
CONTROL DATA

•

GASS
PRELIMINARY
MANUAL

CONTROL DATA

GASS
PRELIMINARY
MANUAL

G01676
15 JULY 1963

The information contained in this
manual is preliminary and subject
to change without notice.

Chapter

1

2

J
4

CONTENTS

Description of GASS ••••••••••••••••••••••••••••••
Description ••••••••••••••••••••

Special Features Included in GASS •••••••
and Subroutine Linkages •••••• Subprogram

Subprogram Form ••••
Data Storage ••••••
Program Relocation ••
Operator Options for GASS ••

Page

1 -1
1 -1
1-2
1-2
1-4
1-4
1-4
1-5

Instruction Format ••••••••••••••••••••••••••••••••••• 2-1
Fields •••••••••••••••••

Location Field.
Operation Field.

.
Modifier Expression ••

Address Field ••••••••••••
Arithmetic Expression.

2-2
2-2
2-2
2-3
2-3
2-4

Comments Field . .•....................•... 2-4
OSAS Option of Operation.

Rules of
Pseudo

Operation •••••••••••••••
Instructions ••••••••••

Subprogram Linkage ••
IDENT ••••••••••

Description.
Comments ••
E.)(ample ••••
System Use of ID ENT ••••••••••••••

E·ND ••••••••••••
Description ••
Comments ••
System Use of END •• ENDT ••••••
Description.
Comments •••

WAI • .
Description •••

Comments ••••
ENTRY •••••••••• . '

Description ••
Comments •••••••••• • •
System Use of ENTRY.

2-4
3-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4~6

EXTNL ••••••••••••••••••••••••••••••••
Description ••
Comments ••
System Use of EXTNL.
Caution ••••••••
Legal
Illegal

LOCAL •••

Example ••
Example ••

Description ••
Comments ••

...

System Use of LOCAL.
NONLC ••••••••• .
LI BA ••••••••••••

Description ••
Example ••••••••••••••••••••••••••••
Comments •••••
System Use of

LIBS •••••••

.
LISA ••••••••••••••• . .

Description ••••••••••
System Use of LIBS •••••••••••••••

Storage Al locations •••••••••••••••.••••••••••
ass ..
BLR.
BES.
LOCM ••••••••••

Description.
Comments ••

COMN ••••••••••
Description.
Example •••••••••••••••••••••••••••
Comments ••••••••••••••••••••••••••

Data Definition
OAF.
OCT.
DEC ••
BCD ••
FLX.

Assembler Control ••
OSAS.
GASS ••

. .

. ...
B NK ••••••••••••••••••••••••••••••••••••

Description.
Comments ••

4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-10
4-10
4-10
4-11
4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-16
4-17
4-18
4-19
4-19
4-19
4-20
4-21
4-21
4-21
4-22
4-22
4-22

ORG ••••••••••••••••••••••••••••••••••• 4-23
4-23 Description.

Comments ••• . •• 4-23
PRG ••••••••••••••••••••••••••••••••.•••• 4-23

Comments •••••••••••••••••••••••••• 4-24
CON •••••••••••••••••••••••••••••••••••• 4-24

Description .4-24
.... • •••••• 4-24 Comments.·.

System Use of ORG, PRG and CON •• 4-25
EQU •••••••••••••••••••••••••••••••••••• 4-25
MA.SS ••••••••••••••••••••

Description.
Comments ••••••••

Output Listing Control.
REM •••••••••••••

. .. . • • • . • 4-25

. 4-25
4-26
4-27
4:-27

EJECT ••••••••••••••••••••••••••••••••• 4-27
SPACE •••••••••••••••••••••••••••.•••••• 4-27

•• 4-28
....

5 Instructions •• •• 4-28
5-1
5-1

Appendix A
Appendix B
Appendix c
Appendix D

Figure
Figure

2-1
3-1

of Instructions. .. GASS Form
Group 1
Group 2
Group
Group
Group
Group 6

FE ••••••••••••••••••••••••••••• 5-2
Fe
F

e 5-2

Pseudo
Machine

3
4
5

E • • • • • . • • • • • • • • .. • • • • • . • . • . • •
FE G •••
F EG.
FE G. •

APPENDIXES

.................
...................

Instructions ••••••••••••••••••••••••••
Instructions.

Error Codes •••••
Special Codes for Type Entries ••••••••••••••

FIGURES

1 60G Assembly
Entire Memory

System Coding
Instruction •••••

Form ••••••••••

5-2
5-3
5-4
5-4

A-1
B-1
C-l
D-t

2-1
3-3

CHAPTER 1

DESCRIPTION OF GASS

An assembly program has two major functions. The first is to al
low the programmer to use meaningful names for the instructions;
thus, an add instruction could be written as ADD rather than
octal 20. The assembly program thus translates the mnemonic oper
ation codes to the actual machine codes required. The second func
tion is to allow the programmer to assign lables or names to loca
tions which are to be referenced in the memory. These I ables or
names are called symbols. When a location is tabled by a symbol,
the programmer then may refer to that location by use of the symbol
without concern about the actual location in the program. The as
sembly program takes care of the assignment of symbols to locations
and the resultant translation by the construction of the symbol table
which gives the absolute location and the symbol to which it has been
assigned.

Using the assembly program, a programmer may write, 11ADD L2".
The assembly program noting the assignment of location L2 trans
lates the above statement to the actual machine coding to perform the
function. GASS provides these basic functions of an assembly pro
gram and other capabilities as defined in this manual.

DESCRIPTION

GASS accepts symbolic instructions for the 160G computer as an
input. These instructions which are prepared on punched cards
may be transferred to magnetic tape as an alternate input to the
program. The assembly process requires two passes (readings)
of the source language information. During the first pass, GASS
reads each line (card) of symbolic information and, optionally,
writes this information on an intermediate magnetic tape for the
second pass. The information is scanned, and a partial translation
of the operation code is made to determine the space which will be
required in the memory of the 160G to contain the instructions and

1 -1

data. This information is used to assign values to symbols which
appear in the program. The symbols then are inserted into the in
ternal and external symbol tables for use in the second pass of the
assembly process.

During the second pass, GASS analyzes the input information
(derived either from the input media or the intermediate magnetic
tape) and converts this information to machine form. It transmits
each line of output and groupings of assembled binary words to the
output devices. At the completion of the assembly process, it also
provides the linkage information for inclusion in the binary program
output. If the information compiled in the current internal symbol
table will be needed during the assembly of other programs, it may
be punched on a separate, special card deck at the completion of the
second pass.

Normally, GASS prepares the internal symbol table based on the in
put symbolic coding; however, the symbol table from a previous as
sembly may be loaded prior to assembly of a program. This
special symbol table information must have been prepared by GASS
as an output from a previous assembly.

The following output information results from the assembly process:

1 • An output listing of the assembled program
2. Relocatable binary card output for subsequent loading and

execution of the assembled program
3. Relocatable binary card images on magnetic tape
4. A symbol table for use in combining other programs

during a separate assembly

SPECIAL FEATURES INCLUDED IN GASS

Gass includes several special features which are described in this
chapter. Additional features are covered in other chapters of the
manual.

SUBPROGRAM AND SUBROUTINE LIN.KAGES

At running time, a program is composed of one or more independ
ently assembled subprograms. Each subprogram is composed of
one or more subroutines which are assembled at the same time.

1-2

For the object program to operate correctly, all references in the
various subprograms and subroutines must refer to the actual
machine locations as they are assigned at run time. The following
methods are used to specify and complete these linkages provided in
MASS and GASS:

1. Several parts of one program may be assembled at differ
ent times by the use of the internal symbol from the pre
vious assemblies. To do this, the first part of the pro
gram is assembled and the internal symbol table is saved.
For the assembly of the second part, the symbol table
from the first part is included in the input information. In
this manner, all references from the second part to the
first part may be made symbolically. This method is
limited by the fact that there is no easy way to make a
symbolic reference from the first to the second part; how
ever, a possible method is to use the EQU statement in
the first part.

2. By use of the pseudo instructions LOCAL and NONLC,
the location symbols appearing in one subroutine may be
declared local to the current coding until the appearance
of another LOCAL or NONLC pseudo instruction. Cross
references from other subroutines to be assembled at the
same time are indicated in the address field of the
LOCAL pseudo instruction. This technique allows the
programmer to re-use symbols in various subroutines
without trouble from multiple definition. Only the cross
reference symbols will appear in the main symbol table.
This technique also allows the use of more symbols in the
program than the capacity in the symbol table. (See the
description of LOCAL and NONLC pseudo instructions.)

3. Subprograms assembled separately or contained on the
library tape, communicate with each other by the use of
entry points and external symbols. (See ENTRY and
EXTNL pseudo instructions.) If, in subprogram 1 there
is a desire to make reference to the location represented
by the symbol ABLE which occurs in subprogram 2,
ABLE must be declared as an external symbol in Sub
program 1 and as an entry point in subprogram 2. The
linkage, or insertion of the true machine location,. is made
by MASS at load time. Only a limited number of linkages
can be made by MASS due to the limited storage available
in the basic 160G system. A program is available to pre
link the subprograms prior to run time.

1-3

SUBPROGRAM FORM

The first card of each subprogram must contain the IDENT pseudo
instruction, and the last card must contain the END pseudo instruc
tion.

Any subprogram may be the main subprogram -- the one to which
initial control will be given on completion of the loading process.
One, and only one subprogram must have an ENDT card which
gives the name of the entry point in the main subprogram. When
the binary deck of the assembled program has been loaded by the
1inking binary loader, a bank return jump is made to this entry point.
If no entry point has been specified, the loader terminates the job.
When the program is complete, there should be a jump to the entry
point location. This jump returns control to the operating system
and terminates the job.

DATA STORAGE

Data may be stored in the same area as the program and thus be
relocatable vvith the program or non-local to the subprogram. Non
local data storage must be declared in COMN statements (see
COMN pseudo instruction). Blocks of common storage declared in
a subprogram may be in different banks of memory with the restric
tion that any one block of common storage must be wholly contained
in one memory bank. A block of common storage shared by two or
more subprograms or by more than two computers, must be de
clared in each of the subprograms which refer to that block. Fur
ther rules regarding the use of common storage are given under
the COMN pseudo instruction.

PROGRAM RELOCATION

All programs assembled by GASS are relocatable (if certain ad
dress field conventions are followed) by the specification of a re
location constant at load time. This constant may be originated by
the programmer under self-contained operation or by MA.SS under
the monitor form of operation.

1-4

The relocation process depends on the contents of the word and on
whether a word is relocatable. The following definitions will be used.

