APPLICATION DEVELOPMENT
SOLUTIONS

COBOL ANSI-85

Programming Reference Manual

Volume 1:
Basic Implementation

ClearPath MCP Release 8.0

Printed in USA
February 2003 8600 1518-307

APPLICATION DEVELOPMENT
SOLUTIONS

COBOL ANSI-85

Programming Reference Manual

Volume 1:
Basic Implementation

UNISYS

© 2003 Unisys Corporation.
All rights reserved.

ClearPath MCP Release 8.0

Printed in USA
February 2003 8600 1518-307

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys and ClearPath are registered trademarks of Unisys Corporation in the United States and other countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

Application Development
Solutions
COBOL ANSI-85

Programming Reference
Manual

Volume 1:
Basic Implementation

ClearPath MCP
Release 8.0

8600 1518-307

Application
Development
Solutions

COBOL ANSI-85

Programming
Reference
Manual

Volume 1:
Basic
Implementation

ClearPath MCP
Release 8.0

8600 1518-307

Bend here, peel upwards and apply to spine.

Contents

Section 1. Program Structure and Language Elements

About This Manualcoeiiiii e 1-1
PUIPOSE ..o 1-1

AUIBNCE ... 1-1
CONVENTIONS ..o 1-2
Acknowledgments ... 1-2

Program OVEIVIEWoiuiiiiiiiiii et 1-3
Divisions of a Source Programcccccoiviiiiiiiiiiiiiicee e 1-3
Contents of @ DIVISIONcciviiiiiie 1-4
Reference FOrmat ... 1-b
Division and Section Headers. ... 1-7
LeVel-NUMDEIS ... e 1-8
Special-Purpose Lines—Fixed Indicatorscccoooovvviiiieeccc 1-9
ContinuUAation LINEScooiiiiiii 1-9

CommeENt LINES ..o 1-10

Floating Comment Indicator..........ccccoeeiviiiiiiiiiieeceiceee 1-11
Debugging LiNeS ..veeiiiiiiiiie e 1-11

Compiler Control Option LiNES........ccccveeeviiiieiiiiiieeiiiee, 1-12

Blank LiNeS ... 1-12
PSEUAOTEXT .. oo 1-12

COBOL Character Setcoieiiiiiieeee e 1-13
Using Separator Characters for Punctuation..........ccccceeeeiiiiiiiinee. 1-14
Types of COBOL WOIAS.......cccuviiiiiiiiiiiiiiie e 1-16
Reserved Words ..., 1-16
CONNEBCTLIVES ..o 1-17

Figurative ConstantS........cccccovvviiiiiiiiiiicciie e, 1-17

FUNCLIONS ..o 1-19

Special RegiSters......oocooviiiiiiiiiiie e, 1-20

Arithmetic and Relational Operatorscccc.coou.... 1-22

SysSteM-NaAMES . ..ooiiiiiiieeee e 1-23
User-Defined Wordsooooiiiiiiiiiiiiicieecccccccccceccceeeeeeeee 1-24

BNt IS e 1-28
L BraIS e 1-29
NonnuMErC LIterals.........oeeiiieeiiiie e 1-30

National Literals ..., 1-31

NUMENC LIteralScoooiiiiie e 1-32

Undigit Literals ... 1-33
Floating-Point Literals...........ocooooiiiiiiii 1-34

Boolean Literals ..., 1-35

8600 1518-307 iii

Contents

Section 2. Identification Division

General FOrMAtuiiiiicc e 2-1
|dentification Division Header ... 2-1
PROGRAME-ID Paragraphcooouueiieeeeeeeeeeeeee e 2-2
IS COMMON PROGRAM Clausecccvvvveeeeeiiiiiiiieceee 2-3
IS INITIAL PROGRAM ClauSeccvvvviiiiiiiiiiiiiieieciie e 2-3
IS LIBRARY PROGRAM ClauSe€...........ooeviiiiiieiiiiieiiiie, 2-3
IS DEFINITION PROGRAM ClauSe.........cccveveeiiiiieiiiia, 2-3
AUTHOR Paragraphco.ueiiiiiiiiiieiieee e 2-4
INSTALLATION Paragraphcoooeioiiiiieeeeeeeeeeeee e, 2-5
DATE-WRITTEN Paragraphccoovviiiiiieieice e 2-6
DATE-COMPILED Paragraphcoooiiiiiiiiiiiiiiieeeieee e, 2-7
Security Paragraph 2-8

Section 3. Environment Division

General FOrMAtoii i 3-1
Environment Division Headercccooiiiiiii 3-1
Configuration SECHION........oiiiiii i 3-2
Configuration Section Header............c..ccoooviiiiiiiiicicice, 3-2
SOURCE-COMPUTER Paragraph........cccoovviieiiiiiieeiiiee, 3-3
OBJECT-COMPUTER Paragraphcccooevvieiiiiiiieiiiee, 3-4
MEMORY SIZE Clausec..ccoovvevveiiiiiiciiicceee, 3-5
DISK SIZE ClauSecooiiiiiiiiiiiiieee e, 3-5
PROGRAM COLLATING SEQUENCE Clause............. 3-6
SPECIAL-NAMES Paragraphcccccoovvviiviiiiiiiieceeee 3-7
CHANNEL ClauSeccooooiiiiiiiiiiiicee 3-10
ODT ClaUSE ... 3-10
SWITCH-NAME Clause.......cccooiviiiiiiiiieiiiiiieeiiiee 3-10
ALPHABET ClauSec..oooviiiiiieiiceceeccee e, 3-11
SYMBOLIC CHARACTERS Clausecccceeevivnienns 3-16
CLASS ClaUSE ..vveieiiiiiiee e 3-17
CURRENCY SIGN ClauSe........ccc.coeiviviiiiiiiiiiaiiiienn, 3-18
Literal-7 IS MNEMONIC-NAME Clause 3-19
DECIMAL-POINT Clause.........ccccooviiviiiiiiiiiiiieenn, 3-19
DEFAULT DISPLAY SIGN and DEFAULT
COMPUTATIONAL SIGN Clauses...........cccc.ce... 3-19
INPU-OULPUL SECTIONoei i 3-21
Input-Output Section Header........ccoceeivviiiiiiiiiicecee, 3-21
FILE-CONTROL Paragraphcc.ccoovviiieiiiiiieiiiieeeece, 3-22
General Format of the FILE-CONTROL
Paragraph......ooooii 3-22
File Control Entry Format 1: Sequential
Organizationeioieiiiiiiec e, 3-23
File Control Entry Format 2: Relative
Organizationeooieiiiiiiec e 3-30
File Control Entry Format 3: Indexed /O 3-34
File Control Entry Format 4: Sort-Merge................... 3-39

v 8600 1518-307

Contents

Section 4.

8600 1518-307

I-O-CONTROL Paragraphc..coooviiiiiiiiiieiiiieeeeee e, 3-41
Input-Output Control Entry Format 1:
Sequential I/O ..o 3-41
Input-Output Control Entry Format 2: Relative
and Indexed Organizationccccccoevvieeeiiinieeenn 3-44
Input-Output Control Entry Format 3: Sort-
MEIGE . e 346
1O Status COES .. uvviiiiiiiiiiiiiie e 3-49
Recovering from O Errors........ccoovviieiiiiiiiiiiiceeee e, 3-56
How the Recovery Process OCCUrs......ccccceeeeeiieeiiiinnnne. 3-57
Modifying the Recovery Process for COBOL74
CompPatiDility ...oovviie i 3-58

Data Division

Structure of the Data DIVISIONcoiiiiiiiiiiicccce e, 4-1
Record CONCEPTS .oovieiieiieeeeeeee e 4-2
LeVel CONCEPLS ..vviiiiiiiiiiiiii e 4-3
LeVel-NUMDETS 4-4
Level Indicators (FD, SD)......coovvviiiiiiiiiiiiiececcieeee 4-4
Classes and Categories of Data ltems.........c.cccevveeiiiieeennn, 4-5

Class and Category of Figurative Constants
and Intrinsic Functions..................cc 4-6
Long Numeric Data [temsvvvvvvvviiieiiiiiiiiiiiinnn 4-7
AlgEDTaIC SIgNS ..o 4-8
Standard Alignment RUIESoccvviiiiiiiiiiiiieecieeee 4-8
Increasing Object-Code Efficiency.......ccccccovviiiiiiiiiiiiinnn, 4-9
Unigqueness of Referencecccccccoiiiiiiii, 4-9
QUAITICATION .o 4-10
Reference Modifiersccco 4-14
General FOrMAt.ooiiiiiiiii e 4-17
Record Description ENtry ... 4-18
Data Description Entry Format 1. 4-19
Data-Name or FILLER Clausecocccveeviiiiiiiiiiicceiice, 4-22
REDEFINES ClauSe.....ccovviiiiiiiiieeciiceeeeeeeeeee e, 4-23
ALIGNED ClaUSEoooiiiiiiiieiee e 4-24
BLANK WHEN ZERO ClausSeccovvvviiiiiiiieiiiiieeceieee 4-24
COMMON ClaUSEvvviiiiiiiiiciiiiie e 4-25
INTEGER and STRING Clauses............cooceveviiiiieiieeee, 4-26
JUSTIFIED (JUST) ClauSecvvveevieeeieeeceeeeeee e 4-26
LOCAL ClAUSE ... 4-26
LOWER-BOUNDS ClaUSEccveveeiiiiiieiiiieeiieeeee, 4-27
OCCURS ClaUSE ..o 4-28
OWN ClaUSEoviiiiiiiiiiei e 4-31
PICTURE ClauSeuvvvieeieiieeeeeeeeeeeeeeeeeeee 4-32
ReSTrCTIONS ..o 4-32
SYMDOIS ... 4-33
Categories of HeMS. ..o, 4-38
Determining the Size of an Elementary Item............ 4-40
Editing RUles ..o 4-41
Precedence Rulesccccoiiiiiiiii 4-47

Contents

Vi

RECEIVED BY Clauseccocoieiiiiiiiiiiieeee e, 4-49
RECORD AREA ClauSe........cccoiuuiiieiiieeeeieeee e 4-50
SIGN ClausSe.....coooiiiii 4-50
SYNCHRONIZED Clausecooouvveiiiiieeeeiieeeeeeee 4-52
TYPE ClaUSE ... 4-53
USAGE ClaUuSe ... 4-54
USAGE IS BINARY ..o, 4-55
USAGE IS BIT ..o, 4-56

USAGE IS COMPUTATIONAL and USAGE IS
COMP oo 4-57

USAGE IS COMPUTATIONAL-5 and USAGE
[SCOMP-5.....ooiiiiiii i, 4-57
USAGE IS CONTROL-POINToooiiiiiiiiiiieee, 4-57
USAGE IS DISPLAY ..o, 4-58
USAGE ISDOUBLE ..., 4-58
USAGE IS EVENT ...ttt 4-59
USAGE IS INDEX ..o, 4-60
USAGE IS LOCK ..., 4-61
USAGE IS KANJI (Obsolete)ccccoevviiiiiiiiiii, 4-61
USAGE IS NATIONALoooiii 4-62
USAGE IS PACKED-DECIMALoooiiiieeeeee, 4-62
USAGE IS REALooiiiiiiiiiei 4-62
USAGE IS TASK ..., 4-63
VALUE ClaUuSe......ovviiiiiiieieeeeeeee e, 4-64
Data Description Entry Format 2: Level-66 RENAMES Entry............. 4-67
RENAMES Clause.......cvveeiiiieiiieeeeeeeeeeeee e 4-68

Data Description Entry Format 3: Level-88 Condition-Name

ENtry. 4-70
VALUE ClaUuSe......uuviiieiiiei e, 4-71
Data Description Entry Format 4: IPC.........ccoooviiiiiiiiiieeee, 4-75
Data-Name or FILLER Clausecccccoevviiiiiiiiiici 4-77
COMMON ClaUSE.......ccceeiiiiieeee e 4-77
EXTERNAL ClaUSe ...ovvviiiiieeieeeeeeeee e 4-77
GLOBAL ClaUSE....ccoe e, 4-78
OWN ClaUSE ... 4-78
REDEFINES ClauSe......ccoeiiiiieiiiieeeeeeeeeeeeeeee e 4-79
VALUE ClaUuSe......uvviiiiiiieieeeeeee e, 4-79
Data Division Header ... 4-80
File SECTION. ... 4-81
File Description Entry Format 1: Sequential I-O...........ccoooeviiiiiiiieen, 4-82
BLOCK CONTAINS ClauSecccuvvveeeieeeeiiieeeeeeeec 4-84
CODE-SET ClauSe......coooeiiiiiii 4-86
DATA RECORDS ClauSecooouviiieeeeeeeeeeeeeeeeee 4-87
LABEL RECORDS Clause.....ccouvvveeeieeieiieeeeeeeeee 4-87
LINAGE Clause ... 4-88
RECORD ClauSe ... 4-91
VALUE OF ClaUSe....ccciiiiiiiieeeee e 4-95
File Description Entry Format 2: Relative I-O, Indexed I-O.................. 4-98
BLOCK CONTAINS ClausSeccuvvveeeieeeeiiieeeeeeeee 4-99
Variable Length Records........cccooiiiiiiii 4-100

8600 1518-307

Contents

File Description Entry Format 3: Sort-Mergeccccoeeviiiieiiiine, 4-101
DATA RECORDS ClaUSEccciuvieiiiiiiiieeiiiieececiiee e 4-102
RECORD ClaUSEooiiiiiiiieiiiiieeeceeeeeeee e, 4-102
File Description Entry Format 4: IPC and Sequential I-O 4-103
EXTERNAL ClauSe ..voooiiiiiiieiiiiiceeeeeeeeeeeee e, 4-105
GLOBAL ClaUSE ...eieiiiiiiecciiiie e 4-105

File Description Entry Format 5: IPC, Relative 1-O, and Indexed
0 e 4-107
Working-Storage SECHION.......ccviiiiiiiiiiice e 4-109
Noncontiguous Working Storage..........coceeevviiieeiiiiieennn, 4-110
Working-Storage Recordsccocvvieeviiiiiiiiiiieeiiicee, 4-110
Initial Values . ..o 4-111
LINKAge SECHIONoooiiiiiiiiie e, 4-112
Noncontiguous Linkage Storage...........cccceeeivivieeiiiiieenns 4-113
Linkage ReCordsuoviiiiiiiiiiiiiieeeee e 4-113
Initial Values . ..o 4-114
Local-Storage SeCtioN..........coooiiiiiiiii e 4-115
Noncontiguous Local-Storagecooeeeeiiiiiiieiiiin, 4-116
Local-Storage Recordscccccooiiiiiiiiiiiiiii 4-116
Initial Values ... 4-116
Library Description Entry Format 1: Export Definition 4-118
ATTRIBUTE ClaUSEcvvviiiiiiiiiiiiicce e 4-119
ENTRY PROCEDURE ClauSeoocoveiiiiiiiiiiicii 4-119
Library Description Entry Format 2: Import Definition 4-121
ATTRIBUTE ClaUSEcvvviiiiiiiiiiiiicce e 4-122
ENTRY PROCEDURE ClauSeccc.coooviiiiiiiiiiiiiiiii 4-123

Section 5. Procedure Division Concepts

Structure of the Procedure DiVISIONcoooeiiiiiiiiiiieciceeeeeee 5-2

General FOrMAtSoooiiii e 5-2

Procedure Division Header ..., 5-2

Declarative Procedure Formatcoooeeeii . 5-6

Nondeclarative Procedure Formatcooooeeiiiiiiiiiiiiienn, 5-8

End Program Header...........coooooiiiiiiii, 5-9

Elements of a Procedure..............cooo 5-10

Statement Scope Terminatorscccoeeeeevviiieeeeee e 5-11

Explicit Terminators.......cccoviiviiiieiiiieeeee e 5-11

Implicit Terminators.........ccoocciiiiiiiie b-12

Types of Statements and Sentences............cccccvvveeeeieen, 5-12

Imperative Statements and Sentences..................... 5-13

Conditional Statements and Sentences.................... 5-14
Compiler-Directing Statements and

SENTENCES .. 5-15

Delimited Scope Statementsccccvvveeeeeeieiinn. 5-15

Categories of Verbs ..., 5-16

Arithmetic EXPresSions ..o b5-26

Allowed Combinations of Elementscccccciii, 5-27

Precedence in Evaluation of Arithmetic Expressions 5-28

Rules for Exponentiation.........ccccccieiiiiiiii 5-29

Intermediate Data HEeMuuuiiiiiiiiiiiiiiiiiii 5-30

8600 1518-307 vii

Contents

General Rules for Arithmetic Statements.......................... 5-31
Data DesCriptioNS.......viiiieiiiiiiiiii e 5-31
Operand Size Limit......cccoooviiiiiiiiie e 5-32
Multiple Results in Arithmetic Statements............... b-32
ROUNDED Phrasecccooovuiiiiieieiiiiiiiieeeeeee, 5-33
SIZE ERROR Phraseccocoeeiiiiiiiiieecieee 5-35
OFFSET FUNCLION ..ot 5-36
Boolean EXPreSSIONSiiiiiiiiiiiiiiee e 5-37
Conditional EXPreSSIONSo.vviiiiiiiice e 5-39
Simple ConNditioNS........oviiiiiiiiiiiee e 5-40
Relation ConditionScoooiiiiiiiieie e 5-40
Class ConditioNScooiuiiiieeie e 5-49
Condition-Name Conditionscccceeeeeeieiiiiiiieeeee, 5-52
Switch-Status ConditionS.........ccovvveeieiiiiiieee, 5-53
SigN ConAItIONS ..vveeeiiviieicciiee e 5-54
Event Condition.............cccoooiiii 5-55
Boolean Condition.............coooovviiieieieeeiiieeee e 5-55
Negated Simple ConditionScoovvveeiiiiiieiiiieeeceee, 5-56
Complex CoNAItIONSviiiiiiiieiiiie e 5-57
Allowed Combinations of Elements 5-58
Combined Condition Format............ccccoeeviiiie, 5-60
Abbreviated Combined Relation Conditions 5-61
Precedence in Evaluation of Complex
CoNAItiONS ..o b-64
Table Handling........cooooiiiiiii e 5-66
Defining a Table ... 5-66
Table DIMENSIONSuuiiic e 5-67
INDEXED BY Optionoveiiiiiiceeeeeeeeeeeeeeee e, 5-68
Initializing Tables ... 5-69
In the Data DIVISIONvevvviviiiiiiii 5-69
In the Procedure DiViSion..........cccccvvvviviiiiiiiiiiiiii, 5-70
References to Table ltems 5-70
Sort and Merge OPErationScvvveeiivieeieiiiee et 5-75
SOMtING oo 5-75
METFQING oo 5-75
Sort and Merge Constructsooovvveveieiieiiiiieeeeeee, 5-76

viii 8600 1518-307

Contents

Section 6.

8600 1518-307

Procedure Division Statements A-H

FAN O O =Ll I ¢=) (= 0 0= 0 6-2
Format 1: Transfer Data from Hardware Device.................. 6-2
Format 2: Transfer Data from Date and Time
REQISTEIS .t 6-5
Format 3: Transfer Number of Storage Queue
ENtriES . 6-8
Format 4: Transfer Formatted System Date and
TIME 6-9
ADD StatBMBNT ..o 6-10
Format 1: ADD .. . TO oo 6-10
Format 2: ADD ... TO ... GIVING........c...cccoiiiii 6-12
Format 3: ADD CORRESPONDINGcccoooiiiiiiie. 6-14
ALLOW Statement..........cooiiiiiiiie e 6-16
ALTER StatemeNnt......ooveeiiiiiieie e 6-17
ATTACH Statement..........ooooiiiii e 6-18
CALL Statement . ..oooo i 6-20
Format 1: CALL with ON OVERFLOW Option 6-21
Format 2: CALL with ON EXCEPTION Option................... 6-24
Format 3: CALL a System Procedurecooceeen. 6-30
Format 4: CALL for Bindingcccccoovviiiiiiiiiiiiiiice 6-34
Format 5: CALL for Library Entry Procedure...................... 6-36
Format 6: CALL for Initiating a Synchronous,
Dependent ProCESSccoooviiiiiiiiiiiieiiie e 6-40
Format 7: CALL MODULEccccoiii 6-44
CANCEL Statement ... 6-47
CAUSE Statement.......cooiiiiiiiie e 6-50
CHANGE Statement............ovvviiiiiiiiiieee e 6-52
Format 1: Changing the Value of a Numeric File
ATETOULE . 6-52
Format 2: Changing the Value of an Alphanumeric
File ATrDULE ..uuveieiiceccccccce e 6-54
Format 3: Changing the Value of a Mnemonic File
ATETOULE .. 6-55
Format 4: Changing the Value of a Library Attribute 6-56
Format 5: Changing the Value of a Task Attribute.............. 6-58
CLOSE Statementcooooiiiiiii 6-62
Format 1: Sequential IOcoooiiiiiiiiiii e, 6-62
Format 2: Relative and Indexed I-Occoeeiil, 6-71
COMPUTE Statementocooiiiiiiii 6-74
Format 1: Arithmetic COMPULecccvvvveviiiiieiiiiececiiee, 6-74
Format 2: Boolean Compute..........ccccoovviiiiiiiiiiiiiie, 6-77
CONTINUE Statementcooooiiiiiii 6-78
Format 1: Designating an Unexecutable Line of
COAB 6-78
Format 2: Returning to the Called Process........................ 6-79
COPY Statementcoooiiiiiiii 6-80
DEALLOCATE Statement...........ovvviiiiieiiiiieeeeee e 6-88
] I W) =) (=Y 0 2= 0 6-89

Contents

Section 7.

DETACH Statementooooiiiiii 6-92
Format 1: Detaching from a Task Variable 6-92
Format 2: Detaching froman Eventooo 6-93
DISALLOW StatemMent.........ccooiiiiiieieeeee e 6-94
DISPLAY Statement.....ccoooiiiiiiieii e 6-95
DIVIDE Statement.....cooooiiiiiiiieie e 6-98
Format 1: DIVIDE . . . INTO ..o 6-99
Format 2: DIVIDE .. . INTO .. . GIVINGcceuvnnne. 6-101
Format 3: DIVIDE .. .BY ... GIVINGeoee 6-103
Format 4: DIVIDE .. . INTO ... GIVING . ..
REMAINDER ... 6-105
Format 5: DIVIDE .. . BY ... GIVING . ..
REMAINDER ... 6-107
EVALUATE Statement ..o 6-109
EXIT Statement ..o 6-119
Format 1: EXIT from an Out-of-Line PERFORM............... 6-119
Format 2: EXIT from a Called Program (ANSI IPC) 6-121
Format 3: EXIT from a Bound Procedure 6-123
Format 4: EXIT from a Called Program (Tasking)............. 6-123
Format 5: EXIT MODULEoco 6-124
Format 6: EXIT from a PERFORM Statement................. 6-125
GO TO StatemMEeNt ..o 6-128
Format 1: GO TO .. 6-128
Format 2: GO TO ... DEPENDING ON.......cooeevei 6-129

Procedure Division Statements I-R

L S AT BMIEINT L. 7-2
INITIALIZE StatemeNnTt 7-6
INSPECT StatemMENTceiiiiiieiiiieeeee e 7-10
Format 1: INSPECT . . . TALLYING.........oooeeeiiiiiiii, 7-10
Format 2: INSPECT ... REPLACING........ccoooeeiiiiiiiiiin, 7-15
Format 3: INSPECT . .. TALLYING and REPLACING........ 7-19
Format 4: INSPECT. . . CONVERTING...........oooeeiiiiiii 7-21
LOCK Statementcoooiiiiiie 7-23
LOCKRECORD Statementcooooviiiiii 7-25
MERGE Statement... ..o 7-28
MOVE Statement.....ccoooiiiiiii 7-37
Format 1: MOVE Dataoooooeiiiiiii 7-37
Format 2: MOVE CORRESPONDING...........ooooeviiii 7-44
Format 3: MOVE Selected Bitsccooovviiiiiiiiiii 7-47
MULTIPLY Statement......oooooiiiiiiiee 7-49
Format 1: MULTIPLY ..o 7-49
Format 2: MULTIPLY .. . GIVING............ooooeii 7-51
OPEN Statement......ccoooiiiiii 7-54
PERFORM Statement.......coooiiiiiiii 7-63
Format 1: Basic PERFORM ... 7-63
Format 2: PERFORM .. . TIMEScccco 7-66
Format 3: PERFORM .. . UNTIL......ooooiiiii 7-69

8600 1518-307

Contents

Format 4: PERFORM .. . VARYING............ccccoiiiiii 7-71
Rules for ldentifiers.........cccooooviiiiiiiiiiiie 7-73
Rules for Arithmetic Expressions.............c..ccccce.. 7-73
Rules for INdex-Names...........uuvvvviviiiiiiiiiiiiiiiiiiiiiiinnns 7-73
Rules for Condition-Namesccccoeevieiceieienn, 7-74
Action of Various PERFORM Statements................. 7-74
How Changes in Variables Affect the

PERFORM Statement........ccccocceiiiiiiiiiieeee, 7-81
Rules for All Formats of the PERFORM Statement 7-82
PROCESS Statementcovviiiiiieeee e 7-85
READ Statement ...cooooiiiiiiie e 7-88
Format 1: Files in Sequential Access Mode 7-88

Format 2: Sequential and Relative Files in Random
ACCESS MOEuuiiiiiiiiiiiiiiii, 7-91
Format 3: Indexed Files in Random Access Mode............. 7-92
READ Statement Examples.........ccocoeevviiiiiiiiiiecicee, 7-98
RECEIVE Statementcoooiiiiiiiiiieieeceecee e 7-100
Format 1: Receive Data Synchronously........................... 7-100
Format 2: Receive Data Asynchronously (STOQ)............ 7-102
RELEASE Statementccoooeieieiieeeece e 7-104
REPLACE Statement......ocooiiiiiiiiii e 7-106
Format 1: Start REPLACE Operationsccccccevvvieenn 7-106
Format 2: Discontinue REPLACE Operations................. 7-109
RESET Statement..........oooiiiiiieee e 7-111
RETURN Statementcooooiiiiiiiiiie e 7-112
REWRITE Statement......ccoooeiiiiiiiiee e 7-117
Format 1: Sequential Filesccocoviiiiiiiiii 7-117
Format 2: Relative and Indexed Files.............................. 7-119
RUN Statementcoovveiiee e 7-123

Section 8. Procedure Division Statements S-2Z

SEARCH Statement ..o 8-2
Format 1: SEARCH ... VARYING (Serial Search)............... 8-2
Format 2: SEARCH ALL (Binary Search)...........ccccoenniio. 8-8
SEEK Statement.......oooiiii 8-12
SEND STate@mMENT ... 8-13
Format 1: Send Data Synchronously (CRCR).................... 8-13
Format 2: Send Data Asynchronously (STOQ).................. 8-15
SET Statement ..o 8-18
Format 1: SET ... TO oo 8-18
Format 2: SET...UP BY (DOWNBY) ..cccoooiiiiiiiiiee. 8-21
Format 3: SET an External Switchccccooiiiiii. 8-22
Format 4: SET a Condition TO TRUEcccoeiiil. 8-23
Format 5: SET or Modify a File Attribute 8-24
SORT StatemeNntooooiiii 8-26
START Statement.....coooiiiii 8-39
STOP StatemMentooooiii 8-45
STRING Statement......cooooiiii 8-47

8600 1518-307 Xi

Contents

Xii

Section 9.

SUBTRACT StatemMent......cooovviiiiiiieeee 8-53
Format 1: SUBTRACT ... FROMcccoi 8-b4
Format 2: SUBTRACT ... FROM ... GIVING................. 8-56
Format 3: SUBTRACT CORRESPONDING.........c..oooee..e. 8-58
UNLOCK Statement.........coooiiiiii i 8-60
UNLOCKRECORD Statement.........ccoooiiiiiiiiii 8-61
UNSTRING Statementcooooviiiiiiie 8-63
Format 1: UNSTRING .. . INTO......ccoooiiini 8-63
Format 2: UNSTRING ... INTO...FOR 8-69
USE Statementcooooiiiiiiee e 8-71
Format 1: USE AFTER ... 8-71
Format 2: USE PROCEDUREooooo 8-75
Format 3: USE AS INTERRUPT PROCEDURE 8-76
Format 4: USE AS EPILOG PROCEDURE....................... 8-77
WAIT STatemMeNnt ..o 8-78
Format 1: Wait for Time or Condition................................ 8-79
Format 2: Wait Until Interrupt..........ccccoooviiiiiiiii, 8-83
WRITE Statement ..o 8-84
Format 1: WRITE (Files in Sequential Access Mode)........ 8-84
Format 2: WRITE (Files in Random Access Mode) 8-91

Intrinsic Functions

Summary of FUNCHIONSoveie e, 9-1
Types Of FUNCHIONSeeiiiiiiiii e 9-5
Rules for Using FUNCTIONSoooiiiiiieee e 9-6
Syntax for @ FUNCHIONooiiiiiiiiiccc e, 9-7
AT GUIMIBNTS Lottt aaaaees 9-8

Types of ArgumMENTSoooiiiiiiiiee e 9-8

Evaluation of Arguments ..o 9-9

Subscripting an ArguUMENTooviieiiiiiieiiieee e, 9-9
ABS FUNCLION ..o 9-12
ACOS FUNCHION. ..ttt 9-13
ANNUITY FUNCTION 1.ttt 9-14
ASIN FUNCHION ..o 9-15
ATAN FUNCHION .. 9-16
CHAR FUNCHION. ..., 9-17
CHAR-NATIONAL FUNCHION.......oiiiiiiiiiiiiieee e 9-18
CONVERT-TO-DISPLAY FUNCHIONcooiiiiiiiiiiiieceeeece e 9-19
CONVERT-TO-NATIONAL FUNCLIONovvviiiiiiiiciecccee 9-20
COS FUNCHION 1. 9-21
CURRENT-DATE FUNCLION ...oiiiiiiiie e, 9-22
DATE-OF-INTEGER FUNCHONiiiiiiiiiccccceeeeeee e, 9-24
DAY-OF-INTEGER FUNCLIONoviiieceeeee e 9-25
DIV FUNCHION. ... 9-26
EXP FUNCHION ... 9-27
FACTORIAL FUNCHION ...ciiiiiiiccciiee e 9-28
FIRSTONE FUNCGHIONooiiiiiii e, 9-29
FORMATTED-SIZE FUNCHIONooiiiiiiiieiiceee e 9-30
INTEGER FUNCTION ..eeiiecieccce e, 9-31
INTEGER-OF-DATE FUNCHION ..viiiiiiiiiiie e, 9-32

8600 1518-307

Contents

Section 10.

8600 1518-307

INTEGER-OF-DAY FUNCHION. .. .ttt 9-33
INTEGER-PART FUNCTION. ...ttt 9-34
LENGTH FUNCHION .o 9-35
LENGTH-AN FUNCLION ..ot 9-36
LINENUMBER FUNGHION ... 9-38
LOG FUNCLION i, 9-39
LOGTO FUNCLION . 9-40
LOWER-CASE FUNCLION .o, 9-41
MAX FUNCHION ... 9-42
MEAN FUNCHION ... 9-44
MEDIAN FUNCHION oo 9-46
MIDRANGE FUNCLION .o, 9-48
MIN FUNCHION ... 9-50
MOD FUNCLION ... 9-52
NUMVAL FUNCHION . e 9-53
NUMVAL-C FUNCHION ..o 9-55
ONES FUNCLION ... 9-57
ORD FUNCHION ..o 9-58
ORD-MAX FUNCLION ..ot 9-59
ORD-MIN FUNCHION ..o 9-60
PRESENT-VALUE FUNCHION ©..vviiicceecece e 9-61
RANDOM FUNCLION oo 9-62
RANGE FUNCLION oo 9-63
REM FUNCHION ... 9-65
REVERSE FUNCHION ...ttt 9-66
SIGN FUNCHION ..o 9-67
SIN FUNCHION ..o 9-68
SQRT FUNCLION .cooiiiiiiieeee 9-69
STANDARD-DEVIATION FUNCLION ...oooiiiiiiiii 9-70
SUM FUNCHION oo 9-71
TAN FUNCHON ... 9-73
UPPER-CASE FUNCHION ...ttt 9-74
VARIANCE FUNCHION .. 9-75
WHEN-COMPILED FUNCHION ...ttt 9-76

Interprogram Communication

The RUn Unit .o, 10-2
Nested SOUrCe ProgramsScuiiiiiiiiiieeiieeeeee e 10-2
Accessing Files and Data ina Run Unit.........ccoooiiiiiii, 10-3
File CONNECTOIS ©.oiiiiiiiiiecie e 10-3
Global and Local NamES........ccoviiiiiiiiiiie e, 10-3
External and Internal ObJECTSccoiiviiiiiiiiiiccceeeeee e 10-5
Common and Initial Programscocceeiiiiiieiiiiieeeeeeee e, 10-6
SCOPE OF NAMIES ..o 10-7
Conventions for Program-Names............coooieiiiiiiiiiiiieeceee e, 10-8
Conventions for Names of Data, Files, and Recordsc....... 10-10
Conventions for INdexX-Names...........cccceiiiiiiiiiieiie e 10-11
Forms of Interprogram Communication...........ccccovvviieiiiiieeiiiieeees 10-11
Transfer of Control.......ccccciiviiiiiii e, 10-11

Passing Parameters to Programsccccccccoiviiiinnnen. 10-12

xiii

Contents

Sharing Dataooeiiiiiiiiii e 10-14
Sharing FIleSoviiiiee e 10-15
Using the ANSI IPC CONSIIUCTS ..oooiviviiiiiiiiiieciiieee e 10-16

Section 11. Library Concepts

Library Programsooeeeeiieie e 11-2
USEI Programsoooiieiiiee e 11-2
Interface between Libraries and User Programsccocoeeiieen, 11-2
Directory Data StruCture........oooeeevviiieeiiieeeecieeeeee e, 11-2
Template Data Structureccooeioiieeeeecc e, 11-3
Library INtiationoooiie e 11-4
Linkage between User Programs and Libraries.........cccccccccoiviinn. 11-5
Creating LIDrariEsiiviiee e 11-6
Library Sharing Specificationscccccooviiiiiiiiiiicciccccee e, 11-7
Making References to Librariesccocooiiiiiiiiii 11-8
Library AttriDUTESeeeiiiiee e 11-9
FUNCTIONNAME ..o, 11-9
INTERFACENAMEooiiiiiiiiiiicc e, 11-9
INTNAME ..., 11-9
LIBACCESS.o 11-10
LIBPARAMETER ...ttt 11-10
I T LE e 11-10
Matching Formal and Actual Parameters...........ccccooviiiiiiiiiiiiin 11-11
COBOLSS Library EXampleoooviiiiiiiiiciiiiicce e 11-13
COBOL85 User Program EXample..........cooviiiiiiiiiiiiiiieieiie e 11-15
ALGOL User Program EXampleccooviiiiiiiiiiiiiiiececee e, 11-16
Passing a File as a Parameterccccoiiiii 11-19
Library Program Examplecccooiiiiiiii 11-19
Calling Program Example.........ccocceiiiiiiiiiiiiiiiiiiiiece 11-20

Section 12. File Concepts

OVBIVIBW ... 12-2
Physical versus Logical Records..........cooooiiiiieiiiiiiinnn. 12-2
Manipulating Files ... 12-3

File AtrDUTES ..o 12-4

File-Attribute Identifier ..., 12-5

MCPRESULTVALUE Identifier........cccccooiiiiiiiiice 12-8

POMt FIlES . 12-10

File Organization.........cooueiiee e 12-11
Sequential Files. ..o 12-11
Relative Files........ccccoc 12-12
INAEXEA FIlES....uuii e 12-13

ACCESS MOAE ..o 12-14
Sequential Access Modecovvviiiiiiiiiiiiiiiiie 12-14
Random Access Modeooooiiiiiiiiiiiiiee 12-14
Dynamic Access Mode.........ooueiiiiiiiiiiii 12-15

Xiv 8600 1518-307

Contents

Section 13.

8600 1518-307

File Organization CheckliStSoooiiiiiiiiiiieiiieceeee e, 12-16
Sequential File ChecklistScooveiiiiiiiiiiiiiciiieecci 12-16
Sequential File Program Examplecocceeiviiiiiinnnn, 12-18
Relative File Checklist.........ccoviiiiiiiiiiiiieeeceeee e, 12-19
Relative File Program Example.............ccoo, 12-22
Indexed File Checklist..........coooviiiiiiiiiiiccceee e, 12-25
Indexed File Program Exampleoccooeiiiii, 12-27

Tasking in COBOL85

—_

Programs and Processes..........cooooeiiiiiiiii

3-1
Task ATTNDUTES ..eeeiiiieiii e 13-2
Task Variables. ..o 13-3
Interprocess Relationshipseeiiiiiiiiii 13-4
INTEINAl PrOCESSES ..vvviiiiiiiiiiiiiiiiiiiaa 13-4
External ProCESSESoooiiiiiiiiiiiiiieeee e 13-4
Synchronous and Asynchronous Processes...................... 13-4
Dependent and Independent Processesccoccveeeenn. 13-6
Details about Process Dependency.........ccccccoevviiiiieenn, 13-6
(Ofe] o]0y 4] aT=T TR 13-8
Structuring a Program to Initiate ProcesSes.......cccccovvvveeiiiiiieiiiiiee, 13-9
Environment DiviSioNcooooeiiiiiiiii e, 13-9
Data DIVISION ..ooioiiiiiiiie e 13-10
Naming the Program to Be Executed
(Alternate Method) ... 13-10
Declaring the Task Variableccccooiiiiiis 13-10
Describing the Formal Parameters in the
Called Program........cccccveiviiiiiiiiiiiiecie e, 13-11
Describing the Formal Parameters in the
Calling Programccccceeoviiiiiiiiiececiie e, 13-11
Describing the Actual Parameters in the
Calling Programccccceeoviiiiiiiiiececiie e, 13-12
Procedure DiviSiONccoooiiiiiiiiiiieeeeeeeeeceeee e, 13-12
Procedure Division Header in the Called
Program ... 13-12
Declaratives SECtioN.......cc.cecviiiieiiiiiieecieceeee e, 13-13
Changing Task Attribute Valuescccccooee. 13-13
Initiating External Proceduresccccccccoiiiin. 13-13
Implementing Coroutines...........cooevveeviiieeeeiiiee, 13-14
Dissociating a Task Variable from a Process........... 13-14
Examples of Declaring the Object Code File
Name of the Called Programccc.cccoevveeeennnn. 13-14
Example of Passing Control between Two
Programs.... ..o 13-15
Preventing Critical Block EXItS.........cccccooviiiiiiiiiiiiicccee e, 13-18

XV

Contents

XVi

Section 14. Report Writer

OVEBIVIBW ... 14-1
File SECTION. ... 14-2
REPOM SECHION .uiiiiiiiie e 14-3
Report Description ENTry ... 14-3
CODE ClaUSe ..o 14-4
CONTROL ClaUSe ... 14-5
PAGE ClausSe......ccoooiiiiieieieeee e 14-7
SPECIAI COUNTEIS .t 14-11
LINE-COUNTER ... 14-11
PAGE-COUNTER ... 14-12
Report-Group Description ENtry.......ccccoiiiiiiiiiiiceceee 14-13
Report-Group Description Entry Format 1....................... 14-14
Report-Group Description Entry Format 2....................... 14-24
Report-Group Description Entry Format 3....................... 14-25
Procedure DiviSIiON ... 14-32
CLOSE Statementcc.ovvveeieieeieeeeeeeeeeeeee e, 14-32
GENERATE Statementcoooiiiiieiieeieeceeee e 14-34
INITIATE Statement........oooiiiiee e 14-36
OPEN Statement ... 14-37
SUPPRESS Statement.........ooooiviiiiieieieeceeeeee e, 14-39
TERMINATE Statement......ccccoooeiiiiiiiiieeeeeee 14-40

USE AFTER STANDARD EXCEPTION PROCEDURE
STAtEMENt. oo 14-41
USE BEFORE REPORTING Statement.............ccevvvne.n. 14-43
Report Writer EXamples.o 14-44

Section 15. Compiler Operations

Input and OQutput Data FIOW..........ooooiiii e, 15-2
COBOL Compiler FIlescccveiiiiiiiiiiiiiiciiee e 15-3

INPUL FIES vttt 15-4

CARD Fil€. it 15-4

SOURCE File ..o 15-4

COPY Library Filesccooviiiiiiiiiiiiiiiiecieeee e 15-4

INCLUDE Fil€S ..oiiiiiiiiiiiiiicciie e, 15-5

INITIALCCI Fil€..iiiiiiiiiiiiiec e 15-5

Controlling Compiler INPUt........cocciiiiiiiiiiieceec 15-7

OULPUL FIlES .ooiiiiiiiicc e 15-8

CODE Fll&. i 15-8

NEWSOURCE File vvviiiiiiiiiiiiiiiececeeee e, 15-8

LINE Fil€ i, 15-9

ERRORFILE File ..ooiiiiieiiiiiiecceee e, 15-9

Using System Support LIDrariescccccoovveeiiiiiiiiiiiiccciee e 15-10
Compiling and Executing COBOL Programsccccocvveivvivieieennnen. 15-11
Compiling and Executing through WFL............ccccooonni. 15-11
Compiling and Executing through CANDE 15-12
Compiling and Executing from the ODT.......................... 15-13
Displaying the Compiling Progress.........cccccccoivvveeiiiinen, 15-13
Preventing Stack Overflowscccccoevviiiiiiiiie i 15-14

8600 1518-307

Contents

8600 1518-307

Types of Compiler Control OptioNScccvviiviiiiiiiiiieecceee e, 15-15
Boolean Compiler OptionSoeeviiiieiiiiiieciieeeeeiiee e, 15-15
Boolean Title Compiler OptionScc.ccovvvveeiiiiieeeiiiee, 15-16
Boolean Class Compiler Optionsccovvvveeiiiiieeiiiiiees 15-16
Enumerated Compiler OptionsScccccovviviieeiiiiiieeeiiiee, 15-17
Immediate Compiler Options.........cccovvviiiiiiiiiiii 15-17
String Compiler OptioNS.......cciiiviiiiiiiiiiicciee e 15-18
User-Defined Compiler OptionS.........ccovvvveeiiiiieeeiiieen, 15-18
Value Compiler OptionSccceeeviiiieeiiiieeecee e 15-18

Syntax for Compiler Control OptioNSccvvvivviiiiiiiiieieiiiee e 15-19
Compiler Control RECOrds........couvviiiiiiiiiiiiiiiiiiiieeciiie 15-19
Conditional Compilations OptioNnS.........cccovvvveeiiiiieiiiien, 15-24
Setting Compiler Options When Initiating the

COMPIIET i 15-26

ComPIiler OPLIONS ©.iiiiiiiieei e 165-27
ANST OPLION .o 165-27
ANSICLASS Optioncoooiiiiiieeeeee e 15-28
ASCIH OPLION (oo 156-32
AUTOINSERT Optioncoovviiiieecieccceeeee e 15-32
BINARYCOMP Optionccooveiiiiiiiiieeeeeeeeeeeeeee 15-33
BINARYEXTENDED Option.......ccooveiviiiiiieecieeeieeeee 15-33
BINDER_MATCH Optioncoooviiiiiiieiieccieeeeeee e 15-34
BINDINFO Optioncooviiiiiieeieccieeeee e, 15-35
BINDSTREAM Optioncoovviiiiiiiieeceieeee e 15-35
BOUNDS Option ..ovvieeiiiiiiceciieeeee e, 15-37
CALL MODULE Option.....ccceiiiiiiiieeceeeceeeeeee e, 15-39
CEB8MOVEWARN OptioN ..o 15-39
CALLNESTED Option...c.ccooiiiiiiieiieeeeeeee e, 15-40
CODE OPtiON .o 15-40
COMMON OPtioN ...cvvieiiciiiie e 15-41
COMPATIBILITY Option ...cccveiiiiiiiieeeieeeeeee e, 15-41
Copy Boundary OptionScovvvviiiiiieiiiiiiieceiiiee e 15-44
CONCURRENTEXECUTION Option........ccceeviviiiiieecnnn 15-45
CORRECTOK Option...ccciieiiiiiiiiiie e 15-45
CORRECTSUPR Optioncccooviiiiiiiecieee e, 15-45
CURRENCYSIGN Option....cc.ccoiuieiiiieeciieeeieeece e 15-46
DELETE OPLioN .oooiiiiieiiiiiiee e, 15-47
ELSE and ELSE IF Optionscooiiiiviiiiiiiiiceciiieee e 15-47
EMBEDDEDKANJI Optionccocooiiiiiiiieiceeieceeeee 15-48
END Option ..ooooiii e 15-48
ERRORLIMIT Option....c..cocieiiiiiecieeeeeeee e 15-49
ERRORLIST Optionccvviieiiieeiiieieeeeeee e 15-49
FARHEAP Optionoooiviiiiiieceece e, 15-51
FEDLEVEL Option......ooviiiiiiiieceeeeeeeeeeeee e, 15-52
FOOTING Option ..vvveieiiiiiie e 15-63
FREE OPLioN .ovviiiiiiiiccec e 15-64
FSAXCONTINUE Option......ccoovviiiiiiiieeceeeeecceeeee 15-55
INCLNEW Option....cooiiiiiieiiiiieeeeeeeee e 15-65
INCLUDE OptioN ...vvvieiiiiiie e 15-56
INLINEPERFORM Optioncocovviiiiiiiiieceeeeeee 15-58
IPCMEMORY Optioncoovviiiiieiiiiiceeceeeeeeee e 15-59
LEVEL OPtioN...cciiiiiiiiiiiiie e 15-60

Contents

XViii

LIBRARY Option ...ooviiiiiiiiiiecciee e 15-60
LIBRARYLOCK OptioNn......ccciiiiiiiiiiiiieeeiiiieeeeiiiee e 15-61
LIBRARYPROG Optioncooveeeiiiieiieccieeeeeee e, 15-61
LINEINFO Option....veeiiiiiiiiiiiiiiee e 15-62
LIST OPtioN oo 15-62
LISTDOLLAR OPtioNn ..oouveeeieeeeieeeeeeeeeeee e, 15-63
LISTINCL Option ... 15-64
LISTINITIALCCI Optioncoovveeoiiieiieeceeeeeee e, 15-64
LISTIPCMEMORY OptioNn......ccccoiiiiiiieiiiiieeiiiiee e 15-65
LISTOMITTED OPtion......coovviiiiiieiee e, 15-65
LISTP OptioN. .o 15-66
LISTT OPtioN .covvviiiiiiiieeee e 15-66
LI_SUFFIX OPtionvviiiiiiiiiiciiee e 15-67
LOCALTEMP OpLion ..occoivviieiiiiiie e 15-68
LOCALTEMPWARN Option ...ocvveiiiiiieiiiieecciiiee e 15-68
LONGLIMIT Option......couvioiiiecieieieeceeeeeee e, 15-69
MAPONELINE Optionc..oooiiiiiiiiiiiiiecceee e 15-69
MAP or STACK OPLtionvcceiiiiiiiiiiiiiee e 15-70
MEMORY_MODEL Option.....cc.ccooveeiiiecieeeeceeeee, 15-70
MERGE OPLiON ..oooiiiiiiiciiiiee e 15-71
MODULEFAMILY Optionccccoviviiiiiieieeee e, 15-72
MODULEFILE Optioncooiiiiiiiiiicceeceeee e, 15-72
MUSTLOCK OPLioN w.eciiiiiiiiiiiiiiie e 15-73
NEW OptioN. ..o 15-74
NEWID Option ... 15-75
NEWSEQERR Option ...covviiiiiiiiiiiiiiieecceeec e 15-75
OMIT OPtION .o 15-76
OPTT OPtiON e 15-77
OPT2 OptiON oo 15-78
OPT3 OptiON oo 15-78
OPTA OPtiON e 15-79
OPTIMIZE OPtiON ..oooiiiiiiiiiiiii e 15-80
OPTION OPtioN. .vvviiiiiiiiieiiiie et 15-82
OWN OPLION ..ot 15-83
PAGE OPtiON....viiiiiiiiiic e 15-83
PAGESIZE Optioncooiiiiiiiiiiiiec e 15-83
PAGEWIDTH Option.....c..coooiiiiiiiiiecceeceeee e, 15-84
RPW (Report Writer) Option..........coccveeiiiiiieiiiiieeciiiee 15-84
SDFPLUSPARAMETERS Optionccccvvviviiiiiieiiiiecce 15-84
SEARCH Option. ..o, 15-85
SEPARATE OPtioN ..vvviiiiiiiiie e 15-86
SEQUENCE or SEQ Optioncccoeeiiiiiiiiiiiiieceee 15-87
Sequence Base Option.......cccoovviiiiiiiiiiiiiie e 15-87
Sequence Increment Option ... 15-87
SHARING Option ...ccoviiiiiiiiiiiceee e 15-88
SHOWOBSOLETE Optioncoovviiiiiiiiiiciiiiie e 15-89
SHOWWARN OPtioN....cveeeicieeeccce e, 15-89
STACK OPtioN ..., 15-89
STATISTICS OPLioN .ovvvviiiiiiiiiiciie e 15-90
STRINGS OPtion ..cooieiieeeeee e, 15-91
STRICTPICTURE Optionccviiiiiiiiieiiiiececie e 15-92
SUMMARY Optionovvviieiiieeeece e, 15-92

8600 1518-307

Contents

Section 16.

8600 1518-307

TADS OPLION .oeiiiiiiiiec e 15-93
TARGET OPtioNn...ovviieiiiiiieceeiee e 15-94
TEMPORARY Optioncvviiiiiiiiiiiieeeeeeeee e, 15-95
TITLE OPLION vveieiiiiiee et 15-96
UDMTRACK OPtioN ..vieiiiiiieciiiiceeeiieee e, 15-96
VERSION Optioncooiiiiiiiii e 15-97
VOID Option ... 15-98
WARNFATAL Option ..ovvviiiciiiiieeieeeee e, 15-98
WARNSUPR Option....c..ccoovviiiiiiecieeeeeeee e 15-100
XREF OPtioN e 15-100
XREFFILES Option ..cccoivviieiiiiiiee e 15-102
XREFLIT OPtion ..vvvieiiiiiiicceieee e 15-103

Internationalization

Localization ... 16-1
Accessing the Internationalization Features...............oooeeeeiiiiiiiieieenn, 16-2
Using the Ccsversion, Language, and Convention
Default SEttiNgSoivvviiiiiiiiice e 16-3
Hierarchy for Default Settings.........c.cccoovvviiiiiiiiieiiiccee 16-4
Components of the MLS Environmentccccoiiiiiiiiee 16-5
Coded Character Sets and CCSVErSIONS.........ccovvveeeiivieennne, 16-5
Mapping Tables ... 16-7
Data ClasSesS......uuuiieeeeeieeecee e, 16-8
Text COMPAISONScoiiiiiiiiiiiee e 16-9
Sorting and Merging.......cocvveiviiiiiiiiiiieiiiie e 16-10
Supporting Natural Languages.........cccceeevivveeiiiiiieeiiiienn, 16-11
Creating Messages for an Application
Program ... 16-11
Creating Multilingual Messages for
TransIatioN.......ueeeiiiii 16-12
Supporting Business and Cultural Conventions............... 16-12
Using the Date and Time Featuresccccccvvvvnnne. 16-13
Formatting the Date and Time with Syntax
ElemMentS . uuiiiiiiii 16-13
Formatting the Date and Time with Library
CallS . 16-14
Formatting Numerics and Currencies 16-15
Formatting Page Sizec.coooviiiiii 16-15
Formatting Page Size with Syntax Elements.......... 16-15
Formatting Page Size with Library Call................... 16-16
Summary of Language Syntax by DiviSioNncccceoeviiieeieeeeinn 16-17
ENVIRONMENT DIVISION. ..., 16-17
DATADIVISION ... 16-17
PROCEDURE DIVISIONoooiiiiieceecieeee 16-18
Summary of CENTRALSUPPORT Library Procedures...................... 16-22
Identifying Available Coded Character Sets and
CCSVEISIONS .., 16-23
Mapping Data From One Coded Character Set to
ANOTNET L. 16-23
Processing Data According to a Ccsversion 16-24

XiX

Contents

XX

Comparing and Sorting TeXtcc.eeoviiiiiiiiiiiiiiiiec e 16-25
Positioning CharaCters.........ccoovveeiiiiieeiiiiee e 16-25
Determining Available Natural Languages............cc......... 16-25
Accessing CENTRALSUPPORT Library Messages 16-26
Identifying Available Convention Definitions 16-26
Obtaining Convention Information............cccccoovviiiiiinnn.. 16-27
Formatting Dates According to a Convention 16-28
Formatting Times According to a Convention 16-29
Determining Default Page Size...........ccccooevveiiiiiiiiiien, 16-29
Calling the CENTRALSUPPORT Library......ccccccoovvviiiiiiiiiiiiiiecene 16-30
IMPIICIt CallS....vviiiiiiiiecce e 16-30
EXPHCIt CallS..oiiiiiiiiiiiiiiiccie e 16-30
Parameter Cate@gorieseoi i 16-32
INPUt Parametersoooooi i 16-32
Input Parameters with Type Values.............ccccooovi. 16-32
Output Parametersoeooiiiiiii e, 16-34
Result Parameter........cccooiiiii 16-34
Procedure DeSCriptioNScooiiiiiiiiiiiieei e 16-35
CCSTOCCS_TRANS_TEXT ..oiiiiiiiiiiiiiiie e 16-35
CCSTOCCS_TRANS_TEXT_COMPLEXccveiiviiiiiiin, 16-39
CCSVSN_NAMES_NUMS ..ot 16-45
CENTRALSTATUS . 16-49
CNV_CURRENCYEDITTMP_DOUBLE_COB.................... 16-54
CNV_CURRENCYEDIT_DOUBLE_COB.........ccoovvvieien. 16-57
CNV_DISPLAYMODEL_COB.....c.cooiiiiiiiiiiieci 16-60
CNV_FORMATDATETMP_COBcoovvvieiiiiiiiiiiicie 16-63
CNV_FORMATDATE_COBcoviiiiiiiiiiiceiie e 16-66
CNV_FORMATTIMETMP_COBcooiiiiiiiiiiiiiiic e 16-70
CNV_FORMATTIME_COB.....cooiiiiiiiiiiiiieie e 16-73
CNV_FORMSIZE ..ot 16-77
CNV_NAMES ... 16-80
CNV_SYMBOLScoiiiiiiiiiiie e 16-84
CNV_SYSTEMDATETIMETMP_COB......ccvveeiiiiiiiiiinn 16-90
CNV_SYSTEMDATETIME_COBovvviiiiiiiiciiee 16-93
CNV_TEMPLATE_COB ...t 16-97
CNV_VALIDATENAMEccooiiiiiiiiiiiceeee e, 16-101
GET_CS_MSG.. .ottt 16-104
MCP_BOUND_LANGUAGES ... 16-109
VALIDATE_NAME_RETURN_NUMccooviiiiiiiiin, 16-112
VALIDATE_NUM_RETURN_NAMEccccooiiiiiiiiiinen 16-115
VSNCOMPARE_TEXT ..ot 16-118
VSNESCAPEMENT ..o 16-123
VSNGETORDERINGFOR_ONE_TEXT ...ooooiiiiiiiiiiiiiee, 16-127
VSNINSPECT _TEXT ..t 16-132
VSNTRANS_TEXT ..ot 16-137
BT O S 16-141
Using the Properties File ..o 16-147

Example of Calling Procedures in the CENTRALSUPPORT

Library

8600 1518-307

Contents

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

Appendix F.

8600 1518-307

Output Messages

Normal Compiler Output MESSAJESoecvivviiiiiiiiieeiiiieeeee e A-1
Numerical Compiler Output Messagescoccvveeevvvreeennnn. A-1
Non-numerical Compiler Output Messages A-83

Abnormal Compiler Output MesSages.........covvveeviiiieeiiiieeeiiieeeen, A-107

Run-Time Compiler Output Messages.........ccoovvveeiiiiiieeiiiiceeiiiee, A-108

Reserved Words

Interpreting General Formats

UPPEICASE VWOTITS .. eiiiiiiiiiiii e C-2
LoWercase WOTAS ..o C-3
Rules for Creating User-Defined Words..........cccccooviiiiiiiiiiiiiiicc C-4
BraCK e S ..o C-b
BraCES . . C-6
Vertical Barsooouuieeeeeeee e C-7
EIDSES o C-8
Punctuation Markscoooie i C-9
Mathematical SYmMbOIS........ccoiiiiiiiice e C-10

Using the Checkpoint/Restart Utility

CALLCHECKPOINT Procedure..........coooueeiiiiiiiieiieeceeee e D-2
CHECKPOINTDEVICE Optionccoveiiiieeeieeeieceeeeee D-2
CHECKPOINTTYPE Optionccvveeiiiiiiieeceieeeeeeee D-2
COMPLETIONCODE Option.......cccoviiiieecieeeecceeee D-2
CHECKPOINTNUMBER Optionccooeeviiiiiiiiieec D-3
RESTARTFLAG OPtioN.....ccvviiiiieiiic e D-3

Restarting @ Job ..o D-4

Checkpoint/Restart MESSAgESccoiviiiiiiiiie e, D-6
Output Messages from an Attempt to Restart.................. D-6
Output Messages and Completion Codes............ccccuueee.... D-8

LOCKING e D-11

Rerunning Programs..........oooiiiiiiie e D-11

CHECKPOINT Procedure Call Examplescococeeviiiiiiiiiiiiiiiiie, D-12

COBOL Binding

Comparison of COBOL Versions

Differences Among COBOL VErSioNS......cc.cceovvviiiiiiiieiiiiee e F-2
Changes That Probably Affect Your Programs...........cccecvvviiiiiiiinnn. F-2
Changes That Might Affect Your Programsccccceevviieeeieeieicnnn. F-31
Changes that Do Not Affect Your Programsccccocvveeiiiiiiiiiiieeen, F-38

XXi

Contents

XXii

Appendix G.

Appendix H.

COBOL Migration

Migration Methods...........eiiiiiiii e G-1
COBOL Migration Tool (CMT)coviiiiiiiieciiiieeeee e G-2
CMT Migration Strategyccovvviieiiiiiieiiiieeeeciee e G-3
Verifying the COBOL Migration Tool is Available................. G4
Running the COBOL Migration Tool........cccccoeviiiiiiiiiinennn, G4
Getting HelP oo, G4
Understanding the COBOL Migration Tool Report.............. G-4
Changes Made by the CMT ..o, G-5
Language Elementsccccooiiii G-5
Identification DiviSIONcooiiiiiiiiii e G-9
Environment DiVISioN ... G-10
Data DIVISION ...oiiiiiiiiiiiii e G-12
Procedure DiviSION ...t G-17
Warnings Issued by the CMT ..o, G-26
Language Element.........ccccoiiiiiii G-26
Data DIVISION ...oiiiiiiiiiiiiie e G-26
Procedure DiviSION ...t G-27
Error MEeSSagEs ..oovieiiiiiieee e G-29
Warning MesSSagesSoooiiiiiiiiiiieiee e G-39

Migrating V Series Intrinsics

SuMMary of ProCEAUIESooiiiiiieiiiiic e, H-2
BINARYDECIMAL Procedure.........cooooiiiiiiii H-6
DATECOMPILED ProcedUreccoooeiiiiiiie H-7
DATENOW ProCeaUIecoooiiiiiiieeeee e H-9
DECIMALBINARY Procedure..........cooooiiiiii H-10
EVA_TASKSTRING ProCeaUIevvvveeieeeeieeeeeeeeeeeeee e H-11
GETMCP ProCedUIecooviiiiiiiee H-13
GETPARAM Procedureoooovvviiiii H-14
GETSWITCH Procedure ..o H-15
INTERROGATE PrOCEAUIE .. v H-16
JOBINFO ProCeaUIe ... H-17
JOBINFOB ProCeAUIE H-19
MIX ProCEAUIE .. .o H-22
MIXB ProCedUre ... H-23
MIXID ProCeAUIe........oveeeie e H-24
MIXIDB ProCEAUIE........vveei e H-25
MIXNUM ProCeAUIeooiiieieee e H-28
MIXNUMB ProCeaUIecooiiiiiee e H-29
MIXTBL ProCeAUIE ... H-32
MIXTBLS ProCeAUIe........ i H-34
PROGINFO ProCcedureooooiiiiiii H-37
PROGINFOB ProCedureoooooiiiiiii H-39
SETSWITCH Procedurecooovvviiiii H-42
SPOMESSAGE Procedureooooiiiiiii H-43
TIMENOWY ProCEAUIEvvie e H-45
UNIQUENAME Procedureccooooiiiiiiii H-46
VDISKFILEHEADER ProCeaUure..........uuuuueiiiiee H-47

8600 1518-307

Contents

Appendix L.

