MicroPower/Pascal l/O

Services Manual
Order No. AA-FQ15C-TK

MicroPower/Pascal l/O

Services Manual
Order No. AA-FQ15C-TK

June 1987

This manual contains the I/O services information required for designing and developing
MicroPower/Pascal microcomputer application programs. 1/O services include file
system services, task-to-task commmunication, and device 1/O. A guide to writing device
drivers is provided for designing and developing nonstandard device drivers.

Operating System and Version: Micro/RSX Version 3.0
RSX-11M Version 4.2
RSX-11M-PLUS Version 3.0
RT-11 Version 5.2
VAX/VMS Version 4.0

Software Version: MicroPower/Pascal-Micro/RSX Version 2.4
MicroPower/Pascal-RSX Version 2.4 Y
MicroPower/Pascal-RT Version 2.4
MicroPower/Pascal-VMS Version 2.4

Digital Equipment Corporation Maynard, Massachusetts

First Printing, June 1985
Updated, April 1986
Revised, October 1986
Revised, June 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1985, 1986, 1987 by Digital Equipment Corporation
All Rights Reserved.

The READER’S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC PDP UNIBUS
DECmate P/0OS VAX

DECUS Professional VMS
DECwriter Rainbow VT

DIBOL RSTS Work Processor

MASSBUS RSX
MicroPower/Pascal RT Eﬂmﬂuau

This document was prepared using an in-house documentation production system. All page
composition and make-up was performed by TgX, the typesetting system developed by Donald
E. Knuth at Stanford University. TgX is a trademark of the American Mathematical Society.

Contents

Preface Xix

Chapter 1 Introduction to MicroPower/Pascal Input/Output

1.1 I/O System Architecture e 1-3
1.2 Performing I/O e 1-7
1.3 Request/Reply Packet Interface 1-8
131 Request Queue Names. i 1-9
1.3.2 I/ORequestand Reply Packets 1-11

Chapter 2 Ancillary Control Process

2.1 ACP Features and Capabilities. e 2-1
2.2 Accessing the ACP for File I/O 2-2
2.3 Pascal File System Interface e 2-3
2.4 Request/Reply Packet Interface e e e 2-4
24.1 Physical Read and Write Functions. 2-4
242 Logical Read and Write Functions 2-5
24.3 Set Characteristics Function 2-5
244 Get Characteristics Function 2-5
245 Lookup and Enter Functions 2-6
2.4.6 Rename, Delete, Protect, and Unprotect Functions 2-7
247 Close and Purge Functions 2-7
25 Status Codes 2-8
26 ACP Prefix File e e 2-9
2.7 Application Note: Device-Name Parsing 2-10
28 FALACP e e 2-11

ifi

Chapter 3 Asynchronous Serial Line (Terminal) Driver

3.1 TT Driver Features and Capabilities 3-1

3.2 Performing Asynchronous Serial /O 3-2

3.3 Pascal 1I/O Procedure Interface O 3-3

3.4 Request/Reply Packet Interface e 3-5

34.1 Read Functions, ... 3-7

3.4.2 Write Functionso e 3-8

3.4.3 Get and Set Characteristics Functions 3-9

3.4.4 Set Modem Semaphore Function 3-14

3.4.5 StopRequest e 3-15

35 Status Codes e e 3-15

3.6 TT Driver Prefix File 3-16

3.7 Application Note: Hardware Buffering 3-20
Chapter 4 Disk-Class Device Drivers

4.1 Disk Driver Features and Capabilities 4-2

4.2 Performing Disk I/O e 4-3

4.3 Pascal I/O Procedure Interface it 4-5

44 Request/Reply Packet Interface, 4-7

44.1 RLO1/2 (DL) Functionsttt 4-10

4.4.1.1 DL Logical Read and Write 4-10

4.4.1.2 DL Physical Read and Write 4-11

4.4.1.3 DL Get Characteristics 4-12

4.4.2 RX02 (DY) Functions oot e e e 4-13

4421 DY Logical Readand Write 4-13

4422 DY Physical Read and Write 4-14

44.23 DY Format Subfunctions of Physical Write 4-15

4424 DY Get Characteristics i 4-16

443 MSCP (DU) FUNCHONS oo vt et e e e e e e et e e e e e 4-17

4431 DUlLogical Readand Write, ... 4-17

4.43.2 DU Get Characteristics 4-18

4.4.4 Extended Disk (XD) Functionso ittt 4-18

4441 XD Logical Readand Write 4-18

4442 XD Get Characteristics 4-19

4.4.5 TUS8 (DD) Functionst 4-20

4451 DD Logical Readand Write 4-20

4.45.2 DD Physical Read and Write e 4-21

4453 DD Get Characteristicst 4-22

iv

4.4.6 Virtual Memory (VM) Functions, 4-23

4.4.6.1 VM Logical Readand Write 4-23

44.6.2 VM Get Characteristics i 4-23

45 Status Codes e e 4-24

4.6 Extended Error Information i i 4-26

4.7 Disk Driver Prefix Files 4-26

4.8 Extended Disk Driver Source Excerpt 4-30
Chapter 5§ TMSCP Tape Driver

5.1 MU Driver Features and Capabilities 5-1

5.2 Performing TMSCP Tape I/O i e 5-2

5.3 Pascal Support Routine Interface e 5-4

5.3.1 READ_TAPE 5-5

5.3.2 WRITE_TAPE e e e e i 5-5

5.3.3 REPOSITION_TAPE e 5-6

534 WRITE_TAPE_MARK i i 5-7

5.3.5 REWIND_TAPEo e e 5-7

5.4 Pascal I/O Procedure Interface i 5-8

5.5 Request/Reply Packet Interface i 5-9

5.5.1 Read and Write Functions 5-11

55.2 Get Characteristics Function 5-12

5.5.3 Reposition Tape Function e e e 5-12

5.5.4 Write Tape Mark Function o i, 5-13

5.5.5 Rewind Tape Function. 5-13

56 Status Codes e e 5-14

57 MUDriver Prefix File 5-15
Chapter 6 Parallel Line Drivers

6.1 Parallel Line Driver Features and Capabilities 6-2

6.2 Performing Parallel I/O e 6-3

6.3 Pascal I/O Procedure Interface e 6-5

6.4 Pascal Support Routines. e e 6-7

6.4.1 SBC-11/21 PIO Support Routines 6-8

6.4.1.1 SET_PIO_MODE i i 6-8

6.41.2 WRITE_PIO. i e i 6-8

6413 READ_PIO e i e 6-9

6.5

6.6
6.7
6.8

6.4.2 KXT11-CA/KXJ11-CA PIO and Counter/Timer Support Routines 6-9

6.4.21 YK_PORT_READt 6-10
6.4.22 YK_PORT_WRITE it 6-11
6.423 YK_SET PATTERN it e e e e e 6-12
6.424 KXT11-CA/KXJ11-CAPIO DMA Processo v v v v v v evuvn .. 6-15
6.425 YK_SET_TIMER it i e et 6-19
6.4.2.6 YK_READ_TIMER i 6-20
6.4.2.7 YK_CLEAR_TIMER i 6-21
6.4.2.8 Using Timer/Counters to Count External Pulses. 6-21
6.4.2.9 Linking Two Timer/Counters as 32-Bit Counter 6-24
Request/Reply Packet Interface 6-25
6.5.1 DRVI1-] (XA) Functions ittt i e e 6-29
6511 XA Readand Write e e 6-29
6.5.1.2 XA Get Characteristics i v v it it it e e e e 6-30
6.5.1.3 XA Enable e e 6-30
6.5.1.4 XA Disable. e e 6-31
6.5.2 DRV11 (YA) FUnctions i ittt it e e et e e e e 6-31
6.5.2.1 YA Read and Write 6-31
6.5.2.2 YA Get Characteristics i i v i it i e e e 6-32
6.5.3 DRVI1I-B (YB) Functionso it vttt ittt it e oo 6-33
6531 YBReadand Write i 6-33
6.5.3.2 YB Set Characteristics e 6-35
6.5.3.3 YB Get Characteristicsttt 6-36
6.5.4 SBC-11/21 PIO (YF) Functions it 6-36
6.54.1 YFReadand Writet 6-36
6.5.4.2 YF Get Characteristics v ittt ittt e 6-37
6.5.5 KXT11-CA/KXJ11-CA PIO (YK) Functions 6-38
6551 YKRead i e e e 6-38
6.5.5.2 YK Write it e e e 6-38
6.5.5.3 YK Get Characteristicsottt 6-39
6.55.4 YK SetPattern 6-40
6.5.5.5 YK DMA Read, Write, and Complete 6-41
6.5.5.6 YK Set Timerttt it ie e 6-42
6.55.7 YK Clear Timer it ittt e e e e e et e e e 6-43
6558 YKRead Timer i ittt et e e e e 6-43
Status Codes e e e e e e e e e e e e e e e 6-43
Extended Error Information it e 6-44
Parallel Line Driver Prefix Files i e 6-45
6.8.1 XA Prefix File e e 6-45
6.8.2 YA Prefix File e ... 6-46

vi

6.8.3 YB Prefix File
6.8.4 YFPrefix File 6-48

6.8.5 YK Prefix File e 6-50
Chapter 7 Analog-to-Digital Converter Driver
7.1 Driver Features and Capabilities 7-1
7.2 Performing Analog-to-Digital Conversions 7-2
7.3 Pascal I/O Procedure Interface i 7-3
7.4 Pascal Support Routine Interface i 7-4
7.4.1 SET_ANALOG_MODE e e e e o 7-5
7.4.2 READ_ANALOG_SIGNAL i 7-7
7.4.3 WRITE_ANALOG_WAIT i e 7-8
7.5 Request/Reply Packet Interface 7-8
7.5.1 Set Characteristics (Configure Device) Function 7-11
7.5.2 Read Logical (Read Converted Data) Function 7-13
753 Get Characteristics Functiono .. 7-14
7.6 Status Codes e e e 7-15
7.7 AD Driver Prefix File 7-15
Chapter 8 Real-Time Clock Driver
8.1 KW Driver Features and Capabilities. 8-1
8.2 Performing Real-Time Clock I/O i i 8-2
8.3 Pascal Support Routine Interface L. 8-3
8.3.1 READ_COUNTS_WAIT e e e 8-3
8.3.2 READ_COUNTS_SIGNAL. i e 8-6
8.3.3 START_RTCLOCK e e e e 8-8
8.3.4 STOP_RTCLOCKo e e 8-10
8.4 Request/Reply Packet Interface 8-10
8.4.1 Read Physical Function e 8-13
8.4.2 Enable Clock Function i i e 8-15
8.4.3 Disable Clock Function 8-17
8.4.4 Get Characteristics Function 8-17
8.5 Status Codes e e e 8-18
86 KWDrver Prefix File e 8-18

vii

Chapter 9 Peripheral Processor DMA Driver

9.1
9.2
9.3

94

9.5
9.6

QD Driver Features and Capabilities. i 9-1
Performing KXT11-CA/KXJ11-CADMAI/O e 9-2
Pascal Support Routine Interface, 9-3
9.3.1 $DMA_TRANSFER it e e e e e e e 9-4
9.3.2 SDMA_SEARCH e e e 9-6
9.3.3 $DMA_SEARCH_TRANSFER i, 9-7
934 KXTI11-CA/KXJ11-CAPIO withDMA 9-8
9.3.5 KXT11-CA/KXJ11-CA I/0O Using SLU2A or SLU2B with DMA 9-8
9.3.6 SDMA_GET-_STATUS e e e e 9-9
9.3.7 $DMA_ALLOCATE e i 9-11
9.3.8 $DMA_DEALLOCATE e 9-11
9.3.9 KXT11-CA/KXJ11-CA DMA Sample Program 9-11
Request/Reply Packet Interface e 9-14
9.4.1 Read and Write Functions 9-16
942 KXT11-CA/KXJ11-CA PIO DMA Process vu i i 9-21
9.4.3 KXT11-CA/KXJ11-CA I/O Using SLU2A or SLU2B with DMA 9-22
9.44 Get Characteristics Function 9-22
9.4.5 Channel Allocation and Deallocation 9-24
Status Codes e e e 9-25
QD Driver Prefix File 9-26

Chapter 10 Instrument Bus Driver

10.1
10.2
10.3
10.4

Instrument Bus Features and Capabilities 10-1
Driver Features and Capabilities 10-3
Performing Instrument Bus I/O o 10-4
Pascal Support Routine Interface o 10-5
104.1 READ_IEQ o e e e 10-6
10.4.2 WRITE_IEQ e e e 10-7
10.4.3 SET_STATE e e e 10-8
10.4.4 WRITE_EOI_IEQ i 10-9
1045 IEQ_COMMAND e i e e 10-10
10.4.6 IEQ_SERIAL. e e e 10-11
10.4.7 IEQ_PARALLEL_POLL i 10-12
10.4.8 IEQ_PARALLEL _LOADt i 10-13
1049 IEQ_PARALLEL_CONFIG i 10-13
10.4.10 IEQ_AUX_COMMAND i i e i 10-14
10.4.11 IEQ_REQ_SERVICE i it i 10-15
10.4.12 IEQ_CONTROL_GTS e e e 10-16
10.4.13 TEQ_PASS_CONTROL e 10-17

viii

10.4.14 SET_INT_MASK e e e i 10-17

10.4.15 REC_IEQ_EVENT i e e i 10-18
10.5 Request/Reply Packet Interface 10-20
10.5.1 Read Logical Function e 10-23
10.5.2 Write and Write with EOI Termination Functions 10-24
10.5.3 Get Characteristics (Sense State) Function 10-25
10.5.4 Set Characteristics (Set State) Function 10-25
10.5.5 Write JEEE Remote Messages Function 10-27
10.5.6 Serial Poll Functions 10-28
10.5.7 Parallel Poll Function, 10-29
10.5.8 Load Parallel Poll Register Function 10-29
10.5.9 Parallel Poll Configure Function 10-30
10.5.10 Auxilary Command Function 10-31
10.5.11 Request Service Function 10-32
10.5.12 Get Control Function 10-32
10.5.13 Goto Standby Function. 10-33
10.5.14 Pass Control Function 10-33
10.5.15 Set Event Mask Function 10-34
10.5.16 Wait for Event and Recognize Event Functions 10-35
10.6 Status Codes e e e e 10-37
10.7 Extended Error Information 10-38
10.8 XE Driver Prefix File e 10-38

Chapter 11 Network Service Process

11.1
11.2
11.3
11.4

11.5
11.6
11.7

NSP Features and Capabilities. 11-1
Accessing the NSP for Task-to-Task Communication 11-2
Pascal File System Interface e 11-4
NSP Set and Get Characteristics Functions. 11-4
11.4.1 Set Characteristics to $SECTL Queue Semaphore 11-4
11.4.2 Get Characteristics to $SECTL Queue Semaphore 11-5
11.4.3 Get Characteristics to File Variable 11-6
Status Codes o e 11-6
NSP Prefix File 11-8
Sample Programs 11-11
11.7.1 Transferring Data Between Two MicroPower/Pascal Nodes 11-11
11.7.2 Transferring Data Between MicroPower/Pascal and VAX/VMS Nodes 11-13
11.7.3 Determining and Setting the Local Node Number 11-15

ix

Chdp’rer 12 Asynchronous DDCMP Driver

12.1 CS Driver Features and Capabilities 12-2
12.2 Performing Asynchronous DDCMP I/O 12-3
12.3 Pascal I/O Procedure Interfacet uii et 12-6
12.4 Request/Reply Packet Interface 12-8
12.4.1 Enable Protocol and Disable Protocol Functions 12-11
12.4.2 Read and Write Functions e e 12-11
12.4.3 Get Characteristics Function 12-12
125 Status Codes e e 12-13
126 CS Driver Prefix File e 12-13

Chapter 13 Communication Drivers

13.1 Communication Driver Features and Capabilities 13-2
13.1.1 Ethernet Communication, 13-3
13.1.2 Synchronous Point-to-Point Communication. 13-4
13.1.3 Peripheral Processor Two-Port RAM Communication 13-5
13.2 Performing Communication Device I/O, 13-6
13.3 Pascal I/O Procedure Interface 13-10
13.4 Request/Reply Packet Interface 13-11
13.4.1 DEQNA (QN) Functions, 13-15
13.4.1.1 QN Enable Portal 0 i i e 13-15
13412 QN Readand Write i 13-16
13.4.1.3 QN Get Characteristics it it it i et e e e 13-18
13.4.1.4 QN Disable Portal it e 13-18

13.4.2 DPVI11 and KXT11-CA/KX]J11-CA Synchronous Communication (XP and XS)
: Functions e e e 13-19
13.4.2.1 XPor XS Enableand Disable 13-19
13422 XPorXSRead and Write i 13-19
13.4.2.3 XP or XS Get Characteristics 13-20
13424 XPorXSStopo e e 13-21
13.4.2.5 XP or XS Set Modem Semaphore 13-21
13.4.3 KXT11-CA/KXJ11-CA Two-Port RAM (KX and KK) Functions 13-22
13.4.3.1 KXorKKReadand Write iuunnn.. 13-22
13.4.3.2 KX or KK Get Characteristics ivun... 13-23
13.4.33 KXorKK Enableand Disable. 13-24
13,5 Status Codes i e e e 13-24
13.6 Communication Driver Prefix Files i, 13-25
13.6.1 QN Prefix File e e e 13-25
13.6.2 XP and XS Prefix Files oo v vttt 13-26
13.6.3 KX and KK Prefix Files e e e e e e 13-28

13.7 Peripheral Processor Communication Support Routines. 13-32

13.71 KX_READ_DATA e e e e 13-33
13.7.2 KX_WRITE_DATA e e e e i e 13-34
13.73 KK_READ_DATA i e 13-35
13.74 KK_WRITE_DATA e e e i 13-35

Chapter 14 Guide to Wri’rihg a Device Driver

14.1 Device Driver Overview o it e e e e 14-1
14.2 Device Driver Prefix Module e e 14-3
14.2.1 Priority Assignments e 14-3
1422 DRVCES MacCro . . . ittt e et e et ettt e e e e e e e e e 14-4
14.23 CTRCFS Macro ittt i e et e e e e e et 14-5
14.2.4 Sample Driver Prefix Module (DYPFXMAC) 14-8

14.3 Device Driver Impure-Area Definition Macro (xxISZ$) e e e 14-9
144 Device Driver Proper. e 14-10
1441 Copyright Page i 14-11

14.42 Module Header @i e 14-11
14.4.3 Functional Description 14-11

14.4.4 Declarations i e e e e 14-12
14.4.4.1 Local Macro Definition 14-12

14.4.4.2 Externally Defined Symbols 14-12

14.4.4.3 Process Definition i 14-12

14.4.4.4 Impure-Area Definition 14-14

14.4.4.5 Pure-Area Definition i 14-14

14.4.5 Initialization Process e 14-14
14.4.6 Controller Process ittt e 14-15
14.4.7 Interrupt Service Routine (ISR) 14-16
14.48 Fork Routine e 14-17

14.49 Reply Subroutine 14-17
14.4.10 Termination Procedure« .. 14-18
14.4.11 Error-Processing Routines i 14-18
14.4.11.1Invalid Requests e 14-18
14.4.11.2Exceptions e e 14-18
14.4.11.3Drive or Controller Errors i 14-19
14.4.11.4Resource Famine e 14-19

xi

Chapter 16 Device Driver Macros and Subroutines

15.1 Driver Macros oo it e e 15-1

15.1.1 ADPAR$ (Return PAR Address)ty 15-3

15.1.2 DRMAPS$ (Remap Virtual Address) 15-4

15.1.3 DRPARS$ (Read Contents of PAR or PDR Register) 15-6

15.1.4 DRVDF$ (Define Driver Packet Symbols). 15-7

15.1.5 DSCXW$ (Disable MMU Context Switch) 15-8

15.1.6 DWPARS (Write to PAR or PDR Register) 15-10

15.1.7 ENCXWS$ (Enable MMU Context Switch) 15-11

15.1.8 IBADRS$ (Increment Byte Address and Check for PAR Tick Overflow) 15-13

15.1.9 IWADRS$ (Increment Word Address and Check for PAR Tick Overflow) 15-14

15.1.10 MVBYT$ (Move Byte from/to Virtual Addresses). 15-15

15.1.11 MVBYU$ (Move Byte from/to Virtual Addresses from User-Mode) 15-16

15.1.12 MVMAP$ (Move Word from/to Virtual Addresses in Mapped Case Only) .. 15-17

15.1.13 MVVAD$ (Move Address and PAR) R B 15-18

15.1.14 MVWRD$ (Move Word from/to Virtual Addresses) 15-19

15.1.15 MVWRU$ (Move Word from/to Virtual Addresses from User-Mode) 15-20

15.1.16 SPL$ (Set Priority Level) i 15-21

15.1.17 XTAD$ (Compute Bus Extended Address) 15-22

15.2 Driver Subroutines e e 15-24

15.2.1 $BLXIO (Block Move)t e 15-25

15.2.2 $DDEXC (Report Exception for Device Driver) 15-26

15.2.3 $DDINI (Device Driver Initialization) 15-27

15.2.4 $DRALR (Allocate Memory) i 15-28

15.2.5 $DRDSP (Deallocate Dynamic Memory) 15-29

15.2.6 $DRHIN (Initialize Heap) i i e 15-30

15.2.7 $DRNEW (Allocate Dynamic Memory) 15-31

15.2.8 $DRPLY (Send Device Driver Reply) 15-32

15.2.9 $SV02, $SV03, and $SV05 (Save/Restore Registers) 15-33
Appendix A Directory Structure and File Storage

A.1 Structure of a Random-Access Device i i e A-1

A1l HomeBlock e A-2

A12 Directoryo i e e e A-4

A.1.21 Directory Segment Header A-5

A122 Directory Entry e e A-6

A.1.2.3 Extended Directory Entry 0. A-8

A.1.2.4 End-of-Segment Markerouieniieiniie... A-8

A2 Directory Use i e e A-9

A2.1 Sample Directory Segment A-9

xii

A.2.2 Splitting a Directory Segment A-12

A23 FileStorageo e A-16

A24 Method A-16

A25 Sizeand Numberof Files. A-18
Appendix B KXT11-CA and KXJ11-CA Peripheral Processors

B.1 KXT11-CA/KX]J11-CA Hardware and Applications B-1

B.1.1 KXT11-CA Hardware Features B-3

B.1.2 KXJ11-CA Hardware Features it i i B-4

B.1.3 Using the KXT11-CA or KXJ11-CA as a Peripheral Processor B-6

B.1.3.1 Peripheral Processor Hardware Configuration B-8

B.1.3.2 Peripheral Processor Application Software Configuration B-8

B.2 Developing KXT11-CA and KXJ11-CA Applications.ovvvvnnn. .. B-9

B.2.1 Partitioning the Application B-9

B.2.2 Designing the Peripheral Processor Application System B-9

B.2.3 Software and Hardware Configuration Guidelines B-10

B.2.3.1 Configuring Memory B-10

B.2.3.2 Memory Configuration Steps L B-11

B.2.3.3 Memory Selection Rules B-12

B.2.4 Configuring the KXT11-CA or KXJ11-CA System Environment B-13

B.2.4.1 Selecting Stand-Alone or Peripheral Processor Operation B-13

B.2.4.2 Selecting KXT11-CA or KXJ11-CA Initialization and Self-Test Options . . B-14

B.3 KX/KK Device Driver Communication Protocol B-19

B.3.1 Communication Mechanisms. e B-19

B.3.2 KX/KK Protocol Definition B-22

B.3.2.1 KX and KK Driver Transactions B-23

B.3.2.2 Message Communication Between the KX and KK Drivers B-25

B.3.2.3 Synchronizing KX and KK Device Driver Operations B-26

B.3.3 Command Register Definition B-27

B.3.3.1 Command Field (KC.COM) B-27

B.3.3.2 Interrupt-When-Data-Available Bit (KC.IDA) B-29

B.3.3.3 Interrupt-When-Data-Requested Bit (KC.IDR) B-30

B.3.3.4 Data Length Field (KC.LEN) iy B-30

B.3.3.5 End-of-Message Bit (KC.EOM), B-30

B.3.3.6 Vector Number Field (KC.VEC) B-30

B.3.4 Status Register Definition oL B-30

B.3.4.1 Error Code Field (KS.ERC). B-31

B.3.4.2 Data-Requested Bit (KS.DR) B-31

B.3.4.3 End-of-Message Bit (KS.EOM) B-31

B.3.4.4 Data-Available Bit (KS.DA) i B-32

B.3.4.5 Actual Length Field (KS.ALN) B-32

xiii

B.4
B.5
B.6
B.7
B.8

B.9
B.10

B.3.4.6 Interrupt-Enabled Bit (KS.IEN) B-32

B.3.4.7 Interface-Ready Bit (KS.ON). B-32

B.3.4.8 Cumulative-Error Bit (KS.ERR) B-32
B.3.5 Interface Initialization i i B-32
KXT11-CA and KXJ11-CA CSR and Vector Assignments B-33
System ID Switch Positions, Two-Port RAM CSR and Vector Assignments B-35
Sample MicroPower/Pascal Configuration File B-37
Sample Configuration Files for the KXJ11-CAo .. B-40
Shared Memoryona KXJ. i i e B-52
B.8.1 KXJ_ENABLE_SHARED B-53
B.8.2 KXJ_DISABLE_SHARED i, B-54
B.8.3 Arbiter and KX] Configuration Files and Applications B-54
Calculating Checksums for PROMS B-65
Load Application onto KXT11-CA/KXJ11-CA Procedure. B-66
B.10.1 MIMFileo e B-66
B.10.2 User'sInterface i e B-66
B.10.3 Program Example e e B-67

Appendix C XL Serial Line Driver

C.1

C2

PDP-11 XL Driver e e e e e i e e e e C-1
C11 FunctionsProvided i C-3
C111 Read Function. i, C-3
C1.1.2 Write Function e e C-3
C.1.1.3 Connect Receive Ring Buffer Function C-4
C.1.1.4 Disconnect Receive Ring Buffer Function C-4
C.1.1.5 Connect Transmit Ring Buffer Function C-4
C.1.1.6 Disconnect Transmit Ring Buffer Function. C-4
C.1.1.7 Report Data-Set Status Change Function. C-4
C.1.1.8 Set Status Function i, C-5
C119 GetStatus Function C-5
C.1.1.10 Device-Independent Function Modifiers C-5
C.1.2 Function-Dependent Request Formats C-5
C.1.2.1 Block-Mode Read or Write Functions C-6
C.1.2.2 Connect Receive or Transmit Ring Buffer Functions. C-6
C.1.2.3 Disconnect Receive or Transmit Ring Buffer Functions C-7
C.1.24 SetStatus Function Cc-7
C.125 GetStatusFunction i, C-10
C.1.2.6 Report Data-Set Status Change Function. C-11
C13 StatusCodes i e e e C-12
Cl1l4 PDP-11XLPrefixFile........... ... i, C-12
Peripheral Processor XL Driver it C-17

xiv

c.21 Functions Provided e C-18

C211 Read Function. C-19
C.2.1.2 Write Function C-19
C.2.1.3 Connect Receive Ring Buffer Function C-19
C.2.1.4 Disconnect Receive Ring Buffer Function C-19
C.2.1.5 Connect Transmit Ring Buffer Function C-19
C.2.1.6 Disconnect Transmit Ring Buffer Function C-20
C.2.1.7 Set Status Function C-20
C218 GetStatus Function C-20
C.2.1.9 Report data-set status change function C-20
C.2.1.10 Device-Independent Function Modifiers C-20
C.2.2 Function-Dependent Request Formats C-20
C.2.2.1 Block-Mode Read or Write Functions C-21
C.2.2.2 Connect Receive or Transmit Ring Buffer Functions. C-21
C.2.2.3 Disconnect Receive or Transmit Ring Buffer Functions C-22
C.2.24 SetStatus Function C-22
C.2.2.5 Get Status FUNCHONo oot oot e e e e et C-25
C.2.2.6 Report Data-Set Status Change Function. C-28
C23 StatusCodes e C-28
C24 KXTI1-CA XL PrefixFile. C-28

Appendix D Sample MACRO-11 Device Driver

Index

Figures
1-1 General I/O Packet Formats i 1-12
2-1 ACP Prefix File (ACPPFXMAC) Excerpt 2-10
3-1 TT Driver Prefix File (TTPEXMAC) i i 3-18
4-1 RLO1/RLO2 Driver Prefix File (DLPEXMAC) 4-27
4-2 RX02 Driver Prefix File (DYPFXMAC) 4-28
4-3 MSCP Disk-Class Driver Prefix File (DUPEXMAC) 4-28
4-4 TUS58 Driver Prefix File (DDPEXMAC) i 4-29
4-5 Virtual Memory Driver Prefix File (VMPEXMAC) 4-30
4-6 Extended Disk Driver Source File (XDDRV.PAS) Excerpt. 4-31
5-1 TMSCP Tape Driver Prefix File MUPFXMAC) oot 5-15
6-1 KXT11-CA/KXJ11-CA PIO DMA Sample Program 6-16
6-2 YK Prefix File for PIO DMA Sample Program 6-18
6-3 KXT11-CA/KX]J11-CA External Pulse Counter Sample Program 6-22
6-4 YK Prefix File for External Pulse Counter Sample Program 6-23

X0

6-10

10-1
11-1
12-1
13-1
13-2
13-3
13-4
13-5

A-1

A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
B-1

KXT11-CA 32-Bit Counter Sample Program 6-24
DRV11-] Driver Prefix File (XAPFXMAC) i 6-46
DRV11 Driver Prefix File (YAPEX.PAS) 6-47
DRV11-B Driver Prefix File (YBPFX.MAC) Excerpt 6-49
SBC-11/21 PIO Driver Prefix File (YFPFXMAC). 6-50
KXT11-CA/KXJ11-CA PIO Driver Prefix File (YKPEXMAC) 6-59
AD Driver Prefix File (ADPEXMAC) i, 7-16
KW Driver Prefix File (KWPEX.MAC) i e 8-19
KXT11-CA/KX]J11-CA DMA Sample Program Lo 912
KXT11-CA/KX]J11-CA DTC Driver Prefix File (QDPFXMAC) 9-26
Instrument Bus Driver Prefix File (XEPFXMAC) 10-39
NSP Prefix File (NSPPEX.MAC) i e e 11-10
CS Driver Prefix File (CSPEXMAC) it i 12-15
DEQNA Driver Prefix File (QNPFXMAC) 13-26
DPV11 Driver Prefix File XPPEXMAC) i 13-27
KXT11-CA/KX]J11-CA Synchronous Serial Driver Prefix File (XSPEXMAC) .. 13-28
KXT11-CA/KX]J11-CA Two-Port RAM Driver Prefix File (KXPEX.MAC) 13-31
KXT11-CA/KX]J11-CA Two-Port RAM Driver Prefix File (KKPFXMAC). 13-32
Format of Random-Access Device, A-2
Formatof Home Block A-3
Format of Directory Segment A-4
Format of Directory Entry A-6
Format of Status Word e e e A-6
Format of Date Word e A-8
Directory Listing .'. e A-9
Directory Segment i e A-10
StoringaNew File A-12
Full Directory Segmentt i A-13
Directory Before Splitting ooy S A-14
Directory After Splitting e e A-15
Directory Links e e A-16
Random-Access Device with Two Permanent Files A-17
Random-Access Device with One Tentative File A-17
Random-Access Device with Two Tentative Files A-17
Random-Access Device with Four Permanent Files A-18
KXT11-CA Hardware Features, B-3
KXJ11-CA Hardware Features i ittt et e it ee e e B-5
Adding Peripheral Processors to Traditional LSI-11 Systems B-7
Peripheral Processor Application Software Configuration B-8
KXT11-CA Memory Map Configurations B-11
KX/KK Device Driver Communication Linkage B-20
TPR Register Layout e B-21

xvi

C-1 XL Driver Prefix File (XLPEX.MAC) i i C-16
C-2 KXT11-CA XL Driver Prefix File (XLPFXK.MAC). C-30
Tables
1-1 Request Queue Names, Units, and Unit Numbering 1-9
12-1 Asynchronous DDCMP 1/0O Paths and Interfaces 12-6
13-1 Communication I/O Paths and Interfaces 13-9
13-2 Two-Port RAM Data Channel Addresses 13-29
13-3 KX Prefix File Defaults 13-29
A-1 Contents of Home Block A-3
B-1 MicroPower/Pascal Usage of KXT11-CA Memory Maps B-12
B-2 Initialization/Self-Test Options for the KXT11-CA B-15
B-3 Initialization/Self-Test Options for the KXJ11-CA B-16

xvii

Preface

Intfended Audience

This manual describes the MicroPower/Pascal 1/O system and the run-time I/O services it
provides for user programs. The content of this manual is based on the assumption that
you are familiar with either Pascal or MACRO-11. All MicroPower/Pascal microcomputer
software development is done with one or both of those development languages. Additional
reference information for performing run-time I/O in Pascal is contained in Chapter 9 of the
MicroPower/Pascal Language Guide.

