EV5 CPU Chip
Internal Specification

The EV5 CPU Chip is a high-performance, single-chip implementation of the Alpha Architecture.

Revision/Update Information: This is Revision 0.0 of this specification.

Product Manager: John Fortune, RICKS::FORTUNE
Engineering Manager: Paul Rubinfeld, ROCK::RUBINFELD

DIGITAL RESTRICTED DISTRIBUTION

This information shall not be disclosed to persons other than DIGITAL employees or generally distributed within
DIGITAL. Distribution is restricted to persons authorized and designated by the originating organization. This
document shall not be transmitted electronically, copied unless authorized by the originating organization, or left
unattended. When not in use, this document shall be stored in a locked storage area. These restrictions are
enforced until this document is reclassified by the originating organization.

Semiconductor Engineering Group
Digital Equipment Corporation, Hudson, Massachusetts

This is copy number

February 1992

The drawings and specifications in this document are the property of Digital Equipment Corporation and
shall not be reproduced or copied or used in whole or in part as the basis for the manufacture or sale of
items without written permission.

The information in this document may be changed without notice and is not a commitment by Digital
Equipment Corporation. Digital Equipment Corporation is not responsible for any errors in this document.

This specification does not describe any program or product that is currently available from Digital
Equipment Corporation, nor is Digital Equipment Corporation committed to implement this specification
in any program or product. Digital Equipment Corporation makes no commitment that this document
accurately describes any product it might ever make.

Copyright ©1992 by Digital Equipment Corporation
All Rights Reserved
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX VAXstation
DECnet ULTRIX-32 VMS
DECUS UNIBUS VT
MicroVAX VAX

MicroVMS VAXBI = ™
P]l)‘;;o VAXcluster dl I |g t a I

Contents

CHAPTER 1 THE IBOX

1.1 OVERVIEW
1.2 FUNCTIONAL DESCRIPTION

1.21
1.2.2

%

1.23
1.24

1.25

1.26

1.27

1.28

1.29

ICache

Instruction Fetch

1.2.2.1
1.2.2.2
1223
1.2.24
ITB

Instruction Fetch Flow « 1-7
Prefetch Addressing « 1-12
I-Cache Hit Logic » 1-12

Refill Buffer Hit Logic » 1-13

Branch History Table

1.2.4.1

HUP Logic « 1-22

I-Stream Flow Prediction

1.2.5.1
1252
1.253
PC
1.2.6.1
1.2.6.2
1.2.6.2.1
1.2.6.2.2
1.2.6.2.3

Branch Predictor » 1-25
Target Calculation « 1-26
Return Prediction Stack « 1—-28

Fetch PC « 1-31

Execution PC « 1-34
BR_ALT_PC - 1-34
JSR_HW_REI_PC « 1-34
PC Mispredict = 1-34

Instruction Buffer{IB)

1.2.7.1

HW_REI - stall prefetch - 1-38

Instruction Slotting

1.2.8.1

Special Slotting Rules: « 1-40

Instruction Issue

1.2.9.1
1.29.2
1.2.93
1.2.9.3.1
1.2.93.2
1.2.93.3
1.2.94
1.2.9.41
1.2.94.2
1.2.943
1.2.944
1.2.94.5
1.2.94.6
1.2.94.7
1.2.94.8
1.2.94.9
1.2.95
1.2.9.6
1.2.9.7
1.2.9.71
1.2.9.7.2
1.2.9.8

Interface with the Slot Stage « 1-48
Instruction Interface with the E,F,M Boxes » 1-48
Dirty Checks « 1-50
DEST-SOURCE Checks « 1-50
DEST-DEST Checks - 1-50
Current Issue Conflicts « 1-51
Resource Availability Checks + 1-51
IMUL_BUSY - 1-51
IMUL_DONE_SOON - 1-52
FDIV_BUSY « 1-52
FDIV_DONE_SQOON » 1-52
STORE_STALL « 1-52
FILL_STALL « 1-52
DRAINT_Stall « 1-53
MB_STALL - 1-53
MB_MB_STALL - 1-53
Instruction Stall « 1-53
Serialization » 1-54
Bypasses « 1-54
EBOX Bypasses « 1-54
FBOX Bypasses * 1-56
Register File Writes « 1-57

DIGITAL RESTRICTED DISTRIBUTION

1-1
1-1

1-5
1-5
1-5

1-18
1-22

1-25

1-31

137

1-40

1-48

Contents

v

1.2.10

1.2.9.9
1.2.99.1
1.2.99.2
1.2.9.9.3
1.2.9.94
1.2.995
1.2.99.6
1.2.8.10
1.2.9.11
1.2.9.12
1.2.9.13
1.2,9.13.1
1.2.9.13.2
1.2.9.13.3
1.2.9.14
1.2.9.14.1
1.2.9.14.2
1.2.9.143
1.2.9.144
1.2.9.145
1.2.9.156
1.2.9.16.1
1.2.9.15.2
1.2.9.16
1.2.9.17
1.2.9.18
1.2.9.18.1
1.2.9.18.2
1.2.9.18.3

LOADs and STOREs « 1-58
Additional LOAD Checks - 1-58
Floating Loads » 158
Floating Stores ¢ 1-59
LOAD HITs « 1-59
LOAD Fills « 1-59
EBOX LD MUX - 1-60
EBOX IMUL MUX « 1-60
Conditional Move « 1-60
Memory Barriers = 1-60
DRAINT « 1-62
Setting the DRAINT_FLAG - 1-62
Clearing the DRAINT_FLAG * 163
DRAINT Latency « 1-63
llegal/Reserved Opcodes * 1-64
Opcodes Reserved to Digital « 1-64
PAL Instruction in "native” mode « 1-64
Priviledged CALL_PALs « 1-64
lllegal CAL_PAL functions - 1-64
Floating Point « 1-65
Aborting Instructions « 1—65
TRAPs, REPLAYSs, and INTERRUPTS « 1-65
ERROR aborts « 1-66
Special Stuff « 1-66
LOAD MISS-AND-USE Replay « 1-66
PAL Shadow Support » 1-68
EBOX Register File Control » 1-68
Dirty Checks for the PAL_SHADOW registers « 1-68
Switching betweeen PAL_SHADOW and NORMAL
banks « 1-68

IBOX IPR’s and PAL_TEMP registers

1.2.10.1
1.2.10.2
1.2.10.3
1.2.104
1.2.10.5
1.2.10.6
1.2.10.7
1.2.10.8
1.2.10.9
1.2.10.10
1.2.10.11
1.2.10.12
1.2.10.13
1.2.10.14
1.2.10.15
1.2.10.16
1.2.10.17
1.2.10.18
1.2.10.19
1.2.10.20
1.2.10.21
1.2.10.22
1.2.10.23

ITB_TAG « 1-69

iTB_PTE « 1-70

Address Space Number, ITB_ASN « 1-70
ITB_PTE_TEMP « 1-71

Istream TB Invalidate All Process, ITB_IAP « 1-71
IStream TB Invalidate All, iTB_IA + 1-71

ITB_IS » 1-72

Formatted Faulting VA register, IFAULT_VA_FORM - 1-72

Virtual Page Table Base register, IVPTBR « 1-72

Icache Parity Error Status register, ICPERR_STAT « 1-73

ICache Flush Control register, IC_FLUSH_CTL - 1-73
Exception Address register, EXC_ADDR « 1-74
Exception Summary register, EXC_SUM -« 1-74
Exception Mask Register, EXC_MASK « 1-75

PAL Base Register, PAL_BASE - 1-75

Processor Status, PS « 1-76

Ibox Control/Status Register, ICSR « 1-76

Interrupt Priority Level Register, IPL « 1-77

Interrupt Id Register, INTID « 1-77

Aynchronous System Trap Request Register, ASTRR + 1-78
Aynchronous System Trap Enable Register, ASTER « 1-78

Software Interrupt Request Register. SIRR « 1-79
HW Interrupt Clear register, HWINT_CLR - 1-79

1-69

DIGITAL RESTRICTED DISTRIBYTION

Contents

1.2.10.24 Interrupt Summary register, ISR + 1-80
1.2.10.25 Serial line transmit, SL_XMIT « 1-81
1.2.10.26 Serial line receive, SL_RCV « 1-81

1.2.11 Traps and Interrupts 1-81
1.2.11.1 Trap Prioritization and cross-products » 1-83
1.2.11.1.14 Asynchronous traps « 1-84
1.2.11.2 Aborting lbox pipe stages on traps » 1-85
1.2.11.3 Aborting Mbox pipe stages on traps - 1-85
1.2.11.4 Generating Restart addresses * 1-85
1.2.11.5 INTERRUPTS - 1-86
1.2.11.51 Interrupt Generation Logic « 1-86
1.2.11.6 ERRORS - 1-89

1.3 RESET AND INITIALIZATION 1-89
14 ERROR HANDLING AND RECORDING 1-89
15 TEST ASPECTS 1-89
1.6 PERFORMANCE MONITORING FEATURES 1-89
1.7 ISSUES 1-89
18 REVISION HISTORY 1-89
CHAPTER 2 THE EBOX 21
21 OVERVIEW-BLOCK DIAGRAM 2-1
2.2 FUNCTIONAL DESCRIPTION 2-5
221 Register File 2-5
2.2.2 Bypass Logic 2-5
223 Adder 2-5
224 Logic Unit 2-8
225 Shifter 2-9
2.2.6 Byte Zapper 2-9
2.2.7 Multiplier 2-9
2.28 Branch Condition Logic 2-10
2.3 INSTRUCTION FLOWS 2-10
23.1 Compare (CMPEQ, CMPLT, CMPLE) 2-10
23.2 Compare Unsigned (CMPULT, CMPULE) 2-11
233 Compare Byte (CMPBGE) 2-12
234 Logical Functions (AND, BIS, XOR, BIC, ORNOT, EQV) 212

235 Conditional Move (CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT,
CMOVGE, CMOVLBC, CMOVLBS) 2-13
236 Add Longword (ADDL) 2-13
237 Scaled Add Longword (S4ADDL, S8ADDL) 2-14
238 Add Quadword (ADDQ) 2-14
239 Scaled Add Quadword (S4ADDQ, S8ADDQ) 2-14
2.3.10 Subtract Longword (SUBL) 2-14
23.11 Scaled Subtract Longword (S4SUBL, S8SUBL) 2-15
2.3.12 Subtract Quadword (SUBQ) 2-15
2.3.13 Scaled Subtract Quadword (S4SUBQ, S8SUBQ) 2-15
23.14 Multiply Longword (MULL) 2-16

DIGITAL-RESTRICTED DISTRIBUTION v

Contents

CHAPTER 3 THE FBOX

vi

2.4

25
2.6
2.7

3.1
3.2
33

23.15 Multiply Quadword (MULQ)

2.3.16 Multiply Unsigned Quadword High (UMULH)

23.17 Shift (SLL, SRL, SRA)

23.18 Extract Byte (EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH,
EXTQH)

2.3.19 Insert Byte (INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH)

2.3.20 Mask Byte (MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH,
MSKQH)

23.21 Zap Byte (ZAP, ZAPNOT)

23.22 Load Address (LDA, LDAH)

23.23 Load (LDL, LDQ)

23.24 Load Unaligned (LDQ_U)

23.25 Load Locked (LDL_L, LDQ L)

2.3.26 Store Conditional (STL_C, STQ_C)

23.27 Store (STL, STQ)

23.28 Store Unaligned (STQ_V)

2.3.29 Hardware Load (HW_LD)

2.3.30 Hardware Store (HW_ST)

2.3.31 Hardware Move From Processor Register (HW_MFPR)

2.3.32 Hardware Move To Processor Register (HW_MTPR)

23.33 Conditional Branch (BEQ, BNE, BLT, BLE, BGT, BGE, BLBC, BLBS)

23.34 Unconditional Branch (BR, BSR)

2.3.35 Jump (JMP, JSR, RET, JSR_COROUTINE)

2.3.36 Fetch (FETCH, FETCH_M)

23.37 Read Cycle Counter / VAX Compatibility (RPCC, RC, RS)

2.3.38 Other Instructions

EBOX INTERFACES

241 Ibox Interface

242 Mbox Interface

EXCEPTIONS, TRAPS, & STALLS
RESET AND INITIALIZATION
REVISION HISTORY

OVERVIEW-BLOCK DIAGRAM
FUNCTIONAL DESCRIPTION
FBOX INTERFACE

331

Interface Overview

33.11 External Interface « 3-3

3.3.1.1.1 Floating Point Instruction Issue « 3-3

33.1.1.2 Floating Point Instruction Retirement « 3-3

3.3.1.1.3 Floating Point LOAD/STORE Issue and Retirement « 3-4
33.1.14 Operand Bypasses » 3-5

33.1.15 Floating Point Branch Evaluation * 3-5

33.1.16 Conditional Move Evaluation « 3-5

33.11.7 Pipeline Stails » 3-5

3.3.1.1.8 Pipeline Aborts « 3-6

2-16
2-16
2-17

2-17
2-18

2-20
2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-25
2-25
2-26
2-26
2-26
2-27
2-27
2-28
2-28
2-28
2-28

2-29
2-29
2-33

2-34
2-34
2-35

3-1
3-1
3-1
31

DIGITAL RESTRICTED DISTRIBUTION

Contents

33.1.19 Exceptions * 3-6
33.1.2 Internal Interface « 3-6
33.1.2.1 Stage 1 Interface « 3-6
3.3.1.22 Stage 3 Interface » 3-8
33.2 Interface Instruction Flows 3-8
3.4 FBOX MULTIPLIER PIPE 3-13
3.4.1 INTRODUCTION 3-13
3.4.2 Multiply Pipe Overview 3-13
3.4.21 Interface « 3—-14
3422 MUL data path « 3-14
3423 Nomenclature « 3-15
343 INSTRUCTION FLOWS 3-15
3.4.341 Floating Point Multiply « 3—15
3.44 Mul Pipe Stage 1 3-18
3.45 Muli Pipe Stage 2 3-18
3.46 Mul Pipe Stage 3 3-21
3.4.7 Copy Sign 3-21
3.4.71 Copy Sign - STAGE 1 - 3-21
3.4.7.2 Copy Sign - STAGE 2 - 3-21
3473 Copy Sign - STAGE 3 - 3-23
3.48 Rounding 3-23
3.5 RESET AND INITIALIZATION 3-24
3.6 ERROR HANDLING AND RECORDING 3-24
3.7 TEST ASPECTS 3-24
3.8 PERFORMANCE MONITORING FEATURES 3-25
3.9 ISSUES 3-25
3.10 REVISION HISTORY 3-25
CHAPTER 4 THE MBOX 4-1
4.1 FUNCTIONAL DESCRIPTION 4-1
411 Instruction Descriptions 4-3
4111 LDx - (LDL, LDQ, LDF, LDG, LDS, LDT) » 44
41.1.14 Dcache FiLLs « 4-5
4112 LDQ U« 4-7
4113 STx - (STL, STQ, STF, STG, STS, STT) « 47
41.1.4 STQ U « 4-8
4115 MB - 4-8
4116 WMB - 4-9
4117 RPCC - 4-9
41.1.8 LDx_L-(LDL L,LDQ L)+ 4-9
41.1.9 STx_C - (STL_GC, STQ_C) » 4-10
41110 HW_MFPR - 4-11
41111 HW_MTPR « 4-11
4.1.1.12 FETCHx - (FETCH , FETCH_M) « 4-11
41113 HW_LD - 4-11
41114 HW_ST -+ 4-13
4.1.2 Memory Management 414

4.1.21 Data Translation Buffer « 4—14

DIGITAL RESTRICTED DISTRIBUTION vii

Contents

viii

413

414
415
416

4.1.7
418

419

Traps 4-16
413.0.1 Memory Management Traps « 4-18

4.1.3.0.2 Miss Address File Full and Conflict Traps « 4-19

41.3.03 Dcache Parity Errors « 4-19

4.1.3.04 Traps from the IBOX » 4-19

4.1.3.05 CBOX fill errors « 4-20

41.3.0.6 Multiple Traps « 4-21

Processor Cycle Counter 4-23
Big Endian Support 4-24
Interface requirements with FBOX, EBOX, IBOX for Dstream Instruction

Execution 4-24

41.6.1 Instruction Opcode ¢« 4-24

41.6.2 Restarting the IBOX After MB, LDx_L and STx_C
Instructions « 4-25

41.6.3 Virtual Address from EBOX - 4-25

41.6.4 LD bus « 4-25

4.1.6.5 ST Bus Sources and Destinations « 4—26

41.6.6 Register Numbers and Controls to FBOX and IBOX for
Dstream FILLs and LDs + 4-26

Dcache Hit and Load Miss Conditions 4-27

Dcache Interface 4-28

4.1.8.1 Dcache LDs « 4-30

4.1.8.2 Dcache STs * 4-30

41.83 Dcache FILLs « 4-31

41.8.4 Dcache Invalidates « 4-32

41.85 Parity Generation and Checking « 4-32

41.8.6 Operation Modes for the Dcaches « 4-33

41.86.1 Dcache Force Bad Parity and Disable Parity « 4-33

4.1.8.6.2 Dcache Enable and Force Hit Modes « 4-33

41.8.6.3 Dcache Flush - 4-34

41.8.7 Reading/writing Dcache Tags for Testability « 4-34

Miss Address File 4-34

41.9.1 Overview « 4-34

41.92 Basic Timing « 4-35

4193 CBOX Interface « 4-36

41.93.1 Command/Address Issue Interface « 4-36

41.9.3.2 Write Buffer Interface + 4-38

41.933 Return Status = 4-38

41.934 Invalidates - CBOX Guarantee 4-39

4194 Icache Interface « 440

4195 Loading the MAF « 4-40

41951 Dcache Read Misses * 4—41

41.95.2 Dstream Writes WMB, FETCHx « 4—44

4.1.95.3 Memory Barriers (MB) 4-46

41954 Write Memory Barriers (WMB) « 4-47

41955 Icache Read Misses « 4-47

4196 MAF Issue to Scache « 4-47

4.1.9.6.1 Reissuing WB addresses « 4-48

41962 Replaying an Address » 4-49

41.9.7 Retiring MAF entries « 4-49

41.9.8 Loads from IO SPACE - 4-50

41.9.9 Mbox Unavailable Traps » 4-50

41.910 MAF Boundary Conditions » 4-50

4.1.9.10.1 Dread Merge Cutoff Point « 4-51

DIGITAL RESTRICTED DISTRIBUTION

4.2
43
4.4
45
4.6
4.7

4.1.10

4.1.9.10.2

Contents

WB Merge Cutoff Point « 4-51

Mbox and Dcache IPR’s 4-51

4.1
4.1

4.1
4.1
4.1

41
4.1
41
4.1
4.1

4.1

441

.10.1
.10.2
4.1.
4.1.
4.1.
4.1.
4.1.
.10.8

.10.9

.10.10
4.1.
4.1,
41.
4.1.
.10.15
.10.16
.10.17
.10.18
.10.19
4.1.
.10.21
41.

10.3
10.4
10.5
10.6
10.7

10.11
10.12
10.13
10.14

10.20

10.22

.10.23

DTB_ASN, Dstream TB Address Space Number « 4-51
DTB_CM, Dstream TB Current Mode « 4-51
DTB_TAG, Dstream TB TAG - 4-52

Dstream TB PTE, DTB_PTE - 4-52

DTB_PTE_TEMP - 4-53

MM_STAT, Dstream MM Fault Status Register » 4-54
VA, Faulting Virtual Address « 4-55

VA_FORM, Formatted Virtual Address « 4-55
MVPTBR, Mbox Virtual Page Table Base Register « 4-56
DC_PERR_STAT, Dcache Parity Error Status » 4-56
Dstream TB Invalidate All Process, DTBIAP - 4-57
Dstream TB Invalidate All, DTBIA » 4-57

DTBIS, Dstream TB Invalidate Single « 4-57

MCSR, Mbox Control Register » 4-58

DC_MODE, Dcache Mode Register « 4-59
MAF_MODE, MAF Mode Register « 4-60

DC_FLUSH, Dcache Flush Register « 4-62
ALT_MODE, Alternate mode « 4-62

CC, Cycle Counter » 4-62

CC_CTL, Cycle Counter Control « 4-63
DC_TEST_CTL, Dcache Test TAG Control Register » 4-64
DC_TEST_TAG, Dcache Test TAG Register » 4-64
DC_TEST_TAG_TEMP, Dcache Test TAG Temp
Register « 465

RESET AND INITIALIZATION 4-66
ERROR HANDLING AND RECORDING 4-67
TEST ASPECTS
PERFORMANCE MONITORING FEATURES 4-67

ISSUES

REVISION HISTORY

CHAPTER 5 THE CBOX

5.1
5.2

5-1

OVERVIEW & BLOCK DIAGRAMS 5-1

FUNCTIONAL DESCRIPTION 5-3
Scache Arbiter Unit 5-3
5.2.1.1

52.1.11

5.2.1

52.1.1.1.1
5.2.1.1.1.2
5.2.1.1.1.3
521.1.1.4
521.1.1.5
52.1.1.1.6

52.1.1.2
52.1.13
52.1.14
521.2

Mbox Requests * 54

Requests from Mbox « 5-6

Load requests « 5-6

Load Locked requests « 56

Store requests « 5-7

Store Conditionals « 5-7

Fetch, FetchM and MB - 5-7

Commands to BIU - 5-8

Invalidates to DCache « 5-9

Retries and Merging of Mbox requests « 5-9

Read/Write Ordering from Mbox « 5-11
TROLLing of Scache Access Requests » 5-12

DIGITAL RESTRICTED DISTRIBUTION ix

Contents

5213 BIU requests « 5-13
52.1.3.1 BIU request Prioritization at SAU « 5-13
5214 SCache Set Allocation « 5-14
52141 Bcache Index Match + 5-15
52.1.4.2 Fills from Scache to I/DCache » 5-16
5.2.2 Write Buffer Unit 5-21
5221 Wirite Buffer Data Store: WBD » 5-21
5222 Storing Data in write buffer « 5-21
5223 Issue of Writes « 5-22
5224 Write Buffer Completion Control:WCC « 5-23
5225 Write Reissue Queue and Control : WRQ,WRC » 5-25
52251 Stopping Writes » 5-26
5.2.25.2 Stopping Reads « 527
52.2.6 Write flows - 5-28
52.26.1 Private & Dirty » 5-28
5226.2 Private & Clean « 5-28
52.2.6.3 Shared & Clean - 5-29
52.26.4 Shared & Dirty « 5-31
52265 Write misses/Invalid » 5-31
52.26.6 O writes & non-cacheable writes « 5-32
5227 General considerations for writes « 5-33
52.2.8 STx_C - 5-33
5.23 Bus Interface Unit 5-35
52.3.1 BIU Functions « 5-35
5232 Lock Register « 5-36
52.33 Scache Requests * 5-36
5.2.3.31 Loading the BAF and VAF « 5-36
52332 Loading the BAF and VAF « 5-38
52333 Victims « 5-39
5234 System Probe Address Requests « 5-42
5.2.35 System Data Requests * 5-47
52.35.1 BIU Sequencer * 5-48
52352 Bcache Data Cycle Timer » 5-51
52353 Bcache Data Valid » 5-51
52.3.6 Data Datapath:ECC generation/check » 5-51
52.3.6.1 Outgoing Data section * 5-52
52.3.6.2 Data buffer section « 5-52
52363 Incoming Data section & Error Signals « 5-52
5237 IPR’s « 5-55
5.2.3.7.1 SC_STAT « 5-56
5.2.3.7.2 SC_ADDR - 5-56
52373 SC_CTL - 5-56
52374 FILL_SYNDROME - 5-56
52375 El_STAT - 5-56
52.3.76 EI_ADDR - 5-56
52377 BC_TAG_ADDR - 5-57
52378 BC_CTL - 5-57
52379 BC_CONFIG « 5-57
523.7.10 LOCK - 5-57

53 RESET AND INITIALIZATION 5-57
5.4 ERROR HANDLING AND RECORDING 5-57
5.5 TEST ASPECTS 5-57

X DIGITAL RESTRICTED DISTRIBUTION

5.6
5.7
5.8

PERFORMANCE MONITORING FEATURES

ISSUES

REVISION HISTORY

CHAPTER 6 THE CACHES
OVERVIEW
ICACHE AND REFILL BUFFER FUNCTIONAL DESCRIPTION

6.1
6.2

6.4

6.2.1

6.2.2
6.23
6.2.4

6.2.5
6.2.6
6.2.7

Icache Details

6.2.1.1 Icache SROM Interface « 6-6

Branch History Table

Icache and Refill Buffer Initialization and Test

Icache & Refill Buffer Transactions

6.2.4.1 lcache & Refill Buffer Fill Operations « 6-8

6.24.11 Writing the Icache and Branch History Table with the
SROM - 6-9

6.2.4.2 Icache & Refill Buffer Read Operations « 6-9

6.2.4.3 Branch History Table Reads and Writes « 6-10

Icache Test Operations

lcache States Resulting in UNPREDICTABLE operation

Icache Redundancy Logic

DCACHE FUNCTIONAL DESCRIPTION

6.3.1
6.3.2

6.3.3

Dcache Initialization and Test

Dcache Transactions

6.3.2.1 Dcache Load Operation « 6-17
6.3.2.2 Dcache Store Operation = 6-17
6.3.23 Dcache Fill Operation « 6-19
6.3.24 Dcache Invalidate Operation « 6-20
6.3.25 Dcache Test Operations * 620
Dcache Redundancy Logic

SCACHE FUNCTIONAL DESCRIPTION

6.4.1

6.4.2
6.4.3
6.4.4

6.45
6.4.6
6.4.7

SCache Tag Array

6.4.1.1 Block Size » 6-23

6.4.1.2 Physical Organization « 6-23

6.41.3 Force Hit/Force Miss Conditions - 6-25
6.4.1.4 Status Bits - 6-25

6.4.15 Aborting an SCache Reference 627
6.4.1.6 Parity Checking « 6-27

SCache Data Array

Pipeline

Transactions

6.4.4.1 SC_READ - 6-30

6.4.4.2 SC_WRITE - 6-31

6.4.43 SC_INVAL - 6-31

6.4.4.4 SC_READ_DIRTY - 6-32

6.4.45 SC_FILL « 6-32

6.4.4.6 SC_SET_SHARED - 6-33

SCache Redundancy Logic

Cbox Interface

Ibox Interface

DIGITAL RESTRICTED DISTRIBUTION

Contents

6-1
6-1

6-3
6-5

6-6
6-7
6-7

6-11
6~11
6-12

6-12
6-15
6-16

6-21

6-21
6-23

6-27
6-29
6-30

Xi

Contents

6.5 RESET AND INITIALIZATION 6-35
6.6 ERROR HANDLING AND RECORDING 6-35
6.7 TEST ASPECTS 6-35
6.7.1 BiST 6-35

6.7.2 IPR access 6-35

6.7.3 Scan Chains 6-35

6.8 PERFORMANCE MONITORING FEATURES 6—42
6.9 ISSUES 642
6.9.1 ICache 642

6.9.2 DCache 6-43

6.9.3 SCache 643

6.10 REVISION HISTORY 6-43
CHAPTER 7 THE CLOCKS 7-1
7.1 OVERVIEW-BLOCK DIAGRAM 7-1
7.2 FUNCTIONAL DESCRIPTION 7-3
73 RESET AND INITIALIZATION 7-3
7.4 ERROR HANDLING AND RECORDING 7-3
7.5 TEST ASPECTS 7-3
7.6 PERFORMANCE MONITORING FEATURES 7-3
7.7 ISSUES 7-3
7.8 REVISION HISTORY 7-3
CHAPTER 8 TEST INTERNALS 8-1
8.1 OVERVIEW 8-1
8.2 THE TESTABILITY STRATEGY 8-1
8.3 TEST PORT 8-1
8.4 PARALLEL DEBUG PORT 8-2
8.5 SROM PORT 8-3
8.6 IEEE 1149.1 (JTAG) PORT 8-3
8.6.1 Instruction Register 8-4

8.7 MISCELLANEOUS TEST PINS 8-5
8.7.1 DISABLE_OUT L 85

8.8 CACHE BIST 8-5
8.9 INTERNAL SCAN REGISTERS 8-5
8.10 INTERNAL LFSRS 8-6
8.11 MISCELLANEOUS TESTABILITY FEATURES 8-6

Xii

DIGITAL RESTRICTED DISTRIBUTION

8.12
8.13

ISSUES
REVISION HISTORY

CHAPTER 9 THE INTERCONNECT

9.1
9.2

FIGURES
1-1
1-2
1-3
1-4
1-5
1-6
1-7

EVS5CIP.H - THE ONLY GLOBAL INTERCONNECT .H FILE

REVISION HISTORY

Simple Block Diagram
Waterfall

Fetch Index Mux Selects for Trap, Exception, Replay(4A,6A)

IC_Index and RFB_Index on IC_Miss and RFB_Hit
Ibox requests to MBOX

Signal Protocall for Fills

IFB Fills with RFB Hits

ICache Index Mux

Fetch/Prefetch Logic

IBOX FETCHER SEQUENCER

IBOX HIT Logic

Superpage

ITB Block

Branch History Logic

Branch Predictor Logic

Return Stack Operation

Return Prediction Stack

Fetch PC

Execution PC

IB Slot Logic

Instruction Slotting

Instruction Issue-Block Diagram

LOAD MISS-AND-USE Replay Timing
Istream TB Tag, ITB_TAG

Istream TB PTE Write Format, ITB_PTE
Istream TB PTE Read Format, ITB_PTE
Address Space Number Read/Write Format, ITB_ASN
Istream TB PTE Temp Read Format, ITB_PTE_TEMP
ITB_IS

IFAULT_VA_FORM in non NT mode
IFAULT_VA_FORM in NT mode

IVPTBR in non NT mode

IVPTBR in NT mode

ICPERR_STAT Read format

DIGITAL RESTRICTED DISTRIBUTION

Contents

8-6
8-6
9-1

9-1
9-23

Contents

4-10
4-11
4-12
4-13
4-14

Xiv

EXC_ADDR Read/Write format

Exception Summary register Read Format, EXC_SUM
Exception Mask register Read Format, EXC_MASK
PAL_BASE

Processor Status, PS

Ibox Control/Status Register ICSR .

Interrupt Priority Level Register, IPL

interrupt Id Register, INTID

Asynchronous System Trap Request Register, ASTRR
Asynchronous System Trap Enable Register, ASTER format
Software Interrupt Request Register, SIRR write format
Hardware Interrupt Clear Register, HWINT_CLR
interrupt Summary Register, ISR read format

Serial line transmit Register, SL_XMIT

Serial line receive Register, SL_RCV

PAL_ENTRY

IBOX TNTERRUPT LOGIC

Ebox Block Diagram

Summary of Adder Control

Conditional Move Conditions

Branch Conditions

Fbox Interface Block Diagram

ADD Pipe Fraction Datapath Alignment/Format
STAGE 1 INPUT BYPASS/FORMAT/RESOURCE TABLE
Register File Data Format

Multipy Pipe Block Diagram

STAGE 1

STAGE 2

STAGE 3

Mbox

MBOX Pipe

HW_LD instruction

HW_ST instruction

DTB Bit Fields

MAF Timing Definition

Pending Queue Bit Fields

Dread Address Datapath

Dread Register Formatting Bits

Dread Control Bits

WB PA Datapath

WB Control Bits

IREF PA Datapath

DTB_ASN

1-74
1-74
1-75
1-76
1-76
1-76
1-77
1-78
1-78
1-78
1-79
1-79
1-80
1-81

1-85
1-88
2-4
2-7
2-13
2-27
3-2
3-7

3-14
3-16
3-19
3-20
3-22

4-2

4-12
4-13
4-15

SLELEEELE

DIGITAL RESTRICTED DISTRIBUTION

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
517
5-18
5-19
5-20
5-21
5-22
5-23

DTB_CM

DTB_TAG, Dstream TB Tag

DTB_PTE, Dstream TB PTE

DTB_PTE_TEMP

MM_STAT, Dstream MM Fault Register

VA, Faulting VA Register

VA_FORM, Formatted VA Register for NT_Mode=0
VA_FORM, Formatted VA Register, NT_Mode=1

MVPTBR

DC_PERR_STAT, Dcache Parity Error Status

DTBIS

MCSR, Mbox Control Register

DC_MODE, Dcache Mode Register

MAF_MODE, MAF Mode Register

ALT_MODE

CC, Cycle Counter Register

CC_CTL, Cycle Counter Control Register

DC_TEST_CTL, Dcache Test TAG Control Register
DC_TEST_TAG, Dcache Test TAG Register
DC_TEST_TAG_TEMP, Dcache Test TAG Temp Register
CBOX Block Diagram

SAU Pipe Stages

SC_BUSY and Mbox Command Issue

Possible FIRST_FILL/LAST_FILL sequences from Cbox to Mbox
Invalidate Timing

Mbox Retry on Miss

Retry on BIU resources full

Set Allocation Algorithm

Bcache index match

I/DREAD hits in the SCache

DREAD fills from external memory (Non-error mode)

IREAD fills from external memory

SCache Arbitration under fills

SCache Dstream (non-error mode) Fill Flow (3 cycle sysciock)
SCache Dstream (non-error mode) Fill Flow (4 cycle sysclock)
SCache Dstream (non-error mode) Fill Flow (5 cycle sysclock)
SCache Dstream (Error mode) Fill Flow (5 cycle sysclock)
SCache Istream (non-error mode) Fill Flow (5 cycle sysclock)
Scache Read Hits Under Fills (3 cycle sysclock)

Scache Write Hits Under Fills (3 cycle sysclock)

Write Buffer Data Store

Write Flow

Write buffer data write timing diagram

DIGITAL RESTRICTED DISTRIBUTION

Contents

Xv

Contents

TABLES
1-1
1-2
1-3
1-4
1-5
1-6

Xvi

Write buffer data issue timing diagram

Write hit private/dirty

Write hit private/clean

Write broadcast

Write miss

EV5 System Interface

BAF full timing

Victim data flow

Data collection of first subblock in VAF

Data collection of second subblock in VAF
Timing for System Probe Address Logic

BSQ Bypass Flow

BSQ No Data Flow

BSQ Data Flow

BSQ System Flow

Outgoing Data flow

Incoming data flow

Cache Positions in EVS5 Pipeline

Instruction Data Flow through Refill Buffer and lcache
Logical lcache Organization

lcache Address Breakdown

Branch History Table Datapath

Dcache-0 and Deache-1

Logical Dcache Organization

Dcache Address Breakdown

Dcache Index Muxing for Data and Tag Arrays
SCache

SCache Tag Physical Organization

SCache Tag Address Breakdown

SCache Physical Organization, Lower Quadword (Right Haif of SCache)
SCache Physical Organization, Upper Quadword (Left Half of SCache)
SCache Data Address Breakdown

Ebox

IEEE 1149.1 Serial Port (the Basic CTl)

Instruction Fetch Logic Signal Interface
Granularity Hint Bit Mapping
MISCELLANEOUS IB BITS

EBOX Bypass MUX control Signals
FBOX Bypass MUX control Signals
Instructions Setting the MB_FLAG

6-11
6-13
6-14
6-15
6-15
6-22
6-24
6-24
6-28
6-29
6-29

7-2

1-5
1-19

1-55
1-56
1-61

DIGITAL RESTRICTED DISTRIBUTION

1-7

1-8

1-9

1-10
1-11
1-12
1-13
1-14
1-15
1-16
117
1-18
1-19

2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-1
3-1
3-2

3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-1
3-12
3-13
4-1

4-2
4-3
4-4
4-5
4-6

MBOX Instructions stalling while MB_FLAG is set
Description of GHD bits in ITB_PTE_TEMP read format
ICPERR_STAT Field Descriptions

EXC_SUM Field Descriptions

ICSR Field Descriptions

SIRR Field Descriptions

HWINT_CLR Field Descriptions

ISR read format Field Descriptions

IBOX TRAPS, ENTRY POINTS and INTERRUPT

Trap Prioritization

PAL_ENTRY

Interrupt Priority Level Effect

Revision History

Instruction Matrix

Compare

Compare

Logical Functions

Shifter Inputs

Shifter Inputs for the Extract Byte Instructions

Byte Zapper Operation for the Extract Byte Instructions
Shifter Inputs for the Insert Byte Instructions

Byte Zapper Operation for the Insert Byte Instructions
Byte Zapper Operation for the Mask Byte Instructions
Revision History

Floating Point Pipe Instruction Execution

Exponent constants muxed onto Stage 1 Input Exponent Operand A

ADD pipe: ADDX/CPYSx/CMPx/CVTX/FCMOVxx/FBXX/MX_FPCR/SUBx

ADD pipe: DiIVx

MULTIPLY pipe: MULX/CPYS

STORE port: STx

RF Load ports: LDx (LOADs and FILLs)
FBOX Interface Signal List

Booth Algorithm

Chop Rounding

Normal Rounding

Rounding to Infinity

Revision History

Instructions Handled by the MBOX
HW_LD Format

HW_ST Format

Granularity Hint Bit Mapping

Traps Detected by the MBOX

Trap Signals to IBOX (One pipe shown)

DIGITAL RESTRICTED DISTRIBUTION

Contents

1-71
1-73
1-75
1-76
1-79
1-79
1-80

1-84
1-86
1-87

2-2
2-11
2-1
2-12
217
2-17
2-18
2-18
2-19
2-20
2-35

3-3

3-10
3-10
3-10
3-11
3-11
3-12
3-17
3-23
3-23
3-24
3-25

4-12
413
4-14
4-16
4-18

Xvii

Contents

4-7 Table of Multiple Trap Effects 4-22
4-8 DC Hit Conditions, (prioritized) 4-27
4-9 Dcache Commands 4-29
4-10 Dcache Command Encodings 4-30
4-11 Commands From MBOX MAF to CBOX Arbiter 4-37
4-12 CBOX Return Status 4-39
4-13 Pending Queue Bit Fields 4-41
4-14 Dread Physical Address Datapath bits 4-42
4-15 Dread Register Formatting Bits 4-42

4-16 Dread Control Bits 4-43
4-17 Dread Merge and Allocate Conditions 4-44
4-18 WB PA Datapath 4-45
4-19 WB Control Bits 4-46
4-20 WB Merge and Allocate Conditions 4-46
4-21 IREF PA Datapath 4-47
4-22 MAF Issue Priority 4-48
4-23 Mbox Unavailable Traps 4-5
4-24 DTB_CM Mode Bits 4-5
4-25 MM_STAT Field Descriptions 45
4-26 VA_FORM Field Descriptions 4-5
4-27 DC_PERR_STAT Field Descriptions 4-5
4-28 MCSR Field Descriptions 4-58
4-29 DC_MODE Field Descriptions 4-5
4-30 MAF_MODE Field Descriptions 4-6
4-31 ALT Mode 4-6
4-32 CC_CTL Field Descriptions 4-6
4-33 DC_TEST_CTL Field Descriptions 4-6
4-34 DC_TEST_TAG Field Descriptions 4-65
4-35 DC_TEST_TAG_TEMP Field Descriptions 4-66
4-36 Revision History 4-68
5-1 Commands from Mbox 5-4
5-2 Encoded Cbox Return Status to Mbox (7a and 8a signals) 5-5
5-3 Cbox Special Signals to Mbox 56
54 Mbox Commands and Scache Arbiter Actions 5-8

5-5 Mbox Retry Conditions 5-10
5-6 Mbox Read/Write Ordering 5-12
5-7 Commands from BIU for SCache access 5-13
5-8 Wr Decode 5-22
5-9 Writes with Permission grant 5-32
5-10 STx_C cases: Cacheable References 5-34
5-11 STx_C cases: Non-Cacheable References 5-34
5-12 Loading of BAF and VAF 5-37
5-13 System Probe Commands and Related Actions if Address match 5-47

xviit DIGITAL RESTRICTED DISTRIBUTION

5-14
5-15

PRIzt

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
7-1

PRIZEE

9-1

Contents

Behavior of CBOX of errors in shadow of other errors 5-54
Revision History 5-57
Icache Tag 6-6
lcache and Refill Buffer Control Signals 6-7
Dcache Tag Command and Transactions 6-16
Dcache Data Command and Transactions 6-17
Dcache STORE Silo, Example of 3 back-to-back STOREs at one Dcache 6-18
CBOX initiated Dcache Invalidates 6-20
SCache Tag 6-23
BCache Index Match 6-25
Tag Modifications 6-25
Final Status Values 6-26
SCache Pipeline 6-30
SCache Transactions: SC_READ 6-30
SCache Transactions: SC_WRITE 6-31
SCache Transactions: SC_INVAL 6-32
SCache Transactions: SC_READ_DIRTY 6-32
SCache Transactions: SC_FILL 6-33
SCache Transactions: SC_TAG_UPDATE 6-33
SCache Commands from Cbox 6-34
Tag Status Driven to Cbox 6-34
Revision History 643
Revision History 7-3
evs Test Pins 8-2
Parallel Debug Port Operating Modes 8-2
Instruction Register 85
Internal Scan Register Organization 8-5
Internal LFSR Organization 8-6
Revision History 8-6
Revision History 9-23

DIGITAL RESTRICTED DISTRIBUTION Xix

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 1

The Ibox

1.1 Overview

The basic IBOX operation is as follows.

In stage S-1 the I_IDX%IC_INDEX_H<12:2> is generated and provided to the ICache. The carry of
the incrementer is passed to the SO PC<42:13> adder.

In stage SO the virtual ICache reads 4 instructions and sends them to the IB. Also in S0 the pc
adder calculates the PC of the fetched instruction block and sends it to the PC silo which has
analogous control with the IB. At the end of SO the ICache hit starts, checking the TAG just read
with the PC just calculated.

In S1, the IB selects one of the 2 Instruction buffers and forwards the data to the Slot logic
if possible. The IB receives I_HIT%IC_HIT_1A_H, calculates I_IBS%IB_STALL_1B_H and informs the
fetch logic. In parallel the Branch taken adders calculate the 4 possible branch path indexes,
picking the correct one at the end of S1 to send to the ICache. The ITB checks all ICache fetches
for access and generates ICache Miss PAs for the Scache. The Slot logic starts in the second half
of S1. It calculates the mux selects to send each instruction to the correct Pipe.

In S2, the Slot logic drives the instructions to the correct pipes. If some instructions don’ slot a
stall is generated to the IB stage, and the remaining instructions will try again in the next cycle.
At the end of S2 the register numbers are predecoded for register reads and dirty checks.

In S3, the dirty logic for the register file checks for conflicts between the current set of instruction
and in previously issued instructions. Instruction Valid is forwarded to the appropriate pipes for
issued instructions, S3_Freeze is sent to earlier stages of the IBOX pipe if some instruction failed
to issue. Also in S3 the alternate PC for predicted branch is calculated (ie the path the branch
predictor didn’t take).

In S4, the PC miss predict compare is done.
In S5, the mispredicted PC is loaded into the fetch index to restart the pipe.
In S6 the only IBOX action is to pipe state.

In S7, the trap logic prioritizes trap conditions and generates the trap vector. The Exception PC
is loaded.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure

1-1: Simple Block Diagram

s-1 s0 s1 s2 s3 s4 S5
FADD
IFETCH | ReFILL FMUL Seeran
FiLL BUFFER FILL BYPASS ko
DATA E1 ke oD Bes 1 130240 t000
—]INSTRUCT —
PREDECODE| SLOT Loaic
180 \
IC FETCH INDEX 4
N
ICACHE Yo w HTHE) DIRTY ISSUE VALID
— sems [| B NN LoGIc
aw \
)|
IC_BTAKEN INDEX £BOX PC
S3 FREEZE
ALTERNATE PC
_l MISPREDICT PC
BRANCH DISP LJ
TRAP INDEX CARRY
PAL PC<42:13>
ENTRY |—
POINT
LOGIC [—‘ —l
L] _J __J PC TO EBOX
PAL TEMP
1BOX PR
178
| IREF PA
_‘ 64 ENTR#
1
1-2 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-2: Waterfall

S0 St S2 83 S4 §5 §6 87

T FETCH[ICACHE 18 | stot |RSUE L A | oc [rB HIT [REG WR

U icacue| 18 stor |ISSUE L aw | oc rB HIT [REe WA

v BRANCH TAKEN TARGET]'CACHE| 1B stor |SSUE L A | oc fiB HIT |REG WA

w IcAcHE| 1B sior |ISSUE 1 aw | oc fe wiT [Rec wA

X ICACHE| 18 stor |ISSUE 1 au | oc B miT [REG we

Y ICACHE| 1B stor [ISSVE L aw | be fre wiT |REG wa

z PC/BRANCH MISPREDICT TARGET |[ICACHE| 1B stor |SSUE | ALy oc [rB HIT |REG WR

0 icacHE| 1B stot [IBSVEL| Aw [b B HiT [REG WA

4 18 TRAP ENTRY POINT ICACHE| iB stor {ISVEl aw | bc FrBwiT |Ree wnI

This water fall shows the location of the IBOX stages in the pipe. The fetch stream changes at 3
different times. The waterfall shows the cycles the fetch stream would be restarted if the named
event happened in instruction T.

1. S2: branch predicted taken
2. S6: Branch or PC miss predict, ITB miss/ACV (this is the S5 trap)
3. S8: DTB Trap or any other error. (this is the S7 trap)

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The EV5 Ibox contains the following functionality :

An 8K byte direct mapped, 32 byte block, virtual ICache with 4 32 byte refill buffers for
streaming prefetch. The ICache reads 4 instructions per cycle.

The ICache Fetch logic including -
¢ Fetch adder
¢ Refill buffer adder
¢ Prefetch adder
¢ Refill buffer tags (4)
A 64 entry, fully associative, full hint bit support, 7 bit ASN, ITB.
A 2K*2 bit Branch History Table and the History Update logic.
The Flow Prediction logic including -
¢ Branch Predictor
¢ Target Calculation logic
¢ Return Prediction Stack
All the PC logic including -
¢ Fetch PC logic
e PCsilo
* Execution PC logic
An 8 instruction IB that holds 2 sets of 4 instruction ICache fetches.
The Instruction Slot logic which includes -
¢ functional unit slotting.
The Instruction issue logic which includes -
¢ The register scoreboard:
¢ A 1 bit shift register per pipe per register.
* The DCache miss bit, 1 bit per register.
¢ The Bypass control for the EBOX and FBOX and the register file write control.
¢ The register serialization checks.
¢ The MB/STC/RC flag
IPRs
¢ TIbox Control
¢ ITB Control
e PAL Temps
Pal Entry point logic

1-4 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2 Functional Description

1.2.1 ICache

1.2.2 Instruction Fetch

The Instruction Fetch block is responsible for providing cache indexes, hit signals, prefetch ad-
dresses and fill data. The goal of the fetch logic is to provide a continuous supply of instructions
to the Instruction Buffer (IB) pipe. Whenever the IB has an available set of instruction buffers
the fetch logic attempts to provide the predicted instruction stream. If it is later determined that
the stream was mispredicted the fetch logic receives the correct calculated branch target from
the I_WPC section and resumes fetching from the ICache. If any other I-stream flow change is
encountered, (exception, trap, interrupt, re-play, etc.) the fetch logic is provided the target index
and fetching resumes from the ICache.

The fetch logic controls a four entry direct mapped Refill Buffer which is used to assist in stream-
ing fetches which miss in the ICache. Data which is prefetched is held in the refill buffer until
requested by the IB or overwritten by a new I-stream. The Refill Buffer consists of four 32 byte
blocks and four associated tag entries. The 128 bytes are accessed as eight octaword buffers, with
two sub-blocks per Refill Buffer Tag entry.

The instruction fetch logic deals primarily with with ICache indexes (i.e. PC<12:2>. There are
three separate indexes which make up the instruction fetch logic; the ICache index (ic_index),
the refill buffer index (rfb_index), and the prefetch index (pf_index). See Figure 1-9.

The instruction fetch logic is controlled by two sequencers; a fetch sequencer and a pre-fetch
sequencer. The fetch sequencer is primarily responsible for the sequencing pertaining to calcu-
lating the ic_index and rfb_index, hitting in the ICache and refill buffer, I-stream flow changes,
and recieving fill data. The pre-fetcher is primarily responsible for the sequencing pertaining to
requesting data when accesses miss in both the ICache and refill buffer , pre-fetching I-stream
data, and calculating the pf_index.

The instruction fetch logic is also responsible for reporting the tag compare information and
generating ICache hit and Refill Buffer hit signals. The instruction fetch logic maintains the
Refill Buffer Tag Store. The instruction fetch logic is responsible for providing the valid bits to
the ICache. The fetch logic provides the two valid bits associated with each ICache Tag write.
The ICache is responsible for clearing the valid bits.

Table 1-1: Instruction Fetch Logic Signal Interface

Signal Description/Notes

Fetcher and ICache Signals

% _IC_INDEX_ZB_H<12:4> ICache Read/Write Index.

%dJ_IC_INDEX_ZB_L<12:4> ICache Read/Write Index.

1%J_VALID_ZB_H<1:0> ICache Valid bits.

1%dJ_IC_CMD_A_H Asserion indicates Write, de-assertion indicates read.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-1 (Cont.): Instruction Fetch Logic Signal Interface

Signal

Description/Notes

Fetcher and ICache Signals

19%J_BYPASS_IC A H

19%J_RFB_RD_IDX_1B_H<6:4>
9%J_RFB_WR_IDX_A_H<2:0>

19%J_RFB_WR_A_H

Asserion indicates J%I_ISTR_DATA 0B H is coming from the Refill Buffer,
De-asserion indicates that J%1_1sTR_DATA 0B _H is coming from the ICache.

Refill Buffer Data Read Index.
Refill Buffer Data Write Index, valid one cyle before the write.
Refill Buffer Data Write Enable, valid one cyle before the write.

Fetcher and I_IBS Signals

LIBS%IB_STALL_1B_H

I_IDX%IC_DATA_VALID_1A_H
L_IDX%CURRENT IDX_1A_H<3:2>
I_IDX%CURRENT_IDX_1A_H<0>

J%I_ISTR_DATA_0B_H<127:0>

Assertion of this signal forces the Instruction Fetcher to stall the fetch-
ing of instructions.

Assertion indicates that the data on Jzic_para oB H is valid.

The longword address of the instruction fetch.

Assertion indicates that the instructions fetched are PAL instructions.
This is the istream data which is sent to the IB.

Fetcher, I WPC, and I_TRP Signals

I TRP%SEL_EXCEPTION_PC_A H

ILTRP%SEL_S8_REPLAY_A_H

I_WPC%REPLAY_IDX 4A_H<12:4,0>
LTRP%ZREPLAY_POS_4A_H<1:0>

I TRPZEXCEPTION_PC_A_H<12:0>
I_WPC%BR_PC_MPRED_IDX_5A_H<12:0>
I_WPC%REPLAY_IDX 6A_H<12:4>

I TRP%ZREPLAY_POS_6A_H<1:0>

L TRP%SEL_EXC_EREPLAY A H

I TRP%SEL_BR_LREPLAY A H

LTRP%TRAP POSTED_A_H

1-6 The Ibox

Assertion indicates select 1 TRP%EXCEPTION PC_A_H<12:0>; de-assertion in-
dicates select 1_.WPC#REPLAY_IDX_4A H<12:4,0>, | TRP%REPLAY_POS_4A H<1:0>.

Assertion indicates that 1 WPCZREPLAY_IDX_6A_H<12:4,0> and I TRP%REPLAY_
Pos_eA_H<1:0> should be selected. De-assertion indicates that 1_wrc#BR_
PC_MPRED_IDX_5A_H<12:0> should be selected.

4A replay index.

4A replay position.

Exception pe.

Branch, PC Mispredict index.
7A replay index.

7A replay position.

Assertion indicates that the 1 TRP%SEL EXCEPTION PC_A H signal is valid
and the next fetch index should be either 1 TRP%EXCEPTION_PC_A H<12:0>
Or I_WPC%REPLAY_IDX_4A_H<12:4,0>,] TRP%REPLAY_POS 4A H<1:0>. It must not
be asserted if 1 TRP%SEL_BR_LREPLAY_A H is asserted.

Assertion indicates that the 1 TRP%SEL_S6 REPLAY A H signal is valid and
the next fetch index should be either 1 WPC%REPLAY_IDX 6A_H<12:4,0>, I_
TRPXREPLAY_POS_6A_H<1:0> OT I_WPC%BR_PC_MPRED_IDX 5A_H<12:0>.]t must not
be asserted if L TRP%SEL_EXC_EREPLAY A H is asserted.

Assertion indicates that a trap has occurred. It must be asserted if ei-
ther 1 TRP%SEL_EXC_EREPLAY_A_H OT I_TRP%SEL_BR_LREPLAY A H are asserted.

DIGITAL RESTRICTED DISTRIBUTION

1.2.2.1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-1 (Cont.): Instruction Fetch Logic Signal Interface

Signal

Description/Notes

Fetcher and I_FPR Signals

LFPR%FLOW_CHANGE_1A_H

I FPR%PREDICTED_IDX 1A_H<12:2>

Assertion indicates that 1_FPR%*PREDICTED IDX_1A H<12:2> should be se-
lected as the next fetch index. Must be conditioned with ICache Hit
or Refill Buffer Hit.

Predicted index (Branch Taken, CALL_PAL, or Stack).

Fetcher and MBOX Signals

I19%M_IREF_IDX_1B_H<6:5>

I%M_IREF_REQ 2B_H

9%M_IREF_ADDR_2A_H<39:4>

Index for the 1 of 4 MAF entries.

Assertion indicates that the MBOX should begin a IREF arbitration
using I1%M_IREF_ADDR_2A H<39:4> as the physical address.

Physical address for IREF access.

Fetcher and CBOX Signals

C%I_IFB_DATA VALID _8B_H

C%I_IFB_INDEX_SB_H<2:0>

C%I_IFB_LAST_FILL_8B H

S%I_IFB_DATA_9B _H<127:0>

Assertion indicates that the s%I_IFB_DATA 9B_H<127:0> Will be valid in the
following cycle.

Indicates which one of 8 possible octawords is being returned on the
S%I_IFB_DATA_9B_H<127:0>.

Assertion indicates that this fill is the last of the two octawords asso-
ciated with the c%l_IFB_INDEX 8B H<2:0>.

SCache Fill data.

Instruction Fetch Fiow

The instruction fetching begins with the longword (4 bytes) index (I1%J_IC_INDEX_ZB_H<12:2>) re-
quired for ICache accesses. The I9%J_IC_INDEX_ZB_H is set-up to the 0A rising edge of K%CLOCK.
The the "next" ic_index can be sourced from 1 of 7 places from the Instruction Fetch section’s
(I_IDX) perspective. These sources are:

* I_FPR%PREDICTED_IDX_1A_H<12:0> - Predicted Index.

e I IDX_FIC%INC_INDEX_ZA_H<12:0> - Incremented Index.

* I_IDX_FIC%REC_INDEX_0A_H<12:0> - Recirculated Index.

¢ I_IDX FIC%FILL_INDEX_1A_H<12:0> - Fill Index.

¢ I WPC%REPLAY_IDX_4A H<12:0> - 4A Replay Index.

* I_TRP%EXCEPTION_PC_A_H<12:0> - Exception Index.

* I_WPC%BR_PC_MPRED_IDX_5A H<12:0> - 5A Branch, PC Mispredict Index.
* I WPC%REPLAY_IDX_6A_H<12:0> - 6A Replay Index.

DIGITAL RESTRICTED DISTRIBUTION

The lbox 1-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The priority of selection of the "next" index is as follows:

* The Exception, 4A, 5A, and 6A Indexes have the highest priority in the selection of a "next"
index. These indexes are selected by the assertion/de-assertion of I_TRP%SEL_EXCEPTION_PC_
A_H, I_TRP%SEL_EXC_EREPLAY_A H, I TRP%SEL_S6_REPLAY_A H, I TRP%SEL_BR_LREPLAY A H,
and I_TRP%TRAP_POSTED_A H. The trap logic ensures that only one of these indexes can be
selected each cycle. '

e L IBS%IB_STALL _A_H will force the ic_index to recirculate while asserted.

* I_FPR%FLOW_CHANGE_1A_H conditioned with I_IDX%ISTR_DATA_VALID_1A_H and NOT(I_IDX%FETCH_

BUBBLE) will cause selection of the predicted index.

¢ If none of the above conditions exist then the "next" index is selected by the sequencer to
either increment, recirculate, or return to the index which missed and wait for the fill.

The refill buffer index and the prefetch index are in sync with the ic_index when the ICache
accesses hit in the ICache or when the I-stream flow is re-directed.

See Figure 1-8 and Figure 1-9 for the muxing heirarchy for the instruction fetch index.

When fetching contiguous ICache blocks which hit in the cache, the I%J_IC_INDEX ZB_H is in-
cremented in 16 byte steps each cycle. (LE. bit 4 is incremented) The 1%J_IC_INDEX_ZB_H is
incremented on aligned octaword boundaries. (LE. bits (3:2) are always zero when the index is
sourced from the incrementer.)

When the Flow Prediction logic (I_FPR) encounters a valid I-stream flow change instruction, I_
FPR%FLOW_CHANGE_1A_H is asserted. This will force the mux for 1%J_IC_INDEX_ZB_H to select I_
FPR%PREDICTED_IDX_1A_H as the next index. The sequencer will assert I_IDX%FETCH_BUBBLE to
indicate to the other sections that a bubble is present. The rfb_index and pf_index are re-sync’ed
with the ic_index and fetching continues by looking into the ICache first.

When I_IBS%IB_STALL_1B_H asserts the I%J_IC_INDEX_ZB_H must be held. This is accomplished
by re-circulating the previous index. The ICache is responsible for holding the data to be stalled.
If the index that is stalled is index(N), the Icache will be holding data(N-1).

When the Trap logic (I_TRP) encounters a I-stream flow change the selection of the next index is
determined by I_TRP%SEL_EXCEPTION_PC_A H, I TRP%SEL_PC_7A_H, and I TRP%SEL_PC_5A_H as
described in the table below. The sequencer will assert I_IDX%FETCH_BUBBLE to indicate to the
other sections that a bubble is present.

1-8 The lbox DIGITAL RESTRICTED DISTRIBUTION

Figure 1-3: Fetch Index Mux Selects for Trap, Exception, Replay(4A,6A)

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

| sel_exc ereplay | sel br lreplay | sel_ exception | sel_sé_replay || next index {
| ¢ | | X | X || determined by fetch seq. | ** NOTE
sel_exc_
| 1 | | 0 | X |1 i_wpc%$replay idx_4a_h I sel_br !
guarente
| 1 ! | 1 | X || i_trp%exception_pc_a_h | to be m
. trap pot
l 0 i I X | 0 || i_wpc%replay_idx 4a_h | be assei
of the ¢

0

X

1

|l i_wpcs$replay idx 6a_h

| are asse¢

When there is an ICache miss the 19%J_IC_INDEX_ZB_H is returned to the index which missed. The
index is then held until the ICache is filled from the refill buffer. The fill may come in the next
cycle if the data is presently in the refill buffer or it will arrive sometime later depending on
where in the memeory system the data presently resides. When the ICache and IB are filled the
1%J_IC_INDEX_ZB_H can be incremented.

When there is an ICache miss, then the refill buffer hit signal is checked. If it indicates a refill
buffer hit, the data is provided by the refill buffer and written to the ICache and IB in the following
cycle. While accesses hit in the refill buffer data can be sent to the ICache and IB in consecutive
cycles. While hitting in the refill buffer the 1%J_IC_INDEX_ZB_H and 19%-J_RFB_RD_IDX_1B_H are no
longer in sync. The 1%J_RFB_RD_IDX_1B_H is ahead of the I%J_IC_INDEX_ZB_H inorder to continue
streaming data to the ICache and IB. After hitting in the refill buffer, the fetcher continues to
fetch instructions from the refill buffer until the access misses in the refill buffer.

Figure 1-4: IC_Index and RFB_Index on IC_Miss and RFB_Hit

| icindex | O} 1 1 2|1} 2] 31| 4} |

| rfb index | O | 1 | 2 | 3 | 4 | | | i ** Note **
X - Miss
| ic_hit | | | 01 X | D| D} | | D - Don’t Care
| rfbhit | | Dt 1] 2(3 1|41 |
| istr_data | | f0 1Dl 1) 21371 4]

Once the fetcher misses in the refill buffer after missing in the Icache or when there is a miss in
both the ICache and the refill buffer, the pre-fetcher attempts to make a request to the MBOX
to get the data from either the SCache, BCache, or memory sub-system. Conditions which would
prevent a request from being sent are if the number of outstanding requests is greater than 2, or
if the refill buffer entry you wish to use is pending or if you are in the shadow of a predicted pc
while in PALmode. If either of these conditions are true the request will not be sent until they
are no longer true. The ic_index and the rfb_index of the block that missed is held while the
request is being serviced.

DIGITAL RESTRICTED DISTRIBUTION The tbox 1-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The interface with the MBOX pertaining to the requesting of fill data consists of 3 signals/busses:
1%M_IREF_IDX_1B_H<6:5>, I%M_IREF_REQ 2B_H I%M_IREF_ADDR_2A_H<39:4>. At the time which the
IBOX sends 1%M_IREF _IDX_1B_H<6:5> it is not known whether or not the access hits in the IBOX
Translation Buffer (ITB). Therefore the protocall is that the IBOX sends I%M_IREF_IDX_1B_H<6:5>
indicating a request to 1 of the 4 Miss Address File (MAF) entries in the MBOX. After it is
determined whether you hit in the ITB in stage 2A, the IBOX will conditionally send I1%M_IREF_
REQ 2B _H in stage 2B if the access hit in the ITB. The physical address (I%M _IREF_ADDR_2A
H<39:4> is read from the ITB in stage 2A. If the access is not to virtual address space than there

will be no translation of the address and the I%M_IREF REQ 2B_H will be sent without regard to
the ITB.

Figure 1-5: Ibox requests to MBOX

| A | B | A | B | A I B |
i [PR (R R R
i%m_iref idx 1b h [I X |_ddx |} X_ | X |
| I I I I i !
ism_iref req 2b h i | [I/ N <--- If hit in ITB.
O P {
i%m_iref addr 2a_h —x | X__ | addr_|_X__| |

The pre-fetcher will then send requests to pre-fetch the next blocks of instructions. The pre-
fetcher can have a maximum of 3 requests outstanding at any time. this is due to the fact that
the refill buffer is direct mapped and the pre-fetcher can not attempt to pre-fetch a block for a
refill buffer entry which has been requested but has not yet been returned. Therefore the pre-
fetcher monitors the ic_index and ensures that the pf_index does not step on the entries which
the fetcher is waiting for.

One cycle before the fill data is driven to the ICache on S%I_IFB_DATA 9B_H<127:0>, the CBOX
sends C%I_IFB_DATA _VALID_8A H indicating that valid fill data will coming. Along with C%I_IFB_
DATA_VALID_8B_H the CBOX sends a 3 bit fill index (C%I_IFB_INDEX_8B_H<2:0>) to indicate which
of a possible 8 octawords is being sent and C%I_IFB_LAST FILL,_8B_H to indicate if this fill is the
last of the two octawords associated with the C%I_IFB_INDEX 8B_H<2:0>. This valid signal is used
to provide the write strobe to the Refill Buffer Data Latches as well as set the valid bit for the
refill buffer entry. All fills are written into the refill buffer. If the fill is the octaword which was
requested (the demand fetch data) the fill data is written thru the refill buffer and directly into
the ICache and IB in parallel. At any point which the data that is being filled is not the demand
fetch data, the fill data is written only into the Refill Buffer. The ICache index and Refill Buffer
Index are both incremented after the demand fetch data is returned. If the incremented index
hits in the Refill Buffer the data is sent to the IB in the next cycle. If the index does not hit in
either the ICache or the Refill Buffer, the fetcher recirculates the demand index until the next
octaword of fill data is returned.

1-10 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-6: Signal Protocall for Fills

| 88 | 9A | 9B | 10A | 10B |
c%i_ifb data_valid 8b_h I[__/——_II II__: [I Il
c%i_ifb_index 8b_h : :x:: :ﬁz: —x l(- : - :
c%i ifb last fill 8b h I| /_|| :‘“_: : II
s%i_ifb data_9b h : : ll X :_data : X ||
Figure 1-7: IFB Fills with RFB Hits
I I X Y | 'z | o0 | 1 | 2 | 3 |
| /A B|A B|IA B|IA B|A BJ]A BJ|A B|
| ic_index | I ' 2 | 0 | 1 2 3
| rfb_index } 01 0| 1 2 | 3] | I ** Note **
X - Miss
I ichit | X. [X. 1X. [X. (X. |X. 1%X. | D - Don’t Care
| rfb hit | X | X | X fo. |1 |2 |3 I
| ifb_valid | 1 | o | 2 |3 ! I I |
| rfb valid | I) |1 | 2 |3 | !
| ifb data | i 1 0 | 2 | 3 | |
| istr data | . | . | . | . 0| .1 . 2 .3

In order to try to prevent prefetching data which is already in the ICache, an effort will be made
to to look in the ICache while waiting for return data to see if there is a hit. If there is a hit,
prefetching will stop, the indexes will be re-sync’ed and accesses will be made to the ICache.
Outstanding prefetches are required to complete and will be written into the refill buffer. If there
is not a hit in the ICache prefetching will continue. The only time that the fetcher will be looking
at ICache hit is when the sequencer is fetching out of the ICache or when the fetcher is waiting
for data to be returned.

When a condition which alters the flow of contiguous block accesses occurs each of the indexes are
re-sync’ed to the target index and fetching begins by looking into the ICache first. Qutstanding
requests will complete and will be written into the refill buffer.

When the prefetcher is stalled due to the fact that there are 3 outstanding fill requests, the

next request can not be made until both octawords associated with a previous request have been
returned.

ICache fills and their associated tags are not dependent upon parity checks. The parity informa-
tion is stored and a trap is taken later in the pipe.

DIGITAL RESTRICTED DISTRIBUTION The Ibox 1-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.22.2 Prefetch Addressing

The Prefetch Index (pf_index) is calculated in S1B. This is a stage later than the icache fetch
and refill buffer indexes. The pf_index stays in sync with the ic_index until there is an ICache
miss. If there is an ICache miss and a refill buffer hit, the pf_index remains in sync with the
rfb_index. At the point which there is a refill buffer miss after an ICache miss, the pf_index

begins to increment independently. The pf_index increments in 32 byte steps while in prefetch
mode. (L.E. increment bit 5)

The prefetcher is the source for requests to the MBOX. Accesses which miss in both the ICache
and refill buffer are requested to be filled from either the SCache, BCache, or memory sub-system.
The MBOX permits no more than 3 outstanding requests at a time. The pf_index is held once
the maximum number of outstanding requests have been sent. Once both octawords of a request
have been returned, another request can be made and the pf_index is incremented. Requests
can not be made for indexes corresponding to refill buffer entries which are pending due to a
previous request. The prefetcher must wait for all 32 bytes cooresponding to the pending entry
to be returned before the new request can be made.

The pf_index I_IDX%IREF_IDX_1B_H<12:4> is merged with the upper bits of the translated PC (1_

ITB%PA_1B_H<42:13>) to form the full physical address to be sent to the MBOX for memory requests.
(1%IREF_ADDR_2A_H<42:4>)

The pf_index is re-sync’ed with the ic_index on a change of the instruction flow.

The prefetcher does not prefetch across page boundaries.

1.2.2.3 I-Cache Hit Logic

The ICache tags and refill buffer tags are looked up and compared to the PC in parallel. If there
is an ICache hit, the ICache index is incremented and fetching continues. The ICache tags are
available late in SOB. In the remaining SOB phase the bit-by-bit XOR is calculated, comparing the
ICache tag to the PC. The ASN and ASM for the entry are contained in the tag, and is compared
to the ASN of the process. In early S1A, the results of all the individual compares is determined,
the ASN compare being conditioned by the ASM bit of the entry not being set. Late in S1A the

signal I_HIT%IC_HIT_1A H is valid. The ic_hit signal can be forced deasserted or asserted either
thru IPR control or as necessary during normal operation.

In order to more accurately store the valid bits for each block, if the tag of an access matches but
the valid bit is not set, the tow valid bits of the entry are copied into the refill buffer tag so that
when the data, tag, and valid bits are written into the ICache the valid bit cooresponding to the
"other" half of the block will be preserved.

During the interval where the instruction fetcher is waiting for data to be returned, the ICache
Tag is checked and if the index hits, prefetching is suspended.

1-12 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.2.4 Refill Buffer Hit Logic

The Refill Buffer Tags are available late in SOB. In the remaining S0B phase the bit-by-bit XOR
is calculated, comparing the Refill Buffer Tag to the PC. The ASN and ASM for the entry are
contained in the tag, and is compared to the ASN of the process. In early S1A, the results of all
the individual compares is determined, the ASN compare being conditioned by the ASM bit of the
entry not being set. Late in S1A the signal I HIT%RFB_HIT_1A_H is valid. The rfb_hit signal can
be forced deasserted or asserted either thru IPR control or as necessary during normal operation.

The Refill Buffer Tag is written in the S2A following a refill buffer miss which requires a request
to be made for a fill from the MBOX. The refill buffer tag section contains two valid bits associated
with each of the four tag entries. In the case of an ICache miss where the ICache tag matches
but is invalid the valid bits are copied from the ICache and are set as each of the two 16 byte
blocks are returned. In the case where the ICache tag does not match, both valid bits are cleared
and are then set as each of the two 16 byte blocks are returned.

The Refill Buffer Hit logic is used to identify indexes which were previously requested but have
not yet been returned. Short forward branches in blocks which miss in the cache are an example
of this. In these cases, I HIT%RFB_TAG_MAT 1A_H is asserted and a second request is not made.

Each of the four refill buffer entries has a pending bit associated with it. The pending bit is set
when the request is sent to the MBOX. The pending bit cleared when all 32 bytes associated with
the particular refill buffer entry have been returned. No new requests can be made for an index
which is mapped to a refill buffer entry which is pending.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-13

xoqi 8yl ¢

NOLLNGIYL1SIA a3101-d1S3Y 1viinia

IDX_MUX

zB

0A

0B 1A

1IDK_FIGRNG_INDEX ZA HaVEo

LEPRWAAEDICTED JOX A H AR

1IOX_FICKRERIRINDEX OA_Ho124s

| JPRWPREDICTED DX A KRS
LJDX MXNNTET_IGK AN 24>
1JOX_ OIS (DX A HA P>

1IBX_FICHAILL INDEX1A_HA24>

1IDX_MIDIRAEGIA_IDX DA HARA

LIVPONAESTART.jOX_SA_H120n

|JOX MXNWTRP JOX_A_HAL0

LWRCKAEPLAY_JOX_TA H<I240>

L TRPRAEPLAY PO_TA HA D >

LTAPRENCERTION_PS.AHARD

|_TAPRBEL EXCEATION P AM

IFPRWFLON_CHANDE AN

T LIOXWFETCH_BURBLEA)

| TABGB STALLAT

0 _DATA_VALID_IA T
*NOTE™
| TRAPRIEL PG,
ARE MUTUALLY EXCUBVE.
LTAPRREL PC AN

_BA.H AND §_TRPKSEL_FC_ T

YY

LTRREL PE M

1_40_RUSKRAING_INOEX ZA He120>

1JOX MKW JOX A He120>

LIOX_FRCNAYE 5, FET_M N

LI_FRONAPD_MOOE PAH
LHTRAFS AT IAN
|_HTHE T AN
1_IDK_FIOGVAT_PO0_3AH =)
LIGH FIINAR_REL ING_BAN

1_IOK_FIOMFETEH.I_3AH

s
:@—J [P——

1_I0%_FETIIFB_DAT_VALIDA_H
1IO_FOPRIFAION AT A
PLLASTLAN

1IOX SUCKAECIAINDEX DA Hat s

LD JOONAR_pEL FETA N
DX JOKNAD_SEL NG A

8- ainbi4y

l LIOX_IORALL 10X 08 Het 24 I JORMNNWAILL JOX.IA_Hei2 AS

aman

Th Mar 12213415 1952

XNA XBpuj ayded|

2661 Areniqay ‘0’0 UOISIAYY ‘UoredyIoads [ewsdtuy diq) NdD SAT

NOLLNAIH1SIa 4310141534 1v110id

Si—1 Xoqj 8yl

s e zB 0A 08 1A 1B 2A

| WRDRAERAY_ 10N, MA_Hei240>
LTAPYAEALAY PC_ M H A D
| TRPMENGERTRN_PC A HAZ 200

’ [] y
10X A2 AL NDEXAZS. FETCH SEQUENCER
LIDXWAECIA_INDEK_JA Het 20> ,\j £ EN
|IOX¥ALL_INDEX_IA_He122> | Bl b‘
1 LR, a3 s
1 _._...%__.——] [
8 A
A B
+ LIDXNAC, COUT, 24 H IC DATA PREFETCH SEQUENCER
110X INDENe12 2>
1) EMM‘O
1IDXOWC INDE X128 - TOREE 1C_ 8 ot
! o E=rra— TN
A] wen
ATemMIMAY IC TAG SPUARMBH
PRRADNA KB 0 AN B N
BIENTRES i TAQ, L ALY
7 | FRCWC Bt | —
A
J JDXRAFET INCEX_DLY_08<124> i
8| | owwrenr woexazee
LIDK%AFAT_INDEX«1240 ») an |]
ocour ! FORCERFANSE | graHT
+ Y PORCEATONT___1108E |nen wr AN A
1IDXRRCOUTBH ” :
1 —— wm RFBDATA | ' 1AFEIAFA DATA_TA Hel 2705
I_HITRADN_ B Ha) Op
MWNFILID. EACR0s
L LY Y Yo
A , L0 1A H
it B o | e
ﬁ‘ STATUS | W
1_IDXWPF_INDEXe12 4> A 8
[} 8 Malile.

1 IDXYPCOUT B W

By
1 IDX%PF_INDEX12 4o _D_

(LD pion,
FPE_1BoAt S

LIOXWPIO_COUT 28 H cauT, A
A 8 et
LWPOXFAC_08 Hod2 19 FPO_18aAZ135 Ton Mar10 104542 1482
. A ° PUREF_FA_2A_ Hatd 4;
| EPOWFAE 0BcdZ13> [11:) e Lt

6—1 ainbi4

91607 yolajaid/yoled

2661 Axrenaqay ‘0’0 UOISIAYY ‘uorjeoyroadg Tewraluy diy) NdD SAA

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-10: IBOX FETCHER SEQUENCER

A

IBAwNG
Tue Mar 10 20:55:28 1992

1-16 The Ibox DIGITAL RESTRICTED DISTRIBUTION

| HIT

NOILLNAGIHLSIa a310141S34 1viivia

Zl—-1 Xoqjsyl

0A oB 1A
| IPRWFORCE_IC_MISS_B_H A
|_IPR%FORCE_IC_HIT 8 H
Ly, [HT_ICHFORCE_IC_HIT_B H
|_FPR%TAGM_08_H P
JM%I_IC_PA_0B_H
F41_IC_VAL_08_H
ICHIT
!, IC_AGM._D8_H LoGIC IC_HT_1A H
J%1_IC_ABN_B_HcB0> JHI_IC_ABN_B_HeBi0> wHm
1_IPR%ASN_B_H<8:0> I_IPR%ASN_B_HcB:0> [W"—
JKI_IC_TAG_0B_Hed2:13> J%I_IC_TAG_08_He42:13>
|_WPC%FPC_0B_H<42:1% |_FPC%FPC_DB<4213> J XoR|
J%I_C_PA_B_H
1_LFPC%FRC_0B<0> |_FPC%FPC_0B<D> | "‘”‘l—
J%I_IC_ASN B_HeB:0>
|_IPR%ASN_B_He8:0> | XOR s
N oK A 1A
JnC PABH o o PSNOKWAN
i_FPC%FPC_08<0> | XA
LIDX%RFB_INDEX<12:7> PhL_IC_VAL_DB H
1IBS%IB STALL A H
J%{_IC_PA B H
|_IDX%RFB_INDEX_ZB_HeB:5> 85 | o
LIDX%IREF_INDEX_1B_He12:5 . LFPOWFFC 0B<0> A
| |_FPCRFPC_0Bc4213>
w A |_(DX%AFB_INDEX<127>
L IPA%ASM AN A B |_HIT_RBTH%RFY_TAG_08_He427>
|_IPR%ASN_A_H<&0>
RFB TAG L IPRYASN_B_He80> RFB HIT
LOGIC RFE_HT_1AH
4 ENTRIES I HIT_RBTHASN_8_H<8:0>
()
| WBCKFRC_18_Hed2:13> < 427> (LHT_RET) RFB_MAT_1AH
1_HIT_RBTHASM_B_H
|_IPR%FORCE_RFB_MISS_B_H
|_IPR%FORCE_RFB_HIT_B_H
{_HIT%FILL_DATA VALID
AFB STATUS L_HIT%AFB_VALID
{_HIT%FILL_INDEX VALID -
|_HIT%LAST_FILL I_HIT%RFB_PENDING
rars
IC TAG
PARITY CHK .
Thu Mar 1221:38:52 1692

L=} ainbi4

91607 LiH xo4I

G661 Arenaqaq ‘970 wOISIASY ‘Uuonjeoydads rewxjuy drg) NdD SAT

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

123 ITB

The Ibox contains a 64 entry fully associative translation buffer (ITB). The ITB contains in-
struction stream address translations and protection information for the referenced pages. The
ITB supports the granularity hint option to map, under software control, either 1, 8, 64, or 512
physically/virtually contiguous 8 Kbyte pages with a single ITB entry, as defined by the ALPHA
SRM. The ITB is maintained by PALcode, and the ITB can be updated only while in PALmode.
PALcode is responsible for ensuring that a particular virtual address is never mapped to more
than one ITB entry. The ITB is accessed using a not-last-used (NLU) algorithm, when written
and when under IPR access control. The PC is not translated and protection is not checked while
in PALmode.

The ITB supports the translation extention referred to as a super page. The mappings for su-
perpages provide virtual to physical address translation for two specific regions of the virtual
address space. The first superpage mapping is defined by the virtual address (PC) bits [42:41] =
10 (BIN). In this mode, the virtual address bits [39:2] are directly mapped to the physical address
bits [39:2]. The second superpage mapping is defined by the virtual address (PC) bits [42:30] =
1FFE (HEX). In this mode, the physical address bits [39:31] = 0 and the virtual address bits
[30:2] are directly mapped to the physical address bits [30:2]. Superpage translation is allowed
only in kernel mode. If a superpage translation is attempted while not in kernel mode, an access
violation fault will occur. This is accomplished by forcing the KRE bit to "1" and forcing the URE,
SRE, and ERE bits to "0" on a superpage translation. Supaer page translation is performed only
if the super page enable bit (SPE) is set in the ICSR IPR. See Section 1.2.10.17.

Figure 1-12: Superpage

Superpage Address Space Mapping

Vintual Address Space

VA<42:30> = 1FFE (hex)

PA39:31> =0

T
VA<42:41>=10{bin)
PA<39:2> = VA<39:2>
I

42:40>=000 VA<42:40>=001 VA<42:40>=010 VA<42:40>=011 VA<42:40>=100 VA<42:40>=101 VA<42:40>=110 VA<42:40>=111

All 64 enties of the ITB supprot each of the four page size options defined by the granularity hint
(GH) bits, whioch are logically contained in the PTE. The two GH bits are decoded at the time
when the PTE is written. The decoded GH bits are then used in the writting of the TAG portion
of the entry to selectively determine the size of the entries page and therfore define which bits
of the virtual address are compared for translation and which bits of the address are translated.
The GH bits anable the comparision and translation of bits [21:13] of the virtual address.

1-18 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-2: Granularity Hint Bit Mapping
eu<l> ¢eE<0> Page Size Physical Addressof Page Address within Page

0 0 8K bytes PA<39:13> PA<12:0>
0 1 64K bytes Pa<39:16> PA<15:0>
1 0 512K bytes ra<39:19> Pa<18:0>
1 1 4096Kbytes Pa<39:22> PA<21:0>

The ITB supports a seven bit Address Space Number (ASN) and single bit Address Space Match
(ASM) for address comparisons. The ASN of the tag entry is compared to the ASN of the current
process only if the ASM bit of the entry is not set. If the ASM bit of the entry is set, the ITB
entry will match all ASN’s. The comparision of the process ASN and the ASN of the entries is
logically performed one cycle before the address comparision. This is done to reduce the load on
the address match wire. The ASM of the entry is stored with the TAG portion of the entry, while
the ASM is logically stored as part of the PTE.

There is one valid bit associated with each ITB entry and is determined by the associated MTPR
instructions. (TBIAP,TBIA,TBIS,TBISI)

The ITB supports writes to the architectually defined TBIAP register by means of PALcode.
PALcode should perform a MTPR to the ITB_IASM IPR. This write will have the effect of inval-
idating all ITB entries which the ASM bit of the PTE is not set.

The ITB supports writes to the architectually defined TBIA register by means of PALcode.
PALcode should perform a MTPR to the ITB_ZAP IPR. This write will have the effect of in-
validating all ITB entries, and resetting the NLU pointer to its initial state.

The ITB supports writes to the architectually defined TBIS register by means of PALcode.
PALcode should perform a MTPR to the ITB_IS IPR. PALcode must ensure that the VA to be
invalidated is present on E%PC_3B_H<63:0>.

The ITB supports writes to the architectually defined TBISI register by means of PALcode.
PALcode should perform a MTPR to the ITB_IS IPR. PALcode must ensure that the VA to be
invalidated is present on E%PC_3B_H<63:0>.

When in non-PALmode, the ITB is looked up every cycle in stage 1 of the pipe. The ITB reference
is performed on I_WPC%FPC_0B_H<42:13> (the virtual PC in non-PALmode), which must be set-up
to the 1A edge of CLK. During the 1A phase the virtual address of the reference is compared
to all the cached virtual addresses. If the Page Table Entry (PTE) associated with the virtual
address is in the ITB, then the Page Frame Number (PFN) of the PTE is driven out of the ITB in
1B on I_ITB%PA_1B_H<42:13>. The lower bits of the address (PC), I IDX%IREF_IDX_1B_H<12:4>, are
not translated and are merged with the translated address to make up the full physical address.
The physical address is latched in 1A and driven to the MBOX as I%IREF_ADDR_2A H<42:4>. The
protection bits for the page associated with the PTE are checked with the process privileges
during stage 2 and produce I_ITB%ACC_VIO_2A_H. I_ITB%ITB_HIT_2A_H is determined during stage
2 as well.

Address translation is not performed if the address is physical. This is determined by bit [0] of
the address; if set, the address is physical (I.LE. PAL-mode) and no translation is performed. Bits
[42:40] are not used.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The ITB supports diagnostic reads and writes of the PTE portion of the ITB entries only in
PALmode. The entry read or written is determined by the NLU pointer.

1-20 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-13: ITB Block

HNSYRuTT

Mon Dec 9 19:12:41 1991

|TR_PTI

TBTAG CAM
COMPARE INA
WARITEING

<EELPH VIV W OVARULLBL “OPH B0

ITATAG TEMP REGISTER
WATE (FLY

B0 DRI

HOBO DO

| JTA_CTLYLAT_ITAG_TEMP_B_H

1ITB_TAGYAG_SZE,_ 18 HeZ Ox]

1ITB_TAGWSUPR_FO_MAT YA H.

LITRIANTAG_SEL_Hei30:
1TE_TAGYMATCH IA_He83 05

HVHOI TTEVEKI U BT
HY A G

HV 314 DY T B
LLELT TR Ty

HE WSV WANMETLO AL
HE BN VZWUS AL

TV W aweRIoTaL

WY N E%TLS8LT

TV NT IDWRRSIE%ILOBU T EE—
W ST IVEIONL0
HE ST N AL

L_ITB%

(T8 INTERFACE LOGIC
READWRITE STROBES
NLU POINTER

VALD BT

IT8 CONTROL LOGIC

ITB BLOCK DIAGRAM

1 JTRIFL%SUPERPAGE, 8EL 18H

1J78_FTEYABM_BT_LAS !
1JTB_JFLWTE,_SEL_18_HesS:0n

l 1JTB_TAG%AQ_BZE_TR_Hed 0>

HBI ROMIALBLTY
HRBU AL B
HBITSER3L BT
HBI M3 B

HVZOW20vRASY BT

T8 FTE RAM

READIN B
WRITEINB

T80 DRI 1
HB0 20T

<5 VT VAVO WA LRI B “eaeroNna

EOPH VAV MM LML BT

<SLOPT Y UMV
SSLOPH 81 NI VU

READ (PA LATGH)
FEAD (DIAG)
WRITE (FILL)

<EOPINELTON AUMRENT|

maeTE

H2IPH B0 NFON et X0 XEPH VW RN

WV LW BN BT

<P 2N 8O XION IR XA

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.24 Branch History Table

Conditional Branches can alter the normal sequential flow of program execution. In EV-5, when
the instructions fetched include Conditional Branches, the condition determining the outcome of
these branches is not known until atleast S4. Rather than waiting till S4 to determine the outcome
of the branch and then resuming the i-stream fetch, EV-5 predicts the outcome of the branch.
If the branch is predicted flow-through, it continues fetching instructions from the sequential
stream. If the branch is predicted taken, it takes a cycle of penalty to determine the branch
target and then starts fetching instructions from the target address.

The branch prediction scheme employed by EV-5 is based on maintaining a 2Kx2 bit Branch
History Table (BHT).

The Branch History Table is accessed using the fetch index 1%J_BHT _IDX_ZB_H<12:4>. When the i-
stream fetcher of the IBOX is fetching a subblock of 4 instructions from the ICache, corresponding
8-bit branch history J%I_BR_HIST 0B_H<7:0> is fetched from the BHT and supplied to the IBOX
directly. However, if the fetcher is fetching the instructions from the refill buffer, the index
supplied to the BHT I%J_BHT_IDX_ZB_H is a stage ahead relative to the index supplied to the Refill
Buffer. Hence, to align the fetched history with the fetched instructions, the history fetched from
the BHT is siloed for one stage and then supplied to the IBOX. History bits driven to the ibox
are zeroed if the BHT is disabled or the IBOX fetcher is in PAL mode.

Of the 2 bits per instruction, bit<1> of the history is used as a prediction hint by the Branch
Predictor logic. If bit<1> is set, the conditional branch is predicted TAKEN and if bit<1> is clear,
it is predicted NOT TAKEN. Bit<0> of the history is used to determine the new value of bit<1>
when the history is updated.

The 8-bit branch history J%I BR_HIST 0B_H<7:0> fetched from the BHT is siloed by the IBOX. As
the instructions flow in the pipe, associated branch history tracks their flow. The siloed history
is later used for history updates as explained below. When a conditional branch is issued to
the EBOX(or FBOX), the branch logic inside the EBOX(or FBOX) checks the branch condition
and determines whether it is taken or not. Based on taken/not_taken feedback from the EBOX(or
FBOX), branch history for this conditional branch gets updated and the updated history is written
back into BHT. These Updates to the BHT are controlled by History UPdate logic (HUP).

1.24.1 HUP Logic

In S4 the EBOX(or FBOX) examines the branch condition and determines branch outcome. The
new branch history corresponding to this instruction is calculated according to 2-bit Counter
scheme:

case (branch_taken):
if (branch_history<l:0> != 0x3) new_branch_history<l:0> = branch_history<1:0> + 1;
case (branch not_taken):
if (branch_history<l:0> != 0x0) new branch history<l:0> = branch_history<l:0> - 1;
The BHT supports updates only on a subblock basis, i.e. 8 bits at a time. Hence, the 2-bit
new_branch_history is merged with 6-bit siloed history for the other 3 instructions in the same

subblock. The resulting 8-bit branch history 1%J_BHT NEW_sB_H<7:0> is written into the Branch
History Table in S6.

1-22 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The BHT supports one fetch operation and one update operation every cycle. If the update is
occuring to the same location as the one being fetched, i.e. the update index 1%J_HUP_IDX_5B_H
and the fetch index I%J_BHT_IDX_ZB_H match and I1%J_HUP_EN_5B_H is active, the updated history
I1%J_BHT_NEW_5B_H<7:0> is bypassed to the IBOX as the fetched history J%I_BR_HIST_0B_H<7:0>.

History updates are not performed in the PAL mode. However, to allow the initialization of BHT
during the testing, history updates are performed if BHT is disabled. Note that the BHT is not
initialized on ICache fills.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-23

Branch History Logi

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-14

<o 8 n ﬁ v <0: ?:-mnu._.muuo..cm*onmu_

y y

avad

181 gvay

1H'8€73Z3344 €S

H 1vis 2s
ogl

H
H

<0:Z>H782 MIN LSIH HE8%I| <0:L>HTEOTLSIH UE%M

<> oy
H V¥~ 10103dd ™ HE%! I|._.w_I|Am—m-Mmm_..=%vv_
X0g4/3 oL 0d3 Ol

H7V 03180d dvHl

gy [F VP OBNSSI NTH 4%0d3"|

—
T HVY?TQ3NSSITNYE 3%0d3Ti

H8%3

H VS Nadvi HE8%d

H VS NaXvl

%dNHI
WVHDVIAQ Y0078 dNH

DIGITAL RESTRICTED DISTRIBUTION

1-24 The Ibox

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.5 |-Stream Flow Prediction

Control instructions in the i-stream can alter the sequential fetch path that the i-stream fetcher
assumes as the default. EV-5 includes Flow Prediction logic to decode such control flow instruc-
tions in the i-stream, predict whether they would change the flow or not and if they are predicted
to change the flow, generate the target address from which the fetch should resume.

The Flow Prediction logic can be divided into 3 subsections:

1. Branch Predictor Logic, which decodes the i-stream, detects the change of flow and controls
the target calculations.

2. Target Calculation Logic, which determines the branch target address.

3. Return Prediction Stack, which stores subroutine return addresses.

1.25.1 Branch Predictor
Branch Predictor logic serves three functions:

1. To detect the change in i-stream flow as a result of branches, jumps, subroutine calls and
returns.

2. To control the return prediction stack as result of detected subroutine calls and returns.
3. To control the calculation of target address from which i-stream fetch should be restarted.

In S1 the IB gets a subblock containing upto 4 instructions from the ICache or the Refill Buffer.
In the same stage, the Branch Predictor gets associated predecode, displacement and branch
history information. In addition, Branch Predictor also gets current index I_IDX%CURRENT_IDX_
0B_H<12:2> so that it can determine which of the 4 instructions being loaded into the IB are
indeed in the i-stream and therefore, valid.

Starting sequentially from the first valid instruction, the Branch Predictor looks for uncondi-
tional flow-change instructions (CALL_PAL, HW_REI, JMP/JSR/RET/JSR_COROUTINE (Opcode
1A), BR, BSR) or conditional flow change instructions (Bxx: Integer conditional Branches,
FBxx:Floating conditional Branches) whose branch history information flags "Predict Taken’. If
any such instruction is detected in the fetched subblock, it signals a flow change from the se-
quential stream. The instructions sequentially after this instruction are not in the i-stream and
are therefore, invalid.

If the instruction that caused the flow change is CALL_PAL, BSR, JSR or JSR_COROUTINE,
it generates a stack PUSH operation, pushing the return address (PC + 1) onto the Return
Prediction Stack.

If that instruction is a HW_REI, RET or JSR_COROUTINE, it generates a stack POP operation,
popping the return address out of the Return Prediction Stack.

Branch Predictor generates all the necessary control signals for calculating the correct target
address.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-25

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.25.2 Target Calculation

The target address TPC<42:0> from which the fetch should resume is determined according to
the type of the instruction causing the i-stream flow change. The following algorithm describes
in detail how the target address is determined. In the implementation, the index part of the
target address (TPC<12:0>), called I_FPR%PREDICTED_IDX_1A_H<12:0> is calculated in S1-A and
is jammed into the ICache Index Mux in S1-B to restart the fetch in the next cycle. In this cycle,

which is SO of the target, the remaining part of the target address (TPC<42:13>) is calculated
and is called I_WPC_FPC%FPC_0B_H<42:13>.

switch (Instruction_type) {

case CALL_PAL:

TPC<0> =1; /* Set the PAL mode bit */

TPC<5:1> = 0;

TPC<11:6> = INSTR<5:0>; /* This encoding allows 64 CALL PAL functions, each with
a code region size of 64 bytes */

TPC<12> = INSTR<7>; /* Previleged instruction encoding */

TPC<13> = 13

TPC<42:14> = PAL_BASE_IPR<42:14> /* Since CALL_PAL instr uses PAL_BASE_IPR at the fetch

end, there should appropriate number of NOPs between
MTPR to PAL_BASE_ IPR and next CALL_PAL */

case RET, JSR_COROUTINE:

TPC<12:0>
TPC<42:13>

TOP_OF_STACK<12:0> /* POP the return prediction stack */
IC_TAG<42:13> /* Predict that ICache Tag = Upper bits of the target PC.
PC comparison is done in S5 to verify this */

case JMP, JSR:

TPC<O> = Current_PC<0> /* keep the same mode */
TPC<1> = 0;

/* Use Displacement Hints */
TPC<12:2> = Current_PC<12:2> + (INSTR<10:0> << 2) + 1;
TPC<42:13> = IC TAG<42:13> /* ICache Tag = Upper BC */

case BSR, BR, Bxx, FBxx:

TPC<0> = Current_PC<0> /* keep the same mode */
TPC<1> = 0;
TPC<12:2> = Current PC<42:2> + (SEXT(INSTR<20:0>) << 2) + 1;

}

Note: 1) PC<0> = PAL mode.
2) PC<1> = 0.
3) Current_PC<42:0> = PC of the instruction causing the flow change.

As shown in the EV-5 waterfall chart, a change of i-stream flow leads to one bubble in the fetch

sequencing. This bubble gets pressed out in the IB stage or the SLOT stage if there is SLOT or
ISSUE stall for at least one cycle.

The block diagram of the Branch Predictor along with some details of the target caleculations is
given below.

1-26 The lbox DIGITAL RESTRICTED DISTRIBUTION

NOILNEIY1SId a310iH1S3YH TvLIOIa

12—} Xxoqj eyl

I_IBC%IB_FULL_B_H =j>_ A
|_FCH%CURRENT_PC_0B_H<«3:2>

J%PREENCODE_OB_H<15:05p=y.

BRANCH_PREDICTOR

GL—L ainbiy

J%BR_HIST_0B_H<7,5,3,1>p,

|_BPR%BR_TAKEN_1A}H

—r
I_BPR%TAG_TO_UPC_}

_—-ﬂ

I >

ioloipaid youeig

|_BPR%CALL_PAL_1A]
——

|_BPR%STACK_POP_1
=" R0 s

>

|_BPR%STACK PUSH_|
—>
|_BPR%STACK PUSH|IDKC 1A_H<3:2>
—
I_BPR%TPC_MUX_SEL| 1

Uiyl

I_BPR%FLOW=>CHNG_ A_H<3:0>]

J%lC_DATA_OB_H<116:96.84:64.52:32,20:0>E :

C,<c12:2>

BPR BLO

BPR%Di

N\ ux L

o
VALID<3:0>
1A
1
1A
<15:14>
1A
TARGET_CALCULATIONS
<20:0> 1aLk20:0> _<12:2> ,\l‘\
[AY
L +
00
1
P 1A <~
L +
01
Z |1A 1
| Y]
Z |1A
3:2> [___I "

]
:

PRED_IDX_1A_H<12:2

IR y4

266 ATenaqog ‘0’0 UQISTAYY ‘WOTIBOYIdadS rewaajuy diq) NdD SAH

BPR%T
o

STK%TI

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.5.3 Return Prediction Stack

EV-5 includes a Return Prediction Stack to predict the return address on a return from subroutine.
The EV-5 Return Prediction Stack is 12 entries deep and has pointer-repair logic to maintain its
correctness in the presence of exceptions (Figure 1-17). The EV-5 implementation of the stack
provides the index bits (PC<12:2>) and the PAL-mode bit (PC<0>).

Alpha archiecture provides four instructions to make a subroutine call: BSR, JSR, JSR_
COROUTINE and CALL_PAL. Return from a subroutine is made through the instructions RET,
JSR_COROUTINE or HW_REIL The return location is the PC of the instruction after the calling
instruction.

When an exception occurs, EV-5 makes a call to a PAL subroutine requesting the service of a
priviledged exception handler. The return from this PAL service routine is made through a HW_
REI instruction.The return location is the PC of the instruction that caused the exception.

The Branch Predictor detects subroutine call and return instructions in the i-stream in S1. On
detection of a subroutine call instruction, the Branch Predictor generates a stack PUSH operation
and pushes longword-incremented PC<12:0> onto the stack. In the implementation, the stack
pointer is updated in S1, but the return address is written to the stack in S2. On detection of
a return, branch predictor generates a stack POP operation and captures the current top of the
stack as the return address.

Note that the above Branch Predictor-intiated stack operations are actually speculative. The
instructions prior to the one generating a PUSH or POP can be mispredicted, replayed or trapped.
If an instruction is mispredicted (or replayed or trapped), all the PUSHes and POPs that occured
after the mispredicted instruction have to be undone. EV-5 Return Prediction Stack has the
pointer-repair logic for this purpose.

The pointer-repair logic includes two additional stack pointers, called the 5B pointer and the 7B
pointer to ’repair’ the stack after an S5 exception and an S7 exception respectively. 5B stack
pointer is updated when an instruction reaches S5 successfully. Hence, the 5B pointer represents
the correct state that the stack should be restored to if an S5 exception occurs. Similary, the
7B stack pointer is updated when an instruction reaches S7 successfully. Hence, 7B pointer
represents the correct state that the stack should be restored to if an S7 exception occurs.

On an S5 exception, therefore, the 5B pointer is copied back to 1B pointer and that constitutes
the 5B stack repair. Similarly, on an S7 exception, the 7B pointer is copied back to 1B and 5B
pointers and that constitutes the 7B stack repair.

Certain exceptions (ITB miss exception in 5B, any PAL service routine exception in 7B) require
that a return address be also pushed on to the prediction stack. If so, the pointers are updated
to reflect the new PUSH at the time of the stack repair, but the return address is written to the
top of the stack in the next cycle.

The stack pointers are implemented to form circular ring. Hence, the stack wrapps up on overflow
or underflow.

The waterfall chart shown below illustrates the operation of the Return Prediction Stack for a
simple case of JSR followed by a RET(Figure 1-16).

1-28 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-16: Return Stack Operation

S0 s1 s2 s3 s4 S5 S6 s7
| | ! | | | | | |
JSR | N 1.2 .31 4.6 7. I . 8| . | .9
| | ! | I] | |
X | | | | | | | |
| | | [| | !
RET | | 5 | | | | |

1. Branch Predictor detects JSR and generates a PUSH.

2. Stack Pointer 1B advances to new top of the stack.

3. Return Address is written at new top of the stack.

4. The pushed return address appears at the top of the stack.

5. Branch Predictor detects RET and generates a POP.

6. The return address appearing at the top of the stack is popped.

7. JSR is issued.

8. Stack Pointer 5B advances to respond to the issued JSR.

9. Stack Pointer 7B advances to respond to the successfully completed JSR.

DIGITAL RESTRICTED DISTRIBUTION ’ The Ibox 1-29

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1—17: Return Prediction Stack

REPAIRABLE STACK

FPR%

H-v1~aIvANI “HoL3s EOD——
H V1L dod ovis C—

HV I Hsnd Movls ———
H-vraanssi~dod D>——
H-vy~aanssi"Hsnda CO—
H s a31s0d dvel ED——

H v Hsnd dvay —

H v, a3Llsod dval ———

STACK CONTROL

7B

[+ N e

5B

o

1B

oo

HTVI XAI~ LN3"HNO —
HTVZ XdI~LN3dHNno -
H VA~ LINV4I -

HTY. 0d dvHl S—

1 MUX

4

Hvo doL yis <=1

STACK CELLS

POINTER LOGIC

DIGITAL RESTRICTED DISTRIBUTION

1-30 The Ibox

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

126 PC

EV-5 PC logic keeps track of the PC of the instructions moving in the pipeline.

