
CJ~ CONTR_OL DATA
~ r::J CO~RftTION

NOS VERSION 2
SCREEN FORMATTING
REFERENCE MANUAL

cocci COMPUTER SYSTEMS:
CYBER 170

MODELS 815,825,835,845,855
CYBER 180

MODELS 810,830,835,845,855
CYBER 70

MODELS 71,72,73,74
6000

60460430

&J c:\ CONTR.OL DATA
~ r:::J COl\PO~TION

NOS VERSION 2
SCREEN FORMATTING
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170

MODELS 815,825,835,845,855
CYBER 180

MODELS 810,830,835,84·5,855
CYBER 70

MODELS 71,72,73,74
6000

60460430

REVISION

A
(10-11-83)

B
(10-05-84)

Publication No.

60460430

REVISION RECORD

DESCRIPTION

Manual released. This revision reflects NOS 2. 2 at PSR level 596.

This manual reflects NOS 2.3 at PSR level 617. This revision includes the terminal definition
utility (TDU) which provides the capability to define display terminals to be used in screen mode.
PDU now supports Pascal programs. This revision also includes the following system-defined
terminals: CDC 722, Tektronix 4115, Zenith Zl9/Heathkit Hl9, DEC VflOO, arxl Lear Siegler AIM3A and
AIMS. llie to extensive changes, change bars and dots are not used, and all pages reflect the
current revision level. This edition obsoletes all previous editions.

REVISION LETTERS I, 0, Q, S, X AND Z ARE NOT USED.

© 1983, 1984
by Control Data Corporation
All rights reserved
Printed in the United States of America

2

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV
...,

Front Cover - 4-8 B B-11 B
Title Page - 4-9 B C-1 B
2 B 4-10 B C-2 B

3/4 B 4-11 B D-1 B
5 B 5-1 B D-2 B
6 B 5-2 B D-3 B

7 B 5-3 B D-4 B
8 B 5-4 B D-5 B
1-1 B 5-5 B D-6 B
1-2 B 5-6 B D-7 B
1-3 B 5-7 B D-8 B
1-4 B 5-8 B D-9 B
2-1 B 5-9 B D-10 B
2-2 B 5-10 B D-11 B
2-3 B 5-lf B D-12 B
2-4 B 5-12 B D-13 B
2-5 B 5-13 B D-14 B
2-6 B 5-14 B D-15 B
2-7 B 5-15 B E-1 B
2-8 B 5-16 B E-2 B
2-9 B 5-17 B F-1 B
2-10 B 5-18 B G-1 B
2-11 B 5-19 B G-2 B
2-12 B 5-20 B G-3 B
2-13 B 5-21 B G-4 B
2-14 B 5-22 B G-5 B
2-15 B 5-23 B Index-1 B
2-16 B 5-24 B Index-2 B
2-17 B 5-25 B Index-3 B
2-18 B 5-26 B Comment Sheet B
2-19 B 5-27 B Back Cover -
2-20 B 5-28 B
2-21 B 5-29 B
2-22 B 5-30 B
3-1 B 5-31 B
3-2 B 5-32 B
3-3 B 5-33 B
3-4 B 5-34 B
3-5 B 5-35 B
3-6 B 5-36 B
3-7 B 5-37 B
3-8 B 5-38 B
3-9 B 5-39 B
3-10 B 5-40 B
3-11 B 5-41 B
3-12 B A-1 B
3-13 B A-2 B
3-14 B A-3 B
3-15 B A-4 B
3-16 B B-1 B
3-17 B B-2 B
3-18 B B-3 B
4-1 B B-4 B
4-2 B B-5 B
4-3 B B-6 B
4-4 B B-7 B
4-5 B B-8 B
4-6 B B-9 B
4-7 B B-10 B

60460430 B 3/4

PREFACE

This manual describes the screen formatting feature for the Network Operating System (NOS)
Version 2. NOS 2 operates on the CONTROL DATA® CYBER 170 and CYBER 180 Computer Systems.

Programming languages supported by NOS screen formatting are FORTRAN Version 5 and COBOL
Version 5 and PASCAL Version 1.1.

The extent to which you can use screen formatting depends on the type of terminal you have.
Generally, NOS supports full-screen mode on any display terminal, although some terminals
have capabilities that make screen formatting more usable. For more information about these
needed capabilities, refer to section S.

AUDIENCE

This manual is written as a reference for application programmers and NOS procedure writers
who want to use the full-screen display capabilities of NOS. For application programmers,
this manual assumes a knowledge of FORTRAN 5, COBOL 5, or Pascal 1.1 languages as described
in the respective reference manuals. For NOS procedure writers, this manual assumes a
knowledge of the structure and use of NOS procedures as described in the NOS 2 Reference
Set, Volumes 2 and 3.

ORGANIZATION

This manual is organized according to the major components of the screen formatting
feature. The first section gives an overview of NOS screen formatting and its major
components. Each of the remaining sections provides a detailed description of one of the
components.

The last page of this manual is a comment sheet. Please use this comment sheet to give us
your opinion on the manual's usability, to suggest specific improvements, and to report
technical or typographical errors. If the comment sheet has already been used, you can mail
your comments to:

Control Data Corporation
Publications and Graphics Division ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55112

Please include the manual title, publication number, and revision level with each inquiry,
and indicate whether or not you would like a reply.

60460430 B 5

CONVENTIONS

Within statement and command format lines, uppercase letters represent words or characters
that must be entered exactly as shown. Lowercase letters represent names and values that
you supply.

Numbers are assumed to be decimal unless otherwise noted.

In this manual, we refer to the keys as they are labeled on the Viking 721 terminal.
Although these are physical keys on the Viking 721, they are also logical keys on other
supported terminals. (Refer to appendix G for more information on these keys for the
system-defined terminals.) For example, all terminals have an equivalent to the CDC® Viking
721 NEXT key, although the key has different names on different terminals (such as RETURN,
NEWLINE, and SEND).

RELATED MANUALS

Readers of this manual may want to refer to one or more of the following manuals.

Control Data Publication

NOS Version 2 Reference Set, Volume 2
Guide to System Usage

NOS Version 2 Reference Set, Volume 3
System Commands

FORTRAN Version 5 Reference Manual

COBOL Version 5 Reference Manual

Pascal Version 1.1 Reference Manual

Publication Number

60459670

60459680

60481300

60497100

60497700

These manuals are available through Control Data sales of fices or Control Data Literature
Distribution Services (308 North Dale, St. Paul, Minnesota 55103).

6

DISCLAIMER

This manual describes a subset of the
features and parameters documented in Volume
3 of the NOS 2 Reference Set and the
programming language reference manuals.
Control Data cannot be responsible for the
proper functioning of any features or
parameters not described in these manuals.

60460430 B

1. INTRODUCTION

What is Screen Formatting?
Screen Formatting for NOS Procedures
Screen Formatting for Application

Programs

2. PANEL DEFINITION UTILITY

Panel Definition File
Title Line
Declaration Section

Format of Declaration Statements
Physical and Logical Attributes
Declaration Statements
Validation of Variable Input

Values
Image Section

PDU Connnand
ULIB Command

3. SCREEN FORMATTING OBJECT

NOS System Considerations

ROUTINES

Linking to Screen Formatting
Routines

Displaying Your Panel
Panel Library Search Order
Screen and Line Modes

Programming Considerations
Call Formats
Variable Types
Input and Output Variables

Object Routines
SFCLOS (panelname,mode)
SFCSET (codeset)
SFGETI (fieldname,value)
SF GE TR (fieldname,value)
SFGETK (type, value)
SFGETP (fieldname,index,row)
SFOPEN (panelname,status)

60460430 B

CONTENTS

1-1

1-2
1-3

1-4

2-1

2-1
2-2
2-2
2-3
2-4
2-5

2-18
2-19
2-21
2-22

3-1

3-1

3-1
3-2
3-3
3-3
3-4
3-4
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13

SFPOSR (tablename,row)
SFSETP (fieldname,index,row)
SFSREA (panelname,instring)
SFSSHO (panelname,outstring,

inst ring)
SFSWRI (panelname,outstring)

4. NOS PROCEDURES IN SCREEN MODE

Procedure Execution
Screen Mode Procedure Format

Message

5.

Title
Page Number
Parameter/Menu Selection Lines

Interactive Parameter Prompts
Menu Selection Prompts
Procedure/Menu Prompt

Help Title
Help
Function Key Labels

TERMINAL DEFINITION UTILITY

Terminal Capabilities
Terminal Definition File
Statement Format
Statement Types

Required Capabilities
Attribute Statements
Cursor Positioning Statements
Set Size Statement
Initialization Output Statements
Input/Output Statements
Input Statements

CDC Standard Function Keys
Programmable Function Keys

Output Statements
Logical Attribute Statements
Line Drawing Statements

TDU Command

3-14
3-15
3-16

3-17
3-18

4-1

4-1
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-9
4-9

5-1

5-1
5-3
5-4
5-5
5-7
5-7
5-10
5-11
5-12
5-12
5-14
5-15
5-16
5-17
5-19
5-19
5-21

7

A. CODE SET CONVERSION

B. DIAGNOSTIC MESSAGES

PDU Syntax Error Messages
PDU Summary Error Messages
Program Dayf ile Error Messages
TDU Syntax Error Messages

C. GLOSSARY

D. SAMPLE PROGRAMS

FORTRAN Program ANGLE3
COBOL ·Program ESTIMAT
Pascal Program TRAIN

1-1 Formatted Screen Display
1-2 Data Entry Panel with Line
2-1 Panel Definition File
2-2 TRYIN Panel Display

Drawings

4-1 Interactive Procedure Display
4-2 Menu Procedure Display
4-3 Interactive Procedure Display with

HELP Text
4-4 NOS Procedure Screen Format
D-1 FORTRAN Program ANGLE3

2-1 Declaration Statements
3-1 Variable Type Notation
3-2 Screen Formatting Object Routines

8

APPENDIXES

A-1

B-1

B-2
B-5
B-7
B-9

C-1

D-1

D-1
D-7
D-14

E. STATIC LOADING OF PANELS

Panel Load Table Format

F. MIGRATION GUIDELINES

Panel Syntax
Panel Format
Standard Languages
Character Sets
Optimizations

G. TERMINAL KEY LABELS

INDEX

FIGURES

1-3 D-2 TRYIN Panel Definition File
1-4 D-3 TRYOUT Panel Definition File
2-2 D-4 MSGOVLl Panel Definition File
2-3 D-5 MSGOVL2 Panel Definition File
4-2 D-6 BLNKOVL Panel Definition File
4-3 D-7 COBOL Program ESTIMAT

D-8 PANELl Panel Definition File
4-4 D-9 PANEL2 Panel Definition File
4-5 D-10 Pascal Program TRAIN
D-2 D-11 TRAIN Panel Definition File

TABLES

2-5
3-4
3-6

4-1 Programmable Function Keys
A-1 Code Conversion Chart
G-1 Function Keys on System-Defined

Terminals
G-2 Attributes Available on Supported

Terminals

E-1

E-1

F-1

F-1
F-1
F-1
F-1
F-1

G-1

D-4
D-5
D-6
D-6
D-6
D-7
D-12
D-13
D-14
D-15

4-10
A-1
G-2

G-5

60460430 B

INTRODUCTION 1

The NOS screen formatting feature provides full-screen input and output capabilities for NOS
procedures and for FORTRANS, COBOLS, or Pascal 1.1 application programs. This manual
describes the modifications and utilities for screen formatting capabilities and how to use
them. Procedures require no special modifications to take advantage of full-screen
parameter prompting. Existing procedures can be executed in full-screen mode without
modification.

Application programs and NOS procedures written to run in full-screen mode can be run on
almost any display terminal. The extent to which you can use screen formatting depends on
the type of terminal you have. Generally, Control Data supports full-screen mode on any
display terminal, although some terminals have capabilities that make screen formatting more
usable. For more information about these needed capabilities, refer to section S. Terminal
capabilities and keys can be defined for full-screen use by using the terminal definition
utility (TDU). Seven terminals are already system-defined for use of screen formatting and
Full Screen Editor (FSE). These terminals are:

• CDC Viking 721

• CDC 722

• Tektronix 4115

• Zenith Zl9/Heathkit H19

• DEC VTlOO

• Lear Siegler ADM3A

• Lear Siegler ADMS

Full-screen displays for application programs are called panels. Panels are stored in user
libraries in load capsule format. Your application programs access panels through special
screen formatting object routines. A screen definition named in a subroutine read or write
operation causes the screen to be displayed at the terminal. Any input or output data that
is entered or displayed on the screen is passed between the program and the terminal as
parameters of the object routine.

60460430 B 1-1

WHAT IS SCREEN FORMATTING?
Interactive job processing can be divided into two types: line mode and screen mode. As
the name implies, line mode processing handles terminal input and output one line at a
time. In response to a system or program prompt, you type in one line of data and submit
the line for processing by pressing the NEXT key (carriage return). Pressing the NEXT key
sends the line to the CPU for validation checking and execution. If the line contains
validation errors, the system prompts you to reenter the line. The system will not display
the next prompt until the current line has been properly entered. You can think of line
mode entry as a question and answer session in which you must answer each question correctly
before moving on to the next one.

In screen mode processing, you are presented with an entire screen of information at one
time. The screen can be formatted to display information and to request user input, just as
the same information might be formatted on a printed page. Figure 1-1 is an example of a
formatted screen.

The screen may contain parameter or variable fields for you to fill in. If so, you may
enter the values in any order. To move from one input field to the next, press the tab key
(the default entry sequence proceeds from the first field on the screen to the last). The
terminal capability that provides tabbing from one input field to the next is called
protected tabbing. To enter input in nonsequential order or to modify values entered
previously, move the cursor to the fields using the cursor control keys.

You can go back and correct any values entered previously; none of the values are submitted
for processing until you are finished with the screen. When satisfied that all entries are
correct, press the NEXT key (or another function key, depending on what you have specified
in the application) to submit the entire page of data for processing.

When using any terminal that does not support protected tabbing, the tab key must be
followed by pressing the key corresponding to NEXT. On these other terminals, you may press
the tab key more than once before pressing the NEXT key to position the cursor ahead more
than one input field. Any programmable function key will act as a tab key if it is not
defined in the panel definition file.

1-2 60460430 B

To find the area of a triangle:

Enter values for Si de A:

Side B:

Side C:

Press: NEXT to execute.
F6 to quit.

Figure 1-1. Formatted Screen Display

NOS screen formatting is a set of software tools that makes screen mode display capabilities
available to the application programmer and NOS procedure writer. For application
programmers, these tools include:

• Utilities and procedures used to create screen definitions and to maintain screen
definition libraries.

• Subroutines used to access screen definitions and use them to perform data input and
output operations.

SCREEN FORMA TYING FOR NOS PROCEDURES

For NOS procedure writers, screen mode parameter display is an automatic system feature.
Once you have entered a SCREEN command (as described in the NOS 2 Reference Set, Volume 3),
the system automatically presents all subsequent parameter displays in a system-defined,
full-screen format. Full-screen parameter display requires no modifications to existing
procedure files, although a knowledge of the screen mode formats and features will help you
make the most effective use of full-screen display capabilities when writing procedures in
the future. The use of NOS procedures in screen mode is described in section 4 of this
manual.

60460430 B 1-3

SCREEN FORMATTING FOR APPLICATION PROGRAMS

In NOS screen formatting, a full-screen data display used by an application program is
referred to as a panel. The panels for a given program are designed by the application
programmer. When creating a panel, you can use any type of screen display (such as blank
forms, menus, and information display tables) that suits the needs of the program. Using
line drawings, you can produce a screen facsimile of a printed form such as the one shown in
figure 1-2. If supported on your terminal, you can also incorporate special display features
such as blinking characters or inverse video into your panels. (Refer to appendix G for a
description of attributes that are available on the system-defined terminals.)

The creation of panels is the function of the panel definition utility (PDU) described in
section 2. That section includes a description of the declaration statements and formats
used to create a panel definition within an ordinary NOS text file. Also described are two
commands used for file maintenance, PDU and ULIB. The PDU command compiles a panel
definition file and stores it in a user library, while the ULIB. command creates or modifies
libraries or library records containing compiled panels.

Once stored in a library, a panel can be accessed by your application program using the
screen formatting object routines described in section 3. Each of the object routines
performs a specific function related to data input and output at the terminal. These
functions include opening and closing panels, reading and writing data using panels,
determining the last function key pressed or the last cursor position at which data was
entered, and so on.

Name:

Organization:

Street Address:

City

PRESS: NEXT
f 1
f 6

ADDRESS CARD

Phone:
() --- -----

State: Zip:

to enter card and get another blank card.
to enter card and return to main program.
to return di re ct Ly to main program.

Figure 1-2. Data Entry Panel with Line Drawings

1-4 60460430 B

PANEL DEFINITION UTILITY 2

The creation of a panel involves three steps:

• Creation of a panel definition file

• Compilation of the definition file into a load capsule

• Storage of the capsule in a user library

This section explains how to create a panel definition file using a standard NOS text editor
and text file. Also described are the PDU and ULIB commands. The PDU command compiles a
panel definition file into load capsule form and stores it in a user library. The ULIB
command simplifies panel library maintenance tasks.

PANEL DEFINITION FILE

A panel definition file is a NOS 6/12-bit display code text file that describes how a panel
appears on the screen, and how user input to the panel is to be handled. It consists of
three parts, an optional title line, a declaration section, and an image section. All three
parts are contained in the same text file.

Figure 2-1 shows an example of a panel definition file. The title line contains the file
name, TRYIN. The declaration section follows the title line and consists of a block of
definition statements enclosed in braces. The image section consists of all file lines
following the last line of the declaration section. Figure 2-2 shows the panel produced by
the file in figure 2-1.

A panel definition file image can contain up to 64 lines of up to 160 columns. The amount
of material that will be displayed on the terminal depends on the size of the terminal
screen. If the terminal allows more than one size, the screen will be set to the smallest
size which can contain the panel.

The panel definition file can be created using any NOS text editor. The NOS 2 Full Screen
Editor is particularly well suited to this purpose because it allows you to create and
display the panel image in screen mode, much as the finished panel will appear when
displayed on the screen.

60460430 B

I NOTE I
To ensure the correct functioning of PDU and
screen formatting facilities, files should
be created and edited as NOS 6/12-bit
display code files.

2-1

TITLE LINE

TRY IN
{ VAR RSIDE1 T=REAL F=E R=CO. 999999999.)

HELP= 'Enter positive integer or real value'
VAR RSIDE2 T=REAL F=E R=CO. 999999999.)

HELP= 'Enter positive integer or real value'
VAR RSIDE3 T=REAL F=E R=CO. 999999999.)

HELP= 'Enter positive integer or real value'
KEY NORMAL=CNEXT)
KEY ABNORMAL=CF6)}

To find the area of a triangle:

Enter values for Side A:

Side B:

Side C:

Press: NEXT to execute.
F6 to quit.

Figure 2-1. Panel Definition File

The title line is optional and is included to provide compatibility with NOS text record
formats. If it is included in a panel definition file, the title line must be the first
line in the file, must start in column one, and must contain only the name of the file,
typed in uppercase characters.

DECLARATION SECTION

The declaration section defines the characteristics of any variable (input/output) fields in
the panel and any nondefault terminal or display features, such as inverse video, blinking
characters, or specially defined function keys. The declaration section is composed of a
number of declaration statements. Each declaration statement defines a unique variable
field or display feature (or combination of features).

2-2 60460430 B

To find the area of a triangle:

Enter values for Si de A:

Side B:

Si de C:

Press: NEXT to execute.
F6 to quit.

Figure 2-2. TRYIN Panel Display

The beginning and end of the declaration section are marked by the opening and closing
braces, respectively. The opening brace must be the first character in the first line of
the definition file, or the first character in the first line following the title line, if a
title line is used. Any characters following the closing brace on the last line of the
declaration section are ignored.

Format of Declaration Statements

Each declaration statement consists of a statement name followed by one or more parameters.
Statement names and parameters are separated by at least one blank space. Declaration
statements are written in free format; multiple statements, separated by semicolons, can be
written on the same line and a single statement can be continued on multiple lines by ending
each continued line with an ellipsis.

Declaration statement parameters are of the form keyword=value. If parameters are specified
in the order shown in the format descriptions, the keyword and equal sign may be omitted.
All keywords can be abbreviated, using only the first character of the keyword name.

Declaration statements can be written in uppercase or lowercase; PDU does not distinguish
between uppercase and lowercase characters except for character strings enclosed in
apostrophes (''). Comments are inserted into the declaration section by enclosing them in
quotation marks (" "). PDU ignores all data enclosed in quotation marks.

The following example shows a sample declaration section that defines five variable fields.
The first three lines define three variables called A, B, and C. These variables are
defined as type character, type integer, and type real, respectively. The next line defines
a fourth variable called PAGE, which is of type character. The declaration statement for
the fifth variable, NUMBER, begins on the fourth line and continues onto the two following
lines. NUMBER is an integer variable with an initial value of O.

60460430 B 2-3

{var name=a type=char
var n=b t=int
var c real
var page char; var number

int •••
0}

Physical and Logical Attributes

Some of the declaration statements allow you to specify physical or logical display
attributes. You can assign these attributes to particular character strings in your panel
to highlight important information or distinguish between different types of data.

Physical attributes explicitly identify display characteristics you choose to use in various
situations. Examples of physical attributes include blinking, alternate intensity, inverse
video, and color.

When writing application programs using physical display attributes, remember that all of
these attributes are not available on all terminals. If an attribute is not available, it
may be mapped into another attribute or ignored. Refer to appendix G for more information
on which attributes are available on the system-defined terminals.

Logical attributes specify display characteristics in terms of the logical function of a
character string. The logical attributes recognized are:

• Input text

• Output

- Text
- Italic (alternate font)
- Title
- Informative message
- Error message

For a particular terminal, each of these logical attributes can have a unique set of
physical attributes associated with it. When you assign a logical attribute to a character
string, you cause the user's terminal to display the character string using the associated
physical display characteristics for that terminal.

There are a number of advantages to using logical, rather than physical, attribute
specifications:

•

•

•

2-4

Logical attributes allow you to specify that different types of data are to be
displayed differently without explicitly defining the physical display
characteristics for each type of data.

Logical attributes provide flexibility with respect to differing terminal models and
capabilities. Since all terminal-dependent display characteristics are handled in
the terminal definition software, panels defined in terms of logical display
attributes do not require modification for new or different terminal models.

Logical attributes promote uniformity in panel formats •

60460430 B

Declaration Statements

Table 2-1 gives a brief description of each of the declaration statements. The table is
followed by a detailed description of each statement and the maximum number of times you can
use the statement in one file.

Table 2-1. Declaration Statements

Statement Description

ATTR

BOX

KEY

PANEL

TABLE

TABLE ND

VAR

Defines physical or logical display characteristics used in the
panel (maximum of 32).

Defines the character that indicates positions of lines and
boxes in the panel (maximum of 32 with up to 256 distinct
edges, corners, or intersections).

Defines function keys recognized by the program (maximum of 30).

Defines an overlay panel.

Defines a variable table (maximum of 32).

Indicates the end of the list of variables associated with a
TABLE statement (maximum of 32).

Defines a variable field (maximum of 256).

The statement descriptions use the following format conventions:

Convention

(underline)

() (parentheses)

[] (brackets)

Description

Underlined characters indicate acceptable abbreviations for
parameter keywords and values. Keywords and the following equal
sign can be omitted if parameters are specified in the order
shown in the format specifications.

Parentheses indicate that more than one value can be specified
for a parameter. Individual values in a list of values must be
separated by at least one space.

Brackets indicate optional parameters. Parameters listed
vertically within brackets indicate that only one of the listed
parameters can be specified.

For clarity of presentation, parameters shown in the statement formats are listed on
separate lines using ellipses. When writing declaration statements, however, you may use
any of the format options described under Format of Declaration Statements earlier in this
section.

60460430 B 2-5

ATTR Statement

The ATTR statement defines a set of delimiters and associates them with one or more
displayable attributes. Character strings bracketed by the delimiters in the image section
are displayed (in the panel) with the associated display attributes. An ATTR statement can
specify either a logical attribute or one or more physical attributes, but logical and
physical attributes cannot both be used in the same statement.

The format of the ATTR statement is:

ATTR DELIMITERS='xy' •••

[
!HYSICAL=(attr1 attrz ••• attrn)J
LOGICAL=attr

The ATTR statement parameters are:

2~

Parameter

~ELIMITERS='xy'

PHYSICAL=(attr1 attrz •••
attrn)

Description

x specifies the beginning delimiter and y specifies the
ending delimiter that will surround the fields or strings
to have the attribute or attributes being defined. x and
y can be the same or different characters. The delimiters
must be enclosed in apostrophes.

Specifies a physical display attribute or combination of
attributes to be associated with the delimiters. The
PHYSICAL parameter cannot be specified if the LOGICAL
parameter is specified. If more than one attribute is
specified, the attribute list must be enclosed in
parentheses. An attribute list can contain one or more of
the following physical attributes:

Attribute

ALTERNATE

BLINK

INVERSE

UNDERLINE

BLACK
RED
GREEN
BLUE
YELLOW
MAGENTA
CYAN
WHITE

Description

Alternate intensity character display.

Blinking character display.

Inverse video display.

Underlined character string.

Colors.

60460430 B

Parameter

LOGICAL=attr

Example:

Description

Specifies a logical display attribute to be associated with
the delimiter. The LOGICAL parameter cannot be specified
if the PHYSICAL parameter is specified. attr can be any
of the following logical attributes:

Attribute Description

INPUT Input text.

TEXT Output text.

ITALIC Alternate output text.

TITLE Titles.

MESSAGE Informative message text.

ERROR Error message text.

The following ATTR statement defines a combination of physical display attributes. These
attributes define the display characteristics for any character strings delimited by
brackets in the definition file image section.

ATTR '[]' P=(BLINK RED)

60460430 B 2-7

BOX Statement

The BOX statement defines a termination character for the panel. The termination character
is used to define endpoints or corners of lines, rectangular boxes, and other line figures.
More than one termination character can be defined for a single panel, but each must be
defined in a separate BOX statement.

Some terminals have special line drawing capabilities that allow you to display figures
constructed of horizontal and vertical lines. PDU allows you to use these capabilities to
add boxes or other line drawings to your panels.

You draw figures in the panel image using three different characters. Vertical lines are
represented by the vertical bar, which may appear as I or I depending on the terminal.
Horizontal lines are drawn with the dash (-). The last character is the termination
character, which defines corners or endpoints of a line. You may use any character as the
termination character, but you must first define the character using a BOX declaration
statement in the declaration section. If you define the asterisk as the termination
character, a horizontal line will look like this:

While a rectangular box looks like this:

I
I

Here are some important points to remember when creating line drawings in your panels:

•

•

2-8

You may define more than one termination character for a panel. Since you can
associate any of the physical or logical display attributes with a given termination
character, using more than one termination character allows you to specify different
display attributes for different figures.

Different terminal models vary in their ability to display line drawings. Terminals
capable of replacing your line drawing characters with neatly drawn lines will do
so, but other terminals may only be able to reproduce the characters you have used
in your panel image.

60460430 B

The format of the BOX statement is:

BOX TERMINATOR='c' •••
(~IGHT=weight •••

[
!HYSICAL=(attr1 attr2 ••• attrn)]
LOGICAL=attr

The BOX statement parameters are:

Parameter

TERMINATOR='c'

~EIGHT=weight

.!HYSICAL=(attr1 attr2 •••
attrn)

LOGICAL=attr

KEY Statement

Description

Defines the line termination character. c can be any
printable graphic character and must be enclosed in
apostrophes. You cannot mix different termination
characters within the same connected line figure. For
example, you must use the same termination character for
all four corners of a rectangle.

Specifies the line weight for lines or figures defined by
the termination character. Values that can be specified
for weight are FINE, MEDIUM, and BOLD; FINE is the default
value •

Specifies a physical display attribute or combination of
attributes for lines drawn using this termination
character. The PHYSICAL parameter cannot be specified if
the LOGICAL parameter is specified. If more than one
attribute is specified, the attribute list must be
enclosed in parentheses. The physical attributes that can
be specified are listed in the ATTR statement description.

Specifies a logical display attribute for Lines drawn
using this termination character. The LOGICAL parameter
cannot be specified if the PHYSICAL parameter is
specified. The logical attributes that can be specified
are listed in the ATTR statement description.

The KEY statement defines which function keys terminate user input to the panel, allow match
advancing, or provide help information. You may specify a normal or abnormal return for
keys defined in a KEY statement. A normal return means that data the user has entered is
checked against the validation requirements specified in the associated VAR statement(s).
If any variable fails to meet validation requirements, the calling subroutine prompts for a
corrected entry before returning control to the program. Thus, a normal return will not
allow program execution to resume until all user input meets validation requirements. On
the other hand, pressing a function key defined with an abnormal return causes input to be
returned to the program immediately with no validation checking.

You may also define a key as a match advancing type key. If pressed within an input field
with match validation defined, the next value in the match list will be placed in the field
(starting at the first value in the list and wrapping back to it after all values have been
displayed).