Index

8600 1518-307

VREADTIMER Procedureooiiiee e
VTRANSLATE ProCeaUIe. oo

Format 1: Translate DISPLAY Source to DISPLAY

DestinatioN.....cooe e

Format 2: Translate DISPLAY Source to COMP

DestinatioN.....cooe e

Format 3: Translate COMP Source to COMP

DestinatioN.....cooe e

Format 4: Translate COMP Source to DISPLAY

DestinatioN.....cooe e

Format 5: Translate Signed Numeric Source to

COMP Destination..........eeee e

Format 6: Translate Signed Numeric Source to

DISPLAY Destinationuuee oo
ZIP ProCeaUIEo
ZIPSPO ProCeAUIe.

Tips and Techniques

Improving Performance of COBOL85 Programsccccccovvvveenn.
Distinguishing CALL Statements.........cccoccvveeviiieieinnnnn.
Reading STREAM Files Faster.......cccccovvviiiiiiiiiiinn,

Generating Temporary Arrays with the

SLOCALTEMP Option ...cccoovviiiieecieeceeeeeee

Diagnosing Performance with the $STATISTICS

OPtION el

Using Multiple Versions of COBOL85 on One

SOOIV e

Improving Reliability of Non-numeric Information in

COMPUTATIONAL Fieldsccoovviieiiiiiiiiiiiiieciiiee
Maintaining Precision in Programscccccccoeeiiinnne.

Producing Object Files for Multiple ClearPath MCP

SBIVEIS .ot
Using Key Features of COBOLSBScocvviiiiiiiiieiiiiececiiee e
Nested Programsccoeiiiiiiiiiiiiiee e,
INTriNSIC FUNCLIONS ..uvvvviiiiiiiiiiiieii
LINENUMBER FunNCtion.........ccoooeiiiiiiiiiiciccccccc
Scope TermMiNatorS........iiiiiieiiciiice e,
IN-liN€ PerformS......uuviiiiiiiiiiiii
EVALUATE OPLion c.vvvviiiiiiiiiiiiee e
SBIF OPLION (oo
SINCLUDE Option..ccooiiiiiiieeeeee e
INITIALCCI Fil& .ot
CONSTANT ENtry..oooiiiiiiiiiccceeeeee e,
USE AS EPILOG Procedurecoccveiviiiiiiiiiiiiiienn
COBOLB5 DUMP ANaIYSIS....vviiiiiiiieiiiieeeeiieeeeiie e,
COBOLSS Library Interfaces......cccccovevvvveeiiiiiiiiiiiece,
SHAREDBYALL Librariesccooeveeviiiiiiiiiieciiiieeee,

XXiii

Contents

XXIV 8600 1518-307

Figures

14-1.

15-1.

16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-7.
16-8.
16-9.

16-10.
16-11.
16-12.
16-13.
16-14.
16-15.
16-16.
16-17.
16-18.
16-19.
16-20.
16-21.
16-22.
16-23.
16-24.
16-25.
16-26.
16-27.

8600 1518-307

Sample of COBOL Coding FOrM ...oiiiiiiiiiiiicce e 1-5
TEST BEFORE with One Identifier Varied.............cocoiiiiiee 7-75
TEST BEFORE with Two Identifiers Varied...........cccciiiiiieee 7-77
TEST AFTER Phrase with One Identifier Varied..............ccccoevviiieec 7-78
TEST AFTER Phrase with Two Identifiers Varied.............ccccoooviiiiiiii 7-80
Valid PERFORM STrUCTUMESvviiieee e 7-84
Format 1 SEARCH Statement with Two WHEN Phrases..................cccoooeinn 8-6
Nested SoUrce Programsoooeiii e 10-2
Identical Program-Names ..o 10-8
Page FOrmat Controlooooiiii e 14-10
COBOL Compiler Input and Output Files ..o, 15-2
Coding the Format 4 ACCEPT Statementcccooiiiiiiiieeeeeeeee 16-19
Coding the MOVE Statement for Internationalization...................ccooooccol. 16-20
Sample Data Declarations for Type Value Data Itemsccooeveeeviiiiiennn, 16-34
Calling the CCSTOCCS_TRANS_TEXT Procedure..........cccooveeeeeieiiiiieeeee, 16-37
Calling the CCSTOCCS_TRANS_TEXT_COMPLEX Procedure 16-42
Calling the CCSVSN_NAMES_NUMS Procedure.........ccccccooeeeeiiiiiiiieee, 16-47
Calling the CENTRALSTATUS Procedure........c...ooeveeeiiiiiieieeeeceeeee 16-52
Calling the CNV_CURRENCYEDITTMP_DOUBLE_COB Procedure 16-b5
Calling the CNV_CURRENCYEDIT_DOUBLE_COB Procedure...................... 16-58
Calling the CNV_DISPLAYMODEL_COB Procedure........cccccooeeieiiiiineeeee, 16-61
Calling the CNV_FORMATDATETMP_COB Procedure............cccccoeevvneeien. 16-64
Calling the CNV_FORMATDATE_COB Procedurecccovvveieiiiiiiieeeee 16-67
Calling the CNV_FORMATTIMETMP_COB Procedureccccceeevuuneneee.n. 16-71
Calling the CNV_FORMATTIME_COB Procedurecccoovveeeeiiiiiiii 16-74
Calling the CNV_FORMSIZE Procedurecccuuveeieiiiiiiiieeeeeeeee 16-78
Calling the CNV_NAMES Procedureccoouuiiiiioiiiiiiceeeeeeecee 16-81
Calling the CNV_SYMBOLS Procedureccouuveeiiiiiiiiiieeeeeeei 16-86
Calling the CNV_SYSTEMDATETIMETMP_COB Procedure.......................... 16-91
Calling the CNV_SYSTEMDATETIME_COB Procedureccccccevvvveeeicnn. 16-94
Calling the CNV_TEMPLATE_COB Procedureccccooovuiieeieeieiiiiiieeee e, 16-98
Calling the CNV_VALIDATENAME Procedure.........c.ccooevvieeieeieiiiiiiee 16-102
Calling the GET_CS_MSG Procedureccooouuieeiceieiiiiieeeeeeieee 16-106
Calling the MCP_BOUND_LANGUAGES Procedure............ccccceevinneienn. 16-110
Calling the VALIDATE_NAME_RETURN_NUM Procedure 16-113
Calling the VALIDATE_NUM_RETURN_NAME Procedure 16-116
Calling the VSNCOMPARE_TEXT Procedurecccoovviieeieeiiiiiiiieeeeee, 16-120
Calling the VSNESCAPEMENT Procedureocoooviiiiiieeieeeieicieee 16-125

XXV

Figures

XXVi

16-28.
16-29.
16-30.
16-31.
16-32.

Calling the VSNGETORDERINGFOR_ONE_TEXT Procedure 16-129
Calling the VSNINSPECT_TEXT Procedureccccooeviuuieieiieeeieecieee 16-133
Calling the VSNTRANS_TEXT Procedure.........cccuvveeiiiiiiiiiieeeee 16-138
Sample Declarations for Message Valuesccccccooovveiiiiiiiiiiiiiiccii 16-142
Calling Procedures in the CENTRALSUPPORT Library......ccccccovviviiiiinenn. 16-166

8600 1518-307

Tables

—_ A A a a a

11 | |
ONDOT AW =

(TOCA)ClA)OOOOOO
OO, WN =

-J>-J>-J|>-J>-J>
OO wWON -

G ona g oo on
NoO oA ON =

PO DD
IRISLIE S

\I\Il\l\l\l
abwnN =

fos)
N

8600 1518-307

Areas of a Line of Code for Columns 1=72coooviiiiiiiiieiiie e 1-6
Areas of a Line of Code for Characters..........cocveeiiiiiiiiiiiiieeeeeceeee e, 1-13
Valid Separator CharaCtersuveee e 1-14
Types of Reserved Words........oooooiiiiiiii e 1-16
FIQUrative CoNSTANTS. . ..iiiiiiiiiiiiiie e 1-17
SPECIAI REGISTEIS .viiiiiiiiii i 1-20
Special CharaCter WOIdSciiiiiiiiiiciie e 1-22
Types of User-Defined WOrdsS ... 1-26
I-O Status Codes: Successful EXECULIONcovviiiiiiiiiiiiiiicccee e 3-49
I-O Status Codes: Unsuccessful READ—End-of-File Condition..............c........ 3-50
[-O Status Codes: Unsuccessful I/O—Invalid Key Conditioncccccccevveenn. 3-51
I-O Status Codes: Unsuccessful I/O—Permanent Error Condition 3-52
[-O Status Codes: Unsuccessful I/O—Invalid Operationsccccccoeveeeivinnenn, 3-53
[-O Status Codes: Unisys Defined ConditionS..........ccccoeeviiiiiiiiiieeiiiieeciiiee 3-54
Relationship between Class and Category of Data Items.........cc.cccoeeiieiiiicnnne, 4-5
Picture Clause SYMDOIS.oooi e 4-33
Specification of Data Item Categories in the PICTURE Clause........................ 4-38
Types of Editing for Data Item Categoriesocoviviiieiiiiiieeeiiieeeie e, 4-41
Precedence RUIES ... 4-48
Elements of @ ProCcedUureooouiiiiiii 5-10
Categories of COBOL VEIMDSooviiiiiiiiicce e 5-16
Combination of Symbols in Arithmetic EXpressionscccceovvviiiiiiiieiennnn, 5-27
Numeric Comparisons Involving HIGH-VALUESccocciiiiiiii 5-44
Numeric Comparisons Involving LOW-VALUEScccciiiiiiiiiiiecc 5-45
Truth Table for Logical Operators..........oocuviiiiiiiieiiiiieeeciee e, 5-58
Combinations of Conditions, Logical Operators, and Parentheses.................. 5-b9
Effect of the SANSI and SANSICLASS Compiler OptionS.......cccceeeviviieeiinieenne, 6-3
Parameter Mapping among Languages ... 6-25
Formal and Actual Parameters for Bound Procedures................................... 6-34
Parameter Mapping for Tasking Callsccccccoiviiiiiiiiieiiccce e 6-42
Relationship of File Types and CLOSE Formats..........ccoooviiiiiie 6-67
Relationship of CLOSE Formats and Nonsequential Unitsccccceeevvneenn 6-72
Categories of Elementary Data t8MSooooiiiiiii e 7-39
Valid MOVE ACHIONS ... 7-40
Result of OPEN Statementoc.oiiiiiiii e 7-58
Permissible Statements—Sequential Filescocoieiiiiiiiiiii 7-59
Permissible Statements—Relative and Indexed Files............ccocceiviiiiiiiiinn 7-60
Valid Operand Combinations for the SET ... TO Statement........................... 8-20

XXVIi

Tables

9-1 INTFINSIC FUNCTIONS ..o 9-2
9-2 TYPES OF FUNCHIONS ... 9-5
9-3 Types of Arguments for FUNCHioNS ... 9-8
9-4 CURRENT-DATE Function, Characters 1=21coooe oo 9-22
9-5 CURRENT-DATE Function, Characters 18—=19cooooiiiiiiie e 9-23
9-6 CURRENT-DATE Function, Characters 20=21cccoeoiueee e 9-23
9-7 WHEN-COMPILED Function, Characters 1-=271cooouuoeeeeeeeeee e 9-76
9-8 WHEN-COMPILED Function, Characters 18=19ouoeiiiiiieee e 9-77
9-9 WHEN-COMPILED Function, Characters 20=27uueeeeeeeiiieeeeeeeee 9-77
10-1. COBOL85 Program Communication TEChNIQUESccvvevviiiiieiiiiieeeciieee, 10-1
11-1. Syntax Differences for COBOL85 Librariesccccveovviiiiiiiiiiieieiiieeeeiieee, 11-6
11-2. Syntax Differences for COBOL85 User Programs...........cccoeevveeviiiieeeciieee, 11-8
11-3. Data Type Mapping between COBOL85, ALGOL, and Pascal...................... 11-11
12-1. File Organization and AcCeSS MOTE...........coiiiiiiiiiiiiiiiiiieeece e, 12-14
14-1. Page Regions Established by the PAGE Clausecccooeiiiiiiiiieiiie, 14-10
14-2. Permissible Clause Combinations in Format 3 Report Group

Description Entries ... 14-31
15=1. Compiler INPUL FIlES ...oiiiiiiiiii e, 15-3
15=2. Compiler OUIPUL FIlESviiiiiiiiii i, 15-3
16-1. System Default Settings for Internationalizationccocooiiiiiin 16-3
16-2. Types of Comparisons Provided by CENTRALSUPPORT Library.................... 16-9
16-3. Valid Character SUbStitution TYPESccvviiiiiiiieeiiiee e, 16-10
16-4. CENTRALSUPPORT Library Procedures for Formatting Date and Time 16-14
16-5. Symbols and Offsets Returned in the SYM-ARY Recordcccooevviieennnn, 16-88
16-6. Error Result Values.........coooo 16-143
C-1. Valid Mathematical SYmDOIS..........cocoiiiiiiiiiiii e C-10
H-1 EVASUPPORT Library ProCedUres..........coovviiiiiiiiiiiiiiie e H-2
H-2 Values in JOBINFO Result StruCtUrecc.oooovvviiiiiiiiicce e H-18
H-3. Values in JOBINFOB5 Result StrUCTUIEcooviiiiiiiiicciieeeceeeeeee e, H-20
H-4 Table Structure for MIXTBL Procedure...........cocoeiviiiiiiiiiiieicciieceeee e H-33
H-5. Values of the SPECIAL-PROGRAM-CODE Field for the MIXTBL

ProCedUre ... H-33
H-6. Table Structure for MIXTBLS Procedure...........ccoovvieiiiiiieiiiiieeecieeeeee e, H-35
H-7. Values of the SPECIAL-PROGRAM-CODE Field for the MIXTBL5

ProCedure ... H-36
H-8. Values in PROGINFO Result StruCturecooovveiiiiiiieecce e H-38
H-9. Values in PROGINFO5 Result StruCturecccooeviiiieeiiiiieiiiieeeeiieeeeee e, H-40
H-10. ClearPath and A Series File Attributes for VDISKFILEHEADER Fields............ H-49

XXViii 8600 1518-307

Section 1
Program Structure and Language
Elements

About This Manual

Common Business-Oriented Language (COBOL) is a programming language that enables
a programmer to write computer instructions in a language much like standard English.
This implementation of COBOLS85 follows the American National Standard Programming
Language COBOL ANSI X3.23-1985.

This manual provides the complete COBOL85 syntax and the extensions to COBOLSb.

Information concerning the interface between COBOL ANSI-85 and various products is
located in Volume 2 of this manual, subtitled, “Product Interfaces.”

This section describes the

e Components of a source program

o Rules for entering the components in the source program
e The COBOL character set

e Punctuation characters used as separators

e Various elements that make up the language, such as COBOL words, identifiers,
literals, and figurative constants

Purpose

This manual explains the syntax and concepts of this implementation of the Common
Business-Oriented Language (COBOL) ANSI-85.

Audience

The primary audience for this manual includes programmers and systems analysts who
are experienced in developing, maintaining, and reading COBOL programs. The
secondary audience consists of technical support personnel and information systems
management. A possible tertiary audience includes programmers who are learning
COBOL; however, note that the manual is not designed for this audience.

8600 1518-307 1-1

About This Manual

Conventions

Throughout this manual, Unisys extensions to the American National Standard for
Programming Language COBOL, ANSI X3.23-1985 are highlighted.

In addition, the term ClearPath MCP servers refers to ClearPath NX, LX, CS, and Libra
Series servers.

Unless otherwise stated, the term Windows is used in this book to refer to Windows NT
Server 4.0; Windows NT Server 4.0, Enterprise Edition; Windows 2000 Server; and
Windows 2000 Advanced Server.

Acknowledgments

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein have
specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. These authors or copyright holders are the following:

IBM: IBM Commercial Translator Form No. F 28-8013 (copyright 1959)
Minneapolis-Honeywell: FACT, DSI 27A5260-2760 (copyright 1960)

Sperry Rand Corporation: FLOW-MATIC, Programming for the UNIVAC (R) | and Il, Data
Automation Systems (copyright 1958, 1959)

Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

1-2 8600 1518-307

Program Overview

Program Overview

The program written in COBOL is called the source program. Before a computer can read

a source program, the COBOL instructions must be translated into machine language.

This translation is the job of the COBOL compiler. First, the COBOL compiler verifies that

the source program satisfies all the rules of the COBOL language. Then the compiler

translates the COBOL instructions to machine language and produces an object program
that contains the translated instructions.

After compilation, the COBOL compiler prints a copy of the source program and lists any
compilation errors on that printout. If program corrections are necessary, you can make
the appropriate changes in the source program and then recompile it.

Divisions of a Source Program

A COBOL source program consists of four parts called divisions. Each division has a
heading and can contain one or more sections or paragraphs, which are constructed and

combined according to specific rules. The divisions of a COBOL source program must

occur in the order shown.

Division

Purpose

Identification
Division

Identifies and describes the program.

Environment
Division

Identifies file processing requirements, hardware requirements,
computers used, nonstandard internal memory allocation for
files, and notation used throughout the program. This division is
optional in certain programming situations.

Data Division

Describes the data elements that the object program is to
manipulate or create. These data elements can be constants or
items within files, records, or program work areas. This division
is optional in certain progralmming situations.

Procedure Division

Defines the steps needed to accomplish a desired task using
the data defined in the Data Division. This division is optional in
certain programming situations.

8600 1518-307

Contents of a Division

Contents of a Division

Divisions can contain one or more sections. A section is made up of paragraphs, which
are formed by a variety of sentences, statements, clauses, phrases, and words. The
following table describes the language elements that make up a COBOLS85 division.

Element Description

Section A section consists of a section header optionally followed by one or
more entries in the Data Division or one or more paragraphs in the
Environment and Procedure divisions.

Paragraph In the Identification and Environment Divisions, a paragraph consists of
a paragraph header optionally followed by one or more entries. In the
Procedure Division, a paragraph consists of a paragraph-name with a
separator period at the end, optionally followed by one or more
sentences.

Clause A clause is an ordered set of consecutive COBOL character-strings that
specify an attribute of an entry.

Phrase A phrase is an ordered set of consecutive COBOL character-strings that
form a portion of a COBOL procedural statement or a COBOL clause.

Sentence A sentence is a sequence of one or more statements, the last of which
is terminated by a separator period.

Statement A statement is a syntactically valid combination of words, literals, and
separators that begins with a verb.

Word A COBOL word is a string of a maximum of 30 characters. The valid
types of COBOL words and the rules for forming them are described
later in this section under the heading “Types of COBOL Words."

Separator A character or a space that is used to punctuate a portion of a COBOL
program.

1-4 8600 1518-307

Reference Format

Reference Format

The COBOL compiler expects the components of your source program to appear in
specific areas along a line of code. Each line has 72 columns, which are grouped into five

areas. This line-formatting scheme is referred to as the reference format. Specific

portions of a program must be placed in each area on the coding form. Predesigned
coding forms are available to assist you in structuring lines of code in the correct way. An

example of a coding form is shown in Figure 1-1.

COBOL CODING FORM

PAGE [PROGRAM REQUESTED BY PAGE OF
NO.
1. 3] PROGRAMMER DATE IDENT. 73 80
[
LINE
NO.
4 6|l 718 1112 16 20 24 28 36 40 44 48 52 56 60 64 68 72
01: (I I 1 I I |
02! (I I 1 I I |
03: (I I 1 I I |
04: (I I 1 I I |
051 (I I 1 I I |
06: (I I 1 I I |
07! (I I 1 I I |
08: (I I 1 I I |
09: (I I 1 I I |
101 (I I 1 I I |
V\:/\/\,’\/\/\/\/\/\/\/\/\A/\A/\A/\A/\A/\/\/\/\/\/\/\/\/\/\/\/\/
\/ | \K.)\ ~ Y
A |B C D
—— Margin B Margin R ——
Margin A
Margin C
Margin L
A 1-6 Sequence field. Used for a sequence number.
B. 7 Indicator area. Used to denote a continuation line (-),
a comment line (*or /), a debugging line (D), or a
dollar option ($).
C 8-11 Area A. Items which must begin in this area are:
division headers; section headers; paragraph headers;
the key words DECLARATIVES and END DECLARATIVES;
level indicators FD and SD; and the level numbers 01 and 77.
D. 12-72 Area B. All other items must begin and end at some position
in this area.
Figure 1-1. Sample of COBOL Coding Form
8600 1518-307 1-5

Reference Format

Table 1-1 describes the areas in which specific information must be placed in a line of
code.

Table 1-1. Areas of a Line of Code for Columns 1-72

Columns Area Description

1-6 Sequence field You can put a sequence number in this area to
label a source program line. The sequence number
can consist of any character in the character set of
the computer. The content of the sequence
number area does not need to be unique or to have
any particular sequence.

7 Indicator area You can place a symbol in this area to indicate that
the succeeding line is of a specific type. The types
of lines and the symbols used to denote them are
as follows:

To denote a . ..
Continuation line, use a hyphen (-)
Comment line, use an asterisk (*) or a slash (\)
Debugging line, use the letter D
Compiler control option, use a dollar symbol ($)

When the FREE compiler option is

e Set, any character in column 7 other than an
asterisk, slash, hyphen, dollar sign, or space is
treated as part of the source image.

e Reset, any character in column 7 other than an
asterisk, slash, hyphen, or dollar sign is treated
as a space.

8-11 Area A The items that must begin in this area are as
follows:
e Division, section, and paragraph headers

e The keywords DECLARATIVES and END
DECLARATIVES

e The level indicators FD and SD
e The level numbers 01 and 77

12-72 Area B I[tems not placed in the other areas must begin and
end at some position in this area.

8600 1518-307

Division and Section Headers

Division and Section Headers

A division header is a combination of words, followed by a separator period, that
indicates the beginning of a division.

A section header is a combination of words, followed by a separator period, that
indicates the beginning of a section. Section headers are used in the Environment, Data,
and Procedure Divisions. In the Environment and Data Divisions, a section header is
composed of reserved words followed by a separator period.

The valid section headers for the Environment Division are

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The valid section headers for the Data Division are

FILE SECTION.

DATA-BASE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
LOCAL-STORAGE SECTION.
REPORT SECTION.
PROGRAM-LIBRARY SECTION.

In the Procedure Division, a section header consists of a user-defined section-name
followed by the reserved word SECTION. The section header must end with a period.

Note: The compiler ignores segment numbers that follow the reserved word SECTION
in a section header. You can retain the segment numbers, but it is recommended that
you make the Segmentation module a comment for the sake of clarity. Note that the
Segmentation module has been placed in the obsolete element category.

8600 1518-307 1-7

Level-Numbers

Level-Numbers

1-8

A level-number is a one- or two-digit number that indicates the hierarchical position or a
special characteristic of a data item. Level-number 1 is typically used for a line that
identifies a record. Level-numbers 2 through 49 typically specify fields within the record.
Level numbers 66, 77, and 88 have specific meanings in COBOL and identify a special
property of the data in the field.

When specific level-numbers appear in a general format, COBOL requires that you use
those level-numbers in your COBOL program. For more information on level-numbers,
refer to Section 4.

Example

The following example shows an input record for a magazine subscription list. The
01-level entry identifies the record. The 05-level entries identify a name and an address
field within the record. The 07-level entries specify the content of each field in the record.
Note that you could use any numbers from 02 through 49 in place of 05 and 07.

01 MAGAZINE-SUBSCRIPTION-INPUT-RECORD.

05 NAME.
07 FIRST PIC X(10).
07 MIDDLE-INITIAL PIC X(2).
07 LAST PIC X(13).
05 ADDRESS.
07 STREET PIC X(12).
07 CITY PIC X(10).
07 STATE-ABBREV PIC X(2).
07 ZIP-CODE PIC x(10).

8600 1518-307

Special-Purpose Lines—Fixed Indicators

Special-Purpose Lines—Fixed Indicators

In addition to standard lines of code, there are several special-purpose lines that you can
include in a source program. Special-purpose lines are usually designated by a special
character in the indicator area (column 7) of the line. The types of special-purpose lines
and their associated characters are as follows:

Type of Line Special Character
Comment line Asterisk (*) or slash (/)
Continuation line Hyphen (-)

Debugging line Letter D (D)
Compiler control option line Dollar sign ($)
Blank line Blank

Continuation Lines

Sometimes a line of code requires more than the 72 characters allocated on a coding
form. You can continue any entry, including a sentence, phrase, clause, word, literal, or
PICTURE character-string onto a subsequent line. The subsequent line is called a
continuation line.

Designating a Continuation Line

You designate a continuation line by placing a hyphen (-) in the indicator area (column 7)
of a line. The hyphen indicates that the first nonblank character in area B (columns 1272)
of the continuation line follows the last nonblank character of the preceding line (with no
spaces). If the indicator area of a line does not contain a hyphen, the compiler assumes
that a space precedes the first nonblank character in the line. Area A of a continuation
line must be blank.

You can use successive continuation lines. Also, you can place comment lines and blank
lines between a line and its continuation lines.

Double-byte names must be placed completely on a single line. You cannot continue
some of the characters of a double-byte name onto a continuation line.

When you use continuation lines with pseudocode, note that the characters that
compose the pseudocode designator (==) must be on the same line.

8600 1518-307 1-9

Special-Purpose Lines—Fixed Indicators

When you use a continuation line with a nonnumeric literal, an undigit literal, or a national
literal, observe the following rules:

e Use all 72 columns of the line to be continued. All spaces at the end of the line are
considered to be part of the literal.

e Do not place a quotation mark (") or a commercial at sign (@) in column 72 of the line
to be continued. Doing so delimits the literal and prevents it from being continued.

e Enter a quotation mark (for a nonnumeric literal), a commercial at sign (for an undigit
literal), or the delimiter N" (for a national literal) as the first nonblank character in area
B. The literal continues with the character immediately following the quotation mark
or commercial at sign.

Examples

The following example shows how a SELECT statement is continued over two lines.

200100 SELECT MASTERFILE ASSIGN TO DISK OR
200110- GANIZATION IS SEQUENTIAL.

The following example assumes that the Y in the word KEY is in column 72, the end of
Area B. The literal must end with a quotation mark. Thus, a continuation line is needed
that begins with a quotation mark (to signify a nonnumeric literal) and ends with a
quotation mark (to end the literal).

200120 01 WARNING-MESSAGE PIC X(24) VALUE IS "WRONG ENTRY FOR THIS KEY
200130- o

Comment Lines

A comment line is any line with an asterisk (*) or a slash (/) in the indicator area
(position 7) of the line. A comment line can appear as any line in a source program after
the Identification Division header and as any line in library text of a COBOL library. You
can include any combination of the characters from the computer’s character set,
including national standard data format characters, in area A and area B of a comment
line.

A slash in the indicator area causes page ejection before the comment line if the listing of
the source program is printed. An asterisk in the indicator area causes the line at the next
available line position in the listing to be printed. The asterisk or slash and the characters
in area A and area B appear on the listing but serve as documentation only. For example,
if you want a heading at the top of a page, type a slash in the indicator area and the
heading in areas A and B. The compiler does not perform a syntax check on comment
lines.

1-10 8600 1518-307

Special-Purpose Lines—Fixed Indicators

Floating Comment Indicator

A comment indicator, signified by the symbols *>, is used to indicate the following:

e A comment line, when specified as the first character-string in the program-text area

e Afloating inline comment, when specified following one or more character-strings in
the program-text area, subject to the following conditions:

— The floating comment indicator of an inline comment must be preceded by a
separator space; it can be specified wherever a separator space can be
specified.

— For purposes of analyzing the text of a compilation group, a space is implied
immediately following a floating comment indicator.

— When a floating comment indicator is present, the rest of the line is treated as a
comment.

— All the characters that form a multiple-character floating comment must be
specified on the same line.

Debugging Lines

A debugging line is any line with a D in the indicator area (column 7) of the line. A
debugging line with spaces in columns 8 through 72 is considered to be the same as a
blank line. You can enter a debugging line anywhere after the OBJECT-COMPUTER
paragraph.

Debugging lines are used when the debugging module is activated. The debugging
module is activated when you specify the WITH DEBUGGING MODE clause in the
SOURCE-COMPUTER paragraph. If you do not activate the debugging module, the
compiler treats a debugging line like a comment line. Thus, you should make sure that
your program is syntactically correct when the debugging lines are considered to be
comment lines. $FREE must be reset to compile debugging lines.

You can use successive debugging lines, and you can continue debugging lines. Each
continued debugging line must contain a D in the indicator area. Character-strings cannot
be continued across multiple lines.

Example

The following example shows the use of debugging lines.
010000 IDENTIFICATION DIVISION.
100000 ENVIRONMENT DIVISION.

100050 CONFIGURATION SECTION.
100100 SOURCE-COMPUTER MICROA WITH DEBUGGING MODE.

100600 WORKING-STORAGE Section.
100700D77 PERFORMANCE-COUNT PIC 9(4).
100800D77 BAD-RECORDS PIC 9(4).

8600 1518-307 1-11

Special-Purpose Lines—Fixed Indicators

100900D77 RATIO PIC 9(4) 99.

101000 PROCEDURE DIVISION.

102000 OPEN-IT.

102100 OPEN INPUT GUEST-FILE.

103000D MOVE ZEROS TO PERFORMANCE-COUNT, BAD-RECORDS, RATIO.
104000 READ-IT.

104100 READ GUEST-FILE AT END GO TO FINISH-IT.

105000D ADD 1 TO PERFORMANCE-COUNT.

106000D IF IN-KEY NOT NUMERIC ADD 1 TO BAD-RECORDS.

107000 GO TO READ-IT.

108000 FINISH-IT.

108100 CLOSE GUEST-FILE.

109000D DIVIDE PERFORMANCE-COUNT BY BAD-RECORDS GIVING RATIO.

Compiler Control Option Lines

A compiler control option is designated by a line that has a dollar sign ($) in the indicator
area (column 7) of the line. Such a line specifies the compiler control options to be used
during the compilation process. For details about compiler control options, refer to
Section 15.

Blank Lines

A blank line is a line that has no characters except blanks in Area B (positions 8 through
72). You can include blank lines anywhere in the source program to help make it more
readable.

Pseudotext

Pseudotext is a sequence of text words, comment lines, or the separator space in a
source program or COBOL library bounded by, but not including, pseudotext delimiters.
Pseudotext delimiters are two contiguous equal sign (=) characters that surround the
pseudotext. Pseudotext must not consist entirely of a separator comma or a separator
semicolon.

The text or space that makes up pseudotext can start in either area A or area B. If,
however, a hyphen (-) is in the indicator area of a line that follows the opening pseudotext
delimiter, area A of the line must be blank, and the normal rules for continuation lines
apply to the formation of text. For more information on the use of the hyphen, refer to
"Continuation Lines” earlier in this section.

1-12 8600 1518-307

COBOL Character Set

COBOL Character Set

The characters you use to write a COBOL source program include the letters of the
alphabet, digits, and special characters. The standard character set is shown in Table 1-2.

Certain characters of the COBOL character set might not be represented graphically in
definitions of national and international standard character sets. In these instances, you
can specify a substitute graphic to replace the character or characters not represented.

Table 1-2. Areas of a Line of Code for Characters

Character Meaning

0 through 9 Digit

A through Z Uppercase letter

a through z Lowercase letter

(Blank) Space

+ Plus sign

- Minus sign (hyphen)

* Asterisk

/ Slant (slash)

= Equal sign

$ Currency (dollar) sign
Comma (decimal point)
Semicolon
Period (decimal point, full stop)

' Quotation mark

(Left parenthesis

) Right parenthesis

> Greater than symbol

< Less than symbol
Colon

_ Underscore

8600 1518-307

Using Separator Characters for Punctuation

Using Separator Characters for Punctuation

When writing the text of a source program, you often need to show where one language
element ends and the next one begins. You can differentiate between language
elements by using separator characters. Sometimes separators are required by a general
format. Other times, you can use separators at your discretion to improve the readability
of your program. The characters you can use as separators and the rules for using them
are described in Table 1-3. Note that the rules provided in Table 1-2 do not apply to the
characters contained in nonnumeric literals, comment-entries, or comment lines.

Table 1-3. Valid Separator Characters

Separator Guidelines for Use

(space) Spaces can precede or follow all other separators except when
restricted by reference format rules as discussed in this section.

All spaces that immediately follow the comma, semicolon, or period
are recognized as part of that separator and are not recognized as
the space separator.

A space is required before the opening pseudotext delimiter.

A space that follows the opening quotation mark (") of a
nonnumeric literal is considered to be part of the literal. A space
that precedes the ending quotation mark of a nonnumeric literal is
considered to be part of the literal.

A period marks the end of a COBOL entry. The period must be
followed by a space, which is interpreted as part of the period
separator.

P You can use the comma and semicolon as separators anywhere you
would use a space, with the exception that you cannot use the
comma as a separator in a PICTURE character-string.

You should include a space after the comma or semicolon
separators. Although the compiler may permit the omission of the
trailing space if the resulting code is not ambiguous, it is
recommended that you include the space to prevent encountering
problems when a space is required, but not supplied.

() A pair of parentheses (left and right) delimits subscripts, reference
modifiers, arithmetic expressions, and conditions. They must
appear only in balanced pairs of left and right.

1-14 8600 1518-307

Using Separator Characters for Punctuation

Table 1-3. Valid Separator Characters

Separator Guidelines for Use

Quotation marks delimit nonnumeric literals. They must appear in
balanced pairs, except when the literal is continued onto another
line.

A line that is to be continued must contain opening quotation marks
preceding the literal. Each continuation line contains opening
quotation marks as the first nonblank character in Area B. The last
continuation line contains closing quotation marks following the
literal.

An opening quotation mark must be immediately preceded by a
space, left parenthesis, comma, or semicolon.

A closing quotation mark must be followed immediately by a space,
right parenthesis, comma, semicolon, or period.

Two contiguous equal signs are pseudotext delimiters. You must
place two contiguous equal signs at the beginning of a line of
pseudotext and at the end of the line.

An opening pseudotext delimiter must be immediately preceded by
a space.

A closing pseudotext delimiter must be immediately followed by a
space, comma, semicolon, or period.

The colon is a required separator when it appears in general
formats.

@ The at-sign character delimits undigit literals.

An opening at-sign character must be preceded immediately by a
space, comma, semicolon, or left parenthesis.

A closing at-sign character must be followed immediately by a
space, comma, semicolon, period, or right parenthesis.

B" The letter B followed by a quotation mark is an opening separator
for a Boolean literal. You must use another quotation mark to end
the Boolean literal. The B" separator must be preceded by a space
or a left parenthesis.

N* The letter N followed by a quotation mark is an opening separator
for a national literal. You must use another quotation mark to end
the national literal. The N" separator must be preceded by a space
or a left parenthesis.

Note: Any punctuation character that you use in a PICTURE character-string or a
numeric literal is considered to be part of the string or literal rather than a punctuation
character. You can delimit PICTURE character-strings with spaces, commas, semicolons,
or periods.

8600 1518-307 1-15

Types of COBOL Words

Types of COBOL Words

A COBOL word is a character-string that contains a maximum of 30 characters. Words
can be classified into three categories:

o Reserved words (compiler-defined)

e System-names

e User-defined words

You cannot use a reserved word as a system-name or a user-defined word.

You can use the same word for a system-name and a user-defined word. The compiler
can determine how the word is to be used by the context of the clause or phrase in

which the word occurs.

The following paragraphs describe the types of COBOL words.

Reserved Words

A reserved word is a COBOL85 word that has a specific meaning to the compiler and is
reserved for use only as indicated by a general format. A reserved word appears in
uppercase letters in the general formats. When the reserved word is a required part of
the syntax, it appears underlined. Underlined reserved words are called keywords. If a
reserved word is not underlined, you can omit it from the syntax.

A reserved word cannot appear in the program as a user-defined word or a system-
name. Table 1-4 shows the way reserved words are used by the COBOL language.

Table 1-4. Types of Reserved Words

Word Types Purpose

Connectives Qualify data, link operands in a series, or link logical operators to
form conditions.

Figurative constants Associate names with commonly used values.

Functions Associate names with commonly used calculations.

Special registers Serve as compiler-generated, read-only storage areas that access
specific COBOLB85 features.

Arithmetic and Indicate arithmetic operation or quantify a relation.

relational operators

Keywords and Satisfy the requirements of the syntax and improve the readability

optional words of your program.

The following paragraphs describe each of the types of reserved words. A complete list
of reserved words is provided in Appendix B.

1-16 8600 1518-307

Types of COBOL Words

Connectives

Connectives are reserved words that you can use in one of the following ways:
e As qualifiers to associate data-names, condition-names, text-names, or paragraph-
names. Examples of qualifier connectives are OF and /N.

e As logical connectives to form conditions. Examples of logical connectives are AND
and OR.

Figurative Constants

A figurative constant is a reserved word, such as ALL or SPACES, that takes on the value
implied by the word.

You can use figurative constants in place of a literal in a general format. However, if the
literal is restricted to a numeric literal, you are limited to the figurative constant ZERO or
its alternate forms ZEROS and ZEROES.

When you use a figurative constant in a context that requires national data, the figurative
constant represents a national literal value.

The figurative constants you can use and the values they imply are described in Table

1-5. Note that the singular and plural forms of figurative constants are equivalent, so you
can use them interchangeably.

Table 1-5. Figurative Constants

The figurative

constant . .. Represents “ns

ZERO, ZEROS, or The numeric value 0 or one or more of the 0 characters from the

ZEROES computer's character set. For national data, it represents the
national literal @A3B0@.

SPACE OR One or more space characters. For national data, it represents the

SPACES national literal @ATA1@.

HIGH-VALUE or One or more of the characters that has the highest ordinal position

HIGH-VALUES in the program collating sequence. For national data, it represents

the national literal @FFFF@ .

The actual characters associated with each figurative constant
depend upon the program collating sequence specified.

To define HIGH-VALUE in the SPECIAL-NAMES paragraph of the
Environment Division (invalid for national literals), you must use the
ALPHABET clause. For details, refer to “SPECIAL-NAMES
Paragraph” in Section 3.

8600 1518-307 1-17

Types of COBOL Words

Table 1-5. Figurative Constants

The figurative

constant . .. Represents “ns
LOW-VALUE or One or more of the characters that has the lowest ordinal position in
LOW-VALUES the program collating sequence. For national data, it represents the

national literal @0000@ .

The actual characters associated with each figurative constant
depend upon the program collating sequence specified.

To define LOW-VALUE in the SPECIAL-NAMES paragraph of the
Environment Division (invalid for national literals), you must use the
ALPHABET clause. For details, refer to “SPECIAL-NAMES
Paragraph” in Section 3.

QUOTE or One or more quotation marks ("). For national data, it represents the
QUOTES national literal @A1C9@ .

You can use the following statement to avoid using a literal:
MOVE QUOTE TO PRINT-LINE

You cannot use the word QUOTE or QUOTES in place of the
quotation mark in a source program to enclose a nonnumeric literal.
Thus, QUOTE ABD QUOQOTE is incorrect as a way of stating the
nonnumeric literal “ABD".

ALL literal A continuous sequence of an alphanumeric or a national literal. The
literal must be nonnumeric and must not be a figurative constant.

Note that associating the figurative constant [ALL] literal, and a
literal of length greater than one, with a data item that is numeric or
numeric-edited is becoming obsolete in COBOL ANSI-85 and will be
deleted from the next revision of the COBOL standard.

[ALL] symbolic- The name of a position in the collating sequence.

character .
For example, the end-of-text position does not have a name. If you

designate ETX IS 14, the name ETX becomes the same as position
14 in the collating sequence. Then, you can use the name ETX in
your program.

You designate the symbolic-character in the SYMBOLIC
CHARACTERS clause of the SPECIAL-NAMES paragraph in the
Environment Division. Refer to “SPECIAL-NAMES Paragraph” in
Section 3.

1-18 8600 1518-307

Types of COBOL Words

When you use a figurative constant other than the [ALL] literal, using the word ALL is
redundant and is for readability purposes only.

When a figurative constant represents a string of one or more characters, the compiler
determines the length of the string from context according to the following rules:

e \When a figurative constant is specified in a VALUE clause, or when a figurative
constant is associated with another data item (for example, when the figurative
constant is moved to or compared with another data item), the string of characters
specified by the figurative constant is repeated character by character on the right
until the size of the resultant string is greater than or equal to the number of
character positions in the associated data item.

The resultant string is then truncated from the right until it is equal to the number of
character positions in the associated data item. This truncation is done before, and
independently of, the application of any JUSTIFIED clause that might be associated
with the data item.

o \When a figurative constant, other than the [ALL] literal, is not associated with
another data item (for example, when the figurative constant appears in a DISPLAY,
STOP, STRING, or UNSTRING statement), the length of the string is one character.

o When the figurative constant [ALL] literal is not associated with another data item,
the length of the string is the length of the literal.

e \When a figurative constant is used in conjunction with the VALUE clause as part of a
data description entry, editing characters in the PICTURE clause are included in
determining the size of the data, but they have no effect on the initialization of the
data item.

Functions

A function is a temporary data item whose value is derived automatically at the time of
reference during the execution of the object program. Functions are specified by a
function-identifier, which consists of the reserved word FUNCTION, a reserved function-
name, and optional user-defined arguments. Functions are described in detail in

Section 9.

8600 1518-307 1-19

Types of COBOL Words

Special Registers

Special registers are compiler-generated storage areas whose primary use is to store
information produced by specific COBOL features. Table 1-6 describes the special
registers.

Table 1-6. Special Registers

The register Contains ...

DATE If DATE is followed by the qualifier "YYYYMMDD", the system
date is formatted as an unsigned, 8-digit elementary numeric
integer made up of the year (four digits), month of the year
(two digits) and the day of month (two digits). For example,
July 1, 1993 is expressed as 19930701.

If DATE is not qualified, the system date is formatted as an
unsigned, 6-digit elementary numeric integer made up of the
year of the century (two digits), the month of year (two digits),
and the day of the month (two digits). For example, July 1,
1993 is expressed as 930701.

To query this special register, use Format 2 of the ACCEPT
statement.

DAY If DAY is followed by the qualifier "YYYYDDD", the system date
is formatted as an unsigned, 7-digit elementary numeric integer
made up of the year (four digits) followed by the number of
days since the beginning of the year (three digits). For
example, July 1, 1993 is expressed as 1993183.

If DAY is not qualified, the system date is formatted as an
unsigned 5-digit elementary numeric integer made up of the
year of the century (two digits) followed by the number of days
since the beginning of the year (three digits). For example, July
1, 1993 is expressed as 93183.

To query this special register, use Format 2 of the ACCEPT
statement.

DAY-OF-WEEK A single data element that represents the day of the week. A
value of 1 represents Monday, a value of 2 represents
Tuesday, and so on. When accessed by a COBOL program,
this register behaves as an unsigned elementary numeric
integer 1 digit in length (PIC9(1) COMP). To query this special
register, use Format 2 of the ACCEPT statement.

LINAGE-COUNTER The number of lines advanced within a printed page. LINAGE-
COUNTER is a fixed data-name for a line counter suitable for
computation. It is generated by the presence of a LINAGE
clause in a file description (FD) entry. The implicit class of a
LINAGE-COUNTER is numeric. No data item is referenced; it is
treated as a LINENUMBER attribute for purposes of retrieval.
The compiler automatically supplies one LINAGE-COUNTER for
each file in the File Section that has a LINAGE clause in its FD
entry. For more information, refer to “"LINAGE" Clause in
Section 4.

1-20 8600 1518-307

Types of COBOL Words

Table 1-6. Special Registers

The register Contains ...

LINE-COUNTER The vertical position in a report. LINE-COUNTER is a fixed data-
name for a line counter suitable for computation. It is
generated for each report description (RD) entry in the Report
Section. The compiler automatically provides one LINE-
COUNTER register for each report in the RD entry. You can
query this special register by using the Report Writer facility.

PAGE-COUNTER Page numbers within a report group. PAGE-COUNTER is a
fixed data-name for a page counter suitable for computation. It
is generated for each report-description (RD) entry in the
Report Section. The compiler automatically supplies one PAGE-
COUNTER for each report that has the word PAGE-COUNTER
as a source data item in an RD entry. You can query this
special register by using the Report Writer facility.

TIME The elapsed time after midnight based on a 24-hour clock in
hours, minutes, seconds, and hundredths of a second. TIME is
an unsigned, 8-digit, elementary numeric integer. For example,
2:41 p.m. is expressed as 14410000. The maximum value of
TIME is 23595999. You can query this special register by using
Format 2 of the ACCEPT statement.

TIMER The number of 2.4-microsecond intervals since midnight.
TIMER is a single, unsigned 11-digit numeric integer. It is
composed of the current value of the computer's interval timer.
You can query this special register by using Format 2 of the
ACCEPT statement.

TODAYS-DATE If TODAYS-DATE is followed by the qualifier "MMDDYYYY", the
system date is formatted as an unsigned, 8-digit elementary
numeric integer made up of the month of the year (two digits),
the day of the month (two digits), and the year (four digits). For
example, July 1, 1993 is expressed as 07011993.

If TODAYS-DATE is not qualified, the system date is formatted
as an unsigned, 6-digit elementary numeric integer made up of
the month of the year (two digits), the day of the month (two
digits), and the year of the century (two digits). For example,
July 1, 1993 is expressed as 070193.

To query this special register, use Format 2 of the ACCEPT
statement.

TODAYS-NAME The current day of the week. TODAYS-NAME is an elementary,
9-character, alphanumeric item. If the day of the week is less
than nine characters long, it is left-justified in the 9-character
area provided, with space-fill on the right. You can query this
special register by using Format 2 of the ACCEPT statement.

8600 1518-307 1-21

Types of COBOL Words

Arithmetic and Relational Operators

Arithmetic and relational operators are symbols used to imply a mathematical operation
or to compare the value of two operands. Table 1-7 lists these COBOL operators. Note
that the operators are required when they appear in a general format even though they

are not underlined.

Table 1-7. Special Character Words

Type of Operator Symbol Meaning
Arithmetic + Addition
- Subtraction
* Multiplication
/ Division
*x Exponentiation
Relational > Greater than
< Less than
= Equal to
>= Greater than or equal to
<= Less than or equal to

1-22

8600 1518-307

Types of COBOL Words

System-Names

A system-name is a word that you use to communicate with the operating system. A
system-name can be one of two types, as shown in the following table.

Type of System-Name Description
Computer-name This is the name of the computer, for example MICROA or
A17, on which the COBOL program is to be compiled or
executed.
Implementor-name This is a name that refers to a particular feature, such as
ODT or SW1.

You can use the same word as a system-name and a user-defined word. The compiler
determines the class of a specific occurrence of the word by the context of the clause or
phrase in which the word occurs.

Rules

Observe the following rules when you form a system-name:

o Make the system-name no more than 30 characters long.

e Select each character from the set of characters A through Z, 0 through 9, the
underscore (_), and the hyphen (). (Each lowercase letter is equivalent to its
corresponding uppercase letter.)

e Do not use the underscore or the hyphen as the first or last character of a system-
name.

e Do not use a reserved word as a system-name.

8600 1518-307 1-23

Types of COBOL Words

User-Defined Words

1-24

A user-defined word is a word that you supply to complete the syntax of a clause or
statement. You can use the same word as a user-defined word and a system-name. The
compiler determines the class of a specific occurrence of the word by the context of the
clause or phrase in which the word occurs.

Observe the following rules when you form a user-defined word:

Make the user-defined word no more than 30 characters long.

Select each character from the set of characters A through Z, 0 through 9, the
underscore (_), and the hyphen (-). (Each lowercase letter is equivalent to its
corresponding uppercase letter.)

Do not use the underscore or the hyphen as the first or last character of a user-
defined word.

Do not use a reserved word.

Make sure that all user-defined words, except level-numbers and segment-numbers,
are unigue. You can use qualification to make similar words unique. (Qualification is
discussed in Section 4.)

Include at least one alphabetic character in all user-defined words, except in the
following types of words:

— Family-names
— Level-numbers
— Library-names
— Paragraph-names
— Section-names
— Segment-numbers

— Text-names

8600 1518-307

Types of COBOL Words

1-25

8600 1518-307

Types of COBOL Words

Table 1-8 lists and describes the types of user-defined words that most frequently
appear in COBOLS85 general formats.

Table 1-8. Types of User-Defined Words

Type

Purpose

Alphabet-name

Assigns a name to a specific character set and collating sequence.

Class-name

Assigns a name to any group of characters in the computer's
character set in the SPECIAL-NAMES paragraph of the Environment
Division. You can use a class-name in a conditional expression.

Condition-name

Assigns a name to a specific value, set of values, or range of values
from a complete set of values that a conditional variable can have. (A
conditional variable is a data item that can assume more than one
value.) A condition-name can also assign a name to a switch or
device.

You define condition-names in the Data Division or in the Special-
Names paragraph of the Environment Division.

You can use a condition-name as an abbreviation for a relation
condition. A relation condition assumes that the associated
conditional variable is equal to one of the set of values to which that
condition-name is assigned.

You can also use a condition-name in a SET statement to indicate that
the associated value is to be moved to the conditional variable.

Data-name

Names a data item described in a data description entry. A data-name
must not have a reference-modifier, qualifier, or subscript unless
specifically permitted by the rules of the general format. A data-name
that has a reference-modifier, qualifier, or subscript is referred to as
an identifier. Identifiers are described in detail later in this section.

File-name

Names a file described in a file description entry or a sort-merge file
description (FD) entry in the File Section of the Data Division.

Index-name

Names an index associated with a specific table.

Level-number

Defines a one- or two-digit number that indicates the hierarchical
position of a data item or the special properties of a data description
entry.

Library-name

Names a COBOL library that is to be used by the compiler for a given
source program compilation.

Mnemonic-
name

Assigns a user-defined word to an implementor-name in the
SPECIAL-NAMES paragraph of the Environment Division. An
implementor-name is a system-name that refers to a particular
feature available on the COBOL85 compiler.

Paragraph-name

Identifies and begins a paragraph in the Procedure Division.
Paragraph-names are equivalent only if they consist of the same
sequence of the same number of digits and/or characters.

8600 1518-307

Types of COBOL Words

Table 1-8. Types of User-Defined Words

Type

Purpose

Program-name

Identifies a COBOL source program in the Identification Division and
the end-program header.

Record-name

Names a record described in a record description (RD) entry in the
Data Division.

Section-name

Names a section in the Procedure Division. Section-names are
equivalent only if they consist of the same sequence of the same
number of digits and/or characters.

Symbolic- Specifies a user-defined figurative constant. Refer to “Figurative
character Constants” in this section for more information.
Text-name Specifies the external identification of a file in the COBOL library.

Note that within a source program, excluding nested programs, user-defined words are
grouped into disjoint sets. A disjoint set is a set that has no common elements. Thus the
user-defined words within the set must be unique. In addition, all user-defined words,
except level numbers, can belong to only one disjoint set.

User-defined words are grouped into the following disjoint sets:

e Alphabet-names

e (lass-names

e Condition-names, data-names, and record-names

e File-names

e Index-names

e Library-names

e Mnemonic-names
e Paragraph-names
e Program-names

e Section-names

e Symbolic-characters

e Text-names

8600 1518-307

1-27

Identifiers

Identifiers

An identifier is a syntactically correct sequence of character-strings and separators used
to uniquely identify a data item.

When a data item other than a function is specified, the term identifier is used in a
general format to indicate a data-name that must be either unique in a program or must
be followed by a syntactically correct combination of qualifiers, subscripts, or reference
modifiers to make it unique. (Qualifiers and reference modifiers are described in
Section 4. Subscripts are discussed in Section 5.)

The general syntax for an identifier is as follows:

IN IN cd-name-1

data-name-1 ~ data-name-2
OF OF file-name-1

report-name-1

[({subscript} ...)] [reference-modifier]

Note that the words IN and OF are equivalent in this syntax.

Some special identifiers do not exactly follow the ANSI COBOL85 format for an identifier.
These identifiers and the sections in this manual in which they are described are shown
in the following table:

For information about . .. Refer to ...

Event-identifiers Section 6 (CAUSE statement)

File attribute identifiers Section 12

Function identifiers Section 9

Task attribute identifiers Section 6 (CHANGE statement) and
Section 13

1-28 8600 1518-307

Literals

Literals

A literal is a word, number, or symbol that names, describes, or defines itself and not
something else that it might represent. For example, consider the following general
format for the ADD statement:

identifier-1
ADD ... TO { identifier-2 [ROUNDED] } ...
literal-1 -

Assume that you want the value for identifier-2 to be "TOTAL.” If you choose to use a
literal as shown in the preceding syntax, your program line might read “ADD 1 TO
TOTAL.” The computer adds the actual value of 1 to the value stored in the TOTAL field.

If you want to add the value stored in the EXTRA-INCOME field to the value stored in the
TOTAL field, you would use an identifier instead of a literal. Your program line might read
“"ADD EXTRA-INCOME TO TOTAL."”

Every literal belongs to one of the following types:

e Nonnumeric
e National

e Numeric

e Undigit

e Floating-point

e Boolean

The types of literals are described in the following paragraphs.

8600 1518-307 1-29

Literals

Nonnumeric Literals

A nonnumeric literal is an alphanumeric value from 1 through 160 characters in length.
The characters can include any character in the alphanumeric and national character sets.
National characters and the control characters SDO and EDO, which are used to
distinguish national characters from nonnumeric characters, can be mixed with
nonnumeric characters to form nonnumeric literals.

To indicate that a value is a nonnumeric literal, you must place quotation marks (") before
and after the value. The quotation marks are not considered to be part of the value of the
literal. The general format for a nonnumeric literal is as follows:

" { character-1} ... "

Character-1 can be any character in the computer’s character set.

Details

To use the quotation mark as a literal, use two contiguous quotation marks. For example,
assume that you want to produce the name William “Bud” Smith, with the name Bud in
quotation marks. You would use the following code:

"William ""Bud"" Smith".

Note that all punctuation characters are part of the value of the nonnumeric literal and are
not used as separators.

The value of a nonnumeric literal in the object program is the value represented by
character-1.

Examples

The following table provides examples of the coding of nonnumeric literals.

Coding Result

"MY NAME" MY NAME

"FEET/SQ. IN." FEET/SQ. IN.

"THIS IS ""EDITED"" THIS IS "EDITED" OUTPUT
OUTPUT"

1-30 8600 1518-307

Literals

8600 1518-307 1-31

Literals

Numeric Literals

A numeric literal is a literal composed of one or more numeric characters. Numeric
literals do not have delimiters.

COBOLB85 acknowledges two types of numeric literals:

e Standard numeric literals (1 to 23 digits)
e | ong numeric literals (24 to 160 digits)

The rules for forming both types of literals are explained in the following paragraphs.

Rules for All Numeric Literals

The following rules apply to both standard numeric literals and long numeric literals:

e Every numeric literal is in the numeric category.

e The value of a numeric literal is the algebraic quantity represented by the characters
in the numeric literal.

e The size of a numeric literal in standard data format characters equals the number of
digits specified in the character-string.

e |f the literal conforms to the rules for the formation of numeric literals but is enclosed
in quotation marks ("), it is a nonnumeric literal and the compiler treats it as such. For
example, "1234" is a nonnumeric literal.

Rules for Standard Numeric Literals

Observe the following rules when forming standard numeric literals:

e The literal can contain only one sign character.

If you use a sign, it must appear as the leftmost character of the literal.
e |f the literal is unsigned, it is assumed to be positive.
e The literal can contain only one decimal point.

The decimal point can appear anywhere within the literal except in the rightmost
character position.

The decimal point is treated as an assumed decimal point, which means that it does
not involve the existence of an actual character in a data item. The assumed decimal
point has logical meaning with no physical representation.

o |f the literal does not contain a decimal point, the literal is an integer.

1-32 8600 1518-307

Literals

1-33

8600 1518-307

Literals

M.

8600 1518-307

1-34

Literals

Boolean Literals

A Boolean literal is a character string delimited on the left by the separator B" and on the
right by the separator quotation mark.

General Format

B"Boolean-character"

The Boolean-character is a "0" ora "1".
Examples

Blllll
BIIOII

8600 1518-307 1-35

Literals

1-36 8600 1518-307

Section 2
Identification Division

This section presents and explains the syntax of the Identification Division, the first
division of a COBOL program.

General Format

The general format of the Identification Division is as follows:

IDENTIFICATION DIVISION.

[PROGRAM-ID. program-name.]

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment entry] ...]
[DATE-COMPILED. [comment-entry] ...]
[SECURITY. [comment-entry] ...]

Except for the DATE-COMPILED paragraph, the entire Identification Division is copied
from the input source program and is included on the output listing. The object program,
however, is not affected by the information included in this division.

Note: The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED, and

SECURITY paragraphs are obsolete elements in COBOL ANSI-85 and will be deleted
from the next revision of the COBOL standard.

Identification Division Header

The following header identifies and must begin the |dentification Division:

IDENTIFICATION DIVISION.

These keywords begin in area A and must be followed by a period.

8600 1518-307 2-1

PROGRAM-ID Paragraph

PROGRAM-ID Paragraph

2-2

The PROGRAM-ID paragraph is the only required paragraph in the Identification Division
of a program nested within another program. Otherwise, this paragraph is optional, and
the compiler will implicitly generate a PROGRAM-ID record if it is missing. However,
multiple source programs arranged sequentially in a single source program must be
delimited by the PROGRAM-ID paragraph, which specifies the name of the program and
assigns selected program attributes to that program.

Refer also to “Using the ANSI IPC Constructs,” “The Run Unit,” “Nested Source
Programs,” and “Common and Initial Programs” in Section 10.

The format of the PROGRAM-ID paragraph is as follows:

PROGRAM-1ID. program-name IS COMMON PROGRAM
INITIAL
LIBRARY
DEFINITION
PROGRAM-ID

This keyword begins in area A and must be followed by a period.

program-name

This name is a user-defined word that identifies the source program, the object program,
and all listings that pertain to a particular program.

The program-name in the PROGRAM-ID paragraph is not necessarily the same as the
source program name or object program name, which are determined by the method of
compilation. For example, if TESTSOURCE/C85/XYZ were the source file name, its
PROGRAM-ID could be PROGRAM-ID xyz COMMON), and, if compiled through CANDE,
its object code file name could be OBJECT/TESTSOURCE/C85/XYZ.

When a sequence of programs is compiled, the second program is named <program-
name>-1, the third program is named <program-name>-2, and so on.

Note that a nested program must not be assigned the same program-name as that of

any other program contained in the separately compiled program that contains the
nested program.

8600 1518-307

PROGRAM-ID Paragraph

IS COMMON PROGRAM Clause

You can use this clause if the program is contained in another program. \When used, this
clause specifies that the program can be called from programs other than the one
containing it. Refer also to “Common and Initial Programs” in Section 10.

IS INITIAL PROGRAM Clause

This clause specifies that the program (and any programs it contains) will be placed in its
initial state each time it is called. Refer also to “Common and Initial Programs” in
Section 10.

IS LIBRARY PROGRAM Clause

This clause identifies a program as a library program. The program that contains this
clause must be the outermost program of a collection of programs; the library program
cannot be nested within another program.

A program that contains an IS LIBRARY PROGRAM clause must also contain an export
definition in the Program-Library Section of the Data Division. For more information, refer

to "Program-Library Section” in Section 4. For information on library programs, refer to
Section 11.

Note: Ifthe IS LIBRARY PROGRAM clause is present in a source program, the
compiler control options LIBRARYPROG and LEVEL cannot be set.

