
Cl y

("''\
·1'

_J

c

0

0
()

CYBIL HANDBOOK

60457290 01

REVISION RECORD

REVISION DESCRIPTION

01 <09-23-83) Preliminary manual released.

Address comments concerning this manual to:

Control Data Corporation

So~ware Engineering Services

4201 North Lexington Avenue

St. Paul, Minnesota 55112

60457290 01

© 1983
by Control Data Corporation

All rights reserved

Printed in the United States of America

0
0

f~'\

\,, __ ;

(-,,'/,'
)

()

0 .

C\
/,

!/

0

0

c

()

0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

Table of .Contents

1.0 APPLICABLE DOCUMENTS
1.1 GENERAL •••••••
1.2 C170 ••••••••

2.0 COMMON CYBIL COMPILER FRONT END ••
2.1 INLINE PROCEDURES IMPLEMENTATION
2.2 SOURCE LAYOUT CONSIDERATIONS

3.0 CYBIL-CC DATA MAPPINGS
3.1 UNPACKED BASIC TYPES

3.1.1 UNPACKED INTEGER ••
3.1.2 UNPACKED CHARACTER
3.1.3 UNPACKED ORDINAL
3.1.4 UNPACKED BOOLEAN
3.1.5 UNPACKED SUBRANGE ••
3.1.6 UNPACKED REAL ••••
3.1.7 UNPACKED LONGREAL ••
3.1.8 POINTER TO FIXED TYPES
3.1.9 POINTER TO STRING ••
3.1.10 POINTER TO SEQUENCE
3.1.11 POINTER TO PROCEDURE
3 .1 .12 UNPACKED SET ••
3.1.13 UNPACKED STRING
3.1.14 UNPACKED ARRAY •••
3.1.15 UNPACKED RECORD

3.2 OTHER TYPES •••••••
3.2.1 ADAPTABLE POINTERS ••••••••

3.2.1.1 Adaptable Array Pointer.
3.2.1.2 Adaptable String Pointer
3.2.1.3 Adaptable Sequence Pointer •••••
3.2.1.4 Adaptable Heap Pointer •
3.2.1.5 Adaptable Record ••••

3.2.2 BOUND VARIANT RECORD POINTERS ••
3.2.3 STORAGE TYPES • • • • • • • •••

3.2.3.1 Sequences •••••••••••
3.2.3.2 Heaps ••••••••
3.2.3.2.1 FREE BLOCKS ••••
3.2.3.2.2 ALLOCATED BLOCKS

3.2.4 CELLS •••••
3 .3 PACKED DATA TYPES ••••••
3.4 SUMMARY •••••••••••

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4.1 STORAGE LAYOUT OF A CYBIL-CC PROGRAM
4.2 REGISTER USAGE •••
4.3 LINKAGE WORD
4.4 STACK FRAME LAYOUT
4.5 CALLING SEQUENCES •

1

83/07 /12
REV: 1

1-1
1-1
1-1

2-1
2-1
2-2

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-9
3-9

3-10
3-10
3-10
3-12

4-1
4-1
4-1
4-2
4-3
4-3

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

4.5.1 PROCEDURE ENTRANCE CPROLOG)
4.5.2 PROCEDURE EXIT (EPILOG)
4.5.3 CALLING A PROCEDURE ••••••

4.6 PARAMETER PASSAGE • • • • • • •••
4.6.1 REFERENCE PARAMETERS ••••
4.6.2 VALUE PARAMETERS ••••••

4.7 RUN TIME LIBRARY •••••
4.7.1 MEMORY MANAGEMENT •••

4.7.1.1 Memory Management Categories
4.7.1.2 Stack Management ••••••••
4. 7 .1 .3 Default Heap Management •
4.7.1.4 User Heap Management
4.7.1.5 CMM Error Processing

4.7.2 I/O ••••••••••
4.7.3 SYSTEM DEPENDENT ACCESS

4.8 VARIABLES • • • • • • • •
4.8.1 VARIABLES IN SECTIONS
4.8.2 GATED VARIABLES •••
4.8.3 VARIABLE ALLOCATION
4.8.4 VARIABLE ALIGNMENT

4.9 STATEMENTS ••••••.•
4.9.1 CASE STATEMENTS •••

5.0 CYBIL-CP TYPE AND VARIABLE MAPPING
5.1 POINTERS ••••••••••••

5.1.1 ADAPTABLE POINTERS •••••
5.1.2 PROCEDURE POINTERS •••••
5.1.3 BOUND VARIANT RECORD POINTERS
5.1.4 POINTER ALIGNMENT. • ••••

5.2 INTEGERS ••••••
5.3 CHARACTERS ••••••••
5.4 ORDINALS •••••••••
5.5 SUBRANGES •••••••••

5.5.1 WITHIN INTEGER DOMAIN •
5.5.2 OUTSIDE INTEGER DOMAIN

5.6 BOOLEANS ••••
5. 7 REALS ••
5 .8 LONG REALS •
5.9 SETS ••
5 .10 STRINGS
5 .11 ARRAYS • •
5 .12 RECORDS
5.13 SEQUENCES ••••
5.14 HEAPS •••••

5.14.1 SYSTEM HEAP
5.14.2 USER HEAPS •

5.15 CELLS ••••••
5.16 SUMMARY FOR THE PCODE GENERATOR

6.0 CYBIL-CP RUN TIME ENVIRONMENT ••
6.1 MEMORY • • • • • • • • • • • • •

2

83/07/12
REV: 1

4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-7
4-7
4-7
4-7

5-1
5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-7
5-9
5-9

6-1
6-1

60457290 01

0
0

0

0
()

c '
0 I

0

0

()

0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.1.1 CODE AND LITERALS •••
6.1.2 STATIC STORAGE •
6.1.3 STACK HEAP AREA.

6.1.3.1 STACK FRAMES
6~1.3.1.1 FUNCTION RETURN VALUE •
6.1.3.2 ARGUMENT LIST •••••
6.1.3.2.1 FIXED SIZE PART •••
6.1.3.2.2 MARK STACK CONTROL WORD

6.1.4 HEAP ••••••
6 .1 .4 .1 System Heap • • • •
6.1.4.2 User Heap •••••

6.2 PARAMETER PASSAGE • • • •
6.2.1 REFERENCE PARAMETERS
6.2.2 VALUE PARAMETERS

6.3 VARIABLES • • • • • •••
6.3.1 VARIABLE ATTRIBUTES ••

6.3.1.1 Variables in Sections.
6.3.1.2 Read Attribute •
6.3.1.3 #Gate Attributes

6.3.2 VARIABLE ALLOCATION •
6.3.3 VARIABLE ALIGNMENT

6.4 EXTERNAL REFERENCES •
6.5 EXTERNAL NAMES • • • •
6.6 PROCEDURE REFERENCE ••
6.7 FUNCTION REFERENCE • • • • • •••
6.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

6.8.1 PROCEDURE CALL
6.9 PROLOG • • • • • • • • • • • • • • •
6.10 EPILOG ••••••••••••••••••••
6.11 RUN TIME LIBRARY ••••••••••••••

6.11.1 UNKNOWN AND/OR UNEQUAL LENGTH STRINGS
6.11.1.1 String Assignment •••••••••
6.11.1.2 String Comparison

7.0 EFFICIENCIES •••••••
7.1 SOURCE LEVEL EFFICIENCIES •

7 .1 .1 GENERAL • • • • • • • •
7.1.2 CC EFFICIENCIES ••••

7.2 COMPILATION EFFICIENCIES

8.0 IMPLEMENTATION LIMITATIONS
8.1 GENERAL •••••••••••
8.2 CC LIMITATIONS ••••••

9.0 COMPILER AND SPECIFICATION DEVIATIONS •
9.1 GENERAL • • • • • • • • •••
9.2 CC DEVIATIONS
9.3 CP DEVIATIONS •••••••••••••

3

83/07/12
REV: 1

6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-5
6-5
6-5
6-5
6-5
6-6
6-6
6-6
6-6
6-6
6-8
6-8
6-9
6-9
6-9
6-9

7-1
7-1
7-1
7-4
7-5

8-1
8-1
8-1

9-1
9-1
9-1
9-1

. 60457290 01

0
0

0
C\

J

c

0

0
()

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

1.0 APPLICABLE DOCUMENTS

1.0 APPLICABLE DOCUMENTS

1-1

83/07/12
REV: 1

The following documents should prove to be helpful in your
CYBIL development.

1.1 GENERAL

o CYBIL Language Specification CARH2298)

o This CYBIL Handbook CARH3078)

o CYBIL Formatter ERS CARH2619)

1.2 C170

o CYBIL I/0 ERS CARH2739)

o CYBIL Debugger ERS CARH3142)

o SES User Handbook CARH1833)

o SES Miscellaneous Routines Interface CSESD003)

60457290 01

0
0

['\.·
'I

/

()

0
0

1 C
-

0

0,
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

2.0 COMMON CYBIL COMPILER FRONT END

2.0 COMMON CYBIL COMPILER FRONT END

This section details the characteristics of
compile rs.