60460430 B 2-9

Your program can detect which function key was pressed by calling the SFGETK object
routine. (SFGETK is described in section 3.) SFGETK returns a value to your program
indicating which key the user pressed. Your program can use that value to determine what to
do next.

If you define a KEY statement or statements for a panel, all function keys except the HELP
key and the keys you define in the KEY statements will act as tab keys.

If you do not specify any KEY statements for a panel, all function keys except STOP and HELP
will cause a normal return. STOP causes an abnormal return.

The KEY statement may be used to define any key as a HELP key. The HELP key (or any other
key defined as help) functions as follows:

• If the cursor is positioned in a variable field for which a help string is defined
(by the VAR statement HELP parameter), pressing the HELP key displays the help
string in the message field (top line of the panel).

• If the cursor is positioned in a variable field for which no help string is defined
and if the HELP key has been defined in a KEY statement, pressing the HELP key
returns control to the application program (norm.ally or abnormally as specified in
the KEY statement).

• If the cursor is positioned in a variable field for which no help string is defined
and if the HELP key was not defined in a KEY statement, pressing the HELP key
displays the following message:

2-10

Please enter

When defining function keys, remember that
only Fl through F6 and the NEXT key may be
defined on some user-defined terminals. If
you define keys at all, you must provide at
least one key defined as normal or abnormal
for the purpose of exiting any application
screen. (This must be done since, if any
keys are defined, all the rest of the
undefined keys act as tabs.) For
compatibility with Control Data software,
all application programs should recognize
the NEXT key, or its equivalent, as a normal
return.

For more information on function keys
available on the system-defined terminals,
refer to appendix G.

60460430 B

The format of the KEY statement is:

KEY _!'!ORMAL=(keyl key2 ••• keyn)
!BNORMAL=(keyl key2 ••• keyn)
~TCH=(keyl key2 ••• keyn)
_!!ELP=(keyl keyz ••• keyn)

The KEY statement parameters are:

Parameter

!ORMAL=(key1 keyz
keyn)

~NORMAL=(keyl key2 •••
keyn)

~TCH=(keyl key2 •••
keyn)

.!!_ELP=(keyl key2 •••
keyn)

Example:

Description

Specifies the function key or keys that cause a normal
return to the application program. If more than one key
name is specified, the list must be enclosed in
parentheses. To specify a shifted programmable function
key, insert the word SHIFT before the key name. Key names
that can be specified include any of the programmable
function keys (Fl through Fl6) and any of the following
CDC standard function keys:

NEXT
HELP
BACK
STOP
FWD
BKW
UP
DOWN

Refer to appendix G for more information on these keys.

Specifies the function key or keys that cause an abnormal
return to the application program. Key names that can be
specified are the same as for the NORMAL parameter.

Defines one or more function keys which can be pressed to
provide values for an input field. When positioned in an
input field that has match validation, pressing the
defined key fills the field with the first value contained
in the match list from the VAR statement. Pressing it
again fills the field with the next value consecutively.
It wraps to the first value when all other values have
been used •

Defines a key or keys to be used for obtaining HELP
information.

The following VAR and KEY statements define key Fl such that when you are positioned in the
COLOR input field, pushing Fl will fill the field with the value red. Each time Fl is
pushed, the field is filled with the next value in the string.

VAR COLOR MATCH=(red,green,blue,yellow)
KEY NORMAL=(FWD NEXT) MATCH=Fl

60460430 B 2-11

Example:

The following KEY statement defines three function keys that cause a normal return and two
keys with an abnormal return.

KEY N=(NEXT HELP Fl) A=(F6 STOP)

PANEL Statement

The PANEL statement identifies a panel as being either a primary panel or an overlay panel.

An SFSREA or SFSSHO subroutine call to a primary panel causes the screen to be cleared
before the panel is displayed. An overlay panel modifies the current screen display without
first clearing the screen. When an overlay panel is displayed, nonblank lines in the
overlay panel overwrite the corresponding lines in the current screen display. Blank lines
in the overlay panel leave the corresponding lines in the screen display unchanged.

Any number of overlay panels can be written to the screen simultaneously. Overlay panels
may overwrite portions of other overlay panels.

Overlay panels may contain input and output fields, but all input variables appearing on the
screen at any given time must belong to the same panel. In other words, if an overlay panel
contains input variable fields, the panel must overwrite all displayed lines containing
input variable fields.

The format of the PANEL statement is:

PANEL NAME=panelname
!YPE=type

The PANEL statement parameters are:

Parameter

!_AME=panelname

.!_YPE=type

2-12

Description

Specifies the name of the panel to be modified; if
specified, it must be the same as the panel definition
file name. This parameter is optional •

Specifies the panel type as either PRIMARY or OVERLAY;
PRIMARY is the default value. Currently, if PRIMARY is
specified, the PANEL statement serves only to document the
panel type. If type is specified, the panel is an overlay
panel.

60460430 B

TABLE Statement

The TABLE statement, in conjunction with the VAR and TABLEND statements, defines a table
data structure (two-dimensional array) for panel variables. Tables provide an easy way of
manipulating repeated sets of variables. Each row of the table comprises one set of
variables, so any variable value in the table can be accessed by using its variable name and
row number. Rows are numbered consecutively, starting with row 1.

The format of the TABLE statement is:

TABLE NAME=tablename
ROWS=numbe r

The TABLE statement parameters are:

Parameter

NAME=tablename

ROWS=numbe r

Description

Specifies the name of the table; the name can be from one
to seven alphanumeric characters.

Specifies the number of table rows; number must be an
integer. The maximum table length is determined by the
user's terminal screen size. The results are
unpredictable if the length of a defined table exceeds the
number of text lines available on a terminal screen.

The actual table definition (as it appears in the declaration section) begins with a TABLE
statement and ends with a TABLEND statement. The TABLE statement specifies the table name
and the number of rows in the table. The TABLE statement is followed by a series of VAR
statements, one for each variable in a table row. The TABLEND statement marks the end of
the list of VAR statements associated with the table.

The following example shows a simple table definition as it might appear in the declaration
section of a panel definition file:

TABLE MAILIST 4
VAR NAME
VAR ADDR
VAR PHONE

TABLE ND

This table definition defines a table called MAILIST, which consists of four rows of three
variables each. The MAILIST definition implies a 4 by 3 variable array, which can be
pictured like this:

NAME ADDR PHONE .

Row 1 name, 1 addr,l phone, 1

Row 2 name,2 addr,2 phone,2

Row 3 name ,3 addr ,3 phone,3

Row 4 name ,4 addr,4 phone,4

60460430 B 2-13

For each table variable defined in the declaration section, you must define a corresponding
variable field in the image section. In other words, if you define a table with m variables
and n rows, you must define m times n variable fields. As an example, the following lines
could be used to define the variable fields for the MAILIST table:

Name Address Phone

(612)
(612) -----

(612) ----
(612) -----

You can place the variable fields for a given table row on two or more image lines (that is,
you do not have to put them all on the same line). The following is an alternate way of
displaying the MAILIST table:

Name:
Address: Phone: (612)

Name:
Address: Phone: (612)

Name:
Address: Phone: (612)

Name:
Address: Phone: (612)

You can also put more than one table row on the same image line. For example, here is a
third possibility for displaying the MAILIST table:

Name Address Phone Name Address Phone

(612) (612)
(612) -----

(612) -----

When designing panels with tables, you can freely intermix constant data in the image
section (such as the area codes in the above examples) with the table fields. Lines and
boxes can be drawn between and around table variable fields.

TABLEND Statement

The TABLEND statement indicates the end of the list of VAR statements associated with the
preceding TABLE statement.

The format of the TABLEND statement is:

TABLE ND

2-14 60460430 B

VAR Statement

The VAR statement defines the characteristics of a panel variable field. Each VAR statement
in the declaration section must have a corresponding variable field in the image section.
VAR statements are associated with their corresponding variable fields by order of
appearance: the first VAR statement defines the first variable field, the second statement
defines the second variable field, and so on.

The format of the VAR statement is:

VAR NAME=fieldname •••
[TYPE=type) •••
[VALUE=string] •••
[FORMAT=c] •••
[~TCH=(stringl stringz ••• stringn)J •••
[RANGE=(low high)] •••

[
::[HYSICAL=(attr1 attrz ••• attrn)J···
LOGICAL=attr

[ENTRY=conditionJ •••
(IO=statusJ •••
([ELP=string]

The VAR statement parameters are:

Parameter

NAME=f ieldname

!,YPE=type

~ALUE=string

60460430 B

Description

Specifies a variable field name, one to seven characters
long.

Specifies whether the variable format is integer,
character, or real. Values that can be specified for type
are INT, CHAR, and REAL; CHAR is the default value.

Specifies an initial value for the variable field. This
value is displayed only when a panel is initially
displayed by an SFSREA routine; that is, when a panel is
opened by an SFOPEN subroutine call and read by an SFSREA
call, with no intervening SFSWRI subroutine call. SFOPEN,
SFSREA, and SFSWRI are described in section 3. The user
can accept the displayed value or write over it. The
value specified for string must match the variable type
declared in the TYPE parameter, as follows:

Type

CHAR

INT

REAL

Description

string must be a character string enclosed in
apostrophes.

string must be an integer in the N format
(refer to the FORMAT parameter description).

string must be a real number in the E format
(refer to the FORMAT parameter description).

2-15

Parameter

FORMAT=c

Description

Specifies the acceptable input format for the variable.
This parameter does not reformat or otherwise affect the
contents of the field. c can be any of the following
format codes; however, the code specified must be
compatible with the variable type as specified in the TYPE
parameter. All formats allow trailing spaces in the
variable field unless (MUST FILL) is specified for the
ENTRY parameter~

Code

x

A

9

N

$

YMD

MDY

DMY

E

Description

Allow any characters; this is the default value
if TYPE=CHAR is specified.

Allow only alphabetic characters.

Allow only numeric characters.

Allow numeric characters with or without a
leading sign; this is the default value if
TYPE=INT is specified.

Allow currency characters. A leading $
character is ignored and up to two digits are
allowed after the decimal point. Commas are
ignored.t

Allow date entry in YY/MM/DD format.

Allow date entry in MM/DD/YY format.

Allow date entry in DD/MM/YY format.

Allow real number entry in a format
corresponding to the FORTRAN E format; that
is, a leading sign, decimal point, and signed
exponent (scientific notation) are allowed in
addition to the digits that comprise the base
of the number. This is the def~ult value if
TYPE=REAL is specified.

The format codes compatible with each variable type are as
follows:

Type Compatible Codes

CHAR Any

INT 9, N, $, Y, M, or D

REAL 9 , N, $, Y, M, D, or E

trf your site has so chosen, the meaning of the comma and decimal point may be reversed.
That is, the comma may serve as the radix indicator and the period as the digit separator
symbol.

2-16 60460430 B

Parameter

~TCH=(string1 string2
stringn)

!ANGE=(low high)

~HYSICAL=(attr1 attr2 •••
attrn)

LOGICAL=attr

!_NTRY=(condition)

60460430 B

Description

Specifies a list of acceptable values the user can enter
for the variable. This parameter is valid only for
character type variables. The user can enter truncated
forms of a string if enough characters are entered to
uniquely identify the string. If a string contains
nonalphanumeric characters, you must enclose it in
apostrophes; otherwise, apostrophes are optional.

Specifies a range of acceptable values for type integer
or type real variables. low is the lower limit and high
is the upper limit. Both low and high must be of the
type specified for the variable.

For range validation purposes, integer variables with a
FORMAT=$ specification are implicitly scaled (multiplied
by 100). For example, an integer value of $1.50 falls
within the range (125 200).

Specifies a physical display attribute or combination of
attributes to be associated with values displayed in the
variable field. The PHYSICAL parameter cannot be
specified if the LOGICAL parameter is specified. If more
than one attribute is specified, the attribute list must
be enclosed in parentheses. The physical attributes that
can be specified are listed in the ATTR statement
description.

Specifies a logical display attribute to be associated
with values displayed in the variable field. The LOGICAL
parameter cannot be specified if the PHYSICAL parameter
is specified. The logical attributes that can be
specified are listed in the ATTR statement description.

Specifies special conditions pertaining to entry of the
variable. Values that can be specified for condition are:

condition

MUST ENTER

MUST FILL

UNKNOWN

Description

The user must enter a value for the
variable.

The user entry must fill the variable
field; no trailing spaces are allowed.

The user may enter an asterisk when
unsure of what to enter.

2-17

Parameter

IO=status

!!_ELP=string

Validation of Variable Input Values

Description

Defines the input/output status of the variable field
associated with this VAR statement. Values that can be
specified for status are:

status

(IN OUT)

OUT

IN

Description

The field is an input/output field; this
is the default value.

The field is output-only; the program can
display data in the field, but the user
cannot enter data in the field.

The field is input-only; data is never
displayed in the field, either when
entered by the user or during a program
WRITE operation.

Some terminals do not support input-only
fields. On these terminals, pressing any
function key causes all input-only fields
to be overwritten with spaces.

Defines a line of help text for the variable; string is a
character string of up to 79 characters. The help string
defined by this parameter appears in the message field
(top line of screen, left-justified) under either of two
conditions:

• The user presses the HELP key while the cursor is
positioned in this variable field.

• Input to this field does not pass validation.

Calling either the SFSREA or SFSSHO object routine causes any user input to a panel to be
read and validated. (SFSREA and SFSSHO are described in section 3.) Validation involves
checking input values entered by the user against the validation requirements specified in
the TYPE, FORMAT, MATCH, RANGE, and ENTRY parameters of the associated VAR statement. If
all input values pass the validation checking, they are returned to the calling program, and
program execution continues.

If one or more values fails validation, a message appears in the message field, and the
screen cursor moves to the beginning of the variable field in error. The message field is
left-justified in the top line of the panel. If you have defined any help text for the
field in error (using the VAR statement HELP parameter), the help text is displayed in the
message field. If no help text is defined for the field, the following default prompt
appears in the message field:

Please correct

When the user enters a corrected value for the field and resubmits the panel input to the
program, the entire process is repeated for the next variable field in error, if any.

2-18 60460430 B

On a normal return, execution of the calling program is not resumed until all erroneous
input values are corrected. By defining a function key or keys that specify an abnormal
return, however, you provide a way for the user to bypass validation checking. An abnormal
return is a return in which the SFSREA or SFSSHO routine reads the input data and passes it
to the calling program without performing validation checking. Both normal and abnormal
returns are defined using the KEY declaration statement.

Any input erroneously entered outside an input field is blanked out by screen formatting.
Normal input validation will then occur if the user has pressed a function key defined as a
normal termination key. If there are no other input errors, the message

Please confirm

is displayed to give the user an opportunity to verify that the information on the screen is
correct.

IMAGE SECTION

The image section begins on the first line following the declaration section and continues
to the end of the definition file. As the name implies, the image section contains an image
of the panel showing how the panel is to appear on the screen. The image consists of any
combination of: parameter or menu prompts that appear in the panel, other instructive or
informative text, variable field markers, and characters representing lines or boxes drawn
in the panel. All blank lines and spaces in the image section produce a like number of
blank lines and spaces in the resulting panel.

You should usually leave the first line of a panel blank, since diagnostic messages
generated by the screen formatting subroutines are displayed left-justified on the first
line. If information is displayed on the first line, any diagnostic messages returned will
overwrite the information on the screen.

When designing a panel, indicate the positions and lengths of variable fields by underlining
the fields where you want them to appear in the image section. You may position the fields
anywhere in the panel, since variable fields in the image section are associated with
variable (VAR) declaration statements in the declaration section according to the order of
appearance. The first VAR statement is associated with the first variable field, the second
VAR statement is associated with the second variable field, and so on. The number of
underlined characters in a variable field in the panel image should be the same as the
length of the associated character variable declared in your application program.

60460430 B 2-19

The panel image you create in the panel definition file is the same as the resulting panel,
with the following exceptions:

2-20

• Displayable attribute delimiters (as defined in the ATTR statement) are replaced by
spaces, and the text between them is displayed with the attributes you declared.

• The underlines indicating variable fields in the definition file are not displayed
in the panel. Instead, the variable fields are displayed using the input text
display attributes defined for the terminal. For example, the Viking 721 displays
input text with a solid underline, so a 5-character variable field that looks like
this in the definition file:

•

looks like this when displayed in a panel on the Viking 721:

When using terminals that do not support the underline attribute, you can identify
the input fields by using delimiting characters which will appear on the panel. You
may want to identify the input fields by writing your program to fill the field with
a character such as an underscore. These characters would appear in the variable
fields and would be typed over by the user.

Image section characters defining lines or boxes are replaced by solid line
drawings. (This action is subject to the capabilities of the user's terminal. A
high-quality graphics terminal may be able to produce neat boxes and lines with all
the attributes specified in the declaration section, while other terminals may only
be able to reproduce the definition characters you used to define lines in the panel
image. In the latter case, the image and the resulting panel will look very much
alike.)

60460430 B

POU COMMAND
The PDU command calls an interactive procedure that compiles a panel definition and stores
the compiled panel in a user library. The compiled output is a load capsule which the
procedure stores in a user library.

The user library to receive the load capsule must be a local file. If the library file you
specify does not exist as a local file, PDU creates it. If you do not specify a library
file, PDU uses a local file with the default name PANELIB, if one exists. If it does not
exist, PDU creates a local file with the name PANELIB.

In the PDU command format, the parameter keywords and equal signs can be omitted if the
parameters are specified in the order listed. The format of the PDU command is:

PDU,I=panel,L=listing,C=capsule,LIB=library

Parameter

I=panel

L=listing

C=capsule

LIB=library

Description

Name of the panel definition file. The file must be a
6/12-bit display code, and the file name must be the same
as the panel name. The I parameter has no default and
must be specified.

Name of the listing file. The listing file is a copy of
the input file with error messages (if any) interspersed.
The default listing file name is OUTPUT. If L=O is
specified, no listing is generated.

Name of the capsule file. The default capsule file name
is CAPSULE. If C=O is specified, the panel definition
file is compiled and checked for compilation errors, but
no capsule is generated.

Name of_ the library file to receive the encapsulated
panel; must be a local file. The default library file
name is PANELIB. If LIB=O is specified, no library file
is changed.

Since the PDU command is an interactive procedure, you can receive help information for the
procedure and be prompted for parameter entries by entering:

PDU?

60460430 B 2-21

ULIB COMMAND
The ULIB command calls an interactive procedure used to create user libraries and add,
modify, or delete individual records from a user library. Changes made to a user library or
library record affect only the local copy of the library file; a modified library file can
be made permanent by naming it in a REPLACE command. Because ULIB does not allow you to
specify the type of record in a library (for example, CAP or PROC). All records in the
library should have a unique name.

In the ULIB command format, the parameter keywords and equal signs can be omitted if the
parameters are specified in the order listed. The format of the ULIB command is:

ULIB,OP=operation,REC=record,LIB=library

Parameter

OP=operation

REC=record

LIB=library

Description

Specifies the library operation to be performed. The OP
parameter must be specified. Values that can be specified
for operation are:

operation Description

C Create a new user library.

A Add a record to a user library.

D Delete a record from a user library.

R Replace a record in a user library.

F Fetch a record from a user library and
make it a local file. This operation does
not modify the local library file.

Name of the record to be added, deleted, replaced,
fetched, or stored in a user library. The REC parameter
must be specified.

Local file name of the library to be created or accessed.
For any of the actions A, C, D, or R, ULIB returns the
original file and creates a new local file; therefore,
ULIB cannot modify a direct access permanent file. The
LIB parameter must be specified.

Since the ULIB command is an interactive procedure, you can receive help information for the
procedure and be prompted for parameter entries by entering:

ULIB?

2-22 60460430 B

SCREEN FORMATTING OBJECT ROUTINES

Panels used by application programs are defined using the PDU utility and are stored in
libraries. The screen formatting object routines described in this section allow your
FORTRANS, COBOLS, or Pascal 1.1 program to retrieve panels from the libraries they are
stored in and use them to perform terminal input and output operations. Some of the screen
formatting object routines are directly involved in the entry or display of input and output
data at the terminal. Others deal with related tasks, such as determining cursor positions.

NOS SYSTEM CONSIDERATIONS

3

When writing application programs that use screen formatting, you should be aware of some of
the ways that the screen formatting object routines interact with NOS. This subsection
describes these interactions in the areas of library usage and terminal status determination.

LINKING TO SCREEN FORMA TYING ROUTINES

The screen formatting object routines are contained in a system library named SFLIB. A
FORTRANS, COBOLS, or Pascal 1.1 program using these routines must link up to them using the
CYBER Loader.

The following NOS procedure contains commands to load, compile, and execute a FORTRAN
program using screen formatting object routines. The source program in this example is
called MYSOURC, and the absolute program is stored in a file called MYPROG •

• PROC,TRIPROG*I,
MYSOURC"SOURCE FILE"=(*F),
LISTING"LIST FILE"=(*F,*N=LISTING).
REWIND,*.
FTNS,I=MYSOURC,L=LISTING.
LDSET ,LIB=SFLIB.
LOAD,LGO.
NOGO,MYPROG.
MYPROG.
REVERT,NOLIST.
EXIT.
REVERT,ABORT.TRIPROG

60460430 B 3-1

If the source program is written in COBOL, replace the line beginning with FTN5 with:

COBOL5,I=MYSOURC,L=LISTING.

If the source program is written in Pascal, replace the line beginning with FTNS with:

PASCAL,I=MYSOURC,L=LISTING.

After the absolute program has been stored in file MYPROG, MYPROG can be saved in an
existing user library for later use. The following NOS commands save MYPROG in a user
library named MYLIB.

GET,MYLIB.
ULIB,R,MYPROG,MYLIB.
REPLACE,MYLIB.

If MYLIB is a direct access permanent file, use:

ATTACH,LIB=MYLIB.
ULIB,R,MYPROG,LIB.
ATTACH,MYLIB/M=W.
REWIND ,LIB.
COPY, LIB ,MYLIB •

To make MYPROG callable as a command, insert the following commands in your prologue if
MYLIB is an indirect access file. If MYLIB is a direct access file, use ATTACH instead of
GET.

GET,MYLIB,PANELIB/UN=username.
LIBRARY,MYLIB,PANELIB.

The LIBRARY command in this example establishes MYLIB (which contains MYPROG) and PANELIB as
libraries within the global library set. Assuming that PANELIB contains the panels for
MYPROG, MYPROG can now be called simply by entering the command:

MYPROG

You may store the program and its panels in the same library. Refer to the NOS 2 Reference
Set, Volumes 2 and 3, for further information on global libraries and prologues.

DISPLAYING YOUR PANEL

After you have compiled and stored your panel, you can display the panel by entering:

SHOW,panelname.

This command calls an interactive procedure which displays the panel without your having to
write a program to display it. panelname is the name of the compiled stored panel file in
user library PANELIB or in a global library.

3-2 60460430 B

PANEL LIBRARY SEARCH ORDER

When a panel is referenced in a screen formatting object routine call, the object routine
searches panel libraries in the following order:

• A local file named PANELIB

• A global library file

• The system library called PANELIB

SCREEN AND LINE MODES

The screen formatting object routines must know what terminal model is in current use.
Before a program using screen mode displays can be run, either the application user or the
procedure that executes the application program must enter a SCREEN or LINE command
identifying the terminal.

The formats of these commands are:

LINE,model
and

SCREEN,model

model is a user-defined (or site-defined) mnemonic which identifies a terminal. The
mnemonic, which can be up to six characters in length, is the name of a compiled and stored
terminal definition file. Entries for the seven system-defined terminals are:

Entry Terminal

721 Viking 721

722 CDC 722

VTlOO DEC VTlOO

Z19 Zenith Z19 or Heathkit H19

ADM3A Lear Siegler ADM3A

ADM5 Lear Siegler ADMS

T4115 Tektronix 4115

(For more information on defining a terminal, refer to section 5.)

For example, either of the following commands informs the system that the user terminal is a
Viking 721:

LINE, 721

SCREEN,721

After the screen command has been entered, the screen formatting object routines, when
called in an executing program, will set the terminal to screen mode and will have access to
the terminal-dependent information required to perform data input and output functions.

60460430 B 3-3

PROGRAMMING CONSIDERATIONS

Panel-oriented input and output operations are easily integrated into application programs
using the screen formatting object routines described in this section. Some considerations
pertaining to panel usage in application programs follow.

CALL FORMATS

A FORTRANS, COBOLS, or Pascal 1.1 application program calls the screen formatting object
routines using the standard subroutine call format for the language being used.

A FORTRAN call to an object routine is formatted as follows.

CALL objrtn(p1,pz,p3)

objrtn The 6-character name of the object routine.

P1,pz,p3 The object routine parameters.

For COBOL, the object routine call is as follows (the variable values are the same as for
the FORTRAN call).

ENTER objrtn USING Pl P2 P3•

For Pascal, the object routine call is as follows (the variable values are the same as for
the FORTRAN call).

objrtn (pl,p2,p3).

All screen formatting routines called from a Pascal program must be declared as FORTRAN
compatible external procedures. Any parameters which return a value to the calling Pascal
application must be declared with the VAR keyword. Variables containing panel names can be
declared as PACKED ARRAY[l •• 7] OF CHAR. Character strings containing variable data can
similarly be defined as packed character arrays.

VARIABLE TYPES

The object routine descriptions in this section specify the variable type required for each
object routine parameter. Table 3-1 relates the variable type notation (shown under Type)
used in the object routine descriptions to the corresponding FORTRAN and COBOL variable
types.

Table 3-1. Variable Type Notation

Type FORTRAN COBOL Pascal

char CHARACTER 01-level display item CHAR

int INTEGER 01-level COMP-1 INTEGER

real REAL 01-level COMP-2 REAL

3-4 60460430 B

INPUT AND OUTPUT VARIABLES

Input and output data passed between the program and a panel are transferred as a
concatenated character string. In other words, all panel variable values handled by the
read and write object routines (SFSREA, SFSWRI, and SFSSHO) are considered to be of type
character (FORTRAN type CHARACTER, COBOL 01-level display item, or Pascal type CHAR). The
variable values are concatenated, in the order of their appearance in the panel, into a
single variable string.

For example, assume that a panel has three 5-character variable fields specifying types
character, integer, and real, in that order. Also assume that a user enters the following
values into these fields: CAT, 123, and 98.6. The resulting character string returned to
the program is:

Your program must convert the concatenated string into individual variable strings of the
appropriate type. This conversion can be accomplished using the character manipulation and
type conversion facilities of the programming language.

In FORTRAN for example, type conversion can be accomplished by reading and writing internal
files. The following sequence of FORTRAN statements converts the character string from the
preceding example into individual character, integer, and real variables (the variable
string is read from a panel called SAMPLE):

INTEGER I
REAL R
CHARACTER C*5, S*15

CALL SFSREA ('SAMPLE',S)
READ(S,l)C,I,R

1 FORMAT(A5,I5,F5.0)

NOS screen formatting also provides two object routines (SFGETI and SFGETR) that extract
individual values from the concatenated string and convert them to integer or real
variables, as required.

60460430 B 3-5

OBJECT ROUTINES

This subsection describes the screen formatting object routines listed in table 3-2. For
each routine, the six-character object routine name is followed by a list of parameters
enclosed in parentheses. This format is for presentation purposes only. Refer to Call
Formats in this section for a description of the language-dependent subroutine call formats.

3-6

Table 3-2. Screen Formatting Object Routines

Object
Routine Description

SFCLOS

SFCSET

SFGETI

SFGETR

SFGETK

SFGETP

SFOPEN

SFPOSR

SFSETP

SFSREA

SFSSHO

SFSWRI

Unloads a panel after use by the application program.

Specifies the code set that the application program uses for input and
output data.

Returns the integer value of a single variable field.

Returns the real value of a single variable field.

Determines the last function key pressed.

Determines the cursor position when a function key was pressed.

Loads a panel and prepares it for use.

Establishes a current row in a named table (used only with SFGETI and
SFGETR).

Sets the cursor to a selected screen position.

Displays a panel and permits entry of variable values.

Displays a panel with current variable values and permits entry or
modification of variable values.

Displays a panel with current variable values.

60460430 B

SFCLOS (panelname,mode)

The SFCLOS object routine closes (unloads) a panel. Once closed, a panel can no longer be
accessed unless it is reopened by another SFOPEN object routine call. Unloading a
dynamically loaded panel frees the central memory used by the panel. It is not necessary to
close a panel before another panel can be opened. By default, the maximum number of panels
that can be open at one time is 10. Refer to appendix E for information on how to change
the default limit.

The mode parameter specifies whether or not the screen is cleared and the terminal reverts
to line mode when the panel is closed. If the panel specified in an SFCLOS subroutine call
is the last panel displayed by the program, the subroutine call should specify reversion to
line mode.

While debugging a program, it may also be convenient to revert to line mode at other points
within the program. Reverting to line mode clears the screen and allows the terminal to
display messages describing compilation or execution errors that may have occurred.

The SFCLOS parameters are:

Parameter

panel name char

mode int

Examples:

CALL SFCLOS ('MYPANEL',O)

Description

The name of a previously opened panel.

