
CONTROL DATA®
6400/6500/6600 COMPUTER SYSTEMS

FORTRAN Reference Manual

REVISION RECORD
REVISION DESCRIPTION

c Documentation changes to FORTRAN version 2. 3 made to clarify concepts.

(2-20-69) Additions include: Examples, Random Access Files (Mass l:Storage) and File

Name Handling (Appendixes I and J), Library Subroutines READEC, WRITEC,

READMS, WRITMS, OPENMS, STINDX, FTNBIN. This manual obsoletes all

previous editions.

D Project updating of system and corrections in response to user comments.

_ill-21-691 Additions include: Example.s, Librarx Subroutines REMARK, and DISPLA,

SEGMENT _p_arameters, Execution Diagnostics, Library Routine Entry Pointsi

File Structure (Appendix M), Print File Conventions (Ap~ndix 0). Affected

pages: 1-1; 2-1, 2, 4; 5-7, 13; 6-10; 7-2 thru 7-4, 7-10 thru 7-12; 8-2
2

3;

9-3, 5, 6, 9, 12, 16, 22, 24, 25; 10-1, 2, 6, 10, 16, 17; B-1 thru B-4; C-1 thru

C-3; F-1, 4; G-1; J-2; K-1 thru K-6; L-3; M-1, 2; N-1, 2; 0·-1, 2; Index;

Comment Sheet.

E This revision reflects standardization of the SCOPE 3. 3 63-character set and

(4-23-71) the 64-character set options. Pages affected are vii, viii, A-1 thru A-4.

Publication No.
60174900

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Address comments concerning
this manual to:

© 1968, 1969
Control Data Corporation
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Documentation Department
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

60174900 E

PREFACE

FORTRAN Version 2. 3 for the Control Data 6000 Series Computer Systems includes I
the extensions allowed in FORTRAN Version 2. 0 and some improvement in generated
object code. The compiler and execution time routines operate under 6400/6500/6600
SCOPE Version 3. Subprograms are compiled independently and a file consisting of
relocatable binary subprograms is produced. Upon option, it will also produce a
source listing, an object code listing, a cross reference listing, and a copy of
the relocatable file on the PUNCHB file which allows the operating system to
produce a relocatable binary deck. Extensions and restrictions provided by
Version 2. 3 are for USASI compatibility or additional features and requirements I
of SCOPE 3. The statement language is compatible with FORTRAN II and
FORTRAN IV; but new programs should be written in FORTRAN IV.

The compiler can operate as load-and-go and produce 6000 Series machine
language output. It operates as an independent program under control of the
operating system and can be called to use only the storage required for compila
tion of a particular program, Several compilations may be processed simul
taneously using the multi-programming features.

FORTRAN accepts main programs and subprograms written either in FORTRAN
source language or 6000 Series assembly language. These features permit a
flexible program arrangement for each particular job.

This document assumes a knowledge of the FORTRAN language and the CONTROL
DATA® 6000 Series Computer System.

60174900 Rev. D iii

CONTENTS

PREFACE iii

CHAPTER 1 CODING PROCEDURES 1-1

1.1 Coding Line 1-1

1.2 Punched Cards 1-3

CHAPTER 2 ELEMENTSOFFORTRAN 2-1

2.1 FOR TRAN Character Set 2-1

2.2 Identifiers 2-1

2.3 Constants 2-2

2.4 Variables 2-5

2.5 Subscripted Variable 2-7

2.6 Arrays 2-8

CHAPTER 3 EXPRESSIONS 3-1

3.1 Arithmetic Expressions 3-1

3.2 Relational Expressions 3-6

3.3 Logical Expressions 3-8 I
3.4 Masking Expressions 3-9

CHAPTER 4 REPLACEMENT STATEMENTS 4-1

4.1 Arithmetic Replacement 4-1

4.2 Mixed-Mode Replacement 4-1

4.3 Logical Replacement 4-4 I
4.4 Masking Replacement 4-4

4.5 Multiple Replacement 4-4

CHAPTER 5 TYPE DECLARATIONS AND STORAGE ALLOCATION 5-1

5.1 Type Declaration 5-1

5.2 DIMENSION Declaration 5-2

5.3 COMMON Declaration 5-3

60174900 Rev. D v

5.4 EQUIV ALEN CE Declaration 5-7

5.5 DATA Declaration 5-9

CHAPTER 6 CONTROL STATEMENTS 6-1

6.1 GO TO Statements 6-1

6.2 IF Statements 6-3

6.3 DO Statement 6-4

6.4 CONTINUE Statement 6-10

6.5 PAUSE Statement 6-10

6.6 STOP Statement 6-10

6.7 RETURN Statement 6-10

6.8 END Statement 6-11

CHAPTER 7 PROGRAM, FUNCTION, AND SUBROUTINE 7-1

7.1 Program Communication 7-1

7.2 Subprogram Communication 7-1

7.3 Formal Parameters 7-1

7.4 Actual Parameters 7-2

7.5 Main Program 7-3

7.6 Subroutine Subprogram 7-4

7.7 CALL Statement 7-5

7.8 EXTERNAL Statement 7-6

7.9 ENTRY Statement 7-8

7.10 Library Subroutines 7-9

7.11 Function Subprogram 7-13

7.12 Function Reference 7-13

7.13 Statement Function 7-14

7.14 Library Functions 7-16

7.15 Program Modes 7-16

7.16 Variable Dimensions in Subprograms 7-17

7.17 Program Arrangement 7-18

vi 60174900 Rev. C

CHAPTER 8 SEGMENTATION 8-1

8.1 Segments 8-1

8.2 Overlays 8-3

8.3 Loader Cards 8-7

CHAPTER 9 INPUT/OUTPUT FORMATS 9-1

9.1 Input/ Output List 9-1

9.2 Format Declaration 9-4

9.3 Conversion Specifications 9-5

9.4 nP Scale Factor 9-16

9.5 Editing Specifications 9-18

9.6 Repeated Format Specifications 9-22

9.7 Variable Format 9-23

9.8 ASA Compatibility 9-25

CHAPTER 10 INPUT/OUTPUT STATEMENTS 10-1

10.1 Output Statements 10-2

10.2 Read statements lQ-4

10.3 Namelist Statements 10-6

10.4 Tape Handling Statements 10-9

10.5 Buffer Statements 10-10

10.6 ENCODE/DECODE Statements 10-13

60174900 Rev. D vii

APPENDIX SECTION

APPENDIX A STANDARD SCOPE CHARACTER SETS A-1 I
APPENDIX B FORTRAN STATEMENT LIST B-1

APPENDIX C FORTRAN FUNCTIONS C-1

APPENDIX D SOME FORTRAN II, 63, IV DIFFERENCES D-1

APPENDIX E COMPUTER WORD STRUCTURE OF CONSTANTS - 6600 E-1

APPENDIX F COMPILATION AND EXECUTION F-1

APPENDIX G COMPILATION DIAGNOSTICS G-1

APPENDIX H PROGRAM - SUBPROGRAM FORMAT H-1

APPENDIX I FORTRAN I/O ROUTINES I-1

APPENDIX J SYSTEM ROUTINE J-1

APPENDIX K EXECUTION DIAGNOSTICS K-1

APPENDIX L FORTRAN LIBRARY ROUTINE ENTRY POINTS L-1

APPENDIX M FORTRAN FILE STRUCTURE AND BLOCKED BINARY
INPUT /OUTPUT M-1

APPENDIX N FORTRAN CROSS-REFERENCE MAP N-1

APPENDIX 0 PRINT FILE CONVENTIONS 0-1

viii 60174900 E

1.1
CODING LINE

1.1.1
STATEMENT

60174900 Rev. D

CODING PROCEDURES 1

A FORTRAN coding line contains 80 columns in which FORTRAN characters
are written one per column. The five types of coding lines are listed below:

Column Content

statement 1-5 statement number or blank
or

1 D,I,B, F FORTRAN II

6 blank or zero

7-72 FORTRAN statement

73-80 identification field

Continuation 1-5 blank

6 FORTRAN character other than
blank or zero

7-72 continued FORTRAN statement

73-80 identification field

Comment 1 c $or*

2-80 comments

Data 1-80 data

Page eject 1 period

Statement information is written in columns 7 through 72. Statements longer
than 66 columns may be continued to the next line. Blanks are ignored by
the FORTRAN compiler except in H fields. The character $ may be used to
separate statements when more than one is written on a coding line, however,
it may not be used with FORMAT or DATA statements. A blank card may be
used to separate the statements .

1-1

I

1.1.2
CONTINUATION

1.1.3
STATEMENT
NUMBER

1.1.4
IDENTIFICATION
FIELD

1.1.5
COMMENTS

1-2

These statements are equivalent:

I = 10
JLIM = 1
K = K+l
GO TO 10

Also:

DO 1 I=l, 10
A(I)=B(I)+C(I)

1 CONTINUE
I=3

I = 10 $ JLIM = 1 $ K = K+l $GO TO 10

DO 1 I=l, 10 $ A(I)=B(I)+C(I)
1 CONTINUE $ I=3

The first line of every statement must have a blank or zero in column 6. If
statements occupy more than one line, all subsequent lines must have a FOR
TRAN character other than blank or zero in column 6. Continuation cards
may be separated by cards whose first 72 columns are blank. A statement
may have up to 19 continuation lines.

Any stqtement except END may have an identifier, statement number, but
only statements refer:red to elsewhere in the program require identifiers.
A statement number is a string of 1 to 5 digits occupying any column positions
1 through 5.

Columns 73 through 80 are always ignored in the compilation process. They
may be used for identification when the program is to be punched on cards.
Usually these columns contain sequencing information provided by the
programmer.

Each line of comment information is designated by a C, *, or $in column 1.
Comment information appears in the source program and the source program
listing, but it is not translated into object code. The continuation character
in column 6 is not applicable to comments cards.

60174900 Rev. C

1.1.6

PAGE EJECT

1.2
PUNCHED CARDS

60174900 Hev. C

A card with a period punched in its first column will eject the page. The
remainder of the card is neither listed nor compiled. The listing of subse
quent mater:ial in the source program will begin on a new page. For the
method of ejecting a page during printing see Output Statements in chapter 10.

Each line of the coding form corresponds to one 80-column card; the terms
"line" and "card" are oft~n used interchangeably. Source programs and data
can be read into the comphter from cards; a relocatable binary deck or data
can be punched directly onto cards.

When cards are being used for data input, all 80 columns may be used.

1-3

2.1
FORTRAN
CHARACTER SET

2.2

IDENTIFIERS

2.2.1
ALPHANUMERIC
IDENTIFIER

60174900 Rev. D

ELEMENTS OF FORTRAN

Alphabetic:

Numeric:

Special:

A to Z

0 to 9

equals

+ plus

minus

* asterisk

I slash

right parenthesis

comma

decimal point

$ dollar sign

(space) blank

left parenthesis

All characters appear internally in 6000 series display code (appendix A).
A blank is ignored by the compiler except in Hollerith fields; otherwise it
may be used freely to improve program readability. Appendix A includes
a list of additional characters which may appear in Hollerith literals and,
with the exception of semi-colon, in DATA statements.

2

An alphanumeric identifier can be any combination of 1-7 characters beginning
with a letter, with certain exceptions. The combination of the letter 0 and 6
digits is recognized as an octal constant. Embedded blanks within an identifier
are ignored. Attempts to use the FORTRAN library routine entry point names I
(Appendix L) or the four characters CALL as an identifier or variable name
will result in a compilation diagnostic (VC or CL).

Examples:

0123456 Illegal SAM Legal
(as an identifier)

LEN32 Legal
012KK3 Legal

CALL Illegal I
0123 Legal

A Legal

2-1

I

I

2.2.2
STATEMENT
IDENTIFIER

2.3

CONSTANTS

2.3.1
INTEGER
CONSTANTS

2-2

Alphanumeric Identifiers are used for:

Formal parameters

Variables

Subprograms

Main programs

Input/output units

Labeled common blocks

Statements are identified by unsigned numbers, 1-5 digits, which can be
referred to from other sections of the program. A statement identifier
(from 1-99999) may be placed anywhere in columns 1-5 of the initial line
of a statement. Leading zeros and trailing blanks are ignored. In any
given program or subprogram, each statement identifier must be unique.

Seven types of constants are used in FORTRAN: integer, octal, real,
double precision, complex, Hollerith, and logical. The type of a constant
is determined by its form. The computer word structure for each type is
listed in Appendix E.

An integer constant, N, is a string of up to 18 decimal digits in the range'
-(259_1)5W==(259_1). The maximum value of the result of integer addition
or subtraction must not exceed 259-1. Subscripts and no.:.index are limited
to 217 -2.

Examples:

63

247

364:7631

46·!646464

314159265 574396517802457165

During execution, the maximum allowable value is 248 -1 when an integer
constant is converted to real. If the result is greater than 248_1, bits
48-58 will be ignored and errors may result. The maximum value of the
operands and the result of integer multiplication or division must be less
than 248_1. High order bits will be lost if the value is larger, but no
diagnostic is provided..

60174900 Rev. D

2.3.2
OCTAL
CONSTANTS

2.3.3
REAL CONST ANTS

60174900 Rev. C

An octal constant consists of 6 to 20 octal digits preceded by the letter 0 or
1 to 20 octal digits suffixed with a B. The form is:

On1 ... ni

n1 ... niB

Both forms of a constant are assigned logical mode; the second form may
be used only in arithmetic or DATA statements. The constants are right
justified with zero fill. If the constant exceeds 20 digits or if a non-octal
digit appears, a compiler diagnostic is provided.

Examples:

000007777777700000000

07777700077777

02323232323232323

0000077

07777777777777700

2374216B

777776B

777000777000777B

A real constant is represented by a string of digits; it contains a decimal
point or an exponent representing a power of 10, or both. Real constants
may be in the following forms:

n.n n. . n n. nE±s n.E±s .nE±s nE±s

The base is n; s is the exponent to the base 10; the plus sign may be omitted
ifs is positive. The range of a non-zero constant is approximately io-294 to
io+322. If the range is exceeded, a compiler diagnostic is provided.

All real numbers are carried in normalized form.

Examples:

3. El (means 3.0x10
1

;i. e., 30.)

. 3. 1415768

314.0749162

-3.141592E+279

31. 41592E-Ol

. 31415E01

. 31415E+Ol

2-3

2.3.4
DOUBLE PRECISION
CONSTANTS

2.3.5
COMPLEX
CONSTANTS

I

2.3.6
HOLLERITH
CONSTANTS

2-4

A double precision constant is a string of digits represented internally by
two words. The forms are similar to real constants, the base is n; sis the
exponent to the base 10.

.nD:l:S n. nD±:s n.D±s nD±s

The D must always appear. The plus sign may be omitted for positive s.
The range of non-zero constant is, approximately, from 10-294 to 10+322;
if the range is exceeded, a compiler diagnostic is provided.

Examples:

3.1415927D

3.1416DO

3141. 593D-03

3141. 593D3

31416. D-04

A complex constant is represented by a pair of real constants separated by a
comma and enclosed in parentheses (r 1 , r 2); r 1 represents the real part of the
complex number, r 2 the imaginary part. Either constant may be preceded by
a minus sign.

If the range of the real numbers comprising the constant is exceeded, a
compiler diagnostic ils provided. Diagnostics also occur when the pair
contains integer constants, including (0, 0) .

Examples:

FORTRAN Representation

(1.' 6. 55)

(15.' 16. 7)

(-14. 09, 1.654£--04)

(0., -1.)

Complex Number

1. + 6. 55i

15. + 16. 7i

-14. 09 + . 0001654i

0. - 1. Oi

A Hollerith constant :is a string of FORTRAN characters of the form hHf; his
an unsigned decimal :integer between 1 and n representing the length of the
field f. The maximum number of characters allowed in a Hollerith constant
of H form depends upon its usage; n is limited to 10 characters when used in
an expression. In a properly formed DATA statement it is limited only by
the number of characters that can be contained in up to 19 continuation lines.
Spaces are significant in the field f. When his not a multiple o.f 10, the last

60174900 Rev. D

2.3.7
LOGICAL
CONSTANTS

2.4
VARIABLES

6017 4900 Rev. C

computer word is left justified with blank fill. Alternate forms are nLf
(left justified) and nRf (right justified) Hollerith constants with zero fill for
incomplete words. A maximum of 10 characters is allowed in expressions
for these forms. If more than 10 characters are used in a DATA statement
for such a constant, only the last word has the zero fill. They may be used in
an arithmetic statement. Hollerith constants are stored internally in 6000
Series console display code.

Examples:

6HCOGITO

4HERGO

3HSUM

5RSUMbb = OOOOOSUMbb

12HCONTROL DATA

5LSUMbb = SUMbbOOOOO

lH)

3LbTT = bTTOOOOOOO

A statement of the form: I=(+5HABCDE) is permitted as a Hollerith constant.
A semicolon (display code 77) cannot appear in Hollerith constants since this
bit configuration is recognized as a Hollerith field terminator.

A false constant is stored internally as binary zero. A true constant is stored
internally as the one's complement of binary zero. Logical constants may be
in the following forms:

. TRUE. or. T. .FALSE. or .F .

FORTRAN recognizes simple and subscripted variables; a simple variable
represents a single quantity; it references a storage location. The value
specified by the name is always the current value stored in the location.
Variables are identified by a symbolic name of 1-7 alphanumeric characters,
the first of which must be alphabetic.

The type of variable is defined in one of two ways:

Explicit. Variables may be declared a particular type with the FOR
TRAN type declarations.

Implicit. A variable not defined in a FORTRAN type declaration is
assumed to be integer if the first character of the symbolic
name is I, J, K, L, M, or N.

2-5

2.4.1
INTEGER
VARIABLES

2.4.2
REAL VARIABLES

2-6

Example:

115, JK26, KKK, NP362L, M

All other variables not declared in a FORTRAN type declaration are assumed
to be real.

Examples:

TEMP, ROBIN, A55, R3P281

Integer variables can be defined explicitly or implicitly; values may be in the
range -(259_1):::::; I :::;(~~59_1). The maximum allowable value of an integer
variable depends on usage. The result of conversion from integer to real, of
integer multiplication, integer division or input/output under the I-format
specification is limited to 248_1; the result of integer addition or subtraction
can be as great as 259-1. Subscripts and DO-indexes are limited to 217 -2.
Each integer variable occupies one word in storage.

Examples:

N

ITEM

M58A

NEGATE

K2S04

M58

The type of a real variable may be explicit or implicit; the value must be in
the range 10-294 < lrl < 10+322 with approximately 14 significant digits.
Each real variable is stored in 6000 Series floating-point format and occupies
one word.

Examples:

VECTOR

YBAR

A6!~597

BARMIN

x

X74A

The variable, r, may have any of the following values:

= 0 10-294 10+322 r , < r < .

60174900 Rev. C

2.4.3
DOUBLE PRECISION
VARIABLES

2.4.4
COMPLEX
VARIABLES

2.4.5
LOGICAL
VARIABLES

2.5
SUBSCRIPTED
VARIABLE

60174900 Rev. C

Double precision variables must be defined explicitly by a type declaration.
Each double precision variable occupie~2~wo words of storage and can assume
values in the range 10-294 ::s !di :::; 10 + with approximately 29 significant
digits.

Complex variables must be explicitly defined by a type declaration. A complex
variable occupies two words in storage. Each word contains a number in real
variable format. This ordered pair of real variables (C1 ,c2) represents the
complex number: c1 + i c2

Logical variables must be defined explicitly by a type declaration. Each
logical variable occupies one word of storage; it can assume the value true or
false. A logical variable with a positive zero value is false; any other value
is true. When a logical variable appears in an expression whose dominant
mode is real, double, or complex, it is not packed and normalized prior to
its use in the evaluation of an expression (as is the case with an integer
variable).

A subscripted variable may have one, two, or three subscripts enclosed in
parentheses; more than three produce a compiler diagnostic. Subscripts can
be expressions in which operands are simple integer variables and integer
constants and operators are addition, subtraction, multiplication, and division
only. Such expressions must result in positive integers; use of other values
such as zero, real, negative integer, complex, logical may invalidate results.

When a subscripted variable represents the entire array, the subscripts are
the dimensions of the array. When a subscripted variable references a single
element in an array, the subscripts describe the relative location of the ele
ment in the array.

Valid Subscripted Variables

A(I, J)

B(I+2, J+3, 2*K+l)

Q(l4)

STRING (3*K*ILIM+3)

Q(l, 4, 2)

Invalid Subscripted Variables

FRAN (0)

P(3. 5)

Z14(-4)

EVAL(2+(3. l, 2. 5))

MAX3(1. GE. K)

1(2, -5' 3)

2-7

2.6
ARRAYS

2.6.l
ARRAY
STRUCTURE

2-8

An array is a block of successive storage locations. The entire array may
be referenced by the array name without subscripts (I/O lists and Implied
DO-loop notation). Arrays may have one, two, or three dimensions; the
array name and dimensions must be declared in a DIMENSION, COMMON,
or TYPE declaration prior to the first program reference to that array.

Each element in an a:C"ray may be referenced by the array name plus a subscript
notation. Program execution errors may result if subscripts are larger than
the dimensions initially declared for the array. The maximum number of
elements in an array is the product of the dimensions.

Array elements are E:tored by columns in ascending locations. In the array
declared as A(3,3,3):

Alll A121 A131

A211 A221 A231

A311 A321 A331

A112 Al22 A132

A212 A222 A232

A312 A322 A332

A113 A123 A133

A213 A223 A233

A313 A323 A333

The planes are stored in order, starting with the first, as follows:

L

L+l

- L+2

-
L+3

L+4

L+5

L+24

L+25

L+26

Array allocation is discussed under DIMENSION declaration. The location of
an array element with respect to the first element is a function of the maximum
array dimensions and the type of the array.

Given DIMENSION A(L,M,N), the location of A(i,j,k), with respect to the first
element A of the array, is given by A+(i-l+L*(j-1 +M *(k-1)))*E.

60174900 Rev. C

60174900 Rev. C

The quantity enclosed by the outer parentheses is the subscript expression.
E is the element length-the number of storage words required for each element
of the array. For real, logical, and integer arrays, E = 1. For complex and
double precision arrays, E = 2.

Example:

In an array defined by DIMENSION A(3,3,3), the location of A(2,2,3) with
respect to A(l,1,1) is:

Locn A(2, 2, 3) = (Locn A(l, 1, 1) + (2-1 +3(1 +3(2)))) *l

= (L + 22) *1 = L + 22

FOR TRAN permits the following relaxation of the representation of subscripted
variables:

Given

then

similarly,

and for

A(D
1

,D
2

,D
3

), where the Di are integer constants,

A(I,J ,K) implies A(I,J ,K)

A(I,J) implies A(I,J ,1)

A(I) implies A(I,1,1)

A implies A(l,1,1)

for A(D
1

,D
2

)

A(I,J) implies A(I,J)

A(I) implies A(I,1)

A implies A(l,l)

A(D
1

)

A(I) implies A(I)

A implies A(l)

The elements of a single-dimension array A(D
1

) may not be referred to as
A(I,J ,K) or A(I, J). Diagnostics occur if this is attempted.

2-9

3.1
ARITHMETIC
EXPRESSIONS

60174900 Rev. C

EXPRESSIONS 3

An expression is a constant, variable (simple or subscripted), function, or any
combination of these separated by operators and parentheses. The four kinds
of expressions in FORTRAN are: arithmetic and masking (Boolean) expressions
which have numerical values, and logical and relational expressions which have
truth values. Each type of expression is associated with a group of operators
and operands.

An arithmetic expression can contain the following operators:

+ addition

subtraction

* multiplication

I division

** exponentiation

Operands are:

Constants

Variables (simple or subscripted)

Evaluated functions

Any unsigned constant, variable, or function is an arithmetic expression. If X
is an expression, then (X) is an expression. If X and Y are expressions, then
the following are expressions:

X+Y

X*Y

-X

X-Y

X/Y

X**Y

If op is a valid operator and X and Y are valid expressions, then X op op Y is
never a valid expression

3-1

3.1. l
ARITHMETIC
EVALUATION

3-2

Examples:

A

3.14159

n + 16.427

(XBAR+(B(I,J+I,K)/3))

-(C+DELTA *AERO)

(B-SQRT(B**2-(4*A *C)))/ (2 .O* A)

GROSS-(TAX*0.04)

(TEMP+V(M,MAX.F(A,B))*Y**C)/ (H-FACT(K+3))

The hierarchy of arithmetic evaluation is:

** exponentiation class 1

I division class 2
* multiplication

+ addition class 3
subtraction

.>

In an expression with no parentheses or within a pair of parentheses in which
unlike classes of operators appear, evaluation proceeds in the above order. Iµ
expressions containing like classes of operators, evaluation proceeds :from left
to right. For example, A **B**C is evaluated as (A **B)**C. ·

Parenthetical and function expressions are evaluated first in a right-to-left scan
of the entire statement. In parenthetical expressions within parenthetical expres
sions, evaluation begins with the innermost expression. Parenthetical expressions
are evaluated as they are encountered in the right-to-left scanning process.

When writing an integer expression, it is important to remember not only the
left-to-right scanning process but also that dividing an integer quantity by an
integer quantity always yields a truncated result; thus 11/3 = 3. The expression
I*J/K may yield a different result than the expression J/K*I.

For example, 4*3/2 = 6 but 3/2*4 = 4.

60174900 Rev. C

60174900 Rev. C

Examples:

In the following examples, R indicates an intermediate result in evaluation:

A **B/ C+D*E*F-G is evaluated:

A**B - R
1

R/C - R2
D*E -H

3
R *F- R

3 4

R +R - R
4 2 5

R -G -R
5 G

evaluation completed

A**B/(Ci-D)*(E*F-G) is evaluated:

E*P.-G - R
1

C+D -R
2

A**B - R
3

R/R2 - R4

R4*R1 - R5 evaluation completed

II(I3)+C(I,J+2)*(COS(Z))**2 is evaluated:

COS(Z) - R
1

R **2 - R 1 2
R

2
*C(I,J+2) - R

3
R

3
+H(13) - R

4
evaluation completed

The following is an example of an expression with embedded parentheses.

A *(B+((C/D)-E)) is evaluated:

C/D - R 1
R 1-E - R

2
Il +B - R

2 3
R *A -R

3 4
evaluation completed

(A *(SIN(X)+l.)-Z)/ (C*(D-(E+ F))) is evaluated:

E+F-R
1

D-R
1

- R
2

C*R - R 2 3
SIN(X) - R

4

3-3

3.1.2
MIXED-MODE
ARITHMETIC
EXPRESSIONS

3-4

R +1 --- R 4 . 5

A*R -- R 5 6
R -Z -- R 6 7

R /R -- R 7 3 8
evaluation completed

Mixed-mode arithmetic with the exception of exponentiation is completely
general; however, most applications probably mix operand types, real and
in~eger, real and double, or real and complex. The relationship between the
mdde of an evaluated expression and the types of operands it contains is
established as follows.

Order of dominance of the operand types within an expression from highest
to lowest:

Complex

Double

Real

Integer

Logical

Simple double precision expressions are not evaluated by closed subroutines,
but by in-line arithmetic instructions.

The type of an evaluated arithmetic expression is the mode of the dominant
operand type.

In expressions of the form A **B, the following rules apply:

If Bis preceded by a unary minus operator, the form is A**(-B).

B is treated as an integer if type logical.

For the various operand types, the type relationships of A** B are:

Type of B

I R D
I I n n
R R R D
D D D D
c c n n
L I n n

c
n
n
n
n
n

L
n
n
n

n
n

mode of A**B

n indicates an
invalid operation

For example, if A is real and B is integer, the mode of A **B is real.

60174900 Rev. C

60174900 Rev. C

Examples:

1) Given real A, B; integer I, J. The type of expression A *B-I+J is real
because the dominant operand type is real.

The expression is evaluated:

Convert I to real

Convert J to real

A*B-R
1

real

R -I- R
1 2

real

R +J-R
2 3

real

2) The use of parentheses can change the evaluation. A,B,I,J are defined
as above. A *B-(I-J) is evaluated:

I-J - R
1

A*B- R
2

integer

real

Convert R
1

to real

R
2

-R
1

- R
3

real

3) Given complex C,D, real A,B. The type of the expression A* (C/D)+B
is complex because the dominant operand type is complex. The
expression is evaluated:

C/D - R1
complex

Convert A to complex

A*R - R 1 2
complex

Convert B to complex

R +B-R
2 3

complex

4) Consider the expression C/D+(A-B) where the operands are defined in
3 above. The expression is evaluated:

A-B-R
1

C/D - R2

real

complex

Convert R
1

to complex

R1 +R2 - R
3

complex

3-5

3.2
RELATIONAL
EXPRESSIONS

3-6

5) Mixed-mode arithmetic with all types is illustrated by this example:

Given: the expression C*D+R/I-L

c Complex
D Double
R Real
I Integer
L Logical

The dominant operand type in this expression is complex; therefore , the
evaluated expression is complex.

Evaluation:

Round D to real and affix zero imaginary part.

Convert D to complex

C*D -R
1

complex

Convert R to complex

Convert I to complex

R/I - R2
complex

R +R -- R 2 1 3
complex

R -L _.,. R
3 4

complex

If the same expression is rewritten with parentheses as C*D+(R/I-L) the
evaluation proceeds :

Convert I to real

R/I - R1 real

R -L _.,. R real
1 2

Convert D to complex

C*D-R
3

complex

Convert R
2

to complex

R
2

+R
3

--: R
4

complex

A relational expression has the form:

60174900 Rev. C

60174900 Rev. C

Thea's are arithmetic expressions; op is an operator belonging to the set:

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

. LE. Less than or equal to

A relation is true if a 1 and a 2 satisfy the relation specified by op; otherwise,
it is false. A false relational expression is assigned the value plus zero; a
true relational expression is assigned the value minus zero (all one bits).

Relations are evaluated as illustrated in the relation p. EQ. q. This is equiva
lent to the question: does p - q = 0?

The difference is computed and tested for zero. If the difference is zero or
minus zero, the relation is true. If the difference is not zero or minus zero,
the relation is false. Relational expressions are converted internally to
arithmetic expressions according to the rules of mixed-mode arithmetic.
These expressions are evaluated and compared with zero to determine the
truth value of the corresponding relational expression. When complex ex
pressions are tested for zero or minus zero, only the real part is used in
the comparison. For double precision numbers, only the most significant
pa.rt is used in the comparison.

Relational expressions of the following forms are allowed:

I.LT .R

I.LT.D

I.LT .C (Real part of C is used)

I is integer, R is real, D is double precision and C is complex.

Order of dominance of the operand types within an expression is the order stated
in mixed-mode arithmetic expressions.

The relation of the form I.GE.O is treated as true if I assumes the value -0.

a
1

op a
2

op a
3

. . . is not a valid expression.

A relation of the form a
1

op a
2

is evaluated from left to right. The relations
a

1
op a

2
,a

1
op (a

2
), (a

1
) op a

2
, (a

1
) op (a

2
) are equivalent.

3-7

3.3
LOGICAL
EXPRESSIONS

3-8

Examples:

A .GT. i6.

R-Q(I)* Z .LE .3 .iLJ,i592

B-C .NE. D+E

R(I) .GE .R(I-i)

K .LT. 16

I .EQ. J(K)

(I) .EQ. (J(K))

A logical expression has the general form:

The terms Li are logfoal variables, logical constants, or relational expressions
and op is the logical operator .AND. indicating conjunction or .OR. indicating
disjunction.

The logical operator .NOT. indicating negation appears in the form:

.NOT. Li

The value of the expression is examined. If the value is equal to plus zero, the
logical expression has the value false. All other values are considered true.

The hierarchy of logical operations is:

First

then

then

.NOT.

. AND.

.OR.

or

or

or

.N.

.A .

.0.

A logical variable, logical constant, or a relational expression is, in :itself, a
logical expression. If Li, L 2 are logical expressions, then the following are
logical expressions:

.NOT.Li

Li.AND.L
2

Li.OR.L
2

If Lis a logical expression, then (L) is a logical expression.

If Li, L2 are logical expressions and op is .AND. or .OR., then Li op op L
2

is
never leg;itimate.

60i 74900 Rev. C

3.4
MASKING
EXPRESSIONS

60174900 Rev. C

.NOT. may appear in combination with .AND. or .OR. only as follows:

L
1

.AND .. NOT .L
2

L
1

.OR .. NOT .L
2

L1 .AND.(.NOT. · · ·)

L
1

.0R.(.NOT. · · ·)

.NOT. may appear with itself only in the form .NOT.(.NOT.(.NOT. L))
Other combinations cause compilation diagnostics.

If L1 , L 2 are logical expressions, the logical operators are defined as follows:

.NOT.L
1

L
1

.AND.L
2

L
1

.0R.L
2

Examples:

is false only if L
1

is true

is true only if L
1

, L
2

are both true

is false only if L
1

, L
2

are both false

1) B - C :'.5 A :'.5 B + C is written
B-C .LE .A .AND .A .LE .B+C

2) FICA greater than 176.0 and PA YNMB equal to 5889 .0 is written
FICA.GT .176.0 .AND.PA YNMB.EQ.5889 .0

3) An expression equivalent to the logical relationship (P - Q) may be
written in two ways:

.NOT .(P .AND.(.NOT .Q))

.N.(P.A.(.N.Q))

The masking expression is a generalized form of the logical express.ion in
which the variables may be types other than logical.

In a FOR TRAN masking expression, 60-bit logical arithmetic is performed
bit-by-bit on the operands within the expression. The operands may be any
type variable, constant, or expression. No mode conversion is performed during
evaluation. If the operand is complex, operations are performed on the real
part. Although the masking operators are identical in appearance to the logical
operators, their meanings are different. They are listed according to hierarchy.
The following definitions apply:

.NOT. or .N .

. AND. or .A.

.OR. or .0.

complement the operand

form the bit-by-bit logical product of two operands

form the bit-by-bit logical sum of two operands

3-9

3-10

The operations are described below:

.2. ~ ~rn.v E .OR.v .NOT. E

1 1 1 1 0

1 0 () 1 0

0 1 () 1 1

0 0 () 0 1

Let B. be masking expressions, variables or constants of any type except
logica\. The following are masking expressions:

If B is a masking expression, then (B) is a masking expression .

. NOT. may appear with .AND. or .OR. only as follows:

.AND .• NOT .

. OR .. NOT .

. AND. (.NOT ...
0

)

.OR. (.NOT.)

Masking expressions of the following forms are evaluated from left to right.

A .AND. B .AND. C .. .

A .OR. B .OR. C .. .

Arithmetic expressions appearing in masking statements must be enclosed in
parentheses. e.g. E=:(E* lOOB). OR. F.

Examples:

A

D

77770000000000000000

00000000777777777777

octal constant

octal constant

B

c
00000000000000001763

20045000000000000000

octal form of integer constant

octal form of real constant

.NOT.A

A.AND.C

is 00007777777777777777

is 20040000000000000000

A .AND .. NOT. C is 57730000000000000000

B .OR .. NOT. D is 77777777000000001763

The last expression could also be written as B .0 .. N. D

6017 4900 Rev. C

4.1
ARITHMETIC
REPLACEMENT

4.2
MIXED-MODE
REPLACEMENT

60174900 Rev. C

REPLACEMENT ST A TEMENTS 4

The general form of the arithmetic replacement statement is A = E, where E
is an arithmetic expression and A is any variable name, simple or subscripted.
The operator = means that A is replaced by the value of the evaluated expression,
E, with c'onversion for mode if necessary.

Examples:

A =-A

B(J, 4) = CALC(I+l)*BETA+2.3478

39 XTHETA=7 .4*DELTA+(A(l,J,K)**BETA)

RESPSNE=SIN(ABAR(INV+2 ,JBAR)/ ALPHA(J ,KAPL(I)))

4 JMAX=19

AREA = SIDE! * SIDE2

PERIM = 2.*(SIDEl + SIDE2)

The type of an evaluated expression is determined by the type of the dominant
operand. This, however, does not restrict the types that identifier A may
assume. A complex expression may replace A, even if A is real. The following
chart shows the A = E relationship for all the standard modes. The mode of A
determines the mode of the statement.

When all the operands in the expression E are logical, the expression is evalu
ated as if all the logical operands were integers.