IS DEFINITION PROGRAM Clause

This clause identifies the program as a definition program. The program that contains this
clause must be the first program. It is followed by a list of multi-procedure programs

separated by a LIBRARY control option. The BINDSTREAM compiler control option must
be set.

A program that contains an IS DEFINITION PROGRAM can contain only the
Working-Storage Section, Local-Storage Section, and the import definitions in the
Program-Library Section of the Data Division. For more information, refer to
BINDSTREAM and LIBRARY compiler control options.

8600 1518-307 2-3

AUTHOR Paragraph

AUTHOR Paragraph

2-4

The AUTHOR paragraph gives the name of the person who wrote the program. Use of
this paragraph is optional.

The format of the AUTHOR paragraph is as follows:

[AUTHOR. [comment-entry] ...]

AUTHOR

This keyword begins in area A and must be followed by a period.

comment-entry

This can be any combination of characters from the computer's character set. You must
not continue a comment-entry with a hyphen in the indicator area; however, a comment-
entry can extend beyond one line. The comment-entry is becoming obsolete in
COBOLS85 and will be deleted from the next revision of the ANSI COBOL standard.

Note: The AUTHOR paragraph is an obsolete element in COBOL ANSI-85 and will be
deleted from the next revision of the COBOL standard.

8600 1518-307

INSTALLATION Paragraph

INSTALLATION Paragraph

The INSTALLATION paragraph gives the name of the site where the program wiill be
used. Use of this paragraph is optional.

The format of the INSTALLATION paragraph is as follows:

[INSTALLATION. [comment-entry] ...]

INSTALLATION

This keyword begins in area A and must be followed by a period.

comment-entry

This can be any combination of characters from the computer's character set. You must
not continue a comment-entry with a hyphen in the indicator area; however, a comment-
entry can extend beyond one line. The comment-entry is becoming obsolete in
COBOLS85 and will be deleted from the next revision of the ANSI COBOL standard.

Note: The INSTALLATION paragraph is an obsolete element in COBOL ANSI-85 and
will be deleted from the next revision of the COBOL standard.

8600 1518-307 2-5

DATE-WRITTEN Paragraph

DATE-WRITTEN Paragraph

2-6

The DATE-WRITTEN paragraph gives the date that the program was written. Use of this
paragraph is optional.

The format of the DATE-WRITTEN paragraph is as follows:

[DATA-WRITTEN. [comment-entry] ...]

DATE-WRITTEN

This keyword begins in area A and must be followed by a period.

comment-entry

This can be any combination of characters from the computer's character set. You must
not continue a comment-entry with a hyphen in the indicator area; however, a comment-
entry can extend beyond one line. The comment-entry is becoming obsolete in
COBOLS85 and will be deleted from the next revision of the ANSI COBOL standard.

Note: The DATE-WRITTEN paragraph is an obsolete element in COBOL ANSI-85 and
will be deleted from the next revision of the COBOL standard.

8600 1518-307

DATE-COMPILED Paragraph

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph gives the date that the program was compiled. If this
paragraph is present, the system automatically updates the compilation date in the
source program listing. Use of this paragraph is optional.

The format of the DATE-COMPILED paragraph is as follows:

[DATE-COMPILED. [comment-entry] ...]

DATE-COMPILED

This keyword begins in area A and must be followed by a period.

This keyword causes the current date to be inserted in the source program listing during
program compilation.

comment-entry

This can be any combination of characters from the computer's character set. You must
not continue a comment-entry with a hyphen in the indicator area; however, a comment-
entry can extend beyond one line. The comment-entry is becoming obsolete in
COBOLS85 and will be deleted from the next revision of the ANSI COBOL standard.

Details

If a DATE-COMPILED paragraph is present, it is replaced during compilation with a
paragraph of the following form:

DATE-COMPILED. year month day hh:mm

Example

DATE-COMPILED. 1988 FEBRUARY 11 10:15.

This example shows how the DATE-COMPILED paragraph would appear on the output
listing of a program that was compiled on February 11, 1988, at 10:15.

Note: The DATE-COMPILED paragraph is an obsolete element in COBOL ANSI-85 and
will be deleted from the next revision of the COBOL standard.

8600 1518-307 2-7

Security Paragraph

Security Paragraph

2-8

The SECURITY paragraph identifies the security restrictions under which the program
can be accessed. Use of this paragraph is optional.

The format of the SECURITY paragraph is as follows:

[SECURITY. [comment-entry] ...]

SECURITY

This keyword begins in area A and must be followed by a period.

comment-entry

This can be any combination of characters from the computer's character set. You must
not continue a comment-entry with a hyphen in the indicator area; however, a comment-
entry can extend beyond one line. The comment-entry is becoming obsolete in
COBOLS85 and will be deleted from the next revision of the ANSI COBOL standard.

Example

IDENTIFICATION DIVISION.
PROGRAM-ID. IDEX.

AUTHOR. WATSINA NAM.
INSTALLATION. YOUR CORPORATION.
DATE-WRITTEN. FEBRUARY 11, 1988.
DATE-COMPILED.

SECURITY. CONFIDENTIAL.

The Identification Division in this example includes all five optional paragraphs. Because
the DATE-COMPILED paragraph is included, the compilation date will be provided on the
source listing.

Note: The SECURITY paragraph is an obsolete element in COBOL ANSI-85 and will be
deleted from the next revision of the COBOL standard.

8600 1518-307

Section 3
Environment Division

This section illustrates and explains the syntax of the Environment Division, the second

division of a COBOL program.

General Format

The general format of the Environment Division is as follows:

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE]]

[OBJECT-COMPUTER. [object computer entry]]

[SPECIAL-NAMES. [special names entry]]
[INPUT-OUTPUT SECTION.

FILE-CONTROL. { file control entry } ...

[I-0-CONTROL. [input output control entry]]]]

Environment Division Header

The following header identifies and must begin the Environment Division:

ENVIRONMENT DIVISION.

ENVIRONMENT DIVISION

These keywords begin in area A and must be followed by a period.

8600 1518-307

3-1

Configuration Section

Configuration Section

The Configuration Section identifies the source computer, the object computer, and the
mnemonic-names that are substituted for system-names in the program. Use of this
section is optional.

Note that the Configuration Section must not be included in a program that is contained
directly or indirectly in another program. Refer to “Nested Source Programs” in
Section 10.

The Configuration Section includes a header and the following three optional paragraphs:

e SOURCE-COMPUTER Paragraph

Describes the computer configuration on which the source program will be compiled.

e OBJECT-COMPUTER Paragraph
Describes the computer configuration on which the object program produced by the
compiler will be run.

o SPECIAL-NAMES Paragraph

Provides a means of specifying the currency sign, choosing the decimal point,
specifying symbolic-characters, relating implementor-names to user-specified
mnemonic-names, relating alphabet-names to character sets or collating sequences,
relating class-names to sets of characters, and specifying the default sign position for
all signed data items whose usage is DISPLAY or COMPUTATIONAL.

Configuration Section Header

The following header identifies and must begin the Configuration Section:

CONFIGURATION SECTION.

CONFIGURATION SECTION

These keywords begin in area A and must be followed by a period.

3-2 8600 1518-307

Configuration Section

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer on which the program will
be compiled. Use of this paragraph is optional.

SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE] .]

SOURCE-COMPUTER

This keyword begins in area A and must be followed by a period.

computer-name

This name is a system-name (any COBOL word) that identifies the computer on which
the source program is to be compiled.

The computer-name is for documentation purposes only.

WITH DEBUGGING MODE

This clause serves as a compile time switch over the debugging lines written in a
separately compiled program. When the WITH DEBUGGING MODE clause is specified in
a separately compiled program, all debugging lines are compiled as specified in the
program. When the WITH DEBUGGING MODE clause is not specified in a program and
the program is not contained within a program including a WITH DEBUGGING MODE
clause, then the debugging lines are compiled as comment lines. $FREE must be reset
to compile debugging lines.

Details
All clauses of the SOURCE-COMPUTER paragraph apply to the program in which they

are explicitly or implicitly specified and to any program contained in that program.

If you specify the SOURCE-COMPUTER paragraph but not the computer-name (refer to
“General Format of the Environment Division” in this section), the computer on which
the source program is compiled is the source computer.

If you specify the SOURCE-COMPUTER paragraph but the program is not contained in a

program that includes a SOURCE-COMPUTER paragraph, again, the computer on which
the source program is compiled is the source computer.

8600 1518-307 3-3

Configuration Section

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the program will
be executed. Use of this paragraph is optional.

All clauses of the OBJECT-COMPUTER paragraph apply to the program in which they are
explicitly or implicitly specified and to any program contained in that program.

The format of the OBJECT-COMPUTER paragraph is as follows:

OBJECT-COMPUTER. [computer-name]

WORDS

MEMORY SIZE integer-1 CHARACTERS
MODULES

DISK SIZE IS integer-2 { WORDS }
MODULES

PROGRAM COLLATING SEQUENCE

IS alphabet-name-1 [alphabet-name-2]

|

FOR ALPHANUMERIC IS alphabet-name-1

|

FOR NATIONAL IS alphabet-name-2

OBJECT-COMPUTER

This keyword begins in area A and must be followed by a period.
computer-name

This name is a system-name (any COBOL word) that identifies the hardware for which
object code is to be generated. The computer-name is optional.

3-4 8600 1518-307

Configuration Section

MEMORY SIZE Clause

The SORT and MERGE statements can also specify MEMORY SIZE and take precedence
over the OBJECT-COMPUTER paragraph. Refer to “MERGE Statement” in Section 7 and
"SORT Statement” in Section 8 for more information. This clause specifies the actual
main storage requirement needed for execution.

If you use this clause but a SORT or MERGE statement does not appear in the program,
the clause is ignored. If you do not use this clause in either a SORT or MERGE statement
or the OBJECT-COMPUTER paragraph, a default memory size of 12,000 words is
assumed. (One module of memory is equivalent to 16,384 words of memory.)

Note that the MEMORY SIZE clause is an obsolete element in COBOL ANSI-85 and will
be deleted from the next revision of the COBOL standard.

integer-1

The value contained in integer-1 specifies the number of bytes, words, or modules of
main storage, exclusive of control program requirements that are available for object
program execution.

WORDS
CHARACTERS
MODULES

You can specify the memory size in words with WORDS, in bytes with CHARACTERS,
and in 16,384-word units with MODULES.
DISK SIZE Clause

This clause specifies the amount of disk space to be used for SORT operations.

The DISK SIZE clause is used only in conjunction with the SORT statement. If you omit
the DISK SIZE clause from a program containing a SORT statement, DISK SIZE is
assumed to be 900,000 words. If you use the DISK SIZE clause, but a SORT statement
does not appear in the program, the DISK SIZE is ignored.

The DISK SIZE can be specified in either MODULES or WORDS. A module of disk is
equivalent to 1.8 million words of disk.

8600 1518-307 3-5

Configuration Section

PROGRAM COLLATING SEQUENCE Clause

If you use this clause, the program-collating sequence is the collating sequence
associated with the alphabet-name specified in this clause. The same collating sequence
is also applied to any nonnumeric merge or sort keys, unless the COLLATING
SEQUENCE phrase of the respective MERGE or SORT statement is specified.

If this clause is not specified, the EBCDIC collating sequence is used.

alphabet-name-1

This name is a user-defined word.

The collating sequence associated with alphabet-name-1 is used to determine the truth
value of any nonnumeric comparisons that are explicitly specified in relation conditions or
condition-name conditions.

alphabet-name-2

This name is a user-defined word.

The collating sequence associated with alphabet-name-2 is used to determine the truth
value of any national comparisons that are explicitly specified in relation conditions or in
condition-name conditions.

When the PROGRAM COLLATING SEQUENCE clause is specified, the initial
alphanumeric program collating sequence is the collating sequence associated with
alphabet-name-1 and the initial national program collating sequence is the collating
sequence associated with alphabet-name-2. When alphabet-name-1 is not specified, the
initial alphanumeric program collating sequence is the native alphanumeric collating
sequence, EBCDIC. When alphabet-name-2 is not specified, the initial program collating
sequence is the native national collating sequence, JAPAN EBCDIC D1-2.

For localization purposes, the program can specify the PROGRAM COLLATING
SEQUENCE clause and a CCSVERSION collating sequence associated with an alphabet-
name. In this case, the truth value of the alphabetic characters that are explicitly
specified in the class condition does not always consist entirely of the letters A through Z
and the space character. The class of alphabetic characters is determined by the system
collating sequence when the CCSVERSION collating sequence is specified.

When the PROGRAM COLLATING SEQUENCE clause is not specified for a given
program, and the program is not contained within a program for which a PROGRAM
COLLATING SEQUENCE clause is specified, the initial program collating sequences are
the native alphanumeric collating sequence and the native national collating sequence.

3-6 8600 1518-307

Configuration Section

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph does the following:

Relates implementor-names used by the compiler to mnemonic-names used by the
source program

Assigns condition-names to the status of switches

Relates alphabet-names to character sets or collating sequences
Specifies symbolic-characters

Relates class-names to sets of characters

Exchanges the functions of the comma and the period in the PICTURE character
string and in numeric literals

Specifies a substitution character for the currency symbol in the PICTURE character
string

Changes default editing characters

Specifies the default sign position for all signed data items whose usage is DISPLAY
or COMPUTATIONAL

Associates a mnemonic-name with an object program

This paragraph is optional. All clauses specified in the SPECIAL-NAMES paragraph for a
program also apply to programs contained in that program.

8600 1518-307 3-7

Configuration Section

The format of the SPECIAL-NAMES paragraph is as follows:

SPECIAL-NAMES.

CHANNEL nn IS mnemonic-name-1
0DT IS mnemonic-name-2
switch-name [IS mnemonic-name-3]
ON STATUS IS condition-name-1
[OFF STATUS IS condition-name-2]
OFF STATUS IS condition-name-2
[ON STATUS IS condition-name-1]

ALPHABET

alphabet-name-1 [FOR ALPHANUMERIC] IS
EBCDIC

ASCII
STANDARD-1
STANDARD-2

NATIVE

THROUGH
literal-1 THRU literal-2]...

{ALSO 1iteral-3 ...}

alphabet-name-2 FOR NATIONAL IS

NATIVE

CCSVERSION [literal-1]

continued

3-8 8600 1518-307

Configuration Section

SYMBOLIC CHARACTERS
FOR ALPHANUMERIC

FOR NATIONAL

IS
{ symbolic-character-1 } ...
ARE
{ integer-1 }...} ... [IN alphabet-name-2]

CLASS class-name-1
FOR ALPHANUMERIC

FOR NATIONAL

THROUGH
¢ literal-5
IS literal-4 THRU

[CURRENCY SIGN IS literal-6 [WITH PICTURE SYMBOL Titeral-7]]...

[1iteral-7 IS mnemonic-name-4] ...
[DECIMAL-POINT IS COMMA]

8600 1518-307 3-9

Configuration Section

CHANNEL Clause

This clause relates a mnemonic-name to a particular channel number. You can then use
the mnemonic-name in a WRITE or SEND statement in place of CHANNEL nn. (WRITE
and SEND statements are discussed in Section 8.)

This is an integer from 01 to 11.

mnemonic-name-1

This name is a user-defined word that is associated with the channel number specified in
the CHANNEL clause.

ODT Clause
This clause relates a mnemonic-name to the Operator Display Terminal (ODT). You can

then use the mnemonic-name in an ACCEPT or DISPLAY statement. (The ACCEPT and
DISPLAY statements are discussed in Section 6.)

mnemonic-name-2

This name is a user-defined word that is associated with the ODT.

SWITCH-NAME Clause

This clause associates mnemonic-names and condition-names with program switches.

switch-name

The switch-names you can use to specify the switches are SW1, SW2, SW3, SW4, SW5,
SW6, SW7, and SW8.

mnemonic-name-3

This name is a user-defined word that can be associated with the switch-name.

This name can be referenced only in the SET statement. (The SET statement is
discussed in Section 8.)

3-10 8600 1518-307

Configuration Section

condition-name-1
condition-name-2

These condition-names are user-defined words that specify the status of a switch. One
condition-name can be associated with the ON status, another with the OFF status. The
condition-name associated with ON STATUS is TRUE when the switch is set, and FALSE
when the switch is not set. The condition-name associated with OFF STATUS is TRUE
when the switch is not set, and FALSE when the switch is set.

The status of the switch can be interrogated by testing these condition-names in the
program's Procedure Division. The status of the switch can be altered by execution of a
Format 3 SET statement, which specifies as its operand the mnemonic-name associated
with that switch.

The condition-names specified in the containing program's SPECIAL-NAMES paragraph
can be referred to from any contained program.

Details

Switches provide a means of communicating with the external environment. The
meaning associated with each switch is user-defined. Switches can be set at program
initiation time or through Work Flow Language (WFL) using the task attributes SW1,
SW2, SW3, SW4, SW5, SW6, SW7, and SW8.

Refer to “Condition-Name Conditions” and “Switch-Status Conditions” in Section 5 for
more information.

ALPHABET Clause

This optional clause relates alphabet-names to character sets or collating sequences.

alphabet-name-1
alphabet-name-2

This is a user-defined word that assigns a name to a specific character code set or
collating sequence.

An alphabet name can consist of the characters A through Z, a through z 0 through 9,
and the hyphen (-). You cannot use the hyphen or 0 through 9 as the first character, and
you cannot use the hyphen as the last character.

When alphabet names are referred to in the PROGRAM COLLATING clause of the
OBJECT-COMPUTER paragraph or in the COLLATING SEQUENCE phrase of a SORT or
MERGE statement, the ALPHABET clause specifies a collating sequence.

When alphabet names are referred to in the SYMBOLIC CHARACTERS clause or in a

CODE-SET clause in a file description entry, the ALPHABET clause specifies a character
code set.

8600 1518-307 3-11

Configuration Section

EBCDIC
ASCIl
STANDARD-1
STANDARD-2
NATIVE

STANDARD-1 and ASCII indicate that alphabet-name-1 is the character code set and
collating sequence defined by the American National Standard Code for Information
Interchange, X3.4-1977.

STANDARD-2 indicates that alphabet-name-1 is the character code set and collating
sequence defined by the International Reference Version of the ISO 7-bit code defined in
International Standard 646, 7-Bit Coded Character Set for Information Processing
Interchange.

If the NATIVE phrase is specified, the native character code set and native collating
sequence are identified with alphabet-name-1. The native character code set is the
character code set associated with DISPLAY usage, EBCDIC.

When the NATIVE phrase is specified for a national alphabet name, the native national
coded character set and native national collating sequence are defined as
JAPAN EBCDIC D1-2.

The correspondence between characters of the ASCII character code set and characters
of the EBCDIC character code set is determined by the standard translation tables for
EBCDIC-to-ASCIl and ASCII-to-EBCDIC.

literal-1
literal-2
literal-3

If the literal phrase of the ALPHABET clause is specified:

e A given character must not be specified more than once in that clause.

e The alphabet-name cannot be referred to in a CODE-SET clause.

The following syntax rules apply to the literals specified in the literal phrase of the

ALPHABET clause:

e |f numeric, the literals must be unsigned integers and must have values in the range
of 1 through 256.

e |f nonnumeric and associated with a THROUGH (THRU) or ALSO phrase, each literal
must be one character in length.

Note that literal-1, literal-2, and literal-3 must not specify a symbolic-character figurative
constant.

THROUGH

THRU

These keywords are equivalent.

8600 1518-307

Configuration Section

ALSO

If you specify the ALSO phrase, the characters of the native character set specified by
the value of literal-1 and literal-3 are assigned to the same ordinal position in the collating
sequence being specified or in the character code set that is used to represent the data.
If alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause, only literal-1 is
used to represent the character in the native character set.

Refer to “OBJECT-COMPUTER Paragraph” in this section, “SORT Statement” in Section
8, and “MERGE Statement” in Section 7.

CCSVERSION

If the CCSVERSION option is specified, the character code set and the collating
sequence identified with the alphabet-name is the system collating sequence. If the
CCSVERSION phrase is specified without literal-1, the collating sequence identified with
the alphabet-name is the internationalized system default collating sequence. If the
CCSVERSION phrase is specified with literal-1, the collating sequence is identified by
literal-1, provided that literal-1 is valid. The alphabet-name cannot be referred to in a
CODE-SET clause.

If the CCSVERSION "ASERIESNATIVE" is specified, the native national coded character
set and native national collating sequence are referenced as JAPAN EBCDIC D1-2.

Example of CCSVERSION Defined at RUN Time

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER.
PROGRAM COLLATING SEQUENCE FOR NATIONAL IS CCS.
SPECIAL-NAMES.
ALPHABET CCS FOR NATIONAL IS CCSVERSION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATAL PIC N(10).
PROCEDURE DIVISION.
BEGIN.
MOVE HIGH-VALUES TO DATAL.
IF DATA1 = HIGH-VALUES
DISPLAY "OK".
STOP RUN.

8600 1518-307 3-13

Configuration Section

Example of CCSVERSION Specified by <literal-1>

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER.
PROGRAM COLLATING SEQUENCE FOR NATIONAL IS CCS.
SPECIAL-NAMES.
ALPHABET CCS FOR NATION AL IS CCSVERSION "FRANCE".
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATAL PIC N(10).
PROCEDURE DIVISION.
BEGIN.
MOVE HIGH-VALUES TO DATAL.
IF DATA1 = HIGH-VALUES
DISPLAY "OK".
STOP RUN.

The CCSVERSION phrase can be specified only once in a program.

Note: Using the internationalized system-default ccsversion can produce unexpected
results for the HIGH-VALUE and LOW-VALUE figurative constants if a program is run on
a host with a system-default ccsversion that differs from the ccsversion compiled into
the program. In this case, the HIGH-VALUE and LOW-VALUE figurative constants contain
values that are correct for the ccsversion compiled into the program. For example, if the
program is compiled on a host with a system-default ccsversion of SPANISH and the
program is run on a host with a default ccsversion of FRANCE, the HIGH-VALUE and
LOW-VALUE constants define their values from the SPANISH ccsversion at compile
time, not from the FRANCE ccsversion.

Rules for the ALPHABET Clause

The collating sequence identified in the ALPHABET clause is defined according to the
following rules:

o |f the ALPHABET clause is specified without either the ALPHANUMERIC or the
NATIONAL phrase, the ALPHANUMERIC phrase is used.

e The value of each literal specifies the following:

— If numeric, the literal defines the ordinal number of a character in the native
character set. This value must not exceed 256.

— If nonnumeric, the literal defines the actual character in the native character set.
If the value of the nonnumeric literal contains multiple characters, each character
in the literal, starting with the leftmost character, is assigned successive
ascending positions in the specified collating sequence.

e The order in which the literals appear in the ALPHABET clause determines, in
ascending sequence, the ordinal numbers of the characters in the specified collating
sequence.

8600 1518-307

Configuration Section

e Any characters in the native collating sequence that are not explicitly defined in the
literal phrase assume a position in the specified collating sequence that is greater
than any of the explicitly specified characters. The relative order in the set of these
unspecified characters is unchanged from the native collating sequence.

e |f the THROUGH (THRU) phrase is used, the set of contiguous characters in the
native character set, beginning with the character defined by the value of literal-1 and
ending with the character defined by the value of literal-2, is assigned a successive
ascending position in the specified collating sequence. In addition, the set of
contiguous characters defined by a given THROUGH (THRU) phrase can specify
characters of the native character set in either ascending or descending sequence.

e |f the ALSO phrase is used, the characters of the native character set specified by
the value of literal-1 and literal-3 are assigned to the same ordinal position in the
specified collating sequence or in the character code set that is used to represent the
data. If alphabet-name-1 is referred to in a SYMBOLIC CHARACTERS clause, only
literal-1 is used to represent the character in the native character set.

The character that has the highest ordinal position in the program collating sequence is
associated with the figurative constant HIGH-VALUE, except when this figurative
constant is defined as a literal in the SPECIAL-NAMES paragraph. If more than one
character has the highest position in the program collating sequence, the last character
specified is associated with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the specified program-collating
sequence is associated with the figurative constant LOW-VALUE, except when this
figurative constant is defined as a literal in the SPECIAL-NAMES paragraph. If more than
one character has the lowest position in the program-collating sequence, the first
character specified is associated with the figurative constant LOW-VALUE.

When defined as literals in the SPECIAL-NAMES paragraph, the figurative constants

HIGH-VALUE and LOW-VALUE are associated with those characters having the highest
and lowest positions, respectively, in the native collating sequence.

8600 1518-307 3-15

Configuration Section

SYMBOLIC CHARACTERS Clause

This optional clause specifies symbolic characters.

symbolic-character-1
integer-1

There must be a one-to-one correspondence between occurrences of symbolic-
character-1 and occurrences of integer-1.

The internal representation of symbolic-character-1 is the internal representation of the
character that is used in the native character set.

A symbolic-character-1 can appear only once in a SYMBOLIC CHARACTERS clause.

The relationship between each symbolic-character-1 and the corresponding integer-1 is
determined by position in the SYMBOLIC CHARACTERS clause. The first symbolic-
character-1 is paired with the first integer-1, the second symbolic-character-1 is paired
with the second integer-1, and so on.

The ordinal position specified by integer-1 must exist in the native character set.

There must be a one-to-one correspondence between occurrences of symbolic-
character-1 and occurrences of integer-1.

When the SYMBOLIC CHARACTERS clause is specified with neither the
ALPHANUMERIC nor the NATIONAL phrase, the ALPHANUMERIC phrase is implied.

When the NATIONAL phrase is specified, the following conditions apply:

e \When the IN phrase is specified, alphabet-name-2 references an alphabet that
defines a single-octet national character set; the ordinal position specified by integer-
1 exists in that character set.

o \When the IN phrase is not specified, the ordinal position specified by integer-1 exists
in the national character set specified with the "ALPHABET FOR NATIONAL IS
CCSVERSION" clause.

IN alphabet-name-2

The alphabet name is a user-defined word.

If the IN phrase is used, integer-1 determines the ordinal position of the character that is
represented in the character set named by alphabet-name-2.

If the IN phrase is not used, symbolic-character-1 represents the character whose ordinal
position in the native character set is determined by integer-1.

8600 1518-307

Configuration Section

CLASS Clause

This optional clause relates a name to the set of characters listed in the clause.

class-name-1
This name is a user-defined word that can be referred to only in a class condition.

The characters specified by the values of the literals of this clause define the exclusive
set of characters of which this name consists.

literal-4
literal-5

When the CLASS clause is specified without the ALPHANUMERIC or the NATIONAL
phrase, the ALPHANUMERIC phrase is implied.
When the ALPHANUMERIC phrase is specified or implied the following conditions apply:

e |If literal-4 is numeric, the literal specifies the ordinal number of a character in the
native character set. This value cannot exceed 256.

e |f literal-4 is nonnumeric, the literal specifies the actual character in the native
character set. If the value of the literal contains multiple characters, each character in
the literal is included in the set of characters identified by class-name-1.

When the NATIONAL phrase is specified the following conditions apply:

e If literal-4 is numeric, it is an unsigned integer and has a value within the range of one
through the number of characters in the national character set specified with the
ALPHABET FOR NATIONAL IS CCSVERSION clause.

e Each non-integer literal is a national literal.
e The THROUGH (THRU) phrase cannot be specified for a national character.

e The number of characters specified cannot exceed the number of characters in the
national character set specified with the ALPHABET FOR NATIONAL IS
CCSVERSION clause.

Note: The aforementioned literals cannot specify a symbolic-character figurative
constant.

The following syntax rules apply to the literals specified in the literal phrase of the CLASS
clause:

e |f numeric, the literals must be unsigned integers and must have values in the range
of 1 through 256.

e |f nonnumeric and associated with a THROUGH (THRU) phrase, each literal must be
one character in length.

8600 1518-307 3-17

Configuration Section

THROUGH
THRU

These keywords are equivalent.

If the THROUGH (THRU) phrase is used, the contiguous characters in the native
character set, beginning with the character specified by the value of literal-4 and ending
with the character specified by the value of literal-5, are included in the set of characters
identified by class-name-1. In addition, the contiguous characters identified by a given
THROUGH (THRU) phrase can specify characters of the native character set in either
ascending or descending sequence.

CURRENCY SIGN Clause

The CURRENCY SIGN clause specifies a currency string that is placed into numeric-
edited data items when they are used as receiving items. The CURRENCY SIGN clause
also specifies a currency string that is placed into de-edited data items when they are
used as sending items that have a numeric or numeric-edited receiving item. In addition,
the clause is used to determine which symbol will be used in a picture character string to
specify the presence of a currency string. This symbol is referred to as the currency
symbol.

If the CURRENCY SIGN clause is specified without the PICTURE SYMBOL phrase,
literal-6 is used as the currency symbol. If the CURRENCY SIGN clause is specified with
the PICTURE SYMBOL phrase, literal-7 is used as the currency symbol.

literal-6

Literal-6 represents the value of the currency string. Literal-6 must be an alphanumeric or
national literal that is not a figurative constant.

If the PICTURE SYMBOL phrase is not specified, then literal-6 is specified and can
consist of only a single character. In this case, literal-6 can be any single character from
the character set except for the following:

e Digits 0 through 9

e Alphabetic characters consisting of the uppercase letters A, B, C, D, E,N, P, R, S, V,
X, Z; the lowercase form of these alphabetic characters; and the space character

e Special characters consisting of the plus sign (+), the minus sign (-), the comma (,),
the period (.), the asterisk (*), the slant (/), the semicolon (;), parenthesis (()), the
double quotation mark ("), and the equal sign (=)

If the PICTURE SYMBOL phrase is specified, then literal-6 can be any number of
characters. In this case, it must contain at least one non-space character and can consist
of any characters from the character set except for the following:

e Digits 0 through 9

e Special characters consisting of the plus sign (+), the minus sign (-), the comma (,),
the period (.), and the asterisk (*)

8600 1518-307

Configuration Section

For information on binding, refer to Appendix E. For details about tasking and structuring
a COBOLS85 program to initiate separately compiled programs, refer to Section 13.

DECIMAL-POINT Clause

This optional clause exchanges the functions of the comma and the period in the
character string of the PICTURE clause and in numeric literals. All numeric literals used in
the program are affected by this clause.

With this clause in use, a comma used as a separator must be followed by a space. The
space is required because a comma immediately followed by a numeric literal is
interpreted as a decimal point by the compiler.

ll‘

8600 1518-307 3-19

Configuration Section

Example of the SPECIAL-NAMES Paragraph

IDENTIFICATION DIVISION.

PROGRAM-ID. PAYROL.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON

OFF STATUS IS SW5-OFF;

CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.

In this example, the program PAYROL includes the optional Configuration Section in its
Environment Division. The source and object computers are the same (both are Abs). A
switch, SW5, is named in the SPECIAL-NAMES paragraph, and the condition-names
SW5-ON and SW5-OFF are used to specify ON STATUS and OFF STATUS, respectively,
of this switch. The one-character nonnumeric literal E defined in the CURRENCY SIGN
clause will replace the dollar sign character ($) in the PICTURE clause. The DECIMAL-
POINT clause is present, so the comma will replace the period in the PICTURE clause
and in numeric literals, and the period will replace the comma.

3-20 8600 1518-307

Input-Output Section

Input-Output Section
The Input-Output Section includes the information needed to control transmission and
handling of data between external media and the object program. This section is optional
in a COBOL source program.

The Input-Output Section is divided into the following two paragraphs:

e The FILE-CONTROL paragraph names and associates the files with external media.

e The I-O-CONTROL paragraph defines special control techniques to be used in the
object program.

Input-Output Section Header

The following header identifies and must begin the Input-Output Section:

INPUT-OUTPUT SECTION.

INPUT-OUTPUT SECTION

These keywords begin in area A and must be followed by a period.

8600 1518-307 3-21

Input-Output Section

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph does the following:

Names each file

ldentifies the file medium

Specifies hardware

Specifies alternate input/output areas

Specifies the organization of the file

The FILE-CONTROL paragraph is required.

General Format of the FILE-CONTROL Paragraph

3-22

The general format of the FILE-CONTROL paragraph is as follows:

FILE-CONTROL. { file control entry } ...

FILE-CONTROL

This keyword begins in area A and must be followed by a period.

file control entry

The file control entry has the following four formats:

Format 1 declares the physical attributes of a sequential file.
Format 2 declares the physical attributes of a relative file.

Format 3 declares the physical attributes of an indexed file.

Format 4 declares the physical attributes of a sort or merge file.

Each of these formats is discussed in the following pages.

8600 1518-307

Input-Output Section

File Control Entry Format 1: Sequential Organization

You can use this format to declare the physical attributes of a sequential file.

COMMON REF
[OPTIONAL] file-name-1

ASSIGN To | DISK
PORT
PRINTER
1 READER ¢

REMOTE
TAPE
VIRTUAL

[IS EXTERNAL-FORMAT FOR NATIONAL]

[RESERVE integer-1 [AREA]]
AREAS

[[ORGANIZATION IS] SEQUENTIAL]

RECORD DELIMITER IS | STANDARD-1

UNISYS

PADDING CHARACTER IS data-name

literal-1

ACCESS MODE IS SEQUENTIAL
RANDOM

[ACTUAL KEY IS data-name-3]
[FILE STATUS IS data-name-2] .

SELECT | LOCAL [RECEIVED] [BY] | REFERENCE

In the FILE-CONTROL paragraph, you must specify the SELECT clause first. The clauses

that follow the SELECT clause can appear in any order.

8600 1518-307

3-23

Input-Output Section

SELECT Clause

LOCAL

This phrase specifies that the file is a formal parameter for a procedure. A file specified
as LOCAL can be named only in the WITH clause and USING clause of one of the
following:

e The ENTRY PROCEDURE clause associated with a procedure imported from a library

e The USE statement associated with a separately compiled, or bound procedure

COMMON

This phrase specifies that the file is declared in another module to which this program is
to be bound. The file description and record description entries in each module in which
the file is declared COMMON must match.

Note: The compiler option COMMON does not affect entries in the Environment
Division or in the File Section of the Data Division.

RECEIVED BY REFERENCE
REF

This phrase allows two or more programs to use the file. Because access to the file is by
reference, any program can perform input-output operations to the file.

OPTIONAL

This phrase only applies to files opened in input, I-O, or extend mode. It is required for
files that are not necessarily present each time the object program is executed.

If you designate an input file with the OPTIONAL phrase in its SELECT clause, and the
file is not present at the time the OPEN statement is executed, the operator is notified of
this fact. At this time, the file can be loaded, or the operator can enter the system
command OF. If the operator uses the OF command, the first READ statement for this
file causes an AT END or INVALID KEY condition to occur. Refer to the System
Commands Operations Reference Manual for information on the OF command.

3-24 8600 1518-307

Input-Output Section

file-name-1
This is a user-defined word that names a file connector.
Each file-name specified in the SELECT clause must have a file description entry in the

Data Division of the same program. Also, each file-name in the Data Division must be
specified only once in the FILE-CONTROL paragraph.

If the file connector referred to by file-name-1 is an external file connector (refer to
"EXTERNAL Clause” in Section 4 and to “File Connectors” in Section 10), all file control
entries in the run unit that refer to this file connector must have:

e The same specification for the OPTIONAL phrase

e A consistent specification in the ASSIGN clause

e A consistent specification in the RECORD DELIMITER clause

e The same value for integer-1 in the RESERVE clause

e The same organization

¢ The same access mode

e The same specification for the PADDING CHARACTER clause

ASSIGN Clause

This clause associates the file referenced by file-name-1 to a storage medium.

You can assign file-name-1 to the following:

e DISK
e PORT
e PRINTER
o READER
e VIRTUAL

8600 1518-307 3-25

Input-Output Section

IS EXTERNAL-FORMAT FOR NATIONAL Clause

The IS EXTERNAL-FORMAT FOR NATIONAL clause causes data items of the national
class to be transmitted in external format to be suitable for display or printing. External
format means that the control characters SDO (for “start of double octet”) and EDO (for
“end of double octet”) are inserted at the beginning and the end of the data to
distinguish it as national data.

This clause can be specified only for remote files and printer files.

Files with this clause cannot be referenced by a SAME clause (see "Input-Output Control
Entry Format 1: Sequential I/O" later in this section for details about the SAME clause).

If the CCSVERSION clause is specified, the EXTERNAL-FORMAT FOR NATIONAL option
is ignored and a warning is issued.

RESERVE Clause
This clause specifies the number of input-output areas allocated.

integer-1

If the RESERVE clause is specified, the number of input-output areas allocated is equal to
the value of integer-1.

If the RESERVE clause is not specified, two input-output areas are automatically
allocated.

ORGANIZATION IS SEQUENTIAL Clause

This clause specifies sequential organization as the logical structure of a file. If If this
clause is not used, sequential organization is implied.

Details

Sequential organization is a permanent logical file structure in which a record is identified
by a predecessor-successor relationship. This relationship is established when the record
is placed into the file.

The file organization is established at the time a file is created and cannot subsequently
be changed.

RECORD DELIMITER Clause

This clause indicates the method of determining the length of a variable-length record on
the external medium. Any method used will not be reflected in the record area or the
record size used in the program.

Note that this clause can be specified only for variable-length records.

3-26 8600 1518-307

Input-Output Section

STANDARD-1
UNISYS

If either STANDARD-1 or UNISYS is specified, the external medium must be a magnetic
tape file.

If this phrase is specified, the method used for determining the length of a variable
length record is that specified in American National Standard X3.27-1978, Magnetic Tape
Labels and File Structure for Information Interchange, and in International Standard 1001
1979, Magnetic Tape Labels and File Structure for Information Interchange.

Details

At the time the OPEN statement that creates the file is executed, the record delimiter
used is the one specified in the RECORD DELIMITER clause associated with the file-
name specified in the OPEN statement.

If the associated file connector is an external file connector, all RECORD DELIMITER
clauses in the run unit that are associated with that file connector must have the same
specifications.

PADDING CHARACTER Clause

This clause is for documentation purposes only.

ACCESS MODE IS SEQUENTIAL Clause

This clause specifies the order in which records are to be accessed in the file. If you
specify SEQUENTIAL, records are accessed sequentially. If you do not use this clause,
sequential access is assumed.

ACCESS MODE IS RANDOM Clause

If you specify RANDOM, records are accessed randomly. Random access can be
specified for mass-storage files only.
Details

Records in the file are accessed in the sequence dictated by the file organization. For
sequential files, this sequence is specified by predecessor-successor record relationships
established by the execution of WRITE statements when the file is created or extended.

If the associated file connector is an external file connector, every file control entry in the
run unit that is associated with that file connector must specify the same access mode.

8600 1518-307 3-27

Input-Output Section

ACTUAL KEY Clause

For mass-storage files that specify an ACTUAL KEY, the value of the ACTUAL KEY data
item specifies the logical ordinal position of the record in the file.

For port files, the value of the ACTUAL KEY data item specifies the subfile index of the
port file. The ACTUAL KEY clause must be specified for a port file that contains more
than one subfile.

For remote files, the value of the ACTUAL KEY data item specifies the ordinal number of
the station within the station list of the remote file. A zero value specifies all stations
within the station list of the remote file.

data-name-3

This name is a user-defined word that must refer to an unsigned integer data item whose
description does not contain the PICTURE symbol P.

This name can be qualified.
Note that you can significantly improve the performance of all I/O statements that act
upon a sequential file declared with an actual key by declaring the appropriate key as

follows:

77 USERKEY REAL.

FILE STATUS Clause

3-28

This clause specifies a data item that contains the status of an input-output operation.

data-name-2

This name is a user-defined word. This name must be defined in the Data Division as a
two-character alphanumeric data item and must not be defined in the File Section. This
name can be qualified.

The data item referred to by data-name-2 is the one specified in the file control entry
associated with that statement. See “General Format of the Environment Division” in
this section.

Details

When the FILE STATUS clause is specified, the data item referred to by data-name-2 is
updated to contain the value of the I-O status whenever the I-O status is updated. This
value indicates the status of execution of the statement. See”l-O Status Codes” in this
section.

8600 1518-307

Input-Output Section

Example of File Control Entry Format 1: Sequential Organization

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON
OFF STATUS IS SW5-OFF;
CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATA-CAPTURE ASSIGN TO DISK;
ORGANIZATION IS SEQUENTIAL;
ACCESS MODE IS SEQUENTIAL;
FILE STATUS IS FS-1.
SELECT PRINTOUT ASSIGN TO PRINTER.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 FS-1 PIC XX.

The program PAYROL includes both a Configuration Section and an Input-Output Section.
File Control Entry Format 1 is used in the FILE-CONTROL paragraph. The input file DATA-
CAPTURE, a sequential file, will be stored on disk. The records of this file will be
accessed sequentially. (If the ACCESS MODE clause is not specified, sequential access
is assumed.) The data item FS-1 is specified in the FILE STATUS clause and is defined in
the Data Division. A value will be moved by the operating system into FS-1 after the
execution of every statement that refers to that file. This value indicates the status of
execution of the statement. The output file PRINTOUT is assigned to a printer.

8600 1518-307 3-29

Input-Output Section

File Control Entry Format 2: Relative Organization

You can use this format to declare the physical attributes of a relative file.

SELECT | LOCAL [RECEIVED] [BY] | REFERENCE
COMMON REF

[OPTIONAL] file-name-1
ASSIGN TO DISK
[RESERVE integer-1 [AREA]]

AREAS
[ORGANIZATION IS] RELATIVE

ACCESS MODE IS SEQUENTIAL [RELATIVE KEY IS data-name-1]

RANDOM
DYNAMIC RELATIVE KEY IS data-name-1

[FILE STATUS IS data-name-2] .

Refer to File Control Entry Format 1 for information on the RESERVE clause and the FILE

STATUS clause.

SELECT Clause

3-30

Refer to File Control Entry Format 1 for information on the SELECT clause, the LOCAL
phrase, the COMMON phrase, the RECEIVED BY REFERENCE phrase, and the

OPTIONAL phrase.

In addition, if the file connector referred to by file-name-1 is an external file connector
(refer to “"EXTERNAL Clause” in Section 4 and to “File Connectors” in Section 10), all file

control entries in the run unit that reference this file connector must have:

e The same specification for the OPTIONAL phrase

e A consistent specification in the ASSIGN clause

e The same value for integer-1 in the RESERVE clause
e The same organization

e The same access mode

e The same external data item for data-name-1 in the RELATIVE KEY phrase

8600 1518-307

Input-Output Section

ASSIGN Clause

Refer to File Control Entry Format 1 for information on this clause.

In addition, in this format DISK specifies that mass storage is the storage medium of the
file. You can define the medium more precisely in the VALUE OF clause of the FD entry
in the Data Division or through the use of file equation.

ORGANIZATION IS RELATIVE Clause

In this format, this clause specifies relative organization as the logical structure of a file.

Details

Relative organization is a permanent logical file structure in which each record is uniquely
identified by an integer value greater than zero, which specifies the record's logical
ordinal position in the file.

The file organization is established at the time a file is created and cannot subsequently
be changed.

ACCESS MODE Clause

This clause specifies the order in which records are to be accessed in the file.

There are three forms of the ACCESS MODE clause in this format: the ACCESS MODE
IS SEQUENTIAL clause, the ACCESS MODE IS RANDOM clause, and the ACCESS
MODE IS DYNAMIC clause.

If this clause is not used, sequential access is assumed.

ACCESS NMODE IS SEQUENTIAL

If the access mode is sequential, records in the file are accessed in the sequence
dictated by the file organization. For relative files, this sequence is the order of ascending
relative record numbers of existing records in the file.

ACCESS MODE IS RANDOM

If the access mode is random, the value of the relative key data item for relative files
indicates the record to be accessed.

Note that this access mode must not be specified for file-names specified in the USING
or GIVING phrase of a SORT or MERGE statement.

ACCESS MODE IS DYNAMIC

If the access mode is dynamic, records in the file can be accessed sequentially and/or
randomly.

8600 1518-307 3-31

Input-Output Section

3-32

RELATIVE KEY

If a relative file is referred to by a START statement, the RELATIVE KEY phrase within
the ACCESS MODE clause must be specified for that file.

data-name-1

This name is a user-defined word that must refer to an unsigned integer data item whose
description does not contain the PICTURE symbol P. The data item specified by data-
name-1 is used to communicate a relative record number to the I-O handler.

This name can be qualified.

This name must not be defined in a record description entry associated with that file-
name.

The relative key data item associated with the execution of an input-output statement is
the data item referred to by data-name-1 in the ACCESS MODE clause.

Details

All records stored in a relative file are uniquely identified by relative record numbers. The
relative record number of a given record specifies the record's logical ordinal position in
the file. The first logical record has a relative record number of 1, and subsequent logical
records have relative record numbers of 2, 3, 4, and so forth.

If the associated file connector is an external file connector, every file control entry in the
run unit associated with that file connector must specify the same access mode. In
addition, data-name-1 must reference an external data item and the RELATIVE KEY
phrase in each associated file control entry must reference that same external data item
in each case.

8600 1518-307

Input-Output Section

Example of File Control Entry Format 2: Relative Organization

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON
OFF STATUS IS SW5-OFF;
CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATA-CAPTURE-2 ASSIGN TO DISK;
ORGANIZATION IS RELATIVE;
ACCESS MODE IS DYNAMIC; RELATIVE KEY IS ACCT-NO.

In this example, the program PAYROL includes both a Configuration Section and an
Input-Output Section in its Environment Division. File Control Entry Format 2 is used in
the FILE-CONTROL paragraph. The input file DATA-CAPTURE-2, which is a relative file,
will be stored on disk. The file organization is relative. The access mode is dynamic, so
the records of DATA-CAPTURE-2 can be accessed either sequentially (that is, in
ascending order by relative record number) or randomly (that is, in a sequence
determined by use of the RELATIVE KEY phrase). The desired record is accessed by
placing its relative record number in the RELATIVE KEY data item, ACCT-NO.

8600 1518-307 3-33

Input-Output Section

File Control Entry Format 3: Indexed I/O

You can use this format to declare the physical attributes of an indexed file.

SELECT| LOCAL [RECEIVED] [BY 1 | REFERENCE
COMMON REF

[OPTIONAL] file-name-1
ASSIGN TO DISK
[RESERVE integer-1 [AREA]]

AREAS
[ORGANIZATION IS] INDEXED

ACCESS MODE IS SEQUENTIAL
RANDOM
DYNAMIC
RECORD KEY IS data-name-1
[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[FILE STATUS IS data-name-3] .

Refer to File Control Entry Format 1 for information on the RESERVE clause.

3-34 8600 1518-307

Input-Output Section

SELECT Clause

Refer to File Control Entry Format 1 for information on the SELECT clause, the LOCAL
phrase, the COMMON phrase, the RECEIVED BY REFERENCE phrase, and the
OPTIONAL phrase.

In addition, in this format, if the file connector referred to by file-name-1 is an external file
connector (refer to “EXTERNAL Clause” in Section 4 and to “File Connectors” in Section
10), all file control entries in the run unit that reference this file connector must have:

e The same specification for the OPTIONAL phrase

e A consistent specification in the ASSIGN clause

e The same value for integer-1 in the RESERVE clause

e The same organization

e The same access mode

e The same data description entry for data-name-1 with the same relative location
within the associated record

e The same data description entry for data-name-2, the same relative location within
the associated record, the same number of alternate record keys, and the same
DUPLICATES phrase

ASSIGN Clause

Refer to File Control Entry Format 1 for information on this clause.
In addition, in this format, DISK specifies that mass storage is the storage medium of the

file. You can define the medium more precisely in the VALUE OF clause of the FD in the
Data Division or with file equation.

ORGANIZATION IS INDEXED Clause

In this format, this clause specifies indexed organization as the logical structure of a file.

Details

Indexed organization is a permanent logical file structure in which each record is
identified by the value of one or more keys within that record.

The file organization is established at the time a file is created and cannot subsequently
be changed.

The native character set is assumed for data on the external media.
For an indexed file, the collating sequence associated with the native character set is

assumed. This is the sequence of values of a given key of reference used to process the
file sequentially.

8600 1518-307 3-35

Input-Output Section

ACCESS MODE Clause

This clause specifies the order in which records are to be accessed in the file.

There are three forms of the ACCESS MODE clause in this format: the ACCESS MODE
IS SEQUENTIAL clause, the ACCESS MODE IS RANDOM clause, and the ACCESS
MODE IS DYNAMIC clause.

If this clause is not specified, sequential access is assumed.

ACCESS NMODE IS SEQUENTIAL

If the access mode is sequential, records in the file are accessed in the sequence
dictated by the file organization. For indexed files, this sequence is ascending within a
given key of reference according to the collating sequence of the file.

ACCESS MODE IS RANDOM

If the access mode is random, the value of a record key data item for indexed files
indicates the record to be accessed.

Note that this access mode must not be specified for file-names specified in the USING
or GIVING phrase of a SORT or MERGE statement.

ACCESS MODE IS DYNAMIC

If the access mode is dynamic, records in the file can be accessed sequentially and/or
randomly.

Details

If the associated file connector is an external file connector, every file control entry in the
run unit that is associated with that file connector must specify the same access mode.

RECORD KEY Clause

3-36

This clause specifies a prime record key for the file with which this clause is associated.
The values of the prime record key must be unique among the records of the file. The
prime record key provides an access path to records in an indexed file.

If the indexed file contains variable length records, the prime record key must be
contained within the first x character positions of the record, where x equals the
minimum record size specified for the file (refer to “RECORD Clause” in Section 4).

data-name-1

This name is a user-defined word. It must reference an alphanumeric or a numeric data
item in a record description entry associated with the file-name to which the RECORD
KEY clause is subordinate.

This name can be qualified.

8600 1518-307

Input-Output Section

This name must not reference a group item that contains a variable occurrence data
item.

The data description of data-name-1, as well as its relative location within a record, must
be the same as that used when the file was created.

If the file has more than one record description entry, data-name-1 need be described
only in one of these record description entries. The identical character positions referred
to by data-name-1 in any one record description entry are implicitly referred to as keys for
all other record description entries of that file.

Details

If the associated file connector is an external file connector, all file description entries in
the run unit that are associated with that file connector must specify the same data
description entry for data-name-1, with the same relative location within the associated
record.

ALTERNATE RECORD KEY Clause

This clause specifies an alternate record key for the file with which this clause is
associated. The alternate record key provides an alternate access path to the records in
an indexed file.

If the indexed file contains variable length records, each alternate record key must be
contained within the first x character positions of the record, where x equals the
minimum record size specified for the file (refer to “RECORD Clause” in Section 4).

data-name-2

This name is a user-defined word. This name must be defined as an alphanumeric or a
numeric data item in a record description entry associated with the file-name to which
the ALTERNATE RECORD KEY clause is subordinate.

This name can be qualified.

This name must not reference a group item that contains a variable occurrence data
item.

This name must not refer to an item whose leftmost character position corresponds to
the leftmost character position of the prime record key or of any other alternate record
key associated with this file.

The data description of data-name-2, as well as its relative location within a record, must
be the same as that used when the file was created. The number of alternate record
keys for the file must also be the same as that used when the file was created.

If the file has more than one record description entry, data-name-1 need be described
only in one of these record description entries. The identical character positions referred
to by data-name-2 in any one record description entry are implicitly referred to in keys for
all other record description entries of that file.

8600 1518-307 3-37

Input-Output Section

WITH DUPLICATES

This phrase specifies that the value of the associated alternate record key can be
duplicated in any of the records in the file.

If this phrase is not specified, the value of the associated alternate record key must not
be duplicated among any of the records in the file.

Details

If the associated file connector is an external file connector, every file control entry in the
run unit that is associated with that file connector must specify the same data
description entry for data-name-2, the same relative location within the associated
record, the same number of alternate record keys, and the same DUPLICATES phrase.

FILE STATUS Clause

Refer to File Control Entry Format 1 for information on this clause. Note that information
about data-name-2 in Format 1 applies to data-name-3 in this format.

Example of File Control Entry Format 3: Indexed I/O

3-38

PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON
OFF STATUS IS SW5-OFF;
CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATA-CAPTURE-3 ASSIGN TO DISK;
RESERVE 5 AREAS;
ORGANIZATION IS INDEXED;
ACCESS MODE IS RANDOM;
RECORD KEY IS NAME;
ALTERNATE RECORD KEY IS MODEL-NO WITH DUPLICATES.

In this example, the program PAYROL includes both a Configuration Section and an
Input-Output Section in its Environment Division. File Control Entry Format 3 is used in
the FILE-CONTROL paragraph. The input file DATA-CAPTURE-3, which is an indexed file,
will be stored on disk. Five input-output areas are allocated with the RESERVE clause.
The file organization is indexed. The access mode is random, so the records of DATA-
CAPTURE-3 can be accessed in a sequence determined by use of the RECORD KEY
clause. The desired record is accessed by placing the value of its prime record key in the
RECORD KEY data item, NAME. MODEL-NO is specified as an alternate record key for
the file.

8600 1518-307

Input-Output Section

File Control Entry Format 4: Sort-Merge

You can use this format to declare the physical attributes of a sort or merge file.

SELECT file-name-1
ASSIGN TO

Refer to File Control Entry Format 1 for information on the SELECT clause.
File-name-1 represents a sort or merge file.

Details

In this format, since file-name-1 represents a sort or merge file, only the ASSIGN clause
is permitted to follow file-name-1 in the FILE-CONTROL paragraph.

Each sort or merge file described in the Data Division must be specified only once as a
file-name in the FILE-CONTROL paragraph.

8600 1518-307 3-39

Input-Output Section

ASSIGN Clause

This clause associates the sort or merge file referred to by file-name-1 with a storage
medium.

DISK

When DISK is specified, mass storage is the primary work medium.

TAPE, TAPES

TAPE or TAPES can be specified to contain any overflow.

integer-1
integer-2

Integer-1 and integer-2 must have values within the range of 3 through 8.
If integer-1 is not specified, three tapes are assumed.

If TAPE or TAPES is specified as the primary work medium of the sort and integer-2 is
not specified, the default number of tapes is three.

Example of File Control Entry Format 4: Sort-Merge

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

SW5 ON STATUS IS SW5-ON

OFF STATUS IS SW5-OFF;

CURRENCY SIGN IS "E";

DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SORT-FILE ASSIGN TO SORT FOR DISK AND 3 TAPES.

The program PAYROL includes both a Configuration Section and an Input-Output Section.
File Control Entry Format 4 is used in the FILE-CONTROL paragraph. The ASSIGN clause
is the only clause that can be specified in this format. The input file SORT-FILE, a sort
file, is assigned to the storage medium SORT, with mass storage (DISK) as the primary
work medium of the sort and three tapes for overflow.

8600 1518-307

Input-Output Section

I-O-CONTROL Paragraph
The I-O-CONTROL paragraph specifies:

e The memory area that is to be shared by different files
e The location of files on a multiple file reel

This paragraph is optional. Clauses can appear in any order in this paragraph.

I-0-CONTROL. [input-output control entry .]

I-O-CONTROL

This keyword begins in area A and must be followed by a period.

input-output control entry

The input-output control entry should have a period only at the end. The input-output
control entry has three formats:

e Format 1 is used for sequential I/O.

e Format 2 is used for relative and indexed I/O.

e Format 3 is used for sort-merge.

Input-Output Control Entry Format 1: Sequential 1/0

I1-0-CONTROL.
[[SAME [RECORD] AREA FOR file-name-3 { file-name-4 } ...] ...

[MULTIPLE FILE TAPE CONTAINS { file-name-5 [POSITION integer-3] } ...] ... o]

I-O-CONTROL

This keyword begins in area A and must be followed by a period.

8600 1518-307 3-41

Input-Output Section

SAME Clause

3-42

This clause specifies the memory area that is to be shared by different files.

There are two forms of the SAME clause: the SAME AREA clause and the SAME
RECORD AREA clause.

SAME AREA

The SAME AREA clause specifies that two or more files that do not represent sort or
merge files are to use the same memory area during processing. The area being shared
includes all storage areas assigned to the files referred to by file-name-3 and file-name-4;
thus, only one file can be open at a time.

SAME RECORD AREA

The SAME RECORD AREA clause specifies that two or more files are to use the same
memory area for processing of the current logical record. Only the record work area is
shared. All of the files can be open at the same time. A logical record in the SAME
RECORD AREA is considered a logical record of each opened output file whose file-name
appears in the SAME RECORD AREA clause and of the most recently read input file
whose file-name appears in the SAME RECORD AREA clause. Like an implicit
redefinition of the area, records are aligned at the leftmost character position.

file-name-3
file-name-4

These names must be specified in the FILE-CONTROL paragraph of the same program.
These names must not reference an external file connector.

These names must not reference a file that uses the IS EXTERNAL-FORMAT FOR
NATIONAL clause.

More than one SAME clause can be included in a program, subject to the following
restrictions:

e A file-name must not appear in more than one SAME AREA clause.
e A file-name must not appear in more than one SAME RECORD AREA clause.

e |f one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA
clause, all of the file-names in the SAME AREA clause must appear in the SAME
RECORD AREA clause. However, additional file-names not appearing in that SAME
AREA clause can also appear in that SAME RECORD AREA clause. The rule that only
one of the files mentioned in a SAME AREA clause can be open at any given time
takes precedence over the rule that all files mentioned in a SAME RECORD AREA
clause can be open at any given time.

8600 1518-307

Input-Output Section

MULTIPLE FILE TAPE Clause

This clause specifies the location of files on a multiple-file reel.

This clause is required when more than one file shares the same physical reel of tape.
Regardless of the number of files on a single reel, only those files that are used in the
object program need to be specified.

POSITION

If all file-names have been listed in consecutive order, the POSITION phrase need not be
given. If any file in the sequence is not listed, the position relative to the beginning of the
tape must be given. No more than one file on the same tape reel can be open at one
time.

Note: This clause is an obsolete element in COBOL ANSI-85 and will be deleted from
the next revision of the COBOL standard.

Example of Input-Output Control Entry Format 1: Sequential 1/O

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

SW5 ON STATUS IS SW5-ON

OFF STATUS IS SW5-OFF;

CURRENCY SIGN IS "E";

DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFIL ASSIGN TO TAPE.

SELECT OUTFIL ASSIGN TO TAPE.
I-0-CONTROL.

SAME AREA FOR INFIL OUTFIL.

In this example, the program PAYROL includes both a Configuration Section and an
Input-Output Section in its Environment Division. The SELECT clause in the FILE-
CONTROL paragraph assigns two sequential files, INFIL and OUTFIL, to the storage
medium TAPE. The SAME clause in the I-O-CONTROL paragraph, which uses Input-
Output Control Entry Format 1, specifies that INFIL and OUTFIL will share the same
memory area during processing (but only one of these files can be open at a time).

8600 1518-307 3-43

Input-Output Section

Input-Output Control Entry Format 2: Relative and Indexed
Organization

I-0-CONTROL.
[[SAME [RECORD] AREA FOR file-name-3 { file-name-4 } ... 1 1]

Refer to Input-Output Control Entry Format 1 for information on the SAME clause.

I-O-CONTROL

This keyword begins in area A and must be followed by a period.

Examples of Input-Output Control Entry Format 2: Relative and Indexed
Organization

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON
OFF STATUS IS SW5-OFF;
CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INFIL ASSIGN TO DISK;
ORGANIZATION IS RELATIVE;
ACCESS MODE IS SEQUENTIAL; RELATIVE KEY IS ACCT-NO.
SELECT OUTFIL ASSIGN TO DISK;
ORGANIZATION IS RELATIVE;
ACCESS MODE IS SEQUENTIAL; RELATIVE KEY IS MODEL-NO.
I-0-CONTROL.
SAME AREA FOR INFIL OUTFIL.

The program PAYROL includes a Configuration Section and an Input-Output Section. The
SELECT clause assigns two relative files, INFIL and OUTFIL, to DISK. The SAME clause
causes the INFIL and OUTFIL files to use the same memory area for file information.
These two files must not be open at the same time.

3-44 8600 1518-307

Input-Output Section

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON
OFF STATUS IS SW5-OFF;
CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INFIL ASSIGN TO DISK;
ORGANIZATION IS INDEXED;
ACCESS MODE IS SEQUENTIAL;
RECORD KEY IS NAME;
ALTERNATE RECORD KEY IS MODEL-NO WITH DUPLICATES.
SELECT OUTFIL ASSIGN TO DISK;
ORGANIZATION IS INDEXED;
ACCESS MODE IS SEQUENTIAL;
RECORD KEY IS ACCT-NO;
ALTERNATE RECORD KEY IS DEPT-NO.
I-0-CONTROL.
SAME RECORD AREA FOR INFIL OUTFIL.