Structure of This Document

Fifteen chapters and four appendixes make up this manual:

Chapter 1 presents an overview of the MicroPower/Pascal 1/O services. The chapter lists
supported devices and protocols, summarizes the I/O system components, mechanisms, and
interfaces, and describes the request/reply packet interface to the DIGITAL-supplied device
drivers,

Chapters 2 through 13 describe the DIGITAL-supplied system processes that provide I/O
services (“I/0 servers”). Chapters 2, 11, and 12 describe the ancillary control process (ACP),
the network service process (NSP), and the asynchronous DDCMP protocol driver—that is,
the 1/O system components that are layered above the device drivers. Chapter 3 describes
the asynchronous serial line (terminal) driver, Chapters 4 and 5 the mass-storage device
drivers (disk and tape), Chapters 6 through 10 the real-time device drivers (PIO, A/D,
DMA, instrument bus), and Chapter 13 the communication device drivers.

Chapters 2 through 13 describe features and capabilities, application building considerations,
user interfaces, completion-status codes, and prefix files for each DIGITAL-supplied 1/O
server.

Chapter 14 presents guidelines for writing a MicroPower/Pascal device driver for nonstan-
dard hardware devices—devices not supported by the drivers in the MicroPower/Pascal
distribution kit. The chapter describes the necessary components of a device driver and
the driver’s interface to the application program and refers to sample drivers written in
MACRO-11 (DY driver) and Pascal (YA driver).

xix

Chapter 15 describes macros and subroutines that can be used by device drivers written in
MACRO-11.

Appendix A describes the RT-11-compatible directory structure optionally supported by the
MicroPower/Pascal ACP and discusses file storage.

Appendix B presents information on developing applications for the KXT11-CA or KX]J11-CA
peripheral processor.

Appendix C describes the XL serial line driver, which is 1ncluded on the MicroPower/Pascal
distribution kit for existing applications that require it.

Appendix D lists the source code for a sample MACRO-11 device driver—the RX02 (DY)
driver.

Associated Documents

The following software documentation is required for complete reference purposes:

MicroPower/Pascal document set

Standard documentation for your host operating system

You will also need the following hardware reference documents to correctly configure your
target (application) hardware, to use the standard device drivers, or to write device drivers that
are hardware- and software-compatible with other system components:

Microcomputer handbooks, including Microcomputers and Memories (Order No. EB-20912-
20) and Microcomputer Interfaces Handbook (Order No. EB-23144-18)

SBC-11/21 Single-Board Computer User’s Guide (Order No. EK-S5BC01-UG-001), required
when developing SBC-11/21 applications

KXT11-CA Single-Board Computer User’s Guide (Order No. EK-KXTCA-UG-001), required
when developing KXT11-CA applications

KXJ11-CA Single-Board Computer User’s Guide (Order No. EK-KXJCA-UG), required when
developing KXJ11-CA applications

LSI-11 Analog System User's Guide (Order No. EK-AXV11-46-002), required when
developing applications using the ADV11-C, AAV11-C, AXV11-C, or KWV11-C I/O boards

IEU11-A/IEQ11-A User’s Guide (Order No. EK-IEUQ1-UG-001), required when developing
applications using IEQ11-A instrument bus hardware

DPV11 Serial Synchronous Interface Technical Manual (Order No. EK-DPV11-TM), required

~when developing applications using DPV11 communication hardware

Peripheral Processor Tool Kit-RT Reference Manual (Order No. AA-AU63C-TC), Peripheral
Processor Software Tool Kit-RSX Reference Manual (Order No. AA-AU64C-TC), or Peripheral
Processor Tool Kit-MicroVMS Reference Manual (Order No. AA-HX84A-TE) required when
using the KUI utility program to load peripheral processor applications from RT-11, RSX~11,
or MicroVMS arbiters .

XX

VAX/VMS DECprom User’s Guide (Order No. AA-W754A-TK), required when using the
VMS DECprom program to calculate and program ROM checksums for KXT11-CA or
KXJ11-CA applications

Additional hardware documentation for microcomputer hardware presently not covered in
the microcomputer handbooks

Conventions Used in This Document

1.

Pascal-reserved words that must not be abbreviated are shown in uppercase characters
in syntax examples. Within those examples, lowercase characters are used for variable
parameters (or other syntax elements) that you may choose for your application.

In some MACRO-11 syntax diagrams, optional parameters and syntax are shown within
brackets ([).

Some MACRO-11 syntax examples are shown with long macro invocations continued on
a second line—for example, the CRPC$ and DFSPC$ macro calls. However, when writing
source code in MACRO-11, you must keep each macro invocation on a single line.

. This manual uses “MPBUILD” as a generic term for the VMS, RSX, and RT versions of the

MicroPower/Pascal automated build procedure. Note that the name of the RT-host version
of the procedure is “MPBLD,” not “MPBUILD.”

Symbols

The numeric values given in this manual for symbols for data structure sizes, offsets, and so
forth, are subject to change. Therefore, use symbol names rather than numeric values for
components of packets and other system data structures.

xxi

Chapter 1
Introduction to MicroPower/Pascal Input/Output

This chapter provides an overview of MicroPower/Pascal input/output (I/O) services. The
I/0 services include device I/0O, task-to-task communication, and Pascal file system operations,
including optional RT-11 directory support for disk-class devices. Those services are provided
at run time by the MicroPower/Pascal 1/O system, consisting of DIGITAL-supplied system
processes (called “I/O service processes” or “I/O servers”) and the Pascal Object Time System
(OTS). The 1/0 services allow a MicroPower/Pascal program to input data from and output data
to devices or tasks that are external to the target processor, using normal Pascal I/O statements
or DIGITAL-supplied Pascal support routines.

Note
The MicroPower/Pascal Run-Time Services Manual describes run-time services
that are provided by the MicroPower/Pascal kernel. Those services include
the kernel facilities for interprocess communication (send/receive) and setup of

interrupt vectoring (connect-to-interrupt) that are basic to MicroPower/Pascal
1/0.

The MicroPower/Pascal I/O service processes support I/O on mass-storage devices, real-time
devices, and communication devices.

Introduction to MicroPower/Pascal Input/Output 1-1

The supported mass-storage devices and protocols, listed by server, are:

Server Devices/Protocols

DL driver RLV11 controller, RLO1 disk (16/18-bit addressing)
RLV12 controller, RL01/RLO02 disks (16/18/22-bit addressing)
RLV21 controller, RLO1/RLO02 disks (16/18-bit addressing)

DY driver RXV21 controller, RX02 flexible diskettes (single/double density, 18-bit
addressing)
DU driver Mass Storage Control Protocol (MSCP) controllers and disks, including

RQDX1, RQDX2, and RQDX3 controllers and RX50, RD51, RD52, RD53,
and RC25 disks (22-bit Q-bus environment)

XD driver Extended (> 65536 blocks) physical disks, partitioned for Pascal 1/0

DD driver TU58 DECtape II connected to DLV or either KXT11-CA or KXJ11-CA
serial line interface unit

VM driver Virtual memory (mapped systems only, requires MMU)

MU driver TMSCP tapes, including TK50 streaming cartridge tape

The supported real-time devices and protocols, listed by server, are:

Server Devices/Protocols

XA driver DRV11-] 64-bit parallel interface (four 16-bit ports)
YA driver DRV11 16-bit parallel interface

YB driver DRV11-B DMA interface

YF driver SBC-11/21 8255 PIO interface

YK driver KXT11-CA or KXJ11-CA

8-bit parallel ports (16-bit if linked)
4-bit special-purpose I/0O port
16-bit counter/timers

AD driver ADV11-C and AXV11-C A/D converter boards

KW driver KWV11-C programmable real-time clock

QD driver KXT11-CA or KXJ11-CA 2-channel direct transfer controller (DTC)
XE driver IEQ11-A instrument bus interface

1-2 Introduction to MicroPower/Pascal Input/Output

The supported communication devices and protocols, listed by server, are:

Server

Devices/Protocols

TT driver

CS driver
QN driver

XP driver

XS driver

KK driver

KX driver

Asynchronous serial (terminal) lines, including DLV11-type (DLV11,
DLV11-E, DLV11-F, DLV11-J), DLART-type (KXT11-CA or KXJ11-CA
console, SBC-11/21, CMR21, MXV11-A, MXV11-B), DZV11, DHV11,
KXT11-CA or KXJ11-CA multiprotocol chip

DDCMP over asynchronous serial lines (usable as base for DECnet)

DEQNA Ethernet interface, Ethernet data link protocol (usable as base
for DECnet)

DPV11 synchronous serial line interface, bit-synchronous mode (usable
as base for bit-oriented protocol, such as HDLC or LAPB)

KXT11-CA or KXJ11-CA synchronous serial line interface (usable as base
for bit-oriented protocol)

KXT11-CA or KX]J11-CA two-port RAM, peripheral processor side of
two-port RAM protocol

KXT11-CA or KXJ11-CA two-port RAM, arbiter side of two-port RAM
protocol

The servers that are not specific to a single device or protocol—the ACP and the NSP—do
not appear above. However, the ACP supports all the OPENable devices and protocols among
those listed, and the NSP supports all listed communication devices and protocols (including,

indirectly, TT).

1.1 1/O System Architecture
The MicroPower/Pascal 1/O system has the following components:
® Pascal/file system OTS

* Andillary control process (ACP)

* Network service process (NSP)

* Protocol/device drivers

Note

The required participants in a standard (driver-based) I/O transfer are a calling
user process, a device driver, and an appropriately set-up hardware device.
For task-to-task communication, a partner task on a remote processor is also
required. The other components—OTS, ACP, NSP, protocol driver—are layered
on the device driver (and each other) and function as intermediaries in an I/O

transfer.

The Pascal OTS is composed of the Pascal kernel and I/O system interface routines. The 1/O
system interface routines reside in a separate file and are called the file system OTS. The OTS
routines are built into a user process on an as-needed basis—automatically if you build with
MPBUILD. (If building without MPBUILD, you must include the appropriate OTS libraries on
the MERGE utility command line.)

Introduction to MicroPower/Pascal Input/Output 1-3

In contrast to the OTS routines, which can be viewed as part of the user process that requests
an I1/O service, the ACP, the NSP, and the protocol/device drivers are system processes,
termed 1/0O service processes or I/O servers. You build the required system processes into your
application by editing and assembling a system-process prefix module. That module includes
a global symbol reference that causes the appropriate system process to be merged into the -
application.

The user process, the ACP, the NSP, and the drivers communicate with each other via the
kernel mechanisms for interprocess communication—the high-level (send/receive) or low-level
(signal-queue /wait-queue) queue semaphore kernel primitives.

The ACP supports file-opening operations for I/O devices and protocols plus standard Pascal
I/O on disk devices. (Optionally, the ACP supports RT-11 file structure on disk devices
or opening of task-to-task links.) The ACP is called when an application program opens a
file. The open operation associates a file variable with an I/O server (a driver, the ACP for
disk operations or the NSP for task-to-task operations), making it possible to perform normal
device-independent Pascal I/O via the server. Subsequent I/O requests go directly to the server.

The NSP supports task-to-task communication between a MicroPower/Pascal application and
an application on a remote processor. The NSP is called (by the ACP) when an application
program opens a logical link, over a physical communication link, with a remote task. The
open operation associates a file variable with an NSP logical-link server, making it possible to
perform device-independent Pascal task-to-task I/O. Subsequent 1/O requests go directly to the
server.

The protocol/device drivers support I/O on a protocol or a hardware device. (The current
version of MicroPower/Pascal has only one protocol driver—for asynchronous DDCMP.) The
driver is called by the user process (that is, the OTS or alternative routines), the ACP (for
OPEN or disk I/0), or the NSP (task-to-task I/O) as necessary to complete a user-requested
1/0O operation.

The device drivers normally communicate with and control the hardware by manipulating
device registers or other I/O page locations. In addition, the drivers establish hardware-
interrupt vectoring via the connect-to-interrupt kernel primitive. When a hardware device issues
an interrupt to signal completion of a transfer or to request further transfer-related processing
from the driver, control is passed to an interrupt service routine (ISR) in the driver. The
ISR performs critical processing in kernel mapping context at a high priority, then issues a
FORKS$ call for less-critical processing or kernel-primitive invocation (possibly signaling a driver
semaphore), then exits, allowing interrupted or lower-priority processing to continue.

The MicroPower/Pascal I/O system provides three basic user interfaces to 1/0:
* Pascal file system I/O (normal Pascal I/O statements)

® Pascal support routines (independent of file system)

® Request/reply packet I/O (send/receive)

The request/reply packet interface uses the kernel send/receive primitives to issue requests
directly to the request queue semaphore of the ACP, the NSP, or a driver. The request/reply
packet interface is the central mechanism for MicroPower/Pascal I/O and provides the basis
for the higher-level file system and support routine interfaces.

1-4 Introduction to MicroPower/Pascal Input/Output

The rest of this section summarizes the possible 1/O request paths (user process —> device
driver) through the I/O system.

Note
The following abbreviations are used in this section:
8) = User process

FSOTS = File system OTS routines

ACP = Ancillary control process
NSP = Network service process
PD = Protocol driver (CS)

DD = Device driver

Each arrow represents a kernel send or signal-queue operation.

The possible I/O request paths for Pascal OPEN operations are shown below:

tmm———— + tmm—————— + tmmm———— + tmm————— +
oo b top :
POV R R . J— !
{ !st ! A I ! N eI D ! 4 D
U0 temedl € lemsd] S} dmmmmeee o :
R S T T R S . >t b |
Lols - " | |
A S — > |
tom————— + tmm————— + tmmmm——— +

MLO-830-87

The paths shown above correspond to the following OPEN operations (x denotes a participant
in the operation):

U FSOTS ACP NSP PD DD Operation

X b X X X X OPEN of NSP/CS/TT link
X b X X X OPEN of NSP/DD link

X X X X X OPEN of CS/TT file

X X X P OPEN of openable DD file

The I/0 request path for a Pascal I/O operation on an opened disk file is shown below:

fm—————— + Fmm————— + o —— +
1 1 1] 1] 1
] 1 1 1 i] i
| | F | | i | |
! i s ' A | | D]
P U0 jee=D C f===>1 |
i VT i P i i D i
| 1S | i i |
' ' | | i ' |
Fmm————— + tm—————— + Fomm————— +

VLO-980-87

Introduction to MicroPower/Pascal Input/Output 1-5

The possible I/O request paths for Pascal I/Ob operations on opened nondisk files or logical
links are shown below:

tmm—————— + m—————— + e ———— +
|) R L B > P ! !
i i Fo Homomee + i IEEEYS |
1S i N l--=>! D ! i D i
f Ut 0 l===> s | Hommme e + ! |
] P T ! P fmmm e >4 D
| 18 oo + i '
i] e T e > !
b ——— + tommm———— +

MLO-831-87

The paths shown above correspond to the following operations (x denotes a participant in the

operation):

§) FSOTS ACP NSP PD DD Operation

X X X X X Pascal I/O on NSP/CS/TT link
X b X X Pascal I/O on NSP/DD link

X x X X Pascal 1/O on CS/TT file

X X X Pascal I/O on nondisk DD file

To perform nonfile I/O from a MACRO-11 program—or a Pascal program from which you
wish to exclude the FSOTS, the ACP, the NSP, and any Pascal support routines—you must
issue send requests to a driver request queue semaphore. The following operations can be

performed:

U FSOTS ACP NSP PD DD Operation

X X X CS/TT function
X X DD function

To perform file I/O from a MACRO-11 program—or a Pascal program from which you wish
to exclude the FSOTS—you must issue a send request to the ACP to open the file or logical
link. (If you wish to exclude the ACP for a logical link open, it is still considered a file system
operation, so you must issue an ACP-formatted send request to the NSP.) Subsequent send
requests—for read, write, and so forth—must be issued to the ACP or driver queue semaphore
identified in the reply to the open request.

1-6 Introduction to MicroPower/Pascal Input/Output

The following operations can be performed (x in parentheses denotes an optional participant in
the operation):

U FSOTS ACP NSP PD DD Operation

X (x) X X X OPEN of NSP/CS/TT link

X (x) X X OPEN of NSP/DD link

X X P X OPEN of CS/TT file

X X X OPEN of DD file or disk file I/O

X X X X I/O on opened NSP/CS/TT link

X X X I/O on opened NSP/DD link

X X X I/O on opened CS/TT file

X X I/0O on opened nondisk DD file
Note

With regard to the ACP and NSP entries above, note that the current version
of this manual does not provide detailed descriptions of the ACP and NSP
send /receive interfaces.

1.2 Performing 1/O

For most MicroPower/Pascal applications, you perform I/O in one of two ways. You can
invoke Pascal I/O statements that open files for data and then input or output the data, in
accordance with the rules for Pascal I/O. The Pascal I/O procedures—OPEN, GET, WRITE,
and so forth—are described in Chapter 9 of the MicroPower/Pascal Language Guide.

For drivers that do not permit file system access—for example, QD, or XE—or for which file
access is of limited usefulness—for example, MU, YK, or KW—you perform I/O by calling
DIGITAL-supplied support routines that are independent of the file system. Those routines
provide high-level nonfile access to an 1/O resource. The routines typically issue Pascal SEND
requests to the request queue semaphore of a device driver. The support routines are described
in detail in Sections 5.3 (MU), 6.4 (YF/YK), 7.4 (AD), 8.3 (KW), 9.3 (QD), 10.4 (XE), and 13.7
(KX/KK).

In addition to invoking the Pascal I/O statements or support routines, you must:

1. [For each device driver:] Edit the DEVICES macro in the system configuration file to reflect
the device interrupt vector addresses

2. Edit the prefix file for each required system process, as described in the prefix file sections
of Chapters 2 through 13

3. Build into your application the required I/O system components:
® Driver process(es)
e [For file OPEN:] ACP
e [For logical link OPEN:] NSP

Introduction to MicroPower/Pascal Input/Output 1-7

* Pascal OTS routines for file service—built in automatically by MPBUILD for programs
that invoke Pascal I/O procedures—or nonfile-oriented support routines, plus any other
I/0 routines you opt to include (see kit files GETSET.PAS and GSINC.PAS)

For more information on setting up your application software for I/O, see Chapter 4 of the
MicroPower/Pascal Run-Time Services Manual, the prefix file sections of Chapters 2 through 13,
and the material on building system processes in the MicroPower/Pascal system user’s guide
for your host system. :

The I/0 system file system and support routine interfaces conceal from the Pascal user the basic
mechanisms of MicroPower/Pascal I/O—the sending of request packets to I/O server queue
semaphores, the dispatching of interrupts, and the signaling of reply semaphores.

Note

It is possible to bypass the file system, the ACP, and any available support
routines in order to access a device driver directly. This can be accomplished
via send/receive operations to a driver’s request queue semaphore.

It is also possible, given detailed knowledge of the ACP and NSP request/reply
packet interfaces, either to bypass the file system OTS in order to access the
ACP directly, or to bypass the file system OTS and the ACP to access the NSP
directly. However, the current version of this manual does not provide detailed
descriptions of the ACP and NSP send/receive interfaces.

1.3 Request/Reply Packet Interface

I/0 servers are system processes that accept requests for I/O operations from user or system
processes. DIGITAL-supplied 1/O servers include device drivers and layered processes, such
as the protocol (DDCMP) driver, the network service process (NSP), and the ancillary control
process (ACP). The mechanism for interprocess communication is the kernel send/receive (or
lower-level signal/wait) queue semaphore facility. I/O requests for a device or service are
passed to the server in the form of a request message (queue packet). Each server maintains a
request queue semaphore, through which I/O requests are passed. The request packet supplies
all the information the server needs to perform the desired operation, including the function
code, type of reply desired, and where applicable, the unit number, device address, and data-
buffer location. After receiving a request, a device-level server (device driver) will perform
all process-level, interrupt-level, and fork-level processing for the requesting process; a layered
server (ACP, NSP, or protocol driver) will perform processing and give requests to other layers
as necessary to complete the operation.

When the I/O operation has been completed, if a full reply was requested, the server signals the
requesting process and returns a reply message packet (often a modified version of the request
packet). The reply message packet indicates completion status and other information, such as
number of bytes successfully transferred, as applicable.

This section describes the general features of the send/receive I/O packet interface as those
features pertain to DIGITAL-supplied drivers (see note). The device- or function-dependent
aspects of the I/O packet interface are covered in the individual driver descriptions in Chapters
3 through 10 and Chapters 12 and 13.

1-8 Introduction to MicroPower/Pascal Input/Output

1.3.

Note
The device driver request and reply packets are described later in this section
and throughout the driver chapters. The symbols used to describe the packets
and the information they contain are MACRO-11 symbols defined by the kernel
macro DRVDF$ from the COMU/COMM kernel macro libraries. The Pascal
equivalents of those symbols are defined in IOPKTS.PAS, an include file that is
recommended for use with Pascal I/O requests.

The ACP and NSP packet-level interfaces are not documented in detail in the
current version of this manual.

1 Request Queue Names

The driver request queue semaphores have standardized, 4-character names that identify the
driver associated with the semaphore and the controller serviced by the driver. The names are
of the form $ddc:

Designator Meaning
dd A driver identifier (for example, DY for RX02 or TT for terminal line)
C A controller identifier (for example, A, B, C, ...—as specified in a driver

prefix file—or simply A where multiple controllers do not apply)

Thus, $DYA and $DYB would name the request queues for the first and second RX02 controllers
configured on a system, and $TTA would name the queue for any asynchronous serial line
interface.

The request queue name must be specified in uppercase letters. Also, since device drivers
specify 6-character names, including two space characters, you should space-fill the last two
character positions in the request queue name when creating the request queue.

Table 1-1 lists standard request queue names, supported hardware units, and unit numbering
for standard device drivers.

Table 1-1: Request Queue Names, Units, and Unit Numbering |

Request Number .
Driver Queue Name of Units Numbering
Asynchronous $TTA 1-n (1-4 for DZV11, 1- 0 through (n-1) in prefix file or-
serial 8 for DHV11, 1 for most der, crossing controller bound-
others) aries
RL01/2 $DLc 1-4 (any combination of In prefix file
RLO1s and RLO2s)
RX02 $DYc 1-2 0 for left drive and 1 for right in
dual-drive
MSCP $DUc 1-n In prefix file

Introduction to MicroPower/Pascal Input/Output . 1-9

Table 1-1 (Cont.):

Request Queue Names, Units, and Unit Numbering

Number
of Units

Numbering

Request
Driver Queue Name
Extended disk $XDc
TU58 $DDc
Virtual memory $VMc
TMSCP $MUc
DRV11-] $XAc
DRV11 $YAA
DRV11-B $YBc
SBC-11/21 PIO $YFA
KXT11-CA or $YKA
KXJ11-CA PIO
A/D converter $ADc
Real-time clock $KWc
KXT11-CA or $QDc
KXJ11-CA DMA
Instrument bus $XEc
DDCMP $CSA
DEQNA $QNc
DPV11 $XPc
KXT11-CA or $XSc
KXJ11-CA synchronous
serial
KXT11-CA $KXc
two-port RAM
KXT11-CA $KKA
two-port RAM

1-n (partitions), as deter-
mined by disk size and
user-defined partition size

1-2

1
1

[For read/write:] 1-4
[For Enable/Disable:]
1-12

1-2
1-6

1 (per controller)

1-4 (portals)
1
1

1-2

1-2

0 through (n-1)

0 for left drive and 1 for right in
dual-drive

0
0

0 through 3 for ports A through
D

4 through 15 for port A lines 0
through 11

0
0
0 and 1 for ports A and B

0 through 5 for ports A through
C and timers 1 through 3

0
0 (normally)
0 and 1 for channels A and B

Sequentially upward from 0 in
prefix file order, crossing con-
troller and board boundaries

0 through (n-1) in prefix file
order, independently of TT unit
numbers

In prefix file

0

0

0 and 1 in prefix file order

0 for channel 0 and 1 for channel
1

1-10 Introduction to MicroPower/Pascal Input/Output

1.3.2 1I/O Request and Reply Packets

Figure 1-1 shows the general form of an I/O request packet as received by the driver and an
I/0 reply packet as received by the caller. The diagram includes the standard 6-byte header that
prefixes all packets and that is transparent to users of the send/receive-level mechanisms. (That
header is provided by the SEND$ primitive, based on kernel information and user-provided
macro arguments, when it builds the packet; it should not be included in the send or reply
buffers that are specified in the send/receive calls.)

Note that the request data consists of an 18-byte portion that is function-independent—fields
DP.FUN to DP.SEM—and a 16-byte portion that varies in content, depending on the kind of
function requested—fields DP.DAD to DP.LEN.

Note

The field names shown do not represent offsets into the send or reply buffers;
rather, they correspond to offset symbols used by the drivers to reference
packets; for example, DP.FUN is a 6-byte offset from the packet header.