An integer value indicating whether or not the terminal
reverts to line mode after the panel is closed. The mode
parameter must be specified. Values that can be specified
for mode are:

mode

0

1

2

Description

Screen mode; leaves the screen unchanged and
leaves the terminal in screen mode.

Line mode; clears the screen and returns the
terminal to line mode.

Line mode; leaves the screen unchanged and
returns the terminal to line mode.

ENTER SFCLOS USING "MYPANEL" SCREEN-MODE.

SFCLOS ('MYPANEL',O);

60460430 B 3-7

SFCSET (codeset)

The SFCSET object routine specifies the code set used by the application program in
processing subsequent data. If no SFCSET object routine call is made, 6-bit display code is
used.

The SFCSET parameter is:

Parameter

codeset char

Description

The code set required by the program. Values that can be
specified for codeset are:

codes et

DISPLAY

ASCII

ASCII8

Description

Specifies 6-bit display code.

Specifies 6/12-bit display code.

Specifies 7-bit ASCII code, right-justified
in a 12-bit byte.

Appendix A provides a conversion chart showing the display code equivalents of ASCII and
ASCII8 characters.

Examples:

3-8

CALL SFCSET ('ASCII8')

ENTER SFCSET USING "ASCII8".

SFCSET ('ASCII8 ');

I NOTE I
When using Pascal, the parameters must be
exactly seven characters long (padded with
spaces as needed).

60460430 B

SFGETI (fieldname,value)

The SFGETI object routine returns the current value of the named variable field as an
integer value.

The SFGETI parameters are:

Parameter

f ieldname char

value int

Examples:

CALL SFGETI ('FIELDl',I)

Description

The field name of the variable as specified in the panel
VAR statement.

The variable to which SFGETI will return the integer value
of the field specified in fieldname (FORTRAN type INTEGER,
COBOL COMP-1, or Pascal type INTEGER). A value of 0 is
returned if the specified field is all blanks or if an
invalid character was entered in the field.

The value returned is influenced by the VAR statement FORMAT
parameter as follows:

FORMAT
Parameter

9 or N

x

$

YMD, or
MDY, or
DMY

E

Value Returned

An integer value.

An integer value, if any.

The value of the field multiplied by 100.
For example, 2 is returned as 200, 2.50 is
returned as 250, and so on.

The integer value of the data in YMD
format. For example, the following
format and entry combinations all return
the value 830131:

Format

YMD
MDY
DMY

Field Entry

83/1/31
1/31/83
31/1/83

The truncated integer value. For example,
a value of 2.5 is returned as 2, and .25
is returned as O.

ENTER SFGETI USING "FIELDl" FIELDl.

SFGETI ('FIELDl ',I);

60460430 B 3-9

SFGETR (fieldname,value)

The SFGETR object routine returns the current value of the named variable field as a real
variable.

The SFGETR parameters are:

Parameter Type

f ieldname char

value real

Examples:

CALL SFGETR ('FIELD2',R)

Description

The field name of the variable as specified in the panel
VAR statement.

The variable to which SFGETR will return the real value of
the field specified in fieldname (FORTRAN type REAL, COBOL
COMP-2, or Pascal type REAL). A value of 0 is returned if
the field is all blanks or if an invalid character was
entered in the field.

ENTER SFGETR USING "FIELD2" FIELD2.

SFGETR ('FIELD2 ',R);

3-10 60460430 B

SFGETK (type,value)

The SFGETK object routine returns values that define the last function key pressed.

The SFGETK parameters are:

Parameter

type int

value int

60460430 B

Description

The variable to which SFGETK will return an integer
indicating whether the last function key pressed was a CDC
standard function key or a programmable function key. The
options for type are:

type Description

0 Programmable function key.

1 CDC standard function key.

The variable to which SFGETK will return an integer
indicating the last function key pressed. For programmable
function keys, the value corresponds to the keycap
numbering (that is, the value for Fl is 1, for F2 is 2, and
so on). A negative value indicates a shifted function key.
For CDC standard functions, the values are:

value Key

1 NEXT
2 BACK
3 HELP
4 STOP
5 DOWN
6 UP
7 FWD
8 BKW

3-11

SFGETP (fieldname,index,row)

The SFGETP object routine returns values that define the last position of the screen cursor.

The SFGETP parameters are:

Parameter

field name char

index int

row int

Examples:

Description

The variable to which SFGETP will return a value indicating
the field name of the variable field in which the cursor
was last positioned.

The variable to which SFGETP will return a value indicating
the character position within the variable field where the
cursor was last positioned. An index of 1 indicates the
first position> an index of 2 indicates the second position,
and so on.

The variable to which SFGETP will return a value indicating
the row number of the variable field if the variable is an
element of a table. If the variable is not part of a table,
row is returned as O.

CALL SFGETP (CNAME,INDEX>IROW)

ENTER SFGETP USING DISPLAY-NAME COMP-1-INDEX COMP-1-ROW.

SFGETP (CNAME, INDEX, ROW);

3-12 60460430 B

SFOPEN (panelname,status)

The SFOPEN object routine loads a panel and prepares it for use. It also sets the terminal
to screen mode if it is not already in screen mode. To locate the specified panel, the
system searches first a library contained in a local file named PANELIB (if one exists) then
the user's global library set, and finally, the system libraries. SFOPEN does not display
the panel on the screen.

A panel must be opened using SFOPEN before it can be used by any other object routine. If
another object routine attempts to use a panel before the panel is opened, the program is
terminated abnormally.

The SFOPEN parameters are:

Parameter

panel name char

status int

Examples:

CALL SFOPEN ('MYPANEL',ISTAT)

Description

The name of the panel to be opened.

The variable to which SFOPEN will return a value indicating
the results of the attempt to open a panel. A value other
than 0 indicates that the panel could not be opened.
Possible values for status are:

status

0

1

2

3

4

5

6

7

Significance

The panel was successfully opened.

The panel could not be found.

The panel capsule was incorrectly formatted,
probably due to panel definition errors.

Too many panels are already open. By
default, up to 10 panels can be opened at
once. Refer to appendix E for more
information.

The specified panel is already open.

Internal errors occurred; the dayfile
contains an informative message. This
return is provided so the application can
attempt a recovery and exit.

No SCREEN or LINE command identifying the
terminal has been entered.

The terminal in use is not supported by NOS
screen formatting.

ENTER SFOPEN USING "MYPANEL" COMP-1-STATUS.

SFOPEN ('MYPANEL',STATUS);

60460430 B 3-13

SFPOSR (tablename,row)

The SFPOSR object routine establishes a current row in the named table and is used in
conjunction with the SFGETI and SFGETR object routines. Before calling an SFGETI or SFGETR
object routine that references a table variable, your program must call an SFPOSR object
routine to specify the row number of the desired variable value. The row number established
by an SFPOSR subroutine call remains in effect for all subsequent SFGETI and SFGETR object
routines until it is changed by another call to SFPOSR.

The SFPOSR parameters are:

Parameter

tablename char

row int

Examples:

CALL SFPOSR ('TABVARl',2)

Description

The 1- to 7-character name of a table defined by a TABLE
statement in a currently active panel.

The row number of a row in the named table. The value
specified is an integer in the range of 1 to the maximum
number of rows defined for the table.

ENTER SFPOSR USING "TABVARl" COMP-1-ROW.

SFPOSR ('TABVARl',2);

3-14 60460430 B

SFSETP (fieldname,index,row)

The SFSETP object routine sets the screen cursor to a selected input variable field in the
displayed panel. SFSETP can be called prior to an SFSREA or SFSSHO subroutine call to
modify the default variable entry sequence. The default sequence proceeds sequentially from
the first variable field in the panel to the last.

The SFSETP parameters are:

Parameter Type

f ieldname char

index int

row int

Examples:

CALL SFSETP ('PLAINV',1,2)

Description

The name of the variable field in which the cursor is to be
positioned.

The character position within the variable field where the
cursor is to be positioned. An index of 1 indicates the
first position, an index of 2 indicates the second
position, and so on.

The row number of the variable if the variable is an
element of a table. A value of 1 indicates the first row,
a value of 2 indicates the second row, and so on. If the
variable is not part of a table, specify 0 for row.

ENTER SFSETP USING "PLAINV" ONE TWO.

SFSETP ('PLAINV ',1,2);

60460430 B 3-15

SFSREA (panelname,instring)

The SFSREA object routine permits the user to enter input data at the terminal. Data
entered is returned to the application program in instring. If the panel has not been
previously displayed on the screen, SFSREA clears the screen and displays the panel using
initial variable values specified for the panel (specified by the VAR statement VALUE
parameter). If the panel is an overlay, only those lines that the overlay will write are
cleared from the screen by SFSREA.

The SFSREA parameters are:

Parameter

panel name char

inst ring char

Examples:

CALL SFSREA ('MYPANEL',INSTR)

Description

The name of the panel to be used for input.

The variable to which SFSREA will return the input data
entered at the terminal for the panel specified in
panelname. The value returned is a single character string
(FORTRAN type CHARACTER, COBOL 01-level display item, or
Pascal type CHAR) formed by concatenating the contents of
all variable fields in the panel. (For more information,
refer to Input and Output Variables in this section.)

ENTER SFSREA USING "MYPANEL" IN-STRING.

SFSREA ('MYPANEL',INSTR);

3-16 60460430 B

SFSSHO (panelname,outstring,instring)

The SFSSHO object routine displays a selected panel with current variable values, and allows
the user to enter additions or modifications to the variable values which is returned in
instring. If the panel is not already displayed on the screen, SFSSHO clears the screen and
displays it using outstring for the variable field values. If the panel is an overlay,
SFSSHO clears only those lines that the overlay will write. SFSSHO is equivalent to an
SFSWRI object routine followed by SFSREA.

The SFSSHO parameters are:

Parameter

panel name char

out string char

inst ring char

Description

The name of a panel to be used for data input and output.

The variable containing the character data to be displayed
at the terminal. outstring is a single character string
(FORTRAN type CHARACTER, COBOL 01-level display item, or
Pascal type CHAR) formed by concatenating the contents of
all variable fields in the panel. (For more information,
refer to Input and Output Variables in this section.)

The variable to which SFSSHO will return the contents of
all panel variable fields after modification by the user.
Modifications made by the user are displayed in the panel
as they are entered. instring is a single character string
(FORTRAN type CHARACTER, COBOL 01-level display item, or
Pascal type CHAR) formed by concatenating the contents of
all variable fields in the panel. (For more information,
refer to Input and Output Variables in this section.)

The same character variable or item can be used for both instring and outstring.

Examples:

CALL SFSSHO ('MYPANEL',OUTSTR,INSTR)

ENTER SFSSHO USING "MYPANEL" OUT-STRING IN-STRING.

SFSSHO ('MYPANEL',OUTSTR,INSTR};

60460430 B 3-17

SFSWRI (panelname,outstring)

The SFSWRI object routine displays the current variable field values. If the specified
panel is not already displayed on the screen, SFSWRI clears the screen and displays the
panel using outstring for the variable field values. If the specified panel is already
displayed as a result of a previous SFSREA, SFSWRI, or SFSSHO object routine, only the
variable field values are rewritten; all other screen data remains unchanged. If the panel
is an overlay, only those lines that the overlay will write are cleared by SFSWRI.

The SFSWRI parameters are:

Parameter

panel name char

out string char

Examples:

Description

The name of a panel to be written.

The variable containing the character data to be displayed
at the terminal. outstring is a single character string
(FORTRAN type CHARACTER, COBOL 01-level display item, or
Pascal type CHAR) formed by concatenating the contents of
all variable fields in the panel. (For more information,
refer to Input and Output Variables in this section.)

CALL SFSWRI ('MYPANEL',OUTSTR)

ENTER SFSWRI USING "MYPANEL" OUT-STRING.

SFSWRI ('MYPANEL',OUTSTR);

3-18 60460430 B

NOS PROCEDURES IN SCREEN MODE 4

NOS screen formatting allows a terminal user to enter NOS procedure parameters or menu
selections in screen mode. The screen formats are predefined by the system and do not
require special procedures; any of your existing interactive procedures can be used in
screen mode without modification. Screen mode procedure entry does provide some additional
features, however, which can increase the usability of your procedures. Becoming familiar
with the screen mode display features will help you to write procedures that make the most
effective use of full-screen display terminals.

NOS procedures allow you to place a sequence of operating system commands into a file and
execute the file as you would a program. In effect, you create your own operating system
commands to perform repetitive tasks, such as printing a file or loading and executing a
program. NOS procedures can include parameters that affect how the procedure file is
executed. Typical parameters would specify file names, processing options, and file
dispositions. When executed interactively, NOS procedures can prompt the user for required
parameter values and can display help information for the procedure and for individual
parameters.

This section describes how procedures are executed in screen mode and tells you how to write
procedures for screen mode display.

PROCEDURE EXECUTION

Screen mode display of NOS procedure parameters requires no special call format. When the
user requests prompting for interactive procedure parameters, the parameters are displayed
either in line mode or in screen mode, depending on the terminal status. If the user has
entered a SCREEN command prior to the procedure call, the procedure parameters are displayed
in screen mode; otherwise, the parameters are displayed in line mode.

When the user calls a procedure in screen mode, the terminal presents a screen display
similar to that shown in figure 4-1 or figure 4-2. Figure 4-1 shows an interactive (*I
format) procedure display, while figure 4-2 shows a menu (*M format) display.

The parameter displays for a single procedure occupy up to nine screens of display text.
The user can page forward and backward through the screen displays by pressing designated
function keys. While paging through the parameter displays, the user can enter or modify
parameter values in any order. To move from one parameter field to the next, the user
presses the TAB key (the default entry sequence proceeds from the first field on the screen
to the last). To enter parameters in nonsequential order or to modify values entered
previously, the user moves the cursor to any parameter field on the screen using the cursor
control keys.

When using any terminal that does not have protected fields, the TAB key must be followed by
pressing the key corresponding to NEXT. On these terminals, you may press the TAB key more
than once before pressing the NEXT key to position the cursor ahead more than one parameter
field. Any programmable function key not defined in the panel definition file also
functions as a logical tab.

60460430 B 4-1

FTNPROC

INPUT FILE: f3
ClJTPUT FILE: ------

COMP IL ED PRffi RAM FILE:

Specify values and press NEXT when ready

FS F 6 fi!IV!IJll

Figure 4-1. Interactive Procedure Display

4-2 60460430 B

FILE ROUTING OPTIONS

1. Print a fi Le.
2 • Pu n ch a f i Le •
3. P Lot a fi Le.

Select from the list above and press NEXT: [!)

FS F6

Figure 4-2. Menu Procedure Display

60460430 B 4-3

While paging through the displays, the user can also obtain help for the procedure or its
parameters; a portion of the screen display is allocated for the help display. The function
keys allow the user to page forward and backward through multiple pages of help text, if the
help text does not fit on one screen. Figure 4-3 shows an example of a parameter display
with help information.

After all required parameters have been entered, the user executes the procedure by pressing
the NEXT key (carriage return). Parameter validation checks are performed in the same
manner, regardless of whether the procedure is submitted in screen mode or line mode; if the
user omits a required parameter or enters an incorrect value, the system prompts for a
correct value before initiating execution of the procedure.

FTM»ROC

INPUT FILE:
Cl.JTPUT FILE:

COMPILED PROGRAM FILE: fl ----
Specify values and press NEXT when ready

-----------COMPILED PROGRAM FILE-----------
This parameter specifies the program source fi Le.
Allowable value<s>: must be a file name.
This parameter must be specified.

FS F6

Figure 4-3. Interactive Procedure Display with HELP Text

4-4 60460430 B

SCREEN MODE PROCEDURE FORMAT
Figure 4-4 illustrates the screen mode format used to display procedure parameters. The
format contains six fixed-content lines. These lines are labeled Message, Title, Page
Number, Procedure/Menu Prompt, Help Title, and Function Key Labels. The number of
parameter/menu selection lines and help lines vary, depending on the terminal screen size
and the number of lines required by the procedure. The minimum supported screen size is 16
lines of 80 columns.

Message
Tit le

Page Number
Parameter/Menu Selection Lines

Procedure/Menu Prompt
Help Title

Help

Function Key Labels

Figure 4-4. NOS Procedure Screen Format

The following paragraphs describe the components of the NOS procedure screen format as shown
in figure 4-4.

MESSAGE

The message line informs the user when a parameter has been entered that does not meet the
validation requirements specified in the procedure. The message consists of an output-only
field of up to 79 characters, left-justified on the first line of the screen. When a
message is displayed in the message line, the screen cursor is automatically placed at the
beginning of the data field associated with the message.

The following message is displayed if the user fails to enter a value for a required
parameter that does not have a defined help string.

Please enter

You can replace the phrase Please enter using the .ENTER directive. This directive is
useful when writing procedures for non-English speaking users. The .ENTER directive format
is:

• ENTER, string

string Specifies a string of from 1 to 40 characters.

60460430 B 4-5

The following message is displayed when an invalid value has been entered:

PLEASE CORRECT value

value Identifies the incorrect value entered. If value is longer than 64
characters, it is truncated to 61 characters, followed by an ellipsis, as
shown in the following example:

PLEASE CORRECT this message is longer •••

You can replace the phrase Please correct with another message using the .CORRECT directive.
The .CORRECT directive format is:

• CORRECT, string

string A string of from 1 to 40 characters.

The system returns only one error message at a time, even if the screen contains more than
one error. When the user corrects an indicated error and resubmits the procedure (by
pressing the NEXT key), the next error message, if any, appears. This process continues
until all errors are corrected. The user may correct any number of errors before
resubmitting a procedure.

TITLE

The title specified in the procedure header is displayed, centered, on the second line of
the screen. If no title is specified in the procedure header, the procedure name is used as
a default title.

PAGE NUMBER

The page number line displays the number of the current page of parameters or menu selec
tions. If all parameters or selections fit on one page, the page number field is blank.
The format of the page number field is:

Page n

n The page number.

You can replace the word Page with another word or phrase using the .PAGE directive. The
.PAGE directive format is:

.PAGE,string

string A string of from 1 to 40 characters.

4-6 60460430 B

PARAMETER/ MENU SELECTION LINES

The page number line is followed by a variabl? number of lines which prompt the user for
parameter entries or menu selections. The number of parameter/menu selection lines
available on each page depends on the terminal type but typically will range from 6 to 17
lines. If all parameters do not fit on one page and leave space for help text on the same
page, the parameter descriptions are continued on one or more additional pages. Following
are the prompt formats for interactive parameters and menu selections.

Interactive Parameter Prompts

A procedure parameter specification uses one of the following three prompt formats. The
right-hand column shows the corresponding screen prompt generated by each specification
format.

Parameter Prompt F·ormat Full-Screen Prompt

Parameter= Parameter:

Pa ramete r"Description"= Parameter Description:

Parameter'Description'= Description:

Regardless of which format is used, each parameter prompt is followed by a 1- to 40-character
input field. The system indicates the length and position of the input field by underlining
the field. Input characters are displayed in the field as the user enters them at the
terminal.

Interactive parameter prompts are centered on the screen according to the length of the
longest parameter description and input field length to be displayed.

The length of the input field for each parameter is that of the largest variable value that
can be entered for the parameter. This length, in turn, is implied by the checklist pattern
used in defining the parameter. The maximum variable lengths for each checklist pattern are
as follows:

Checklist Pattern

*F

*A

*K

*Sn

literal string

60460430 B

Maximum Length

Seven characters.

Forty characters.

A value equal to the length of the parameter name.

A value equal to the maximum length (as specified by n) of
the set.

A value equal to the number of characters in the literal
string.

4-7

The following examples illustrate the formats that result from various interactive parameter
specifications.

Parameter and Checklist Prompt Generated

CSET=(A, D, AS) CSET:

I"- Input file"=(*F) I - Input file:

!'File to copy'=(*F) File to copy: ______ _

R'Rewind (Y or N)'=(Y, N) Rewind (Y or N):

Menu Selection Prompts

Menu selection prompts in both screen and line mode are preceded by a number, period, and
space. The menu is centered on the screen according to the longest selection prompt in the
menu. Prompts that are too long to fit on the screen are truncated on the right.

Procedure/ Menu Prompt

The procedure/menu prompt line tells the terminal user what to do when he or she has finished
entering parameters or menu selections. The prompt format for interactive procedures is:

Specify values and press NEXT when ready

Menu procedures prompt for a numeric value. The prompt format is:

Select from the list above and press NEXT:

This prompt directs the user to select a menu item, enter the number of that item in the
input field, and press the NEXT key.

You can replace either of the preceding prompts using the .PROMPT directive. The format of
the .PROMPT directive is:

.PROMPT ,string

string A string of 1 to 40 characters.

4-8 60460430 B

HELP TITLE

The help title line appears on the screen only when help text is being displayed. The help
title is centered in the line. It consists of the parameter or procedure name for which
help is being displayed. To clearly separate help information from the parameter/menu
selection information, a medium intensity horizontal line is drawn through the portions of
the help title line not occupied by the title itself.

HELP

Help text appears in a variable number of lines that appear between the help title line and
the function key labels. Six or more lines (depending on the terminal model) are available
for help text displays. Help text can occupy more than the minimum number of help lines if
the parameter prompts or menu selections do not require all lines that are available to
them. The system displays as much of the help text as it can fit on the screen without
overwriting parameter descriptions or menu selections.

There is no restriction on the length of help text you can write into a procedure. The
terminal user can page forward or backward through the help text by pressing a function
key. This feature is described in detail under Function Key Labels.

Two types of information are available to the terminal user through help texts: information
on the procedure and its functions and descriptions of procedure parameters. You supply the
help text for procedure and parameter information using the .HELP directive.

The terminal user obtains help by pressing the HELP key or by entering a question mark in a
parameter field. To obtain help for a menu selection, the user enters the number of the
selection followed by a question mark. For example, the entry 2? requests help information
for menu selection 2. To remove help text from the screen, the user presses the BACK key.

FUNCTION KEY LABELS

The bottom line of the screen displays a series of descriptive labels, one for each active
programmable function key. (The programmable function keys are labeled Fl, F2, and so on.)
Each label consists of a word or phrase describing the action of the associated key. For
example, the key that requests help text (FS) is appropriately labeled HELP. The function
key labels are displayed in inverse video, so they appear as a series of rectangular boxes
across the bottom of the screen. Each box is preceded by the name of the key associated
with the label.

Table 4-1 describes the function keys that are active for NOS procedure parameter displays.

60460430 B 4-9

Key Label

Fl FWD

F2 BKW

F3 HELP FWD

F4 HELP BKW

FS HELP

F6 QUIT

Table 4-1. Programmable Function Keys

Description

Displays the next page of procedure parameters or menu selections.
If there is no next page, the Fl label does not appear.

Displays the previous page of procedure parameters or menu
selections. If there is no previous page, the F2 label does not
appear.

Displays the next page of help text. If there is no next page, the
F3 label does not appear.

Displays the previous page of help text. If there is no previous
page, the F4 label does not appear.

Displays help text as follows:

• Pressing the help key once displays parameter help for the
parameter field at which the cursor is currently positioned.

• Pressing the help key a second time, without moving the
cursor, displays help text for the procedure.

Terminates the procedure normally without executing the procedure.

You can replace the default function key labels using the .Fx directive. The .Fx directive
format is:

.Fx,string

x

string

4-10

Specifies an integer value from 1 to 6, corresponding to a function key
from Fl to F6.

Specifies a character string of from one to six characters.

60460430 B

The .Fx directive does not change the operation of the function keys. For example, FS
provides help, regardless of how it is labeled in the screen display.

On the Viking 721, some of the preceding operations can also be performed using the CDC
standard function keys available on the Viking 721. The keys and their functions are as
follows:

Function

FWD Fl (FWD)

BKW F2 (BKW)

HELP FS (HELP)

STOP F6 (QUIT)

Also, the BACK key can erase help text from the screen. This function may not be available
on some terminals.

The .NOCLR directive inhibits the system from automatically clearing the terminal's screen
at the end of the procedure call (that is, once all required parameters are supplied). You
can also specify a message to appear on the top line of the screen. Unless you specify a
.NOCLR directive, the system clears the screen at the end of the call and sets the terminal
to line mode, allowing any generated dayfile message to be displayed.

The .NOCLR directive is useful in procedures which call a program or a series of nested
procedures. Using the .NOCLR directive in these situations prevents the screen from
remaining blank for an undesirable length of time. The .NOCLR directive should not be used
in unnested procedures or in the last (innermost) procedure in a series of nested procedures.

Format:

.NOCLR,message.

message Specifies a 1- to 40-character text string that appears on the screen.
message can consist of both uppercase and lowercase characters.

60460430 B 4-11

TERMINAL DEFINITION UTILITY

Terminals using full-screen applications on NOS must be defined using the Terminal
Definition Utility (TDU).t After compilation by TDU, the definitions are stored in
libraries for use by the terminal support routines common to all full-screen products.

Any display terminal with certain minimal capabilities which can be defined using the TDU
utility will work with any full-screen product.

TERMINAL CAPABILITIES

To be used with full-screen products, a terminal must have the following attributes:

• Uses asynchronous communications (as opposed to synchronous).

• Operates in character mode (as opposed to block mode).

• Has keys which move the cursor on the screen and transmit characters to the host
computer so it can tell the cursor moved.

• Supports direct cursor positioning.

• Provides a clear screen operation.

The terminal should have the following additional attributes:

• A clear-to-end-of-line.

• A way to define at least six function keys.

tThe system already has definitions of the following seven terminals. The terminal
definitions used for these terminals are records on file TDUFILE under user name LIBRARY.
You can modify these definitions to meet your particular needs. Across from the terminal
model names in the following list are the corresponding records on file TDUFILE (on user
name LIBRARY) that contain the terminal definitions.

Terminal

Viking 721
CDC 722
DEC VTlOO
Zenith 719 or Heathkit Hl9
Lear Siegler ADM3A
Lear Siegler ADMS
Tektronix 4115

Terminal Definition

TDU721
TDU722
TDUVTlO
TDUZ19
TDUADM3
TDUADMS
TDUT415

5

60460430 B 5-1

In addition to those previously mentioned, the following terminal attributes are desirable:

• Eight to 32 function keys.

• Function keys should transmit a unique, identifying character sequence followed by a
carriage return (CR) character.

• Host-definable tab stops (for use with the Full Screen Editor).

• Protected fields on the screen and tabbing between unprotected fields (for use with
screen formatting). The tab key, like the cursor keys, must transmit characters to
the host so it can tell the tab key was pressed.

• Line drawing graphic characters.

Other terminal features are supported by full-screen products, but those listed are heavily
used. (The CR at the end of function key sequences provides added usability and is a
feature of the Viking 721 terminal.)

5-2 60460430 B

TERMINAL DEFINITION FILE
Terminal keys are defined by typing definition statements into a text file and compiling the
file using TDU. The text file must be in 6/12-bit display code.

Terminal definition statements are highly readable but can be tedious to type. A text file
with all the statements already typed and formatted can be obtained by entering the command:

GET,TDUIN/UN=LIBRARY

Edit this file and fill in the parameters to describe your terminal.

You will need your terminal hardware reference manual for filling in the file. TDUIN lists
statements for all possible attributes and keys that can be supported by full-screen
products. In the hardware reference manual there should be one or more tables listing the
keys and attributes available on your terminal. After each key or attribute listed in these
tables, the character sequence your terminal accepts or generates is listed. Use these
character sequences to fill in the statement parameters in the TDUIN file. TDUIN contains
directions (enclosed in quotation marks before each statement) which give more instructions
on filling in the file's directive parameters. Read these carefully. Not all attribute and
key statements will apply to your terminal. Leave those which do not apply blank.

An example of a terminal definition file for the Viking 721 is shown at the end of this
section.

The TDUIN file includes some statements for defining Full Screen Editor (FSE) keys. For
more information on these statements consult the FSE User's Guide.

I NOTE I
If you use TDU to define any of your
terminal keys, you must define your FSE keys
either in your terminal definition file or
your FSEPROC. The normal default FSE key
definitions are no longer used once you
define any terminal keys using TDU.

Compile your terminal definition file using the TDU utility and store it on TERMLIB. This
load capsule will be used to define your terminal anytime you enter the SCREEN,model command
with model being the MODEL NAME you specified in your terminal definition file. To verify
the creation or replacement of the capsule on your library file, get a catalog of the
library and check for the terminal model name prefixed with a z.

Before you start, it is wise to check whether someone else at your installation has already
defined your terminal. Your installation probably makes a number of compiled definitions
publicly available in the TERMLIB file on user name LIBRARY. To get a list of all the
terminal models TERMLIB already has, enter the commands:

GET,TERMLIB/UN=LIBRARY
CATALOG,TERMLIB,R,U,N

60460430 B 5-3

ST A TEMENT FORMAT
The general format of a terminal definition statement is:

Statement name keyword1=value1 keywordz=valuez •••
keywordn=valuen

The statement name and any of the keywords may be entered in either uppercase or lowercase.
Keywords and equal signs may be omitted if values are entered in the order they are defined
for the statement. The elipsis (•••)is usef1 to continue statements onto another line.
More than one statement may be typed on the same line if the statements are separated by a
semicolon.