1 • A relocatable word is a word of program or data which
was assembled under control of the ORG or PRG counter.

2. A nonrelocatable word is a word which was assembled
under control of the CON counter or which is defined in
a COMN pseudo instruction.

3. A word which may be modified that specifi.es a reference to
the 13-bit address of a relocatable word.

Under the above definitions, the relocation process consists of stor
ing all nonrelocatable words at the location specified as the result
of the GASS assembly. All relocatable words will be stored at
the location specified in the assembly, plus the relocation constant.
All words which make a 13-bit reference to a relocatable word will
have the relocation constant added to the contents of the word thus
making a reference to the true location of the relocated word.

The following words are not modified by the relocation constant:

1 • One word instructions (for example, load direct, load
relative, etc. instructions)

2. Words which consist of a numeric address field
3. Words that refer to addresses of words assembled under

control of the CON counter or specified in COMN
4. Words which specify the difference of the addresses of

two relocatable words

OPERA TOR OPTIONS FOR GASS

By positioning jump switches on the 1 60G console, the operator may
do any of the following during GASS assembly:

1 • Suppress binary output
2. Load a special symbol table prior to assembly
3. Obtain the symbol table as output of the assembly

Further options, including the assembly of several jobs at one time,
may be performed. See the GASS operating instructions for these
options.

1-5

CHAPTER 2

INSTRUCTION FORMAT

Input to GASS consists of symbolic instructions for the 1 60G
written in the form of characters punched on 80-column cards or
images of these cards on magnetic tape. The cards are punched
from coding lines written by a programmer on the 160G assembly
system coding form. The format of the input as written on the
coding form is expressed in terms of the colums of a card in which
the information will be punched. The coding form is illustrated in
figure 2-1 •

PROGRAM CONTROL DATA PAGE
160 G ASSEMBLY SYSTEM COOING FORM NAME

ROUTINE . DATE
LOCATION OPERATION ADDRESS FIELD COMMENTS IDENT

CDC 535 f • ALPHA 0 0 •NUMERIC 0 :I• ALPHA ~ I• NUMERIC I ~·ALPHA Z 2 •NUMERIC 2

Figure 2-1. 160G .Assembly System Coding Form

2-1

FIELDS

A coding line is divided into four major fields: location field, L;
operation field, 0; address field, A; and comments field, C. The
location field covers columns 1 through 8. Column 9 is not used.
The operation field begins in column 10 and ends at the first blank
column.. The address field may start anywhere to the right of the
blank column terminating the operation field, but must begin no later
than column 20. Column 20 (the first dashed I ine on the coding
form) is a convenient justification point for the address field. The
address field terminates at the first blank column or at column 72.
The remaining columns after the blank column following the address
field are treated as comments. Column 41 (second dashed line) is
suggested for justifying the comments if the address field ends before
column 40. Columns 7 3 to 80 may be used only for comments or
identification.

LOCATION FIELD

The location field (called an L-term, label, symbol, or identifier)
may contain a symbol or 8 blanks. A symbol consists of 1 to 8
non-blank characters, with at least one character being alphabetic.
Leading, imbedded, and trailing blanks will be ignored, and the
symbol will be packed and left justified in the field by GASS. The
following characters may not be used in constructing a symbol:

+-*/,=()$

All other characters from the 64-character set may be used.

OPERATION FIELD

The operation field may consist of the following:

1. One of the mnemonic operation codes listed in Appendix B,
followed by a blank column or a comma

2. One of the pseudo operations listed in Appendix A
3. The name of a macro-instruction
4. One of the preceding, a comma, and a modifier

expression

A blank in column 1 0 indicates that the word to be assembled does
not contain an operation field. In this case, the address field may
start in column 11 •

2-2

Modifier Expression

A modifier expression is contained in the operation field and is
separated from the operation code by a comma. The modifier may
take on any form which is described under address field. A re
striction on the modifier expression is that it must be of the correct
magnitude to be acceptable to GASS.

ADDRESS FIELD

The address field is evaluated to get either the address of an oper
and in memory or a constant which will enter into the calculations in
the 160G. The address field may be any of the following:

1 • Blank. In this case, it will be evaluated as zero.
2. A decimal number less than 21 7. A number will be in

terpreted as decimal unless it is suffixed with a B.
3. An octal number no greater than 377777 8 • A number to

be interpreted as octal must be suffixed with the charac
ter B.

4. A symbol
5. A symbol prefixed with the character $. This symbol

will be interpreted as 11 the number of the bank which con
tains the location specified by the symbol 11. For example,
The symbol ABLE is assigned to location 0077 in bank 5.
$ABLE will be interpreted as the number 0005.

6. An array element expressed as A. For example,
A (i ,j ,k) where A is an array name defined in COMN and
i ,j, and k are element numbers in the array. The element
numbers must be numeric.

7. A special symbol (*). The value of * is the current
value of the location counter. This value specifies the ad
dress at which the operation code portion of the current
instruction is being assembled.

8. A special symbol (**). The value of ** is always the
octal value 17777. This symbol may not appear in an
arithmetic expression. It is normally used in a field. which
is going to be preset.

9. An arithmetic expression combining any combination of the
preceding items 2 through 7.

2-3

Arithmetic Expression

An arithmetic expression may combine symbols and constants using
the four operations of addition (+), subtraction (-), multiplication (*),
and division (/) • The expression is evaluated from left to right, per
forming all multiplications and divisions and then all additions and sub
tractions. The use· of parentheses for grouping is not permitted.

For example, the expression:

15*a + 5/2* C-5

is evaluated as

(1 5 ·A) + ((~) • C) -5

The following rules apply to the evaluation of an arithmetic expression:

1 • The modulus of the arithmetic is 2
13

-1 •
2. In a divide operation, only the integer portion of the quotient

is retained.
3. Symbols which appear in an arithmetic expression must be

defined, thus external symbols must not appear in an arith
metic- expression.

COMMENTS FIELD

The comments field begins with the first column after the blank column
which terminates the address field and ends with column 80. The
comments field is ignored by the assembler, but it is printed on the
output listing.

OSAS OPTION OF OPERATION

If a line of coding is indicated to be in the OSAS format by the pre
vious appearance of the OSAS pseudo instruction, the format and
general rules of operation are as given in Control Data Publication
507a 110SAS-A 160-A Assembly System".

2-4

. CHAPTER 3

RULES OF OPERATION

During the first pass of an assembly process, GASS forms the sym
bol table which gives a symbol and its numeric equi\/alent. The nu
meric equivalent is determined by where the symbol appears in the
location column of a coding form or in the COMN statement. The
numeric equivalent is stored in the symbol table as a 17-bit number
of which the upper 5 bits represent a bank number (4096 -word bank)
and the lower 1 2 bits represent the location within the bank. In the
G mode of operation, the programmer may consider this number to
be a 5-bit bank number, where the banks are numbered 0, 2, 4, 6,
etc. , and a 1 3-bit address within a 8192-word bank.

The numeric equivalent is formed in three ways:

1. It is obtained from an EQU pseudo instruction. In this
case, the number contained in the location term is convert
ed to a 1 7-bit number and placed in the symbol table, or
the expression in the location term is evaluated and placed
in the symbol table.

2. The equivalent is implied by the current value of the pro
gram location counter. In this case, the value of the
counter is placed as the numeric equivalent, including the
bank number.

3. The equivalent is determined by the COMN statement.

The symbol table also classifies a symbol as to whether it may be
relocatable or non-relocatable. A relocatable symbol is any symbol
which has its numeric equivalent assigned from a setting of the
ORG-PRG program location counter or which is defined by an equi
valence statement to a relocatable symbol. A non-relocatable symbol
is any symbol which has its numeric equivalent assigned from a set
ting of the CON program location counter or from an EQU statement
which has a numeric location term only. A relocatable symbol also
may be defined by an equivalence statement to a relocatable symbol
plus or minus a constant.

The value of the address term is also flagged on the binary card
output as being relocatable or non-relocatable to permit the relocating
binary loader routines to position the program correctly. Generally,
an address term will be flagged as non-relocatable unless it consists

3-1

of a single relocatable symbol or a single relocatable symbol plus or
minus a constant. Any other form of relocatable symbols appearing
in an address term will be evaluated. Generally, the resulting pro
gram will operate correctly only at the position it was assembled,
and the program itself will not be relocatable.

In constructing the final machine instruction from the symbolic state
ment, the evaluated address term, and also modifier terms, must be
reduced to 3, 6, 1 3, or 18 bits. The followlng l"'ules of opel"'atton
are fol1owed by GASS In producing the address portion of the In
struction or the Instruction.

1 • A llne that contains information only in the l"'emarks fleld
will appear on the II sting, but it wfll not reserve space
In the binary object program.

2. If the operation field is blank (column 10 is a blank code) ,
the address field will be evaluated if It is an arithmetic ex
pression. A 1 3-bit number will be produced and stored.
The operands will au consist of the lower-order 13 bits of
the numeric equivalent without regard to the bank number
assigned in the numeric equivalent.

3. If the operation field specifies no address, direct, or in
direct addressing (N, D, I) , the address field is evaluated to
form a 13-bit address. If this value is greater than 77 8
the line is flagged as a range error (R) on the listing, '
and the lower 6 bits of the instruction are set to zero. If
the value is less than or equal to 77

8
it is used to form

the one-word · instruction. '
4. If the operation field specifies 6-bit relative addressing

(F, B, R) and a numeric address field is given, this ad
dress is inserted in the 6-bit E portion of the instruction,
if it is the right size. If the address field is symbolic, it
is evaluated, and the contents of the locat1on counter is sub
tracted from the evaluated address field to determine the re
lative increment. For F type opel"'ation codes, a positive
result is directly inserted in the lower-order 6 bits of the
instruction. If the result is negative or the number is
greater than 77 e, the lower 6 bits of the instruction are
taken as zero, and the line is flagged as a possible range
error in t he listable output. For B-type operation codes,
a negative result is complemented, and the process is as
for forward operation.

3-2

The possibility of t'ange errors may be reduced by substi
tuting an R-type code for the F- or B-type operation codes.
In this case, GASS determines the correct relative machine
operation code and selects the correct operation if the ad
dress specified is within range. (JPR and ERR, which
are not considered R-type operation codes, will not be re
cognized as such by GASS.)

5. If the operation code specifies a 1 3-bit address portion
(M, C, I B, MX) , the evaluated address field will be stored as
the 1 3-bit G portion of the instruction.