Introduction to MicroPower/Pascal Input/Output 1-11

Figure 1-1: General I/O Packet Formats

1/0 tmmm—m e, —————— + tomm—m——————————— + I/0
REQUEST | Standard ! ! Standard | REPLY
PACKET j~- -=1 I -1 PACKET
E packet 1 H packet !
I] 1
| Bl == [-
| header | i header !
1 t 1]
| ittt P mmm——— e ——————— - i
DP.FUN - | Function 1 ! Function |\ - DP.FUN
1 1] 1]
| Bt e ' s mssEsEmEmEsss 1
DP.UNI - | - i Unit | H H DP.UNI

DP.SEQ - | Sequence number | ! Sequence number | - DP.SEQ

e >
]
[
=]
=)
-
ot
1

DP.PDB - | Requesting 1 Func- | Status code { - DP.STS
1-- -1 indep fmm e - |
! process 1 value i Actual length | - DP.ALN
f-- - data e L E LR i
! identifier ! 1 ! Error info | - DP.ERR
ittty H i e e LR TP |

DP.SEM - | Reply | ! | Reserved for | - DP.XTR
! 1 1 t 1
)= == 1 [Bdind -1
| semaphore | 1 i driver E
| -= --1 i = -=1
E identifier E v E usage E
|- VS mmm———- | Bt 1]

DP.DAD - |] - i | - DP.FDD
1= --i 1 |- -=1
1 i Func- i |
== -] dep j-- -1
! Request data 1 value i Reply data
| -- -1 data y == -1
]] 1 1 |
1-- -=1 1 j—= -=1
] | v | !
R e C T I R e e L L LT !

DP.BUF - | Buffer i - i |
j-= -1 Ref | -- -

DP.PAR - | address i data i Reserved /
L T | info f—- -1

DP.LEN - | Buffer length | v | {
Fommmmm——— e a——————— + mm——— o —— e +

MLO-832-87

1-12 Introduction to MicroPower/Pascal Input/Output

The request packet fields shown in Figure 1-1 have the following significance:

Field Significance

DP.FUN The 6-bit function code and the function-modifier bits that together specify the
operation to be performed. The function word is divided into three subfields,
as follows:

* Function code value in bits 0 to 5:
IF$RDP = Read Physical

IF$RDL = Read Logical

IF$WTP = Write Physical

IFSWTL = Write Logical

IF$SET = Set Characteristics

IF$GET = Get Characteristics

Other codes denote device-specific functions—for example, IF$SMD, as used
in the TT driver. See individual device-driver descriptions for device-specific
functions.

The following function codes are reserved (see Sections 2.4.5 through 2.4.7):
IF$LOK = Lookup (open)

IF$ENT = Enter (open)

IF$REN = Rename

IF$DEL = Delete

IF$CLS = Close

IF$PRG = Purge

IF$PRO = Protect

IF$UNP = Unprotect

® Device-dependent function-modifier bits 6 to 12 (their meaning is described
separately for each driver).

® Device-independent function-modifier bit settings, for bits 13 to 15:
FM$BSM (bit 13) Set = Reply semaphore (DP.SEM) is a binary or a counting
semaphore

FM$DCK (bit 14) Set = Data check

FMS$INH (bit 15) Set = Inhibit retry of soft device errors

DP.UNI The unit number of the desired device, where applicable. (The high-order byte
of DP.UNI is reserved.) See Table 1-1 for unit-numbering information.

DP.SEQ An optional, user-defined value, for example, a sequence number for identifying
a given request. This field is provided for the user’s purposes only; it is not
used by the driver but is returned in the reply packet.

DP.PDB The Pascal STRUCTURE _ID-type variable that identifies the requesting process
(first three words of the process descriptor block; see Section 3.1.6 of the
MicroPower/Pascal Run-Time Services Manual). This field is used for the QD

driver Allocate Channel (IFSALL) function; see Chapter 9.

Introduction to MicroPower/Pascal Input/Output 1-13

Field Significance

DP.SEM The Pascal STRUCTURE_ID-type variable that identifies the user’s completion-
reply semaphore (first three words of the structure descriptor block; see Section
3.1.5 of the MicroPower/Pascal Run-Time Services Manual). If modifier bit
FM$BSM of word DP.FUN is not set, implying a full reply, this field must
identify a queue semaphore through which a reply packet is to be sent. If
modifier bit FM$BSM is set, this field can identify either a binary or a counting
semaphore, which is signaled on request completion (whether successful or not).
If the first word of this field is zeroed, the driver takes no completion-reply
action.

DP.DAD Interpreted according to the type of device handled and the function requested
and is unused in some cases. For logical I/O on a disk, the first two words are
interpreted as a double-word logical block number, with the least-significant part
in the first word. Other drivers either ignore this field or interpret it differently
(see the TT driver Get Characteristics request packet in Chapter 3, for example).

DPBUF The virtual address of the start of the user’s data buffer. This word is filled in
automatically by SEND or SENDS$, based on the reference-buffer parameter you
supply in the call.

DP.PAR The page address register value that maps the user’s data buffer. This value
is supplied and filled in automatically by SEND or SEND$ and is meaningful
only in a mapped environment.

DP.LEN The amount of data to be transferred, in bytes. This word is filled in
automatically by SEND or SENDS$, based on the reference-length parameter
you supply in the call.

Note

If not used for reference data information, fields DP.BUF through DP.LEN can
be used for additional value data.

Note that all drivers notify the requesting process of a request completion, if a reply semaphore
is specified in the request (DP.SEM is nonzero), by either a full reply or a done signal, as
determined by function-modifier bit FM$BSM of the function word (DP.FUN). If bit FM$BSM is
not set, a full reply (also shown above) is sent via the queue semaphore identified in DP.SEM.

If bit FM$BSM is set, the binary or the counting semaphore identified in DP.SEM is signaled on
request completion. In this case, the requesting process cannot determine whether the operation
completed successfully. If the requesting process does not desire any notification of completion,
the first word of DP.SEM must contain 0, in which case the setting of DP.FUN bit 13 is not
significant.

1-14 Introduction to MicroPower/Pascal Input/Output

The function-dependent portion of a request is described in detail for each driver in the individual
driver descriptions.

The reply message is a modified form of the request message, with the DP.FUN and DP.SEQ
fields unchanged and the following fields filled in as appropriate:

e DP.STS (DP.PDB), in which completion-status information has been inserted

* Possibly DP.ALN and DP.ERR (DP.PDB+2 and DP.PDB+4), in which the actual length of a
transfer and error information may have been placed

* Possibly DP.XTR (DP.SEM)
® Possibly some portion of the function-dependent value data field, DP.FDD

The meanings of the modified fields in the reply message shown in Figure 1-1 are as follows:

Field Significance
DP.STS Code for completion status, indicating type of error; the exception codes

returned are listed in Chapter 6 of the MicroPower/Pascal Run-Time
Services Manual and in the individual driver chapters; ES$NOR (0)
indicates success

DP.ALN The length of the data actually transferred, in bytes, for transfer functions

DP.ERR Device-dependent hardware- or software-error information if DP.STS is
nonzero

DP.FDD To be interpreted according to the type of device handled and the function

requested—unused in most cases

Individual driver descriptions in later chapters provide more specific information about the
status, length, and error word values and function-dependent information in the DP.FDD field.

Introduction to MicroPower/Pascal Input/Output 1-15

Chapter 2
Ancillary Control Process

This chapter describes the MicroPower/Pascal ancillary control process (ACP), which in
cooperation with the network service process (NSP), the standard I/O drivers, and the Pascal
file system OTS (or equivalent user routines), provides the capability for device-independent file
I/0. (The ACP, the NSP, and the drivers are collectively referred to as “I/O service processes”
or “I/0 servers.”) Also, the ACP optionally provides RT-11 directory services, which allow you
to set up RT-11-compatible file directory structures on disk devices.

2.1 ACP Features and Capabilities

The ACP supports file-opening operations for all MicroPower/Pascal-supported 1/O devices
and protocols plus normal Pascal I/O on disk devices. It is called from a MicroPower/Pascal
application program in order to associate a file variable with an I/O service process, making
it possible to perform device-independent I/O via normal Pascal 1/O statements. Requests for
file-opening or disk-transfer operations are passed by the file system OTS to the ACP.

The functions of the ACP include:

* Parsing user device/file specifications

®* Determining device characteristics

* Supporting RT-11 file structure on disk-class devices (optionally enabled in prefix file)
* Checking file limits when accessing disk-class devices

* Supporting parsing for task-to-task links in cooperation with the NSP—a DECnet Session
Control layer function (optionally enabled in prefix file)

Ancillary Control Process 2-1

2.2 Accessing the ACP for File I/O

For most MicroPower/Pascal applications, you access the ACP implicitly by opening a file with
the Pascal OPEN statement. If the file in question is a named file on a directory-structured disk,
other Pascal I/O statements you issue implicitly access the ACP—BREAK, DELETE_FILE, and
so forth. See Section 2.3 for more information on the Pascal file system interface to the ACP;
see Chapter 9 of the MicroPower/Pascal Language Guide for descriptions of OPEN and the other
Pascal I/O statements.

In addition to issuing the OPEN and subsequent Pascal I/O procedure calls, you must:
1. Edit the ACP prefix file to indicate:

* ACP initialization and request-handling process priorities

® Directory operation priority

* Whether RT-11 directory support is required

* Whether network open support is required

* The ACP dynamic pool size
2. Build into your application the following I/O system components:

®* ACP process

* I/0 service processes (device drivers and NSP, as appropriate) to be accessed via file
system (OPEN)

® Pascal OTS routines for file service—built in automatically by MPBUILD for programs
that invoke Pascal I/O procedures—plus any support routines you opt to include (see
kit files FSPAS.PAS, INTDIR.PAS, GETSET.PAS, and GSINC.PAS)

For more information on setting up your application software for file system I/O, see Section
2.6, the NSP and driver chapters of this manual, and the material on building system processes
in the MicroPower/Pascal system user’s guide for your host system.

Note

It is possible to bypass both the file system and the ACP in order to access a
device driver directly. This can be accomplished via send/receive operations
to a driver’s request queue semaphore or, in some cases, via DIGITAL-supplied
support routines that talk to a particular driver. Such access is referred to
throughout this manual as “nonfile access.”

As noted in other chapters, it is also possible, given detailed knowledge of the
ACP and NSP request/reply packet interfaces, to either bypass the file system
OTS in order to access the ACP directly or bypass the file system OTS and the
ACP to access the NSP directly. Such access is referred to as “low-level file
system access.” However, the current version of this manual does not provide
detailed descriptions of the ACP and NSP send/receive interfaces.

The following sections describe the Pascal file system interface to the ACP, the lower-level
request/reply packet interface (in general terms—see the preceding note), the status codes that
can be returned to users of either interface, and the ACP prefix file. An application note on
device-name parsing concludes the chapter.

2-2 Ancillary Control Process

2.3 Pascal File System Interface
The following Pascal I/O statement implicitly accesses ACP services:
OPEN

When you open a non-directory-structured file—that is, a file that does not have a directory,
such as a terminal line, a communications port, a network link, or an A/D converter—the
file system OTS sends an open request to the ACP, and the ACP sends the request to the
associated I/0O server (device driver or NSP) for any device-dependent open processing. When
the device/server completes open processing, it replies to the ACP. Provided no error occurred,
the ACP returns the unit number and the structure descriptor block (SDB) of the I/O server
to the file system OTS. All subsequent operations to that file are sent by the file system OTS
directly to the I/O service process, with no further ACP involvement.

However, when you open a disk file, whether directory-structured or not, the ACP associates a
channel with your file variable and returns the channel number and the ACP’s SDB to the file
system OTS. All subsequent operations to that disk file are processed by the ACP. This allows
the ACP to perform file-limit checks for disk files. If you build RT-11 directory support into
your application—by specifying RTSUP = 1 in the ACP prefix file—RT-11 directory operations
can be performed.

The current OTS and ACP interaction does not allow for Pascal I/O with disks having greater
than 65,536 blocks. I/O transfer computations are performed with 16 bits, with no allowances
made for media having block counts that exceed 16 bits. If multiblock GET transfers are being
performed to a disk opened as '‘DUAOQ:” or '’XDA1:’, for example, the ACP may not detect when
the 16-bit block count overflows and wraps around (beginning again at zero). Thus, EOF is
never returned, and the operation loops.

The following Pascal I/O statements implicitly access the ACP for disk-class devices only:

DELETE_FILE BREAK
INIT_DIRECTORY CLOSE
PROTECT_FILE EMPTY_BUFFER
RENAME_FILE GET, READ
SQUEEZE_DIRECTORY PUT, WRITE
UNPROTECT_FILE PURGE

GET, READ, PUT, and WRITE statements may or may not trigger ACP requests, depending on
the current state of the OTS buffers. The appropriate request packets are sent to the ACP only
when necessary to complete a user-requested operation. For example, a READ or GET operation
that requires more data than what remains in the buffers from previous input operations causes
the OTS to issue one or more Read Logical (IFSRDL) requests to the ACP. Other Pascal
statements unconditionally cause the OTS to issue send requests; examples are BREAK, which
" generates a Write Logical (IFfWTL), and CLOSE, which generates a Close (IFSCLS) request
(normally preceded by a Write Logical, unless BREAK immediately precedes CLOSE).

Pascal Get Characteristics functions that report the characteristics of disks are provided in
the file GETSET.PAS in the MicroPower/Pascal distribution kit. Those functions issue Get
Characteristics (IFEGET) request packets to the driver.

Ancillary Control Process 2-3

2.4 Request/Reply Packet Interface

The packet-level functions provided by the ACP are listed below by symbolic and decimal
function code:

Code Function

IF$RDP (0) Read Physical
IF$RDL (1) Read Logical
IF$WTP (3) Write Physical
IF$WTL (4) Write Logical
IF$SET (6) Set Characteristics
IF$GET (7) Get Characteristics
IF$LOK (16) Lookup

IF$ENT (17) Enter

IF$REN (18) Rename

IF$DEL (19) Delete

IF$CLS (20) Close

IF$PRG (21) Purge

IF$PRO (22) gmtect .
IF$UNP (23) nprotec

Many of the functions are not processed directly by the ACP but rather are passed to the I/O
service process connected to the channel.

Note
When a disk-class device is opened, a channel is allocated in the ACP, and
subsequent requests for that device come to the ACP. When a nondisk device
is opened, the ACP is called only for the open. Subsequent requests for that
device go directly to the device driver or service process with no further ACP
involvement.

The ACP consists of an initialization process, which lowers its priority to become the main
request server. The main request server handles all I/O requests for open disk files and
passes all open or RT-11 directory requests to the RT-11 directory process. The RT-11 process
performs device-specification parsing, determination of device characteristics, and all RT-11
directory operations.

2.4.1 Physical Read and Write Functions

Physical read and write requests are valid only on an open channel. The request is sent to the
device driver with no limit or boundary checks.

2-4 Ancillary Control Process

2.4.2 Logical Read and Write Functions

Logical read /write requests are checked for validity (within bounds of the file for a file-structured
device, channel open verification) and the request is passed on to the appropriate driver. The
driver will reply directly to the user upon completion of the request. On write operations, the
ACP will update the current high mark in the file if the file was entered. The request packet
for read/write requests is the same as for device drivers, except that the unit (DP.UNI) field
contains a channel number.

Each read or write request specifies the beginning block number for the operation.

If the read or write operation causes the limits of a file on a file-structured device to be
exceeded, the ACP truncates the transfer length to the maximum available in the file. If no data
is available, status ES$EOF is returned.

2.4.3 Set Characteristics Function
Set Characteristics requests are valid only on an open channel. The request is sent to the device
driver with no checks.

2.4.4 Get Characteristics Function

The Get Characteristics function returns a block of device-dependent information about a
specified channel in the function-dependent portion of the reply message. The information
consists of the codes for device class, type, starting block number of the file, highest block in
use, the file size, the device driver unit number, and the device driver structure descriptor block.

If no channel is specified (packet offset DP.UNI) or if the specified channel is not open, the
ACP returns only a class and type code indicating that the response has come from the ACP.

The function-independent portions of the Get Characteristics request and reply packets are the
same as for device drivers, except that, as noted above, the unit (DP.UNI) field contains a
channel number. The function-dependent portions of the packets are as follows:

1
|
DP.DAD - | ! - i Type | Class - DP.FDD
] 1 1
|- -1 1 [sttt it
i i Func- ! Start block # |
|-- =1 dep [mmm—m—em—cm——— e
] : value ! High block # !
\-- -1 data mmmmm e |
i Not] |] File size ;
1 1 1] 1
[B - 1 i Endatadatat ettt 1
! used ! v | Device unit # |
1 | 1 1]
== -] m——— [Bttt i
DP.BUF - | ! . ! Device i
1-- - Ref - -
DP.PAR - | i data 1 driver !
i-- -1 info 1-- --1
DP.LEN - | 1 v | SDB H
e —c e ————————— + e=m—- fmm e ——— +
MLO-834-87

Ancillary Control Process 2-5

In the reply information:
* (Class is DC$SSV, for system service class.

* Type is SS$DFL for file (directory) structured access, SS$DSK for nonfile (nondirectory)
structured access, or SS$ACP if no channel or an invalid channel was specified.

If the type is SS$DFL or SS$DSK the following information is returned:
¢ The starting block number of the file on the disk

* The highest logical block number used within the file (normally meaningful only when
creating a file—that is, HISTORY = NEW)

* The size of the file in blocks
¢ The unit number of the device on which the file resides

* The device driver structure descriptor for the device on which the file resides

Note
The MACRO-11 field names do not represent offsets into the user’s send or reply
buffers; they are offset symbols used by MACRO-11 I/O servers to reference
packets. For example, DP.FDD is a 24-byte (decimal) offset from the packet
header. The symbols are defined by the DRVDF$ macro, which resides in the
COMU and COMM kernel macro libraries. The equivalent Pascal symbols are
defined in the IOPKTS.PAS include file.

2.4.5 Lookup and Enter Functions

Lookup and Enter are the OPEN functions. For directory-structured I/0O, Lookup is used to find
an existing file, and Enter is used to create a new file. For network I/O, Lookup designates
the active task, and Enter establishes a passive task. For all other I/O, Lookup and Enter are
equivalent.

Lookup and Enter parse the user’s file specification. If the device specification is a ring buffer,
the SDB of the ring buffer is returned to the file system OTS. The file system then operates
directly on the ring buffer. Otherwise, the ACP sends a Get Characteristics request (IFSGET) to
the I/0O server request semaphore in order to determine the device characteristics.

If the Get Characteristics succeeds, the ACP passes the Lookup or Enter request to the I/O server
to allow it to perform any device-specific open processing. I/O servers must reserve Lookup and
Enter function codes even if they do not implement those functions. I/O servers may ignore the
requests if they have no device-specific processing to perform for them. 1/O servers that ignore
the requests should return them with ESSNOR (normal completion) or ES$IFN (invalid function)
status. The ACP interprets ES$IFN as indicating that no special processing was required and
continues processing the request as if ESENOR were returned. (This allows compatibility with
Version 1 MicroPower/Pascal drivers.) Alternatively, an 1/O server may support Lookup or
Enter, performing appropriate device-specific open processing. However, if an 1/O server does
not wish to be accessed by the ACP, it should return ES$UFN (unsupported function) or any
other error code (other than ES$IFN), informing the ACP that an error occurred during open
processing.

2-6 Ancillary Control Process

If no error occurs in device-dependent open processing, the ACP returns the following
information to the file system OTS:

* For nondisk devices, the unit number and the device-driver SDB
¢ For disk devices, a channel number and the ACP SDB

The file system OTS sends all subsequent requests for the specified device to the I/O server
indicated in the ACP reply. Thus, disk requests are sent to the ACP, while nondisk requests
are sent to a device driver with no further ACP involvement.

2.4.6 Rename, Delete, Protect, and Unprotect Functions

Rename, Delete, Protect, and Unprotect are valid only on permanent files. A permanent file
is one with the PERM bit set in the directory entry; see Appendix A for more information on
RT-11 directory structure.

The ACP searches the directory for the specified file and, if the file is found, changes the
directory entry. (Note that Delete changes the status of the file from permanent to empty.)

No checks are made to determine if the file is currently open for another user; the ACP does
not perform any contention checks on files.

2.4.7 Close and Purge’ Functions

Close and Purge are valid only for a channel that has been defined by a previous Lookup or
Enter request to the ACP.

Close makes a tentative file permanent if the file was Entered. If the file was opened with a
Lookup, Close is functionally equivalent to Purge (deallocates channel).

Purge makes a tentative file empty if the file was Entered. If the file was opened with a Lookup,
Purge deallocates the channel in the ACP.

Any further requests on the channel after Close or Purge are invalid, since the channel is no
longer defined.

The file system OTS passes Close/Purge requests on to the I/O server when the Pascal
CLOSE /PURGE procedures are executed. I/O servers must reserve Close and Purge function
codes even if they do not wish to implement the functions. I/O servers may completely ignore
these requests if they have no device-specific processing to perform for any of them. I/O servers
that ignore the requests should return them with an ESBNOR (normal completion) or ES$IFN
(invalid function) status. ES$IFN indicates to the file system OTS that no special processing was
required. (This allows compatibility with Version 1 MicroPower/Pascal drivers.) Alternatively,
an I/0 server can support Close or Purge, performing appropriate device-specific Close/Purge
processing.

Ancillary Control Process 2-7

2.5 Status Codes

The ACP returns the exception codes shown below in the status-code field of the reply message.
If you perform I/O with Pascal I/O statements—that is, not with send/receive statements or
Pascal support routine calls—the Pascal OTS will report the corresponding exception (unless the
operation was an OPEN, DELETE_FILE, RENAME_FILE, PROTECT_FILE, UNPROTECT_FILE,
INIT_DIRECTORY, or SQUEEZE_DIRECTORY for which a STATUS return was specified). The
error codes shown are those generated by the ACP d1rectly—-—not those generated by other I/O
system components involved in file I/O.

If no error is detected during the I/O operation, the ACP returns a value of ESSNOR (0) in the
status-code field.

The following codes are returned by all configurations of the ACP:

Code Type Description

ES$ABT HARD_IO I/0O request canceled or aborted
ES$NXU HARD_IO Nonexistent unit or channel

ES$DVF SOFTI_IO Attempt to signal device driver failed
ES$EOF SOFI_IO End of file encountered

ESS$IDS SOFI_IO Ilegal device specification

ES$IFN SOFT_10 Illegal function

ES$IFS SOFT_IO Illegal file specification

ES$IRS SOFT_IO Illegal rename specification

ES$NFS SOFI_IO Device not file structured

ES$NRF SOFI_IO No reference data present

ES$WEF SOFT_IO Attempted write past EOF

ES$NMC RESOURCE Insufficient space for operation in ACP pool
The following codes are returned only if RT-11 dlrectory support is selected (RTSUP = 1) in the
prefix file:

Code Type Description

ES$DCF SOFI_IO Device full

ES$DIO SOFT_IO Directory 1/O error

ES$DRF SOFT_IO Directory full

ES$FNF SOFT_IO File not found

ES$IDR ‘SOFT-1IO Invalid directory format

ES$PRO SOFI_10 File protection error

2-8 Ancillary Control Process

The following codes are returned only if NSP support is selected (NSPSUP = 1) in the prefix

file:

Code Type Description

ES$INS SOFT_IO Invalid network specification
ES$NNS RESOURCE No network service process installed

Exception codes are defined in the EXC.PAS include file for Pascal users and by the EXMSK$
macro in the COMU and COMM macro libraries for MACRO-11 users.

2.6 ACP Prefix File

Figure 2-1 shows the user-modifiable portion of the ACP prefix module. The following
paragraphs describe the macro calls and symbol definitions that can be edited to fit your
application.

The ACP prefix file allows you to enable or disable RT-11 file support, enable or disable network
OPEN support, and tune the size of the ACP pool area.

RT-11 file support allows the user to create, maintain, and modify RT-11 file-structured disk
devices. Volumes written with the MicroPower/Pascal ACP may be read by RT-11, VAX/VMS
(using EXCHANGE), and RSX-11 (using FLX).

The network OPEN support allows the ACP to parse and create session control messages,
required when using the NSP. If the NSP is not being used in your application, the code
required to parse and generate these messages is not required.

The ACP pool area is used by the ACP in processing open requests. This area may need to be
adjusted in size, depending on the number of NSP open requests that are currently in progress
(180 bytes required per open) and the number of concurrently open disk files (40 bytes required
per channel).

Ancillary Control Process 2-9

Figure 2—-1: ACP Prefix File (ACPPFX.MAC) Excerpt

.TITLE ACPPFX - Ancillary Control Process prefix file
T+
; This software is furnished under a license and may be used or copied
; only in accordance with the terms of such license.
; Copyright (c) 1984, 1986 by Digital Equipment Corporation.
; All rights reserved.

.MCALL macdf$

macdf$

RT$IPR == 250. ; initialization priority
RT$PPR == 175. ; processing priority

DIR$PR == 175. ; directory operation priority

s+
; NSPSUP = (0 or 1)
No NSP open support

Include NSP open support

o
nn

NSPSUP = 1 ; include NSP support

; RTSUP = (0 or 1)
; 0 = No RT--11 Directory support
; 1 = Include RT--11 Directory support

RTSUP =1 ; include RT--11 directory support

; ACP pool size in bytes

$DPLSZ == 1000. ; 180. per NSP open
; 40. per channel

4+

; END OF USER PARAMETERS

.end

2.7 Application Note: Device-Name Parsing

The ACP parser converts device names into SDBs. The device name in a file specification may
be:

* A ring buffer name.

¢ A standard device name in the form ddcu, where dd is the 2-letter device name, c is an
optional controller letter (default is A), and u is an optional unit number (default is 0). A
dollar sign ($) is added to the beginning of the device name and controller letter to form
the structure name (example: DUAO: is converted to ‘$DUA’ unit 0).

* A logical name. A logical name should translate to one of the other forms described here.

2-10 Ancillary Control Process

Device strings are converted to uppercase before processing, so only uppercase kernel structures
may be accessed via the OPEN statement. Any names less than six characters are padded with
spaces to a 6-character length.

If no device name is specified, the ACP uses the default device name ‘DK ’. The user is assumed
to have created a logical name for DK, either at build time in the kernel configuration file, or
at run time via a call to the CREATE_LOGICAL _NAME routine.

2.8 FALACP

FALACP.PAS is a small version of the ACP, which you can use only in specific applications.
FALACP performs terminal and ring buffer OPENs for a FALCON or KXT11-CA application
having more than one serial line. This program opens files from "TTA1:" to 'TTA9:’, 'XLOO0:" to
"XLOY’, and 'XLIO:" to 'XLI9:". For applications that require only terminal or ring-buffer access
on the FALCON or KXT11-CA, you can use this program to replace the standard ACP.

Unlike the standard ACP, FALACP performs minimal device checking, making use of the first
device name character to discriminate between terminal driver and ring buffer access. You are
responsible for using the correct terminal line name or ring buffer name.

To use this alternate ACP, build FALACP into your application instead of the standard ACP
driver. You do not need the ACPPFX.MAC prefix file. FALACP.PAS is in MICROPOWERS$LIB
for VMS and in LB:[2,10] for RSX.

Ancillary Control Process 2-11

Chapter 3
Asynchronous Serial Line (Terminal) Driver

This chapter describes the use of the MicroPower/Pascal asynchronous serial line (TT) driver,
sometimes referred to as the terminal driver. The driver supports I/O operations on terminals
and other devices attached to the following serial line interfaces:

* DLVI11l-type—DLV11, DLV11-E, DLV11-F, DLV11-]

* DLART-type—KXT11-CA or KXJ11-CA console, SBC-11/21, CMR21, MXV11-A,
MXV11-B

* DZVil
¢ KXT11-CA or KXJ11-CA multiprotocol chip

The supported devices interface one or more asynchronous serial communication lines to a
MicroPower/Pascal target processor for communication with terminals, modems, and other
Pprocessors.

3.1 TT Driver Features and Capabilities

The TT driver supports read and write operations, the returning or altering of line parameters,
and a stop function for outstanding read requests. All data transmissions use the same baud
rate for sending and receiving. All lines run in 8-bit mode with one stop bit and no parity.

Read operations on a line are performed in line or block mode, as determined by prefix file
default or a Set Characteristics operation.

In line mode, terminal-oriented line-editing operations, such as line erasure (CTRL/U), previous-
character deletion (DELETE), and line redisplay (CTRL/R), are performed. Characters are echoed
(if echo is enabled) as they are read. No data is returned to the requesting process until a
carriage return is typed or the edit buffer overflows. The size of the edit buffer is specified in
the TT driver prefix file.

In block mode, all data is passed to the requesting process without interpretation (unless
XON/XOFF flow control is enabled). This allows you to connect the serial lines to devices other
than terminals. For example, you can use the TT driver in conjunction with the asynchronous
DDCMP (CS) driver to communicate with another MicroPower/Pascal target system over a
serial line. See Chapter 12 for details.

Asynchronous Serial Line (Terminal) Driver 3-1

In block mode, minimum/maximum read requests are honored. This allows your program—
in particular, the OTS routines that carry out Pascal I/O procedure requests—to read a
minimum number of bytes to complete your request plus as many other bytes (up to a
maximum) as are immediately available. This facility is useful for high line-speed applications.
Minimum/maximum read requests are possible, because the TT input ISR has two buffers and
can buffer characters between reads. The size of the ISR input buffers is set in the TT driver
prefix file,

Get and Set Characteristics functions allow the requesting process to inspect and change line
parameters, including baud rate, modem status flags, input/output flow control (XON/XOFF),
line/block mode, character length, even/odd parity, number of stop bits, and echo. Line
parameters are initially set according to default values you specify in the TT driver prefix file.

The stop function allows the requesting process to reclaim resources by aborting an in-progress
read request.

