
l';J I:'\ CONT"OL DATA
\:I r:!I CO~OR<\TION

6047~200

STATE PROGRAMMING LANGUAGE
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
255X SERIES
NETWORK PROCESSOR UNITS
COMMUNICATIONS CONTROL PROGRAM (CCP)
COMMUNICATIONS CONTROL INTERCOM (CCI)
COMMUNICATIONS CONTROL MODULE (CCM)

CDC® HOST OPERATING SYSTEMS:
NOS 1
NOS/BE 1
MASTER/MCS Ill

.. REVISION
A

(6-30-78)

B

(5-31-79)

c

(5-22-80)

Publication No.
60472200

© 1978, 1979, 1980

REVISION RECORD
DESCRIPTION

Original release.

Revised to CCP 3.2, PSR Level 497. This revision obsoletes all previous editions.

Revised to CCP/CCI, PSR Level 518 (HASP postprint).

REVISION LETTERS I, 0, 0 AND X ARE NOT USED Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. 0. Box 4380-P
Anaheim, California 92803

by Control Data Corporation or use Comment Sheet in the back of
this manual.

Printed in the United States of America

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins
or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than
content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV

Cover -
Title Page -
ii thru iv c
v/vi B
vii c
1-1/1-2 B
2-1 thru 2-3 B
3-1 thru 3-3 B
4-1/4-2 B
5-1 thru 5-11 B
5-12 thru 5-15 c
A-1 thru A-8 B
A-9 thru A-11 c
B-1 B
B-2 c
C-1 B
D-1 thru D-8 B
lndex-1/Index-2 c
Comment Sheet -
Mailer -
Back Cover -

60472200 c iii/iv

PREFACE

The manual is intended to provide specific programming
information for analyst-level personnel who wish to create
or to modify the firmware-level (mux-level) message proces
sing portions of a terminal interface program (TIP). These
programs are called text processing state programs for
downline messages and input state programs for upline
messages. The programs are required for every TIP in a
255x Network Processor Unit using Communications Control
Program (CCP), Communications Control INTERCOM (CCI)
or Communications Control Module (CCM). There is also a
set of modem state programs used in each of these systems.

Publication Title

Communications Control Program
Version 3

This manual should be used in conjunction with the appropri
ate System Programmer's Reference Manual for CCP or
CCI. Unless specified, all references to number are to
decimal values; all references to bytes are to 8-bit bytes; all
references to characters are to 8-bit ASCII-coded
characters.

RELATED MANUALS
Additional information on state programs and on systems
which use state programs can be found in the following
documents:

Publication Number

60474500

System Programmer's Reference Manual

60472200 B

Communications Control INTERCOM
Version 3
System Programmer's Reference Manual

Communications Control Module
Version 3
Reference Manual

Macro Assembler
Reference Manual
Mass Storage Operating System

60471160

60470500

60361900

CDC manuals can be ordered from Control Data Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103

This product is intended for use only as described
in this document. Control Data cannot be
responsible for the proper functioning of
undescribed features or parameters.

v/vi

CONTENTS

1. INTRODUCTION 1-1 Store Character Counter in Buffer 5-3
Character Manipulation 5-3

Program Interface 1-1 Store Character 5-3
State Program Structure 1-1 Replace Character 5-3
Manual Format 1-2 Replace and Store Character 5-4

Add (Insert) a Character 5-4
Expand (Repeat) Character 5-4

2. INPUT ST A TE PROGRAMS 2-1 Index Manipulations 5-4
Set Modem State Index 5-4

Firmware Interface 2-1 Set Input/Text Processing State Index 5-5
Program Control 2-1 Jump to Input/Text Processing State 5-5
Data Structure for Input State Program: MLCB 2-2 Skips 5-5
Program Organization 2-3 Skip 5-6
Interface to the Modem State Programs 2-3 Skip if CRC is Equal 5-6

Skip if State is Less Than Value 5-6
Skip if Character is Not Equal 5-6

3. TEXT PROCESSING ST A TE PROGRAMS 3-1 Skip if Special Character Equals
Current Character 5-6

Data Structure, TPCB 3-1 Skip if Character is Less Than Operand 5-7
Firmware Interface 3-2 Processing CLA Status 5-7

TPCB Initial Set-Up 3-2 Test CLA Status 5-7
TPCB Set-Up for Restart 3-2 Compare CLA Status 5-7
TPCB Return Values 3-2 Flag Control 5-7
File 1 Text Processing Registers 3-3 , Set/Reset Translate Flag 5-7

Program Control 3-3 Set/Reset Message in Process Flag 5-7
Program Organization 3-3 Operate on User Flags 5-8

Set Flags in the Destination Buffer 5-9
Set/Reset Parity Flag 5-9

4. MODEM ST A TE PROGRAMS 4-1 Worklist Handling 5-9
Terminate Input Buffer 5-9

Firmware Interface 4-1 Build Event Worklist 5-10
Proqram Control 4-1 Build CLA Status Worklist Entry 5-10
Program Organization 4-1 Text Processing Macros 5-11
Interface to the Multiplex Level Status Handler 4-1 Operate on File 1 Register 5-11
Interface to the Input State Programs 4-2 Set Register Value 5-11

Save/Restore Text Processing Conditions 5-11
Store Character from File 1 Register 5-12

5. ST A TE INSTRUCTIONS 5-1 Exit Text Processing 5-12

I
Insert Text Processing Character 5-12

Handling Assignable Counter 5-1 Miscellaneous Macros 5-13
Initialize Character Counter 5-1 Set Translation Table Address 5-13
Set Character Counter 5-1 Reset Timer 5-13
Mask and Set Character Counter 5-1 Backspace 5-13
Set Character Counter with Mod Function 5-1 Resync a Synchronous Line 5-13
Increment Character Counter 5-3 Set CRC Value 5-14

I
Decrement Character Counter 5-3 Allocate a New Buffer 5-14
Compare Character Counter to a Value 5-3 No Operation 5-14
Compare Character Counter to Move Field 5-14

Block Length 5-3 Store Block Length Character 5-14

60472200 c vii

A.
B.

SUMMARY OF STA TE INSTRUCTIONS
ST A TE INSTRUCTION TIMING

1-1 State Pointer Table Creation
2-1 Locating an Input State Process
2-2 Standard MLCB
3-1 Standard TPCB

viii

APPENDIXES

A-1
B-1

c.

o.

INDEX

JOB DECK STRUCTURE FOR
ASSEMBLING ST A TE PROGRAMS

SAMPLE STATE PROGRAM

FIGURES

1-1
2-1
2-2
3-1

4-1 Locating a Modem State Process
5-1 Standard Macro Parameter Definitions
5-2 CLA Status Bit Assignment

C-1
D-1

4-1
5-2
5-8

604722008

INTRODUCTION 1

State programs handle protocol dependent tasks (such as
code and format conversion) for a terminal interface
program (TIP). These state programs operate on the
firmware (multiplex) level. All state programs are
written using a set of macros called state instructions.
These macros are a defined set of CYBER 18 macro
assembly macros and are assembled using the CYBER 18
macro assembler.

Three types of state program are needed by every TIP:

• Text processing state programs convert the
code/format of output messages; and in some cases the
code/format of input messages. These state programs
are called directly from the TIP and return control to
the TIP when the message text is in terminal format
and ready for output. (In the case of input text
processing, the message is in host format and is ready
to be passed to the host.)

• Input state programs convert code/format for input
messages. These state programs are specified by the
TIP to the multiplex subsystem, which controls the
programs directly. One-pass input state programs
convert the message to a form expected by the host.
Two-pass input state programs demultiplex data from
the circular input buffer to an input source buffer.
The TIP then performs input text processing.

• Modem state programs are common to all TIPs. They
are controlled by the multiplex subsystem and are used
to set up modem/communications line adapter
parameters, and to take status from the
communications line adapter parameters, and branch
on the basis of the communications line adapter
status. Modem state programs need be considered only
if a new line type is added to the system.

PROGRAM INTERFACE
All TIPs are written on two levels of processing: the OPS
level and the firmware level. State programs run at the
firmware level and interface with the OPS-level TIP by
passing information to them through worklist entries
and/or through the control block (MLCB and TPCB are
described later).

Part of the message processing is handled by the firmware
output data processor (ODP) or by the input data
processor (IDP). Both programs are part of the multiplex
subsystem. The ODP is interrupt driven by a
microprogram that is activated when output data demands
(ODD) are generated by the communications line
adapters. The ODP's primary function is to obtain
characters from line-oriented output buffers, transform
this data into line frame formats, and transfer the line
frames onto the multiplex output loop.

Output text processing is required when the output sent by
the host and received by the OPS-level TIP requires
special handling (e.g., character translation) before being
output to the terminal. Text processing state programs

60472200 B

analyze and reformat the output buffer data to terminal
format and code. This processing must be completed
before the TIP requests the multiplex subsystem to start
output on the line.

The IDP is a multiplex subsystem level 1 microprogram
which removes loop cell data from the circular input
buffer (CIB), strips off the multiplex loop control fields,
and packs the resulting characters into line-oriented input
buffers. Prior to storing an input character into the
buffer, an input state program determines whether any
special action is required for that character. When all the
input characters in the transmission are processed and the
line-oriented input buffer is completed, a worklist entry is
sent to the TIP at OPS-level. The IDP is interrupt driven
by the multiplex loop interface adapter whenever a line
frame is stored in the CIB. Unless its processing is
preempted by an ODP interrupt, the IDP processes all
active entries in the CIB prior to relinquishing control.

STATE PROGRAM STRUCTURE
The elements of a state program are as follows:

• State program instructions provide individual firmware
operations. These basic elements of the language are
defined in section 5 and summarized in appendix A.

• State processes consist of one or more state
instructions.

• State programs consist of one or more state
processes. A state program assembles as a sequential
table of coded state instructions, but processing starts
or stops only at state process boundaries. All state
programs are reentrant.

• State pointer tables contain a pointer to every state
process in the program. The state pointer table is
constructed with a set of macros to create both the
state process addresses and the state indexes. The
macro has the advantage of forcing the programmer to
use mnemonic names for the state and indexes, thus
making the code more flexible should state processes
be deleted or inserted.

In the example (figure 1-1) of the creation of a state
pointer table, the state named Pl is state 1, as
determined by its position in the table. Defining the
macro UMPTRl using the CYBER lB macro assembler
creates a symboi, USPl, which is equated to l and an
address reference named UPI. Elsewhere in the program
there must be a label UPI which defines the address of a
set of state instructions defining this state process. The
choice of the prefix US and U is arbitrary; however, the
following conventions are in use:

A and AS -
Hand HS -
Mand MS
V and VS -

Async or TTY TIP
HASP TIP
Modem State Programs
Mode 4 TIP

1-1

MANUAL FORMAT

UMPTRl MAC NM
EQU us I NM I (*-UISPTBL) creates state

mnemmic
ADC U/NMI
FMC

*
ENT UISPTBL

*
UISPTBL UMPTRl ESRC end of source

UMPTRl Pl first state process (index = 1)
UMPTRl P2

UMPTRI PN last state process (index = n)

(Note that each state pointer table has a unique entry
address name, UISPTBL in this case, and thus each table
has its own macro.)

Fig.ire 1-1. State Pointer Table Creation

index

The remainder of the manual describes input state
programs, modem state programs and the state
instructions.

For further CYBER 18 macro assembler information, see
the macros description in the Macro Assembler Reference
Manual.

1-2 60472200 B

INPUT STATE PROGRAMS 2

Prior to the start of an input operation, the appropriate
TIP passes information to the multiplex subsystem so that
the subsystem knows which input state pointer table to
use for a given line. As the data passes into the circular
input buffer (CIB), the specified input state program is
called by the input data processor (IDP). to store
characters into line-oriented buffers. These buffers are
sent to the TIP for further processing.

FIRMWARE INTERFACE

When the IDP detects a data character in the CIB, it
passes control to the designated input state process for
the line/terminal. Prior to executing the first state input
state instruction, the firmware loads a selected register
with the current (untranslated) character. The contents
of this register may be tested or changed by state
instructions. This register is referred to as the current
character.

The parity bit is stripped when the register is initially
loaded, if parity stripping is specified. If a state
instruction changes the character of this register, parity
stripping is ignored.

PORT TABLE
(NAPORT) MLCB

STATE NCLCB ADDRESS
INDEX

(ONE ENTRY PER STATE
LINE) POINTER

TABLE
ADDRESS

BUFFER
POINTER

PROGRAM CONTROL
The line determines the port table (NAPORT) to use. The
dynamically allocated multiplex line control block (MLCB)
is found through NAPORT. Within the MLCB, selection of
the input state process to execute is found by combining
the value of the input state process index with the input
state pointer table entry which points to the associated
input state process. Figure 2-1 shows these relationships.

DATA STRUCTURE FOR
INPUT STATE PROGRAM: MLCB

The TIP causes the command driver of the multiplex
subsystem to set up the fields in the multiplex line control
block (MLCB). MLCB fields hold various control
information for the data processing. A standard 16-word
MLCB is provided for all systems using state programs.
This MLCB variant is shown in figure 2-2. Other variants
of the MLCB are used by some systems. See the
appropriate system programmer's reference manual for
definition of variant MLCB fields.

STATE POINTER STATE PROGRAM
TABLE

STATE STATE
PROCESS 0 PROCESS 0
STATE INSTRUCTIONS
PROCESS 1

STATE STATE
PROCESS N PROCESS 1

INSTRUCTIONS

DATA
BUFFER 1

CHAIN STATE
PROCESS N
INSTRUCTIONS

D.ATA
BUFFER N

Figure 2-1. Locating an Input State Process

60472200 8 2-1

The TIP must never directly reference the MLCB. The
fields within the MLCB may be changed only by the
command driver or state instructions.