For example, if L1 , L2 , L3 , L4 are logical variables, R is a real variable, and
I is an integer variable, then I = L1 * L2 + L3 - L4 is evaluated as if the Li were
all integers and the resulting value is stored as an integer in I.

R = L 1*L 2 + L3 - L4 is evaluated as stated above, but the result is converted to
a real (a floating point quantity) before it is stored in R.

When a mode conversion is made from real, double precision, or complex to
integer and the real number (or the real portion of the complex number) is in
the range -1< R< 0 the following conversion is made:

4-1

4-2

Resulting Integer

-1< H< -(2-17)

-17
-(2) :SR< 0

Type of
A

Complex

Complex A= E

Double
Precision

Real

Integer

Logic~

A=E
real

less signifi-
cant is set
to zero

A=E
real

Truncate

E al to re
Integer

A=E

If E 7l
real

O,A = 1

If E l --rea
O,A = 0

-0

0

Type of Expression E

Double
Precision

Set A= most
significant half
of E

A =E real
A = 0

image

A=E

Real

A =E
real

A. = 0
imag

Integer

Convert E
to Real

A =E
real

A. = 0
imag

A= E Convert E
to Real

less signifi-
cant is set A = E
to zero

less signifi
cant is set
to zero

Set A = most A = E Convert E
to Real significant half

of E

A=E

Truncate E
to 48 bit
integer

A=E

If E =f 0,
A= 1

If E = 0,
A=O

A=E

Truncate E A = E
to Integer

A=E

If E =f 0,
A= 1

If E = 0,
A= 0

If E =f 0,
A=l

If E = 0,
A= 0

60174900 Rev. C

60174900 Rev. C

Examples:

Given: Ci,Al

Di,A2

Ri,A3

Ii,A4

L.,A
5 l

Complex

Double

Real

Integer

Logical

(6.905, 15.393) = (4.4, 2.1)*
(3.o, 2.0) - (3.3, 6.8) I (1.1, 3.4)

The expression is complex; the result of the expression is a two-word,
floating point quantity. Ai is complex, and the result replaces Ai.

4.4000+000 = (4.4,2.1)

The expression is complex. A3 is real; therefore, the real part of c1 re
places A 3 .

3. A
3

= c
1

(O. ,-1.) 2 .1000+000 = (4.4,2 .1)
(0. ,-1.)

4.

5.

6.

The expression is complex. A3 is real; the real part of the result of the
complex multiplication replaces A3 .

A = R /R * (R - R)+I -
4 (Il*R2) 3 4 1

2 5

13=8 .4/ 4.2*(3 .1-2 .1)+
14-(1 *2 .3)

The expression is real. A4 is integer; the result of the expression evalua
tion, a real, is converted to an integer replacing A4 .

A = D * *2 *(D +(D *D))
2 1 2 3 4

+(D *D *D)
2 1 2

4.96800000000000+001=

2 .OD**2 *(3 .2D+(4.1D*l.OD))
+(3.2D*2 .OD*3 .2D)

The expression is double precision. A2 is double precision; the result of
the expression evaluation, a double precision floating quantity, replaces A2 .

A = C *R -R +I
5 1 1 2 1

1=(4.4,2 .1)*8.4-4.2+14

The expression is complex. Since A 5 is logical, the real part of the evalu
ated expression replaces A5 . If the real part is zero, zero replaces A5 .

4-3

4.3
LOGICAL
REPLACEMENT

4.4
MASKING
REPLACEMENT

4.5
MULTIPLE
REPLACEMENT

4-4

The general form of the logical replacement statement is L = E, where L is a
logical variable and E: may be a logical, relational, or arithmetic expression:

Examples:
LOGICAL A, B, C, D, E, LGA, LGB, LGC

REAL F, G, H

A = B .AND. C .AND. D

A= F .GT. G .OR. F .GT. H

5 A= .N. (A.A .. N. B) .AND. (C.O.D)

LGA =.:~OT. LGB

2109 LGC = E: .OR. LGC .OR. LGB .OR. LGA .OR. (A .AND. B)

The general form of the masking replacement statement is M = E. Eis a
masking expression, and M is a variable of any type except logical. No mode
conversion is made during the replacement.

Examples:

INTEGER I,J ,K,L,M,N(l6)

REAL B,C,D,E,F(15)

N(2) =I .AND. J

B = C .Al'\·D. L

84 F(J) =I .C>R •• NOT. L .AND. F(J)

N(l) = I.O.J.O.K.O.L.O.M

I= .N.I

D = (B.LE. C) .AND. (C .LE. E) .AND .. NOT. I

Expressions of the form

A=B=C=D=3. O*X

are permissible and result in code which is equivalent to the expressions:

D=3.0*X

C=D

B=C

A=B

60174900 Rev. C

TYPE DECLARATIONS AND STORAGE ALLOCATION 5

5.1

TYPE
DECLARATION

60174900 Rev. C

The type declaration statement provides the compiler with information on the
structure of variable and function identifiers.

Statement

COMPLEX list

DOUBLE PRECISION list
or DOUBLE list

REAL list

INTEGER list

LOGICAL list

Characteristics

2 words/ element

2 words/ element

1 word/ element

1 word/ element

1 word/ element

Floating Point

Floating Point

Floating Point

Integer

Logical

TYPE may precede any of the above statements.

DOUBLE may replace DOUBLE PRECISION in any FORTRAN statement
in which the latter is allowed.

List is a string of identifiers separated by commas; integer constant subscripts
are permitted. For example:

A, Bl, CAT, D36F, GAR (1, 2, 3)

The type declaration is non-executable and must precede the first reference
to the variable or function in a given program. If an identifier is declared in
two or more type declarations, the first declaration holds until the second is
read, the second holds until the third, etc. However, the second and ensuing
declarations will result in informative diagnostics.

An identifier not declared in a type declaration is type integer if the first letter
of the name is I, J, K, L, M, N; for any other letter, it is type real.

When subscripts appear in the list, the associated identifie.r is the name of an
array, and the product of the subscripts determines the amount of storage to
be reserved fo:r that array. By this means, dimension and type information
are given in the same statement. In this case no DIMENSION statement is
needed; in fact it is not allowed.

5-1

5.2
DIMENSION
DECLARATION

5-2

Examples:

COMPLEX A412 ,DATA ,DRIVE,IMPORT

DOUBLE PRECISION PLATE,ALPHA(20,20),B2MAX,F60,JUNE

REAL I,J(20,50,2),LOGIC,MPH

INTEGER GAR(60),BETA,ZTANK,AGE,YEAR,DATE

LOGICAL DISJ ,IMPL,STROKE,EQUIV ,MODAL

DOUBLE RL,MASS (10,10)

A subscripted variable represents an element of an array of variables. Storage
is reserved for arrays by the non-executable statements DIMENSION, COMMON,
or a type statement.

The standard form of the DIMENSION declaration is:

The variable names vi may have 1, 2, or 3 integer constant subscripts separated
by commas, as in SPACE (5, 5, 5). Under certain conditions within subprograms
only, the subscripts mRy be constants or variables.

Example:

DIMENSION A(lO), B(20, 3)

The DIMENSION declaration is non-executable and it must precede the first
reference to the array in a given program. The DIMENSION statement should
precede the first executable statement and will result in an informative
diagnostic otherwise.

The number of computer words reserved for an array is determined by the
product of the subscripts in the subscript string and the type of the variable.
A maximum of 217 -1 elements may be reserved in any one array. If the
maximum is exceeded, a diagnostic is provided.

COMPLEX ATOM

DIMENSION ATOM (10, 20)

fu the above declarations, the number of elements in the array A TOM is 200.
1\vo words are used to contain a complex element; therefore, the number of
computer words reserved is 400. This is also true for double precision
arrays. For real, log:ical, and integer arrays, the number of words in an
array equals the number of elements in the array.

60174900 Rev. C

5.2.l

If an array is dimensioned in more than one declaration statement, the first
declaration holds and an informative diagnostic is provided.

Examples:

DIMENSION A(20, 2, 5)

DIMENSION MATRIX(lO, 10, 10), VECTOR(lOO), ARRAY(16, 27)

VARIABLE DIMENSIONS When an array identifier and some or all dimensions appear as formal para
meters in a function or subroutine, the dimensions may be assigned through
the actual parameter list accompanying the function reference or subroutine
call. Dimensions must not exceed the maximum array size specified by the
DIMENSION declaration in the calling program.'/"

5.3
COMMON
DECLARATION

60174900 Rev. C

Example:

SUBROUTINE X(A, L, M)

DIMENSION A(L, 10, M)

The COMMON declaration provides up to 61 blocks of storage that can be
referenced by more than one subprogram. The declaration reserves blank,
numbered, and labeled blocks. Starting addresses for these blocks are
indicated on the core map.

Areas of common information may be specified by the declaration:

The common block identifier, i, may be 1-7 characters. If the first character
is alphabetic, the identifier denotes a labeled common block; remaining charac
ters may be alphabetic or numeric. If the first character is numeric, remaining
characters must be numeric and the identifier denotes a numbered common
block. Leading zeros in numeric identifiers are ignored. Zero by itself is an
acceptable numbered common identifier.

f See Variable Dimensions in Subprograms in Chapter 7.

5-3

Example:

COMMON/200/A, B, C

The following are common identifiers:

I,abeled

AZ13

MAXIM

z
XRAY

Numbered

1

146

6600

0

A common statement without a label, or with just blanks between the separating
slashes is treated as a blank common block, for example:

COMMON / /A, B, C or COMMON X, Y, Z(5)

Lis11_ is a string of identifiers representing simple and subscripted variables;
formal parameters are not allowed. If a non-subscripted array name appears
in the list, the dimensions must be defined by a type or DIMENSION declara
tion in that program. If an array is dimensioned in more than one declaration,
a compiler diagnostic is issued. The order of simple variables or array
storage within a common block is determined by the sequence in which the
variables appear in the COMMON statements.

Numbered common is treated as labeled common by the loader. The total of
labeled and numbered common blocks is limited to 61. Labeled and numbered
common blocks may be preset; data stored in them by DATA declarations is
made available to any subprogram using the appropriate block. Data may not
be entered into blank common blocks by the DATA declaration.

Examples:

1. COMMON /B LK/ A(3)

DATA Afl., 2., 3. /

2. COMMON/100/1(4)

DATA I/4,5,6,7/

COMMON is non-executable and can appear anywhere in the program. Any
number of blank COMMON declarations may appear in a program. If
Dil.VIENSION, COMMON or type declarations appear together, the order is
immaterial.

60174900 Rev. C

60174900 Rev. C

Since labeled and numbered common block identifiers are used only within
the compiler, they may be used elsewhere in the program as other kinds of
identifiers except subroutine names in the same job. An identifier in one
common block may not appear in another common block. (If it does, the
name is doubly defined.)

At the beginning of program execution, the contents of all common areas are
unpredictable except labeled common areas specified in a DATA declaration.

Examples:

COMMON A, B, C } Blank Common

COMMON/ /E,F,G,H

COMMON/BLOCKA/ Al(l5), Bl, Cl/BLOCKD/DEL(5, 2), ECHO

COMMON/VECTOR/VECTOR(5), HECTOR, NECTOR

COMMON/9999/ AX, BX, ex

The length of a common block in computer words is determined from the number
and type of the list variables. In the following statements, the length of common
block A is 12 computer words. The origin of the common block is Q (1).

COMMON/ A/Q(4), R(4), 8(2)

REAL Q,R

COMPLEX S

origin

Block A

Q(l)
Q(2)
Q(3)
Q(4)
R(l)
R(2)
R(3)
R(4)
s (1)
s (1)
s (2)
s (2)

real part
imaginary part
real part
imaginary part

If a subprogram does not use all of the locations reserved in a common block,
unused variables may be necessary in the COMMON declaration to insure proper
correspondence of common areas.

5-5

5-6

COMMON/SUM/A,B,C,D (main program)

COMMON/SUM/E(3) ,D (subprogram)

In the above example, only the variable Dis used in the subprogram. The unused
variable E is necessary to space over the area reserved by A,B, and C.

Each subprogram using a common block assigns the allocation of words in the
block. The identifiers used within the block may differ as to name, type, and
number of elements; but the block identifier must remain the same.

Example:

PROGRAM MAI:t\.

COMPLEX C

COMMON/TEST/ C(20)/36/ A ,B, Z

The length of the block named TEST is 40 computer words. The length of
the block numbered 36 is 3 computer words.

The subprogram may rearrange the allocation of words as :in:

SUBROUTINE ONE

COMMON/TEST/ A(lO), G(lO), K(lO)

COMPLEX A

The length of TEST is 40 words. The first 10 elements (20 words) of the
block represented by A are complex elements. Array G is the next 1 O
words, and array K is the last 10 words. Within the subprogram, ele
ments of G are treated as floating point quantities; elements of K are
treated as integer quantities.

The length of a common block other than blank common must not be increased
by subprograms using the block unless that subprogram is loaded first by the
SCOPE loader. The symbolic names used within the block may differ, how
ever, as shown above.

60174900 Rev. C

5.4
EQUIVALENCE
DECLARATION

60174900 Rev. D

The EQUIVALENCE declaration permits variables to share locations in
storage. The general form is :

EQUIVALENCE (A,B, ...), (Al,Bl, ...), ...

(A, B, ...) is an equivalence group of two or more simple or subscripted
variable names; formal parameters are not allowed. A multiply subscripted
variable can be represented by a singly subscripted variable. The corres
pondence is :

A(i, j, k) is the same as A ((the value of (i +(j-1) *I +(k-1) *I*J)) *E)

where Eis 1 or 2 depending on A's word length. i, j, k are integer constants;
I and.J are the integer constants appearing in DIMENSION A(I, J, K). For
example, in DIMENSION A(2, 3, 4), the element A(l, 1, 2) can be represented
by A(7).

EQUIVALENCE is most commonly used when two or more arrays can share
the same storage locations. The lengths need not be equal.

Example:

DIMENSION A(lO, 10) ,I(lOO)

EQUIVALENCE (A,I)

5 READ 10, A

6 READ 20, I

The EQUIVALENCE declaration assigns the first element of array A and array I
to the same storage location. The READ statement 5 stores the A array in
consecutive locations. Before statement 6 is executed, all operations using A
should be completed since the values of array I are read into the storage
locations previously occupied by A.

Variables requiring two memory positions which appear in EQUIV ALEN CE
statements must be declared to be COMPLEX or DOUBLE prior to their
appearance in such statements.

Example:

COMPLEX DAT,BAT

DIMENSION DAT(l0,10),BAT(l0,10),CAT(l0,10)

DOUBLE PRECISION CAT

COMMON/IFAT/FAT(2 ,2)

EQUIVALENCE (DAT(2,l),FAT(2,2)), (CAT,BAT)

5-7

I

5-8

EQUIVALENCE is non-executable and can appear anywhere in the program
or subprogram. However, if it appears after the first executable statement,
an informative diagnostic is provided.

Any variable may be made equivalent to any other variable, provided that no
two variables in any one group are in COMMON. The variables may be with
or without subscript. In FORTRAN II, equivalence groups can reorder the
common variables and arrays, and more than one variable in an equivalence
group may be in common. The following examples illustrate changes in block
lengths caused by the EQIBV ALEN CE declaration.

Given: Arrays A and B

Examples:

Sa subscript of A

Sb subscript of B

A and C in common, B not in common

Sb ::::: Sa is a permissible subscript arrangement

Sb> Sa is not

The design of this compiler prevents the following use of EQUIVALENCE

DIMENSION F AT(6)

COMMON/I FAT /SKINNY

EQUIVALENCE (SKINNY, FAT(n))

The latter statement will be flagged fatally if n > 1.

Block 1

origin A(l) COMMON /1/ A(4), C

A(2) B(l) DIMENSION B(5)

A(3) B(2) EQUIVALENCE (A(3), B(2))

A(4) B(3)

c B(4)

B(5)

60174900 Rev. C

5.5
DATA
DECLARATION

60174900 Rev. C

Values may be assigned to program variables or labeled common variables
with the DATA declaration:

DATAd , ... ,d /a
1

,k*a
2

, ... ,a /,d
1

, ... ,d /a
1

, ... ,a /, ...
1 n n n n

d.
1

a.
1

k

identifiers representing simple variables, array names, or
variables with integer constant subscripts or integer variable
subscripts (implied DO-loop notation).

literals and signed or unsigned constants.

integer constant repetition factor that causes the literal
following the asterisk to be repeated k times. If k is non
integer, a compiler diagnostic occurs.

A semicolon cannot be used in the character string of data entered under
L, R or H control.

Data is non-executable and can appear anywhere in the program or sub
program. When DATA appears with DIMENSION, COMMON, EQUN ALEN CE,
or a type declaration, the statement that dimensions any a rr~ys used in the
DATA statement must appear prior to the DATA statement. Variables in
blank common or formal parameters may not be preset by a DATA declaration.

Only single-subscript, DO-loop-implying notation is permissible. This
notation may be used for storing constant values in arrays.

Examples:

1. DIMENSION GIB(lO)
DATA (GIB(I), I=l, 10) /1. , 2. , 3. , 7*4. 32/

Array GIB: 1.
2.
3.
4.32
4.32
4.32
4.32
4.32
4.32
4.32

5-9

5-10

2. DIMENSION TW0(2, 2)
DATA TWO(l, 1), TWO(l, 2), TW0(2, 2), TW0(2, 1)/1., 2., 3., 4. /

Array TWO: TWO(l, 1) 1.
TW0(2, 1) 4.
TWO(l, 2) 2.
TW0(2, 2) 3.

3. DIMENSION SINGLE(3, 2)
DATA (SINGLE(I),I=l,6)/1. ,2. ,3. ,1. ,2. ,3./

Array SING LE: SINGLE(l, 1) 1.
SINGLE(2, 1) 2.
SINGLE(3, 1) 3.
SINGLE(l, 2) 1.
SINGLE(2, 2) 2.
SINGLE(3. 2) 3.

In the DATA declaration, the type of the constant stored is determined by the
structure of the constant rather than by the variable type in the statement. In
DATA A/2/, an integer 2 replaces A, not a real 2 as might be expected from
the form of the symbolic name A.

There should be a one-one correspondence between the variable names and the
list. Th.is is particularly important in arrays in labeled common. For instance:

COMMON/BLK/A(3), B

DATA A/1. ,2. ,3. ,4./

The constants 1. , 2. , 3. , are stored in array locations A, A+ 1, A +2; the
constant 4. is discarded, B is unmodified and an error is issued. If this
occurs unintentionally, errors may occur when B is referred to elsewhere
in the program.

COMMON/ TUP / C(3)

DATA C/1. ,2 ./

The constants 1. , 2. are stored in array locations C and C+ 1;
the c .. mtent of C(a), that is, location C+2, is not defined.

When the number of list elements exceeds the range of the implied DO, the
excess list elements are not stored, and a diagnostic is issued.

DATA (A(I), I=l, 5, 1)/1., 2., ... ,10./

The excess values 6. through 10. are discarded.

60174900 Rev. C

Examples:

1) DATA LEDA, CASTOR, POLLUX/15,16.0,84.0/

LEDA 15

CASTOR 16.0

POLLUX 84.0

2) DATA A(l,3)/16.239/

ARRAY A

A(l,3) 16.239

3) DIMENSION B(lO)

DATA B/0000077, 0000064, 3*0000005, 5*0000200/

ARRAY B 077

064

05

05

05

0200

0200

0200

0200

0200

4) COMMON/HERA/ C(4)

DATA C/3.6, 3*10.5/

ARRAY C 3.6

10.5

10.5

10.5

60174900 Rev. C 5-11

5-12

5) COMPLEX PROTER (4)

DATA PROTER/4*(1.0,2.0)/

AH.RAY PROTER 1.0

2.0

1.0

2.0

1.0

2.0

1.0

2.0

6) DIMENSION MESA GE (3)

DATA MESAGE/9HSTATEMENT ,2IDS,10IDNCOMPLETE/

AR.RAY MESAGE STATEMENT
IS
INCOMPLETE

Data declaration statements of the following forms may also be used to assign
constant values to program or common variables at load time.

DATA (i
1
=value list), (i

2
=value list),

DATA (i(j, k, l)=v::llue list),

j, k, 1 are integer constants.

The variable identifier, i, may be:

non-subscripted variable

array variable with constant subscripts

array name

array variable with integer variable quantifiers

The value list is either a single constant or set of constants whose number is
equal to the number o:f elements in the named array.

List contains constants only and has the form:

k is an integer constant repetition factor that causes the parenthetical list
following it to be repeated k times. If k is non-integer a compiler diagnostic
is provided.

60174900 Rev. C

5.5.1
BLOCK DATA
SUBPROGRAM

60174900 Rev. D

Examples:

COMMON/DATA/ GIB

DATA ((GIB(I), I=l,10)=1. , 2. , 3. , 7(4.32))

COMMON/DATA/ROBIN(5 ,5 ,5)

DATA (ROBIN(4,3,2)=16.)

A block data subprogram may be used to enter data into labeled or numbered
common prior to program execution in place of a DATA declaration and it
may appear more than once in a FORTRAN program. If more than one
BLOCK DATA subprogram is compiled, the user-supplied name is used to I
identify the -binary records. If no name is specified, however, the binary
records are named BLKDAT A, BLKDAT B, BLKDAT C, ..• Also if seg
mentation is used, the SEGMENT card must specify which block data binary
record is to be used.

BLOCK DATA n

FORTRAN declaration statements only

END

Where n is blank or any acceptable alphanumeric identifier beginning with a I
letter, all elements in the common blocks must appear in a COMMON declara
tion in the subprogram even if they are not in the DATA declaration.

Examples:

1) BLOCK DATA

COMMON/ ABC/ A(5), B, C/DEF /D, E, F

COMPLEX D,E

DOUBLE PRECISION F

DATA (A(L), L=l, 5)/2. 3, 3. 4, 3*7 .1/, B/2034. 756/, D, E, F /2*(1. O, 2. 5),

17.86972415872D30/

END

2) BLOCK DATA HOODAR

COMMON /DEF /G, H, I

END

5-13

I

I

6.1
GO TO
STATEMENTS

6.1.1
UNCONDITIONAL
GO TO

6.1.2
ASSIGNED GO TO

6.1.3
ASSIGN ST A TEMENT

60174900 Rev. C

CONTROL ST A TEMENTS 6

Program execution normally proceeds from one statement to the statement
immediately following it in the program. Control statements can be used to
alter this sequence or cause a number of iterations of a program section.

Control may be transferred to an executable statement only; a transfer to a
non-executable statement results in a fatal diagnostic.

Program control is transferred to a statement other than the next statement in
sequence by the GO TO statements.

GO TO n

An unconditional transfer is made to the statement labeled n.

GO TO m, (n1 ,n
2

, ... ,nm)

GOTO m

This statement acts as a many-branch GO TO; mis a simple integer variable
assigned an integer value n in a preceding ASSIGN statement. The ni are
statement labels. As shown, the parenthetical statement label list need not
be present.

The comma after m is optional; however, when the list is omitted, the comma
must be omitted. m cannot be defined as the result of a computation. No
compiler diagnostic is given if m is computed, but the object code is incorrect.
If an assignment has not been made for an assigned GO TO statement and m is
equal to zero, a diagnostic is provided at object time. If mis non-zero,
a valid assignment is assumed. FORTRAN does not preset all locations to
zero.

ASSIGN s TO m

This statement is used with the assigned GO TO statement; sis a statement label,
m is a simple integer variable.

6-1

6.1.4
COMPUTED GO TO

6-2

Example:

ASSIGN 10 TO LSWTCH

GO TO I.SWTCH, (5,10,15,20)

Control transfers to statement 10.

GO TO (n
1

,n
2

, ... ,nm) ,i

This statement acts a.s a many-branch GO TO; i is preset or computed prior
to its use in the GO TO.

The ni are statement labels and i is a simple integer variable. If i < 1 or if
i > m, the transfer is undefined and an object time diagnostic will be issued
indicating the point at which the error was detected. If 1 :s i :s m, the transfer
is to ni.

The comma separating the statement number list and the index is optional.

Example:

N=3

GO TO (100,101,102,103) N

Statement number 102 will be the selected control transfer.

For proper operations, i must not be specified by an ASSIGN statement. No
compilation diagnostic is provided for this error, but the object code is in
correct.

Example:

ISWICH = 1

GO TO (10,20,30), ISWICH

10 ,JSWICH = ISWICH + 1

GO TO (11,21,31), JSWICH

Control transfers to statement 21.

60174900 Rev. C

6.2
IF STATEMENTS

6.2.1
THREE-BRANCH
ARITHMETIC IF

6.2.2
ONE-BRANCH
LOGICAL IF

6.2.3
TWO-BRANCH
LOGICAL IF

60174900 Rev. C

Program control is transferred to a statement depending upon the condition of
the computed results of the IF statements.

c is an arithmetic expression, and the ni are statement labels. This statement
tests the evaluated expression c and jumps accordingly as follows:

c < 0 jump to statement n
1

c = 0 jump to statement n
2

c > 0 jump to statement n
3

In the test for zero, +O = -0. When the mode of the evaluated expression is
complex, only the real part is tested.

IF(A *B-SINF(X)) 10,20,10

IF (I)5 ,6, 7

402 IF (A/B ** 2) 3, 6, 6

IF (Q) s

Q is a logical expression and s is any executable statement except another
logical IF, a DO statement or an END. If Q is true (not plus zero), the
statement s is executed. If Q is false (plus zero) the statement immediately
following the IF statement is executed.

IF(A. LE. 2. 5) A=2. 0

IF (VALUE*4. 73. GT. PRICE. OR. VALUE. LT.150. O)BUY=. TRUE.

IF(P. AND. Q)GO TO 427

Q is a logical expression; ni are statement labels.

The evaluated expression is tested for true (not plus zero) or false (plus zero)
condition. If Q is true, the jump is to statement n1 . If Q is false, the jump
is to statement n2 .

6-3

6.3
DO ST A TEMENT

6-4

Example:

IF(L)5, 6

5 IF(K.EQ.l 00)70 ,60

6 IF(IJUMP.LT.K)l0,11

This statement makes it possible to repeat groups of statements and to change
the value of an integer variable during the repetition. n is the statement label
ending the DO loop; i is the index variable (simple integer). mi are the in
dexing parameters; they may be unsigned integer constants or simple integer
variables no larger than 217-2. m 1 is the initial value assigned to i, m 2 is
the terminal value, and m3 is the amount added to i after each time the DO
loop is executed. If m 3 does not appear, it is assigned the value 1.

The DO statement (statement labeled n) and any intermediate statements
constitute a DO loop; n may not be an arithmetic IF or GO TO statement,
a two branch logical IF, a RETURN, another DO statement or a nonexe
cutable statement.

The indexing parameters m 1 , m2 , m are either unsigned integer constants or
simple integer variables. Subscripted variables and negative or zero integer
constants cause a diagnostic.

The indexing parameters m 1 and m
2

, if variable, may assume positive or
negative values or zero.

The values of m
1

, m
2

, and m
3

may be changed during the execution of the
DO loop.

Examples:

1. DO 25I=l,100
2fi A(I) =A(I) + B(I)

The index variable I is incremented by one for each cycle until the DO
loop is executed 100 times. The control is then transferred to the state
ment: immediately following statement 25.

2. D012I=l,10,2
J=l+K
X(J)=Y(J)

12 CONTINUE

60174900 Rev. C

6.3.l
DO LOOP
EXECUTION

6.3.2
DO NESTS

60174900 Rev. C

I is set to the initial value of one and incremented by two on each of
the following cycles. When the execution of the fifth cycle (I=9) is
completed, control passes out of the DO loop.

The initial value of i, m 1 , is increased by m 3 and compared with m2 after
executing the DO loop once, and if i does not exceed m2, the loop is executed
a second time. Then, i is again increased by m 3 and again compared with
m2; this process continues until i exceeds m2. Control then passes to the
statement immediately following n, and the DO loop is satisfied.

Should m 1 exceed m 2 on the initial entry to the loop, the loop is executed once
and control is passed to the statement following n. When the DO loop is
satisfied, the index variable i is no longer well defined. If a transfer out of
the DO loop occurs before the DO is satisfied, the value of i is preserved
and may be used in subsequent statements.

When a DO loop contains another DO 1oop, the grouping is called a DO nest.
Nesting may be to any level. The last statement of a nested DO loop must eithm
be the same as the last statement of the outer DO loop or occur before it. If
Di ,D2, ... Dm represent DO statements where the subscripts indicate that D1
appears before D2 , D2 appears before D3 and n1,n2, ... ,nm represent the
corresponding limits of the Di, then ~ must appear at or before nm -1 ·

Dl
D2

[D3
n3

n2

Ill

6-5

Examples:

DO loops may be nested in common with other DO loops:

Dl Dl Dl

[D2 lD3
-n3

n2

[D4
n4

[D2 --D
2

D3
n2

n =n =n

[D3 1 2 3

n3

nl

nl

DO 1 I=l,10,2 DO 100 L=2,LIMIT DO 5 I=l,5

DO 5 J=I,10

DO 5 K=J,15
DO 2 J=l,5 DO 10 I=l,10

DO 10 J=l,10

5 A= B*C
DO 3 K=2,E;

10 CONTINUE

3 CONTINUE
DO 20 K=Kl,K2

2 CONTINUE:
20 CONTINUE

DO 4 L=l,3 100 CONTINUE

4 CONTINUE

1 CONTINUE

6-6 60174900 Rev. C

6.3.3
DO LOOP TRANSFER

60174900 Rev. C

In a DO nest, a transfer may be made from one DO loop into a DO loop that
contains i.t, but should not be made from the outer DO loop to the inner DO
loop without first executing the DO statement of the inner DO loop.

~
~) Llb

Not Allowed Allowed

One exception is allowed: once the DO statement has been executed and
before the loop is satisfied, control may be transferred out of the DO range
to perform some calculation and then transferred into the range of the DO.

Certain problems arise if the transfer from outside the range i~ to the
terminal statement of the DO. A statement number terminating a DO loop
not previously referenced except in a DO statement is ignored. A later
reference to such a statement number causes a missing statement number
indication. The statement number does not appear in the statement assign
ments list.

Examples 1 and 2 are permissible sets of statements, however, example 3
is not allowed.

6-7

6-8

Examples:

1) K=O
DO 3I=:l,10
IF (K)3, 2, 3

2 X=l
GO TO 1

3 CONTINUE
1 Y=M*X+B

GO TO 3

2) GO TO 2

3)

1 Y=M*X+B
GO TO 3

2 DO 3I=l,10
X=I
GO TO 1

3 CONTINUE

2 DO 3I=:l,10
X=I
GO TO 1

3 CONTINUE
1 Y=M*X+B

GO TO 3

(statement number 3 is referenced prior
to the end of the DO loop)

(statement number 3 is referenced prior
to the end of the DO loop)

(illegal)

(statement number 3 is not referenced
prior to the end of the DO loop)

If more than one DO loop has the same terminal statement, the execution
of the statements is properly satisfied only if the transfer occurred from
the innermost DO.

60174900 Rev. C

60174900 Rev. C

Examples:

1) This example is acceptable since the statement GO TO 2 occurs
from the innermost DO loop.

GO TO 3
2 A(I)=A(I)+ B(I, J)

GO TO 1
3 DO 1 I=l,M

A(I)=O
DO 1 J=l,N
GO TO 2

1 CONTINUE

2) This example is not acceptable since the statement GO TO 3 does
not occur from the innermost DO loop.

3 IF (A (I)) 2 , 5 , 5
DO 2 I=l,M
GO TO 3

5 DO 2 J=l, N
1 A(I)=A(I)+B(I, J)
2 CONTINUE

(statement number 2 causes index to
increment for inner DO loop, but not
for the outer DO)

3) This example is acceptable since statement number 3 is in the
range of the DO for I index and not in the range of the DO for
J index.

4 IF (A (I)) 3 , 5, 5
DO 3 I=l,M
GO T04

5 DO 2 J=l,N
1 A(I)=A(I)+B(I, J)
2 CONTINUE
3 CONTINUE

For the above examples, the terminal statement number of the DO loops must
be referenced prior to the DO statement as a later reference to such a state
ment number produces a :rpessage indicating a missing statement number.

6-9

I

I

6.4
CONTINUE
STATEMENT

6.5
PAUSE
STATEMENT

6.6
STOP STATEMENT

6.7
RETURN
STATEMENT

6-10

n CONTINUE

The CONTINUE statement is most frequently used as the last statement of a
DO loop to provide a loop termination when a GO TO or IF would normally be
the last statement of the loop. If CONTINUE is used elsewhere in the source
program it acts as a do-nothing instruction and control passes to the next
sequential program statement. The CONTINUE statement must contain a
statement label n in column 1-5.

PAUSE

PAUSE n

n $ 5 octal digits without an 0 prefix or B suffix. PAUSE n stops program
execution with the words PAUSE n displayed as a dayfile message. An
operator entry from the console can continue or terminate the program.
Program continuation proceeds with the statement immediately following
PAUSE.. If n is omitted, it is understood to be blank.

STOP

STOPn

n $ 5 octal digits without an 0 prefix or B suffix. When a STOP n statement
is encountered, n is displayed in the dayfile, program execution is terminated
and control is returned to the operating system. If n is omitted, it is
assumed to be blank.

A subprogram normally contains one or more RETURN statements to indicate
the end of logic flow within the subprogram and return control to the calling
program.

In function subprograms, control returns to the statement containing the
function reference. In a subroutine subprogram, control returns to the next
executable statement following the CALL. A RETURN statement in the main
program causes an exit to the operating system.

60174900 Rev. D

6.8

END ST A TEMENT

60174900 Rev. C

END must be the final statement in a program or subprogram. It is
executable in the sense that it effects termination of the program. The
END statement may not be numbered.

The END statement may include the name of the program or subprogram
which it terminates; however, any information appended to the END state
ment is ignored by the compiler.

In FORTRAN VI only, the END statement in a function or subroutine acts
as a RETURN statement.

6-11

7.1
PROGRAM
COMMUNICATION

7.2
SUBPROGRAM
COMMUNICATION

7.3
FORMAL
PARAMETERS

6017 4900 Rev. C

PROGRAM, FUNCTION, AND SUBROUTINE 7

A FORTRAN program consists of a main program with or without subprograms.
Subprograms are of two kinds: subroutine and function. fu the following
discussions, the term subprogram refers to both. Subprograms may be
compiled independently of the main program.

The main program and subprograms communicate with each other via
parameters and COMMON variables. Subprograms may call or be called by
any other subprogram as long as the calls are nonrecursive; that is, if
program A calls B, B may not call A. A calling program is a main program
or subprogram that refers to another subprogram. A subroutine referenced
by a program may not have the same name as the program.

Subprograms , functions, and subroutines use parameters as one means of
communication. The parameters appearing in a subroutine call or a function
reference are actual parameters. The corresponding arguments appearing
with the program, subprogram, statement function, or library function name
in the definition are formal parameters. One or more of the formal parameters
or common variables can be used to return output to the calling program.

Formal parameters may be the names of arrays, simple variables, library
functions, and subprograms. Since formal parameters are local to the sub
program containing them, they may be the same as names appearing outside
the procedure.

No element of a formal parameter list may appear in an EQUIVALENCE or
DATA statement within the subroutine. If it does, a compiler diagnostic results.

When a formal parameter represents an array, it must be dimensioned within
the subprogram. If it is not declared, the array name must appear without
subscripts and only the first element of the array is available to the subprogram.

7-1

7.4
ACTUAL
PARAMETERS

7-2

Permissible forms:

Arithmetic expression

Logical expression

Constant

Simple or subscripted variable

Array name

FUNCTION subprogram name

Library function and subroutine name

SUBROUTINE name

A calling program statement label, identified by suffixing the label
with the character S. This form should be used only when calling
DUMP or PDUMP.

A function name or a :function reference may be used as an actual parameter.
The function referenc•e is a special case of an arithmetic expression.

Actual and formal parameters must agree in order, type and number.

I/O buffer names may not be used as actual parameters but the following
is allowed:

PROGRAM MAIN (OUTPUT, TAPE 6 = OUTPUT)

x = 50

END
SUBROUTINE SUB(!, B)

WRITE (I, lOO)B

END

60174900 .Rev. D

7.5
MAIN PROGRAM The first statement of a main program should be one of the following forms

where name is an alphanumeric identifier of 1-7 characters. The parameter
list is optional on all forms. If the first card of a program is not one of the
following forms, a PROGRAM with a blank name and files of INPUT, OUTPUT,
are assumed. If more files than INPUT, OUTPUT are necessary, a PROGRAM
card is required.