2.1 INLINE PROCEDURES IMPLEMENTATION

2-1

83/07/12
REV: 1

all CYBIL

The CYBIL Language Specification lists language considerations
for inline procedures. Listed below are specific features of the
inline procedure implementation:

o Local variable declarations in an inline procedure become
part of the calling procedure's stack frame.

o Formal parameters are treated as Local variable
declarations in the inline procedure. At the point of call
to an inline procedure the actual parameter is assigned to
the corresponding formal parameter local variable.
Reference parameters are accessed by assigning a pointer to
the actual parameter to the formal parameter Local
variable.

o When the actual parameter for a value parameter is of an
adaptable type or is a substring then the parameter is
treated as though it were a read-only reference parameter,
i.e. a Local copy of the parameter is not created. This
is necessary to allow type-fixing at execution time. A
restriction is imposed on adaptable array/record value
parameters that the actual parameter be aligned to a
machine addressable boundary.

o Nested calls to inline procedures are arbitrarily limited
to 5 Levels of nesting on the assumption that an
inappropriate amount of code expansion may be occurring
when the nesting Level becomes too great. Excessive call
nesting levels and recursive calls are considered errors
and terminate inline substitution.

o Source statements in an inline procedure body are not
listed at the point of call to an inline procedure.

o Inline procedures may be used with the interactive
debugger. The debugger considers an inline procedure call
expansion to be a series of statements on the same line as
the procedure call. Local variables declared in an inline
procedure may not be accessible directly by name following

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

2.0 COMMON CYBIL COMPILER FRONT END
2.1 INLINE PROCEDURES IMP~EMENTATION

2-2

83/07/12
REV: 1

an inline procedure call since the substitution process can
result in the creation of non-unique variable names.
Variable names in the calling procedure will always take
precedence for the debugger.

2.2 SOURCE LAYOUT CONSIDERATIONS

If a source text line contains non-blank characters beyond the
column specified for the right source margin then a 'I •
character string is inserted in the source listing line after the
right margin. This is done to indicate the end of the compiler's
scan should a source text line erroneously exceed the designated
right margin.

60457290 01

()
0

0 ,JY

. 0

c

0

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS

3.0 CYBIL-CC DATA MAPPINGS

3-1

83/07/12
REV: 1

The actual CYBER 60-bit word formats of each of the CYBER 170
CYBIL data types is described below. This information will provide
some insight into the amount of storage required for various CYBIL
data structures. This will allow the user to predict the storage
efficiency of his program. Unpacked data types provide for more
efficient data access at the expense of storage efficiency. Packed
data types provide for more efficient storage utilization at the
possible expense of access time and extra code. When data Cor a
field of data) is aligned it will be placed on a CYBER 60-bit word
boundary. Unused fields are not necessarily zeros and should not be
altered by the (assembly language) programmer.

3.1 UNPACKED BASIC TYPES

3.1.1 UNPACKED INTEGER

The unpacked integer format consists of one 60-bit word. The
integer value is limited to the rightmost 48 bits of the word.
Ones's complement data representation is used. Integer values are
therefore restricted to -<2**48 - 1> <= INTEGER <= (2**48 - 1> or
-281474976710655 <= INTEGER <= 281474976710655. In the diagram
below, SIGN indicates sign extension. This field will be all zero's
if the integer is positive and all one's if the integer is negative.

59 47 0

+------------+---+ I SIGN I INTEGER VALUE I
+------------+---+

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3 .1 .2 UNPACKED CHARACTER

3.1.2 UNPACKED CHARACTER

3-2

83/07/12
REV: 1

The unpacked character format consists of one 8-bit ASCII
character right justified in the rightmost 12 bits of one 60-bit
CYBER word. Bit positions 11 through 8 are always zero. The
remaining 48 bits of the word are unused. This format provides for
the most efficient data access of characters at the expense of
storage efficiency. The ASCII data representation is used. For
example, an unpacked character 'A' would be represented as
XXXXXXXXXXXXXXXX0101 (octal>, 65 (decimal). The X's indicate unused
bit positions.

59 11 0

+---+------------+
f /I I I I I I I I I UNDEFINED I I I I I I I I I I II CHARACTER I
+---+------------+
3.1.3 UNPACKED ORDINAL

An unpacked ordinal is represented as a positive integer value in
the rightmost bits of a 60-bit word. The integer value designates
the current ordinal value. The number of bits required to represent
an ordinal of N elements is: ceilingClog2CN)). For example, an
ordinal containing 10 decimal elements would require
ceilingClog2C10)) or 4 bits.

59 0

+---+------------+ I/ I I I I I I I I I UNDEFINED I I I I I I I I I I II VALUE
+---+------------+
3.1.4 UNPACKED BOOLEAN

An unpacked boolean type will occupy one 60-bit word. Only one
bit (the sign bit) is used. The other 59 bits are unused. A sign
bit of 1 indicates the boolean value true. A sign bit of 0 indicates
the boolean value false.

58 0

+-+--+ I I/ I I I I I I I I I I I UNDEFINED I I I I I I I I I I I I I I
+-+--+

60457290 01

0
0

/f~\

:'-=_)

,,~\

~j

~- \

~'c~j

0
0 '

c

0

c

0
0

3-3
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

3.0 CYBIL-CC DATA MAPPINGS
3.1.5 UNPACKED SUBRANGE

3.1.5 UNPACKED SUBRANGE

An unpacked subrange of any scalar type is represented in the same
manner as the scalar type of which it is a subrange.

3.1.6 UNPACKED REAL

The unpacked real format consists of one 60-bit word. The
mantissa is located in the right most 48 bits of the word. The sign
is located in bit 59, and the biased exponent occupies the next 11
bits. One's complement data representation is used. Real values are
limited in magnitude to the range of 6.2630*10**(-294) to 1.2650*10**
322, or zero.

59 47 0
+-+----------+---+ I SI EXPONENT MANTISSA
+-+----------+---+
3.1.7 UNPACKED LONGREAL

The unpacked real format consists of two adjacent 60-bit words.
The format of each word is the same as the format of a real number.
The first word contains the most-significant half of the mantissa,
the exponent and the sign of the number. The second word contains
the least-significant half of the mantissa, an exponent 48 less than
that in the first word, and the same sign as in the first word.
Longreal values are limited in magnitude to the range
6.2630*10**(-294) to 1.2650*10**322, or zero.

59 47 0
+-+----------+---+
ISIEXPONENT1 I UPPER MANTISSA
+-+----------+---+

59 47 0

+-+----------+---+
ISIEXPONENT2 I LOWER MANTISSA
+-+----------+---+

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3.1.8 POINTER TO FIXED TYPES

3.1.8 POINTER TO FIXED TYPES

3-4

83/07/12
REV: 1

Pointers to fixed types <excluding strings, fixable types,
procedure types and sequence types> occupy the rightmost 18 bits of a
60-bit word. For all pointer types, the NIL pointer is represented
as an 18 bit field with the rightmost 17 bits all ones. In the
specific example of the direct pointer to fixed types a NIL pointer
would have the data representation XXXXXXXXXXXXXX377777 octal where
the X's indicate unused bit positions.

59 17 0

+--+-------------------+
I/ I I I I I I I UNDEFINED I I I I I I I I I I POINTER I

+--+-------------------+
3.1.9 POINTER TO STRING

Pointers to strings are 18 bits long but have an additional 4 bit
"position" field to indicate which of the ten positions CPOS) in a
CYBER word contains the first character of the string. A string may
begin on any 12 bit boundary Cbit positions 59,47,35,23, or 11>. The
POS field will contain a value C0,2,4,6, or 8) indicating the
starting position of the string. For example, a POS value of 0
indicates that the string begins in the leftmost (bit 59) position of
the word pointed to.

59 21 17 0

+--------------------------------------+-----+-------------------+
I/ I I I I I I UNDEFINED I I I I I I I I POS I POINTER I

+--------------------------------------+-----+-------------------+
3.1.10 POINTER TO SEQUENCE

Pointers to sequences contain the pointer plus an additional
descriptor word. This de-scriptor word contains an offset to the next
available (AVAIL) location in the sequence and an offset to the top
(LIMIT) of the sequence.

60457290 01

0
0

;"(~

()

0
0

0

0

()

0

3-5
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07 /12

REV: 1

3.0 CYBIL-CC DATA MAPPINGS
3 .1 .10 POINTER TO SEQUENCE

59 17 0

+--+-------------------+ I/ I I I I I UNDEFINED I I I I I I I POINTER I
+-------------------------+------------------+-------------------+ I/ I I I UNDEFINED I I I II LIMIT AVAIL I
+-------------------------+------------------+-------------------+
I I
3.1.11 POINTER TO PROCEDURE

Pointers to procedures are 36 bits long. Two 18 bit pointers are
contained in the 36 bit field. One of the pointers points to the
code and the other pointer points to the environment (stack) of the
procedure. For the outermost procedures, the AEnvironment is equal
to zero.