Statement names may be entirely spelled out or may be abbreviated by using the first three
characters of the first word and the first character of each following word. For example,
the following are equivalent statement names:

function key leaves mark
f unklm - - -

Keywords are usually abbreviated by the first character (but INOUT is abbreviated IO; IN is
abbreviated I).

Comments may be used anywhere in a statement where blank spaces can appear (except within
quotes). Comments are enclosed in quotes (") characters. Character strings are enclosed in
apostrophes ('). For example,

"This is a comment."
'This is a character string'

The most frequently occurring parameter value in terminal definition statements is a list of
characters. Lists must be enclosed in parentheses. These lists are obtained from the
terminal hardware reference manual. Often the tables containing these character strings
list more than one representation. Character values that you enter in the terminal
definition file may be indicated in any one of the ways shown in the following example:

Value

101(8)

41 (16)

65

33(8)

ESC

Meaning

The ASCII character A.

The character A as an octal number.

The character A as a hexadecimal number.

The character A as a decimal number.

The ASCII ESC character as an octal number.

The ASCII ESC character indicated by its standard designation. Standard
designations of ASCII characters are shown in table A-1 in Appendix A.

For example, the following are valid terminal definition statements:

MODEL NAME VALUE='721'
BLINK=BEGIN OUT=(ESC 12(16) 'a')

These examples show values as ASCII character strings ('721','a'), an ASCII character (ESC),
and a hexadecimal number (12(16)).

5-4 60460430 B

If you are going to be using a character string more than once, you may want to define a
variable name to have that value. This can be done by listing the variable name and its
value at the beginning of the file before any of the TDU statements. The format is:

variable name = (character string)

variable name can be any string of alphanumeric characters and the underscore. It can be up
to 256 characters in length. character string is the sequence listed in your terminal
hardware reference manual for a particular attribute.

STATEMENT TYPES
Following is a list of the different types of statements. Details on the specific
statements and their parameters are explained later in this section. TDUIN, the file to use
for creating your terminal definition file, also lists the parameters and information for
using them.

Statements

Attribute

Cursor positioning

Screen size

Initialization
Output

60460430 B

Description

Describe general characteristics of the terminal. For example:

HOME AT TOP VALUE=TRUE

Attribute statements have parameters appropriate for the
characteristic being described. The VALUE parameter will
usually be either TRUE or FALSE, or it may be some other
alphanumeric value, depending on the terminal.

Describe the behavior of the cursor on the screen. The
statement will have TYPE parameters describing the cursor
movement. For example:

MOVE PAST SIDE TYPE = WRAP ADJACENT NEXT

Describe the size of the screen. For example:

SET SIZE ROWS=24 COLUMNS=80 •••
OUT-;;(re dc2 'H' rs dc2 '!')

This statement has the following parameters:

Parameter

ROWS

COLUMNS

OUT

Description

The number of rows on the terminal.

The number of columns on the terminal.

The sequence to be sent to the terminal.
This sequence must be obtained from the
terminal hardware reference manual.

Describes terminal attributes set and cleared when the LINE or
SCREEN command is executed. These statements may be repeated
to allow entrance of long character strings for initializing
the terminal.

5-5

Statements

Input/output

Input

Output

5-6

Description

Describe character sequences which can either be sent by the
terminal or by the host computer. For example:

CURSOR UP INOUT=(VT)

Input/output statements have the following parameters:

Parameter

INOUT=sequence

LABEL=string

Description

The character sequence transmitted to or
from the host.

A character string which identifies the
corresponding keyboard key. For example:

CURSOR UP LABEL='CTRL-H'

LABEL is optional.

Describe character sequences generated by the terminal keyboard
and transmitted to the host computer. For example:

Fl LABEL = 'Fl' INPUT = (RS DCl 'h')

Input statements have the following parameters:

Parameter

INPUT=sequence

LABEL=string

Description

The character sequence, not to exceed 256
characters, transmitted to the host.
INPUT is required.

A character string which labels the
corresponding keyboard key. LABEL is
optional.

Describe character sequences sent from the host computer to the
terminal. For example:

BLINK BEGIN OUT=(l2(16))

Output statements have the following parameter:

Parameter

OUT=sequence

Description

The character sequence, not to exceed 256
characters, transmitted to the terminal.
OUT is required.

60460430 B

The categorization of statements as input, output, or input/output is based on what the
full-screen products can actually do with a terminal. It might be, for example, that a
terminal could generate a BLINK BEGIN sequence from the keyboard, but programs, such as FSE,
will not recognize such an input sequence, so BLINK BEGIN is an output statement.
Conversely, the terminal might not be able to recognize a sequence such as CURSOR RIGHT if
sent from the host, so it is acceptable to specify this as an IN parameter, even though
CURSOR RIGHT is an input/output statement. This tells the full-screen products to recognize
CURSOR-RIGHT but not to try to send it.

REQUIRED CAPABILITIES

Some capabilities are required for the full-screen products to work correctly. These are:

CURSOR HOME
CURSOR-DOWN
CURSOR-LEFT
CURSOR-POS BEGIN

CURSOR POS ENCODING
CURSOR-RIGHT
CURSOR-UP
ERASE PAGE STAY OR ERASE
MODEL -NAME-
ERASE-=END-OF-LINE

(and possibly CURSOR POS SECOND AND_CURSOR_POS_THIRD, if these
are used for your terminal)

PAGE HOME

(not required but highly desirable)

There must also be a subset of the application function keys available and defined (a
minimum of six). All statements that are required will be identified as such in their
descriptions in the TDUIN file.

ATTRIBUTE ST A TEMENTS

The following statements may be used to describe terminal characteristics:

Statement Parameter

MODEL NAME

VALUE=name

COMMUNICATIONS

TYPE=type

60460430 B

Description

The model name identifies the type of terminal
being defined. The model name is used as the
name of the definition in the TER.MLIB file,
and is the name used as the model name
parameter on the SCREEN or LINE command.
Required statement.

The model name may be a one to six
alphanumeric character string. Lowercase
letters are translated to uppercase.

Identifies the type of communication the
terminal uses. Required statement.

type refers to the terminal protocol. ASYNCH
is the value used to indicate an asynchronous
terminal.

5-7

Statement

CURSOR POS ENCODING

5-8

Parameter

TYPE=encoding

Description

Tells how the cursor position output sequence
is encoded. Most terminals fall in one of the
categories below. Required statement.

Let a be the cursor pos begin, b the cursor
pos second, c the cursor pos third, x the
horizontal position, and-y the vertical
position. The values for a,b,c,x,and y must
be obtained from your terminal hardware
reference manual. The general encoding format
is:

axbyc

All terminals will have an a, x, and y at
least. The value of encoding is
interpreted as follows:

Encoding

BINARY CURSOR

ANSI CURSOR

Description

The cursor positioning
sequence is of the format:

a (x+bias) (y+bias) or
a (y+bias) (x+bias)

X and y are generated as
decimal graphic
characters; for example,
'12' rather than OC(l6),
with format:.

a (x decimal)
b (y decimal) or

a (y decimal)
b (x decimal) c

CDC721 CURSOR Whenever the x value
exceeds 80 it is generated
as two bytes.

If xis less than 81:
a (x+bias) (y+bias)

If x is greater than 80:
a b (x+bias-80) (y+bias)

I NOTE I
For more information about the values of a,
b, and c see the OUTPUT subsection for the
CURSOR POS BEGIN, CURSOR POS SECOND, and
CURSOR-POS-THIRD statements.-

60460430 B

Statement Parameter

BIAS=number

CURSOR POS COLUMN FIRST

CURSOR POS COLUMN LENGTH

CURSOR POS ROW LENGTH

Description

Specifies an integer to be added to the x and
y values. The usual number is 32, which is
the value of the ASCII space character. The
purpose of a bias is to prevent the x and y
values from falling in the range of 0 through
31, which have special meanings in
communications. This parameter must be used,
though it may be zero.

VALUE is TRUE if your terminal has a cursor
positioning sequence that outputs the column
sequence before the row sequence when
positioning the cursor. FALSE if your
terminal outputs the row before the column
(this applies to the binary and ANSI type
only).

This is set for ANSI type terminals and only
if the terminal sends a set n:um.ber of bytes to
the terminal for column values. If your
terminal is not an ANSI type or if it outputs
a variable number of decimal bytes, then set
VALUE to zero.

This is set for ANSI type terminals and only
if the terminal sends a set number of bytes to
the terminal for row values. If your terminal
is not an ANSI type or if it outputs a
variable number of decimal bytes, then set
VALUE to zero.

The following ten statements have either VALUE=TRUE or VALUE=FALSE parameters. These are
required parameters.

Statement

HOME AT TOP

HAS PROTECT

MULTIPLE SIZES

AUTOMATIC TABBING

TYPE AHEAD

HAS HIDDEN

60460430 B

Description

The CURSOR HOME sequence sends the cursor to the top
left of the screen rather than to the bottom.

The PROTECT BEGIN and PROTECT END sequences can be used
to define protected areas on the screen.

There is more than one SET SIZE statement.

The terminal supports tabbing from one completed,
filled, unprotected input field to the next without
requiring that a tab key be pressed. FALSE if your
terminal does not support protected areas.

Allows the Full Screen Editor to run in type ahead
mode. This allows you to enter additional input
without waiting for the system response to the previous
one. Care should be exercised in that type ahead could
allow you to make changes that you cannot see on the
screen unless you clear the page.

The HIDDEN BEGIN and HIDDEN END sequences can be used
to define areas on the screen in which nothing will be
displayed, even if something is typed there.

5-9

Statement

TABS TO HOME

TABS TO UNPROTECTED

TABS TO TAB STOPS

CLEARS WHEN CHANGE SIZE

FUNCTION KEY LEAVE MARK

CURSOR POSITIONING STATEMENTS

Description

When the TAB key is pressed and the cursor is on the
last unprotected field, the cursor goes to the
CURSOR HOME position rather than wrapping around to the
first unprotected field.(The same happens if tabbing
backward.) FALSE otherwise or if the terminal does not
have protected areas.

The terminal supports tabbing forward and backward to
the start of each unprotected field. False if the
terminal does not have protected areas.

The terminal supports tabbing to settable or predefined
tab stops (like typewriter tabs).

The SET SIZE sequence causes the screen to be cleared.
FALSE if your terminal supports only one screen size.

This is needed for full-screen products to repaint the
valid character over the marked area. When a function
key is pressed, it causes a character (or characters)
to be displayed on the screen, or the use of function
keys on the terminal is to be supported by escape or
control sequences that require a character to complete
the sequence. VALUE is the number of characters that
must be erased from the screen after a function key has
been pressed. If your terminal leaves no marks when a
function key is pressed, VALUE is equal to zero. This
statement is required.

These statements are required. Each has a required TYPE parameter with one of the following
values:

Parameter

SCROLL NEXT

STOP NEXT

HOME NEXT

WRAP ADJACENT NEXT

WRAP SAME NEXT

5-10

Description

The terminal scrolls all characters on the screen (up,
down, or sideways).

The cursor refuses to move beyond the edge.

The cursor moves to the home position.

The cursor wraps around to the adjacent line or column
at the opposite edge of the screen. For example, if
the cursor moves beyond the right edge of the screen,
it reappears at the left side on the next line down.

The cursor wraps around to the opposite edge of the
screen, but in the same line or column. This commonly
occurs when the cursor moves beyond the top or bottom.
It stays in the same column but at the opposite edge of
the screen.

60460430 B

The following statements specify how the terminal behaves when the cursor is urged to go
beyond the edge of the screen. Each statement must be included with one of the TYPE
parameters listed above.

Statement

MOVE PAST LEFT
MOVE-PAST-RIGHT

MOVE PAST TOP

MOVE PAST BOTTOM

CHAR PAST LEFT
CHAR-PAST-RIGHT

CHAR PAST LAST POSITION

SET SIZE ST A TEMENT

Description

Describes what happens when the cursor is moved past
the left or right edge of the screen by use of the
cursor movement keys.

Describes what happens when the cursor is moved past
the top of the screen using the cursor movement keys.

Describes what happens when the cursor is moved past
the bottom of the screen using the cursor movement keys.

Describes the action when the cursor moves past the left
or right side of the screen because you have typed
characters other than the cursor movement keys.

Describes the action when the cursor is moved past the
last position on the screen because you typed
characters other than the cursor movement keys.

This statement describes the size or sizes of the terminal screen. It is required for at
least one size. If more than one size is specified, you may use the statement up to four
times, specifying them in increasing order, giving columns preference over lines.

Statement

SET SIZE

60460430 B

Description

The sequence specified causes the number of rows and
columns to be changed to the values indicated.

Parameters

ROWS=number

COLUMNS=number

OUT=sequence

Description

The number (an integer) of rows
(lines) to which the terminal will be
set.

The number (an integer) of columns
(characters) to which the terminal
will be set.

The sequence to be sent to the
terminal. This sequence must be
obtained from the terminal hardware
reference manual.

5-11

INITIALIZATION OUTPUT ST A TEMENTS

Statement

SCREEN INIT

LINE INIT

SET SCREEN MODE

SET LINE MODE

INPUT/OUTPUT STATEMENTS

Description

This sequence is sent whenever the SCREEN command is
executed.

This sequence is sent whenever the LINE command is
executed.

This sequence is sent whenever the terminal switches
from line mode to screen mode.

This sequence is sent whenever the terminal switches
from screen mode to line mode.

The following statements define sequences which may be either sent or received by the
terminal. All of these statements have a LABEL and an INOUT parameter. Only the INOUT
parameter is required.

Statement

INSERT CHAR

DELETE CHAR

INSERT LINE STAY

INSERT LINE BOL

DELETE LINE STAY

DELETE LINE BOL

ERASE PAGE STAY

5-12

Description

Inserts a single blank character at the current
position, shifting present text to the right.

Deletes a single character at the current position,
shifting the present text to the left.

Inserts a blank line at the current position, the
current line shifting down. Leaves the cursor where it
is. Only one of the INSERT LINE STAY and
INSERT LINE BOL statements ;ay bE;° used.

Inserts a blank line at the current position, shifting
the current line down. Moves the cursor to the start
of the line. Only one of the INSERT_LINE_STAY and
INSERT_LINE_BOL statements may be used.

Deletes the line at the current position, shifting the
remaining text up. Leaves the cursor where it is.
Only one of the DELETE LINE STAY and DELETE LINE BOL
statements may be used:- -

Deletes the line at the current position, shifting the
remaining text up. Moves the cursor to the start of
the line. Only one of the DELETE LINE STAY and
DELETE LINE BOL statements may be-used:

Clears the screen, leaving the cursor where it is. One
of the ERASE PAGE STAY or ERASE PAGE HOME is required
and only one-may be used.

60460430 B

Statement

ERASE PAGE HOME

ERASE UNPROTECTED

ERASE END OF PAGE

ERASE LINE STAY

ERASE LINE BOL

ERASE END OF LINE

ERASE FIELD STAY

ERASE FIELD BOF

ERASE END OF FIELD

ERASE CHAR

CURSOR HOME

CURSOR UP

CURSOR DOWN

CURSOR LEFT

CURSOR RIGHT

INSERT MODE BEGIN

INSERT MODE END

60460430 B

Description

Clears the screen, moving the cursor to the home
position. One of the ERASE PAGE STAY and
ERASE PAGE HOME statements is required and only one may
be used.

Erases all the unprotected character positions on the
screen.

Erases the screen from the current cursor position to
the bottom of the screen.

Erases the current line. Leaves the cursor where it
is. Only one of the ERASE LINE STAY and ERASE LINE BOL
statements may be used. - -

Erases the current line. Moves the cursor to the start
of the line. Only one of the ERASE LINE STAY and ERASE
LINE......:.BOL s.tatements may be used.

Erases from the current position to the end of the
line. Leaves the cursor where it is. No full-screen
product will function acceptably without this
capability.

Erases the current unprotected field. Leaves the
cursor where it is.

Erases the current unprotected field. Moves the cursor
to the start of that unprotected field.

Erases from the current position to the end of the
unprotected field. Leaves the cursor where it is.

Erases the character at the current position, moving
the cursor left one position.

Moves the cursor to the home position. No full-screen
application will function acceptably without this.
This is a required statement.

Moves the cursor up one line. Required statement.

Moves the cursor down one line. Required statement.

Moves the cursor left one position. Required statement.

Moves the cursor right one position. Required
statement.

Enters insert mode. Any graphic characters are
inserted, shifting other characters right, rather than
overstriking.

Exits insert mode. Any graphic characters overstrike
rather than insert.

5-13

Statement

INSERT MODE TOGGLE

BACK SPACE

TAB FORWARD

TAB BACKWARD

TAB CLEAR

TAB CLEAR ALL

TAB SET

RESET

INPUT ST A TEMENTS

Description

Switches between insert and overstrike mode.

Moves the cursor left one position. (This is provided
for terminals with a back space key that is unique from
the CURSOR_LEFT key.)

Tabs to the next tab stop or unprotected field.

Tabs to the previous tab stop or unprotected field.

Clears the tab stop at the current position.

Clears all tab stops.

Sets a tab stop at the current position.

Resets the terminal hardware. The terminal must be
reinitialized.

The following statements define character sequences sent by the terminal. They all have an
INPUT parameter with values obtained from the terminal hardware reference manual. The first
two statements are used to allow direct cursor positioning by the touch panel with the
Viking 721 only.

Statement

CURSOR POS BEGIN

END OF INFORMATION

5-14

Description

The first character string of the cursor position
sequence. This is a required statement. The value is a in
the format.

Signifies end of input. This is a system-dependent, not
terminal-dependent statement and the value is normally
zero.

60460430 B

CDC Standard Function Keys

All full-screen products use CDC standard function keys. These keys have the same meaning
to a particular full-screen product regardless of the terminal in use. The Viking 721
terminal has these CDC standard function keys as actual key caps.

You define what input sequences the terminal you use will send upline to be recognized as a
CDC standard function key. This capability will make all full-screen products more usable
to the end user but is not required when using the NOS procedures in screen mode.

If local screen formatting applications have been written that use CDC standard function
keys (rather than programmable function keys described in the next subsection) to drive
menus or to terminate input, then these function keys must be defined in the terminal
definition file.

Escape or control sequences such as ESC-H for HELP can be a good way to define CDC standard
functions but take care not to use sequences that conflict with terminal hardware sequences.

Unshifted CDC standard function keys:

DOWN
UP
FWD
BKW
NEXT
BACK
STOP
HELP
EDIT
DATA

Shifted CDC standard function keys:

DOWN S
UP S-
FWD S
BKW-S
NEXT S
BACK-S
STOP-S
HELP-S
EDIT-S
DATA-S

60460430 B 5-15

Programmable Function Keys

All system-defined full-screen products use programmable function keys to tell the full
screen product what you want to do next. Programmable function keys in the Full Screen
Editor allow a frequently used command to execute by pressing one function key or the
required sequence of keys for the terminal in use.

You define what input sequences the terminal you use will send upline to be recognized as
programmable function keys. These are required parameters for at least the first six keys
(Fl through F6) and should be defined for all of the keys if possible for your terminal.

If local screen formatting applications have been written that use programmable function
keys to drive menus or to terminate input, then programmable function keys must be defined
in the terminal definition file for your terminal.

Escape or control sequences such as ESC-1 for Fl can be a good way to define programmable
functions but take care not to use any sequences that conflict with terminal hardware
sequences.

Unshifted programmable function keys are:

Fl
f 2
f3
f 4
f 5
f 6
f7
f 8
f 9
flO
fll
fl2
fl3
fl4
fl5
Fl6

Shifted programmable function keys are:

5-16

Fl S
f2-s
f3-s
f4-s
fS-s
f6-s
f7-s
f8-s
f9-s
nos
fll-s
fl2-s
fl3-s
fl4-s
flS-s
Fl6-S

60460430 B

OUTPUT ST A TEMENTS

The following statements define sequences sent to the terminal. Each directive has an OUT
parameter that specifies a character string obtained from the terminal hardware reference
manual.

Statement

OUTPUT BEGIN

OUTPUT END

PROTECT ALL

RETURN

BELL NAK

BELL ACK

DISPLAY BEGIN

DISPLAY END

PRINT BEGIN

PRINT END

60460430 B

Description

Send this sequence before starting output (after receiving
input). This sequence should include the sequence to
disable protected areas if the terminal supports it and
also the sequence to exit insert mode if the terminal
supports an insert mode.

Send this sequence after ending output (before receiving
input). This sequence should include the sequence to
enable protected areas if the terminal supports protected
areas.

Every character position on the screen is protected.

Move the cursor to the beginning of the current line.

Ring the bell on an error. Default is ASCII BEL (7).

Ring the altern~te bell.

Enable the dib~_dy so characters received show on the
screen.

Disable the display.

Enable the printer so characters received print.

Disable the printer.

5-17

The following statements define character sequences sent by the terminal. They all have an
OUTPUT parameter with values obtained from the terminal hardware reference manual. The
first three statements are used in conjunction with a CURSOR POS ENCODING statement having
the axbyc format.

Statement

CURSOR POS BEGIN

CURSOR POS SECOND

CURSOR POS THIRD

Description

The first character string of the cursor position
sequence. This is a required statement. The value is a in
the format.

The second character string of the cursor position
sequence. This is a required statement if present. The
value is bin the format.

The third character string of the cursor position
sequence. This is a required statement if present. The
value is c in the format.

Some terminals actually use a character position on the screen to enable/disable the
following attributes. If this is the case with your terminal, do not use the following
attributes.

Statement

BLINK BEGIN

BLINK END

ALT BEGIN

ALT END

HIDDEN BEGIN

HIDDEN END

INVERSE BEGIN

INVERSE END

PROTECT BEGIN

PROTECT END

UNDERLINE BEGIN

UNDERLINE END

5-18

Description

Blinks characters received after this statement.

Does not blink. characters received after this statement.

Displays characters received after this in alternate
intensity (may be bright or dim).

Does not display characters received after this in
alternate intensity.

Does not display characters received after this (sets up
"hidden fields", as for passwords).

Displays characters received after this statement.

Displays characters received after this in inverse video.

Does not display characters received after this in inverse
video.

Makes character positions written to after this protected.

Makes character positions written to after this unprotected.

Underlines characters received after this statement.

Does not underline characters received after this statement.

60460430 B

Logical Attribute Statements

Logical attributes are used mainly for procedures executed in screen mode and screen
formatting applications to define various types of fields on the screen. Procedures used in
screen mode, for example, define all input parameters for a procedure as logical type INPUT
TEXT. This assures that they are underlined for those terminals that have that capability
or that any blanks in the variables are replaced with hyphen characters on the screen to
make them easily recognizable.

You may define the logical attributes below as any combination of physical attributes by
using the sequences (obtained from the terminal hardware reference manual) to turn them on
and off, or as any other displayable type function that your terminal can support, such as
RED ON for ERROR BEGIN and RED END for ERROR END.

INPUT TEXT BEGIN
INPUT-TEXT-END

- -OUTPUT TEXT BEGIN
OUTPUT-TEXT END
ITALIC-BEGIN
ITALIC-END
TITLE BEGIN
TITLE END
MESSAGE BEGIN
MESSAGE-END
ERROR BEGIN
ERROR-END

Line Drawing Statements

Screen formatting applications allow specification of three weights of line drawing (fine,
medium, and bold), along with the output sequences for each weight (on and off) and the
characters for horizontal lines, vertical lines, box corners, and box intersections.

If your terminal has the capability of actual line drawing, then place the sequences to turn
the line drawing on and off in the LD FINE BEGIN and LD FINE END and so on for up to three
types of line drawing sets (you may specify the same sequences for all three or for any two
if your terminal has only one or two line drawing sets). If your terminal does not have
line drawing then the use of a hyphen character for a horizontal character, a colon or like
character for a vertical line, and asterisks for all corners and intersections is
recommended. In this case the LD FINE BEGIN and LD FINE END sequences would be blank though
you could use a terminal attribute such as BLINK_ON-and BLINK_OFF respectively.

Also for a bold line drawing character set you can define all characters as blanks (' ') and
use INVERSE_ON and INVERSE_OFF as the LD_BOLD_BEGIN and LD_BOLD_END sequences.

The following statements can be used to specify line drawings for the three line weights.
Different statements specify begin and end, horizontal and vertical lines, the four box
corners, and intersection characters. All directives have a required OUT parameter.

60460430 B 5-19

LS FINE BEGIN
LD FINE END
LO-FINE-HORIZONTAL
LO-FINE-VERTICAL
LO-FINE-UPPER LEFT
LO-FINE-UPPER-RIGHT
LO-FINE-LOWER-LEFT
LO-FINE-LOWER-RIGHT
LD-FINE-UP T
LD-FINE-DOWN T
LD-FINE-LEFT-T
LO-FINE-RIGHT T
LD-FINE-CROSS
LD-MEDIUM BEGIN
LO-MEDIUM-END
LO-MEDIUM-HORIZONTAL
LO-MEDIUM-VERTICAL
LO-MEDIUM-UPPER LEFT
LO-MEDIUM-UPPER-RIGHT
LD-MEDI~LOWER-LEFT
LO-MEDIUM-LOWER-RIGHT
LO-MEDIUM-UP T
LO-MEDIUM-DOWN T
LD-MEDIUM-LEFT-T
LO-MEDIUM-RIGHT T
LD-MEDI~CROSS
LD-BOLD BEGIN
LO-BOLD-END
LD-BOLD-HORIZONTAL
LO-BOLD-VERTICAL
LD-BOLD-UPPER LEFT
LO-BOLD-UPPER-RIGHT
LO-BOLD-LOWER-LEFT
LO-BOLD-LOWER-RIGHT
LO-BOLD-UP T
LD-BOLD DOWN T
LD-BOLD-LEFr'r
LO-BOLD-RIGHT T
LO-BOLD-CROSS-

5-20 60460430 B

TDUCOMMAND
The TDU command calls an interactive procedure to compile a terminal definition and store
the compiled definition in a user library. The compiled output is a load capsule which the
procedure stores in a user library.

The user library to receive the load capsule must be a local file. If the library file you
specify does not exist as a local file, TDU creates it. If you do not specify a library
file, TDU uses a local file with the default name TERMLIB, if one exists. If it does not
exist, TDU creates a local file with the name TERMLIB.

In the TDU command format, the parameter keywords and equal signs can be omitted if the
parameters are specified in the order listed. The format of the TDU command is:

TDU,I=definition,L=listing,LIB=library

Parameter

!=definition

L=listing

LIB=library

Description

Name of the terminal definition file. The file must be in
6/12~bit display code. The I parameter must be specified.

Name of the listing file. The listing file is a copy of
the input file with error messages (if any) interspersed.
The default listing file name is OUTPUT.

Name of the library file to receive the load capsule; must
be a local file. The default library name is TERMLIB. To
be used by the SCREEN and LINE commands, the library name
must be TERMLIB.

Since the TDU command is an interactive procedure, you can receive help information for the
procedure and be prompted for parameter entries by entering:

TDU?

When the SCREEN or LINE command is entered specifying a terminal model name, the command
will attempt to locate in file TERMLIB a terminal definition for that model.

Certain terminal definitions have been preloaded into the full-screen products by your
installation. If the model you specify is one of these, then SCREEN and LINE look no
further.

If the terminal definition is not preloaded by your installation then SCREEN and LINE first
look for a local file named TERMLIB, then an indirect access permanent file named TERMLIB
under your user name. If such a file exists and contains a definition for the terminal
model requested, that definition is used.

If not, SCREEN and LINE look for an indirect file named TERMLIB under user name LIBRARY.
Your installation may provide such a file with common terminal definitions in it. If such a
rile exists and contains a definition for the model requested, that definition is used.

In either of these two cases (a definition is either in your TERMLIB or under user name
LIBRARY) SCREEN and LINE copy the definition into a local file named ZZZTERM for later use
by the NOS full-screen products. If you see the file, that is what it is for; do not delete
it, or you will not be able to run in screen mode until you issue another SCREEN command.

The following example is a terminal definition file for a Viking 721 terminal.

60460430 B 5-21

"
" TERMINAL DEFINITION FILE FOR 721 TERMINAL

II

II

II

II

II

II

"
II

"
II

"
II

"
"
"

5-22

The terminal definition utility (TDU) allows user definition of
most character mode asynchronous type terminals for use with all NOS
full screen products. A detailed description of TDU can be found in
the NOS Screen Formatting Reference Manual.

There should be a collection of system defined terminal def ini
tions on file TDUFILE under UN=LIBRARY that may assist you (and perhaps
already define your terminal or one very much like it). These defini
tions and the terminals that they define are:

TDU721
TDU722
TDUVTlO
TDUT415
TDUZ19
TDUADM3
TDUADMS

CDC 721 (Viking)
CDC 722
DEC VTlOO
TEKTRONIX T4115
ZENITH Zl9/Z29
LEAR SIEGLER ADM3A
LEAR SIEGLER ADMS

A collection of terminal definition files for other terminals
will also be made available through Central Software Support for a
variety of popular terminals and micro computers.