For compilation i.n FORTRAN IV mode:

PROGRAM name (f1, ••• ,fn)
FORTRAN IV PROGRAM name (f1, ••• , fn)
FORTRAN VI PROGRAM name (f1, ••• , fn)

For compilation in FORTRAN II mode:

FORTRAN II PROGRAM name (f 1 , ... , fn)

Parameters fi represent the names of all input/output files required by the
main program and its subprograms; n must not exceed 50. Although these
parameters may be changed at execution time; at compile time, they must
satisfy the following conditions:

1. The file name INPUT (references standard input unit) must appear
if any READ statement is included in the program or its subprograms.

2. The file name OUTPUT (references standard output unit) must
appear if any PRINT statement is included in the program or its
subprograms. OUTPUT is required for obtaining a listing of
execution diagnostics.

When logical file numbers are made equivalent to INPUT or OUTPUT,
file names INPUT and OUTPUT must be declared in the PROGRAM
statement card.

Example:

PROGRAM X (INPUT ,OUTPUT, TAPE5=INPUT, TAPE6=0UTPUT)

3. The file name PUNCH must appear if any PUNCH statement is included
in the program or its subprograms.

4. The file name TAPE i, must appear if a READ INPUT TAPE i,
WRITE OUTPUT TAPE i, READ TAPE i, WRITE TAPEi, READ(i,n),
WRITE (i, n), READ (i), or WRITE (i) statement is included in the
program or its subprogram. (i is an integer.)

5. If I is an integer variable name for a READ INPUT TAPE I, WRITE
OUTPUT TAPE I, READ TAPE I, WRITE TAPE I, READ (I, n)
WRITE (I, n), READ (I), or WRITE (I) statement which appears in
the program or its subprograms, the file names TAPE i1 , ... ,
TAPE ik must appear. The integers i1 , ... , ik must include all
values which are assumed by the variable I. The file name TAPE I
may not appear in the list of arguments to the main program.

60174900 Rev. D 7-3

I

7.6
SUBROUTINE
SUBPROGRAM

7-4

File names may be made equivalent and their buff er lengths may be specified
at compile time. See Appendix J for details on file name handling at execution
time.

Example:

PROGRAM ORB (INPUT, OUTPUT=lOOOO, TAPEl=INPUT, TAPE2=0UTPUT)

All input normally provided by TAPE 1 would be extracted from INPUT
and all listable output normally recorded on TAPE 2 would be transmitted
to the OUTPUT file. OUTPUT=lOOOO establishes an output buffer length
of 100008• If buff er length is not indicated, a standard buff er size of
2022s is allocated. t Buffer length may not be less than 10028 words; for
instance, PR<Xl-RAM X(INPUT=20) will cause a buffer of 1002s words to
be formed. In the list of parameters, equivalenced file names must
follow those to which they are made equivalent. Their corresponding
parameter positions may not be changed at execution even though the
names of the files to which they are made equivalent may be changed at
that time.

A subroutine subprogram is a closed loop computational procedure which may
return none, one or more values. A value or type is not associated with the
subroutine name its·elf.

The first statement of a subroutine subprogram must have one of the following
forms:

SUBROUTINE name (p
1

, ... ,pn)

FORTRAN IV SUBROUTINE name (P
1

, ... , Pn)

FORTRAN II SUBROUTINE name (Pl, ... , Pn)

FORTRAN VI SUBROUTINE name (p
1

, ... , Pn)

name is an alphanumeric identifier and pi are formal parameters; n may
be 1 to 60.

The parameter list is optional. If the parameter list is not specified, the
following form is allowed:

SUBROUTINE name

t'flle standard buffer size includes the 218 word file environment table of the
buffer.

60174900 Rev. D

7.7
CALL STATEMENT

60174900 Rev. C

The executable statement in the calling program for referring to a subroutine
is:

CALL name

or

CALL name (p
1

, ... , pn)

name is the name of the subroutine being called, and pi are actual
parameters; n is 1 to 60. The name should not appear in any declara
tive statement in the calling program, with the exception of the
EXTERNAL statement when name is also an actual parameter.

The CALL statement transfers control to the subroutine. When a
RETURN statement is encountered in the subroutine, control is re
turned to the next executable statement following the CALL statement
in the calling program. If the CALL statement is the last statement
in a DO loop, looping continues until the DO loop is satisfied.

Examples:

1) SUBROUTINE BLDX(A, B, W)

W=2.*B/A

RETURN

END

Calls

CALL BLDX(X(I), Y (I), W)

CALL BLDX(X(I)+H/2. , Y(I)+C(J), PROX)

CALL BLDX(SIN(Q5), EVEC(I +J), OVEC(L))

2) SUBROUTINE MATMULT

COMMON/ITRARE/X(20, 20), Y(20, 20), Z(20, 20)

DO 10 I= 1, 20

DO 10 J = 1,20

Z(I, J) == 0.

DO 10 K=l, 20

10 Z(I, J) = Z(I, J) + X(I, K)*Y(K, J)

RETURN

END

7-5

7.8
EXTERNAL
STATEMENT

7-6

Operations :in MATMULT are performed on variables contained in
the common block IT RARE. This block must be defined in all
calling programs.

COMMON/ITRARE/ AB(20, 20), CD(20, 20), EF(20, 20)

CALL MATMULT

3) SUBROUTINE AGMT(SUB, ARG)

COMMON/ ABL/XP(lOO)

ARG = 0.

DO 5I=1,100

5 ARG = ARG + XP(I)

CALL SUB

RETURN

END

Here the formal parameter SUB is used to transmit another sub
program name. The call to subroutine AG MT might be call
AGMT(MULT, FACTOR), where MULT is specified in an EX
TERNAL statement. (section 7. 8)

When the actual parameter list which calls a function or subroutine subprogram
contains a function or subroutine name, that name must be declared in an
EXTERNAL statement.

EXTERNAL name
1

,name
2

, ...

The EXTERNAL statement must precede the first statement of any program
which calls a function or subroutine subprogram using the EXTERNAL name.
When it is used, EXTERNAL always appears in the calling program; it may
not be used with statement functions. If it is, a compiler diagnostic is
provided.

Examples:

1) A function name used as an actual parameter .:requires an EXTERNAL
statement.

Calling Program Reference

EXTERNAL SIN
CALL PULL(SIN, R, Q)

60174900 Rev. C

60174900 Rev. C

Called Subprogram

SUBROUTINE PULL(X, Y, Z)

Z=X(Y)

But a function reference used as an actual parameter does not need
an EXTERNAL statement.

Calling Program Reference

CALL PULL(SIN(R), Q)

Called Subprogram

SUBROUTINE PULL(X, Z)

Z=X

END

2) A subroutine used as an actual parameter must have its name
declared in an EXTERNAL statement in the calling program.

COMMON/ ABL/ ALST(lOO)
EXTERNALRTENTA, RTENTB
CALL AGMT(RTENTA, Vl)
CALL AGMT(RTENTB, Vl)

When a subprogram name appears as an actual parameter, any
parameters to be associated with a call of this subprogram must
appear as separate actual parameters.

7-7

7.9
ENTRY STATEMENT

7-8

Example:

Calling Program

EXTER~AL ADDER

CALLSUB(ADDER,A,m

Called Subprogram

SUBROUTINE SUB(X, Y, Z)

CALL X(Y ,Z)

END

CALL SUB(ADDER(A, B)) would imply that ADDER is a function
value, not a subroutine name.

The statement provides alternate entry points to a function or subroutine
subprogram .

ENTRY name

Name is an alphanumeric identifier, and may appear within the subprogram
only in the ENTRY statement. Each entry identifier must appear in a
separate ENTRY statement. The formal parameters, if any, appearing
with the FUNCTION or SUBROUTINE statement do not appear with the
ENTRY statement. ENTRY may appear anywhere within the subprogram
except it should not appear within a DO; ENTRY statement cannot be labeled.
The first executable statement following ENTRY becomes an alternate entry
point to the subprogram .

In the calling program, the reference to the entry name is made just as if
reference were being made to the function or subroutine in which the ENTRY
is imbedded. The name may appear in an EXTERNAL statement and, if a
function entry name, in a type statement.

60174900 Rev. C

7.10
LIBRARY
SUBROUTINES

60174900 Rev. C

The ENTRY name may not be given type explicitly in the defining program;
it assumes the same type as the name in the FUNCTION statement.

Examples:

FUNCTION JOE(X, Y)

10 JOE=X+Y

RETURN

ENTRY JAM

IF (X. GT. Y) 10, 20

20 JOE=X-Y

RETURN

END

This could be called from the main program as follows:

Z=A+B-JOE(3. *P,Q-1)

R=S+JAM(Q, 2. *P)

FORTRAN contains several built-in subroutine subprograms which may be
referenced by any program with a CALL statement. i must be an integer
variable or constant; j is an integer variable.

CALL SLITE (i)

Turn on sense light i. If i = 0, turn all sense lights off. i is 0 to 6; if i > 6, the
results are undefined and no diagnostic is provided.

CALL SLITET (i,j)

If sense light i is on, set j = 1, if sense light i is off, set j = 2; then turn sense
light i off. i is 1 to 6. If i is out of the range, the results are undefined.

7-9

I

7-10

CALL SSWTCH (i, j)

If sense switch i is on, set j = 1; if sense switch i is off, set j = 2. i is 1 to 6.
If i is out of the range, the results are undefined.

CALL OVERFL U)t

If a floating point overflow condition exists, set j = 1; if no overflow exists,
set j = 2; and set the machine to a no overflow condition.

CALL DVCHK (j)t

If division by zero occurred, set j = 1 and clear the indicator; if division by zero
did not occur, set j = 2.

CALL FTNBIN (i, n, IRA Y)

Sets the input/output format of the specified binary files according to the
blocking flag, i. (appendix M)

IRAY is an integer a:rray. IRAY(j) contains the logical unit designation of
a binary file.

n is the number of elements in IRAY to be processed.

If n = 0, all files will be processed. IRAY has no effect in this case.

If i = 1, each proces:3ed file will have blocked input/output; if i = 0, each
processed file will have nonblocked input/output.

Examples:

1) CALL FTNBIN (1, 0, dummy) The third parameter is used for
compatibility with FTN and will
not affect the routine.

Sets the format of all binary files in the program to be blocked.

2) IRAY(l)=lO
IRAY(2)=11
CALL FTNBIN(l, 2,IRAY)

Sets the format of binary files TAPElO and TAPEll to be blocked.

Coded files are not affected by a call to FTNBIN.

tCurrently J is always set to 2 (see LEGVAR in Appendix C).

60174900 Rev. D

1 60174900 Rev. D

CALL READEC (cm,ecs,n)

Transfers words from extended core storage (ECS) into central memory. cm
is the central memory address; it can be an array name or a variable name.
ecs is the ECS relative address. The extended core storage field length is
declared in the JOB card (SCOPE card manual). n is the count of the number
of words to be transferred; it must be an integer variable or integer constant.

If no parity error occurs, return is to the user's program. If a parity error
is detected, * ECS READ PARITY ERROR AT RA = xxxxxB KEY IN GO OR
DROP is output on the console and in the dayfile. If the operator keys in GO,
return is to the user with the data as it was read; if DROP, the job is dropped.

CALL WRITEC (cm,ecs,n)

Transfers words from central memory to ECS. Parameters are the same as
for READ EC. If the ECS unit is off or in maintenance mode, a diagnostic
*ECS UNIT DOWN is output on the console and dayfile; and the job is terminated.

Example:

PROGRAM ECS(INPUT ,OUTPUT)
DIMENSION A(lOOO)

CALL WRITEC(A,0,1000)
C TRANSFER 1000 CM WORDS BEGINNING AT CM LOCATION
C A INTO ECS BEGINNING AT WORD 0 OF THE USERS
C RESERVED ECS.

END

CALL SECOND(t)

Returns central processor time from start of job in seconds in floating point
format to three decimal places. tis a real variable.

CALL OPENMS (u,ix,£,p) t

Opens a mass storage file, and informs SCOPE that it is a random access
file. If the file already exists, the master index is read into the area speci
fied by the program.

CALL READMS (u,fwa,n,i) t
CALL WRITMS (u,fwa,n,i) t

Perform data transfers between mass storage and central memory.

t Appendix I gives further information and examples for these routines.

7-11

7-12

CALL STINDX (u,ix,£)t

Changes the file index to the base specified in the CALL.

u Logical unit number

ix First word address of the index (in central memory)

£ Length of index;£ ::::2 (number of index entries) +1 for name index
£::=:number of index entries +1 for number index

p=l Indicates file is referenced through a name index, p=O indicates a
number index

fwa Central memory address of the first word of the record

n Number o:f central memory words to be transferred

i Record number or address. When address, it is the address of
record number or record name. Record number is right justified
and record name is left justified display code 1-7 characters.

CALL EXIT terminates program execution and returns control to the monitor.

CALL REMARK (H) places a message, ::::: 40 characters, in the dayfile. H is
a Hollerith specification. Program generated messages must terminate
with a 12-bit byte of binary zeros.

CALL DISPLA(H,k) displays a variable name (::::: 40 characters, but should be
restricted to 20) and its numerical value in the dayfile; k is displayed as
an integer if not normalized, in floating point format if normalized. H is
a Hollerith specification. Program generated messages must terminate
with a 12-bit byte of binary zeros followed by a zero word.

CALL DUMP (a1 , bl,. f1 , ... , an, bn, fn)

CALL PDUMP(a1 , bl, f 1' ..• , an, bn, fn)
[n ::::: 20]

Dump storage on OUTPUT file in indicated format. For PDUMP control
returns to the calling program; for DUMP execution terminates and control
returns to the operating system. If no parameters are provided, an octal
dump of all storage occurs.

ai and bi, identifiers or statement numbers, indicate first and last word of
the storage area to be dumped. Statement numbers must be 1 to 5 digits with
a trailing S, CALL DUMP (lOS, 208, 0). The last word of the storage area

'to be dumped cannot be contained in the last statement of a DO loop.

The dump format indicators are: f = O or 3 octal dump, f = 1 real dump,
f = 2 integer dump; if bit 48 is set (normalize bit).

t Appendix I gives further information and examples for these routines.

60174900 Rev. D

7.11

FUNCTION
SUBPROGRAM

7.12
FUNCTION
REFERENCE

6017 4900 Rev. C

A function is a computational procedure which returns a value associated with
the function name. The mode of the function is determined by a type indicator
or the name of the function. The first statement of a function subprogram
must be one of the following forms where name is an alphanumeric identifier
and Pi are formal parameters. A FUNCTION statement must have at least
one parameter. 1 ::=: n ~ 60.

FUNCTION name (P1, .. · , Pn)

type FUNCTION name (Pi, ... , Pn)

FORTRAN IV FUNCTION name (P1, ·· .. ,Pn)

FORTRAN IV type FUNCTION name (P1, ... , Pn)

FORTRAN II FUNCTION name (p1 , ... ,pn)

FORTRAN II type FUNCTION name (pl, ... , Pn)

FORTRAN VI FUNCTION name (P1, ... , Pn)

FORTRAN VI type FUNCTION name (Pi, .•. , Pn)

Type is REAL, INTEGER, DOUBLE PRECISION, DOUBLE, COMPLEX, or
LOGICAL. When the type indicator is omitted, the mode is determined by
the first character of the function name.

The name of a function must not appear in a DIMENSION declaration. The
name must appear, however, at least once as any of the following:

The left-hand identifier of a replacement statement

An element of an input list

An actual parameter of a subroutine reference

In the general form, name identifies the function referenced, it is an alphanu
meric identifier, and its type is determined in the same way as a variable
identifier. pi are actual parameters, n is 1 to 60.

A function reference may appear any place in an expression that an operand
may be used. The evaluated function has a single value associated with the
function name. When a function reference is encountered in an expression,
control is transferred to the function indicated. When a RETURN statement
in the function subprogram is encountered, control is returned to the statement
containing the function reference.

7-13

7.13

STATEMENT
FUNCTION

7-14

Examples:

1)

1

FUNCTION GRATER(A,B)

IF(A.GT .B)l ,2

GRATER=A-B

RETURN

2 GRATER=A+B

RETURN

END

A reference to the function GRATER might be:
W(I,J)=FA+ FB-GRATER(C-D,3. *AX/BX)

2) FUNCTION PIIl (ALPHA,PHI2)

PHI= PHI2(ALPHA)

RETUHN

END

This function can be referenced:

EXTEHNAL SIN

C=D-PHI(Q(K) ,SIN)

The replacement statement in the function PHI will be executed as if
it had been written PHI=SIN(Q(K))

A statement function is defined by a single expression and applies only to the
program or subprogram containing the definition. The name of the statement
function is an alphanumeric identifier; a single value is always associated with
the name.

name (p
1

, . . . ,p n) = E

pi are formal pRrameters and must be simple variables; n is 1 to 60. The
expression E may be any arithmetic or logical expression which may contain
reference to library functions, statement functions, or function subprograms.

The nonparameter iC~entifiers appearing in the expression have the same values
as they have outside the function.

60174900Rev. C

60174900 Rev. C

A statement function reference has the form:

name is the name of the statement function; the actual parameters pi may
be any arithmetic expressions.

During compilation, the arithmetic statement function definition is compiled
once at the beginning of the program and a transfer is made to this portion of
the program whenever a reference is made to the arithmetic statement function.

The statement function name must not appear in a DIMENSION, EQUIVALENCE,
COMMON, or EXTERNAL statement; the name can appear in a type declaration
but cannot be dimensioned. Statement function names must not appear as actual
or formal parameters.

Actual and formal parameters must agree in number, order, and mode. The
mode of the evaluated statement function is determined by the name of the
arithmetic statement function.

A statement function must precede the first statement in which it is used, but
it must follow all declarative statements (DIMENSION, Type, etc.) which
contain symbolic names referenced in the statement function. All statement
functions should precede the first executable statement; otherwise, an in
formative diagnostic is provided.

A statement function may not reference itself and if such an attempt is made,
a fatal diagnostic is provided.

Examples:

LOGICAL A, B

EQV(A, B)=(A.AND. B). OR.(. NOT.A.AND .. NOT. B)

COMPLEX Z

Z(X, Y)=(l., 0.)*EXP(X)*COS(Y)+(O., 1.)*EXP(X)*SIN(Y)

GROPAY (RATE, HRS, OTHRS)=RATE*HRS+RATE*. 5*0THRS

Examples of use:

ANET=GROPAY(l. 25, NOHRS(I) ,OVTIME(I))-DEDUCT(I)-TAX

RESULT=(Z(BETZ, GAMMA(I +K))**2-1.) /SQRT(TWOPIE)

7-15

7.14
LIBRARY
FUNCTIONS

7.15
PROGRAM MODES

7-16

Function subprograms that are used frequently have been stored in a reference
library and are available to the programmer through the compiler. Library
function references may appear in the main program, subprograms, and
statement functions.

FORTRAN contains the standard library functions available in earlier versions
of FORTRAN. (Appendix C.) The parameter and result type of all library
functions is also listed in Appendix C.

A FORTRAN program or subprogram is compiled in one of three modes:

FORTRAN IV

FORTRAN II

FORTRAN VI

When a mode is not .indicated, the program or subprogram is compiled in
FORTRAN IV mode.

The compiling mode for subprograms is assumed FORTRAN IV unless
specific subprograms are declared to be of a different mode. A subprogram
declared to be of a different mode is processed in its declared mode. The
subprogram following it, unless declared to be of a different mode, is pro
cessed in FORTRAN IV mode.

FORTRAN II and FOR TRAN IV statements which are not inherently :incom -
patible may be intermixed in a program to be compiled in either mode
(Appendix D). Inherently incompatible statements are those involving
function subprogram references and EQUIVALENCE statements, causing a
reordering of variables in COMMON. However, any standard FORTRAN II
or FORTRAN IV library function or subroutine reference may appear in a
program to be comp:lled in either mode.

FORTRAN VI causes FORTRAN IV type compilation except in the area of DO
loops and END statements. Under FORTRAN VI, the 3600 FORTRAN DO
procedure is used. That is, a DO loop is not executed if the initial value is
greater than the terminal value. Also, in FORTRAN VI, the appearance of
an END statement in a function or subroutine acts like a RETURN statement.

6017490P Rev. C

7.16

VARIABLE
DIMENSIONS IN
SUBPROGRAMS

60174900 Rev. C

In many subprograms, especially those performing matrix manipulation, the
programmer may wish to vary array dimensions each time the subprogram
is called.

This is accomplished by specifying the array name and its dimensions as
formal parameters in the FUNCTION or SUBROUTINE statement. The
corresponding actual parameters. specified in the calling program are used
by the called subprogram. The maximum dimensions that any given array
may assume are determined by dimensions in a DIMENSION, COMMON, or
type statement in the calling program at compile time.

The formal parameters representing the array dimensions must be simple
integer variables. The array name must also be a formal paramet~r. The
actual parameters representing the array dimensions must have integer values.

The total number of elements of the corresponding array in the subprogram
may not exceed the total number of elements of a given array in the calling
program.

Example:

Consider a simple matrix add routine written as a subroutine:

SUBROUTINE MATADD (X,Y,Z,M,N)

DIMENSION X (M,N), Y(M,N), Z(M,N)

DO 10 I= 1,M

DO 10 J = 1,N

10 Z (I , J) = X (I , J) + Y (I , J)

END

The arrays X, Y, Z and the variable dimensions M, N must all appear
as formal parameters in the SUBROUTINE statement and also in the
DIMENSION statement as shown. If the calling program contains the
array allocation declaration

DIMENSION A(lO, 10) ,B(lO, 10), C(lO, 10), E(5 ,5), F(5, 5) ,G(5 ,5) ,H(lO, 10)

7-17

7.17
PROGRAM
ARRANGEMENT

7-18

the program may call the subroutine MATADD from several places within
the main program as follows:

CALL MATADD(A,B ,C,10, 10)

CALL MATADD(E,F ,G,5,5)

CALL MATADD(B,C,A,10,10)

CALL MA TADD(B, C, H, 10, 10)

The compiler does not check to see if the limits of the array established by
the DIMENSION statement in the main program are exceeded.

FORTRAN assumes that all statements and comments appearing between a
PROGRAM, SUBROUTINE, or FUNCTION statement and an END statement
belong to one program. A typical arrangement of a set of main program and
subprograms follows. (Also see appendix F.)

PROGRAM

END

FORTRAN II

END

FORTRAN IV

END

WHAT

SUBROUTINE Sl(A,B)

SUBROUTINE 82

REAL FUNCTION Fl(Pl)

END

60174900 Rev. C

8.1
SEGMENTS

60174900 Rev. C

SEGMENTATION

Segmentation allows programs that exceed available storage to be divid0d
into independent parts which may be called and executed as needed.

8

A segment is a group of relocatable subprograms or sections loaded and
delinked as a unit. A section is a collection of relocatable programs with
one section name; it is included in the loader scheme to reduce the number
of program names in segment calls. The user defines the programs and
sections to be included in a given segment. Segments allow the user to
dynamically select programs which he requires in memory. Segment
loading proceeds like normal loading and ·parameters are passed as in
normal loading. However, when additional segments are called, they may
destroy existing segments. The user defines a segment with a SEGMENT
card. Segments are loaded by the monitor during initial load. A running
program may load a segment with a user request.

LEVELS

The user assigns one priority or level number (0-77 g) to each segment.
The level serves as a programmer's tool for rapid delinking of segments.
Level zero is reserved for the initial or main segment which remains in
memory during segment execution; subsequent segments may be loaded :.:t.t
any level. The number of segments in central memory at one time is
limited only by the amount of memory available.

When a segment is loaded, its external references are linked to their
corresponding entry points in subprograms and common blocks in previously
loaded segments at lower levels. Unsatisfied references in the segments
will remain unsatisfied. Subsequently loaded segments may include entry
points to satisfy them; or the user may specify that they be satisfied from
the system library. All external references which remain unsatisfied will
contain out-of-bounds references.

If execution is attempted when unsatisfied externals exist, the job is
terminated and a message output.

8-1

8-2

Levels are used to delink segments that are no longer needed. If a segment
is loaded at a requested level which is less than or equal to the level of the
last loaded segment, all segments at levels down to and including the re
quested level will be delinked and removed. If a segment is loaded at level
6, any segments previously loaded at levels 6, 7, 8 and upward will be
delinked and removed. When a segment is delinked, the linkage of its entry
points to external references in lower levels is destroyed and the externals
are unsatisfied once again. Levels need not be consecutive. For instance,
the user may request segments at levels 2, 3, 10 and they will be loaded
as requested.

Example:

A SINE routine is loaded in a segment at level 2. If any external symbols
refer to entry points in level 1, they are linked. To try an experimental
version of SINE, the user loads a segment containing new SINE at level 3.
The original SINE remains at levels 2 and so do its links to level 1; but,
any new segments loaded at higher levels will link to the new SINE at level
3. The linkage remains until a new level 3 is loaded, this would clear
out SINE at level 3 and any references to it would be left unsatisfied. If
a new SINE were loaded at a level higher than 3, any segments loaded
afterward would be linked to it. It is permissible to have more than one
version of a subprogram with the same name, however, the first version
encountered from the current file position is the one which is loaded. It
is up to the user to properly position the file to load the version he desires.

The first segment to declare blank common establishes its length. If sub
sequent segments declare larger blank common, it is truncated to fit the
established length, a message is output on the DA YFILE, and loading continues.
To change the size of blank common, the segment first declaring it must be
delinked by loading a new segment at that level, which declares a new length.
If that segment does not declare blank common, subsequently loaded segments
may do so.

Segments are called with this statement; lib and m are optional:

CALL SEGMENT (fn, e, a, lib, m)

fn variable name of location containing file name (left justified dis
play code) from which the segment load should take place.

e level of the segment load

a simple or subscripted variable name of array containing a list of
segments, sections, and/or subprograms to be loaded with this
call. Names must be in either Lor H form in the upper seven
character positions of each word and be terminated by a zero entry.
If the first entry in the list is zero, all subprograms remaining in
the file fn are loaded into the segment. Although contents of array
a are modified by this call, they remain in a form suitable for a
subsequEmt SEGMENT call.

60174900 Rev. D

8.2
OVERLAYS

8.2.1
LEVELS

60174900 Rev. D

lib if zero or missing, the system library will be searched for any
unsatisfied externals. If non-zero, the system library will not
be used. This parameter controls the c bit in the LOADER
call.

m if zero or missing, no segment load map will be produced. If
non-zero, a map of the segment load will be produced on file
OUTPUT. This parameter controls the m bit in the LOADER
call.

An overlay is a portion of a program written on a file in absolute form and
loaded at execution time without relocation. As a result, the resident loader
for overlays can be reduced substantially in size. Loading an overlay may
destroy previously loaded overlays in much the same way as loading a seg
ment may destroy previously loaded segments. The user defines an overlay
with an OVERLAY card. The loader generates the overlay and writes it on a
file to be called as needed for execution.

The above paragraph implies that during execution of the object programs, the
structure of all overlays is fixed and predictable. This system is used when
the organization of programs in core at object time is reasonably stable, and
the most pressing need is for the fastest possible loading speed.

Levels are used to describe the sequence of loading overlays and to specify
which sections of code are to overlay others. In 6000 SCOPE, there are
three normal levels of overlaying, main, primary and secondary, and one
floating method. Up to three overlays may be in core simultaneously; they
are usually loaded contiguously. Any one or all of the overlays may be
replaced by other overlays. The following diagram demonstrates the relation
ship of the levels when they are loaded into core. This example shows a
number of different core loads, which might exist for a single job:

MAIN

PRIMARY

1,2 J I , __,
SECONDARY 1, 1

8-3

8.2.2
USAGE

8.2.3
IDENTIFICATION

8-4

Normally only one overlay of each level will be in core at a time; secondary
overlays usually replace secondary overlays, and primary overlays usually
replace primary overlays.

A typical overlay usage would be the case where a programmer desires to
constrain field length to 40, 000 words, but must execute programs requiring
100, 000 words. Assuming a program which can be broken into three
sequentially executed portions of approximately 20, 000 words and a basic,
common portion containing about 20, 000 words, the common program portion
would be designated as the MAIN OVERLAY. The common section would
usually consist of the 1/0 routines, and other function subprograms which
may be accessed by two or more of the portions, as well as some common
data storage area. It would probably also contain the controlling CALL
statements for loading and executing other portions of the program.

Since there is no interdependence between the other three program sections,
each would be designated a PRIMARY OVERLAY. Only one of these sections
would reside in core at a time, each being overlaid by its successor during
processing.

When an overlay is loaded by a FORTRAN CALL statement, it is immediately
entered and executed. Control is thus taken away from the calling program
and some means must be established by the programmer for returning from
the overlay. Usually return is to an entry point in the MAIN OVERLAY. The
major differences between SEGMENTS and OVERLAYS are as follows:

SEGMENTS are dynamically organized at execution time; the composition
of OVERLAYS is fixed when they are generated.

SEGMENTS are loaded by one CALL and entered at various points by
additional CALL statements; OVERLAYS are loaded and entered with
the same CALL ..

Overlays may be loaded from the SCOPE library or from a specified file. A
single overlay may be loaded only from a single file, although many files may
be used for loading by a single job. When an overlay is loaded from the
library, it is identified by its primary entry point name; when it is loaded
from a file, it is identified by its level number. The level number is a pair
of two-digit octal numbers (0-77 8) giving the primary and secondary overlay
relationship. The first number is the primary level, the second is the
secondary level. An overlay with a non-zero primary level and a zero
secondary level (1, 0) is a primary overlay. Any overlay with the same

60174900 Rev. C

8.2.4
COMPOSITION

8.2.5
CALL

60174900 Rev. C

primary level and a non-zero secondary level (1, 1) is associated with and
subordinate to the corresponding primary and is called a secondary overlay.
This difference is significant when overlays are loaded. Level O, O is re
served for the initial, or main, overlay which is neither primary nor second
ary; it is a special case which remains in memory during overlay execution.
Overlay numbers (0, 1) to (0, 77) are illegal.

The main overlay (0, 0) is loaded first. All primary overlays are loaded at
the same point immediately following the main overlay. Secondary overlays
are loaded immediately following the primary overlay. Loading the next
primary overlay destroys the first loaded primary overlay and any associated
overlays. Likewise, the loading of a secondary overlay destroys a previously
loaded secondary overlay.

An overlay may consist of one or more FORTRAN or COMP ASS programs.
The first program in the OVERLAY must have the characteristics of a
FORTRAN main program (not a subprogram). The program name becomes
the primary entry point for the overlay through which control passes when the
overlay is called. An overlay cannot reference entry points in higher levei
overlays. The only method of reference for a MAIN overlay to primary and
secondary overlays is through the CALL OVERLAY statement. However, the
primary overlay may reference any entry point in the MAIN overlay, while
the secondary overlay may reference any entry point in the primary or
MAIN overlay.

Blank common and labeled common may be defined in any level overlay and
referenced by that overlay and higher level overlays. (The same rules apply
as for entry points.) Unlike SEGMENT jobs, labeled common is linked
between overlays.

An OVERLAY is established by an OVERLAY card which precedes the pro
gram cards (section 8. 3). The overlay consists of all programs appearing
between the OVERLAY card and the next OVERLAY card or an end-of-file.

Overlays are called by the following statement:

CALL OVERLAY (fn, p_ l' p_
2

,p)

OVERLAY FORTRAN subroutine which translates the FORTRAN call
into a call to the loader

fn

p_

1

variable name of the location containing the name of the file
(left justified display code) which incfodes the overlay

primary level of the overlay

8-5

8.2.6
OVERLAY FORMAT

8-6

,Q
2

secondary level of the overlay

p recall parameter. If p equals 6HRECALL, the overlay is
not reloaded if it is in memory.

All four parameters must be specified; the absence of any one could result in
a MODE error at execution time. The levels appearing on the OVERLAY card
are always octal. The normal mode for parameters in FORTRAN calls is
decimal. This fact should be considered when coding the ,Q

1
, ,Q

2
parameters.

If uniqueness is em::ured at execution time, more than one overlay may be
created with the same level numbers. Uniqueness is determined by the level
numbers, the file name from which the OVERLAY is to be loaded, and the
position of the overlay on the file. Since the loader selects the first overlay
encountered on the specified file with level numbers which match those in the
call, it is possible to position a number of overlays on a file with the same
identifier and by properly sequencing the calls thereto, have available a
number of different overlays.

Loading from a file requires an end-around search of the file for the specified
overlay; this can be time consuming in large files. When speed is essential,
each overlay should be written to a separate file.

Each overlay consists of a logical record in the following format:

Word 1

*
,Q 1

,Q 2

ea

fwa

50
8

(specified on overlay header)

Primary overlay level

Secondary overlay level

Entry point to the overlay

First word address of overlay (overlay is loaded at fwa)

Word 2 through end of record: 60-bit data words.

60174900 Rev. C

8.3
LOADER CARDS

8.3.1
SEGMENT CARDS

60174900 Rev. C

Loader cards are processed directly by the loader rather than by the
monitor. They provide the loader with information necessary for generating
overlays and segments. All loader cards must precede the subprogram text
to be loaded. Formats are the same as for SCOPE control cards. However,
if they are in the FORTRAN decks, the loader cards must begin in column 7.

All subprograms named in a segment must reside in the same file.

SEGMENT

Segments other than segment zero may be defined by a segment card or in
the user's program.

(SEGMENT(sn,p'\,pn
2

, ... ,pni)

SEGZERO

sn and pn are defined as in SEGZERO
1

All programs requiring segment loading must have a SEGZERO card defining
the first segment. There may be only one SEGZERO card in the initial load.

sn Segment name

pn. Names of subprograms or sections
l

SECTION

This card defines a section, or group of programs within a SEGMENT.

sname Name of the section

pn.
1

Name of a subprogram belonging to the section

8-7

8.3.2
OVERLAY CARDS

8-8

If more than one card is necessary to define a section, consecutive SECTION
cards with the same sname may follow. Whenever the named section is
loaded, all subprograms within a section will be loaded.

All SECTION cards must appear prior to any SEGMENT cards.

fn

cnnnnnn

File name onto which the generated overlay is to be
written

Primary level number } must be O, 0 for first overlay card

Secondary level number and must be in octal t

optional; nnnnnn is 6-octal digits. If absent, overlay is
loaded normally
If present, overlay is loaded nnnnnn words from the start
of blank common. This provides a method for changing
the size of blank common at execution time.

The first overlay card must have an fn. Subsequent cards may omit fn,
and the overlay is written on the same fn.

Each OVERLAY card must be followed by a program card. The program
card for the main overlay must specify all needed file names, such as
INPUT, OUTPUT, TAPE 1, etc, for all overlay levels. File names should
not appear in program cards for other than the (0, 0) OVERLAY.

tLevel numbers given in the CALL OVERLAY, however, are decimal;
e.g., the overlay card for overlay 1, 9 would be OVERLAY(fn, 1, 11)
and its. call would be CALL OVERLAY(fn, 1, 9)

60174900 Rev. C

60174900 Rev. C

Example:

OVERLAY (XFILE, 0, 0)
PROGRAM ONE(INPUT, OUTPUT, PUNCH)

CALL OVERLAY(5HXFILE, 1, 0, 0)

STOP
END
OVERLAY(XFILE, 1, 0)
PROGRAM ONE ZERO
CALL OVERLAY(5HXFILE, 1, 1)

RETURN
END
OVERLAY(XFILE, 1, 1)
PROGRAM ONE ONE

RETURN
END

8-9

9.1

INPUT /OUTPUT
LIST

60174900 Rev. C

INPUT/OUTPUT FORMATS 9

Data transmission between storage and external units requires the FORMAT
statement (BCD only) and the I/O control statement (chapter 10). The I/O
statement specifies the input/output device and process READ, WRITE, etc.,
and a list of data to be moved. The FORMAT statement specifies the manner
in which the data is to be moved. In binary statements no FORMAT statement
is used.