6. If the operation code specifies relative entire bank (RB), the
location of the operation code F portion of the instruction
will be subtracted from the evaluated address field and
stored as a 1 3-bit number.

7. If the operation code specifies entire memory (no modifier) ,
the 17-bit value of the evaluated addrPss field is stored as
18 bits in the instruction. The 5-bit bank designator is
stored as the lower 5 bits of the E portion of the instruc
tion. The 12 bits of the bank location plus the low-order
bit of the bank designator are stored as the 13-bit G por
tion of the instruction, as shown in figure 3-1 •

4 K BANK LOCATION lN BANK

xxx xxx xxx

OP CODE xxx xxx
F PORTION E PORTION G PORTION

Figure 3-1 • Entire Memory Instruction

3-3

CHAPTER 4

PSEUDO INSTRUCTIONS

Pseudo instructions are non-machine language instructions which are
used in preparing a subprogram for GASS assembly, a program
for inclusion on the I ibrary tape, and the output of the GASS assem
bly for operation under the MASS monitor system. Some of the
pseudo instructions provide required information to GASS, others
provide information which is passed on to MASS for operation of the
program, and still others are programmer aids which provide a
more convenient means for defining portions of a program. The
pseudo instructions are grouped according to functions. Following
several of the pseudo instructions are comments on the function and
programmer use of the pseudo instructions.

Samples of the way that the pseudo instructions are written on the
GASS coding form are included with the description of each pseudo
instruction. The pseudo instructions have certain specifications on
the symbols which may appear in the location field and the address
field. The following conventions have been followed in preparing the
samples:

1. If a symbol ~appear in a field, the symbol REQUIRED,
REQ, or some variation is written in the field.

2. If a symbol may occur, but is not necessary, the symbol
OPTIONAL:-, OPNL, OP, or some variation is written in
the field.

3. If a symbol must not appear in a field, the field is left blank.
4. Other self explanatory information may appear in the ad

dress and comments field.
5. All examples are shown with the address field starting in

column 20 of the coding form. This is not necessary; the
address field may start following the first blank column
following the operation field.

SUBPROGRAM LINKAGE

These pseudo instructions define the name, beginning, and end of a
subprogram. They define the logical input/output units which are
used by the subprogram if the subprogram is to be operated under
MASS. They also define the subprograms which will be called

4-1

during the execution of the subprogram under MASS control. In
structions are also provided to incorporate other subroutines during
the assembly of a given subprogram.

IDENT

LOCATION OPERATION ADDRESS FIELD COMMENTS
I'D~f/f 1RtQUIREI> I

1 2 3 4 5 6 7 I t IO 11 12 13 14 15 II 17 II It 20 21 2l Z:S 14 25 21 27 II II 30 31 U U 34 31 H 37 H It 40 41 4l 43 44 41 41 47 41 49 10

Description

IDENT causes the symbol contained in the address field to be estab
lished as an identifier I able for the assembled subprogram. This con
trol operation must be physically located prior to any Instruction, data
definition, insertion, or storage allocation statement in a subprogram.
REM pseudo operations may precede the IDENT card for a program
which is not to be included on the library tape in a symbolic form.

Comments

IDENT must appear as the first meaningful card of each subprogram;
otherwise, "NO IDENT CARD" will appear as the first line on the
output listing. If an IDENT occurs anywhere but the first line of a
subprogram, it will be flagged on the output listing with the error
code I. An L term is meaningless and wit I be ignored. The ad
dress field must contain a symbol. If the subprogram is to be oper
ated under MASS and makes use of the MASS standard input/output
routines, the standard unit designation of the 1/0 units used in the
subprogram must also appear on the IDENT card as shown in the
following example.

Example

LOCATION I OPERATION ADDRESS FIELD COMMENTS

12345678

System use of IDENT

The identifier table provided in the address field of the IDENT card
has the following uses throughout the 160G programming systems:

1 • The subprogram may be included on the system I ibrary
tape in a symbolic form for inclusion with other assemblies
of subprograms. In this case, the program may be called
a subroutine. For this use, the IDENT card must be the
first card of the subroutine deck. The program identifier
lable from the address field is used by GASS in searching
for the subroutine from the library tape. This calling of a
subroutine from the library tape is provided by the LISA
pseudo instruction.

2. The subprogram may be assembled to a relocatable binary
form and included on the MASS library tape. In this case,
IDENT provides the identifier for locating the program on
the library tape and information on the length of the pro
gram and the standard 1/0 units which are required.

3. The subprogram may be combined with other subprograms
at object program load time. The other subprograms may
be loaded from the same media as the original subprogram,
or they may be called from the library tape. The effect of
the IDENT card is to cause an IDC (Identification Card) to
be produced as the first card of a binary program deck.
The format will be that prescribed by the MASS relocat
able linking loader. The symbol from the address field will
appear on the IDC card as the name of the subprogram.
Also appearing on this IDC card will be the length of the
subprogram and the standard input/ output units which may
be called on by the subprogram.

The identifier lable specified in the address field of the IDENT card
is unique and may or may not be the same as any location lable de
fined in the subprogram or any other subprogram. This I able will
be printed out (on option) at object program load time, to tell what
subprograms are being used. The lable is also used in the address
field of the LIBA and LIBS pseudo operations to specify what sub
programs are to be included in the final operating program.

4-3

END

LOCATION I OPERATION ADDRESS FIELD COMMENTS
fN) 1U~T!¢NAL

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 U 24 •25 26 27 28 29 30 31 32 33 ll4 35 36 !7 31 59 40 41 42 43 44 4!. 46 47 41 49 50

Description

END marks the end of the current subprogram to the assembly pro
cess. It causes the assembly operation to prepare for the next pass
or to terminate the program assembly process. Since END marks
the end of the subprogram, it causes a binary transfer card (TRA
card) to be produced as the last card i.n the relocatable binary deck.
If a symbol appears in the address field, the TRA card will contain
the relocatable transfer address within the subprogram. If there is
no symbol, there will not be a transfer address in the TRA card.
A location term, if present, will be ignored.

Comments

END must always be the last card of a subprogram.

System use of END

END is used by the assembler to mark the end of an assembly pro
gram and to produce a binary transfer card on the relocatable output.
The binary transfer card is used by the relocatable loader routine to
identify the end of a binary deck. When the relocatable loader is used
independently of the MASS system, the transfer address given in the
TRA card is set up as the starting point of the program. If there is
no transfer address, the loader will stop and leave the starting of the
program up to the operator.

Within MASS, the transfer address given in the TRA card is ignored
during the loading, and the MASS linking relocatable loader depends
on the ·symbolic transfer card to designate the starting point in an ob
ject program. For the MASS loader, two successive binary trans
fer cards must appear to signal the end of the loading process.

4-4

ENDT

LOCATION I OPERATION ADDRESS FIELD COMMENTS
E N D T IR E Q UI RE l> I

I 2 3 4 5 6 7 I 9 10 II 12 13 14 15 16 17 II l9 20 21 22 23 24 25 26 27 21 29 30 31 32 33 34 35 36 37 31 39 40 41 42 43 44 4!5- 46 47 48 49 50

Description

ENDT causes a symbolic transfer card (STRA) to be produced in
the relocatable binary deck. Normally, the ENDT is the card pre
ceding the END card of a subprogram. The address field must con
tain a symbolic transfer address. This address must appear in an
ENTRY statement in the current subprogram or in one of the sub
programs which are loaded together with the current subprogram in
obtaining the final object program. The symbolic transfer card will
be in the format specified by the linking relocatable binary loader used
in MASS. A location term will be ignored.

Comments

The ENDT pseudo command is used to specify a transfer of machine
control to the MASS linking relocatable loader. On completion of the
loading of all programs provided and called for at the running time, a
transfer is made to the symbolic location specified. The transfer ad
dress must be specified as an ENTRY point to one of the subpro
grams which are loaded since the transfer is made by an examination
of the entry point table at load time.

WAI

LOCATION OPERATION ADDRESS FIELD COMMENTS

Description

WAI causes the program assembly process to stop. The contents of
theWAI statement starting at column 10 will be typed on the typewriter
to provide instructions to the operator. Typing a space and then a
carriage return causes the assembly process to continue. Typing a
carriage return simulates the END pseudo operation.

4-5

Comments

An END or WAI pseudo operation must be the last card of the pro
gram to be assembled. If a WAI is the last instruction, the END
pseudo must be generated by the operator as given in the preceding
description in order to complete the assembly process.

ENTRY

LOCATION I OPERATION ADDRESS FIELD COMMENTS

1234567
ENTRY IRE..Q ¢PT70A'L.'CA I

8 9 10 11 12 13 14 15 16 17 18 UI 20 21 22 l3 24 25 21 27 21 29 30 31 H 33 54 55 H !7 31 H 40 41 42 4ll 44 4it 41 47 41 49 10

Description

ENTRY causes the symbols appearing in the address field to be
placed in an Entry Point Name Table. These symbols must be de
fined within the subprogram. If a symbol has not been defined, the
error flag U will appear next to the ENTRY pseudo operation in the
program listing. A location term will be ignored. The address
field is of the form SYMBOL 1 , SYMBOL2, etc. , with the field ter
minated by the first blank column. ENTRY pseudo operations may
appear any place in a subprogram.

Comments

The ENTRY pseudo operation is used to define locations in a sub
program which will be referenced by other subprograms.

System use of ENTRY

The entry point name table is punched out as a part of the binary
program deck. The information in the table is combined with in
formation on the entry point name table obtained from other subpro
grams that are loaded at the same time. This allows the linking re
locatable loader to provide the linkage which permits all subprograms
to work together. The information in the entry point name table is
carried as the symbolic name of a location and the relocatable binary
location which corresponds to the symbolic name in the subprogram.
At load time, the symbols specified in the external symbol table are
matched with symbols specified in the entry point name table. The
corresponding substitution of absolute machine locations is made in
the subprograms to complete the I inkage.

4-6

EXTNL

LOCATION OPERATION ADDRESS FIELD COMMENTS

12345678
E x T N L I~ E Q u J R E D) D p TI ¢ /v' A L 0 :>,VI I) 0 f' ,v d<

9 IO fl 12 l3 14 15 16 17 II l9 20 21 22 23 24 n H 27 28 29 JO 31132 33 34 35 3617 ·39 h 40 41 42 4s 44 45 46 47 41 49 50

Description

EXTNL causes the symbols appearing in the address field to be en
tered into the external symbol table. The ENTRY and EXT NL con
trol operations are used to establish linkage controls for the object
program linking loader in the system monitor program. The form of
the address term in EXTNL is the same as that in ENTRY. The
symbols appearing in the address field are entered in order into the
external symbol table. Duplicate external symbols are deleted. A
location term will be ignored.

