference assignment, and array specification in a PROCEDURE
declaration. In each of these cases, the identifier refers to the same data as an original
array. Such an identifier is called a referred array. An array row equivalence or array
reference assignment can cause an array identifier of one array class to refer to data in
an original array of another array class.

Dimensionality
The dimensionality (number of dimensions) of an original array is the number of bound
pairs in the bound pair list with which the array is declared. Arrays cannot have more than

16 dimensions.

The size (number of elements) of each dimension of an array declared with a particular
bound pair is given by the following expression:

<upper bound> - <lTower bound> + 1
The maximum number of elements in an ARRAY dimension can vary and is checked by
the MCP when a program is executed. The maximum size of a dimension is dependent

on the system on which the program is executed. The current range of size is 2**20-1,
2*%*24-1,2**27-1, and 2**28-1.

8600 0098-505 3-7

ARRAY Declaration

Array Row Equivalence

3-8

<array row equivalence>

—<identifier>— [—<lower bound>—] — = —<array row |

An array row equivalence causes the declared array identifier to refer to the same data as
the specified array row. That array row can be an original array or another referred array.
The declared identifier is an equivalent array.

The size of the declared array is determined by the size and element width of the array
row and the element width for the array class of this declaration. For example, assume
that Sa and Wa are the size and element width of the array row, and that Wea is the
element width for the equivalent array. The size of the equivalent array, Sea, is then the
following:

Sea := (Sa * Wa) DIV Wea

Because of the truncation implicit in the DIV operation, Sea * Wea might be less than
Sa * Wa. In this case, indexing the equivalent array by Sea + <lower bound> causes an
invalid index fault. Nevertheless, pointer operations that use the equivalent array can
access the entire area of memory allocated to the original array to which the array
identifier ultimately refers; the memory area can hold more than Sea elements of width
Wea.

The array row equivalence enables the program to reference the same array row with
two or more identifiers. Each identifier can reference the same data with different type,
character type, or lower bound specifications. For example, in the following program,
both [[2] and R[0] contain the value 25.0 after the assignment /[2] := 25.234 is executed.
However, after the assignment R[0] .= 25.234 is executed, both I[2] and R[0] contain the
value 25.234.

BEGIN
REAL ARRAY R[0:9];
INTEGER ARRAY I[2] = R; % Array row equivalence. The INTEGER
% array I refers to the same data as
the REAL array R.

[
%

I1[2]:= 25.234;
R[0]:= 25.234;
END.

8600 0098-505

ARRAY Declaration

The array row equivalence part cannot appear in an ARRAY declaration that declares an
OWN array. For example, the following declaration is invalid:

OWN ARRAY A[0] = B

An array declared with an array row equivalence part is an OWN array if and only if the
array to which it is equated is an OWN array.

Note: There are subtle restrictions on the correct declaration and use of an array row
equivalence in which the array row of the declaration is a row of an array reference,
because the default state of an array reference variable is uninitialized.

If the array reference is one-dimensional and has the same element width as the new
array, then the two identifiers become synonyms. Whenever the array reference variable
is assigned a value, the equivalent array describes the same data.

If the array reference is multidimensional and/or has a different element width than the
new array, the array row equivalence is established from the value of the array reference
variable at the time the program enters the block containing the array row equivalence
declaration. Later assignments to the array reference variable do not affect the array row
equivalence. Therefore, in order for the declaration to be useful, the array reference
variable must have been declared and initialized in a scope global to the block declaring
the array row equivalence.

Array Row

<array row>

|_ one-dimensional array name>:|—|
|:<connect1'on block qualifier> <array name>—<row selector>

<structure block qualifier>

An array row is a one-dimensional array designator.

<one-dimensional array name>

An <array name> whose identifier was declared with one dimension.

<array name>

<array identifier |
<direct array identifier>

<array reference identifier>—

<value array identifier>

8600 0098-505 3-9

ARRAY Declaration

Row Selector

<row selector>

—

*] |

J—<subscr‘1’ pt>— , JJ

<subscript>

—<arithmetic expression {

A row selector is the limiting case of a subarray selector, with only one asterisk.

Examples of ARRAY Declarations

The following example declares DOG, a four-dimensional array made up of
6 *26 * 7 * 13 = 14196 integer elements:

INTEGER ARRAY D0G[0:5,0:25,1:7,4:16]

The following example declares STUB, a one-dimensional OWN array made up of 10 real
elements:

OWN REAL ARRAY STUB[0:9]

The following example declares two real arrays: GROUP_REAL, which is a
one-dimensional array, and CAD, which is a two-dimensional array:

REAL ARRAY GROUP_REAL[0:17], CAD[400:500,1:50]

The following example declares the EBCDIC array GROUP_EBCDIC. Array row
equivalence causes GROUP_EBCDIC to refer to the same data as the previously
declared real array GROUP_REAL. Note that the element width of GROUP_REAL is
48 bits, whereas the element width of GROUP_EBCDIC is 8 bits. This means that a
reference to a single element in GROUP_REAL refers to 48 bits, and a reference to a
single element in GROUP_EBCDIC refers to 8 bits.

EBCDIC ARRAY GROUP_EBCDIC[O] = GROUP_REAL[*]
The following example declares XRAY, a one-dimensional array. Because no array class is
specified, the array class XRAY is of type REAL. The lower bound is the integerized value
of X +Y + Z, and the upper bound is the integerized value of 3 * A + B.

ARRAY XRAY [X+Y+Z:3*A+B]

8600 0098-505

ARRAY Declaration

The following example declares BIG_ARRAY, a one-dimensional array made up of
10,000 Boolean elements. Because BIG_ARRAY is declared a LONG array, the array is
not paged (segmented). Because it is not paged, the array occupies 10,000 contiguous
words in memory.

LONG BOOLEAN ARRAY BIG_ARRAY[0:9999]

The following example declares SEGARRAY, a one-dimensional array made up of
50,001 real elements. Because SEGARRAY is not declared a LONG array and the array
row is longer than 1024 words, SEGARRAY is automatically divided at run time into
segments that are 256 words long.

ARRAY SEGARRAY[0:50000]
The following example declares C, a two-dimensional array made up of 3 * 61 = 183
complex elements. Note that the element width of a complex array is 96 bits (two

words).

COMPLEX ARRAY C[0:2,0:60]

8600 0098-505 3-11

ARRAY REFERENCE Declaration

ARRAY REFERENCE Declaration

An ARRAY REFERENCE declaration is used to establish an array reference variable. The
array reference assignment statement can then be used to assign an array or part of an
array to this variable.

<array reference declaration>

— PRIVATEj L DIRECT il |—<ar‘r‘ay c]ass>J
L PUBLIC

ARRAY — REFERENCE ——

E]

»—J—<1dent;f1 er‘>J— [—<lower bounds>—] {

Following an array reference assignment, any subsequent use of the array reference
identifier acts as a reference to the array assigned to it. For more information on array
reference assignment, see “Array Reference Assignment” in Section 4, “Statements.”

The PRIVATE and PUBLIC specifiers can only be used for array reference variables that
are declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the array reference variable to the scope of the structure block or a
connection block. A PRIVATE array reference variable cannot be accessed using a
structure or connection block qualifier. The PUBLIC specifier allows the array reference
variable to be accessed using a structure or connection block qualifier. If neither PRIVATE
nor PUBLIC is specified, the default value is PUBLIC and access to the array reference
variable using a structure or connection block qualifier is allowed.

If the array class is not specified as COMPLEX, the array reference variable can be
declared as DIRECT. This declaration enables the array reference variable to be used in
direct 1/O operations.

If an array class is not specified, a REAL array is assumed.

Identifiers

<array reference identifier>

An identifier that is associated with an array reference in an ARRAY REFERENCE
declaration. A formal array parameter to a procedure is also treated as an array reference
identifier when referenced within the scope of the procedure.

<direct array reference identifier>

An identifier that is associated with an array reference that is declared as DIRECT in an
ARRAY REFERENCE declaration. A formal direct array parameter to a procedure is also
treated as a direct array reference identifier when referenced within the scope of the
procedure.

8600 0098-505

ARRAY REFERENCE Declaration

Lower Bounds

<lower bounds>

E]
—|—<ar1' thmetic expression '

The number of dimensions of the array reference variable is determined by the number
of lower bounds in its declaration. No more than 16 dimensions are allowed. For more
information on lower bounds, see "ARRAY Declaration” earlier in this section.

The initial state of an array reference variable is uninitialized. Any attempt to use an
uninitialized array reference variable as an array results in a fault at run time.

Examples of ARRAY REFERENCE Declarations
The following example declares REFARRAY, an array reference variable with a lower

bound of 3. Because an array class is not specified, REFARRAY is a real array reference
variable.

ARRAY REFERENCE REFARRAY[3]
The following example declares DIRREFARRAY, a direct, real array reference variable
with a lower bound equal to the value of N. Because this array reference variable is
declared to be DIRECT, it can be used in direct I/O operations.

DIRECT ARRAY REFERENCE DIRREFARRAY[N]
The following example declares two complex array reference variables. CREF1 is a
one-dimensional array reference variable with a lower bound of 0 (zero), and CREF2 is

three-dimensional with lower bounds of 0, 10, and 10.

COMPLEX ARRAY REFERENCE CREF1[0], CREF2[0,10,10]

8600 0098-505 3-13

BOOLEAN Declaration

BOOLEAN Declaration

A BOOLEAN declaration declares simple variables that can have Boolean values of TRUE
or FALSE.

<Boolean declaration>

BOOLEAN J—[<1dent1f% er | |
i: PRIVATEj L OWN l <equation par’c>J !
PUBLIC

The PRIVATE and PUBLIC specifiers can only be used for simple variables that are
declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the simple variable to the scope of the structure block or the connection
block. A PRIVATE simple variable cannot be accessed using a structure or connection
block qualifier. The PUBLIC specifier allows the simple variable to be accessed using a
structure or connection block qualifier. If neither PRIVATE nor PUBLIC is specified, the
default value is PUBLIC and access to the simple variable using a structure or connection
block qualifier is allowed.

A simple variable declared with the OWN specification retains its value when the
program exits the block in which the variable is declared. The value of that variable is
again available when the program reenters the block in which the variable is declared.
<Boolean identifier>

An identifier that is associated with the BOOLEAN data type in a BOOLEAN declaration.

Equation Part

<equation part>

—<identifiers— = —<identifier }

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier. This action is called address
equation. An identifier can be address-equated only to a previously declared local
identifier or to a global identifier. The first identifier must not have been previously
declared within the block of the equation part. An equation part is not allowed in the
global part of a program.

Address equation is allowed only among INTEGER, REAL, and BOOLEAN variables.
Because both identifiers of the equation part have the same address, altering the value
of either variable affects the value of both variables. For more information, see “Type
Coercion of One-Word and Two-Word Operands” in Appendix C, “Data Representation.”

The OWN specification has no effect on an address-equated identifier. The first identifier

of an equation part is declared with the OWN specification only if the second identifier of
the equation part is also declared with the OWN specification.

8600 0098-505

BOOLEAN Declaration

Boolean Simple Variable Values
The TRUE or FALSE value of a Boolean simple variable and the value of any other
Boolean operand depend only on the low-order bit (bit zero) of the word. Each of the
48 bits of a Boolean simple variable contains a Boolean value that can be interrogated or
altered by using the partial word part or concatenation.

When a Boolean simple variable is allocated, it is initialized to FALSE, a 48-bit word with
all bits equal to 0 (zero).

Refer to Appendix C, “Data Representation,” for additional information on the internal
structure of a Boolean operand.

Examples of BOOLEAN Declarations

The following example declares BOOL as a Boolean simple variable.

BOOLEAN BOOL
The following example declares DONE and ENDOFIT as Boolean simple variables.
Because they are declared as OWN, these simple variables retain their values when the
program exits the block in which the simple variables are declared.

OWN BOOLEAN DONE, ENDOFIT
The following example declares FLAG and BINT as Boolean simple variables, and
address-equates BINT to the previously declared simple variable INTGR. The variables

BINT and INTGR share the same address.

BOOLEAN FLAG, BINT = INTGR

8600 0098-505 3-15

COMPLEX Declaration

COMPLEX Declaration

A COMPLEX declaration declares a simple variable that can have complex values.

<complex declaration>

T COMPLEX ——<ident fier>] |
e
PUBLIC

<complex identifier>

An <identifier> that is associated with the COMPLEX data type in a COMPLEX
declaration.

Complex Variables

Complex variables allow for the storage and manipulation of complex values in a
program. The interpretation of complex values is the usual mathematical one. The real
and imaginary parts of complex values are always stored separately as single-precision
real values.

Because a real value is a complex value with an imaginary part equal to O (zero), the set
of real values is a subset of the set of complex values. Therefore, arithmetic values can
be assigned to complex variables, but complex values cannot be assigned to arithmetic
variables.

The PRIVATE and PUBLIC specifiers can only be used for simple variables that are
declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the simple variable to the scope of the structure or connection block. A
PRIVATE simple variable cannot be accessed using a structure block or the connection
block qualifier. The PUBLIC specifier allows the simple variable to be accessed using a
structure or connection block qualifier. If neither PRIVATE nor PUBLIC is specified, the
default value is PUBLIC and access to the simple variable using a structure or connection
block qualifier is allowed.

A simple variable declared to be OWN retains its value when the program exits the block
in which it is declared. The value of that variable is again available when the program
reenters the block in which the variable is declared.

Refer to Appendix C, “Data Representation,” for additional information on the internal
structure of a complex operand.

3-16 8600 0098-505

COMPLEX Declaration

Examples of COMPLEX Declarations

The following example declares C1 and C2 as complex simple variables.

COMPLEX C1, C2
The following example declares CURRENT, VOLTAGE, and AMP as complex simple
variables. Because they are declared as OWN, these simple variables retain their values

when the program exits the block in which the simple variables are declared.

OWN COMPLEX CURRENT, VOLTAGE, AMP

8600 0098-505 3-17

CONNECTION BLOCK REFERENCE VARIABLE Declaration

CONNECTION BLOCK REFERENCE VARIABLE
Declaration

<connection block reference variable declaration>

—|—<c0nnect1'on b]ock.type 1'dent1'f1'er‘>J— REFERENCE —<1'dent1'f1'er‘>—|

A CONNECTION BLOCK REFERENCE VARIABLE declaration declares a connection
reference variable with the type of the connection block type identifier. A CONNECTION
BLOCK REFERENCE ASSIGNMENT statement can then be used to assign an instance of
the connection block of the declared type to this variable.

A reference to an embedded connection block is allowed by the following syntax:
outerSBtype.embeddedCBtype REFERENCE <id>

<connection block reference variable>

An identifier that is associated with a connection block reference in a CONNECTION
BLOCK REFERENCE VARIABLE declaration.

The following example shows the declaration of a connection block reference variable:

TYPE STRUCTURE BLOCK SB;
BEGIN
TYPE CONNECTION BLOCK CBINNER;
BEGIN
REAL X;

END;
CBINNER LIBRARY CLINNER(CONNECTIONS = 8);
END;

SB SBVAR;

SB.CBINNER REFERENCE CBINNER REF;
CBINNER _REF:= SBVAR.CLINNER [5];

3-18 8600 0098-505

CONNECTION BLOCK TYPE Declaration

CONNECTION BLOCK TYPE Declaration

Connection blocks are similar to structure blocks but provide a means of specifying
procedures for export and import. From the CONNECTION BLOCK TYPE declaration you
can declare a connection library.

<connection block type declaration>

—E<1oca1 connection block type declaration n }
<global connection block type declaration>
<local connection block type declaration>
— TYPE CONNECTION BLOCK —<identifier>— ; — BEGIN —=<declaration list>— END —|

<global connection block type declaration>

A global connection block can appear only in the global part of a program unit and cannot
be nested. Global connection blocks enable the replacement binding of connection block
procedures.

—E<for‘war‘d global connection block type declaration a |
<external global connection block type declaration>

<forward global connection block type declaration>
— TYPE CONNECTION BLOCK —<identifier>— ; — FORWARD

Connection blocks can be declared FORWARD within the global part of a subprogram.
The global connection block then can be used for global connection library declarations
within the global part. The global connection block must be fully specified before it is
referenced. This syntax is used when the subprogram references a connection block
item from outside the connection block.

<external global connection block type declaration>
— TYPE CONNECTION BLOCK —<identifier>— ; — EXTERNAL I

The EXTERNAL connection block sets up the environment for connection block pending
procedures in the subprogram to be bound to the host. Only those connection block
items that are referenced by the pending procedures need to be specified in the
subprogram connection block declaration. The local declarations of the connection block
items in the host that are not referenced by the pending procedures do not need to be
specified in the subprogram. This enables pending procedures in the subprogram to be
bound without having to fully declare the entire connection block. EXTERNAL connection
blocks cannot be bound. Connection libraries cannot be derived from EXTERNAL
connection blocks. EXTERNAL connection blocks must be declared at level 3.

All rules and restrictions that apply to the STRUCTURE BLOCK TYPE declaration also
apply to the CONNECTION BLOCK TYPE declaration.

Connection blocks can be declared within connection or structure blocks, but a

connection library cannot be declared with the type of the inner connection block outside
the outer connection or structure block.

8600 0098-505 3-19

CONNECTION BLOCK TYPE Declaration

<connection block type identifier>

An identifier that is associated with a connection block type in a CONNECTION BLOCK
TYPE declaration.

Referencing Connection Block Items Outside the Connection Block

<connection block item designator>

—=<connection block qualifier>—=<connection block item |

<connection block qualifier>

—L[<connection library instance designattl— . | }
<connection block reference variable>

<connection block item>
Any identifier that was declared inside a CONNECTION BLOCK TYPE declaration.

When items of a connection block are referenced outside the connection block, the
connection block qualifier must be used to identify those items. The restrictions about
what types of items can be referenced outside a structure block also apply to connection
blocks.

A connection block procedure can be declared as NULL in an EXTERNAL connection
block in a subprogram. The procedure serves as a placeholder for a procedure that is
referenced by the pending procedure that is to be bound. A procedure in an EXTERNAL
connection block can be declared only as PENDING, NULL, or IMPORTED.

For more information about structure block binding, refer to the Binder Programming
Reference Manual.

3-20 8600 0098-505

CONNECTION BLOCK TYPE Declaration

Examples of CONNECTION BLOCK TYPE Declaration

The following example includes the ALGOL host program and an ALGOL subprogram
that references connection block items from outside the connection block.

ALGOL Host Program

BEGIN
TYPE CONNECTION BLOCK CB;
BEGIN
REAL PROCEDURE R1;
BEGIN
REAL R;
R:= 5.5
R1:= R;
END R1;
END CB;

CB SINGLE LIBRARY CL;

PROCEDURE EXTERNAL PROC;
EXTERNAL;

EXTERNAL PROC;
END.

ALGOL Subprogram

[
TYPE CONNECTION BLOCK CB; FORWARD;
CB SINGLE LIBRARY CL;

]

TYPE CONNECTION BLOCK CB; % CB is fully specified here
BEGIN
REAL PROCEDURE R1;
BEGIN
REAL R;
R:=5.5;
R1:=R;
END R1;
END CB;

$ SET LEVEL 3
PROCEDURE EXTERNAL PROC;

BEGIN

REAL REEL;
REEL := CL.R1;
END.

8600 0098-505 3-21

CONNECTION BLOCK TYPE Declaration

The following example includes an ALGOL host program that declares a connection block
with imported library objects and an external procedure. Also included is an example of a
subprogram containing the procedure to be bound and, for completeness, an example of
the library file.

ALGOL Library Program

BEGIN
EVENT EV;
TYPE CONNECTION BLOCK CB;
BEGIN
EBCDIC ARRAY OUTPUTMSG[0:30];
PROCEDURE SENDOUTPUT;
BEGIN
DISPLAY (STRING (OUTPUTMSG[0],10));
END;

EXPORT
OUTPUTMSG (READWRITE),
SENDOUTPUT;
END CB;

CB SINGLE LIBRARY CL_LIB;
EXPORT EV;
READYCL (CL_LIB);

FREEZE (TEMPORARY);
END.

ALGOL Host Program

BEGIN
TYPE CONNECTION BLOCK CB;
BEGIN
REAL R;
IMPORTED EBCDIC ARRAY % Imported library object
OUTPUTMSG[0] (READWRITE);
PROCEDURE SENDOUTPUT; % Imported library object
IMPORTED;
PROCEDURE P1;
EXTERNAL;
END CB;

CB SINGLE LIBRARY CL
(AUTOLINK=TRUE,
INTERFACENAME="CL LIB.",
TITLE="0OBJECT/IMPORTED/CL/LIB."
)s

CL.P1;
END.

3-22 8600 0098-505

CONNECTION BLOCK TYPE Declaration

ALGOL Subprogram

$ set level 4
[TYPE CONNECTION BLOCK CB; EXTERNAL;]

TYPE CONNECTION BLOCK CBj;

BEGIN

IMPORTED EBCDIC ARRAY % Imported library object
OUTPUTMSG[0] (READWRITE);

PROCEDURE SENDOUTPUT; % Imported library object
IMPORTED;

PROCEDURE P1;
PENDING;

END CB;

PROCEDURE CB.P1;
BEGIN
REPLACE OUTPUTMSG[0] BY "IN P1";
SENDOUTPUT;
END PI1.

8600 0098-505 3-23

CONNECTION LIBRARY Declaration

CONNECTION LIBRARY Declaration

3-24

Connection libraries provide the ability to establish asynchronous two-way connections
between libraries that provide access to the procedures of the connected library.

<connection library declaration>

—=<connection block type identifier B a
SINGLE i: EXPORTING
IMPORTING

>— LIBRARY J—<connec’c1’on 11'bra;‘y specification | }

When you declare a connection library, if you specify SINGLE, then only a single
connection is allowed for this connection library and a connection index must not be
specified when referencing an item of a connection block. An attempt to modify the
CONNECTIONS attribute of a SINGLE library to a value other than 1 results in an attribute
error.

If you specify EXPORTING, the compiler gives a syntax error if the specified connection
block contains imports. If you specify IMPORTING, the compiler gives a syntax error if
the specified connection block contains exports. EXPORTING and IMPORTING cannot
appear in FORWARD declarations of connection libraries.

<connection library specification>
—<identifier>— (—<library attribute specifications>—) 4|

The <procedure identifier> specified for the CHANGE <procedure-valued library attribute
name> must be declared inside the specified connection block. The <procedure
identifier> specified for the APPROVAL <procedure-valued library attribute name>must
be declared outside of the specified connection block if it is declared at all.

<connection library identifier>
An identifier that is associated with a connection library specification in a CONNECTION
LIBRARY declaration.

<connection library instance designator>

—-<connection Tibrary identifier

L [—<arithmetic expression>—] il

A <connection library instance designator> specifies a particular instance of a connection
library. If the connection library was declared without specifying SINGLE, the brackets
and <arithmetic expression> must be included in order to specify a particular instance.
The arithmetic expression must evaluate to a nonnegative integer.

For more information about procedure-valued library attributes, see the Task
Management Manual.

8600 0098-505

CONNECTION LIBRARY Declaration

Explanation

At library linkage time, if either half of a linkage operation is an EXPORTING or
IMPORTING connection library, the MCP checks that only a one-way import/export
relationship is being established. If the linkage operation would produce a two-way
import/export relationship, in conjunction with existing library and IPC relationships, the
linkage fails.

Also, if either half of a linkage operation is an EXPORTING or IMPORTING connection
library, the importing side of the connection must not be a server library, which is a
library established by the FREEZE statement.

You can avoid creating two-way import/export relationships by linking EXPORTING or
IMPORTING connection libraries first and then closing the loop with a server library
linkage or with a connection library linkage not specifying EXPORTING or IMPORTING.
This concern can be addressed by using only EXPORTING and IMPORTING connection
libraries for the library linkages within an application.

8600 0098-505 3-25

DEFINE Declaration

DEFINE Declaration

The DEFINE declaration causes the compiler to save the specified text until the
associated define identifier is encountered in a define invocation. At that point, the saved
text is retrieved and compiled as if the text were located at the position of the define
invocation.

<define declaration>

— DEFINE —<definition>—. |

<definition>

—<identifier B a = —<text>— # '
<formal symbol part>

<define identifier>

An identifier that is associated with text in a DEFINE declaration.

<text>

Any sequence of valid characters not including a free number sign (#) character.

Text is bracketed on the left by the equal sign (=) and on the right by the number sign (#).
The equal sign is said to be matched with the number sign. The text can be any
sequence of characters not containing a free number sign. A free number sign is one that
is not in a string literal, not in a remark, and not matched with an equal sign in a define
declaration within the text. The compiler interprets the first free number sign as signaling
the end of the text. That is, the first free number sign is matched with the equal sign that
started the text.

Compiler control records occurring within the text are processed normally if the dollar
sign ($) is in column 1 or 2. If the dollar sign is in column 3 or beyond, a syntax error is
generated whenever the define is invoked.

Note: \When declaring defines using included files, you should have the <text> and
terminating free pound sign (#) within the same file. These two parts should either be in
the same symbol file or the same include file. Failure to follow this guideline can produce
unexpected results. This is known to be true for number defines, for example

DEFINE A = 50#. For more information about include files, see the “INCLUDE Option” in
Section 6, “Compiling Programs.”

3-26 8600 0098-505

DEFINE Declaration

Formal Symbol Part

<formal symbol part>

—|: (L <forma gymbo1>J—) J |
[1 <format ;ymbo1>J—]

<formal symbol>

—<identifier }

A define has two forms: simple and parametric. These forms are readily differentiated
because parametric defines have a series of parameters (called formal symbols)
enclosed in matching parentheses or brackets. The parentheses and the brackets have
identical meanings.

The formal symbols constitute the essential part of a parametric define. Formal symbols
function similarly to the formal parameters of a PROCEDURE declaration. When a
parametric define is invoked, wherever formal symbols appear in the text, a substitution
of the corresponding closed text of the define invocation is made before that part of the
text is compiled. References to formal symbols cannot appear outside the text of the
corresponding parametric define. No more than nine formal symbols are allowed in a
parametric define. Note that if the formal symbols are themselves define identifiers, they
are not expanded.

Define Invocation

A define invocation causes a define identifier to be replaced by the text associated with
the define identifier.

<define invocation>

—=<define identifier '
|—<actua1 text pa\r‘t>J !

<actual text part>

(| cactual text>—) |
—|: [J—<ac’cua1 ’text>J—] J

The parentheses and the brackets have identical meanings. These symbols are used
when a parametric define is invoked.

8600 0098-505 3-27

DEFINE Declaration

<actual text>

Program text that cannot contain mismatched or unmatched parentheses, brackets, or
guotation marks, or any comma outside of these bracketing symbols.

The invocation of a parametric define causes the actual text to be substituted into the
positions in the text designated by the proper formal symbol.

The actual text need not be simple. As an example, assume you are using the following
DEFINE declaration:

DEFINE FOR J(A,B,C) = FOR J:= A STEP B UNTIL C #
For this declaration, the following applies:

Define Invocation Expands to
FORJ(0,B*3,MAX(X,Y,Z)) FOR J:= 0 STEP B*3 UNTIL MAX(X,Y,2)

The actual text can be empty in a define invocation. In this case, all occurrences of the
corresponding formal symbol in the text are replaced by no text. For example, assume
you are using the following DEFINE declaration:

DEFINE F(M, N) =M+ N #

For this declaration, the following applies:

Define Invocation Expands to Syntactically Correct?
R:=F(1), R:=+1; Yes
R :=F(2,); R:=2+; No

A define identifier cannot be invoked as a part, rather than the whole, of a language
component such as a string literal or a number. For example, assume you are using the
following declarations:

EBCDIC STRING S;
DEFINE EBCDIC _STR = 8 #;

For these declarations, the following two statements are not interpreted by the compiler
to be equivalent:

Statement Syntactically Correct?
S : = EBCDIC_STR"ABC"; No
S :=8"'ABC", Yes

3-28 8600 0098-505

DEFINE Declaration

The invocation of define EBCDIC_STR is interpreted by the compiler as a whole language
component, specifically a number, and not as an EBCDIC code preceding a quoted
EBCDIC string. Thus, it appears that a number is being assigned to a string variable,
which is illegal, and the compiler flags the statement with a syntax error.

As a further example, assume you are using the following declarations:

REAL R;
DEFINE ITEM = 15 #;

For these declarations, the following applies:

Statement Legal?
R:=ITEM; Yes
R := ITEM.30; No, because it is equal to R := (15).30;, which is illegal.

In the following instances, the appearance of a define identifier does not cause the
define to be expanded:

e Defines are not expanded in an end remark, a comment remark, or an escape
remark.

e Defines are not expanded within quoted strings. For example, assume you are using
the following declaration:

DEFINE ONE = THE FIRST #;

For this declaration, the string ONE WEEK is not equivalent to the string THE FIRST
WEEK.

o Defines are not expanded within identifiers. For example, assume you are using the
following declaration:

DEFINE A = PREFIX #;

For this declaration, the identifiers A_B and ABC are not expanded to PREFIX_B and
PREFIXBC.

8600 0098-505 3-29

DEFINE Declaration

3-30

Define identifiers are not always expanded when they occur in declarations. If the
define identifier occurs in a position where an identifier can appear, the define
identifier is not expanded. If the define identifier occurs in a position where an
identifier is not expected, the define identifier is expanded. The following examples
illustrate this rule:

DEFINE A = ARRAY #;

A B[0:10];
REAL A B[0:10];

o

A is expanded.

A can be interpreted as an identifier
in a REAL declaration. A is not
expanded. A syntax error results.

A is expanded.

N o o

o

EBCDIC A B[0:10];

DEFINE THE PARAMS = A PROCEDURE, B, C#,%THE PARAMS is not expanded

THE_CALL (THE_PARAMS, D) = %when a reference to THE CALL
BEGIN %is made; thus, THE CALL only
A _PROCEDURE (D); %has two formal parameters, not
END#; %four. The following receives a
PROCEDURE A PROCEDURE (Z); ... %syntax error indicating that the
END; % of A PROCEDURE %compiler expected a right
%parenthesis after the second
%parameter:

% THE_CALL (P, Q, R, S);

A define identifier is not expanded either in the format part of a FORMAT declaration
or in the editing specifications of a READ statement or WRITE statement.

Furthermore, if a FORMAT declaration or editing specifications are located within the
text of a parametric define, they cannot reference the formal symbols of that define.

A define identifier is not expanded when used in place of a file or task attribute
mnemonic. Refer to the File Attributes Programming Reference Manual for file
attribute mnemonics and the Work Flow Language (WFL) Programming Reference
Manual for task attribute mnemonics.

In the following example, the define identifiers are not expanded in the FILE
declaration or in the VALUE function:

DEFINE NEVERUSED = NEWTASK #,
PRINTER = REMOTE #;

FILE F(KIND = PRINTER); % INTERPRETED AS PRINTER,
% NOT REMOTE

T.STATUS := VALUE(NEVERUSED); % INTERPRETED AS NEVERUSED,
% NOT NEWTASK

If the ALGOL compiler encounters a syntax error while compiling the combination of the
text, actual text part, and formal symbol part at the occurrence of a define invocation,
some or all of the expanded define is given along with the appropriate error message.

8600 0098-505

DEFINE Declaration

To avoid problems with expanding a define, particularly when an expression is passed in
as actual text, each occurrence of a formal symbol in the text of a parametric define
should be enclosed in parentheses. For example, consider the following program:

BEGIN
BOOLEAN BOOL;
DEFINE
LOGIC1(A,B) = A AND B #,
LOGIC2(A,B) = (A) AND (B) #;

BOOL := LOGIC1(TRUE OR TRUE, FALSE); % INVOCATION OF LOGIC1
BOOL := LOGIC2(TRUE OR TRUE, FALSE); % INVOCATION OF LOGIC2
END.

The assignment of a value to BOOL differs, depending on whether you invoke LOGIC1 or
LOGIC2, as shown in the following table:

Invocation Evaluates As Value Assigned to
BOOL
LOGIC BOOL := TRUE OR (TRUE AND FALSE); TRUE

LOGIC2 BOOL := (TRUE OR TRUE) AND (FALSE); FALSE

Passing an updating expression to a parametric define should be done cautiously.
Multiple uses of the corresponding formal symbol cause multiple updates. For example,
assume you are using the following DEFINE declaration:

DEFINE Q(E) = E + 2 * E #

For this declaration, the following applies:

Define Invocation Expands to

QX:=X+1) X=X+1+2*X=X+1

8600 0098-505 3-31

DEFINE Declaration

Examples of DEFINE Declarations

3-32

The following example declares BLANKIT as a define identifier:
DEFINE BLANKIT = REPLACE POINTER(LINEOUT) BY "™ " FOR 22 WORDS #

Where BLANKIT appears as an allowable define invocation, it is expanded to the
following when the program is compiled:

REPLACE POINTER(LINEOUT) BY " " FOR 22 WORDS #
The following example declares SEC as a define identifier with a formal symbol X:
DEFINE SEC(X) = 1 / COS(X) #

If SEC(N) appears as an allowable define invocation, it is expanded to the following when
the program is compiled:

1/ COS(N)

The following example declares LENGTH as a define identifier with two formal symbols,
Xand:

DEFINE LENGTH(X,Y) = SQRT(X**2 + Y**2)#

If LENGTH(3,4) appears as an allowable define invocation, it is expanded to the following
when the program is compiled:

SQRT(3**2 + 4**2)

The following define results in a syntax error when it is invoked by passing a semicolon
as its parameter. The syntax error occurs because the parameter is not expanded when
viewed as part of an <end commentary>:

DEFINE X STATEMENT (SEP) = BEGIN
BEGIN
Z := -5
END SEP
A :=5;
END #;

8600 0098-505

DIRECT ARRAY Declaration

DIRECT ARRAY Declaration

A DIRECT ARRAY declaration declares arrays that can be used in direct |/O operations.

<direct array declaration>

— DIRECT ARRAY

L OWN J |—<ar‘r‘ay c]ass>J

L

»—TL<1'dent1ff1'er>J— [—<bound pair Tist>—] {
<

direct array row equivalence |

<direct array identifier>

An identifier that is associated with a direct array in a DIRECT ARRAY declaration.

<direct array row equivalence>
—<identifier>— [—<lower bound>—] — = —<direct array r‘ow>4|

<direct array row>

—E<one-d1'mens1'ona1 direct array name a {
<direct array name>—<row selector>

<one-dimensional direct array name>

A direct array name whose identifier is declared with one dimension.

<direct array name>

<direct array identifier }
|:<d1'\r‘ect array reference 1'dent1'1’1'e\r‘>J

8600 0098-505 3-33

DIRECT ARRAY Declaration

Declaring Direct Arrays

3-34

A direct array can be a word array or a character array. Direct arrays of type COMPLEX
are not allowed.

A direct array can be used in any way that a nondirect array can be used. However,
arbitrary use of direct arrays instead of normal arrays can seriously degrade overall
system efficiency.

The dimensionality of a direct array is the number of bound pairs in its declaration. No
more than 16 dimensions are allowed.

Note: There are subtle restrictions on the correct declaration and use of a direct array
row equivalence in which the array row of the declaration is a row of an array reference,
because the default state of a direct array reference variable is uninitialized.

For more information on the OWN specification, array class, bound pair list, lower bound,
and row selector, see “"ARRAY Declaration” earlier in this section. For information on the
direct array reference identifier, see “ARRAY REFERENCE Declaration” earlier in this
section.

A direct array has attributes that can be programmatically interrogated and altered
before, during, and after an actual I/O operation that uses the array.

Because a direct array can be used in performing direct I/O operations, a direct array is
automatically unpaged (nonsegmented). For more information on direct |/O operations,
see "l/O Statement” in Section 4, "“Statements.”

Caution

A DIRECT ARRAY declaration can also be used, instead of a LONG ARRAY
declaration, to declare an array that is longer than the 65,535-word maximum
limit for a long array. Doing so, however, disables normal system safeguards
for array sizing and addressing, and could cause incorrect addressing of that
array and data corruption on some system configurations.

The maximum size of a long array is determined by the configuration of the system.
Those limitations are imposed as safeguards to prevent data corruption. Declaring a
direct array explicitly defeats those safeguards.

For example, a long array cannot be declared so large that a valid character pointer
cannot be developed for any location in that array. The operating system discontinues
the program when it encounters such a declaration during program or procedure
initiation. Similarly, a long array cannot be the target of a RESIZE command that would
cause it to exceed the limits and endanger the contents of the array.

8600 0098-505

DIRECT ARRAY Declaration

Because these limits are explicitly disabled for a direct array, data in a very large direct
array could be corrupted without warning by an invalid pointer. Even if the initial size of
the array is within the system limitations, a direct array could be resized beyond those
limitations.

Always make sure that your program accesses to a direct array do not cause data
corruption.

Examples of DIRECT ARRAY Declarations

The following example declares DIRARY, a one-dimensional direct array. Because no
array class is specified, the array class of DIRARY is of type REAL.

DIRECT ARRAY DIRARY[0:29]
The following example declares the direct integer array DIREQVARAY. Array row
equivalence causes the array DIREQVARAY to refer to the same data as the previously

declared direct real array DIRARY.

DIRECT INTEGER ARRAY DIREQVARAY[5] = DIRARY

8600 0098-505 3-35

DOUBLE Declaration

DOUBLE Declaration

A DOUBLE declaration declares simple variables that can have double-precision values
(that is, 96-bit arithmetic entities).

<double declaration>

T~ DOUBLE ——<identfier>—! |
e
PUBLIC

<double identifier>

An identifier that is associated with the DOUBLE data type in a DOUBLE declaration.

Declaration of Simple Variables

A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared. That value is again available when the program reenters
the block in which the variable is declared.

When a double-precision simple variable is allocated, it is initialized to a double-precision
0 (zero), which is two 48-bit words with all bits equal to zero. Refer to Appendix C, “Data
Representation,” for additional information on the internal structure of a double-precision
operand.

The PRIVATE and PUBLIC specifiers can only be used for simple variables that are
declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the simple variable to the scope of the structure block or the connection
block. A PRIVATE simple variable cannot be accessed using a structure or connection
block qualifier. The PUBLIC specifier allows the simple variable to be accessed using a
structure or connection block qualifier. If neither PRIVATE nor PUBLIC is specified, the
default value is PUBLIC and access to the simple variable using a structure or connection
block qualifier is allowed.

Examples of DOUBLE Declarations

The following example declares DUBL, a double-precision simple variable.
DOUBLE DUBL

The following example declares three double-precision variables: BIGNUMBER,
GIGUNDOUS, and DUBLPRECISION.

DOUBLE BIGNUMBER, GIGUNDOUS, DUBLPRECISION

3-36 8600 0098-505

DUMP Declaration

DUMP Declaration

The DUMP declaration allows the display of the values of selected items during the
execution of a program.

<dump declaration>

— DUMP J—<f1'1e identifier>— (—<dum|3 1ist>—) —=<contro]l par‘t>J—{

<dump list>
<simple vériab]e | I
<array 1'dent1'f1'er‘>:‘
<label identifier>

The file identifier specifies the name of the file to which the displayed information is to
be written, and the dump list specifies the items whose values are to be displayed. The
following types of variables and arrays must not appear in the dump list:

e Arrays with multiple dimensions
e Character arrays
e String variables

e String arrays

8600 0098-505 3-37

DUMP Declaration

Control Part

<control part>

—<Tabel identifier

<label counter modulus>

|—<1abe1 counter modu]us>J |—<dump palr‘ame’celr‘s>J

— : —=<unsigned integer

<dump parameters>

—()
|—<1abe1 counte\r‘>J |—<bounds pa\r‘t>J

<label counter>

—<simple variable

<bounds part>

, —<lower Timit
L » —<upper Timit>—

» — » —<upper Timit

<lower limit>

—<arithmetic expression

<upper limit>

—=<arithmetic expression

The control part determines when the items are to be displayed. The control part can be

just a label identifier or it can have a combination of components.

Label Identifier

3-38

If the control part is simply a label identifier, the items in the dump list are dumped each
time program execution encounters the statement labeled by the specified label

identifier.

8600 0098-505

DUMP Declaration

Label Identifier with Label Counter Modulus

If a label counter modulus appears, the items in the dump list are dumped every

<label counter modulus> times that the statement labeled by the label identifier is
encountered. For example, if N is the label counter modulus and E is the number of
times that the labeled statement has been encountered, then the items in the dump list
are dumped whenever E MOD N is equal to O (zero).

Label Identifier with Dump Parameters

Dump parameters are used to restrict the dumping to a specified range of encounters.
All three parameters (the label counter, the lower limit, and the upper limit) are optional.

If a label counter is given, this variable is used to count the number of times that the
labeled statement has been encountered. The specified variable is incremented
automatically each time the labeled statement is encountered; changing the value of this
variable elsewhere in the program affects the dumping process.

The items in the dump list are dumped when the number of times the labeled statement
is encountered (or the value of the label counter variable, if specified) is greater than or
equal to the lower limit and less than or equal to the upper limit. If the lower limit is not
specified, it has a default value of 0 (zero). If the upper limit is not specified, it has a
default value of infinity (no limit).

Label Identifiers with Label Counter Modulus and Dump Parameters

When both a label counter modulus and dump parameters are specified, both the
modulus check and the range check are performed. The items in the dump list are
dumped when all the following conditions are true for the number of times that the
labeled statement has been encountered (or the value of the label counter variable, if
specified):

e The number is greater than or equal to the lower limit and less than or equal to the
upper limit.

e The number is evenly divisible by the label counter modulus.

8600 0098-505 3-39

DUMP Declaration

Form of Output

3-40

The information produced when a dump occurs depends on the declared types of the
items to be dumped. When a dump occurs, the 1-character to 6-character symbolic name
of each item in the dump list is produced, along with the following information:

For dumped simple variables,

If the simple variable is of type REAL or DOUBLE, a real value is printed—for
example, R =.10000000000 or DUBL = 0.0.

If the simple variable is of type INTEGER, an integer value is printed—for example,
=2.

If the simple variable is of type BOOLEAN, the Boolean value is printed—for
example, BOOL =.FALSE..

If the simple variable is of type COMPLEX, it is printed as a pair of numbers. The
format consists of a left parenthesis, the real part in REAL format, a comma, the
imaginary part in REAL format, and a right parenthesis—for example,

COMP = (3.0000000000, 5.0000000000).

For dumped arrays,

If the array is of type REAL, each element is printed as if the value were operated on
by an R editing phrase. For more information, see “FORMAT Declaration.”

If the array is of type BOOLEAN, the value of each element is shown as .TRUE. or
.FALSE..

If the array is of type INTEGER, each element is printed as an integer value.

If the array is of type COMPLEX, each element is printed in the form used for
complex variables for example, CA = (2.0000000000, 3.0000000000),
(5.0000000000, 7.0000000000).

A dumped label shows the number of times execution control has passed the specified
label—for example, L2 = 3.

8600 0098-505

DUMP Declaration

Examples of DUMP Declarations

The following example dumps the value of variable A to a file named FYLE each time the
statement labeled LBL is encountered during execution of the program.

DUMP FYLE (A) LBL

The following example dumps the values of I, INFO, and INDX to a file named PRNTR
when the statement labeled NEXT is encountered. A label counter, DMPCOUNT, counts
the number of times the statement labeled NEXT is encountered. Dumps occur until the
value of DMIPCOUNT exceeds DPHIGH. Note that when a label counter is specified, the
counter can also be altered elsewhere in the program.

DUMP PRNTR (I,INFO,INDX) NEXT (DMPCOUNT, ,DPHIGH)

The following example dumps the values of X, Y, ARRAYV, and COUNTER to a file
named FID. Because a label counter modulus of 3 is specified, a dump of these items
occurs only every third time the label LOUP is encountered during execution of the
program.

DUMP FID (X,Y,ARRAYV,COUNTER) LOUP: 3

The following example dumps the values of A, B, LBL1, and ARRAYV to a file named LP.
Because a label counter modulus of 5 is specified, a dump of these items occurs only
every fifth time the label AGAIN is encountered during execution of the program. Dumps
are further restricted to those times when the label counter TALY has a value between
20 and 50, inclusive. Because the dump occurs each time TALY MOD 5 = 0, dumps
occur when TALY has the values 20, 25, 30, 35, 40, 45, and 50. Note that TALY can be
altered elsewhere in the program.

DUMP LP (A,B,LBL1,ARRAYV) AGAIN: 5 (TALY,20,50)

8600 0098-505 3-41

EPILOG PROCEDURE Declaration

EPILOG PROCEDURE Declaration

The EPILOG PROCEDURE declaration enables you to designate a procedure that must
be executed before exiting the block in which the EPILOG PROCEDURE declaration is
contained. If an EPILOG PROCEDURE declaration exists for a block, the epilog procedure
is automatically executed before exiting the containing block. The epilog procedure is not
required to be invoked before exiting the containing block. However, the program can
explicitly invoke an epilog procedure during execution, if you desire.

The epilog procedure functions differently if it is declared in a structure or connection
block. Instead of being executed upon a block exit of the structure or connection block,
epilog procedures in structure or connection blocks are executed when the block
declaring the structure block variable or structure block array or connection library
associated with that structure or connection block is exited. The epilog procedure of a
structure block variable or array or connection library is called only if that structure block
variable or array or connection library has been created. If the block declaring the
structure block variable or structure block array or connection library contains an epilog
procedure, the epilog for the structure or connection block is executed first.

<epilog procedure declaration>
— EPILOG PROCEDURE —<epilog procedure identifier>— ;

>—<unlabeled statement }

<epilog procedure identifier>

—<identifier }

Restrictions on Epilog Procedures

3-42

The following restrictions apply to epilog procedures:

o No parameters are allowed.

e Aninvalid GO TO statement cannot be used to exit from an epilog procedure to an
outer block. A run-time error occurs if an attempt is made to perform an invalid
GO TO statement.

e An epilog procedure cannot return a value.

e An epilog procedure cannot contain an EPILOG PROCEDURE declaration. A block or
procedure cannot have more than one EPILOG PROCEDURE declaration (or an
EPILOG PROCEDURE declaration and an EXCEPTION PROCEDURE declaration).

e An epilog procedure cannot be declared as a formal parameter.

e Certain restrictions are placed on programs that contain EPILOG PROCEDURE
declarations. Epilog procedures cannot be declared as EXTERNAL. Only replacement
binding can be used. A block or procedure with a EPILOG PROCEDURE declaration
in its outer block cannot be used as the host code file when running BINDER. No
procedure in a block that has an EPILOG PROCEDURE can be replaced by the
BINDER.

8600 0098-505

EPILOG PROCEDURE Declaration

e |f a program that contains one or more EPILOG PROCEDURE declarations fails due
to a fatal stack overflow, the epilog procedures will not be executed.

e |f the outer block (or procedure) of a program contains an EPILOG PROCEDURE
declaration and the statistics option is TRUE, the epilog procedure is executed at
block exit time before the statistics wrap-up code.

e |[f certain Data Management System (DMS) functions such as DATABASE OPEN or
DATABASE CLOSE are called, it might not be possible to return to the epilog
procedure if the executing task is discontinued.

e Structure or connection block epilog procedures can declare and invoke additional
structure types and structure blocks. However, if a new structure or connection
block instance is created as a result of calling the epilog procedure of another
structure or connection block in the block, its own epilog procedure is not invoked if
its declaration occurs after the point in the block that the declaration occurs for the
structure or connection block instance whose epilog procedure is running.

In the following example, the only structure block that has been created (allocated)
when the exit of the block occurs is SBA[1], which is at a lower lex offset than SBG.

BEGIN
TYPE STRUCTURE BLOCK SBT; FORWARD;
SBT ARRAY SBGA [0:9];

SBT SBG;
TYPE STRUCTURE BLOCK SBT;
BEGIN
EPILOG PROCEDURE EPI;
BEGIN
SBG.P;

SBGA[9] .P;

END; %EPI
PROCEDURE P;

BEGIN

END; %P
END; % SBT

SBGA[1].P;
END; %BLOCK

In this example, the first call to EPI of SBT occurs for SBGA[1] which is after the
point at which epilogs would have been called for SBG and SBGA[9], yet the epilog
call for SBGA[1] causes both of those to become active.

The epilogs of elements of structure block arrays are called in reverse index order for
the structure block array upon exit of the block that declared the structure block
array. Only epilogs of structure block array elements that have been allocated are
invoked.

8600 0098-505 3-43

EPILOG PROCEDURE Declaration

Every procedure with critical locking code or critical block exit code of some type should
have an EPILOG PROCEDURE declaration in it. All critical block exit code must be
contained in the epilog procedure. Whenever the procedure is exited (either normally or
abnormally) the epilog procedure is executed.

The order for cleanup of blocks containing structure block variables or structure block
arrays or connection libraries is the following:

1.
2.

If an epilog procedure for this block exists, it is run first.

Epilog procedures for existing structure or connection blocks emanating from this
block run and any libraries linked to those structure or connection blocks are
delinked.

Libraries linked to the block are delinked. Libraries delinked by BLOCKEXIT cannot be
relinked.

Critical block action is taken for process family members.

The structure or connection block instances are cleaned up and destroyed.

Example of an Epilog Procedure

3-44

BEGIN
FILE OUT(KIND=DISK,MAXRECSIZE=14,AREASIZE=420,AREAS=5);
ARRAY A[0:13];
REAL I;
EPILOG PROCEDURE CLEANUP;
BEGIN
%IF I=100 THEN PROGRAM TERMINATED NORMALLY
%IF I<100 THEN PROGRAM TERMINATED ABNORMALLY
REPLACE POINTER(A) BY "LAST RECORD, I=",I FOR 3 DIGITS;
WRITE(OUT),14,A);
LOCK (OUT,CRUNCH) 3
END CLEANUP;

8600 0098-505

EVENT and EVENT ARRAY Declarations

EVENT and EVENT ARRAY Declarations

An event provides a means to synchronize simultaneously executing processes. An
event can be used either to indicate the completion of an activity (for example, the
completion of a direct /O read or write operation) or as an interlock between participating
programs over the use of a shared resource.

<event declaration>

PRIVATE

- EVENT —L<identifier>| |
PUBLIC

<event identifier>

An identifier that is associated with an event in an EVENT declaration.

<event array declaration>
EVENT — ARRAY

— PUBLIC
— PRIVATE

E]

»—J—<1dent;f1er>J— [—<bound pair Tist>—] {

<event array identifier>

An identifier that is associated with an event array in an EVENT ARRAY declaration.

An event array is an array whose elements are events. An event array can have no more
than 16 dimensions.

Events can be used synchronously by explicitly testing the state of an event at various
programmer-defined points during execution, or the events can be used asynchronously
by using the software interrupt facility.

The PRIVATE and PUBLIC specifiers can only be used for events and event arrays that
are declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the event or event array to the scope of the structure block or the connection
block. A PRIVATE event or event array element cannot be accessed using a structure or
connection block qualifier. The PUBLIC specifier allows the event or event array element
to be accessed using a structure or connection block qualifier. If neither PRIVATE nor
PUBLIC is specified, the default value is PUBLIC and access to the event or event array
element using a structure or connection block qualifier is allowed.

Events have two Boolean characteristics, happened and available. Each characteristic can
be either TRUE or FALSE. Language constructs such as the SET, RESET, and CAUSE
statements can be used to change the happened state of an event. The HAPPENED
function returns the value of the happened state of an event. The FIX, FREE, and
LIBERATE statements can be used to change the available state of an event. The
AVAILABLE function returns the available state of an event.

8600 0098-505 3-45

EVENT and EVENT ARRAY Declarations

The initial available state of an event is TRUE (available), and the initial happened state of
an event is FALSE (not happened). For more information on events, refer to “Event
Statement” in Section 4, “Statements.” For more information on interrupts, refer to
"INTERRUPT Declaration” later in this section. For more information on the AVAILABLE
function and the HAPPENED function, see Section 5, “Expressions and Functions.”

Event Designator

An event designator represents a single event. An event array designator represents an
array of events.

<event designator>

<event identifier {

e ,
<event array identifier>— [—I—<subscr1;;;:1— 1 —
<event-valued file attribute
<event-valued library attribute
<event-valued task attribute

<event-valued file attribute>
—<file designator>— . —<event-valued file attribute name>4|

<event-valued file attribute name>
ALGOL supports all file attributes and file attribute values described in the File Attributes
Programming Reference Manual.