The list portion of an input/ output statement indicates the data items and the
order, from left to right, of transmission. The input/ output list can contain
any number of elements; list items may be array names, simple or subscripted
variables, or an implied DO loop. Items are separated by commas, and their
order must correspond to any FORMAT specification associated with the list.
External records are always read or written until the list is satisfied.

Subscripts in an I/ 0 list may be in the following forms:

(c*I±d)

(I ±d)

(c*I)

(I)

(c)

c and d are unsigned integer constants, and I is a simple integer variable,
previously defined, or defined within an implied DO loop.

Examples:

READ 100, A,B,C,D

READ 200, A,B,C(l),D(3,4),E(I,J,7),H

READ 101, J,A(J),l,B(I,J)

READ 102, DELTA(5*J+2,5*1-3,5*K),C,D(I+7)

READ 202, DELTA

READ 300, A ,B,C,(D(I) ,I=l ,10),E(5, 7),F(J),(G(I) ,H(I) ,I=2 ,6,2)

READ 400, I,J,K,(((A(II,JJ,KK),II=l,I),JJ=l,J),KK=l,K)

READ 500, ((A(I,J),I=l,10,2),B(J,1),J=l,5),E,F,G(L+5,M-7)

9-1

9.1.l
ARRAY
TRANSMISSION

9-2

Part or all of an array can be represented for transmission as a single I/O
list item by using an implied DO notation in the form:

m.,n.,p,
1 1 1

Unsigned integer constants or simple integer variables.
Tf m

3
, n

3
, or p

3
is omitted, it is assumed equal to 1.

I,J,K Subscripts of A

Index variables I, J, K in same order

During execution, eaeh subscript (index variable) is set to the initial index
value: L1=m 1 , L 2=n1 , L3=p1 . The first index variable defined in the list
is incremented first, following the rules for a DO loop execution. When the
first index variable reaches the maximum value, it is reset; the next index
variable to the right is incremented, and the process is repeated until the
last index variable has been incremented. If m 1 is greater than m 2 initially,
one read is executed.

An array name which appears without subscripts in an I/O list causes trans
mission of the entire array by columns.

Example:

DIMENSION B(lO, 15)

the statement

READ 13, B

is equivalent to

READ 13, ((B(I, J), I=l, 10), J=l, 15)

An implied DO loop can be used to transmit a simple variable more than one
time. For example, the list item (A(K), B, K=l, 5) causes the transmission of
variable B five times. A list of the form K, (A(I), I=l, K) is permitted and the
input value of K is us1~d in the implied DO loop. The index variable in an
implied DO list in a DA TA statement should be an implicit integer.

Examples:

1) Simple implied DO loop list items.

READ 400, (A(I), I=l, 10)
400 FOHMAT (E20.10)

60174900 Rev. C

60174900 Rev. D

This statement is equivalent to the following DO loop.

DO 5I=l,10
5 READ 400, A(I)

READ 100, ((A(JV, JX) ,JV=2 ,20,2) ,JX=l ,30)
READ 200, (BETA(3*JON+7),JON =JONA,JONB,JONC)
READ 300, ((ITMSLST(I, J +1, K-2), I=l ,25), J=2, N), K=IVAR, IVMAX ,4)

READ 600, (A(I), B(I), I=l, 10)
600 FORMAT (F10.2,E6.l)

The previous statement is equivalent to the DO loop:

DO 17I=1,10
17 READ 600, A(I), B(I)

2) Nested implied DO list items.

READ 100, (((((A(I, J, K), B(I, L), C(J, N), I=l, 10), J=l, 5),
K=l, 8), L=l ,15) ,N=2, 7)

Data is transmitted in the following sequence:

A(l, 1, 1), B(l, 1), C(l, 2), A(2, 1, 1),B(2, 1), C(l, 2) •••
. . . A(lO, 1, 1), B(lO, 1), C(l, 2), A(l, 2, 1), B(1, 1), C(2, 2) ...

I

. . . A(lO, 2, 1), B(lO, 1), C(2, 2) ... A(lO, 5, 1), B(lO, 1), C(5, 2) .. .

. . . A(lO, 5, 8), B(lO, 1), C(5, 2) ... A(lO, 5, 8), B(lO, 15), C(5, 2) .. .

. . . A(10, 5, 8), B(lO, 15), C(5, 7)

The following list item will transmit the array E(3, 3) by columns:

READ 100,((E(I,J),I=l,3),J=l,3)

The following list item will transmit the array E(3, 3) by rows:

READ 100, ((E(I, J), J=l, 3), I=l, 3)

3) DIMENSION MATRIX(3, 4, 7)
READ 100, MA TRIX

100 FORMAT (I6)

The above items are equivalent to the following statements:

DIMENSION MATRIX(3, 4, 7)
READ 100, (((MATRIX(!, J, K), I=l, 3), J=l, 4), K=l, 7)

The list is equivalent to the nest of DO loops:

DO 5 K=l,7
DO 5 J=l,4
DO 5 I=l, 3

5 READ 100, MATRIX(!, J, K)

9-3

9.2

FORMAT
DECLARATION

9-4

BCD input/output statements require a FORMAT declaration which contains
conversion and editing information relating to internal/ external structure of the
corresponding I/O list items. A FORMAT declaration has the following form:

FORMAT (spec
1

, ,k(spec , ...),spec, .•.)
m n

Spec.
1

format specification

k optional repetition factor, must be unsigned integer constant.

The FORMAT declaration is non-executable and may appear anywhere in the
program. FORMAT declarations must have a statement label in columns 1-5.

The data items in an I/O list are converted from one representation to another
(external/internal) according to FORMAT conversion specifications. FORMAT
specifications may also contain editing codes.

Conversion specifications:

Ew.d Single precision floating Iw Decimal integer conversion
point with exponent

Ow Octal integer conversion
Fw.d Single precision floating

Aw Alphanumeric conversion
point without exponent

Dw.d Double precis:ion floating
Rw Alphanumeric conversion

point with exponent Lw Logical conversion

Gw.d Single precision floating nP Scaling factor
with or without
exponent

Complex data items are converted on input/output according to a pair of
consecutive Ew. d or Fw. d specifications.

Example:

COMPLEX A,B
PRINT 10,A

10 FORMAT (F'7.2,F9.2)
READ 11,B

11 FORMAT (E.lO. 3, ElO. 3)

Editing specifications:

wX

wH

Intraline spacing

Heading and labeling

I Begin new record

* * Heading and labeling

Both w and d are unsigned integer constants; w specifies the field width in
number of character positions in the external record, and d specifies the
number of digits to the right of the decimal within the field.

60174900 Rev. C

9.3
CONVERSION
SPECIFICATIONS

9.3.1
Ew.d OUTPUT

60174900 Rev. D

Real numbers in storage are converted to the BCD character form for output
with the E conversion. The field occupies w positions in the output record;
with the real number right justified in the form:

ha.a ... a±eee 100 ::s eee ::s 322

or

ha.a ... aE±ee 0 ::see ::s 99

b indicates a blank or a minus sign. a's are the most significant digits of the I
integer and fractional part and eee are the digits in the exponent. If d is zero
or blank, the decimal point and digits to the right of the decimal do not appear
as shown above. Field w must be wide enough to contain the significant digits,
signs, decimal point, E, and the exponent. Generally, w 2=d+7. Positive
numbers need not reserve a space for the sign of the number.

If the field is not wide enough to contain the output value, an asterisk is inserted
in the high order position of the field. If the field is longer than the output value,
the quantity is right justified with blank fill to the left.

Examples:

Ew.d Output

PRINT 10,A

10 FORMAT(*bA=*ElO. 3)

A contains -67. 32
or +67.32

Result: A= -6. 732E+Ol or b6. 732E+Ol

PRINT 10,A

10 FORMAT(*bA=*E12. 4)

Result: A = b-6. 7320E+Ol

PRINT 10,A

10 FORMAT(*bA=*E9. 3)

Result: A= *· 732E+Ol

PRINT 10,A

10 FORMAT(*bA=*ElO. 4)

Result: A = *. 7320E+Ol

bb6. 7320E+Ol

A contains -67. 32

provision not made
for sign

I

I

I

I

9-5

9.3.2
Ew.d INPUT

I

9-6

The E specification converts the number in the input field to a real number and
stores it in the proper location.

Subfield structure of the input field:

input field ____ ____ _...........__ ____ ______ _

I ~lg_it~~~~~~~ ~~~~~~~---:-
integer fraction exponent

.___ decimal point

The total number of characters in the input field is specified by w; this field is
scanned from left to .right; blanks are interpreted as zeros. An input field con
sisting entirely of blanks is interpreted as minus zero.

The integer subfield begins with a sign (+ or -) or a digit and may contain a
string of digits. The integer field is terminated by a decimal point, D, E, +, -,
or the end of the input field.

The fraction subfield which begins with a decimal point may contain a string of
digits. The field is terminated by D, E, +, -, or the end of the input field.

The exponent subfield may begin with D, E, + or - . When it begins with D or E,
the + is optional between D or E and the string of digits of the subfield. The
value of the string of digits in the exponent subfield must be less than 323.

Permissible subfield combinations:

+l.6327E-04

-32. 7216

+328+5

.629E-1

+136

136

.07628431

E-06 (interpreted as zero)

integer fraction exponent

integer fraction

integer exponent

fraction exponent

integer only

integer only

fraction only

exponent only

In the Ew .d specification, d acts as a negative power-of-ten scaling factor when
an external decimal point is not present. The internal representation of the
input quantity is:

(. t bf" Id) 10-d 10(exponent subfield) 1n eger su ie x. x

60174900 Rev. D

60174900 Rev. C

For example, if the specification is E7 .8, the input quantity 3267+05 is converted
and stored as: 3267x10-8x105 = 3 .267.

A decimal point in the input field overrides d. The input quantity 3 .67294+5 read
by an E9 .d specification is always stored as 3 .6729x105 . When d does not appear,
it is assumed to be zero.

The field length specified by w in Ew .d should always be the same as the length
of the field containing the input number. When it is not, incorrect numbers may
be read, converted, and stored as shown below. The field w includes the
significant digits, signs, decimal point, E or D, and exponent.

Example:

READ 20,A,B,C

20 FORMAT (E9.3,E7 .2,El0.3)

Input quantities on the card are in three contiguous fields columns 1
through 24:

9 5 10

~~i
l+6.47E-01-2 .36+5 .321E+02bb

The second specification (E7 .2) exceeds the width of the second field by
two characters.

Reading proceeds as follows:

9

~ E-Otj -2 .: 6+5i-.-3-21-~"':-0-2-bb___,
+6.47E-Ol l-2 .36+5 I .321E+02bb

+6.47E-Ol-2.36+5 l.321E+02bbl

First, +6.47-01 is read, converted, and placed in location A. Next, -2.36+5
is read, converted, and placed in location B. The number actually desired
was -2.36, but the specification error (E7.2 instead of E5.2) caused the two
extra characters to be read. The number read (-2.36+5) is a legitimate
input representation under the definitions and restrictions.

Finally, .321E+0200 is read, converted, and placed in location C. Here again,
the input number is legitimate and is converted and stored, even though it is
not the number desired.

9-7

9.3.3
Fw.d OUTPUT

9-8

The above example illustrates a situation where numbers are incorrectly read,
converted, and stored, and yet there is no immediate indication that an error
has occurred.

Examples:

Ew.d Input
Specifi-

Input Field cation

+143.26E-03 Ell.2

-12 .437629E+l E13.6

8936E+004 E9.10

327 .625 E7.3

4.376 E5

-.0003627+5 Ell.7

-.0003627E5 Ell.7

blanks Ew.d

lEl E3.0

E+06 El0.6

1.bEbl E6.3

Converted
Value

.14326

-124.37629

.008936

327 .625

4.376

-36.27

-36.27

-0.

10.

0.

10.

Remarks

All subfields present

All subfields present

No fraction subfield; input
number converted as 8936.
x 10-10+4

No exponent subfield

No d in specification

Integer subfield contains
- only

Integer subfield contains
- only

All subfields empty

No fraction subfield; input
number converted as l .x1ol

No integer or fraction sub
field; zero stored regardless
of exponent field contents

Blanks are interpreted as
zeros

The field occupies w positions in the output record; the corresponding list item
must be a floating point quantity, which appears as a decimal number, right
justified:

ba ... a.a ... a

b indicates a blank. The a 's represent the most significant digits of the number.
The number of decimal places to the right of the decimal is specified by d. If d
is zero or omitted, the decimal point and digits to the right do not appear. If
the number is positive, the + sign is suppressed. If the field is too short to
accommodate the number, one asterisk appears in the high-order position of the
output field. If the field is longer than required to accommodate the number, the
number is right justified with blank fill to the left.

60174900 Rev. C

9.3.4
Fw.d INPUT

60174900 Rev. D

Contents of A Format Statement Print Statement Printed Result

+32.694 10 FORMAT (F7. 3) PRINT 10,A b32.694

+32.694 11 FORMAT (Fl0.3) PRINT 11,A bbbb32.694

-32.694 12 FORMAT (F6. 3) PRINT 12,A *2.694

no provision
for - sign and
most signifi-
cant digit)

.32694 13 FORMAT (F4. 3, F6. 3) PRINT 12,A,A .327b0.327

This specification is a modification of Ew .d. The input field consists of an
integer and a fraction subfield. An omitted subfield is assumed to be zero.
The restrictions described under Ew .d input apply.

Examples:

Specifi- Converted
Input Field cation Value Remarks

367 .2593 F8.4 367 .2593 Integer and fraction field

37925 F5.7 .0037925 No fraction subfield; input
number converted as
37925 x 10-7

-4.7366 F7 -4.7366 No d in specification

.62543 F6.5 .62543 No integer subfield

.62543 F6.2 .. 62543 Decimal point overrides d
of specification

+144.15E-03 Fll.2 .14415 Exponents are legitimate
in F input and may have
P-scaling

5bbbb F5.2 500.00 No fraction subfield; input
number converted as
50000x 10-2

bbbbb F5.2 -0.00 Blanks in input field
interpreted as -0

9 ... 9

I

9.3.5
Gw.d OUTPUT

9-10

The field occupies w positions of the output record, with d signficant digits.
The real data will be represented by F conversion unless the magnitude of
the data exceeds the range that permits effective use of F conversion. In
this case, the E conversion will represent the external output. Therefore,
the effect of the scale factor is not implemented unless the magnitude of
the data requires E conversion.

When F conversion is used under Gw. d output specification, 4 blanks are
inserted within the field, right justified. Therefore, for effective use of
F conversion, d must be::::: w-6.

The method of reprei::entation in the output record is a function of the mag
nitude N of the real data being converted. The following table gives a
correspondence between N and the method of conversion:

0.1::::: N < 1
1 ::::: N < 10

1od-2 ::::: N < 10
d·-1

1od-l ::::: N < 1od

Examples:

Gw.d OUTPUT

PRINT 101, XYZ

F (w-4). d, 4X
F (w -4). (d-1), 4X

F (w -4) . 1, 4X
F (w -4) . 0, 4X

XYZ contains 77. 132

101 FORMAT (GlO. 3)

Result: bb77. lbbbb

PRINT 101,XYZ

101 FORMAT (GlO. 3)

Result: bl. 215E+06

XYZ contains 1214635 .1

60174900 Rev. C

9.3.6
Gw.d INPUT

9.3.7
Dw.d OUTPUT

9.3.8
Dw.d INPUT

9.3.9
lw OUTPUT

60174900 Rev. C

Gw. d specification is similar to the Fw. d input specification.

The field occupies w positions of the output record, the list item is a double
precision quantity which appears as a decimal number, right justified:

ba.a ... a±eee 100 :::Seee s 512

or

ba.a ... aD±ee O see :::s99

b indicates blank. D conversion corresponds to Ew .d Output.

D conversion corresponds to E conversion except that the list variables must
be double precision names. D is acceptable in place of E as the beginning of
an exponent subfield.

Example:

DOUBLE Z,Y,X

READl,Z,Y,X

1 FORMAT (D18.ll,D15,Dl 7.4)

Input Card:

-6.31675298443E-03 +2. 718926453147 6293477528869D-09 ------------------------------....----18 15 17

I specification is used to output decimal integer values. The output quantity
occupies w output record positions, right justified:

ba ... a

bis a blank. Thea's are the most significantdecimal digits (maximum 15)
of the integer. If the integer is positive, the + sign is suppressed. The range
of numbers permitted is roughly -248+1 s n s 248-1.

9-11

9.3.10
lw INPUT

I

I

9-12

If the field w is larger than required, the output quantity is right justified with
blank fill to the left.]f the field is too short, characters are stored from the
right, an asterisk occupies the leftmost position.

Example:

PRINT 10 ,I,J ,K

10 FORMAT (I8,I10,I5)

Result:

I contains -3 7 62
J contains +4762937
K contains + 13

lbbb-3762bbb4762937bbb13I
L.-_r--l---v--/L,-J

8 10 5

The field is w characters in length, and the list item is a decimal integer
constant. The input field w consists of an integer subfield, containing+, -,
O through 9, or blank. When a sign appears, it must precede the first digit in
the field. Blanks are interpreted as zeros. The value is stored right justified
in the specified variable.

Example:

READ 10,I,J,K,L,M,N

10 FORMAT (I3 ,I7 ,I2 ,I3 ,I2 ,I4)

Input Card:

(~~18~b~
3 7 2 3 2 4

In storage:

I contains 13~1

J'

K
L
M
N

-H·OO
18
7
-0
104:

60174900 Rev. D

9.3.11
Ow OUTPUT

9.3.12
Ow INPUT

60174900 Rev. C

0 specification is used to output octal integer values. The output quantity
occupies w output record positions right justified:

aa ... a

Thea's are octal digits. If w is 20 or less, the rightmost w digits appear. If
w is greater than 20, the number is right justified in the field with blanks to the
left of the output quantity. A negative number is output in its one's complement
internal form .

Octal integer values are converted under 0 specification. The field is w
characters in length, and the list item must be an integer variable.

The input field w consists of an integer subfield only (maximum of 20 octal
digits) containing+, -, 0 through 7 or blank.

Only one sign may precede the first digit in the field. Blanks are interpreted
as zeros.

Example:

TYPE INTEGER P ,Q,R

READ 10,P,Q,R

10 FORMAT (010,012 ,02)

Input Card:

~3737373737666b6644b444-0
~~~ 

10 12 2 

In storage: 

p 00000000003737373737 
Q 00000000666066440444 
R 77777777777777777777 
A negative number is represented in one 1 s complement form. 

9-13 



9.3.13 
Aw OUTPUT 

9.3.14 
Aw INPUT 

9.3.15 
Rw OUTPUT 

9-14 

A negative octal number is represented internally in seven's complement form 
(20 digits) obtained by subtracting each digit of the octal number from seven. 
For example, if -703 is an input quantity, its internal representation is 
77777777777777777074. 

That is, 77777 /'77777777777777 
-00000000000000000703 

77777777777777777074 

A conversion is used to output alphanumeric characters. If w is 10 or more, 
the quantity appears :right justified in the output field, blank fill to left. If w is 
less than 10, the output quantity is represented by leftmost w characters. 

This specification accepts FORTRAN characters including blanks. The internal 
representation is 6000 Series display code; the field width is w characters. 

If w exceeds 10, the input quantity is the rightmost 10 characters in the field. 
If w is 10 or less, the input quantity is stored as a left justified BCD word; the 
remaining spaces are blank filled. 

Example: 

READ 10,Q,P,O 

10 FORMAT (A8,A8,A4) 

Input Card: 

(
LUX MENTIS LUX ORBIS 
'-.~ _ __....__.,,,..._--._,,.....___ ...._,,_,, 

8 8 4 

In storage: 

Q LUXbMENTbb 
P ISbLUXbObb 
0 RBISbbbbbb 

This specification is similar to the Aw Output with the following exception. If 
w is less than 10, the output quantity represents the rightmost characters. 

60174900 Rev. C 



9.3.16 
RwlNPUT 

9.3.17 
Lw OUTPUT 

9.3.18 
Lw INPUT 

60174900 Rev. C 

This specification is the same as the Aw Input with the following exception. If 
w is less than 10, the input quantity is stored as a right justified binary zero 
filled word. 

Example: 

READ 10,Q,P ,0 

10 FORMAT (R8,R8,R4) 

Input Card: 

(~,~T~~~ 
8 8 4 

In storage: 

Q 00 LUXbMENT 
P OOISbLUXbO 
0 OOOOOORBIS 

L specification is used to output logical values. The output field is w characters 
long, and the list item must be a logical element. 

A value of TRUE or FALSE in storage causes w-1 blanks followed by a T 
or F to be output. 

Example: 

LOGICAL I, J, K, L 

PRINT 5, I, J, K, L 

5 FORMAT (4L3) 

I contains -0 

K contains -0 

Result: bbTbbFbbTbbT 

J contains 0 

L contains -0 

This specification accepts logical quantities as list items. The field is 
considered true if the first non-blank character in the field is T or false if 
it is F. An all-blank field is considered false. 

9-15 



9.4 

I nP SCALE FACTOR 

I 

9.4.1 
Fw .d SCALING 

9-16 

The D, E, F, and G conversion may be preceded by a scale factor whose 
effect is defined by: External number =Internal number x10scale factor. 
The scale factor applies to Fw. d and Gw. d on both input and output and to 
Ew. d and Dw. d on output only. A scaled specification is written as shown 
below; n is a signed integer constant. 

nPDw.d nPEw.d nPFw.d nPGw.d nP 

The scale factor is assumed to be zero if no other value has been given; 
however, once a value has been given, it holds for all D, E, F, and G 
specifications. To nullify this effect in subsequent D, E, F, and G specifica
tions, a zero scale faetor, OP, must precede a D, E, F, or G specification. 
Scale factors for D, E:, F, and G output specifications must be in the range 
-8 ~ n ~ 8. 

Scale factors on D or E input specifications are ignored. For USASI compati
ble scale factor see section .9. 8. 

The scaling specification nP may appear independently of a D, E, F, or G 
specification; it holds for all subsequent D, E, F, and G specifications 
within the same FORMAT statement unless changed by another nP. 

Example: 

FORMAT(3PE12. 6, FlO. 3, OPD18. 7 ,-lP, F5. 2) 

The El2.6 and Fl0.3 specifications are scaled by 10
3

, the Dl8.7 speci
fication is not sea.led, and the 'F'5. 2 specification is scaled by 10-1 . 

The specification (3P, 319, FlO. 2) is the same as the specification 
(319, 3PF10. 2). 

The number in the input field is divided by 1on and stored. For example, if the 
input quantity 314.1592 is read under the specification 2PF8.4, the internal 
number is 314.1592xl0-2 = 3.141592. 

The number in the output field is the internal number multiplied by 1on. In the 
output representation,. the decimal point is fixed; the number moves to the left 
or right, depending on whether the scale factor is plus or minus. For example, 
the internal number 3.145926538 may be represented on output under scaled F 
specifications as follows: 

60174900 Rev. D 



9.4.2 
Ew.d ORDw.d 
SCALING 

9.4.3 
Gw.d SCALING 

60174900 Rev. C 

Specification_ 

F13.6 

1PF13.6 

3PF13.6 

-1PF13.6 

Output Representation 

3.141593 

31.415927 

3141.592654 

.314159 

The scale factor has the effect of shifting the output number left n places while 
reducing the exponent by n. Using 3.1415926538, some output representations 
corresponding to scaled E specifications are: 

Specificatio~ Output Representation 

E20.2 3.14 E+OO 

1PE20.2 31.42 E-01 

2PE20.2 314.16 E-02 

3PE20.2 3141.59 E-03 

4PE20.2 31415.93 E-04 

5PE20.2 314159.27 E-05 

-1PE20.2 0.31 E+Ol 

Gw. d scaling on input is the same as Fw. d scaling on input. 

Output 

The effect of the scale factor is suspended unless the magnitude of the data 
to be converted is outside the range that permits the effective use of F 
conversion. 

9-17 



9.5 
EDITING 
SPECIFICATIONS 

9.5.1 
wX 

9.5.2 
wH OUTPUT 

9-18 

This specification may be used to include w blanks in an output record or to 
skip w characters on an input record to permit spacing of input/ output quantities. 
OX is not permitted; bX is interpreted as lX. In the specification list, the comma 
following X is optional. 

Examples: 

INTEGER A A contains 7 
B contains 13.6 

PRINT 10, A, B, C 
C contains 1462.37 

10 FORMAT cm, 6X, F6.2, 6X, E12.5) 

Result: b7bbbbbbb13 .60bbbbbbbl .46237 E+03 

READ 11, R, S, T 

11 FORMAT (F5.2, 3X, F5.2, 6X, F5.2) 
or 

11 FORMAT (F5.2, 3XF5.2, 6XF5.2) 

Input Card: 

(14.62bb$13 .78bCOSTb15 .97 

In storage: 

R 14.62 
s 13.78 
T 15.97 

With this specification 6-bit characters, including blanks may be output in the 
form of comments, titles, and headings. w, an unsigned integer, specifies the 
number of characters to the right of H that are transmitted to the output record; 
w may specify a maximum of 136 characters. H denotes a Hollerith field; the 
comma following H is optional. 

60174900 Rev. C 



9.5.3 
wHINPUT 

60174900 Rev. C 

Examples: 

Source program: 

PRINT 20 

20 FORMAT (28HbBLANKSbCOUNTbINbANbHbFIELD.) 

produces output record: 

bBLANKSbCOUNTbINbANbHbFIELD. 

Source program: 

PRINT 30, A A contains 1.5, comma is optional 

30 FORMAT (6HbLMAX=,F5.2) 

produces output record: 

bLMAX =bl .50 

The H specification may be used to read Hollerith characters into an existing H 
field within the FORMAT specification. 

Example: 

Source program: 

READ 10 

10 FORMAT (27Hbbbbbbbbbbbbbbbbbbbbbbbbbbb) 

Input Card: 

(~HIS IS A VA~BLE HEADI~ 
27 cols 

After READ, the FORMAT statement labeled 10 contains the alphanumeric in
formation read from the input card; a subsequent reference to statement 10 in 
an output statement acts as follows: 

PRINT 10 

produces the print line: 

bTHIS IS A VARIABLE HEADING 

9-19 



9.5.4 
NEW RECORD 

9-20 

The slash (/) signals the end of a record anywhere in the specifications list. 
Consecutive slashes may appear in a list and they need not be separated from 
the other list elements by commas. During output, the slash is used to skip 
lines, cards, or tape records. During input, it specifies that control passes to 
the next record or card. K(/) results in K-1 lines being skipped. 

Examples: 

1) PRINT 10 

10 FORMAT (6X, 7HHEADING/ / /3X, 5IITNPUT, 2X, 6HOUTPUT) 

Printout: 

HEADING line 1 

___ (blank) ___ line 2 

___ (blank) ___ line 3 

I NPUTbbOUTPUT ________ line 4 

Each line corresponds to a BCD record. The second and third records are 
null and produce the line spacing illustrated. 

2) PRINT 11, A, B, C, D 

11 FORMAT (2El0.2/2 F7 .3) 

In storage: 

A -11.6 
B .325 
c 46.327 
D -14.261 

Printout: 

b-l .16E+Olbb3 .25E-Ol 

b46.327-14.261 

3) PRINT 11, A,B,C,D 

11 FORMAT (2El0.2/ /2F7 .3) 

Printout: 

b-l.16E+Olbb3.25E-01 ----- line 1 

- (blank) - line 2 

b46.327-14.2Gl line 3 --------

60174900 Rev. C 



9.5.5 
* * 

60174900 Rev. C 

4) PRINT 15, (A(I), I=l, 9) 

15 FORMAT (8HbRESULTS2(/) (3F8.2) / 

Printout: 

3.62 

-6.33 

6.21 

-4.03 

7 .12 

-6.74 

-9.78 

3.49 

- 1.18 

line 1 

(blank) ___ line 2 

line 3 

line 4 
~~~~~~~~-

line 5

The specification * ... * can be used as an alternate form of wH to output
headings, titles, and comments. Any 6-bit character (except asterisk) be
tween the asterisks will be output. The asterisks delineate the Hollerith
field. This specification need not be separated from other specifications
by commas.

Output Examples:

1) Source program: PRINT 10
10 FORMAT (*bSUBTOT ALS*)

produces the output record: bSUBTOT ALS

2) Improper source program to output ABC*BE:

PRINT 1

1 FORMAT(*ABC*BE*)

The * in the output causes the specification to be interpreted as
ABC and BE*. BE* is an improper specification; therefore,
the wH specification must be used to output ABC*BE.

For input, this specification may be used in place of wH to read a new heading
into an existing Hollerith field. Characters are stored in the heading until an
asterisk is encountered in the input field or until all the spaces in the format
specification are filled. If the format specification contains n spaces and the
mth character (m::Sn) in the input field is an asterisk, all characters to the
left of the asterisk will be stored in the heading and the remaining character
positions in the heading will be filled with blanks.

9-21

I

I
9.6
REPEATED
FORMAT
SPECIFICATIONS

9-22

Input Examples:

1) Source prog:ram: READ 10
10 FORMAT (*bbbbbbbbbbbbbbbbbbbbb*)

Input card: (bFORTRAN FOR THE 6600

A subsequent reference to statement 10 in an output control statement:

PRINT 10 produces: FORTRAN FOR THE 6600

2) Source program: READ 10
10 FORMAT (*bbbbbbbb*)

(bHEAD* LINE

PRINT 10 produces: HEAD bbb

FORMAT specifications may be repeated by using an unsigned integer constant
repetition factor, k, as follows: k(spec), spec is any conversion specification
except nP. For example, to print two quantities K, L:

PRINT 10,K, L

10 FORMAT (12, I2)

Specifications for K, Lare identical; the FORMAT statement may also be:

10 FORMAT (2I2)

When a group of FOHMAT specifications repeats itself as in: FORMAT (El5. 3,
F6.1,14, I4, El5. 3, Fl3. 1, I4, I4), the use of k produces: FORMAT(2 (El5. 3, F6. 1,
2I4))

Nesting of parenthetical groups preceded by repeat constants beyond two levels
is not permitted in FORMAT specifications.

60174900 Rev. D

9.6.1
UNLIMITED
GROUPS

9.7
VARIABLE
FORMAT

60174900 Rev. C

FORMAT specifications may be repeated without using a repetition factor. The
innermost parenthetical group that has no repetition factor is unlimited and will
be used repeatedly until the l/O list is exhausted. Parentheses are the controlling
factors in repetition. The right parenthesis of an unlimited group is equivalent
to a slash. Specifications to the right of an unlimited group can never be reached,
as in the following example:

Format specifications for output data:

(El6.3,F20.7 ,2(l4),(I3,F7 .1),FS.2)

The first two fields are printed according to E16.3 and F20. 7. Since 2(14) is a
repeated parenthetical group, the next two fields are printed according to 14
format. The remaining print fields follow (13 ,F7 .1), which does not have a
repetition factor, until the list elements are exhausted. F8.2 is never reached.

FORMAT specifications may be specified at the time of program execution.
The specification, including left and right parentheses but not the statement
label or the word FORMAT, is read under A conversion or in a DATA state
ment and stored in an array or a simple variable. The name of the array
containing the specifications may be used in place of the FORMAT statement
labels in the associated input/output operation. The array name that appears
with or without subscript specifies the location of the first word of the FOR
MAT information.

Examples:

1. Assume the following FORMAT specifications:

(El2.2,F8.2,I7 ,2E20.3,F9.3,l4)

This information can be punched. in an input card and read by the state
ments of the program such as:

1

DIMENSION lVAR(3)

READ 1 (lVAR(l),l=l,3)

FORMAT (3Al0)

9-23

9.6.l
UNLIMITED
GROUPS

9.7
VARIABLE
FORMAT

60174900 Rev. C

FORMAT specifications may be repeated without using a repetition factor. The
innermost parenthetical group that has no repetition factor is unlimited and will
be used repeatedly until the l/O list is exhausted. Parentheses are the controlling
factors in repetition. The right parenthesis of an unlimited group is equivalent
to a slash. Specifications to the right of an unlimited group can never be reached,
as in the following example:

Format specifications for output data:

(El6.3,F20. 7 ,2(l4),(I3,F7 .1),F8.2)

The first two fields are printed according to E16.3 and F20.7. Since 2(14) is a
repeated parenthetical group, the next two fields are printed according to 14
format. The remaining print fields follow (13 ,F7 .1), which does not have a
repetition factor, until the list elements are exhausted. F8.2 is never reached.

FORMAT specifications may be specified at the time of program execution.
The specification, including left and right parentheses but not the statement
label or the word FORMAT, is read under A conversion or in a DAT A state
ment and stored in an array or a simple variable. The name of the array
containing the specifications may be used in place of the FORMAT statement
labels in the associated input/output operation. The array name that appears
with or without subscript specifies the location of the first word of the FOR
MAT information.

Examples:

1. Assume the following FORMAT specifications:

(E12.2,F8.2,l7 ,2E20.3,F9.3,l4)

This information can be punched. in an input card and read by the state
ments of the program such as:

1

DIMENSION lVAR(3)

READ 1 (lVAR(l),l=l,3)

FORMAT (3Al0)

9-23

I

The elements of the input card are placed in storage as follows:

CVAR(l):
IVAR(2):
IVAR(3):

(El2. 2, F8.
2,17, 2E20.
3,F9.3,I4)

A subsequent output statement in the same program can refer to these
FORMAT specifications as:

PRINT IVAR, A, B, I, C, D, E, J

This produces exactly the same result as the program:

PRINT 10, A, B, I, C, D, E, J
10 FORMAT (E12.2,F8.2,I7,2E20.3,F9.3,I4)

2. DIMENSION LAIS1(3), LAIS2(2), A(6), LSN(3), TEMP(3)
DATA LAIS1/21H(2F6. 3 ,17, 2E12. 2, 311)/, LAIS2/20H
(I6, 6X, 3F4.1, 2E12. 2)/

Output statement:

PRINT LAISl, (A(I), I=l, 2), K, B, C, (LSN(J), J=l, 3)

which is the same as:

1
PRINT l, (A(I), I=l, 2), K, B, C, (LSN(J), J=l, 3)
FORMAT (2F6.3,I7,2E12.2,3Il)

Output statement:

PRINT LAIS2, LA, (A(M), M=3, 4), A(6), (TEMP(I), I=2, 3)

which is the same as:

PRINT~!, LA, (A(M), M=3,4),A(6), (TEMP(L), L=2,3)
2 FORMAT (I6, 6X,3F4.1,2E12.2)

3. DIMENSION LAIS (3), VALUE(6)
DATA LAIS/26H(I3, 13HMEANbVALUEbIS, F6. 3)/

Output statement:

WRITE (10, LAIS)NUM, VALUE(6)

which is the same as:

WRITE (10, lO)NUM, VALUE(6)
10 FORMAT (13, 13HMEANbV ALUEbIS, F6. 3)

9-24 60174900 Rev. D

9.8
USASI
COMPATIBILITY

9.8.1
UNLIMITED
GROUPS FOR USASI

9.8.2
SCALE FACTOR
FOR USASI

60174900 Rev. D

During compilation, a compiler parameter is available to select either the
USA SI compatibility features of the execution time routines or retain the
present method of FORMAT /list interaction and output format. The switch
is enabled by initialization of the main program and has effect only when a
program is being compiled.

I
I

Unlimited group repeat is implemented according to the USASI specification. I
An innermost parenthetical group that has no group repeat count specified in
a FORMAT statement assumes a group repeat count of one. If the last outer
right parenthesis of the format specification is encountered and the I/O list
is not exhausted, control reverts to that group repeat specification terminated
by the last preceding right parenthesis, or if none exists, then to the first
left parenthesis of the format statement.

A scale factor is allowed for F , E, D, and G on input. On input, the scale I
factor has no effect if there is an exponent in the external field. G output
makes use of the scale factor only if E conversion is necessary to convert the
data.

9-25

60174900 Rev. D

INPUT/OUTPUT STATEMENTS 10

The following definitions apply to all I/ 0 statements:

logical I/O unit number:

an integer constant of one or two digits (the first
must not be zero)

integer variable names of no more than 7 characters,
with a value of 1 to 99

n FORTRAN declaration identifier:

statement number

variable identifier which references the starting storage
location of FORMAT information

L 1/0 list

The logical BCD record and the logical binary record for each 1/0 device
as used with the 6000 Series Computer System are defined as follows:

Printer
Card Reader
Card Punch

One Inch Tape

Logical BCD record is a one-card image (80
characters) for the card 1/0 devices and 136t
characters (1 print line) for the printer.