Comments

The symbols in the address field represent entry point names of sub
programs and library subroutines which vvill be called in at load time.
If the symbols were not named as external, they would appear to the
GASS assembler as undefined symbols. A symbol appearing in the
address field of EXTNL must not appear anywhere in the location
column or otherwise be defined in the subprogram which contains
the EXTNL pseudo operation.

In the output listing of the subprogram where these symbols appear
in address fields, the machine language will contain the location of a
previous reference to that external symbol. The first reference to
the external symbol will contain the machine value of 1 7777. In the
column preceding this reference octal value, the letter X will appear.

System use of EXTNL

The external symbol table is punched out as a part of the binary
program deck. The information in the table is added to information
on external symbols from other subprograms which are loaded at
the same time. When all subprograms are loaded, each entry in
the external symbol table is matched with the corresponding symbolic
member from the entry point name table. The absolute location of
the named entry point is then placed in the object program and re
places the chain of references to the given external symbol.

4-7

Caution

Each reference to a location defined as external by the EXTNL
pseudo operation must appear as the symbol alone, and the instruc
tion which references the external symbol must be a two-word in
struction. An external symbol may appear as a constant. The
following coding shows legal and illegal use of an external symbol.

Legal Example

LOCATION OPERATION ADDRESS FIELD COMMENTS
LDM tf:¢rt'

12345671 9 10 11 12 13 14 15 1& 17 II 19 20 21 22 u 24 25 H 27 211 29 30 31 J2 s:s 34 n H S7 H H 40 41 42 4S 44 4& 41 47 41 41 to

J, P R. 1 F // N.C T N. .._.__._ _._~'-+--1-._.....~ _._ _.__._.__._~ _._ _.__._.__.__._ _._...._._.__._.__.__._ _._-...J.....l

1.. v 1=' 'A

A

EXT/VL

fl L T

Illegal Example

LOCATION I OPERATION ADDRESS FIELD COMMENTS

12345678

L l> D IF~~ I>)

S' :T 'I? E > + 5":
LD'RB

,,.
MCTil. (DAIYG.ER(Ju s)

4-8

LOCAL

LOCATION OPERATION ADDRESS FIELD COMMENTS
· REQu:rREI> L[ICAL i~PT:X;JNAJ. ,~PN 1

I 2 3 4 5 6 7 I 9 10 11 12 13 14 15 16' 17 II 19 20 21 22 U 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Description

LOCAL causes ensuing symbols which appear in the location field to
be considered local to the coding which follows the L~L pseudo
operation. Symbols which will be referenced from outside of the
local region are specified in the address field of the LOCAL pseudo
instruction. A location symbol must appear with the first LOCAL
pseudo instruction of a local region. If the number of symbols refer
enced from outside of the local region will not fit in the address field
of a card, the address field can be continued by another LOCAL
pseudo operation which does not have a symbol in the· location field.

Comments

LOCAL defines a region of coding which extends from the LOCAL
pseudo operation to the next LOCAL pseudo operation with a location
symbol, or to the NONLC pseudo operation. Symbols which appear
in the location field are unique to the local region. This feature allows
a programmer to reuse symbols as often as desired, provided each
use occurs only once in each local region. Correspondingly, a pro
grammer can freely use symbolic library programs without any
trouble due to duplicate symbols between the main program and the
library routines.

Any reference to a symbol within a local region from outside of the
region is made by writing the symbol in the address field of the
LOCAL pseudo operation.

System use of LOCAL

Each LOCAL pseudo operation which contains a symbol in the loca
tion field establishes a local symbol table and also closes out the pre
vious local symbol table. The address field of the LOCAL pseudo
operation contains a list of symbols, which if encountered in the loca
tion field in the local area, will be entered into the common symbol
table for the main program. For a program with a large number
symbols which may overflow the internal symbol table, the local
symbols will be put on tape and called back as needed.

4-9

NONLC

LOCATION OPERATION ADDRESS FIELD COMMENTS

12345171
N¢NLC I

I 10 II 12 13 14 15 II 17 II 19 20 21 22 u 24 211 H 27 n 21 30 31 u n 34 n H 11 H H 40 41 42 0 44 49' 41 47 49 41 ao

NONLC terminates a local region which was initiated by LOCAL.
If there was no LOCAL pseudo operation, the NONLC wilt be ig
nored by the assembler.

LOCATION I OPERATION ADDRESS FIELD COMMENTS

1234567
i.. J i.:A) n t /VA l·H!:. I > N /. M t : · .. •) W 411 E ,, t .

I 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 21 29 30 ;. 32 33 :S4 35 31 ll7 31 :SI 40 41 42 4:S 44 49' 41 47 41 41 Ml

Description

LIB.A. (include library routine in assembly form) causes ttle symbolic
library routines specified in the address field to be included as input
to the assembly process for inclusion in the current program. The
operation modifier, n, specifies the number of routines which are to
be called in. The names in the address field are the identifiers
which occur on the IDENT cards in the library routines. The
library routines which are carried on the system library tape in
assembly coding, conform to the rules for writing library routines.

In case more routines are required than there is space on one card
to name them, a continuation of the LIBA pseudo instruction is made
by giving the modifier, n, on the first card the value which will in
clude at1 routines desired. The continuation card wilt contain LIBA,
without a modifier, and a continuation of the names of routines. On
each card of a continued LI BA, the last routine named must be
followed by a comma and a blank column, A routine name must not
be split between two cards.

4-10

Example

LOCATION OPERATION ADDRESS FIELD COMMENTS

12545679

Lr.BA

The library routines will be included in the program at the point that
the LISA pseudo instruction occurs. GASS will treat them as a
continuation of the programmers own coding.

Comments

One pass of the symbolic llbrary tape will occur when an LIBA
pseudo instruction is encountered. All routines named on the LISA
card wfll be included in the programmers codf ng at the point the
cards occur. The routines wlll occupy the bank and location indicat
ed by the present setting of the program location counter.

The library routines include a size Indication. The assembly process
will have an error indicated if the llbrary routines included cause a
program to overflow one bank of memory.

Routines on the library tape may also call for other routines from the
llbrary tape. In this case, an extra pass of the Ubrary tape may be
caused for each level of routine call Ing within the library tape. The
programmer can prevent the extra passes of the tape by lncludlng
all routines which may be called In his LISA instruction.

Several LISA pseudo instructions may be given at different places in
the main program. Each occurance of LISA causes a pass of the
library tape. If the same routine is called in two different LI BA
pseudo instructions, it appears in the program twice with the result
ing duplication of symbols.

System use of LISA

The function of the LIBA pseudo instruction is to include the given
library routine names into a library search table. This table is
fined until the end of the LIBA address field, (as indicated by a
symbol followed by a blank column (whether the first or the end of

a group of continuation cards) • Then the I ibrary tape is searched,
and each IDENT card from the library tape is compared with the
library search table. If a match is found, the library routine is

4-11

then treated as normal input up to the END card of the I ibrary
routine. Then the search continues. The library routine names in
the address field of the LISA may occur in any order; however,
all routines within one LISA pseudo instruction will appear in the
program in the order they appear on the library tape.

The required library routines are copied on the intermediate tape as
they go through the first pass of the assembly; therefore, an inter
mediate tape must be used if LISA occurs in a program.

OPERATION ADDRESS FIELD COMMENTS

outine from the system (binary) tape) causes the
routines named i the address field to be included in the program at
running time when the program is to be run under MASS control.
LIBS has the same form as the LISA pseudo instruction. The
LIBS pseudo instruction must be the last card before the END card
of the subprogram.

System use of LIBS

LIBS causes a system library call card to be punched as a part of
the binary program deck. This card is used by MASS to determine
which binary programs are to be included from the binary system
tape.

4-12

STORAGE ALLOCATION

The storage allocation pseudo instructions give the programmer con
trol of the positioning of the . program in the core storage of the
computer and also enable him to allocate data storage to be associat
ed with the program. The data storage may be unique to one pro
gram (BSS, BL R, and BES) or it may be in an area common to
a number of subprograms (COMN) •

BSS

LOCATION 1 OPERATION ADDRESS FIELD COMMENTS
" r (I -P+- 17{ ~ <"' /." ~ .. • " ·"" -' I c- ,; "' "'1..)V) , . Co ,_l

9 10 11 12 13 14 IS 16 17 II 19 20 21 22 2 24 2& I 27 21 U 30 31 32 U 34 U 31 37 31 H 40 I 42 43 44 4& 41 47 41 49 !10

l"f... ~) °l" 'r (''.'I It
y. .. · , J ••. , • • \ /'! ·-
1234S678

BSS reserves a block of consecutive addresses and assigns the
location symbol, if present, to the first location of the block. The
symbol in the location field is optional. The evaluation of the
address fields specifies the number of locations to be reserved.
Any symbols which occur in the address field expression must be
previously defined. A negative value for the address field Js con
sidered a::; an error, and the BSS wlll be ignored. A zero ad
dress field leaves no space, but it assigns a value to the symbol
appearing in the location field.

BLR

LOCATION OPERATION ADDRESS FIELD COMMENTS

Y LI 7' -,.. [..~ ,'/ ,: i r .. ,,. ' I~ •••

2 s 4 's e 1 1
B iM R 1r;:t C1 ~ s 't M 8 :J L I

I 10 11 12 13 14 15 1& 17 II ll 20 21 rz U 24 U 21 27 21 2t SO lll ll2 U 14 U SI 17 H H 40 41 42 45 44 4& 0 47 41 41 10

BLR operates the same as BSS.

4-13

BES

LOCATION OPERATION ADDRESS FIELD COMMENTS

·ff'rT~~~"~. lff.~1:111• 19 .. ,., 1.111
1
2011 f!~u2f2Yi~RR/o:111 uns•n1•n11u•o

1
•1 •2•s•••i.•••.,•••1ao

BES reserves a block of consecutive addresses and assigns the lo
cation symbol a if present, to the last location of the block. The
S}(mbol in the location field is optional. The evaluation of the address
fields specifies the number of locations to be reserved. A.ny sym
bols which occur in the address field expression must be previously
defined. A zero value for the address field leaves no space, but it
assigns a value to the symbol appearing in the location field.

LOCM

NOTE: The BSS, BLR, and BES pseudo oper
ations will result in relocatable addresses
if they are used under control of the
ORG-PRG counter. They will result
in non-relocatable addresses if they are
used under control of the CON counter.