2-2

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15 141 13'. 12 11, 10 9, 8 7 6 5 4 0

F1 F2 F3 F4 I F5 I F6 I F7 I F8 NCOCHR - NEXT OUTPUT CHARACTER

F9 F10 F11
NCTIME - MULTIPLEX
TIMER NCOBLCD - LCD OF OUTPUT BUFFER

NCOBP - POINTER TO OUTPUT BUFFER

F12 F13 F14 F15 l F16 l F17 l F18 l F19 F20 l F21 l NCISTAI - INPUT STATE PROGRAM INDEX

NCCNTL - CHARACTER COUNT LIMIT NCCNT1 - CHARACTER COUNTER 1

NCISPTA - POINTER TO INPUT STATE PROGRAM POINTERS TABLE

NCIBP - POINTER TO INPUT BUFFER

F22 F23 F24 F25 T F26 I F27 I F28 l F29 F30 l F31 T F32 l NCCRCP - CRC POLYNOMIAL

NCSCHR - SPECIAL CHARACTER NCIBFCD - FCD OF INPUT BUFFER

NCCRCS - CRC ACCUMULATION

NCZER1 - ZERO NCCNT2 - CHARACTER COUNTER 2

NCZER2 - ZERO NCBLKL - BLOCK LENGTH (RECORDS)

NCCXLTA - POINTER TO CODE TRANSLATE TABLE

NCSCBA - POINTER TO FIRST BUFFER IN BLOCK

NCBLCNT - NUMBER OF BUFFERS ALLOCATED NCSVWL - SAVED WORKLIST

RESERVED

Flags:

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16

NCEOBL - end of block
NCNXOCA - next output character available
NCLCT - last character transmitted (CDCCP)
NCBCREO - buffer chaining required
NCOMPRO - output message in progress
NCSP1 - not used
NCODDI N - ODD received
NCSP2 - not used
NCSUPCHAIN - suppress buffer chaining
NCOBT - generate output buffer terminated (OBT)
NCBZ L - reset timer
NCRINCH - input character in right byte
NCCAR EC - character received
NCRIGHTC - left/right source flag (1 = right)
NCINPRO - input message in progress
NCNOXL - code translation active

F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31
F32

Figure 2-2. Standard MLCB

NCRPRT - strips parity bit
NCSCF - suppress chain flag
NCLASTCH - LCD of source buffer reached
NCEOSR - end of source buffer reached
NCSP3 - not used
NCUOP1
NCUOP2
NCUOP3
NCUOP4
NCUOP5
NCUOP6
NCUOP7
NCUOP8

optional user flags

NCETX - Delay ETX worklist generation
NCMRTO - Modem response timed out
NCCAR R - Line carrier type (1 = controlled;

0 = constant)

60472200 B

PROGRAM ORGANIZATION
An input state program consists of a maximum of 64 state
processes. These states handle tasks such as data
conversion, cyclic redundancy checksum generation,
character compression, and message blocking. Since all
state processes are reentrant, lines with a similar protocol
(that is, controlled by a single TIP) share state processes.

The user must provide programs for the four reserved
input state processes (0, 1, 2, and 3):

• State 0 handles parity errors and data transfer
overruns.

• State 1 is called when DCD dropped is detected. This
allows DCD dropped to be used as a logical ETX for
controlled carrier lines.

• State 2 is called when the number of input buffers
currently in use exceeds the system limit.

• State 3 is called when the buffer threshold is reached.

State 0 and state 1 are given control by the modem state
program (regardless of the current input state) when the
stated condition occurs. States 2 and 3 are called by the
IDP to process buffer related condition when trying to
store a new character which requires assigning a new
buffer (note: the character is not stored). States 4
through 63 are defined by the TIP.

INTERFACE TO THE
MO-DEM STA tlf PROGRAMS

This subsection describes the current interface; it by no
means represents all the allowable interfaces to the
modem state programs. When a data character and
communications line adapter status occur in the same line
frame of the CIB, the firmware transfers control to the
current modem state process. A modem state program

60472200 B

jumps to input state process 0 or 1 upon detecting status
conditions for which the input state program should get
control.

MLCB flags are used for communication between a
modem state program and an input state program. Setting
NCETX indicates the input state program has detected
the end of the input transmission and wishes to wait for
the carrier before continuing. Setting NCETX has
meaning only if NCCARR is also set. NCCARR is set by
the line initializer for a controlled carrier line and must
not be altered. State instructions are available to set,
clear, and test these flags.

Input state programs set the modem state index to the
modem state process which handles status while input is in
progress. That is, upon detecting start of input, the input
state program changes the modem state index to point to
the modem state process which handles status when
inputting (MSTINP). Then, upon detecting end of
transmission, the input state program sets the modem
state index to the modem state process for idle (MSTIDL).

On controlled carrier-type lines, an output message
cannot be transmitted until data carrier detect (DCD)
drops on input. To eliminate the possibility of TIPs
attempting to output before DCD drops during input, the
input state program has the ability to terminate the input
buffer and save the workcode in the MLCB (as opposed to
building a worklist at termination time). The input state
program then sets the NCETX user flag indicating that
the workcode was saved. A worklist entry may be built
immediately if the line type is not a controlled carrier
line.

The modem state program jumps to input state process 1
when DCD drops while in the idle modem state. The input
state can then send a worklist entry to the OPS level of
the TIP. The TIP does not get control until DCD drops,
eliminating the possibility of starting to output before
DCD drops during input.

2-3

TEXT PROCESSING STATE PROGRAMS 3

Two kinds of text processing are provided by a system:

• Output text processing converts data from host format
to data in terminal code/format. The processed data
is placed in an output buffer (or chain of buffers) and
the multiplex subsystem then sends the data to the
terminal.

• Input text processing converts data from the source
buffers to host code/format. The data was placed in
the source buffers by the appropriate input state
program.

Both types of text processing programs are called directly
from the OPS-level TIP.

15 I 14 I 13 l 12 1 11 l 10 l 9 I
0 NCLCDFCD - SOURCE BUFFER LCD/FCD

8

F9 I F10 I F11 NCTIME - MULTIPLEX TIMER

2

3

4

NCSBP - SOURCE BUFFER POINTERS

F12 I F13 I F14 F15 1 F16 l F17 l F18 l F19

NCCNTL - CHARACTER COUNT LIMIT

I

When handling characters for text processing state
programs, the buffer containing data to be converted is
called the source buffer. A character from this buffer is
called the source character. The source character is
placed in the current character register by the firmware.

DAT A STRUCTURE, TPCB
The text processing control block (TPCB) contains
information necessary to perform text processing. The
first 19 words are standard in all systems but only the
first 7 words plus a few named fields in other words are
used by each TIP. Figure 3-1 shows the standard TPCB.

7 I 6 l 5 l 4 l 3 I 2 I 1 l 0

NCOBLCD - LCD OF OUTPUT BUFFER

F20 I F21 l NCISTA1 - INPUT STATE PROGRAM INDEX

NCCNT1 - CHARACTER COUNTER 1

5

6

NCSPTA - POINTER TO STATE PROGRAMS POINTERS TABLE

7

8

9

10

11

12

13

14

15

16

17

18

19

NCDBP - POINTER TO STATE PROGRAMS TABLE

F22 l F23 l F24 F25 1 F26 1 F27 1 F28 l F29 F30 l F31 1 F32 I NCCRCP - CRC POLYNOMIAL

NCSCHR - SPECIAL CHARACTER NC1BFCD - FCD OF INPUT BUFFER

NCCRCS - CRC ACCUMULATION

NCZER1 - ZERO NCCNT1 - CHARACTER COUNTER 2

NCZER2 - ZERO NCBLK1 - BLOCK LENGTH (RECORDS)

NCCXL TA - POINTER TO CODE TRANSLATE TABLE

NCFDBA - POINTER TO FIRST DESTINATION BUFFER

NCBLCNT - NUMBER OF BUFFERS ALLOCATED NCSVWL - SAVED WORKLIST

RESERVED

NC DU MD

NC DUME

NCFSBA - FIRST STORAGE BUFFER ADDRESS

RESERVED FOR TIP USAGE

~~

311 RESERVED FOR TIP USAGE

Figure 3-1. Standard TPCB

60472200 8

.....

I
M-422

3-1

FIRMWARE INTERFACE

The procedure PTTPINF provides the PASCAL interface
to the text processor. The procedure is called with one
parameter specified with the control block to be used.
The control block is a variable of type NCLCB.

The format of the call is PTTPINF (TPCB) where the
TPCB is contained in a data buffer. A pointer variable of
type BOBUFPTR is required to contain the address of the
TPCB. Control is returned to the called with various
control fields set in the TPCB.

TPCB INITIAL SET-UP

Prior to calling the firmware to perform text processing,
the TIP prepares the TPCB. Three fields must be
initialized:

• NCSPTA and NCST Al point to the first text process to
execute.

• NCFSBA specifies the first source buffer to be text
processed.

Depending on the TIP and the type of data to be
processed, several other fields need to be initialized:

• NCBLKL, NCCNTl, NCCNT2, and NCCNTL specify
the counters (word count values and initialization
values).

• NCSCHR contains the special character used by the
SPCHEQ state instruction.

• NCCRCP selects the cyclic redundancy check (CRC)
polynomial.

• NCSCF suppresses length chaining of the input source;
and is used if a nonstandard buff er is used as the
source.

• NCUOPS user option flags are set as appropriate. All
other fields must be zero.

• TIP defined fields in words 19 to 31 may be set as
needed.

TPCB SET-UP FOR RESTART

NCSBP and NCOBP fields can affect a restart condition
(or the initial call) and are set to zero prior to calling the
text processing state program.

• NCSBP - If this field is zero, the firmware obtains the
first character from NCFSBA and sets all
related flags to their proper state.

3-2

If this field is nonzero, the firmware
assumes a continuation. The next source
character is obtained based on this word,
NCRIGHTC, and NCEOSR. To determine
the end of the source condition, the
firmware expects the data to be in the data
buffer and the LCD to be in the NCLCDFCD
field.

• NCDBP - If this field is zero, the firmware gets a
buffer, sets NCFDBA with the address of
the buffer, and sets all flags to their proper
state.

If this field is nonzero, the firmware stores
the next character based on this pointer and
NCR INCH.

The TIP must also reset any of the initial parameters
required by the restarted state program. If CRC is being
accumulated, the field NCCRCS must be restored. The
restart is typically used when the initial source is
exhausted and the TIP must wait for more data to
complete the destination block. If the TPCB is contained
in a data buffer, no field need be changed except NCFSBA
and NCSBP.

TPCB RETURN VALUES

On return to the calling program the TPCB will contain
parameters as needed for the TIP to determine the actions
performed by the state programs. The following fields are
available:

• NCFSBA -Contains the address of the first destination
buffers containing the processed data.

• NCVQPS -Contains the user-option flags being

•

returned.

The TIP defined fields in words 19 to 31 may
contain any values, as needed.

If source data is to be fragmented into more than one
destination block, some special processing is usually
necessary. On return from test processing, the source
buffers that have been completely processed should be
released. The first source buffer containing data not yet
processed should have its first character displacement
(FCD) updated to point to the next character to be
processed. The following fields may be used:

• NCSBP - Contains the address of the word containing
the next source character to process.

• NCEOSR -is set to TRUE if the next source character
is the first of the next buffer.

• NCRIGHTC - is set to TRUE if the next source
character is in bi ts 7 to 0 of the word.

FILE 1 TEXT PROCESSING REGISTERS

A group of 16 firmware registers referred to as the file l
text processing registers are initialized from the last 16
words of the TPCB before text processing is initiated.

The 16 file 1 registers are accessed by specifying a
displacement to the selected file l register. Thus, a
displacement of 0 selects the first text processing file l
register and a displacement of 15 selects the last text
processing file l register.

60472200 B

PROGRAM CONTROL

The text processing state process to be executed is
determined by combining the value of the state process
index with the state pointer table address. Both fields are
in the TPCB. The selected text processing state pointer
table entry points to the associated text processing state
process. The process is the same as that shown in figure
2-1 except there is no port table and the TPCB takes the
place of the MLCB.

The state pointer table address and state process index
fields are set by the OPS-level TIP program. State
processing instructions may change the processing index
while executing state programs.

60472200 B

PROGRAM ORGANIZATION

A text processing state program consists of a maximum of
64 state processes. Since all state processes are
reentrant, lines with a similar protocol may share state
processes.

Text processing state process 0 is reserved for handling
the end-of-source-reached condition and state process 2 is
reserved for handling buffer overflow processing. States
1, and 3 through 63 are defined by the TIP.

3-3

MODEM STATE PROGRAMS 4

The modem state programs process modem status as a
function of modem control signals. The programs, which
are called by the firmware when communications line
adapter status enters the subsystem, forward the logical
communications line adapter status via a worklist entry to
the multiplex level status handler (PTCLAS). PTCLAS
analyzes the status and reports line conditions to the TIP
through a worklist entry.

FIRMWARE INTERFACE

Communications line adapter status is passed by the
multiplex subsystem to the circular input buffer (CIB).
The CIB provides temporary buffering of input characters
(section 2) and communications line adapter status. When
the firmware's input data processor (IDP) detects
communications line adapter status, it passes control to
modem state process for that line.

PROGRAM CONTROL

The modem state program is entered by accesing the port
table. A combination of the modem state index and the
modem state program address selects the modem state
pointer table entry which points to the associated modem
state process. Figure 4-1 shows this relationship.

The modem state program address field is set by the
multiplex subsystem when a line is initialized. The
modem state index is changed by the multiplex subsystem,
by an input state program, or by the modem state
program. The multiplex subsystem sets the modem state
index to the modem state process to be executed
according to the command being issued. The input state

programs control the setting of the modem state program
index for handling status while input processing is in
progess.

