
CONTROL DATA
160-A COMPUTER

OSAS-A/160-A ASSEMBLY SYSTEM

OSAS-A/160-A ASSEMBLY SYSTEM

April, 1964

Pub. No. 60050700
Revision C

This manual, publication 60050700, Revision C,

is a major revision and obsoletes publication

507B. Any comments should be addressed to:

Control Data Corporation

Documentation and Evaluation Department

3145 Porter Drive

Palo Alto, California

©Control Data Corporation

Printed in the United States of America

CONTENTS

Introduction

Part I, Master Paper Tape

General Description

Input Parameter

Record One

Compiler

Record Two

Main Assembly Driver

Input I Output Subroutines

Bi-octal Tape of OSAS-A Assembly System

Operating Instructions for MPT

Part II, OSAS-A Assembler

General Information

Program Relocation

Symbolic Input

Card Symbolic Format

Arrangement of Symbolic Deck for Assembly

Symbolic Paper Tape Format

Symbolic Magnetic Tape Format

OSAS-A Pseudo-Instructions

ORG-PRG Counter

CON Counter

Symbol Table

Pseudo-Ops

Assembler Rules for Input

Listable Output

Error Flags

Table A, Rules for Character Correspondence

Binary Output

iii

v

1

2

2

3

4

4

4

4

5

7

8

8

10

11

11

11

12

12

12

13

13

16

17

18

19

21

CONTENTS (CONT'D)

Part II (Cont'd)

Operating Instructions for Assembly Process

Magnetic Tapes

Suppress Codes

To Assemble

Stops

Mnemonic Codes for OSAS-A

Part III, Master Paper Tape Edit

General Information

Edit Identification Tape

Edit List

New Directory

Opera ting Instructions

To Produce a New MPT

To Test New MPT

Program Stops for Master Paper Tape Edit

Part IV, Binary Loaders

22

22

22

22

23

29

31

31

31

31

33

33

33

33

General Information 35

Operating Instructions 35

Stops 35

Appendix A, Mnemonic Codes Recognized by OSAS-A 37

Appendix B, Operating Instructions for Extended
Assembly Process (OSAS-AX) 43

iv

INTRODUCTION

The 160-A Assembly System (OSAS-A) allows a programmer to write programs for the

CONTROL DATA':~ 160-A Computer in symbolic notation with minimum regard for ulti

mate storage locations assigned a program. The assembly system also allows a pro

grammer to write instructions using mnemonic symbols, which are easier to remember

and to later interpret than are the octal machine code equivalents.

OSAS-A assembles symbolic programs from cards, paper tape or magnetic tape. For

each program assembled, OSAS-A provides both a listable and a binary output on any

of the three media - cards, paper tape or magnetic tape. In addition, listable output

may appear on a line printer. The assembly system can be utilized by any 160-A con

figuration, ranging from a system that consists of the 160-A computer and paper tape

input/ output equipment to the full range of paper tape, magnetic tape, card and printer

equipment that may be included in a 160-A computer system.

The OSAS-A manual is intended to be used in conjunction with the 160-A programming

manual.

*Registered trademark of Control Data Corporation

v

PART I

MASTER PAPER TAPE

The complete 160-A assembly system is contained on a Master Paper Tape (MPT).

This tape contains the OSAS-A compiler, the main assembly driver and all input/ output

subroutines. The function of the compiler is to produce a working version of the MPT

that consists of the main assembly driver and the input/ output subroutines designated

by the programmer. The main assembly driver is the assembly program. The I/O

subroutines control the type of symbolic input, intermediate input/ output, and listable

and binary output. The working version of the MPT is compiled and stored in core,

and may also be punched on paper tape for future assemblies using the same I/O config

uration.

7th
LEVEL

[
L •••

COMPILER

Bl-OCTAL FORMAT

7
7
7
7

MA IN ASSEMBLY ALL INPUT/ ~ (
01 OUTPUT < DRIVER

SUBROUTINES)

BINARY FORMAT

The compiler is in bi-octal format and comprises the first record on the MPT; the

remainder of the routines on the MPT are in binary format and form the second record.

To assemble a symbolic program, the compiler is machine loaded; as soon as it is

stored in core, an input parameter specifying the required I/O subroutines is manually

entered in the A register and the compiler is run. At the completion of the compiler

run, the required working version of the MPT is in core and on paper tape, if specified.

The MPT can be updated by adding or deleting routines in the second record; the

master paper tape edit program can also duplicate the MPT as described in Part III,

Master Paper Tape Edit.

1

I/O FORM

Symbolic Input

Intermediate
Input I Output

Listable Output

Binary Output

INPUT PARAMETER

PARAMETER MEDIA

oxxx Paper Tape

lXXX Magnetic Tape

2XXX Cards

3XXX Cards

4XXX Cards

5XXX Magnetic Tape

6XXX Magnetic Tape

7XXX Cards

xoxx Paper Tape

XlXX Magnetic Tape

X4XX Magnetic Tape

X5XX Magnetic Tape

X6XX Magnetic Tape

xx ox Paper Tape

XXlX Magnetic Tape

XX2X Line Printer

XX3X Line Printer

XX5X Magnetic Tape

XX6X Magnetic Tape

xxxo Paper Tape

XXXl Magnetic Tape

XXX2 Cards

XXX5 Magnetic Tape

XXX6 Magnetic Tape

EQUIPMENT

163

Fast Reader via 1610

167-1

167-2

1608 (Low Density)

1607

405

163 Assembly Mode

163 Character Mode

1608 (Low Density)

1607

163

166

1612

1608 (Low Density)

1607

163 Character Mode

Faster Reader via 1610

1608 (Low Density)

1607

Entering an improper parameter will cause the MPT to stop at 7140 with the incorrect

parameter in the A register. To continue, reload the compiler, enter the correct para

meter in the A register, and run from P = 7000.

RECORD ONE

This portion of MPT consists of a Compiler and forms the first physical record on the

tape. It is in bi-octal format with a 7777 code at the end of the record. MPT will stop

after this record is read and wait for the input parameter. MPT operation instructions

are given at the end of Part I.

2

Compiler

The Compiler loads the proper I/O subroutines for the version of OSAS-A designated

by the input parameter. It also generates a bi-octal tape if requested.

The ID numbers are used by the compiler to identify I/O subroutines during compilation

of the working version of the MPT. These numbers are also used by the MPT edit

program for locating routines in the second record.

RECORD TWO

This portion of the MPT contains the Main Assembly Driver and all current I/O sub

routines. It is in binary format and forms the second record on the MPT. The Main

Assembly Driver and the I/O subroutines loaded by the compiler constitute the working

version of OSAS-A. The I/O configuration of any working version is specified by the

input parameter. As a version of OSAS-A is generated, it may be punched on a bi-octal

paper tape. Loading the paper tape is faster than regenerating the assembly program

each time by means of the MPT and input parameter.

Main Assembly Driver

This program is preceded by a 01 on the MPT. The Main Assembly Drive, which

consists of the main assembly logic, controls execution of designated I/0 subroutines

during assembly of a symbolic program.

Input/Output Subroutines

Each subroutine is identified by a two digit prefix and controls a specific type of input

or output.

BI-OCTAL TAPE OF OSAS-A ASSEMBLY SYSTEM

Bi-octal tapes of OSAS-A produced by the compiler are not in relocatable form. Leader

for each tape is generated automatically by the compiler when the tape is punched.

3

OPERATING INSTRUCTIONS FOR MPT

To generate a version of OSAS-A without bi-octal tape

1. Machine load MPT at location 7000, relative bank zero; reader stops with 7647

in P register and 0435 in A register. Compiler now loaded.

2. Leave tape positioned in reader; reader on.

3. Master clear; enter input parameter into A register, 7000 into P register and

run.

4. When the program stops at 7151, OSAS-A is in bank zero. Clear and run to

assemble programs using this I/O configuration.