The PC logic functionality can be divided into two sub-sections: The FPC (Fetch PC), which
calculates the PC when the instructions are fetched from the ICache or the Refill Buffer, and
the EPC (Execution PC) which calculates the PC when the instructions are executed. EPC also
compares the PC it calculated with a siloed version of the the PC that the FPC calculated and
signals a PC_MISPREDICT trap if they do not match.

1.2.6.1 Fetch PC

Fetch PC sub-section generates the PC associated with each subblock of instructions being sup-
plied to the IB. This PC, called FPC<42:0> is calculated in a pipelined fashion in two stages: SZ
and S0.

In the stage SZ, the index part of the PC (FPC<12:0>) called I%J_IC_INDEX_ZB_H<> is calculated
so that the ICache fetch can be done in S0. In the stage S1 when the ICache fetch is in progress,
the tag part of the PC (FPC<42:13>) called I_WPC_FPC%FPC_0B_H<42:13> is calculated. As a
result, when the fetched instructions enter the IB stage S1, the associated PC (FPC<42:0>) is
available for tag comparison (I_WPC%FPC_FOR_TAG_0B_H<42:13>, ITB look-up (I_WPC_FPC%FPC_
FOR_ITB_0B_H<42:13> or PC-silo (I_WPC_FPC%FPC_0B_H<42:13>.

The calculation of FPC is based on the the type of event occuring in a particular cycle. These
details are given in the algorithm described below.

/* FPC Calculation */

switch(Event Type) {

case (7A trap or replay): /* Trap or replay is selected based on instr-order */
FPC<42:0> = TRAP_PC<42:0>; /* trap PC is the PAL entry point of trap handler */
FPC<42:0> = REPLAY PC_7A<42:0>; /* replay PC is the PC of the instr to be replayed */

case (5A Bxx mispredict, load-use replay or JSR/HW _REI PC mispredict):

FPC<42:0> = BR_ALT_PC<42:0>; /* Correct Target PC calculated by the EPC on
Conditional Branch Mispredict from E/FBOX */
FPC<42:0> = REPLAY PC_5A<42:0>; /* PC of the load-~use instruction to be replayed */

FPC<42:0> = JSR_HW_REI_PC<42:0>; /* PC from EBOX (JSR), or PC from Exception Address
Register (HW_REI) on PC mispredict */
case (ICache miss):

FPC<42:0> = Current_PC<42:0>; /* Freeze the PC of the instruction missing in the ICache *
case (I-stream Flow Change):

FPC<42:0> = TPC<42:0>; /* Target PC predicted by the branch predictor. TPC
is speculative and hence, it is later subjected
to branch mispredict and PC mispredict checks */

default:
FPC<42:4> = Current_PC<42:4> + 1; /* Next sequential subblock of 4 instructions */
FPC<3:2> = 0;
FPC<1l:0> = Current PC<1:0>; /* preserve the PAL mode bit */

Note: 1. JMP/JSR/RET/JSR_COROUTINE instructions have the same opcode(lA).
The discussion above refers to all of them by the single keyword "JSR".
2. Events with higher priority are listed earlier.

DIGITAL RESTRICTED DISTRIBUTION The Ibox 1-31

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The calculated FPC is siloed upto S7 in the PC datapath. The siloed FPC is used for various
purposes such as calculating BR_ALT_PC or REPLAY_PC_XA, loading EXC_ADDR_REG, supply
index for history updates, ete.

Note that the FPC<42:0> calculated in the event of I-stream flow change is actually speculative.
As explained in the Section 1.2.5, TPC<42:0> is calculated based on the prediction of conditional
branch outcome, Return Prediction Stack or ICache tag. Since the prediction can be wrong, the
TPC can be wrong and hence the FPC can be wrong.

In the case of a conditional branch, FPC<42:0> is the predicted target from which the I-stream
fetch continues. When that conditional branch is issued, the EBOX(FBOX) branch logic deter-
mines the branch outcome and compares it with the predicted outcome. A Mranch Mispredict
trap is signaled in 5A if the prediction turns out to be wrong. The fetch is restarted from BR_
ALT_PC<42:0>.

In the case of a JSR or a HW_REI, FPC<42:13> is predicted to be the ICache Tag<42:13>. If the
prediction turns out to be wrong, or there is an ASN mismatch, PC mispredict logic signals a PC
mispredict trap in 5A and the fetch is restarted from JSR_HW_REI PC<42:0>.

1-32 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 GPU C

FPC E

N

Figure 1—18: Fetch PC

—caH 11vis 2s

terngl Specification, Revision 0.0, February 1992

—c33H 081" av3y
< HTi1gi"avay

H 0dl 3LIHMED— -

14

—caH 181 311HM

<Q:
<0:2¢l>H “Xa1%H34 |
<gliegv>H 80 2dd
u Sfm NG —
I5) H 80 3dn S| vl
>
[
z . — —
o <gL2¥>H 80 HYVL OI%l
< $f o | b o
= = Lo | °
8 H 1IV1S Od%HOI4 |
')
<
o
(&) ‘\’ -
- L H Y0 QVO1 0d M3N
w
a
a.
= A
(]
— f + E ke
H T\ g
» A A v
z 2 ? o
T 3 3 .
. -
£ z
[s] s =s]ls] § L[s Ls] [s
o) o 2 of o o o
7 [+ 4
=)
[3)
8
e [l o] [olls | S Le @ @
w
| =
= 7w 42 N i % W YN ———
I m| H ¥V 13S Od M3N
J [« | @
[+ 4
o
e 00 8
505 o > onoe R
< < - & cevessin p s
- - o — NN |
| | S o <+ <
> > v m VVVV ~
€ T «© IITT | r I
< } R b3 |«
QI 5 f ' lﬂltnll\ 1 ml 5 -
-) ! o oooa o ! s
w g % o eea > E «
Q - 1 w | n - T u
g 2 9 > >'_—:<< o : 5
a g; ; @ J(..Jf_: < 9 «
X O o < n o *
|- S w <ol - S o
o | @ W woe < x
m - _ - ! &
_ o us x
z s o

DIGITAL RESTRICTED DISTRIBUTION

The lbox 1-33

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.6.2 Execution PC

EPC generates BR_ALT PC<42:0>, receives JSR_HW_REI_PC<42:0> and performs PC mispre-
dict calculation.

1.2.6.21 BR_ALT_PC

Every time a control instruction is issued, an associated BR_ALT PC is generated in S4. BR_ALT _
PC has two meanings depending on the type of the control instruction. If the control instruction
is a conditional branch predicted Not Taken, BR_ALT_PC is the PC of the conditional branch
target. Otherwise, it is the PC of the instruction after the associated control instruction.

BR_ALT PC generation logic examines the pipes FA and E1 in S3. It identifies the type of control
instruction and uses siloed branch history to calculate the BR_ALT_PC:
if (FBxx/Bxx, predicted Not Taken)
BR_ALT PC<42:0> = PC of the branch + displacement + 4;

else
BR_ALT PC<42:0> = PC of the control instruction + 4;

BR_ALT PC is an all-in-one address for multiple tasks. If the control instruction is a conditional
branch and the EBOX or FBOX signals a Branch Mispredict, BR_ALT_PC is the address from
which the i-stream feteh is to be restarted. If it is a JSR (Opcode 1A), BR_ALT PC is the PC to
be supplied to the EBOX. Finally, if it is a CALL_PAL, BR_ALT PC is the address to be latched
into the Exception Address Register.

1.26.22 JSR HW_REI PC

A JSR instruction (Opcode 1A) causes the i-stream to jump to an address pointed to by an integer
register. When a JSR instruction is slotted, this address appears on the EBOX bus E%PC_sSB_
H<63:0>. HW_REI is similar, except that the address is stored in the IBOX Exception Address
Register and it appears on the IBOX bus I_IPR%EXC_ADDR_REG_B_H<63:0>. The Issue Decode
Logic inside the PC section decodes the type of the control instruction slotted in S3 and selects
one of the above two PCs as the JSR_HW_REI_PC. Since a JSR instruction does not affect the
existing PAL mode setting, E%PC_3B_H<1:0> are ignored and instead I_WPC_SIL%FPC_3B_H<1:0> is
used to form JSR_HW_REI_PC<1:0>. E%PC_3B_H<63:43> are checked for correct sign extension.
If there is a sign-extension error, the error is siloed till S7 and then reported as an i-stream
Access Violation Fault.

1.2.6.2.3 PC Mispredict

The JSR_HW_REI_PC is the right PC where the i-stream should jump to. When a JSR or HW_
REI is issued, the Issue Decode Logic posts a PC Comparison in S4-A to compare the right PC
with the PC predicted by the Fetch PC logic.

The PC predicted by the Fetch PC logic is available in the PC silo. However, this PC can currently
be in S3 or in S2 depending on whether the i-stream flow-change bubble is pressed or not. The PC
Mispredict logic relies on the *Target’ bit supplied by the IB to determine where the PC is. If the
Target bit is TRUE at the time the JSR or HW_REI is issued, PC is already in S3 and hence the
comparison can be done right in the same cycle in phase B. However, if the target bit is FALSE,
PC is yet to come in S3. The PC comparison is then postponed till next cycle. In any case, if a
trap is posted in a cycle the PC comparison is to be done, the PC comparison is cancelled.

1-34 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The address comparison takes place in phase B. Bits <42:2> are compared. If there is an address
mismatch, a PC mispredict trap I WPC%PC_MISPREDICT 5A_H is signaled. Note that this address
mismatch could be because of the following three reasons:

1. JSR hint bits (INSTR<10:0> were wrong.

2. Return Prediction Stack was corrupted.

3. The address was not in the ICache and hence, the assumption of FPC<42:13> = IC_
Tag<42:13> was wrong.

In addition to the address mismatch, a PC mispredict trap is also signaled if any of the following
conditions was TRUE:

1. Target bit was FALSE when the PC comparison was done.
2. ASN_HIT was FALSE.
3. For a HW_REI PC comparison, PAL mode bit (<0>) did not match.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-35

0.0, February 1992

sion

Revi

Execution PC

EV5 CPU Chip Internal Specification,

Figure 1-19

m‘nn.muwmf_anu

e L a8 \ﬂ__ _ma_ _ﬁ._‘ _ _m _\ =
<0:Z¥*H VI Ddd v ar M o “ <0:Z¥>H ¥Z Ddd
4
ons 94 B
e
<y-ZI>HVST0dd 3
1
b
“ <0:L>H VE 138440 |
s H
<0:L>H V¥ LSO HE ¥
ve -
_ _ne;v: vZ 136440 ¥
é.aﬂx‘:-un#i.znn n 9d L1V ¥8
_ <0.0¢>H ¥d HLSNI iT
<0:2¥>H VY D¢TLWTHE 4
[m
<0:2v>HYS™0d AVIdIY ar - - ve _E
0:4>H ¥¥ 1384407 N0 _l_ _ _no.ﬁvzni.z»az_lﬁ
T -
PpE— i <0:37>D3N"HAOY™OX3
<0.29>H VET D03 ATHYI 8% e oaau mnuer \ g
N

H VS HEITNDIS™0d

138~ 0d ATHV3 _.“n_ HTYY NITAVIdIN NOY

dna”od

W V8 03ud SSIN Od L HBE X0 TNSY

H BC 0anssI"vy
F ec danssi™ig

WdTdNO' NI IND

a n G3A70"1ouL n o s L]
n :—7 o
[ELTTTNTY T N
Agvabrrow n = ot uer - HTYZTLEIH zmtuzxﬁw_
WO vd'aNd oa Y’ € ve B2 EIT T
[= Seaa A"
03n88I NEE 3 @4
H¥ 031§0d aViL < = <0:8>H” t3 030
Canesl NHE 3 L_Jo3 DOHLLS IR

ve v eV
“ H ¥Z i3oNvl

%0d3 .IQ d >>|_ NGILYINDIV OIMaSSIN od 21507 300030 388
AVHDYVYIAQ %0019 Od3

DIGITAL RESTRICTED DISTRIBUTION

1-36 The Ibox

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.7 Instruction Buffer(IB)

The IB stage consists of two four-entry instruction buffers. The two buffers form a circular FIFO
queue. The IB control logic maintains a set of read/write pointers which control the operation of
the IB. The IB is written in S1A of the pipe, whenever the output of the ICACHE or the Refill
Buffer is valid. The IB is not written during the bubble cycle caused by any one of the following
flow-change instructions:

¢ Conditonal branch predicted taken.
¢ Unconditional branch, JMP, CALLPAL or HW_REL

If the slot stage is finished with the last set of instructions it was operating on, the IB supplies
it with a set of four new instructions in S1B. The IB stage can fill up if the slot stage does not
accept instructions from the IB, at the rate at which the ICACHE/RFB delivers them. The IB
then asserts a backpressure signal 1%J_IB_STALL_A_H to the cache/fetcher indicating that it cannot
accept any further data. The signal 1%J_IB_STALL_A H is asserted in S2A whenever the IB clocks
in valid data in S1A, causing both buffers to go full and if the slot stage is not done with the
last set of four instructions that it was operating on. As an optimization 1%J_IB_STALL_A_H is
deasserted in S2A if a flow-change instruction was latched by the IB in S1A. This can possibly
supress some bubbles in the branch-taken path.

The IB stage maintains a valid bit for all 8 instructions in the 2 buffers. Whenever an istream
reference is not octaword aligned (as in the case of a branch to the middle of an octaword), these
valid bits can be used to selectively invalidate some instructions from a group of four.

The IB stage also has a flow-change bit for all 8 instructions. The branch prediction logic detects
the presence of a flow change instruction in the set of four instructions presented to the IB. This
information is stored along with the instruction in the IB and is used by the SLOT stage to
invalidate all instructions following a flow change instruction.

The IB control logic controls the movement of addresses along the PC pipe. This ensures that the
PC and the instruction move in lock-step. In addition to the PC, the IB control also controls the
movement of other miscellaneous information associated with an instruction. Table 1-3 contains
a list of all miscellaneous bits that are piped along with the instruction.

Table 1-3: MISCELLANEOUS IB BITS

Name Width Description

ASNOK 1 On JMP/HW_REI instructions indicates a predicted ASN field match
JSR_TARGET 1 Instr stream is the target of a JSR

PAL_MODE 1 PAL Mode

TIACCVIO 1 IStream ACCVIO

ITBMISS 1 ITBMiss - trap later

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-37

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.7.1 HW_REI - stall prefetch

The hardware supports a special encoding of the HW_REI instruction which inhibits prefetching.
Whenever this special HW_REI instruction is clocked into the IB in S1A, the IB control logic
asserts T%J_IB_STALL_A_H in S2A. The stall signal remains asserted until 3 cycles after the HW_
REI is issued i.e. when the HW_REI instruction is about to enter S6 of the execution pipeline.
This special instruction has been devised in order to synchronize Ibox changes (such as ITB writes
which take place in S6) with the HW_REI. Using the the special HW_REI instruction after an
MTPR ITB_TAG or MTPR ITB_PTE will ensure that instructions following the HW_REI, do not
access the ITB until after the ITB write is complete.

1-38 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992
i'

Figure 1—20{ Ié Siﬂ igic 5 ;
; T]
i b
‘[l]cj ,i
§il |
m T=l A8
1 O e
RN g; i
UL T
;

DIGITAL RESTRICTED DISTRIBUTION The lbox 1--39

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.8 Instruction Slotting

The SLOT stage of the IBOX pipeline receives a set of four instructions and valid bits from the
IB stage in S1B. The function of the SLOT stage is to route each instruction to the appropriate
integer/floating point execution unit required by the instruction. The slotting process begins
with the first valid instruction and is carried out "in-order" with respect to the actual instruction
ordering. In the event that the appropriate execution unit is not available for an instruction (i.e.
an earlier instruction has already been slotted to that pipe), the slotting process stops and no
attempt is made to slot instructions that follow in that cycle. Figure 1-21

The SLOT stage logic is assisted by five pre-decode bits calculated for each instruction during
the ICACHE fill operation. These predecodes identify, among other things, the pipe(s) that a
particular instruction requires for execution.

The SLOT stage routes all 32 bits of the instruction to the appropriate pipe in S2A. In addition
it also sends a two bit encoding for each instruction that indicates the position of the instruction
within the block of 4 instructions. The first of the 4 instructions is tagged as 00#2, the second as
01#2, etc. This encoding is used by the Issue stage to prevent out of order issue of instructions.

The SLOT stage also generates a valid bit for each of the four execution slots. The Issue stage
receives the valid bits in S2B and disables the instruction-issue for the non-valid pipes.

Instructions that are not slotted in a cycle are retried in the following cycle. This process continues
until all valid instructions in the SLOT stage have been slotted and have advanced to the issue

stage. Until this happens the SLOT stage does not accept any further instructions from the IB
stage.

1.2.8.1 Special Slotting Rules:
Instructions can belong to any of the following categorties:

¢ Requires Integer Pipe E0 (Class E0)

¢ Requires Integer Pipe E1 (Class E1)

* Requires any one of the Integer Pipes EO/E1 (Class EE)

* Requires the Floating Add Pipe FA (Class FA)

¢ Requires the Floating Mul Pipe FM (Class FM)

¢ Requires any one of the Floating Pipes FA/FM (Class FE)

¢ Requires NO execution slots- instruction is a UNOP (Class UNOP)

The slotting of an EE class instruction is dependent on whether a particular instruction sequence
is detected in the group of four instructions to be slotted. If the instruction sequence EE..EE or
EE..ELl is detected, an attempt is always made to first slot the EE class instruction to pipe EO.
If pipe EO is unavailable, the instruction is then slotted to pipe E1. If the sequences EE..EE or
EE..E1 are not present, an attempt is first made to slot the EE class instruction to pipe E1. IF
pipe E1 is unavailable, the instruction is then slotted to pipe EO.

If an instruction is capable of being issued to either the FA or FM pipes, an attempt is always to
made to first slot it to pipe FA.

1-40 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

In addition to execution unit conflicts, any one of the following situations can defer or stop in-
struction slotting.

1

Slotting stops when a flow-change instruction is encountered. All instructions that follow the
flow-change instruction are killed. The instructions which belong to this category are:

* Predicted taken Floating/Integer Conditonal branches.

¢ Unconditional Floating/Integer branches, JSR, JSR_COROUTINE, JMP, RET, CALLPAL
or HW_REI.

Slotting is deferred when a second branch-class instruction is encountered (i.e any Branch,
JSR, JSR_COROUTINE, JMP, RET, CALLPAL or HWREI). The slotting of the second branch-
class instruction and all following instructions is deferred to the next cycle. Splitting of
branch-class instructions is required in order to avoid having to track multiple alternate PCs
in the event of misprediction and also simplifies some other control.

Slotting is deferred when a Load-class instruction (i.e Floating or Integer Load) is encountered
following a Store-class (i.e Floating or integer Store, Opcode = 0x18 and LDX_L). Slotting of
the Load-class instruction and all instructions that follow is deferred to the next cycle. This
is done because issuing Loads and Stores simultaneously causes Dcache resource conflicts.

Slotting is deferred when a Store-class instruction (i.e Floating or Integer Store, Opcode =
0x18 and LDX_L) is encountered following a Load-class (i.e Floating or integer Load).

Slotting is deferred when the slot stage detects instructions sequences of the type I-F-I-1 or
F-1-I-I, where F refers to a floating instruction and I refers to an integer instruction. The
slotting of the second integer instruction (i.e the third instruction) is deferred to the next
cycle. This facilitates the compiler use of EV4 padding rules for EV5.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-41

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-21:

Instruction Slotting

EV5 Opcodes, What they do, where they go....

Notes:

ope.

Instr. {s)/Mnemonic

Primary Exec. Boxes

--> Opcode (bits 31:26)

appropriate

--> boxes that "operate" on the instruction

—-> Contains the Mnemonics assoclated with each field... Also contains function field decodes when

Pre-Decodes --> 4 bit predecode value stored in the ICACHE with the instruction.
Prod. --> Register results produced
Cons. --> Reglster results consumed
Bubbles --> Number of pipe bubbles inserted until the "Prod." register is available.

A 0 indicates that the result is available to the next cycle. A "none" indicates that

no destination register is locked and therefore this instruction will not block multiple

issue due to conflicts in the current issue cycle.
| Opc.| Instr.(s) |Exec. | Pred.| Issue |Prod. | Cons. |Bubblest Comment {
1 | /Mnemonic | Boxes | Value| Pipes I | {] 1
{ 00 | CAL_PAL { IBOX | 1010 | El { none | none | none | IBOX stalls further issuing until all the pipes have |
{ 1] | | | | i i have drained and all loads have gotten past the trap |
1 | 1 | | | | | i point. The IBOX then looks up the dispatch address \
| i | ! | | i | i in a table and then alters the flow to that address. |
1 i | |] | | | | The EBOX pipe basically treat this as a NOP... |
i | | | | | | | | ***xxMoved to PIPE El only****x* |
01-07] reserved	IBOX	00012?) EOQ	i		Reserved Instruction Fault on Issue, slot maps to E0		
08	LDA { EBOX	0011	EQ or E1 { Ra	Rb	0	Ra = Rb + disp (Not really a LOAD!! -- totally EBOX)	
09	LDAR	EBOX	0011	ECor El	Ra	Rb ! [¢]	Ra = Rb + (disp*65535) (Not really a LOAD!! -- totally
			!			1 EBOX}	
oA	reserved] IBOX	0001?] E0	I		Reserved Instruction Fault on Issue, slot maps to EO		
{ 0B	IDQ U	EBOX,	0010 { EOor E1	Ra	Rb	2 hit	Unaligned integer load... The EBOX treats this like a
		MBOX	1				normal load. Alignment Trap not generated.. 1
0C-0E} reserved	IBOX	0001?	EO 1 i]	Reserved Instruction Fault on Issue, slot maps to EO			
OF	STQ U	EBOX,	0000	EO		Ra,Rb	none
]		MBOX		i t		normal store. Alignment Trap not generated.	
{ 10	Iarith	EBOX	0011			1	
1	(binary func)	!			[I !		
I] (xxx0xx) 1 1]	EQorEl1	Rc [Ra,Rb	0	Integer Adds/Subs including scaled...			
1 ADD1					1	either pipe, 1 cycle latency on Rc	
1 ! SnADD1	1 i				t		
1 I suBi 1 1	!			!			
1 SnSUBL i		i		1 1			
t I		1		I			
1 1 {xxx1xx}]	EO or E1	Rc	Ra,Rb	1	Integer Compares I	
	CMPxx	I				1 ***Now in either E pipe but still has 2 cycle]	
	CMPUxx	1 1 !	!	latency***x !			
	CMPBGE		I t	1 i			
1 11	Ilogs	EBOX	0011				t !
	{(binary func)			t	I 1 !		
1] {xxx0xx) [EQOor E2	Rc	Ra,Rb	0	Integer Logicals]	
1	AND				1		1 cycle latency, either Pipe I
	BIS		I				1
{	XOR	1		I] BIS R31,R31,R31 will be the preferred method of i		
] BIC 1 i	!	1 I creating integer NOPs in EVS!!!					
!	ORNOT] I 1 I	1 !				
	EQV ! ' 1] i			
t I				! 1 I			
{ {xxx1xx)			EOor E1	Rc	Ra,Rb	1 { Integer CMOVs, two cycle latency, either pipe	
	CMOVXX						

Figure 1-21 Cont’d on next page

1-42 The Ibox

DIGITAL RESTRICTED DISTRIBUTION

EV35 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-21 (Cont.): Instruction Slotting

} Ope.| Instr. (s} [Exec. | Pred.| Issue {Prod. | Cons. [Bubbles}| Comment I
| | /Mnemonic | Boxes | Value| Pipes | 1] | |

12 EO0 Rc Ra,Rb Integer Shifts ***MOVED to PIPE EQ***x

I
I
I
|
|
1
|
|
|

13 EBOX 0001 EO0 Ra,Rb | MULL Integer Multiplies

i
] 7 i Latency based upon function field... No IBOX issues
| UMULH | around latency since IMUL bit controls...

[MULQ 9 | **AXMOVED to PIPE EQ****

.

| 14 | reserved | IBOX 00012?] EO

Reserved Instruction Fault on Issue, slot maps to EO]

15 VAX_FP

{binary func)
(xxxaxxxxx00)
(xxxxxxxxx01)

(XXAXXXKXXXIXX)

FBOX

0110 FA Fc Add/Subs/Compares/Converts. ...

SRM requires that Fa be F31 on Converts

{xxxxxxx0010) 0101
MULF

MULG

Fe Floating Multiplies

{xxxxxxx0011} 0110
DIVF

DIVG

Fa n? Floating Divides, latency depends upon the data type
in the function field. The IBOX doesn’t care since

all divides set the DIVIDE bit dirty.

1 1
| t
f |
! !
| I
| I
| I
t t
| 1
l |
I |
CVTDG |]
| |
I I
| |
| !
| |
| t
| I
! I
I i

16 IEEE_FP
{binary func)

{xxxXXXXXX%00)
{xxxxxxxxx01)
(xxxxXxXX1XK)

ADDS

ADDT

SUBS

SUBT

CMPTxx

| | FBOX
I 1
| !
| I
| !
| I
| |
t |
I f
| |
| CVTQsS |
t I
| I
I t
! i
I t
| t
I I
| |
I |
| |
| I

0110 FA Fc Fa,Fb Adds/Subs/Compares/Converts

SRM requires that Fa be F31 on Converts...

??Do we understand rounding to +/- infinity??

CVTQT
CVTTx

(xxxxxxx0010})
MULS
MULT

0101 FM Floating Multiplies

(xxxxxxx0011)
DIVS
DIVT

0110 FA Fc Floating Divides... The latency depends upon the data

specified in the function field. The IBOX doesn’t
care what the acutal latency is since they all set
the divide bit.

Figure 1-21 Cont’d on next page

DIGITAL RESTRICTED DISTRIBUTION The Ibox 1-43

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-21 (Cont.): Instruction Siotting

will assert DC_HIT or a proper FILL sequence to load
and unlock Ra. The IBOX will allow these two clears

| Ope.| Instr.(s) |Exec. | Pred.| Issue |Pred. | Cons. |Bubbles| Comment:]
] | /Mnemonic | Boxes | Value| Pipes] [}] H 1
{ 17 | DI_FP | FBOX | | I | | | Datatype Independent Floating Point Ops |
| | (hex func.)} | | 1 I | | | |
[} { {all excpt. 020) | 0110 | FA | Fc | Fa,Fb | 4 | Floating CMOV, Mx_FPCR, Int-Int Converts, CPYS negate, |
] i CPYSN i i]] | i | CPYS & exponent. To simplify decoding, the MT_FPCR }
| | CPYSE I i 1 | | 1 | has a latency of 5 even though it has no register |
| | FCMOVXX }]] } }] I destination. In addition, an MF_FPCR will stall on 1
1] MT_FPCR |] Il 1 | I] Fa,Fb dirty even though it doesn’t actually read the |
1] MF_FPCR] | |]] 3 | regs... This is acceptable since the SRM requires |
i | CVTQL/x 1 | | ! i | | DRAINTs around the Mx_FPCR instructions. |
| | CVTLQ | i | | i | | the SRM requires that Fa is F31 on the Converts... |
1 t | I 1 1 I] | |
1 | €020} 1 | i | I I | Copy Sign. Using CPYS F31,F31,F31 results in a floating|
] i CPYS] | 0111 | FMor FA | Fc | Fa,Fb | 4 i point NOP. Therefore, the CPYS opcode will be slottedj
| 1 1 [1 I] 1 | to either available pipe to effect the NOP case. As |
1 | | I | ! | ! | a result of the NOP decision, real CPYS will be done |
1 | I 1 I 1 I} I | in the first available pipe, FA or FM. 1
{ 18 | MISC. | | 0a01 | | |] | Goofy Miscellaneous Instructions... Most can be treated |
i | (hex funct.) | | | 1 I 1 | as either EBOX Nops or special cases of LOADS (see {
| | | I | I | | | FETCHx below)... I
! | ! i | | i | | |
! t I | i | | I | Issue??? Do we need to decode all 16 bits of the i
] | | | | t | 1 I function field... Could we simply check the top !
| | | 1 | i] | 1 -8 bits as in EV42?2??]
| | t 1 | | 1 | I |
] i] | i | | t | Issue??? The current plan is dirty check these like i
1 | | | 1]] i i special cases of LOADs for the Rb source. The Ra {
I | | | t | i 1 { dest will not set the load/miss bit unless the inst. |
I | | | I | | I I is RPCC,RC, or RS. Having the unused register src/ |
] !] | | I] I] dest. fields set to R31 will avoid unnecessary dirty |
i i | 1 | | I | | check stalls in the IBOX. {
! 1 | I | I i | | |
1 | Draint | IBOX |] EQ I 1 | X { Stops issue until all 4 pipes have drained. t
} | (0000}] i 1 I]]] Outstanding Loads DO NOT have to complete]
I ! i I I i i i | Slotting routes this to pipe E0 which can either NOP |
i 1 | t | i i 1 | it or do the FETCHx routine. |
			f	1 1			
	MB { IBCX,		EC		t x	Stops issue of MBOX instructions until the MBOX clears	
	(4000)	MBOX	1				a flop in the IBOX. Slotting routes this to pipe
1 [(4400} i I i	1		E0 which can either NOP or do the FETCHx routine. I				
	(4800) 1	t	t I	i			
	(4co0)	1 i		lj	22?Issue?? A 2nd MB while the first is still pending 1		
I I]	i]		I should stall issue??. This allows for DVT software				
]		i	1 to completely freeze the machine. When the first MB		
[}]	I i		{ finishes and clears the flop, the 2nd will be]				
1 1	1					executed and will reset the flop until the MBOX !	
1 1	1]	clears it a 2nd time 1		
I I			!	1			
{ FETCHx	MBOX,		EO		Rb	none	The Ebox sends (Rb + 0) to the MBOX which then fetches
	(8000)	EBOX	1			f the page. The EBOX treats this like a load except i	
{ (A000)] 1	l i	1 for zeroing the displacment field in the addition.					
1		1 1	i 1	I			
]	RPCC (C000)	MBOX,	I EO { Ra		2	IBOX will lock the Ra destinatlon as if these were LOADs	
	RC {EC00}	EBOX	i i i	1 An implied MB will occur upon issue. The MBOX will			
	RS - {F0O00)				i i] clear the MB flag to reenable MBOX instructions and I		
1	t		1 i 1				
i { | | i | | | !
1 | | ! 1 ! | ! |

to occur on different cycles if necessary.

Figure 1—-21 Cont’d on next page

1-44 The Ibox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-21 (Cont.): _Instruction Slotting

L Opc.| Instr.(s) lExec. | Pred.| Issue . |Prod. | Cons, |Bubblesl| Comment, 1
1 | /Mnemonic | Boxes | Valuei Pipes i |] |]

19 | HW_MFPR
MBOX, CBOX,
Scache IPRs

MBOX, | 0011
EBOX |
IBOX |

EO 2 hit If the IPR is in the M or C Boxes, this looks like a
load to the I and E boxes. The MBOX will either
return the data 2 cycles later at HIT time or will

assert a MISS and a "FILL" when the data 1s available.

1BOX IPRs,
PAL_TEMPS

If the IPR is in the IBOX, the data is provided on the
I%PC_BUS which the EBOX muxes inplace of the Legic
box results in S4. The data is therefore bypassable
to the next cycle as if 1t was a logic box result.

A few IBOX IPRs might not able to be read in 1 cycle.
Any of these registers would use a special IPR_TEMP
IPR register as an intermediate step in a two step
read operation

NOTE: It is up to PAL code to insure that the proper
slot is used depending upon the source box. i.e. if
an IBOX IPR or PAL temp is being read, PAL code MUST
pad the instruction block with a leading integer NOP
or an unrelated integer op to use the E0 pipe. Like-
wise if the IPR 1s in the MBOX, PAL code must insure
that the MFPR is the first integer instruction in the
block so that it gets the EO pipe.

NOTE; It is possible {in fact it is a feature) to dual |
issue MFPRs as long as the destinations are not |
identical and one is in the IBOX while the other 1s in}

I
|
|
|
|
|
I
|
|
|
|
|
|
i
|
|
|
|
1
i
|
t
|
|
t
1
1
| the MBOX, CBOX, or Scache.]

|
I
|
1
|
|
|
I
I
I
!
|
!
|
|
i
t
I
!
!
!
|
I
I
!
|
1

1a EBOX,

IBOX

1001 El Ra The IBOX provides the old PC in 3B over the I%PC bus. |
This can then be bypassed to the next cycle. The EBOX|
provides the Rb value (the target PC) in 3B over the |
E%PC BUS. In theory, dirty logic could allow a 1

1
latency on the Ra dest, however, I need to check to I
|

see if this is even a needed case.

iB HW_LD EBOX, 0010

MBOX

EQ or El 2 hit To the IBOX and the EBOX this looks almost like a normali
load. The only difference is that the displacement

field is only 12 bits wide.

HW_LD with the Locked option and any other MBOX inst.
In addition, the HW_LD_L must be routed by E0 by
explicit code padding.

e o o o . ——————

|
|
|
NOTE: PAL Code will be restricted from dual issuing |
|
l
I

| 1c | reserved } IBOX | 00012} E0 | Reserved Instruction Fault on Issue..slot maps to E0/E1?)

1D | HW_MTPR
MBOX, CBOX,

Scache IPRs

EBOX,
IBOX,

0011 Ra nhone

EO For MBOX IPRs, the EBOX pipe will provide the data on

the ERVA bus in 4B and over the E%ST_DATA_BUS.

IBOX IPRs,
PAL_TEMPS

El For IBOX IPRs, the EBOX pipe will provide the data on

the E%PC bus in 3B.

|

|

i

|

I

|

|

| NOTE: It is possible (in fact it is a feature) to be

| able to to dual issue an MTPRs. One must be in the

| IBOX and the other must be in the MBOX,CBOX, or Scache
|
|
|
|
I
i
1
[
|

NOTE: It is up to PAL code to insure that the proper
slot is used depending upon the source box. i.e. if
an IBOX IPR or PAL temp is being written, PAL cede
MUST pad the instruction block with a leading integer
NOP or an unrelated integer op to use the E0 pipe.
Likewise if the IPR is in the MBOX, PAL code must
insure that the MFPR is the first integer instruction
in the block so that it gets the E0 pipe.

|
|
|
!
I
i
|
!
1
1
I
I
i
|
i
|
I
|
!

e e e ———————— . — o —— o —

e e o — — — —————— — —

Figure 1-21 Cont’d on next page

DIGITAL RESTRICTED DISTRIBUTION The Ibox 1-45

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure:
Al

:?KIQE!“-’”

=imstryction Siott

!m | Cons. |Bubbles|
1 i] 1

| Exe Comment. |
[Mpemonic | Boxes | Value Ripes !
| 1E | BW_REIL | IBOX |] El |] | none | The EBOX NOPs this.... i
| { "normal™ | | 1100 | | I | | The "normal"™ HW_REI uses the 1100 predecode {
I 1 | | 1 i | i | |
| | "special™ | | 1110 | | l} 1 | The "special™ HW REI uses the 1110 predecede !
1F	HW_ST { EBOX,	0000	EO		Ra,Rb	none	This looks almost like a normal STORE to the EBOX pipe
]	MBOX	1 {	1	except that the displacement field is only 12 bits			
i			[wide.	
		t	1 1				
] 1] i i I I t	NOTE: The MBOX must clear the MB flop to resume MBOX]						
1	I	i 1		instruction issuing when the _C option is used.]			
{20-23] Floating LDs	EBOX,	0010	EO or E1.	Fa	Rb	2 hit	The EBOX calculates the address the same way as if this
1 I LDF	MBOX,	I	I] was an Integer Load. The MBOX determines that this 1			
I] LDG	FBOX] t]] i is a floating load and routes the data appropriately.					
!	1DS t	! !	1	i			
1	1DT						
j	24~27	Float. Stores	EBOX,	0100	EC] { Fa,Rb	none	The FBOX sends the Fa reglister to the MBOX on it's STORE
]] STF	MBOX,		I	i ! bus while the EO0 pipe calculates the address in the]			
[}] STG	FBOX				i] same manner as for Integer stores.]		
t i STS			i 1 i				
1	STT						l !
28-29] Int. Loads	EBOX,	0010	EO or E1	Ra	Rb	2 hit	The EBOX calculates the address and sends the E%VA bus
	IDL { MBOX		I			to the MBOX in 4B. Dirty logic will lock the dest.]	
i 1DQ i i i		I	for two cycles until HIT time. At that point, a I				
i 1			I} i ! i LOAD-MISS-REPLAY may occur if the data is bypassed]				
i]		but found to MISS. Misses will lock the register 1
[{ { I I		i until the MBOX indicates a FILL has occurred to that				
f			I]	particular destination.		
28-2B	Load Locked { EBOX,	0000	EO			{ Similar to normal Integer Loads but will inhibit dual	
1 LDL_L	MBOX]] { issue of MBOX instructions and will only slot to the			
	DO L				t 1	EO pipe.... 1	
2C-2D	Int. Stores	EBOX,	0000	EO I	Ra,Rb	none	The EBOX calculates the address and sends it to the MBOX
] 1 STL	MBOX	i 1	t	on the E%VA bus in 4B. The data is sent on the]			
1	sTQ			1 1 t	E%ST_DATA bus in 4A/4B. 1		
2E-2F	Store Cond.	EBOX,	0000	EO { Ra	Ra,Rb	2 hit*	Similar to normal stores except that MBOX instructions
	STL_C { MBOX						will be inhibited by an implicit MB. The MBOX will 1
1 STQ C 1 f				i clear the MB flop when it is ready to resume accepting			
i		1 t 1] I 1] instructions.. The destination register Ra will be]					
i	! 1	1			be locked by the dirty logic until a FILL occurs to		
! i]		1 i] the appropriate register. DC_HIT should NOT assert atj					
1		i]	1 1 HIT time on these instructions. i				
30	BR	EBOX,	1101	El	Ra	I Q0	The IBOX sends the PC in 3B over the I%PC bus. [}
		IBOX		!		i 1	
131-33f Float. Branch.	FBOX,	1111	FA		Fa I 0	The FBOX sends BR_SUCC and BR_MISPRED in S5A.]	
	FBEQ	IBOX			1	! I	
1	FBLT	t ! [!	!			
	FBLE		1	1 t	I		
{ 34	BSR	EBOX,	1011	} El { Ra	i o	The IBOX sends the PC in 3B over the I%PC bus	
!	IBOX		[1 !	I			
135-37	Float. Branch.	FBOX,	1111	FA		Fa i [}	The FBOX sends BR_SUCC and BR_MISPRED 1n 5a. 1
	FBNE i IBOX			i			
t { FBGE	I 1	!		I			
	FBGT t		I t ! ' !				
{38-3F	Int.Cond.Br.	IBOX,	1000	El	I Ra	0	The EBOx sends BR_SUCC and BR_MISPRED in 5A.
		EBOX		1	i !		

Figure 1—21 Cont’d on next page

1-46 The lbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figuré&1=21(Cont.): __Instruction_Slotting

Date Who What
13-Nov-91 rpp Created the table
14-Nov-91 rpp Changes from IBOX meeting 13-Nov

a. Converts are required by SRM to have Fa as F31 which simplifies the decoding of the
floating point operates

b. Clarify dirty checks on OPC 18 instructions

¢. Add Homayoon’s request that a 2ns MB causes a complete pipeline stall until the first
MB finishes

d. Change HW_MFPR plpes from "E0 and E1" to "EQ or E1™

e. Change HW_LD pipes from "E0 and E1" to "E0 or E1"

f. Change HWN_REI pipes from "E0 and E1" to "El only”

g. Change HW ST pipes from "EQ and E1l" to "E0 only"

h. Fix mistake on Flt. Store. pipes "EQO and FA" to "ED and FM"

i. Fix mistake on Flt. Branch latency, should be 0 bubbles

3. Fix mistake on Int. Cond. Branch latency, should be 0 bubbles.

25-Nov-91 rpp Clarified HW_MFPR operation for both IBox and Mbox instructions. Added timing for IBOX IPRs
and PAL_TEMPs

09-Dec~91 rpp Updates from IBOX/Arch meeting of 09-DEC. Changes are:

a. CAL_PAL moved from "E0 and E1"™ to "EO"

b. reserved opcodes moved from "EQO or E1" to "EO".

c. STQ U moved from "E1" to "EO", thls was a mistake in the 25-Nov rev....

d. add plpe E0 to the CMPxx instructions.

e. move shifts from "E1" to "EO™

f. move IMULs from "E1™ to "EO™

g. change CPYS to go to either pipe as the new floating NOP.

h. add a comment defining BIS R31,R31,R31 as the integer NOP.

1. changed all misc. instructions (opcode 18) to pipe "EO" from pipe "El", also
changed several of the comment fields

jJ. changed HW_MFPRs from the MBOX to "EO" from "EC or E1". All non-IBOX IPRs will
return their data on the E0 pipe 1f the return data at hit time. Added a
comment about dual issuing HW_MFPRs.

k. changed HW_MTPRs to the following: IBOX and PAL_TEMP are now in "El". MBOX
etc. are in "EO". Added a note about support for dual issuing MTPRs

1. added a comment on Load_Locked. Can we issue this to either pipe.

13-Dec-91 pp Converted into DECWRITE to get PostScript for the DOCUMENT Spec
17-Dec-91 pp/vr Added Predecode values and corrected some of the Comments....
03-Mar-92 rpp Updates for the 2nd IBOX review

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-47

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.9 Instruction Issue

The "slotted” instructions are presented to the Issue Stage in S2B where register conflict (also
known as Dirty) checks are performed in S3. In addition, final resource availability and serializa-
tion of the instructions are performed prior to releasing the instructions to the various execution
units.

The Issue Stage’s primary output is the signal 1%Z_STALL 3B which is used to freeze the EBOX
and FBOX register file addresses, opcodes, and the earlier stages of the IBOX. The Issue stage
is also responsible for signaling the appropriate data bypasses to the EBOX and the FBOX and
for driving addresses for reading and writing both the EBOX and FBOX register files.

A block diagram of the Issue Stage is given in Figure 1-22 which is included in the large pull
outs.

1.2.9.1 Interface with the Slot Stage

The Slot stage sends the instructions to the Issue stage over the I_IBS%FM_INST_2A<31:0>, I IBS%FA_
INST_2A<31:0>, I_IBS%EO_INST_2A<31:0>, I_IBS%E1_INST 2A<31:0> lines.

In addition, the slot stage indicates the relative logical ordering of the four instructions on the
I_IBS%EO_POS_2A<1:0>, I_IBS%E1_POS_2A<1:0>, I_TBS%FA_POS_2A<1:0>, I_IBS%FM_POS_2A<1:0> lines.
The value 00#2 indicates the first instruction of the block of four while 11#2 indicates the fourth
instruction.

A valid signal (I_IBS%E0_VALID_2A, I IBS%E1_VALID 2A, I IBS%FA_VALID_2A, I_IBS%FM_VALID_24) is
also sent from the slotting stage for each instruction to indicate which of the slots contain valid
instructions.

Finally the Slot stage sends a pair of signals (I_IBS%E0_DEST RC_2A and I IBS%E1_DEST RC_2A)
which indicate whether the A field (<25:21>) or the C field (<4:0>) should be used as the destina-
tion register for the corresponding integer instructions. Only instructions with opcodes between
10#16 and 17#16 will use the C field. Since all floating instructions use the C field as the
destination register, the slotting stage does not have to calculate a mux control for them.

1.2.9.2 Instruction Interface with the E,F,M Boxes

The Issue stage sends the instruction context information to the E,F,M Boxes. It contains 2B
latches and buffer/repeaters which output the integer instruction buses as 1%Z_E0_INST _2B<31:0>
and 1%Z_E1_INST 2B<31:0> to the EBOX and MBOX. The RA and RB fields of both integer in-
structions are sent directly to the EBOX register file in phase 2A prior to the 2B latch to ease
a critical path. The buses I%E_RAO_ADDR_2A_H<4:0>, 1%E_RBO,ADDR_2A_H<4:0>, I%ZE_RA1_ADDR_2A_
H<4:0>, and I1%E_RB1_ADDR_2A_H<4:0> contain the register file address information.

The instruction context information for the FBOX instructions is latched into 2B and conditionally
into 3A when I%Z_STALL_3B is not asserted. This data is then buffered and sent to the FBOX
as I%F_FA_INST_3A_H<31:0> and 1%F_FM_INST 3A_H<31:0>. In addition, the EO instruction data is
latched and send to the FBOX as 1%F_ST_INST_3A_H<31:0> so that the FBOX can process the data
for floating stores.

1-48 The lbox DIGITAL RESTRICTED DISTRIBUTION

0.0, February 1992

vision

JNe PM_INeY S8ed)i0p

LlEpEoQ.!
14

10 reox

Y .._m_“m __m & i i mu: .____..w mg
] S
P
N\ .
)

-

X

‘ﬂ

EV5 CPU Chip Internal Specification, Re

r __ w. $ i et TR

$a140107 te0a

N8 _AA)_ADDR_BA_Nedioping BRI ADOR JA Nedi% , 1o gpen

Instruction Issue-Block Diagram

Figure 1-22:

IN2 a1 1MAT IA Hedlit2, 1o Feow

The Ibox 1-49

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1293 Dirty Checks

The Dirty Checks are used prevent the issue of an instruction until it can complete without
encountering any data dependencies. Each of the 31 integer registers and each of the 31 floating
point registers is allocated a bit in the appropriate Dirty Logic Datapath.

The two Dirty Logic Datapaths mimic the flow of the execution datapaths for pipe length and
bypassabilities. Additional stages are present in each datapath to account for IMUL and FDIV
destinations, for LOADs that have missed in the D-Cache, and to support the PAL,L SHADOW
registers. As instructions are issued, the associated destination registers are decoded and latched
into the appropriate bit of the datapaths. These destination bits are SILOed down the dirty logic
datapaths to indicate that data bound for the corresponding register is present in the execution
unit(s) at the corresponding point.

During S3, the four current instructions are checked for conflicts against those instructions that
are currently executing in the four execution unit pipelines, against any Loads that have not
completed, and against each other.

1.29.3.1 DEST-SOURCE Checks

A DEST-SOURCE check is done for each of the two possible source operands of each of the up
to four slotted instructions during S3 of the IBOX pipe. These checks are performed by decoding
the source register numbers for the current instructions and checking to see if a corresponding
destination bit has been set in any of the pipeline stages, the IMUL/FDIV units, or for a LOAD
that has missed in the D-Cache.

The source register numbers for integer instructions are not checked against operate destination
register numbers currently in S5 or beyond of the two EBOX pipelines since all integer operate
results are bypassable by the end of the S5 stage. Matches between integer source registers and
integer destination registers in the S4 stage are qualified by the type of instruction executing in
S4. Most integer instructions are bypassable by the end of S4 however some (like shifts) are not
available until S5 (see Figure 1-21 for a list of instructions and their respective latencies).

All of the 8 source registers are checked against any LOADs that are currently executing in S4
or S5 since LOAD data is not available until S6. In addition, the source registers are checked
against any load that has advanced into S7 and missed in the D-Cache. Instructions with source
registers that attempt to use data from a LOAD instruction that is in S6 will be issued and will
either complete successfully if the LOAD hits in the D-Cache or will generate a LDU-REPLAY
as detailed in Section 1.2.9.17 if the LOAD misses.

If a match is found on any of these checks, the instruction with the matching source register is
stalled. This stall is termed a DEST-SOURCE stall.

1.29.3.2 DEST-DEST Checks

In addition to the DEST-SOURCE checks detailed above, some DEST-DEST checks are performed.
These checks are used to preserve the correct ordering of the eventual write operations into the
register file. The only checks that need to be performed are for units/instructions that can write
the register file out-of order, such as IMUL, FDIV, integer loads that could miss in the D-Cache,
and all Floating Loads (since LDFs write the FBOX register file two cycles earlier than floating
operates). If any of the following tests fail, the failing instruction cannot issue. The created stall
condition is termed a DEST-DEST stall.

1-50 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1. Ifeither the EO or E1 instruction’s destination register is the same as IMUL unit’s destination
register, the EO or E1 instruction is stalled.

2. Ifeither the FA of FM instruction’s destination register is the same as FDIV unit’s destination
register, the FA or FM instruction is stalled.

3. Ifeither the EO or E1 instruction is a floating LOAD with a destination register that matches
the FDIV destination register, the EO or E1 instruction is stalled.

4. Ifeither the EO or E1 instruction is a floating LOAD with a destination register that matches
the S4 or S5 destination registers in either the FA or FM pipes, the EQ or E1 instruction is
stalled.

5. If any of the instructions have a destination register that is the same as the destination
register of any Load that has missed in the D-Cache, the instruction is stalled until a FILL
occurs returning the register data.

6. If any of the instructions have a destination register that is the same as the destination
register of any Load instruction that is currently executing in S4 or S5, the the matching
instruction is stalled until the conflicting Load reaches S6 at which point the instruction will
be issued. The instruction will either complete successfully if the conflicting Load hits in the
D-Cache or a LDU-Reply will occur (see Section 1.2.9.17).

1.2.9.3.3 Current issue Conflicts

The destination and both source registers of each of the four current instructions are checked
against the destination registers of the other three currently slotted instructions to determine if
any conflicts exist in the block. If a match occurs between a source/destination and the destination
of another instruction which logically proceeds it (as determined by the I_IBS%E0_POS_2A<1:0>, etc.
lines), the logically latter instruction is stalled. The created stall is termed a Current-Issue stall.

1.29.4 Resource Availability Checks

The Issue stage performs a series of checks to insure that the proper execution resources are
available prior to releasing an instruction for execution. The results of the following checks are
ORed together for each of the four slotted instructions to generate a RESOURCE_STALL signal
for each instruction.

1.29.4.1 IMUL_BUSY

When an integer multiply is issued, the destination register number is stored in a register in
the integer dirty datapath. Subsequent IMUL instructions will check to see that this register is
empty prior to issuing. A stall occurs on an IMUL instruction if the multiplier is busy with a
previous instruction. It is possible to overlap the final cycle of one multiply with the first cycle
of the next multiply if there are no register dependencies. The Issue stage will clear the IMUL,_
DEST register one cycle prior to the actual end of the first multiply operation to support this
feature. The EBOX will send the signal E%I_MUL_DONE_SOON_2A to indicate that the multiplier
will produce S5 results in 3 cycles.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-51

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.29.4.2 IMUL_DONE_SOON

The result of an integer multiply is muxed into the EQ EBOX pipeline at the S5 stage. There
must not be a valid instruction in S5 of the EO pipe when the multiply result becomes available
or a data collision will occur. The Issue logic will stall the EO pipe for one cycle to allow the
multiply results to mux into the normal flow. The signal E%I_MUL_DONE_SOON_2A causes this
stall. The EBOX will signal the MUL_DONE_SOON indication in 2A, in the next cycle (3A), the
E0 instruction will be unconditionally stalled to introduce the necessary bubble.

1.29.43 FDIV_BUSY

A FDIV_BUSY stall occurs when a floating divide is scheduled to execute prior to the comple-
tion of a previous floating divide. This stall is similar to the IMUL_BUSY stall described in
Section 1.2.9.4.1. The FBOX will send the signal F%I_FDIV_DONE_SOON_2A to clear the FDIV_
DEST register in the floating dirty datapath. As with the IMUL unit, it is possible to overlap the
final cycle of a previous divide with the first cycle of the next divide in the absence of register
dependencies.

1.29.4.4 FDIV_DONE_SOON

The Floating Divider results are multiplexed into the Floating Add pipe in place of the normal
FA results. A bubble is required in the FADD pipe to avoid a data collision. The signal Fo%I_FDIV_
DONE_SOON_2A will cause a stall to occur on the FA slotted instruction in the next cycle. This
stall is similar to the IMUL_DONE_SOON stall described in Section 1.2.9.4.2.

12945 STORE_STALL

The Store SILO in the MBOX requires that Store(s) cannot be followed by Load instructions
in the second subsequent cycle. The Issue logic in the IBOX will set a bit in a two cycle shift

register whenever a STORE is issued. If the low order bit of this register is set, any LOAD type
instruction will be stalled.

1.29.4.6 FILL_STALL

Fill data returning from the MBOX to the EBOX register file is multiplexed into the appropriate
EBOX datapaths in place of operate results at the S6 stage. If an operate instruction is present
in S6 when a fill occurs, a data collision would result. To avoid this collision, the CBOX will send
a request to the IBOX Issue stage indicating that a FILL operation MIGHT occur. The IBOX
will stall both the EQ and E1 pipes inorder to insert the necessary bubbles when this signal C%I_
ALLOCATE_CYCLE_2B is asserted. LOADs that HIT in the DCache will not require any additional
pipe bubbles, since the pipe is already reserved for the MBOX data by the instruction itself.

Fills for Floating Loads will not require these bubbles since the FBOX register file contains two
write ports dedicated to LOAD data. In the event that the MBOX has a conflict between a floating
fill and a floating LOAD hit in the DCache that want to use the same Load bus, the second LOAD
will be "FORCED_MISS"ed and the earlier LOAD’s Fill data will be returned.

1-52 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.9.4.7 DRAINT_Stail

A number of conditions, including issuing the DRAINT or CALL_PAL instructions, or entering
PALMode due to a TRAP will cause a DRAINT operation. When a DRAINT occurs, the DRAINT _
FLAG is set in the Issue stage of the IBOX. All issuing is stalled while this bit is set. All previously
issued instructions must complete to the S7 trap point prior to resuming issuing. In addition, the
IMUL and FDIV units must finish any current operation before the DRAINT _FLAG is cleared.
Conditions causing the DRAINT_FLAG to be set and the requirements for clearing it are listed
in Section 1.2.9.13. ‘

1.29.4.8 MB_STALL

A number of conditions, including issuing the MB instruction, will set the MB_FLAG in the Issue
stage of the IBOX. When this flag is set, any slotted instruction that requires the MBOX will
be stalled. Instructions requiring the MBOX are listed in Figure 1-21. Conditions causing the
MB_FLAG to set and reset are listed in Section 1.2.9.12.

1.29.49 MB_MB_STALL

If a second MB instruction occurs while the MB_FLAG is set, all four instructions are uncondi-
tionally stalled. This allows an easy method for software (i.e. DVT code) to freeze the machine.
Unfreezing the machine occurs when the first MB is cleared. Since clearing the MB can be accom-
plished from the pins, this allows for hardware to synchronize stopping and starting instruction
issue. When the first MB is cleared, the second MB instruction will issue and will set the MB_
FLAG sllowing any subsequent non-MBOX instructions to issue. A second clear of the MB_FLAG
must occur to remove the second of the MB instructions to allow MBOX instructions to issue.

1.2.9.5 Instruction Stall

Each of the four slotted instructions has four possible stall conditions associated with it: a DEST-
SOURCE stall, a DEST-DEST stall, a Current-Issue stall, and a Resource stall. These four lines
are ORed together for each instruction to create a single stall indication for each of the four
instructions. If a valid instruction has not been slotted (as determined by the 1 IBS%E0_VALID 2A
etc. lines), the corresponding stall condition is not asserted.

If any of the four instructions signals that a STALL is necessary, the 1%Z_STALL_3B signal is
raised and sent to the earlier stages of the IBOX and to the other boxes. The Issue stage will
have latched the opcodes and other information sent from the slot stage into a set of conditional
holding latches. If a stall occurs, these latches will not update but will hold the instruction context
for all four of the current instructions. Local valid bits will be cleared for those instructions that
have been issued (as indicated by the I1%Z_ISSUE_E0_4A, etc. lines). In the next cycle, the Issue
stage will attempt to issue the remaining un-issued instructions. The Dirty Logic will assert 1%Z_
STALL_3B for as many cycles as necessary to resolve all the conflicts and successfully issue each
instruction in the block. Each of the four 1%Z_ISSUE_XX_4A lines will only assert for a single cycle
in each block. The cycle when I%Z_ISSUE_XX_4A asserts, is the cycle that a particular instruction
was actually released to the pipe.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-53

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.9.6 Serialization

Assuming that one or more of the instructions was stalled, a serialization step is necessary to
block the issue of all instructions that logically followed the stalling instruction even if there are
no register or resource conflicts on those following instruction(s). This is necessary to preserve
write ordering of the result data. This step is performed during 3B with the result of creating
four lines (1%Z_ISSUE_E0_4A, 1%Z_ISSUE_E1_4A, I%F_ISSUE_FA_4A, I1%F_ISSUE_FM_4A). These signals
indicate to the IBOX, EBOX, FBOX, and MBOX which of the four instructions are able to issue.
These signals will be latched and will travel down the the dirty logic datapaths as valid bits to
qualify future stall and bypass calculations. The signal 1%Z_ISSUE_E0_4A is also sent to the FBOX
as I%F_ST_ISSUE_4A to indicate that a floating store has been issued in the EO pipe.

1.29.7 Bypasses

In addition to coordinating the release of instructions to the various execution units, the Issue
stage is responsible for steering the correct data in the execution pipelines through a number
of built in bypasses. The IBOX Issue stage detects that a destination register matches one (or
more) of the source registers using the same datapaths used for the dirty checks. Bypasses are
signaled to the EBOX/FBOX regardless of the state of the 1%Z_ISSUE_XX 4A and 1%Z_STALL 3B
lines. If a stall is occurring, the source register numbers used in the bypass calculations will be
recirculated and the correct bypasses will be updated and signaled in the subsequent cycles until
the instruction requiring the bypass is actually able to execute.

1.29.7.1 EBOX Bypasses

In the two EBOX pipes, each stage’s (S4-S7) destination data is bypassable back to replace any of
the four operand registers (EOA, EOB, E1A, E1B). In addition, the S4 stage of each pipe has two
possible destination registers, the adder output or the logic box output. (RPP—Is this still true?,
does the dirty logic need to pick the LU or ADDer or will the EBOX figure this out for itself??)
There are 2 pipes * (4 + 1 stages) * 4 source registers = 40 different bypass possibilities.

For the case of two cycle EBOX instructions like SHIFTs, an S4 bypass may be asserted, but the
DEST-SOURCE checks will stall without issuing the following instruction since the data is not
actually available from the shifter until S5. Likewise IMUL results are not bypassable until they
reach the S5 stage which occurs three cycles following the E%MUL_DONE_SOON_2A signal.

It is possible that a particular register destination might exist in more than one stage of the pipe
simultaneously. This can be caused, for example, by issuing two instructions that write the same
register in back to back cycles. In this case, if the same register was then used as a source in a
following cycle, two different bypasses would be indicated. The bypass signals will be prioritized
prior to sending them to the EBOX such that the bypass from the logically latest instruction
will be used as the source register for the issuing instruction. Since the Current-Issue checks
(Section 1.2.9.3.3) will prevent the same destination register from appearing in both pipes in the
same cycle at the same stage, it is always possible to select the latest instruction to use as the
bypass source. If an instruction uses a literal value rather than a register file location as the B
source, the issue stage will detect this and signal the EBOX that the literal field should be used

instead of the register file or bypasses. Table 1-4 contains a list of the EBOX bypasses and their
relative priorities.

1-54 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1—4: EBOX Bypass MUX control Signals

Bypass Priority Description

EOA Source Bypasses

1%E_BYP_E0S4_E0A_3B 1 Use the EO Pipe’s S4 result
I%E_BYP_E184_E0A_3B 1 Use the E1 Pipe’s S4 result
I%E_BYP_E0S5_E0A_SB 2 Use the EO Pipe’s S5 result
I%E_BYP_E185_E0A_3B 2 Use the E1 Pipe’s S5 result
I%E_BYP_E0S6_E0A_3B 3 Use the EO Pipe’s S6 result
I%E_BYP_E186_E0A_3B 3 Use the E1 Pipe’s S6 result
I%E_BYP_EOW_E0A_3B 4 Use the EO Pipe’s S7 result
I%E_BYP_E1W_E0A_3B 4 Usethe E1 Pipe’s S7 result
1%E_USE_E0A_SB 5 Use the Register File Contents
EOB Source Bypasses

1%E_USE_EO_LIT_3B 1 Use the Literal Field
I%E_BYP_E0S4_E0B_3B 2 Use the EQ Pipe’s S4 result
1%E_BYP_E184_EOB_3B 2 Use the E1 Pipe’s S4 result
%E_BYP_E0S5_EOB_SB 3 Use the EO Pipe’s S5 result
1%E_BYP_E1S5_E0B_SB 3 Use the E1 Pipe’s S5 result
1%E_BYP_E0S6_EOB_SB 4 Use the EO Pipe’s S6 result
I%E_BYP_E1S6_E0B_3B 4 Use the E1 Pipe’s S6 result
1%E_BYP_EOW_EOB_SB 5 Use the EO Pipe’s S7 result
1%E_BYP_E1W_EOB_3B 5 Usethe E1 Pipe’s S7 result
1%E_USE_EOB_3B 6 Use the Register File Contents
E1A Source Bypasses

I%E_BYP_E0S4_E1A_3B 1 Use the E0 Pipe’s S4 result
I%E_BYP_E184_E1A_3B 1 Use the E1 Pipe’s S4 result
1%E_BYP_E0S5_E1A_3B 2 Use the EO Pipe’s S5 result
I%E_BYP_E1S5_E1A_3B 2 Use the E1 Pipe’s S5 result
1%E_BYP_E0S6_E1A_SB 3 Use the EO Pipe’s S6 result
I%E_BYP_E1S6_E1A_3B 3 Use the E1 Pipe’s S6 result
I%E_BYP_EOW_E1A_3B 4 Use the EO Pipe’s S7 result
I%E_BYP_E1W_E1A_3B 4 Usethe E1 Pipe’s S7 result
1%E_USE_E1A_3B 5 Use the Register File Contents

E1B Source Bypasses

DIGITAL RESTRICTED DISTRIBUTION

The Ibox 1-55

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-4 (Cont.): EBOX Bypass MUX control Signhals

Bypass Priority Description
I%E_USE_E1_LIT_3B Use the Literal Field
1%E_BYP_E0S4_E1B_3B Use the E0 Pipe’s S4 result
1%E_BYP_E1S4 E1B_3B Use the E1 Pipe’s S4 result
1%E_BYP_EOS5_E1B_3B Use the E0 Pipe’s S5 result

1%E_BYP_E1S5_E1B_3B Use the E1 Pipe’s S5 resuit
Use the E0 Pipe’s S6 result
Use the E1 Pipe’s S6 result
Use the EO0 Pipe’s S7 result
Usethe E1 Pipe’s S7 result

Use the Register File Contents

1%E_BYP_E0S8_E1B_3B
1%E_BYP_E1S6_E1B_3B
I%E_BYP_EOW_E1B 3B

%E_BYP_E1W_Ei1B 3B

S Ut O A A WWNN -

I%E_USE_E1B_3B

1.29.7.2 FBOX Bypasses

The FBOX bypasses are somewhat simpler since FBOX results are only bypassable at the register
file write stage. In the FBOX, the FA result can be bypassed back as any one of the four source
registers or as data for the store port. The FM result can be bypassed back similarly. In addition,
the two Load buses can be bypassed to any of the four source registers or the store port. Therefore
we have 4 destination registers * 5 source registers = 20 bypasses.

The Current-Issue checks (Section 1.2.9.3.3) will prevent the FA and FM pipes’ destination regis-
ter numbers from matching so that only a single bypass can be asserted for each of the 4 source
registers slotted to the FBOX pipes due to the execution pipes. The DEST-DEST checks (num-
ber 4 in Section 1.2.9.3.2) will prevent either of the LOAD bus destination registers in 7A from
matching either the FA or FM output destination register numbers currently in 9A. Therefore

no priority encoding of bypass signals to the FBOX is necessary. Table 1-5 contains a list of the
FBOX bypasses.

Table 1-5: FBOX Bypass MUX control Signals

Bypass Description

FAA Source Bypasses

1%F_FA_FAA_SB Use the Adder results
19F_FM_FAA_3B Use the Multiplier results
1%F_LDO_FAA_3B Use the data on Load Port 0
19%F_LD1_FAA_SB Use the data on Load Port 1
FAB Source Bypasses

1%F_FA_FAB_3B Use the Adder results

1-56 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-5 (Cont.): FBOX Bypass MUX control Signals

Bypass Description
I%F_FM_FAB_3B Use the Multiplier results
%F_LD0_FAB_SB Use the data on Load Port 0

I%F_LD1_FAB_3B

FMA Source Bypasses
I%F_FA_FMA_3B
1%F_FM_FMA 3B
1%F_LDO_FMA_3B

I1%F_LD1_FMA_SB

FMB Source Bypasses
1%F_FA_FMB_3B
1%F_FM_FMB_3B
19%F_LDO_FMB_3B

19%F_LD1_FMB_3B

STORE Port Bypasses
I%F_FA_ST 3B
I%F_FM_ST_SB
1%F_LDO_ST_SB

I%F_LD1_ST 3B

Use the data on Load Port 1

Use the Adder results

Use the Multiplier results
Use the data on Load Port 0
Use the data on Load Port 1

Use the Adder results

Use the Multiplier results
Use the data on Load Port 0
Use the data on Load Port 1

Use the Adder results

Use the Multiplier results
Use the data on Load Port 0
Use the data on Load Port 1

1.2.9.8 Register File Writes

The IBOX Issue stage provides both the EBOX and FBOX register files with write addresses and
write strobes. The destination register numbers are piped in the two dirty datapaths and the
accompanying valid bits are used to create the address and strobes respectively.

Destination register numbers for operates or loads entering S6 of the integer dirty datapath are
encoded and sent to the EBOX register file over the I%E_W0_ADDR_6A<4:0> and I%E_W1_ADDR_
6A<4:0> lines. The corresponding valid bits are buffered and sent as I%E_Wo0_EN_7A and I%E_W1_
EN_7A. If the valid bit(s) have been cleared by either not having issued an instruction in that
cycle or by a pipe abort condition, no write strobe is issued and therefore the register file is not
updated. Also, the write strobe is not issued if the instruction writing the register file was a
LOAD that missed in the D-Cache.

Destination register numbers entering S8 of the floating dirty datapath are encoded and sent
to the FBOX register file over the 1%F_FA_ADDR_8A<4:0> and I%F_FM_ADDR_8A<4:0> lines. The
corresponding valid bits are buffered and sent as 1%F_WE_FA _9A and I1%F_WE_FM 9A. As with the
EBOX registers, if the valid bit(s) have been cleared, the register is not updated.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-57

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The FBOX register file also has two separate write ports for Load data. The Issue stage will send
register addresses for these two ports over the I%F_LDO_ADDR_6A<4:0> and I%F_LD1_ADDR_6A<4:0>
lines. These are 6A signals to support the 7B write from the MBOX. For floating Loads that
HIT in the DCache, the address is provided by the IBOX Issue logic by decoding the instruction.
For FILLs, the MBOX will provide the register destination number to the Issue stage in 5A (see
Section 1.2.9.9). This destination number will be siloed, muxed inplace of the IBOX generated
address, and sent to the FBOX in 6A. The write strobes are I%F_WE_LD0_7A and I%F_WE_LD1_
7A. These strobes are created by examining the M%I_DC_HIT_E0_6A, M%I_DC_HIT_E1_6A, M%I_FILL_

VALIDo0_5B, and M%I_FILL_VALID1_5B lines as appropriate to the pipe and hit/miss status of the
instruction.

1.29.9 LOADs and STORES

LOAD and STORE instructions require some additional effort and special casing due to their un-

certain latency (LOADs), special pipe requirements (floating LOADs, and STORESs), and because
of MBOX requirements.

1.2.9.9.1 Additional LOAD Checks

The destination register of a load instruction will be locked against all reads/writes for two cycles
(S4 and S5). This means that any following instruction will not be allowed to issue if it uses the
Load’s destination register as either a source or a destination.

If an issuing (S3) instruction references the destination register of a load that is entering S6 as
either it’s destination or one of its two sources, the Load is assumed to hit in the D-Cache and
the appropriate bypasses and issue lines are asserted. If it turns out that the Load misses in the
D-Cache, an LDU-Replay occurs, see Section 1.2.9.17.

When a load misses in the D-Cache, the destination register is added to a list of outstanding
load misses held in the dirty datapaths. Any register locked by this list will cause stalls when
an issuing instruction attempts to reference the register as either a source or a destination.

1.2.9.9.2 Floating Loads

Floating Loads present a special problem since they are integer instructions that return results
to the floating register file. Therefore, for floating loads, the dirty logic must check the base
address (an integer register) using the DEST-SOURCE checks of the integer dirty pipe (this is
the same as for integer LOADs). However, the destination register (a floating register) must
be checked using the DEST-DEST checks of the floating dirty pipe. The current issue checks
that must be performed are a hybrid of the integer and floating current issue checks. The base
address register (Rb) must not conflict with the other integer instruction’s destination, if it does,
the Current Issue check will stall the floating load if it logically follows the conflicting integer
instruction. The floating load’s destination register (Fa) must not conflict with either of the
floating execute instruction’s destination registers. The logically latest of the floating load or the
conflicting floating operate will be stalled by the Current Issue checks to maintain register file
write ordering (see Section 1.2.9.3.3). If the floating load’s destination register conflicts with one
of the floating operate’s sources, and the floating load logically preceeds the operate, then the
floating operate is stalled. Therefore a condition resulting in a stall of a Floating LOAD could be
generated in either the integer or floating dirty datapath and the floating load (while technically
an integer instruction by issue pipe) can cause stalls of floating point instructions.

1-58 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.29.9.3 Floating Stores

Like Floating LOADs, Floating STOREs are integer instructions that use the floating register file.
The base address register of a floating store (Rb) is checked using the integer dirty datapath for
DEST-SOURCE and Current Issue conflicts similar to the Floating Load case described above.
The store data register (Fa) is checked using the floating dirty datapath for DEST-SOURCE
conflicts and Current Issue conflicts. Since the Fa register is a source rather than a destination,
the floating store cannot cause other instructions to stall (in either datapath). However, conditions
in either the integer or the floating point dirty datapaths, can lead to stalls of the floating store.

1.29.94 LOAD HITs

Register file destination numbers for LOADs that HIT will be encoded from the destinations being
piped along in the dirty datapaths. These encoded values will be sent to the register files in 6A as
described in Section 1.2.9.8 prior to learning of their hit status. The Hit signal(s) (M%I_DC_HIT_
Eo0_6A and M%I_DC_HIT E1_6A) will arrive at the Issue logic in late 6A and will be used to qualify
the write strobes sent in 7A. The "EQ" hit line will indicate that data is returning to either the
EQ integer pipe over the M%E_LD_DATA0_6A_H<31:0> bus or to the floating register file’s LDO write
port over the "0" (rpp-fill in the name of the bus when I know what it is) bus. The "E1" hit line
operates in a similar manner for the E1 integer pipe (M%E_LD_DATA1_6A_H<31:0>) and the LD1
port of the floating register file. The IBOX issue logic will determine which register file (E or F)
is to be written in each case by examining siloed bits associated with each pipe which indicate
whether the current S6 instruction is a LOAD and whether it is an integer or a floating point.

1.2.9.9.5 LOAD Fills

When a load misses in the D-Cache, the absence of the HIT signal(s) will prevent a write strobe
from being issued to the appropriate register file. Instead the register destination number will
be added to the list of LOAD_MISSes in the appropriate dirty logic datapath. This list is used in
the DEST-SOURCE and DEST-DEST checking as described in Section 1.2.9.3. When FILL data
is returned from the MBOX, the appropriate register is removed from the list.

The register addresses for returning fill data are provided by the MBOX in 4B over the M%I_FILL_
RNUMO_4B<6:0> and M%I_FILL_RNUM1_4B<6:0> lines. The "0" bus is used for addresses correspond-
ing to data being returned to either the E0 EBOX pipe (over M%E_LD_DATA0_6A<31:0> or to the
LDO port of the floating register file (rpp-fill in name). The "1" bus likewise corresponds to the
E1 EBOX pipe and the LD1 port of the floating register file. Unlike with HITs where the MBOX
must return the data using the same pipe in which the instruction was issued ("0" or "1"), FILL
data may be returned to either of the two E/F box pipes/ports. Fill data is marked valid by the
FBOX by the assertion of the lines M%I_FILL_VALIDO_5B and M%I_FILL_VALID1_5B.

The IBOX Issue stage will determine whether the fill data is bound for the E or F box by examining
bit 5 of the MBOX supplied register address. This bit will be a "1" for an FBOX fill or a "0" for an
EBOX fill. Bit 6 of the rnum is the "Pal_Shadow" bit. It is a "1" for fill addresses corresponding
to a PAL_SHADOW register rather than a normal EBOX register. Bit 6 is ignored, if Bit 5 is set,
corresponding to an FBOX fill.

When a valid fill is sent from the MBOX (i.e. a valid register destination and "fill_valid" are
present), the IBOX will multiplex the MBOX specified register destination address into the ap-
propriate dirty logic datapath and then drive out the correct register address in the same manner
as done for D-Cache Hits.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-59

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.29.9.6 EBOX LD MUX

LOAD data is multiplexed into the normal EBOX result SILO at the S6 stage. The IBOX Issue
stage signals the EBOX whether it should SILO it’s S5 results into S6 or accept MBOX data.
This is accomplished by the two lines I%E_USE_LDo0_6A and I%E_USE_LD1_6A. Since these are 6A
signals, it is not known whether the MBOX data multiplexed will be valid. The EBOX register
file will not be updated in S7 if MBOX FILL data was not valid or not a HIT. The Issue stage
will assert the appropriate "use_ldx" line when an integer LOAD advances into S6. It will assert
both lines in response to the CBOX allocate c¢ycle command (C%I_ALLOC_CYCLE_2B).

1.29.10 EBOX IMUL MUX

The EBOX integer multiplier indicates that it has finished it’s operation and has data available by
asserting the E%I_MULL_DONE_SOON_2A line. As mentioned in Section 1.2.9.4.2, the E0 instruction
is stalled for a cycle, to allow this instruction to merge into the E0 pipe at the S5 stage three cycles
later. However, if a FILL_STALL (Section 1.2.9.4.6) is signaled by the CBOX (C%I_ALLOCATE_
CYCLE_2B) at the same time, the FILL_STALL has priority. Therefore the IMUL unit cannot mux
it’s results into the EQ pipe. The final stage of the IMUL unit contains a static latch will hold the
data until the next IMUL finishes. Therefore this data is available for multiplexing into the E0
pipe at any point until the next IMUL is issued and completes. The IBOX Issue stage will select
the IMUL result by asserting the I%E_SEL_MUL_5B signal in the first cycle that the FILL_STALL
does not occur. In this cycle, the EO pipe will be reserved by the IMUL_DONE_SOON stall so
that a data collision does not occur.

The floating divider does not present a similar problem since FILLs are returned to the FBOX
register file via separate dedicated write ports.

(rpp— Is there a potential problem here if the CBOX allocates N cycles in a row???)

1.29.11 Conditional Move

The integer and floating point CMOV instructions are jointly performed by the Issue stage of the
IBOX and the E/FBoxes. The Issue stage issues the instruction and signals the appropriate box
with the I%Z_ISSUE_XX 4A lines. The E/FBoxes, assume that the CMOV will be successful and
copy the Rb data to the destination. At the same time the "conditional” test on Ra is carried out.
The sucess of this test is indicated to the IBOX Issue stage using the lines E%I_KILL_CMOV0_4B,
E%I_KILL_CMOV1_4B, and F%I_KILL_CM_5A_H. If one of these signals asserts, it indicates that the
conditional test failed. The Issue stage will clear the appropriate valid bit associated with the
instruction thus "killing" it. If the test is sucessful, the instruction is allowed to proceed down
the pipeline (being bypassed if necessary) and eventually written into the register file.

1.29.12 Memory Barriers

Issuing any of the following instructions will set the MB_FLAG in the Issue stage which will
prevent further issuing of MBOX instructions:

1-60 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-6: Instructions Setting the MB_FLAG
Opcode(hex) Mnenomic

Description

18.4xxx MB Memory Barrier

2E STL_C Store Long Conditional

2F STQ C Store Quad Conditional

18.Cxxx RPCC Read Process Cycle Counter

18.Exxx RC READ and CLEAR

18.Fxxx RS READ and SET

1F. HW_ST Hardware Store, only sets the MB_FLAG if the "_C" option is present

The MB flag will remain set until the MBOX clears it via the M%I_MB_CLEAR 2B signal. (rpp—
Does this still come solely from the MBOX?? or does the CBOX ack MBs while the MBOX acks
the rest?)

Need to work out what happens during the various pipe abort conditions -rpp

While the MB_FLAG is set, all MBOX associated instructions are stalled at the Issue stage.
Since EV5 does not issue instructions out-of-order, this first stalled MBOX instruction will stall
all further instruction issue until the MB_FLAG is cleared by the MBOX. The following table
lists instructions that will be stalled while the MB_FLAG is set.

Table 1—-7: MBOX Instructions stalling while MB_FLAG is set

Opcode Mnemonic Description

0B LDQU Load Quad Unaligned

oF STQ U Store Quad Unaligned

18.4xxx MB Memory Barrier—2nd MB stalls the machine see Section 1.2.9.3

18.8xxx FETCH Fetch Instruction

18.Axxx FETCHM Fetch with Modify Intent

18.Cxxx RPCC Read Process Cycle Counter

18.Exxx RC Read and Clear

18.Fxxx RS Read and Set

19 HW_MFPR Hardware Move from Processor Register —(rpp-Should this stall under
MB for both I, M boxes, just for the MBOX, or for neither?)

1B HW_LD Hardware Load

1D HW_MTPR Hardware Move to Processor Register—(rpp see note on HW_MFPR)

1F HW_ST Hardware Store

20 LDF Load F

21 LDG Load G

22 LDS Load S

23 LDT Load T

DIGITAL RESTRICTED DISTRIBUTION

The Ibox 1-61

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-7 (Cont.): MBOX Instructions stalling while MB_FLAG is set

Opcode Mnemonic Description

24 STF Store F

25 STG Store G

26 STS Store S

27 STT Store T

28 LDL Load Long

29 LDQ Load Quad

2A LDL_L Load Long Locked

2B LDQ L Load Quad Locked

2C STL Store Long

2D STQ Store Quad

2E STL_C Store Long Conditional
2F STQ C Store Quad Conditional

1.2.9.13 DRAINT

The Issue stage contains a one bit DRAINT_FLAG which is used to indicate that a DRAINT

operation (explicit or implicit) is occuring. No instructions are issued while the DRAINT _FLAG
is set.

1.29.13.1 Setting the DRAINT_FLAG

The DRAINT_FLAG is explicitly set by issuing the DRAINT instruction. It is also set (implicitly)
by the issue of a CALL_PAL instruction or by the dispatch of a TRAP to the appropriate PALCode
routine. The DRAINT_FLAG is set when the DRAINT or CALL_PAL is actually issued. This
implies that it is not set until the instruction is next in line to issue. Therefore if a prior instruction
in the issue block causes a STALL, the DRAINT FLAG is not set in that cycle. DRAINTs and
CALL_PALs may multiple issue with other instructions however by definition they will be the last
instruction in the multiple issue block. When a DRAINT is issued, subsequent (and therefore)
unissued instructions in the S3 Issue block will be stalled immediately (CALL_PALs will be the
last valid instruction slotted in an issue block since they change the PC). Neither DRAINT or
CALL_PAL instructions will set any valid bits in the dirty logic pipelines when they issue, the
only effect as far as the issue stage is concerned is the setting of the DRAINT_FLAG. When
a TRAP is posted, the change from "native"” mode to PALMode as indicated by bit 0 of the PC

(RPP-get the signal name from NITAL), an implicit DRAINT is executed. Al! instruction issuing
is stalled in that cycle.

1-62 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.29.13.2 Clearing the DRAINT_FLAG

Each cycle, the valid bits in both the floating and integer dirty datapaths are examined. The
presence of a valid bit indicates that a valid instruction is executing in one of the pipelines.
The presence of any set valid bit corresponding to stages 4-7 of either of the EBOX pipes or to
stages 4-9 of either of the FBOX pipes means that the DRAINT operation has not completed.
(NOTE: The valid bits for instructions that logically follow a TRAP are cleared when the TRAP is
posted—see Section 1.2.9.15.1). In addition, if a valid instruction is executing in either the Integer
Multiplier or the Floating Divider, the DRAINT operation is not complete. The DRAINT_FLAG
is cleared at the end of the cycle following the cycle when all of the valid bits in the two dirty
logic pipelines, the IMUL, and the FDIV, become clear. This means that any TRAPS associated
with the executing instructions have reached their reporting points and the TRAP logic in the
IBOX has had a cycle to take the appropriate response if a TRAP has occurred.

1.29.13.3 DRAINT Latency

Instruction issuing is resumed at the beginning of the cycle following the cycle in which the
DRAINT_FLAG is cleared. There is an explicit SET overrides RESET logic for the DRAINT _
FLAG such that a minimum DRAINT operation appears to require two cycles. In the first cycle,
the DRAINT (or CALL_PAL) instruction is issued and the DRAINT FLAG is set. This corre-
sponds to the initial cycle that a TRAP is posted. In the second cycle, if all the valid bits are
clear, the DRAINT_FLAG is cleared. However, this does not occur until late in the cycle at which
point a STALL decision for that cycle has already been made. Therefore instruction issuing
resumes at the beginning of the third cycle.

Typically the minimum DRAINT operation does not occur. The pipeline must have been fully
drained prior to issuing the DRAINT (or CALL_PAL) to achieve the minimum latency. For well
scheduled integer code (without IMULS), the typical latency of a DRAINT is 5 or 6 cycles. This
corresponds to the following:

Dual Issue of an integer operate and the DRAINT.

S4 of the Integer Operate

S5 of the Integer Operate

S6 of the Integer Operate

S7 of the Integer Operate (Overflow is reported to the TRAP logic)

The DRAINT_FLAG is cleared late in the cycle

Issuing resumes.

SIS S o

The latency is reduced to 5 cycles, if the DRAINT does not dual issue with an integer operate.

Typical DRAINT latency on floating point code is two cycles longer (i.e. 7 or 8 cycles) since the
floating pipe is two cycles longer than the integer pipes.

What do we do about error conditions,aborts, etc???—rpp

DIGITAL RESTRICTED DISTRIBUTION The Ibox 1-63

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.29.14 lllegal/Reserved Opcodes

(RPP- It is currently a little unclear how much of this is detected by the issue stage and how
much by the Slot stage. This description provides the details of having the Issue Stage do all
the detecting/reporting of illegal opcodes. The final implementation may have some/all of the
decoding done in the slot stage with the issue stage simply providing the issue timing for the
appropriate signals to the TRAP logic).

The Issue Stage of the IBOX detects and reports several kinds of illegal/reserved opcodes to the
TRAP logic. The Issue Stage reports on these conditions at the same time that the offending
instruction issues. This helps preserve the "exactness” of the potential exceptions generated by
these conditions. The TRAP logic must abort the instruction (and any subsequent instructions
(Section 1.2.9.15.1) by generating the appropriate TRAP. The following conditions are detected
and reported.

1.29.14.1 Opcodes Reserved to Digital

These opcodes (01-07, 0A, 0C-0E, 14, and 1C) are routed by the Slot stage to Pipe E0. The
Issue Stage will assert the signal I 1SS%OPCDEC_4A to the TRAP logic when one of these opcodes
"issues"”. In addition, the relative position of this instruction within the current block of four will
be indicated by the I_ISS%E0_POS_4A<1:0> lines.

1.2.9.14.2 PAL Instruction in "native” mode

The PAL opcodes (19, 1B, 1D, 1E, 1F) are detected by the instruction decoder in the Issue stage.
When one of these opcodes reaches the issue stage and does not encounter any stalls, the instruc-
tion issues and the appropriate registers are marked dirty. If the machine is operating in "native"
mode when the instruction issues as indicated by bit 0 of the S3 PC (rpp-check with Nital for the
correct signal) instead of PALMode, the signals I_ISS%OPCPAL_E0_4A and/or I_ISS%OPCPAL_E1_4A
are asserted to the TRAP logic. The instruction will issue during the 3B/4A phase, so the TRAP
logic must signal a valid TRAP back to the Issue stage in order to clear the valid bits associated
with this instruction and to free up the dirty registers. The position of the OPCPAL instruction
within the current block can be determined by examining the 1_ISS%E0_POS_4A<1:0> and I_ISS%E1_
POS_4A<1:0> lines. -

1.29.14.3 Priviledged CALL_PALS

When a CALL_PAL with a priviledged function field is issued, the Issue stage signals the TRAP
logic using the I ISS%PRIV_PAL_4A<1:0> line. The position of this instruction may be determined
by examining the I ISS%E1_POS_4A<1:0> lines. Since a CALL_PAL does not dirty any registers, no
registers are dirty locked by the issuing of this instruction. The Issue stage will indicate that a
priviledged CALL_PAL has been executed regardless of the current mode of the machine. The
TRAP logic will determine if a TRAP is required (i.e. not in KERNAL mcde).

1.29.144 lllegal CAL_PAL functions

When a CALL_PAI with a function field outside of the legal range (0-3F and 80-BF are the legal
range), is issued, the Issue stage signals the TRAP logic with the I ISS%BAD_PAL 4A line. The
position of this instruction may be determined by the I_ISS%E1_POS_4A<1:0> lines.

1-64 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.29.14.5 Floating Point
(rpp-I need to check on this... Does the issue stage need to do anything?)

1.2.9.15 Aborting Instructions
1.29.15.1 TRAPs, REPLAYSs, and INTERRUPTS

When an instruction is issued, the I%ISSUE_XX_4A lines are latched and travel down the appro-
priate dirty logic pipeline as valid bits. (Section 1.2.9.6). The TRAP logic will send the signals I_
TRP%ABORT_S2_THRU_S7_B_H or I TRP%ZABORT_S2_THRU_S5_B_H when an interrupt, error, replay,
or trap occurs. These signals will be used to clear the siloed valid bits in the dirty datapaths. In
addition, issuing is suspended for two cycles. This allows time for the earlier stages of the IBOX
to cycle to the correct state without releasing any additional instructions into the execution units.

The actual valid bits cleared depends upon which of the TRAP signals is indicated and upon the
position information sent from the TRAP logic sent over the (rpp-get the name from Vidya) lines.
For S7 traps, (indicated by the I TRP%ABORT_S2 THRU_S7_B_H signal), all valid bits in stages 3-6
are cleared. In addition, valid bits for instructions in S7 that follow the TRAPping instruction
cleared. For S5 traps, (_LTRP%ABORT _S2_THRU_S5_B_H) only the valid bits in S3, S4, and for S5

instructions following the TRAPping instruction are cleared.

Since the register file writes in the EBOX (FBOX) use an S7 (S9) version of these siloed valid bits
as the write strobe, EBOX and FBOX operates for the aborted instructions are effectively killed
when the valid bits are cleared. The FBOX also uses the write strobe(s) to update the FPCSR
register with the exception status. If the write strobe doesn’t occur, the instruction is assumed to
have been aborted by a previous exception and the register is not updated. Since some TRAPS
are reported in S7, the EBOX register file write strobes cannot be aborted in time. Therefore
the MBOX (the source of the S7 traps) will send a pair of register file write aborts to the EBOX
register file to abort the S7 instructions.

Instructions executing in the integer Multiplier (and the floating Divider) require a special abort
sequence. When an instruction is issued to either of these units, it sets a timer in the Issue stage.
The timer is used to determine the state of the inprogress instruction relative to the trapping
event. If the instruction in one of these two units logically follows the faulting instruction in
execution order, the unit must be aborted. This state is detected by the issue logic and an
abort signal is sent (I%E_ABORT_IMUL, 1%F_ABORT_FDIV) to the appropriate box. In addition, the
IMUL_DEST (or FDIV_DEST) register in the dirty logic is cleared to free up the unit for future
instructions. These abort signals may be sent in any of the first four cycles of the IMUL/FDIV
instruction’s execution.

The Trap logic in the IBOX will be responsible for driving the appropriate signals to the MBOX
to abort any issued MBOX instructions. The valid bits for any instructions following the faulting
instruction will have been cleared in the Issue stage so that no data is expected to be returned
to the register file(s) for these instructions. LOADs that have missed in the D-Cache must have
logically preceeded any trapping instruction and therefore will be allowed to complete when the
data is returned by the MBOX. The list of outstanding misses will not be cleared until the fill
data returns, therefore PALCode may experience some unanticpated stalls if the code attempts
to use a register that is still locked from prior loads.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-65

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.9.15.2 ERROR aborts

Certain conditions, like RESET, expiration of the S3_STALL_TIMEOUT counter, and (others
TBD-rpp) will cause all of the valid bits in the Issue logic to be cleared These conditions will also

cause the oustanding miss register list to be cleared and aborts to be sent to the IMUL and FDIV
units.

1.29.16 Special Stuff

**RPP-This section will be a collection of all the other hoops that the Issue stage jumps through
that don’t fit into the other sections**.

1.29.17 LOAD MISS-AND-USE Replay
This section is waiting some clarification of the latest set of changes prior to being included.

The DCache HIT signals from the MBOX (M%I_DC_HIT_E0_6A and M%I_DC_HIT_E1_6A do not arrive
in the Issue logic early enough for the IBOX to signal the correct stall or bypass if a current issuing
53 instruction has a data dependency on one of the LOADs currently in 6A. To avoid adding an
additional cycle of latency to the LOAD-HIT path, special LDU_REPLAY logic has been built into
the integer dirty datapath. In the case described, where an issuing instruction a source register
that matches the destination of a LOAD currently is S6, the LOAD is assumed to HIT and the
instruction is issued. If the guess was correct, everything proceeds as normal. If the guess proves
incorrect, an LDU_REPLAY is asserted. The signal I_ISS%LDU_REPLAY_3B is asserted to the EPC
and TRAP sections of the IBOX. In addition, the position in the block of 4 of the instruction that
was incorrectly issued is sent on the lines I_ISS%LDU_OFFSET 4A<1:0>. An LDU_REPLAY also
occurs if one of the issuing instructions has a DEST-DEST conflict with the LOAD that missed
in the DCache.

The TRAP logic will abort the Issue stage pipe at the S5 TRAP time assuming that no higher
priority TRAP occurs. This will cause the incorrectly issued instruction and all instructions issued
in it’s shadow to be aborted.

The EPC section will create the PC of the incorrectly issued instruction by appending together
the PC of the issue block and the offset. This PC will be sent to the IDX section which will start
a new ICACHE access at the point of the incorrectly issued instruction.

The incorrectly issued instruction will arrive back at the issue point 5 cycles later just as the
data is being returned from the SCache (if the SCache data was a Hit). If the SCache MISSes,

the instruction is stalled until the data arrives. Figure 1-23 shows a timing diagram for the
LDU_REPLAY path.

1-66 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

[} 1 2 3 4 5 6 7 8] 10 11 12
! H H 3
LD RO,0(Rt) itc jIB isL iIs
fic fiB isL ! H : ADD_ STALLED DUE TO DEST-SOURCE
ADD RO,R1,R2 — S STl aB; H : H CONFLICT WITH THE
o 11C 1B 3 SL 1 i H ADD STILL STALLED
: ' t ¢ ' t t
iumnllu:ln-nuunb;nln--nn;tnnllnn;lun--l P RS ST ADD ISSUED, LOAD DATA BYPASSED
ADD RO,R1,R2 1B :SL 118 DC_HIT INDICATES A MISS IN LATE 6A
H ; LDU_REPLAY ASSERTS IN 6B
. ADD™ABORTED IN 8B
: i : INSTRUGTIONS FOLLOWING THE ADD ISSUED
INSTRUGTIONS FOLLOWING THE ADD....} : ! ABORTED IN 8B -- AL STAGE
T R H INSTRUCTIONS ISSUED
° N ABORTED IN 8B -- ISS STAGE
o i i INSTRUCTIONS KILLED AT SL STAGE
INSTRUCTIONS KILLED AT IB STAGE
TR RIORITIZATION AND INDEX GENERATION
ADD RO,R1,R2 :

LOAD MISS-AND-USE REPLAY TIMING {1

ASSUMES 5 CYCLE SC LATENCY

LOAD MISS-AND-USE Replay Timing

Figure 1-23

The lbox 1-67

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.9.18 PAL Shadow Support

The EBOX has an additional 8 "PAL_SHADOW" registers that can be enabled in PAL mode to
replace registers 8-15 of the normal EBOX register file. Mapping of the PAL_SHADOW bank is
enabled when the machine is in PALMode and the ICSR<SDE> bit is set. PALMode is determined
by examining bit 0 of the 3A PC (rpp-check with Nital for the correct version).

1.2.9.18.1 EBOX Register File Control

The EBOX register file selects the PAL_SHADOW bank registers for reads by examining the
1%E_RD_PAL_SHADOW_2A_H line which is created by ANDing the PALMode and SDE bits together.
If this signal is active, all four source operands will be read from the PAL,_SHADOW bank if they
are in the PAL,_SHADOW?’s range, otherwise they will be read from the normal EBOX registers.

The Issue Stage will silo the I%E_RD_PAL_SHADOW_2A_H bit down the dirty logic datapath with
the valid and position bits. The siloed version of this signal is used to select the PAL_SHADOW
bank for register file writes. Two signals are generated in S6 to control the bank selection for
register file writes, I%E_Wo0_PAL_SHADOW_6A and I%E_W1_PAL_SHADOW_6A. These signals select
the PAL_SHADOW bank for the WO and W1 write ports respectively. If one of these signals is
active, and the register address falls in the PAL_SHADOW range, the PAL, SHADOW register is
updated when the write strobe (IZE_Wo0_EN_7A, etc.) is generated. If the register falls outside the
PAL_SHADOW bank, then the normal EBOX register is updated regardless of the state of the
T%E_WX_PAL_SHADOW_6A lines.

1.2.9.18.2 Dirty Checks for the PAL_SHADOW registers

The Issue Stage peforms the normal dirty and bypass checks (see Section 1.2.9.3) on instructions
issued while the PAL_SHADOW bank is enabled. The Issue stage doesn’t separate a reference to a
PAL_SHADOW register from that to the corresponding normal register. Stalls and Bypasses may
be asserted if, for example, one instruction references Shadow R8 and another references "normal”
R8. This implies that all writes to PAL_SHADOW registers must complete before switching to
the "normal" bank and that all writes to "normal" registers must complete prior to switching to
the PAL_SHADOW bank. The only exception to this rule is for LOADs that miss in the DCache.
The PAL_SHADOW bit that is siloed with the instruction is used in setting the bits in the DCache
Miss register of the integer dirty datapath. In addition, the MBOX reads the signal 1%M_PAL _
SHADOW_EN _2A and stores this bit in the Miss Address File. The MBOX will return this bit as
bit 6 of the register address when the fill data returns. Therefore, it is possible to determine
the correct register address (PAL_SHADOW or normal) for the EBOX register file. The PAL_
SHADOW bit of the write addresses sent to the EBOX register file (I#E_WX_PAL_SHADOW_6A) are
set to match the MBOX provided bit 6 for FILLs.

1.29.18.3 Switching betweeen PAL_SHADOW and NORMAL banks

There are two ways that the PAL_SHADOW bank can be enabled. The first case is switching
from "native” mode to PALMode by either issuing a CALL_PAL instruction or by the posting
of a TRAP. Switching from "native” mode to PALMode requires that an implicit DRAINT be
performed, therefore the pipeline is drained of any operate instructions that have destinations to
the "normal” registers. At the point that issuing resumes, the PAL_SHADOW bank is enabled
and no outstanding writes (due to operates) exist for the "normal” registers that lie in the PAL_
SHADOW address range.

1-68 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The second way to enable the PALL SHADOW bank is to set the ICSR<SDE> bit while in
PALMode. In this case, up to 5 cycles of operates (S3-S7) may be in the pipeline with desti-
nations that should be to "normal” registers. These operates could cause incorrect data to be
bypassed to subsequent instructions that reference PAL_SHADOW registers with corresponding
register numbers. Therefore, PALCode must ensure that 5 cycles are allowed between an operate
instruction that will write a "normal” register in range R8-R15 and an instruction that will use
the PAL_SHADOW version of this register as a source operand.

There are also two ways that the PAL_SHADOW bank can be disabled. The first is to switch from
PALMode back to "native” mode. As in the case outlined in the previous paragraph, operates in
the two EBOX pipes with PAL,_SHADOW destinations could cause incorrect bypasses to source
registers that are actually in the "normal” bank. Since PALCode has no control over the appli-
cation instructions following an HW_REI (switch back to "native” mode), PALCode must avoid
writing a PAL_SHADOW register in any of the 5 cycles prior to and including the cycle when a
HW_REI issues that switches back to "native" mode. This restriction can also be met by issuing
a DRAINT just before the HW_REI.

The second way of disabling the PAL,_SHADOW bank is to clear the ICSR<SDE> bit. This case
the exact analog of the case where the bit is set. Therefore PALCode must not reference a register
in the range R8-R15 within 5 cycles of a write to the corresponding PAL_SHADOW register.

1.2.10 IBOX IPR’s and PAL_TEMP registers

The PC bus is used for data movement to and from the IPR’'s/PAL_TEMP registers.

An IPR/PAL_TEMP is read in S3 and sent to the EBOX on the IBOX PC bus where it is muxed
in with the output of the logic box at the end of the E1 pipe. This makes the data bypassable in
a cycle.

To write an IPR/PAL_TEMP, the data is read from the EBOX gpr in S3 and sent over the EBOX
PC bus in S4. The actual write of the IPR/PAL_TEMP register takes place in S5. There is no
siloing of write data to wait out trap shadows. The Ibox will stop writes to the IPR once a trap
happens. Given that the latest traps happen in S6 and that IPR writes happen in S5, S6 traps
cannot block IPR writes. Only Mbox instructions can trap in S6, which therefore implies that
any HW_MTPR that dual issues with and is after an Mbox instruction, will not be aborted if the
Mbox instruction is aborted. Floating branch mispredicts which trap in S5 also do not abort IPR
writes. are posted in S7.

NOTE

Unless explicitly stated, IPRS are not cleared or set by hardware on chip or on timeout
reset.

1.2.10.1 ITB_TAG

The ITB_TAG register is a write only register. This register is written by hardware on an
ITBMISS/IACCVIO, with the tag field of the faulting VA. To ensure the integrity of the ITB,
the TAG and PTE fields of an ITB entry are updated simultaneously by a write to the ITB_PTE
register. This write causes the contents of the ITB_TAG register to be written into the tag field
of the ITB location, which is determined by a NLU algorithm. The PTE field is obtained from
the MTPR ITB_PTE instruction.