PROGRAM ORGANIZATION

The modem state program consists of a maximum of 16
state processes. There are modem state processes defined
for each line type based on line condition. Thus, the
modem state program can have one or more processes for
each condition or one state process to handle more than
one line condition, depending on the line type.

INTERFACE TO THE MULTIPLEX
LEVEL STATUS HANDLER

The modem state program builds a worklist entry
containing the communications line adapter status. The
multiplex level worklist processor routes the worklist
entry to the multiplex level status handler, PTCLAS.
Upon receiving control, PTCLAS analyzes the status
condition indicator and acts accordingly. The appropriate
action may be to generate a CE error message, start a
timer for modem response or communications line adapter
status overflow, or make a worklist entry to the
associated TIP.

PORT TABLE
(NAPORT)

MODEM STATE
POINTER TABLE

MODEM STATE
PROGRAM

60472200 B

STATE
INDEX

MODEM
STATE
POINTER
TABLE
ADDRESS

STATE
PROCESS 0

STATE
PROCESS 1

STATE
PROCESS N

STATE
PROCESS 0
INSTRUCTIONS

STATE
PROCESS 1
INSTRUCTIONS

STATE
PROCESS N
INSTRUCTIONS

Figure 4-1. Locating a Modem State Process

4-1

INTERFACE TO THE INPUT
ST A TE PROGRAMS

When a data character and communications line adapter
status occur in the same line frame of the CIB, the
firmware transfers control to the current modem state
process. The modem state prograrn jumps to input state
process 0 or 1 upon detecting status conditions for which
the input state program gets control.

There are user flags in the multiplex line control block
used for communication between the modem state
program and input state program. Refer to the Input
State Programs, Section 3.

Another user flag, MXCARR, is set by the line initializer
when a controller carrier line is initialized.

The input states programs also set the modem state index
to the modem state process which handles status while
input is in progress. That is, upon detecting start of input,
the input state program changes the modem state index to
the modem state process which handles status when

4-2

inputting (MSTINP). Then, upon detecting end of
transmission, the input state program sets the modem
state index to the modem state process for idle (MSTIDL).

On controlled carrier type lines, an output message cannot
be transmitted until DCD drops following input. To
eliminate the possibility of a TIP trying to output before
DCD drops for the current input operation, the input state
program has the ability to terminate the input buffer and
to save the workcode in the multiplex line control block
(as opposed to building the worklist at terminate time).
The input state program sets the MXETX user flag
indicating this saved workcode condition and sets the
modem state index to idle (MSTIDL). A worklist entry is
built immediately if the line type is not a controlled
carrier line.

The modem state program jumps to input state process 1
when MXETX sets and DCD drops while in the idle modem
state. The TIP does not get control until DCD drops,
eliminating the possibility of starting output before DCD
drops following input. When DCD drops, the TIP builds a
worklist entry using the saved workcode and buffer
address.

60472200 B

STATE INSTRUCTIONS 5

This section describes each state processing instruction in
detail.

The general format for a state instruction is:

MACRO NAME PARAMETER!,
PARAMETER2, ••• ,PARAMETERn

The number of parameters varies depending upon the state
instruction. Note that this is the normal CYBER 18
macro assembler macro format. The macro name is
followed by a blank. Parameters are separated by
commas, and blanks within the parameter stream are
ignored. Omitted parameters are delimited by commas;
that is, PARAMETER1,,PARAMETER3 omits PARAM
ETER2.

Appendix A lists the state instructions by macro name in
alphabetical order. Certain parameters are common to
several state instructions. These parameters are listed
separately in figure 5-1.

The instructions are functionally grouped in nine
categories as follows:

• Handling assignable counters
• Character manipulation
• Index manipulation
• Skips
• Processing communications line adapter status
• Flag control
• Worklist handling
• Text processing
• Miscellaneous

HANDLING ASSIGNABLE COUNTER

Two general purpose counters, character counter 1 (CCI)
and character counter 2 (CC2), are usd in state programs
for tasks such as packetizing and character expanding.
CCI is an 8-bit counter whose value may range from
0-255; CC2 is a 12-bit counter whose value may range
from 0-4095. Both counters are maintained in the control
block (MLCB or TPCB).

INITIALIZE CHARACTER COUNTER

This state instruction initializes either of two character
counters that are maintained in the control block.
Character count 1 is initialized from the line control
block field NCCNTL. Character count 2 is initialized
from the line control block NCBLKL field.

Macro Call

INT CC COUNT ,ACTION

Initializes the specified character counter.

60472200 B

Usage

The initialize character counter instruction resets control
block NCCNTl or NCCNT2 with the values set in the
fields NCCNTL or NCBLKL, respectively. For input state
programs, NCCNTL and NCBLKL are set by issuing an
ENABLE or INPUT command to the command driver. For
text processing programs, the values are set in the TPCB
before calling the firmware.

SET CHARACTER COUNTER

This two-word state instruction sets either character
count 1 or count 2 to a specified value.

Macro Call

SETCC COUNT,CV

Sets character count (COUNT) to value
(CV).

MASK AND SET CHARACTER COUNTER

This two-word state instruction masks, using a logical
AND, a specified value to the current (untranslated)
character. The result is stored in the selected character
counter.

Macro Call

CHRCC COUNT ,IM ASK

Sets designated character counter
(COUNT).

Nonstandard Parameters

IM ASK 8-bit mask

SET CHARACTER COUNTER
WITH MOD FUNCTION

This two-word state instruction performs a modulus
function by repeatedly subtracting a given modulo value
until the result is negative. The modulo value is then
added to the negative number and the result is stored in
the specified character counter.

Macro Call

MODCC COUNT ,CV

5-1

5-2

ACTION

CHAR

COUNT

CRCA

CV

DD

EQT

EP

LABEL

SD

VALUE

WC

WL

Selects a character related and/or process control action.

Symbolic Name Value

Not specified 0
0

EXIT 1
STOREXIT 2
CRCSTOREX 3
CRCEXIT 4
CRCNT 5

Defines an 8-bit character.

Symbolic Name ~

Not specified 0
1
2

SYmboli~ Name Value

Not specified 0

CRCA

Count value (must not be zero).

Description

Default
Execute next instruction
Discard character and exit
Store character and exit
Accumulate CRC, store character, and exit
Accumulate CRC, discard character, and exit
Accumulate CRC, execute next instruction

Description

Error
Count 1
Count 2

oescriotion

Default
Store character and do not accumulate CRC
Store character and accumulate CRC

Sets the destination displacement to the file 1 register.

Symbolic Name Value Description

Not specified 0 File register (first)
0-15 File 1 register (ffrst through 16th)

Symbolic Name Value Description

Not specified 0 Default
0 Reset EQT flag

EOT 1 Set EQT flag

This determines the worklist control block (WLCB) or translation table to be used. This
label is associated with this instruction so that the address of the appropriate translation
table or OPS-level WLCB may be supplied by the link editor at a later time. If the WLCB
parameter is not specified or is 0, the multiplex WLCB is used.

The name associated with the state instruction to receive control. The label must be on an
instruction that is within N locations forward or back from this instruction. N is defined in
each label using instruction.

Sets the source displacement to the file 1 register.

Symbolic Name

Not specified

Description

File register :(first)

Value

0
0-15 File 1 register (first through 16th)

The hexadecimal value to be used.

Specifies the workcode.

Symbolic Name

No:t specified

Value
(hexadecimal)

0
0
1-7F

Description

Default
Use saved workcode
Use given workcode } Multiplex or OPS-level

This parameter is not used; however, space must be allocated for it in the parameter string.

Figure 5-1. Standard Macro Parameter Definitions-

60472200 B

INCREMENT CHARACTER COUNTER

This state instruction increments (by one) either character
count 1 or count 2 of the control block. Counter recycles
if incremented when full.

Macro Call

BLCNE COUNT ,LABEL

Uses the specified character count
(COUNT) for the comparison.

Macro Call The label must be on an instruction that is within 8
locations forward from this instruction.

ICC COUNT ,ACTION

Increment the specified character count
(COUNT).

DECREMENT CHARACTER COUNTER

This state instruction decrements (by one) either
character count 1 or count 2 of the control block. When
the specified character count reaches zero the processor
skips to the designated instruction. While the character
count is not zero, the specified action exit is performed.
If the count is zero when this instruction is executed, the
count is set to minus one. This value is treated as a large
positive number for subsequent operations.

Macro Call

DCC

Usage

COUNT ,LABEL,ACTION

Decrement the specified character count
(COUNT).

This is used to store or discard a fixed number (count) of
characters. When the last character in the string is
processed, the state program skips to the selected label to
continue processing.

COMPARE CHARACTER COUNTER
TO A VALUE

This two-word state instruction compares the selected
character counter to a specified value.

character count = value: execute next instruction

character count t value: skip

Macro Call

CNTNE COUNT ,CV ,LABEL

Use specified character count (COUNT).

Labeled instruction is within _::8 instructions of macro.

COMPARE CHARACTER COUNTER.
TO BLOCK LENGTH

This two-word state instruction compares the block length
with either character count 1 or count 2.

block length t count: skip
block length = count: execute next instruction

60472200 B

Usage

The block length for this comparison is obtained from the
control block field, NCBLKL.

STORE CHARACTER COUNTER IN BUFFER

This state instruction stores either character count 1 or
count 2 of the control block into the third word of the
first destination buffer (following the flag word).

Macro Call

STORC COUNT,ACTION

Store specified character count (COUNT)
into the buffer.

Usage

The third word of the first destination buffer is used to
communicate one counter value to the OPS-level TIP.
Thus it is useful only during input state processing as the
TIP is unable to access the control block.

CHARACTER MANIPULATION
These instructions store, replace, and add characters. The
character is translated or altered during the operations.

STORE CHARACTER

This state instruction stores the current character into
the destination buffer. If the translate flag is set, the
current character is translated before it is stored.

Macro Call

STORE CRCA

REPLACE CHARACTER

This state instruction takes the specified character and
establishes it as the current (untranslated) character.

Macro Call

RCHAR CHAR,ACTION

5-3

Usage

If the CRC is being accumulated and the existing current
character is to be included in the CRC, it must be
available to the encoder before executing this character
instruction. This is accomplished by executing a previous
instruction with an exit action parameter of CNCNT to
accumulate the CRC.

When this instruction is executed during input processing,
the current character received from the line is lost. For
text processing, the current character is saved in the first
file l register (displacement = 0) and may be restored, if
desired. The saved copy of the character does not have
the parity bit stripped regardless of the parity strip
option. If the CRC accumulation is specified as an exit
action with this instruction, the replacing character is
CRC encoded.

NOTE

RCHAR must exit to perform translation,
CRC encoding, and character storing.
ADDC does not allow CRC encoding or
translating.

REPLACE AND STORE CHARACTER

This combinatirn of two state instructions takes a specified
character, establishes it as the current character, and
stores it into the destinatirn buffer.

Macro Call

RPLACE CHAR,CRCA

_Usage

The instruction produce the following code:

RC HAR
STORE

CHAR
CRCA

If the CRC is being accumulated and the existing current
character is to be included in the CRC, it must be available
to the encoder before executing this character instruction.
This is accomplished by executing a previous instruction
with an exit action parameter of CNCNT to accumulate in
the CRC.

When this instruction is executed during input processing,
the current character received from the line is lost. For
text processing, the current character is saved in the first
file l register (displacement = 0) and is restored, if
desired. The saved copy of the character does not have the
parity bit stripped even if the parity strip option is set. If
the CRC accumulation is specified as an exit action with
this instruction, the replacing character is CRC encoded.

This macro provides a shorthand method of coding to place
a character into the destination buffer. The character is
translated and CRC is adjusted. Control returns to the
next state instruction.

ADD (INSERT) A CHARACTER

This state instruction inserts a given character into the
destination buffer. Character CRC accumulation and
translation is not performed.

5-4

Macro Call

ADDC CHAR, ACTION

NOTE

The exit action is performed
current character and not the
character.

on the
inserted

EXPAND (REPEAT) CHARACTER

This state instruction expands either a given character or
the current character by placing it in the destination
buffer. Character count l specifies the number of times
the character is to be expanded.

Character translation is performed if the translation flag is
set; however, CRC accumulation is not available.

NOTE

When the initial value of character
counter l is zero or is greater than 80,
expansion is not performed. The next
state instruction is executed.

· Macro Calls

RADDC CHAR

Expands the given character (CHAR).

CHRPT Expands the current character.

INDEX MANIPULATIONS
Some macros manipulate the following state program
indices:

Index Location Field

Modem Port table NAM SI
(NAPORT)

Input state MLCB NCISTAI

Text pro- TPCB NCSTAI
cessing state

SET MODEM STATE INDEX

This state instruction sets the modem state index in the
port table to a specified value.

Macro Calls

MSTATE STATE,ACTION

MJUMP

Sets the modem state index to the specified
value (ST A TE).

STATE

Sets the modem state index to the specified
value (STATE) then executes this modem
state program.

60472200 B

Nonstandard Parameters

STATE Determines the new modem state program
index.

Usage

Symbolic
Name

Not
specified

MSTCH<

MSTERR

MSTLNI

MSTENB

MSTIDL

MST OUT

MSTINP

Value
(hexadecimal)

0

0-F

0

1

2

3

4

5

6

Description

Default index

Index

Check hard
error

Error

Line
Initialized

Enable

Idle

Output

Input

The MSTIDL and MSTINP symbolic names are used by input
state programs exclusively. All the other symbolic names
are used by modem state programs only.

SET INPUT /TEXT PROCESSING
STATE INDEX

This state instruction sets the state program index in the
control block to a specified value.

Macro Call

STATE ST A TE, ACTION

Sets the state program
specified value (STATE).

index to the

Nonstandard Parameters

STATE Sets the state value.

Symbolic Value
Name (hexadecimal) Descri~tion

Not 0 Default. Does
specified not change the

index.