This file (TDUIN) is the input file that you will fill with the
specific terminal dependent data that you should find in the hardware
reference manual for your terminal. When the sequences, capabilities
and attributes of your terminal have been filled in you will then com
pile your terminal definition by using the system TDU command. This
will produce a file named TERMLIB which contains an encapsulated copy
of the information needed by NOS screen formatting products to utilize
your terminal. The command SCREEN,XXXXXX (XXXXXX being the value you
specified for the model name statement) will then enable you to inter
act with all NOS full screen facilities.

A number of capabilities are required for your terminal to func
tion in screen mode. These are a clear page stay or a clear page
home, a cursor home, and the ability to-directly position the-cursor
on the screen.- At least a subset (Fl-F6) of the application keys and
a CDC standard STOP function key should also be defined. An erase
end of line is not required but will provide considerably better per
formance for all full screen products.

Any line surrounded by quotation marks (such as this text) is a
comment line and will be ignored when compiling your terminal capsule.
This is a way in which you can add your owm comments to this file as
you proceed to fill in the requested information. Those lines that
are not surrounded by quotation marks in this file are the input dir
ectives to TDU for which you will fill in the correct values for your
terminal.

TDU allows you to define variables for commonly used character
strings and recognizes ASCII mnemonics (such as rs, ack). Both your
variables and the mnemonics can be used anywhere in this file.

II

"

II

II

"
"
II

II

II

II

"
II

II

II

II

II

"
II

II

II

II

"

II

60460430 B

"
II

II

II

II

"
II

"
"
"
"
"

"
"
II

"

Here are some examples to assist you in your definitions:

VARIABLES
set line mode
set-line-mode
set-line -mode
set-line-mode
set -line -mode
blank character
start underline
stop_underline

clear all tabs
disable blink
disable-auto er
disable=protect
enable auto er
enable-clear
enable-er delim
enable -blink
enable -pro tee t
enable=typeamatic
end print
large cyber mode
page ;Dde -
pop f n keys
push fn keys
scroll mode
shift numeric_pad
start inverse
start-underline
stop inverse
stop=underline

()
(rs ack)
(14(8))
(14(16))
(14)

Empty sequence.
ASCII mnemonics.
(8) indicates an octal value.
(16) indicates a hexadecimal value.
Any nonsubscripted number is decimal.
Blank character (see line drawing).
ASCII mnemonic and character.

(,.. ,..)

(rs '=')
(rs "") Use of apostrophe.

(rs dc2 'Y')
(eot)
(rs ,..,..)
(rs dc2 'L')
(rs '&')
(rs '$')
(rs enq)
(etx)
(rs dc2 'K')
(rs dc2 'i')
(rs 7f(16))
(rs dc2 'B')
(syn)
(rs dc2 71(16) er)
(rs dc2 70(16) er)
(dc2)
(rs dc2 6B(16))
(rs 'D')
(ack)
(rs 'E')
(nak)

Another use of the TDU capability to define variables can be
used to make default function key sequences for FSE (which are also
defined in TDUIN) more readable.

60460430 B

"
"
"
"
"
"
"
"
"
"
"
"

II

II

II

II

5-23

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Here is an example for a terminal with a set of six (Fl-F6) keys:

VARIABLES FOR FULL SCREEN EDITOR FUNCTION KEY DEFINITIONS

kl
k2
k3
k4
kS
k6
kl
k2
k3
k4
kS
k6
kl
k8
k9
klO
kll
kl2
kl3
kl4
klS

= ('SKl/SM/L/ MARK/;SKSl/SMW/L/MRKCHR/')
= ('SK2/MMTP/L/ MOVE/;SKS2/CMTP/L/ COPY/')

('SK3/IBP/L/ INSB/;SKS3/DB/L/ DELB/')
= ('SK4/PF/L/ FIRST/;SKS4/VL/L/ LAST/')
= ('SKS/U/L/ UNDO/')
= ('SK6/Q/L/ QUIT/')
('SKl/SM/L/ MARK/;SKSl/SMW/L/MRKCHR/')
('SK2/MMTP/L/ MOVE/;SKS2/CMTP/L/ COPY/')
('SK3/IBP/L/ INSB/;SKS3/DB/L/ DELB/')
('SK4/PF/L/ FIRST/;SKS4/VL/L/ LAST/')
('SKS/U/L/ UNDO/')
('SK6/Q/L/ QUIT/')
('SK711L/&?/ 11L11 LOCATE 11 ;SK7S/LN/L/LOCNXT/')
('SK8/SVC132/L/132COL/;SK8S/SVC80/L/ 80COL/')
('SK9/V/L/MIDDLE/')
('SKlO/.E/L/ENDLIN/')
('SKll/.S/L/ SPLIT/')
('SK12/.J/L/ JOIN/')
('SK13/.F/L/ PARA/')
('SK14/CMTP/L/ COPY/')
('SKlS/.C/L/CENTER/')

There are several basic types of statements that you will en
counter in this file:

0

0

0

VALUE STATEMENTS

model name
has _protect

value = 'myown'
value = TRUE

where VALUE is TRUE, FALSE, an alphabetic string or a number.

TYPE STATEMENTS

cursor pos encoding type
char_past_Tast_position type

= ansi cursor
= wrap=adjacent_next

where TYPE is one of a predefined list of choices that will
be listed preceding the statement.

IN STATEMENTS

fl
help

in
in

(rs 71(16))
(rs SC(l6))

where IN is the sequence that comes upline from the terminal
when a specific function is performed or key is pressed.

5-24

II

II

II

II

II

II

II

"
"
"

II

II

II

II

II

II

II

II

"
II

II

II

II

II

II

II

II

II

II

II

II

"
II

II

II

II

II

60460430 B

"
"
"
II

"
"
"
II

"
"
"
"
"
"
II

II

II

"
II

II

II

II

"
II

"
II

II

"
II

"
II

II

"
II

II

II

II

II

II

"
II

II

II

"
II

"
II

"

"
II

"

0

0

OUT STATEMENTS

cursor pos begin
bell nak -

out
out

(stx)
(bel)

where OUT is the sequence sent down line to the terminal to
perform a certain function.

INOUT STATEMENTS

erase page home
tab forward

inout
inout

(ff)
(ht)

where INOUT is the identical sequence sent up and down line
for a certain function.

It should be noted that you may break any INOUT statement like

tab forward inout = (ht)

into a matched pair of statements like

tab forward
tab-forward

in
out

(ht)
(ht)

You will need to do this if your terminal sends a different
sequence downline to the terminal to perform a certain function
than is sent upline when that function is performed.

Any statement that is IN or OUT only should be left as is.

The file from this point on is arranged by functional groups and
contains comments for each directive that should assist you in fill
ing in the correct sequences for your terminal.

MODEL NAME AND COMMUNICATION TYPE
model name - A one to six character alphanumeric name for your
terminal. Lower case letters are translated to upper case. The
value specified here will be the name used on the SCREEN command.

model name value = "721"

Communication type is asynch as only asynchronous terminals are
presently supported.

communications type = asynch

END OF INFORMATION SPECIFICATION
This defines the end of information sequence which is a zero byte.

end of information in = (0)

CURSOR POSITIONING INFORMATION

60460430 B

"
II

"

II

II

II

"
II

II

II

II

II

"
"

"
"
"
"

"
II

II

5-25

II

II

II

II

It

II

II

II

II

II

II

II

II

II

II

II

II

"
II

II

II

n

II

II

II

II

II

II

II

II

II

II

II

The way in which your terminal encodes cursor positioning will
determine your choice for cursor pos encoding and cursor pos
column first. The general format for cursor positioning-is:-

~t x --------------> represent the column coordinate.
Let y --------------> represent the row coordinate.
Let a --------------> represent cursor pos begin.
Let b
~t c
And Bias

--------------> represent cursor-pos-second.
--------------> represent cursor-pos-third.
--------------> is the integer value-added to the

row or column for cursor positioning.
You should be able to find the value
for bias in the harware reference man
ual for your terminal (often 20(16)).

Then cursor_pos_encoding will be one of three type:

ansi cursor ----> Those terminals which are ansi standard
and use decimalized cursor coordinates.
Format is:

a (X + bias) b (Y + bias) c
a (Y + bias) b (X + bias) c

the order of X and Y for your terminal
determines the value for cursor_pos_
column first.

cdc721 cursor ----> The Control Data 721 (Viking X) terminal.
Format is:

a (X + bias) (Y + bias)
(if X is less than 81)

a b (X + bias -80) (Y + bias)
(if X greater than 80)

binary_cursor ----> Those terminals which use direct co
ordinate positioning.

cursor_pos_encoding bias

Format is:
a (X + bias) b (Y + bias) c
a (Y + bias) b (X + bias) c

the order of X and Y for your terminal
determines the value for cursor_pos_
column first.

(32) type = cdc721 cursor

Cursor pos column first has a value of TRUE if your terminal
sends the x (or column) coordinate followed by the y (or row)
coordinate and has a value of FALSE if the reverse is true.

II

II

II

II

II

II

II

II

II

II

"
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II 11

cursor_pos_column_first value = TRUE

5-26 60460430 B

"
"
"
"
"
"
"
"

"
II

"
"
"
"
"
"
"

Cursor pos column length and row length apply only to ANSI type
cursor-position (there are zero for both other types) and are
non-zero only if your terminal sends a fixed number of decimal
ized bytes for the column and row coordinates (as opposed to a
variable number which is the usual case).

cursor pos column length value
cursor=pos=row_length value

(O)
(0)

Cursor pos begin, second and third are the sequences sent before
the first coordinate, in between coordinates and after the last
coordinate when positioning the cursor (a b and c in the formats
shown above). At least a cursor pos begin should be supplied
for your terminal though second and third are of ten an empty
sequence and can be left alone.

cursor pos begin
cursor-pos-second
cursor=pos=third

out
out
out

(stx)
(7E(l6) soh)
()

CURSOR MOVEMENT INFORMATION

Cursor home, up, down, left and right are the sequences sent both
downline to the terminal to move the cursor to the home position
or a single column or row up, down, left, or right and upline
from the terminal when a cursor key is pressed. Since this is
both and upline and downline sequence the INOUT keyword is used.

cursor home inout (em)
cursor up inout (etb)
cursor-down inout (sub)
cursor-left inout (bs)
cursor=right inout (can)

CURSOR BEHAVIOR (for cursor movement keys)

Move past right, left, top and bottom describe when happens
when-the cursor on your terminal is urged to move past the
right, left, top and bottom of the screen by a cursor move
ment key (not by cursor movement caused by character input
or a seperate backspace key your terminal may have in add
ition to a cursor left key, these behaviors may be different
from those for cursor positioning keys and will be defined
in the next section). The possible types are:

wrap_adjacent_next ----> The cursor wraps to the other end
of the screen on the adjacent row
(next row cursor right or previous

wrap_same_next

scroll next
stop_next
home next

---->
row for cursor left)
The cursor wraps to the other
end of the screen still in the
same row or column.

----> The terminal scrolls.
----> The cursor stops
----> The cursor homes.

60460430 B

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

"

II

II

"
II

II

"
II

"
"
"

5-27

If

II

II

"
II

II

II

"
"
"
"
"
"
II

"

"
"
"
"

move _past_right type = wrap_adjacent_next
move _past _left type wrap_adjacent_next
move _past_ top type wrap_same_next
move_past_bottom type wrap _same _next

CURSOR BEHAVIOR (for character keys)

Char past right, left and last postion describe when happens
when-the cursor on your terminal is urged to move past the
right, left and end of the screen by character input or a
seperate backspace key your terminal has in addition to (or
in place of) a cursor left key. The possible behaviors are
the same as those for cursor positioning keys.

wrap_adjacent_next ----> The cursor wraps to the other end
of the screen on the adjacent row
(next row cursor right or previous

wrap_same_next

scroll next
stop next
home-next

char past right
char-past-left
char=past=last_position

TERMINAL ATTRIBUTES

type
type
type

---->
row for cursor left)
The cursor wraps to the other
end of the screen still in the
same row or column.

---->The terminal scrolls.
----> The cursor stops
----> The cursor homes.

wrap adjacent next
wrap-adjacent-next
wrap=adjacent=next

These describe various attributes and capabilites of your
terminal that should be either TRUE or FALSE.

Automatic tabbing is TRUE if your terminal supports tabbing
from one completed filled unprotected input field to the
next without requiring that a tab key is pressed.

automatic_ tabbing value = FALSE

Clears when change size is TRUE if your terminal has more than
one sc;een S'ize and changing screen sizes causes the screen to
be cleared.

"

"

fl

"
"
II

"
"
"
"
fl

"

"
fl

fl

"
II II

"
"
"
"
"
"
"
"
"

5-28

clears_when_change_size value = TRUE

Function key leaves mark is TRUE if pressing a function key
on your terminal leaves a visible mark or character on the
screen or if function keys for your terminal will be support
ed by an escape or control sequence that will require a char
acter to complete. The full screen editor will then know to
rewrite the line on the screen that has been overwritten by
the mark or character(s).

function_key_leaves_mark value FALSE

60460430 B

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

"
II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Has hidden is TRUE if your terminal supports a hidden attribute
that allows a field to be,defined as input only such that typed
characters are not displayed on the screen.

has hidden value = TRUE

Has protect is TRUE if the terminal hardware supports a protected
field attribute so that users can only enter data within specified
areas on the screen.

has_protect value = TRUE

Home at top is TRUE if the cursor goes to the top of the screen
when-the home key is pressed or FALSE if it goes to the bottom.

home_at_top value = TRUE

Multiple sizes is true if your terminal has more than one screen
size that can be set by a sequence sent downline to the terminal.

multiple_sizes value = TRUE

Tabs to home is TRUE if when tabbing forward from the last un
protected field on the screen (or backward from the first) the
cursor moves to the home position and will move to the field
when the tab key is pressed again. Set FALSE if your terminal
can tab directly from the last unprotected field to the first
{and vice versa) or if your terminal does not support a pro
tect attribute.

tabs to home value = FALSE

Tabs to tab stops is TRUE if your terminal supports hardware
tabbing-to tab stops, FALSE otherwise.

tabs_to_tab_stops value = TRUE

Tabs to unprotected is TRUE if your terminal supports tabbing
from-one unprotected field to the next (or previous). Set to
FALSE if the terminal does not support protect or protected
tabbing.

tabs_to_unprotected value = FALSE

Type ahead is TRUE if you wish to run the full screen editor
in type ahead mode, FALSE if you do not. This has no effect
on screen formatting applications. Type ahead means that you
do not have to wait for the system response to each carriage
return (next key) but may continue to type. Care should be
exercised not to abuse this capability since it is possible
to produce a screen that does not reflect the actual file
contents. If you fear this is the case do a clear page or
a SET SCREEN {SS) command to tell FSE to repaint the screen.
In addition typed ahead control t-s (STOP keys) can not pre
sently be handled by FSE so you should avoid using procedures
unless you are sure they will end and not loop continuously.

type_ahead value = FALSE

60460430 B

"
"
"
"
"

"
"
"
"
"

"
"
"
"

"
"
" ,,

"
"
"
"
"
"
"
"
"

"
"
"
"

"
"
"
"
"
"

5-29

"
"
"
"
"
"
"
"
"

"
"
"
"
"
II

"
"
"
"
II

"
"
II

"
II

II

"

"
"
"
"
II

"

"
II

II

II

II

II

5-30

SCREEN SIZES

These sequences are those necessary to set the terminal to a
specific number of lines and columns if the terminal has more
than one screen size that can be downline configured. If the
terminal does have more than one size specify them in ascend
ing order (giving columns preference over lines) by duplicat
ing the entire set size rows = yy columns = xx out = (sequence)
statement. A maximum of four sizes and a minimum of one are
to be specified.

Rows is the integer number of rows (lines) on the screen for
a specific screen size.

Columns is the integer number of columns (characters per line)
for a specified screen size.

Out is the sequence to be sent to the terminal to set a the
screen size (it may be an empty sequence for a terminal with
only one size but the rows and columns should still be entered).

set size
set-size

rows
rows

30 columns
30 columns

SCREEN AND LINE MODE TRANSITION

80 out
132 out

(rs dc2 'H' rs dc2 'A')
(rs dc2 'G' rs dc2 'A')

Screen_init is the sequence that will be sent to the terminal
when a SCREEN,TERMINAL NAME command (or a SCREEN. command when
a SCREEN,TERMINAL NAME-or LINE,TERMINAL NAME identifying the
terminal has previously been executed) is executed. This is
useful for a terminal that requires a large amount of recon
figuration, some of which does not affect line mode dialogs
and thus does not have to be done at each entrance to a full
screen application (see set_screen_mode).

screen init out = ()

Line init is the sequence that will be sent to the terminal
when-a LINE,TERMINAL_NAME command (or a LINE. command when
a SCREEN,TERMINAL NAME or LINE,TERMINAL NAME identifying the
terminal has previously been executed) is executed.

line init out = ()

Set screen mode is the sequence that will be sent when the
teriinal eri'ters the full screen editor or a screen formatting
application. This is where page mode should be set, tabs per
haps cleared and so on to configure for running is screen mode.

II

"
"
"
"
"

"
II

II

II

"
"
II

II

"
II

II

II

set screen mode out= (push fn keys shift numeric pad enable clear •••
large cyber mode disable auto er enable-er delim clear all-tabs
enable_blink end_print page_iiiode)

60460430 B

"
"
"
"
"
"

"
"
"

"
"
II

"
II

"

"
"
"
II

"
"
"
II

II

"
"
"

II

"
"

Set line mode is the sequence that will be sent when the
terminal-exits the full screen editor or a screen formatting
application. This is where roll (or line) should be set and
what was done by the set_screen_mode sequence reversed.

set line mode
pop~n_keys)

out = (scroll_mode enable auto er clear all tabs

TERMINAL CAPABILITIES

These define what capabilities such as local insert and
delete line or character your terminal provides.

Backspace allows you to define a key that sends a different
(from the cursor left key) sequence upline from the terminal
to move the cursor one character position to the left. This
is of particular use if the behavior for the backspace key
(which will be treated as a character movement key, not a
cursor movement key and hence is bound by the CHARACTER MOVE
MENT BEHAVIOR descriptions) differs from the CURSOR MOVEMENT
BEHAVIOR for the cursor left key (as described in the CURSOR
MOVEMENT BEHAVIOR section of this file). This is an input
only sequence so the IN keyword is used here.

backspace in = ()

Delete char is the sequence for local delete character for
your terminal. In order for this to function correctly the
key that does the local (that is on the screen) delete char
acter must send a sequence upline to make the full screen
product aware that the screen has changed. This is true
for all terminal capabilities.

delete char inout = (rs 4e(l6))

Delete line bol and delete line stay are provided so that
full screen-applications are aware of the cursor position
after a delete line function has been performed. If your
terminal has a local delete line function then one (and
only one) of delete line bol or delete line stay should
be filled with the correct terminal sequence. Delete line
bol if the cursor moves to the leftmost position when-a
line is deleted, delete line stay if the cursor stays in
the column it was in when the delete line function was per
formed.

delete line bol
delete=line=stay

inout
ioo~

()
(r~ 51(16))

Erase char is the sequence for an erase character function.

erase char inout = (lf(l6))

60460430 B

"
"
"
II

"
"

II

II

II

II

II

II

II

II

II

II

II

II

II

II

"
"
"
"
"
II

"
"
"
II

II

"
II

5-31

"
"
"
"
"
"

"
"
"

"
"
"

"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"

Erase end of line is the sequence for an erase from the
current cursor position to the end of that line. This is
not a required terminal capability but will provide much
better performance for all full screen products.

erase end of line inout = (vt)

Erase field bof is reserved for future use.

erase field bof inout = ()

Erase field_stay is reserved for future use.

erase _field _stay inout = ()

Erase line bol and erase line stay are provided so that
full screen applications-are aware of the cursor position
after a erase line function has been performed. If your
terminal has a local erase line function then one (and
only one) of erase line bol or erase line stay should
be filled with the-correct terminal sequence. Erase line
bol if the cursor moves to the leftmost position when a
line is erased, erase line stay if the cursor stays in
the column it was in when the erase line function was per
formed.

erase line bol
erase _line _stay

inout
inout

(rs 5D(l6))
()

Erase page home and erase page stay are provided so that
full screen applications are aware of the cursor position
after an erase page function has been performed. If your
terminal has a local erase page function (that sends a
a sequence upline) then one (and only one) of erase_Page_
home or erase page stay should be filled with the correct
terminal sequence.- Erase page home if the cursor moves to
the home position when the screen is cleared, erase page
stay if the cursor stays where it was when the erase page
function was performed.

erase_page_home
erase _page _stay

inout
inout

(ff)
()

Insert char is the sequence for local insert character for
your terminal. In order for this to function correctly the
key that does the local (that is on the screen) insert char
acter must send a sequence upline to make the full screen
product aware that the screen has changed. This is true
for all terminal capabilities.

insert char inout = (rs 4f(16))

5-32

"
"
"
"
"
"

"
"
"

"
"
"

"
"
"
"
"
"
"
"
"
"
"
"

"

60460430 B

"
"
"
"
"
"
"
"
"
"
"
"

"
"
"

"
"
"

"
"
"

"
"
"
"
"

"
"
"
"

"
"
"
"

"
II

"
"
"
II

II

"
"

"
"
II

Insert line bol and insert line stay are provided so that
full screen-applications are aware of the cursor position
after a insert line function has been performed. If your
terminal has a local insert line function (that sends a
a sequence upline) then one (and only one) of insert line
bol or insert line stay should be filled with the correct
terminal sequence.- Insert line bol if the cursor moves to
the leftmost position when-a line is inserted, insert line
stay if the cursor stays in the column it was in when-rhe -
insert line function was performed.

insert line bol
insert=line=stay

inout
inout

()
(rs 52(16))

Erase_unprotected is reserved for future use.

erase_unprotected inout = ()

Erase end_of _page is reserved for future use.

erase_end_of _page inout = ()

Erase end of field is reserved for future use.

erase end of field inout = ()

Insert mode begin is the sequence to enter insert mode. Char
acters-are inserted, shifting other characters right rather
than overstriking them.

insert_mode_begin inout = ()

Insert mode end is the sequence to exit insert mode. Characters
will now overstrike rather than insert.

insert mode end inout = ()

Insert mode_toggle will switch between insert and overstike
mode.

insert mode_toggle inout = ()

Tab backward is the sequence sent (and received) when tabbing
from a tab stop or unprotected field to the previous tab stop
or unprotected field.

tab backward inout =(rs Ob(l6))

Tab clear is the sequence to clear the tab stop at the current
cursor position.

tab clear inout = (rs dc2 'X')

Tab clear all is the sequence to clear all tab stops.

tab clear all inout (clear_all tabs)

60460430 B

"
II

II

II

II

II

II

II

II

"
"
II

"
II

II

"
II

"
II

" ,,
"
II

II

II

II

II

II

II

II

II

"

II

II

II

II

II

II

II

5-33

"
"
"
"
"

"
"
II

"

"
"
II

II

ti

"
"
"

"
II

"

"
II

"

"
"
II

"
"
II

"
"
II

II

"
"
II

II

II

5-34

Tab forward is the sequence sent (and received) when tabbing
from a tab stop or unprotected field to the next tab stop or
unprotected field.

tab forward inout = (ht)

Tab set is the sequence to set a tab stop at the current cursor
position.

tab set inout = (rs dc2 ""W"")

MISCELLANEOUS TERMINAL SEQUENCES

Bell nak is the sequence to ring the bell on your terminal.

bell nak out = (bel)

Bell ack is reserved for future use.

bell ack out = ()

Display_begin is reserved for future use.

display_begin out = ()

Display_end is reserved for future use.

display _end out = ()

Field scroll down is reserved for future use.

field scroll down out = ()

Field scroll set is reserved for future use.

field scroll set out = ()

Field scroll_up is reserved for future use.

field _scroll_up out = ()

Output begin is the sequence that will be sent before each
stream-of output is sent downline to the terminal. This
should include the sequence to disable protect if the term
inal supports it as well as the sequence to exit insert mode
if the terminal has an insert mode.

output_begin out = (disable_protect)

Output end is the sequence that will be sent after each stream
of output (and therefore before the next request for input) is
sent downline to the terminal. This should include the seq
uence to enable protect if the terminal supports protect.

output_end out = (enable_protect)

"
"
"
II

"
II

"
"
"

"
"
II

"
"

"
"
II

"
"
"

"
"
"

"
"
"

"
"
II

II

II

II

"
II

II

II

"
"

60460430 B

11

11

11

11

"
"
11

"
11

11

"
II

"
II

II

II

"
II

II

II

II

II

"
II

II

II

II

II

"

Print_begin is reserved for future use.

print_begin out = ()

Print end is reserved for future use.

print_end out = ()

Print_page is reserved for future use.

print_page out = ()

Protect all is the sequence that will set the protect bit for
all characters positions on the screen. For some terminals
that have protect this will be an empty string (an example is
is a terminal that uses a clear screen to protected character
positions sequence to accomplish this function).

protect_all out = (rs 'G')

Reset is reserved for future use.

reset out = ()

Return is reserved for future use.

return out = ()

PROGRAMMABLE FUNCTION KEY INPUT INFORMATION

All full screen products use programmable function keys so that a
user can tell the full screen product what they want to do next.
Programmable function keys in the full screen editor allow a f re
quently used command to be reduced to pressing the correct func
tion key (or required sequence of keys) for the terminal in use.

This section allows you to define what input sequences will be sent
upline by your terminal to be recognized as programmable function
keys. These should be entered for at least Fl - F6 and should be
defined for all of the keys if possible.

Procedures run in screen mode will require only Fl - F6 to execute
correctly but local screen formatting application programs that use
programmable function keys to drive menus or to terminate form type
input may require that more programmable functions keys than just
Fl - F6 be defined in this file.

Escape or control sequences such as ESC - 1 for Fl can be a good
way to define programmable function keys but take care not to use
sequences that conflict with terminal hardware sequences. These
are input only sequences so the IN keyword is used here.

60460430 B

"
"
"

"
"
II

II

II

"

"
II

II

"
"
II

"

"
"
"

"
"
II

II

II

II

II

II

II

"
"
II

II

II

II

"
II

5-35

"

"
"
"
"

"

fl
f 2
f3
f 4
f 5
f 6
f 7
f 8
f 9
flO
fll
f12
f13
f14
f15
f16
fl s
f2-s
f3-s
f4-s
fS-s
f6-s
f7-s
f8-s
f 9 s
nos
fll-s
fl2-s
fl3-s
f14-s
f15-s
f16-s

in =
in =
in =
in =
in=
in=
in=
in =
in=
in =
in =
in =
in =
in =
in=
in =
in
in
in
in
in
in =
in =
in =
in =
in =
in=
in =
in
in
in
in

(rs 71(16))
(rs 72(16))
(rs 73(16))
(rs 74(16))
(rs 75(16))
(rs 76(16))
(rs 77(16))
(rs 78(16))
(rs 79(16))
(rs 7A(16))
(rs 7B(16))
(rs 7C(16))
(rs 7D(16))
(rs 7E(16))
(rs 70(16))
(rs dc2 31(16))
(rs 61(16))
(rs 62(16))
(rs 63(16))
(rs 64(16))
(rs 65(16))
(rs 66(16))
(rs 67(16))
(rs 68(16))
(rs 69(16))
(rs 6A(16))
(rs 6B(16))
(rs 6C(16))
(rs 6D(16))
(rs 6E(16))
(rs 60(16))
(rs dc2 32(16))

CDC STANDARD FUNCTION KEY INPUT INFORMATION

All full screen products use what are called CDC standard func
tion keys. These are keys that have the same meaning to a par
ticular full screen product regardless of the terminal in use.
Each of these keys also corresponds to a physical key on the
CDC 721 (Viking) terminal.

The next section allows you to define what input sequences the
terminal you wish to use will send upline to be recognized as
CDC standard function keys. This capability will make all full
screen products more usable to the end user but is not required
when using the Full Screen Editor or Procedures in screen mode.

Local screen formatting applications that have been written to use
CDC standard function keys (rather than programmable function keys
described in the previous section) to drive menus or to terminate
form type input may require that at least some CDC standard function
keys be defined in this file.

Escape or control sequences such as ESC - F for Forward can be
a good way to define CDC standard function keys but take care not
to use sequences that conflict with terminal hardware sequences.
These are input only sequences so the IN keyword is used here.

5-36

"

II

II

II

II

II

II

"
"
II

"
"
"
"

II

"
II

"

60460430 B

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

If

II

II

If

II

II

II

II

II

II

II

II

If

If

If

II

back in (rs 5F(l6))
back s in= (rs 5B(l6))
help in= (rs 5C(l6))
help_s in= (rs 58(16))
stop in= (rs 49(16))
stop s in= (rs 4A(l6))
down- in= (rs dc2 20(16))
downs in= (rs dc2 21(16))
up in= (rs dc2 24(16))
up s in= (rs dc2 25(16))
fwd in = (rs dc2 28(16))
fwd s in = (rs dc2 29(16))
bkw- in= (rs dc2 2C(l6))
bkw s in= (rs dc2 2d(l6))
edit in= (rs 5E(l6))
edit s in= (rs 5A(l6))
data- in (rs dc2 35(16))
data s in= (rs dc2 36(16))

TERMINAL VIDEO ATTRIBUTES

These attributes are used mainly by screen formatting applications
to define various types of fields (though protect begin and end as
well as inverse begin and end or alternate begin and end where they
available are used by FSE). -

Define the attributes sequences below as described in the hardware
reference manual for your terminal. The only restriction is that
attributes that require an actual character position on the screen
can not be used. If your terminal has a protect mode that uses a
video attribute such as alternate video (either bright or dim) then
you will want to place these sequences in the protect begin and pro
tect end statements. These sequences are output only-hence the OUT
keyword' is used here.