DIGITAL RESTRICTED DISTRIBUTION The Ibox 1-69

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-24: Istream TB Tag, ITB_TAG

63 43 42 13 12 00

| IGN | VA[42..13] | IGN !

12102 ITB_PTE

The ITB_PTE register is a read/write register. A write to this register, writes both the PTE and
TAG fields of an ITB location determined by a not-last-used algorithm. The TAG and PTE fields
are updated simultaneously to insure the integrity of the ITB. A write to the ITB_PTE register
increments the NLU pointer, which allows for writing the entire set of ITB PTE and TAG entries.
The TAG field of the ITB location is determined by the contents of the ITB_TAG register. The
PTE field is available in the MTPR ITB_PTE instruction. Writes to this register use the memory
format bits as described in the Open VMS memory management chapter of the Alpha SRM.

Note: The NLU pointer is bumped in trap shadows.

Figure 1-25: Istream TB PTE Write Format, ITB_PTE

63 59 58 32 31 12 11 10 09 08 07 06 05 04 03 00

	! 1U	8	E IK	I	1A	
IGN	PFN{39..13]	IGN IR R IR IR	G	GH	S	IGN
		IE	E	E [E [N	M	
t + } b=+ + pom et +

A read of the ITB_PTE requires two instructions. A read of the ITB_PTE register, returns the
PTE pointed to by the NLU pointer to the ITB_PTE_TEMP register and updates the NLU pointer
according to the not-last-used algorithm. A zero value is returned to the integer register file. A

second read of the ITB_PTE_TEMP register returns the PTE the the general purpose integer
register file.

Note: The NLU pointer is bumped in trap shadows.

Figure 1-26: Istream TB PTE Read Format, ITB_PTE

63 59 58 32 31 30 29 28 22 21 20 19 18 13 12 0
	:	GHD	U IS	E	K	1A		
RAZ	PFN[39..13]	<2:0>	RAZ IR [R	R	R	RAZ	S	RAZ
	1		IE	E	E	E	M	

+

1.2.10.3 Address Space Number, ITB_ASN

The ITB_ASN register is a read/write register which contains the Address space number (ASN) of
the current process.

1-70 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-27: Address Space Number Read/Write Format, ITB_ASN

63 11 10 04 03 00

| RAZ/IGN | ASN<6:0> |RAZ/IGN|

+ +
+ +

1.2.104 ITB_PTE_TEMP

The ITB_PTE_TEMP register is a read-only holding register for ITB_PTE read data. A read of the
ITB_PTE register returns data to this register. A second read of the ITB_PTE_TEMP register
returns data to the integer general purpose register file.

Figure 1-28: Istream TB PTE Temp Read Format, ITB_PTE_TEMP

63 59 58 32 31 30 29 28 22 21 20 19 18 1312 0
i I | GHD | U IS IE IK | ia | I
| RAZ { PFN([39..13] | <2:0> | RAZ JR |R R |R |RAZ |S | RAZ |
| l I ! |IE IE |E [E | M | I

Table 1-8: Description of GHD bits in ITB_PTE_TEMP read format

Name Extent Type Description

GHD 31 RO Is set if GH(granularity hint) equals 11.

GHD 30 RO Is set if GH(granularity hint) equals 10 or 11.
GHD 29 RO Is set if GH(granularity hint) equals 01, 10 or 11.

1.2.10.5 Istream TB Invalidate All Process, ITB_IAP
This is a write-only register. Any write to this register invalidates all ITB entries, whose ASM
bit equals zero.

1.2.10.6 IStream TB Invalidate All, ITB_IA

This is a write-only register. Any write to this register invalidates all ITB entries, and resets the
ITB NLU pointer to its initial state. RESET Palcode must execute an MTPR ITB_IA instruction
in order to initialize the NLU pointer.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-71

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.10.7 ITB_IS

This is a write-only register. Writing a virtual address to this IPR invalidates the ITB entry that
meets any one of the following criteria:

¢ An ITB entry whose VA field matches ITB_IS<42:13> and whose ASN field matches ITB_
ASN<10:4>.

An ITB entry whose VA field matches ITB_IS<42:13> and whose ASM bit is set.

Figure 1-29: ITB_IS

63 43 42 13 12 00

+

| IGN | VA[42:13] | IGN

+
+

1.2.10.8 Formatted Faulting VA register, IFAULT_VA_FORM

This is a read-only register which contains the formatted faulting virtual address on an ITBMiss/IACCVIO.

The formatted faulting address generated depends on whether NT super page mapping is enabled
through the SPE <0> bit of the ICSR.

Figure 1-30: IFAULT_VA_FORM in non NT mode

63

33 32 03 02 00
4= + + +
| VPTB[63:33] | VA[42:13] {RAZ |
+ + +————+
Figure 1-31: IFAULT_VA_FORM in NT mode
63 30 29 22 21 03 02 00
+ + + et
| VPTB[63:30] | RAZ | VA[31:13] |RAZ |

+

1.2.10.9 Virtual Page Table Base register, IVPTBR
This is a read-write register.

1-72 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-32: IVPTBR in non NT mode

63 33 32 30 29 00

+ +

| VPTB[63:33] | IGN | RAZ/IGN |

+

Bits <32:30> are undefined on a read of this register in non NT mode.

Figure 1-33: IVPTBR in NT mode

63 30 29 00

+

| VPTB[63:30]] RAZ/IGN l

+

1.2.10.10 Icache Parity Error Status register, ICPERR_STAT

This is read/write register that contains information about an Icache Parity error. The error status
bits may be cleared by writing a 1 to the appropriate bits.

Figure 1-34: ICPERR_STAT Read format

63 13 12 11 00

| T
RAZ/IGN | M
| R

4 o ——— 4

Table 1-9: ICPERR_STAT Field Descriptions

Name Extent Type Description

DPE 11 WI1C Data parity error.
TPE 12 wi1C Tag parity error.
TMR 13 wWicC Timeout reset error.

1.2.10.11 ICache Flush Control register, IC_FLUSH_CTL

This is a write-only register. Writing any value to this register flushes the entire Icache.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-73

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.10.12 Exception Address register, EXC_ADDR

The EXC_ADDR register is a read-write register used to restart the machine after exceptions or
interrupts. The HW_REI instruction causes a return to the instruction pointed to by the EXC_
ADDR register. This register can be written both by hardware and software. Hardware writes
happen as a result of exceptions/interrupts and CALLPAL instructions. Hardware writes which
occur as a result of exceptions/interrupts take precedence over all other writes.

In case of an exception/interrupt, hardware writes a PC to this register in S6 of the execution
pipeline. In case of precise exceptions, this is the PC of the instruction that caused the exception.
In case of imprecise exceptions/interrupts, this is the PC of the next instruction that would have
issued if the exception/interrupt was not reported.

In case of a CALLPAL instruction, the PC of the instruction after the CALLPAL is written to
EXC_ADDR in S5. Software writes of the register through the HW_MTPR instruction also take
place in S5. At a given time only a CALLPAL or HW_MTPR instruction will attempt to write
EXC_ADDR as both these instructions are slotted to the E1 pipe.

BIT <0> of this register is used to indicate PAL mode. On a HW_REI the mode of the machine
is determined by BIT <0> of the EXC_ADDR register.

Figure 1-35: EXC_ADDR Read/Write format

63 02 01 00

IR/T	P
PC[63:2] IA/G	A
12/N	L

1.2.10.13 Exception Summary register, EXC_SUM

The exception summary register records the different arithmetic traps that have occurred since the
last time EXC_SUM was written. Any write to this register clears bits <16:10>.

Figure 1-36: Exception Summary register Read Format, EXC_SUM

63 16 15 14 13 12 11 10 09 00

1T 4TI [U IF ID |IT |S | |
RAZ/IGN |O [N IN |O |2 [N |W | RAZ/IGN |
IV [E [F |V |E |V |C | |

e + +
+ + + + + +

4+ —_—— -+

1-74 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1—-10: EXC_SUM Field Descriptions
Name Extent Type Description

SWC 10 WA Indicates Software completion possible. This bit is set after
a floating point instruction containing the /S modifier com-
pletes with an arithmetic trap and all previous floating point
instructions that trapped since the last MTPR EXC_SUM also
contained the /S modifier. The SWC bit is cleared whenever
a floating point instruction without the /S modifier completed
with an arithmetic trap. The bit remains cleared regardless
of additional arithmetic traps until the register is written via
an MTPR instruction. The bit is always cleared upon any
MTPR write to the EXC_SUM register.

INV 11 WA Indicates invalid operation.

DZE 12 WA Indicates divide by zero.

FOV 13 WA Indicates floating point overflow.

UNF 14 WA Indicates floating point underflow.

INE 15 WA Indicates floating inexact error.

10V 16 WA Indicates Fbox convert to integer overflow or Integer Arithmetic
Overflow.

1.2.10.14 Exception Mask Register, EXC_MASK

The exception mask register records the destinations of instructions that have caused an arithmetic
trap, since the last time EXC_MASK was cleared. The destination is recorded as a single bit mask in
the 64 bit IPR representing F0-F31 and 10-I31. A write to EXC_SUM clears the EXC_MASK register.

Figure 1-37: Exception Mask register Read Format, EXC_MASK

63 32 31 00

¥

|F31 F30 F29..... F1 FO{I31 I30 I29 I1 10|

+
+

1.2.10.15 PAL Base Register, PAL_BASE

The PAL_BASE register is a read/write register which contains the base address for PALcode.
The register is cleared by hardware on reset.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-75

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 1-38: PAL_BASE

63 40 39 14 13 00
= + ¢

| RAZ/IGN | PAL BASE[39:14] | RAZ/IGN |

+ +
t

+
t

1.2.10.16 Processor Status, PS

The processor_status register is a read/write register containing the current mode bits of the
architecturally defined PS.

Figure 1-39: Processor Status, PS

63 04 03 02 00

|
| RAZ/IGN
|

1.2.10.17 Ibox Control/Status Register, ICSR

This is a read-write register which contains Ibox related control and status information.

Figure 1-40: Ibox Control/Status Register ICSR

63 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 00

+ + n + + + + + + t + et

| IT 1ISID |F |F |F |S |CR|IR/I |S | SPE |H |F |T T |

| IS IT IB |B |B |M |L |D |A/G [D {[1:0]|W [P |M M | RAZ/IGN

| IT {A |S ID |IT |S |IE |E {|2/N |E | |E |E |D M |
R et et SR e T St +

Table 1-11: ICSR Field Descriptions

Name Extent Type Description
TMM 24 RW,0 If set, the timeout counter counts 5K cycles before asserting

timeout reset. If clear, the timeout counter counts 1 billion
cycles before asserting timeout reset.

T™MD 25 RW,0 If set, disables the timeout counter.

FPE 26 RW,0 If set floating point instructions may be issued. When clear
floating point instructions cause FEN exceptions.

HWE 27 RW,0 If set, allows PALRES instructions to be issued in kernel
mode.

1-76 The Ibox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-11 (Cont.): ICSR Field Descriptions
Name Extent Type Description

SPE 29:28 RW,0 IfSPE<1> isset, it enables super page mapping of istream vir-
tual addresses VA<39:13> directly to physical address PA<39:13>
if VA<42:41> = 10. Virtual address bit VA<40> is ignored in
this translation. Access is allowed only in kernel mode.

SPE<0> when set, enables super page mapping of istream
virtual addresses VA<42:30>=1FFE (Hex) directly to physical
address PA<39:30>= 0(Hex). VA<30:13> is mapped directly
to PA<30:13>. Access is allowed only in kernel mode.

SDE 30 RW,0 If set, enables PAL shadow registers.

CRDE 32 RW,0 If set, enables correctable error interrupts.

SLE 33 RW,0 If set, enables serial line interrupts.

FMS 34 RW,0 If set, forces miss on Icache references.

FBT 35 RW,0 If set, forces bad Icache tag parity.

FBD 36 RW,0 If set, forces bad Icache data parity.

DBS 37 RW,1 This bit controls the selection of the multiplexer for the debug

port. If set the debug port sees bits <11:4> of the siloed PC.
If cleared, the packet from the MBOX is selected.

ISTA 38 RO Reading this bit indicates ICACHE BIST status. If set,
ICACHE BIST was successful.
TST 39 RW,0 Writing a 1 to this bit causes the TEST STATUS_H pin of the

chip to be asserted.

1.2.10.18 Interrupt Priority Level Register, IPL

This is a read/write register containing the value of the architecturally specified IPL register.
Whenever hardware detects an interrupt whose target IPL level is greater than the value in
IPL<4:0>, an interrupt is taken.

Figure 1—41: Interrupt Priority Level Register, IPL

63 04 00

|
RAZ/IGN IPI<4:0> |
|

+ = — = 4+

1.2.10.19 Interrupt Id Register, INTID

This is a read only register. It is written by hardware with the target IPL of the highest priority
pending interrupt. The hardware recognizes an interrupt if this IPL is greater than the IPL
given by IPL<4:0>. Interrupt service routines may use the value of this register to determine
the cause of the interrupt. PAL code, for the interrupt service, must ensure that the IPL level

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-77

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

in INTID is greater than the IPL level specified by the IPL register. This restriction is required
because a level sensitive hardware interrupt may disappear before the interrupt service routine
is entered (passive release).

The contents of INTID are not correct on a HALT interrupt, as this particular interrupt does not
have a target IPL at which it can be masked. When a HALT interrupt occurs INTID indicates
the next highest priority pending interrupt. PAL code for interrupt service must check the ISR
to determine if a HALT interrupt has occured.

Figure 1-42: Interrupt id Register, INTID

63 04 00

i |
RAZ/IGN | INTID<4:0> |

| I

+ +

o — - 4

1.2.10.20 Aynchronous System Trap Request Register, ASTRR

The Asynchronous System Trap Request Register is a read/write register which contains bits to
request AST interrupts in each of the four processor modes(USEK). In order to generate an AST
interrupt, the corresponding enable bit in the ASTER must be set and the current processor mode
given in PS<4:3> should be equal or higher than the mode associated with the AST request.

Figure 1-43: Asynchronous System Trap Request Register, ASTRR

63 03 02 01 OO

U IS |E IK |
RAZ/IGN I{A |A |JA |A |
JR IR |R [R |

+ + + +
t y + +

‘- —_——

1.2.10.21 Aynchronous System Trap Enable Register, ASTER

The Asynchronous System Trap Enable Register is a read/write register which contains bits to enable
corresponding AST interrupt requests.

Figure 1-44: Asynchronous System Trap Enable Register, ASTER format

63 03 02 01 00
to—t -ttt

IU 18 IE K |

RAZ/IGN IA |A |A |A |

|IE IE |E |E |

N
pomt

F oo - — 4

1-78 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.10.22 Software Interrupt Request Register. SIRR

The Software Interrupt Request Register is a read/write register used to control software interrupt
requests. A software request for a particular IPL may be requested by setting the appropriate bit in
SIRR<15:1>.

Figure 1-45: Software Interrupt Request Register, SIRR write format

63 18 04 03 00

+ +

+———

|
IGN | SIRR<15:1> | IGN
|

Table 1-12: SIRR Field Descriptions
Name Extent Type Description

SIRR 18:4 RW Request software interrupts.

1.2.10.23 HW Interrupt Clear register, HWINT_CLR

This is a write-only register, used to clear edge-sensitive hardware interrupt requests.

Figure 1-46: Hardware Interrupt Clear Register, HWINT_CLR

63 33 32 29 28 27 00
| IS ICR] |PCIPC|PC|]
| IL D | 12 11 10 4§ |
| IC ICc | Ic Ic |c | I

+o—t——t bt oot

Table 1-13: HWINT_CLR Field Descriptions

Name Extent Type Description

PCoC 27 WwicC Clears perf counter 0 interrupt requests.

PC1C 28 wi1cC Clears perf counter 1 interrupt requests.

PC2C 29 wicC Clears perf counter 2 interrupt requests.

CRDC 32 wicC Clears correctable read data interrupt requests.
SLC 33 wic Clears serial line interrupt requests.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-79

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.10.24 Interrupt Summary register, ISR

The Interrupt Summary register is a read only register which contains information about all pending
hardware/software/AST interrupt requests.

Figure 1-47: interrupt Summary Register, ISR read format

63 34 33 32 31 30 29 28 27 2624 23 22 21 20 19 18 04 03 00
R s R B R et L e + +
| IH S |C M [P |P {P |P | 1T I IT IT |A | | USEK |
IRAZ L IL IR IC IF |C IC |C | RAZI2 12 [2 |2 IT | STRR<15:1> |ASTRR<3:0>|
| IT II ID jK IL |2 |1 O | 13 12 11 |10 |R | | AND |
I | S T O R I I A [N JASTER<3:0>]
+ s et S T e it et + +
Table 1-14: ISR read format Field Descriptions
Name Extent Type Description
ASTRRI[3:0] 3:0 RO AST requests 3 through 0 (USEK) at IPL 2.
SIRR[15:1] 18:4 RO,0 Software interrupt requests 15 through 1 corresponding to
IPL 15 through 1.
ATR 19 RO Is set if any AST request and corresponding enable bit is set

and if the processor mode is equal to or higher than the AST
request mode.

120 20 RO External hardware interrupt at IPL 20.

121 21 RO External hardware interrupt at IPL 21.

122 22 RO External hardware interrupt at IPL 22.

123 23 RO External hardware interrupt at IPL 23.

PCoO 27 RO External hardware interrupt - Performance counter 0 (IPL
29).

PC1 28 RO External hardware interrupt - Performance counter 1 (IPL
29).

PC2 29 RO External hardware interrupt - Performance counter 2 (IPL
29).

PFL 30 RO External Hardware interrupt - Powerfail (IPL 30).

MCK 31 RO External Hardware interrupt - system machine check (IPL

' 31).

CRD 32 RO Correctable ECC errors (IPL 31).

SLI 33 RO Serial line interrupt.

HLT 34 RO External Hardware interrupt - halt .

1-80 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.10.25 Serial line transmit, SL_XMIT

The serial line transmit register is a write-only register used to transmit bit-serial data off chip
under the control of a software timing loop. The value of the TMT bit is transmitted off chip on
the SROM_CLK_H pin. In normal operation mode (not in debug-mode), the SROM_CLK_H pin is
overloaded and serves both the serial line transmission and the Icache serial ROM interface.

Figure 1-48: Serial line transmit Register, SL_XMIT

63 08 07 06 00

IT |
M |
IT |

- ——

1.2.10.26 Serial line receive, SL_RCV

The serial line receive register is a read-only register used to receive bit-serial data under the control
of a software timing loop. The RCV bit in the SL_RCV register is functionally connected to the
SROM_DAT _H pin. A serial line interrupt is requested whenever a transition is detected on the
SROM_DAT_H pin and the SLE bit in the ICSR is set. During normal operations (not in test-mode),

the SROM_DAT H pin is overloaded and serves both the serial line reception and the ICache serial
ROM interface.

Figure 1-49: Serial line receive Register, SL_RCV

63 07 06 05 00

IR |
Ic |
v

+
+ +

———

1.2.11 Traps and Interrupts

For the purpose of this discussion,traps are events that cause a change in control flow other than
those caused by explicit transfer of control instructions in the istream. Traps are caused when
an instruction (and instructions that follow) are not allowed to complete because of one of the
following reasons:

* Replay Traps: An instruction that has passed the issue stage (and therefore cannot be stalled
anymore) encounters a resource conflict and must be retried. The traps belonging to this
category are MBOX_UNAVAIL and LD_USE_REPLAY and CORR_ECC_REPLAY.

* The istream was incorrectly predicted and must therefore be corrected. - BR/PC Mispredicts.

¢ Exceptions: An instruction encounters an exception condition which needs to be serviced.
The exception is precise if the instruction causing the exception, and all instructions that
follow are aborted before the exception is serviced. The exception is imprecise if the trapping
instruction is allowed to complete, but some later instruction and all instructions that follow

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-81

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

it are aborted cleanly. From the point of view of the implementation the imprecise exception
in effect looks like a precise exception tied to a later instruction in the istream. Once the
exception is serviced control returns to the istream with the exception causing instruction.

Interrupts - An interrupt has been detected, and must be serviced before control may return to
the interrupted istream. This is achieved by associating the interrupt with some instruction
in the istream and causing that instruction to trap.

For a detailed description of exceptions and interrupts refer to Chapter 9 of the ALPHA SRM.
Whenever a trap is detected in EV5 the following actions take place:

All instructions in the shadow of the trap are aborted. The trap shadow consists of all
instructions including and after the trapping instruction (or some later instruction, as in the
case of imprecise exceptions) that have entered some stage of the execution pipeline.

A new Icache fetch address is generated and supplied to the fetcher. In case of replay traps
this is the address of the trapping instruction and in case of istream mispredicts it is the
corrected istream address. In the case of exceptions/interrupts this is a PAL entry point
associated with the exception/interrupt.

If the event is an exception/interrupt the following additional steps are taken.

An address is written to the EXC_ADDR register in S6 and is also pushed on the prediction
stack for use by following HW_REI instructions. In case of precise exceptions this is the
address of the trapping instruction. In case of imprecise exceptions this is the address of some
instruction in the istream that follows the trapping instruction or in the case of interrupts
some instruction in the istream which has been chosen as the cutoff point. The requirement
is that all instructions before this address must complete and no instruction at or after this
location must be allowed to complete.

When the fetcher receives a restart address because of an exception/interrupt, the PAL mode
bit, which is the LSB of the PC, is set to indicate that a PAL flow is now beeing executed.
The PAL mode bit is then piped along with the rest of the PC.

The trap logic makes a request to the issue stage for a TRAPB. This ensures that the issue
stage will drain out all previous exceptions before allowing execution to continue.

The following is a table of all events that cause traps in EV5,

Table 1-15: 1BOX TRAPS, ENTRY POINTS and INTERRUPT

Name Description

RESET Reset

MCHK Uncorrectable hardware error

ARITH Arithmetic Exception

INTERRUPT Hardware, Software or AST interrupts.

ITBMISS Istream Translation buffer miss

IACCVIO Istream Access violation, also includes sign_check error on PC
OPCDEC Nllegal Opcode includes:

- Opcodes: 01-07, OA, 0C-0E, 14, 1C

1-82 The Ibox DIGITAL RESTRICTED DISTRIBUTION

Table 1-15 (Cont.):

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

IBOX TRAPS, ENTRY POINTS and INTERRUPT

Name Description
- privileged CALLPAL instr in non-kernel mode.
- CALLPAL instr outside the range 0-3F or 80-BF
- PALRES instr attempted in native mode (non-PAL) and HWE bit in ICSR or kernel
mode not set.

FEN Floating Point Operation attempted with:
- FP Instructions(LD, ST and Operates) disabled through FPE bit in ICSR
- FP IEEE operation with datatype other than S, T or Q

DTBMISS_SGL DTBMiss - Dstream Translation Buffer Miss.

DTBMISS_DBL DTBMiss - DTBMiss in ITBMiss or DTBMISS_SGL flow.

DUNALIGN Dstream unaligned VA

DFAULT Dstream access violation or BAD VA

MBOX_UNAVAIL Includes MAF full, WB conflict and WB full

CORRECCREPLAY A dstream correctable ECC error was detected.

BR MISPRED Branch Target Mispredict

PC MISPRED PC Mispredict on target of JMP class instr.

LD USE REPLAY Attempt to use load data which missed in Dcache.

1.2.11.1 Trap Prioritization and cross-products

The traps in EV5 belong to one of the following categories based on the time of posting.

* 5S4 traps - Trap detected when the instruction that caused the trap is in S4 of the execution

pipeline.

® S5 traps - Trap detected when the instruction that caused the trap is in S5 of the execution

pipeline.

® S6 traps - Trap detected when the instruction that caused the trap is in S6 of the execution

pipeline.

* Asynchronous events (ASYNC) - The instruction that caused the trap is no longer in stages
S0-S6 of the execution pipeline or, as in the case of interrupts the trap causing event is not tied
to any particular instruction in the pipeline. This class includes, amongst others, imprecise
exceptions and interrupts.

When multiple trap signals are asserted simultaneously the trap signal associated with the earlier
instruction takes precedence. ASYNC traps therefore take precedence over both S6, S5 and S4
traps asserted at the same time. A single instruction may generate multiple traps. Table 1-16
defines the prioritization used to determine the highest priority trap in such an event.

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-83

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.11.1.1 Asynchronous traps

ASYNC traps are synchronized with the execution pipeline by piggybacking them on some in-
struction currently in the execution pipeline. The ASYNC trap is brought into the execution
pipeline in S5. An attempt is made to post the ASYNC trap by tying it to the first *valid* in-
struction in the S5 stage. The attempt to post the trap is successful if the following conditions
are met:

® The first instruction in the S5 stage is not in the shadow of an "non-exception” trap.
* The first instruction in the S5 stage is not the target of a mispredicted JSR.

If all of the above conditions are met the attempt to post the ASYNC trap is successful. If not,
the trap is deferred, until the conditions are satisfied. If the trap attempt is successful, the EXC_
ADDR register is loaded in S6 and the return address is pushed on the stack at the same time.
The fetcher is restarted at the PAL entry point associated with the ASYNC event. If the attempt
to post the ASYNC trap succeeded in the shadow of an exception, the EXC_ADDR register and
the stack already contain the right address. The fetcher is restarted but EXC_ADDR is not loaded
and no-address is pushed on the stack.

Table 1-16: Trap Prioritization

Name Trap Time Category Priority Restart Address
RESET Async Exception 1 PAL offset: 0000
MCHK Async Exception 2 PAL offset: 0080
ARITH Async Imprecise Exception 3 PAL offset: 0100
INTERRUPT Async Interrupt 4 PAL offset: 0580
CORR_ECC_REPLAWsync Replay 5 Replay first valid instr in S6.
OPCDEC S5 Precise Exception 6 PAL offset: 0280

FEN S5 Precise Exception 6 PAL offset: 0200
DTBMISS_SGL S6 Precise Exception 7 PAL offset: 0480
DTBMISS_DBL S6 Precise Exception 7 PAL offset: 0500
DUNALIGN S6 Precise Exception 8 PAL offset: 0300
DFAULT S6 Precise Exception 9 PAL offset: 0380
MBOX _UNAVAIL Sé6 Replay 10 Replay trapping instr.
ITBMISS S4 Precise Exception 11 PAL offset: 0400
IACCVIO S4 Precise Exception 12 PAL offset: 0180

BR MISPRED S5 Istream mispr. 13 Correct Br target

PC MISPRED S4 Istream mispr. 13 Correct Jmp Target
LDUSE REPLAY S4 Replay 13 Replay trapping instr

1-84 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.11.2 Aborting Ibox pipe stages on traps

Whenever a trap is detected all instructions in the trap shadow are aborted by the following
mechanism.

¢ The trap logic asserts I TRP%ZTRAP_POSTED_A_H which causes pipe stages S0-S3 to be
flushed.

¢ The trap logic aborts register file writes in the shadow by asserting the signals I_TRP%ABORT_
Eo0_6A_H,I TRP%ABORT_E1_6A_H, I TRP%ZABORT_LD0_6A_H, I TRP%ABORT LD1_6A_H, I TRP%ABOR'
FA_6A_H, I TRP%ABORT_FM_6A_H through the shadow.

* Writes to Ibox IPR’s are aborted by asserting the signal I_TRP%ABORT_IPR_WRITE_SA_H
through the shadow.

1.2.11.3 Aborting Mbox pipe stages on traps

At the IBOX end all precise traps except those generated by the MBOX are known by the end of
S5A, The ASYNC traps are brought into S5 and are therefore also known by the end of S5A. Based
on the trap information two kill signals 1%M_KILL_Eo0_5B_H and I%M_KILL_E1_sB_H are generated
towards the end of S5B, which tell the MBOX if one or both the pipes are to be aborted.

1.2.11.4 Generating Restart addresses

A restart address is generated based on the highest priority trap signal. There are four categories
of trap restart addresses.

¢ Branch/PC Mispredict: Restart address is I_WPC%BR_PC_MPRED_IDX _5A H.

¢ 54 replays(LD_USE_REPLAY): Restart address is I_WPC%REPLAY_IDX_6A_H.

* S6 Replay trap(MBOX UNAVAIL): Restart address is I_WPC%REPLAY_IDX_4A H.
¢ Exceptions/interrupts: Restart address is I TRP%EXCEPTION_PC_A H.

If one or more exception/interrupt signals are asserted, a PAL entry point I TRP%EXCEPTION_PC_
A_H is generated based on the highest priority exception/interrupt asserted.

The PAL entry point is a 40 bit physical address formed as shown.

Figure 1-50: PAL_ENTRY

39 14 13 o

+
t

| Base { Offset |

+
t

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-85

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-17: PAL_ENTRY

Name Extent Description
Base 39:14 From Pal_Base Register
Offset 13:0 PAL Entry Offset

The 14 bit. PAL entry offset associated with the various exceptions is listed in Table 1-16. The
trap vectors are assigned at fixed intervals of 128 bytes.

The trap logic generates control signals which determines which one of the four restart addresses
is to be used.

1.2.11.5 INTERRUPTS

The EV5 chip supports three sources of interrupts: hardware, software and asynchronous system
traps (AST). There are 7 level sensitive hardware interrupts sourced by pins, 2 edge sensitive
hardware interrupts for performance counters sourced by pins, 15 software interrupts sourced
by an internal IPR (SIRR) and 4 AST interrupts (one for each processor mode) sourced by a
second internal IPR (ASTRR). Associated with each interrupt source is a target interrupt priority
level(IPL). An interrupt is masked when its target IPL is less than the value specified by the
IPL IPR. Additional masking capability is provided for the AST interrupts. The AST interrupts
can be masked by clearing the corresponding enable bits of the ASTER IPR. Also AST interrupt
requests need to be qualified with the current processor mode. An AST interrupt request is made
only when the mode (USEK) associated with the request is equal to or lower than the current
processor mode.

1.2.11.5.1 Interrupt Generation Logic

The interrupt generation logic priority encodes the interrupt requests from all possible interrupt
sources, and selects the highest priority pending interrupt. The highest priority pending interrupt
is the interrupt request with the highest target IPL value. This value is latched in the INTID
IPR. A comparator determines whether the value of the highest pending interrupt is greater than
the value stored in the IPL IPR. If so, an interrupt request is made to the trap logic if the machine
is not currently executing PAL. All interrupt requests are masked in PALmode. The trap logic
prioritizes the different trap/interrupt sources and eventually a PAL entry point for the interrupt
service routine is taken. A level sensitive hardware interrupt may deassert before the PAL entry
point for the interrupt request is taken. This is termed a passive release. PALcode for interrupt
service must therefore check to see if the value in the INTID IPR is greater than the value stored
in the IPL IPR. The INTID IPR is continuously updated and can therefore be used to determine
if a passive release ocurred. PALcode may also use the INTID IPR to determine the nature of the
interrupt i.e. software, hardware, AST. The following table lists the different interrupt sources
and their target IPL values.

1-86 The lbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 1-18: Interrupt Priority Level Effect

Interrupt Source Target IPL (decimal)

Halt Masked only by executing in
PAL mode

System machine check interrupt and internally detected correctable error 31

interupt.

Power fail interrupt 30

Performance counters 29

External interrupt 23(I/O interrupt at IPL 23) 23

External interrupt 22(I/O interrupt at IPL 22; interprocessor interrupt; 22
timer interrupt)

External interrupt 21(I/O interrupt at IPL 21) 21
External interrupt 20(I/O interrupt at IPL 20) 20
Software Interrupt Request 15 15
Software Interrupt Request 14 14
Software Interrupt Request 13 13
Software Interrupt Request 12 12
Software Interrupt Request 11 11
Software Interrupt Request 10 10
Software Interrupt Request 9 9
Software Interrupt Request 8 8
Software Interrupt Request 7 7
Software Interrupt Request 6 6
Software Interrupt Request 5 5
Software Interrupt Request 4 4
Software Interrupt Request 3 3
Software Interrupt Request 2 2
AST pending (for current or more privileged mode) 2
Software Interrupt Request 1 1

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-87

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

IBOX TNTERRUPT LOGIC

Figure 1-51

%LINI |

H Vv 03" LNI%LINI™

HOLVHYJWNOD

L v | v
l

=

<0:v>H 8 1di%HdI|

<0:7>al LNI

==

<0:¥>H V Al LNI%LNI |

"30OON3 ALlIHOIYd

(=]

Ll 2 &€ ¥ 6 9 L 8 6 OLLbcLelLvl S 0c L2 cec ec 6¢

A

21901
379VYN3 1SV

<gip>H 8 Sd%HdI™
<0:8>H 8 HILSVY%HUJI |
<0:€>H 8 HHLISV% mﬂ&

i

<0:¢>H 8 UHIH%HdI™ B
<y>H™ 8 HYlHPeHd! |
<g>H @ ddl

Atfv_._:mumm_wo\omn::w

%Hddl
<9:8>H lmm_z%mm_xw

adl

DIGITAL RESTRICTED DISTRIBUTION

1-88 The Ibox

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

1.2.11.6 ERRORS
This section is TBD
1.3 Reset and Initialization

1.4 Error Handling and Recording
1.5 Test Aspects

1.6 Performance Monitoring Features
1.7 Issues

1.8 Revision History

" Table 1-19: Revision History

Who When Description of change

jbk 12/10/91 cold start

npp 12/30/91 pe,stack,branch portions added
vr 1/07/91 IB/slot/IPR/raps sections added

DIGITAL RESTRICTED DISTRIBUTION The lbox 1-89

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 2

The Ebox

2.1 Overview-Block Diagram

The EV5 Ebox is the execution unit which performs the integer arithmetic, logical, and byte-
manipulation instructions of the Alpha instruction set. It also partially executes memory
(LOAD/STORE) and instruction flow control instructions.

The EV5 Ebox is leveraged from the EV4 design as much as possible, but it is mostly a new design.
An additional pipe has been added, and most of the functional units will be redesigned. The EV4
Z-bit logic has been removed, reducing much complexity in the branch logic and at the output of
the execution units. Other changes include: the multiplier retires 8 bits per cycle, the Ebox is
now responsible for virtual address generation in load/store instructions, 8 PAL shadow registers
have been added to the register file, the register file does not have any write ports dedicated to
the Mbox for load and fill data, and the register file does not have a read port dedicated to store
instructions.

The Ebox consists of a 40 entry register file and two instruction execution pipelines. The pipelines
E0 and E1 are four stages long, semi-symmetrical, fully bypassable, and they operate in parallel.
This permits two instructions to be issued to the Ebox each cycle. Instructions may also be
issued to the Ebox in parallel with instructions issued to the Fbox.! To reduce the latency of each
instruction to the time required for its execution, a bypass path exists from the output of each
stage in each pipe to each input of both pipes. There is no direct path, however, between the
Ebox and the Fbox. Both pipes contain the hardware required to execute most instructions. The
exceptions are shift, byte-manipulation, store, and multiply instructions, which must be issued
to pipe EO; and the instruction flow control instructions, which must be issued to pipe E1. Some
MxPR instructions are also restricted based on the location of the register: MxPR instructions
involving registers in the Ibox are only executed in pipe E1, and MTPR instructions to registers
in the Mbox are only executed in pipe EQ.

A table of the instructions handled by each pipe is shown in Table 2—1.

1 See the Ibox spec for detailed information on instruction issuing.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 2-1: Instruction Matrix

Instruction Pipe EO Pipe E1
STx YES NO
LDx YES YES
STx _C YES NO
LDx L YES NO
JMP NO YES
JSRx NO YES
RET NO YES
BRx NO YES
ADDx YES YES
SUBx YES YES
CMPx YES YES
CMPBGE YES YES
S4ADDx YES YES
S4SUBx YES YES
S8ADDx YES YES
S8SUBx YES YES
AND YES YES
BIS YES YES
BIC YES YES
XOR YES YES
ORNOT YES YES
EQV YES YES
CMOVx YES YES
SLL YES NO
SRx YES NO
EXTx YES NO
INSx YES NO
MSKx YES NO
ZAPx YES NO
MULx YES NO
UMULH YES NO
FETCHx YES NO
RPCC YES NO
Rx YES NO
CALL_PAL NO YES
DRAINT YES NO

2-2 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 2—-1 (Cont.): Instruction Matrix
Instruction Pipe E0 Pipe E1

MB YES NO

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 2-1: Ebox Block Diagram
IBOX MBOX
REGISTER :l + 8 ENTRIES
v FILE RExd Ponts. —— 3A
T, WRITE IN 8
READ iN A
3B
hmemmsmone
D!
[
il ! o
al Jitl v
N
2’
= 4A
4B
EO E1
Boos Bonen sA
a1 e MULTIPLIER
=]
BRuMP
MXPR
CALPAL
5B
6A
E BOX 68
7A
Tue Oct 29 09:55:20 1991

2-4 The Ebox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.2 Functional Description

2.2.1 Register File

The Ebox register file contains the 32 integer registers (R00 thru R31), as described in the Alpha
SYSTEM REFERENCE MANUAL, and 8 implementation specific PAL shadow registers (SR08
thru SR15). Each register is 64 bits wide and has 4 read ports and 2 write ports.

Three signals control whether the PAL shadow registers are addressed or not, 1 read and 2 PAL
shadow address signals. The read PAL control signal selects between reading from reading R08-
R15 or SRO8-SR15. Because there can be loads pending, there are separate write PAL signals,
one for each write port. The PAL shadow address signals operate in the same way the normal
address signals do - all control is left to the Ibox.

2.2.2 Bypass Logic

The Ebox bypass logic is controlled by the Ibox. Each Ebox pipe can bypass data being written
into the register file or any of the intermediate pipe stage results onto the A or B operand of
either pipe. The bypass scheme is shown in the block diagram in Figure 2-1.

The results of most operations are available for bypassing in 4B. The exceptions are shift & byte
operations, CMOVx, CMPBGE, and CMPx, which are valid in 5B, and multiplies, which take
many cycles.

2.2.3 Adder

Each Ebox pipe contains an adder. Each adder performs the operate instructions ADDx, SUBx,
and generates memory instruction addresses for the Mbox. It should be noted that memory

instruction addresses do not need to be bypassed because the address, with the exceptions of
LDA and LDAH, is not the result of the operation.

The adder accepts three operands: AX and BX from the bypass logic, and a sign extended dis-
placement DISP. From these two inputs are selected for the adder. The A input can be AX, AX
shifted left two bits, AX shifted left three bits, or the sign extended DISP. The B input can be BX
or the one’s complement of BX. In addition, there is a carry-in to the adder. See Figure 2-2 for
details about adder inputs for various instructions.

The adder produces two outputs: the main datapath result of the add operation and an eight bit
byte carry-out field (BYTE_COUT). The main datapath result is always the 64 bit sum A + B + CIN,
or a 32 sign extended version of A<31:0> + B<31:0> + CIN.

BYTE_COUT is a vector containing the carry-outs from byte operations in the adder. Forx =1
to 7, BYTE_COUT<X> is the carry-out of A<8X + 7: 8X> + B<8X + 7: 8X> + 1. BYTE_COUT<0> is the
carry-out of A<0> + B<0> + CIN. BYTE_COUT is only used for the byte compare operation.

The adder produces a carry-out of the quadword add and the true sign of the quadword operation,
QW_SIGN. QW_SIGN is only used for the signed compare operations, and the carry-out is only used
for the unsigned compare operations.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The adder asserts a quadword overflow signal if the 64 bit operation A + B + CIN produces a
result that does not fit in 64 bits, and it asserts a longword overflow signal if the 32 bit operation
A<31:0> + B<31:0> + CIN produces a result that does not fit in 32 bits. These overflow signals do not
indicate an integer overflow exception by themselves. They must first be combined with opcode
information and integer overflow enable.

2-6 The Ebox DIGITAL RESTRICTED DISTRIBUTION

0.0, February 1992

sion

vi

EV5 CPU Chip Internal Specification, Re

Summary of Adder Control

Figure 2-2

not used
ignored

NU

IG =

63 Cout | 31 Ovf | 63 Ovf | LW sext | Result |

Byte Cout |

Cin

Bin

| Scale Mux

|Opcode

[ala)
[
=N D B D =) D D D PD D DD PRPp ww
z =z z = =z Z z = Z =2z =2 =2=2 =Z=zZz=2 DPD
D D =B~ =) =} D D b bp B BPD RPR BB
z = z = = =4 z = zZz RBZ = Z=Z =2zZzZ =22
o o o o o <) o o© o 00 O ©0O0 rMed =
m m m o m m m m m mMm @A MM Mm@ MM
A © A A A A A A
oq o ©o o o o o
[Te S w1 N N
~ A - o~ 0~ o~ -~
vV © v Vv v v v vV
L T o T < N < O < T < T T . .
@ n 0w a)] @ @ . . , .
o e - - e H O o D O NMm O NMm 000 oo o
LY LS © ° v T oo =) 51 51
o A — o H OHBE R OHEH OBEBEBH HEK ot
£g4 w2 2 8 g8 85 0§ £ B BEE B BB BEE BE 3
BET [2] £ 2 I B < 0 0 T @mIm I m@m mmEm m o o
©n wn ~ 77 N7 %) 0 w ©n g a g ®m N W Bl nunun naa &
e —
5 da Jou =) m a4 28 omwm a3 =
[
~ T ~ | [P} [~ | ~ s~ | A o8 o Dm maAAa Db AQ4d
< HO0 O 49 a0 30 O X -~ X mRTR A a4 A 9« mPP oy LLW
[alyal oQ A AR HEHE HEH H X &40 nEY A TO O 9 Y® =2 =2a 2R
H H o (=] A [v 0 7)) m m m hEMb = v 0 < v v [SRTNT] (SR 3] EED

a] a a [a] o] [=] [a]] [alya] [&] [ala] [agalal aQn
5]] 28]] 2] =)) =l %3] [%3] [T] [T] =
0 2] 7] 7} ©n w0 @ 2] 7] (782 12} 2R w0 v w v
=] D2 o] =] =] 2 =] =] =] DD =] [= iy =] DpPR [Sl=]
0 0 u
Q o [+] [} Q o] (o) (o} Q Q9 Q Q 0 o 00 o 0
[5] o =]] S a s > el = (=S [SEESIN =) e &
o
H [alya)
=] £ [
(V) (U] U] (V) (V] 4] Q Q (U] (LR < [VNO] O v w (G
H =] =] H =] -t H - = o > o HDD o
[a]
e
O] (&) () (&) (U] (4] v (4] < (U] (4] Vo [CRVNL] (L]
(] - (=] (] H = = =] > o = H - e o

Figure 2-2 Cont’d on next page

The Ebox 2-7

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 2-2 (Cont.): Summary of Adder Control

|Opcode | Scale Mux | Bin | Cin | Byte Cout | 63 Cout | 31 Ovf | 63 Ovf | LW sext | Result |
| SUBL | SHIFT O | !B | 1 | NU | NU | VALID | IG | yes | USED |
| | | | | | | | | i I
S4SUBL	SHIFT 2	B	1	NU	NU	IG i IG	yes	USED	
S8SUBL	SHIFT 3	‘B 1	NU	NU	IG	IG	yes	USED	
								t	
SUBQ	SHIFT O	B 1	NU	.NU	IG	VALID	no	USED	
		l	I						
S4SUBQ	SHIFT 2	B	1	NU	NU	IG	IG	no	USED
S8SUBQ	SHIFT 3	Bl 1	NU	NU	IG	IG	no	USED	
			1				!		
AND,)			i 1 1				
BIS,]				1					
XOR,		! }		1	i				
BIC,	I ! I				l				
ORNOT,		}							
EQV	nothing...	J					l		
!							i		
jCMOVxx	nothing...		j						
			! !			!			
SLL,	l								
SRL	nothing...								
							1 }		
SRA	nothing...								
i									
CMPBGE	SHIFT O	B 1	USED	NU	IG	IG { no	IG		
I 1			[1				
EXTxx	nothing...								
							I	I	
INSxx	nothing...			i					
									}
IMSKxx	nothing...								
1									
ZAPx	nothing...								
FETCH,		1							
TBIS	disp = 0	B	O	NU	NU	IG	IG	no	USED 1
f								!	
HW_ID,									

| SEXT disp<11:0> | B} O | NU | NU | IG | IG | no | USED |

JHW_ST

+

2.24 Logic Unit

Each Ebox pipe contains a logic unit. Each logic unit implements all the integer logical functions
(See Table 2—4), the ability to pass A, the ability to pass B, a zero detector, and logic to examine
bits <63> and <0> of A.

The main section of the logic unit contains the functionality for the logical functions and the
ability to pass A. The output of this section passes through the zero detector, which is used to
detect an A operand of zero. The zero detector is also used on the result of A XOR B to determine
equivalence between the two operands. B cannot be passed through the zero detector. B can be
passed through the logic unit while a zero detect is being performed on A.

The logic unit is used for all integer logical instructions, all integer compare instructions, all
unsigned integer compare instructions, and all conditional move instructions. The logic unit
must also be used to perform a shift of zero on A; this impacts the shift, extract byte, and insert
byte instructions.

2-8 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.2.5 Shifter

The shifter is located in pipe E0 and is a right shifter only. The input to the shifter is a 128
bit vector that is constructed from the outputs of two datapath input muxes. It is composed of
various combinations of operand A, sign extensions of A<63>, and 0. For the specific combinations
used for each shift related instruction see Table 2-5, Table 2-6, and Table 2-8.

The amount of the right shift is determined from bits <5:0> of operand B and the intended
direction of the shift. See the aforementioned tables for the right shift amounts used for each
instruction.

The major limitation of the shifter is that it can not perform a shift of zero. When operand A
must be shifted by zero, the logic unit is used to pass A in lieu of a shift.

The shifter consumes enough time so that shift instructions cannot complete in one cycle. All
instructions which use the shifter have a latency of two cycles.

All shift instructions use the shifter, as well as all extract byte and insert byte instructions. The
extract and insert byte instructions are only partially executed in the shifter.

2.2.6 Byte Zapper

There is a byte zapper in pipe EO of the Ebox. This unit is used during all compare, unsigned
compare, compare byte, shift, extract byte, insert byte, mask byte, and zap byte instructions. It
simply masks different fields of a result passed from another execution unit in the Ebox; forcing
all masked bits to zero. Generally, the mask resolution is at the byte level, except that bits <7:1>
can also be masked for the compare instructions.

All the instructions which use the zapper have a latency of two cycles, and the zapper operates
in the second of these two. Therefore, it does not receive its operands from the bypass logic as
all the other execution units in the Ebox do.

For a compare operation, the zapper passes the result of the compare in bit <0>; all other bits are
forced to zero. The result of a compare byte operation are passed in bits <7:0> with the other bits
masked. The zapper does nothing on a shift operation, passing all bits. See Table 2—7, Table 2-9,
Table 2-10, and Section 2.3.21 for zapper operation details for the extract, insert, mask, and zap
byte instructions respectively.

Pipe E1 contains a less complex byte zapper that is only used for the various compare instructions.

The zappers are in the normal path of data flow in each pipe. For all instructions other than
those mentioned the zappers will pass data untouched.

2.2.7 Multiplier

The Ebox multiplier performs all of the integer multiply operations. MULL operations have a
latency of 8 cycles and MULQ & UMULH take 13 cycles to complete. The multiplier array retires
8 bits per cycle. The other latency cycles are accounted for in the following way: two cycles are
used at the front end to allow the booth decoder to get started and to do the first array calculation
based on the LSB of the multiplier; at the backend, in the case of MULL, two cycles are used to
do a final addition of the carry & sum bits and calculate overflow, whereas MULQ and UMULH
take an extra addition cycle for a total of three backend cycles.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The multiplier result is can be inserted into the EQ pipe in 5B. The Ibox controls which cycle this
occurs. Overflow is reported to the Ibox in the following 6A.

2.28 Branch Condition Logic

The branch logic is used to execute the conditional branch instructions. It receives operand A as
data and the condition type and the branch prediction information as control. This unit contains
logic to examine bits <63> and <0> of A, and it contains a zero detector which operates on A. This
is different from the EV4 implementation in that there is no Z-bit that arrives with the operand.
Therefore, a zero detector is necessary.

The branch logic determines whether the branch condition is met, and whether the branch pre-
diction is correct. For details about conditional branch, see Section 2.3.33.

2.3 Instruction Flows

This section discusses the execution of instructions in the Ebox pipelines. The execution flows
for most Ebox instructions require only one cycle and actively use only one stage of the pipeline.
Whenever this is not the case, the number of cycles needed to execute the instruction will be
given.

The possible operands for an instruction include RA, RB, #B (literal), and DISP. RA and RB are
the contents of integer register ’a’ and 'b’ respectively. The value for RA and/or RB may come
from the register file or from one of the multiple bypass paths in the Ebox. The displacement
operand (DISP) usually refers to the displacement field of the memory format instruction; that is,
bits <15:0> of the instruction longword. The exception is in the case of HW_LD/HW_ST and is
discussed in context. A literal (#B) can be used in place of RB for operate instructions. It comes
from bits <20:13> of the instruction longword.

The Ibox controls the selection of RA and RB. The Ibox also controls the destination register for
each instruction and provides the register file write enable.

Unless indicated otherwise, the result of each instruction flows down the pipe until it is written
into the register file in cycle 7.

2.3.1 Compare (CMPEQ, CMPLT, CMPLE)

These instructions are executed in the adder, logic unit, and byte zapper of either pipe.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit performs a bit-wise XOR of A and B. A zero detect is then performed on the result
of the XOR. If the result of the XOR is zero, then LOGIC_Z is set to indicate that A is equal to B.

RA is selected as the A input to the adder, and the one’s complement of RB is selected as the B
input. The carry-in is set. The adder computes A + B + CIN. The true sign of the result, QW_SIGN,
is calculated (QW_SIGN = A<63> XOR B<63> XOR carry-out of the add).

2-10 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The result of the compare is determined from the outputs of the logic unit and the adder. See
Table 2-2.

Table 2-2: Compare

LOGIC_Z QW_SIGN CMPEQ CMPLT CMPLE
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1

This result is passed to the byte zapper. The byte zapper forces bits <63:1> to zero and passes
the result of the compare in bit <0>.

The final result is the output of the byte zapper.
The latency of these compare instructions is two cycles.

No exceptions are possible for these instructions.

2.3.2 Compare Unsigned (CMPULT, CMPULE)

These instructions are executed in the adder, logic unit, and byte zapper of either pipe.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit performs a bit-wise XOR of A and B. A zero detect is then performed on the result
of the XOR. If the result of the XOR is zero, then LOGIC_Z is set to indicate that A is equal to B.

RA is selected as the A input to the adder, and the one’s complement of RB is selected as the B
input. The carry-in is set. The adder computes A + B + CIN and produces a carry-out, COUT.

The result of the compare is determined from the outputs of the logic unit and the adder. See
Table 2-3.

Table 2-3: Compare

LOGIC_Z Cout CMPULT CMPULE
0 0 0 0
0 1 1 1
1 1 0 1

This result is passed to the byte zapper. The byte zapper forces bits <63:1> to zero and passes
the result of the compare in bit <0>.

The final result is the output of the byte zapper.
The latency of these compare instructions is two cycles.

No exceptions are possible for these instructions.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.3.3 Compare Byte (CMPBGE)

This instruction is executed in the adder and byte zapper of either pipe.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

RA is selected as the A input to the adder, and the one’s complement of RB is selected as the B
input. A carry-in to each byte is set. The adder adds each byte of A to the complement of each
byte of B and to a carry-in to that byte for all eight bytes. A carry-out is generated for each byte,
and these are passed to the byte zapper.

The byte zapper forces bits <63:8> to zero and passes the byte carry-outs on bits <7:0>.
The final result is the output of the byte zapper.
The latency of this instruction is two cycles.

No exceptions are possible for these instructions.

2.3.4 Logical Functions (AND, BIS, XOR, BIC, ORNOT, EQV)

These instructions are executed in the logic unit of either pipe.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit performs the appropriate logical operation on A and B in a bitwise fashion. The
operations for each opcode are given in the Alpha SRM and repeated here for convenience in
Table 24.

Table 2-4: Logical Functions

Opcode Function

AND AANDB

BIS ' AORB

XOR AXORB

BIC A AND (NOT B)
ORNOT A OR (NOT B)
EQV A XOR (NOT B)

If the instruction is issued to pipe E1, the result of the logic unit must be muxed with the 1%PC_4B
bus before dropping into the normal pipe flow.

No exceptions are possible for these instructions.

2-12 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

23.5 Conditional Move (CMOVEQ, CMOVNE, CMOVLT, CMOVLE, CMOVGT,
CMOVGE, CMOVLBC, CMOVLBS)

These instructions are executed in the logic unit of either pipe.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit passes B to its output. This is the result that may be written to the destination
register and flows down the pipe normally. The logic unit also tests the A value to determine
whether B will be written. Bits A<63> and A<0> are examined, and a zero detect (LOGIC_Z set if A
= 0) is performed on A. With this information, it determines whether the move condition is true.
This logic is summarized in Figure 2-3.

Figure 2-3: Conditional Move Conditions

LOGIC_Z A<63> A<0> | CMOVEQ CMOVNE CMOVLT CMOVLE CMOVGT CMOVGE CMOVLBC CMOVLBS

HOOO0OO
O

|
|
[
|
I

mroooo
orHOO
o~ OO
oL OO
PHPOO
CcoorpP
ook
HOPOM
o~OoOrHO

If the condition is false, the appropriate E%KILL_CMOVX signal for the pipe is asserted. This
indicates to the Ibox that the value of B should not be written to the destination register, and
that it should also not be bypassed back into the Ebox pipe. Because of this hand-shaking with
the Ibox, these instructions have a latency of two cycles.

No exceptions are possible for these instructions.

2.3.6 Add Longword (ADDL)
This instruction is executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

RA is selected as the A input to the adder. RB or #B is selected as the B input, and the carry-in is
cleared.

The adder adds A<31:0>, B<31:0>, and CIN. The result is sign extended from bit <31>, that is, bits

<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B
are ignored.

The Ebox can generate integer overflow on this instruction. This exception is produced when
integer overflow is enabled and the resultant sum does not fit in bits <31:0> of the sum.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

237 Scaled Add Longword (S4ADDL, SSADDL)

These instructions are executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

For S4ADDL, RA, shifted left by two, is selected as the A input to the adder. For SSADDL, RA is
shifted left by three. RB or #B is selected as the B input, and the carry-in is cleared. No checks
are performed to determine whether any significant bits of RA are lost during the shifting.

The adder adds A<31:0>, B<31:0>, and CIN. The result is sign extended from bit <31>, that is, bits
<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of Aand B
are ignored.

No exceptions are possible for these instructions.

2.3.8 Add Quadword (ADDQ)

This instruction is executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

RA is selected as the A input to the adder. RB or #B is selected as the B input, and the carry-in is
cleared.

The adder adds A<63:0>, B<63:0>, and CIN to produce the result.

The Ebox can generate integer overflow on this instruction. This exception is produced when
integer overflow is enabled and the resultant sum does not fit in bits <63:0> of the sum.

2.3.9 Scaled Add Quadword (S4ADDQ, SSADDQ)

This instruction is executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

For S4ADDQ, RA, shifted left by two, is selected as the A input to the adder. For SSADDQ, RA is
shifted left by three. RB or #B is selected as the B input, and the carry-in is cleared. No checks
are performed to determine whether any significant bits of RA are lost during the shifting.

The adder adds A<63:0>, B<63:0>, and CIN to produce the result.

No exceptions are possible for these instructions.

2.3.10 Subtract Longword (SUBL)

This instruction is executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

RA is selected as the A input to the adder. The one’s complement of RB or #B is selected as the B
input, and the carry-in is set.

2-14 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The adder adds A<31:0>, B<31:0>, and CIN. The result is sign extended from bit <31>, that is, bits
<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B
are ignored.

The Ebox can generate integer overflow on this instruction. This exception is produced when
integer overflow is enabled and the resultant difference does not fit in bits <31:0> of the difference.

2.3.11 Scaled Subtract Longword (S4SUBL, S8SUBL)

These instructions are executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

For SASUBL, RA, shifted left by two, is selected as the A input to the adder. For SSSUBL, RA is
shifted left by three. The one’s complement of RB or #B is selected as the B input, and the carry-in

is set. No checks are performed to determine whether any significant bits of RA are lost during
the shifting.

The adder adds A<31:0>, B<31:0>, and CIN. The result is sign extended from bit <31>, that is, bits

<63:32> of the result are given the same value as bit <31> of the result. Bits <63:32> of A and B
are ignored.

No exceptions are possible for these instructions.

2.3.12 Subtract Quadword (SUBQ)

This instruction is executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

RA is selected as the A input to the adder. The one’s complement of RB or #B is selected as the B
input, and the carry-in is set.

The adder adds A<63:0>, B<63:0>, and CIN to produce the result.

The Ebox can generate integer overflow on this instruction. This exception is produced when
integer overflow is enabled and the resultant difference does not fit in bits <63:0> of the difference.

2.3.13 Scaled Subtract Quadword (S4SUBQ, S8SUBQ)

These instructions are executed in the adder of either pipe.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

For S4SUBQ), RA, shifted left by two, is selected as the A input to the adder. For S8SUBQ, RA is
shifted left by three. The one’s complement of RB or #B is selected as the B input, and the carry-in

is set. No checks are performed to determine whether any significant bits of RA are lost during
the shifting.

The adder adds A<63:0>, B<63:0>, and CIN to produce the result.

No exceptions are possible for these instructions.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.3.14 Multiply Longword (MULL)

This instruction is executed in the multiplier, and it must be issued to pipe EO.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

The multiplier produces a sign extended 32 bit product of A and B. At *TBD* cycles before the
multiply is complete, the Ebox asserts E%MUL_DONE_SOON_H. Then, once the product has been
completed, the multiplier stores it until another multiply instruction is issued or until 1%MUL_
ABORT is asserted. The Ibox asserts 1%SEL_MUL_5B_H to mux the product into the EO pipe, from
which it can be bypassed from cycle 5 onward.

The minimum latency for MULL is 8 cycles.

The Ebox can generate integer overflow on this instruction. This exception is produced when
integer overflow is enabled and the resultant product does not fit in bits <31:0> of the sum.

2.3.15 Muitiply Quadword (MULQ)

This instruction is executed in the multiplier, and it must be issued to pipe E0.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

The multiplier produces a 64 bit product of A and B. At *TBD* cycles before the multiply is
complete, the Ebox asserts E%=MUL_DONE_SOON_H. Then, once the product has been completed,
the multiplier stores it until another multiply instruction is issued or until I%MUL_ABORT is
asserted. The Ibox asserts I%SEL_MUL_SB_H to mux the product into the EQ pipe, from which it
can be bypassed from cycle 5 onward.

The minimum latency for MULQ is 13 cycles.

The Ebox can generate integer overflow on this instruction. This exception is produced when
integer overflow is enabled and the resultant product does not fit in bits <64:0> of the sum.

2.3.16 Multiply Unsigned Quadword High (UMULH)

This instruction is executed in the multiplier, and it must be issued to pipe EO.

The bypass mux_A selects RA. The bypass mux_B selects either RB or #B, as indicated in the
instruction.

The multiplier produces the high order 64 bits of the 128 bit product of A and B multiplied as
unsigned numbers. At *TBD* cycles before the multiply is complete, the Ebox asserts E%MUL_
DONE_SOON_H. Then, once the product has been completed, the multiplier stores it until another
multiply instruction is issued or until ¥%MUL_ABORT is asserted. The Ibox asserts I%SEL_MUL_
5B_H to mux the product into the EO pipe, from which it can be bypassed from cycle 5 onward.

The minimum latency for UMULH is 13 cycles.

No exceptions are generated for this instruction.

2-16 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.3.17 Shift (SLL, SRL, SRA)

These instructions are executed in the shifter and in the logic unit of pipe E0. They may only be
issued to pipe EO.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit passes A to its output.

The shifter is a right shifter only. The input to the shifter is a 128 bit vector that is constructed
from the outputs of two datapath input muxes. The correct right shift amount is determined from
bits <5:0> of RB and the direction of the shift. A summary of the shifter input logic is given in
Table 2-5.

Table 2-5: Shifter Inputs

Opcode Input<127:64> Input<63:0> Right Shift Amount
SLL A 0 NOT(B<5:0>) + 1
SRL 0 A B<5:0>

SRA SEXT(A<63>) A B<5:0>

The result is the output of the shifter, with one exception. If the shift amount is zero, the result
is the output of the logic unit. This is due to the inability of the shifter to perform a shift of zero.
The output of the shifter passes through the byte zapper, which does nothing to modify it.

The latency of these shift instructions is two cycles.

No exceptions are possible for these instructions.

2.3.18 Extract Byte (EXTBL, EXTWL, EXTLL, EXTQL, EXTWH, EXTLH, EXTQH)

These instructions are executed in the shifter and in the logic unit and byte zapper of pipe EO.
They may only be issued to pipe EO.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit passes A to its output.

The shifter is a right shifter only. The input to the shifter is a 128 bit vector that is constructed
from the outputs of two datapath input muxes. The correct right shift amount is determined from

bits <2:0> of RB and the direction of the shift. A summary of the shifter input logic is given in
Table 2-6.

Table 2-6: Shifter Inputs for the Extract Byte Instructions

Opcode Input<127:64> Input<63:0> Right Shift Amount
EXTxL 0 A B<2:0> & 000#2
EXTxH A 0 B<2:0> & 000#2

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The shift result is the output of the shifter, with one exception. If the shift amount is zero, the

shift result is the output of the logic unit. This is due to the inability of the shifter to perform a
shift of zero.

The output of the shifter passes through the byte zapper, which forces certain bytes of the output

to zero. A summary of the byte zapper operation for the extract byte instructions is given in
Table 2-7

Table 2-7: Byte Zapper' Operation for the Extract Byte Instructions

Opcode Bits Cleared Bits Passed
EXTBL <63:8> <7:0>
EXTWL/EXTWH <63:16> <15:0>
EXTLI/EXTLH <63:32> <31:0>
EXTQL/EXTQH none <63:0>

The final result is the output of the byte zapper.
The latency of these extract instructions is two cycles.

No exceptions are possible for these instructions.

2.3.19 Insert Byte (INSBL, INSWL, INSLL, INSQL, INSWH, INSLH, INSQH)

These instructions are executed in the shifter and in the logic unit and byte zapper of pipe EQ.
They may only be issued to pipe EQ.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit passes A to its output.

The shifter is a right shifter only. The input to the shifter is a 128 bit vector that is constructed
from the outputs of two datapath input muxes. The correct right shift amount is determined from
bits <2:0> of RB and the direction of the shift. A summary of the shifter input logic is given in
Table 2-8.

Table 2—8: Shifter Inputs for the Insert Byte Instructions

Opcode Input<127:64> Input<63:0> Right Shift Amount
INSxL A 0 NOT(B<2:0> & 000#2) + 1
INSxH 0 A NOT(B<2:0> & 000#2) + 1

The shift result is the output of the shifter, with one exception. If the shift amount is zero, the

shift result is the output of the logic unit. This is due to the inability of the shifter to perform a
shift of zero.

2-18 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The output of the shifter passes through the byte zapper, which forces certain bytes of the output
to zero. A summary of the byte zapper operation for the insert byte instructions is given in
Table 2-9

Table 2-9: Byte Zapper Operation for the Insert Byte Instructions

Opcode B<2:0> Bits Cleared Bits Passed
INSBL 0 <63:8> <7:0>
INSBL 1 <63:16,7:0> <15:8>
INSBL 2 <63:24,15:0> <23:16>
INSBL 3 <63:32,23:0> <31:24>
INSBL 4 <63:40,31:0> <39:32>
INSBL 5 <63:48,39:0> <47:40>
INSBL 6 <63:56,47:0> <55:48>
INSBL 7 <55:0> <63:56>
INSWL 0 <63:16> <15:0>
INSWL 1 <63:24,7:0> <23:8>
INSWL 2 <63:32>,15:0 <31:16>
INSWL 3 <63:40,23:0> <39:24>
INSWL 4 <63:48,31:0> <47:32>
INSWL 5 <63:56,39:0> <55:40>
INSWL 6 <47:0> <63:48>
INSWL 7 <55:0> <63:56>
INSWH 0-6 <63:0> none
INSWH 7 <63:8> <T:0>
INSLL 0 <63:32> <31:0>
INSLL 1 <63:40,7:0> <39:8>
INSLL 2 <63:48,15:0> <47:16>
INSLL 3 <63:56,23:0> <55:24>
INSLL 4 <31:0> <63:32>
INSLL 5 <39:0> <63:40>
INSLL 6 <47:0> <63:48>
INSLL 7 <55:0> <63:56>
INSLH 0-4 <63:0> <none>
INSLH 5 <63:8> <7:0>
INSLH 6 <63:16> <15:0>
INSLH 7 <63:24> <23:0>
INSQL 0 <none> <63:0>
INSQL 1 <7:0> <63:8>
INSQL 2 <15:0> <63:16>

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 2-9 (Cont.): Byte Zapper Operation for the Insert Byte Instructions

Opcode B<2:0> Bits Cleared Bits Passed
INSQL 3 <23:0> <63:24>
INSQL 4 <31:0> <63:32>
INSQL 5 <39:0> <63:40>
INSQL 6 <47:0> - <63:48>
INSQL 7 <55:0> <63:56>
INSQH 0 <63:0> <none>
INSQH 1 <63:8> <7:0>
INSQH 2 <63:16> <15:0>
INSQH 3 <63:24> <23:0>
INSQH 4 <63:32> <31:0>
INSQH 5 <63:40> <39:0>
INSQH 6 <63:48> <47:0>
INSQH 7 <63:56> <55:0>

The final result is the output of the byte zapper.
The latency of these insert instructions is two cycles.

No exceptions are possible for these instructions.

23.20 Mask Byte (MSKBL, MSKWL, MSKLL, MSKQL, MSKWH, MSKLH, MSKQH)

These instructions are executed in the logic unit and byte zapper of pipe E0. They may only be
issued to pipe EO.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit passes A to its output.

The output of the logic unit passes through the byte zapper, which forces certain bytes of the

output to zero. A summary of the byte zapper operation for the mask byte instructions is given
in Table 2—-10

Table 2-10: Byte Zapper Operation for the Mask Byte Instructions

Opcode B<2:0> Bits Cleared Bits Passed
MSKBL 0 <63:8> <7:0>
MSKBL 1 <63:16,7:0> <15:8>
MSKBL 2 <63:24,15:0> <23:16>
MSKBL 3 <63:32,23:0> <31:24>
MSKBL 4 <63:40,31:0> <39:32>

2-20 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 2-10 (Cont.): Byte Zapper Operation for the Mask Byte Instructions

Opcode B<2:0> Bits Cleared Bits Passed
MSKBL 5 <63:48,39:0> <47:40>
MSKBL 6 <63:56,47:0> <55:48>
MSKBL 7 <55:0> <63:56>
MSKWL 0 <63:16> : <15:0>
MSKWL 1 <63:24,7:0> <23:8>
MSKWL 2 <63:32>,15:0 <31:16>
MSKWL 3 <63:40,23:0> <39:24>
MSKWL 4 <63:48,31:0> <47:32>
MSKWL 5 <63:56,39:0> <55:40>
MSKWL 6 <47:0> <63:48>
MSKWL 7 <55:0> <63:56>
MSKWH 0-6 <63:0> none
MSKWH 7 <63:8> <7:0>
MSKLL 0 <63:32> <31:0>
MSKLL 1 <63:40,7:0> <39:8>
MSKLL 2 <63:48,15:0> <47:16>
MSKLL 3 <63:56,23:0> <55:24>
MSKLL 4 <31:0> <63:32>
MSKLL 5 <39:0> <63:40>
MSKLL 6 <47:0> <63:48>
MSKLL 7 <55:0> <63:56>
MSKLH 04 <63:0> <norie>
MSKLH 5 <63:8> <7:0>
MSKLH 6 <63:16> <15:0>

" MSKLH 7 <63:24> <23:0>
MSKQL 0 <none> <63:0>
MSKQL 1 <7:0> <63:8>
MSKQL 2 <15:0> <63:16>
MSKQL 3 <23:0> <63:24>
MSKQL 4 <31:0> <63:32>
MSKQL 5 <39:0> <63:40>
MSKQL 6 <47:0> <63:48>
MSKQL 7 <55:0> <63:56>

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 2-10 (Cont.): Byte Zapper Operation for the Mask Byte Instructions

Opcode B<2:0> Bits Cleared Bits Passed
MSKQH o0 <63:0> <none>
MSKQH 1 <63:8> <7:0>
MSKQH 2 <63:16> <15:0>
MSKQH 3 <63:24> - <23:0>
MSKQH 4 <63:32> <31:0>
MSKQH 5 <63:40> <39:0>
MSKQH 6 <63:48> <47:0>
MSKQH 7 <63:56> <55:0>

The final result is the output of the byte zapper.
The latency of these mask instructions is two cycles.

No exceptions are possible for these instructions.

2.3.21 Zap Byte (ZAP, ZAPNOT)

These instructions are executed in the logic unit and byte zapper of pipe E0. They may only be
issued to pipe EO.

The bypass mux_A selects RA; the bypass mux_B selects either RB or #B, as indicated in the
instruction.

The logic unit passes A to its output.

The output of the logic unit passes through the byte zapper, which forces certain bytes of the
output to zero. The mask used in the byte zapper is provided directly by the B operand for the
zap instructions. For ZAP, the mask is B<7:0>. For each bit <x> that is set in B, bits <8x + 7 :
8x> of the logic unit output are cleared. The other bits are passed.

For ZAPNOT, the mask is NOT B<7:0>. For each bit <x> that is set in B, bits <8x + 7 : 8x> of the
logic unit output are passed. The other bits are cleared.

The final result is the output of the byte zapper.
The latency of these zap instructions is two cycles.

No exceptions are possible for these instructions.

2.3.22 Load Address (LDA, LDAH)

These instructions are executed in the adder of either pipe.
The bypass mux_A is not used. RB is selected by the bypass mux_B.

The A input to the adder is the sign extended displacement. This sign extension is a direct sign
extension of DISP for LDA, and a sign extension of (DISP shifted left by 16) for LDAH. RB is
selected as the B input to the adder, and the carry-in to the adder is cleared.

2-22 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The result is A + B + CIN, and is available after one cycle. No exceptions are possible for these
instructions.

23.23 Load (LDL, LDQ)

The Ebox only partially executes these instructions. The virtual address for the load is generated
in the Ebox, and the rest of the instruction is executed in the Mbox and possibly the Cbox. The
Ebox portion of these instructions are executed in the adder of either pipe.

The bypass mux_A is not used. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input,
and the carry-in is cleared.

The virtual address is A + B + CIN, which is available on one of the E%VAX_4B buses after one
cycle.

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this.
In the case of LDL, the data is sign extended in the Mbox. If the data is returned late (such as
the result of a Dcache miss), the Mbox must ensure that a bubble exists in the instruction flow
of the appropriate pipe when data is returned.

The Ebox does not generate any of the possible exceptions for these instructions.

2.3.24 Load Unaligned (LDQ_U)

The Ebox only partially executes this instruction. The virtual address for the load is partially
generated in the Ebox, and the rest of the instruction is executed in the Mbox and possibly the
Cbox. The Ebox portion of this instruction is executed in the adder of either pipe.

The bypass mux_A is not used. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input,
and the carry-in is cleared.

The virtual address is A + B + CIN, with bits <2:0> of the sum cleared. The Ebox does not clear
bits <2:0> of the sum; the Mbox is expected to ignore these bits. The sum is available on one of
the E%VAX_4B buses after one cycle.

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this.
If the data is returned late (such as the result of a Dcache miss), the Mbox must ensure that a
bubble exists in the instruction flow of the appropriate pipe when data is returned.

The Ebox does not generate any of the possible exceptions for this instruction.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-23

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

23.25 Load Locked (LDL_L, LDQ_L)

The Ebox only computes the virtual address for these instructions. This is done in the adder of
pipe EQ only.

The bypass mux_A is not used. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input,
and the carry-in is cleared.

The virtual address is A + B + CIN, which is available on the E%VAo_4B bus after one cycle.

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this.
In the case of LDL_L, the data is sign extended in the Mbox. If the data is returned on M%LD_
DATA1_6A, or if the data is returned late (such as the result of a Dcache miss), the Mbox must
ensure that a bubble exists in the instruction flow of the appropriate pipe.

The Ebox does not generate any of the possible exceptions for these instructions.

The Ebox does not contain nor control the locked_physical_address register or the lock_flag.

2.3.26 Store Conditional (STL_C, STQ_C)

The Ebox only partially executes these instructions, and is responsible for generating the virtual
address. The Ebox also provides the data to be stored and receives the lock_flag.

These instructions are executed in the adder, and can only be issued to pipe EO.
RA is selected by the bypass mux_A. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input,
and the carry-in is cleared.

The virtual address is A + B + CIN, which is available on E%VA0_4B. The data to be stored, RA, is
available on E%ST DATA_3B (4A?). In the case of STL_C, 64 bits of data are delivered on E%ST_
DATA_3B; the Mbox must extract the lower longword to be stored in memory.

The Ebox does not generate any of the possible exceptions for these instructions.
The Ebox does not contain nor control the locked_physical_address register or the lock_flag.

The lock_flag must be delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which
the data will be inserted, but if pipe E1 is chosen there must be an appropriate bubble in the
pipe. The lock flag is written to the register RA. The Ibox keeps track of the destination register
numbers.

2.3.27 Store (STL, STQ)

The Ebox only partially executes these instructions, and is responsible for generating the virtual
address and delivering the data to be stored.

These instructions are executed in the adder, and can only be issued to pipe EO.

RA is selected by the bypass mux_A. RB is selected by the bypass mux_B.

2-24 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input,
and the carry-in is cleared.

The virtual address is A + B + CIN, which is available on E%VA0_4B. The data to be stored, RA,
is available on E%ST_DATA_3B (4A?). In the case of STL, 64 bits of data are delivered on E%ST_
DATA_3B; the Mbox must extract the lower longword to be stored in memory.

The Ebox does not generate any of the possible exceptions for these instructions.

2.3.28 Store Unaligned (STQ_U)
The Ebox only partially executes this instruction, and is responsible for generating the virtual
address and delivering the data to be stored.
This instruction is executed in the adder, and can only be issued to pipe EO.
RA is selected by the bypass mux_A. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. RB is selected as the B input,
and the carry-in is cleared.

The virtual address is A + B + CIN, with bits <2:0> of the sum cleared. The Ebox does not clear
bits <2:0> of the sum; the Mbox is expected to ignore these bits. The sum is available on one

of the E%VAX_4B buses after one cycle. The data to be stored, RA, is available on E%ST_DATA_3B
(4A7).

The Ebox does not generate any of the possible exceptions for this instruction.

2.3.29 Hardware Load (HW_LD)

The Ebox only partially executes this instruction. The virtual address for the load is generated
in the Ebox, and the rest of the instruction is executed in the Mbox and possibly the Cbox. The
Ebox portion of this instructions is executed in the adder of either pipe.

The bypass mux_A is not used. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. This sign extension is done
from DISP<11>, unlike most memory format instructions. RB is selected as the B input, and the
carry-in is cleared.

The virtual address is A + B + CIN, which is available on one of the E%VAX_4B buses after one
cycle. The Ebox does not zero any of the low order bits in the virtual address.

The result of the load is delivered to the Ebox on one of the M%LD_DATAX_6A buses, and is muxed
into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into which
the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes this.
If the QW bit of the instruction is cleared, the data is sign extended in the Mbox.

The Ebox does not generate any exceptions for this instructions.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-25

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.3.30 Hardware Store (HW_ST)

The Ebox only partially executes this instruction, and is responsible for generating the virtual
address and delivering the data to be stored.

This instruction is executed in the adder, and can only be issued to pipe EQ.

RA is selected by the bypass mux_A. RB is selected by the bypass mux_B.

The sign extension of DISP is selected as the A input to the adder. This sign extension is done
from DISP<11>, unlike most memory format instructions. RB is selected as the B input, and the
carry-in is cleared.

The virtual address is A + B + CIN, which is available on E%VA0_4B. The Ebox does not zero any of
the low order bits in the virtual address. The data to be stored, RA, is available on E%ST_DATA_3B
(4A?). If the QW bit of the instruction is cleared, 64 bits of data are still delivered on E%ST DATA_
3B; the Mbox must extract the lower longword to be stored in memory.

The Ebox does not generate any exceptions for this instruction.

2.3.31 Hardware Move From Processor Register (HW_MFPR)

The Ebox only partially executes these instructions. The Ebox primarily just receives and stores
the data.

If the IPR is located in the Mbox or Cbox, the instruction is issued to pipe E0. If the IPR is
located in the Ibox, the instruction is issued to pipe E1.

The bypass muxes and execution units of the Ebox are not used.

If the IPR is located in the Mbox or Cbox, the data is delivered to the Ebox on one of the M%LD_
DATAX_6A buses, and is muxed into the appropriate Ebox pipe in cycle 6. The Mbox is responsible
for picking the pipe into which the data will be inserted, and it also controls the mux in the Ebox
pipe which accomplishes this. If the data can not be delivered by cycle 6, it is returned later,
much like a fill.

If the IPR is located in the Ibox, the data is delivered to the Ebox on the 1%PC_4B bus. The Ebox
must mux this data with the output of the logic unit in pipe E1. If the data cannot be delivered
to the Ebox on time, the Ibox must re-issue the instruction when data is available.

The Ebox does not generate any exceptions for these instructions.

2.3.32 Hardware Move To Processor Register (HW_MTPR)

The Ebox only partially executes these instructions. The Ebox delivers the data to either the Ibox
or the Mbox.

This instruction is executed in the adder. If the IPR is located in the Mbox or Cbox, the instruction
is issued to pipe EO. If the IPR is located in the Ibox, the instruction is issued to pipe E1. The
execution of these instructions is much like that for the FETCH instruction.

Bypass mux_A is not used. RB is selected by the bypass mux_B.

The displacement is forced to zero and then is selected as the A input to the adder. RB is selected
as the B input, and the carry-in is cleared.

2-26 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The adder performs A + B + CIN, which is equal to RB. In this way the adder passes RB to one of
the E%VAX_4B buses.

If the IPR is located in the Mbox or Cbox, the data is available on E%VA0_4B and E%ST_DATA_3B

(4B?) during the appropriate cycles. If the IPR is located in the Ibox, the data is available on
E%PC_3B.

The Ebox does not generate any exceptions for these instructions.

2.3.33 Conditional Branch (BEQ, BNE, BLT, BLE, BGT, BGE, BL.BC, BLBS)

The Ebox only partially executes these instructions. The Ebox tests the condition; the Ibox is
responsible for generating the virtual address and updating the PC.

These instuctions are executed in the branch logic, and can only be issued to pipe E1.

RA is selected by the bypass mux_A. Bypass mux_B is not used.

The branch logic examines bits <63> and <0> of A, and performs a zero detect (BR_ZBIT set if A
= 0) on A. With this information, it determines whether the branch condition is true. This logic
is summarized in Figure 2—4.

Figure 2-4: Branch Conditions

BR_ZBIT A<63> A<O> | BEQ BNE BLT BLE BGT BGE BLBC BLBS

0 0 0 | O 1 0 0 1 1 1 o]
0 0 1 | © 1 0 0 1 1 0 1
0 1 c [1 1 1 0 0 1 0
0 1 1 | O 1 1 1 0 0 0 1
1 0 0 Pl 0 0 1 0 1 1 0

The Ebox asserts E%BR_TAKEN 5A if the branch condition is true. If the branch condition does
not match with 1%BR_PREDICT _4A, the Ebox asserts E%BR_MISPREDICT 5A.

These instuctions can not produce an exception.

2.3.34 Unconditional Branch (BR, BSR)

The Ebox only partially executes these instructions. The Ebox stores the old PC.

These instructions do not require any of the Ebox execution units. They must be issued to pipe
E1l.

Neither bypass mux_A nor bypass mux_B is used.

The Ebox receives the value of the old PC on 1%PC_4B. The Ebox is responsible for muxing this
into the E1 pipe with the output of the E1 logic unit.

These instuctions can not produce an exception.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-27

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

23.35 Jump (JMP, JSR, RET, JSR_COROUTINE)

The Ebox only partially executes these instructions. The Ebox provides the new PC, and stores
the old one.

These instructions do not require any of the Ebox execution units. They must be issued to pipe
El.

Bypass mux_A is not used. RB is selected by the bypass mux_B.

The Ebox provides the value of the new PC on E%PC_3B. The lower two bits of the value on E%PC_
3B should not be used by the Ibox. The Ebox receives the value of the old PC on 1%PC_4B. The
Ebox is responsible for muxing this into the E1 pipe with the output of the E1 logic unit.

These instuctions can not produce an exception.

2.3.36 Fetch (FETCH, FETCH_M)

The Ebox only partially executes these instructions. Their execution is performed in the adder,
and they are issued to pipe EO.

Bypass mux_A is not used. RB is selected by the bypass mux_B.

The displacement is forced to zero and then is selected as the A input to the adder. RB is selected
as the B input, and the carry-in is cleared.

The adder performs A + B + CIN, which is equal to RB. In this way the adder passes RB to one of
the E%VAX_4B buses.

These instructions can not produce an exception.

2.3.37 Read Cycle Counter / VAX Compatibility (RPCC, RC, RS)

The Ebox only partially executes these instructions. These are treated much like loads, except
that the Ebox does not need to generate a virtual address. These instructions are assumed to be
issued to pipe EO only.

Neither bypass mux is used, and no Ebox execution unit is used.

The result of the instruction is delivered to the Ebox on one of the M%LD_DATAX_¢6A buses, and is
muxed into the appropriate Ebox pipe in cycle 6. The Mbox is responsible for picking the pipe into
which the data will be inserted, and it also controls the mux in the Ebox pipe which accomplishes
this. If the data is returned on M%LD_DATA1_6A, the Mbox must ensure that a bubble exists in
the instruction flow of the pipe E1.

These instructions can not produce an exception.

2.3.38 Other Instructions

The Ebox treats all other instructions, including CAL_PAL, DRAINT, MB, HW_REI and all float-
ing instructions, as NOPs.

2-28 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.4 Ebox Interfaces

2.4.1 Ibox Interface

The Ibox issues instructions to the Ebox, and sends the necessary opcode and data information.
that the Ebox does not already have.

The Ibox is responsible for the control of data flow in the Ebox. This means that the Ibox must
determine whether the up-to-date copy of a register is in the register file or in one of the stages
of one of the Ebox pipes. The Ibox owns the bypass mux controls to the extent that it dictates
whether an operand comes from the register file or a pipe stage. If the source is a pipe stage,
and if that stage has more than one source, the Ebox must choose the correct source for that pipe
stage.

The Ibox also controls the Ebox register file. The Ibox indicates when the output of an Ebox

pipe should be written to a register, and which register should be written. The register file read
addresses are also supplied by the Ibox.

The Ibox and Ebox collaborate on certain instructions; Section 2.3 gives details about these
instructions, but they are briefly discussed here for convenience. During conditional branch
instructions, the Ebox determines the success or failure of the branch and the correctness of the
branch prediction. The Ebox stores the old value of the PC for other branch and jump instructions,
and it supplies the new PC for jump instructions.

The Ibox can directly abort a multiply operation, and it must reset the multiplier during system
initialization (by asserting abort). The Ibox controls when the output of the Ebox multiplier is
muxed into stage 5 of the EO datapath.

The Ebox indicates success or failure for conditional move instructions. The Ibox acts on this
information to determine whether to kill the move by not bypassing its result or writing the
result to the register file.

The Ebox sends data to the Ibox during HW_MTPR instructions to an Ibox IPR, and receives
data from the Ibox during HW_MFPR instructions to an Ibox IPR.

The Ebox reports integer overflow to the Ibox.
The following signals are driven by the Ebox to the Ibox.

* E%MUL_DONE_SOON_H
This signal informs the Ibox that the Ebox multiplier result will be available for bypassing
in *TBD¥* cycles.

* E%MUL_BUSY_H

This signal informs the Ibox that a multiply instruction has been received by Ebox and its
result is being calculated.

¢ E%INT OVF0_6A_H

This signal informs the Ibox that an integer overflow has occured in the adder in pipe EO.
* E%INT_OVF1_6A_H

This signal informs the Ibox that an integer overflow has occured in the adder in pipe E1.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-29

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

E%KILL_CMOVO0_H

This signal informs the Ibox that a conditional move instruction issued to pipe EQ has failed
its condition evaluation and no register file write should occur.

E%KILL_CMOV1_H

This signal informs the Ibox that a conditional move instruction issued to pipe E1 has failed
its condition evaluation and no register file write should occur.

E%BR_TAKEN_5A_H

This signal informs the Ibox that a conditinal branch instruction has been successfully eval-
uated and that the branch can occur.

E%BR_MISPREDICT_5A H

This signal informs the Ibox that the evaluation of a conditional branch instruction has been
mis-predicted.

E%PC_3B_H<63:0>

This 64 bit bus carries new PC values and MTPR data from the Ebox to the Ibox.

The following signals are driven by the Ibox to the Ebox.

2-30

1%BYP_RAO_AO_L

This signal selects register file RAO read port data onto E_BYP%A0_3B<63:0>.
1%BYP_S40_A0_L

This signal bypasses the result from stage 4 of pipe EQ onto E_BYP%A0_3B<63:0>.
1%BYP_S41_AO0_L

This signal bypasses the result from stage 4 of pipe E1 onto E_BYP%A0_3B<63:0>.
1%BYP_S50_A0_L

This signal bypasses the result from stage 5 of pipe EQ onto E_BYP%A0_3B<63:0>.
1%BYP_S51_A0_L

This signal bypasses the result from stage 5 of pipe E1 onto E_BYP%A0_3B<63:0>.
1%BYP_S60_A0_L

This signal bypasses the result from stage 6 of pipe E0 onto E_BYP%A0_3B<63:0>.
1%BYP_S61_AO0_L

This signal bypasses the result from stage 6 of pipe E1 onto E_BYP%A0_3B<63:0>.
1%BYP_WO0_AO_L

This signal bypasses the result from stage 7 of pipe E0 onto E_BYP%A0_3B<63:0>.
1%BYP_W1_AO0_L

This signal bypasses the result from stage 7 of pipe E1 onto E_BYP%A0_3B<63:0>.
1%BYP_RA1_A1l_L

This signal selects register file RA1 read port data onto E_BYP%A1_3B<63:0>,
I%BYP_S40_A1 L

This signal bypasses the result from stage 4 of pipe EO onto E_BYP%A1_3B<63:0>.
I%BYP_S41_A1_L

This signal bypasses the result from stage 4 of pipe E1 onto E_BYP%A1_3B<63:0>.
1%BYP_S50_A1_L

This signal bypasses the result from stage 5 of pipe EQ onto E_BYP%A1_3B<63:0>.
I%BYP_S51_A1_L

This signal bypasses the result from stage 5 of pipe E1 onto E_BYP%A1_3B<63:0>.

The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

* T1%BYP_S60_Al1_L

This signal bypasses the result from stage 6 of pipe E0 onto E_BYP%A1_3B<63:0>.
¢ JT%BYP_S61_Al1_L

This signal bypasses the result from stage 6 of pipe E1 onto E_BYP%A1_3B<63:0>.
¢ I%BYP_WO_Al_L

This signal bypasses the result from stage 7 of pipe E0 onto E_BYP%A1_3B<63:0>.
* I%BYP_W1_Al_L

This signal bypasses the result from stage 7 of pipe E1 onto E_BYP%A1_3B<63:0>.
¢ 1%BYP_PC_A1_L

This signal selects the Ibox PC bus onto E_BYP%A1_3B<63:0>.
* I%BYP_RBO_BO_L

This signal selects register file RBO read port data onto E_BYP%B0_3B<63:0>.
¢ T1%BYP_S40_BO_L

This signal bypasses the result from stage 4 of pipe E0 onto E_BYP%B0_3B<63:0>.
* I%BYP_S41 _BO_L

This signal bypasses the result from stage 4 of pipe E1 onto E_BYP%B0_3B<63:0>.
¢ I%BYP_S50_BO0_L

This signal bypasses the result from stage 5 of pipe E0 onto E_BYP%B0_3B<63:0>.
* I%BYP_S51_BO_L

This signal bypasses the result from stage 5 of pipe E1 onto E_BYP%RB0_3B<63:0>.
e I%BYP_S60_BoO_L

This signal bypasses the result from stage 6 of pipe E0 onto E_BYP%R0_3B<63:0>.
* I%BYP_S61_BO_L

This signal bypasses the result from stage 6 of pipe E1 onto E_BYP%B0_3B<63:0>.
* I%BYP_WO_BO_L

This signal bypasses the result from stage 7 of pipe E0 onto E_BYP%B0_3B<63:0>.
e I%BYP_W1_BO_L

This signal bypasses the result from stage 7 of pipe E1 onto E_BYP%B0_3B<63:0>.
e I%BYP_LIT Bo_L

This signal selects the pipe EO literal onto E_BYP%B0_3B<63:0>.
* I%BYP_RB1_B1_L

This signal selects register file RB1 read port data onto E_BYP%B1_3B<63:0>.
* I%BYP_S40_B1 L

This signal bypasses the result from stage 4 of pipe E0 onto E_BYP%B1_3B<63:0>.
e I1%BYP_S41_B1_L

This signal bypasses the result from stage 4 of pipe E1 onto E_BYP%B1_3B<63:0>.
e I%BYP_S50_B1_L

This signal bypasses the result from stage 5 of pipe E0 onto E_BYP%B1_3B<63:0>.
* I%BYP_S51_B1_L

This signal bypasses the result from stage 5 of pipe E1 onto E_BYP%B1_3B<63:0>.
* I%BYP_S60_B1_L

This signal bypasses the result from stage 6 of pipe E0 onto E_BYP%B1_3B<63:0>.
* I%BYP_S61_B1_L

This signal bypasses the result from stage 6 of pipe E1 onto E_BYP%B1_3B<63:0>.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-31

EVS5 CPU Chip Internal Specification, Revision 0.0, February 1992

2-32

1%BYP_W0_B1_L

This signal bypasses the result from stage 7 of pipe E0 onto E_BYP%B1_3B<63:0>.
1%BYP_W1_B1_L

This signal bypasses the result from stage 7 of pipe E1 onto E_BYP%B1_3B<63:0>.
I%BYP_LIT_B1_L

This signal selects the pipe E1 literal onto E_BYP%B1_3B<63:0>.

I%FREEZE_EBOX 3B_H

In the register file, this signal determines whether newly decoded or previously decoded
registers are read (applies to all registers reads for that cycle).

I%LIT0_3B_H<7:0>

I%LIT1_3B_H<7:0>

I%INSTRO_EBOX_2B_H<26:0>

This 27 bit bus contains the opcode, function, literal, and displacement information for the
EO pipe instruction.

I%INSTR1_EBOX_2B_H<26:0>

This 27 bit bus contains the opcode, function, literal, and displacement information for the
E1 pipe instruction.

I%1SSUE0_EBOX_4A_H

This signal informs the Ebox that a valid instruction has been issued to pipe EQ.
1%1SSUE1_EBOX _4A_H

This signal informs the Ebox that a valid instruction has been issued to pipe E1.
1%MUL_ABORT_H

This signal tells the Ebox to abort a previously issued multiply instruction.

I%BR_PREDICT _4A_H

This signal informs the Ebox what the result of a conditional branch was predicted to be by
the Ibox.

I%PC_4B_H<63:0>

This 64 bit bus carries the old PC value and MFPR data from the Ibox to the Ebox.
I19%EW0_ADDR_6A_H<4:0>

These signals are the EQ pipe register file write port address.

I%EW1_ADDR_6A_H<4:0>

These signals are the E1 pipe register file write port address.

I9%ERAO0_ADDR_2A H<4:0>

These signals are the RAO register file read port address.

I%2ERA1_ADDR_2A H<4:0>

These signals are the RA1 register file read port address.

I%ERBO_ADDR_2A_ H<4:0>

These signals are the RBO register file read port address.

1%ERB1_ADDR_2A_H<4:0>

These signals are the RB1 register file read port address.

I1%2ERD_PAL_SHADOW_ADDR _2A H

This signal determines whether registers R08-R15 or shadow registers SR08-SR15 are ac-
cessed. This applies to all register file read ports: RAO, RA1, RB0, RB1.

The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

* T%WO0_EN_7A_H
This signal is the EO pipe register file write enable.
* TI%W1 EN 7A H
This signal is the E1 pipe register file write enable.
* T%EWO0_PAL_SHADOW_ADDR_6A_H
This signal determines whether registers R08-R15 or shadow registers SR08-SR15 are written
from WO.
e I%EW1_PAL_SHADOW_ADDR_6A_H

This signal determines whether registers R08-R15 or shadow registers SR08-SR15 are written
from W1,

2.4.2 Mbox Interface

The Ebox/Mbox interface is mostly one of data transmission. The Ebox sends data to the Mbox
on E%ST_DATA_3B<63:0> during store, store conditional, HW_ST, and HW_MTPR instructions
to Mbox IPRs. The Ebox sends addresses to the Mbox on the E%VAX_4B<63:0> buses during
store, store conditional, load, load locked, HW_LD, HW_ST, HW_MxPR operations to Mbox IPRs,
and FETCH instructions. The Ebox receives data on the M%LD_DATAX_6A<63:0> buses during
load, load locked, store conditional, HW_LD, HW_MFPR operations to Mbox IPRs, read from

process cycle counter, and the VAX compatibility instructions. See Section 2.3 for details on these
instructions.

Any time that the Mbox sends data to the Ebox on one of the M%LD_DATAX 6A<63:0> buses, it
is the responsibility of the Mbox/Ibox to ensure that there is a bubble in the data flow of the
appropriate Ebox pipe. The Mbox controls the muxes which bring the data into the pipes.

The following signals are driven by the Ebox to the Mbox

* E%ST _DATA_3SB_H<63:0>
This 64 bit bus carries store and MTPR data from the Ebox to the Mbox.
® E%VA0_4B_H<63:0>

This 64 bit bus carries memory instruction virtual addresses and MTPR data from the Ebox
to the Mbox. It is the buffered output of the E0 adder.

¢ E%VAl_4B_H<63:0>

This 64 bit bus carries memory instruction virtual addresses and MTPR data from the Ebox
to the Mbox. It is the buffered output of the E1 adder.

The following signals are driven by the Mbox to the Ebox.
¢ M%BYP_LDO_S60_L
This signal inserts load data into stage 6 of pipe EO.
* M%BYP_LD1_S61_L
This signal inserts load data into stage 6 of pipe E1.
® M%LD_DATAO0_6A_H<63:0>
This 64 bit bus carries returning fill data from the Mbox to pipe EO.
® M%LD_DATA1_6A_H<63:0>
This 64 bit bus carries returning fill or MFPR data from the Mbox to pipe El.

DIGITAL RESTRICTED DISTRIBUTION The Ebox 2-33

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.5 Exceptions, Traps, & Stalls

If integer overflow is enabled, the Ebox generates that exception if the result of an ADDL, SUBL,
or MULL instruction does not fit in 32 bits, or if the result of an ADDQ, SUBQ, or MULQ
instruction does not fit in 64 bits. The instruction must have been issued in order to result in
overflow. The Ebox does not generate any other exceptions, nor does it generate overflow for any
other instructions. The Ebox reports overflow to the Ibox and returns a truncated 32 bit result
for longword operations or a truncated 64 bit result for quadword operations.

The Ebox does not initiate any traps.

The Ebox is stalled at cycle 3 when 1%FREEZE_EBOX 3B is asserted. It cannot be stalled at any
other point in either pipe. The output of the multiplier, however, is static and can be read until
a new multiply instruction is issued or I%MUL_ABORT is asserted.

2.6 Reset and Initialization

The sequencer which controls the multiplier must be reset during initialization. This is accom-
plished by asserting 1%MUL_ABORT.

2-34 The Ebox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

2.7 Revision History

Table 2-11: Revision History

Who When Description of change

Dan Dever 23-JAN-1992 Added a description of instruction flows, an adder control
chart, and the overview/introduction. Added to the descrip-
tions of the adder, shifter, byte zapper, and the branch logic,
and added narative to the interface section.

Harry Fair 06-NOV-1991 CREATED.

DIGITAL RESTRICTED DISTRIBUTION

The Ebox 2-35

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 3

The Fbox

3.1 Overview-Block Diagram

FIGURE> (Ebox)

FIGURE ATTRIBUTES> (KEEP\WIDE)
FIGURE_FILE>{POSTSCRIPT\ebox_blk.ps\43}
ENDFIGURE>

3.2 Functional Description

3.3 FBOX Interface

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 3—1: Fbox Interface Block Diagram

MULTIPLY UNIT INTERFACE p-—E-INTXADD O, F_BRN T
5"—
! LoGic %l BEN BA £
coND i)

48088 | mrrusmes

“l“ !'

AR AR I%F LDO_ ADDR_SActD> o
REG.

h FLE I%F WE (Do _6A Vo |
DECODE

MRALH MRE_L MRAM NRAL MWR 1%F_LD1_ADDR_SA<40> <

L mEwEm
I‘LFFAINSTSA:
FI.FFAISUEMG

l'l-FHﬂlNS"MD

ARBH ARBL ARAM ARAL STAH STAL AWR D1 LDO 1%F_FM_ISSUE, “CJ

J I'I.FSTNST:!AG
48 AN

1]

REGISTER FiLE
ARRAY

[l

[s e

4A 48—

DOCSHEIGHT 78

DOCSAOST_ALE F_INT_BLK DOMPS
DOCSROTATION B

DOCSWIDTHS.O

DOCSX OFFSET 9

PRSP DACSY.OFFSET 0

F_INTRADD_OP. A 48<84:0>
F_INTRAQD_OP_B_48<84:05.

G0 U

TO ADDUNIT STORE BUS LOAD BUSSES

3-2 The Fbox DIGITAL RESTRICTED DISTRIBUTION

EVS5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.3.1 Interface Overview

3.3.1.1 External Interface
3.3.1.1.1 Floating Point Instruction Issue

The FBOX contains two pipelined functional units: an ADD pipe and a MULTPLY pipe. Each
pipe may be issued one floating point ALPHA instruction per cycle from the IBOX. In addition to
these functional units, the Fbox floating point register file contains 2 load ports and 1 store port.
These ports allow up to 2 floating point loads and 1 floating point store to access the register
file each cycle. Table 3-1 lists the instructions which may be issued to each pipe. Floating point
load/store instructions are issued to the EBOX at a maximum of two loads or one store per cycle,
joining the FBOX pipe for formatting and floating point register file reads and writes. Floating
Point loads and stores are described in detail in Section 3.3.1.1.3.

Table 3—1: Floating Point Pipe Instruction Execution

ADD Pipe ADD pipe (contd) Multiply Pipe Load Port Store Port
ADDx FBx CPYS LDT STT

CMPx FCMOVxx MULx LDS STS
CPYSx MF_FPCR LDG STG

CVTx MT_FPCR LDF STF

DIVx SUBx

Instruction issue to the FBOX is initiated in cycle 3A by the IBOX placing source register ad-
dresses and opcode information on bus I%F_FA_INST_3A for an ADD pipe issue, bus I%F_FM_INST_
3A for a MULTIPLY pipe issue, and bus I%F_ST_INST _3A for floating store issues. Instruction
issue is completed in cycle 4A by the IBOX asserting I%F_ISSUE_FA 4A for ADD pipe issues and
19%F_ISSUE_FM_4A for MULTIPLY pipe issues. No issue signal is required at the Fbox for floating
stores.

