
Positional
Device Interface
Programmer's Manual

Order No. AA-ED06A-TH

November 1985

This manual describes the Positional Device Interface
(POI), a kit that allows you to write applications that
use devices such as mice, bitpads, and touch screens.

REQUIRED SOFTWARE: Host Tool Kit V3.0
or PRO/Tool Kit V3.0

OPERATING SYSTEM: P/OS V3.0

DIGITAL EQUIPMENT CORPORATION
_Maynard. Massachusetts 01754-2571

First Printing, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications
Digital Equipment
copied or used in
manufacture or sale

and drawings, herein, are the property of
Corporation and shall not be reproduced or
whole or in part as the basis for the
of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MAS SB US Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

!IDmDDIDTM PROSE Work Processor
PROSE PLUS

CHAPTER 1

1.1
1.1.1
1.1.2
1.1. 3
1.2
1.2 .1
1. 2. 2
1. 2. 3
1.2. 4
1. 2. 5
1. 2. 6

CHAPTER 2

2.1
2 .1.1
2 .1.2
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.4
2.4.1
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2

CHAPTER 3

3.1
3.2
3. 3
3.4
3.5
3.6
3.7

CONTENTS

PREFACE vii

INTRODUCTION TO THE POSITIONAL DEVICE INTERFACE

COMPONENTS OF THE POI KIT
The Device Driver
The Applications
The Positional Device Library (POL)

USING THE POI KIT
Step 1: Install Applications
Step 2: Load Driver and Set Device Type
Step 3: Connect Your Device
Step 4: Run the Test Application .
Step 5: Run the Sketchpad Application
Step 6: Produce Your Own Application ..

DEVELOPING APPLICATIONS THAT USE POSITIONAL
DEVICES

1-2
1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-5
1-5
1-6

MAPPING DEVICE COORDINATE UNITS 2-1
Maintaining 1:1 Aspect Ratio . 2-2
Mapping Coordinate Units to Terminal Screen 2-3

SPECIFYING DEVICE IDENTIFICATION 2-5
Device Class 2-5
Device Subclass 2-5
Port 2-6
Using Zero in the Device Identification 2-9

HANDLING BUTTON DATA 2-10
CALLING THE LIBRARY ROUTINES .•...... 2-10

Using the POL Global Entry Point 2-10
LINKING THE PROGRAM 2-11

Step 1: Modify Command File .. 2-11
Step 2: Modify Descriptor File (Optional) 2-12

RUNNING THE PROGRAM 2-13
If Program Uses Cluster Library 2-14
If Using Certain Graphics Software . 2-14

CALLING THE LIBRARY ROUTINES

ATTPD--ATTACH POSITIONAL DEVICE
CNMAST--CANCEL MOUSE AST
DETPD--DETACH POSITIONAL DEVICE
EVNCAN--CANCEL READ ON EVENT ..
GETDVC--GET DEVICE COORDINATES
GETNAM--GET DEVICE NAME
PDL--REQUEST POL OPERATION

iii

3-2
3-4
3-5
3-6
3-7
3-8
3-9

3.8
3.9
3.10
3.11
3.11.1
3 .11. 2
3.11.3
3.11.4
3 .11. 5

3.11.6

3 .11. 7
3.11.8
3.11.9

3.11.10
3.11.11
3.11.12
3.11.13
3.12
3.13

CHAPTER 4

4.1
4.2
4. 3
4.4

APPENDIX A

A.1
A. 2
A. 3
A. 4
A. 5
A. 6
A. 7
A. 8

APPENDIX B

B.1
8.2
8.3

REDCNF--READ CONFIGURATION ..
REDEVN--READ ON EVENT
REDRPT--READ POSITIONAL REPORT
SETCHR--SET DEVICE CHARACTERISTICS

SETCHR BAUD--Set Baud Rate
SETCHR CLICK--Set Touchscreen Click
SETCHR DRATE--Set Device Data Rate .
SETCHR
SETCHR
Aspect
SETCHR

. 3-11
3-14

. 3-18
.. 3-20

. 3-23

. 3-25
3-27

. 3-28 IDA--Set Input Device Area
IDAASP--Set Input Device Area/1:1
Ratio 3-30
LNCHR--Set Serial Line

Characteristics
SETCHR ORIG--Set Device Origin
SETCHR PORT--Set Device to Port
SETCHR PROD--Position a Relative-Oriented
Device
SETCHR RESET--Reset Positional Device
SETCHR RESOL--Set Coordinate Resolution
SETCHR RPMOD--Set Report Mode
SETCHR SCALE--Set Touchscreen Scaling

SPMAST--SPECIFY MOUSE AST
WRTDEV--WRITE RAW DATA TO DEVICE

SAMPLE PROGRAMS

. 3-32
3-34
3-35

. 3-36
3-37

. 3-38
3-40
3-42

. 3-43
3-46

4-1
4-4
4-7

FORTRAN-77 .
PASCAL . . .
BASIC-PLUS-2
MACR0-11 4-11

DEVICES YOU CAN USE WITH THE PDI

SUMMAGRAPHICS MM 961 AND MM 1201 DIGITIZERS
GTCO MICRO DIGI-PAD
SUMMAGRAPHICS SUMMAMOUSE .
MICROSOFT SERIAL MOUSE .
DECTOUCH (VRTSl-A) . . .
SEIKO DT-3100 TABLET . .
SUMMAGRAPHICS BIT PAD ONE
SUMMAGRAPHICS BIT PAD TWO

USING THE SKETCHPAD DEMONSTRATION APPLICATION

THE SCREEN . . .
THE COMMAND MENU
THE PALETTE

iv

A-2
A-3
A-3
A-4
A-4
A-5
A-6
A-9

B-2
B-3
B-5

APPENDIX C GLOSSARY

INDEX

FIGURES

TABLES

2-1 Square Input Device Area 2-1
2-2 Summagraphics MM961 Input Device Area 2-2
2-3 Coordinate Units of Terminal Screen 2-3
2-4 Simple Coordinate Units Mapping 2-3
2-5 Alternative Coordinate Units Mapping 2-4
2-6 Device Identification Parameter 2-5
2-7 DECtouch Ports 2-7
2-8 Sample Command (.CMD) File 2-12
2-9 Sample Descriptor (.ODL) File . 2-13
A-1 Wiring for the Seiko Tablet A-5
B-1 Screen Display for Sketchpad Application B-2

2-1
2-2

2-3

2-4

3-1
3-2
3-3
3-4
3-5
3-6

3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14
A-1
A-2
A-3
B-1

Device Classes 2-6
Values for Dev id Parameter When Using
DEC touch Ports 2-7
Values for Dev id Parameter When Using XKO: or
TT2: . .
Combinations of Class, Subclass, and Port
Using Zero
Format of GETDVC Buffer
Request Values for POI Operations
Format of Configuration Data
Stack Values Upon AST Entry, REDEVN
Values for SETCHR Characteristics

. . 2-8

2-9
3-7

. . 3-10
3-11

.. 3-17
. 3-22

Data Values for BAUD Characteristic (Serial
On 1 y) • • • • • • • • • • • • • • • • 3 - 2 4
Data Values for IDA Characteristic 3-29
Data Values for IDA Characteristic 3-30
Data Values for LNCHR Characteristic (Serial
Only) 3-32
Data Values for ORIG Characteristic 3-34
Data Values for PROD Characteristic 3-36
Data Values for RESOL Characteristic . 3-38
Data Values for RPMOD Characteristic . 3-41
Stack Values Upon AST Entry, SPMAST 3-45
Bit Pad One Switch Settings for XKO: or TT2: A-7
Bit Pad One Switch Settings for DECtouch Port A-8
Bit Pad Two Switch Settings for Any Port . A-9
Sketchpad Commands from Command Menu . . B-3

v

PREFACE

Document Objectives

After reading this manual, you will be able to use the Positional
Device Interface kit to:

• Connect various positional devices to the Professional
computer and install the software that drives them.

• Run several test programs to demonstrate the operation of a
positional device.

• Write your own applications that use positional devices.

Intended Audience

You should be an experienced programmer who is familiar with the
procedures described in the Tool Kit User's Guide and in your
language-specific manuals for developing applications to run on
the Professional computer.

Structure of This Document

This document contains the following chapters and appendixes:

Chapter 1, Introduction to the Positional Device Interface,
provides general information about the kit. The chapter
describes the components of the kit and gives a step-by-step
description of how to install and test the required software.

Chapter 2, Developing Applications that Use Positional Devices,
shows in detail how to write your application. Included are
details on writing, linking, and running your program.

Chapter 3, Calling the Library Routines, is a reference chapter
that describes each of the routines you can call from the POI
Library.

Chapter 4, Sample Programs, provides complete examples for each
of the programming languages you can use.

vii

Appendix A, Devices You Can Use with the PDI, presents basic
information on how each device operates and describes how to
connect each device to the Professional. The appendix also lists
the names and addresses of the device manufacturers.

Appendix B, Using the Sketchpad Demonstration Application, shows
how to use one of the demonstration applications that comes with
the PDI kit.

Associated Documents

For general information on writing applications
Professional computer, see the Tool Kit User's Guide.

for the

For information on the DECtouch touch screen monitor, see the
PRO/DECtouch Software User's Guide (and the VRTSl-A Color/Touch
Screen Monitor Installation/Owner's Guide.

For specific information regarding the programming language you
are using, refer to the following manuals:

• BASIC-PLUS-2 Documentation Supplement
BASIC-PLUS-2 documentation set.

and

• Professional Tool Kit FORTRAN-77
Documentation Supplement and
documentation set.

Installation
the PDP-11

the PDP-11

Guide and
FORTRAN-77

• The Tool Kit PASCAL documentation set: User's Guide,
Language Reference Manual, and Installation Guide and Release
Notes.