<event-valued library attribute>

— LIBRARY — (— <connection library identifier>» —) — , ——
>—<event-valued library attribute name }

<event-valued library attribute name>
— DELINKEVENT |

For more information on library attributes, see the Task Management Programming
Guide.

<event-valued task attribute>

—<task designator>— . —<event-valued task attribute name>4|

<event-valued task attribute name>

T EXCEPTIONEVENT |
ACCEPTEVENT —

<event array designator>

—<event array identifier B : - a {
<subarray selector>

3-46 8600 0098-505

EVENT and EVENT ARRAY Declarations

Examples of EVENT and EVENT ARRAY Declarations

The following example declares an event, FILEA.
EVENT FILEA

The following example declares an event array, SWAPPEE, which can store up to six
events.

EVENT ARRAY SWAPPEE[0:5]

8600 0098-505 3-47

EXCEPTION PROCEDURE Declaration

EXCEPTION PROCEDURE Declaration

The EXCEPTION PROCEDURE declaration enables you to designate a procedure that
must be executed automatically by the system whenever an abnormal exit occurs for the
block in which the EXCEPTION PROCEDURE declaration is contained.

<exception procedure declaration>

— EXCEPTION PROCEDURE —<exception procedure identifier>— ; —

>—<unlabeled statement }

<exception procedure identifier>

—<identifier }

An exception procedure is invoked when a block containing it terminates in any way
other than a normal exit. It is not automatically invoked on a normal exit of the block.
Abnormal exits include the following:

e Adiscontinue (DS) command

e Abad branch (GO TO) leading out of the block
e Abranch to a global label in the block

e Any unhandled fault

An exception procedure can be invoked directly like any other procedure; it can be
passed as a parameter (with limitations), and so on. The use of a procedure as an
exception procedure is allowed only to the block that contains the procedure. A block or
procedure cannot contain more than one EXCEPTION PROCEDURE declaration (or an
EXCEPTION PROCEDURE declaration and an EPILOG PROCEDURE declaration).

If a fault occurs, and an ON declaration exists to handle the fault, the exception
procedure is invoked only if an abnormal exit of the block occurs. Thus, the exception
procedure is not invoked if the ON declaration includes a GO TO clause linked to a label
inside the block in which the EXCEPTION PROCEDURE declaration occurs.

3-48 8600 0098-505

EXCEPTION PROCEDURE Declaration

Restrictions on Exception Procedures

The following restrictions apply to exception procedures:

e An exception procedure must be a named, untyped procedure without parameters,
and therefore cannot return a value.

e An exception procedure cannot contain parameters.

e An exception procedure cannot be specified as a formal parameter. However, an
exception procedure can be passed as an actual parameter, if the formal parameter
is an untyped procedure without parameters.

e Aninvalid GO TO statement cannot be used to exit from the exception procedure to
an outer block. A run-time error occurs if an attempt is made to perform an invalid
GO TO statement.

e An exception procedure cannot contain an EXCEPTION PROCEDURE declaration or
an EPILOG PROCEDURE declaration.

e An exception procedure cannot be declared as EXTERNAL. Only replacement binding
can be used. A block or procedure with an EXCEPTION PROCEDURE declaration in
its outer block cannot be bound to. The exception procedure body cannot be a library
entry point specification or a dynamic procedure specification.

e For other than the outer block of a program, certain string handling declarations,
statements, expressions, and functions cause a string pool epilog procedure to be
generated for that block to return the string space that was allocated. If a string pool
epilog procedure is required for the same block in which an exception procedure is
declared, a warning message is generated at compile time because the exception
procedure will not be executed at run time for a nonfatal stack overflow fault.

e An exception procedure identifier can be included in a library EXPORT list. However,
any programs that import this entry point must declare it as a normal, untyped
procedure without parameters, not as an exception procedure. The following export
is an example:

EXCEPTION PROCEDURE CLEANUP;
BEGIN
% procedure body
END; % of exception procedure
EXPORT
CLEANUP;

Any programs that import this entry point must include the following declaration,
assuming library MYLIB has already been declared:

PROCEDURE CLEANUP;
LIBRARY MYLIB;

Note: It is possible that an exception procedure might be invoked automatically while
the program is in the middle of a direct call to the same exception procedure. For
example, if a program calls CLEANUP (an exception procedure) and is terminated by a
DS system command, the exception procedure is invoked a second time because of the
abnormal exit of the block in which the exception procedure was declared. Exception
procedures that are called directly need to be written with this possibility in mind.

8600 0098-505 3-49

EXCEPTION PROCEDURE Declaration

Example of an EXCEPTION PROCEDURE Declaration

3-50

PROCEDURE P1;

BEGIN
REAL A, B;
FILE MYFILE (KIND=DISK);
EXCEPTION PROCEDURE CLEANUP;
BEGIN
CLOSE (MYFILE, LOCK);
END; %0F EXCEPTION PROCEDURE CLEANUP

IF MYFILE.AVAILABLE THEN

BEGIN

OPEN (MYFILE);

CLEANUP; % A DIRECT CALL TO THE EXCEPTION PROCEDURE
END;

A :=17* (B + 4);
END; % OF PROCEDURE P1. THE PROCEDURE CLEANUP WILL BE
% INVOKED AUTOMATICALLY IF WE EXIT P1 ABNORMALLY.

o

8600 0098-505

EXPORT Declaration

EXPORT Declaration

The EXPORT declaration declares procedures in a library program to be entry points into
that library. A procedure that is declared as an entry point into a library can be accessed
by programs external to the library.

<export declaration>

— EXPORT L J
[/1\— PROTECTED I_ L1
<linkage class>—

<library object access mode>

—>J—<export object specification | {

<export object specification>

——=<array identifier '
—<array reference identifiers—— |—<exp01r"c qua11'f1'e1r‘>J

—<event array identifier
—<event identifier
—<interlock array identifier>
—<interlock identifier
—<non-array data identifier>
—<procedure identifier
L<procedure reference array identifier>—

<export qualifier>

L AS —<EBCDIC string 11'te\r‘a1>J |—<exp0\r‘t op’c1’ons>J

<export options>

— (—/1\- LINKCLASS —'= —— PROTECTED ——1-) |
<integer>—-
<library object access mode>

<EBCDIC string literal>

| " —<EBCDIC string>— " {

<EBCDIC code>J . .

ﬁgo—_'— " —<hexadecimal string>— " ——
ggo—_‘— " —<quaternary string>— " ——
%20_—|— " —<binary string>— "

<non-array data identifier>

<Boolean identifier I
<complex identifier>—
<double identifier>—
<integer identifier>—
<real identifier>

8600 0098-505 3-51

EXPORT Declaration

<library object access mode>

—/1\ READONLY '
L reapwrITE !

All procedures to be exported must be declared before the appearance of the EXPORT
declaration and must be declared in the same block as the EXPORT declaration. All data
to be exported must be declared no later than the appearance of the EXPORT declaration
and must be declared in the same block as the EXPORT declaration.

A program can give an exported access mode to an exported data library object by
specifying a <library object access mode>. A <library object access mode> can be
specified only for data library objects. Data library objects include <non-array data
identifier>s and <data array identifier>s. The READONLY option indicates that the
exporter is allowing read-only access to the data. The READWRITE option indicates that
the exporter is allowing both read and write access to the data. The access mode, if not
specified, defaults to READONLY. An exported access mode is not allowed for an
EVENT, an EVENT ARRAY, an INTERLOCK, or an INTERLOCK ARRAY. If all the library
objects in the EXPORT declaration are data library objects and they all have the same
access mode, the access mode can be specified in the square brackets just after the
EXPORT keyword.

Multidimensional arrays can be included in an EXPORT declaration if they are specified
with a READWRITE access mode.

A program can export an array row by specifying the name of the array, which was
declared with one dimension, as an <array identifier> in the EXPORT declaration. No
bounds should be specified. A multi-dimensioned array cannot be exported, but array row
equivalence can be used to export one of its rows. Value arrays cannot be exported, but
array references can be exported, and the array reference can be assigned the value
array in an array reference assignment.

To provide a library object with a security level, the object can be exported with a linkage
class assigned to it. The linkage class of the user program, which is assigned by the
system, is matched to the linkage class of the exported object on a per object basis to
determine if visibility is allowed to the calling program. The PROTECTED linkage class
provides the highest level of security. The values 0 through 15 can be assigned. The
default linkage class is 0, which provides the lowest level of security.

A procedure reference array can be exported. Any type or parameters allowed for an
exported procedure can be reference by an exported procedure reference array.

A program becomes a library by exporting procedures and then executing a FREEZE
statement. The code file for that program contains a structure called a library directory,
which describes the library and its entry points. The directory's description of an entry
point includes the entry point's name, a description of the procedure's type, if any, and
descriptions of its parameters.

3-52 8600 0098-505

EXPORT Declaration

When a program calls a library entry point, the description of the entry point in the library
template of the calling program is compared to the description of the entry point of the
same name in the library directory of the library. If the called entry point does not exist in
the library or if the two entry point descriptions are not compatible, a run-time error is
given and the calling program is terminated.

The name given to an exported entry point in a library directory is the procedure identifier
from the EXPORT declaration, unless an AS clause appears, in which case the name is
given by the EBCDIC string literal.

The EBCDIC string literal in the AS clause can contain only valid <printable character>s,
but must not contain any leading, trailing, or embedded blanks or periods. The entry point
name indicated by this string literal will be case sensitive.

Library Entry Point Types and Parameters

A library entry point can be any of the following:

e ASCII string procedure

e Boolean procedure

e Complex procedure

e Double procedure

e EBCDIC string procedure

e Hexadecimal string procedure
e Integer procedure

o Real procedure

e Untyped procedure

The parameters to a library entry point can be any of the following types:

e ASCII character array

e ASCII string variable or array

o Boolean variable or array

e Complex variable or array

e Double variable or array

e EBCDIC character array

e EBCDIC string variable or array
e Event variable or array

e File

e Hexadecimal character array

e Hexadecimal string variable or array

e Integer variable or array

8600 0098-505 3-53

EXPORT Declaration

e Pointer
o Real variable or array
e Task variable or array

A parameter to a library entry point can also be a formal procedure with the above
restrictions on its type and parameters. The formal procedure must be fully specified,
that is, the <formal parameter specifier> construct of the PROCEDURE declaration must
be used. A fully-specified formal procedure cannot take a by-reference pointer as a
parameter.

Conditions in Which Errors Can Occur

3-54

A library can export a procedure that is declared to be an entry point in yet another
library. When a program calls this entry point, the template of the library to which the
procedure is declared to belong is searched for an entry point with the same name as
that of the called entry point in the directory for this library.

For example, assume the following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L;
EXPORT LIBPROC;

When another program calls entry point LIBPROC of this library, the template for library L
is searched for an entry point named LIBPROC. When found, the entry point LIBPROC of
library L is then called.

On the other hand, assume the following declarations have been compiled:

LIBRARY L;
PROCEDURE LIBPROC; LIBRARY L;
EXPORT LIBPROC AS "P";

Another program calls entry point P of this library, and the template for library L is
searched for an entry point named P. If it is found, that entry point is called. If that entry
point is not found, a run-time error is given and the calling program is terminated. In
either case, procedure LIBPROC of library L is not executed. For more information on
libraries, refer to Section 8, “Library Facility.”

A library entry point must not declare any OWN arrays. An attempt to execute a library
entry point that declares an OWN array results in a run-time error.

If a library exports a procedure reference array, a program importing that procedure
reference array can access the procedures in that library. A program cannot assign into
an element of an imported procedure reference array. If such an assignment is
attempted, a compile-time or run-time error occurs.

Programs that export procedure reference arrays cannot be used for binding.

8600 0098-505

EXPORT Declaration

Examples of EXPORT Declarations

The following example declares the procedure EXPROC as an entry point in a library
program.

EXPORT EXPROC

The following example declares the procedure PROC1 as an entry point in a library
program.

The name exported for this procedure is LIBPROC3; consequently, a program calls
PROCT1 in this library by using the name LIBPROCS.

EXPORT PROC1 AS "LIBPROC3"
The following example declares the procedure reference arrays PRA1 and PRA2 and the
procedure PROCID as entry points in a library program. The procedure reference array

PRAZ2 is exported with the name PROCREF; consequently, a program must use the
name PROCREF to call PRA2.

EXPORT PRAL, PROCID, PRAZ AS "PROCREF"

8600 0098-505 3-55

EXPORTLIBRARY Declaration

EXPORTLIBRARY Declaration

3-56

The EXPORTLIBRARY declaration allows a CHANGE procedure to be associated with a
regular server library, that is, a library that contains an EXPORT list and a FREEZE
statement. The CHANGE procedure is useful for providing linkage and delinkage
notification about callers to the library.

<exportlibrary declaration>

— EXPORTLIBRARY — (—=<procedure library attribute specification>——

>—) I

The EXPORTLIBRARY declaration must appear in the same block as the EXPORT list and
FREEZE statement for the library.

For EXPORTLIBRARY, the only kind of procedure-valued library attribute name that can
be specified is the CHANGE attribute.

8600 0098-505

FILE Declaration

FILE Declaration

A FILE declaration associates a file identifier with a file and assigns values to the file
attributes of the file.

<file declaration>

LTomeer J
DIRECT

->J—<1'dent1'f1'er‘ B - n | '
(—<attribute specifications>—)

Identifiers

<file identifier>

An identifier that is associated with a file in a FILE declaration.

<direct file identifier>

An identifier that is associated with a file declared as DIRECT in a FILE declaration.

If DIRECT is specified, the file is declared as a direct file to be used for direct I/O.

Attribute Specifications

<attribute specifications>

<arithmetic attribute specification
<Boolean attribute specification>
<pointer attribute specification>
<translate-table attribute specification>—

L (—<attribute parameter list>—) il

<arithmetic attribute specification>

—<arithmetic-valued file attribute name>— =

<mnemonic file attribute value>—

—>—E<ar1' thmetic expression {
<abstract value mnemonic>

<Boolean attribute specification>

—~<Boolean-valued file attribute name

L. —E<Boo1ean expression>
<abstract value mnemonic>—

8600 0098-505 3-57

FILE Declaration

3-58

<pointer attribute specification>

—<pointer-valued file attribute name>— =

<string literal>

»—E<po1'nter‘ expression {
<abstract value mnemonic>—

<translate-table attribute specification>

—<translate-table-valued file attribute name>— =

»>——<translate table identifier |
—E<1'ntr1'ns1'c translate ’tab1e>J !

<attribute parameter list>

E]
—|—<c0nstant number: | {

<arithmetic-valued file attribute name>
<Boolean-valued file attribute name>
<pointer-valued file attribute name>
<translate-table-valued file attribute name>
<mnemonic file attribute value>

<abstract value mnemonic>

ALGOL supports all file attributes and file attribute values described in the File Attributes
Programming Reference Manual.

File declaration can be used to set a file attribute to one of the abstract value mnemonics
allowed for that file attribute.

The attributes for a particular file need not be specified in the FILE declaration. Attributes
can be assigned values by using an appropriate assignment statement, the multiple
attribute assignment statement, a compile-time or run-time file equation, or the 1/0
subsystem, which is the default option. Refer to the Work Flow Language (WFL)
Programming Reference Manual for the file equation syntax.

Although the syntax allows more than one file identifier to precede the optional attribute
specifications, only the identifier immediately before the attribute specifications is
assigned the specified file attribute values. The other identifiers are assigned default file
attribute values.

For example, the result of the following declaration is that the KIND attribute of file C is
assigned the value DISK, and the KIND attributes of files A and B are assigned the
default value for the KIND attribute, which might or might not be the value DISK.

FILE A,B,C(KIND=DISK)

For more information on file attributes and their default values, refer to the File Attributes
Programming Reference Manual.

8600 0098-505

FILE Declaration

Valid mnemonics for file attributes are also type 3 reserved words in ALGOL. When it is
not certain whether an identifier is a variable or a mnemonic, the compiler always
assumes that the identifier is a variable or other local identifier if it is enclosed in
parentheses. If the identifier is not enclosed in parentheses, the compiler always
assumes it is a mnemonic. This rule can be used to resolve ambiguities when new
attributes with names that conflict with local variables are added to the system.

A Boolean-valued file attribute whose name appears in a Boolean attribute specification
without the = <Boolean expression> part is assigned the value TRUE.

When the value of a <pointer-valued file attribute name> is a <string literal>, the last

character of the <string literal> must be a period (".").

A translate table identifier assigned to a translate-table-valued file attribute name must
have been declared previously and must reference the first (or only) translate table
declared in that particular TRANSLATETABLE declaration.

Attribute parameters are allowed in FILE declarations and MULTIPLE
ATTRIBUTEASSIGNMENT statements. In a FILE declaration, the attribute specifications
cannot reference the file identifier of the file being declared. For example, the following is
not valid:

FILE F(MAXRECSIZE=90, BLOCKSIZE=F.MAXRECSIZE*10)

Examples of FILE Declarations

The following example declares a file named F.
FILE F

The following example declares a file named NEWFILE. This FILE declaration is the first
step in creating a new disk file with the title DATA on a pack named PACK. Synchronized
output, which is useful for auditing and recovery, will be performed.

FILE NEWFILE(KIND=DISK, MAXRECSIZE=14, BLOCKSIZE=420, NEWFILE,

FILEUSE=0UT, AREAS=20, AREASIZE=450, SYNCHRONIZE=OUT,
TITLE="DATA ON PACK.");

The following example declares a file, SCREEN_OUTPUT, to be a remote file. Typically,
using this declaration in conjunction with a WRITE statement allows a program to write
to a computer terminal.

FILE SCREEN_OUTPUT(KIND=REMOTE)

The following FILE declaration sets the arithmetic-valued file attribute AREAS to its
maximum value:

FILE F (AREAS = MAXIMUM)

8600 0098-505 3-59

FORMAT Declaration

FORMAT Declaration

A FORMAT declaration associates a format identifier with a set of editing specifications.
These editing specifications can then be used in READ and WRITE statements.

<format declaration>

— FORMAT —<in-out par‘t>J—<for‘mat’par‘t | {

In-Out Part

The in-out part affects the processing of simple string literals appearing in the editing
specifications. If the in-out part of a FORMAT declaration is designated as OUT or
unspecified (in which case OUT is assumed), simple string literals appearing in the
editing specifications of the format are read-only. If the in-out part is designated as IN,
such simple string literals are read-write. For more information, refer to “Simple String
Literal” later in this section.

<in-out part>

IN
ouT

Format Part

3-60

<format part>

—<1'dent1'f1'er‘>—|: (—<editing specifications>—) 5 {
< —<editing specifications>— >

<format identifier>

An identifier associated with a set of editing specifications in a FORMAT declaration.

<editing specifications>

5]

] simple string literal
/ T editing phrase
—<repeat part> (—<editing specifications>—) —

Nuym
L] |

<repeat part>

<unsigned integer
LY o |

8600 0098-505

FORMAT Declaration

The editing specifications that appear in FORMAT declarations can be used in READ and
WRITE statements to format, respectively, the input and output data.

Define identifiers, remarks, and formal symbols of parametric defines cannot be used in
formats.

A format identifier can be referenced in a READ statement, WRITE statement, or
SWITCH FORMAT declaration. In general, a list is referenced in READ and WRITE
statements to indicate a series of data items, specified by the list, along with the
formatting action, specified by the format, to be performed on each of the data items.

Editing phrases in the editing specifications are separated by a comma (,), a slash (/), or a
series of slashes. A slash indicates the end of a record. On input, any remaining
characters in the current record are ignored when a slash is encountered in the editing
specifications. On output, the construction of the current record is terminated and any
subsequent output is placed in the next output record when a slash is found in the
editing specifications. Multiple slashes can be used to skip several records of input or to
generate several blank records on output. The final right parenthesis or right angle
bracket (>) of the editing specifications also indicates the end of the current record.

A carriage control action occurs each time a slash appears in the editing specifications. If
a core-to-core part is specified in the file part of a READ statement, a slash is ignored.

Example of Editing Specifications

BEGIN
FILE READER (KIND=READER),
LINE (KIND=PRINTER);
REAL A,B;
FORMAT FMT(I2,/,12);
READ (READER,FMT,A,B);
WRITE(LINE,FMT,A,B);
WRITE(LINE [SKIP 1],FMT,A,B);
END.

8600 0098-505 3-61

FORMAT Declaration

Assume that the following two input records are used:

1234
5678

Using these two input records, this program produces the following output:

12
56
12

[skip to channel 1]
56

If all editing specifications have been used before the list of data items is exhausted, a
carriage control action occurs, and the editing specifications are reused. If the list of data
items is exhausted before all the editing specifications have been used, the /O operation
is complete and the remaining editing specifications are ignored.

Simple String Literal

The presence of a simple string literal in the editing specifications indicates that the
characters enclosed in quotation marks are to be used as the data. A simple string literal
does not require a corresponding list element.

To enable more efficient handling of string literals in formats, 1-bit, 2-bit, and 7-bit strings
are not allowed. The lengths of 3—bit and 4-bit strings must be a multiple of 2, to facilitate
packing into 6-bit or 8-bit characters, respectively.

If no string code appears in a string literal, the default character type is used. The default
character type can be designated by the compiler control option ASCII. If no such
compiler control option is used, the default character type is EBCDIC. For more
information, refer to “Default Character Type” in Appendix C, “Data Representation.”

Example of Simple String Literal

Assume you are using the following statement:
WRITE(LINE,<4"C1C2",8"ABC">);
This statement produces the following output:
ABABC
When a simple string literal appears in editing specifications, only the first digit of the

string code is used; if a second or third digit appears, a warning is given at compilation
time.

3-62 8600 0098-505

FORMAT Declaration

Simple string literals appearing in editing specifications can be read-only or read/write,
depending on the in-out part specified in the FORMAT declaration. If the in-out part is IN,
simple string literals appearing in the editing specifications are read-write, and the format
can be used in both READ statements and WRITE statements. When a format used in a
READ statement is declared with an in-out part of IN and contains a simple string literal in
the editing specifications, then data is read into the memory location of the simple string
literal over the original value.

The number of characters read always equals the length of the simple string literal as it is
defined in the FORMAT declaration. When the format is used in a subsequent WRITE
statement, the new data is written to the output record. If the in-out part is OUT or
unspecified (in which case OUT is assumed), any simple string literals appearing in the
editing specifications are read-only. Any attempt to change the value of a read-only
simple string literal by using that format in a READ statement results in a run-time error.

Repeat Part
The repeat part indicates the number of times an editing phrase or editing specifications

are repeated. If the repeat part is unspecified, a value of 1 is assumed. A repeat part
value greater than 4029 results in a syntax error.

Editing specifications and their corresponding repeat parts can be nested. For example,
assume you are using the following WRITE statement:

WRITE(F,<2(2(213))>,INT1,INT2,INT3,INT4,INT5,INT6,INT7,INT8)

The first repeat part indicates that the editing specifications (2(213)) are to be repeated
twice, the second repeat part indicates that the editing specifications (213) are to be
repeated twice, and the third repeat part specifies that the editing phrase I3 is to be
repeated twice, causing the editing phrase I3 to be used a total of eight times.

The following examples show the correct syntax of repeat parts:
3F10.4

3(A6/)
3(3A6,3(/112) /)

8600 0098-505 3-63

FORMAT Declaration

Editing Phrases
<editing phrase>

G
o] |
— A <field width

[
<—A-xITO

U
v I L<fierd width

L . <decimal places>

— S —<scale factor

L<editing m0d1'f1'e\r‘>J E
F
R
I <field width
JJ

D ﬂ—die]d width>— . <decimal places> —

Z —<field width
L . <decimal places> —

<field width>
<unsigned intege
T 5n igned integer I |

<decimal places>

<unsigned integer
LY o |

<scale factor>

<integer
* g l

<editing modifier>

Field Width

The field width specifies, in characters, the width of the field to be read or written.
Because the field width specifies the entire length of the field to be used, if the

<decimal places> variable is also specified, the field width value must allow for the
number of decimal places requested plus one for the decimal point. Any field width value
greater than 4029 results in a syntax error. Field width is covered further in the
discussions of the individual editing phrase letters.

3-64 8600 0098-505

FORMAT Declaration

Decimal Places

The decimal places value specifies the number of characters following the decimal point
in the field that are to be read or written. On input, the <decimal places> variable can be
overridden by an explicit decimal point. A decimal places value greater than 4029 results
in a syntax error. The decimal places value is covered further in the discussions of the
individual editing phrase letters.

Variable Editing Phrases

A variable editing phrase is one that is not fully specified at compilation time. The format
is processed from left to right at run time. If the letter V is encountered in an editing
phrase, the next list element is accessed to provide an editing phrase letter. For more
information, refer to “V Editing Phrase Letter” later in this section. If an asterisk (*) is
encountered as the repeat part, field width, decimal places, or scale factor, then the next
list element is accessed to provide an integer value for that specification. In addition to
the list elements to be read or written, the 1/O list must contain one list element for each
V editing phrase letter and asterisk encountered in the editing specifications. The WRITE
statements in the following examples use asterisks as both repeat parts and field widths
to produce varying | editing phrases.

Examples of Variable Editing Phrases

WRITE(F, <I*>, IWIDTH, A);
WRITE(F, <3I*>, IWIDTH, A, B, C);
WRITE(F, <3(I*)>, IWIDTH1, A, IWIDTH2, B, IWIDTH3, C);

IREPEAT1 := 1;

IREPEAT2 := 2;

WRITE(F, <2(X1,*I*)>, IREPEAT1, IWIDTH1, A,
IREPEAT2, IWIDTH2, B, C);

When an asterisk is used as the repeat part, the number of repetitions performed
depends on the value supplied by the list element. If the value of the list element is
greater than 0 (zero), that number of repetitions is performed; if the value is equal to 0,
an unlimited number of repetitions are performed. If the value is less than 0, no
repetitions are performed, and control passes to the next editing phrase.

When an asterisk is used for the field width of an editing phrase, the actual width of the
field depends on the value supplied by the list element. If the value of the list element is
greater than 0 (zero), that value is used as the width of the field. If the value of the list
element is less than or equal to 0, no editing is performed, the list elements
corresponding to the editing phrase are skipped, and control passes to the next editing
phrase.

8600 0098-505 3-65

FORMAT Declaration

Editing Phrase Letters

Every valid path through the editing phrase syntax requires an editing phrase letter that
specifies how the data being read or written is to be edited. The editing phrase letters
are as follows: A, C,D,E,F, G, H,I,J,K, L O,R, ST, UV, X, orZ An editing phrase
that contains the editing phrase letter A is called an A editing phrase, an editing phrase
that contains the editing phrase letter C is called a C editing phrase, and so on.
Descriptions of the editing specified by each editing phrase letter are arranged in
alphabetical order in the following paragraphs.

For ease of explanation, lowercase letters are used hereafter to refer to the values for
the repeat part, field width, and decimal places as follows:

Letter Meaning

r <repeat part>

W <field width>

d <decimal places>

A list element of type COMPLEX is always edited as if it were two list elements of type
REAL.

In the examples in the following sections, the lowercase letter bis used to denote a
blank character.

A and C Editing Phrase Letters

3-66

The editing phrase letters A and C are used when reading or writing alphanumeric data.
Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN,
POINTER, and STRING.

When A is used, characters are read from, or written to, the word starting at the
rightmost position. If C is used, the starting character position is the leftmost one.

In the explanations of the editing phrase letters A and C, the letter Q is used.

The value of Q is 6 for single-precision and 12 for double-precision, and if the list element
is of the following form, then the value of the arithmetic expression is used as the value
of Q:

<pointer expression> FOR <arithmetic expression>

On input, w characters are transferred from the input record to the pointer-designated
location or string variable. On output, w characters are transferred from the
pointer-designated location or string variable to the output record. The character size
used is that of the pointer or string variable.

Input

On input, the editing phrase letters A and C specify that w characters of data are to be
read from the input record and assigned to the corresponding list element.

8600 0098-505

FORMAT Declaration

For the editing phrase letter A, if wis greater than or equal to Q, the rightmost Q
characters of the input field are transferred to the list element. If wis less than Q, then
w characters of the input field are transferred right-justified to the list element. The
unused high-order bits of the list element are set to 0 (zero).

The action specified by the editing phrase letter C is identical to that specified by the
editing phrase letter A except that characters are read to the leftmost portion of the
word.

The following are input examples for the A and C editing phrase letters. The default
character type is 8-bit in all cases.

Editing
External String Phrase Internal Value
ABCDEFGHIJKL A9 8'DEFGHI"
AbCbEbGbIbK A4 4"0000"8"AbCb"
ABCDEFGHIJKL A12 ABCDEFGHIJKL
(pointer as list element)
ABCDEFGHIJKL A12 4"0000"8"ABCDEFGHIJKL"
(8-bit pointer FOR 14)
ABCDEFGHIJKL C9 8'DEFGHI"
ABCD C4 8"ABCD"4"0000"
ABCDEFGHIJKL C12 8'ABCDEFGHIJKL"4"0000"
(8-bit pointer FOR 14)

The editing phrase letters A and C do not round values before assigning them to a list
element. Therefore, a list element of type INTEGER is not necessarily assigned an
integer value. If w is greater than 4, the exponent field of the list element is affected; the
result can be a noninteger value. The data representations of real and integer operands
are discussed in Appendix C, “Data Representation.”

Output

On output, the editing phrase letters A and C Specify that the value of the corresponding
list element is to be written as a character string to an output field that is w characters
wide.

For the editing phrase letter A, if wis greater than or equal to Q and the list element is
not a pointer expression, the Q characters of the list element are written right-justified
with blank fill to the output field. If wis less than Q, the rightmost w characters of the list
element are written to the output field. If any of the character fields in the word contain
bit patterns that do not correspond to an EBCDIC graphic, then question marks (?) are
written to those positions.

The action specified by the editing phrase letter C is identical to that specified by the

editing phrase letter A except that characters are written from the leftmost portion of the
list element.

8600 0098-505 3-67

FORMAT Declaration

The following are output examples for the A and C editing phrase letters:

Editing
External String Phrase Internal Value
8'DEFGHI" A9 bbbDEFGHI
4"'0000000000"8"A" A4 ?277A
8'ABCDEFG" A11 bbbbABCDEFG
(8-bit pointer FOR 7)
8'DEFGHI" C9 bbbDEFGHI
8"ABCD"4"0000" Ch ABCD?
8'ABCDEFG" C11 bbbbABCDEFG
(8-bit pointer FOR 7)

D Editing Phrase Letter

3-68

The editing phrase letter D is used for reading or writing floating-point values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter D specifies that w characters of input data are to be read,

converted to a real value, and assigned to the corresponding list element. The input data
must be in the form of a data number; otherwise, a data error is returned. A data number
is defined syntactically as follows:

<data number>

decimal number
|—<s1'gn>J L
<data exponent

<data exponent part>

|—<data exponent part>—

part

D <integer

=

@
<sign>—<unsigned integer>

8600 0098-505

FORMAT Declaration

The position of the decimal point in the internal value is determined by its position in the
input data or by the value of d. If a decimal point appears in the input data, that position is
used for the internal value. If no decimal point appears in the input data, one is assumed
to be dplaces to the left of the D, E, at sign (@), plus sign (+), or minus sign (-) indicating
the beginning of the exponent field. If no decimal point appears in the input data and an
exponent is not present, a decimal point is assumed to be d places to the left of the right
edge of the input field.

For example, if the editing phrase D7.2 is used to read the data number 10005.0, the
resulting internal value is 10005.0. However, if the same editing phrase is used to read
the data number 10005, the resulting internal value is 100.05.

The value of w must be greater than or equal to the value of d. Blanks are interpreted as
Zeros.

The following are input examples for the D editing phrase letter:

External String Editing Phrase Internal Value
bbbbbb25046 D11.4 +2.5046
bbbbb25.046 D114 +25.046
—bb25046E-3 D11.4 -0.0025046
—bbb25046-3 D11.4 -0.0025046
bb250.46D-3 D114 +0.25046
bbb250.46-3 D114 +0.25046
b—b25.04678 D11.4 -25.04678
Output

On output, the editing phrase letter D specifies that the value of the corresponding list
element is to be converted to a string of characters that expresses the value in
exponential notation. The string is written right-justified with blank fill to a field

w characters wide. The value of the mantissa is rounded to the number of decimal
places specified by d before it is written.

The value of w must be greater than or equal to d + 7. This width allows for a 4-character

exponent part, a decimal point, a digit preceding the decimal point, and a sign. If wis less
than d + 7, the field is filled with asterisks (*).

8600 0098-505 3-69

FORMAT Declaration

The editing phrase letter D always uses four or seven characters to represent the
exponent of the list element being written. The magnitude of the exponent determines in
which syntactic form the exponent is expressed:

Magnitude of

Exponent Form

4-character D+xx or D-XX (where ABS(XX) <= 99)

4-character +XXX or =XXX (where 100 <= ABS(XXX) <= 999)

7-character D+XXXXX or D-XXXXX (where 1000 <= ABS(XXXXX) <=
99999)

The following are output examples for the D editing phrase letter:

Internal Value Editing Phrase External String
+36.7929 D13.5 bb3.67929D+01
-36.7929 D12.5 -3.67929D+01
-36.7929 D11.5 FRHEH IR I T HRR
+36.7929 D10.5 FHRHH IR I XX
1.234@@-73 D14.5 bbb1.23400D-73
-789@@1234 D15.3 bb-7.890D+01236
6.54@@321 D9.2 b6.54+321

E Editing Phrase Letter
The action specified by the editing phrase letter E is identical to that specified by the
editing phrase letter D except that the letter E, when used for output, indicates the
beginning of the exponent in the output string.

The following are output examples for the E editing phrase letter:

Internal Value Editing Phrase External String
+36.7929 E13.5 bb3.67929Eb01
-36.7929 E12.5 -3.67929Eb01

3-70 8600 0098-505

FORMAT Declaration

F Editing Phrase Letter

The editing phrase letter F is used when reading or writing floating-point values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter F is identical to that specified
by the editing phrase letter D.

Output

On output, the editing phrase letter F specifies that the value of the corresponding list
element is to be converted to a string of characters that expresses the value in simple
decimal notation. The string is written right-justified with blank fill to a field w characters
wide. The value of the list element is rounded to the number of decimal places specified
by d before it is written.

The value of w must be greater than or equal to d + 7. When a program writes negative
values, w must also allow for the minus sign (-). The field contains asterisks (*) if the
value to be written requires a field wider than w characters.

The following are output examples for the F editing phrase letter:

Internal Value Editing Phrase External String
+36.7929 F7.3 036.793
+36.7934 F9.3 bbb36.793
-0.0316 F6.3 -0.032

0.0 F6.4 0.0000

0.0 FG.2 bb0.00
+579.645 F6.2 579.65
+579.645 F4.2 Frwx

-579.645 F6.2 FHH XX

G Editing Phrase Letter

If used to read an EBCDIC file, the editing phrase letter G specifies that six 8-bit
characters of the input data are to be skipped. If used to write to an EBCDIC file, the
editing phrase letter G specifies that six EBCDIC zeros are to be written to the output
record.

8600 0098-505 3-71

FORMAT Declaration

H and K Editing Phrase Letters

3-72

The editing phrase letters H and K are used when reading or writing hexadecimal and
octal values, respectively. Valid list elements are of type INTEGER, REAL, DOUBLE,
COMPLEX, and BOOLEAN.

In the following explanation of the H and K editing phrase letters, the letter Q is used.
The value of Q is derived from the following table:

Editing Phrase Letter

H K
Single- 12 16
precision
Double- 24 32
precision
Input

The editing phrase letter H specifies that w characters of input data are to be read,
converted to a hexadecimal value, and assigned to the corresponding list element. The
editing phrase letter K specifies that w characters of input data are to be read, converted
to an octal value, and assigned to the corresponding list element. When the letter H is
specified, the input data must consist of only characters from the set of hexadecimal
characters, the blank, or the minus sign (-). When K is specified, the input data must
consist of only characters from the set of octal characters, the blank, or the minus

sign (). If other characters are used, a data error is returned. Leading, trailing, and
embedded blanks are interpreted as zeros. If a minus sign appears in the input string, the
value 1 is assigned to bit 46 of the list element (bit 46 of the first word of a
double-precision list element).

If wis less than or equal to Q, the value is stored right-justified in the storage location.
Both words of a double-precision variable are included. Unused high-order bits are set to
0 (zero). If wis greater than Q, the leftmost w — Q characters must be blanks, zeros, or
minus signs; otherwise, a data error is returned.

8600 0098-505

FORMAT Declaration

The following are input examples for the H and K editing phrase letters:

Editing

External String Phrase Internal Value

6F H2 4"00000000006F"

1FFFFFFFFFFF H12 4"\ FFFFFFFFFFF"

-16 H3 4"400000000016"

1234b568 H8 4'000012340568"

FFCb H4 4"00000000FFCO"

00C1C2C3C4C5C6 H14 4"C1C2C3C4C5Ce"

-ABCD H5 4"40000000000000000000ABCD"
(double-precision)

123456789ABCDEF H15 4'000000000123456789ABCDEF"
(double-precision)

16 K2 3"0000000000000016"

1777777777777777 K16 3"1777777777777777

-16 K3 3"2000000000000016"

1234b56 K7 3"0000000001234056"

77b K3 3"0000000000000770"

-567 K4 3"20000000000000000000000000000567"
(double-precision)

1234567654321234567 K19 3"00000000000001234567654321234567"
(double-precision)

8600 0098-505 3-73

FORMAT Declaration

3-74

Output

On output, the editing phrase letter H specifies that the value of the corresponding list
element is to be converted to a string of hexadecimal characters. The editing phrase
letter K specifies that the value of the corresponding list element is to be converted to a
string of octal characters. The output string is written right-justified with blank fill to a
field w characters wide. If wis less than Q, only the contents of the rightmost w * 4 bits
(when H is used) or w * 3 bits (when K is used) of the list element are converted. A
double-precision list element is treated as 96 contiguous bits. The output string does not
contain an explicit sign.

The following are output examples for the H and K editing phrase letters:

Editing
Internal Value Phrase External Value
4"0000E5551010" H5 51010
4"0000E5551010" H12 0000E5551010
4"0000E5551010" H16 bbbb0000E5551010
8"123456" H12 F1F2F3F4F5F6
4"000000000000000012345678 H4 5678
(double-precision)
8"123456789bbb" H24 F1F2F3F4F5F6F7F8F9404040
(double-precision)
3"'0005677701234445" K5 34445
3"'0005677701234445" K16 0005677701234445
3"'0005677701234445" K18 bb0005677701234445
3"0000000000000000000000001234567" K4 4567
(double-precision)

8600 0098-505

FORMAT Declaration

I Editing Phrase Letter

The editing phrase letter | is used when reading or writing integer values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter | specifies that w characters of input data are to be read,
converted to an integer value, and assigned to the corresponding list element. The data
must be in the form of an ALGOL integer; otherwise, a data error is returned. Blank
characters are interpreted as zeros. The magnitude of the value that can be read depends
on the type of the list element.

The following are input examples for the | editing phrase letter:

External String Editing Phrase Internal Value
567 13 +567
bb-329 16 -329
-bbbb27 17 -27
27bbb 15 +27000
b-bb234 17 -234

Output

On output, the editing phrase letter | specifies that the value of the corresponding list
element is to be converted to a character string in the form of an ALGOL integer. The
string is written right-justified with blank fill to a field w characters wide. The value of the
list element is rounded to an integer before it is written as output data.

Negative values are written with a minus sign (-); nonnegative values are written without
a sign.

If the value of the list element requires a field larger than w, then w asterisks (*) are
written.

The following are output examples for the | editing phrase letter:

Internal Value Editing Phrase External String
+23 14 bb23

=79 14 b-79

+67486 15 67486

—67486 15 FrwEx

+978 11 *

0 13 bb0

+3.6 12 b4

8600 0098-505 3-75

FORMAT Declaration

J Editing Phrase Letter

The editing phrase letter J is used when reading or writing integer values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter J is identical to that specified
by the editing phrase letter |.

Output

On output, the editing phrase letter J specifies that the value of the corresponding list
element is to be converted to a character string in the form of an ALGOL integer. The

string is written to a field equal in width to the length of the string. The value of the list
element is rounded to an integer before it is written.

Negative values are written with a minus sign (-); nonnegative values are written without
a sign.

If wis less than the number of characters required to express the value of the list
element, w asterisks (*) are written.

The following are output examples for the J editing phrase letter:

Internal Value Editing Phrase External String
+23 J5 23

-23 J5 -23

+233 J3 233

-233 J3 HHX

0 J3 0

3.14,-12 2J10 3-12

3-76 8600 0098-505

FORMAT Declaration

L Editing Phrase Letter

The editing phrase letter L is used when reading or writing Boolean values. Valid list
elements are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

The editing phrase letter L specifies that w characters of input data are to be read,
converted to one of the Boolean values TRUE or FALSE, and assigned to the
corresponding list element. If the first nonblank character of the input data is the letter T,
then bit 0 (zero) of the list element is assigned the value 1; otherwise, bit 0 is assigned
the value 0 (zero). All other bits in the list element are assigned the value 0 (zero). An
all-blank field yields the value FALSE. If the list element is a double-precision variable, the
first word is assigned a value according to the rules just described, and the second word
is set to 0 (zero).

The following are input examples for the L editing phrase letter:

External String Editing Phrase Internal Value

T L1 TRUE (4'000000000001")

bbF L3 FALSE (4"000000000000")

bbbTRU L6 TRUE (4'000000000001")

b L1 FALSE (4"000000000000")

T L1 TRUE (4"'000000000001000000000000")
(double-precision)

Output

On output, the editing phrase letter L specifies that TRUE is to be written to the output
record if bit O (zero) of the corresponding list element equals 1, and the letter L specifies
that FALSE is to be written if bit O (zero) of the corresponding list element equals the
number 0. If wis less than 5, the first w characters of TRUE or FALSE are written. If wis
greater than 4, TRUE or FALSE is written right-justified with blank fill.

The following are output examples for the L editing phrase letter:

Internal Value Editing Phrase External String
0 L6 bFALSE

1 L5 bTRUE

2 L4 FALS

3 L3 TRU

4 L2 FA

8600 0098-505 3-77

FORMAT Declaration

O Editing Phrase Letter

3-78

The editing phrase letter O is used when data is to be read or written without editing.
Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN, and
POINTER.

In the following explanation of the editing phrase letter O, the letter Q is used. The value
of Q is derived from the following table:

Precision Pointers
Single Double 4-bit 8-bit
EBCDIC 6 12 12 6

Input

The editing phrase letter O specifies that the input data is to be assigned to the
corresponding list element without editing. Q characters of input data are read, unless
the corresponding list element is of the following form:

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of the arithmetic
expression are compared, and the lesser value is the number of characters read.

Output

On output, the editing phrase letter O writes the value of the list element as an unedited
string of characters. Q characters are written to the output record unless the
corresponding list element is of the following form:

<pointer expression> FOR <arithmetic expression>

When the list element is of this form, the value of Q and the value of the arithmetic
expression are compared, and the lesser value is the number of characters written.

8600 0098-505

FORMAT Declaration

Example of Input and Output

The following example shows the use of the editing phrase letter O:

BEGIN
FILE TD(KIND=REMOTE,MYUSE=IO0);
REAL R;
READ(TD, <0>, R);
WRITE(TD, <0>, R);
END.

Input and output data for this example are as follows:

Input Output
A A
ABCDEFGH ABCDEF

R Editing Phrase Letter

The editing phrase letter R is used when reading or writing real values and can be used
with the editing phrase letter S. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the action specified by the editing phrase letter R is identical to that specified
by the editing phrase letter D except when the letter R is immediately preceded by an
S editing phrase.

Output

On output, the editing phrase letter R specifies that the value of the corresponding list
element is to be converted to a string that expresses the value in either simple decimal
or exponential notation.

In general, if wis greater than or equal to the number of characters required to express
the value of the list element using simple decimal notation, then simple decimal notation
is used. If wis less than the number of characters required to express the value using
simple decimal notation and greater than or equal to the number of characters required
to express the value using exponential notation, then exponential notation is used. If wis
less than the number of characters required to express the value using exponential
notation, the field is filled with asterisks (¥).

8600 0098-505 3-79

FORMAT Declaration

S Editing Phrase Letter

3-80

Examples of Input and Output

List Editing
External Input String Element Phrase External Output String
Type
—.333333bb REAL R10.4 bbb-0.3333
—.333333bb DOUBLE R10.4 bbb-0.3333
-.333333bb INTEGER R10.4 bbbb0.0000
3333.333E2 DOUBLE R10.4 3.3333D+05
3333.333E2 INTEGER R10.4 3.3333E+05
—.333bbbbb REAL R10.9 FREFAKE KRR
—.333bbbbb INTEGER R10.9 .000000000
333.333E2b DOUBLE R10.4 3.3333D+22
bbbbbbbbbbbbb1.23D12 REAL R20.4 bb1230000000000.0000
bbbbbbbbbb1.23D12345 DOUBLE R20.4 bbbbbbb1.2300D+12345
bbbb4.3@68 REAL R10.4 4.3000E+68

The editing phrase letter S is used with an R editing phrase to provide a scale factor.

If the next editing phrase in the editing specifications does not contain the editing phrase
letter R, the S editing phrase is ignored. When more than one S editing phrase appears in
the editing specifications, each subsequent S editing phrase takes precedence over the

preceding one.

8600 0098-505

FORMAT Declaration

Input

On input, the value of the input data corresponding to the subsequent R editing phrase is
divided by the following number before the input data value is assigned to the list
element:

10 ** <scale factor>

The following are input examples for the S editing phrase letter:

External String Editing Specifications Internal Value

bbbb10000. S2,R10.2 100.0

bbbbbb5.41 S1,R10.2 0.541

bbbbbb05.5 S1,R10.2 0.55

bbb5.01521 S-1,R10.2 50.1521

bbbbbbb541 S1,R10.2 0.541
Output

On output, the value of the list element corresponding to the subsequent R editing
phrase is multiplied by the following number before the list element value is written to
the output field:

10 ** <scale factor>

The following are output examples for the S editing phrase letter:

Internal Value Editing Specifications External String
100.0 S2,R10.2 bb10000.00
0.54 S1,R10.2 bbbbbb5.40
0.0056 S1,R10.2 bbbbbb0.06
1.55 S-1,R10.2 bbbbbb0.16

8600 0098-505 3-81

FORMAT Declaration

T Editing Phrase Letter

The editing phrase letter T specifies that the buffer pointer is to be moved to character

position w of the input or output record. The value of w must be greater than 0 (zero); if
wis equal to 0, the buffer pointer is moved to the first character position in the record.

No list element corresponds to this editing phrase letter.

Input Examples

External String Editing Specifications Internal Value
012345678910111213 113,13 111
012345678910111213 11,14 123
012345678910111213 T15,14 1213
ABCDEFGHIJKLMNOPQR T8,A6 HIUKLM

Output Example

BEGIN
FILE DCOM(KIND=REMOTE,MYUSE=IO0);
ARRAY A[0:9];
WRITE(DCOM, <T11,13,T2,13>, 123, 456); %
WRITE(DCOM, <T4,A3,T1,A2>, "ABC", "DE");
END.

o

This program produces the following output:

WRITE statement 1: b456bbbbbb123
WRITE statement 2: DEbABC

U Editing Phrase Letter

3-82

WRITE STATEMENT 1
WRITE STATEMENT 2

The editing phrase letter U specifies that output data is to be edited as best suits the
type of the corresponding list element. Valid list elements are of type INTEGER, REAL,
DOUBLE, COMPLEX, and BOOLEAN, STRING, POINTER.

Input

The editing phrase letter U is not implemented for input.

Output

On output, real, integer, and double-precision list elements are written using a format
that combines readability with maximum numerical significance. Boolean values are
written as T or Fand occupy one character position in the record. String literals are
treated as real values. If the number of characters required to express the list element is
greater than the number left in the current record, the output is placed in the next record.

8600 0098-505

FORMAT Declaration

If wis specified and the number of characters required to express the list element is
greater than w, the field is filled with asterisks (*).

If dis specified and dis greater than w, then d - w leading blanks are inserted in the
value that is written to the list element before the field is written.

Thus, when the editing phrase letter U is used, the number of characters actually written
cannot be less than d and can be greater than w.

The following are output examples for the U editing phrase letter:

Internal Value Editing Phrase External String
-123.4567 U -123.4567

789 U 789

1.5@@275 u10 1.5D+275
1234567 Ub 1.2+6

1 u10.4 bbb1

123.456 u10.4 123.456

1 Ub.8 bbbbbbb1
123.456 Ub.8 bbb123.5

V Editing Phrase Letter

The editing phrase letter V allows the type of editing to be specified at run time. The
rightmost character of the first word of the next list element (or, if the list element is a
pointer, the character pointed at) provides the editing phrase letter to be used to edit the
data. Valid list elements are of type INTEGER, REAL, DOUBLE, COMPLEX, BOOLEAN,
and POINTER.

The editing phrase letter extracted from the list element is an 8-bit character.

8600 0098-505 3-83

FORMAT Declaration

Example of V Editing Phrase Letter

In the following program, FMT1 in the first READ statement evaluates to R8.2 and
corresponds to the list element A; FMT2 in the WRITE statement evaluates to 2A6 and
corresponds to the list elements A and |; and FMT3 in the second READ statement
evaluates to 2E10.4 and corresponds to the list elements A and B.

REAL A,B;
INTEGER I;

FORMAT FMT1(Vv8.2),

FMT2 (2V*),
FMT3 (*V*. %) ;

READ(KARD,FMT1,"R",A);

B :=4"C1";
WRITE(LINE,FMT2,B,6,A,1);
I := 4"C5";

READ(KARD,FMT3,2,1,10,4,A,B);

For more information, see “Variable Editing Phrases” earlier in this section.

X Editing Phrase Letter
On input, the editing phrase letter X specifies that w characters of input are to be

skipped. On output, the editing phrase letter X specifies that w blanks are to be written.
No list element corresponds to this editing phrase letter.

3-84 8600 0098-505

FORMAT Declaration

2 Editing Phrase Letter

The editing phrase letter Z is used when reading or writing real values. Valid list elements
are of type INTEGER, REAL, DOUBLE, COMPLEX, and BOOLEAN.

Input

On input, the editing phrase letter Z selects one of the editing phrase letters D, |, or L to
specify the editing action, depending on the type of the corresponding list element, as
shown in the following table:

Type Editing Phrase
REAL or DOUBLE Dw.d
INTEGER Iw
BOOLEAN Lw
Output

The output string has a length of w characters regardless of the value or type of the list
element being written. For Boolean list elements, Lw s used. For integer list elements,
Iwis used. For real or double-precision list elements, editing with D, E, or F editing
phrase letters is performed depending on the type of the list element and the magnitude
of its value.

The following are output examples for the Z editing phrase letter:

Internal Value Editing Phrase External String
1.23@@250 Z12.6 1.230000+250

1 Z5.1 bbbb1

12345 Z5.1 12345

12 8.7 bbbbbb12
12345.678 2104 1.2346E+04

12 Z10.4 bbbbbbbb12
12345678 Z6 FHXHRX

1234 /6 bb1234

8600 0098-505 3-85

FORMAT Declaration

Editing Modifiers

Editing modifiers can be used to modify the editing performed by the editing phrase
letters D, E, F, |, J, R, and Z. Editing modifiers are valid only for output.

P Editing Modifier

The P editing modifier specifies that a comma (,) is to be inserted immediately to the left
of every third digit left of the decimal point.

$ Editing Modifier

The $ editing modifier specifies that a dollar sign ($) is to be inserted immediately to the
left of the output string.

Examples of P and $ Editing Modifiers

Internal Value Editing Phrase External String
17.347 $F10.2 bbbb$17.35
-1234567 PI10 -1,234,567
-1234567 P$715.2 bbbb$-1,234,567
1234567.11111 PF15.5 1,234,567.11111
1234567.1234 $PR15.5 bbb$1.23457E+06
1234567.1234 $PR15.0 bbbb$1,234,567.