3.3.1.1.2 Floating Point Instruction Retirement

Floating point instruction results are retired from both pipes in cycle 8B, at a maximum rate of
one instruction per cycle per pipe. Instruction retirement involves writing results into the register
file, recording any exceptions which occurred during instruction execution in the Floating Point
Control Register (FPCR), and conditionally signalling exceptions to the IBOX.

Instructions are retired from the pipes in cycle 8B by sending register file write addresses and
asserting the appropriate write enables. The IBOX places the destination register addresses
on bus 1%F_FA_ADDR_7A<4:0> for ADD pipe retirement and on bus I1%F_FM_ADDR_7A<4:0> for
MULTIPLY pipe retirement. The appropriate register file write enable must also be asserted:
19F_WE_FM_s8A for MULTIPLY pipe and 1%F_WE_FA_8A for ADD pipe retirement.

The floating point divider is located in Stage 1 of the Fbox ADD pipe. The divider is non-
pipelined, and requires a variable, data-dependent number of cycles to complete. Retirement
of floating divide instructions is initiated by the FBOX asserting F%I_DIV_DONE_SOON_1B seven
cycles before the divide instruction is complete (ready to be retired). The IBOX detects this
condition and prevents issue to the ADD pipe in that pipe slot. This allows the divider result to
rejoin the ADD pipe without conflict. Six cycles after assertion of F%DIV_DONE_SOON_1B, the IBOX

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

drives the siloed destination register number on I%F_FA_ADDR _7A, followed by the RF write enable
on 1%F_WE_FA_sA. The divider fraction result rejoins the ADD pipe from the quotient register at
the Fbox stage 3 input during cycle 7A. The fraction and exponent pass thru stage 3 and are
written to the FBOX register file in cycle 8B. The signalling and recording of all divide-related
exceptions are held until the divide instruction is retired in cycle 8B of the Fbox ADD pipe.

See Section 3.3.1.1.8 for details on abort handling in the FBOX.

33.1.1.3 Floating Point LOAD/STORE Issue and Retirement

Floating Point load (LDx) and store (STx) instructions are primarily executed by the EBOX. Their
only interaction with the FBOX is during data formatting and FBOX register file reads and writes
needed to complete the instruction.

Register file reads for floating point store instructions are accomplished using a dedicated register
file port. The IBOX initiates a STx register file read in the FBOX by placing the source register
address and opcode information on bus I%F_ST_INST_3A.

Store data is then recoded from register file format to memory format and EVEN longword parity
is generated for the memory format data. Opcode information driven from the IBOX is used to
generate control signals for the store bus data formatter. Memory format data and longword
parity are driven to the DCACHE in cycle 6A on B%D_WR_DATA_6A<63:0> and B%D_WR_LW_PAR_
6A<1:0>. For floating point stores of longword-length data (STF, STS), the longword store data
and its corresponding parity bit are duplicated on the upper and lower halves of B%D_WR_DATA_
6A<63:0> and B%D_WR_LW_PAR_6A<1:0>. The DCACHE then selects the appropriate longword
based on store address bit 2. Store data and parity must be valid at the DCACHE input at the
beginning of cycle 6B.

B%D_WR_DATA _6A<63:0> is a global tristate bus having two drivers: the MBOX and the FBOX.
The DCACHE is the only receiver. The MBOX is the default bus driver and controls access to
the bus: the FBOX is enabled to drive data in cycle 6A when the signal M%F_FBOX_DRV_ENA_5A
was asserted in the previous cycle.

DCACHE load and fill data is sent to the FBOX on two 64 bit buses: D%Z_DATA_0_5A<63:0> and
D%Z_DATA_1_5A<63:0>. Format information for the data is driven to the FBOX from the MBOX
on M%F_LD_FORMATo0_4B<2:0> for load bus 0 and M%F_LD_FORMAT1_4B<2:0> for load bus 1. Bit 2
of each bus indicates VAX/NOT IEEE format, bit 1 indicates LW/NOT QW length datatype, and
bit 0 indicates UPPER/NOT LOWER LONGWORD position for longword-length datatypes. The
data is recoded from memory format to register file format in the FBOX during cycles 5B and
6A. The formatted data is driven to the FBOX register file during cycle 6A and is written during
cycle 6B.

Register file writes for load instructions are controlled by the IBOX for both loads (DCACHE
hits) and fills (DCACHE misses). During a load/ffill, the IBOX places destination register file
addresses on I%F_LDO_ADDR_5A<4:0> for load bus 0 and on I%F_LD1_ADDR_5A<4:0> for load bus 1.
The load/fill sequence is completed by asserting I%F_WE_LD0_6A and 1%F_WE_LD1_6A for loads on
busses 0 and 1, respectively.

3-4 The Fbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.3.1.1.4 Operand Bypasses

To reduce pipeline latency by one cycle between data-dependent instructions, the FBOX pro-
vides for the bypassing of instruction results around the register file back into the FBOX pipe.
Scoreboarding and scheduling of bypasses is performed completely by the IBOX. The FBOX sim-
ply muxes potential operand sources into each pipeline using control signals 1%F_BYP_FXX_FXX_3B
provided by the IBOX. Results from load bus 0, load bus 1, the ADD pipe, or the MULTIPLY pipe
may be bypassed from the register file write stage (6B for 1oads/ﬁlls and 8B for operates) into the
first stage (cycle 4B) of any floating point instruction.

3.31.1.5 Floating Point Branch Evaluation

The FBOX evaluates the outcome of floating point branch instructions (FBxx) as well as the
validity of the corresponding IBOX branch prediction. The IBOX sends the predicted branch
outcome to the FBOX via I%Z_BR_PREDICT 4A. The FBOX evaluates the actual branch outcome
and signals the IBOX via F%I_BR_MISPREDICT 5A and F%I_BR_TAKEN_5A. F%I_BR_MISPREDICT 5A
is asserted if the IBOX branch prediction was incorrect, and F%I_BR_TAKEN_5A is asserted if the
branch condition evaluates as TRUE. The FBOX conditions the assertion of these signals with
the issue signal, preventing spurious branch mispredict indications. The mispredict and taken
signals are valid at the IBOX early in cycle 5A.

When the floating branch instruction slot reaches cycle 8A of the FBOX ADD pipe, it is possible
for the IBOX to send a register file write enable (implementation-dependent). The FBOX does
not require this write enable here (floating point branches do not take exceptions) but can handle
it with certain constraints. See Section 3.3.1.1.8 for details.

3.3.1.1.6 Conditional Move Evaluation

The FBOX evaluates the outcome of each conditional move instruction (FCMOVxx) and signals
the IBOX with the result. The IBOX uses this result to conditionally disable write enables
during retirement of the instruction. The FBOX asserts F%I_KILL_CM_5A to signal the IBOX that
the move should not be retired (i.e. register write should be KILLed). The FBOX conditions
F%I_KILL_CM_5A with the ADD pipe issue signal so the IBOX receives it only when an FCMOVxx
instruction has actually been issued.

3.3.1.1.7 Pipeline Stalls

As described in Section 3.3.1.1.1, the IBOX issues instructions to the FBOX by sending source
register addresses and opcode information in cycle 3A. When a valid instruction has been sent
to the FBOX in cycle 3A and it has issued properly, the IBOX asserts I%F_FA_ISSUE_4A or I%F_
FM_ISSUE_4A for issues to the ADD and MUL pipes, respectively. Pipeline stall conditions are
handled by the IBOX inhibiting the assertion of 1%F_FA ISSUE_4A and I%F _FM_ISSUE_4A. Thus,
stall conditions in the CPU are transparent to the FBOX.

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.3.1.1.8 Pipeline Aborts

Many conditions may arise in which it is necessary to abort instructions in either FBOX pipe. This
includes aborts of the floating point divider in the ADD pipe, whose latency is not deterministic
and is much longer than the ADD pipe or the MULTIPLY pipe. In general, aborts can be caused
by exception and non-exception conditions.

Non-exception aborts do not require the pipeline to be drained of all outstanding instructions
before restarting the pipeline at a redirected address. Examples of non-exception abort conditions
are branch mispredictions, subroutine callreturn mispredictions, and cache misses. Data cache
misses do not produce abort conditions but can cause pipeline stalls. Non-exception aborts are
completely transparent to the FBOX.

Aborts caused by exceptions require the pipeline to be drained of all outstanding instructions
before restarting the pipeline at a redirected address. The IBOX accomplishes aborts in both
FBOX pipelines by disabling write enables during retirement of instructions which are being
"drained”. Absence of the write enable prevents any results from being written and any related
exceptions from being recorded in the FPCR and sent to the IBOX. Thus, write enables function
as a late abort mechanism for the FBOX. In addition, assertion of the signal I->F_FDIV_ABORT
forces any instruction in the FBOX divider to be immediately aborted and the divider reset.

Certain instructions issued to the FBOX produce no Stage 3 result and do not signal exceptions.
This class includes floating branches (FBXX) and divide instructions (DIVXX, as opposed to divide
bubbles). Although these instructions do not require write enable to be asserted when they reach
ADD pipe cycle 8A, it may be convenient for the IBOX to do so for implementation purposes.

For this class of instructions, the IBOX may assert I%F_WE_FA_8A when the instruction reaches
FBOX Stage 3 (8A), provided the register file address specified is F31. The FBOX internally
detects this class of instructions and inhibits both FPCR writes and exception signals to the
IBOX, regardless of whether the write enable is asserted.

3.3.1.1.9 Exceptions

Exception signals from the ADD and MULTIPLY pipes are logically OR’ed and written into
the FPCR when either 1%F_WE_FM_ 8A or I%F_WE_FA SA are asserted. Exception signals from
both pipes are driven to the IBOX for use in updating the Exception Summary Register. ADD
and MULTIPLY pipe exceptions are signalled only when I%F_WE_FA_8SA and I%F_WE_FM_8A are
asserted, respectively. The exception signals and their associated conditions are described in
Table 3-8.

3.3.1.2 Internal Interface
3.3.1.2.1 Stage 1 Interface

Stage 1 of the ADD and MULTIPLY pipes each receive two operand busses from the FBOX
interface section. The operand bus sources are selected by the interface bypass mux.

36 The Fbox DIGITAL RESTRICTED DISTRIBUTION

Figure 3-2:

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

ADD Pipe Fraction Datapath Alignment/Format

bit numbers:

FP names:

boundary bits:

166665555555555444444444433333333332222222222111111111100006000000]
13210987654321098765432109876543210987654321098765432109876543210| RG

| AAAAAAAAAAABBEBBEBBBBBBBBBBEBBBBBBEBBBBBBBBBBBBBBBBBBBEBBBBBBBBBB|
110600000000000000000001111111111222222222233333333334444444444555]
10987654321001234567890123456789012345678901234567890123456789012|RG

F: }00000000000H LRG000000000000000000000000000]
S: :OOOOOOOOOOOH LRGO00000000000000000000000000:
G: :OOOOOOOOOOOH L:RG
T: :OOOOOOOOOOOH L:RG
D: :OOOOOOOOH L:RG
integer IW: :s LRGOOOOOO000000000000000000000=
integer QW: :s L:RG

H=HIDDEN BIT; L=LSB; R=RND; G=GUARD; S=SIGN

The ADD pipe receives the A operand on F_INT%ADD_OP_A_4B<64:0> and the B operand on F_
INT%ADD_OP_B_4B<64:0>. Operand A has been recoded in the interface to the ADD pipe fraction
datapath operand format depicted in Figure 3-2. Operand B has been partially formatted and
receives additional formatting in Stage 1 to get to its final fraction datapath format. For floating
point datatypes (F,S,G,T,D), these busses represent the fraction portion, and the exponent is
driven to stage 1 via F_INT%ADD_EXP_A_4B<10:0> and F_INT%ADD_EXP_B_4B<10:0>. For longword
and quadword datatypes, the A and B operands are contained completely on F_INT%ADD_OP_A_
4B<64:0> and F_INT%ADD_OP_B_4B<64:0>. The stage 1 normalization-shift-detect and trailing-
zero sections use these busses directly.

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 3-2: Exponent constants muxed onto Stage 1 Input Exponent Operand A

Instruction Constant Value (hexadecimal)
IEEE CVT float-float IEEE Bias 3FF
VAX CVT float-float VAX Bias 400
. IEEE CVT float-quad IEEE Bias + 52 (decimal) 433
VAX CVT float-quad VAX Bias + 53 (decimal) 435

To allow the stage 1 exponent adder to begin in cycle 5A, special exponent bypass logic muxes
several exponent constants onto the F_INT%ADD_EXP_A_4B<10:0> bus. As described in Table 3-2,
these constants are used during CVT floating-floating IEEE and VAX, and CVT floating-quadword
IEEE and VAX instructions. Due to implementation constraints, portions of these constants can
"leak" onto the exponent field of the data in the fraction datapath during these instructions. The
fraction data that gets modified in these cases is always 0, because the Alpha SRM requires that
operand A be F31 for CVT instructions. During these CVTs the normalization-shift-detect logic
is not using the operands. Therefore the Stage 1 output mux must select 0 for these cases rather
than the original A operand, thus making the stage 1 exponent, bypass details transparent to the
remainder of the pipe. Figure 3—3 shows the conditions occurring in the interface and ADD Pipe
Stage 1 for these cases.

The MULTIPLY pipe receives its A operand on F_INT%MUL_OP_A_4B<64:0> and the B operand on
F_INT%MUL_OP_B_4B<64:0>. The format of these operands matches the floating point register file
format.

3.3.1.2.2 Stage 3 interface

Stage 3 of the ADD and MULTIPLY pipes supply result data to the register file and bypasses in
register file format. The ADD pipe result bus is F_AS3%FWR_8A<64:0> and the MULTIPLY pipe
result bus is F_MS3%FWR_8A<64:0>.

3.3.2 Interface Instruction Flows

3-8 The Fbox DIGITAL RESTRICTED DISTRIBUTION

Figure 3-3: STAGE 1 INPUT BYPASS/FORMAT/RESOURCE TABLE

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

| | | | i | | MINI-FORMAT | S1 | S1 | EXP | EXP |
] LXD | TRZ | IN | IN | BYP | BYP | FRACTION | FL | F2 | FMT | FMT |
OPERATION | Y/N | Y/N | OPA | OP B | OP A | OP | OPA | OPB | OUT | OUT | OPA | OP B | COMMENTS
| | |] | | | | | | | | |
EFFADD | N | Y | * | * | BYP | BYP | FP | FP |AF|BF|AF|BF| EXP | EXP |
| | | | | | ! | | | | | |
EFF SUB | Y | Y | * | = | BYP | BYP | FP | FP |AF|BF|FS|*F| EXP | EXP | valid for ediff :
! | | | | | | | | | I | |
CMP* | N | N | * | * | BYY | BYP | FP | FP 1 0] O | EXP | EXP |
| 1 | | | | | 1 | | | | 1
CVT IEEE | N | Y | F31 | = | X | BYP | X | FP | 0 | BF |OX3FF | EXP |
FP-FP | I | | | | | | | | | | |
| | | | | | | | | | l | |
CVT VAX | N | Y | F31 | = | X | BYP | X | FP | 0 | BF |0X400 | EXP |
FP-FP | | | | | | | | I | I | |
| | | | | | | | | | | | |
CVTDG | N | Y | F31 | * | X | BYP | X | oW {1 0 | BF |0X400 |D-EXP |
| | I | I | | | | 1 | | |
CVTQF | Y | Y | F31 | ~* | BYP | BYP | QW | oW () |FSIBF| X | X |
VAX | | ! [1 | | | | I | | |
| | | | | | 1 | | | | | |
CVTQF | Y Y | F31 | * | BYP | BYP | OW | oW | 0 |[FSIBF| X | X |
IEEE | | | | I | | | | | | | |
| | | 1 | | | | | | 1 ! |
CVTFQ j N | Y | F31 | | X | BYP | X | FP] 0 | BF |0X435 |[EXP |
VAX | | | |] | I | | | | | |
| | | | ! | | | | ! | | i
CVTFQ | N | Y | F31 | *] X | BYP | X | FP] 0 | BF |0X433 [EXP |
IEEE | | | | | | | | | ! | | |
| | 1 i | | | | | | | |]
CVTLQ] N | N | F31 | * | X | BYP | X | oW 10 | BF | X | X |
| || | I | | | I | |] |
CVTQL j N | Y | F31 | ~* | X | BYP | X | oW] 0 | BF | X | X |
| | | | | i | | | | | | |
CPYS* | N | N | * | | BYP | | FP | FP | 0 | BF | EXP | EXp |
| | | | | | | | | | J | |
FCMOV* | N | N | * | * | BYP | | FP | FP) | BF | EXP | EXP |
| | | | | |] | | | | | |
MT FFCR | N | N | * | | BYP | | FP | FP | 0 | BE | EXP | EXP |
I] ! | | | | | | 1 | | |
oW : PASS ALL FRACTION BITS UNMODIFIED INTO LXD/TRZ/FIS.
FIS WILL FORMAT FRACTION PROPERLY FOR REST OF PIPE.
FP : bit B52 = !Z; ZERO EXPONENT FIELD OF FRACTION (FSGT types only)
EXP : EXTRACT EXPONENT FIELD OF FRACTION DP
D-EXP : EXTRACT EXPONENT FIELD OF FRACTION; ZERO UNUSED FRACTION BITS
Al : STAGE 1 ADDER 1
A2 : STAGE 1 ADDER 2
AF : OPERAND A FRACTION
BF : OPERAND B FRACTION
FS : FRACTION SUM

LXD : NORMALIZATION-~SHIFT-DETECT LOGIC

TRZ : TRAILING-ZERO-DETECT LOGIC

DIGITAL RESTRICTED DISTRIBUTION

The Fbox 3-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 3-3: ADD pipe: ADDx/CPYSx/CMPx/CVTx/FCMOVxx/FBXX/MX_FPCR/SUBXx

Cycle Description

3A Instruction opcode and RF source addresses sent from IBOX on 1%F_FA_INST 3A

3B RF source address decode

4A RF source operand read; Issue signal from IBOX on 1%F_ra _1ssur_sa

4B RF sense amp; operand bypass; Pipe formatting

5A F%I_BRN_TAKEN_5A and F%BRN_MISPREDICT 54 to IBOX for FBxx; rekmL cm_s5a to IBOX for
FCMOVxx

5A - 8B S1-S3

TA RF destination address from IBOX on 19F_FA_ADDR_7a

7B RF decode

8A Write enable from IBOX on 1«F_WE_Fa_sa

8B RF write; FPCR write; Exceptions driven to IBOX; Operand bypass; Late abort in

absence of RF write enable

Table 3-4: ADD pipe: DIVx

Cycle Description

3A Instruction opcode and RF source addresses sent from IBOX on 1%F_ra_INST_3A
3B RF source address decode

4A RF source operand read

4B RF sense amp; Operand bypass; Pipe formatting

5A Operands driven to Divider in Stage 1

- Divider runs for variable period ——MM ———

- (1>F_FDIV_ABORT can be asserted ai: any f.iﬁie) _

1B "Divider done soon" signal sent to Ibox on F#%I_pDIV_ DONE_SOON_1B

4A No issue signal to ADD pipe from IBOX this cycle (DIV bubble)

5B Exponent, controls re-enter ADD pipe S2 from Divider Hold Latch (DHL)

7A RF destination address from IBOX on 1%F_raA_ADDR 7a

7B RF decode; Quotient register result enters Stage 3

8A Write enable from IBOX on 1%r_we_Fa _sa

8B RF write; FPCR write; Exceptions driven to IBOX; Operand bypass; Late abort in

absence of RF write enable

Table 3-5: MULTIPLY pipe: MULx/CPYS

Cycle

Description

3A

3-10 The Fbox

Instruction opcode and RF source addresses sent from IBOX on 1%F_rM_INST_3A

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 3-5 (Cont.): MULTIPLY pipe: MULX/CPYS

Cycle Description

3B RF source address decode

4A RF source operand read

1B RF sense amp; Operand bypass; Issue signal from IBOX on 1F_FM 1SsUE_4a

5A - 8B S1-83

7A RF destination address from IBOX on 1«F_rM_ADDR_7A

7B RF decode

8A Write enable from IBOX on sr_we_FM_sa

8B RF write; FPCR write; Exceptions driven to IBOX; Operand bypass; Late abort in

absence of RF write enable

Table 3-6: STORE port: STx

Cycle Description

3A Instruction opcode and RF source addresses sent from IBOX on r_sT_INsT_3a

3B RF source address decode

4A RF source operand read

4B RF sense amp; Operand bypass

5A Drive data to store logic; Begin formatting and parity generation; Store bus enable
from MBOX on M%F_FBOX_DRV_ENA_5A

5B Finish store data formatting and parity generation

6A Formatted data and parity driven to DCACHE on B%D_WR_DATA 6A<63:0> and B%D_WR_

LW_PAR_6A<1:0>

Table 3-7: RF Load ports: LDx (LOADs and FILLs)

Cycle Description

4B RF dest. address driven from IBOX on %F_LDX_ADDR_5A<>; Format info. from MBOX on
M%F_LD_FORMATX 4B

5A Load data driven from DCACHE on p#%z_pata_x_sa<>; Decode RF dest. address and
format info

5B Format data into floating point RF format

6A Complete exponent expansion/zero detect and drive to FBOX RF; WEs from IBOX on
19F_WE_LDX_6A

6B RF write; Operand bypass; Absence of WE constitutes late abort

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 3-8: FBOX Interface Signal List

Signal

Description

From FBOX:
F%I_BRN_TAKEN_5A
F%I_BR_MISPREDICT _5A
F%I_DIV_DONE_SOON_1B

F9I_KILL_CM_SA

B%D_WR_DATA_6A<63:0>

B%D_WR_LW_PAR_6A<1:0>
F%I_FOV_FA_SB
F%I_IOV_FA_SB
F%I_FUN_FA_SB
F%I_INE_FA_SB
F%I_FDZ_FA_8B
F%I_INV_FA_8B
F%1_SWC_FA_SB
F%I_FOV_FM_SB
F%I_FUN_FM_SB
F%I_INE_FM_SB
FoI_INV_FM_SB
F%I_SWC_FM_SB

To FBOX:
D9:Z_DATA_0_5A<63:0>
D%Z_DATA_1_5A<63:0>
1%F_BYP_FM_FMA 3B
1%F_BYP_FA_FMA_SB
19%F_BYP_FLDO_FMA_3B
1%F_BYP_FLD1_FMA_3B
1%F_BYP_FM_FMB_3B
1%F_BYP_FA_FMB_SB
1%F_BYP_FLD0_FMB_3B
%F_BYP_FLD1_FMB_3B
17%:F_BYP_FM_FAA_3B
1%F_BYP_FA_FAA 3B
1%F_BYP_LDO_FAA_3B
1%F_BYP_LD1_FAA_3B
1%F_BYP_FM_FAB_3B

1%F_BYP_FA_FAB_3B

3-12 The Fbox

Floating branch (FBx) condition evaluated TRUE
IBOX mispredicted branch condition result
Divide result ready in seven cycles

Conditional move (FCMOVxx) condition evaluated FALSE
FBOX store data bus

Fbox store data bus LW parity

Floating Overflow - ADD pipe

Integer Overflow - ADD pipe

Floating Underflow - ADD pipe

Floating Inexact Result - ADD pipe

Floating Divide by Zero - ADD pipe

Invalid Operation - ADD pipe

Software Completion - ADD pipe

Floating Overflow - MULTIPLY pipe

Floating Underflow - MULTIPLY pipe

Floating Inexact Result - MULTIPLY pipe
Invalid Operation - MULTIPLY pipe

Software Completion - MULTIPLY pipe

load data bus 0 from DCACHE
load data bus 1 from DCACHE
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls
Bypass controls

DIGITAL RESTRICTED DISTRIBUTION

Table 3-8 (Cont.): FBOX Interface Signal List

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Signal Description
1%F_BYP_LDO_FAB_3B Bypass controls
1%F_BYP_LD1_FAB_3B Bypass controls
1%F_FDIV_ABORT Abort FBOX divide

1%F_LDO_ADDR_5A<4:0>

FBOX load bus 0 register address

1%F_LD1_ADDR_5A<4:0> FBOX load bus 1 register address

1%F_WE_LDO_6A FBOX load bus 0 write enable
I%F_WE_LD1_6A FBOX load bus 1 write enable
1%F_WE_FA_8A FBOX ADD pipe write enable
I%F_WE_FM_8A FBOX MULTIPLY pipe write enable

FBOX load bus 0 format information
FBOX load bus 1 format information

ADD pipe instruction - multiple bits
MULTIPLY pipe instruction - multiple bits
STORE port instruction - multiple bits
IBOX issue valid to ADD pipe

IBOX issue valid to MULTIPLY pipe
IBOX predicted conditional branch taken

M%F_LD_FORMAT0_4B<2:0>
M%F_LD_FORMAT1_4B<2:0>
I%F_FA_INST_3A
I%F_FM_INST_SA
1%F_ST_INST_3A
I%F_FA_ISSUE_4A
1%F_FM_ISSUE_4A

1%Z_BR_PREDICT _4A

3.4 FBOX Multiplier Pipe
3.4.1 INTRODUCTION

In this section an overview of the FBOX Multiplier Pipe is presented. The multiplier pipe consists
of a three stage pipelined execution unit.

The primary goal of this section is to demonstrate how various instructions can be executed using
the three stage pipelined microarchitecture. A general overview and block diagram of each stage
is given, followed by a description of the sequence of operations the FBOX performs to execute
the floating point multiply instruction.

The appendices contain a description of the algorithms used to implement parallel rounding with
addition, trailing 0 detection on the input operands, and a summary of the multiply pipe exception
handling.

3.4.2 Multiply Pipe Overview

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.4.2.1 Interface

The register file contains 32 floating-point registers each 65 bits wide. The additional bit in
each register is assigned to the Z bit. The bypass mux at the output of the register file selects
the two operands from the register file, formatted load data, or the result (WR) sent from the
pipeline. Depending on the datatype, the selected operand is formatted into the appropriate
fraction, exponent, and sign fields of the pipelined stages.

The result of the floating-point operation is formatted to register file format in stage 3 of the
pipeline and sent to the interface on the WR bus. This data is written to a register (WR latch) to
enable reading the result in the same cycle as the register file write.

The floating point register file has 65 bits designated as RF<64:0>. The msb, RF<64>, is a z-bit
that is set when the RF<62:0> field is all zeros. The z-bit does not cover the sign bit, RF<63>.
The register file data format is shown in Figure 3—4.

Figure 3-4: Register File Data Format

F/S datatype
6 6 6

4 32
+—t—t t 4 +
1Z21S{ Exponent. } Fraction
+=t-t +

N W
[]
0N
@ N
o

zero |

+ — 4
+

G/T datatype
6 6 6 5
4 3 2 2 0
+—+—-1 + +
1218} Exponent | Fraction |

+—+

5
1

Note the hidden bit 1s not stored for floating point operands.

3.42.2 MUL data path
The bits in the MUL fraction data path are numbered as follows:

Weight: 4 2 1 .5 .25
Bits: A2 A1 AO . BO Bl B55

A A

(] HIDDEN BIT FOR FLOATING POINT NUMBERS
\ BINARY POINT
BITS<A2:A1> are only significant during the multiply operation.

The exponent data path, E<12:0> is 13 bits wide, with E<12> representing the exponent sign bit.
The pipeline also maintains a sign (N) and a zero (Z) bit for each operand.

Register file data is formatted onto the fraction and exponent datapaths depending on the
datatype as follows:

3-14 The Fbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

+

|BIT F/S/G/T |
+ +
7.5 0 |
IBO NOT RF<64> |
{B1:B52 RF<51:0> |
|B53:B56 0 |
|E<12:11> 0 |

|

|E<10:0> RF<62:52>

The sign and z-bits are taken directly from RF<64:63>.

3.4.2.3 Nomenclature

E Exponent field.
F Fraction field, including the hidden bit.
LXD Vector of one out of 64 bits, MSB bit set indicates zero

left shift, LSB set indicates left shift of 63.

ELXD Encoded LXD in 13 bits; only the least significant 6 bits
to encode 0 to 63 are generated in FDP, other bits are
forced to zero in EDP.

AIN, BIN Inputs to the FRACTION adders.

<r> The round bit is a function of the floating point operation.
STKY Logical OR of all bits shifted out of destination datapath
width.

3.4.3 INSTRUCTION FLOWS

Following is an analysis of the pipeline flow. This analysis demonstrates what is done in each
stage of the pipeline with emphasis on fraction and exponent computation. See Figure 3-5 for a
block diagram of the multiplier pipe.

3.43.1 Floating Point Multiply

The multiplier array in stage 2 utilizes a radix-8 modified Booth algorithm, recoding three bits
of the multiplier at a time. The computation is performed on two threads in parallel and the
results are combined at the output of the array.

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 3-5: Mulitipy Pipe Block Diagram

Moper

Generale 3x

s
o P T

Mrws 142 seleciors

a_odd
b_odd

s s s s

-
s

Recoder

odd_ipp even_ipp ax '
C+S C+S
W array <0:6>
CSA’s with selectors
odd even

HAC

uliply Fraction Resull

3-16 The Fbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 3-9: Booth Algorithm

Mi+2 Mi+l Mi Mi-1 Operation MRECODE
+01234
0 0 0 0 +0 x Mcand 010000
0 0 1 0 +1 x Mcand 001000
0 1 0 0 +2 x Mcand 000100
0 1 1 0 +3 x Mcand 000010
1 0 0 0 -4 X Mcand 100001
1 0 1 0 -3 x Mcand 100010
1 1 0 0 -2 x Mcand 100100
1 1 1 0 -1 x Mcand 101000
0 0 0 1 +1 x Mcand 001000
0 0 1 1 +2 x Mcand 000100
0 1 0 1 +3 x Mcand 000010
0 1 1 1 +4 x Mcand 000001
1 0 0 1 -3 x Mcand 100010
1 0 1 1 -2 x Mcand 100100
1 1 0 1 -1 x Mcand 101000
1 1 1 1 -0 x Mcand 110000

Precomputation of three times the multiplicand and partial recode of the multiplier is performed
in stage 1. The stage 1 recoder retires 12 bits of the muliplier and sets up the initial partial
products for the first double row in the multiplier array. The trailing zero detection used in the
sticky bit calculation for IEEE rounding is also performed in stage 1 by detecting the trailing 1
position.

The multiplier array is composed of double rows of carry sum adders that perform the addition
of weighted multiplicands in parallel on odd and even threads of the array. The result of each
computation is represented in sum and carry form. The product is obtained by using two addi-
tional carry sum adders to reduce the vector pairs to a single pair of sum and carry vectors. In
order to facilitate parallel rounding in stage 3, the sum and carry vectors are passed through a
half adder to generate a sum and carry vector pair with a place created for injecting the round
bit.

The sticky bit calculation is done with a trailing zeros summing circuit. The sum of the number
of trailing zeros in the multiplier and multplicand is compared with a fixed value (depending on
data type) to determine the sticky bit. If the total number of trailing zeros in the muliplier and
multiplicand span the sticky bit range of the product then the sticky bit is set to zero.

The carry out from the lower half of the stage 2 double precision multiply is added to the sum
and carry vectors to generate a single precision result in stage 3.

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.4.4 Mul Pipe Stage 1

The first stage of the pipeline consists of fraction, exponent, and control sections as shown in Fig.
Figure 3-6.

The fraction datapath consists of a 56b adder, trailing zero detect circuits for both the multiplier
and multiplicand operands, and a set of MIPPR muxes for driving the initial partial products to
row 1 (even and odd) of the multiply array. The operands do not require formatting since the
MUL Pipe does not execute any conversions to or from integer format and are loaded directly from
the output of the MUL Pipe bypasses. The recoder is located adjacent to the fraction datapath
and is distributed throughout the first two stages of the MUL pipeline. The 56 bit fraction adder
is used to precompute 3X the multiplicand. TR_PLIER and TR_CAND vectors which set a bit
a the first trailing 1 are calculated. The sum of the trailing zeros in the product eTR_SUM is
determined by adding ¢eTR_PLIER and eTR_CAND (6 bit encodes of the position of the trailing
one in the multiplier and the multiplicand). The eTR_PLIER and eTR_CAND values also serve
to determine if the fraction sections of the operands are zero. This information is used to detect
a dirty zero input for a multiply. The MIPPR muxes use the recoded multiplier data to set up
several initial partial products for the multiplier array during multiply operations. The exponent
datapath contains a 13-bit adder, and an output mux. The exponent sum is driven to Mul Stage
2 for multiplies, and the multiplicand exponent is output for CPYS. Note the stage 1 exponent
result includes (2 * Bias). This is corrected in stage 2.

3.4.5 Mul Pipe Stage 2

A block diagram of stage 2 is shown in the Fig. Figure 3-7.

The fraction datapath of Mul Pipe stage 2 consists of a multiplier array. The multiplier consists
of 8 double rows of multiplicand selectors and CSAs organized as odd and even threads. The
multiplier recoder in stage 2 uses the multiplier from stage 1 to perform Booth recoding. Each of
the two threads produces the product in two halves in sum and carry form. These are combined
using two additional CSAs to produce a pair of sum and carry vectors (F'S, FC). The two operand
buses that carry 1x the multiplicand and the 3x the multiplicand through the datapath are used
to set up the input addends for the CSA’s. In addition, a half adder to enable parallel rounding
is included at the output of the multiplier array. The Mul Sticky bit is determined by comparing
e¢TR_SUM to a constant which is determined by the data type of the multiplication (52 for T/G,
81 for F/S). The exponent datapath consists of a 13-bit adder which subtracts the bias from the
exponent sum calculated in Mul stage 1, and an output mux to provide the original exponent of
the multiplicand operand for CPYS.

3-18 The Fbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 3-6: STAGE 1

EV5 FBOX MULTIPLIER PIPE STAGE 1 BLOCK DIAGRAM

I%AP_$B_Lcts:t>

TRANSPOSE
BUS

Pietanars_se_resasior

sea0n

Stewee
TITLE=EVS_PBOX_WA. 31_FRAC
AN v-EVS_PROX_MUL_81_FRAC

LAST_MODIFIED=Fri Dec & 18.20 57 1831

TRAILING ZERO CATECY

rg‘

canme cuand canme cuan]

T

=

r I8 Leosier

=
-
w

—SAx (38}

—]_mremax 4y

oax (48

<k ()

| TPISRBFI LAT_4A Hets:0n
._I waren] ek (an)
Z FI_LAT_4A_Hasstr
e cup ep:en

1 s B

Pirissari_se_tess:10>

48 _Lats:0>

Freaonraum oo picssion

[k —] o
CONSTANTS.

& b - TYrEN

NE= S b

T\.“‘"";

|E§! =

o | I s vy hbLL_25 noe_orr_sno_N
> 4 !l’ 1 '
e e) s
v =
-
e T
el =z
o o st st} T
st R coiakutes Sl
MULTIPLIER . ot r
1Y
RECODER Tvet I_
+ s & e
£
© ADOEND A Mitlets \L‘: !
sT01
£ " ALL_IR ACS_OFF_INO_ M
T 1? .48 Latdztn
FINCIN S8 N bl
it s SR v s a0
1RO_APPEND _48_W{1s3:0>
. Pk W

DIGITAL RESTRICTED DISTRIBUTION

The Fbox 3-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 3-7: STAGE 2

I
- P
= = F& -
ﬁﬁfi === o
* ;;535=E-u Fi e
== o = e
E e
ST e T
e =
—= H =
MULTIPLIER BLOCK DIAGRAM T e 5
ST |..T:::. e e o
[J BEFL'JN&:EE:?'W’

3-20 The Fbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.4.6 Mul Pipe Stage 3

As the final stage of the pipeline, stage 3 computes the final result including the various round-
ings, calculates the z-bit result, detects exceptions and formats the result back to the register file
format. Fig. Figure 3—8 shows the block diagram of stage 3 of the pipeline.

The fraction datapath of MUL PIPE stage 3 contains, an input selector, a 56 bit double adder,
and an output mux. The input selector chooses the operands from the multiplier(FS, FC) or zero
and the multiplicand for CPYS. The 56-bit double adder produces results either of the form A+B
and A+B+1 for VAX rounding and IEEE round to nearest, or of the form A+B and A+B+2 for
IEEE round to infinity. The final output mux chooses the results from the two adder results
and performs a 1 bit normalization. The mux control is generated using the MSBs of the adders
(MSB logic), and detection of fraction equal to exactly 1/2 in the higher order adder. The exponent
datapath contains a 13-bit adder which is used to compute the Er-1 corresponding to the potential
fraction outputs, floating overflow and underflow detection logic and an output selector. The
control section of the MUL Pipe stage 3, performs exception detection, final sign computation,
and Z bit calculation. The fraction, exponent, and sign (are already in register file format) are
driven to the Floating Register file and bypasses.

3.4.7 Copy Sign

There are three instructions in this group, only CPSY is implemented in the multiply pipe in
order to allow the compiler to generate a multiply pipe NOP. Instruction requires copying of the
sign and exponent fields. The fraction field is unchanged. Exception checking is disabled for the
copy sign instruction.

For CPYS (copy sign), the sign bit of register Fa is concatenated with the exponent and fraction
bits from register Fb. The result is stored in register Fc.

3.4.7.1 Copy Sign - STAGE 1
The appropriate data is passed to stage 2 in both the fraction and exponent datapaths.

1%F1
1%F2

0
FB

non

1%E1 EA

#

The sign and z-bits associated with the input operands are piped to the next stage.

3.4.7.2 Copy Sign - STAGE 2

The operands are passed directly to stage 3.
2%F1 = 1%F1
2%F2 = 1%F2
2%E = 1%E

The sign and z-bits from the previous stage are piped to the next stage as well.

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 3-8: STAGE 3

FANFOP_FUNC_8B_He7.05
Fa%RIN_58_H

FZHAC_3B_Heos:95 FI%HAS_08_Hce 8>
FinBz_s8 M
FIRAZ_8B_H
FxFZ_aB_H
FI%BN_S8_H
FE%EN_88_H
FrnEAz_oB H
CLK BA
| P80 AND CARRY LOBIC CLK o8
| | Fscio
— — v
I }——cix A NOR ARRA
I l -
r }—— cix 78 cix o8
CLK 7A
FSFADRAGD_1_78_Hee3:05 J_
FIFADRADD_2_78_Heta 8> F3CiD
—_— NOR ARRAY

FSCMLNSEL_ADDY_78_H

FICMLNEEL_ADDZ_7B_H
(j F3CIDNRND_MODE_7A«1:0»
FECECTARIFT Wk | _PASS_1B_H

—
M FSCMU%SEL_SHL_78_H FACIDNFOP_FUNG_7A_L<7:0>

‘| Fsos%REsULT_78_Hcsa0>

F3CRN
FSCML%FORCE... FUF, F8, Q. Facw
— {anwgss :IL:LP‘A.,‘IA_N RANODM LOGIC
PR_INE_PASS
. L — it]

EV5 MULTIPLIER FRACTION - STAGE 3

3-22 The Fbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.4.7.3 Copy Sign - STAGE 3

Stage 3 passes the stage 2 fraction and exponent outputs to the result. The sign bit is passed
from stage 2.

2%F2
2%E
2%BN

Z2mm
[

Since the z-bit calculation does not include the sign bit, the z-bit resulting from the CPYS in-
struction is equal to the z-bit associated with the Fb register operand;

3.4.8 Rounding

Table 3—-10: Chop Rounding
Addl Add2 Cin Output Shift Actual Addl= Add2=

<B0> <B0> <r> select Value A+B+ A+B+
0 X 0 Add1l L A+B 0 1
0 0 1 Add2 L A+B+1 0 1
0 1 1 Add2 no A+B+1 0 1
1 X 0 Add1 no A+B 0 1
1 X 1 Add2 no A+B+1 0 1

note: 1) Cin<r> is used to select Add1 or Add2

Table 3—11: Normal Rounding

Add1l Add2 Cin 3 and SorC Ouiput Shift Actual Addl= Add2=
<B0> <B0> <g> <g> <g> select Value A+B+ A+B+
0 X 0 X X Add1 L A+B+M M M+1
0 0 1 0 0 Add2 L A+B+l M M+1
0 0 1 0 1 Add1l L A+B+l M M+1
0 0 1 1 X Add2 L A+B+2 M M+1
0 1 1 0 1 Addl L A+B+l M M+1
0 1 1 X 0 Add2 no A+B+l M M+1
0 1 1 1 X Add2 no A+B+2 M M+1
1 X 0 0 1 Add1 no A+B+l M M+1
1 X X X 0 Add2 no A+B+l M M+1
1 X X 1 X Add2 no A+B+2 M M+1
1 X 1 X X Add2 no A+B+M+1 M M+l

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-23

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

note: 1) M =S<g> + C<g>

2) Add1 and Add2 add all bits down to and including <r>

3) additional logic will detect if the first 1 is at the <r> or <g>
position and if so may conditionally force the LSB of the rounded

result to zero if in IEEE rounding mode

Table 3-12: Rounding to Infinity

Addl Add2 STKY Cin Addl Output Shift Force Actual Addl= Add2=
<B0> <B0> bit <r> <r> select <L.SB> Value A+B+ A+B+

0 0 0 0 1 Addl L no A+B STKY 2+STKY
0 X 0 0 0 Addl L no A+B STKY 2+STKY
0 X 0 1 0 Addl L A+B+1 STKY 2+STKY
0 X 0 1 1 Add2 L A+B+1 STKY 2+STKY
0 1 0 0 1 Add2 no no A+B+2 STKY 2+STKY
0 X 1 0 X Addl L no A+B+1 STKY 2+STKY
0 0 1 1 0 Addl L 1 A+B+2 STKY 2+STKY
0 0 1 1 1 Add2 L 0 A+B+2 STKY 2+STKY
0 1 1 1 0 Add1 L 1 A+B+2 STKY 2+STKY
0 1 1 1 1 Add2 no no A+B+3 STKY 2+STKY
1 X 0 0 0 Addil no no A+B STKY 2+STKY
1 X 0 0 1 Add2 no no A+B+1 STKY 2+STKY
1 X 0 1 0 Add1 no no A+B+1 STKY 2+STKY
1 X 0 1 1 Add2 no no A+B+2 STKY 2+STKY
1 X 1 0 0 Addl no no A+B+2 STKY 2+STKY
1 X 1 0 1 Add2 no no A+B+2 STKY 2+STKY
1 X 1 1 X Add2 no no A+B+3 STKY 2+STKY

note: 1) STKY = 0 if all of the bits to the right of <r> are zero
2) Add1 and Add2 add all bits down to and including <r>

3.5 Reset and Initialization
3.6 Error Handling and Recording

3.7 Test Aspects

3-24 The Fbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3.8 Performance Monitoring Features
3.9 Issues

3.10 Revision History

Table 3-13: Revision History
Who When Description of change

your name date description

DIGITAL RESTRICTED DISTRIBUTION The Fbox 3-25

&U«A A4

Chapter 1

The Mbox

1.1 Functional Description

The primary function of the Mbox is to process loads and stores issued by the IBOX by performing
the following operations:

¢ Lookup the virtual to physical address translation in the Data Translation Buffer (DTB),
¢ Calculate Dcache hit or miss,

¢ Format and return Dcache hit data to the EBOX on loads,

* Queue up and merge loads that miss in the Dcache or Icache for issuing to the Scache,

¢ Format and return Dcache fill data to the EBOX register file,

¢ Control return of Dcache hit and fill data to the FBOX register file,

¢ Control stores to the Dcache,

* Queue up and merge stores in a write buffer for issuing to the Scache,

¢ Ensure strict ordering between reads and writes to the same address,

¢ Detect and report Dstream faults and Dcache parity errors.

The virtual addresses are calculated by the EBOX in either pipe0, pipel, or both. LD’s may
come down either pipe, but ST’s are only processed by pipe0. A ST and a LD will not be issued
simultaneously.

The major sections of the Mbox include a dual-ported 64-entry Data Translation Buffer (DTB),
fault and trap logic for each pipe, interface logic to support the control of a dual-ported 8-K
Dcache (implemented as two 8K-byte single-ported Dcaches - one per pipe), and a Miss Address
File (MAF), which holds addresses for outstanding Dcache read misses, Icache read misses and
prefetches, and Dstream writes waiting to be processed by the CBOX. In addition, the MBOX has
various control and status IPRs, the Processor Cycle Counter (PCC), and an instruction decode
section which controls the rest of the MBOX.

The MBOX begins action in Stage 4 of the EV5 pipe. During this stage, the Dcache does a tag
lookup for LDs and STs and a data lockup on LDs. Meanwhile, the virtual to physical address
translation is being performed by the DTB.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-1

Figure 1—1: Mbox

E%VA0_4B, E%ST|DATA_aA JiLL_dariTy r’l%IREF,ADDR,
E%VA1_4B F%ST_DATA_4A FILL|DATA I1%REF]IDX
INV_ADDR Co%ARB_CMD
FORMAT
64 BIT FILL_ADDR
N
DCACHE LD MISS
8K BYTE MAF
s ENTRY DUAL PORTED IGACHE MISS
DUAL PORTED
PARITY_ERR WRITE BUFFER
I PAQ PAL
fo_MISS hrco.pTEY £AST TRA2
PATA0,DATA1 FAGD,TAGY
TRAPS FORMAT | | COMPARE
64 BIT
M%LD_DATAO JsA,
TRAP SIGNAYS TO IBOX M%LD_DATA1_pA M{C_IDX
MDC_HITo, M2%C_MAF_ADDR
M%WB_ST_BUS Wil |)

During Stage 5, LD data is formatted and driven to the EBOX (the FBOX handles floating
point formatting) while the Dcache tag and the physical address from the DTB are compared to
determine whether the address hit or missed in the Dcache. Also in Stage 5, memory management
faults and parity errors are calculated. The MAF uses the physical address to determine if an
incoming instruction merges with an existing MAF entry. It also does read-write conflict checking
between the new address and addresses already in the MAF. Meanwhile, the MAF arbitrates
between all outstanding memory references and the new reference to determine which shall be
issued next to the CBOX for processing.

In stage 6, the MAF is updated based on the hit, merge and conflict results. For LDs that hit in
the Dcache, the data is bypassed into the next instruction and also written into the register file.
No entry is made in the Miss Address File. For LDs that missed in the Dcache, the reference
either makes a new DREAD entry in the MAF, or is merged with an existing MAF entry. If the
MAF has no memory references already waiting to be issued to the Cbox for an Scache lookup,
then the new reference may be issued to the Cbox for a Stage 6 Scache tag lookup. For STs that

1-2 The Mbox DIGITAL RESTRICTED DISTRIBUTION

hit in the Dcache, the data is written to the Dcache in Stage 6. Regardless of whether the ST hit
or missed in the Dcache, the ST address is placed in the Write Buffer (WB) section of the MAF,
either as a new entry or merged with an existing entry. The ST data is sent to the CBOX along
with an MAF index for entry into the CBOX data write buffer.

Figure 1-2 shows how the MBOX fits into the overall pipe.

Figure 1-2: MBOX Pipe

Load Hit:
| so | s1 | s2 | s3 | s4 | S5 | sS6 | s7 | 58 | s9 | $10 | s11 | s12 |
Other boxes| IC | IB | SLOT | ISS {ADD | | USE/RCF| | | | | | |
| | [| I | | WR| ! | | | | I
DTB | | | | | PA LKUP/HIT | | | | | | | |
| | | | | | TRAP | | | | | | | |
DC TAG | | | | i READ ! | | | | | I |
DC DATA | | | | | READ / FMT| | | | | | I I
MAF | | | I | | MERGE? | | | | | ! I
| | | | | IMAF ARB | | | | | | | |
Load Miss (MAF empty, Scache hit):
| SO | s1 | s2 | s3 | s4 | s5 | 56 | s7 | s8 | 59 | s10 | s11 | s12 |
Other boxes| IC | 1B | SLOT | ISS | ADD | SC ARB / SC TAG / SC HIT / SC DATO/ SC DAT1/ |USEO/RGF | USE1 /RGF |
| | |] | | | | N | RFBO | RFB1 | WRO | WR1|
DTB | | | | | PA LKUP/HIT | | | | | | | |
| | | | | | TRAP | | | | | | | |
DC TAG | | | | | READ | | | | | WRITEO / WRITE1 |
DC DATA | | | | | READ | | | | | WRITEO / WRITE1l |
| | | | | | ! | | | | FMTO| FMT1 | |
MAF ! | | | | | MERGE? WR | FIL RQO /FIL RQ1 | |RETIRE | |
] | | | | |ARB BYP| | | RDO | RD1 | | | |
Store (MAF empty, Scache hit):
| SO | s1 | S2 | 83 ! s4 | s5] S6 | s7 | s8 | 59 | 510 | s11 | s12 |
Other boxes| IC | IB | SLOT | ISS |ADD | | | SC ARB / SC TAG / SC HIT /SC WRITEO/SC WRITE1 |
DTB | ! | | | PA LKUP/HIT | | | | | I | |
| ! | | | I TRAP | | | I | | | !
DC TAG | | | | | READ | | | i 1 | | |
DC DATA | | | | | | | WRITE | I | | | I
MAF | | | | | | MERGE? WR I | | | | | |
| | | | | | | |ARB RD | | | WR DONE | RETIRE |
<---ALL DC FILLS BLOCKED--->
1.1.1 Instruction Descriptions

Table 1-1, Instructions Handled by the MBOX, contains the list of instructions the MBOX needs
to handle and on which pipe they may be issued.

DIGITAL RESTRICTED DISTRIBUTION

The Mbox 1-3

Table 1-1: Instructions Handled by the MBOX
Instruction Name

LDx - (LDL, LDQ, LDF, LDG, LDS, LDT)
LDQ U

LDx L - (LDL_L, LDQ L)

STx - (STL, STQ, STF, STG, STS, STT)
STx_C - (STL_C , STQ C)

STQ U

FETCHx - (FETCH , FETCH_M)

MB

WMB

RPCC

HW_LD

HW_ST

HW_MTPR

HW_MFPR

o]
=
b~
®
[~

Pipe 1

PP 24 B DA B D M

1.1.1.1 LDx - (LDL, LDQ, LDF, LDG, LDS, LDT)

The MBOX will accept up to two LDx instructions per cycle. These instructions may be issued in
either pipe0 or pipel. A STx may not be issued in the same cycle as a LDx. When two loads occur
in the same cycle, the load in pipe0 will always be considered "earlier” than pipel. A load cannot
issue in the same cycle as a HW_MxPR instruction. These rules are important with regards to
traps and read ordering.

When the MBOX receives the load address it is checked for the proper quadword or longword
alignment, as appropriate. An ALIGN_ERR trap is generated if the address is not aligned prop-
erly.

The Dcache reads the tag and data arrays for each pipe in stage 4, using the index from VAo
and VAL In stage 5 the Dcache returns data to the FBOX and MBOX on the DATA0 and DATA1
busses, and the tag to the MBOX on TAG0 and TAG1. The FBOX will format the data according to
floating point type for floating point instructions. The MBOX will provide format controls to the
FBOX. The MBOX will perform longword shifting and sign extension for integer loads and drive
the formatted integer data to the EBOX on the LD_DATA0 and LD_DATA1 busses. Also in stage 5,
the Dcache tag is compared against the physical address of the instruction (read from the Data
Translation Buffer, or DTB) to determine whether the load hit in the Dcache. DC_HIT EX must be
asserted to the IBOX on a Dcache hit and deasserted on a miss. If the load hit, the actual write
to the FBOX and EBOX register files will occur in stage 6.

The physical address of an incoming load is compared against every location in the Miss Address
File (MAF), and on a Dcache miss the load is either merged with an existing request or allocated
a new entry. The MAF will merge entries that are in the same 32 byte block but to different
quadwords. Loads to the same quadword will trap (discussed later). The MAF will not merge
floating point and integer requests. The MAF will also not merge longword load requests with

1-4 The Mbox ' ' ' DIGITAL RESTRICTED DISTRIBUTION

quadword load requests, nor longword load requests to odd addresses with longword load requests
to even addresses. These restrictions were put in place to ease the implementation of the MAF.

There are 6 entries in the MAF. When there are 5 entries already allocated in the MAF, any
new load in pipel will be forced to trap by asserting MBOX_UNAVAIL to the IBOX. A load in pipe0
will be allowed to allocate a new entry. If there are 6 entries already allocated in the MAF, then
any new load will be trapped. Therefore, once a sixth entry has been allocated, no loads may be
processed by the Mbox until an entry is retired from the MAF.

The addresses of all incoming loads are compared against all addresses in the MAF. If there is
an exact match (to the exact longword/quadword), then the incoming load will be forced to trap,
regardless of whether it would have hit or missed in the Dcache. This is to guarantee precise
ordering of reads from the same address (as required by litmus test #1 in the ALPHA SRM). This
trap is called the LD-MAF Conflict trap, and is discussed in Section 1.1.3.

If the index of an incoming load matches the index of a store in the immediately preceding cycle,
and the store hit in the Dcache, then the load will be forced to trap. If the load would have hit in
the Deache, then the store will have updated the Dcache location by the time the load is issued
the second time around. If the load would have missed, then it will miss again the second time
around and will then be processed by the MAF. This trap is referred to as the Ld-ST Silo trap.

All load miss addresses are checked against every entry in the Write Buffer portion of the MAF,
or WB. If a conflict is detected, the load instruction that conflicts will be stored in the MAF along
with conflict bits indicating which entry(ies) in the WB caused the conflict. The WB will be forced
to flush - that is, issue to the CBOX all outstanding writes up to and including the conflicting
entry. When the conflicting WB entry is retired by the Cbox, the corresponding conflict bit(s) in the
Dread portion of the MAF will be cleared. An entry in the MAF with any conflict bits set will be
blocked from issuing to the Cbox until all conflict bits for that entry are clear. The corresponding
Write Buffer entry will be set to NOMERGE to keep subsequent writes from passing the read.

Load requests will arbitrate with Ireads, writes and BIU requests for the Scache (see Table 1-22,
MATF Issue Priority). If there are no outstanding requests pending, the MAF is bypassed. Pipe0
is the primary bypass of the MAF. Pipel may bypass the MAF if there is not a load in pipe0.

1.1.1.1.1 Dcache FiLLs

When the load is passed to the CBOX, the index into the MAF is also sent. The fill data is
returned with this index, an octaword address bit, and whether this is the first or second part of
the fill. The index and octaword address are used to read out the register destination numbers,
formatting information, status bits, and physical address out of the MAF. The register destination
numbers are sent to the IBOX to use for register file fills. The physical address is sent to the
Dcache on DC_ADDR<38:4> along with the FILL command. The octaword address and first/second
fill information are used to determine which octaword valid bits should be set and these valid bits
are driven to the Dcache along with a NOFILL indicator for each pipe. The Dcache is written the
cycle after the fill data shows up on the fill bus (RFB) from the CBOX. The Dcache will drive the
fill data on the DATA0 and DATA1 busses to the FBOX and MBOX. For integer fills, the MBOX
will perform a longword shift and sign extend and drive the formatted data to the EBOX on the
LD_DATA0 and LD_DATA1 busses. For floating point fills, the FBOX will do the formatting under
MBOX control.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-5

For a fill destined for the EBOX register file, the CBOX will notify the IBOX (and MBOX) to insert
idle bubbles in the EBOX pipe to ensure slots for the fill to write the Dcache and the register
file. For each octaword of fill data, the IBOX will insert one "no-op” bubble to ensure the EBOX
register file write port is free, followed by one "no-MBOX" bubble to ensure the Dcache is free.

For fills destined to the FBOX, the MBOX will detect any loads or stores that want to use the
Dcache or register file at the same time. If an incoming load coincides with either the cycle when
the fill is writing the register file or the cycle when the fill is writing the Dcache, then it will
be forced to miss and the fill will complete normally. If either the tag lookup, hit, or data write
cycles of a store coincides with the cycle when the fill is writing the Dcache, then the fill will not
be written to the Dcache but the data will still be forwarded and written to the register file.

Every FILL writes identical data to both 8K banks of the Dcache.

If an ECC error is detected on fill data from the Bcache or the external memory system, the CBOX
will assert M_RFB_ECC_ERR to the MBOX. The MAF locks the register number and formatter
control in a special holding register called the ECC error register and flushes the Dcache. When
the ECC error occurs on the first part of a fill, the MAF sets the NOFILL bit for that DREAD
entry to block the second half of the fill from writing the Dcache. For correctable ECC errors, the
CBOX returns the corrected fill data with an ECC_FILL return status. The register number and
formatter control are read from the ECC error register and the corrected fill data is forwarded
and written to the register file. The Dcache is not written with the corrected data. Refer to
Section 1.1.3.0.5 for a further description of ECC errors and the ECC_FILL operation.

LD’s from "non-cacheable” memory (PA<39> = 1), will be forced to miss the Dcache and will be
loaded into the MAF with the NOFILL bit set. On the returning fill, the NOFILL bit will be read
from the MAF and force a bypass of the Dcache. Load merging for IO space addresses is done
the same as load merging for non-I0 space addresses. After an IO space read is issued to the
CBOX, the CBOX will send the MBOX a FILL request at the time normally reserved for fills due
to Scache hits. The MAF will read out the register numbers, formatting information, quadword
request bits, and physical address in anticipation of the fill. The fill will be aborted (since I/O
addresses will miss in the Scache), but the quadword request bits will be sent to the CBOX. The
CBOX will forward these bits to the pins when sending out the IO read request to the system to
identify the requested quadwords within the block. Once the FILL request is received from the
CBOX, the MAF will disallow further merging to that entry. The actual fill will be completed
later when the data is returned from the system.

IMPLEMENTATION NOTE

Bit 39 of the address is not part of the Dcache tag. Only data with PA<39> = 0 may
reside in the Dcache. Therefore, the condition, PA<39> = 1, will force a Dcache miss
and set the fill to NOFILL.

If MCSR<DC_FHITS> is set, all loads will be forced to hit in the Dcache, regardless of
the value of PA<39>.

The CBOX will notify the IBOX to insert to insert idle bubbles in the pipeline when
the initial FILL request is asserted to activate the quadword request bits.

EV5 provides minimal support for a "big endian” mode. When this mode is enabled, bit 2 of the
address is inverted for all longword loads (LDL, LDS, LDF).

1-6 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1112 LDQU

The LDQ U instruction is handled in the same manner as the LDQ instruction except that
alignment traps are disabled. Note that address bits <2:0> are not actually cleared, but are
ignored.

1.1.1.3 STx- (STL, STQ, STF, STG, STS, STT)

The MBOX will accept at most one STx instruction per cycle. The STx can be either a floating
point or integer type store. The addresses for both types of stores will be processed by EBOX
pipe0. The actual store data will come from the FBOX on floating point stores and from EBOX
pipe0 on integer stores. Data will be driven to the Dcache on the WR_DATA bus by either the
FBOX or MBOX as appropriate. The Dcache will forward this data on to the CBOX write data
buffer. Parity is calculated on the data by the FBOX on floating point stores and by the MBOX
on integer stores.

The Dcache tag lookup for the store will occur in Stage 4. DC_HIT is calculated in Stage 5, and
the data is stored in the Dcache in Stage 6 if DC_HIT is true.

DC_HIT is calculated using the tag from the Dcache bank associated with pipe0. If DC_HIT is
true, then both banks are written with the ST data. Otherwise, neither bank is written.

In the 2nd cycle following the issue of the store, the IBOX will not issue any LDs to the Decache.
In the cycle immediately following a store, the Ibox may issue a LD, (as long as there were not 2
consecutive stores). The address of this load is checked against the address of the preceding store.
If there is an exact index match (down to the longword level), and the store hit in the Decache,
then the load will be trapped. Otherwise, the data will be read from the Dcache as normal. The
trapped load will then be replayed by the IBOX, this time presumably hitting in the Dcache, since
the store will have had time to complete. If a store is present in Stages 4, 5, or 6, any FILLs
coming in from the CBOX (at stage 5) will not fill the Dcache.

Stores are checked for quadword or longword alignment, as appropriate. Improper alignment
will cause an ALIGN_ERR trap.

Regardless of whether the store hits or misses in the Dcache, the write is entered into the Write
Buffer (WB) section of the MAF, where it is queued up for issuing to the Scache and eventually
the system. Subsequent stores may merge with a previous store in the WB if they are in the
same 32 byte block. Entries in the WB will eventually be flushed to the Scache interface. The
WB will send entries to the Scache when a 2nd entry is made to the WB, when a load conflicts
with a WB entry, or every 64 cycles (when the 6-bit WB counter overflows). In the conflict case,
the MAF will set a conflict bit and flush the WB until the conflict is resolved. The FETCHx,
STx_C, MB and WMB instructions also inititate a flush of the write buffer.

When the store conflicts with a LD-miss entry already in the MAF, a conflict bit will be set in the
WB entry corresponding to each MAF index that conflicts. As fills retire entries from the MAF,
the corresponding conflict bits will be cleared in the WB entries. A WB entry will not be issued
as long as any conflict bit is set in that entry. Conflict checking is not performed against Istream
addresses.

All store addresses are checked against every entry in the WB. If the ST matches a WB entry but
for some reason can not merge with the previous store, the new store instruction will be allocated
an entry in the WB. A conflict bit is set in the WB entry to indicate the address of the newly
allocated store conflicts with the address of a previous store. The conflicting store instruction

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-7

will not be allowed to issue until all previous stores have been retired. This ensures ordering of
store/store operations is maintained in the system.

IMPLEMENTATION NOTE

The ST/ST conflict is implemented as a virtual WMB instruction by the Mbox. (The
WMB bit is used to order ST/ST conflicts in the WB).

Once a write is issued to the Scache, the CBOX takes over that entry. No further merging is
allowed to the WB entry after it is issued. The entry remains in the WB until the actual write is
complete for conflict checking purposes. After the CBOX has written the entry into the Scache,
the CBOX will return the index of the WB entry with a WR_DONE command. The MBOX will
retire the entry from the WB and clear the corresponding conflict bits in the DREAD file. The
CBOX has the means for requesting the MBOX to reissue a store after it was initially issued by
the MBOX and accepted by the CBOX.

A store to "non-cacheable"” memory space (PA<39>=1) will always miss the Dcache, unless the
MCSR<DC_FHIT> mode bit is set. Otherwise, writes to "non-cacheable” memory space are
treated the same as "cacheable” memory space by the MBOX. The CBOX handles any other
differences in EV5 behavior for the two spaces.

EV5 provides minimal support for a "big endian” mode. When this mode is enabled, bit 2 of the
address is inverted for all longword stores (STL, STS, STF).

When there have been 6 entries allocated in the WB, a new store will be forced to trap by asserting
MBOX_UNAVAIL to the IBOX.

1114 STQU

The STQ_U instruction is handled in the same manner as the STQ instruction except that align-
ment traps are disabled. It will only be issued to EBOX pipe0. Note that address bits <2:0> are
not actually cleared, but are ignored.

1115 MB

When the IBOX detects a memory barrier (MB), it stops issuing any MBOX instructions until
the MBOX tells it to restart. The IBOX will issue the MB in pipe0 and will not issue any other
MBOX instructions in the same cycle.

When the MBOX detects the MB instruction, it will flush all WB requests to the Cbox and allow
all DRD requests to issue to the CBOX. The MBOX will wait until all DREAD and WB entries
have been retired before issuing the MB command to the CBOX. This is to ensure proper ordering
between the outstanding fills and writes with respect to new loads and stores issued once the MB
finishes and restarts the IBOX. Note that the MB instruction does not affect IREADs, so there
may be outstanding IREADs in the system.

The MBOX will receive acknowledgment from the CBOX (MB_DONE return status) and send
the MB_CLEAR signal to the IBOX to restart instruction issue.

1-8 The Mbox ' DIGITAL RESTRICTED DISTRIBUTION

1.1.16 WMB
The IBOX will issue a WMB in pipe0. A store will never be issued in the same cycle with a WMB.

Unlike the normal MB, the WMB does not stop the IBOX from issuing further instructions. Its
purpose is to ensure that all writes issued before the WMB finish before any writes issued after
the WMB. Writes issued after the WMB may not merge with writes issued before.

When a WMB is received by the MBOX, the MAF sets all existing WB entries to be non-mergeable,
so subsequent writes will make new entries. Since the Cbox cannot guarantee that it will complete
all writes in the order they were issued to the CBOX, the MAF will stall the issuing of all writes
received after the WMB until all previous writes have been retired from the WB.

The WMB command will not be issued to the CBOX or the pin interface.

1.1.1.7 RPCC

The RPCC instruction will return the value in the Processor Cycle Counter register on the LD_
DATAO bus with the same timing as a LD instruction that hit in the Decache. The IBOX will only
issue the RPCC instruction down EBOX pipe0.

The signal DC_HIT_E0 must be asserted to the IBOX to emulate a Dcache hit.

Refer to Section 1.1.4, Processor Cycle Counter, for more details on the Processor Cycle Counter.

1118 LDx L-(LDL L,LDQ_L)

When the IBOX detects a LDx_L instruction, it stops issuing any MBOX instructions until the
MBOX tells it to restart. The IBOX will issue the LDx_L in pipe0 and will not issue any other
MBOX instructions in the same cycle.

LDx_L instructions are forced to miss in the Dcache. (DC_HIT_Eo to the IBOX must be cleared).

LDx_L commands will always allocate a new MAF entry regardless of whether it could have
merged with previous entries. This is to prevent it from merging with an entry that has already
been issued with the DREAD command instead of the LDx_L command. In order to prevent
subsequent LDx instructions from matching multiple entries in the DREAD file, merging to the
LDx_L entry is not allowed. The LDx_L instruction will cause the top entry of the write buffer
to arbitrate at low priority. If there is one entry pending in the WB when the LDx_L is executed,
this feature improves the performance of the LDx_IL/STx_C sequence by clearing the WB in
preparation for the expected STx_C instruction.

When the LDx_L command is issued to the CBOX, the CBOX will take care of locking the asso-
ciated address and setting the lock flag. The MBOX will send the MB_CLEAR instruction to the
IBOX to restart instruction issue after the LDx_L has been issued and accepted by the CBOX
(the command is past the RETRY point). The CBOX will return the LDx_L data to the MBOX
like an ordinary FILL.

All the same conflict checking and traps that apply to normal LDx’s apply to the LDx_L as well.

EV5 provides minimal support for a "big endian” mode. When this mode is enabled, bit 2 of the
address is inverted for all LDL_L instructions.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-9

NOTE

There is another version of the LDx_L instruction implemented by the HW_LD in-
struction (HW_LD_L). This can be LW, QW, virtual or physical and can be issued down
either pipe0 or pipel. PALcode will guarantee the HW_LD_L can not be dual-issued
with any other MBOX instruction. (The IBOX does not support simultaneous issue of
"MB-Class" instructions).

1.1.19 STx_C- (STL_C, STQ_C)

A STx_C instruction will only be issued by the IBOX on EBOX pipe0. The IBOX will stop issuing
further MBOX commands until it is told to restart by the MBOX. The Dcache interface will
process the STx_C instruction like a normal store. Fills that coincide with the previous, current
and following cycle of the STx_C will be blocked from writing the deache.

STx_C addresses are stored in the WB section of the MAF. The address will always be allocated
a new entry and no merging will be allowed to that entry. STx_C will set the FLUSH bit to force
the WB to empty.

The STx_C register number is stored in a special latch in the control section of the Miss Address
File, so that when notification of the STx_C passing or failing arrives from the CBOX, the appro-
priate register may be written with the status of the STx_C.

Just like a normal store, the STx_C address will be checked against the MAF for conflicts and
store the appropriate conflict bits in the WB to ensure all prior Dstream read and write requests
to the same block are processed by the CBOX first.

The STx_C is issued to the CBOX using the STx_C command so that the CBOX will condition
the write with the lock bit value. When the STx_C completes, the CBOX will send back the value
of the lock bit on a dedicated wire along with the STx_C_DONE command. The result bit will
be returned to the EBOX register file by driving it onto the LD_DATA0 bus in the MBOX, and
the register number will be sent to the IBOX. The CBOX will assert the RFB_DATA_VALID signal
on a STx_C_DONE so that the FILL_VALID signal will be asserted by the MBOX when it sends
the register number to the IBOX. The MBOX will restart the IBOX at this time by asserting
MB_CLEAR. The CBOX will notify the IBOX (and MBOX) to insert an idle bubble in the EBOX
pipe to ensure there is a slot to write the register file with the STx_C result.

EV5 provides minimal support for a "big endian" mode. When this mode is enabled, bit 2 of the
address is inverted for all STL_C instructions.

The lock bit is required to be cleared by PALcode on certain exceptions. This may be accomplished
by issuing a HW_ST with the PHYS and COND bits set. (The HW_ST C is to a bit bucket
address). This is guaranteed to clear the lock bit since any previous LDx_L instructions will be
issued to the CBOX ahead of the HW_ST C.

NOTE

There is another version of the STx_C instruction implemented by the HW_ST instruc-
tion. This can be LW, QW, virtual or physical and can only be issued down pipe0.

1-10 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1.1.1.10 HW_MFPR

IPR reads from MBOX registers will have timing similar to a load hit. Data is returned to the
EBOX register file on the LD_DATA0 bus and DC_HIT_E¢ is asserted to the IBOX.

1.1.1.11 HW_MTPR

An IPR write to an MBOX register will be treated like a store except it will not be entered into
the WB and will not modify the Dcache (unless the destination is a Dcache IPR). As long as the
Ra and Rb fields of the HW_MTPR are the same, IPR write data will be driven from the EBOX
to the MBOX on both the ST_DATA and the VAo buses.

IMPLEMENTATION NOTE

For implementation reasons, the write data for the MBOX IPRs is taken from the VAo
bus. The ST_DATA is ignored by the MBOX on HW_MTPR instructions.

1.1.1.12 FETCHXx - (FETCH , FETCH_M)

The IBOX will issue a FETCHXx instruction in pipe0. FETCHx instructions will be loaded into
the WB and will be issued to the CBOX with the FETCH or FETCH_M command. A FETCHx
instruction will inititate a flush of the write buffer at high priority. Merges will not be allowed
to FETCHx entries. The FETCHx will be removed from the WB only after receiving a FETCH_
DONE command from the CBOX. No data is returned to the MBOX on a FETCHx.

TB_Misses and ACC_VIO’s are generated like a LDx for the FETCH and like a STx for the
FETCH_M. BAD_VA traps will be generated, but alignment checks will be disabled.

NOTE

A side effect of putting the FETCHx instructions in the write buffer is that normal
conflict checking will be performed between the incoming FETCH and the MAF and
also between incoming loads and the FETCH in the write buffer. This will have the
consequence of ordering FETCH and LD instructions, except in the case of a LD and
FETCH issued in the same cycle. In this case, no conflict checking is performed.

1.11.13 HW_LD

The HW_LD is an implementation-specific instruction that is used to implement some load varia-
tions not accounted for in the Alpha SRM. It is an unaligned load, which means that the alignment
trap is disabled.

The following diagram shows the instruction decode for the HW_LD instruction.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-11

Figure 1-3: HW_LD instruction

11111
65432
Bt I RN SRR +
| IPIAIWIQ|VIL] |
| |[HILIRIU|P|O| i
| RB IYITITIA|T|CI DISP |
I IS {CIDIEIKI |
| [T B B I I |
+ B e T S e

! 1

0

110
109 1]

OPCODE

o ————

The HW_LD instruction takes on different behavior depending on which bits in the instruction
are set. These bits and their effect on behavior are deseribed below.

Table 1-2: HW_LD Format
Field Load Behavioral Description

PHYS 0 - The address from the Ebox is virtual.

1 - The address from the Ebox is physical. The DTB is bypassed and memory
management access checks are inhibited.

ALT 0 - Memory management checks use PS current mode bits.
1 - Memory management checks use ALT MODE IPR.
WRTCK 0 - Memory management checks FOR and read access violations.
1 - Memory management checks FOR, FOW, read and write access violations.
QUAD 0 - Length is longword.
1 - Length is quadword.
VPTE 1 - Flags a virtual PTE fetch. Used by trap logic to distinguish single TBmiss from
double TBmiss. Memory management checks are done against KMODE.
LOCK 1 - Load_lock version of HW_LD. Will be issued on Pipe0 only, as ensured by
PALcode.

The HW_LD instruction is treated just like a normal LDx (LOCK=0) or LDx_L (LOCK=1), except
for the address translation and access checks as specified in the decode of the opcode. PALcode
can not dual-issue a HW_LD_L instruction with any other MBOX instruction.

The QUAD bit distinguishes between longword and quadword versions of this instruction.

Memory management traps are generated according to the setting of the PHYS, ALT, WRTCHK,
and VPTE bits. If the PHYS bit is set, then all memory management traps are disabled and
the DTB is bypassed. If the ALT bit is set, then the read and write access checks are performed
against the Current Mode bits from the ALT_MODE register rather than those from the Processor
Status. If WRTCK is set, then write access checks are performed in addition to the read access
checks. If VPTE is set, access checks are done against KMODE rather than using the Processor
Status mode. If a DTB_MISS is detected on a HW_LD with the VPTE bit set, then the signal
IN_TB_FLOW will be asserted to the IBOX along with the normal trap indicators.

1-12 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1.1.1.14 HW_ST

The HW_ST is an implementation-specific instruction that implements some store variations not
accounted for in the SRM. It is an unaligned store, which means the alignment trap is disabled.

The following diagram shows the instruction decode for the HW_ST instruction.

Figure 1-4: HW_ST instruction

3 2 2 22 11111110 0

1 6 5 10 654321009 0

	I IP{Al	Ql [CI					
		{HILI U]	O]				
OPCODE	RA	RB	YIT		A]	[N	DISP
		Is		ID	ID]		
		[T O					
+ + + —t—t—t=t—t—t—t +

The HW_ST instruction takes on different behavior depending on which bits in the instruction
are set. These bits and their effect on behavior are described below.

Table 1-3: HW_ST Format
HW_ST Field Store Behavioral Description

PHYS 0 - The address from the Ebox is virtual.

1 - The address from the Ebox is physical. The DTB is bypassed and memory
management access checks are inhibited.

ALT 0 - Memory management checks use PS current mode bits.
1 - Memory management checks use ALT MODE IPR.
QUAD 0 - Length is longword.
1 - Length is quadword.
COND 1 - Store_conditional version of HW_ST. In this case, Ra will be written with the

value of LOCK_FLAG.

HW_ST addresses are stored in the WB section of the MAF. The address can be physical or virtual
depending on the PHYS bit of the opcode. All HW_ST’s, except the version with the COND bit
set, will be handled like any other STx, except for the address translation and access checks. If
the COND bit is set, the HW_ST will treated as a STx_C.

The QUAD bit distinguishes between longword and quadword versions of this instruction.

If the PHYS bit is set then the address received from the EBOX is physical, so the DTB is
bypassed and memory management traps are disabled. If the ALT bit is set, the trap logic will
use the bits from the ALT_MODE register instead of the PS Current Mode when doing read/write
access checks.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-13

1.1.2 Memory Management

1.1.2.1 Data Translation Buffer

EV5 contains a 64-entry fully associative dual ported translation buffer. The DTB caches re-
cently used data stream page table entries for 8Kbyte pages. Two addresses can be translated
simultaneously for loads and one address for stores. In addition, each of the entries supports all
four granularity hint options, i.e. 1, 8, 64, or 512 pages as described in section 6.5 of the ALPHA
SRM V4.0. The operating system via PALcode is responsible for insuring that translation buffer
entries, including super page regions, do not map overlapping virtual address regions at the same
time.

In addition, EV5 provides an extension referred to as the super page, which can be enabled via
bits in the MCSR register. Super page mappings provide virtual to physical address translation
for two regions of the virtual address space. The first mode (SP0) maps a 30-bit region of the total
physical address space to a single corresponding region of virtual space defined by VA<42:30> =
1FFE(Hex). In this mode, if VA<42:30> = 1FFE(Hex), then PA<39:30> is forced to 0 and VA<29:13>
is copied to PA<29:13>. The second mode (SP1) enables superpage mapping when the virtual
address bits <42:41> = 2. The entire physical address space is mapped multiple times over to
one quadrant of the virtual address space defined by VA<42:41> = 2. Address translation in this
mode is done by copying VA<39:13> to PA<39:13>. No DTB miss traps are generated during a
superpage translation.

Super page translation is only allowed in kernel mode. The translation will fault if the super
page translation is attempted while not in kernel mode. This is accomplished by forcing all the
protection bits except the KRE and KWE bits to "0" when the super page translation is attempted.
The KRE and KWE bits are forced to "1". The DTB is bypassed during a superpage translation.

For load and store instructions, the effective 43 bit virtual address is presented to the DTB, one
address for each pipe. If the PTE’s of the supplied virtual addresses are cached in the DTB,
the PFN and protection bits for the page associated with that address are used by the MBOX to
complete the address translation and access checks. If either of the addresses misses in the DTB,
then a trap to PALcode is generated. PALcode is responsible for filling the DTB.

Each of the 64 DTB entries can support all 4 granularity hint bit (GH) page size options. At
the time when the PTE is written to the DTB, the GH bits are decoded and used to disable
the compare on a subset of Virtual Address bits <21:13>. The number of address bits disabled
corresponds to the size of the page indicated by the GH bits. The GH bits themselves are stored
in the DTB array. When a load or store instruction is presented to the DTB, only those address
bits that are enabled by the GH bits of each entry are compared with the Virtual Address of
the instruction. If a match occurs on these bits, then the corresponding PFN and Protection bits
are read out of the DTB. A subset of the tranlated physical address, bits <21:13>, are replaced
with the corresponding bits of the Virtual Address according to the page size specified by the
granularity hint bits.

Table 1—4: Granularity Hint Bit Mapping
cE<l> ¢a<0> Page Size Physical Address of Page Address within Page

0 0 8K bytes PA<39:13> Pa<12:0>
0 1 64K bytes PA<39:16> PA<15:0>

1-14 The Mbox | DIGITAL RESTRICTED DISTRIBUTION

~*\- Granularity Hint Bit Mapping
™-waical Address of Page Address within Page

19> PA<18:0>
22> PA<21:0>

1s that have the PHYS bit set, the DTB is bypassed altogether.
38 (VA) lines is the actual physical address and is transferred
3 (PA) lines. No DTB miss or memory management traps are

NOTE

instructions take precedence over superpage translation.
to PA<39:13> on a HW_LD/ST instruction even in SP0Q mode.

Number (ASN) bits. When a tag is loaded into the DTB on a TB
1 to a field in the same entry. The tag for a DTB entry may only
1 if the ASN bits in the DTB match the current ASN. Each DTB
ich, when set, forces the ASN stored in the DTB to always match
t is a part of the PTE written to the DTB on a TB fill.

are physically arranged in the DTB datapaths as follows:

Flgu.-
Physical Datapath Virtual Datapath

o] 01 33 3 0 11 2 2 4 4 5555555 6

0 920 6 7 9 0 23 12 23 1234567 3
tm——mmm— b=t =+ + + + B s H e B &
| | | [| | ! | IVIAL | |
] PROT | PFN | GH | JINT | VA L | VA | VA H | |A|S| | ASN |
I | | [1<13:21>1<22:42>(<13:21> ILIM]| | |
B ittt St I Tt S + + ————tee— ettt t

| | | [|

[+---> Address Space Number ({(6:0)

| | | +=======> ASN latch

| | d=m—mm—————= > Address Space Match (l=force match on all ASNs}

| B > Valid (1 = DTB entry is valid)

fmmm e > Match Latch for clearing Valid (DTBIS)
e > Virtual Address Tag (21:13)

> Virtual Address Tag (42:22)

e e > Virtual Address Tag (21:13) (Copy for large page ma
- > Tag-PTE interface logic

I |
I |
| |
I |
| |
| |
|

o e -

| |
| |
! |
| l
| !
| |
| |
| |
| i
l |
| o e e e e e e e e e e e e e e e > Decoded Granularity Hint Bits
+

______ > Physical Address Mapping (39:13)
- —_— > PTE Protection Bits

|
|
|
|
|
|
|
|
|
i
|
|

The translation buffer uses a not_last_used replacement algorithm. This is implemented via a
round-robin pointer which is initialized to the 1st DTB entry on RESET or a DTBIA. This pointer
is bumped to the next entry whenever PAL code finishes a DTB fill for an entry, or when a DTB
hit is detected for the entry currently being pointed to. The pointer always points to the next
entry to be filled upon detection of a DTB_MISS.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-15

NOTE

For load/store operations, the pointer bump is done before the Ibox trap point. When
the normal conditions for bumping the pointer are met, this has the effect of bumping
the NLU pointer on a trapping virtual address instruction or on a virtual address
instruction in the cycle following a trapping instruction.

The DTB is filled and maintained by PALcode. The chapter on PALcode in the external spec
details the DTB miss flows. The DTB is filled via the HW_MTPR instruction to the DTB_TAG
and DTB_PTE IPRs. The virtual address bus for pipe0O is used to carry the data read from the
EBOX register specified in the Ra field of the HW_MTPR instruction, to the DTB. A HW_MTPR
to the DTB_PTE is first executed, which loads the PTE into a temporary register. When a HW_
MTPR to the DTB_TAG is executed, the data from the temporary PTE register is loaded into the
PTE side of the DTB array at the same time as the tag is written. The valid bit for this entry
-will be set by hardware at this time. The HW_MTPR to the DTB_TAG will cause the pointer to
be bumped.

There are 3 types of invalidates for the DTB, They are DTB-Invalidate-All (DTBIA), DTB-
Invalidate-All-Process (DTBIAP) and DTB-Invalidate-Single (DTBIS). Each of these commands is
issued via the HW_MTPR instruction; each has its own IPR encoding. When DTBIA is detected
(HW_MTPR DTBIA), all the valid bits in the DTB are cleared. When DTBIAP is detected (HW_
MTPR DTBIAP), any entry whose ASM bit is clear will have its valid bit cleared. When DTBIS
is detected (HW_MTPR DTBIS), the EBOX will drive the contents of the register addressed in
the Rb field of the instruction onto the pipeQ VA lines. If any entry in the DTB matches the value
on the VA lines, then that entry’s valid bit is cleared. The DTBIS invalidate occurs in Stage
5A of the HW_MTPR instruction. The DTBIAP and DTBIA invalidates occur in Stage 7A of the
HW_MTPR instruction. Because the DTBIS is executed prior to the IBOX trap point, a special
IBOX kill signal, KILL_DTBIS, is used to abort the HW_MTPR DTBIS. The DTBIS will be aborted
when the IBOX detects a PC mispredict or an ITB Miss trap, or when the HW_MTPR is issued
during user mode.

The valid bits in the DTB array are not cleared by hardware on RESET. PALcode will clear the
DTB using the HW_MTPR_DTBIA instruction.

1.1.3 Traps
The following traps will be detected by the MBOX.

NOTE

These are not the actual trap entry points recognized by PALcode. For a complete de-
scription of EV5 traps, PAL entry points and priorities, please see <REFERENCE>(ev5_
IBOX_trap_section\ full).

Table 1-5: Traps Detected by the MBOX

Trap Name Trap Descriptions

FOR Fault on Read: LD or FETCH from an address whose PTE has the FOR bit set.

FOW Fault on Write: ST, FETCH_M, or LDQ/AW to/from an address whose PTE has the
FOW bit set

1-16 The Mbox ‘ DIGITAL RESTRICTED DISTRIBUTION

Table 1-5 (Cont.):

Traps Detected by the MBOX

Trap Name Trap Descriptions

ACCVIO Access Violation: An access occurred to an address whose protection bits were set
up in such a way as to forbid that access.

BAD_VA Bad Virtual Address: Bits <63:43> of the Virtual Address are not a sign-extension
of bit <42>.

ALIGN_ERR Bits <2:0> of the address of a quadword LD or ST are not all 0, or bits <1:0> of a

DTB Miss Single

longword LD or ST are not all 0.

The VA of a Dstream access does not have a valid translation in the DTB and the
instruction occurred outside the TB miss PALcode flow.

DTB Miss Double The VA of a Dstream access does not have a valid translation in the DTB and the
instruction was in a TB miss PALcode flow. This trap will only occur on the HW_LD
instruction with the VPTE bit set.

MAF Full The Dstream read portion of the Miss Address File is full.

WB Full The Write Buffer section of the Miss Address File is full.

LD-MAF Conflict The physical address of a LD instruction already has an outstanding LD miss in
the Dread section of the Miss Address File. The fill must complete before the new
LD can be processed. This is to guarantee exact ordering for reads from the same
address - (litmus test #1).

LD-ST Silo Conflict The Decache index of a load matches that of a store that hit in the immediately
preceding cycle.

Dcache Parity Error ~ The Dcache detected a parity error on either the tag or data read out of the Dcache

on a Dcache reference.

All traps generated by the MBOX, IBOX, or FBOX, except the Dcache Parity Error, must inhibit
the MBOX from updating any state. This includes, but is not limited to: writing the MAF in
cycle 6A, writing the Dcache in cycle 6B on stores and issuing commands to the CBOX in cycle
6A. Any instruction in the same stage of the pipe as the trapping instruction must be aborted if it
is later in time. If it is earlier in time, then it must be allowed to complete. The imprecise traps
(certain FBOX traps, CBOX Fill errors, Dcache parity errors) will be resolved by the IBOX and
will appear to the MBOX as IBOX traps. Any trap on an instruction in Stage 6 of the pipeline
must abort any instructions (that are later in time) in Stages 3 through 6 of the pipe. Since the
MBOX pipe begins at Stage 4, this will require aborting Stage 4 for 2 cycles.

Table 1-6 shows the traps detected by the MBOX and the resulting signals sent to the IBOX.
The actions taken by the IBOX when one or more of these signals is asserted is described in
<REFERENCE>(ev5_IBOX_trap_section\ full).

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-17

Table 1-6: Trap Signals to IBOX (One pipe shown)
Traps detected

by MBOX CYCLE dmm err align err in_tb_flow dtb_miss MBOX unavail perr
FOR2 5b 1 - 0 - -
FOW2 5b 1 - 0 -

ACCVIO? 5b 1 0 R

BAD_VAl:2 5b 1 - 0 -

ALIGN_ERR 5b 1 1 - - - -
DTB Miss Single 5b 1 0 1 -

DTB Miss Double 5b 1 1 1 - -
MAF Full 5b - - - - 1 -
WB Full 5b - . - - 1

LD-MAF Conflict 5b - - - - 1

LD-ST Silo Conflict 5b - - - - 1 -
Dcache Parity Error 6a - - - - - 1

1A BAD_VA trap will disable dtb_miss signal to the IBOX.

2POR, FOW, ACCVIO, and BAD_VA are recognized at the IBOX when align_err and dtb_miss are deasserted and dmm_
err is asserted. The FOR, FOW, and ACCVIO bits in the MM_STAT register will only be set if there was a DTB hit. The
ACCVIO bit will also be set by BAD_VA.

- means signal is unaffected by this trap condition.

1.1.3.0.1 Memory Management Traps

The Dstream Memory Management traps include FOR, FOW, ACCVIO, BAD_VA, ALIGN_ERR,
and DTB Miss traps. These are briefly described in Table 1-5. When any one of these traps is
detected, the IBOX is notified by the DMM_ERR signal. A group of encoded signals is sent to the
IBOX at the same time so the IBOX may generate the appropriate trap vector. These signals are
specified in Table 1-6. There is an identical set of signals for each of the 2 issue pipes.

For the HW_LD and HW_ST instructions with the PHYS bit set, the DTB is bypassed and memory

management traps are not generated (although MBOX_UNAVAIL and Dcache Parity Error traps
may be).

When DMM_ERR has been asserted, the following MBOX IPRs are loaded and locked:
¢ MM_STAT - This register is loaded with the opcode and Ra field of the trapping instruction.
It also stores the nature of the fault (FOR, FOW, ACCVIO, BAD_VA, DTB_MISS).

* VA - The complete Virtual Address (bits <63:0>) of the faulting memory reference is loaded
into the VA register.

e VA _FORM - The VA_FORM is not actually a register that is loaded and locked. Instead,
when a HW_MFPR VA_FORM is issued, it returns shifted and truncated bits of the Virtual
Address from the VA register along with bits from the MVPTBR register.

These registers may also be loaded and locked when a Decache parity error is detected as discussed
in Section 1.1.3.0.3.

1-18 The Mbox DIGITAL RESTRICTED DISTRIBUTION

These registers are all unlocked when the VA register is read by PALcode. Their contents will
remain unchanged until another Memory Management trap or Dcache parity error is detected.

1.1.3.0.2 Miss Address File Full and Conflict Traps

The Miss Address File generates an MBOX UNAVAIL trap when either the write buffer or the
Dstream read portion of the MAF is full, or when the LD-MAF Conflict or LD-ST Silo Conflict
conditions are detected. There is one MBOX_UNAVAIL signal per pipe, and it signals to the IBOX
that the instruction being trapped needs to be replayed. These types of traps do not trap to
PALcode. The IBOX loads the PC of the trapping instruction and restarts issuing immediately.

The MBOX_UNAVAIL trap is a precise trap and must inhibit the MBOX from updating any state.
The same considerations apply as are mentioned in Section 1.1.3.0.1, Memory Management Traps.
No IPR registers are loaded or locked as a result of this trap.

The sources of the MBOX_UNAVAIL trap are talked about in more detail in Section 1.1.9.9, Mbox
Unavailable Traps.

1.1.3.0.3 Dcache Parity Errors

Parity will be checked on the data read from the Dcache on LDs and on the tag read from the
Dcache on both LDs and STs. Parity will not be checked on either data or tag if the data sub-block
valid bits are not set. If either data sub-block valid bit is set, then tag parity will be checked.
Dcache parity checking will be enabled unless the DC_PERR_DIS bit in the DC_MODE register is
set.

When a Deache Parity error is detected, PERR is asserted to the IBOX. The following registers are
loaded and locked: MM_STAT, VA, VA_FORM and DC_PERR_STAT. DC_PERR_STAT contains
information as to which of the Decache banks produced the error, whether the faulting instruction
wrote the register file, and whether a second error occurred after the register was locked. If any
of the error bits is set, then the register is locked.

MM_STAT, VA, VA_FORM are all unlocked by reading the VA register. DC_PERR_STAT is un-
locked and cleared by writing a "1" to the lock bit.

NOTE

If Machine Checks are disabled for some reason, a Dcache parity error will still load
and lock these registers, even though the machine check will never be recognized.

The pipes are not aborted when a parity error is detected. Instead, the IBOX will detect the
parity error as a Machine Check and will assert the IBOX trap signal(s) at a later time. This is
to ensure that the instructions aborted match up to the exception PC reported to PALcode.

1.1.3.0.4 Traps from the IBOX

The IBOX will send 2 signals to the MBOX indicating which pipe(s) to abort on any trap origi-
nating from the IBOX (included also are all EBOX and FBOX imprecise traps, interrupts, CBOX
fill errors, etc.) These signals are KILL E¢ and KILL_E1. Each signal will abort the instruction
in the current stage of the pipe specified by the signal name and all instructions already issued
in both pipes back through Stage 3. When the IBOX aborts a particular instruction, the MBOX
must ensure that any MBOX-generated traps for that instruction or following instructions will

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-19

not result in the locking of the VA and MM_STAT registers. The trap signals themselves, except
the Dcache parity error, will be ignored by the IBOX while in the trap shadow.

NOTE

It is possible for KILL_E0 to be asserted, but not KILL_E1. This means that the instruc-
tion in pipel is logically earlier than the instruction in pipe0. When this condition
occurs, the instruction in pipeQ is aborted. The instruction in pipel is not aborted
unless there is an MBOX generated trap in pipel. All following stages must still be
aborted.

If there is an IBOX trap in pipe0 and the instruction in pipe0 is logically ahead of the
instruction in pipel, then the IBOX is guaranteed to assert the KILL_E1 signal.

The same actions are inhibited on IBOX traps as mentioned in Section 1.1.3.0.1, Memory
Management Traps. No IPR registers are loaded or locked as a result of this trap.

1.1.3.0.5 CBOX/fill errots

When the CBOX detects an ECC error on a Deache fill, it will assert the signal M_RFB_ECC_ERR.
The MBOX will load the register number and format control into a special ECC_FILL holding
register. This register will be locked against further updates until the CBOX returns corrected
data. (A second ECC error can not occur before the corrected data is returned). When the
corrected data is returned on an ECC_FILL from the CBOX, the fill data is not written to the
Dcache. The IBOX register number and the E/FBOX format control are read from the ECC_FILL
register and the fill data is forwarded to the integer/floating register file.

The Dcache is flushed in the cycle following the assertion of M_RFB_ECC_ERR. The flush takes
effect 2 cycles after the Dcache write of the fill in error. Due to restrictions placed on the timing
of ST/FILL and LD/FILL operations, a load or store will never access the bad Dcache data in the
cycle before the Dcache is flushed.

Because both sub-block data valid bits are set when the second half of a fill is written to the
Dcache, care must be taken to maintain coherence in the Decache. The MAF will set the NOFILL
bit if the ECC error happens on a FIRST_FILL. This prevents the second half of the fill from
being written to the Dcache after the first half is flushed.

NOTE

There is potential for the first half of a fill from the Scache to be written to the Dcache
in the cycle following the fill with the ECC error (11B). The first half of the fill will be
flushed from the Decache in 12A. The second half of the fill will be written to the Dcache
in 12B, and both sub-block data valid bits will be set. Since the Dcache flush operation
clears valid bits but does not affect the Dcache data, Dcache coherence is maintained
as long as the two parts of the fill operation happen in back-to-back cycles.

No aborting of the pipes will be done when the ECC error is first signaled to the MBOX. Instead,
the IBOX will detect it as a Machine Check and will assert the IBOX trap signal(s) at a later
time. This is to ensure that the instructions aborted match up to the exception PC reported to
PALcode.

1-20 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1.1.3.0.6 Multiple Traps

If multiple traps are detected in the same cycle, then multiple trap signals may be asserted to

the

IBOX in that same cycle. However, special actions must be taken in regards to aborting the

pipes and loading and locking the VA and MM_STAT registers depending on which traps were
asserted by which pipe.

Dcache parity error traps take precedence over any other traps that occur in the same cycle (either
pipe). For all but the Dcache parity error trap, if traps occur on both pipes in the same cycle, the
trap that is associated with the logically earlier of the two instructions takes precedence over the
other. Within a given instruction, the precedence of traps is this:

1.
2.
3.
4,
Within
follows:

Dcache Parity Error
IBOX

Memory Management
MBOX_UNAVAIL

a given cycle, the actions taken for aborting pipes and loading and locking registers are as

Dcache parity errors by themselves do not abort any pipes. If there is a Dcache parity error,
then the VA, MM_STAT, VA_FORM and DC_PERR_STAT registers will be loaded and locked
by the pipe generating the Dcache parity error even if the instruction in the other pipe is
logically ahead of the instruction with the Dcache parity error.

An IBOX trap will abort the instruction in the pipe that generated the trap. If one of the
instructions IBOX traps and that instruction is logically the earlier of the two instructions,
then the IBOX will abort both pipes by asserting KILL_Eo¢0 and KILL_E1. IBOX traps do not
load and lock any registers in the MBOX. An IBOX trap will abort any attempt to load and
lock the VA, VA_FORM and MM_STAT registers by any MBOX generated traps that happen
in the IBOX trap shadow.

If there is not an IBOX trap in pipe0, then MBOX generated traps in pipe0 take precedence
over any traps in pipel. The instructions in both pipes are aborted and the MM_STAT, VA
and VA_FORM are loaded and locked with information from pipe0. If two loads occur in the
same cycle, the instruction in pipe0 is guaranteed to be logically ahead of the instruction in
pipel. If the instruction in pipel is a non-MBOX instruction that is logically ahead of the
instruction in pipe0, then the abort of pipel has no effect.

MBOX traps in pipel take precedence over IBOX traps in pipe0 unless KILL_P1 is asserted.
This is because the IBOX will abort the instruction in pipel if it is logically after the in-
struction in pipe0 and the instruction in pipe0 IBOX traps. If there is an IBOX trap in
pipe0 and KILL _P1 is not asserted, and there is an MBOX generated trap in pipel, then both
pipes are aborted and the MM_STAT, VA and VA_FORM registers are loaded and locked with
information from pipel.

If there is a trap from any source in pipel and there are no traps in pipe0 then the instruction
in pipe0 is allowed to complete and the instruction in pipel is aborted. The MM_STAT, VA and
VA_FORM are loaded and locked with information from pipel. Note the instruction in pipe0
may be logically ahead of the instruction in pipel. If pipel has an IBOX trap, then KILL_E0
will be asserted by the IBOX and pipe0 will be aborted. If the instruction in pipel MBOX
traps and the instruction in pipe0 is a non-MBOX instruction, then allowing pipe0 to complete
is innocuous since the instruction can not modify any MBOX state. If the instruction in pipel
MBOX traps and the instruction in pipe0 is an MBOX instruction then the pipe0 instruction

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-21

is guaranteed to be logically ahead of the pipel instruction, and the pipe0 instruction should
be allowed to complete.

Memory management traps take precedence over MBOX_UNAVAIL traps. The VA, VA and
VA_FORM are loaded and locked with information from the trapping pipe when the memory
management trap takes precedence.

MBOX_UNAVAIL traps do not load and lock any registers.

Summary of priority of loading and locking the VA/MM_STAT/VA_FORM registers:

e Rl o

Dcache parity error pipe0

Dcache parity error pipel

IBOX trap pipe0, pipe0 is logically ahead of pipel
IBOX trap pipel, pipel logically ahead of pipe0
MBOX MM trap pipe0

MBOX unavailable trap pipe0

IBOX trap pipel, pipe0 logically ahead of pipel
MBOX MM trap pipel

MBOX unavailable trap pipel

Note that the VA, VA_FORM and MM_STAT registers are not loaded or locked when an IBOX or
MBOX_UNAVAIL trap has precedence. Attempts to load and lock the registers by lower priority
traps are aborted.