To generate a version of OSAS-A with bi-octal tape

1. Generate internal version of OSAS-A as described above.

2. When program stops at 7151, turn punch on and run. DO NOT CLEAR.

3. When the program stops at 7172, OSAS-A has been punched correctly. OSAS-A

is in bank zero and also on bi-octal paper tape; programs using this version

can now be assembled. Similar programs can be assembled later by simply

loading the taped version.

4. Clear and run to assemble.

To load taped version of OSAS-A

1. Clear core, master clear, set all bank storage registers to zero, and load

bi-octal tape at location 0000.

2. Master clear and run.

Stops

7140 Invalid input parameter; enter correct parameter into A register and run.

7151 Generation of OSAS-A is complete.

1. To assemble: clear and run.

2. To punch a bi-octal tape of OSAS-A: run.

7172 OSAS-A punched correctly.

1. To assemble: clear and run.

4

7372

7447

7470

7600

Bad master tape caused by longitudinal parity error. (The word count in

the binary card image does not agree with the number of characters

encountered.) Correct MPT and reload compiler.;"=

Error on master tape caused by 7, 9 punches missing from column 1 in

binary card image. One of these punches may be missing or misread, in

which case ignore error and continue by running. If a character is bad,

master tape is bad and other error stops will occur.

Check sum error on a transfer card image. Recommend reloading MPT.

Ignore and continue by running if desired.

Longitudinal check sum error. The check sum as part of the binary card

image does not agree with its computed value. Either a frame has been

misread (reader trouble) or a frame has been mispunched. Run to continue,

but accuracy of compiled program is doubtful. ~:"~

~~ Compiler cannot be restarted. Reload MPT to run again.

** An assembly program compiled after a 7600 stop has been encountered may work for
most programs assembled, as the error may be in a region of the assembly program
rarely or never used by the compiler I/O configuration or in assembling certain
types of programs.

5

PART II

OSAS-A ASSEMBLER

The 160-A Assembly System (OSAS-A) is a two or three-pass assembler depending

upon the size of a symbolic program. If the condensed representation of the symbolic

program exceeds available core storage, it is dumped onto some intermediate storage

medium.

This intermediate information is read back in for the assembler 1s second pass and is

read in a second time if a third pass is required. A third pass occurs only if both

listable and binary output of an assembled program are to be dumped on paper tape.

During the first pass of the assembly process, the assembler reads in each line of

symbolic information, scans the various fields, and stores a condensed representation

of each line in a reserved block of storage. When that storage block is full, its con

tents are dumped onto the output medium designated by the input parameter during

generation of OSAS-A. This is the intermediate output. Other steps during the first

pass include assigning values to location symbols, entering symbolic quantities into

the symbol table, translating operation codes, and advancing the current location

counter.

During the second pass the assembler analyzes and converts the intermediate infor

mation. It transmits each line of listable output and grouping of assembled binary

words to the output device. If the current symbol table will be needed during the

assembly of other programs, it may be punched on a separate non-listable paper tape

at this time.

Normally, OSAS-A automatically prepares the symbol table during the assembly

process. However, a special symbol table may be loaded in conjunction with a

symbolic program. The symbol table information to be loaded must be in the form

generated by OSAS-A.

Also, intermediate output may be loaded together with the special symbol table; both

must be in the form generated by OSAS-A, and they must be compatible. This facility

of OSAS-A permits assembly of a segmented program or the independent assembly of

one portion of a large program.

7

A programmer may halt the assembly process temporarily at any point by inserting

a WAI pseudo-op or setting a stop, making necessary changes, and continuing.

Listable or binary output may be suppressed by inserting a SUPA or SUPB pseudo-op

in the program; or by positioning certain jump switches, an external symbol table may

be loaded. The symbol table is normally suppressed and can be obtained as an output

only by positioning a Jump switch as specified in the operation instructions.

PROGRAM RELOCATION

All programs assembled by OSAS-A are relocatable by specifying a relocation constant

at load time. The relocation constant is added, under control of the loader, to the

storage address assigned to relocatable words in a program assembled by OSAS-A.

Relocatable words may be stored in any location in memory. Each word that is capable

of being relocated must be assembled under control of the ORG- PRG counter. There

fore, to be relocatable, a word or group of words must be associated with the ORG or

PRG pseudo-op as shown in the example on page 14. Words consisting entirely of

addresses that ref er to relocatable words in the symbolic program must be modified

by the relocation constant. Words that are stored in low core locations (0000-0077 8)

in any bank are normally non-relocatable and are assembled under control of the CON

counter. Storage locations assigned to these words are not incremented by the

relocation constant.

Words that will not be modified by the relocation constant are as follows:

1. Words that contain an op code or op code, address, and additive fields.

2. Words that consist of entirely numeric address and additive fields.

3. Words that refer to addresses of words assembled under control of the CON

counter.

SYMBOLIC INPUT

A symbolic program to be assembled by OSAS-A may be read in from various media

as designated by the input parameter from the following possibilities:

1. Paper tape punched by a Flexowriter.

2. Magnetic tape from CONTROL DATA 163 Tape Units.

3. Magnetic tape (low density) from IBM 729 tape units via CONTROL DATA

1608 Adapter.

4. Magnetic tape from CONTROL DATA 1607 Tape Units.

8

5. Punched cards from a fast card reader via CONTROL DATA 1610 Control Unit.

6. Punched cards from the CONTROL DATA 167-1, 167-2, or 405 Card Reader.

Acceptable BCD or Flexowriter input characters and corresponding output characters

are shown in table A, page 19. All input is converted to BCD in the computer. Remarks

and other pseudo- ops may be located anywhere in a program; however, each program

must end with a \VAI or an END pseudo-op.

The location, address, and additive fields in any input medium are preceded by a plus,

a minus, or a blank. (A blank indicates a positive field.) The description of each

field in a line of symbolic input is given below.

1. Location Field

A location symbol may be a maximum of six alphanumeric characters. The

sign (or blank) is not a part of the location field. Numeric characters may be

either octal or decimal. Resultant octal values equal to or greater than 10, 0008
may be used as location symbols. Values less than 10, 0008 will be entered in

the symbol table but can not be referenced by other instructions. Four-digit

decimal numbers that result in five-digit octal values are valid symbols.

2. Operation Code Field

This field may contain any of the symbolic op codes or pseudo-ops listed in

appendix A.

Two-digit octal machine instruction codes may also be used if they are left

justified within the field.

3. Address Field

This field may contain an octal number, a decimal number followed by a D, or

a location symbol. Any location symbol used in an address field must appear

in the location field somewhere in the program.

4. Additive Field

This field increments the address specified in the address field. The field may

contain a location symbol, an octal integer, or a decimal number followed by

a D.

Information specified by the additive field will be added algebraically to infor

mation specified in the address field. Location symbols appearing in either

field are represented by assigned machine addresses during address computation.

9

In the relative mode, the resultant sum is added to or subtracted from the current

address to obtain a new address. The resultant sum can never exceed ± 77 8
except for Memory Address Mode instructions, the Return Jump instruction,

or the Selective Jump instructions. If a minus sign is punched in the sign

position preceding the location field of a line, the current address is ignored in

processing the address and additive fields for that line.

5. Comments Field

This field may contain up to 5010 characters. BCD and flex character inputs

are translated for output as a function of the I/O device used. Formats are

shown in table A on page 19.

CARD SYMBOLIC FORMAT

Columns Contents Columns Contents

2 Minus, plus sign, or blank 16-21 Address Field

3-8 Location symbol 23 Minus, plus sign, or blank

10-13 Op Code 24-29 Additive Field

15 Minus, plus sign, or blank 31-80 Comments Field

10

Contents of the location, address, and additive fields may be left-justified (may start

in columns 2, 15, 23).