Modem control is supported for the DLV11-E, DHV11, and KXT11-CA or KXJ11-CA
multiprotocol channel A interfaces and, in a limited fashion, for the DZV11 interface. Modems
allow you to connect remote terminal lines to the serial line interface for access to the target
processor. The modem is controlled by a set of signals it exchanges with the target processor.
(More information on modem control signals is provided in Section 3.4.3.)

Modem control interrupts are supported for DLV11-E, DHV11, and KXT11-CA and KXJ11-CA
multiprotocol channel A. The Set Modem Semaphore command allows the requesting process
to specify a binary or counting semaphore to be signaled on each interrupt.

3.2 Performing Asynchronous Serial 1/0

For most MicroPower/Pascal applications, you perform asynchronous serial I/O—particularly
terminal I/O—by invoking Pascal I/O procedures that open files for terminal data and then
input or output the data, in accordance with the rules for Pascal I/O. (INPUT and OUTPUT are
opened implicitly and thus require no explicit OPEN invocation.) The Pascal I/O procedures—
OPEN, GET, WRITE, and so forth—are described in Chapter 9 of the MicroPower/Pascal
Language Guide.

Note

The TT driver Set Modem Semaphore operation cannot be performed with Pascal
I/O procedures. See Section 3.3 for more information on such operations.

In addition to invoking the Pascal I/O procedures, you must:

1. Edit the DEVICES macro in the system configuration file to reflect the serial-line controller
interrupt vector addresses

2. Edit the TT driver prefix file to reflect:

'

¢ [For each controller:] Controller type, CSR address, interrupt vector address, hardware
interrupt priority, and number of serial lines

¢ [For each line:] ISR buffer size, speed, edit buffer size, and where supported by hardware,
the setting or clearing of such parameters as input or output flow control (XON/XOFEF),
line editing (with or without echo of characters as they are read), bits/character, parity
bits, number of stop bits, modem status-change interrupts, baud rate programming, Data
Terminal Ready or Request to Send indications, or BREAK assertion

3-2 Asynchronous Serial Line (Terminal) Driver

® Driver initialization and request-handling process priorities.
3. Build into your application the following I/O system components:
e TT driver process
® [For explicit terminal file OPEN:] Ancillary control process (ACP)

* Pascal OTS routines for file service—built in automatically by MPBUILD for programs
that invoke Pascal 1/O procedures—plus any terminal I/O support routines you opt to
include (see kit files GETSET.PAS, GSINC.PAS, VT100.PAS, and VT1INC.PAS)

For more information on setting up your application software for terminal I1/O, see Chapter
4 of the MicroPower/Pascal Run-Time Services Manual, Section 3.6 of this manual, and the
material on building system processes in the MicroPower/Pascal system user’s guide for your
host system.

When a module that contains Pascal I/O procedure invocations is built into your application,
Pascal OTS routines for file service are linked to the module. The OTS file routines perform all
Pascal operations on files, including file opening, input, and output. In particular, they perform
the necessary low-level processing of high-level operations like OPEN and WRITE. Thus, the
basic mechanisms of MicroPower/Pascal I/O—the sending of request packets to driver or ACP
queue semaphores, the dispatching of interrupts, and the signaling of reply semaphores—are
concealed from the Pascal user.

Alternatives to using the Pascal I/O procedures for terminal 1/O exist, but require more effort.
You can:

* Issue your own Pascal or MACRO-11 packet-level requests to the ACP and the driver,
bypassing the OTS file routines (lower-level file system access)

* Issue your own Pascal or MACRO-11 packet-level requests to the driver, bypassing the
OTS file routines and the ACP (nonfile access)

The following sections describe the Pascal I/O procedure interface to the TT driver, the lower-
level request/reply packet interface, the status codes that can be returned to users of either
interface, and the TT driver prefix file. An application note on hardware buffering concludes
the chapter.

3.3 Pascal I/O Procedure Interface

To perform standard Pascal I/O to an asynchronous serial line, you must open a file. Opening
the file associates a Pascal file variable with a serial line unit. Invoke the OPEN procedure as
follows:

OPEN (filvar, ’TTAu:’, ...)
where:
e filvar is a Pascal file variable.

® uis a serial line number (0, 1, ...).

Asynchronous Serial Line (Terminal) Driver 3-3

For example, "TTA1:" would specify the second line (1) of the first serial interface controller
listed in the TT driver prefix file.

Note

Any number of serial lines are supported, but the number is limited for each
type of controller—up to four for DZV11, up to eight for DHV11, and one for
most others. The range of valid identifying unit numbers is 0 through (n~1) for
n lines configured in the TT driver prefix file. Lines are numbered sequentially
upward from 0 in the order they appear in the prefix file, crossing controller
boundaries.

The standard Pascal file variables INPUT and OUTPUT are implicitly associated
(by default) with 'TTA0:". They require no explicit OPEN invocations.

The OPEN statement causes the Pascal OTS to send an open request to the ACP, which returns
a unit number and a TT driver request semaphore ID to the OTS. Subsequent I/O requests are
sent directly to the driver by the OTS, with no further ACP involvement.

In carrying out subsequent input, output, CLOSE, or PURGE operations on serial interface units,
the Pascal OTS uses the following packet-level driver functions:

* Read Logical (IF$RDL)
* Write Logical (IFSWTL)
¢ Close (IF$CLS)
* Purge (IF$PRG)

The appropriate request packets are sent to the driver only when necessary to complete a
user-requested operation. For example, a READ or GET operation that requires more data than
what remains in the buffers from previous input operations causes the OTS to issue one or
more Read Logical (IF$RDL) requests to the TT driver. Other Pascal statements unconditionally
cause the OTS to issue send requests; examples are BREAK, which generates a Write Logical
(IF$WTL), and CLOSE, which generates a Close (IF$CLS) request (normally preceded by a Write
Logical, unless BREAK immediately precedes CLOSE).

Pascal Get and Set Characteristics functions that report or alter the characteristics or status of
serial lines are provided in the file GETSET.PAS on the MicroPower/Pascal distribution kit.
Those functions issue Get or Set Characteristics (IFSGET or IF$SET) request packets to the
driver.

Neither the Set Modem Semaphore (IF$SMD) nor the Stop I/O (IF$STP) packet-level driver
function can be performed with normal Pascal I/O statements or GETSET functions. To
perform the Set Modem Semaphore or the Stop I/O function, either use the request/reply
packet interface directly or write Pascal procedures that take a user-specified file variable (or
queue semaphore ID) and send the appropriate request packet to the driver. (The Get/Set
Characteristics procedures in GETSET.PAS demonstrate the latter approach.)

Note

Pascal procedures for manipulating VT100 video are distributed as source
modules on the MicroPower/Pascal kit. The relevant files are VT100.PAS, which
contains the procedures, and the include file VT1INC.PAS, which externally
declares the procedures. Most of the operations WRITE to OUTPUT.

3-4 Asynchronous Serial Line (Terminal) Driver

3.4 Request/Reply Packet Interface

The following packet-level functions provided by the TT driver are listed by symbolic and
decimal function code:

Code Function

IF$RDP (0) Read Physical

IF$RDL (1) Read Logical

IF$WTP (3) Write Physical

IFSWTL (4) Write Logical

IF$SET (6) Set Characteristics
IF$GET (7) Get Characteristics
IF$STP (10) Stop 1/0

IF$SMD (11) Set Modem Semaphore

If a request is received for an Open (IFSLOK or IF$ENT), a Close (IF$CLS), or a Purge
(IF$PRG), the driver returns an illegal function status code (ES$IFN), which the ACP (Open) or
OTS (Close/Purge) interprets as indicating that no device-dependent processing was required
for that operation.

Note

The MACRO-11 symbols used in this section are defined by the DRVDF$ macro,
which resides in the COMU and COMM kernel macro libraries. The equivalent
Pascal symbols are defined in the IOPKTS.PAS include file.

The following function modifiers recognized by the TT driver are shown listed by symbolic code
and bit position:

Code Function
FM$MIN (bit 7) Enable minimum/maximum block-mode read
FM$BSM (bit 13) Signal binary/counting semaphore

The TT driver is a single (static) process, beginning as an initialization process and then
lowering its priority to the running level specified in the prefix file. The single process handles
all the controllers (serial interface units) and lines specified in the prefix file, unlike other
MicroPower/Pascal drivers that create a separate process for each controller. I/O requests for
any controller are sent (using a Pascal SEND or a MACRO-11 SENDS$) to the request queue
semaphore waited on by the driver process.

Asynchronous Serial Line (Terminal) Driver 3-5

The request queue name and number of supported units for TT driver requests are shown

below:
Request
Driver Queue Name Number of Units Numbering
Asynchronous $TTA 1-n (1-4 for DZV11, 0 through (n-1) in
1-8 for DHV11, prefix file order,
serial 1 for most others) crossing controller
boundaries

The units configured for each controller must be specified in the TT driver prefix file.

The general format of the TT driver request and reply packets follows:

TT B + e mm——————————— + TT
REQUEST | Standard ' | Standard i REPLY
PACKET 1-- - t=- - PACKET
{ packet ! ! packet |
] t 1 N 1
== == | Bt ==1
| header 1 | header '
1 1 I 1
[Bttt [e [it 1]
DP.FUN - | Function | - H Function { - DP.FUN
1 1 t i 1
| B e] 1 | Bindababeiad bt 1
DP,UNI - | - | Unit |] i -- ! Unit | - DP.UNI
1 ! 1 1 1
|-]] | et b 1
DP.SEQ - | Sequence number | | | Sequence number | - DP.SEQ
t 1 1] 1
| Bt e 1] | e E- 1]
DP.PDB - | Requesting 1 Func- | Status code { - DP.STS
j-= - indep R L Lt i
! process i value ! Actual length | - DP.ALN
f-- - data T L L T, 1
! identifier ! 1 ; Error info ! - DP.ERR
1 | 1] 1]
| e e ————— 1 i TS e —— 1
DP.SEM - | Reply i | | Reserved for | - DP.XTR
1 3] 1)
== =" 1 f=- ==
H semaphore ! 1 1 driver
1 . 1 1 1 1
== == 1] |- ==
1 identifier 1 v \ usage |
1 i 1]
| Bttt " TEmEme- | T e eSS -— 1
DP.FDD - | ' - i | - DP.FDD
1 1 1]]
== == 1 == ==
! Request ! Func- ' Reply !
p=-- -~ dep |- -=1
DP.MIN - | data i value i data |
{== -1 data |- -=1
i 1 1 1 i
1 1 1 1 1
] 1 1 i 1
| B e] 1 [Bttt]
! Not used 1 v 1 Not used !
i 1 1 1
| et P T == [et 1
DP.BUF - | Buffer] " i i
[- Ref | -- -1
DP.PAR - | address | data i Reserved
I H info 1= -
DP.LEN - | Buffer length | v i :
e ———————— + me———— o mm———— e ———— +
MLO-833-87

The function-independent portions of the packets are described in the request/reply packet
interface section of Chapter 1. The valid function and function-modifier codes for the function
(DP.FUN) field and the valid unit numbers for the unit (DP.UNI) field are listed at the beginning
of this section.

3-6 Asynchronous Serial Line (Terminal) Driver

The function-dependent portions of the request and reply packets for each type of TT driver
function are described in the following sections.

Note

The MACRO-11 field names shown do not represent offsets into the user’s
send or reply buffers; they are offset symbols used by MACRO-11 drivers to
reference packets. For example, DP.FUN is a 6-byte offset from the packet
header.

3.4.1 Read Functions

When a read (IF$RDP or IF$RDL) request is received, the TT driver validates the request and
queues it on the specified line. If no request is currently active, the operation is begun.

Reads are performed in block mode, unless you enabled line editing for the line in question in
the prefix file or in a Set Characteristics request.

In line mode, line-editing functions are performed with optional echoing of characters as they
are read. No data is returned to the requesting process until a carriage return has been entered,
regardless of the requested read length. Thus, even a single-character request must wait for a
carriage return—unless a portion of a previously entered line remained in the line buffer when
the operation commenced.

In block mode, the request is checked for the minimum/maximum (FM$MIN) function modifier
and a minimum read value (offset DP.MIN in the request packet). If both are present, the
value specified at offset DP.MIN in the request packet is used as the required read size; if
either is absent, the reference buffer length (DP.LEN) is used as the required size. Once the
required amount of data has been received, the request is considered complete. If FM$MIN
was specified, up to (maximum-minimum) additional bytes of data will be returned to the user
if they are currently available in the ISR buffers. The request is then returned to the user with
the actual-length field (offset DP.ALN), reflecting the actual length of the transfer.

If input flow control is enabled for the line (by prefix file default or Set Characteristics request),
the input ISR sends XOFFs to the device attached to the line whenever the input ISR buffer is
75% full. When the congestion is reduced, an XON is sent to allow further input.

Asynchronous Serial Line (Terminal) Driver 3-7

The function-dependent portions of the read request and reply packets are shown below:

] I | 1

1] 1 1 i

1 1 1 1
1

DP.FDD -~ }l Not =| H \ - DP.FDD
T -~ 1 j=- -=
! used | Func=~ H 1
e L L e Rt e i dep == -~
DP.MIN - | Min read length | value ! Not used 1
L T | data | -= -1
] Not 1 | i i
1-- -1 i 1-- -1
E used E v 1 E
| b dadeh et it i " mmm——— | Bt)
DP.BUF - | Buffer 1 - i '
== -- Ref
DP.PAR - | address i data
e 1 info
DP.LEN - | Buffer length | v
frme e e ——————— + mm———
MLO-835-87

Fields DP.BUF through DP.LEN specify the location and length of the user buffer that is to
receive the data. Those fields are put into the packet by the kernel send primitive, based on
the send call arguments.

The DP.MIN field can be used to specify a minimum read length for block-mode reads. If
function-modifier FM$MIN is set, the number of bytes returned by a block-mode read is the
amount specified in DP.MIN plus as many bytes, up to the DP.LEN maximum, as were available
in the input ISR buffers when the minimum length was achieved. If DP.MIN is zero, this has
the effect of a conditional read. DP.MIN is ignored for line-mode reads.

If FM$MIN is not set, DP.LEN is used as the required read length.

In line mode, the length specified at DP.LEN is honored, but regardless of the number of
available bytes, no data is returned until a terminator has been entered.

3.4.2 Write Functions

When a write (IFSWTP or IF$WTL) request is received, the TT driver validates the request and
queues it on the specified line. If no request is currently active, the operation is begun.

Note
Write requests have priority over pending echo for output. Thus, if a
user application performs continuous writes, pending echo may be delayed
indefinitely.
If output flow control is enabled for the line (by prefix file default or Set Characteristics request),
XOFFs received from the device attached to the line suspend output, until an XON is received.

Replies to write requests are not sent to the caller until all data has been given to the device.
Generally, this means that all data except the last two bytes has been transmitted. If the
application requires complete output synchronization, it writes one or two null bytes. See the
application note on hardware buffering at the end of this chapter for details.

3-8 Asynchronous Serial Line (Terminal) Driver

The function-dependent portions of the write request and reply packets follow:

]
!
DP.FDD - | | 1 |\ - DP.FDD
- -1 i {-- -1
'] Func- i]
== --1 dep == ==
! Not used ! value] Not used i
(- . data -- -=i
] 1 1 1 1
] 1 1 1 1
1]] ']
== - I §- -
i ' v |]
] 1 1 1
| meseEEEEEe- VS mEmm— | T, ———]
DP.BUF - | Buffer | - H i
j-- -1 Ref
DP.PAR - | address i data
T ! info
DP.LEN - | Buffer length | v
e e ——— + eee—-
MLO-836-87

Fields DP.BUF through DP.LEN specify the location and size of the user buffer from which data
is to be copied. Those fields are put into the packet by the kernel send primitive, based on the
send call arguments.

3.4.3 Get and Set Characteristics Functions

The Get Characteristics (IFSGET) and Set Characteristics (IF$SET) functions allow you to inspect
or change the current parameters of a given line. The parameters include bit settings for:

Input/Output flow control (XON /XOFF)
Line/Block mode
Echo (line mode only; characters are echoed as they are read)

Read-only modem controls—Ring, Carrier, Clear to Send, Data Set Ready (for DLV11-
E, DHV11, KXT11-CA or KXJ11-CA multiprotocol channel A; Ring and Carrier only for
DZV11)

Read/write modem controls—Data Terminal Ready, Request to Send, Enable Modem
Interrupts (for DLV11-E, DHV11, KXT11-CA or KXJ11-CA multiprotocol channel A; DTR
only for DZV11)

Assert/Deassert BREAK

Programmable baud rate (only for DLV11-E, DLV11-F, DLART, KXT11-CA or KXJ11-CA
multiprotocol, DHV11, DZV11)

Setting the line’s framing characteristics: bits/character, parity, stop bits

Terminal type

Note

No modem control is provided for KXT11-CA or KXJ11-CA multiprotocol
channel B. Channel A can be configured with full modem control or no modem
control. The list above assumes full modem control for channel A.

Asynchronous Serial Line (Terminal) Driver 3-9

Split line speeds are not supported; a line’s transmit and receive speeds must
match.

When a Get Characteristics request is received, the TT driver gets the line status settings from
the transmit and receiver CSRs and from its internal control block for the specified line and
passes those parameters back to the requesting process.

When a Set Characteristics request is received, the TT driver sets or clears bits in the transmitter
and receiver CSRs and in its internal control block for the specified line and then performs
a Get Characteristics operation, which passes the new line parameters back to the requesting
process.

The function-dependent portions of the Get Characteristics request and reply packets follow:

DP.FDD - | ! ° i\ Type | Class | - DP.FDD
1 1 1] 1
== == 1 | TmEEesTsEEs s 1
i | Func- | Line parameter 1,
P-— - dep e e e e T i
| i value ! Line parameter 2|
P-- - data e T i
i Not i | ! Line speed i
] t 1 1 1
== == t [Bkt 1
| used 1 v ! Not used |
1] 1 |
== —-— e [Bl]

DP.BUF - |] - ! '
i-- -—1 Ref

DP.PAR - | | data
== —-- info

DP.LEN - | i v
O + m———-

MLO-837-87

The function-dependent portions of the Set Characteristics request and reply packets are shown
below:

DP.FDD - | Reserved ! - |\ Type | Class | - DP.FDI
1 1 1 1 1]
| Bttt 1 1 | Bdadabehatataiabaiedeideda 1]
! Line parameter 1} Func- ! Line parameter 1}
R ittt i dep R et L i
| Line parameter 2| value i Line parameter 2|
e e e ' data R ittt |
! Line speed 1 H] Line speed !
] 1] 1]
| B it] 1 | e EesseTmm—- 1
| | v 1 Not used !
1 1]]
[i == - o mm————— b

DP.BUF - | Not] - ! '
1-- - Ref

DP.PAR ~ | used i data
== -1 info

DP.LEN - | | v
iy + eme-e-

MLO-838-87

3-10 Asynchronous Serial Line (Terminal) Driver

Device class and type information is returned at offsets DP.FDD and DP.FDD+1 in the Get and
Set Characteristics reply packets. In those fields:

* Class is DC$TER for asynchronous serial line interface.

* Type indicates the specific type of interface:
TT$DL for minimum serial line capability (DLV11, DLV11-], MXV11-A)
TT$DLE for DLV11-E
TT$DLF for DLV11-F
TT$DLT for DLART (SBC-11/21, MXV11-B, KXT11-CA console, CMR21)
TT$DLU for DLART (KXJ11-CA console)
TT$DM for KXT11-CA or KX]J11-CA multiprotocol, data line only port
TT$DMM for KXT11-CA or KXJ11-CA multiprotocol with modem control
TT$DH for DHV11
TT$DZ for DZV11

The first and second line parameters (at DP.FDD+2 and DP.FDD+4 in the packets just shown)
are identical to the parm1 and parm?2 arguments used in calls to the TTLIN$ prefix file macro.

(See Section 3.6.) The TT line parameters select the characteristics to be set or report the current
line characteristics.

The format of the first line parameter is shown below:

+=~=-- Input flow control
fmmm e ——————————— Line editing
B etttk Echo
MLO-839-87

The four bits labeled above correspond to the TTLIN$ C.xxxx options:
* Bit 0, if set, enables output flow control (XON/XOFF).

® Bit 1, if set, enables input flow control (XON/XOFF).

* Bit 6, if set, enables line editing (line mode for read operations).

e Bit 7, if set, enables echo of characters as they are read, provided the line-editing bit (6) is
also set.

Asynchronous Serial Line (Terminal) Driver 3-11

The format of the second line parameter is shown below:

Fmm————— Clear to Send
fmmm——————— Data Set Ready
fmmmm———————— Data Terminal Ready

Fmm e Request to Send
fmmmme e ——— Enable Modem Interrupt
dmmmmmmm——m e me e Assert BREAK

S Oy S S Enable Baud Rate Set
MLO-840-87

Bits 0 (Ring) through 3 (Data Set Ready) are read-only. The remaining labeled bits correspond
to the TTLIN$ E.xxx options. Bits 0 (Ring) through 6 (Enable modem status-change interrupts)
are modem control bits. Proceeding from right to left in the format above:

Bit 0, if set, indicates a Ring, informing the target processor that an incoming call signal is
being received by the modem.

Bit 1, if set, indicates Carrier Detect, informing the target processor that the data channel
signal is OK, receiver is ready.

Bit 2, if set, indicates Clear to Send, informing the target processor that the modem is ready
to transmit data.

Bit 3, if set, indicates Data Set Ready, informing the target processor that the modem is in
data mode and ready to operate.

Bit 4, if set, indicates Data Terminal Ready, informing the modem that the target processor
is ready to transmit or receive data; if clear, the modem disconnects itself from the line.

Bit 5, if set, indicates Request to Send, telling modem to enter transmission mode; if clear,
the modem leaves transmission mode after data transmission.

Bit 6, if set, enables modem status-change interrupts (only for DLV11-E, KXT11-CA, or
KXJ11-CA multiprotocol with full modem control, or DHV11).

Bit 8, if set, asserts a BREAK (must be cleared by software).

Bit 9, if set, enables software-setting of the baud rate specified in the TT line speed parameter.
(Device must be jumpered to allow programmable baud rate.)

3-12 Asynchronous Serial Line (Terminal) Driver

* Bits 10 and 11, select character length as follows:

Setting Length

00 = 5
01 = 6
10 = 7
11 = 8

* Bit 12, if set, generates parity bit for each character. If clear, no parity bits are generated.

* Bit 13, if set, generates even parity. If clear, odd parity is generated. This bit has no effect
if bit 12 is clear.

* Bit 14, if set, generates two stop bits rather than one. (If you have selected a character
length of 5 and you select two stop bits, 1.5 stop bits are generated for each character.) If
~ clear, one stop bit is generated for each character.

® Bit 15, if set, modifies the line’s framing characteristics through use of the values in bits
10-14. If clear, bits 10-14 have no effect on the line’s framing characteristics.

With a KXT11-CA/KX]J11-CA multiprotocol chip, if you have selected 5-bit mode, the three
high-order bits of each data byte must be 0, or unpredictable errors occur.

The line speed parameter (at offset DP.FDD+6) contains a value that sets the baud rate—
provided the device is jumpered to allow software programming of baud rate and bit 9 of the
second line parameter is set. In a TT Get/Set Characteristics reply packet, the speed parameter
gives the current baud rate.

The following shows possible decimal line speed values:

Value Baud Notes

1 50 Invalid for DLART, KXT11-CA/KXJ11-CA multiprotocol
2 75 Invalid for DLART, KXT11-CA/KX]J11-CA multiprotocol
3 110 Invalid for DLART

4 134.5 Invalid for DLART, KXT11-CA/KX]J11-CA multiprotocol
5 150 Invalid for DLART

6 200 Valid only for DLV11 type

7 300

8 600

9 1200

10 1800 Invalid for DLART, KXT11-CA/KX]J11-CA multiprotocol
11 2000 Invalid for DLART, KXT11-CA/KX]J11-CA multiprotocol
12 2400 .

13 3600 Invalid for DLART, KXT/KX] multiprotocol, DHV11

Asynchronous Serial Line (Terminal) Driver 3-13

Value Baud Notes

14 4800

15 7200 Invalid for DLART, KXT11-CA /KX]J11-CA multiprotocol
16 9600

17 19200 Invalid for DZV11

18 38400 Invalid for DLV11-E/F, DZV11

19 76800 Valid only for KXT11-CA/KX]J11-CA multiprotocol

Note

For DHV11 line-pairs, two sets of possible baud rates (A and B) are listed in
the DHV11 hardware guide. When selecting DHV11 baud rates, remember that
both members of a line-pair must use baud rates from the same set.

3.4.4 Set Modem Semaphore Function

The Set Modem Semaphore (IF$SMD) function is used to specify the binary or counting
semaphore to be signaled at each modem interrupt. Modem interrupts are generated when a
change in modem status occurs on a specified line. After issuing this command, you would
normally send a Set Characteristics command, enabling modem status interrupts. Modem
interrupts are supported only by DHV11, KXT11-CA or KXJ11-CA multiprotocol channel A, and
DLV11-E hardware. To disable modem status signaling, you can send a set command disabling
modem interrupts. To change semaphores, you can send another Set Modem Semaphore
command specifying a different semaphore.

The following shows the function-dependent portions of the Set Modem Semaphore request
and reply packets:

1 1 1
1 ! 1
i]]
DP.FDD - | Semaphore ! H ! - DP.FDD
] 1 I 1 1
== ==] == ==
! structure ! Func- ! 1
== -=1 dep |-- -
' ID | value ! Not used 1
oo e mmmmmmmem ! data - —
1] 1] 1
] 1 1 1]
i 1 1 1 1
| Bt == 1 == ==
| ! v ! :
| -- -1 === e i tatatet |
DP.BUF - | Not used | - | i
—-- -1 Ref
DP.PAR - | | data
-~ -1 info
DP.LEN - | ' v
tm——m——w e ———————— + e————
MLO-840A-87

The binary or counting semaphore specified at offset DP.FDD is placed in the TT driver’s
internal control block for the line specified at offset DP.UNI (function-independent portion).
The specified semaphore is signaled whenever a modem control interrupt occurs on a DLV11-E,
DHV11, or KXT11-CA or KXJ11-CA multiprotocol channel A.

3-14 Asynchronous Serial Line (Terminal) Driver

The calling program is responsible for issuing a Get Characteristics request to determine the
status on each signal and for taking appropriate action (possibly including a Set Characteristics
operation). The file GETSET.PAS on the MicroPower/Pascal distribution kit provides a model
for getting and changing characteristics.

3.4.5 Stop Request

The Stop Request (IF$STP) function lets you stop an in-progress read. DP.ALN of the read
reply packet contains the number of bytes already transferred to your buffer at the time the
terminal driver begins processing the stop request.

For lines in edit mode, your buffer gets filled with the contents of the edit buffer at the time
the stop request is processed. The number of characters transferred are MIN (characters in edit
buffer, DP.LEN). After your buffer has been filled, any additional characters in the EDIT buffer
are flushed.

DP.STS of the read reply packet contains ES$ABO.

The stop request is returned with a status of ES$NOR. It is returned by the driver after the
stopped read request is returned.

If you have an outstanding Pascal read request (as opposed to packet level I/O) and a stop
I/0 is issued, the OTS raises an ES$ABO exception for the process that issued the read. You
should be prepared to handle the exception that occurs as a result of the stopping of the read.

Characters that arrive on the line while the stop request is being processed are buffered and
are available for the next read request on that line. These characters are placed in an internal
buffer different from the edit buffer. No characters are transferred from the internal buffer to
the edit buffer or to the user buffer while the stop request is being processed.

If you issue a stop request for a line on which no read request is currently in progress, the
driver returns an ES$NIP (no I/O in progress) exception.

3.5 Status Codes

If a serial interface device or the TT driver detects an error during an 1/O operation, the driver
returns an exception code in the status-code (DP.STS) field of the reply message. If you are
performing I/O with Pascal I/O statements—that is, not with send/receive statements—the
Pascal OTS will raise the corresponding exception (unless the operation was an OPEN for which
a STATUS return was specified). If no error was detected during the 1/O operation, the driver
returns a value of ES$NOR (0) in the status-code (DP.STS) field of the reply message.

Asynchronous Serial Line (Terminal) Driver 3-15

The TT driver returns the following exception codes:

Code Type Description

ES$FRM HARD_IO Framing error ’

ES$IVP HARD_IO Invalid parameter: software set of baud rate not allowed for this
device, baud rate illegal for this device

ES$NXU HARD_IO Nonexistent unit: invalid unit number

ES$OVF HARD_IO Data (software buffer) overflow

ES$OVR HARD_IO Device overrun

ES$PAR HARD_IO Parity error

ES$IFN SOFT_IO Illegal function code; also used internally to signal ACP or
OTS that no device-dependent processing of an Open, Close, or
Purge was required

ES$NRF SOFI_IO No reference data present for read or write request

ES$ABO SOFT_IO Read request aborted

ES$NIP SOFT_IO No I/0 in progress for specified line

Exception codes are defined in the EXC.PAS include file for Pascal users and by the EXMSK$
macro in the COMU/COMM macro libraries for MACRO-11 users.

Note

Not listed above are exception codes for OTS-detected I/O errors or for kernel-
detected errors that the TT driver raises rather than passing back to the

requesting process.

OTS-detected 1/O errors are listed in Chapter 9 of the

MicroPower /Pascal Language Guide.