59 35 17 0
+-------------------------+------------------+-------------------+ ,, I I I UNDEFINED I I I II AENVIRONMENT I ACODE I
+-------------------------+------------------+-------------------+
3.1.12 UNPACKED SET

An unpacked set will be left justified in the word or words it
occupies. One bit is required for each member in the set. A bit set
to one indicates that the set member is present. A zero bit
indicates the set member is absent. If all the bits associated with
a set are zero the representation is of an "empty set". For example,
a set of 75 members will occupy two 60-bit words C120 bits). The
leftmost 75 bits of the 120 bit field will be used to represent the
set. The maximum size allowed for a set is 32,768 elements.

59 0

+-+-+---+-+-+--+
I I . . . I I I I I I I I I I I I I UNDEFINED I I I I I I I I I I I
+-+-+---+-+-+--+
3.1.13 UNPACKED STRING

Unpacked strings will be 12 bits per character, five characters
per word, left justified in the word or words they occupy. The data
representation is the ASCII encoding C8 bits) right-justified within
a field of 12 bits.

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3.1.13 UNPACKED STRING

59 47 35 23 11

3-6

83/07/12
REV: 1

0

+------------+------------+------------+------------+------------+ I CHAR I CHAR CHAR CHAR I CHAR I
+------------+------------+------------+------------+------------+
3.1.14 UNPACKED ARRAY

An unpacked array is a contiguous list of aligned instances of its
component types. A two dimensional array is thought of as a one
dimensional array of components which are one dimensional arrays.
This structure is continued for multi-dimensional arrays. Storage
for the array is mapped such that the right-most (inner-most) array
is allocated contiguous storage locations. Considering the typical
two dimensional array consisting of "rows and columns" the data
mapping would be by rows. The maximum number of elements in an array
is 262~43. In general, there mut be sufficient storage to contain
the array.

3.1.15 UNPACKED RECORD

An unpacked record is a contiguous list of aligned fields.

3 • 2 OTHER TYPES

3.2.1 ADAPTABLE POINTERS

Pointers to adaptables are identical to pointers to the
corresponding non-adaptable type with the addition of descriptors
giving the length of the structures. In order to determine the size
of an adaptable pointer a scan is made of the target type and all its
contained types.

60457290 01

0
0

,1-----\

'~,,;

()
'(~'1 j

0
0

0

0

oi

()

0

3-7
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

3.0 CYBIL-CC DATA MAPPINGS
3.2.1 ADAPTABLE POINTERS.

59 21 17 0

+--------------------------------------+-----+----·---------------+
I/ I I I I I I I UNDEFINED I I I I I I I POS I POINTER
+--------------------------------------+-----+-------------------+ I DESCRIPTOR I
+--+

The POS field is used only for adaptable strings as described
above in the discussion on Direct Pointer to String.

3.2.1.1 Adaptable Array Pointer

The descriptor for an adaptable array is:

59 53 35 17 0
+------+------------------+------------------+-------------------+ I/ I I I ARRAY SIZE LOWER BOUND ELEMENT SIZE
+------+------------------+------------------+-------------------+

The ARRAY and ELEMENT SIZE fields are either both in bits, or both
in words. The value for the sizes are in bits when the array is
packed and is in words when the array is unpacked.

3.2.1.2 Adaptable String Pointer

A pointer to an adaptable string will have a descriptor word. The
descriptor will contain the Length of the adaptable string in 6 bit
quantities Ci .e., twice the number of characters) as· shown below:

59 11 0

+------------------------------------~--------------+------------+
I/ I I I I I I I I I UNDEFINED I I I I I I ·I I I I I LENGTH I
+---+------------+
3.2.1.3 Adaptable Sequence Pointer

A pointer to an adaptable sequence will have the same format as
the pointer to a fixed size sequence, as described above.

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3.2.1.4 Adaptable Heap Pointer

3.2.1.4 Adaptable Heap Pointer

3-8

83/07 /12
REV: 1

A pointer to an adaptable heap will have one descriptor word.
This word will contain the total size of the space allocated Cin
words) as shown below:

59 17 o,
+--+-------------------+ I/ I I I I I I I UNDEFINED I I I I I I I I I I SIZE I
+--+-------------------+
3.2.1.5 Adaptable Record

An adaptable record may have at most one adaptable field. A
pointer to an adaptable record requires a descriptor word for the
adaptable field. Since the adaptable field must be one of the above
types, the descriptor will be as described above.

3.2.2 BOUND VARIANT RECORD POINTERS

A pointer to a bound variant record will consist of a pointer to
the record followed by a descriptor word which contains the size of
the particular bound variant record in use.

59 17 0

+--+-------------------+ I/ I I I I I I I UNDEFINED I I I I I I I I I I POINTER I
+--+-------------------+ I/ I I I I I I I UNDEFINED I I I I I I I I I I SIZE I
+--+-------------------+
3.2.3 STORAGE TYPES

The amount of storage required for any user declared storage type
(sequence or heap) may be determined by summing the #SIZE of each
span plus, in the case of user heaps, some conrol information.·

3.2.3.1 Sequences

Access to a sequence is through the control information associated

60457290 01

0
0

0
()

c
0 \

0

0

0
0

3-9
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

3.0 CYBIL-CC DATA MAPPINGS
3.2.3.1 Sequences

with the pointer to sequence. The Layout of the sequence is shown
below:

59 0
+--+

STORAGE FOR

SEQUENCE

+--+
3.2.3.2 Heaps

User declared heap storage must be managed differently than th~
sequence because explicit programmer written ALLOCATE's and FREE's
may be executed. The heap, in general, consists of 1) a header word,
2) free areas (blocks) which are Linked together (forward and
backward) and 3) areas in use as a result of explicit ALLOCATE
statement Cs>. For the heap data type, one additional header word is
added for each repetition count for each span specified. The heap
with its header word is illustrated below:

59 54 35 17 0
+------+------------------+------------------+-------------------+ I/ I I I I I UNDEFINED I II AVAIL SIZE .FREE BLOCK
+------+------------------+------------------+-------------------+

STORAGE FOR
FREE BLOCKS

AND USER
ALLOCATED DATA

+--+
3.2.3.2.1 FREE BLOCKS

The free blocks are a circular forward and backward Linked List.
Free blocks are condensed each time the user code executes a FREE
statement referencing this heap. The storage map of a typical free
block is shown below:

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3.2.3.2.1 FREE BLOCKS

59 54 35 17

3-10

83/07/12
REV: 1

0

+------+------------------+------------------+-------------------+ I/ I I I FORWARD LINK BACKWARD LINK BLOCK SIZE
+------+------------------+------------------+-------------------+
I I
I FREE BLOCK I
I I
+--+
3.2.3.2.2 ALLOCATED BLOCKS

When the CYBIL program executes an ALLOCATE statement the free
block chain is re-arranged to make room for the allocated space in
the heap. For each ALLOCATE a one word header is added to the space
to maintain the size of the allocated area. This size information is
used to verify subsequent FREE statements. The format of an
allocated area in the user declared heap is:

59 17 0

+--+-------------------+ I/ I I I I I I UNDEFINED I I I I I I I I I I I BLOCK SIZE
+--+-------------------+
I I
I ALLOCATED SPACE I
I I
+--+
3.2.4 CELLS

A cell is allocated a word and is always aligned.

3 .3 PACKED DATA TYPES

Packed data types are provided to allow the programmer to conserve
storage space at the possible expense of access time. The choice is
easily made by the programmer by si mp Ly using the 'PACKED' attribute
in the declaration of the structured type.

A packed integer occupies a 60 bit word.

A packed character is 8 bits <ASCII encoded).

A packed boolean is 1 bit.

A packed set occupies as many bits as there are elements in the

60457290 01

0
0

/,--~

:::~"-j

()
0

0
0 \

'

0

0

0

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3.3 PACKED DATA TYPES

set.

3-11

83/07/12
REV: 1

A packed ordinal of N elements is as long as the packed subrange
O •• N-1.

A packed subrange of any type except integer is as long as the
packed type of which it is a subrange.

A packed subrange of integers a •• b has
follows: If a is >= O, then
1+ceilingClog2CmaxCabs(a),b)+1)).

A packed real occupies a 60 bit word.

its length computed as
ceilingClog2Cb+1>>, else

A packed longreal occupies two consecutive 60 bit words.

A packed string is the same as an unpacked string except that it
is aligned on a 12 bit boundary instead of a word boundary.

A packed array is a contiguous list of unaligned instances of its
packed component type with the length of the component type increased
by the smallest number of bits that will make the new length an even
divisor of 60 or a multiple of 60 bits; such that the array will fit
in an integral number of 60 bit words.

The length of a packed record is dependent upon the length and
alignment of its fields. The representation of a packed record is
independent of the context in which the packed record is used. In
this way, all instances of the packed record will have the same
length and alignment whether they be variables, fields in a larger
record, elements of an array, etc. When the ALIGNED clause is used
on a field within a packed record, the field will be aligned to the
next word boundary. ,

A packed pointer to fixed type requires 18 bits. A packed pointer
to an adaptable type would require 120 bits. A packed pointer to
procedure requires 36 bits.

Storage types Cheaps and sequences) require as much space as the
sum of the space requirements for each span as if it were defined as
an unpacked array.

A packed cell is allocated a word and is always aligned.