Arrangement of Symbolic Deck for Assembly

No special start or identification card is required. A remarks card may be included

to identify the program but is not necessary. Blank cards are ignored; they do not

affect the object program. The last card must be an END or a WAI card. Decks may

be followed by 3 blank cards to assure reading of the last card.

Decks may be stacked for assembly by placing several programs in the reader, one

program following another with no special cards between.

SYMBOLIC PAPER TAPE FORMAT

Paper tape input is punched on seven level tape by a Flexowriter. Every tape must

begin with a carriage return and each line must terminate with a carriage return.

Lines may be of variable length; location, address, and additive fields (including the

sign) may also vary within the specified limits. Each field is terminated by a tab, and

each tape must have at least one inch of trailer. A line may be terminated at the end

of any field by typing· a carriage return instead of a tab.

A program may be continued to a second tape by placing a WAI pseudo-op at the end of

the first tape so that the program will pause while a second tape is placed in reading

position. Each tape must begin with a carriage return and all except the last one must

end with a WAI. The last tape must end with an END pseudo-op.

Tape Format: SIGN LOC TAB OP TAB SIGN ADDRESS TAB SIGN ADDITIVE TAB

COMMENTS CR

SYMBOLIC MAGNETIC TAPE FORMAT

A card to tape routine is currently not included with OSAS-A. The user may write a

card-to-tape routine or use an off line card-to-tape device. OSAS-A expects to find

symbolic magnetic tape input written in binary coded decimal (BCD) with card images

in the format shown under SYMBOLIC CARD INPUT on page 10. Blank cards need not

follow a deck of cards for card-to-tape. If programs are stacked for assembly, the

operator must know how many are on a tape since there is no indicator to mark the end

of the last program.

11

OSAS-A PSEUDO-INSTRUCTIONS

The OSAS-A assembly program recognizes 16 pseudo-instructions (pseudo-ops).

Pseudo-ops are not interpreted as machine language instructions; they provide the

programmer with a means of controlling the assembly of a symbolic program, and

are recognized only by the assembly program. The ORG, PRG and CON pseudo-ops

are included in the pseudo-op repertoire because of the relative addressing feature

of the 160-A computer. These three pseudo-ops determine the storage location of

each assembled line in the object program by specifying the contents of the two

assembly program location counters - the ORG- PRG counter and the CON counter.

Addresses assigned to each line during assembly are under control of whichever

counter is active at that time. The active location counter is incremented after the

current line is assembled. The CON counter is actuated by a CON pseudo-op and the

ORG- PRG counter is actuated by either an ORG or a PRG pseudo-op. At the beginning

of a program, OSAS-A automatically sets the ORG- PRG counter to 1008 and the CON

counter to 0. Relocatable lines are assembled under control of the ORG-PRG counter;

non-relocatable lines (those that are to be placed in low core) are assembled under

control of the CON counter.

ORG-PRG Counter

This counter is activated by either an ORG or a PRG pseudo-op. The counter is set

to the value of the algebraic sum of ihe address field and the additive field EXCEPT

when both these fields are blank. The instruction immediately following an ORG or a

PRG pseudo-op is assembled to the location contained in the ORG-PRG counter as a

result of the pseudo-op. If neither of the pseudo-ops appear at the beginning of a pro

gram, the ORG-PRG counter is set to 0100.

If the additive and address (AA) fields are blank the following occurs:

1. ORG causes the ORG-PPG cou;i'Ler to be set to 1008.

2. PRG causes the ORG- PRG r::ounter to resume control and to continue counting

f ram the previous value.

CON Counter

This counter is initially set to 0 if no CON pseudo-op occurs at the beginning of a

program. When a CON pseudo- op is encountered, the CON counter is set to the

algebraic sum of the address and additive (AA) fields. This sum must never be greater

than 77 8 . As long as the CON counter remains active, it is incremented by one except

12

when it is reset by the AA fields of a CON pseudo-op. If the AA fields of a CON

pseudo-op are blank, counting begins from the previous value. The l~gal range of a

CON counter is from 0 through 77 8 . If locations higher than 77 8 are specified by a

CON pseudo-op, they are flagged as range errors.

Symbol Table

Each symbol in the location field of a line in a symbolic program is assigned a numeric

value by OSAS-A and is placed in a symbol table. This symbol table has two parts,

variable and constant. The variable symbol table contains the numeric value of all

symbols that refer to relocatable words. The constant symbol table contains the

numeric value of all non-relocatable symbols. Symbols that are assigned to constants

or low core addresses are placed in the constant symbol table. The capacity of the

entire symbol table is 1000
10

. The following formula may be used for computing the

allowable variable or constant symbol table capacity in a program to be assembled.

Sv + 2Sc = 100010
Where Sv = total number of variable symbols

and S = total number of constant symbols
c

External symbol tables may be loaded with a symbolic program at assembly time if

the external symbol table is in a format acceptable to OSAS-A.

Pseudo-Ops

ORG - Puts the ORG- PRG counter in control and causes the ORG- PRG location

counter to assume the value of the algebraic sum of the address and additive

(AA) fields. This value is the location to which the next instruction (after

an ORG) will be assembled. Each word assembled under this pseudo-op

will be flagged as relocatable on the binary output card or card image.

Symbols appearing in either AA field must be defined before ORG is exe

cuted. An ORG should not be used to continue an assembly. Blank AA fields

set the ORG-PRG counter to 0.

PRG - Has all the properties of ORG but it is used principally to continue an

assembly. A PRG with blank AA fields reactivates the ORG-PRG counter.

If a PRG with blank AA fields is the first instruction of a program, the

counter starts at 100
8

.

13

CON - Controls the CON counter as the PRG controls the ORG- PRG counter.

LOC

*1000

*1001

*1002

*1003

0043

0044

0045

*1004

Symbolic locations defined under control of the CON pseudo-op may be

referenced with no-address, direct, or indirect address instructions only.

Words assembled under control of the CON pseudo-op are non-relocatable,

and may be stored only in low core.

NOTE: Forward, backward and relative mode instructions must not refer
to symbolic.-locatiohs defined by the CON pseudo-op. If such
references are made, errors that are extremely difficult to inter
pret may appear in the assembled listing.

SYMBOL

OMEGA

ALPHA

BETA

DELTA

EXAMPLE

OP

ORG

LDD

STD

AOD

RAD

CON

PRG

ADDRESS ADDITIVE

1000

ALPHA

BETA

DELTA

DELTA +l

43

35

(ORG with blank AA fields would set
LDF location to 0. ORG with AA
fields OMEGA + 4 would set LDF
location to 1004.)

**THETA

*1005 + 1006

LDF

STM

JPR

**STORE

*1007 + 1010

*1011

*1012

THETA

STORE

END

* Will be incremented by a relocation constant
**Will be modified by a relocation constant

14

**OMEGA

The remaining pseudo- ops recognized by the OSAS-A Assembly System are as follows:

BLR, BSS Advances the location counter in control by the amount specified in the

address plus additive field. Any symbol in the location field will be

assigned to the first numeric address in the block. Care must be taken

not to exceed the CON counter range.

WAI Stops the assembly program to allow for mounting a new input tape. The

END pseudo-op may be simulated here by entering a non-zero quantity

into the A register and running.

END

EQU

REM

Prepares the assembly program for the second pass. During binary

output, a transfer card is produced. An END pseudo-op with blank AA

fields will cause the loader to transfer program control to address 0000.

Otherwise an END pseudo-op will transfer program control to the address

designated by the algebraic sum of the AA fields.

NOTE: An END or WAI pseudo-op must terminate the assembly program.
If a WAI is the last instruction, the END pseudo-op must be gen
erated manually in order to complete the assembly process.