Logical binary record, for the card I/O devices,
is a number of cards between the EOR cards (7, 8, 9
punch in column 1); for the printer, it is a number
of print-lines between the EOR marks.

Logical BCD record is a character string ending with
a zero byte blocked in 512-word physical records.

Logical binary record is a number of chained blocks
(512 words).

One-half Inch Tape Logical BCD record is a physical record (even parity)

I

I

containing up to 136t characters. I

Disk

Logical binary record is a set of chained blocks
(512 words) with odd parity.

Logical BCD record is a character string ending
with a zero byte (blocked in sectors).

Logical binary record is a number of chained
sectors.

t As the first character specifies carriage control, only 135 characters are
printed.

10-1

10.1
OUTPUT
STATEMENTS

I

I

I
10-2

PRINT n, L

Information in the list (L) is transferred from the storage locations to the
standard output unit as line printer images, 136 characters or less per
line in accordance with the FORMAT declaration, n. The maximum record
length is 136 characters, but the first character of every record is not
printed as it is used for carriage controlt when printing on-line. Characters
in excess of the print line appear on the succeeding line. Each new record
starts a new print line.

For off-line printing;, the printer control is determined by the installation's
printer routine.

PUNCH n,L

Information is transferred from the storage locations given by the list (L)
identifiers to the standard punch unit. Information is transferred as Hollerith
images, 80 characters or less per card in accordance with the FORMAT
declaration, n.

WRITE (i ,n) L

WRITE OUTPUT TAPE i,n,L

These forms are equivalent; they transfer information from storage locations
given by the list (L) to a specified output unit (i) according to the FORMAT
declaration (n).

With a half inch tape unit, a logical record containing up to 136 characters is
recorded in even parity (BCD mode). The number of words in the list and
the FORMAT declaration determine the number of records that are written
on a unit. If the log;ical record is less than 136 characters, the remainder
of the record is filled with blanks.

fsee Appendix 0 for carriage control character conventions.

60174900 Rev. D

60174900 Rev. C

With a one-inch tape unit, a packed 5120-character physical record is recorded
in odd parity. Each physical record consists of as many logical record charac
ters as required to fill the physical record. The information is recorded in 6000
series display code with no special control characters added, and it represents a
continuous stream of logical output records. Trailing blanks on each logical
record are removed and two consecutive characters with a value of zero separate
logical records on the tape.

If the tape is to be printed, the first character of a record is not printed as it is
a printer control. If the programmer fails to allow for a printer control charac
ter, the first character of the output data is lost on the printed listing.

WRITE (i)L

WRITE TAPE i, L

These equivalent forms transfer information from storage locations given
by the list (L) to a specified output unit (i). If L is omitted, the WRITE (i)
statement acts as a do-nothing statement. See READ (i)L.

If blocked binary option is not used, the number of words in the list determines
the number of physical records written on the unit. A physical record contains
a maximum of 512 central storage words; the last physical record may con
tain from 1 to 512 words. Physical records written by one WRITE (i) L
statement constitute one logical record. The information is recorded in odd
parity (binary mode). For blocked binary I/O files see FTNBIN routine in
section 7-10 and appendix M.

A logical record which is an exact multiple of 512 words is followed by a
physical record of eight zero characters called a zero length record.

Examples:

1. DIMENSION A(260), B(4000)

WRITE(lO)A, B

2. DO 5 I = 1, 10

5 WRITE TAPE 6, AMAX (I), (M(I, J), J=l, 5)

3. PRINT 50,A, B, C(I,J)

50 FORMAT (X 8HMINIMUM=Fl 7. 7, 2X8HMAXIMUM=Fl 7. 7,

2X10HV AL UE IS $F8. 2)

4. PRINT 51, (A(I),I=l,20)

51 FORMAT(X23HTRUTH MATRIX VALUES ARE/(3X4L3))

5. PUNCH 52,ACCT, LSTNME, FSTNME, TELNO, SHPDTE,ITMNO

52 FORMAT (F8.2,3X4A10,XI5)

10-3

10.2
READ
STATEMENTS

10-4

The format on the previous page assumes the following dimension
statement:

DIMENSION LlSTNME(2), FSTNME(2)

WRITE (2 ,53)A ,B ,C, D

53 FORMAT (4E21. 9)

WRITE OUTPUT TAPE 2,52,A,B,C,D

WRITE (2, 54)

54 FORMAT (32HTIITS STATEMENT HAS NO DATA LIST.)

A check should be made for the end of the file (either by counting records or
by an IF EOF statement after each read). If this check is not made and the
EOF is reached, the data used for processing will remain unchanged from the
last read. If a read is issued after the EOF is reached,, the job will be term
inated unless the EOF flag has been cleared by an IF EOF statement.

READ n,L

One or more card images are read from the standard input unit. Information
is converted from left to right in accordance with FORMAT specification (n) ,,
and it is stored in the locations named by the list (L). Input may be on 80-
column Hollerith cards or magnetic tapes prepared off-line, containing
SO-character records in BCD mode.

Example:

READ 10,A,B,C

10 FORMAT (3F10.4)

READ (i,n)L

READ INPUT TAPE i, n, L

These equivalent forms transfer one logical record of information from logical
unit (i) to storage locations named by the list (L), according to FORMAT speci
fication (n). The number of words in the list and the FORMAT specifications
must conform to the record structure on the logical unit.

60174900 Rev. C

READ (i)L

READ TAPE i,L

These equivalent forms transfer one logical record of information from a speci
fied unit (i) to storage locations named by the list (L).

Records to be read by READ (i) should be written in binary mode. The number
of words in the list of READ (i)L must not exceed the number of words in the
corresponding WRITE statement.

If Lis omitted, READ (i) spaces over one logical record. See WRITE (i)L.

Examples:

1) DIMENSION C(264)

READ (lO)C

DIMENSION BMAX (10), M2 (10,5)

D07I=l, 10

7 READ TAPE 6, BMAX (I), (M2(I,J),J=l,5)

READ (5) (skip one logical record on unit 5)

READ (6) ((A(I,J),I=l,100),J=l, 50)

READ TAPE 6,((A(I,J),I=l,100),J=l, 50)

2) READ INPUT TAPE 10,50,X,Y,Z

50 FORMAT (3Fl0.6)

DOUBLE PRECISION DB(4)

READ (10,51) DB

51 FORMAT (4D20.12)

READ 51,DB

READ (2,52) (Z(J) ,J=l,8)

52 FORMAT (Fl0.4)

60174900 Rev. C 10-5

I

10.3
NAME LIST
STATEMENT

I0-6

The NAMELIST statement permits the input and output of e;haracter strings
consisting of names and values without a format specification.

NAMELIST /y /a /y
2
/a

2
/ ... /y /a

I I n n

When NAMELIST appears with a DIMENSION, COMMON, EQUIVALENCE,
or a type declaration,, any arrays used in NAME LIST must have been dimen
sioned prior to the N.AMELIST statement.

Each y is a NAMELIST name consisting of I-7 characters which must be
unique within the program unit in which it is used. Each ~is a list of the
form b , b

2
, ... , b ; each being a variable or array name.

I n

In any given NAMELIST statement, the list~ of variable names or array
names between the NAMELIST identifier y and the next NAMELIST identifier
(or the end of the statement if no NAMELIST identifier follows) is associated
with the identifier y.

Examples:

PROGRAM MAIN
NAMELIST /NAMEI/NI, N2, Rl, R2/NAME2/N3, R3, N4, NI

SUBROUTINE XTRACT (A, B, C)
NAMELIST /CALLI/LI, L2, L3/CALL2/L3, P4, L5, B

A variable name or array name may be an element of more than one such list.
In a subprogram, 2. may be a dummy parameter identifying a variable or an
array, but the array may not have variable dimensions.

A NAMELIST name may be defined only once in a program unit preceding any
reference to it. Once defined, any reference to a NAMELIST name may be
made only in a READ or WRITE statement. The form of the input/output
statements used with NAMELIST is as follows:

READ (u,x)

WRITE (u,x)

.!! is an integer variable or integer constant denoting a logical unit, and x is
a NAMELIST name.

60I 74900 Rev. D

INPUT DATA

60174900 Rev. C

Example:

Assume A, l, and Lare array names

NAMELlST /NAMl/ A, B,l,J/NAM2/C, K, L

READ (5,NAMl)

WillTE (8,NAM2)

These statements result in the BCD (coded) input/outputs on the device
specified as the logical unit of the variables and arrays associated with
the identifiers, NAMl and NAM2.

The current file on unit !:!:. is scanned up to an end-of-file or a record with a
$in column 2 followed immediately by the name (NAMl) with no embedded
blanks. Succeeding data items are read until a $ is encountered.

The data item, separated by commas, may be in any of three forms:

v=c

a=d
1

, ... ,dj

a(n) = d
1

, •.. , dm

vis a variable name, c a constant, !!_an array name, and!!. is an integer
constant subscript. d. are simple constants or repeated constants of the

-1
form k*c, where~ is the repetition factor.

Example:

DIMENSION Y (3, 5)

LOGICAL L

COMPLEX Z

NAMELlST /HURRY/11,12,13,K, M, Y, Z, L

READ (5, HURRY)

and the input record:

$HURRY 11=1, L=. TRUE., 12=2,13=3. 5, Y(3, 5)=26, Y(l, 1)=11, 12. OEl, 13, 4*14,
Z=(l., 2.), K=16, M=l 7$

10-7

10-8

produce the following values:

11=1
12=2
13=3
Y(3, 5)=26. 0
Y(l, 1)=11. 0
y (2 ' 1) = 120 . 0
Y(3, 1)=13. 0

Y(l,2)=14.0
Y(2, 2)=14. 0
Y(3, 2)=14. 0
Y(l, 3)=14. 0
K=16
M=17
Z=(l. , 2.)
L=. TRUE.

The number of const~mts, including repetitions, given for an unsubscripted
array name must equal the number of elements in that array. For a sub
scripted array name, the number of constants need not equal, but may not
exceed, the number of array elements needed to fill the array.

v=c

a(n) ==d
1

, ... , dm

variable v is set to c - -

the values _g.
1

, ... , Q_. are stored in consecutive elements
of array~ in the order in which the array is stored
internally.

elements are filled consecutively starting at a(n)

The specified constant of the NAME LIST statement may be integer, real,
double precision, complex of the form (c 1 ,c2), or logical of the form T, or
. TRUE. , F, or . FALSE .. A logical or complex variable may be set only
to a logical and complex constant, respectively. Any other variable may be
set to an integer, real or double precision constant. Such a constant is con
verted to the type of its associated variable.

Constants and repeated constant fields may not include embedded blanks.
Blanks, however, may appear elsewhere in data records.

A maximum of 150 characters per input record is permitted. More than one
record may be used for input data. All except the last record must end with
a constant followed by a comma, and no serial numbers may appear; the first
column of each record is ignored.

The set of data items may consist of any subset of the variable names
associated with x. These names need not be in the order in which they appear
in the defining NAME LIST statement.

60174900 Rev. C

OUTPUT DATA

10.4
TAPE HANDLING
STATEMENTS

60174900 Rev. C

Output to unit !!. of BCD information is as follows:

One record consisting of a $in column 2 immediately followed by the identi
fier~· As many records as are needed to output the current values of all
variables in the list associated with ~· Simple variables are output as v=c.

Elements of dimensioned variables are output in the order in which they are
stored internally.

The data fields are made large enough to include all significant digits. Logi
cal constants appear as T and F. No data appears in column 1 of any record.

One record consisting of a $in column 2 immediately followed by the letters
END.

The records output by such a WRITE statement may be read by a READ (u,x)
statement where ~is the same NAME LIST identifier.

If unit !!. is the standard punch unit and a record is longer than 80 characters,
the remaining characters are punched on the next card.

The maximum length of .a record written by a WillTE (u,x) statement is 130
characters.

REWIND i

Magnetic tape unit i is rewound to load point. If the tape is already rewound,
the statement acts as a do-nothing statement.

BACKSPACE i

Unit i is backspaced one logical record in a binary file or a BUFFER IN/OUT
file or one BCD record in a normal BCD file. If tape is at load point (rewound),
this statement acts as a do-nothing statement.

END FILE i

An end-of-file i.s written on magnetic tape unit i.

10-9

I

I
10.5
BUFFER
STATEMENTS

10-10

IF (END FILE i)n
1

, n
2

IF (EOF ,i)n
1

,n
2

These statements check the previous read operation to determine if an end-of
file has been encountered on unit i. If so, control is transferred to statement
n

1
; if not, control is transferred to statement n

2
.

n1 not ready

n2 ready and no previous error

na EOF sensed on last input operation

n4 parity error O)uffered I/O operations)

With the present system,
a write parity error on a unit being tested is not

detected, as the operator is notified of the existing condition by the SCOPE
Version 3. 0 operating system.

The primary differences between buffer 1/0 and read/ write 1/0 statements
are given below:

1. The mode of transmission (BCD or binary) is tacitly implied
by the form of the read/write control statement. In a buffer
control statement, parity must be specified by a parity
indicator ..

60174900 Rev. D

60174900 Rev. C

2. The read/write control statements are associated with a list
and, in BCD transmission, with a FORMAT statement. The
buffer control statements are not associated with a list; data
trans mission is to or from one area in storage.

3. A buffer control statement initiates data transmission, and
then returns control to the program, permitting the program
to perform other tasks while data transmission is in progress.
Before buffered data is used, the status of the buffer operation
should be checked. A read/write control statement completes
the operation before returning control to the program.

In the descriptions that follow, these definitions apply.

u logical unit number

p parity key. May be specified by a simple variable (not
subscripted). 0 for even parity (coded characters);
non-zero for odd parity.

Length [A, B]
--K

Is K < 1?

WRITE K words
[binary or BCD]
on unit i

logical unit number
p recording mode

0 even-BCD
1 odd-binary

A variable identifier:
first word of data block
to be transmitted.

B variable identifier:
last word of data block
to be transmitted.

10-11

10-12

In the BUFFER statements the addr~'3S of B must be greater than that of
A. A unit referenced in a BUFFER statement may not be referenced in
other I/O statements.

BUFFER IN (u,p) (A, B)

Information is transmitted from unit u in mode p to storage locations A
through B. The use o:f this statement is described in detail under BUFFEI
in Appendix I.

BUFFER OUT (u, p) (A, B)

Information is transmitted from storage locations A through B and one
logical record is written on unit u in mode p containing all the words
from A to B inclusive. The use of this statement is described in detail
under BUFFEO in Appendix I.

Examples:

1) COMMON/BUFF /DATA(lO), CAL(50)
PAR=O
BUFFER IN(9, PAR) (DATA(l), CAL(50))

BCD information is input from unit 9 to the labeled common area BUFF
beginning at DATA(l), the first word of the block, and extending
through CAL(50), the last word of the block.

2) DThiENSION A(lOO)
N=6
BUFFER OUT(N, 1) (A(l), A(lOO))

Binary information is transmitted to unit N from the block area defined
by A(l) and A(lOO), that is, all of array A is tranemitted.

60174900 Rev. C

10.6
ENCODE/DECODE
STATEMENTS

60174900 Rev. C

The ENCODE/DECODE statements are comparable to the BCD WRITE/READ
statements; however, no peripheral equipment is involved. Information is
transferred under FORMAT specifications from one area of storage to
another. The parameters in these statements are defined as follows:

ENCODE (c,n, v)L where

n statement number, variable identifier, or formal parameters
representing the FORMAT statement

L input/ output list

v variable identifier or an array identifier which supplies the starting
location of the BCD record.

c unsigned integer constant or a simple integer variable (not sub
scripted) specifying the number of characters in the record. c
may be an arbitrary number of BCD characters.

When encoding or decoding is performed, the first record begins with the
leftmost character position specified by v and continues c BCD characters
(10 BCD characters per computer word). For ENCODE, if c is not a
multiple of 10, the record ends in the middle of a word and the remainder
of the word is blank filled. For DECODE, if the record ends with a partial
word the balance of the word is ignored.

Since each succeeding record begins with a new computer word, an integral
number of computer words is allocated for each record with c+9 words. The
number of characters allocated for any single record in the lO encoded
area must not exceed 150.

Example:

1)

1

A(l) = ABCDEFGHIJ
A (2) = KLMNObbbbb
B(l) = PQRSTUVWXY
B(2) = Z12345bbbb

c = multiple of 10

ENCODE (20, 1,ALPHA) A, B
FORMAT (A10,A5/A10,A6)

10-13

10-14

record a record b
_/'.,.___ ____ ~------../ ~-------...

ALPHA r ABCDEFGHIJ KLMNO bbbbb PQRSTUVWXY Z12345 bbbb

word 1 word 2

2) c f. multiple of 10

ENCODE (16, 1, ALPHA) A,B
1 FORMAT (Al0,A6)

record a

ALPHA (ABCDEFGHIJ KLMNOb bbbb

word 1 word 2

3) c f. multiple of 10

DECODE (18, 1, GAMMA) A6,B6
1 FORMAT (A:LO, AS)

record a

GAMMA (HEADERbl21 HEADbbOl 31

word 1 word 2

A.6(1) = HEADERbl21

A6(2) = HEADbbOlbb

B6(1) = HEADERb122

B6(2) = HEADbb02bb

ENCODE (c,n,v)L

word 3 word 4

record b

record b

31

word 3 word 4

~--beginning of new record

The information of the list variables, L, is transmitted according to the
FORMAT (n) and stored in locations starting at v, c BCD characters per record.
If the I/O list (L) and specification list (n) translate more than c characters per
record, an execution diagnostic occurs. If the number of characters converted
is less than c, the remainder of the record is filled with bianks.

60174900 Rev. C

DECODE (c,n, v)L

The information in c consecutive BCD characters (starting at address v) is
transmitted according to the FORMAT n and stored in the list variables. If
the number of characters specified by the I/O list and the specification list
(n) is greater than c (record length) per record, an execution diagnostic occurs.
If DECODE attempts to process an illegal BCD code or a character illegal
under a given conversion specification, an execution diagnostic occurs.

Examples:

1) The following illustrates one method of packing the partial contents of
two words into one word. Information is stored in core as:

LOC(l) SSSSSxxxxx

LOC(6) xxxxxddddd

10 BCD ch/wd

To form SSSSSddddd in storage location NAME:

DECODE(lO, 1, LOC(6))TEMP

1 FORMAT (5X,A5)

ENCODE(lO, 2, NAME) LOC(l), TEMP

2 FORMAT(2A5)

The DECODE statement places the last 5 BCD characters of LOC(6)
into the first 5 characters of TEMP. The ENCODE statement packs the
first 5 characters of LOC(l) and TEMP into NAME.

With the R specification; the program may be shortened to:

ENCODE (10, 1, NAME)LOC(l), LOC(6)
1 FORMAT (A5, R5)

2) DECODE may be used to calculate a field definition in a FORMAT
specification at object time. Assume that in the statement FORMAT
(2A8,Im) the programmer wishes to specify m at some point in the
p,rogram, subject to the restriction 2 s ms 9. The following program
permits m to vary.

60174900 Rev. C 10-15

10-16

IF(M.LT.10.AND.M.GT.l)l,2

1 ENCODE (8,100,SPECMAT) M

100 FORMAT (6H(2A8,I,Il,1H))

PRINT SPECMAT,A,B,J

M is tested to insure it is within limits. If not, control goes to state
ment 2 which could be an error routine. If M is within limits,
ENCODE packs the integer value of M with the characters: (2A8,Im).
This packed FORMAT is stored in SPECMAT .. SPECMAT contains
(2A8,Im).

A and B will be printed under specification AS, and the quantity J under
specification 12, or I3, or ... or 19 according to the value of m.

3) ENCODE can be used to rearrange and change the information in a
record. The following example also illustrates that it is possible to
encode an area into itself and that encoding will destroy information
previously contained in an area.

I = lOHV = bbFT /SEC
IA= 16
ENCODE (10, 1, I)I, IA, I

1 FORMAT (A2, 12, R6)

Before executing the above code

I = 26545555062450230503

After execution

I = 26543441062450230503

4) ENCODE/DECODE handles randomly formatted input data. The
following example illustrates how ENCODE/DECODE is used to
:interpret format and reduce data to a desired format.

Problem: To search for items of information when a given word in
the input string keys the format for the rest of the string. In the
example, EFORMAT is the key word and EF is unique in that, if EF
starts an input record, ORMAT is assumed to follow. The appear
ance of EF indicates a number in the string is in E format.

60174:900 Rev. D

60174900 Rev. D

DIMENSION IDA TLIN (80) ,INTER(3)

READ 1, IDATLIN

1 FORMAT (80Rl)

IF((IDATLIN(l). EQ. lRE) .AND. (IDATLIN(2). EQ. lRF))
GO TO 5000

5000 ENCODE(23, 900 ,INTER) (IDATLIN(J) ,J=33 ,55)

900 FORMAT (23Rl)

DECODE (23,901,INTER) NUMBER

901 FORMAT (E23.14)

PRINT 1000,NUMBER

1000 FORMAT(* NUMBER= *F8.3)

END

EFORMAT

67
89

Output will be

NUMBER = b347. 316

3.47315999999997 E+o02

10-17

APPENDIX SECTION

STANDARD SCOPE CHARACTER SETS A

The character set selected when the system is installed should be compatible with the printers.

With an installation parameter, the installation keypunch format standard can be selected as 026 or 029; the
installation parameter can also allow a user to override the standard; a user may select a keypunch mode for his input
deck by punching 26 or 29 in columns 79 and 80 of his JOB card or any 7 /8/9 end-of-record card. The mode remains
set for the remainder of the job or until it is reset by a different mode selection on another 7 /8/9 card.

60174900 E A-1 •

• >
~

g
lo-*

-...J
~
l.O
0
0
t'I'.1

CDC 64-CHARACTER SET

Display Hollerith Hollerith External Display Hollerith Hollerith
Code Character (026) (029) BCD Code Character (026) (029)

00 :t 8-2 8-2 00* 40 5 5 5
01 A 12-1 12-1 61 41 6 6 6
02 B 12-2 12-2 62 42 7 7 7
03 c 12-3 12-3 63 43 8 8 8
04 D 12-4 12-4 64 44 9 9 9
05 E 12-5 12-5 65 45 + 12 12-8-6
06 F 12-6 12-6 66 46 - 11 11
07 G 12-7 12-7 67 47 * 11-8-4 11-8-4
10 H 12-8 12-8 I 70 50 I 0-1 0-1
11 I 12-9 I 12-9 I 71 51 (0-8-4 12-8-5
12 J 11-1 11-1 41 52) 12-8-4 11-8-5
13 K 11-2 11-2 42 53 $ 11-8-3 11-8-3
14 L 11-3 11-3 43 54 = 8-3 8-6
15 M 11-4 11-4 44 55 blank no punch no punch
~,..

i'~ 11-5 i 1-5 45 56 , (commai 0-8-3 0-8-3 10

17 0 11-6 11-6 46 57 . (period) 12-8-3 12-8-3
20 p 11-7 11-7 47 60 - 0-8-6 8-3
21 Q 11-8 11-8 50 61 [8-7 8-5
22 R 11-9 11-9 51 62] 0-8-2 12-8-7
23 s 0-2 0-2 22 63 % 8-6 0-8-4
24 T 0-3 0-3 23 64 =I= 8-4 8-7
25 u 0-4 0-4 24 65 - 0-8-5 0-8-5
26 v 0-5 0-5 25 66 v 11-0 or 11-0 or
27 w 0-6 0-6 26 11-8-2 11-8-2
30 x 0-7 0-7 27 67 /\ 0-8-7 12
31 y 0-8 0-8 30 70 t 11-8-5 8-4
32 z 0-9 0-9 31 71 ~ 11-8-6 0-8-7
33 0 0 0 12 72 < 12-0 or 12-0 or
34 1 1 1 01 12-8-2 12-8-2
35 2 2 2 02
36 3 3 3 03 73 > 11-8-7 0-8-6

37 4 4 4 04 74 ~ 8-5 12-8-4
75 2: 12-8-5 0-8-2
76 --; 12-8-6 11-8-7
77 ; (semicolon) 12-8-7 11-8-6

tThis character is lost on even parity magnetic tape.

*Since 00 cannot be represented on magnetic tape, it is converted to BCD 12. On input, it will be translated to display code 33
(number zero).

External
BCD

05
06
07
10
11
60
40
54
21
34
74
53
13
20
33
73
36
17
32
16
14
35
52

37
55
56
72

57
15
75
76
77

0\
0
I-'

-....J
.j:::..
\0
0
0
m

> I
w

A

ASCII 64-CHARACTER SUBSET*

Display Hollerith Hollerith ASCII Display Hollerith Hollerith
Code Character (026) (029) Code Code Character (026) (029)

00 :t 8-2 8-2 072 40 5 5 5
01 A 12-1 12-1 101 41 6 6 6
02 B 12-2 12-2 102 42 7 7 7
03 c 12-3 12-3 103 43 8 8 8
04 D 12-4 12-4 104 44 9 9 9
05 E 12-5 12-5 105 45 + 12 12-8-6
06 F 12-6 12-6 106 46 - 11 11
07 G 12-7 12-7 107 47 * 11-8-4 11-8-4
10 H 12-8 12-8 110 50 I 0-1 0-1
11 I 12-9 12-9 111 51 (0-8-4 12-8-5
12 J 11-1 11-1 112 52) 12-8-4 11-8-5
13 K 11-2 11-2 113 53 $ 11-8-3 11-8-3
14 I L 11-3 11-3 114 54 = 8-3 8-6
15 M 11-4 11-4 115 55 blank no punch no punch
16 N 11-5 11-5 116 56 , (comma) 0-8-3 0-8-3
17 0 11-6 11-6 117 57 . (period) 12-8-3 12-8-3
20 p 11-7 11-7 120 60 # 0-8-6 8-3
21 Q 11-8 11-8 121 61 '(apostrophe) 8-7 8-5
22 R 11-9 11-9 122 62 ! 0-8-2 12-8-7
23 s 0-2 0-2 123 63 % '8-6 0-8-4
24 T 0-3 0-3 124 64 "(quote) 8-4 8-7
25 u 0-4 0-4 125 65 (under(ine) 0-8-5 0-8-5

-
26 v 0-5 0-5 126 66] 11-0 or 11-0 or
27 w 0-6 0-6 127 11-8-2 11-8-2
30 x 0-7 0-7 130 67 & 0-8-7 12
31 y 0-8 0-8 131 70 @ 11-8-5 8-4
32 z 0-9 0-9 132 71 ? 11-8-6 0-8-7
33 0 0 0 060 72 [12-0 or 12-0 or
34 1 - . 1 1 061 12-8-2 12-8-2
35 2 2 2 062
36 3 3 3 063 73 > 11-8-7 0-8-6

37 4 4 4 064 74 < 8-5 12-8-4
75 \ 12-8-5 0-8-2
76 -.. [circumflex) 12-8-6 11-8-7
77 ; (semicolon) 12-8-7 11-8-6

tThis character is lost on even parity magnetic tape.

*BCD representation is used when data is recorded on even parity magnetic tape. In this case, the octal BCD/display code
.correspondence is the same as for the CDC 64-character set.

ASCII
Code

065
066
067
070
071
053
055
052
057
050
051
044
075
040
054
056
043
047
041
045
042
137
175

046
100
077
173

076
074
134
136
073

• >
.b.

°' 0 --....)
~
\0
0
0
tr:1

CDC 63-CHARACTER SET

Display Hollerith Hollerith External Display Hollerith Hollerith External
Code Character (026) (029) BCD Code Character (026) (029) BCD

00 {none)t 16 40 5 5 5 05
01 A 12-1 12-1 61 41 6 6 6 06
02 B 12-2 12-2 62 42 7 7 7 07
03 c 12-3 12-3 63 43 8 8 8 10
04 D 12-4 12-4 64 44 9 9 9 11
05 E 12-5 12-5 65 45 + 12 12-8-6 60
06 F 12-6 12-6 66 46 - 11 11 40
07 G 12-7 12-7 67 47 * 11-8-4 11-8-4 54
10 H 12-8 12-8 70 50 I 0-1 0-1 21
11 I 12-9 12-9 71 51 (0-8-4 12-8-5 34
12 J 11-1 11-1 41 52) 12-8-4 11-8-5 74
13 K 11-2 11-2 42 53 $ 11-8-3 11-8-3 53
14 L 11-3 11-3 43 54 = 8-3 8-6 13
15 M 11-4 11-4 44 55 blank no punch no punch 20
i6 I N i i-5 11-5 45 ..,.,. '-----1 0-8-3 0-8-3 .,.,

:.JU , \LUlllllla/ ..,;)..,;)

17 0 11-6 11-6 46 57 . {period) 12-8-3 12-8-3 73
20 p 11-7 11-7 47 60 - 0-8-6 8-3 36
21 Q 11-8 11-8 50 61 [8-7 8-5 17
22 R 11-9 11-9 51 62] 0-8-2 12-8-7 32
23 s 0-2 0-2 22 63 :{colon) t 8-2 8-2 00*
24 T 0-3 0-3 23 64 * 8-4 8-7 14
25 u 0-4 0-4 24 65 - 0-8-5 0-8-5 35
26 v 0-5 0-5 25 66 v 11-0 or 11-0 or 52
27 w 0-6 0-6 26 11-8-2 11-8-2
30 x 0-7 0-7 27 67 (\ 0-8-7 12 37
31 y 0-8 0-8 30 70 t 11-8-5 8-4 55
32 z 0-9 0-9 31 71 ~ 11-8-6 0-8-7 56
33 0 0 0 12 72 < 12-0 or 12-0 or 72
34 1 1 1 01 12-8-2 12-8-2
35 2 2 2 02
36 3 3 3 03 73 > 11-8-7 0-8-6 57

37 4 4 4 04 74 .:S 8-5 12-8-4 15
75 2: 12-8-5 0-8-2 75
76 --, 12-8-6 11-8-7 76
77 ; {semicolon) 12-8-7 11-8-6 77

tWhen the 63-Character Set is used, the punch code 8-2 is associated with display code 63, the colon. Display code 008 is not included in
the 63-Character Set and is not associated with any card punch. The 8-6 card punch (026 keypunch) and the 0-8-4 card punch (029 key
punch) in the 63-Character Set are treated as blank on input.

*Since 00 cannot be represented on magnetic tape, it is converted to BCD 12. On input, it will be translated to display code 33
(number zero).

FORTRAN ST A TEMENT LIST

SUBPROGRAM STATEMENTS

Entry Points ENTRY name

PROGRAM name (f1, ••• , fn)

FORTRAN VI PROGRAM name (f1, ••• ,fn)

FORTRAN IV PROGRAM name (f 1, ••• , fn)

FORTRAN II PROGRAM name (f1, ••• , fn)

SUBROUTINE name (Pl, ••• , Pn)

FORTRAN VI SUBROUTINE name (P1, ••• , Pn)

FORTRAN IV SUBROUTINE name (P1, ••• ,pn)

FORTRAN II SUBROUTINE name (P1, ••• , Pn)

FUNCTION name (P1, ••• , Pn)

type FUNCTION name (p1 , ••• , Pn)

FORTRAN VI FUNCTION name (P1, ••• ,pn)

FORTRAN IV FUNCTION name (p1 , ••• ,pn)

FORTRAN II FUNCTION name (Pl, ••• , Pn)

FORTRAN IV type FUNCTION name (P1, ••• , Pn)

FORTRAN II type FUNCTION name (pl, ••• , Pn)

FORTRAN VI type FUNCTION name (p1 , ••• , Pn)

Intersubroutine EXTERNAL name1 ,name2 •••

F name1 , name2 , ••• t

Transfer CALL name
Statements

CALL name (p1 , ••• ,pn)

RETURN

N = Non-executable

t Col. 1 indicator (F) is used in FORTRAN II modes.

60174900 Rev. D

B

Page

N 7-8

N 7-3

N 7-3

N 7-3

N 7-3

N 7-4

N 7-4

N 7-4

N 7-4

N 7-13

N 7-13' 7-151

N 7-13

N 7-13

N 7-13

N 7-13

N 7-13

N 7-13

N 7-6

N D-2

E 7-5

E 7-5

E 6-10

E = Executable

B-1

DATA DECLARATION AND STORAGE ALLOCATION Page

Type Declaration COMPLEX List N 5-1

DOUBLE PRECISION List N 5-1

DOUBLE List N 5-1

REAL List N 5-1

INTEGER List N 5-1

LOGICAL List N 5-1

TYPE DOUBLE lJst N 5-1

TYPE COMPLEX List N 5-1

TYPE REAL List N 5-1

TYPE INTEGER List N 5-1

TYPE LOGICAL List N 5-1

Storage DIMENSION v1, v~~, ••• , Vn N 5-2
Allocations

COMMON/i1/list1/i2/list2 ••• /in/listn N 5-3

EQUIVALENCE (A, B, .••), (Al, Bl, .••) ••• N 5-7

I DATA d1 , ••• ,dn/a1 ,k*a2 , •.• ,an/,d1 , .•• ,dn/ N 5-9

DA TA (i1 =value list), (i2=value list), ••• N 5-12

BLOCK DATA N 5-13

BLOCK DATA name N 5-13

ARITHMETIC STATEMENT FUNCTION

name (P1, p2 , ••• Pn) = Expressions E 7-14

SYMBOL MANIPULATION, CONTROL AND I/O

Replacement A=E Arithmetic E 4-2

D A=Et

I A=Et

L=E Logical/Relational E 4-4

M=E Masking E 4-4

n M=Et

t Col. 1 indicators (D, I, B) are used in FOHTRAN II mode.

B-2 60174900 Rev. D

Page

Intra program GO TOn E 6-1
Transfers

GOTOm E 6-1

GO TO m, (n1' ••• nm) E 6-1

GO TO (n1 , ••• ,nm) ,i E 6-2

IF ACCUMUIA TOR OVERFLOW n 1 ,n2 t E D-2

IF QUOTIENT OVERFLOW n 1 ,n2t E D-2

IF (c)n1 ,n2 ,n3 E 6-3

IF (£)n1 ,n2 E 6-3

IF (f)s E 6-3

IF DIVIDE CHECK n 1 ,n2 t E D-2

IF (ENDFILE i)nvn2 E 10-10

IF (EOF ,i)n1,n2 E 10-10

IF (SENSE LlGHT i)n1 , n2 t E D-2

IF (SENSE SWITCH i)nttn2 t E D-2

IF (UNIT ,i)ni,n2 ,n3 ,n4 E 10-10

LOOP CONTROL DO n i = m 1 ,m2 ,m3 E 6-4

MISCELLANEOUS PROGRAM CONTROLS

ASSIGN s tom E 6-1

n CONTINUE E 6-10

PAUSE E 6-10

PAUSE n E 6-10

SENSE LlGHT it E D-1

STOP E 6-10

STOPn E 6-10

I/O FORMAT

FORMAT (spec1 , ••• , k(specm, •••), ••• N 9-4 I NAMELlST/y1/a1/Y2/a2/. • • /yn/~ N 10-6

tFORTRAN II

60174900 Rev. D B-3

I/0 CONTROL STATEMENTS Page

BUFFER IN (u,p) (A,B) E 10-12

BUFFER OUT (u,p) (A,B) E 10-12

DECODE (c,n,v)L E 10-15

ENCODE (c ,n,v}L E 10-13

PRINTn,L E 10-2

PUNCH n,L E 10-2

READ (i)L E 10-5

READ (i,n)L E 10-4

READ INPUT TAPE i,n,L E 10-4

READ n,L E 10-4

READ TAPE i, L E 10-5

WRITE (i)L E 10-3

WRITE (i,n)L E 10-2

WRITE OUTPUT TAPE i,n, L E 10-2

WRITE TAPE i, L E 10-3

I/O Tape Handling END FILE i E 10-9
Handling

REWIND i E 10-9

BACKSPACE i E 10-9

PROGRAM AND SUBPROGRAM TERMINATION

END E 6-11

END name E 6-11

SEGMENTATION

CALL OVERLAY (fn,l1,l2,P) E 8-5

CALL SEGMENT (fn,e,a,lib,m) E 8-2

SEGZERO (sn,pn1 ,pn2, ••• ,pni) E 8-7

SECTION (sname,pn1,pn2 , ••• ,pni) E 8-7

B-4 60174900 Rev. D

ABS(X)

ATh'IAG(C)

AINT(X)

AMAXO(I
1

, I
2

,
...)
AMAX1(X

1
,x

2
,

...)
AMINO(I

1
, I

2
,

...)
AMINl (X

1
, X

2
,

...)
AMOD(X

1
,X

2
) t

AND(X
1

, ... ,Xn)

CMPLX(X
1

,X
2
)

COMPL(X)

CONJG(C)

DIM(X
1

,X
2
)

DMAX1(D
1

, D
2

,
...)
DMINl(D

1
,D

2
,

...)
FLOAT(I)

IABS(I)

IDIM(I
1

, I2)

FORTRAN FUNCTIONS

IN - LINE FUNCTIONS

Definition

Absolute value

Obtain the imaginary part of a complex argument

Truncation integer. Sign of X times largest
integer s IX j •

Determine maximum argument

Determine maximum argument

Determine minimum argument

Determine minimum argument

Boolean AND of X
1
, ... ,Xn

Convert real to co~plex (X
1

+ iX
2
)

Complement of X

Conjugate of C

If X
1

> X
2
:x

1
-x

2
If x

1
s x

2
:o

Determine maximum argument

Determine minimum argument

Integer to real conversion

Absolute value

If I
1

>I
2

: I 1 - I2

If I
1
sI

2
: 0

Actual
Parameter
Type

Real

Complex

Real

Integer

Real

Integer

Real

Real

Real

Complex

Real

Double

Double

Integer

Integer

Integer

Mode of
Result

Real

Real

Real

Real

Real

Real

Real

Real

Logical

Complex

Logical

Complex

Real

Double

Double

Real

Integer

Integer

c

tAMOD(X1,X2) is defined as Xi-[X1/X2]X2 , where [x] is an integer with magnitude of not more than I
the magnitude of x and sign the same as x.