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

3.0 CYBIL-CC DATA MAPPINGS
3.4 SUMMARY

3.4 SUMMARY

ALIGNMENT
+------------------------+

TYPE SIZE I UNPACKED I PACKED
+---------------+------------+----------+-------------+
I BOOLEAN I bit I LJ word I bit I

+---------------+------------+----------+-------------+
I INTEGER I word I word I word I

+---------------+------------+----------+-------------+
I SUBRANGE I as needed I RJ word I bit I

+---------------+------------+----------+-------------+
I ORDINAL I as needed I RJ word I bit I

+---------------+------------+----------+-------------+
I CHARACTER I 12 bits/ I RJ word I bit I
I I a bi ts . I I I

+---------------+------------+----------+-------------+
I REAL I word I word I word I

+---------------+------------+----------+-------------+
I LONGREAL I 2 words I word I word I

+---------------+------------+----------+-------------+ I STRING I n * 12 bitsl LJ word I 12 bit I
+---------------+------------+----------+-------------+
I SET I as needed I LJ word I bit I

+---------------+------------+----------+-------------+
I ARRAY/RECORD I component I word I unaligned I
I I dependent I I components I

+---------------+------------+----------+-------------+
I FIXED POINTER I 18 bits I RJ word I bit I

+---------------+------------+----------+-------------+
I CELL I word I word I word
+---------------+------------+----------+-------------+

3-12

83/07/12
REV: 1

Note: The abbreviations LJ and RJ in the above table stand for left
and right justification.

60457290 01

0
0

()
0

0
0

0

0

O·

0
0

4-1
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

4.0 CYBIL-CC RUNTIME ENVIRONMENT

4.0 CYBIL-CC RUNTIME ENVIRONMENT

4.1 STORAGE LAYOUT OF A CYBIL-CC PROGRAM

The first 101(8) words are (as always on CYBER) the job
communication area, which is described in the appropriate reference
manual. The following storage area comprises the static part (code
and static data) of the program. Usually it starts with the modules
loaded from the load fileCs> Cin the order of the LOAD requests),
followed by the modules from the library. The following storage
area, the dynamic area starts immediately after the static area and
is controlled by the memory manager. It contains:

o The stack.
o Dynamically allocated memory.

The dynamic area is capable of expanding and, if necessary, the
memory manager incrementally extends the field length up to the
system permitted maximum.

4.2 REGISTER USAGE

BO = 0
B1 = 1
B2 = dynamic link - callers stack frame pointer <top of stack)
B3 = stack segment limit
B4 = static link - set before a nested procedure is called
BS =pointer to extended parameter list

X1
X2
X3
X4
XS

last 5 parameters passed to callee, starting with X1

X1 = on return from callee must contain the linkage word
X7 = linkage word passed to callee

X6 = The function result if the value is one word or less;
otherwise it is a pointer to th~ function value and the
actual value is built in the callee's stack frame. The
caller must save it before any other stack activity
(procedure/function calls, or PUSH statements) takes place.

60457290 01

4-2
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4 .3 LINKAGE WORD

4 .3 LINKAGE WORD

1 5 18 18 18
+---------+-----+------------+-------+-------+
f Exceptionf/////I Potential fDynamiclReturn I
I Return l/////ICaller Stackl Link IAddressl
I I // // / I Poi nt er I I I
+---------+-----+------------+-------+-------+
The linkage word is identical to the first word of the stack Cthe

stack header>, which if expressed in CYBIL syntax would be:

TYPE
stack header: PACKED RECORD

exceptional return: boolean,
filler: O •• fFC16>,
potential caller stkp: pointer,
dynamic Link: pointer,
return_address: address,
RECEND;

The meaning of the fields is as follows:

EXCEPTIONAL RETURN:

POTENTIAL CALLER STKP:

DYNAMIC LINK:

RETURN ADDRESS:

This field is set whenever after the
procedure received control, a new stack
segment was acquired. It is not used by
the stack manager, but is meant as an aid
for post mortem processors and
programmers. Not normally used.

This field is set to the dynamic
predecessor's stack frame pointer if the
dynamic predecessor has multiple stack
frames. Otherwise, it is zero. Not
normally used.

This field contains whatever the current
procedure found in 82 when it received
control (pointer to caller's stack
frame).

Address to which the epilog will go to.

60457290 01

0
0

,n I'- y

0

c
0

0

0

0

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4.4 STACK FRAME LAYOUT

4.4 STACK FRAME LAYOUT

SF + 0 Will contain the linkage word.

4-3

83/07/12
REV: 1

SF + 1 Will normally be the start of the user's data in the
stack frame if coding a COMPASS subroutine. Internally
a CYBIL procedure starts the user's data at SF + 5.

4.5 CALLING SEQUENCES

The interfaces described in this section are available on common
deck ZPXIDEF which is availabe through the CYBCCMN parameter on SES
procedure GENCOMP.

4.5.1 PROCEDURE ENTRANCE CPROLOG)

increase field length MORE
START

RJ
sxo
LXO
8X6
S87
S82
GE
SA6

=XCIL#SPE
82 caller's stack frame pointer to XO
18
X7+XO
size of stack
82-87
83 ,82,MORE
B2

merge into linkage word
frame needed

move stack frame pointer
ch eek if room
store linkage info in stack

4.5.2 PROCEDURE EXIT CEPILOG)

RETLA8 BSS
SA1
SB7
SB2
JP

0
82 load linkage word
X1 return address to B7
B2+size of stack frame needed
87

4.5.3 CALLING A PROCEDURE

1) Set up parameters in X1 ••• X5 plus BS if necessary.
2> Set up linkage word in X7.
3) Use an EQ instruction to jump to the procedure in mind. Must

not use a return jump.

60457290 01

4-4
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

83/07/12
CYBIL Handbook REV: 1

--~------------------~---~
4.0 CYBIL-CC RUNTIME ENVIRONMENT
4.6 PARAMETER PASSAGE

4.6 PARAMETER PASSAGE

4.6.1 REFERENCE PARAMETERS

In the case of reference parameters a pointer to the actual data
is generated and the pointer is passed as the parameter.

4.6.2 VALUE PARAMETERS

In the case of "big" va Lue parameters (i.e., larger than 1 word in
length) the parameter list contains a pointer to the actual parameter
and the callee's prolog copies the parameter to the callee's stack
frame.

If the parameter length is less than or equal to a word then it is
a candidate for passing via one of the 5 X registers as described
above. If all 5 X registers are all ready in use, passing other
value parameters, then the parameter is included in the extended
parameter list entries. In either case it is a copy of the actual
data.

Remember that adaptable pointers are bigger than one word in
length and consequently when they are passed' as a value parameter
they are considered a "big" parameter.

4.7 RUN TIME' LIBRARY

4.7.1 MEMORY MANAGEMENT

4.7.1.1 Memory Management Categories

Three categories of memory management occur for CYBIL programs:

1) Run Time Stack;
2) befault Heap; and
3) User Heap.

The run time stack and default heap managers use blocks of memory
obtained through run time library calls to the Common- Memory Manager
(CMM). User heaps occupy memory designated by the CYBIL program and
are managed entirely by CYBIL run time routines.

60457290 01

0
0

n ,_ /

0

0 '

0

0

0

c

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4.7.1.2 Stack Management

4.7.1.2 Stack Management

4-5

83/07/12
REV: 1

Most of the stack management is done in the compiler generated
code. Only under exceptional conditions will run time library
routines be invoked. Each procedure activation has associated with
it a stackframe, which is used to keep local variables, compiler
generated temporaries, and procedure linkage information. The
stackframe consists of several fragments:

1) The base fragment, which is acquired during the prolog, and

2) The extension fragments, which are acquired during the execution
of the procedure body through PUSH .statements or through space
required to copy adaptable value parameters. At procedure
termination, the epilog releases the activation's stack frame,
possibly to be reused on later procedure activations.

This dynamic behavior implies that the run time stack must be part
of the dynamic memory area; i.e., must coexist with the memory
manager.

The model used by CYBIL is a compromise between efficiency and
flexibility. It uses stack segments, each of which accommodates at
least one, but usually many, fragments. Within a stack segment, the
acquisition of a new fragment is done by inline code, unless the
current segment is exhausted where upon a stack management routine is
called to obtain a new stack segment from the memory manager.
Registers B2 and B3 are reserved throughout program execution to
maintain the state of the stack.

The default stack segment size is 3000(8) words which according to
our experience, is normally enough. In the case where additional
memory is required additional stack segments are obtained with an
incremental size of 2000(8) until adequate memory is obtained.

4.7.1.3 Default Heap Management

Memory Management for the default heap is done by calls to CMM
from a run time routine when an allocate or free request is made. In
some cases the run time interface for allocate may be able to release
unused stack segments to become available for the default heap. The
run time interface allows CMM to increase field length as necessary
but does not allow CMM to reduce field length, in order to curb the
potential for a job's field length to change up and down many times
during execution. Apart from the cases mentioned here, however,

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4. 7 .1 .3 Defau Lt Heap Management

4-6

83/07/12
REV: 1

default heap management is under the control of Cftlt1 and is
essentially transparent to the CYBIL program.