Assigns the algebraic sum of the address and additive fields of the EQU

pseudo-op to the symbol in the location field, and places this symbol and

its numeric value in either the variable or the constant symbol table. The

address and additive fields may be either numeric or symbolic. If both

fields are numeric, the symbol in the location field is assigned to the

constant symbol table and is not relocatable. (To maintain program

relocatability, numeric locations should refer only to low core.) If both

address and additive fields are symbolic, the algebraic sum of the two

fields are equated to the symbol in the location field. If either address or

additive symbol is relocatable, the symbol in the location field will be

relocatable. If both symbols are non-relocatable, the location field symbol

will be non-relocatable (constants or low-core addresses). If the address

and additive fields consist of a symbol and a numeric value, the relocat

ability of the location field symbol is determined by the relocatability of

the symbol in either field.

Treats as remarks all that follows the additive field and is ignored by the

assembly program. A REM instruction will not cause the location counter

to advance. A maximum of 5010 characters is permitted in the remarks

field.

15

BNKX

SUPA

SUPB

BCD

BCDR

FLX

FLXR

Generates a binary bank card that will cause the instructions following

the pseudo-op to be loaded into bank X. (X must be an octal digit.) This

pseudo-op does not affect the assembly of a symbolic program; it is a

signal to the loader.

Suppresses the assembly listable output.

Suppresses the binary output.

Causes a contiguous string of characters to be assembled 2 BCD characters

per word.

Causes a contiguous string of characters to be assembled 1 BCD character

per word.

Causes a contiguous string of characters to be assembled 2 flex characters

per word.

Causes a contiguous string of characters to be assembled 1 flex character

per word.

The following rules affect BCD, BCDR, FLX and FLXR pseudo- ops. A maximum of

50 10 characters is permitted by the BCD, BCDR, FLX, and FLXR pseudo instructions.

The characters must be in the remarks field; a character count must appear in the

address field.

ASSEMBLER RULES FOR INPUT

1. A line containing information in the remarks field only will be ignored during

assembly but will appear in proper order with the listable output.

2. All non-printing characters (color shift) are ignored by the assembler except

in the case of control characters (carriage return).

3. If the OP field of a line is blank, the address and additive fields are added

algebraically and stored as one 12-bit number. (If the result is negative, the

line will assemble without error, but the resultant machine word will be

incorrectly modified by any relocation constant.)

4. If the OP field is non-relative, the address and additive fields are added

algebraically to form a 6-bit low-core machine address or a 6-bit constant.

If the sum of the address and additive field exceeds 77 8, the line is flagged as

a range error in the listable output and the low order 6- bits of the instruction

are set to zero.

16

5. If the OP field is relative (last character is F, B, or R), the contents of the

location counter are subtracted from the algebraic sum of the address and

additive fields. (A minus sign in the sign position of the location field indicates

that a line is to be assembled as in rule 2.) For F-type op codes, a positive

result is directly inserted in the low order 6-bits of the resultant 12-bit

machine instruction. If the result is negative, the low order 6-bits are cleared

to zero and the line is flagged as a possible range error in the listable output.

For B-type op codes, a negative result is complemented before it is combined

with the high order 6-bit machine op code. If the result is positive, the low

order 6-bits are cleared and the line flagged as a possible range error.

The possibility of range errors may be reduced by substituting for F or B-type

op codes an R-type op code, which is a pseudo-op recognized by OSAS-A. If, for

example, a programmer wishes to use one or the other of the two relative

machine codes (F or B), but does not know at the time the program is written

whether the desired reference is forward or backward, an R-type code may be

used. An R-type (special relative) op code forces OSAS-A to examine the

result of the subtraction of the contents of the location counter from the sum of

the address and additive fields to determine the correct relative machine op

code. If the result is positive, the machine op code will be an F-type; if the

result is negative, the machine op code will be a B-type. (JPR and ERR are

not considered R-type op codes and will not be recognized as such by OSAS-A.)

For all three types of relative op codes, if the difference between the current

location and the sum of the address and additive fields is greater than ± 77 8,

the low order 6-bits of the resulting machine instruction are cleared to zero

and the line is listed with a range error flag.

LISTABLE OUTPUT

Listable output may be on any medium specified by the input parameter. Flexowriter

or printer listings can list 50 characters in the comment field. Listing from cards

limits comments to the first 32 characters.

Columns

2-5

7-10

13-16

Contents

Error flags

Octal location (location in core to which the
line of data was assembled)

Octal contents (contents of octal location)

17

Columns

Error Flags

19

20-25

27-30

32

33-38

40

41-46

48-97

Contents

Blank or minus sign

Location symbol

Op code

Plus sign, minus sign, or blank

Address

Plus sign, minus sign, or blank

Additive

Comments

OSAS-A has eight error codes which may appear on an assembly listing.

Error Code

c

e

1

m

0

u

v

x

Explanation

CON location out of range (beyond first 1008 locations)

E term of assembled machine op code
greater than 7 7 8
Undefined symbol in location field

Symbol defined more than once

Illegal op code

Undefined symbol in address field

Undefined symbol in additive field

Illegal character

18

TABLE A. RULES FOR CHARACTER CORRESPONDENCE

FLEXOWRITER
CHARACTER

A thru Z

0 thru 9

I

Blank

+

color shift

double color shift

, ,

(to terminate a
field)

, .

(to terminate a
line)

FLEX INPUT

Output

FLX, FLXR

PART I (one to one character correspondence)

A thru Z

0 thru 9

I

Blank

+

PART II (special characters)

upper case code

color shift

PART III (control character combinations)

tab

(terminates field)

carriage return

(terminates line)

19

Output

BCD, BCDR

A thru Z

0 thru 9

- (minus)

I

Blank

(

$

+

plus zero

double plus zero

, $

, .

Input

BCD
CHARACTER

A thru Z

0 thru 9

- (minus}

I

Blank

*
=

(

$

TABLE A (CONT'D}

BCD INPUT

Output

FLX, FLXR

PART I (one to one character correspondence}

A thru Z

0 thru 9

I

Blank

Output

BCD, BCDR

A thru Z

0 thru 9

I

Blank

*

(

$

+ + +

20 Insert the following conversions after the + characters.

plus zero

double plus zero

' $

' .

PART II (special characters}

upper case code

color shift

PART III (control character combinations}

tab

(terminates field}

carriage return

(terminates line)

20

plus zero

double plus zero

' $

' .

BINARY OUTPUT

All binary output produced by OSAS-A is relocatable; it includes program cards, bank

cards, and a transfer card for each program.

Magnetic tape binary output consists of complete binary card image records, 160

characters per record.

The paper tape binary output routine suppresses unused words of the card image.

Each new card image on paper tape is indicated by a seventh level punch in column 1.

Format is given below:

Columns

Program Card

1

1

1

2

3

4-9

10-80

Bank Card

1

1

2

3

Transfer Card

1

1

2

3

Rows

7' 9, 12

8

0-6

7, 9, 11

8

7-9

7, 9, 12

8

Information

Binary program card indicators

If check sum is to be ignored

Word Count

Starting address

Check sum of other 79 columns

Designator bits for words in columns 10 through 80 that
must be modified by relocation constant. A punch indi
cates that word will be modified at load time if relocation
constant is specified. A punch in row 9, column 9,
indicates that words in column::; 10 through 80 will not be
relocated. (A 12-punch in column 4 indicates that word
10 is modified; an 11-punch in column 4 indicates that
word 11 is modified; a 0-punch in column 4 indicates
word 12 is modified. Ordering of word-bit correspondence
proceeds in sequence down each column, 4 through 9.)

Machine instructions, addresses or constants.

Bank card indicator

If check sum is to be ignored

Bank number

Check sum

Binary transfer card indicator

If check sum is to be ignored

Transfer address

Check sum

21

OPERATING INSTRUCTIONS FOR ASSEMBLY PROCESS

Magnetic Tapes

Tape assignments are: Unit # 1 - Symbolic input

Unit # 2 - Intermediate input/ output

Unit # 3 - Li stable output

Unit #4 - Binary output

To rewind unload tapes 1, 3 and 4 after final halt, run - DO NOT CLEAR. Tape 1 will

not rewind if Selective Jump switch 1 is set.