• PDP-11 MACR0-11 Language Reference Manual

Acknowledgements and Disclaimer

Copyright of Atari Corporation:

ATARI

Registered trademarks of Summagraphics Corporation:

BIT PAD ONE
BIT PAD TWO
SUMMAMOUSE
MM (DIGITIZERS)

viii

Registered trademarks of GTCO Corporation:

DIGI-PAD
MICRO DIGI-PAD

Registered trademark of The Microsoft Corporation:

MICROSOFT

This document describes several positional devices manufactured
and distributed by independent vendors. These descriptions (in
some cases including installation instructions) are provided for
the reader's information and convenience only. They are based
upon information provided by the vendors.

Digital Equipment Corporation assumes no responsibility for the
accuracy of the descriptions, for any changes that vendors may
make that affect the descriptions of their products, nor for the
quality or performance of the products.

Further, Digital Equipment Corporation makes no representation
that the use of these products with this software or with a
Professional computer as described in this document will not
infringe existing or future patent rights. Neither does Digital
Equipment Corporation imply the grant of a license to make, use,
or sell any of the products described herein.

Also, this document does not imply that the equipment as used
with this software or with a Professional computer will meet any
governmental regulations or laws under which the positional
devices or connected equipment may fall.

Finally, by describing certain positional devices that
used with this software or with a Professional computer,
Equipment Corporation does not imply that the described
are the only positional devices that can be used.

can be
Digital
devices

For additional information on any of these devices, please
contact the vendor directly.

ix

Conventions and Terminology Used In This Document

The manual uses the following conventions and terminology:

Convention/Term

[optional]

UPPERCASE

lowercase

red

Tool Kit

Host Tool Kit

PRO/Tool Kit

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters indicate that you
should type the word or letter exactly as
shown.

Lowercase words and letters indicate that you
should substitute a word or value of your
own. Usually the lowercase word identifies
the type of substitution required.

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter ...)

A vertical ellipsis means that not all of the
statements are shown.

Interactive input appears in red.

This general term refers to the software you
use to develop applications to run on a
Professional computer.

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

Also, numeric values are decimal unless specified otherwise.

x

CHAPTER 1

INTRODUCTION TO THE POSITIONAL DEVICE INTERFACE

The Positional Device Interface (POI) is software that enables
you to write applications that use a mouse, digitizing tablet,
touch screen, or other positional device. A positional device is
hardware that you use for input. Its main feature is the ability
to transmit information about location as input to the computer.

The POI software operates with positional devices connected to
the Professional's Communication Port or Printer Port.
Additionally, the software supports devices connected to ports
located on the DECtouch Touch Screen Monitor.

You can connect the following positional devices to the
Communication Port, the Printer Port, or a DECtouch port:

• GTCO Digi-Pad 5

• GTCO Micro Digi-Pad

• Summagraphics MM 961

• Summagraphics MM 1201

• Summagraphics SummaMouse

• Microsoft Serial Mouse

• Seiko DT-3100 Tablet

• Summagraphics Bit Pad One and Bit Pad Two

In addition, POI supports the following devices only when they
are connected to ports located on the DECtouch monitor:

1-1

• LM200 Quadrature Mouse

• Atari(c)-compatible Joystick

Appendix A describes each of the devices that you can use with
the POI software.

The remainder of this chapter describes the components of POI and
presents an overview of how you use them.

1.1 COMPONENTS OF THE POI KIT

POI comes as a kit that consists of the following:

• A device driver

• Three applications

• A library of routines to access the driver

Note that the kit does not supply any positional devices. You
must supply these yourself.

The following sections describe each component of the kit.

1.1.1 The Device Driver

The driver is called DTORV.TSK. It comes with the operating
system and is loaded by the POI Setup Application.

1.1.2 The Applications

The PROORIVERS diskette, distributed with P/OS, contains the
following applications:

• Positional Device Setup

This application allows you to load the driver into memory
and indicate which positional device you will connect. This
application is described in Section 1.2.2.

1-2

COMPONENTS OF THE POI KIT

• Test the PDI

This application simply attaches a positional
reads and displays data transmitted from
Section 1.2.4 describes Test the POI.

• PDI Sketchpad

device, then
that device.

The Sketchpad is a sample application that allows you to use
a positional device to draw simple pictures on the terminal
screen. Sketchpad has a crosshair cursor that you can move
across any of three screen areas: Command Menu, Drawing
Area, and Color Palette. Appendix B describes the Sketchpad
application.

1.1.3 The Positional Device Library (POL)

The Positional Device Library (POL) comes as a cluster library
with the operating system, or as an object module with the Tool
Kit. The library contains routines that call the POI. These
routines enable you to write applications that use positional
devices.

You can call the library routines from the following Tool Kit
programming languages:

e BASIC-PLUS-2

e FORTRAN-77

e PASCAL

e PDP-11 MACR0-11

For detailed, language-specific information, refer
appropriate language manual listed in the Preface.

1.2 USING THE POI KIT

to the

To get started using the kit, perform the steps outlined in the
following subsections.

1-3

USING THE POI KIT

1.2.1 Step 1: Install Applications

Install the applications from the diskette PRODRIVERS, which
comes with P/OS. Use the normal P/OS installation procedure.

1.2.2 Step 2: Load Driver and Set Device Type

To load the driver and set the device type, you must run the
Positional Device Interface setup application. This application
automatically loads the POI driver if it has not previously been
loaded. Once loaded, the PDI driver remains in memory until you
reboot your Professional.

The system displays a Positional Device Interface Setup Menu.
The options displayed on this menu are as follows:

• Feature Selection

This option provides the ability to set up your positional
device configuration. For example, you can assign the
current port (when DECtouch is not present), force the POI
system start up at boot time, change mouse scaling, and vary
the POI's button support. Note that if DECtouch is
connected, you cannot assign the Communication Port or
Printer Port as the current port.

• DECtouch Port Setup

With this option, you can assign different devices to the
OECtouch ports.

• Communication Port Setup

When the Communication Port is enabled, you can use this
option to assign different devices to the Communication Port.
This option also allows you to set the default postitional
device for the Communication Port.

• Printer Port Setup

When the Printer Port is enabled, you can use this option to
assign different devices to the Printer Port. This option
also allows you to set the default postitional device for the
Printer Port.

1-4

USING THE PDI KIT

• Reset POI

This option puts the POI system into its default state.

Each submenu provides HELP.

To set the device type for the device you will be using, choose
the appropriate option for your PDI configuration.

1.2.3 Step 3: Connect Your Device

You must connect your positional device to the desired port
before running any application that uses a positional device.
This allows the application to initialize the device with a
startup sequence.

1.2.4 Step 4: Run the Test Application

The test application is designed to simply attach and read data
from a positional device.

The application continuously updates a display showing:

• Coordinates (x and y) indicating the current location of the
device

• Status of one button

• Device ID of the device reporting the data

• Status block returned from the driver

See Chapter 2 for descriptions of the status codes.
code of 1 indicates success.

You can press any key to exit this application.

1.2.5 Step 5: Run the Sketchpad Application

A status

Sketchpad is an application that illustrates some of the
capabilities of positional devices when used with the
Professional's graphics software. Appendix B describes how to
use this application.

1-5

USING THE PDI KIT

1.2.6 Step 6: Produce Your Own Application

Using the library routines
either the PRO/Tool Kit
applications in any of the
fully described in Chapter

in the Positional Device Library, and
or Host Tool Kit, you can write

supported languages. This step is
2.

1-6

CHAPTER 2

DEVELOPING APPLICATIONS THAT USE POSITIONAL DEVICES

This chapter provides important information that you need to
write an application that uses a positional device.

2.1 MAPPING DEVICE COORDINATE UNITS

During execution, your program reads data as input from a
positional device. For each positional device, the PDI driver
defines an area from which the device can send valid input. We
call this area the input device area.

For example, the Microsoft Mouse has a square input device area
that measures 4096 by 4096 units. That is, the driver reports
movements of the mouse in 4096 equal units in each direction.
Figure 2-1 illustrates this input device area.

~ x-axis ~

0 4095

i
y-axis

l
4095

Figure 2-1: Square Input Device Area

2-1

Not all input
defines the
4096 by 2560.
the tablet.
MM961. Points

1

MAPPING DEVICE COORDINATE UNITS

device areas are square, however. For example, PDI
input device area for the Summagraphics MM961 to be
This rectangle corresponds with the active area on
Figure 2-2 shows the input device area for the
extending below +2559 on the y-axis are unused.

~ x-axis ---?

0 4095

y-axis 2559

J
unused

4095

Figure 2-2: Summagraphics MM961 Input Device Area

2.1.1 Maintaining 1:1 Aspect Ratio

The aspect ratio of the input device area is a ratio between the
size of the units on the x-axis and the size of the units on the
y-axis. Maintaining an aspect ratio of 1:1 means that units on
both axes are equal in size. Consequently, the positional device
always reports the same number of units for the same distance
moved in either direction.

If the movement of one inch along the x-axis equals ten units,
then movement of one inch along the y-axis also equals ten units.
The default settings for PDI guarantee that this is always true.

To maintain the 1:1 aspect ratio, PDI by default defines the
length of the x axis to be 4096 units, and adjusts the length of
the y-axis according to the proportions of the positional
device's active area. If the input device area is square, then
it measures 4096 by 4096. If the input device area is not
square, then it measures 4096 by n, where n is calculated by POI.

2-2

MAPPING DEVICE COORDINATE UNITS

2.1.2 Mapping Coordinate Units to Terminal Screen

Once your program has read input data from the input device area,
it will likely transmit this data as output to the terminal
screen. However, the coordinate units of the input device area
and the terminal screen are different--the terminal screen
measures 960 by 600 units. See Figure 2-3.

~x-axis ~

0 959

t
y-axis

t
599

Figure 2-3: Coordinate Units of Terminal Screen

In order for your program to correctly map input data to the
screen coordinates, you must change the coordinate units of the
input device area. While doing so, you generally should maintain
the 1:1 aspect ratio of the x- and y-coordinates.

Figure 2-4 illustrates how the coordinates of the terminal screen
appear when mapped over a square input device area. Points below
+599 in the input device area are unused.