0-3F State value

Usage

Changing the state index does not affect the current state
process execution. The macro changes states based on
incoming character patterns.

60472200 B

JUMP TO INPUT /TEXT
PROCESSING STATE

This state instruction executes a given state and optionally
~dates the control block state program index with the
given state.

Macro Calls

.UMP STATE,RTN

RTRN Jumps to the current state process.

Nonstandard Parameters

STATE Sets the state value.

Symbolic
Name

Not
specified

RTN

Usage

Symbolic
Name

Not
specified

Value
(hexadecimal)

0

0-3F

Value
(hexadecimal)

0

0

1

Description

Default. Does
not change the
index.

State value

Description

Default

Update state
index

Do not update
state index

The jump instruction allows a state program to pass
control to a state process to continue the processing of
the current character. The R TN option allows the
programmer to suppress changing the state index, so that
the next input or source character is processed by the
previous state process. The R TN option also provides a
method for calling a simple subroutine. If the state
parameter is zero, the firmware jumps to the state
specified by the state index. The RTRN instruction jumps
to the state process indicated by the current value of the
state index. Processing begins at the first instruction of
this current state.

SKIPS
If the label parameter is within 128-255 locations from
the associated state instruction and the instruction is
located within 128 locations from the beginning of the
program, an informative diagnostic message is produced
and the instruction assembles correctly. This is an
assembler limitation.

SKIP

This state instruction transfers control by skipping
forward or backward.

Macro Calls

SKIP LABEL

Skip forward or backward.

SKIPS LABEL

Skip backward.

The label must be on an instruction that is within +255
locations from this instruction.

SKIP IF CRC IS EQUAL

This state instruction tests either an 8-bit or 7-bit block
check character (BCC) against the accumulated CRC. An
equal condition causes the processor to skip to the
instruction specified. An unequal condition causes the
next state instruction to be executed.

NOTE

When comparing a hexadecimal (16-bit)
CRC polynomial, the first BCC character
is accumulated by a state instruction that
relinquishes control with a CRCEXIT
parameter.

Macro Call

CRCEQ SB, LABEL

Nonstandard Parameters

SB Specifies BCC format

Symbolic Value
Name (hexadecimal) Description

Not 0 Default
specified

BB 0 8-bit BCC

B7 1 7-bit BCC

The label must be on a state instruction that is within 8
locations forward from this instruction.

SKIP IF ST ATE IS LESS THAN VALUE

This state instruction compares the current state index
(input, text, or modem) with a specified value to determine
the subsequent state process instruction to perform.

Current state < value: skip

Current state ::;: value: execute next instruction

5-6

Macro Calls

STATLS

MSTLS

STATE,LABEL

Compares the current state index to the
specified value (STATE). The current state
is defined in the control block and is either
an input state or text processing state.

ST A TE, LABEL

Compares the current modem state index to
the specified value (STATE).

Nonstandard Parameters

STATE Specifies the comparison value.

Symbolic
Name

Not
specified

Value
(hexadecimal)

0

0-lF

Description

Default

Modem state
values

0-3F Input and text
processing state
values

The label must be on a state instruction that is within 8
locations forward from this instruction.

SKIP IF CHARACTER IS NOT EQUAL

This state instruction compares the current (untranslated)
character with a specified character to determine the
subsequent state process instruction to perform.

Current character I= char: skip

Current character = char: execute next instruction

Macro Call

CHARNE CHAR, LABEL

The label must be on an instruction that is within 8
locations forward from this instruction.

SKIP IF SPECIAL CHARACTER
EQUALS CURRENT CHARACTER

This state instruction compares the special character
(NCSCHR) to the current (untranslated) character to
determine the subsequent state instruction to perform.

Special character I= current character: action parameter

Special character = current character: skip

60472200 B

Macro Call

SPCHEQ LABEL,ACTION

This instruction must be within 255 locations forward from
this instruction.

Usage

This instruction compares an incoming character against a
changing value in the line control block. This may be the
case if a line has multiple types where different control
characters are used for each terminal.

SKIP IF CHARACTER IS
LESS THAN OPERAND .

This state instruction compares the current (untranslated)
character to a specified value to determine the subsequent
state process instruction to perform.

Current character < value: skip

Current character ~ value: execute next instruction

The label must be on an instruction that is within 8
locations forward from this instruction.

PROCESSING CLA STATUS
Each type of communications line adapter (async, sync and
HDLC) has its own status words. For these tests, the two
status words (8 bits each) are packed into a single computer
word (16 bits) with the first communications line adapter
status word in the upper half word and the second
communications line adapter status word in the lower half
word. The three words are defined in figure 5-2.

TEST CLA ST A TUS

This two-word state instruction checks for a specific
positive line status by performing an AND. If the check is
satisfied, the next state instruction is executed.
Otherwise, the processor skips to a designated instruction.

Macro Call

TSTCLA CMASK,LABEL

Nonstandard Parameters

CM ASK Communications line adapter status mask
(16 bits). See figure 5-2.

The label must be on a state instruction that is within 8
locations forward from this instruction.

Usage

This instruction is used in input and modem state programs
only.

COMPARE CLA STATUS

This two-word state instruction checks the line status for
any selected negative line status condition(s) by performing

60472200 B

an exclusive AND with the mask followed by an exclusive
OR with the mask. If the test result is zero, the next state
instruction is executed. If the result is non-zero, the
processor skips to the labelled instruction. The
communications line adapter status word 1 and word 2 are
packed into the upper half and lower half word (of one
word) respectively for this check.

Macro Call

CMPCLA CMASK,LABEL

Nonstandard Parameters

CM ASK Communications line adapter status mask
(16 bits). See figure 5-2.

The label must be on a state instruction that is within 8
locations forward from this instruction.

Usage

This instruction is used in input and modem state programs
only.

FLAG CONTROL
These macros control the setting/resetting of various flags
in the control block (MLCB or TPCB) and destination
buffers.

SET/ RESET TRANSLATE FLAG

This state instruction sets or resets the translate flag
(NCNOXL) in the control block. Setting the flag causes the
current character to be translated before it is stored into
the destination buffer. Translation is not performed if the
translation address (NCCXL TA) is nil.

Macro Calls

SETRAN ACTION

Sets the translation flag.

RSTRAN ACTION

Resets the translation flag.

SET/ RESET MESSAGE IN PROCESS FLAG

This state instruction sets or resets the input message in
process flag maintained in the control block.

Macro Calls

SETINP

RSTINP

ACTION

Sets the flag.

ACTION

Resets the flag.

5-7

Async
CLA

Sync
CLA
(Mode 4)

HDLC
CLA

15 11

CTS DSR DCD RI SDCD SOD ILE

15 11

CTS DSR I DCD I RI QM SOD ILE

15

CTS DSR

where

ABT

CTS

DCD

DSR

OTO

FCSE

FES

HDLC -

ILE

LCR

NCNA

OLE

PES

QM

RCl

} -RC2

RC3

RI

SOCD

SOD

11

DCD RI QM SOD ILE

Abort

Clear to send

Data carrier detect

Data set ready

Data transfer overrun

Frame check sequence error

Framing error status

High-level data link control

Input loop error

Last character received

Next character not available

Output loop error

Parity error

Quality monitor

Reason codes

Ring indicator

Secondary data carrier detector

Signal quality detector

.7 3 0

OLE PES DTO FES

7 3 0

OLE I PES I DTO I - INCNAI

7 3 0

OLE FCSE DTO ABT NCNA LCR RC1 RC2 RC3

Figure 5-2. CLA Status Bit Assignment

Usage

This instruction is used in input state programs to indicate
whether input is active or not active to the macro level
TIP. The ASYNC/TTY TIP uses this bit to indicate that a
character timeout has occurred.

Macro Calls

SETMXF MFLAGS,ACTION

Set user flags (MFLAGS).

RSTMXF MFLAGS,ACTION

OPERA TE ON USER FLAGS Reset user flags (MFLAGS).

This state instruction sets, resets or tests the flags in the
control block. If any of the tested flags are set, the
processor skips to the labelled state instruction. if the
tested flag is not set, the next state instruction is executed.

5-8

TSTMXT MFLAGS,LABEL

Skip (to LABEL) if any user flags (MFLAGS)
are set.

60472200 B

Nonstandard Parameters

MFLAGS The 11 user flags in the control block. The
flags NCETX, NCMRTP and NCCARR are
reserved for modem state use.

Symbolic Value
Name (hexadecimal) Descrietion

NCUOPl 400 bit 15
NCUOP2 200 bit 14
NCUOP3 100 bit 13
NCUOP4 080 bit 12
NCUOP5 040 bit 11
NCUOP6 020 bit 10
NCUOP7 010 bit 09
NCUOP8 008 bit 08
NCETX 004 bit 07
NCMRTP 002 bit 06
NCC ARR 001 bit 05

The label must be on a state instruction that is within 8
locations forward from this instruction.

Usage

The flags are used to record events during processing and
to indicate special processing. The initial value of the
flags is set for input state processing by calls to the
command driver. For text processing the various flags are
set on entry and tested on exit for communication between
the firmware and the OPS-level portions of the TIP.

SET FLAGS IN THE
DESTINATION BUFFER

This state instruction sets selected bits (bits 7 to 1) in the
flag word of either the first destination buffer or the
current destination buffer. Any bits set at a prior time
remain set.

Macro Call

SETFLG FLAGS,BUFF ,ACTION

Nonstandard Parameters

FLAGS Selects flags.

Symbolic
Name

Not
specified

Value
(hexadecimal)

0

2-7E

Description

Default

Flag bits

BUFF Selects flag word to operate upon.

Symbolic Value
Name (hexadecimal) Description

Not 0 Default
specified

FRST 0 First buff er

CURN l Current buffer

60472200 B

Usage

This instruction allows the input state program to record
data events in the flag bits of the b~ffer for
communication with the OPS-level portion of the TIP.

SET/RESET PARITY FLAG

This state instruction sets or resets the parity flag in the
control block. Setting the flag causes the firmware to strip
off the high order bit (bit 7) of the current (untranslated)
character before executing the first state instruction. This
instruction does not affect the present current character,
but rather the next and subsequent current characters until
the parity bit resets. During text processing, the setting of
the parity flag does not affect the character saved in the
file 1 registers.

Macro Calls

SETPAR ACTION

Set the parity flag.

RSTPAR ACTION

Reset the parity flag.

Usage

Stripping the parity bit is advantageous when performing
character translation. A translation table contains 128
entries, instead of 256, when translation is used in
conjunction with the SETPAR macro.

WORKLIST HANDLING
These instructions build worklists or set a workcode in the
appropriate control block (MLCB or TPCB).

TERMINATE INPUT BUFFER

This two-word state instruction terminates input and either
builds a worklist entry or stores the workcode in the
MLCB. When specified, the end of transmission flag (EDT)
in the flag word of the current buffer is set. If a worklist
entry is built, the state program determines if it is
processed at the multiplex (interrupt level 3) or OPS level.
This is done by the selection of the worklist control block.

Macro Calls

TIBWL we, WL,EOT ,ACTION,EP

Terminats the input buffer and builds a
worklist entry.

TIBSWC WC,EOT ,ACTION

Usage

Terminates the input buffer and saves the
workcode in the MLCB.

These instructions are used primarily for input state
processing to set the LCB in the final buffer and to signal
end of input via a workcode to the OPS-level portion of the

5-9

TIP. For text processing, the LCB is also set in the last
buff er with the TIBSWC instruction. The creation of a
workcode is unnecessary as the text processing is done at
OPS level.

The address of the worklist control block is calculated by
the Link Edit program. The control blocks are arranged in
an array of multiword entries. The origin of the array is an
entry point (BYWLCB) which allows the following
calculations:

(EP) = BYWLCB + (WLINDEX - (BOFSWL))*
/BYWSIZE

where

BYWLCB = address of worklist control block array

WLINDEX = index of worklist to receive the entry

/BYSIZE = length of worklist entry

The EOT flag is set when the input data is to be
transmitted to the host via a coupler. Input state l?rograms
are not required to set this bit.

BUILD EVENT WORKLIST

This two-word state instruction generates a worklist entry.
Two worklist formats are available. One format places a
given workcode and the input buffer pointer from the
MLCB into the worklist. The other format obtains the
workcode and the first buffer address from the MLCB.
Format of a worklist to the OPS-level TIP is as follows:

15 7

J Workcode

Line Number

Current IBP or first buffer address

Macro Call

BLDWL

Usage

we, WL,ACTION,EP

0

If the WC parameter is zero, the workcode is the last one
saved by TIBSWC. This instruction is used for input state
and modem state processing only. The address of the
worklist control block is calculated by the Link Edit
program. The control blocks are arranged in an array of
multiword entries. The origin of the array is an entry point
(BYWLCB) which allows the following calculations:

(EP) = BYWLCB + (WLINDEX - (BOFSWL))*
/BYWSIZE

where

BYWLCB = address of worklist control block array

WLINDEX - index of worklist to receive the entry

/BYWSIZE = length of worklist entry

5-10

BUILD CLA STATUS WORKLIST ENTRY

This state instruction generates the following com
munications line adapter status worklist entry to the
multiplex level.

15 7 0

SCI I 01

Line Number

SW! l SW2

SCI Status condition indicator
SW! Status Word 1
SW2 Status Word 2

Macro Call

BLKOl SCI, ACTION

Nonstandard Parameters

SCI Status condition indicator

Symbolic
Name

Not
specified

Value
(hexadecimal)

0

0

l

2

3

4

5

6

7

8

9

A

B

Description

Default

Pass status to TIP

Line
initialized

Line enabled

Hard error(s)

Soft output
error(s)

Soft input
error(s)

Start modem
response time
out (10 sec)

Stop modem
response
timeout

Communica
tions line
adapter status
overflow

Communica
tions line
adapter status
overflow
timeout

Modem
response
timeout

Break (FES -
from an error
status)

60472200 B

-Usage

This instruction is used for modem state processing only.