To Assemble

a) Normal Assembly - no intermediate I/O

1. Master clear

2. Set bank control registers to zero

3. Run

4. At stop 2152, program has been assembled correctly. Run to rewind unload

tape units or master clear and run to assemble next program. If stop 2151

occurs, certain lines of symbolic input were in error. The A register dis

plays number of lines in error. Run to stop 2152.

b) Normal Assembly - with intermediate I/O

1. to 3. Same as a)

4. At stop 1152, load intermediate I/0 for cards or paper tape (magnetic tape

reads back in automatically) by positioning and running.

5. Same as 4. in a)

c) Assemble with given symbol table - no intermediate I/O

1. Position symbol table in reader, set Jump switch 2

2. to 4. Same as steps 1- 3 in a)

5. At stop 0117, position symbolic program for loading, and run.

6. Same as 4. in a)

d} Assemble with given symbol table and intermediate I/O.

1. Position symbol table in reader. If intermediate I/0 is not on paper tape,

position it for reading at the same time.

2. Enter 1051 into P register and run.

22

3. At halt 1152, position intermediate I/O and run.

NOTE: The assembly will halt at 1152 only if intermediate I/O is on paper
tape or cards. Magnetic tape will be read in automatically with no
stop.

e) Punch symbol table during assembly.

1. Prior to assembling for any option, set Jump switch 4.

2. Proceed with assembly.

f) Halt program after first pass with magnetic tape unit 1 in rewind load position.

1. Prior to running assembly program, set Jump switch 1.

2. Proceed with assembly.

3. At stop 1042, first pass is complete and tape unit 1 is in rewind load position.

Run from this point unless symbolic input tape is to be saved.

g) Halt assembly program prior to completion.

1. Set Stop switch 1. Do NOT take out of run position to stop assembly program.

2. To resume assembly, restore Stop switch 1 and run.

3. To restart assembly program, master clear and run.

Stops

NOTE: If OSAS-A is being loaded from a previously prepared bi-octal tape,
always load it first with P and A registers at zero before starting
assembly procedure.

N orrnal Stops:

1042 Will occur only if Jump switch 1 has been set. Occurs after the first pass

so that magnetic tapes and tape designations can be changed in a two-tape

I/0 system.

0117

1152

Symbol table has been read. Position symbolic input and run to begin

assembly with a given symbol table.

Position intermediate I/O for input and run.

2152 Final stop. The assembly has been completed correctly. Run if tape units

are to be rewound unload. Master clear and run to assemble next program.

23

2200

2277

Post-final stop occurs after running from stop 2152. Master clear and

run to assemble next program.

The WAI pseudo-op has been encountered. Position next symbolic input

portion and run to continue assembly. To simulate an END pseudo-op,

enter some non-zero quantity into the A register and run.

Error Stops:

2151 Line error display. The number of program lines containing errors is

displayed in the A register. Run to proceed to final stop (2152).

0343 Symbol table is too large for computer to handle. Either the number of
or

3763 symbols must be decreased, or the program must be assembled in parts;

symbols common to more than one part must be EQU'd to each other. Each

part (except the first) must be ORG'd to the address immediately after the

last address of the preceding portion. Maximum symbol table capacity is

100010·

Additional Error Stops (as a function of I/O medium):

Some error stops are computed as a function of I/0 subroutine length. The

following tables should be used to calculate the various error stops. When

a halt occurs at a parity error, the program has attempted to read or

write three times.

Second Record Subroutine Lengths (in octal)

Main Driver

Paper Tape

Magnetic Tape (163)

1610 Card Reader (Fast)

167 Card Reader

Magnetic Tape (1608 Low Density)

Magnetic Tape (1607)

405 Card Reader

167-2 Card Reader

Symbolic Input

24

L = 4412

L = 141

L = 57

L = 274

L = 124

L = 104

L = 107

L = 76

L = 72

Intermediate I/O

Paper Tape

Magnetic Tape (163 Assembly Mode)

Magnetic Tape (163 Character Mode)

Magnetic Tape (1608 Low Density)

Magnetic Tape (1607)

Paper Tape

Magnetic Tape (163)

Line Printer (1612)

Line Printer (166)

Magnetic Tape (1608 Low Density)

Magnetic Tape (1607)

Paper Tape

Listable Output

Binary Output

Magnetic Tape (163 Character Mode)

1610 Card Punch (Fast)

Magnetic Tape (1608 Low Density)

Magnetic Tape (1607)

Error Stops (in octal)

Magnetic Tape (163)

1. Symbolic Input

L = 201

L = 105

L = 163

L = 136

L = 122

L .= 147

L = 43

L = 23

L = 66

L = 116

L = 75

L = 122

L = 72

L = 122

L = 105

L = 66

EOF mark detected; run to generate an END card. Contents of location 62 + 33

2. Intermediate (Character Mode)

Write parity error; ruri to rewrite. Zero A

register and run to disable parity for remainder

of record. Continue processing.

Contents of location 63 + 5 5

Read parity error; run to reread. Zero A regis- Contents of location 63 + 151

ter and run to disable parity for remainder of

record. Continue processing.

25

3. Intermediate (Assembly Mode)

Write parity error; run to rewrite. Zero A regis- Contents of location 63 + 30

ter and run to disable parity for remainder of

record. Continue processing.

Read parity error; run to reread. Zero A regis

ter and run to disable parity for remainder of

record. Continue processing.

4. Listable Output

Contents of location 63 + 77

Write parity error; run to rewrite. Zero A regis- Contents of location 65 + 26

ter and run to disable parity for this record.

Continue processing.

5. Binary Output (Character Mode)

Write parity error; run to rewrite. Zero A regis- Contents of location 66 + 62

ter and run to disable parity for this re~ord.

Continue processing.

1. Symbolic Input

End-of-file sensed

2. Intermediate I/O

Magnetic Tape (1608)

Contents of location 62 + 33

Write parity error; run to rewrite. Zero A regis- Contents of location 63 + 31

ter and run to disable parity for remainder of

record. Continue processing.

Read parity error; run to reread. Zero A regis

ter and run to disable parity for remainder of

record. Continue processing.

3. Listable Output

Contents of location 63 + 115

Write parity error; run to rewrite. Zero A regis- Contents of location 65 + 56

ter and run to disable parity for this record.

Continue processing.

4. Binary Output

Write parity error; run to rewrite. Zero A regis- Contents of location 66 + 34

ter and run to disable parity for remainder of

record. Continue processing.

26

1. Symbolic Input

End-of-file marks sensed

Magnetic Tape (1607)

Read parity error indicated by rapid back

and-forth tape movement. (OSAS-A is

attempting to read record correctly.)

2. Intermediate I/0

Write parity error; run to rewrite. Zero

A register and run to disable parity for

remainder of record. Continue processing.

Read parity error. Run to reread. Zero

A register and run to disable parity for

remainder of record. Continue processing.

3. Listable Output

Write parity error; run to reread. Zero

A register and run to disable parity for

remainder of record. Continue processing.

4. Binary Output

Write parity error; run to reread. Zero

A register and run to disable parity for

remainder of record. Continue processing.

Paper Tape

1. Symbolic Input

2. Intermediate I/0

Frame just read has lateral parity error.

Step twice, enter correct character in

A register and run.

Frame just read in is not longitudinal check

character; re-start assembly.

3. Lis table Output

4. Binary Output

27

Contents of location 6 2 + 3 5

Contents of location 63 + 27

Contents of location 63 + 101

Contents of location 65 + 52

Contents of location 66 + 31

No Stop

Contents of location 62 + 140

Contents of location 63 + 175

No Stop

No Stop

Cards (1610 Fast)

1. Symbolic Input Card Reader Error

2. Binary Output

Equipment not ready.