LOCATION OPERATION ADDRESS FIELD COMMENTS

12ll4587

Description

LOOM (Locate common) specifies the beginning address assignment
for the following OOMN statements. The address term is required
and may take two basic forms:

1 • Assign a bank and location with a bank. This form would
be written as LOOM,# LOCN where # is a bank number
and LOCN is a location within· a bank.

2. Assign a bank and location within a bank from the implicit
bank assignment which is available.

The general form of the address field of the LOCM is the same as
applied to entire memory addressing forms for computer instructions.

4-14

Comments

The LOCM specifies the beginning value for the -assignment of com
mon storage. The address term may be any value which is- defined.
Uses of LOCM in addition to specifying the beginning of the common
area include defining an overlay of common name assignments, defin
ing sub-arrays within another array, etc.

COMN

LOCATION OPERATION ADDRESS Fl"ELD COMMENTS

1234517

Description

COMN defines the data to be included In a common block for refer
ence from several subprograms. The data may be expressed as
array.s or as single symbols. A location symbol will be ignored.
The address field defines the arrays to be included in the block.
The address field is terminated by the first btank character encoun
tered. Array definitions are separated by commas, the general
form of the address field is as follows:

A (I , j , k) , B (1 , m , n) , etc • ,

whet"'e I, J, k at"'e the dimensions of the at"'ray. An Bt"'t"'ay f !i[i restricted
to a maximum of three dimensions. In the example and In pt"'actlce,
i, j, k. I, m, and n must appear as integer constants-. Fot"' a two
dimensional at"'ray, the third subsct"'ipt should be omitted. For a
one-dimensional array, only one subscript should appear. Fot"' a
single element~ the entire term within the parentheses and the pat"'en
theses enclosing this term are omitted.

The assembler will sum the expressed sizes of the arrays for all
common data in one block. This sum will be the total number of
computer words reserved for the block. The first eiement of the
first array in the block will occupy the location specified in the pre
vious LOCM pseudo operation. Successive words and arrays will
occupy successively higher locations. Successive COMN statements
will continue fil I ing the area started by a LOCM pseudo operation.

4-15

Address reservation under the control of the COMN pseudo operation
is considered to be non-relocatable.

If the number of arrays to be specified exceeds the capacity of one
·card, the common specification can be extended to a second or more
cards by writing COMN and continuing the arrays. An array defini
tion must be completed on one card.

Example

LOCATION OPERATION ADDRESS FIELD COMMENTS

1234517
c (/;/(', N 'A (I S') I 5) (3 4 S' I

• • 10 " 12 13 14 II " 17 II It 20 ZI 22 u 24 21 H 27 a4 2t :so :SI 42 n ,?. :SI SI h H H 40 41 42 4S 44 4& 41 47 41 41 ao

It should be noted that the occurrence of A, B, C, D, E, and F
in the preceding common statement causes the location of the first
element in the array to be assigned in the symbol table. (This is
the only case in which an assignment will be made to a symbol
which does not appear in the location field of a card.)

Comments

The arrays defined in COMN may have up to three dimensions.
The general form is A(i ,j ,k) where the value of i is assumed to
vary most rapidly, j next most r~pidly, and k the slowest. For
example, the array defined in common as A(3,3,2) defines an
array of 1 8 elements. The lndlvidual elements of the array would
be referred to in the main part of a program as A (1 , 1 , 1) ,
A (3, 2, 1) , etc. The allocation of the members of the array would be
as follows, assuming that the first element of the array appeared at
location 10009.

4-16

.Location

1000
1001
1002
1003
1004
1005
1006
1007
1010
1011
1012
1013
1014
1015
1016
1017
1020
1021

Array element

A(1,1,1)
A(2,1,1)
A(3,1,1)
A(1,2,1)
A(2,2, 1)
A(3,2,1)
A(l,3,1)
A(2,3, 1)
A(3,3,1)
A(1,1,2)
A(2, 1 ,2)
A(3,1,2)
A(l ,2,2)
A(2,2,2)
A(3,2,2)
A(1,3,2)
A(2,3,2)
A(3,3,2)

If a symbol is defined as an array name, e.g. MA TRIX (3, 2) ,
references to its elements must be made in the same dimension or
less than the one in which the array name was defined. Thus, a
reference to MA TRIX would refer to element (1 , 1) of the array.
A reference to MA TRIX (3) would refer to element (3, 1) , and a
reference to MATRIX (3, 2, 2) would be illegal.

DAT A DEFINITION

The data definition pseudo instructions cause data to be assembled
into the subprogram or into a common block. A data definition
pseudo operation will cause space to be. reserved and data to be
inserted into this space for entry into the computer when the object
program is loaded into the machine. Data definitions which are made
after a PRG or ORG statement (any time after the statement) are
assigned to the private storage occupied by the program. This data
will be moved with the program as the program is relocated. Data
definitions following a CON statement are fixed in location in the
memory.

4-17 .

A CON pseudo operation may be used to originate a sequence of
data in the common area defined by a COMN pseudo operation. In
this case, the address field of the CON pseudo operation is the
name of an array defined within the common block. After the pre
setting operation is completed, a PRG instruction, or a CON with
a symbol or number in the address field, may be used to resume
the subprogram assignments.

Example

If it is desired to set the values 1 to 9 in an array A defined in a
COMN statement, the coding would be as follows:

LOCATION OPERATION ADDRESS FIELD COMMENTS

DAF

LOCATION OPERATION ADDRESS FIELD COMMENTS

DAF (Data Former) causes constants to be inserted into consecutive
machine words. A location term is optional. If present, it will be as
signed to the first word of the group of constants. The address field
consists of one or more conse.cutive subterms, separated by commas
and terminated by a blank. Each subterm specifies one constant
which may take any form that is legal for the address term of a
machine instruction. Thus, the subterm may be an octal number, a
decimal number' the value of a symbol' etc. ; or the subterm may be
an arithmetic combination of quantities. Each subterm is evaluated
modulo 21 3 - 1 •

4-18

OCT

LOCATION OPERATION ADDRESS FIELD COMMENTS
(/) p II f1> idr'L t1JC T 1 / 0 r - ~ ? r'J 0 n I
I ~ I ! I 4 -r, • 7 • t ib1 II 12 13 14 15 II 17 II It 20 21 22 ~ 24 25 ~ 27 211 u s'tt 31 'S2 n 'S4 u H 'S7 H It 40 41 42 43 44 4& 41 47 41 4t 10

OCT causes octal constants to be Inserted Into consecutive machine
words. A location term is optional. If present, ft wfll be assigned
to the first word of the group of ocjal constants. The address ff eld
consists of one or more consecutive subterms, separated by commas.
Each subterm specifies one constant· as a sign (+, - , or none) ,
followed by up to 5 octal digits. Each constant Is assigned to a
separate word. A negative constant· fs stored as the ones comple
ment of the positive value.

DEC

LOCATION OPERATION ADDRESS FIELD COMMENTS

t Po f.: f.-1s 14 15 II 17 Ii lt
1 lo ~ J :! t4 ~ g 27 J :: st 3~ Ii n 'S4 u H 'S7 H H 40

1
41 42 43 44 49' 41 47 41 4t 10

DEC causes decimal constants to be inserted Into consecutive ma
chine words. A location term is optional. If present, ft will be
assigned to the first word of the group of decfmal constants. The
addl"'ess field consists of one or mol"'e consecutive subterms, sepa
l"'ated by commas. Each subtel"'m speclffes one constant as a sign
(+, - , or none) , followed by a value of up to 4 decfmal digits.
The decimal number must be less than 8192 In absolute value.

BCD

LOCATION OPERATION ADDRESS FIELD COMMENTS

. BCD causes binary-coded-decimal characters to be inserted, two
per word, into consecutive words. A location term is optional.
If used, it will be assigned to the first word of the group. The ad
dress field consists of a number n where n~50 or a previously de
fined symbol which is followed by a comma and n succeeding char-.
acters, including blanks. The result is n/2 computer words, each
containing 2 BCD characters. The order of the characters in the

4-19

words Is as follows: the first character goes to bits 11 through 6
of the first word, the second character goes to bits 5 to 0 of the
first word, etc. If n is odd, the last word will contain a blank code
In the lower six bits. In all cases, the highest-order bit of the
words is zero. Anything after n characters is treated as remarks.

FLX

LOCATION OPERATION ADDRESS FIELD COMMENTS

FLX causes Flexowrlter coded characters (input/output typewriter
code) to be Inserted, two per word, Into consecutive words. A
location term Is optional. If used, it will be assigned to the first
word of the group. The address field consists of a number n
where n ~ 50 or a previously defined symbol which Is followed by
a comma and n succeeding typewriter code equivalent characters,
including blanks.

NOTE: Certain speclal functions such as carriage
return , tab, etc. are not in the BCD code.
They are represented by two-letter groups
where the first character is asterisk (*} •
These speclaJ groups are counted as one
character.

The result Is n/2 computer words, each containing 2 typewriter
characters. The order of the characters In the words Is the same
as In BCD. If n Is odd, the last word wlll contain zeros as the
lower" six bits. This code Is lgnol"'ed by the typewl"'lter or Frexowrf
tel"'. In all cases, the hlghest-o.~del"' bit of the words is zero. Any
thing after" n typewl"'ltel"' chal"'actel"'s fs tl"'eated as l"'emal"'ks.

4-20

ASSEMBLER CONTROL

The assembler control pseudo instructions give the programmer con
trol of the allocation of space in the final object program and also
allow him to specify the modes of operation of the assembler.

OSAS

LOCATION OPERATION ADDRESS FIELD COMMENTS

1234567
0~4$ I I

8 9 10 1~ '12 13 14 15 1& 11 18 19 20 21 22 23 24 25 26 21 u 29 30 31 32 n 34 35 36 :sr 38 n 40 41 42 43 44 4r. 46 47 48 41 r.o 1

OSAS causes the assembler to accept cards in OSAS format until
a GASS pseudo instruction is encountered. If no OSAS pseudo
instruction occurs and the operator has not specified OSAS mode of
operation, GASS format is assumed for all cards. An L term, if
present, will be ignored. Everything beyond column 1 4 is treated as
comments.

CAUTION:

GASS

Numbers under the OSAS format are
treated as octal numbers if there is no
designation to the contrary. Numbers
in GASS format are treated as decimal
numbers if there is no designation to the
contrary.

_.