60174900 Rev. D C-1

Form Definition

IFJX(X) Real to integer conversion

INT(X) Truncation, integer. Sign of X times
largest integer s IX j •

ISIGN(I
1

, I
2
) Sign of r

2
times absolute value of r

1
•

MAXO(I
1

, r
2

, ...) Determine maximum argument

MAXl(X
1
,x

2
, ...) Determine maximum argument

MINO(I
1

, I
2

, ...) Determine minimum argument

MIN1(X
1
,x

2
, ...) Determine minimum argument

MOD(I
1

, I
2
) t

OR(X
1

, ... ,Xn) Boolean OR of X
1

, ... ,Xn

REAL(C) Obtain the real part of a complex argument

SIGN(X
1

, X
2
) Sign of X

2
times absolute value of X

1
•

ACOS(X)

ALOG(X)

ALOGlO(X)

ASIN(X)

ATAN(X)

ATAN2(X
1

, X
2

)

CABS(C)

CCOS(C)

CEXP(C)

CLOG(C)

COS(X)

CSIN(C)

CSQRT(C)

DABS(D)

DATAN(D)

DATAN2(D
1

, D
2

)

LIBRARY FUNCTIONS

Arccosine in radians

Natural log of X

Log to the base 10 of X

Arcsine in radians

Arctangent in radians

Arctangent (X1/X2) in radians

Absolute value

Complex cosine , argument in radians

Complex exponent

Complex log

Co sine X radians

Complex sine, argument in radians

Complex square root

Absolute value

Double arctangent in radians

Double arctangent: D/D
2

in radians

Actual
Parameter Mode of
.!xE_e ___ Result

Real Integer

Real Integer

Integer Integer

Integer Integer

Real Integer

Integer Integer

Real Integer

Integer Integer

Logical

Complex Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Real Real

Complex Real

Complex Complex

Complex Complex

Complex Complex

Real Real

Complex Complex

Complex Complex

Double Double

Double Double

Double Double

It MOD(I 1 ,I2) is defined as Il-[I1/I2]I2, where [x] is an integer with magnitude not more than the
magnitude of x and sign the same as x.

C-2 60174900 Rev. D

DBLE(X)

DCOS(D)

DEXP(D)

DLOG(D)

DLOGlO(D)

DMOD(D
1

,D
2
)t

DSIGN(D
1

,D
2

)

DSIN(D)

DSQRT(D)

EXP(X)

IDINT(D)

LEGVAR(A)

LENGTH(!)

RANF(X)

SNGL(D)

SIN(X)

SQRT(X)

TAN(X)

TANH(X)

Definition

Real to double

Double cosine, argument in radians

Double exponent

Natural log of D

Log to the base 10 of D

Sign of: D
2

times absolute value of D
1

Sine of double precision argument in radians

Double square root

e to Xth power

Double to integer. Sign of D times largest
integer ~IDI.

Returns -1 if variable is indefinite, +1 if
out of range, and 0 if normal

Returns number of words transferred to
CM from unit I after BUFFER IN

Random number generator; typical call
follows: Y=RANF(X) where Xis type
real. Three conditions exist on X.
1. If X is zero, the next random number

is generated and returned.
2. If Xis negative, a random number is

not generated but the last previously
generated random number (or the seed
if no random number has been generated)
is returned.

3. If Xis positive, the exponent part of Xis
set to 1717 8 and the low order bit is set to
one. This result is returned as the seed
of a new sequence, and any additional
calls to RANF will be based on a sequence
using this seed.

Double to real (unrounded)

Sine X radians

Square root of X

Tangent X radians

Hyperbolic tangent X radians

Actual
Parameter
Type

Real

Double

Double

Double

Double

Double

Double

Double

Double

Real

Double

Real

Integer

Real

Double

Real

Real

Real

Real

Mode of
Result

Double

Double

Double

Double

Double

Double

Double

Double

Double

Real

Integer

Integer

Integer

Real

Real

Real

Real

Real

Real

t DMOD(D1, D2) is defined as n1 -[D1/D2]D2, where [x] is an integer with magnitude of not more than
the magnitude of x and sign the same as x.

60174900 Rev. D C-3

Following functions accept A as a variable address name for an actual parameter:

C-4

Form

LOCF(A)

XLOCF(A)

Definition ---

Returns address of argument A

Returns address of argument A

Actual
Parameter
Type

Mode of
Result

Integer

Integer

60174900 Rev. C

SOME FORTRAN II, 63, IV DIFFERENCES D

The following FORTRAN II statements are accepted by FORTRAN:

1. In FORTRAN II arithmetic replacement statements, column 1 may contain either of the following
characters.

D Double Pree is ion mode

I Complex mode

When these characters are encountered, all variables and constants in the statement are assumed
to be of the same type (double precision or complex) .

2. FORTRAN II statements which contain a Bin column 1 (Boolean) are evaluated as masking expres
sions. The operator equivalences are:

FORTRAN

.AND.

.NOT .

. OR.

none

Exclusive OR function defined as:

..E
1

1

0

0

v

1

0

1

0

p/v

0

1

1

0

FORTRAN II

*

+

I

3. Mixed mode variables may appear in any FORTRAN II Boolean, B-type, Statement.

4. SENSE LIGHT STATEMENTS

SENSE LIGHT i

The statement turns on SENSE light i; i must be an integer constant in the range 1 to 6.

60174900 Rev. C D-1

SENSE LIGHT 0 turns off all sense lights.

IF' (SENSE LIGHT i)n
1

, n
2

The statement tests sense light i. If it is on, it is turned off, and a jump occurs to statement
n

1
. If it is off, a jump occurs to statement n

2
. The n . are statement labels; i must be an

integer constant in the range 1 to 6. 1

5. IF SENSE SWITCH STATEMENT

IF (SENSE SWITCH i)n
1

, n
2

If sense switch i is set (on), a jump occurs to statement n
1

. If it is not set (off), a jump occurs
to statement n

2
; i may be a simple integer variable constant (1 to 6).

6. FAULT CONDITION STATEMENTS

At execute time, the computer may be set to interrupt on divide overflow or exponent fault. The
fault indicator must be checked immediately after any statement that could possibly cause a fault
condition.

A divide check occurs following division by zero. The statement checks for this condition: if it
has occurred jump to statement n

1
takes place. If no check exists, a jump to statement n

2
takes

place.

IF QUOTIENT OVERFLOW n
1

,n
2

IF ACCUMULATOR OVERFLOW n
1

, n
2

An overflow occurs when the result of a real, double precision, or complex arithmetic operation
exceeds the upper limits specified for these types. Results that are less than the lower limits
are set to zero without indication. This statement is therefore a test for floating point overflow
only. If the condition has occurred, a jump to statement n

1
takes place. If the condition does

not exist, a jump to statement n
2

takes place.

7. FORTRAN accepts the FORTRAN II version of the EXTERNAL statement. This form contains
the same name list, but the word EXTERNAL has been replaced by the character F in column 1
of the statement.

7

8. The only inherently incompatible areas are the following:

D-2

COMMON-EQUIVALENCE Statement Relationships
In FORTRAN II, equivalence groups can reorder the common variables and arrays,
and more than one variable in an equivalence group can be in common.

60174900 Rev. C

In FORTRAN, equivalence groups do not reorder common, but may only extend the
length of a common block.

Function-Naming Conventions
In FORTRAN II, the following rules apply for function subprogram, library function and
statement function names:

The name is 4-7 alphanumeric characters, ending with the character F.

The first character must be X if, and only if. the value of the function is integer; for
any other first character, the value of the function is real.

In FORTRAN, the number of characters in the function name is 1-7; the first character
must be alphabetic.

FORTRAN 63 and FORTRAN IV DIFFERENCES

DO STATEMENT

If the terminal value of the DO statement (m
2
) is less than the initial value (m

1
):

FORTRAN IV

FORTRAN 63

END STATEMENT

FORTRAN IV

FORTRAN 63

60174900 Rev. C

DO loop is executed once

DO loop is not executed

in subprograms, the END statement not preceded by a
RETURN statement will cause the compilation of termination
instruction (STOP)

simifar ·condition is compiled with an assumed RETURN
statement

D-3

COMPUTER WORD STRUCTURE' OF CONSTANTS-6600 E

INTEGER

REAL

HOLLERITH BCD AND
DISPLAY CODE

DOUBLE-PRECISION

COMPLEX

LOGICAL

OCTAL

60174900 Rev. C

59 58 0

SOGN~-------59 __________ ___.

59 58

SOGN~
BIASED

EXP

4847 0

FRACTION (m)

48

59 5453 4847 4241 3635 3029 2423 1817 1211 65 0

59 58

59 58

.. ~,~

BIASED
EXP

BIASED
EXP

48 47

4847

0

m

MOST SIGNIFICANT

0

m

REAL

a9

6 6 6

59 58

59 58

···~
SOGN

6

BIASED
EXP-48

BIASED
EXP

~ 0

FALSE 10000 oooClj
TRUE _I 111 --------------------- 11 I jl

57 54 51 48 45 42 39 36 12 9 6 3 0

3333333 3 3 3 3

4847

LEAST SIGNIFICANT

4847

IMAGINARY

0

0

E-1

COMPILATION AND EXECUTION F

FORTRAN Control Card

The FORTRAN compiler is called by the control card:

RUN(cm, fl, bl, if, of, rf, le, as, cs)

cm Compiler mode option; (if omitted, assume G; if unrecognized, assume S)

G compile and execute, nolist unless explicit LIST cards appear in the deck

S compile with source list, no execute

t P compile with source list and punch deck on file PUNCHB, no execute

L compile with source and object list which contains mnemonics, no execute

t M compile with source and object list which contains mnemonics, produce a punch deck
on file PUNCHB, no execute

fl object program field length (octal); if omitted, it is set equal to the field length at
compile time.

bl object program I/O buffer lengths (octal); if omitted, assumed to be 2022
8

if file name for compiler input; if omitted assumed to be INPUT

of file name for compiler output; if omitted, assumed to be OUTPUT

rf file name on which the binary information is always written; if omitted, assumed to be LGO.

le

as

line-limit (octal) on the OUTPUT file of an object program. If omitted, assumed to be
10000

8
. If the line count exceeds the specified line limit, the job is terminated.

if non-zero or non-blank, the USASI switch causes the USASI I/O list/format interaction
at execution time. It has no effect on the compilation method.

cs cross-reference switch. If non-zero a cross reference listing is produced.

A dayfile message indicates that an error has been detected in the RUN card fields 2-7:

RUN CARD FIELD IN ERROR- xxxxxxxxxx

x.xxxxxxxxx is the input field in error.

I

t Because COMPASS allows only one binary output file to be written, a RUN (P or M) and LGO. will
result in only the FORTRAN code of a FORTRAN-COMPASS job being placed on LGO. If P or M I
compile mode options are used and the sixth parameter is PUNCHB, two binary decks will be
pnnched.

60174900 Rev. D F-1

Compiler output, except in the G mode, includes a reproduction of the source program, a variable
map, and indications of fatal and non-fatal errors detected during compilation. If the G mode is
selected, all output is suppressed unless fatal errors are detected in which case the output is the
same as indicated for the S mode of compilation. If the Lor M mode is selected, the output includes
an object list which contains mnemonics.

A copy of the compiled programs is always left in disk storage as a binary record on a file named
either LGO or the name specified as the rf parameter in the call to the compiler. The compiled
program may be called and executed repeatedly, until the end of job occurs, by using the name of
the load-and-go file. In the output file at the end of compilation of each subprogram, the compiler
indicates the amount of unused compilation space.

Two control cards LIST and NOLIST are available to allow the programmer more flexibility in
requesting a list of his programs. These cards are free field beyond column 6 and appear between
subprograms. When the LIST card is detected, the source cards of the following programs are
listed. If the compiler mode was L, the object code is also listed. When the NOLIST card is
detected, no more listing takes place until a LIST card is detected. Each LIST card will probably
cause reJX>sitioning of the output file, therefore excessive LIST-NOLIST sequences should be avoided.

To aid in the preparation of overlay and segment files, the FORTRAN compiler, UJX>n detecting an
OVERLAY or SEGMENT card between subprograms, transfers them to the load-and-go file, and
to the PUNCHB file if the P or M option is selected. They also are transferred to the output file.

The following types of control cards are transferred to the load-and-go and PUNCHB file if mode
is P or M.

F-2

OVERLAY(.. .

SECTION(.. .

SEGZERO (

SEGMENT (

(These statements must begin after column 6)

60174900 Rev. C

.COMPILE AND EXECUTE

7
8
9

6
7
8
9

7
8
9

DATA

RUN(G,10000)

JOB123, P6, T400, CM45000.

The above control card sequence will compile in a field of 45000 words and run in a field of 10000
8 8 words.

DECK STRUCTURE FOR A NORMAL COMPILE AND EXECUTE

Job name

Priority

Time limit

Field length

JOB123

6

approx. 4 minutes

4 50008 words

Compile and execute with no list and no binary deck.

60174900 Rev. C F-3

FORTRAN Load and Run

Job name: MOPOOl

I Three tape references:

7
8
9

TAPE 1 assumed input tape which
operator loads on a particular
unit

6
7
8
9

data deck

binary deck

source deck

PROGRAM ALFRED (INPUT,OUT
PUT, TAPE!, TAPE5, TAPE6)

7
8
9 LGO.

LOAD, INPUT.

RUN(S)

REQUEST, TAPE 1.

REQUEST, TAPE 6.

REt~UEST, TAPE 5. TAPE 5 l output scratch tapes
TAPE 6 f drawn from tape pool

MOPOOl, P2, T400, CM45000.
Some binary decks on INPUT

The FORTRAN compiler, RUN, causes the COMPASS assembler to be loaded and transfers control
to it upon the detection of a header card that has !DENT beginning in column 11. When a header
card is found that the COMPASS assembler does not recognize, control returns to the RUN compiler
which continues processing. COMPASS is directed to produce the type of output specified by the
compiler mode (note limitations of P and M on page F-1).

F-4 60174900 Rev. D

FOR TRAN Compile and Execute with Mixed Deck

Source
Deck

....

60174900 Rev. C

/6
7
8
9

1
L.

1
.L

~ data

0
.L

.L

{ENTRY Al

_CI DENT (in cols. 11-15)

L
L ...

_L I------'
_L

_{_I DENT (cols. 11-15)
1-----1

J_
]_

_I
I-

J_
1

-1

SUBROUTINE Sl(pl, p2) l
l

~ l
"-I

~ROG RAM DONE (INPUT ,OUT::~) ~_ -'---

r~ 1 9
RUN.

JOB123, P6, T400, CM45000.

----i

.....___

1---

F-5

FORTRAN Compile and Produce Binary Card; no execution.

Three files of I/O - INPUT, OUTPUT AND TAPEl

Job name

Priority

Time limit

field length

RA6600

7

approximately 1 minute

45000
8

words

6
7
8
9

source statements

PROGRAM BOB(INPUT, OUTPUT, TAPEl)

F-6

7
8
9

RA6600, P7, TlOO, CM45000.

60174900 Rev. C

FORTRAN Compile and Execute (plus a prepunched binary subroutine deck)

A binary deck to be loaded with a compiled routine must be preceded by 7, 8, 9 card.

60174900 Rev. C

7
8
9

7
8
9

7
8
9

binary deck

source deck

6
7
8
9

data

PROGRAM HOW (INPUT, OUTPUT)

LGO.

LOAD, INPUT.