3.6 TT Driver Prefix File

The TT driver prefix module is distributed in four versions—TTPFX.MAC, TTPFXC.MAC (CMR21
version), TTPFXF.MAC (SBC-11/21 version), and TTPFXK.MAC (KXT11-CA and KXJ11-CA
versions). The versions differ only in their selection of the default (uncommented) macro calls
for a particular board.

Figure 3-1 shows TTPEX.MAC. The following paragraphs describe the macro calls and symbol
definitions that can be edited to fit your application.

The TTCTR$ macro is invoked once for each controller serviced by the driver. Its parameters
are device type, CSR address, interrupt vector, hardware priority, and number of lines.

Note

The interrupt vector supplied in the prefix file is the receive-side vector for a
given controller; the transmit vector is assumed to follow the receive vector
by 4 bytes. For example, vec=300 implies a corresponding transmit vector at
location 304. Both vectors would be specified in the DEVICES macro in the
system configuration file—for example, “DEVICES ... 300, 304.”

3-16 Asynchronous Serial Line (Terminal) Driver

The possible device types are:

e TT$DL for minimum serial line capability (DLV11, DLV11-], MXV11-A)

* TT$DLE for DLV11-E

e TT$DLF for DLV11-F

* TT$DLT for DLART (SBC-11/21, MXV11-B, KXT11-CA console, CMR21)

* TT$DLU for DLART (KXJ11-CA console)

* TT$DM for KXT11-CA or KX]J11-CA multiprotocol, data line only port

* TT$DMM for KXT11-CA or KXJ11-CA multiprotocol with full modem control
* TT$DH for DHV11

* TT$DZ for DZV11

The TTLIN$ macro is invoked once for each configured line. Its parameters are ISR buffer size,
two parameters (parml and parm?2) of status bit-settings, line speed, and edit buffer size.

The options for TTLIN$ parameters parml and parm2, described below, correspond to bit
settings in the TT driver Set Characteristics request packet. The Set Characteristics request can
be used to change line characteristics at run time.

For lines that are to be used by the asynchronous DDCMP (CS) driver for DDCMP message
exchange, you must not enable flow control (XON/XOFF) or line editing. See Chapter 12 for
details.

Note

For serial hardware in which each line is associated with its own CSR/vector
pair, the TTCTR$ and TTLIN$ macros are invoked in pairs for each line. For
example, the DLV11-] is considered a single controller in the hardware sense.
However, each DLV11-] line, by virtue of being associated with a unique
CSR/vector pair, is considered a separate controller by the MicroPower /Pascal
software. So the controller and line macros, TTCTR$ and TTLIN$, must be
invoked in pairs for each DLV11-] line.

The following TT$IPR and TT$PPR definitions determine the priority at which the TT driver
process initializes and the priority to which it lowers itself for request processing. Note that
no xx$HPR hardware priority symbol appears. The TT driver, unlike most other standard
MicroPower/Pascal drivers, services several different types of controllers under the umbrella of
a single process. Thus, a different hardware priority is specified—in a TTCTR$ call—for each
controller.

Asynchronous Serial Line (Terminal) Driver 3-17

Figure 3-1: TT Driver Prefix File (TTPFX.MAC)

.NLIST

.ENABL LC

.LIST

.TITLE TTPFX - Terminal/Serial Line Driver Prefix file
o+

; This software is furnished under a license and may be used or copied
; only in accordance with the terms of such license.

; Copyright (c) 1984, 1986 by Digital Equipment Corporation.
; All rights reserved.

.mcall macdf$, drvdf$, ttpfx$
macdf$
drvdf$
ttpfx$
i+

; Define globals symbols needed for the TT process

250. ;Initialization priority

TT$IPR ==
== 175. ;Normal process priority

TT$PPR
+

; This is where the user defines the asynchronous lines.

; TTCTR$ is used to define the device controller, TTLIN$

; defines each of the lines associated with the controller.

; TTLIN$(s) must follow (immediately) its (their) TTCTR$ definition.

; The order of the TTLIN$ defines the unit numbers. Thus
; the first TTLIN$ is unit O, the second unit 1, etc....

; Options for parml are:

; C.OFLW enable output flow control (terminal/host XON/XOFF)

; C.IFLW enable input flow control (host/terminal XON/XOFF)

; C.LINE enable line editing

; C.ECHO If C.LINE has been selected, enable echo of characters

; as they are read.

; Options for parm2 are:

; E.DIR Set Data Terminal ready (DTR)

; E.RTS Set Request to send

; E.DIE Enable modem interrupts (TTDLE, TTDMM, TT$DH)
i E.BRK Set Break (must be cleared by software)

; E.PBD Software set selected baud rate. This option

; should only be used if the device is jumpered
; to allow software programming of the baud rate.

; DLV-11 Console SLU

; WARNING: Do not define this line for applications with PASDBG support

H foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
; fool = 0 ; Use jumpered/default baud rate

; ttetr$ type=TT$DL, csr=1776560, vector=60, hprio=4, nlines=1

; ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

3-18 Asynchronous Serial Line (Terminal) Driver

; DLV-11 SLU2

foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = 0 ; Use jumpered/default baud rate
ttctr$ type=TT$DL, csr=176500, vector=300, hprio=4, nlines=1

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; KXT11--CA/FALCON/CMR21 Console DLART

; WARNING: Do not define this line for applications with PASDBG support

; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD ; Set programmed baud rate
ttctr$ type=TT$DLT, csr=177560, vector=60, hprio=4, nlines=1

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; KXJ11--CA Console DLART

; WARNING: Do not define this line for applications with PASDBG support

; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD ; Set programmed baud rate
ttctr$ type=TT$DLU, csr=177660, vector=60, hprio=4, nlines=1

ttlin$ ibuf=20, parmi=foo, parm2=fooi, speed=9600, edtbuf=80.

; FALCON SLU2 DLART (NOTE: hprio=5 for SLU2)

; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD ; Set programmed baud rate
ttctr$ type=TT$DLT, csr=176540, vector=120, hprio=5, nlines=1

tt1lin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; KXT11--CA/KXJ11--CA Multiprotocol channel A (SLU2A) with modem control

; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD!E.DTR ; Set baud rate & DIR
ttctr$ type=TT$DMM, csr=175700, vector=140, hprio=4, nlines=1

tt1lin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; KXT11--CA/KXJ11--CA Multiprotocol channel B (SLU2B) (Note: Channel B has no

; modem control)

foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD ; Set programmed baud rate

ttctr$ type=TT$DM, csr=175710, vector=160, hprio=4, nlines=1

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; CMR21 Port 3 (Note Hardware priority = 5)

; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD ; Set programmed baud rate
ttctr$ type=TT$DLT, csr=175620, vector=124, hprio=5, nlines=1

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; DZV-11
; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
fool = E.PBD!E.DTR ; Set baud rate & DTR
ttctr$ type=TT$DZ, csr=160100, vector=310, hprio=4, nlines=4

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

Asynchronous Serial Line (Terminal) Driver

; DHV11 ,

; foo = C.OFLW!C.IFLW!C.LINE!C.ECHO ; Full XON/XOFF, ECHO, LINE
; fool = E.PBD!E.DTR ;- Set baud rate & DTR
; _ttctr$ type=TT$DH, csr=160020, vector=320, hprio=4, nlines=8.

; ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

; ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.
ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.
ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.
ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.
ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.
ttlin$ ibuf=20, parmi=foo, parm2=fool, speed=9600, edtbuf=80.

ttfin$; Finish up after generating the data structures
.end

3.7 Application Note: Hardware Buffering

TT driver packet-level write requests are not replied to the caller until all data has been given to
the device. Generally this means that all the data except the last two bytes has been transmitted.
If the application requires complete output synchronization—a guarantee that all data has left
the particular serial interface board—it writes one or two null bytes.

The relevant hardware buffering information is given below for each type of serial line controller:

Controller Buffering

DLV11-j Double-buffered input, double-buffered output; two null bytes
should be written to guarantee all data has left the board.

DLV11, Double-buffered input, single-buffered output; one null byte should

DLV11-E, be written to guarantee all data has left the board.

DLV11-F,

DLART

DHV11 256-character input buffer, DMA output; all data has left the
DUART; only one null byte required to guarantee all data has left
the board.

DZV11 64-character input buffer, single-buffer output; one null byte should
be written to guarantee all data has left the board.

KXT11-CA Quadruple-buffered input, double-buffered output; two null bytes

or KXJ11-CA should be written to guarantee all data has left the chip.

multiprotocol

chip

3-20 Asynchronous Serial Line (Terminal) Driver

Chapter 4

Disk-Class Device Drivers

This chapter describes the use of the MicroPower /Pascal disk-class device drivers, which support
I/O operations both on disks and on nondisk media that are treated as disks. The disk drivers
support the mass-storage controllers, media, and protocols listed below:

Driver Supported Controllers, Media, and Pretocols

DL RLV11 controller, RLO1 disk (16/18-bit addressing)
RLV12 controller, RLO1/RLO02 disks (16/18/22-bit addressing)
RLV21 controller, RLO1/RL02 disks (16/18-bit addressing)

DY RXV21 controller, RX02 flexible diskettes (single/double density, 18-bit address-
ing)

DU Mass Storage Control Protocol (MSCP) controllers and disks, including RQDX1,
RQDX2, and RQDX3 controllers and RX50, RD51, RD52, RD53, and RC25 disks
(22-bit Q-bus environment)

XD Extended (> 65536 blocks) physical disks, partitioned for Pascal 1/O

DD TU58 DECtape II connected to DLV or KXT11-CA/KXJ11-CA serial line
interface unit

VM Virtual memory (mapped systems only, requires MMU)

The devices listed above provide mass storage for MicroPower/Pascal target applications.

Note

MSCP is a high-level interface to a family of devices and mass-storage controllers
manufactured by DIGITAL.

Disk-Class Device Drivers 4-1

4.1 Disk Driver Features and Capabilities

The disk-class drivers support read and write operations and the returning of device
characteristics.

Logical read or write operations transfer data to or from a buffer in the calling process, starting
at a disk address that is specified (at packet-level) in units of numbered, 512-byte logical blocks.

- All RL01/2, RX02, and MSCP read and write operations use direct-memory-access (DMA)
transfers; TU58 read and write operations use byte transfers; virtual memory read and write
operations use word move (MOV) instructions.

Get Characteristics operations report standard device characteristics, including the storage
capacity per disk unit (or XD partition) in terms of logical blocks.

In addition to logical read and write and Get Characteristics functions, most disk drivers support
operations that are specific to the controllers, media, or protocols they support.

The RL01/2, RX02, and TU58 drivers support physical read and write operations, which specify
the initial disk or tape address in terms of a track, cylinder, and sector (RL0O1/2, RX02) or a
128-byte physical record (TUSS8).

The RLO1/2 driver supports bad-block replacement, using the manufacturer’s bad-block
replacement table, which resides in block 1 of the RLO1 or RLO2 disk. The table starts at
the first word of block 1 and has the following form:

MLO-841-87

The bad-blk-num value is the logical block number of the bad block. The replemnt-blk-num
value is the logical block number of the replacement block. Replacement blocks reside on the
disk’s last track—second recording surface, last cylinder. The range of logical block numbers on
the last track is 10220 to 10239 for the RL01 and 20460 to 20479 for the RLO2. Logical blocks
on the last track are write protected from access by logical block number; you can access the
replacement area only by physical address. No more than 10 bad blocks are allowed per disk.

The RLO1/2 driver also supports dynamic mounting and dismounting of disk packs. The
driver detects when a new pack has been mounted and reads in a new copy of the bad-block
replacement table. (Control of the mounting of the pack by an operator is the responsibility of
the application program.)

The RX02 driver supports initialization (formatting) of a diskette for single- or double-density
operation.

4-2 Disk-Class Device Drivers

The TU58 driver supports read-with-increased-threshold and write-verify options. The extended
disk driver supports the partitioning (subdividing) of disks with greater than 65,536 blocks so
that Pascal file operations can be performed on them. The XD driver helps you overcome two
current limitations on I/O to extended disks:

® The RT-11 file system’s 16-bit orientation, which imposes a 65,536 block limit on an RT-11
directory-structured disk

® The current OTS and ACP interaction, in which 16 bits are used for I/O transfer
computations with no allowances made for media with block counts that cannot be contained
in 16 bits; this limitation imposes a 65,536 block limit on a non-directory-structured disk
(for example, a disk opened as 'DUAQ:")

The XD driver allows you to subdivide an extended disk into multiple partitions of up to 65,536
blocks each. You can then OPEN a partition or a named directory file in a partition as if the
partition was a disk itself and perform normal Pascal file operations. (Section 4.3 gives the
OPEN syntax for a named directory file or a non-directory-structured disk unit.)

Conceptually, the XD driver resides “between” the ACP and a physical disk driver (DL, DY, DU),
receiving ACP requests for I/O and translating them into physical-disk driver requests. In the
standard MicroPower/Pascal controller/unit terminology, each physical disk partitioned by the
XD driver is considered a single controller and each partition a unit. Thus, an RD53 configured
as DUAQ: (for example) in the DU prefix file could be subdivided into three partitions that
could be referenced in Pascal OPEN statements as "XDAO:", '’XDA1:’, and 'XDA2:". According
to that mapping, an I/O request for XDA1: would access the second partition of DUAQ:.

Note

Another approach to extended disk I/O is to issue send requests directly to
the physical disk driver, bypassing the OTS file routines, the ACP, and the XD
driver (nonfile access).

4.2 Performing Disk I/O

For most MicroPower/Pascal applications, you perform disk I/O by invoking Pascal 1/0O
procedures that open files for disk data and then input or output the data, in accordance
with the rules for Pascal I/0. If a file is a named file on a directory-structured disk, you can
also invoke Pascal I/O procedures that initialize the directory or rename, protect, or delete
a file. If the disk is an RX02, you can invoke a Pascal I/O procedure that formats the
disk for single- or double-density operation. Pascal I/O procedures—OPEN, GET, WRITE,
INIT_DIRECTORY, DELETE_FILE, FORMAT_RX02, and so forth—are described in Chapter 9
of the MicroPower/Pascal Language Guide.

Note

The disk driver physical read and write operations cannot be performed with
Pascal I/O procedures. See Section 4.3.

In addition to invoking the Pascal I/O procedures, you must:

1. Edit the DEVICES macro in the system configuration file to reflect the disk controller
interrupt vector addresses (not applicable for the VM driver)

Disk-Class Device Drivers 4-3

2. Edit the disk driver prefix file to reflect:

Number of controllers

[For each controller:] Controller identifier (A, B, ...), number of controller units and their
identifying numbers (0, 1, ...)

[For-each nonVM controller:] CSR address and interrupt vector address

[For each VM controller (region):] Size of the memory region in 512-byte blocks
[For each DD controller:] Serial line type and speed

Hardware interrupt priority

Driver initialization and request-handling process priorities

3. [For extended disk partitioning:] Perform steps 1 and 2 to configure the physical disk device
driver(s) for the disks to be partitioned; then edit the XD driver source, XDDRV.PAS, to
reflect:

Maximum number of disk blocks per partition (up to 65,536)
Minimum number of disk blocks per partition
Number of physical disks to be partitioned

[For each physical disk:] Request queue semaphore name and unit number associated
with the physical disk (see Step 2) and XD request queue semaphore name; for each
physical disk after the first, increase DATA_SPACE attribute by 456

4. Edit the ACP prefix file to indicate whether RT-11 directory support is required; the default
is inclusion of directory support

5. Build into your application the following I/O system components:

Disk driver process

[For extended disk partitioning:] XD driver, as a user static process (NOT as a system
process, as for other drivers); see Appendix B of the system user’s guides for build
details v

[For disk file OPEN:] Ancillary control process (ACP)

Pascal OTS routines for file service—built in automatically by MPBUILD for programs
that invoke Pascal I/O procedures—plus any disk I/O support routines you opt to
include (see kit files FSPAS.PAS, INTDIR.PAS, GETSET.PAS, and GSINC.PAS)

For more information on setting up your application software for disk I/O, see Chapter 4 of
the MicroPower/Pascal Run-Time Services Manual, Sections 4.7 and 4.8 of this manual, and the
material on building system processes in the MicroPower/Pascal system user’s guide for your
host system.

When a module that contains Pascal I/O procedure invocations is built into your application,
Pascal OTS routines for file service are linked to the module. The OTS file routines perform all
Pascal operations on files, including file opening, input, and output. In particular, they perform
the necessary low-level processing of high-level operations such as OPEN and WRITE. Thus, the
basic mechanisms of MicroPower/Pascal I/O—the sending of request packets to driver or ACP

4-4 Disk-Class Device Drivers

queue semaphores, the dispatching of interrupts, and the signaling of reply semaphores—are
concealed from the Pascal user.

Alternatives to using the Pascal I/O procedures for disk I/O exist, but require more effort. You
can:

® Issue your own Pascal or MACRO-11 packet-level requests to the ACP and the driver,
bypassing the OTS file routines (lower-level file system access).

* Issue your own Pascal or MACRO-11 packet-level requests to the driver, bypassing the
OTS file routines and the ACP (nonfile access).

The following sections describe the Pascal I/O procedure interface to the disk drivers, the
lower-level request/reply packet interface, status codes that can be returned to users of either
interface, extended error information that the DL, DY, and DD drivers return to packet-level
users, and disk driver prefix files.

4.3 Pascal I/O Procedure Interface

To perform standard Pascal I/O to a disk, you must open a file. Opening the file associates a
Pascal file variable with a named directory file or a non-directory-structured disk unit. For a
named directory file, invoke the OPEN procedure with:

OPEN (filvar, ’ddcu:filnam.typ’, ...)
where:
¢ filvar is a Pascal file variable.

* dd is the driver identifier (DL for RL01/2, DY for RX02, DU for MSCP, DD for TU58, VM
for virtual memory, XD for extended disk).

* ¢ is a controller identifier (A, B, ...; default is A).

®* uis a controller unit number (0, 1, ...; default is 0).

* filnam.typ is the directory file name.

For a non-directory-structured disk file, invoke the OPEN procedure with:
OPEN (filvar, ’ddcu:’, ...)

where filvar, dd, ¢, and u are the same syntactic elements described above. For example,
'DYAOQ:” would specify the first unit (0) of the first RX02 controller (A) listed in the DY driver
prefix file.

Disk-Class Device Drivers 4-5

The number of units supported for each disk-class controller follows:

Controller Number of Units - Numbering

RLO1/2 1-4 (any In prefix file
combination of
RLO1s and RL02s)

RX02 1-2 0 for left drive and 1 for right in dual-drive
MSCP 1-n In prefix file
Extended 1-n (partitions), 0 through (n-1)
disk as determined by
physical disk
size and

user-defined
partition size

TU58 1-2 0 for left drive and 1 for right in dual-drive
Virtual 1 0
memory

The number of units configured for each controller and their unit numbers must be specified in
a disk driver prefix file. Typically, unit numbering starts at 0.

The OPEN statement causes the Pascal OTS to send an open request to the ACP, which returns
a channel number and an ACP request semaphore ID to the OTS. That information is used in
subsequent Pascal I/O operations on the unit.

In carrying out subsequent input, output, CLOSE, PURGE, rename, delete, protect, and unprotect
operations on disk units and files, the Pascal OTS and the ACP use the following packet-level
driver functions:

¢ Read Logical (IF$RDL)

* Write Physical (IFfRDP)—for RX02 formatting
® Write Logical (IFSWTL)

¢ Rename (IFSREN)—directory files only

* Delete (IF$DEL)—directory files only

* Close (IF$CLS)

* Purge (IF$PRG)

* Protect (IFSPRO)—directory files only

* Unprotect (IF§UNP)—directory files only

The appropriate request packets are sent to the ACP only when necessary to complete a user-
requested operation. For example, a READ or GET operation that requires more data than what
remains in the buffers from previous input operations causes the OTS to issue one or more
Read Logical (IFSRDL) requests to the ACP. Other Pascal statements unconditionally cause the
OTS to issue send requests; examples are BREAK, which generates a Write Logical (IFSWTL),

4-6 Disk-Class Device Drivers

and CLOSE, which generates a Close (IF$CLS) request (normally preceded by a Write Logical,
unless BREAK immediately precedes CLOSE).

Pascal Get Characteristics functions that report the characteristics of disks are provided in
the file GETSET.PAS on the MicroPower/Pascal distribution kit. Those functions issue Get
Characteristics (IFfGET) request packets to the driver.

The following packet-level driver functions cannot be performed with normal Pascal I/O
statements or GETSET functions:

* Read Physical (IFRDP)
* Write Physical (IFSWTP)—except for RX02 formatting

To perform these functions, either use the request/reply packet interface directly or write
Pascal procedures that take a user-specified file variable (or queue semaphore ID) and send
the appropriate request packets to the driver. (The Get/Set Characteristics procedures in
GETSET.PAS demonstrate the latter approach.)

4.4 Request/Reply Packet Interface

The packet-level functions provided by the disk-class device drivers are listed below by symbolic
and decimal function code:

Code Function

IF$RDP (0) Read Physical (RL01/2, RX02, TU58)
IF$RDL (1) Read Logical

IF$WTP (3) ‘Write Physical (RL01/2, RX02, TU58)
IFSWTL (4) Write Logical

IF$GET (7) Get Characteristics

IFSONY (8) Bypass Only (MSCP— for internal use only)
IF$BYP (9) Bypass (MSCP—for internal use only)
IF$INT (10) Initialize Port (MSCP—for internal use only)

If a request is received for an Open (IF$LOK or IF$ENT), a Close (IF$CLS), or a Purge (IF$PRG),
the driver returns an illegal function (ES$IFN), which the ACP interprets as indicating that no
device-dependent processing was required for that operation.

Note

. The MACRO-11 symbols used in this section are defined by the DRVDF$ macro,
which resides in the COMU and COMM kernel macro libraries. The equivalent
Pascal symbols are defined in the IOPKTS.PAS include file.

Disk-Class Device Drivers 4-7

The function modifiers recognized by the disk-class device drivers are shown below by symbolic
code and bit position:

Code Function

FM$WFM (bit 6) Format device (RX02 Write Physical)

FM$WSD (bit 7) Format single density (RX02 Write Physical)
FM$BSM (bit 13) Signal binary/counting semaphore

FM$DCK (bit 14) Data check (TU58)

FM$INH (bit 15) Inhibit retries on error (RL01,/2, RX02, MSCP, TU58)

Each disk-class device driver consists of an initialization process, which lowers its priority to
become the first controller’s request handler process, plus an additional request handler process
for each configured controller. (For the VM driver, “controller” means “memory region,” as
specified in the VM driver prefix file.) Multiple processes within a driver process family share
the same instruction and pure-data segments but require separate RAM for impure data. I/O
requests intended for a particular controller are sent (using a Pascal SEND or a MACRO-11
SENDS$) to the request queue semaphore waited on by that controller’s request handler process.

The following shows request queue names and number of supported units for disk driver

requests:
Driver Requerst Queue Name Number of Units Numbering
RLO1 /2 $DLc 1-4 (any combination In prefix file
of RLO1s and RL02s)
RX02 $DYc 1-2 0 for left drive and 1
for right in dual-drive
MSCP $DUc 1-n In prefix file
Extended $XDc 1-n (partitions), 0 through (n-1)
disk as determined by
physical disk size
and user-defined
partition size
TU58 $DDc 1-2 0 for left drive and 1
for right in dual-drive
Virtual $VMc 1 0
memory
The letter ¢ in a queue name represents a controller designation (A, B, ...—as specified in a

driver prefix file). The number of units configured for each controller and their unit numbers
must be specified in a disk driver prefix file. Typically, unit numbering starts at 0.

4-8 Disk-Class Device Drivers

The general format of the disk request and reply packets follows:

DISK L e b + e mmmc e mc——————— + DISK
REQUEST | Standard ! H Standard ' REPLY
PACKET !-- - f-- --! PACKET
i packet | | packet H
1 1 1
== == 1== -
H header | ! header !
] 1 1 1
[Bttt et " T - Bt e e 1
DP.FUN - E Function 1 - ! Function { - DP.FUN
1] 1]
| e . ———] 1 | Bedadededeid e]
DP.UNI - | -- ! Unit | i | - { Unit | - DP.UNI
1]) 1 1
| B kg)] | e teadeha 1
DP.SEQ - E Sequence number | i ! Sequence number | - DP.SEQ
] 1 1]
| R b deddnddadesl | 1 | B bt 1
DP.PDB - | Requesting H Func- i Status code { - DP.STS
1-- -=1 indep R ittt !
| process 1 value i Actual length | - DP.ALN
{== -1 data R e LT Tep |
| identifier 1 i | Error info | - DP.ERR
1 | 1]]
| it et 1) | Bt et
DP.SEM - | Reply ! | ' Reserved for | - DP.XTR
] i] ! 1
== - 1 [B -
1 semaphore ' ' ! driver |
1 1 1 1 |
== - 1 [Bt -
| identifier | v | usage i
] 1 1 1
[Bttt fidend [| Bt 1
DP.DAD - | | - | | - DP.FDD
1 1 I !]
1 == b | 1 == -
! Request i Func- | Reply |
-- --1 dep i-- --1
| ! value ! |
—-- -1 data j == -1
! data ' | ! data |
1 1] 1 1
| = -1 i == ==
i i v | |
1) 1 1
| m e ——— - 1 iniabeiuind [Rabuiadebebebabniebeinbebn bt |
DP.BUF - | Buffer ' | i
== -1 Ref - -1
DP.PAR - | address H data | Reserved 1
jmm———- B et ! info == -
DP.LEN - | Buffer length | v | |
e ——————————————— + me——— tomm—m e +
MLO-842-87

The function-independent portions of the packets shown above are described in the request/reply
packet interface section of Chapter 1. The valid function and function-modifier codes for the
function (DP.FUN) field and the valid unit numbers for the unit (DP.UNI) field are listed at the
beginning of this section.

The function-dependent portions of the request and reply packets are described in the sections
that follow for each type of disk driver function.

Note

The MACRO-11 field names shown above do not represent offsets into the user’s
send or reply buffers; they are offset symbols used by MACRO-11 drivers to
reference packets. For example, DP.FUN is a 6-byte offset from the packet
header.

Disk-Class Device Drivers 4-9

4.4.1 RLO1/2 (DL) Functions
4.4.1.1 DL Logical Read and Write

An RLO01/2 logical read or write operation transfers data to or from a user buffer, starting at a
disk address that is specified in terms of a logical block number—0 to 10209 for the RL01, 0 to
20449 for the RLO2.

The unit of storage implied by logical I/O operations is the 512-byte logical block, which
consists of two logically contiguous sectors.

The disk driver converts logical block numbers into physical device addresses—tracks, cylinders,
and sectors. Logical blocks span several sectors and may cross cylinders.

Multisector logical transfers read from or write to logically sequential sectors of the disk.

A write operation that does not fill the last or only block involved causes the remainder of the
block to be zero-filled; this remainder can include the entire second sector of the block.

The RLO1 disk has 20 logical blocks per track and 510.5 usable tracks, for a total of 10,210
logical blocks. The RL02 disk has 20 logical blocks per track and 1022.5 usable tracks, for a
total of 20,450 logical blocks.

Note

The last track on an RLO1 or RLO2 disk, containing the replacement blocks
for bad-block replacement, is write-protected by the DL driver. This track is
excluded from the calculation of usable logical blocks.

In addition, for RT-11 compatibility, the last 10 blocks on the next to last track
of each disk are also excluded from the logical block calculation. The RT-11
RLO1 and RLO2 drivers reserve these 10 blocks for bad-block replacements. The
DL driver does not use or write-protect these blocks but also does not include
them in the device-dependent information it returns to the caller.

The format used for recording logical blocks is RT-11-compatible: twenty 2-sector logical blocks
per track with a 34-sector per track offset.

All RL01/2 read and write operations transfer an even number of bytes to or from the user’s
buffer because of the word orientation of the device.

4-10 Disk-Class Device Drivers

The following are function-dependent portions of the DL logical read or write request and reply
packets:

]]
]]
] |
DP.DAD - | Logical block | - | \ - DP.FDD
] 1 1 1]
== - 1 == ==
! number] Func- | '
S e C L L R ! dep == =i
| ' value i Not used '
|-- --i data | -- -=1
! Not used] i | i
] 1] 1 1
|- ==] | - ==
1 | v ' i
1] 1 1
| B s P T | i]
DP.BUF -~ | Buffer ' - ! i
1-- - Ref
DP.PAR - | address H data
e ettt) info
DP.LEN - | Buffer length | v
g + m————
MLO-843-87

The range of the logical-blk-num value is 0 to 10,209 for the RLO1 or 0 to 20,449 for the RL02.
The buffer-length value determines the length, in bytes, of the data transfer.

4.4.1.2 DL Physical Read and Write

An RLO1/2 physical read or write operation transfers data to or from the user’s buffer, starting
at a physical device address specified by absolute track, cylinder, and sector number.

The unit of storage implied by physical I/O operations is the 128-word sector. Data transfers
can start at any physical sector of the disk.

A write operation that does not fill the last or only sector involved causes the remainder of the
sector to be zero-filled.

All RL01/2 read and write operations transfer an even number of bytes to or from the user’s
buffer because of the word orientation of the device.