4. 7 .1 .4 User Heap Management

The user heap manager manages contiguous storage areas Cheaps)
which are organized into memory blocks. Each block is either free or

allocated. The free blocks are linked to form a free block""Cii"ain,
whose start is identified by a free chain pointer. Initially, each
heap contains one free block.

An allocate request causes the memory manager to search the
specified heap's free block chain for a block that is sufficiently
big. Depending on the found block's excess size, either the whole
block or a sufficiently large part of it is returned to the caller
Cin the latter case the remainder is removed from the block and
inserted Cas a new free block) into the free block chajn). If it is
impossible to allocate a block of the requested size a nil pointer
value is returned for the request.

A free reguest causes a block to be inserted into the free block
chain of a heap. In order to reduce memory fragementation, it is
merged immediately with adjacent free blocks Cif they exist).

4.7.1.5 CMM Error Processing

The CYBIL run time interface to CMM traps any fatal errors
detected by CMM. If the error condition is no more memory available
then a nil pointer is returned for the allocate call. For all other
other error conditions the job step is aborted with the dayfile
message •- FATAL CMM ERROR'. When the job is aborted register X1
contains the CMM status word. See the Cftlt1 Reference Manual CPub.
No. 60499200) section on own-code error processing for a description
of the CMM status word.

4.7 .2 I/O

The CYBIL I/O utilities are available as part of the run time
system contained on CYBCLIB. The I/O interfaces are described in
document ARH2739 and supported via common decks on CYBCCMN in the SES
catalog.

60457290 01

0
0

0
()

0
0

0

0

0

()

0'

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4.7M3 SYSTEM DEPENDENT ACCESS

4.7.3 SYSTEM DEPENDENT ACCESS

4-7

83/07/12
REV: 1

A set of CYBIL callable routines are available and described in
the SES document: ERS for Miscellaneous Routines Interface SESD003.

4 .8 VARIABLES

4.8.1 VARIABLES IN SECTIONS

Using the section attribute on a variable has no effect on the
variable other than to assure its residence with the static
variables.

4.8.2 GATED VARIABLES

The #GATE attribute is ignored on both variables and procedures.

4.8.3 VARIABLE ALLOCATION

Space for variables is allocated in the order in which they occur
in the input stream. No reordering is done. If a variable is not
referenced, no space is reserved.

4.8.4 VARIABLE ALIGNMENT

The <offset> mod <base> alignment feature of the language is
ignored. Quoting any combination of alignments will always result in
word alignment.

4.9 STATEMENTS

This section describes what may be
implementations of certain CYBIL statements.

4.9.1 CASE STATEMENTS

less than obvious

Alternate code is generated for case statements depending on the
density of selection specs. The "span" of selection values is equal
to the highest value found in a sellction spec minus the lowest value
found in a selection spec, plus one. This is the number of words

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

4.0 CYBIL-CC RUNTIME ENVIRONMENT
4.9.1 CASE STATEMENTS

4-8

83/07/12
REV: 1

that would be needed in a jump table, with one entry per word. A
series of conditional jumps requires two words per selection spec
Corte test against each bound). The CC code generator picks the
method that will result in less code: if the span of selection values
is less than twice the number of selection specs then a jump table is
generated, otherwise, a series of conditional jumps is generated. If
a conditional jump sequence is being generated and there is 9 or more
selection specs present a "midpoint label" is generated to bisect the
conditional jump sequence.

60457290 01

0
0

~

\~'-. _ _,)

,,./-- ·,\

l'.\.,,,r/

0
()

0
0 I

'

c

0 ,
'

c,

()

0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPPING

5.0 CYBIL-CP TYPE AND VARIABLE MAPPING

5-1

83/07/12
REV: 1

The Pcode data formats for each of the supported CYBIL data types is
described in the following sections. These data mappings are
compatible with the UCSD version IV.O format.

The Pcode interpreter supports three basic data types as follows:

o Bits
o Bytes CB bits)
o Words C16 bits)

Integers are represented in two's complement form.

Quoting any combination of the CYBIL alignment attribute will result
in word alignment.

5.1 POINTERS

A pointer consists of an address field of 2 bytes and, for certain
pointer types, a descriptor. The address field contains a 16-bit
address of the first byte of the object Cdata or procedure).

The value of the nil data pointer is constructed via the LDCN pcode
instruction whose normal value is:

0001 (16)

The address field for a nil procedure pointer is described in the
paragraph on procedure pointers.

With the exception of pointers to string and pointers to sequences,
pointers to fixed size data objects consist of the address field
only.

A pointer to string consists of an even, 2-byte address field
followed by a 2-byte field indicating the starting byte offset of the
possible substring. A value of zero indicates the first character
position of the string and the bytes are numbered consecutively.

A pointer to a sequence consists of the 2-byte address field followed
by 2 2-byte fields indicating the size of the sequence in words, and
the word offset to the next available position in the sequence.

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPP~NG
5.1.1 ADAPTABLE POINTERS

5.1.1 ADAPTABLE POINTERS

5-2

83/07/12
REV: 1

Adaptable pointers are identical to pointers to the corresponding
fixed type with the exception that the pointer consists of the
address field and a descriptor containing information such as the
size of the structure.

An adaptable string pointer consists of the 2-byte address field,
followed by a 2-byte position indicator, followed by a 2-byte size
field indicating the length of the string in bytes.

An adaptable array pointer consists of the 2-byte address field
followed by 3 2-byte fields indicating the array size, the lower
bound and the upper bound. The value for the array size is in words
independent of packing.

An adaptable sequence pointer consists of the 2-byte address field
followed by 2 2-byte fields indicating the size of the sequence in
words, and the word offset to the next available position in the
sequence.

An adaptable heap pointer consists of the 2-byte address field
followed by a 2-byte size field containing the size of the heap in
words.

An adaptable record pointer consists of the 2-byte address field
followed by one of the above descriptors depending on the adaptable
field of the record. Thus, if the adaptable field is a string, the
adaptable record pointer consists of a 2-byte address field, followed
by a 2-byte position indicator, followed by a 2-byte size field
indicating the length of the string in bytes.

5.1.2 PROCEDURE POINTERS

A procedure pointer consists of a 2-byte field
procedure number, followed by a 2-byte pointer
followed by a 2-byte static link.

containing the
to E_rec field,

A level 0 procedure does not require a static link. Therefore, the
nil data pointer,is used.

For a nil procedure pointer, the address field contains the address
of a run time library procedure which handles the call as an error,
and the static link field contains a nil data pointer.

60457290 01

0
0

0

n.! _ y

0
0

c

0 .
I

0

0
~
~

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPPING
5.1.3 BOUND VARIANT RECORD POINTERS

5.1.3 BOUND VARIANT RECORD POINTERS

5-3

83/07/12
REV: 1

A bound variant record pointer consists of the 2-byte address field
followed by a 2-byte size field, containing the size of the record in
words.

5.1.4 POINTER ALIGNMENT

All pointer types are word aligned.

5.2 INTEGERS

Integer types are allocated 16 bits.

An unpacked integer type is word aligned.

A packed integer type is word aligned.

An integer variable is mapped as an unpacked integer type.

5.3 CHARACTERS

An unpacked character type is allocated 16 bits and is right
justified on a word boundary.

A packed character type is allocated 8 bits and is bit aligned.

A character variable is mapped as an unpacked character type.

5.4 ORDINALS

Ordinal types are mapped as the integer subrange O •• n-1, where n is
the number of elements in the ordinal type.

5.5 SUBRANGES

5.5.1 WITHIN INTEGER DOMAIN

An unpacked integer subrange type is allocated a word C16 bits) and
is word aligned.

A packed subrange type, a •• b, with a negative is allocated and

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPP~NG
5 .5 .1 WITHIN' INTEGER DOMAIN

5-4

83/07112
REV: 1

aligned as an unpacked integer subrange type. If a is non-negative
then it is bit aligned and it has its allocated bit length, L,
computed as fQllows:

L:= CEILING CLOG2Cb+1))

A subrange variable is mapped as an unpacked subrange type.

5.5.2 OUTSIDE INTEGER DOMAIN

Subranges of integer type can encompass the range -32768 32767.
For these large subranges, the implementation for packed will be the
same as that for unpacked. This requires a mini mum of 3 words, the
first reserved for sign, the remaining to contain four digits per
word, four bits per digit.

For the subrange a •• b, let
n := number of digits C max Cabs C a >, abs C b)) >

then the number of data words required, would be:
n #words

5 •• 8 3
9 •• 12 4

13 •• 16 5

The internal representation of long subranges is as binary integers.

5 .6 BOOLEANS

An unpacked boolean type is allocated 16 bits right justified on a
word boundary.

A packed boolean type is allocated 1 bit and is bit aligned.

A boolean variable is mapped as an unpacked boolean type.

The internal value used for FALSE is zero and for TRUE is one.

5.7 REALS

Real types are allocated 32 bits.

An unpacked real type is word ali.gned.

A packed real type is word aligned.

A real variable is mapped as an unpacked real type.

60457290 01

0
0

0
0

0 I

0 .

c

0

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPPING
5.7 REALS

5-5

83/07/12
REV: 1

See the UCSD P-system Internal Architecture Guide, page 14, for the
internal representation of real numbers.