1
y-axis 599

~
959

0

~x-axis~

Input /
Device
Area

(unused)

959

Figure 2-4: Simple Coordinate Units Mapping

2-3

0

599

Terminal
Screen

959

MAPPING DEVICE COORDINATE UNITS

To perform the mapping in your program, call the routine SETCHR
IDAASP. This routine changes the coordinates of the input device
area. It allows you to specify the low and high values along the
x-axis as well as the low value along the y-axis, while
maintaining the 1:1 aspect ratio. PDI computes the high value of
the y-axis.

For example, suppose that for the Microsoft Mouse you want to
perform the terminal screen mapping. Pseudocode follows:

DECLARE status(2),coordinate(3) INTEGER WORD ARRAY
request INTEGER WORD

request = 9.
coordinate(O)
coordinate(l)
coordinate(2)

0
959
0

request IDAASP
low bound of x-coordinate
high bound of x-coordinate
low bound of y-coordinate

CALL SETCHR (status,request,coordinate)

Because you can set the x- and y-coordinates separately, you do
not have to set the same high and low bounds for each, as long as
you maintain the 960:600 proportion of the terminal screen. For
example, the following mapping would also work:

coordinate(O)
coordinate(l)
coordinate(2)

-300
+659
-300

low bound of x-coordinate
high bound of x-coordinate
low bound of y-coordinate

CALL SETCHR (status,request,coordinate)

Figure 2-5 shows this alternative mapping.

1
y-axis 0

l
659

-300

f-- x-axis ~

Input
Device
Area

(unused)

659

Figure 2-5: Alternative Coordinate Units Mapping

2-4

-300

0

Terminal
Screen

659

SPECIFYING DEVICE IDENTIFICATION

2.2 SPECIFYING DEVICE IDENTIFICATION

The device identification is an optional two-word parameter
(devid) that appears in most of the routine~. Its primary
purpose is to allow you to specify the devices from which to read
data. Also, the PDI returns the complete device identification
value of an accessed device into the devid parameter, if
supplied. You can obtain a list of all device identification
values on the system by calling the REDCNF routine.

The devid parameter consists of three components: class,
subclass, and port. Figure 2-6 illustrates these components.

Byte
1

CLASS

SUBCLASS 1 PORT

3

Figure 2-6: Device Identification Parameter

2.2.1 Device Class

0

2

Word
0

1

Devices are grouped into classes.
similar devices, such as all
joysticks.

A device class is a
mice, all keyboards,

set of
or all

Use the device class alone to tell the POI that you want reports
from all connected devices of a similar type, such as all
connected joysticks.

The first word of the devid parameter is a bit field indicating
one of 16 possible device classes. Table 2-1 shows the classes
and the decimal codes that provide the corresponding bit mask.

2.2.2 Device Subclass

The device subclass indicates a specific device; it further
qualifies the class. For example, you can tell the PDI that you
want reports from all connected GTCO Digi-Pad graphics tablets.
Note that you must minimally use both the class and subclass to
identify a specific device--a subclass alone is not unique.

2-5

SPECIFYING DEVICE IDENTIFICATION

Table 2-1: Device Classes

Class Code (Decimal) Device Class

00 All device classes

01 Keyboard

02 Mouse

04 Graphics Tablet

08 Joystick

16 Touch screen

The subclass is an 8-bit integer located in the second word, high
byte of the devid parameter. Tables 2-2 and 2-3 show the
combinations of class, subclass, and port that you can use.

2.2.3 Port

The PD! assigns a port number to each connected device. If you
know the port to which a device is connected, you can directly
access that device by specifying the port number in the devid
parameter. Determine which ports have devices connected by
calling the REDCNF routine.

You can also use the port to distinguish between two
having the same class and subclass. For example,
identical joysticks are connected to the DECtouch
distinguish between them using the port number.

devices
if two

monitor,

Note that you cannot distinguish between the Communication Port
and the Printer Port using the port number; the value is the same
(2) for both ports. This is because you can only use one of
these ports at a time.

The port is an 8-bit integer located in the second word, low byte
of the devid parameter. Figure 2-7 illustrates the DECtouch
ports and their port numbers.

2-6

SPECIFYING DEVICE IDENTIFICATION

I -
==I I - Port 5 (RS232 Serial)

-
-

\ ______ ~ ===== =I I - Port 4 (RS232 Serial)
-

-
I I - Port 3 (LK201 Keyboard)
-
-

I I - Port 6 (Touchscreen)
-
-

- Port 7 (Parallel)

-
-

- Port 8 (Parallel)

-

Figure 2-7: DECtouch Ports

Table 2-2 shows combinations of class, subclass, and port for
each device that can be connected to a DECtouch port. All values
shown are decimal.

Table 2-2: Values for Devid Parameter When Using DECtouch Ports

Class Subclass

0 0

1 1

Port

0

3

Description

All connected devices
(ATTPD and DETPD only)

LK201 keyboard

2-7

SPECIFYING DEVICE IDENTIFICATION

Class Subclass Port Description

2 2 7 or 8 LM200 Quadrature Mouse

2 8 4 or 5 Summagraphics SummaMouse

2 4 4 or 5 Microsoft Mouse

4 1 4 or 5 Any device listed in Table
2-3.

8 1 7 or 8 Atari-compatible Joystick

16 1 6 DECtouch Touch Screen

Table 2-3 shows the combinations for each device that can be
connected to the Communication Port or Printer Port. All values
shown are decimal.

Table 2-3: Values for Devid Parameter When Using XKO: or TT2:

Class Subclass Port Description

0 0 0 All connected devices
(ATTPD and DETPD only)

1 1 3 LK201 keyboard

4 1 2 GTCO Digi-Pad 5

4 2 2 GTCO Micro Digi-Pad

4 4 2 Summagraphics MM 961

4 8 2 Summagraphics MM 1201

2 8 2 Summagraphics SummaMouse

2 4 2 Microsoft Mouse

4 16 2 Seiko DT-3100

4 32 2 Summagraphics Bit Pad One

4 64 2 Summagraphics Bit Pad Two

2-8

SPECIFYING DEVICE IDENTIFICATION

2.2.4 Using Zero in the Device Identification

You can specify zero
subclass, and port.
combinations.

in different combinations of class,
Table 2-4 shows how the POI handles such

Table 2-4: Combinations of Class, Subclass, and Port Using Zero

Class Subclass Port

c s p

c s 0

c 0 0

0 0 p

0 0 0

KEY
c = valid class other than 0

Result

This combination precisely
locates a particular device on a
particular port.

The POI performs the operation on
all devices matching the
class/subclass combination.

The POI performs the operation on
all devices of the specified
class.

The POI performs the operation on
whatever device is connected to
the specified port.

For ATTPO, the POI attaches all
connected devices. For REDRPT,
the POI reads from the last
attached device that reported a
position. For REOEVN, the POI
reads from the first device that
satisfies the request parameters.
For all other operations, the POI
performs the operation on all
attached devices.

Specifying zero for the devid
parameter is equivalent to
omitting the parameter
altogether.

s = Valid subclass other than 0
p = Valid port other than 0

2-9

HANDLING BUTTON DATA

2.3 HANDLING BUTTON DATA

A parameter on read operations allows you to obtain the status of
up to 16 buttons on a positional device. A button can be either
the kind of standard button you find on a mouse, or it can be
some other switch-type mechanism. For example, with some bitpads
you can order an optional stylus whose point retracts when
depressed. This is considered a button.

The button status parameter is a one-word bit mask that reflects
the current button status. Each bit set indicates that the
corresponding button is down (switch closed). Each bit cleared
indicates that the corresponding button is up (switch open).

2.4 CALLING THE LIBRARY ROUTINES

Your program must always attach the positional device before
attempting to read data from it. Then, to read the input data
from the device, your program must call either the REDRPT or
REDEVN routine.

After all I/O operations with the device are complete, you can
detach the device either explicitly by calling the DETPD routine,
or implicitly by terminating your task. The operating system
automatically detaches a device upon terminating the task that
attached the device.

2.4.1 Using the POL Global Entry Point

You can make any request to the library through the PDL global
entry point, rather than calling each routine individually. The
PDL entry point is similar to the CGL entry point used to make
requests to the Core Graphics Library.

For some programs, it is advantageous
making requests through a single
clarity, you should always use ~ne

both--in the same program.

to use the
global entry
technique or

technique of
point. For
another--not

See Chapter 3, Section 3.7 for a detailed description of the PDL
entry point.

2-10

LINKING THE PROGRAM

2.5 LINKING THE PROGRAM

Linking programs that use the PDL routines requires several
steps, as described in the following sections.

2.5.1 Step 1: Modify Command File

You must modify the command (.CMD) file that you submit to PAB.
Figure 2-8 shows a sample command file for a BASIC-PLUS-2
program. Numbers in parentheses in the left margin show the
changed lines, and correspond to the numbered descriptions that
follow:

1. UNITS option: Increase by 1 the number of LUNs (logical unit
numbers) available to your program. The extra lun is for use
by the positional device. The number of LUNs in the
illustrated command file was increased from 18 to 19.

2. CLSTR option: Define the library PDL as a cluster library to
be linked with your program. In Figure 2-8, PDL was added to
the CLSTR option.

3.

NOTE

Omit this step if you want to use the object
library instead of the cluster library.
Section 2.5.2 describes how to use the object
library.

GBLDEF option: Assign the unused LUN that you added in the
UNITS option to the symbol PD$LUN. Your program uses this
LUN for positional device I/O. Note that the value 23
(octal) in the GBLDEF option is equivalent to LUN number 19
(decimal).

4. GBLDEF option: Assign an unused event flag number (EFN) to
the symbol PD$EFN. Your program needs this event flag to
synchronize all positional device operations. In the figure,
the EFN 2 was not used for any other EFN, so we assigned it
to PD$EFN.