Disk-Class Device Drivers 4-11

The following are function-dependent portions of the DL physical read or write request and
reply packets:

DP.DAD - Track | Sector - ! \ = DP.FDD
) i 1] 1
|- I] = -
! Cylinder ' Func-] '
R e BT E ! dep -- -=i
' 1 value ! Not used '
== - data 1-- -~
| Not used | 1 1 i
j-- -1 ! f - -1
i ! v 1 :
e ittt b m———- e i]
DP.BUF - | Buffer | - ! !
[- Ref
DP.PAR ~ | address i data
jmmmmmmmmme e 1 info
DP.LEN - | Buffer length | v
tommmm—————— ——————— + mmem——
MLO-844-87

The range of the sector value is 1 to 40.

The track value is 0 or 1.

The range of the cylinder value is 0 to 255 for RL01 or 0 to 511 for RL02.
The buffer-length value determines the length, in bytes, of the data transfer.

4.4.1.3 DL Get Characteristics

The DL Get Characteristics function returns a block of device-dependent information about a
specified RL01/2 unit in the function-dependent portion of the reply message. The information
consists of the codes for device class and type, the number of logical blocks per unit—10,210 for
the RLO1 and 20,450 for the RLO2—and the number of tracks (surfaces), sectors, and cylinders
per unit. The unsafe volume (ES$UNS) error is returned if a disk is not properly mounted for
a Get Characteristics request.

4-12 Disk-Class Device Drivers

The following are function-dependent portions of the DL Get Characteristics request and reply
packets:

DP.DAD - | | T | Type | Class | - DP.FDD
1 1
== =1 [1
! ' Func- ' Number of ! (Least
| -- -1 dep - --| signif.)
| | value ! logical blocks | (Most
[- data L LT T TP, | signif.)
:. Not i E \ Tracks | Sector‘siI
1
|- -1 1 | Bkttt 1
! used ! v ! Cylinders !
1 1] 1
== - e | bttt St '
DP.BUF - | | " ' i
[- Ref
DP.PAR - | | data
[-1 info
DP.LEN - | i \4
e — e ————— + e————
MLO-845-87

In the reply information above:
* Class is DC$DSK for disk device class.
e Type is DK$DL for RLO1/RL02 device type.

* The number of logical blocks, tracks, sectors, and cylinders is given per unit—for one disk.
The number of tracks is reported as 2, indicating two recording surfaces.

4.4.2 RX02 (DY) Functions
4.4.2.1 DY Logical Read and Write

An RXO02 logical read or write operation transfers data to or from a user buffer, starting at an
initial disk address that is specified in terms of a logical block number—0 to 493 for single
density, 0 to 987 for double density.

The unit of storage implied by logical I/O operations is the 512-byte logical block. In single-
density mode, a logical block consists of four logically contiguous sectors; in double-density
mode, two logically contiguous sectors. (The sectors are physically noncontiguous because of
the 2:1 sector interleaving algorithm used to read and write logical blocks.)

The disk driver converts logical block numbers into physical device addresses—cylinders and
sectors. Logical blocks span several sectors and may cross cylinders.

Multisector logical transfers read from or write to logically sequential sectors of the disk.

A write operation that does not fill the last or only block involved causes the remainder of
the block to be zero-filled; this remainder can include the entire second sector of the block in
double-density mode or as many as three complete sectors in single-density mode.

In accordance with DIGITAL and industry standards, cylinder 0 is unused in the organization of
logical blocks on an RX02 diskette; logical block 0 begins at cylinder 1, sector 1. A single-density
diskette has 6.5 logical blocks per cylinder and 76 usable cylinders, for a total of 494 logical
blocks. A double-density diskette has 13 blocks per cylinder and 76 usable cylinders, for a

Disk-Class Device Drivers 4-13

total of 988 logical blocks. (The logical block-recording technique used is RT-11-compatible:
2:1 interleaving with a 6-sector per cylinder offset.)

All RX02 read or write operations transfer an even number of bytes to or from the user’s buffer
because of the word orientation of the device. If an odd-value buffer length is specified in the
request (field DP.LEN), the driver assumes one byte as the effective transfer length.

All read or write operations are tried at the density of the last request; the first request is always
tried at single density. If a density error occurs and if retries are inhibited, the opposite density
is set, and the ES$IVM status code is returned to the application program. (The user’s program
may then retry the previous request at the new density, if desired; in any case, the new density
will be in effect for the next I/O operation performed on the drive unit.) If a density error
occurs and if retries are not inhibited, the opposite density is set, and the request is retried
automatically. If the density error persists after 10 retries, the ES$IVM status code is returned
to the application program.

The function-dependent portions of the DY logical read or write request and reply packets are
shown below:

| 1
1 ! !
DP.DAD - i Logical block | - i ! - DP.FDD
1-- -=1 | - -~
! number H Func- | H
e ! dep P-- -~
i | value ! Not used '
f-- -= data == -1
! Not used | 1 i i
= -=1 i | -- -=1
1 1 v | 1
R i T e T e it '
DP.BUF - | Buffer | - ' !
[- Ref
DP.PAR - | address H data
e e ! info
DP.LEN - | Buffer length | v
R + me=—e-
MLO-846-87

The range of the logical-blk-num value is 0 to 493 for a single-density RX02 or 0 to 987 for a
double-density RX02.

The buffer-length value determines the length, in bytes, of the data transfer.

4.4.2.2 DY Physical Read and Write

An RX02 physical read or write operation transfers data to or from the user’s buffer, starting at
a physical device address specified by absolute cylinder and sector number.

The unit of storage implied by physical 1/O operations is the 64-word (single-density) or
128-word (double-density) sector. Data transfers can start at any physical sector of the diskette.

A write operation that does not fill the last or only sector involved causes the remainder of the
sector to be zero-filled.

Two special forms of the physical write function format an RX02 diskette for single-density or
double-density operation. (See the section on DY format subfunctions.)

4-14 Disk-Class Device Drivers

The following are function-dependent portions of the DY physical read or write request and
reply packets:

DP.DAD - | Track | Sector | ' | - DP.FDD
R | i | -- -1
| Cylinder ! Func- ! !
R] dep == ==
! ! value ' Not used i
y-- - data | —= -1
} Not used ! ! ! 1
| -= -- i == -1
| ! v | |
R ittt e e N e e E L !
DP.BUF - | Buffer ' - i i
[gy Ref
DP.PAR - | address ! data
T | info
DP.LEN - | Buffer length | v
o ———— + -
MLO-847-87

The range of the sector value is 1 to 26.

The track value is 0.

The range of the cylinder value is 0 to 76.

The buffer-length value determines the length, in bytes, of the data transfer.

4.4.2.3 DY Format Subfunctions of Physical Write

If modifier bits FM$WFM and FM$WSD of the function word are both set in an RX02 Write
Physical (IF$WTP) function request, the meaning of the function is “format diskette for single-
density;” if modifier bit FM$WEM is set and modifier bit FM$WSD is not set, the meaning of
the function is “format diskette for double-density.”

The single-density format subfunction reformats a double-density or single-density diskette for
single density, clearing the entire volume in the process. The double-density format subfunction
reformats a single-density or double-density diskette for double density, likewise clearing the
entire volume.

Note
A format operation requires approximately 30 seconds to complete.

Disk-Class Device Drivers 4-15

The function-dependent portions of the request and reply packets for the single- and double-
density formatting subfunctions of Write Physical are shown below:

] 1 1
]]]
! | |
DP.DAD - | ! ! 'F! ! ! ! - DP.FDD
R i ! ! -~ -1
i ! Func- ! !
j-- -=1 dep j~= -1
' ! value ! Not used '
== - data e -1
t]] (] 1
]]]]]
]]]] [
) - =i 1 == -
! Not used | v ! E
I] 1
| = - e | meemaSmmm-n——]
DP.BUF - | 1 ° ! H
1=~ - Ref
DP.PAR - | i data
1-- -1 info
DP.LEN - | H v
e m—— e —————— F -
MLO-848-87

The DP.DAD field must contain the ASCII character sequence FO in the first (low-order) word.

4.4.2.4 DY Get Characteristics

The DY Get Characteristics function returns a block of device-dependent information about a
specified RX02 unit in the function-dependent portion of the reply message. The information
consists of codes for the device class and type, the number of logical blocks per unit—494
for single density, 988 for double density—and the number of tracks (surfaces), sectors, and
cylinders per unit. The unsafe volume (ES$UNS) error is returned if a disk is not properly
mounted for a Get Characteristics request.

The following are function-dependent portions of the DY Get Characteristics request and reply

packets:

1]]]
i | | :
| Badadedahadahaieeeb " e [Bkttt

DP.DAD - | i - i Type | Class | - DP.FDD
] i 1
1= -] |m———mmmeemmeSm———]
!] Func- ! Number of ! (Least
{-- -1 dep t-- -~} signif.)
! ' value | logical blocks | (Most
1-- - data D —————— | signif.)
{ Not i ! ! Tracks | Sectorsi
1 1] 1 1
== - 1 jm——————msmemEmm=—— 1
i used H v ! Cylinders i
] 1
|- -1 e | s eem——— 1

DP.BUF - .: E s] H
j=- - Ref

DP.PAR - | i data
{-- -1 info

DP.LEN - | i v
tommmc e — e ———— + o ee——-

MLO-849-87

4-16 Disk-Class Device Drivers

In the preceding reply information:
* Class is DC$DSK for disk device class.
* Type is DK$DY2 for RX02 device type.

¢ The number of logical blocks, tracks, sectors, and cylinders is given per unit—for one
diskette. The number of tracks is reported as 1, indicating a single recording surface.

4.4.3 MSCP (DU) Functions
4.4.3.1 DU Logical Read and Write

An MSCP logical read or write operation transfers data to or from the user’s buffer, starting at
a 512-byte logical block specified by a logical block number—0 to n-1, where n is the size of
the disk in logical blocks.

The unit of storage implied by logical I/O operations is the 512-byte logical block.

A write operation that does not fill the last or only block involved causes the remainder of the
block to be zero-filled.

Read and write operations to an MSCP disk transfer an even number of bytes to or from the
user’s buffer because of the word orientation of the devices.

The following are function-dependent portions of the DU logical read or write request and reply
packets:

i
1
DP.DAD - | Logical block | - ! ! - DP.FDD
] 1]] 1
== b | 1 |- ==
H number 1 Func- i i
e L E L R i dep == -1
|] value H Not used]
1-- - data | -- -=1
! Not used 1 1 b \
]]) 1 1
[aind - 1 [Baid !
i] v 1 i
R e L L ! mm——- e it '
DP.BUF - | Buffer] - i !
- --1 Ref
DP.PAR - | address ! data
P | info
DP.LEN - | Buffer length | v
trmmmm———————————— + emem--
MLO-850-87

The range of the logical-block-number value is 0 to n-1, where n is the size of the device in
logical blocks.

The buffer-length value determines the length, in bytes, of the data transfer.

Disk-Class Device Drivers 4-17

4.4.3.2 DU Get Characteristics

The DU Get Characteristics function returns a block of device-dependent information about a
specified MSCP unit in the function-dependent portion of the reply message. The information
consists of the codes for device class and type and the number of logical blocks per unit. The
only way to distinguish between MSCP disks is by the number of logical blocks per unit.
The unsafe volume (ES$UNS) error is returned if a disk is not properly mounted for a Get
Characteristics request.

The following are function-dependent portions of the DU Get Characteristics request and reply
packets:

DP.DAD - | i ° i Type | Class i - DP.FDD
:-_ -=i : | e e m—n——]
| | Func- ! Number of ! (Least
- - dep == --| signif.)
] | value | logical blocks | (Most
V- - data R | signif.)
H Not 1 1 : Not !
== -1 i = -
' used ! v ‘: used l'
1= -—] —=——- e it]

DP.BUF - | ! - i ;
[- Ref

DP.PAR - | i data
[-1 info

DP.LEN - | 1 v
e mmm e — . ——— + mme——

MLO-851-87

In the reply information above:
® C(lass is DC$DSK for disk device class.
* Type is DK$DU for MSCP disk device type.

¢ The number of logical blocks is given per unit—for one disk.

4.4.4 Extended Disk (XD) Functions
4.4.4.1 XD Logical Read and Write

The XD packet-level read/write functions normally are accessed through the file system, not
through explicit send requests from the user process. You can issue send requests for extended
disk I/O to the XD driver, although normally it is preferable to issue the requests directly to
the physical disk device driver. (An exception would be if the XD driver is present in your
application and is accessed both by the file system and by sends, by different processes.)

An extended disk logical read or write operation transfers data to or from the user’s buffer,
starting at a 512-byte logical block specified by a logical block number—0 to n-1, where n is
the size of the partition in logical blocks.

‘The unit of storage implied by logical 1/O operations is the 512-byte logical block.

4-18 Disk-Class Device Drivers

See the descriptions of the MicroPower/Pascal physical disk device drivers for information on
zero filling of blocks, word or byte orientation of devices, and so forth. An XD driver transfer
takes on the characteristics of the physical-disk driver on which XD is layered.

The following are function-dependent portions of the XD logical read or write request and reply

packets:

DP.DAD

DP.BUF
DP.PAR

DP.LEN

Buffer

address

- DP.FDD

MLO-852-87

The buffer-length value determines the length, in bytes, of the data transfer.

4.4.4.2 XD Get Characteristics

The XD Get Characteristics function returns a block of device-dependent information about a
specified XD partition in the function-dependent portion of the reply message. The information
consists of the codes for device class and type and the number of logical blocks in the partition.

The following are function-dependent portions of the XD Get Characteristics request and reply

packets:

DP.DAD

DP.BUF
DP.PAR

DP.LEN

Not

used

Type | Class | - DP.FDD
1
Number of i (Least
- --1 signif.)
logical blocks | (Most
----------------- | signif.)
Not E
- -
used E
_________________ !
1
1
MLO-853-87

Disk-Class Device Drivers

4-19

In the reply information above:

® (lass is DC$DSK for disk device class.

* Type is DK$XD for extended disk device type.

* The number of logical blocks is given for the requested partition (DP.UNI).

4.4.5 TUS8 (DD) Functions
4.4.5.1 DD Logical Read and Write

A TU58 logical read or write operation transfers data to or from a user buffer, starting at a tape
address that is specified in terms of a logical block number (0 to 511).

The unit of storage implied by logical I/O operations is the 512-byte logical block, which consists
of four logically contiguous 128-byte records. (The records are physically noncontiguous because
of the automatic interleaving performed by the controller in normal tape addressing mode.)

A write operation that does not fill the last or only block involved causes the remainder of the
block to be zero-filled; that remainder can consist of up to 511 bytes.

If modifier bit FM$DCK of DP.FUN is set to 1 in a TU58 read function request, the driver
instructs the drive to read with increased threshold. That type of read operation can be used to
check for fading data on the tape.

If modifier bit FM$DCK of DP.FUN is set to 1 in a TU58 write function request, the driver
instructs the drive to write with read verify. Following the write portion of the request, the
drive attempts to read the data without errors; the drive returns a status code to the driver,
indicating success or failure. That type of write operation can be used to ensure that reliable
data can later be recovered.

The following are function-dependent portions of the DD logical read or write request and reply
packets:

[
o
wm
[
o
o
—
o
I~
o
o
~

DP.DAD - | | |\ - DP.FDD
] 1 1]
)= - 1 = -
! number Func- ! !
e i dep | -- -
: | value ! Not used
J-= -1 data == -1
! Not used H | 1 |
| -- -1 H 1 -- -=
| i v | '
I et e e T S == e e !
DP.BUF - | Buffer i ° i '
[-1 Ref
DP.PAR - | address 1 data
R | info
DP.LEN - | Buffer length | v
fmmmmem—— e ————— + m———-
MLO-854-87

The range of the logical-blk-num value is 0 to 511.
The buffer-length value determines the length, in bytes, of the data transfer.

4-20 Disk-Class Device Drivers

If retries were required to complete the operation successfully, a value of ES§NOR (0) is
returned in the status-code (DP.STS) field of the reply packet, and a value of 1 is returned in
the error-info (DP.ERR) field of the packet. The status-code and error-info fields are in the
function-independent portion of the packet.

4.4.5.2 DD Physical Read and Write

A TUS58 physical read or write operation transfers data to or from the user’s buffer, starting
at a device address specified by a physical record number (0 to 2047). (Tape positioning is
performed in special address mode.)

The unit of storage implied by physical I/O operations is the 128-byte record. Data transfers
can start at any physical record on the tape.

Multirecord transfers—exceeding 128 bytes—read from or write to physically sequential records
on the tape.

A write operation that does not fill the last or only record involved causes the last record (up
to 127 bytes) to be zero-filled. The standard record interleaving that is performed for logical
I/0 is disabled for physical 1/0.

If modifier bit FM$DCK of DP.FUN is set to 1 in a TU58 read function request, the driver
instructs the drive to read with increased threshold. That type of read operation can be used to
check for fading data on the tape.

If modifier bit FM$DCK of DP.FUN is set to 1 in a TU58 write function request, the driver
instructs the drive to write with read verify. Following the write portion of the request, the
drive attempts to read the data without errors; the drive returns a status code to the driver,
indicating success or failure. That type of write operation can be used to ensure that reliable
data can later be recovered.

The following are function-dependent portions of the DD physical read or write request and
reply packets:

DP.DAD - | Physical rec num! 1 | - DP.FDD
et T T | | 1-- -1
! ! Func- | |
== -1 dep -- -
| Not | value ! Not used |
| -= -1 data f—= -
! used | | | |
== -=1 | == =1
| ! v ! i
I | - T |
DP.BUF - | Buffer | - i i
[-=] Ref
DP.PAR - | address ! data
| e ! info
DP.LEN - | Buffer length | v
e —————— + eem——-—
MLO-855-87

The range of the physical-rec-num value is 0 to 2047.

The buffer-length value determines the length, in bytes, of the data transfer.

Disk-Class Device Drivers 4-21

If retries were required to complete the operation successfully, a value of ESJNOR (0) is
returned in the status-code (DP.STS) field of the reply packet, and a value of 1 is returned in
the error-info (DP.ERR) field of the packet. The status-code and error-info fields are in the
function-independent portion of the packet.

4.4.5.3 DD Get Characteristics

The DD Get Characteristics function returns a block of device-dependent information about a
specified TU58 unit in the function-dependent portion of the reply message. The information
consists of the codes for device class and type and the number of logical blocks per unit.

In addition to returning device characteristics, the Get Characteristics function performs a seek
operation—to the first block of the directory—in order to determine whether a cartridge is in
the drive. If no cartridge is in the drive, the unsafe volume (ES$UNS) status code is returned
in the function-independent portion of the reply message.

The following are function-dependent portions of the DD Get Characteristics request and reply
packets:

DP.DAD - | a T i Type | Class i - DP.FDD
]
| == ==] [Bkt i
i ! Func- 1 Number of i (Least
1-= -1 dep == --| signif.)
!] value ! logical blocks | (Most
| -- -=1 data R it | signif.)
| Not ' i | Not !
e -- H P - -
i used II v l' used l‘
| -= -— m==-- L et i
DP.BUF - | ! " i !
j =~ -1 Ref
DP.PAR - | ' data
f e - info
DP.LEN - | 1 v
tmmmem—————————— + mme——
MLO-856-87

In the reply information above:
* C(Class is DC$DSK for disk device class.
* Type is DK$DD (TU58) for TU58 device type.

* The number of logical blocks is given per unit—for one DECtape II cartridge (always 512
blocks).

4-22 Disk-Class Device Drivers

4.4.6 Virtual Memory (VM) Functions
4.4.6.1 VM Logical Read and Write

A virtual-memory-disk logical read or write operation transfers data to or from the user’s buffer,
starting at a 512-byte logical block specified by a logical block number—0 to n-1, where n is
the size of the memory region in logical blocks.

You specify the memory region size in the VM driver prefix file. The unit of storage implied by
logical 1/O operations is the 512-byte logical block, although of course the number of blocks
you specify is converted to 64-byte PAR ticks for the purpose of allocating the region.

When a read or write request is received, the driver maps the “device” and the user buffer to
PARs 0 and 1 and then uses the driver subroutine $BLXIO to copy the logical block. ($BLXIO
is described in Chapter 15.) An even number of bytes are transferred between the user buffer
and virtual memory using word move (MOV) instructions. A write operation that does not fill
the last or only block involved causes the remainder of the block to be zero-filled.

The following are function-dependent portions of the VM logical read or write request and reply
packets:

i |
| i
DP.DAD - | Logical block | ! |\ = DP.FDD
- --1 H | -- -1
! number i Func- i i
fmm e ! dep f == -1
i i value ' Not used !
1= -1 data 1-- -=1
! Not used ' | i i
| -- -1 i | -- -=1
i 1 v i i
it L P i m———- I e e :
DP.BUF - | Buffer ! - ! !
[-1 Ref
DP.PAR - | address ! data
LT T | info
DP.LEN - | Buffer length | v
o ——— + m—e-—
MLO-857-87

The range of the logical-blk-num value is 0 to n-1, where n is the size of the device in logical
blocks.

The buffer-length value determines the length, in bytes, of the data transfer.

4.4.6.2 VM Get Characteristics

The VM Get Characteristics function returns a block of device-dependent information about a
specified virtual memory “disk” unit in the function-dependent portion of the reply message.
The information consists of the codes for device class and type and the number of logical blocks
in the memory region (as specified in the VM driver prefix file).

Disk-Class Device Drivers 4-23

The function-dependent portions of the VM Get Characteristics request and reply packets are
shown below:

1
DP.DAD - | i T } Type | Class - DP.FDD
: j—= -1 ettt e
i ! Func- | Number of ! (Least
== =1 dep = ~~| signif.)
1 ! value | logical blocks | (Most
1-- - data I ettt | signif.)
! Not] i | Not]
S -1 ' 1-- -=1
1 used 1 v Il used E
1 1
[Bt - mm—= | == eeemee—-]
DP.BUF - | : ~ g !
- -1 Ref
DP,PAR - | ' data
1 - info
DP.LEN - | | v
B it T + mm——-
MLO-858-87

In the preceding reply information:
® (lass is DC$DSK for disk device class.
* Type is DK$VM for virtual memory disk device type.

4.5 Status Codes

If an error is detected during an I/O operation by a disk-class device or driver, the driver
returns an exception code in the status-code field of the reply message. If you are performing
I/0O with Pascal I/O statements—that is, not with send/receive statements or Pascal support
routine calls—the Pascal OTS will raise the corresponding exception (unless the operation was
an OPEN for which a STATUS return was specified). If no error was detected during the I/O
operation, a value of ESSNOR (0) is returned in the status-code (DP.STS) field of the reply
message.

4-24 Disk-Class Device Drivers

The disk drivers return the following exception codes:

Code Type Description

ES$ABT HARD_IO Driver process deleted; request not serviced

ES$CTL HARD_IO Controller error (DY, DU)

ES$DRV HARD_IO Drive error (DL, DU); all retries failed, data check
error, seek error (block not found), motor stopped,
or bad operation code (DD)

ES$FOR HARD_IO Media format error (DU)

ES$IBN HARD_IO Invalid block number on read/write request (DU,
DD, XD)

ES$IDA HARD_IO Invalid device address on read/write request (DL,
DY, VM)

ES$IVD HARD_IO Invalid data (DU)

ES$IVM HARD_IO Invalid mode—volume formatted for opp051te or
unrecognized density (DY)

ES$IVP HARD_IO Invalid request packet parameter—odd buffer ad-
dress or odd number of bytes to transfer (DL, DY,
DU, VM)

ES$NXM HARD_IO Attempted transfer to nonexistent memory or write
to ROM (DL, DY)

ES$NXU HARD_IO Nonexistent unit—unit number not defined in
prefix file (DL, DU); drive number greater than
1 (DY, DD); unit number greater than 0 (VM); unit
number not defined in XDDRV (XD)

ES$OFL HARD_IO Unit off line (DU)

ES$OVF HARD_IO Data overflow (DY)

ES$PAR HARD_IO Parity error, CRC error (DL); unrecoverable CRC
error or soft error with no retry (DY)

ES$PWR HARD_IO Device power failure (DY)

ES$UNS HARD_IO Unsafe volume, drive not ready: door open, power
not OK, drive not up to speed, no volume, no
cartridge in drive (DL, DY, DU, DD)

ES$WLK HARD_IO Write-locked unit (DL, DU, DD)

ES$IFN SOFI_IO Illegal function code

ES$IVL SOFT_IO Invalid length specified (XD)

ES$NRF SOFT_IO No reference data present (DD)

Exception codes are defined in the EXC.PAS include file for Pascal users and by the EXMSK$
macro in the COMU/COMM macro libraries for MACRO-11 users.

Disk-Class Device Drivers 4-25

Note
Not listed above are exception codes for OTS-detected 1/O errors or for kernel-
detected errors that the disk drivers raise rather than passing back to the

requesting process. OTS-detected 1/O errors are listed in Chapter 9 of the
MicroPower/Pascal Language Guide.

4.6 Extended Error Information

The RL0O1/2 (DL), RX02 (DY), and TU58 (DD) disk-class drivers return extended error
information to packet-level users.

In the event of a hardware error, the DL driver copies the multipurpose register (MPR) into the
DP.ERR field of the reply packet. See the RLV12 Disk Controller User’s Guide for a description
of the MPR.

In the event of a hardware error, the DY driver copies one byte of definitive error code—as
returned by the RXV21 in response to the read error code function—into the DP.ERR field of
the reply packet. That status information is described in the RX02 Floppy Disk System User’s
Guide.

For all status returns and hardware error returns in particular, the DD driver returns a hardware
success code in the low-order byte of the DP.ERR field of the reply message. (It is the same
hardware success code returned by the TU58 controller for each operation in byte 3 of the end
packet.) In the event of a hardware error, the hardware success code provides more specific
error information. See the TU58 DECtape II User’s Guide for a description of the end packet
sent by the tape controller.

4.7 Disk Driver Prefix Files

Figures 4-1 through 4-5 show the disk driver prefix modules. The following paragraphs describe
the prefix file macro calls and symbol definitions that can be edited to fit your application.

Note

No prefix module exists for the XD driver. Instead, you edit the XD driver
source module, available on the distribution kit, to fit your application. See
Section 4.8 for details.

The DRVCF$ macro contains a field (nctrl) for the number of controllers (or memory regions)
on the target to be supported by the driver. The dname field specifies the first two characters
of the corresponding request-queue semaphore name.

The CTRCF$ macro is invoked once for each controller to be serviced by the driver. It gives
the controller name, number of units, CSR and vector addresses, and unit numbers. You can
edit those fields, if your controller does not conform to the defaults. For the VM driver, the
memory region size—the number of 512-byte blocks—is specified in place of the CSR and vector
addresses. For the DD driver, the serial line type and speed are specified. The five CTRCF$
invocations in the DD driver prefix file specify a DLV11-type SLU; a KXT11-CA, FALCON, or
CMR21 console DLART; a KXJ11-CA console DLART; an SBC-11/21 DLART type SLU; and
a KXT11-CA or KXJ11-CA multiprotocol channel B (SLU2B), each with a line speed of 38400.
(See Chapter 3 for valid serial line types and speeds.)

4-26 Disk-Class Device Drivers

Note

The DU prefix file shows two possible CTRCF$ definitions for a single controller
rather than CTRCF$ definitions for multiple controllers (the normal practice).

The units field specifies the unit numbers of the devices attached to the controller. The
designation 0:1 refers to unit 0 and unit 1. For an RX02 or a TU58, 0 and 1 are the only
possible unit numbers, but you can edit that field if you have only one unit <0> . Note that
<0,1> and <0:1> are equivalent. For a virtual memory region, 0 is the only possible unit
number,

The interrupt vectors specified in those macros must also be specified in the system configuration
file, using the DEVICES macro.

The xxIPR, xxPPR, and xx$HPR definitions specify the initialization and request-handling
software priorities for the disk driver processes and the hardware interrupt priority for the disk
controllers. All controllers associated with a given driver have the same priority. Of course, no
hardware interrupt priority is specified for a virtual memory “controller” (region).

Figure 4-1: RLO1/RLO2 Driver Prefix File (DLPFX.MAC)

.TITLE DLPFX - RLV11, RLV21 Prefix File
i+
; This software is furnished under a license and may be used or copied
; only in accordance with the terms of such license.
; Copyright (c) 1982, 1986 by Digital Equipment Corporation.
; All rights reserved.

.mcall drvcf$, ctrcf$

DL$IPR == 250. ; Process initialization priority
DL$PPR == 175. ; Process priority
DL$HPR == 4 ; RLV11 hardware priority

drvcf$ dname=DL,nctrl=1
ctrcf$ cname=A,nunits=2.,csrvec=<174400,160>,units=<0:1>
; ctrcf$ cname=B,nunits=2.,csrvec=<174410,164>,units=<0, 1>

.end

Disk-Class Device Drivers 4-27

Figure 4-2: RXO02 Driver Prefix File (DYPFX.MAC)

.TITLE DYPFX - RX02 Prefix File

; This software is furnished under a license and may be used or copied
; only in accordance with the terms of such license. .

; Copyright (c) 1982, 1986 by Digital Equipment Corporation.
; All rights reserved.