5 .8 LONG REALS

Treated the same as reals.

5.9 SETS

The number of contiguous bits required to represent a set is the
number of elements in the base type of the associated set type. The
rightmost bit represents the first element, the next bit represents
the second element, etc.

An unpacked set type is allocated a field of enough words to contain
the set elements. The set field is word aligned.

Example -
TYPE ~,

S1 = SET 0 F 150 •• 156;
VAR

A: S1;

Set A resides as follows:

15 0
+---+

n+OI l 156l 155l154l 153l152l 151l150I
+---+

A packed set type is mapped as an unpacked set type.

A set variable is mapped as an unpacked set type.

The maximum size allowed for a set is 4079 elements.

5.10 STRINGS

A string type is allocated the same number of bytes as there are
characters in the string.

An unpacked string type is word aligned and occupies an integral

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPPING
5.10 STRINGS .

number of words. Any filler byte is zero.

5-6

83/07/12
REV: 1

A packed string type is word aligned and occupies an integral number
of words.

A string variable is mapped as an unpacked string type.

The maximum length of a string is limited to 32767 characters.

In many respects a string is represented as a packed array of
character. String constants reside in the constant pool with the odd
character positions occupying the lower portion of each word. The
even character positions occupy the upper portion of each word.

5 .11 ARRAYS

An unpacked array type is a contiguous list of aligned instances of
its component type. The array is aligned on a word boundary and
occupies an integral number of words.

A packed array type is a contiguous list of unaligned instances of
its component type with the restriction that the component type can
not cross word boundaries. The array is aligned on its first element
and occupies as many bits as needed.

An array variable is mapped as an unpacked array type.

In general, array sizes are limited by storage availability.

5 .12 RECORDS

An unpacked record type is a contiguous list of aligned fields. It
is aligned on a word boundary, and occupies an integral number of
words.

A packed record type is a contiguous list of unaligned fields with
the restriction that a component field can not cross word boundaries.
It is aligned on its first field, and occupies as many bits as
needed.

A record variable is mapped as an unpacked record type.

60457290 01

0
0

,(I\

(,.../'/

c~
()

0 I

0

o.

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPP.ING
5 .13 SEQUENCES

5 .13 SEQUENCES

5-7

83/07/12
REV: 1

A sequence type consists of the data area required to contain the
span(s) requested by the user. A sequence type is always word
aligned, and occupies an integral number of words.

5.14 HEAPS

5.14.1 SYSTEM HEAP

The system heap is as described in the UCSD manuals.

5.14.2 USER HEAPS

A user heap consists of a Free Chain Header and storage for Allocated
Blocks and Free Blocks.

An Allocated Block consists of an Allocated Block Header followed by
storage for user data.

A Free Block consists of a Free Block Header followed by storage
which is available for use.

A common format is used for all 3 headers as follows:

15 0
+--+---------------------+
Is I SIZE
+--+---------------------+ I FORWARD_FREE_LINK I
+------------------------+ I BACKWARD_LINK I
+------------------------+ I FORWARD LINK I
+------------------------+

The field, S, indicates the status of the block, AVAILABLE or USED.

The CYBIL description of the common header format is as follows:

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPP.ING
5.14.2 USER HEAPS

BLOCK HEADER = PACKED RECORD
BLOCK STATUS: CAVAILABLE,USED),
SIZE :-0 •• 7FFFC16),
FORWARD FREE LINK: O •• OFFFFC16>,
BACKWARD LINK: 0 •• O FFFF C16),
FORWARD_LINK: O •• OFFFFC16>,

RECEND;

For the Free Chain Header, the fields are as follows:

BLOCK STATUS: Set to AVAILABLE
SIZE:- Size of heap
FORWARD FREE LINK: Link to Free Block.
BACKWARD LINK: 0
FORWARD LINK: 0

For the Allocated Block Header, the fields are as follows:

BLOCK STATUS: Set to USED.
SIZE: Size of block.
FORWARD FREE LINK: Not used
BACKWARD LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

For the Free Block Header, the fields are as follows:

BLOCK STATUS: Set to AVAILABLE
SIZE:- Size of Block
FORWARD FREE LINK: Link to succeeding Free Block.
BACKWARD LINK: Link to preceeding block
FORWARD_LINK: Link to succeeding block

5-8

83/07/12
REV: 1

Initially, a user heap consists of the Free Chain Header and a Free
Block. Typically, an ALLOCATE request is made causing the Free Block
to be divided into a Free Block and an Allocated Block.

Adjacent free blocks are always combined as part of FREE request
processing.

The amount of storage allocated for a user heap is the sum of the
following:

o 8 bytes for the Free Chain Header
o 8 times the repetition count for each span specified Cin order

to provide for block headers)
o sum of the spans specified

60457290 01

0
0

0

()

0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

5.0 CYBIL-CP TYPE AND VARIABLE MAPPlNG
5.15 CELLS

5.15 CELLS

A cell type is allocated 16 bits and is always word aligned.

5.16 SUMMARY FOR THE PCODE GENERATOR

+-----------+---------------------+----~--------------+
I I UNPACKED I PACKED I
+-----------+-----------+---------+-----------+-------+
I TYPE I ALIGN I SIZE I ALIGN I SIZE
+-----------+-----------+---------+-----------+-------+

BOOLEAN word I word bit bit
INTEGER word I word word word
SUBRANGE word I word bit bits

ORDINAL
CHARACTER
STRING
SET
ARRAY
RECORD
POINTER
CELL

word I long
word I word
word I word
word I words
word I words
word I words
word I words
word I words
word I word

bit
bit
word
word
word
word
word
word

bits
byte
bytes
words
words
words
words
word

+-----------+-----------+---------+-----------+-------+

5-9

83/07/12
REV: 1

60457290 01

0
()

-!\
/: I

\~_j

(-)_·_
' l

0

0
0

0 .'

0

()
()

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT

6.0 CYBIL-CP RUN TIME ENVIRONMENT

6-1

83/07/12
REV: 1

The instructions generated by the CYBIL Pcode generator are per the
UCSD version IV.O P-system.

6.1 MEMORY

With regard to memory, a CYBIL program has the following parts:

o Code and Literals
o Static Storage
o Stack Heap Area

6.1.1 CODE AND LITERALS

Program counter relative addressing is used to refer to code and
literals except for the following:

o Pointers to procedures
o Calls to external procedures

For the above, full 16-bit addresses are used.

6.1.2 STATIC STORAGE

The lifetime of static variables is the life of the program
execution.

6.1.3 STACK HEAP AREA

The Stack Heap area is a storage area for the stack and the system
heap. The stack grows from high numbered locations to low. The
system heap grows from low numbered locations to high. If a
collision occurs, the program aborts.

6.1.3.1 STACK FRAMES

The stack frame consists of four parts ordered from high addresses to
low:

Function return value (optional)

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6 .1 .3 .1 STACK FRAMES

- Argument list (optional)

6-2

83/07/12
REV: 1

Fixed sized part containing all automatic and implied, local
variables and fixed local copies of non-scalar, value
parameters Coptiona L>

- Mark Stack Control Word CMSCW) provided and manipulated by the
Pcode interpreter during call and RPU Pcode interpretations.

The first two parts are pushed onto the operand stack as the call is
being formed. The next part and the MSCW is placed onto the stack by
the interpreter as part of the call interpretation. The RPU (return>
instruction causes the discarding of all but the optional ·return
value.

6.1.3.1.1 FUNCTION RETURN VALUE

A scalar size operand normally. For functions that provide a pointer
value requiring a descriptor (adaptable, bound variant), the Pcode
calling/returning sequence may have as many as three words of
returning value. For functions returning large integer subranges,
the value may require four to six words.

6.1.3.2 ARGUMENT LIST

Each actual parameter is represented in the parameter list as a value
or a pointer. The pointer may include descriptor information for
adaptable and bound variant formal. parameters.

Adaptable parameters may be declared such that not all bounds and
size information is known at compile time. In this case the compiler
allocates a type descriptor which contains the result of the
calculation of all variable bounds, and a variable descriptor which
contains information to locate the base address of the variable bound
part of the automatic stack. These descriptors are in the argument
list of the stack frame.

6.1.3.2.1 FIXED SIZE PART

The Fixed
directly.

Size Part contains data which the procedure may access
The Fixed Size Part contains the following:

- Automatic Variables

- Value Parameters

60457290 01

0
0

1,r-\
i.~'

0

0
0

0

c

0

()
()

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.1o3.2.1 FIXED SIZE PART

- Workspace

6-3

83/07/12
REV: 1

Automatic variables and value parameters may be declared such that
all bounds and size information is known at compile time. In this
case, the required storage is allocated from the Fixed Size Part of
the stack frame.

6.1.3.2.2 MARK STACK CONTROL WORD

Five full words providing:

- MSSTAT - pointer to the activation record of the lexical
parent.

- MSDYN - pointer to the activation record of the caller.

- MSIPC - seg-relative byte pointer to point of call in the
caller.

- MSENV - E_Rec pointer of the caller.