Completes loading from
file LGO

Loads binary routines
......~ ____ from INPUT

~~~~~~~~~~~~~---1.__...;.--. 

RUN(S) 

EEK15, P5, T200, CM45000. 

F-7 



Load and Execute a Prepunched Binary Program 

The binary cards in the input file following the record separator are loaded into central memory 
when the program call card INPUT is encountered. 

6 
7 
8 
9 

..l 
j_ 

l 
l 

]_ 

data cards l ......., 

0 '-I 
"""'i 

L...i 
~ 

D 
.L 

L 
.L 

1 
_L_ 

L 
binary deck --·-

~ 
I-

I-' 

_CNPUT. ~ 
I-
~ 

REQUEST, FILENM. l 
CDClll, P6, T400, CM20000 . 

...._ 

F-8 60174900 Rev. C 



Compile Once and Execute Twicetwith Different Data Decks 

6 
7 
8 
9 

L 
L 

L 
'-----f 

.£!-
_L 

L 

{DATA SET#2 
I-' 

(~ 
t-

~ 
t-
~ 

I-' 

L 
L i---

.L 
L 

L 
L 

L 

CATA SET#l 

7 I-

8 t-
9 I-

I-' 
}"' 

_l 
_I 

j_ 

i......---..i 
PROGRAM TWICE(INPUT, OUTPUT) 

l 

..... 0 ...., 

lLGO. 
{RUN. 

REPT2, P5, T600, CM45000. 

i---

....--

tProgram TWICE must read the end of record card (7 /8/9). 

60174900 Rev. C F-9 



FORTRAN Load and Execute Segments 

lr~EN-D--·--'----. 
(data 

/7 

I. : /SUBROUTINE sum 

- /SUBROUTil-IE START2 l 
/END 

Loads SUB6,SUB7 from file 
HELP2 at level 2 

CALL SEGMENT(L, 2, L2, X, Y) 

_{L2(2) 0 
1--

L2(1) -0 5L HELP2 
1--

Loads SU B2, SU B3 
from file 
HELPl at level 1 f cALL SEGMENT(L, l, L2,X,Y) 1 

Preparation 
of 

SEGMENT 
call 

F-10 

I /L2(2) =O 

I 
/L2(1) ~sL HELPl 

( ~ /L-3LLBJ ~ 
I /DIMENSION L2(2) 
\ '----

/PROGRAM START! (CNPUT,OUTP~T) 
L--

_(SUB7 

(SUB6 

f_SUB3 

/sEGMENT(IIELP'2,SUB6,SUB7) 1 
/SEGMENT(HELPl, SUB2, SUB3) 

1--

/SEGZERO(HELP, STARTl, START2)1 

I~ 
9 

/LGO. 

jIWN(S) 

1---

l 
DRY, PlO, TlOO, CM45000. 

'-----

~ 
Preparation 
of SEGMENT 
call 

60174900 Rev. C 



Overlay Preparation of 0, O;l, 0 ;1, 1 

60174900 Rev. C 

Source 
Deck 

Source 
Deck 

Source 
Deck 

6 
7 
8 
9 

{ 
END 

data 

7 
8 
9 

7 
8 
9 

data 

PROGRAM MLT 

OVERLAY (FRANKi, 1, 1) 

END 

CALL OVERLAY(6LFRANKI, 1, 1, 0) 

PROGRAM RDY 

OVERLAY(FRANKI, 1, 0) 

SUBROUTINE GROUCH(X) 

CALL OVERLAY (6LFRANKI, 1, 0, 0) 

CALL GROUCH(40, 0) 

PROGRAM LEO(INPUT, OUTPUT, TAPEl) 

OVERLAY (FRANKi, 0, 0) 

8 
9 

LGO. 

FHANKI 

RUN(M, 10000) 

LMY, Pl 7, T500, CM45000. 

F-11 





COMPILATION DIAGNOSTICS G 

During a FORTRAN compilation, 2- or 3-character error printouts follow statements which are 
incorrect; other printouts may follow the end statement indicating types of errors in the program. 
The short printouts produce a more descriptive full line diagnostic which is printed after the 
subprogram has been compiled. 

The full line diagnostic contains a number to identify the statement in which the error was detected. 
In the short diagnostic an F as the third letter indicates a fatal error. 

Fatal errors force a listing of the subprogram with diagnostics and inhibit the production of a 
relocatable record of the subprogram. 

Non-fatal errors do not force a listing and will only appear if some type of listing has been specified 
or if fatal errors have been detected. 

The two-character error indicators are defined below: 

*****AC** 

*****AE** 

*****AF** 

*****AL** 

*****AS** 

*****BX** 

Argument count too high. 

Indicates that the number of arguments in this reference to a subroutine differs 
from the number which occurred in a prior reference. 

ARITHMETIC STATEMENT FUNCTION CALLS ITSELF 

The arithmetic statement function being compiled references itself. 

ARITHMETIC STATEMENT FUNCTION ERROR 

The arithmetic statement function has a statement number or appears after the 
first executable statement. 

SYNTAX ERROR IN ARGUMENT LIST 

Indicates a format error in a list of arguments. 

SYNTAX ERROR IN ASSIGNMENT STATEMENT 

Indicates a format error in an ASSIGN statement. 

SYNTAX ERROR IN BOOLEAN CONSTANT 

Indicates a format error in the designation of a FORTRAN boolean constant in a 
B-type expression. 

60174900 Rev. D G-1 

I 



*****CB** LABELED COMMON BLOCKS EXCEED MAX OF 61 

Attempt made to use more than 61 labeled common blocks. 

*****CD** VARIABLE DUPLICATED IN A COMMON REGION 

Indicates that a variable currently being assigned to the COMMON region has been 
previously assigned to this region. 

*****CE** VARIABLES ASSIGNED TO COMMON ARE IMPROPERLY EQUIVALENCED 

Indicates that two variables assigned to COMMON are improperly equivalenced. 

*****CL** SYNTAX ERROR IN CALL STATEMENT 

Indicates a format error in a call statement. 

*****CM** SYNTAX ERROR IN COMMON STATEMENT 

Indicates a format error on a COMMON statement. 

*****CN** TOO MANY CONTINUATION CARDS 

Indicates that more than 19 continuation cards appear in succession or that one such 
c.a-rd appears in an illogical sequence. 

*****CO** COMMON STORAGE EXCEEDED 

Indicates that the amount of COMMON storage required by the main program or 
specified to the compiler is less than required by the current program or subroutine. 

*****CT** CONTINUE STATEMENT IS MISSING A STATEMENT NUMBER 

Indicates a CONTINUE statement with no statement number-. 

*****DA** DUPLICATE ARGUMENTS IN A FUNCTION DEFINITION STATEMENT 

*****DB** ARRAY SIZE OUT OF RANGE 

Indicates the requested array size exceeds 131K. A constant used as an array 
subscript cannot be contained in 1 7 bits. 

*****DC** SYNTAX ERROR IN A DECIMAL CONSTANT 

Indicates a format error in the expression of a FORTRAN decimal constant. 

*****DD** VARIABLE BEING DIMENSIONED HAS BEEN PREVIOUSLY DThlENSIONED 

Indicates a variable has appeared in more than one DThlENSION statement. 

G-2 60174900 Rev. C 



*****DF** 

*****DI** 

*****DL** 

*****DM** 

*****DN** 

*****DO** 

*****DP** 

*****DR** 

*****DS** 

*****DT** 

*****DU** 

*****EC** 

DUPLlCATEFUNCTIONNAME 

Indicates that the function name in the current function-definition statement has 
occurred as the name of a previously defined function. 

DO TERMINATOR PREVIOUSLY DEFINED 

The terminator of this DO loop has already been defined. 

DECLARATIVE APPEARS AFTER FIRST EXECUTABLE STATEMENT 

The declarative statement appears after the first executable statement. 

SYNTAX ERROR IN DIMENSION STATEMENT 

Indicates an error in the format of a DIMENSION statement. 

ILLEGAL DO TERMINATOR 

This statement cannot be used as a DO terminator. Indicates the attempt to use a 
FORMAT, GO TO, arithmetic IF, or another DO statement as the termination 
statement of a DO. 

SYNTAX ERROR IN A DO STATEMENT 

Indicates an error in the format of a DO statement. 

MULTIPLY DEFINED STATEMENT NUMBER 

Indicates the current statement has previously appeared in the statement number field. 

DATA RANGE ERROR 

Attempt to store data out of range. 

UNDEFINED STATEMENT NUMBER IN A DO LOOP 

Indicates that references have been made in DO statements to statement numbers 
which did not appear anywhere in the statement number field. 

SYNTAX ERROR IN DATA STATEMENT 

Indicates an error in the format of a DATA statement. 

ATTEMPT HAS BEEN MADE TO PRESTORE VALUE INTO BLANK COMMON. 

CONTRADICTION IN EQUIVALENCE STATEMENT 

Indicates that a variable currently appearing in an EQUIV ALEN CE statement cannot be 
equivalenced because of an inherent contradiction in the statement. 

60174900 Rev. C G-3 



*****EF** END OF FILE CARD ENCOUNTERED, END CARD ASSUMED 

Indicates that an end of file card is detected before the last END card is encountered. 

*****EM** SYNTAX ERROR IN INDICATED EXPONENTIATION 

Indicates the mode of the base or the exponent of an indicated exponentiation process 
is improper. 

*****EQ** SYNTAX ERROR JN EQUIVALENCE STATEMENT 

Indicates an error in the format of an EQUIVALENCE statement. 

*****EX** SYNTAX ERROR IN EXPONENT 

Indicates an error in the exponent portion of an indicated exponentiation process. 

*****FA** FUNCTION HAS NO ARGUMENT 

The FUNCTION has a void parameter list; at least one argument is required. 

*****FL** SYNTAX ERROR 1N EXTERNAL ORF-TYPE STATEMENT 

Indicates an error in an EXTERNAL statement of F-TYPE statement. 

*****FM** UNRECOGNIZABLE STATEMENT 

Indicates a statement whose type cannot be determined. 

*****FN** NO STATEMENT NUMBER ON FORMAT STATEMENT 

Indicates that a FORMAT statement is missing a statement number. 

*****FS** ERROR IN SPECIFICATION PORTION OF FORMAT STATEMENT 

Indicates a format error in the specification portion of a FORMAT statement. 

*****FT** SYNTAX ERROR IN FUNCTION TYPE STATEMENT 

Indicates an error in a FUNCTION TYPE statement. 

*****GF** FORMAT NUMBER REFERENCED BY CONTROL STATEMENT 

A statement number attached to a preceding FORMAT statement is being referenced 
by a control statement, e.g., a GOTO statement. 

G-4 60174900 Rev. C 



*****GO** SYNTAX ERROR JN A GO TO STATEMENT 

Indicates an error in the format of a GO TO statement. 

*****IC** CHARACTER NOT JN FORTRAN CHARACTER SET 

Attempt was made to use a character other than those listed in appendix A. 

*****ID** IMPROPERLY NESTED DO LOOPS 

The sequence of DO loops is improper. 

*****IF** SYNTAX ERROR JN AN IF STATEMENT 

Indicates an error in the format of an IF statement. 

*****IL** SYNTAX ERROR JN AN JNDEXED LIST OF I/O STATEMENT 

Indicates a format error in an indexed list of the current input/output statement. 

*****IN** ILLEGAL FUNCTION NAME 

The name of a function reference starts with a number. 

*****IO** ILLEGAL I/0 DESIGNATOR 

I/0 designator has a variable name of more than six characters or a numeric value of 
more than two digits or is alphanumeric and begins with a number. 

*****IT** ILLEGAL TRANSFER TO DO TERMJNATOR 

A transfer to a DO terminator is not allowed if the terminator has already been 
defined and no transfer to it appeared before it was defined. 

*****LN** NAMELIST ERROR 

*****LP** EXPONENTIATION TO A LOGICAL POWER 

*****LS** SYNTAX ERROR JN INPUT/OUTPUT LIST 

Indicates an error in the format of an input/output list. 

*****MA** MISUSED SUBROUTJNE ARGUMENT IN EQUNALENCE STATEMENT 

Indicates that an argument of the subroutine or function being compiled has been 
misused in an EQUNALENCE statement. 

60174900 Rev. C G-5 



*****MO** MEMORY OVERFLOW, FIELD LENGTH TOO SHORT 

*****MS* 

Indicates that the compiler field length, as specified on the JOB card, is too short. 

UNDEFINED STATEMENT NUMBER 

Indicates that references have been made to statement labels which did not appear 
somewhere in the statement-label field of a line. 

*****NC** SUBROUTINE OR FUNCTION :\fAME CONFLICTS WITH A PRIOR USAGE 

*****NM** IMPROPER HEADER CARD 

Indicates an error in the formatting of the name (header) card. 

*****NO** NO OBJECT CODE GENERA TED 

Source program has generated no object code. This error will occur if a void file is 
input to the compiler. 

*****NP** NO PATH TO THIS STATEMENT 

The flagged statement cannot be executed at object time; program continues. 

G-6 60174900 Rev. C 



*****PM** 

*****PN** 

*****PT** 

*****RN** 

*****SB** 

*****SE** 

*****SF** 

*****SM** 

*****SN** 

*****SY** 

*****TM** 

*****TT** 

*****TN** 

FUNCTION PARAMETER MODE INCONSISTENCY 

Indicates the parameters in a function reference do not agree in mode with the formal 
parameters of the statement function. 

UNBALANCED PARENTHESIS 

Indicates an unequal number of open and closed parentheses in a statement. 

SYNTAX ERROR IN AN ENTRY STATEMENT 

The entry statement being processed is labeled or has more than one name or is in 
a DO loop or name started with a number. 

SYNTAX ERROR IN A RETURN STATEMENT 

Indicates an error in the format of a RETURN statement. 

ERROR IN AN ARRAY SUBSCRIPT 

Indicates a format error in a subscript of an array reference currently being processed. 

SYNTAX ERROR IN SENSE STATEMENT 

Indicates an error in the format of a sense statement. 

FIELD LENGTH OF ROUTINE BEING COMPILED EXCEEDS THE SPECIFIED FIELD 
LENGTH 

SYNTAX ERROR IN STATEMENT NUMBER 

Indicates an error in the format of the statement label field. 

ILLEGAL CHARACTER IN STATEMENT NUMBER USAGE 

Indicates an error in the format of the position where the statement label should appear. 

SYSTEM ERROR IN FORTRAN COMPILER 

SUBROUTINE HAS MORE THAN 60 ARGUMENTS 

Indicates that a subroutine reference has more than 60 arguments or that the routine 
being compiled has more than 60 parameters. 

VARIABLE GIVEN CONFLICTING TYPES 

A variable has appeared in more than one type statement. 

PROGRAM HAS MORE THAN 50 ARGUMENTS 

60174900 Rev. C 
G-7 



*****TY** 

*****UA** 

*****UE** 

*****VC** 

*****VD** 

*****XF** 

*****ZY** 

G-8 

SYNTAX ERROR IN A TYPE STATEMENT 

Indicates an error in the format of a TYPE statement. 

REFERENCE MADE TO AN AS YET UNDIMENSIONED ARRAY 

Indicates reference was made to an array which has not previously appeared in a 
DIMENSION statement. 

LOGICAL UNIT NUMBER IS NOT AN INTEGER 

VARIABLE NAME CONFLICTS WITH A PRIOR USAGE 

Indicates that a variable name appears which conflicts with some prior use. 

ARRAY WHOSE DilVIENSIONS ARE ARGUMENTS TO THE SUBROUTINE OR FUNCTION 
HAS BEEN MISUSED 

Indicates improper use of an array with variable dimensions. 

SYNTAX ERROR IN THE EXPRESSIONS BEING PROCESSED 

Indicates an error in the format of the expression currently being processed. 

SYSTEM ERROR-UNKNOWN 'IWO LETTER CODE 

60174900 Rev. C 



PROGRAM - SUBPROGRAM FORMAT H 

The starting address of all programs is RA+l008 with the first 77 8 locations containing file and 
loader information. Only 50 files may be declared for any one program and the file names along 
with their associated buffer addresses begin at RA+2. An object time routine, QSNTRY, transfers 
the file information to RA+2+n, where n is the number of declared files, at execution time. The 
I/O buffers are reserved as a portion of the main program and QSNTRY also initializes the buffer 
parameters during execution. 

The first word of a main program contains the name of the program in left justified display code 
and a parameter count greater than 77 8 in the right most position. Since no more than 7 48 
parameters may be passed to a subprogram, a count of greater than 77 8 terminates trace back 
information. The second word of a main program is the entry point. It contains instructions to 
preset the parameters for Q8NTRY which performs initiation only once per execution. Therefore, 
entry into an overlay is through this word destroying its contents. Since Q8NTRY does not perform 
any function after the first entry, the destruction of the preset parameters for an overlay entry 
does not matter. 

The addresses of the first six parameters to a subprogram are passed by B registers 1-6. One 
word is reserved for each parameter greater than six so that the address of the parameter is 
actually passed through this reserved word. Immediately following these reserved words is a 
location containing the name of the subprogram in left justified display code and a parameter count 
in the lower six bits. Next is the entry I exit line for the subprogram. Therefore, a subprogram 
will have as few as two reserved words if the parameter count is six or less. Otherwise, there 
will be a reserved word for each parameter over six plus the name and entry words. 

Subroutines written in the COMPASS assembly language that will operate in conjunction with FOR
TRAN coded routines should be formatted as in the following examples to take full advantage of 
the error tracing facility of FORTRAN Version 2. 0. 

Examples: 

PROGRAM PETE (INPUT, OUTPUT, TAPE 1) 

DATA 0 

SBl L00002 

SB2 COOOOl 

RJ Q8NTRY 

60174900 Rev. C 

L00002 

LOOOOl 

L00003 

Name & argument count plus 100 
8 

Entry /Exit line 

H-1 



SUBROUTINE PHD 

DATA 0 

DATA 0 

(A, B, C) 

L00002 

LOOOO.L 

SUBROUTINE PEN (A,B,C,D,E,F,G,H,I,J) 

DATA 0 LOOOll 

DATA 0 LOOOl~~ 

DATA 0 L0001:3 

DATA 0 L00014 

DATA 0 LOOOO~~ 

DATA 0 LOOOOl 

Name & argument count 

Entry /Exit line 

Reserved word for G 

H 

I 

J 

Name & argument count 

Entry /Exit line 

Calling Sequence to PEN 

H-2 

CALL PEN (M, N, 0, P, Q, R, S, T, U, V) 

SBl M 

SB2 N 

SB3 0 

SB4 p 

SB5 Q 

SB6 R 

SX6 Entry line of PEN 

SAl X6-1 Name & argument count 

SB7 Xl-6 Number of arguments less 6 

SX6 s 
SA6 Al-B7 Reserved word for S 

SX7 T 

SA7 A6+1 Reserved word for T 

SX6 u 

SA6 A7+1 Reserved word for U 

SX7 v 
SA7 A6+1 Reserved word for V 

RJ PEN 

0712L00002 Where 128 is argument count and L00002 is word containing the name 
of calling routine. 

60174900 Rev. C 



FORTRAN 1/0 ROUTINES 

A new set of FORTRAN I/O routines is supplied with Version 2. 1. The re-written routines are 
BACKSP, BUFFEI, BUFFEO, ENDFIL, IFENDF, INPUTB, INPUTC, IOCHEK, OUTPTB, OUTPTC, 
and REWINM. In addition, there isa new routine, SION. SION is used for all communication be
tween the FORTRAN I/O routines and the PP routine CIO. Also, SION includes routines to backspace 
physical records and read physical records. The characteristics of these routines are as follows: 

Structure of I/O Files 

Logical record is composed of physical records which terminate in a short or zero length 
physical record. 

Physical record is composed of a pre-determined maximum number of characters. On 
magnetic tape the physical record separator is the record mark, and on 
disk a physical record is defined to be one sector. 

Unit record is analogous to a card image or print line. 

Coded physical records on disk are composed of 640 10 characters (maximum); on magnetic 
tape, 1280 10 characters (maximum). Binary physical records are composed of 5120 10 
characters (maximum) on tape, 640 10 characters (maximum) on disk. 

Records created by FORTRAN coded writes are unit records. Unit records are packed into 
physical records. 

Records created by FORTRAN binary writes (including BUFFER OUT) are logical records. 

Records read using FORTRAN coded reads are unit records. 

Records read using FORTRAN binary reads (including BUFFER IN) are logical records. 

BUFFER IN coded and BUFFER OUT coded read and create a logical record. 

Multi-file files are permitted on all files except INPUT and OUTPUT. 

BUFFER I/O 

BUFFEI 

Only one logical record is read each time BUFFEI is called. If the block length specified by 
the call is longer than the logical record, the excess block locations are not changed by the 
read. If the logical record is longer than the block, the excess words in the logical record are 
passed over. The number of CM words transmitted to the program block may be obtained by 
referencing LENGTH. 

60174900 Rev. C I-1 



I-2 

After using a BUFFER IN statement on unit i, and prior to a subsequent reference to unit i or 
to the information being read in, the status of the BUFFER operation must be checked by an IF 
UNIT statement. This insures that the data has actually been transferred, and the buffer param
eters have been properly restored. 

BUFFEO ----

One logical record is written each time the routine is called. The length of the record is 
LWA-FWA+l. 

The IF UNIT statement must be used similarly with BUFFEO as with BUFFET. Since BUFFEO 
changes the buffer arguments for the file to point to the CM block specified in the call, calls to 
other routines involving the same file may not follow any buffer operation until the pointers 
have been restored by the IF UNIT statement. 

Random Access Files (Mass Storage) 

Two degrees of sophistication are available using the mass storage subroutines. It is possible 
to utilize the routines in a normal fashion having just one master index, or it is possible to 
have a master index and many sub-indexes. A file may have a name or a number index. 

In all cases, it is necessary to open (CALL OPENMS) the mass storage file before calling 
READMS, WRITMS, or STINDX. If the file exists, OPENMS reads the master index into the 
CM area specified in the call (the ix parameter). 

The STINDX subroutine causes no transfer of data; it merely changes the file index in the FET 
to the base specified in the call. Only the master indexes are managed by the system. The 
user must keep track of all sub-indexes. A user may open a master index, for example, I, do 
a call READMS onto B, assuming B to be a sub-index, then call STINDX to assure that subse
quent operations on the logical unit will use B as the index. If the master index is to be changed 
to some sub-index, a call to STINDX should be made prior to CALL WRITMS. Master indexes 
should be restored prior to job conclusion. After making a call to STINDX, if the next operation 
on that file is to be a random access write (WRITMS) and if the file is being referenced through 
a name index, the programmer must zero out the area reserved for the new index buffer (whose 
first word address is specified by the ix parameter in the call to STINDX) prior to calling 
WRITMS. The master index must be reset before termination of the job so that the correct 
index will be written on the file. 

Upon termination of the job, the mass storage file is closed automatically by FORTRAN. At 
this time the index as specified in the F' ET is dumped to the file. 

60174900 Rev. C 



Examples: 

1. l PROGRAM MS (TAPE5) 
DIMENSION I(lO), B(20), C(30) 

C READ MASTER INDEX INTO I 
CALL OPENMS(5, I, 10, O) 

C READ RECORD 4 INTO B (ASSUME THIS RECORD IS A SUB-INDEX) 
CALL READMS(5, B, 20,4) 
CALL STINDX(5, B, 20) 

C ALL SUBSEQUENT OPERATIONS ON UNIT 5 WILL USE 
C B AS THE INDEX FOR THE FILE 

C RESTORE MASTER INDEX 
CALL STINDX(5,I, 10) 
END 

2. PROGRAM MS (TAPE5) 
C PROGRAM FOR CREATING RANDOM FILE 

DIMENSION J(lO), B(7), XYZ(20), ZXY(lO), YXZ(50) 

DATA SUB 1/4L SUBl/ 
DATA JOE,SAM, PETE/3H JOE,3L SAM,4H PETE/ 
CALL OPENMS(5, J, 10, 1) 

C USE INDEX B 
CALL STINDX(5, B, 7) 
CALL WRITMS(5, XYZ, 20, JOE) 
CALL WRITMS(5, ZXY, 10, SAM) 
CALL WRITMS(5, YXZ, 50, PETE) 
CALL STINDX(5, J, 10) 

C WRITE OUT THE SUB-INDEX 
CALL WRITMS(5, B, 7, SUBl) 
END 

3. PROGRAM MS (TAPE5) 
C THIS MS FILE HAS NO SUB-INDEXES 

DIMENSION I(lO) 
C READ MASTER INDEX INTO I 

CALL OPENMS(5,I, 10, 0) 

C ANY READ OR WRITE ON THIS FILE WILL USE THE INDEX IN 
C ARRAY I 

END 

Execution of the END routine will close the file, causing the index at I to be rewritten on 
the file. 

60174900 Rev. D 

I 
I 

I 

I-3 



I-4 

Status Checking 

The IF UNIT statement checks the status of a buffered operation on logical unit i. The status 
returned is unit not ready, unit ready, no previous error, or previous read encountered an 
end of file. 

Example: 

IF (UNIT, 5) 10, 20 , 30 

Control would transfer to statement 10, 20, or 30 if the unit was still busy, if the unit was 
not busy and there were no previous errors, or if an end of file was read on the previous 
read, respectively. Since the optional fourth branch is ineffective, it is omitted. 

When the IF UNIT statement references a non-buffered unit, the second branch is always taken. 

The IF EOF statement tests for an end of file read (non-buffered) on unit i. 

Example: 

IF (EOF, i) 10, 20 

Control would transfer to statement 10 if the preceding READ statement had encountered an 
EOF, or to 20 otherwise. If an EOF had been read, the indicator would be cleared before 
proceeding. 

Backspace 

When a BACKSPACE is requested on a coded file (except file created by the BUFFER OUT 
statement) the file is logically moved baek one unit record. The backspace will be attempted 
within the I/O buffer; if not possible the external I/0 device will be repositioned. 

Backspace on binary files and files created by the use of the buffer I/O statements reposition 
the external device so that the last logical record becomes the next logical record. 

When a BACKSPACE (or REWIND) request follows a write operation on a file, an end-of-file is 
written and backspaced over; and then the requested backspace is processed. 

Labeled files (tapes) 

Only files recorded on 1/211 magnetic tape may be labeled. FORTRAN will accept labeled tapes, 
but the FORTRAN program eannot access the label. 

A labeled tape written by a FORTRAN program will be given a default label by the system. 
A standard label cannot be written on a labeled tape from a FORTRAN program. 

A labeled tape prepared elsewhere with a standard label can be read by a FORTRAN program 
only if special instructions are given to the operator. The information in the label will not 
compare with the information in the FORTRAN prepared FET and SCOPE will not allow the 
job to proceed unless overridden from the console. 

60174900 Rev. C 



Undefined Operation 

Meaningful results are not guaranteed in the following circumstances: 

• Mixed mode files 

• Mixing buffer I/O statements and standard READ/WRITE statements referencing 
the same logical file. 

• Two consecutive buffer I/O statements referencing the same logical file without an 
intervening IF UNIT statement. 

• Requesting a LENGTH function on a buffered unit before checking status on the unit 
with an IF UNIT statement. 

Summary of Differences from Previous Versions 

Although this version includes a complete re-write of the FORTRAN I/O routines, the external 
characteristics remain essentially the same. Disk I/O is the same as in version 2. 0 and, for 
the most part, tape I/O is now the same as Disk I/O. The most important change is the BCD 
record structure on tape. Previously, unit records existed on tape as separate physical records 
and a logical record was the entire file; now one or more unit records are packed into logical 
records as on the disk and a file may consist of one or more logical records. 

Note that BUFFER IN/OUT read and write logical records regardless of device type. READ's 
and WRITE' s read and write unit records. While writing, no end-of-logical record is written 
unless a backward operation occurs, causing the emptying of the buffer. Thus, if no backward 
operation occurs on a write file, it will consist of a single logical record. Encountering an 
end-of-logical-record while reading from a file other than INPUT is without special significance. 
The EOR is passed over and the next unit record is read. 

Increasing the buffer size will speed up I/O operations until the size becomes as large as the 
largest logical record on the file. Beyond that point, no advantage is gained. Under no cir
cumstances will more than one logical record be read or written at any one time. 

60174900 Rev. C I-5 





SYSTEM ROUTINE J 

The SYSTEM routine handles the following extensions for the mathematical routines of FORTRAN 
Version 2. 1: error tracing, diagnostic printing, termination of output buffers and transfer to 
specified non-standard error procedures. The END processor also uses SYSTEM to dump the 
output buffers and print an error summary. Since SYSTEM, along with the initialization routine, 
Q8NTRY, and the end processors, END, STOP, EXIT, must always be available, these routines 
are combined into one with multiple entry points. Any of the parameters used by SYSTEM relating 
to a specific error may be changed by a user routine during execution by calling SYSTEMC. 

CALLING SYSTEM 

The calling sequence to SYSTEM from an assembly language routine passes the error number Xl and 
an error message address in X2. Therefore, one error number may have several different messages 
associated with it. The error summary at the end of the program lists the total number of times 
each error number was encountered. 

FORTRAN routines call SYSTEM via a RJ to SYSTEMP, a special entry point. Because the 
addresses of the subprogram arguments must be passed to a non-standard recovery routine if one 
is specified, SYSTEMP must be called with eight parameters. The first six parameters are the 
first six formal parameters of the subprogram. If the subprogram does not have six parameters, 
dummy parameters must be supplied. The seventh parameter to SYSTEMP is the error number 
specified as an integer constant or integer variable. The array or simple variable containing the 
diagnostic message is the eighth parameter. After adjusting the parameters, SY STEMP transfers 
to SYSTEM for error processing. 

ERROR PROCESSING 

If an error number of zero is accepted, this is a special call to end the output buffers and return. 
If no OUTPUT file is defined before SYSTEM is called, there is no error printing and an appropriate 
message appears in the Dayfile. Each line printed is subjected to the line limit of the OUTPUT 
buffer. When limit is exceeded, the job is terminated. The error table is ordered serially; the 
first error corresponds to the error number 1, and is expandable at assembly time. The last 
entry in the table is a catch-all for any error number that exceeds the table length. Following 
is an entry in the error table. 

60174900 Rev. C J-1 



I 

Error Table 

PRWT hd ERROR 

PRINT FREQUENCY PRINT DETECTION F/ A/ NON-STANDARJ 

FREQUENCY INCREMENT LIMIT TOTAL NF NA RECOVERY ADDRESS 

8 8 12 12 1 1 18 

Use of PRINT FREQUENCY 

PRINT FREQUENCY = PF 

PRINT FREQUENCY INCREMENT= PF'l 

1. If PF = 0 and PFI = 0, diagnostic and trace back information are never listed. 

2. If PF = 0 and PFI = 1, diagnostic and trace back information are always listed until the 
print limit is reached. 

3. If PF = 0 and PFI = n, diagnostic and trace back information are listed only the first n 
times unless the print limit is reached first. 

4. If PF = n, diagnostic and trace back information are listed every nth time until the 
print limit is reached. 

Use of FATAL (F)/ non-FATAL (NF) 

1. If the error is non-fatal and no non-standard recovery address is specified, the error 
messages are printed according to PRINT FREQUENCY and control is returned to the 
calling routine. 

2. If the error is fatal and no non-standard recovery address is specified, the error messages 
are printed according to PRINT FREQUENCY, an error summary is listed, all the output 
buffers are terminated, and the job is terminated. 

TRACEBACK EXAMPLE 

DATA 0 

DATA 0 

+ RJ 

07 

L00002 

LOOOOl 

SYSTEM 

L00002 

Name and number of parameters 

Entry/exit line 

07 is number of parameters passed to SYSTEM and L00002 is 
address of word containing name of calling routine 

The name of the routine always precedes the entry I exit line. 

J-2 60174900 Rev. D 



Use of NON-STANDARD RECOVERY 

SYSTEM will supply the non-standard recovery routine with the following information: 

Bl-B6 address of the first six parameters passed to the routine that detected 
the error 

Xl error number passed to SYSTEM 

X2 address of the diagnostic message available to SYSTEM 

X3 address within an auxiliary table if A/NA bit is set 

X4 instruction word consisting of the return jump to SYSTEM in the upper 
30 bits and trace back information in the lower 30 bits for the routine 
which detected the error 

AO address of error number entry within SYSTEM's error table. 

1 . Non -fatal error 

The entry/exit line of the routine which called SYSTEM is set into the entry/exit line of the 
recovery routine. Control is then passed to the word immediately following the entry I exit 
line of the recovery routine. The traceback information available to SYSTEM from the 
routine which detected the error is passed to the recovery routine in X4. 

Any faulty parameters may be corrected, and the recovery routine is allowed to call the 
routine which detected the error with corrected parameters. Upon exit from the recovery 
routine, control is turned not to SYSTEM nor to the routine which detected the error, but 
rather back another level (see example). By not correcting the faulty parameters in the 
recovery routine, a three routine loop could develop between the routine which detects the 
error, SYSTEM, and the recovery routine. No checking is done for this case. 

Example: 

E/E 

RTNl 

6017 4900 Rev. C 

MAIN 

CALL MATH (A, B, C) 

END 

Point of return from MA TH, if no errors detected, 
or from RECOVERY. 

J-3 



E/E 

RTN2 

E/E 

MATH 

RJ SYSTEM 

May be reentered from RECOVERY with corrected 
parameters 

07XXAAAAAA ......... trace-back information 

END 

SYSTEM 

bump to RTN~ 

JUMP TO RECOVERY 

END 

RECOVERY 

~ump to RTN:Q 

RJ MATH 

jump to E/E 
END 

transfers E/E line of MATH to E/E 
line of RECOVERY and gives control 
to RECOVERY 

corrects faulty parameters and may 
recall MATH 

returns to MAIN following reference 
to MATH 

2. Fatal error: 

J-4 

Into the entry I exit line of the recovery routine is set a return address back to SYSTEM. Control 
is then passed to the word immediately following the entry I exit line of the recovery routine. 
The traceback information available to SYSTEM from the routine which detects the error is set 
in X4. If control is returned to SYSTEM from the recovery routine, then an error summary is 
listed, all output buffers are terminated and the job is aborted. 

SYSTEM 

E/E 

TAG jump to RECOVERY 

07XXAAAAAA 

RTN3 

END 

trace back information 

60174900 Rev. C 



RECOVERY 

E/E bump to RTN31 

jump to E/E 
END 

Jse of the A/NA Bit 

The A/NA bit is for use only when a non-standard recovery address is specified. If this bit is set, 
the address within an auxiliary table is passed in X3 to the recovery routine. This bit allows more 
information than is normally supplied by SYSTEM to be passed to the recovery routine. Only during 
assembly of SYSTEM may this bit be set, because an entry must also be made into the auxiliary 
table. Each word in the auxiliary table must have the error number in its upper 10 bits so that 
the address of the first error number match is passed to the recovery routine. An entry in the 
auxiliary table for an error is not limited to any specific number of words. 

The traceback information is terminated as soon as one of the following variables is detected: 

Calling routine is a program (the number of arguments > 77B). 

Maximum trace back limit is reached. 

No trace back information is supplied; a 07 instruction does not follow the 
return jump as is the case with I/ 0 operations. 

To change an error table during execution, a FORTRAN type call is made to SYSTEMC with the 
addresses of the following parameters in Bl and B2: 

Bl error number 

B2 parameter list in consecutive locations containing: 

word 1 
word 2 
word 3 

word 4 
word 5 
word 6 

6017 4900 Rev. C 

fatal/ non -fatal (fatal = 1 , non -fatal = 0) 
print frequency 
print frequency increment (only significant if word 2=0) 

special values: 
word 2 = 0, word 3 = 0 never list error 
word 2 = 0, word 3 = 1 always list error 
word 2 = 0, word 3 = X list error only the first X times encountered 

print limit 
non-standard recovery address 
maximum trace back limit 

J-5 



If any word within the parameter list is negative, the value already in table entry will not be 
altered. 

(Since the auxiliary table bit may be set only during assembly of SYSTEM, only then can an 
auxiliary table entry be made.) 

ERROR LISTING 

<message supplied by calUng routine> 

ERROR NUMBER xxxx DETECTED BY zzzzzzz at yyyyyy 
CALLED FROM cccccc at W\VWWWW 

zzzzzzz and ccccccc are routine 
names, yyyyyy and wwwwww are 
absolute addresses and error 
number is decimal 

ERROR SUMMARY 

ERROR TTh1ES 

xxxx yyyy 
xxxx yyyy 
xxxx yyyy 

all numbers are decimal 

NO OUTPUT FILE FOUND 

OUTPUT FILE LINE LTh1IT EXCEEDED 

Functions of entry points: 

J-6 

Q8NTRY 

STOP 

EXIT 

END 

SYSTEM 

initialize I/O buffer parameters 

enter STOP in the Dayfile and begin END processing 

enter EXIT in the DayfEe and begin END processing 

terminate all output b1.1ffers, print an error summary; 
transfer control to main overlay if within an overlay or in 
any other case exit to monitor 

handles error tracing, diagnostic printing, termination of output 
buffers, and either transfers to specified non-standard error recovery 
address, aborts the job, or returns to calling routine depending on 
type of error 

60174900 Rev. C 



SY STEMP 

SYSTEMC 

ABNORML 

adjusts arguments for use by SYSTEM and transfers control to SYSTEM 

changes entry in SYSTEM's error table according to arguments passed. 

gains control from an execution routine when an error had been assembled 
as fatal and during the processing of the job was changed to non-fatal with 
no non-standard error recovery. An abnormal termination is given. 

FILE NAME HANDLING BY SYSTEM 

SYSTEM(QSNTRY) places in RA+2 and the locations immediately following, the file names from the 
FORTRAN PROGRAM card. The file name is left justified and the file's FET address is right 
justified in the word. (Thus the declared file names replace any actual file names at execution 
time in the RA area.) 

The logical file name (LFN) which appears in the first word of the FET is determined in one of the 
three following ways: 

CASE 1: 

Example: 

Before 
RA+2 

After 
RA+2 

If no actual parameters are specified, the LFN will be the file name from the 
PROGRAM card. 

RUN(S) 
LGO. 

PROGRAM TESTl(INPUT, OUTPUT, TAPE!, TAPE2) 

SYSTEM(QSNTRY) 

000 000 
000 000 

LFN in FET 
INPUT FE'I' address INPUT 
OUTPUT FET address OUTPUT 
TAPE! FET address TAPE! 
TAPE2 FET address TAPE2 

CASE 2: If actual parameters are specified, the LFN will be that specified by the 
corresponding actualparameter, or the file name from the PROGRAM card 
if no actual parameter was specified. A one-to-one correspondence exists 
between the actual parameters and the file names found on the PROGRAM 
card. 

60174900 Rev. C J-7 



J-8 

Example: 

Before 
RA+2 

After 
RA+2 

CASE 3: 

Example: 

Before 
RA+2 

After 
RA+2 

RUN(S) 
LGO(,, DATA, ANSW) 

PROGRAM TEST2(INPU'I', OUTPUT, TAPEl, TAPE2, TAPE3=TAPE1) 

000----000 
000 000 
DATA 000 
ANSW---000 

INPUT FET address 
OUTPUT--FET address 
TAPEl FET address 
TAPE2 FET address 
TAPE3---FET address of TAPEl 

LFN in FET 
INPUT 
OUTPUT 
DATA 
ANSW 
Uses TAPE 1 FET 

An equivalenced file name from the PROGRAM card will ignore an actual 
parameter. The LFN will be that of the file to the right of the equivalence 
and no new FET will be created. 

RUN(S) 
LGO(, ,DATA,ANSW) 

PROGRAM TEST3(INPUT,OUTPUT, TAPEl=OUTPUT, TAPE2, TAPE3) 

000----000 
000 000 
DATA 000 
ANSW 000 

INPUT FET address 
OUTPUT--FET address 
TAPEl FET address of OUTPUT 
TAPE2---FET address 
TAPE3 FET address 

LFN in FET 
INPUT 
OUTPUT 
uses OUTPUT FET 
ANSW 
TAPE3 

60174900 Rev. C 



EXECUTION DIAGNOSTICS K 

The format of these error listings is shown on page J-6. 

The symbol INF denotes infinite and IND denotes indefinite internal words. 

Some error conditions are preceded by "also". The routine in question calls on a subordinate librar~ 
routine, giving it the arguments indicated; therefore the subordinate routine may detect some errors 
of its own and report them under its own error number. 

Standard Error 
Routine Condition Recovery Number 

ACGOER Called only upon detection of a computed Fatal l I 
or assigned GO TO error 

ACOS (R) R = INF or R = IND or +IND 2 
abs (R) . GT. 1. 0 +IND 

ALOG (R) R =INF or R =IND or R . LT. 0 +IND 3 
R = 0 -INF 

ALOGlO (R) R = INF or R = IND or R . LT. 0 +IND 4 
R = 0 -INF 