2-11

LINKING THE PROGRAM

SY:MOUSE/FP/CP=SY:MOUSE/MP
TASK=MOUSE

(1) UNITS = 19
ASG = SY:5:6:7:8:9:10:11:12
ASG = TI:13:15
EXTTSK= 952

(2) CLSTR=PBFSML,PDL,CGLFPU,RMSRES,POSRES:RO

DEFINE BUFFER SIZES
EXTSCT DM$BUF:4540 dynamic single choice menu
EXTSCT FL$BUF:4310 file selection/specification
EXTSCT = HL$BUF:3500 help text/menu
EXTSCT = MM$BUF:1000 multi-screen menu
EXTSCT = MN$BUF:4540 static single choice menu

DEFINE LUN ASSIGNMENTS
GBLDEF HL$LUN:21 help frame file
GBLDEF MN$LUN:20 menu frame file
GBLDEF = MS$LUN:16 message frame file
GBLDEF = TT$EFN:l terminal I/O event flag
GBLDEF = TT$LUN:15 terminal I/0
GBLDEF = WC$LUN:22 directory searches for OLDFIL

and NEWFIL routines and
callable print services

GBLDEF = G$LUN:17 for Core Graphics Library
GBLDEF = G$EFN:3 for Core Graphics Library

(3) GBLDEF = PD$LUN:23 POL device I/0
(4) GBLDEF = PD$EFN:2 POL I/0 event flag

II

Figure 2-8: Sample Command (.CMD) File

2.5.2 Step 2: Modify Descriptor File (Optional)

This step is optional and you should perform it only if your
program does not need to run on future versions of P/OS.

NOTE

For most applications, we recommend that you omit
this step so as to maintain compatibility with
future P/OS releases.

2-12

LINKING THE PROGRAM

You perform this step in order to link your program with a POL
object module rather than a cluster library. Note that using a
cluster library ensures that your program will not need to be
relinked upon release of a new version of P/OS. The operating
system always contains the most recent cluster libraries.

However, a drawback to using a cluster library is the loss of
performance due to mapping and unmapping of the cluster library.
By linking an object module directly into the application address
space, you avoid this performance loss.

To link the object module with the application, first modify the
build command file as described in Section 2.5.1, but do not add
"POL" to the CLSTR option as described in that Section.

Next, modify the overlay descriptor file to include PDLOBJ.OBJ as
a segment in the application. Figure 2-9 shows a sample overlay
descriptor file for use with a BASIC-PLUS-2 program. The line
indicated by a (1) in the left margin shows the addition of
"LB:[1,S]PDLOBJ", surrounded by hyphens .

. ROOT BASIC2-RMSROT-USER,RMSALL
(1) USER: .FCTR SY:TEST-LB:[1,5]PDLOBJ-LIBR

LIBR: .FCTR LB:[1,S]PBFOTS/LB
@LB:[1,S]PBFIC1
@LB:[1,S]RMSRLX

.END

Figure 2-9: Sample Descriptor (.ODL) File

PAB resolves references to the object library by searching in
LB:[1,5] for PDLOBJ.OBJ.

2.6 RUNNING THE PROGRAM

In order to run your program successfully, you must load the
appropriate driver. If you have not yet done so, load a driver
as described in Section 1.2.2.

2-13

RUNNING THE PROGRAM

2.6.1 If Program Uses Cluster Library

If you are using the cluster library version of the POI Library,
you must install the cluster library on the Professional before
running your program. In A .INS form of the application
installation command file, insert the command:

INSTALL [ZZSYS]PDL.TSK/LIBRARY

In a .INB file, you must use the /CLUSTER qualifier on the
INSTALL command:

INSTALL [ZZSYS]PDL.TSK/LIBRARY/CLUSTER

If you are executing your program from DCL instead, enter the
following command:

INSTALL LB:[ZZSYS]PDL.TSK/READ

2.6.2 If Using Certain Graphics Software

Tool Kit graphics software that you might use likely has its own
requirements. For example, for programs that call CGL routines,
you must install [ZZSYSJCGLFPU on the target Professional before
running the program. In the application installation command
file insert the line:

INSTALL [ZZSYS]CGLFPU.TSK/LIBRARY

Or, from DCL, first enter the command:

$INSTALL LB:[ZZSYS]CGLFPU/READ

See the Core Graphics Library Manual for details.

2-14

CHAPTER 3

CALLING THE LIBRARY ROUTINES

The standard PDP-11 R5 parameter passing mechanism is the calling
method for all of the routines in the PDI Library. Upon entry
into a routine, R5 contains the address of a parameter block.

Also, each value in a parameter block contains the address of the
variable, rather than containing the actual value of the
variable. Consequently, all of the subroutines indirectly refer
to the values passed to the calling routines.

This chapter describes the PDI routines in alphabetical order.

3-1

ATTPD--ATTACH POSITIONAL DEVICE

3.1 ATTPD--ATTACH POSITIONAL DEVICE

Attach your task to the currently connected positional device.

Format

CALL ATTPD (status [,devid])

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received

devid

value can be

rs.sue +01

IE.BAD -01

IE.ONP -05

IE.DAA -08

IE.DUN -09

IE.FHE -59

IE.TMO -75

(none) -510

(none) -511

(none) -520
(none) -521
(none) -522
(none) -523
(none) -524

one of the following decimal integers:

Call completed successfully.

Invalid format for parameter block. See
MACR0-11 examples for correct format.

Invalid subfunction. You have not loaded
the POI driver.

Device already attached by another task.
Other task must first detach.

Device not attachable. Communication
Port or Printer Port is currently busy.

Fatal hardware error while performing
operation. Often occurs when device is
not physically attached.

Timeout error.
acknowledge the
seconds.

the DTM
request

did
within

not
two

Attach failed due to device
error.

handler

DECtouch driver not active.

Invalid devid parameter. See Tables 2-2
and 2-3.

The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.

3-2

ATTPD--ATTACH POSITIONAL DEVICE

Description

This routine logically connects a positional device or group of
devices to the interface. Once attached, a positional device is
ready to transmit data. You can call this routine any number of
times.

Under the following conditions, the system returns status -09,
"Device not attachable," upon invoking ATTPD:

• You have attempted to attach the device via the Communication
Port (XKO:), but a Communication Service such as file
transfer or terminal emulation is active, or the
Communication Port is otherwise attached.

• You have attempted to attach the device via the Printer Port,
but a Print Service request is active, or the Printer Port
(TT2:) is otherwise attached.

You might also receive status -09 if you incorrectly linked your
program with the POI Library.

If the Communication Port has a modem connection, but there is no
activity on the line, the modem connection is broken. The POI
attach is successful.

3-3

CNMAST--CANCEL MOUSE AST

3.2 CNMAST--CANCEL MOUSE AST

Disable an AST previously set by the SPMAST routine.

Format

CALL CNMAST (status [,devid])

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value is always the following decimal integer:

devid

rs.sue +01 Call completed successfully.

The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.

Description

This routine disables an asynchronous system trap (AST) set by
the SPMAST routine for the specified device(s).

3-4

DETPD--DETACH POSITIONAL DEVICE

3.3 DETPD--DETACH POSITIONAL DEVICE

Detach your task from the currently attached positional device.

Format

CALL DETPD (status [,devid])

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

devid

rs.sue +01

IE.BAD -01

IE.DNA -07

IE.TMO

(none)
(none)
(none)
(none)
(none)

-75

-520
-521
-522
-523
-524

Call completed successfully.

Invalid format for parameter block. See
the MACR0-11 examples for correct format.

Device not attached. You cannot detach a
device that is not attached.

Timeout error.
acknowledge the
seconds.

the DTM
request

did
within

not
two

Invalid devid parameter.
and 2-3.

See Tables 2-2

The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.

Description

This routine explicitly detaches one or more positional devices.
That is, it logically disconnects your task from the device(s).
You can also implicitly detach all positional devices by
terminating your task.

NOTE

Detaching a device connected to the Printer Port
or Communication Port allows normal operation of
the port.

3-5

EVNCAN--CANCEL READ ON EVENT

3.4 EVNCAN--CANCEL READ ON EVENT

Cancel any pending Read on Event calls.

Format

CALL EVNCAN (status)

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value is always the following decimal integer:

IS.sue +01 Call completed successfully.

Description

This routine cancels any pending calls to the REDEVN routine.
The Read on Event operation terminates immediately with IE.ABO as
the status.

3-6

GETDVC--GET DEVICE COORDINATES

3.5 GETDVC--GET DEVICE COORDINATES

Get the input device area coordinates.

Format

CALL GETDVC (status, buff, devid)

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

buff

devid

rs.sue +001

(none) -520

Call completed successfully.

Invalid devid parameter. See Tables 2-2
and 2-3.

A four-word integer array that receives the input device
area coordinates. Table 3-1 shows the format of the
array.

The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.
The devid parameter must specify a unique device.

Description

This routine is the converse of IDA and IDAASP; rather than
setting the input device area coordinates, it returns them.

Table 3-1: Format of GETDVC Buffer

Word Value

0 x minimum (default 0)

1 x maximum (default 4095)

2 y minimum (default 0)

3 y maximum (default 4095)

3-7

GETNAM--GET DEVICE NAME

3.6 GETNAM--GET DEVICE NAME

Get the name of a device with the specified device ID.

Format

CALL GETNAM (status, buff, devid)

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

buff

devid

rs.sue +01 Call completed successfully.

IE.BAD -01 Invalid format for parameter block.

A 16-byte ASCII string in which GETNAM returns the device
name.

The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.
This routine returns the name of the device you specify
in the devid parameter. The devid parameter must specify
a unique device.

Description

This routine returns a 16-byte ASCII name corresponding to the
device ID. The name is left-justified. If the name is less than
16 bytes, it is terminated by a null byte (0). If the routine
cannot find the device name, it returns the string value
"No_Device".

3-8

PDL--REQUEST POL OPERATION

3.7 PDL--REQUEST POL OPERATION

Request a positional device library operation using the POL
global entry point.

Format

CALL POL (reqnum, status, [pl, ...])

Where:

reqnum A one-word decimal integer indicating the operation that
you want to perform. Table 3-2 lists the valid values.

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

pl, ...

rs.sue +01 Call completed successfully.

IE.BAD -01 Invalid format for parameter block.

Are the actual parameters
request. Each routine
describes the parameters.

required by the particular
description in this chapter

Description

POL is a global entry point through which you can request any
operation. It is similar in operation to the CGL entry point
used in the Core Graphics Library.