.mcall drvcf$, ctrcf$

DY$IPR == 250. ; Process initialization priority
DY$PPR == 175. ; Process priority
DY$HPR == 5 ; RX02 hardware priority

drvcf$ dname=DY,nctrl=1
ctrcf$ cname=A,nunits=2.,csrvec=<177170,264>,units=<0:1>
i ctrcf$ cname=B,nunits=2.,csrvec=<177200,270>,units=<0, 1>

.end

Figure 4-3: MSCP Disk-Class Driver Prefix File (DUPFX.MAC)

.TITLE DUPFX - MSCP Micro PDP-11 Prefix File
,
; This software is furnished under a license and may be used or copied
; only in accordance with the terms of such license.
; Copyright (c) 1983, 1986 by Digital Equipment Corporation.
; A1l rights reserved.

.mcall drvcf$, ctrcf$

DU$IPR == 250. ; Process initialization priority
DU$PPR == 175. ; Process priority

drvcf$ dname=DU,nctrl=1

ctrcf$ cname=A,nunits=3.,csrvec=<172150,154>,units=<0:2>
; ctrcf$ cname=A,nunits=3.,csrvec=<174344, 154> units=<0:2>

.end

4-28 Disk-Class Device Drivers

Figure 4-4: TUS58 Driver Prefix File (DDPFX.MAC)

.nlist
.enabl LC
.list
.TITLE DDPFX ' - TU58 Device Driver Prefix Module

; THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED OR COPIED
; ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

; COPYRIGHT (c) 1982, 1986 BY DIGITAL EQUIPMENT CORPORATION. ALL
; RIGHTS RESERVED.

.mcall drvcf$
.mcall ctrcf$
.mcall drvdf$

drvdf$
DD$PPR == 175. ; Process priority
DD$HPR == 4 ; TU58 hardware priority (must be 5 for Falcon
; SLU2)
DD$IPR == 250. ; Process initialization priority

drvcf$ dname=DD,nctrl=1
;DLVi1 type SLU
; ctrcf$ cname=A,nunits=2.,csrvec=<176510,310>,units=<0:1>, typrm=<TT$DL,
; 38400>
;KXT11--CA/FALCON/CMR21 Console DLART
; ctrcf$ cname=A,nunits=2.,csrvec=<176560,60>,units=<0:1>,typrm=<TT$DLT,
; 38400>
;KXJ11--CA Console DLART
; ctrcf$ cname=A,nunits=2.,csrvec=<176560,60>,units=<0:1>, typrm=<TT$DLU,
; 38400>
;FALCON SLU2 DLART
; * Remember to change DD$HPR to 5 if Falcon SLU2 DLART is selected *
; ctrcf$ cname=A,nunits=2.,csrvec=<176540,120>,units=<0:1>,typrm=<TT$DLT,
; 38400>
;KXT11--CA or KXJ11--CA Multiprotocol channel B (SLU2B)
; ctrcf$ cname=A,nunits=2.,csrvec=<175710,160>,units=<0:1>, typrm=<TT$DM,
; 38400>

.end

Disk-Class Device Drivers 4-29

Figure 4-5: Virtual Memory Driver Prefix File (VMPFX.MAC)

.TITLE VMPFX - Virtual Memory Driver Prefix Module
+
; This software is furnished under a license and may be used or copied
; only in accordance with the terms of such license.

; Copyright (c) 1984, 1986 by Digital Equipment Corporation.
; All rights reserved.

.mcall drvcf$, ctrcf$

VM$IPR == 250. ; Process initialization priority
VM$PPR == 175. ; Process priority
VMSIZ = <128.> ; size in blocks (each block is 512. bytes)

drvcf$ dname=VM,nctrl=1
ctrcf$ cname=A,nunits=1.,csrvec=<VMSIZ>,units=<0>

.end

4.8 Extended Disk Driver Source Excerpt

Figure 4-6 shows the portions of the extended disk (XD) driver source, XDDRV.PAS, that can
be edited to fit your application.

MAX_UNIT_SIZE, the maximum number of disk blocks for each partition, must not exceed
65,536. If there is room for multiple partitions on the disk, every partition, except possibly the
last, will be of this size.

MIN__UNIT_SIZE, the minimum number of disk blocks for each partition, gives the minimum
acceptable value for the last (or only) partition on the disk.

To illustrate the use of MAX _UNIT_SIZE and MIN_UNIT_SIZE, an extended disk with 138,000
blocks for which you specify MAX_UNIT_SIZE = 65000 and MIN _UNIT_SIZE = 100 will have
two 65,000 block partitions (XDAO: and XDA1:) and one 8000 block partition (XDAZ2:).

NO_DEVICES specifies the number of physical disks to be partitioned.

The PARTITION _ONE_PHYSICAL _UNIT procedure must be called NO_DEVICES times.
For each physical disk to be partitioned, PARTITION_ONE_PHYSICAL _UNIT identifies
the request queue semaphore name and unit number associated with the physical disk
(DEVICE_NAME_X and UNIT_NUMBER_X) and the XD request queue semaphore name
to be associated with that disk unit (XD_NAME_X). INDEX indexes into the internal array that
holds the control information; by convention, the INDEX value begins at 1 and increments up
to NO_DEVICES.

For each extended disk after the first, increase the DATA_SPACE attribute by 456.

4-30 Disk-Class Device Drivers

Figure 4-6: Extended Disk Driver Source File (XDDRV.PAS) Excerpt

[system(micropower), init_priority(250), priority(175),
privileged, data_space(1000)]
program $xddrv;

(*
COPYRIGHT (c) 1986 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.
*)
{

The XD driver permits MicroPower/Pascal to do perform file-structured
I/0 to disk devices with

greater than 65536 blocks. It does this by partitioning the

physical disk unit into multiple partitions. Each physical disk

unit is treated as a single controller with one or more logical units.

}

%include ’src:exc’
%include ’src:iopkts’
%include ’src:gsinc’

const

{Define the maximum number of disk blocks per partition.}

{NOTE: Must not exceed 65536.}
max_unit_size = 65536;

{Define the minimum number of disk blocks per partition.}
min_unit_size = 100;

{Define the number of physical disk units which are to be partitioned.}
no_devices = 1;

{Procedure partition_one_physical_unit is invoked no_devices times.}

partition_one_physical_unit(

device_name_x := ’$DUA °*,
unit_number_x := 0,
xd_name_x := ’$XDA °’,
index := 1);

{

Note: For each additional call to partition_one_physical_unit,
increase data_space attribute by 456 (dynamic process
stack and impure area).

partition_one_physical_unit(

Request queue semaphore name associated with physical disk device.
device_name_x := *$DUA °,

Unit number of physical disk device.
unit_number_x := 1,

Request queue semaphore name associated with extended disk.
Should be of the form '$XDc .

xd_name_x := '$XDB °’,
Ordinal in range 1,2,...,no_devices.

index := 2);

}

eﬁd. {$xddrv}

Disk-Class Device Drivers

4-31

Chapter 5
TMSCP Tape Driver

This chapter describes the use of the MicroPower/Pascal TMSCP magnetic tape (MU) driver.
The MU driver supports nondirectory-structured I/O operations on tape interfaces that use the
Tape Mass Storage Control Protocol (TMSCP)—in particular, the TK50 streaming cartridge tape
interface. The TK50 is used primarily for large-volume data storage or redundant (backup)
storage by MicroPower/Pascal applications.

Note

TMSCP is a high-level interface to a family of tape controllers and devices
manufactured by DIGITAL.

5.1 MU Driver Features and Capabilities

The MU driver supports read and write operations and the returning of device characteristics,
plus the tape-specific operations Reposition, Write Tape Mark, and Rewind.

Read and write operations transfer data to or from a buffer in the calling process, starting at
the current tape position.

The Get Characteristics operation reports the TMSCP device class and type.

The Reposition Tape operation repositions the tape to an offset forward or backward from the
current position or forward from the beginning of tape (BOT), as determined by user-specified
modifiers.

The Write Tape Mark operation establishes the end of a logical file.
The Rewind Tape operation repositions to the BOT.

TMSCP Tape Driver 5-1

5.2 Performing TMSCP Tape I/O

For most MicroPower/Pascal applications and particularly for streaming applications, you
perform TMSCP tape I/O by invoking Pascal support routines—READ_TAPE, REWIND_TAPE,
and so forth. Those routines provide high-level nonfile access to TMSCP tape controllers. The
MU support routines issue Pascal send requests to the request queue semaphore of the MU
driver. The routines are described in Section 5.3.

You can also perform TMSCP tape I/O by invoking Pascal I/O procedures that open files for
tape data and then input or output the data in accordance with the rules for Pascal I/0. The
Pascal 1/0 procedures—OPEN, GET, WRITE, and so forth—are described in Chapter 9 of the
MicroPower/Pascal Language Guide. However, file-oriented operations are of limited use; one
limitation is that MU tape-specific operations cannot be performed by Pascal I/O procedures.
Optionally, you can modify the Pascal support routines that perform Reposition, Write Tape
Mark, and Rewind operations to accept a file variable. (For a model, see the Get and Set
Characteristics functions in kit file GETSET.PAS.) A more serious limitation is that because of
the nature of Pascal buffering, you must take special care to provide the necessary degree of
input or output synchronization. Pascal I/O is unsuitable for streaming applications.

In addition to invoking the TMSCP support routines or Pascal I/O procedures, you must:

1. Edit the DEVICES macro in the system configuration file to reflect the TMSCP controller
interrupt vector addresses

2. Edit the MU driver prefix file to reflect:
* Number of controllers

¢ [For each controller:] Controller identifier (A, B, ..., CSR address, interrupt vector
address, number of controller units (1) and identifying number (0)

* Hardware interrupt priority
® Driver initialization and request-handling process priorities
3. Build into your application the following I/O system components:
®* MU driver process
* Pascal TMSCP support routines (from kit files MUSUB.PAS and MUINC.PAS)
® [For MU file OPEN only:] Ancillary control process (ACP)

® Pascal OTS routines for file service—built in automatically by MPBUILD for programs
that invoke Pascal I/O procedures—plus any other I/O support routines you opt to
include (see kit files GETSET.PAS and GSINC.PAS)

For more information on setting up your application software for TMSCP tape I/O, see Chapter
4 of the MicroPower/Pascal Run-Time Services Manual, Section 5.7 of this manual, and the
material on building system processes in the MicroPower/Pascal system user’s guide for your
host system.

5-2 TMSCP Tape Driver

Alternatives to using the TMSCP support routines or the Pascal I/O procedures for TMSCP
tape I/O exist, but require more effort. You can:

¢ Issue your own Pascal or MACRO-11 packet-level requests to the driver, bypassing the
Pascal support routines for nonfile I/O, as well as the ACP and the OTS file routines
(low-level nonfile access)

* Issue your own Pascal or MACRO-11 packet-level requests to the ACP and the driver,
bypassing the OTS file routines (lower-level file system access)

The following sections describe the Pascal support routine interface to the MU driver, the Pascal
I/O procedure interface, the lower-level request/reply packet interface, the status codes that
can be returned to users of any interface, and the MU driver prefix file.

TMSCP Tape Driver 5-3

5.3 Pascal Support Routine Interface

The following support routines, written in Pascal and independent of the file system, provide a
high-level interface to TMSCP tape controllers:

* READ_TAPE procedure

® WRITE_TAPE procedure

* REPOSITION_TAPE procedure

* WRITE_TAPE_MARK procedure

e REWIND_TAPE procedure

¢ INIT_TAPE__CNTL procedure—for internal use only

Note

The TMSCP support routines use all of the packet-level MU driver functions
except Get Characteristics (IF$GET). To perform that operation, use the
Get Characteristics function (descriptor version) in the distribution kit file
GETSET.PAS.

The following sections describe Pascal support routines for TMSCP tape I/O. Each routine
allocates an I/O packet, fills it in with information based on the procedure parameters, sends it
to the MU driver queue semaphore for the specified port, and returns immediately to the caller.
If the routine has a reply parameter, the driver sends a standard driver reply via the specified
queue semaphore when the operation is complete. (The driver reply packets are described in
Section 5.5.)

Note
The distributed support routines assume a unit number of 0 for each operation.

The following files on the MicroPower/Pascal distribution kit are required for using the routines:

File Description

MUSUB.PAS TMSCP routine source module
MUINC.PAS TMSCP routine include file
IOPKTS.PAS Pascal I/O include file

To use a source module, you must compile it and then merge it with the program at user-process
build time. The associated include files must be included in the program at compile time.

5-4 TMSCP Tape Driver

5.3.1 READ_TAPE

The READ_TAPE procedure requests a read operation, which transfers data to the user’s buffer
from the current tape position. The length of the specified buffer determines the length of the

data transfer.

The packet-level equivalent of READ_TAPE is the IF$RDL function.

The syntax for calling the procedure is as follows:

READ_TAPE (buffer, mu_desc, reply);

Parameter Type Description
VAR buffer PACKED ARRAY Data buffer
[first. last:
INTEGER] of CHAR
VAR mu_desc STRUCTURE_DESC Initialized driver queue semaphore descrip-
tor
VAR reply STRUCTURE_DESC Optional initialized reply queue semaphore

descriptor; if specified, it is the user’s
responsibility to wait for the reply

The count of bytes transferred is returned in the actual-length field of the MU driver reply

packet.

5.3.2 WRITE_TAPE

The WRITE_TAPE procedure requests a write operation, which transfers data from the user’s
buffer to the current tape position. The length of the specified buffer determines the length of

the data transfer.

The packet-level equivalent of WRITE_TAPE is the IFSWTL function.

The syntax for calling the procedure is as follows:

WRITE_TAPE (buffer, mu_desc, reply);

Parameter Type Description
VAR buffer PACKED ARRAY Data buffer
[first..last:
INTEGER] of CHAR
VAR mu_desc STRUCTURE_DESC Initialized driver queue semaphore descrip-
tor
VAR reply STRUCTURE_DESC Optional initialized reply queue semaphore

descriptor; if specified, it is the user’s
responsibility to wait for the reply

The count of bytes transferred is returned in the actual-length field of the MU driver reply

packet.

TMSCP Tape Driver 5-5

5.3.3 REPOSITION_TAPE

The REPOSITION_TAPE procedure requests that the tape be repositioned to a point that is
specified either by use of a generic object count or by use of record and tape-mark counts.

Note

For tape-specific operations, the relevant units are records, tape marks (which
indicate the end of a logical file), and objects (a context-dependent term for
either records or tape marks).

Depending on user-specified modifiers, the tape can be repositioned to an offset forward or
backward from the current position or forward from the BOT.

The packet-level equivalent of REPOSITION_TAPE is the IF$REP function.
The syntax for calling the procedure is as follows:

REPOSITION_TAPE (ocount, mcount, mod_oper, mu_desc, reply);

Parameter Type Description

ocount LONG_INTEGER Object offset if the Object-Count modifier
is specified; otherwise a record offset—the
number of objects or records to skip

mcount LONG_INTEGER Tape-mark offset—the number of tape
marks to skip; not applicable if the Object-
Count modifier is specified

mod_oper UNSIGNED Function-modifier values: Rewind value (2)
for repositioning from BOT, Object-Count
value (4) for use of object offsets, or Reverse
value (6) for reverse repositioning

VAR mu_desc STRUCTURE_DESC Initialized driver queue semaphore descrip-
tor ‘
VAR reply STRUCTURE_DESC Optional initialized reply queue semaphore

descriptor; if specified, it is the wuser’s
responsibility to wait for the reply

When both record and tape-mark offsets are specified, the tape-mark offset is observed first. For
example, with the Rewind modifier set, a record offset of 10 (decimal) and a tape-mark offset
of 2 would reposition the tape to the eleventh record of the third file.

Indication of success or failure is returned in the MU driver reply packet.

5-6. TMSCP Tape Driver

5.3.4 WRITE_TAPE_MARK

The WRITE_TAPE_MARK procedure establishes the end of a logical file by writing a tape
mark at the current position.

The packet-level equivalent of WRITE_TAPE_MARK is the IF$MRK function.
The syntax for calling the procedure is as follows:

WRITE_TAPE_MARK (mu_desc, reply);

Parameter Type Description

VAR mu_desc STRUCTURE_DESC Initialized driver queue semaphore descrip-
tor

VAR reply STRUCTURE__DESC Optional initialized reply queue semaphore

descriptor; if specified, it is the user’s
responsibility to wait for the reply

Indication of success or failure is returned in the MU driver reply packet.

5.3.5 REWIND_TAPE

The REWIND_TAPE procedure requests that the tape be rewound to the BOT. It is logically
equivalent to doing a REPOSITION_TAPE with an offset of 0 and the Rewind modifier set.

The packet-level equivalent of REWIND_TAPE is the IFSRWD function.
The syntax for calling the procedure is as follows:

REWIND_TAPE (mu_desc, reply);

Parameter Type Description

VAR mu_desc STRUCTURE_DESC Initialized driver queue semaphore descrip-
tor

VAR reply STRUCTURE_DESC Optional initialized reply queue semaphore

descriptor; if specified, it is the user’s
responsibility to wait for the reply

Indication of success or failure is returned in the MU driver reply packet.

TMSCP Tape Driver 5-7

5.4 Pascal 1/0O Procedure Interface

To perform standard Pascal I/O to a TMSCP tape controller, you must open a file. Opening
the file associates a Pascal file variable with a tape controller unit. Invoke the OPEN procedure
as follows:

OPEN (filvar, ‘'MUc0, ...)

where:

e filvar is a Pascal file variable.

* cis a controller identifier (A, B, ...).

For example, 'MUAOQ:" would specify unit 0 of the first TMSCP controller (A) listed in the MU
prefix file.

The OPEN statement causes the Pascal OTS to send a packet-level open request to the ACP,
which returns a unit number and a driver request semaphore ID to the OTS. Subsequent I/O
requests are sent directly to the driver by the OTS with no further ACP involvement.

In carrying out subsequent input, output, CLOSE, or PURGE operations on TMSCP units, the
Pascal OTS uses the following packet-level driver functions:

* Read Logical (IFSRDL)
* Write Logical (IFSWTL)
* Close (IF$CLS)
* Purge (IF$PRG)

The appropriate request packets are sent to the driver only when necessary for completion of
a user-requested operation. For example, a READ or GET operation that requires more data
than what remains in the buffers from previous input operations causes the OTS to issue one or
more Read Logical (IFfRDL) requests to the MU driver. Other Pascal statements unconditionally
cause the OTS to issue send requests; examples are BREAK, which generates a Write Logical
(IF$WTL), and CLOSE, which generates a Close (IF$CLS) request (normally preceded by a Write
Logical, unless BREAK immediately precedes CLOSE).

Pascal functions that report the characteristics of MU-driver-supported hardware are provided
in the filee GETSET.PAS on the MicroPower/Pascal distribution kit. Those functions issue Get
Characteristics (IF§GET) request packets to the driver.

The following packet-level driver functions cannot be performed with normal Pascal 1/0
statements or GETSET functions:

* Reposition Tape (IF$REP)
* Write Tape Mark (IFSMRK)
* Rewind Tape (IFSREW)

To perform these functions, use the Pascal support routines for nonfile I/O (see the preceding
section), use the request/reply packet interface directly, or write Pascal procedures that take a
user-specified file variable and send the appropriate request packets to the driver. (The Get
Characteristics procedures in GETSET.PAS demonstrate the latter approach.)

5-8 TMSCP Tape Driver

5.5 Request/Reply Packet Interface

The packet-level functions provided by the TMSCP driver are listed below by symbolic and
decimal function code:

Code Function

IF$RDL (1) Read Logical

IF$WTL (4) Write Logical

IF$GET (7) Get Characteristics

IFSONY (8) Bypass Only—for internal use only
IF$BYP (9) Bypass—for internal use only
IF$INT (10) Initialize Port—for internal use only
IF$REP (11) Reposition Tape

IF$MRK (12) Write Tape Mark
IF$RWD (13) Rewind Tape

If a request is received for an Open (IFSLOK or IF$ENT), a Close (IF$CLS), or a Purge
(IF$PRG), the driver returns an illegal function status code (ES$IFN), which the ACP (Open)
or OTS (Close/Purge) interprets to mean that no device-dependent processing was required for
that operation.

Note

The MACRO-11 symbols used in this section are defined by the DRVDF$ macro,
which resides in the COMU and COMM kernel macro libraries. The equivalent
Pascal symbols are defined in the IOPKTS.PAS include file.

The function modifiers recognized by the MU driver are shown below by symbolic code and
bit position:

Code Function

FM$BSM (bit 13) Signal binary/counting semaphore
FM$INH (bit 15) Inhibit retries on error

The MU driver consists of an initialization process, which lowers its priority to become the
first controller’s request handler process, plus an additional request handler process for each
configured controller. I/O requests for a particular controller are sent (using a Pascal SEND or
a MACRO-11 SENDS$) to the request queue semaphore waited on by that controller’s request
handler process. '

TMSCP Tape Driver 5-9

The request queue name and number of supported units for MU driver requests are shown

below:
Request Number
Driver Queue Name of Units Numbering

TMSCP $MUc 1 0

The letter ¢ in a queue name represents a controller designation (A, B, ..., as specified in an MU
driver prefix file).

The general format of the TMSCP request and reply packets is shown below:

TMSCP R + T + TMSCP
REQUEST | Standard ! 1 Standard | REPLY
PACKET -~ -- == --{ PACKET
i packet ! 1 packet !
1 I 1 1
|- == [Bl ==
H header 1 1 header |
))] |
| Baaeddee ke inchedddnd t mEmEms= [ettt]
DP.FUN - i Function 1 ~ ! Function i - DP.FUN
]) 1)
| ettt S bl) t | Bkttt i]
DP.UNI - i - | Unit | ' i -- | Unit | - DP.UNI
t 1 >)
== i 1 | Bttt S nhaiad]
DP,.SEQ - | Sequence number | ! | Sequence number | - DP.SEQ
1 1 1 1
----------------- 1 [bdteabadadedbethe e i |
DP.PDB - | Requesting ! Func- | Status code | - DP.STS
== -1 indep jmm——mm—mm————————]
! process ! value ! Actual length | - DP.ALN
)]] 1
|- - data | =, ————— I
! identifier ! ' ! Error info | - DP.ERR
!] 1) 1
[kit | [Bt iestd e 1
DP.SEM - | Reply ! | ! Reserved for | - DP.XTR
])] 1 1
- -1 1 [B ==
! ° semaphore ! | i driver !
)] I 1]
- - i = ==
H identifier { v | usage |
1]] 1
e m———_—— P T | e e e e me- 1
DP.DAD - | i ° | ! - DP.FDD
1]] 1)
== - i == -
H Request | Func- ! Reply data H
i == -=1 dep P=- -=
1 1 value ' i
- - data R 1
i data] i ' Not !
i -- -1 | P -- —--i
| | v ! used !
R e e N e ettt |
DP.BUF - | Buffer | - ! ;
== --1 Ref -- -=1
DP.PAR - | address 1 data] Reserved !
e ! info j=- -
DP.LEN - | Buffer length | v ! 1
frmmm— e ——————— + emma— e ——— +
MLO-869-87

The function-independent portions of the packets shown above are described in Section 1.3,
Request/Reply Packet Interface. The valid function and function-modifier codes for the function
(DP.FUN) field and the valid unit numbers for the unit (DP.UNI) field are listed at the beginning
of this section. ‘

5-10 TMSCP Tape Driver

The function-dependent portions of the request and reply packets are described in the sections
that follow for each type of TMSCP driver function.

Note

The MACRO-11 field names shown above do not represent offsets into the user’s
send or reply buffers; they are offset symbols used by MACRO-11 drivers to
reference packets. For example, DP.FUN is a 6-byte offset from the packet
header.

5.5.1 Read and Write Functions

A TMSCP read or write operation transfers data between the user’s buffer and the current tape
position.

The following are function-dependent portions of the MU read or write request and reply
packets:

DP.DAD - | ' i | - DP.FDD
1] |] 1
1== == 1 [t ==
! | Func- i |
= --1 dep P-- -=
' Not used 1 value i Not used !
|- - data == -—1
! ! ! ! i
|- -1 i i-- =
i | v | i
] i 1 H
|- T mmms [ttt it [
DP.BUF - | Buffer H . i i
[-1 Ref
DP.PAR - | address | data
L T LT ! info
DP.LEN - | Buffer length | v
tmm e m— e ——————— + —me——
MLO-860-87

The buffer-length value determines the length, in bytes, of the data transfer.

TMSCP Tape Driver 5-11

5.5.2 Get Characteristics Function

The MU Get Characteristics function returns the codes for TMSCP device class and type in the
function-dependent portion of the reply message.

The following are function-dependent portions of the MU Get Characteristics request and reply
packets:

DP.DAD - E :l - i Type | Class | - DP.FDD
] 1 1
== == 1 | Bttt '
1 H Func- ! i
V-- - dep P == -
| ! value ' Not i
\-- -1 data | -- -=i
! Not | | i used !
| -= -1 | | -- -
! used] v ' '
=-= -1 ee—-- mmm e '
DP.BUF - | ' - ! |
[- Ref
DP.PAR - | i data
[- info
DP.LEN - | i v
tmmm—mm——————————— + em———
MLO-861-87

In the reply information above:
* Class is DC$TAP for tape device class.
* Type is MT$MU for TMSCP tape device type.

5.5.3 Reposition Tape Function

The Reposition Tape function requests that the tape be repositioned to a point that is specified
either by use of a generic object count or by use of record and tape-mark counts.

Note

For tape-specific operations, the relevant units are records, tape marks (which
indicate the end of a logical file), and objects (a context-dependent term for
either records or tape marks).

Depending on user-specified modifiers, the tape can be repositioned to an offset forward or
backward from the current position or forward from the BOT.

5-12 TMSCP Tape Driver

The following are function-dependent portions of the MU Reposition request and reply packets:

DP.DAD - | Modifiers i i { - DP.FDD
1] t] |
[] = ==
! Object ! Func- H 1
| -- -1 dep | -- -=1
i offset | value | Not used
I ittt DT ' data == -~
! Tape-mark ! | | i
1] ' 1]
== == | [l -1
| offset i v | |
1 1] i
| B el " Emm== | mEmsEmEs s EEE [
DP.BUF - | 1 - | i
== -=1 Ref
DP.PAR - | Not used | data
== -1 info
DP.LEN - | ! v
U S + mm———
MLO-862-87

The modifier word can specify the following:

¢ Rewind value (2) for repositioning from the BOT
* Object-Count value (4) for use of object offsets

* Reverse value (6) for reverse repositioning

If the Object-Count modifier is set, the object-offset field gives the number of objects (records
or tape marks) to skip, and the tape-mark-offset field is ignored. Otherwise, the object-offset
and tape-mark-offset fields give the numbers of records and tape marks to skip. In the latter
case, the tape-mark offset is observed before the record offset. For example, with the Rewind
modifier set, a record offset of 10 (decimal) and a tape-mark offset of 2 would reposition the
tape to the eleventh record of the third file.

5.5.4 Write Tape Mark Function

The Write Tape Mark function establishes the end of a logical file by writing a tape mark at the
current position.

The function-dependent portions of the Write Tape Mark request and reply packets are not
used.
5.5.5 Rewind Tape Function

The Rewind Tape function requests that the tape be rewound to the BOT. It is logically
equivalent to doing a Reposition with an offset of 0 and the Rewind modifier set.

The function-dependent portions of the MU Rewind request and reply packets are not used.

TMSCP Tape Driver 5-13

5.6 Status Codes

If an error is detected during an I/O operation by a tape device or the MU driver, the driver
returns an exception code in the status-code (DP.STS) field of the reply message. If you
are performing I/O with Pascal I/O statements—that is, not with send/receive statements or
Pascal support routine calls—the Pascal OTS will raise the corresponding exception (unless the
operation was an OPEN for which a STATUS return was specified). If no error is detected
during the I/O operation, a value of ES$NOR (0) is returned in the status-code (DP.STS) field
of the reply message.

The MU driver returns the following exception codes:

Code Type Description

ES$ABT HARD_IO I/0 request canceled or port reinitialized
ES$BOT HARD_IO Beginning of tape encountered

ES$CTL HARD_IO Controller error, formatter error, or position lost
ES$DRV HARD_IO Drive error

ES$IBN HARD_IO Invalid block number

ES$IVD HARD_IO Data error

ES$IVP HARD_IO Invalid command, host buffer access error
ES$NXU HARD_IO Nonexistent unit

ES$OFL HARD_IO Device off line

ES$OVF HARD_IO Data overflow, record data truncated
ES$UNS HARD_IO Unsafe volume

ES$WLK HARD_IO Write-protected unit

ES$EOF SOFT_IO Tape mark encountered

ES$IFN SOFT_IO Illegal function

Exception codes are defined in the ESCODE.PAS include file (included by EXC.PAS) for Pascal
users and by the EXMSK$ macro in the COMU/COMM macro libraries for MACRO-11 users.

Note

Not listed above are exception codes for OTS-detected I/O errors or for
kernel-detected errors that the driver raises rather than passing back to the

requesting process.

OTS-detected I/O errors are listed in Chapter 9 of the

MicroPower /Pascal Language Guide.

5-14 TMSCP Tape Driver

5.7 MU Diriver Prefix File

Figure 5-1 shows the TMSCP tape driver prefix module. The following paragraphs describe the
prefix file macro calls and symbol definitions that can be edited to fit your application.