- MSPROC - procedure number of caller.

6.1.4 HEAP

Memory management for the system heap and user heaps is done via
calls to standard run time routines.

6.1.4.1 System Heap

To allocate space on the system heap a procedure call of the form:

SYSALLOC C pointer _to_type, number _of _words)

is generated. To de-allocate space on the system heap a call of the
form:

VARDISPOSE C pointer_to_type, number_of_words >

is generated. The value of NIL is assigned to the variable
pointer _to_type. _

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.1~4.2 User Heap

6.1.4.2 User Heap

To allocate space on the user heap a call of the form:

6-4

83/07/12
REV: 1

CYPSALLOCATE IN USER HEAP(pointer to type,number of words,
pointer _to_user:)eap) - - - -

is generated. The result of the call is a pointer that has the
address of the first location allocated in the user heap.

To de-allocate space on a user heap a call of the form:

CYPSFREE_IN_USER_HEAP(poi nter _to_type,poi nter_to_user _heap)

is generated. The value of NIL is assigned to the reference
parameter pointer _to_type.

T~ reset a user heap a call of the form:

CYPSRESET_USER_HEAPCpoi nter _to_user_heap: .. HEAP(•))

i s gene rat ed.

6.2 PARAMETER PASSAGE

6.2.1 REFERENtE PARAMETERS

For a reference parameter, a pointer to the data is passed as the
parameter.

6.2.2 VALUE PARAMETERS

There are two styles of passing value parameters. Scalar types and
sets are passed by copying the value of the variable onto the stack.

Other structured types are passed by pushing the address of the
structure. In the prolog of the called procedure, the structure is
copied into the lo~al data area.

In order to preserve the string pointer structure (pointer/offset>,
string constants, when appearing as the actual parameter will be
copied into the caller's local storage as part of the call.

Adaptable value parameters are passed as
parameters. This is done because there is no

if they were reference
mechanism to "PUSH"

60457290 01

0
0

()
()

0
c '

c

0

0

0
0

6-5
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.2.2 VALUE PARAMETERS

stack space.

6.3 VARIABLES

6.3.1 VARIABLE ATTRIBUTES

6.3.1.1 Variables in Sections

Using the section attribute on a
variable other than to assure
variables.

6.3.1.2 Read Attribute

83/07/12
REV: 1

variable has no effect
its residence with the

on the
static

The READ attribute, when associated with a variable, causes compile
time checking of access to the variable. No provision for execution
time checking is made.

6.3.1.3 #Gate Attributes

The #GATE attribute is ignored.

6.3.2 VARIABLE ALLOCATION

Space for variables is allocated in the order in which they occur in
the input stream. No reordering is done other than allocating space
in the stack from high numbered locations to low.

If a variable is not referenced, no space is reserved.

6.3.3 VARIABLE ALIGNMENT

A subset of the ALIGNED feature of the language is implemented. The
subset provides for guaranteeing addressability only. Any offset or
base specification is ignored.

6.4 EXTERNAL REFERENCES

During the compilation process a hash is computed for each XDCL and
XREF variable and procedure. The hash is based on an accumulation of
data typing. In the case of procedures the parameter list is
included in the process. A loader may check these hash values to

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.4 EXTERNAL REFERENCES.

6-6

83/07/12
REV: 1

assure that the data types for all XDCL and XREF items agree.

6.5 EXTERNAL NAMES

The external/entry point names are limited by the UCSD system to be
the first 8 characters.

6.6 PROCEDURE REFERENCE

6.7 FUNCTION REFERENCE

A function is a procedure' that returns a value. The function value
is returned via the RPU pcode instruction.

6.8 PROCEDURE CALL AND RETURN INSTRUCTION SEQUENCES

6.8.1 PROCEDURE CALL

A procedure/function call can be separated into several subsequences.
If the called procedure is a function, then the initial Pcode
sequence causes room for the function return value, e.g.,

SLDC 0

would be appropriate for an integer function call.

Because of the high to low allocation mechanism of UCSD stack frames,
the procedure body of the called function will reference the function
return value in the last allocated space of its stack frame.

Should the called procedure have parameters, then the parameter
values or addresses are pushed onto the stack in the normal left to
right order. If the formal parameter is of reference type, then the
address of the actual parameter is pushed. Otherwise, if the
parameter is of scalar type then its value is pushed, else the
address is pushed and the procedure's prolog will make a local copy.

In some cases above where "the address is pushed" is used, if the
formal parameter requires a descriptor Cadaptables and bound variant
records), then the description is pushed along with the address.

Within the called procedure, because of the high to low nature of the
stack frame, the first formal parameter will be allocated the highest
offset in the frame (just lower than the optional function return
value). This repeats with the last parameter having the lowest

60457290 01

0
0

0
0

0
0

0

0
0

6-7
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.8.1 PROCEDURE CALL

offset of all parameters.

Summarizing, a procedures stack frame is allocated beginning at word
offset 1 in the following order:

Automatic variables and local copies for value, non-scalar
parameters.

Parameter value and address/descriptors in a right to left
order.

Function return value.

The procedure call Pcode instruction is selected from a set of
several depending upon the lexicgraphical distance between caller
and callee. All calls contain the called procedures ordinal. This
ordinal is a Pcode Generator assigned value assigned from 2 (except
for PROGRAM declarations which will be given ordinal number 1)
upwards Cp-ord in examples below).

Examples:

CPL p-ord

SCPI 1 p-ord

SCPI 2 p-ord

CPI n p-ord

CPG p-ord

CXG seq p-o rd

CPF

Used to call Local (child) procedures to the calling
procedure and its body Ci.e., LEX= +1).

Used to call sibling procedures of the calling
procedure C LEX= 0).

Used to call parent procedures of the calling
procedure C LEX= -1).

Used to call intermediate, but non-global procedures
C LEX < -1).

Used to call outer level procedures local to this
module.

Used to call XREF procedures that are located in
other compilation units. ~

Used to ca LL forma L procedure_s that have been
introduced in CYBIL text as pointers to procedures.

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.9 PROLOG

6.9 PROLOG

6-8

83/07/12
REV: 1

All non-scalar, value parameters have an area for a local copy of the
actual parameter. The pro log for a procedure will contain Pcodes to
move the data into this local area.

Parameters of adaptable type are loaded by the calling mechanism in
reverse order (because of the downward growing operand stack>.
Prolog code appears to reverse this order.

Implicit within the interpretation of the procedure call Pcodes are
several functions that classically have been the explicit jobs of
prolog in Pcode machines.

Since these will not be present in the PROLOG, but assumed the
responsibility of the interpreter, it is worthwhile to list them:

- Stack frame creation - each procedure has a fixed stack frame
size; the interpreter must "push" this area onto the dynamic
stack; this size is the datasize word at the head of the
procedure's code.

- Mark Stack Control Word CMSCW) located at the head of the stack
frame.

6.10 EPILOG

The epilogue contains only the following:

0
0

~~\

'\'~--_J

RPU size :~(~";
't .. Y

Size is the number of words to release from the stack. It is based
on the two fixed sizes for:

- Automatic variables and local parameter storage.

Actual parameters.

The value of size for RPU is not necessarily the same as the datasize
value used by the interpreter in the prolog. It differs by and
includes the additional size of the actual parameters.

60457290 01

1''>
'__)'

0
--···'\

J

0
0 ,

'

0

0

()

o· '

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

6.0 CYBIL-CP RUN TIME ENVIRONMENT
6.11 RUN TIME LIBRARY

6.11 RUN TIME LIBRARY

6.11.1 UNKNOWN AND/OR UNEQUAL LENGTH STRINGS

6-9

83/07/12
REV: 1

Support for unknown and/or unequal length strings is provided by
calls to standard run time routines.

6.11.1.1 String Assignment

For string assignments a call of the following form is provided:

CYPSMOVE STRING(pointer to left string, left string Length,
pointer_to_right_string;right_string_length). -

6.11.1.2 String Comparison

For string comparison a function call of the following form is
provided:

CYPSCOMPARE STRING C operation, pointer to left string,
Left string-length, pointer to right string, -
right_string_Length > : boolean. -

The boolean function value indicates the result of applying one of
the six relational operators on the specified strings. The
relational operators are represented as: equal = 1, not equal = 2,
greater than or equal = 3, less than = 4, Less than or equal = 5, and
greater than = 6.

60457290 01

0
0

()
0

0 .
"'

\ C'
I

c

0

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

7.0 EFFICIENCIES

7 .0 EFFICIENCIES

7-1

83/07/12
REV: 1

This section lists a group of programming tips to help the user
make better utilization of the CYBIL development environment. As
such, it is not an exhaustive list and will be added to as additional
hints become known. The CYBIL Project would appreciate any other
information which may assist the usage of CYBIL.