3-9

PDL--REQUEST POL OPERATION

Table 3-2: Request Values for POI Operations

Request

ATTPD

CNMAST

DETPD

EVN CAN

GETDVC

GE TN AM

REDCNF

REDD EV

RED EVN

REDRPT

SETCHR

SPMAST

WRTDEV

Number
(Decimal)

01

12

02

14

15

13

05

07

04

03

08

11

06

Description

Attach Positional Device

Cancel Mouse AST

Detach Positional Device

Cancel Read on Event

Get Input Device Area
Coordinates

Get Device Name

Read Configuration

Read Raw Data from Device

Read on Event

Read Positional Report

Set Device Characteristics

Specify Mouse AST

Write Raw Data to Device

NOTE

Request values 09 and 10 are reserved.

3-10

REDCNF--READ CONFIGURATION

3.8 REDCNF--READ CONFIGURATION

Get the configuration of a connected positional device.

Format

CALL REDCNF (status, buff)

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

buff

rs.sue +01 Call completed successfully.

IE.BAD -01 Invalid format for parameter block.

IE.TMO -75 Timeout occurred. Either the device or
the DEC touch module did not acknowledge
the request within 2 seconds.

A 20-word data buffer to receive the configuration data.
Table 3-3 shows the format of this data.

See Section 2.2 for information on device identification values.

Table 3-3: Format of Configuration Data

Word Description

O This word can have the following decimal values:

• 36 No device connected.

• 37 Only the LK201 is connected.

• 44 Printer Port connected, LK201
disabled.

• 45 = Printer Port connected, LK201
connected.

3-11

word

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

REDCNF--READ CONFIGURATION

Description

• 52 s Communication Port connected, LK201
disabled.

• 53 = Communication Port connected, LK201
connected.

• 60 = DECtouch present, LK201 disabled.*

• 61 = DECtouch present, LK201 connected.

If DECtouch present: Control Module status
(normally zero). If DECtouch not present: zero.

Reserved

Reserved

Port 2 device class ID--serial port
(Communication or Printer), valid only if
DECtouch not present.

Port 2 device subclass ID--serial port
(Communication or Printer), valid only if
DECtouch not present.

Port 3 device class ID--always LK201

Port 3 device subclass ID--always LK201

Port 4 device class ID

Port 4 device subclass ID

Port 5 device class ID

Port 5 device subclass ID

Port 6 device class ID

Port 6 device subclass ID

Port 7 device class ID

* REDCNF reports that the LK201 is disabled either when the
cable is physically unconnected or when LK201 input is
disabled from the POI setup application.

3-12

REDCNF--READ CONFIGURATION

Word Description

15 Port 7 device class ID

16 Port 8 device class ID

17 Port 8 device subclass ID

18 Reserved

19 Reserved

3-13

REDEVN--READ ON EVENT

3.9 REDEVN--READ ON EVENT

Read report when a specified event occurs.

Format

CALL REDEVN (status, xcoor, ycoor, button, [devid], [butmsk],
[tmo], [evtflg], [astadd], [xinc], [yinc])

Where:

status A one-word decimal integer that receives the status
return of the call. The received value can be one of the
following decimal integers:

xcoor

rs.sue +01

(none) +02

(none) +03

(none) +04

IE.ABO -15

IE.BAD -01

IE.DNA -07

IE.FHE -59

(none)
(none)
(none)
(none)
(none)

-520
-521
-522
-523
-524

Success, button changed state

Success, x increment satisfied

Success, y increment satisfied

Success, timeout occurred

Request terminated. This value is
returned when you abort REDEVN by calling
the EVNCAN routine.

Invalid format for parameter block.
the correct R5 calling format.

Use

Device not attached.
input data from a
attached.

You cannot read
device that is not

Fatal hardware error while performing
operation. Often occurs when device is
not physically attached.

Invalid devid parameter. See Tables 2-2
and 2-3.

The x-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of xcoor are between 0 and 4095, inclusive.

3-14

REDEVN--READ ON EVENT

ycoor The y-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of ycoor are between 0 and 4095, inclusive.

button The button status, a one-word bit mask identifying up to
16 button states. For each bit, 0 is button up (switch
open), and 1 is button down (switch closed).

devid The address of a two-word device identification used for
input to and output from the call. The default devid is
00. See the description and Section 2.2 for details.

butmsk The button mask, a one-word integer specifying the button
events that will trigger completion of the read
operation.

tmo A one-word integer specifying a timeout value in seconds
that will trigger completion of the read operation.
Possible values are 0 to 255.

evtf lg A one-word integer specifying the event flag to be set
upon completion of the read operation. A value of -1
sets the event flag PD$EFN, specified in the task build
command file. A positive value i'ndicates the explicit
number of the flag you want to set. A value of zero sets
no event flag.

astadd A one-word integer specifying the address of an AST
routine that the system will call upon completion of the
read operation. A value of 0 for this parameter
specifies that the system will not attempt to call an AST
routine.

xinc

yinc

A one-word positive integer value specifying
of change in the x-coordinate value to trigger
of the read operation. If the value is 0, a
the x-coordinate value has no effec~.

A one-word positive integer value specifying
of change in the y-coordinate value to trigger
of the read operation. If the value is 0, a
the y-coordinate value has no effect.

3-15

the amount
completion
change in

the amount
completion
change in

REDEVN--READ ON EVENT

Description

This routine performs a conditional read operation. It returns a
positional report to the calling task only when one of the events
you specify occurs. The routine performs a logical OR operation
on the specified events.

The x- and y-coordinate values reflect the current input device
coordinates.

NOTE

The x- and y-coordinate values are affected by
the IDA, ORIG, RESOL, and RPMOD characteristics,
which you can set with the SETCHR routine. See
Section 3.11 for details.

Button events occur for both down and up states for the buttons
specified in the butmsk parameter.

To perform the conditional read asynchronously, you supply a
value for the evtflg parameter.

When you specify a value for the astadd parameter, you must
ensure that the following parameters in the call are contiguous:

• status (one word)

• xcoor (one word)

• ycoor (one word)

• button (one word)

• devid (two words)

These parameters must always appear in the order shown.

Upon entry to the AST routine, the user stack contains tbe values
shown in Table 3-4.

The device identification (devid) identifies one of several
devices that you can connect to a DECtouch port. Jf you specify
a devid other than 00, the POI performs the operation on the
specified device. If you specify a devid of 00, the PDI performs
the operation on any and all devices connected.

3-16

REDEVN--READ ON EVENT

In all cases, the routine always returns the device
device reporting data into the devid
You should reset the devid to zero each
specifying an explicit devid of 00.

identification of the
parameter, if supplied.
time you call REDEVN when

NOTE

You must remove the completion cause word (top
word) from the stack prior to exiting the AST
routine.

Table 3-4: Stack Values Upon AST Entry, REDEVN

Current Stack
Pointer

SP+lO

SP+06

SP+04

SP+02

SP+OO

Contents

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's Directive Status Word

cause

Value

01
02
03
04

of completion:

Cause

Button changed state
X increment satisfied
Y increment satisfied
Timeout

3-17

REDRPT--READ POSITIONAL REPORT

3.10 REDRPT--READ POSITIONAL REPORT

Read input data from the positional device.

Format

CALL REDRPT (status, xcoor, ycoor, button [,devid])

Where:

status A two-word decimal integer array whose first word
receives the status return of the call.. The received
value can be one of the following decimal integers:

rs.sue +01

IE.BAD -01

IE.DNA -07

IE.FHE -59

(none)
(none)
(none)
(none)
(none)

-520
-521
-522
-523
-524

Call completed successfully.

Invalid format for parameter block.
the correct R5 calling format.

use

Device not
input data
attached.

attached.
from a

You
device

cannot read
that is not

Fatal hardware error while p~rforming

operation. Often occurs when device is
not physically attached.

Invalid devid parameter. See Tables 2-2
and 2-3.

xcoor The x-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of xcoor are between 0 and 4095, inclusive.

ycoor The y-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of ycoor are between 0 and 4095, inclusive~

button The button status, a one-word bit mask identifying up to
16 button states. For each bit, 0 is button up (switch
open), and 1 is button down (switch closed).

3-18

devid

REDRPT--READ POSITIONAL REPORT

The address of a two-word device identification used for
input to and output from the call. The default devid is
00. See the description and Section 2.2 for details.

Description

This library call returns a positional report to the calling
task, reflecting the current position of the active positional
device. The report contains one word each for x- and y­
coordinate values, and one word for button status.

The x- and y-coordinate values reflect the current input device
coordinates.

NOTE

The x- and y-coordinate values are affected by
the IDA, ORIG, RESOL, and RPMOD characteristics,
which you can set with the SETCHR routine. See
Section 3.11 for details.

3-19

SETCHR--SET DEVICE CHARACTERISTICS

3.11 SETCHR--SET DEVICE CHARACTERISTICS

Set the characteristics of an attached positional device.

Format

CALL SETCHR (status, chr, data [,devid])

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

rs.sue +01

(none)
(none)
(none)
(none)
(none)

-520
-521
-522
-523
-524

Call completed successfully.

Invalid devid parameter.
and 2-3.

See Tables 2-2

chr A one-word integer value specifying the characteristic to
set. Table 3-5 shows the possible values for this
parameter.

data The address of a data block containing the parameters for
the particular characteristic you are setting. The
description of each characteristic provides the format
and size of the block.

devid The address of a two-word device identification used for
input to and output from the call. The default devid is
00. See the description and Section 2.2 for details.

Description

There are two classes of device characteristics:

• Device Independent

Device-independent characteristics are applicable to any
positional device. You use them mainly to set the format of
the coordinate data returned to your application.

3-20

SETCHR--SET DEVICE CHARACTERISTICS

• Device Specific

Device-specific characteristics, code values 65 to 67
(decimal), can be altered for some types of positional
devices, but not necessarily all of them. The POI handles
such characteristics differently for each device.

You should consult the documentation for the particular device to
make sure that you can alter the desired characteristic.