Examples of FORMAT Declarations

The following examples illustrate the FORMAT declaration syntax:
FORMAT HDG("THIS REPORT SHOULD BE MAILED TO ROOM W-252")
FORMAT IN EDIT(X4, 216, 5E9.2, 3F5.1, X4)

FORMAT IN F1(A6, 5(X3, 2E10.2, 2F6.1)),
F2(A6, G, A6)

FORMAT OUT FORM1(X56, "HEADING", X57),
FORM2(X10, 4A6 / X7, 5A6 / X2, 5A6)

FORMAT FMT1(*I*)

FORMAT FMT2(*V*.*)

3-86 8600 0098-505

FORWARD REFERENCE Declaration

FORWARD REFERENCE Declaration

The FORWARD REFERENCE declaration enables the ALGOL compiler to handle
situations in which two procedures, two interrupts, two switch labels, two connection
blocks, or two structure blocks make references to each other. Normally, a procedure,
interrupt, switch label, connection block, or structure block must be declared before it
can be used in a program. However, if two such entities make reference to each other,
regardless of which procedure, interrupt, switch label, connection block, or structure
block is declared first, then the body of the procedure, interrupt, switch label, connection
block, or structure block contains a reference to an undeclared entity.

The FORWARD REFERENCE declaration enables the compiler to recognize such entities
before they have been declared in full. When a procedure is declared in full, the
declaration must match the FORWARD REFERENCE declaration in its type. Also, if there
are parameters, these must also match the FORWARD REFERENCE declaration in
number and type.

<forward reference declaration>

<forward interrupt declaration

<forward procedure declaration>

<forward switch label declaration>

<forward structure block type declaration>—
<forward connection block type declaration>—
<forward epilog procedure declaration>
<forward exception procedure declaration>—
<forward prolog procedure declaration>

<forward interrupt declaration>
— INTERRUPT —<interrupt identifier>— ; — FORWARD {

<forward procedure declaration>

B a PROCEDURE —<procedure heading>— ; —
<procedure type>
>— FORWARD |

<forward switch label declaration>
— SWITCH —<switch label identifier>— FORWARD {

<forward structure block type declaration>
— TYPE STRUCTURE BLOCK —<structure block type identifiers— ; ———

>— FORWARD |

8600 0098-505 3-87

FORWARD REFERENCE Declaration

<forward connection block type declaration>
— TYPE CONNECTION BLOCK —<connection block type identifier>— ; ——

>— FORWARD |

<forward epilog procedure declaration>
— EPILOG PROCEDURE —<epilog procedure identifier>— ; — FORWARD —|

<forward exception procedure declaration>

— EXCEPTION PROCEDURE —<exception procedure identifiers— ; ——

>— FORWARD |

<forward prolog procedure declaration>
— PROLOG PROCEDURE —<prolog procedure identifier>— ; — FORWARD —|

Order of Referencing

Assume two procedures, PROC_ONE and PROC_TWO, make references to each other,
and PROC_ONE appears before PROC_TWO in the source code. Before PROC_ONE is
declared, the following FORWARD REFERENCE declaration must appear:

PROCEDURE PROC_TWO; FORWARD

When PROC_ONE calls PROC_TWO, the compiler recognizes the second procedure.
Later in the program, the second procedure, PROC_TWO, is declared in full.

Similar methods are used for mutually referencing interrupts, switch labels, structure
block types, and connection block types.

3-88 8600 0098-505

FORWARD REFERENCE Declaration

Examples of FORWARD REFERENCE Declarations

The following example declares a forward reference to a switch label named SELECT.
Later in the program, SELECT must be declared in full.

SWITCH SELECT FORWARD

The following example declares a forward reference to an integer procedure named
SUM. Later in the program, SUM must be declared in full, and its parameters must be
the same in number and type as in this FORWARD REFERENCE declaration.

INTEGER PROCEDURE SUM(A,B,C);
VALUE A,B;
INTEGER A,B;
REAL C;
FORWARD

The following example declares a forward reference to a connection block type named
CB. Later in the program, CB must be declared in full.

TYPE CONNECTION BLOCK CB; FORWARD

8600 0098-505 3-89

IMPORTED Declaration

IMPORTED Declaration

3-90

An IMPORTED declaration can be specified only within a CONNECTION BLOCK
declaration.

<imported declaration>

— IMPORTED —<imported data specification {

<imported data specification>

<library object attri bu’ces>J

—|:<data type>J—<1'dent1' fier C ’ | }

<imported array specification

<imported array specification>

ARRAY
|:<data type>
<character type>—

->J—<1'dent1'f1'er‘>— [—<lower bound>—j B a | |
<library object attributes>

<library object attributes>

— /1\— ACTUALNAME — = —;EBCDIC string Titeral I |) }
<library object access mode

<data type>

BOOLEAN |
COMPLEX —

DOUBLE ——
EVENT ——
INTEGER —
INTERLOCK —
REAL

A program can give an imported access mode to a data library object by specifying a
<library object access mode>. The READONLY option indicates that the importer wants
read-only access to the data. The READWRITE option indicates that the importer wants
both read and write access to the data. The access mode, if not specified, defaults to
READONLY. An imported access mode is not allowed for an EVENT, an EVENT ARRAY,
an INTERLOCK, or an INTERLOCK ARRAY.

The imported access mode, as well as the exported access mode, is used to determine
whether two data library objects match each other. A library object exported READONLY
matches only a library object imported READONLY. A library object exported
READWRITE can match a library object imported either READONLY or READWRITE. If
the library objects match, the actual access mode used for accessing the data is
determined by the imported access mode. If the imported access mode is READONLY,
any attempt to write to the data object results in a memory protection error.

8600 0098-505

IMPORTED Declaration

Multidimensional arrays can be imported inside of Connection Blocks if they are specified
with a READWRITE access mode.

Note: IMPORTED EVENTS and EVENT ARRAYS cannot be used as:

e An <event designator> in an <event list> for the WAIT and WAITANDRESET
Statements

However, if the compiler control option WAITIMPORT is set, an IMPORTED EVENT
that is declared in a CONNECTION BLOCK can be used as an <event designator> in
an <event list> for a WAIT or WAITANDRESET statement.

e An <event designator> in a direct /O READ or WRITE statement
e An <event designator> in an ATTACH statement
e An <event designator> for the LOCK Interlock statement

e Actual parameters in a PROCEDURE INVOCATION statement or a
PROCEDURE REFERENCE statement

Examples of IMPORTED Declaration

IMPORTED ARRAY D[0] (ACTUALNAME = "AA),
B[3];

IMPORTED INTEGER I (READWRITE), J, K;

8600 0098-505 3-91

INTEGER Declaration

INTEGER Declaration

An INTEGER declaration declares simple variables that can have integer values, that is,
arithmetic values that have exponents of 0 (zero) and no fractional parts.

<integer declaration>

INTEGER J—[<1dent1f%er | |
i: PRIVATEj L OWN l <equation par’c>J !
PUBLIC

<integer identifier>

An identifier that is associated with the INTEGER data type in an INTEGER declaration.

The PRIVATE and PUBLIC specifiers can only be used for simple variables that are
declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the simple variable to the scope of the structure block or the connection
block. A PRIVATE simple variable cannot be accessed using a structure or connection
block qualifier. The PUBLIC specifier allows the simple variable to be accessed using a
structure or connection block qualifier. If neither PRIVATE nor PUBLIC is specified, the
default value is PUBLIC and access to the simple variable using a structure or connection
block qualifier is allowed.

A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared, and that value is again available when the program
reenters the block in which the variable is declared.

When an arithmetic value is assigned to an integer simple variable, the value is rounded
to an integer, if possible, before it is stored in the simple variable.

When an integer simple variable is allocated, it is initialized to O (zero) (a 48-bit word with
all bits equal to zero).

See Appendix C, “Data Representation,” for additional information on the internal
structure of an integer operand.

Equation Part

3-92

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier. This action is called address
equation. An identifier can be address-equated only to a previously declared local
identifier or to a global identifier. The first identifier must not have been previously
declared within the block of the equation part. An equation part is not allowed in the
global part of a program.

Address equation is allowed only between INTEGER, REAL, and BOOLEAN variables.
Because both identifiers of the equation part have the same address, altering the value
of either variable affects the value of both variables. For more information, see “Type
Coercion of One-Word and Two-Word Operands” in Appendix C, “Data Representation.”

8600 0098-505

INTEGER Declaration

The OWN specification has no effect on an address-equated identifier. The first identifier
of an equation part is OWN only if the second identifier of the equation part is OVWN.

Examples of INTEGER Declarations
The following example declares INDEX as an integer simple variable.
INTEGER INDEX

The following example declares COUNT, VAL, and NOEXPONENT as integer simple
variables.

INTEGER COUNT,VAL,NOEXPONENT
The following example declares SAVEVALUE and MAX as integer simple variables.
Because they are declared to be OWN, these simple variables retain their values when
the program exits the block in which the simple variables are declared.

OWN INTEGER SAVEVALUE,MAX
The following example declares INT and CAL as integer simple variables, and
address-equates INT to the previously declared simple variable BOOL. The variables INT

and BOOL share the same address.

INTEGER INT = BOOL,

8600 0098-505 3-93

INTERLOCK and INTERLOCK ARRAY Declarations

INTERLOCK and INTERLOCK ARRAY Declarations

3-94

An interlock, or an interlock array element, protects a resource that is shared by several
participating processes. Using an interlock with the LOCK and UNLOCK functions is
similar to using an event with the PROCURE and LIBERATE statements. Using
interlocks, however, can significantly improve the run-time performance, compared with
using the PROCURE and LIBERATE statements on events.

<interlock declaration>

PRIVATE

i: INTERLOCK J—<1'nte\r‘1ock %dentiﬁer‘ | {
PUBLIC

<interlock identifier>

—<identifier }

<interlock array declaration>
INTERLOCK ARRAY

— PRIVATE
— PUBLIC

E]

->—J—<1'nter‘1ock ar‘r‘z’iy 1'dent1'f1'er‘>J— [—<bound pair Tist>—] ——|

<interlock array identifier>

—<identifier }

The PRIVATE and PUBLIC specifiers can only be used for interlocks and interlock arrays
that are declared within a structure block or a connection block. The PRIVATE specifier
limits visibility of the interlock or interlock array to the scope of the structure block or the
connection block. A PRIVATE interlock or interlock array element cannot be accessed
using a structure or connection block qualifier. The PUBLIC specifier allows the interlock
or interlock array element to be accessed using a structure or connection block qualifier.
If neither PRIVATE nor PUBLIC is specified, the default value is PUBLIC and access to
the interlock or interlock array element using a structure or connection block qualifier is
allowed.

The initial state of an interlock is FREE. For a complete list of the possible states of an
interlock, refer to “"LOCKSTATUS Function” in Section 5.

8600 0098-505

INTERLOCK and INTERLOCK ARRAY Declarations

Interlock Designator

An interlock designator represents a single interlock.

<interlock designator>

—<connection block qualifier>—
L<structure block qualifier>—

»>——<interlock identifier J |
e L

L<interlock array identifier>— [J—<subscr1’p’c—>—|—]

When an interlock or interlock array is declared within a connection or structure block,

you must use a connection or structure block qualifier to reference the interlock identifier
or interlock array identifier from outside of the connection or structure block.

8600 0098-505 3-95

INTERRUPT Declaration

INTERRUPT Declaration

The INTERRUPT declaration declares an interrupt and associates an unlabeled statement
with it.

<interrupt declaration>
— INTERRUPT —<identifier>— ; —<unlabeled statement }

<interrupt identifier>

An identifier that is associated with an interrupt in an INTERRUPT declaration.

Interrupting a Program

3-96

An interrupt provides a method of forcing a process to depart from its current point of
control and to execute the unlabeled statement that the INTERRUPT declaration
associates with the interrupt.

After executing the unlabeled statement associated with an interrupt, a program usually
returns to its previous point of control. However, the program does not return to this
point if a GO TO statement is executed within the unlabeled statement and the specified
designational expression references a statement outside of the unlabeled statement.

Once an interrupt is declared, it is enabled until it is explicitly disabled with the DISABLE
statement. The DISABLE statement can temporarily render the associated interrupt
ineffective. The ENABLE statement is used to reenable a disabled interrupt.

For an interrupt to be used, the interrupt identifier must be attached to an event through
the ATTACH statement. An interrupt can be detached from an event through the
DETACH statement.

An INTERRUPT declaration can be thought of as describing an unlabeled statement,
which can be a block, that is automatically entered on the occurrence (CAUSE) of an
event. The operating system ensures that when a program is executing the unlabeled
statement associated with an interrupt, all other interrupts are queued until the program
exits the unlabeled statement.

For more information, refer to “ATTACH Statement,” “DETACH Statement,” “"DISABLE
Statement,” and “"ENABLE Statement” in Section 4, “Statements.”

8600 0098-505

INTERRUPT Declaration

Examples of INTERRUPT Declarations

The following example declares ERR to be an interrupt and associates with it the
statement GO TO ABORT.

INTERRUPT ERR; GO TO ABORT

The following example declares BLOCK1 to be an interrupt. When BLOCK1 is invoked,
two messages are displayed. Because a GO TO statement does not occur within the
declaration, after the interrupt code is executed, the program continues from the point at
which the interrupt occurred.

INTERRUPT BLOCK1;
BEGIN
DISPLAY ("ERROR");
DISPLAY ("INTERRUPT BLOCK1 OCCURRED");
END

8600 0098-505 3-97

LABEL Declaration

LABEL Declaration

A LABEL declaration declares each identifier in the declaration to be a label.

<label declaration>

— LABEL J—<1’dent13f1'er‘ | {

<label identifier>

An identifier that is associated with a label in a LABEL declaration.

Using Label Identifiers

Label identifiers can be used as the targets of GO TO statements and as labels in READ
and WRITE statements.

A label identifier must appear in a LABEL declaration within the innermost block in which
the label identifier is used to label a statement.

Examples of LABEL Declarations

The following example declares START as a label.
LABEL START
The following example declares ENTER, EXIT, START, and LOOP as labels.

LABEL ENTER,EXIT,START,LOOP

3-98 8600 0098-505

LIBRARY Declaration

LIBRARY Declaration

The LIBRARY declaration declares a library identifier and specifies values for the library
attributes associated with the library. The library identifier can be used by a program to
access entry points in the library.

<library declaration>

— LIBRARY J—<11'b\r‘a\r‘y spe<’:1'f1'cat1'on | {

<library specification>

—<identifier
L (<library attribute specifications>) J

|—<11’brary object declaration 11's’c>J

<library object declaration list>

— [J—<11'b\r‘a\r‘y objec% dec]arat10n>J—] {

<library object declaration>

—E<procedure reference array specification |
<imported data speciﬁcation>;

<procedure reference array specification>

—<procedure reference array declaration

|—<1 ibrary object attri bu’ces>J

<library identifier>

An identifier that is associated with a library in a LIBRARY declaration.

The LIBRARY declaration appears in a program that accesses a library. The LIBRARY
declaration can be used to assign values to the library attributes of a library. In a program
that calls a library, the library identifier also appears in the PROCEDURE declarations for
the library entry points.

Libraries can be declared in any block of a user program. The library and its entry points
are valid within the scope of the block; when the block is exited, the linkage to the library
is broken, and the count of the library users is decremented.

The <imported data specification> portion of the LIBRARY declaration is identical to the
<imported data specification> portion of the IMPORTED declaration.

An imported access mode can be given to a data library object by specifying a <library
object access mode> as part of the <library object attributes> variable item. For more
information on library object attributes, including compile-time restrictions, see the
IMPORTED declaration earlier in this section.

8600 0098-505 3-99

LIBRARY Declaration

The ALGOL compiler does not allow an access mode to be specified for a procedure, a
procedure reference array, an event, an event array, an interlock, or an interlock array.

Section 8, “Library Facility,” contains extended examples of libraries and programs that
use libraries, as well as information about library attributes, library linkage, and library
usage in general.

Programs that declare procedure reference arrays as library objects cannot be used for

binding.

Library Attribute Specifications

<library attribute specifications>

<string or pointer Tibrary attribute specification }
<arithmetic library attribute specification>
<Boolean library attribute specification>
<procedure library attribute specification>

<string or pointer library attribute specification>

—<string- or pointer-valued library attribute name>— = ——

>—<EBCDIC string literal '

<string- or pointer-valued library attribute name>

FUNCT IONNAME }
INTERFACENAME —

INTNAME ———
LIBPARAMETER —
TITLE ———

<arithmetic library attribute specification>

—<arithmetic-valued library attribute name>— =

—>—|:<constant arithmetic expression n {
<mnemonic library attribute value>

<arithmetic-valued library attribute name>

CLUSAGE |
CONNECTIONS —
LIBACCESS —

STATE —

<mnemonic library attribute value>

BYFUNCTION |
BYTITLE —]
BYINITIATOR —

3-100 8600 0098-505

LIBRARY Declaration

<Boolean library attribute specification>

—<Boolean-valued library attribute name

L. —<constant Boolean exp\r‘ess1'on>J

<Boolean-valued library attribute name>
— AUTOLINK |

<procedure library attribute specification>

—<procedure-valued library attribute name>— =

s—<procedure identifier }

<procedure-valued library attribute name>

CHANGE |
L apprOVAL J !

<library object declaration list>

— [J—<11'b\r‘a\r‘y object declaration |_’ . |
<library object attributes> |
>—] I

<library object declaration>

—<procedure reference array declaration }

<library object attributes>
— (— ACTUALNAME — = —<EBCDIC string literal>—) }

The FUNCTIONNAME attribute specifies the system function name used to find the
object code file for the library. For example, GENERALSUPPORT is a system library
function name.

The INTERFACENAME attribute is used to identify a particular connection library within a
program.

When a value is assigned to the TITLE attribute, the EBCDIC string literal must be a
properly formed file title as defined in the Work Flow Language (WFL) Programming
Reference Manual, and must have a period (.) as its last nonblank character within the
quotation marks.

8600 0098-505 3-101

LIBRARY Declaration

When a value is assigned to the INTNAME attribute, the EBCDIC string literal can have
leading blanks and must have a period as its last character. The sequence of characters
beginning with the first nonblank character up to, but not including, the next blank or
period constitutes the INTNAME and must be a valid identifier. A valid identifier is
defined to be any sequence of characters beginning with an uppercase letter and
consisting of letters, digits, hyphens (-), and underscores (_). Blanks can be present
between the INTNAME and the period.

Specification of the TITLE and INTNAME attributes is optional; by default, the library
identifier being declared is used for the TITLE and INTNAME. If the INTNAME is given
and the TITLE is not, the INTNAME is also used for the TITLE.

The EBCDIC string literal assigned to the LIBPARAMETER attribute is used as a
parameter to a selection procedure during dynamic library linkage.

For information on LIBACCESS, see Section 8, “Library Facility.”

For LIBRARY declarations, only the CHANGE <procedure-valued library attribute name>
can be specified.

A PROCEDURE REFERENCE ARRAY declaration that appears in a LIBRARY declaration
can be either the local or the global form of the declaration; that is, either NULL or
EXTERNAL can appear at the end of the declaration. However, only the lower bound is
required. If an upper bound is given, it is ignored. The procedure reference array is said to
be imported from the library.

The handling of a procedure reference array that is declared to be a library object is
comparable to the handling of a procedure that is declared to be a library entry point. For
more information, see “PROCEDURE Declaration” later in this section.

For more information on library attributes, see the Task Management Programming
Guide.

3-102 8600 0098-505

LIBRARY Declaration

Examples of LIBRARY Declarations

The following example declares a reference to the library LIB that is to be referenced by
the title OBJECT/LIBRARY.

LIBRARY LIB(TITLE="OBJECT/LIBRARY.");

The following example declares a reference to the library L, from which the procedure
reference array REFID is to be imported. The procedure reference array is exported from
the library as PROCREF.

LIBRARY L [PROCEDURE REFERENCE ARRAY REFID [0] (I);
VALUE I; INTEGER I;
EXTERNAL (ACTUALNAME="PROCREF")];

The following example declares a reference to the library LIB, from which the procedure
reference arrays PA1 and PA2 are imported.

LIBRARY LIB [REAL PROCEDURE REFERENCE ARRAY PA1[0:10];
NULL;
PROCEDURE REFERENCE ARRAY PA2[0:3,0:10] (R,B);
REAL R;
BOOLEAN B;
NULL];

8600 0098-505 3-103

LIST Declaration

LIST Declaration

A LIST declaration associates an ordered set of list elements with a list identifier. The list
identifier is used in a READ statement or WRITE statement to indicate which entities are
to be read or written.

<list declaration>

L

— LIST J—<1’den’c1’f1’e\r‘>— (J_ﬁdi;t e]ement>J—) —4|
*

<list identifier>

An identifier that is associated with a set of list elements in a LIST declaration.

Although the syntax of the READ statement and WRITE statement allows the list
elements to be listed within the statement itself, a LIST declaration provides a way to
associate a list identifier with a specific group of list elements.

A simple complex expression or complex value appearing in a list is considered to be a
pair of real values: the first value is the real part of the complex value, and the second is
the imaginary part.

List Elements

3-104

<list element>

—r<simple arithmetic expression {
—<simple Boolean expression
—<simple complex expression
—<pointer expression

L FOR —<arithmetic expression>—

—<string expression
—<array row

— [J—<11'st e]ement>J—]
— DO —<T1ist element>— UNTIL —<Boolean expression>——
—<iteration clause>—<list element
—<if clause>—<list element

L ELSE —<Tist element>—

L<case head>— (J—<11'st eiement>J—)

<iteration clause>

FOR —<variable>— := —L<for Tist element>—— DO }
THRU —<arithmetic expression>— DO
WHILE —<Boolean expression>— DO

8600 0098-505

LIST Declaration

List elements of the following form enable the user to specify the number of characters
to be read to or written from the pointer-specified location:

<pointer expression> FOR <arithmetic expression>

An array row appearing in a list is interpreted as a sequence of variables of the same type
as that of the array. A complex array row is considered to be a real array row containing
the real and imaginary parts of the complex values in the following order: the real part of
the first element, the imaginary part of the first element, the real part of the second
element, the imaginary part of the second element, and so on.

A string variable is a valid list element for editing phrase letters A, C, and U and for
free-field formatting. For more information on free-field formatting, see "READ
Statement” in Section 4, "Statements.”

A string variable acts in the same manner as <pointer expression> FOR <arithmetic
expression> when used with the A, C, and U editing phrases. For more information
about the A, C, and U editing phrases, refer to "FORMAT Declaration” earlier in this
section.

Asterisks (*) prefixed to list elements have meaning only for free-field output; they are
ignored for other types of I/O operations. An asterisk prefixed to a list element causes
the text of the list element and an equal sign (=) to be written to the left of the edited
value of the list element.

Examples of LIST Declarations

The following example declares L1 as a list identifier for the list consisting of X, Y, the
array row Al4,*1, and B[2], B[3], B[4], and BI[5].

LIST L1 (X,Y,A[4,*],FOR I := 2 STEP 1 UNTIL 5 DO B[I])
This list identifier might appear in a WRITE statement such as the following:
WRITE (LP OUT,//,L1);

The following example declares ANSWERS and RESULTS as two list identifiers with
associated list elements.

LIST ANSWERS (P + Q,Z,SQRT(R)),
RESULTS (X1,X2,X3,X4/2)

The following example declares LIST3 as a list identifier with an associated list consisting
of nested FOR clauses indexing array A. This list identifier can be used in a READ
statement to read the specified elements of array A.

LIST LIST3 (FOR I := 0 STEP 1 UNTIL 10 DO

FOR J := 0,3,6 DO
ALL,d])

8600 0098-505 3-105

MONITOR Declaration

MONITOR Declaration

The MONITOR declaration designates items to be monitored during execution of the
program and the method by which the items are monitored. The MONITOR declaration is
used when diagnostic information is needed.

<monitor declaration>
— MONITOR

t]

»——=<file identifier> (J—<mon1’tor‘ é]ement>J—) —
L flersd —

<procedure identi

Each time an identifier designated as a monitor element is used in one of the ways
described in this section, the identifier and its current value are written to the file or
passed as parameters to the procedure specified in the MONITOR declaration.

The monitor action does not occur within procedures that are declared before the
MONITOR declaration is encountered. Monitoring of a variable in the monitor list does
not occur if this identifier is passed as an actual parameter to a call-by-name formal
parameter that is modified within the procedure. In addition, the control variable in a FOR
statement cannot be monitored. The monitor action does not occur when a value
changes as the result of a READ statement or a REPLACE statement.

When a procedure identifier is specified in the MONITOR declaration, printing of the
monitor element must be performed by the procedure. Also, the monitoring procedure
performs the specified operations depending on the values passed to it.

For a debugging feature, refer to “"TADS Option” in Section 6, “Compiling Programs.”

Monitor Elements

<monitor element>

<simple variable }
<subscripted variable>—
<label identifier>

<array identifier>

The diagnostic information produced depends on the forms of the monitor elements.
When the LINEINFO compiler control option is TRUE and a file identifier is specified in
the MONITOR declaration, a stack number, an at sign (@), a code address, and a
sequence number are printed in front of the symbolic name of the monitor element (for
example, 07143 @ 003:0003:4 (00007000)).

3-106 8600 0098-505

MONITOR Declaration

Diagnostic information is given for the specified monitor elements as follows:

e |f the monitor element is a simple variable or a subscripted variable, the symbolic
name and the previous and new values of the variable are printed (for example,
B =0:=13).

e |f the monitor element is a label identifier, the symbolic name of the label is shown
(for example, LABEL L).

e |f the monitor element is an array identifier, the symbolic name of the array, the
subscript of the element, and the previous and new values of the changed array
element are printed (for example, A[12] =0:=12).

If the monitor element is to be assigned a value, this assignment must be done by the
monitoring procedure. This value also can be assigned to the procedure value to be used,
for example, in evaluating the remainder of an expression in which the assignment is
embedded. In the example under “Monitor Element as an Array Identifier,” the
assignment statement NAME:= MON:= VAL; allows the subsequent use of the value
assigned to the monitor element.

Monitor Element as a Simple Variable

When the monitor element is a simple variable, the format of the monitoring procedure
must be as follows:

REAL PROCEDURE MON(NAME,VAL,SPELL);

The procedure must be of the same type as the monitor elements. The procedure must
have three parameters:

o The first parameter, NAME, is a call-by-name parameter of the same type as the
monitor element. The parameter NAME is passed a reference to the monitor
element, and it is normally used to store the value of the second parameter, VAL.

e The second parameter, VAL, is also of the same type as the monitor element, but it
is a call-by-value parameter and is passed the new value to be assigned to the
monitor element.

e The third parameter, SPELL, must be a call-by-value real variable that is passed the
name of the monitor element as a string of characters. Only the first six characters
of the symbolic name are passed to this formal parameter. If the symbolic name is
less than six characters long, it is left-justified, and trailing blanks are added, up to six
characters.

8600 0098-505 3-107

MONITOR Declaration

Monitor Element as a Label Identifier

When the monitor element is a label identifier, the format of the monitoring procedure
must be as follows:

PROCEDURE MON(SPELL);

The procedure must be untyped and must have only one parameter. This parameter is a
call-by-value real variable that is passed the first six characters of the symbolic name. If
the symbolic name is less than six characters long, it is left-justified, and trailing blanks
are added, up to six characters. The monitoring procedure could compare this name to
the symbolic names in the monitor list in order to identify a particular label.

Monitor Element as an Array Identifier

When the monitor element is an array identifier, the declaration of the monitoring
procedure must be as follows:

REAL PROCEDURE MON(D1,...,Dn,NAME,VAL,SPELL);

The parameters D1 through Dn of the procedure are index parameters that are passed
the subscripts for each dimension of the array element that is modified. There must be
as many index parameters as the array has dimensions. Each index parameter is a
call-by-value integer. The last three parameters are the same as in the simple variable
form, except that NAME and VAL are simple variables of the same type as the array.

The value being assigned to the array element also can be assigned to the procedure
value to be used, for example, in evaluating the remainder of an expression that contains
the array element.

The following procedure can be used to monitor a two-dimensional real array so that the
values in the array never become negative:

REAL PROCEDURE MON(D1,D2,NAME,VAL,SPELL);
VALUE D1,D2,VAL,SPELL;
REAL NAME,VAL;
REAL SPELL;
INTEGER D1,D2;
BEGIN
IF VAL < O THEN
GO TO ERROREXIT; % BAD GO TO
NAME := MON := VAL; % RETURN VALUE FOR FURTHER USE
END;

N

3-108 8600 0098-505

MONITOR Declaration

The following statements are equivalent to each other, where A is monitored by MON. A
is a two-dimensional array declared in the same program where the monitoring
procedure MON is declared. The first assignment statement assigns 4 to All,J], as does
the second statement because inside the procedure MON the fourth parameter (VAL) is
assigned to the 3rd parameter (NAME).

B :

A[I,J] := 4;

B :

MON(I,J,A[I,J],4,"A");

Examples of MMIONITOR Declarations

The following example declares the simple variable A to be a monitor element. When A is
used, monitoring information on A is written to file FYLE.

MONITOR FYLE (A)

In the following program, simple variable |, array MON1, subscripted variable MON2[1],
and label FINISH are monitored.

100 BEGIN

200

300 FILE TERMOUT(KIND=REMOTE);
400 INTEGER I;

500 LABEL FINISH;

600 ARRAY MON1[0:3],

700 MON2[0:3];

800 MONITOR TERMOUT (I,MON1,MON2[1],FINISH);
900

1000 I :=27;

1100 MON1[0] := I;

1200 MON2[0] := 23;

1300 MON2[1] := MON1[0] * 2;
1400 GO TO FINISH;

1500 FINISH:

1600 END.

When the program is executed, the following output is written to the terminal:
0148 @ 003:000E:4 (00001000) I =0:=27 (4"00000000001B")
0148 @ 003:0013:4 (00001100) MON1 [0]=0:=27 (4"00000000001B")

0148 @ 003:0020:4 (00001300) MON2 [1]=0:=54 (4"000000000036")
0148 @ 003:0024:4 (00001500) LABEL FINISH

8600 0098-505 3-109

OUTPUTMESSAGE ARRAY Declaration

OUTPUTMESSAGE ARRAY Declaration

An OUTPUTMESSAGE ARRAY declaration declares output message arrays. An output
message array contains output messages to be used by the MultiLingual System (MLS).
For a description of how to use these arrays, refer to “MESSAGESEARCHER

3-110

Statement” in Section 4, “Statements.”

<output message array declaration>

— OUTPUTMESSAGE — ARRAY J—<output mes;age array |

<output message array>

—<identifier>— ()

J—<output message par‘t>J—

<output message array identifier>

An identifier that is associated with an output message array in an OUTPUTMESSAGE

ARRAY declaration.

<output message part>

—<language name
|—<trans1ators' help ’cex’c>J |—<ccsve1r‘s1'on natme>J

-

J—<0utput r;1essage>J—

<language name>

—<Tetter L
/16\——<]1 ette\r‘>4~,—L
—E<d1'g1't>

<ccsversion name>

—<letter |_L
/16\——<1 e’c’cer>4~,—L
—E<d1'g1't>

<translator's help text>

— < —<EBCDIC string constant>— >

8600 0098-505

OUTPUTMESSAGE ARRAY Declaration

The OUTPUTMESSAGE ARRAY declaration is part of the ALGOL interface to the
MultiLingual System (MLS), which enables the user to access system messages in
various natural languages, that is languages used by humans rather than machines.

Each output message array identifier must be unique throughout the entire program. This
requirement is an exception to the description of the scope of identifiers given in
Section 1, “Program Structure.”

The ccsversion name identifies the ccsversion to be associated with the messages
contained in the output message array. This information is used during translation of the
declared output messages by the MLSTRANSLATE statement to provide
case-insensitivity. If unspecified, the associated ccsversion becomes the
internationalized system default collating sequence.

Output Message

<output message>

output message number:

|—<trans1ators' help ’cex’c>J

C I - | C output message segment>j—‘—{
<translators' help text> <translators' help text>

<output message number>

—<unsigned integer {

<output message segment>

<EBCDIC string constant
<hexadecimal string constant>
<output message parameter>

<output message case expression>—
EMPTY

<output message parameter>

— < —<output message parameter number>— >

L, —— DECIMALPOINTISCOMMA
—D—[/l\— DECIMALPOINTIS —<punctuation 11'ter‘a1>—4|—L
/1\— THOUSANDSEPARATORIS —<punctuation Titeral>

<output message parameter number>

—<unsigned integer }

8600 0098-505 3-111

OUTPUTMESSAGE ARRAY Declaration

3-112

<output message case expression>

— CASE — < —<output message parameter number>— > — OF — BEGIN —

->J—<0utput messag’;e case part |] END |

<output message case part>

4‘—|:<0utput message parameter va]ue>—|— : |

/1\- ELSE

J—|:<0utput message segment>:|—L
<translators' help text>

<output message parameter value>

<EBCDIC string constant }
E<hexadec1'ma1 string constant>—
EMPTY

An output message number must be less than 8 digits long. For each output message
part, the output message number must uniquely identify an output message. For
example, a number is assigned to one and only one output message segment, and each
output message segment has only one number assigned to it.

An output message parameter number represents a parameter to be substituted into the
message when the MESSAGESEARCHER statement is executed. The number identifies
which parameter is to be substituted. The output message parameters are numbered
consecutively from 1 through n, where n is the number of parameters in the output
message. The maximum number of parameters in an output message is 255.

DECIMALPOINTISCOMMA indicates that any decimal point (.) appearing in the preceding
output message parameter number is changed to a decimal comma (,). In addition, all
commas are changed to decimal points. DECIMALPOINTIS <punctuation literal> causes
any decimal points appearing in the parameter value to be changed to the specified
character. THOUSANDSEPARATORIS <punctuation literal> causes any commas
appearing in the parameter value to be changed to the specified character.

A slash (/) causes both a carriage return character (48'0D") and a line feed character
(48"25") to be inserted into the completed output message.

If an output message case expression does not contain an ELSE clause and no case
exists for the value of the output message parameter, then the result of the output
message case expression is a null string and an error result is returned with the
completed output message. The program requesting the output message can determine
whether or not the partially formed output message should be used.

8600 0098-505

OUTPUTMESSAGE ARRAY Declaration

When multiple output message parts occur within the same output message array, they
define the same output messages for different languages. Multiple output message
arrays can be used to define different groups of output messages.

Defines are expanded within an OUTPUTMESSAGE ARRAY declaration.

Translators' Help Text

The translators' help text is displayed by the Message Translation Utility (MSGTRANS)
when an output message is being translated. For more information on the MSGTRANS,
refer to the Message Translation Utility (MSGTRANS) Operations Guide. The translators'
help text can occur before or after an output message segment or an output message
number. If translators' help text needs to appear with all output messages in the
language, then the translators' help text is placed after the language name and before
the left parenthesis.

Only one set of beginning and ending angle brackets are needed for each segment of
translators' help text. However, beginning and ending quotation marks are required for
each line if the help text continues over more than one line. The following is a multilined
translators' help text:

<"This message should not be translated into another language."
"However, it can be uppercased.">

Examples of OUTPUTMESSAGE ARRAY Declarations

In the following example, the output message array ERRORS shows an
OUTPUTMESSAGE ARRAY declaration with the same output messages in two
languages. The language of the user and the output message number determine the
output message that is selected from this array.

OUTPUTMESSAGE ARRAY ERRORS (
ENGLISH (
10 = "POSITIVE INTEGER EXPECTED.",
20 = "TOO MANY PARAMETERS."
)’
FRANCAIS (
10 = "DEMANDE UN ENTIER POSITIF.",
20 = "TROP DE PARAMETRES."
))s

8600 0098-505 3-113

OUTPUTMESSAGE ARRAY Declaration

3-114

In the following example, the output message array SUMMARY shows an

OUTPUTMESSAGE ARRAY declaration with parameters. The first parameter value is not
used as part of the message, but rather to select among case alternatives. The second
and third parameters are conditionally inserted into the message, based on the value of
the first parameter. Note that both the second and third parameters are not necessarily
used. When the message is given in the language FRANCAIS, decimal points in the
values of parameters 2 and 3 are changed to decimal commas.

OUTPUTMESSAGE ARRAY
ENGLISH (
100 =

SUMMARY (

"THIS PROGRAM IS TO BE EXECUTED WITH "

CASE <1>
BEGIN
II1II:
II2II:
II3II:

END
)

FRANCAIS (
100 =
"CE PROG
CASE <1>
BEGIN
II1II:

II2II:
II3II:

END
))s

OF

"MAX PROCESSING TIME " <2> " SEC.",
"MAX I/0 TIME " <3> " SEC.",
"MAX PROCESSING TIME " <2> " SEC., MAX "

"I1/0 TIME " <3> " SEC."

RAMME DOIT S'EXECUTER EN
OF

<2, DECIMALPOINTISCOMMA>
" SEC. DE CALCUL.",

<3, DECIMALPOINTISCOMMA>
<2, DECIMALPOINTISCOMMA>
" SEC. DE CALCUL oU "
<3, DECIMALPOINTISCOMMA>

MOINS DE "

" SEC. D'E/S.",

" SEC. D'E/S."

8600 0098-505

PENDING PROCEDURE Declaration

PENDING PROCEDURE Declaration

<pending procedure declaration>

B a PROCEDURE —<procedure heading>— ; ——
<procedure type>

>— PENDING |

The PENDING PROCEDURE declaration enables procedures declared within a structure
or connection block to have their bodies specified later outside the original STRUCTURE
or CONNECTION BLOCK TYPE declaration. It is similar to the FORWARD reference of a
PROCEDURE declaration.

A syntax error results if the PENDING procedure is not fully resolved in the block
containing the STRUCTURE or CONNECTION BLOCK TYPE declaration with the
PENDING PROCEDURE ACTUAL declaration.

8600 0098-505 3-115

PENDING PROCEDURE ACTUAL Declaration

PENDING PROCEDURE ACTUAL Declaration

<pending procedure actual declaration>

B | PROCEDURE —=<structure block type identifier>—
<procedure type>
»— . —<procedure heading>— ; —<unlabeled statement }

The PENDING PROCEDURE ACTUAL declaration provides the body of the procedure
that was previously declared as PENDING in the STRUCTURE or CONNECTION BLOCK
TYPE declaration. This declaration must appear at the same level as, and outside the
STRUCTURE or CONNECTION BLOCK TYPE declaration in which, the pending procedure
is contained.

All variables declared inside the STRUCTURE or CONNECTION BLOCK TYPE declaration
become the outer scope for the procedure. Variables declared outside the STRUCTURE
or CONNECTION BLOCK TYPE declaration become the next most outer scope.

The following is an example of a PENDING PROCEDURE ACTUAL declaration:

REAL X;

TYPE STRUCTURE BLOCK SB;
BEGIN
PROCEDURE P; PENDING;
REAL X;
REAL R;
REAL Z;
END;

REAL R;
REAL Z;
PROCEDURE SB.P;
BEGIN
REAL Z;
X := 100; %Updates X contained in SB
R := 100; %Updates R contained in SB
Z := 100; %Updates Z contained in procedure P
END;

3-116 8600 0098-505

PICTURE Declaration

PICTURE Declaration

The PICTURE declaration declares pictures that are used in REPLACE statements to
perform general editing of characters.

<picture declaration>

— PICTURE J—<1'dent1'1’1'e\r‘>— (,—<p1'ctur‘e>—) | {

<picture identifier>

An identifier that is associated with a picture in a PICTURE declaration.

<picture>

—|—<p1'cture symbo]l | I

<picture symbol>

<string literal }
<introduction
<picture skip B

<repeat part value>
<control character
<single picture character
<picture character

|—<\r‘epeat part value>-

A picture is used in a REPLACE statement to perform generalized editing functions as
characters are transferred from a source location to a destination. The following editing
operations can be performed:

e Unconditional character moves

e Moves of characters with leading 0 (zero) editing

o Moves of characters with leading 0 (zero) editing and floating character insertion
e Moves of characters with conditional character insertion

e Moves of characters with unconditional character insertion

e Moves of only the numeric parts of characters

e Forward and reverse skips of source characters

o Forward skips of destination characters

e Insertion of a zone field on the previous character

8600 0098-505 3-117

PICTURE Declaration

A picture consists of a named string of picture symbols enclosed in parentheses. The
picture symbols specify the editing to be performed and can be combined in any order to
perform a wide range of editing functions.

One value array, also called an edit table, is generated for each PICTURE declaration;
therefore, for run-time efficiency, all pictures should be collected under a single PICTURE
declaration.

String Literals
If a string literal appears in a picture, the string is inserted into the destination. If the
destination is EBCDIC, the string is inserted unchanged. If the destination is
hexadecimal, only the numeric fields of the string characters are inserted into the
destination.

Introduction

<introduction>

—|:<1'ntr‘oduct1'on code>—<new character: |

4 —<introduction code>J—/2\—<hexadec1'ma1 char‘acter‘>J—

<introduction code>

CcCUoOU=Z=X0w

<new character>
<letter I
<digit
<single space>——
<special new character>—

<special new character>

Any of the following special characters:

1 |

10+ -7
5 & *; 6

H*= V
A N v

3-118 8600 0098-505

PICTURE Declaration

Introduction Codes

The introduction codes can be used to change the implicit characters used by some of
the picture symbols. The <introduction> construct specifies the new character to be
used. If two hexadecimal characters are used to specify the new character, they are
assumed to represent a single EBCDIC character.

Introduction
Code

B

8600 0098-505

Action

Specifies the zero character to be used by D, E, F, and Z. The default
zero character is the blank character.

Specifies the nonzero character to be used by D. The default
nonzero character is the comma (,).

Specifies the minus character to be used by E, R, and S. The default
minus character is the hyphen ().

Specifies the insert character to be used by |. The default insert
character is the period (.).

Specifies the plus character to be used by E, R, and S. The default
plus character is the plus sign (+).

Specifies the dollar character to be used by F and J. The default
dollar character is the dollar sign ($).

3-119

PICTURE Declaration

Characters Used by Picture Symbols

Certain picture symbols implicitly define characters to be inserted into the destination.
These characters are referred to as the insert character, zero character, nonzero
character, minus character, plus character, and dollar character.

The insert character is the character inserted into the destination by the picture symbol I.
It is, by default, the period (.), and it can be changed by the introduction code N.

The zero character is used by the picture symbol D, and by the picture symbols E, F, and
Z for leading zero replacement. It is, by default, the blank character, and it can be
changed by the introduction code B.

The nonzero character is used by the picture symbol D. It is, by default, the comma (,),
and it can be changed by the introduction code C.

The minus character is used by the picture symbols E, R, and S. The default minus
character is the hyphen (-), and it can be changed by the introduction code M.

The plus character is used by the picture symbols E, R, and S. The default plus character
is the plus sign (+), and it can be changed by the introduction code P.

The dollar character is used by the picture symbols F and J. The default dollar character is
the dollar sign ($), and it can be changed by the introduction code U.

Flip-Flops Used by Picture Symbols

Two hardware flip-flops affect the operation of certain picture symbols: the float flip-flop
(FLTF) and the external sign flip-flop (EXTF).

The value of FLTF affects the function performed by the picture symbols D, E, F, J, R,
and Z. FLTF is set to O (zero) at the beginning of every picture. The picture symbols E, F,
and Z can change the value of FLTF to 1, and the picture symbols J, R, and D
unconditionally assign the number 0 to FLTF.

The value of EXTF affects the function performed by the picture symbols E, F, J, Q, R,
and S. EXTF is not assigned a value by the REPLACE statement that is using the picture;
EXTF remains in the state in which it was left after the most recent operation that
affected it. For example, a REPLACE statement of the following form sets EXTF to
reflect the sign of the first arithmetic expression: the number 0 if the arithmetic
expression is positive, and the number 1 if it is negative.

REPLACE <destination> BY <arithmetic expression>
FOR <arithmetic expression> DIGITS

3-120 8600 0098-505

PICTURE Declaration

Character Fields

Pictures can act on both EBCDIC and hexadecimal characters. In the descriptions of the
picture symbols, the term numeric field is used to mean either an entire hexadecimal
character or the rightmost four bits of an EBCDIC character. The term zone field is used
to mean the leftmost four bits of an EBCDIC character.

Picture Skip Characters

<picture skip characters>

C 2] '

<repeat part value>

— (—=<unsigned integer>—) |

The picture skip characters are described in the following table. If a repeat part value is
given with the picture symbol, then this unsigned integer indicates the number of
characters that are to be skipped in the source. If no repeat part value is given, one
character is skipped in the source.

Character Action

> The source pointer is skipped forward (to the right) the specified
number of characters.

< The source pointer is skipped backward (to the left) the specified
number of characters.

8600 0098-505 3-121

PICTURE Declaration

Control Characters

<control character>

L?J |

The control characters are described in the following table.

Character Action

Q If the value of EXTF is 1, a 4'D" character is inserted into the zone
field of the preceding destination character. If the value of EXTF is
0, the destination character is not altered. The destination pointer
must be EBCDIC, and it is left pointing to the same character that
it was pointing to before the Q action was taken.

FLTF is unconditionally assigned the value O.

Single Picture Characters

<single picture character>
J

C R |
S

The single picture characters are described in the following table.

Character Action

J If the value of FLTF is 0, the dollar character is inserted into the
destination. If the value of FLTF is 1, no character is inserted, and the
destination pointer is not advanced. FLTF is then assigned the value 0.
If the destination is hexadecimal, only the numeric field of the dollar
character is inserted.

R If the values of FLTF and EXTF are 0, the plus character is inserted into
the destination. If FLTF is 0 and EXTF is 1, the minus character is
inserted into the destination. If FLTF is 1, no character is inserted, and
the destination pointer is not advanced. FLTF is then assigned the value
0. If the destination is hexadecimal, only the numeric field of the plus or
minus character is inserted.

S If EXTF is 1, the minus character is inserted into the destination;
otherwise, the plus character is inserted into the destination. The
destination must be EBCDIC.

3-122 8600 0098-505

PICTURE Declaration

Picture Characters

<picture character>

|
ONXHTTMO >
|

The picture characters are described in the following table. If a repeat part value is given
with the picture symbol, then the unsigned integer in the repeat part value specifies the
number of characters to be skipped, inserted, or transferred from the source to the
destination. If no repeat part value is given, one character is skipped, inserted, or
transferred from the source to the destination.

Character Action

A The specified number of characters are transferred from the source to
the destination. If the destination is hexadecimal, only the numeric
fields of the characters are transferred.

D If the value of FLTF is O, the specified number of zero characters are
inserted into the destination. If FLTF is 1, the specified number of
nonzero characters are inserted into the destination. If the destination
is hexadecimal, only the numeric field of the zero or nonzero character
is inserted.

E For the specified number of source characters, the following action
takes place. While the value of FLTF is 0 and the numeric field of the
source character is 4'0", the zero character is inserted into the
destination. If the destination is hexadecimal, only the numeric field of
the zero character is inserted. If the value of FLTF is 0 and the numeric
field of the source character is not equal to 4'0", several things happen.
If EXTF is O, the plus character is inserted into the destination. If EXTF
is 1, the minus character is inserted into the destination. If the
destination is hexadecimal, only the numeric field of the plus or minus
character is inserted. The numeric field of the source character is
transferred to the destination, with a zone field of 4"F" if the destination
is EBCDIC. FLTF is assigned a value of 1. While FLTF is 1, the numeric
field of the source character is transferred to the destination, with a
zone field of 4"F" if the destination is EBCDIC.

8600 0098-505 3-123

PICTURE Declaration

3-124

Character
F

Action

For the specified number of source characters, the following action
takes place. While the value of FLTF is 0 and the numeric field of the
source character is 4'0", the zero character is inserted into the
destination. If the destination is hexadecimal, only the numeric field of
the zero character is inserted. If FLTF is 0 and the numeric field of the
source character is not equal to 4'0", several things can happen. The
dollar character is inserted into the destination. If the destination is
hexadecimal, only the numeric field of the dollar character is inserted.
The numeric field of the source character is transferred to the
destination, with a zone field of 4"F" if the destination is EBCDIC. FLTF
is assigned a value of 1. While FLTF is 1, the numeric field of the
source character is transferred to the destination, with a zone field of
4"F" if the destination is EBCDIC.

The specified number of insert characters are inserted into the
destination. If the destination is hexadecimal, only the numeric field of
the insert character is inserted.

The destination pointer is skipped forward (to the right) the specified
number of characters.

For the specified number of source characters, the following action
takes place. While the value of FLTF is 0 and the numeric field of the
source character is 4'0", the zero character is inserted into the
destination. If the destination is hexadecimal, only the numeric field of
the zero character is inserted. If the value of FLTF is 0 and the numeric
field of the source character is not equal to 4'0", the numeric field of the
source character is transferred to the destination, with a zone field of
4"F" if the destination is EBCDIC. FLTF is assigned a value of 1. While
FLTF is 1, the numeric field of the source character is transferred to the
destination, with a zone field of 4"F" if the destination is EBCDIC.

If the source and destination are both EBCDIC, the numeric fields of
the specified number of characters are transferred from the source to
the destination with zone fields of 4'F". If the source and destination are
both hexadecimal, the specified number of characters are transferred
from the source to the destination.

8600 0098-505

PICTURE Declaration

Examples of PICTURE Declarations

The following picture transfers five characters from the source to the destination:
PICTURE NUM (ZZZZ9)

The first four characters are transferred with leading zero replacement; that is, leading
zeros are transferred to the destination as the zero character, which is a blank character
by default. The fifth character is not replaced by the zero character. If the source and
destination are EBCDIC, digits are transferred as digits, but other characters have their
zone field replaced by 4"F", turning them into digits. If the source and destination are
hexadecimal, only the numeric field of the zero character is transferred to replace leading
zeros. The following table gives some sample results of this picture.

Source Destination
8'00000" 8" 0"

8'00500" 8" 500"
8'00356" 8" 356"
8'0ABCD" 8" 1234"
4"00000" 4"00000"
4"00500" 4"00500"
4"00356" 4"00356"
4"0ABCD" 4"0ABCD"

The following picture transfers nine characters from the source to the destination and
inserts one character into the destination, yielding 10 characters in the destination:

PICTURE USECS (ZZZ1999999)

8600 0098-505 3-125

PICTURE Declaration

The first three characters from the source are transferred to the destination with leading
zero replacement. Then the insert character, which is a period (.) by default, is inserted
into the destination. Six characters are then transferred from the source to the
destination with no leading zero replacement. The following table gives some sample
results of this picture.

Source Destination
8"000000000" 8".000000"
8'356000012" 8'356.000012"
8"'005123400" 8" 5.123400"
8"'150000376" 8"150.000376"

The following picture transfers six characters from the source:
PICTURE TIMENOW (N: " "™ 9(2) I 9(2) I 9(2))

The introduction code N causes the insert character to be the colon (:). The string literal

" " causes the blank character to be inserted into the destination. The first and second
source characters are transferred to the destination without leading zero replacement,
the insert character is inserted into the destination, the third and fourth source characters
are transferred to the destination, the insert character is inserted, and the fifth and sixth
source characters are transferred to the destination. The destination receives a total of
nine characters.

The following table gives some sample results of this picture.

Source Destination
8'000000" 8" 00:00:00"
8"'123456" 8" 12:34:56"
8'000523" 8" 00:05:23"
8"'150007" 8" 15:00:07"

3-126 8600 0098-505

PICTURE Declaration

The following picture transfers 11 characters from the source to the destination,
formatting the information into a table:

PICTURE TABLE ("1983 = " F(4) X(2) "1984 = ":F(4) X(2)
"CHANGE = ":E(3) "%")

First, the string 7983 = is inserted into the destination. Then four characters are
transferred from the source to the destination, with leading zero replacement and a dollar
sign ($) inserted in front of the first nonzero character. Then the destination pointer is
advanced two characters, and the string 7984 = is inserted into the destination. The
colon (:) control character causes leading zero replacement to be restored. Four
characters are transferred from the source to the destination with leading zero
replacement and a dollar sign ($) inserted in front of the first nonzero character. The
destination pointer is advanced two characters, and the string CHANGE = is inserted into
the destination. Again, the colon is used to restore leading zero replacement. Then three
characters are transferred from the source to the destination with leading zero
replacement and a plus sign (+) or a minus sign (-) inserted in front of the first nonzero
character, depending on the value of EXTF. Finally, the string % is inserted into the
destination. A total of 42 destination characters are produced by this picture.

The following table gives some sample results of this picture. In the table, it is assumed
that the destination area was filled with blanks before the picture was used, and that
EXTF was properly set up to reflect the sign of the change value.
Source Destination
8'00035000420020" 8"1983 = $35 1984 = $42 CHANGE = +20%"
8'00110003680235" 8"1983 = $110 1984 = $368 CHANGE = +235%"
8'02246021060006" 8"1983 = $2246 1984 = $2106 CHANGE = -6%"
8'00089000350061" 8"1983 = $89 1984 = $35 CHANGE = -61%"

8600 0098-505 3-127

POINTER Declaration

POINTER Declaration

The POINTER declaration declares a pointer. A pointer can represent the address of a
character position in a one-dimensional array or an array row. Therefore, the point is said
to point to a character position.