In this example, the program PAYROL includes both a Configuration Section and an
Input-Output Section in its Environment Division. The SELECT clause in the FILE-
CONTROL paragraph assigns two indexed files, INFIL and OUTFIL, to the storage
medium DISK. The SAME RECORD clause in the I-O-CONTROL paragraph, which uses
Input-Output Control Entry Format 2, specifies that INFIL and OUTFIL will share the
same record area for processing of the current logical record. Both of these files can be
open at the same time.

8600 1518-307 3-45

Input-Output Section

Input-Output Control Entry Format 3: Sort-Merge

I-0-CONTROL.
RECORD
SAME SORT AREA FOR file-name-1 {file-name-2}...
SORT-MERGE
I-O-CONTROL

This keyword begins in area A and must be followed by a period.

SAME Clause

This clause specifies the memory area that is to be shared by different files. At least one
of these files must be a sort or merge file.

There are two forms of the SAME clause in this format: the SAME RECORD AREA
clause and the SAME SORT AREA or SAME SORT-MERGE AREA clause.

SAME RECORD AREA

This clause specifies that two or more files referred to by file-name-1 and file-name-2 are
to use the same memory area for processing of the current logical record. All of these
files can be in the open mode at the same time. A logical record in the SAME RECORD
AREA is considered to be a logical record of each file that is open in the output mode and
whose file-name appears in the SAME RECORD AREA clause, and of the most recently
read file that is open in the input mode and whose file-name appears in the SAME
RECORD AREA clause. This is equivalent to an implicit redefinition of the area; that is,
records are aligned on the leftmost character position.

SAME SORT AREA
SAME SORT-MERGE AREA

These keywords are equivalent. If this clause is used, at least one of the file-names must
represent a sort or merge file.

3-46 8600 1518-307

Input-Output Section

file-name-1
file-name-2

Each file-name specified in the SAME clause must be specified in the FILE-CONTROL
paragraph of the same program. File-name-1 and file-name-2 must not reference an
external file connector.

A file-name that represents a sort or merge file must not appear in the SAME clause
unless the SORT, SORT-MERGE, or RECORD phrase is used.

The files referred to in the SAME clause need not all have the same organization or
access.

Details

The SAME clause specifies that storage is shared as follows:

e The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory
area that will be made available for use in sorting or merging each sort or merge file
named. Thus, any memory area allocated for the sorting or merging of a sort or
merge file is available for reuse in sorting or merging any of the other sort or merge
files.

e |n addition, storage areas assigned to files that do not represent sort or merge files
can be allocated as needed for sorting or merging the sort or merge files named in
the SAME SORT AREA or SAME SORT-MERGE AREA clause.

o Files other than sort or merge files do not share the same storage area with each
other. For these files to share the same storage area with each other, the program
must contain a SAME AREA or SAME RECORD AREA clause specifying file-names
associated with these files.

e During the execution of a SORT or MERGE statement that refers to a sort or merge
file named in this clause, any non-sort or non-merge files associated with file-names
named in this clause must not be in the open mode.

Rules

More than one SAME clause can be included in a program. If more than one SAME
clause is included in a program, the following restrictions apply:

e A file-name must not appear in more than one SAME RECORD AREA clause.

o Afile-name that represents a sort or merge file must not appear in more than one
SAME SORT AREA or SAME SORT-MERGE AREA clause.

e |[f a file-name that does not represent a sort or merge file appears in a SAME clause
and one or more SAME SORT AREA or SAME SORT-MERGE AREA clauses, all of
the files named in that SAME clause must be named in that SAME SORT AREA or
SAME SORT-MERGE AREA clause(s).

8600 1518-307 3-47

Input-Output Section

Example of Input-Output Control Entry Format 3: Sort-Merge

3-48

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON
OFF STATUS IS SW5-OFF;
CURRENCY SIGN IS "E";
DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATA-CAPTURE-1 ASSIGN TO TAPE.
SELECT DATA-CAPTURE-2 ASSIGN TO TAPE.
SELECT SORT-FILE ASSIGN TO SORT.
SELECT MERGE-FILE ASSIGN TO MERGE.
I-0-CONTROL.

SAME SORT-MERGE AREA FOR SORT-FILE MERGE-FILE.

In this example, the program PAYROL includes both a Configuration Section and an
Input-Output Section in its Environment Division. In the FILE-CONTROL paragraph, the
input file SORT-FILE, which is a sort file, is assigned to the storage medium SORT, and
the input file MERGE-FILE, which is a merge file, is assigned to the storage medium
MERGE. The SAME clause in the I-O-CONTROL paragraph, which uses Input-Output
Control Entry Format 3, specifies that SORT-FILE and MERGE-FILE will share the same

memory area for sorting or merging.

8600 1518-307

Input-Output Section

I-O Status Codes

The I-O status is a two-character conceptual entity whose value is set to indicate the
status of an input-output operation. Some status values indicate successful execution,
while other values indicate unsuccessful execution. The value of the I-O status is made

available to the COBOL program through the data item named in the FILE STATUS

clause of the file control entry for the file.

The I-O status value is placed into the FILE STATUS data item in the following situations:

e During the execution of a CLOSE, DELETE, OPEN, READ, REWRITE, START or

WRITE statement before the execution of any imperative statement associated with

the statement

e Before the execution of any applicable USE AFTER STANDARD EXCEPTION

procedure

Note: To receive the standard COBOL ANSI-85 status codes, you must set the
SANSICLASS compiler option. For COBOL74 compatibility, this option must be reset
(FALSE). The default value is FALSE. For details about this option, refer to Section 15.

Tables 3-1 through 3-6 describe each of the possible I-O status codes. The symbols

used in the File Organization column of these tables are as follows:

Symbol Meaning
S Organization is sequential.
R Organization is relative.

Organization is indexed.

The I-O status values in Table 3-1 indicate that the input-output statement was
successfully executed.

Table 3-1. I-O Status Codes: Successful Execution

File

Organization I-O Status Condition Description

SRI 00 The input-output statement was successfully
executed and no further information is available
concerning the input-output operation.

SRI 04 A READ statement was successfully executed, but
the length of the record that was processed did not
conform to the fixed file attributes for that file.

SRI 05 An OPEN statement was successfully executed, but

mode was |-O or EXTEND, the file was created.

the referenced optional file was not present when
execution of the OPEN statement began. If the open

8600 1518-307

3-49

Input-Output Section

Table 3-1. 1-O Status Codes: Successful Execution

File
Organization I-O Status Condition Description
S 07 The input-output statement was successfully

executed. However, for a CLOSE statement with the
NO REWIND, REEL/UNIT, or FOR REMOVAL phrase
or for an OPEN statement with the NO REWIND
phrase, the referred to file was on a non-reel/unit
medium.

The I-O status values in Table 3-2 indicate that a sequential READ statement was
unsuccessfully executed as a result of an end-of-file condition.

Table 3-2. 1-O Status Codes: Unsuccessful READ—End-of-File
Condition

File
Organization I-O Status Condition Description

SRI 10 The execution of a sequential READ statement was
unsuccessful because:

e The end of the file has been reached (no next
logical record was present in the file).

e A sequential READ statement was attempted
for the first time on an optional input file that
was not present when the associated OPEN
statement was executed.

e An attempt was made to sequentially read a
port file when no next logical record existed
and the communication path with the
connected process was no longer established.

SR 14 A sequential READ statement was attempted for a
relative file, but the number of significant digits in
the relative record number is larger than the size of
the actual or relative key data item described for the
file.

3-50 8600 1518-307

Input-Output Section

The I-O status values in Table 3-3 indicate that the input-output statement was
unsuccessfully executed as a result of an invalid key condition.

Table 3-3. I-O Status Codes: Unsuccessful 1/0—Invalid Key Condition

File
Organization 1-O Status Condition Description
record key values were violated.
" R e
I _
DUPLICATES phrase in an indexed file.
SRI This condition exists because:
s movoss o st
- .
. e o oco b g o e s o
the relative key data item described for the file.
- NORESOURCAWAT T vbots o THUE

8600 1518-307

3-51

Input-Output Section

The I-O status values in Table 3—4 indicate that the input-output statement was
unsuccessfully executed as a result of an error that precluded further processing of the
file. Any specified exception procedures are executed. The permanent error condition
remains in effect for all subsequent input-output operations on the file, until you take
action to correct the error or your program performs error recovery.

Table 3-4. 1-O Status Codes: Unsuccessful I/0—Permanent Error
Condition

File
Organization 1-O Status Condition Description

SRI 30 A permanent error exists and no further information is
available concerning the input-output operation.

S 34 A permanent error exists because of a boundary
violation; an attempt was made to write beyond the
externally defined boundaries of a sequential file.

SRI 35 A permanent error exists because an OPEN
statement with the INPUT, I-O, or EXTEND phrase
was attempted on a non-optional file that is not
present. This error occurs only after you enter the
command ?NF RSVP.

SRI 37 A permanent error exists because an OPEN
statement is attempted on a file and that file will not
support the open mode specified in the OPEN
statement. The possible violations are:

e The EXTEND or OUTPUT phrase was specified,
but the file will not support write operations.

e The I-O phrase was specified, but the file will not
support the input and output operations that are
permitted for a sequential, relative, or indexed
file when opened in the I-O mode.

e The INPUT phrase was specified, but the file will
not support read operations.

SRI 38 A permanent error exists because an OPEN
statement was attempted on a file previously closed
with lock.

SRI 39 The OPEN statement was unsuccessful because a
conflict has been detected between the fixed file
attributes and the attributes for that file in the
program.

3-52 8600 1518-307

Input-Output Section

The I-O status values in Table 3-5 indicate that the statement was unsuccessfully
executed either as a result of an improper sequence of operations that were performed
on the file, or as a result of violating a limit defined by the user.

Table 3-5. I-O Status Codes: Unsuccessful /0—Invalid Operations

File
Organization I-O Status Condition Description

SRI 41 An OPEN statement was attempted for a file in the
open mode.

SRI 42 A CLOSE statement was attempted for a file not in
the open mode.

SRI 43 For a mass-storage file in the sequential access mode
the last input-output statement executed for the
associated file prior to the execution of a DELETE or
REWRITE statement was not a successfully executed
READ statement.

SRI 44 A boundary violation exists because:

e An attempt was made to write or rewrite a record
that is larger than the largest or smaller than the
smallest record allowed by the RECORD IS
VARYING or RECORD CONTAINS clause of the
associated file-name.

e An attempt was made to rewrite a record to a
sequential file and the record is not the same size
as the record being replaced. (Sequential)

SRI 46 A sequential READ statement was attempted on a file
open in the input or I-O mode and no valid next record
has been established because:

e The preceding READ statement was
unsuccessful but did not cause an at end
condition.

e The preceding READ statement caused an at end
condition.

e The preceding START statement was
unsuccessful. (Relative/Indexed).

This does not apply to port files or remote files for
which a non-zero TIMELIMIT is specified.

SRI 47 The execution of a READ or START statement was
attempted on a file opened in a mode other than input
or |-O.

S 48 The execution of a WRITE statement was attempted
on a file opened in a mode other than output.

SRI 48 The execution of a WRITE statement was attempted
on a file opened in a mode other than I-O, output, or
extend.

8600 1518-307 3-53

Input-Output Section

Table 3-5. I-O Status Codes: Unsuccessful /0—Invalid Operations
File
Organization I-O Status Condition Description
S 49 The execution of a REWRITE statement was
attempted on a file opened in a mode other than
output.
RI 49 The execution of a DELETE or REWRITE statement

was attempted on a file opened in a mode other than
[-O.

The I-O status values in Table 3-6 indicate Unisys defined conditions.

Table 3-6. I-O Status Codes: Unisys Defined Conditions

File
Organization

1-O Status

Condition Description

SRI

91

Short Block. A physical block shorter than the
physical blocksize declared for the file was received
from the hardware device. The operation completed
successfully because an I/O status value of 91 is to
be considered a warning, not an error.

SRI

92

Data Error. When logical records are declared variable
in length and the logical record length is supplied by
the programmer (by the RECORD CONTAINS clause),
a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record length supplied is less
than the minimum record size or greater than the
maximum record size declared for the file. This
condition initiates no I/O operation and does not
cause data to be transferred to or from the record
area.

93

Port File. A broadcast write operation failed on one or
more subports.

94

No Data. The WITH NO WAIT clause was used with
the READ statement and no data was available.

95

No Buffer. The WITH NO WAIT clause was used with
the WRITE statement and no buffer was available.

SRI

96

Timeout. A time limit elapsed before the transfer of
data to or from the hardware device.

8600 1518-307

Input-Output Section

Table 3-6. I-O Status Codes: Unisys Defined Conditions

File
Organization 1-O Status Condition Description

| 82 Form Not Found. A READ FORM or WRITE FORM
statement to a file that is designated ASSIGN TO
REMOTE requested a form that does exist in the
form library or requested a form for which the
compile-time version does not equal the run-time
version.

96 Timeout. A deadly embrace (or “deadlock”) occurred
because multiple programs tried to lock the same
records in a different order.

SRI 97 Break on Output. For an output or I-O file, this
condition occurs if the hardware device is equipped
with a break so that the transfer of data in process
can be halted.

98 Deadlock.

SRI 99 Unexpected I/O Error. An error might have occurred
in the /O operation, but its nature cannot be
determined.

S 9A You specified a file with the LOCK statement that
does not support locking.

S 9B An existing locked region of the file is blocking the
LOCK request, and the resulting wait timed out.

S 9C The LOCK statement failed, because the number of
locked regions met the system-imposed maximum.

S 9D An UNLOCK statement was issued but failed,
because no locked records matched its record
specification.

S 9E The record being written is unlocked by the current
user.

8600 1518-307 3-55

Input-Output Section

Recovering from I-O Errors

3-56

You can enable a COBOL85 program to recover from an I-O error by specifying a
particular action for the program to take if an error occurs during the execution of an I-O
statement. To specify the alternate action, use one of the following syntaxes:

e FILE STATUS clause in the Environment Division

The FILE STATUS clause associates a file status variable with the file. You can use
this method to detect and recover from any |-O error for the file.

e USE AFTER STANDARD EXCEPTION statement in the Procedure Division

You can associate a USE procedure with the file to detect and recover from an |-O
error in a file

— That is named in the USE statement

— That has the same open mode as that of the file named in the USE statement
(for files not explicitly named in any USE AFTER STANDARD EXCEPTION
statement)

e AT END or INVALID KEY phrase with the READ and WRITE statements as allowed
by the specific formats

You can use this method to detect and recover from either an AT END or an INVALID
KEY error condition. For details on these error conditions, see the READ statement in
Section 7 and the WRITE statement in Section 8.

8600 1518-307

Input-Output Section

How the Recovery Process Occurs

Recovery from an I-O error occurs in the following way:

1.

2. The next action depends upon the following conditions:

If the FILE STATUS clause is present in the program, the specified data item is
updated to reflect the error condition.

If an AT END or INVALID
KEY phraseis...

And. ..

Then . ..

Present The error code in the FILE The specified imperative
STATUS data item statement is executed.
indicates AT END or an
INVALID key,

Present The error code in the FILE The USE AFTER

STATUS data item does
not indicate AT END or an
INVALID key,

STANDARD EXCEPTION
procedure is executed, if
present.

Not Present

The USE AFTER
STANDARD EXCEPTION
procedure is executed, if
present.

3.

Finally, the next statement in the program is executed.

8600 1518-307

3-57

Input-Output Section

Modifying the Recovery Process for COBOL74 Compatibility

3-58

The $FS4XCONTINUE compiler option is available to provide error semantics similar to
COBOL74 if you are migrating COBOL74 code to COBOL85. When reset (FALSE), this
compiler option causes a program to be terminated if it issues

e An OPEN statement for an open file

e A CLOSE statement for a file that is already closed

e A READ, SEEK, or START statement for a file opened in a mode other than INPUT or
I-O

e A WRITE statement for a file opened in a mode other than EXTEND, |-O, or OUTPUT
e A DELETE or REWRITE statement for a file opened in a mode other than I-O

Before the program terminates, it executes either the imperative statement named in the
AT END or INVALID KEY phrase, if specified, or the USE AFTER STANDARD EXCEPTION
statement, if specified.

Because the semantics provided by the $FS4XCONTINUE option often conflict with
COBOLS85, you can modify the settings of the option (and thus, the semantics of the
compiled code) at any point in the source program listing.

When the $FS4AXCONTINUE option is TRUE, error recovery occurs as described in this
section under “How the Recovery Process Occurs.”

Note: For COBOL74 compatibility, the $ANSICLASS option must be reset (FALSE),
which is the default value. For details about this option, refer to Section 15.

8600 1518-307

Section 4
Data Division

This section illustrates and explains the concepts and syntax of the Data Division, the

third division of a COBOL program. The Data Division describes the data that the object
program is to accept as input, to manipulate, to create, or to produce as output.

Use of the Data Division is optional in a COBOL source program.

Structure of the Data Division

The Data Division consists of the header DATA DIVISION, followed by eight optional

sections:

Section

Function

File Section

This section describes the physical structure of data files
used by the program.

Data-Base Section

Refer to Section 3 of MCP/AS COBOL ANSI-85
Programming Reference Manual, Volume 2: Product
Interfaces.

Working-Storage
Section

This section describes the records and the subordinate
data items that are developed and processed internally in
the program and that have values assigned in the source
program that do not change during execution of the object
program.

Linkage Section

Located in a called program, this section describes the
data in the calling program that is to be referenced by both
programs. The Linkage Section is meaningful only if the
object program functions under the control of a calling
program that contains a CALL statement with a USING
phrase.

Communication Section

Refer to Section 1 of MCP/AS COBOL ANSI-85
Programming Reference Manual, Volume 2: Product
Interfaces.

Local-Storage Section

Located in a calling program, this section describes
parameters in the calling program that are to be
referenced by both the calling and the called programs.

8600 1518-307

Structure of the Data Division

Section Function
Report Section Refer to Section 14.
Program-Library Section This section defines the interface between a user program
and a library program.

Data entries in a section can take the following forms:

o File description entries

File description entries represent the highest level of organization in the File Section.
File description entries follow the File Section header. Each entry begins in area A
with a level indicator, followed by a space, followed by a file-name, followed by a set
of file clauses, as required.

e Record description entries

A record description entry consists of one or more data description entries that
describe one record in the file.

e Data description entries

Data description entries begin with a level-number, followed by a space, followed by
a data-name (if required), followed by a set of data clauses, as required. The total set
of data description entries associated with a particular record is a record description
entry. The syntax for various data description entries is provided in this section.

Record Concepts

To separate the logical characteristics of data from the physical characteristics of the
data storage media, separate clauses or phrases are used. In a COBOL program, the
input or output statements refer to one logical record of a file, as opposed to a physical
record. A physical record is a physical unit of information whose size and recording mode
is convenient to a particular computer for the storage of data on an input or output
device. The size of a physical record is hardware dependent and does not bear a direct
relationship to the size of the file contained on a device.

A COBOL logical record is a group of related information that is uniquely identifiable and
treated as a unit. A logical record can be contained in a single physical unit; several logical
records can be contained in a single physical unit; or a logical record can be contained in
more than one physical unit.

The concept of a logical record is not restricted to file data but is carried over into the

definition of working-storage. Thus, working-storage is grouped into logical records and
defined by a series of record description entries.

8600 1518-307

Structure of the Data Division

Level Concepts

The concept of levels is inherent in the structure of a logical record. Levels indicate the
subdivision of a record for the purpose of data reference. Once a subdivision has been
specified, it can be further divided for more detailed data referral.

The most basic subdivisions of a record (that is, those that cannot be further subdivided)
are called elementary items. A record can consist of a sequence of elementary items or
can itself be an elementary item. For reference purposes, the elementary items are
combined into groups. Each group consists of a named sequence of one or more
elementary items. Groups, in turn, can be combined into groups of two or more groups,
and so forth. Thus, an elementary item can belong to more than one group.

A group includes all group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered. All items that are
immediately subordinate to a given group item must be described by using identical
level-numbers greater than the level-number used to describe that group item.

A true concept of levels does not exist for the following types of entries:

e Entries that specify elementary items or groups introduced by a RENAMES clause
e Entries that specify noncontiguous working-storage and linkage data items

e Entries that specify condition-names

Example
01 PRIMARY.
03 ACCT-NO PIC 9(8).
03 NAME PIC X(20).

03 OTHER-NAMES.
05 NME PIC X(20).
05 FLAG PIC 9.

This data description entry defines the group item PRIMARY. PRIMARY consists of the

elementary items ACCT-NO and NAME, and the group item OTHER-NAMES. OTHER-
NAMES consists of the elementary items NME and FLAG.

8600 1518-307 4-3

Structure of the Data Division

Level-Numbers

A system of level-numbers shows the organization of elementary items and group items
(that is, the hierarchy of data in a logical record). Level-numbers identify entries for
working-storage items, linkage items, condition-names, and the RENAMES clause.

A one- or two-digit level-number is required as the first element in each data description
entry. At least one space must follow a level-number. Because records are the most
inclusive data items, level-numbers for records start at 01. Multiple level-01 entries that
are subordinate to any given level indicator represent implicit redefinitions of the same
area. Less inclusive data items are assigned higher (not necessarily successive) level-
numbers not greater in value than 49. Separate entries are written in the source program
for each level-number used. Level-numbers can identify special properties of a data
description entry, as shown next.

Number . .. Identifies entries that . . .

66 Describe items through RENAMES clauses for the purpose of
regrouping data items

77 Specify noncontiguous data items that are not subdivisions of
other items and are not themselves subdivided

88 Specify condition-names to be associated with particular values of
a conditional variable

The syntax for these types of entries is provided later in this section.

For data description entries that begin with a level-number 01 or 77, the level-number
must begin in area A. Data description entries that begin with other level-numbers can
begin any number of positions to the right of margin A.

Note that the extent of indentation is determined only by the width of the physical
medium. The entries on the output listing need to be indented only if the input is
indented. Indentation does not affect the magnitude of a level-number.

Level Indicators (FD, SD)

A level indicator consists of two alphabetic characters that identify a specific type of file.
The level indicators FD and SD are used in file description entries in the Data Division. FD
identifies the beginning of a file description entry, and SD identifies the beginning of a
sort-merge file description entry. The level indicator must precede the file-name.

8600 1518-307

Structure of the Data Division

Classes and Categories of Data Items

Every data item is considered to belong to one of five classes: alphabetic, numeric,
alphanumeric, national, or Boolean

Each class is further subdivided into categories:

e Alphabetic

e Numeric

e Alphanumeric

e National

e Boolean

e Alphanumeric-edited
¢ National-edited

e Numeric-edited

The relationship between the class and category of data items is shown in Table 4-1.
Information on how to define the different categories of items is presented under
"PICTURE Clause" in this section.

Table 4-1. Relationship between Class and Category of Data Items

Level of Item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric
Alphanumeric Numeric-edited

Alphanumeric-edited
Alphanumeric

National National
National-edited

Boolean Boolean
Nonelementary (Group) Alphanumeric Alphabetic
Numeric

Numeric-edited
Alphanumeric-edited
Alphanumeric
National
National-edited

Note that the class of a group item is treated as alphanumeric at object time regardless
of the class of elementary items subordinate to that group item.

8600 1518-307 4-5

Structure of the Data Division

Class and Category of Figurative Constants and Intrinsic Functions

Following are the class and category for figurative constants and intrinsic functions:

e When moved to a national or national-edited field, all figurative constants belong to
the national class and category.

e The figurative constant space, except when moved to a national or national-edited
field, belongs to the alphabetic class and category.

e The figurative constant ZERO (ZERQOS, ZEROES), except when moved to a Boolean,
national, or national-edited category, belongs to the numeric class and category when
moved to a numeric field and the numeric-edited class and the alphanumeric
category when moved to a nonnumeric field.

e Inall other cases, figurative constants belong to the alphanumeric class and
category.

e Intrinsic functions belong to either the numeric class and category or the
alphanumeric class and category. For details, refer to Section 9.

The PICTURE clause describes the general characteristics and editing requirements
of an elementary data item. When the PICTURE clause of the item contains a picture
character N, the usage is implicitly NATIONAL.

The USAGE clause specifies the manner in which a data item is represented in the
storage of a computer, and can affect the type of character representation of the
item. If the USAGE clause is not specified for an elementary item, or for any group to
which the item belongs, the usage is implicitly DISPLAY. The syntax for these
clauses is provided in this section.

When a computer provides more than one means of representing data, the standard data
format or national standard data format must be used for data items other than integer
and numeric functions, if not otherwise specified by the data description.

Note that an alphanumeric function is always represented in the standard data format.
The size of an elementary data item or a group item is the number of characters in the
standard data format of the item. Synchronization and usage can cause a difference

between this size and that required for internal representation.

The size of a national data item is the number of national characters in the national
standard data format of the item.

4-6 8600 1518-307

Structure of the Data Division

_E- -

8600 1518-307 4-7

Structure of the Data Division

Algebraic Signs

There are two categories of algebraic signs: operational signs and editing signs.
Operational signs are associated with signed numeric data items and signed numeric
literals to indicate their algebraic properties. Editing signs appear on edited reports, for
example, to identify the sign of the item.

The SIGN clause, discussed in this section, allows the programmer to state explicitly the

location of the operational sign.

Editing signs are inserted into a data item through the sign control symbols of the
PICTURE clause, which is also defined under the data description entry formats in this

section.

Standard Alignment Rules

The standard rules for positioning data in an elementary item depend on the category of

the receiving item.

Category of Receiving Item

Positioning of Data

Numeric

The data is aligned by decimal point and is moved to the
receiving digit positions with zero fill or truncation on
either end as required.

If an assumed decimal point is not explicitly specified,
the data item is treated as if it has an assumed decimal
point immediately following its rightmost digit and is
aligned in the same way.

Numeric-edited

The data moved to the edited data item is aligned by
decimal point with zero fill or truncation at either end as
required in the receiving character positions of the data
item, except where editing requirements cause
replacement of the leading zeros.

Alphanumeric (other than a
numeric-edited data item),
alphanumeric-edited, or
alphabetic

The sending data is moved to the receiving character
positions and aligned at the leftmost character position
in the data item with space fill or truncation to the right,
as required.

National or national-edited

The sending data is moved to the receiving character
positions and is aligned at the leftmost character position
in the data item with national space fill or truncation to
the right, as required.

Note that if the JUSTIFIED clause is specified for the receiving item, these standard rules
are modified (refer to “JUSTIFIED Clause” in this section).

8600 1518-307

Structure of the Data Division

Increasing Object-Code Efficiency

Certain uses of data (for example, in arithmetic operations or in subscripting) can be
made easier if the data is stored so that it is aligned on the natural addressing boundaries
in the computer memory (for example, word boundaries and byte boundaries).
Specifically, additional machine operations in the object program can be required for the
accessing and storage of data if portions of two or more data items appear between
adjacent natural boundaries, or if certain natural boundaries divide a single data item.
Data items that are aligned on these natural boundaries in such a way as to avoid such
additional machine operations are said to be synchronized. With increases in machine
speeds, the measurable effect of SYNCHRONIZE might be recognized only at the level of
millions of calculations. Synchronization can be accomplished in two ways:

e By using the SYNCHRONIZED clause

e By recognizing the appropriate natural boundaries and organizing the data suitably
without using the SYNCHRONIZED clause

Uniqueness of Reference

Every user-defined name in a COBOL program is assigned by the programmer to name a
resource that will be used in solving a data processing problem. To use a resource, a
statement in a COBOL program must contain a reference that uniguely identifies that
resource. To ensure that a user-defined name is unique, you can add a subscript, a
qualifier, or a reference modifier. Qualifiers and reference modifiers are discussed in this
section. Subscripts are discussed in Section 5.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not allow
the reference in one of those programs to differentiate between the two identically
named resources, then certain conventions that limit the scope of names apply. These
conventions ensure that the resource identified is the one described in the program that
contains the reference (refer to “Scope of Names” in Section 10). When the resource is
an ANSI intrinsic function, the values assigned to the arguments of each function help
differentiate between the two functions.

Unless otherwise specified, subscripts and reference modifiers are evaluated only when
a statement is executed.

8600 1518-307 4-9

Structure of the Data Division

Qualification

Every user-defined name explicitly referred to in a COBOL source program must be
unique in one of the following ways:

e No other name has the identical spelling and hyphenation.

e The name is unigue within the context of a REDEFINES clause (refer to "REDEFINES
Clause” in this section).

e The name exists in a hierarchy of names so that reference to the name can be made
unique by mentioning one or more of the higher-level names in the hierarchy.

e The name is contained in a program that is contained in another program or contains
another program (refer to “Scope of Names"” in Section 10).

Higher-level names in a hierarchy of names are called qualifiers, and the process that
specifies uniqueness is called qualification. The formats on the following pages can be
used for qualification.

Identical user-defined names can appear in a source program. However, uniqueness
must then be established through qualification for each user-defined name that is
explicitly referred to (except in the case of redefinition). As long as unigueness is
established, all available qualifiers do not need to be specified.

Reserved words that name the special registers require qualification to provide
uniqueness of reference whenever a source program would result in more than one
occurrence of any of these special registers. A paragraph-name or section-name in one
program cannot be referred to from any other program.

The same data-name must not be used as the name of an external record and as the
name of any other external data item described in any program that is contained in or
contains the program that describes that external data record. Also, the same data-name
must not be used as the name of an item that possesses the global attribute and as the
name of any other data item described in the program that describes that global data
Item.

8600 1518-307

Structure of the Data Division

Qualification Format 1

IN IN
~ t data-name-2 } ... — t file-name-1
data-name-1 OF QE
condition-name-1 IN

— t file-name-1
OF

In this format, each qualifier must be the name associated with a level indicator, the
name of a group item to which the item being qualified is subordinate, or the name of the
conditional variable with which the condition-name being qualified is associated.
Qualifiers are specified in the order of successively more inclusive levels in the hierarchy.

o
T

data-name-1
data-name-2

A data-name is a user-defined word that names a data item described in a data
description entry. When used in the general formats, data-name represents a word that
must not be reference-modified, subscripted, or qualified unless specifically permitted by
the rules of the format.

In this format, either of these data-names can be a record-name.

condition-name-1

A condition-name is a user-defined word that assigns a name to a subset of values that a
conditional variable can assume; or a user-defined word assigned to a status of a switch
or device. When condition-name is used in the general formats, it represents a unique
data item reference consisting of a syntactically correct combination of a condition-name,
together with qualifiers and subscripts, as required for uniqueness of reference.

file-name-1

A file-name is a user-defined word that names a file connector described in a file
description entry or a sort-merge file description entry in the File Section of the Data
Division.

OF

These keywords are logically equivalent.

8600 1518-307 4-11

Structure of the Data Division

Qualification Format 2

IN
paragraph-name-1

section-name-1
OF

paragraph-name-1

A paragraph-name is a user-defined word that identifies and begins a paragraph in the
Procedure Division.

If explicitly referenced, a paragraph-name must not be duplicated in a section.

When a paragraph-name is qualified by a section-name, the word SECTION must not
appear.

A paragraph-name does not need to be qualified when it is referred to within the same
section.

A paragraph-name in one program cannot be referred to from any other program.

IN
OF

These keywords are logically equivalent.

section-name-1

A section-name is a user-defined word that names a section in the Procedure Division.
A section-name in one program cannot be referred to from any other program.

Qualification Format 3

IN
text-name-1 { _ } Tibrary-name-1

oF

text-name-1

A text-name is a user-defined word that identifies library text.

If more than one COBOL library is available to the compiler during compilation, text-
name-1 must be qualified each time it is referred to.

8600 1518-307

Structure of the Data Division

IN
OF

These keywords are logically equivalent.

library-name-1

A library-name is a user-defined word that names a COBOL library that is to be used by
the compiler for a given source program compilation.

Qualification Format 4

IN
LINAGE-COUNTER { T

file-name-2
OF

LINAGE-COUNTER

LINAGE-COUNTER must be qualified each time it is referred to if more than one file
description entry containing a LINAGE clause have been specified in the source program.

IN
OF

These keywords are logically equivalent.

file-name-2

A file-name is a user-defined word that names a file connector described in a file
description entry or a sort-merge file description entry in the File Section of the Data
Division.

Details

For each nonunigue user-defined name that is explicitly referred to, uniqueness must be
established through a sequence of qualifiers that precludes any ambiguity of reference.

A name can be qualified even though it does not need qualification; if there is more than
one combination of qualifiers that ensures uniqueness, then any such set can be used.

8600 1518-307 4-13

Structure of the Data Division

Reference Modifiers

A reference modifier identifies a function or a data item by specifying a leftmost
character and a length for the function or data item. Unless otherwise specified, a
reference modifier is allowed only when the function-name or data-name references an
alphanumeric function or data item.

data-name-1
FUNCTION funct-name-1 [({argument-1}...)]

(Teftmost-char-position:[length])

Note: The reference modifier consists only of the leftmost-character-position and the
length. The other elements in the preceding syntax are provided only for context.

data-name-1

This data-name must refer to a data item whose usage is DISPLAY or NATIONAL. It can
be qualified or subscripted.

FUNCTION function-name-1 (argument-1)

This is an alphanumeric function. For information about functions, refer to Section 9.

leftmost-character-position

This must be an arithmetic expression. For details about arithmetic expressions, refer to
Section 5.

Evaluation of the leftmost-character-position specifies the ordinal position of the leftmost
character of the unique data item in relation to the leftmost character of the data item or
function specified in this format.

Evaluation of the leftmost-character-position must result in a positive nonzero integer

less than or equal to the number of characters in the data item or function specified in
this format.

8600 1518-307

Structure of the Data Division

length

This must be an arithmetic expression. For details, see Section 5.

The evaluation of the length specifies the size of the data item to be used in the
operation.

The evaluation of the length must result in a positive nonzero integer.

The sum of the leftmost-character-position and the length minus the value 1 must be
less than or equal to the number of characters in the data item or function specified in
this format.

If the length is not specified, the unique data item extends from and includes the
character identified by the leftmost-character-position up to and including the rightmost
character of the data item or function specified in this format.

Details

Reference modification creates a unique data item that is a subset of the data item or
function specified in this format. The syntax descriptions for the leftmost-character-
position and the length contain the definitions of the unique data item.

The unigue data item is considered an elementary data item without the JUSTIFIED
clause. If a function is specified, the data item has the class and category of
alphanumeric. When a data item is specified, the unique data item has the same class
and category as defined for the data item referred to by data-name-1, with the
exceptions shown in the following table.

The category . .. Is considered to be class and category . ..
Numeric Alphanumeric

Numeric-edited Alphanumeric

Alphanumeric-edited Alphanumeric

National-edited National

Each character of a data item or a function specified in this format is assigned an ordinal
number that is incremented by one from the leftmost position to the rightmost position.
The leftmost position is assigned the ordinal number one. Note that if the data
description entry for data-name-1 contains a SIGN IS SEPARATE clause, the sign position
is assigned an ordinal number within that data item.

8600 1518-307 4-15

Structure of the Data Division

The type of data item specified by data-name-1 determines how that data item is treated
for purposes of reference modification:

If the data item specified by Then it is treated in reference modification

data-name-1 is described as . . . as if it were redefined as . ..

Numeric, numeric-edited, An alphanumeric data item of the same size as

alphabetic, or alphanumeric-edited the data item referred to by data-name-1

National-edited A national data item of the same size as the
data item referred to by data-name-1

Reference modification for an operand is evaluated as follows:
e |f subscripting is specified for the operand, the reference modification is evaluated
immediately after evaluation of the subscripts.

e |f subscripting is not specified for the operand, the reference modification is
evaluated at the time subscripting would be evaluated if subscripts had been
specified.

e |f the subscript ALL is specified for an operand, the reference modifier is applied to
each of the implicitly specified elements of the table.

If a reference modifier is specified in a function reference, the reference modifier is
evaluated immediately after the function is evaluated.

4-16 8600 1518-307

General Format

General Format

The general format of the Data Division is as follows:

DATA DIVISION.
[FILE SECTION.
[file description entry
{ record description entry } ...]
[sort-merge file description entry
{ record description entry }...] ...]

[DATA-BASE SECTION.

[01 [internal-set name] INVOKE set-name] ...]
[WORKING-STORAGE SECTION.

[77-Tevel description entry]
record description entry

[LINKAGE SECTION.

[77-1evel description entry]
record description entry

[COMMUNICATION SECTION.

[COMS headers] ... 1]
[LOCAL-STORAGE SECTION.

local-storage description entry
{ 77-1evel description entry }]

record description entry
[REPORT SECTION.

[A report description entry ...] ...
[A report-group description entry ...] ...]

[PROGRAM-LIBRARY SECTION.

[Tibrary description entry] ...]

Because the record description entry is used in each of the sections of the Data Division,
it is described in the following subsection rather than as an element of each section.

For information on the Data-Base Section and the Communication Section, refer to
COBOL ANSI-85 Programming Reference Manual, Volume 2: Product Interfaces.

8600 1518-307 4-17

Record Description Entry

Record Description Entry

A record description consists of a set of data description entries that describe the
characteristics of a particular record. Because a record description can have a hierarchical
structure, the clauses used with an entry can vary considerably, depending on whether it
is followed by subordinate entries.

One or more record description entries must follow the file description entry.

Format Use
Format 1 This format identifies noncontiguous working-storage data items and
noncontiguous linkage data items.
Format 2 This format renames a data-name or range of data-names.
Format 3 This format defines condition-names associated with conditional variables.
Format 4 This format is used for interprogram communication. It determines whether

the data record and its subordinate data items have local names or global
names, and it determines the internal or external attribute of the data record
and its subordinate data items.

The syntax of each data description entry is illustrated and explained on the following
pages.

4-18 8600 1518-307

Data Description Entry Format 1

Data Description Entry Format 1

The format for Data Description Entry Format 1 is shown on the following three pages. A
user will use this syntax for most data items.

level-number {

{ PICTURE

PIC

TYPE IS

data-name-1

FILLER

} IS character-string

SHORT-DATE
LONG-DATE
NUMERIC-DATE

NUMERIC-TIME
LONG-TIME

USING

} [REDEFINES data-name-2] || INTEGER

STRING
COMMON
oun
LOCAL
literal-1

CONVENTION OF
data-name-3

literal-2
LANGUAGE OF
data-name-4

8600 1518-307

Data Description Entry Format 1

4-20

[USAGE IS]

TRUNCATED
BINARY

EXTENDED
BIT
COMPUTATIONAL
comp

COMPUTATIONAL-5

COMP-5

CONTROL-POINT

DISPLAY

DOUBLE

EVENT

INDEX

KANJI

LOCK

NATIONAL
PACKED-DECIMAL
REAL

TASK

RECEIVED BY

CONTENT

REFERENCE

REF

8600 1518-307

Data Description Entry Format 1

[SIGN IS] | LEADING [SEPARATE CHARACTER]
TRAILING

OCCURS 1integer-2 TIMES

ASCENDING KEY IS {data-name-3} ...
DESCENDING

INDEXED BY [LOCAL] { index-name-1 } ...]
OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4

ASCENDING KEY IS {data-name-3}...
DESCENDING

[INDEXED BY [LOCAL] {index-name-1} ...]

SYNCHRONIZED LEFT JUSTIFIED RIGHT
SYNC RIGHT JUST

[BLANK WHEN ZERO] [VALUE IS literal-1] |[WITH LOWER BOUNDS]

[ALIGNED]
- [RECORD AREA] .

8600 1518-307 4-21

Data Description Entry Format 1

The level-number, the data-name, and the REDEFINES clause must appear in the order in
which they are described in the syntax diagram. All other clauses of Format 1 can appear
in any order.

The first three clauses of this data description entry are described in order on the
following pages. The remaining clauses are described in alphabetical order.

level-number

In this format, this number can be one of the following:

e Any number from 01 through 49
o 77

Level-number 77 identifies noncontiguous working-storage data items and
noncontiguous linkage data items. Level-number 77 is used only in this format of a data
description entry.

Data-Name or FILLER Clause

4-22

data-name-1

This name is a user-defined word that specifies the name of the data item being
described.

FILLER

This keyword can be used to name an elementary item in a record.

A FILLER item can never be referred to explicitly. However, the keyword FILLER can be
used to name a conditional variable because such use does not require explicit reference
to the FILLER item itself, but only to the value of the FILLER item.

Example

03 FILLER PIC 9.
88 ANNUAL VALUE 1.
88 WEEKLY VALUE 2.
88 DAILY VALUE 3.

Details

If this clause is omitted, the data item being described is treated as though FILLER had
been specified.

8600 1518-307

Data Description Entry Format 1

REDEFINES Clause

This clause allows the same computer storage area to be described by different data
description entries.

When specified, this clause must immediately follow the data-name-1 or FILLER clause if
either is specified; otherwise, it must immediately follow the level-number. The
remaining clauses can be written in any order.

Note that this clause must not be used in level 01 entries in the File Section.

data-name-2

The level-numbers of data-name-2 and the subject of this entry (the data-name-1 or
FILLER clause) must be identical, but must not be 66 or 88.

The data description entry for data-name-2 cannot contain an OCCURS clause; however,
data-name-2 can be subordinate to an item whose data description entry contains an
OCCURS clause. In this case, the reference to data-name-2 in the REDEFINES clause
must not be subscripted. Neither the original definition nor the redefinition can include a
variable-occurrence data item.

If the data item referred to by data-name-2 is declared to be an external data record or is
specified with a level-number other than 01, the number of character positions it contains
must be greater than or equal to the number of character positions in the data item
referred to by the subject of this entry (the data-name-1 or FILLER clause). If the data-
name referred to by data-name-2 is specified with a level-number of 01 and is not
declared to be an external data record, there is no such constraint.

Data-name-2 must not be qualified, even if it is not unique. (No ambiguity of reference
exists in this case because of the required placement of the REDEFINES clause in the
source program.)

Rules
Multiple redefinitions of the same character positions are permitted. These redefinitions

must all use the data-name of the entry that originally defined the area.

The entries that give the new description of the character positions must not contain a
VALUE clause, except in condition-name entries.

No entry having a level-number numerically lower than the level-number of data-name-2
and the subject of this entry (data-name-1 or FILLER) can occur between the data
description entries of data-name-2 and the subject of this entry (data-name-1 or FILLER).

The entries that give the new descriptions of the character positions must follow the

entries defining the area of data-name-2, without intervening entries that define new
character positions.

8600 1518-307 4-23

Data Description Entry Format 1

Details

Data-name-2 can be subordinate to an entry that contains a REDEFINES clause.

Storage allocation starts at data-name-2 and continues over a storage area sufficient to
contain the number of character positions in the data item referred to by the data-name-1
or FILLER clause.

When the same character position is defined by more than one data description entry,
the data-name associated with any of those data description entries can be used to refer
to that character position.

ALIGNED Clause

This clause can be specified only for an elementary bit data item. The ALIGNED clause
specifies that an elementary bit data item be aligned at the leftmost bit of the next
character boundary in storage. The ALIGNED clause and the SYNCHRONIZED clause are
mutually exclusive.

BLANK WHEN ZERO Clause

4-24

This clause fills a data item with spaces when the value of the data item is zero.

This clause can be specified only for an elementary item whose PICTURE is specified as
numeric or numeric-edited (refer to “PICTURE Clause” in this section).

The numeric or numeric-edited data description entry to which this clause applies must
be described, either implicitly or explicitly, as USAGE IS DISPLAY.

When this clause is used for an item whose PICTURE is numeric, the category of the
item is considered to be numeric-edited.

Example

01 PRODUCT.
05 PART-NO PIC IS 99999.
05 QUANTITY PIC S9999 SIGN IS LEADING SEPARATE.
05 UNIT-PRICE PIC IS 999v99.
05 TOTAL-PRICE PIC 9(5)V99 BLANK WHEN ZERO.

In this example, the data item TOTAL-PRICE is set to blank spaces when its value is
zero.

8600 1518-307

Data Description Entry Format 1

~
~

GLASTATUS COMMON COMP PIC 9(11).

GL-RCD COMMON.

GL-EBCARY COMMON.

03 CMP-ITM COMP PIC 9(11) OCCURS 100 INDEXED BY I.

[e]
_

8600 1518-307 4-25

Data Description Entry Format 1

INTEGER and STRING Clauses

These clauses identify the type of the data item used as a library parameter. INTEGER
will identify the data type as an integer, and STRING will identify the data type as a string.

To use the INTEGER clause, the level-number of the data item must be either 01 or 77,
and the USAGE of the data itemm must be COMPUTATIONAL.

To use the STRING clause, the level-number of the data item must be either 01 or 77,
and the USAGE of the data item must be DISPLAY or NATIONAL.

Note: The INTEGER clause and the STRING clause are ignored for data items not
referenced as formal parameters.

JUSTIFIED (JUST) Clause

This clause permits alternate (nonstandard) positioning of data in a receiving data item.
"JUST” and "JUSTIFIED" are equivalent words.

Rules

e This clause can be specified only at the elementary item level.

e This clause cannot be specified for any data item described as numeric or for which
editing is specified.

e This clause must not be specified for an index data item.

Details

When the receiving data item is described with the JUSTIFIED clause and the sending
data item is larger than the receiving data item, the leftmost characters are truncated.
When the receiving data item is described with the JUSTIFIED clause and it is larger than
the sending data item, the data is aligned at the rightmost character position in the data
item with space fill for the leftmost character positions.

When the JUSTIFIED clause is omitted, the standard rules for aligning data in an
elementary item apply (refer to “Standard Alignment Rules” earlier in this section).

LOCAL Clause

4-26

A local variable is a variable that is referenced in the same procedure in which it is
declared. Any value stored in a local variable is lost upon exit from that procedure.

For COBOL procedures compiled at level 3 or higher, the variables are declared implicitly
LOCAL unless the COMMON or OWN clause is specified.

Index-names for a LOCAL array are treated as LOCAL variables.

8600 1518-307

Data Description Entry Format 1

8600 1518-307 4-27

Data Description Entry Format 1

OCCURS Clause

4-28

This clause eliminates the need for separate entries for repeated data items and supplies
information required for the application of subscripts or indexes.

This clause must not be specified in a data description entry that has either:

e Alevel-number of 01, 66, 77, or 88
e A variable-occurrence data item subordinate to the entry

Except for the OCCURS clause, all data description clauses associated with an item
whose description includes an OCCURS clause apply to each occurrence of the item
described.

OCCURS integer-2 TIMES

This form of the OCCURS clause specifies that the subject of this entry (the data-name-1
or FILLER clause) occurs the number of times indicated by the integer in this clause.

integer-2

The value of this integer represents the exact number of occurrences of the subject of
this entry (the data-name-1 or FILLER clause).

OCCURS integer-1 TO integer-2 TIMES

This form of the OCCURS clause specifies that the subject of this entry (the data-name-1
or FILLER clause) has a variable number of occurrences. (Note that the length of the
subject of this entry is not variable, just the number of occurrences.)

A data description entry that contains this form of the OCCURS clause can only be
followed, within that record description, by data description entries that are subordinate
to it.

If this form of the OCCURS clause is specified in a record description entry and the
associated file description entry or sort-merge description entry contains the VARYING
phrase of the RECORD clause, the records are variable length. If the DEPENDING ON
phrase of the RECORD clause is not specified, the content of the data item referred to
by data-name-4 of the OCCURS clause must be set to the number of occurrences to be
written before the execution of any RELEASE, REWRITE, or WRITE statement.

integer-1

The value of this integer represents the minimum number of occurrences of the subject
of this entry (the data-name-1 or FILLER clause).

When both integer-1 and integer-2 are used, integer-1 must be greater than or equal to
zero, and integer-2 must be greater than integer-1.

8600 1518-307

Data Description Entry Format 1

integer-2

The value of this integer represents the maximum number of occurrences of the subject
of this entry (the data-name-1 or FILLER clause).

DEPENDING ON data-name-4

Data-name-4 can be qualified.
Data-name-4 must describe an integer.

The data item defined by data-name-4 must not occupy a character position in the range
between the first character position defined by the data description entry containing the
OCCURS clause and the last character position defined by the record description entry
containing that OCCURS clause.

If the OCCURS clause is specified in a data description entry that is included in a record
description entry containing the EXTERNAL clause, data-name-4, if specified, must
reference a data item that possesses the external attribute that is described in the same
Data Division.

If the OCCURS clause is specified in a data description entry subordinate to one
containing the GLOBAL clause, data-name-4, if specified, must be a global name and
must reference a data item that is described in the same Data Division.

The data item identified by data-name-4 must not contain an OCCURS clause except
when data-name-4 is the subject of this entry.

The current value of the data item referred to by data-name-4 represents the number of
occurrences of the subject of this entry.

At the time the subject of this entry is referred to or any data item subordinate or
superordinate to the subject of this entry is referred to, the value of the data item
referred to by data-name-4 must fall in the range of integer-1 through integer-2. The
contents of the data items whose occurrence numbers exceed the value of the data item
referred to by data-name-4 are undefined.

When a group item is referred to that has subordinate to it an entry that contains this
form of the OCCURS clause, the part of the table area used in the operation is
determined as follows:

e |f the data item referred to by data-name-4 is outside the group, only that part of the
table area that is specified by the value of the data item referred to by data-name-4 at
the start of the operation will be used.

o |f the data item referred to by data-name-4 is included in the same group and the
group data item is referred to as a sending item, only that part of the table area that
is specified by the value of the data item referred to by data-name-4 at the start of
the operation will be used in the operation. If the group is a receiving item, the
maximum length of the group will be used.

8600 1518-307 4-29

Data Description Entry Format 1

4-30

ASCENDING/DESCENDING data-name-3

No entry that contains an OCCURS clause can appear between the descriptions of the
data items identified by the data-names in the KEY IS phrase and the subject of this
entry.

When the KEY IS phrase is specified, the repeated data must be arranged in ascending
or descending order according to the values contained in data-name-3. The ascending or
descending order is determined according to the rules for the comparison of operands
(see "Conditional Expressions” in Section 5). The data-names are listed in their
descending order of significance.

Data-name-3 can be qualified. The first specification of data-name-3 must be the name of
either the entry containing the OCCURS clause or an entry subordinate to the entry
containing the OCCURS clause. Subsequent specification of data-name-3 must be
subordinate to the entry containing the OCCURS clause.

Data-name-3 must be specified without the subscripting normally required.

INDEXED BY

This phrase is required if the subject of this entry, or an entry subordinate to this entry, is
to be referred to by indexing. The index-name identified by this phrase is not defined
elsewhere, since its allocation and format are dependent on the hardware and, not being
data, cannot be associated with a data hierarchy.

LOCAL

This option designates the specified index-name as a LOCAL item along with the other
LOCAL host and subprogram items. LOCAL indicates that the item is declared in the
procedure that references it. If multiple index-names are specified in an INDEXED BY
clause, the LOCAL clause applies to each index-name.

If the COMMON or OWN clause is specified for a data item, you can specify the index-
name as LOCAL by using the INDEX BY LOCAL clause within the OCCURS clause.

index-name-1

This name must be a unique word in the program.
Example

01 PRIMARY.
03 ACCT-NO PIC 9(8).
03 NAME PIC X(20).
03 OTHER-NAMES OCCURS 1 TO 5 TIMES
DEPENDING ON ALTERNATE-NAMES.
05 NME PIC X(20).
05 FLAG PIC 9.

8600 1518-307

Data Description Entry Format 1

This data description entry defines the group item PRIMARY. PRIMARY consists of the
elementary items ACCT-NO and NAME, and the group item OTHER-NAMES. OTHER-
NAMES consists of the elementary items NME and FLAG. OTHER-NAMES can occur up
to five times depending on the value of ALTERNATE-NAMES.

L

8600 1518-307 4-31

Data Description Entry Format 1

PICTURE Clause

This clause describes the general characteristics and editing requirements of an
elementary data item.

PICTURE
PIC

These keywords are equivalent.

IS character-string

A character-string consists of certain allowable combinations of characters in the COBOL
character set used as symbols. The allowable combinations determine the category of
the elementary item.

The allowable PICTURE clause symbols are A, B, I, N, P, S, V, X, Z 0,1, 9, slant (/),
comma (,), period (.), plus sign (+), minus sign (-), asterisk (*), currency symbol (usually $),
CR, and DB. Refer to the paragraphs under the heading “Symbols” in this section for
information on each of these symbols.

The lowercase letters that correspond to the uppercase letters that represent the
PICTURE clause symbols A, B, I, N, P, S, V, X, Z, CR, and DB are the same as their
uppercase representations in a PICTURE character-string. However, all other lowercase
letters are not equivalent to their corresponding uppercase representations.

The maximum number of characters allowed in the character-string is 30.

Restrictions

The PICTURE clause has the following restrictions:

e A PICTURE clause can be specified only at the elementary item level.
e A group item must not have a PICTURE clause.

e Every elementary data item except an index data item or the subject of a RENAMES
clause must have a PICTURE clause. The PICTURE clause is prohibited for an index
data item and the subject of a RENAMES clause.

o The asterisk, when used as the zero suppression symbol, and the BLANK WHEN
ZERO clause cannot appear in the same entry.

4-32 8600 1518-307

Data Description Entry Format 1

Symbols

The PICTURE clause symbols and their functions are described in Table 4-2.

Table 4-2. Picture Clause Symbols

Symbol

Function

Each A in the character-string represents a character position that
can contain only an alphabetic character. This symbol is counted in
the size of the item.

Each B in the character-string represents a character position into
which the space character will be inserted and is counted in the size
of the item.

For an alphanumeric-edited item, each B represents an alphanumeric
character position in the item into which an alphanumeric space
character will be inserted.

For a national-edited item, each B represents a national character
position in the item into which a national space character is to be
inserted.

Each | in the character string indicates that the nonblank character
immediately following it is treated as a simple insertion character.
Specifying the character | as the currency symbol overrides its use
to indicate simple insertion characters. The | itself is not counted in
the size of the item, but the single, nonblank character following it is
counted in the size of the item. The 30-character limit for the size of
a PICTURE string includes both the | symbol and the character that
follows it.

Each N in the character-string represents a character position that
contains a national character. Each N is counted in the size of the
data item being described. The size is considered to be the total
number of character positions defined for the data item.

8600 1518-307

4-33

Data Description Entry Format 1

Table 4-2. Picture Clause Symbols

Symbol Function

P Each P in the character-string indicates an assumed decimal scaling
position, which is used to specify the location of an assumed
decimal point when the point is not in the number that appears in
the data item. The scaling position character P is not counted in the
size of the data item. Scaling position characters are counted in
determining the maximum number of digit positions|(23) in numeric-
edited items or numeric items. The scaling position character P can
appear only as a continuous string of Ps in the leftmost or rightmost
digit positions in a PICTURE character-string, because the scaling
positions character P implies an assumed decimal point (to the left
of Ps if Ps are leftmost PICTURE symbols and to the right if Ps are
either the leftmost or rightmost character in such a PICTURE
description).

The symbol P and the insertion symbol period (.) cannot both occur
in the same PICTURE character-string. The symbol P and the symbol
V cannot both occur in the same PICTURE character-string (unless
they are immediately adjacent, indicating the same character
position).

In certain operations that refer to a data item whose PICTURE
character-string contains the symbol P, the algebraic value of the
data item is used rather than the actual character representation of
the data item. This algebraic value assumes the decimal point in the
prescribed location and zero in place of the digit position specified by
the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations can
be:

e Any operation that requires a numeric sending operand

e A MOVE statement in which the sending operand is numeric
and its PICTURE character-string contains the symbol P

e A MOVE statement in which the sending operand is numeric-
edited and its PICTURE character-string contains the symbol P
and the receiving operand is numeric or numeric-edited

e A comparison operation in which both operands are numeric

In all other operations the digit positions specified with the symbol P
are ignored and not counted in the size of the operand.

4-34 8600 1518-307

Data Description Entry Format 1

Table 4-2. Picture Clause Symbols

Symbol

Function

The letter S is used in a character string to indicate the presence of
an operational sign in the internal representation of a numeric data
item. A single S must be the first (leftmost) character in the
character string and there cannot be more than one S character in a
PICTURE clause character-string.

The symbol S can be used in the PICTURE character string of any
data item with the USAGE clause equal to DISPLAY,
COMPUTATIONAL, or BINARY. The SIGN clause can be used to
specify the exact representation and position of the operational sign.

When an operational sign is specified for a DISPLAY data item and a
SIGN clause is not specified, the sign is maintained and expected in
the zone of the least significant (rightmost) character. When the data
item is in the receiving field in an arithmetic statement and when the
native character set is EBCDIC, the four zone bits are set to binary
1101 for negative values and to binary 1100 or 1111 for positive
values.

When the data item is used in an algebraic comparison or operation
to supply an algebraic value, specification of the least significant
zone as binary 1101 causes the value to be considered negative.

Only the zone values 1100, 1101, and 1111 qualify the data item as
NUMERIC if it is tested by the numeric class condition. For DISPLAY
data items, the presence or absence of an operational sign has no
effect on the amount of storage required to contain the data item,
unless the SIGN SEPARATE clause is specified.

When an operational sign is specified for a COMPUTATIONAL data
item and a SIGN clause is not specified, the sign is maintained and
expected as a leading, separate 4-bit character to the left of the most
significant digit position.

When the native character set is EBCDIC, the binary pattern of the
sign character is 1101 for negative values and 1100 for positive
values. Like DISPLAY data items, only these values allow the item to
be considered NUMERIC in the class condition test. Unlike DISPLAY
data items, the specification of an operational sign for
COMPUTATIONAL data items increases by one the number of 4-bit
character positions occupied by the data item in storage.

The V is used in a character-string to indicate the location of the
assumed decimal point and can appear only once in a character-
string. The V does not represent a character position and is not

counted in the size of the elementary item.

The V is redundant if the assumed decimal point is to the right of the
rightmost symbol in the string that represents a digit position or
scaling position.

Each X in the character-string represents a character position that
contains any allowable character from the computer's character set.
The X is counted in the size of the item.

8600 1518-307

4-35

Data Description Entry Format 1

Table 4-2. Picture Clause Symbols

Symbol Function

Z Each Z in a character-string can be used to represent only the
leftmost leading numeric character positions that will be replaced by
a space character when the content of that character position is a
leading zero. Each Z is counted in the size of the item.

0 Each 0 (zero) in the character-string represents a character position
into which the character 0 is to be inserted. The 0 is counted in the
size of the item.

For an alphanumeric-edited item, each 0 represents an alphanumeric
character position into which the alphanumeric character 0 is to be
inserted.

For a national-edited item, each O represents a national character
position into which the national character 0 is to be inserted.

1 The 1 in a PICTURE character-string represents a Boolean position
that contains a Boolean character and can occur only once in a
character-string. The 1 is counted in the size of the item.

9 Each 9 in the character-string represents a digit position that
contains a numeric character. The 9 is counted in the size of the
item.

/ Each slant (/) in the character-string represents a character position

into which the slant character is to be inserted. The slant is counted
in the size of the item.

For an alphanumeric-edited item, each slant represents an
alphanumeric character position into which an alphanumeric
character slant is to be inserted.

For a national-edited item, each slant represents a national character
position into which a national character slant is to be inserted.

, Each comma (,) in the character-string represents a character
position into which the comma will be inserted. The comma is
counted in the size of the item.

The period (.) in the character-string is an editing symbol that
represents the decimal point for alignment purposes, and in addition,
represents a character position into which the period will be
inserted. The period is counted in the size of the item.

For a given program, the functions of the period and comma are
exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the
period apply to the comma, and the rules for the comma apply to the
period wherever they appear in a PICTURE clause.

+ These symbols are editing sign control symbols. When used, they
represent the character position into which an editing sign control
symbol will be placed. The symbols are mutually exclusive in any

CR one character-string. Each character used in the symbol is counted in
DB determining the size of the data item.

4-36 8600 1518-307

Data Description Entry Format 1

Table 4-2. Picture Clause Symbols

Symbol

Function

Each asterisk (¥*) in the character-string represents a leading numeric
character position into which an asterisk will be placed when the
content of that position is a leading zero. Each * is counted in the
size of the item.