If you attempt to set a device-specific characteristic that is
unsupported for a device or device group, the POI returns the
conditional success code 2, indicating that it ignored the SETCHR
call for that particular device.

The device identification (devid) identifies one of several
devices that you can connect to a DECtouch port. If you specify
a devid other than 00, the POI performs the operation on the
specified device. If you specify a devid of 00, the POI performs
the operation on any and all devices connected.

For device-specific characteristics, always specify a unique
device ID in the devid parameter.

Table 3-5
following
order.

lists the characteristics you can set. Sections
the table describe the characteristics in alphabetical

We suggest you
characteristics
symbols.

NOTE

use the
if you

names shown
are creating

3-21

for the
your own

SETCHR--SET DEVICE CHARACTERISTICS

Table 3-5: Values for SETCHR Characteristics

Decimal Value

1

2

3

4

5

6

8

9

65

66

67

128

129

Characteristic

RESET--Reset Positional Device

RPMOD--Set Report Mode

IDA-~Set Input Device Area

RESOL--Set Coordinate Resolution

ORIG--Set Device Origin

PORT--Set Device to Port

PROD--Position Relative-Oriented Device

IDAASP--Set Input Device Area with 1:1 Aspect
Ratio

BAUD--Set Baud Rate for Device

LNCHR--Set Serial Line Characteristics

DRATE--Set Device Data Rate

SCALE--Set Screen Scaling

CLICK--Set Touchscreen Click

3-22

SETCHR--SET DEVICE CHARACTERISTICS

3.11.1 SETCHR BAUD--Set Baud Rate

Characteristic Number: 65

Data Value: 1-Word Integer

Description

This characteristic is device-specific. You must specify a
unique device ID in the devid parameter of the call.

The BAUD characteristic allows you to change the data
transmission rate between the positional device and the port to
which it is connected.

You can set the baud rate for serial ports only. The serial
ports are DECtouch ports 4 and 5, and the Professional's
Communication and Printer ports, both port number 2.

Table 3-6 shows the values for the data parameter in the SETCHR
call and their associated baud rates.

Status Returns

+1 Success.

+2 Function not supported.

-500 One or more data values are out of range.

3-23

SETCHR--SET DEVICE CHARACTERISTICS

Table 3-6: Data Values for BAUD Characteristic (Serial Only)

Data Value (Deeimal) Baud Rate

1 50

2 75

3 110

4 300

5 600

6 1200

7 2400

8 4800

9 9600

3-24

SETCHR--SET DEVICE CHARACTERISTICS

3.11.2 SETCHR CLICK--Set Touchscreen Click

Characteristic Number: 129

Data Value: 1 Byte

Description

This characteristic is device-specific. You must specify a
unique device ID in the devid parameter of the call.

NOTE

This characteristic applies only to the DECtouch
monitor. For other devices, the PDI ignores this
characteristic and performs no operation.

Use CLICK to set or change the way the DECtouch monitor produces
sounds during user operations. The data parameter is a byte
containing bit fields that you can set or clear to specify how
DECtouch produces the sounds.

The format of the eight bits of the data value follows:

xxcrfnnn

nnn Three bits indicating the volume of the output sound.
The possible bit combinations are:

000--No change

001--Turn sound off

010--Low volume

011--Medium volume

100--High volume

f If set, DECtouch produces sound on the first touch.

r If set, DECtouch produces sound when the touch is
released.

c If set, DECtouch produces a beep sound.
DECtouch produces a click tone.

xx These two bits are reserved.

3-25

If clear,

SETCHR--SET DEVICE CHARACTERISTICS

Status Returns

+1 Success.

+2 Function not supported.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Table 2-2.

3-26

SETCHR--SET DEVICE CHARACTERISTICS

3.11.3 SETCHR DRATE--Set Device Data Rate

Characteristic Number: 67

Data Value: 1-Word Integer

Description

This characteristic is device-specific. You must specify a
unique device ID in the devid parameter of the call.

NOTE

This characteristic applies to devices connected
to DECtouch ports 6, 7, and 8 only. For devices
connected to any other ports, the POI ignores
this characteristic and performs no operation.

The ORATE characteristic sets the rate at which a device sends
the x,y-coordinate pairs. The device data rate is independent of
the baud rate; however, the baud rate can affect the ceiling at
which coordinate pairs can be generated.

You specify the data rate in coordinate pairs generated per
second. The actual data rate can vary from the value specified,
but the POI approximates as close as possible.

Status Returns

+1 Success.

+2 Function not supported.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Table 2-2.

3-27

SETCHR--SET DEVICE CHARACTERISTICS

3.11.4 SETCHR IDA--Set Input Device Area

Characteristic Number: 3

Data Value: 4-Word Integer Array

Description

This characteristic is device-independent.

The IDA characteristic sets the values
y-coordinates for the input device area.

of the x- and

To invoke IDA, you must have set the report mode of the target
device or device group to absolute mode (see the description of
the RPMOD characteristic).

In a SETCHR call with the IDA characteristic, you specify the
m1n1mum and maximum values for both the x- and y-coordinates.
The PDI does not maintain a 1:1 aspect ratio of the input device
area. (See Section 3.11.5.)

This characteristic
y-coordinate
operation.

values

NOTE

affects the
returned by

x- and
any read

Table 3-7 shows the values for the data parameter in the SETCHR
call with the IDA characteristic.

3-28

SETCHR--SET DEVICE CHARACTERISTICS

Table 3-7: Data Values for IDA Characteristic

Word· Value

0 x minimum (default -0)

1 x maximum (default - 4095)

2 y minimum (default - 0)

3 y maximum (default - 4095)

Status Returns

+1 Success.

+2 Function not supported.

-500 one or more data values are out of range .. ·

-520 Invalid devid parameter. See Tables 2-2
-521 and 2-3.
-522
-523
-524

3-29

SETCHR--SET DEVICE CHARACTERISTICS

3.11.5 SETCHR IDAASP--Set Input Device Area/1: 1 Aspect Ratio

Characteristic Number: 9

Data Value: 3-Word Integer Array

Description

This characteristic is device-independent.

The IDAASP characteristic sets the values of the x- and
y-coordinates for the input device area, while maintaining a 1:1
aspect ratio.

To invoke IDAASP, you must have set the report mode of the target
device or device group to absolute mode (see the description of
the RPMOD characteristic).

In a SETCHR call with the IDAASP characteristic, you specify the
minimum and maximum x-coordinate values, and the minimum
y-coordinate value. The PDI calculates the y-coordinate maximum
value in order to maintain a 1:1 aspect ratio of the input device
area.

This characteristic
y-coordinate
operation.

values

NOTE

affects the
returned by

x- and
any read

Table 3-8 shows the values for the data parameter in the SETCHR
call with the IDAASP characteristic.

Table 3-8: Data Values for IDA Characteristic

Word Value

0 x minimum (default

1 x maximum (default

2 y minimum (default

3-30

0)

4095)

0)

SETCHR--SET DEVICE CHARACTERISTICS

Status Returns

+1 Success.

+2 Function not supported.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Tables 2-2
-521 and 2-3.
-522
-523
-524

3-31

SETCHR--SET DEVICE CHARACTERISTICS

3.11.6 SETCHR LNCHR--Set Serial Line Characteristics

Characteristic Number: 66

Data Value: 4-Word Integer Array

Description

This characteristic is device-specific. You must specify a
unique device ID in the devid parameter of the call.

The LNCHR characteristic modifies the transmission line
characteristics between a positional device and the port to which
it is connected. Serial line characteristics include character
length, number of stop bits per character, and parity type.

After issuing the SETCHR call with this characteristic, the PDI
first attempts to notify the device of the line change, and then
it sets the port to the correct serial mode.

You can set the line characteristics for serial ports only. The
serial ports are DECtouch ports 4 and 5, and the Professional's
Communication and Printer ports, both port number 2.

Table 3-9 shows the values for the data parameter in the SETCHR
call with the LNCHR characteristic.

Table 3-9: Data Values for LNCHR Characteristic (Serial Only)

Word

0

1

2

3

Line
Characteristic

Bits per character

Number of stop bits

Parity enable

Parity type

3-32

Possible Values

Integer between 5 and 9
(decimal), inclusive.
Default is 8.

0
1
2

1.0 stop bit
1.5 stop bits (default)
2.0 stop bits

0 disable (default)
1 = enable

0
1

even
odd

SETCHR--SET DEVICE CHARACTERISTICS

Status Returns

+1 Success.

+2 Function not supported.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Tables 2-2
-521 and 2-3.
-522
-523
-524

3-33

SETCHR--SET DEVICE CHARACTERISTICS

3.11.7 SETCHR ORIG--Set Device Origin

Characteristic Number: 5

Data Value: 1-Word Integer

Description

This characteristic is device-independent.

The ORIG characteristic specifies which corner of the physical
device space corresponds to the coordinate origin. The device
origin affects both relative and absolute coordinates.

This characteristic
y-coordinate values
operation.

NOTE

affects the
returned by

x- and
any read

Table 3-10 shows the possible values for the data parameter in
the SETCHR call with the ORIG characteristic.

Table 3-10: Data Values for ORIG Characteristic

Data value (Decimal) Origin

0 Bottom left

1 Top left (default)

2 Top right

3 Bottom right

Status Returns

+1 Success.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Table 2-2.

3-34

SETCHR--SET DEVICE CHARACTERISTICS

3.11.8 SETCHR PORT--Set Device to Port

Characteristic Number: 6

Data Value: None, parameter is ignored

Description

This characteristic is device-dependent.

The PORT characteristic associates a class and subclass with a
particular port. Use this call to assign a device number to a
DECtouch port. Since the PDI driver handles different devices
differently, you can call SETCHR PORT to cause the driver to
handle a device connected to a particular port as the specified
device.

Your application can change the port association only under the
following conditions:

• The device of the desired class/subclass combination must not
be attached.

• The desired port must not be attached.

For example, you can change the PORT characteristic before
calling ATTPD for the desired class/subclass, or after issuing a
DETPD for the desired class/subclass.