<pointer declaration>

T om T POINTER
OWN

L <identifier B] | |
<lex Tevel restriction part>

<pointer identifier>

An identifier that is associated with a pointer in a POINTER declaration.
The POINTER declaration establishes each identifier in the list as a pointer identifier.

The following declaration, for example, declares PTS, PTD, SOURCE, and DEST to be
pointers:

POINTER PTS,PTD,SOURCE,DEST
Pointers are initialized through the use of a pointer assignment statement or the update

pointer construct. Any attempt to use a pointer before it is initialized results in a fault at
run time.

OWN Pointers

3-128

A pointer declared to be OWN retains its value when the program exits the block in
which the pointer is declared, and that value is again available when the program
reenters the block in which the pointer is declared.

OWN pointers can be assigned only to global arrays or OWN arrays declared within the
scope of the pointer. This restriction applies because the pointer is not deallocated when
the block in which it is declared is exited. If an OWN pointer were assigned to a local
array, then when the block in which the pointer is declared is reentered, the pointer could
contain a reference to an array that has been deallocated.

8600 0098-505

POINTER Declaration

Lex Level Restriction Part

<lex level restriction part>

— FOR <pointer identifier
—E<array 1'den’c1'f1'e1r‘>J !

A global pointer pointing to a local array would access an invalid portion of memory if the
local array is deallocated. To avoid this situation, any construct that could result in a
pointer pointing to an array declared at a higher lexical (lex) level than that at which the
pointer is declared is disallowed by the compiler. Such an assignment is called an
up-level pointer assignment.

An explicit up-level pointer assignment such as the following results in a syntax error,
because the locally declared array LOCALARRAY might be deallocated, leaving the global
pointer GLOBALPOINTER pointing at an invalid memory location:

GLOBALPOINTER := POINTER(LOCALARRAY)

A potential up-level pointer assignment such as the following also results in a syntax
error, because the local pointer LOCALPOINTER can point to a locally declared array:

GLOBALPOINTER := LOCALPOINTER

Of course, LOCALPOINTER can point to an array declared at a lex level equal to or less
than that at which GLOBALPOINTER is declared (in which case up-level assignment
would not occur). However, because there is no way for the compiler to determine
where LOCALPOINTER will be pointing when the assignment is executed, such potential
up-level pointer assignments are not allowed.

The lex level restriction part causes assignments to the declared pointer to be restricted
so that the pointer can be used to assign values to pointers declared at lower lex levels.
The lex level restriction part specifies that, for up-level pointer assignment checking, the
compiler is to treat the pointer being declared as if it were declared at the same lex level
as the pointer or array whose identifier follows the FOR. For example, the following
declaration declares a pointer LOCALPOINTER that can point only to arrays declared at
lex levels equal to or less than the lex level at which GLOBALPOINTER is declared:

POINTER LOCALPOINTER FOR GLOBALPOINTER
Because assignments to LOCALPOINTER are restricted by the lex level restriction part in
the preceding declaration, an assignment such as the following one cannot result in an
up-level pointer assignment, and therefore is allowed by the compiler:

GLOBALPOINTER := LOCALPOINTER

The lex level restriction part is not allowed in the formal parameter part or the global part
of a PROCEDURE declaration.

8600 0098-505 3-129

POINTER Declaration

Examples of POINTER Declarations

In the following example, program 1 and program 2 are nearly identical. The only
difference is found in the POINTER declaration at line 1000. In program 1,
LOCALPOINTER is declared without a lex level restriction part, and the potential up-level
pointer assignment at line 1200 of program 1 causes a syntax error. In program 2,
LOCALPOINTER is declared with the lex level restriction part FOR GLOBALARRAY2, so
the pointer assignment at line 1200 of program 2 cannot be an up-level pointer
assignment and does not cause a syntax error. However, the restrictions imposed by the
lex level restriction part cause a syntax error at line 1300 of program 2, where no error
occurred in program 1.

100 %%%%%%%%% %% % %% %% % %% % %% % %% %% % %% % %55 %55 %6 %66 %

200 %%%%%%%%%%%%%% PROGRAM 1 %%%%%%%%%%%%%%%

300 %%%%%%% %% % %% %% % %% %% % %% % %% % %% %576 % %% % %55 6 %66 %

400 BEGIN % LEX LEVEL 2
500 POINTER GLOBALPOINTER;

600 ARRAY GLOBALARRAY1,

700 GLOBALARRAY2[0:9];

800 GLOBALPOINTER := POINTER(GLOBALARRAY1);

900 BEGIN % LEX LEVEL 3
1000 POINTER LOCALPOINTER;

1100 ARRAY LOCALARRAY[0:9];

1200 GLOBALPOINTER := LOCALPOINTER; % SYNTAX ERROR
1300 LOCALPOINTER := POINTER(LOCALARRAY);

1400 END;

1500 END.

100 %%%%%%%%% %% % %% %% % %% % %% %% %% % %% % %5 % %5 6 %66 %

200 %%%%%%%%%%%%%% PROGRAM 2 %%%%%%%%%%%%%%%

300 %%%%%%5% %% % %% %% % %% %% % %% % %% % %% % %6 % %% % %55 %6 %66 %

400 BEGIN % LEX LEVEL 2
500 POINTER GLOBALPOINTER;

600 ARRAY GLOBALARRAY1,

700 GLOBALARRAY2[0:9];

800 GLOBALPOINTER := POINTER(GLOBALARRAY1);

900 BEGIN % LEX LEVEL 3
1000 POINTER LOCALPOINTER FOR GLOBALARRAY2;

1100 ARRAY LOCALARRAY[0:9];

1200 GLOBALPOINTER := LOCALPOINTER;

1300 LOCALPOINTER := POINTER(LOCALARRAY); % SYNTAX ERROR
1400 END;

1500 END.

3-130 8600 0098-505

POINTER Declaration

As the following example illustrates, a call-by-name formal pointer parameter cannot be
assigned the value of any pointer other than itself, because there is no way for the
compiler to determine the lex level of the actual pointer parameter passed to the
call-by-name formal pointer parameter.

BEGIN
POINTER P1, P2; % LEX LEVEL 2
ARRAY A[0:9];
PROCEDURE P(PTRA, PTRB);
POINTER PTRA, PTRB;
BEGIN

PTRA := PTRA + 3; % 0K
REPLACE PTRA:PTRA BY PTRB:PTRB FOR 5; % OK
PTRA := PTRB; % SYNTAX ERROR
PTRA := P2; % SYNTAX ERROR

PTRB := POINTER(A);
REPLACE PTRA:PTRB BY "X";
END;
P2 := POINTER(A);
P(P1, P2);
END.

o

SYNTAX ERROR
SYNTAX ERROR

o

As the following example illustrates, to prevent up-level pointer assignments that can
result from separate compilation of procedures with global parts, a pointer declared in
the global part cannot be assigned the value of any pointer other than itself.

[POINTER PTRA,PTRB;]
PROCEDURE P;

BEGIN

ARRAY A[0:9];

PTRA := PTRA + 2; % 0K
PTRA := POINTER(A); % SYNTAX ERROR -- THIS IS AN
% UP-LEVEL POINTER ASSIGNMENT.
PTRA := PTRB; % SYNTAX ERROR -- THE LEX LEVELS
% OF PTRA AND PTRB ARE NOT KNOWN,
% SO THIS IS A POTENTIAL UP-LEVEL
% POINTER ASSIGNMENT.
END.

8600 0098-505 3-131

PROCEDURE Declaration

PROCEDURE Declaration

3-132

A PROCEDURE declaration defines a procedure and associates a procedure identifier
with it. The procedure can then be invoked by using the procedure identifier.

<procedure declaration>

B a PROCEDURE —<procedure heading>—
PRIVATEj <procedure type>

PUBLIC
»>— 3 —<procedure body I

<procedure type>
——<word type {

STRING —
_

—<string type>

<procedure heading>

—<identifier {
|:<forma1 parameter part>—

The PRIVATE and PUBLIC specifiers can only be used for procedures that are declared
within a structure block or a connection block. The PRIVATE specifier limits visibility of
the procedure to the scope of the structure block or the connection block. A PRIVATE
procedure cannot be accessed using a structure or connection block qualifier. The
PUBLIC specifier allows the procedure to be accessed using a structure or connection
block qualifier. If neither PRIVATE nor PUBLIC is specified, the default value is PUBLIC
and access to the procedure using a structure or connection block qualifier is allowed.

A procedure becomes a function by preceding the word PROCEDURE with a procedure
type and by assigning a value (the result to be returned by the procedure) to the
procedure identifier somewhere within the procedure body. This kind of procedure is
referred to in ALGOL as a typed procedure. For examples of typed procedures, see
procedures RESULT, HEXPROC, MATCH, and MUCHO under “Examples of
PROCEDURE Declaration” later in this section. A typed procedure can be used either as
a statement or as a function. When used as a statement, the returned result is
automatically discarded.

If the <string type> variable is not specified in the <procedure type> construct in the
declaration of a string procedure, then the string procedure is of the default character
type. The default character type can be designated by the compiler control option ASCII.
If no such compiler control option is used, the default character type is EBCDIC. For
more information, refer to “Default Character Type"” in Appendix C, “Data
Representation.”

If a program is a procedure, parameters can be passed to it. If the procedure is initiated
through CANDE (which passes only one parameter, a quoted string), then the formal
parameter must be declared as a real array with an asterisk lower bound. If the
procedure is initiated through Work Flow Language (WFL), a formal parameter for a
string actual parameter must be declared as a real array with an asterisk lower bound.
Both CANDE and WFL pass strings as arrays. For more information, refer to the

8600 0098-505

PROCEDURE Declaration

EXECUTE command in the CANDE Operations Reference Manual and the RUN
statement in the Work Flow Language (WFL) Programming Reference Manual. When the
program is initiated, the array is allocated the minimum number of words needed to
contain the string plus at least one null character (48"'00"), which is appended to the end
of the string.

Identifiers

<procedure identifier>

An identifier that is associated with a procedure in a PROCEDURE declaration.

<string procedure identifier>

An identifier that is associated with a procedure that is declared a string procedure in a
PROCEDURE declaration.

Formal Parameter Part

<formal parameter part>

— (—<formal parameter list>—) — ; B
<value paur"c>J

[o]
specification |
|—<r‘efer‘ence pa\r‘t>J

<formal parameter list>

LH<parameter del 1'm1"ce\r‘>J
—L <formal parameter |

<formal parameter>

—<identifier |

<value part>

— VALUE —<identifiers—L ; |

’ |

<reference part>

— REFERENCE —L<identifiers— ; |

The formal parameter part lists the items to be passed in as parameters when the
procedure is invoked. A formal parameter part is optional. Every formal parameter for a
procedure must appear in a specification.

8600 0098-505 3-133

PROCEDURE Declaration

3-134

If the identifier of a formal parameter is declared again as a local variable, the identifier
gets local significance. This makes the actual parameter that corresponds to it
inaccessible throughout this inner scope. Any reference to the parameter identifier
actually is a reference to the local variable.

For maximum efficiency, as many formal parameters as possible should be call-by-value,
and each specified lower bound should have a value of O (zero).

To ensure that a parameter is passed call-by-reference, the parameter name must appear
in the <reference part> of the parameter description. Constants and arithmetic
expressions cannot be passed to parameters whose name appears in the reference part.

If a formal parameter is call-by-reference and the actual parameter being passed to it is
itself a parameter and is call-by-name, then evaluation of the call-by-name parameter is
done in order to generate the call-by-reference parameter. This ensures that any
expressions evaluated due to an accidental entry generated for the call-by-name
parameter are evaluated only once for the call-by-reference parameter.

The value part specifies which formal parameters are to be call-by-value. When a formal
parameter is call-by-value, the formal parameter is assigned the value of the
corresponding actual parameter when the procedure is invoked. Thereafter, the formal
parameter is handled as a variable that is local to the procedure body. That is, any change
made to the value of a call-by-value formal parameter has no effect outside the
procedure body.

For more information on <parameter delimiter>, see Section 2, “Language
Components.”

Only arithmetic, Boolean, complex, designational, pointer, and string expressions can be
passed as actual parameters to call-by-value formal parameters. These expressions are
evaluated once before entry into the procedure body.

Formal parameters not listed in the value part are call-by-reference, except for Boolean,
complex, double, integer, and real parameters, which are call-by-name, unless they are
listed in the reference part. Wherever a call-by-name formal parameter appears in the
procedure body, the formal parameter is, in effect, replaced by the actual parameter itself
and not by the value of the actual parameter. A call-by-name formal parameter is
essentially global to the procedure body, because any change made to its value within
the procedure body also changes the value of the corresponding actual parameter
outside the procedure body. If the formal parameter is a complex call-by-name parameter
and the actual parameter is not of type COMPLEX, an assignment within the procedure
body to the formal parameter causes the program to discontinue with a fault.

An expression can be passed as an actual parameter to a call-by-name formal parameter.
This situation results in a thunk, or accidental entry. A thunk is a compiler-generated
typed procedure that calculates and returns the value of the expression each time the
formal parameter is used. This situation can be time-consuming if the formal parameter
is repeatedly referenced. In addition, a fault occurs if an attempt is made to store into
that parameter.

The default mode of passing a string is call-by-reference instead of call-by-name. Any
string expression can be passed to a call-by-reference string formal parameter. When a

8600 0098-505

PROCEDURE Declaration

string variable or a subscripted string variable is passed as an actual parameter to a

call-by-reference string formal parameter, a reference to the actual string is passed. If the
value of the formal parameter is changed within the procedure body, the actual string is

als

If any other form of string expression is passed as an actual parameter to a

o changed.

call-by-reference string formal parameter, the string expression is evaluated once at the

time the expression is passed, and a reference to the value of the expression is passed

to the called procedure. This value can be altered by the called procedure. However, any
change in the value of the formal parameter within the procedure body has no effect

outside the procedure body. A string expression cannot be passed as an actual

parameter to a call-by-name parameter of a procedure in a PROCESS or CALL statement.

Specification

<s

<s

pecification>

E]
<spec1’f1’er>J—<1'dent1'f1'er |

<procedure specification

<array specification

<procedure reference array specification>—

<structure block array specification>

pecifier>
— ANYTYPE

— CONNECTION

— EVENT

T FILE
— DIRECT

— FORMAT

— INTERLOCK

— LABEL

— LIST

— PICTURE

— POINTER

a STRING
—<string type>
— SWITCH

T SWITCH FILE
— DIRECT

— SWITCH FORMAT

— SWITCH LIST
— TASK

—<word type

J—<s’c\r‘uc’cu1r‘e block ’Eype 1'dent1'f1'er>J—

J—<connec’c1’on b1ock.type 1'dent1'f1'er>J—

<procedure specification>

|—<p\r‘ocedu1r‘e ’cype>J

PROCEDURE —<identifier

|—<f0rma1 parameter spec1'f1'e1r‘>J

8600 0098-505

3-135

PROCEDURE Declaration

3-136

<formal parameter specifier>

. |
|_() T FORMAL |

<formal parameter part>

<array specification>

B a ARRAY J—<1’dent1?f1'er‘ |
<array type>
»>— [—<Tower bound Tlist>—] {

<array type>

——<array class {

— DIRECT

|—<ar‘r‘ay class>—
— EVENT
— INTERLOCK

STRING —

—<string type>J
- TASK

<lower bound list>

—|—<spec1'f1'ed 16wer bound | {

<specified lower bound>

<integer
* g l

An array specification must be provided for every formal array. The array specification
indicates the number of dimensions in the formal array and indicates the lower bound for
each dimension.

If the specified lower bound is an integer, then the corresponding dimension of the
formal array equals that integer. An asterisk (*) used as a specified lower bound indicates
that the corresponding dimension of the formal array has a lower bound that is passed to
the procedure with the actual array.

Array rows that are passed as actual parameters to procedures have their subscripts
evaluated at the time of the procedure call, rather than at the time the corresponding
formal array is referenced.

The formal parameter specifier causes the compiler to generate more efficient code for
passing procedures as parameters. When a procedure is declared FORMAL, the compiler
checks the parameters of the actual procedure passed to it at compilation time;
otherwise, the parameters are checked at run time. If FORMAL is specified, the formal
procedure is called a fully specified formal procedure.

8600 0098-505

PROCEDURE Declaration

If a formal parameter is a structure block variable, the actual parameter passed to that
formal structure block variable must be a structure block array element, a structure block
variable, or a structure block reference variable of the same structure block type as the
formal parameter.

When a structure block variable is a formal parameter of an imported or exported library
procedure, there are restrictions on the items that can be declared within the parent
structure block type. The PRIVATE specifier cannot be used for the items declared.
Only items allowed in the <export object specification> list of the EXPORT declaration
can be declared within the structure block type: plus two additional items. The additional
items are an embedded structure block variable and a structure block reference variable.
The structure block type of the embedded structure block variable or structure block
reference variable has the same restrictions as the parent structure block type.

The use of ANYTYPE as the formal parameter specifier allows for a flexible interface
between an exported unsafe procedure in a NEWP library and the invocation of that entry
point in an ALGOL program. The actual parameter passed is matched at run time to a
WORD variable in the NEWP library procedure. Therefore, the actual parameter can be of
any type that ALGOL allows to be passed to a library. The compiler does not perform
parameter type checking. If ANYTYPE is specified as a formal parameter, the procedure
must be an imported library entry point.

If CONNECTION or <connection block type identifier> is used as the specifier for the
formal parameter, an individual connection library must be passed as the actual
parameter. The actual parameter must be an indexed library connection variable unless
the connection library has been declared with the SINGLE modifier. If the connection
library has been declared with the SINGLE modifier, the actual parameter must be an
unindexed connection library variable. In addition, the connection parameter must be a
call-by-reference parameter. An exported or imported library procedure cannot have a
<connection block type identifier> as the specifier for a formal parameter.

When CONNECTION is used as a specifier, the procedure cannot see the elements of
the connection library associated with the connection parameter. The procedure can pass
the connection parameter to MCP procedures and can access the connection attributes.
The procedure cannot use the parameter either to call procedures within the connection
library or to access nonconnection attributes.

Nonlibrary procedures—procedures that are neither imported nor exported from a
library—can specify either CONNECTION or a <connection block type identifier> for
connection parameters. Using CONNECTION restricts the use of the parameter. Library
procedures can specify CONNECTION only for a connection parameter.

Procedure Reference Array Specification

<procedure reference array specification>
PROCEDURE — REFERENCE — ARRAY —<identifier>—

|—<procedure ’cype>J
>— [—<lower bound 1ist>—] —<formal parameter speciﬁer‘>4|

A procedure reference array specification must have a formal parameter specifier.

8600 0098-505 3-137

PROCEDURE Declaration

Structure Block Array Specification

<structure block array specification>

—|—<structure block ’.cype 1'dent1'f1'er>J— ARRAY J—<1'den’c1?f1'e1r‘>J— [—

»—<lower bound Tist>—] }

Structure Block Array Parameters

If a formal parameter is a structure block array, the actual parameter passed to that
formal structure block array must be a structure block array designator of the same
structure block type as the formal parameter. A structure block array cannot be a formal
parameter for an exported or imported library procedure.

Procedure Body

<procedure body>

<block |
<unlabeled statement

EXTERNAL
<dynamic procedure specification>—
<library entry point specification>—
<isolated procedure specification>—

Procedures can be called recursively; that is, inside the procedure body, a procedure can
invoke itself.

The procedure body EXTERNAL is used to declare a procedure that is to be bound in to
the program (as opposed to actually appearing within the program) or that is an external
code file to be invoked. An attempt to invoke a procedure that is declared external but
has not been bound in nor associated with an external code file results in a run-time
error.

Dynamic Procedure Specification

<dynamic procedure specification>

— BY CALLING —<selection procedure identifier |

<selection procedure identifier>

—<procedure identifier |

A dynamic procedure specification is used in a library program to declare a procedure
that is to be exported dynamically. Such a procedure is also called a by-calling procedure.
For more information on by-calling procedures, refer to Section 8, “Library Facility.” The
by-calling procedure cannot be declared FORWARD or PENDING and cannot be a
separately compiled procedure. Also, the by-calling procedure cannot be referenced
directly in the library program that declares it.

3-138 8600 0098-505

PROCEDURE Declaration

A selection procedure identifier must specify an untyped procedure with two
parameters. The first parameter must be a call-by-value EBCDIC string. The second
parameter must be a fully specified untyped procedure with one parameter that is a task.
When the operating system invokes this selection procedure, the task variable passed to
its procedure parameter must already be associated with a library that has been
processed using this task variable.

Library Entry Point Specification

<library entry point specification>

LIBRARY —<1ibrary identifier
L IMPORTED |

L (— ACTUALNAME — = — <EBCDIC string literal> —) J

A library entry point specification declares a procedure to be an entry point in the library
known to this program by the library identifier. The procedure cannot be declared
FORWARD, EXTERNAL, or PENDING. The IMPORTED clause is allowed only inside a
connection block type.

If a program declares a library and entry points in that library, the object code file for the
program contains a structure called a library template, which describes the library and its
declared entry points. Each declared library has one template. The template description
of an entry point includes the entry point name, a description of the procedure type, and
descriptions of the entry point parameters.

When a library entry point is called, the entry point description in the library template of
the calling program is compared to the entry point description of the same name in the
library directory associated with the referenced library. Refer to “EXPORT Declaration”
earlier in this section for a discussion of library directories. If the entry point does not
exist in the library or if the two entry point descriptions are not compatible, then a
run-time error is given and the program is terminated.

The name given for an entry point in a library template is the procedure identifier in the
entry point declaration, unless an ACTUALNAME clause appears, in which case the name
is given by the EBCDIC string literal. The EBCDIC string literal in the ACTUALNAME
clause can contain only valid <printable character>s, but must not contain any leading,
trailing, or embedded blanks or periods. The entry point name indicated by this string
literal is case sensitive.

ISOLATED Procedure Specification

<isolated procedure specification>
— BEGIN — [ISOLATED]

statement list>— END —|
|—<dec1ar‘at1’on 11's’c>J

An isolated procedure is primarily used in the context of shared libraries that have global

data protected by locking mechanisms. However, an isolated procedure can be used in
any situation where a procedure from one stack runs on another stack. In the following

8600 0098-505 3-139

PROCEDURE Declaration

3-140

text, the stack in which the isolated procedure is declared is called the parent stack and
the other stack is called the client stack. The ISOLATED procedure attribute is used to
protect the parent stack of an isolated procedure from being stopped or discontinued
when the client stack on which the isolated procedure is running is stopped or
discontinued.

If the parent stack of the isolated procedure is discontinued, then the isolated procedure
is discontinued.

If the client stack is stopped by an ST command, the isolated procedure is allowed to run
for an additional 5 seconds of CPU time. After 5 seconds of CPU time, the isolated
procedure is also stopped.

If the client stack is discontinued, the isolated procedure is allowed to continue to run.
After 5 seconds of CPU time, a message is displayed to allow the operator to take any
necessary action.

Using the ISOLATED procedure attribute, a library or other IPC program can assume that
an isolated procedure will not be interrupted by a DS command while running on a client
stack. Also, an isolated procedure will not be delayed by an ST command, provided the
procedure does not use more than 5 seconds of CPU time before exiting.

When an isolated procedure fails to exit cleanly, the parent stack of the isolated
procedure is discontinued. Failure to exit cleanly includes: a fatal error in the isolated
procedure, a fatal error in a procedure invoked above the isolated procedure, or a GO TO
statement that cuts back the stack environment of the isolated procedure.

When an isolated procedure is running on a client stack, asynchronous actions such as
software interrupts, signals, approval procedures, and change procedures for the client
stack are delayed until the isolated procedure exits. Software interrupts declared within
an isolated procedure or within procedures invoked above the isolated procedure will
never run.

If an isolated procedure uses the DSABLE option of a WAIT or LOCK Interlock function,
code in the isolated procedure should be written to exit cleanly if the value returned by
the WAIT or LOCK Interlock function indicates that the client stack has been
discontinued.

When an isolated procedure is running on a client stack, the isolated semantics apply to
the client stack until the isolated procedure exits or the parent stack of the isolated
procedure is discontinued. The isolated semantics apply to procedures invoked above
the isolated procedure. When multiple isolated procedures are running in a client stack,
the isolated semantics apply down to the first isolated procedure of the client stack in
which the parent stack has not been discontinued.

An isolated procedure can cause some system operations to be delayed such as a DS

command, or an ST command. Therefore, the code for an isolated procedure should be
written to run quickly and efficiently, not consuming excessive system resources.

8600 0098-505

PROCEDURE Declaration

Allowed Formal and Actual Parameters

All parameters can be declared to be call-by-name or, in the case of strings,
call-by-reference. A parameter of type ANYTYPE is declared as call-by-reference. The
following types of parameters also can be declared to be call-by-value:

e ASCII string

e Boolean simple variable

e complex simple variable

e double simple variable

e EBCDIC string

e hexadecimal string

e integer simple variable

e label

e pointer

e real simple variable

e string

Parameter Matching

Array Parameters

If a formal parameter is an array, the actual parameter passed to that formal array must
be an array designator that has the same number of dimensions as the formal array.

The types of actual arrays that can be passed to formal arrays are listed in Table 3—1. The
<null value> is allowed as an actual parameter for all formal parameters that are arrays.

Table 3-1. Array Parameters

Formal Parameters Allowed Actual Parameters
ASCII array ASCII array
ASCII value array
ASCII string array ASCII string array
Boolean array Boolean array

Direct Boolean array
Boolean value array

Complex array Complex array
Complex value array

Direct ASCII array Direct ASCII array

Direct Boolean array Direct Boolean array

8600 0098-505 3-141

PROCEDURE Declaration

3-142

Table 3-1. Array Parameters

Formal Parameters

Allowed Actual Parameters

Direct double array

Direct double array

Direct EBCDIC array

Direct EBCDIC array

Direct hexadecimal array

Direct hexadecimal array

Direct integer array

Direct integer array

Direct real array

Direct real array

Double array

Double array
Direct double array
Double value array

EBCDIC array

EBCDIC array
EBCDIC value array

EBCDIC string array

EBCDIC string array

Event array

Event array

Hexadecimal array

Hexadecimal array
Hexadecimal value array

Hexadecimal string array

Hexadecimal string array

Interlock array

Interlock array

Integer array
Real array

Direct integer array
Direct real array
Integer array
Integer value array
Real array

Real value array

Task array

Task array

8600 0098-505

PROCEDURE Declaration

Procedure Reference Array Parameters

If a formal parameter is a procedure reference array, the actual parameter passed to that
formal procedure reference array must be a procedure reference array designator that
has the same number of dimensions as the formal procedure reference array.

The following must also be true:

e The actual procedure reference array designator must have the same number of
parameters as the formal procedure reference array.

e Each parameter of the actual procedure reference array designator must have the
same type as the corresponding parameter in the formal procedure reference array.

e Each parameter of the actual procedure reference array designator must be passed
in the same manner (call-by-name or call-by-value) as the corresponding parameter in

the formal procedure reference array.

The types of procedure reference array designators that can be passed to formal
procedure reference arrays are listed in Table 3-2.

Table 3-2. Procedure Reference Array Parameters

Formal Parameter

Allowed Actual Parameters

ASCII string procedure reference array

ASCII string procedure reference array
designator

Boolean procedure reference array

Boolean procedure reference array
designator

Complex procedure reference array

Complex procedure reference array
designator

Double procedure reference array

Double procedure reference array
designator

EBCDIC procedure reference array

EBCDIC procedure reference array
designator

Hexadecimal procedure reference array

Hexadecimal procedure reference array
designator

Integer procedure reference array

Integer procedure reference array
designator

Real procedure reference array

Real procedure reference array designator

Untyped procedure reference array

Untyped procedure reference array
designator

8600 0098-505

3-143

PROCEDURE Declaration

Procedure Parameters

If a formal parameter is a procedure and the actual parameter is not a <null value>, the
actual parameter passed to the formal procedure must be the identifier of a procedure or
procedure reference for which the following is true:

e The actual procedure has the same number of parameters as the formal procedure.

e Each parameter of the actual procedure must have the same type as the
corresponding parameter in the formal procedure.

e Each parameter of the actual procedure must be passed in the same manner
(call-by-name or call-by-value) as the corresponding parameter in the formal
procedure.

The types of procedures that can be passed to formal procedures are listed in Table 3-3.
The <null value> and procedure reference identifiers are allowed as actual parameters
for all formal procedures.

Table 3-3. Procedure Parameters

Formal Parameter Allowed Actual Parameters
ASCII string procedure ASCII string procedure

ASCII string procedure reference array element
Boolean procedure Boolean procedure

Boolean procedure reference array element
Complex procedure Complex procedure

Complex procedure reference array element
Double procedure Double procedure

Double procedure reference array element
EBCDIC string procedure EBCDIC string procedure

EBCDIC string procedure reference array element
Hexadecimal string Hexadecimal string procedure
procedure Hexadecimal string procedure reference array element
Integer procedure Integer procedure

Integer procedure reference array element

Real procedure Real procedure
Real procedure reference array element

Untyped procedure Untyped procedure
Untyped procedure reference array element

3-144 8600 0098-505

PROCEDURE Declaration

Simple Variable Parameters

The types of actual parameters that can be passed to formal parameters that are simple
variables are listed in Table 3-4.

Table 3-4. Simple Variable Parameters

Formal Parameter

Allowed Actual Parameters

Boolean simple variable
(call-by-name or call-by-value)

Boolean identifier
Boolean procedure identifier
Boolean expression

Complex simple variable
(call-by-name or call-by-value)

Complex identifier

Double identifier

Integer identifier

Real identifier

Complex procedure identifier
Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double-precision)
Complex expression

Double simple variable
(call-by-name)

Double identifier

Double procedure identifier
Arithmetic expression
(double-precision only)

Double simple variable
(call-by-value)

Double identifier

Integer identifier

Real identifier

Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double-precision)

Integer simple variable
Real simple variable
(call-by-name)

Integer identifier

Real identifier

Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single-precision only)

Integer simple variable
Real simple variable
(call-by-value)

Double identifier

Integer identifier

Real identifier

Double procedure identifier
Integer procedure identifier
Real procedure identifier
Arithmetic expression
(single or double-precision)

8600 0098-505

3-145

PROCEDURE Declaration

String Parameters

The types of actual parameters that can be passed to formal parameters that are strings

are listed in Table 3-5.

Table 3-5. String Parameters

Formal Parameter

Allowed Actual Parameters

ASCII string
(call-by-reference or call-by-value)

ASCII string identifier
ASCII string procedure identifier
ASCII string expression

EBCDIC string
(call-by-reference or call-by-value)

EBCDIC string identifier
EBCDIC string procedure identifier
EBCDIC string expression

Hexadecimal string
(call-by-reference or call-by-value)

Hexadecimal string identifier
Hexadecimal string procedure identifier
Hexadecimal string expression

File Parameters

The types of actual parameters that can be passed to formal parameters that are files are

listed in Table 3-6.

Table 3-6. File Parameters

Formal Parameter

Allowed Actual Parameters

Direct file

Direct file identifier
Subscripted direct switch file identifier

Direct switch file

Direct switch file identifier

File Nondirect file identifier
Subscripted switch file identifier
Switch file Switch file identifier

3-146

8600 0098-505

PROCEDURE Declaration

Other Types of Parameters

The types of actual parameters that can be passed to formal parameters that are not
arrays, procedures, simple variables, strings, or files are listed in Table 3-7.

Table 3-7. Other Types of Parameters

Formal Parameter

Allowed Actual Parameters

Anytype

Any allowable library parameter type; must match the
corresponding type in the library procedure

Connection block

Connection library instance designator
Connection block reference variable

null value
Event Event identifier
An element of an event array
File identifier.event-valued file attribute name
Subscripted switch file identifier.event-valued file attribute
name
Format Format identifier
Subscripted switch format identifier
Interlock Interlock identifier
An element of an interlock array
Label Label identifier
(call-by-name) Subscripted switch identifier
(call-by-value) Designational expression
List List identifier
Subscripted switch list identifier
Picture Picture identifier

Pointer (call-by-name)

Pointer identifier

Pointer (call-by-value)

Pointer identifier
Pointer expression
null value

Structure block

Structure block array element
Structure block reference variable
Structure block variable

null value

Structure block array

Structure block array designator

Switch label

Switch label identifier

Switch format

Switch format identifier

Switch list

Switch list identifier

Task

Any task designator

8600 0098-505

3-147

PROCEDURE Declaration

Examples of PROCEDURE Declarations

3-148

The following examples show how the procedure body of a procedure can vary in
complexity from a simple unlabeled statement to a block.

The following example declares SIMPL to be an untyped procedure with no parameters.
The body of SIMPL is a single statement.

PROCEDURE SIMPL;
X::=X+1

The following example declares TUFFER to be an untyped procedure with one
parameter, PARAM, which is a call-by-value real variable. The body of TUFFER consists
of a single statement.

PROCEDURE TUFFER(PARAM) ;
VALUE PARAM;
REAL PARAM;
X := X + PARAM

In the following example, procedure RESULT is a typed procedure that returns a real
value. The value to be returned is assigned to the procedure identifier by the following
assignment:

RESULT := X + PARAM;
RESULT has two parameters, a call-by-name real variable and a file.

REAL PROCEDURE RESULT(PARAM,FYLEIN);

REAL PARAM;

FILE FYLEIN;
BEGIN

RESULT := X + PARAM;

END
The following example declares HEXPROC to be a typed procedure that returns a
hexadecimal string value. The value to be returned is assigned to the procedure identifier
in the assignment that makes up the body of HEXPROC.

HEX STRING PROCEDURE HEXPROC;
HEXPROC := 4"123"

8600 0098-505

PROCEDURE Declaration

The following example declares MATCH to be a typed procedure that returns a Boolean
value. MATCH has three parameters that are all call-by-value integer variables.

BOOLEAN PROCEDURE MATCH(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;

MATCH := A=B OR A=C OR B=C
The following example is a FORWARD PROCEDURE declaration for the procedure
FURTHERON. For more information, refer to “FORWARD REFERENCE Declaration”
earlier in this section.

PROCEDURE FURTHERON;
FORWARD

The following example declares MUCHO to be a double-precision procedure with three
parameters. DBL1 is a call-by-name double-precision variable, DBL2 is a call-by-value
double-precision variable, and BOOL is a call-by-value Boolean variable. The body of
MUCHO is a block.

DOUBLE PROCEDURE MUCHO(DBL1,DBL2,BOOL);
VALUE DBL2,B0OL;
DOUBLE DBL1,DBL2;
BOOLEAN BOOL;
BEGIN
REAL LOCALX,LOCALY;

MUCHO := DOUBLE(LOCALX,LOCALY);
END OF MUCHO

The following example declares GETDATA to be a by-calling procedure. The selection
procedure is SELECTDATASOURCE. GETDATA has one parameter, a one-dimensional
real array, A, with an asterisk lower bound, meaning that the lower bound is to be passed
as a parameter.

PROCEDURE GETDATA(A); % BY-CALLING PROCEDURE
ARRAY A[*];
BY CALLING SELECTDATASOURCE

The following example declares NUMRECORDS to be an entry point in the library
DATAHANDLER. The entry point is exported from DATAHANDLER with the name
COUNTRECS, but will be called NUMRECORDS in this program.

INTEGER PROCEDURE NUMRECORDS(TYPE); % LIBRARY ENTRY POINT
VALUE TYPE;
INTEGER TYPE;

LIBRARY DATAHANDLER (ACTUALNAME="COUNTRECS")

8600 0098-505 3-149

PROCEDURE REFERENCE Declaration

PROCEDURE REFERENCE Declaration

The PROCEDURE REFERENCE declaration declares a procedure reference, which is a
structure that allows a procedure to be invoked by referencing the procedure reference.

<procedure reference declaration>
PROCEDURE REFERENCE —<identifiers—M —

|—<p\r‘ocedmr‘e type>J

; — NULL }
|—<f0r‘ma1 parameter pa\r‘t>J

Identifiers

<procedure reference identifier>

An identifier associated with a procedure reference in a PROCEDURE REFERENCE
declaration.

The PROCEDURE REFERENCE declaration does not initialize the procedure reference
during declaration. The procedure reference must be assigned to a value before it can be
invoked. A run time error occurs if the procedure reference identifier is invoked before it
is initialized.

A PROCEDURE REFERENCE declaration cannot appear in the formal parameter part of a
PROCEDURE declaration, PROCEDURE REFERENCE ARRAY declaration, or of another
PROCEDURE REFERENCE declaration. A procedure reference can be passed as an
actual parameter to a formal procedure that is of the same type and that has the same
parameter descriptions.

Example of a PROCEDURE REFERENCE Declaration

The following example declares a procedure reference for a real procedure with two
parameters of type integer. The second parameter is passed by value.

REAL PROCEDURE REFERENCE RPREF(A,B);
VALUE B;
INTEGER A,B;
NULL;

3-150 8600 0098-505

PROCEDURE REFERENCE ARRAY Declaration

PROCEDURE REFERENCE ARRAY Declaration

The PROCEDURE REFERENCE ARRAY declaration declares a procedure reference array,
which is a structure that allows a group of like procedures to be treated as a single entity.
A procedure in the group can be invoked by referencing an element of the procedure
reference array. An imported procedure reference array declaration is allowed only inside
a connection block type.

<procedure reference array declaration>

<global procedure reference array declaration>——

—E<1oca1 procedure reference array declaration }
<imported procedure reference array declaration>—

<local procedure reference array declaration>
PROCEDURE — REFERENCE — ARRAY —<identifier>—

; — NULL —

|—<procedure type>J
>— [—<bound pair Tist>—]

|—<for‘ma1 parameter pa\r"c>J

<procedure reference array identifier>
An identifier that is associated with a procedure reference array in a PROCEDURE
REFERENCE ARRAY declaration.

<global procedure reference array declaration>
PROCEDURE — REFERENCE — ARRAY —<identifier>—

|—<procedure ’cype>J
- [<bound pair list]
—E<1ower bound 11's’c>J |—<forma1 parameter par’c>J
>— EXTERNAL {

E]

<imported procedure reference array declaration>
PROCEDURE — REFERENCE — ARRAY —<identifier>—

|—<procedure ’cype>J
>— [—<arithmetic expression>—]

|—<forma1 parameter par’c>J ’
->— IMPORTED B n }
(— ACTUALNAME — = —<EBCDIC string literal>—)

<procedure reference array designator>

—<procedure reference array identifier B n }
<subarray selector>

8600 0098-505 3-151

PROCEDURE REFERENCE ARRAY Declaration

<procedure reference array row>

—<procedure reference array identifier I a
<row selector>

<procedure reference array element>

e L
—<procedure reference array identifier>— [J—<subscr‘1’p’c—>—|—] 4|

Placement of Procedure Reference Arrays

A procedure reference array is an array of references to procedures of identical type and
parameters. An element of a procedure reference array can appear in the following
places:

e On either side of a procedure reference array assignment

e As aprimary in an expression, if the procedure reference array has a type associated
with it

e Ina PROCEDURE REFERENCE ARRAY statement

e As aformal or actual parameter

e As an object exported by, or imported from, a library in a LIBRARY declaration
For more information, see “"LIBRARY Declaration” earlier in this section.

Before an element of a procedure reference array can be used as a parameter, as a
primary, or in a PROCEDURE REFERENCE ARRAY statement, it must be initialized in a
procedure reference array assignment. A procedure assigned to the element must have
had its parameters declared explicitly.

A procedure reference array can appear in the formal parameter part of a PROCEDURE
declaration or of another PROCEDURE REFERENCE ARRAY declaration. A formal
parameter that is a procedure reference array must be declared FORMAL so that all of its
parameters are checked at compilation time.

A procedure reference array element can be passed as an actual parameter to a formal
procedure that is of the same type and that has the same parameter descriptions.

A local PROCEDURE REFERENCE ARRAY declaration cannot appear in the global part of

a program unit. A global PROCEDURE REFERENCE ARRAY declaration can appear in the
global part of a program unit or in a LIBRARY declaration.

3-152 8600 0098-505

PROCEDURE REFERENCE ARRAY Declaration

Example of a PROCEDURE REFERENCE ARRAY Declaration
The following example declares a 10-element procedure reference array, each element of
which references a procedure of type INTEGER with two parameters. The first
parameter is a call-by-value integer simple variable, and the second is an untyped
procedure reference array with a lower bound of O (zero) and no parameters.
INTEGER PROCEDURE REFERENCE ARRAY REFARRAY[1:10] (Q,R);

VALUE Q;

INTEGER Q;

PROCEDURE REFERENCE ARRAY R[0]();

FORMAL;

NULL

8600 0098-505 3-153

PROLOG PROCEDURE Declaration

PROLOG PROCEDURE Declaration

<prolog procedure declaration>
— PROLOG PROCEDURE —<identifier>— ; —<unlabeled statement>4|

The PROLOG PROCEDURE declaration can only be declared inside a STRUCTURE or
CONNECTION BLOCK TYPE declaration. The PROLOG PROCEDURE declaration allows
you to designate a procedure that must be executed when the structure or connection
block instance is first created. If a PROLOG PROCEDURE declaration exists for a
structure or connection block, the prolog procedure is executed automatically by the
operating system when the structure or connection block instance (structure block
variable, structure block array element, or connection) is first touched. You can also
invoke the prolog procedure directly.

The following restrictions apply to PROLOG PROCEDURE declarations:

o No parameters are allowed.
e A prolog procedure cannot return a value.

e The body of a prolog procedure can contain a compound statement only. The prolog
procedure body cannot be declared as external, as a library entry point specification,
or as a dynamic procedure specification.

e A prolog procedure cannot be declared as a formal parameter. However, a prolog
procedure can be passed as an actual parameter if the formal parameter is an
untyped procedure without parameters.

Identifiers
<prolog procedure identifier>

An identifier that is associated with a prolog procedure in a PROLOG PROCEDURE
declaration.

3-154 8600 0098-505

REAL Declaration

REAL Declaration

A REAL declaration declares simple variables that can have real values, that is, arithmetic
values that have exponents and fractional parts.

<real declaration>

REAL | 1'dent1'f1?er‘ | '
i: PRIVATEj L OWN l |—<equa’c1’on par’c>J !
PUBLIC

<real identifier>

An identifier that is associated with the REAL data type in a REAL declaration.

Declaration of Simple Variables

The PRIVATE and PUBLIC specifiers can only be used for simple variables that are
declared within a structure block or a connection block. The PRIVATE specifier limits
visibility of the simple variable to the scope of the structure block or the connection
block. A PRIVATE simple variable cannot be accessed using a structure or connection
block qualifier. The PUBLIC specifier allows the simple variable to be accessed using a
structure or connection block qualifier. If neither PRIVATE nor PUBLIC is specified, the
default value is PUBLIC and access to the simple variable using a structure or connection
block qualifier is allowed.

A simple variable declared to be OWN retains its value when the program exits the block
in which the variable is declared, and that value is again available when the program
reenters the block in which the variable is declared.

The equation part causes the simple variable being declared to have the same address as
the simple variable associated with the second identifier.

For more information on <equation part>, see “BOOLEAN Declaration” earlier in this
section.

This action is called address equation. An identifier can be address-equated only to a
previously declared local identifier or to a global identifier. The first identifier must not
have been previously declared within the block of the equation part. An equation part is
not allowed in the global part of a program unit.

Address equation is allowed only between integer, real, and Boolean variables. Because
both identifiers of the equation part have the same address, altering the value of either
variable affects the value of both variables. For more information, see “Type Coercion of
One-Word and Two-Word Operands” in Appendix C, “Data Representation.”

The OWN specification has no effect on an address-equated identifier. The first identifier
of an equation part is OWN only if the second identifier of the equation part is OVWN.

8600 0098-505 3-155

REAL Declaration

If a real or integer value is assigned to a real variable, it is stored as is into the variable. If
a double-precision value is assigned to a real variable, it is rounded to single-precision
before it is stored in the variable.

When a real simple variable is allocated, it is initialized to O (zero), which is a 48-bit word
with all bits equal to 0.

See Appendix C, “Data Representation,” for additional information on the internal

structure of a real operand.

Examples of REAL Declarations

The following example declares INDX, X, Y, and TOTAL as real variables.

REAL INDX,X,Y,TOTAL
The following example declares CALC, INDEX, and VALU as real variables. CALC is
address-equated to the simple variable BOOL, and VALU is address-equated to the
simple variable INTR. According to this declaration, CALC and BOOL share the same
address, and VALU and INTR share the same address.

REAL CALC = BOOL, INDEX, VALU = INTR
The following example declares DISTANCE and REALINDEX as real variables. Because
these variables are declared to be OWN, the variables retain their values when the

program exits the block in which they are declared.

OWN REAL DISTANCE, REALINDEX

3-156 8600 0098-505

SIMPLE VARIABLE Declaration

SIMPLE VARIABLE Declaration

A SIMPLE VARIABLE declaration declares simple variables that can be used in a manner
appropriate to the specified type.

<simple variable declaration>

<Boolean declaration I
<complex declaration>—
<double declaration>—
<integer declaration>—
<real declaration>

Type-transfer functions can be used, as can the equation part construct, to perform
operations on a variable other than those that are valid for the type of the variable.

Each type of simple variable is used as follows:

Type Meaning/Description

BOOLEAN Boolean values. A Boolean variable is a one-word variable in which
the Boolean value (TRUE or FALSE) depends on the low-order bit
(bit zero) of the word. The use of partial word parts and
concatenation enables all 48 bits to be tested or manipulated as
needed.

COMPLEX Complex values. A complex variable consists of two real variables
in which the first variable contains the real part and the second
variable contains the imaginary part.

DOUBLE Double-precision arithmetic values. A double-precision variable is a
two-word variable.

INTEGER Integer arithmetic values. An integer value is one that has an
exponent of 0 (zero) and no fractional part. Integer variables are
one-word variables.

REAL Real arithmetic values. A real value is one that can have an
exponent and a fractional part. Real variables are one-word
variables.

See Appendix C, “Data Representation,” for more information regarding the internal
structure of each type of simple variable.

8600 0098-505 3-157

STRING Declaration

STRING Declaration

A STRING declaration declares simple variables to be strings. Strings allow storage and
manipulation of character strings in a program.

<string declaration>

B a STRING J—<1’dent1?f1'er‘ | {
<string type>

<string type>

<string identifier>

An identifier that is associated with the STRING data type in a STRING declaration.

STRING Type

3-158

The type STRING is a structured data type that contains characters of only one character
type.

A string has two components: contents and length. No trailing blanks or null characters
are added to a string; therefore the length of a string is exactly the number of characters
stored in the string. The maximum string length allowed is 2**16-2 characters.

All strings declared in a STRING declaration are of the same string type. If no string type
is specified in the STRING declaration, then the default character type is used. The
default character type can be designated by the compiler control option ASCII. If no such
compiler control option is designated, the default character type is EBCDIC. For more
information, refer to “Default Character Type"” in Appendix C, “Data Representation.”

The number of strings that can be declared in a program is limited by the operating

system to 500. If this limit is exceeded, the message STRING POOL EXCEEDED is
given.

8600 0098-505

STRING Declaration

Examples of STRING Declarations

The following example declares S1, S2, and S3 as string simple variables of string type
ASCII. S1, S2, and S3 contain ASCII characters.

ASCII STRING S1,S2,S3

The following example declares S5, S6, S7, and S8 as string simple variables of string
type EBCDIC. These strings contain EBCDIC characters.

EBCDIC STRING S5,56,S7,S8
The following example declares S9 as a string simple variable. Because no string type is
specified, the default character type is used. This character type is EBCDIC unless the
compiler control option ASCII is TRUE, in which case the string type is ASCII.

STRING S9

8600 0098-505 3-159

STRING ARRAY Declaration

STRING ARRAY Declaration

A STRING ARRAY declaration declares string arrays. A string array is an array that has
string elements.

<string array declaration>
STRING — ARRAY

|—<str‘1’ ng type>J

L

—>—J—<1'dent1?f1'er>J— [—<bound pair Tist>—] |

<string array identifier>

An identifier that is associated with a string array in a STRING ARRAY declaration.

<string array designator>

—<string array identifier o — }
<subarray selector>

String Array Type

All string arrays declared in a STRING ARRAY declaration are of the same string type. If
no string type is specified, the default character type is used. The default character type
can be designated by the compiler control option ASCII. If no such compiler control
option is used, the default character type is EBCDIC. For more information, refer to
"Default Character Type” in Appendix C, “Data Representation.”

The restrictions that apply to arrays also apply to string arrays. For more information on
bound pair lists, subarray selectors, and arrays, see “ARRAY Declaration” earlier in this
section.

Examples of STRING ARRAY Declarations

3-160

The following example declares SA, SB, and SC as one-dimensional arrays of strings,
each with a lower bound of 0 and an upper bound of 10. Because no string type is
specified, the default character type is used. This character type is EBCDIC unless the
compiler control option ASCII is TRUE, in which case the string type is ASCII.

STRING ARRAY SA,SB,SC[0:10]
The following example declares ESA, ESB, and ESC as arrays of strings. The string type
is EBCDIC, so each is an array of EBCDIC strings. ESA is one-dimensional and has a
lower bound of 1 and an upper bound of 15. Arrays ESB and ESC are two-dimensional

arrays with lower bounds of 0 and upper bounds of 10 for both dimensions.

EBCDIC STRING ARRAY ESA[1:15], ESB, ESC[0:10, 0:10]

8600 0098-505

STRUCTURE BLOCK ARRAY Declaration

STRUCTURE BLOCK ARRAY Declaration

<structure block array declaration>

—=<structure block type identifier>— ARRAY

E]

->—J—<1'dent13f1'er‘>J— [—<bound pair Tist>—] {

A STRUCTURE BLOCK ARRAY declaration declares an array whose elements are
structure block instances. Each lower bound and upper bound in the bound pair list must
resolve to a constant arithmetic expression.

Structure block types can be declared within structure blocks, but a structure block
variable or array cannot be declared with the type of an inner structure block outside the
outer structure block. The following example illustrates the declaration of structure

blocks:
BEGIN
TYPE STRUCTURE BLOCK STRBLOCKTYPEL;
BEGIN
REAL R;
TYPE STRUCTURE BLOCK STRBLOCKTYPEZ2;
BEGIN
REAL RR;
* % %
END; %STRBLOCKTYPE2
STRBLOCKTYPE2 ARRAY STR2ID [0:10]; %ALLOWED
* % %
END; %STRBLOCKTYPE1
STRBLOCKTYPE1 ARRAY STRID1 [0:10]; %ALLOWED
STRID1.STRBLOCKTYPE2 ARRAY STR2ID [0:10]; %NOT ALLOWED
STRBLOCKTYPE1.STRBLOCKTYPE2 ARRAY STR2ID2 [0:10]; %NOT ALLOWED
* % %
END.
Identifiers

<structure block array identifier>

An identifier associated with a structure block array in a STRUCTURE BLOCK ARRAY
declaration.

<structure block array designator>

—-<structure block array identifier B a
<subarray selector>

<structure block array row>

—<structure block array identifier B n }
<row selector>

8600 0098-505 3-161

STRUCTURE BLOCK ARRAY Declaration

<structure block array element>

— E]
—<structure block array identifier>— [J_—<subsc1r‘1'p’t_>—|—] 4|

3-162 8600 0098-505

STRUCTURE BLOCK REFERENCE VARIABLE Declaration

STRUCTURE BLOCK REFERENCE VARIABLE
Declaration

<structure block reference variable declaration>

—|—<str‘uctur‘e block ’.type 1'dent1'f1'er‘>J— REFERENCE —<1'dent1'f1'er‘>4|

A STRUCTURE BLOCK REFERENCE VARIABLE declaration declares a structure
reference variable with the type of the structure block type identifier. A STRUCTURE
BLOCK REFERENCE ASSIGNMENT statement can then be used to assign an instance of
the structure block of the declared type to this variable.

A reference to an embedded structure block is allowed by the following syntax:
outerSBtype.embeddedSBtype REFERENCE <id>

Identifiers
<structure block reference variable>

An identifier that is associated with a structure block reference in a STRUCTURE BLOCK
REFERENCE VARIABLE declaration.