1. Symbolic Input

Cards (167-1)

167-1 card reader not operating. A register

displays 33XX. Correct 167 error condition

and master clear. Add one to contents of P,

enter sum in P register, zero A register

and run.

Contents of location 62 + 20

Contents of location 6 6 + 113

Contents of location 6 2 + 121

4324 + 117

167 Status Response Codes XX = 00 Card read ready

XX = 01 Hopper empty

XX = 02 Stacker full

XX = 04 Feed failure

XX = 10 Program error

XX = 20 Amplifier failure

XX = 40 Motor power off

Cards (167-2)

1. Symbolic Input

167- 2 card reader not operating. A register

displays 33XX. Correct 167-2 error condition

and master clear. Add 1 to contents of P,

enter sum in P register, zero A register,

and run.

Cards (405)

1. Symbolic Input

405 card reader not operating. A register

displays 3XXX. Correct 405 error condition

and master clear. Add 1 to contents of P,

enter sum in P register and run.

28

Contents of location 62 + 67

Contents of location 62 + 71

405 Status Response Codes

1. Listable Output

XXX = 000 Card reader ready

XXX = 001 Hopper empty

XXX = 002 Stacker empty

XXX = 004 Feed failure

XXX = 010 Program error

XXX = 020 Amplifier error

XXX = 040 Motor power off

XXX = 100 Compare error

XXX = 200 Hopper empty with EOF set

Printer 166

Printer in off-line condition. Place

printer on-line and run.

Contents of location 6 5 + 13

Printer is out of paper. Contents of lo ca ti on 6 5 + 16

MNEMONIC CODES FOR OSAS-A

The 160-A Assembly System recognizes all of the normal mnemonic operation codes

for the 160-A computer. It also recognizes certain pseudo-ops}:< and 15 special rela

tive codes. The special relative codes are relative instructions which do not specify

direction. An R is substituted for the terminal B or F in thP. symbolic program and

OSAS-A determines the proper direction automatically as explained on page 17. For

example, LPR may be coded instead of LPF or LPB. The special relative mnemonics

are: ADR, AOR, LCR, LDR, LPR, LSR, NJR, NZR, PJR, RAR, SER, SCR, SRR, STR,

ZJR.

Appendix A contains a complete list of all mnemonic codes recognized by OSAS-A,

including normal operation codes, pseudo-ops, and the special relative codes. To

provide compatability with previous 160 assembly programs, OSAS-A accepts the old

Shift A and Logical Sum instructions.

}:~ Discussed on page 12.

29

PART III

MASTER PAPER TAPE EDIT

This program will produce on OSAS, OSAS-A, OSAS-AX or AUTOCOMM Master Paper

Tape. It allows replacement of the compiler {bi-octal) portion and the driver portion of

the MPT. The I/0 routines can be replaced, deleted, or a new routine inserted.

If the compiler is to be replaced, the new compiler tape must be in bi-octal format.

All other routines are in OSAS or OSAS-A binary format.

EDIT PARAMETERS

The edit parameters are entered in the computer by manually placing them in the A

register. If the compiler is to be replaced, its parameter must be entered first. The

next parameter which must be entered is the driver's, if it is to be replaced. The

remainder of the parameters may be entered in any order. The last parameter must

be 0077.

PARAMETERS

0000

0001

OlXX

ooxx
0077

replace compiler

replace driver

delete routine XX (ID nurn.ber)

replace or insert XX {ID number)

end of list

ID numbers of routines are assigned as follows:

10 symbolic input ~ 17

20 intermediate output < 27

30 listable output ~ 3 7

40 binary output S 47

31

OPERATING INSTRUCTIONS

To Edit a New MPT

1. Position edit tape in reader; master clear and RUN.

2. At halt P = 650, A = 5043, set the Load/ Clear switch to Clear and the Run/Step

switch to Neutral.

3. Set P = 0000. If the compiler is to be replaced, place new compiler routine

(bi-octal format) in reader, otherwise place old MPT in reader, RUN.

4. At stop P = 60, enter edit parameter in A register. Place Run/Step switch to

Run and repeat until all parameters have been entered. After last edit para

meter has been entered, place 0077 in A register and RUN.

5. If compiler has been replaced and driver will not be replaced, a stop with P =

0121 occurs. Replace MPT in reader, positioned at blank space following the

old compiler. Set Run/Step switch to Run.

6. If the driver is to be replaced a halt with P = 0143 occurs. Place the new

driver tape in reader and set Run/Step switch to Run. After the new driver

has been reproduced, a halt at P = 0175 will occur. Place the MPT in reader

at the blank following the bi-octal portion of the tape, set the Run/ Step switch

to Run.

7. If an I/O routine is to be replaced or inserted, a halt at P = 0330 will occur

with the ID number of the routine to be replaced in the A register. Place the

routine in the reader, and set the Run/Step switch to Run. Repeat this proce

dure until all routines have been punched.

8. If at the completion of an edit .a routine was specified to be deleted but was not

on the MPT, a halt at P = 0444 occurs with the specified routine ID numbers

in the A register. Set Run/Step switch to Run position to determine if any

other delete errors occurred.

9. At the completion of the edit, a stop will occur at P = 0446.

To Copy a MPT

1. Load edit program tape at 0000. Halt P 0650, A = 5043 indicates program

tape is properly loaded.

2. Place MPT to be copied in reader. Set P = 0002 and RUN. At halt P 0446,

lVIPT has been copied.

32

To Determine Routines on a MPT

1. Load edit program tape at 0000. Halt P 0650, A = 5043 indicates program

tape is properly loaded.

2. Position MPT in reader.

3. Set P = 0004 and RUN.

4. Halt with P = 0050 occurs with the ID of next routine on MPT in A register.

Run until 77 appears in the A register signifying the end of the MPT.

Ve rifyihg the New MPT

Test all possible I/O configurations to insure that the new MPT will compile properly.

PROGRAM STOPS FOR MASTER PAPER

Normal Stops

0050 Halt with ID in A register. Used to determine routines on MPT.

0060

0121

0143

0175

0330

Halt to enter Edit parameter in A register.

Halt to replace MPT in reader after replacing compiler.

Halt to enter new driver tape in reader.

Halt to replace MPT in reader after replacing driver routine.

Halt with ID number of routine to be replaced or inserted in A register.

Fin:::i.l halt for copy and edit.

Error Stops

0444 Halt to indicate a routine which was to be deleted was not on the MPT.

33

PART IV

BINARY LOADERS

The OSAS-A assembly system includes a loading routine for each form of binary input.

Loaders are in relocatable format stored on bi-octal paper tapes (not on the MPT);

they load binary card images from cards, magnetic tape, or paper tape prepared by

the OSAS-A assembly program.

OPERATING INSTRUCTIONS

1. Place bi-octal loader tape in reader, enter starting address into P register, load

and run.

2. At halt, set P register to starting load address, position first binary input (tape

unit #4 if magnetic tape), enter relocation constant of first binary input into A

register and run.

3. To load additional binary inputs:

Enter original load address into P register, position next binary input, enter its

relocation constant into A register and run.

NOTE: An assembled program also may be relocated during input by placing a re
location card before the binary deck. In such cases the relocation constant
need not be entered into the A register. The relocation card format is:

STOPS

Columns

1

2

3

Rows

7, 9, 11 and 12 pun~hP.s

8 if check sum is to be ignored

relocation constant

check sum

Loader stops are computed as a function of the input medium and the length of the binary

loader. Use the following tables to compute the proper stop addresses.

Binary Loader Lengths
(in octal)

163 Magnetic Tape, Assembly Mode
163 Magnetic Tape, Character Mode
1607 Magnetic Tape
1608 Magnetic Tape
1610 Card Reader, Fast
Paper Tape
167-1 Card Reader
405 Card Reader

35

L = 412
L = 555
L = 412
L = 411
L = 613
L = 425
L = 366
L = 402

Cards

405 1610

L + 227 L + 440

Cards

405 1610

L + 174 L + 405

L + 226 L + 437

L + 344 L + 555

L + 147

NORYiAL STOPS
(L first storage location of loader)

Magnetic Tape Paper TaEe Magnetic TaEe (163)

167 1607 1608 Assy. Mode Char. Mode - Transfer card has been read.