Also, the device ID must have a class set, and optionally can
have the subclass set. The port must be specified, and its value
must be in the range 2 through 8 (decimal).

Status Returns

+1 Success.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Table 2-2.

3-35

SETCHR--SET DEVICE CHARACTERISTICS

3.11.9 SETCHR PROD--Position a Relative-Oriented Device

Characteristic Number: a

Data Value: 3-Word Integer Array

Description

This characteristic is device-independent.

The PROD characteristic centers the device coordinates for a
positional device. This is especially useful when used with a
relative-oriented device such as a quadrature mouse or joystick.
After invoking this characteristic, subsequent data received from
the positional device causes the driver to increment and/or
decrement the initial value.

You can also use PROD with a positional device that is not
relative-oriented; however, as soon as the device begins
transmitting data, the initialized coordinates are overwritten.

The formulas the driver uses for centering the coordinates are:

x = ((x_maximum - xminimum)/2) + x_minimum
y = ((y_maximum - yminimum)/2) + y_minimum

Table 3-11 shows the possible values for the data parameter in
the SETCHR call with the PROD characteristic.

Table 3-11: Data Values for PROD Characteristic

Word Contents

0 Center coordinates

1 Reserved

2 Reserved

Status Returns

+1 Success.

3-36

SETCHR--SET DEVICE CHARACTERISTICS

3.11.10 SETCHR RESET--Reset Positional Device

Characteristic Number: 1

Data Value: None, parameter is ignored

Description

This characteristic is device-independent.

The RESET characteristic forces a positional device to a known
state. For all devices except the Touch Screen Monitor of
DECtouch, RESET sets the normalization boundaries to 4096 by
4096. For the Touch Screen Monitor, RESET sets the normalization
boundaries to 4096 by 2560. For all devices including the Touch
Screen Monitor, RESET also sets the origin to the upper left
corner.

Status Returns

+1 Success.

-520 Invalid devid parameter. See Table 2-2
-521 and 2-3.
-522
-523
-524

3-37

SETCHR--SET DEVICE CHARACTERISTICS

3.11.11 SETCHR RESOL--Set Coordinate Resolution

Characteristic Number: 8

Data Value: 2-Word Integer Array

Description

This characteristic is device-independent.

The RESOL characteristic sets the resolution of relative
coordinates returned by any read operation. The coordinate
resolution is the number of coordinate units returned by the
physical device for every inch of its movement.

This characteristic
y-coordinate values
operation.

NOTE

affects the
returned by

x- and
any read

To invoke RESOL, you must have set the report mode of the target
device or device group to relative mode (see the description of
the RPMOD characteristic).

As an example of setting the resolution, suppose you set a mouse
device in relative mode to an x resolution of 10 units per inch.
If the mouse moves 2 inches horizontally, the x value returned by
the REDRPT routine is 20 (or -20, depending on the coordinate
origin).

Table 3-12 shows the possible values for the data parameter in
the SETCHR call with the RESOL characteristic.

Table 3-12: Data Values for RESOL Characteristic

Word Value

O Units per inch of x coordinate

1 Units per inch of y coordinate

3-38

SETCHR--SET DEVICE CHARACTERISTICS

Status Returns

+1 Success.

-500 One or more data values are out of range.

-520 Invalid devid parameter. See Table 2-2
-521 and 2-3.
-522
-523
-524

3-39

SETCHR--SET DEVICE CHARACTERISTICS

3.11.12 SETCHR RPMOD--Set Report Mode

Characteristic Number: 2

Data Value: 1-Word Integer

Description

This characteristic is device-independent.

The RPMOD characteristic sets the report mode of a device or
device group to either absolute mode, relative mode, or device
physical mode:

• In absolute mode, all coordinate data returned by a REDRPT
call are absolute values that range between the minimum and
maximum normalization boundaries. (See Section 3.11.4 for
details on the normalization boundaries.)

• In relative mode, all coordinate data returned in a REDRPT
call are values relative to the last report block that was
read. The resolution of relative coordinate data can also be
altered. (See Section 3.11.11 for details on resolution.)

• In device physical mode, no coordinate
Your application receives coordinate
intrepreted by the positional device.

This characteristic
y-coordinate values
operation.

NOTE

affects the
returned by

conversion occurs .
data as physically

x- and
any read

Table 3-13 shows the possible values for the data parameter in
the SETCHR call with the RPMOD characteristic.

Status Returns

+1 Success.

-1 Bad parameters; report mode was not in the range 0-2.

-520 Invalid devid parameter. See Tables 2-2 and 2-3.

3-40

SETCHR--SET DEVICE CHARACTERISTICS

Table 3-13: Data Values for RPMOD Characteristic

Value Description

0 Absolute mode (default)

1 Relative mode

2 Device physical

3-41

SETCHR--SET DEVICE CHARACTERISTICS

3.11.13 SETCHR SCALE--Set Touchscreen Scaling

Characteristic Number: 128

Data Value: 8-Word Integer Array

Description

This SETCHR routine is used by the DECtouch alignment procedure.

3-42

SPMAST--SPECIFY MOUSE AST

3.12 SPMAST--SPECIFY MOUSE AST

Specify AST routine to execute upon occurrence of event.

Format

CALL SPMAST (status, astadd, [devid], [butmask],
[xinc], [yinc))

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

astadd

devid

rs.sue +01

(none) -538

Call completed successfully.

AST address is invalid. (Cannot be odd,
for example.)

A one-word integer containing the address of an AST
service routine to be executed upon occurrence of the
specified event.

The address of a two-word device identification.
default devid is 00. See Section 2.2 for details.

The

butmsk The button mask, a one-word integer specifying the button
events that will trigger completion of the read
operation.

xinc A one-word positive integer value specifying the amount
of change in the x-coordinate value to trigger the AST.
The value can be 0, and it must be within the input
device device area.

yinc A one-word positive integer value specifying the amount
of change in the y-coordinate value to trigger completion
of the read operation. The value can be 0, and it. must
be within the input device area.

3-43

SPMAST--SPECIFY MOUSE AST

Description

The purpose of SPMAST is to allow you to specify the address of
an AST routine that will execute when the specified event(s)
occur. An event can be a change in state of specifed button(s),
and/or a change in the position of at least the amount specified
by the x or y increments.

While the AST executes, mouse ASTs are disabled; upon exiting,
the ASTs are reenabled.

You can call this routine to specify ASTs for any and all
connected devices. You can specify separate AST addresses and
qualifiers for each device.

Subsequent calls to SPMAST for a particular device override any
previously-specified AST for that device.

All of the data normally returned by read routines is returned on
the user stack, which contains the data shown in Table 3-14. To
handle ASTs, your programming language must be able to access the
user stack.

NOTE

Your task must remove the eight words SP+OO to
SP+12 from the stack before exiting the AST.

3-44

SPMAST--SPECIFY MOUSE AST

Table 3-14: Stack Values Upon AST Entry, SPMAST

Current Stack
Pointer

SP+22

SP+20

SP+18

SP+16

SP+14

SP+12

SP+lO

SP+08

SP+06

SP+04

SP+02

SP+OO

Contents

Event flag mask word

PS of task prior to AST

PC of task prior to AST

Task's Directive Status Word (DSW)

Reserved

Reserved

Device ID second word (subclass/unit)

Device ID first word (class)

Button data

y-coordinate

x-coordinate

Cause code:

01 - Button changed state
02 - X increment satisfied
03 - Y increment satisfied

3-45

WRTDEV--WRITE RAW DATA TO DEVICE

3.13 WRTDEV--WRITE RAW DATA TO DEVICE

Write data directly to a device without interpretation.

Format

CALL WRTDEV (status, len, buff, devid)

Where:

status A two-word decimal integer array whose first word
receives the status return of the call. The received
value

Is.sue
IE.BAD

IE.DNA

IE.FHE

(none)
(none)
(none)
(none)
(none)

can be

+01
-01

-07

-59

-520
-521
-522
-523
-524

one of the following decimal integers:

Call completed successfully.
Invalid format for parameter block.

Device not attached.

Fatal hardware error on device.

Invalid devid parameter. See Tables 2-2
and 2-3.

len A one-word integer value specifying the number of
characters to write to the device. This is the length of
the data buffer in bytes.

buff

devid

A one-word integer containing the address of a buffer to
be transmitted to the device.

The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.

Description

This routine writes raw data to a positional device. The device
identification parameter must describe a single unique device.
The buff parameter is a data buffer whose length is determined by
the value of the len parameter.

You normally use WRTDEV to tranmit data to an intelligent device,
such as a graphics tablet. An intelligent device is one that can
process a string of data.