ASIN (R) R = INF or R = IND or abs (R) .GT. 1. 0 +IND 5 

ATAN (R) R = INF or R = IND +IND 6 

ATAN2 (Rl, (Rl or R2) = (INF or IND) +IND 7 
R2) Rl = R2 = 0 +IND 

CABS (Z) (real ( Z) or imag ( Z) =(INF or IND) +IND 8 

CBAIEX:Z**I (real (Z) or imag (Z)) =(INF or IND) (+IND, +IND) 9 
Z = ( 0 , 0) and I . LE . 0 (+IND, +IND) 

CCOS (Z) (real (Z) or imag (Z)) =(INF or IND) (+IND,+IND) 10 
also: COS (real (Z)) and EXP (imag (Z)) 
and imag (Z) . LT. -675. 82 

CEXP (Z) (real (Z) or imag (Z)) =(INF or IND) (+IND, +IND) 11 
also: SIN(inag (Z)) and EXP (real (Z)) 

CLOG (Z) (real (Z) or imag (Z)) =(INF or IND) (+IND, +IND) 12 
also: ALOG (CABS(Z)) and 

ATAN2 (imag (Z), real (Z)) 

COS (R) R =INF or R =IND or abs (R) .GT. 2. 2E14 +IND 13 

60174900 Rev. D K-1 



standard Error 

Routine Condition Recovery Number 
--- ---

CSIN (Z) (real (Z) or imag (Z)) = (INF or IND) (+IND, +IND) 14 

also: SIN(real(Z)) and EXP (imag (Z)) 
and imag (Z) . LT. -675. 82 

CSQRT (Z) (real (Z) or imag(Z)) =(INF or IND) (+IND, +IND) 15 

DABS (D) D =INF +INF 16 
D =IND +IND 

DATAN (D) D = INF or D = IND +IND 17 

DATAN2 (Dl, (Dl or D2) =(INF or IND} +IND 18 

D2) Dl = D2 = 0 +IND 

DBADEX: (Dl or D2) =(INF or IND) +IND 19 

Dl**D2 D 1 = 0 and D2 . LE. 0 +IND 
Dl .LT. 0 +IND 

DBAIEX: D 1 = INF or D 1 = IND +IND 20 

Dl**I2 D 1 = 0 and I2 . LE . 0 +IND 

I INPUT B Illegal file input Proceed 20 

DBAREX: (Dl or R2) =(INF or IND) +IND 21 
Dl**R2 Dl = 0 and R2 . LE. 0 +IND 

Dl.LT.O +IND 

DCOS (D) D = INF or D = IND or abs (D) . GT. 2. 2El4 +IND 22 

DEXP (D) D = INF or D = IND +IND 23 
D . GT. 7 41. 67 +INF 

DLOG (D) D =INF or D =IND or D. LT. 0 +IND 24 
D = 0 -INF 

DLOGlO (D) D = INF or D = IND or D . LT. 0 +IND 25 
D = 0 -INF 

DMOD (Dl,D2) (Dl or D2) = (INF or IND) +IND 26 
D2 = 0 +IND 
Dl I D2 . GE. 2 ** 96 +IND 

DSIGN (Dl, D2) Dl =IND or D2 = (0 or INF or IND) +IND 27 
Dl =INF INF with sign of D2 

DSIN (D) D = INF or D = IND or abs (D) • GT. 2. 2El4 +IND 28 

DSQRT (D) D =INF or D =IND or D . LT. 0 +IND 29 

EXP (R) R = INF or R = IND +IND 30 
R . GT. 7 41. 67 +INF 

IBAIEX: I1 = 0 and I2 . LE. 0 0 31 
Il**I2 I1 ** I2 . GE. 2** 48 0 

IDINT (D) D = +INF or D = IND or D . GE. 2**59 2**59-1 32 
D = -INF or D . LE. -2**59 1-2**59 

K-2 60174900 Rev. D 



Standard Error 
Routine Condition Recovery Number 

RBADEX: (Rl or D2) =(INF or IND) +IND 33 
Rl**D2 Rl = 0 and D2 . LE. 0 +IND 

Rl .LT. 0 +IND 

RB AI EX: Rl = INF or Rl = IND +IND 34" 
Rl **I2 R 1 = 0 and I 2 . LE . 0 +IND 

Rl**I2 =INF +INF 

RBAREX: (Rl or R2) = (INF or IND) +IND 35 
Rl**R2 R 1 = 0 and R2 . LE. 0 +IND 

Rl .LT. 0 +IND 

SIN (R) R =INF or R =IND or abs (R) .GT.2.2E14 +IND 36 

SLITE (I) I . GT. 6 or I . LT. 0 Proceed 37 

SLITET I1 . GT. 6 or I1 . LE. 0 I2 = 2 38 
(Il, I2) 

SQRT (R) R =INF or R =IND or R . LT. 0 +IND .39 

SSWTCH (Il, I2) I1 . GT. 6 or I1 . LE. 0 I2 = 2 40 

TAN (R) R = INF or R =IND or abs (R) . GT. 8. 4E14 +IND 41 

TANH (R) R = INF or R = IND +IND 42 

INPUTN Precision lost in floating integer constant Proceed 49 

I Namelist data terminated by EOF not $ Proceed 
Too few constants for unsubscripted array Proceed 

OVERLAY Fatal error reported by LOADER Fatal 50 

SEGMENT Fatal error reported by LOADER Fatal 51 
Non-fatal error reported by LOADER Proceed 52 

BACKSP Unassigned medium t Fatal 53 

BUFF EI Unassigned mediumt Fatal 54 
Attempt to read past EOF on Buff er In. Fatal 55 
Last operation was a write, no data Fatal 56 
available to read. 
Starting address greater than terminal Fatal 57 
address. 

BUFFEO Unassigned mediumt Fatal 58 
Starting address greater than terminal Fatal 59 
address. 

ENDFIL Unassigned medium t Fatal 60 

IFENDF Unassigned medium t Fatal 61 

tExecution time diagnostic occurs when a variable file name is undefined. It is printed as 
Unassigned medium, file xxxxxxx (where xxxxxxx is the name of the undefined file). 

60174900 Rev. D K-3 



I 

I 

I 

Routine Condition 

FTNBIN Unassigned medium t 

IN PU TB Unassigned medium t 
Attempt to read past EOF - binary input. 

OUTPTN Unassigned medium variable file name is 
undefined. 

INPUTC Unassigned medium, t va.riable file name 
is undefined • 

. ,,. ~ttempt to read past EOF - coded input 

INPUTN Namelist name not found. 
No I/O medium assigned. 
Wrong type constant. 
Incorrect subscript. 
Too many constants. 
(,$,OR= expected, missing. 
Variable name not found .. 
Bad numeric constant. 
Missing constant after * .. 
Uncleared EOF on read. 
Attempted read after write. 

INPUTS Attempt to transfer more than 150 char-
acters/record on DECODE processing. 
DECODE * character per record count 
less than or equal to zero. 

IOCHEK Unassigned medium t for IF UNIT 
statement. 

KODER Illegal letter as format specification 
(Coded output) Format specification has more than 2 

levels of parentheses (3 levels under ASA). 
Exceeded record size (fo:rmat specified 
more than 136 characters per line). 
Field width specified as zero. 
Field width specified is less than or 
equal to the specified decimal width. 
Attempt to output data under Hollerith 
format. 

Standard 
Recovery 

Fatal 

Fatal 
Fatal 

Fatal 

Fatal 

Fatal 

Fatal 
Fatal 
Fatal 
Fatal 
Fatal 
Fatal 
Fatal 
Fatal 
Fatal 
Fatal 
Fatal 

Fatal 

Fatal 

Fatal 

Fatal 
Fatal 

Fatal 
Fatal 
Fatal 

Fatal 

Error 
Number 

62 

62 
63 

64 

64 

65 

66 

66 

67 

68 
69 

70 
71 
72 

73 

tExecution time diagnostic occurs when a variable file name is undefined. It is printed as 
Unassigned medium, file xxxxxxx (where xxxxxxx is the name of the undefined file)~ 

K-4 60174900 Rev. D 



Standard Error 
Routine Conditiontt Recovery Number 

KRAKER Illegal letter used as format specification. Fatal 
(Coded input) Format specification with more than 2 Fatal 

levels of parentheses. 
Field width specified as zero. Fatal 
Coded read past end of record. Fatal 
Illegal data in the external field.ttt Fatal 
Data converted is out of range. ttt Fatal 
Attempt to input data under Hollerith Fatal 
format. 

LENGTH Unassigned mediumt Fatal 

OUTPTB Unassigned medium t Fatal 

OUTPTC Unassigned medium t Fatal 
Line limit as specified on RUN card Fatal 
exceeded. 

OUTPTS Attempt to transfer more than 150 charac- Fatal 
ters/record on ENCODE processing. 

REWINM Unassigned mediumt Fatal 

KODER Attempt to output a single array under Fatal 
(Coded output) "D" format specification. 

INPUTC Last operation was a write, no data Fatal 
available to read. 

INPUTB List exceeds data on file, attempt to read Fatal 
more data than exists in the logical record. 

INPUTB Last operation was a write, no data Fatal 
available to read. 

OUTPTB Mixed mode operation Proceed 

IOCHEC Unassigned medium variable file name Fatal 
file is undefined. 

Status of buffer 1/0 must be checked by Fatal 
the unit function. 

tExecution time diagnostic occurs when a variable file name is undefined. It is printed as 
Unassigned medium, file xxxxxxx (where xxxxxxx is the name of the undefined file). 

74 
75 

76 
77 
78 
79 
80 

81 

82 

83 
84 

85 

86 

87 

88 

89 

90 

91 

95 

96 

tt All input/ output errors at execution time are fatal. Standard error recovery for all the above 
cases is to terminate the job after standard error tracing. 

lttt Card image will be printed. 

60174900 Rev. D K-5 



I 

Standard 
Routines Condition Recovery 

INITMS, Unassigned medium ;t variable file name Fatal 
READ MS, 
WRIT MS 

is undefined. 

I NIT MS File does not reside on a random access Fatal 
device. 

READMS, File not opened by a call to subroutine Fatal 
WRIT MS OPENMS 

READ MS Record name referred to in call is not Fatal 
in file index. 

INITMS, Index buffer is too 
WRIT MS 

small. Fatal 

READ MS Read parity error Fatal 

READ MS Index specified in this mass storage call Fatal 
is greater than master index or is zero. 

WRITEC ECS unit has lost power or is in Fatal 
maintenance mode. 

READ EC ECS read parity error. Proceedtt 

BUFFEO Array too large. Fatal 
Buff er too small. Fatal 

t Execution time diagnostic occurs when a variable file name is undefined. It is printed as 
Unassigned medium, file xxxxxxx (where xxxxxxx is the name of the undefined file). 

tt Fatal or non-fatal depending upon operators response. 

Error 
Number 

97 

98 

99 

100 

101 

102 

110 

112 

113 

114 
115 

K-6 60174900 Rev. D 



FORTRAN LIBRARY ROUTINE ENTRY POINTS L 

Routine Entry Points Externals 

AC GOER AC GOER SYSTEM, ABNORML 

ALNLOG ALOG, ALOG 10 SYSTEM 

ASINCOS ASIN, ACOS SYSTEM 

ATAN ATAN SYSTEM 

ATAN2 ATAN2 SYSTEM 

BACKSP BACKSP SYSTEM, ABNORML, GETBA, CIOl., 
BKSPRU, FIZBAK 

BUFF EI BUFF EI SYSTEM,ABNORML,GETBA,OPEN., 
CZOl. 

BUFFEO BUFFEO SYSTEM, ABNORML, GETBA, OPEN. , 
CIOl. 

CABS CABS SYSTEM 

CBAIEX CBAIEX SYSTEM 

ccos ccos COS, SIN, EXP, SYSTEM 

CEXP CEXP COS, SIN, EXP, SYSTEM 

CLOG CLOG ALOG,ATAN2,CABS,SYSTEM 

CSIN CSIN COS, SIN, EXP, SYSTEM 

CSQRT CSQRT CABS, SQRT, SYSTEM 

DABS DABS SYSTEM 

DATAN DATAN,DATAN2 SYSTEM 

60174900 Rev. C L-1 



Routine Entry Points Externals ---

DBADEX DBADEX,DBAREX,RBADEX DLOG,DEXP,SYSTEM 

DBAIEX DBAIEX SYSTEM 

DBLE DBLE 

DEXP DEXP SYSTEM 

DISPLA DISPLA 

DLNLOG DLOG, DLOG!O SYSTEM 

DMOD DMOD SYSTEM 

DSIGN DSIGN SYSTEM 

DSINCOS DSIN, DCOS SYSTEM 

DSQRT DSQRT SYSTEM 

DUMP DUMP, PDUMP OUTPUTC, STOP 

DVCHK DVCHK 

END FIL END FIL SYSTEM, ABNORML, GETBA, 
FIZBAK., <t}PEN., CI<t}M. 

IFTNBIN FTNBIN SYSTEM, ABNORML, GETBA 

EXP EXP SYSTEM 

GE TBA GET BA SYSTEM, ABNORML 

IBAIEX IBAIEX SYSTEM 

ID INT ID INT SYSTEM 

IFENDF IFENDF SYSTEM, ABNORML, GETBA 

IINITMS IXTYPE, OPENMS, STINDX GET BA, OPEN. , ABNORML, SYSTEM 

INPUTB INPUTB SYSTEM, ABNORML, GETBA, 
OPEN. , CIOl. , RDWDS. 

INPUTC INPUTC SYSTEM, ABNORML, GETBA, 
KRAKER, OPEN. ,RDCARD. ,DAT. 

L-2 60174900 Hev. C 



Routine Entry Points Externals 

INPUTS INPUTS SYSTEM,ABNORML,KRAKER 

IOCHEK IOCHEK SYSTEM, ABNORML, GETBA, 
RDWDS., CIOl. 

IOCHEC IOCHEC SYSTEM,ABNORMAL,GETBA I 
KODER KO DER SYSTEM, ABNORML 

KRAKER KRAKER SYSTEM, ABNORML 

LEGVAR LEGVAR 

LENGTH LENGTH SYSTEM,ABNORML,GETBA 

LOCF LOCF,XLOCF 

OUTPTB OUTPTB SYSTEM,ABNORML,GETBA, 
OPEN., WRWDS., CIOl. 

OUTPTC OUTPTC SYSTEM, ABNORML, GETBA, 
KODER, OPEN., WRWDS., DAT., 
FIZBAK. 

OUTPTS OUTPTS SYSTEM,ABNORML,KODER 

OVER FL OVER FL 

OVERLAY OVERLAY LOADER,SYSTEM,ABNORML 

PAUSE PAUSE 

RANF RANF 

RBAIEX RBAIEX SYSTEM 

RBAREX RBAREX ALOG, EXP, SYSTEM 

READEC READEC SYSTEM 

READ MS READ MS GETBA, SIO., CIOl. ,IXTYPE, 
ABNORML, SYSTEM 

REMARK REMARK 

REWINM REWINM SYSTEM, ABNORML, GETBA, CIOl. 

SECOND SECOND 

60174900 Rev. D L-3 



Routine Entry Points Externals 
---

SEGMENT SEGMENT LOADER,SYSTEM,ABNORML 

SIQN SIQ., CIQL, QPEN., BKSPRU., 
FIZBAK 

SIN COS SIN, COS SYSTEM 

SLITE SLITE SYSTEM 

SLIT ET SLITET SYSTEM 

SNGL SNGL 

SQRT SQRT SYSTEM 

SSWTCH SSWTCH SYSTEM 

SYSTEM SYSTEM, SYSTEMC, SYS TEMP, 
QSNTRY, STOP, END, EXIT, 
ABNORML 

TAN TAN SYSTEM 

TANH TANH EXP, SYSTEM 

TIME TIME 

WRITEC WRITEC 

WRIT MS WRIT MS 

L-4 60174900 Rev. C 



STRUCTURE OF FILES 

FORTRAN FILE STRUCTURE AND 

BLOCKED BINARY INPUT /OUTPUT 

M 

A file is an ordered sequence of user logical records. Each type of input/output that a FORTRAN 
programmer can use has a user logical record definition. 

FORMATTED I/O 

READ f ,k 

PRINT f ,k 

PUNCH f ,k 

READ(u,,,,f) k 
I 

READ(u,f) 

WRITE(u,f) k 

WRITE(u,f) 

The user logical record (also referred to as a unit record) corresponds to a card image or ·a print 
line. User logical records may be a maximum of 15010 characters for input, but no more than 
13610 are transferred on output records. (On Sand L tapes a user logical record corresponds to 
a tape block.) For X tapes, user logical records may have a maximum of 136 characters for 
input/output records (only 135 will be printed). 

UNFORMATTED I/0 

READ(u) k 

WRITE(u) k 

When I/0 is unformatted, the user logical record is the same as a SCOPE logical records on internal 
files or X magnetic tape files. On an S and L magnetic tape the physical representation of user logi
cal records is the same as that on a SCOPE internal tape even though there is no SCOPE-logical
record definition. 

BUFFER I/0 

BUFFER IN(u,k) (A,B) 

BUFFER OUT(u,k) (A ,B) 

60174900 Rev. D M-1 



On SCOPE internal files (including tape files) and binary S magnetic tapes, the user logical record 
is represented as a SCOPE logical record. On a coded X tape, the user logical record will always 
consist of 14 words (137 characters on tape), and any attempt to write a record longer will result in 
a fatal diagnostic. On S and L magnetic tapes, the user logical record is defined to be one tape 
block, the information between two record gaps or between the load point and a record gap. On S 
magnetic tapes, 512 words is the maximum record length. 

UNFORMATTED 1/0 

Since the physical representation of FORTRAN unformatted user logical records is the same on S 
tapes as that on SCOPE internal tapes, the files created may be used interchangeably; a tape created 
as a SCOPE internal tape may be read as an S tape. Likewise, a tape created as an S tape may be 
read as a SCOPE internal tape (tapes written as X tapes must be read as X tapes). On L tapes the 
maximum physical record (user logical record) is determined by the size of the user's buffer area. 

Throughput of small user logical records can be increased if S magnetic tapes are used instead of 
SCOPE internal or L tapes. Non-stop tape motion can often be achieved when the buffer size is in 
excess of 2, 04810 words, which is four tape physical record units. 

With use of blocked binary input/output files, logical records are grouped into blocks and accesses 
are made in terms of blocks rather than records. Since with each access several logical records, 
rather than only one, are transmitted to or from the file buffer, the speed of job throughput is in
creased by decreasing the number of accesses made to an input/output device. 

FILE FORMAT 

Blocked binary files have the following format: control word (CW), one logical record or part of 
one logical record (LR), CW, LR, etc. Logical records are packed in the order in which they are 
referenced, but the end of a block need not correspond to the end of a record. Records may extend 
across several blocks depending on their lengths and positions in the file. 

At least one control word is associated with each logical record. Control words created during 
output indicate the beginning of a logical record, the continuation of a logical record, and the EOF. 

Each control word contains: 

M-2 

End of record flag to indicate whether o:r not the next control word is at the beginning of a 
logical record 

Number of words between it and the control word at the beginning of the 
previous logical record (current record if it is the control word of a continuation). 

Number of words between it and the next control word. 

60174900 Rev. D 



INPUT/OUTPUT OPERATIONS 

Blocked binary input/output operations are performed under the assumption that the file is in 
blocked format; nonblocked binary operations assume a nonblocked file format. If the mode of 
the operation is not the same as that of the file, the operation will not be executed correctly. 

The decision on whether blocked or unblocked binary files will be output is made by each installation. 
However, to change the format of one or more binary files, the library subroutine FTNBIN (section 
7. 10) may be called to override the installation selection. 

60174900 Rev. D M-3 





FORTRAN CROSS-REFERENCE MAP 

If the ninth field of the run control card is non-zero, FORTRAN supplies the programmer with a 
cross-reference map after each PROGRAM, SUBROUTINE, or FUNCTION, purely as an aid to 
program debugging. The following information is furnished: 

Program length including I/O Buffers 

N 

Statement function references with the relative core locations, general compiler tag assigned, 
symbolic tag given in the program and the references to the statement function 

Statement number references with the same information as above 

Block names and lengths 

Variable references - also with location, general tag, symbolic tag, and a list of references 

Start of constants (relative address) 

Start of temporaries (relative address) 

Start of indirects (relative address) 

Unused compiler space 

The programmer should bear in mind that because of the operation of the compiler not all references 
will be listed. An actual physical reference is necessary before the reference is placed in the ref
erence map. If the required variable address is already in a register, the compiler will use the 
address in the register and not make an actual variable reference by name. A reference to a state
ment number will not be listed if an actual jump is not necessary, such as when the code simply 
falls through to the next statement and the compilation of a jump instruction is therefore unnecessary. 

The following cross reference map was produced by a main program compiled in 40, 0008 words of 
memory. 

60174900 Rev. D N-1 

I 



STORAGE MAP FOR MAIN PROGRAM 

PROGRAM LENGTH INCLUDING I/O BUFFERS _. 
002453 

Length of main program; includes (for this examplE 
2022s words for I/O buffers. 

STATEMENT FUNCTION REFERENCES 

LOCATION GEN TAG SYM TAG REFERENCES 

STATEMENT NUMBER REFERENCES 

LOCATION 
000201 
000214 
000223 
000225 
000233 
000255 
000267 
000247 
000230 

GEN TAG 
L00057 
C00007 
C00016 
C00020 
C00026 
C00050 
C00062 
C00042 
C00023 

SYM TA~~Statement labels and locations. The statement 
2 000177 
90 000003 
100 000007 
101 000015 
110 000117 
120 000151 
130 000155 
140 000137 
150 000024 

labeled 2 is generated object code at location 201. 
FORMAT statements are transmitted and stored in 
BCD code in object program. FORMAT statement 
100 is stored at location 223 which follows the main 
program code and constants. 

_ ~--------- Length of blank and labeled common. 
BLOCK NAMES AND LENGTHS.....---

000002 LAB! - 000001 

VARIABLE REFERENCES 

LOCATION GEM TAG 
000356 VOOOll 
000357 V00012 
OOOOOOCOl V00020 
000362 V00015 
000360 V00013 
OOOOOlCOl V00021 
OOOOOOC02 V00002 

START OF CONSTANTS..-. 
000205 

START OF TEMPORARIES 
000274 

START OF INDIRECTS 
000346 

UNUSED COMPILER SPACE 

002700 ..-----

N-2 

---- Location of all variables. AREA is stored at locatl 
~ 362. BETA is stored in second word of common. 

SYM TAG REFERENCES 
AB 000053 000071 000111 000114 000142 
AC 000062 000070 000075 000110 000114 000144 
ALPHA 000166 
AREA 000105 000107 000113 000160 
BC 000071 000077 000110 000115 000146 
BETA 000170 
GAMMA 00017 2 

---All constants are stored immediately following 
program object code. 

---This program used (40000-2700) or 351008 
----- memory positions. 

----Unused compiler space is 2700s for this program. 

60174900 Rev. D 



PRINT FILE CONVENTIONS 

Files with a print disposition (including OUTPUT) and files assigned to a printer, must adhere to 
specific format rules as follows: 

1. All characters must be in display code. 

0 

2. The end of a print line must be indicated by a zero byte in the lower 12 bits of the last cen
tral memory word of the line. Any other unused characters in the last word should be filled 
with display code blanks (558). For example, if the line has 136 characters (including 
carriage control), the last word would be aabbccddeeffgg550000 in octal; the letters repre
sent the last seven characters to be printed in the line. No line should be longer than 
136 characters. 

3. Each line must start in the upper 6 bits of a central memory word. 

4. The first character of a line is the carriage control, which specifies spacing as shown in the 
following table. It will never be printed, and the second character in the line will appear in 
the first print position; therefore a maximum of 136 characters can be specified for a line, 
but only 135 characters will be printed. All characters apply to both the 501 printer and 
the 512 printer unless they are specifically designated otherwise. 

Character 

A 
B 
1 
2 
+ 
0 (zero) 
- (minus) 
blank 

Carriage Control Characters 

Action Before Printing 

Space 1 
Space 1 
Eject to top of next page 
Skip to last line on page 
No space 
Space 2 
Space 3 
Space 1 

Action After Printing 

Eject to top of next page 
Space to last line of page 
No space 
No space 
No space 
No space 
No space 
No space 

When the following characters are used for carriage control, no printing takes place. The remainder 
of the line will not be printed. 

Q Clear auto page eject 

R Select auto page eject 

S Clear 8 vertical lines per inch (512) 

T Select 8 vertical lines per inch (512) . . ''t(;:·7: 
PM 

(col 1-2) 
Output remainder of line (up to 30 characters) on the B display an(T:~b_,e dayfile. and 
wait for the JANUS typein /OKuu. For files assignedto a printer:%1·:ao. must be 
typed to allow the operator to change form or carriage control ta~s. 

60174900 Rev. D 0-1 



Any pre-print skip operation of 1, 2 or 3 lines that follows a post skip operation will be reduced to 
0, 1 or 2 lines. 

The functions Q thrru gh T should be given at the top of a page. S and T can cause spacing to be 
different from the stated spacing if given in other positions on a page. Q and R will cause a page 

·eject before the next line is print~d. 

0-2 60174900 Rev. D 



Actual parameters 5-3; 7-1, 2, 13, 1 7 
Alphanumeric 

Conversion 9-14 
Identifiers 2-1 

Arithmetic 
Evaluation 3-2 
Expression 3-1; 7-2 

In masking statements 3-10 
IF, three branch 6-3, 6-4 
Mixed-mode expressions 3-4 
Replacement 4-1 
Statement function B-2 

Array 2-8 
Allocation 5-2 
COMMON declaration 2-8 
Dimension 2-7, 8; 5-1; 7-17 
Name 7-2; 9-23; 10-6 
Relative location 2-7 
Single dimension 2-8 
Storage 

Reserved 5-1, 2, 3 
Shared 5-7 

Structure 2-8 
Transmission 9-2 
Type declaration 2-8; 5-1 

ASSIGN statement 6-1, 2 
Assigned GO TO statement 6-1 
Assigned values (DATA) 5-9 
Asterisk 1-1, 2; 9-21 

Editing specification 9-21 
Output (Conversion) 9-5, 9, 12 

Aw input specification 9-14 

60174900 Rev. D 

INDEX 

B suffix 2-3 
BACKSPACE 10-9; I-4 
BCD 

Code A-1 
Conversion 9-5 
Logical record 10-1 
Mode 10-2 
Word structure E-1 

Binary 
Blocked 7-10; 10-3; M 
Files, I/O format 7-10 
Logical record 10-1 
Mode 10-2 

Blank common 5-3, 4, 9 
Overlay 8-5, 8 

Blanks 1-1; 2-1 
Inserted (editing) 9-18 

BLKDAT 5-13 
Block 

Blank 5-3 
Common 5-3 
Identifier 5-5, 6 
Labeled 5-3 
Numbered 5-3 

BLOCK DA TA 5-13 
Subprogram 5-13 

Blocked binary I/O 7-10; M-1 
Blocking flag 7-10 
BUFFER 

I/O routines I-1; M-1 
IN/OUT 10-12 
Parity key 10-11 
Size 7-4 
Statements 10-10 
Transmission mode 10-10 
Undefined operation I-5 

Index-1 



c 1-1, 2 
CALL statements 2-1; 7-5 

DISPLA 7-12 
DO loop 7-5 
DUMP 7-11 
DVCHK 7-10 
EXIT 7-11 
FTNBIN 7-10 
OPENMS 7-11 
OVERFL 7-10 
OVERLAY 7-10; 8-4 
PDUMP 7-12 
READEC 7-11 
READMS 7-11 
REMARK 7-12 
SECOND 7-11 
SLITE 7-10 
SLITET 7-10 
SSWTCH 7-10 
STNDX 7-12 
WRITMS 7-12 

Card logical record 
Punch 10-1 
Reader 10-1 

Carriage control character 10-1, 2; 0-1 
Central memory 7-12 
Central processor 7-12 
CL 2-1 
Closed loop 7-4 
Coding 1-1 

Character code A-1 
Columns 1-1, 2 
Comments 1-2 
Continuation card 1-2 
Format 1-1 
Identification field 1-2 
Line 1-1 
Statement 1-1 

Number 1-2 
Comment, coding 1-1, 2 

Hollerith insertions, editing 9-18 

Index-2 

COMMON declaration 5-3 
Common blocks 5-3, 13 
Overlay 8-4, 5 
With DA TA 5-9 

Compilation/execution F-1 
With mixed deck F-5 
With prepunched binary deck F-7 

Compile once, execute twice F-9 
Compile and produce binary deck F-6 
Compiler diagnostics G-1 
Compiling mode 7-16 

Options F-1 
Complex 

Constants 2-4 
Data items 9-4 
Type declaration 5-1 
Variables 2-7; 5-7 
Word structure E-1 

Composition, overlay 8-5 
Computed GO TO statement 6-2 
Computer word structure, constants E-1 
Constant 2-2; 7-2; E-1 

Complex 2-4 
Computer word structure E-1 
Double precision 2-4 
Hollerith 2-4 
Integer 2-2 
Logical 2-5 
Octal 2-3 
Real 2-3 

Continuation card, coding 1-1, 2 
CONTINUE statement 6-10 
Control statements 6-1; 7-5; B-3 

ASSIGN 6-1 
CONTINUE 6-10 
DO 6-4 
END 6-11 
GO TO 6-1 
IF 6-3 
IF ENDFILE 10-10 
IF EOF 10-10 
PAUSE 6-10 
RETURN 6-10 
STOP 6-10 

Conversion, mode 3-9; 4-1, 4 
Table 4-2 

60174900 Rev. D 



Conversion specifications 9-4, 5 
Aw input/output 9-14 
Dw. d input/ output 9-11 
Ew. d input 9-6 

Output 9-5 
Fw. d input 9-9 

Output 9-8 
Gw. d input 9-11 

Output 9-10 
Iw input 9-12 

Output 9-11 
Lw input/output 9-15 
Ow input/ ouput 9-13 
Rw input 9-15 

Output 9-14 
Cross-reference map N-1 

D (double precision) 2-4 
DATA 

Declaration 1-1; 2-1; 5-9; 7-l;·B-2 
Coding line 1-1 
Common blocks 5-4 
Variable format 9-23 

Dayfilemessage 6-10; 7-11, 12; 8-2;J-1, 0-1 
H form 2-4 

Debugging aid N-1 
DECK structure F-3 
Declarations, Type and Storage Allocation 5-1 

COMMON 5-3 
DATA 5-9 
DIMENSION 5-2 
EQUIVALENCE 5-7 
Type 5-1 

DECODE 10-15 
Diagnostics 

Compilation G-1 
Execution K-1 
Listing 7-3 

Differences, FORTRAN II, 63, IV D-1 
Mode 7-16 

60174900 Rev. D 

DIMENSION declaration 5-1, 2 
With DATA 5-9 

Dimension variable 5-3; 7-1 7 
Disk logical record 10-1 
DISPLA 7-12 
Display code 2-1; 10-3; A-1; 0-1 

Conversion 9-14 
Word structure E-1 

Division 
By zero 7-10 
Result truncated 3-2 

DO index limits 
Integer constant 2-2 
Integer variable 2-6 

DO loop 6-4; 7-16; 9-1, 2 
CALL statement 7-5 
ENTRY statement 7-4 
Execution 6-5 
Implied 2-8; 5-9; 9-1, 2 
Termination 6-5, 7, 8, 10 
Tran sf er 6-7 

DO nests 6-5 
DO statement 6-3, 4 
Dollar sign 1-1, 2 

NAMELlST 
Input data 10-7 
Output data 10-9 

DOUBLE 5-1, 7 
Double precision 

Constants 2-4 
Conversion 9-11 
D 2-4 
Expressions evaluated 3-4 
Type declaration 5-1 
Variables 2-7 
Word structure E-1 

DUMP 7-2, 12 
Format indicators 7-12 

DVCHK (j) 7-10 
Dw. d input specification 9-11 

Output specification 9-11 
Scaling 9-1 7 

Index-3 



ECS 7-11 
Editing 

Codes 9-4 
New record 9-20 
Specifications 9-4, 18 
wH input 9-19 
wH output 9-18 
wX 9-18 
* ... * 9-21 

Eject, page 1-1, 3 
Elements of FORTRAN 2-1 
ENCODE 10-13 
END FILE 10-9 
END statement 1-2; 6-3, 11; 7-18 

RETURN 6-11; 7-16 
End of record I 9-21 
Entry points 

Library routine L-1 
Subprograms B-1 

ENTRY statement 7-8 
EQUIVALENCE declaration 5-7; 7-1 

Variables in common 5-8; 7-16 
With DA TA 5-9 

Error processing, SYSTEM J-1 
Evaluation 

Arithmetic 3-2, 4 
Relational 9-6 

Ew. d input specification 9-6 
Output specification 9-5 
Scaling 9-17 

Execution/compilation F-1 
With mixed deck F-5 
With prepunched binary deck F-7 

Execution diagnostics K-1 
EXIT 7-12 
Exit to operating system 6-10 
Exponentiation 2-3; 3-4 
Expressions 3-1 

Arithmetic 3-1 
Evaluated 3-2, 3-4 
Logical 3-8 
Masking 3-9 
Mixed mode 3-4 
Relational 3-6 

Index-4 

Extended core storage 7-11 
EXTERNAL 7-6 

CALL name 7-5 
ENTRY 7-8 

F 9-15 
False value 

Constant 3-5 
Conversion 9-15 
Logical 3-8; 6-3 
Relational 3-7 
Variable 2-7 

Field length calculated (DECODE) 10-15 
File 

Index 7-12 
Format M-2 
Labeled I-4 
Multi I-1 
Names 7-3, 4; 8-8 
Print disposition 0-1 
Structure I-1; M-1 

First characters (integer) 2-5; 7-13 
Carriage control 10-1 

Floating point 2-6; 4-1; 7~11, 12 
Conversion 9-8 
Overflow 7-10 

Formal parameters 5-3, 9; 7-1, 14, 17 
FORMAT declaration 1-1; 9-1, 4 

List, I/O 9-1 
Specification 9-22; 10-13 

Format, overlay 8-6 
Format, program-subprogram H-1 
Formatted I/O M-1 
FORTRAN 

Character conversion 9-14 
Character set 2-1; A-1 
Control card F-1 
Cross-reference map N-1 
Differences, II, 63, IV D-1 
Functions C-1 
Identifiers 2-1 
I/O routines I-1 
Library routine entry points 2-1; L-1 
Statement list B-1 

60174900 Rev. D 



FORTRAN II, IV 1-1; 5-8; 7-3, 4, 13, 16; 
D-1 

FORTRAN VI 6-11; 7-3, 4, 13, 16 
FTNBIN 7-10; K-4; L-2; M-3 
FUNCTION subprogram 6-10; 7-2, 13, 18 

Map, cross reference N-1 
Mode 7-13 
Name 7-2 
Reference 7-1, 2, 13 
Statement 7-14 

Functions 7-1 
FORTRAN C-1 
In line C-1 
Library 7-16 

Fw. d input specification 9-9 
Output specification 9-8 
Scaling 9-16 

GO TO statements 6-1, 4 
Assigned 6-1 
Computed 6-2 
Unconditional 6-1 

Gw. d input specific a ti on 9-11 
Output specification 9-10 
Scaling 9-17 

H (Hollerith) 
Field 1-1; 2-1; 9-18, 19 

Terminator 2-5 
* ..• * 9-21 

Form 2-4; 8-2 
Input insertions 9-19 
Output insertions 9-18 

Headings, output 9-18 
Hierarchy 

Arithmetic evaluation 3-2 
Logical operations 3-8 
Masking expressions 3-9 
Mixed mode 3-4, 7 

Hollerith constants 2-4 
(see H) 
Word structure E-1 

601 74900 Rev. D 

I (first character) 2-5; 5-1 
Identification 

Coding field 1-1, 2 
Overlays 8-4 

Identifiers 
Alphanumeric. 2-1 
Common blocks 5-3, 5 
FORTRAN declaration 10-1 
Statement 2-2 
Type declaration 5-1 

IF 6-3 
IF ACCUMULATOR OVERFLOW D-2 
IF DIVIDE CHECK D-2 
IF (ENDFILE) 10-10 
IF EOF 10-10 
IF QUOTIENT OVERFLOW D-2 
IF SENSE LIGHT D-2 
IF SENSE SWITCH D-2 
IF statements 6-3 

Logical 6-3, 4 
One branch logical 6-3 
Three branch arithmetic 6-3 
Two branch logical 6-3 

IF (UNIT) 10-10 
Index variable (DO) 6-4; 9-2 
Indexing parameters 6-4 
INPUT file 7-3 
Input/Output formats 9-1 

BCD statements 9-4 
Binary files 7-10 
Block/non-blocked 7-10 
Blocked binary M-1, 2 , 3 
List 9-1; 10-1 

Input/Output statements 10-1 
Integer 

Constants 2-2 
Conversion 

Decimal 9-12 
Fraction 9-9 
Octal 9-13 

Type declaration 5-1 
Variables 2-6 

Intersubroutine B-1 
Intraprogram transfers B-3 

Index-5 



I/O 
Blocked binary M-1 
Buffer names 7-2 
Devices 10-1 
File structure I-1 
Format 9-1 
List 2-8; 9-1; 10-1 
Routines I-1 
Statements 10-1; B-3 

BCD 9-4 
BUFFER 10-10; M-1 
Formatted M-1 
NAMELIST 10-6 

Output 10-2 
PRINT 10-2 
PUNCH 10-2 
WRITE 10-2 
WRITE TAPE 10-3 

READ 10-4 
Tape handling 10-9 
Unformatted M-1 

Iw input specification 9-12 
Output specification 9-11 

J (first character) 2-5; 5-1 
JOB card (SCOPE) 7-11 

K (first character) 2-5; 5-1 

L (first character) 2-5; 5-1 
Form (SEGMENT) 8-2 
Left justified 2-5; 5-1 

L tape M-1, 2 
Labeled common 5-3, 4, 5 

BLOCK DATA 5-13 
File I-4 
Overlay 8-5 
Tape I-4 
Variables, assigned value 5-9 

Index-6 

Left justified 2-5 
Levels 

CALL OVERLAY 8-8 
Number 8-1, 6 
Overlay 8-3, 4 
Segment 8-1 

LGO F-1, 2 
Library 

Functions 7-2, 16; C-2 
Routine entry points L-1 
Subroutines 7-2, 9 

Line, coding 1-1 
LIST F-2 
List 5-1 

I/O format 9-1 
Listing diagnostics 7-3 
Load and execute F-8 

Segments F-10 
Load and run F-3 
LOADER call 8-3 
Loader cards 8-7 

Overlay 8-8 
Segment 8-7 

Loading 
Overlays 8-5 
Segments F-10 
Sequence 8-3 

Logical 
Constants 2-5 

Word structure E-1 
Conversion 9-15 
Expression 3-8; 7-2 
IF 6-3, 4 
Mode 2-3 
Overlay format 8-6 
Records 10-1; I-1; M-1 

BCD 10-1 
Binary 10-1 

Replacement 4-4 
Type declaration 5-1 
Unit number 10-1 
Variables 2-7 

Loop control statements B-3 
Lw input specification 9-15 

Output specification 9-15 

601 74900 Rev. D 



M (first character) 2-5; 5-1 
Main program 7-3 

Array dimension 7-18 
Overlay 8-3, 4 

Many branch GO TO 6-1, 2 
Map, cross reference N-1 
Masking expressions 3-9 
Masking replacement 4-4 
Mass storage 7-11; I-2 
Matrix manipulation 7-1 7 
Minus sign 2-4 
Mixed deck structure F-5 
Mixed-mode 

Arithmetic expressions 3-4 
Evaluation 4-1 
Replacement 4-1 
Type relationship 3-4 
Undefined operation I-5 

Mode 
Compiling 7-16 
Conversion 3-9; 4-1, 4 
Error 8-6 
Logical 2-3 
Program 7-16 
Table 4-2 

Multi-file I-1 
Multiple replacement 4-4 

N (first character) 2-5; 5-1 
NAMELIST statement 10-6 

Identifier 10-6 
Name 10-6 

Nesting 
DO loops 6-5 
Repeatformat 9-22 

New record specification 9-21 
NOLIST F-2 
Non-standard recovery J-2, 3 

A/NA bit J-2, 5 
Fatal J-2, 3 
Non-fatal J-2, 4 

Normalized form 2-3, 7; 7-12 
nP scale factor 9-16 
Numbered common 5-3, 4, 5 

BLOCK DA TA 5-13 

60174900 Rev. D 

0 (octal) 2-1, 3 
Octal constants 2-1, 3 

Word structure E-1 
One-branch logical IF 6-3 
OPENMS 7-11; I-2 
Operands 

Arithmetic 3-1 
Type dominance 4-1 

Arithmetic 3-4 
Relational 3-7 

Operating system 6-10 
Operator intervention 6-10 
Operators 

Arithmetic 3-1 
Logical 3-8 
Masking 3-9 
Relational 3-7 

Options, compiler mode F-1 
OUTPUT file 7-3, 12; J-1 
Output statements 10-2 
OVERFL 7-10 
OVERLAY 8-3, 5 
Overlay 8-3 

Call 8-4, 5 
Card 8-5, 8 
Composition 8-5 
Format 8-6 
Identification 8-4 
Levels 8-3, 8 
Preparation F-10 
Usage 8-4 

Ow input specification 9-13 
Output specification 9-13 

P scale factor 9-16 
Packing words 10-15 
Page eject 1-1, 3 
Parameters 7-1 

Actual 7-2 
Formal 7-1 

Parentheses (format repetition) 9-22, 23 
PAUSE statement 6-10 
PDUMP 7-2, 12 
Period , page eject 1-1, 3 

Index-7 



Physical record 10-3; I-1 
Plus sign 2-3 
PRINT 7-31; 10-2 
Print 

Conventions 0-1 
File disposition 0-1 
Frequency J-2 

Printer control, tape 10-3 
Printer, logical record 10-1 
Primary overlay 8-3, 4 
Priority level 8-1 
PROGRAM card 7-3, 18; 8-8 

Map, cross reference N-1 
Program 

Arrangement 7-18 
Communication 7-1 
Format H-1 
Main 7-3 
Modes 7-16 
Relocatable 8-1 
Termination 6-11 

Program-subprogram format H-1 
PUNCH 7-3; 10-2 
PUNCHB F-2 
Punched cards 1-3 

R (justified) 2-5 
Random access files 7-11; I-2 
Random format input 10-16 
READEC 7-11; K-6; L-3 
READMS 7-11; I-2; K-6; L-3 
Read statements 10-4 

Real 

PRINT 7-3 
READ 10-4, 5, 6 
READ INPUT TAPE 10-4 
READ TAPE 10-5 

Constants 2-3 
Input conversion 9-6 
Type declaration 5-1 
Variables 2-6 
Word structure E-1 

Index-8 

Rearrange data in record 
(ENCODE) 10-16 

Record, size/structure 10-1; I-1 
Recovery, non-standard J-2, 3 

A/NA bit J-2, 5 
Fatal J-2, 4 
Non-fatal J-2, 3 

Relational expressions 3-6 
Relocatable 

Programs 8-1 
Subprograms 8-1 

Repeated format specifications 9-22 
Unlimited groups 9-23 

USASI 9-25 
Repetition factor 9-22, 23 
Replacement statements 4-1; B-2 

Arithmetic 4-1 
Logical 4-4 
Masking 4-4 
Mixed-mode 4-1 
Multiple 4-4 

Reserved words 2-2 
RETURN statement 6-4, 10; 7-13 

END 6-11; 7-16 
REWIND 10-9; I-4 
Right justified 2-5 
RUN F-1 
Rw input specification 9-15 

Output specification 9-14 

S suffix 7-2, 12 
S tape M-1, 2 
Scale factor 9-6, 14, 16 

USASI 9-25 
Scaling 9-16 

Dw.d 9-17 
Ew.d 9-17 
Fw. d 9-16 
Gw.d 9-17 
nP factor 9-16 

60174900 Rev. D 



SCOPE 7-11; 10-10; I-4; M-1, 2 
Library 8-4 
Loader 5-6 

SECOND 7-11; L-3 
Secondary overlay 8-3 
SECTION card 8-7 
Section 8-1 
SEGMENT card 5-13; 8-7 
Segment 

Call 8-2, 4 
Card 5-13; 8-1, 7 
Delinldng 8-2 
File name 8-2 
External references 8-1 
Length 8-2 
Levels 8-1, 2 
Loading 8-1, 2, 7 
Priority 8-1 
Usage 8-4 
Segmentation 5-13; 8-1 
SEGZERO 8-7 

Semi-colon 2-1, 5; 5-9 
Sense lights 7-9 
Sense switches 7-10 
Separators, statement 1-1 
Sequencing cards 1-2 
Simple variable 2-5 
Skip (editing) 

Characters 9-18 
Cards 9-20 
Lines 9-20; 0-2 
Tape records 9-20 

Slash 9-20 
SIJTE statement 7-9 
SIJTET statement 7-9 
Special characters 2-1 
Specifications 9-18 

Conversion 9-5 
Editing 9-18 
Repeated format 9-22 
Variable format 9-23 

SSWTCH statement 7-10 
Standard input/output unit 7-3 

60174900 Rev. D 

Statements 
Buffer 10-10 
Coding 1-1 
Control 6-1 
FORTRAN, with page reference B-1 
Function 7-14 
Identifier 2-2 
I/O 10-1 
Number 1-2; 10-1 
Output 10-2 
Read 10-4 
Replacement 4-1 
Tape handling 10-9 

Status checking I-4 
IF UNIT 10-10 
IF EOF 10-10 

STINDX 7-12; I-2 
STOP statement 6-10 
Storage allocation 5-1 

Declarations 5-2, 3, 5; B-2 
Reservation, array 5-1, 2, 3 
Shared, EQUIVALENCE 5-7 

Structure 
Array 2-8 
File I-1 

Subprogram 
Block data 5-13 
Communication 7-1 
Entry points B-1 
Format H-1 
Function 7-13 
Relocatable 8-1 
Statements B-1 
Variable dimensions 5-3; 7-17 

SUBROUTINE 7-4, 18 
Map, cross reference N-1 
Name 7-2 
Subprogram 7-4 

Subroutine 7-1 
Library 7-9 
Subprogram 6-10; 7-4 

Subscript limits 
Integer constants 2-2 
Integer variables 2-6 

Index-9 



Subscripted variable 2-5, 7, 9; 5-7 
Subscripts, type declaration 5-1 
Symbol manipulation statement B-2 
SYSTEM routine J-1 

T 9-15 
TAPE 7-3 
Tape handling statements 10-9 

BACKSPACE 10-9 
END FILE 10-9 
IF (ENDFILE) 10-10 
IF (EOF) 10-4, 10 
IF (UNIT) 10-10 
REWIND 10-9 

Tape 
L M-1, 2 
Labeled I-4 
Logical record 10-1 
Printer control 10-3 
Read 10-4, 5 
SCOPE M-1, 2 
S M-1, 2 
Write 10-2 
X M-1, 2 

Terminate execution 7-12 
Three-branch arithmetic IF statement 6-3 
Titles, Hollerith 9-18 
Transfer control 6-1; 7-5; 9-18; 10-10 

To calling program 7-12 
To operating system 6-10; 7-12 

Transfer data 7-11 
Words 7-11 

Transfer statements B-1 
True value 

Conversion 9-15 
Constant 2-5 
Logical 3-8; 6-3 
Relational 3-7 
Variable 2-7 

Two-branch logical IF statement 6-3, 4 
Type 

DATA 5-9 
Declaration 2-5, 6, 7; 5-1; B-2 
ENTRY 7-8 
Indicator 7-13 
Relationship, mixed mode 2-4 

Index-10 

I 

Unconditional GO TO statement 6-1 
Undefined operation 

Buffer I-4 
Mixed mode I-4 

Unformatted I/O M-1, 2 
Unit record I-1; M-1 
Unlimited groups specification 9-23 

USASI 9-25 
USA SI 

Compatibility 9-25 
Scale factor 9-25 
Unlimited groups 9-25 

Variable dimensions in subprograms 5-3; 7-17 
Variable format 9-23 
Variables 2-5 

Common 5-8 
Complex 2-7 
DA TA declaration 5-9 
Dimensions 7-17 
Double precision 2-7 
Explicit type 2-5, 6 
Implicit type 2-5, 6 
Integer 2-5, 6 
Labeled common 5-9 
Logical 2-7 
Real 2-6 
Simple 2-5 
Subscripted 2-7, 9 
Values assigned 5-9 
Type 2-5, 6 

vc 2-1 

Word structure, constants E-1 
wH input specification 9-19 

Output specification 9-18 
WRITEC 7-11; K-5; L-4 
WRITE 10-2, 3, 6 
WRITE OUTPUT TAPE 10-2 
WRITE TAPE 10-3 
WRITMS 7-11; I-2; K-6; L-4 
wX specification 9-18 

60174900 Rev. D 



X tape M-1, 2 

Zero length record 10-3 

* Comments 1-1, 2 
Output 9-5, 9, 12 

* ... * Comments 9-21 
Headings 9-21 
Titles 9-21 

$ Comments 1-1, 2 
Statement separator 1-1 
NAMELIST 10-7, 9 

I (end of record) 9-20 

60174900 Rev. D Index-11 





~I 
UJ 

~I 
0 

al 

COMMENT SHEET CONTROL DATA 
------ --

c 0 RP 0 R.j\ T I CJ N 

TITLE: FORTRAN Reference Manual 

PUBLICATION NO. 60174900 REVISION E 

Control Data Corporation solicits your comments about this manual with a view to improving its usefulness in later 
editions. 

Applications for whichypu use this manual. 

Do you find it adequate for your purpose? 

What improvements do you recommend to better serve your purpose? 

Note specific errors discovered (please include page number reference). 

General comments: 

FROM NAME: ____________ _ 
POSITION:------------

BUSINESS 
ADDRESS:-----------------------------------------~ 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

FOLD FOLD I ----- ---- -------- -- -- -- ------ ---- - ------~ 

BUSINESS REPLY MA IL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE P.t\ID BY 

CONTROL DATA~ CORPORATION 
Documentation Department 
215 Moffett Park Drilve 
Sunnyvale, California 94086 

FlRSTCLASS 
PERMIT NO. 8241 

MINNEAPOLIS, MINN. 

I 
I 
L 
I~ 
I~ 
la 

I 
I ____________________________ J 

FOLD FOLD I 

STAPLE STAPLE 

I 
I 
I 
I 
I 
t 

I 
I 