TEXT PROCESSING MACROS
These instructions, used by the text processor, use file l
registers to modify the current character or perform
calculations.

OPERATE ON FILE 1 REGISTER

This state instruction operates on two file l registers by
either adding, subtracting, or comparing the registers.
When adding or subtracting, the result is stored in the
register designated by the destination displacement
parameter.

Macro Calls

TPADDR SD,DD

Add the contents of the source file l
register to the contents of the destination
file l register and store the result in the
destination file l register.

TPSUBR SD,DD

Subtract the contents of the source file l
register from the contents of the
destination file l register and store the
result in the destination file l register.

TPCMPR SD,DD

Usage

Compare the contents of the source file l
register to the contents of the destination
file l register. The result determines the
next instruction to execute.

(source) (destination) go to P+l
(source) = (destination) skip to P+2
(source) (destination) skip to P+3

P is the program address counter.

This instruction gives
computation capability.
processing.

the state program a basic
It is used primarily for text

SET REGISTER VALUE

This state instruction increments or decrements the
contents of the selected file l register by a specified
value.

Macro Calls

TPINCR SD, VALUE

Increment the selected file l register by
the specified value.

TPDECR SD, VALUE

60472200 B

Decrement the selected file 1 register by
the specified value.

Nonstandard Parameters

VALUE Specifies the amount to increment or
decrement.

Symbolic
Name

Not
specified

Value
(hexadecimal)

0

0-7

SAVE/RESTORE TEXT
PROCESSING CONDITIONS

Description

Increment by 0
or decrement
by 0

Value to
increment/
decrement

This state instruction provides the user with the ability to
look ahead before processing the data in a source buffer.
The mark function saves the current source and
destination buffer pointers, flags, and CRC accumulation;
this includes all the necessary information required to
get/store the next character in the respective buffer. The
information is stored in file l registers by the firmware.
Two levels of marking are allowed. The backup function
restores the information from the file l registers for the
specified level.

Macro Calls

TPMARK LV

Mark the source and destination buffers at
the indicated level.

TPBKUP LV,SRC,DST

Back up to the specified buffer/level.

Nonstandard Parameters

LV Specifies the marking level.

Symbolic Value
Name (hexadecimal) Descrietion

Not 0 Default to
specified level 1

LEVELl 0 Level 1

LEVEL2 1 Level 2

SRC Specifies the source buffer.

Symbolic
Name

Not
specified

SRC

Value
(hexadecimal)

0

Description

Default - null

Source buff er

5-11

DST Specifies the destination buffer.

Symbolic Value
Name (hexadecimal) Description

Not 0 Default - null
specified

DST 2 Destination
buffer

Usage

This instruction is used in text processing state programs
only. Several protocols require a look ahead on the source
data to determine the correct transform for the data.
Thus, the program records a position in the data and
subsequently returns when the correct transform is known.

For TIPs which require that lines not cross transmission
block boundaries, the position at the end of a line (or start
of a line) is marked. Then, in the event that the line being
processed does cross transmission block boundaries, the
user can back up to the end of the last line (or start of the
current line). Another application is to mark the
beginning of a string when compressing characters.

STORE CHARACTER FROM
Fl LE 1 REGISTER

This state instruction, used for text character processing,
has two functions:

• It transfers a character from the file 1 register in the
register reserved for untranslated characters.

• It stores a character in the destination buffer and
optionally accumulates the CRC. If the translate flag
in the MUXLCB is on, the character is translated
before it is stored. The CRC is accumulated after
translation. When the translate flag is off, the
untranslated character is stored. Either the left or
right byte of the selected file 1 register is stored.

Macro Calls

TPSTLC SD,CRCA

Store the left byte of the file 1 register
(SD) in the destination buffer.

TPSTRC SD,CRCA

Store the right byte of the file 1 register
(SD) in the destination buffer.

TPRSTL SD

Restores the untranslated character
register from the left byte of the file 1
register (SD).

TPRSTR SD

5-12

Restores the untranslated character
register from the right byte of the file 1
register (SD).

Usage

The restoration of the untranslated character may be
accomplished with any file 1 register. However, the
restoration is usually done with the first file 1 register
(displacement is 0) which contains the current source
character. Caution should be used as this copy of the
source character does not have the parity bit set to zero
even when the parity strip option is selected. The parity
bit is always as it is in the source data.

EXIT TEXT PROCESSING

This state
processing
processing.

instruction causes an exit from
state program and returns to

the text
OPS-level

Macro Call

TPEXIT Exit text processing.

Usage

This macro is used to leave text processing after the end
of source condition is detected.

INSERT TEXT PROCESSING CHARACTER

This text processing state instruction inserts a character
in a destination buffer near a previously marked position.

Macro Call

TPINSR L,S,CHAR,I

Nonstandard Parameters

L

c

Symbolic
Name

Not
specified

Mark level

Value
(hexadecimal)

l

2

other

Character source

Description

Insert character
at a position rela
tive to the level l
mark

Insert character
at a position rela
tive to the level 2
mark

Illegal. Causes
error message:
LEVEL MUST BE
ONE OR TWO

6047220 c

Symbolic Value
Name (hexadecimal) Descrietion

Not 0 Default
specified Insert character

supplied with this
instruction

CUR NT 1 Insert current
source character

other other Illegal. Causes
error message:
ILLEGAL
CHARACTER
SOURCE

Note that if the symbolic name for CHAR is label, the
character associated with the label will be used rather
than the CHAR supplied with the instruction.

Index to position where character is to
be inserted

Usage

Symbolic
Name

Not
specified

Value
(hexadecimal)

other

Descrietion

Determines
position of
character to
be inserted
relative to the
mark

Illegal.
Causes error
message:
INDEX OUT
OF RANGE

This instruction is used in text processing state programs
only.

MISCELLANEOUS MACROS

SET TRANSLATION TABLE ADDRESS

This two-word state instruction stores the address of a
translation table into the control block.

Macro Call

STRNTB TA,ACTION

Set translation table address directly.

STRNTE ACTION,EP

Set up entry point for translation address to
be assigned by the link edit program.

Nonstandard Parameters

TA Address of the translation table.

RESET TIMER

This input processing state instruction sets the line
control timer (BL TIME) with a specified value for the
associated line.

Macro Call

RSTIME TIME,ACTION

Parameters

TIME Sets a time interval for the subsystem timer.

Symbolic Value
Name (hexadecimal) Descrietion

Not 0 Default
specified

I-FF Number of half
seconds

Usage

This instruction gives an input state program the ability to
set the line timer based on input data. An application sets
a short timeout value for the interval between output
terminate and start of input. Once input is detected the
timer clears, permitting the receipt of the message. This
allows for quick detection of a no response condition.

BACKSPACE

This state instruction backspaces the destination buffer
pointer one character at a time. Should the pointer cross
buff er boundaries while backspacing, the firmware
releases the unused destination buffer. However, if
backspace is performed on the first character of the first
destination buffer, the firmware does not release this
buffer.

Macro Call

BKSPAC

RESYNC A SYNCHRONOUS LINE

This state instruction sends a resync command to the
communications line adapter instructing it to discard all
characters until a sync character is detected.

Macro Call

RESVNC ACTION

Usage

This instruction is used by input state programs for
processing synchronous lines.

60472200C 5-13 •

SET CRC VALUE

This state instruction initializes the cyclic redundancy
checksum (CRC) value in the control block for
communications lines that require encoding and decoding.

Macro Call

INTCRC ICRC,ACTION

Nonstandard Parameters

ICRC Sets the initial CRC value.

Symbolic Value
Name (hexadecimal) Descrietion

Not 0 Default
specified

ZCRC 0 Set to zero

OCRC 1 Set to all l's

ALLOCATE A NEW BUFFER

This state instruction gets a new buffer and sets the
buffer FCD field. The user-supplied FCD is always an
even number. The LCD of the old buffer is updated and a
chain to the new buffer is established. If a buffer has not
been established, this instruction effectively does a no-op.

Macro Call

ALNBUF FCD,ACTION

Parameters

FCD

Usage

Defines a displacement to the first data
character of the new buffer. This value
must be an even number between 4 and
7Cl6· An even number forces the first
character into the left character position
of the word.

This instruction is used to end an old message, then start a
new buffer when a new message is detected, or to break
up the data into packets.

NO OPERATION

This state instruction provides the mechanism for
specifying the action parameter exclusively. (The action
parameter is normally specified as one of the parameters
for a state instruction.)

Macro Call

NOPR ACTION

I s-14

MOVE FIELD

This state instruction is used only in text character
processing. it allows the user to move specified fields
from (1) a file 1 register to another file 1 register, (2) the
control block (16 words) to a file 1 register, or (3) a file 1
register to the control block (16 words).

Macro Calls

TPMOVE SD,DD

TPST

TPSTR

TPSTL

TPLD

TPLDR

TPLDL

Usage

Moves the contents (16 bits) of a file 1
register (SD) to another file 1 register (DD).

SD,DD

Moves the contents (16 bits) of a file 1
register (SD) to the specified (DD) control
block word.

SD,DD

Moves the contents of the right byte of the
file 1 register (SD) to the right byte of the
specified (DD) control block word.

SD,DD

Moves the contents of the right byte of the
file 1 register (SD) to the left byte of the
specified (DD) control block word.

SD,DD

Moves the contents (16 bits) of the
specified (SD) control block word to the
selected file 1 register (DD).

SD,DD

Moves the right byte of the specified (SD)
control block word to the right byte of the
designated (DD) file 1 register.

SD,DD

Moves the left byte of the specified (SD)
control block word to the right byte of the
designated (DD) file 1 register.

These instructions are useful for moving TPCB fields into
the file 1 registers where they can be operated on by the
add, subtract, and compare register instructions. They
are also used for setting and resetting TPCB fields with
user-supplied information in the file 1 registers.

STORE BLOCK LENGTH CHARACTER

This state instruction sets the block length count in the
character count 1 (NCCNTl) field of the control block
with the current character minus an adjustment.

60472200C

Macro Call

SBLC ADJ, ACTION

Parameters

ADJ Specifies an adjustment to the start of the block.

Symbolic Value
Name (hexadecimal) Descri~tion

Not 0 Default
specified

0-FF Adjustment

Usage

The adjustment is required if (1) the block length
character is included in the block length count, or (2) the
block length character is not the first character in the
block.

60472200 c

1 2 3 4 5

A B

2LL:JNGTH
CHARACTER

ADJUSTMENT= 3

An adjustment is not required when the block length
character is not included in the block length count.

1 2 3 4 5

4 A B c

---BLOCK LENGTH CHARACTER

ADJUSTMENT = 0

5-1s I

SUMMARY OF STATE INSTRUCTIONS A

In this appendix, the state instructions are listed
alphabetically. The one or two-word macro-assembler
packing of the instruction (including its parameter list) is
also shown.

Note that the ACTION code always appears in bits 5, 6,
and 7 of word 1. If the execution/exit action to be taken
is specified by the TIP writer, the label ACTION is used;

MACRO PARAMETERS

ADDC CHAR,ACTION

15 14 13 12

otherwise, the fixed action code is given. See figure 5-1
for ACTION codes.

The control block of the MLCB (input state processing) or
the TPCB (upline or downline text processing).

File 1 registers are numbered 1 to 16; they are indexed 0
to 15.

PARAMETER LIST FORMAT

Add a character

11 10 09 08 07 06 05 04 03 02 01 00

CHAR ACTION 1115

ALNBUF FCD,ACTION Allocate a new buffer

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FCD ACTION 1815

BKSPAC Backspace

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1015

BLCNE COUNT, LABEL Skip if counter value unequal to block length

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

IA1 I 1 0 A7 1C15

0

A 1 = count -1 A 7 = label - * -2
Macro takes the form BLC1NE or BLC2NE where A1 = 0 or

BLDWL WC,WL,ACTION,EP Build worklist entry with given workcode

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

lo
WC I ACTION 0315

EP WLCB ADDRESS

W L is ignored but is present in macro call

60472200 B A-1

MACRO PARAMETERS PARAMETER LIST FORMAT

BLDWL WC,WL,ACTION,EP Build worklist entry with workcode in control block

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

11
0 I ACTION 0315

EP WLCB ADDRESS

WL is ignored, but must be present in the macro call

BLD01 SCl,ACTION Build CLA status worklist

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SCI ACTION

CHAR LS CHAR,LABEL Skip if character < operand

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CHAR A2 OA16

A2 = label - *-1

CHAR NE CHAR,LABEL Skip if character -=/= operand

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CHAR A2 OC16

A2 = label - *-1

CHRCC COUNT,IMASK Mask and set character counter

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I A1 I 0 I 1 0 1C15

IMASK

A1 = count -1

Macro takes the form of CHRCC11MASK and CHRCC21MASK where Al = O or 1

CHRPT Expand current character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 7 1115

A-2 60472200 B

MACRO

CMPC LA

CNTNE

CR CEO

DCC

ICC

INTCC

60472200 B

PARAMETERS PARAMETER LIST FORMAT

CMASK,LABEL Compare C LA status

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 A7

CM ASK

A7 = label - *-2

COUNT,CV,LABEL Skip if character counter does not equal CV

15

I Al I

SB,LABEL

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 A7

CV

Al = count -1 A7 = label - *-2

Macro also takes the form CNT1NE CV,LABEL and CNT2NE CV, LABEL
where A1 = 0 or 1

Skip if CRC equal

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I SB I 0 A2

A2 = label - *-1

COUNT,LABEL,ACTION Decrement count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A2 I ACTION

A1 = count -1 A2 = label - *-1

Macro takes the forms DCC1 LABEL,ACTION and DCC2 LABEL,ACTION
where A1 = 0 or 1

COUNT,ACTION Increment count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION

A1 = count -1

Macro takes the forms ICC1 ACTION and ICC2 ACTION
where A 1 = 0 or 1

COUNT,ACTION Initialize count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 ()()

0 ACTION

Al = count -1

Macro takes the form INTCC1 ACTION and INTCC2 ACTION
where Al = 0 or 1

A-3

MACRO PARAMETERS PARAMETER LIST FORMAT

INTCRC ICRC,ACTION Set CRC initial value

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

IA31 0 2 ACTION 1F15

A3 = ICRC

JUMP STATE,RTN Jump to state

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Io I 1 STATE 0 0815

JUMP STATE Update state index and jump

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

f 1 Io I STATE 0 0815

MJUMP STATE Set modem state and execute

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 STATE 0 1915

MOD CC COUNT,CV Set count with modulus function

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I A1 I 0 1c16

CV

A 1 = count -1

MST ATE STATE,ACTION Set modem state index

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 STATE ACTION 1915

MST LS STATE,LABEL Skip if modem state < operand

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

11 I STATE A2 0815

A2 = label - *-1

NOPR ACTION No operation (execute ACTION only)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION 0015

A-4 60472200 B

MACRO PARAMETERS PARAMETER LIST FORMAT

RAD DC CHAR Expand (add) current character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CHAR 6 1115

RESYNC ACTION Resync the line

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION 1F15

RC HAR CHAR,ACTION Replace character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CHAR ACTION 0215

RP LACE CHAR,CRCA Replace and store character with CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CHAR 0 0215

0 3 1215

RP LACE CHAR Replace and store character without CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CHAR 0 0215

0 2 1215

RSTIME TIME,ACTION Reset timer

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

TIME ACTION 1A16

RSTINP ACTION Reset input in progress flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION 1F15

RSTMXF MFLAGS,ACTION Reset user flags

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 11 I ACTION 1715

MF LAGS 0

60472200 B A-5

MACRO PARAMETERS PARAMETER LIST FORMAT

RSTPAR ACTION Reset parity flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION OF15

RSTRAN ACTION Reset translate flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 ACTION OF15

RTRN Jump to current state process

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 1 I 0 0815

SBLC ADJ,ACTION Store block length in character counter 1

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ADJ ACTION 0915

SETCC COUNT,CV Set count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

IA+ l1 I 0 1C15

CV

A1 = count -1
Also the forms SETCC1 CV and SETCC2 CV

SETFLG FLAGS,BUFF,ACTION Set flags in buffer

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FLAGS I A4 I ACTION 1315

A4 = buffer (0 = first 1 = current)

SETI NP ACTION Set input in progress flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 1 I 0 ACTION 1F15

SETMXF MFLAGS,ACTION Set user flags

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION 1715

MF LAGS 0

A-6 60472200 B

MACRO PARAMETERS PARAMETER LIST FORMAT

SETPAR ACTION Set parity flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 1 I 0 ACTION OF 16

SET RAN ACTION Set translation flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

f 1 I 0 I 1 I 0 ACTION OF16

SKIP LABEL Skip forward

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A9 0015

A9 = label - *

SKIPS LABEL Skip backward

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Bl 0 0015

81 = * - label

SPCHEO LABEL,ACTION Skip if special character equals current character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A2 ACTION ~016

A2 = label - * -1

STATE STATE,ACTION Set next state

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 STATE ACTION 0815

STATLS STATE,LABEL Skip if state < operand

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I o I STATE A2 0815

A2 = label - *-1

60472200 B A-7

MACRO PARAMETERS PARAMETER LIST FORMAT

STORC COUNT.ACTION Store count

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I A1 I 0 I ACTION 1415

Al = count -1
Also STORC1 ACTION and STORC2 ACTION

STORE Store character without CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 2 1215

STORE CRCA Store character and accumulate CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 3 1215

STRNTB TA,ACTION Set translation table address

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 ACTION 1815

TA

STRNTE ACTION,EP Set translation table address

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 l ACTION l 1815

EP TRANSLATION TABLE ADDRESS

TIBSWC WC,EOT,ACTION Terminate and save workcode

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

, , I A5 I WC ACTION 0415

0

AS = EOT

TIBWL WC,WL,EOT,ACTION,EP Terminate input and build worklist

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 0
I A5 I WC I ACTION 0416

EP WLCB ADDRESS

A5 = EOT

TPADDR SD,DD (SD) + (DD) ~ (DD)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 1015

A-8 60472200 B

MACRO PARAMETERS PARAMETER LIST FORMAT

TPBKUP LV,SRC,DST Restore text processing conditions

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 1 I 0 I A61 A8 0 1E15

A6 = LV-1 A8 = SRC + DST

TPCMPR SD,DD Compare file registers

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 ()()

SD DD 3 1016

TPDECR SD,VALUE Decrement file 1 register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

l 1 I VALUE SD 0 1015

TPEXIT Exit from text processing

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1E16

TPINCR SD,VALUE Increment file 1 register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I 0 I VALUE SD 0 1015

TPSINSR L,S,CHAR,I Insert text processing character

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 ()()

L I 0 0 s I o 0 1F15

CHAR

TPLD SD,DD Move control block word to file 1 register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 4 OE15

TPLDL SD,DD Move left byte of control block word to file register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 6 OE15

I
60472200 c A-9

MACRO PARAMETERS PARAMETER LIST FORMAT

TPLDR SD,DD Move right byte of control block word to file 1 register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 ()()

SD DD 5 OE16

TPMARK LV Save buffer conditions

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 ()()

0 I A6 I 0 0 1E16

A6 = LV-1

TPMOVE SD,DD Move register to register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 0 OE 16

TPRSTL SD Restore from left byte of file 1 register

15 14 13 12 11 10 09 08 . 07 06 05 04 03 02 01 00

0 SD 0 0116

TPRSTR SD Restore from right byte of file register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 SD 0 0116

TPSTL SD,DD Move right byte of file 1 register to left byte of control block word

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 3 OE15

TPSTLC SO,CRCA Store left byte of file register into destination buffer with CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 SD 3 0116

TPSTLC SD Store left byte of file register into destination buffer without CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 SD 2 0116

I A-10 60472200 c

MACRO PARAMETERS PARAMETER LIST FORMAT

TPSTR SD,DD Move right byte of file 1 register to right byte of control block word

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 2 OE15

TPSTRC SD,CRCA Store right byte of file 1 register into destination buffer with CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 SD 3 0715

TPSTRC SD Store right byte of file 1 register into destination buffer without CRC

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 SD 2 0715

TPSUBR SD,DD Subtract file register

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD 2 1015

TPST SD,DD Move file 1 register to control block

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SD DD OE 16

TSTCLA CMASK,LABEL Test CLA status

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

, , 0 A7 1515

CM ASK

A7 label - *-2

TSTMXF MFLAGS,LABEL Test user flags

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 11 I 0 I A7 1715

MF LAGS 0

A7 label - * -2

60472200 c A-11 I

STATE INSTRUCTION TIMING B

Timing for input, output, and text processing is calculated
by using the following tables. All timing values are
expressed in microseconds.

TABLE B-1. EXECUTION TIMES FOR INPUT /TEXT
PROCESSING DEPENDENT INSTRUCTIONS

Text
Task - Per Character Input Processing

Get character 12.8 5.5

Number of instructions x 2.2 --- ---

Instruction execution time(s) --- ---
(See Section B.2)

Translation (select one)
On 3.1 --- ---
Off 1.5

CRC (select one)
Yes 4.9 --- ---
No 0.0

Store character 4.8 4.8

Exit 2.2 1.5

Text
Task - Per Character Input Processing

Get and chain a destination 15.0
buffer

Chain a source buffer ---

Release a buffer 11.4

Make a worklist 6.9

Start-up ---

PTTPINF interface ---

TABLE B-2. STATE INSTRUCTION
EXECUTION TIMES

Execution
Macro Time Description

ADDC 2.3 Add a character
7.1 (including store)

ALNBUF 10.8 Allocate a new buffer

16.0

6.6

11.4

6.9

10.l

135.0

BK SP AC 3.9 B...tckspace (not over buffer
bounclary)

60472200 B

Macro

BLCNE

BLDWL

BLDWL

BLKOl

CHAR LS

CHAR NE

CHRCC

CHRPT

CMPC LA

CNTNE

CRCEQ

DCC

ICC

INTCC

INTCRC

JUMP

JUMP

MJUMP

MODCC

MSTATE

MSTLS

NOPR

RADDC

RESYNC

RC HAR

RPLACE

TABLE B-2. STATE INSTRUCTION
EXECUTION TIMES (Contd)

Execution
Time

5.0

16.l

10.4

14.5

1.2

1.4

5.0

9.4

2.6

5.0

2.0

2.9

2.9

1.8

2.8

4.0

5.4

3.4

5.0

3.4

2.3

1.5

9.4
3.1

8.8

0.5

6.7

Description

Skip if count not equal
block length

Build worklist entry with given
workcode

Build work list entry
workcode in control block

Build CLA status worklist

Skip if char < operand

Skip if char not equal
operand

Mask and set char counter

Expand (one) character

Compare CLA status

Skip if char count not equal

Skip if CRC equal

Decrement count

Increment count

Initialize count

Set CRC initial value

Jump to state

Update state index and jump

Set modem state and execute

Set count with mod function

Set modem state index

Skip if modem
state < operand

No operation

Expand (one) character
(each additional 2 chars)

Resync the line

Replace character

Replace and store
character

with

B-1

Macro

RSTIME

RSTINP

RSTMXF

RSTPAR

RSTRAN

RTRN

SBLC

SETCC

SETFLG

SETINP

SETMXF

SETPAR

SETRAN

SKIP

SKI PB

SPCHEQ

STATE

STATLS

STORC

STORE

STRNTB

STRNTE

TIBSWC

TIBWL

TPADDR

B-2,

TABLE B-2. ST A TE INSTRUCTION
EXECUTION TIMES (Contd)

Execution
Time Description

3.4 Reset timer

2.5 Reset input in progress flag

3.9 Reset user flags

2.5 Reset parity flag

1.9 Reset translate flag

4.0 Jump to current state
process

1.4 Store block length in char-
acter counter l

5.0 Set count

3.4 Set flags in buffer

2.5 Set input in progress flaq

3.9 Set user flags

2.5 Set parity flag

1.9 Set translation flag

1.5 Skip forward

1.5 Skip backward

1.8 Skip if special char = char

4.0 Set next state

2.3 Skip if state operand

3.2 Store count

1.4 Store character

2.0 Set translation table
address

-- Set translation table
address

10.4 Terminate input and save
workcode

16.l Terminate input and build
work list

5.2 (SD)+ (DD) (DD)

Macro

TPBKUP

TPCMPR

TPDECR

TPEXIT

TPINCR

TPINSR

TPLD

TPLDL

TPLDR

TPMARK

TPMOVE

TPRSTL

TPRSTR

TPSTL

TPSTLC

TPSTR

TPSTRC

TPSUBR

TPST

TSTCLA

TSTMXF

TABLE B-2. ST A TE INSTRUCTION
EXECUTION TIMES (Contd)

Execution
Time Description

9.4 Restore TP conditions

5.2 Compare file l registers

5.2 Decrement file l register

2.8 Exit text processing

5.2 Increment file l register

-- Insert text processing
character

4.4 Move control block word to
file l register

4.4 Move left byte of control
block word to file l register

4.4 Move right byte of control
block word to file l register

6.3 Save buffer conditions

4.4 Move register to register

2.3 Restore from left byte of
file 1 register

2.3 Restore from right byte of
file 1 register

4.4 Move right byte of file l
reqister to left byte of
control block word

2.3 Store left byte of file l
register into test buffer

4.4 Move right byte of file l
register to right byte of
control block word

2.3 Store right byte of file l
register into test buffer

5.2 Subtract file l register

4.4 Move file 1 register to
control block

2.6 Test CLA status

3.9 Test user flags

60472200 c

I

60472200 8

JOB DECK STRUCTURE FOR ASSEMBLING
STATE PROGRAMS

(T-o be supplied later)

c

C-1

SAMPLE STATE PROGRAM D

This appendix has the following subsections:

• Equates

• Input state program pointers table (HSINST)

This sample is the input state program (first pass) for the
HASP TIP. Since there is no code or format conversion in
this first pass state processing, this comparatively simple
state program is only concerned with moving data from
the circular input buffer (CIB) to the input source buffer,
and then notifying the TIP that the data is ready for
upline text processing. • Input state processes making up the input state program

60472200 B 0-1

D-2

.....
IH2
1181
IHI
1111
1112
1113
HOit
1115
1106

1JltH
1200
01H
0080
HltO
8020
0011
8008
Olllt
1102
0001

1113
1121
H22
H23
Ol21t
0025
H26
0927
0028
0029
002A
0028
ooze
0020
002E
ll02F
0030
0031
0032
D033
1031t
9035
9036

............................•..... ~
• •
• HASP STATE PROGRAMS ANO •
• TRO'SLA1TION TA9L!:S •

A SSEHBL IES •
• ...

f\AM HSRltIPS

• • • • • • • • • • • • • • • • • • • • • ... • • • • • • • •
•
• IMUX SUl!SYSfEM EQUATES
•
•
•

• • •
•

• • •
•
•
•
• ·~· •

EQU MXETXUlt> ETX FLAG FOR CLA STATUS HAtlOLER
EQU MXMRTOC2t RESPONS TI"EOUT
EQU MXCARt;UU CONTROll£0 CARRIER FlAG
EQU MSTCHKCI>
EQU MSTERRU>
EQU MSTLNIC2J
EQU MSTENBC3>
EQU MSTIOl(lt)
EQU MSTOUT<S>
EQU HSTINP(6)