Table 1-7: Table of Multiple Trap Effects

PERRO PERR1 Io MMO M UNAVLO I1 MMi1 M_UNAVL1 Action

0
0
0

0 0 0 0 0 0 0 VA, MM_STAT unlocked; noabort

0 b4 0 0 0 0 1 VA, MM_STAT unlocked; abort

0 X 0 0 0 1 X VA, MM_STAT loaded and locked
from pipel; abort

0 X 0 0 1 X b4 VA, MM_STAT unlocked; abort

0 0 0 1 X X b4 VA, MM_STAT unlocked; abort

0 0 1 X X X X VA, MM_STAT loaded and locked
from pipe0; abort

0 1 X X 0 0 0 VA, MM_STAT unlocked; abort

1 0 0 0 0 0 0 VA, MM_STAT, DC_PERR_STAT
loaded and locked from pipel; noabc

0 0 0 0 0 0 0 VA, MM_STAT, DC_PERR_STAT

loaded and locked from pipe0; noabc

¢ Ix—ALL non-MBOX traps in PIPEx

e MMx—Dstream MM faults and DTB_Miss in PIPEx

e M_UNAVLx—MAF full and conflict traps in PIPEx

¢ PERRx—Dcache parity error in PIPEx

¢ abort—abort all instructions following an instruction that traps due to IBOX, MM, or MBOX_UNAVAIL traps

1-22 The Mbox DIGITAL RESTRICTED DISTRIBUTION

Table 1-7 (Cont.): Table of Muitiple Trap Effects
PERRO PERR1 T0 MMO0 M_UNAVLO I1 MM1 M UNAVL1 Action

1 1 0 0 0 0 0 0 VA, MM_STAT, DC_PERR_STAT
loaded and locked from pipe0; set
SEO; noabort

0 1 X X X X X X VA, MM_STAT, DC_PERR_STAT
loaded and locked from pipel; abort
if other trap

1 0 X X X X X X VA, MM_STAT, DC_PERR_STAT
loaded and locked from pipe0; abort
if other trap

1 1 X X X X X X VA, MM_STAT, DC_PERR_STAT
loaded and locked from pipe0; set
SEO; abort if other trap

Ix—ALL non-MBOX traps in PIPEx

MMx—Dstream MM faults and DTB_Miss in PIPEx

M_UNAVLx—MAPF full and conflict traps in PIPEx

PERRx—Dcache parity error in PIPEx

abort—abort all instructions following an instruction that traps due to IBOX, MM, or MBOX_UNAVAIL traps

Here are the simplified equations for loading and locking the VA/VA_ FORM/MM_STAT registers
and selecting VA0/VA1:;

¢ LD LK=(MMO0 && '10) | | (MM1 && !I1 && 'M_UNAVL(®) | | PERRO | | PERR1
e SEL_VAO = PERRO | | (MMO && !'PERR1)

1.1.4 Processor Cycle Counter

The Processor Cycle Counter is a 32-bit counter which is written via the CC and CC_CTL IPR
registers and read via the RPCC instruction. RPCC returns a 64 bit value. The lower 32 bits are
the cycle counter and the upper 32 bits are an offset which may be written to by writing the CC
IPR. The CC_CTL IPR is used to write the lower 32 bits and to enable or disable the counter.
The counter is disabled on chip reset.

Implementation Note: The counter is partitioned into two parts - a 4-bit part and a 28-bit part.
The carry input to the 4-bit part is tied to the counter’s enable signal and this portion increments
every cycle. The 28-bit incrementer is only updated whenever the carry out of the lower 4-bit
incrementer is active. This gives the 28-bit incrementer 16 cycles to work.

The upper 32 bits form a simple register which is written via MTPR to CC and read via RPCC,
but never incremented.

The SRM specifies that there must be a mode where 0 is always returned when the PCC is
read. This is accomplished by writing all 0’s to CC and all 0’s to CC_CTL. This has the effect of
initializing the counter to 0 and turning it off, so subsequent RPCCs will return a value of 0.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-23

1.1.5 Big Endian Support

EV5 will provide minimal support for big endian systems (EV5 is "little endian”). When the big
endian mode bit in the MCSR register is set, address bit <2> will be inverted for all longword
Dstream accesses.

"Big endian" refers to the addressing of longwords within a quadword. EV5 is "little endian”
and addresses the low order longword of a quadword with a lower address than the high order
longword. In "big endian" systems, this is the opposite (the low order longword has a higher
address than the high order longword).

For longword accesses, EV5 will perform a rotate and sign extend based on address bit 2.
Therefore, when in big endian mode, an inversion of bit 2 of the address is necessary for all
longword Dstream references. This inversion happens upon entering the MBOX - the formatting
logic in the Dcache interface and the MAF PA control both need the big endian version of bit 2.
The virtual address stored in the VA register will not reflect this inversion.

1.1.6 Interface requirements with FBOX, EBOX, IBOX for Dstream Instruction
Execution

The Icache interface is discussed in Section 1.1.9.4, Icache Interface.

1.1.6.1 Instruction Opcode

For each EBOX pipe, the IBOX will send a subset of the 32-bit instruction on E0_INST<31:0>
and E1_INST<31:0>. The MBOX will use these to decode the type of instruction, the destination
register number for LDs, the IPR number for HW_MxPRs, and the instruction type for HW_LDs
and HW_STs.

E0_INST<31:0> and E1_INST<31:0> will arrive in Stage 2 of the pipe and will be decoded, piped
along, and aborted, as needed, by the MBOX. The IBOX will also send a stage 3 stall signal
(STALL), which will be used to stall the stage 3 opcode latches for both pipes.

The IBOX also sends the signal PAL_SHADOW_EN which indicates that the destination register
on integer loads is really a PAL shadow register. This information is stored in the MAF with
the register number and returned to the IBOX on fills. This signal is a stage 3 signal which is
already stalled appropriately by the IBOX.

The instruction in pipe0 is valid if the signal E0_ISSUE is asserted, and the instruction in pipel
is valid if the signal E1_ISSUE is asserted. EX_ISSUE are asserted in stage 4. Since this is too late
for the MBOX to setup the Dcache commands and address based on an "issued" instruction, the
IBOX will also send a signal that will give the hint that the instruction in pipeQ is not "junk"
(such as for an Icache or ITB miss). This signal, E0_VALID, is asserted in stage 2. The E0_VALID
signal is stalled using the stage 3 STALL signal, and is cleared after Eo_ISSUE is asserted while
the pipeline is still stalled. The MBOX does this to reduce the chance of blocking fills on a "false"
store (this is the case where the store has issued and its valid bit is stalled).

NOTE

If a store is stalled and has not issued yet, incoming fills to the Dcache will be blocked
by the stalled store.

1-24 The Mbox DIGITAL RESTRICTED DISTRIBUTION

For integer fills (including STx_C_DONE), the CBOX sends the IBOX notification to allocate a
bubble in the EBOX pipe by asserting ALLOC_CYCLE in stage 2. The IBOX uses this signal to
disable the EX_ISSUE signals, which are too late for the MBOX to know that there is an idle
bubble in the pipe. The MBOX will need to use ALLOC_CYCLE directly in order to setup the
Dcache properly for a fill (in the case when a fill is coming in and it looks like there is a store in
the EBOX pipe).

1.1.6.2 Restarting the IBOX After MB, LLDx_L and STx_C Instructions

The IBOX will stop issuing MBOX instructions whenever it encounters an MB, STx_C, a HW_ST
with the COND bit set, a LDx_L, or a HW_LD with the LOCK bit set. For the MB, STx_C and
HW_ST C cases, the CBOX will notify the MBOX upon completion of the command via RETURN_
STATUS<3:0> and the MBOX will then restart the IBOX by asserting MB_CLEAR. For the LDx_L
and HW_LD_L instructions, the MBOX will restart the IBOX after the CBOX accepts the load
locked command.

1.1.6.3 Virtual Address from EBOX

For each EBOX pipe, the EBOX will send a clocked 64-bit virtual address from the output of the
Stage 4 adder, VA0<63:0> and VA1<63:0>. There are both active high and active low versions of
each of these busses. The addresses on VA0 and VA1 will be valid for all LDx (including LDx_L
and HW_LD), ST (including STx_C and HW_ST), FETCHx and HW_MTPR TBIS instructions.
The MBOX uses these signals primarily for address translation and the bad VA check. They are
also piped and saved in the VA register on traps.

The EBOX has a special "fast” index adder which will send the index bits of the virtual address
directly to the Decache.

On HW_MTPR instructions the data on the VAo bus will be a copy of the data on the ST_DATA
bus. (The Ra/Rb field of the HW_MTPR instruction must be the same). The VA0<63:0> is used
on HW_MTPR instructions to load the Mbox/Dcache IPR registers.

1164 LD bus

The MBOX drives two 64-bit busses into the EBOX, LD_DATA0<63:0> and LD_DATA1<63:0>, one for
EBOX pipe0 and the other for pipel. These busses are muxed together with other EBOX sources
and written into the register file. They can also be bypassed directly into the current EBOX
operation. The MBOX will return data on one or both of these busses for several operations
(LDx, HW_LD, STx_C, HW_ST with the COND bit set, RPCC, HW_MFPR, and fills). During
these operations, unused bits will be driven with "0" values, such as in the STx_C instruction
which only returns one bit of data. The MBOX will also drive a "0" value on the LD_DATA0 bus
for any HW_MFPR from a write-only MBOX IPR or from an unassigned IPR in the range MBOX
IPR addresses, 2xx(hex). This is done to support the EV5 verification effort.

The Dcache also returns data to the MBOX on two busses, DATA0<63:0> and DATA1<63:0>. During
LD and HW_LD instructions, DATA0<63:0> and DATA1<63:0> will contain the data read from
the Dcache arrays. For fill operations, these busses will carry the contiguous octaword of data
supplied by the CBOX, with the lower quadword on DATA0<63:0> and the upper quadword on
DATA1<63:0>. For both load and fill operations, the MBOX will drive properly formatted ver-
sions of the DATA0<63:0> and DATA1<63:0> busses onto the LD_DATA0<63:0> and LD_DATA1<63:0>
busses, respectively.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-25

There are 3 possible formats for integer LD and fill operations: quadword, longword from the
upper longword of a quadword, and longword from the lower longword of a quadword. No for-
matting is necessary in the quadword case. For a longword load from the upper longword, the
upper longword is shifted into the lower longword position and the MSB of the longword is sign-
extended across the upper longword of the new quadword. For a longword load from the lower
longword, no shifting is necessary, but the upper longword of the new quadword is replaced with
a sign-extension of the MSB of the lower longword.

On floating point LDs and FILLs, the Dcache will send the data directly to the FBOX on
DATA0<63:0> and DATA1<63:0>. The FBOX will perform floating point data formatting under
MBOX control.

1.1.6.5 ST Bus Sources and Destinations

The EBOX sends the MBOX a 64-bit store bus, ST_DATA<63:0>, for integer STx, HW_ST, STx_
C and HW_MTPR instructions. The store bus data is ignored by the MBOX on a HW_MTPR
instruction; the IPR write data is taken from the VA0 bus instead.

For store instructions, the MBOX will pass the data along to the Dcache for quadword integer
STxs and will copy the lower longword of data onto the upper longword for longword integer oper-
ations. Longword parity is calculated on this "formatted” data. The MBOX drives the formatted
data and the two longword parity bits to the Dcache on WR_DATA<63:0> and WR_LW_PARITY<1.0>,
which are tristate busses that also carry floating point store data and parity from the FBOX to
the Dcache. All floating point formatting and parity generation is done by the FBOX, but MBOX
will control the tri-state WR_DATA bus drivers for both integer and floating point stores. For
longword stores, the Dcache will select which longword to write into the Dcache based on bit 2
of the address. The Dcache will forward the store data and parity on to the CBOX write data
buffer on separate busses.

1.1.6.6 Register Numbers and Controls to FBOX and IBOX for Dstream FILLs and LDs

For Dstream FILL data coming from the CBOX, the MBOX sends the destination register num-
bers and valid bits to the IBOX. The IBOX controls both the integer and floating point register
file writes. There are 2 sets of register numbers and valid bits, one for each quadword of the
octaword of data being returned from the CBOX. These bits are read from the MAF when a
Dstream FILL request comes in from the CBOX. FILL_RNUM0<6:0> and FILL_RNUM1<6:0> con-
tain the 5-bit register number, whether it is a floating point or integer register, and whether
it is a PAL shadow register (integer only). These signals go to the IBOX and are qualified by
the signals FILL_VALID0 and FILL_VALID1 to select which pipe(s) contain data to be written to
the register file. The signal FILL_COMING is issued at the same time as the register numbers to
indicate that there is a potential fill. This allows the IBOX to setup the FBOX register number
muxes appropriately. FILL_COMING is needed on floating point fills, but not integer fills, because
the CBOX will allocate bubbles in the EBOX pipe for integer fills, but not for floating point fills.
Therefore, a load could be issued at the same time as a floating point fill, requiring the load to
be force missed, and the fill register numbers to be selected for writing the floating point register
file. Separate FILL_COMING signals for the 2 FBOX ports are not necessary since a FILL reserves
both ports regardless of whether data is being written to both ports of the register file (a Dcache
resource requirement).

1-26 The Mbox DIGITAL RESTRICTED DISTRIBUTION

For floating point LDs and FILLs, the MBOX sends formatting information to the FBOX to
control the floating point formatters on the input to the FBOX register file. These signals are
LD_FORMAT0<2:0> and LD_FORMAT1<2:0>, one for each pipe. These specify IEEE or VAX Floating
Point format, whether it was a longword or quadword operation, and bit <2> of the address for
selecting which longword within a quadword.

1.1.7 Dcache Hit and Load Miss Conditions

For LD and HW_LD commands, the IBOX needs to know whether the LD hit or missed the Dcache
for the purposes of scheduling bypasses, freeing up "dirty" registers, and controlling register file
writes. To determine if the LD hit or missed, the PFN read out of the DTB is compared with the
tag read out of the Dcache. If there is a match, and the data is valid in the Dcache, then the hit
signal is generated. This information is determined on a per pipe basis and is sent to the IBOX
on DC_HIT Eo and DC_HIT E1.

This is true for the "normal” case. However, there are cases when the LD may be "forced" to hit
or miss regardless of the results of the tag match, such as in reads from I/O space, or for the
LDx_L instruction. In addition, the same signal is used by the IBOX for other instructions to
accomplish the same objective. For instance, the HW_MFPR and RPCC instructions "look" like
a LD to the IBOX, so the MBOX must force the DC Hit signal active when returning data for
these. The cases are listed in Table 1-8. This same signal is used by the MAF for loading Dcache
LD misses, and by the Dcache on stores to enable the update of the data array.

Table 1-8: DC Hit Conditions, (prioritized)

Condition Action
RPCC HIT
HW_MFPR from any MBOX or DCACHE IPR (2xx,hex) HIT
LDx_L or HW_LD with LOCK bit set MISS
HW_ST, STk, STx_C, LDx or HW_LD, AND NOT MCSR<DC_ENA> MISS
LD or HW_LD simultaneous with a DC FILL? MISS

HW_ST, HW_LD with LOCK bit not set, STx, STx_C or LDx, AND HIT
MCSR<DC_FHIT> AND MCSR<DC_ENA>

HW_ST, STx, STx_C, LDx or HW_LD, AND PA<39> =1 MISS
HW_ST, STx, STx_C, LDx or HW_LD, AND tag nomatch OR data MISS
not valid

HW_ST, HW_LD with LOCK bit not set,STx, STx_C or LDx, AND HIT
tag match AND data valid

IThis will only occur on floating point fills.

The ST _VALID signal indicates to the Dcache the need to update its data array for a store. The
Dcache command interface will be setup for a write, but the actual write will be qualified by
ST_VALID. ST VALID is asserted if the Dcache hit conditions in Table 1-8 are true and the store
does not trap.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-27

1.1.8 Dcache Interiace

The Dcache is organized as 2 separate 8KB arrays, one for pipe0 and one for pipel (see
<REFERENCE>(Dcache\full)). Each array has a separate tag store associated with it. The
tag and data arrays for each pipe are accessed through separate word line decoders. This allows
different accesses to be happening to the tag and data arrays in any given cycle (necessary for
STs).

The MBOX is responsible for controlling the operation of the Dcache each cycle. Requests for
access to the Dcache can come from either the LD/ST pipes or the CBOX (on Dstream fills). The
Dcache interface is responsible for deciding which request is granted to the Dcache, driving the
proper commands and status, and processing the results of the Dcache operation.

Every cycle the MBOX initiates a Dcache access by driving a TAG_CMD and DATA_CMD to both
Dcaches. Only one set of commands are needed for both pipes since both Dcaches will always
be performing the same basic operation (Fill, LD, ST). The table below shows the 2 commands
sent and the operation done for all combinations of Dcache requests/cycle. The priority order for
Dcache access is 1) STORES, 2) FILLS, 3) LOADS. Any ST in the silo during a given cycle will
cause any FILL to bypass (not write) the Dcache. The IBOX guarantees that no LDs will be
issued in the 2nd cycle after a ST. Also, a LD in the same and/or next cycle as an incoming FILL
will be forced to miss. The LD is never sent to the Decache in this case. This will only happen
on floating point fills. On integer fills, there will never be another instruction requiring Dcache
resources (LD or ST) since the CBOX will notify the IBOX to insert idle cycles into the EBOX
pipes whenever an integer fill is coming. If the index of a LD matches exactly the index of a ST
in the immediately preceding cycle, and the store hit in the Dcache, then the LD will be trapped.

The following table shows the Commands and Index select controls that will be driven to the
Decache. All command information will be sent to the Dcache in the B phase of the cycle before
the actual DC operation takes place. It is the responsibility of the MBOX to properly prioritize
and align the ST/FILL/LD operations for the DC.

Assumptions for Stores:

The tag lookup for Store operations takes place in 4B/5A of the store instruction.
DC hit will be calculated for the store operation in 5B of the store.
If the Store hits, then the data array will be updated in 6B/7A of the store.

The Dcache processes the STx_C as a normal ST instruction. The CBOX will always invalidate
the DC at the index of a STx_C that fails, and the Ibox will not issue any MBOX instructions
after the STx_C until the operation is complete.

Ll

Assumptions for Fills:

1. Fill requests are aligned to cycle 2B at the MBOX.

MATF is read in 3B of the re-aligned fill cycle.

The Fill data is on the RFB in re-aligned cycle 4B/5A.

Fill data is formatted by the MBOX in 5B for use in the EBOX at 6A.

The actual Dcache write of Fill data is in 5B/6A. Only FIRST_FILL and LAST_FILL data are
written to the Dcache.

6. ECC_FILLs are not written to the Dcache, but are forwarded to the integer/floating register
files through the Dcache NOP command.

A

1-28 The Mbox DIGITAL RESTRICTED DISTRIBUTION

Assumptions for Loads:

1. The Dcache tag and data arrays are both read in 4B/5A.
2. Decache hit is calculated in 5B.
3. The load data is formatted and returned to the EBOX in 5B for use in 6A.

Table 1-9: Dcache Commands

tag_idx_ data_ d%z_data wr_data

Operation tag_cmd sel cmd dat_idx_sel src sre Comment

NOP NOP - NOP - RFBL,! - Must select RFB to d%z_data

FILL', 12 FILL MBOX FILL MBOX RFB2,12 RFB’ Conditional Dcache write in
5B/6A3

LD RD EBOX RD EBOX Dct - Dcache tag/data read in 4B
/BA

ST4° RD EBOX (8 ()8 RFB® - Dcache tag read in 4B/5A

STe6! 8 08 WR MBOX RFB5 ST _DATA Conditional Dcache write in
6B/7A8

IPR_RD RD MBOX RD MBOX Dc* - IPR read of Dcache tag ar-
ray and data parity

IPR WR WR MBOX NOP - - - Conditional tag write for Dcache
test, see DC_TEST_CTL reg-
ister

1Pill data is returned to the Mbox in the cycle before the actual DC write operation. A DC data command of "NOP" will be
used to steer the Fill data on the RFB to the MBOX in the proper cycle.

2During the write operation of a fill the d%z_data bus source must be the RFB in anticipation of a following fill (ie, back-to-back
fills) needing to steer data to the Mbox.

3The DC write operation for fills is conditioned with RFB_DATA_VALID from the Cbox.

4 The only time the d%z_data needs to be sourced from the Dcache is when the data_cmd is RD.
5 During Store operations it is still necessary to return any coincident fill data to the Mbox.

6 The DC write operation for stores is conditioned with ST VALID.

7 The RFB is piped by the DC for one cycle before being written into the Dcache.

8 It is possible for several piped stores to be executing simultaneously in the DC. When this happens, the tag for a new store
instruction can be read coincidentally with the data write for a previous store. Valid data commands during these cycles are
NOP and WR, valid tag commands are NOP and RD.

9ST4 — Store in stage 4 of the pipe (1st store silo stage).
10576 — Store in stage 6 of the pipe (3rd store silo stage).

11Ty save power, the d%z_data bus is not updated unless there is valid fill request from the CBOX. The MBOX will send the
deache a separate signal to indicate whether to update the bus on a NOP or FILL command.

2Includes FIRST_FILL and LAST_FILL but not ECC_FILL.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-29

Table 1-10: Dcache Command Encodings

Command Encoding MUX Select Encoding
TAG_CMD: TAG_IDX SEL:

NOP (RD) 00 EBOX 0
RD 01 MBOX 1
FILL 10

WR 11

DATA_CMD: DAT_IDX_SEL:

NOP (RD) 00 EBOX 0
RD 01 MBOX 1
FILL 10

WR 11

1.1.8.1 Dcache LDs

The MBOX initiates a LD operation by sending TAG_CMD<1:0> = RD and DATA_CMD<1:0> = RD.
The EBOX sends the indices for the loads directly to the Decache on VA0<12:3> and VA1<12:3> from
a special "fast” adder. The MBOX notifies the Dcache to select the EBOX source as the address
via the TAG_IDX_SEL and DAT_IDX_SEL signals. The tag, valid, and parity bits are returned for
each pipe to the MBOX to be used for DC_HIT and parity error checking. These signals are:
TAG0<38:13>, TAG1<38:13>, VALID0<1:0>, VALID1<1:0>, TAG_PAR0, and TAG_PAR1. A quadword
of data for each LD is sent to the MBOX and FBOX on DATA0<63:0> and DATA1<63:0>. For
integer LDs, the MBOX formats the data and forwards it to the EBOX on LD_DATA0<63:0> and
LD_DATA1<63:0>. For floating point LDs, the FBOX handles all formatting. Longword parity for
each quadword is sent by the Dcache to the MBOX on DATA_PAR0<1:0> and DATA_PAR1<1:0>. For
all LDs, the MBOX will check for data and tag parity errors.

A load that arrives at the Dcache at the same time as a fill will be forced to miss.

1.1.8.2 Dcache STs

Dcache STs are a 3 cycle operation. The MBOX begins a ST sequence by sending TAG_CMD<1:0>
= RD and TAG_IDX_SEL = EBOX. During the first cycle, the Dcache reads the tag, valid and
parity bits and returns them to the MBOX. DC_HIT and tag parity error checking is done in
the next cycle. For the 3rd cycle, the MBOX sends DATA_CMD = ST, DAT IDX_SEL = MBOX (to
select DC_ADDR<12:3> as the data index), and a siloed version of VA0 on DC_ADDR<12:3> and
ST_ADR<2>to the Dcache. If there was a DC_HIT on pipe0 and no traps were detected, then
the MBOX will assert ST VALID. Each bank writes the data simultaneously in the 3rd cycle if
ST_VALID is asserted. The MBOX will also send WR_TYPE to indicate whether the operation is a
quadword or longword write.

1-30 The Mbox DIGITAL RESTRICTED DISTRIBUTION

Data and data parity are sent to the Dcache on the WR_DATA<63:0> and WR_LW_PARITY<1:0>
buses. The FBOX drives these busses on floating point STs while the MBOX drives them on
integer STs. For longword stores, the lower longword of data will be duplicated on both the
upper and lower longwords of the data bus. (The Dcache will use bit ST ADR<2> and WR_TYPE
to determine which longword(s) to write).

During the 3 cycles where there is a ST in the silo, all FILLs will be blocked from accessing the
Dcache. The Dcache will bypass any FILLs that arrive during these 3 cycles by defaulting the
Dcache read muxes to the RFB<127:0>. The IBOX guarantees that no LDs will be issued in the
2nd cycle following a ST. However, LDs may be issued in the cycle immediately following a ST.
The address for this LD will be compared with the address of the preceding store. If there is an
exact match between address bits <12:3>, they access the same longword, and the store hit in the
Dcache, then the LD will be trapped. If there is not a match, then the LD will read the Dcache
as normal.

For STx_C instructions, the data will be written to the Dcache as for a normal ST instruction. If
the STx_C fails, the CBOX will invalidate the Dcache block via the INVAL port to the Dcache.
Since the IBOX will not issue any more MBOX instructions until after the STx_C is complete,
there is no danger of a subsequent LD hitting on the updated data of a failing STx_C.

The MBOX will invert the data parity bits that are sent to the Dcache on a store when the FORCE_
BAD_PAR is set. The MBOX will send the mode bit signal, FORCE_BAD_PAR, to the Dcache, so
that the Dcache can restore data parity at the input to the CBOX Write Data Buffer. This mode
bit may be found in the DC_MODE register and is for test/diagnostic purposes.

1.1.8.3 Dcache FlLLs

The MBOX receives Dcache fill requests from the CBOX on RETURN_STATUS<2:0> for each octa-
word of fill data on the RFB<127:0>. The tag and index are supplied to the Dcache by the MAF
on the DC_ADDR<38:3> bus. The data and data parity are supplied to the Dcache by the CBOX
on RFB<127:0> and FILL PAR<3:0>, respectively. When a FIRST_FILL or LAST_FILL request is
received, the Dcache interface drives DATA_CMD = Fill, TAG_CMD = Fill, TAG_IDX_SEL = MBOX
and DAT_IDX SEL = MBOX along with the tag parity (TAG_PAR) and the valid bits (VALID<1:0>)
to be written to the array. For the first fill operation to a Dcache block, the MBOX will assert
only one of the valid bits, the other valid bit will be deasserted. Which valid bit to assert is based
on OW_VALID received from the CBOX. OW_VALID is effectively address bit <4> for the fill data.
During the last fill (second) operation to a Dcache block, the MBOX will assert both of the valid
bits. Both valid bits are always written at the same time. OW_VALID is muxed onto DC_ADDR<4>
to select the appropriate octaword in the Dcache data array to write. If, for some reason, the
first octaword did not get written to the Dcache, or was written to the Dcache with an ECC error,
then the second octaword will be set to NOFILL to ensure the valid bits are correct.

The data will only be written if

1. DATA CMD<1:0> = FILL,
2. NOFILL is deasserted and
3. RFB_DATA _VALID (driven by the CBOX) is asserted.

Corrected ECC data fills (ECC_FILLs) are not written to the Dcache.

There are separate NOFILL signals for each pipe for testability reasons. In normal operations,
they have identical values and are set and cleared in the MAF based on certain error and conflict
conditions (see Table 1-16, Dread Control Bits).

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-31

On Fills, all addresses and commands to the Dcache are identical for the 2 different Dcache
banks. The octaword of fill data, the tag, tag parity, and valid bits are all written in the Dcache
simultaneously, regardless of whether it is the first fill or second fill. Fill data for a first, last
or ECC fill is forwarded to the MBOX/FBOX on the DATA0<63:0> and DATA1<63:0> busses. Fill
data is always returned to the MBOX/FBOX, even if a ST is accessing the Dcache during that
cycle (Fill bypass). Fills will take precedence over any LDs that arrive at the Dcache at the same
time. The LD will be blocked and forced to miss.

NOTE

It is assumed that the CBOX will guarantee that no fills containing "old" data will be
sent to the MBOX/Dcache after an invalidate for the same address has been sent to
the Decache.

1.1.8.4 Dcache Invalidates

The Dcache may be invalidated (valid bits cleared for a block or group of blocks) in one of the
following ways:

1. The CBOX directly sends an invalidate command and index to the Dcache. The Dcache will
clear all the valid bits for 2 Dcache blocks (1 Scache block).

2. PALcode can issue a HW_MTPR to the DC_FLUSH IPR. The Mbox will assert DC_FLUSH and
the Dcache will clear all the valid bits in the array. It is assumed that PALcode will flush the
Dcache in this way after reset.

3. PALcode may use the DC_TEST _TAG and DC_TEST_CTL IPRs to write to the tag and valid
bit fields in the Dcache arrays.

4. When the CBOX signals an ECC error, the MBOX will assert DC_FLUSH and the Dcache will
clear all the valid bits in the array.

The MBOX will not assert DC_FLUSH to the Dcache under reset.

1.1.8.5 Parity Generation and Checking

The MBOX will do even longword parity generation on the integer store bus on its way to the
Dcache and write buffer. The FBOX will generate even longword parity on the floating point
store bus. The data parity bits generated are a tristate bus driven by the FBOX on floating point
stores and by the MBOX on integer stores. The MBOX generates even parity on the tag address
on its way to the Dcache on fills. Data parity is generated by the Cbox on fills.

On all loads from the Dcache (both integer and floating point), the MBOX will do even longword
parity checking on the data and even parity checking on the tag address bits, and generate
appropriate parity errors if the data valid bits are set. The data valid bits themselves are not
covered by parity. On stores, only tag parity is checked if the data valid bits are set.

Parity checking will be disabled during IPR accesses of the Deache or if the Dcache data valid
bits are not set. The DC_PERR_DIS bit in the DC_MODE IPR can be used to disable Dcache parity
errors when the Scache is being tested, or when the Dcache is disabled or is in force hit mode.

1-32 The Mbox DIGITAL RESTRICTED DISTRIBUTION

If a parity error is detected, the information for the instruction causing the error is saved in the
IPR registers: VA, MM_STAT, and DC_PERR_STAT. The instruction is not aborted (note: store
data will still be written to the Dcache, load data to the register file). The IBOX will recognize it
as a machine check and abort the instruction stream at a later time. This is discussed in more
detail in Section 1.1.3.0.3, Dcache Parity Errors.

1.1.8.6 Operation Modes for the Dcaches
1.1.8.6.1 Dcache Force Bad Parity and Disable Parity

The DC_MODE register contains control bits for forcing bad parity to be written to the Dcache and
for disabling Dcache parity errors. These modes are used for testability and diagnostic purposes.

When the DC_BAD_PARITY bit in the DC_MODE register is set, the Mbox will invert the data
parity bits that are written to the Dcache on a store. The MBOX will assert FORCE_BAD _PAR to
the Dcache, causing the data parity bits written to the CBOX write data buffer to be restored to
the value calculated by the data parity generators. The value of the data parity bits sent to the
Dcache on fills will be unaffected by the setting of the DC_BAD_PARITY bit.

The DC_PERR_DIS signal specifies whether Dcache parity error checking is enabled. When this
bit is set the Deache interface will disable Deache parity error reporting.

1.1.8.6.2 Dcache Enable and Force Hit Modes

The DC_MODE register contains control bits for enabling the Dcaches, for disabling Dcache
parity errors, and for putting the Decache into a FORCE HIT mode for testability and diagnostic
purposes. These modes are implemented via the normal MBOX/Dcache command interface, and
so are transparent to the Dcache itself.

The DC_ENA bit in the DC_MODE IPR is cleared on reset and, when clear, forces all LDs to miss
the Decache and all STs and FILLs to not write the Dcache.

The DC_FHIT bit in the DC_MODE register specifies Dcache Force Hit mode. When DC_FHIT is
set, then all STs will write to the Dcache regardless of the outcome of DC_HIT. A LD issued in
pipel will have the effect of forcing DC_HIT1 active and data will be read and used from the pipel
Dcache, regardless of the actual outcome of the DC_HIT calculation. This same scenario works
with the pipe0 Dcache. The DC_ENA bit takes precedence over DC_FHIT.

The tag, tag parity, and valid bits will remain unaffected by stores during DC_FHIT mode. (This
is true for non-DC_FHIT mode as well).

NOTES

The DC_HIT and DC_BAD_PARITY bits are used exclusively for diagnostics and test.

Outstanding Dstream fills may return and write the Dcache, even in force hit mode.
Also, floating point fills arriving at the same time as a LD will write to the Dcache,
forcing the LD to miss, even though in force hit mode. A memory barrier inserted before
code that tests the Dcaches will ensure all outstanding fills have been completed before
the start of the test code. Disabling the Dcache will force loads to miss, causing fill
requests to be generated to the CBOX.

A LD in the cycle following a ST to the same index while in force hit mode will result
in a replay trap.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-33

A LD(ST) from(to) a "non-cacheable" memory address (PA<39>=1) while the DC_
MODE<DC_FHIT> bit is set, will result in the data being read from(written to) the
Dcache.

1.1.8.6.3 Dcache Flush

A write to the DC_FLUSH IPR will cause the MBOX to assert DC_FLUSH to the Dcache. The
Dcache will flush (clear) all the valid bits in both Dcaches regardless of the settings of DC_ENA
and DC_FHIT.

1.1.8.7 Reading/writing Dcache Tags for Testability

There are three IPRs for the support of reading and writing the Dcache tags for testability. These
are DC_TEST CTL, DC_TEST TAG, and DC_TEST TAG_TEMP.

The DC_TEST_CTL register contains the row and bank in the Dcache that will be affected by
reading/writing the DC_TEST _TAG register.

A write to the DC_TEST_TAG register will cause the MBOX to take the data from VA0<63:0>
from the EBOX, and drive it onto DC_ADDR<38:13>, TAG_PAR, and VALID<1:0> to the Dcache. At
the same time, the contents of the DC_TEST_CTL register will be driven onto DC_ADDR<12:5>,
NOFILLO, and NOFILLi. When the HW_MTPR DC_TEST_TAG instruction is decoded, the TAG_
CMD will be set to WR, TAG_IDX_SEL will be set to select the MBOX address, and the DATA_CMD
will be set to NOP. This will enable the Dcache to write only the tag array. (See Table 1-9).

When a HW_MFPR DC_TEST TAG instruction is decoded, the contents of the DC_TEST CTL
register will be driven onto DC_ADDR<12:3>, TAG_CMD and DATA_CMD are set to RD, and TAG_IDX_
SEL and DAT _IDX SEL will be set to select the MBOX address. The Dcache will read out the tag,
tag parity, valid and longword data parity bits onto TAG0<38:13>, TAG1<38:13>, TAG_PAR0, TAG_
PAR1, VALID0<1:0>, VALID1<1:0>, DATA_PAR0<1:0>, and DATA_PAR1<1:0>, respectively. Note that
4 HW_MFPR’s are required to read all of the data parity bits associated with a block of dcache
data. The MBOX will latch the tag, tag parity, valid and data parity bits from one of the banks
into a temporary register (according to the bank select bits in the DC_TEST_CTL register). A
subsequent HW_MFPR from DC_TEST_TAG_TEMP will enable this temporary register to drive
onto the LD_DATA0 bus to the EBOX,

NOTE

The Dcache data parity bits may only be written to the Deache via a store or a fill.
There is no IPR access for writing, only reading.

1.1.9 Miss Address File

1.1.9.1 Overview
The Miss Address File (MAF) has 3 basic functions:

1. Store all address and instruction data for memory references which will eventually be issued
to the Scache. These include LD misses, all STs, LDx_L, STx_C, FETCHx, MB, WMB, and
IREF requests.

1-34 The Mbox DIGITAL RESTRICTED DISTRIBUTION

2. Issue addresses to the Scache and BIU. This includes logic to guarantee proper ordering of
LD’s and ST’s and prioritizing of Scache requests originating in the MBOX, including MB
sequencing and IREF requests.

3. Supply addresses and instruction data to the Dcache, IBOX and formatters for incoming fills
from the BIU/Scache.

The MAF is divided into 3 sections:

1. DREAD - handles all HW_LD and LDx misses, and all LDx_L’s.
2. WB - handles all HW_ST, STx, STx_C, WMB, and FETCHx.
3. IREF - handles all IBOX prefetch queue requests.

1.1.9.2 Basic Timing

The MAF is the convergence zone between the end of the normal EV5 LD/ST pipes through DC_
HIT, the Icache prefetch queue requests, the beginning of the address sequencing for the Seache,
and the return of FILL data to the Decache. Figure 1-6 shows how each of these timings lines up
to the MAF timing. Throughout the text, the following timing assumptions will be used.

1. Incoming LD/ST - referenced to the EBOX pipes (Register file write cycle 6).

2. Incoming IREF Requests - referenced to Icache cycle 0.

3. Addresses to the Scache - referenced to Scache Tag cycle 6.

4. Return Status (Fills) - referenced to Register file write cycle 6.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-35

Figure 1-6: MAF Timing Definition

DCACHE MISS (BYPASS)

3 4 5 6 7 8 9 10 11
ISSUE |ALU: DQ/TB MAr—J WR ! SCTI G ! SCHIT : SCDATA : eg i TMT | use RGFWH
| [A DCEILL
LOAD CYCLES 2 3 4 5 6
IREF REQUESTS
0 1 2 3 4 5 6 7 8
ICACHE 1B MAI—JI WR MAI—JI RD : SCTIr\G : SCHIT : SCDATA : IFB
SCACHE CYCLES 6 7 8 9 10
ST CASE (SCACHE HIT PRIVATE DIRTY)
3 4 5 6 7 8 9 10 11
ISSUE | ALU : DL{/TB MAI—Jl WR MAI-JI ARB MAF: RD i SCT}AG P SCHIT SCWIILITE SCV{RITE
SCACHE CYCLES 6 7 8 9

1.1.9.3 CBOX interface

The MAF in general has three communication links with the CBOX. (1) It supplies addresses
for memory references to the Scache. (2) It interfaces with the data portion of the WB for any
instructions stored in the WB and (3) the CBOX informs it when data is returning or operations
initiated by the MAF are completing.

1.1.9.3.1 Command/Address Issue Interface

For issuing memory references to the Scache/CBOX, the MAF sends a command (MAF_CMD<3:0>)
informing the CBOX what operation is being done, the address (MAF_ADDR<39:4>), the MAF
entry of this address (MAF_INDEX<4:0>) which is used as an ID for the operation, and the type of
reference being issued to the CBOX (MAF_TYPE: integer=0/floating=1).

When the MAF receives a Dread down one of the pipes, there is a 2 cycle window when it may
be bypassed to the CBOX before the results of the merge or the Dcache hit logic are known.
Arbitration proceeds during this time as if the Dread will ultimately want to be issued to the
CBOX. If the Dread wins the arb in the first cycle, but merges with an existing entry or hits in
the Dcache, then the command to the CBOX is aborted via the MAF_ABORT signal. If the Dread
wins the arb only in the second cycle, but merges with an existing entry or hits in the Dcache,
it will be effectively aborted by issuing a NOP command to the CBOX. Once this 2 cycle window
has passed, if the Dread was not bypassed, didn’t merge and missed the Dcache, it is loaded into
the pending queue and begins normal arbitration. Once in the pending queue, Dreads are not
aborted.

1-36 The Mbox DIGITAL RESTRICTED DISTRIBUTION

For a pair of loads issued to the MBOX by the IBOX in a given cycle, pipe0 has the higher priority
for bypassing to the CBOX. Pipel will automatically begin arbing the next cycle assuming that
the pipe0 bypass will be aborted. If the load in pipe0 is aborted due to a hit or merging, then the
load in pipel proceeds to issue in the next cycle. This too is before the merge result is known, so
it may be aborted by issuing a NOP command on MAF_CMD<3:0>. Meanwhile, 2 new loads may
have come down the pipe. The new load in pipe0 will not have immediately been bypassed to the
CBOX because the pipel load from the previous cycle speculatively won the arb. However, the
new pipe0 load will be setup to issue in the next cycle, again assuming the previous cycle’s pipel
load will be aborted. As before, this is before the results of the merge are known, so it, too, may
be NOPd.

The CBOX indicates backpressure by two mechanisms. 1) If the Scache is busy the CBOX requests
the MAF to hold off sending addresses by asserting a busy signal (SC_BUSY) 2 cycles before the
CBOX needs the Scache. This signal must be asserted for each cycle that the Scache is busy.
Any 2 consecutive cycles where SC_BUSY is not asserted will potentially be used by the MAF. 2)
The CBOX indicates that the BIU cannot accept an address just issued by the MAF by asserting
RETRY 2 cycles after the address is sent to the Scache. The MAF will place the rejected command
in a replay queue. The command and the Scache address may be issued again to the CBOX 2
cycles later if the CBOX is not busy and there is nothing already pending in the replay queue.
(Four cycles is the quickest turnaround time between command issue and reissue). The replay
queue will always arb if any entry is valid in the queue.

For IO space reads (PA<39> = 1), if the command is not retried, then the CBOX will give the MBOX
an indication that a fill is coming along with the index of the command. This fill command will
always come at the same time as if the read had hit in the Scache. The fill will be marked invalid
by the CBOX (using signal RFB_DATA VALID), but the MAF will use the fill notification to read
the quadword request bits out of that IO space read entry in the MAF, stop further merging to
that entry, and send the quadword request information to the CBOX on DRD_MASK<3:0>. This
takes place in cycle 8. DRD_MASK<3:0> will be sent whenever a fill request is generated by the
CBOX, but it is only meaningful on IO space reads.

Table 1-11: Commands From MBOX MAF to CBOX Arbiter

Commands MAF_CMD«<3:0> Description

NOP 0000 No operation
0001 Reserved
0010 Reserved
0011 Reserved
DREAD 0100 DREAD Request
LDx_L 0101 Load Memory Data into Integer Register Locked
IREAD 0110 IREF Request
0111 Reserved
FETCH 1000 Prefetch Data
FETCH_M 1001 Prefetch Data, Modify Intent
MB 1010 Memory Barrier
1011 Reserved

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-37

Table 1-11 (Cont.): Commands From MBOX MAF to CBOX Arbiter
Commands MAF_CMD<38:0> Description

WR32 1100 32B Write Request
STx_C 1101 Store Conditional
1110 Reserved
1111 Reserved

1.1.9.3.2 Write Buffer Interface

When a ST is presented to the MAF, the MAF informs the write data buffer in the CBOX whether
the ST was LW (WR_TYPE=1) or QW (WR_TYPE=0), the LW address of the ST (WR_LW_ADDR<4:2>),
and which entry to write the data to in the WB data store (WR_ENABLE<5:0>). The write data
and longword parity (WR_DATA<63:0> and WR_LW_PARITY<1:0>) are sent to the Dcache where
they are latched and forwarded on to the CBOX write data buffer on WB_DATA<63:0> and WB_
LW_PARITY<1:0>.

The data portion of the WB can ask the MAF to reissue write addresses by asserting WR_NOW
and sending the MAF index of the entry on WR_MAF_INDEX<4:0>. If the CBOX is doing a 64B
write operation, it will ask the MAF to reissue the same address twice, once with WR_64B_REQ
deasserted, and once with WR_64B_REQ asserted. When WR_64B_REQ is asserted, the MBOX will
invert MAF_ADDR<5> when reissuing the address. This second transaction is used to read the
other 32B block from the Scache to form a complete 64B block to be written to the system.

1.1.9.3.3 Return Status

Upon completion of a requested operation the CBOX sends the MAF the index (RETURN_
INDEX<4:0>) and the status (RETURN_STATUS<2:0>) which describes the operation being com-
pleted. This allows the MAF to clear entries from the file and forward necessary controls to the
Dcache and register files for DREAD fills. Fills also require the OW_VALID (1=upper , O=lower)
to indicate whether the lower or upper octaword of the block is being filled. On all fills, the
CBOX indicates that there is valid data on RFB<127:0> with RFB_DATA_VALID. The Mbox uses
RFB_DATA_VALID to verify that a Fill is actually valid (Fills from the Scache and/or the Bcache
may be speculative) and complete the fill of the Dcache and register files. (The CBOX also asserts
RFB_DATA_VALID on a STx_C_DONE so that the MBOX will assert the FILL_VALID signal to the
IBOX along with the STx_C register number). SCACHE_HIT is sent to the MBOX and used to
disable merging when a load hits in the Scache. If the load did not hit, then merging is allowed
to continue until the first fill from the Bcache is signalled (this is speculative).

If an ECC error is detected on fill data destined for the Dcache, the CBOX will assert the signal M_
RFB_ECC_ERR. This signal is too late to hold off the register file write or the Deache fill operations.
On the second half of a fill the MAF DREAD entry will be cleared before the ECC error is known.
The ECC_ERR signal is used by the MAF to conditionally lock the ECC error register that holds
the register number and format control associated with the most recently returned fill data. (If
there is no ecc error, the holding register will be overwritten on the next fill request from the
CBOX). The MBOX will flush the dcache and the MAF will set the NOFILL bit for that DREAD
entry of the error occured on the first half of a fill. When an ECC error is correctable in hardware,
the CBOX will return the corrected fill data a minimum of three cycles later along with an ECC_

1-38 The Mbox DIGITAL RESTRICTED DISTRIBUTION

FILL return status. The ECC error register supplies the IBOX register number and the formatter
control on an ECC_FILL. A read from the ECC error register unlocks the register for updates.

NOTES

The MAF needs to see a LAST FILL in order to retire an entry from the DREAD
file. The CBOX guarantees that a fill operation will complete even when a hard error
(Scache parity error or uncorrectable ecc error) occurs. This means the MBOX will
see the LAST _FILL request for all DREAD entries, even though the fill data may be
garbage. This ensures the MAF is left in a predictable state.

The CBOX guarantees that the MBOX will not see multiple ECC errors. When the
ECC holding register is loaded and locked, the MBOX will not see another ecc error
until after the corrected fill data has been returned on an ECC_FILL.

LAST FILLs from the CBOX are always non-speculative and are used by the MBOX to retire
the MAF entry. If the CBOX generates a LAST_FILL request before an ECC error is detected on
a FIRST FILL, the CBOX will send a correction signal, BOGUS_LF, to indicate the LAST FILL
request was not valid. The MBOX will use this signal to abort any operations that may affect
state as a result of the erroneous LAST_FILL request.

Table 1-12: CBOX Return Status

Status RETURN_STATUS<2:0> Description

NOP 000 No Operation

FIRST FILL 001 This is the 1st Dcache fill cycle of 2

LAST FILL 010 This is the last Decache fill cycle of 2
WR_DONE 011 Write Operation Done

FETCH_DONE 100 FETCH_x Operation Done

MB_DONE 101 Memory Barrier Operation Done

ECC_FILL 110 This is corrected ECC fill data

STXC_DONE 111 The Result of the STx_C Operation is Returning

1.1.9.3.4 Invalidates - CBOX Guarantee

The MBOX is unaware of invalidates to the Dcache. The CBOX sends these to the Dcache directly.
The MBOX and Dcache depend on the CBOX to guarantee that there will never be a 1ST_FILL-
INVAL-2nd_FILL sequence on the same address, nor any INVAL-FILL sequence on the same
address where the FILL represents "older" data than any updates from the system causing the
INVAL, or where the FILL would cause the Dcache to load valid data for an address that has
been removed from the Scache due to the INVAL.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-39

1.1.9.4 Icache Interface

The MAF interfaces with the IBOX prefetch queue to either demand fetch 32B blocks of instruc-
tions on Icache misses or prefetch blocks of instructions during prefetch sequences. The Icache
requests an IREF by sending the physical address (IREF_ADDR<39:4>) and prefetch queue in-
dex (IREF_IDX<1:0>) to the MAF. The MAF will load the address at the location specified by the
prefetch index in 3A. When the MAF receives the IREF_REQ signal from the Icache, the entry is
validated and normal arbitration for the Scache begins. Once the MAF receives a valid request,
the operation will complete (ie. no aborting is done).

When the IREF is issued to the CBOX, the entry is retired by the MAF. The default (precharged)
state for the QW request bits is sent to the CBOX on Istream IO space reads as DRD_MASK<3:0>
= (FHHEX. The CBOX controls the filling of the Icache directly.

1.1.9.5 Loading the MAF

The MAF has 3 separate sources of addresses to be stored for issue to the Scache. All DREAD
addresses are received on both pipes 0 and 1, at most 2 per cycle. All WB addresses are received
on pipe 0 only, at most 1 per cycle. Dreads and writes may not occur in the same cycle. All IREF
addresses are received on a dedicated IREF address bus, at most 1 per cycle. All DREAD and
WB requests are loaded into the MAF during 6A. All IREF requests are loaded during 3A.

The DREAD and WB sections can either merge the incoming address with previous requests or
allocate a new entry for the address. These sections each have FREE LIST fifos and PENDING
queues. The FREE list points to the next MAF entry to be allocated for each type of reference.
When an address is loaded, the MAF index is shifted off the FREE list and onto the PENDING
queue for issuing. When the memory reference is complete and the entry deallocated, the MAF
index is loaded back onto the respective FREE LIST to be reallocated to another address. IREF
references receive the index directly from the prefetch queue, so no FREE LIST is needed in the
IREF section.

Each entry in the free list will be initialized on reset to a unique index and all pending queue
entries will be invalidated.

The following shows the bit fields of the pending queues for each section of the MAF.

Figure 1-7: Pending Queue Bit Fields

+ + +
cmd | float | index<2:0> |

+ +
+ +

DREAD | wvalid | conflict<5:0> |

+
+

+— t + + ! +
WB | WMB | valid | conflict<5:0> | cmd<1:0> | index<2:0> |

+ . + + + +

+ +- +
IREF | valid | index<1:0> |
+ + +

1-40 The Mbox DIGITAL RESTRICTED DISTRIBUTION

Table 1-13: Pending Queue Bit Fields

Field Name Description

VALID Pending queue entry is valid

INDEX<4:0> Entry in the MAF corresponding to pending entry

CMD<3:0> Command to be issued to CBOX

FLOAT 1 = Floating Point DREAD, 0 = Integer DREAD

WMB Marks insertion of a WMB or a ST/ST conflict. All previous stores finish before
subsequent stores can be issued

DREAD Conflict<5:0> The WB entries that this DREAD entry has a conflict with. All conflicts must be
cleared before an entry can be issued.
clear<5:0> = WB_DONE<5:0>, where WB_DONE = WR_DONE | | FETCH_DONE
I I STx_C_DONE
set<5:0> = DREAD_ALLOCATE && WB_MATCH<5:0>

WB Conflict<5:0> The DREAD entries that this WB entry has a conflict with. All conflicts must be

cleared before an entry can be issued.
clear<5:0> = LAST FILL<5:0> && !BOGUS_LF
set<5:0> = WB_ALLOCATE && DREAD_MATCH<5:0>

1.1.9.5.1 Dcache Read Misses

The DREAD section holds addresses for LD misses and LDx_L’s. It consists of 6 entries of 32B
block physical addresses. Each entry also has 4 slots which represent 1 of 4 quadwords within the
32B block. When a LD miss requests a certain quadword, the block address is written into the
entry and the requested quadword slot is loaded with the register number and format information
for this request. When the LD data is returned, the physical address is read out of the MAF and
driven to the Dcache interface for FILLS. The register number and format information will be
returned to the IBOX and floating point/integer formatters. Deache write enables are derived at
the Dcache interface from the NOFILL status bit and the OW_VALID control.

If a subsequent LD miss requests the same 32B block but a different quadword within the block,
the address and pipe data can be merged into the same DREAD entry with register number and
format information loaded into its respective quadword slot. Otherwise, it is allocated a new
entry.

All DREAD merging is done on physical addresses. No merging is allowed between floating
and integer requests (this is because integer fills allocate bubbles in the pipe and floating point
fills do not). Also, quadword load requests are not merged with longword load requests, and
longword requests to even address are not merged with longword requests to odd addresses (this
was done as a simplification of the merge logic implementation). LDx_L requests are always
allocated a new entry in the MAF (to ensure the LDx_L request is issued to the CBOX with the
LDx_L command), and merging to the LDx_L entry is not allowed (this prevents subsequent LDx
requests from matching multiple entries in the DREAD file). If merging needs to be disabled for
a given entry in general, the NOMERGE bit is set for that entry. (See Table 1-16.)

If an incoming load address matches that of an address already in the MAF (down to the longword
level), then the incoming load is forced to trap. This is the LD-MAF Conflict Trap and occurs
whether or not the load would have hit in the Dcache. This is to ensure that loads to the exact
same address do not finish out of order (Litmus test #1 in the ALPHA SRM).

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-41

The MAF also detects ST/LD conflicts by comparing incoming LD PA’s (Physical Address) with
the PA of previous writes in the WB. If a match is detected then a new entry is made in the MAF
for that load and the new entry in the pending queue is made with the conflict bits corresponding
to the conflicting WB indices set. No entry in the DREAD pending queue may be issued until
all the conflict bits are cleared. All WB entries up to and including the conflicting write will be
flushed to the CBOX interface at an elevated priority. When a conflicting write is retired, all
conflict bits in the DREAD pending queue corresponding to that WB index will be cleared.

Figure 1-8: Dread Address Datapath

+- t +
| PA<39:4> | valid |

Table 1-14: Dread Physical Address Datapath bits

Field Name Description

PA<39:4> Physical Address of 32B Block
Loaded on DREAD_ALLOCATE.

Valid This address is a valid entry.

set = DREAD_ALLOCATE
clear = (LAST FILL && 'BOGUS_LF) | | RESET

Figure 1-9: Dread Register Formatting Bits

+ +
| Qwl_fmt<2:0> |

+— + } +
|Valid0| Qw0_reg<6:0> | QwO_fmt<2:0> | Owl_ reg<6:0>

+
t

+ + + + + —+
|Validl| Qw2_reg<6:0> | Qw2 fmt<2:0> | Qw3 _reg<6:0> | Qw3_fmt<2:0> |

——— .
+

Table 1-15: Dread Register Formatting Bits

Field Name Description
Qwx_reg<6:0> QWx <6>-pal shadow, <5>-(1=floating,0=integer),<4:0>-register number
Qwx_fmt<2:0> QWx format: <2> - (1=vax_fp,0=ieee), <1> - (1=LW,0=QW), <0> - (1=upper,0=lower LW)

142 The Mbox DIGITAL RESTRICTED DISTRIBUTION

Table 1-15 (Cont.): Dread Register Formatting Bits

Field Name Description

Validx This is a valid entry.
set = (DREAD_ALLOCATE | | DREAD_MERGE) && (decode<4:3>)
clear = (LAST FILL && 'BOGUS_LF) | | RESET
NOTE - The register number and format control for the last entry cleared are locked
in a special register when an ECC error is detected on a LAST FILL. The ECC register
supplies the register number and format control when the corrected data is returned from
the CBOX.

Figure 1-10: Dread Control Bits

+

_— n +

| Nofill | Type<3:0> | Qw_req<3:0> | Nomerge |

U .

——————————————————— ot

Table 1-16: Dread Control Bits

Field Name

Description

Nofill

Type<3:0>

Qw_req<3:0>

Nomerge

Don’t fill this entry into the Dcache.

clear = (LAST_FILL && !BOGUS_LF) | | RESET

set =(STx | | STx_C | | FETCHx) && DREAD_MATCH && !ITRAP | |
FIRST_FILL && FILL,_BLOCKED (from DC interface) && RFB_DATA_VALID | |
DREAD_ALLOCATE && PA<39>=1 | |
FIRST FILL && ECC_ERR

<3> = Quadword

<2> = Longword Even

<1> = Longword Odd

<0> = Floating Point

Loaded on DREAD_ALLOCATE.

Quadwords requested within this block.
Loaded on (DREAD_ALLOCATE | | DREAD _MERGE) && decoded PA<4:3>

Disable merging to this entry.
clear = (LAST FILL && !BOGUS_LF) | | RESET
set =(8Tx | | STx_C | | FETCHx) && (DRD_MATCH | | MCSR<MAF NMERGE>)
&& !ITRAP | |
LDx 1, && !TRAP | |
FIRST FILL && SC_HIT && Scache operation | |
FIRST FILL && !Scache operation | |
FIRST FILL && I0_SPACE

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-43

Table 1-17: Dread Merge and Allocate Conditions
MATF Action Description

DREAD_MERGE entry_VALID
&& entry TYPE same as incoming LD (F/I, LWE/LWO/QW)
&& PA_MATCH
&& INOMERGE && 'MCSR<MAF _NMERGE>
&& DC_MISS
&& Valid LD instruction && !LDx_L
&& LD doesn’t TRAP (MAF Full, LD-ST Silo Trap, LD-MAF Conflict Trap, DMM_ERR,
IBOX Trap)

DREAD_ALLOCATE (LD && DC_MISS && CANT_MERGE | | LDx L)
&& LD doesn’t TRAP

1.1.9.5.2 Dstream Writes WMB, FETCHXx

The Write Buffer (WB) section of the MAF stores addresses and commands for all ST, STx_C,
WMB, and FETCHx instructions. The data portion of the write buffer is in the CBOX. The WB
section of the MAF consists of 6 entries of 32B block PAs. When a ST PA is presented to the
MAF, it will be compared with all other PA’s in the WB section. If it matches an address already
stored in the WB, it will be merged with that entry. Otherwise, it will be allocated a new entry.
Merging can be disabled to any entry by setting the NOMERGE bit. Unlike the DREAD section,
ST’s can overwrite previous ST’s which have not yet been issued to the Scache. Therefore, no
quadword slot data needs to be stored or checked for quadword conflicts.

When any ST is presented to the MAF, the MAF index in which the ST was loaded will be sent
to the WB data section in the CBOX along with the LW address and an indication as to whether
the opcode was a longword or quadword store. LW valid bits are kept by the CBOX for each entry
of the WB.

LD/ST conflicts are detected by comparing all incoming ST’s with previous LD’s in the Dread sec-
tion. A ST to the same 32B block as an outstanding LD will set the CONFLICT bit corresponding
to the Dread entry with the same PA. The NOFILL bit is also set for the outstanding LD entry
to ensure the Dcache does not end up with "stale” data. (If the previous LD was forced to miss,
the ST may hit in the Dcache). If multiple Dread entries match the store, then multiple conflict
bits will be set for the store’s entry in the WB. A WB entry with conflict bits set will be blocked
from issuing until the conflicting LD has completed. When the fill for a LD completes, it clears
any conflict bits related to it in the WB.

ST/ST conflicts are detected by comparing all incoming ST’s with previous WB entries. A ST that
has the same 32B block address as a previous WB entry but cannot merge with the previous store
will set the WMB bit associated with the entry allocated in the WB. The store will not be issued
until all previous WB entries have completed.

The MAF does not do anything special for stores to "non-cacheable” memory. These are handled
by the CBOX.

Each WB entry also has a FLUSH bit to indicate a HI-Priority arbitration for the entry to the
MAF arbiter. Setting and clearing the FLUSH bit are shown in Table 1-19.

1-44 The Mbox DIGITAL RESTRICTED DISTRIBUTION

FETCHx instructions are allocated a new entry in the WB and are loaded with the NOMERGE
bit set to disable subsequent WB entries from merging with it. A FETCHx will set the FLUSH
bit to force the WB to empty.

The WMB instruction will set the WMB bit in the next available entry in the pending queue.
This keeps any subsequent WB entries from issuing until all previous WB requests have been
retired. It will also set the FLUSH and NOMERGE bits on all valid entries.

The STx_C instruction is allocated a new entry in the WB and is loaded with the NOMERGE bit
set to disable subsequent WB entries from merging with it. A STx_C will cause the WB to flush
all non-issued entries to the CBOX.

The WB will begin normal low-priority arbitration whenever a second entry is made to the buffer.
The top entry of the WB arbitrates at low priority every 64 cycles or when a LDx_L instruction
is executed. These events do not affect the state of the WB FLUSH bits.

Figure 1-11: WB PA Datapath

R - +
| PA<39:4> | Valid

L
+=

|

Table 1—-18: WB PA Datapath

Field Name Description

PA<39:4> Physical address of 32B block.
Loaded on WB_ALLOCATE.

NOTE - PA<4:2> are sent directly to the CBOX WB as the LW address of the ST.

Valid This address is a valid entry.
clear = WB_DONE | | RESET
set = WB_ALLOCATE

Figure 1-12: WB Control Bits

+
+

| Flush | Issued | Nomerge |

+ + fomm +

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-45

Table 1-19: WB Control Bits

Field Name Description
Flush A LD matched this WB entry. This entry should be issued to the CBOX at high
priority.

clear = entry is issued | | RESET
set = JISSUED && !TRAP &&
(LD 1 | LDx_L) && WB_PA_MATCH && DC_MISS | |
STx C | |
FETCHx | |
VALID && (MB | | WMB))

NOTE: MCSR<WB_FLUSH> doesn’ set the flush bits explicitly.
It only forces a high priority request (overriding the state of the
stored flush bits). When cleared, all requests return to using stored state.

Issued The WB entry has been issued to the CBOX, but not completed.
clear = WB_DONE | | RESET
set = entry is issued

Nomerge Disable merging to this entry.

clear = WB_DONE | | RESET

set=((STx_C | | FETCHx | |
(MB | | WMB) && VALID | |
WB_ALLOCATE && MCSR<WB_NMERGE> | |
@D | 1 LDx L) && WB_PA_ MATCH && DC_MISS)
&& !TRAP) | |
entry has won the ARB (WB_GNT)

NOTE - WB_DONE = WR_DONE | | FETCH_DONE | | STxC_DONE

Table 1-20: WB Merge and Allocate Conditions

MAF Action Description
WB_MERGE ST && (ISTx_C && 'WMB && 'FETCHx)

&& entry_VALID

&& PA _match

&& INOMERGE && !MCSR<WB_NOMERGE>

&& ITRAP ‘
WB_ALLOCATE ((ST && CANT MERGE) | | STx C | | FETCHx)
&& ITRAP)

1.1.9.5.3 Memory Barriers (MB)

On Memory Barriers (MB), the MB command will not be issued to the CBOX until all DREADs
in the MAF have filled, and all WB entries in the MAF have been retired (this is detected when
both free lists are "full"). The Memory Barrier sets the FLUSH bit for all valid entries in the
WB. When MB_DONE is received from the CBOX on RETURN_STATUS, the MBOX will assert
MB_CLEAR to restart the IBOX.

1-46 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1.1.9.5.4 Write Memory Barriers (WMB)

On Write Memory Barriers (WMB), all writes issued before the WMB must finish before any
writes issued after the WMB. The WMB does not get allocated an entry in the WB since it
does not get issued to the CBOX. On a WMB instruction, the MAF sets the WMB bit in the
next available entry in the WB pending queue and disables merging to all valid WB entries.
This prevents subsequent WB entries from being issued until all previous WB entries have been
retired. The WMB instruction sets the FLUSH bits for all valid entries in the WB.

1.1.9.5.5 Icache Read Misses

The IREF section holds PA’s for all IBOX prefetch queue requests. It consists of 4 entries of
32B block PA’s. When the IBOX prefetch queue requests a new block, it will supply the PA
and prefetch queue index to the MAF. The PA will be loaded into the IREF section at the entry
specified by the index (direct mapped to the Icache prefetch queue).

Figure 1-13: IREF PA Datapath

+——= - +
| PA<39:4> I
== -—+

Table 1-21: IREF PA Datapath

Field Name Description

PA<39:4> Physical address of 32B block with OW order.
Load on IREF_REQ.

1.1.9.6 MAF Issue to Scache

Whenever memory requests (DREAD, WB or IREF) are allocated a new entry in the MAF (i.e. not
merged), the corresponding MAF index is loaded into a FIFO pending queue. Separate pending
queues exist for each type of request because they have different arbitration criteria. Entries
logged in the DREAD pending queue immediately begin arbitrating for Scache cycles and may
bypass directly to the Scache. An entry logged in the WB pending queue waits for either 2
entries to be pending, a 64 cycle counter to overflow, a LDx_L instruction, or WB flush condition
before it arbitrates for the Scache. Entries logged in the IREF pending queue immediately begin
arbitrating.

Incoming loads may be bypassed directly to the Scache if there are no other pending MAF requests
of any kind. If there is a load in pipe0, it will be issued to the Scache before it is known whether
it hit in the Dcache or merged with a previous MAF entry. If either of these conditions turn out to
be true, then the issued command is aborted and a load in pipel may be issued the following cycle
if there are no other pending requests. This command is speculative also, and may be aborted if
it merged with a previous MAF entry (in this case by issuing a NOP to the CBOX). If there were
no LD in pipel of the previous cycle, then a new load from the current cycle may be bypassed
instead. If there are no loads in pipe0, then pipel will be issued to the CBOX in the bypass cycle.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-47

All MAF pending requests compete with requests from the BIU for free SC tag cycles. The priority
levels are (from highest to lowest):

Table 1-22: MAF Issue Priority

Name Description

SC_BUSY BIU is using the SCtag this cycle.

WB_REISSUE Reissue a previous WB address (wr_ Now ¢md from the CBOX).

REPLAY Previously issued address was not accepted by the BIU. It must be
replayed.

WB_HI Elevated WB request whenever any flush bits in WB are set

DREAD_PEND DREAD requests basic arb.

MB Memory Barrier issue request

IREF_PEND IREF requests basic arb.

WB_LO WB requests basic arb.

PREVIOUS BYPASS No other pending requests. A load from a previous cycle has not yet
been loaded into the MAF, but may be issued straight to the Scache.

BYPASS No other pending requests. Load misses can be issued straight to the

Scache in parallel with loading into the MAF.

Once a given request wins the arb for the Scache, the index is used to read the address out of the
MATF to be driven to the Scache/BIU. If no other requests are pending in the MAF, LD addresses
can be bypassed to the Scache in parallel with loading the MAF. The MAF index is shifted out of
the pending queue and shipped as an ID for the address. The index is stored in a REPLAY queue
and kept until the address has passed the point where it can be rejected by the BIU. Once an
address is issued from any pending queue, that queue is incremented to start arbitrating at the
next pending request (if any are pending). This process is independent for each pending queue
(DREAD, WB, IREF). The MAF will only issue addresses when SC_BUSY has been deasserted
for 2 consecutive cycles. This guarantees a minimum number of free cycles for the MAF request
to complete in the Scache Tag store.

1.1.9.6.1 Reissuing WB addresses

The MAF has the capability of reissuing WB addresses which needed to get system permission
before actually writing the data to the Scache. The data portion of the WB (in the CBOX) returns
the MAF index, the WR_NOW command, and a bit indicating whether to issue the original 32B
address or the other 32B address in the 64B block. The index is used to read the entry out of
the WB section and reissue it to the Scache. If WR_64B_REQ is asserted, then MAF_ADDR<5> is
inverted when the write is reissued.

When the WR_NOW command is received by the MBOX, the command is latched in the wb_reissue
latch. The command waits there until it wins arbitration for issue to the CBOX (the CBOX may
be busy). Once the command is issued, the latch is cleared.

1-48 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1.1.9.6.2 Replaying an Address

The MAF has the capability of replaying addresses which have been issued to but not accepted
by the CBOX. This is the mechanism the CBOX uses to back pressure the Mbox when it detects
certain address or resource conflicts. When an address is issued to the Scache, the MAF index
of that address is latched for 2 cycles. If the CBOX rejects the address by asserting RETRY, the
CBOX packet (MAF command, type, and index) is placed into the replay pending queue. Once
loaded, the replay queue will arb at high priority. Upon winning the arb, the replay index is used
to read the address back out of the MAF. Replays have higher priority than DREAD, WB and
IREF requests, but lower priority than any CBOX request. There can be up to 2 replays in the
queue at any time.

Commands that are issued to the CBOX have already been checked for LD/LD, ST/ST LD/ST and
ST/LD conflicts with previous MAF entries. For this reason, there is no need to maintain ordering
of commands in the replay queue. With the exception of WB_REISSUE commands, addresses
that are retried by the CBOX are placed into the bottom of the replay queue. This has the effect
of round-robin issue from the replay queue when multiple retries occur.

The WB_REISSUE command is never placed in the replay queue. After the WB_REISSUE
command is issued to the CBOX, it is piped along for a couple of cycles until it hits the "retry"
point. If, at this time, the CBOX decides to "retry” it, then the WB_REISSUE command is
re-latched into the wb_reissue latch instead of the replay queue.

NOTE

It is possible that a second MAF command will already have been issued to the CBOX
when RETRY is asserted for the first command. The MAF will not automatically abort
a command that is in the shadow of the retry; the CBOX is responsible for accepting
or retrying each MAF command on its own.

1.1.9.7 Retiring MAF entries

The final stage in the life of a MAF entry is retiring the entry. For LD’, this occurs when the
data has been returned to the Ebox/Fbox and the block filled into the Dcache (if the fill wasn’
blocked for some reason). For ST’s, the CBOX informs the MAF that the write has completed.
Once the given operation has completed, the entry in the MAF is cleared and the MAF index for
the entry is loaded into the corresponding FREE list to be reallocated later. For IREF’s, the entry
is retired upon issuing to the CBOX.

For Dcache fills, the CBOX returns the MAF index which was sent with the address when it
was issued. The MAF reads the address, register number and format information out of the
DREAD portion of the MAF. The address is driven to the Dcache interface, the register number
to the IBOX and the format control to the respective formatter (E or F). This register number and
format information is also piped along to the ECC error register, where it is loaded and locked if
there is an ECC error associated with the fill from the CBOX. The MAF receives an MAF index
for each octaword returned by the Scache/BIU and follows the same basic procedure for each.
When the last octaword is sent to the MBOX, the CBOX also informs the MAF that this is the
last fill. This allows the MAF to clear the entry and place the index back on the free list.

For ECC fills, the CBOX returns corrected data for the fill associated with the previous M_RFB_
ECC_ERR. When the MAF receives the ECC_FILL return status, the register number and format
information are read out of the ECC fill register to be sent to the IBOX and formatter along with

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-49

the corrected data. The ECC fill register is unlocked on read. The Dcache is not filled with the
corrected ECC_FILL data.

For the WB, the BIU simply sends the MAF index and informs the MAF that the write corre-
sponding to that entry has completed. The MAF clears the entry and places the index in the WB
free list.

For IREF’s, the CBOX controls the Icache fills directly. The MAF clears the entry when it is
issued to the CBOX.

1.1.9.8 Loads from |0 SPACE

IO space addresses will be handled like any other addresses in the MAF. They will be allowed to
merge and issue as described above. When the entry is made to the MAF, the NOFILL bit is set
if PA<39> is set (indicating IO space). The NOFILL bit will be read out of the MAF on fills and
will disable the writing of the Dcache.

When an IO space DREAD is issued to the CBOX, merging may continue to that entry until
approximately 2 cycles later, when the CBOX returns a FIRST_FILL command and the index
of the issued command. The fill request will be aborted by the Scache miss, but the MAF uses
the FIRST_FILL command to read out the quadword valid bits and send them to the CBOX as
DRD_MASK<3:0>. These bits are sent out to the system as a quadword mask, indicating which
quadwords in IO space were actually requested by the CPU. The NOMERGE bit for that entry
is set at this time as well. For Istream IO loads the quadword mask is set to all ones.

1.1.9.9 Mbox Unavailable Traps

Trap conditions caused by the MAF are calculated during 5B based on available entries, DC_HIT
and PA conflict results. All traps will be reported on the instruction causing the trap. If pipel
causes the trap, pipe0 will continue and pipel will abort; if pipe0 causes the trap, both pipe0 and
pipel will be aborted.

Table 1-23: Mbox Unavailable Traps

Trap Condition Description
DREAD FULL Any Load && DREAD_FREE_LIST EMPTY | |
Any Load in Pipel && DREAD_FREE LIST ONE_LEFT.
WB FULL (Any Store | | FETCH | | WMB) && WB_FREE_LIST EMPTY

LD-MAF CONFLICT Any Load && DREAD_PA_MATCH && same quadword or longword
TRAP

LD-ST SILO TRAP Any Load && Index match immediately preceding Store && ST hit in Deache

1.1.9.10 MAF Boundary Conditions

1-50 The Mbox DIGITAL RESTRICTED DISTRIBUTION

1.1.9.10.1 Dread Merge Cutoff Point

Incoming LD’s may merge to existing LD MAF entries until one of the following conditions are
encountered.

FIRST _FILL and Scache lookup and Scache hit
FIRST FILL and IO space

FIRST_FILL and not Scache lookup for existing entry
Incoming Store to same address sets NOMERGE bit.

In the worst case, for a load that bypasses the MAF and hits in the Scache, there are 2 cycles in
addition to the current cycle in which subsequently issued loads may merge to the original load.

LDx_L instructions will always allocate a new DREAD entry; the MAF will disable merging to
LDx_L entries.

1.1.9.10.2 WB Merge Cutoff Point

Merging to the WB is constrained by how fast the data portion of the WB can supply the data to
the Scache. For this reason merging is only allowed to entries that have not won the arb for the
Scache. Merging is stopped during the cycle the WB wins the arb. Note, merging is cutoff before
it is known whether the write is actually issued to the Scache.

1.1.10 Mbox and Dcache IPR’s
NOTE

Traps are factored into MBOX IPR write operations unless noted otherwise.

Unless explicitly stated, IPRs are not cleared or set by hardware on chip or on timeout
reset.

1.1.10.1 DTB_ASN, Dstream TB Address Space Number

The DTB_ASN register is a write-only register which, when not in PALmode, must be written
with an exact duplicate of the ITB_ASN register’s ASN field.

Figure 1-14: DTB_ASN

6 5
3 7
+ + -—— ——
| ASN <6:0> | IGN |
+ + o +

5
6

1.1.10.2 DTB_CM, Dstream TB Current Mode

The DTB_CM register is a write-only register which, when not in PALmode, must be written with
an exact duplicate of the Ibox Processor Status (IPS) register’s CM field. These bits indicate the
Current Mode of the machine.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-51

Figure 1-15: DTB_CM

6000 0
3 5432 0

+ +—+—+ ——+
I Icicl |
| IGN IMIM| IGN |
| 11101 |

O t—t—t +

Table 1-24: DTB_CM Mode Bits
CM<1> CM<0> Current Mode

0 0 Kernel Mode

0 1 Executive Mode
1 0 Supervisor Mode
1 1 User Mode

1.1.10.3 DTB_TAG, Dstream TB TAG

1.1

The DTB_TAG register is a write-only register which writes the DTB tag and the contents of
the DTB_PTE register to the DTB. To insure the integrity of the DTBs, the DTB’s PTE array
is updated simultaneously from the internal DTB_PTE register when the DTB_TAG register is
written. The entry to be written is chosen at the time of the DTB_TAG write operation by a
not-last-used algorithm implemented in hardware. A write to the DTB_TAG register increments
the TB entry pointer of the DTB which allows writing the entire set of DTB PTE and TAG entries.
The TB entry pointer is initialized to entry zero and the TB valid bits are cleared on chip reset
but not on timeout reset.

Figure 1—16: DTB_TAG, Dstream TB Tag

6 4 4 11

3 32 32 0

+ + + +
| IGN | VA<42,..13> | IGN |
+ } N +

.10.4 Dstream TB PTE, DTB_PTE

The DTB_PTE register is a read/write register representing the 64-entry DTB page table entries.
The entry to be written is chosen by a not-last-used algorithm implemented in hardware. Writes
to the DTB_PTE use the memory format bit positions as described in the Alpha SRM with the
exception that some fields are ignored. In particular the PFN valid bit is not stored in the DTB.

1-52 The Mbox DIGITAL RESTRICTED DISTRIBUTION

To ensure the integrity of the DTB, the PTE is actually written to a temporary register and not
transferred to the DTB until the DTB_TAG register is written. As a result, writing the DTB_
PTE and then reading without an intervening DTB_TAG write will not return the data previously
written to the DTB_PTE register.

Reads of the DTB_PTE require two instructions. First, a read from the DTB_PTE sends the PTE
data to the DTB_PTE_TEMP register. A zero value is returned to the integer register file on
a DTB_PTE read. A second instruction reading from the DTB_PTE_TEMP register returns the
PTE entry to the register file. Reading the DTB_PTE register increments the TB entry pointer
of the DTB which allows reading the entire set of DTB PTE entries.

Figure 1-17: DTB_PTE, Dstream TB PTE

63 59 58 32 31 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4 + + B e T B A T T B B e S s Rt

[IGN | PFN<39:13> | IGN [[N N
O e + T e T B S et e T e S R S St 1
| N I [N A
| | | | +--=> ignore
[T T e S—— > FOR
|
|

| Am—m—————— > FOW

Fmm > ignore
Fr— e ——— > ASM

B > GH<1:0>
—— > ignore
~> KRE
> ERE
> SRE
> URE
—-—~=> KWE
-==> EWE
------- > SWE
oo > UWE

______ > PFN<39:13>

|
|
[
|
|
|
|
+

|
|
|
|
!
|
!
+

|
|
I
|
|
|
|
|

I
|
|
|
|
|
|
|
|
+

[
[
[
[
[
[
[
[
[
[
|+
+

|
|
|
|
I
|
|
|
|
|
!
|
!
|
|
|

Note: The fields of the Page Table Entry are described in the ALPHA SRM.

1.1.105 DTB_PTE_TEMP

The DTB_PTE_TEMP register is a read-only holding register for DTB_PTE read data. Reads of
the DTB_PTE require two instructions to return the PTE data to the register file. The first reads
the DTB_PTE register to the DTB_PTE_TEMP register and returns zero to the register file. The
second returns the DTB_PTE_TEMP register to the integer register file.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-53

Figure 1-18: DTB_PTE_TEMP

+

|
+

63 39 13 12

10 09 08|07 06 05 04|03 02 01 QO
e e T S S e I S

-t

PFN<39:13> | RAZ

L I R B B

z
(5]
+— +

+
t

B e S S Tt S S

|
|
|
|
|
I
|
|
|
I
|
|
|
!
+

.,..____._._____
+ —— o ————

o

o ——— e — e

>
> SRE
>

FOR
FOW
KRE
ERE

URE

> KWE

EWE

> SWE

UWE

> PFN<39..13>

1.1.10.6 MM_STAT, Dstream MM Fault Status Register

When D-stream faults or Dcache parity errors occur the information about the fault is latched
and saved in the MM_STAT register. The VA, VA_FORM and MM_STAT registers are locked
against further updates until software reads the VA register. MM_STAT bits are only modified
by hardware when the register is not locked and a memory management error, DTB miss, or
Dcache parity error occurs. The MM_STAT is not unlocked or cleared on reset.

Figure 1-19: MM_STAT, Dstream MM Fault Register

11 10
} + R R
! | | O T E I B
+ + + t——t '

63 17 16 06 05 04|03 02 01 00

3

>BAD VA
>RA
>OPCODE

o —— o — —
—————

Table 1-25: MM_STAT Field Descriptions

Name Extent Type Description

WR 0 RO Set if reference which caused error was a write.

ACV 1 RO Set if reference caused an access violation. Includes bad VA.
FOR 2 RO Set if reference was a read and the PTE’s FOR bit was set.
FOW 3 RO Set if reference was a write and the PTE’s FOW bit was set.
DTB_MISS 4 RO Set if reference resulted in a DTB miss.

1-54 The Mbox

DIGITAL RESTRICTED DISTRIBUTION

Table 1-25 (Cont.): MM_STAT Field Descriptions

Name Extent Type Description

BAD_VA 5 RO Set if reference had a bad virtual address.
RA 10:6 RO Ra field of the faulting instruction.
OPCODE 16:11 RO Opcode field of the faulting instruction.

1.1.10.7 VA, Faulting Virtual Address

When D-stream faults, DTB misses, or Dcache parity errors occur the effective virtual address
associated with the fault, miss, or error is latched in the read-only VA register. The VA, VA_
FORM, and MM_STAT registers are locked against further updates until software reads the VA
register. The VA IPR is not unlocked on reset.

Figure 1-20: VA, Faulting VA Register

e e e e +
| Virtual address |
e e +

1.1.108 VA_FORM, Formatted Virtual Address

VA_FORM contains the virtual page table entry address calculated as a function of the faulting
VA and the Virtual Page Table Base (VA and MVPTBR registers). This is done as a performance
enhancement to the Dstream TBmiss PALflow. The VA is formatted as a 32-bit PTE when the
NT _Mode bit, MCSR<SP0>, is set. VA_FORM is a read-only IPR, and is locked on any D-stream
fault, DTB miss, or Dcache parity error. The VA, VA_FORM, and MM_STAT registers are locked
against further updates until software reads the VA register. The VA_FORM IPR is not unlocked
on reset. Figure 1-21 describes VA_FORM when MCSR<SPO> is clear. Figure 1-22 describes
VA_FORM when MCSR<SPO0> is set.

Figure 1-21: VA_FORM, Formatted VA Register for NT_Mode=0

w o
N O

+ — + OO

i VPTB<63:33> | VA<42:13> | 0

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-55

Figure 1-22: VA_FORM, Formatted VA Register, NT_Mode=1

6 32 22 00 0
3 09 21 32 0
T VPTB<63:30> | 0 r VA<31:13>I= 0 |+
+ + + + +
Table 1-26: VA_FORM Field Descriptions
Name Extent Type Description
VA<42:13> 32:03 RO Subset of the original faulting Virtual Address,NT_Mode=0.
VPTB 63:33 RO Virtual Page Table Base address as stored in MVPTBR,NT_
Mode=0.
VA<31:13> 21:03 RO Subset of the original faulting Virtual Address,NT_Mode=1.
VPTB 63:30 RO Virtual Page Table Base address as stored in MVPTBR,NT _
Mode-=1.

1.1.10.9 MVPTBR, Mbox Virtual Page Table Base Register

MVPTBR contains the virtual address of the base of the page table structure. It is stored in the
Mbox to be used in calculating the VA_FORM IPR for the Dstream TBmiss PAL flow. Unlike the
VA register, the MVPTBR is not locked against further updates when a Dstream fault, DTB Miss
or Dcache parity error occurs. The MVPTBR is a write-only IPR that looks like this:

Figure 1-23: MVPTBR

o

| VPTB<63:30> | IGN

1.1.10.10 DC_PERR_STAT, Dcache Parity Error Status

When a Dcache parity error occurs, the error status is latched and saved in the DC_PERR_STAT
register. The VA, VA_FORM and MM_STAT registers are locked against further updates until
software reads the VA register. If a Dcache parity error is detected while the Dcache parity error
status register is unlocked, the error status is loaded into DC_PERR_STAT<5:2>. The LOCK bit
is set and the register is locked against further updates (except for the SEO bit) until software
writes a "one" to clear the LOCK bit. The SEO bit is set when a Dcache parity error occurs while
the Dcache parity error status register is locked. Once the SEO bit is set it is locked against
further updates until the software writes a "one" to DC_PERR_STAT<0> to unlock and clear the
bit. Note the SEQO bit does not get set when Dcache parity errors are detected on both pipes
within the same cycle. For this particular situation, the pipe0/pipel Dcache parity error status

1-56 The Mbox DIGITAL RESTRICTED DISTRIBUTION

bits will indicate the existence of a second parity error. The DC_PERR_STAT is not unlocked or
cleared on reset.

Figure 1-24: DC_PERR_STAT, Dcache Parity Error Status

63 06 05 04 03 02 01 0O

+ et e

I RAZ [/ R A

+ e e T
[
| [| | +-->SEC
[>LOCK
I B B >DPO
[T T >DP1
| e >TPO
+ >TP1

Table 1-27: DC_PERR_STAT Field Descriptions
Name Extent Type Description

SEO 0 WwWi1C Set if second Dcache parity error occurred in a cycle after the
register was locked. The SEO bit will not be set as a result
of a second parity error that occurs within the same cycle as
the first.

LOCK 1 WwiC Set if parity error detected in Dcache. Bits <5:2> are locked
against further updates when this bit is set. Bits <5:2> are
cleared when the LOCK bit is cleared.

DPO 2 RO Set on data parity error in Dcache bank 0.
DP1 3 RO Set on data parity error in Dcache bank1.
TPO 4 RO Set on tag parity error in Dcache bank 0.
TP1 5 RO Set on tag parity error in Dcache bank 1.

1.1.10.11 Dstream TB Invalidate All Process, DTBIAP

This is a write-only register. Any write to this register invalidates all DTB entries in which the
ASM bit is equal to zero.

1.1.10.12 Dstream TB Invalidate All, DTBIA

This is a write-only register. Any write to this register invalidates all 64 DTB entries, and resets
the DTB NLU pointer to its initial state.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-57

1.1.10.13 DTBIS, Dstream TB Invalidate Single

This is a write-only register. Writing a virtual address to this IPR invalidates the DTB entry
that meets any one of the following criteria:

e A DTB entry whose VA field matches DTBIS<42:13> and whose ASN field matches DTB_
ASN<63:57>.

e A DTB entry whose VA field matches DTBIS<42:13> and whose ASM bit is set.

Figure 1-25: DTBIS

6 4 4 11

3 32 32 0
+ + + +
| IGN | VA<42:13> | IGN |
¥

—_— —t———

+ -+

NOTE

The DTBIS is written before the normal IBOX trap point. The DTB invalidate single
operation will be aborted by the IBOX only for the following trap conditions: ITB miss,
PC mispredict, or when the HW_MTPR DTBIS is executed in user mode.

1.1.10.14 MCSR, Mbox Control Register

The MCSR register is a read/write register that controls features and records status in the Mbox.
This register is cleared on chip reset but not on timeout reset.

Figure 1-26: MCSR, Mbox Control Register

63 6 5 4 3 2 1 0

+ t——t——t——f——t——+——+

| RAZ | I N | [

+ B e e e it 3
[| |
o | |
o | fmmmmme > M _BIG_ENDIAN
o Fmmmm e > SP<1:0>
[T T > DBG_TEST_SEL<0>
| A > E_BIG_ENDIAN

-> DBG_TEST SEL<1>

Table 1—-28: MCSR Field Descriptions
Name Extent Type Description

M_BIG_ENDIAN 0 RW,0 Mbox Big Endian mode enable. When set, bit 2 of the physical
address is inverted for all longword Dstream references.

1-58 The Mbox DIGITAL RESTRICTED DISTRIBUTION

Table 1-28 (Cont.): MCSR Field Descriptions
Name Extent Type Description

SP<1:0> 2:1 RW,0 Super page mode enables. SP<1> enables superpage map-
ping when VA<42:41> = 2. In this mode, virtual addresses
VA<39:13> are mapped directly to physical addresses PA<39:13>.
Virtual address bit VA<40> is ignored in this translation.
SP<0> enables one-to-one super page mapping of D-stream
virtual addresses with VA<42:30> = 1FFE(Hex). In this mode,
virtual addresses VA<29:13> are mapped directly to physical
addresses PA<29:13>, with bits <39:30> of physical address
set to 0. SP<0> is the NT Mode bit that is used to control
VA formatting on a read from the VA_FORM IPR. Superpage
access is only allowed in kernel mode.

DBG_TEST SEL<0> 3 RW,0 Debug Test Select. The DBG_TEST_SEL<«1:0> bits are used
to control the Mbox/Cbox DECchip 21164-AA parallel test
port mux selection. When DBG_TEST SEL<1:0> = (00), the
Cbox pBG_DATA<T7:0> is selected. When DBG_TEST SEL<1:0>
= (01), the Mbox DCI debug packet is selected. When DBG_
TEST SEL<1:0> = (10), the Mbox MAF_OUT debug packet
is selected. When DBG_TEST SEL<1:0> = (11), the debug
packet selection is dynamically controlled by the state of the
RFB_DATA_VALID signal from the Cbox. (Need a refer-
ence to the Mbox test packet signal description.) These
bits are used for diagnostic and test purposes only.

E_BIG_ENDIAN 4 RW,0 Ebox Big Endian mode enable. This bit is sent to the Ebox to
enable Big Endian support for the EXTxx, MSKxx and INSxx
byte instructions. This bit causes the shift amount to be in-
verted (ones-complemented) prior to the shifter operation.

DBG_TEST SEL<1> 5 RW,0 Mbox debug packet select. See DBG_TEST SEL<0>.

1.1.10.15 DC_MODE, Dcache Mode Register

The DC_MODE register is a read/write register that controls diagnostic and test modes in the
Dcache. This register is cleared on chip reset but not on timeout reset.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-59

Figure 1-27: DC_MODE, Dcache Mode Register

63 5 4
+ +

3 2 1 0
Sl et T

| RAZ [

|

|
|
|
!
|
+

|

[|

Bt B

DC_ENA
DC_FHIT
DC_BAD_PARITY
DC_PERR_DISABLE
DC_DOA

Unless the Dcache has been dis-
abled in hardware (DC_DOA is set), the DC_ENA bit enables
the Dcache. (The Dcache is enabled if DC_ENA=1 AND DC_
DOA=0). When clear, the Dcache command will not be up-
dated by ST’s or FILLs, and all LD’s will be forced to miss in

Dcache force hit. When set, this bit forces all D-stream refer-

When set, this bit inverts the data parity inputs to the Dcache
on integer stores. This will have the effect of putting bad data
parity into the Dcache on integer stores that hit in the Dcache.
This bit will have no effect on the tag parity written to the
Dcache during fills or the data parity written to the CBOX
Write Data Buffer on integer stores. Note: Floating point
stores should NOT be issued when this bit is set because it
may result in bad parity being written to the CBOX Write

When set, this bit disables Dcache parity error reporting.
When clear, this bit enables all Dcache tag and data par-
ity errors. Parity error reporting is enabled during all other
Dcache test modes unless this bit is explicitly set.

Table 1—-29: DC_MODE Field Descriptions
Name Extent Type Description
DC_ENA 0 RW,0 Software Dcache enable.
the Dcache.
DC_FHIT 1 RW,0
ences to hit in the Dcache.
DC_BAD_PARITY 2 RW,0
Data Buffer.
DC_PERR_DISABLE 3 RW,0
DC_DOA 4 RO

Hardware Dcache Disable. When set, the Dcache is faulty and
has been disabled under hardware control (a programmable
/readable fuse resides in the MBOX). All D-stream references
will be forced to miss in the Dcache, and outstanding fills
will be blocked from filling the Dcache. When DC_DOA is
clear, the Dcache can be enabled under software control (DC_
ENA=1). Note the DC_MODE register must be written under
software control at least once before the state of the DC_DOA
fuse is readable.

1-60 The Mbox

DIGITAL RESTRICTED DISTRIBUTION

NOTE

The DC_MODE bits are only used for diagnostics and test. For normal operation, they
will only be supported in the following configuration:

DC_ENA =1
DC_FHIT =0

DC_BAD_PARITY = 0
DC_PERR_DISABLE =0

1.1.10.16 MAF_MODE, MAF Mode Register

The MAF_MODE register is a read/write register that controls diagnostic and test modes in the
Mbox Miss Address File. This register is cleared on chip reset. Bit<5> is also cleared on timeout
reset.

Figure 1-28: MAF_MODE, MAF Mode Register

63 8 7 6 5 4 3 2 1 O
s et Tt S e
[e A I N R R
-- B ST T s Dt
| | R N

+— +
2
o~

|
T T [S— > DREAD_NOMERGE
[T > WB_FLUSH_ALWAYS
[> WB_NOMERGE
e > MAF_NO_BYPASS

> WB_CNT_DISABLE

> MAF_ARB_DISABLE

> DREAD_PENDING (READ ONLY)
> WB PENDING (READ ONLY)

|
|
|
|
|
+

+o——— - — —

|
f
|
|
|
|
!

o —— e —

Table 1-30: MAF_MODE Field Descriptions
Name Extent Type Description

DREAD_NOMERGE 0 RW,0 Miss Address File DREAD Merge Disable. When set, this bit
disables all merging in the DREAD portion of the miss ad-
dress file. Any load that is issued when DREAD_NOMERGE
is set will be forced to allocate a new entry. Subsequent merg-
ing to that entry is not allowed (even if DREAD_NOMERGE

is cleared).

WB_FLUSH_ALWAYS 1 RW,0 When set, this bit forces the write buffer to flush whenever
there is a valid WB entry.

WB_NOMERGE 2 RW,0 When set, this bit disables all merging in the write buffer.

Any store that is issued when WB_NOMERGE is set will be
forced to allocate a new entry. Subsequent merging to that
entry is not allowed (even if WB_NOMERGE is cleared.)

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-61

Table 1-30 (Cont.):

MAF_MODE Field Descriptions

Name

Description

MAF_NO_BYPASS

WB_CNT_DISABLE

MAF_ARB_DISABLE

DREAD_PENDING

WB_PENDING

Extent Type
3 RW,0
4 RW,0
5 RW,0
6 R,0
7 R,0

When set, this bit disables Dread bypass requests in the MAF
arbiter. All Dread requests will be loaded into the MAF pend-
ing queue before arbitration takes place.

When set, this bit disables the 64-cycle WB counter in the
MAF arbiter. The top entry of the WB will arb at low priority
only when a LDx_L is issued or a second WB entry is made.

When set, this bit disables all Dread and WB requests in the
MAF arbiter. WB_Reissue, Replay, Iref and MB requests are
not blocked from arbitrating for the Scache. This bitis cleared
on both timeout and chip reset.

This bit indicates the status of the MAF Dread file. When set,
there are one or more outstanding Dread requests in the MAF
file. When clear, there are no outstanding Dread requests.

This bit indicates the status of the MAF WB file. When set,
there are one or more outstanding WB requests in the MAF
file. When clear, there are no outstanding WB requests.

NOTE

Bits <5:0> of the MAF_MODE register are only used for diagnostics and test. For
normal operation, they are supported in the following configuration:

DREAD_NOMERGE = 0
WB_FLUSH_ALWAYS =0

WB_NOMERGE = 0
MAF_NO_BYPASS = 0
DREAD_WB_ARB_DISABLE=0
WB_CNT_DISABLE=0

1.1.10.17 DC_FLUSH, Dcache Flush Register
A write to this register clears all the valid bits in both banks of the Dcache.

1.1.10.18 ALT_MODE, Alternate mode

ALT_MODE is a write-only IPR. The AM field specifies the alternate processor mode used by
HW_LD and HW_ST instructions.

1-62 The Mbox

DIGITAL RESTRICTED DISTRIBUTION

1.1

141

Figure 1-29: ALT_MODE

6 0 00 0 0
3 5 43 2 0
+ o=t +
! IGN |AM| IGN |
+ +-—+ +

Table 1-31: ALT Mode
ALT_MODE<4:3> Mode

00 Kernel

01 Executive
10 Supervisor
11 User

.10.19 CC, Cycle Counter

DECchip 21164-AA supports a cycle counter as described in the Alpha SRM. The low half of the
counter, when enabled, increments once each CPU cycle. The upper half of the CC register is the
counter offset. CC<63:32> is written on a HW_MTPR to the CC IPR; bits <31:0> are unchanged.
CC_CTL<32> is used to enable or disable the cycle counter. The lower half of the cycle counter
is written on a HW_MTPR to the CC_CTL IPR.

The CC register is read by the RPCC instruction as defined in the Alpha SRM (The RPCC
instruction returns a 64-bit value). The cycle counter is enabled to increment only 3 cycles after
the MTPR CC_CTL (with CC_CTL<32> set) is issued. This means that an RPCC instruction
issued 4 cycles after an MTPR CC_CTL that enables the counter will read a value that is 1
greater than the initial count. The cycle counter is disabled on chip reset.

The write-only CC Register looks like this:

Figure 1-30: CC, Cycle Counter Register

63 32 31 0

| CC, offset | IGN |
e + ————t

.10.20 CC_CTL, Cycle Counter Control

The CC_CTL register is a write-only register that is used to write the low 32 bits of the cycle
counter and to enable or disable the counter. Bits CC<31:4> are written with the value CcC_
CTL<31:4> on a HW_MTPR to the CC_CTL register. Bits CC<3:0> are written with zero; bits
CC<63:32> are not changed. If CC_CTL<32> is set then the counter is enabled, otherwise the
counter is disabled.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-63

Figure 1-31: CC_CTL, Cycle Counter Controt Register

63 33 32 31 43 0

| IGN [| IGN |

-> Count<31:4>

—_———
+ — —

> CC_ENA

Table 1-32: CC_CTL Field Descriptions

Name Extent Type Description

Count<31:4> 314 wo Cycle count. This value is loaded into bits <31:4> of the CC
register.

CC_ENA 32 WO Cycle Counter enable. When set, this bit enables the CC reg-

ister to begin incrementing 3 cycles later. An RPCC issued 4
cycles after CC_CTL<32> is written will see the initial count
incremented by 1.

1.1.10.21 DC_TEST_CTL, Dcache Test TAG Control Register
The DC_TEST_CTL register is a read/write IPR used exclusively for test and diagnostics.

An address written to this register will be used to index into the Dcache array when reading or
writing the DC_TEST _TAG register. See Section 1.1.10.22 for a description of how this register
is used.

Figure 1-32: DC_TEST_CTL, Dcache Test TAG Control Register

63 13 12 03 02 01 00

== ——— e e s

| RAZ | [

+—— —— - } - e
I [
| | | +=--> BANKO
| | te——— > BANK1
I R — > IGN/RAZ

1-64 The Mbox DIGITAL RESTRICTED DISTRIBUTION

> INDEX<12::

Table 1-33: DC_TEST_CTL Field Descriptions

Name Extent Type Description
BANKO 0 RW Dcache Bank0 enable. When set, reads from DC_TEST TAG

will return the tag from Dcache bank0 and writes to DC_
TEST _TAG will write to Dcache bank0. When clear, reads
from DC_TEST TAG will return the tag from Dcache bankl1.

BANK1 1 RW Dcache Bank1 enable. When set, writes to DC_TEST TAG
will write to Dcache bank1. This bit has no effect on reads.

INDEX 12:3 RW Dcache tag index. This field is used on reads/writes from
/to the DC_TEST TAG register to index into the Dcache tag
array.

1.1.10.22 DC_TEST_TAG, Dcache Test TAG Register
The DC_TEST _TAG register is a read/write IPR used exclusively for test and diagnostics.

When DC_TEST_TAG is read, the value in the DC_TEST_CTL register is used to index into the
Dcache and the value in the tag, tag parity, valid and data parity bits for that index are read out
of the Dcache and loaded into the DC_TEST_TAG_TEMP IPR register. A zero value is returned
to the integer register file. If BANKO is set, the read is from Dcache bank0. Otherwise it is from
Dcache bank1.

When DC_TEST_TAG is written, the value written to DC_TEST _TAG is written to the Dcache
index referenced by the value in the DC_TEST_CTL register. The tag, tag parity, and valid bits
are affected by this write. Data parity bits are not affected by this write (use DC_MODE<DC_
BAD_PARITY> and force hit modes). If BANKO is set, the write is to Deache bank0. If BANK1 is
set, the write is to Dcache bank1. If both are set, the write will occur to both banks.

Figure 1-33: DC_TEST_TAG, Dcache Test TAG Register

63 39 38 31211 03 02 01 00
+-- + et +——1 +
| IGN | | IGN | | IGN |
e e + ottt +——+ +
[|
[Fo—————— > TAG_PARITY

|+ > OWO_VALID
+ > OWl_VALID
—-——> TAG<38:13>

+ —_——

Table 1-34: DC_TEST_TAG Field Descriptions
Name Extent Type Description

TAG_PARITY 2 WO Tag Parity. This bit refers to the Dcache tag parity bit which
covers tag bits 38 through 13 (valid bits not covered).

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-65

Table 1-34 (Cont.):

DC_TEST_TAG Field Descriptions

Name Extent Type Description

OWO0_VALID 11 WO Octaword valid bit 0. This bit refers to the Dcache valid bit
for the low order octaword within a Dcache 32B block.

OW1_VALID 12 WO Octaword valid bit 1. This bit refers to the Dcache valid bit
for the high order octaword within a Dcache 32B block.

TAG 38:13 WO Tag<38:13>. This refers to the tag field in the Dcache array.

(Note: Bit 39 is not stored in the array)

1.1.10.23 DC_TEST_TAG_TEMP, Dcache Test TAG Temp Register
The DC_TEST_TAG_TEMP register is a read-only IPR used exclusively for test and diagnostics.

Reading the Dcache tag array requires a 2 step process. First, a read from DC_TEST TAG reads
the tag array and data parity bits and loads them into the DC_TEST _TAG_TEMP register. An
undefined value is returned to the integer register file. A second read of the DC_TEST_TAG_
TEMP register will return the Dcache test data to the register file.

Figure 1-34: DC_TEST_TAG_TEMP, Dcache Test TAG Temp Register

63 39 38 13 12 11 07 06 05 04 03 02 01 0O

+ - + b Tt e S T 1
I RAZ | [RAZ I 1 I I | | RAZ |
+ —_—— + s S e et T SRS

o ——— —

+ — — o ————

+ — — o —— e — —

> TAG_PARIT
> DATA_PARO«
DATA_PARO<
> DATA_PARI«
DATA_PARI«
OWO_VALID
OW1_VALID
> TAG<38:13:

v

v vV V

Table 1-35: DC_TEST_TAG_TEMP Field Descriptions

Name Extent Type Description

TAG_PARITY 2 RO Tag Parity. This bit refers to the Dcache tag parity bit which
covers tag bits 38 through 13 (valid bits not covered).