CS

The currency symbol in the character-string represents a character
position into which a currency symbol will be placed. The currency
symbol in a character-string is represented by either the currency
sign ($) or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph. The currency symbol is
counted in the size of the item.

8600 1518-307

4-37

Data Description Entry Format 1

Categories of Items

4-38

The PICTURE clause can describe the following categories of data items:

e Alphabetic

e Numeric

e Alphanumeric

e National

e Boolean

e Alphanumeric-edited

e National-edited

e Numeric-edited

Table 4-3 contains information on how to define the different categories of items.

Table 4-3. Specification of Data Item Categories in the PICTURE

Clause
Item Definition
Alphabetic The PICTURE character-string for an alphabetic item can contain only
the symbol A.
The content of the character-string, when represented in standard
data format, must be one or more alphabetic characters.
Numeric The PICTURE character-string can describe two types of numeric data

items: standard numeric items and long numeric items.

The PICTURE character-string for standard numeric items can contain
from 1 through 23 digits. The valid symbols for the PICTURE
character-string are 9, P, S, and V.

An unsigned numeric item, when represented in standard data format,
must be one or more numeric characters. A signed numeric item can
also contain a plus sign (+), minus sign (-), or other representation of
an operational sign.

The PICTURE character-string for long numeric items can contain from
1 t0 99,999 digits. A long numeric item must be described as an
unsigned integer, so operational signs, editing symbols, and the
symbols P and V are not valid in its PICTURE character-string.

Alphanumeric

The PICTURE character-string for an alphanumeric item is restricted to
certain combinations of the symbols A, X, and 9. The item is treated
as if the character-string contained all Xs. An alphanumeric PICTURE
character-string cannot consist entirely of As or entirely of 9s.

The PICTURE character-string, when represented in standard data
format, must be one or more characters in the computer's character
set.

8600 1518-307

Data Description Entry Format 1

Table 4-3. Specification of Data Item Categories in the PICTURE

Clause

Item

Definition

National

The PICTURE character-string for a national data item can contain only
the letter N or X. When the letter N is used, the PICTURE clause must
be accompanied by the USAGE IS NATIONAL clause. When the letter
Xis used, the PICTURE clause must be accompanied by the USAGE
IS KANJI clause. (Note that the USAGE IS KANJI clause might become
obsolete in a future release.)

The PICTURE character-string, when represented in national standard
data format, must be one or more characters in the national character
set of the computer.

Boolean

Symbol 1 is the only symbol that the PICTURE character-string for a
Boolean item can contain.

Alphanumeric-
edited

The PICTURE character-string for an alphanumeric-edited item is
restricted to certain combinations of simple insertion editing symbols
and the symbols A, X, and 9. The PICTURE character string must
contain at least one A or X, and must contain at least one simple
insertion editing symbol.

The PICTURE character-string, when represented in standard data
format, must be two or more characters in the computer's character
set.

National-edited

The PICTURE character-string for national-edited data items is
restricted to certain combinations of the symbols X, N, |, B, 0, and
slant (/). When the letter X is used, the PICTURE clause must be
accompanied by the USAGE IS KANJI clause. Note that this clause
might become obsolete in a future release.

The PICTURE character-string, when represented in national standard
data format, must be one or more characters in the national character
set of the computer.

8600 1518-307

4-39

Data Description Entry Format 1

Table 4-3. Specification of Data Item Categories in the PICTURE
Clause

Item Definition

Numeric-edited The PICTURE character-string for a numeric-edited item is restricted to
certain combinations of simple insertion editing symbols; the symbols
P, V, Z, 9, comma (,), period (.), plus sign (+), minus sign (-), CR, and
DB; and the currency symbol ($). The allowable combinations are
determined from the order of precedence of symbols and the editing
rules. Refer to the paragraphs headed “Precedence Rules” and
"Editing Rules” in this section.

The number of digit positions that can be represented in the PICTURE
character-string must range from 1 to 23 inclusive.

The character-string must contain at least one simple insertion editing
symbol, asterisk (*), plus sign (+), comma (,), period (.), minus sign (),
slant (/), CR, DB, or currency symbol ($).

The content of each character position must be consistent with the
corresponding PICTURE symbol.

The size of an elementary item refers to the number of character
positions occupied by the item in standard data format. The number of
allowable symbols that represent character positions determines the
size of an elementary item.

The following symbols can appear only once in a given PICTURE: S, V,
period (.), CR, and DB.

Determining the Size of an Elementary Item

The size of an elementary item is the number of character positions it occupies in
standard data format. You indicate the size of an elementary item by using the number of
allowable symbols that represent character positions. For example, 9999 indicates a field
with four digits.

The symbols A, B, P, X, Z, 9, O (zero), asterisk (¥*), slant (/), comma (,), plus sign (+), minus
sign (-), or currency symbol ($) can appear more than once in a given PICTURE clause.
You can specify a number of consecutive occurrences of a symbol by using an unsigned
integer enclosed in parentheses after the symbol. For example, X(8) indicates eight
alphanumeric characters.

4-40 8600 1518-307

Data Description Entry Format 1

Editing Rules

Editing in the PICTURE clause can be done either by insertion or by suppression and
replacement. The four types of insertion editing are

e Simple insertion
e Special insertion
o Fixed insertion

e Floating insertion

The two types of suppression and replacement editing are

e Zero suppression and replacement with spaces

e Zero suppression and replacement with asterisks

The category to which an item belongs determines the type of editing that can be used,

as shown in Table 4—4.

Table 4-4. Types of Editing for Data Item Categories

Category Type of Editing
Alphabetic None.
Numeric None.
Alphanumeric None.
National None.

Alphanumeric-edited

Simple insertion.

National-edited

Simple insertion

(B, slash (/), and zero (0) only).

Numeric-edited

All. Floating insertion editing and editing by zero

suppression and
a PICTURE claus
used with zero s

replacement are mutually exclusive in
e. Only one type of replacement can be
uppression in a PICTURE clause.

8600 1518-307

4-41

Data Description Entry Format 1

Simple Insertion Editing

Unisys supports the following two forms of simple insertion editing:

e ANSI simple insertion editing

The space character (B), slash (/), zero (0), and comma (,) are used as insertion
characters.

4-42 8600 1518-307

Data Description Entry Format 1

The character B already specifies simple insertion editing according to ANSI
standards in that it causes the insertion of a space into the output string. This same
functionality applies, according to this extension, even when the B character appears
outside of ANSI-defined contexts. The B character in a PICTURE string never results
in the insertion of a B into the output even if it appears in a context in which it would
otherwise be treated as invalid.

The space character always indicates that the character immediately preceding it is
the last character in the PICTURE character string.

A period followed by a space character always serves to indicate the end of the
PICTURE string, as it does for ANSI-compliant PICTURE character strings.

The only simple insertion editing functionality that Unisys supports is as stated in the
preceding descriptions. The results of using characters in a PICTURE character string that
does not conform to either ANSI or automatic insertion editing rules are unpredictable.

If the insertion character comma (,) is the last symbol in the PICTURE character-string,
then the PICTURE clause must be the last clause of the data description entry and must
be immediately followed by the separator period. As a result, the combination of a
comma and a period (,.) appears in the data description entry (or, if the DECIMAL POINT
IS COMMA clause is used, two consecutive periods (..) will appear).

Special Insertion Editing

The period (.) is used as the insertion character. In addition to being an insertion
character, it also represents the decimal point for alignment purposes. The insertion
character used for the actual decimal point is counted in the size of the item. The use of
the assumed decimal point, represented by the symbol V, and the actual decimal point,
represented by the insertion character, in the same PICTURE character-string is not
allowed.

If the insertion character period (.) is the last symbol in the PICTURE character-string, the
PICTURE clause must be the last clause of that data description entry and must be
followed by the separator period. As a result, two consecutive periods (..) appear in the
data description entry (or the combination of a comma and a period (,.) if the DECIMAL-
POINT IS COMMA clause is used). The result of special insertion editing is the
appearance of the insertion character in the item in the same position as shown in the
character-string.

8600 1518-307 4-43

Data Description Entry Format 1

4-44

Fixed Insertion Editing

The currency symbol and the editing sign control symbols plus sign (+), minus sign (),
CR, and DB are the insertion characters. Only one currency symbol and only one of the
editing sign control symbols can be used in a given PICTURE character-string. When the
symbols CR or DB are used, they represent two character positions in determining the
size of the item and they must represent the rightmost character positions that are
counted in the size of the item. If these character positions contain the symbols CR or
DB, the uppercase letters are the insertion characters. The plus sign (+) or minus sign (-),
when used, must be either the leftmost or rightmost character position to be counted in
the size of the item. The currency symbol must be the leftmost character position to be
counted in the size of the item except that it can be preceded by either a plus sign (+) or
minus sign (-). Fixed insertion editing results in the insertion character occupying the
same character position in the edited item as it occupied in the PICTURE character-
string. Editing sign control symbols produce the following results depending upon the
value of the data item:

Result
Editing Symbol in
PICTURE Positive or Zero Data
Character-string Item Negative Data Item
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols plus sign (+) and minus sign (-) are
the floating insertion characters. They are mutually exclusive in a given PICTURE
character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a string of at
least two of the floating insertion characters. This string can contain any of the simple
insertion characters or have simple insertion characters immediately to the right of this
string. These simple insertion characters are part of the floating string. When the floating
insertion character is the currency symbol, the string of floating insertion characters can
have the fixed insertion characters CR and DB immediately to the right of this string.

The leftmost character of the floating insertion string represents the leftmost limit of the
floating symbols in the data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the numeric

data that can be stored in the data item. Nonzero numeric data may replace all the
characters at or to the right of this limit.

8600 1518-307

Data Description Entry Format 1

In a PICTURE character-string, there are only two ways of representing floating insertion
editing. One way is to represent any or all of the leading numeric character positions on
the left of the decimal point by the insertion character. The other way is to represent all
the numeric character positions in the PICTURE character-string by the insertion
character.

If the insertion character positions are only to the left of the decimal point in the
PICTURE character-string, the result is that a single floating insertion character will be
placed into the character position immediately preceding either the decimal point or the
first nonzero digit in the data represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The character positions preceding the
insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, at least one of the insertion characters must be to the left of the
decimal point.

When the floating insertion character is the plus sign (+) or minus sign (-), the character
inserted depends on the value of the data item:

Result

Editing Symbol in

PICTURE

Positive or Zero Data

Character-string Item Negative Data Item
+ + -
- Space -

If all numeric character positions in the PICTURE character-string are represented by the
insertion character, the result depends on the value of the data. If the value is zero, the
entire data item will contain spaces. If the value is not zero, the result is the same as
when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the receiving
data item must be the number of characters in the sending data item, plus the number of
nonfloating insertion characters being edited into the receiving data item, plus one for the
floating insertion character. If truncation does occur, the value of the data that is used for
editing is the value after truncation. Refer to “Standard Alignment Rules” in this section
for more information.

8600 1518-307 4-45

Data Description Entry Format 1

Zero-Suppression Editing

The suppression of leading zeros in numeric character positions is indicated by the use of
the alphabetic character Z or the character asterisk (*) as suppression symbols in a
PICTURE character-string. These symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in determining the size of the item.
If Zis used, the replacement character will be the space and if the asterisk is used, the
replacement character will be an asterisk (*).

Zero-suppression and replacement is indicated in a PICTURE character-string by using a
string of one or more of the allowable symbols to represent leading numeric character
positions that are to be replaced when the associated character position in the data
contains a leading zero. Any of the simple insertion characters embedded in the string of
symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero suppression.
One way is to represent any or all of the leading numeric character positions to the left of
the decimal point by suppression symbols. The other way is to represent all of the
numeric character positions in the PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero
in the data that corresponds to a symbol in the string is replaced by the replacement
character. Suppression terminates at the first nonzero digit in the data represented by
the suppression symbol string or at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented by
suppression symbols and the value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal point. If the value is zero and
suppression symbol is Z, the entire data item, including any editing characters, is spaces.
If the value is zero and the suppression symbol is an asterisk (*), the entire data item,
including any insertion editing symbols except the actual decimal point, will be an
asterisk (*). In this case, the actual decimal point will appear in the data item.

When the symbols plus sign (+), minus sign (-), asterisk (*), Z, and the currency symbol
(usually $) are used as floating replacement characters, they are mutually exclusive
within a given character-string. The zero-suppression editing characters Z and asterisk (*)
can be used as simple insertion characters in limited situations. \When they are the
trailing characters to the right of the decimal point in what would otherwise be a valid
floating insertion editing picture, the Z or asterisk is treated as a simple insertion
character.

4-46 8600 1518-307

Data Description Entry Format 1

Precedence Rules

The following table shows the order of precedence for characters as symbols in a
character-string. An X at an intersection indicates that the symbol or symbols at the top
of the column can precede (not necessarily immediately), in a given character-string, the
symbol or symbols at the left of the row. Arguments in braces {} indicate that the
symbols are mutually exclusive. The currency symbol is indicated by the symbol cs.

At least one of the symbols A, X, IN, Z 9, or asterisk (*), or at least two occurrences of
one of the symbols plus sign (+), minus sign (-), or a currency symbol (for example, $)
must be present in a PICTURE character-string.

The nonfloating insertion symbols plus sign (+) and minus sign (9); the floating insertion
symbols Z, asterisk (*), plus sign (+), minus sign (9, and currency symbol; and symbol P
appear twice in the PICTURE character precedence in the tables that follow. The
leftmost column and uppermost row for each symbol represent its use to the left of the
decimal point position. The second appearance of the symbol in the chart represents its
use to the right of the decimal point position.

Note: The symbol| in the following table represents any manual insertion character

when $AUTOINSERT is set, and the nonblank character following the | in the PICTURE
string when $SAUTOINSERT is reset.

8600 1518-307 4-47

Table 4-5. Precedence Rules

8600 1518-307

z SIES
o x| x| x x| < X x x| x x
3 |a x| x x| x
Ke)
E [> [x|x|x]|x|x x| < < x x| = =
n
5 | x x| x| x
e
O |ax]x|x| x| x x| x
o |Xx|x|x|x|x]|x x| < x| x x| x
B x| x| x| x]|x x| x P
c
2 (B | x|x| x| x]|x]|x x| < x| x| = x| x
3
28|+ 1] x|x| x|x]|x x
.mvm,+_xxxxxx x| < X x| <
S N x| x| x| x| x x| =< x
L
N X x| x| x| x]|x x| < x | x x x| x
B < |x| x| x]|x|x x| < x | x [x]x x x| x| x
@
oa
S |+
g
S ol x| x| x| x| x| x x| x| x x| x| < x| x| x
2 o
wm x| x| x| x| x x| x > x x| <
c
vau, X | x| X| x| x| x x| X X | X | X|X| x| x]|x x| %
= X[x| x| x|x|x x| < x | x| x| x|x|x]x]| x x| x x
P4
X || x| x| x| x x| < x| x| x| x| x|x]x]| x x| x x
X || x| x| x| x x| < x| x| x| x| x|x]x]| x x| x x
<[<[<] x|x]x x| < < | x [x<]x][x[x]x] x x| x x
3 al—|of<| [J+1]+ 1|52 [EIN: [N [+1[+1|B[B]o|<x|n|>|ala|z
mm s|oquiAg sjoquAg S|OQWIAS JaUI0
m & uoinasu| buieopuoN uoluasu| buneoj4

Data Description Entry Format 1

4-48

Data Description Entry Format 1

8600 1518-307 4-49

Data Description Entry Format 1

RECORD AREA Clause

This clause specifies that the record being described is to be used for DIRECT [-O
buffering. This clause may only appear on the 01 level in a WORKING-STORAGE
SECTION or a LOCAL-STORAGE SECTION.

Areas described with the RECORD AREA clause become non—overlayable until the area
is specified in a DEALLOCATE statement.

An area described with the RECORD AREA clause must not be declared to be binary.

SIGN Clause

Every numeric data description entry whose PICTURE clause contains the character Sis
considered to be a signed numeric data description entry. The Sindicates only the
presence of the operational sign. To indicate the position and mode of representation of
the operational sign, you can use the SIGN clause.

A numeric data description entry with an Sin the PICTURE clause, but to which no
optional SIGN clause applies, has an operational sign that is positioned and represented
according to the standard default position and representation of operational signs.

(If you do not specify a SIGN clause, the sign is assumed to be in the trailing position for
a DISPLAY data item or in the leading position for a COMPUTATIONAL data item unless
a default sign is specified by the DEFAULT DISPLAY SIGN clause or the DEFAULT
COMP SIGN clause in the Special-Names paragraph of the Environment Division.)

If a SIGN clause is specified in a group item, each item subordinate to the group item is
affected.

If a SIGN clause is specified in a group item subordinate to a group item for which a SIGN
clause is specified, the SIGN clause specified in the subordinate group item takes
precedence for that subordinate group item.

If a SIGN clause is specified in an elementary numeric data description entry that is
subordinate to a group item for which a SIGN clause is specified, the SIGN clause
specified in the subordinate elementary numeric data description entry takes precedence
for that elementary numeric data item.

Note that when the SIGN clause is used, any conversion necessary for computation or
comparisons takes place automatically.

SIGN IS SEPARATE

If the CODE-SET clause is specified in a file description entry, any signed numeric data
description entries associated with that file-description entry must be described with this
form of the SIGN clause.

4-50 8600 1518-307

Data Description Entry Format 1

SEPARATE CHARACTER

If a SIGN clause with a SEPARATE CHARACTER phrase applies to a numeric data
description entry, the following rules apply:

e The operational sign is presumed to be the leading or, respectively, trailing character
position of the elementary numeric data item. This character position is not a digit
position.

e The letter Sin a PICTURE character-string is counted in determining the size of the
item (in standard data format characters).

e The operational signs for positive and negative are the standard data format
characters plus sign (+) and minus sign (-), respectively.

If a SIGN clause without a SEPARATE CHARACTER phrase applies to a numeric data
description entry, the following rules apply:

o The operational sign will be presumed to be associated with the leading (or,
respectively, trailing) digit position of the elementary numeric data item.

e The letter Sin a PICTURE character-string is not counted in determining the size of
the item (in standard data format characters).

8600 1518-307 4-51

Data Description Entry Format 1

SYNCHRONIZED Clause

This clause specifies the alignment of an elementary item on the natural boundaries of
the computer memory (refer to “Increasing Object-Code Efficiency” in this section).

This clause specifies that the subject data item is to be aligned in the computer so that
no other data item occupies any of the character positions between the leftmost and
rightmost natural boundaries that delimit this data item. If the number of character
positions required to store this data item is less than the number of character positions
between those natural boundaries, the unused character positions (or portions thereof)
must not be used for any other data item. Such unused character positions, however, are
included in the following:

e The size of any group item or items to which the elementary item belongs.

e The number of character positions allocated when any such group item is the object
of a REDEFINES clause. The unused character positions are not included in the
character positions redefined when the elementary item is the object of a
REDEFINES clause.

This clause can appear only with an elementary item.

SYNCHRONIZED
SYNC

These keywords are equivalent.

The SYNCHRONIZED keyword not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such a way as to
effect efficient utilization of the elementary data item. LEFT and RIGHT have no effect on
alignment and are treated only as commentary.

If the subject data item is of type COMP, it is aligned on a byte boundary. If it is a single
word type (REAL or PIC 9(11) or less in BINARY or COMP-5) or a double word type
(DOUBLE, or PIC (12) or larger in BINARY or COMP-5), it is aligned on a word boundary.
If the previous data item did not end on a byte (or word) boundary, an implicit FILLER is
generated. This unused filler is included in the size of any group item or items to which
the elementary item belongs.

Whenever a SYNCHRONIZED item is referred to in the source program, the original size
of the item, as shown in the PICTURE clause, the USAGE clause, and the SIGN clause, is
used in determining any action that depends on size, such as justification, truncation, or
overflow.

If the data description of an item contains an operational sign and any form of the

SYNCHRONIZED clause, the sign of the item appears in the sign position explicitly or
implicitly specified by the SIGN clause.

4-52 8600 1518-307

Data Description Entry Format 1

When the SYNCHRONIZED clause is specified in a data description entry of a data item
that also contains an OCCURS clause, or in a data description entry of a data item that is
subordinate to a data description entry that contains an OCCURS clause, then the data
description entry is affected as follows:

e Each occurrence of the data item is SYNCHRONIZED.

e Any implicit FILLER generated for other data items within that same table is
generated for each occurrence of those data items.

BINARY, REAL, and DOUBLE data items that are subordinate to a data description entry
containing an OCCURS clause are not SYNCHRONIZED.

TYPE Clause

The TYPE clause provides automatic date and time editing based on the CONVENTION
and LANGUAGE options specified. The TYPE clause can be used only for
internationalization purposes. The desired format for the five date and time data items
can be obtained via the ACCEPT or MOVE statements.

Data items can be declared as one of the following date or time types:

Type Example
SHORT-DATE Fri, Aug 31, 1998
LONG-DATE Friday, August 31, 1998
NUMERIC-DATE 08/31/98
NUMERIC-TIME 13:37:20
LONG-TIME 14:37:20.0000

Data items can also be declared with an associated LANGUAGE or CONVENTION option.

Each convention defined by Unisys has a specified format for the five date and time data
items. The program formats an item that is declared to be one of the five date and time
types according to the predefined format of the specified convention. For the SHORT-
DATE, LONG-DATE, and LONG-TIME options, the specified language is also used in
formatting the output. If the convention or language is not specified, the system
determines the language and convention to be used based on system-defined hierarchy.

The only clauses that can be used with the TYPE clause are the PICTURE clause and the
USAGE clause. If the PICTURE clause is specified, the TYPE clause can designate only
PICTURE X or PICTURE N. If the USAGE clause is specified, the TYPE clause can
designate only USAGE IS DISPLAY or USAGE IS NATIONAL. If the date or time items are
edited in the PICTURE clause, the TYPE clause overrides the edit and the compiler issues
a warning message.

8600 1518-307 4-53

Data Description Entry Format 1

The total length of the data item must be greater than or equal to the length required by
the format of the specified conventions. If the length of a data item is shorter than the
required length, the compiler issues a truncation warning message.

Example

The following example shows TYPE clause coding. The NUM-DATE-ITEM is declared as
a NUMERIC-DATE type and it is formatted by using the ASERIESNATIVE convention. The
NUM-DATE-ITEM language is determined by the system hierarchy. The LONG-DATE-
ITEM data is formatted according to the convention and language determined by the
system hierarchy. The LONG-TIME-ITEM is declared as the LONG-TIME type and is
formatted using the UNITEDKINGDOM1 convention and the ENGLISH language.

01 NUM-DATE-ITEM PIC X(8) TYPE IS NUMERIC-DATE
USING CONVENTION OF "ASERIESNATIVE".
01 LONG-DATE-ITEM PIC X(20) TYPE IS LONG-DATE.
01 LONG-TIME-ITEM PIC X(20) TYPE IS LONG-TIME
USING CONVENTION OF "UNITEDKINGDOMI"
LANGUAGE OF "ENGLISH".

USAGE Clause

This clause specifies the manner in which a data item is represented in the storage of a
computer. The USAGE clause does not affect the use of the data item, although certain
statements in the Procedure Division might restrict the USAGE clause to certain
operands. For example, the PROCESS statement requires a data item to be declared
with the USAGE IS TASK clause. The USAGE clause can affect the type of character
representation of the item.

This clause can be written in any data description entry except those defined with a level-
number of 66 or 88.

If this clause is written in the data description entry for a group item, it can also be
written in the data description entry for any subordinate elementary item or group item,
but the same usage must be specified in both entries. Note that if the USAGE clause is
written at a group level, it applies to each elementary item in the group.

An elementary data item (or an elementary data item subordinate to a group item) whose
declaration contains a USAGE clause that specifies BINARY, COMPUTATIONAL, or
PACKED-DECIMAL must be declared with a PICTURE character-string that describes a
numeric item (that is, a PICTURE character-string that contains only the symbols P, S, V,
and 9. Refer to "PICTURE Clause” in this section.)

An elementary data item declaration that contains a USAGE clause that specifies BIT is
specified only with a PICTURE character-string that describes a Boolean data item.

4-54 8600 1518-307

Data Description Entry Format 1

USAGE IS BINARY

This form of the USAGE clause indicates that the data is in a binary-coded format. A
BINARY item is capable of representing a value to be used in computations and therefore
is always numeric.

When the declared size is less than or equal to 11 decimal digits, the actual size is
equal to one computer word (the equivalent of 6 DISPLAY digits or 12
COMPUTATIONAL digits). Note that the item is not necessarily aligned on a word
boundary.

When the declared size is greater than 11 digits, the actual size is equal to two
computer words (the equivalent of 12 DISPLAY digits); however, the item is not
necessarily aligned on a word boundary.

The actual size is used for determining the size of a record and for testing for size
error conditions.

8600 1518-307 4-55

Data Description Entry Format 1

4-56 8600 1518-307

Data Description Entry Format 1

USAGE IS COMPUTATIONAL and USAGE IS COMP
A COMPUTATIONAL item can represent a value to be used in computations and must be
numeric. The system interprets COMPUTATIONAL fields as packed-decimal numeric
items rather than hexadecimal strings. Thus, if nonnumeric values are assigned to a
COMPUTATIONAL item, the content of the COMPUTATIONAL item is undefined.
A numeric literal can be described as a COMPUTATIONAL item. Valid characters for a
numeric literal are the numbers 0 through 9, the plus sign (+), the minus sign (-), and the
decimal point. The hexadecimal digits A through F are not valid in a numeric literal.
If a group item is described as COMPUTATIONAL, the elementary items in the group are

COMPUTATIONAL, but the group item itself is not COMPUTATIONAL (that is, it cannot
be used in computations).

Elementary COMPUTATIONAL data items are represented internally as contiguous 4-bit
digits.

A long numeric data item with a usage of COMPUTATIONAL must contain an even
number of digits.

The keywords COMP and COMPUTATIONAL are equivalent.

USAGE IS COMPUTATIONAL-5 and USAGE IS COMP-5

This form of the USAGE clause indicates that the data behaves as a binary item with the
SYNCHRONIZED clause specified. (The SYNCHRONIZED clause specifies that a binary
item is to be aligned on a word boundary. For more information, see “SYNCHRONIZED
Clause” earlier in this section.)

A COBOLS85 data item declared as COMP-5 PIC S9(4) maps to a C short integer.

A COBOLS85 data item declared as COMP-5 PIC S9(9) maps to a C long integer.

A long numeric data item cannot have a USAGE of COMP-5.

COMP-5 is a valid abbreviation for COMPUTATIONAL-5.

USAGE IS CONTROL-POINT

This clause is an obsolete synonym for the USAGE IS TASK clause.

8600 1518-307 4-57

Data Description Entry Format 1

USAGE IS DISPLAY

This form of the USAGE clause, whether specified explicitly or implicitly, indicates that a
standard data format is used to represent a data item in the storage of the computer, and
that the data item is aligned on a character boundary.

If the USAGE clause is not specified for an elementary item, or for any group to which
the item belongs, the usage is implicitly DISPLAY.

<.
@
o
—
>
(0]
<
o
C
(0]
o
o,
-
N
©
—n
o
-
@
O
D
(@]
Q
C
w
(0]
w
>
Q
w
it
>0
[0}
Q
o
o
S
o
X
3
Q
—
@
<
<o
C
(0]
o
o,

4-58

1.7999999999883584678:

MOVE 1.8 TO A
COMPUTE B = A

8600 1518-307

Data Description Entry Format 1

8600 1518-307 4-59

Data Description Entry Format 1

USAGE IS INDEX

4-60

This form of the usage clause specifies that a data item is an index data item and
contains a value that must correspond to an occurrence number of a table element.

If a group item is described with the USAGE IS INDEX clause, the elementary items in
the group are all index data items. The group itself is not an index data item and cannot
be used in the SEARCH or SET statement or in a relation condition.

A group item is also considered to be a group data item if its class is numeric, if its
USAGE IS INDEX, and if it can be referred to at any place in the syntax that is acceptable
for such an item. The size of the group item is considered in terms of DISPLAY
characters (four characters for each subordinate index data item).

An index data item can contain a signed value. An index data item occupies the same
space and has the same alignment as an item declared PICTURE S9(7) USAGE IS
COMPUTATIONAL.

An elementary data item described with a USAGE IS INDEX clause must not be a
conditional variable.

An index data item can be referred to explicitly only in a SEARCH or SET statement, a
relation condition, the USING phrase of a Procedure Division header, or the USING
phrase of a CALL statement.

When a MOVE statement or an input-output statement that refers to a group item that
contains an index data item is executed, no conversion of the index data item takes

place.

The BLANK WHEN ZERO, JUSTIFIED, PICTURE, SYNCHRONIZED, and VALUE clauses
must not be specified for data items whose usage is INDEX.

8600 1518-307

Data Description Entry Format 1

8600 1518-307 4-61

Data Description Entry Format 1

USAGE IS PACKED-DECIMAL

This clause is the same as the USAGE IS COMPUTATIONAL/USAGE IS COMP clause.

he actual size of a REAL data

4-62

item is equal to one computer word. A REAL data item can be used to store any item
that is documented as being equivalent to a REAL data item without altering the bit
pattern. REAL data items are not necessarily word-aligned. \Whether the data item is
aligned on a word boundary is dependent on the context in which it is declared. Although
REAL data items are not required to start at a word boundary, faster execution results
when they do start at a word boundary.

When a REAL data item represents a value that the machine must approximate, and it is
assigned to a DISPLAY, COMP, or BINARY data item, then precision might be lost.

8600 1518-307

Data Description Entry Format 1

If Ais declared as REAL, and B is declared as PIC 9V999, the following statements yield

the value of 1.119 for B, because A has the approximate value of
1.1199999999953433871:

MOVE 1.12 TO A
COMPUTE B = A

8600 1518-307 4-63

Data Description Entry Format 1

VALUE Clause

In this format, the VALUE clause defines the initial value of Working-Storage Section data

items.

The following rules apply to the literals specified in a VALUE clause of an item:

If the itemis ...

Then the literal must. ..

Numeric

Have a value in the range of values indicated by the PICTURE
clause, and must not have a value that would require truncation
of nonzero digits

Signed Numeric

Have a signed numeric PICTURE character-string associated with
it

Nonnumeric

Not exceed the size indicated by the PICTURE clause

Long numeric

e BeZEROor0

e Be anumeric literal of the same size in digits as the data
item

e Be an undigit literal of the same size in bytes as the item

The VALUE clause must not conflict with other clauses in the data description of the
item or in the data description in the hierarchy of the item.

The following rules apply:

If the category of
the itemis ...

Then all literals in the VALUE clause must be . . .

Numeric

Numeric.

If a literal defines the value of a WORKING-STORAGE item, that
literal is aligned in the data item according to the standard
alignment rules (refer to “Standard Alignment Rules” in this
section).

Numeric-edited

Numeric or nonnumeric.

If the literal is a nonnumeric literal, it is aligned in the data item
as if the data item had been described as alphanumeric.

If the literal is a numeric literal, it is aligned on the data item
according to the standard alignment rules for numeric literals.
Refer to “Standard Alignment Rules” in this section.

Editing characters in the PICTURE clause are included when
determining the size of the data item but have no effect on
initialization of the data item (refer to “PICTURE Clause” in this
section). Therefore, the VALUE clause for an edited item must
be specified in edited form.

4-64

8600 1518-307

Data Description Entry Format 1

If the category of
the itemis ...

Then all literals in the VALUE clause mustbe . ..

Alphabetic
Alphanumeric
Alphanumeric-edited

Nonnumeric.

The literal is aligned in the data item as if the data item had
been described as alphanumeric (refer to “Standard Alignment
Rules” in this section).

Editing characters in the PICTURE clause are included in
determining the size of the data item but have no effect on
initialization of the data item (refer to “"PICTURE Clause” in this
section). Therefore, the VALUE clause for an edited item must
be specified in edited form.

National
National-edited

National.

The literal is aligned in the data item as if the data item had
been described as national (refer to “Standard Data Alignment
Rules” in this section).

Editing characters in the PICTURE clause are included in
determining the size of the data item (refer to “PICTURE
Clause” in this section). Therefore, the VALUE clause for an
edited item must be specified in edited form.

Boolean

Boolean

Note that initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause

that might be specified.

Rules that govern the use of the VALUE clause differ depending on the section of the
Data Division in which the VALUE clause occurs.

For Data Description Entry Format 1, the rules in the following table apply:

The VALUE clause . . .

The File Section

Cannot be used.

The Linkage Section

Cannot be used, except for the data items which
are not used as formal parameters.

The Local-Storage Section

Cannot be used.

The Working-Storage Section Takes effect only when the program is placed into

its initial state.

If the VALUE clause is used in the description of
the data item, the data item is initialized to the
defined value. If the VALUE clause is not
associated with a data item, the initial value of that
data item is undefined. If the data item is defined
as a formal parameter, then the VALUE clause will
be ignored.

8600 1518-307

4-65

Data Description Entry Format 1

The VALUE clause . ..

A data description entry that
contains a REDEFINES clause, or
an entry that is subordinate to an
entry that contains a REDEFINES
clause

Cannot be used.

A data description entry that is part
of the description or redefinition of
an external data record

Cannot be used.

A data description entry that
contains an OCCURS clause, or an
entry that is subordinate to an
OCCURS clause

Causes every occurrence of the associated data
item to be assigned the specified value.

An entry at the group level

Must contain a figurative constant or a
nonnumeric literal, and the group area is initialized
without consideration for the individual elementary
or group items contained within this group. The
VALUE clause cannot be stated at the subordinate
levels within this group.

A group item containing
subordinate items with
descriptions include JUSTIFIED,
SYNCHRONIZED, or USAGE (other
than USAGE IS DISPLAY)

Cannot be used.

4-66

8600 1518-307

Data Description Entry Format 2: Level-66 RENAMES Entry

Data Description Entry Format 2: Level-66
RENAMES Entry

This format renames a data-name or range of data-names.

66 data-name-1 RENAMES data-name-2 THROUGH data-name-3

THRU

66

Level-number 66 identifies RENAMES entries. Level-number 66 is used only in this
format of a data description entry.

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-number
77,88, or 01 entry.

data-name-1

This name is a user-defined word. It cannot be used as a qualifier and can be qualified
only by the names of the associated level-01, FD, or SD entries.

When data-name-3 is specified, data-name-1 is a group item that includes all elementary
items starting with data-name-2 (if data-name-2 is an elementary item) or with the first
elementary item in data-name-2 (if data-name-2 is a group item), and concluding with
data-name-3 (if data-name-3 is an elementary item) or with the last elementary item in
data-name-3 (if data-name-3 is a group item).

When data-name-3 is not specified, data-name-1 assumes all characteristics of data-

name-2 as determined from the data description of data-name-2, including usage,
justification, synchronization, and editing requirements.

8600 1518-307 4-67

Data Description Entry Format 2: Level-66 RENAMES Entry

RENAMES Clause

This clause allows alternative, possibly overlapping, groupings of elementary items.
Any number of RENAMES entries can be written for a logical record.

All RENAMES entries that refer to data items in a given logical record must immediately
follow the last data description entry of the associated record description entry.

data-name-2

This name is a user-defined word and must be the name of an elementary item or a
group of elementary items in the same logical record.

This name cannot have an OCCURS clause in its data description entry and cannot be
subordinate to an item that has an OCCURS clause in its data description entry.

This name cannot be the same name as data-name-3.

This name can be qualified.

THROUGH
THRU

These keywords are equivalent.

data-name-3

This name is a user-defined word and must be the name of an elementary item or a
group of elementary items in the same logical record.

This name cannot have an OCCURS clause in its data description entry and cannot be
subordinate to an item that has an OCCURS clause in its data description entry.

This name cannot be the same name as data-name-2.

This name can be qualified.

The beginning of the area described by this data-name must not be to the left of the
beginning of the area described by data-name-2. Also, the end of the area described by

this data-name must be to the right of the end of the area described by data-name-2.
Therefore, data-name-3 cannot be subordinate to data-name-2.

4-68 8600 1518-307

Data Description Entry Format 2: Level-66 RENAMES Entry

Details

None of the items in the range of data-name-2 through data-name-3 (including data-
name-2 and data-name-3) can be variable-occurrence data items.

Example
03 NAME-PARTS.
05 LAST1 PIC X(15).
05 FIRST1 PIC X(15).
05 MID PIC X(10).

66 PARTIAL-NAME RENAMES LAST1 THROUGH FIRSTI.
The RENAMES entry associates the user-defined name PARTIAL-NAME with the data

descriptions for the elementary items LAST1 and FIRST1 of the group item NAME-
PARTS.

8600 1518-307 4-69

Data Description Entry Format 3: Level-88 Condition-Name Entry

Data Description Entry Format 3: Level-88
Condition-Name Entry

4-70

This format contains the name of the condition and the value, values, or range of values
associated with the condition-name. This format is used for each condition-name.

88 condition-name-1 |VALUE IS literal-1 | |THROUGH| literal-2
VALUES ARE THRU

88

Level-number 88 identifies entries that define condition-names associated with a
conditional variable. Level-number 88 is used only in this format of a data description
entry.

Note that each condition-name requires a separate entry with level-number 88.

condition-name-1

This name is a user-defined word. The Condition-name entries for a particular conditional
variable must immediately follow the entry describing the item with which the condition-
name is associated.

A condition-name can be associated with any data description entry that contains a level-
number except the following:

e Another condition-name

o Alevel-66 item

e A group containing items with descriptions including JUSTIFIED, SYNCHRONIZED,
or USAGE (other than USAGE IS DISPLAY)

e Anindex data item

VALUE
VALUES

This clause is explained in the following subsection under the heading “VALUE Clause.”

8600 1518-307

Data Description Entry Format 3: Level-88 Condition-Name Entry

literal-1 THROUGH literal-2

Whenever the THROUGH (THRU) phrase is used, literal-1 must be less than literal-2.
THROUGH

THRU

These keywords are equivalent.

VALUE Clause

In this format, the VALUE clause defines the values associated with condition-names.

The VALUE clause is required in a condition-name entry. The VALUE clause and the
condition-name itself are the only two clauses permitted in the entry. The characteristics
of a condition-name are implicitly those of its conditional variable.

The following rules apply to the literals specified in a VALUE clause of an item:

If the itemis ... Then the literal must. ..

Numeric Have a value in the range of values indicated by the PICTURE
clause and must not have a value that would require truncation
of nonzero digits

Signed numeric Have a signed numeric PICTURE character-string associated
with it
Nonnumeric Not exceed the size indicated by the PICTURE clause

The VALUE clause must not conflict with other clauses in the data description of the
item or in the data description within the hierarchy of the item. The following rules apply:

If the category of
the itemis ... Then all literals in the VALUE clause must be . . .

Numeric Numeric.

If the literal defines the value of a WORKING-STORAGE item, the
literal is aligned in the data item according to the standard
alignment rules (refer to “Standard Alignment Rules” in this
section).

Numeric-edited Numeric or nonnumeric.

8600 1518-307 4-71

Data Description Entry Format 3: Level-88 Condition-Name Entry

If the category of
the itemis ...

Then all literals in the VALUE clause must be . . .

Alphabetic
Alphanumeric
Alphanumeric-
edited

Nonnumeric.

The literal is aligned in the data item as if the data item had been
described as alphanumeric (refer to “Standard Alignment Rules” in
this section).

Editing characters in the PICTURE clause are included in
determining the size of the data item but have no effect on
initialization of the data item (refer to “PICTURE Clause” in this
section). Therefore, the VALUE clause for an edited item must be
specified in edited form.

National
National-edited

National.

The literal is aligned in the data item as if the data item had been
described as national (refer to “Standard Data Alignment Rules” in
this section).

Editing characters in the PICTURE clause are included in
determining the size of the data item (refer to “PICTURE Clause”
in this section). Therefore, the VALUE clause for an edited item
must be specified in edited form.

Boolean

Boolean

Note that initialization is not affected by any BLANK WHEN ZERO or JUSTIFIED clause

that might be specified.

Rules that govern the use of the VALUE clause differ depending on the section of the
Data Division in which the VALUE clause occurs. In Data Description Entry Format 3, the
rules in the following table apply:

The VALUE clause . ..

The File Section

Can be used only in condition-name
entries. Therefore, the initial value of the
data items in the File Section is undefined.

The Linkage Section

Can be used only in condition-name entries
(level 88).

4-72

8600 1518-307

Data Description Entry Format 3: Level-88 Condition-Name Entry

The VALUE clause . ..

The Working-Storage Section

Must be used in condition-name entries.

VALUE clauses in the Working-Storage
Section of a program take effect only
when the program is placed into its initial
state.

If the VALUE clause is used in the
description of the data item, the data item
is initialized to the defined value. If the
VALUE clause is not associated with a data
item, the initial value of that data item is
undefined.

A data description entry that contains a
REDEFINES clause, or an entry that is

subordinate to an entry that contains a
REDEFINES clause

Can be used.

A data description entry that includes, or is
subordinate to, an entry that includes the
EXTERNAL clause

Can be used.

A data description entry that is part of the
description or redefinition of an external
data record

Can be used.

A data description entry that contains an
OCCURS clause, or an entry that is
subordinate to an OCCURS clause

Causes every occurrence of the associated
data item to be assigned the specified
value. (The OCCURS clause is described
earlier in this section.)

An entry at the group level

Must contain a figurative constant or a
nonnumeric literal, and the group area is
initialized without consideration for the
individual elementary or group items
contained within this group.

The VALUE clause cannot be stated at the
subordinate levels within this group.

A data item referred to by a DEPENDING
ON phrase

Can be used. The value is considered to be
placed in the data item after the variable
occurrence data item is initialized (refer to
“OCCURS Clause” in this section).

A group item containing items subordinate
to it with descriptions including
JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY)

Cannot be used.

8600 1518-307

4-73

Data Description Entry Format 3: Level-88 Condition-Name Entry

Examples

01 MONTH PIC 99.
88 QI VALUES ARE 01 02 03.
88 QII VALUES ARE 04 05 06.
88 QIII VALUES ARE 07 08 09.
88 QIV VALUES ARE 10 11 12.

These condition-name entries associate values with the conditions Ql, Qll, Qlll, and QIV.
02 MONTH PIC 99.
88 MONTHS-WITH-31-DAYS
VALUES ARE 01, 03, 05, 07
08, 10, 12.

This condition-name entry associates values with the condition MONTHS-WITH-31-
DAYS.

01 ITEM-1 PIC 7799 VALUE 1.
01 ITEM-2 PIC ZZ99 VALUE " O01".

In this example, the VALUE clauses define the same initial value for both ITEM-1 and
ITEM-2.

4-74 8600 1518-307

Data Description Entry Format 4: IPC

Data Description Entry Format 4: IPC

In interprogram communication (IPC), a level-01 or level-77 data description entry in the
Working-Storage Section or a level-01 data description entry in the File Section
determines whether the data record and its subordinate data have local names or global
names.

{Ql} data-name-1 [REDEFINES data-name-2]|| INTEGER

77 FILLER STRING

[IS EXTERNAL] [IS GLOBAL]

COMMON

PICTURE IS character-string
OMN —
PIC

LOCAL

TRUNCATED
BINARY

EXTENDED
COMPUTATIONAL CONTENT
[USAGE IS] | COMP RECEIVED BY { REFERENCE
DISPLAY REF
DOUBLE

INDEX

KANJI
NATIONAL
PACKED-DECIMAL

REAL

8600 1518-307 4-75

Data Description Entry Format 4: IPC

[SIGN IS] LEADING [SEPARATE CHARACTER]
TRAILING

OCCURS integer-2 TIMES
ASCENDING KEY IS [data-name-3] ...
DESCENDING
[INDEXED BY [LOCAL 1 [index-name-117 ...]
OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-4
ASCENDING KEY IS {data-name-3}...
DESCENDING

[INDEXED BY [LOCAL] {index-name-1 } ...]

SYNCHRONIZED LEFT JUSTIFIED RIGHT
SYNC RIGHT JUST

[BLANK WHEN ZERQ] [VALUE IS literal-1] [[WITH LOWER BOUNDS] .

Refer to “Data Description Entry Format 1" for information on the BLANK WHEN ZERO,
JUSTIFIED, LOCAL, LOWER BOUNDS, OCCURS, PICTURE, RECORD AREA, RECEIVED
BY, SIGN, STRING, SYNCHRONIZED, and USAGE clauses.

4-76 8600 1518-307

Data Description Entry Format 4: IPC

Data-Name or FILLER Clause

Refer to “Data Description Entry Format 1" for information on this clause.

In Format 4, data-name-1 must be specified for any entry that contains the GLOBAL or
EXTERNAL clause, or for record descriptions associated with a file description entry that
contains the EXTERNAL or GLOBAL clause.

COMMON Clause

Refer to “Data Description Entry Format 1" for information on this clause.

The COMMON clause cannot be specified in the same data description entry as the
EXTERNAL clause.

In addition, in Format 4, the COMMON clause can occur only at the outermost level of a
group of nested programs.

Also, the compiler option COMMON does not apply to data-items declared in the
Working-Storage Section of nested programs.

EXTERNAL Clause

The EXTERNAL clause specifies that a data item is external. The data items and group
data items of an external data record are available to every program in the run unit that
describes that record. This clause can be specified only in 01-level data description
entries in the Working-Storage Section that are described as USAGE IS DISPLAY.

Observe the following guidelines when using the EXTERNAL clause:

e The EXTERNAL clause cannot be specified in a data description entry with the
REDEFINES, COMMON, or OWN clause.

e \Within a program, a data-name specified as the subject of a level-01 data description
entry that includes the EXTERNAL clause cannot be specified for any other data
description entry that includes the EXTERNAL clause.

e |f two or more programs in a run unit describe the same external data record, the
same record-name must appear in a record description entry in each program and
the records must define the same number of standard data format characters.

e |f a program contains a data description entry that includes the REDEFINES clause,
which redefines the complete external record, this complete redefinition need not
occur identically in other programs in the run unit (refer to “REDEFINES Clause” in
this section).

Note that use of the EXTERNAL clause does not imply that the associated data-name is a
global name. (Refer to “GLOBAL Clause” in this section.) For information on the
EXTERNAL clause, refer to “File Description Entry Format 4: IPC and Sequential I-O."

8600 1518-307 4-77

Data Description Entry Format 4: IPC

GLOBAL Clause

Refer to “File Description Entry Format 4: IPC and Sequential I-O" for a complete
description of this clause.

The following conditions apply to the GLOBAL clause when used in Data Description
Entry Format 4:

This clause can be specified only in data description entries whose level-number is
01 or 77.

This clause specifies that a data-name is a global name. A global name is available to
every program contained within the program that declares it.

A data-name described using a GLOBAL clause is a global name. All data-names
subordinate to a global name are global names. All condition-names associated with
a global name are global names.

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include this clause.

A statement in a program that is contained directly or indirectly in a program that
describes a global name can reference that name without describing it again (refer to
"Scope of Names” in Section 10).

If this clause is used in a data description entry that contains the REDEFINES clause,
only the subject of that REDEFINES clause possesses the global attribute.

OWN Clause

Refer to “Data Description Entry Format 1" for a complete description of this clause.

Rules

Observe the following rules when you use the OWN clause:

4-78

The OWN clause can occur at any level of nested programs.

The OWN clause cannot be specified in the same data description entry as the
EXTERNAL clause.

The compiler option OWN applies to all data-items declared in the Working-Storage
Section of nested programs.

8600 1518-307

Data Description Entry Format 4: IPC

REDEFINES Clause

Refer to “Data Description Entry Format 1" for a complete description of this clause.

In Format 4, this clause and the EXTERNAL clause must not be specified in the same
data description entry.

VALUE Clause

Refer to “Data Description Entry Format 1" for a complete description of this clause.

In Format 4, the VALUE clause must not be used in any data description entry that
includes, or is subordinate to, an entry that includes the EXTERNAL clause. (The VALUE
clause can be specified for condition-name entries associated with such data description
entries.)

8600 1518-307 4-79

Data Division Header

Data Division Header

The following header identifies and must begin the Data Division:

DATA DIVISION.

DATA DIVISION

These keywords begin in area A and must be followed by a period.

4-80 8600 1518-307

File Section

File Section
The File Section defines the structure of data files. Use of this section is optional.
Each file is defined by a file description entry and one or more record description entries.
Record descriptions are written immediately following each file description entry. The

format of record descriptions is described earlier in this section.

The general format of the File Section is as follows:

FILE SECTION.

[file description entry { record description entry } ...]

FILE SECTION

These keywords begin in area A and must be followed by a period.

file description entry

A file description entry associates a file-name with a file connector.

Format Use

Format 1 This format provides information on the physical structure, identification,
and record-names that pertain to a sequential file.

Format 2 This format provides information on the physical structure, identification,
and record-names that pertain to a relative or indexed file.

Format 3 This format provides information on the physical structure and record-
names that pertain to a sort or merge file.

Format 4 This format is used for interprogram communication and sequential I-O.
It determines the internal or external attributes of a file connector, of the
associated data records, and of the associated data items. It also
determines whether a file-name is a local name or a global name.

Format 5 This format is used for interprogram communication and relative I-O or
indexed I-O. It determines the internal or external attributes of a file
connector, of the associated data records, and of the associated data
items. It also determines whether a file-name is a local name or a global
name.

8600 1518-307 4-81

File Description Entry Format 1: Sequential I-O

File Description Entry Format 1: Sequential 1-O
This format provides information on the physical structure, identification, and record-

names that pertain to a sequential file. The clauses that follow file-name-1 can appear in
any order. They are described on the following pages in alphabetical order.

4-82 8600 1518-307

File Description Entry Format 1: Sequential I-O

FD file-name-1

RECORDS
BLOCK CONTAINS [integer-1 T0] integer-2

CHARACTERS

[CONTAINS integer-3 CHARACTERS]
IS VARYING IN SIZE [[FROM integer-4]
[TO integer-5] CHARACTERS]

RECORD - {
[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS
[DEPENDING ON data-name-8]]

LABEL {

RECORD IS STANDARD
RECORDS ARE

OMITTED

RECORD IS

DATA { } { data-name-3 } ...

RECORDS ARE

data-name-4
LINAGE IS

data-name-5
LINES | WITH FOOTING AT

integer-8 integer-9

data-name-6 data-name-7
LINES AT TOP LINES AT BOTTOM
integer-10 integer-11

[CODE-SET IS alphabet-name-1]

8600 1518-307 4-83

File Description Entry Format 1: Sequential I-O

FD

This level indicator identifies the beginning of a file description entry and must precede
file-name-1.

FD refers to file description.
file-name-1
This name is a user-defined word.

The clauses that follow file-name-1 can appear in any order.

BLOCK CONTAINS Clause

4-84

The BLOCK CONTAINS clause specifies the size of a physical record. This clause is
required except when one or more of the following conditions exist:

e A physical record contains only one complete logical record.

e The hardware device assigned to the file has only one physical record size.

e The number of records contained in a block is specified in the operating environment.
integer-1

integer-2

If integer-1 is not specified, integer-2 represents the exact number of RECORDS or

CHARACTERS in the physical record.

If integer-1 and integer-2 are both specified, they refer to the minimum and maximum
size of the physical record, respectively.

If the associated file connector is an external file connector, all BLOCK CONTAINS
clauses in the run unit that are associated with that file connector must have the same
values for integer-1 and integer-2.

RECORDS

The size of a physical record can be stated in terms of records unless one or more of the
following conditions exists, in which case the RECORDS phrase must not be used:

e |In mass-storage files, where logical records can extend across physical records.

e The physical record contains padding (area not contained in a logical record). Logical
records are grouped in such a manner that an inaccurate physical record size would
be implied.

When RECORDS is specified, the physical record size is considered to be integer-2
multiplied by the largest record specified for this file.

8600 1518-307

File Description Entry Format 1: Sequential I-O

CHARACTERS

If this phrase is specified, the physical record size is specified in terms of the number of
character positions required to store the physical record, regardless of the types of
characters used to represent the items in the physical record.

When CHARACTERS is specified, the physical record size is considered to be integer-2
characters.

Details

If logical records of differing sizes are grouped into one physical record, the amount of
data transferred from the record area to the physical record depends on the size of the
record named in the WRITE or REWRITE statement. In this case, the logical records are
aligned on maximum record-size boundaries. If the size of the record named does not
equal the maximum record size specified for the file, the data is transferred to the
physical record according to the rules specified for the MOVE statement without the
CORRESPONDING phrase. The sending area is considered to be a group item.

If variable-length records are specified (refer to “RECORD Clause” in this section), then
the physical record size is determined as follows:

If . . . is specified in the

BLOCK CONTAINS clause Then the physical record size equals . . .
Integer-2 RECORDS Integer-2 multiplied by the maximum record size.
Integer-1 and integer-2 Either integer-1 multiplied by the maximum record
RECORDS size or integer-2 multiplied by the minimum record

size, whichever is larger.

CHARACTERS Either integer-2 or the maximum record size,
whichever is larger. If the maximum record size is
larger, a warning is issued. (Integer-1 is shown for
documentation purposes only.)

8600 1518-307 4-85

File Description Entry Format 1: Sequential I-O

CODE-SET Clause

4-86

This clause specifies the character code set used to represent data on the external
media.

If this clause is specified, alphabet-name-1 specifies the algorithm for converting the
character codes on the external media to or from EBCDIC during the execution of an
input or output operation.

If this clause is not specified, the native character code set (EBCDIC) is assumed for data
on the external media.

If this clause is specified for a file, all data in that file must be described as USAGE IS
DISPLAY, and any signed numeric data must be described with the SIGN IS SEPARATE
clause (refer to “Data Description Entry Format 1" for descriptions of the USAGE and
SIGN clauses).

alphabet-name-1
This name is a user-defined word.

The alphabet-name clause referred to by the CODE-SET clause must not specify the
literal phrase (refer to the “"ALPHABET Clause” in Section 3).

If the CODE-SET clause is specified, upon successful execution of an OPEN statement,
the character set used to represent the data on the external media is the one referred to
by alphabet-name-1 in the file description entry associated with the file-name specified in
the OPEN statement.

Details

If the associated file connector is an external file connector, all CODE-SET clauses in the
run unit that are associated with that file connector must have the same character set.

8600 1518-307

File Description Entry Format 1: Sequential I-O

DATA RECORDS Clause

This clause serves only as documentation for the names of data records in their
associated file.

The DATA RECORDS clause is an obsolete element in COBOL ANSI-85 and will be
deleted from the next revision of standard COBOL.

data-name-3
This name is a user-defined word.

This is the name of a data record that must have a level-01 record description (with the
same name) associated with it.

The presence of more than one data-name indicates that the file contains more than one
type of data record. These records can be different in size, format, and so forth. The
order in which they are listed is not significant.

Details

Conceptually, all data records in a file share the same area, even if more than one type of
data record is present in the file.

LABEL RECORDS Clause

This clause specifies the presence or absence of label information.
If this clause is not specified for a file, STANDARD is assumed.

The LABEL RECORDS clause is an obsolete element in COBOL ANSI-85 and will be
deleted from the next revision of standard COBOL.

STANDARD

This specifies that labels exist for the file or the device to which the file is assigned and
that the labels conform to the standard label specifications. STANDARD should be used if
you wish to take advantage of the automatic file allocation and handling procedures in
the operating system. (Note that disk devices maintain a directory instead of a system of
labels.) The format of labels depends on the device containing the file. (Refer to the //O
Subsystem Programming Guide for label formats.)

OMITTED

OMITTED must be used if an input file does not have standard labels or if labels are not
desired on output files.

8600 1518-307 4-87

File Description Entry Format 1: Sequential I-O

Details

If the file connector associated with this file description entry is an external file connector
(refer to the "EXTERNAL Clause” in this section, and to “File Connectors” in Section 10),
all LABEL RECORDS clauses in the run unit associated with that file connector must
have the same specification.

LINAGE Clause

This clause specifies the size of a logical page according to the number of lines. It also
specifies the size of the top and bottom margins on the logical page, and the line
number, at which the footing area begins in the page body. (The terms logical page and
page body are defined under the paragraph headed “Details,” which follows the
description of syntax elements.)

data-name-4
integer-8

Integer-8 or the value of the data item referred to by data-name-4 specifies the number
of lines that can be written and/or spaced on the logical page. The value must be greater
than zero. The part of the logical page in which these lines can be written and/or spaced
is called the page body.

At the time an OPEN statement with the OUTPUT phrase is executed for the file, either
integer-8 or the value of the data item referred to by data-name-4, whichever is specified,
is used to specify the number of lines that will make up the page body for the first logical

page.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the value of the data item referred to by data-name-4, if
specified, is used to define the page body for the next logical page.

FOOTING

This phrase specifies the line number in the page body at which the footing area begins.

If this phrase is not specified, the assumed value is equal to integer-8 or the contents of
the data item referred to by data-name-4, whichever is specified.

4-88 8600 1518-307

File Description Entry Format 1: Sequential I-O

data-name-5
integer-9

Integer-9 or the value of the data item referred to by data-name-5 specifies the line
number in the page body at which the footing area begins. The value must be greater
than zero and less than or equal to integer-8 or the value of the data item referred to by
data-name-4.

Integer-9 must not be greater than integer-8.

At the time an OPEN statement with the OUTPUT phrase is executed for the file, either
integer-9 or the value of the data item referred to by data-name-5, whichever is specified,
is used to specify the number of lines that will make up the footing area for the first
logical page.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the value of the data item referred to by data-name-5, if
specified, is used to define the footing area for the next logical page.

LINES AT TOP
This phrase specifies the number of lines that make up the top margin on the logical
page.

If this phrase is not specified, the value for this function is zero.

data-name-6
integer-10

Integer-10 or the value of the data item referred to by data-name-6 specifies the number
of lines that make up the top margin on the logical page. This value can be zero.

At the time an OPEN statement with the OUTPUT phrase is executed for the file, either
integer-10 or the value of the data item referred to by data-name-6, whichever is
specified, is used to specify the number of lines that will make up the top margin for the
first logical page.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the value of the data item referred to by data-name-6, if
specified, is used to define the top margin for the next logical page.

LINES AT BOTTOM

This phrase specifies the number of lines that make up the bottom margin on the logical
page.

If this phrase is not specified, the value for this function is zero.

8600 1518-307 4-89

File Description Entry Format 1: Sequential I-O

4-90

data-name-7
integer-11

Integer-11 or the value of the data item referred to by data-name-7 specifies the number
of lines that make up the bottom margin on the logical page. This value can be zero.

At the time an OPEN statement with the OUTPUT phrase is executed for the file, either
integer-11 or the value of the data item referred to by data-name-7, whichever is
specified, is used to specify the number of lines that will make up the bottom margin for
the first logical page.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the value of the data item referred to by data-name-7, if
specified, is used to define the bottom margin for the next logical page.

Details

The data-names used in this clause must refer to elementary unsigned numeric integer
data items. All of the data-names can be qualified.

The logical page size is the sum of the values referred to by each phrase except the
FOOTING phrase. Each logical page is contiguous to the next, and additional spacing is
not provided.

Note that there is not necessarily a relationship between the size of the logical page and
the size of a physical page.

The part of the logical page in which the lines can be written and/or spaced is called the
page body.

The footing area is made up of the area of the page body between the line represented
by integer-9 or the value of the data item referred to by data-name-5 and the line
represented by integer-8 or the value of the data item referred to by data-name-4,
inclusive.

If the file connector associated with this file description entry is an external file
connector, all file description entries in the run unit that are associated with this file
connector must have the following:

e A LINAGE clause, if any file description entry has a LINAGE clause

e The same corresponding values for integer-1, integer-2, integer-3, and integer-4, if
specified

e The same corresponding external data items referred to by data-name-1,
data-name-2, data-name-3, and data-name-4

A separate LINAGE-COUNTER register is generated for each file whose file description
entry contains a LINAGE clause. Because more than one LINAGE-COUNTER can exist in
a program, you must qualify LINAGE-COUNTER by file-name when necessary (refer to
Format 4 under "Qualification” in this section). You can refer to a LINAGE-COUNTER
only in Procedure Division statements.