MUX FLAGS

EQU
EOU
EQU
EOU
EQU
EOU
EOU
EQU

·:au
EOU
EQU

••••••
MOftK CODES

• • • • • •
EQU
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

. EQU
EQU

NCUOP 1 (lltl I> BIT 15
NCUOP2C120 Ot BIT 11t
NCUOP3U11U BIT 13
NCUOPltUUO> BIT 12
NCUOPS UIJltlU BIT 11
NCUOP6U02D> !!IT 10
NCUOP7UD1U BIT 9
NCUOP8U00at en 8
NCUOP900flt) an 7 CTEXT PROCESSING ONLY>
NCUOPA 0002) BIT 6 <TEXT PROCESSING ONlY>
NCUOPBUIOU BIT 5 CTEXT PROCESSING ONLY>

•
•
• •

•
MM8UTCHC3) HUX BUFFER THRESHOLD
ADMK1U2U
AtWK2 UIMK1+U
At!MK3Ul!MK2•U
AOWKltUOMK3Ht
AO MKS CAIJMKlt+U
AOWK6 CAOMKS+U
AGWK7UOMK6•U
AOWK8 (AONK7+U
AONK9UONK8+U
AQWK10 UINK1HU
AONKU UONK1U.1J
AOWK12CAOWK11•1>
AOWK13CAONK12•1>
AOWKtlt<AIWK13t1}
A@WK15CAONK11t+1>
AOWK16CAOWK15+1>
AOWK17(AONK16•1>
AOWK18CAINK17•1>
AOWK19CAOWK18+1>
AOWK20(AQWK19•1t
AOWK21<AONK20•1>
AONK22UONK21+U

•
•
•

60472200 B

0001
0002
0010
0026
0020
0032
01130
0070
0000
OOFO
OOC1

0014
0021
0022
0023
0024
0025
0026

G001
0002

ooco
OOAO

003F
0010
001F
001F
OOFF

60472200 B

...
•
• HASP REL~ CONSTANT EQUATES
•

•
•
• •••

EQU HCSOH<SOU • BSC OUTER PROTOCOL CHAPACTERS
EQU HCSTX<S02>
EOU HCDLE CS10>
EQU HCETBCS26>
EQU HCENOC!2D>
EOU HCSYN<S32)
EQU HCNAK C!30J
EOU HCA CK <!70)
EQU HCZEROUOl CHARACTER !)
EOU HCCONTROL UFO> CONTROL RCB
EOU HCSIGNON($C1J SIGt.ON SRC8
EQU H WKML NO Ui 4) . HASP MORKLIST NUHBER
EOU HWKENQ (AOMK1J ENO RECEIVED WORKCIJOE
EQU HWKERR (HMKENQtiJ ERR RECEIVED WORKCODE
EQU HWKACl((HWKENQt2 t ACK RECEIVED WOP.KCODE
EOU HWKNAk(HWKENQ•3) NAK RECEIVED WORKCOOE
EQU HWK"SG<HWKENQ•4) MSG RECEIVED WORKCOOE
EQU HWKBTH (HWKENO•S> BUFFER THRESHOLD WCRKCODE

EOU HFNEW nou
EQU HFXPT ($!l2t

EQU HNONCMP <!COi • NON COl'IPRESS~D DATA s~e
EQU HC"PNBLKSUAOt COHPRESSEO NON 9LANKS SCB

EQU H"NCHSK U3F) • NON-COMPRESSED-DATA S~E MASK
EQU H~XPTU6l • TRANSPARENT DATA MASK
EOU Hf'CeHSK (Si FJ • COl'IP~ESSEO BLANKS MASK
EQU HMCN8HSK<S1F) COMPRESSED NON-BLANKS ~ASK
EOU Hl'ICHRl!SKCSFFJ CHARACTEF MASK

D-3

D-4

POOOO
P0001
P0002
POOG3
PIDOlt
POOOS
P0006
POGD7
P0008
POOICJ
POOU
POllB
PHOC
PIOOD
PDOOE
PIHF
PI011
PHU
PI012
POll13
P0011t
PIUS
PH16
PU17

POINTER

0018 p

OG19 p
0028 p
tlt29 fl
OOZE p
0036 p
Hitt p
OOltB p
OllS7 p
HSD fl
0866 fl
0069 p
8076 p
007F fl
ooae. p

H95 p
lllCJE p
HA2 p

IOA6 p
DUD p
OIAE p
OIBJ p
0086 p
llC2 p

OHO p
0001 p

........ -............ ~ -...................... .

.............. ·-·-·· •
•
•

HASP INPUT STATE PROGRA"S UST PASS> POINTER TABLE
• •
•

l"SINST

•

HC
EQU
ADC
EMC

Nfl
HSINMIC•-HINSPTJ
HllNHt

ENT HINSPT
EQU HINSPT (•t
HSINST CLASTAT 0
HSINST DCDNOT 1
HSINST OVERUN 2
HSINST 8UTHR 3
HSINST INIT
HSINST DATO
HSINST SCH
HSINST OLEO
HSINST BCB
HSINST LFCS
HSINST RFCS
HSINST lRC!
HStNST CONTROL

. HSINST SRCE!
HSINST see
HSINST DATA
HSINST OLE
HSINST SIGNON
HSINST ETB
HSINST lCRC
HSINST 2CRC
HSINST ERROR
HSINST TERM
HSIMST IDLE

STANDARD DEFINITIONS FOR
INPUT STATE PROGRAMS

60472200 B

60472200 B

POJ1q
POll1A
PO!l10
POHC
POatO
PO il1E
P001F
PO J 2"
P0021
POll22
PO:J2~

P0021+
POil25
P0026
P0i127
P0!128

POiJ28
POQ2q

POIJ2CJ
P002A
P0,28
POIJ2C
P0020
POQ2E

P002E
P0!12F
PO::J30
PO!l31
PO:J32
POIJ33
P~J3'+
PDl35
PO'l36

POJ36
POJ37
PGQ38
POQ'!q
POO!A
P0039
PD03C
Pl!!130
PO'J:!i:
POIJ3F
Plll40
PCJ41

P0041
P0042
P0043
POollt4
P0045
P0046
POOH
PG!l46
POiJ49
POIJl+A

002!!

1!237
O!! 20
013F
0237
fill 80
013F
61+20
8520
013F
1!117
00 60
C01A
AO 03
00 OD
1l13F

5508

0304
00 00
A604
DODO
%08

32CC
0117
0200
0117
110 60
Cf'>H
C528
013F

322C
1!1!20
C12C
t!"-2"
1t zc
0728
306C
Al+04
cooo
%0'1
8408

322C
0020
206C
A104
tODO
%08
1J24C
021F
~888

6408

..
••

HSCLASTAT - CLA STATUS HANDLER

•• ..
t-CLASHT f\OPR EXIT IGNO~E STATUS

HSOCONCT - OATA-CARRIER-O~TECT OPOPPEO

..•...........•..... ..
t-OCOf\OT

1-0CD1

1-0(02

t-OCD3
t-OCDI+

TSTHXF HXCARR,HOC01 •

FESYNC EXIT
TST~XF MXETX,HDC02 •

SKIP IF CONTPOLLE0 CAPPIER

RESYNC CLA ANO EXIT
SKI~ IF WORKLIST WANTEC

RESYNC EXIT RESYNC CLA A~O ~XIT
~STLS HSTIOL,HOC03 OOU8L~ CHECK THAT ~ODE~ STATE I~ IrLE
HSTLS HSTIOL+1,HOCOI+
RESYNC EXIT • MODEM STATE N0T IDLE
FSTHXF HXETX CLEA~ WL ENTRY NEECEO FLAG

l'STIME
ELCWL , ,,HWC'<K2

RESYNC EXIT

• STOP TI!4EQ
9U!L[._L ':NTPY

RESYhC CLA ANO EXIT
HSOVEQUN - TOO MANY 3UFFERS

.. ..
JUMP HSEFRCR,RTN GOTO STATE SPQOR REHEH~E~ CUQ S~ATE
HSBUTHR - BUFFER-T~RESHOLO REAC1-4EO I~ SYSTEH .

···~··············· ··· t-0UT~R TI0WL Hf'leUTCH TELL HUX SS TO PcLE4.S:: BUFFERS

Tl"lSWC HWKBTH t1AKE BUFF€? Tl.4RESHOLO WLE

JUHP HSTERH • TER"1INATE INPUT•... .. .
HSINIT - INITIAL INPUT STATE

.. ..
HNIT CHARNE H CSYN • HINIT1 LOCI< FOR SYN CHAR

FSTHXF HMXPT R:'.SET MUX XPT FL4.G

l<STHXF HXETX CLEAi< ETlt' FL4.G

f'ISTATE: HSTINP S~T t400EM SUTE INPUT
STATE HSOAT'l ,EXIT IT IS - SWITCH Tl) DATA AP'HVINr;

t-INIT1 f'ESYNC EXIT IT ISl'IT - RESYNC CLA ...•........................ ...
~SOATO - OATA ARRIVING

... ..

.. 04TO (HARNE HCSYN, HDAT:it SYN CfiAR
l'ICl'R ElCIT v:::s - I Gt-ORE

l-OAT01 CHAR NE HCSOH,HOATOZ ')!')M

STAT!". HSSOH, EXIT v::s
1-0AH2 CH ARN=: HCOLE,HCATOJ OLE

STATE HSIJLEO ,EXIT
l-DllTC3 CHAR NE HCNAK,HDATtl5 NAK

TIBSWC HWKl\llK • v::s- NAI(WLE TC TI"

JUMP HSTE?H • ERMIN ATE !NOIJT
1-DAT05 JUMP H~It\IT ALLOi. LINE f'l RESY"IC

1-SSCH - SCH F"'.CEiv=::o

... ..
I-SCH CHAR NE HCSYN,HSOH1 SYN

NOPP ElCIT Y€S - !Gt.OR':
l-SCM1 CHAP NE HCENO,HSOH2 ENC

TIBSWC HWKENC Y€S- ENfl wL:: TO TIP

JUHP HSTERH • ERMINA TE !"!!>UT
t-SOHc CHAR NE HCSTX,HSOH3 STX

INTCP.C ZCRC IN IT I Al IZE CRC AC CUM
STATE H sec0. CFC EXIT

l-SCH3 JUMP HS IN IT ALLOW LINE TO RESYN~

D-5

D-6

PDOltB

PI01t9
PIDltC
PIOltO
PIGltE
PDOltF
P0050
P0051
PD\152
P0353
PD051t
PD055
P0056
P0057

P0057
P0058
P0059
P005A
P0058
P005C
P0050

P0350
P005E
P005F
P0060
P0061
PO!J62
P0063
P0061t
POOE5
P0066

P0066
P0067
POD68
POD69
P006A
POO&B

PH68
P006C
P006D
POO&E
P006F
POiJ7D
POIJ71
PO!J7Z
POIJ73
P0071+
P0375
P0076

POH6
POQ77
PO!J78
PO!J79
POIJ7A
P0078
P007C
POIJ70
POHE

322C
1528
716C
AUit
OHO
9619
028C
0017
02DD
021F
Dll29
81t08

322C
tl020
1C2C
8020
0011
0968

322C
0020
102C
0020
1!237
1!200
0220
0513
OA68

32ZC
00211
10ZC
8020
0866

322C
1!020
102C
0820
ooze
1288
262C
1388
Fft2C
OC68
'l068

322C
0020
1tl2C
0(!20
C16C
llUC
0050
1188
OE68

0057 p

······················~··· ••
• •
• HSDLEI - OLE RECEIVED

• ••
····································~··································· f!OlEG CHAftNE HCSYN,HDLED1 SYN

STATE HSOATD,EXIT TES - IGNORE
.. OLEl1 CffARNE HCACK,HDLE02 ACK

TIBSMC HMKACK • YES- ACK MLE TO TIP

JUMP HSTER" • T!;RHINATE INPUT
HOLE02 CHAR NE HCSTX, HDL EOJ STX

SETMXF HMXPT SET HUX XPT FLAG

INTCRC ZCRC • INITULIZE CRC AC CUM
STATE HSBCB,EXIT

.. DLE03 JUMP HSINIT • ALLOW LINE TO RESYNC
••
··••4••••················· • •

HSece - PROCESS ec~
• •
.. ece EQU HSCE(•)

CHARN~ HCSYN,HBCB1
NOPR EXIT IG~ORE

.. ece1 CHARNE HCDLE,Hece2 OLE
NOPR EXIT IGNORE

.. ece2 ADDC HCZERO ADD OUMHY FOR RIGHT-CHAR-ALLIGNHENT
STATE HSLFC~ 9 CRCSTOR~X STO~E BC8,CRC AND E~tT

•• ..
• HSLFCS - PROCESS LEFT FCS • .
•• ..
.. LFCS CH ARNE HCSYN,HLFCS1 SYN

NOPR EXIT IGNORE
.. LFCS1 CHA RN~ HCOLE,HLFCSZ DLE

NOPR EXIT IGNORE
._LFCS2 TSTMKF Hl1XPT,HLFCS3 SKIP IF XPT-FLAG SET

SKIP HLFCSlt
.. LFCS3 SET.FlG HFXPT,CURN SET X?T-rLAG IN FIRST-9UF"'ER
.. LFCSlt STATE HSRFCS,CRCSTOREX STORE LFCS,CRC ANO ~XtT
••
••
•
•

HSRFCS - PFOCESS RIGHT FCS
•
•

..
••
.. RFCS CHARNE HCSYN,HRFCS1 SYN

NOPR EXIT IGNORE
._RFCS1 CHARNE HCDLE,Hf<FCS2 OLE

NOPR EXIT IGNORE
.. RFCS2 STATE HS1RCB,CRCSTOREX STORE RFCS,CRC AND EXIT
•

HS1RC8 - PROCESS FIRST I NEXT RCB
•
• .