Alt begin is the sequence to cause subsequent characters sent
dowllline to be displayed in an alternate intensity (which may
be bright or dim on your terminal).

alt_begin out = (fs)

Alt end is the sequence to cause subsequent characters sent
dowilline to be in normal intensity.

alt end out = (gs)

Blink begin is the sequence to cause subsequent characters
sent downline to be displayed with a blinking attribute.

blink _begin out = (so etx)

Blink end is the sequence to cause subsequent characters
sent downline after this with not be displayed with the
blinking attribute.

blink end out = (si)

60460430 B

It

II

II

II

II

II

II

II

II

II

II

II

It

II

"
II

"
II

II

5-37

"
"
"
"
"

"
"
II

II

"
"
II

"
II

II

"
II

II

"
"
"

"
"
II

"
II

"
"
II

II

"
"

"
"
II

"
II

Hidden begin is the sequence to set the hidden attribute for
subsequent characters so that data typed in this area can not
be seen on the screen (also called a guarded attribute).

hidden_ begin out= (rs dc2 '[')

Hidden end is the sequence to return to visible characters.

hidden end out = (rs dc2 5C(16))

Inverse begin is the sequence to cause subsequent characters
to be displayed in inverse video.

inverse_begin out = (start_inverse)

Inverse end is the sequence to return to normal video.

inverse end out (stop_inverse)

Protect_begin is the sequence to cause subsequent characters
sent downline to the terminal to be protected, which means
data can not be typed in these character positions on the
screen.

protect_begin out = (rs dc2 'I')

Protect end is the sequence to return to unprotected mode.

protect_end out= (rs dc2 'J')

Underline begin is the sequence to cause subsequent characters
sent downline to be displayed with an underline attribute.

underline_begin out = (start_underline)

Underline end is the sequence to cause subsequent characters
sent downline to no longer be underlined.

underline end out = (stop_underline)

LOGICAL ATTRIBUTE SPECIFICATIONS

Logical attributes are used mainly by screen formatting applications
to define various types of fields. Procedures run in screen mode for
example define all input variables for a procedure as logical type
INPUT TEXT which assures that they are underlined for those terminals
that have that capability or that any blanks in the variables are rep
laced with hypen characters on the screen to make them easily recogniz
able.

You may define the logical attributes below as any combination of phy
sical attributes by using the sequences to turn them on and off or use
any other displayable type function (except an attribute that will re
quire a actual character position on the screen) that your terminal
supports, such as RED ON for error_begin and RED OFF for error end.

5-38

"
"
"
II

"

"
"
"

"
"
"
"

"
"
"

"
"
"
"
"
"

"
"
II

II

"
"
"

"
II

"
"
II

"
II

II

II

"
"

60460430 B

"
"
"

"
"
"
II

II

"

"
"
"
"
"
"
"
"

II

II

II

II

II

II

II

"

II

II

ERROR

error begin
error-end

INPUT TEXT

out
out

(start inverse)
(stop_inverse)

If your terminal supports protect by use of a video attribute
such as alternate intensity for unprotected areas of the screen you
should define input text begin and end accordingly so that screen
formatting applications display the input fields correctly as un
protected areas.

input text begin
input=text:end

ITALIC

out
out

(start underline)
(stop_underline)

If your terminal supports an alternate character set then here
is a place that you can make use of it with screen formatting app
lications.

italic begin
italic-end

MESSAGE

out
out

()
()

Attributes display here will be used when printing help and
error messages on the first line of the screen when a screen for
matting application is running. Use any physical attributes that
you wish but remember that if your terminal has a video attribute
based protect capability this area should be protected data.

message begin
message=end

OUTPUT TEXT

out
out

()
()

For output only data so if your terminal has a video attribute
based protect capability this area should be protected data.

output_text_begin out ()
output_text _end out ()

TITLE

title _begin out ()
title end out ()

LINE DRAWING CHARACTER SPECIFICATION

Line drawing character sets that your terminal supports should
be specified here for use with the box drawing capabilty found in
NOS screen formatting. There are three line weights, fine, medium,
and bold, each with a sequence to enable and disable that weight
and with eleven characters that represent the corners, edges and
intersections for the corresponding line drawing character set.

60460430 B

II

"
II

"
"
II

II

II

II

II

II

II

II

II

II

"
II

II

"
"
II

II

II

II

II

II

5-39

"
"

"
"
"

5-40

If your terminal has the capability of actual line drawing
then place the sequences to turn the line drawing on and off in
the ld fine begin, ld fine end and so on for up to three types of
line drawing sets (you may-specify the same sequences for all three
or for any two if your terminal does not have three line drawing
sets). If your terminal has no line drawing then the use of a
hypen character for a horizontal character, a colon or like char
acter for a vertical line, and asterisks for all corners and in
tersections is suggested. In this case the ld fine begin, ld
fine end sequences would be blank though you could use a terminal
attribute such as alternate intensity.

Also for a bold line drawing character set you can define
all characters as blanks c- ') and use inverse on and inverse off
as the ld_bold_begin and ld_bold_end sequences:-

Fine Line Drawing.

ld fine begin
ld-fine -end
ld-fine-horizontal
ld-f ine-vertical
ld-fine-upper left
ld-f ine-upper-right
ld-fine-lower-left
ld-fine-lower-right
ld-fine-up t -
ld-f ine-down t
ld-fine-left-t
ld-fine-right t
ld-fine-cross-

Medium Line Drawing.

ld medium begin
ld-medium-end
Id-medium-horizontal
ld-medium-vertical
ld-medium-upper left
ld-medium-upper-right
ld-medium-lower-left
ldtnedium-lower-right
ld-medium-up t -
ld-medium-down t
ld-medium-left-t
ld-medium-right t
ld-mediuin-cross-

out
out
out
out
out
out
out
out
out
out
out
out
out

out
out
out
out
out
out
out
out
out
out
out
out
out

(rs fs)
(rs gs)
20(16)
21(16)
22(16)
23(16)
24(16)
25(16)
26(16)
27(16)
28(16)
29(16)
2A(16)

(rs fs)
(rs gs)
2B(l6)
2C(16)
2D(16)
2E(16)
2F(l6)
30(16)
31(16)
32(16)
33(16)
34(16)
35(16)

"
"
"
"
"

"
II

"
II

"
"
II

"
"
"

60460430 B

II

II

II

II

"
II

"
"
II

II

"
II

II

II

II

Bold Line Drawing.

ld bold begin
ld-bold-end
ld-bold-horizontal
ld-bold-vertical
ld-bold-upper left
ld-bold-upper-right
ld-bold-lower-lef t
ld-bold-lower-right
ld-bold-up t -
ld-bold-do'Wn t
ld-bold-left-t
ld-bold-right t
ld-boldcross-

out =
out
out
out
out
out
out
out
out
out
out
out
out

start inverse
stop inverse
(' ')
(......)
(.....)
(.....)
(.....)
(' ')
(......)
(.....)
(.....)
(' ')
(.....)

DEFAULT KEY DEFINITIONS FOR THE FULL SCREEN EDITOR

Here is where the default function.key sequences that will be
used by the full screen editor are defined. Using the variables
defined earlier (see VARIABLES FOR FULL SCREEN EDITOR FUNCTION KEY
DEFINITONS around line fifty) the six function keys our example term
inal has are defined.

The keyword here is APPLICATION STRING (the ••• indicates a
line continuation to TDU) and the name used is FSEKEYS which will
be recognized by FSE. The out sequence is just the previously de
fined variable strings seperated by semi-colons to make a correct
FSE command. In addition to default function key sequences here
is a good place to put a SET TAB command if your terminal has pre
defined hardware tabs. Simply define a variable as was done with
kl through k6 as sl = ('st 7 11 14 24 34 44 54 64') and include it
in one of the out sequences below.

application string •••
name = ('FSEKEYS') •••
out =(kl';' k2 ';' k3 ';' k4 ';' kS ';' k6 ';' k7 ';' k8)
application string •••
name ('FSEKEYS') •••
out = (k9 ';' klO ';' kll ';' kl2 ';' kl3 ';' kl4 ';' klS)

Now that you have completed your TDUIN file you need to execute
the TDU command. It should compile this file and produce a local file
called TERMLIB (or add the capsule for this terminal to a file called
TERMLIB, such as the one from UN=LIBRARY, that is alreday local). Re
place this file and then whenever the SCREEN,model name command is ex
ecuted you will see a local file called ZZZZTRM that will allow you
to interact with all NOS full screen products.

END OF TERMINAL DEFINITION FILE FOR 721 TERMINAL

60460430 B

"
"
"

"

"
"
II

5-41

CODE SET CONVERSION A

The code conversion inf orm.ation in this appendix is provided to help you interpret
information coded in 6/12-bit display code or 7-bitt ASCII code when it is displayed in
6-bit display code form. The left side of table A-1 lists the 128-character ASCII character
set with the corresponding 6-bit display code values. The right side of the table shows the
6/12-bit display code and 7-bit ASCII code characters as they appear when displayed in 6-bit
display code format.

Table A-1. Code Conversion Chart (Sheet 1 of 4)

ASCII 6-Bit 6/12-Bit 7-Bit
(128-character) Display Code Display Code ASCII

Code
Character Octal Hexadecimal Character Octal Character Octal Character

NUL 000 00 "'5 7640 .. 5:
SOH 001 01 "'6 7641 :A
STX 002 02 "'7 7642 :B
ETX 003 03 "'8 7643 :C
EOT 004 04 "'9 7644 :D
ENQ 005 05 "'+ 7645 :E
ACK 006 06 A - 7646 :F
BEL 007 07 "'* 7647 :G

BS 010 08 "'/ 7650 :H
HT 011 09 "'(7651 :I
LF 012 OA "') 7652 :J
VT 013 OB "'$ 7653 :K
FF 014 QC A = 7654 :L
CR 015 OD A sp 7655 :M
so 016 OE A 7656 :N ,
SI 017 OF A 7657 :O .
DLE 020 10 "'fl 7660 :P
DCl 021 11 "'[7661 :Q
DC2 022 12 "'] 7662 :R
DG3 023 13 "% 7663 :S
DC4 024 14 "'" 7664 :T
NAK 025 15 A 7665 :U
SYN 026 16 "T 7666 :V
ETB 027 17 "& 7667 :W

Note: sp represents a space.

t7-bit ASCII characters occupy the rightmost 7 bits of a 12-bit field. The leftmost 5 bits
are.~unused.

60460430 B A-1

Table A-I. Code Conversion Chart (Sheet 2 of 4)

ASCII 6-Bit 6/ I2-Bit 7-Bit
(I28-character) Display Code Display Code ASCII

Code
Character Octal Hexadecimal Character Octal Character Octal Character

CAN 030 I8 , 7670 :X
EM 03I I9 ? 7671 :Y
SUB 032 IA "(7672 :Z
ESC 033 IB "") 7673 :0
FS 034 IC ""@ 7674 :I
GS 035 lD ""\ 7675 :2
RS 036 IE ,. 7676 :3
us 037 IF ; 7677 :4

sp 040 20 sp 55 sp 55 :5
! Exclamation Point 041 21 ! 66 ! 66 :6
II Quotation Marks 042 22 II 64 II 64 :7
fl Number Sign 043 23 11 60 11 60 :8
$ Dollar Sign 044 24 $ 53 $ 53 :9
% Percent Sign 045 25 % 63 % 63 :+
& Ampersand 046 26 & 67 & 67 ·-,

Apostrophe 047 27
,

70
,

70 :*

(Opening Parenthesis 050 28 (51 (51 :/
) Closing Parenthesis 051 29) 52) 52 : (
* Asterisk 052 2A * 47 * 47 :)
+ Plus 053 2B + 45 + 45 :$

' Comma 054 2C ' 56
'

56 :=
- Dash 055 2D - 46 - 46 :sp
• Period 056 2E . 57 . 57 . .
I Slant 057 2F I 50 I 50 : I

0 060 30 0 33 0 33 :11
1 061 31 1 34 1 34 : [
2 062 32 2 35 2 35 :]
3 063 33 3 36 3 36 :%
4 064 34 4 37 4 37 :"
5 065 35 5 40 5 40 :
6 066 36 6 41 6 41 :T
7 067 37 7 42 7 42 :&

8 070 38 8 43 8 43 : ,
9 071 39 9 44 9 44 :?
: Colon 072 3A : 00 @D 7404 :<
; Semicolon 073 3B ; 77 ; 77 :)

< Less than 074 3C < 72 < 72 :@
= Equals 075 3D = 54 = 54 : \
> Greater than 076 3E > 73 > 73 :"
? Question Mark 077 3F ? 71 ? 71 . '
Note: sp represents a space.

A-2 60460430 B

Table A-1. Code Conversion Chart (Sheet 3 of 4)

ASCII 6-Bit 6/12-Bit 7-Bit
(128-character) Display Code Display Code ASCII

Code
Character Octal Hexadecimal Character Octal Character Octal Character

@ Commercial At 100 40 @ 74 @A 7401 A:
A 101 41 A 01 A 01 AA
B 102 42 B 02 B 02 AB
c 103 43 c 03 c 03 AC
D 104 44 D 04 D 04 AD
E 105 4S E OS E OS AE
F 106 46 F 06 F 06 AF
G 107 47 G 07 G 07 AG

H 110 48 H 10 H 10 AH
I 111 49 I 11 I 11 AI
J 112 4A J 12 J 12 AJ
K 113 4B K 13 K 13 AK
L 114 4C L 14 L 14 AL
M 115 4D M lS M lS AM
N 116 4E N 16 N 16 AN
0 117 4F 0 17 0 17 AO

p 120 50 p 20 p 20 AP
Q 121 51 Q 21 Q 21 AQ
R 122 52 R 22 R 22 AR
s 123 53 s 23 s 23 AS
T 124 S4 T 24 T 24 AT
u 125 SS u 2S u 2S AU
v 126 S6 v 26 v 26 AV
w 127 57 w 27 w 27 AW

x 130 58 x 30 x 30 AX
y 131 S9 y 31 y 31 AY
z 132 SA z 32 z 32 AZ
[Opening Bracket 133 SB [61 [61 AO
\ Reverse Slant 134 SC \ 7S \ 7S Al
] Closing Bracket 135 SD] 62] 62 A2
"' Circumflex 136 SE 76 @B 7402 A3

Underline 137 SF 6S 6S A4 - - -

60460430 B A-3

Table A-1. Code Conversion Chart (Sheet 4 of 4)

ASCII 6-Bit 6/ 12-Bit 7-Bit
(128-character) Display Code Display Code ASCII

Code
Character Octal Hexadecimal Character Octal Character Octal Character

' Grave Accent 140 60 @ 74 @G 7407 AS
a 141 61 "'A 7601 A6
b 142 62 "'B 7602 A7
c 143 63 "'C 7603 A8
d 144 64 "'D 7604 A9
e - 145 65 "'E 7605 A+
f 146 66 "'F 7606 A-
g 147 67 "'G 7607 A*

h 150 68 "'H 7610 A/
i 151 69 "'I 7611 A(
j 152 6A "'J 7612 A)
k 153 6B "'K 7613 A$
1 154 6C ""L 7614 A=
m 155 6D "'M 7615 ASP
n 156 6E N 7616 A,
0 157 6F 0 7617 A.

p 160 70 "'P 7620 All
q 161 71 "'Q 7621 A[
r 162 72 R 7622 A]
s 163 73 ""S 7623 A%
t 164 74 "'T 7624 A"
u 165 75 "'U 7625 A
v 166 76 v 7626 AT
w 16 7 77 "'W 7627 A&

x 170 78 ""X 7630 A'
y 171 79 "'Y 7631 A?
z 172 7A ""Z 7632 A<
{ Opening Brace 173 7B [61 ""O 7633 A)

I Vertical Line 174 7C ' 75 ""l 7634 A@
} Closing Brace 17 5 7D 1 62 "'2 7635 A\ - Tilde 176 7E 76 "'3 7636 A"'
DEL 177 7F "'4 7637 A· ,

A-4 60460430 B

DIAGNOSTIC MESSAGES B

This appendix describes the error messages generated by NOS screen formatting. Screen
formatting error messages are of four types:

• PDU syntax error messages

• PDU summary error messages

• Program dayfile error messages

• TDU syntax error messages

PDU error messages are returned as a result of an unsuccessful attempt to compile a panel
using the PDU command. All PDU error messages are listed in the PDU command output file.
If a PDU command is included in a batch job, the PDU summary error messages also appear in
the job's dayfile. Program dayfile messages indicate execution errors that occur during an
attempt to run a program that calls screen formatting object routines.

TDU error messages are returned as a result of an unsuccessful attempt to compile a terminal
definition file using the TDU command. All TDU error messages are listed in the TDU command
output file. If a TDU command is included in a batch job, the TDU summary error messages
also appear in the job's dayfile.

60460430 B B-1

POU SYNTAX ERROR MESSAGES

PDU syntax error messages detect syntax errors (such as a variable name omitted on a VAR
statement) encountered while scanning a panel definition file. Individual error messages
begin with the characters *ERROR* and are displayed in the PDU output file as shown in the
following example:

VAR

ERROR EXPECTING VAR NAME AFTER VAR

The PDU output line in error is followed by a line containing an exclamation point that
points to the position where the error occurred. The second line following the output line
contains the PDU individual error message.

B-2 60460430 B

ERROR EXPECTING ATTR, BOX, KEY, PANEL,
TABLE, VAR or)

ERROR EXPECTING CONSTANT AFTER

ERROR EXPECTING CONSTANTS AFTER RANGE

ERROR EXPECTING LIST AFTER MATCH

ERROR EXPECTING NAME= OR ROWS= AFTER TABLE

ERROR EXPECTING NORMAL=Ckeys) OR
ABNORMAL=Ckeys) AtTER KEY

ERROR EXPECTING NORMAL= OR ABNORMAL=
AFTER KEY

ERROR EXPECTING PANEL NAME AFTER PANEL

ERROR EXPECTING PHYSICAL ATTRIBUTE

ERROR EXPECTING PRIMARY OR OVERLAY

ERROR EXPECTING QUOTED DELIMITERS

ERROR EXPECTING STRING AFTER HELP

ERROR EXPECTING TABLE DI MENSI ON

ERROR EXPECTING TABLE NAME

ERROR EXPECTING TERMINATOR CHARACTER

ERROR EXPECTING TERMINATOR= OR WEIGHT=
AFTER BOX

ERROR EXPECTING TYPE= AFTER PANEL

ERROR EXPECTING VAR NAME AFTER VAR

ERROR EXPECTING X, A, 9, N, E, YMD, MOY,
OMY OR $ FORMAT

ERROR F !ELD DECLARED DI FF ER ENT SIZE

ERROR MORE THAN 256 BOX ELEMENTS

ERROR MORE THAN 256 VARIABLES

ERROR MORE THAN 32 ATTRIBUTES

ERROR MORE THAN 32 KEYS

ERROR MORE THAN 8 BOXES

60460430 B

SIGNIFICANCE

Unknown keyword was encountered when the
beginning of a new declaration statement or
the end of declarations was expected.

VAR default value must be a constant.

The RANGE parameter value must be two
constants enclosed in parentheses.

The MATCH parameter value must be enclosed
in parentheses.

Unknown keyword in the TABLE statement.

Unknown keyword in the KEY statement.

Unknown keyword in the KEY statement.

A panel name is required in the PANEL
statement.

A logical attribute (for example, TITLE>
was specified where a physical attribute
(for example, INVERSE) was expected.

PRIMARY or OVERLAY are the only valid panel
types.

Attribute delimiters must be specified as
two characters enclosed in apostrophes; for
example, ATTR '()'.

The HELP parameter value must be a
character string enclosed in apostrophes;
for example, HELP='Helpful message'.

A table dimension (number of time the VARs
are to be repeated> must be specified in a
TABLE statement.

A table name must be specified in a TABLE
statement.

A terminator character must be specified in
a BOX statement.

Unknown keyword in the BOX statement.

Unknown keyword in the PANEL statement.

Each variable field declared in a VAR
statement 111Ust be named.

An incorrect value was specified for the
FORMAT parameter.

A variable field in the panel image has a
different length (number of underlined
characters> than declared in the
corresponding VAR statement.

Only 256 lines and corners are allowed for
all box figures in a single panel.

Only 256 variable fields are allowed per
panel.

Only 32 unique attribute combinations are
allowed per panel.

Only 32 function keys may be defined in
each panel.

Only eight BOX statements are allowed per
panel. There may, however, be any number
of individual box figures on the screen,
subject to the 256 line and corner limit.

ACTION

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Reconstruct box figures
to conform to limits.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

ROUTINE

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

POU

B-3

~

•ERROR* MORE THAN 8 TABLES

•ERROR* NOT IN TABLE

•ERROR* PANEL IMAGE EXCEEDS 64 LINES

•ERROR* RANGE LOW GT HIGH

•ERROR* RANGE OR CHAR NOT ALLOWED

•ERROR* REAL CONSTANT FORMAT

•ERROR* SHI FT NOT ALLOWED

•ERROR* STRING LENGTH

•ERROR* TABLE DIMENSION REQUIRED

•ERROR* TABLE NAME REQUIRED

•ERROR* TABLE PARAMETER

•ERROR* TERMINATOR CHAR REQUIRED

•ERROR* TOO llMNY ATTR PARAMETERS

•ERROR* TOO MANY VAR PARAMETERS

•ERROR* TWO VAR NAMES

•ERROR* TYPE/FORMAT MISMATCH IN PRECEDING
VAR

•ERROR* UNEXPECTED END OF FILE

•ERROR* UNKNOWN KEYWORD

•ERROR* UNTERMINATED STRING

•ERROR* VALIDATION TABLE OVERFLOW

•ERROR* VALUE TYPE MISMATCH

•ERROR* VAR DECLARED TWICE

•ERROR* VAR NAME NOT SPECIFIED

B-4

SIGNIFICANCE

Only eight TABLE statements are allowed per
panel.

A TABLEND statement was encountered without
a preceding TABLE statement.

A panel may have a maximum of 64 lines.

The constants in a RANGE parameter must
have ascending values; for example, the
second must be larger than the first.

A CHAR type variable Cthe default type>
cannot have a RANGE parameter.

A constant for a VAR of type REAL must be
in the following format: sn.nEsm ~ where s
is a sign (either + or ->, n is one or more
digits, E is the letter 'e', and m is a 1-
to 3-digit nU11ber.

SHIFT cannot be specified for the CDC
standard keys like BACK. Only the
application keys, like F1, can be shifted.

A single character string within
apostrophes exceeds 256 characters.

The number of rows in a TABLE must be
declared for each table. There is no
defau Lt.

Tables must have a name specified in the
TABLE statement.

More than two parameters were specified in
the TABLE state•ent.

A terminator character enclosed in
apostrophes must be specified for each BOX
statement.

More positional parameters than allowed
were specified in the ATTR statement.

More positional parameters than allowed
were specified in the VAR statement.

More than one name was specified in a
single VAR statement. A single VAR can
have on Ly one name.

The format specified in the VAR statement
is not compatible with the data type.

The end of the panel definition file was
encountered before the end of declarations;
for example, before the terminating >.

The keyword specified is not allowed for
this statement.

A string with no closing apostrophe was
encountered.

The panel contains too much variable
related information. The validation table
is an internal table used to store all
validation and help information for the
panel. It can contain approximately 4000
characters.

The initial VALUE specified in a VAR
statement is not the same type as the
declared TYPE; for example, an integer
initial value for a CHAR type variable.

Two VAR statements using the same variable
name were encountered. Variable names must
be unique.

Each VAR statement must specify a variable
name.

ACTION

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resub11it.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Correct declaration and
resubmit.

Simplify the panel by
reducing the number of
variable fields, or by_
reducing the a•ount of
validation and/or help
information specified
for panel variable
fields.

Correct declaration and
resubmit.

Correct declarations and
resubmit.

Correct declarations and
resubmit.

~

POU

POU

POU

POU

POU

PDU

POU

PDU

POU

POU

PDU

PDU

POU

PDU

PDU

PDU

PDU

POU

PDU

PDU

PDU

PDU

PDU

60460430 B

POU SUMMARY ERROR MESSAGES
PDU summary error messages indicate the type of error that caused the compilation to fail.
Summary error messages begin with the characters PANEL- and are listed at the end of the PDU
output file. If the PDU command is included in a batch job, the summary error messages also
appear in the job's dayfile.

Syntax errors in the panel definition file generate both PDU individual and summary error
messages. All other panel definition errors produce only a summary error message.

60460430 B B-5

MESSAGE

PANEL - ERROR IN xxxxxx CAN'T OPEN FILE
yyyyyyy

PANEL - ERROR IN xxxxxx DECLARATIONS

PANEL - ERROR IN xxxxxx END OF FILE DURING
DEFINITIONS

PANEL - ERROR IN xxxxxx NO DEFINITION ON
IMAGE

PANEL - ERROR IN xxxxxx SCREEN IMAGE

PANEL - ERROR IN xxxxxx UNRECOGNIZED
PARAMETER yyy

B-6

SIGNIFICANCE

The specified file containing the panel
definitions could not be opened; for
example, was not a local file.

Preceding errors in the declaration part of
the panel definition caused compilation to
fail. The image is not scanned.

The end of the panel definition file was
encountered before the end of declarations;
for example, before the terminating) •

An empty panel definition file was
submitted. The definition file must have
at least one line.

A previous Ly noted error in the panel image
caused compilation to fail.

An unrecognized (probably misspelled)
parameter keyword was specified on the
PANEL statement.

Correct file name or
attach, get, or create
the definition file.

Correct errors and
resubmit.

Supply missing) or
otherwise correct the
panel definition and
resubmit.

Correct definition and
resubmit.

Correct image and
resubmit.

Correct parameter
specifications and
resubmit.

~

POU

POU

POU

POU

POU

POU

60460430 B

PROGRAM DA YFILE ERROR MESSAGES

As the name implies, program dayfile error messages are listed in the dayfile of the job
that initiated execution of the program. Program dayfile messages begin with the name of
the screen formatting object routine that encountered the error.

60460430 B B-7

~

SFCLOS PANEL xxxxxxx ALRfADY CLOSED

SFCLOS PANEL xxxxxxx NOT IN PLT

SFC LOS PANEL xxxxxxx NOT OPENED

SFC LOS PANEL xxxxxxx NOT ~LOADED

SFOPEN PANEL xxxxxxx BAD ENTRY FORMAT

SFOPEN PANEL xxxxxxx BAD GROUP NAME

SFOPEN PANEL xxxxxxx BAD UBRARY LIST

SFSREA PANEL xxxxxxx M>T OPENED

SFSWRI PANEL xxxxxxx NOT OPENED

SFSWRI PANEL xxxxxxx NOT PRIMARY

B-8

S IGHIF ICANCE

kt attempt was made to close a panel more
than once.

kt attempt was made to close a panel that
was never opened.

kt attempt was made to show a panel that
was never opened.

The fast dynamic loader was unable to
unload panel xxxxxxx.

The passloc/ entry list in routine LCP is
incorrect.

The grot.p name of the panel library being
used is incorrect.

The library list in routine LCP is
incorrect.

An attempt was made to show a panel that
was never opened.

kt attempt was made to show a panel that
was never opened.

kt attempt was made to write an overlay
panel before any primary panel was written
{for example, while the screen display is
still in line mcx:le).

ACTION

Check program logic for
a redundant SFCLOS
subroutine call for
panel xxxxxxx.

Check program logic for
a missing SFOPEN
subroutine call for
panel xxxxxxx.

Check program to ensure
that panel xxxxxxx is
successfully opened
before it is referenced
by an SFSSNO subroutine
call.

Call site analyst.

Call site analyst.

call site analyst.

Call site analyst.

Cheek program to ensure
that panel xxxxxxx is
successfully opened
before it is referenced
by an SFSREA subroutine
call.

Check program to ensure
that panel xxxxxxx is
successfully opened
before it is referenced
by an SFSWRI subroutine
call.

Check program logic to
ensure that the primary
panel is written on the
screen before overlay
panels are called.

ROUTINE

SFCLOS

SFCLOS

SFSSMO

SFCLOS

SF OPEN

SF OPEN

SF OPEN

SFSSMO

SFSWR I

SFSWR I

60460430 B

TDU SYNTAX ERROR MESSAGES

TDU syntax error messages detect syntax errors encountered while scanning a terminal
definition file. The TDU messages are prefixed with the line:

TDU TERMINATED WITH ERRORS

Syntax error messages are displayed in the TDU output file (which is an ASCII file) as shown
in the following example:

INVALID COMMUNICATIONS TYPE
communications type = bisynch

!