The following example shows the declaration of a structure block reference variable:

TYPE STRUCTURE BLOCK SB;
BEGIN
TYPE STRUCTURE BLOCK SBINNER;
BEGIN
REAL X;

END;
SBINNER SBINNERVAR;
END;

SB SBVAR;
SB.SBINNER REFERENCE SBINNER REF;
SBINNER _REF := SBVAR.SBINNERVAR;

8600 0098-505 3-163

STRUCTURE BLOCK TYPE Declaration

STRUCTURE BLOCK TYPE Declaration

3-164

A STRUCTURE BLOCK TYPE declaration provides a method of grouping together data
and procedures that act upon that data into a logical unit, and have the data persist past
block exit of those procedures. Structure block variables and structure block arrays can
be declared from the STRUCTURE BLOCK TYPE declaration.

<structure block type declaration>

—E<1oca1 structure block type declaration n }
<global structure block type declaration>

<local structure block type declaration>
— TYPE STRUCTURE BLOCK —<identifier>— ; — BEGIN

>—<declaration Tist>— END }

There are restrictions on what can be declared in the declaration list. The following
cannot be declared within a structure block: <database declaration>, <label declaration>,
<switch label declaration>,<dictionary option>, <dump declaration>, <exception
procedure declaration>, <exportlibrary declaration>, <transaction base declaration>,
<transaction record declaration>, <transaction record array declaration>, and
<transaction declaration>.

PROLOG PROCEDURE declarations and PENDING PROCEDURE declarations can only
be located within a structure block or connection block.

A simple variable declared with the OWN specification in a structure block has one value
for all structure block variables and arrays with the type of that structure block. This
enables all structure block variables and arrays with the same structure block type to
share a variable.

A structure block variable or a structure block array can be declared within structure or
connection blocks, but a structure block variable or array cannot be declared with the
type of the inner structure block outside the outer structure or connection block.

Note: An EVENT or EVENT ARRAY element that is declared in the <declaration list> of
a STRUCTURE BLOCK TYPE declaration cannot be used as the <event part> of a direct
/O statement unless the direct array involved is declared in the same structure block and
both are items of the same instance of that type.

<global structure block type declaration>

—E<for‘war‘d global structure block type declaration a
<external global structure block type declaration>

A global structure block can appear only in the global part of a program unit and cannot
be nested. Global structure blocks enable the replacement binding of structure block
procedures.

8600 0098-505

STRUCTURE BLOCK TYPE Declaration

<forward global structure block type declaration>
— TYPE STRUCTURE BLOCK —<identifier>— ; — FORWARD I

Structure blocks can be declared FORWARD within the global part of a subprogram. The
global structure block then can be used for structure block variable declarations within
the global part. The global structure block must be fully specified before it is referenced.
This syntax is used when the subprogram procedure references a structure block item
from outside the structure block.

<external global structure block type declaration>
— TYPE STRUCTURE BLOCK —<identifier>— ; — EXTERNAL I

The EXTERNAL structure block sets up the environment for structure block pending
procedures in the subprogram to be bound to a host. Only those structure block items
that are referenced by pending procedures need to be specified in the subprogram
structure block declaration. The local declarations of the structure block items in the host
that are not referenced by pending procedures do not need to be specified in the
subprogram. This enables pending procedures in the subprogram to be bound without
having to fully declare the entire structure block. EXTERNAL structure blocks cannot be
bound. EXTERNAL structure blocks must be declared at level 3.

For more information about structure block binding, refer to the Binder Programming
Reference Manual.

Identifiers

<structure block type identifier>

An identifier that is associated with a structured block type in a STRUCTURE BLOCK
TYPE declaration.

Referencing Structure Block Items Outside the Structure Block

<structure block item designator>

—=<structure block qualifier>—<structure block item |

<structure block qualifier>

<structure block variable identifier> . |
<structure block reference variab1e>£|
<structure block array element>

8600 0098-505 3-165

STRUCTURE BLOCK TYPE Declaration

3-166

<structure block item>
Any identifier that was declared inside a STRUCTURE BLOCK TYPE declaration.

When items of a structure block are referenced outside the structure block, the structure
block qualifier must be used to identify those items. The types of structure block items
that can be referenced outside the structure block are procedures, structure block
variables, structure block arrays, structure block reference variables, connection libraries,
connection block reference variables, events, event arrays, interlocks, interlock arrays,
data, and data arrays of type BOOLEAN, COMPLEX, DOUBLE, INTEGER, and REAL.
Array references and character array types of ASCII, EBCDIC, and HEX can also be
referenced.

Procedures declared within an EXTERNAL structure block can be declared only as NULL
or PENDING. A structure block procedure can be declared as NULL in an EXTERNAL
structure block in a subprogram. The procedure serves as a placeholder for a procedure
that is referenced by the pending procedure that is to be bound.

8600 0098-505

STRUCTURE BLOCK VARIABLE Declaration

STRUCTURE BLOCK VARIABLE Declaration

<structure block variable declaration>

—=<structure block type 1dent1’f1’er‘>J—<1’dent1ﬁer‘ | '

A STRUCTURE BLOCK VARIABLE declaration declares a single instance of a structure
block with the type of the structure block type identifier.

Structure block types and instances can be declared within structure blocks, but a
structure block variable or array cannot be declared with the type of an inner structure
block outside the outer structure block. The following example illustrates the declaration
of structure blocks:

BEGIN
TYPE STRUCTURE BLOCK STRBLOCKTYPE1;
BEGIN
REAL R;
TYPE STRUCTURE BLOCK STRBLOCKTYPEZ;
BEGIN
REAL RR;
* * %
END; %STRBLOCKTYPE2
STRBLOCKTYPE2 STR2ID; %ALLOWED
* * %

END; %STRBLOCKTYPE1

STRBLOCKTYPE1 STRIDI; %ALLOWED
STRID1.STRBLOCKTYPE2 STR2ID %NOT ALLOWED
STRBLOCKTYPEL1.STRBLOCKTYPE2 STR2ID2; %NOT ALLOWED
* % %
END.

Identifiers

<structure block variable identifier>

An identifier associated with a structure block in a STRUCTURE BLOCK VARIABLE
declaration.

8600 0098-505 3-167

SWITCH FILE Declaration

SWITCH FILE Declaration

A SWITCH FILE declaration associates an identifier with a list of file designators. Any of
these file designators can later be referenced by using the identifier and a number
corresponding to the position of the file designator in the list.

<switch file declaration>

I e —— SWITCH — FILE —<identifier>— :=
DIRECT

>—<switch file Tist }

<switch file identifier>

An identifier that is associated with a switch file list in a SWITCH FILE declaration.

<direct switch file identifier>

An identifier that is associated with a switch file list in a DIRECT SWITCH FILE
declaration.

<switch file list>

—|—<f1' le des;gnator‘ | '

<file designator>

<file identifier {
<direct file identifier
E<sw1’tch file 1'dent1'f1'er‘>—_|— [—<subscript>—] -

<direct switch file identifier>

Switch File List

3-168

An integer index is associated with each file designator in the switch file list. The indexes
are 0, 1, 2, and so on through N-1, where N is the number of file designators in the list.
These indexes are obtained by counting the file designators in order of their appearance
in the list. A file designator in the list can be referenced by subscripting the switch file
identifier with a subscript whose value is equal to the index of the file designator.

If a subscript to a switch file identifier yields a value outside the range of the switch file
list (that is, less than O or greater than N-1), a fault occurs at run time.

Any subscripts in the switch file list are evaluated at the time of the SWITCH FILE
declaration.

8600 0098-505

SWITCH FILE Declaration

A switch file can reference itself in the switch file list, in which case a stack overflow
might occur when the program is executed. For example, assume a switch file is
declared as the following:

SWITCH FILE SF := F1, F2, SF[N]
If N equals 2, the subscripted switch file identifier SF[N] references itself indefinitely.

The switch file list of a switch file that is not designated as DIRECT can contain only file
designators that are not DIRECT, and the switch file list of a switch file that is designated
DIRECT can contain only file designators that are DIRECT.

Example of a SWITCH FILE Declaration

The following example declares CHOOSEUNIT to be a switch file identifier with a list of
three file designators. CHOOSEUNITIO] evaluates to file CARDOUT, CHOOSEUNITI[1]
evaluates to file TAPEOQOUT, and CHOOSEUNIT[2] evaluates to file PRINTOUT.

SWITCH FILE CHOOSEUNIT :=
CARDOUT,
TAPEOUT,
PRINTOUT;

o

WRITE(CHOOSEUNIT[0], 14, A[*]); WRITES TO CARDOUT
WRITE(CHOOSEUNIT[1], 14, A[*]); % WRITES TO TAPEOUT
WRITE(CHOOSEUNIT[2], 14, A[*]); % WRITES TO PRINTOUT

8600 0098-505 3-169

SWITCH FORMAT Declaration

SWITCH FORMAT Declaration

A SWITCH FORMAT declaration associates an identifier with a list of items representing
editing specifications. Any of these items and the associated editing specifications can
later be referenced by using the identifier and a number corresponding to the position of
the item in the list.

<switch format declaration>
— SWITCH — FORMAT —<identifier>— := —<switch format 1ist>4|

<switch format identifier>

An identifier that is associated with a switch format list in a SWITCH FORMAT
declaration.

<switch format list>

—|—<sw1'tch format segment | {

<switch format segment>

<format designator |
E (—<editing specifications>—)
< —<editing specifications>— >

<format designator>

<format identifier
|:<sw1'tch format identifier>— [—<subscript>—] J !

Switch Format List

3-170

An integer index is associated with each switch format segment in the switch format list.
The indexes are 0, 1, 2, and so on through N-1, where N is the number of switch format
segments in the list. These indexes are obtained by counting the switch format
segments in order of their appearance in the list. A switch format segment in the list can
be referenced by subscripting the switch format identifier with a subscript whose value
is equal to the index of the switch format segment.

If a subscript to a switch format identifier yields a value outside the range of the switch
format list (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the switch format list are evaluated at the time the subscripted switch
format identifier is encountered.

8600 0098-505

SWITCH FORMAT Declaration

A switch format can reference itself in the switch format list, in which case a stack
overflow might occur when the program is executed. For example, assume a switch
format is declared as the following:

SWITCH FORMAT SF := FMT1, FMT2, SF[N]
If N equals 2, the subscripted switch format identifier SFIN] references itself indefinitely.
A simple string literal in a SWITCH FORMAT declaration is always read-only if the switch

format segment in which it appears consists of editing specifications rather than a format
designator.

Examples of SWITCH FORMAT Declarations

The following example declares SF to be a switch format identifier with a switch format
list of four sets of editing specifications. The editing specifications (X738, 12), for example,
can be referenced as SF[2].

SWITCH FORMAT SF := (A6, 314, I2, X60), % 0
(14, X2, 214, 312), %1
(x78, 12), % 2
(x2) % 3

The following example declares SWHFT to be a switch format identifier with a switch
format list of three format designators. SWHFTI[0] evaluates to format FMT1, SWHFTI[1]
to FMT2, and SWHFT([2] to FMT3.

SWITCH FORMAT SWHFT := FMT1,FMT2,FMT3

8600 0098-505 3-171

SWITCH LABEL Declaration

SWITCH LABEL Declaration

A SWITCH LABEL declaration associates an identifier with a list of designational
expressions, which are expressions that evaluate to labels. Any of these designational
expressions can later be referenced by using the identifier and a number corresponding
to the position of the designational expression in the list.

<switch label declaration>
— SWITCH —<identifier>— := —<switch label 1ist }

<switch label identifier>

An identifier that is associated with a switch label list in a SWITCH LABEL declaration.

<switch label list>

L
—|—<des1'gnat1'ona1 expression {

Switch Label List

3-172

An integer index is associated with each designational expression in the switch label list.
The indexes are 1, 2, 3, and so on through N, where N is the number of designational
expressions in the list. These indexes are obtained by counting the designational
expressions in order of their appearance in the list. A designational expression in the list
can be referenced by subscripting the switch label identifier with a subscript whose value
is equal to the index of the designational expression.

Note that the indexing of a switch label list begins at 1.

If a subscript to a switch label identifier yields a value outside the range of the switch
label list (that is, less than 1 or greater than N), the statement using the switch label is
not executed, and control proceeds to the next statement. Typically, the next statement

is a specification of some form of error handling.

The designational expressions in a switch label list are evaluated at the time the
subscripted switch label identifier is encountered.

A switch label can reference itself in the switch label list, in which case a stack overflow
might occur when the program is executed. For example, assume a switch label is
declared as the following:

SWITCH SW := L1, L2, L3, SW[N]

If N equals 4, the designational expression SWIN] references itself indefinitely.

8600 0098-505

SWITCH LABEL Declaration

Examples of SWITCH LABEL Declarations

The following example declares CHOOSEPATH to be a switch label identifier with labels
L1, L2, L3, and L4 in the switch label list. CHOOSEPATHI1] evaluates to label L1,
CHOOSEPATHI[2] to L2, and so on.

SWITCH CHOOSEPATH := L1,L2,L3,L4

The following example declares SELECT to be a switch label identifier with labels START
and ERROR1 and designational expression CHOOSEPATHI[2] in the switch label list. Note
that from the previous SWITCH LABEL declaration, CHOOSEPATH][2] evaluates to L2;
therefore, SELECT[3] evaluates to L2.

SWITCH SELECT := START, %1
ERROR1, % 2
CHOOSEPATH[2] % 3

8600 0098-505 3-173

SWITCH LIST Declaration

SWITCH LIST Declaration

A SWITCH LIST declaration associates an identifier with a list of list designators. Any of
these list designators can later be referenced by using the identifier and a number
corresponding to the position of the list designator in the list.

<switch list declaration>
— SWITCH — LIST —<identifier>— := J—<11's’c des%gnator‘>J—{

<switch list identifier>

An identifier that is associated with a list of list designators in a SWITCH LIST declaration.

<list designator>

<list identifier '
|:<sw1"cch 1ist identifier>— [—<subscript>—] J

List Designator

An integer index is associated with each list designator in the declaration. The indexes
are 0, 1, 2, and so on through N-1, where N is the number of list designators in the
declaration. These indexes are obtained by counting the list designators in order of their
appearance in the declaration. Any of these list designators can be referenced by
subscripting the switch list identifier with a subscript whose value is equal to the index of
the list designator.

If a subscript to a switch list identifier yields a value outside the range of the list of list
designators (that is, less than 0 or greater than N-1), a fault occurs at run time.

Any subscripts in the list of list designators are evaluated at the time the subscripted
switch list identifier is encountered.

A switch list can reference itself in the list of list designators, in which case a stack
overflow might occur when the program is executed. For example, assume a switch list
is declared as the following:

SWITCH LIST SL := L1, L2, SL[N]

If N equals 2, the subscripted switch list identifier SLIN] references itself indefinitely.

3-174 8600 0098-505

SWITCH LIST Declaration

Example of a SWITCH LIST Declaration

The following example declares NUMVARIABLES to be a switch list identifier and
associates four list designators with it. NUMVARIABLES[O] evaluates to the list
NOVARS, NUMVARIABLES[1] evaluates to ONEVAR, and so on.

SWITCH LIST NUMVARIABLES := NOVARS, % O
ONEVAR, %1
TWOVARS, % 2
THREEVARS % 3

8600 0098-505 3-175

TASK and TASK ARRAY Declarations

TASK and TASK ARRAY Declarations

The TASK and TASK ARRAY declarations are used to declare tasks and task arrays,
which can then be associated with a process or coroutine. Task attributes can be used to
control or to contain information about the process or coroutine.

<task declaration>

— TASK J—<1’dent13f1'er‘ | |

<task identifier>

An identifier that is associated with a task in a TASK declaration.

<task array declaration>

E]

— TASK — ARRAY —J—<1'dent1?f1' er‘>J— [—<bound pair Tist>—] ——|

<task array identifier>

An identifier that is associated with a task array in a TASK ARRAY declaration.

A task array is an array whose elements are tasks. A task array can have no more than
15 dimensions.

Task and Task Array Designator

3-176

<task designator>

—r—<task identifier

— E]
—<task array identifier>— [J—<subscr‘1’pt—>—|— 1 —
— MYSELF
- MYJOB

L . —<task-valued task attribute name>J—

<task-valued task attribute name>

T EXCEPTIONTASK
PARTNER] !

<task array designator>

—-<task array identifier B : ot a {
<subarray selector>

8600 0098-505

TASK and TASK ARRAY Declarations

A task designator represents a single task. A task array designator represents an array of
tasks. MYSELF is the task designator for the currently running program. MYJOB is the
task designator for the currently running job.

When a process or coroutine is invoked, a task can be associated with it. For example, a
task designator can appear in a CALL statement, PROCESS statement, or RUN
statement. Task attributes can be assigned values by the program to control the process
or coroutine, and the program can interrogate the values of task attributes as the process
or coroutine executes.

The EXCEPTIONEVENT attribute of the EXCEPTIONTASK of a program is caused
whenever the status of that program changes (for example, if the program is suspended
or terminated).

Attributes associated with a task designator can be assigned values or interrogated in a
program by specifying the task designator and the appropriate task attribute names in
assignment statements.

For information on processes and coroutines, see “CALL Statement,” “"PROCESS
Statement,” and “RUN Statement” in Section 4, “Statements.” For more information on
assigning and interrogating task attributes, see the <arithmetic task attribute> construct
under “Arithmetic Assignment,” the <Boolean task attribute> construct under “Boolean
Assignment” and “Task Assignment” in Section 4, “Statements.”

Examples of TASK and TASK ARRAY Declarations
The following example declares PROCESSTASK to be a task identifier.
TASK PROCESSTASK
The following example declares CHILDREN as a one-dimensional task array with a lower
bound of 0 (zero) and an upper bound of LIM. The CHILDREN task array might be used to
store the tasks associated with a group of processes and coroutines initiated by a

program.

TASK ARRAY CHILDREN[O0:LIM]

8600 0098-505 3-177

TRANSLATETABLE Declaration

TRANSLATETABLE Declaration

The TRANSLATETABLE declaration defines one or more translate tables. Used in a
REPLACE statement, a translate table indicates translations to be performed from one

group of characters to another group of characters.

<translate table declaration>

— TRANSLATETABLE J—<t\r‘ans1ate taB]e element |

<translate table element>

—<identifier>— (J—<’c1r":~1ns1at1'on specifier>J—)

<translate table identifier>

An identifier that is associated with a group of one or more translation specifiers in a

TRANSLATETABLE declaration.

Translation Specifier

3-178

<translation specifier>

—E<source characters>— TO0 —<destination characters

<translate table identifier

<source characters>

—E<str‘1' ng literal
<character se’t>J

<character set>

<destination characters>

<string literal
E<char‘acter‘ set
<special destination character>—

<special destination character>

A string literal that is 1 character long.

8600 0098-505

TRANSLATETABLE Declaration

Specifying a character set is equivalent to specifying all the characters in that set, in
ascending binary sequence. The length of a character set is equal to the total number of
characters in the set.

A string literal specifies all the characters in the string literal. The length of a string literal
is equal to the number of characters in the string literal in terms of the largest character
size specified by the string literal.

A translation specifier is enclosed in parentheses, and each succeeding translation
specifier overrides the previous translation specifiers.

Within a single translate table, all source character sizes and all destination character
sizes must be the same, although the character sizes of the source and destination parts
need not be the same.

The number of destination characters must equal the number of source characters,
unless the special destination character is used or unless a character set is used for both
the source characters and the destination characters. If the special destination character
is used, all the source characters are translated to the special destination character.

Every translate table has a default base in which all source characters are translated to
characters with all bits equal to O (zero). This means that all source characters that do not
appear in the TRANSLATETABLE declaration are translated to the character whose binary
representation had all bits equal to 0 (zero).

The use of a character set for both the source and destination parts invokes a standard
table from the operating system and provides a way of obtaining a legitimate base on
which additional translation specifiers can be used, if desired, to override certain parts of
the standard table. The use of a translate table identifier as a translation specifier can also
be used to provide a base.

When string literals of equal length are used for the source and destination parts,
translation is based on the corresponding positions of the source and destination
characters, from left to right.

Translate Table Indexing

The size of a translate table is determined by the size of the source characters (the
characters to be translated): 4-bit characters require a 4-word table; 7-bit and 8-bit
characters require a 64-word table. A translate table is a one-dimensional read-only array.

Each word in a translate table (Figure 3-1) has its low-order 32 bits divided into four 8-bit
fields, numbered 0 to 3 from left to right. The high-order 16 bits are all zeros.

When a character is to be translated, the binary representation of the character is divided
into two parts: a word index and a field index. The field index consists of the two
low-order bits; the word index consists of the remaining high-order bits. The word index
designates the word in the translate table in which the field index designates the
character into which the source character is to be translated.

8600 0098-505 3-179

TRANSLATETABLE Declaration

3-180

Figure 3-1 below shows indexing for the translation of a to A that would result from the
following declaration:

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,

"abcdefghijklmnopgrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ")

7 4
Binary representation of
1 1 the character to be translated
(EBCDIC)
WORD INDEX FIELD INDEX Binary representation of new
\ value for
EMPTY FIELD O FIELD 1 FIELD 2 FIELD 3
[47:16] [31:8] [23:8] [15:8] [7:8]
L; 47| 43| 39| 35 131 027 123 O19 115 11 O7 03
o<
—
EE 46 42 38 34 030 O26 122 O18 114 10 O6 02
a_j
=D
gg i a1l 3 33| Q| Oos| Onif Oy 13] ~ 9 05 1,
—
44 40 36 32 028 024 020]'16 O12 08 04]'O

Figure 3-1. Translate Table Indexing

8600 0098-505

TRANSLATETABLE Declaration

Examples of TRANSLATETABLE Declarations

The following example translates the letters Lto G, Eto O, Ato L, and D to D. All other
characters are translated to the character whose binary representation has all bits equal
to O (zero). Both the source and the destination characters are of the default character

type.
TRANSLATETABLE ALCHEMY ("LEAD" TO "GOLD")

The following example translates all EBCDIC characters to themselves except for the
lowercase letters, which it translates to uppercase letters.

TRANSLATETABLE UPCASE (EBCDIC TO EBCDIC,
"abcdefghijklmnopgrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ")

The following example translates all EBCDIC characters to themselves except for the left
parenthesis ((), which is translated to the left square bracket ([).

TRANSLATETABLE PAREN_TO BRACKET (EBCDIC TO EBCDIC, 8"(" TO 8"[")

The following example translates all EBCDIC characters to themselves except for the
digits, which it translates to periods (.).

TRANSLATETABLE NUMBERS TO PERIODS (EBCDIC TO EBCDIC,
"0123456789" TO ".")

8600 0098-505 3-181

TRUTHSET Declaration

TRUTHSET Declaration

The TRUTHSET declaration associates an identifier with a set of characters. From the
characters in a TRUTHSET declaration, the compiler builds a truth set table, which is
used in a truth set test to determine whether a given character is a member of that
group of characters. The identifier can then be used in a SCAN statement to scan while
or until any character in the truth set occurs.

The identifier also can appear as a condition in a REPLACE statement, so that
replacement takes place while or until any character in the truth set occurs.

<truth set declaration>

— TRUTHSET J—<1'dent1'1’1'e\r‘>— (—<membér‘sh1’p expression>—) J—{

<truth set identifier>

An identifier that is associated with a membership expression in a TRUTHSET
declaration.

Membership Expression

<membership expression>

AND
«— OR
— |
«— IMP
«— EQV

— <membership primary
L nor |

<membership primary>

<string literal {
<truth set identifier>
(—<membership expression>—) —
ALPHA
ALPHA7
ALPHA8

All membership primaries of a membership expression must be of the same character
size (4-bit, 7-bit, or 8-bit); this character size determines the type of the truth set. The
character size of a string literal is determined by the maximum character size indicated by
its component string codes. For more information, refer to “String Literal” in Section 2,
“Language Components.”

A membership expression is evaluated according to the normal rules of precedence for

Boolean operators. This precedence is described under “Boolean Expression” in
Section 5, “Expressions and Functions.”

3-182 8600 0098-505

TRUTHSET Declaration

ALPHA, ALPHA7, and ALPHAS are intrinsic truth sets defined as follows:

Truth Set Definition

ALPHA7 A truth set that contains the ASCII digits and uppercase letters
ALPHAS8 A truth set that contains the EBCDIC digits and uppercase letters
ALPHA A truth set that contains the digits and uppercase letters of the

default character type

If a default character type is not explicitly specified by the compiler control option ASCII,
then the default character type is EBCDIC, and ALPHA is the same as ALPHAS. If the
ASCII compiler control option is TRUE, then ALPHA is the same as ALPHA7.

Truth Set Test

From the characters in a TRUTHSET declaration, the compiler builds a truth set table,
which is used in a truth set test to determine whether a given character is a member of
that group of characters.

All truth sets declared by a single TRUTHSET declaration are stored in a single read-only
array. Separate TRUTHSET declarations produce separate read-only arrays.

A truth set test references a bit in the read-only array containing the truth set by dividing
the binary representation of the character being tested into two parts: the low-order five
bits are used as a bit index, and the three high-order bits are used as a word index. If the
size of the source character is smaller than eight bits, high-order zero bits are inserted to
make an 8-bit character before the indexing algorithm is used.

The word index selects a particular word in the truth set table. The bit index is then
subtracted from 31, and the result is used to reference one of the low-order 32 bits in the
selected word. If the bit selected by the following expression is equal to 1, the character
is a member of the truth set:

TABLE[CHAR.[7:3]].[(31-CHAR.[4:5]):1]

8600 0098-505 3-183

TRUTHSET Declaration

Figure 3-2 shows an example of a truth set test. In this example, the referenced bit (13)
is equal to 1; therefore, the test character is a member of the truth set.

7 6 4
Binary representation of
1 1 1 the character: (EBCDIC)
WORD INDEX BIT INDEX =
31-18=13
EMPTY
[47:16] [31:32]
47 43 39 35 031 127 123 019 115 111 O 7 O 3
L
o
E::f_:’ 46 42 38 34 030 126 122 018 114 110 O6 02
()
or>o
ox
=" 45| 41| 37| 33 129 125 Ly O17 19 05 01
44 40 36 32 128 124 120 016 112 1 8 O 4 O 0

Figure 3-2. Truth Set Test

Examples of TRUTHSET Declarations

3-184

The following example declares T to be a truth set with membership equal to that of
ALPHA. ALPHA consists of all uppercase letters and the digits 0 through 9, in the default

character set.

TRUTHSET T(ALPHA)

The following example declares Z to be a truth set with membership of ALPHA8 and the

hyphen (-).

TRUTHSET Z(ALPHA8 OR "-")

The following example declares NUMBERS to be a truth set with a membership of the

digits 0 through 9 in the default character set.

TRUTHSET NUMBERS("0123478956")

8600 0098-505

TRUTHSET Declaration

The following example declares LETTERS to be a truth set with a membership of ALPHA
but not the digits 0 through 9; that is, consisting of the uppercase letters in the default
character set.

TRUTHSET LETTERS(ALPHA AND NOT NUMBERS)

The following example declares two truth sets:

e HEXN, with a membership of the hexadecimal characters 1, 2, and 3
e ASCN, with a membership of the ASCII characters 1, 2, and 3
TRUTHSET HEXN(4"123"), ASCN(7"123")

8600 0098-505 3-185

VALUE ARRAY Declaration

VALUE ARRAY Declaration

A VALUE ARRAY declaration declares a read-only, one-dimensional array of constants.

<value array declaration>
VALUE — ARRAY

L LONG il |—<ar‘r‘ay c]ass>J

->J—<1'dent1'f1'er‘>— (—=<constant list>—) | {

<value array identifier>

An identifier that is associated with a value array in a VALUE ARRAY declaration.

A value array is a one-dimensional, read-only array. An element of a value array is
referenced in the same manner as for any other array; that is, through a subscripted

variable or by using a pointer. However, an attempt to store a value into a value array is
flagged with a compile-time or run-time error.

The lower bound of a value array is 0 (zero).
Normally, a value array longer than 1024 words is automatically paged (segmented) at
run time into segments 256 words long. LONG specifies that the value array is not to be

paged, regardless of its length.

If no array class appears in a VALUE ARRAY declaration, a REAL array is assumed.

Constants

3-186

<constant list>

— ,
—L<constant |

<constant>

<Boolean value I
<number:
<constant expression
<string literal
<unsigned integer>— (—<constant list>—) —

<constant expression>

An arithmetic, Boolean, or complex expression that can be entirely evaluated at
compilation time.

Each constant initializes an integral number of words. The number of words initialized
depends on the type of the array and the kind of constant.

8600 0098-505

VALUE ARRAY Declaration

Single-precision numbers, single-precision expressions, Boolean values, and Boolean
expressions initialize one word in value arrays other than double or complex value arrays.
In double value arrays, this word is extended with a second word of O (zero). In complex
value arrays, this word is normalized and then extended with an imaginary part of

0 (zero).

Double-precision numbers and expressions are stored unchanged in two words in double
value arrays. In complex value arrays, the value is rounded and normalized to
single-precision and then extended with an imaginary part of O (zero). For other types of
value arrays, the second word of the double-precision value is dropped and the first word
initializes one word of the array.

Complex expressions can appear only in complex value arrays, and they initialize two
words of the array.

String literals more than 48 bits long initialize as many words as are needed to contain
the string and are left-justified with trailing zeros inserted in the last word, if necessary. In
complex and double value arrays, long string literals can initialize an odd number of
words, causing the following constant to start in the middle of a two-word element of the
array.

String literals less than or equal to 48 bits long are right-justified within one word with
leading zeros, if necessary. This word initializes one word in value arrays other than
double or complex value arrays. In double value arrays, this word is extended with a
second word of 0 (zero). In complex value arrays, this word is normalized and then
extended with an imaginary part of 0 (zero).

The <unsigned integer> (<constant list>) form of constant causes the values within the
parentheses to be repeated the number of times specified by the unsigned integer.

The operating system overlays value arrays more efficiently than other arrays because
value arrays need not be written to disk when their space in memory is relinquished.

The maximum size of an unpaged value array is 4095 words; the maximum size of a
paged value array is 32,767 words.

Example of a VALUE ARRAY Declaration

The following example declares DAYS to be a value array of real elements. DAYS stores
the names of the days of the week, one day name in each two words. The string
FRIDAY, for example, is stored in DAYS[8] and DAYS[9], and can be retrieved by
assigning a pointer to DAYS[8] and using the pointer.

VALUE ARRAY DAYS ("MONDAY ", "TUESDAY ",
"WEDNESDAY ", "THURSDAY ",
"FRIDAY ", "SATURDAY ",
"SUNDAY ")

8600 0098-505 3-187

VALUE ARRAY Declaration

3-188 8600 0098-505

Section 4
Statements

Statements are the active elements of an ALGOL program. They indicate an operation to
be performed. Statements are normally executed in the order in which they appear in the
program. A statement that transfers control to another program location can alter this
sequential flow of execution. Note that a statement can be null or empty.

In this section, the ALGOL statements are listed and discussed in alphabetical order. In
many cases, portions of the syntax of a statement are discussed before moving on to
the next syntax segment.

The syntax for any statement is recursive: a statement can be a block or a compound
statement, each of which, in turn, can include statements. For a description of the syntax
of <block> and <compound statement>, see Section 1, “Program Structure.”

Statements can be labeled or unlabeled. A <labeled statement> is of the following form:

—<label identifiers— : —<statement }

An <unlabeled statement> is any statement that does not contain a label identifier.

8600 0098-505 4-1

ACCEPT Statement

ACCEPT Statement

The ACCEPT statement causes the display of a specified message on the Operator
Display Terminal (ODT).

<accept statement>

— ACCEPT — (<pointer expression) |
—E<str‘1'ng variable>
<subscripted string variable>

ACCEPT Parameters

4-2

The message displayed on the ODT is designated by the parameter to the ACCEPT
statement. If the parameter is a pointer expression, then the characters to which the
pointer expression points are displayed on the ODT. The pointer expression must point to
EBCDIC characters, and the message to be displayed must be terminated by the

EBCDIC null character (48"00"). Following display of the characters, the program is
suspended until a response is entered at the ODT. The response is placed, left-justified,
with leading blanks discarded and with an EBCDIC null character added at the end, into
the location to which the pointer expression points, and the program continues execution
with the statement following the ACCEPT statement.

If the parameter to the ACCEPT statement is a string variable or subscripted string
variable, then the contents of the specified string are displayed on the ODT. The string
variable or subscripted string variable must be of type EBCDIC. Following the display of
the characters, the program is suspended until a response is entered at the ODT. The
response is placed in the string variable or subscripted string variable, and the program
continues execution with the statement following the ACCEPT statement.

The ACCEPT statement can be used as a Boolean function. If a response is not available,
the value of the ACCEPT statement is FALSE. If a response is available, the value of the
ACCEPT statement is TRUE, and the response is placed in the specified location. The
program continues execution regardless of the value returned by the ACCEPT statement.

No more than 430 characters can be displayed by the ACCEPT statement. No more than
960 characters can be accepted as a response.

The response to the ACCEPT statement can be entered before the actual execution of

that statement. The response can be entered using the AX (Accept) system command.
For more information, refer to the System Commands Operations Reference Manual.

8600 0098-505

ACCEPT Statement

Examples of ACCEPT Statements

The following example displays the string of EBCDIC characters in the array Z, from the
beginning of the array to the EBCDIC null character (48"00).

ACCEPT(POINTER(Z,8))

The following example displays the contents of string STR on the ODT. If a response is
available, the string "THANK YOU." is displayed. If no response is available, the string
"PLEASE REENTER." is displayed.

IF ACCEPT(STR) THEN
DISPLAY ("THANK YOU.")
ELSE
DISPLAY ("PLEASE REENTER.")

8600 0098-505 4-3

ASSIGNMENT Statement

ASSIGNMENT Statement

The ASSIGNMENT statement causes the item on the right of the assignment operator
(:=) to be evaluated and the resulting value to be assigned to the item on the left of the
assignment operator.

<assignment statement>

———<arithmetic assignment }
—<array reference assignment>
—<Boolean assignment
—<complex assignment
—<connection block reference assignment>—
—<mnemonic attribute assignment>
—<pointer assignment
—<procedure reference array assignment>—
—<string assignment
—<structure block reference assignment>—
L<task assignment

The action of an ASSIGNMENT statement is as follows:

e The location of the target is determined.
e The item following the assignment operator (:=) is evaluated.
e The resulting value is assigned to the target.

The various forms of the ASSIGNMENT statement are called assignments instead of
statements because they can appear both as statements and in expressions. For
example, the following is a statement when it stands alone:

A:=A+1
However, the same construct can be used in an expression, such as in the following:

IF (A := A+ 1) > 100 THEN <statement>
Too many arithmetic, Boolean, complex, pointer, or string assignments in one statement
can cause a stack overflow fault in the compiler. The fault can be avoided by breaking the
statement into several separate statements, each containing fewer assignments, or by

increasing the maximum stack size for the program by using the task attribute
STACKLIMIT.

4-4 8600 0098-505

ASSIGNMENT Statement

Arithmetic Assignment

An arithmetic assignment assigns the value of the arithmetic expression on the right side
of the assignment operator (:=) to the arithmetic target on the left side.

<arithmetic assignment>

<arithmetic variable B
<partial word part>—
<arithmetic type transfer variable>——

<arithmetic attribute
»—T: := —<arithmetic expression] {
<arithmetic update assignment>

Arithmetic Variable

The attribute error number returned from the operating system can be captured in the
arithmetic variable.

<arithmetic variable>

—<variable {

<variable>

C simple variable] }
|:<connect1'on block qualifier> <subscripted variable>

<structure block qualifier>

<simple variable>

—<identifier {
<subscripted variable>

E— E]
—<array name>— [J—<subsc1r‘1'pt—>—|—] {

If the <arithmetic variable> <partial word part> syntax or the <arithmetic attribute>
syntax appears in a statement with multiple assignments, then it must appear as the
leftmost target in the statement. The following examples illustrate this rule.

Allowed Not Allowed
X[7:8] =Y =1 Y :=X.[7:8] =1
F1.MAXRECSIZE:= RECLNGTH:= 30 RECLNGTH:= F1.MAXRECSIZE:= 30

An <arithmetic variable> <partial word part> assignment leaves the remainder of the
arithmetic variable unchanged, despite any possible side effects, such as embedded
assignments, in the arithmetic expression.

8600 0098-505 4-5

ASSIGNMENT Statement

Arithmetic Type Transfer Variable

<arithmetic type transfer variable>

DOUBLE —— (—<variable .) {
INTEGER — |:<part1'a1 word part>
REAL —) —<partial word part>

If the declared type of the target item to the left of the assignment operator (:=) and the
type of the value to be assigned to it are different, then the appropriate implicit type
conversion is performed according to the following rules:

o |[f the left side is of type INTEGER and the expression value is of type REAL, then the
value is rounded to an integer before it is stored.

o |f the left side is of type INTEGER and the expression value is of type DOUBLE, then
the value is rounded to a single-precision integer before it is stored.

o |f the left side is of type REAL and the expression value is of type INTEGER, then the
value is stored unchanged.

o |f the left side is of type REAL and the expression value is of type DOUBLE, then the
value is rounded to single-precision before it is stored.

o |f the left side is of type DOUBLE and the expression value is of type INTEGER or
REAL, then the value is converted to double-precision by appending a second word
of zero (all bits equal to zero) before it is stored.

The use of an arithmetic type transfer variable causes the value on the right side of the
assignment operator to be stored unchanged into the variable on the left side, regardless
of type. However, if an attempt is made to assign a double-precision value into a
single-precision variable by using the DOUBLE form of the construct, only the first word
of the double-precision value is stored unchanged into the single-precision variable. For
more information, see “Type Coercion of One-Word and Two-Word Operands” in
Appendix C, “Data Representation.”

If more than one assignment operator appears in a single assignment (for example,
A:= B:=C:=1.414), assignment of values is executed from right to left. If, during this
process, a value is converted to another type so that it can be assigned, then it remains
in that converted form following that assignment; that is, the value does not resume its
original form. For example, assume you are executing the following program:

BEGIN

DOUBLE DBL1, DBLZ;

REAL REL1, RELZ;

INTEGER INTI;

DBL2 := RELZ2 := INT1 := REL1 := DBL1 := 1.4142135623730950488016@0;
END.

4-6 8600 0098-505

ASSIGNMENT Statement

In this program, the variables are assigned the following values:

DBL1 = 1.414213562373095048801
REL1 = 1.41421356237

INT1 =1

REL2 = 1.0

DBLZ2 = 1.0

Arithmetic Attribute

<arithmetic attribute>

<arithmetic file attribute {
E<ar1’thmet1’c direct array attribute>—

<arithmetic task attribute>
<arithmetic Tibrary attribute>

<arithmetic file attribute>

—<file designator

L—<attr1’bute parameter specificat10n>—J
»>—<arithmetic-valued file attribute name

L (—<arithmetic variable>—) J

<attribute parameter specification>

— (—<attribute parameter list>—) {

<attribute parameter list>

—E<ar1'thmet1'c expression |
<file attr‘ibute>g L , —<arithmetic exp\r‘ess1'on>J

<arithmetic direct array attribute>

—<direct array row>— .

>—<arithmetic-valued direct array attribute name }

<arithmetic-valued direct array attribute name>
ALGOL supports all direct array attributes and direct array attribute values described in
the File Attributes Programming Reference Manual.

<arithmetic task attribute>
—<task designator>— . —<arithmetic-valued task attribute name>4|

<arithmetic-valued task attribute name>

ALGOL supports all task attributes of type real and integer described in the Task
Attributes Programming Reference Manual.

8600 0098-505 4-7

ASSIGNMENT Statement

<arithmetic library attribute>

—<library attribute designator>— .

>—<arithmetic-valued library attribute name |

<library attribute designator>

<library identifier |
E<th1'sc1 intrinsic
LIBRARY — (—<connection 1ib id) —

L [—<arith expression>—] il

Arithmetic Update Assignment

<arithmetic update assignment>
|

—<update symbols
|—<a\r‘1'thmet1'c operator>—<arithmetic exp\r‘ess1'on>J

<update symbols>

- * |

The arithmetic update assignment is a shorthand form of assignment that can be used
when the arithmetic target on the left side of the assignment operator also appears in
the arithmetic expression on the right side of the operator. The arithmetic update
assignment form can be specified only following an arithmetic target that does not
contain a partial word part. The asterisk (*) represents a duplication of the item to the left
of the assignment operator. For example, the same results are produced by the following
two assignments:

A=*+1

A :

A+1

The target item is not reevaluated at the appearance of the asterisk. Hence, if | equals
zero initially, the following applies:

Assignment Equivalent Not Equivalent
Bll:=1+1]:=%*+1 B[1]:=B[1] + 1 B[1]:=B[2] + 1

If the item to the left of the assignment operator is a subscripted variable, it cannot
reference a value array.

If an expression is used as a subscript to a variable, the subscript is evaluated first. In the
following example, the expression used as a subscript [|+2] is evaluated first:

A[1+2] := 1 := 10

4-8 8600 0098-505

ASSIGNMENT Statement

Examples of an Arithmetic Assignment

VAL := 7

A[4,5].[30:4] := X

FYLE.AREAS := 50

FYLE(5) .AREAS := 10
FYLE.SYNCHRONIZE := VALUE(OUT)
DIRARAY.IOCW := 4"1030"
TSK.COREESTIMATE := 10000
NEWARRAY[I] := * + OLDARRAY[I]
ONE := SIN(X := 3)**2 + COS(X)**2

DISTANCE := SQRT(X**2 + Y**2 + 2%%*2)

CONNECTION_ LIBRARY INT.R := CONNECTION LIBRARY EXT[4].T;

Array Reference Assignment

<array reference assignment>

—<array reference variable>— :=
L

<array desig

nator |

<null value>

An array reference assignment associates a variable, called an array reference variable,
with an array or a portion of an array. The array reference variable can then be used to
reference the array or array portion.

An array reference assignment generates a copy descriptor of an array or array row.

Typical uses of an array reference assignment include the following:

To perform more efficiently arithmetic operations on multidimensional arrays (for
example, by extracting a particular row to avoid repeated indexing to the same row)

For concurrent, but different, uses of the same array (for example, for storing values
of type REAL into an array that is originally declared as Boolean)

8600 0098-505

4-9

ASSIGNMENT Statement

Array Reference Variable

<array reference variable>

—-<array reference identifier {
The array reference variable cannot be global to the array designator.

If the array reference variable is declared as DIRECT, then only an array designator for a
direct array can be assigned to it. However, a nondirect array reference variable can be
assigned an array designator for either a direct or a nondirect array.

The dimensionality of the array reference variable and the array designator must be the
same. If both are multidimensional, then the array classes must be compatible.
INTEGER, REAL, and BOOLEAN types are compatible with each other. Other array
classes are compatible only with themselves. If the array reference identifier and the
array designator are both one-dimensional, then they can have any array class.

The size of each dimension of a multidimensional array reference variable is the same as
the size of the corresponding dimension of the array designator. The size of a
one-dimensional array reference variable is determined by the size and element width of
the array designator and the element width for the array class with which the array
reference variable was declared. Let Sa and \Wa be the size and element width,
respectively, of the array designator, and let Vr be the element width for the array
reference variable. The size of the array reference variable, Sr, is then the following:

Sr := (Sa * Wa) DIV Wr

Because of the truncation implicit in the DIV operation, Sr * Wr might be less than

Sa * Wa. In this case, indexing the array reference variable by S+LB, where LB is the
lower bound in the ARRAY REFERENCE declaration, causes an invalid index fault.
Nevertheless, pointer operations using the array reference variable can access the entire
area of memory allocated to the original array to which the array designator ultimately
refers; the memory area may hold more than Srelements of width Wr.

Array Designator

<array designator>

_ |
<array name T a |
<subarray selector>

<subarray selector>
— I F_*’ —|] |
J—<subsc1r‘1'pt>— JJ

E]

The array designator indicates the array or array portion to be associated with the array
reference variable. Following an array reference assignment, the array reference variable
becomes a referred array, describing the same data as the array designator, which can
itself be an original array or another referred array.

8600 0098-505

ASSIGNMENT Statement

A subarray selector selects part of an array by specifying subscripts for high-order
dimensions and leaving others unspecified. The unspecified dimensions are indicated by
an asterisk (*). The dimensionality of the subarray is the number of asterisks in the
subarray selector.

The total number of subscripts and asterisks in a subarray selector must equal the
dimensionality of the array identifier to which the subarray selector is suffixed. In the
case of no subscripts, the number of asterisks equals that dimensionality, and the
subarray is the whole array. In all other cases, the subarray selector specifies a subarray
of reduced dimensionality.

For example, assume you are using the following declarations:

ARRAY A[0:9,1:40,0:99];
INTEGER I,J; % (ASSUME 0 <= I <= 9 AND 1 <= J <= 40)

For these declarations, the following applies:

A and A[*,*,*] Denote the entire three-dimensional array.

AllL*,*1 Denotes one of the 10 two-dimensional arrays that
constitute A.

All,J,*] Denotes one of the 40 one-dimensional arrays (array rows)
that constitute All,*,*], and one of the 400 one-dimensional
arrays that constitute A.

If the array designator is an uninitialized array reference variable, the array reference
assignment causes the target array reference variable to become uninitialized.

Examples of Array Reference Assignments

BOOLARRAY := REELARRAY
EBCDICARAY := INPUTARAY[*]
SUBARRAY :=BIGARRAY[N,*,*

ARAYROW := MULTIDIMARAY[I,J,K,*]

8600 0098-505 4-11

ASSIGNMENT Statement

Boolean Assignment

A Boolean assignment assigns the value of the Boolean expression on the right side of
the assignment operator (:=) to the Boolean target on the left side.

<Boolean assignment>

<Boolean variable
|—<part1’ al word part>—

<Boolean type transfer variable>

<Boolean attribute
> := —<Boolean expression
_I:<Boo1ean update assignment>—J

Boolean Variables

<Boolean variable>

A <variable> of type Boolean.

<Boolean type transfer variable>

— BOOLEAN — (—=<variable .) {
|:<part1'a1 word part>
) —<partial word part>

If the <Boolean variable> <partial word part> syntax or the <Boolean attribute> syntax
appears in a statement with multiple assignments, then it must appear as the leftmost
target in the statement. The following examples illustrate this rule.

Allowed Not Allowed
X.[7:8] := Y := FALSE Y := X.[7:8] := FALSE
F1.0PEN := OPENED := FALSE OPENED := F1.0PEN := FALSE

A <Boolean variable> <partial word part> assignment leaves the remainder of the
Boolean variable unchanged, despite any possible side effects, such as embedded
assignments, in the Boolean expression.

4-12 8600 0098-505

ASSIGNMENT Statement

Boolean Attributes

<Boolean attribute>

<Boolean file attribute {
E<Boo1ean direct array attribute>—

<Boolean task attribute>
<Boolean Tlibrary attribute>

<Boolean file attribute>

—<file designator

|—<attr1’bute parameter spec1’f1’ca’c1’on>J
»>—<Boolean-valued file attribute name

L (—<arithmetic variable>—) il

The attribute error number returned from the operating system can be captured in the
<arithmetic variable>.

<Boolean direct array attribute>

—<direct array row>— .

>—<Boolean-valued direct array attribute name {

<Boolean-valued direct array attribute name>

ALGOL supports all direct array attributes and direct array attribute values described in
the File Attributes Programming Reference Manual.

<Boolean task attribute>
—<task designator>— . —<Boolean-valued task attribute name>4|

<Boolean-valued task attribute name>

T LOCKED
TADS _ !

<Boolean library attribute>

—<library attribute designator>— .

>—<Boolean-valued library attribute name {

8600 0098-505 4-13

ASSIGNMENT Statement

Boolean Update Assignment

<Boolean update assignment>

—~<update symbols B 5 '
<Boolean operator>—<simple Boolean expression>

The Boolean update assignment is a shorthand form of assignment that can be used
when the Boolean target on the left side of the assignment operator (:=) also appears in
the Boolean expression on the right side of the operator. The Boolean update assignment
form can be specified only following a Boolean target that does not contain a partial word
part. The asterisk (*) represents a duplication of the item to the left of the assignment
operator. For example, the following two assignments produce the same results:

B :

* AND BOOL

B :

B AND BOOL
The target item is not reevaluated at the appearance of the asterisk.

If the item to the left of the assignment operator is a subscripted variable, it cannot
reference a value array.

Examples of Boolean Assignments

BOOL := TRUE
BOOLARRAY[N].[30:1] := Q < VAL
HIGHER := PTR > PTS FOR 6
TAUTOLOGY := * OR TRUE

STRUCTURE_BLOCK_VARIABLE.B := STRUCTURE_BLOCK ARRAY[2].B;

8600 0098-505

ASSIGNMENT Statement

Complex Assignment

A complex assignment assigns the value of the complex expression on the right side of
the assignment operator (:=) to the complex variable on the left side.

<complex assignment>

—<complex vari ab1e>—|: := —<complex expression a {
<complex update assignment>

<complex variable>

—<variable {

Complex Update Assignment

<complex update assignment>

—<update symbols C - —] {
<complex operator>—<simple complex expression>

The complex update assignment is a shorthand form of assignment that can be used
when the complex variable on the left side of the assignment operator (:=) also appears
in the complex expression on the right side of the operator. The asterisk (*) represents a
duplication of the variable to the left of the assignment operator. For example, the
following two assignments produce the same results:

C:

* + COMPLEX(3,4)

C .

C + COMPLEX(3,4)
The target variable is not reevaluated at the appearance of the asterisk.

If the item to the left of the assignment operator is a subscripted variable, it cannot
reference a value array.

Examples of Complex Assignments

Cl :

COMPLEX(8,1.5)

C2 :

* 4 C1/2

8600 0098-505 4-15

ASSIGNMENT Statement

Connection Block Reference Assignment

<connection block reference assignment>

—<connection block reference variable>— :=

s>——<null value |
—E<connect1'on library designator>———

<connection block reference variable>—
<this function

A connection block reference assignment associates a connection block reference
variable with a particular connection block instance.

Mnemonic Attribute Assignment

A mnemonic attribute assignment assigns a value to the mnemonic-valued library
attribute LIBACCESS.

Refer to “Library Attributes” in Section 8, “Library Facility,” for a description of the
library attribute LIBACCESS.

<mnemonic attribute assignment>

—<mnemonic attribute>— := — VALUE — (

»—<mnemonic attribute value>—) {

<mnemonic attribute>

—<mnemonic library attribute I

<mnemonic library attribute>

—<library attribute designator>— .

>—<mnemonic-valued Tibrary attribute name {

<mnemonic attribute value>

—<mnemonic library attribute value }

The following are examples of Mnemonic Attribute Assignment:
L.LIBACCESS := VALUE(BYTITLE)

L.LIBACCESS :=VALUE(BYFUNCTION)

4-16 8600 0098-505

ASSIGNMENT Statement

Pointer Assignment

A pointer assignment assigns the pointer on the left side of the assignment operator (:=)
to point to the location in an array indicated by the expression on the right side of the
assignment operator. Such a pointer is then considered initialized and can be used in the
REPLACE and SCAN statements for character manipulation.

A pointer cannot be assigned to an array that is at a higher lex level than the pointer. This
would create an up level pointer condition, a situation in which the pointer might
reference deallocated memory when the program exits from the higher lex level.

<pointer assignment>

—<pointer variable> = —E<po1'nter‘ expression {
<null value>
<pointer update assignment>—

<pointer variable>

—<pointer identifier '

<pointer update assignment>

—~<update symbols '
|—<sk1'p>J !

Pointer Variable
A pointer assignment causes the creation of a pointer variable, or copy descriptor, to an
array. The pointer variable can be set up with the needed character size by using the
POINTER function syntax. For more information, see “POINTER Function” in Section 5,
"Expressions and Functions.”

Examples of Pointer Assignments

The following example assigns a pointer named PTS to point to the EBCDIC character in
the EBCDIC array EBCDICARAY identified by the subscripted variable EBCDICARAYI5].

PTS := EBCDICARAY[5]

The following example assigns a pointer named PTR to point to the leftmost character
position in the first element of the real array REALARAY.

PTR := POINTER(REALARAY)

The following example assigns the pointer PINFO to point to the seventeenth character
position after the character position pointed to by the pointer PTR.

PINFO := PTR + 17

8600 0098-505 4-17

ASSIGNMENT Statement

The following example assigns the pointer POUT to point to the leftmost character
position in the array element identified by INSTUFF[N]. The 4 following the comma
indicates that POUT is a hexadecimal pointer and thus points to hexadecimal characters.