L + 213 L + 216 L + 215 L + 253

L + 222 L + 221

L + 144 L + 143

L + 150 L + 147

ERROR STOPS

Magnetic Tape Paper Tape

167 1607 1608

L + 160 L + 157 L + 140

L + 160 L + 200 L + 177 L + 220

L + 212 L + 215 L + 214 L + 252

L + 330 L + 355 L + 354 L + 367

36

L + 216 L + 361
Run to cause a jump to pro-
gram and execute. Master
clear, enter starting load
address into P register,
enter relocation constant
into A register, and run to
load next program. If mag-
netic tape loaders are used,
to rewind unload tape unit
1t4, zero the A register and
run from the halt.

L + 222 L + 365 - Tape unit #4 has been rewound
unload. Run from here to jump
to program. To load next pro-
gram, change tapes, master
clear, enter starting load
address into P register, re lo-
cation constant into A
register and run.

L+ 143 I.;+ 270 - End of file mark detected on
last read operation; run to
rewind unload magnetic tape
unit #4; clear A register and
run to read next record.

L + 147 L + 274 - Tape unit 1fo4 has been rewound
unload.

Magnetic Tape (163)

Assy. Mode

L + 160

L + 200

L + 215

L + 355

Char. Mode - Read parity error. Run to

L + 305
continue processing.

L + 343 - Card or record just read not
in proper binary format.
Run to continue processing.

L + 360 - Check sum error in transfer
card; step once and run to
jump to program.

L + 520 - Check sum error. Run to read
next record or card.

- Reader failure.

APPENDIX A

MNEMONIC CODES RECOGNIZED BY OSAS-A

X or XX = Any Octal digit or digits
XXXX = Octal Operand or EF code
YYYY = Octal Address

Mnemonic Name F E G Type~:<:

ACJX Set D, I, and R Bank Control 00 7X N
and Jump

ADB Add Backward 33 xx N

ADC Add Constant 32 00 xx xx N

ADD Add Direct 30 xx N

ADF Add Forward 32 xx N

ADI Add Indirect 31 xx
ADM Add Memory 31 00 yyyy N

ADN Add No Address 06 xx N

ADR Add Relative 3X xx s
ADS Add Specific 33 00 N

AOB Replace Add One Backward 57 xx N

AOC Replace Add One Constant 56 00 xx xx N

AOD Replace Add One Direct 54 xx N

AOF Replace Add One Forward 56 xx N

AOI Replace Add One Indirect 55 xx N

AOM Replace Add One Memory 55 00 yyyy N

AOR Replace Add One Relative 5X xx s
AOS Replace Add One Specific 57 00 N

ATE A to Buff er Entrance Register 01 05 yyyy N

ATX A to Buff er Exit Register 01 06 yyyy N

BCD 2 BCD Characters/Word p

BCDR 1 BCD Character /Word p

BLR Block Storage Reserve p

BLS Block Store 01 00 yyyy N

BNKX Generate Binary Bank Card p

~:<: Normal codes = N, pseudo-ops = P, and special relative codes = S

37

Mnemonic Name F E G Type*

BSS Block Storage Reserve p

CBC Clear Buff er Controls 01 04 N

CIL Clear Interrupt Lockout 01 20 N

CON Constant p

CTA Bank Controls to A 01 30 N

DRJX Set D and R Bank Control and Jump 00 5X N

END End p

ETA Buff er Entrance Register to A 01 07 N

EQU Equality p

ERR Error Stop 00 00 N

EXC External Function Constant 75 00 xxxx N

EXF External Function Forward 75 xx N

FLX 2 Flex Characters /Word p

FLXR 1 Flex Character/Word p

HLT Halt 77 00 N
77 77

HWI Half Write Indirect 76 xx N

IBI Initiate Buffer Input 72 00 yyyy N

IBO Initiate Buffer Output 73 00 yyyy N

INA Input to A 76 00 N

INP Input 72 xx yyyy N

IRJX Set I and R Bank Control and Jump 00 3X N

JFI Jump Forward Indirect 71 xx N

JPI Jump Indirect 70 xx N

JPR Return Jump 71 00. yyyy N

LCB Load Complement Backward 27 xx N

LCC Load Complement Constant 26 00 xx xx N

LCD Load Complement Direct 24 xx N

LCF Load Complement Forward 26 xx N

LCI Load Complement Indirect 25 xx N

LCM Load Complement Memory 25 00 yyyy N

LCN Load Complement No Address 05 xx N

~~ Normal Codes = N, pseudo-ops = P, and special relative codes = S

38

Mnemonic Name F E G Type*

LCR Load Complement Relative 2X xx s
LCS Load Complement Specific 27 00 N

LDB Load Backward 23 xx N

LDC Load Constant 22 00 xxxx N

LDD Load Direct 20 xx N

LDF Load Forward 22 xx N

LDI Load Indirect 21 xx N

LDM Load Memory 21 00 yyyy N

LDN Load No Address 04 xx N

LDR Load R.elative 2X xx s
LDS Load Specific 23 00 N

LPB Logical Product Backward 13 xx N

LPC Logical Product Constant 12 00 xx xx N

LPD Logical Product Direct 10 xx N

LPF Logical Product Forward 12 xx N

LPI Logical Product Indirect 11 xx N

LPM Logical Product Memory 11 00 yyyy N

LPN Logical Product No Address 02 xx N

LPR. Logical Product Relative lX xx s
LPS Logical Product Specific 13 00 N

LSB Logical Sum (exclusive or) 17 N

LSD Logical Sum (exclusive or) 14 N

LSF Logical Sum (exclusive or) 16 N

LSI Logical Sum (exclusive or) 15 N

LSN Logical Sum (exclusive or) 03 N

LSR Logical Sum (exclusive or) lX s
LSl Left Shift One 01 02 N

LS2 Left Shift Two 01 03 N

LS3 Left Shift Three 01 10 N

LS6 Left Shift Six 01 11 N

MUH Multiply A by One Hundred 01 13 N

MUT Multiply A by Ten 01 12 N

* Normal codes = N, pseudo-ops = P, and special relative codes = S

39

Mnemonic Nan1e F E

NJ-B Negative Jump Backward 67 xx

NJF Negative Jump Forward 63 xx

NJR Negative Jump Relative 6X xx

NOPx):<):< No Operation 00 ox

NZB Non-Zero Jump Backward 65 xx

NZF Non- Zero Jump Forward 61 xx

NZR Non- Zero Jump Relative 6X xx

OTA Output from A 76 77

OTN Output No Address 74 xx

OUT Output 73 xx

ORG Origin

PJB Positive Jump Backward 66 xx

PJF Positive Jump Forward 62 xx

PJR Positive Jump Relative 6X xx

PRG Program

PTA Transfer P to A 01 01

RAB Replace Add Backward 53 xx

RAC Replace Add Constant 52 00

RAD Replace Add Direct 50 xx

RAF Replace Add Forward 52 xx

RA! Replace Add Indirect 51 xx

RAM Replace Add Memory 51 00

RAR Replace Add Relative 5X xx

RAS Replace Add Specific 53 00

REM Remarks

RSl Right Shift One 01 14

RS2 Right Shift Two 01 15

SBB Subtract Backward 37 xx

SBC Subtract Constant 36 00

SBD Subtract Direct 34 xx

SBF Subtract Forward 36 xx

,,~ Normal codes = N, pseudo-ops = P, and special relative codes = S
** X for NOP cannot be 0