DATA PARO0<0> 3 RO Data Parity. This bit refers to the BankO Dcache data parity
bit which covers the lower longword of data indexed by dc_
test_ctl<INDEX>.

DATA_PARO<1> 4 RO Data Parity. This bit refers to the Bank0 Dcache data parity

1-66 The Mbox

bit which covers the upper longword of data indexed by DC_
TEST CTL<INDEX>.

DIGITAL RESTRICTED DISTRIBUTION

Table 1-35 (Cont.): DC_TEST_TAG_TEMP Field Descriptions
Name Extent Type Description

DATA*PAR1<0> 5 RO Data Parity. This bit refers to the Bankl Dcache data parity
bit which covers the lower longword of data indexed by DC_
TEST CTL<INDEX>.

DATA _PAR1<1> 6 RO Data Parity. This bit refers to the Bankl Dcache data parity
bit which covers the upper longword of data indexed by DC_
TEST_CTL<INDEX>.

OWO_VALID 11 RO Octaword valid bit 0. This bit refers to the Dcache valid bit
for the low order octaword within a Dcache 32B block.

OW1_VALID 12 RO Octaword valid bit 1. This bit refers to the Dcache valid bit
for the high order octaword within a Dcache 32B block.

TAG 38:13 RO Tag<38:13>. This refers to the tag field in the Dcache array.

(Note: Bit 39 is not stored in the array)

1.2 Reset and Initialization

The MCSR, DC_MODE and MAF_MODE IPRs are cleared on chip reset; all other IPRs must be
reset by PALcode.

On both chip and timeout reset, the MAF operating state will be reset. This includes clearing all
status bits in the MAF file, clearing all pending queues, setting the free list indices, clearing the
WB counter and MB request flip-flops, clearing the replay and wb_reissue valid bits, and clearing
the valid bits in the register number array.

The cycle counter IPR, CC, is disabled on chip reset.

The DTB pointer will be initialized to point to the bottom entry and the DTB valid bits will be
cleared on chip reset but not on timeout reset. The valid bits in the Decache will not be cleared
on either reset.

Palcode is expected to read the VA register to unlock the VA, VA_FORM and MM_STAT registers,
and to write to the DC_PERR_STAT register to unlock and clear the status bits. (DC_PERR_
STAT<SEO> is unlocked and cleared under separate control from the remaining status bits).

1.3 Error Handling and Recording

The MM_STAT, VA, and VA_FORM registers record the status of an instruction causing a memory
management fault or Dcache parity error. These registers are locked against further updates until
PALcode reads the VA register.

The DC_PERR_STAT register records the tag and data parity status for the instruction causing
a Dcache parity error. The DC_PERR_STAT register is locked against further updates (except
for the SEO bit) until software writes a "1" to the LOCK bit. A W1C on the LOCK bit will unlock
and clear the tag and data parity status bits. The DC_PERR_STAT<SEO> bit is set if a Deache
parity error occurs when the DC_PERR_STAT<LOCK> bit is set. The SEQ bit is locked against
further updates until software writes a "1" to unlock and clear the bit.

DIGITAL RESTRICTED DISTRIBUTION The Mbox 1-67

The Dcache is flushed when an ECC error occurs on a fill. The register number and format
information for the associated DREAD entry are loaded into the MAF ECC error register and the
register is locked against further updates. The MAF sets the NOFILL bit when the ECC error
occurs on the first half of a fill. When the CBOX returns the corrected data, it is forwarded to the
EBOX/FBOX register file but is not written to the Dcache. The MAF inititates a read of the ECC
error register to supply the register number and format control on an ECC_FILL and unlocks
the ECC error register for future updates.

1.4 Test Aspects

The Mbox is equipped with the standard LFSR chains used for chip testability and the parallel
port used for debug. Detailed information on the specification of these can be found in the EV5
external spec.

1.5 Performance Monitoring Features

The performance monitoring hardware is located in the Ibox. The normal Mbox trap and Dcache
hit signals will be used to count DC misses, DTB misses, memory management errors, Dcache
parity errors, and replay (MAF_UNAVAIL) traps. The Mbox is sending special signals to the
Ibox to indicate whether a load in pipe0 or pipel got allocated a new entry in the MAF (used in
conjunction with traps and DC_HIT to count load merging). The Mbox also sends signals that
indicate the WB_FULL or MAF_FULL condition has occured for stores in pipe0 and loads in
pipe0 or pipel.

1.6 Revision History

Table 1-36: Revision History

Who When Description of change

J Meyer, L.Noack, 13-Dec-91 Initial spec.

B.Benschneider

J.Meyer 02-Mar-92 Updates after 2nd Mbox review.

J.Meyer 21-May-92 Updates for new Mbox timing.

S.Britton 20-November-92 Updates for architecture and implementation changes.
S.Britton 17-February-93 Updates for architecture and implementation changes.
S.Britton 01-April-93 Updates for Mbox IPRs

B.Benschneider 27-January-94 Update to Passl implementation

1-68 The Mbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 5

The Cbox

5.1 Overview & Block Diagrams

The EV5 CBOX is responsible for providing data to/from the Scache and the System data stores.
The CBOX consists of three major sections: the SCache Arbiter Unit (SAU), the Write Buffer
Data Unit (WBU) and the Bus Interface Unit (BIU). The SAU prioritizes access requests from
the MBOX and the BIU to the Scache. WBU provides the storage for write data and is responsible
for the successful completion of store requests. The BIU controls the interface to the EV5 pin
bus. The block diagram of the CBOX is shown in Figure 5-1.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-1

xoqQ eyl 2-S

NOLLNGIYLSIA 310141S3Y Tv1iIoia

CBOX BLOCK DIAGRAM n
-
C%D_INVALADDR_88_He17:5> C%M_RFB_DATA_VALID_108_H B W PR3 00 PADINNOATA Haterons| - (R
M%G_MAF_ADDA_SB_H«<39.02> - n‘a_.NJ‘t_c“D_lB_Ht\ o» C%M_8C_BUSY_SA M%C_MAF_CMD_7A<9:0>» B%C_AFB_10A_H<127:00> M%C_| “F_|NDEX%‘S:°’ :
C_WR_ENABLE_7A<s:0> ey
C%M_RETRY_STALL_sR] o
A]BNG_RFS_PAR_10A_H«<3:0%
(| FiiL AT 86,
FOR DCACHE) A

-

Noolg x0ao

868 L

3 C%S_ADOR_8B_H«39:02> L 13 C%S_ADDA_SB_He14:02>
Ll N 5]
874 SCACHE TAG # w [Geces]
G%8_CMD_7A_H«2:05 \ DEGODE
28 L
L RDPAT_1 Y I
878 S%C_TAG_HIT 8A_H(} _7 SCAGHE
J1a

88A _} 3 FILL. PRLUPDATE. $PAR H0OABIS
z

[
N

FiLL

Mas

WRITE
- BUFFER
CONTROL
BAF GAM_HIT-BAF,VAE. TROLL
o >/ ARBITER uniT
wiss_1 o - uNIT e (wBU)
. (X et AAFr WG] B
S8A LoaIC (VAF) - CONTROL (SAU) 83A
vieTiM_o — VALDATE JTRPLL SCACHE N/ 3
S%C_TAG_8A_H<38:16> VIGTIM_1 - NG ADDAR « 192 % FILL
VAF
ook Rea 1\ cowtroL DECODE P WAITEFAT US| ECC
SYS_ACACHE_REG P! CHK s88
see A (8BCR) T
CONTROL #Y4_PROBE_ADDR
] ~ SCACHE

UTRUT_LAT (ADP)| F,‘::,_
S0A AD_PAT_¢ (BSQ) DATA ECC | noB) an
{ BIU CORR

SEQUENCER
898 &:T {0 M 898
* ~ 1” a* 0_FAT_BUS S10A
810A E: E::] E: READ_FAT_BU! 1
8108 8108
sia - - Eoc 8114
8118 44 ' : \1e GEN LARL]
BG.TAG_HeaW;20> R
MM, BRARRS SO, svasonnasen BRRTHEGHC S WPARRI B gt TEATIAS : 8124
8124 ffe_é‘hﬁﬂ‘ VALY 8YS_ADOR_H<17:0> - -BOFFFULEH BVERBBN AT Y, oo
OAT_;
L SYS_DATA (BDB)
L Svsoata |
8128) ;' 8128
813A PAD_OUTXDATA_H<127:005 ﬂ 8134
— ADDRESS DATAPATH CONTROL LOGIC DATA DATAPATH

~mn
LAST_MODIFIED=Fri Mar 20 11:12:48 1892

%661 Arenaqay ‘0°0 UOISIAYY ‘uoryeoyadg rewanuy diq) NdD AR

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2 Functional Description

5.2.1 Scache Arbiter Unit

The Scache Arbiter Unit (SAU) arbitrates access to the SCache. Primary sources of requests for
the SCache access are the Mbox and the Bus Interface Unit (BIU). Arbitration requests from
the BIU have higher priority over the requests from the Mbox. In the idle mode, the Mbox has
access to SCache if no BIU requests are pending. The Cbox asserts an early SCache busy signal
(SC_BUSY) to the Mbox if the BIU needs access to the SCache.

Figure Figure 5-2 shows the general flow of the SCache Arbiter Unit (SAU) pipe stages. Requests
arrive from the BIU Address File (BAF), the Victim Address File (VAF) and the System Probe
Arbiter (SPA) in 3b. These requests are presented to the arbiter in 4a, Arbiter runs in 4a-4b
and generates the SC_BUSY signal to Mbox if a valid BIU request for SCache is found. A grant
signal is sent to the BIU controller that requested access. The address register is read out in
5b and driven to SCache Tags in 6a. This address is also latched into the TROLL register input
latch in 6b. TROLL results are driven in 7a. The SCache ships all block tag status bits to the
CBox in 7a. The hit signal arrives in 7b at the Cbox from the SCache. Based on these signals
the SAU generates appropriate merge, retry, set number, victim and Ibox allocate cycle signals.

Figure 5-2: SAU Pipe Stages

4a 4b 5a 5b 6a 6b 7a b 8a 8b 9a 9b l0a 10b
[T B e B B T
trfb_data
|retry @ mbox
|{WRITE_BAF
lcmd_to_biu
|baf_inp_latch (next change at 9b)

|scache_hit from scache
|tag status from scache
[troll_results
|troll compare
|troll_inp_ latch (next change at 9a)
|addr @ scache

4a 4b S5a S5b 6a 6b 7a 7b 8a 8b 9a 9b 10a 10b

Jmmmm ammmm mmmm s e mmmm | mm | mm s | mm o | e |

| drive addr to scache

| READ_BAF
|sc_source_sel (biu or mbox)
|biu_req_granted (= rd_enable)

|sc_busy @ mbox
iprioritize biu regs
lbiu_reqgs@sau Inext _biu_req from same_source

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.1.1 Mbox Requests

Requests from the Mbox are primarily DCache or ICache Load Misses and Stores. Each Mbox
request is accompanied by a miss address file index physical address and a command. Physical
address bits and the command are driven to both the SAU and the SCache by the Mbox. Mbox
miss address file index information is sent directly to the SAU.

The Mbox is guaranteed access to SCache Tags in cycles s6b and s7b ONLY if it sees the SC_
BUSY signal de-asserted during both cycles s4b and s5b. In the idle mode, Mbox must drive a
NOP command if it has no valid Scache requests pending. See Figure 5-3.

Figure 5-3: SC_BUSY and Mbox Command Issue

4b 5a 5b 6a
| | | |

sc_busy [e e e e e e e \
cmd=NOP

sC_busy /e~~mamsmssssasnns \
cmd=NOP

sc_busy [
cmd=valid

Table 5-1: Commands from Mbox

Command Description

NOP No Operation

DREAD Dref Read

IREAD Iref Read

LDX_L Load Locked from Memory

FETCH Fetch from Memory

FETCH_M Fetch from Memory with Modify Intent
MB Memory Barrier

WR Write to Scache

STX C Store Conditional to Memory

5-4 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-2: Encoded Cbox Return Status to Mbox (7a and 8a signhals)

Command Description

NOP No Operation

FIRST FILL First Octaword of the I/D Cache fill cycle

LAST FILL Last (second) Octaword of the I/D Cache fill cycle
WR_DONE Write Operation Done

STXC_DONE Store Conditional Done Successfully
FETCH_DONE Fetch Done

MB_DONE Memory Barrier Done

Figure 5-4: Possible FIRST_FILL/LAST_FILL sequences from Cbox to Mbox

fun
.

FA FB LB
FA FB -~

FAe FB LB

> w N
. . .

FAe FB LB

5 FA FB 1B
6 FA FB LA
Key:

A = Scmiss and
B = Schit

FA = FIRST FILL
LA = IAST FILL
FAe = FIRST FILL
LAe =

EFA =

ELA =

LA

LA ! FB is speculative (if B is Scmiss)
ECCA LA

LA EFA 1A ! Possible sequence from Cbox

~

| Mbox can not handle this LAST FILL
! Cbox will send this in a 3cycle Bcache config

Lae ECCA

LB LB ! Will not occur

Bchit

has ecc error

IAST_FILL has ecc errxor
ECC Corrected FIRST FILL
ECC Corrected LAST FILL

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-3: Cbox Special Signals to Mbox

Signal' Description

SC_BUSY Cbox is accessing the Scache 4a signal

RETRY Mbox request denied. Mbox must retry. 8a signal
RETURN_INDEX Mbox MAF index of the returning fill data. 7a and 8a signal
FILL_OW Which OW is this fill. bit 4 of the address

WRITE_NOW High priority write for broadcast data

WR_MAF_INDEX Mbox MAF index for writes

WRITE_32B_REQ Distinguish between 32B and 64B write request

1See global signal list for actual signal names and widths

5.2.1.1.1 Requests from Mbox
5.2.1.1.1.1 Load requests

All reads are looked up in the Scache for a hit or miss. On a SCache hit the requested 32B
are sent in two consecutive cycles (s9b, s10b) on the Read Fat Bus (RFB). The Mbox MAF index
and return status is driven back to the Mbox in s7b before each 16B data transfer. The Ibox
Allocate Cycle information is dispatched two cycles before each RFB cycle. Both Ibox bubble
information and the FIRST FILL return status are speculative for the first OW fill to Dcache
and non-speculative for second OW fill.

On a SCache miss, the address is forwarded to the BIU for a lookup in the external memory
system. Mbox reads are merged at the 64B level at the BIU when in the 64B mode of operation.
Only accesses to different 32B within the same 64B are merged. All other requests are re-tried if
it can not be merged or if BIU resources are not available. No merging is done in the 32B mode
of operation.

IO space reads are treated as SCache misses and are forwarded to the BIU. If the address maps
to an IO space reserved for EV5 then it is treated as a read to the Cbox IPR’s.

Loads to IPR space are processed by SAU. These addresses do not get loaded in the BAF register.
Requested IPR data is returned in the upper Quadword of the lower Octaword of a 32B block
which is sent to the Mbox in the first of two RFB cycles. RFB data valid is driven ONLY for the

first Octaword of the fill. Appropriate allocate cycle signal is also driven for the first Octaword
returned.

Speculative allocate cycle signal is asserted by Cbox for integer Dreads and reads to Cbox IPR
space. Allocate cycle for the second Octaword of the fill from Scache is non-speculative.

5.2.1.1.1.2 Load Locked requests

If a LDxL request hits in the SCache, the Lock flag is set and the requested 32B are returned to
the Mbox. A Lock command is also sent to the BIU. On a SCache miss, the command is forwarded
to the BIU which does a lookup in the Beache. The Lock flag is set only when the fill returns
from external memory.

5-6 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

On a BCache hit, the Lock flag is set and the data is returned to both the Mbox and the SCache.
On a BCache miss the request is further forwarded to the SI.

LDxL to IO space are treated as misses in the SCache and the request is forwarded to the BIU.
The address is loaded into the BAF register.

LDxL to IPR space is not permitted.

5.2.1.1.1.3 Store requests

Stores requests are looked up in the SCache to determine the state of the block. Stores are
accepted to a private/dirty block. Stores to a private/clean block require permission from the SI
These requests are re-tried if BIU Address File (BAF) resources are full. Upon receipt of the
required permission from the SI, these stores are re-initiated by the Cbox. Cbox provides write
permission to the SCache to mark the block as dirty.

Stores to shared blocks require permission from the SI. These requests are re-tried if either the
BAF or the VAF resources are unavailable. Upon receipt of permission from the SI, these writes
are re-initiated by the Cbox by requesting Mbox to reissue the command. Cbox provides write
permission to the SCache.

Store to 10 space are forwarded to the SI. The SAU dispatches WRITE_DONE (WD) return status
to the Mbox in 8a for all IO writes. Allocate cycle is sent to the Ibox along with the STXC_DONE
return status ONLY for STX_C commands to non-IPR IO space.

STXC to IPR space is NOT permitted.

5.2.1.1.1.4 Store Conditionals

A STxC to a private/dirty block in SCache succeeds if the Lock flag is found set and the Lock
register matches the store address. Cbox returns a STXC_DONE status to the Mbox. If the Lock
flag is found cleared, a STXC_FAIL status is returned. The RFB data valid signal is also driven
to the Mbox to help load the register file with the status of the lock flag.

A STxC to an IO space is treated as an SCache miss and forwarded to the system. The lock flag
is cleared. The BIU completes the transaction.

STX_C to IPR space is not permitted.

The Cbox sends an invalidate to the DCache when it receives a STxC from the Mbox in all
instances except when the STXC hits a private and dirty block in the Scache and the the Lock
flag is found set. The Chox also provides appropriate one cycle allocate information to the Ibox
on completion of a StxC. STxC data is dropped if it is not to I/O space and the STxC fails.

Allocate_cycle signal, RFB data valid, return index and the return status bits are driven back to
the Mbox when the second Octaword is written to the Scache.

5.2.1.1.1.5 Fetch, FetchM and MB

These commands do not access the SCache and are forwarded directly to the BIU. A MB_DONE,
FETCH_DONE return status is dispatched back to the Mbox upon receipt of the command from
Mbox in cycle 8a. Mbox will ensure appropriate instruction ordering around MB.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

52.1.1.1.6 Commands to BIU

The Scache receives commands from the Mbo,x,k’ the Bcache Sequencer (BSQ), the VAF controller
and the SPA controller. The SAU forwards g1l Mbox commands and the SH_UPDATE and SC_

INVAL to the BIU. These get loaded in to B
SAU are not loaded in to the BAF.

Table 5-4: Mbox Commands and Scache Arbiter Actions

register. Mbox commands that are re-tried by the

From Mbox 'To Scache Type Hit Status Action To BIU/BSQ
I/DREAD READ - hit - Nop
READ miss - - READ
READ 10 - - - READ
READ EV5_I0 - - - NOP
LDxL READ - hit - set(L) LOCK
READ - miss - LDXL,LLOCK
READ 10 - - - LDXL,LOCK
WRITE WRITE - hit priv/dirty set(M,D) NOP
WRITE - hit priv/clean - WRITE
WRITE - hit shared - WRITE
WRITE - miss - - WRITE
WRITE 10 - - - WRITE
WRITE IPR - - - NOP
WRITE permission 2 - priv/clean set(M,D) NOP
WRITE permission - shared clr(D,M) Error. Will not
occur.
STxC WRITE Lock=1 hit priv/dirty set(M) CLR_LOCK
STxC DONE
WRITE Lock=1 hit priv/clean - WDTY
WRITE Lock=1 hit shared - WBDCST_LOCK
WRITE - miss - - WRITE_LOCK
WRITE 10 - - - WRITE_LOCK
WRITE permission - priv/clean set(M) NOP
Lock=1 STxC DONE
WRITE permission - shared clr(D,M) NOP
Lock=1 STxC pass
WRITE permission - priv/clean STxC fail NOP
Lock=0
WRITE permission - shared STxC fail NOP
Lock=0 ,
FETCH NOP - - - FETCH_DONE FETCH

2 permission to write a block in the scache if its shared or its clean

5-8 The Cbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-4 (Cont.): Mbox Commands and Scache Arbiter Actions

From Mbox To Scache Type Hit Status Action To BIU/BSQ

FETCHM NOP - - - FETCH_DONE FETCHM

NOP - - - MB_DONE MB

5.2.1.1.2 Invalidates to DCache

In general, the Cbox invalidates a DCache block whenever that block is displaced from the SCache.
A DCache block is also invalidated on all STxC commands from the Mbox except one which hits
a private dirty block in the Scache and the Lock flag is found set.

On an Update command from the system, the Cbox sends an invalidate to the Scache and DCache.
DCache invalidates are also sent by the Cbox on a FLUSH command from the system.

Invalidate command and index bits to the DCache will follow the same timings as a fill cycle from
the Cbox. This helps avoid potential fill-inval-fill sequences to the same block.

Invalidates are sent to the Dcache on both WRITE misses and IREAD misses in the Scache.

Figure 5-5: Invalidate Timing

6b 7o 8b 9b 10b
| | | | t |
tag tag rsc rfb dc

Isc_hit
linval cmd
linval_index

5.2.1.1.3 Retries and Merging of Mbox requests

Mbox requests that result in misses in the SCache are re-tried, merged with already pending
misses or queued at the BIU for a fill from the external memory. In general, BIU requests have
higher priority over Mbox requests and will cause a retry of the Mbox request until the BIU
request is completed. BIU accesses can occur at any time and are indicated by asserting the
SC_BUSY signal. Mbox should not issue any commands to Cbox if it sees SC_BUSY asserted.
See Figure 5-3.

The MBOX has to replay instructions if they are blocked by the TROLL registers (which contain
DCache indices of outstanding requests to the external system) or if certain BIU resources are
not available. A RETRY signal is asserted in s8a to the Mbox. See Figure 5-6. if BIU address
and data resources are full, all Mbox requests that result in non-mergeable SCache misses are
re-tried.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

A maximum of 2 non-mergeable Mbox requests that miss in the SCache can be queued in the
Cbox for external memory access. Additional Mbox requests that result in SCache misses can
be accepted if it merges with any of the previous misses. Only accesses to the same 64B and
different 32B block are merged. Accesses to the same 64B and same 32B block of a pending miss
are re-tried to avoid double pumping of the same octaword to two different Mbox MAF indices.
Merging is stopped as soon as the fill to that address starts.

Stores that miss in the SCache are re-tried if BAF resources are full. Stores to a private/clean
block in SCache that need permission from the System Interface (SI) are re-tried if BAF resources
are full. Stores to a shared block in the SCache are re-tried if BAF or VAF resources are full. A
WR command is always merged to the existing WR address in the BAF if it is to a private/clean
or shared block awaiting permission from the SI.

Instructions from the Mbox in the shadow of a retry are accepted by the Cbox. These may be re-
tried if any of the retry conditions are true. However if the Mbox command issued is a re-issued
WRITE (initiated by the WBU), all Mbox instructions in the shadow of this write will be aborted
if the reissued write is re-tried by the Cbox.

Instructions from the Mbox are re-tried if the WBU asserts STOP_WRITE or STOP_READ signals
to the SAU.

Table 5-5: Mbox Retry Conditions

Request Action Condition
Read Retry (sc_miss) && !(victim) && (baf_full)
Retry (sc_miss) && (victim) && (vaf_full + baf full)
Retry (sc_miss) && (troll_match) && (fill in progress)
Retry (sc_miss) && (troll match) && !(fill in progress) && (same 64B) &&
(same 32B)
Merge (sc_miss) && (troll_match) && !(fill in progress) && (same 64B) &&
(diff 32B)
Retry (sc_hit) && (troll match)
OK (sc_hit) && !(troll match)
Write Retry (troll_match) && (input_cmd == wr) && (diff WB entry)
Merge (troll_match) && (input_cmd == wr) && (same WB entry)
Retry (sc_miss) && (victim) && (vaf_full + baf_full) && ((164B mode) or (64B
mode && !populate))
OK (sc_hit) && (priv/dirty)
Retry (sc_hit) && (priv/clean) & (baf_full)
Retry (sc_hit) && (shared) & (baf_full + vaf_full) ((!64B mode) or (64B mode
&& !populate))
Retry (10 mode) && (vaf_full)

5-10 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-6: Mbox Retry on Miss

s6 s7 s8 s9
| | | ! | 1 |

jcmdl | cmd2=NOP
|sc_missl

|RETRY1 (to Mbox)
|ABORT_CMD2 IF CMD1="REISSUED WRITE"

Cbox issues ABORT CMD2 to the SCache.

Figure 5-7: Retry on BIU resources full

7 8 9 10
(1) | | | | | | | | |
{cmdl |cmd2 |cmd3 | cmd4
|sc_missl |sc_miss2 |sc_miss3 Isc_miss4
| load | load
| BAF_FULL

|RETRY3 (to Mbox)

Cbox sends RETRY3 to Mbox for omd3 if it cannot be merged. Mbox
retries CMD3.

7 8 9 10 11
(2) | | | | | | | | |]
| cmdl |cmd2 jcmd3 {cmd4 |cmdS
Isc_missl |sc_miss2 Isc_miss3 Isc_miss4d
|load | merge {load
| BAF_FULL
|RETRY

Cbox sends Retry to Mbox for cmd4 if it can not be merged.

5.2.1.1.4 Read/Write Ordering from Mhox

Read/Write conflicts are resolved at the Mbox. Read-Read conflicts to same 32B block are resolved

at the Cbox by issuing a retry to Mbox. Following table lists some actions under SCache miss
conditions.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-6: Mbox Read/Write Ordering

Action @ Mbox

Request Conditions (Why) Action @ Cbox on sc_miss
Read then Read Tosame 32Band ~ Could Issue lw/qw, Retry second Read

same 64B nomerge)

To diff 32B and Could Issue (only Process normally. Merge if possible

same 64B check 32B) :
Read then Write Tosame 32Band Will not issue Write Flag error if issued

same 64B (1d/st conflict)

To diff 32B and Will issue (only checkFlag error if issued

same 64B 32B)
Write then Read Tosame 32Band Will notissue (st/ld No action

same 64B conflict)

To diff 32B and Could Issue(only No action

same 64B check 32B)
Write then Write Tosame 32Band Merged at Mbox Process Normally

same 64B (Mbox issues only

one command)

Notmerged(stop Retry second if first not done. Process in order
merge on issue)

To diff 32B and Issue (mergeonly Process Normally
same 64B within 32B)

Not merged Retry first if first not done. Process in order.

5.2.1.2 TROLLIng of Scache Access Requests

The Scache arbiter trolls load and store accesses to DCache indices that are already in the
read/write miss pending or write permission pending state. All incoming requests are compared
against physical address bits <12:5> in the BIU Address File (BAF) and the System Bcache
Register (SBR).

SCache load misses are forwarded to the BIU for look-up in the Bcache. Bits <12:6> of the
physical address are entered into the TROLL register. The miss address file index for the loads,
obtained from the Mbox, is sent to the BIU. The BIU returns this index information back to the
Mbox when the fill arrives.

In the fastest Beache implementation, fill data (one octaword at a time) arrives at a rate of 12ns
or 3 EV5 clock cycles. The tag and status bits of the filling block are written into the SCache with
every octaword of fill data. This leaves the 64B block in the SCache in a partially valid state until
the fill is complete. To avoid read/write accesses to the partially valid block between octaword fills,
such accesses are filtered by the TROLL register and a retry is sent to the requester. The SCache
is indexed using bits <14:5> of the physical address. However the TROLL compare is done on a
smaller field of bits <12:5> equivalent to the DCache index in order to prevent interleaved fills
into the same DCache index. This is explained below.

5-12 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Lot
Let us assume that the TROLL compare is performed on the SCache index., If there is a LD ff« i
miss in the DCache and in the SCache, the associated SCache index is loaded into the TROLL b o
register. Before the fill for this LD completes, another LD miss to the same DCache 1ndex (phy_
address<12:5>) as the previous LD is issued to the SCache. This LD may not be prevented from
accessing the SCache if it has a different SCache index (phy_address<14:5>) and may hit in the
SCache. This data is returned to the DCache and register file. If the fill data for the first LD
miss arrives at the same time, we would have a situation where the DCache block is filled with
data from two different blocks. To avoid this, the TROLL compare is performed on the DCache
index. To ease implementation when addresses hit the BAF in 64B or 32B modes, trolling is done
on bits <14:6>.

A write request from the Mbox to a private-clean or shared block in the SCache needs permission
from the System Interface unit. The DCache index of this write request is also entered in the
TROLL register so that subsequent reads and writes to the same index are blocked until after
the permission for the first write has been granted by the system.

5.21.3 BIU requests

BIU requests have highest priority for SCache access. For the data movement commands (Fills
or Updates), BIU alerts the Scache arbiter in s4a of the pipe for the corresponding RFB cycle in
9b. This helps the Arbiter to assert the SC_BUSY signal to the Mbox to free up the SCache and
the other buses in time for the BIU requests.

Table 5-7: Commands from BIU for SCache access

Command Description

NoP No Operation

FILL_TAG Fills from memory. Update Tag and Status in Scache
FILL_TAG_STATUS Fills from memory. Update only Tag Status
FILL_NOP Reserve an RFB slot for fills to Dcache

SH_UPDATE Set/Clear Shared bit in Scache

INVAL Invalidate block if present in Scache

RD_DIRTY Read Dirty or Flush from System

READ_VICT Read Victim

5.2.1.3.1 BIU request Prioritization at SAU

BIU provides 3 request lines to the SAU in s4a. The SAU prioritizes these requests and arbitrates
for the SCache. A grant signal is sent to the request that won the arbitration. SC_BUSY is
appropriately asserted in s5 and s6 to hold off SCache tag accesses from the Mbox. The grant
signal also enables the address read from the appropriate address register of the request source
(BAF, VAF or the SPA). This address is latched and driven to the SCache tags in s6b by the SAU.

VAF and SPA grants are aborted if the requests are followed by a FILL in the next cycle.

1. Request from BAF (Fills and Fill updates from Memory)
2. Request from VAF (Victim Reads)

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

3. Request from SPA (System Probe Requests)

Requests for fills originate from the BCache Sequencer (BSQ) and BAF controllers. Addresses to
SCache lookup are driven from the BAF or the SBR register. For updates from the system, the fill
address is stored in the System BCache Register (SBR). Addresses for fills from the BCache are
stored in the BAF registers. The grant signal from SAU is used to read the appropriate address
from these registers.

Requests for victim reads are sent from the VAF controller. Addresses for the victim reads are-
stored in the VAF register. The SAU provides the appropriate set number to the SCache and
forces a hit. The SCache drives out the tags and data which are accumulated in the VAF and
Victim Data Buffer by the VAF controller.

System probe requests are initiated by the SPA (System Probe Arbiter) controller. The SAU
provides appropriate SCache block status bits and the SCache hit information to the SPA.
Information on VAF address hits are forwarded to SPA by the VAF controller.

5.2.1.4 SCache Set Allocation

The SCache is a 96KB, 3-way set associative, write-back on-chip secondary cache. The tag, index
and block bits of the physical address are as follows.

39 15 14 65 0
| sc_tags | sc_index | blocks |
25bits 9bits 6bits

The SCache Tag Store sends the following block status signal to the Set Allocation Section.
¢ Block Valid Bit from all sets

¢ Block Dirty Bit from all sets

¢ Block Shared Bit from all sets

¢ Bcache Index Match from all sets

* Tag parity from all sets

* Hit signal from all sets

e 2 Sub-block Modified Bits

¢ 25 bits of Tag from the set that was hit

A modified round robin scheme is used for set allocation on an SCache Miss.

Figure 5-8: Set Allocation Algorithm

if (bcache index match) {
set allocated = bcache index matched set.
}
else {
set allocated = round-robin
}

5-14 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.1.4.1 Bcache Index Match

The SCache is a 3-way set associative 96KB cache and the Bcache is a direct mapped cache. If
a miss occurs in the SCache, the Beache is read . This read may miss in the Bcache and the
Beache miss may produce a victim. (i.e. the evicted block is dirty and has to be written out to
main memory) Because the SCache is a write back cache, a "dirtier" version of this victim may
be in any of the 3 sets in the SCache. The SCache copy of the victim is most up to date and it is
this copy of the block that we should write to memory, not the Beache copy.

We can prevent this from happening by doing some extra work when we read the SCache. Since
we know the size of the Bcache, we can create a "Bcache victim might be old” signal by comparing
the part of the Beache index that overlaps with the SCache tag. If there is a match we know that
one of the three blocks in the SCache maps to the block in the Beache that we are going to read
to fix the SCache miss. Further more, since we know that this is the block that we will read from
the Beache and it’s not the block the SCache wants, we know the Bcache will miss. (If there was
a Beache index match, and it hit in the Beache, it would mean that the tag portion also matched.
This would imply that it would have hit in the SCache to begin with. We are hence guaranteed a
miss in the Becache.) Thus, if there is an extended Beache index match and the block is dirty, the
thing to do is to force the block in the SCache into the Beache and then do the read. The Bceache
extended index matching is shown in Figure 5-9

Figure 5-9: Bcache index match

SCache tag and index sections of the physical address

|38 114 6|5 0

+ +
+

TAG | SC INDEX | BLOCK OFFSET |

+
+

Bcache tag and index sections of the physical address
{(shown for a 4MB Bcache)

138 22121 615 0

| TAG | INDEX | BLOCK OFFSET |

+
+

+++++++

|

+- overlapping part of the Bcache index and SCache tag
to perform extended Bcache index compare on.

Thus, if the Beache index matched set is dirty, then a victim read must be scheduled for the set,
BEFORE any off-chip transaction for the miss can be dispatched. The BIU initiates this Read
Victim transaction by driving the SCache index bits and victim set number to the SCache tag
store through the SCache Arbiter. One victim read is mandatory to clear the dirty bit in the
SCache. The SCache tag store drives the two INT32 Modified bits during this first victim read.

Since a miss in the SCache, on an extended Bcache index match, is guaranteed to miss in the
Bcache, the fill data returned will overwrite the indexed location in the Beache and in the SCache.
Therefore, even if the data is not dirty in the SCache, it has to be invalidated to "make room" for
the fill data. Thus the Set Allocation Logic checks for a Beache index match in any one of the 3
sets. If there is a match, that set is allocated for refills.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Mode bits will be required to perform the Beache index compare on the appropriate range of bits

for different Bcache sizes.

5.2.1.4.2 Fills from Scache to I/DCache

Figure 5-10: I/DREAD hits in the SCache

6 7 8 9 10
lalloc_cycle |RFB
|first_fill | IFB
Imaf_index

Isc_hit

Figure 5-11: DREAD fills from external memory (Non-error mode)
| | | | | |
7 8 9
|first fill | RFB
lalloc cycle
|data@pins
Figure 5-12: IREAD fills from external memory
1 ! | | | | I | ! |
8 9 10 11
4 5 6 7 8 9
|£1i11_tag
| sc_busy
jdata@pins X b4
| ——ECC | WEB |WsC |IFB

=== holding latch

5-16 The Cbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-13: SCache Arbitration under fills

dat@pins ..eeececcanvoncs X X X Kewannnooaneonnn
D1 D2 D3 D4
| RFB1 |RFB2 | RFB3 | RFB4
fill FN FT FT FT FT
sc_busy /~~~\ /~~~\ /~~=~\ /~~~\ /~~~\ sc_busy_4a

Figure 5-14: SCache Dstream (non-error mode) Fill Flow (3 cycle sysclock)

2 3 4 S 6 7 8 9 10 11 12 13
| | | | | | | | | | | |
bsq FN FT1
D1 D2 D3 D4
d@pins X=-= -X —— X X
ecc lecc-—=—mmmmmmm 1555555555555 >>
|WFB1
|WSC1
RFB |RFBF1 |RFB2 |RFB3
key: WSCl = D1 gets written into Scache
RFB1 = D1 gets sent to Dcache
FT1 = fill request from BSQ to write D1 into Scache
FN = fill request from BSQ to free up RFB2 slot
>>>> = Holding latch

Figure 5-15: SCache Dstream (non-error mode) Fill Flow (4 cycle sysclock)

2 3 4 5 6 7 8 9 10 11 12 13
| | | | [| | | | | | | |
bsq FT1 FT
D1 D2 D3
d@pins X X: X
ecc lecc—————mmmm |>>
|WFB1
|WSC1

RFB |RFBF1 | RFB2
key: WSCl = D1 gets written into Scache

RFB1 = D1 gets sent to Dcache

FT1 = fill request from BSQ to write D1 into Scache

>>>> = Holding latch

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-16: SCache Dstream (non-error mode) Fill Flow (5 cycle sysclock)

1 2 3 4 5 6 7 8 9 10 11 i2
| | | | | |] | | | | [|
bsq FT1 FT
D1 D2
d@pins X X
ecc lecc—————mmm——= | >>53>>>>
|WFB1
| WSC1
RFB | RFBF1 | RFB2
key: WSCl1 = D1 gets written into Scache
RFB1 = D1 gets sent to Dcache
FT1 = fill request from BSQ to write D1 into Scache

Figure 5-17: SCache Dstream (Error mode) Fill Flow (5 cycle sysclock)

1 2 3 4 5 6 7 8 9 10 11 12
| | | | | ! i | 1] | | |
bsq FT1 FT
D1 D2
d@pins X X
ecc |eccmm—mmmm——m— [>>>>>>>>
|WFB1
|WSC1
RFB | RFBF1 |RFB1 (corrected data)
key: WSCl = D1 gets written into Scache
RFB1 = D1 gets sent to Dcache (Gets driven twice!)
FT1 = fill request from BSQ to write Dl into Scache

5-18 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-18: SCache Istream (non-error mode) Fill Flow (5 cycle sysclock)

1 2 3 4 S 6 7 8 9 10 11 12
| | | | | | | | | | | | |
bsq FT1 FT
Dl D2
d@pins X X
ecc lece-~——mmmmmome |>>5>>>>>
|WFB1
jWsCl1
RFB | IFB1
key: WSC1l = D1 gets written into Scache
RFB1 = D1 gets sent to Dcache
FT1 = fill request from BSQC to write D1 into Scache

Figure 5-19: Scache Read Hits Under Fills (3 cycle sysclock)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
d@pins | | | | I X | I X | | X | |
bsq ’ FN FN FT1
scbusy busy busy busy
tag tagF tagR tagF tagR
rsc rscr rscr
rfb rfbr rfbr
rfb RFBF1 RFBF2 RFBF3
wsc WSCF1
wfb WFBF1
ecc | eccm=m=mommm |
data datl dat2 dat3
depins | [| | | X | | X | | X | |

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

key:
tag tag access
rsc read SCache data bus
rfb fat bus to DCache
ifb fat bus to icache
wsc write SCache bus
wfb write fat bus
bsq biu Sequencer arbitration request
sau scache arbiter unit

DIGITAL RESTRICTED DISTRIBUTION

The Cbox 5-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-20: Scache Write Hits Under Fills (3 cycle sysclock)

-5 -4 -3 -2 -1 0
d@pins | | | | ! X |

bsq FN FN
scbusy busy busy
tag tagF tagW

wsc
wfb wfbw

rfb

wscC

wfb

ecc { ecc
data datl
d@pins | | | | | X 1

FT1
busy
tagF tagW

WSCW WSCW
wfbw

RFBF1

wfbw wfbw

wfbw wfbw

RFBF2 RFBF3
WSCF1

WFBF1

dat3

-5 -4 -3 -2 -1 0

key:
tag tag access
rsc read SCache data bus
rfb fat bus to DCache
ifb fat bus to icache
wSC write SCache bus
wfb write fat bus
bsq biu Sequencer arbitration request
sau scache arbiter unit

5 6 7 8

5-20 The Cbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.2 Write Buffer Unit

The Write Buffer Unit (WBU) contains 6 entries, each of 32B blocks. The Write Buffer Data Store
(WBD) is in the CBOX and the write address file (WAF) is in the MBOX. Stores are allocated a
new entry in the WBU unless they can merge to an existing entry. The WAF is responsible for
merging stores into the write buffer and the issue of the writes to the CBOX. The write buffer
completion control (WCC) in the CBOX is responsible for the completion of the writes. The Write
reissue control (WRC) is responsible for the reissue of writes by the MBOX. Every write transaction
issued to the CBOX is a 32B write. If EV5 is in 64B mode, writes to the system are performed by
first populating the 64B block by performing a second "wr_for_populate”.

5.2.2.1 Write Buffer Data Store: WBD

Each entry in the WBD is organized as 2 rows of octawords (16B) for a total height of 12 rows
as seen in Figure 5-21. The store data is valid from the EBOX/FBOX in cycle 6 and the data is
piped to be written into the WBD in cycle 7. The delay is required in order to allow the WAF to
perform merge/conflict calculation on the incoming store addresses and for TRAP calculation. It
is assumed that the longword parity bits are provided along with the store data by the MBOX.
LW valid bits for each octaword and octaword modified bits for each entry are also stored in the
WBD.

Figure 5-21: Write Buffer Data Store

127/63 96/32* 95/31 64/0 par 1lw mod

Ent.0 OWO | I

Ent.1 OWO | |

Ent.2 OWO | |

MmO OoOQmEmO

Ent.3 OWO | |

Ent.4 OWO

;
|

.

.

[

+ 4

| | ~=mm === [=== |
M — ;
!

+

|

.

(o]

=

=
o— A —

Ent.5 OWO | | [y p— — |
OWl + + + + + +

* In the layout, bit <127>/<63> thro <96>/<32> are mirrored so that <127>/<63>
sits closer to the center.

5.2.2.2 Storing Data in write buffer

When a STx is received by the MBOX, they write the DCache (if the block is present) and load
the appropriate entry in the WAF. Data is written into the WBD in cycle 7a. Physical address bits
M%C_WR_LW_ADDR_5B_H<4:2> are sent to the MBOX in 5b along with the signal M%C_WR_TYPE_
5B_H (0=QW or 1=LW). The address and type are decoded as shown in Table 5-8. Write enables

are sent in 6a to enable the write in 7a. Data being written cannot be bypassed and issued to the
CBOX.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-8: Wr Decode

wr_lw_addr<4:2> wr_type=0 (qw) wr_type=1 (Iw)
000 wr <63:0> wr <31:0>

001 wr <63:0> wr <63:32>

010 wr <127:64> wr <95:64>

011 wr <127:64> wr <127:96>
100 wr <191:128> wr <159:128>
101 wr <191:128> wr <191:160>
110 wr <255:192> wr <223:192>
111 wr <255:192> wr <255:224>

5.2.2.3 Issue of Writes

The MBOX will determine when to issue a write to the CBOX. (For further detail please see the
MBOX chapter of the spec.) When the WAF issues a write it stops merging to that entry. The
MBOX sends the signals M%C_MAF_INDEX 5B H<4:0>, (<4> is asserted for WB indices with <2:0>
indicating which entry), M%C_MAF_CMD_sB_H<3:0> and address in 5b/6a. It is assumed that the
MBOX asserts the maf_cmd wires only in the first cycle of the 2 cycle write. The WBD is read in
6b and in 7b and driven onto the WFB (fat bus) in 7B/8A and in 8b/9a. The lower 16B is ALWAYS
read out in 6b followed by the upper 16B,regardless of which half of the 32B of data has valid
longwords written

Bad LW parity for the WB data can be forced by asserting the appropriate bit in the SC_CTL ipr.
If a write completes successfully and updates data in the SCache, the MBOX is sent a "wr_done"
or "stxc_done" return status in 8a accompanied by the maf_index of the write. The lw_valid bits
and the ow_modified bits of the corresponding entry in the WBD are cleared in 9a. Data and
parity are not cleared.lt is assumed that WBD will not get write enables for writes that have
already been issued by the MBOX. (ie. we will get a case where we are clearing an entry while
we are writing into it)

NOTE

M%C_MAF_ABORT_6A_H will never be asserted for writes since writes are never bypassed
by the MBOX.

5-22 The Chox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The basic write transaction is shown in Figure 5-22 and the data write and data issue timing dia-
grams are shown in Figure 5-23 and Figure 5-24.

Figure 5-22: Write Flow

6 7 8 9 10 1 12 13
| | | 1 | | ! I I
ARB WR
TAG RD WR
RSC
RFB
WSC OW1 OW2
WFB OWl OW2

Figure 5-23: Write buffer data write timing diagram

5b 6a 6b 7a b 8a
| | | | | | |

|wr_enable<5:0> valid @ WBD (which entry to write)
lupdate longword valid bit store
|update INT16 dirty bits
|perform write in 7a
|WAF finishes conflict checks
|str _data<63:0> & parity from MBOX
|finish decode
|predischarge word lines
|WAF finishes PA cam for merge test
|wr_addr<4:2> @ WBD (to decode which longword/quadword to write)
|wr_type<> @ WBD (STQ, STL)

5.2.2.4 Write Buffer Completion Control:WCC

The Write buffer Completion Control (WCC) is responsible for determining whether a write can
successfully complete. Writes can successfully complete if they satisfy the conditions shown below:
¢ Cacheable References

¢ hits the SCache with private/dirty status
hits the SCache with private/clean status and permission to set the dirty bit
hits the SCache with shared status and has a shared permlsswn gi'ant
the SCache is operating on force hit mode

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-23

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-24: Write buffer data issue timing diagram

5a 5b 6a 6b 7@ 7b 8a 8b %9a
| | | | | | | | | |

lclear lw_valid bit and ow_mod bits of that entry
|wr_done, stxc _done sent to MBOX
{drive upper OW of data onto wb bus (then onto WFB in 8a)
|drive longword valid bits for upper OW to data store
|drive lower OW of data onto wb_bus (then onto WFB in 8a)
|drive longword valid bits for lower OW to data store
fdrive 32B valid bits/permission grant to tag store via SAU
|if STx_C, send abort signal to tag store if lock=0
levaluate bit lines
|receive maf_cmd
|maf_index at WBD, start decode
laddress drive to SC_Tag
|precharge bit lines
|predischarge word lines
|WAF address read out

¢ Non-Cacheable References
¢ the BIU has enough resources (one BAF & one VAF entry) to store the data

If any of the above conditions are satisfied, "wr_done" is returned as status to the MBOX. If any of
the above conditions are not satisfied, the write is loaded into a reissue queue and reissued later to
the MBOX. This is discussed in Section 5.2.2.5.

STx_C’s can successfully complete if they satisfy the conditions shown below:
¢ (Cacheable References

¢ lock is clear & hits the SCache regardless of status (fails)

¢ lock is set & hits the SCache with private dirty status (succeeds)

® lock is set & hits the SCache with private/clean status and permission to set the dirty bit
(succeeds)

¢ lock is set & hits the SCache with shared status and has a shared permission grant
(succeeds)

¢ lock is clear but system CACK'd a shared write. (succeeds)
¢ Non-Cacheable References

¢ Ignores local lock flag. Completes after systems has CACK'd/CFAILd the STx_C.
If any of the above conditions are not satisfied, the STx_C is loaded into the reissue queue and
reissued later to the MBOX. A more detailed table of the STx_C flow is shown in Table 5-10 and
Table 5-11.

NOTE
STx_C should not be issued under force hit mode.

5-24 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.2.5 Write Reissue Queue and Control : WRQ,WRC

Writes from the MBOX are stored in a reissue queue if they do not complete successfully. There are 2
reissue queues, one for 32B/64B mode (called the write queue) and another used specifically for 64B
mode (called the read queue). The write queue is a 2 deep linear queue that holds:

¢ cacheable writes that miss in the SCache
* writes that hit private/clean data which requires system permission to set the dirty bit
¢ STx_C’s that hit private/clean data with the lock flag set

e writes that hit shared data which has to be broadeast on the bus before it can be written into
the SCache

¢ STx_C’s that hit shared data with the lock flag set

e STx C’s to I/0 space which ignore local lock flag and have to get acknowledged from the
system before proceeding.

Each entry in the reissue queue consists of a valid bit (set when it is loaded), a reissue bit(set when
the write is ready to reissue) and a permission bit(set when the write has permission to update
the SCache). It also holds other information such as the maf_index, shared,dirty,cmd and address
bit<39>. Requests are sent to the system by the BIU to process the writes in the reissue queue
(SET_DIRTY,WRITE_BLOCK,WRITE_BLOCK_LOCK & READ_MISS_MODIFY). The reissue bit for
an entry is set when the following conditions are satisfied:

e For misses, when the fill completes , the BIU asserts C_BAF%FILL_DONE_4A_H along with C_
BAF%SC_MAF _IDX_6A_H which sets the reissue bit for that entry.

¢ When an CACK s received, for private/clean writes ,shared writes and STx_C to I/O space, the
BIU will assert C_BIU%ACK_9A_H along with C_BAF%SC_MAF_IDX_6A_H which sets the reissue
bit and permission bit for that entry.

¢ When a CFAIL is received, for shared writes, and STx_C to I/O space, the BIU asserts C_
BIU%NOACK_9A_H along with C_BAF%SC_MAF_IDX_6A_H which sets the reissue bit for that en-
try.

e If a pending write got invalidated, the BIU asserts C_BIU%WR_INVAL_9A _H along with C_
BAF%SC_MAF _IDX_6A_H which sets the reissue bit for that entry.

If the entry that got acknowledged (reissue bit set) is at the top of the reissue queue, the write buffer
reissues the write to the MBOX by asserting C%xM_WR_NOW_4A _H and C%M_WR_MAF_INDEX 4A _H<2:0>.
Once this signal is asserted, in the best case, the MBOX reissues the write in the very next cycle
{cycle 5). In the worst case, if they had already arbed for an instruction in cycle 4, then the reissued
write will issue only in cycle 6. Since the write queue is a linear queue, writes are reissued to the
MBOX in the original order that they were issued. Only one reissue can be performed at a time. If
a write has been reissued to the MBOX, the next reissue will not be sent until the first one does not
get retried. Reissued writes take highest priority in the MBOX to ensure forward progress of writes.
Writes are not guaranteed to complete in the order that they were originally issued by the MBOX.

In 64B mode ONLY, writes that hit shared data are loaded into the read queue in order to
accumulate the second half of the 64B data to broadcast onto the bus. This write will be reissued
to the MBOX , along with a request to send the the address of the other half of the 64B block to
the SCache by asserting the C%M_WR_64B_REQ_4A_H signal.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-25

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The write and read queues are loaded in cycle 9 for a tag cycle access in cycle 6. This implies
that any acknowledgment from the BIU must not arrive earlier than cycle 10. Entries in the
read queue take higher priority over those in the write queue. When a write is reissued to the
MBOX, (either from the read queue or from the write queue), the maf_index and other pertinent
information are loaded into a reissue_register. If an entry in this register is valid, no other write
can reissue until this register is cleared. The register is cleared in 8B when the reissued write is
issued by the MBOX and is not retried.

NOTE

¢ Reissued STx_C’s are issued by the MBOX as a WR cmd. The reissue logic keeps
track of the STx_C’s and asserts C_WBU%STXC_CMD_6B_H to indicate that the in-
struction that is being issued is a STx_C and not a write command.

e STx _Cis NOT allowed to a CBOX IPR.

5.2.25.1 Stopping Writes

To prevent a "deadlock” situation from arising, the CBOX will retry all new writes from the
MBOX when it gets into a situation when it cannot reissue a write even though it may be ready
to reissue. This situation will arise when

* entries in the write reissue queue are acknowledged out of order
¢ There is a pending reissue when another reissue queue entry has been acknowledged.

In other words , the situations where this can occur are

¢ when we have 2 valid entries in the write reissue queue, both missing in the SCache. If the
first one misses in the Beache and the second one hits in the Beache, the second entry in the
reissue queue is ready to reissue before the first one. The second entry cannot issue until the
first entry has its fill completed from memory.

¢ Whenever a fill completes/ACK arrives just as we are are issuing a write to populate a shared
write in 64B mode. The write cannot issue until the write_for_populate completes.

Whenever we get into the situations described above, all subsequent (new) writes from the MBOX
will be retried until the "stop_write" scenario is resolved. Both the scenarios are likely to happen
very infrequently and its impact to chip performance is expected to be negligible. The stop_write
scenario resolves the deadlock situation described below:

Currently, in the CBOX , writes that miss in the SCache are loaded into the WB reissue queue
and into the BIU Address File (BAF). The BAF entry acts as the "troll" register and retrys any
subsequent SCache access that has the same Dcache index to prevent interleaved accesses to the
same cache location. Take for example that a STR, STR A, missed in the SCache and is loaded
into the BAF. Another STR , STR B, to the same SCache index as STR A, gets retried until the
fill for STR A completes.

In order to facilitate streaming writes on the pins, the BAF entry is cleared a few cycles after the
fill actually completes. For the most part, the clearing of the BAF entry is synchronized with the
reissue of STR A, (for which the fill completed) by the MBOX. In certain situations,as explained
above the clearing of the BAF may occur before STR A can be reissued to the MBOX. As a result,
the BAF entry is cleared prematurely in these cases and TROLLing on STR A’s index is stopped.

5-26 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

STR B, to the same SCache index as STR A, could then sneak in before the original write is
reissued by the MBOX.

A deadlock situation can arise if STR A and STR B have the same Beache index and both miss in
the SCache. If STR A and STR B have the same Bcache index and the Bcache is direct mapped,
STR A and STR B cannot simultaneously exist in the SCache. So in the above example, if STR
B sneaks in before STR A is reissued , STR B would miss in the SCache and evict STR A from
the SCache. The reissued STR A, meanwhile is continuously being retried since it trolls on the
STR B BAF entry. Eventually when the fill for STR B completes, the BAF entry is cleared and
STR A proceeds. STR A misses in the SCache and evicts STR B from the SCache. The process
continues infinitely with both the STR’s swapping each other out indefinitely.

Part of the deadlock problem arises from the implementation of the reissue queue in the CBOX as
a linear queue where writes are reissued to the MBOX only in the order that they were originally
received. Considering the fact that the above cases occur infrequently, changing the reissue queue
structure from a linear queue structure where only the top of the queue can reissue, to a structure
where any entry can reissue may not be a big win. In fact changing the queue structure does
not solve all cases, unless the MBOX redesigns their logic to accept multiple reissues. Making
the reissue queue non-linear also complicates,the write buffer reissue control. The safest solution
would be to clear the BAF entry only when the reissued write actually completes. However , this
solution has a big impact when we are streaming writes off chip. Bus bandwidth would drop from
4.26GB/sec (64B mode) to 3.55GB/sec. In 32B mode, the bandwidth would drop from 3.55GB to
3.01GB/sec. Hence this solution was abandoned and the stop_write widget was introduced.

5225.2 Stopping Reads

Whenever an CACK is received from the system for either a shared write or a SET DIRTY, and.
the write cannot immediately reissue (because of a pending reissue), MBOX reads are stopped.
This is done in order to prevent the block ,for which an CACK was rceived from the system , from
being swapped out of the SCache until the block status has been updated.

To prevent a deadlock situation from occurring, we also stop stop reads whenever any reissued
writes which possibly hits shared data is followed by another write which is ready to tssue (for
which a fill completed) and needs a BAF entry. The deadlock is shown below

* Reissue WR 1: hits shared : allocate BAF entry, wait for wr for populate
¢ MBOX read miss : allocate other BAF entry ,
¢ Reissue WR 2 : misses or hits shared or p/c => needs BAF entry , but none available, retries

¢ BAF unload ptr, still waiting for wr_for populate before servicing shared write. It cannot
serice the read_miss since it services requests in order

o => Deadlock : BAF waits for write for populate which cant issue until Reissue WR 2 completes

which cant until a BAF entry clears which cant until the Shared write is serviced which cant
until BAF receives write for populate etc.

The deadlock was fixed by detecting if there is a pending reissue to a block that originally missed

followed by another write, ready to issue, that originally missed or got invalidated. If such a case
occurs, then MBOX reads will be retried.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-27

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5226 Write flows AR
Data in the SCache can exist in one of four possible states s
* private/clean vl ;|
e private/dirty A -
* shared/clean
¢ shared/dirty
¢ invalid

5.2.2.6.1 Private & Dirty

Writes can proceed without system intervention only if the write is to a block that is in the private
and dirty state. This is depicted in Figure 5-25.

Figure 5-25: Write hit private/dirty

CYCLE 5 6 7 8 9 10 11
| a b | a b | a b | a b | a bl a b i a b |
CMD WR
TAG | RD | WR |
WFB | OWO | OWl |
WsC | OWO | OWl |
RSC

| hit
| wr_done to MBOX

5.2.26.2 Private & Clean

If the block is private/clean, before the SCache and Beache tag status can be changed to pri-
vate/dirty, the duplicate tag store in the System Interface (SI) must be updated. So the write
is loaded into the "write" reissue queue and a SET_DIRTY request is sent to the SI to request
permission to write this block. The SI processes the request by setting the dirty bit, for the
block, in its duplicate tag store and CACK’s the request. (On a uniprocessor system, EV5 works
in auto-ACK mode where an external CACK will not be required) On receipt of the CACK, the
WRC reissues the write at high priority by asserting the C%M_WR_NOW_4A _H signal along with the
C%M_WR_MAF_INDEX_4A_H<2:0>. The write is then re-issued but this time the WRC asserts the
signal C%S_WR_DIRTY_PERM 6B_H to the SCache tag store,which sets the dirty bit and proceeds
with the write. The flow is depicted in Figure 5-26. ;

5-28 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-26: Write hit private/clean

CYCLE [7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
1 | | | | | | | | | | ! i | | | | 1 | 1 | |
CMD WR WR
TAG |IRD | WR | |RD | WR |
WFB | oW1} OW2| deieees | OW1l| OwW2|
WsC | OWl] OwW2| | OWl| OW2|
|wr_done to MBOX
| send SET DIRTY to SI | hit & p/c & perm
|load wr reissue q
| addr loaded in BAF | update tag to p/d
| W1 hit & p/c, write aborted | BAF entry cleared
| wr_now issued to MBOX
| CACK @QWRC
| CACK @ BIU

| receive CACK at pins

In the boundary case, EV5s could receive a SET_SHARED(INVALIDATE FLUSH) to the same
block, before the BIU has had a chance to issue the SET_DIRTY e¢md. The shared bit of the
block would then be set in the SCache tag store. The BIU will NOT issue the SET_DIRTY
command. It will service the SET_SHARED(INVALIDATE, FLUSH) request and then assert C_
BIU->WR_INVAL_9A_H along with C_BAF%SC_MAF _IDX_6A_H to the WRC. The write is then reissued
which will hit shared data (miss)in the SCache and the shared write (write miss) flow will be
initiated. If EVs had just issued the SET _DIRTY command as it received the SET_SHARED
(INVALIDATE,FLUSH), it is assumed that the SI will ignore the SET_DIRTY, since it was to the
same block that the SET_SHARED was sent for. The BIU will service the request and proceed
as described above.

The other beundary case is when EV5 receives a READ_DIRTY request to a block that has just
been CACK'd for a SET_DIRTY request. The READ_DIRTY could sneak in and set the shared bit
of the block before the write has been re-issued with permission to set the dirty bit. This would
cause incoherency in the tag stores. To prevent this from happening, every time EV5 receives an
CACK, it will not process further system requests until the dirty bit has been set. Therefore on
an CACK, the signal C_WBU%STOP_SPA_4A_H is asserted to stop servicing system requests until
the reissued write sets the dirty bit. If the reissued write can not go out immediately, MBOX
requests are then retried by asserting C_WBU%STOP_WRITES_6B_H and C_WBU%STOP_READS_6B_
Hto ensure that the block for which the CACK arrived does not get evicted from the SCache until
the dirty bit is set.

7 Y A
boie e el AR

5.22.6.3 Shared & Clean P
Shared writes or "broadcasts" onto the bus require a fully populated block. Therefore, in 32B
mode, if the block is shared, the 32B block is first popnlated by reading the SCache and merging
it with the written longwords from the write buffer. (the SCache is not written at this stage) ECC
is then generated on the merged data and loaded into the BIU system buffer. The write is also
loaded into the "write" reissue queue. Then a WRITE_BLOCK request is sent to the SI, along
with the two octawords of data. The Bcache is written with the data as it is passed to the SI.
When an ACK is received, the WRC reissues the write. The C%S_WR_SHARED_PERM_6B_H signal
is asserted to the SCache which then updates the SCache tag and data stores. The state of the

block transitions to private/clean since the WRITE_BLOCK invalidates every other copy of the

block in the system. Yy

b Cﬁ ol

i o
DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-29

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

If EVs is operating in 64B mode, the first 32B is populated as explained above and the data loaded
into the BIU data buffer. The write is also loaded into both the read reissue queue and write
reissue queue. The entry in the read reissue queue issues to the MBOX asap. The C%M_WR_NOW_
4A_H signal is asserted to the MBOX along with a C%M_WR_64B_REQ_4A_H signal since the reissue
is coming from the read queue. This forces the MBOX to flip bit<5> of the address to access the
other 32B half of the 64B block. Typically it will take about 6 cycles from when we see the first
write from the MBOX to when the MBOX will send the second write to populate the 64B block.
The second write is referred to as the "write_for_populate” The data for this half is read out from
the SCache and is loaded into the BIU data buffer. Having accumulated all the data, the BIU
then processes the transaction to the SI as explained for the 32B flow. On receipt of the CACK,
the WRC reissues the write and the SCache is updated. The broadcast transaction for 64B mode
is shown. is shown in Figure 5-27

Figure 5-27: Write broadcast

a) Sending out data

CYCLE 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| | | | | I | | | | | | | | |
CMD WR WRP*
TAG IRD | WR | IRD | WR |
WFB | OW1l] OW2| [OWLlL| OW2}
WsC | OWl| OW2| | OWl| OwW2}
RFB | OWl}] OwW2 | | OW3| ow4 |

|earliest OWl @ pins
|load data buffer OW2 | load data buffer OW4
| load data buffer OW1 | load data buffer OW3
|wr_now for populate from read gq
|merge OWl ,gen ecc
|load wr reissue & rd q
| addr loaded in BAF
| W1 hit shared, write aborted

Note: The data and ECC is driven from BIU data buffer onto the pins only after both 32B of data have bee

b) on CACK

CYCLE 1 2 3 4 5 6 7 8 9 10 11 12
f I | ! | | I | I | | | | I

TAG IRD | WR |

WFB | OWl| OwW2|

WsC | OWl| OwW2|
RFB | OWlL| OW2 |

|wr_done to MBOX
| hit & shared perm
| update tag to p/c
| BAF entry cleared
| wr_now issued to MBOX from write g
| CACK @WRC
| CACK @ BIU
| receive CACK at pins

5-30 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The boundary cases are similar to the private/clean case, If EV5 receives an INVALIDATE(FLUSH)
to the same block, before the BIU has had a chance to issue the WRITE_BLOCK cmd, the BIU
services the INVALIDATE and then asserts C_BIU%WR_INVAL_9A_H signal along with C_BAF%SC_
MAF_IDX _6A H to the WRC. The write is then reissued which will miss the SCache and the write
miss flow will be initiated. In 64B mode, the INVALIDATE could occur between the original write
and the write_for_populate. In this case, the BIU will not service the INVALIDATE until the wr_
for_populate has gone through. After it has, it will service the INVALIDATE and then ,like
described above,assert C_BIU%WR_INVAL_9A H (Previously the INVALIDATE would be serviced
first and then the write_for_populate will miss in the SCache and be ignored, since it is not a
"real" write)

Again, to prevent incoherency in the system, every time EVs receives an CACK, it will not process
further system requests until the SCache has been updated and the state of the tag store changed
to private/clean. The signal C_WBU%STOP_SPA _4A_H is asserted until the reissued write updates
the tag store. If the reissued write can not go out immediately, MBOX requests are then retried
by asserting C_WBU%STOP_WRITES_6B_H and C_WBU%STOP_READS_6B_H. This is done to ensure
that the block for which the CACK arrived does not get evicted from the SCache.

As can be seen in Figure 5-27, in 32B mode, the earliest EV5 can provide data & ecc at the pins
for a tag access beginning in cycle 6, is at cycle 13. In 64B mode, the earliest EV5 can provide
data & ecc at the pins is cycle 19.

5.2.2.6.4 Shared & Dirty

For a shared dirty block, the transaction is identical to the shared/clean case except that the dirty
bit is also cleared. It is assumed that the SI will clear the dirty bit in the backmap on receipt of
the WRITE_BLOCK request from EV5,

5.2.2.6.5 Wirite misses/Invalid

If the write misses in the SCache or the write hits an invalid block in the SCache, the write miss
flow is initiated. The block is fetched from the Beache if it is present there, else it is fetched from
memory if it is not present in the Beache using the READ_MISS_MODIFY command. The write
is loaded into the "write" reissue queue Once the fill completes into the SCache, the BIU asserts
the C_BAF%FILL_DONE_4A_H signal and the WRC reissues the write at high priority by asserting
the C%M_WR_NOW_4A_H signal along with the C%M_WR_MAF_INDEX_4A _H<2:0>. The write is then
re-issued and depending on the status of the fill data, the appropriate flow is initiated. The write
miss flow is depicted in Figure 5-28.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-31

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-28: Write miss

CYCLE 6 7 8 g 10 11 1 2 3 4 5 6 7 8 9 10
! | | | I | | | | | | ! | | | | | | | |
CMD WR WR
TAG {RD | WR | |IRD | WR |
WFB | OWl] OWZ2{SCache filled.... | OW1l| OW2|
WsC | OWl| OW2| | OW1l| OW2|
| access Bcache | hit ...etc.

|load wr reissue q
| addr loaded in BAF
| WR miss | BAF entry cleared
| wr_now issued to MBOX
| £ill done @ WRC

5.2.2.6.6 1/0 writes & non-cacheable writes

I/O writes and non-cacheable writes are writes to addresses with bit<39> of the address set. The
SCache is not written and data is driven from the write fat bus directly into the BIU system
buffer. The longword valid bits are provided to the BIU to indicate which longwords are valid
in each octaword. (for longword granularity in I/O space). Regardless of which mode EV5 is in,
I/O writes are always only 32B writes. Table 5-9 shows the cases when writes succeed for all
combinations of permission grants/tag status.

Table 5-9: Writes with Permission grant
c%s_wr_shared_perm_6b_

h c%s_dirty_perm_6b_h shared bit dirty bit write SCache
0 0 ' 0 0 No
0 1 Yes
1 0 No
1 1 No
0 1 0 0->1 Yes
0 1 Yes
1 0 No, rd SC
1 1 No, rd SC
1 0 0 0 Yes
0 1->0 Yes
1->0 0 Yes
1->0 1->0 Yes
1 1 ERROR

5-32 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.2.7 General considerations for writes

¢ Up to two write requests can be queued up at the BIU but only one request can be pending at
any time at the BIU to the system. Only after the first permission request (WRITE_BLOCK,
WRITE_BLOCK_LOCK,SET_DIRTY) to the system is CACK'd will the second entry issue its
request to the Bcache/system. The only exception is if the first request is a READ_MISS_
MODIFY cmd to the SI to fetch data from memory. In this case, the second entry can still
access the Beache underneath the first fill request.

¢ In general, write hits on DCache index matches are not allowed to be issued, and are replayed
by the MBOX until the TROLL entry has been cleared. (If they were allowed, then we could
have a situation where we get write hits to a set that has been allocated for a fill. If the write
requires system permission, the fill data could return before write permission was granted
thus changing the status of the tag.) The only exception to this rule is if the DCache index
match is to the same Write buffer entry. This is to allow the second half of a 64B write to
pass and to be merged at the BAF.

e Write buffer should not get write enables for MB’s, WMB’s and FETCH’s that are store in the
write buffer.

e It is assumed that if a reissued write gets retried, no further MBOX loads and stores will be

gerviced until the reissned write ig allowad to nase
serviced write 1g allowad 1o pass,

ALT Miivia warl 2 TASSWTRe

¢ In general, if an instruction gets retried, the instruction in its shadow is treated indepedently.
However, if the retried instruction is a reissued write, then the shadow is aborted and un-
conditionally retried. This is to ensure that no instructions in the shadow can access/displace
the same block that the reissued write accesses.

¢ Write misses are not merged in the BIU.

¢ Writes are aborted on
e failed STx_C instructions
¢ troll matches except for write_for_populate

* whenever the stop_write scenario occurs.

5228 STx C

STx_C are not merged with any existing entry in the WBU and are allocated separate entries in the
WBU by the WAF. The WBU is flushed when it receives a STx_C. The lock flag is loaded on a fill with
the logical AND of the local lock flag and the system lock register. When a write is issued the WRC
checks the lock flag before issuing the data. If the lock flag is clear, an abort signal is sent to the
SCache. If the lock flag is set, the success of the STx_C is dependent on the V,S,D tag status bits and
the permission grant signals. The SAU is sent a C_WBU%STXC_DONE_8A_H signal which then returns
STx_C_DONE as as return status to the MBOX. The lock flag is then cleared. A signal C%M_STXC_
FAIL_7A_H is returned along with the status, to the MBOX to be written into the appropriate register
file location. Invalidates to the locked address that arrive at EV5 clear the lock flag. As shown in
tables Table 5-10 and Table 5-11, the following cases are possible.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-33

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-10: STx_C cases: Cacheable References

lock flag
on first
tag status issue action

lock flag
on re-
issue

action

private/dirty 1

WRITE_BLOCK to SI

private/clean 0 STx_C fails
1 Send SET_DIRTY to SI.
On CACK
on CFAIL
shared 0 STx_C fails
1 Send
on CACK
on CFAIL
miss/invalid *

Proceed with write. STx_C
succeeds,clear lock flag

0 The write into the SCache is
aborted. STx_C fails

*

Reissue STX_C. STx_C succeeds,clear
lock flag.

The write into the SCache is aborted.
STx_C fails

SET_DIRTYs should not be CFAIL’d

Accumulate and send data out

Reissue STX_C. Local lock flag ignored
since system accepted data. The STx_C
succeeds. Clear lock flag

Should not occur. If it occurs,Reissue
STX_C. STx_C fails. clear lock flag

Fetch Data from memory and restart
STX_C. Ignore local lock flag on the
miss

Table 5-11: STx_C cases: Non-Cacheable References

lock flag lock flag
on first on reis-
tag status issue action sue action
- * Send Accumulate and send data out
WRITE_BLOCK_LOCK to SI
on CACK * Reissue STX_C. STx_C succeeds. Clear
lock flag
on CFAIL * Reissue STX_C. STx_C fails

5-34 The Cbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.3 Bus Interface Unit

The cache system is made up of the Scache, the Scache victim buffers, and the Beache. The
Bceache is optional. The BIU will support only non-pipelined Beaches of various sizes and access
speeds. Some address support is provided for Beache victims, but a Beache vietim buffer is not
directly support by the BIU. The block size of Scache and Bcache can be either 32 bytes or 64
bytes, which is controlled by a mode bit located in the SC_CTL IPR register.

The BIU will service read miss, write miss, shared write, interlock, and victim requests from -
the Scache. It will manage the state of the cache system for the System, allowing the system to
invalidate, flush, and read blocks in the cache system.

Figure 529 shows a simple picture of the system as seen by the BIU.

EV5 CMD H<3:0> SYSTEM
Figm = 3 ADDR H<39:4> MEMORY
< w AND
CACK H I / O
CFAIL H
MISS RES H<1:0>
FROM SCACHE
STATE
VICTIM TAG vDs.P BCACHE DATA
VALID
SHARED, DIRTY PAFHT\J

DATA<127:0> H

EiLL H

EILL 1D H

FILL DONE EARLY H

FILL ERROR H

DACK H

5.2.3.1 BIU Functions
The BIU is made up of five parts and their control. Each is tightly integrated into the Scache.
The Lock Register and its control is used to maintain the state of the lock flag.

The System Probe Address Register (SPR) holds the probe address and command from the system.
The SPR interacts with the Scache to perform the Scache Probe, and then interacts with the
Bceache, provided one exists in the system.

The BIU miss Address File (BAF) holds the state and address for two requests from the CPU. The
BIU Sequencer (BSQ) will access the Beache and/or the system to satisfy these requests.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-35

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The Victim Address File (VAF) holds Scache victim addresses and state. It interacts with the
Scache to remove the victims in a timely manner, with the WBU to buffer write data, and with
the BSQ to write the victim data into the Bcache or System.

5232 Lock Register

The lock register is loaded with the Scache address each time a LDx_L command is issued in the
Scache. The lock flag is also set.

Each cycle the address in the lock register is compared to the system addresses that arrive. If
an INVALIDATE or FLUSH is received to the cache block that is locked, the lock bit is cleared.

PAL code clears the lock flag by initiating a STx_C to the address in the lock register.
These signals are required for this function:

¢ Scache address
¢ lock flag

5.2.3.3 Scache Requests

This section outlines the interface between the Scache and the bus interface.

5.23.3.1 Loading the BAF and VAF

The address going into the Scache is compared to the addresses that are already in the BAF.
If the cache system is in 64 byte mode, the address is the same 64B block, but a different 32B
within that block, the command, the type (integer or floating), and the stream type (I or D) are
the same, then the requests merge. Only read misses can merge. Merges can only occur until
the first octaword of fill data arrives for that BAF entry.

If the request is a miss and it merges, the second MAF_idx location is validated and loaded into
the existing BAF entry.

If the request is a miss and does not merge, a new BAF location is allocated and written with the
command, address, set allocation, and MAF_idx. The command loaded into the BAF is a function
of the Scache command and the status from the Scache tags. Table 5-12 for the full story.

5-36 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EVS CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-12: Loading of BAF and VAF

Command Hit Shared Dirty Modified BAF Command VAF command
READ HIT * * * NoOP NoOP

READ MISS * * no READ NoP

READ MISS * yes yes READ VICTIM
WRITE . HIT no no no TAG UPDATE NOP

WRITE HIT no yes no NOP NOP

WRITE HIT yes no no WRITE BRDCST WRITE_DATA
WRITE HIT yes yes no WRITE BRDCST WRITE_DATA
WRITE MISS * * no READ_FOR WRITE NOP

WRITE MISS * * yes READ_FOR _WRITE VICTIM

LDx L HIT * * * LOCK NoOP

LDx L MISS * * no READ_LOCK NOP

LDx L MISS * * yes READ_LOCK VICTIM
STx_C HIT no no no TAG UPDATE NOP

STx_C HIT no yes no NOP NOP

STx_C HIT yes no no STx_C BRDCST WRITE_DATA
STx_C HIT yes yes no STx_C BRDCST WRITE_DATA
STx_C MISS * * no READ_FOR_WRITE NOP

STx C MISS * yes yes READ_FOR_WRITE VICTIM
FETCH * * * * FETCH NopP
FETCH_M * * * * FETCH M NOP

MB * * * * MB NOP

If the miss caused an Scache victim to be created, the VAF will be loaded with the Scache index,
the set number of the victim, and the modify bits for that block. At least one modify bit must be
set for a victim to be created. Note that the block must be dirty to have modify bits set. Having
modify bits set in a clean block is an error condition.

If the allocation of the BAF fills the BAF, the SAU must be informed. The SAU will use this
information to prevent the overflow of the BAF. The baf full timing is shown in Figure 5-30.

Figure 5-30: BAF full timing

7 8 9

laddress that fills the BAF
jvalid bit set
Ibaf full set

DIGITAL RESTRICTED DISTRIBUTION

The Cbox 5-37

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Some commands do not access the Scache, but are passed through to the BIU. FETCH, FETCH_
M, and MB will allocate a new BAF entry every time.

A BAF entry is cleared after a fill is completed, a FETCH, FETCH_M, or MB is completed, or a
shared or I0 write is completed. The BAF entry is cleared 5 cycles after a fill for a write miss
completes to allow time for the WBU to reissue the write. The valid bit for the entry is cleared
the cycle after the clear condition occurs.

If a FLUSH, INVALIDATE, or SET_SHARED hit on an entry in the BAF, the entry is a write
command, and a VAF entry is allocated for it (shared or I0 write), then the BAF_inval bit will
be set for that BAF entry. When all the data for the write is collected, the entry will be shown
to the BSQ. If the BAF_inval bit is set, the BSQ will forward the correct MAF_idx to the WBU
with a fail notification. The WBU will then reissue the write if necessary.

5.2.3.3.2 Loading the BAF and VAF

The following bits of information must be stored in the BAF file for each entry:

¢ Address<39:4>

e BAF CMD<3:0>

¢ SC_SET<1:0>

e Victim Hit or Beache Index Match
¢ MAF1_Valid '
e MAF1_idx<4:0>

e MAF2 Valid

e MAF2 idx<4:0>

e ARB

¢ Bcache miss

¢ Stop merging

e BAF inval

The following list of functions will be performed on the BAF entries:
¢ Write Address, CMD, SC_SET, Vic./BIM, MAF1_valid, MAF1_idx,
* Set ARB

e Set BC_MISS

¢ Set BAF inval

* Set Stop merging

¢ Set MAF2_valid, Write MAF2_idx

¢ TROLL(cam on Address<12:5>), in 32-byte mode

¢ TROLL(cam on Address<12:6>), in 64-byte mode

e HIT(cam on Address<39:6>)

e MERGE(cam on Address<39:6>, XOR Address<5>)

5-38 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.23.3.3 Victims
Victims are only generated by dirty and modified blocks which are deallocated from the Scache.
The Victim Address File (VAF) performs actions when it detects any of the following conditions:

I o

Victim generated from a miss

WRITE BROADCAST command from the WBU
WRITE BROADCAST LOCK command from the WBU
WRITE FULL BLOCK command from the WBU
READ DIRTY which hits in the VAF
SC_INVALIDATE which hits in the VAF on a victim

The following is a brief description of the actions taken by the VAF for each condition.

Victim generated from a miss

When a victim is produced, the VAF is loaded with the index, set number, and status bits
(modify, shared, and dirty) of the Scache victim. The SAU generates a victim request on
behalf of the VAF and arbs for the Scache. The VAF sends a request to the SAU for a second
Scache access for the victim. When the SAU grants the VAF access to the Scache, the VAF
sends the index, set number, and subblock for the victim to the Scache. The SAU sends
FORCE_HIT to the Scache for this access. The Scache returns the data for that subblock
and the tag for the block. The VAF sets the corresponding data valid bit for the block. In the
meantime, the second Scache access request for the victim is arbing in the SAU. (Note that
the tag is stored in the VAF only as the first subblock returns from the Scache. A fill to the
block may change the tag before the victim is completely read out of the Scache). The second
data valid bit for the victim is set when the data arrives in the BDP (Biu DataPath). Once

both data entries are collected the VAF sends a request to the BSQ to read the victim out of
the chip. '

WRITE BROADCAST, WRITE BROADCAST LOCK, and WRITE FULL BLOCK commands
from the WBU

These commands are {reated in the same way by the VAF. After the permission grant arrives
back from the system, the WBU signals the Mbox to start the write transaction. The VAF
captures the address and data arriving from the Scache and sets the WB bit for that entry.
When the data for the specific type of write is collected, the VAF signals the Biu Sequencer
(BSQ) to begin the process of reading the data off chip. Data arriving from the Scache is not
wrapped for these commands (ie the INT16 corresponding to the octaword 0 arrives first from
the Scache, then the INT16 corresponding to to octaword 1, etc) For more information about
these commands see Section 5.2.2.6.3 and <REFERENCE>(wr_full_blk).

READ DIRTY which hits in the VAF

When the address of a READ DIRTY command hits in the VAF, the shared bit is set for the
entry. When the BSQ sends the data off chip, the Entry_Valid bit for that entry is cleared.

SC_INVALIDATE which hits in the VAF

When the address of an Scache invalidate coramand hits in the VAF on a victim, the Entry_
Valid bit for that entry is cleared if it is not currently being sent to the pins by the BSQ. An
INVALIDATE to should not occur to the address of one of these WRITES after EV5 has been
ACKED for them. This case should be checked with an assertion checker in the behavioral
model.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-39

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The subblock entry (bit A<5>) is generated using the fill order to the Scache block when a victim
is read out. The data arrives from the Scache in the same order in which it will be filled. While
the VAF is processing one of the three WRITE commands listed above, the subblock entry (bit
A) starts at 0 for the first victim read and is a 1 for the second victim read.

The commands SET_SHARED and CLR_SHARED should not hit in the VAF due to the operations
which must precede them. SET_SHARED should only be sent to clean blocks which, by definition,
won’t be in the VAF. A CLR_SHARED to a block is processed after a WRITE BROADCAST to
that block. The VAF would invalidate its entry after the WRITE BROADCAST thus the CLR_
SHARED would not hit in the VAF.

Quadword ECC is generated for the data entries in the VAF as they arrive from the Scache.

The VAF is required to accumulate the entire block from the Scache. It is also required to send
the entire block out to the system on any of the following cases:

* A Bceache is NOT present.

¢ The operation is a WRITE BROADCAST, WRITE BROADCAST LOCK, or WRITE FULL
BLOCK.

¢ All four modify bits are set for the Victim entry.

However, if only one modify bit is set for the block and none of the other conditions listed above
are met, then the VAF can write out only the octawords that have modify bits set. This reduces
the bus traffic on the pins.

- The VAF can only process 1 victim at a time. So any instruction which is issued by the Mbox
which requires VAF resources (IO write, shared write, or victim) will be retried until the victim is
processed. IO writes or shared writes can be processed by the VAF as quickly as they are issued.
The VAF processes an entry by collecting all the data required for the entry based on type of entry
and the CBOX SC_BLK_SIZE ipr bit. Victims always collect 64b of data regardless of the value
of the Scache block size. IO writes always are 32b regardless of the assertion of the Scache block
size. Once all the required data for a victim is collected, the VAF sends a request to the BSQ to
send the victim data to the pins. When processing a WRITE_BROADCAST of WRITE_BLK, the
VAF informs the BAF once all the data is collected for the entry and then the BAF issues the
request to the BSQ to service the WRITE_BROADCAST or WRITE_BLK.

The following bits of information must be stored in the VAF file for each entry:
¢ Address<39:15>

¢ Address<14:6>

e SC_SET<1:0>

* Modify<1:0>

¢ Data Valid<1:0>

e Entry Valid

e Shared
¢ Dirty
e WB

The following list of functions will be performed on the VAF entries:
¢ Write Address<14:6>, SC_SET, Modify, Set Entry_Valid, Clear Data Valid

5-40 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

¢ Set Data Valid

¢ Write Address<39:15>

e VICTIM_HIT(Cam on Address<39:6>)

¢ (Clear Entry Valid, WB

¢ Write Address<39:6>, SC_SET, Modify, Set Entry_Valid, WB, Clear Data Valid

¢ Set Shared bit

¢ Write Dirty (possibly could be optimized away)

The timing for a sample victim flow is shown in Figure 5-31. This sample hits in the Bcache.

The Beache access is 4 cpu cycles. Two octawords of the victim are read in the first Scache access.
The third and fourth octawords of data are read in the second Scache access.

Figure 5-31: Victim data flow

fmiss which creates victim
|victim generation
|1st victim request
1£i11 nop |£i1l nop |1st ow Scache fill |2nd ow Scache fill
|2nd victim request
|1st victim grant
| sét entry valid
| set data valid ©
| 2nd vaf grant
|load vaf_ status
|1st ow of victim |1st ow arrives at BDP
|2nd ow of victim |2nd ow arrives at BDP
|load_vaf_status
|3rd ow of victim |3rd ow arrives at BDP
|4th ow of victim |4th ow arrives at BDP
|set data valid 1

The loading of the first subblock of data in the VAF for a shared or I0 write is shown in
Figure 5-32. The WB bit signifies that this entry is a write transaction rather than a victim.
Longword valid bits are used to select between the WFB (asserted) or the RFB (deasserted) for the
data arriving to the BDP for the write.

The timing for a populate write in 64b mode is shown in Figure 5-33. The populate write has all
its longword valid bits deasserted, thus it is read entirely from the Scache via the RFB.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-41

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-32: Data collection of first subblock in VAF

|load_baf_status
|load_vaf_ status
jset entry valid
|set WB bit
|1st ow of data @ BDP
|2nd ow of data @ BDP
|set data valid 0

Figure 5-33: Data collection of second subblock in VAF

|wr_for_populate
|load_baf_status
|1st ow of data @ BDP
|2nd ow of data @ BDP
|set data valid 1

5.2.3.4 System Probe Address Requests

EV5 receives system probe commands and addresses on dedicated bidirectional pins from the
system interface. Cache block address<39:04> and the four-bit system probe command are latched
on separate buses in one system clock cycle following the assertion of Addr_Bus_Req_H.

The following commands can be received at any time from the system. These commands require
the Scache to be probed and possibly modified. For systems with a Beache, access to that cache
may also be necessary to complete the transaction.

¢ INVALIDATE
e SET SHARED

e READ
¢ READ DIRTY
e FLUSH

Once a valid address and command are received from the system, indicated by the assertion of
Addr_Bus_Req_H, the address is written to the System Probe Register (SPR) in the Cbox Address
Data Path (ADP), and the command is fed into the System Probe Arbiter (SPA), which processes
all system requests. In general, the command will be completed by a two step procedure.

1. Arbitration to access the Scache

Access to the Scache is requested from the Scache Arbiter Unit (SAU).
Once access is granted by the SAU, the Scache is probed and/or
updated as required by the probe command. If there is a fill or

victim operation pending, there will be some delay in completing the
Scache access.

2. Arbitration to access the Beache

5-42 The Cbox

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

If a Beache is present in the system, arbitration is requested from
the BIU Sequencer (BSQ) for access to modify the Becache. The BSQ
then notifies the SPA once the Beache access is complete, or has
started in the case of probe command requiring data transmission.
Only then is the command acknowledged by EVs, and the SPA can
process the next probe command.

Once the system asserts Addr_Bus_Req_h to transmit probe commands, it is allowed to send two
probe commands without waiting for for a response from EV5. Then the system must wait for
a response before dispatching another probe command, and if Addr_Bus_Req h is left asserted
to process a packet of commands, the system must transmit a NOP as a command until it re-
ceives a response, when it can dispatch the next command. Otherwise, Addr_Bus_Req_h must
be deasserted until a response for a previous command is received.

This is necessary to prevent the System Probe Arbiter (SPA) from processing the same command
multiple times, since the probe command is held by a latch in the pad ring as long as Addr_Bus_
Req_h is asserted.

If a parity error occurs as a result of either a bad probe command or address, the SPA begins
processing the command in the normal manner, in order to get access to the Scache and Address
Data Path (ADP) from the Scache Arbiter Unit (SAU). This is the only means writing the system
probe address to the proper Cbox IPR in the ADP, i.e. EI_ADDR. Once the SAU has granted
access, the SPA terminates the command and transmits NOACK as a system response.

In processing system probe commands that require transmission of a cache block from the Scache,
such as a READ or READ_DIRTY, the data is unloaded from Scache and stored in the sys_data
buffer of the data datapath explained below. The SPA sends signals to both the Victim Address
File (VAF) control and the BIU Sequencer (BSQ) to facilitate the transfer of data to the system.

¢ ¢_biu_spa%ld_sys_bdb_6b_h : notifies VAF control that data is arriving to be loaded in sys_
data buffer.

¢ c_biu_spa%spa_lookup_a_h : a strobe signal that notifies VAF control a probe command is in
progress that will use one of the three data buffer entries in the data datapath.

* C_BIU SPA%SYS_BDB_ENTRY_8B_H<1:0> : two-bit field indicates to VAF control which data
buffer entry to use for the probe command.

e ¢_biu_spa%sdb_vid_8b_h : notifies BSQ whether to use a data buffer entry or Bcache for
probe command; 1-data buffer, 0-Bcache.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-43

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-34: Timing for System Probe Address Logic

spa_req _ [~~~sans \
spa_gnt

sau_address [\

3b 4a 4b 5a Sb 6a 6b 7a 7b 8a 8 9a 9b 10a 10b 1lla 11b

sc, BAF, VAF_hit Y2 \

1d_sys_bdb [~ \

spa_lookup / e~

sdb_vld

Below is a brief description of the procedure followed by the System Probe Arbiter (SPA), for each
system probe command issued to EV5. For more details about the interaction of the SPA with the
Scache Arbiter Unit, see <REFERENCE>(biu_cmds).

INVALIDATE

For INVALIDATE, SPA requests access to the Scache by sending an SC_INVAL command
and asserting Spa_Req_3b_h to the SAU. Regardless of the result of address compares in the
BIU miss Address File (BAF) and Victim Address File (VAF), or whether the command hits or
misses in the Scache, once the SAU grants access to the Scache by asserting Spa_Granted_5b_
h, the probe command is sent to the BSQ to update the Bcache, providing a Beache is present.
Otherwise the SPA returns to the idle state, ready to process the next probe command. When
the SPA is finished with the probe command, EVs responds by sending ACK/Shared/Scache if
no Bcache is present, or sending ACK/Shared/Beache if there is one.

If there is a victim pending in the VAF, or a shared write pending in both the BAF and
VAF, these entries will be invalidated; the victim will be cleared from the cache system, and
the shared write will be restarted. If there is a fill pending to the Scache from Bcache that
matches the cache block being invalidated by the system, the BAF entry will be invalidated.

SET SHARE

For SET SHARE, SPA requests access to the Scache to perform a SC_SET_SHARED com-
mand. Regardless of the result of address compares in the BAF and VAF, or whether the
command hits or misses in the Scache, once the SAU grants access to Scache, the probe com-
mand is sent to the BSQ to update the Beache, providing a Beache is present. Otherwise the
SPA returns to the idle state, ready to process the next probe command. When processing of
the SET SHARE command is complete, EV5 responds with ACK/Share/Scache if no Beache is
present, or sending ACK/Shared/Bcache if there is one.

READ

For a READ, SPA requests access to the Scache for an SC_READ command. If the EV5 is in
32-byte mode only one SC_READ is requested, but in 64-byte mode two scache accesses are
requested. The resulting value driven on the read fat bus (RFB) is loaded into the sys_data
buffer by the VAF controller on assertion of 1d_sys_bdb_6b_h by SPA.

5-44 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Next the SPA checks the results of address compares in the ADP and tag compares in the
Scache. This is done after the first Scache access in 32-byte mode, and after the second access
in 64-byte mode. If the probe command hits in the Scache (Sc_hit), and there is not a fill
or victim pending, the SPA generates the following signals: Spa_Lookup_a_h is asserted for
the rest of the transaction, Sys_Bdp_Entry_8b_h<1:0> is written with the entry number of
the sys_data buffer (0x2), sdb_vld_8b_h is also asserted for the rest of the transaction, and
the probe command is sent to the BSQ. When the BSQ processes the command, the cache
block in the sys_data buffer is transmitted from the EVs, a signal is returned to SPA, ¢_biu_
bsq%spa_bc_dne_9b_h, which clears the above logic, and an ACK/Shared/Scache response is
transmitted.

If there is a hit in the address compare with a Victim Address File (VAF) entry, but not with
any BIU miss Address File (BAF) entries, this means a pending victim matches the cache
block the system intends to read. In this case, Sys_Bdp_Entry_8b_h<1:0> is written with the
entry number of the matching VAF entry, either (0x0) or (0x1), and either the vicO or vicl data
buffer entries is used both to process a victim and the system read. The ACK/Shared/Scache
response is sent to the system.

If there is a hit in the BAF, but not the VAF, this indicates a pending fill to Scache. The probe
command is sent to the BIU Sequencer (BSQ) without asserting sdb_vld_8b_h, providing
a Bcache is present in the system. The BSQ then looks in Beache to complete the probe
command. If the cache block is found in Bcache an ACK/Shared/Beache is sent, otherwise
NOACK is dispatched.

If the cache block is not found in Scache, the probe command is sent to the BSQ to complete,
provided a Beache is present, and an ACK/Shared/Beache is sent. If a Beache is not present
in the system, NOACK is sent as a response and SPA returns to the idle state in order to
process the next command.

¢ READ_DIRTY

For a READ_DIRTY, SPA requests access to the Scache for an SC_READ_DIRTY command,
one access in 32-byte mode and two Scache accesses in 64-byte mode. The resulting value
driven on the read fat bus (RFB) is loaded into the sys_data buffer by the VAF controller on
assertion of 1d_sys_bdb_6b_h by SPA.

Next the SPA checks the address compares in the ADP and tag compares in the Scache,
this being done after the first Scache access in 32-byte mode, and after the second access
in 64-byte mode. If an Sc_hit results and the cache block is dirty, and there is not a fill
or victim pending, the SPA drives the following: Spa_Lookup_a_h is asserted for the rest
of the transaction, Sys_Bdp_Entry_8b_h<1:0> is written with the entry number of the sys_
data buffer (0x2), sdb_vld_8b_h is also asserted for the rest of the transaction, and the probe
command is sent to the BSQ. When the BSQ processes the command, the cache block in the
sys_data buffer is transmitted from the EV5, a signal is returned to SPA, ¢_biu_bsq%spa_bc_
dne_9b_h, which clears the above logic, and an ACK/Shared/Scache response is transmitted.
If there is a hit in VAF but not the BAF, meaning a pending victim that matches the READ_
DIRTY cache block, Sys_Bdp_Entry_8b_h<1:0> is written with the entry number of the match-
ing VAF entry, and either the vicO or vicl data buffer entries is used both to process a victim
and the READ_DIRTY probe command. The ACK/Shared/Scache response is sent to the
system.

If there is a victim pending in the VAF, the VAF controller is responsible for setting the share
status bit for that entry.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-45

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

If there is a hit in the BAF, but not the VAF, this indicates a pending fill to Scache. The probe
command is sent to the BIU Sequencer (BSQ) without asserting sdb_vld_8b_h, providing a
Bceache is present in the system. The BSQ then reads the data out of the Bcache to complete
the READ_DIRTY command. Since this probe command should always be found in the EVs
cache system, an ACK/Shared/Bcache is sent.

If the cache block is not found in Scache, the probe command is sent to the BSQ to complete,
provided a Beache is present, and an ACK/Shared/Beache is sent. If a Beache is not present
in the system, NOACK is sent as a response and SPA returns to the idle state in order to
process the next command.

» FLUSH

For FLUSH, SPA requests access to the Scache for an SC_READ command, one access in
32-byte mode and two Scache accesses in 64-byte mode, in order to accumulate a victim in
the sys_data buffer before invalidating the cache block.

Next the SPA checks the address compares in the ADP and tag compares in the Scache,
this being done after the first Scache access in 32-byte mode, and after the second access
in 64-byte mode. If an Sc_hit results and the cache block is dirty, and there is not a fill
or victim pending, the SPA drives the following: Spa_Lookup_a_h is asserted for the rest
of the transaction, Sys_Bdp_Entry_8b_h<1:0> is written with the entry number of the sys_
data buffer (0x2), sdb_vld_8b_h is also asserted for the rest of the transaction, and the probe
command is sent to the BSQ.

As the BSQ processes the command, however, the SPA requests access of the Scache for an
SC_INVAL command, to flush the cache block from the scache. The BSQ transmits the cache
block in the sys_data buffer from the EV5, and sends a signal back to SPA, ¢_biu_bsq%spa_bc_
dne_9b_h, which clears the above logic, and an ACK/Shared/Scache response is transmitted.

If there is a hit in VAF but not the BAF, meaning a pending victim that matches the cache
block to be flushed, Sys_Bdp_Entry_8b_h<1:0> is written with the entry number of the match-
ing VAF entry, and either the vicO or vicl data buffer entries is used both to process a victim
and the FLUSH probe command. The SPA requests access to Scache for an SC_INVAL
command, and an ACK/Shared/Scache response is sent to the system.

If there is a hit in the BAF, but not the VAF, this indicates a pending fill to Scache. In this
case the SPA requests access to Scache for an SC_READ in order to recirculate the FLUSH
probe command to allow the fill to complete. This has the side effect of reloading the sys_data
buffer entry in the data datapath.

Address compares in the Scache, BAF, and VAF indicate a pending write to the sytem waiting
for permission to start. The SPA will attempt to process the FLUSH command, but its request
to the Scache Arbiter Unit (SAU) will be disabled in this instance by a signal from the Write
Buffer Unit (WBU), c_wbu%stop_spa_4a_h. The SPA request should be disabled until the
pending write completes its Scache access, and then allowed through.

If the cache block is not found in Scache, the probe command is sent to the BSQ to complete,
provided a Beache is present, and an ACK/Shared/Bcache is sent. If a Beache is not present

in the system, NOACK is sent as a response and SPA returns to the idle state in order to
process the next command.

5-46 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 5-13: System Probe Commands and Related Actions if Address match

Command Where Present Action
INVALIDATE Scache Maybe clear valid bit on Sc_Hit
BAF Maybe clear valid bit on entry
VAF Maybe clear valid bit on entry
Beache Maybe clear valid bit on Be_Hit
SET SHARE Scache Maybe set share bit on Sc_Hit
BAF Maybe No action taken
VAF Maybe set share bit on entry
Bcache Yes set share bit
READ Scache Maybe load sys_data buffer and use if Sc_Hit
BAF Maybe if fill, Read done from Bcache, else NOACK
VAF Maybe vaf entry used for victim and read
Bceache Maybe Read from Bcache if Bc_Hit, elde NOACK
READ DIRTY Scache Maybe Do Rd_Drty if Sc¢_Hit and Dirty
BAF Maybe if fill, Rd_Drty from Bcache, else NOACK
VAF . Maybe vaf entry used for victim and Rd_Drty
Bceache Yes Rd_Drty from Bcache if not Sc_Hit
FLUSH Scache Maybe If Sc_Hit & Drty, do Read, else invalidate
BAF Maybe if fill, wait then invalidate
VAF Maybe vaf used for victim & flush, then invalidate
Bcache Maybe deallocate block if dirty, then invalidate

if write_broadcast, wbu will disable

5.23.5 System Data Requests

These commands are used by the system to move data in and out of the EV5 cache system.

e SEND BRDCST DATA
e SEND DIRTY DATA

¢ READ VICTIM DATA
e TAG WRITE

e FILLO

e FILL1

e FILLO SHARED

e FILL1 SHARED

¢ FILLO NO CHECK

DIGITAL RESTRICTED DISTRIBUTION The Chox 5-47

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

¢ FILL1 NO CHECK

The SEND BRDCST DATA command will select the address and data of the next write broadcast
that is to take place.

The SEND DIRTY DATA and TAG WRITE commands will use the address in the System Probe
Register and the data in the system data buffer if data is required.

READ VICTIM DATA will use the address and data in the next victim buffer to be written to
memory.

The FILLn commands will use the address in the nth BAF register.

5.2.3.5.1 BIU Sequencer

The BIU sequencer (BSQ) creates the runs the EV5 command and selects the address that is
used to control the Becache and request service from the System. It also produces read addresses
for the data buffers.

Inputs to BSQ include:

¢ Sysclock-2

¢ Last EV5 CMD

* next BAF request

¢ next VAF request

* System Bcache Request
¢ NO_EV5_ACCESS

e VICTIM_BUFFERS_FULL
¢ NEXT_EV5_REQUEST
e SYSTEM_DATA_CMD
¢ Bcache Hit

¢ Configuration Data

Outputs from BSQ include:

¢ New BAF state

* New VAF state

e New EV5 CMD

¢ Data Buffer Read Address

* C(Clear System Bcache Request

The rough ARB priority for BSQ is this
System Data request

System Bcache request

BAF request

VAF request

N

The VAF will have priority over the BAF if the next request from the BAF has victim hit/Bcache
index match asserted.