The first line contains the TDU syntax error message. The second line is the line of the
terminal definition file in error, followed by a line with an exclamation point that points
to the position where the error occurred.

60460430 B B-9

MESSAGE

CONTINUATION EXCEEDS 256 CHARACTERS

CURSOR BIAS OUT OF RANGE, MUST BE -255 TO
255 -

DEFINITION FILE NOT FOUND

DOUBLY DEFINED PARAMETER xxxxxx

DUPU CATE PARAMETERS, BOTH "IN" AND "INOUT"

DUPUCATE PARAMETERS, BOTH "OUT" AND "INOUT"

Efl'TY INPUT FILE

EXPECTING xxxxxx

EXPECTING VERB OR VARIABLE, FOUND xxxxxx

INTEGER OVERFLOW xxxxxx

/

INTEGER TOO LARGE xxxxxx

INVALID xxxxxx

INVALID CURSOR_ENCODING

INVALID "MOVE_PAST •• " OR "CHAR_PAST •• " TYPE

INVALID NAME-MAY ONLY BE ALPHABETIC AND
NUMERIC CHARACTERS

INVALID TYPE-ONLY STRING, INTEGER, OR
VARIABLE ALLOWED

INVALID VERB OR MISSING
ASSIGNMENT

IN VARIABLE

ITEM xxxxxx IS SUPERSET OF A PREVIOUS ITEM

NAME IS REQUIRED

NAME MUST BE 1 TO 6 CHARACTERS

B-10

SIGNIFICANCE

The total number of characters in a line
and its continuation exceeds 256.

Cursor bias must be within range -255 <=
cursor:bias <= 255.

The user returned the file ZZZZTRM
which containes the terminal definitions.

A parameter appeared twice in the same
statement.

You specified both parameters in the same
statement.

Both parameters were specified in the same
statement with an Input/output verb.

The TDU input file contained only blank
lines Cor no lines>.

TDU was expecting to find the indicated
symbol, but did not.

A statement began with a symbol other than
a name, such as an integer, boolen, string,
and so on.

Specified integer exceeds CDC integer size.

Specified integer exceeds CDC integer
ceiling.

The indicated symbol is not allowed at the
location where it was found.

Communications value not from allowed set.
Must be ASYNCH, SYNCH, or SNA.

An incorrect value was assigned to the TYPE
parameter for one of the verbs MOVE PAST
SIDE, MOVE PAST TOP, MOVE PAST BOTTOM, CHAR
PAST_SIDE,-or CHAR_PAST_LAsT_POSITION. -

The value assigned to the VALUE parameter
of the MODEL NAME statement used a
character other than A-Z or 0-9.

A boolean, undeclared variable, or other
symbol was encountered in a character
string sequence.

A statement began with a name which TDU did
not recognize so it assumed statement was a
variable declaration; but there was no "="
symbol.

The leading characters of the input
character sequence are the same as an
entire character sequence encountered
earlier.

The MODEL NAME statement was missing or the
name was Tnvalid.

The value assigned to the VALUE parameter
of the MODEL NAME statement used O or more
than 6 characters.

Reformat using variables
and minimize indentation.

Correct bias and
resubmit.

Re-issue the SCREEN or
LINE command.

Check mixed usage of
keyword parameters.

Possible confusion when
using parameters. Use
"IN" and "OUT" only when
the character sequences
differ, otherwise use
"INOUT".

Possible confusion when
using parameters. Use
"IN" and "OUT" only when
the character sequences
differ, otherwise use
"INOUT".

Check input file.

Correct statement and
resubmit.

Correct statement and
resubmit.

Correct integer value
and resubmit.

Correct integer value
and resubmit.

Correct statement and
resubmit.

Correct the
communication value.

Use only STOP NEXT,
SCROLL NEXT, HOME NEXT,
WRAP ADJACENT NEXT, or
WRAP-SAME NEXT for the
value anaresubmit.

Use only alphabetic and
numeric characters in
the name.

Check for a misspelled
name, missing
apostrophe, and so on.

Check for misspelled
statement or missing
symbol.

All input character
sequences must be unique.

You must give your
terminal definition file
a unique name.

Use at least 1 character
but no more than 6
characters in the name.

~

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

60460430 B

NO ROOM IN TABLE FOR xxxxxx

NOT YET IMPLEMENTED xxxxxx

NUMBER OF COLUMNS MUST RANGE FROM 0 to 511

NUMBER OF ROWS MUST RANGE FROM 0 TO 63

"OUT" REQUIRED FOR SET SIZE

REQUIRED PARAMETER MISSING xxxxxx

STRING OVERFLOW xxxxxx

TABLE OVERFLOW xxxxxx

TABLE OVERFLOW DUR ING OP TIMI ZA TION

TDU TERMINATED WITH ERRORS

TERMINAL DEFINITION NOT FOUND

TERMINAL MODEL NOT YET SPECIFIED

TOO MANY xxxxxx

TOO MANY SCREEN SIZES SPECIFIED, MAXIMUM 4

UNBALANCED xxxxxx

UNEXPECTED xxxxxx

UNKNOWN KEYWORD xxxxxx

VAWE RANGE NOT ALLOWED xxxxxx

VARIABLE xxxxxx HAS NOT BEEN DECLARED

VERB xxxxxx APPEARS TWICE

60460430 B

SIGNIFICANCE

TDU internal tables exceeded available
storage.

Reserved for future implementation.

You specified too large a number of
columns. It should be within the range 0
to 511.

You specified too large a number of rows.
It chould be within the range 0 to 63.

The SET SIZE statement was used without
specify Tng the OUT parameter.

The indicated parameter must be specified
when this verb is used.

The total number of characters in a st ring
exceeds 256.

TDU internal tables exceeded available
storage.

TDU internal tables exceeded availaable
storage.

TDU encountered errors in the terminal
definition file as indicated by other
messages.

There is no fi le named TERMLIB which
contains the specified terminal
definitions.

The user has not previously issued a
SCREEN or LINE command and so must
specify the terminal model name.

A value list was used with a parameter
which only allows a single value.

You specified too many screen sizes.

The indicated symbol should be used in
pairs. It was not.

TDU did not expect to fine the indicated
symbol where it did.

TDU did not recognize a parameter.

TDU does not use va Lue rang es.

The indicated variable was not previous Ly
defined.

Input, Output, and Input/output statements
may only appear once.

Increase the job's field
length limit and retry.

None.

Correct number of
columns and resubmit.

Correct number of rows
and resubmit.

For every screen size
you must specify the
character sequence that
switches the terminal
into that size.

Supply necessary
parameter and resubmit.

See initialization verb
section. If string is
part of a terminal
function other than
initialization, look for
a way to shorten it.

Increase the job's field
length limit and retry.

Increase the job's field
length limit and retry.

Correct errors in the
TDU input fi Le.

None.

Specify the terminal
model name so the
SCREEN and LINE commands
can be issued without
specifying the terminal
model.

Correct statement and
resubmit.

Choose your four favorite
screen sizes.

Check for a missing
parenthesis or
apostrophe.

Correct statement and
res!!l'mit,

Check for misspelling,
or extra parenthesis or
apo st roph e.

Use a value list.

Check for misspelling or
missing apostrophe.

Delete the redundant
statement.

~

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

TDU

B-11

GLOSSARY c

Alternate Intensity Character Display

A CRT display characteristic in which
certain characters or character strings
are highlighted by displaying them at a
different light intensity than the
surrounding text.

Application Program

A program resident in a host computer
that uses the Network Access Method and
provides an information storage, re
trieval, and/or processing communication
network.

ASCII

American National Standard Code for
Information Interchange.

CDC Standard Function Keys

The following function keys are defined
as CDC standard function keys: NEXT,
HELP, BACK, STOP, FWD, BKW, UP, and DOWN.

COBOL

Common Business Oriented Language.
This higher-level language simplifies
the programming of business data
applications.

Declaration Section

In NOS screen formatting, the part of a
panel definition file that defines the
display characteristics and data type
characteristics of information appearing
in a panel.

Direct Access File

A type of NOS file which allows you to
make editing changes directly on the
permanent copy of the file. Contrast
with Indirect Access File.

60460430 B

Editing Function Keys

The following terminal keys are defined
as editing function keys: INSERT
(character/line), DELETE (character/
line), ERASE,TAB (forward), TAB (back
ward), CLEAR (page/end of line).

FORTRAN

Formula Translation. A language that
solves algebraic and scientific problems
using symbols and statements that
closely resemble mathematical notation.

Full Screen Editor (FSE)

A NOS text editor which allows you to
edit files in either line mode or screen
mode.

Function Key

Any of a number of special keys (apart
from the standard typewriter keys) on a
user terminal which are used to request
a specific action by the application
program. The number and type of
functions keys available on a keyboard
differs depending on the terminal
model. See also CDC Standard Function
Keys, Editing Function Keys, and
Programmable Function Keys.

Image Section

In NOS screen formatting, the part of a
panel definition file in which you
define the format or layout of a panel.

Indirect Access File

A type of NOS file which allows you to
make editing changes on a local copy of
the file without affecting the permanent
copy of the file. When you are finished
editing the local copy, you can either
replace the permanent copy with the
local (edited) copy or else discard the
local copy. Contrast with Direct Access
File.

C-1

Inverse Video Display

A CRT display characteristic in which
characters or character strings are
highlighted by displaying the characters
darkened against a lighted background,
rather than vice versa.

Line Mode

A method of interactive job entry in
which job statements or commands are
entered and executed on a line by line
basis. Contrast with Screen Mode.

NOS Procedure

A series of NOS commands that resides in
a separate file or file record and that
is structured to perform a specific
subroutine-like function. NOS proce
dures can be called from an executing
job or from another procedure.

Object Routine

A section of program code which resides
on a common file or library and which
performs a specific, frequently repeated
function. An object routine can be
loaded and called as a subroutine by an
executing application program.

Panel

In NOS screen formatting, a formatted
screen defined using the Panel Defini
tion Utility (PDU). An application
program uses a panel to display data or
request user input at the terminal.

Panel Definition File

C-2

In NOS screen formatting, a NOS text
file which defines a panel format. The
panel definition file must be compiled
and stored in a user library before it
can be called by an executing applica
tion program.

Panel Definition Utility (PDU)

In NOS screen formatting, the utility
used to create and maintain panels and
panel libraries.

Pascal

A general usage high-level programming
language.

Programmable Function Keys

The numbered function keys on a user
terminal. The programmable function
keys are usually labelled Fl,F2, ••• ,Fn
or PFl,PF2, ••• ,PFn.

Screen Mode

A method of interactive job entry in
which formatted display screens are used
to display output information or to
request user input of job parameters or
program data. Contrast with Line Mode.

Terminal Definition Utility (TDU)

In NOS screen formatting, the utility
used to compile definition files to be
loaded defining terminal key functions.

User Library

A file of binary modules that can be
used by the loader to load routines and
satisfy externals. It contains tables
referencing the assembled central
processor programs, subroutines, text
records, or overlays.

Validation Checking

The process of testing input values
submitted for procedure parameters,
program variables, or other types of
input variables to ensure that the
entered values meet any specified format
or range requirements.

60460430 B

SAMPLE PROGRAMS

This appendix contains a FORTRAN 5 program, a COBOL 5 program, and a Pascal program that
demonstrate how panels can be used in application programs to perform program input and
output operations. The panel definition files used to create each panel are also included
in this appendix, so you can create panel libraries for sample programs and run them in
screen mode.

I NOTE I
The first line of the panel definition file
must always be left-justified.

FORTRAN PROGRAM ANGLE3

D

Figure D-1 presents the listing for a FORTRAN program called ANGLE3. ANGLE3 calculates the
area of a triangle from values entered by the user. ANGLE3 uses five different panels. The
panel definition files for ANGLE3 panels are presented in figures D-2 through D-6.

Figures D-2 and D-3 are the panel definition files for the ANGLE3 input and output panels.
The input panel is called TRYIN and the output panel is called TRYOUT.

60460430 B D-1

D-2

PROGRAM ANGLE3
C ***THIS PROGRAM CALCULATES THE AREA OF A TRIANGLE***

INTEGER STAT, KTYPE, KORD, SW, F1, QUIT, NEXT, FKEY, CDCKEY
REAL RSIDEC3), S, RDCL, AREA
C~ARACTER INPAN*30, Cl.JTPAN*40, DUMMY*40
CHARACTER* (*) TRYIN, TRYClJT, MSGOVL1, MSGOVL2, BLNKOVL
PARAMETERCTRYIN='TRYIN', TRYClJT='TRYClJT', MSGOVL1='MSGOVL1',

+ MSGOVL2='MSGOVL2', BLNKOVL='BLNKOVL')
PARAMETER CF1=1, QUIT=6, FKEY=O, CDCKEY=1, NEXT=1)

C ***OPEN ALL PANELS; PRINT DIAGNOSTIC MESSAGE
C If SFOPEN IS UNSUCCESSFUL.***

CALL SFOPEN CTR YIN, STAT>
IFCSTAT .NE. 0) THEN

PRINT *,'PANEL TRYIN NOT OPENED; STAT=',STAT
STOP

ENDIF
CALL SFOPENCTRYOUT ,STAT>
IFCSTAT .NE. 0) THEN

PRINT*,'PANEL TRYOUT NOT OPENED; STAT=',STAT
STOP

ENDIF
CALL SFOPENCMSGOVL1,STAT)
IFCSTAT .NE. 0) THEN

PRINT*,'PANEL MSGOVL1 NOT OPENED; STAT=',STAT
STOP

ENDIF
CALL SFOPENCMSGOVL2,STAT)
IFCSTAT .NE. 0) THEN

PRINT*,'PANEL MSGOVL2 NOT OPENED; STAT=',STAT
STOP

ENDIF
CA LL SF OP EN CBLNK OV L, ST AT)
If (STAT .NE. Q) THEN

PRINT*,'PANEL BLNKOVL NOT OPENED; STAT=',STAT
STOP

ENDIF
C ***READ INPUT STRING CINPAN)***
20 CA LL Sf SR EA CTR YIN, I NP AN)
C ***TEST FOR QUIT KEY; If PRESSED, TERMINATE
C PROO RAM.***

CALL SFGETKCKTYPE,KORD)
IFCKTYPE .EQ. FKEY .AND. KORD .EQ. QUIT) THEN

CALL SFCLOSCTRYIN,1)
STOP

ENDIF

Figure D-1. FORTRAN Program ANGLE3 (Sheet 1 of 2)

60460430 B

60460430 B

C ***TEST FOR MSGOVL1 SWITCH SETTING. IF SET, CALL
C BLNKOVL AND CLEAR SWITCH; OTHERWISE, CONTINUE.***

IF (SW .NE. 0) THEN
CALL SFSWRICBLNKOVL,DUMMY)
SW=O

ENDIF
C ***CONVERT INPUT TO REAL VARIABLES***

READCINPAN,'(3F10.0)')RSIDE
C ***CALCULATE AREA OF TRI ANGLE***

S=CRSIDEC1)+RSIDEC2)+RSIDE(3))/2.0
RDCL=S*CS-RSIDEC1))*(S-RSIDE(2))*(S-RSIDEC3))
IFCRDCL.LE.0.0) THEN

C ***IF VALUES ENTERED DO NOT FORM A VALID TRIANGLE,
C USE MSGOVL1 TO DISPLAY DIAGNOSTIC MESSAGE.***

CALL SFSWRICMSGOVL1,DUMMY)
SW=1

ELSE
C ***CALCULATE AREA. IF AREA EXCEEDS MAXIMUM ALLOWED
C VALUE (9999999.99), USE MSGOVL2 TO DISPLAY
C DIAGNOSTIC MESSAGE.***

AREA=SQRT(RDCU
IF CAREA.GT.9999999.99) THEN

CALL SFSWRICMSGOVL2,DUMMY)
SW=1

ELSE
C ***CONVERT REAL VARIABLES TO CHARACTER VARIABLES,
C AND PACK IN OUTPUT STRING COUTPAN).***

WRITECOUTPAN,'C4F10.2)')RSIDE,AREA
C ***CALL SFSSHO TO OUTPUT RESULTS.***
C ***NOTE - SFSSHO, BELOW, USES A DUMMY VARIABLE FOR THE
C INPUT STRING TO ALLOW PANEL INPUT THROUGH FUNCTION
C KEYS.***

CALL SFSSHOCTRYOUT,OUTPAN,DUMMY)
ENDIF

ENDIF
C ***TEST FOR FUNCTION KEY PRESSED CF1 OR F6) -
C IF F1, REDISPLAY TRY IN PANEL TO GET NEXT SET 0 F
C VARIABLES. IF F6, CLOSE TRYIN PANEL AND TERMINATE
C PR<Xl RAM.***

CALL SFGETKCKTYPE,KORD)
IF CKTYPE .EQ. COCKEY .AND. KORD .EQ. NEXT) GO TO 20
IF CKTYPE .EQ. FKEY .AND. KORD .EQ. F1) GO TO 20
CALL SFCLOS(TRYIN,1)
END

Figure D-1. FORTRAN Program ANGLE3 (Sheet 2 of 2)

D-3

{ VAR RSIDE1 T=REAL F=E R=CO. 999999999.)
HELP='Enter positive integer or real value'

VAR RSIDE2 T=REAL F=E R=CO. 999999999.)
HELP='Enter positive integer or real value'

VAR RSIDE3 T=REAL F=E R=CO. 999999999.)
HELP='Enter positive integer or real value'

KEY NORMAL=CNEXT)
KEY ABNORMAL=CF6)}

To find the area of a triangle:

Ent er va Lu es for Si de A:

Si de B:

Si de C:

Press: NEXT to continue.
F6 to <JJit.

Figure D-2. TRYIN Panel Definition File

D-4 60460430 B

{ VAR SI DE1 REAL
VAR SIDE2 REAL
VAR SIDE3 REAL
VAR AREA REAL
KEY ABNOR~L=CF1 F6)

}

For a triangle with sides of _____ , _____ , and ____ _.,
units

The area is ----- square uni ts.

Press: F1 to enter another set of values.
F6 to quit.

Figure D-3. TRYOUT Panel Definition File

60460430 B D-5

Figures D-4 and D-5 show the panel definition files for two error message panels. These
panels, named MSGOVLl and MSGOVL2, are called by ANGLE3 in response to invalid user input.
Both MSGOVLl and MSGOVL2 are overlay panels that modify the ANGLE3 input (TRYIN) panel. ~
When either MSGOVLl or MSGOVL2 is called, the corresponding error message is displayed in
inverse video in the upper right corner of the input panel.

Figure D-6 is the panel definition file for an overlay panel called BLNKOVL. When either of
the error messages defined by MSGOVLl or MSGOVL2 is displayed, the user can indicate his or
her intention to enter new values by pressing the Fl function key. Upon detecting that Fl
has been pressed, the program calls BLNKOVL to blank out the error message.

D-6

{ PANEL MSGOVL1 OVERLAY
ATTR 1

()
1 P=INVERSE

KEY ABNORMAL=CF1 F6)}

(THE VALUES ENTERED DO NOT FORM A TRIANGLE]
(--PLEASE REENTER J

Figure D-4. MSGOVLl Panel Definition File

{ PANEL MSGOVL2 OVERLAY
ATTR 1 (J 1 P=INVERSE
KEY ABNORMAL=CF1 F6)}

(AREA EXCEEDS MAXIMUM ALLOWABLE VALUE OF J
(9999999.99 - REENTER VALUES OR QUIT. J

Figure D-5. MSGOVL2 Panel Definition File

{ PANEL BLNKOVL OVERLAY
ATTR 1 CJ 1 L=TEXT
KEY ABNORMAL=CF1 F6)}

Figure D-6.

(
(

BLNKOVL Panel Definition File

J
J

60460430 B

:;,

COBOL PROGRAM ESTIMA T

Figure D-7 is a listing of the COBOL program ESTIMAT. ESTIMAT is used to estimate the
proceeds from the sale of a home. ESTIMAT uses two panels, an input panel called PANELl and
an output panel called PANEL2. The panel definition files for PANELl and PANEL2 are shown
in figures D-8 and D-9, respectively.

Figure D-8 shows the panel definition file for PANELl. PANELl accepts and validates user
input, and returns the input to the application program.

Figure D-9 is the panel definition file for PANEL2. PANEL2 adds three lines of output
information to the PANELl screen display.

*

IDENTIFICATION DIVISION.
PROGRAM-ID. ESTIMAT.

* ESTIMAT IS USED TO ESTIMATE PROCEEDS FOR THE SALE
* OF A HOME. IT USES PANELS FROM A FILE
* CALLED PANELIB CREATED BY THE PDU UTILITY.
* PANEL1 IS THE INITIAL DISPLAY IN WHICH A PERSON
* INSERTS ALL DATA RELATING TO THE SALE 0 F A HOME.
* AFTER ALL INPUT IS GIVEN, THE INFORMATION FROM
* PANEL 1 IS SENT TO THE PROGRAM TO BE USED IN THE
* CALCL.LATION OF THE NET PROCEEDS FROM THE SALE.
* PANEL2 OVERWRITES A PORTION OF PANEL1 GIVING
* THE RESULTS FROM THE USER DATA.

*
AUTHOR. CDC.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER.
OBJECT-COMPUTER. CYB ER.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ESTIMATED-CASH PIC S9(8).
01 ESTif•\HED-EXPENSES PIC 9(8).
01 KEY-ORDINAL COMP-1 PI C 9(2).

88 NEXT-KEY VALUE 1.
88 BACK-KEY VALUE 2.

01 KEY-TYPE COftl>-1 PIC 9(2).
01 PANEL-STATUS COMP-1 PIC 9(1).

88 PANEL-OK VALUE 0.
88 LINE-MODE VALUE 1.
88 SCREEN-MODE VALUE 0.

* PANEL-VARIABLES IS USED TO PASS INFORMATION TO/FROM
* OUR TERMINAL SCREEN. THE SCREEN FORMATTING
* OBJECT-TIME ROUTINES PASS ALL DATA INPUT
* BY THE USER AS A SINGLE INPUT STRING. IT IS
* UP TO OOR PROGRAM TO BREAK THE DATA INTO THE
* VARIOUS PIECES. WHEN WE SEND THE STRING BACK
* TO THE TERMINAL, THE TERMINAL BREAKS UP THE
* DATA INTO THE CORRECT FIELDS ON OUR SCREEN.

*

Figure D-7. COBOL Program ESTIMAT (Sheet 1 of 5)

604 60430 B D- 7

*

01 PANEL-VARI ABLES.
02 PANEL 1-VARI ABLES.

03 PANEL 1-ALP HA-VARI ABLES •
05 PANEL 1-0WNER
05 PANEL 1-DATE
05 PANEL1-SPERSON

03 PANEL 1-NUMERI C-VARI ABLES.
05 PANEL1-SPRI CE
05 PANEL1-MORTGAG
05 PANEL 1-PAYCD
05 PANEL1-HOMEILN
05 PANEL 1-ABSUPD
05 PANEL 1-TAXES
05 PANEL 1-RFEES
05 PANEL1-REPAIRS
05 PANEL1-CLOSFEE
05 PANEL1-REALFEE

02 PANEL2-VARI ABLES.
05 PANEL2-SPRI CE
05 PANEL2-EXPENSE
05 PANEL2-ECASH

PI C XC26>.
PIC XC8}.
PIC X(26}.

PIC ZZZZZZZ9.
PIC ZZZZZZZ9.
PIC ZZZZZZZ9.
PIC ZZZZZZZ9.
PIC 999.
PIC ZZZZZZZ9.
PIC 99.
PIC ZZZZZZZ9.
PIC 99.
PIC 9.

PI C ZZZZZZZ9.
PIC ZZZZZZZ9.
PI C -ZZZZZZ9.

* HOLD-VARIABLES IS USED TO RETRIEVE VARIABLES
* FROM THE PANEL IN INTEGER FORMAT.

*

*

01 HOLD-VARI ABLES.
03 HOLD-SPRI CE
03 HOLD-MORTGAG
03 HOLD-PAYCD
03 HOLD-HOMEILN
03 HOLD-TAXES
03 HOLD-REPAIRS
03 HOLD-CLOSFEE
03 HOLD-REALFEE

PRO CE DURE DIVISION.
START-PROGRAM.

COMP-1
COMP-1
COMP-1
COftP-1
COMP-1
COMP-1
COMP-1
COMP-1

PI C 9(8}.
PIC 9(8).
PIC 9(8).
PIC 9(8).
PIC 9(8}.
PIC 9(8).
PI C 9(2).
PIC 9(1).

* OPEN PANELS "PANEL 1" AND "PANEL2" FOR USE BY THE PROGRAM.

*
ENTER SFOPEN USING "PANEL 1", PANEL-STATUS.
IF NOT PANEL-OK

GO TO STOP-PROGRAM
END-IF.
ENTER SFOPEN USING "PANEL2", PANEL-STATUS.
IF NOT PANEL-OK

END-IF.

MOVE 1 TO PANEL-STATUS
PERFORM CLOSE-PANELS
GO TO STOP-PROGRAM

Figure D-7. COBOL Program ESTIMAT (Sheet 2 of 5)

D-8 604 60430 B

DISPLAY-PANEL.

* * CALL TO SFSREA DISPLAYS PANEL1 AT THE TERMINAL
* WITH TIE DEFAULT VALUES.

* * IT ALSO CAUSES THE PROGRAM TO READ THE RESULTS
* FROM THE USER INPUT AND PLACE THEM IN
* PANEL 1-VARI ABLES.

*
ENTER SFSREA USING "PANEL1", PANEL 1-VARIABLES.

* * SFGETK RETURNS THE FUNCTION KEY TYPED AT THE TERMINAL
* (RE FER TO KEY STATEMENTS IN THE PANEL DEFINITION).

*
ENTER SFGETK USING KEY-TYPE, KEY-ORDINAL.

* * CHECK FOR -BACK- KEY

*

*

IF BACK-KEY
GO TO START-OVER

END-IF.

* CHECK FOR -NEXT- KEY

*

*

IF NOT NEXT-KEY

END-IF.

SET LINE-MODE TO TRUE
PERFORM CLOSE-PANELS
GO TO STOP-PROGRAM

* THE FOLLOWING SFGETI CALLS RETRIEVE ALL INTEGER VARIABLES
* RIGHT JUSTIFIED SO THAT THE COBOL PROGRAM CAN USE THEM
* IN COMPUTATIONAL STATEMENTS. IF WE USED THE
* VARIABLES FROM PANEL1-VARIABLES, WE WOULD HAVE
* TO "RIGHT-JUST! FY" THEM AND "REPLACE LEADING SPACES
* BY ZEROS" BEFORE USING THEM IN CALCULATIONS.

*
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

s F G ETI u SI NG II s p RI CE II,
SFGETI USING "MORTGAG",
SFGETI USING "PAYCD",
SFGETI USING "HOMEILN",
SFGETI USING "TAXES",
SFGETI USING "REP AI RS II
SFGETI USING "CLOSFEE"
SFGETI USING "REALFEE"

HOLD-SPRI CE.
HOLD-MORTGAG.
HOLD-PAYCD.
HOLD-HOMEILN.
HOLD-TAXES.
HOLD-REPAIRS.
HOLD-CLOSFEE.
HOLD-REAL FEE.

Figure D-7. COBOL Program ESTIMAT (Sheet 3 of 5)

60460430 B D-9

*

ACCEPTABLE-INPUT.
COMPUTE ESTIMATED-EXPENSES =

CHOLD-MORTGAG +
HOLD-PAY CD +
HOLD-HOMEILN +
PANEL1-ABSUPD +
HOLD-TAXES +
PANEL 1-RFEES +
HOLD-REPAIRS +
CHOLD-CLOSFEE * .01 * HOLD-SPRICE) +
CHOLD-REALFEE * .01 * HOLD-SPRICE)).

COl'tPUTE ESTIMATED-CASH= HOLD-SPRICE - ESTIMATED-EXPENSES.
MOVE ESTIMATED-CASH TO PANEL2-ECASH.
MOVE ESTIMATED-EXPENSES TO PANEL2-EXPENSE.
MOVE HOLD-SPRICE TO PANEL2-SPRICE.
PERFORM RE-FILL-VARIABLES.

* SFS WR! WRITES TO THE TERMINAL THE RES UL TS FROM THE
* CALCLLATIONS IN ADDITION TO THE ORIGINAL DATA
* RECEIVED FROM THE TERMINAL.

* ENTER SFSWRI USING "PANEL2'', PANEL-VARIABLES.

* * SFSREA READS FROM THE TERMINAL A FUNCTION KEY.
* IT DOES NOT RECEIVE ANY USER DATA BECAUSE "PANEL2"
* DOES NOT CONTAIN ANY INPUT FIELDS.

* ENTER SFSREA USING "PANEL2", PANEL-VARIABLES.

* * SFGETK OBTAINS THE KEY.
* ENTER SFGETK USING KEY-TYPE, KEY-ORDINAL.