LOCATION OPERATION ADDRESS FIELD COMMENTS

1_l21.3_14_15_16J_7_ll
GAS S" I I

' 10J.11 J_12j_l3_l14_115 _ll6j_l7 J.18 .1" J.20_l 21J.22_12~ 2412~ 2~27J_28_l 29_l 30_131 l J2J_UJ_34_p5J.3~ 37 J.311Hl40I41I4214314414&i41147l 41l 41lf>O I

GASS pseudo instruction switches the input format to GASS if an
OSAS pseudo instruction occurred previously. If the current for
mat mode is GASS, this pseudo instruction will be ignored. Every
thing beyond column 14 is treated as comments. A location term, if
present, will be ignored.

CAUTION: See discussion under OSAS regarding number
conventions.

4-21

BNK

LOCATION OPERATION ADDRESS FIELD COMMENTS

12345171 t ~ ~ ~ ~5 II 17 1.8 lt I 20 21 22 2S 24 25 H 27 28 2t 30 31 32 33 34 35 36 37 38 3t 40

1
41 42 43 44 45' 48 47 48 41 50

Description

BNK causes the words following this control operation to be loaded
into the bank specified by the operation modifier if the location count
er is set to locations in bank zero or one.

Comments

The BNK pseudo instruction allows a symbolic program to be assign
ed to a different bank than the one for which it was written. This
action only applies if there is no bank specified or implied in the
setting of the PRG-ORG counter or in the setting of the CON count
er. If the program location counters are set to bank 2 or higher,
the bank pseudo instruction is ignored.

This instruction has the fol lowing two operations under the preceding
restriction:

1 • It causes all symbols appearing in the location field of the
ensuing instructions to have the bank number appended to
them in the symbol table. This feature will be apparent
in the entire memory mode of instructions which refer to
these symbols.

2. It causes a bank specification card to be punched in the
binary program deck. In the loading, BNK takes prece
dence over all address assignments to place data in banks
0 and 1 • It does not change bank 2 and higher numbered
banks.

4-22

ORG

LOCATION I OPERATION ADDRESS FIELD COMMENTS

1234567

Description

ORG enters the value obtained from the address field into the
ORG-PRG counter and causes this counter to assume control of the
word location process. All words assembled under control of the
ORG-PRG counter are relocatable. Any symbol which occurs in
the address field must have been previously defined. A location
term, if present, will be ignored. The address field may take a
value which implies a bank setting other than zero (for example,
ORG 0400008) • In this case, the program is restricted to the bank
implied, but the program may be relocated within that bank.

Comments

The ORG pseudo operation activates the use of the ORG-PRG coun
ter in assigning locations to the following words in the assembly pro
cess. The counter is set to the value of the evaluated address
field or to zero if the address field is missing. The instruction
immediately following the ORG pseudo instruction is assembled to the
location contained in the ORG-PRG counter as a result of the pseudo
operation. If no counter setting pseudo instruction appears as the
first instruction of a program, the ORG-PRG counter is assumed to
be in control and it will begin assigning locations at the first location
after MASS in bank 0 •

PRG

LOCATION 1 OPERATION ADDRESS FIELD COMMENTS

12345678 , e 8 ~13 14 15 16 17. 18 19

1
20 21 22 23 24 25 26 27 28 29 30 31 32 :u 34 35 36 37 38 39 40

1
4. 42 43 44 4$ 46 47 48 49 50

PRG causes the ORG-PRG counter to assume control of the word
location process. The value of the ORG-PRG counter is set to the
value of the counter prior to a previous CON statement or to the
value specified in the previous ORG statement if no CON statement
intervened.

4-23

Comments

The ORG pseudo instruction is always used to insert a starting
value for assignment of storage locations for a program. As such it
must always have a value in its address field, or the value of the
address field will be assumed to be zero. In the process of assign
ing locations, the programmer may desire to assign non-relocatable,
or common storage. This is done by the CON pseudo instruction.
The PRG pseudo instruction allows the programmer to resume the
assignment of relocatable locations from the last location assigned
before the CON operation. The same effect could be obtained by
using ORG with a value in the address field which defines the cor
rect starting location.

CAUTION:

CON

To operate correctly, the PRG pseudo
operation must follow the CON pseudo
operation. If no CON appears prior to
the PRG pseudo operation, the PRG-ORG
counter will be reset to the value given Jn
the previous ORG pseudo instruction.

LOCATION OPERATION COMMENTS

12345871

Description

CON sets the translated value of the contents of the address field
into the CON counter and causes this counter to assume control
of the word location process. All words assembled under control
of the CON counter are non-relocatable.

Comments

The CON counter is initially set to 0 if no CON pseudo operation
occurs at the beginning of a program. When a CON pseudo opera
tion is encountered, the CON counter is set to the value of the eval
uated address field. If the address field is blank, the CON counter
continues counting from the previous value of the counter before an
ORG or PRG pseudo operation occurred. As long as the CON
counter remains active, it is incremented by one for each word
assigned in storage, except when it is reset by the address field
of a CON pseudo operation.

4-24

SYSTEM USE OF ORG, PRG, AND CON

The preceding pseudo operations are used to establish the starting
point ~nd the type of counter which will be used in constructing the
symbol table. Each symbol in the location field of a line in a sym
bolic program is assigned a numeric value by GASS. This numeric
value is determined by the current value of the assignment counter,
or by the EQU pseudo instruction. The corresponding symbol and
numeric value. is stored in the symbol table. Symbols in the table
are classified as relocatable and constant. The relocatable symbols
are flagged as such on the binary program output and may be incre
mented by a relocation eonstant at the time they are loaded. Loca
tions which refer to a constant symbol are not relocated or modified
at the time the program is loaded.

EQU

LOCATION OPERATION ADDRESS FIELD COMMENTS
Rf Q u I 1-::Z TJ E u I~ "'R 5 \/ M R Ol.. I

I 2 J 4 s 6 7 • ' 10 11 12 13 14 IS II 17 II It 20 21 1f'l'z~124 25 '· 21 z'(i 21 ao 31 H n 14 :u H 57 H H 40 41 42 45 44 41 41 47 41 .. 10

EQU equates a symbol to the value of the address field. Thus, it
provides a means of establ Jshfng a numeric equivalent for the symbol
appearing in the location field. Any symbols which oc·cur in the
address field must be previously defined. A blank location term is
meaningless.

MASS

LOCATION I OPERATION ADDRESS FIELD COMMENTS

,. 2 3 4 s 6 7 • t lj(r ~ ~ 14 15 16 17 18 l9l20 21 22 23 24 ZS 26 27 28 29 30 31 32 33 14 35 36 37 38 39 40

1
41 42 43 44 4~ 46 47 48 49 10

Description

MASS terminates the assembly process and causes GASS to return
control to the operating system. The MASS pseudo instruction
should follow the END pseudo instruction of the last subprogram to
be assembled by GASS. If MASS follows any card which is not
END, control will be returned to MASS following the second pass
of the assembly process, but a 0 error will be flagged on the out
put listing. A location term is meaningless and, if present, will be
ignored. Everything beyond column 14 is treated as comments.

4-25

Comments

If an END card is missing from the last program to be assembled,
MASS wlll provide the same function as END, but an error will
be sfgnaled as previously described.

4-26

OUTPUT LISTING CONTROL

The output listing control pseudo instructions give the programmer
control over the appearance of the Usting of the program whlc.:h is
assembled and also allow him to include additional remarks in the
program.

REM

LOCATION I OPERATION ADDRESS FIELD COMMENTS

I 2 3 4 5

i1.·: 1-: r ,~)!'I. c~ t:Av~1-~ := f' ;: t. lvtf .~ •. > 1
& 1 e t 10 11 12 13 14 1s ~111 11 it 20 21 22 u 24 u 21 21 21 21 30 31 32 n 34 u H 37 31 u 40 41 42 43 44 45' 41 47 41 4t ao

REM produces an output record on the program listing which con
tains remarks only. The pseudo Instruction is ignored by GASS as
far as producing information in the binary program output. All
columns except 9 to 13 inclusive are available for remarks. On the
listing, the code REM is suppressed.

EJECT

LOCATION OPERATION ADDRESS FIELD COMMENTS
eJec-r 1 1

I 2 3 4 5 6 7 8 t 10 II 12 13 1./ 15 16 17 II It 20 21 22 23 24 U 2t 27 28 29 30 31 32 :S:S 34 35 H 37 31 St 40 41 42 43 44 45' 41 47 41 41 50

EJECT will produce a character in column one of the next record
of the magnetic tape listing. This character causes the line printer
to eject paper to the top of the next page. Also if listing is perform
ed on line, the eject action will take place. The input record con
taining the EJECT pseudo instruction will be suppressed on the list
Jng.

SPACE

LOCATION I OPERATION ADDRESS FIELD · COMMENTS

1234567
Cfft-C f I# I

8 t 'Ti, II 12 13 14 15 16 17 18 19 20 21 22 U 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45' 46 47 41 49 50

SPACE will cause the listing to be spaced the number of lines
specified by the address field. If this spacing would cause an over
f I ow at the bottom of the page, the page is ejected to the ~op of the
next page only. The input record containing the space pseudo
instruction will be suppressed on the Ii sting.

4-27 .

NOLIST

LOCATION OPERATION ADDRESS FIELD COMMENTS

12S45171 1 (! r1./r is ,! ,71• 11 11 11 I 20 21 22 u 24 u 21 21 21 21 so s1 S2 ss S4 u H 57 SI st 40

1
41 42 o 44 4& 41 47 41 4t r.o

NOLIST will cause GASS to suppress the output llsting when it
appears. This suppression will continue until a LIST pseudo in
struction Ts encountered or unUI the END pseudo instruction is
encountered. The input record containing NOLIST will be sup
pressed on the output I isttng.

LIST

LOCATION OPERATION ADDRESS FIELD COMMENTS

12345171 ' ~F~ 114 15 1• 17 II 11

1
20 21 22 u 24 25 21 27 21 21 so SI S2 SS S4 u H 57 SI st 40

1
41 42 4S 44 4& 4t 47 41 41 so

LIST wltl cause GASS to resume the output listing when it is en
countered if the listlng was previously suppressed by the NOLIST
pseudo instruction. The input record containing LIST will be
suppressed on the output listing. If NOLIST has not been encoun
tered previously, LIST will be ignored.

4-28

CHAPTER 5

INSTRUCTIONS

The 1 60G instructions can be classified Jnto six. groups, depending
on the number of words occupied by the Jnstructlon and the layout of
the instruction. The most general form of a 160G Jnstruction Js as
follows:

F E G
7 Bits I 6 Bits 13 Bits

Group 1 instructions have only a 13-bit operation code. This group
will be indicated as FE.