8600 1518-307

File Description Entry Format 1: Sequential I-O

The value in the LINAGE-COUNTER at any given time represents the line number at
which the device is positioned in the current page body. Only the input-output control
system can change the value of the LINAGE-COUNTER.

e When an OPEN statement with the OUTPUT phrase is executed for a file, the value
of LINAGE-COUNTER is automatically set to 1.

e When a WRITE statement is executed, LINAGE-COUNTER is automatically modified
according to the rules in the following table:

If the . .. Then the LINAGE-COUNTER . . .

ADVANCING PAGE phrase of the WRITE Is automatically reset to 1.

statement is specified, During the resetting of the LINAGE-

COUNTER to the value 1, the value of
LINAGE-COUNTER is implicitly incremented
to exceed the value specified by integer-1 or
the data item referred to by data-name-1.

ADVANCING identifier-2 or integer-1 Is incremented by integer-1 or the value of
phrase of the WRITE statement is the data item referred to by identifier-2.
specified.

ADVANCING phrase of the WRITE Is incremented by the value 1.

statement is not specified.

Device is repositioned to the first line that Is automatically reset to 1.
can be written on for each of the
succeeding logical pages.

RECORD Clause

The RECORD clause specifies the number of character positions in a fixed-length record
or the range of character positions in a variable-length record. If the number of character
positions varies, you can specify the minimum and maximum number of character
positions.

If the RECORD clause is omitted, the record-description entry completely defines the
size of each record, and the file is considered to have fixed-length records. When
multiple record-description entries are associated with this file, the record size for the file
is that of the largest record-description entry. The other record descriptions merely
represent a redefinition of the same memory area. As a result, each READ or WRITE
statement for the file uses the full length of the record for data transfer.

There are three forms of the RECORD clause: the RECORD CONTAINS integer-3

CHARACTERS clause, the RECORD IS VARYING IN SIZE clause, and the RECORD
CONTAINS integer-6 TO integer-7 clause.

RECORD CONTAINS integer-3 CHARACTERS
This form of the RECORD clause enables you to specify fixed-length records.

8600 1518-307 4-91

File Description Entry Format 1: Sequential I-O

4-92

integer-3

This integer represents the exact number of character positions contained in each record
of the file.

An error message is issued if the number of character positions specified by integer-3
does not match the record description entry.

RECORD IS VARYING IN SIZE

This form of the RECORD clause enables you to specify variable-length records.

integer-4

This integer specifies the minimum number of character positions that can be contained
in any record of the file.

If this integer is not specified, the minimum number of character positions to be
contained in any record of the file is equal to the least number of character positions
described for a record in that file.

integer-5

This integer specifies the maximum number of character positions in any record of the
file.

If this integer is not specified, the maximum number of character positions to be
contained in any record of the file equals the greatest number of character positions
described for a record in that file.

data-name-1

This name is a user-defined word. Data-name-1 can be qualified.

The number of character positions associated with a record description is determined by
the sum of the number of character positions in all elementary data items excluding
redefinitions and renamings, plus any implicit FILLER due to synchronization. If a table is
specified,

e The minimum number of table elements described in the record is used in the
summation to determine the minimum number of character positions associated
with the record description.

e The maximum number of table elements described in the record is used in the
summation to determine the maximum number of character positions associated
with the record description.

The contents of the data item referred to by data-name-1 and the number of
character positions in the record depend upon whether data-name-1 is specified in
the RECORD clause, as described in the following tables.

8600 1518-307

File Description Entry Format 1: Sequential I-O

If data-name-1 is specified in the
RECORD clause and . . .

Then . ..

A RELEASE, REWRITE, or WRITE
statement has not yet been executed for
the file.

The number of character positions in the
record must be placed into the data item
referred to by data-name-1 before any
RELEASE, REWRITE, or WRITE statement
is executed for the file.

A DELETE, RELEASE, REWRITE, START,
or WRITE statement has been executed
for the file.

The content of the data item referred to by
data-name-1 is not altered.

A READ or RETURN statement has been
unsuccessfully executed for the file.

The content of the data item referred to by
data-name-1 is not altered.

A READ or RETURN statement has been
successfully executed for the file.

The content of the data item referred to by
data-name-1 indicates the number of
character positions in the record just read.

A RELEASE, REWRITE, or WRITE
statement is being executed for the file.

The number of character positions in the
record is determined by the content of the
data item referred to by data-name-1.

The INTO phrase is specified in the READ
or RETURN statement.

The number of character positions in the
current record that participate as the
sending data items in the implicit MOVE
statement is determined by the content of
the data item referred to in data-name-1.

If data-name-1 is not specified in the
RECORD clause and . . .

Then . ..

The record does not contain a variable-
occurrence data item.

The number of character positions in the
record is determined by the number of
character positions in the record.

The record contains a variable-occurrence
data item.

The number of character positions in the
record is determined by the sum of the
fixed portion and that portion of the table
described by the number of occurrences at
the time of execution of the output
statement.

The INTO phrase is specified in the READ
or RETURN statement.

The number of character positions in the
current record that participate as the
sending data items in the implicit MOVE
statement is determined by the value that
would have been moved into the data item
referred to in data-name-1 if data-name-1
had been specified.

8600 1518-307

4-93

File Description Entry Format 1: Sequential I-O

Details

4-94

RECORD CONTAINS integer-6 TO integer-7 CHARACTERS [DEPENDING ON data-
name-8]

This form of the RECORD clause enables you to specify the minimum and maximum
number of character positions when the number of character positions varies. In this
case, the logical records have variable lengths.

integer-6

This integer refers to the minimum number of characters in the smallest size data record.

integer-7

This integer refers to the maximum number of characters in the largest size data record.

data-name-8

Data-name-8 is a user-defined word that can be qualified.

Special Considerations for Sequential Files

The use of data-name-8 determines the BLOCKSTRUCTURE of the declared file. When
data-name-8 is omitted from the RECORD CONTAINS clause or when it is internal to the
record description of a file, the default is the same as that of data-name-1 as described
earlier in this section. When data-name-8 is external to the record descriptions for a file,
the file uses the BLOCKSTRUCTURE = EXTERNAL statement.

How Record Size Is Determined

In this form of the RECORD clause, the size of each data record is completely defined in
the record description entry. The size of each data record is specified according to the
number of character positions required to store the logical record, regardless of the types
of characters used to represent the items in the logical record.

The size of a record is determined by the sum of the number of characters in all fixed-
length elementary items plus the sum of the maximum number of characters in any
variable-length item subordinate to the record. This sum might be different from the
actual size of the record (refer to “SYNCHRONIZED Clause” and “USAGE Clause” in this
section). The size of the record is part of the record when the type of the file is DISK OR
TAPE, but is not written if the file is PORT, PRINTER, or READER.

External File Connectors

If the associated file connector is an external file connector, all file description entries in
the run unit that are associated with that file connector must specify the same values for
integer-3 in the RECORD CONTAINS clause or integer-4 and integer-5 in the RECORD IS
VARYING clause. If a RECORD clause is not specified, all record description entries
associated with the file connector must be the same length.

8600 1518-307

File Description Entry Format 1: Sequential I-O

Special Considerations for Relative and Indexed Files

The FROM integer-4 clause and the integer-6 TO clause are ignored for indexed or
relative files unless the ANSI compiler control option has been set prior to the file
description (FD) entry for the file. Only fixed length record files are created for indexed or
relative files unless the ANSI compiler control option has been set. Specifying variable
length records for indexed or relative files when the ANSI compiler control option is set
makes these files incompatible with files created or retrieved through programs compiled
with COBOL74. The DEPENDING ON clause is not allowed for indexed or relative files
unless the ANSI compiler control option has been set prior to the file description (FD)
entry for the file.

Special Considerations for Sequential Files

Data-name-1 of the DEPENDING phrase influences the file type of the file to which it
applies, when it is a field internal to the file. Generally a BLOCKSTRUCTURE = VARIABLE
file is created when the data item is a display numeric which occupies the first four
characters of the record. Should the internal length field be elsewhere in the record or be
of a different size, then a BLOCKSTRUCTURE = VARIABLEOFFSET file is created, with
the supporting attributes SIZE2, SIZEOFFSET and SIZEMODE set accordingly. Should a
single or double-word data item, which is used as the internal length field of the record,
start on a character boundary, the resulting file will have BLOCKSTRUCTURE =
EXTERNAL. Any other use of a double-word data item as an internal length field is invalid.

VALUE OF Clause

This clause defines the initial values for the attributes of a file.

The descriptive clauses and phrases of the Input-Output Section and the file record
descriptions (other than the VALUE OF clause) implicitly determine the initial values for
appropriate attributes of a file. These attribute values, however, can be overridden, or
other attributes can be specified, by the VALUE OF clause.

File attributes provide access to functions not otherwise available within the language.
Also, file attributes can be used to declare and access files. When both a file attribute
and standard COBOL syntax are available to accomplish a desired function, it is always
preferable to use the standard COBOL syntax, because changing the attribute can lead to
unexpected results in cases when the attribute is also used or altered by the compiler.

Refer to the I/O Subsystem Programming Guide for a description of available attributes
and their values.

Note: The VALUE OF clause is an obsolete element in COBOL ANSI-85 and will be
deleted from the next revision of standard COBOL. Unisys, however, will continue to
support this element as an extension to the COBOL language.

VALUE

VA

These keywords are equivalent.

8600 1518-307 4-95

File Description Entry Format 1: Sequential I-O

4-96

mnemonic-attribute-value

This value must be associated with the attribute specified.

alphanumeric-file-attribute-name

If this is specified, the literal must be a nonnumeric literal, and the identifier must be a
nonnumeric DISPLAY data item. Additionally, the contents of the data-name must be
ended by a period.

numeric-file-attribute-name

If this is specified, the literal must be a numeric literal, and the identifier must be a
numeric data item that represents an integer.

data-name-2
This name is a user-defined word.

This data-name should be qualified when necessary, but it cannot be subscripted, nor
can it be described with the USAGE IS INDEX clause.

This data-name must be in the Working-Storage Section.

When an attribute is equated to the value of this data-name, the attribute is implicitly
changed to this value just prior to execution of any explicit OPEN, SORT, or MERGE
statement that refers to the file.

literal-1

When an attribute is equated to the value of this literal, the value becomes a part of the
file description given by the file when first referred to at run time. Any specification in
this file description can be overridden by a file-equation.

Details

If the associated file connector is an external file connector, all VALUE OF clauses in the
run unit that are associated with that file connector must be consistent.

File titles must not contain special characters.

Using data-name-2 in file descriptions for port files is not recommended if your program
specifies that subfiles will be opened independently and remain open simultaneously.
The compiler explicitly sets all dynamic attributes for the entire file on each OPEN
statement. The MCP will reject an OPEN statement for a subport of a file if any other
subport of the file is open and the file declaration contains a dynamic file attribute that is
permitted to be modified only when the file is closed.

8600 1518-307

File Description Entry Format 1: Sequential I-O

You should use the CHANGE statement to dynamically change attributes of port files
that have multiple subfiles explicitly opened. Note that the CHANGE statement must be

executed while the port file is closed. Refer to “CHANGE Statement” in Section 6 for
more information.

This restriction does not apply if your program opens the entire port file; if your program
has only one subfile of a port open at any given time; or if there is no limitation on when
a particular file attribute can be modified. For information on port files, refer to Section
12.

Examples

FD SEQ-FILE
BLOCK CONTAINS 10 RECORDS
VALUE OF FILENAME IS "MASTER"
DATA RECORDS ARE PRIMARY SECONDARY.

This file description entry defines a file with an internal file name of SEQ-FILE, and an
external file name of MASTER. Each logical block of the file contains 10 physical file
records. The records are identified as PRIMARY and SECONDARY for documentation
puUrposes.

FD PFILE
LINAGE IS 40 LINES
LINES AT TOP 5
LINES AT BOTTOM 15.

This file description entry defines a file with an internal file name of PFILE. The logical
page associated with PFILE is 40 lines in length with a top margin of 5 lines and a bottom
margin of 15 lines.

8600 1518-307 4-97

File Description Entry Format 2: Relative 1-O, Indexed 1-O

File Description Entry Format 2: Relative I-O,
Indexed I-O

This format provides information on the physical structure, identification, and record-
names that pertain to a relative file or an indexed file.

FD file-name-1

RECORDS
BLOCK CONTAINS [integer-1 TO] integer-2
__ CHARACTERS

CONTAINS integer-3 CHARACTERS
IS VARYING IN SIZE [[FROM integer-4]
RECORD [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

RECORD IS STANDARD
LABEL

RECORDS ARE OMITTED

mnemonic-file- IS mnemonic-attribute-
attribute-name value
VALUE
OF A alphanumeric-file- "
VA -

attribute-name { data-name-2 }
IS

numeric-file- literal-1
attribute-name -

RECORD IS
DATA { data-name-3 } ...
RECORDS ARE

Refer to “File Description Entry Format 1: Sequential I-O"” for information on the DATA
RECORDS, LABEL RECORDS, RECORD, and VALUE OF clauses.

4-98 8600 1518-307

File Description Entry Format 2: Relative 1-O, Indexed 1-O

FD

This level indicator identifies the beginning of a file description entry and must precede
file-name-1. FD refers to file description.

file-name-1

This name is a user-defined word. The clauses that follow file-name-1 can appear in any
order.

BLOCK CONTAINS Clause

Refer to “File Description Entry Format 1: Sequential I-O"” for a complete description of
this clause.

In this format (in the case of relative file organization) the physical record size is adjusted
by the I/O subsystem to be integer-2 multiplied by six bytes larger than what would be
determined by the methods stated in the BLOCK CONTAINS clause in “File Description
Entry Format 1: Sequential I-O.”

Examples

FD REL-FILE
BLOCK CONTAINS 2 RECORDS
LABEL RECORD IS STANDARD
VALUE OF AREAS IS 10
AREASIZE IS 1000
DATA RECORDS ARE PRODUCT, PRODUCT-PART.

This file description entry defines a file with an internal file name of REL-FILE. Each
logical block of the file contains 2 physical file records. The file attributes AREAS and
AREASIZE associated with REL-FILE are assigned the values 10 and 1000, respectively.
The records are identified as PRODUCT and PRODUCT-PART for documentation
purposes.

FD INDX-FILE
BLOCK CONTAINS 10 RECORDS
DATA RECORD IS ACCOUNT.

This file description entry defines a file with an internal file name of INDX-FILE. Each
logical block of the file contains 10 physical file records. The record is identified as
ACCOUNT for documentation purposes.

FD CUSTOMER-FILE
BLOCK CONTAINS 40 TO 60
RECORD IS VARYING IN SIZE
DEPENDING ON SIZE-VARIABLE.

This file description entry defines a file with an internal file name of CUSTOMER-FILE.
Each logical block of the file contains between 40 and 60 physical file records. The
records are variable length with the record length of each record stored in the variable
SIZE-VARIABLE.

8600 1518-307 4-99

File Description Entry Format 2: Relative 1-O, Indexed 1-O

Variable Length Records

4-100

To provide the capability of variable length records, the compiler takes advantage of the
I/O system implementation of files that have the following attributes:

BLOCKSTRUCTURE=VARIABLE
FILESTRUCTURE=STREAM
UNITS=CHARACTERS
FILEORGANIZATION=RELATIVE

Although this is declared as a variable length record implementation, the /O system
actually maintains a fixed block and record size, where the length of each record is at
least the length of the declared MAXRECSIZE value. For this reason, processor execution
time, I/O transfer time and disk sector space requirements are larger than expected for
files that have an average record size that is less than the declared MAXRECSIZE.

If the DEPENDING data-name is the leading 4—-byte field of one of the record description
entries for the file, the system sets the SIZEVISIBLE attribute to TRUE and maintains the
length in the field. If the DEPENDING data-name is not a part of the record described for
the file, SIZEVISIBLE is set to FALSE and the system maintains the length. In either
case, before performing a WRITE or REWRITE operation, the intended record length
must be programmatically established in the DEPENDING data-name. In the case of a
READ followed by a REWRITE, the READ statement automatically returns the record
length into the DEPENDING data-name.

Note that the DEPENDING clause is not available for indexed files.

8600 1518-307

File Description Entry Format 3: Sort-Merge

File Description Entry Format 3: Sort-Merge

This format provides information on the physical structure and record-names that pertain
to a sort or merge file.

SD file-name-1

CONTAINS integer-1 CHARACTERS
IS VARYING IN SIZE [[FROM integer-2]
RECORD [TO integer-3] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-4 TO integer-5 CHARACTERS

RECORD IS
DATA { data-name-2 } ...
RECORDS ARE

SD

This level indicator identifies the beginning of a sort-merge file description entry and
must precede file-name-1.

SD refers to sort-merge description.
Note that one or more record description entries must follow the sort-merge file

description entry. However, input-output statements (except RELEASE and RETURN)
cannot be executed for this sort or merge file.

file-name-1

This name is a user-defined word.

The clauses that follow file-name-1 can appear in any order.

8600 1518-307 4-101

File Description Entry Format 3: Sort-Merge

DATA RECORDS Clause

Refer to “File Description Entry Format 1: Sequential I-O"” for a complete description of
this clause.

Note that information about data-name-3 in Format 1 applies to data-name-2 in this
format.

RECORD Clause

Refer to “File Description Entry Format 1: Sequential I-O"” for a complete description of
this clause.

Note that information about integer-3, integer-4, integer-5, integer-6, and integer-7 in
Format 1 applies to integer-1, integer-2, integer-3, integer-4, and integer-5, respectively,
in this format.

Example

SD SORT-FILE
RECORD CONTAINS 200 CHARACTERS
DATA RECORD IS SORT-RECORD.

This sort-merge file description entry defines a file with an internal file name of SORT-

FILE. Each record of the file contains 200 characters. The record is identified as SORT-
RECORD for documentation purposes.

4-102 8600 1518-307

File Description Entry Format 4: IPC and Sequential I-O

File Description Entry Format 4: IPC and Sequential
o)

This format is used for interprogram communication (IPC) and sequential |I-O. This format
determines the internal or external attributes of a file connector, of the associated data
records, and of the associated data items. It also determines whether a file-name is a
local name or a global name. Refer to the diagram on the following page.

8600 1518-307 4-103

File Description Entry Format 4: IPC and Sequential I-O

FD file-name-1
[IS EXTERNAL]
[IS GLOBAL]

RECORDS
BLOCK CONTAINS [integer-1 T0] integer-2

CHARACTERS

[CONTAINS integer-3 CHARACTERS]
IS VARYING IN SIZE [[FROM integer-4]
RECORD 1 [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

RECORD IS STANDARD
LABEL

RECORDS ARE

OMITTED

RECORD IS

DATA { } { data-name-3 }

RECORDS ARE

data-name-4 data-name-5
LINAGE IS LINES | WITH FOOTING AT
integer-8 integer-9
data-name-6 data-name-7
LINES AT TOP LINES AT BOTTOM
| integer-10 integer-11

[CODE-SET IS alphabet-name-1]

4-104 8600 1518-307

File Description Entry Format 4: IPC and Sequential I-O

Refer to “File Description Entry Format 1: Sequential I-O"” for information on the BLOCK
CONTAINS, RECORD, LABEL RECORDS, VALUE OF, DATA RECORDS, LINAGE, and
CODE-SET clauses.

FD

This level indicator identifies the beginning of a file description entry and must precede
file-name-1.

FD refers to file description.
file-name-1
This name is a user-defined word.

The clauses that follow file-name-1 can appear in any order.

EXTERNAL Clause

In this format, this clause specifies that a file connector is external. The subordinate data
items and group data items of an external data record are available to every program in
the run unit that describes that record.

This clause can be specified only in file description entries in the File Section when used
for interprogram communication.

If the file description entry contains the LINAGE clause and the EXTERNAL clause, the
LINAGE-COUNTER data item is an external data item.

The file connector associated with this file description entry is an external file connector.

Note that use of the EXTERNAL clause does not imply that the associated file-name is a
global name. (Refer to the GLOBAL Clause in this section.)

GLOBAL Clause
In this format, this clause specifies that a file-name is a global name. A global name is
available to every program contained within the program that declares it. A statement in
a program contained directly or indirectly within a program that describes a global name

can refer to that name without describing it again (refer to “Scope of Names” in
Section 10).

This clause can be specified only in file description entries.

If the file description entry contains the LINAGE clause and the GLOBAL clause, the
special register LINAGE-COUNTER is a global name.

Note that if the SAME RECORD AREA clause is specified for several files, the file-
description entries for these files must not include the GLOBAL clause.

8600 1518-307 4-105

File Description Entry Format 4: IPC and Sequential I-O

4-106

Examples

FD SEQ-FILE IS EXTERNAL
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 22 CHARACTERS
VALUE OF ACCESSMODE IS SEQUENTIAL.

This file description entry defines an external file with an internal file name of SEQ-FILE.
Each logical block of the file contains 20 physical file records, and each physical record
contains 22 characters. The file attribute ACCESSMODE associated with SEQ-FILE is
assigned the value SEQUENTIAL.

FD SEQ-FILE IS GLOBAL
BLOCK CONTAINS 5 RECORDS
DATA RECORD IS RECORD-NAME.

This file description entry defines a global file with an internal file name of SEQ-FILE.
Each logical block of the file contains 5 physical file records. The record is identified as
RECORD-NAME for documentation purposes.

FD PFILE IS EXTERNAL
LINAGE IS 30
WITH FOOTING AT 6.

This file description entry defines an external file with an internal file name of PFILE. The

logical page associated with PFILE is 30 lines in length, with the footing area beginning at
line number 6 of the page body.

8600 1518-307

File Description Entry Format 5: IPC, Relative I-O, and Indexed I-O

File Description Entry Format 5: IPC, Relative I-O,
and Indexed I-O

This format is used for interprogram communication (IPC) and relative |-O or indexed I-O.
This format determines the internal or external attributes of a file connector, of the
associated data records, and of the associated data items. It also determines whether a
file-name is a local name or a global name

FD file-name-1
[IS EXTERNAL]
[IS GLOBAL]

RECORDS
BLOCK CONTAINS [integer-1 TO] integer-2

CHARACTERS

CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4]

RECORD [TO integer-5] CHARACTERS]

[DEPENDING ON data-name-1]

CONTAINS integer-6 TO integer-7 CHARACTERS

RECORD IS STANDARD
LABEL

RECORDS ARE OMITTED

mnemonic-file- IS mnemonic-attribute-
attribute-name value
VALUE
OF A alphanumeric-file- s
VA -

attribute-name { data-name-2 }
IS

numeric-file- literal-1

attribute-name

RECORD IS
DATA { data-name-3 } ...
RECORDS ARE

8600 1518-307 4-107

File Description Entry Format 5: IPC, Relative I-O, and Indexed I-O

Refer to “File Description Entry Format 1: Sequential I-O"” for information on the BLOCK
CONTAINS, RECORD, LABEL RECORDS, VALUE OF, and DATA RECORDS clauses.

Refer to “File Description Entry Format 4: IPC and Sequential I-O” for information on the
EXTERNAL and GLOBAL clauses.

FD

This level indicator identifies the beginning of a file description entry and must precede
file-name-1.

FD refers to file description.

file-name-1

This name is a user-defined word.
The clauses that follow file-name-1 can appear in any order.

Examples

FD REL-FILE IS GLOBAL
BLOCK CONTAINS 3 RECORDS
LABEL RECORDS ARE STANDARD.

This file description entry defines a global file with an internal file name of REL-FILE.
Each logical block of the file contains 3 physical file records.

FD CUSTOMER-FILE IS EXTERNAL
BLOCK CONTAINS 40 TO 60
RECORD IS VARYING IN SIZE

DEPENDING ON SIZE-VARIABLE.

This file description entry defines an external file with an internal file name of
CUSTOMER-FILE. Each logical block of the file contains between 40 and 60 physical file
records. The records are variable in length, with the record length of each record stored
in the variable SIZE-VARIABLE.

FD INDX-FILE IS GLOBAL
BLOCK CONTAINS 10 RECORDS
DATA RECORD IS ACCOUNT.

This file description entry defines a global file with an internal file name of INDX-FILE.

Each logical block of the file contains 10 physical file records. The record is identified as
ACCOUNT for documentation purposes.

4-108 8600 1518-307

Working-Storage Section

Working-Storage Section

The Working-Storage Section describes records and subordinate data items that are not
part of external data files, but are developed and processed internally. In addition, the
Working-Storage Section describes data items that have values assigned in the source
program that do not change during the execution of the object program. Use of this
section is optional.

The Working-Storage Section is composed of the section header and record description
entries (and/or data description entries) for noncontiguous data items.

The general format of the Working-Storage Section is as follows:

WORKING-STORAGE SECTION.

77-Tevel description entry

record description entry

WORKING-STORAGE SECTION

These keywords begin in area A and must be followed by a period.

77-level description entry

This is a data description entry that describes a noncontiguous data item with the level-
number 77. Refer to “Data Description Entry Format 1" in this section for more
information about this entry.

record description entry

This is the total set of data description entries associated with a particular record. Refer
to "General Format of the File Section” in this section for more information about this
entry.

Note that a record description entry is also referred to as a record description.

8600 1518-307 4-109

Working-Storage Section

Noncontiguous Working Storage

ltems and constants in working storage that do not have a hierarchical relationship to one
another do not need to be grouped into records if they do not need to be further
subdivided. Instead, they are classified and defined as noncontiguous elementary items.
Each of these items is defined in a separate data description entry that begins with the
special level-number 77.

The following data clauses are required in each data description entry:

e Level-number 77
e Data-name

e The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional but can be used to complete the description
of the item, if necessary.

Working-Storage Records
Data elements in the Working-Storage Section that have a definite hierarchical
relationship to one another must be grouped into records according to the rules for

formation of record descriptions.

Data elements in the Working-Storage Section that do not have a hierarchical relationship
to any other data item can be described as records that are single elementary items.

All clauses used in record descriptions in the File Section can be used in record
descriptions in the Working-Storage Section.

4-110 8600 1518-307

Working-Storage Section

Initial Values

The initial value of any data item in the Working-Storage Section, except an index data
item, is specified by associating the VALUE clause with the data item. The initial value of
any index data item or any data item not associated with a VALUE clause is undefined.

Example

WORKING-STORAGE SECTION.
77 DISK-CONTROL PIC 9(8).
77 TOTAL-SALES PIC 9(11) VALUE IS ZERO.
01 STATE-TABLE.
05 STATES.
10 CA PIC 9(4).
10 NEVADA PIC 9(4).
10 ORE PIC 9(4).
01 HDG-LINE.
03 FILLER PIC X(58) VALUE IS SPACES.
03 FILLER PIC X(11) VALUE IS "PERFORMANCE".
03 FILLER PIC X(51) VALUE IS SPACES.

In this example, DISK-CONTROL and TOTAL-SALES represent noncontiguous
elementary items. STATE-TABLE and HDG-LINE represent working-storage records with
subordinate entries (STATES and FILLER). This entire working-storage section describes
the records in a sales performance report.

8600 1518-307 4-111

Linkage Section

Linkage Section

The Linkage Section appears in a called program and describes data items that are
referred to by the calling program and the called program. If a data item in the Linkage
Section is accessed in a program that is not a called program, the effect is undefined.

The Linkage Section describes data that is available through the calling program, but will
be referred to in both the calling and the called program.

The Linkage Section is meaningful in a program only if both of the following are true:
e The object program will function under the control of a CALL, PROCESS, or RUN

statement.

o The CALL,/PROCESS, or RUN statement in the calling program contains a USING
phrase.

The way that data items described in the Linkage Section of a called program correspond
to data items described in the calling program is discussed in Section 5 under “Procedure
Division Header” and in Section 6 under “CALL Statement.”

In the case of index-names, a correspondence is not established, and index-names in the
called and calling programs always refer to separate indexes.

Note: Data items defined in the Linkage Section but not referenced in a USING phrase
will be treated in the same way as other Working-Storage Section data items.

The Linkage Section consists of a section header and noncontiguous data items and/or
record description entries.

The format for the Linkage Section is as follows:

LINKAGE SECTION.

{ 77-1evel description entry }

record description entry

LINKAGE SECTION

These keywords begin in area A and must be followed by a period.

4-112 8600 1518-307

Linkage Section

77-level description entry

This is a data description entry that describes a noncontiguous data item with the level-
number 77. Refer to “Data Description Entry Format 1" in this section for more
information about this entry.

record description entry

This is the total set of data description entries associated with a particular record. Refer
to “Record Description Entry” in this section for more information about this entry.

A record description entry is also referred to as a record description.

Noncontiguous Linkage Storage

ltems in the Linkage Section that do not have a hierarchical relationship to one another
do not need to be grouped into records. Instead, they are classified and defined as
noncontiguous elementary items. Each of these items is defined in a separate data
description entry that begins with the special level-number 77.

The following data clauses are required in each data description entry:

e Level-number 77
e Data-name
e The PICTURE clause or the USAGE clause

Other data description clauses are optional but can be used to complete the description
of the item, if necessary.
Linkage Records

Data elements in the Linkage Section that have a definite hierarchical relationship to one
another must be grouped into records according to the rules for the formation of record
descriptions.

Data elements in the Linkage Section that do not have a hierarchical relationship to any
other data item can be described as records that are single elementary items.

8600 1518-307 4-113

Linkage Section

Initial Values

The VALUE clause must not be specified in the Linkage Section, except in condition-
name entries (level 88). Refer to “Data Description Entry Format 3: Level-88 Condition-

Name Entry.”

Example
IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER-PROGRAM. PROGRAM-ID. CALLED-PROGRAM.
DATA DIVISION. DATA DIVISION.
WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
01 COLOR PIC X(10). 01 WS-1 PIC 99V99.

01 LOC-SIZE PIC 99V99.
01 AMOUNT PIC 999.

LINKAGE SECTION.
01 HUE PIC X(10).
. 01 MY-SIZE PIC 99V99.
PROCEDURE DIVISION. PROCEDURE DIVISION

USING MY-SIZE, HUE.
PARA-1. PARA-A.
CALL CALLED-PROGRAM MOVE MY-SIZE TO WS-1.
USING LOC-SIZE, COLOR. MOVE "RED" TO HUE.

EXIT PROGRAM.

The program on the left (CALLER-PROGRAM) is calling the program on the right
(CALLED-PROGRAM). The identifiers (SIZE and COLOR) that will be passed to the called
program are defined in the program that contains the CALL statement. These identifiers
correspond to MY-SIZE and HUE, which are defined in the Linkage Section of the called
program.

4-114 8600 1518-307

Local-Storage Section

8600 1518-307 4-115

Local-Storage Section

4-116 8600 1518-307

Local-Storage Section

8600 1518-307 4-117

Library Description Entry Format 1: Export Definition

K]

4-118 8600 1518-307

Library Description Entry Format 1: Export Definition

8600 1518-307 4-119

Library Description Entry Format 1: Export Definition

4-120 8600 1518-307

Library Description Entry Format 2: Import Definition

Library Description Entry Format 2 Import
i g, el radtes o R SES o e og s COROLED

8600 1518-307 4-121

Library Description Entry Format 2: Import Definition

4-122 8600 1518-307

Library Description Entry Format 2: Import Definition

8600 1518-307 4-123

Library Description Entry Format 2: Import Definition

4-124 8600 1518-307

Section b
Procedure Division Concepts

The Procedure Division is the fourth and last division of a COBOL source program. This
division contains procedures that direct the system to perform certain actions in a given
sequence.

The Procedure Division is optional in a COBOL source program. For example, you would
not need a Procedure Division in a program that is to be nested in another program. You
could also omit the Procedure Division when compiling part of a program to check
syntax.

This section discusses the following concepts:

The structure of the Procedure Division

The general formats for the syntax of the Procedure Division

The elements of a procedure

The classifications of statements and sentences used in the Procedure Division
The categories of COBOL verbs

Information on common Procedure Division applications, such as arithmetic and
conditional expressions, table handling, and sorting and merging

For the syntax of the elements and statements that comprise the Procedure Division,
refer to Sections 6 through 8.

8600 1518-307 5-1

Structure of the Procedure Division

Structure of the Procedure Division

The Procedure Division begins with a header and can contain declarative and
nondeclarative procedures. Declarative procedures are grouped at the beginning of the
Procedure Division. The remainder of the division must consist of nondeclarative
procedures.

An end program header can be used to indicate the end of the named COBOL source
program. The end program header can be followed by a COBOL program that is to be
compiled separately in the same invocation of the compiler.

Execution begins with the first statement of the Procedure Division, excluding
declaratives. Statements are then executed in the order in which they are presented for
compilation, except where the rules indicate some other order.

General Formats

The following general formats apply to the Procedure Division and are discussed in this
section:

e Procedure Division header format

o Declarative procedure format

¢ Nondeclarative procedure format

e End program header format

Procedure Division Header

5-2

The following header identifies and must begin the Procedure Division:

data-name-1
file-name
PROCEDURE DIVISION USING { STRING (data-name-2)

INTEGER (data-name-3)

[GIVING data-name-2] .

8600 1518-307

General Formats

PROCEDURE DIVISION

These keywords begin in area A.

USING

The USING clause names the identifiers that are received as parameters.

The data-name in the USING clause of the Procedure Division header must be defined in
the Linkage Section of the program in which this header occurs, and it must have a 01 or
77 level-number and must not be a redefined item. If a file-name is specified, the file
must be declared as a RECEIVED BY REFERENCE file in the SELECT clause.

When the USING clause is present, the object program operates as if each identifier in
the list is replaced by the corresponding identifier from the USING clause of the CALL
statement of the calling program.

When the RECEIVED BY REFERENCE clause appears in an identifier's data description,
the corresponding identifier refers to a single set of data available to both the calling and
called program.

When the data-name is RECEIVED BY CONTENT, the invocation of the procedure will
initialize the corresponding data-name in the called program's USING clause to the
current value in the initiating program. The correspondence is positional and not by
symbolic name.

The calling program must contain a CALL, PROCESS, or RUN statement with a USING
phrase. Section 8 provides detailed information about these statements.

data-name
This identifies a data item or items that will be shared by both the calling program and
the called program.

The following rules apply to the data-name:

e The data-name must be defined as a level-01 or level-77 entry in the Linkage Section
of the program in which this header occurs. The Linkage Section describes data to be
shared when a program is communicating with another program.

e You cannot specify the same data-name more than once in a USING phrase.
e The record description entry for a data-name must not contain a REDEFINES clause.

e The description of the data item in both the calling and called program must describe
the same number of character positions.

e The data-name in the called program and the data-name in the calling program do not
have to be the same name. Correspondence between data-names is based on the
data-name's position in the data description entry, not by name.

e Dataitems in a USING phrase (data-names and file-names) are separated by a
comma.

8600 1518-307 5-3

General Formats

5-4

file-name

This identifies a file to be shared by both the calling and called program. The file must be
declared RECEIVED BY REFERENCE in the SELECT clause.

GIVING data-name-2

The GIVING clause identifies the procedure as a function that returns a value to the
calling program in data-name-2. Data-name-2 must be a numeric data item.
Details

When the USING clause in the Procedure Division header is present, the object program
operates as if each data-name in the list is replaced by the corresponding data-name
from the USING phrase of the CALL, PROCESS, or RUN statement of the calling
program.

You can refer to data items defined in the Linkage Section of the called program in the
Procedure Division of that program.

Related Information

The following table provides references for additional information related to this topic:

For information about . .. Refer to ...
The Linkage Section Section 4

The REDEFINES Clause Section 4

The Working-Storage Section Section 4

The CALL, PROCESS, or RUN statement Sections 6 and 7
Interprogram communication Section 10

8600 1518-307

General Formats

Example
IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.
PROGRAM-ID. PROGA. PROGRAM-ID. PROGB.
DATA DIVISION. DATA DIVISION.
WORKING-STORAGE SECTION. LINKAGE SECTION.
01 A. 01 Employee-Data.
05 Al PIC X(20). 05 Name PIC X(20).
05 A2 PIC X(20). 05 Title PIC X(20).
05 A3 PIC X(4). 05 Dept-no PIC X(4).
01 B PIC X(6). 01 Hire-date PIC X(6).
01 C PIC 9(4)V99. 01 Salary PIC 9(4)V99.
PROCEDURE DIVISION. PROCEDURE DIVISION USING

Employee-Data, Salary.

CALL "PROGB" USING A, C.
The statement PROCEDURE DIVISION USING Employee-Data Salary indicates the
beginning of the Procedure Division and that the program containing this header,
PROGB, is to be called by another program. The two programs will have access to the
data in Employee-Data and Salary.
The CALL statement in PROGA contains a USING phrase.

Employee-Data and Salary are defined as level-01 items in the Linkage Section. The data-
names A and C are defined as level-01 items in the Working-Storage Section.

Data-name A in PROGA corresponds to Employee-Data in PROGB; data-name C in
PROGA corresponds to Salary in PROGB.

All corresponding data-names have the same number of characters, but do not have the
same names.

8600 1518-307 5-5

General Formats

Declarative Procedure Format

5-6

Declarative procedures consist of a set of one or more special-purpose sections that are
grouped together at the beginning of the Procedure Division following the Procedure
Division header. Each declarative procedure is composed of a section header, followed
by a USE compiler-directing sentence, optionally followed by one or more associated
paragraphs. Declarative procedures can be used when special conditions, such as input-
output errors, occur during the execution of a program.

[DECLARATIVES.
{section-name SECTION.
declarative-sentence.
[paragraph-name.
[sentence] ...] ...}

END DECLARATIVES.]

{section-name SECTION.
[paragraph-name.

[sentence] ...] ...}

DECLARATIVES

This keyword must appear on a line by itself, begin in area A, and be followed by a
period.

section-name

This user-defined word names a section of code. A section-name can consist of the
characters A through Z athrough z, 0through 9, and the hyphen (-). The hyphen cannot
appear as the first or last character of the section-name.

You can use the section-name in the nondeclarative portion of this syntax in Format 7 of
the CALL statement to enter another program. Refer to the CALL statement in Section 6
for details.

paragraph-name

This user-defined word names a paragraph of code. A paragraph-name can consist of the
characters A through Z athrough z, 0through 9, and the hyphen (-). The hyphen cannot
appear as the first or last character of the paragraph-name.

8600 1518-307

General Formats

sentence

This sentence consists of one or more compiler-directing statements and ends with a
period.

END DECLARATIVES

These keywords must appear on a line by themselves, begin in area A, and be followed
by a period (.).

The next source statement following the END DECLARATIVES statement must be a
section-name.

Details

Each declarative consists of a single section.
A SORT statement cannot appear in the DECLARATIVES section of a COBOL program.
Refer also to "USE Statement” in Section 8 for more information.

Example

IDENTIFICATION DIVISION.
PROGRAM-ID. DECL-IO-EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO DISK
FILE STATUS IS INPUT-STATUS.
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE
VALUE OF TITLE IS "DISK-FILE".
01 INPUT-REC PIC X(80).
WORKING-STORAGE SECTION.
77 INPUT-STATUS PIC XX.
PROCEDURE DIVISION.
DECLARATIVES.
DECL-1 SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
D-0010.
DISPLAY "I/0 ERROR READING FILE".
DISPLAY "FILE STATUS IS" INPUT-STATUS.
STOP RUN.
END DECLARATIVES.
MAIL-1000 SECTION.
P-1010.
MOVE "00" TO INPUT-STATUS.
OPEN INPUT INPUT-FILE.
READ INPUT-FILE.
STOP RUN.

8600 1518-307 5-7

General Formats

This program illustrates the use of declaratives to handle input-output errors when
reading the file INPUT-FILE. After an input-output error has occurred, and the system's
standard retry procedures have been used, “I/O ERROR READING FILE” and “FILE
STATUS IS" with the value of INPUT-STATUS will be displayed.

Nondeclarative Procedure Format

5-8

Nondeclarative procedures comprise the main portion of a COBOL85 program. A
nondeclarative procedure consists of a paragraph-name followed by one or more
statements that make a logical unit.

Once the program is compiled and initiated, execution begins with the first statement in
the Procedure Division, excluding declaratives. Statements are then executed in the
order in which they were compiled, except where the rules indicate some other order.

{paragraph-name.

[sentence]... } ...

paragraph-name

This name is a user-defined word and can consist of the characters A through Z, a
through z, 0 through 9, and the hyphen (-). The hyphen cannot appear as the first or last
character. A paragraph-name ends with a period.

sentence

This sentence consists of one or more statements and ends with a period. The
Procedure Division statements are presented in Section 6.

Example

WRITE-PARA.
MOVE IN-NAME TO OUT-NAME
WRITE OUT-RECORD AFTER ADVANCING 2 LINES.

This example contains the paragraph-name WRITE-PARA and a sentence containing two
statements—MOVE and WRITE.

8600 1518-307

General Formats

End Program Header

The end program header indicates the end of the named COBOL source program. You
must use the end program header if the COBOL source program

e Contains one or more other COBOL source programs.

e |s contained in another COBOL source program.

e Isinasequence of programs to be separately compiled in the same invocation of the
compiler. Only the last program in the sequence would not need an end program
header.

END PROGRAM program-name .

END PROGRAM

The end program header begins in area A.

program-name

This name is a user-defined word and must be identical to the program-name declared in
the PROGRAM-ID paragraph of the source program's Identification Division.

A program-name must have at least one alphabetic character.

Details

If the source program does not have a Procedure Division, the end program would follow
the end of the Data Division.

Example

IDENTIFICATION DIVISION.
PROGRAM-ID. EMPFIL.

END PROGRAM EMPFIL.
The END PROGRAM header indicates the end of the program EMPFIL.

Refer to “IPC Examples” in Section 10 for examples of the end program header used
with a sequence of programs and nested programs.

8600 1518-307 5-9

Elements of a Procedure

Elements of a Procedure

A procedure is composed of a section, or a group of successive sections, or a paragraph,

or a group of successive paragraphs. Paragraphs can be further broken down into
sentences, statements, and verbs. Table 5-1 describes the elements that form a

procedure.
Table 5-1. Elements of a Procedure
Element Definition Format

Section A section contains a A section-name begins in area A and
section-name followed by must be unique throughout the
a period and zero, one, or program.
more paragraphs. If one
paragraph is in a section,
then all paragraphs must
be in sections.

Paragraph A paragraph consists of a A paragraph-name begins in area A.
paragraph-name followed The paragraph-name must be unique
by a period and zero, one, within the section in which it appears.
or more sentences.

Sentence A sentence consists of one The first sentence in a paragraph
or more statements and begins either on the same line as the
ends with a period. paragraph-name or in area B of the

next nonblank line that is not a
comment line. Successive sentences
begin in either area B of the same line
as the preceding sentence, or in area
B of the next nonblank line that is not
a comment line. When sentences
require more than one line, they can
be continued on a subsequent line or
lines.

Statement A statement begins with a Statements are positioned similarly to
verb and contains a sentences. For the specific format of
syntactically valid COBOL statements, refer to Sections
combination of other 6 through 8.
words and symbols.

Verb A verb is a word that Verbs appear in area B. Verbs are a
indicates the way data will subset of the COBOL reserved
be manipulated or the words. A list of COBOL reserved
actions to be taken by the words is provided in Appendix B. To
COBOL compiler or object see how verbs are used in COBOL
program. statements, refer to Sections 6

through 8.

8600 1518-307

Elements of a Procedure

Statement Scope Terminators

Scope terminators delimit the scope of certain Procedure Division statements. The scope
of statements can be terminated either explicitly or implicitly.

Explicit Terminators

Explicit scope terminators are phrases that occur at the end of some Procedure Division
statements to indicate the end of the statement. The presence of such a terminator
indicates that the statement contains no more phrases. The explicit scope terminators

are as follows:

END-ABORT-TRANSACTION
END-ADD

END-ASSIGN
END-BEGIN-TRANSACTION
END-CALL
END-CANCEL-TRANSACTION
END-CLOSE
END-COMPUTE
END-CREATE

END-DELETE

END-DIVIDE

END-END

END-EVALUATE

END-FIND

Example

END-FREE
END-GENERATE
END-IF
END-INSERT
END-LOCK
END-MODIFY
END-MULTIPLY
END-OF-PAGE
END-OPEN
END-PERFORM
END-READ
END-RECEIVE
END-RECREATE
END-REMOVE

MULTIPLY RATE BY TIME GIVING DISTANCE

ON SIZE ERROR

DISPLAY "DISTANCE ERROR"
PERFORM INIT-PROCEDURE

END-MULTIPLY.

END-RETURN
END-REWRITE
END-SAVE
END-SEARCH
END-SECURE
END-SET
END-START
END-STORE
END-STRING
END-SUBTRACT
END-TRANSACTION
END-UNSTRING
END-WRITE

In this example, the END-MULTIPLY phrase explicitly terminates the scope of the

MULTIPLY statement.

8600 1518-307

Elements of a Procedure

Implicit Terminators

Implicit scope terminators refer to the period at the end of a sentence that terminates
the scope of all previous statements not yet terminated.

READ GFILE INTO New-Record
AT END
CLOSE GFILE
PERFORM Search-Para.

The period at the end of Search-Para implicitly terminates the scope of the READ,
CLOSE, and PERFORM statements.

A statement contained in another statement is called a nested statement. The scope of
nested statements can be implicitly terminated by the ELSE, WHEN, or NOT AT END
phrase of the containing statement.

IF Dept-No = 0113
MOVE "Sales Department" TO Print-Dept-Name
IF Emp-Name = SPACES
PERFORM Proc-2
ELSE MOVE Emp-Name TO Print-Emp-Name
ELSE PERFORM Read-Proc.

The phrase ELSE PERFORM Read-Proc implicitly terminates the scope of the two IF and
two MOVE statements. When statements are nested, the period that terminates the
sentence also implicitly terminates all nested statements.

Types of Statements and Sentences

Statements and sentences can be one of the following types:
e Imperative, indicating a specific unconditional action to be taken by the object
program

e Conditional, specifying that the truth value of a condition is to be determined and that
the subsequent action of the object program depends on this truth value

e Compiler-directing, causing the compiler to take a specific action during compilation

o Delimited scope, which is a statement that includes its explicit scope terminator

5-12 8600 1518-307

Elements of a Procedure

Imperative Statements and Sentences

An imperative statement

e Begins with an imperative verb
e Specifies an unconditional action to be taken by the object program

e |s a conditional statement delimited by its explicit scope terminator (delimited scope
statement)

e Can consist of a sequence of imperative statements, each separated from the next
by a separator

An imperative statement, when it appears as a variable in the format of a Procedure
Division statement, refers to that sequence of consecutive imperative statements that
must be ended by a period or by any phrase associated with a statement containing that
imperative statement.

An imperative sentence is an imperative statement terminated by the
separator period.

Examples
MOVE LNAME TO LNAME-PR.

The above example moves the data from the identifier LNAME to the identifier
LNAME-PR.

PERFORM PARA-1.
The above example causes the statements specified in paragraph PARA-1 to be

executed first. Then the statements immediately following this PERFORM statement will
be executed.

8600 1518-307 5-13

Elements of a Procedure

Conditional Statements and Sentences

A conditional statement specifies that the truth-value of a condition will be determined
and that the subsequent action of the object program depends on this truth value.

A conditional statement can be any one of the following:

e An EVALUATE, IF, or SEARCH statement, or a RETURN statement that includes the
AT END phrase

e A LOCK statement with the AT LOCKED phrase

e A PERFORM statement with the UNTIL phrase

e A READ statement that includes the AT END, NOT AT END, INVALID KEY, or NOT
INVALID KEY phrase

e A WRITE statement that includes the INVALID KEY, NOT INVALID KEY, END-OF-
PAGE, or NOT AT END-OF-PAGE phrase

e A START, REWRITE, or DELETE statement that includes the INVALID KEY or NOT
INVALID KEY phrase

e An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, or SUBTRACT) that
includes the ON SIZE ERROR or NOT ON SIZE ERROR phrase

e A STRING or UNSTRING statement that includes the ON OVERFLOW or NOT ON
OVERFLOW phrase

e A CALL statement that includes the ON OVERFLOW, ON EXCEPTION, or NOT ON
EXCEPTION phrase

e A SORT or MERGE statement that includes the ON ERROR phrase
Conditional expressions are fully explained in this section. COBOL statements, including
those that use conditional expressions, are explained in Sections 6 through 8.
Examples
IF A > B PERFORM PARA-1
ELSE PERFORM PARA-2.

These statements cause the statements in paragraph PARA-1 to be executed if the value
of A is greater than the value of B. If A is not greater than B, the statements in PARA-2
are executed.

ADD X, Y TO Z ON SIZE ERROR PERFORM SIZE-ERROR-PROC.
This statement adds the value of X to the value of Y and stores the result in Z. If, after
decimal point alignment, the absolute value of the result exceeds the largest value that

can be contained in Z, a size-error condition occurs. When a size-error condition occurs,
the procedures in SIZE-ERROR-PROC are executed, and the value of Z is not changed.

8600 1518-307

Elements of a Procedure

Compiler-Directing Statements and Sentences

A compiler-directing statement, which consists of a compiler-directing verb and its
operands, causes the compiler to take a specific action during compilation. The compiler-
directing verbs are COPY, REPLACE, and USE.

A compiler-directing sentence is a single compiler-directing statement terminated by a
period and followed by a space.

Examples

COPY ERROR-REC-PROC OF COB85.

This statement directs the compiler to copy the ERROR-REC-PROC portion of the library
program COBB85 into the source program that contains this COPY statement. The COPY
statement is processed before the resulting source program is processed.

FILE-ERROR SECTION.

FILE1-ERROR PARA.
USE AFTER STANDARD ERROR PROCEDURE ON FILEL.
MOVE ERROR-MSG TO ERROR1
WRITE PRINT-ERROR-REC.

This example directs the compiler to follow the error-handling procedures associated
with the USE statement after it completes the standard error routine of the system.

Delimited Scope Statements

Delimited scope statements are statements that include their explicit scope terminators.

Examples

ADD A TO B GIVING C END-ADD

This example adds the value of A to the value of B, and stores the result in C. The END-
ADD phrase explicitly terminates the scope of the ADD statement.

When a delimited scope statement is nested in another delimited scope statement with
the same verb, each explicit scope terminator terminates the statement begun by the
most recently preceding, and as yet unpaired, occurrence of that verb.

ADD A TO B GIVING C
SIZE ERROR
ADD A TO B GIVING OVER-SIZE END-ADD
PERFORM SIZE-ERR-PARA
END-ADD

This adds the value of A to the value of B, and stores the result in C. If the result exceeds
the size specified for C, a size error occurs, and the result of A added to B is stored in
OVER-SIZE and the procedures in SIZE-ERR-PARA are executed.

8600 1518-307 5-15

Elements of a Procedure

The first END-ADD in this series of statements terminates the scope of the ADD A TO B
GIVING OVER-SIZE statement. The second END-ADD terminates the scope of the ADD
A TO B GIVING C statement.

Categories of Verbs

Table 5-2 categorizes the COBOL verbs according to their functions. For a detailed
discussion of the specific Procedure Division verbs with examples of syntax, refer to
Sections 6 through 8. Refer to Volume 2: Product Interfaces for COBOL verbs intended
for use with various products.

Table 5-2. Categories of COBOL Verbs

Category Verb Function

Arithmetic ADD Sums two or more numeric operands
and stores the result.

COMPUTE Calculates an arithmetic expression
and stores the result.

DIVIDE Divides a numeric operand into
another operand and stores the
quotient and remainder.

INSPECT (TALLYING) Searches for and tallies the
occurrences of specified characters
in a data item.

MULTIPLY Multiplies numeric operands and
stores the result.

SUBTRACT Subtracts one or the sum of two or
more numeric operands from one or
more operands and stores the result.

Compiler-Directing COPY Incorporates text from a library
program into a COBOL source
program.

REPLACE Replaces source program text.
USE Specifies procedures for handling

input- output errors in addition to the
standard procedures provided by the
input-output control system.

5-16 8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category

Verb

Function

Conditional

ADD (ON SIZE ERROR,
NOT ON SIZE ERROR)

Sums two or more numeric operands
and stores the result. If a size-error
conditions occurs, specific
procedures are followed

CALL (ON OVERFLOW,
ON EXCEPTION, NOT ON
EXCEPTION)

Transfers control from one program
to another during program execution.
If the called program is not present,
specified procedures are followed.

COMPUTE (ON SIZE
ERROR, NOT ON SIZE
ERROR)

Calculates an arithmetic expression
and stores the result. If a size-error
condition occurs, specified
procedures are followed.

DELETE (INVALID KEY,
NOT INVALID KEY)

Removes a logical record from a
relative or indexed file. If the file does
not have the record indicated by the
key, specified procedures are
followed.

DIVIDE (ON SIZE ERROR,
NOT ON SIZE ERROR)

Divides one numeric operand into
another and stores the quotient and
remainder. If a size-error condition
occurs, specified procedures are
followed.

EVALUATE Causes multiple conditions to be
evaluated. Subsequent action of the
object program depends on the
results of the evaluations.

IF Evaluates a condition. Subsequent

action of the object program depends
on whether the value of the condition
is true or false.

LOCK (with AT LOCKED)

Locks a common data storage area
so that related processes cannot
access it. The AT LOCKED phrase
specifies statements to be performed
if the storage area is already locked.

MULTIPLY (ON SIZE
ERROR, NOT ON SIZE
ERROR)

Multiplies numeric operands and
stores the result. If a size-error
condition occurs, specified
procedures are followed.

PERFORM (UNTIL)

Transfers control to the specified
subroutine until the condition in the
UNTIL phrase is true.

8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category

Verb

Function

Conditional

READ (AT END, NOT AT
END, INVALID KEY, NOT
INVALID KEY)

For sequential access, it makes the
next logical record from a sequential
file available. For random access, it
makes a specific record from a mass-
storage file available. If the end of the
file is reached or if the file does not
contain the indicated key, specified
procedures are followed.

RETURN (AT END, NOT AT
END)

Causes the next record in a sort-
merge file to be read. If the end of
the file is reached, specified
procedures are followed.

REWRITE (INVALID KEY,
NOT INVALID KEY)

Logically replaces a record in a mass-
storage file. If the file does not
contain the record identified by the
indicated key, specified procedures
are followed.

SEARCH

Searches a table for a table element
that satisfies a specified condition
and adjusts the associated index-
name to point to that table element.

SORT (ON ERROR)

Sorts the contents of one or more
input files. If an error condition is
encountered, specific action can be
performed.

START (INVALID KEY, NOT
INVALID KEY)

Provides a logical position for a
relative or indexed file when the file
will be read sequentially. If the file
does not contain the indicated key,
specified procedures are followed.

STRING (ON OVERFLOW,
NOT ON OVERFLOW)

Provides juxtaposition of the partial or
complete contents of one or more
data items into a single data item.

SUBTRACT (ON SIZE
ERROR, NOT ON SIZE
ERROR)

Subtracts one or the sum of two or
more numeric operands from one or
more operands and stores the result.
If a size-error condition occurs,
specified procedures are followed.

8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category Verb Function

Conditional UNSTRING (ON Causes contiguous data items in a

OVERFLOW, NOT ON sending field to be separated and

OVERFLOW) placed into multiple receiving fields. If
the value of the pointer is less than 1
or greater than the sending field, or if
all the receiving fields have been
acted upon and the sending field
contains characters that have not
been examined, specified procedures
are followed.

WRITE (INVALID KEY, NOT Releases a logical record for an

INVALID KEY, END-OF- output or input-output file. If the file

PAGE, NOT END-OF- does not contain the indicated key, or

PAGE) if an end-of-page condition exists,
specified procedures are followed.

ACCEPT (DATE, DAY, DAY- Makes low-volume data available to a

OF-WEEK, TIME) specified data item. Data from the
DATE, DAY, DAY-OF-WEEK, or TIME
register is moved to the specified
item.

INITIALIZE Sets selected types of data fields to
predetermined values.

INSPECT (REPLACING, Searches for and replaces

CONVERTING) occurrences of specified characters
in a data item.

MOVE Transfers data, according to the rules
of editing, to one or more data areas.

STRING Provides juxtaposition of the partial or
complete contents or one or more
data items into a single data item.

UNSTRING Causes contiguous data items in a
sending field to be separated and
placed into multiple receiving fields.

ACCEPT Makes low-volume data available to a
specified data item from an ODT.

ADD (without ON SIZE Sums two or more numeric operands

ERROR, NOT ON SIZE and stores the result.

ERROR)

Imperative ALLOW Readies an interrupt procedure for
execution when its associated events
are activated.

ATTACH Associates an interrupt procedure

with an event.

8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category Verb Function
Imperative ALTER Modifies a predetermined sequence
of operations.

CALL (without ON Transfers control from one program
OVERFLOW, ON to another during program execution.
EXCEPTION, NOT ON
EXCEPTION)
CANCEL Ensures that the next time a program

referenced in a CALL statement is
called, the program will be in its initial

state.
CAUSE Initiates specified events.
CHANGE Modifies a file, task, or library
attribute.
CLOSE Ends the processing of a file and

specifies the disposition of the file
and the device to which the file is

assigned.

COMPUTE (without ON Calculates an arithmetic expression

SIZE ERROR, NOT ON and stores the result.

SIZE ERROR)

CONTINUE task-variable Reinstates a synchronous, dependent
process that was previously initiated
by a CALL statement from another
program and then exited by an EXIT
PROGRAM statement.

COPY Incorporates text from a library
program into the program that
contains the COPY statement.

DELETE (without INVALID Removes a logical record from a

KEY, NOT INVALID KEY) relative or indexed file.

DETACH Dissociates an interrupt procedure
from an event or a task variable from
a task.

DISALLOW Prevents an interrupt procedure from
executing when its associated event
is activated.

DISPLAY Causes low-volume data to be
transferred to an ODT.

DIVIDE (without ON SIZE Divides one numeric operand into

ERROR, NOT ON SIZE another and stores the quotient and

ERROR) remainder.

5-20 8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category

Verb

Function

Imperative

EXIT

Indicates a logical end for a series of
sections or paragraphs referenced by
a PERFORM statement.

EXIT PROGRAM

Indicates the logical end of a called
program.

GO

Unconditionally transfers control from
one procedure to another. Control is
not implicitly returned to the
statement following the GO
statement.

INITIALIZE

Sets selected types of data fields to
predetermined values.

INSPECT

Searches for and can tally or replace
specified characters in a data item.

LOCK (without AT
LOCKED)

Locks a common data storage area
so that related processes cannot
access it

MERGE

Merges two or more identically
sequenced files on a set of specified
keys. The merged records then
become available to an output
procedure or output file.

MOVE

Transfers data, according to the rules
of editing, to one or more data areas.

MULTIPLY (without ON
SIZE ERROR, NOT ON

Multiplies numeric operands and
stores the result.

SIZE ERROR)

OPEN Makes a file available for processing.

PERFORM Unconditionally transfers control to
the specified subroutine and returns
control to the statement following the
PERFORM statement.

PROCESS Initiates a separately compiled

program as an asynchronous,
dependent process

READ (without AT END or
INVALID KEY, NOT AT
END, NOT INVALID KEY)

For sequential access, it makes the
next logical record from a sequential
file available. For random access, it
makes a specific record from a mass-
storage file available.

8600 1518-307

5-21

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category Verb Function

RELEASE Transfers records to the initial phase
of a sort operation and writes records
to a sort file.

Imperative REPLACE Replaces source program text.

RESET Turns off specified events.

REWRITE (without Logically replaces a record in a mass-

INVALID KEY, NOT storage file. If the file does not

INVALID KEY) contain the indicated key, specified

procedures are followed.

RUN Initiates a separately compiled
program as an asynchronous,
independent process.

SEARCH (without AT END Searches a table for a table element
or WHEN) that satisfies a specified condition
and adjusts the associated index-
name to point to that table element.

SEEK Repositions a file to a specified
record.
SET Establishes reference points for table

handling operations by setting
indexes associated with table
elements; can alter the value of
external switches; and can alter the
value of the conditional variables.

SORT Sequences a file on a set of specified
keys and makes the sort file available
to output procedures or output files

START (without INVALID Provides a logical position for a
KEY, NOT INVALID KEY) relative or indexed file when the file
will be read sequentially. If the file
does not contain the indicated key,
specified procedures are followed.

STOP Suspends the execution of a program
either permanently or temporarily.
STRING (without ON Provides juxtaposition of the partial or
OVERFLOW, NOT ON complete contents of one or more
OVERFLOW) data items into a single data item.
SUBTRACT (without SIZE Subtracts one or the sum of two or
ERROR, NOT ON SIZE more numeric operands from one or
ERROR) more operands and stores the result.