5-48 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

These commands will be used by the BIU to service all requests from the Scache and System.
Refer to the EV5 Functional Specification for a full description of these commands.
e READ

e WRITE INT32

e READ MISS

¢ READ MISS MOD

e VICTIM

e DATA FROM BCACHE

e MEMORY BARRIER

e FETCH

* FETCH_M

e TAG UPDATE DIRTY

e TAG CHANGE

e WRITE DATA

e WRITEBACK

e WRITE BROADCAST

e WRITE BROADCAST LOCK

There are four basic sequences in the BSQ; CPU read bypass, CPU read, CPU write, and system
cycle. They are outlined below.

An Scache tag access starts in S7 of the pipe. If the access results in a miss that requires a read,
of Beache or memory, BSQ will attempt to drive the command and address off chip at the rising
edge of S10. The miss signal arrives from the Scache during S8a. If a fill is required and there
is no Beache Index Match, the command can be bypassed. BSQ will have started at S8a and not
finish until the end of S8b. It will assert bypass possible if the command could be driven at S10.
This will only be true if there was nothing else to do and the needed clock edge will be there at
S10. If the bypass is possible, BSQ will select the bypass address and send it to the pins. During
S9a we will decide on the command to send and drive it to the pins. If there is no clock at S10,
a second cycle of bypass is possible at S11. The miss will be written into the BAF at S9A and be

read by the normal BSQ arbitration during S9B. This would result in a read starting in S12 or
later.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-49

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 5-35: BSQ Bypass Flow

CPU Read Bypass:

s7 s8 s9 s10
| | I | |
|SC tag
|SC hit
IBSQ |
|Bypass?
|Addr sel
|Cmd to pins

|Addr to pins
| Sysclock edge

If there are reads to do in the BAF, the command will be read from the BAF during a B phase.

The next cycle the BSQ will evaluate to produce the needed command. This will be driven along
with the address to the pins.

Figure 5-36: BSQ No Data Flow

NO DATA

| | | ! |

| BAF read
1BSQ I
|bypass?
jcmd to pins
|to pins->|

| Sysclock edge

If the BAF or the VAF contains a command that requires data to be sent to the pins, this flow
will be used. The command will be read in the B phase of the first cycle. During the second cycle
BSQ will produce the read address for the data buffer and send it out. During the third cycle the

command will be created and the address read out. During the four cycle the command, address,
and data will be driven to the pins.

Figure 5-37: BSQ Data Flow

Write
| ! | |
| BAF read
IBSQ | BSQ !
lemd to pins
|data read address
|data read
Jdata to pins
| Bypass?
laddr to pins
| Sysclock edge

When a system data command is received we have one Sysclock to respond. The minimum
Sysclock rate is 3 CPU cycles. In order to respond in time, most of the normal BSQ control must
be bypassed. The data read address must be computed in the B phase of the first cycle. The
data read will start in the B phase of the second cycle, allowing for one cycle to drive the address
across the bottom of the chip. During the second cycle BSQ will produce the correct command.

5-50 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The address is read during the second cycle from the BAF. During the third cycle the command,
address, and data are driven to the pins.

Figure 5-38: BSQ System Flow

| | |] |
| BAF read
|BSQ |

lemd to pins

|addr read

|addr to pins
|data read address

|data read
|data to pins
|addr to pins

| Sysclock edge
{Sysclock edge

5.2.3.5.2 Bcache Data Cycle Timer

This control will time each Beache read or write cycle. BSQ will start the timer at the beginning
of each read or write. The timer will assert a done signal to BSQ at the end of each cycle.

5.2.3.5.3 Bcache Data Valid

This control will most likely be a timing chain that will provide a data valid signal at the end of

each Beache read. The first data valid of each read or write sequence will also be used to trigger
the Beache tag check.

5.2.3.6 Data Datapath:ECC generation/check

The CBOX provides parity bits for data, tag and status bits in the SCache. If EV5 is operating in
ECC mode, Quadword ECC is provided for all off-chip data transactions and parity for all off-chip

address transactions. Otherwise byte parity is generated on all data. The mode is determined
by a bit in the BC_CONFIG IPR sitting in the address datapath.

Store data is written 2 octawords per transaction into the SCache in 2 consecutive cycles.

The data datapath consists of 3 sections.

* The outgoing data section which generates ECC on outgoing data
¢ The data buffer section

* The incoming data section which checks ECC on incoming data
¢ The IPR section

Physically the data datapath is split up into two halves, each half for each quadword of data, sitting
on opposite sides of the chip.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-51

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.2.3.6.1 Outgoing Data section

For shared writes, valid longwords from the write buffer are merged in the BIU data datapath
with the remaining longwords from the SCache coming from the RFB in 9b. If EV5 is operating in
ECC (byte parity) mode, ECC (byte parity) is then generated and the data, LW valid bits along
with the ECC (byte parity) are written into the BIU data buffer in 12a. The longword valid bits
are driven onto the data valid pins through a mux which selects between these longword valid
bits and QW valid bits (for reads from I/O space).

For /O writes, all data is taken directly from the write buffer. No merging is done.

For victims,write for populates and system reads, all data entering the data datapath comes
directly from the SCache (RFB). All lw_valid bits are set for victims. The timing diagram for the
ECC generation for a shared write is shown in Figure 5-39.

Figure 5-39: Outgoing Data flow

WFB | OW1l| OW |
RFB | CW1l| OW2)
jmux to merge lw’s OWl
{ECC gen on merged OWl begins
| bypass OW1/ECC/1lw_valids to pin if idle
{load data buffer OWl
{load data buffer OW2

5.2.3.6.2 Data buffer section

There are three data buffers sitting in the data datapath. Two for victims, shared writes and
I/O writes, namely vic0 and vicl and one to hold system data requests, namely sys_data. Each
data buffer is capable of holding up to 64B of data along with ECC and longword valid bits for
each quadword of data. The data buffer is written in cycle 12a for a write/victim read tag access
beginning in cycle 6. The data buffer is read in cycle 11b to get data at the pins in cycle 13.

5.2.3.6.3 Incoming Data section & Error Signals

This section checks incoming data from the pins for ECC errors, corrects them if possible and
returns the raw data to the DCache and returns the corrected data to the DCache and ICache.

Fill data is valid at the pins at the beginning of cycle 8 and is driven to the data datapath to be
driven directly to the Dcache in 9b via the RFB. Longword parity is generated for the fill data
and also driven to the DCache. (The data datapaths have a 3:1 mux that drives either fill data,
corrected fill data or IPR data onto the RFB)

IfEVs is operating in ECC mode, the syndrome is first calculated for each of the 64 bits of fill data.
If the syndrome is non-zero, that implies that an error occurred and C_BDP%RAW_ECC_ERR_10B_
H<1:0> is asserted(one bit for each quadword). The syndrome is then decoded to correct the data
if possible . If it is a single bit error, it is a correctable error and C_BDP%CORR_ERR_11A_H<1:0>
is asserted.

5-52 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

NOTE

C_BDP%CORR_ERR_11A_H<1:0> should be examined only if the corresponding bit in C_
BDP%RAW_ECC_ERR_10B_H<1:0> is asserted.

The data datapaths also have a longword parity checker to check the parity of data read from
the SCache. This parity checker is used for BOTH arrowheads and Dreads. To summarize, the
internal CBOX errors:

* C_BDP%RAW_ECC_ERR_10B_H<1:0> : one bit for ECC error for each quadword of valid fill data
for both I & D streams. Not asserted if the FILL, NOCHECK pin is asserted for that octaword
of fill data.

* C_BDP%CORR_ERR_11A_H<1:0> : Correctable error on each quadword of fill data for both I &
D stream. Not qualified. Should be examined only when C_BDP%RAW_ECC_ERR_10B_H<1:0>
is asserted.

¢ C_BDP%RFB_PAR_ERR_10B_H<3:0> : RFB LW parity error on SCache read hits and shared
writes without permission, for which the Scache is read. To be examined twice for each
SCache access for both octawords on the RFB.

* S%C_TAG_PERR 7B_H<2:0> : tag parity error, asserted for each set in the Scache for Scache
reads and writes (even if it misses)

The local signals are used to generate the global signals shown below:

* C%M_RFB_ECC_ERR_10B_H: This signal is asserted only on Stream ECC errors.

* C%I_HARD_ERR_TRAP_11B_H: Uncorrectable ECC error (I or D stream) OR Scache fill parity
(Data or Tag)error if Scache hit OR BCache tag parity error. EVs goes into machine check.
Asserted in 11b and 12b for data parity errors on both octawords from Scache.

* C%I_CORR_ERR_TRAP_11B_H: Correctable ECC error on Stream fills only. This signal is a flip
flop that is set when a correctable error occurs and is cleared only when the corrected data
is written back into the register file.

* C%I_CORR_ERR_INTR_11B H : Correctable ECC error (both I/D streams)

The data is corrected and written into a silo in 11a to be written into the SCache and some later
time. If the error is double bit or more, the data is not corrected.

On an ECC error, the CBOX enters error mode. In error mode, data is no longer driven directly
to the Dcache from the pins but data is always corrected (if possible), written into the Scache
and then returned to the DCache. This is so that corrected data can always be returned to the
DCache/register file once an error occurs. Therefore on the first ECC error, the DCache and
register file get the same data returned twice. First the raw data and then again in corrected
form. After this, all data is returned via the SCache. The CBOX leaves error mode only after the
BIU’s address file is emptied.

In byte parity mode, the byte parity of the incoming data is generated and compared against the
byte parity at the check pins. If there is a difference, the error is flagged as an uncorrectable ECC
error and the CBOX enters error mode. The following points should be noted about the CBOX
error mode:

* C%M_RFB_ECC_ERR_10B_H will be asserted on any ECC error. CBOX will enter error mode.
Any further ECC errors while the CBOX is in error mode will NOT cause this signal to be
asserted since data is being returned via the correctable path.

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-53

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

C%I_CORR_ERR._TRAP_11B_H will be set on the first Stream correctable error received. This
puts CBOX into error mode. If another correctable error occurs while this signal is set, this
signal will not change (ie.it will remain set). This signal is de-asserted when the corrected
data for the first error is written in to the register file It does NOT have to remain set until the
corrected data for the second error is returned, because the CBOX had already entered error
mode on the first error, and in this mode only corrected data , not raw fill data is returned to
the register files. C%I_CORR_ERR_INTR_11B_H will be asserted twice however for each of the
correctable errors.

It is possible for hard errors to occur while C%I_CORR_ERR_TRAP_11B_H is set. (hard errors in
the shadow of correctable errors).

For Scache accesses, it is possible for both octawords of the 32B block being read to have parity
errors. If so, the data read in 9b onto the RFB will have C%I_HARD_ERR_11B_H asserted in
cycle 11b and the data read in 10b onto the RFB will have C%I_HARD_ERR_11B_H asserted in
cycle 12b.

If a hard error occurs, C%I_HARD_ERR_11B_H is asserted. This forces CBOX to enter error
mode. Currently CBOX will do the following.

* On the first hard error, flag C%I_HARD_ERR_11B_H (corresponds to raw fill data on the
RFB in 9b) and enter error mode.

¢ Jload error information into IPR’s and lock them.

¢ On subsequent hard error, set second error bit. Do not flag C%I_HARD_ERR_11B_H at this
time (although this is easier for the CBOX)

¢ Later, assert I HARD_ERR_11B_H in cycle 11b when the fill data for the second error is
being returned to the register files via the Scache in 9b

A summary of CBOX behavior with respect to the error signals while one error is pending is
shown in Table 5-14

Table 5-14: Behavior of CBOX of errors in shadow of other errors

C%I_CORR_
ERR_INTR _
First error Second C%M_RFB_ECC_ERR_10B_H C%I_CORR_ERR_TRAP_11B_H C%I_HARD_ERR TRAP_1IBH 11B_H
- - 0 o 0 0
corr 1 (if Stream) SET (if Stream) 0 1
corr corr 0 No change. De-asserted 0 1
when first corrected data
is returned.
corr hard 0 No change. De-asserted assert only when the SCache 0
when first corrected data is updated
is returned.
hard - 1 (if Stream) 0 1 0
hard corr 0 0 0 1
hard hard 0 0 assert only when the Scache 0

is updated

The timing diagram for the data flow on fills is shown in Figure 540

5-54 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The ECC code is defined in the EV5 CPU Chip Functional Specification. It provides single bit
error detect & correct, double bit error detect, quad-bit nibble error detect and all ones and all
zeros failure detect.

Figure 5-40: Incoming data flow

jregfile write
|data@DCache
|data on RFB
{data@pins
|data@cbox
| start_syndrome_gen
lraw_ecc_error
|corr_error
| correct data, load silo
|learliest corrected data onto WFB to SCache

5.23.7 IPR’s
There are 10 IPR locations in the CBOX, namely :

¢ SC_CTL (Phy. Addr:FFFFF000AS8)

e SC_STAT (Phy. Addr:FFFFFO00ES)

e SC_ADDR (Phy. Addr:FFFFF00188)

e BC_CTL (Phy. Addr:FFFFF00128)

¢ BC_CONFIG (Phy. Addr:FFFFF001C8)

e BC_TAG_ADDR (Phy. Addr:FFFFF00108)
e EI_STAT (Phy. Addr:FFFFF00168)

e EI_ADDR (Phy. Addr:FFFFF00148)

e FILL_SYN (Phy. Addr:FFFFF00068)

e LOCK (Phy. Addr:FFFFF001ES8)

Of these IPR’s the SC_CTL, SC_STAT and FILL_SYN IPR’s sit in the upper quadword section of the
data datapath. The remaining IPR’s sit in the Address datapath. Apart from SC_CTL, BC_CTL and
BC_CONFIG IPR’s, all IPR’s are readable. IPR’s are driven onto the upper quadword of the RFB in
9b for a MBOX command issued in cycle 5. Some details about the IPR’s are described below. For a
more detailed discussion on the IPR’s, please refer to the external functional specification.

DIGITAL RESTRICTED DISTRIBUTION The Chox 5-55

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

52371 SC_STAT

The SC_STAT IPR is written in cycle 13A if a parity error occurred on the access. This is because

the worst case data parity error for the second OW, is available only in early 12a. It is locked in

13A on a parity error for any Scache Read or shared write. Writes to SC_STAT clear the IPR but

do not unlock it. Only reads to SC_ADDR can unlock this IPR. Unlocking is also done in cycle 13.

In order to obtain the status of an SCache read, a restriction placed is that any read to SC_STAT

must be at least 5 cycles after the last SCache read. Similarly, any read to SC_ADDR must be
" at least 5 cycles after the last SCache access.

52372 SC_ADDR

The SC_ADDR IPR is written in cycle 12A following every Scache access. It is locked from further
writes if a tag or data parity error for an Scache access will cause SC_STAT to be written. Reading
SC_ADDR will unlock the IPR and allow writes to occur.

5.2.3.7.3 SC_CTL

SC_CTL is written in cycle 8b from the first OW (lower 16B of 32B address) from the WB. It is
written in cycle 8b and latched in 9a and driven to the SCache/CBOX/BIU. It can also be read.

5.23.74 FILL_SYNDROME

The syndrome of the fill data is is currently written (on ECC error)into this IPR in 12a corre-
sponding to raw fill data on RFB in 9b. This is because ECC error for both qw’s is valid only in mid
11a. If an ECC error is uncorrectable , this IPR is locked in cycle 12a. Correctable ECC errors
do not lock this IPR. This IPR is unlocked by reads to EI_ADDR. Reads to FILL_SYNDROME
can be made only after all fill data has been loaded into the SCache.

5.23.7.5 EI_STAT
The EI_STAT IPR is written in cycle 13A and locked for any of the following errors:

* ECC or byte parity error on fill data from Bcache or Memory

¢ Tag parity error on fill from Bcache

¢ Tag Status (Valid, Shared, Dirty) parity error on fill from Becache
¢ Address and Command parity error on System Probe Command

Writes to EI_STAT clear the IPR but do not unlock it. Only reads to EI_ADDR can unlock this IPR.
Unlocking is also done in cycle 13.

5.23.76 EI_ADDR

The EI_ADDR IPR is written in cycle 12A following every Scache access. It is locked from further
writes if an ECC or parity error for a Fill or System Probe Command will cause EI_STAT to be
written. Reading EI_ADDR will unlock the IPR and allow writes to occur.

5-56 The Cbox DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

5.23.7.7 BC_TAG_ADDR

The BC_TAG_ADDR IPR is written in cycle 9A following every Bcache access, with the exception
of BC_HIT. It is locked from further writes if a Beache tag or tag status parity error will cause
EI_STAT to be written. Since BC_HIT cannot be computed as fast as the incoming tag and status
bits, it is written and locked one cycle after the other bits in the IPR. Reading EI_ADDR will
unlock the IPR and allow writes to occur.

52378 BC_CTL

BC_CTL is written in cycle 8a with the first OW (lower 16B of 32B address) from the WB. 1t is
latched in cycle 8a driven to the Bcache/CBOX/BIU. This IPR is write only.

523.79 BC_CONFIG

BC_CONFIG is written in cycle 8a with the first OW (lower 16B of 32B address) from the WB.
It is latched in cycle 8a driven to the Becache/CBOX/BIU. This IPR is write only.

5.23.7.10 LOCK
The LOCK register file entry can also be read as an IPR location in the address data path. It is
read in the same manner as any other Cbox IPR.

5.3 Reset and Initialization

5.4 Error Handling and Recording

5.5 Test Aspects

5.6 Performance Monitoring Features

5.7 Issues

5.8 Revision History

Table 5-15: Revision History

Who When Description of change

Chandra Somanathan 12-08-1991 Chox Arbiter, Set Allocation, Transaction Flows
Sribalan Santhanam . 12-15-1991 adding wbuffer,iprs and block diagram

Cbox team. 2-20-1991 lots more stuff added especially to BIU

DIGITAL RESTRICTED DISTRIBUTION The Cbox 5-57

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 6

The Caches

6.1 Overview

The EV5 on-chip memory is structured into two levels. The first level consists of separate instruc-
tion and data caches; the second level is a unified instruction and data cache. The instruction
cache (ICache) is an 8 KByte direct-mapped virtual cache, accessed from the Ibox. The data
cache (DCache) is a 16 Kbyte direct-mapped write-through physical cache, accessed from the

Mbox. The second-level cache (SCache) is a 96 Kbyte, 3-way set associative, write-back, physical
cache, accessed from the Cbox.

The ICache resides in SO of the EVs pipeline. The DCache resides in S4B/S5A. The SCache resides
in S6B through S11A of the pipeline.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-1

seyseg eyr z-9

NOILLNGIH1SIA a310141S3Y 1vlivia

EV5 PIPE

19 ainbi4

sujadid SAT ul SUORISOd dYyde)

S0 S1 S§2 $3 S4 1 $6
b%ﬁ%',"_lé ﬁﬂ [mcns }hls JSLOT I|ssue ;u.ul DCACHE ;’;‘;l Wae
S0 §1 82 83 S4 S5 $6 87 S8 1] $10 S6
SGAGHE MIFP lnc'AcHEA| 18 | sLoT lassus IALUI DCACHEI SC ARB I sc TAG I sc HIT lsc DATA | FATBUS I;’#I whore I
, ¢ DCACHES
S0 S1 S2 $3 S4 85 S6 S7 s8 s6 S6
QCACHE MISS: |icacke | 18 stor [issue [aLu| ocacHE| sc ars l SC TAG |SC MIsS Irms 000 I PINS I raTBUS |pWEl ROF
¢ DCACHE®
S0 S1 S2 S6 §7 S8 59 S$0/81
Is%l}\%HHE m?s IEACHE [lc Miss 'lc REQ IMAF’ SC ARB I SC TAG] sc HIT[SG DATA]IFB, otaeoe | CIEHE I
S0 S1 s2 S6 87 S8 86 87 S8 S9 S0/s81
ICAGHE M138: |icacke [ic miss [ic REa |maF| sc ams [sc TAG | sc miss PINSI 000 SC ARB |SC TAG [SC HIT |sc DATA | 1FB| PRE | ICAGHE

G661 Axeniqay ‘0"Q UOISIASY ‘uonesyroadyg rewsauy diq) NdO SAR

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.2 ICache and Refill Buffer Functional Description

IBOX instruction data is stored in the Icache and the Refill Buffer (RFB) (see Figure 6-2).
Instructions are processed in the IBOX from the Instruction Buffer (IB); data is loaded into
the IB from two sources:

¢ From the Refill Buffer during FILLs or during a Read when (I_HIT%RFB_HIT 1A H AND NOT
I_HIT%IC_HIT_1A _H). :

¢ From the Icache on I_HIT%IC_HIT 1A_H.

The IBOX sends the control signals that determine the data flows to the Icache and Refill Buffer;
these flows are detailed in Section 6.2.4.

The Icache is an 8Kbyte, direct-mapped, virtual address cache that holds 256 32-byte blocks of
instruction stream data. The Icache has a one cycle access and a one cycle repetition rate for
both FILLs and READs. A cache block is filled in two octaword FILL transactions, and READs
to the cache read an octaword of data (four instructions).

The Refill Buffer is an 8-entry prefetch buffer holding 8 octawords of instruction data in the same
format as the Icache, see Section 1.2.2, Instruction Fetch. The data portion of the buffer is in the
Icache datapath while tags and control are in the IBOX. The IBOX directs the filling of the Refill
Buffer by sending the FILL enable, 1%J_RFB_WRITE_A_H, and the FILL index, I%J_RFB_WR_IDX_
A_H<2:0>. The IBOX directs the reading of the Refill Buffer via 1%J_RFB_RD_IDX_B_H<(6:4)>. Data
is written into the Buffer with conditional A-latches and read using a mux.

Both the Refill Buffer and the Icache hold predecoded data bits, 5 bits per instruction. A cycle
is allocated to decode these bits from the FILL data on S%J_IFB_DATA_9B_H<127:0>; the advance
decoding and storing of this data saves time in the slotting logic and the branch logic when the
actual instruction is read and processed, see Section 1.2.8, Instruction Slotting.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-2: Instruction Data Flow through Refill Buffer and Icache

IRD_BUS<127:0> + Parity?

Predecode logic (first part) &
‘—'—9 start Parity Generation?
128 *
>
a3 B Latch |
~
bt Predecode logic (2nd part) &
a —>| tinish Parity Generation?
“ + 128 t1s
3 | AvLateh: DATA<127:0>, PREDECODE<15:0>, PARITY<0> |
§ RFB_BYPASS
3 ¥
N I B Latch: DATA<127:0>, PREDECODE<«15:0>, PARITY<0> I
3 [
i
o
2 Refill Buffer: DATA<12740>, PREDECODE<15:0>, PARITY<0> RFB_WRITE
i Cond. A Latch: RFB-7 Cond. A Latch: RFB-3 RFB_WR_10X<2:0>
%]
< Cond. A Latch: RFB-6 Cond. A Latch: RFB-2 RFB_RD_IDX<2>
x Cond. A Latch: RFB-5 Cond. A Latch: RFB-1
@
o' Cond. A Latch: RFB-4 Cond. A Latch: RFB-0
e <
T RFB_RD_IDX<1:0>
o \ 4:1 Mux, choose RFB / \ 4:1 Mux, choose RFB ; = -
3
: I}
Y
E \ 3:1 Mux, choose RFB or Bypass /
5 I B Latch: DATA<127:0>, PREDECODE<15:0>, PARITY<0> l
Fill Datapath Fill Datapath
Virtual, Direct Map, Tag: Branch
ICACHE 8KB, 256 blocl?s P VA<42:13> | History
Stage O0A/0B 22 ' AMs0. | Table
® o
© - 3 . . .
High Side Data <127:64> A EN Low Side Data <63:0> PRl 2 bits
2l |cw per
,Predecode(sd) + Parity(4) + Dala(Sii’\) ,Pndecode(sd) + Parily(4) + Dnu(5|2\) , 168 R ,64 bi!s‘
N 7 Y 7 N rd) 7
Read Datapath Read Datapath Fill/Rd Rd/Wr DP
Conditional A Latch Conditional A Latch A Latch?| A Latch?
M4_Bypass 1\ \L T JI
m - o o
v o 2 »
\ 2:1 Mux, choose IC or Bypass / DN, Tk
I o2 a8 s
x ® z ©
1B-1 7 Laten 1A tygen | 1B-0 l % 'z 3 .:
pT
IC_DATA_0B_H<127:0> § 5 'g A
= ! 5
PREDECODE_0B_H<15:0> & A
32 bit DP 32 bit DP 3
v

6-4 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.2.1 Icache Details

The logical organization of the Icache is shown below:

Figure 6-3: Logical icache Organization

Crm e left bank > e e e e — e right bank —-——-—-—-——-—=— >
67R: i Data <127:64> for 4 blks i Predecodes i DP i i DP i Predecodes i Data <63:0> for 4 blks ;
66R: T— Data <127:64> for 4 blks i Predecodes i DP ; " { DP i Predecodes ; Data <63:0> for 4 blks r
65R: ; Data <127:64> for 4 blks i Predecodes i DP i i DP i Predecodes i Data <63:0> for 4 blks ;
64R: ; Data <127:64> for 4 blks ; Predecodes i DP i " ; DP ; Predecodes i Data <63:0> for 4 blks ;
63: i Data <127:64> for 4 blks ; Predecodes ; DP i i DpP i Predecodes [Data <63:0> for 4 blks {
62: i Data <127:64> for 4 blks i Predecodes i DP ; b T DP i Predecodes i Data <63:0> for 4 b;;;-T

+— + + + + + + +
1z I Data <127:64> for 4 blks i Predecodes i DP I ; DP ; Predecodes ; Data <63:0> for 4 blks ;
0: ; Data <127:64> for 4 blks ; Predecodes i DP ; b T DP ; Predecodes i Data <63:0> for 4 blks T

Note: Rows 64/65 and 66/67 are redundant row pairs. See Section6.2.7.

where: Data (1024 bits)

4 blocks of data in order by bit, i.e.: Blk 3, Octaword 1, bit<127>;
Blk 2, OW 1, bit<127>; ... Blk 1, OW 0, bit<0>; Blk 0, OW 0, bit<0>

Predecodes (160) Data decoded ahead of cache, 5 bits per longword = 40 per block.

o

DP (16) Even parity. Per octaword: 1 bit for data, 1 bit for predecodes.
WL = Wordline Decoders/Drivers (row pairs) in center of cache.
BRANCH HISTORY TABLE ICACHE TAGS
63: | wWWL | BHT <7:0> / 4 blks | rWL | 63: | WL | Tag Array<41:0> for 4 blks |
0: | WWL | BHT <7:0> / 4 blks | rWL | 0: | WL | Tag Array<41:0> for 4 blks |

BHT (64) Branch History Table: 2 bits per longword = 16 per block. See Section 6.2.2.
wWWL = Write Wordline Decoders/Drivers --> BHT has dual port ram cell.

WL = Read Wordline Decoders/Drivers
Tag {168) = tag and valid bits, 42 bits per block. See Table 6-1 below.
WL = tag Wordline Decoders/Drivers

As can be seen from the diagram, the Icache is organized into 64 direct mapped indexes, where
each index consists of four blocks. The breakdown of the Virtual address bits for Icache decoding
is shown below:

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6—4: Icache Address Breakdown

42 41 40 14 13112 11/10 09 08 07 06 05]04| 03 02 01 00
B e e R At B e A At st S
| 30-bit Tag address | blk | index address |OW| |
s e e S e S T el fatant S SEE B

where: tag address
blk index address
row index address
OW address
bits <3:0>

Virtual address bits loaded into or compared with Tag.
indicates which block of 4 within an Icache row.
addresses 1 of 64 rows.

indicates which Octaword of the block, 0 or 1.
addressing within the octaword, not used by the Icache.

[A

The 42-bit Icache tag field holds the tag and the following information:

Table 6-1: Icache Tag

Name Extent Description

Tag 41:12 30 bit tag, Virtual Address <42:13>

ASM 11 Address Space Map

ASN 10:4 Address Space Number <6:0>

PA 3 Indicates Icache address is a Physical Address
Valid 2:1 Valid bits, 2 per block = 1 per octaword

Parity 0 Even tag parity for VA<42:13>, ASM, ASN<6:0>, PA

The ASM and ASN bits allow implementation of process tags; see the ALPHA SRM for more
information. The Physical Address bit specifies that the Tag is physical, not virtual; it prevents
address translation by the ITB. There are 2 valid bits per block because a FILL to the Icache
occurs as two separate octaword FILL transactions.

6.2.1.1 Icache SROM interface

The Icache supports a Serial ROM interface for diagnostics to allow the Icache (data, tags, Branch
History Table) to be written and read in a serial fashion from the pins. An IBOX counter sequences
the index during serial reads and writes. See Section 6.2.4.1.1.

6.2.2 Branch History Table

The Branch History Table (BHT) is physically separate from the Icache, but its timing and design
are very similar to the Icache, so it is part of the Icache block. The control for updating the
Branch History Table is in the IBOX, see Section 1.2.4, Branch History Table. Each longword
of data has 2 branch history bits to implement a 2-bit branch prediction scheme. These bits are
not initialized on FILLs, but the SROM interface may be used to initialize the table in a serial
fashion. If the table is not fully loaded using the SROM, the first time a location is read, these
bits are UNPREDICTABLE. The Branch History Table is read with the Icache data in stage 0
and updated in stage 6 once the branch results are known. Like the Icache, Branch History reads
and updates correspond to four instructions, i.e. 8 bits at a time.

6-6 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

When the Instruction Buffer is loaded from the Refill Buffer instead of the Icache, the IBOX
accesses the Branch History Table using the Refill Buffer address instead of the Icache address.
This is handled in the IBOX using a 2:1 mux to set the BHT index, J_ BHT_IDX_ZB_H<12:4>. There
is a good chance that the prediction bits delivered on a Refill Buffer access are correct, being
left from the last time that particular branch instruction was stored in the Icache. This is true
because:

e The BHT is not initialized on FILLs, and
e Instructions are swapped in and out of the Icache, and
¢ Not all instructions are branches.

These factors combined give the effect of a BHT that holds history bits for more branches than
are actually stored at any one time in the Icache.

6.2.3 Icache and Refill Buffer Initialization and Test

All valid bits are cleared using 1%J_FLUSH_A_H from the IC_FLUSH_CTL IPR, see Section 1.2.10.11.
There are no external invalidates for the Icache.

On reset, after the BiST logic completes, all valid bits should be cleared using 19%J_FLUSH_A_H or
another signal which has the same effect.

It is planned that the full Icache will be flushed using 1%J_FLUSH_A_H if data with a parity error
or uncorrectable ECC data has been written into the Icache. For a description of ECC and parity
error handling, see the Error Handling Chapter in the EV5 CPU Chip/Functional Specification.

The IBOX is responsible for initializing and maintaining the valid bits for the Refill Buffer, see
Section 1.2.2, Instruction Fetch.

Bad parity may be forced for both the Icache tag and data parity by writing bits in the ICSR
IPR, see Section 1.2.10.17, Ibox Control/Status Register, ICSR. The IBOX handles asserting bad
parity for tags; if the IBOX asserts 19%J_FORCE_BAD_DP_A_H, the parity destined for the Icache
will be inverted ahead of the Refill Buffer.

6.2.4 Icache & Refill Buffer Transactions
The IBOX and CBOX send the control signals necessary for reading and writing the Icache, the

Refill Buffer, and the Branch History Table. Several read/write scenarios exist depending on the
control signals in Table 6-2; the basic flows will be outlined in this section.

Table 6-2: Icache and Refill Buffer Control Signals

Control Signal Source Operation/Notes
Icache Control:
1%J_IC_CMD_A_H: IBOX Indicates Icache transaction
READ Read the Icache data, tags, and the BHT
1 FILL Fill the Icache data and tags

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-2 (Cont.): Icache and Refill Buffer Control Signals
Control Signal Source Operation/Notes

Icache Control:

1%J_IB_STALL_A_H IBOX Hold data at output of RFB and Icache data/tags/BHT
Refill Buffer Control:

1%J RFB_RD_IDX B H<6:4> IBOX RFB Data Index; read this RFB data entry
1%J_RFB_WRITE_A H IBOX Refill Buffer write enable
1%J_RFB_WR_IDX_A_H<2:0> IBOX If RFB_WRITE_A_H asserted, write this entry

Control for the Instruction Buffer fill mux:

I%J_BYPASS_IC B H: IBOX Instruction Buffer fill mux
0 IB is loaded with data from the Icache
1 IB is loaded with data from the Refill Buffer

Branch History Table Control:

I%J_ICCMD AH =0 IBOX Read the BHT
1%J_HUP_EN_5B_H IBOX Write the BHT with updated prediction bits
1%J_BHT_SILO_SEL_B_H: IBOX Delay BHT history by 1 cycle for RFB reads
0 Send IBOX history bits just read from BHT
1 Send IBOX history bits piped for one cycle

6.2.4.1 Icache & Refill Buffer Fill Operations

FILL data with longword parity is always received from the Scache on S%J_IFB_DATA_9B_H<127:0>
and S%J_IFB_PARITY_9B_H<3:0>; FILLs from off-chip are written through the Scache to drive the
data and parity. The FILL data is piped into an A/B-latch pair and then into the appropriate
Refill Buffer Entry, see Figure 6—2. A Refill Buffer entry is written when I%J_RFB_WRITE_A_H is
received from the IBOX; this signal has been conditioned with C%I_IFB_DATA_VALID 9A H in the
IBOX. This allows a cycle to calculate the Predecoded bits and their parity which become part of
the data datapath.

Two types of FILLs exist, those returning requested data (Demand FILLs) and those returning
the other octaword of the requested block, (non-Demand FILLs). For non-Demand FILLs, the
data is only written into the Refill Buffer; meanwhile the IBOX can be probing/reading the Icache
and the Refill Buffer and writing the IB (see Section 6.2.4.2).

For Demand FILLs, the FILL data is written into both the Icache and the Instruction Buffer in
Stage 0A; this is the cycle after the Refill Buffer is written. To allow the parallel write of the
Icache and the IB, the 2:1 Mux ahead of the IB is set to choose Refill Buffer Data: 19%J_BYPASS_
ICBH = 1.

6-8 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

If the Instruction Buffer is full, the FILL data is held in the B-latch that follows the Refill Buffer
until the IB is ready to receive data. This is accomplished by preventing loads of the B-latch
when 1%J_IB_STALL_A_H is asserted.

The Icache is also written from the Refill Buffer on reads which miss in the Icache and hit in
the Refill Buffer. Since this is initiated by a read transaction, it is described in Section 6.2.4.2.
The SROM interface may also be used to write the Icache and the Branch History Table, see
Section 6.2.4.1.1.

The Icache tag field is written whenever the data is written; the IBOX provides the tag address,
tag parity, both valid bits, and other qualifiers. Since FILLs occur as two separate octaword
transactions, the IBOX determines the valid bits using the octaword address and information
from the CBOX as to which FILL this is (first or second).

The Refill Buffer tags are maintained in the IBOX; they are also written on FILLs, see
Section 1.2.2, Instruction Fetch.

S%J_IFB_DATA_9B_H<127:0> is driven to the Refill Buffer and the Icache before parity checking and
ECC error correction are complete. Once the CBOX detects that bad data was written, there will
be a machine check. The full error sequence has not been defined, but it is expected that the full
Icache will be flushed using I%J_FLUSH_A_H. Handling of bad data in the Refill Buffer is TBD by
the IBOX. For a description of ECC and parity error handling, see the Error Handling Chapter
in the EV5 CPU Chip/Functional Specification.

6.2.4.1.1 Writing the icache and Branch History Table with the SROM

The SROM is another source of Icache and Branch History data and tags. Two types of SROM
data may be loaded: shifted serial data or serial data that is being held and recirculated at the
inputs to the Icache and BHT. The IBOX controls the SROM operation; when in SROM mode,
one of the two types of SROM inputs will load the cache tag, data, and the Branch History Table,
over-riding the FILL datapath described in Section 6.2.4.1.

6.2.4.2 Icache & Refill Buffer Read Operations

Reads of the Icache are initiated when I%J_IC_CMD_A_H is a READ. The Refill Buffer is always
being read via the muxes at its output. If the requested data is in either the Icache or the Refill
Buffer, the IB will be written and validated, otherwise a fill request will be issued by the IBOX.
The basic read flow is outlined below, see also Section 1.2.2, Instruction Fetch.

On a "new" Read, assume the Icache will hit:
xA: 1%J_IC_CMD_A_H is a READ
xB: Icache index received from IBOX (critical path).
I%J_BYPASS_IC_B_H = 0 to choose data from Icache latch.
0A: Icache index decode, wordline drive, and ram cell read.
Refill Buffer tag read in the IBOX.

0B: Icache data, tag, and branch prediction bits read and latched at output of Icache
and Branch History Table. '

1A:; If 19J_IB_STALL_A_H is low then IB-0 or IB-1 is written with the Icache data.

If 1%J_IB_STALL_A H is high then the data is held at the output of the Icache until the IB
is not full.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Refill Buffer data read (one cycle behind the Icache).

In the IBOX, I_HIT%RFB_HIT_1A_H and I_HIT%IC_HIT_1A_H calculated.
1B: Refill Buffer data captured in B-latch.

I_HIT%RFB_HIT_1A_H and I_HIT%IC_HIT_1A_H available:

a. On Icache hit: IB has correct data. Proceed with next transaction, if a read, assume the
Icache will hit again, i.e. keep I%J_BYPASS IC_B_H = 0.

b. On Icache miss and Refill Buffer hit:
— 1B has incorrect data, invalidate IB entry.
— Move I%J_BYPASS_IC_B_H to 1 to choose the IC bypass.
— 2A: Overwrite the IB with the Refill Buffer data.
Write the Icache with the Refill Buffer data and tag.

— Proceed with the next transaction. If a read, assume the Refill Buffer will hit, i.e.
keep I%J_BYPASS_IC_B_ H = 1. Icache hit will no longer be checked; reads will be
taken from the Refill Buffer (IB and Icache are written in 1A) until a Refill Buffer
miss occurs and the IBOX requests a FILL. Once the FILL has been requested, a
"new" read sequence may be initiated and data will once again be loaded from the
Icache assuming Icache hit, i.e. 1%J_BYPASS_IC_B_H is changed to a 0. When the fill
data comes back, it is processed according to the FILL flows in Section 6.2.4.1.

c¢. On Icache miss and Refill Buffer miss: IBOX requests a FILL; subsequent reads are "new"
reads and will assume Icache hit.

During reads, the IBOX checks the parity read from the Icache data and tag. Parity checking is
done in stages 1 and 2. On parity error, the IBOX traps in stage 7.

6.2.4.3 Branch History Table Reads and Writes

The BHT is read during Icache and Refill Buffer reads. Like the Icache data and tag, reads are
initiated in phase A and complete in phase B. The IBOX provides the index, I1%J_BHT_IDX_ZB_
H<12:4>, which corresponds to an Icache or Refill Buffer index, see Section 6.2.2, and the BHT
returns 8 history bits to the IBOX. A piped version of the BHT data read in the previous cycle
is available for reads of the BHT that correspond to a new Refill Buffer access. (As noted in
Section 6.2.4.2, Refill Buffer data is available one cycle after Icache data on Icache miss and RFB
hit.) The IBOX asserts 1%J_BHT_SILO_SEL_B_H when they want the piped data instead of the new
data, see Figure 6-5.

The Branch History Table is not written on FILLs. Once the IBOX finishes the processing of a

branch, it recalculates the prediction bits. In stage 5B, the 8 new prediction bits, their index,
and the write enable, I%J_HUP_EN_5B_H, are sent to the Branch History Table. In 6B, the Branch

History Table entry is written.

The read and write ports of the Branch History Table are separate. Thus during a write, a read
may be occurring. If a read and write access the same index; two cases are possible.

* Case 1: A read initiated in phase A follows a write in the previous cycle; the read will get
the newly written data. :

¢ Case 2: A read initiated in phase A coincides with a pending write for the following B; the
read will get the new "pending” data, not the data currently stored in the BHT.

6-10 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

A Case 1 read is handled with the normal sequencing of BHT reads and writes, i.e. the RAM
cells will be written by the time the read starts. Case 2 is satisfied by providing a BHT Bypass
using a mux at the BHT output; the new write data is sent back to the IBOX. Figure 6-5 shows
the Branch History read path with the bypass mux and the mux to choose the delayed data on
Refill Buffer reads.

Figure 6-5: Branch History Table Datapath

F New History
6A-Latch q 1%J_BHT_NEW_5B_H<7:0>

BHT 6B-Latch

0B-Latch

BHT_DATA_0B_H<7:0> | BHT_NEW_6B_H<7:0>
Wrilte Index

- 1%J_HUP_IDX_5B_H<12:4>
Address 4

0 ,. 1
2 . 1 MUX Q——M-AISE:—H——— compare Read Index

q 1%J_BHT_IDX_B_H<12:4>

A-Latch
B-Latch

$HT_DELAYED_H<7:0>

1 o Silo Select
2:1 MUX 4 1%J_BHT_SILO_SEL_B_H
smsome. TITLE=CACHE_BHT_MUX J%I_BR_HIST_0B_H<7:0>
LAST_MODIFIED=Fri Feb 14 15:29:56 1992

6.2.5 Icache Test Operations

Built-in-Self Test (BiST) will be incorporated into the Icache. BiST will provide read and write
access (with test patterns) to the Icache data and tag arrays. The SROM interface may also be
used to facilitate reads and writes of Icache data, tags, and branch history data.

Note that BiST will probably run while the chip is in reset. This requires certain IBOX/Icache
functions to be operable during reset. BiST should clear all the Icache valid bits at the end of
the BiST testing.

6.2.6 Icache States Resulting in UNPREDICTABLE operation

¢ Reading a Branch History Table entry before that entry has been updated or initialized using
the SROM will give UNPREDICTABLE history bits.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.2.7 Icache Redundancy Logic

To increase yield of the Icache array, two extra row pairs are included in the Icache data array.
These rows will be programmable, but the specific programming scheme has not been determined.
There will be no column redundancy in the Icache data array.

There is no redundancy in the Branch History Table or in the Icache Tag Array.

6.3 DCache Functional Description

The Dcache is a direct-mapped, write through, physical address cache of D-stream data. It has a
one cycle access and a one cycle repetition rate for both reads and writes. The Dcache is comprised
of two 8KByte caches, Dcache-0 and Dcache-1; each holds 256 32-byte blocks of data. The two
caches allow two read accesses at a time, or a single STORE or FILL access (FILL data may also
be returned to the EBOX and FBOX without writing the Decache, see Section 6.3.2.3). They may
be thought of as a single 8K cache which is dual-ported for reads (allows two concurrent LOADs)
and single-ported for FILLs or STOREs with the two caches being exact copies of each other. A
cache block is filled in two octaword FILL transactions; LOADs to the cache access a quadword of
data; STOREs may write a longword or quadword of data. Even longword parity is maintained
for the data (8 bits per block), and one bit of even tag parity is maintained for tag bits <38:13>
(valid bits are not covered).

The Dcache is maintained as a subset of the Secache. When the Scache replaces a block, an
invalidate is sent to the Dcache. The invalidate is done based upon address bits <12:6>. These
invalidates correspond to one Scache block (64 bytes) and clear two 32-byte Dcache blocks.

A diagram of the Dcache is shown in Figure 6-6.

6-12 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-6: Dcache-0 and Dcache-1

NOTE: No SILO or Write-Miss-Invalidate specifics included.
Waiting for decision on which one to implement.

' d_wr_dala_sxx_h<63:0> / parily A A
b_datal_s5b_h<63:0> / parily
b_data0_s5b_h<63:0> / parily
STORE Datapath STORE|Datapath
. Tag: [Jd
DCACHE-0 ° - Physicgl PA<39:13> g:
® - Direct |Map Valide1:0> | o®
Stage 5A/58 =23| . gks Parity a=
v®o a
-2~ - 256 blojcks »
253 s
. Parity (16) + Data (512) N 0o ¢ Parity (16) + Data (512 s |¢ 120 >
2:1 Mux 2:1 Mux
LOAD & FILL Datapathjs LOAD & FJLL Datapaths Tag DP
A/B Latch: FBOX Fill] Bypass A/B Latchf FBOX Fill| Bypsss
LOAD & FILL DPs| &plmt LOAD & FILL DPs @E‘EX Tag DP
A/B Latch: FBOX] Fill Bypdss A/B Latchj FBOX Fill Bypdss
Tag: [
DCACHE-1 ° PA<as:13> | 832
: o
Stage 5A/58B __Eg : vp:','::;' o> %E
° -] : .
High Side Data |<63:3P> 52 Low Side)Data <31:0p »
- © ~
L Parity (16) + DJta (512) N 20 " Parity|](16) + Datp (512) , 120 N
STORE Datapath STORE Datapath
5B Latch: Pipe data|for WB 6B Latch: Pipe data for WB
till_data_4b_h<127:96> fitl_data_pb_h<63:32>
till_data_4b_h<95:64> titl_data_4b_h<31:0>
T32 T 32 T32 T32 T32 T 32
N t ~N 4
{B Latch to hold] FILL Data <127:0> + Parity }
c_wr_dala_s5b_h<31:0>
c_wr_data_s5b_h<63:32> c_wr_lw_parily_s5b_h<1:0>

WRITE BUFFER (in CBOX)
6 64B entries = 12 DC blks = 48 QN rows

+128 L 128

Read FAT_BUS<127:0> + Parity

Write FAT_BUS<127:0> + Parity

smwee TITLE=CACHE_DC_BLK LAST_MODIFIED=Thu Dec 26 13:18:40 1991

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

In the diagram below, the logical organization of each Dcache is shown.

Figure 6-7: Logical Dcache Organization

<-- Dcache Tags --> e right bank —-—-——-- >
67R: |DP| Data <32:63> for 4 blocks | | | | Data <31:0> for 4 blocks |DP{
+==t + dWL | | dWL | +==1
66R: |DP| Data <32:63> for 4 blocks | | | | Data <31:0> for 4 blocks |DP|
65R: |DP| Data <32:63> for 4 blocks | | | | Data <31:0> for 4 blocks |DP|
+——+ + dWL | | dWL | +-=+
64R: |DP| Data <32:63> for 4 blocks | | | | Data <31:0> for 4 blocks |DP|
63: |DP| Data <32:63> for 4 blocks | { Inval | Tag | tWL | | Data <31:0> for 4 blocks |DP|
t—t + dWL | + + + dWL | +-=t
62: |DP| Data <32:63> for 4 blocks | | Inval | Tag | tWL | | Data <31:0> for 4 blocks |DP}
-t } + + t + + +-—+
+-—+ + + t + -+ t -+
1: |DP| Data <32:63> for 4 blocks | | Inval | Tag | tWL | | Data <31:0> for 4 blocks |DP|
==+ + dWL | + + + dWL | t—=1t
0: |DP| Data <32:63> for 4 blocks | | Inval | Tag | tWL | | Data <31:0> for 4 blocks |DP|
Bit order Left bank is increasing: Bit order Right bank is decreasing:
(far left) 32, 33, 34, ... 61, 62, 63 (center) {center) 31, 30, 29, ... 2, 1, 0 (far right}

Note: Rows 64/65 and 66/67 are redundant row pairs,

where: DP (32)
dWL
Tag (116)

tWL
Inval

Data (1024 bits)

[}

See Section 6.3.3.

Data parity, one bit per longword. Even parity.
Data Wordline Drivers (row pairs), left and right, 1 set for each bank.

= tag and valid bits, 29 bits per block: Tag (26}, Parity (1), Valid (2).

[

Note Tag Address bits may be in reverse order to match MBOX datapath.
Tag Wordline Drivers (needed for STORE silo)

Invalidate decoder and logic for tag array.

4 blocks of data in order by bit: (Note Quadword organization)

+ + + + + +oAmmmmmmmme e +
| Quadword 3 (I Quadword 1 [Quadword 2 | | QW 0 en QWO |
+ + } + + + + + + + o+ + + + + 4+ + + .. Fmmm
|B1k3|B1k2{Blk1|B1k0| {Blk3{Blk2|Blk1|B1k0| |[Blk3|Blk2|Blk1l|BlkO| |(B1lk3[Blk2| e |Blk1{B1kO|
|QW-3 | QW-3 | OW-3 |QW-3| |[QW-1|QW-1|QW-1|QW-1| |QW—-2|QW-2|QW-2|QW-2| |QW-O|QW-01| . | OW~-0 | QW-0 |
1 32 1 32 1 32)32 | 32)32)| 321}132) | 323214321321 132] 32 vee | 01 0]
e s s Tttt + + + + + + + + + Ammmmt et e e

As can be seen from the diagram, each Dcache is organized into 64 direct mapped indexes, where
each index consists of four Deache blocks (or two Scache/Bcache blocks). The breakdown of the
Physical address bits for Dcache decoding is show below:

6-14 The Caches

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-8: Dcache Address Breakdown

38 37 36 14 13112 11 10 09 08 07{06 05|04 03 02 01 0O
B e et et I e aaas At e B S e e e
| 26-bit Tag address | index address | blk | QW |LW|
B St S R e a S et st S e S R e e S

where: tag address = Physical address bits loaded into or compared with Tag.
row index address = addresses 1 of 64 rows: A
~ Index<12:8> decodes one of 32 M3 wordlines (row pairs)
- Index<7> drives 1 of 2 M1 wordlines from the M3 wordline.

blk index address indicates which block of 4 within an Dcache row.

OW address = indicates which Quadword of the block.
LW address = indicates which Longword within the QW, used for longword STOREs.
bits <1:0> = addressing within the longword, not used by the Dcache.

Data in the Dcache is accessed using an address from the MBOX, M%D_DC_ADDR_XA_H, or one
of the EBOX Virtual Addresses (VA) depending on the type of operation. The MBOX sends the
control signals, M%D_TAG_IDX_SEL_SB_H and M%D_DAT IDX_SEL_3B_H, telling the Dcache tag array

and Dcache data array which address to pick. The address muxing is illustrated in Figure 6-9.

Figure 6-9: Dcache Index Muxing for Data and Tag Arrays

EBOX VA busses: MBOX Address:
Y Y e%d_val_4a_h<12:3> Y

e%d_va0_4a_h<12:3>

m%d_dat_idx_sel_3b_h m%d_tag_idx_sel_3b_h
m%d_dc_addr_xa_h<142:3>

0 Data-0
2:1 Mux

data0O_idx datat_idx

omawng. TITLE=CACHE_DC_IDX LAST_MODIFIED=Tue May 12 15:58:33 1992

6.3.1 Dcache Initialization and Test

All valid bits in a Dcache are clear when M%D_DC_FLUSH_A_H is asserted via the DC_FLUSH
IPR, see Section 4.1.10, Mbox and Dcache IPR’s. Thus on powerup, M%D_DC_FLUSH_A_H should
be asserted in order to clear the valid bits.

There are enable and force_hit signals for the Dcache; these are described in Section 4.1.8.6.2.

The Dcache tags are written by FILL operations. They may also be written and read using IPR
access, see Section 4.1.10, Mbox and Dcache IPR’s.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Bad parity may be written for both the Dcache tag and data parity, see Section 4.1.8.2. Bad
parity is written to the Dcache tags using the IPR tag access. Bad parity may be written to
the Dcache data parity bits on STOREs; if the MBOX asserts M%D_FORCE_BAD_PAR_5B H, the
longword parity bits will be inverted as they are written to the Dcaches. This does not affect the
parity sent to the Write Buffer; it will still be correct.

6.3.2 Dcache Transactions

The MBOX sends the Dcache a Tag Command, Data Command, Tag Index Select, and Data Index

Select every cycle. The two separate command busses help to facilitate the Write-Silo used for
STORES, Section 6.3.2.2.

The MBOX also sends the Dcache M%D_UPDATE_DCOUT 3B_H which the Dcache uses on non-
READ commands to decide whether to update the data busses, D%Z _DATA0_5A_H<63:0> and D%Z_
DATA1_5A_H<63:0>. This is a power-savings feature, which prevents the large data busses from
changing value when they are not needed, see Section 6.3.2.3.

The following Tables show the results of each tag and data transaction based upon the commands
and index selects received. For LOADs and FILLs, the Data and Tag Command are the same;
for STORESs which occur as a three cycle operation, the commands may be different.

Table 6-3: Dcache Tag Command and Transactions

Transaction: Address Select: MBOX Tag Bus: Write
TAG_CMD_3B_H TAG_IDX SEL 3B Action D%M_TAG_5A Tag?
0 0 NOP! Default (DON’T CARE) NOP — Default? No
01 Read EBOX VA LOAD — LOAD Tag No
01 Read EBOX VA STORE —> STORE Tag No
01 Read MBOX (IPR) IPRRD —> Read Tag No
01 Read MBOX (BiST) BiSTRD —> Read Tag No
10 FILL MBOX (Fill) FILL —> FILL Tag w/ FILL?
11 Write MBOX (IPR) IPRWR —> DC_TEST_TAG w/ IPR data®
11 Write MBOX (BiST) BiSTWR —> BiST pattern w/ BiST data

INOP may default to Read or may be used to save power.
2Tag Bus depends upon what TAG_IDX_SEL_3B the MBOX sends and/or any power-saving logic.
3Write with FILL data if (RFB_DATA_VALID 9A * ANOFILL_5A)

6—16 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-4: Dcache Data Command and Transactions

Transaction: Address Select: MBOX DCTag Data Bus: Write
DATA_CMD 3B H DAT IDX SEL 3B Action Action! D%Z_DATA 5A Dcache?
0 0 NOP Don’t Care Note? Read —-> RFB Data® No
01 Read EBOX VA LOAD Read —> Decache Data No
01 Read MBOX (BiST) BiSTRD BiSTRD —> Dcache Data No
10 FILL MBOX (FILL) FILL FILL —> RFB Data?® w/ FILL!
10 FILL MBOX (BiST) BiSTWR BiSTWR —> RFB Data® w/ BiST patte
11 Write MBOX (Silo) Note? Read —> RFB Data® w/ Silo®

1Data and Tag commands are independent. This colummn indicates what the tag action would be.
2Ppossible MBOX actions: NOP, STORE, FILL bypass

3RFB data is driven if M%D_UPDATE_DCOUT_3B_H=1, otherwise "old" data remains on the bus, see Section 6.3.2.3.
feature as it prevents the data bus from switching when it is unnecessary.

4Write with FILL data if (RFB_DATA_VALID_9A * ANOFILL_5A)
5Unconditional write, BiST over-rides RFB_DATA_VALID_9A and NOFILL 5A
6Write with Silo data if (D_ST_VALID_6A)

6.3.2.1 Dcache Load Operation

A read of the Dcache occurs whenever the MBOX sends a Read command requested by the EBOX
and/or FBOX, to the Dcaches in stage 3B of the pipe, and sets the index selects to choose the
EBOX Virtual Address. Late in 4A, the EBOX will send the Virtual address outputs from the
EBOX fast adders to each Dcache for the data requested in Pipe-0 and the data requested in
Pipe-1. (Note, if a LOAD is requested for one pipe only, the other pipe will be driven (by default)
with the data corresponding to its index.)

In stage 4B, the data and tag decoders at each Decache decode the indices and drive their wordlines
enabling the data and tag ram cells to be read. The sense-amps are fired in 5A and a quadword
of data with its parity is driven into each data pipe from a 5A latch. D%Z _DATA0_5A H<63:0> is
driven from Dcache-0 into Pipe-0 and D%Z_DATA1_5A_H<63:0> is driven from Dcache-1 into Pipe-1.
With the same timing, D%M_TAGO0_5A_H<38:13>, D%M_TAG1_5A_H<38:13>, tag parity, and valid bits
are read from the tag array and driven to the MBOX Dcache Hit logic which is calculated in 5B.

6.3.2.2 Dcache Store Operation
STOREs occur as a three cycle operation using a Write Silo, see Section 4.1.8.2, Dcache STs:

¢ Stage 4: Read the tag from Dcache-0 that corresponds to the index on EBOX VA-0.
¢ Stage 5: The MBOX calculates Dcache hit for Dcache-0.

* Stage 6: If the STORE hit in the cache, both Dcache data arrays are written with the STORE
data.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

To allow back-to-back STORES, the Dcaches’ tag arrays are accessed separately from the data
arrays (each cache has a tag index decoder and a data index decoder). This allows for reading of
the tag index for the hit calculation while data from the previous STORE is being written into
the Dcache, see Table 6-5. ;

Here’s the full STORE sequence by cycle:

3B: MBOX sends a READ command to the Dcache tags.
MBOX sets M%D_TAG_IDX_SEL_3B_H=0 to choose EBOX VA-0.
4A: EBOX sends STORE index on VA-0 to Dcache Tag-0.
4B: Dcache tag read. '
5A: D%M_TAGO_5A_H<38:13> with parity is driven to the MBOX Dcache hit logic.
5B: MBOX calculates Dcache hit for Dcache-0 only.

MBOX sends a write command to Dcache data arrays in preparation for a
possible data write in stage 6.

MBOX sets M%D_DAT_IDX_SEL_3B_H=1 to choose MBOX silo’d index.
6A: MBOX sends the piped STORE index to both Deache data decoders.
STORE data with parity from the EBOX or FBOX is sent to the Dcaches.

MBOX enables/disables the data STORE by sending M%D_ST_VALID_6A_H
based on the results of M%DC_HIT_Eo_5B_H and IBOX traps.

Dcache-1 buffers the STORE data and forwards it with parity to the CBOX Write Buffer
on D%C_WB_DATA_6A_H<63:0> and D%C_WB_LW_PARITY_6A_H<1:0>.

6B: If M%D_ST_VALID_6A_H is high then the STORE data is written into both Dcaches.

Table 65 shows an example of three back-to-back STORESs. Note that in this example, the second
STORE misses in the Dcache and the data is not written.

Table 6-5: Dcache STORE Silo, Example of 3 back-to-back STORESs at one Dcache

S4 S5 Seé S7
Tag Command: Read Read Read X
Tag Index: Store-1 (EBOX) Store-2 (EBOX) Store-3 (EBOX) X
Data Command: X NOP Write Write
Data Index: X X Store-1 (MBOX) Store-2 (MBOX)
D_ST VALID: X X 1 (hit) 0 (miss)
Tag-1: DC Loockup DC Hit
Data-1: @ EBOX/FBOX @ EBOX/FBOX Write DC
Tag-2: DC Lookup DC Miss
Data-2: @ EBOX/FBOX @ EBOX/FBOX No Write
Tag-3: DC Lookup DC Hit
Data-3: @ EBOX/FBOX @ EBOX/FBOX

6-18 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

STOREs may write a longword or quadword of data. The Dcache will write a quadword of data
when M%D_WR_TYPE_5B_H = 1; otherwise a longword of data is written using M%D_ST_ADR_5B_
H<2> to indicate which longword within the quadword to write. The upper longword within a
quadword is in the left bank of each Dcache; the lower longword is in the right bank.

This Write Silo places restrictions on other commands. For instance, FILLs which arrive during
the 3-cycle STORE sequence will be bypassed over the cache and written to the register files only.
See Section 4.1.8.2 for other command restrictions during the processing of a STORE.

6.3.2.3 Dcache Fill Operation

FILL data is received from the CBOX on B%Z_RFB_SB_H<127:0>, the parity arrives a phase later
on C%D_FILL PAR_10A_H<3:0>. FILL data is driven to the FBOX and MBOX/EBOX as soon as
it arrives at the Dcache. The fill-bypass mux in the Dcache Data LOAD/FILL Datapath, see
Figure 6-6, muxes B%Z_RFB_9B_H<127:0> with the Dcache read data, latches it, and drives it onto
the data bus (if M%D_UPDATE_DCOUT_3B_H is asserted, see below). The FILL data is returned
during Stage 5A without waiting for the Dcache write. (Note, timing is normalized such that
9B/10A in the Scache/CBOX pipe is equivalent to cycle 4B/5A in the Dcache LOAD pipe). Both
data busses are driven with the FILL data even if this is not the requested data. Furthermore,
the upper quadword is always driven on Pipe-1 and the lower quadword on Pipe-0:

D%Z_DATA1_5A_H<63:0> = Pipe-1 Data Bus, driven with Fill data <127:64>
D%Z_DATAO_5A_H<63:0> = Pipe-0 Data Bus, driven with Fill data <63:0>.

The FILL parity is not driven to the FBOX, EBOX and MBOX.

The actual write of the Deache with the FILL data occurs in 5B after the data has already been
returned to the FBOX, EBOX and MBOX. B%Z_RFB_9B_H<127:0> is piped at the Dcache and the
MBOX sends the tag, tag parity, and two valid bits, in stage 5A for the 5B write.

For the FILL to write either Dcache, its NOFILL bit must be inactive and the CBOX must
indicate that the FILL data is valid with C%Z_RFB_DATA_VALID_9A_H. Since FILLs occur as two
separate octaword transactions, the MBOX determines the valid bits using the octaword address
and information from the CBOX as to which FILL this is (first or second). Both valid bits are
updated on every FILL. ’

If the above conditions are met, the data and tag are written into the Dcache in stage 5B.

There are restrictions around FILLs occurring with other operations, i.e. LOADs, STOREs. These
are detailed in the MBOX specification. Some conflict cases are handled by returning the FILL
data to the FBOX, EBOX, and MBOX, and not writing the FILL data into the Dcache. For
instance, a FILL can occur with a STORE as long as the FILL data does not write the cache—the

fill-bypass mux passes the FILL data onto the data busses, and the STORE data is written into
the Decaches.

The fill-bypass mux is used to pass the RFB data onto the data busses. The data busses may be
driven with the RFB data anytime except during Dcache Data Read (i.e. LOAD) operations, but
to save power, the data busses, D%Z_DATA0_5A_H<63:0> and D%Z_DATA1_5A_H<63:0>, are not always
updated. If one of the following is true, the data busses will be driven with new data:

1. The Dcache Data command is a READ (drive data busses with Dcache data).

2. M%D_UPDATE_DCOUT_H is a 1 (drive data busses with RFB data).

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Otherwise, the data busses will driven with old data (no switching of large devices and loads
saves power).

Data from the CBOX is filled in the Dcache(s) before the ECC checking or Scache parity checking
has completed. ECC or parity errors discovered on data that has been written to the Deache
are reported by the CBOX and will cause a machine check. The error flow has not been fully
determined, but it is likely that the parity error or ECC error will cause the full Dcache to be
flushed via the DC_FLUSH IPR. For a description of ECC and parity error handling, see the
Error Handling Chapter in the EV5 CPU Chip/Functional Specification.

6.3.24 Dcache Invalidate Operation

The types of Dcache invalidates that use the Dcache invalidate port addressed by the CBOX
are shown in Table 6-6. All invalidates are based on an index only and clear four valid bits
corresponding to a 64-byte Scache block (2 Dcache blocks). For increased performance, invalidates
have their own index decoder and occur during the precharge phase of the Dcache; this means
they do not consume a cycle and can happen asynchronous to other Dcache operations.

The invalidate command and invalidate address are received from the CBOX in stage 9A: C%D_
INVAL_CMD_9A_H and C%D_INVAL_ADDR_9A_H<12:6>. The invalidate will occur at the Dcache one
cycle later in Stage 10A.

Table 6-6: CBOX initiated Dcache Invalidates

Type Index Bits Octawords Cleared Notes
CBOX Scache <12:6> 4 Clears 64 bytes.!
Any STxC <12:6> 4 Don’t wait for STxC Pass/Fail

IMust clear Scache/Bcache block size to keep Dcache subset of Scache.

In addition to the CBOX initiated invalidates, individual Dcache entries may be invalidated by
using IPR access to the Dcache tags to clear the valid bit(s) (however, at this point there are no
plans for using this mechanism). See the Dcache tag IPRs in Section 4.1.10, Mbox and Dcache
IPR’s. For a description of ECC and parity error handling, see the Error Handling Chapter in
the EV5 CPU Chip/Functional Specification.

As mentioned in Section 6.3.1, the full Dcache may also be invalidated by a write to the DC_
FLUSH IPR.

6.3.2.5 Dcache Test Operations

Referring to Table 6-3, the Dcache tag array is accessible via IPR reads and writes processed by
the MBOX. If BiST is implemented for the Dcache, the Dcache tags will also be readable and
writable using the BiST logic; the BiST tag operation works by using existing MBOX-Dcache
signals and busses.

There is no IPR access to the Dcache data arrays. If BiST is implemented for the Dcache, the
data arrays may be written using the FILL path as indicated in Table 6—4. In order for the
write to occur, a signal indicating that BiST is running will be needed to over-ride the values of
C%Z_RFB_DATA_VALID_9A_H, M%D_NOFILL0_5A_H, and M%D_NOFILL0_5A_H. During BiST, the data
arrays may be read using the normal data read path.

6-20 The Caches DIGITAL RESTRICTED DISTRIBUTION

-/

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.3.3 Dcache Redundancy Logic

To increase yield of the Dcache array, two extra row pairs are included in the Dcache data array.
These rows will be programmable, but the specific programming scheme has not been determined.
There will be no column redundancy in the Dcache data array.

There is no redundancy in the Dcache Tag Array.

6.4 SCache Functional Description

The second-level cache, or SCache, is a 96 KByte cache. It is 3-way set associative and physically
addressed. Accesses to the SCache are controlled by the SCache Arbiter, which is part of the
Cbox.

The SCache consists of a tag array and a data array. It operates in a pipelined manner.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-10: SCache

S6B/S7A S7B/S8A S8B/S9A S9B/S10A S10B

INDEX

COMMAND

[|

1]

TAG TAG TAG TAG
ADDRESS LOOKUP| ADDRESS|
ARRAY DECODE DECODE

TAG
MODIFY

TAG MODIFY
MODIFY NEW STATUS STATVS —-{_s'r_nu s

o] _i_._.1
INPUT_TAG HIT l

HIT FORCE WIT 1

==

a0 PARITY
CHECK

TAG . {
OUTPUT omer |
PATH ARRAYS

TAG X X
OUTPUTS STATUS HIT TAG PARITY
AVAILABLE ERROR

DATA L DAT,
ARRAY q DATA fél‘m - L] DATA DATA

LOOKUP
DECODE -] ' becone]

DATA
INPUT s s
PATH

. 1 PARITY 11 PARITY
oTHeR & u CT4ER & -
DATA & CHECK DATA © CHLEK
DATA ARRAYS 5, ARRAYS g

OUTPUT
PATH

DATA
OUTPUTS X >, b,

X X X
AVAILABLE :iFF: PARITY_ERAOR :1:: PARITY_ERROR

6-22 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4.1 SCache Tag Array

The SCache Tag Array actually consists of three small arrays, one for each set. Each small array
contains 512 tags. Each tag is made up of the upper bits of the physical address, plus some status
bits which are used by the Cbox.

Table 6-7: SCache Tag

Name Extent Description

Tag<38:15> 34:11 Physical Address

Valid<1:0> 10:9 Valid bits for each 32 bytes of data

Shared<1:0> 8:7 Block is in Shared state: it is also present in another CPU’s SCache or
BCache. One Shared bit per 32B.

Dirty<1:0> 6:5 Block is in Dirty state: this CPU’s copy of this block is more up-to-date
than the copy in main memory. One Dirty bit per 32B.

Modified<3:0> - 4:1 Block is modified. One Modified bit per octaword.

Parity 0 Even parity over the Tag portion only

Note that status bits are maintained for each 32 bytes of data. This is done to support a block
size of 32 bytes, in addition to the native block size of 64 bytes.

6.4.1.1 Block Size

The SCache’s native block size is 64 bytes. A 32 byte block size is also supported, with separate
tag status bits for each 32 byte block. However, there is only one tag for each 64 byte block. This
tag is shared for two 32 byte blocks: the two 32B blocks must have identical values for physical
address bits <38:15>. In the best case, where all blocks have adjacent addresses, the SCache can
hold twice as many different blocks in 32B mode as in 64B mode. In the worst case, it holds the
same number of blocks in either mode, and therefore half as much actual data in the 32B mode.
In general, tag operations look at only the status bits for the addressed 32B. During 64B mode,
the Cbox must keep identical both of the Valid, Shared, and Dirty bits for each half of the block.

6.4.1.2 Physical Organization

The physical organization of one tag subarray is described below. The array is made up of 64
rows, plus two redundant rows. Each row contains 8 tags. The eight tags are interleaved on a
bit-by-bit basis, i.e. the 'P’ field described in Figure 6-11 actually consists of eight 'P’ bits, one
for each tag in that row.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-23

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 6-11: SCache Tag Physical Organization

65R: | P | M<1:20> | S<0> | D<O> | V<O> | Tag<38:27> | WL | Tag<26:15> | V<1> | D<1> | S<1> | M<3:2> |

64R: | P | M<1:0> | S<0> | D<O0> | V<O> | Tag<38:27> | WL | Tag<26:15> | V<1> | D<1> | S<1> | M<3:2> |

+ + + + + + + + + + + + +

63: | P | M<1:0> | S<0> | D<O0> | V<0> | Tag<38:27> | WL | Tag<26:15> | V<1> | D<1> | S<1> | M<3:2> |

0: | P | M<1:0> | $S<0> | D<O> | V<O0> | Tag<38:27> | WL | Tag<26:15> | V<1> | D<1> | S<1> | M<3:2> |
WL = Wordline Decoders/Drivers in center of cache.

Note: Rows 64 and 65 are redundant. See Section 6.4.5.

The following diagram shows how the 40-bit physical address is broken down and used within
the SCache Tag Array.

Figure 6-12: SCache Tag Address Breakdown

39|38 37 17 16 15]14 13 12|11
B S A e o e e N F——t——+ +
|I0| 24-bit Tag address | block | row | |

+ "
+ +

10 09 08 07 06/05 04 03 02 01 OO0

+
+

+

where: 1I/0

tag address
block index
row index
bits <5:0>

Indicates whether block is cacheable (=0}

Physical address bits

Indicates which block of 8 within a row

Addresses 1 of 64 rows

Addressing within the block, not used by the Scache tags

[}

[}

Each reference to the SCache begins with parallel lookups of all three SCache Tag sections. The
SCache Tag Array is looked up in EVs pipeline stages S6B/STA. Each tag section calculates SET_
HIT, and drives its SET_HIT signal to its SCache data banks. The SET_HIT signals are also
driven to the Cbox. Any modifications to the tag are written back into the array in S7TB/S8A.

SET_HIT is asserted if the tag read out of the array matches the input tag driven by the Cbox,
and the valid bit for the 32B being addressed is set. The SCache tag section also derives a TAG_
MATCH signal for each set, which is asserted if the two tags match, and EITHER valid bit is
set. TAG_MATCH is used by the Cbox when in 32B mode, to assist in determining which set to
select for a FILL.

In addition to SET_HIT, each tag section calculates BCACHE_INDEX MATCH. These signals
are used by the SCache Allocation logic (see <REFERENCE>(cbox_??)). They indicate when a
miss in the SCache will also cause a miss in the BCache (board-level cache). BCACHE_INDEX _
MATCH is simply a hit calculation over fewer tag bits. The number of bits compared depends on
the BCache size; if there is no BCache, BCACHE_INDEX_MATCH is not calculated. Either of
the two valid bits must be set in order to assert BCACHE_INDEX_ MATCH.

6-24 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-8: BCache Index Match

BCache Size (Megabytes) Tag Bits Compared

1 Physical Address <38:20>
4 Physical Address <38:22>
8 Physical Address <38:23>
16 Physical Address <38:24>
32 Physical Address <38:25>
64 Physical Address <38:26>

6.4.1.3 Force Hit/Force Miss Conditions

There are several transactions for which the Cbox can force the SET_HITSs using a set selection
signal. (For more detail on the transactions, see Section 6.4.4). Force hit is also used in testing
the SCache.

There is also a force miss mechanism. References to non-cacheable regions of memory must not be
stored in the SCache. These blocks all have bit<39> of their physical address equal to 1. Rather
than store PA<39> in the SCache tags (since it must always be ’0’ for cacheable references), the
condition of PA<39> equal to 1 is detected and used to force a miss in the SCache.

6.4.1.4 Status Bits

Each tag includes several status bits, described above. These may be modified in S7TB/S8A,
depending on the command driven by the Cbox. Note that all modifications are done only to the
status bits corresponding to the 32B being addressed.

Table 6-9: Tag Modifications

Transaction Modifies Hit Condition Explanation
SC_READ none No modifications done on a read.
SC_WRITE M SET _HIT .[PRIVATE.DIRTY + WR_ Modified bits are set based on
PERMISSION] which longwords will be writ-
ten in the SCache.
D SET _HIT . S WR_PERMISSION Dirty is cleared on every write
‘ to Shared data
SET_HIT.[PRIVATE.DIRTY +P_ Dirty is set on every write to
WR_PERMISSION] . Private data
SC_INVAL v SET HIT Both valid bits cleared
SC_READ_DIRTY S SET_HIT Shared bit set
SC_FILL all SET_HIT! Cbox writes new tag entry
SC_SET _SHARED S SET_HIT Shared bit set

INote that SET_HITs may be forced by the SCache Arbiter.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-25

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Some status bits are set to fixed values based on the transaction. The following table lists
the final value for each portion of the SCache tag at the completion of each transaction type.
Modifications are only done to the status bits for the status bits corresponding to the 32B being
addressed, unless otherwise noted.

Table 6-10: Final Status Values

Status

Value

Transaction!

Note

TAG

2

val®

'

(=T

val

SC_READ
SC_WRITE
SC_INVAL
SC_READ_DIRTY
SC_FILL
SC_SET_SHARED

SC_READ
SC_WRITE
SC_INVAL
SC_READ_DIRTY
SC_FILL

SC_SET SHARED

~ SC_READ

SC_WRITE
SC_WRITE
SC_INVAL
SC_READ_DIRTY
SC_FILL

SC_SET _SHARED

SC_READ
SC_WRITE
SC_WRITE
SC_INVAL
SC_READ_DIRTY
SC_FILL

SC_SET SHARED

Both valid bits cleared

Private data
Shared data

Private data
Shared data

1The transaction is successful: SET_HIT is detected/forced; SC_WRITE performs the write.
2_ indicates no change was made
3"val" is the value driven from the Chox

6-26 The Caches

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6—-10 (Cont.): Final Status Values

Status Value Transaction’ Note

M - SC_READ
MORval SC_WRITE Private data
0 SC_WRITE Shared data
- SC_INVAL
- SC_READ_DIRTY
val SC_FILL

- SC_SET_SHARED

P - SC_READ
- SC_WRITE
- SC_INVAL
- SC_READ_DIRTY
val SC_FILL
- SC_SET_SHARED

IThe transaction is successful: SET_HIT is detected/forced; SC_WRITE performs the write.

6.4.1.5 Aborting an SCache Reference

Only the SC_WRITE command can be aborted. This can be accomplished in either of two ways:
the command can be changed to NOP if there is time to do so, or the abort signal can be asserted.
The abort signal is sent in S7TA. On an abort no tag modifications are done, and no data array
modifications are done.

6.4.1.6 Parity Checking

The SCache tag array also has parity checking logic, which operates over the Tag portion only.
Each of the three tag arrays has its own parity checking logic; parity is checked and errors are
reported for every access to a valid block (either valid bit set), regardless of hit or miss. See the
external spec for details of parity error handling.

6.4.2 SCache Data Array

The SCache is a 96KB, 3-way set associative, physically addressed, write-back cache. It is a
unified instruction and data cache. Misses in the ICache and DCache generate accesses into the
SCache; misses in the SCache generate accesses off-chip. Transactions generated by the sytem
are also processed in the SCache.

The data within the SCache is protected with even longword parity; writes to the SCache can be
done to the granularity of a longword.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-27

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The SCache data array resides in pipeline stages S8B/S9A and S9B/S10A. Most transactions are
done on a 32-byte basis, since that is the block size for the ICache and DCache. These 32-byte
transactions are handled as two 16-byte operations. The octaword requested (determined by
decoding the address originating in the Mbox, Ibox, or Cbox) is read or written in S8B/S9A; the
other half the 32-byte block is processed in S9B/S10A.

The SCache has two major internal buses: the Read SCache bus (RSC), used for reading data from
the SCache data array, and the Write SCache bus (WSC), used for writing data into the SCache
data array. These internal buses connect to external read and write buses: the RFB, WFB, and
IFB. The SET_HIT signals generated in the SCache Tag Array are used to select which set will
drive onto/be written from the RSC/WSC.

The Mbox and Cbox access the SCache from the Read Fatbus (RFB) and Write Fatbus (WFB),
which are separate 128-bit buses. The RFB is used to read data from the SCache; the WFB is
used to write data into the SCache. The Ibox accesses the SCache from the ICache Fill Bus (IFB);
this bus is used for reading from the SCache.

Control signals from the Cbox are used to enable the SCache to drive onto the RFB and IFB,
and to enable the SCache to receive data from the WFB. All of these buses have multiple drivers
and/or receivers.

The Cbox checks parity on every read of the SCache data array. See the external spec for details
of parity error handling.

The SCache is physically made up of twenty-four 4KB banks. There are 64 rows, plus two

redundant rows, in each bank. Each row contains 8 quadwords of data, plus longword parity for

those 8 quadwords. To access an entire octaword, two of the 24 banks are looked up, producing one -
quadword from each of the two banks. The physical organization of one SCache bank is described

below. Note that all fields are actually interleaved, as in the tag arrays, i.e. the Data<63> field

is actually made up of eight bits: Data<63> for each of the 8 quadwords stored in this row.

Figure 6-13: SCache Physical Organization, Lower Quadword (Right Half of SCache)

+ + ; + +

P<0> | Data<0:31> | WL | Data<32:63> | P<1> | R

65R:

=

64R:

o

P<0> | Data<0:31> | WL | Data<32:63> | P<1> | R

63:

o

=t — - +

+—+—+ =+

+— =+ — +

P<0> | Data<0:31> | WL | Data<32:63> | P<1> | R

+
+

0: | R | P<O0> | Data<0:31> | WL | Data<32:63> | P<1> | R |

=t +

+
t

where: R
P<1>
P<0>
WL

redundant bitslice (8 columns)

longword parity bit for LW1l, Data<63:32>
longword parity bit for LWO, Data<31:0>
wordline decoders/drivers

Wonowon

Note: Rows 64 and 65 are redundant. See Section 6.4.5.

6-28 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

The previous diagram shows storage of the lower half of an octaword. The upper half is stored
in another 4KB bank, as shown in the following diagram.

Figure 6-14: SCache Physical Organization, Upper Quadword (Left Half of SCache)

P<3> | Data<127:96> Data<95:64> | P<2> | R

+ + }
+ + t +

65R: | R | | WL | |
64R: | R | P<3> | Data<127:96> | WL | Data<95:64> | P<2> | R |
63: | R | P<3> | Data<127:96> | WL | Data<95:64> | P<2> | R |

|

0: | R | P<3> | Data<127:96> | WL | Data<95:64> | P<2> | R

where: P<3>
P<2>

longword parity bit for IW3, Data<127:96>
longword parity bit for LW2, Data<95:64>

o

The following diagram shows how the 40-bit physical address is broken down and used within
the SCache Data Array.

Figure 6-15: SCache Data Address Breakdown

39 38 16 15114 13)12 11 10 09 08 07|06}05 0403

e T

02 01 00
| fbank | row |bl] OW | |

B R N s et e S

; n 4+
.- N v T + + t

Y
+ u

where: bits <39:15>
bank index
row index

Tag portion, not used by the SCache Data Array
Selects two of eight 4KB banks
Addresses 1 of 64 rows

[/ | T

bl index Addresses 1 of 2 blocks

OW index Addresses 1 of 4 octawords within a block
bits <6:4> Addresses 1 of 8 columns

bits <3:0> Addressing within an octaword, not used

6.4.3 Pipeline
The SCache is a 4-stage pipeline. Most transactions have a 4-cycle latency: if the tag lookup is

done in S6B/STA, the first octaword of data is output on the bus in S9B/S10A. In general, a new
transaction can be started every two cycles. The general SCache flow for a single operation is:

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-29

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-11: SCache Pipeline

Stage Tag Operations Data Operations

S6B/STA Tag Lookup Index driven to data arrays
Hit Calculation

S7B/S8A Tag Modification Index decoding

Hit driven to data arrays
WRITE data driven to data arrays (1st octaword)

S8B/S9A [Next Tag Lookup] Data read/written (1st octaword)

WRITE data driven to data arrays (2nd octaword)
S9B/S10A Data read/written (2nd octaword)

READ data available (1st octaword)
S10B/S11A READ data available (2nd octaword)

6.4.4 Transactions

The SCache handles six transaction types: SC_READ, SC_WRITE, SC_INVAL, SC_READ_
DIRTY, SC_FILL, and SC_SET_SHARED. Read commands are initiated by the Mbox and
Ibox; Write commands are initiated by the Mbox; Read Dirty, Fill, Inval, and Set_Shared

are initiated by the the system. For more details on interactions between transactions, see
<REFERENCE>(cbox_sc_arb).

6.44.1 SC_READ

The SCache reads 32 bytes at a time, in two 16-byte transactions. The octaword requested is
read first, followed by the other half of the 32-byte block. If there is no SET_HIT detected in the
SCache tags, no read is done. For a regular read, SET_HIT is not forced.

This transaction is also used to copy a victim from the SCache into the Cbox. A victim is a block
which has been deallocated, but has been modified so it must be written back. In this case, the
SCache Arbiter will send the SCache a tag array index plus a set selection signal in order to
choose which block is to be removed (SET_HIT will be forced).

An SC_WRITE command which fails becomes an SC_READ command.
No tag status bits are modified for this operation.

Table 6-12: SCache Transactions: SC_READ

S6B/STA S7B/S8A S8SB/S9A S9B/S10A S10B/S11A
Tag Lookup
Data Read OW1! Read OW2
RFB,IFB ow1 owz

WFB

10Wx: octaword x

6-30 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.442 SC_WRITE

The SCache writes 32 bytes at a time, in two 16-byte transactions. The octaword requested is
written first, followed by the other half of the block. Longword enables are driven to the SCache
with each octaword, indicating which longwords are to be written (zero to four enables asserted).

If there is no SET_HIT detected, no write is done. If a SET_HIT is detected, but the status is
Private and Not Dirty, no write is done. The Cbox must obtain permission from the system to
change the tag status to Dirty before the write can be done. If a SET_HIT is detected, but the
status is Shared, no write is done until the Cbox obtains permission from the system.

A write succeeds if:
1. The block status is Private and Dirty.

2. The block status is Private and Clean, and the Cbox asserts a "Set Dirty" permission signal.
3. The block status is Shared, and the Cbox asserts a "Shared Write" permission signal.

Any write which fails is turned into an SC_READ command by the SCache Tag section.

On a write, any longword which is not written (based on the longword enables) is read. This
assists the Cbox in accumulating a block which will require an off-chip broadcast.

The SCache tags modify the Shared, Dirty, and Modified status bits only on a successful Write.
Shared, Dirty and Modified are cleared on every write to a Shared block. On a write to a Private
block, Dirty is set and the new values for the Modified bits are created by OR’ing the previous
Modified status bits with the input Modified bits, which are generated from the longword write
masks.

Table 6-13: SCache Transactions: SC_WRITE

S6B/S7A S7B/S8A S8B/S9%A S9B/S10A S$10B/S11A
Tag Lookup Modify SM,D
Data Write OW1 Write OW2
RFB,IFB owil owat
WFB oW1 ow2
1Unwritten longwords.

6.443 SC_INVAL

This transaction is used to invalidate a block in the SCache. The only action performed by this
transaction is that of clearing both Valid bits corresponding to a 64B block, regardless of actual
block size.

This transaction never accesses the SCache data array.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-31

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-14: SCache Transactions: SC_INVAL

S6B/S7A S7B/SSA S8B/S9A S9B/S10A S10B/S11A
Tag Lookup Modify V
Data
RFB,IFB
WFB

6.444 SC_READ_DIRTY

This transaction is used to perform a read that was initiated from off-chip. The status of the block
must be changed to Shared. Note that only the Shared bit for the 32 bytes addressed is modified,
regardless of actual block size. In 64B mode, the Cbox must eventually do an SC_READ_DIRTY
to both halves of the block in order maintain the Shared bit correctly.

SC_READ_DIRTY behaves like a normal Read, in that it operates on a 32-byte piece of data. It
returns the requested octaword first, then the other octaword in the 32-byte datum. Two SC_
READ_DIRTY commands are required to read an entire 64B block.

Table 6-15: SCache Transactions: SC_READ_DIRTY

S6B/S7A S7B/S8A S8B/S9A S9B/S10A S10B/S11A
Tag Lookup Modify S
Data Read OW1 Read OW2
RFB,IFB ow1l ow2

WFB

6.445 SC FILL

Data requested due to a miss in the SCache is written to the SCache using the SC_FILL command.
Since this transaction handles data received from the system, the data is handled one octaword
at a time. The SCache arbiter prevents CPU access to a block being filled, so no accesses can be
done to a partially filled block.

A new tag entry is written on an SC_FILL. The SCache set allocation logic decides which location
is to be written. Like the SC_INVAL command, block selection is done by sending the SCache

a tag array index and a set selection signal. Four SC_FILL commands are required to write an
entire 64B block.

SC_FILL is the only transaction which writes the SCache Tag array in S6B/S7A.

6-32 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 6-16: SCache Transactions: SC_FILL

S6B/S7A S7B/SSA S8B/S9A S9B/S10A S10B/S11A
Tag Write New Tag
Data Write OW1
RFB,IFB
WFB . oW1

6.446 SC_SET_SHARED

This command is used to set the Shared status bit based on commands generated by the system.
The tag array is probed, to see if the SCache contains a particular block; on a SET_HIT, the
Shared bit is set. This SCache command is used to implement the system command Set_Shared
(changing a private block to a shared block).

This transaction never accesses the SCache data‘array.

Table 6-17: SCache Transactions: SC_TAG_UPDATE

S6B/S7A S7B/SSA S8B/S9A S9B/S10A S10B/S11A
Tag Lookup Modify S
Data
RFB,IFB
WFB

6.4.5 SCache Redundancy Logic

The SCache tag array is implemented as 3 banks of approximately 2KB each. Each bank has
two extra rows, which are enabled by fuses. The exact fuse usage is TBD.

The SCache data array is implemented as 24 banks of 4KB each. Each bank has two extra rows;
each extra row can replace any failing row within the 4KB bank. The extra rows are enabled
by fuses: mapping of the extra row to a faulty row is done by programming the failing row’s
address into the fuses associated with the extra row. Every address driven into the cache bank
is compared to the addresses encoded in the mapping fuses; if a match is detected, the extra row
is looked up rather than the failing row.

Each 4KB bank also has two sets of 8 redundant columns, one set on each side of the word line
drivers. The set of 8 columns can be mapped to any bitslice within its half-bank (any one of 33
other bitslices: 32 data plus one parity). Column redundancy fuses are shared between two 4KB
banks, so that one repair can be done within any given half-bank; the same repair will be done
in the half-bank immediately below.

The SCache data array can also be disabled a set at a time. If a bank cannot be repaired, its
set can be disabled. The SCache will continue to function properly; performance may be reduced.
Only one good set is required for correct operation of the SCache.

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-33

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4.6 Cbox Interface

The SCache Arbiter in the Cbox controls the SCache by sending the SCache tag array a com-
mand, and with some commands, new data values. Set selection signals are also sent with some

commands in order to force SET_HIT. The command and set selection encodings are described
below.

Table 6-18: SCache Commands from Cbox

Encoding Command Force Hit
000 Nop 1t

001 SC_READ #

010 SC_INVAL 11

011 SC_WRITE 11

100 SC_SET_SHARED 11

101 SC_READ_DIRTY 1

110 Not Used 1

m SC_FILL ##

INo set is caused to "force hit".

3For a normal read, Force Hit = 11; for a victim read, Force Hit = ##.

On every tag lookup, status information is driven to the Cbox. The information, and the stage in
which it is driven, are listed in the table below.

Table 6-19: Tag Status Driven to Chox

S7A S7B
V[2:0]<1:05! Tag?

S[2:0]<1:0> Parity Error[2:0]
D[2:0]<1:0>

M[2:0]<3:0>

SET_HIT[2:0]

BCACHE_INDEX_MATCH[2:0]
TAG_MATCH][2:0]

1[2:0] indicates this status is driven from all 3 sets
2 this status is driven from only the set which detected SET_HIT

6-34 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.4.7 Ibox Interface
The Ibox interface with the SCache is via the ICache Fill Bus (IFB). For a reference which hits
in the SCache, data is driven on the IFB from the RSC. If a reference misses in the SCache, the
request is sent off-chip. Fill data returns to the Ibox through the SCache, on the WSC. This fill

data is already ECC-corrected. Data from non-cacheable regions of memory are sent through the
SCache, but are not written into the SCache.

Fill data to the Ibox must be piped one cycle within the SCache in order to mimic the timing of
an SCache hit and prevent collisions on the IFB. This piping is done in the SCache data array,
at the Ibox interface.

The SCache uses the longword write signals sent by the Cbox in order to determine whether data
to be driven on the IFB is appearing on the RSC or WSC.

6.5 Reset and Initialization

See the External Spec.

6.6 Error Handling and Recording

See the External Spec.

6.7 Test Aspects

- The ICache incorporates built-in self-test (BiST). The DCache and SCache are tested via IPRs.
Bad parity may be written to the Dcache tags and data, see Section 6.3.1.

6.7.1 BiST

See the External Spec for a description of BiST in the ICache.

6.7.2 IPR access

The DCache and SCache are accessible for testing via IPRs. Using these access paths, all bits
can be tested as desired. These IPRs may also be used in error handling.

6.7.3 Scan Chains

A scan chain is located at the output of the SCache, at its interface to the IFB. There are actually
two segments of the scan chain, one over each half of the SCache data array. The signals in order
of appearance are:

DIGITAL RESTBICTED DISTRIBUTION The Caches 6-35

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Right Half of SCache:

<0> S%IFB_PAR_H<0> LW Parity for Data<31:0>
<1> S%IFB_H<0> Data<0>
<2> S%IFB_H<l> Data<1>
<3> S%IFB_H<2> - Data<2>
<4> S%IFB_H<3> Data<3>
<5> S%IFB_H<d> Data<4>
<6> S%IFB_H<5> Data<5>
<7> S%IFB_H<6> Data<6>
<8> S%IFB_H<7> Data<7>
<9> S%IFB_H<8> Data<8>
<10> S%IFB_H<9> Data<9>
<11> S%IFB_H<10> Data<10>
<12> S%IFB_H<11> Data<11>
<13> S%IFB_H<12> Data<12>
<14> S%IFB_H<13> Data<13>
<15> S%IFB_H<14> Data<14>
<16> S%IFB_H<15> Data<15>
<17> S%IFB_H<16> Data<16>
<18> S%IFB_H<17> Data<17>
<19> S%IFB_H<18> Data<18>
<20> S%IFB_H<19> Data<19>
<21> S%IFB_H<20> Data<20>
<22> S%IFB_H<21> Data<21>
<23> S%IFB_H<22> Data<22>
<24> S%IFB_H<23> Data<23>
<25> S%IFB_H<24> Data<24>
<26> S%IFB_H<25> Data<25>
<27> S%IFB_H<26> Data<26>
<28> S%IFB_H<27> Data<27>
<29> S%IFB_H<28> Data<28>
<30> S%IFB_H<29> Data<29>
<31> S%IFB_H<30> Data<30>
<32> S%IFB_H<31> Data<31>
<33> 8_DIR_CTL%LSEL_WSC_H LW write enable for Data<31:0>
<34> S_DCR%ADDR_7A_L<14> Address driven to SCache
<35> 8 DCR%ADDR_7A_L<13> "

6-36 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Right Half of SCache:

<36> S_DCR%ADDR_7A L<12> "

<37> S_DCR%ADDR_7A_L<11> "

<38> S_DCR%ADDR_7A_L<10> "

<39> S_DCR%ADDR _7A_L<8> "

<40> S8_DCR%ADDR_7A_L<8> Y

<41> 8_DCR%ADDR_7A_L<7> "

<42> S_DCR%ADDR_7A_L<6> "

<43> S_DCR%ADDR_7A_L<5> "

<44> S DCR%ADDR_7A_L<4> "

<45> S_DCR%HIT_H<2> SET _HIT signal, set 2
<46> S_DCR%HIT_H<1> SET _HIT signal, set 1
<47> S_DCR%HIT_H<0> SET_HIT signal, set 0
<48> 8_DIR_CTL%RSEL_WSC_H LW write enable for Data<63:32>
<49> S%IFB_H<32> Data<32>

<50> SHIFB_H<33> Data<33>

<51> SHIFB_H<34> Data<34>

<52> S®IFB_H<35> Data<35>

<53> S%IFB_H<36> Data<36>

<54> S%IFB_H<37> Data<37>

<55> S%IFB_H<38> Data<38>

<56> S%IFB_H<i9> Data<39>

<57> S%IFB_H<40> Data<40>

<58> S®IFB_H<dl> Data<41>

<59> S%IFB_H<42> Data<42>

<60> S%IFB_H<43> Data<43>

<61> S%IFB_He44> Data<44>

<62> S%IFB_H<45> Data<45>

<63> SXIFB_H<A6> Data<46>

<64> S%IFB_HAT> Data<47>

<65> S%IFB_HA4S> Data<48>

<66> S%IFB_H<49> Data<49>

<67> S%IFB_H<50> Data<50>

<68> S%IFB_H<51> Data<51>

<69> S%IFB_H<52> Data<52>

<70> S%IFB_H<53> Data<53>

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-37

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment

Scan Chain for Right Half of SCache:

<71> S%IFB_H<51> Data<b4>
<72> S%IFB_H<55> Data<55>
<73> S%IFB_H<56> Data<56>
<74> S%IFB_H<57> Data<57>
<75> S%IFB_H<58> Data<58>
<76> S%IFB_H<59> Data<59>
<77> S%IFB_H<60> Data<60>
<78> S%IFB_H<6l> Data<61>
<79> S%IFB_H<62> Data<62>
<80> S%IFB_H<63> Data<63>
<81> S%IFB_PAR_H<I> LW Parity for Data<63:32>

6-38 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment
Scan Chain for Left Half of SCache:

<0> S%IFB_PAR_H<2> LW Parity for Data<95:64>
<1> S%IFB_H<64> : Data<64>
<2> S%IFB_H<65> Data<65>
<3> S%IFB_H<66> Data<66>
<4> S%IFB_H<67> Data<67>
<5> S%IFB_H<68> Data<68>
<6> S%IFB_H<69> Data<69>
<7> S%IFB_H<0> Data<70>
<8> S%IFB_H<71> Data<71>
<9> S%IFB_H<72> Data<72>
<10> S%IFB_H<13> Data<73>
<11> S%IFB_H<74> Data<74>
<12> S%IFB_H<75> Data<75>
<13> S%IFB_H<16> Data<76>
<14> . S%IFB_H<?> Data<77>
<15> S%IFB_H<78> Data<78>
<16> S%IFB_H<79> Data<79>
<17> S%IFB_H<80> Data<80>
<18> S%IFB_H<81> Data<81>
<19> S%IFB_H<82> Data<82>
<20> S%IFB_H<83> Data<83>
<21> S%IFB_H<84> Data<84>

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-39

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment
Scan Chain for Left Half of SCache:
<22> S%IFB_H<85> Data<85>
<23> S%IFB_H<86> Data<86>
<24> S%IFB_H<87> Data<87>
<25> S%IFB_H<88> Data<88>
<26> S%IFB_H<S8> Data<89>
<27> S%IFB_H<80> Data<90>
<28> S%IFB_H<91> Data<91>
<29> S%IFB_H<92> Data<92>
<30> S%IFB_H<93> Data<93>
<31> S%IFB_H<94> Data<94>
<32> S%IFB_H<95> Data<95>
<33> S_DIL_CTL%LSEL_WSC_H LW write enable for Data<95:64>
<34> S_DCL%ADDR_7A_L<14> Address driven to SCache
<35> _DCL%ADDR_7A _L<13> "

6-40 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment
Scan Chain for Left Half of SCache:
<36> S_DCL%ADDR_7A_L<12> "
<37> S_DCL%ADDR_7A_L<11> "
<38> 8_DCL%ADDR_7A_L<10> "
<39> S_DCL%ADDR_7A_L<8> "
<40> 8_DCL%ADDR_7A_L<8> "
<41> 8_DCL%ADDR_7A_L<7> "
<42> S_DCL%ADDR_7A_L<6> "
<43> 8_DCL%ADDR _7A_L<5> "
<44> 8_DCL%ADDR_7A_L<4> "
<45> S_DCL%HIT_H<2> SET_HIT signal, set 2
<46> S_DCL%HIT_H<1> SET_HIT signal, set 1
<47> S_DCL%HIT_H<0> SET_HIT signal, set 0
<48> S_DIL_CTL%RSEL_WSC_H LW write enable for Data<127:96>
<49> S%IFB_H<96> Data<96>
<50> S%IFB_HI?> Data<97>
<51> S%IFB_H8> Data<98>
<52> SXIFB_H<99> Data<99>
<53> S%IFB_H<100> Data<100>
<54> S%IFB_H<101> Data<101>
<55> S%IFB_H<102> Data<102>
<56> S%IFB_H<103> Data<103>
<57> S%IFB_H<104> Data<104>

DIGITAL RESTRICTED DISTRIBUTION The Caches 6-41

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Position Description Comment
Scan Chain for Left Half of SCache:
<58> S%IFB_H<105> Data<105>
<59> S%IFB_H<106> Data<106>
<60> S%IFB_H<107> Data<107>
<61> S%IFB_H<108> Data<108>
<62> S%IFB_H<109> Data<109>
<63> S%IFB_H<110> Data<110>
<64> S%IFB_H<111> Data<111>
<65> S%IFB_H<112> Data<112>
<66> S%IFB_H<113> Data<113>
<67> S%IFB_H<114> Data<114>
<68> S%IFB_H<115> Data<115>
<69> S%IFB_H<116> Data<116>
<70> S%IFB_H<117> Data<117>
<71> S%IFB_H<118> Data<118>
<72> S%IFB_H<119> Data<119>
<73> S%IFB_H<120> Data<120>
<74> S%IFB_H<121> Data<121>
<75> S%IFB_H<132> Data<122>
<76> S%IFB_H<123> Data<123>
<77> S%IFB_H<124> Data<124>
<78> S%IFB_H<125> Data<125>
<79> S%IFB_H<126> Data<126>
<80> S%IFB H<137> Data<127>
<81> S%IFB_PAR_H<S> LW Parity for Data<127:96>

6.8 Performance Monitoring Features

These are TBD. They are likely to include tracking of cache hit rates for various transactions. See
the Ibox, Cbox, and Mbox chapters for details.

6.9 Issues
6.9.1 ICache
1. Does loading from the SROM take place while RESET is asserted?
2. Handling of data with parity error or ECC error that gets written into the Icache and/or Refill

Buffer. I am assuming that this error flow will be described in the Error Handling Chapter
of the EV5 CPU Chip/Functional Specification.

6-42 The Caches DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

6.9.2 DCache

1. Handling of data with ECC error that gets written into the Dcache. I am assuming that this
error flow will be described in the Error Handling Chapter of the EV5 CPU Chip/Functional
Specification.