7.1 SOURCE LEVEL EFFICIENCIES

7 .1 .1 GENERAL

o There is a significant amount of overhead associated with any
procedure call. If a procedure is being called in a looping
construct, it may pay to call the procedure once and put the loop
tests inside the called procedure.

o References to variables via the static chain in nested procedures
cause an overhead associated with that reference. In general, a
procedure should only reference static variables, arguments and
its own automatic variables.

o A copy is currently being made of all value parameters. This
implementation is subject to change.

o Assignment of records is done with one large move, while record
comparison is done field by field.

o Move structures rather than lots of elementary
require structuring the elements together
purpose.

items. This may
especially for this

o Reference to adaptable structures are slower than references to
fixed structures because the adaptable has a descriptor field
which must be accessed.

o References to fields within a record require no execution penalty.

o Repeated references to complex data structured (via pointers or
indexing operations) can be made more efficient by pointing a
local pointer at the structure and use it to replace the complex
references.

o Inappropriate use of the null string facility can be an expensive

60457290 01

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

7.0 EFFICIENCIES
7.1.1 GENERAL

NOOP.

7-2

83/07 /12
REV: 1

o Initialization of static variables incurs no run time overhead.

o If a record is being initialized with constants at run time it is
often more efficient to define a statically initialized variable
of the same type and do record assignment.

o A packed structure will generally require less space at the
possible cost of greater overhead associated with access to its
components. This is because elements of packed structures are not
guaranteed to lie on addressable memory units.

o When organizing data within a packed structure it is more space
efficient to group bit aligned elements together.

o The STRING data type is a more efficient declaration than a PACKED
ARRAY OF CH AR.

o When considering alternative data structures for homogenous data
the user should first consider ARRAYs, then SEQuences and finally
HEAPs.

o When considering alternatives between the HEAP and SEQuence
storage types, the following should be considered. The HEAP is
the more inefficient mechanism requiring the greatest overhead in
terms of space requirements and the more execution overhead.
SEQuences are the more efficient in terms of both storage and
execution overhead.

o The NEXT and RESET statements as used on sequences and user heaps
are implemented as inline code. Whereas the implementation for
ALLOCATE and FREE is a procedure call to run time library
routines.

o Space in a heap is consumed only when an ALLOCATE statement is
executed. In addition to the space ALLOCATEed by the CYBIL
program, a header is added to maintain certain chaining
information. For this reason, ALLOCATEing small types incurs a
large percentage overhead.

o Code for the PUSH statement is generated .inline and, as such, is
considerably faster than an ALLOCATE and FREE combination.

o When a definition contains a number of 'flags' or attributes, the
following should be considered when chasing between BOOLEANs or a
SET type:

60457290 01

0
0

(1

0

0
C' . !

/

0

0
()

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

7-3

83/07/12
REV: 1

7.0 EFFICIENCIES
7 .1 .1 GENERAL

o If the record is not packed the SET will reduce the size of the
definition

o Any sub-set of the attributes of a SET can be tested at once.
o If a single element test is desired an unpacked BOOLEAN is

slightly more efficient than a SET.

o Usage of boolean expressions is more efficient than IF statements.
For example, use:

equality := Ca=b);

Do not use:

IF a=b THEN
equality := TRUE;

ELSE
equality := FALSE;

I FEND;

o Rather than coding long IF sequences a CASE statement should be
considered when using a proper selector.

o Compound boolean expressions should be ordered such that the first
condition is the one which has the highest probability of
terminating the condition evaluation.

0 Compile time evaluation of expressions involving constants
produces better object code if all constants Cat the same level)
in the expression are grouped together. For example, the
expression:

x := 5 * y * c * 2 ;

will produce object
variables CY and C).

code using two constants C5 and 2) and two
If the expression is rewritten:

X := 5 * 2 * Y * C;

with the constants together, the compiler Cat compile time) will
combine the expression "5 * 2" into the constant "10" and produce
object code to evaluate the expression using only one constant
(the ten) and two variables CY and C}.

o Range checking code requires additional storage space and is time
consuming. One can eliminate all generated range checking code by
setting "CHK=O" on the ca LL statement Cor ??SETCCHKRNG :=OFF)?? n
the source program). Setting CHK=O on the call statement, while

60457290 01

CYBER IMPLEMENTATlON LANGUAGE DEVELOPMENT

CYBIL Handbook

7 .O EFFICIENCIES
7 • 1 • 1 GENERAL

7-4

83/07/12
REV: 1

debugging programs, is not recommended since legitimate program
errors may not be diagnosed. A better approach is to request
range checking on the call statement Cor in the source program>
and then minimize, using good programming practice, the amount of
checking code generated. Consider the following program segment:

TYPE
a = 0 •• 10;

VAR
i ndex,y: a,
x: array [a] of integer;

y:=S;.
index :=y:
x [index] :=3;

Si nee variables "index" and "y" are defined to be of type "a" Ct he
subrange 0 •• 10) the assignment "index :=y;" will not Cand need
not> be checked for proper range even if range checking is
requested. Similarly, the statement "x[index] :=3;" will not Cand
need not> contain range checking code. If variables "y" and
"index" were decl-ared to be INTEGER Cor some type other than the
subrange 0 •• 10> range checking code would be required.

o Any timed executions should be run after the CYBIL code has been
built with checking code turned off.

o Certain conversion functions Ci.e.,ORD,CHR,etc.>
execution time overhead.

require no

o The code generated for STRINGREP is a call to a run time library
routine.

o A file should not be opened before it is needed. As soon as a
file is no longer needed, it should be closed. An overhead is
involved in opening & closing files. Therefore, unnecessary opens
& closes should be avoided.

7.1.2 CC EFFICIENCIES

o Pointers to strings are inefficient because the string may, in
general, begin at any character boundary. These pointers may be
created explicitly by assignment statements or implicitly by
supplying a string as an actual parameter for a call by reference
formal parameter. If possible, align strings so that they begin
on a word boundary.

60457290 01

0
I 0

-·~

(J

0

0
0 \

)

0

():

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

7.0 EFFICIENCIES
7.1.2 CC EFFICIENCIES

7-5

83/07/12
REV: 1

o Run time routines are called for the string operations of
assignment & comparison when:

1> Neither string is aligned or,
2) Lengths are known and unequal or,
3) Either or both lengths are unknown at compile time.

Otherwise the faster inline code is generated.

o It is possible to modify the buffer size used by the CYBIL I/O
package. For an explanation see the ERS for CYBIL I/0 CARH2739).
If there are very few accesses to a file, it may be best to select
a small buffer, since overall field length will be reduced,
thereby increasing total system throughput by decreasing swap
rates, allowing more jobs to run concurrently, etc.

7.2 COMPILATION EFFICIENCIES

If compilation time is a factor the following items could be
considered as they do affect the compilation rate.

o The generation of information to interface to the symbolic
debuggers slows the compi_lation process.

o The generation of range checking code slows the compilation
process.

o The selection of listings slows the compilation process. This
includes the source listing, the cross reference listing and the
attribute list.

o Generating a source listing with the generated code included is
slower than if just the source listing is being obtained.

o Actually, for the normal CYBIL user very little can be done to
improve the compilation rate. However, rest assure that
considerable effort has been expended to reduce the number of
recompilations necessary to produce a debugged program.

0 60457290 01

·A~

'~_)

'C) ·'--i
0

0
0

0

0

0

0
0

CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook

8.0 IMPLEMENTATION LIMITATIONS

8.0 IMPLEMENTATION LIMITATIONS

8.1 GENERAL

8-1

83/07/12
REV: 1

o Maximum number of lines in a single compilation unit is 65535.

o Maximum number of unique identifiers allowed in a single
compilation unit is 16383.

o Maximum number of procedures in a single compilation unit is 999.

o Procedures can only be nested 255 levels deep.

o Maximum number of compile time variables used in conditional
compilations is limited to 1023.

o Maximum number of error messages printed per module is 2000.

o Maximum number of elements defined in a single ordinal list is
limited to 16384.

o Integer constants are restricted to 48 bits.

8.2 CC LIMITATIONS

o Case selector values limited to less than 2**17.

o Pointer fields within initialized packed records must be aligned
for use within C170 capsules or overlay capsules.

60457290 01

0
0

·o·
' ' .~

()
j

0 ' _y

I 0

c

0

0 /

0
0

9-1
CYBER IMPLEMENTATION LANGUAGE DEVELOPMENT

CYBIL Handbook
83/07/12

REV: 1

9.0 COMPILER AND SPECIFICATION DEVIATIONS

9.0 COMPILER AND SPECIFICATION DEVIATIONS

This section is intended to provide sufficient detail to be able
to understand those features where the compiler implementation lags
the language specification.

**Indicates plans do not include the implementation of that feature
in the R1 timeframe.

9.1 GENERAL

CYBIL Implementation - Deviations

o Double Precision Floating Point. **
o Initialization of static pointers to NIL and zeroing the adaptable

descriptor fields is not done. **
o #SIZE of adaptable types. **
o Run time checking on accessing fields of variant records not

supported. **
o Restricting pointers to not point to data with less scope. **

o Pre-defined identifiers are implemented as reserved words. **

9.2 CC DEVIATIONS

o Relative Pointer Types. **
o Partial condition evaluation on OR operator not supported. **
o Actual value parameters > 1 word must be addressable. **

9.3 CP DEVIATIONS

o Static initialization. **
o PUSH statement is not supported. **
o Relative Pointers. **
o General Intrinsics. **

60457290 01

0
0

0
0