POUT := POINTER(INSTUFF[N],4)

Procedure Reference Assignment

A procedure reference assignment associates a procedure reference with a procedure
reference variable. The identifier can then be used to refer to the procedure.

<procedure reference assignment>

—<procedure reference variable>— :=

>——<null value |
—E<procedure identifiers———
<procedure reference variable>—

Procedure Reference Variable

The procedure reference variable on the left side of the assignment operator (:=) and the
procedure identifier or procedure reference variable on the right side must be of the
same type and have the same parameter descriptions.

The procedure reference variable on the left side of the assignment operator cannot be
global to the procedure or procedure reference variable on the right side. If a procedure
reference array element is on the left side of the assignment operator and is a formal
parameter, a procedure reference array element on the right side can only be another
element of the same procedure reference array that appears on the left side.

A procedure reference array that is declared to be part of a library cannot appear on the
left side of a procedure reference assignment. An attempt to assign a value to such a
procedure reference array results in an error at compilation time or at run time.

If the procedure reference variable on the right side of the assignment operator is

uninitialized or has been assigned NULL, an attempt to invoke the procedure reference
variable that was on the left side results in a run-time error.

8600 0098-505

ASSIGNMENT Statement

Example of a Procedure Reference Assignment

In the following example, P and Q are REAL procedures and RA is a REAL procedure
reference array. Neither P, Q, nor RA have parameters. The program sample assigns
references to elements one through four of the procedure reference array RA.

BEGIN
REAL PROCEDURE P;
BEGIN
REAL A;
A:=T*T;
P :=A;
END;
REAL PROCEDURE Q;
BEGIN
INTEGER A;
A:=T*T*T;
IF A > 0 THEN
Q :=A
ELSE
Q := -1;
END;

REAL PROCEDURE REFERENCE ARRAY RA[1:10]; NULL;
REAL PROCEDURE REFERENCE PREF1; NULL;

RA[2] := Q; %RA[2] CONTAINS A REFERENCE TO PROCEDURE Q
RA[3] := NULL; %RA[3] CONTAINS A NULL VALUE

RA[4] := RA[3]; %RA[4] CONTAINS A NULL VALUE

PREF1 := P; %PREF1 CONTAINS A REFERENCE TO PROCEDURE P
PREF1 := NULL; %PREF1 CONTAINS A NULL VALUE

END.

8600 0098-505 4-19

ASSIGNMENT Statement

String Assignment
A string assignment assigns the string that results from evaluation of the string
expression on the right side of the assignment operator (:=) to the string target on the
left side.

<string assignment>

—E<str‘1'ng designator: 1=
<string-valued Tibrary att\r‘1'bu’ce>J

J—<st\r‘1'ng designator>— := JJ

— * —<string concatenation ope\r‘atmr‘>J
L<string-valued library attribute

string expression>———|

<string designator>

<string identifier {
E— E]

E<str1’ng array identifier>— [J—<subscr1’p’c—>—|—] —
<string procedure identifier

The result of the expression on the right side of the assignment operator (:=) must be a
string of the same character type as the declared type of the string designator on the left
side.

Embedded assignment is not allowed. For example, the following is not allowed:

S1 := DROP(S2 := "ABC", 2)
Assignment can be made to a string procedure identifier only within the body of that
string procedure.

String Concatenation Operator

The * <string concatenation operator> form is a shorthand form of assignment that can
be used when the string designator on the left side of the assignment operator also
appears in the expression on the right side of the operator. The asterisk (*) represents a
duplication of the item to the left of the assignment operator. For example, the following
two assignments produce the same results:

S :

* CAT "ABC"

S := S CAT "ABC"

4-20 8600 0098-505

ASSIGNMENT Statement

Examples of String Assignments
The following example assigns the EBCDIC string ABCD123 to the string variable STRI.

STRI := 8"ABCD123"

The following example assigns the string 1234 (of the default character type) to both of
the string variables S2 and S1.

S1 := S2 := "1234"

The following example concatenates the string INPUT onto the end of the string stored in
SOUTT1, and then assigns the result to both of the string variables SOUT1 and SOUT.

SOUT := SOUT1 := * CAT "INPUT"
The following example concatenates the string ABC onto the end of the string stored in
SOUT, and this string is then concatenated onto the end of the string stored in SOUT.
The resulting string is assigned to the string variable SOUT.

SOUT := * || SOUT || "ABC"

Structure Block Reference Assignment

<structure block reference assignment>

—<structure block reference variable>— :=

>——=<null value |
<this function
<structure block variable identifier>—
<structure block array element>
<structure block reference variable>—

A structure block reference assignment associates a structure block reference variable
with a particular structure block instance.

8600 0098-505 4-21

ASSIGNMENT Statement

Task Assignment

A task assignment associates the task designator on the right side of the assignment
operator (:=) with the task indicated by the expression on the left side.

<task assignment>

—<task designator>— . —<task-valued task attribute name>— := —

»>—<task designator {

For information on task designator and task-valued task attribute name, see “TASK and
TASK ARRAY Declarations” in Section 3, “Declarations.”

The PARTNER task attribute is used in conjunction with the CONTINUE statement.
The following are examples of Task Assignment:

The following example assigns the task TASKIT to the EXCEPTIONTASK attribute of
TISKIT.

TISKIT.EXCEPTIONTASK := TASKIT

The following example assigns the task identified by the task array element
TASKARAYIN] to the EXCEPTIONTASK attribute of TSK.

TSK.EXCEPTIONTASK := TASKARAY[N]

The following example assigns the task COHORT to the PARTNER attribute of
TASKVARB.

TASKVARB.PARTNER := COHORT

The following example assigns the task identified by the task array element
COWORKERSI[INDX] to the PARTNER attribute of MYSELF.

MYSELF.PARTNER := COWORKERS[INDX]
The following example assigns the task that is the PARTNER attribute of the task
MYSELF.PARTNER to the task that is the EXCEPTIONTASK attribute of the task
MYSELF.PARTNER.

MYSELF.PARTNER.EXCEPTIONTASK := MYSELF.PARTNER.PARTNER

4-22 8600 0098-505

ATTACH Statement

ATTACH Statement

The ATTACH statement associates an interrupt with an event so that when the event is
caused, the program is interrupted, and the interrupt code is placed in execution,
provided that the interrupt is enabled.

<attach statement>
— ATTACH —<interrupt identifier>— TO —<event designator>4|

Attachment of Interrupts

Although different interrupts can be simultaneously attached to the same event, a
particular interrupt can be attached to only a single event at any one time. For this
reason, if, at attach time, the interrupt is found to be already attached to an event, then it
is automatically detached from the old event and attached to the new event. Any
pending invocations of the interrupt are lost.

An interrupt can be attached to an event that is declared in a different block. For
example, a local interrupt can be attached to a formal event. Such an attachment can
cause compile-time or run-time up-level attach errors if the block containing the event
can be exited before the block that contains the interrupt is exited.

Event-valued file attributes are allowed. If the file is declared (or specified as a formal
parameter) at least as global as the interrupt, then run-time checking can be bypassed.

However, the operating system can prevent some attachments at run time. For example,
the INPUTEVENT of a remote file is available only after the file has been opened with an
OPEN statement. In the operating system, run-time verification that an interrupt is not
declared more global than the event always fails for attribute events. This causes a task
fatal UP LEVEL ATTACH error. Therefore, a formal parameter event whose actual
parameter is a file attribute cannot be attached, nor can an attribute of a formal
parameter file be attached, to a global interrupt.

Imported events and event arrays cannot be used as <event designator>s in an ATTACH
statement.

Examples of ATTACH Statements

The following example attaches the interrupt THEPHONE to the event THEBELL. When
THEBELL is caused, the code associated with THEPHONE begins executing.

ATTACH THEPHONE TO THEBELL
The following example attaches the interrupt ANSWERHI to the event
MYSELF.EXCEPTIONEVENT. Whenever the task MYSELF undergoes a change in status,
the EXCEPTIONEVENT attribute is caused, and the code associated with ANSWERHI

begins executing.

ATTACH ANSWERHI TO MYSELF.EXCEPTIONEVENT

8600 0098-505 4-23

AWAITOPEN Statement

AWAITOPEN Statement

The AWAITOPEN statement is used to await a request for dialog establishment.
Information on networks that support this function can be found in the /O Subsystem
Programming Guide.

<awaitopen statement>
— AWAITOPEN — (—<awaitopen file part

) —

|—<awa1’ topen opti ons>J

<awaitopen file part>

—<file designator C —] }
[SUBFILE —<subfile index>—]

<awaitopen options>

L , —<awaitopen control opt1’on>J

L » — PARTICIPATE

L , —<connecttimelimit opt1’on>J

<awaitopen control option>
AVAILABLE {

<connecttimelimit option>
— CONNECTTIMELIMIT — = —<arithmetic expression {

The AWAITOPEN statement can be used only when the kind of the file designator is
PORT and only when the SERVICE attribute for the port is set to a network type that
supports this feature.

The subfile index, if present, specifies the subfile that is waiting for dialog establishment.

The AWAITOPEN statement can be used as an arithmetic function. It returns the same
values as the file attribute AVAILABLE. For a description of these values refer to the File
Attributes Programming Reference Manual. If the result of this statement is not
interrogated by the program, the program terminates when the awaitopen action fails.

The control options AVAILABLE, DONTWAIT, and WAIT are described in the //O

Subsystem Programming Guide. The control option is used to indicate when control
should be returned to the program. If a control option is not specified, WAIT is assumed.

4-24 8600 0098-505

AWAITOPEN Statement

PARTICIPATE Option

The PARTICIPATE option is used to indicate that the program specifies the option of
accepting or rejecting offers, through the RESPOND statement, when the subfile is
matched to an incoming dialog request. Specifying PARTICIPATE is equivalent to
specifying PARTICIPATE = TRUE. Upon notification of a matching dialog request, through
CHANGEEVENT and FILESTATE attributes, the program can interrogate the value of
attributes, read open user data, and negotiate the value of negotiable attributes. The
program can then reject or accept an incoming dialog request. For more information on
FILESTATE and CHANGEEVENT attributes, see the File Attributes Programming
Reference Manual. If the PARTICIPATE option is not included, a default value of FALSE is
assumed, and any offer is unconditionally accepted.

CONNECTTIMELIMIT Option

The CONNECTTIMELIMIT option can be used to specify the maximum amount of time,
in minutes, that the system will allow for a successful match with a corresponding
endpoint. The default for this option is an unlimited wait. If the amount specified is
negative, an error result is returned. If the value is zero, there is no time limit on the wait.
If the value is not a single-precision integer, it is integerized. If the FILESTATE of the port
file does not change to an OPENED or OPENRESPONSEPLEASE file state within the
time specified, the AWAITOPEN fails and an implicit CLOSE ABORT is performed on the
subfile.

Examples of AWAITOPEN Statements

The following example indicates that the program is being used to await dialog
establishment on all subfiles of the port file FILEID.

AWAITOPEN (FILEID [SUBFILE 0])

The following example indicates that the program is being used to await dialog
establishment on subfile | of the port file FILEID.

AWAITOPEN (FILEID [SUBFILE I])

The following example indicates that the program is being used to await dialog
establishment on subfile 1 of port file FILEID. Control is not returned to the program until
the subfile is matched. In addition, the participate option is used to indicate that the
program can accept or reject any offers through the RESPOND statement.

AWAITOPEN (FILEID [SUBFILE 1], WAIT, PARTICIPATE=TRUE)
The following example indicates that the program is being used to await dialog
establishment on subfile N of port file FILEID. The maximum amount of time to wait for a

successful match is set to the result of the arithmetic expression (X * 60 + 3).

AWAITOPEN (FILEID [SUBFILE N], CONNECTTIMELIMIT=(X * 60 + 3))

8600 0098-505 4-25

CALL Statement

CALL Statement

The CALL statement initiates a procedure as a coroutine.

<call statement>

— CALL —<procedure identifier B a
<actual parameter part>
»— [—<task designator>—] |

Coroutines

Initiation of a coroutine consists of setting up a separate stack, passing any parameters
(call-by-name or call-by-value), and beginning the execution of the procedure.

Processing of the initiating program, called the initiator or the primary coroutine, is
suspended.

If the called procedure, referred to as the secondary coroutine, is a typed procedure, the
return value is discarded. If the procedure identifier is a system supplied process, such
as an intrinsic, the library GENERALSUPPORT must be declared using a library entry
point specification. The procedure identifier must be declared in the program or the
syntax error, PROCEDURE MUST BE USER DECLARED, results. The actual parameter
part must agree in number and type with the formal parameter part in the declaration of
the procedure; otherwise, a run-time error occurs.

The task designator associates a task with the coroutine at initiation; the values of the
task attributes of that task, such as COREESTIMATE, STACKSIZE, and
DECLAREDPRIORITY, can be used to control the execution of the coroutine. For more
information about assigning values to task attributes, refer to <arithmetic task attribute>
under “Arithmetic Assignment,” <Boolean task attribute> under “Boolean Assignment,”
and “Task Assignment” earlier in this section.

Every coroutine has a partner task to which control can be passed by using the
CONTINUE statement. The partner task of the secondary coroutine is the initiator by
default but can be changed by assignment to the task-valued task attribute PARTNER of
the task designator. Local variables and call-by-value parameters of the secondary
coroutine retain their values as control is passed to or from the coroutine.

The critical block, described in “PROCESS Statement” later in this section, in the initiator
cannot be exited until the secondary coroutine is terminated. Any attempt by the initiator
to exit that block before the secondary coroutine is terminated causes the initiator and all
tasks it has initiated through CALL or PROCESS statements to be terminated.

4-26 8600 0098-505

CALL Statement

A secondary coroutine is terminated by exiting its own outermost block or by execution
in the initiator of the following statement, where the task designator specifies the task
associated with the secondary coroutine to be terminated:

<task designator>.STATUS:= VALUE(TERMINATED)

Note: The CALL statement causes the initiation of a separate stack as a coroutine.
Because of the cost involved, a coroutine should be established once and then used
through CONTINUE statements. If a CALL statement is used to invoke a procedure,
overall system efficiency is severely degraded. A string expression cannot be passed as
an actual parameter to a call-by-name parameter of a procedure in a CALL statement.

Example of a CALL Statement
The following example initiates as a coroutine the procedure COROOTEEN, and passes
the parameters X, Y, 7, and X + Y + Z. COROOTEEN has the task designator T
associated with it.

CALL COROOTEEN(X, Y, 7, X + Y + Z) [T]

8600 0098-505 4-27

CANCEL Statement

CANCEL Statement

The CANCEL statement can be used to delink a library from a program and cause the
library program to thaw (or unfreeze) and resume running as a regular program.

<cancel statement>

<connection Tibrary instance designator>—
<this intrinsic
<connection parameter

— CANCEL — (—Edibrary identifier) |

Delinking a Library from a Program

Normally, a library is linked to a program when the program calls one of the library entry
points or the LINKLIBRARY intrinsic, and the library is delinked from the program when
the block in which the library is declared is exited. The CANCEL statement can be used
to delink a library before it would normally be delinked.

When a library is canceled, all users of the library are delinked from the library, and the
library thaws and resumes running as a regular program regardless of whether it is
temporary or permanent. Refer to “"FREEZE Statement” later in this section for a
discussion of temporary and permanent libraries.

After a program has canceled a library, the program can again link to a new instance of
the library as if for the first time.

Only libraries whose SHARING compiler control option is specified as PRIVATE or
SHAREDBYRUNUNIT can be canceled. If an attempt is made to cancel a library that is
not PRIVATE or SHAREDBYRUNUNIT, a run-time message is given and the library is
delinked as if DELINKLIBRARY was called.

To delink a program from a library without affecting any other users of the library, use the
DELINKLIBRARY function. For more information, see "DELINKLIBRARY Function” in
Section 5, “Expressions and Functions.”

For more information on libraries, refer to Section 8, “Library Facility.”

Example of a CANCEL Statement

The following example delinks the library LIB from the program.

CANCEL (LIB)

4-28 8600 0098-505

CASE Statement

CASE Statement

The CASE statement provides a means of dynamically selecting one of many alternative

statements.

<case statement>

—<case head>—=<case body

<case head>

— CASE —<arithmetic expression>— OF

<case body>

— BEGIN <statement 1ist END
—E<number‘ed statement 11'st>J

<numbered statement list>

—|—<number‘ed statement group |

<numbered statement group>

—<number 1list>—<statement Tist

<number list>

—L[<constant arithmetic expression>—|— :
ELSE

Unnumbered Statement List

If the case body contains an unnumbered statement list, then the statement to be

executed is selected in the following manner:

e The arithmetic expression in the case head is evaluated. If the resulting value is not

an integer, it is integerized by rounding.

e The integer value is used as an index into the list of statements in the case body. The
N statements in the case body are numbered 0 to N-1. The statement corresponding
to the index value is the statement executed. If the index value is less than zero or

greater than N-1, the program is discontinued with a fault.

8600 0098-505

4-29

CASE Statement

Numbered Statement List

Examples of CASE Statements

4-30

If the case body contains a numbered statement list, then the statement list to be

executed is selected in the following manner:

e The arithmetic expression in the case head is evaluated. If the resulting value is not

an integer, it is integerized by rounding.

e If the integer value is equal to one of the statement numbers, the statement list

associated with the number is executed.

If the integer value is not equal to any of the statement numbers, then an invalid
index fault occurs unless the word ELSE appears in a number list in the CASE
statement, in which case control is transferred to the statement list following ELSE.

The statement numbers given by the constant arithmetic expressions in the number list
must lie in the range 0 to 1023, inclusive. The word ELSE can appear only once in a
CASE statement.

CASE I OF
BEGIN
J :=
J :=
BEGIN

J
K :

END;
J :=
END;

CASE I OF
BEGIN
1:

2:
5:
7:

J

1;
20;

4

o

STATEMENT 0
% STATEMENT 1
% STATEMENT 2

3;
0;

% STATEMENT 3

TO BADCASEVALUE;

8600 0098-505

CAUSE Statement

CAUSE Statement

The CAUSE statement activates all tasks that are waiting on the specified event.

<cause statement>

— CAUSE — (—<event designator>—) |

Causes of Events

Normally, the CAUSE statement also sets the happened state of the event to TRUE
(happened). For an explanation of exceptions to this condition, see “"WAITANDRESET
Statement” later in this section.

If an enabled interrupt is attached to the event, each cause of the event results in one
execution of the interrupt code.

Activating a task does not necessarily place the task into immediate execution. Activating
a task consists of delinking the task from an event queue (each event has its own queue)
and linking that task in priority order into a system queue called the ready queue.

The ready queue is a queue of all tasks that are capable of running. Tasks are taken out
of the ready queue either when a processor is assigned to the task or when the task
must wait for an operation (such as an I/O operation) to complete or for an event to be
caused. A task is placed in execution only when it is the top item in the ready queue and
a processor is available.

When a program causes a happened event, the CAUSE statement is ignored (a no-op is

caused); the system does not remember every cause unless an interrupt is attached to
the event. For more information on events, see “"EVENT Statement” later in this section.

Examples of CAUSE Statements

The following example activates the tasks waiting for the event EVNT.
CAUSE (EVNT)

The following example activates the tasks waiting for the event identified by
EVNTARAYI[INDX].

CAUSE (EVNTARAY [INDX])

The following example activates the tasks waiting for a change in the status of the task
TSK.

CAUSE(TSK.EXCEPTIONEVENT)

8600 0098-505 4-31

CAUSEANDRESET Statement

CAUSEANDRESET Statement

The CAUSEANDRESET statement activates all tasks that are waiting on the specified
event and sets the happened state of the event to FALSE (not happened).

<causeandreset statement>
— CAUSEANDRESET — (—<event designator>—) |

Relationship to CAUSE Statement

This statement differs from the CAUSE statement in that the happened state of the
event is set to FALSE (not happened).

For further information on the relationship between the CAUSEANDRESET statement
and events see the discussion in “CAUSE Statement” earlier in this section.

Examples of CAUSEANDRESET Statements

The following example activates the tasks waiting for the event EVNT, and sets the
happened state of EVNT to FALSE (not happened).

CAUSEANDRESET (EVNT)

The following example activates the tasks waiting for the event identified by
EVNTARAYI[INDX], and sets the happened state of that event to FALSE (not happened).

CAUSEANDRESET (EVNTARAY [INDX])

The following example activates the tasks waiting for a change in the status of the task
TSK, and sets the happened state of TSK.EXCEPTIONEVENT to FALSE (not happened).

CAUSEANDRESET (TSK.EXCEPTIONEVENT)

4-32 8600 0098-505

CHANGEFILE Statement

CHANGEFILE Statement

The CHANGEFILE statement changes the names of files without opening them.

<changefile statement>
— CHANGEFILE — (—=<directory element>— , —<directory element>———

>—) I

The CHANGEFILE statement returns a value of TRUE if an error occurs. Error numbers,
stored in field [39:20] of the result, correspond to the causes of failure as follows:

Value Meaning

10 The first directory element is in error.

20 The second directory element is in error.
30 File names have not been changed.

File names and directory names must be specified in EBCDIC and must be followed by a
period. All errors in the names are detected at run time.

If a family substitution specification is in effect, the CHANGEFILE statement affects only
the substitute family, not the alternate family.

If a directory name is specified as the source, the names of the files in that directory are
changed according to the following rules:

o |f the specified target directory is a new directory, then the names of all the files in
the source directory are changed.

o |f the specified target directory is not a new directory, then only files that do not have
corresponding names in the target directory are changed. For example, the first
column in the following table shows file names that exist before the statement
CHANGEFILE('A.","B.") is executed, and the second column shows the file names
resulting from execution of the statement.

Existing Files Resulting Files

A/B/C B/B/C

A/B/D A/B/D

A/C/C B/C/C

B/B/D B/B/D

B/C/D B/C/D
Note that because the file name B/B/D already exists, the file name A/B/D is not
changed.

e Adirectory element of the form <file name>/= affects only files in that directory. It
does not affect a file named <file name>.

8600 0098-505 4-33

CHANGEFILE Statement

Conflicting CHANGE requests

Two simultaneous change requests that affect the same set of files can produce
unpredictable results because directory change requests are processed in groups of files.
For example, two simultaneous CHANGEFILE ("A.", "B.") and CHANGEFILE ("B.", "A.")
statements, where both directories A/= and B/= exist with nonconflicting file names, can
result in all of the files being held in directory A/=, all of the files being held in directory
B/=, or all of the files being split between the two directories.

Directory Element

<directory element>

<pointer expression {
E<array row>———
<string literal>

A directory element is a file name, a directory name, or both a file name and a directory
name. A directory name references a group of files. For example, the following files are
all in the directory named JAMES. The first six files are in the directory named
(JAMES)OBJECT, and the first five files are in the directory named
(JAMES)OBJECT/TEST. Note that (JAMES)OBJECT/TEST/PRIMES is both a file name
and a directory name.

(JAMES)OBJECT /TEST/COMM
(JAMES) OBJECT /TEST/SORT
(JAMES)OBJECT/TEST/PRIMES
(JAMES)OBJECT/TEST/PRIMES/1
(JAMES)OBJECT/TEST/PRIMES /2
(JAMES) OBJECT/LIBRARY1
(JAMES)MEMO

In the CHANGEFILE statement, the second directory element, the target, designates the
name to which the first directory element, the source, is to be changed. If the change
applies to files on pack, and a family substitution specification is not in effect (either by
default through the USERDATA file or by specification in either CANDE or WFL), the
target must include ON <family name>, and the source must not include a family name.
If a family substitution specification is in effect, ON <family name> is not required; if ON
<family name> does not appear, the family substitution specification is used to
determine the family on which the files reside.

4-34 8600 0098-505

CHANGEFILE Statement

Example of a CHANGEFILE Statement

The following program changes A/B to C/D and then removes C/D.

BEGIN

ARRAY OLD, NEW[0:44];

BOOLEAN B;

REPLACE POINTER(OLD) BY 8"A/B.";
REPLACE POINTER(NEW) BY 8"C/D.";
IF B := CHANGEFILE(OLD,NEW) THEN

DISPLAY ("CHANGEFILE ERROR");

IF B := REMOVEFILE(8"C/D.") THEN

DISPLAY ("REMOVEFILE ERROR");
END.

8600 0098-505 4-35

CHECKPOINT Statement

CHECKPOINT Statement

The CHECKPOINT statement writes to a disk file the complete state of the job at a
specified point. Using the disk file, the job can later be restarted from this point.

<checkpoint statement>
— CHECKPOINT — (—<device>— , —<disposition>—) }

<device>

The checkpoint/restart facility can protect a program against the disruptive effects of
unexpected interruptions during the program's execution. If a halt/load or other system
interruption occurs, a job is restarted either before the initiation of the task that was
interrupted or, if the operator permits, at the last checkpoint, whichever is more recent.
Checkpoint information can also be retained after successful runs to permit restarting
jobs to correct bad data situations.

The <device> specification determines the family name of the checkpoint file. If the
device is DISK, the family name is DISK. If the device is PACK or DISKPACK, the family
name is PACK.

The CHECKPOINT statement can be used as a Boolean function. An attempted
checkpoint returns a value with the following information:

[0: 1] = Exception bit

[10:10] = Completion code

[25:12] = Checkpoint number

[46: 1] = Restart flag (1 = restart)

In response to the request for a completion code, a program can receive a variety of
messages. See “Restarting a Job” later in this section for a list of the completion codes
and messages.

Disposition Option

<disposition>

Lock |
L puree |

The disposition option PURGE causes all checkpoint files to be removed at the
successful termination of the job and protects the job against system failures. The LOCK
option causes all checkpoint files to be saved indefinitely and can be used to restart a job
even if it has terminated normally.

4-36 8600 0098-505

CHECKPOINT Statement

When a checkpoint is invoked, the following files are created:

e The checkpoint file, CP/<JN>/<CPN>, where <JN> is a four- or five-digit job number
and <CPN> is a three-digit checkpoint number

If the PURGE option has been specified, the checkpoint number is always zero, and
each succeeding checkpoint with PURGE removes the previous file. If the LOCK
option is used, the checkpoint number starts with a value of 1 for the first checkpoint
and is incremented by 1 for each succeeding checkpoint with LOCK. If the two types
are mixed within a job, the LOCK checkpoints use the ascending numbers and the
PURGE checkpoints use 0 (zero), leaving files 0 through N at the completion of the
job.

e Temporary files, CP/<JN>/T<FN>, where <FN> is a three-digit file number beginning
with 1 and incremented by 1 for each temporary disk file

e The job file, CP/<JN>/JOBFILE
This file is created under the LOCK option only.

The LOCK and PURGE options are also effective when the task terminates. If the task
terminates abnormally and the last checkpoint has used the PURGE option, then the
checkpoint file (numbered zero) is changed to have the next sequential checkpoint
number, and the job file is created (if necessary). If the job terminates normally and only
PURGE checkpoints have been taken, the CP/<JN> directory is removed.

Restarting a Job
A job can be restarted in two ways:

e After a halt/load

The system automatically attempts to restart any job that was active at the time of a
halt/load. If a checkpoint has been invoked during the execution of the interrupted
task, then the operator is given a message requiring a response to determine
whether the job should be restarted. The operator can respond with the system
command OK (to restart at the last checkpoint), DS (to prevent a restart), or QT (to
prevent a restart but save the files for later restart if the job was a checkpoint with
PURGE).

e By a Work Flow Language (WFL) RERUN statement
A WFL job can be restarted programmatically by use of the WFL RERUN statement.

The following conditions can inhibit a successful restart:

e Aninvalid usercode
o Recompilation of the program since the checkpoint
e Change of the operating system, since the checkpoint

The restart fails if the creation time stamp of the operating system that created the
checkpoint file does not match the creation time stamp of the current operating
system.

8600 0098-505 4-37

CHECKPOINT Statement

4-38

e Intrinsics after the checkpoint that are different from the intrinsics before the
checkpoint

The messages in the following list can appear as the result of an attempt to restart.

e RESTART PENDING (RSVP)
MISSING CHECKPOINT FILE
IO ERROR DURING RESTART
USERCODE NO LONGER VALID
OPERATOR DSED RESTART
OPERATOR QTED RESTART
MISSING CODE FILE

NOT ABLE TO RESTART
INVALID JOB FILE

RESTART AS CP/nnnn
MISSING JOB FILE

FILE POSITIONING ERROR
WRONG JOB FILE

WRONG CODE FILE

BAD CHECKPOINT FILE

BAD STACK NUMBER

¢ WRONG MCP

The following can inhibit a successful checkpoint/restart:

e Direct I/O (direct arrays or files)

e Datacomm I/O (open datacomm files)

Open Data Management System Il (DMSII) sets
ODT files

Output directly to a printer (backup files are acceptable)

Checkpoints taken inside sort input or output procedures. The sort intrinsic provides
its own restart capability; for more information, see “SORT Statement” later in this
section.

e Checkpoints taken in a compile-and-go program

If a job that produces printer backup files is restarted, the backup files can already have
been printed and removed, and on restart, the job requests the missing backup files. In
this situation, when the backup files are requested, the operator must respond with the
system command OF (Optional File). A new backup file is created. Output preceding the
checkpoint is not re-created.

8600 0098-505

CHECKPOINT Statement

The messages in the following table can appear as the result of a checkpoint/restart.
Error conditions can be handled in a program by checking for them by completion code
number and instructing the program to handle the result.

Checkpoint Message Completion Code
CHECKPOINT#nn/yy TAKEN 0
INVALID AREA IN STACK 1
SYSTEM ERROR 2
BAD IPC ENVIRONMENT 3
NO USER DISK FOR CP FILE 4
IO ERROR DURING CHECKPOINT 5
ROWS IN CP FILE > 1024 6
DIRECT FILE NOT ALLOWED 7
TOO MANY TEMPORARY DISK FILES 8
ILLEGAL FILEKIND 9
ILLEGAL FILE ORGANIZATION 11
INSUFFICIENT MEMORY TO CHECKPOINT 12
OPEN REVERSED TAPE FILE NOT ALLOWED 13
ICM AREA IN STACK 14
DMS AREA IN STACK 15
DIRECT ARRAY IN STACK 16
SECURITY ERROR SAVING TEMPORARY DISK FILE 17
SUBSPACE IN STACK 18
STACKMARK 19
SORT AREA IN STACK 20
IN USE ROUTINE NOT ALLOWED 21
ILLEGAL CONSTRUCT 22
BDBASE ILLEGAL 23
ILLEGAL FILE STRUCTURE 24
MULTI-REEL UNLABELED TAPE NOT ALLOWED 25
SURROGATE TASK NOT ALLOWED 26
NON-EVENT PO IN STACK 27
PROGRAM USES LIBRARIES 28
JOB STACK NOT VISIBLE 29
ROW SIZE TOO SMALL FOR CP FILE 30
VISIBILITY ATTRIBUTE SHOULD BE USED 31

8600 0098-505 4-39

CHECKPOINT Statement

4-40

Checkpoint Message

OPERATOR CHECKPOINT REQUEST CANCELLED
CHECKPOINT REQUEST DENIED

BR REQUEST REJECTED

OPEN BACKUP FILE WITH PRINTDISPOSITION = EOT
NOT ALLOWED

OPEN BACKUP FILE WITH PRINTDISPOSITION =
CLOSE NOT ALLOWED

OPEN BACKUP FILE WITH PRINTDISPOSITION =
DIRECT NOT ALLOWED

ERROR OCCURRED DURING CHECKPOINT IN FILE

ATTEMPT TO EXCEED TEMPORARY FILE LIMIT ON CP
FILE

ATTEMPT TO EXCEED FAMILY LIMIT ON CP FILE
FAMILY INTEGRAL LIMIT EXCEEDED ON CP FILE
INVALID ENVIRONMENT IN STACK

DISK TYPE MUST BE DISK OR PACK
CHECKPOINT TYPE MUST BE ZERO OR ONE
SHARED BUFFERS NOT ALLOWED

STACK CONTAINS STRUCTURE TYPE VARIABLES

LIBRARY IS LINKED TO A CONNECTION LIBRARY
ENVIRONMENT

PROGRAM USES CONNECTION LIBRARIES
PROGRAM USES SIGNALS

PROGRAM USES FILE DESCRIPTORS

FIFO NOT ALLOWED

POSIX SPECIAL FILES NOT ALLOWED

CHECKPOINT ABORTED: PRINTDISPOSITION OF
OPEN BACKUP FILE MUST BE EOJ OR DONTPRINT

CHECKPOINT ABORTED: PRINTER FILES MUST BE
BACKUP

Completion Code

32
33
34
36

37

38

39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54

55

8600 0098-505

CHECKPOINT Statement

Locking

For jobs that take a large number of checkpoints with LOCK, the checkpoint number
counts up to 999 and then recycles to 1 (leaving zero undisturbed). When this recycling
occurs, previous checkpoint files are lost as new ones using the same numbers are
created.

If a temporary disk file is open at a checkpoint, it is locked under the CP directory. If it is
subsequently locked by the program, the name is changed to the current file title. At
restart time, the file is sought only under the CP directory, resulting in a no-file condition.
To avoid this condition, all files that are to be locked eventually should be opened with
the file attribute PROTECTION assigned the value SAVE. To remove the file, it must be
closed with PURGE. True temporary files, which are never locked, do not have this
problem. All data files must be on the same medium as at the checkpoint, but need not
be on the same units or the same locations on disk or disk pack. They must retain the
same characteristics, such as blocking. The checkpoint/restart system makes no attempt
to restore the contents of a file to their state at the time of the checkpoint; the file is
merely repositioned. At this time, volume numbers are not verified.

Note: CANDE and remote job entry (RJE) cannot be used to run a program with
checkpoints. The checkpoints are ignored if used.
Rerunning Programs

If a rerun is initiated and the job number is in use by another job, a new job number is
supplied, and the CP/<JN> directory node is changed to reflect the new job number.

If a rerun is initiated and the PROCESSID function is used, the value returned by the
function can be different for the restarted job. Refer to “PROCESSID Function” in
Section 5, "Expressions and Functions,” for more information.

When a job is restarted at some checkpoint before the last, subsequent checkpoints

taken from the restarted job continue in numerical sequence from the checkpoint used
for the restart. Previous higher numbered checkpoints are lost.

Example of a CHECKPOINT Statement

BOOL := CHECKPOINT(DISK,PURGE)

8600 0098-505 4-41

CLOSE Statement

CLOSE Statement

4-42

The CLOSE statement breaks the link between a logical file declared in the program and
its associated physical file, which is the actual file data is sent to or from. For port files, it
is used to close dialogs between processes.

<close statement>
— CLOSE — (—=<close file part

) |
L , —<close op’c1’ons>J !

<close file part>

<file designator C }
[— SUBFILE —<subfile index>—] i‘
>.

<task designator>— . —<file-valued task attribute name

<subfile index>

—<arithmetic expression {

The CLOSE statement can be used as an arithmetic function. For information about
results returned, see the File Attributes Programming Reference Manual.

When no CLOSE option is specified, the CLOSE statement closes the file, depending on
the kind of file, as follows:

Line Printer File

The printer is skipped to channel 1, an ending label is printed, and the printer is again
skipped to channel 1. The file must be labeled.

Unlabeled Tape Output File

A double tape mark is written after the last block on the tape, and the tape is rewound.

Labeled Tape Output File

A tape mark is written after the last block on the tape; then an ending label is written
followed by a double tape mark, and the tape is rewound.

Disk File
If the file is a temporary file, the disk space is returned to the system.

For all types of files, the 1/O unit and the buffer areas are released to the system.

The <subfile index> syntax is used to specify the subfile to be closed.

8600 0098-505

CLOSE Statement

CLOSE Options

<close options>
* |

— CRUNCH

— LOCK

— PURGE

— REEL

— REWIND
DOWNSIZEAREA
— DOWNSIZEAREALOCK —
L<port close option>—

If the asterisk (*) is used and the file is a tape file, the I/O unit remains under program
control, and the tape is not rewound. This construct is used to create multifile reels.

When the asterisk is used on multifile input tapes and the value of the LABEL file
attribute is STANDARD, the CLOSE statement closes the file as follows:

o |f the value of the DIRECTION file attribute is FORWARD, the tape is positioned
forward to a point just following the ending label of the file.

o |f the value of the DIRECTION file attribute is REVERSE, the tape is positioned to a
point just in front of the beginning label for the file.

e |[f the end-of-file branch of a READ statement or WRITE statement has been taken,
the CLOSE statement does not position the file.

The close action performed on a single-file reel is the same as that performed on a
multifile reel. The next I/O operation performed on the file must be done in the direction
opposite to that of the prior I/O operations; otherwise, an end-of-file error is returned.

When the asterisk is used and the LABEL file attribute does not have the value
STANDARD, the tape is spaced beyond the tape mark (on input), or a tape mark is
written going forward (on output). The essential difference is that if LABEL is
OMITTEDEQF, labels are not spaced over, but if LABEL is STANDARD, labels are spaced
over.

The CRUNCH option is meaningful only for disk files. It causes the unused portion of the
last row of disk space, beyond the end-of-file indicator, to be returned to the system. The
file cannot be expanded but can be written inside of the end-of-file limit.

If the LOCK option is used, the file is closed. If the file is a tape file, it is rewound, and a
system message is displayed that notifies the operator that the reel will be saved. The
tape unit is made inaccessible to the system until the operator readies it manually. If the
file is a disk file, it is kept as a permanent file on disk. The file buffer areas are returned to
the system.

The DOWNSIZEAREA and DOWNSIZEAREALOCK options are meaningful only for disk
files. If the file uses a small portion of the first area only, both options cause the area size
of the file to be reduced and the remaining portion to be returned to the system.
Otherwise, the DOWNSIZEAREA option is like the REWIND option, and the
DOWNSIZEAREALOCK option is like the LOCK option. The DOWNSIZEAREA and

8600 0098-505 4-43

CLOSE Statement

DOWNSIZEAREALOCK options do not return as much space as the CRUNCH option, but
they do enable the file to be extended.

If the PURGE option is used, the file is closed, purged, and released to the system. If the
file is a permanent disk file, it is removed from the disk directory, and the disk space is
returned to the system.

If the REEL option is used, the file must be a multireel tape file. The current reel is
closed, and the next reel is opened. This option is provided primarily for use with direct
tape files, for which the system does not automatically perform reel switching.

If the REWIND option is used, the file is closed. If the file is a tape file, it is rewound. For
disk files, the record pointer is reset to the first record of the file. The file buffer areas are
returned to the system, and the I/O unit (or disk file) remains under program control.

All forms of the CLOSE statement that are not appropriate for the type of unit assigned
to the file are equivalent to using the REWIND option. For example, when the asterisk or
the REEL option is specified for a disk file, the result is the same as when the REWIND
option is specified for a disk file.

A CLOSE statement that leaves the disk file under program control is referred to as a
close with retention. For example, a CLOSE statement that designates a disk file and the
asterisk option or the REWIND option is a close with retention.

PORT CLOSE Option

4-44

<port close option>

4‘—[/1\— » — DONTWAIT a |
/1\- , —<closedisposition option>

L , —<associateddata opt1’on>J

<closedisposition option>

<associateddata option>

—E<str1'ng associateddata option }
<non-string associateddata opt1’on>J

<string associateddata option>

L ASSOCIATEDDATALENGTH — = —<arithmetic expression>— , il
s— ASSOCIATEDDATA — = —<string expression }

8600 0098-505

CLOSE Statement

<non-string associateddata option>

— ASSOCIATEDDATALENGTH — = —<arithmetic expression>— , —MM
>— ASSOCIATEDDATA — = <array row {
—E<subscr1'pted variable>—

<pointer expression>—

The PORT CLOSE option is meaningful only for files for which the KIND file attribute has
the value PORT.

The control option DONTWAIT is used to indicate that control should be returned to the
program as soon as possible. [f DONTWAIT is not specified, WAIT is assumed and
control is returned when processing of the CLOSE statement is complete. Refer to the
/O Subsystem Programming Guide for more information on control options.

The CLOSEDISPOSITION = ORDERLY option and ASSOCIATEDDATA option are
meaningful only for certain port file services. The CLOSEDISPOSITION = ABORT
terminates a dialog immediately. A CLOSEDISPOSITION = ORDERLY steps the subfile
through an orderly termination procedure that involves handshaking between the two
programs. If the file is a port file and the CLOSEDISPOSITION option is not specified, the
ABORT operation is assumed. With an ABORT termination, the processes must go
through their own handshake procedure to ensure no data loss. The ASSOCIATEDDATA
option can be used to send associated data with the subfile close. If a string expression
is specified, the length is calculated automatically and used as the
ASSOCIATEDDATALENGTH value. Otherwise, the ASSOCIATEDDATALENGTH option
specifies how many characters are to be sent. If the ASSOCIATEDDATA value is of type
HEX, the ASSOCIATEDDATALENGTH option indicates the number of HEX characters,
otherwise the number of EBCDIC characters. If theASSOCIATEDDATALENGTH value is
not a single-precision integer it is integerized.

Examples of CLOSE Statements

In the following example, if FILEID is a temporary disk file, this statement closes the file
and returns the disk space to the system.

CLOSE(FILEID)

The following example closes FILEID and, assuming FILEID is a tape file, positions the
tape according to the description under “CLOSE Options” earlier in this section.

CLOSE(FILEID,*)
The following example closes, purges, and releases FILEID to the system. If FILEID is a
permanent disk file, it is removed from the disk directory and the disk space is returned

to the system.

CLOSE(FILEID,PURGE)

8600 0098-505 4-45

CLOSE Statement

4-46

In the following example, assuming FILEID is a multireel tape file, the current reel is
closed, and the next reel is opened.

CLOSE(FILEID,REEL)

The following example closes FILEID and, assuming FILEID is a disk file, returns to the
system the unused portion of the last row of FILEID.

CLOSE(FILEID,CRUNCH)

The following example requests an orderly close on subfile 1 of port file FILEID. Control
is returned to the program as soon as the close has been checked for semantic
consistency, because the DONTWAIT port close option is included.

CLOSE (FILEID [SUBFILE 1], CLOSEDISPOSITION = ORDERLY, DONTWAIT)

The following example requests a close of subfile 1 of port file FILEID. Since the
<closedisposition option> is not specified, a CLOSEDISPOSITION ABORT operation is
performed. Since the <control option> is not specified, WAIT is assumed, and control is
not returned to the file until the close is complete. The information specified in the
<associateddata option> is sent to the correspondent program during the close process.
The length need not be specified because a string expression is being used.

CLOSE (FILEID [SUBFILE 1], ASSOCIATEDDATA = STRNG)
The following example requests a close of subfile 1 of port file FILEID. During the close
process, 14 characters of data are taken, beginning at the location pointed to by PTR, and

are sent to the correspondent process as associated data.

CLOSE (FILEID [SUBFILE 1], ASSOCIATEDDATALENGTH = 14,
ASSOCIATEDDATA = PTR)

8600 0098-505

CONTINUE Statement

CONTINUE Statement

The CONTINUE statement causes control to pass from the program in which the
statement appears to a coroutine.

<continue statement>

— CONTINUE |
L (—<task designator>—) il !

Coroutines
A coroutine is a procedure that is initiated as a separate task by using a CALL statement.

The caller is referred to as the primary coroutine and the called procedure as the
secondary coroutine.

Because the execution of CONTINUE statements causes control to alternate between
primary and secondary coroutines, processing always continues at the point where it last
terminated.

The secondary coroutine uses the CONTINUE statement form without the task
designator to pass control back to its partner task, which is the primary coroutine by
default. The task designator is used by the primary coroutine to pass control to the

secondary coroutine associated with that task designator by the CALL statement. For
more information, refer to “CALL Statement” earlier in this section.

Examples of CONTINUE Statements

The following example passes control from this program, a secondary coroutine, to its
partner task, which is, by default, the primary coroutine.

CONTINUE
The following example passes control to the coroutine associated with the task TSK.

CONTINUE(TSK)

8600 0098-505 4-47

DEALLOCATE Statement

DEALLOCATE Statement

The DEALLOCATE statement causes the contents of the specified array row or
procedure reference array row to be discarded and the memory area to be returned to
the system.

Notes:

o The DEALLOCATE statement cannot be used for task arrays or structure block
arrays.

o When a procedure reference array is imported from a library, it cannot be
deallocated using the DEALLOCATE statement. An attempt to deallocate an
imported procedure reference array results in a compile-time or run-time error.

<deallocate statement>

— DEALLOCATE — (—[sarray row]) {
<procedure reference array row>

Deallocation with Arrays
When an array row or procedure reference array row is deallocated, it is made not
present (all data is lost). When the array row or procedure reference array row is used
again, it is made present, and each element is reinitialized to O (zero) if it is an array row
and to the uninitialized state if it is a procedure reference array row.
Event arrays cannot be deallocated by using the DEALLOCATE statement.
When a procedure reference array is imported from a library, it cannot be deallocated

using the DEALLOCATE Statement. An attempt to deallocate an imported procedure
reference array results in a compile-time or run-time error.

Examples of DEALLOCATE Statements

The following example discards the contents of ARAY and returns the memory area to
the system. Note that ARAY must be a one-dimensional array or a syntax error results.

DEALLOCATE (ARAY)

The following example discards the contents of the row MATRIXARY[INDX, *] and
returns the memory area to the system.

DEALLOCATE (MATRIXARY [INDX,*])

The following example discards the contents of the procedure reference array row
PROCARRAYI1,*] and returns the memory area to the system.

DEALLOCATE (PROCARRAY[1,*])

4-48 8600 0098-505

DETACH Statement

DETACH Statement

The DETACH statement severs the association of an interrupt with an event.

<detach statement>
— DETACH —<interrupt identifier '

Detaching Interrupts

Any pending invocations of a detached interrupt are discarded. Detaching an interrupt
that is not attached to an event is essentially a no-operation; no error occurs.

The enabled/disabled condition of an interrupt is not changed by a DETACH statement.
When an interrupt is attached after it has been detached, the enabled/disabled condition
of the interrupt is the same as it was before it was detached. For more information, see
"ATTACH Statement,” "DISABLE Statement,” and "ENABLE Statement” in this section
and "INTERRUPT Declaration” in Section 3, “Declarations.”

Example of a DETACH Statement

The following example severs the association between the interrupt THEPHONE and the
event to which it is attached.

DETACH THEPHONE

8600 0098-505 4-49

DISABLE Statement

DISABLE Statement

The DISABLE statement prevents interrupt code from being executed.

<disable statement>

— DISABLE '
|—<1'nter‘r‘upt 1'dent1'1’1'e\r‘>J

Disabling Interrupts
A DISABLE statement that does not specify an interrupt identifier is referred to as a
general disable. A general disable has the effect of disabling all the interrupts for the task.
The interrupts whose associated events are caused are placed in an interrupt queue for
the task.

If the DISABLE statement specifies an interrupt identifier, only that interrupt is disabled.
The system queues these interrupts until the interrupt is enabled.

Interrupts are queued to ensure that none are lost during the time they are attached.
Queuing continues until the appropriate ENABLE statement is executed.

Disabling or enabling an interrupt is not affected by whether or not the interrupt is
attached to an event.

For more information, see “ATTACH Statement,” "DETACH Statement,” and “ENABLE
Statement” in this section and “INTERRUPT Declaration” in Section 3, “Declarations.”

Examples of DISABLE Statements
The following example is a general disable; it disables all interrupts.
DISABLE
The following example disables the interrupt named THEPHONE.

DISABLE THEPHONE

4-50 8600 0098-505

DISPLAY Statement

DISPLAY Statement

The DISPLAY statement causes the specified message to be displayed on the Operator
Display Terminal (ODT) and to be printed in the job summary of the program.

<display statement>

— DISPLAY — (——<pointer expression>——) {
—E<str‘1' ng expr‘ession>——|—

Pointer and String Expressions
The message to be displayed is specified by the pointer expression or the string
expression. If the parameter to the DISPLAY statement is a pointer expression,
execution of the DISPLAY statement causes the characters to which the pointer
expression points to be displayed on the ODT. The pointer expression must point to

EBCDIC characters and the message to be displayed must be terminated by a null
character (48"00").

If the parameter to the DISPLAY statement is a string expression, execution of the
DISPLAY statement causes the contents of the string specified by the string expression

to be displayed on the ODT. The string expression must be of type EBCDIC.

Display messages from programs run in CANDE appear on the user's terminal if the
MESSAGES option of the CANDE SO command has been specified.

A maximum of 430 characters can be displayed.

Examples of DISPLAY Statements

The following example displays the EBCDIC characters stored in array Q, from the
beginning of the array to the EBCDIC null character (48'00) or to the end of the array.

DISPLAY (POINTER(Q,8))

The following example displays the string created by concatenating VALUE IS and the
string STR.

DISPLAY ("VALUE IS " CAT STR)

The following example displays the string stored in the string variable MESSAGESTRING.

DISPLAY (MESSAGESTRING)

8600 0098-505 4-51

DO Statement

DO Statement

The DO statement causes a statement to be executed until a specified condition is met.

<do statement>

— DO —<statement>— UNTIL —<Boolean expression '

Evaluation of Boolean Expression

The statement following DO is executed. The Boolean expression is evaluated, and if it is
FALSE, the statement is executed again and the Boolean expression is reevaluated. This
sequence of operations continues until the value of the Boolean expression is TRUE. At
that time, control passes to the statement following the DO statement.

Note that both <block> and <compound statement> are statements and can be
substituted for <statement>.

Figure 4-1 illustrates the DO-UNTIL loop.

BOOLEAN
EXPRESSION
TRUE

YES TERMINATE
LOOP

ENTER EXECUTE
LOOP 4 STATEMENT

A 4

NO

Figure 4-1. DO-UNTIL Loop

Examples of DO Statements

DO
BEGIN
PTR := *-4;
CTR := *+4;
END

UNTIL PTR IN LOOKEDFOR
DO

J :=J/2
UNTIL BUF[J] < JOB

4-52 8600 0098-505

ENABLE Statement

ENABLE Statement

The ENABLE statement allows interrupt code to be executed.

<enable statement>

— ENABLE '
|
<interrupt identifier>

Enabling Interrupts
Previously disabled interrupts can be enabled with the ENABLE statement. If the event
associated with the interrupt is caused after an interrupt has been enabled, then the
interrupt code is executed.
An ENABLE statement that does not specify an interrupt identifier is referred to as a
general enable and causes the system to look for, and place in execution, all interrupts
that are in the interrupt queue of the task.

If the ENABLE statement specifies an interrupt identifier, only that interrupt is enabled.
The system executes all occurrences of the interrupt in the interrupt queue.

Disabling or enabling an interrupt is not affected by whether or not the interrupt is
attached to an event.

For more information, refer to "ATTACH Statement,” “DETACH Statement,” and

"DISABLE Statement” earlier in this section and to “INTERRUPT Declaration” in
Section 3, “Declarations.”

Examples of ENABLE Statements

The following example is a general enable: it enables all previously disabled interrupts.
ENABLE
The following example enables the interrupt named THEPHONE.

ENABLE THEPHONE

8600 0098-505 4-53

ERASE Statement

ERASE Statement

The ERASE statement removes all records from a file, leaving the attributes of the file
unchanged where possible. The LASTRECORD attribute is set to —1 and all data are lost.
For more information on file attributes, see the File Attributes Programming Reference
Manual.

<erase statement>
— ERASE — (—<file designator>—) }

The ERASE statement can be used as a Boolean primary. When it is used in this way, it
returns one of the following enumerated results if an error has occurred:

NOTCLOSERETAINED
VALIDONLYFORDISK
NODISKHEADER
SECURITYERROR
NOTONLYUSEROFFILE
INTERCHANGEFILENOTALLOWED

In using the ERASE statement, the following requirements must be met:

e The file specified in the ERASE statement must be a local file or a File Transfer,
Access, and Management (FTAM) foreign file and the KIND attribute must be disk or
pack. For more information on FTAM, see the I/O SubsystemProgramming Guide.

e The file must be closed with retention.

e The open count of the file must be 1.

e The PERMITTEDACTIONS attribute must permit the erase.
e The user must have access to the file.

The user process is discontinued if an error occurs when the ERASE statement is not
used as a Boolean primary.

4-54 8600 0098-505

EVENT Statement

EVENT Statement

Events have two Boolean characteristics, happened and available. Each characteristic can
be in one of two states: TRUE or FALSE. These states can be changed using event
statements.