6.9.3 SCache

1. Currently parity is only computed over the address portion of the tag. Should separate parity
be computed over the status bits?

2. How are the modified blocks removed during powerfail?
3. Define IPRs.

6.10 Revision History

Table 6-20: Revision History

Who When Description of change

Elizabeth M. Cooper 2-Dec-1991 Overview, SCache particulars

M. Delaney 17-Dec-1991 Adding to Icache/Dcache sections

M. Delaney 7-Jan-1992 First pass of Icache & Dcache sections done

M. Delaney 10-Jan-1992 Changed Dcache indexing 12:11 —> 6:5 etc.

M. Delaney 13-Jan-1992 Icache section corrections per Mike Smith

M. Delaney 20-Jan-1992 Changed Dcache over to write silo
Icache: updated for fills coming through Scache

Elizabeth M. Cooper 22-Jan-1992 Scache updates

Elizabeth M. Cooper 3-Feb-1992 Scache command updates

M. Delaney 13-Feb-1992 Icache and Decache updates

M. Delaney 21-Feb-1992 Minor Dcache updates—Forcing bad parity

M. Delaney 9-Mar-1992 Icache updates: Forcing bad parity; updated RFB
logic/timing

M. Delaney 16-Mar-1992 Dcache updates: FILL bypass timing change, DC tag
in middle

M. Delaney 12-May-1992 Icache & Dcache updates: new DC timing, no split
DC

Elizabeth M. Cooper 26-June-1992 SCache updates

DIGITAL RESTRICTED DISTRIBUTION

The Caches 6—43

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 7

The Clocks

7.1 Overview-Block Diagram

DIGITAL RESTRICTED DISTRIBUTION The Clocks 7-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 7-1: Ebox

BOX MBOX_
. REGISTER 32 4+ 8 ENTRIES
p—— FILE 3 Rens romms ———a 3A
WRITE IN B
L]
38
R
T
TR,
V———
i
L
[| L
T & >
‘I'II J[l I v
N
Vv
- - 4A
Bl (==] BLd
4B
EO E1
v o 5A
oy =
BYTE
BRIJNP
WXPR
CALPAL
58
6A
E BOX 6B
7A
- 7B
Tue Oct 29 09:55:20 1991

7-2 The Clocks DIGITAL RESTRICTED DISTRIBUTION

7.2

7.3

7.4

75

7.6

7.7

7.8

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Functional Description

Reset and Initialization

Error Handling and Recording
Test Aspects

Performance Monitoring Features
Issues

Revision History

Table 7-1: Revision History

Who When Description of change

your name date description

DIGITAL RESTRICTED DISTRIBUTION

The Clocks 7-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Chapter 8

Test Internals

8.1 Overview

This chapter describes the EVs CPU chip’s testability features and the test port.

8.2 The Testability Strategy

The EVs CPU chip’s testability strategy addresses the broad issue of providing cost-effective and
thorough testing during many life cycle testing phases. The strategy specifically implements test

features to support

¢ chip debug

* high fault coverage test at wafer probe and packaged chip test

¢ support for effective chip burn-in test

¢ support for efficient embedded RAM testing for laser repair and go/nogo testing.
¢ support module manufacturing test via IEEE 1149.1 boundary scan architecture
¢ support for system test via a variety of architectural features.

The strategy uses a combination of a variety of testability techniques and approaches that are best
suited to address the specific functional elements in the chip. The cost-effective implementation
is realized by the appropriate consideration of the global issues, by unifying the test objectives,
by sharing test resources and by exploiting features inherent in the chip. The strategy also relies
on leveraging off the design verification patterns in developing production test patterns to meet
the fault coverage goals.

The EV5 Testability Micro-Architecture consists of the Test Port and Testability Features. The
Test Port implements a comprehensive test access strategy, permiting an efficient access during
debug and manufacturing test.

8.3 Test Port

Test Port on EV5 supports a parallel debug port, a serial ROM port, and an IEEE 1149.1 port and
a number of miscelleneous test functions through a set of shared test port pins. The test port
consists of 13 dedicated test pins. These pins have dual defintions. For normal chip operations,
including test operations, the test_mode_]l pin is connected to ground. All test pins have their
normal definitions and functions. When test_mode_l is asserted high, the test port becomes an

DIGITAL RESTRICTED DISTRIBUTION Test Internals 8-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

11-bit wide parallel debug port. This mode is used exclusively for chip/system debugging in chip
alone or a prototype system environments.. . » '

. Table 8—~1 summerizes the test pins and their functions.

Table 8—-1: EVs Test Pins

Pin Name Pin Type Normal Function Shared Function
TEST MODE_H I, Puli-down Selects debug port defintion - ;
TDI_H I, Pull-up IEEE 1149.1 Serial Data Input pp_data_h<0>
TDO_H O, Tri-state, IEEE P1149.1 Serial Data Output pp_data_h<1>
TMS_H I, Pull-up IEEE 1149.1 Test Mode Select pp_data_h<2>
TCK_H 1, pull-down IEEE 1149.1 Test Clock pp_data_h<3>
TRST_L I, pull-up IEEE 1149.1 Test Reset pp_data_h<4>
TEST_STATUS_H 0] Test status/hand shake for BiST pp_data_h<5>
DISABLE_OUT_1 I, pull-up Disables all output drivers pp_data_h<6>
SROM _DISABLE H I Serial ROM disable pp_data_h<7>
SROM_CLK_H (0} Serial ROM clock/Tx data pp_data_h<8>
SROM_DATA_H I Serial ROM data/Rx data pp_data_h<9>
'SROM_OE_L (0] Serial ROM output enable -

spare test pin tbd pp_data_h<10>

NOTE

_May be the TEST_MODE pin should be renamed DEBUG_MODE pin..

8.4 Paraliel Debug Port
This port allows the critical chip nodes to be monitored in parallel. The port consists of 11 output
pins and is activated by asserting a high on TEST_MODE_H pin.

Signals to be observed on parallel port are selecetd by a tbd-bit Debug Port Control register. This
register is written by an IPR access. As a back-up, the register may also be set up via the JTAG
port. Table 8-2 lists the Parallel Port’s configurations.

Table 8-2: Parallel Debug Port Operating Modes

Debug Control Register Data Pins
DBG_REG(2:0) Port Mode PP_DATA H<10:0> Signals Observed
111 Observe xBOX (Default) PP_DATA_H(IO:i) internal signal xbox signals
PP_DATA_H(i-1:0) more internal x box signals
11 0 Observe yBox PP_DATA_H(10:) thd

PP_DATA _H(i-1:0) tbd

8-2 Test Internals DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Restrictions of parallel debug test port

1. The parallel debug port and the normal test ports are mutually exclusive. That is, neither
JTAG nor SROM port could be accessed while the test port is configured as the parallel debug
port.

2. The parallel debug port must be activated only after normal power-up and initialiazation of
the EV5 chip.

3. When parallel debug port is activated, all inputs corrseponding to normal test input pins are
fed with their default values.

4. The test_mode_h pin allows to switch back and forth between the normal test port and the
parallel debug port.

5. Parallel debug port is designed to support chip/system debugging in chip alone or
a prototype system environments only. Some small logic may be required to ensure that
there is no interference with other chips connected to the test port.

8.5 SROM Port

The 3-pin SROM port decription
8.6 IEEE 1149.1 (JTAG) Port

The Serial Test Port is a 4-pin test access interface based on IEEE 1149.1 standard. In EV5 this
port is used for accessing the internal scan registers, the die identificationr egister, the cache self-
test results and tbd the boundary scan register. The port supports EXTEST, SAMPLE and BYPASS
and a number of tbd instructions.

The block diagram of the port logic together with the boundary scan register is shown in
Figure 8-1. It consists of the four-wire Test Access Port (TAP), a TAP controller, an instruction
register (IR) and a bypass register (BPR).

The five pins in test access port are TDI_H, TDO_H, TMS_H, TCK_H, and TRST 1. These pins
conform to all requirements of the standard.

The TAP Controller is a state machine which interprets IEEE 1149.1 protocols received on TMS
line and generates appropriate clocks and control signals for the testability features under its
jurisdiction.

The Instruction Register resides on a scan path. Its contents are interpreted as test instructions
and are used to select the testability modes and features.

The Bypass Register is a 1-bit shift register which provides a single-bit serial connection through
the port (chip) when no other test path is selected.

DIGITAL RESTRICTED DISTRIBUTION Test Internals 8-3

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Figure 8-1: IEEE 1149.1 Serial Port (the Basic CTI)

8.6.1 Instruction Register

The JTAG Instruction Register on EVs CPU consists of £bd bits. These bits are interpreted as per
Table 8-3 to select and control the operation of EVs test features. During Capture-IR state, the

shift register stage of IR is loaded with data ’01’. This automatic load feature is useful for testing
the integrety of the JTAG scan chain on module.

8-4 Test Internals DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

Table 8-3: Instruction Register
IR< tbd:0 > Test Register Selected Test Instruction/ Operation

thd tbd tbd

More JTAG port description

8.7
8.7

Miscellaneous Test Pins

A1 DISABLE_OUT L

EVs CPU chip has a dedicated pin disable_out_l. When asserted low, the CPU chip tri-states
output drivers on all output-only and bidirection pins, except those listed below. When asserted,
the pin also forces internally a reset to the EVs chip.

The only exceptions are the TDO_H pin and the clock output pins which are not tristated by
the disable_out_l pin. Not tristating clock output pins was approved by the stage-1 module test
engineers on NVAX.

Leaving out the TDO_H pin allows the JTAG circuits to operate while chip tristate is in effect.
This affords additonal flexibility for the module manufacturing test. For example, during the
interconnection test, the EV5 outputs may be allowed to drive only during the Capture-DR state
and kept in tristate in all other states. This can eliminates the effect of shifting patterns, as well
as drastically reduces the duration of time for which the drivers may see an interconnect short
fault.

The single pin tristate functionality is used only during testing.

8.8 Cache BIiST

8.9

Internal Scan Registers

Table 8-4: Internal Scan Register Organization

Scan Chain Name: xyz
Size: b bits

Access Chain Number:

Bit # Signal name Remarks
0 tbd thd

31 tbd thd

DIGITAL RESTRICTED DISTRIBUTION Test Internals 8-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

8.10 Internal LFSRs

Table 8-5: Internal LFSR Organization

LFSR Name: xyz

Size: b bits

>left>Feedback polynomial:
Access Chain Number:

Bit # Signal name Remarks
0 tbd tbd
. . thd
31 tbd thd

LFSR Name: xyz

Size: b bits

>left>Feedback polynomial:
Access Chain Number:

Bit # Signal name Remarks
0 tbd tbd ‘
- . tbd
31 tbd thd

8.11 Miscellaneous Testability Features
8.12 Issues

1. Should EVs support SROM disable like EV4 does?

8.13 Revision History

Table 8-6: Revision History

Who When Description of change

Dilip Bhavsar 2/13/92 Working draft

8-6 Test Internals

DIGITAL RESTRICTED DISTRIBUTION

Chapter 9

The Interconnect

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

9.1 EVS5CIP.H - the only global interconnect .H file

/*
**
** evSchip.h
*k
** Copyright (c) 1991
** information in this

by Digital Equipment Corporation, Maynard, Mass. The
software is subject to change without notice and should

** not be construed as a commitment by DEC.

*x .
** @(#) Description

** Q(#) evSchip.h: EVS Behavior model EVS5CHIP header file

* %

*/

#define REV_EVSCHIP H 152

/*
** Revision History:
Fk

** Rev Who Date
*k

Description of Change

** 152 rmf 17-jun-1993
** 151 rmf 07-jun-1993
** 150 wa 18-may-19293
** 149 wa 17-may-1993

add p->temp_sense

add signals needed for t_pad.c
taking out p->ref clk in_1
adding clk_mode_h pins

** took out ev5_addr_h pin definitions, not pins

** 148 rmf 14-may-1993
** 147 dkb 12-may-1993
** 146 wa 11-may-~1993
** p->ecl_out_h

** 145 npp 10-may-1993
** 144 rom 06-may-1993
** 143 dkb 03-may-1993

* ik

** 142 vr 27-apr-1993

** 141 cs 21-apr-1993

** 140 rwc 15-apr-1993
** 139 Jjem - 15-apr-1993

change 1->t_sl _xmit_b h from bit 31 to a 1 bit signal
Rename t->j_bst_bistdone_b_h to *bist_running b 1

taking out p->vref_h, p->cont_l, p->tristate_. and

c->i perf mon_in a h added

adding C->S_WFB_*_7B H (for moving latch into SCache)

Add OBSA Observe scan macro for use in LFSR lsb.

Removed redundant/unused t->* bist signals.

Add signal i->j_flush b h, Raj will remove i->j flush a_h later.

c->s rfb drive 8b h

fix Cbox global signal declarations for Judge

add c->m_wr_64b signal to eventually replace c->m_wr_64B (CHANGO doesn’t handle

i deleted m~->i_perr 5b_h

** 138 pjb 06-apr-1993
** 137 wa 05-apr-1993

remove fill done early, make addr_res_h a 3 bit field
putting in conditional definition of "t™ to be "tt*

*x as a work-around to Verilog link conflict

** 136 dkb Ol-apr-1993
** 135 cs 14-mar-1993
** 134 rmf 12-mar-1993
** 133 rmf 08-mar-1993
** 132 rpp 07-Mar-93
*% the MBOX updates t
for the LDx ports on
** 131 cs 07-mar-1993
** 130 vr 25-Feb-1993
** 129 dkb 23-feb-1993

Add OBLA/V OBLB/V macros. Add t->j* a_* signals.
new S__ SC encodings
add scache LFSR signals; keep old OBL sigs for now
change LFSR ctl sigs from A to B, but keep A sigs in model for now
Moving m->i_fill valid#_4b_h to 4a (old version won’t be deleted until
heir code, also adding the new write strobes
the FBOX register file from the IBOX
c->m_return_index is now <2:0>
Change cbox->ibox error interface signals and adding e->1 mul_ovf 8a_h.
change t->i sigs to register t->i

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-1

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

**
*%
* Kk
*k
* %
*k
* %
*k
* ok
*k
*k
* &
* K
* %
*Kx
*k
*x
**
*x
K
* %k
* %k
* Kk
* %
*k
*k
*x
**k
*%x
*x
* Kk
* Kk
**
* %
* %
*x
* %k
**
*x
**
*k
*Kx
*k
*x
*K
**k
*k
* %
* %
*&
*k
* %
*x

*%x
*k
**
*%
*k
*%k
*Kk
*k
*k
*k
* ok
*k
*k
**k
x*
**
* %
*x
* %
*
* %

128 rmf 17-feb-1993
127 rmf 16-feb-1993
126 dkb 16-feb-1993
125 rom 15-feb-1993
124 npp 9-feb-1993
123 rmf 3-feb-1993
122 npp 3-feb-1993
121 pjb 1-feb-1993
120 dkb 28-jan-1993
119 pjb 25-jan-1993
118 rmf 13-jan-1993
117 Jjem. 13-jan-1993
116 Jjem 11-3an-1993
115 pib 8~3Jan-1993
114 rmf O04-jan-1993
113 cs 04-3jan-1993
112 dkb 28-dec-1992
111 jem 21-dec-1992
111 rmf 17-dec~1992

add multiple ibox reset signals

add global testability signals

Correct repair signals from tbox to j box

change two cbox signals from SIGNAL to REGISTER

change 1d_merge to 1ld_alloc

add support for x srom and x_ster

add performance counter signals

move wrt_blk and wrt_blk lock back to 6 and 7, add read modify lock at E and F
t->z_jtg si_to_xxx_a_h changed to si to_xxx b h

add k->sysclock_in five_a h
observability scan chain signals

Fixing IBOX output declarations for Judge

add m—>1_perr_6a h (m->i perr 5b h will be deleted at a future time)

write block write block_lock encoding changed to 14, 15

change i->t_dbg_data_a_h, remove p_drv->port_mode_drv_ctl

s_set_hit 5b _h

add jtag global sigbals

add m—>e_big_endian_7a_h, change m->i fill coming 4a_h from sig to reg

change p->tristate_l to a sig; eventually get rid of; add i->*_treset_b_1 signals

change width of test port drive enables

110 pjb 07-dec-1992
109 rmf 03-dec-1992
108 pjb 30-nov-~-1992
107 rmf 30-nov-1992
106 cs 22-nov-1992
105 cs 12-nov-1992
104 cs 04-nov-1992
103 dkb 02-nov-1992
102 ded 20-oct-1992
101 san 8-0ct-1992
100 vr 7-0ct-1992
99 mjs 9-sep-1992
98 vr 24-aug-1992
97 smb 19-aug-1992
97 mkg 19-aug-1992
26 ded 10-aug-1992
95 san 6—-aug-1992
94 mis 5—-aug-19292
93 rpp 20-jul-1992
92 san 17-jul-1992
91 tb 13-jul-1992
90 bbf 8-jul-1992
89 bbf 7-jul-1992
88 ded 7-jul~1992
87 vr 6~jul-1992
86 cs 6-Jjul-1992
85 sm 2-3ul-1992
84 pib 2-3ul-1992
83 ded 1-jul-1992

82 rpp 29-jun-1992
81 san 28-3un-1992
80 rwc 28-3jun-1992
79 rwb 21-jun-1992
78 mkg 17-jun-1992
77 san 04-jun-1992
76 bib 03-jun-1992

75 bjb 28-may=1992

74 mkg 28-may-1992

73 ded 27-may-1992

72 ded 26-may-1992
71 mkg 26-may-1992
70 md 25-may-1992
69 ded 22-may-1992

68 md 19-may-1992
67 rpp 15-may-1992
66 cs 15~-may-1992
65 mkg 13-may-1992
64 ded 13-may-1992
63 md 12-may-1992
62 vr 12-may—-1992
61 md 11-may-1992
60 cs 08-~may—-1992
59 bbf 05-may-1992
58 vr 04-may-1992
57 tcf 04-may-1992

9-2 The Interconnect

add c->i1 force time out_b_h
add IBOX ICSR test status signals, remove t_pad functionality from c_pad
add READ DIRTY INVAL to the system interface
update tbox signals
cleanup obsolete c->i sigs
c->s_fill tag_cmd and s_fill _status are now 1 bit wide
c->m bogus_1f 8a h
Added several TBOX i/f globals in *t, *i. Also s_set_hit_6a_h
Added ebox reset signals and test interface structure, changed timing on integer overflow
Added c->s_flush b h
Added signal i->m _kill dtbis_4a_h
change i~>j bypass ic b h to i- >j _bypass_ic_a_h.
Replaced m~->i_in tb_. flow e0 5a h with m->1 in t _tb_filow_5a_h
Removed redundant mbox interface signals for global routing
Removed WMB constant
Added low asserted versions of the e->m vaX_clk_4b signals for GUIDEWIRE.
changed B__C_RFB SC_DRV constant to 4 for SCache drive
Fix missing "end" comment found with guidewire
Making Judge fixes
changed c~->m_wr_maf_index from 5 bits to 3 bits
add two pins to p->tag_data for 1MB Bcache
Add m->i_perr 5b_h for Vidya
Add drive control states for tri-state pins {(p_drv)
Fix Ebox judge warnings
adding interrupt pins from cbox->ibox
slide cbox->ibox timings to 8b. ifb data to 9b. c¢->z_alloc cycle 2a.
swapped the decodings of M_C DREAD , M_C_IDX L , M_ C_IREF
judge fixes to the pad signals
Removed old versions of Mbox load data buses.
Fixing Judge Declarations
changed SIGNAL/REGISTER declarations for JUDGE
add i->c_clr _lock _flg_a_h for clearing lock flag from PAL code
added m->f_fbox_drv_ena_5a_h, used to control source of b- ->d_wr_data6a_h
changed dmm_err from signal to register
changed B__C_RFB constants for ADP and BDP drives
update cbox interface from signal->register
add c->m_sc_hit_7b_h and change bit field of m->c_wr_lw_addr_5b h
add e->m vaO_clk 4b_h and e->m val _clk _4b_h
Add intr flag signals for RS/RC instructions
Delete obsolete ebox signals
Add new constant, I _WMB
Added m->d_update_dcout_3b_h. Used for power savings.
Change timing of mul done _soon to Oa
Added m~>d_st_adr_5b_h<2> (for LW STOREs), removed m->d_dc_addr_xa h<2>
Deleting obsolete I/E/F interface signals
cbox/dcache interface
add i->m_ex valid 2b_h and i->m_pal_shadow_en 3a _h
epbox updated for new bypass timing
Added e->d_val_4a_h<12:3>, e->d val _4a_ h<12:3>, fast adder outputs
updated timing on kill sigrals from ibox to mbox for traps.
mbox/dcache interface updated for new DC timing
cbox/dcache interface, maf_index to/from mbox
add definitions of ev5/system commands, ev5 responses
update mbox->ibox trap timings
update load timing to fbox

DIGITAL RESTRICTED DISTRIBUTION

*K
*k
ok
* &
*k
* K
*k
* %
*k
* K
**
* %
*k
* K
*k
* &
**
*%
* &
*x
* &

ok
ok
*x
*%
*x
*x
*%
*x
*x
*%
**
*%
*&
* %
*k
*k
*k
&
*%
*k
ok
**
xx
*%
*%
**
*%
*k
*%
*x
*k
*k
*x
**
**
*x
**

-> *d
*%
ok
* Kk
*k
*k
*k
*%
*%
*k
*x

*/

DIGITAL RESTRICTED DISTRIBUTION

02

00

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

cs 0l-may-1992
sch 30-apr-1992
cs 29-apr-1992
pijb 28-apr-1992
cs 23-apr-1992
rpp 10-apr-1992
tcf 09-apr-1992
BAS 07-apr-1992
mis O07-apr-1992

pjb 07-APR-1992
tcf 07-APR-1992
BAS 02-APR-1992
rpp 30-Mar-1992
RPP 27-Mar-1992
BAS 27-mar-1992
ded 17-mar—-1992

c->s, m->c signals

add RFB tristate control

cbox~->{mbox, scache} interface update

Update external interface signals.

New Cbox interface timings to/from Mbox, Scache, Ibox, Dcache

Updated timing on Fill lines between the MBOX and IBOX

changed timing of fbox pipe RF write addresses

changed timing of fbox write strobes

problems with some signal declarations found by running occam.
new chip interface pinout

temporarily fix fleoating exception signal timing

changed timing of FBOX add pipe exception signals according to new design
Changing register file timings to match the new design
Updating a number of IBOX outputs from SIGNAL to REGISTER

add fbox add pipe exception signals
Change timing on e->i mul_done_soon from 2a to la

mjs 16-mar-1992 change i->j_rfb rd_idx a_h to i->j_rfb rd idx b_h
mjs 12-mar-1992 Fix the fix for m iref req 2b h to m iref req 2a_h.
mjs 12-mar-1992 changed/added signals for IBOX/MBOX/CBOX/SCACHE interface.
rpp 1l2-mar-1992 Fixing syntax error on SIGNAL (sys_fill end_h, 1);
vr 12-mar-1992 Delete j->i_ic_data Ob_h
ded 12-mar-1992 Change definition of e->i mul_done_soon_2a_h to REGISTER
md 9-mar-1992 Updated Icache and Dcache interface signals
cs 9-mar-1992 move cbox->mbox retry, index,status to 9a. move cbox->dcache invals to 10a.
jah 4-mar-1992 Added FBOX div_done_soon signal
ded 2-mar-1992 changed kill_cmov and br signals to REGISTER
dha 27-feb-1992 added pin definitions
cs 24~feb-1992 changed SIGNALW back to BUSW macro (ref: #28 below fixed}
jdh 21-feb-1992 changed BUSW macro to SIGNAL macro [ultrix errors]

tcf 19-feb-1992

changed dcache store data bus and parity to

b->d_wr*; added driver IDs for Fbox and Ebox;
removed old store bus name m->d_wr*

tcf 16-feb-1992 added fbox global signals
cs 14-feb-1992 mbox->cbox commands, cbox->mbox return status
npp 14-feb-1992 Predecodes added
mkg 14-feb-1992 Add mbox signal to abort ebox register writes
and update other mbox signals. Also add three
new ibox trap related signals sent to the mbox.
Remove bit<39> from dcache tag.
md 14-feb-1992 Updated Icache and Dcache global signals
mjs 13-feb-1992 change i->ic_index xb h to i->j_ic_index zb h.
ded 13-feb-1992 Add the Ebox signals
cs 12-feb-1992 wipe out _s from pipe stage specifications
emc 12-feb-1992 fix scache signals
cs 11-feb-1992 fixed cbox signal names
rp 11-feb-1992 Fixed some problems with the IBOX outputs
Jm 07-feb-1992 Changed fill signals from Mbox to Fbox/Ibox
rp 06-~feb-1992 Adding Ibox Issue stage outputs
wa 06-feb-1992 Fixing declaration of tag
rpp 02-feb-1992 Adding some useful constants for instruction decocding
wa 21-jan-1992 Changing to single clock
md 20-3jan-1992 Update Dcache/MBOX, Dcache/CBOX interfaces for write silo, removed duplicate Scac
emc 17-jan-1992 Added/corrected scache interface
wa 13-jan-1992 Renamed clocks
Jjm 9-jan-1992 Changed bitfield widths on Mbox signals, removed d_ and _s from dcache/mbox names
jm 9-jan-1992 Changed Ibox-Mbox trap signal names and timing. Changed Dcache parity signal tim:
nd 9-jan-1992 Added mux control signals for ICACHE datapath. Changed CBOX to DC invalidate add:
d_inval_addr s8b h, from full address to index address <12:5>
pb 23-dec~1991 Added the pin bus signals p->
md 20—~dec-1991 Added ICACHE interface signals to Ibox, Icache. Changed *sc --> *s, *ic--> *j, *d
Jm 14-dec-1991 Mbox interface signals to/from Dcache, Ibox, Fbox, Ebox.
added m->c_maf type 6b_h to cbox-mbox interface
moved m->c_wr_data_sS5b_h and parity from mbox to dcache
changed c->i_iref index s%a h to a 2 bit field instead of 1.
added c->i_alloc_cycle_s2b _h to cbox interface
added c->d_fill data_valid _s4b _h, d_inval_cmd s8b h, d_inval_addr s8b_h to cbox
cs 27-nov-1991 Cbox interface signals to/from Mbox, Scache & Ibox.
wa 25-o0ct-1991 added two clock pins, moved all pins to evSsim.h
cs 20-jun-1991 original

The Interconnect

/ir

** Hook to load this header file only once.
*/

$ifndef CCS_EVSCHIP_H_LOADED

#define CCS_EVSCHIP_H_LOADED

/ *

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

** Hook to allocate storage only once for variables declared in chip.h

*/
#1f defined(VMS)

#if defined(CCS_EVSCHIP_ALLOCATE_ STORAGE)

#define DECLARE globaldef
#else
#define DECLARE globalref
#endif
#else

#if defined{CCS_EVSCHIP ALLOCATE_STORAGE)

#define DECLARE

#else

#define DECLARE extern
#endif

#endif

DECL_REV(rev_ev5chip h, "ev5 chip header", REV_EV5CHIP_H);

/*

** EVS commands to the system

*/

#define EV5 CMD__ NOP

#define EVS _CMD__ LOCK

#define EV5 CMD FETCH

#define EVS CMD FETCH_M

#define EV5 CMD MB

#define EVS CMD SET_DIRTY
#define EVS CMD WRITE BLOCK
$define EV5 CMD WRITE _BLOCK_LOCK
$define EV5_ CMD READ ! MISSO
$define EV5 _CMD READ MISS1
$define EVS5 _CMD__ | READ MISsS MODO
#define EVS CMD READ _MISS MODl
#define EV5 CMD BCACHE VICTIM
#define EV5 CMD __READ | MS _MOD LKO
#define EV5_ CMD READ Ms MOD LK1

/*

** System commands to EVS

*/

#define SYS CMD__NOP

#define SYS CMD__] __FLUSH

#define SYS CMD INVALIDATE
#define SYS“CMDn«SET~SHARED
#define SYS CMD__ READ

#define SYS CMD READ DIRTY
#define SYS CMD READ | DIRTY _INV

/*

** EV5 responses to system commands

*/

#define EV5_RES NOP
#define EV5_RES_ NOACK
#define EVS_RES__ACK_SCACHE
#define EVS_RES__ ACK_BCACHE

9-4 The Interconnect

VoOoOgaUdWNHO

NuUuswNHEOo

wN=Oo

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/*

** Tri-state pin driver IDs
*/

#define P_DRV__SRC_SYS
#define P_DRV__SRC EVS
#define P DRV SRC_| _BC
#define P DRV SRC__ " SROM
#define P_DRV__SRC_STER

/*

*K

00 s N -

** Global chipwide (inter-box) constants.

Kk

*/

/* Clock Inter-box Constants */
/* */

/* Ibox Inter-box Constants */
/* */

/**'k*)\'***t***‘l:***t'k***t*****k***tt************k ALPHA OPCODES ** %k Xk AAAXAAAXKAKX A KRN AR XA AT X AR A XK RA XX R AT AN I Ah X7

/* bits 31:26 of all instruction formats

JREKEKR */

#define I_ CALL PAL 0x00 /* Call Pal

/* opcodes 01-07 are RESDEC */
#define I_ LDA 0x08 /* LDA */
#define I LDAH 0x09 /* LDAH */
/* opcode 10 is RESDEC */
#define I_ LDQ_U OxOb /* LDQ_U */.
/* opcodes Oc-0e are RESDEC */
#define I__ STQ U Ox0f /* STQ U */
#define I__IARITH 0x10 /* ADDi SnAddi, SUBL, CMPxx, CMPUxx.CMPBGE */
#define I_ILOG 0x11 /* AND,BIS,XOR,BIC, ORNOT, EQV,CMOVx */
#define I__ ISHFT 0x12 /* SLL,SRL,SRA,EXTxx, INSxx,MSKxx, 2AP, ZAPNOT */
#define I_ IMUL O0x13 /* MULi,UMULH */
/* opcode 14 is RESDEC */
#define I__VAX FP 0x15 /* ADDF, ADDG, SUBF, SUBG, CMPGxx,CVTGxx, CVIDG, CVTQF, MULF,MULG,DIVF,DIVG */
#define I__IEEE FP 0x16 /* ADDS,ADDT,SUBS, SUBT,CMPTxx,CVTQS,CVTQT,CVITX,MULS,MULT, DIVS,DIVT */
#define I_ DI _FP 0x17 /* CPYS,CPYSN, CPYSE, FCMOVxx,MT_FPCR,MF FPCR,CVTQL, CVTLQ */
#define I__MISC 0x18 /* TRAPB,MB,FETCHX,RPCC,RC,RS */
#define I__HW _MFPR 0x19 /* HW_MFPR */
#define I__JSR Oxla /* JSR */
#define I Hw LD Oxlb /* HW_1D */
/* opcode lc is RESDEC */
#define I__HW _MTPR Oxld /* HW_MTPR */
#define T HW REI Oxle /* HW_REI */
$define I_ HW ST Ox1f /* HW_ST */
#define I__IDF 0x20 /* LDF */
#define I LDG 0x21 /* LDG */
#define I LDS 0x22 /* LDS */
#define I LDT 0x23 /* LDT */
#define I STF 0x24 /* STF */
#define I__STG 0x25 /* STG */
#define I__ __STS 0x26 /* STS */
#define I STT 0x27 /* STT */
#define I LDL 0x28 /* LDL */
#define I __IDQ 0x29 /* LDQ */
#define I LDL L 0x2a /* LDL L */
#define I__LDQ_L 0x2b /* LDQ L */
#define I_ STL O0x2c /* STL */
#define I_ STQ O0x2d /* STQ */
#define I__ STL C 0x2e /* STL C */
#define I STQ C 0x2f /* STQ C */
$define I__BR 0x30 /* BR */
#define I _ FBEQ 0x31 /* FBEQ */
#define I FBLT 0x32 /* FBGE */
#define I__ FBLE 0x33 /* FBGT */
#define I BSR 0x34 /* BSR */
g#define I FBNE 0x35 /* FBNE */
#define I__FBGE 0x36 /* FBGE */
#¢define I__ FBGT 0x37 /* FBGT */
#define I BLBC 0x38 /* BLBC */

DIGITAL RESTRICTED DISTRIBUTION

The Interconnect 9-5

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

#define I__BEQ 0x39 /* BEQ */
#define I__BLT 0x3a /* BLT */
#define I__ BLE 0x3b /* BLE */
#define I_ BLBS 0x3c /* BLBS . */
#define I_ BNE 0x3d /* BNE */
#define I_ BGE Ox3e /* BGE */
#define I_ BGT 0x3f /* BGT */

JRIK KKKk kkkkkkhhkhkkkhkkxkkkkkikx and of Alpha OpCOdes ***x khkkkk k kK kX kX KAk X KA KR KK RK KXk KA AK KKK ARK AKX R R KA R IR KA XXX AR I A XK X

JrEKKK KK KR KKK KA R KKK RXR KKK KX *%* MISC (OPC18) Instruction Function Fields ¥ * Ak xxk kx Ak Ak kkkk kXK KKK AR AKX KK RIKRX AR KR KK KR Kk A

/**** Bits 15:0 of the Memory Format MISC Instructions L b V4
/*** I’m only specifying the top 4 bits (all others MBZ kKK f
/**** js this legal with the SRM22? *xkk
#define I__ DRAINT 0x0 /* DRAINT */

/* 1-3 are not used */
#define I_MB 0x4 /* MB */

/* 6-7 are not used */
#define I_ FETCH 0x8 /* FETCH */

/* 9 is not used */
#define I__FETCHM Oxa /* FETCHM */

/* b is not used */

#define I__RPCC Oxc /* RPCC */

/* d is not used */
#define I__RC Oxe /* RC */
#define I RS Oxf /* RS */

JrEKAR KK KRRk hRkAhkhkKkhhkxhkkdx*xx%% ond of the MISC FUNCLION COdESs FH Ak x kA kkkhkh k kA A A KKK AR K AR KX A KRR KA KK kKKK AR KK KK KR KR RR AR KK X

JEERKRRKKAKKKKKRKKKKK KX KKK KK KK *XhA*% TNStruction FOrmats X *xax ks khkhk Ak KA KA KA KK KK KAR KKK AKX KRR AR KK AKR KRR KKK KRR K AR AR KK KA &

/*t** ****/

#define I_ OPC_H 0x1f /* bit position of the top of the opcode field for all formats */

#define I_ OPC_L Oxla /* bit position of the bottom of the opcode field for all formats */

#define I__RA H 0x19 /* bit position of the top of the Ra field, for all applicable formats */
$define I_RA L 0x15 /* bit position of the bottom of the Ra field, for all applicable formats */
#define I__ RB H 0x14 /* bit position of the top of the Rb field, for all applicable formats */
#define I__RB L 0x10 /* bit position of the top of the Rb field, for all applicable formats */
#define I _RC_H 0x04 /* bit position of the top of the Rc field, for all applicable formats */
#define I__RC_L O0x00 /* bit position of the top of the Rc field, for all applicable formats */

#define I__ MEM DSP_H OxO0f /* bit position of the top of the displacement field for memory format */
#define I_ MEM DSP_L O0x00 /* bit position of the bottom of the displacement field for memory format */

#define I_ BRA DSP_H 0x14 /* bit position of the top of the displacement field for branch format */
#define I_ BRA DSP_L Ox0f /* bit position of the bottom of the displacment field for branch format */

#define I__LIT H 0x14 /* bit position of the top of the literal field for operate format */
#define I_ LIT_L 0x0d /* bit position of the bottom of the literal field for operate format */

#define I__LIT BIT OxOc /* bit determining whether to use the literal or B field in operate format */

#define I__OP_FCN_H 0xOb /* bit position of the top of the function field for operate format */
#define I OP FCN L 0x05 /* bit position. of the bottom of the function field for operate format */

#define I__FOP_FCN_H Ox0f /* bit position of the top of the function field for floating operate format */
#define I__FOP_FCN_L 0x05 /* bit position of the bottom of the function field for floating operate format */

#define I__PAL_H 0x19 /* bit position of the top of the PAL function field in the pal format */
#define I_ PAL L O0x00 /* bit position of the top of the PAL function field in the pal format */
/**** t*tﬁ/

JrFhkkhkkkhkhkkhkhhhkhhk KX KKKRKX Kk khkkkk*** ond Of INSCYUCLION FOrMats *F*dxk kA kkkkk kAN KA KKK KK AR KA KK RN KK AR KR KA KK AR K AR KKK K

/*********t***********t*t*tt**ﬁ*****i********i***t**t*****tt***t************************t***t*****t*******t*****#******i

/**** t***/

Vel Some other useful bit fields for the IBOX decoding o4

#define I__LATENCY O0x07 /* Position of the bit defining the latency for opcode 11. 1If this bit is set,
* we have a CMOV which has 2 cycle latency rather than 1 */

#define I FMUL 0x02 /* Value of the bottom 4 bits of the functioin field for FMULs */
#define I_ FDIV 0x03 /* Value of the bottom 4 bits of the function field for FDIVs */

#define I__ CPYS 0x020 /* Value of the 15 bit function field for CPYS */
JERKKAKRK KRR AR KRR KRR KKK KKK AR R KK KRR end of useful bit fields *Arkx kX Kk h AKXk AKX KK XK K AR KK KX KK KKRARK KA KKK KKK K AKX KKK

/***k*t*tt****i*i***t******k*****k** 5 bit Instruction Predecodes EEE RS SRR SRR SRRt R RS SRR RS]

9-6 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

#define I__SP_HW REI_TYPE 0x00

#define I_ BR TYPE 0x01

#define I__ HW REI_RET_TYPE 0x02

#define I__JMP_TYPE 0x03

#define I__CALL_PAL TYPE 0x04

#define I__BSR TYPE 0x05

#define I__ JSR COR_TYPE 0x06

$define I __ JSR TYPE 0x07

tdefine I _ I COND BR_TYPE 0x08 /* Actually it is 0x08 and 0x09 */
#define I F COND BR TYPE 0x18 /* Actually it is 0x18 and 0x19 */

/’r*‘k*i**i**‘k**************************t end of Predecodes **xikkhdkhkkkhhhhhhhhkhhhhhkhhhAxhhhhhhhhhkhkhrkhhrrx

/* Cbox Inter-box Constants */

/* */

/* Cbox read fat bus driver ID */

#define B_ C_RFB_BDP_DRV 1 /* constant when BDP is driving its IPR’s or FILL data onto RFB */
#define B_ C_RFB_ADP_DRV 2 /* constant when ADP is driving its IPR’s onto RFB */

/* return status to Mbox */

#define C_ M NOP 0x00 /* nop */
#define C M FIRST FILL 0x01 /* first fill */
#define C M LAST FILL 0x02 /* last fill */

#define C M i [WR_] DONE 0x03 /* write done */

#define C M | FETCH _DONE 0x04 /* fetch */

#define C M} MB DONE 0x05 /* memory barrier done */

#define C M ECC_FILL 0x06 /* corrected ecc_fill */
tdefine C M

| STX_ C_DONE 0x07 /* store conditional */

/* Ebox Inter-box Constants */
/* */

/* EBOX store bus driver ID */
tdefine B_ DC_STR_EBOX 2

/* Fbox Inter-box Constants */
/* */

/* FBOX store bus driver ID */
#define B DC_STR FBOX 1

/* Mbox Inter-box Constants */
/* */

/* mbox commands to cbox */
#define M__C_NOP 0x00 /* nop */

#define M__C_DREAD 0x04 /* dref read */
#define M_C LDX L 0x05 /* load locked from memory */
#define M C_IREAD 0x06 /* iref read */

#define M__ C_FETCH 0x08 /* fetch from memory */
#define M_C FETCH M 0x09 /* fetch with modify intent from memory */
#define M C MB O0x0a /* memory barrier */

#define M_C_WR 0x0c /* write 32B block */
#define M_ C_STX_C 0x0d /* store conditional to memory */

/* Dcache Inter-box Constants */

/* Scache Inter—box Constants */
/* */

/* Scache read fat bus driver ID */
#define B_ C RFB SC DRV 4

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-7

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* Scache commands */

#define S__SC_NOP 0x00

#define S SC_READ 0x01

#define S_ | SC FILL 0x02 /* unused */
#define S SC WRITE 0x03

#define S SC INVAL 0x04

#define S__ SC SET_SHARED 0x06

4define S__SC_READ DIRTY 0x05

$define S_ SC_TEST WRITE 0x07

#if O

/* Scache commands OLD SCHEME */
#define S__SC_NOP 0x00
#define S_ SC_READ 0x01
#define S__ _SC_INVAL 0x02
#define S sC WRITE 0x03
#define S SC SET SHARED 0x04
#define S SC READ _DIRTY 0x05
#define S SC TEST WRITE 0x06
#define S__SC_FILL 0x07
#endif

/* Observability LFSR MACROS

K e mmEmmmm e e

x*

** The following 4 LFSR Macros may be used for modelling LFSRs implemented with
** the OBLA* and OBLB* cells from the EV5 structure Library.

*k

** The first two Macros OBLA and OBLAV model OBLA cells used for capturing
** B signals. OBLA represents a signle bit of LFSR and can be used when
** LFSR is stiched to capture random scattered isolated signals. OBLAV may
** be used when capturing groups of signals (buses etc).

*k

** The OBLB and OBLBV are similar macros used for modelling

** OBLB* cells that observe _A signals.

* &

** See examples in t_lfs.c to see how to connect these macros.

*/

/*

** macro:

** OBSA Represents a single Observability Scan Register bit

** Parameters:

** obs b h CONTRCL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi b h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK

** si h SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR

** PREVIOUS LFSR.

** lat_a h _A LATCH. REGISTER DECLARATION IN .H FILE.

** lat b h B LATCH. REGISTER DECLARATION IN .H FILE.

* %

** Note: pl_b h, lat_a_h, lat_b_h are multi bit declarations in .h file
*/

#define OBSA(obs_b h, pi_b h, si_h, lat_a h, lat_b _h)\
i\

if (k->clock)\

0
if (obs_b_h)\

lat_a _h =pi_b h ;\

if (!k->clock)\
lat_b_h = lat_a _h ;\
}

9-8 The Interconnect DI!GITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/*

** macro:

** OBLA Represents a single bit of LFSR

** Parameters:

** obs b h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi b h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED. OR FEEDBACK
** si_h SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR

** PREVIOUS LFSR.

** lat_a_h _A LATCH. REGISTER DECLARATION IN .H FILE,

** lat b " h B TATCH. REGISTER DECLARATION IN .H FILE.

*/

#define OBLA(obs_b h, pi_b h, si_h, lat_a_h, lat_b h)\

\

\

if (k->clock)\

\
if (obs b_h N

lat_a h = pi b h * si h ;\
else\

lat_a_h = si_h ;\

A

if (tk->clock)\
lat_b h = lat_a h ;\
}

/*
** macro:
** OBLE Represents multiple bits of LFSRs
** Parameters:
** obs_a_h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi_a h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK
** si_h SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR
** PREVIOUS LFSR.
** lat a_h _A LATCH. REGISTER DECLARATION IN .H FILE.
** lat b _h B LATCH. REGISTER DECLARATION IN .H FILE.
** Note: OBLB* cells should not receive the feedback.
*/
#define OBLB{ obs_a_h, pi_a_h, si_h, lat_a_h, lat_b h)\
[
if { k->clock)\
lat_a h = si_h ;\
\
1f (!'k->clock)\
\
if (obs_a_h)\
lat_ b h = pi_a h ~ lat_a h ;\
else\
lat_b_h = lat_a_h ;\
N

/*

** macro:

** OBLAV Represents multiple bits of LFSRs

** Parameters:

** obs b h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi b h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK

** si h SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR

**%* PREVIOUS LFSR.

** lat_a_h _A LATCH. REGISTER DECLARATION IN .H FILE.

** lat b h B LATCH. REGISTER DECLARATION IN .H FILE.

** hbit HIGH BIT

** l1bit LOW BIT

* X

** Note: pi_b h, lat_a_h, lat_b h are multi bit declarations in .h file
*/

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-9

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

#define OBLAV(obs b_h, pi_ b h, si_h, lat_a h, lat_b_h, hbit, 1lbit)\

[AY
if (hbit > 1bit }\
{\

if { k—>clock)\

{\

if (obs b _h)\
{\
if (1bit == 0)\

INSV(lat_a_h, hbit, lbit, pi b h ~ ((EXTV(lat b h, hbit-1,1bit) << 1) | {si_h & 0)));\

else\

INSV(lat_a_h, hbit, lbit, pi_b h ~ EXTV{ lat_b_h, hbit - 1, 1bit - 1)};\

if { 1bit == 0)\

INSV{ lat_a_h, hbit, lbit, ({EXTV(lat_b h, hbit - 1, 1bit) << 1) [(si_h & 1 }});\

else\
INSV(lat_a_h, hbit, lbit, EXTV(lat_b h, hbit-1, 1lbit - 1)};\
AN
|
if (!'k->clock)\
INSV(lat_b h, hbit, lbit, EXTV(lat_a_h, hbit, lbit));\
I
else if (hbit == 1lbit)\
0N\
if (k=->clock)\
1\
if (obs_ b h)\
\
if (lbit == 0)\
INS(lat_a_h, hbit, pi_b h) ;\
else\
INS(lat_a h, hbit, pi_b h ~ EXT{ lat_b h, hbit - 1)} ;\
IAN
else\
AN
if { lbit == 0)\
INS(lat_a _h, hbit, si_h) ;\
else\
INS(lat_a_h, hbit, EXT{ lat_b_h, hbit - 1 }} ;\
AN
N
if (tk->clock)\
INS{ lat_b_h, hbit, EXT(lat_a_h, hbit));\
IAY
}
/* INSV(lat_a_h, hbit, lbit, pi b h ~ ((EXTV{ lat_b h, hbit-1,1bit) << 1} | (si_h & 1)});\ */

9-10 The Interconnect

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

** macro:

** OBLBV Represents multiple bits of LFSRs

** Parameters:

** obs_a h CONTROL INPUT. CONNECT SIGNAL THAT ENABLES CAPTURE ACTION
** pi_a_h PARALLEL INPUT. CONNECT DATA TO BE OBSERVED OR FEEDBACK
** si h SERIAL INPUT: CONNECT SERIAL OUT FROM PREVIOUS STAGE OR
*%. PREVIOUS LFSR.

** lat_a h _A LATCH. REGISTER DECLARATION IN .H FILE.

** lat_b_h _B LATCH. REGISTER DECLARATION IN .H FILE,

** hbit HIGH BIT

% 1pbit LOW BIT

** Note: pi_a_h, lat_a_h, lat_b_h are multi bit declarations in .h file

x OBLB cells should not receive the feedback.
* &
*/
#define OBLBV(obs a h, pi_a h, si_h, lat_a_h, lat_b_h, hbit, 1lbit)\
0N
if (hbit > lbit)\
£\
if { k->clock)\

0N
if (1lbit == 0)\
INSV(lat_a_h, hbit, 1bit, ((EXTV(lat b h, hbit - 1, 1lbit) << 1) | (si_h & 1)));\
else\
INSV(lat_a_h, hbit, lbit, EXTIV{ lat_b h, hbit — 1, 1bit - 1) };\
N
\
if (tk->clock)\
[
if (obs_a h)\
INSV(lat_b_h, hbit, lbit, pi_a h ~ EXTV{ lat_a_h, hbit, 1lbit));\

else\
INSV(lat_b h, hbit, 1lbit, EXTV(lat_a_h, hbit, lbit});\
JAY
N
\
else if (hbit == 1lbit)\
{\
if { k->clock)\
N\

if (1bit == 0)\
INS(lat_a_h, hbit, si _h) ;\
else\
INS{ lat_a_h, hbit, EXT(lat_b_h, hbit - 1 }) ;\
[AY
\
if (tk—>clock }\
0\
if (obs_a_h)\
INS(lat_b h, hbit, pi_a h ~ EXT{ lat_a_h, hbit)) ;\
else\
INS(lat_b_h, hbit, EXT(lat_a_h, hbit));\
A
N\
} .
/* End of observability LFSR MAcros */

/*

*k

** Global chipwide (inter-box} signals
* %

*/
/* Clock Interface Signals */

DECLARE struct k {
CLOCK (clock, 1, 50); /* clock */
SIGNAL (reset_a h, 1); /* EVENTUALLY REMOVE THIS SIGNAL !!!1!! */

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-11

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL (sys_clk_outl _h, 1);
SIGNAL {sys_clk_out2 h, 1);
SIGNAL (sysclk_ratio_h, 4);
REGISTER (sysclk_in five a h, 1, 0);
REGISTER (sysclk_in two_a h, 1, 0);
REGISTER (sysclk _in one_a_h, 1, 0);
REGISTER (c_slip req a h, 1, 0);

SIGNAL (t_sys_reset_a 1, 1);
REGISTER (t_dc_ok_h, 1, 0);
SIGNAL (z_pad_tristate h, 1);
} o*k;

/* Test Box Signals
* K

*/

/* conditionally redefine "t" to "tt®" to solve Verilog link conflict */

#ifdef EXT_USE
#define t tt
#endif

DECLARE struct t {
/* title: Test Box Signals */

/* all reset signals asynch assert and synch deassert */
SIGNAL(i_reset b 1,1); /* EVENTUALLY REMOVE THIS SIGNAL !!!t!! =*/
SIGNAL(i_iss reset b 1,1); /* ibox gets two reset signals */
SIGNAL(i idx reset b 1,1); /* ibox gets two reset signals */
SIGNAL{e reset b 1,1); /* ebox reset */

SIGNAL(m reset b 1,1); /* mbox reset */

SIGNAL(c_reset b 1,1); /* cbox reset */

SIGNAL(f reset b 1,1); /* fbox reset */

SIGNAL(c_pad_reset b 1,1); /* reset the pads */
SIGNAL{c_pad_tristate 1,1); /* tristate the pads */

REGISTER(j_clr tag_ a_h,1,0); /* clear Icache tag durign reset; this signal will probably not be needed */
/* title: Dispatch to Generic Test Features */

REGISTER(z_obl_on_a_h,1,0); /* GET RID OF THIS REAL SOON !!! */

REGISTER(z_cbl_on_a_h,1,0); /* GET RID OF THIS REAL SOON !!t! */

REGISTER(s_obs_capture _a h,1,0}; /* GET RID OF THIS REAL SOON !!! */

REGISTER(z_obl on_b h,1,0); /* turn on observability LFSRs */

REGISTER(z_cbl on_b h,1,0 /* turn on controllability LFSRs; this signal may not get used anywhere */
REGISTER(s_obs_capture b ,0); /* GET RID OF THIS REAL SOON !!! */

REGISTER(s_1_obl_on_b ; /* turn on lscache LFSRs */

REGISTER(s_r_obl_on_b ; /* turn on rscache LFSRs */

REGISTER(i_sl _rcv_a _h,1 /* recelve serial data */

REGISTER(i_icfail a_h,1 /* copy of t_bst->icfail b h */

_h
_h

~ s s~

/* title: Signals to BHT Array */
SIGNAL{j_bht_new_5b_h, 8); /* T_BST FSD outputs to BHT Array */

/* title: Data Array */

REGISTERW (3 dat _in a h, 128, W4, 0);
REGISTER(]J dat_in dcd_a_h, 20, 0);
REGISTER(j_dat_in _par_a h, 2, 0);

/* title: Tag Array */

REGISTER(J_fpc_par_2a h, 1,0); /* Tag Parity bit, input to ICACHE Tag*/
REGISTER(j_valid_2a_h, 2,0); /* (1:0) Tag Valid bits, in to ICACHE Tag */
REGISTER(J_pa_2a_h, 1,0); /* Phy Addr bit, input to ICACHE Tag */
REGISTER(j_asn_a h, 7,0); /* (6:0) ASN bits, input to ICACHE Tag */
REGISTER(J_asm a_h, 1,0); /* ASM bit, input to ICACHE Tag */
REGISTERW(j_fpc_2a_h, 43, W2, 0); /* 30 bits exactly */

/* title: Other signals to ICache */

SIGNAL(j_bst bistdone b h, 1); /* Bist done sig to clear TAG Valids */
/* Delete above once j_tag.c is changed */

SIGNAL(J bst_bist_running b 1, 1); /* Indicates bist is running. */

9-12 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL(j bst_wr_za h, 1); /* write command for BiSt/SROM */
SIGNAL(J_bst_do_program b 1, 2); /* Program enable from FRC to IC */
SIGNAL{J bst_red init b 1, 1); /* Init redundancy. Disbales spares. Enables regular rows. */

/* title: Signals to the IBox index dp */

SIGNAL(i_bst_repair index_a_h, 13); /* Repair index. Use only 10:6 */
SIGNAL(i_bst_nextaddress b_h, 1); /* Increment address */
REGISTER(i_bst_test_ctl b h, 2, 0); /* Test Control to idx counter */

/* title: Other Signals */
SIGNAL(z_bst_ictest_b h, 1); /* IC test mode. Controls muxes etc */
SIGNAL(z_bst_bist_init_b h, 1); /* Init signal from BisSt State m/c UNUSED, DELETE! */

/* title: JTAG Signals */

SIGNAL{ z_jtg bsr_capture b h, 1); /* capture sig to BSR */

CLOCK(z_Jjtg_bsr_update b_h, 50, 100)}; /* Update sig to BSR */

SIGNAL(z_jtg_bsr_drv_pins b_h, 1); /* Output mux control to pads */
CLOCK(z_Jjtg bsr_clk_a_h, 0, 50); /* sSlave clock for bsr */

CLOCK(z_Jjtg _bsr clk_b h, 50,100); /* Master clock for BSR */

SIGNAL(z_jtg_si_to_bsr b_h, 1); /* Ser in to 1lst BSR Cell. NOT A GLOBAL */

REGISTER (k_bsr_so_pm h, 2, 0); /* si to kbox BSR; only use bit 1 */

}ort;

DECLARE struct p {
/* title: External interface */

/* Clocks */

REGISTER (clk_in h, 1, 0);
REGISTER (clk_in_1, 1, 0);
SIGNAL (cpu_clk_out_h, 1);
SIGNAL (sys_clk_outl h, 1);
SIGNAL (sys_clk_outl_ 1, 1);
SIGNAL (sys_clk_out2 h, 1);
SIGNAL (sys_clk_out2 1, 1);
REGISTER (ref_clk_in_h, 1, 0);
REGISTER (sys_reset_1, 1, 0);
SIGNAL (clk_mode h, 2); /* functionality not currently modeled */

/* System Interface */

BUSW (addr_h, 40, W2);

BUS (cmd_h, 4);

BUS (addr_cmd_par_h, 1);

REGISTER (victim pending h, 1, 0);
REGISTER (addr_bus_req_h, 1, 0);
REGISTER (cack_h, 1, 0);

REGISTER (cfail h, 1, 0);
REGISTER (addr_res_h, 3, 0);
REGISTER (int4_valid h, 4, 0);
REGISTER (scache_set_h, 2, 0);
REGISTER (fill _h, 1, 0);

REGISTER (fill id_h, 1, 0);
REGISTER (dack_h, 1, 0);

REGISTER (fill_error_h, 1, 0);
REGISTER (fill_nocheck h, 1, 0);
REGISTER (system lock_flag h, 1, 0);
REGISTER (idle bc_h, 1, 0};
REGISTER (data bus req h, 1, 0);

/* Bcache Interface */
REGISTER (index_h, 26, 0);
BUSW (data_h, 128, W4);

BUS (data_check_h, 16);

BUS (tag_data_h, 19};

BUS (tag_data_par_h, 1);

BUS (tag_valid h, 1};

BUS (tag_shared_h, 1};

BUS (tag_dirty h, 1});

BUS (tag_ctl par h, 1);
REGISTER (tag_ram ce h, 1, 0};
REGISTER (tag_ram we_h, 1, 0);
REGISTER (data_ram oe_h, 1, 0);
REGISTER (data_ram we_h, 1, 0);

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-13

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* Misc stuff */

REGISTER (irq_h, 4, 0);

REGISTER (sys_mch_chk irq h, 1, 0);
REGISTER (pwr_fail irq h, 1, 0);
REGISTER (mch_hlt_irg h, 1, 0);
REGISTER (dc_cok_h, 1, 0);

/* test port */
REGISTER (port_mode_h,2,0); /* selects NORMAL, MANUFACTURING, or DEBUG */
REGISTER(srom_present 1,1,0); /* SROM used to load ICache */
REGISTER(srom_data h,1,0); /* SROM data, or serial receive */
REGISTER(srom_clk_h,1,0); /* SROM clock, or serial transmit */
REGISTER (srom_ce_1,1,0); /* enable either SROM or serial terminal */
REGISTER(tdi_h,1,0); /* JTAG data input */
REGISTER(tdo_h,1,0); /* JTAG data output */
REGISTER(tms_h,1,0); /* JTAG mode select */
REGISTER(tck_h,1,0); /* JTAG clock */
REGISTER{trst_1,1,0); /* JTAG reset */
REGISTER(test_sta_h,2,0); /* information on test status */
REGISTER (temp_sense,1,0);

/* performance counter */

SIGNAL (perf mon_h, 1); /* external performance counter input */
} *pi
DECLARE struct p_drv {

/* title: External interface tri-state control variables*/
VARIABLE {(addr_drv_ctl, 32);
VARIABLE (cmd_drv_ctl, 32);

VARIABLE (addr_cmd_par_drv_ctl, 32);
VARIABLE (data_drv_ctl, 32);
VARIABLE (data_check_drv_ctl, 32);
VARIABLE (tag_data_drv_ctl, 32);
VARIABLE (tag_data_par_drv_ctl, 32);
VARIABLE(tag_valid_drv_ctl, 32);
VARIABLE (tag_shared_drv_ctl, 32);
VARIABLE (tag_dirty drv_ctl, 32);
VARIABLE (tag_ctl par drv_ctl, 32);

/* test port drive enables */

/* VARIABLE (port_mode_drv_ctl,32); */ /* no longer an output */
VARIABLE (srom_present_drv_ctl,32);
VARIABLE (srom_data_drv_ctl,32);
VARIABLE (srom_clk_drv_ctl,32);
VARIABLE (srom oe_drv_ctl,32);
VARIABLE (tdi_drv_ctl,32);

VARIABLE (tdo_drv_ctl,32);

VARIABLE (tms_drv_ctl, 32);
VARIABLE (tck_drv_ctl,32);

VARIABLE {trst_drv_ctl,32);
VARIABLE (test_sta_drv_ctl,32);

} *p_drv;

/* Ibox Interface Signals */
DECLARE struct i {

/* title: Signals to E and MBOXes */

REGISTER(z eO_inst_2b h ,32,0); /* Integer/MBOX Pipe Instructions */
REGISTER(z el _inst_2b h ,32,0); /* includes OPC,Src R#s,LIT,DISP etc. fields */
REGISTER(z_eO_issue_4a_h ,1,0); /* Instruction Issue Lines */
REGISTER(z_el_issue_4a_h ,1,0);

SIGNAL{z_stall 3b_h ,1); /* Freeze Line */

/* title: Signals to the EBOX */

9-14 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL(e_ra0_addr 2a h ,5); /* Register file address for read port RAC */
SIGNAL(e_ral_addr 2a h ,5); /* Register file address for read port RAl */
SIGNAL(e rb0_addr 2a h ,5); /* Register file address for read port RBO */
SIGNAL(e rbl addr 2a h ,5); /* Register file address for read port RB1 */
REGISTER{e_use_e0a_3b h ,1,0); /* use RF as the src operand -- are these needed? */
REGISTER{e_use e0Ob 3b_h ,1,0);

REGISTER(e_use_ela_3b_h ,1,0);

REGISTER (e_use ¢ elb 3b h ,1,0);

REGISTER (e_use_t e01it 3b h ,1,0); /* Use the LIT field instead of RB */
REGISTER (e _use ellit 3b h ,1,0); /* are these needed?? */
REGISTER(e byp e0s4 eOa 3b h ,1,0); /* EBOX RF bypasses */

REGISTER (e_byp_ els4 eOb 3b h ,1,0); .

REGISTER (e_byp eOs4 ela 3b h ,1,0);

REGISTER (e _byp eOs4_elb 3b h ,1,0);

REGISTER (e_byp_els4 eOa 3b h ,1,0);

REGISTER (e_byp els4 eOb 3b | h ,1,0);

REGISTER (e byp els4 ela 3b h ,1,0);

REGISTER(e_byp els4 elb 3b h ,1,0);

REGISTER (e_byp_e0s5 eOa 3b h ,1,0);

REGISTER({e_byp_e0s5 eOb 3b h ,1,0);

REGISTER (e_byp e0s5 ela 3b h ,1,0);

REGISTER (e _byp e0s5_elb 3b h ,1,0);

REGISTER (e_byp_els5 eOa 3b h ,1,0);

REGISTER (e_byp_els5 eOb 3b h ,1,0);

REGISTER(e_bprelss_gla_3th »1,0)¢

REGISTER{e_byp els5_elb 3b h ,1,0};

REGISTER(e_byp eOw_e0a_3b _h ,1,0);

REGISTER(e_byp eOw_eOb 3b h ,1,0);

REGISTER (e_byp_eOw_ela_3b_h ,1,0);

REGISTER (e_byp _eOw_elb 3b h ,1,0};

REGISTER{(e byp elw e0a 3b_h ,1,0);

REGISTER (e_byp_elw eOb _3b h ,1,0);

REGISTER (e_byp elw _ela 3b_h ,1,0);

REGISTER(e byp_elw elb 3b_h ,1,0};

REGISTER (e_dual_cmp 3b_h ,1,0); /* Special dual issue widget. Tells the EBOX that we might */
REGISTER(e_dual_log 3b h ,1,0); /* dual issue a CMP-BR or CMP-CMOV and that they should be

* ready to use their special widget. Note that if we don’t

* actually wiggle both E0 and El issue lines in the next phase

* then we didn’t actually do the dual issue due to some stall

* condition */
REGISTERW (e_pc_4a_h ,64,W2,0); /* PC bus to the Ebox pipe El */
REGISTER(e_use_1d0_5a_h ,1,0); /* Select the LOAD port rather than the datapath for S6 results */
REGISTER (e_use_ldl 5a_h ,1,0);
REGISTER(e_mul_abort_h ,1,0); /* Abort the multiplier */
REGISTER(e_sel mul _4b h ,1,0); /* Select the Multiplier result rather than the shifter */
SIGNAL{e_w0_addr_5a_h ,5); /* Register Write Addresses */
SIGNAL(e_wl_addr_5a h ,5);
SIGNAL{e _w0_en_6a_h ,1); /* Write Enables */

SIGNAL(e_wl _en 6a_h ,1); :

SIGNAL(e rd_pal_shadow_2a_h ,1); /* Use PAL SHADOW regs for read */

REGISTER(e wO_pal shadow 5a_h ,1,0); /* Use PAL SHADOW for W0 write */

REGISTER(e_wl_pal shadow_5a_h ,1,0};

REGISTER(e_intr_flag 3a_h ,1,0}; /* The intr flag for RS/RC instructions (must be valid a mux delay ahead of
SIGNAL{e_use_intr_flag 3a_h ,1); /* Selects the intr flag over the literal (must be valid a mux delay ahead ¢

/* title: Signals to E and FBOXes */
SIGNAL(z_br_predict_4a_h ,1)7 /* Predict that the branch is taken */

/* title: Signals to FBOX */

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-15

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

REGISTER(f fa inst_3a h ,32,0); /* FA instruction -- all 32 bits
* The schematic/layout implementation will not require bits 4:0
* they are included in the model in order to retain the correct

* bit numbering. */
REGISTER(f_ fm inst_3a_h ,32,0); /* FM Instruction -- all 32 bits
* The schematic/layout implementation will only require bits

* 30,27:26,25:11. The rest are included in the model in
order to retain the correct bit numbering */

REGISTER(f_st“inst_3a_h ,32,0); /* EO Instruction after an S3 latch routed to the FBOX

* The schematic/layout implementatation will not require all

* 32 bits. They are included in the model in order to retain

N the correct bit numbering */
REGISTER(f fa_issue 4a_h ,1,0); /* Issue Lines - timing may change, rpp */
REGISTER(f_fm issuve 4a_h ,1,0);
REGISTER(f_st_issue_4a h ,1,0);
REGISTER(f byp fm_ fma 3b h »1,0);
REGISTER(f byp fm fmb 3b h ,1,0);
REGISTER(f byp fm faa | _3b_] » h ,1 0);
REGISTER(f byp . fm fab 3b h,1,0);
REGISTER(f byp fm st 3b h ,1 0);
REGISTER (f_byp fa fma 3b h ,1,0);
REGISTER(f byp fa_fmb 3b h ,1,0);
REGISTER(f byp fa faa 3b_h V1,00
REGISTER(f byp fa_fab 3b_h ,1,0);
REGISTER (£ _byp fa st _3b h ,1,0);
REGISTER (f_byp_ld0_fma _3b_h ,1,0);
REGISTER(f byp 1d0_fmb 3b h ,1,0);
REGISTER(f_byp_ ldO faa 3b h ,1,0);
REGISTER(f byp ldO fab 3b_| _h +,1,0);
REGISTER(f _byp_. ldO st 3b h ,1,0);
REGISTER({f byp 1dl_ fma 3b h ,1,0);
REGISTER(f byp 1dl_. fmb 3b h ,1,0);
REGISTER(f_byp_ldl_faa_3b_h ,1,0);
REGISTER({f byp ldl_fab 3b_h ,1,0);
REGISTER(f byp_ldl_st 3b h ,1,0);
REGISTER(f_ fdiv_abort_h ,1,0); /* Abort the Floating Point Divider */
SIGNAL(f_1d0_addr_5a_h ,5); /* Floating Register File, Load port addresses */
SIGNAL(f 1d1_addr_5a_h ,5);
SIGNAL(f we_1d0_6a_h ,1); /* LOAD port write enables, delete these when the FBOX updates */
SIGNAL(f we_ldl_6a_h ,1);

/* FBOX RF Bypass Lines -- timing may change, rpp */

SIGNAL(f fill we_ 1d0_éa_h 15 /* New Load port write enables for FILLs only, not qualified with aborts */
SIGNAL(f fill we_1dl_6a_h s1);
SIGNAL(f_hit_we ld0 Ga h s1); /* New Load port write enables for HITs only, qulaified with MBOX aborts */
SIGNAL(f hit_we_1dl _6a h 1)

SIGNAL(f fa addr 7a_h ,5); /* operate write port addresses */
SIGNAL(f fm addr 7a_h ,5);

REGISTER(f we_. fa | _8a h ,1,0); /* oeprate write port enables */
REGISTER(f_we fm 8a h ,1,0);

/* title: Signals to Mbox */

SIGNAL (m_pal_ shadow_en 3a h,1); /* PAL SHADOW Mode bit, MBOX will store in MAF with the
* register address */

REGISTER(m e0_valid 2b h,1,0); /* indicates a valid instruction has been slotted */
REGISTER(m el valid 2b h,1,0); /* indicates a valid instruction has been slotted */

REGISTER(m kill e0 5b_h, 1,0); /* pipe0 ibox/ebox/fbox traps */
REGISTER {m _kill el _Sb h, 1,0); /* pipel ibox/ebox/fbox traps */
SIGNAL (m_kill dtbis 4a_h, 1); /* pipe0 kill for dtbis only */

SIGNAL (m_imaf req_1lb h, 1); /* load iref PA into MAF */
SIGNAL (m_iref idx_lb h, 2); /* iref prefetch queue index*/

SIGNALW (m_iref addr_2a h, 40,W2); /* (39:4) iref Physical Address */
SIGNAL (m_iref req 2a_h, 1); /* iref PA is real, MAF can begin arbing */

/* title: Signals to ICACHE & Refill Buffer & BHT */

9-16 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

REGISTER(j_ic_index_zb h, 13,0); /* (12:0) ~--> ICACHE only uses (12:4): Index (Block, index (row), octaw«
SIGNAL (j_ic index zb 1, 13); /* (12:0) --> ICACHE only uses (12:4): _L version of above */

SIGNAL (J_asm b _h, 1); /* ASM bit, input to ICACHE Tag */

SIGNAL (j_asn_b h, 7); /* (6:0) ASN bits, input to ICACHE Tag */

SIGNAL (j_pa_1lb_h, 1); /* Physical Address bit, input to ICACHE Tag */

SIGNAL (Jj_valid_lb h, 2); /* (1:0) Tag Valid bits, input to ICACHE Tag */
SIGNALW (Jj_fpc 1lb_h, 43,W2); /* (42:0) --> ICACHE only uses 30 bits (42:13), Fill Tag, input to ICACHE °*
SIGNAL (Jj_fpc_par_lb h, 1); /* Tag Parity bit, input to ICACHE Tag */

/** OLD SIGNAL TO BE DELETED */

SIGNAL (j_flush_a h, 1); /* Clear all IC valid bits. Flush occurs during B-phase */

/** END OLD SIGNAL TO BE DELETED */ .

SIGNAL (j_flush b h, 1); /* Clear all IC valid bits. Flush occurs during next B-phase */

SIGNAL (j_ic cmd a h, 1); /* command to Icache: READ (=0), FILL (=1) */

SIGNAL (J_force bad_dp_a h, 1); /* Force bad data parity on data going into the Refill Buffer and Icache */
REGISTER(J_ib_stall_a h, 1,0); /* IB_STALL, Sense Amp disable, mux control */

SIGNAL (J_bypass_ic_a h, 1); /* Bypass Icache: IB gets FILL data or RFB data */

SIGNAL (j_rfb rd idx b h, 13); /* (12:0) RFB Read Index, RFB only uses (6:4), Icache latches in A, uses

REGISTER(J_rfb wr_ idx a_h, 3,0); /* (2:0) Refill Buffer Write Index, arrives one cycle ahead of write */

REGISTER(]_rfb write a h, 1,0); /* Refill Buffer Write Enable, arrives one cycle ahead of write */
SIGNAL (Jj_bht_new_5b h, 8); /* (7:0) Branch History Bits to update */

SIGNAL (j_bht_idx_zb_h, 13); /* (12:0) --> ICACHE uses 9 bits (12:4), Index for BHT read */

SIGNAL (j_bht_idx_zb_1, 13); /* (12:0) --> ICACHE uses 9 bits (12:4), _L of above */

SIGNAL (j_hup_idx Sb_h, 13); /* (12:0) --> ICACHE uses 9 bits (12:4), Index for BHT update */

SIGNAL (j_hup_en 5b_h, 1); /* BHT update enable */

SIGNAL (j_bht_silo_sel b_h, 1); /* Use BHT output delayed by one cycle, for use on RFB reads */

/* title: Signals to Cbox */
SIGNAL (c_clr_lock flg a h, 1); /* signal to clear lock flag when necessary from PAL CODE */

/* title: Signals to Tbox */

SIGNAL(t_tst_index za_h, 13); /* Test Indexes. Use 12:4 */
REGISTER(t_lastaddress_a h, 1,0); /* Test IDX Counter overflow */
REGISTER(t_obl so_b_h,1,0); /* serial out of observability LFSR chain */
REGISTER(t_sl_xmit_b_h,1,0); /* transmit serial data */
REGISTER(t_icsr_sle_b_h,1,0); /* SEL bit (31) of ICSR */
REGISTER(t_icsr_sta_b h,1,0); /* ICSR can turn on test_sta<l> */
REGISTER(t_dbg data_a h,8,0); /* parallel observability */

/* title: Timeout Reset signals */
SIGNAL{m treset b _1,1);
SIGNAL(c treset b 1,1);
SIGNAL{e treset b 1,1);
SIGNAL(f treset_b_1,1);

} *i; .

/* Ebox Interface Signals */

DECLARE struct e {

/* title: Signals to Ibox */

REGISTER {(i_mul_done_soon_0a_h,1,0}; /* Multiplier will deliver data soon */

REGISTER (i_kill_cmovO_4b_h, 1,0); /* Do not write or bypass result of CMOV issued to EO */
SIGNAL (i_kill_cmovl_4b h, 1); /* Do not write or bypass result of CMOV issued to El */

SIGNAL (i_br taken_5a h, 1); /* Branch condition is satisfied */
REGISTER (i_br mispredict_5a_h,1,0); /* Branch was mispredicted */
REGISTER (i_int_ovf0_éb_h, 1,0); /* Overflow from pipe EO */
REGISTER (i_int_ovfl_6éb_h, 1,0); /* Overflow from pipe E1 */
REGISTER (i1_mul _ovf_8a_h, 1,0); /* Overflow from the multiplier */
SIGNALW (i pc 4ac h, 64,W2); /* PC bus to Ibox */

REGISTER(i obl_so b h,1,0); /* serial out of observability LFSR chain */
SIGNAINW (i_pc_3b_h, 64,W2); /* DELETE ME */

/* title: Signals to Mbox */
SIGNALW (m_vaO_4bc_h, 64,W2); /* Pipe0 Virtual Address (also data for mtpr tbhis */
SIGNAIW (m_val_4bc_h, 64,W2); /* Pipel Virtual Address */

/* These low asserted versions are not used in the model. They are here for GUIDEWIRE purposes only. */
SIGNALW (m va0O_4bc_1, 64,W2);
SIGNALW (m_val_4bc_l, 64,W2);

REGISTERW (m_st_data_4a_h, 64,W2,0); /* Integer store and MTPR data */

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-17

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

9-18 The Interconnect

/* title: signals to Dcache */

REGISTER(d_vaO_4a_h, 13,0); /* (12:3) Pipe0 Virtual Address from fast adder output */
REGISTER(d_val_4a_h, 13,0); /* (12:3) Pipel Virtual Address from fast adder output */
} *e;

/* Fbox Interface Signals */
DECLARE struct f {

REGISTER(i br_taken 5a h, 1,0); /* branch taken */
REGISTER(i br mispredict 5a_h, 1, 0); /* branch mispredict */
REGISTER(1_kill_cm 5a_h, 1, 0); /* KILL conditional move */

REGISTER (div_done_soon_lb_h, 1, 0); /* Divide done soon */
REGISTER(i_fdz fa 8b_h, 1, 0) ; /* divide by zero */
REGISTER(i_fov_fa 8b_h, 1, 0} /* floating add pipe over flow */
REGISTER{i_fun_fa 8b h, 1, 0} /* floating add pipe under flow */
REGISTER(1 ine fa 8b h, 1, 0) /* floating add pipe inexact */
REGISTER(i inv fa 8b_h, 1, 0) /* floating add pipe invalid operand */
REGISTER(i_iov_fa 8b h, 1, 0) /* floating add pipe int overflow */
REGISTER(i_swc_fa_8b_h, 1, 0) /* floating add pipe software completion */

EPREPREEE VK TRE PR Y

REGISTER(i_fov_fm_8b _h, 1, 0)
REGISTER{i_ fun fm 8b h, 1, 0)
REGISTER(i_ine fm 8b h, 1, 0)
REGISTER(i_inv fm 8b_h, 1, 0)
REGISTER (i_swc_fm_8b_h, 1, 0)

/* floating mul pipe over flow */

/* floating mul pipe under flow */

/* floating mul pipe inexact */

/* floating mul pipe invalid operand */

/* floating mul pipe software completion */

Ne Ns Ne we s

REGISTER(c_obl_so_b_h,1,0); /* serial out of observability LFSR chain */
}oxE;

/* Mbox Interface Signals */
DECLARE struct m {
/* title: Signals to Ebox */

/*******t*i*kt*t******t******i**i****‘k*************k*i*********** **********in\'*t************t*it**tt**/
BUSW (e_1d_data0O_5bc_h, 64,W2); /* Pipe0 data returened to Ebox register file for:
LD, fill, MFPR, RPCC, STxC */
BUSW(e_ld_data0_5bc_1, 64,W2); /* Pipe0 data returened to Ebox register file for:
LD, fill, MFPR, RPCC, STXC */
BUSW (e_ld_datal_5bc_h, 64,W2); /* Pipel data returened to Ebox register file for:
LD, fill */
BUSW(e_1d_datal 5Sbc 1, 64,W2); /* Pipel data returened to Ebox register file for:
D, fill */
SIGNAL (e_big_endian 7a_h, 1}); /* E_BIG_ENDIAN mode bit from MCSR register */

REGISTER(e obl_so_b h,1,0); /* serial out of observability LFSR chain */

JrR kR kAR IR Ak kR R ARk AR Ak AR R AR A A Ak A AR AR A A A ARk AR R A AR AR A KA AR A I A KA AR KA IR KRR AR AR AR Kk R AR AR R Ak hhkhh ko h /

/* title: Signals to Cbox */

REGISTERW (c_maf_addr_5b_h, 40,W2,0); /* (39:2) physical address. Valid end-6a at Cbox. */
SIGNAL (c_maf_cmd 5b h, 4); /* commands to Cbox. Valid end-6a at Cbox. */

SIGNAL (c_maf_index 5b_h, 5); /* 1 of 16 maf entries. Valid mid-6a at Cbox */

SIGNAL (c maf type 5b_h, 1); /* integer/floating. Valid end-6a at Cbox. */

REGISTER (c.wr_type 5b_h, 1, 0); /* LW or QW writes. Valid mid-6a at Cbox. */

REGISTER (c_wr_lw_addr Sb h, 5, 0); /* (4:2) IW to write in WB.Valid mid-6a at Cbox. */

SIGNAL (c_maf_abort 6a h, 1); /* abort cmd. Valid mid-6b at Cbox. */
REGISTER (c_wr_enable 6a_h, 6, 0); /* 1 of 6 WB entries. Valid end-6b at Cbox. */
REGISTER (c_drd mask_8b_h, 4, 0); /* qw masks for i/o reads. Valid end-9a at Cbox */

/* title: Signals to Tbox */

SIGNAL (i_dc_hit_eO_Sb_h, 1); /* pipeO dc_hit */
SIGNAL (i_dc_hit_el 5b_h, 1); /* pipel dc_hit */
SIGNAL (i_mb_clear_2b_h, 1); /* RS, RC, MB, STxC done, o.k. to restart */

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

REGISTER (i_dmm err e0_5b_h, 1, 0); /* pipe0 Mbox trap (summary of all MM traps) */

REGISTER (i_dmm_err el 5b_h, 1, 0); /* pipel Mbox trap (summary of all MM traps) */

SIGNAL (i align err e0_5a_h, 1); /* pipe0 VA alignment error */

SIGNAL (i_align_err_ e el 5a_h, 1); /* pipel VA alignment error */

SIGNAL (i_in tb . flow 5a _h, 1); /* pipe0 trap happened while in a TB flow */

SIGNAL (i_¢ dtb miss e0 5a_h, 1); /* pipe0 dtb miss */

SIGNAL (i ¢ dtb miss el 5a _h, 1); /* pipel dtb miss */

/* These two signals to be deleted later */

SIGNAL (i_mbox_unavail e0_5b h, 1}; /* pipe0 - wb conflict, wb full, maf full trap */

SIGNAL (i_mbox unavail el 5b h, 1); /* pipel - wb conflict, wb full, maf full trap */

SIGNAL (i_mbox_unavail_ e0_6ac_h,1); /* pipe0 - wb conflict, wb full, maf full trap, dmm err */
SIGNAL (i_mbox unavail el 6ac_h,1); /* pipel - wb conflict, wb full, maf full trap, dmm err */
REGISTER(i_ perr 6a_h, 1,0} ; /* Dcache tag or data parity error */

SIGNAL (i_fill rnumC_4a h, 7); /* pipe0 register for fill data NEW TIMING
<6>-pal shadow, <5>~(I=0,F=1),
<4:0>-register number
Fbox ignores bit 6 */
SIGNAL (i_fill rnuml_4a _h, 7); /* pipel register for fill data NEW TIMING
<6>-pal shadow, <5>-{I=0,F=1},
<4:0>-register number
Fbox ignores bit 6 */
SIGNAL (i_fill validO_4b_h, 1); /* fill data coming on pipe0 NEW TIMING */
SIGNAL (i_fill validl_4b _h, 1); /* fill data coming on pipel NEW TIMING */

SIGNAL (i_fill validO_4a_h, 1) /* £ill data coming on Pipe0O, new functionality, is that the MBOX
will send in 4A, and the IBOX will qualify with the CBOX RFB_DATA VALID
signal -- MBOX to remove the 4B signals when the change is implemented */

SIGNAL (i_fill validl_4a h, 1); /* ditto for pipel */

REGISTER (i _fill coming 4a h, 1, 0); /* Fbox fill is coming, but may not be valid NEW TIMING */

REGISTER(i_1d alloc e0_6b_1, 1, 0); /* to performance counter to indicate that missed LD in E0 got allocate
REGISTER(i 1d alloc el _6b 1, 1, 0); /* to performance counter to indicate that missed ILD in El got allocats
REGISTER(1i_3 wbmaf full eo Ga _h, 1, 0); /* to performance counter to indicate that ST has WB full or LD has }
REGISTER(1 maf full el 6a _h, 1, 0); /* to performance counter to indicate that LD in El has MAF full */

REGISTER (i_dbg_data_a_h,8,0); /* parallel observability */
/* title: Signals to Fbox */

SIGNAL (f_ld formatO_4b_h, 3); /* Format info for Fbox pipe0 fills and loads.
<2> = vax_fp/ieee, <1> = LW/QW,
<0> = lower/upper LW */
SIGNAL (f_ld formatl 4b h, 3); /* Format info for Fbox pipel fills and loads.
<2> = vax fp/ieee, <1> = LW/QW,
<0> = lower/upper LW */
SIGNAL(f_ fbox drv_ena_5a_h, 1) /* asserted at 5a ==> fbox drives b->d_wr_data_6a_h at 6a */

/* title: Signals to Dcache */

SIGNALW (d_dc_addr_xa_h, 39, W2); /* (38:3): (38:13) = fill tag to be stored in Dcache tags,

(12:8) = address for wordline decode, (7) = Ml w

(6:3) = column muxing

Timing is early A (reads, fills, stores occur f{
SIGNAL (d_tag idx sel_3b h, 1); /* Address source for DC Tags for 4B operation: 0=EBOX VA, 1=MBOX d _dc add
SIGNAL (d_dat_idx sel 3b_h, 1); /* Address source for DC Data for 4B operation: 0=EBOX VA, 1=MBOX d_dc_add
SIGNAL (d_1 nofil10 _5a_h, 1); /* nofill Dcache0, from the MAF, we have one for each cache for testability on:
SIGNAL {(d_: | nofilll _S5a_h, 1); /* nofill Dcachel, used for FILL in 5b, * " */
SIGNAL (d_update_dcout_Sb_h, 1); /* For power savings, don’t update Z_DATAX 5A H if this is 0 and cmd is not
SIGNAL (d_tag_cmd 3b_h, 2); /* (1:0) command to DC tag for 4b operation: nop=00, read=01, fi11=10, write=l
SIGNAL (d_data cmd 3b_h, 2); /* (1:0) command to DC data for 4b operation: nop=00, read=01, £il1=10, write=
SIGNAL (d_st_adr_Sb_h, 3); /* (2) Address bit 2, used for LW Stores, comes early to be used with wr_type_ 5!
SIGNAL (d_wr type Sb_h, 1); /* LW or OW Store: O=LW, 1=QW, used with d_st_adr_Sb_h(2) for STORE in 6b */
SIGNAL (d_tag par_5a_h, 1); /* £ill tag parity to be stored in Dcache tags in 5B */
SIGNAL (d valid 5a_h, 2); /* £ill tag valid bits to be stored in Dcache tags in 5B*/
SIGNAL (d_st valld 6a_h, 1); /* store data is valid for the Dcache for STORE in 6B */
SIGNAL (d_dc_flushua_h, 1); /* Dcache flush, if 1, clear all DC valid bits in B-phase */
SIGNAL (d_force bad par_Sb_h, 1); /* Force bad parity on data parity into the Dcache data array, for STORE

} *m;

DECLARE struct c {

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-19

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* title: Signals to Mbox */

SIGNAL
SIGNAL

7-93 */
SIGNAL

{m_sc busy 4a_h, 1); /* No scache access. Valid end-4b at Mbox */
(m_retry 8a h, 1); /* Retry. Valid mid-8b at Mbox */

SIGNAL {m_sc_hit_7b_h, 1) /* sc_hit in one of the 3 banks */
SIGNAL (m_return_index_7a_h, 3); /* only <2:0> needed.

1 of 16 maf entries. Valid end-7b at Mbox cs 3~

{m_return_status_7a_h, 3); /* Return status. Valid end-7b at Mbox. */

SIGNAL (m wr _now_4a_h, 1); /* Cbox initiated Writes. Valid mid-4b at Mbox */

SIGNAL (m_wr_maf_ index 4a_h, 3); /* only <2:0> needed. 1 of 16 maf entries. Valid end-4b at Mbox */
SIGNAL (m_wr_64B_req 4a_h, 1); /* to be deleted */
SIGNAL (m _wr_64b_req_4a_h, 1}; /* 64B mode Write. Valid end-4b at Mbox */

SIGNAL (m_stxc_fail 7a h, 1); /* stxC failed. Valid end-7b at Mbox */

SIGNAL (z_rfb_data_valid 9a_h, 1); /* rfb. Valid end-9b at Mbox and Dcache */

SIGNAL (m_rfb ecc_err 10b_h, 1); /* ecc error. Valid end-1lla at Mbox */

SIGNAL (m_ow_valid 7a_h, 1); /* ow valid (bit4) for fills. Valid end 7b */

SIGNAL (m_bogus 1f 8a h, 1); /* bogus last fill. sysclock=3 and ff has error */

/* valid end 8a @ mbox. may spill into 8b */
SIGNAL (z_alloc_cycle 2a_h, 1); /* integer fill bubble. Valid early-2b at Mbox */

REGISTER(m_obl_so_b_h,1,0); /* serial out of cbservability LFSR chain */
REGISTER(m dbg data_a h,8,0); /* parallel observability */

/* title: Signals to Scache */

/* to SCache tag array */

SIGNAL (s_bcache_size a_h, 3); /* Bcache size. Vallid end-a at Scache */
REGISTER (s_set_enable_a_h, 3,0); /* Set enables. Valid end-a at Scache */

REGISTER {s_32b_mode_a. h,

1,0}; /* 32b mode. Valid end-a at Scache */

REGISTER (s_flush_b_E,T,O); /* flush all the valid bits in the Scache */

SIGNALW (s_addr 6a_h, 40,

REGISTER

SIGNAL (s_fill tag_cmd_5b_h,

(s_cmd_6b_h,3,0); /* Command. Valid end-6éb at

W2); /* 39:3 physical address. Valid end-6a at Scache. */

Scache */

1}; /* Fill (on scmiss) command. Valid end-5b at Scache */

SIGNAL (s_fill_ status_cmd_5b_h,1); /* Fill (32b mode, tag match, not valid) command.
SIGNAL (s_set_hit_5b_h, 2); /* Pick 1 of 3 sets.

/* To be Deleted once move to Sb is done {cs] */

(s_fill tag_cmd_6a_h, 1,0); /* Fill (on scmiss) command. Valid end-6a at Scache */

(s_fill status_cmd_6a_h,1,0); /* Fill (32b mode, tag match, not valid) command.
Valid end-6a at Scache */

REGISTER
REGISTER

REGISTER

SIGNAL (s_abort_7a_h,

{s_set_hit_6a_h,2,0); /* Pick 1 of 3 sets.

valid end 5b */

Valid end-6a at Scache */

1); /* Abort Scache operation. Valid end-7a at Scache */

SIGNAL (s_wr_shared perm 6b_h, 1); /* Valid end-7a at Scache */
SIGNAL (s_wr_dirty perm 6b_h, 1); /* Valid end-7a at Scache */

/* status

signals: 6a for fills, 7a for writes */

SIGNAL (s_tag_v_6a_h, 1); /* Valld bit. Valid mid-6b at Scache */

SIGNAL (s_tag_s_6a_h, 1); /* Shared bit. Valid mid-6b at Scache */

SIGNAL (s_tag_d_6a_h, 1); /* Dirty bit. Valid mid-6b at Scache */

SIGNAL (s_tag m 6a_h, 2); /* Modified (16B) bit. Valid mid-6b at Scache */
REGISTER (s_tag parity 6a_h, 1,0); /* address parity. Valid mid-6b at Scache. */

/* to SCache data array */
SIGNAL (s_lw_write_7a_h, 4); /* 4 LW’s per OW. Vallid mend-7b at Scache. */
REGISTER (s_wfb parity 7b_h,4,0); /* 4 LW parity bits */

REGISTERW (s wfb_7b_h,128,W4,0) ; /* Write Fatbus */
REGISTER (s_wfb_parity 8a_h,4,0); /* (to be removed) 4 IW parity bits */

REGISTERW (s wfb 8a_h,128,W4,0);

REGISTER (s_ifb drive %9a_h,1,0); /* Iread fill bus select */
SIGNAL (s_rfb drive 9a_h, 1); /* Dread fill bus select */
SIGNAL (s_rfb _drive 8b h, 1); /* Dread fill bus select */

/* title:
/*

SIGNAL (i

Signals to Ibox */
x%% NEW TIMINGS ****% g-jul-1992 =*/

ifb index 8b_h, 3); /* 1 of 8 iref rfb index */

/* (to be removed) Write Fatbus */

SIGNAL (i:ifb_data_valid_Bb_h, 1); /* ifb data valid, one cycle before data */
SIGNAL (i_ifb_last_fill 8b_h, 1); /* 1fb data 1s last of the 2 OW from the fill. */

9-20 The Interconnect

DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

SIGNAL (i_corr_err trap 11b_h, 1}); /* Correctable error. Dstream. flop */
REGISTER (i_corr_err_ intr_11b h,1,0); /* Correctable error. D and I streams */
SIGNAL (i_err_abt_lla_h, 1}; /* Ecc error D stream, RFB/Scache/Bcache tag/statu parity error */
REGISTER (i_iecc hrd_err 11b h,1,0); /* Uncorrectable ecc error on istream, fill error, sys cmd er
/* To be deleted */
SIGNAL (i_hard err_1lb _h, 1); /* Uncorrectable ecc error on istream, fill error, sys cmd er
SIGNAL (i_perf mon in_a h, 1); /* Input to IBOX perf monitor logic, a cycle wide PULSE */
SIGNAL (i_irg_a h, 4); /* synchronised interrupt request pins */
SIGNAL (i_sys_mchk_irq_a_h, 1); /* system machine check interrupt pin */
SIGNAL (i_pwr_fail irq_a_h, 1); /* powerfail interrupt request pin */
SIGNAL (i_mch_hlt_irq_a_h, 1); /* machine halt interrupt request pin */

SIGNAL (i_force_time_out_b h, 1); /* force a time out if the system regests one */

REGISTER (i_pmcl_in a _h, 1, 0); /* input to performance counter 1 */
REGISTER (i1_pmc2_in a h, 1, 0)}; /* input to performance counter 2 */

/* title: Signals to Dcache */

REGISTER (d_inval_cmd 9a_h, 1, 0); /* invalidate command */

REGISTER (d_inval_addr 9%a_h, 13, 0); /* 12:6 inval address */

REGISTER {(d_fill par_ 10a_h, 4, 0); /* DC Fill parity, 4 LW parity bits,
source is A-latch in CBOX */

REGISTER (k_slip ok_a_h, 1, 0); /* wave pipelined bcache access in progress */
REGISTER (t_bsr_so_addr h, 5, 0); /* si to tbox BSR; only use bit 4 */

} *c;

/* Scache Interface Signals */
DECLARE struct s {

/* title: Signals to Cbox */

/* signals from tag section */ :

SIGNAL (c_tag _vO0_7a_h[3], 1); /* Valid bits. Valid early-7b at Cbox */
SIGNAL (c_tag_d0_7a_h[3], 1); /* Dirty bits. Valid early-7b at Cbox */
SIGNAL (c_tag_sO_7a_h(3}, 1); /* shared bits. Valid early-7b at Cbox */
SIGNAL (c_tag mO0_7a_h[3], 2); /* Modified (OW). Valid early-7b at Cbox */

SIGNAL (c_tag_vl_7a_h([3], 1); /* Valid bits. Valid early-7b at Cbox */
SIGNAL (c_tag_dl_7a_h[3], 1); /* Dirty bits. Valid early-7b at Cbox */
SIGNAL (c_tag_sl_7a_h({3}, 1); /* Shared bits. Valid early-7b at Cbox */
SIGNAL (c_tag_ml_7a_h[3], 2); /* Modified (OW). Valid early-7b at Cbox */

SIGNAL (c_tag_parity 7a_h{3], 1); /* tag parity bits. Valid mid-7b at Cbox */
SIGNAL (c_tag_bc_index match_7a_h[3], 1); /* Bcache idx match. Valid mid-7b at Cbox */

SIGNAL (c_hit_7a_h[3], 1); /* Hit signal. Valid mid-7b at Cbox */
SIGNAL (c_tag_match_7a_h[3], 1); /* Match signal. Valid mid-7b at Cbox */

SIGNALW (c_tag_7b_h, 40,W2); /* tag bits 39:15. Valid end-7b at Cbox */
SIGNAL (c_tag_perr 7b h[3], 1); /* tag parity error. Valid end-7b at Cbox */

/* title: Signals to ICache */

/***** NEW TIMING **** 6-jul-1992 */
SIGNALW (j_ifb data_9b h, 128, W4); /* ICache fill bus */
SIGNAL (j_ifb parity 9b h, 4); /* 4 LW parity bits */

J***%x%% TQ BE DELETED ******%x** cg 6-3jul-1992 */
/* title: Signals to ICache */
SIGNALW (j_ifb data_l0a_h, 128, W4); /* ICache fill bus */

SIGNAL (j_ifb_parity 10a_h, 4); /* 4 LW parity bits */
/*'k*******;***:***k***i**ﬁ***i/

/* title: Signals to TBOX */

REGISTER(t_1 obs_so_b h,1,0); /* GET RID OF THIS REAL SOON !!! */
REGISTER(t_r_obs_so_b_h,1,0); /* GET RID OF THIS REAL SOON !!! */
REGISTER(t_1_obl_so_b_h,1,0); /* serial out of lscache LFSR chain */
REGISTER(t_r obl_so_b_h,1,0); /* serial out of rscache LFSR chain */

} *s;

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-21

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/* Buses */
DECLARE struct b {

BUSW (z_rfb_%b h, 128, W4); /* rfb data bus, sources are Scache and CBOX,
destination CBOX and Dcache */
BUS (c_rfb parity 9 h, 4); /* 4 LW parity bits, sources are Scache and CBOX,
destination CBOX */
VARIABLE (c_rfb_state, 32); /* state variable for driving rfb from (scache or CBOX)*/
VARIABLE (c_rfb parity_state, 32); /* state variable for driving rfb parity from (scache or CBOX)
To be deleted later, rfb parity is not tristated [san,hale] */

BUSW (d_wr_data_6a_h, 64, W2); /* Dcache tristate store data from FBOX/EBOX for 6B STORE */
BUS (d_wr_lw_parity 6a_h, 2); /* Dcache tristate store 1w parity from FBOX/EBOX for 6B STORE */
VARIABLE (d_wr_data state, 32); /* dcache store bus data driver state

{FBOX or EBOX)*/
VARIABLE (d_wr_lw_parity state, 32}; /* dcache store bus parity driver state
(FBOX or EBOX) */

} *b:

/* Dcache Interface Signals */
DECLARE struct d {

/* title: Signals to Cbox */

SIGNALW (c_wb_data_é6a_h, 64, W2); /* 64 bits of store data to Cbox WB. */
SIGNAL (c_wb_lw_parity 6a_h, 2); /* 2 parity bits per Quadword of store data */

/* title: Signals tc Mbox */

SIGNALW (m_tag0_5a_h, 39, W2); /* (38:13) tag0 for hit logic*/
SIGNALW (m tagl_5a_h, 39, W2); /* (38:13) tagl for hit logic*/
SIGNAL (m_tag_par0_5a_h, 1); /* pipe0 tag parity */

SIGNAL (m_tag_parl 5a_h, 1); /* pipel tag parity */

SIGNAL (m_valid0_5a_h, 2); /* (1:0) pipe0 valid bits for block */
SIGNAL (m_validl 5a_h, 2); /* (1:0) plpel valid bits for block */
SIGNAL (m _data_parO_5a_h, 2); /* pipe0O data parity */

SIGNAL (m_data_parl_5a_h, 2); /* pipel data parity */

/* title: Signals to Mbox and Fbox */

/* NEW TIMING */

SIGNALW (z_dataO_5a_h, 64,W2); /* (63:0) pipe0 load data bus to mbox and fbox */
SIGNALW (z_datal S5a_h, 64,W2); /* (63:0) pipel load data bus to mbox and fbox */
} *d;

/* Icache Interface Signals */
DECLARE struct j {

/* title: Signals to Ibox */

SIGNAL (i_ic _asm Ob_h, 1}); /* ASM bit read from ICACHE Tag */

SIGNAL (i_ic asn_Ob_h, 7); /* (6:0) ASN bits read from ICACHE Tag */

SIGNAL (i_ic_val Ob_h, 2}; /* Block Valid bits read from ICACHE Tag */

SIGNAL (i_ic pa_Ob_h, 1); /* Physical Address bit read from ICACHE Tag */

SIGNAL (i_tag _par Ob_h, 1); /* ICACHE tag parity read from ICACHE Tag */

SIGNALW (i_ic_tag_Ob_h, 43,W2); /* (42:0) --> ICACHE only sends 30 bits (42:13). Tag read from ICACHE */
SIGNAL (i_ic_asm Ob_1, 1); /* ASM bit read from ICACHE Tag */

SIGNAL (i_ic_asn Ob_1, 7); /* (6:0) ASN bits read from ICACHE Tag */

SIGNAL (i_ic val Ob_l, 2); /* Block Valid bits read from ICACHE Tag */

SIGNAL (i_ic pa Ob_l, 1); /* Physical Address bit read from ICACHE Tag */

SIGNAL (1_tag par Ob_1, 1); /* ICACHE tag parity read from ICACHE Tag */

SIGNAILW (i_ic_tag Ob 1, 43,W2); /* (42:0) --> ICACHE only sends 30 bits (42:13). Tag read from ICACHE */

SIGNAIW(i_istr data Ob_h, 128,W4); /* (127:0) data bus, IB input from Icache or Refill Buffer */
SIGNAL (i_predecode 0b_h, 20); /* (19:0) Predecodes from IC/Refill Buffer */
SIGNAL (i_data_par_Ob_h, 2); /* (1:0) data parity, predecode parity */

SIGNAL (i_br_hist _Ob_h, 8); /* (7:0) Branch History Bits read from BHT */

SIGNAL (i_ic_srom out_xx h, 1); /* Serial SROM output from ICACHE (probably @ BHT end)

NOTE: This may go to CBOX directly */
SIGNAL (j_bht_idx_zb_h, 13); /* Index copy. For BiSt/FRC logic */
bo*5;

9-22 The Interconnect DIGITAL RESTRICTED DISTRIBUTION

EV5 CPU Chip Internal Specification, Revision 0.0, February 1992

/*
** Punction prototypes for functions defined in EVSCHIP.C
*/

void ev5chip _init (); /* calls box level init routines */
void evSchip main(); /* calls box level main routines */

/* trailer */
#undef DECLARE
#endif

9.2 Revision History

Table 9-1: Revision History
Who When Description of change

your name date description

DIGITAL RESTRICTED DISTRIBUTION The Interconnect 9-23