Group 2 instructions have a 10-bit operation code and a 3-bit e
portion. This group will be indicated as Fe e.

Group 3 instructions have a 7-bit operation code and a 6-bit E
portion. This group will be indicated as F E.

Group 4 instructions have a 13-bit operation code and a 13-bJt G
portion. This group is indicated as FE G.

Group 5 instructions have a 7-bit operation code and a 19-blt E
and G portion. This group is indicated as F EG.

Group 6 instructions have a 7-bit operation code, a 6-bft E portion,
and a 1 3-bit G portion. This group is indicated as F E G.

GASS FORM OF INSTRUCTIONS

The instructions from each group will be listed along with the accept
able forms of writing the instruction in A coding.

5-1

GROUP FE

Group 1 instructions are written as the operation codes given below. All
information after the operation code is ignored and treated as comment.

The GASS form of group 1 instructions is:

ERR LS6 LPS SRS ETA2 INA6 CIL3
PTA MUT scs RAS ETA3 INA7 CIL4
LS1 MUH LDS AOS ETA4 CBC2 CILS
LS2 RSl LCS INA ETAS CBC3 CIL6
CBC RS2 ADS OTA ETA6 CSC4 CIL7
ETA CIL SSS HLT ETA7 cscs AMOD
LS3 CTA STS ERRG INA2 CBC6 GMOD

INA3 CSC7 CTAQ
INA4 CIL1 X.AQ
INAS CIL2 HLTG

GROUP 2 Fe e

The general form for group 2 is as follows:
OPN,X or OPN X

where X is a digit from 0 through 7 or a symbolic expression. The
value of the expression must be in the range of 0 through 7 or the in
struction will be flagged with an R (range) error on the output listing
and the value 0 inserted.

This group of commands is written as follows:

NOP,X SRJ,X SIC,X
SID,X ACJ,X SBU,X

GROUP 3 FE

IRJ,X
STP,X

SDC,X
STE,X

Group 3 instructions are written in the general form:
OPN X or OPN,X

DRJ,X
NOPG,X

where X is a number from 0 through 63 1 0 (or 0 through 77 8) or a
symbolic expression. The value of the symbolic expression must also
fall in the range specified for the preceding number given with three
exceptions. If the last letter of the mnemonic operation code is F, B,
or R indicating relative addressing and the expression can be reduced
to the form SYMBOL + # or SYMBOL - #, GASS will form the
difference of the symbolic location and the location of the instruction.
This difference will be accepted as E if it meets the limit on the size
of E.

5-2

The group 3 instructions are written as follows:

LPNX SCNX LDNX LCNX ADNX SBNX LPDX LPIX
LPFX· LPBX LPRX SCDX SCI X SCFX SCBX SCRX
LDDX LDI X LDFX LDBX LDRX LCDX LCIX LCFX
LCBX LCRX ADDX ADIX ADFX ADBX ADRX SBDX
SBI x SBFX SBBX SBRX STDX STI x STFX STBX
STRX SRDX SRI x SRFX SRBX SRRX RADX RAIX
RAFX RABX RARX AODX AOIX AOFX AOBX AORX
ZJF X NZFX PJF X NJF X ZJBX NZ8X PJBX NJ8X
ZJRX NZRX PJRX NJRX JPIX JFIX INPX OUTX
OTNX EXFX HWI X SLSX ARSX ALSX QRSX QLSX
LRSX LLSX SDCG,X SICG,X

GROUP 4 FE G

Group 4 instructions are written in the general form:
OPN X or OPN,X

where x is a number or symbolic expression with a value of 0
through 819110 or 0 through 177778 •

The group 4 commands are written as:

BLS X
LDM X
SBC X

ATE X
LDC X
STM X

ATX X
LCM X
STC X

LPM X
LCC X
SRM X

AOM X AOC X JPR X IBI X
BBC3X BBC4X 88CSX 8BC6X
ATE4X ATESX ATE6X ATE7X
ATXSX ATXGX ATX7X

LPC X
ADM X
SRC X
ISO X
BBC7X
ATX2X

SCM X
ADC X
RAM X
EXC X
ATE2X
ATX3X

1812 X 1813 X 1814 X IBIS X 1816 X 1817 X

sec x
SBM X
RAC X
8802 x
ATE3X
ATX4X

1802 x 1803 x 1804 x 1805 x 1806 x 1807 x
EXC2X EXC3X EXC4X EXCSX EXC6X EXC7X
RCJP X ZJRB X NZR8 X PJR8 X NJRB X UJRB X
BITJ X JRIB X JPIB X LPl8 X LPR8 X SCIB X
SCRB X LDIB X LDRB X LCIB X LCRB X ADIB X
ADRB X SBIB X SBRB X STIB X STRB X SRIB X
SRRB X RAIB X RARB X AOIB X AORB X LQ IB X
LQRB X SQIB X SQRB X SQC X MUIB X MURB X
MUC X DVIB X DVRB X DVC X

5-3

GROUP 5 F EG

Group 5 instructions may be written in either of the following forms:

1. OPN X
2. OPN,x X

In form 1 , X may be a number less than 2
17

or a symbolic ex
pression which is evaluated to less than 2 17 • The bank designation
which appears in the E portion of these instructions is supplied by
the symbol table in GASS.

In form 2, the address is split to bank designation and location with
in bank. In this case, x is a bank designator which is a number
from 0 through 37 8 or an expression which has a value in the same
range. The quantity X may be a number less than 213 or a sym
bolic expression which is evaluated to a number less than 2 1 3 •

Under option 1 ' the group 5 instructions are written as follows:

JPRG X DRJP x SRJP x ZJ X NZ x PJ X NJ X
LP x SC x LD x LC x AD x SB X STX
SR x RAX AO X LQ X SQ x HW X MU X
DV x

Under option 2, the Group 5 instructions are written as follows:

JPRG,x x DRJP,x X SRJP,x X ZJ,x X NZ,x x PJ,x X
NJ,x x LP,x x SC,x x LD,x X LC,x x AD,x X
SB,x x ST,x x SR,x x RA,x x AO,x x LQ,x X
SQ,x x HW,x x MU,x x DV,x x

GROUP 6 FEG

Group 6 instructions which include Indexing are written in the gen-
era I form

OPN,I X
where I is a number in the range of 2 through 63 10 (or 2 through
77

8
) or a symbolic expression which when evaluated is in the

same range as the number. X is a number or symbolic expression
which has a value of 0 througt-. 8191 1 0 (or 0 to 177778) •

5-4

The group 6 instructions are written as follows:

LPMX,I X
SBMX;1 X
LQMX,I X

SCMX,1 X
STMX,I X
SQMX,1 X

LDMX,I X
SRMX,I X
MUMX,1 X

5-5

LCMX,1 X
RAMX,1 X
DVMX,I X

ADMX,I X
AOMX,1 X

Mnemonic

BCD
BES
BNK
BLR
BSS
COMN
CON
DAF
DEC
EJECT
END
ENDT
ENTRY
EQU
EXTNL
FLX
GASS
IDENT
LIBA
LIBS
LIST
LOCAL
LOCM
MASS
NOLIST
NON LC
OCT
ORG
OSAS
PRG
REM
SPACE
WAI

APPENDIX A

PSEUDO INSTRUCTIONS

Insert BCD characters
Reserve block of storage
Specifies bank number for address assignment
Reserve block of storage
Reserve block of storage
Declare array in common
Set location counter
Insert constants
Insert single precision decimal constants
Eject a single page on the output listing
Specify the end of a subprogram
Specify the end of a subprogram
Define entry points in a subprogram
Equate an undefined symbol to a defined symbol
Define external symbols
Inserts flexowriter coded characters
Change input to GASS format
Identify the subprogram by name
Includes library routines
Includes library routines at run time
Resume output listing
Begins local region
Specifies beginning address of common storage
Perminates assembly process
Suppress output listing
Perminates local region
Insert octal constants
Set location counter
Change input to OSAS format
Set location counter
Insert remarks on the output listing
Insert spaces in the output listing
Causes pause in assembly process

A-1

Page

4-19
4-14
4-22
4-13
4-13
4--15
4-24
4-18
4-19
4-27
4-4
4-5
4-6
4-25
4-7
4-20
4-21
4-2
4-10
4-12
4-28
4-9
4-14
4-25
4-28
4-10
4-19
4-23
4-21
4-23
4-27
4-27
4-5

APPENDIX 9

MACHINE INSTRUCTIONS

NOTE: EB - Entire Bank; EM - Entire Memory

F

000
000
000

000
000

000
000

000

000

001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
002
003

004
005

E

00
ox
lX

2X
3X

4X
sx

6X

7X

00
01
02
03
04
05
06
07
10
1 1
1 2
13
14
15
20
30
4X
sx
6X
xx
xx

xx
xx

G

x

x
x

Mnemonic

ERR
NOP
SRJ

SIC
IRJ

SDC
DRJ

SID

ACJ

BLS
PTA
LS1
LS2
CBC
ATE
ATX
ETA
LS)
LS6
MUT
MUH
RSl
RS2
CIL
CTA
=?BU
STP
STE
LPN
SCN

LDN
LCN

B-1

Operation

Error Stop
No OP
Set Relative Bank Control ;
Jump
Set Indirect Bank Control
Set Indirect and Relative Bank
Controls; Jump
Set Direct Bank Control
Set Direct and Relative Bank
Controls; Jump
Set Indirect and Direct Bank
Controls
Set Direct, Indirect, and
Relative Bank Controls; Jump
Block Store
P to A
Left Shift One
Left Shift Two
Clear Buffer Controls

A to BER
A to BXR
BER to A
Left Shift Three
Left Shift Six
Multiply A by 10 l O
Multiply A by 1 00 l O
Right Shift One
Right Shift Two
Clear Interrupt Lockout
Bank Controls to A
Set Buffer Bank Control
Store P at Location SX
Store BER at 6X, A to BER
Logical Product No Address
Selective Complement, No
Address
Load No Address
Load Complement, No Address