5-22 8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category Verb Function

UNLOCK Frees a common storage area that
was previously restricted by a LOCK
statement.

UNSTRING (without ON Causes contiguous data items in a

OVERFLOW, NOT ON sending field to be separated and

OVERFLOW) placed into multiple receiving fields.

Imperative WAIT Suspends program execution for a

specified period of time.

WRITE (without INVALID
KEY or END-OF-PAGE,
NOT INVALID KEY, NOT
AT END-OF-PAGE)

Releases a logical record for an
output of input-output file.

Input-Output

ACCEPT (identifier)

Transfers low-volume data from an
ODT to a specified data item.

CLOSE

Ends the processing of a file,
specifies the disposition of the file
and of the device to which the file is
assigned.

DELETE

Removes a logical record from a
relative or indexed file.

DISPLAY

Causes low-volume data to be
transferred to an ODT.

OPEN

Makes a file available for processing.

READ

For sequential access, it makes the
next logical record from a sequential
file available. For random access, it
makes a specific record from a mass-
storage file available.

REWRITE

Logically replaces a record in a mass-
storage file.

SEEK

Repositions a file to a specified
record.

START

Provides a logical position for a
relative or indexed file when the file
will be read sequentially.

STOP (literal)

Suspends the execution of a
program. The literal is communicated
to the operator, and execution
continues with the next executable
statement in the program.

8600 1518-307

5-23

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category

Verb

Function

WRITE

Releases a logical record for an
output or input-output file.

Interprogram
Communication

CALL

Transfers control from one program
to another during program execution.

CANCEL

Ensures that the next time a program
referenced in a CALL statement is
called, the program will be in its initial
state.

Interprogram
Communication

EXIT PROGRAM

Indicates the logical end of a called
program.

No Operation

CONTINUE

Indicates that no executable
statement is present.

EXIT

Indicates a logical end to a series of
sections or paragraphs referenced by
a PERFORM statement.

Ordering

MERGE

Merges two or more identically
sequenced files on a set of specified
keys. The merged records then
become available to an output
procedure or output file.

RELEASE

Transfers records to the initial phase
of a sort operation and writes records
to a sort file.

RETURN

Causes the next record in a sort-
merge file to be read.

SORT

Sequences a file on a set of specified
keys and makes the sort file available
to output procedures or to output
files.

Procedure Branching

ALTER

Modifies a GO TO statement to a
different destination.

CALL

Transfers control from one program
to another during program execution.

EXIT

Indicates a logical end to a series of
sections or paragraphs referenced by
a PERFORM statement.

EXIT PROGRAM

Indicates the logical end of a called
program.

5-24

8600 1518-307

Elements of a Procedure

Table 5-2. Categories of COBOL Verbs

Category Verb Function
GO Unconditionally transfers control to a
procedure-name. Control is not
implicitly returned to the statement
following the GO statement.
PERFORM Unconditionally transfers control to
the specified subroutine and returns
control to the next statement
following the PERFORM statement.
Scope Termination END-ADD Delimits the scope of its
END-CALL corresponding statement.
END-COMPUTE
END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-LOCK

END-MULTIPLY
END-PERFORM
END-READ
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE

String Handling

INSPECT (REPLACING,
CONVERTING, TALLYING)

Searches for and replaces the
occurrences of specified characters
in a data item.

STRING

Provides juxtaposition of the partial or
complete contents or one or more
data items into a single data item.

UNSTRING

Causes contiguous data items in a
sending field to be separated and
placed into multiple receiving fields.

Table Handling

SEARCH

Searches a table for a table element
that satisfies a specified condition
and adjusts the associated index-
name to point to that table element.

SET

Establishes reference points for table
handling operations by setting
indexes associated with table
elements; can alter the value of
external switches; and can alter the
value of the conditional variables.

8600 1518-307

5-25

Arithmetic Expressions

Arithmetic Expressions

An arithmetic expression contains combinations of identifiers and literals, which are
separated by arithmetic operators and parentheses.

Identifiers and literals that appear in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic operations can be
performed. Numeric literals cannot exceed 23 digits when used for arithmetic operations.

An arithmetic operator is a single character or a fixed two-character combination that
indicates a particular arithmetic operation. Binary operators link two variables together,
such as in A + B. Unary operators contain only one variable, such as +A or —-B.

The binary arithmetic operators are represented by specific characters, as follows:

Operator Meaning

+ Addition

- Subtraction

* Multiplication
/ Division
** Exponentiation

The unary arithmetic operators are represented by specific characters, as follows:

Operator Meaning

+ The effect of multiplication by the numeric literal +1

- The effect of multiplication by the numeric literal -1

Note that binary arithmetic operators must be preceded and followed by a space.

Any arithmetic expression can be preceded by a unary operator.

Parentheses can be used in arithmetic expressions to change the order in which
expressions are evaluated. Refer to “Precedence in Evaluation of Arithmetic
Expressions” in this section for more information.

There must be a one-to-one correspondence between left and right parentheses of an

arithmetic expression. That is, each left parenthesis is to the left of its corresponding
right parenthesis.

5-26 8600 1518-307

Arithmetic Expressions

Allowed Combinations of Elements

Table 5-3 shows the permissible combinations of identifiers and literals, arithmetic
operators, and parentheses in an arithmetic expression.

Table 5-3. Combination of Symbols in Arithmetic Expressions

Second Symbol
First Identifier * [% Unary + ()
Symbol or Literal -+ or -
Variable — OK — — OK
* | x% OK — OK OK —
+ —
Unary + OK — — OK —
(OK — OK OK —
) — OK — — OK

An arithmetic expression can begin only with a left parenthesis, plus sign, minus sign, or
an identifier or literal and can end only with a right parenthesis or an identifier or literal.

Examples

The following examples show valid arithmetic expressions.
COMPUTE X =Y ** 10

This first example causes the value of the identifier Y to be raised to the power of the
numeric literal 10 and stored in X.

MULTIPLY -6 BY Z

This second example causes the value of Z to be multiplied by —6. The -6 is a
combination of a unary and a numeric literal.

SUBTRACT Discount FROM Item-Cost GIVING Sale-Price

This third example causes identifier Discount to be subtracted from identifier ltem-Cost
and the result to be stored in identifier Sale-Price.

8600 1518-307 5-27

Arithmetic Expressions

Precedence in Evaluation of Arithmetic Expressions

Arithmetic expressions are evaluated as follows:

5-28

Expressions in parentheses are evaluated first:
COMPUTE A = B + (C - D)

D is subtracted from C and the result is added to B.
Within nested parentheses, the sequence of operations works outward from the
innermost parentheses:

COMPUTE A =B + (C - (D + E))

D and E are added first. The result is subtracted from C. This result is then added
to B.

When parentheses are not used, or parenthesized expressions are at the same
hierarchical level, the sequence of execution is as follows:
— Unary plus and minus (+, -)
— Exponentiation (**)
— Multiplication and division (*, /)
— Addition and subtraction (+, -)
COMPUTE A =B ** .5 * C - D

Exponentiation is performed first, which results in the square root of B. The result is
multiplied by C, and then D is subtracted.

Parentheses help either to eliminate ambiguities in logic where consecutive
operations of the same level appear, or to modify the normal sequence of execution
in expressions where it is necessary to have some deviation from the normal
precedence:

COMPUTE A = B + (C - D) + (E - F)

D is subtracted from C; then F is subtracted from E. B is added to the result of C - D,
which is then added to the result of E - F.

When the sequence of execution is not specified by parentheses, the order of
execution of consecutive operations of the same hierarchical level is from left to
right:

COMPUTE X =A+B /C+ (D** E) *F -G

8600 1518-307

Arithmetic Expressions

This example would be interpreted as:
((A+ (B /C)+ ((D**E)*F)) -G

First the exponentiation (D ** E) is performed; then the multiplication of (D ** E) by F
and division (B / C). Addition and subtraction are last, proceeding from left to right, so
A'is first added to (B / C). The sum is added to the next group. Finally, G is subtracted
from the resulting value.

Rules for Exponentiation

The following rules apply to the evaluation of exponents in an arithmetic expression:

You cannot have the value of an expression be zero raised to any power. For
example, you cannot have A ** 2, if the value of Ais 0.

You cannot have the value of an expression be raised to a power of zero. For
example, you cannot have A ** B, if the value of B is O.

Either case causes a size-error condition. Refer to “SIZE ERROR Phrase” in this
section for more information.

If the evaluation yields both a positive and a negative real number, the value returned
as the result is the positive number. For example, in 4 ** .5, which calculates the
square root of 4, the result is +2 or —2. The value returned and stored as the result is
+2.

If the result of an evaluation is not a real number, a size-error condition exists. For
example, in A ** 5, if the value of A is a negative number, the result would be an
imaginary number, and a size-error condition would exist.

If an identifier to store the value of a result is not associated with an expression, an
intermediate data item will be used. Intermediate data items are described in the
following subsection.

For all noninteger operands, the operand value is scaled into a double-precision,
floating-point value as part of the preparation for the operation. Various arithmetic
operations are performed during the operation itself. The result of exponentiation
should always be regarded as an approximation. Performing the appropriate
calculations directly within the program might produce more precise results than
exponentiation, particularly when the exponent is known to be an integer.

8600 1518-307 5-29

Arithmetic Expressions

Intermediate Data Item

An intermediate data item is a signed numeric data item provided by the compiler to
contain the values developed during evaluation of an arithmetic expression.

The contents of the intermediate data item are then moved to the resultant-identifier,
which is a user-defined data item that contains the result of the arithmetic operation,
according to the rules for the MOVE statement. (Refer to “MOVE Statement” in Section
7 for detailed information.) Rounding is performed, if specified, and the size-error
condition determined only during this move.

An intermediate data item occurs when an arithmetic statement involves several
operations. Consider the following example:

COMPUTE X = A * B + C

This example requires an intermediate item to contain the value of A * B; then C is added
to this intermediate item to produce the final result.

Limitations on Intermediate Data Items

The length of an intermediate data item is limited to 23 decimal digits. It contains the
leading zeros and the leftmost digits of the value produced in the arithmetic operation.

If the size of the result exceeds the size of the intermediate data item, the result is
truncated on the right to the size of the intermediate data item. The truncated value is
used in the remainder of the computation.

Addition and subtraction operations have the following limitation: When the two
operands aligned on their decimal points require a field longer than 23 decimal digits,
truncation occurs before the operation is performed. The right end of the longer operand
will be truncated, with the most significant 23 decimal digits saved.

Example
COMPUTE X = A+ B

The value of A is 11.000000000123456789012, and the value of B is 11111.23.

A contains 23 digits, which is the maximum allowed for an intermediate data item. \When
A and B are aligned on their decimal points, the sum will contain more than 23 digits,
because B contains five digits before the decimal point. The value of A is truncated on
the right end by three digits before the addition will be performed. The value of A
becomes 11.000000000123456789.

5-30 8600 1518-307

Arithmetic Expressions

General Rules for Arithmetic Statements

The COBOL arithmetic statements are the
o ADD statement, which sums two or more numeric operands and stores the result

e COMPUTE statement, which calculates an arithmetic expression and stores the
result

o DIVIDE statement, which divides a numeric operand into another and stores the
quotient and remainder

e MULTIPLY statement, which multiplies numeric operands and stores the result

e SUBTRACT statement, which subtracts one or the sum of two or more numeric
operands from one or more operands and stores the result

These statements have features in common regarding data descriptions, operand size
limit, multiple results, the ROUNDED phrase, and the ON SIZE ERROR phrase.

When a REAL or a DOUBLE data item, or an intermediate result, is assigned to a
DISPLAY, COMP, or BINARY data item in an Arithmetic statement, precision can be lost
if the REAL or DOUBLE data item, or the intermediate result, represents a value that the
machine must approximate. For more information, refer to “USAGE IS REAL" and
"USAGE IS DOUBLE" in “Data Description Entry Format 1" in Section 4.

Data Descriptions

The data descriptions of the operands need not be the same; any necessary conversion
and decimal point alignment is supplied throughout the calculation.

Data to be used in arithmetic operations, and data that is to be edited for a report, must
be defined in the Data Division as numeric data.

Example

IDENTIFICATION DIVISION.
PROGRAM-ID. ADD-EXAMPLE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MATH-ITEMS.

05 AA PIC 99.

05 BB PIC 9v999.
01 OUT-ITEM.

05 CC PIC Z2Z77.999.

PROCEDURE DIVISION.

ADD AA TO BB GIVING CC END-ADD.
STOP RUN.

8600 1518-307 5-31

Arithmetic Expressions

The data items AA, BB, and CC are described in the Data Division. The values for AA and

BB are:
AA =02
BB = 1.005

CC would be 3.005 after the calculation and decimal point alignment.

Operand Size Limit

The maximum size of each operand is 23 decimal digits. An operand that exceeds the
size limit causes a syntax error.

Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements can have multiple
results. Such statements behave as though they had been written in the following way:

e A statement whose execution accesses all data items that are part of the initial
evaluation of the statement, performs any necessary arithmetic or combining of
these data items and stores the result of this operation in a temporary location. See
the individual statements for the rules indicating which items are part of the initial
evaluation.

e A sequence of statements whose execution transfers or combines the value in this
temporary location with each single resulting data item. These statements are
considered to be written in the same left-to-right sequence that the multiple results
are specified.

For example, assume that temp is an intermediate data item provided by the compiler.
The multiple results of the statement ADD a, b, ¢ TO ¢, d (c), e are equivalent to:

ADD a, b, ¢ GIVING temp
ADD temp TO c

ADD temp TO d (c)

ADD temp TO e

And the multiple results of the statement MULTIPLY a (i) BY i, a (i) are equivalent to:
MOVE a (i) TO temp

MULTIPLY temp BY i
MULTIPLY temp BY a (i)

5-32 8600 1518-307

Arithmetic Expressions

ROUNDED Phrase

The ROUNDED phrase is used to round the result from an arithmetic operation so that it
fits into its specified data item. The ROUNDED phrase increases the absolute value of
the result from the COMPUTE statement by adding 1 to its low-order digit whenever the
absolute value of the most significant digit of the excess is greater than or equal to 5.
(The excess refers to the number of digits greater than the size of the data item in which
the result is to be stored.)

Assume, for example, that you created a data item that can have two numbers after the
decimal point. The result of the COMPUTE statement yields four numbers after the
decimal point, “.5678". To fit into the defined data item, the ROUNDED phrase rounds
".5678" to ".57".

The ROUNDED phrase often requires a resultant-identifier to store the final results of the
arithmetic operation. Truncation occurs if, after decimal point alignment, the number of
places in the fraction of the result of an arithmetic operation is greater than the number
of places provided for the fraction of the resultant-identifier. When using large BINARY
EXTENDED integers in the calculation of the source expression, an overly large result can
occur while scaling for decimal alignment and subsequent rounding. It is suggested that
the ON SIZE ERROR phrase be used with rounded COMPUTE results to detect and deal
with this possibility.

Example

Data Division.

01 IN-RECORD.
05 hourly-wage PIC 999V99.
05 no-of-hours PIC 999V99.
01 OUT-RECORD.
05 Gross-pay PIC 7277779.99.

PROCEDURE DIVISION.
MULTIPLY hourly-wage BY no-of-hours GIVING Gross-pay ROUNDED.

The values are as follows:

hourly-wage = 7.50
no-of-hours = 45.25

The actual result of the multiplication is 339.3750, and the result is rounded prior to being
stored in Gross-pay as 339.38.

8600 1518-307 5-33

Arithmetic Expressions

When the low-order integer positions in a resultant-identifier are represented by the
character Pin the PICTURE clause, which implies an assumed decimal point location,
rounding or truncation occurs relative to the rightmost integer position for which storage
is allocated. Refer to "PICTURE Clause” in Section 4 for more information.

Example

05 C1 PIC 9PP.
05 C2 PIC 9PP.

ADD A B Giving Cl1.
ADD A B Giving C2 ROUNDED.

The values are as follows:

A =100
B =50

The result of the calculation would be
C1 =100

C2 =200

5-34 8600 1518-307

Arithmetic Expressions

SIZE ERROR Phrase

The SIZE ERROR phrase enables you to specify procedures to be executed when a size
error condition exists. Size error conditions occur under the following circumstances:

If, after decimal point alignment, the absolute value of a result exceeds the largest
value that can be contained in the associated resultant-identifier.

e If, in the case noted above, the USAGE IS BINARY clause is specified for the
resultant-identifier, and the value exceeds what can be contained in the resultant-
identifier implied by the associated decimal PICTURE character-string.

e Division by zero. The execution of the program is abnormally terminated if the SIZE
ERROR phrase is not specified.

¢ \Violation of the rules for evaluation of exponentiation. This terminates the arithmetic
operation.

The size error condition applies only to the final results of an arithmetic operation and
does not apply to intermediate results, except in the DIVIDE and COMPUTE statements.
An intermediate result of a COMPUTE statement can exceed the 23-digit length limit of
the intermediate data item, but a size error condition does not result unless the final
results of the COMPUTE statement exceed the limit of the resultant-identifier. Such a
condition can produce unexpected results.

If the SIZE ERROR phrase is not used and a size error condition occurs, the value of the
affected resultant-identifiers is undefined. Values of resultant-identifier(s) for which no
size error condition occurs are unaffected by size errors that occur for the other resultant-
identifier(s) during the execution of this operation.

If the SIZE ERROR phrase is used and a size error condition occurs, then the values of
resultant-identifier(s) affected by the size errors are not altered. After completion of this
operation, the imperative statement in the SIZE ERROR phrase is executed.

If the ROUNDED phrase is specified, rounding takes place before checking for a size
error. When such a size error condition occurs, the subsequent action depends on
whether or not the SIZE ERROR phrase is specified.

If you use the CORRESPONDING phrase in an ADD or SUBTRACT statement and any of
the individual operations produces a size error condition, the imperative statement in the
SIZE ERROR phrase is not executed until all of the individual additions and subtractions
are completed.

8600 1518-307 5-35

Arithmetic Expressions

OFFSET Function

OFFSET is a numeric function that returns a count of the number of characters that
precede a data item in the logical record in which the data item is defined.

If data-name refers to a packed numeric data item that is not aligned on a character
boundary, then the returned value is equal to the number of characters preceding the
character with which data-name begins. If data-name is a record-name or a 77-level item,
the value returned is 0. Data-name can be qualified.

Example

Given the following data declaration:

77 CURRENT-OFFSET PIC 9999.
01 PERSONNEL-GRP.

05 NAME PIC X(16).
05 EMPLOYEE-NUMBER PIC 9999.
05 JOB-TITLE PIC X(16).
05 DATES PIC X(16).
05 SUPP-FILE-NO PIC 9999.

The following statement sets CURRENT-OFFSET to a value of 20:

COMPUTE CURRENT-OFFSET = OFFSET (JOB-TITLE OF PERSONNEL-GRP).

5-36 8600 1518-307

Boolean Expressions

8600 1518-307 5-37

Boolean Expressions

5-38

The following table shows the permissible combinations of operands, operators, and
parentheses in a Boolean expression.

Second Symbol

B-AND
First Identifier B-OR
Symbol or Literal B-XOR B-NOT ()

Identifier — OK — — —
or literal
B-AND, OK = OK OK —
B-OR,
B-XOR
B-NOT OK — — OK —

(OK = OK OK —

8600 1518-307

Conditional Expressions

Conditional Expressions

Conditional expressions contain conditions to be tested. The object program selects
between alternate paths of control depending upon the truth value of the condition.

You can specify conditional expressions in the following statements:

Use a conditional expression

inthe ... To...

EVALUATE statement Evaluate multiple conditions. Subsequent action of the
object program depends on the results of the
evaluations.

IF statement Evaluate a single condition. Subsequent action of the

object program depends on whether the value of the
condition is TRUE or FALSE.

PERFORM statement (with Transfer control to one or more procedures until a

the UNTIL phrase) particular condition specified in the UNTIL phrase is
TRUE.

SEARCH statement Search a table for a table element that satisfies a

specified condition and adjusts the associated index to
indicate that table element.

Conditions associated with conditional expressions can be one of the following types:
e Simple conditions

In a simple condition, a comparison is made. The value of the comparison is either
TRUE or FALSE.

e Complex conditions

In a complex condition, one or more logical operators (AND, OR, and NOT) act upon
one or more conditions. The value of a complex condition is the truth value that
results from the interaction of all the comparisons.

Conditions can be enclosed in any number of paired parentheses.

8600 1518-307 5-39

Conditional Expressions

Simple Conditions

A simple condition has a truth-value of either TRUE or FALSE. The types of simple
conditions that you can use are

e Relation

e C(lass

e Condition-name

e Switch status

e Sign
e FEvent
e Boolean

Relation Conditions

A relation condition causes a comparison of two operands. The operands can be a literal,
a task attribute, a data item referred to by an identifier, the value resulting from an
arithmetic expression, or an index-name. A relation condition has a truth value of TRUE if
the relation exists between the operands.

A relation condition must contain at least one reference to a variable. Otherwise, there is

no guestion as to the truth-value of the condition, and no reason to have the condition.
Conseqguently, you cannot compare one literal with another literal.

5-40 8600 1518-307

Conditional Expressions

General Format for Relation Conditions

GREATER THAN
IS [NOT]
- >
identifier-1 LESS THAN identifier-2
IS [NOT]
arithmetic- - < arithmetic-
expression-1 expression-2
literal-1 EQUAL TO literal-2
IS [NOT]
index-name-1 ___ = index-name-2
task-attribute- task-attribute-
identifier-1 GREATER THAN OR EQUAL TO identifier-2
IS
file-attribute- >= file-attribute-
identifier-1 identifier-2
boolean- LESS THAN OR EQUAL TO boolean-
expression-1 IS - expression-2
<=

The first operand in the condition is called the subject of the condition.

identifier-1
literal-1
index-name-1

|dentifiers, literals, and index-names are user-defined words. The hyphen (-) cannot
appear as the first or last character in a user-defined word.

arithmetic-expression-1

Arithmetic-expression-1 refers to the result of an arithmetic operation.

task-attribute-identifier-1

Task-attribute-identifier-1 specifies one of the task attributes. For the syntax of the task
attribute identifier, refer to Format 5 of the CHANGE statement in Section 6.

file-attribute-identifier-1
File-attribute-identifier-1 specifies one of the file attributes. For the syntax of the file

attribute identifier, refer to Section 12.

boolean-expression-1

Boolean-expression-1 refers to the result of a Boolean expression.

8600 1518-307 5-41

Conditional Expressions

IS [NOT] GREATER THAN
>

IS [NOT] LESS THAN

<

IS [NOT] EQUAL TO

IS GREATER THAN OR EQUAL TO
> =

IS LESS THAN OR EQUAL TO

< =

These relational operators specify the type of comparison to be made in a relation
condition.

A space must precede and follow the first reserved word of the relational operator.

NOT, when used, determines the test to be true if the subject does not meet the
specified relation. For example, IS NOT LESS THAN would be TRUE if the subject were
equal to or greater than the object.

The second operand in the condition is called the object of the condition.

identifier-2
index-name-2
literal-2

Identifiers, literals, and index-names are user-defined words. The hyphen (-) cannot
appear as the first or last character of a user-defined word.

arithmetic-expression-2

Arithmetic-expression-2 refers to the result of an arithmetic operation.

task-attribute-identifier-2

Task-attribute-identifier-2 is one of the task attributes, the value of which you are
comparing to the value of the attribute specified by task-attribute-identifier-1. For the
syntax of the task attribute identifier, refer to Format 5 of the CHANGE statement in
Section 6.

file-attribute-identifier-2

File-attribute-identifier-2 is one of the file attributes, the value of which you are comparing
to the value of the attribute specified by file-attribute-identifier-1. For the syntax of the file
attribute identifier, refer to Section 12.

boolean-expression-2

Boolean-expression-2 refers to the result of a boolean expression.

5-42 8600 1518-307

Conditional Expressions

Details

You can compare two numeric operands regardless of the formats indicated in their
respective USAGE clauses. The USAGE clause in the Data Division specifies the format
of a data item in computer storage, not the actual format of the numeric operand. For
more information on the USAGE clause, refer to Section 4.

For comparisons that involve nonnumeric operands, index-names or index data items,
the operands must have the same usage. If either of the operands is a group item, the
nonnumeric comparison rules apply. Refer to “Comparison of Nonnumeric Operands”
later in this section for more information.

A relation condition involving operands of class Boolean is a Boolean relation condition.
An operand of class Boolean can be compared with another operand of class Boolean for
equality (EQUAL and NOT EQUAL) only. Comparison of operands of class Boolean is a
comparison of Boolean values, regardless of usage.

Examples
IF JOB-NO < 10 MOVE "ADMINISTRATIVE" TO CLASS.

This first example compares the identifier JOB-NO and the literal 10.
IF A + B >= C PERFORM C-PROC.

This second example compares the result of the arithmetic expression A + B and the
identifier C.

PERFORM Year-End-Calc THRU Total-Proc VARYING Year FROM 1948 BY 1 UNTIL
Year = 1985 END-PERFORM.

This third example executes the procedures in Year-End-Calc through Total-Proc until the
comparison of the index-name Year and the literal 1985 is TRUE.

Comparison of Numeric Operands

Numeric operands are compared according to their algebraic value, that is, the relation of
the value to zero. Zero is a unique value regardless of the sign. That is, a plus or minus
zero equals zero. The length of the literal or arithmetic expression operands, in number of
digits represented, is not significant.

Numeric operands can be compared regardless of the formats described in their USAGE
clauses. When needed, the numeric items are converted to their algebraic values. If the
numeric item contains characters other than the digits 0 through 9, a conversion to valid
numeric values occurs before the comparison is done.

Unsigned numeric operands are considered positive for purposes of comparison.

8600 1518-307 5-43

Conditional Expressions

Comparisons involving long numeric operands are restricted to the following:

e Comparing a long numeric operand against O (zero) or an approximate figurative
constant

e Comparing a long numeric operand for equality or nonequality against a long numeric

operand of equal size and usage

Numeric Comparisons Involving HIGH-VALUES and LOW-VALUES

On Unisys V Series platforms, the rules and behavior for comparing these figurative
constants to numeric data items is different than on Unisys A Series platforms. Tables
5-4 and 5-5 describe the results of moving HIGH-VALUES or LOW-VALUES to a data
item of a certain type with a specific type of sign field.

Table 5-4. Numeric Comparisons Involving HIGH-VALUES

Platform

Data Value A Series
and Field A Series A Series COBOLS85 V Series
Type COBOL74 COBOLS85 with COBOL74

FIGCONST

set
COMP Syntax Error Syntax Error TRUE Syntax Error
Unsigned
COMP Syntax Error Syntax Error Syntax Error Syntax Error
TRAILING
COMP Syntax Error Syntax Error Syntax Error Syntax Error
LEADING
COMP Syntax Error Syntax Error Syntax Error Syntax Error
TRAILING
SEPARATE
COMP Syntax Error Syntax Error Syntax Error Syntax Error
LEADING
SEPARATE
DISPLAY FALSE FALSE TRUE TRUE
Unsigned
DISPLAY FALSE FALSE TRUE TRUE
TRAILING
DISPLAY FALSE FALSE TRUE TRUE
LEADING
DISPLAY FALSE FALSE TRUE TRUE
TRAILING
SEPARATE
DISPLAY FALSE FALSE TRUE FALSE
LEADING
SEPARATE

5-44

8600 1518-307

Conditional Expressions

Table 5-5. Numeric Comparisons Involving LOW-VALUES

Platform

A Series
Data Value COBOLS85
and Field A Series A Series with V Series
Type COBOL74 COBOLS85 FIGCONST COBOL74

set
COMP Syntax Error Syntax Error TRUE Syntax Error
Unsigned
COMP Syntax Error Syntax Error Syntax Error Syntax Error
TRAILING
COMP Syntax Error Syntax Error Syntax Error Syntax Error
LEADING
COMP Syntax Error Syntax Error Syntax Error Syntax Error
TRAILING
SEPARATE
COMP Syntax Error Syntax Error Syntax Error Syntax Error
LEADING
SEPARATE
DISPLAY FALSE FALSE TRUE TRUE
Unsigned
DISPLAY FALSE FALSE FALSE FALSE
TRAILING
DISPLAY FALSE FALSE FALSE FALSE
LEADING
DISPLAY FALSE FALSE FALSE FALSE
TRAILING
SEPARATE
DISPLAY FALSE FALSE FALSE FALSE
LEADING
SEPARATE

8600 1518-307

5-45

Conditional Expressions

Comparison of Nonnumeric Operands

A comparison of nonnumeric operands, or one numeric and one nonnumeric operand, is
made according to a specified collating sequence of characters. Refer to “OBJECT-
COMPUTER Paragraph” in Section 3 for information on collating sequences.

The size of an operand is the total number of standard data format characters in the
operand. A numeric and a nonnumeric operand can be compared only when their usage
is the same, such as in a comparison of two operands whose usage is DISPLAY. If the
numeric item contains characters other than the digits 0 through 9, no conversion to valid
numeric values occurs before the comparison is done.

Compared operands need not be equal in size, because the comparison proceeds as
though the shorter operand were extended on the right by enough spaces to make the
operands of equal size.

Comparison of Undigit Literals and Numeric Operands

You can compare undigit literals with numeric operands on the basis of equality or
nonequality. Comparisons involving greater than or less than operators are not allowed.
Observe the following rules:

Only unsigned integers can be compared with undigit literals.

The PICTURE clause for the numeric operand cannot contain any editing characters
or the characters S, V, or P.

Binary and real items cannot be used.

The undigit literal must be of the same length as the numeric data item with which it
is being compared.

— For packed items (COMP), there must be as many hex digits as specified in the
PICTURE for the numeric data item.

— For items with a usage of DISPLAY, there must be two hex digits for each
number position in the item's definition.

Numeric Operands in Nonnumeric Comparisons

A numeric operand can be an integer data-item, non-integer data-item, or literal.

Example

01 Job-Data.

05 Job-No PIC X(3).
05 Job-Class PIC X(10).

Working-Storage Section.
01 Field-1 PIC 999 Value Is 200.

IF Job-No = Field-1 PERFORM 200-Proc.

In the IF statement, Job-No is a nonnumeric data item and Field-1 is a numeric field.

8600 1518-307

Conditional Expressions

If the nonnumeric operand is an elementary data item or a nonnumeric literal, the
numeric operand is treated as though it had been moved to an elementary alphanumeric
data item of the same size as the numeric data item (in standard data format characters)
ignoring the decimal point, if any. The contents of this alphanumeric data item are then
compared to the nonnumeric operand. For detailed information on MOVE rules and data
item descriptions, refer to “MOVE Statement” in Section 7 and the “PICTURE Clause” in
Section 4.

In the preceding example, Job-No is an elementary alphanumeric data item that consists
of three characters. For the comparison, the numeric operand Field-1 is also considered
an alphanumeric data item of three characters.

If the nonnumeric operand is a group item, the numeric operand is treated as though it
were moved to a group item of the same size as the numeric data item (in standard data
format characters) ignoring the decimal point, if any. Then the contents of this group item
were compared to the nonnumeric operand. Consider the following example, which uses
data items from the preceding example:

IF Job-Data = Field-1 PERFORM Print-Proc.

Job-Data is a group item, and Field-1 will be considered as 13 alphanumeric characters in
length.

A noninteger numeric operand cannot be compared to a nonnumeric operand.
If Job-No contains 102, the result of the comparison is true.

How Comparisons Are Nade

The comparison proceeds by comparing characters in corresponding character positions.
The evaluation starts from the high-order end and continues until either a pair of unequal
characters is encountered or the low-order end of the operand is reached, whichever
comes first.

The operands are equal if all pairs of characters compare equally when the low-order end
is reached.

The first encountered pair of unequal characters is compared to determine their relative

positions in the collating sequence. The operand that contains the character positioned
higher in the collating sequence is recognized as the greater operand.

8600 1518-307 5-47

Conditional Expressions

Comparisons Involving National Operands

A comparison of national operands is made according to a specified collating sequence of
characters. For more information on collating sequences, refer to “OBJECT-COMPUTER
Paragraph” in Section 3.

The size of an operand is the total number of national standard data format characters in
the operand.

Compared operands need not be equal in size, because the comparison proceeds as
though the shorter operand were extended on the right by enough space to make the
operands of equal size.

Comparisons Involving Index-Names, Index Data Items

5-48

An index-name is a user-defined word that names an index associated with a specific
table of data. Index-names are defined by an INDEXED BY phrase of the OCCURS
clause. An index data item contains values associated with an index-name. It is an
elementary data item described by a USAGE IS INDEX clause. For more information,
refer to “OCCURS Clause” and “"USAGE Clause” in Section 4.

For comparisons involving index-names and index data items, relation tests can be made
only between:

e Two index-names. The result is the same as if the corresponding occurrence
numbers were compared.

e Anindex-name and a data-item (other than an index data item) or literal. The
occurrence number that corresponds to the value of the index name is compared to
the data item or literal.

e Anindex data item and an index-name or another index data item. The actual values
are compared without conversion, that is, according to their occurrence in the table.
Refer to “Data-Names and Integers versus Index-Names” under “Table Handling” in
this section for information on conversion.

8600 1518-307

Conditional Expressions

Class Conditions

The class condition determines whether the operand is entirely numeric, alphabetic,
contains only lowercase or only uppercase alphabetic characters, or contains only
characters in a set specified by the CLASS phrase of the SPECIAL-NAMES paragraph of
the Environment Division.

NUMERIC
ALPHABETIC
identifier IS [NOT] ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

identifier

The identifier is a user-defined word that references a data item or a function that will be
the object of the class test. Only alphanumeric functions can be used in class tests. For
more information about identifiers, refer to Section 1.

NOT

NOT determines a test to be true if an operand is not of the specified class.

NUMERIC

This test classification determines whether the identifier consists entirely of the
characters 0 through 9, with or without an operational sign.

You cannot use the NUMERIC test with an identifier whose data description describes
the identifier as alphabetic or with a group item composed of elementary items whose
data description indicates the presence of operational sign(s).

If the data description of the identifier does not indicate the presence of an operational
sign, the identifier is determined to be numeric only if the contents are numeric and an
operational sign is not present.

If the data description of the identifier indicates the presence of an operational sign, the
identifier is determined to be numeric only if the contents are numeric and a valid
operational sign is present. Valid operational signs for data items described with the SIGN
IS SEPARATE clause are the standard data format characters + and - .

For information on the position and representation of valid operational signs, refer to
“PICTURE Clause” and “SIGN Clause” in Section 4.

8600 1518-307 5-49

Conditional Expressions

5-50

ALPHABETIC

This test classification determines if the identifier consists entirely of any combination of
characters A through Z, a through z and spaces.

The ALPHABETIC test cannot be used with an identifier whose data description defines
the item as numeric.

ALPHABETIC-LOWER

This test classification determines if the identifier consists entirely of the lowercase
characters a through zand spaces.

The ALPHABETIC-LOWER test cannot be used with an identifier whose data description
describes the item as numeric.

ALPHABETIC-UPPER

This test classification determines if the identifier consists entirely of the uppercase
characters A through Zand spaces.

The ALPHABETIC-UPPER test cannot be used with an identifier whose data description
describes the item as numeric.

Note: For applications using the internationalization features, the data item being tested
is determined to be alphabetic, alphabetic-upper, or alphabetic-lower only if the contents
consist of any combination of the alphabetic characters in the truthset. To use a system
collating sequence other than the characters A through Z, a through z, and the space, the
program must use the ALPHABET FOR NATIONAL alphabet-name IS CCSVERSION
phrase of the SPECIAL-NAMES paragraph.

class-name

This test classification determines if the identifier consists only of the characters in the
set specified by the CLASS phrase of the SPECIAL-NAMES paragraph of the
Environment Division. For more information, refer to “SPECIAL-NAMES Paragraph” in
Section 3.

The class-name test must not be used with an item whose data description describes
the item as numeric.
Details

The USAGE of the operand used with the NUMERIC test must be DISPLAY or
COMPUTATIONAL. The USAGE of the operand used with the ALPHABETIC tests must
be DISPLAY. Refer to "USAGE Clause” in Section 4 for more information.

8600 1518-307

Conditional Expressions

Examples

IF Item-Price IS NUMERIC PERFORM Price-Calc
ELSE PERFORM Print-Error-Proc.

This first example tests the identifier Item-Price to see if it is entirely numeric. If it is, the
procedures under Price-Calc are performed. If the test is not true, the procedures under

Print-Error-Proc are performed.

SPECIAL-NAMES.
CLASS A-to-K IS "A" THROUGH "K".

IF Element IS A-to-K GO TO Para-4.

This second example tests identifier Element to see if it contains only the characters
specified in class-name A-to-K in the SPECIAL-NAMES paragraph.

8600 1518-307 5-51

Conditional Expressions

Condition-Name Conditions

5-52

In a condition-name condition, a conditional variable is tested to determine whether or
not its value is equal to one of the values associated with a condition-name.

condition-name

condition-name

This is a user-defined word that assigns a name to a subset of values that a conditional
variable can assume.

A condition-name is defined as a level 83 entry in the Data Division.

If the condition-name is associated with a range or ranges of values, then the conditional
variable is tested to determine whether or not its value falls in this range, including the
end values.

Details

The rules for comparing a conditional variable with a condition-name value follow those
specified for relation conditions. For more information, refer to “Relation Conditions”
earlier in this section and to “Working-Storage Section” in Section 4.

The result of the test is true if one of the values corresponding to the condition-name
equals the value of its associated conditional variable.

Example

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Dept-Code PIC X.
88 Operations Values"A" Thru "D" .
88 Programming Values "E" Thru "P" .
88 Documentation Values "Q" Thru "T" .
88 Personnel Values "U" Thru "Z" .

PROCEDURE DIVISION.
IF Programming PERFORM Prog-Para.
IF NOT Personnel PERFORM Activity-Para.

This example tests conditional variable Dept-Code to see if it contains the range of values
described for condition-name Programming. If it does, the procedure Prog-Para will be
performed. The second statement tests Dept-Code for the values not described for
condition-name Personnel, that is, if Dept-Code contains the values “A" through “T". If it
does, then the procedure Activity-Para will be performed.

8600 1518-307

Conditional Expressions

Switch-Status Conditions

A switch-status condition determines the ON or OFF status of a switch. The switch
name and the ON or OFF value associated with the condition must be defined in the
SPECIAL-NAMES paragraph of the Environment Division. For more information, refer to
"SPECIAL-NAMES Paragraph” in Section 3.

condition-name

condition-name

This is a user-defined word assigned to the status of a switch or device.

Details

The result of the test is true if the switch is set to the specified position corresponding to
the condition-name.

Example

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SW5 ON STATUS IS SW5-ON.

PROCEDURE DIVISION.
IF SW5-ON PERFORM SEARCH-PROC.

This example tests switch SW5 for its ON or OFF status. If condition-name SW5-ON
tests true, the procedures specified in SEARCH-PROC will be performed.

8600 1518-307 5-53

Conditional Expressions

Sign Conditions

The sign condition determines whether or not the algebraic value of an arithmetic
expression is less than, greater than, or equal to zero.

POSITIVE
arithmetic-expression IS [NOT] NEGATIVE
ZERO

arithmetic-expression

This indicates an arithmetic operation and must contain at least one reference to a
variable. For example, you could not have COMPUTE A = 1 + 2, which contains two
literals.

NOT

NOT determines the test to be true if the arithmetic expression does not meet the
specified sign condition.

POSITIVE

When you specify POSITIVE, the test is determined to be true if the arithmetic
expression has a value greater than zero.

NEGATIVE

When you specify NEGATIVE, the test is determined to be true if the arithmetic
expression has a value less than zero.

ZERO

When you specify ZERO, the test is determined to be true if the arithmetic expression
has a value equal to zero.

Example

IF A/ B Is Negative Add C To D Giving E.

This statement tests to see if the result of A divided by B has a value less than zero. If it
does, C will be added to D and the value stored in E.

5-54 8600 1518-307

Conditional Expressions

8600 1518-307 5-55

Conditional Expressions

Negated Simple Conditions

The logical operator NOT negates a simple condition.

NOT simple-condition

NOT

This is a logical negator.

simple-condition

The simple-condition contains a comparison, the value of which is either TRUE or FALSE.
The simple condition can be a relation, class, condition-name, switch-status, or sign
condition.

Details

The negated simple condition produces the opposite truth value for a condition. Thus, the
truth value of a negated simple condition is TRUE if the truth value of the condition is
FALSE and FALSE if the truth value of the condition is TRUE.

Parentheses do not change the truth value of a negated condition.

Example

IF NOT AIS>=8
MOVE ITEM-2 TO ITEM-3
ELSE MOVE A TO ITEM-3.

This example tests the truth value of the relational condition “A is greater than or equal
to B." If Alis less than B, the condition is TRUE and ITEM-2 is moved to ITEM-3. If A is
greater than or equal to B, the condition is FALSE, and A is moved to ITEM-3.

The statement IF NOT A IS >= B could be phrased as IF A IS NOT >= B. Both
statements would cause the same results, but /F NOT A IS >= Bis considered a negated
condition and /F A IS NOT >= Bis a relation condition that contains the optional word
NOT.

5-56 8600 1518-307

Conditional Expressions

Complex Conditions

A complex condition is a condition in which one or more logical operators act upon one or
more conditions.

A logical operator is one of the reserved words AND, OR, or NOT. The reserved words
AND and OR are called logical connectors; NOT is a logical negator. Logical operators
must be preceded and followed by a space.

The logical operators and their meanings are as follows:

Logical
Operator Description Effect on Condition

AND Logical conjunction The truth value is TRUE if both of the joined
conditions are TRUE; FALSE if one or both of
the joined conditions is FALSE.

OR Logical inclusive OR The truth value is TRUE if one or both of the
included conditions are TRUE; FALSE if both
included conditions are FALSE.

NOT Logical negation or The truth value is TRUE if the condition is

reversal of truth value FALSE and FALSE if the condition is TRUE.

The truth value of a complex condition results from the interaction of all the stated logical
operators on the individual truth values of simple conditions, or the intermediate truth
values of conditions logically connected or logically negated.

Table 5-6 shows the truth table for complex conditions with logical operators. For
example, the first line of Table 5-6 shows the following:

e A simple condition that results in the variable A is TRUE.

e A simple condition that results in the variable B is TRUE.

e |f a complex condition uses the logical operator AND, and both A and B are TRUE,
the result of that complex condition is TRUE.

e |f a complex condition uses the logical operator OR, and both A and B are TRUE, the
result of that complex condition is TRUE.

e |f a complex condition uses the logical negator NOT to negate the simple condition
that results in A, and both A and B are TRUE, the result of that complex condition is
FALSE.

8600 1518-307 5-57

Conditional Expressions

Table 5-6. Truth Table for Logical Operators

Values of Condition Values of Complex Condition
A B A AND B AORB NOT A
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE TRUE
Example

EVALUATE TRUE ALSO TRUE

WHEN B <= C AND D <= E ALSO E NOT = F OR 10
COMPUTE A = C + 10

WHEN OTHER PERFORM Para-3

END-EVALUATE.

This example evaluates several conditions: The COMPUTE statement will be executed if
B is equal to or less than C, D is equal to or less than E, and if E does not equal F or 10.
For all other conditions, Para-3 will be executed.

Allowed Combinations of Elements

Complex conditions can include simple conditions, the logical operators AND and OR, the
logical negator NOT, and parentheses.

Although parentheses are not needed when either AND or OR (but not both) is used
exclusively in a combined condition, parentheses can be used to affect a final truth value
when a mixture of AND, OR and NOT is used. Refer to “Precedence in Evaluation of
Complex Conditions” later in this section for information on how parentheses affect a
complex condition.

Table 5-7 shows the allowable combinations of conditions, logical operators, and
parentheses.

Note that there must be a one-to-one correspondence between left and right
parentheses.

5-58 8600 1518-307

Conditional Expressions

Table 5-7. Combinations of Conditions, Logical Operators, and
Parentheses
Element, When Not First, Can Be Immediately
Given the
Following Preceded Only
Element: First Last By: Followed Only By:
Simple- Yes Yes OR, NOT, AND,) OR, AND,)
condition
OR or AND No No Simple-condition, Simple-condition, NOT, (
)
NOT Yes No OR, AND, (Simple-condition, (
(Yes No OR, NOT, AND, (Simple-condition, NOT,
) No Yes Simple-condition, OR, AND,)
)
Example

SEARCH Tabl

WHEN (Age IS < 45 OR Age is > 35)
AND ("V" is = Operations OR Dept)
PERFORM Op-Proc

END-SEARCH.

This example searches the table Tab1, and tests the “Age is less than or greater than”
conditions. If one of these conditions is TRUE, Tab1 is searched to see if Operations or
Dept equals “V". If either of these conditions is TRUE, the statements in Op-Proc will be

executed.

8600 1518-307

5-59

Conditional Expressions

Combined Condition Format

A combined condition results from connecting conditions with one of the logical
operators AND or OR.

AND
condition-1 _ condition-2
OR

condition-1
condition-2

These elements can be any one of the following:

e A simple condition
e A negated simple condition
e A combined condition

e A negated combined condition; that is, the NOT logical operator followed by a
combined condition enclosed in parentheses

e Combinations of the previous conditions that follow the rules summarized in
Table 5-7.

AND

This is a logical connector. The value of the combined conditions is TRUE if both
conditions are TRUE.

OR

This is a logical connector. The value of the combined conditions is TRUE even if only
one of them is TRUE.

Example

IF SW5-ON AND Sale-Item IS ALPHABETIC
MOVE Sale-Item To Report-Line-1

ELSE IF Regular-Item IS ALPHABETIC

AND NOT Regular-Item < = Sale-Item
MOVE Regular-Item To Report-Line-1

END-IF.

This example illustrates combined conditions. /F SW5-ON is a switch-status condition;
Sale-Item IS ALPHABETIC and Regular-ltem IS ALPHABETIC are class conditions; and
NOT Regular-ltem <= Sale-ltem is a negated relative condition. This example uses the
logical connector AND.

5-60 8600 1518-307

Conditional Expressions

If the switch status of SW5 is TRUE and the Sale-ltem consists entirely of alphabetic
characters, the data in Sale-ltem moves to Report-Line-1. If one or both of these
conditions is FALSE, Regular-ltem is tested to see if it consists entirely of alphabetic
characters. If this tests TRUE, Regular-ltem is tested to see if it is not less than or equal
to Sale-ltem. If this is also TRUE, the data in Regular-ltem moves to Report-Line-1.

Abbreviated Combined Relation Conditions

Any simple or negated simple relation condition other than the first that appears in a
combined conditional statement can be abbreviated.

You can abbreviate a combined conditional statement if the sequence of relation
conditions:

e Has no parentheses
e |s combined by a logical connector (AND or OR)
e Contains identical subjects

e Contains identical subjects and relational operators
The sequence can be abbreviated as follows:

e You can omit identical subjects. For example:
IFA=BAND=C

This is equivalentto IF A = B AND A = C.
e You can omit identical subjects and relational operators. For example:
IF A=BANDC

This is equivalentto IF A = B AND A = C.

8600 1518-307 5-61

Conditional Expressions

5-62

The use of abbreviated relations in conditional statement sequences that contain
parentheses is a Unisys extension. When a condition is abbreviated, the subject and the
relational operator are assumed, and are declared immediately before the object for
which the assumption was made. This situation occurs even if the expression in which
the relational operator, or the subject (or both), is embedded within a parenthetical
expression. For example, the statement:

IF (A = 1) AND (B-2) AND (C-3) AND (D-4) THEN...
is expanded to:

IF (((A = 1) AND (A = B-2))) AND
(A = (C-3))) AND (A = (D-4))) THEN...

AND
_ } [NOT] [relational-operator] object
OR _

relation-condition {

relation-condition

This causes a comparison of two operands, each of which can be a data item referred to
by an identifier, a literal, the value resulting from an arithmetic expression, or an index-
name.

AND

This is a logical connector. The truth value is TRUE if both of the joined conditions are
TRUE; FALSE if one or both is FALSE.

OR

This is a logical connector. The truth value is TRUE if one or both of the included
conditions are TRUE; FALSE if both are FALSE.

NOT

This can be part of a relational operator, if immediately followed by any of the following:

GREATER >

LESS <

EQUAL =

GREATER THAN OR EQUALTO >=
LESS THAN OR EQUAL TO <=

NOT can also be a logical negator, which would make a negated relation condition.

When used, NOT causes the truth value to be TRUE if the condition is FALSE and FALSE
if the condition is TRUE.

8600 1518-307

Conditional Expressions

relational-operator

This specifies the type of comparison to be made in the relation condition and refers to
the following:

GREATER >

LESS <

EQUAL =

GREATER THAN OR EQUAL TO >=
LESS THAN OR EQUALTO <=

object

This refers to an operand in the comparison test.

Relation Conditions Details

In a sequence of relation conditions, you can use both forms of abbreviation; that is,
omission of the subject or omission of the subject and relational-operator.

The effect of using abbreviations is as if the last preceding stated subject were inserted
in place of the omitted subject, and the last stated relational-operator were inserted in
place of the omitted relational-operator. The result of such implied insertion must comply
with the rules of Table 5-7.

The insertion of an omitted subject and the relational-operator ends once a complete
simple condition occurs in a complex condition.
Examples

The examples in the following table show abbreviated combined and negated combined
relation conditions and their expanded equivalents.

Abbreviated Condition Expanded Equivalent
a>bAND NOT <cORd (@ >b AND (a NOT < ¢)) OR (a NOT < d))
aNOT EQUALb ORc (@ NOT EQUAL b) OR (a NOT EQUAL c)
NOTa=bORc (NOT (a=b)) OR (a =c¢)

NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < ¢))
NOT (a NOT > b AND ¢ AND NOT d) NOT ((((a NOT > b)

AND (a NOT > ¢))

AND (NOT (a NOT > d))))

8600 1518-307 5-63

Conditional Expressions

Precedence in Evaluation of Complex Conditions

5-64

Parentheses specify the order in which individual conditions in complex conditions will be
evaluated when you want to depart from the implied evaluation precedence.

Conditions in parentheses are evaluated first. Within nested parentheses, evaluation
proceeds from the least inclusive condition to the most inclusive condition. An entire
complex condition can be considered a nested structure of hierarchical levels with the
entire complex condition itself being the most inclusive level. In this context, the
evaluation of the conditions is an entire complex condition and proceeds according to the
following rule, recursively applied where necessary.

For conditions without parentheses or those that contain parenthesized conditions at the
same level of inclusiveness, the evaluation proceeds in the following implied hierarchical
order to determine the final truth value:
1. Values for arithmetic expressions
2. Truth values for simple conditions in the following order:
a. Relation (following the expansion of any abbreviated relation condition)
b. Class
c. condition-name
d. Switch-status
e. Sign
Truth values for negated simple conditions

4. Truth values for combined conditions. The AND logical operators are evaluated
before OR logical operators.

5. Truth values for negated combined conditions

6. Truth values of consecutive operations of the same hierarchical level from left to
right when the sequence of evaluation is not completely specified by parentheses

8600 1518-307

Conditional Expressions

Example

IF CURRENT-MONTH AND DAY1 = 6 OR 12.
For this example, evaluation proceeds in the following order:

1. Truth value of the simple condition-name condition (CURRENT-MONTH is TRUE).
2. Truth value for the relation DAY1 = 6.

3. Truth value for combined conditions using AND (CURRENT-MONTH is TRUE AND
DAY1 = 6).

4. Truth value for the relation DAY1 = 12.

Truth value for combined conditions using OR (the combined condition is the
abbreviated combined relational, subject is DAY1, object is = 12, so DAY1 = 12).

Two possible conditions satisfy this example:

e CURRENT-MONTH is TRUE AND DAY1 = 6.
e DAY1 =12

8600 1518-307 5-65

Table Handling

Table Handling

Table handling refers to a way of organizing data items into a table, so that they can be
accessed according to their position in the table.

You can create multidimensional variable-length tables, specify ascending or descending
keys, and search a dimension of a table for an item that satisfies a condition.

Defining a Table

One way to describe repeating items that make up a table is to use a series of separate
data description entries that have the same level-number and that are all subordinate to
the same group item, as in the following example:

01 Seasons.
05 Filler PIC X(6) VALUE IS "Spring".
05 Filler PIC X(6) VALUE IS "Summer".
05 Filler PIC X(6) VALUE IS "Autumn".
05 Filler PIC X(6) VALUE IS "Winter".

However, this approach has several undesirable effects: it can generate long tables that
are cumbersome to document; homogeneity of the table elements is not always
apparent; and accessing an individual element of such a table is very difficult.

A better approach is to define a table by including an OCCURS clause in the data
description entry of the item to be referenced. The OCCURS clause specifies that a data
item is a table element that is to be repeated as many times as stated. The name and
description of the data item apply to each repetition.

The following example shows a table defined by the item Mailing-Address. Twenty
occurrences of Mailing-Address are specified by the OCCURS clause, and each
occurrence consists of a name and an address.

01 Table-1.
02 Mailing-Address OCCURS 20 TIMES.
03 Name . . .
03 Address . . .

The OCCURS clause enables you to designate either a fixed number of occurrences for a

table element or a variable number of occurrences. For more information, refer to
"OCCURS Clause" in Section 4.

5-66 8600 1518-307

Table Handling

Table Dimensions

You can define the dimensions of a table by subordinating a table element under multiple
group items and including the OCCURS clause with the table element and the group
items that contain the element.|Theoretically, you can define up to 48 dimensions for any
one table. However, due to current hardware limitations, the maximum number of
practical dimensions that you can use is 19. This number is derived by using subscripts
that range from 1 to 2 with element sizes of 1 byte or 1 hex unit for all dimensions. The
practical number of dimensions you can declare decreases with larger subscript ranges
or larger element sizes.

In the following example, the table defined by Department is not nested in any other
table, so it is a one-dimensional table. The table defined by employee, however, is nested
within one other table, Department, and is thus, a two-dimensional table.

01 Table-1.
02 Department OCCURS 10 TIMES.
03 Employee OCCURS 50 TIMES.
04 Name . . .
04 Address . . .

Note that the preceding example has been assigned the name Table-1. You do not need
to give a group name to the table unless you want to refer to the complete table as a
group item. For example, neither of the one-dimensional tables shown in the following
example has a group name:

01 Produce.
02 Lettuce OCCURS 2 TO 5 TIMES DEPENDING ON Lettuce-Count . . .
02 Cucumber . . .
02 Apple OCCURS 10 TIMES . . .

8600 1518-307 5-67

Table Handling

INDEXED BY Option

5-68

The optional INDEXED BY phrase in the OCCURS clause enables you to refer to the
subject of the entry (and subordinate entries) by a technique called indexing. Indexing is
especially useful for operations such as table searches and the manipulation of specific
items.

To use indexing, you assign one or more index-names to an item whose data description
entry contains an OCCURS clause. An index-name must be a unigue word in the
program. The index associated with an index-name acts as a subscript, and its value
corresponds to an occurrence number for the item to which the index-name is
associated.

No separate entry describes the index associated with an index-name. At object time,
the contents of the index correspond to an occurrence number for the table dimension
with which the index is associated. In the following example, Apple-1 is an index-name
associated with a table of data:

01 Produce.
02 Lettuce . . .
02 Apple OCCURS 10 TIMES INDEXED BY Apple-1 . . .
02 Cucumber . . .

8600 1518-307

Table Handling

Initializing Tables

You can set initial values of tables either in the Data Division or through statements in
the Procedure Division.

In the Data Division

You can specify the initial values of table elements in the Working-Storage Section of the
Data Division as follows:

e The table can be described as a series of separate data description entries all
subordinate to the same group item. Each data description entry can specify the
value of an element, or part of an element, of the table:

WORKING-STORAGE SECTION.

01 Seasons.
05 Filler PIC X(6) VALUE IS "Spring".
05 Filler PIC X(6) VALUE IS "Summer".
05 Filler PIC X(6) VALUE IS "Autumn".
05 Filler PIC X(6) VALUE IS "Winter".

In defining the record and its elements, any data description clause (USAGE,
PICTURE, and so forth) can be used to complete the definition, where required. The
previous example uses a picture clause of PIC X(6).

e The hierarchical structure of the table can be shown by a REDEFINES entry and its
associated subordinate entries. The subordinate entries are repeated because of
OCCURS clauses and must not contain VALUE clauses:

WORKING-STORAGE SECTION.
01 Seasons PIC X(24)

VALUE IS "SpringSummerAutumnWinter".
01 Season-Table REDEFINES Seasons.

02 Season PIC X(6) OCCURS 4 TIMES.

e All the dimensions of a table can be initialized by associating the VALUE clause with
the description of the entry defining the entire table. The lower level entries will
show the hierarchical structure of the table; lower level entries must not contain
VALUE clauses:

03 Seasons PIC X(28)
VALUE IS "SpringlSummer2Autumn3Winterd".

03 Season-Table REDEFINES Seasons OCCURS 4 TIMES.
05 Name PIC X(6).
05 Number PIC 9.

For detailed information on these clauses, refer to “REDEFINES Clause” and “"VALUE
Clause” in Section 4.

8600 1518-307 5-69

Table Handling

In the Procedure Division

The INITIALIZE statement sets the initial values for an entire table or for specific
elements of a table. For detailed information on the syntax of this statement, refer to
"INITIALIZE Statement” in Section 6.

If you are using the INDEXED BY option of the OCCURS clause, the initial value of an
index at object time is undefined. You must initialize an index before you use it. The
following Procedure Division statements can assign an initial value to an index:

e PERFORM statement with the VARYING phrase

During execution, this statement augments the values referenced by one or more
identifiers or index-names in an orderly fashion. For detailed information on the
syntax of this statement, refer to Section 7.

e SEARCH statement with the ALL phrase

This statement performs a binary search of a table and looks for a table element that
satisfies the specified condition. It then adjusts the value of the associated index to
indicate that table element. For detailed information on the syntax of the SEARCH
statement, refer to Section 8.

e SET statement

This statement assigns a value to an index or to index data items. For detailed
information on the syntax of the SET statement, refer to Section 8.

References to Table Items

5-70

You can refer to table items by specifying the data-name with the occurrence number.
The occurrence number is called a subscript.

Whenever you refer to a table element or a condition-name that is associated with a
table element, the reference must indicate which occurrence of the element is intended.
This rule applies except for the SEARCH statement.

In a one-dimensional table, the occurrence number of an element table provides
complete information for you to access it. For tables of more than one dimension, you
must supply an occurrence number for each dimension of the table.

Consider the following example:

02 Apple OCCURS 10 TIMES . . .
03 Granny-Smith . . .
03 Delicious OCCURS 5 TIMES . . .

A reference to the fourth Apple or the fourth Granny-Smith would be complete.

However, a reference to the fourth Delicious would be incomplete, because Delicious
could be one of five possible occurrences in a two-dimensional table. To reference
Delicious, you must define a specific occurrence of it; for example, the fourth Delicious in
the fifth Apple.

8600 1518-307

Table Handling

Subscripting

You specify occurrence numbers by appending one or more subscripts to a condition-
name or a data-name.

integer

data-name-2 [+ integer]

condition-name
(index-name-1 [+ integer] e)

data-name-1
ALL

arithmetic-expression

condition-name
This is a user-defined word that assigns a name to a subset of values. A conditional
variable can assume these values.

A condition-name is defined as a level-number 88 entry in the Working-Storage Section of
the Data Division and can be associated with a range of values.

data-name-1

This is a user-defined word and can consist of the characters A through Z a through z, 0
through 9, and the hyphen (-). The hyphen cannot appear as the first or last character.

()

The left and right parentheses enclose the subscript.

integer
data-name-2
index-name-1

The integer represents the occurrence number. The lowest permissible occurrence
number is 1. The highest permissible occurrence number is the maximum number of
occurrences of the item as specified in the OCCURS clause.

You can also represent a subscript with a data-name or an index name: data-name-2
must refer to an integer numeric elementary item, and index-name-1 is an index-name

associated with a table.

You can mix integers, data-names, and index-names in a single set of subscripts that
refer to an individual occurrence in a multidimensional table.

8600 1518-307 5-71

Table Handling

5-72

+ integer
- integer

These can follow a data-name for relative subscripting or an index-name for relative
indexing. The plus sign (+) or the minus sign (=) and an integer are used as an increment
or decrement, respectively.