••
••
Hf<CE CHARNE HCSYN,H1RCB1 SYN

t.iOPR EXIT. IGllOR:
Hf<CU CHAR NE HCOLE,H1RC92 OLE

NOPR EXIT IGllORE
t;tF!CB2 CHAR NE HCZERO,H1RC85 NO (HORE> R':COROS

STATE HSETB,CRCEXIT DONE, LOOK FOR ETB
HRCl!5 CHARNE HCETB,H1RCB3 ETE WITH CUT ZEP.O RC9

STATE HS1CRC,CRCEXIT YES GO PROCESS c~c NOW
HFCE3 CHAR NE HCCONTROL,H1RCP4 NO - CONTROL RECORD

STATE HSCONTROL,CRCEXIT PROCESS CO"ITROL <:;Rr.9
t'1FCE4 STATE HSSRCe,CRCSTORE~ NO - GET SRCB

HSCONTFOL - CONTROL RCe RECEIVEO,LOOK AT SRCR •
•

.. CCNTRCL CH ARNE HCSYN,HCON1 SYN
NCPP EXIT IGllORE

.. CCN1 CHARNE HCDLE,HCON2 OLE
NOPR EXIT IGNORE

.. CCN2 CHAR NE HCSIGNOll,HCON3 SIGN ON
SETCCZ HC~I! YES - SET 80 CHAR LENGTl-f

STATE HSSIGhON,CRC:XIT PqocESS TH~ SIGl\IOl\I + THRfJW AWAY SRC~
.. CCN3 STATE HSSC9 ,CRCSTOREX 1\10 - PROC~SS NORMALLY

60472200 B

60472200 B

P007F

P007f
POBllO
POiJ81
POOll2
POOll3
POB114

POIHllt
P0085
POOll6
POOll7
P0088
P0089
POOllA
P0088
POllllC
POUO
POHE

,P008F
P0090
PODU
P0092
P0093
P0091t
P0095

POJC:5
P0096
POGc;7
P0098
POOC:9
POOCJA
P0098
POiJC:C
P0190

POIJCJE
POOC:F
PO IJAO
POaA1

POOA2
POOA3
POOAlt
PODAt;
POOA&

POIJA6
POtJA7
POIA8
POOA9
POOAA
PIOAB
PIJQAC
POOAO

POOAD

322C
0020
102C
0020
OE611

J22C
OG20
102C
0028
262C
1388
tl02C
886&
C06A
901C
IUF
IF68
A06A
A01C
0001
OF611
0060

32AC
0237
C200
01!20
8066
ot68
102C
102~
0401)

322C
OFZS
OF08
0800

262C
1388
8086
CE811

322C
0020
102C
0020
262C
1388
5508

11t88

•• ..
HSSRCB - PROCESS SRC0S

.. ..
~SRCe

~Sl<CE2

CHAR NE
NOPR
CHARNE
toiOPR
STATE

HCSYN,~SRCB1 SYN
EXIT IGNORE
HCOLE,HSRcez OLE
EXIT IGNORE
HSSCB,CRCSTOREX CRG STORE ANO EXIT

•
HSSCB - PROCESS sc~s

.. ..
~SCB CHAR.NE HCSYN 9 HSC81 SYt-l

NOPR EXIT IGNORE
~SCB1 CH ARNE HCOLE,HSCB1A OLE

NOPR EXIT IGtiORE
~SC81A CHAR NE HCET8,HSCB2 ETB

STATE HS1CRC,CRCEXIT PROCESS CRC
~SCB2 CHARNE HCZERO,HSCB3 EOR

STATE HSiRCe,CRCSTOREX YES - GET NEXT PCB
~SC83 CHARLS H NONC"P, HSC'31t NON - COfo!PRESSEO

CHRCC2 HMNCHSK SET COUNT TO NUH OF NON COl'PRESSEO

STATE HSOATA,CRCSTOREX SET OATA STATE CRC, STORE AND EXIT
~SCBlt CHARLS HCHPNBLKS, HSCB5 COMPRESSED NON BLANK

SETCC2 HCO~E SH COUNT TO ONE

STATE HSOATA,CRCSTOREX SET OATA STATE CPC ,STCRE ANO EXIT
~sees NOPR CRCSTCREX CO~OPESSEO BLAMKS - STO~E SCB,CRC,EX

HSDATA - PROCESS CHARACTERS AFTEP SCB •
.. ..
~DllTll CHAR NE HCSYM, HUATA3 IS CHAR A SYN

TSTHXF HMXPT, HOAT Ai y;:<:. - XPT lolORKSTA TION

NOPR EXIT NO - IGNOP.E
~OllTll1 CCC2 HDATA2,CRCSTO~EX YE5 so PPIJCESS IT
~DllU2 STATE HSSCB, CRCSTOREX UNTIL DONE
~OllTll3 CHARNE HCOLE,HOATAlt OLE

STATE HSOLE,ElCIT YES - PROCESS IT
~o aui. SICIPB HCATA1 NOT OLE - PROCES'i ~HARACT':F
•

~SOLE - FRCCESS CHAR AFTER OLE
•

~OLE

t-DLE1

CHARNE HCSYN,HOLE1
STATE HSCATA,EXIT
STATE HSOATA
SKIP'3 HCATA1

SYN
IGNORE
OTH~RWISE SET STAE BACK TO DATA
ANO PROCFSS THIS CHARACTE~•..

• •
• HSSIGNON - PROCESS SIGNON-CllRO •

.. ..
1-SIGNON

~S IGN2
~SIGt\1

CHARNE HCETB,HSIGN2 •
STATE HS1CRC,CRCEXIT
CCC2 HSIG~i,CRCEXIT
STATE HSSCBtCRCEXIT

CHECK FOR EA~LY ~T9
LOOK FOR CRC
ACCUH CRC, OISCARO OATA

UNTIL CONE All 80 ..
••

•
HSETB - PROCESS ETB •

• ••
••
~ETB

~ETB1

.. ETB2

~ETB3

CHARNE
NOPR
CH ARNE
NOPR
CH ARNE
STATE
JUMP

HCSYN,HETB1 SYN
EXIT IGNORE
HCOLE,HETB2 OLE
EXIT IGNORE
HCETB,HETB3 ETe
HS1CRC,CRCEXIT PROCESS
HSE~RQR,RTN GOTO STATE ERROR R~HFM8~R CUR STATE

•
• HS1CRC - PROCESS LEFT c~c •
.. ..
~1CRC STATE HS2CRC,CRCEXIT SET FCR RIGHT CRC ,CRC ANn ~XIT

0-7

D-8

POOAE

POOAE
POOAF
POOl!O
POllB1
POOBZ
POOl!3

P0tll!3
PUBft
POOf!5
POOl!6

POOl!6
P00l!7
PHU
P001!9
POOSA
POOB8
POOBC
POU!D
.POHE
POO!F
PllCO
PUC1
PllCZ

POOCZ

0025
5508
A501t
Ot! 00
9608

AZOlt
GOOD
9608

0419
0207
0021
001A
0117
0081
8003
IOH
9708
0017
IOH
9718

113f'

••
••
•
• •

HSZCRC - PROCESS RIGHT CRC

••
••
1-ZCRC CRCEQ ee,HZCRC1

JUMP HSE~RCR,RTN
TIBSWC HWl<flSG

JUHP HST ERP.

CRC EQUAL
NO, ERROR
• YES- WLE TO TIP

TERMINATE JNDUT
••
·· • •

HSERROF - ERROR IN DATA MESSAGE •
•

••
••
t-ERRCR TI8SWC HWKERR • GIVE TIP AN ~RPOR NL~

JUHP HSTERfl • TERHINJITE INPUT
••
••

HSTERH - TER~IhATE INPUT •
• ...•..............................

••

HERt11

t'!STATE HSTIDlE
TSTMXf HXCAR~ 9 HTERH1

f<STIHE 0
l<STMXf HXETX

f3LOWL , .,HWORK1

JUHP HSIDLE
SETHXf HXETX

JUHP HSIDt.E

•

•
•

•
•
•

S~T HOOEH STATE TO IDLE
SKIP IF CONTROLLED CAR~IER

TURN OFF TilllE~

RESET ETX FLAG

HAl(E WlE W/ SAVED WORl(COOE

WAIT Al IOL~
SET ETX FlAG

WAIT Al IDLE
•• ..
• •

HS!Ot.E - All DCNE,IGNORE ANY ARRIVING DATA
• • •• ••
HOLE RESYNC EXIT RESYNC Ct.A

60472200 B

ACTION 5-2
ADDC 5-4

I ALNBUF 5-14
Assignable counters 5-1

Backspace 5-13
BKSPAC 5-13
BLCNE 5-3
BLDWL 5-10
BLKOl 5-10
Buffer allocation 5-13
Buffer flags 5-9

CHAR 5-2
Character

add 5-4
block length 5-14
counters 5-1, 5-14
current 5-7
expand 5-4
repeat 5-4
replace 5-4
skips 5-6, 5-7
special 5-7
store 5-4, 5-12, 5-14

CHARNE 5-6
Circular input buffer (CIB) 2-1, 4-1
CLA 5-7, 5-10

status bits 5-8
CMPCLA 5-7
CNTNE 5-3
Command driver 2-2
Communications line adapter (CLA) 5-7, 5-10
Control

input state program 2-1
modem state program 4-1
text processing program 3-3

COUNT 5-2
Counters, character 5-1, 5-3, 5-4
CRC 5-4, 5-6, 5-11, 5-13
CRCA 5-2
CRCEQ 5-6
CV 5-2

Data structures
input state program 2-2
text processing program 3-1

DCC 5-3
DD 5-2

EOT 5-2
EP 5-2

Flags 5-7
File 1 registers 3-2, 5-11, 5-12

Index 5-5
input state 5-5
modem state 4-1, 5-5
text processing state 5-5

Input data processor (IDP) 1-1, 2-1
Input states 2-1, 4-2, 5-5, 5-6
Instructions 1-1, 5-1

I INTCRC 5-14

60472200 c

INDEX

Interfaces
firmware to input states 2-1
firmware to modem states 4-1
firmware to text processing 3-2
input state to modem state 2-3, 4-2
input state to text processing 2-3
modem state to multiplex subsystem 4-2
program 1-1

JUMP 5-5
Jumps 5-5

LABEL 5-2

MJUMP 5-4
MLCB 2-1, 2-2, 5-5, 5-10
MODCC 5-1
Modem states 2-3, 4-1, 5-4
Move

field 5-13
file 1 register 5-11, 5-12

MSTATE 5-4
MSTLS 5-6
Multiplex subsystem 1-1, 4-2

No-Op 5-13
NOPR 5-14

OPS-level TIP 1-1, 2-3, 3-1, 3-2, 3-3, 5-4, 5-9, 5-10
Output data processor (ODP) 1-1

Parity flag 5-9
Port table 2-1, 4-1, 5-5
Process flag 5-7
Programs

control 2-1, 3-3, 4-1
input state 2-1, 4-2
interfaces 1-1; also see Interfaces
modem 2-3, 4-1
oganization 2-3, 3-3, 4-1
state 1-1
structure 1-1
text processing 3-1

PTTPINF 3-2

RADDC 5-4
RCHAR 5-4
RESYNC 5-13
RPLACE 5-4
RSTIME 5-13
RSTINP 5-7
RSTMXF 5-8
RSTPAR 5-9
RSTRAN 5-7
RTRN 5-5

SBLC 5-14
SD ~-2
SETFLG 5-9
SETINP 5-7
SETMXF 5-8
SETPAR 5-9
SETRAN 5-7
SKIP, SKIPS 5-6

Index-1

I

I

Skips 5-5, 5-6, 5-7 TPCB 3-1
SPCHEQ 5-7 TPDECR 5-11
STATE 5-5 TPEXIT 5-12
State TPINCR 5-11

input 2-1, 4-2 TPINSR 5-12 I
modem 2-3, 4-1 TPLD,TPLDL,TPLDR 5-14
pointer table 1-2, 2-1, 4-1 TPMARK 5-11
process 1-1, 2-1 TPMOVE 5-14
program 1-1, 2-1, 4-1 TPST, TPSTL, TPSTR 5-14
reserved (0, 1, 2 and 3) 2-3, 4-2 TPRSTL 5-12
text processing 3-1 TPRSTR 5-12

Status, CLA 5-7 TPSTLC 5-12
Status handler, multiplex 4-1 TPSTRC 5-12
STORC, STORCl, STORC2 5-3 Translate flag 5-7
STORE 5-4 Translation table 5-12

I STRNTB 5-13 TSTCLA 5-7
STRNTE 5-13 TSTMXF 5-8
Synchronous line 5-13

User flags 5-8
Text processi nq 3-1, 5-11, 5-12
TIBSWC 5-9 VALUE 5-2
TIBWL 5-9
Timer 5-12 WC 5-2
TPADDR 5-11 WL 5-2
TPBKUP 5-11 Worklists 5-10

Index-2 60472200 c

w
z
:::::;

0 z
0
~

<(

....
::>
u

<i.
0
::>

~
0
w
I-

~.
a:: I
Q. I

t
o. I
"I _,
-.:t

> w
°'

COMMENT SHEET

MANUAL TITLE: State Programminq Language Reference Manual

PUBLICATION NO.: 60472200 REVISION: C

STREET ADDRESS=-------------------------------

CITY: ______________ STATE: _______ ZIP CODE:--------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE TAPE

i
I
I
I
I
I
I
I
I
I
I

I
I
I

~ID ~ID I
---~--------------------------~-------------------------~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. Box 4380-P
Anaheim, California 92803

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

---~ FOLD FOLD

w z
:::;

C>
z
0
<(
I
::>
u

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS. MINN. 55440 LITHO IN U.S.A.
SALES OFFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONTR_OL DATA CO~ORf\TION

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	Index-01
	Index-02
	replyA
	replyB
	xBack