<event statement>

—r—<cause statement |
—<causeandreset statement>—
—<fix statement>
—<free statement>
—<Tiberate statement>
—<procure statement>
—<reset statement>
—<set statement>
—<wait statement>
L<waitandreset statement>—

The happened and available states of an event can be interrogated using the HAPPENED
function and the AVAILABLE function. For more information, see “AVAILABLE Function”
and “HAPPENED Function” in Section 5, “Expressions and Functions.”

8600 0098-505 4-b5

EXCHANGE Statement

EXCHANGE Statement

The EXCHANGE statement is used to exchange rows between two disk files.

<exchange statement>
— EXCHANGE — (—<file designator>— [—<row/copy numbers>—] ——

»— , —<file designator>— [—<row/copy numbers>—] —) 4|

<row/copy numbers>

—<row number B a
, —<copy number>

<row number>

—=<arithmetic expression |

<copy number>

—<arithmetic expression |

Conditions for Execution of the EXCHANGE Statement

The two disk files must be closed when the EXCHANGE statement is executed, the two
rows must be the same size, the specified row numbers and the specified copy numbers
must be valid, and the two files cannot be code files of any kind.

Row numbers begin with zero and copy numbers begin with 1. If there are copies of the
file and a copy number is specified, then only the rows of that copy are exchanged.

For the exchange to take place, the referenced files must be closed with retention. For
more information, see “CLOSE Statement” earlier in this section.

If the system detects an error, the exchange is not performed and the program resumes
execution with the next statement. After the program uses the EXCHANGE statement,
the row addresses should be checked by using file attributes to ensure that the
exchange was successfully completed.

4-56 8600 0098-505

EXCHANGE Statement

Caution

The EXCHANGE statement creates an unaudited directory transaction. An
unaudited directory transaction is not subject to recovery in the event of
halt/load disk family verification. Thus, the disk family directory can be left in
an inconsistent state with an area within the family allocated to both of the
files involved in the exchange operation.

Always make sure that an EXCHANGE statement finishes successfully. You
can do this by programmatically capturing the row addresses that were
involved in the exchange, and comparing them with the respective rows of
the files that were involved in the exchange. If the comparison yields an
inconsistency, then take corrective measures to recover the affected files to
their respective states before the EXCHANGE statement was executed.

Refer the System Messages Support Reference Manual for information about
recovery techniques.

Examples of EXCHANGE Statements

The following example exchanges the contents of row ROWE of FILE1 with the contents
of rov ROWO of FILE2.

EXCHANGE (FILE1[ROW6] , FILE2[ROWO])
The following example exchanges row | of MASTERFYLE with row J of REBUILTFYLE.

EXCHANGE (MASTERFYLE[I],REBUILTFYLE[J])

8600 0098-505 4-57

FILL Statement

FILL Statement

The FILL statement fills an array row with specified values. The FILL statement cannot
be used with character arrays.

<fill statement>

— FILL —<array row>— WITH —<value list }

<value list>

L <initial values— |

<initial value>

<number {
E<str1'ng literal
<unsigned integer>— (—<value list>—) -

Initialization

Each initial value initializes an integral number of words. The number of words initialized
depends on the type of the array and the kind of initial value.

Single-precision numbers initialize one word in arrays other than double or complex
arrays. In double arrays, this word is extended with a second word of 0 (zero). In complex
arrays, this word is normalized and then extended with an imaginary part of 0 (zero).

Double-precision numbers are stored unchanged in two words in double arrays. In
complex arrays, the value is rounded and normalized to single-precision and then
extended with an imaginary part of 0 (zero). For other types of arrays, the second word of
the double-precision value is dropped and the first word initializes one word of the array.

String literals more than 48 bits long initialize as many words as are needed to contain
the string and are left-justified with trailing zeros inserted in the last word, if necessary. In
complex and double arrays, long string literals can initialize an odd number of words,
causing the following initial value to start in the middle of a two-word element of the
array.

String literals less than or equal to 48 bits long are right-justified within one word with
leading zeros, if necessary. This word initializes one word in arrays other than double or
complex arrays. In double arrays, this word is extended with a second word of 0 (zero). In
complex arrays, this word is normalized and then extended with an imaginary part of

0 (zero).

4-58 8600 0098-505

FILL Statement

An initial value of the form <unsigned integer> (<value list>) causes the values in the
value list to be repeated the number of times specified by the unsigned integer.

If the value list contains more values than will fit in the array row, filling stops when the
array row is full.

If the value list contains fewer values than the array row can hold, the remainder of the
array row is left unchanged.

The length of the value list cannot exceed 4095 48-bit words.

Examples of FILL Statements

The following example fills the first 250 words of the one-dimensional array MATRIX with
Zeros.

FILL MATRIX[*] WITH 250(0)
The following example fills the designated row of array GROUP with the value .25, the
string ALGOL right-justified with leading zeroes, the character " right-justified with leading
zeros, and with the string LONGER STRING, which fills two words and part of a third

word. Trailing zeros fill the rest of the third word.

FILL GROUP[1 ,*] WITH .25, "ALGOL", """, "LONGER STRING"

8600 0098-505 4-59

FIX Statement

FIX Statement

The FIX statement examines the available state of an event. After the FIX statement
executes, the available state of the designated event is always FALSE (not available).

<fix statement>

— FIX — (—<event designator>—) }

FIX Statement as a Boolean Function
The FIX statement can be used as a Boolean function. If the available state of the
specified event is TRUE (available), the event is procured, the state is set to FALSE (not
available), and FALSE is returned as the value of the function. If the available state of the
specified event is FALSE (not available), the FIX statement returns TRUE, and the
available state is left unchanged.
The FIX statement is sometimes referred to as the conditional procure function.

When the FIX statement has finished execution, the available state of the event is FALSE
(not available).

Examples of FIX Statements
The following example examines the available state of the event EVNT.
FIX(EVNT)

The following example examines the available state of the event designated by
EVENTARRAYI[INDEX].

FIX(EVENTARRAY[INDEX])

The following example examines the available state of event FILELOCK and stores in
GOTIT a value indicating this state.

IF GOTIT:= FIX(FILELOCK) THEN...

The following example examines the available state of the task's EXCEPTIONEVENT.

FIX(MYSELF.EXCEPTIONEVENT)

4-60 8600 0098-505

FOR Statement

FOR Statement

The FOR statement constructs a loop consisting of one or more statements that are
executed a specified number of times.

<for statement>

— FOR —<variable>— := J—<for‘ 11'st’e1ement>J— DO —<statement>—|

<for list element>

—<initial part '
|—<1'ter‘at1'on pa\r‘t>J !

<initial part>

—<arithmetic expression {

<iteration part>

WHILE <Boolean expression>

—|: STEP <arithmetic expression> T UNTIL <arithmetic expression> ——|

WHILE <Boolean expression>

The number of times a FOR loop is traversed is determined by a variable, called the
control variable, which is initialized when the FOR statement is first entered, and which
can be updated during each iteration of the loop.

The action of a FOR statement can be described by isolating the following three distinct
steps:

e Assignment of a value to the control variable
e Test of the limiting condition
e Execution of the statement following DO

Each type of <for list element> syntax specifies a different process. However, all of
these processes have one property in common: the initial value assigned to the control
variable is that of the arithmetic expression in the <initial part> construct.

The <for list element> construct establishes which values are assigned to the control
variable and which test to make of the control variable to determine whether or not the
statement following DO is executed. When a for-list element is exhausted, the next
for-list element, if any, is evaluated, progressing from left to right. When all for-list
elements have been used, the FOR statement is considered completed, and execution
continues with the statement following the FOR statement. The statement following DO
can transfer control outside the FOR statement, in which case some for-list elements
might not have been exhausted before the FOR statement is exited.

8600 0098-505 4-61

FOR Statement

Forms of the FOR Statement

In the following discussion of the various forms of the FOR statement, the letter V
stands for the control variable; AEXP1, AEXP2,...are arithmetic expressions; BEXP is a
Boolean expression; and S1 is a statement.

FOR-DO Loop
Assume that a for-list element consists of only an initial part, such as the following:
FOR V:= AEXP1, AEXP2,... DO
In this case that for-list element designates only one value to be assigned to the control
variable. Because no limiting condition is present, no test is made. After assignment of
the arithmetic expression to the control variable, the statement following DO is

executed, and the for-list element is considered exhausted.

Figure 4-2 illustrates the FOR-DO loop.

ENTER SET INDEX SET INDEX SET INDEX
loop —>| TOINTAL » TO SECOND ~——» TOFINAL
VALUE VALUE | VALUE
|
|
|
\ 4 y | A
|
EXECUTE EXECUTE } EXECUTE
STATEMENT STATEMENT [~ 7~ STATEMENT
TERMINATE
LOOP

Figure 4-2. FOR-DO Loop

4-62 8600 0098-505

FOR Statement

FOR-STEP-UNTIL Loop

Assume a for-list element is of the form <initial part> STEP <arithmetic expression>
UNTIL <arithmetic expression> such as the following:

FOR V:= AEXP1 STEP AEXP2 UNTIL AEXP3 DO <statement>

In this case, a new value is assigned to the control variable V before each execution of
the statement following DO. First, the initial value, that of AEXP1, is assigned to the
control variable. After each execution of the statement following DO, the assignment
V.=V + AEXPZ2 is performed. Both AEXP2 and AEXP3 are reevaluated each time through
the loop.

A test is made immediately after each assignment of a value to V to determine whether
or not the value of V has passed the value of AEXP3. Whether AEXP3 is an upper or a
lower limit depends on the sign of AEXP2; AEXP3 is an upper limit if AEXP2 is positive
and a lower limit if AEXP2 is negative. If AEXP3 is an upper limit, then V has passed
AEXP3 when the expression V LEQ AEXP3is no longer TRUE. If AEXP3 is a lower limit,
then V has passed AEXP3 when the expression V GEQ AEXP3is no longer TRUE. If V
has not passed AEXP3, the statement following DO is executed; otherwise, the for-list
element is exhausted. Figure 4-3 illustrates the FOR-STEP-UNTIL loop.

ENTER LOOP
l A 4
SET INDEX INDEX EXECUTE INCREMENT
TO INITIAL PASSED LIMIT STATEMENT INDEX
VALUE VALUE
YES
TERMINATE
LOOP

Figure 4-3. FOR-STEP-UNTIL Loop

8600 0098-505 4-63

FOR Statement

FOR-STEP-WHILE Loop

Assume a for-list element is of the form <initial part> STEP <arithmetic expression>
WHILE <Boolean expression> such as the following:

FOR V := AEXP1 STEP AEXP2 WHILE BEXP DO <statement>

In this case a new value is assigned to the control variable V before each execution of
the statement following DO. First, the initial value, that of AEXP1, is assigned to the
control variable. After each execution of the statement following DO, the assignment
V:i=V + AEXPZ2 is performed. AEXP2 is reevaluated each time through the loop. After
each assignment to V, the Boolean expression BEXP is evaluated and, if BEXP is TRUE,
the statement following DO is executed. If BEXP is FALSE, this for-list element is
exhausted. Figure 4-4 illustrates the FOR-STEP-WHILE loop.

ENTER LOOP
l |
SET INDEX BOOLEAN '\ ygs EXECUTE INCREMENT
TO INITIAL EXPRESSION STATEMENT > INDEX
VALUE TRUE
NO
TERMINATE
LOOP

Figure 4-4. FOR-STEP-WHILE Loop

4-64 8600 0098-505

FOR Statement

FOR-WHILE Loop

Assume the for-list element is of the form <initial part> WHILE <Boolean expression>,
such as the following:

FOR V:= AEXP1 WHILE BEXP DO

In this case the control variable V is assigned the value of AEXP1 before each execution
of the statement following DO. AEXP1 is reevaluated for each assignment to V. After
each assignment to V, the Boolean expression BEXP is evaluated. If the value of BEXP is
TRUE, the statement following DO is executed. If the value of BEXP is FALSE, this
for-list element is exhausted. For example, in the following FOR statement if V had the
value zero before execution of this statement, S1 would be executed five times:

FOR V:= V + 1 WHILE V LEQ 5 DO
S1;

Figure 4-5 illustrates the FOR-WHILE loop.

ENTER
LOOP
A 4
ASSIGN VALUE BOOLEAN YES
TO CONTROLLED EXPRESSION SE’X]I-;S“[/IJI-EFIEIT
VARIABLE TRUE

NO

TERMINATE
LOOP

Figure 4-5. FOR-WHILE Loop

8600 0098-505 4-65

FOR Statement

Examples of FOR Statements

The following example executes the statement following DO just once, with | assigned
zero.

FOR I:= 0 DO
The following example assigns 1 to elements 0 through 255 of array LOOKEDFOR.

FOR J:= 0 STEP 1 UNTIL 255 DO
LOOKEDFOR[J] := 1

The following example assigns ITEM to elements 0, 1, 2, 5, 10, 15, 16, and 37 of array
BUF.

FOR INDEX:= 0, 1, 2, 10, 15, 37, 5, 16 DO
BUF[INDEX]:= ITEM

The following example calls FETCH repeatedly, passing the values 0, 1, 2, 3, 4, 5, 29, and
the values of (47 + 3 * X) where X =0, 1, 2, and so on, as long as (47 + 3 * X) is less
than LIM.

FOR X := 0 STEP 1 UNTIL 5, 29, 47 STEP 3 UNTIL LIM DO
FETCH(X)

The following example calls PANHANDLE and assigns to NEXT values equal to BEG,
BEG + AMT, BEG + 2*¥AMT, and so on, as long as DONE is FALSE.

FOR NEXT := BEG STEP AMT WHILE NOT DONE DO
PANHANDLE

The following example increments TARGET by the value IX + 7 as long as TARGET is
less than or equal to RANGE.

FOR N := IX + 7 WHILE TARGET LEQ RANGE DO
TARGET := * + N

4-66 8600 0098-505

FREE Statement

FREE Statement

The FREE statement sets the available state of the specified event to TRUE (available).

<free statement>

— FREE — (—<event designator>—) }

FREE Statement as a Boolean Function
The FREE statement can be used as a Boolean function that returns FALSE if the
available state of the event is already TRUE (available) and TRUE if the available state of
the event is FALSE (not available). In either case, the available state of the event is
unconditionally set to TRUE (available).

The FREE statement does not activate any task attempting to procure the event, nor
does it activate any task waiting on the event.

Examples of FREE Statements
The following example sets the available state of the event EVNT to TRUE (available).

FREE(EVNT)

The following example sets the available state of the event designated by
EVNTARAYI[INDX] to TRUE (available).

FREE(EVNTARAY [INDX])

The following example assigns to WASPROCURED a value indicating the available state
of the event FYLELOCK, and sets the available state of FYLELOCK to TRUE (available).

IF WASPROCURED := FREE(FYLELOCK) THEN...

8600 0098-505 4-67

FREEZE Statement

FREEZE Statement

The FREEZE statement changes the running program into a library.

<freeze statement>

— FREEZE — (PERMANENT) I
TEMPORARY
CONTROL — , —<procedure identifier>—

For more information on <procedure identifier>, see “PROCEDURE Declaration” in
Section 3, “Declarations.”

FREEZE Statements in Library Procedures

At least one EXPORT declaration must appear in the same block as the FREEZE
statement. The procedures affected by a FREEZE statement are the procedures that
appear in EXPORT declarations in the same block as the FREEZE statement. After the
FREEZE statement is executed, these procedures are library entry points.

The PERMANENT and TEMPORARY specifications of the FREEZE statement control the
permanence of the library. A permanent library remains available until it is discontinued. A
temporary library remains available as long as there are users of the library. A temporary
library that is no longer in use unfreezes (thaws) and resumes running as a regular
program. However, a temporary library does not unfreeze until it has been referenced at
least once. When a library unfreezes, it cannot execute another FREEZE statement in an
attempt to become a library again.

The CONTROL specification of the FREEZE statement controls the nature of the freeze.
The program is set up as a permanent library, but after the freeze operation has been
performed, control is transferred to the specified procedure, known as the control
procedure. The procedure must be untyped and must have no parameters.

Once the control procedure is in control, the library can keep track of the number of its
users through the task attribute LIBRARYUSERS.

When the control procedure is exited, the library unfreezes if there are no users. If there
are users, the library becomes an ordinary library, and a warning message is issued. A
control frozen library can prevent the warning message from being issued and prevent
the linkage of new users by changing the value of the task attribute STATUS to
VALUE(GOINGAWAY). This status change causes the library to unfreeze and resume
execution as a normal program as soon as possible. For further information on the value
setting for the STATUS attribute, refer to the Task Attributes Programming Reference
Manual.

4-68 8600 0098-505

FREEZE Statement

Because a library program initially runs as a regular program, the flow of execution can be
such that the execution of a FREEZE statement is conditional and can occur anywhere in
the outer block of the program.

If a calling program causes a library to be initiated and this library does not execute a
FREEZE statement (if, for example, it was not a library program and thus had no FREEZE
statement), then the attempted linkage to the library entry points cannot be made, and
the calling program is discontinued. For more information on libraries, refer to Section 8,
“Library Facility.”

Examples of FREEZE Statement

In the following example, control is transferred to procedure Z after executing the
FREEZE statement. Procedure Z is untyped and has no parameters. The value of the
STATUS is changed to GOINGAWAY, which causes the library to become temporary.
New users cannot link to this library. If there are users, the library does not resume
execution until the number of users becomes zero.

BEGIN

PROCEDURE X(A,B);

ce %Procedure to be exported
PROCEDURE Y(P,Q);
ce %Procedure to be exported
PROCEDURE Z;
BEGIN %Control procedure - untyped and no parameters

MYSELF.STATUS:= VALUE (GOINGAWAY);
WHILE MYSELF.LIBRARYUSERS GTR O DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);
END;
EXPORT X, Y;
FREEZE (CONTROL,Z) ;
END.
The following example transfers control to the procedure CTRL_PROCEDURE after the

freeze operation is completed.

FREEZE(CONTROL,CTRL_PROCEDURE)

8600 0098-505 4-69

GO TO Statement

GO TO Statement

The GO TO statement transfers control to the statement in the program with the
specified label.

<go to statement>

— GO <designational expression |
L 1o ’ P !

The value of the designational expression specifies the label to which control is
transferred.

Because labels must be declared in the innermost block in which they occur as
statement labels, a GO TO statement cannot lead from outside a block to a point inside
that block. Each block must be entered at the BEGIN so that the declarations associated
with that block are invoked. For more information on labels, refer to “LABEL Declaration”
in Section 3, “Declarations.”

Bad GO TO

A bad GO TO occurs when a GO TO statement in an inner block transfers control to a
label that is global to that block. A necessary side effect of a bad GO TO is that the block
in which it occurs is exited abruptly and local variables are deallocated immediately.

A bad GO TO requires cutting back the lexical (lex) level to a more global block. To
perform a bad GO TO, the operating system is invoked to cut back the stack and discard
any locally declared items that occupy memory space outside of the stack, sometimes
referred to as nonstack items, such as files, arrays, and interrupts.

Examples of GO TO Statements

4-70

In the following example, control is transferred to the statement with the label LABEL1.
GO TO LABEL1

In the following example, control is transferred to the statement with the label LABEL2.
GO LABEL2

In the following example, control is transferred to the statement with the label
designated by the subscripted switch label identifier SELECTIT[INDX].

GO TO SELECTIT[INDX]
In the following example, if K'is equal to 1, control is transferred to the statement with
the label designated by the subscripted switch label identifier SELECT[2]. Otherwise

control is transferred to the statement with the label START.

GO TO IF K=1 THEN SELECT[2] ELSE START

8600 0098-505

I/O Statement

I/0 Statement

An |/O statement causes information to be exchanged between a program and a
peripheral device, and allows the programmer to perform certain control functions.

<l/O statement>

——<accept statement {
—<close statement>
—<display statement>——
—<lock file statement>—
—<open statement>
—<read statement>
—<rewind statement>
—<seek statement>
—<space statement>
L<write statement>

ALGOL I/O is handled by a part of the operating system called the I/O subsystem. For
more information on the I/O subsystem, refer to the /O Subsystem Programming Guide.

The ACCEPT statement and DISPLAY statement are unique in that the file to or from
which data is transferred need not be specified. For more information, refer to “ACCEPT
Statement” and "DISPLAY Statement” earlier in this section.

The remaining I/O statements reference a file that must be declared by the program. For
more information, refer to “FILE Declaration” in Section 3, “Declarations.”

Two distinct methods of I/O are available. The first and typical method is referred to as
normal I/O; the second method is called direct I/O. The major differences between
normal I/O and direct I/O have to do with buffering, the overlap of program execution,
and the overlap of I/O operations. Their effect on a particular I/O statement is presented
in the description of the statement.

Normal I/O

Normal /O is indicated when direct files and direct arrays are not used. Normal I/O
includes many automatic facilities provided by the operating system, such as the
following:

e Buffering: the automatic overlap of program processing and I/O traffic to and from
the peripheral units
e Blocking: more than one logical record per physical block

e Translation as needed between the character set of the unit and that required by the
program

The amount of buffering between the I/O statements and program execution depends on
the number of buffers allocated for the file. Refer to “FILE Declaration” in Section 3,
“Declarations,” for information on how to specify the number of buffers.

8600 0098-505 4-71

I/O Statement

In normal I/O, a READ statement causes the automatic testing of the availability of the
needed record. The program is suspended in the READ statement until the record is
actually available for use.

In normal I/O, a WRITE statement transfers the specified data to a buffer; the program is
immediately released to begin execution of the next statement. If all the buffers are full
when the WRITE statement is executed, the program is suspended until a buffer is
available.

Direct I/O

4-72

Direct 1/O is indicated when direct files and direct arrays are used.

Direct I/O allows more direct control of the actual I/O operations. In certain situations,
avoiding suspension of the program is desirable. In other situations, nonstandard 1/O
operations and masking of certain types of error conditions which could arise are
desirable.

When direct I/O is used, the program is responsible for the buffering, blocking, and
translation.

The syntax for a direct read or direct write operation employs the <arithmetic
expression>, <array row> form of <format and list part>. An event designator is the only
allowable form of action labels or finished event for direct I/O. The value of the arithmetic
expression has the following meaning:

Field Contains
[16:17] Number of words to be transferred
[19:3] Number of trailing characters to be transferred

The array row is called the I/O area of the user. A direct array identifier must be used for
the <array name> part in the array row construct. Thus, the following statement could be
used to perform a direct read of 10 words from file FID into direct array A using the event
EVT as the finished event:

READ(FID, 10, A[*]) [EVT]

The operating system establishes a relationship between the I/O area and the finished
event, if one is specified. Before any subsequent use of the I/O area can be made in the
program, either for calculations or for further I/O, the direct I/O operation must be
finished. The finished event can be inspected by one of the following methods:

e By using the HAPPENED function

e By obtaining the value of the STATE file attribute using the WAIT statement as a
Boolean function and specifying a direct array row as a parameter

e By using the WAIT statement on the event to deactivate the process until the event
is caused

8600 0098-505

I/O Statement

Once the operation has been completed, the happened state of the event should be set
to FALSE (not happened) before reusing it. Refer to “WAIT Statement” later in this
section for more information.

The finished event can be associated with a direct array row that is declared in a different
block. For example, a formal event can be associated with a local array. Such an
association can cause compile-time or run-time up-level event errors if the block
containing the finished event can be exited before the block that contains the direct array
is exited.

In direct 1/O, the I/O operations analogous to the SPACE and REWIND statements are
performed as if they were read or write operations, except that the IOCW direct array
attribute is specifically assigned the proper hardware instructions for the operation.

When performing direct 1/O with the SPACE operation, the device's spacing limitation
overrides any user-specified spacing. In the case of a line printer, this limitation is two.

8600 0098-505 4-73

IF Statement

IF Statement

The IF statement causes a statement to be executed or not executed based on the value
of a Boolean expression.

<if statement>

—<if clause>—<statement B] }
ELSE —<statement>

<if clause>

— IF —<Boolean expression>— THEN I

Forms of the IF Statement

Assume the IF statement you are using is of the following form:
IF BEXP THEN S1

If the value of the Boolean expression BEXP is TRUE, the statement S1 is executed. If
BEXP is FALSE, then S1 is not executed. In either case, execution continues with the
statement following the IF statement.

Assume the IF statement you are using is of the following form:
IF BEXP THEN S1 ELSE S2

If the value of BEXP is TRUE, the statement S1 is executed and the statement S2 is
ignored. If the value of BEXP is FALSE, then the statement S2 is executed, and S1 is
ignored. In either case, execution continues with the statement following the IF
statement.

Note that both block statements and compound statements can be substituted for
<statement> in the IF statement.

IF statements can be nested; that is, the statements following the reserved words THEN
or ELSE (or both) can also be IF statements.

When IF statements are nested, the correct correspondence between the reserved
words THEN and ELSE must be maintained. The compiler matches the innermost THEN
to the first ELSE that follows it and that yields a syntactically correct IF statement.
Consider the following IF statement:

IF BEXP1 THEN IF BEXP2 THEN S2 ELSE S1

4-74 8600 0098-505

IF Statement

The ELSE is paired with the innermost THEN, which is the THEN following BEXP2, as
illustrated in the following:

IF BEXP1 THEN
IF BEXP2 THEN
S2
ELSE
S1

If the program pairs the ELSE with the THEN following BEXP1, the inner IF statement
must be made a compound statement by using BEGIN and END as follows:

IF BEXP1 THEN
BEGIN
IF BEXP2 THEN
S2
END
ELSE
S1

A GO TO statement can lead to a labeled statement within an IF statement. The
subsequent action is equivalent to the action that would result if the IF statement were
entered at the beginning and evaluation of the Boolean expression caused execution of
the labeled statement.

Examples of IF Statements

In the following example, if ALLDONE is TRUE, control is transferred to the statement
with the label AWAY. If ALLDONE is FALSE, the statement following the IF statement is
executed.

IF ALLDONE THEN
GO AWAY

In the following example, if the value of X is greater than the value of LIMIT, procedure
ERROR is called. If the value of X is less than or equal to the value of LIMIT, the value of
X'is incremented by 1. In either case, execution continues with the statement following
the IF statement.

IF X > LIMIT THEN
ERROR

ELSE
X:=*+1

8600 0098-505 4-75

INTERRUPT Statement

INTERRUPT Statement

Interrupts provide a way to interrupt a process when a specific event occurs. Interrupt
statements allow interrupts to be attached to and detached from events, and allow
interrupts to be enabled and disabled.

< interrupt statement>

<attach statement |
<detach statement>
<disable statement>

<enable statement>

The ATTACH statement is used to associate an interrupt with an event.

The DETACH statement is used to sever the association between an interrupt and the
event to which it is attached.

The ENABLE statement and DISABLE statement are used to explicitly enable and
disable, respectively, an interrupt.

For more information on interrupts, refer to “INTERRUPT Declaration” in Section 3,
“Declarations.”

4-76 8600 0098-505

INVOCATION Statement

INVOCATION Statement

An INVOCATION statement causes a previously declared procedure to be executed as a
subroutine, an asynchronous process, a coroutine, or an independent program.

<invocation statement>

<call statement I
<procedure invocation statement>—

<process statement

<run statement

The CALL statement invokes a procedure to execute as a coroutine. The PROCEDURE
INVOCATION statement invokes a procedure to execute as a subroutine. The PROCESS
statement invokes a procedure to run as an asynchronous process. The RUN statement
invokes a procedure to run as an independent program.

With the exception of the PROCEDURE INVOCATION statement, a separate stack is
initiated and the specified procedure cannot be a typed procedure.

With the exception of the RUN statement, parameters can be call-by-name or
call-by-value. All parameters passed in the RUN statement must be call-by-value.

8600 0098-505 4-77

LIBERATE Statement

LIBERATE Statement

The LIBERATE statement activates all tasks waiting on the specified event. It changes
the happened state of the event to TRUE (happened) unless a waiting task uses the
WAITANDRESET statement.

<liberate statement>
— LIBERATE — (—<event designator>—) }

Execution of Implicit CAUSE Statement

The LIBERATE statement causes the execution of an implicit CAUSE statement for the
specified event. This implicit CAUSE statement results in a change to the happened state
of the event, if no waiting task has used the WAITANDRESET statement. For more
information, refer to “CAUSE Statement” and “"WAITANDRESET Statement” in this
section. The available state of the event is set to TRUE (available).

Although all waiting tasks are activated, they are linked into the ready queue in priority
order. At that point, all tasks that were waiting to procure the event are in the ready
queue in priority order. For more information about procuring events, refer to “"PROCURE
Statement” later in this section.

Examples of LIBERATE Statements

4-78

The following example causes the event ANEVENT and sets its available state to TRUE
(available).

LIBERATE (ANEVENT)

The following example causes the event designated by EVENTARRAY[INDEX] and sets
its available state to TRUE (available).

LIBERATE (EVENTARRAY [INDEX])

8600 0098-505

LOCK File Statement

LOCK File Statement

The LOCK file statement causes the specified file to be closed.

<lock file statement>
— LOCK — (—=<file designator:

) |
L , —<lock op’c1’on>J !

<lock option>

T ERUNCH |

The LOCK file statement cannot be used as a function.

Lock Options

If the specified file is a tape file, it is rewound and the tape unit is made inaccessible to
the system until the operator readies it again. If the file is a disk file, it is retained as a
permanent file on disk. The file buffer areas are returned to the system.

A LOCK file statement with a lock option performs the same action as a CLOSE
statement that specifies CRUNCH. Whether CRUNCH or an asterisk (*) appears as the
lock option, the action of the LOCK file statement is the same. The file must be a disk
file. The unused portion of the last row of disk space, beyond the end-of-file indicator, is

returned to the system. The disk file can no longer be expanded without being copied
into a new file; however, data can be written to existing records.

Examples of LOCK File Statements

In the following example, if FILEA is a disk file it is retained as a permanent file.
LOCK(FILEA)

In the following example, the unused portion of the last row of disk file FYLE is returned
to the system.

LOCK(FYLE,CRUNCH)

In the following example, the unused portion of the last row of disk file FYLE is returned
to the system.

LOCK(FYLE,*)

8600 0098-505 4-79

LOCK Interlock Statement

LOCK Interlock Statement

4-80

The LOCK interlock statement suspends the program until the interlock is acquired.

<lock interlock statement>
— LOCK

(
L [— <lock interlock option> —] il
>—<interlock designator) }
L , —E<t1'meout>
<event designator>—

<lock interlock option>

DSABLE |
L INTERRUPTIBLE !

<timeout>

—=<arithmetic expression {

The LOCK interlock statement attempts to acquire the interlock. The LOCK interlock can
be used as a function. If LOCK interlock is used as a statement, the process is
discontinued when the result is a value other than 1 (successfully acquired).

If an event designator is present and the interlock cannot be acquired immediately, the
caller waits until either the interlock can be acquired or the event state is HAPPENED.

The event cannot have an interrupt attached or be inscribed for use with a POBOX. If

the event is used in either of these two ways, a result of 10 is returned.

When an isolated procedure is waiting to acquire an interlock while being run by another
process, the DSABLE option specifies that the wait can be terminated if the calling
process is discontinued. If the wait was terminated before the interlock could be
acquired, the function value returned is zero.

If the interlock cannot be acquired immediately and the INTERRUPTIBLE option is used,
the caller waits until either the interlock can be acquired, the timeout or event happens,
or a signal is sent to the program. If the process is awakened by receipt of a signal, the
function value is zero (0).

The LOCK interlock function is of the type INTEGER, and the following values can be
returned:

Value Meaning
0 A signal was received before the interlock could be acquired.
1 The interlock was successfully acquired.
2 The timeout elapsed or the event happened (event state HAPPENED),
before the interlock could be acquired.
10 The event used has a conflicting usage, such as an attached
INTERRUPT.

8600 0098-505

LOCK Interlock Statement

The following conditions cause various values to be returned:

e |[f the interlock has a state of FREE, it becomes LOCKED_UNCONTENDED, and a
result of 1 is returned.

e If the interlock is LOCKED_UNCONTENDED, it becomes LOCKED_CONTENDED,
and the caller is placed in the contender list. \WWhen the owner unlocks the interlock,
and the caller is at the head of the contender list, a result of 1 is returned. If the
timeout expires before the caller can acquire the interlock, a result of 2 is returned. If
the caller that timed out is the only contender, the interlock becomes
LOCKED_UNCONTENDED.

e [f the interlock is LOCKED_CONTENDED, its state does not change, and the caller is
added to the contender list.

Timeout Option
The timeout option, if present, specifies the amount of time the caller can wait if the
interlock cannot be acquired immediately. The timeout is specified in seconds, and a
value less than zero indicates that the program can wait indefinitely. If no timeout is
specified, a timeout of —1 is assumed. If the timeout is 0 (zero), the lock succeeds only if
the interlock is FREE.
Examples of LOCK Interlock Statements
The following examples show valid uses of the LOCK interlock statement:
LOCK (MYLOCK) ;
LOCK (OURLOCKS [2]);

I:

LOCK (CONN_LIB[7].MYLOCK);

I := LOCK (MYLOCK, 17);

—
.o
1}

LOCK (MYLOCKS [31]);

—
.o
1}

LOCK (MYLOCK, FINISHEVENT);

8600 0098-505 4-81

MERGE Statement

MERGE Statement

The MERGE statement causes data in the specified files to be combined and returned.

<merge statement>

— MERGE — (—<output option>— , —<compare procedure>— , ———

»—<record length>— , —<merging option list>—) }

<merging option list>

—|—<merg1'ng’opt1'on | }

<merging option>

—<input option |

Merge Options

The compare procedure determines the manner in which the data is combined. The
output option specifies how the data is to be returned from the merge operation.

The merging option list must contain between two and eight input options, inclusive,
which must be files or Boolean procedures.

Example of a MIERGE Statement

The following example merges records from files IN1 and IN2 according to a scheme
given in compare procedure COMP. The merged result is written to file LINEOUT. The
records of IN1 and IN2 have a maximum record size of 14.

MERGE (LINEOUT,COMP,14,IN1,IN2)

4-82 8600 0098-505

MESSAGESEARCHER Statement

MESSAGESEARCHER Statement

The MESSAGESEARCHER statement returns a completed output message based on the

information passed to it.

< messagesearcher statement>

— MESSAGESEARCHER — (—=<output message array identifier>— [————

|—<1anguage specification>— , l

arithmetic expression>—] — , —

»>—<result pointer>— , —<result length

)

|—L , —<parameter e]ement>J—

<language specification>

—E<str‘1' ng expression

<pointer expression>— FOR —<arithmetic expression>

<result pointer>

—<pointer expression

<result length>

—<variable

<parameter element>

—E<str‘1' ng expression

<pointer expression>— FOR —<arithmetic expression>

The output message array identifier indicates the output message array from which the
output message is to be obtained. For more information on output message arrays, see

"OUTPUTMESSAGE ARRAY Declaration” in Section 3, “Declarations.”

The language specification indicates the preferred language for the requested output
message. The language specification must not have a trailing dot.

The arithmetic expression within the square brackets ([]) indicates the output message
number of the message that is to be completed. The arithmetic expression cannot be a

double-precision value.

The result pointer is a call-by-value EBCDIC pointer that points to where the completed
output message is to be stored. An EBCDIC null character (48"00") is placed after the last
character of the message. The null character is not included in the returned message

length.

The result length is an integer or real variable that is assigned the length of the returned

output message, not counting the null character that is appended at the end.

8600 0098-505

4-83

MESSAGESEARCHER Statement

Finding a Requested NVlessage

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter <1>, the second to parameter <2>, and so on.

The following method is used to find the requested message so that it can be
completed.

First, an initial language in which to search for the message must be selected. If a
language specification is given as a parameter to the MESSAGESEARCHER statement,
that language is selected; otherwise, the language in the language specification of the
task requesting the message is used. If the task does not have a language specification,
the system default language is used.

If the requested message cannot be found in the initial language and the initial language
is not the system default language, the message is searched for in the system default
language. If the message still cannot be found, then the message is searched for in the
languages that exist in the specified output message array, beginning with the first
language, the second language, and so on. If none of the languages in the output
message array contains the message, an error message that specifies the message
number is produced in place of the message.

MESSAGESEARCHER Statement as an Arithmetic Function

4-84

The MESSAGESEARCHER statement can be used as an arithmetic function that returns
an integer result indicating whether or not the message was successfully found and
formatted. The possible values for this result are as follows:

Value Meaning
1 The message is not in the requested language; it is in
MYSELF.LANGUAGE or the system default language.
0 The message was found and formatted as requested.
-1 Too few parameters were specified.
-2 No matching <output message case part> was found.
-3 The message is in the first available language.
-4 The array row referenced by the result pointer is too small.
-5 The message was not found.
-6 The version of the output message array is incompatible with the
version of the operating system.
-7 The output message array is in error.
-8 A fault occurred while obtaining the output message.
-9 The length passed with a parameter is too long.
-1 The result pointer has a type that is not valid.

8600 0098-505

MESSAGESEARCHER Statement

Example of a MESSAGESEARCHER Statement

In the following example, the value of RTN, the returned integer, notes whether or not
the message was successfully found and formatted. ERRORS is the output message
array identifier. The language specification is ENGLISH. POSINTX is the arithmetic
expression. MSG is the result pointer and MSG_LEN is the result length.

RTN:= MESSAGESEARCHER (ERRORS ["ENGLISH", POSINTX], MSG, MSG_LEN);

8600 0098-505 4-85

MLSACCEPT Statement

MLSACCEPT Statement

The MLSACCEPT statement either displays or prints a message and causes the program
to wait for input, or it returns a Boolean value indicating whether or not a message is
waiting for the program.

<NMLSaccept statement>

— MLSACCEPT — (—=<output message array identifier>— [———

=] arithmetic expression>—] — , —
<language specification>— ,

»>——<pointer expression>— , —<arithmetic variable
—<string variable
L<subscripted string variable

J— , —<parameter e]ement>J—

MLSACCEPT Used for Data Input

When the MLSACCEPT statement is used for data input, it displays a message and
causes the program to wait for input. No MLS translation is performed on the input text.

The input text can be entered at an Operator Display Terminal (ODT) or at a user
terminal. If the input text is entered from a user terminal, the user must use the mix
number of the task and be logged on to the usercode that originated the job.

The input text is placed in the specified pointer expression, string variable, or subscripted
string variable. It is placed left-justified with leading blanks discarded. No translation is
performed on the input text. The program continues execution with the statement
following the MLSACCEPT statement.

MLSACCEPT Used as a Boolean Function

The MLSACCEPT statement can be used as a Boolean function to determine whether or
not a message was entered before the MLSACCEPT statement was executed. If a
message was entered, the result returned by the MLSACCEPT statement is TRUE and
the message is placed in the pointer expression, string variable, or subscripted string
variable. If no message was entered, the result is FALSE. In either case, the program
does not wait for input.

Additional MLSACCEPT Options

4-86

The language specification defines the language to be used for messages that are
displayed or printed.

The arithmetic expression indicates the output message number of the message to be
displayed or printed. It cannot be a double-precision value.

8600 0098-505

MLSACCEPT Statement

The arithmetic variable is an integer or real variable that is assigned the length of the
returned response.

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter 1, the second to parameter 2, and so on.

No more than 430 characters can be displayed or printed. A maximum of 960 characters

can be accepted as input. The input response can be entered before the MLSACCEPT
statement is executed.

For additional information on output messages, refer to "MESSAGESEARCHER
Statement” earlier in this section.

Example of an MILSACCEPT Statement
In the following example, the message number POSINDX from output message array
ERRORS is displayed in the ENGLISH language. The program waits to accept an input
which, when received, is placed in INPT for length specified by INPT_LEN.

MLSACCEPT (ERRORS ["ENGLISH", POSINDX], INPT, INPT LEN);

8600 0098-505 4-87

MLSDISPLAY Statement

NMLSDISPLAY Statement

4-88

The MLSDISPLAY statement displays a message on the Operator Display Terminal
(ODT) and prints the message in the job summary listing.

<MLSdisplay statement>
— MLSDISPLAY — (—=<output message array identifier>— [——

arithmetic expression>—] ———

) |

|—<1anguage specification>— , l

|—L , —<parameter e]ement>J—

NMLSDISPLAY Options

The MLSDISPLAY statement displays the specified message on the ODT and prints the
message between the beginning-of-task (BOT) and end-of-task (EOT) messages on the
job summary listing. If the program that invokes the statement was started with either
the CANDE RUN or START command, and if the MESSAGES option is currently set to
TRUE for the session, the text is also displayed on the user's terminal.

The output message array identifier indicates the output message array that contains the
message to be displayed.

The language specification defines the language to be used for messages displayed on
the user's terminal.

The arithmetic expression indicates the message number of the output message to be
displayed. It cannot be a double-precision value.

Each parameter element contains the actual value of a parameter that was specified in
the declaration of the requested output message. The first parameter element refers to
parameter 1, the second to parameter 2, and so on.

No more than 430 characters can be displayed.

The MLSDISPLAY statement returns a Boolean result. If an error occurred, a result of
TRUE is returned.

For additional information on output messages, refer to "MESSAGESEARCHER
Statement” earlier in this section.

8600 0098-505

MLSTRANSLATE Statement

MLSTRANSLATE Statement

The MLSTRANSLATE statement returns an integer value indicating whether or not the
message was successfully found in both the input and output languages. The translated
message is returned to the caller using a pointer parameter.

<mlstranslate statement>

— MLSTRANSLATE — (—<output message array identifier>— [———

output language>—] — ,

|—<1'nput language>— , il
>—<input message>— , —<result message number>— , —<result message>—

>—) I

<input language>
<output language>

—<Tanguage specification {

<input message>

—E<str1' ng expression = {
<pointer expression>— FOR —<arithmetic expression>

<result message number>

—<arithmetic variable I

<result message>

—E<r‘esu1t pointer>— , —<result length {
<string primary |

<result pointer>

. . |
—<pointer expression |

<result length>

—<arithmetic variable I

8600 0098-505 4-89

MLSTRANSLATE Statement

MLSTRANSLATE Options

A message that is used with the MLSTRANSLATE statement must not contain
parameters.

The output message array identifier indicates the output message array from which the
translated message is to be obtained.

The input language indicates the language from which the message is being translated. If
no input language is specified, the language of the task is used as the input language. If
the input message does not exist in the task language, the system language is used as
the input language. If the input message is still not found, an error is returned. The input
language must not have a trailing period.

The output language indicates the language into which the message is to be translated.
The output language must not have a trailing period.

The input message contains the text to be translated. For the translation to be
successful, the input message must be the same as the message contained in the
output message array, including blanks. However, the translation is not case-sensitive.

The result message number is an integer or real variable that is assigned the message
array index corresponding to the message looked up. This value can be used to acquire
text in the language understood by the program through a MESSAGESEARCHER call.

The result message can be either a pointer/length pair of variables or a string variable,
providing flexibility for the destination of the translated message.

The result pointer is a call-by-value EBCDIC pointer that points to where the translated
message is to be stored. An EBCDIC null character (48'00") is placed after the last
character of the message. The null character is not included in the returned message
length.

The result length is an integer or real variable that is assigned the length of the returned
output message, not counting the null character that is placed at the end.

The MLSTRANSLATE statement can be used only with output message arrays that have

been declared with a CCSVERSION, a DECIMALPOINTIS, or a
THOUSANDSEPARATORIS output message parameter.

4-90 8600 0098-505

MLSTRANSLATE Statement

MLSTRANSLATE as an Arithmetic Function

The MLSTRANSLATE statement can be used as an arithmetic function that returns an
integer result indicating whether or not the message was successfully found in both the
input and output languages. The possible values for this result are as follows:

Value
1

-12

-13
=14

8600 0098-505

Meaning

The message is not in the requested language. It is in
MYSELF.LANGUAGE or the system default language.

The message was found and returned as requested.
The message was not found in the <input language>.
The message was not found in the <output language>.

The requested <output language> does not exist for this output
message array.

The array row referenced by the <result pointer> is too small.
The message was not found in any language tried.

The version of the output message array is incompatible with the
version of the operating system.

The output message array is corrupted: cannot obtain output message
number <num>.

A fault occurred while obtaining the output message.
The length passed with a parameter is too long.

The <result pointer> has a type that is not valid for the
MLSTRANSLATE statement.

The output message array created by this program cannot be used for
message translation.

The ccsversion of the input or output language messages is invalid.
The CENTRALSUPPORT library is not available.

4-91

MLSTRANSLATE Statement

Example of an MILSTRANSLATE Statement
The following example illustrates the use of the MLSTRANSLATE statement:

BEGIN
DEFINE NO_V = O#,
YES V = 1#;
OUTPUTMESSAGE ARRAY INPUT MESSAGES
(ENGLISH SYSTEMDEFAULT

(NO_V = "NO",

YES V = "YES"),
FRENCH

(NO_V = "NON",

YES V = "0UI"));

INTEGER I, MSG_NUMBER;
STRING OUTP,INP;

INP := "YES";
I := MLSTRANSLATE (INPUT_MESSAGES ["ENGLISH","FRENCH],
INP, MSG_NUMBER, OUTP);

IF T GEQ O THEN
BEGIN
DISPLAY (OUTP);
CASE MSG_NUMBER OF
BEGIN
NO_V: MLSDISPLAY (INPUT MESSAGES ["FRENCH", NO V]);
YES V: MLSDISPLAY (INPUT MESSAGES ["FRENCH", YES V];
ELSE:;
END;
END
ELSE
DISPLAY ("ERROR:" CAT STRING8(I,5));
END.

4-92 8600 0098-505

MULTIPLE ATTRIBUTE ASSIGNMENT Statement

MULTIPLE ATTRIBUTE ASSIGNMENT Statement

The multiple attribute assignment statement is used to assign values at run time to one
or more attributes of a specified file.

<multiple attribute assignment statement>

—<file identifier>— (—<attribute specifications>—) —|

Assignment of Values

If the name of a Boolean file attribute in the attribute specifications is not followed by an
equal sign (=) and a value, it is assigned a value of TRUE; that is, the following attribute
specifications have the same effect as each other:

DEPENDENTSPECS,KIND = DISK
DEPENDENTSPECS = TRUE,KIND = DISK

An assignment specified in a MULTIPLE ATTRIBUTE ASSIGNMENT statement occurs at
run time and overrides any assignment made to the attribute in a FILE declaration or
through file equation.

One intrinsic call is generated to assign all attributes, except when a pointer-valued file
attribute name is assigned a pointer expression. In this case, the compiler generates a
separate intrinsic call for the pointer-valued attribute assignment.

Valid mnemonics for file attributes are also type 3 reserved words in ALGOL. When it is
not certain whether an identifier is a variable or a mnemonic, the compiler always
assumes that the identifier is a variable or other local identifier if it is enclosed in
parentheses. If the identifier is not enclosed in parentheses, the compiler always
assumes it is a mnemonic. This rule can be used to resolve ambiguities when new
attributes with names that conflict with local variables are added to the system.

Examples of MULTIPLE ATTRIBUTE ASSIGNMENT Statements
In the following example, at run time the BUFFERS attribute of file AFILE is assigned the
value 3, the INTMODE attribute is assigned EBCDIC, and the KIND attribute is set to
DISK.

AFILE(BUFFERS = 3,INTMODE = EBCDIC,KIND = DISK)

In the following example, at run time the TITLE attribute of file LINE is assigned the value
pointed to by pointer P, and the INTNAME attribute is assigned the value pointed to by
pointer Q.

LINE(TITLE = P,INTNAME = Q)

8600 0098-505 4-93

ON Statement

ON Statement

The ON statement is used to enable or disable an interrupt for one or more fault
conditions.

<on statement>

<enabling on statement |
|:<d1'sab11'ng on statement>J

Enabling ON Statements

<enabling on statement>
— ON —<fault Tlist

|—<1’au1t information pa\r"c>J L , J

>—<fault action }

The two forms of enabling ON statements are the implicit call and the implicit branch.
The implicit call form causes the fault termination of the block in which it appears. The
implicit branch form permits the block in which it appears to continue to run.

Once an interrupt is enabled, it remains enabled until one of the following conditions
occurs:

e The procedure or block that contains the ON statement is exited.

e The interrupt is explicitly disabled.

e A new interrupt is enabled for the same fault condition.

Whenever the block that contains an ON statement is exited, the interrupt status
(enabled or disabled) for that fault condition reverts to the status it had just before the
block was entered.

No call on the block exit intrinsic is required to deactivate the armed faults for a block.

Each execution of an ON statement adds one stack cell to the block in which it is used.

4-94 8600 0098-505

ON Statement

Fault List
<fault list>

OR
1 <fault name>—. |

<fault name>

—— ANYFAULT |

— ASSERTIONFAILURE —
— EXPONENTOVERFLOW ——
— EXPONENTUNDERFLOW —
— INTEGEROVERFLOW ——
— INVALIDADDRESS —
— INVALIDINDEX ———
— INVALIDOP ———
— INVALIDPROGRAMWORD —
— LOOP
— MEMORYPARITY ———
— MEMORYPROTECT
— PROGRAMMEDOPERATOR —
— SCANPARITY —————
— STRINGPROTECT
L ZERODIVIDE

The fault list allows several fault interrupts to be enabled (armed) or disabled (disarmed)
at the same time. When it is used to enable several interrupts, they all use the same
fault action if any of the faults occur. The occurrence of any one of the faults in the fault
list is sufficient to cause transfer of control to the fault action. The fault name ANYFAULT
is used to enable or disable all faults.

Refer to the Task Management Programming Guide for more information about
determining the internal cause of a fault.

8600 0098-505 4-95

ON Statement

Fault Information Part

4-96

<fault information part>

—<fault number>—

— [—|:<fau1t stack history B

: —<fault number:

<fault number>

<Boolean variable
E<1'nteger‘ variable>—
<real variable>

The fault information part provides access to the stack history at the time of the
occurrence of the fault and to the number corresponding to the fault kind. The variable
that contains the fault number is assigned one of the following values when the

corresponding fault occurs:

Value Fault

1 DIVIDEBYZEROV
2 EXPOVERFLOWV
3 EXPUNDERFLOWV
4 INVALIDINDEXV
5 INTEGEROVERFLOWV
6 INACTIVEQV
7 MEMORYPROTECTV
8 INVALIDOPV
9 LOOPV
10 MEMORYPARITYV
11 SCANPARITYV
12 INVALIDADDRESSV
13 STACKOVERFLOWV
14 STRINGPROTECTV
16 FALSEASSERTV
17 SEQUENCEERRORV
18 INVALIDPCWV
19 STACKUNDERFLOWV
21 LIBLINKERRORV
22 INVALIDINTV
23 MEMFAILTV
26 MEMORYFAIL2V

8600 0098-505

ON Statement

Value
30
35
40
41
42
43
45
46
47
48

Fault
PROCINTERNALV
PROCDIEDV
DISKPARITYV
EMODEVIOLATIONV
NOACTIVELINKV
PROCLINKPARITYV
BOTTOMOFSTACKYV
RUNLIGHTOUTV
STACKSTRUCTUREV
BADMSCWV

Fault Stack History

<fault stack history>

—E<array row
<pointer expression>

If the fault stack history option is used, a string of EBCDIC characters representing the
stack history is stored into the array row or the array specified by the pointer expression.
The stack history information is always stored as EBCDIC characters regardless of the
character type of the array row or pointer expression.

The format of the stack history is either of the following:

SSS:AAAA:Y, ;SSS:AAAA:Y, ;...

SSS:AAAA:Y; (DDDDDDDD), ;...

,3SSS:AAAA:Y.

,3SSS:AAAA:Y; (DDDDDDDD) .

In these formats, the following applies:

EBCDIC Characters
SSS

AAAA

Y

1

DDDDDDDD

8600 0098-505

Meaning

A code segment number
A code word address

A code syllable number
A blank space

A sequence number (present only if the compiler
control option LINEINFO was TRUE during program
compilation). The element DDDDDDDD can have the
formm DDDDDDD/DDDDDDDDY... when INLINE
procedures are referenced. The rightmost line
number indicates the most recently invoked
procedure reference.

4-97

ON Statement

One of these entries is generated for each activation record in the stack when the fault is
encountered. Each entry is followed by a comma (,), and the last complete entry is
terminated by a period (.). If the user-specified array is sufficiently long, the entire stack
history is stored. If it is not long enough, then only a portion of the stack history is stored,
with the last complete entry in the array terminated by a period. The code segment
number field, SSS, is expanded to four characters, SSSS, for segment numbers greater
than 4095; that is, for segment numbers whose hexadecimal representation requires
four characters.