ALL

ALL can be used as a subscript only for data-names that are used as arguments to
functions. The ALL subscript causes the argument to be repeated the number of times
specified in the OCCURS clause. You cannot use ALL with a condition-name.

arithmetic-expression

An arithmetic-expression can be used as a subscript. In addition, integers, data-names,
and arithmetic-expressions can be mixed in a single set of subscripts that is a reference
to an individual occurrence in a multidimensional table. Arithmetic-expressions used in
subscripts must be references to integer values.

Details

You write subscripts, which are enclosed in parentheses, immediately following any
qualification for the name of the table element. The number of subscripts in such a
reference must equal the number of dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS clause in the hierarchy
containing the data-name. Moreover, the data-name itself must also have a subscript.

When the table element requires more than one subscript, write the subscripts in order
of the outermost to the innermost table. A multi-dimensional table can be thought of as a
series of nested tables. The outermost table is the major table; the innermost, the minor
table. Therefore, you would write the subscripts from left to right in the order major,
intermediate, and minor.

Subscript a reference to an item only if the item is either of the following:

e Atable element

e Anitem or a condition-name in a table element

Example

The following example shows the data-description entries for a three-dimensional table

definition.

01 CENSUS-TABLE.

05 CONTINENT-TABLE OCCURS 8 TIMES.
10 CONTINENT-NAME PIC X(16).
10 COUNTRY-TABLE OCCURS 15 TIMES.
15 COUNTRY-NAME PIC X(18).
15 CITY-TABLE OCCURS 20 TIMES.
20 CITY-NAME PIC X(10)

20 CITY-POPULATION PIC X (12)

8600 1518-307

Table Handling

Related Information

The following table provides references for additional information related to this topic:

For information about. .. Referto ...

The USAGE and OCCURS clauses Section 4

The INITIALIZE Statement, Sections 6, 7, and 8
PERFORM Statement, SEARCH
Statement, and SET Statement

Error handling for subscripts The BOUNDS compiler control
option in Section 15

Subscripts Using Integers or Data-Names

When an integer or data-name represents a subscript, it can refer to items in different
tables. Elements in these tables are not required to be of the same size. The same
integer or data-name can appear as the only subscript with one item and as one of two or
more subscripts with another item.

Subscripts Using Index names

An index-name can refer to only the table with which it is associated through the
INDEXED BY phrase of the OCCURS clause.

Relative indexing is an added option that you can use to refer to a table element or to an
item in a table element. When the name of a table element is followed by a subscript of
the form (index-name + or — integer), the occurrence number required to complete the
reference is the same as if the index-name were set up or down by the integer through
the SET statement before the reference. The use of relative indexing does not cause the
object program to alter the value of the index.

Data-Names and Integers versus Index-Names

The primary difference between subscripting with an integer or data-name and
subscripting with an index-name is in the method used to access the desired table entry.

At object time, a subscript is an integer that represents an occurrence in a table, that is, 1
for the first entry, 2 for the second, and so forth.

Since the subscript data-item contains only an occurrence number of the item to be
accessed, the program must multiply the occurrence number by the length of a table
entry to locate the desired item.

For example, consider a table defined as follows:

Y PIC 9(4) COMP OCCURS 10 TIMES INDEXED BY NDX.

8600 1518-307 5-73

Table Handling

Assume that a numeric data-item SUB has also been declared for use as a subscript.

To execute the statement MOVE Y(SUB) TO X, the program must first multiply the value
in SUB by the length of the table element Y. (The multiplication is repeated each time
you use SUB to access an item.) This gives the offset value of the desired element from
the beginning of the table. Adding the offset value to the beginning address of the table
(actually, to an address one element-length before the beginning of the table) gives the
location of the item.

Literal subscripts, for example Y(5), are calculated once at compile time, so they involve
the same code as nonsubscripted items.

An index-name contains an offset value to a table instead of a simple occurrence
number. The statement SET NDX TO data-name causes the program to compute the
offset value of the element whose position is given by data-name. SET NDX UP (or
DOWN) BY 1 causes the length of one table item to be added to (or subtracted from) the
value in NDX.

In the statement MOVE Y(NDX) TO X, the location of Y is determined by adding the
contents of NDX to the beginning address (actually, an address one element-length
before the beginning) of the table. The index does not require the multiplication that is
required for the subscript.

The index value is always carried in its final form as an offset value. Multiplication is
performed, when applicable, at the time the index is set, not each time it is used.

If you are using indexing, which contains an offset value to a table, and then use a
statement that requires an occurrence number, conversion takes place. The offset value
will be converted into an occurrence number.

Index Data Items

5-74

The value of an index can be made accessible to an object program by storing the value
in an index data item. Index data items are memory locations and are described in the
program by a data description entry that contains a USAGE IS INDEX clause. The index
value is moved to the index data-name by the execution of a SET statement.

Refer to “USAGE Clause” in Section 4 and to “SET Statement” in Section 8 for more
information.

8600 1518-307

Sort and Merge Operations

Sort and Merge Operations

The COBOL sort function orders the occurrence of records in one or more files. Sort
functions are performed according to a set of specified keys that are contained in each
record.

The COBOL merge function combines two or more identically ordered files according to
specified keys.

Sorting

A sort file is a collection of records to be sorted by a SORT statement.

Sort files often require special processing, such as addition, deletion, creation, alteration,
and editing of the individual records in the file. Special processing might be needed
before or after the records are reordered by the sort. The COBOL sort function enables
you to do this special processing and to specify whether it should occur before or after
the sort.

A COBOL program can contain any number of sorts, each with its own input and output
procedures. The sort function automatically causes execution of these procedures at the
specified point.

In an input procedure, the RELEASE statement creates a sort file. When the input
procedure has completed, those records processed by the RELEASE statement
compose the sort file. This file is available only to the SORT statement.

Execution of the SORT statement arranges the entire set of records in the sort file
according to the keys specified. The sorted records are made available from the sort file
through the RETURN statement during execution of the output procedure.

The sort file does not have label procedures that the programmer can control. The rules
for blocking and for allocation of internal storage are unique to the SORT statement. The
RELEASE and RETURN statements imply nothing about buffer areas, blocks, or reels.

A sort file, then, is an internal file created from the input file by the RELEASE statement,
processed by the SORT statement, and then made available to the output file by the
RETURN statement. The sort file itself is referred to and accessed only by the SORT
statement.

Merging

A merge file is a collection of records to be merged with another input file by a MERGE
statement.

Merged files sometimes require special processing, such as addition, deletion, creation,

alteration, and editing of the individual records in the file. The COBOL merge function
enables you to execute output procedures as the merged output is created.

8600 1518-307 5-75

Sort and Merge Operations

The merged records from the merge file are made available through the RETURN
statement in the output procedure.

The merge file does not have label procedures that the programmer can control. The
rules for blocking and for allocation of internal storage are unique to the MERGE
statement. The RETURN statement implies nothing about buffer areas, blocks, or reels.

A merge file, then, is an internal file created from input files by combining them (MERGE
statement) as the file is made available (RETURN statement) to the output file. The
merge file itself is referred to and accessed only by the MERGE statement.

Sort and Merge Constructs

5-76

A sort or a merge file is named by a file control entry in the Environment Division and
described by a sort-merge file description entry in the Data Division. A sort file is referred
to in the Procedure Division by the SORT, RELEASE, and RETURN statements. A merge
file is referred to by the MERGE and RETURN statements.

The following list shows the COBOL constructs to use with sort and merge operations.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

e Use Format 4 of the FILE-CONTROL paragraph. This file control entry declares the
relevant physical attributes of a sort or a merge file.

Each sort or merge file must be specified in the SELECT clause of the FILE-
CONTROL paragraph and must have a sort-merge file description entry in the Data
Division of the same program.

Each sort or merge file described in the Data Division must be specified only once in
the FILE-CONTROL paragraph.

Since the file-name in the SELECT clause represents a sort or a merge file, only the
ASSIGN clause can follow the file-name in the FILE-CONTROL paragraph.

Use the ASSIGN clause to associate the file reference with a storage medium
reference.

e Specify the memory area to be shared by the sort or merge files in the SAME
RECORD/SORT/SORT-MERGE AREA clause of the I-O-CONTROL paragraph.

The files referenced in the SAME RECORD/SORT/SORT-MERGE AREA clause are
not required to have the same organization or access.

Each file-name specified in the SAME RECORD/SORT/SORT-MERGE AREA clause
must be specified in the FILE-CONTROL paragraph of the same program.

For detailed information on the syntaxes, uses, and restrictions of these paragraphs,
refer to "FILE-CONTROL Paragraph” and "I-O-CONTROL Paragraph” in Section 3.

8600 1518-307

Sort and Merge Operations

DATA DIVISION.
FILE SECTION.

e Use sort-merge file description entry, Format 4, in the File Section; see Section 4 for
details.

Each sort or merge file specified in a sort-merge file description entry must also be
specified in the SELECT clause of the FILE-CONTROL paragraph of the Environment
Division of the same program.

The sort-merge file description entry (the SD entry) furnishes information on the
physical structure and record-names that pertain to a sort or a merge file.

The FILE SECTION header is followed by a sort-merge file description entry that
consists of a level indicator, a file-name, and a series of independent clauses.

The clauses of an SD entry specify the size and the names of the data records
associated with a sort file or a merge file.

o Record description entries are written immediately after the sort-merge file
description entry. A record description consists of a set of data description entries
that describe the characteristics of a particular record. Each data description entry
consists of a level number followed by the data-name or FILLER clause, if specified,
followed by a series of independent clauses as required. A record description can
have a hierarchical structure. Therefore, the clauses used with an entry can vary
considerably, depending upon whether or not the entry is followed by subordinate
entries.

The RECORD clause of the SD entry is the same as the RECORD clause in the FD
entry for sequential files.

The DATA RECORDS clause is the same as the DATA RECORDS clause in the FD
entry for sequential files. The DATA RECORDS clause is an obsolete element in
Standard COBOL and will be deleted from the next revision of Standard COBOL.

e Refer to “File Section” in Section 4 for detailed information on syntax, usage, and
restrictions.
PROCEDURE DIVISION.

e Use the SORT statement to sequentially order a file on a set of specified keys and to
make the sort file available to output procedures or an output file.

e Use the RELEASE statement to transfer records to the initial phase of a SORT
operation and to write records to a sort file.

e Use the RETURN statement to obtain sorted or merged records from the final phase
of a SORT or MERGE operation and to read records from a sort file.

e Use the MERGE statement to combine two or more identically sequenced files on a
specified key.

Refer to “RELEASE Statement,” "RETURN Statement,” and "MERGE Statement” in
Section 7 and to “"SORT Statement” in Section 8 for detailed information and syntax.

8600 1518-307 5-77

Sort and Merge Operations

5-78

Example

The following example shows the COBOL constructs used in sort and merge operations.

IDENTIFICATION DIVISION.
PROGRAM-ID. SORTMERGE-EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

DATA-CAPTURE-1
DATA-CAPTURE-2
DATA-CAPTURE-3
MASTER-FILE
SHOW

SORT-FILE
MERGE-FILE

DATA DIVISION.
FILE SECTION.

FD
01

FD
01

FD
01

FD
01

FD
01

SD
01

SD
01

DATA-CAP
D-RECORD
03 FILLE
DATA-CAP
D-RECORD
03 FILLE
DATA-CAP
D-RECORD
03 FILLE
MASTER-F
M-RECORD
03 FILLE
SHOW.
OUT-RECO
03 FILLE
03 PAYNO
03 FILLE
03 DEPTN
03 FILLE
SORT-FIL
SORT-REC
03 FILLE
03 ACC-N
03 FILLE
03 QTE
03 FILLE
03 PRICE
03 FILLE
MERGE-FI
MERGE-RE
03 FILLE
03 PAY-N
03 FILLE
03 DEPT-

TURE-1.

-1.

R PIC

TURE-2.

-2.

R PIC

TURE-3.

-3.

R PIC

ILE.

R PIC

RD.

R PIC
PIC

R PIC

0 PIC

R PIC

E.

ORD.

R PIC

0 PIC

R PIC
PIC

R PIC
PIC

R PIC

LE.

CORD.

R PIC

0 PIC

R PIC

NO PIC

ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

X(180) .

X(180) .

X(180) .

X(180) .

X(5).
9(5).
X(5).
X(10).
X(107).

X(10).
9(6) .

X(10).
9(4).

X(10).
9(10).
X(130).

X(20).
9(5).
X(50) .
X(10).

T0
T0
T0
T0
T0
T0
T0

DISK.
DISK.
DISK.
DISK.

PRINTER.

SORT.
MERGE.

8600 1518-307

Sort and Merge Operations

03 FILLER PIC X(95).
PROCEDURE DIVISION.
BEGIN-SORT.
SORT SORT-FILE
ON ASCENDING KEY ACC-NO
INPUT PROCEDURE IS PROC-1 THRU END-1
OUTPUT PROCEDURE IS PROC-2 THRU END-2.
GO TO BEGIN-MERGE.
PROC-1.
OPEN INPUT DATA-CAPTURE-1.
PROC-1A.
READ DATA-CAPTURE-1 AT END GO TO END-1.
RELEASE SORT-RECORD.
GO TO PROC-1A.
END-1.
CLOSE DATA-CAPTURE-1.
PROC-2.
OPEN OUTPUT DATA-CAPTURE-2.
PROC-2A.
RETURN SORT-FILE AT END GO TO END-2.
MOVE SORT-RECORD TO D-RECORD-2.
WRITE D-RECORD-2.
GO TO PROC-2A.
END-2.
CLOSE DATA-CAPTURE-2.
BEGIN-MERGE.
OPEN OUTPUT SHOW.
MERGE MERGE-FILE ON ASCENDING KEY PAY-NO
USING MASTER-FILE, DATA-CAPTURE-3
OUTPUT PROCEDURE IS OUT-1.
OuT-1.
RETURN MERGE-FILE
AT END GO TO FINISH-1.
PERFORM WRITE-PROC.
WRITE-PROC.
MOVE SPACES TO OUT-RECORD.
MOVE PAY-NO TO PAYNO.
MOVE DEPT-NO TO DEPTNO.
WRITE OUT-RECORD.
FINISH-1.
CLOSE MERGE-FILE.
CLOSE SHOW.
STOP RUN.

In the Environment Division, SORT-FILE is declared as a sort file, and MERGE-FILE is
declared as a merge file.

SORT-FILE and MERGE-FILE have SD entries in the Data Division.

8600 1518-307 5-79

Sort and Merge Operations

Data-Capture-1 will be sorted by ACC-NO on an ascending key. The input procedure
opens and reads DATA-CAPTURE-1. If the file is not at the end, SORT-RECORD is
transferred and written to SORT-FILE. If the file is at the end, DATA-CAPTURE-1 is
closed. DATA-CAPTURE-2 is opened output. The next record of SORT-FILE is read. If the
file is at the end, then DATA-CAPTURE-2 is closed.

Then the merge begins. The file SHOW is opened output. MASTER-FILE and DATA-
CAPTURE-3 are merged into MERGE-FILE. The records in MERGE-FILE are read, and
their data is moved to OUT-RECORD. When MERGE-FILE is at end, MERGE-FILE and
SHOW are closed.

5-80 8600 1518-307

Section 6
Procedure Division Statements A-H

This section illustrates and explains the syntax of the Procedure Division statements.
Statements beginning with the letters A through H are listed in alphabetical order with
the following information:

A brief description of the function of the statement

A syntax diagram for each format of the statement (if you need information on how
to interpret a COBOL syntax diagram, refer to Appendix C)

A statement of what portion of the syntax, if any, can be used interactively in a Test
and Debug System (TADS) session

An explanation of the elements in the syntax diagram
Details, rules, and restrictions about the particular statement
An example of the statement

References to additional information relevant to the statement

Detailed information about language elements common to many Procedure Division
statements, such as user-defined names, literals, and identifiers, is provided in Section 1.
Concepts such as arithmetic and conditional expressions, and operations such as table
handling, sorting, and merging are described in Section 5.

8600 1518-307 6-1

ACCEPT Statement

ACCEPT Statement

The ACCEPT statement makes low-volume data available to a specified data item.

Format Use
Format 1 This format transfers data from a hardware device to a data item.
Format 2 This format transfers data from date and time registers to a data item.
Format 3 This format returns the number of entries in a storage queue (STOQ)

into the entry-data-length field of the specified STOQ parameter block.

Format 4 This format transfers a formatted system date or time to a data item
based on the type, convention, and language in effect for the item.

Format 1: Transfer Data from Hardware Device

ACCEPT identifier-1 [FROM {mnemonic-name-1 }]

Explanation

identifier-1

This is the data item to which data is transferred from the hardware device.

mnemonic-name-1

The mnemonic-name must be specified in the SPECIAL-NAMES paragraph of the
Environment Division, and must be associated with the hardware name ODT. If the
FROM clause is not specified, the hardware device is assumed to be ODT.

6-2 8600 1518-307

ACCEPT Statement

Details

The $ANSI and $ANSICLASS compiler control options control the transfer of data to the

receiving item. Table 6-1 explains the effects of this option upon the transfer of data.

Table 6-1. Effect of the $ANSI and $SANSICLASS Compiler Options

When the

$ANSI or

$ANSICLAS

S option

is... And. .. Then...

Set The size of the transferred The transferred data is left-
data is less than the size of justified in the receiving data
the receiving data item. item, and a “"MORE" prompt is

displayed on the ODT requesting
additional input.

Set The size of the transferred The left-most digits are moved
data is greater than the size of into the receiving field and the
the receiving data item. remainder of the digits are

ignored.

Reset The size of the transferred The compiled code issues a run-
data is greater than the size of time error and prompts you to re-
the receiving data item. enter your data.

(Leading zeros are not
considered in computing the
size of the transfer field.)

Reset The receiving field is The transferred data is stored
alphanumeric or national. aligned to the left and blank-filled.

Reset The receiving field is numeric. The transferred data is stored

aligned to the right and zero-filled.

Any necessary conversion of data from one form of internal representation to another

takes place during data transfer. Control information is removed from national data
before the data is transferred into the receiving national data field.

Data transferred to a numeric field is validated by the compiler to prevent you from
inadvertently entering a nonnumeric character into a numeric field. Additionally, you
cannot enter a number that is too large to fit into the named data item. In either case, an
error message appears requesting that you re-enter your data.

Data accepted into an elementary data item of class alphanumeric can contain national
characters in external format. In this situation, the control information necessary for
external format is retained in the content of the data item.

8600 1518-307

ACCEPT Statement

Examples

ACCEPT keyboard-option

In this example, the ACCEPT statement transfers data from the ODT (that is, the default
hardware device) to the data item keyboard-option.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

ODT IS TERMINALIL.

PROCEDURE DIVISION.

PARA-1.
ACCEPT keyboard-option FROM TERMINALL.

In this example, the ACCEPT statement transfers data from the ODT to the data item

keyboard-option. The ODT has been given the mnemonic-name TERMINALT in the
SPECIAL-NAMES paragraph of the Environment Division.

6-4 8600 1518-307

ACCEPT Statement

Format 2: Transfer Data from Date and Time Registers

DATE [YYYYMMDD]

DAY [YYYYDDD]
DAY-OF-WEEK
ACCEPT identifier-2 FROM TIME

TIMER

TODAYS-DATE [MMDDYYYY]

| TODAYS-NAME

Explanation

In this format, the ACCEPT statement transfers one of the special registers (date, day,
time, and so on) to the data item named by identifier-2. The transfer of data occurs
according to the rules of the MOVE statement. For information about these rules, refer
to "“MOVE Statement” in Section 7. Special registers are conceptual data items that are
not declared in a COBOL program. Each register is described in the following list.

identifier-2

This identifier is the user-defined name of the data item.

DATE

This register contains the data elements year, month, and day. |f DATE is followed by the
qualifier YYYYMMDD, the year is four digits, otherwise the year is two digits.

The sequence of the data elements is from high order to low order (year, month, day).
Therefore, July 1, 1988 is expressed as 880701, or, if qualified by YYYYMMDD, July 1,
1988 is expressed as 19880701.

When accessed by a COBOL program, this register behaves as if it had been described
in the COBOL program as an unsigned elementary numeric integer data item six digits in
length (PIC 9(6) COMP), or, if qualified by YYYYMMDD, a data item eight digits in length
(PIC 9(8) COMP).

Data from the DATE register cannot be transferred to a national data item.

8600 1518-307 6-5

ACCEPT Statement

DAY

This register contains the data elements year and Julian day (that is, days are numbered
consecutively from 001 to 365, or 366 if it is a leap year). If DAY is followed by the
qualifier "YYYYDDD', the year is four digits, otherwise the year is two digits. The
sequence of the data element codes is from high order to low order (year and day).
Therefore, July 1, 1989 is expressed as 89183, or, if qualified by "YYYYDDD", July 1,
1989 is expressed as 1989183.

When accessed by a COBOL program, this register behaves as if it had been described
in a COBOL program as an unsigned elementary numeric integer data item five digits in
length (PIC 9(5) COMP), or, if qualified by "YYYYDDD", a data item seven digits in length
(PIC 9(7) COMP).

DAY-OF-WEEK
This register contains a single data element that represents the day of the week. A value
of 1 represents Monday, a value of 2 represents Tuesday, and so on.

When accessed by a COBOL program, this register behaves as an unsigned elementary
numeric integer one digit in length (PIC 9(1) COMP).

TIME

This register contains the data elements hours, minutes, seconds, and hundredths of a
second. The value of this register is based on elapsed time after midnight on a 24-hour
clock; therefore, 2:41 p.m. is expressed as 14410000.

The minimum value of this register is 00000000 (midnight); the maximum value is
23595999 (one one-hundredth of a second before midnight).

If the hardware cannot provide fractional parts of the data elements contained in this
register, the value is converted to the closest decimal approximation.

When accessed by a COBOL program, this register behaves as if it had been described
in COBOL as an unsigned elementary numeric integer data item eight digits in length
(PIC 9(8) COMP).

Data from the TIME register cannot be transferred to a national data item.

TIMER

This register contains the current value of the object computer's interval timer (that is,
the number of 2.4-microsecond intervals since midnight).

When accessed by a COBOL program, this register behaves as if it had been described
in COBOL as an unsigned elementary numeric integer data item 11 digits in length (PIC
9(11) COMP).

6-6 8600 1518-307

ACCEPT Statement

Examples

ACCEPT date-1 FROM DATE

In this example, the ACCEPT statement transfers the content of the DATE register (that
is, the current year, month, day) to the data item date-1.

ACCEPT time-1 FROM TIME
In this example, the ACCEPT statement transfers the content of the TIME register (that
is, the current time in hours, minutes, seconds and hundredths of a second) to the data
item time-1.

ACCEPT name-1 FROM TODAYS-NAME

In this example, the ACCEPT statement transfers the content of the TODAYS-NAME
register (that is, the name of the current day) to the data item name-1.

8600 1518-307 6-7

ACCEPT Statement

6-8 8600 1518-307

ACCEPT Statement

8600 1518-307 6-9

ADD Statement

ADD Statement

The ADD statement adds two or more numeric operands together and stores the result.

This statement is partially supported in the TADS environment. Supported syntax is
noted in this section.

Format Use

Format 1 The ADD . .. TO format adds elementary numeric items and/or
numeric literals.

Format 2 The ADD ... TO ... GIVING format adds elementary numeric
items and/or numeric literals, resulting in either an elementary
numeric item or an elementary numeric-edited item.

Format 3 The ADD CORRESPONDING format adds the corresponding
data items of two group items.

Format1: ADD ... TO

identifier-1
ADD .. .T0 { identifier-2 [ROUNDED] } . . .
literal-1

[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-ADD]

TADS Syntax

identifier-1
ADD .. .T0 { identifier-2 [ROUNDED] } . . .
___ literal-1 -

[END-ADD]

6-10 8600 1518-307

ADD Statement

Explanation

identifier-1
literal-1
identifier-2

In this format, each identifier must refer to an elementary numeric item. Each literal must
be a numeric literal.

ROUNDED

This phrase causes the result to be rounded. Refer to “ROUNDED Phrase” in Section 5
for information about the rounding process.

ON SIZE ERROR imperative-statement-1

If a size error condition occurs, imperative-statement-1 will be executed. Refer to “SIZE
ERROR Phrase” and "Imperative Statements and Sentences” in Section 5 for more
information.

NOT ON SIZE ERROR imperative-statement-2

If a size error does not occur and this phrase is specified, imperative-statement-2 will be
executed.

END-ADD
This phrase delimits the scope of the ADD statement.

Details

The values of the operands preceding the word TO are added together, and the sum is
stored in a temporary data item. The temporary data item is then added to the value of
identifier-2. This process is repeated as many times as required by the statement.

The composite length of the operands cannot exceed 23 decimal digits (the composite
length is based on the length of all of the operands in the statement).

The compiler ensures that enough places are carried so as not to lose any significant
digits.

8600 1518-307 6-11

ADD Statement

Examples

ADD key-1 TO key-2

In this first example, the elementary numeric item key-1 is added to the elementary
numeric item key-2. The result is stored in the data item key-2.

ADD key-1, key-2 TO key-3, key-4 ROUNDED END-ADD

In this second example, key-1 and key-2 (both elementary numeric items) are added
together; the result is stored in a temporary data item. The temporary data item is added
to the data item key-3, and the result is stored in the data item key-3. The temporary data
item is then added to the data item key-4, and the result is rounded and stored in data
item key-4. The END-ADD option terminates the scope of this ADD statement.

Format 2: ADD ... TO ... GIVING

identifier-1 identifier-2
ADD L0100
literal-1 literal-2

GIVING { identifier-3 [ROUNDED] } . . .
[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]
[END-ADD]

TADS Syntax

identifier-1 identifier-2
ADD ... [T0]
_ literal-1 - literal-2

GIVING { identifier-3 [ROUNDED] } . . .
[END-ADD]

6-12 8600 1518-307

ADD Statement

Explanation

Refer to Format 1 for information on the ROUNDED, ON SIZE ERROR, NOT ON SIZE
ERROR, and END-ADD phrases.

identifier-1
identifier-2

|dentifier-1 and identifier-2 must be elementary numeric items.

literal-1
literal-2

Each literal must be a numeric literal.

GIVING identifier-3

The values of the operands preceding the word GIVING are added together, and the sum
is stored into the data item named by identifier-3. The data item represented by identifier-
3 can be an elementary numeric item or an elementary numeric-edited item.

Details
The composite length of the operands in the ADD statement cannot exceed 23 decimal
digits (the composite length is based on all of the operands that precede the word
GIVING).
The compiler ensures that enough places are carried so as not to lose any significant
digits.

Examples

ADD key-1 TO key-2 GIVING key-3

In this first example, the data items key-1 and key-2 are added, and the result is stored in
the data item key-3.

ADD key-1, key-2 TO key-3
GIVING key-4, key-5 ROUNDED
END-ADD.

In this second example, the data items key-1, key-2, and key-3 are added together, and

the result is stored in the data item key-4 and in the data item key-5. The result in key-5
is rounded.

8600 1518-307 6-13

ADD Statement

Format 3: ADD CORRESPONDING

CORRESPONDING

ADD identifier-1 TO identifier-2 [ROUNDED]
CORR ==

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

TADS Syntax

CORRESPONDING
ADD identifier-1 TO identifier-2 [ROUNDED]
CORR -

[END-ADD]

Explanation

For more information about the CORRESPONDING phrase, refer to “MOVE Statement”
in Section 7.

CORRESPONDING
CORR

The CORRESPONDING (or CORR) option enables you to add numeric data items from
one group item to data items of the same name within another group item. Only
elementary numeric data items can be added with this phrase. Refer to the discussion of
the CORRESPONDING phrase under "MOVE Statement” in Section 7 for rules that also
apply to the ADD CORRESPONDING phrase.

CORRESPONDING and CORR are equivalent.

identifier-1
identifier-2

In this format, each identifier must refer to a group item.

Data items in the group referred to by identifier-1 are added to and stored in the
corresponding data items in the group referred to by identifier-2.

The compiler ensures that enough places are carried so as not to lose any significant
digits.

6-14 8600 1518-307

ADD Statement

A data item that is subordinate to the data item referred by identifier-1 or identifier-2 and
that contains a REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause is ignored.
In addition, any data item subordinate to such a subordinate data item is also ignored.

A valid group item identifier cannot contain level-number 66, level-number 77, level-
number 88, or the USAGE IS INDEX clause.

A valid group item identifier cannot be reference-modified.

Refer to “USAGE Clause,” "REDEFINES Clause,” "RENAMES Clause,” and “"OCCURS
Clause” in Section 4.

Overlapping Operands

When a sending item and a receiving item share a part of their storage areas and are not
defined by the same data description entry, the result of the ADD statement is
undefined. The undefined result occurs only when operands share a part, but not all, of
their storage areas.

Example
DATA DIVISION.
01 group-1.
05 A PIC 99.

05 B PIC X(4).
05 C PIC 9(8).

01 group-2
05 A PIC 99.
05 D PIC 99.
05 B PIC X(4).
05 E PIC 9(4).
05 C PIC 9(8).
05 F PIC 9(8).

ADD CORR group-1 TO group-2 ROUNDED END-ADD
In this example, the data items belonging to the group item group-1 are added to the
corresponding data items (A, B, and C) that belong to the group item group-2. The results
are rounded.

Refer to “Imperative Statements and Sentences,” "ROUNDED Phrase,” and “SIZE
ERROR Phrase” in Section 5 for more information.

8600 1518-307 6-15

ALLOW Statement

6-16 8600 1518-307

ALTER Statement

ALTER Statement

The ALTER statement modifies a predetermined sequence of operations. This statement
is obsolete and will be deleted from the next revision of Standard COBOL.

Refer to “GO TO Statement” in this section for a description of the GO TO statement
and the DEPENDING phrase.

ALTER { procedure-name-1 TO [PROCEED TO] procedure-name-2 } . .

Explanation

procedure-name-1

Procedure-name-1 refers to the name of a paragraph in the Procedure Division that
contains a single sentence consisting of a GO TO statement without the DEPENDING
phrase.

procedure-name-2

Procedure-name-2 refers to the name of a paragraph or section in the Procedure Division.

Details
Execution of the ALTER statement modifies the GO TO statement in the paragraph

named procedure-name-1, so that a subsequent execution of the GO TO statement
transfers control to the procedure named procedure-name-2.

Example

Main-paragraph.

ALTER Search-1 TO PROCEED TO Search-2

Search-1.
GO TO Unstring-1.
Search-2.

In this example, the ALTER statement modifies the GO TO statement in the paragraph
named Search-1, so that when the GO TO statement is executed, control is transferred
to the paragraph named Search-2.

8600 1518-307 6-17

ATTACH Statement

6-18 8600 1518-307

ATTACH Statement

6-19

8600 1518-307

CALL Statement

CALL Statement

The CALL statement transfers control from one object program to another object
program in the same run unit.

Format Use

Format 1 This format provides a CALL statement with an ON OVERFLOW
option. This format uses the interprogram communication (IPC)
technique, which is described in Section 10.

Format 2 This format provides a CALL statement with an ON EXCEPTION
option. This format uses the interprogram communication (IPC)
technique, which is described in Section 10.

Format 3 This format provides a CALL statement for invoking an external
system procedure or WFL job. This format is partially supported in
the TADS environment. Supported syntax is noted in the
description of the format.

Format 4 This format provides a CALL statement for binding. The use of
Binder with COBOLS85 programs is discussed in Appendix E.

Format 5 This format provides a CALL statement for access to entry
procedures residing in program libraries. Library concepts and the
programmatic components required in programs that call libraries
are described in Section 11.

Format 6 This format provides a CALL statement for executing an
independently compiled program as a synchronous, dependent
task. The concepts of tasking and the components required in
programs that perform tasking are described in Section 13.

Format 7 This format provides a CALL statement for transferring control to
a portion of code in an externally compiled program bound into
the calling program. You can specify a section-name or a user-
defined program-name as an entry point.

6-20 8600 1518-307

CALL Statement

Format 1: CALL with ON OVERFLOW Option

identifier-1
CALL

literal-1

identifier-2

BY REFERENCE file-name
USING

BY CONTENT INTEGER (identifier-4)
STRING (identifier-5 }

[GIVING identifier-3]
[ON OVERFLOW imperative-statement-1]
[END-CALL]

Explanation

identifier-1

This identifier must be defined as an alphanumeric data item whose value is consistent
with program-naming conventions. It identifies the name of the called program.

literal-1

This must be a nonnumeric literal that identifies the name of the called program. If you
are calling a library entry point, you can specify the called program by using the following
syntax:

I

=

BYTITLE

entrypoint { } Tibrary

OF BYFUNCTION

In this syntax, entrypoint is the program-name specified by the PROGRAM-ID paragraph
in the Identification Division, which is exported by the ENTRY PROCEDURE clause in the
Program-Library Section. For details about library entrypoints, refer to Table 9-1. Library is
the file title of the library if BYTITLE is specified or the function name of the library if
BYFUNCTION is specified. If neither BYTITLE nor BYFUNCTION is specified, the library
will be called by title. If you choose the BYTITLE option, you can specify the ON <family
name> clause in the title.

8600 1518-307 6-21

CALL Statement

6-22

USING

The USING phrase identifies the individual parameters that can be passed. Parameters
can be passed either by reference or by content. Passing by reference is the default.

Long numeric data items are valid in the USING phrase. A long numeric data item is an
unsigned numeric DISPLAY or COMPUTATIONAL data item from 24 to 99,999 digits
long. Long numeric data items are treated as group items. Data items larger than 23
digits must be unsigned integers.

BY REFERENCE

The BY REFERENCE phrase enables the calling program to pass data to the called
program. The values of the passed data may be modified by the called program. If the
values of the passed data were modified by the called program, they will be modified in
the calling program when control is returned to the calling program.

If the BY REFERENCE phrase is either specified or implied for a parameter, the object
program operates as if the corresponding data item in the called program occupies the
same storage area as the data item in the calling program.

The data item in the called program and the corresponding data item in the calling
program must have the same number of character positions.

Both the BY CONTENT and the BY REFERENCE phrases are transitive across the
parameters that follow them until another BY CONTENT or BY REFERENCE phrase is
encountered. If neither the BY CONTENT nor the BY REFERENCE phrase is specified
prior to the first parameter, the BY REFERENCE phrase is assumed.

BY CONTENT

The BY CONTENT phrase enables the program that contains the CALL statement to pass
data to the called program. The original values of the passed data will be restored to the
calling program when control is returned to the calling program. This occurs despite any
changes the called program might make to the passed data.

The data description of each parameter in the BY CONTENT phrase of the CALL
statement must match the data description of the corresponding parameter in the USING
phrase of the Procedure Division header.

identifier-2

This is a data item that will be passed to the called program.

Identifier-2 can be an elementary data item or a non-01-level group item declared in the
File Section, Working-Storage Section, or the Linkage Section of the calling program. The
compiler generates a copy of the data and passes the copy to the called program. If the

parameter is passed BY REFERENCE, the data is copied back into the original area on
return from the call.

|dentifier-2 cannot be a function-identifier.

8600 1518-307

CALL Statement

|dentifier-2 ean be a national data item.

To prevent data corruption, identifier-2 cannot be a redefined data item. This rule includes
implicit as well as explicit redefinitions. An explicit redefinition occurs when a data item is
declared in the File Section with a REDEFINES clause or is subordinate to a data item
declared with a REDEFINES clause. An implicit redefinition occurs when the first data
item declared in the File Section is followed by subsequent level 01 items. The
subsequent level-01 items are considered to be implicit redefinitions of the first item.

COMS headers can be sent as parameters to entry points of libraries and will match to a
real array.

file-name

This is a file name of a file to be passed as a parameter. The file must be declared as
RECEIVED BY REFERENCE in the file's SELECT clause of the FILE-CONTROL paragraph.

INTEGER (identifier-4)

This declares the parameter to be an integer type parameter. Integer type parameters
must be declared with USAGE COMPUTATIONAL.

STRING (identifier-5)

This declares the parameter to be a string type parameter. String type parameters must
be declared with USAGE DISPLAY.

GIVING identifier-3

The GIVING phrase is used to provide a data item into which the value of the called
function is to be stored. The procedure identified by identifier-1 must be a function that
returns a value. Identifier-3 must be a numeric item.

ON OVERFLOW imperative-statement-1

If the program is not present, imperative-statement-1 is executed.

END-CALL
This phrase delimits the scope of the CALL statement.

Details

Details for the CALL with ON OVERFLOW option and the CALL with ON EXCEPTION
option appear under the heading “Format 2: CALL with ON EXCEPTION Option” in this
section.

8600 1518-307 6-23

CALL Statement

Format 2: CALL with ON EXCEPTION Option

identifier-1
CALL

literal-1
identifier-2

BY REFERENCE file-name
USING

BY CONTENT INTEGER (identifier-4)
STRING (identifier-5)

[GIVING identifier-3]

[ON EXCEPTION imperative-statement-1]

[NOT ON EXCEPTION imperative-statement-2]
[END-CALL]

Explanation

Details

6-24

Refer to Format 1 for descriptions of the syntax elements identifier-1, literal-1, identifier-
2, file-name, USING, BY REFERENCE, BY CONTENT, INTEGER (identifier-4), STRING
(identifier-5), GIVING, and END-CALL.

ON EXCEPTION imperative-statement-1

If the called program is not present and this phrase is specified, imperative-statement-1
is executed.

NOT ON EXCEPTION imperative-statement-2

If the called program is available and executable as a called program, imperative-
statement-2 is executed.

The calling program is the program in which the CALL statement appears. The called
program is the object of a CALL statement, combined at execution time with the calling
program to produce a run unit.

Literal-1 or the content of the data item referenced by identifier-1 must contain the object
name of the called program.

8600 1518-307

CALL Statement

If the program being called in identifier-1 or literal-1 is not a COBOL program, the number
of parameters in the formal parameter list of this program must match the number of
operands in each USING phrase of the COBOL program. In case of parameter size
difference, the COBOL MOVE rules apply.

When a CALL statement is executed, and the program specified by the CALL statement
is made available for execution, control is transferred to the called program.

The BY CONTENT phrase of the CALL statement is a method of passing parameters
between programs without changing the value in the calling program. \Whether the BY
CONTENT or the BY REFERENCE phrase is specified in the CALL statement, for the
implicit entry procedure interface, the compiler treats the formal parameter as though the
BY REFERENCE phrase had been specified. In this case, a copy is made for the BY
CONTENT data item and passed by reference. True BY CONTENT applies only to the
explicit library interface for level-77 BINARY, DOUBLE, and REAL data items.

Table 6-2 illustrates parameter mapping among COBOL85, ALGOL, Pascal, and
COBOL74 programs.

Table 6-2. Parameter Mapping among Languages

Implicit Interface
COBOLS85 Data ALGOL Data Pascal Data COBOL74 Data
BY CONTENT Reference Reference Reference
BY REFERENCE Reference Reference Reference
Explicit Interface
COBOLS85 Data ALGOL Data Pascal Data COBOL74 Data
BY CONTENT Value Value No Match
(REAL, DOUBLE,
BINARY)

To use the explicit library interface, you must add a LOCAL-STORAGE SECTION and a
PROGRAM-LIBRARY SECTION in your program to describe the library and its parameters
and attributes. You can pass the parameters from COBOL85 to ALGOL as by value and
match the ALGOL VALUE parameter by specifying BY CONTENT in the LOCAL-
STORAGE SECTION on the formal description of the COBOL85 parameter; nothing is
specified on the corresponding CALL statement.

8600 1518-307 6-25

CALL Statement

Example

The following COBOLS85 program calls an ALGOL library that is passing a parameter by
value.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 WS-PARAM1 PIC 9(3) BINARY.
LOCAL-STORAGE SECTION.
LD PROGI.
77 PARAM1 PIC 9(3) BINARY BY CONTENT.
PROGRAM-LIBRARY SECTION.
LB MYLIB IMPORT
ATTRIBUTE LIBACCESS IS BYTITLE
TITLE IS "OBJECT/ALGOL/LIB".
ENTRY PROCEDURE PROC1 WITH PROG1 USING
PARAM1.
PROCEDURE DIVISION.
START-MAIN.
MOVE 3 TO WS-PARAML.
DISPLAY "BEFORE LIB CALL WS-PARAM1=" WS-PARAMI.
CALL PROC1 USING WS-PARAML.
DISPLAY "AFTER LIB CALL WS-PARAMI1=" WS-PARAMI.
END-MAIN.
STOP RUN.
And here is the library:
BEGIN
PROCEDURE PROCI1(I1);
VALUE I1;
INTEGER I1;
BEGIN
I1:=%+1;
DISPLAY ("IN LIBRARY, PARAMETER CHANGED TO " CAT STRING(I1,*));
END;
EXPORT PROC1;
FREEZE (TEMPORARY) ;
END.

When the COBOLS85 program runs, the displays show that the value of WS-PARAM1 is
not changed

RUNNING 9061

9061 DISPLAY:BEFORE LIB CALL WS-PARAM1=003.

9061 DISPLAY:IN LIBRARY, PARAMETER CHANGED TO 4.
9061 DISPLAY:AFTER LIB CALL WS-PARAM1=003.
ET=0.4 PT=0.1 1I0=0.1

6-26 8600 1518-307

CALL Statement

Control and the ON OVERFLOW and ON EXCEPTION Phrases

After control is returned from the called program, the ON EXCEPTION or ON
OVERFLOW phrase (if specified) is ignored. Control is transferred to the end of the CALL
statement.

After control is returned from the called program and the NOT ON EXCEPTION phrase is
specified, control is transferred to imperative-statement-2. Then, execution continues
according to the rules for each statement specified in imperative-statement-2. If a
procedure-branching or conditional statement that causes explicit transfer of control is
executed, control is transferred according to the rules for that statement. Otherwise,
upon completion of the execution of imperative-statement-2, control is transferred to the
end of the CALL statement.

If the program specified by the CALL statement cannot be made available for execution
when it is called, one of the following actions will occur:

e |f the ON OVERFLOW or ON EXCEPTION phrase is specified, control is transferred
to imperative-statement-1. Execution then continues according to the rules for each
statement specified in imperative-statement-1.

If a procedure branching or conditional statement that causes explicit transfer of
control is executed, control is transferred according to the rules for that statement.
Otherwise, upon completion of the execution of imperative-statement-1, control is
transferred to the end of the CALL statement, and the NOT ON EXCEPTION phrase,
if specified, is ignored.

o |f the ON OVERFLOW or ON EXCEPTION phrase is not specified in the CALL
statement, then imperative-statement-2 in the NOT ON EXCEPTION phrase, if
specified, is ignored.

Program-Name Conventions

Two or more programs in a run unit can have the same program-name. If a CALL
statement refers to a duplicated program-name, the problem is resolved by the
conventions for the scope of names for program-names. Refer to "Conventions for
Program-Names" in Section 10 for more information.

For example, when only two programs in the run unit have the same name as that
specified in a CALL statement:

e One of those two programs must also be contained directly or indirectly in the
program which includes that CALL statement or in the separately compiled program
which itself directly or indirectly contains the program which includes that CALL
statement.

e The other of those two programs must be a different, separately compiled program.
The mechanism used in this example is as follows:
e |f one of the two programs having the same name as that specified in the CALL

statement is directly contained within the program which includes that CALL
statement, that program is called.

8600 1518-307 6-27

CALL Statement

e [f one of the two programs having the same name as that specified in the CALL
statement possesses the common attribute and is directly contained within another
program which directly or indirectly contains the program which includes the CALL
statement, that common program is called unless the calling program is contained
within that common program.

e Otherwise, the separately compiled program is called.

Program States

A called program (and each program it directly or indirectly contains) is in its initial state
the first time it is called in a run unit or the first time it is called after it has been canceled
by a CANCEL statement.

If the called program possesses the initial attribute, it and each program it directly or
indirectly contains are placed into an initial state every time the called program is called in
a run unit.

On all other entries in the called program, the state of the program (including each
program it directly or indirectly contains) remains unchanged from its state when it was
last exited.

Files associated with a called program's internal file connectors are not in the open mode
when the program is in an initial state. On all other entries into the called program, the
states and positions of all such files are the same as when the called program was last
exited.

The process of calling a program or exiting from a called program does not alter the
status or position of a file associated with any external file connector.

The USING Phrase

The USING phrase is included in the CALL statement only if there is a USING phrase in
the Procedure Division header of the called program. In this case, the number of
operands in each USING phrase must be the same.

The sequence in which data-names appear in the USING phrase of the CALL statement
and in the corresponding USING phrase in the called program's Procedure Division
header determines the relationship between the data-names used by the calling and
called programs. This relationship is based on position; the first data-name in one USING
phrase corresponds to the first data-name in the other, the second to the second, and so
forth.

The values of the parameters referenced in the USING phrase of the CALL statement are
available to the called program at the time the CALL statement is executed.

6-28 8600 1518-307

CALL Statement

CALL Statements in Nested Programs

Called programs can contain CALL statements. However, a called program must not
execute a CALL statement that directly or indirectly calls the calling program. As a result,
there are no recursive calls.

If a CALL statement is executed within the range of a declarative procedure, that CALL
statement cannot directly or indirectly reference any called program to which control has
been transferred or that has not completed execution.

Example
IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER. PROGRAM-ID. CALLED.
DATA DIVISION. DATA DIVISION.
WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.

01 COLOR PIC X(10).

01 SIZEl PIC 99v99.

01 AMOUNT PIC 999. .
LINKAGE SECTION.
01 HUE PIC X(10).
01 MY-SIZE PIC 99V99.

PROCEDURE DIVISION. PROCEDURE DIVISION
USING MY-SIZE, HUE.
PARA-1. PARA-A.

CALL "CALLED"
USING BY CONTENT SIZE1
BY REFERENCE COLOR

ON EXCEPTION PERFORM EX-1
NOT ON EXCEPTION MOVE MY-SIZE TO WS-1.
PERFORM PARA-4. MOVE "RED" TO HUE.
EXIT PROGRAM.

The program on the left (CALLER) is calling the program on the right (CALLED). The
identifiers that will be passed, which are SIZE1 and COLOR, are defined in the program
that contains the CALL statement. These identifiers correspond to the identifiers MY-
SIZE and HUE in the called program.

The values of SIZE1 and COLOR wiill be passed from CALLER to CALLED, but the value
of SIZE1 cannot be modified because it is passed BY CONTENT.

If an exception condition exists, the statements in EX-1 will be executed. The NOT ON

EXCEPTION phrase will be ignored. If an exception condition does not exist, the
statements in PARA-4 will be executed. The ON EXCEPTION phrase will be ignored.

8600 1518-307 6-29

CALL Statement

6-30 8600 1518-307

CALL Statement

8600 1518-307 6-31

CALL Statement

il

6-32 8600 1518-307

CALL Statement

This program calls the version value and displays pass/fail status.

8600 1518-307 6-33

CALL Statement

8600 1518-307

6-34

CALL Statement

Table 6-3. Formal and Actual Parameters for Bound Procedures

COBOLS5 ALGOL Formal Parameter Permissible Actual
Formal Parameter Parameters
DOUBLE, 77 (RECEIVED BY DOUBLE DOUBLE, 77
REFERENCE)
BINARY, 01, 1-11 digits INTEGER ARRAY BINARY, 01, 1-11 digits
COMP, 01
DISPLAY 01
BINARY, 01, 12-23 digits DOUBLE ARRAY BINARY, 01, 12-23 digits
or DOUBLE, 01 DOUBLE, 01
REAL, 01
REAL, 01 REAL ARRAY REAL, 01
COMP, 01 HEX ARRAY COMP, 01
INDEX, 01 DISPLAY, 01
BINARY, 01, 1-11 digits
DISPLAY, 01 EBCDIC ARRAY COMP, 01
DISPLAY, 01
BINARY, 01, 1-11 digits
FILE FILE FILE
TASK, 77 or 01 TASK TASK, 77 or 01
TASK, 01 group TASK ARRAY TASK, 01 group
EVENT or LOCK, 77 EVENT EVENT or LOCK, 77
EVENT or LOCK, 01 group EVENT ARRAY EVENT or LOCK, 01
group
BIT, 77 BOOLEAN BIT, 77
SYNC RIGHT Boolean-expression
(RECEIVED BY CONTENT)
BIT, 77 BOOLEAN BIT, 77
SYNC RIGHT
(RECEIVED BY REFERENCE)
BIT, 01 BOOLEAN ARRAY BIT, 01
SYNC RIGHT

8600 1518-307

6-35

CALL Statement

6-36 8600 1518-307

CALL Statement

8600 1518-307 6-37

CALL Statement

6-38 8600 1518-307

CALL Statement

B
B

8600 1518-307 6-39

CALL Statement

6-40 8600 1518-307

CALL Statement

8600 1518-307 6-41

CALL Statement

8600 1518-307

6-42

CALL Statement

L]]]

6-43

8600 1518-307

CALL Statement

6-44 8600 1518-307

CALL Statement

8600 1518-307 6-45

CALL Statement

6-46

8600 1518-307

CANCEL Statement

CANCEL Statement

The CANCEL statement breaks the link between the called program and a calling
program. The next time the program is called, it will be in its initial state.

For information on program-naming conventions, refer to “User-Defined Words" in
Section 1.

Refer to “PROGRAM-ID Paragraph” in Section 2 for information on how a program
receives the initial attribute.

For conceptual information on interprogram communication and the use of the CANCEL
statement, refer to Section 10.

Refer to “CALL Statement” and “EXIT Statement” in this section for more information.

identifier-1
literal-1
CANCEL
library-name-1 BYTITLE
BYFUNCTION
Explanation

identifier-1

This identifier must reference an alphanumeric data-item whose value is consistent with
program-naming conventions.

The content of the data-item referenced by the identifier can identify the program to be
canceled.

literal-1

This is a nonnumeric literal that identifies the name of the program to be canceled.

library-name-1
This is the name of the library to be canceled. Cancellation of a library causes the
program to be delinked from the library.

Literal-1 must be the file title of the library if the BYTITLE option is specified, or the
function name of the library if the BYFUNCTION name is specified. The library name and
the option you choose must match those used when the library program was called.

8600 1518-307 6-47

CANCEL Statement

Details

6-48

BYTITLE
BYFUNCTION

These options are described as follows:
e BYTITLE indicates that the library was referred to by its file title in the CALL
statement of the calling program.

e BYFUNCTION indicates that the library was referred to by its function name in the
CALL statement of the calling program.

The library name and the option you choose must match those used when the library
program was called.

e |f you do not specify an option, BYTITLE is assumed.

When a program is canceled, the contents of data items in external data records
described by that program are not changed.
When Cancellation Occurs

A called program is canceled when any one of the following occurs:

e Whenitis referred to as the operand of a CANCEL statement
e At the termination of the run unit of which the program is a member

e When an EXIT PROGRAM statement is executed in a called program that has the
initial attribute

All programs contained in the program referenced by the CANCEL statement are also
canceled.
Explicit and Implicit Cancel Statements

A CANCEL statement can be explicit or implicit. An explicit cancellation occurs when one
program cancels another. An implicit cancellation occurs with nested calls. Consider the
following example:

1. Program A calls Program B, and Program B calls Program C.

2. Program A contains a CANCEL statement to cancel Program B.

3. This statement, in effect, cancels Program C and then cancels Program B.
Program B is canceled explicitly, because it is directly canceled through a CANCEL

statement in Program A. Program C is canceled implicitly because its parent program,
Program B, was canceled.

After the execution of an explicit or implicit CANCEL statement, the referenced program
does not have a logical relationship to the run unit in which the CANCEL statement
appears. If the program referenced by a successfully executed explicit or implicit
CANCEL statement in a run unit is then called in that run unit, that program is in its initial
state.

8600 1518-307

CANCEL Statement

No action is taken when an explicit or implicit CANCEL statement is executed naming a
program that has not been called into the run unit or that has been called and is presently
canceled. Instead, control is transferred to the next executable statement following the
explicit CANCEL statement.

During execution of an explicit or implicit CANCEL statement, an implicit CLOSE
statement without optional phrases is executed for each file in the open mode that is
associated with an internal file connector in the program named in the explicit CANCEL
statement. USE procedures associated with these files are not executed.

Rules for Referenced Programs

A program named in a CANCEL statement in another program must be callable by that
other program.

A program named in the CANCEL statement must not refer directly or indirectly to any
program that has been called and has not yet executed an EXIT PROGRAM statement.

You can establish a logical relationship to a canceled program only by executing a
subsequent CALL statement that names the program.

Examples

03 Nme PIC X(6) VALUE "PROG-1".

CANCEL NME.

This cancels the called program PROG-1. NME is an identifier, which contains a program-
name.

CANCEL "AUDIT1"™ "AUDIT2".
This cancels the called programs AUDIT1 and AUDIT2.
CANCEL "AUDIT1", NME, "OBJECT/AUDIT2".

This cancels the called programs AUDIT1, PROG-1, and OBJECT/AUDIT2.

8600 1518-307 6-49

CAUSE Statement

6-50 8600 1518-307

CAUSE Statement

W
IRLE
LA

CAUSE WS-EVENT (3).

CAUSE AND RESET WS-77-EVENT.

8600 1518-307 6-51

CHANGE Statement

vl
il

6-52 8600 1518-307

CHANGE Statement

6-53

8600 1518-307

CHANGE Statement

Format 2: Changing the Value of an Alphanumeric File Attribute

6-54 8600 1518-307

CHANGE Statement

8600 1518-307 6-55

CHANGE Statement

| 'HI l
\| iz

6-56 8600 1518-307

CHANGE Statement

8600 1518-307 6-57

CHANGE Statement

I
I

6-58 8600 1518-307

CHANGE Statement

TIR 1]
LI

8600 1518-307 6-59

CHANGE Statement

6-60 8600 1518-307

CHANGE Statement

8600 1518-307 6-61

CLOSE Statement

CLOSE Statement

The CLOSE statement ends the processing of a file or a reel/unit of a file. Also, it can
specify the disposition of the file and the device to which the file is assigned.

This statement is partially supported in the TADS environment. Applicable exclusions are
noted in this section.

Format Use
Format 1 This format ends the processing of sequential files.
Format 2 This format ends the processing of either relative or indexed files.

Format 1: Sequential I-O

REEL
[FOR REMOVAL]
UNIT

CLOSE |file-name-1
NO REWIND
LOCK

SAVE P e
PURGE

CRUNCH

WITH

RELEASE
DISMISS
REMOVE [CRUNCH]

| NO WAIT

This format is supported in the TADS environment.

6-62 8600 1518-307

CLOSE Statement

Explanation

file-name-1

This name is a user-defined word that specifies the name of the file to be closed.
The specified file must be in an open mode.

Files referenced in the CLOSE statement can have different organizations and access
modes.

REEL
UNIT

These are equivalent.
The reel/unit is closed and rewound.

Treatment of sequential mass storage files is logically equivalent to the treatment of a
file on tape or a similar sequential medium.

Treatment of a file contained in a multiple-file tape environment is logically equivalent to
the treatment of a sequential single-reel/unit file, if the file is contained on one reel.

The REEL or UNIT phrase and the NO REWIND option cannot be specified together in a
CLOSE statement.

FOR REMOVAL

This option is used for sequential single-reel/unit files and multi-reel/unit files. The
reel/unit is closed, and the system waits for the next reel/unit.

NO REWIND
The file is closed, and the current reel/unit is left in its current position.

The NO REWIND option and the REEL or UNIT phrase cannot be specified together in a
CLOSE statement.

LOCK

The logical file is marked as locked, so that it cannot be reopened during the execution of
the program. If the file is a mass-storage file, it becomes a permanent file before it is
made unavailable. If the file is assigned to tape, the physical unit is made not ready.

SAVE

This disposition is valid only for mass-storage files. The file is made permanent and can
be reopened during execution of the program.

8600 1518-307 6-63

CLOSE Statement

8600 1518-307

6-64

CLOSE Statement

Details

The execution of the CLOSE statement updates the value of the |-O status associated
with the specified file. Refer to Table 3-1 for information on the I-O status codes.

A CLOSE statement can be executed only for a file in open mode. In general, a CLOSE
statement changes the FILEUSE attribute of the file to I-O. This change can affect the
results of any subsequent access to the RESIDENT, PRESENT, or AVAILABLE attribute
of the file. (A CLOSE statement without a specified option retains the file and does not
change the FILEUSE attribute of the file.)

End-of-file or reel/unit processing is performed for the file if an optional input file is
present. Processing is not performed if an optional input file is not present. In this case,
the file position indicator and the current volume pointer are unchanged.

Following the successful execution of a CLOSE statement without the REEL or UNIT
phrase, the record area associated with the specified file is no longer available. After the
unsuccessful execution of such a CLOSE statement, the record area remains
unchanged.

Following the successful execution of a CLOSE statement without the REEL or UNIT
phrase, the file is removed from the open mode, and the file is no longer associated with
the file connector.

If more than one file-name is specified in a CLOSE statement, the result of executing this
CLOSE statement is as if a separate CLOSE statement had been written for each file-
name in the same order as specified in the CLOSE statement.

TADS
Any USE procedure is not executed when a CLOSE statement that is compiled and
executed in a TADS session fails.

Effect of CLOSE Statements on Different Storage Media

In general, a CLOSE statement changes the FILEUSE attribute of the file to I-O. This
change can affect the results of any subsequent access to the RESIDENT, PRESENT, or
AVAILABLE attributes of the file. (A CLOSE statement without a specified option retains
the file and does not change the FILEUSE attribute of the file.)

A CLOSE statement without file retention also checks the EXCLUSIVE attribute of the

file during the CLOSE operation. If this attribute is found to be TRUE, it is set to FALSE
during the CLOSE process.

8600 1518-307 6-65

CLOSE Statement

The formats of the CLOSE statements affect various storage media differently. To show
the effects of CLOSE statements on various storage media, all files are divided into the
following categories:

e Non-reel/unit file

This is a file whose input or output medium is such that the concepts of rewind,
reels, and units have no meaning. This category includes mass-storage files.

A CLOSE statement executed for a non-reel/unit file can affect the disposition of the
device to which it is assigned. The CLOSE statement affects only the disposition of
the physical file and its association with the logical file, not the disposition of the
physical device.

e Sequential single-reel/unit file
This is a sequential file that is entirely contained on one reel/unit.
e Sequential multi-reel/unit file

This is a sequential file that is contained on more than one reel/unit.

6-66 8600 1518-307

CLOSE Statement

Table 6-5 summarizes the results of executing each type of CLOSE statement for each
category of file. Definitions of the numeric entries appear in the paragraphs following the

table.
Table 6-5. Relationship of File Types and CLOSE Formats
Sequential
CLOSE Single-Reel or Sequential Multi-
Statement Non-Reel or Unit Unit Reel or Unit
Format

CLOSE 39 379 12317
CLOSE 615 6715 67
REEL/UNIT
CLOSE 615 467 467
REEL/UNIT FOR
REMOVAL
CLOSE WITH NO 3815 289 12317
REWIND
CLOSE WITH 351011 3571011 13571011
LOCK
CLOSE WITH 31013 15 15
SAVE
CLOSE WITH 312 3712 13712
PURGE
CLOSE WITH 31011 371011 1371011
RELEASE
CLOSE WITH 31011 371011 1371011
DISMISS
CLOSE WITH 31013 15 15
REMOVE
CLOSE WITH 31014 15 15
CRUNCH
CLOSE WITH 31013 15 15
REMOVE
CRUNCH
CLOSE WITH NO 16 15 15

WAIT

8600 1518-307

6-67

CLOSE Statement

6-68

The following paragraphs explain the meaning of the numerical values in Table 6-5. In
these paragraphs, definitions apply to input, output, and input-output files. Alternate
definitions are given where the type of file affects the definition.

1.

Previous reels or units are closed.

Input Files and Input-Output Files:

All reels or units in the file before the current reel/unit are closed (except for those
reels or units controlled by a prior CLOSE REEL or CLOSE UNIT statement). The
reels or units in the file following the current one are not processed.

Output Files:

All reels or units in the file before the current reel/unit are closed (except for those
reels or units controlled by a prior CLOSE REEL or CLOSE UNIT statement).

The current reel is not rewound.
The current reel/unit is left in its current position.
The logical file is closed.

Input Files and Input-Output Files:

If the file i