F E G Mnemonic Operation

006 xx ADN Add No Address
007 xx SBN Subtract No Address
010 xx LPD Logical Product Direct
011 00 x LPM Logical Product Memory
011 xx LPI Logical Product Indirect
012 00 y LPC Logical Product Constant
012 xx LPF Logical Product Forward
013 00 LPS Logical Product Specific
013 xx LPB Logical Product Backward
014 xx SCD Selective Complement Direct
015 00 x SCM Selective Complement Memory
015 xx SCI Selective Complement Indirect
016 00 y sec Selective Complement Constant
016 xx SCF Selective Complement Forward
017 00 scs Selective Complement Specific
017 xx SCB se·lective Comf')lement Backward
020 xx LDD Load Direct
021 00 x LDM Load Memory
021 xx LDI Load Indirect
022 00 y LDC Load Constant
022 xx LDF Load Forward
023 00 LDS Load Specific
023 xx LDB Load Backward
024 xx LCD Load Complement Direct
025 00 x LCM Load Complement Memory
025 xx LCI Load Complement Indirect
026 00 y LCC Load Complement Constant
026 xx LCF Load Complement Forward
027 00 LCS Load Complement Specific
027 xx LCB Load Comple.ment Backward
030 xx ADD Add Direct
031 00 x ADM Add Memory
031 xx ADI Add Indirect
032 00 y ADC Add Constant
032 xx ADF Add Forward
033 00 ADS Add Specific
033 xx ADB Add Backward
034 xx SBD Subtract Direct
035 00 x SBM Subtract Memory
035 xx SBI Subtract Indirect
036 00 y SBC Subtract Constant
036 xx SBF Subtract Forward
037 00 SBS Subtract Specific

B-2

F E G Mnemonic Operation

037 xx SBB Subtract Backward
040 xx STD Store Direct
041 00 x STM Store Memory
041 xx STI Store Indirect
042 00 y STC Store Constant
042 xx STF Store Forward
043 00 STS Store Specific
043 xx STB Store Backward
044 xx SRO Shift Replace Direct
045 00 x SRM Shift Replace Memory
04.5 xx SRI Shift Replace Indirect
046 00 y SRC Shift Replace Constant
046 xx SRF Shift Replace Forward
047 00 SRS Shift Replace Specific
047 xx SRB Shift Replace Backward
050 xx RAD Replace Add Direct
051 00 x RAM Replace Add Memory
051 xx RAI Replace Add Indirect
052 00 y RAC Replace Add Constant
052 xx 'RAF Replace Add Forward
053 00 RAS Replace Add Specific
053 xx RAB Replace Add Backward
054 xx AOD Replace Add One Direct
055 00 x ACM Replace Add One Memory
oss xx AOI Replace Add One Indirect
056 00 y AOC Replace Add One Constant
056 xx AOF Replace Add One Forward
057 00 AOS Replace Add One Specific
057 xx AOB Replace Add One Backward
060 xx ZJF Zero Jump Forward
061 xx NZF Non-Zero Jump Forward
062 xx PJF Positive Jump Forward
063 xx NJF Negative Jump Forward
064 xx ZJB Zero Jump Backward
065 xx NZB Non-Zero Jump Backward
066 xx PJB Positive Jump Backward
067 xx NJB Negative Jump Backward
070 xx JPI Ju mp I ndi re ct
071 00 x JPR Return Jump
071 xx JFI Jump Forward Indirect
072 00 x IBI Initiate Buffer Input
072 xx y INP Normal Input

B-3

F

073
073
074
075
075
076
076
076
077
077
077
077
077
100
100
100
100
100
100
100
100
100
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101
101

E

00
xx
yy
00
xx
00
xx
77
00
OY
YO
yy

77
00
ox
lY
2Y
3Y
4Y
SY
6Y
7Y
OY
1Y
2Y
3Y
60
61
62
63
64
70
71
72
73
74
75
76
77

G

x
y

y

x
x

z
x
x

x
x
x
z

x

x
x
x
x
x
x
x
x

Mnemonic

IBO
OUT
OTN
EXC
EXF
INA
HWI
OTA
HLT
SLS
SLJ
SJS
HLT
ERRG
NOPG
BBCY*
ATEY*
ATXY*
ETAY*
MTMY*
IBIY*
ISOY*
EXCY*
INAY*
CBCY*
CILY**
AMOD
GMOD
CTAQ
RCJP
XAQ
ZJRB
NZRB
PJRB
NJRB
UJRB
BITJ
JRIB
JPIB

Operation

Initiate Buffer Output
Normal Output
Output No Address
External Function Constant
External Function Forward
Input to A
Half Write Indirect
Output From A
Halt
Selective Stop
Selective Jump
Selective Stop, Jump
Halt
Error Stop
No Op
Set Suffer Bank Control ,.Channel Y
A to BER, Channel Y
A to BXR, Channel · Y
BER, Channel Y, to A
Memory to Memory, Channel Y
Initiate BFR Input, Channel Y
Initiate BFR Output, Channel Y
External Function, ·channel Y
Input to A, Channet··y
Clear Buffer Controls, Channel Y
Clear Interrupt Lockout, Channel Y
Select A Mode
Select G Mode
Bank Controls to AQ
AQ to Bank Controls; Jump
Interchange A and Q
Zero Jump Relative - EB
Non-Zero Jump Relative - EB
Positive Jump Relative - EB
Negative Jump Relative - EB
Unconditional Jump Relative - EB
Bit-by-Bit Jump
Jump Relative Indirect - EB
Jump Indirect - EB

* Y, which is included in the operation code, must be a digit
from 2 through 7 .

** Y, which is included in the operation code, must be a digit
from 1 through 7.

B-4

F

103
104
105
106
107
110
1 1 1
1 1 1
1 11
113
114
115

115

115

117
120
121
121
121
123
124
125
125
125

127
130
131
131
131
133
134
135
135
135
137
140
141
141

E

zz
zz
zz
zz
zz
zz
00
01
yy
yy
zz
00

01

yy

yy
zz
00
01
yy
yy
zz
00
01
yy

yy
zz
00
01
yy
yy
zz
00
01
yy
yy
zz
00
01

G

x
x
x
x
x
x
x
x
x

x
x

x

x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x

Mnemonic

JPRG
ZJ
NZ
PJ
NJ
LP
LPIB
LPRB
LPMX
ARS
SC
SCIB

SCRB

SCMX

ALS
LD
LDIB
LDRB
LDMX
QRS
LC
LCIB
LCRB
LCMX

QLS
AD
ADIB
ADRB
ADMX
LRS
SB
SBIB
SBRB
SBMX
LLS
ST
STIB
STRB

B-5

Operation

Return Jump - EM
Zero Jump - EM
Non-Zero Jump - EM
Positive Jump, - E: M
Negative Jump - EM
Logical Product - EM
Logical Product Indirect - EB
Logical Product Relative - EB
Logical Product Index
A Right Shift
Selective Complement - EM
Selective Complement
Indirect - EB
Selective Complement
Relative - EB
Selective Complement Memol""y
Index
A Left Shift
Load - EM
Load lndil""e·ct - EB
Load Relative - EB
Load Memory Index
Q Right Shift
Load Complement - EM
Load Complement Indirect - EB
Load Complement Relative - EB
Load Complement Memory
Index
Q Left Shift
Add-EM
Add Indirect - EB
Add Relative - EB
Add Memory Index
AQ Right Shift
Subtract - EM
Subtract Indirect - EB
Subtract Relative - EB
Subtract Memory Index
AQ Left Shift
Store-EM
Store Indirect - EB
Store Relative - EB

F

141
143

144
145
145
145
147

150
151
151
1 51
153
154
155
155
155
157
160
161
161
161
162
164
165
165
165
166
167
170
171
171
1 71
172
173
174
175
175
175
176
177

E

yy
zz

zz
00
01
YY
zz

zz
00
01
yy
zz
zz
00
01
yy
zz
zz
00
01
yy
00
zz
00
01
YY
00
zz
zz
00
01
yy
00
zz
zz
00
01
yy
00
xx

G

x
x

x
x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x
x
x
x
x
x
y
x
x
x
x
x
x
x
x
x
x
x
x

Mnemonic

STMX
SRJP

SR
SRIB
SRRB
SRMX
DRJP

RA
RAIS
RARB
RAMX
SDCG
AO
AOIB
AORB
AOMX
SICG
LQ.
LQIB
LQRB
LQMX
LQC
SQ
SQIB
SQRB
SQMX
SQC
HW
MU
MUIB
MURB
MUMX
MUC
HILO
DV
DVIB
DVRB
DVMX
DVC
HLTG

B-6

Operation

Store Memory Index
Set Relative Bank Control ;
Jump-EM
Shift Replace - EM
Shift Replace Indirect - EB
Shift Replace Relative - EB
Shift Replace Memory Index
Set Direct and Relative Bank
Controls; Jump-EM
Replace Add - EM
Replace Add Indirect - EB
Replace Add Relative - EB
Replace Add Memory Index
Set Direct Bank Control - EM
Replace Add One - EM
Replace Add One Indirect - EB
Replace Add One Relative - EB
Replace Add One Memory Index
Set Indirect Bank Control -EM
Load Q - EM
Load Q Indirect - EB
Load Q Relative - EB
Load Q Memory Index
Load Q Constant
Store Q - EM
Store Q Indirect - EB
Store Q Relative - EB
Store Q Memory Index
Store Q Constant
Half Write - EM
Multiply - EM
Multiply Indirect - EB
Multiply Relative - EB
Multiply Memory Index
Multiply Constant
High-Low Comparison
Divide - EM
Divide Indirect - EB
Divide Relative - EB
Divide Memory Index
Divide Constant
Halt

APPENDIX C

ERROR CODES

A Address Field Error. An A error wfll occur If there Is
a format error In the address field or In an indlvldual ad
dress term.

D Duplicate Symbol. A D error results If a symbol occurs
more than once In a location field o.f a subprogram. The
symbol will be Ignored on the second and subsequent
occurrences.

F Full Symbol Table. No assignment Is made If a table
entry would cause overflow of the symbol table.

ldent Error. An I error wlll occur If an IDENT record
appears anywhere except as the first record of a sub
program.

L Location Term Error. An L error occurs If an L term
appears where none f s allowed, if an L term Is absent
where one is required, or If an Illegal type symbol appears.

0 Operation Code Error.
operation code Is used.

An 0 error occurs If an Illegal
Zeros are substituted.

E Range Error. The E term of assembled machine OP code
is greater than 77 8 •

U Undefined Symbol • A symbol referenced in the address
field has not been defined; zeros are substituted.

C-1

APPENDIX D

SPECIAL CODES FOR TYPE ENTRIES

BCD CHARACTERS

*R
*u
*L
*s
*T
*x
*A
*s

D-1

TYPE EQUIVALENT

Carriage Return
Shift to Upper Case
Shift to Lower Case
Backspace
Tab

CONTROL DATA
CORPORATION 8100 34th Avenue South, Minneapolis 20, Minnesota

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	D-01
	xBack