* * CHECK HERE FOR -NEXT- OR -BACK- KEYS.

*

*

IF NEXT-KEY OR BACK-KEY
GO TO START-OVER

END-IF.

* STATUS OF 1 SAYS GO TO LINE MODE.

*

*

SET LINE-MODE TO TRUE.
PERFORM CLOSE-PANELS.
GO TO STOP-PROGRAM.

START-OVER.

* STATUS OF 0 SAYS KEEP IN SCREEN MODE.

* SET SCREEN-MODE TO TRUE.
PERFORM CLOSE-PANELS.
GO TO START-PROGRAM.

Figure D-7. COBOL Program ESTIMAT (Sheet 4 of S)

D-10 60460430 B

60460430 B

*

RE-FILL-VARIABLES.
MOVE HOLD-SPRICE TO PANEL1-SPRICE.
MOVE HOLD-MORTGAG TO PANEL1-MORTGAG.
MOVE HOLD-PAYCD TO PANEL1-PAYCD.
MOVE HOLD-HOMEILN TO PANEL 1-HOMEILN.
MOVE HOLD-TAXES TO PANEL 1-TAX ES.
MOVE HOLD-REPAIRS TO PANEL1-REPAIRS.
MOVE HOLD-CLOS FEE TO PANEL 1-CLOSFEE.

CLOSE-PANELS.

* SFCLOS CLOSES THE PANELS.
* PANEL-STATUS = 1 (TO SET TERMINAL TO LINE MODE)
* = 0 CTO SET TERMINAL TO SCREEN MODE)

*
ENTER SFCLOS USING "PANEL2", PANEL-STATUS.
ENTER SFCLOS USING "PANEL 1", PANEL-STATUS.

STOP-PR(); RAM.
STOP RUN.

Figure D-7. COBOL Program ESTIMAT (Sheet 5 of S)

D-11

{KEY NORMAL= (NEXT>
KEY ABNORMAL=CSTOP BACK)
VAR NAME=OWNER TYPE=CHAR FORMAT=A ENTRY=MUST ENTER

HELP='MANDATORY ENTRY - ENTER CUSTOMERS NAME'
VAR NAME=DATE TYPE=CHAR FORMAT=X ENTRY=MUST FILL

HELP='MANDATORY ENTRY - TODAYS DATE MM/DD/YY'
VAR NAME=SPERSON TYPE=CHAR FORMAT=A

HELP='OPTIONAL ENTRY - ENTER NAME OF SALESPERSON'
VAR NAME=SPRICE TYPE=INT FORMAT=9 RANGE=CO 1000000>

ENTRY=MUST ENTER HELP='ENTER A VALUE BETWEEN S.00 AND $1,000,000'
VAR NAME=MORTGAG TYPE=INT FORMAT=9

HELP='OPTIONAL ENTRY - CAN USE DEFAULT OF 0'
VAR NAME=PAYCD TYPE=INT FORMAT=9

HELP='OPTIONAL ENTRY - CAN USE DEFAULT OF 0'
VAR NAME=HOMEILN TYPE=INT FORMAT=9

HELP='OPTIONAL ENTRY - CAN USE DEFAULT OF 0'
VAR NAME=ABSUPD TYPE=INT FORMAT=9 VALUE=SOO IO=ClJT
VAR NAME=TAXES TYPE=INT FORMAT=9

HELP='OPTIONAL ENTRY - CAN USE DEFAULT OF 0'
VAR NAME=RFEES TYPE=INT FORMAT=9 VALUE=75 IO=ClJT
VAR NAME=REPAIRS TYPE=INT FORMAT=9

HELP='OPTIONAL ENTRY - CAN USE DEFAULT OF 0'
VAR NAME=CLOSFEE TYPE=INT FORMAT=9 VALUE=01 RANGE=C1 10)

HELP='OPTIONAL ENTRY - SEE TITLE CO. FOR CORRECT VALUE'
VAR NAME=REALFEE TYPE=INT FORMAT=9 VALUE=? RANGE=C1 7>

HELP='OPTIONAL ENTRY - SEE SALESPERSON FOR CORRECT VALUE'}

E S T I M A T E 0 F P R 0 C E E D S

Name of owner Date
Sales person ----
Selling price of house S ___ _
Payoff of present mortgage S ___ _
Payoff of contract for deed S ___ _
Payoff of home improvement loan S ___ _
Abstracting l.4)date S
Real estate taxes due in the year S ___ _
Recording fees S
Estimate of repairs S ___ _
Tit le closing co. closing fee (percentage) %
Realtor fee (percentage) %

Total estimated expenses wi LL be calculated for you a long with your
net profit. After entering the current values press -NEXT- to continue.
If at any point you want to start over press -BACK-

need help press -HELP
quit press -STOP-

Figure D-8. PANELl Panel Definition File

D-12 60460430 B

{KEY ABNOR~L=CNEXT STOP BACK)
VAR NAME=OWNER IO=OUT
VAR NAME=DATE IO=<lJT
VAR NAME=SPERSON IO=OUT
VAR NAME=SPRI CE IO=<lJT
VAR NAME=MORTGAG IO=OUT
VAR NAME=PAYCD IO=OUT
VAR NAME=HOMEILN IO=OUT
VAR NAME=ABSUPD IO=<lJT
VAR NAME=TAXES IO=<lJT
VAR NAME=RFEES IO=<lJT
VAR NAME=REPAIRS IO=OUT
VAR NAME=CLOSFEE IO=<lJT
VAR NAME=REAL FEE IO=OUT
VAR NAME=EPRI CE IO=<lJT
VAR NAME=EXPENSE IO=OUT
VAR NAME=ECASH IO=<lJT}

E S T I M A T E 0 F P R 0 C E E D S

Name of owner
Sa Les person

------------ Date ___ _

Selling price of house
Payoff of present mortgage
Payoff of contract for deed
Payoff of home improvement Loan
Abstracting update
Real estate taxes due in the year
Recording fees
Estimate of repairs
Title closing co. closing fee (percentage)
Realtor fee (percentage)

Se L ling price of house
Less total estimated expenses
Total estimated cash to seller

Press -NEXT- or -BACK- to continue
-STOP- to terminate

Figure D-9. PANEL2 Panel Definition File

$
$----

$
$----

$
$ ----$
$
%----

%

$
$----

$ ----

60460430 B D-13

PASCAL PROGRAM TRAIN

Figure D-10 shows a Pascal program called TRAIN. TRAIN will display a picture of a train on
the screen.

Figure D-11 is the panel definition file for the TRAIN program.

PROGRAM EXAMPLE COUT PUT);

CONST
MAXSTR = 100; (* MAXIMl.PI STRING SIZE *)

TYPE
TERMMODE = CSCREEN,LINE,NOCLEAR);
!DENT =PACKED ARRAY [1 •• 7] OF CHAR;
STRING = PACKED ARRA YC1 •• MAXSTRJ OF CHAR;

VAR
BLANKS
INSTR
STATUS
I

STRING;
STRING;
INTEGER;
INTEGER;

C* TERMINATION STATUS *)

(* IDENTIFIER *)
C* DATA STRING *)

(* BLANK STRING *)

(* IN PUT STRING *)

C* OPEN STATUS *)
C* LOOP INDEX *)

PROCEDURE SF CLOS CP: !DENT ;MODE:TERMMODE); FCRTRAN;
PROCEDURE SFOPEN CP: !DENT ;VAR STATUS: INTEGER); FORTRAN;
PROCEDURE SFSSHOCP: !DENT ;VAR OUTSTR:STRING;VAR INSTR: STRING); FCRTRAN;

BEGIN (* EXAMPLE *)

SFOPENC'TRAIN ';,STATUS);
IF STATUS = 0 THEN

BEGIN
FCR I : =1 TO MAXSTR DO

BLANKS [I] := I I;

SF SS HOC' TRAIN ',BLANKS, INSTR);
SFCLOS ('TRAIN I ,LINE);
END

ELSE
WRITELN C'PAtEL NOT FOUND. I)

END. (*EXAMPLE *>

Figure D-10. Pascal Program TRAIN

D-14 60460430 B

TRAIN
{ PAf\E L

ATTR
ATTR
BOX
BOX
VAR

}

NAME=TRA IN
DELIMITERS='//' PHYS ICAL=A LTERNATE
DELIMITERS='!!' PHYSICAL=CALTERNATE BLINK)
TERMINATOR='*' WEIGHT=BOLD
TERM INA TOR= I+ I WEIGHT =ft1 EDI ll"1
COWCATCHER

!@@@ @@ @@!

!@QI@!

!@@!

!@!

[&J []
+---------+

--- *--*-- *--* __ *--* __ *--* __ *--* I soo ,-
-- *--* *--* *--* *--* *--*==+---------+)

00 00 00 00 00 00 0000 0000 \\\
.###

Figure D-11. TRAIN Panel Definition File

60460430 B D-15

STATIC LOADING OF PANELS E

By default, panels are dynamically loaded (by the Fast Dynamic Loader) when they are opened
(by an SFOPEN object routine) and unloaded when they are closed (by an SFCLOS object
routine). Some high-performance applications may wish to avoid the disk access requirements
implied by dynamically loading panels. Also, some applications may wish to load more than
the default maximum of 10 panels. This appendix describes how to load panels as part of the
field length of the application program. If this is done, the panels may not be unloaded
and will be memory resident for the duration of program execution.

Panel loading is controlled by a panel load table (PLT), which is a separate object module
in the SFLIB system library. You can change the PLT by defining an alternate PLT (in
Compass), assembling the alternate PLT, and copying the object module (LGO file) to a user
program library. To use the alternate PLT, insert the following command into the load
sequence:

LDSET,LIB=SFLIB/USERLIB.

If the redefined PLT is in USERLIB, it will be used instead of the default PLT in SFLIB.

PANEL LOAD TABLE FORMAT
The PLT has a 2-word header. The low-order 12 bits of the first word contain the number of
table entries which follow the header. The low-order 12 bits of the second word contain the
number of panels currently in memory.

Following the header are one, or more 2-word entries. The number of entries determines how
many panels can be in memory at once.

The high-order 42 bits of the first word contain the panel name in display code (seven
characters). The high-order bit (bit 59) of the second word is set if the panel is
statically loaded. The low-order 18 bits contain the address of the panel in memory.

60460430 B E-1

The following procedure compiles a program along with a PLT which statically loads the panel
MYPANEL. The user-supplied PLT allows up to two other panels to be dynamically loaded •

E-2

• PROC,MYPLT.
REWIND,*.
PDU,MYPANEL.
FTNS,I=MYPROG,L=O.
COMPASS,l=PLT,L=O.
LDSET,LIB=SFLIB/PANELIB.
LOAD,LGO.
NOGO,MINE.
RETURN,MYPANEL,MYPROG,PLT.
REVERT,NOLIST •
• DATA,MYPANEL

TEST PANEL

ENTER ANYTHING: #
.DATA,MYPROG

PROGRAM MYPROG
CHARACTER*! S
CALL SFOPEN('MYPANEL',I)
IF (I.EQ.O) THEN

CALL SFSREA('MYPANEL',S)
CALL SFCLOS('MYPANEL', 1)

END IF
END

.DATA,PLT

*
*
*
*
*
PLT

!DENT PLT
ENTRY PLT

THIS CODE WILL FORCE THE CYBER LOADER TO STATICALLY
LOAD *MYPANEL*. SPACE IS LEFT TO DYNAMICALLY LOAD
UP TO TWO OTHER PANELS •

VFD
VFD
VFD
VFD
VFD
VFD
VFD
VFD
END

60/3
60/3
60/7LMYPANEL
1/1,41/0,18/=XMYPANEL
60/0
60/0
60/0
60/0

60460430 B

MIGRATION GUIDELINES

Panels and application programs intended to be migrated to future systems should use the
following guidelines to minimize the conversion effort.

PANEL SYNTAX

F

The PANEL program currently accepts certain syntactical variants which do not conform to the
documentation. For example, semicolons may be omitted between successive statements on the
same line. Since these variations may be corrected at any time, we recommend that you
follow the documented syntax rules.

The {} characters which begin and end the panel declaration section should be written as the
only characters on their respective lines.

PANEL FORMAT

References to function keys should be confined to a known part of each panel image (such as
the bottom), and KEY statements should be placed in a known part of the panel declarations.
The reason for this is that future products may allow the use of more terminal independent
selection devices which may include function keys as a subset. The application developer
may wish to modify the panels to take advantage of this higher level service.

STANDARD LANGUAGES

Application programs should be written in ANSI standard FORTRAN, COBOL, and Pascal
languages. Consult each language reference manual for a list of potential problem areas.

CHARACTER SETS

For maximum portability, application programs should use only the default character set for
the programming language; in other words, the 6-bit display code set.

If 6-bit display code is not suitable, the next most portable character set is the NOS 7-bit
ASCII set, which uses exactly two display code character positions for each single ASCII
character. References to variables or items containing such data should compare or move
them as a whole rather than character by character. All such data declarations or
references to individual characters will have to be converted manually.

OPTIMIZATIONS

Static loading of panels by redefining the default panel load table should not be used by
programs intended for migration.

60460430 B F-1

TERMINAL KEY LABELS

NOS 2 now supports screen formatting on almost any display terminal. By using the terminal
definition utility (TDU), the user can define terminal attributes for use with full-screen
products. Seven terminals are system-defined for full-screen use. They are:

• CDC Viking 721

• CDC 722

• Tektronix 4115t

• Zenith Zl9/Heathkit H19t

• DEC VTlOOt

• Lear Siegler ADM3At

• Lear Siegler ADMSt

The logical and physical attributes you can define are dependent on your terminal's
capabilities. This information must be obtained from the terminal hardware reference
manual, as explained in section 5.

G

Table G-1 lists the Viking 721 application and CDC standard function keys. In this manual,
we use these Viking 721 physical key labels when referring to the logical function performed.

Across from each Viking 721 key is the key or sequence of keys that must be used on the
other system-defined terminals to generate the same function. If more than one key must be
used, they are shown with a plus between them indicating they should be entered
consecutively. These Viking 721 application keys and CDC standard function keys perform
functions defined by the application. Using TDU, you can change the attributes of any of
these function keys.

Table G-2 lists the physical display attributes that can be defined by TDU and which
attributes are available on the seven system-defined terminals. As with the logical
functions, these physical capabilities vary with different terminals. If an attribute is
defined but not available, it may be mapped into another attribute, which is listed in the
table, or it may be ignored ("No").

Some terminals require the user to press NEXT or its equivalent (NEWLINE or RETURN, for
example) after each function key. You can, however, press a function key or function key
sequence several times before you press NEXT. You cannot press several different function
keys or sequences before you press NEXT. If you press a different function key or sequence,
it is ignored.

twhen using this terminal, change the network control character (ct) to something other
than ESC. This terminal uses escape sequences for function key definitions. To change
the network control character, enter: TRMDEF,CT=value (for more information, refer to the
NOS Reference Set, Volume 3).

60460430 B G-1

Table G-1. Function Keys on System-Defined Terminals (Sheet 1 of 3)

CDC Lear Siegler Lear Siegler Tektronics Zenith Digital
Viking 721 CDC 722 ADM3A ADMS T4115 Zl9 VTlOO

Fl Fl + ESC + 1 + ESC + 1 + Fl Fl + KEYPAD 1 +
NEWLINE RETURN RETURN RETURN RETURN

F2 F2 + ESC + 2 + ESC + 2 + F2 F2 + KEYPAD 2 +
NEWLINE RETURN RETURN RETURN RETURN

F3 F3 + ESC + 3 + ESC + 3 + F3 F3 + KEYPAD 3 +
NEWLINE RETURN RETURN RETURN RETURN

F4 F4 + ESC + 4 + ESC + 4 + F4 F4 + KEYPAD 4 +
NEWLINE RETURN RETURN RETURN RETURN

FS F5 + ESC + 5 + ESC + 5 + F5 F5 + KEYPAD 5·+
NEWLINE RETURN RETURN RETURN RETURN

F~ F6 + ESC + 6 + ESC + 6 + F6 F6(BLUE) KEYPAD 6 +
NEWLINE RETURN RETURN + RETURN RETURN

F7 F7 + ESC + 7 + ESC + 7 + F7 F7 (RED) KEYPAD 7 +
NEWLINE RETURN RETURN + RETURN RETURN

FB FB + ESC + 8 + ESC + 8 + FB F8(WHITE) KEYPAD 8 +
NEWLINE RETURN RETURN + RETURN RETURN

F9 F9 + ESC + 9 + ESC + 9 + CTRL A KEYPAD 9 +
NEWLINE RETURN RETURN RETURN

FlO FlO + ESC + 0 + ESC + 0 + CTRL S
NEWLINE RETURN RETURN

Fl1 Fll + ESC + : + ESC + : + CTRL D
NEWLINE RETURN RETURN

Fl2 ESC + - + ESC + - + CTRL F
RETURN RETURN

F13 ESC + [+ ESC + [+
RETURN RETURN

Fl4 ESC +] + ESC +] +
RETURN RETURN

Fl5 ESC + "" +
RETURN

Fl6 ESC + I +
RETURN

G-2 60460430 B

Table G-1. Function Keys on System-Defined Terminals (Sheet 2 of 3)

CDC Lear Siegler Lear Siegler Tektronics Zenith Digital
Viking 721 CDC 122 ADM3A ADMS T4115 Zl9 VTlOO

SHIFT Fl SHIFT Fl ESC + SHIFT ESC + SHIFT SHIFT Fl SHIFT Fl PFl + RETURN
+NEWLINE 1 + RETURN 1 + RETURN + RETURN

SHIFT F2 SHIFT F2 ESC + SHIFT ESC + SHIFT SHIFT F2 SHIFT F2 PF2 + RETURN
+ NEWLINE 2 + RETURN 2 + RETURN + RETURN

SHIFT F3 SHIFT F3 ESC + SHIFT ESC + SHIFT SHIFT F3 SHIFT F3 PF3 + RETURN
+NEWLINE 3 + RETURN 3 + RETURN +RETURN

SHIFT F4 SHIFT F4 ESC + SHIFT ESC + SHIFT SHIFT F4 SHIFT F4 PF4 + RETURN
+ NEWLINE 4 + RETURN 4 + RETURN + RETURN

SHIFT FS SHIFT FS ESC + SHIFT ESC + SHIFT SHIFT FS SHIFT FS KEYPAD -
+ NEWLINE 5 + RETURN 5 + RETURN + RETURN + RETURN

SHIFT F6 SHIFT F6 ESC + SHIFT ESC + SHIFT SHIFT F6 SHIFT F6 KEYPAD ,
+ NEWLINE 6 + RETURN 6 + RETURN + RETURN + RETURN

SHIFT Fl SHIFT Fl ESC + SHIFT ESC + SHIFT SHIFT Fl SHIFT Fl KEYPAD ENTER
+NEWLINE 7 + RETURN l + RETURN + RETURN + RETURN

SHIFT F8 SHIFT F8 ESC + SHIFT ESC + SHIFT SHIFT F8 SHIFT F8 KEYPAD •
+NEWLINE 8 + RETURN 8 + RETURN + RETURN + RETURN

SHIFT F9 SHIFT F9 ESC + SHIFT ESC + SHIFT CTRL Q
+ NEWLINE 9 + RETURN 9 + RETURN

SHIFT FlO SHIFT FlO ESC + SHIFT ESC + SHIFT CTRL W
+ NEWLINE 0 + RETURN 0 +RETURN

SHIFT Fl l SHIFT Fl l ESC + SHIFT ESC + SHIFT CTRL E
+ NEWLINE : + RETURN : + RETURN

SHIFT Fl2 ESC + SHIFT ESC + SHIFT CTRL R
- + RETURN - + RETURN

SHIFT Fl3 ESC + SHIFT ESC + SHIFT
[+ RETURN [+ RETURN

SHIFT Fl4 ESC + SHIFT ESC + SHIFT
] + RETURN] + RETURN

SHIFT FlS ESC + SHIFT
"' + RETURN

SHIFT Fl6

60460430 B G-3

Table G-1. Function Keys on System-Defined Terminals (Sheet 3 of 3)

CDC Lear Siegler Lear Siegler Tektronics Zenith Digital
Viking 721 CDC 722 ADM3A ADMS T4115 Zl9 VTlOO

NEXT NEWLINE RETURN RETURN RETURN RETURN RETURN
or CR

HELP ESC + h + ESC + h +
RETURN RETURN

BACK ESC + k + ESC + k +
RETURN RETURN

STOP or CTRL T + CTRL T + CTRL T + CTRL T + CTRL T + CTRL T +
CTRL T RETURN RETURN RETURN RETURN RETURN RETURN

FWD ESC + f + ESC + f +
RETURN RETURN

BKW ESC + b + ESC + b +
RETURN RETURN

UP ESC + u + ESC + u +
RETURN RETURN

DOWN ESC + d + ESC + d +
RETURN RETURN

SHIFT ESC + H + ESC + H
HELP RETURN RETURN

SHIFT ESC + K + ESC + K +
BACK RETURN RETURN

SHIFT CTRL T + CTRL T + CTRL T + CTRL T + CTRL T + CTRL T +
STOP NEWLINE RETURN RETURN RETURN RETURN RETURN

SHIFT ESC + F + ESC + F +
FWD RETURN RETURN

SHIFT ESC + B + ESC + B +
BKW RETURN RETURN

SHIFT ESC + U + ESC + U +
UP RETURN RETURN

SHIFT ESC + D + ESC + D +
DOWN RETURN RETURN

SHIFT CTRL X
CLEAR

G-4 60460430 B

Table G-2. Attributes Available on Supported Terminals

CDC CDC Lear Siegler Lear Siegler Tektronix Zenith/ DEC
Attribute 721 722 ADM3A ADM5 4115 Heathkit VTlOO

ALTERNATE Yes No No No No No Yes

BLINK Yes No No No Yes No Yes

INVERSE Yes No No No Yes Yes Yes

UNDERLINE Yes No No No Yes No Yes

BLACK No No No No Yes No No

RED No No No No No No No

GREEN Yes No No No No No No

BLUE No No No No No No No

YELLOW No No No No No No No

MAGENTA No No No No No No No

CYAN No No No No No No No

WHITE No Yes Yes Yes No Yes Yes

line drawing Yes No No No No Yes Yes

WEIGHT Yes No No No No Yes Yes

6 0460430 B G-5

Abnormal return 2-9,19
Alternate intensity character display
Application program C-1
Application program routines 3-1
ASCII C-1
ATTR statement 2-6
Attribute statements 5-7

BOX statement 2-8

CDC standard function keys
CDC Viking 721 G-1

5-15; C-1

CDC Viking 722 G-1
Character sets F-1
COBOL C-1
COBOL example D-7
COBOL 5 3-1,5
Code set conversion table
Code sets 3-8

A-1

Comments 2-3
.CORRECT directive 4-6
Creating panel definition file
Cursor position routine 3-12
Cursor positioning 5-8,10,11
Cursor positioning statements

Data array 2-13
DEC VT 100 G-1
Declaration section
Declaration statement
Defining keys 1-1
Defining terminal keys

2-1,2; C-1
2-2,3,5

5-1
Delete statements 5-12
Direct access file C-1
Display attributes 2-4; 5-18
Displaying your panel 3-2
Drawing figures 2-8

2-1

5-18

Editing function keys C-1
.ENTER directive 4-5
Erase statements 5-13
Existing application screen 2-10

60460430 B

C-1

INDEX

Filling variable fields 1-2
Format

Declaration statements 2-3
TDU statements 5-4

FORTRAN C-1
FORTRAN example D-1
FORTRAN 5 3-1,5
FSE (refer to Full Screen Editor)
FSE keys

Defining with TDU 5-3
Full Screen Editor (FSE) 2-1; C-1
Function keys C-1; G-1

CDC standard 5-15
In NOS procedures
Panel definition of
Programmable 5-16

.Fx directive 4-10

Help information
For NOS procedures
For panel variables

HELP key
Defining 2-11

4-9, 10
2-9' 11

4-4,9
2-10

Image section 2-1,19; C-1
Indirect access file C-1
Input files

Displaying 2-20
Input/output statements 5-12
Input/output values 2-18
Input statements

For Viking 721 5-14
Input validation 1-2; 2-18
Insert statements 5-12,13
Inverse video display C-2

KEY statement 2-9

Lear Liegler ADM3A
Lear Liegler ADM5
Library

Create 2-22

G-1
G-1

Index-1

Modify 2-22
LINE command 3-3
Line drawing statements 5-19
Line drawings 1-4; 2-8
Line mode 1-1; 3-3; C-2
Lines

Display 5-19
Loading panels

Static E-1
Loadpanel routine 3-13
Logical attributes 5-19
Logical display attributes 2-4,6

Match advancing type key 2-9
Match key

Defining 2-11
Messages

Help 2-18
Migration guidelines F-1
Mode routine 3-7
MODEL NAME 5-7

.NOCLR directive 4-11
Normal return 2-9,19
NOS procedures

Function key labels 4-9,10
Help information display 4-4,9
Interactive parameter prompts 4-7
Screen mode format 4-5
Screen mode parameter display
Screen mode parameter entry

1-3
4-1

Object routine, defined
Object routines

1-1,4; C-2

Call formats 3-4
Linking to 3-1,2
Listed 3-6
SFCLOS 3-7
SFCSET 3-8
SFGETI 3-9
SFGETK 2-10; 3-11
SFGETP 3-12
SFGETR 3-10
SFOPEN 3-13
SFPOSR 3-14
SFSETP 3-15
SFSREA 3-16
SFSSHO 3-17
SFSWRI 3-18

Optimization F-1
Output statements 5-17
Overlay panel 2-12

Index-2

.PAGE directive 4-6
Panel 1-1,4; C-2

Compilation of 2-20
Definition file 1-4; 2-1; C-2
Definition utility (PDU) 1-4; C-2
Displaying 3-2
Format F-1
Image 2-19
Library file 2-20; 3-2
Library maintenance 2-22
Library search order 3-3
Load capsule 2-20
Load table E-1
Message field 2-19
Mode 3-7
Syntax F-1
Width 2-1

PANEL statement 2-12
PANELIB 2-20
Pascal C-2
Pascal example D-14
Pascal 1.1 3-1,5
PDU command 1-4; 2-21
PDU (refer to Panel definition utility)
Physical display attributes 2-4,6
PLT E-1
Primary panel 2-12
Procedure message line
Procedure title line
Procedures

Screen mode 4-1

4-5
4-6

Procedures (refer to NOS procedures)
Program

COBOLS D-7
FORTRAN5 D-1
Pascal D-14

Programmable function keys
Programming considerations
.PROMPT directive 4-8

5-16; C-2
3-4

Protected tabbing 1-2

Required terminal attributes 5-7

SCREEN command 1-3; 3-3
Screen mode 1-1; 3-3; C-2

Terminal support 5-1
Screen size 5-11
Set size statement
SFLIB system library
SHOW command 3-2

5-11
3-1

Standard languages F-1
Static loading of panels E-1
System-defined

Files 5-1
Terminals 1-1; 3-3; G-1

60460430 B

TAB key 1-2
TAB statements 5-14
Tabbing 1-2; 5-10
TABLE statement 2-13
TABLEND statement 2-14
TDU (refer to Terminal definition
TDU command 5-21
TDU required statements 5-7
TDU statement types 5-5
TDUIN 5-3
Tektronix 4115 G-1
Terminal attributes 5-1; G-1

Capabilities 1-1; 5-1; G-1
Definitions 5-1
Key labels G-1
Model name 5-7
Screen size 5-11

Terminal characteristics
Required 5-7

Terminal definition
Character strings 5-4
Compiling 5-21
File 5-3
Statement format 5-4

Terminal definition utility
C-2; G-1

(TDU)

Cursor positioning
Defining FSE keys

5-10
5-3

60460430 B

utility)

5-1;

Termination character
TERMLIB 5-21

Terminal definitions
Title line 2-2
Touch panel 5-14
TRMDEF G-1
Type-ahead mode 5-9

ULIB command
User library

1-4; 2-22
2-22; C-2

2-8

5-3

Validation checking 2-9,19; C-2
VAR statement 2-9,15,19
Variable fields 1-2

Definition of 2-15
In image section 2-20
Input or output 2-18

Variable types 3-4
Variables, display of initial values

Zenith/Heathkit
ZZZTERM 5-21

G-1

2-15

Index-3

I
I

z' :::;

l')
z
g
<{

I
::>
u

COMMENT SHEET

MANUAL TITLE: C~ NOS Version 2 Screen Formatting Reference Manual

PUBLICATION NO.: 60460430 REVISION: B

STREET ADDRESS=---------------------------------

CITY: _______________ STATE: _______ ZIP CODE:---------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

0 Please Reply D No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

>LD FOLD
--~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

w
z
::::;

<.:>
z
g
<(

I
:)

Publications and Graphics Division

ARH219
.u

4201 North Lexington Avenue

Saint Paul, Minnesota 55112

---,
ILD FOLD

CORPORATE HEADQUARTERS, .P.O. BOX 0, MINNEAPOLIS, MINN. !5e440 UTH0 IN U.S.,
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

@:~
CONT1'0L DATA CO~OR(\TION