The array row or pointer expression that makes up the fault stack history and the variable
that makes up the fault number are evaluated once when the ON statement is executed,
and not at the time the fault occurs. Thus, in the following ON statement, array row All, *]
is determined by the value of | at the execution of the ON statement and not when a
ZERODIVIDE fault actually occurs. This determination is also true for the variables B[J]
and J.

ON ZERODIVIDE[A[I,*]:B[J]]: GO TO ERROR HANDLING

Fault Action

4-98

<fault action>

—<statement {

The form of the ON statement that includes a comma, instead of a colon (:), before the
fault action is the implicit call form. With this form of ON statement, when a specified
fault occurs, the program calls the fault action statement as a procedure. If the fault
action statement does a bad GO TO, the fault condition is discarded and the program
continues running.

When a bad GO TO branches to a label outside the block in which the fault occurred, the
block is terminated. \When it branches out of the fault action statement into the block in
which the fault occurred, the block continues to run.

If the fault action statement exits without doing a bad GO TO, the fault condition for
which the fault action statement was called still exists. If an ON statement is enabled for
that condition in a more global block, then control is passed to that ON statement;
otherwise, the program is discontinued as a result of that fault.

A GO TO statement cannot be executed from outside the fault action statement to a
label inside the fault action statement. Undefined results occur when a GO TO statement
specifies a label passed as a parameter (a formal label).

The form of the ON statement that includes a colon, instead of a comma, before the fault
action is the implicit branch form of the ON statement. With this form of ON statement,
the program branches to the statement given as the fault action when a specified fault
occurs. The fault condition is discarded, as though it had never happened, and the
program continues execution at the first statement of the fault action. When there is no
branch out of the fault action statement, the program flow continues with the next
statement following it. When the ON statement is in the block in which the fault
occurred, it permits that block to continue to run.

8600 0098-505

ON Statement

Disabling ON Statement

<disabling on statement>

— ON —<fault Tist {

The disabling ON statement disables or disarms the interrupts corresponding to the fault
names in the fault list. This has the same effect as if none of those interrupts had been
enabled in the block in which it appears. It has no effect, however, on any interrupts that
were enabled by ON statements in more global blocks, once this block is exited.

Note: Excessive arming and disarming of faults within a single activation of the block
can cause the stack limit of the program to be exceeded and the program to be
terminated.

Examples of ON Statements

In the following example, if either a divide-by-zero fault or an invalid index fault occurs at
run time, the fault condition is discarded and control transfers to the compound
statement in this ON statement. The stack history information is written to the array row
FAULTARRAY, and the fault number of the fault that occurred is stored in FAULTNO.

ON ZERODIVIDE OR INVALIDINDEX [FAULTARRAY:FAULTNO]:
BEGIN
REPLACE FAULTARRAY[8] BY FAULTNO FOR * DIGITS;
WRITE(LINE, 22, FAULTARRAY);
REPLACE FAULTARRAY BY " "™ FOR 22 WORDS;
CASE FAULTNO OF
BEGIN
1: DIVISOR := 1;
4: INDEX := 100;
END;
GO BACK;
END

In the following example, if either of the specified faults occurs at run time, the fault
condition is discarded and control is transferred to the assignment statement in the ON
statement. After execution of the assignment statement, execution continues with the
statement following the ON statement.

ON MEMORYPROTECT OR LOOP: Q:= 2

The following example disables the interrupt associated with the exponent under flow
fault.

ON EXPONENTUNDERFLOW % Disabling ON Statement

8600 0098-505 4-99

ON Statement

In the following example, if any fault occurs, the statement HANDLEFAULTS(Z) is called
as a procedure. The stack history information is written to the location indicated by the
pointer expression POINTR + 2, and the fault number of the fault that occurred is stored
inZ.

ON ANYFAULT [POINTR + 2:7Z] ,HANDLEFAULTS(Z)

4-100 8600 0098-505

OPEN Statement

OPEN Statement

The OPEN statement causes the referenced file or subfile to be opened.

<open statement>
— OPEN — (—<open file part

) |
|—<open opti ons>J !

<open file part>

<file designator C }
[— SUBFILE —<subfile index>—] i‘
>.

<task designator>— . —<file-valued task attribute name

The OPEN statement can be used as an arithmetic function. For information on the
values returned, see the File Attributes Programming Reference Manual.

The subfile index specifies the subfile to be opened. For more information on the subfile
index, see "CLOSE Statement” earlier in this section. For more information on the file
designator, see “"SWITCH FILE Declaration” in Section 3, “Declarations.” For more
information on the task designator, see "TASK and TASK ARRAY Declarations” in
Section 3, “Declarations.”

OPEN Options

<open options>

L , —<open control op’c1’on>J L , —<associateddata op’c1‘on>J

L , —<connecttimelimit op’c1’on>J

<open control option>

ATEND |
AVAILABLE —
AVAILATEND —
CONDITIONAL —
DONTWAIT —
MUSTBENEW —
OFFER ———
WAIT

8600 0098-505 4-101

OPEN Statement

Open Control Options

If no open control option is specified, the WAIT option is assumed. The WAIT option sets
the current position to the beginning of the file. Use the ATEND option to set the current
position to the end of the file.

Use the AVAILABLE option to prevent the OPEN operation from being suspended if the
file cannot be opened. The AVAILABLE option sets the current position to the beginning
of the file. Use the AVAILATEND option to set the current position to the end of the file.

The DONTWAIT and OFFER options are meaningful only for port files. Refer to the
following examples for information about when to use these options.

The CONDITIONAL and MUSTBENEW options are meaningful only for disk files. When
creating a new file, use either of these options to ensure that an existing file is not
replaced. Use the MUSTBENEW option to cause the OPEN operation to fail if an existing
file would be replaced. Use the CONDITIONAL option to cause the existing file to be
opened instead of replaced.

ASSOCIATEDDATA Option

This option is only meaningful for port files and is used to send associated data with an
OPEN request.

For more information on the ASSOCIATEDDATA option, see “CLOSE Statement” earlier
in this section.

CONNECTTIMELIMIT Option

This option is only meaningful for port files and is used to specify the maximum amount
of time (in minutes) that the system allows for a successful OPEN operation on a subfile.

For more information on the CONNECTTIMELIMIT option, see “AWAITOPEN
Statement” earlier in this section.

Examples of OPEN Statements

4-102

The following example opens file FILEID. Execution of the program is suspended until
FILEID is open.

OPEN(FILEID)
The following example opens subfile | of port file FILEID and offers it for matching.
Control is returned to the program when it is determined whether the host can be
reached.

OPEN(FILEID[SUBFILE I],OFFER)

The following example opens subfile | of port file FILEID and a dialog request is sent. The
program is suspended until dialog establishment is complete.

OPEN(FILEID[SUBFILE I],WAIT)

8600 0098-505

OPEN Statement

The following example opens subfile | of port file FILEID. The AVAILABLE control option
is a nonpreferred way of verifying OPEN WAIT with AVAILABLEONLY = TRUE. When
AVAILABLEONLY = TRUE, the OPEN attempt fails if the correspondent endpoint cannot
be reached immediately. If dialog can currently be established, the subfile is opened, the
result returned by the OPEN statement is 1, and PROCESSOPEN is called; otherwise, an
error result is returned and PROCESSOPEN is not called.

IF OPEN(FILEID[SUBFILE I],AVAILABLE) = 1 THEN PROCESSOPEN

The following example opens subfile 1 of port file FILEID. The program is suspended until
a dialog is established or until T minutes have elapsed.

OPEN (FILEID [SUBFILE 1], WAIT, CONNECTTIMELIMIT = T)

The following example opens subfile 1 of port file FILEID. When the dialog request is
sent, the information "MYDATA" is sent to the correspondent process as associated data.

OPEN (FILEID [SUBFILE 1], ASSOCIATEDDATA = "MYDATA")

The following example opens subfile | of port file FILEID. Control returns to the program
as soon as the open process has begun, because the DONTWAIT option is included.
When a matching subfile is found, 14 characters of information are taken, beginning at
the location pointed to by PTR; the 14 characters are sent to the correspondent process
as associated data.

OPEN (FILEID [SUBFILE I], DONTWAIT, ASSOCIATEDDATALENGTH = 14,
ASSOCIATEDDATA = PTR)

8600 0098-505 4-103

POINTER Statement

POINTER Statement

Pointer statements are used to examine, transfer, and edit character data stored in
arrays.

<pointer statement>

<replace statement }
Eﬂr‘ep]ace family-change statement>———

<replace pointer-valued attribute statement>—
<scan statement

POINTER Statement Options

The REPLACE statement can be used to move character data into an array row. Within a
single REPLACE statement, the character data to be moved can be taken from several
sources. Each of these sources can be one of several different types. A source can be
another array row, a string literal, the value of an arithmetic expression, the value of a
string expression, or the value of a pointer-valued attribute. Furthermore, as the character
data is moved from a source to the destination, the characters can be translated or
edited. Also, an arithmetic expression source can be treated as a binary value and
converted into the equivalent decimal number expressed as a string of numeric
characters.

The REPLACE FAMILY-CHANGE statement is the language construct provided to add
datacomm stations to or remove datacomm stations from a family of stations.

The REPLACE POINTER-VALUED ATTRIBUTE statement is the language construct
provided to assign character data to pointer-valued file and task attributes.

The SCAN statement can be used to examine character data located in an array row.

POINTER statements process character data from left to right.

Temporary Storage

4-104

Many of the operations performed by POINTER statements require the use of temporary
storage for intermediate results. In describing the actions of a POINTER statement, a
discussion of how this temporary storage is initialized, changed, and disposed of is
necessary. These discussions use the following names for these temporary storage
locations:

e Stack-source-pointer

e Stack-destination-pointer

e Stack-auxiliary-pointer

e Stack-integer-counter

e Stack-test-character

e Stack-source-operand

8600 0098-505

POINTER Statement

The prefix, stack, denotes that none of these parameters correspond to any program
variables. They exist only until execution of the POINTER statement is completed.

The stack-source-pointer, the stack-destination-pointer, and the stack-auxiliary-pointer
have the same internal structure as a pointer variable that can be declared in a program.
These temporary storage locations are initialized either from pointer expressions in the
pointer statement or from previous corresponding temporary storage locations.

Stack-Source-Pointer

The initial value of the stack-source-pointer points to the first source character to be used
by the associated operation. As the execution of the instruction progresses, the
stack-source-pointer is modified to point to each successive source character. WWhen the
operation is complete, the stack-source-pointer points to the first unprocessed character
in the source data (the process is determined by the particular form of the POINTER
statement). This final value can be stored into a pointer variable, or it can be discarded.

Stack-Destination-Pointer

The initial value of the stack-destination-pointer points to the first destination character
position to be used by the associated operation. As the execution of the operation
progresses, the stack-destination-pointer is modified to point to each successive
destination character position. \When the operation is complete, the
stack-destination-pointer points to the first unfilled character position in the destination. If
more than one source is to be processed, the stack-destination-pointer value
corresponding to the completed processing of one element in the source list is used as
the initial value for the subsequent source. If no more sources are to be processed, this
final value can be stored into a pointer variable, or it can be discarded.

Stack-Auxiliary-Pointer

The initial value of the stack-auxiliary-pointer points to the first entry in a table of data to
be used by the operation in its execution. This table can be a translate table if the
operation to be performed is extracting characters from the source data, translating the
characters to different characters (possibly containing a different number of bits per
character), and storing the translated characters in the destination. This table can be a
truth set describing a particular set of characters if the operation to be performed
requires a membership test. Finally, this table can be a picture: a table that contains
instructions of a special type describing how the source data is to be edited before being
stored in the destination.

8600 0098-505 4-105

POINTER Statement

Stack-Integer-Counter

The stack-integer-counter, when required by a POINTER statement, is initialized by an
arithmetic expression supplied in the POINTER statement. The value of this arithmetic
expression is integerized before it is used. The stack-integer-counter has different
meanings depending on the type of POINTER statement involved. In some cases, the
number of characters in a source string to be processed is dictated solely by this
parameter. The number of numeric characters to be placed in the destination while
converting the value of an arithmetic expression to character form is also dictated by the
stack-integer-counter.

In some forms of the POINTER statement, two controlling factors exist that dictate how
many characters are to be processed from a source string. One factor depends on the
source data and is called a condition. The other factor is a maximum count contained in
the stack-integer-counter and is provided by an arithmetic expression in the POINTER
statement. For example, with such a POINTER statement, the following instructions
could be written: Translate characters from the source string to the destination until
either 14 characters have been transferred or a period is encountered in the source
string, whichever comes first. The final value of the stack-integer-counter is available for
storage, or it is discarded.

Stack-Test-Character

The stack-test-character is initialized by an arithmetic expression usually, but not
necessarily, of the form of a single-character string, such as B. Although the
stack-test-character parameter is one entire word of memory that contains the
single-precision value of the arithmetic expression, only the rightmost character position
of the word is used. When a condition employing a relational operator is used in a
POINTER statement, the stack-test-character must contain the character against which
the individual characters in the source string are to be compared.

Stack-Source-Operand

4-106

The stack-source-operand is used when the source data is given by the value of an
arithmetic expression rather than a value located in an array row into which the
stack-source-pointer points. The stack-source-operand is initialized by the arithmetic
expression.

8600 0098-505

PROCEDURE INVOCATION Statement

PROCEDURE INVOCATION Statement

A PROCEDURE INVOCATION statement causes a previously declared procedure to be
executed as a subroutine.

<procedure invocation statement>

—<procedure identifier '
|:<actua1 parameter part>—

<actual parameter part>

LH<parameter del 1'm1'te\r‘>g

<actual parameter) I

— (-

When a procedure is invoked, program control is transferred from the point of the
PROCEDURE INVOCATION statement to the referenced procedure. When the
procedure is completed, program control is transferred back to the statement following
the PROCEDURE INVOCATION statement, unless a bad GO TO is executed in the
referenced procedure. Bad GO TO statements are described in "GO TO Statement”
earlier in this section.

A typed procedure returns a value. However, when a typed procedure is used in a
PROCEDURE INVOCATION statement, this value is discarded.

8600 0098-505 4-107

PROCEDURE INVOCATION Statement

Calling Procedures with Parameters

4-108

<actual parameter>

expression {
—<array designator
—<string array designator
—<connection block reference variable>
—<connection Tibrary instance designator>—
—<direct file identifier
—<direct switch file identifier>
—<event designator
—<event array designator
—<file designator
—<switch file identifier
—<format designator
—<switch format identifier
—<interlock designator
—<interlock array designator>
—<1label identifier
—<switch label identifier
—<1list designator
—<switch list identifier
—<null value
—<picture identifier
—<procedure identifier
—<procedure reference array designator>——
—<procedure reference array element>
—<procedure reference identifier>

—<structure block array designator>
—<structure block array element>

—<structure block reference variable>
—<structure block variable
—<task designator
—<task array designator:
L<this intrinsic

The actual parameter part of a PROCEDURE INVOCATION statement must have the
same number of entries as the formal parameter list in the declaration of the procedure.
Correspondence between the actual parameters and formal parameters is obtained by
matching the parameters that occur in the same relative position in the two lists.
Corresponding formal and actual parameters must be of compatible types. Parameters
can be call-by-name or call-by-value.

For more information on procedures and formal parameters, refer to “PROCEDURE
Declaration” in Section 3, “Declarations.”

If a formal parameter is a call-by-name INTEGER or REAL simple variable, then the actual
parameter can be either an INTEGER or a REAL expression; no type conversion is
performed. If a formal parameter is a call-by-value INTEGER, REAL, or DOUBLE simple
variable, then the actual parameter can be either an INTEGER, a REAL, or a DOUBLE
expression, and automatic type conversion is performed on the actual parameter at the
time the procedure is invoked.

8600 0098-505

PROCEDURE INVOCATION Statement

If the formal parameter of a nonformal procedure is a simple variable of type COMPLEX,
then the corresponding actual parameter can be of type INTEGER, REAL, DOUBLE, or
COMPLEX. However, if the COMPLEX formal parameter is call-by-name and the
corresponding actual parameter is not of type COMPLEX, an assignment to that formal
parameter within the procedure body causes the program to be discontinued with a fault.

The types of actual and formal parameters must match exactly for all cases not
mentioned above. For more information, see “Type Coercion of One-Word and
Two-Word Operands” in Appendix C, “Data Representation.”

Imported events and event arrays cannot be used as actual parameters in a
PROCEDURE INVOCATION statement.

Examples of PROCEDURE INVOCATION Statements

The following example invokes the procedure SIMPL, which has no parameters.

SIMPL

The following example invokes the procedure HEAVY and passes it four parameters: X,
Y, the array row A[*], and the expression SQRT(BINGO+BASE).

HEAVY (X,Y,A[*],SQRT(BINGO+BASE))

8600 0098-505 4-109

PROCEDURE REFERENCE Statement

PROCEDURE REFERENCE Statement

A PROCEDURE REFERENCE statement causes the procedure referenced by a specified
procedure reference variable to be executed as a procedure invocation.

<procedure reference statement>

—<procedure reference variable B n I
<actual parameter part>

<procedure reference variable>

—E<procedure reference identifier n {
<procedure reference array element>

Using Procedure References

4-110

If the procedure reference variable is invoked while it is uninitialized or has had NULL
assigned to it, the program is terminated with the message INVALID STACK
ARGUMENT.

When a typed procedure reference variable is used in a PROCEDURE REFERENCE
statement, the value returned by the procedure reference is discarded.

The actual parameter part of a PROCEDURE REFERENCE statement must have the
same number of entries as the formal parameter list in the declaration of the procedure
reference identifier or procedure reference array. The formal and actual parameters are
compared in the manner in which the formal and actual parameters are compared in a
PROCEDURE INVOCATION statement.

Invoking a procedure through a procedure reference variable in a PROCEDURE
REFERENCE statement is equivalent to invoking the procedure directly in a PROCEDURE
INVOCATION statement. For more information, see “PROCEDURE INVOCATION
Statement” earlier in this section.

Imported events and event arrays cannot be used as actual parameters in a
PROCEDURE REFERENCE statement.

8600 0098-505

PROCEDURE REFERENCE Statement

Example of a PROCEDURE REFERENCE Statement

The following example assigns a reference to procedure SWAPPER in the first element
of the procedure reference array PROCARRAY and to the procedure reference
PROCREF. SWAPPER is then invoked through PROCARRAY and PROCREF.

BEGIN

*
*
*

REAL
SORT1,
SORT2,
SORT3;

PROCEDURE REFERENCE ARRAY PROCARRAY[0:9] (A,B);
REAL A,B;
NULL;
PROCEDURE REFERENCE PROCREF(A,B);
REAL A,B;
NULL;
PROCEDURE SWAPPER(X,Y);
REAL X,Y;
BEGIN
X :=:Y;
END;

PROCARRAY[0] := SWAPPER;
PROCREF := SWAPPER;
READ (MYFILE, *, SORT1, SORT2);
IF SORT2 > SORT1 THEN
PROCARRAY[0] (SORT1, SORT2);
READ (MYFILE, *, SORT3);
IF SORT3 > SORT2 THEN
PROCREF (SORT2, SORT3);
END.

8600 0098-505 4-111

PROCESS Statement

PROCESS Statement

The PROCESS statement initiates a procedure as an asynchronous process.

<process statement>
— PROCESS —<procedure identifier

|—<actua1 parameter pa\r"c>J
> [—<task designator>—] }

Initiation of an Asynchronous Process

Initiation of an asynchronous process consists of setting up a separate stack for the
process, passing any parameters (call-by-name or call-by-value), and beginning the
execution of the procedure. The initiating program continues execution, and both the
initiating program and the initiated procedure run in parallel.

If the specified procedure is a typed procedure, the return value is discarded.

If the procedure identifier is a system supplied process, such as an intrinsic, the library
GENERALSUPPORT must be declared using a library entry point specification. The
procedure identifier must be declared in the program or the syntax error PROCEDURE
MUST BE USER DECLARED results.

The actual parameter part must agree in number and type with the formal parameter part
in the declaration of the procedure; otherwise, a run-time error occurs.

The task designator associates a task with the process at initiation; the values of the task
attributes of that task, such as COREESTIMATE, STACKSIZE, and DECLAREDPRIORITY,
can be used to control execution of the process. For information about assigning values
to task attributes, refer to “Task Assignment,” <arithmetic task attribute> under
“Arithmetic Assignment,” and <Boolean task attribute> under “Boolean Assignment”
earlier in this section. Many task attributes can be interrogated while the process is
running.

Critical Block

4-112

An asynchronous process depends on its initiator for global variables and call-by-name
actual parameters. Thus, for each process, a critical block is present in the initiator that
cannot be exited until the process is terminated. The critical block is the block of highest
lexical level that contains one or more of the following items:

e The declaration of the procedure itself

o The declarations of the actual parameters passed to the call-by-name formal
parameters

o The declaration of the task designator

e Any compiler-generated code for evaluating arithmetic expressions passed to
call-by-name parameters

8600 0098-505

PROCESS Statement

The critical block can be the block that contains the PROCESS statement, the outer block
of the program, or a block in between. An attempt by the initiator to exit the critical block
before the process is terminated causes the initiator and all tasks it has initiated through
CALL or PROCESS statements to be terminated.

A process is terminated by exiting its own outermost block or by execution in the initiator
of the following statement where the task designator specifies the task associated with
the process to be terminated:

<task designator>.STATUS := VALUE(TERMINATED)

Note: A processed procedure must not declare an OWN array or reference another
procedure that declares an OWN array. An attempt to do so results in a run-time error. A
string expression cannot be passed as an actual parameter to a call-by-name parameter
of a procedure in a PROCESS statement.

When an item of a structure or connection block is used in the PROCESS or CALL
statement, either as the procedure being invoked, an actual parameter passed to a
call-by-name formal parameter, or the task designator, the calculation for the block that
contains the highest lexical level includes the lexical level of the block that declared the
structure block variable, structure block array, structure or connection block reference, or
connection library used to qualify the structure or connection block item.

Examples of PROCESS Statements

In the following example, the procedure AGENT, which has no parameters, is invoked as
an asynchronous process. The task TSK is associated with the process.

PROCESS AGENT [TSK]
In the following example, the procedure ACHILD is invoked as an asynchronous process
and passed the three parameters OUTARRAY, YOUREVENTIINDX], and COUNT. The
task designated by TSKARAY[INDX] is associated with the process.

PROCESS ACHILD(OUTARRAY,YOUREVENT[INDX],COUNT) [TSKARAY[INDX]]

8600 0098-505 4-113

PROCURE Statement

PROCURE Statement

The PROCURE statement tests the available state of an event.

<procure statement>
— PROCURE — (—<event designator>—) }

Testing the Available State

If the available state of the event is FALSE (not available), the program is suspended and
put in the procure list until some other task executes the LIBERATE statement for that
event. If the available state of the event is TRUE (available), the available state is set to
FALSE (not available), and the program continues execution with the statement following
the PROCURE statement.

Sharing Resources Among Programs

The PROCURE statement provides a means for different programs to share resources.
For example, a convention could be established that a certain shared resource that is
available for use by more than one program is not to be used by a program unless that
program has procured the event that is used as the interlock. When the program has
completed its use of the resource, it should execute a LIBERATE statement on the
event.

Examples of PROCURE Statements

In the following example, if the available state of EVNT is TRUE (available), EVNT is
procured by setting its available state to FALSE (not available). Otherwise, the program is
suspended until EVNT is made available.

PROCURE (EVNT)
In the following example, if the available state of the event designated by
EVNTARAYI[INDX] is TRUE (available), then that event is procured by setting its available
state to FALSE (not available). Otherwise, the program is suspended until the event
designated by EVNTARAYI[INDX] is made available.

PROCURE (EVNTARAY [INDX])

4-114 8600 0098-505

PROGRANDUMP Statement

PROGRANMDUNIP Statement

The PROGRAMDUMP statement can be used to generate a program dump. After the
dump is taken, the program continues and executes the next statement.

A program dump is an expanded listing of the internal stack as it existed when the dump
was requested. Several options are available to specify which items of the stack are to
be included in the dump.

<programdump statement>
— PROGRAMDUMP |

|— (<programdump 6pt1’on> 1) J
<arithmetic expression>——

<programdump destination>—

The information produced by the PROGRAMDUMP statement is written to the file
specified by the TASKFILE task attribute of the program, unless the TODISK destination
option is specified. See the discussion of the TODISK destination option later in this
section.

PROGRAMDUMP Options

<programdump option>

—— ARRAY |
— ARRAYS ———

— PRESENTARRAY ——

— PRESENTARRAYS ——

— BASE

— CODE

— DBS

— FILE

— FILES

— LIBRARIES ————

— PRIVATELIBRARIES

— CRITICALBLOCK ——

— ALL

8600 0098-505 4-115

PROGRANDUMP Statement

The information included in the dump depends on the options specified. If no program
dump options are specified, the stack is dumped according to the specifications in the
task attribute OPTION of the program. The following table describes the results of
specifying each program dump option:

Option
ARRAY or ARRAYS

PRESENTARRAY or
PRESENTARRAYS

BASE

CODE

DBS
FILE or FILES

LIBRARIES

PRIVATELIBRARIES

Result

Causes the contents of all arrays declared in the
program to be dumped.

Causes only the arrays in the present state (at the time
the program dump is taken) to be dumped. If the ARRAY
or ARRAYS program dump option is set along with the
PRESENTARRAY or PRESENTARRAYS program dump
option, all arrays will be dumped.

Causes the base of the stack to be dumped. The
operating system uses a portion of each stack to contain
various words needed to control, identify, and log the
program. If the TODISK option is also specified, the base
of the stack and the program information block (PIB) are
always dumped for any stack dumped.

Causes segment dictionary information to be included in
the dump. The actual code is dumped only for segments
that have been referenced by the program when the
program dump occurs. Value arrays in the segment
dictionary are dumped when both the CODE option and
either the ARRAY or ARRAYS option are specified.

Causes the output of database stacks to be dumped.

Causes information about each file declared in the
program to be dumped. For each file, each word of the
file information block (FIB) is separately named and, in
some cases, analyzed.

Causes the stacks of all libraries that are being used by
the program to be dumped.

Causes the stacks of all private libraries that are being
used by the program to be dumped.

CRITICALBLOCK Causes the stack that contains the critical block visible to
the calling stack to be dumped. Dumping starts at the
offset specified by the critical block reference in the
Process Information Block of the calling stack.

ALL Equivalent to specifying all the other options. The ALL

option has no effect on the program dump destination. If
the TODISK or TOPRINTER destination options are
needed, they must be explicitly mentioned.

8600 0098-505

PROGRANDUMP Statement

If the arithmetic expression option is used, the value in the arithmetic expression
corresponds to the bit values in the OPTION word. The value of the expression is

interpreted as follows:

Value

[7:1]=1
[8:1]=1
[9:1] =1
[10:1]1 =1
[11:1] =1
[15:1] =1
[19:1]1 =1
[20:1] =1
[23:1] =1
[24:1] =1
[25:1] =1

8600 0098-505

Meaning

The base of the user stack is dumped.
Array contents are dumped.

The segment dictionary is dumped.
Files are dumped.

Present array contents are dumped.
Database stacks are dumped.

Stacks for libraries that the program is linked to are
dumped.

Stacks for private libraries are dumped.
Destination of the dump is the disk.
Destination of the dump is the printer.

The stack containing the critical block is dumped.

4-117

PROGRANDUMP Statement

Programdump Destination Options

<programdump destination>

TODISK |
L TOPRINTER !

When the TODISK option is specified and a program dump is taken, a disk file is created
in a format acceptable to DUMPANALYZER. The listing normally produced by
PROGRAMDUMP is suppressed.

The program dump file name is as follows. The portion of the task name included in the
program dump file name is limited to eight nodes. The date format is YYMMDD, and the
time format is HHMMSS.

PDUMP/<task name>/<date>/<time>/<mix number>

In a program dump to disk, the base of the stack and the PIB are always dumped. All
other program dump option settings work the way they work in a dump to the printer.

If the TODISK option and the TOPRINTER option are set, a program dump to the printer
is taken after the disk file program dump has been produced. The two dumps might not
be identical because the dump to disk has some side effects that might change the
contents of memory.

The current destination option can be overridden by either destination option.

If neither destination option is specified, the destination is determined by the PDTODISK
system options.

Relation to OPTION Task Attribute

4-118

Options specified in the PROGRAMDUMP statement apply only to the program dump
taken at that time and temporarily override the values specified in the OPTION word of
the program. The bits of the OPTION word are set with the OPTION task attribute for the
program. Refer to the Task Attributes Programming Reference Manual for information
about the OPTION task attribute.

A program dump taken with the PROGRAMDUMP statement has an advantage over a
program dump taken with the OPTION task attribute. A program dump can be taken with
the OPTION task attribute only upon a fault or discontinue condition. A program dump
taken with the PROGRAMDUMP statement can be taken at any time, and the program
can continue after the dump is taken. For example, the PROGRAMDUMP statement
might be useful as part of an ON statement, within an INTERRUPT statement, or within a
piece of newly developed code.

The PROGRAMDUMP statement displays identifier name and compiler class information
along with the stack variables when binding information (bindinfo) is present in the code
file. ALGOL generates binding information by default unless the program is compiled
with the compiler control option NOBINDINFO set to TRUE.

8600 0098-505

PROGRANDUMP Statement

Retrieval of Binding Information

When the BEGINSEGMENT and ENDSEGMENT compiler control options are used, a
situation can occur where the binding information cannot be retrieved. This situation is
related to two factors:

e Two or more variables have the same address. Normally there is no conflict when
this happens because the addresses relate to different code segments.

e Procedures that are encountered between a BEGINSEGMENT and ENDSEGMENT
option are placed in the same code segment.

When these two conditions occur, and multiple variables have the same address within
the same code segment, the compiler cannot retrieve the binding information for those
variables.

Diagnostic and debugging information also can be written to the TASKFILE so that the
program dump and the information can be coordinated.

Examples of PROGRANMDUNMP Statements

The following example analyzes and prints the program stack according to the value of
the OPTION task attribute of the program.

PROGRAMDUMP

The following example analyzes and prints the basic information plus the contents of all
arrays.

PROGRAMDUMP (ARRAYS)

The following example analyzes and prints the contents of arrays, value arrays, the base
of the stack, the segment dictionary, referenced code segments, and files.

PROGRAMDUMP (ARRAYS ,BASE,CODE,FILE)

The following example analyzes the maximum amount of information about the program
stack. The program dump is written to the printer.

PROGRAMDUMP (ALL,TOPRINTER)

The following example analyzes and prints the program stack according to the value of
DUMPPARAM.

PROGRAMDUMP (DUMPPARAM)

The following example is equivalent to the statement PROGRAMDUMP(FILES). This
statement analyzes and prints the contents of files of the program.

PROGRAMDUMP (0 & 1 [10:1])

8600 0098-505 4-119

PROGRANDUMP Statement

The following example analyzes the basic information plus the contents of all arrays and
database stacks. The information is written to a disk file.

PROGRAMDUMP (ARRAYS,DBS,TODISK)
The following example analyzes the information specified in the OPTION word of the
program because no program dump option was specified in the statement. The dump is

written first to the disk file and then to the printer file.

PROGRAMDUMP (TODISK,TOPRINTER)

4-120 8600 0098-505

READ Statement

READ Statement

The READ statement allows data to be read from files and assigned to program
variables.

Note: The syntax of the READ statement and the syntax of the WRITE statement are
nearly identical. Differences in the semantics are discussed following the syntax for each
Statement.

<read statement>

|—<for‘mat and list part>
<core-to-core part>—<format and Tist part>—

— READ — (—|:<f1'1e part

|—<act1’on labels or finished even’c>J

The action of the READ statement depends on the form of the <file part> element or
<core-to-core part> element and on the form of the <format and list part> element. If
the file was declared as a direct file, the <record number or carriage control> part
interpretation is governed in ways specific to the device type; this is less general than for
nondirect files.

The file part or the core-to-core part specifies the location of the data to be read.

The READ statement can be used as a Boolean function. When the read operation fails,
the value TRUE is returned. When the read operation succeeds, the value FALSE is
returned. The READ statement returns a value identical to that returned by the file

attribute STATE. For more information, refer to the discussion of the STATE attribute in
the File Attributes Programming Reference Manual.

File Part

<file part>

—<file designator B : : n {
<I/0 option or carriage control>

The file designator specifies the file to be read. For more information on the file
designator, refer to “SWITCH FILE Declaration” in Section 3, “Declarations.”

8600 0098-505 4-121

READ Statement

I/O Option or Carriage Control

4-122

<I/O option or carriage control>

— [arithmetic expression
L CONTROL — L, — SYNCHRONIZE]
— LINE
— SKIP
— SPACE —
— STACKER ——
— STATION —
— TIMELIMIT —
— NO
— STOP
— SYNCHRONIZE
—<subfile specification
>—] |

|

If the 1/O option or carriage control element is not specified, the record currently
addressed by the record pointer is read, and the record pointer is adjusted to point to the
next record in the file.

If the 1/O option or carriage control element is invalid for the physical file associated with
the file designator, it is in general ignored. If the file was declared as a direct file, the I/O
option or carriage control is overridden by the limitations of the particular I/O device type.

If the 1/O option or carriage control element is an arithmetic expression, its value
indicates the zero-relative record number of the record in the file that is to be read. The
record pointer is adjusted to point to the specified record before the read is performed,
and the record pointer is adjusted after the read operation to point to the next record.

The [CONTROL <arithmetic expression>] construct is meaningful only for KIND=LBP
direct files. The construct [CONTROL 1]is a READ modifier used to perform a Read
Information operation.

If the 1/O option or carriage control element is NO, then the record pointer is not
adjusted following the read operation. That is, the record can be read again. This I/O
option or carriage control element has no effect if the KIND attribute of the file being read
is equal to REMOTE.

If the I/O option or carriage control element is of the form

[SPACE <arithmetic expression>], then the number of records specified by the value of
the arithmetic expression are skipped. Spacing is forward if the arithmetic expression has
a positive value and backward if the arithmetic expression has a negative value.

The [TIMELIMIT <arithmetic expression>] construct, which is meaningful only for remote
files, assigns the value of the arithmetic expression to the TIMELIMIT attribute of the file.
Refer to the File Attributes Programming Reference Manual for information on the
TIMELIMIT attribute. The value of this attribute applies to all subsequent READ and
WRITE statements on that file. If the value of the TIMELIMIT attribute is greater than
zero and if no input is received within that number of seconds (the value can be
fractional), then a time-out error is reported.

8600 0098-505

READ Statement

The [STATION <arithmetic expression>] construct is meaningful only for remote files.
The value of the arithmetic expression is assigned to the LASTSUBFILE attribute of the
file. Refer to the File Attributes Programming Reference Manual for information on the
LASTSUBFILE attribute.
The [SYNCHRONIZE] construct is meaningful for the WRITE statement only.
Imported events and event arrays cannot be used as <event designator> s in a direct I/O
READ statement.

Subfile Specification

<subfile specification>

—E<r‘ead subfile specification '
<write subfile spec1'f1'ca’c1'on>J !

<read subfile specification>

J—[/l\— DONTWAIT : . | |
/1\— SUBFILE B . index>
<result>— :

<result>

—<arithmetic variable {

If the file to be read is a port file (a file for which the KIND attribute is equal to PORT), an
array row read containing a subfile specification must be used. For more information,
refer to “Array Row Read" later in this section.

The subfile specification is meaningful only for port files. It is used to specify the subfile
to be used for the read operation and the type of read operation to be performed.

If the subfile index is used, the value of the subfile index is assigned to the
LASTSUBFILE attribute of the file. It specifies the subfile to be used for the read
operation. If the subfile index is zero, a nonselective read is performed. If the subfile
index is nonzero, then a read from the specified subfile is performed. The result variable,
if any, is assigned the resultant value of the LASTSUBFILE attribute. For more
information on the LASTSUBFILE attribute, refer to the File Attributes Programming
Reference Manual.

If DONTWAIT is specified in a READ statement, and if no input is available, no data is
returned and the program is not suspended.

8600 0098-505 4-123

READ Statement

Core-to-Core Part

<core-to-core part>

—=<core-to-core file part
|—<core-to-core blocking paur"c>J

<core-to-core file part>

<array row |
E<po1'nter expression>—-
<subscripted variable>—

If the core-to-core part is specified in the READ statement, then a core-to-core read is
performed. A core-to-core read operation reads from a location in memory, not from a
physical device; therefore, it is much faster than a physical read. Editing is performed
exactly as it is performed when reading from a physical device.

If the core-to-core file part is a hexadecimal, or EBCDIC array row or pointer, then the
default record size (the number of characters considered to be in the record) depends on
the character size of the array row or pointer and is determined by the actual length of
the designated string.

The maximum size of the core-to-core file part for hexadecimal arrays is 65,535 words.
Core-to-core I/O on hexadecimal arrays longer than 65,535 words is permitted only if the
core-to-core file part is indexed far enough into the array such that the length between
that point and the end of the array does not exceed 65,535 words. If an attempt is made
to use an array or array segment more than 65,535 words long, a run-time error occurs.

For single-precision and double-precision array rows or subscripted variables, the default
record size is computed by multiplying the length of the array row (or remaining length of
the array row when a subscripted variable is used) by the number of characters per word.
The characters per word is 6 for single-precision and 12 for double-precision.

Core-to-Core Blocking Part

4-124

<core-to-core blocking part>

— (—<core-to-core record size J) —|

L , —<core-to-core blocking>

<core-to-core record size>

—<arithmetic expression |

<core-to-core blocking>

—<arithmetic expression {

To specify a record size smaller than the default size, a value can be provided for
core-to-core record size. This value is in terms of characters. By supplying a value for
core-to-core blocking, the file can be blocked into more records than the default number,
which is one.

8600 0098-505

READ Statement

With formatted I/O, if the format requires more records than indicated by the
core-to-core blocking value, a run-time error is given. Also, the format can require more
characters than the core-to-core file part contains; this situation also results in a run-time
error. In such cases, the number of characters indicated in the core-to-core blocking part
(this number is computed by multiplying the core-to-core record size by the core-to-core
blocking) can appear to be large enough to satisfy the format, but the core-to-core
blocking part can indicate more characters than the core-to-core file part actually
contains. The core-to-core file part, the core-to-core blocking part, and the format must
be compatible or run-time errors occur.

For example, the following statements result in errors:

BEGIN
ARRAY A[0:9];
REAL B,C;
READ (A(80),<T50,A6,110>,B,C); E
WRITE(A(15,3),<X5,115>,1,2,3); % Example 2
WRITE(A(20,2),<X5,115>,1,2,3) E
B :=" ITEM";
WRITE(A(15,4),<".",X2,A6,12,X4>,B,1,B,2,B,3,B,4); % Example 4
END.

. [
H %

The statement labeled “Example 1" in the preceding program results in a run-time error
(format error 217), because the format requires 65 characters, but the file part (array A)
contains only 60 characters.

The statement labeled “Example 2" results in a run-time error (format error 117),
because the format requires 20-character records, but 15-character records were
specified in the blocking part.

The statement labeled “Example 3" results in a run-time error (format error 120),
because the three list elements require three repetitions of the format. Thus, three
records are required, but only two records were specified in the blocking part.

The statement labeled "Example 4" fills array A with the following EBCDIC data
("I" denotes the end of the data):

ITEM1 . ITEM2 . ITEM3 . ITEM 4 |

8600 0098-505 4-125

READ Statement

Format and List Part

<format and list part>

— <format designator B I
, —<list
< —<editing specifications>— >

L ,» —<list>

* , —<list
<free-field part>—J
<arithmetic expression>— , <array row>

<subscripted variable>—
<pointer expression>—
<string variable>
<string expression>

<list>
TL<Hst eiement | |
|
<list des1’gna’co1r‘>J

<free-field part>

/
L« |—<number of co]umns>J L / il |—<co1umn w1'd’ch>J !

<number of columns>

— [—<arithmetic expression>—] {

<column width>

— [—<arithmetic expression>—] {

The format and list part element indicates the interpretation of the data in the file and the
variables to which the data is assigned.

If the format and list part element does not appear, the input record is skipped.

Formatted Read

4-126

A READ statement that contains a format designator, editing specifications, or a
free-field part is called a formatted read.

A format designator without a list indicates that the referenced format contains a string
literal into which corresponding characters of the input data are to be placed. The string
literal in the FORMAT declaration is replaced by the string literal in the input data.

A format designator with a list indicates that the input data is to be edited according to
the specifications of the format and assigned to the variables of the list.

Editing specifications can appear in place of a format designator and have the same
effect as if they had been declared in a FORMAT declaration and had been referenced
through a format designator. For more information, refer to “FORMAT Declaration” in
Section 3, “Declarations.”

8600 0098-505

READ Statement

On any formatted I/O statement (excluding core-to-core I/O), the number of characters
allowed in the record is determined solely by the value of the file attribute MAXRECSIZE
of the file. If the format requires more characters than are contained in the record, a
format error occurs at run time.

The free-field part is discussed under “Data Format for Free-field Input” later in this
section.
Binary Read
A READ statement of the following form is called a binary read:
READ(<file part>,*,<list>)

An asterisk (*) followed by a list specifies that the input data is to be processed as full
words and assigned to the elements of the list without being edited. The number of
words read is determined by the number of elements in the list or the maximum record
size, whichever is smaller.

When data is read into character arrays, only full words are read. If there is a partial word
left at the end of the data, it is ignored. For example, if A is an EBCDIC array and FILEID
contains the string 12345678, the following statement reads only the characters 123456:

READ(FILEID,*,A)
When a string is read into a string variable using a binary READ statement, the first word
read from the record is assumed to specify the length of the string. This word is
evaluated, and the resulting value is the number of characters read beginning with the
next word of the record. The binary WRITE statement automatically writes a word of
length information before the text of each string variable; therefore, the following WRITE
statement can later be read by the following READ statement:

WRITE(F,*,STR,STRARRAY[5],STR || "ABC")

READ(F,*,STR1,STR2,STRARRAY[0])

For more information, see “Binary Write” under “WRITE Statement” later in this section.

The results are undefined for binary READ statements that attempt to read data not
containing length information into string variables.

8600 0098-505 4-127

READ Statement

Array Row Read

4-128

A READ statement of any of the following forms is called an array row read:

READ(<file part>,<arithmetic expression>,<array row>)

READ(<file part>,<arithmetic expression>,<subscripted variable>)
READ(<file part>,<arithmetic expression>,<pointer expression>)
READ(<file part>,<arithmetic expression>,<string variable>)

The first three forms of the array row read specify that input data is to be read without
editing and assigned left-justified to the array specified by the array row, subscripted
variable, or pointer expression. The arithmetic expression specifies the number of words
or the number of characters, depending on the value of the FRAMESIZE attribute for the
file, to be read. Refer to the File Attributes Programming Reference Manual for
information on the FRAMESIZE attribute. The number of words or characters actually
read equals whichever of the following values is smallest:

e The MAXRECSIZE attribute of the file being read

e The length of the array row (or portion of the array to the right of where the pointer
expression points or to the right of the element specified by the subscripted variable)

e The absolute value of the arithmetic expression

A READ statement of the following form specifies that input data is to be read without
editing and assigned to the string variable:

READ (<file part>,<arithmetic expression>,<string variable>)

The number of characters read is the smaller of the value of the MAXRECSIZE attribute
of the file being read or of the absolute value of the arithmetic expression. The value of
the arithmetic expression always specifies the number of characters (not words) to be
read.

The following is an example of an array row read:

BEGIN
FILE IN(TITLE="TEST.", UNITS=CHARACTERS, MAXRECSIZE=20);
STRING S$1,52;
READ(IN,15,S1); % READS 15 CHARACTERS INTO S1
READ(IN,50,S2); % READS 20 CHARACTERS INTO S2

END.

o

8600 0098-505

READ Statement

Action Labels or Finished Event

<action labels or finished event>
— [

»——<eof label

: <parity error label> B

—<eof 1abe1>J : <data error Tabel> —

| : <data error Tlabel>
—<eof label>
L<event designator

>—] I

<eof label>

—=<designational expression {

<parity error label>

—=<designational expression }

<data error label>

—=<designational expression {

The action labels or finished event element provides a means of transferring control from
a READ statement, WRITE statement, or SPACE statement when exception conditions
occur. A branch to the eof label takes place when an end-of-file condition occurs. A
branch to the parity error label takes place if an irrecoverable parity error is encountered.
A branch to the data error label takes place if a conflict exists between the format and
the data.If the appropriate label is not provided when an exception condition occurs, the
program is terminated.

The [<event designator>] syntax can be used only for direct I/O. The event is caused
when the I/O operation is finished. For more information, refer to “Direct I/O" under “1/O
Statement” earlier in this section.

Exception conditions occurring during a READ statement can also be handled without the
use of the action labels or finished event syntax. The READ statement can be used as a
Boolean function, and the value returned can be tested to determine if any exception
conditions exist. For more information, refer to the discussion of the STATE attribute in
the File Attributes Programming Reference Manual. When exception conditions are
handled in this manner, the action labels or finished event syntax cannot be used. The
user assumes all responsibility for handling exception conditions. Core-to-core |/O
statements of the following forms cannot be used with the action labels or finished event
syntax and cannot be used as Boolean functions.

READ(<array row>,<arithmetic expression>,<array row>)
WRITE(<array row>,<arithmetic expression>,<array row>)

Attempting to do either results in a syntax error.

8600 0098-505 4-129

READ Statement

Data Format for Free-Field Input

The use of a free-field part element in a READ statement allows input to be performed
with editing but without using editing specifications. The appropriate format is selected
automatically.

On input, only the simplest forms of the free-field part, a single slash (/) or double

slash (//), can be used. These formats allow input from records in the form of free-field
data records. A single slash indicates that data items are delimited by a comma; a double
slash indicates that data items are delimited by one or more blanks.

Free-Field Data Format

The format of a free-field input data record is as follows:

| fi | |
eld
|—<exp11’c1’t del 1'm1'te\r‘>J !

<field>

<unquoted string field delimiter

<number
<quoted string>— L—<commentary>-—
<hex string>

*

<unquoted string>

Any string not containing an <explicit delimiter>.

<quoted string>
— <EBCDIC string> }

<hex string>

— 4" —<hexadecimal string>— |

<commentary>

Any string not containing an <explicit delimiter>.

<field delimiter>

<explicit delimiter |
|:<end-0f-\r‘ec0\r‘d>Q !

<explicit delimiter>

Comma (,) for the single-slash form or one or more blanks for the double-slash form. An
empty record is not considered an explicit delimiter.

<end-of-record>

The end of the input record.

4-130 8600 0098-505

READ Statement

Fields

Each record of free-field input data must be in the form described earlier.
Empty records are ignored. The commentary option is ignored.

Each field except the slash is associated with the list element to which it corresponds by
position.

The single-slash format interprets a field that contains only a comma or a comma
preceded by blanks as a null field. Such a field is skipped along with its associated list
element, which is left unaltered.

The different types of fields are described in the following paragraphs.

Unquoted String

Number

If an unquoted string is read into a list element of type string or pointer, all characters
preceding the explicit delimiter (including quotation marks if present) are transferred to
the list element. The end-of-record is not recognized as a delimiter.

If an unquoted string is read into a list element of type string, characters are read until an
explicit delimiter is detected or until the maximum string length (2**5 - 2) is reached.

If an unquoted string is read into a list element of type pointer, characters are read until
an explicit delimiter is detected or until the end of the array is reached.

If an unquoted string is read into a list element of type Boolean, the value TRUE is
assigned to the list element if the first character of the string is T. If the first character is
not the letter T, the value FALSE is assigned to the list element. The unquoted string is
read until a field delimiter is detected.

If an unquoted string is read into a list element of any type other than string, pointer, or
Boolean, it is treated as commentary.

A number that is represented as an integer is treated as type INTEGER unless it is larger
than the largest allowable integer, in which case it is treated as type REAL. Numbers that
contain a decimal fraction are treated as type REAL. However, when the list element is
double-precision, results are treated as type DOUBLE. When the field delimiter is a
comma, blanks within numbers are ignored.

Complex values are divided into real and imaginary values. When a complex variable or
complex subscripted variable appears in the list of a free-field READ statement, two
fields are necessary to complete the read operation. The value in the first field is
assigned to the real part, and the value in the second field is assigned to the imaginary
part.

8600 0098-505 4-131

READ Statement

Quoted String

A quoted string of any length can be read into single-precision or double-precision list
elements. Each single-precision EBCDIC list element receives six characters

(12 characters for double-precision list elements), until either the list or the string is
exhausted. If the number of characters in the string is not a multiple of six (for EBCDIC)
then the last list element receives the remaining characters of the string. The string
characters are stored, right-justified, in the list elements.

Hex String

Slash (/)

A hexadecimal string can be read into a single-precision or double-precision list element.
If fewer than 12 hexadecimal digits are read into a single-precision variable (or fewer than
24 hexadecimal digits into a double-precision variable), the string is stored right-justified
in the variable. If a minus sign precedes the string (for example, —4"A"), bit 46 of the
resulting value is complemented.

The slash field causes the remainder of the current buffer to be ignored. The buffer
following the slash is considered the beginning of a new field. The slash is a field by itself
and must not be placed within another field or between a field and its explicit delimiter.

Asterisk (*)

4-132

The asterisk field terminates the READ statement. The program continues with the
statement following the READ statement. The list element corresponding to the asterisk
remains unchanged, as do any subsequent elements in the list.

8600 0098-505

READ Statement

Examples of Fields

8600 0098-505

1,

2.5, / anything to the right of a slash is ignored

2.48 @ -20, / blanks are ignored if using single-slash editing
34 / two data elements if the delimiter is a blank
3,4, / two data elements if the delimiter is a comma
"THIS IS A QUOTED STRING"

THIS IS AN UNQUOTED STRING AND THE DELIMITER IS A COMMA, 123
THIS-IS-AN-UNQUOTED-STRING-AND-THE-DELIMITER-IS-A-BLANK 456
2.5 ANY COMMENT OR NOTE NOT CONTAINING A COMMA,

4"AB" / A HEX STRING

-4"40000000000A" / BIT 46 IS COMPLEMENTED, THE RESULT = +10

»»» / null fields; the three corresponding T1ist elements are
/ skipped with no alteration to their contents.

4, ,5 / null field is ignored

* THIS DATA RECORD TERMINATES THE READ STATEMENT

4-133

READ Statement

Examples of READ Statements

READ(FILEID)

READ(FILEID, FMT)

READ(FILEID, FMT,LISTID)

READ(FILEID,*,LISTID)

READ (SPOFILE,FMT,A,B,C)

READ(SPOFILE,/,SIZE,LENGTH,MASS)
READ(FILEID,FMT,7,2,A,B,C,ARAY[A] ,B+C,F)
READ(FILEID,/,J,FOR I:= 0 STEP 1 UNTIL J DO ARRY[I])
READ(FILEID,*,A,B,C,FOR A:= B*A STEP C UNTIL J DO ARY[I])
READ(SWFILEID[IF X > N THEN X+N ELSE 0],25,ARRY[2,*])
READ(FILEID,/,SWLISTID[I])

READ(FILEID, FMT,SWLISTID[I])

READ (SPOFILE, SWFMT[16],A,B,C)

READ(FILEID,50,STR)

READ(FILEID,/,L,M,N,ARRY[2]) [EOFL]

READ(FILEID[3][NO]) [:PARL]

READ (SWFILEID[14] [NO] , FMT,A+EXP(B),ARRY[I,J,*]) [:PARSWL[M]]
READ(FILEID[NO],SWFMT[6+J],LISTID) [EOFSWL[Q*3]::DATAERRORL]
READ (SWFILEID[A+B] ,*,SWLISTID[2+H/K]) [EOFL:PARL]
READ(FILEID[NO]) [EOFSWL[I]:PARSWL[J]]

READ(FYLE) [EOFL:PARL:DATAERRL]

READ(DIRFYLE) [EVNT]

READ(DIRFYLE,30,DIRARAY) [EVNT]

4-134 8600 0098-505

REMOVEFILE Statement

REMOVEFILE Statement

The REMOVEFILE statement removes files without opening them.

<removefile statement>
— REMOVEFILE — (—<directory element>—) }

Directory Element

The syntax and semantics of the directory element appear under “CHANGEFILE
Statement” earlier in this section.

If the directory element is a directory name, all files in that directory are removed. If the
directory element is both a file name and a directory name, that file and all files in the
directory are removed.

A directory element of the form <file name>/= removes only files in that directory. It
does n