The DRVCF$ macro contains a field for the number of controllers on the target to be supported
by the driver. The dname field specifies the first two characters of the corresponding request
queue semaphore name.

The CTRCF$ macro is invoked once for each controller to be serviced by the driver. It gives
the controller name, number of units (1), CSR and vector addresses, and unit number (0). The
interrupt vectors must also be specified in the system configuration file, using the DEVICES
macro.

The MUSIPR, MU$PPR, and MU$HPR definitions specify the initialization and request-handling
software priorities for the driver process and the hardware interrupt priority for the controller(s).

Figure 5-1: TMSCP Tape Driver Prefix File (MUPFX.MAC)

.title MUPFX - TMSCP Micro PDP-11 driver prefix module

; THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED OR COPIED
; ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

; COPYRIGHT (c) 1983, 1986 BY DIGITAL EQUIPMENT CORPORATION. ALL RIGHTS
i RESERVED.

.mcall drvcf$
.mcall ctrcf$

MU$PPR == 175. ; Process priority
MU$HPR == 4 ; MSCP hardware priority
MU$IPR == 250. ; Process initialization priority

drvcf$ dname=MU,nctrl=1
ctrcf$ cname=A,nunits=1.,csrvec=<174500,300>,units=<0:0>

.end

TMSCP Tape Driver 5-15

Chapter 6

Parallel Line Drivers

This chapter describes the use of the MicroPower/Pascal parallel line drivers, which support
I/O operations on devices connected through parallel line interfaces. The parallel line drivers
support the interfaces listed below:

Driver Supported Interfaces

XA DRV11-] 64-bit parallel interface (four 16-bit ports)
YA DRV11 16-bit parallel interface

YB DRV11-B DMA interface

YF SBC-11/21 8255 PIO interface

YK KXT11-CA/KX]J11-CA

8-bit parallel ports (16-bit if linked)
4-bit special-purpose I/O ports
16-bit counter/timers

The supported devices interface parallel lines to a MicroPower/Pascal target processor so that
block data transfers can be performed.

DRV11-B block transfers use direct memory access, minimizing processor involvement. It is
also possible to coordinate the YK driver with the KXT11-CA and KX]J11-CA DMA (QD) driver
to effect DMA block transfers through a KXT11-CA or KXJ11-CA parallel port.

Note

Unlike other MicroPower/Pascal drivers, the DRV11 (YA) driver is not included
in the driver object libraries. It is distributed as two source modules—the driver
proper (YADRV.PAS) and the driver prefix file (YAPFX.PAS). It is available for
applications that require it and/or as a base for editing and/or as an example
of a device driver coded in Pascal.

The DRV11-] (XA) driver is distributed in both object and source form; source
modules XADRV.MAC and XAPEX.MAC are available as a base for editing,.

Parallel Line Drivers 6-1

6.1 Parallel Line Driver Features and Capabilities

The parallel line drivers support block-mode read and write operations and returning of device
characteristics.

Read and write operations transfer a specified number of data bytes to or from the caller’s buffer.
For the DRV11-], DRV11, and DRV11-B, data is transferred by word. For the SBC-11/21 PIO
interface, data is transferred by byte. For the KXT11-CA and KXJ11-CA PIO interface, data is
transferred by byte or (if two ports are linked) by word. An even number of bytes must be
specified for devices that do word transfers.

KXT11-CA and KXJ11-CA parallel port read/write operations have pattern recognition
capabilities, by which a transfer can be made to terminate when a specified pattern is found or
a search limit is reached.

Get Characteristics operations report standard device characteristics, including device class and
type.

In addition to read, write, and Get Characteristics operations, most of the drivers support
operations that are specific to the interfaces they support.

The XA driver supports enabling or disabling of special interrupt functions on DRV11-] port
A. In the standard, factory-jumpered DRV11-] configuration, port A provides 12 sense lines
(0 to 11), each capable of generating unique interrupt requests. These lines are particularly
useful for monitoring specific points in your application environment (for example, in process
control applications). The remaining four bits in port A monitor the four user-reply signals
(USER RPLY A to USER RPLY D) on the DRV11-]’s two I/O connectors. These four bits are
capable of generating interrupt requests in response to events in or requests by your hardware.
In addition to the interrupt functions of port A, all 16 lines can be used for I/O operations as
provided through ports B, C, and D.

The selection of low-active or high-active signals for generating interrupt requests and the
selection of rotating or fixed priority for interrupts within each of two 8-bit interrupt groups are
made in the XA driver prefix file. See Section 6.8.1 for details.

The DRV11-B Set Characteristics function establishes internal default CSR settings to be used
for subsequent DMA transfers. Initial default settings of those bits are determined in the YB
driver prefix file. The settable bits include bits that control the initiation of DMA transfers and
three function bits available for user-defined purposes.

The KXT11-CA/KXJ11-CA PIO (YK) driver supports pattern recognition on PIO reads and
writes, DMA transfers, use of a KXT11-CA or KX]J11-CA parallel port (in coordination with the
KXT11-CA/KXJ11-CA DMA driver), and the setting, reading, and clearing of the KXT11-CA
and KXJ11-CA counter/timers. Many types of I/O operations are possible, depending on how
the parallel ports and counter/timers are configured and programmed. See Section 6.8.5 for
information on different configurations. Bidirectional mode is not supported.

6-2 Parallel Line Drivers

6.2 Performing Paraliel 1/0

For most MicroPower/Pascal applications—except KXT11-CA and KXJ11-CA target applica-
tions—you perform parallel I/O by invoking Pascal I/O procedures that open files for parallel
line data and then input or output the data, in accordance with the rules for Pascal 1/0. The
Pascal 1/O procedures—OPEN, GET, WRITE, and so forth—are described in Chapter 9 of the
MicroPower/Pascal Language Guide.

File-oriented operations on the KXT11-CA or KXJ11-CA parallel ports are allowed but are of
limited usefulness, because the YK pattern setting, DMA transfer, and counter/timer functions
cannot be performed by Pascal I/O procedures. For most MicroPower/Pascal applications, you
perform KXT11-CA or KXJ11-CA PIO by invoking Pascal support routines—YK_PORT_READ,
YK_SET_PATTERN, YK_READ_TIMER, and so forth. Those routines provide high-level
nonfile access to the KXT11-CA or KXJ11-CA parallel ports and counter/timers. (Optionally,
you can modify the pattern setting and counter/timer routines to accept a file variable.) The YK
support routines issue Pascal send requests to the request queue semaphore of the YK driver.
The routines are described in Section 6.4.2.

Note

The DRV11-J (XA) driver sense line Enable and Disable operations also cannot
be performed with Pascal I/O procedures. See Section 6.3 for more information
on such operations.

In addition to invoking the Pascal I/O procedures, or KXT11-CA or KXJ11-CA support routines,
you must:

1. Edit the DEVICES macro in the system configuration file to reflect the parallel-line controller
interrupt vector addresses

2. Edit the parallel line driver prefix file to reflect:
® Number of controllers

¢ [For each controller:] Controller identifier (A, B, ..., CSR address, interrupt vector
address, number of controller units and their identifying numbers (0, 1, ...)

¢ Hardware interrupt priority

e Other hardware/interface characteristics, such as DRV11-] sense-line signal and priority
settings, DRV11-B default CSR settings, or KXT11-CA or KXJ11-CA parallel port and
timer port attributes

* Driver initialization and request-handling process priorities
3. Build into your application the following I/O system components:
* Parallel line driver process

* [For non-file-oriented KXT11-CA or KXJ11-CA PIO:] Pascal KXT11-CA and KXJ11-CA
PIO support routines (from kit files YK.PAS and YKINC.PAS)

* [For parallel line file OPEN:] Ancillary control process (ACP)

~ Parallel Line Drivers 6-3

* Pascal OTS routines for file service—built in automatically by MPBUILD for programs
that invoke Pascal I/O procedures—plus any file-oriented support routines you opt to
include (see kit files GETSET.PAS and GSINC.PAS)

Note
In addition to the KXT11-CA and KXJ11-CA PIO support routines
and file-oriented support routines in the kit files mentioned above, the
MicroPower/Pascal distribution kit provides support routines for non-file-
oriented, non-interrupt parallel I/O on the SBC-11/21 board. Those routines,
discussed below and in Section 6.4, do not require the OTS file-service routines,
the ACP, or the YF driver.

For more information on setting up your application software for parallel I/O, see Chapter
4 of the MicroPower/Pascal Run-Time Services Manual, Section 6.8 of this manual, and the
material on building system processes in the MicroPower/Pascal system user’s guide for your
host system.

When a module that contains Pascal I/O procedure invocations is built into your application,
Pascal OTS routines for file service are linked to the module. The OTS file routines perform all
Pascal operations on files, including file opening, input, and output. In particular, they perform
the necessary low-level processing of high-level operations such as OPEN and WRITE. Thus, the
basic mechanisms of MicroPower/Pascal I/O—the sending of request packets to driver or ACP
queue semaphores, the dispatching of interrupts, and the signaling of reply semaphores—are
concealed from the Pascal user.

Alternatives to using the Pascal I/O procedures for parallel I/O exist, but require more
effort. (The PIO support routines for KXT11-CA, KXJ11-CA, and SBC-11/21 applications
were mentioned previously in this section.) You can:

* Issue your own Pascal or MACRO-11 packet-level requests to the ACP and the driver,
bypassing the OTS file routines (lower-level file system access).

* [For KXT11-CA, KXJ11-CA or SBC-11/21 PIO:] Invoke Pascal routines that support non-
file-oriented parallel I/O (high-level nonfile access).

¢ Issue your own Pascal or MACRO-11 packet-level requests to the driver, bypassing the OTS
file routines, the ACP, and the Pascal support routines for nonfile I/O (low-level nonfile
access).

The following sections describe the Pascal I/O procedure interface to the parallel line drivers,
the Pascal support routines, the lower-level request/reply packet interface, the status codes that
can be returned to users of any interface, and the parallel line driver prefix files.

6-4 Parallel Line Drivers

6.3 Pascal I/0 Procedure Interface

To perform standard Pascal I/O to a parallel line, you must open a file. Opening the file
associates a Pascal file variable with a parallel controller unit. Invoke the OPEN procedure as
follows:

OPEN (filvar, °’ddcu:’, ...)
where:
¢ filvar is a Pascal file variable.

® dd is the driver identifier (XA for DRV11-], YA for DRV11, YB for DRV11-B, YF for SBC—
11/21 PIO, YK for KXT11-CA and KXJ11-CA parallel ports—KXT11-CA and KXJ11-CA
counter/timers not accessible).

® ¢ is a controller identifier (A, B, ...).
* uis a controller unit number (0, 1, ...).

For example, 'XAA1l:" would specify the second unit (1) of the first DRV11-] controller (A)
listed in the XA driver prefix file.

Note

The DRV11 (YA), SBC-11/21 PIO (YF), and KXT11-CA and KXJ11-CA PIO
(YK) drivers do not support multiple controllers; specify A for the controller
identifier.

The number of units supported for each parallel line controller is shown below:

Controller Number of Units Numbering
DRV11-] [For read/ 0 through 3 for

write:] 1-4 ports A through D

[For packet- 4 through 15 for port A

level Enable/ lines 0 through 11

Disable:] 1-12
DRV11 1 0
DRV11-B 1 0
SBC-11/21 PIO 1-2 0 and 1 for ports

» A and B

KXT11-CA or 1-6 0 through 2 for ports A through
KXJ11-CA PIO C and 3 through 5 for timers 1

through 3 (timer units cannot be
accessed by Pascal I/O procedures)

The number of units actually configured for each controller and their unit
numbers must be specified in a parallel line driver prefix file.

The OPEN causes the Pascal OTS to send a packet-level open request to the ACP, which returns
a unit number and a driver request semaphore ID to the OTS. Subsequent I/O requests are
sent directly to the driver by the OTS, with no further ACP involvement.

Parallel Line Drivers 6-5

In carrying out subsequent input, output, CLOSE, or PURGE operations on parallel line controller
units, the Pascal OTS uses the following packet-level driver functions:

® Read Logical (IF$RDL)
® Write Logical (IF$WTL)
* (Close (IF$CLS)
* Purge (IF$PRG)

The appropriate request packets are sent to the driver only when necessary for completion of
a user-requested operation. For example, a READ or GET operation that requires more data
than what remains in the buffers from previous input operations causes the OTS to issue one
or more Read Logical (IFSRDL) requests to the parallel line driver. Other Pascal statements
unconditionally cause the OTS to issue send requests; examples are BREAK, which generates
a Write Logical (IFSWTL), and CLOSE, which generates a Close (IF$CLS) request (normally
preceded by a Write Logical, unless BREAK immediately precedes CLOSE).

Pascal Get and Set Characteristics functions that report or alter the characteristics or status of
supported parallel interfaces are provided in the file GETSET.PAS on the MicroPower/Pascal
distribution kit. Those functions issue Get and Set Characteristics (IF$GET and IF$SET) request
packets to the driver.

The following packet-level driver functions cannot be performed with normal Pascal I/O
statements or GETSET functions: ’

e XA Enable (IFSENA)

® XA Disable (IF$DSA)

®* YK Set Pattern (IF$YKP)

e YK DMA Read (IF$YKR)

* YK DMA Write (IF$YKW)

* YK DMA Complete (IF$YKE)
®* YK Set Timer (IF$YKS)

® YK Clear Timer (IF$YKU)

® YK Read Timer (IF$YKT)

To perform those functions, use Pascal support routines (available for KXT11-CA or KXJ11-CA
PIO only), use the request/reply packet interface directly, or write Pascal procedures that take
a user-specified file variable (or queue semaphore ID) and send the appropriate request packets
to the driver. (The Get/Set Characteristics procedures in GETSET.PAS demonstrate the last
approach.)

6-6 Parallel Line Drivers

6.4 Pascal Support Routines

The following support routines, written in Pascal and independent of the file system, provide
alternative high-level interfaces to the SBC-11/21 and KXT11-CA or KXJ11-CA PIO hardware:

* SET_PIO_MODE procedure
e READ_PIO function

e WRITE_PIO procedure

¢ YK_PORT_READ function

¢ YK_PORT_WRITE function
* YK_SET_PATTERN function
* YK_SET_TIMER function

¢ YK_READ_TIMER function
e YK_CLEAR_TIMER function

The first three routines support SBC-11/21 8255 PIO in noninterrupt mode and are independent
of the SBC-11/21 PIO driver. They are used to set up and access the PIO ports directly from
a user process, using programmed 1/0.

The remaining routines support KXT11-CA or KXJ11-CA PIO via the YK driver. The KXT11-CA
and KXJ11-CA routines use all the YK packet-level functions, except the following:

* Get Characteristics (IF$GET)
¢ DMA Read (IF$YKR)

¢ DMA Write (IF$YKW)

* DMA Complete (IF$YKE)

Note

A non-file-oriented’ Get Characteristics function is provided in the distribution
kit file GETSET.PAS.

See Section 6.4.2.4 for details on the use of a KXT11-CA/KX]J11-CA parallel
port for DMA transfers.

The following sections describe the Pascal functions for non-file-oriented parallel I/O on the
SBC-11/21 and the KXT11-CA or KXJ11-CA.

Parallel Line Drivers 6-7

6.4.1 SBC-11/21 PIO Support Routines

The SBC-11/21 PIO routines allow you to set up and access the SBC-11/21 PIO ports directly
from a user process, with no driver involvement. (This differentiates those routines from most
MicroPower/Pascal support routines, which send packet-level requests to drivers.) The routines
support the SBC-11/21 on-board 8255 PIO in mode 0 (noninterrupt mode). In mode 0 there
are two 8-bit data ports (A and B) and a third dual 4-bit port (C). The lower half of port C is
permanently connected as an input. Ports A and B and the upper half of port C can be used
as either input or output, as determined by wire-wrap jumpers on the SBC-11/21 board.

The following files on the MicroPower/Pascal distribution kit are required for using the functions:

Name Description
YFDRVP.PAS SBC-11 /21 noninterrupt PIO routine source module
YFDRVIL.PAS SBC-11/21 noninterrupt PIO routine include file

To use a source module, you must compile it and then merge it with the program at user-process
build time. The associated include file must be included in the program at compile time.

The following SBC-11/21 data structures, defined in YFDRVILPAS, are referenced throughout
the rest of this section:

TYPE
port_sel

(port_a, port_b, port_c_low, port_c_high);

[}

mode_sel = (Ainput_Binput_Cinput, Ainput_Binput_Coutput,

Ainput_Boutput_Cinput, Ainput_Boutput_Coutput,
Aoutput_Binput_Cinput, Aoutput_Binput_Coutput,
Aoutput_Boutput_Cinput, Aoutput_Boutput_Coutput);

6.4.1.1 SET_PIO_MODE

The SBC-11/21 procedure SET_PIO_MODE sets one of eight modes, each of which represents
a different combination of input/output settings for the three ports.

The syntax for calling the procedure is as follows:

SET_PIO_MODE (mode);

Parameter Type Description

mode mode_sel Mode selected—one of the eight possible combinations of
input/output settings for ports A, B, and C (high)

6.4.1.2 WRITE_PIO
The SBC-11/21 procedure WRITE_PIO writes a value to a user-specified port.

6-8 Parallel Line Drivers

The syntax for calling the procedure is as follows:

WRITE_PIO (port, outdat);

Parameter Type Description
port port_sel Port selected
outdat INTEGER Value to be written—must be in 8-bit or 4-bit value range

as appropriate for the port

6.4.1.3 READ_PIO

The SBC-11/21 function READ_PIO reads a user-specified port and returns a value of type
INTEGER.

The syntax for calling the function is as follows:

READ_PIO (port)

Parameter Type Description

port port_sel Port selected

6.4.2 KXT11-CA/KXJ11-CA PIO and Counter/Timer Support Routines

Each KXT11-CA or KXj11-CA PIO routine allocates an I/O packet, fills it with information
based on the function parameters, and sends it to the YK driver.

If a reply semaphore is provided in the call, the function returns immediately after sending the
driver request. When the operation is complete, the driver sends a standard device driver reply
via the specified semaphore. (The driver reply is described in Section 6.5.) The completion
status returned in the reply packet must be processed by a routine that is waiting on the
semaphore. For PIO read/write operations, the routine that waits on the semaphore must also
process the actual-length information in the packet.

If no reply semaphore is provided, the function waits for the driver reply before returning to
the caller.

The KXT11-CA and KXJ11-CA PIO functions allow you to issue multiple requests for a single
KXT11-CA or KX]J11-CA parallel port. Thus, you can set up a double-buffering type of operation,
with a second buffer starting to be filled/sent while a first buffer is returned/acknowledged to
the caller.

In addition, pattern-matching commands can be issued in conjunction with the PIO transfer
commands. For example, consider a case in which a buffer is to be filled until a special
character is received and then a second buffer is to be filled until a different special character
is received. The function calls to accomplish are a YK_SET_PATTERN, a YK_PORT_READ,
a second YK_SET_PATTERN, and a second YK_PORT_READ. All four calls can be issued
without waiting for a reply from any of them. You can continue processing until signaled that
the first portion has been received; then the device driver can continue receiving the second
portion while you are processing the first.

Parallel Line Drivers 6-9

The following files on the MicroPower /Pascal distribution kit are required for using the functions:

Name Description

YK.PAS KXT11-CA and KXJ11-CA PIO and counter/timer function
source module

YKINC.PAS KXT11-CA and KXJ11-CA PIO, C/T function and driver

packet include file

To use a source module, you must compile it and then merge it with the program at user-process
build time. The associated include files must be included in the program at compile time.

The following data type from YKINC.PAS is referenced throughout this section; it defines the
YK unit numbers for the support routine interface:

TYPE
UNIT_NUMBER = (
PORT_A , { Port A }
PORT_B , { Port B }
PORT_C , { Port C }
TIMER_1 , { Timer 1 }
TIMER_2 , { Timer 2 }
TIMER_3) ; { Timer 3 }

6.4.2.1 YK_PORT_READ

The YK _PORT_READ function transfers data from a parallel port to a KXT11-CA or KX]J11-CA
buffer and returns a completion-status value of type UNSIGNED. See Section 6.6 for a list of
completion-status values.

The syntax for calling the function is as follows:

YK_PORT_READ (port_num, buffer, byte_count, reply, match_rst, seq_num)

Parameter Type Description.
port_num UNIT_NUMBER Number of port to be read from.
VAR buffer UNIVERSAL Data buffer address; if omitted, a “signal

semaphore only” operation is implied, and the
byte count must be 0.

VAR byte_count UNSIGNED Number of bytes to be read. If in pattern-
match mode, the count specifies an upper limit
instead of an actual count. If the limit is
reached before the pattern is matched, an error
is reported. When the pattern is found, the
read terminates, and BYTE_COUNT is set to
the actual number of bytes read. In pattern-
match mode, the last byte in the buffer will be
the one that matched. BYTE_COUNT is not
returned if the reply parameter is provided.

6~10 Parallel Line Drivers

Description.

Parameter Type

reply STRUCTURE_DESC_PTR
match_rst BOOLEAN

seq_num UNSIGNED

Optional pointer to an initialized reply queue
semaphore descriptor; default is NIL.

Optional parameter that, if TRUE, causes a
previously set pattern mode to be reset at the
end of the read command; default is FALSE.

Optional user-defined word value, returned
unmodified in driver reply packet; default is
0 (0 is returned in reply packet).

If no reply parameter is provided, the function sets the parameter BYTE_COUNT to the count
of bytes transferred by the operation. Otherwise, the count of bytes transferred is returned in
the actual-length field of the YK driver reply packet.

6.4.2.2 YK_PORT_WRITE

The KXT11-CA/KXJ11-CA function YK_PORT_WRITE transfers data from a KXT or KX]J buffer
to a parallel port and returns a completion-status value of type UNSIGNED. See Section 6.6 for

a list of completion-status values.

The syntax for calling the function is as follows:

YK_PORT_WRITE (port_num, buffer, byte_count, reply, match_rst, seq_num)

Parameter Type Description
port_num UNIT_NUMBER Port number to be written to.
VAR buffer UNIVERSAL Data buffer address.

VAR byte_count UNSIGNED

reply STRUCTURE _DESC_PTR
match_rst BOOLEAN
seq_num UNSIGNED

Number of bytes to be written. If pattern-
match mode is enabled on at least one of the
output lines, the byte count specifies an upper
limit instead of an actual length. If the limit
is reached before the pattern is matched, an
error is reported. When the pattern is found,
the write terminates, and BYTE_COUNT is
set to the actual number of bytes that were
written. BYTE_COUNT is not returned if the
reply parameter was provided.

Optional pointer to an initialized reply queue
semaphore descriptor; default is NIL.

Optional parameter that, if TRUE, causes a
previously set pattern mode to be reset at the
end of the write command; default is FALSE.

Optional user-defined word value, returned
unmodified in driver reply packet; default is
0 (0 is returned in reply packet).

Parallel Line Drivers 6-11

If no reply parameter is provided, the function sets the parameter BYTE_COUNT to the count
of bytes transferred by the operation. Otherwise, the count of bytes transferred is returned in
the actual-length field of the YK driver reply packet.

6.4.2.3 YK_SET_PATTERN

The KXT11-CA/KXJ11-CA function YK_SET_PATTERN controls the pattern-recognition fea-
tures of the peripheral processor. Specifically, it sets pattern-match mode on parallel port A or
B. The setting of pattern-match mode affects subsequent operation of the YK _PORT_READ and
YK_PORT_WRITE functions. In pattern-match mode, a read or a write operation terminates
only when a specified pattern is found in the data or when the user-imposed search limit in
the read or write request (BYTE_COUNT) is reached.

The YK_SET_PATTERN function returns a completion-status value of type UNSIGNED. See
Section 6.6 for a list of completion-status values.

To use pattern matching, you must specify “PAT=YES” for port A or B in the prefix file
port-configuration (YKCP$) macro.

The syntax for calling the function is as follows:

YK_SET_PATTERN (port_num, mode, reply, patp, patt, patm, pt_buf, seq_num)

Parameter Type Description
port_num UNIT_NUMBER Port number.
mode PAT_MOD_ENTRY Pattern modifier bits; AND_MODE, the de-

fault, indicates that all specified pattern bits
must match. OR_MODE indicates that
only one of the specified pattern bits must
match. WAIT_MATCH sets wait-for-pattern-
match mode. PAT_RESET causes the pattern
mode to be reset after a command. Note that
OR_MODE and AND_MODE are the only
modifiers that are mutually exclusive; all other
combinations are valid.

reply STRUCTURE_DESC_PTR Optional pointer to an initialized reply queue
semaphore descriptor; default is NIL.

6-12 Parallel Line Drivers

Parameter

Type

Description

patp
patt
patm

pt—buf

seq—num

BYTE_RANGE
BYTE_RANGE
BYTE_RANGE

YKBUE_PT

UNSIGNED

The PATP, PATT, and PATM parameters col-
lectively define the match pattern for the spec-
ified port. Each bit (0-7) in a PATP, PATT,
or PATM specification corresponds to a bit (0-
7) in the match pattern; that is, bit n of the
match pattern is defined by the nth bits of
PATP, PATT, and PATM. For each match pat-
tern bit, PATP supplies pattern polarity infor-
mation; PATT, pattern transition information;
and PATM, pattern mask information. For de-
tails on the significance of PATP/PATT/PATM
bit combinations, see the table and the example
below. The default value for each parameter
is 0.

Optional buffer pointer used only in wait_match
mode; default is NIL. If omitted for wait_match
mode operation, one byte of data—two if ports
are linked—will be returned in first word of
function-dependent portion of YK driver reply
packet. '

Optional user-defined word value, returned
unmodified in driver reply packet; default is
0 (0 is returned in reply packet).

The PAT_MOD_ENTRY, PATTERN_MODS, and YKBUE_PT data types, from YKINC.PAS, are
shown below:

TYPE

Pattern_mods = (

nu_3 ,
nu_4 ,

pat_reset ,
and_mode ,
or_mode ,
wait_match) ;

A A A

Pattern Function Modifiers }
- not used }

- not used }

- reset pattern at end }
AND pattern mode }

OR pattern mode }

- Wait until match mode }

Pat_mod_entry = PACKED SET OF Pattern_mods ;
YKBUF_PT = ~ UNSIGNED ;

{ data buffer pointer }

Parallel Line Drivers 6-13

The pattern specification for each bit of the match pattern is defined as follows:

PATP PATT PATM Event Recognized
X 0 0 Bit masked off—no event recognized
X 1 0 Any transition
0 0 1 Logical 0 state
1 0 1 Logical 1 state
0 1 1 Logical 1 to logical 0 transition
1 1 1 Logical 0 to logical 1 transition
‘ Note
Do not specify more than one bit to detect transitions if you specify

AND_MODE.

For example, to set a pattern of bits 0 to 3 =1 AND bits 5 and 6 = 0 AND bit 7 = logical 1 to
logical 0 transition AND bit 4 ignored, you would pass the following bits in the PATP, PATT,
and PATM parameters: '

=
=

PATP PATT PATM

NN ok WO RO
O O O O RV =R =
- O O O O O <© o
[I e S S o B R L

The following function call would set the desired pattern:

YK_SET_PATTERN (port_num := PORT_A,

mode := [and_mode],
patp := %0°17’,
patt := %0°200°,
patm := %0°357°)

6-14 Parallel Line Drivers

6.4.2.4 KXT11-CA/KXJ11-CA PIO DMA Process

If you want to perform DMA transfers via a KXT11-CA/KX]J11-CA parallel port, you must first
set up and send a DMA Read or a DMA Write request packet to the YK driver and wait for
the reply. If the reply indicates normal status, you then send a DMA transfer command to the
DMA (QD) driver; otherwise, you report a software exception. You must wait for each request
to complete, since only one PIO DMA operation can be in progress at a time. After the DMA
transfer completes, you send a DMA Complete request to the YK driver, which unlocks the
queue of requests for that port.

Observe the following guidelines when performing DMA I/0O on a KXT11-CA or KX]J11-CA
parallel port:

* Use KXT11-CA or KXJ11-CA DMA channel B (QD unit 1) for the QD requests. Channel
B is linked to the timer/counter (KXT11-CA or KXJ11-CA PIO) chip when you install
the jumper to configure the DMA request lines. (See Section 6.3.12 of the SBC-11/21
Single-Board Computer User’s Guide for details on installing the jumper or see the KXJ11-CA
Single-Board Computer User’s Guide.)

* Specify “DMA=YES” for the KXT11-CA or KXJ11-CA PIO port in the YK prefix file port-
configuration (YKCP$) macro.

e Use KXT11-CA/KXJ11-CA PIO port A (YK unit 0). Line C1 is connected to the DMA
request line and therefore is not available for handshake for port B. (This means that port
B, if used, must be configured as a bit port.) In the prefix file, line C1 must be set up as an
inverted output so that it works correctly with the DMA request line.

e In the QD transfer request, specify wait-for-request mode and byte mode. Also, specify
the address of the data CSR for YK port A as 177033 (octal), not 177032 (octal). This is
necessary because the DMA chip addresses bytes in memory in a way different from typical
LSI-11 hardware; the chip’s high-order byte is LSI-11’s low-order byte, and vice-versa.
Specify that the data CSR for YK port A is in the I/O page (DMA$ IO option). Use an
even address for the other address