40

G Type*

N

N

s
N

N

N

s
N

N
yyyy N

p

N

N

s
p

N

N

xxxx N

N

N

N

yyyy N

s
N

p

N

N

N

xxxx N

N

N

Mnemonic Name F E G Type* ---
SBI Subtract Indirect 35 xx N

SBM Subtract Memory 35 00 yyyy N

SEN Subtract No Address 07 xx N

SER Subtract Relative 3X xx s
SES Subtract Specific 37 00 N

SBUX Set Buffer Bank Control 01 4X N

SCB Selective Complement Backward 17 xx N

sec Selective Complement Constant 16 00 xx xx N

SCD Selective Complement Direct 14 xx N

SCF Selective Complement Forward 16 xx N

SCI Selective Complement Indirect 15 xx N

SCM Selective Complement Memary 15 00 yyyy N

SCN Selective Complement No Address 03 xx N

SCR Selective Complement Relative lX xx s
scs Selective Complement Specific 17 00 N

SDCX Set Direct Bank Control 00 4X N

SHA Shift A Left 01 N

SICX Set Indirect Bank Control 00 2X N

SIDX Set Indirect and Direct Bank Control 00 6X N

SLJX Selective Jump 77 XO yyyy N

SLSX Selective Stop 77 ox N

SJS Selective Stop and Jump 77 xx yyyy N

SRB Shift Replace Backward 47 xx N

SRC Shift Replace Constant 46 00 xxxx N

SRD Shift Replace Direct 44 xx N

SRF Shift Replace Forward 46 xx N

SRI Shift Replace Indirect 45 xx N

SRJX Set Relative Bank Control and Jump 00 lX N

SRM Shift Replace Memory 45 00 yyyy N

SRR Shift Replace Relative 4X xx s
SRS Shift Replace Specific 47 00 N

STE Store Backward 43 xx N

* Normal codes = N, pseudo-ops = P, and special relative codes = S

41

Mnemonic Name F E G Type*

STC Store Constant 42 00 xxxx N

STD Store Direct 40 xx N

STEX BER to Location 6X, A to BER 01 6X N

STF Store Forward 42 xx N

STI Store Indirect 41 xx N

STM Store Memory 41 00 yyyy N

STPX P to Lo ca ti on 5X 01 5X N

STR Store Relative 4X xx s
STS Store Specific 43 00 N

SUPA Suppress Listable Output p

SUPB Suppress Binary Output p

WAI Wait p

ZJB Zero Jump Backward 64 xx N

ZJF Zero Jump Forward 64 xx N

ZJR Zero Jump Relative 6X xx s

* Normal codes = N, pseudo-ops = P, and special relative codes = S

42

APPENDIX B

OPERATING INSTRUCTIONS FOR EXTENDED ASSEMBLY PROCESS (OSAS-AX)

The Extended 160-A Assembly System (OSAS-AX) performs essentially the same

function as OSAS-A with the important difference that a much larger symbol table is

feasible with the extended version.

Magnetic Tapes

Tape assignments are: Unit # 1 - Symbolic input

Unit # 2 - Intermediate input/ output

Unit # 3 - Listable output

Unit #4 - Binary output

To rewind unload tapes 1, 3 and 4 after final halt, run - DO NOT CLEAR. Tape 1 will

not rewind if Selective Jump switch 1 is set.

To Assemble

a) Normal Assembly - no intermediate I/0

1. Master clear

2. Set bank control registers to zero

3. Run

4. At stop 2142, program has been assembled correctly. Run to rewind unload

tape units or master clear and run to assemble next program. If stop 2141

occurs, certain lines of symbolic input were in error. The A register dis

plays number of lines in error. Run to stop 2142.

b) Normal Assembly - with intermediate I/O

1. to 3. Same as a)

4. At stop 1142, load intermediate I/O for cards or paper tape (magnetic tape

reads back in automatically) by positioning and running.

5. Same as 4. in a)

c) Punch symbol table during assembly

1. Prior to assembling for any option, set Jump switch 4.

2. Proceed with assembly.

d) Halt program after first pass with magnetic tape unit 1 in rewind load position

1. Prior to running assembly program, set Jump switch 1.

2. Proceed with assembly.

43

3. At stop 1045, first pass is complete and tape unit 1 is in rewind load position.

Run from this point unless symbolic input tape is to be saved.

e) Halt assembly program prior to completion

1. Set Stop switch 1. Do NOT take out of run position to stop assembly program.

2. To resume assembly, restore Stop switch 1 and run.

3. To restart assembly program, master clear and run.

Stops

NOTE: If OSAS-A is being loaded from a previously prepared bi-octal
tape, always load it first with P and A registers at zero before
starting assembly procedure.

Normal Stops:

1045 Will occur only if Jump switch 1 has been set. Occurs after the first pass

so that magnetic tapes and tape designations can be changed in a two-tape

I/O system.

1142 Position intermediate I/O for input and run.

2142 Final stop. The assembly has been completed correctly. Run if tape units

are to be rewound unload. Master clear and run to assemble next program.

2170 Post-final stop occurs after running from stop 2055. Master clear and run

to assemble next program.

2267 The WAI pseudo-op has been encountered. Position next symbolic input

portion and run to continue assembly. To simulate an END pseudo-op,

enter some non- zero quantity into the A register and run.

Error Stops:

2141

0344

or

4007

Line error display. The number of program lines containing errors is

displayed in the A register. Run to proceed to final stop (2055).

Con table - Bank 1 full.

Var table - Banks 2 and 3 full.

Symbol table is too large for computer to handle. Either the number of

symbols must be decreased, or the program must be assembled in parts;

symbols common to more than one part must be equated to each other

(using the EQU pseudo-op). Each part (except the first) must be given as

origin the address immediately after the last address of the preceding

44

portion (using the ORG pseudo-op). Maximum symbol table capacity is

1023
10

constant symbols (Bank 1) and 2046
10

variable symbols (Banks 2

and 3).

Symbol Table (See page 13)

The symbol table extends over three banks, bank 1 containing 1023
10

constant symbols

and banks 2 and 3 containing 2 x 1023 10 or 2046 10 variable symbols.

External symbol tables are dispensed with.

45

Other publications concerning programming and programming

systems for the Control Data Corporation 160-A Computer are:

160-A Reference Manual

Satellite Programming

160-A FORTRAN/General Information

INTERFOR

Peripheral Processing Package

160-A FORTRAN/Reference Manual

AUTOCOMM/Reference Manual

46

#60014500

#60018700

#60050500

#60051200

#60051700

#60051300

#60051900

CONTROL DAT A SALES OFFICES ALAMOGORDO. ALBUQUERQUE. ATLANTA • BEYERL y HILLS • BOSTON

CAPE KENNEDY• CHICAGO• CLEVELAND• COLORADO SPRINGS• DALLAS• DAYTON

DENVER• DETROIT• DOWNEY• HONOLULU •HOUSTON

HUNTSVILLE• ITHACA• KANSAS CITY, KAN. • MINNEAPOLIS •NEWARK

NEW ORLEANS• NEW YORK CITY• OAKLAND• OMAHA• PHILADELPHIA

PHOENIX• PITTSBURGH• SACRAMENTO• SALT LAKE CITY• SAN BERNARDINO

SAN DIEGO• SAN FRANCISCO• SEATTLE• WASHINGTON, D.C.

INTERNATIONAL OFFICES FRANKFURT, GERMANY• HAMBURG, GERMANY• STUTTGART, GERMANY

Pub. No. 60050700
Revision C

LUCERNE, SWITZERLAND• ZURICH, SWITZERLAND• MELBOURNE, AUSTRALIA

CANBERRA, AUSTRALIA• ATHENS, GREECE• LONDON, ENGLAND• OSLO, NORWAY

PARIS, FRANCE •STOCKHOLM, SWEDEN

CONTROL DATA
CORPORATION

8100 34th AVENUE SOUTH, MINNEAPOLIS 20, MINNESOTA

Litho in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	xBack