3-46

CHAPTER 4

SAMPLE PROGRAMS

4.1 FORTRAN-77

c Program file MOUSE.FTN

c --
c Command file, MOUSE.CMD:

c --
c SY:MOUSE/FP/CP=SY:MOUSE/MP
c TASK=MOUSE
c UNITS = 19
c ASG = SY:5:6:7:8:9:10:11:12
c ASG = TI:13:15
c EXTTSK= 952
c CLSTR=PROF77,PDL,CGLFPU,RMSRES,POSRES:RO
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

EXTSCT = DM$BUF:4540
EXTSCT = FL$BUF:4310
EXTSCT = HL$BUF:3500
EXTSCT = MM$BUF:1000
EXTSCT = MN$BUF:4540

GBLDEF
GBLDEF
GBLDEF
GBLDEF
GBLDEF
GBLDEF

GBLDEF
GBLDEF
GBLDEF
GBLDEF
II

= HL$LUN:21
= MN$LUN:20
= MS$LUN:16
= TT$EFN:1
= TT$LUN:15
= WC$LUN:22

= G$LUN:17
= G$EFN:3
= PD$LUN:23

PD$EFN:2

DEFINE BUFFER SIZES
dynamic single choice menu
file selection/specification
HELP text/menu
multiscreen menu
static single choice menu

DEFINE LUN ASSIGNMENTS
HELP frame file
menu frame file
message frame file
terminal I/0 event flag
terminal I/O
directory searches for OLDFIL
and NEWFIL routines and
callable print services

for Core Graphics Library
for Core Graphics Library
POL device I/0
PDL I/O event flag

c --

4-1

FORTRAN-77

c Overlay Descriptor Language file, MOUSE.ODL:
c --
c .ROOT MOUSE-RMSROT-LIBR,RMSALL
c LIBR: .FCTR LB:[l,5]PROF77/LB
c @LB:[l,5]PROF77
c @LB:[l,S]RMSRLX
c . END
c --
c To run this program at DCL level:
c
c
c
c
c
c

$ INSTALL [ZZSYS]CGLFPU
$ INSTALL [ZZSYS]PROF77
$INSTALL LB:[l,S]PDL

c --
c

program mouse
c
c This program uses a positional device to draw on
c the screen. The program loops indefinitely until aborted
c or until it encounters a positional device error.
c The graphics are generated using the CORE Graphics Library (CGL).
c

include 'lb:[l,S]CGL.FTN'
c
c This instruction provides the file CGL.FTN
c that declares a set of integer constants
c corresponding to the names of the CGL instructions.
c
c Declare variables for use as parameters in POL calls:
c

INTEGER*2 status,xint,yint,button
c
c Declare variables for use as parameters in CGL calls:
c

REAL xreal,yreal
c
c Declare flag variable to control looping:
c

LOGICAL flag
c
c Initialize CGL core and invoke new frame:
c

c

call CGL (GIC
call CGL (GNF

!INITIALIZE CORE
!NEW_FRAME

c Guarantees that the graphics system is in
c a start state with default parameters
c established, and clears the screen.
c

4-2

FORTRAN-77

c Map the positional device coordinates to the
c screen and allow for the aspect ratio (decimal points
care required since parameters are REAL):
c

call CGL(GSW, 0.00, 4095.00, 0.00, 4095.00*0.625
c
c Specifies the edges of the window and resets
c the current position to the origin of the window. Notice
c that we specified REAL constants for parameters.
c

call CGL(GSO, 1 !SET_ORIGIN
c
c Define our cursor symbol:
c

call CGL(GSMKS, 2 I 0) !SET_MARKER_SYMBOL
call CGL(GSWM, 2) !SET_WRITING_MODE

c
c Specifies one of five standard symbols or
c a user-defined symbol as the current marker
c symbol, and specifies the exact manner in
c which CGL draws output primitives on the screen.
c
c Attach the positional device:
c

c

call ATTPD(status
if (status .NE. 1
flag = • FALSE.

goto 900

c Now read coordinates of positional device and convert
c to real values. Notice that we do not care what device

lSET_WINDOW

c we get the input from, so we have omitted the devid from the
c parameter list.
c
c (Loop begins here.)
c
300 call REDRPT(status, xint, yint, button)

if (status .NE. 1) goto 900

c

yreal = yint
xreal = xint
if (flag .EQ .. TRUE.) call CGL(GMKR2, 0, 0) lMARKER_REL_2
flag = . FALSE.

c If user presses button, draw a line; if user does not press
c button, just echo the cursor:
c

if (button .EQ. 1) then
call CGL(GSWM, 4

else

call CGL(GLA2, xreal, yreal)
call CGL(GSWM, 2)

!SET_WRITING_MODE
!LINE_ABSOLUTE_2
!SET_WRITING_MODE

call CGL(GMKA2, xreal, yreal) !MARKER_ABSOLUTE_2

4-3

FORTRAN-77

flag = . TRUE.
endif

c
c Go back to top of loop:
c

goto 300
c
c Process error
c
900 print 990, 'Positional device error: ',status
990 format (A,I)

end

4.2 PASCAL

{ Program file MOUSE.PAS }
{ -- }
{ Command file, MOUSE.CMD: }
{ -- }
{ MOUSE/CP/FP,MOUSE/MA/-SP=MOUSE/MP }
{ CLSTR=PASRES,PDL,CGLFPU,POSRES,RMSRES:RO }
{ }
{ }
{ Extra unit }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ LUN for positional device }
{ Event flag for positional device. }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ -- }
{ Overlay Descriptor Language File, MOUSE.ODL: }
{ -- }
{ .ROOT USER-PASLB-RMSROT }
{ USER: .FCTR MOUSE }
{ PASLB: .FCTR LB:[1,5]PASLIB/LB }
{ @LB:[1,5]RMSRLX }

4-4

PASCAL

{ .END
{ --
{
{
{
{
{
{
{
{
{

To run this program at DCL level:

$ INSTALL [ZZSYS]CGLFPU
$ INSTALL [ZZSYS]PASRES
$ INSTALL LB:[l,SJPDL

program mouse;

}
}
}
}
}
}
}
}
}
}
}

{ This program uses a positional device to draw on }
{ the screen. The program loops indefinitely until aborted }
{ or until it encounters a positional device error. }
{The graphics are generated using the CORE Graphics Library (CGL). }

%include 'lb:[1,5]CGLDEFS.PAS/NOLIST'

{ This instruction provides the file CGL.FTN
{ that declares a set of integer constants
{ corresponding to the names of the CGL instructions.

Declarations -- external entry points for the POL routines:

[external(ATTPD)J
procedure ATTACH_POSITIONAL_DEVICE(VAR status

[external(REDRPT)J
procedure READ_POSITIONAL_REPORT(VAR status,

xint,
yint,

integer); SEQ11;

button : integer); SEQ11;

{ Declarations -- integer variables, for use as parameters in calls. }
{ real variables, for use as parameters in CGL calls. }
{ boolean variable, to control looping. }

var
status,xint,yint,button
xreal,yreal
flag

label
900;

begin

integer;
real;
boolean;

Initialize CGL core and invoke new frame: }

4-5

PASCAL

initialize_core;
new_frame;

Guarantees that the graphics system is in
a start state with default parameters
established, and clears the screen.

Map the positional device coordinates to the
screen and allow for the aspect ratio

set_window(0.00, 4095.00, 0.00, 4095.00*0.625);

Specifies the edges of the window and resets }
the current position to the origin of the }
window. Note that we specified REAL constants }
for parameters. }

set_origin(1);

Define our cursor symbol. Note that the CGLDEFS.PAS
procedure declaration of SET_MARKER_SYMBOL requires
a CHAR value as the second parameter, NOT an integer.

set_marker_symbol(2, '0');
set_writing_mode(2);

Specifies one of five standard symbols or
a user-defined symbol as the current marker
symbol, and specifies the exact manner in
which CGL draws output primitives on the screen.

Attach the positional device:

ATTACH_POSITIONAL_DEVICE(status);
if (status <> 1) then goto 900;
flag := false;

Now read coordinates of positional device and convert
to real values. Note that we do not care what device
we get the input from, so we have omitted the devid
from the parameter list.

while true do
begin

READ_POSITIONAL_REPORT(status, xint, yint, button);
if (status <> 1) then goto 900;
yreal := yint;
xreal := xint;
if (flag = true)

then marker_rel_2(0, 0);
flag := false;

4-6

end;

PASCAL

If user presses button, draw a line; if user
does not press button, just echo the cursor:

if (button = 1)
then begin

set_writing_mode(4);
line_abs_2(xreal, yreal);
set_writing_mode(2);

end
else marker_abs_2(xreal, yreal);

flag := true;

{ Go back to top of loop.}

Process error. }
900: writeln('Positional device error: ',status);

end.

4.3 BASIC-PLUS-2

10 ! Program file MOUSE.B2S

!--
PAB Command file, MOUSE.CMD:

!--
SY:MOUSE/FP/CP=SY:MOUSE/MP
TASK=MOUSE
UNITS = 19
ASG = SY:5:6:7:8:9:10:11:12
ASG = TI : 13: 15
EXTTSK= 952
CLSTR=PBFSML,PDL,CGLFPU,RMSRES,POSRES:RO

EXTSCT DM$BUF:4540
EXTSCT = FL$BUF:4310
EXTSCT = HL$BUF:3500
EXTSCT MM$BUF:1000
EXTSCT MN$BUF:4540

GBLDEF HL$LUN:21
GBLDEF MN$LUN:20
GBLDEF MS$LUN:16
GBLDEF TT$EFN:l
GBLDEF TT$LUN:15

4-7

DEFINE BUFFER SIZES
dynamic single choice menu
file selection/specification
HELP text/menu
multiscreen menu
static single choice menu

DEFINE LUN ASSIGNMENTS
HELP frame file
menu frame file
message frame file
terminal I/O event flag
terminal I/0

BASIC-PLUS-2

GBLDEF = WC$LUN:22 directory searches for OLDFIL
and NEWFIL routines and
callable print services

GBLDEF
GBLDEF
GBLDEF
GBLDEF
II

G$LUN:17
= G$EFN:3

PD$LUN:23
= PD$EFN:2

for Core Graphics Library
for Core Graphics Library
PDL device IIO
PDL IIO event flag

Overlay Descriptor File, MOUSE.ODL:

.ROOT BASIC2-RMSROT-USER,RMSALL
USER: .FCTR SY:MOUSE-LIBR
LIBR: .FCTR LB:[l,S]PBFOTSILB
@LB:[1,5]PBFIC5
@LB:[l,S]RMSRLX

.END

To run this program at DCL level:
!--

$ INSTALL [ZZSYS]CGLFPU
$INSTALL LB:[l,S]PDL
$ RUN MOUSE

!--
' This program uses a positional device to draw on

the screen. The program loops indefinitely until
aborted or encountering a positional device error.

The graphics are generated using the CORE Graphics
Library (CGL).

The next instruction provides the file CGL.B2S
that declares a set of integer constants
corresponding to the names of the CGL instructions.

20 ~include 'lb:[1,5)CGL.B2S'

Declarations of integer variables used with the POL
routines:

Declare integer
xint,
yint,
bint,
libstatus

x-coordinate returned
y-coordinate returned
button status returned
POL routine status word

Declarations of real variables used with the CGL
routines:

4-8

&

&

&
&

100

110

120

130

140

Declare real
xreal,
yreal

BASIC-PLUS-2

x-coordinate
y-coordinate

We use the real variables to convert the integer
coordinates, because CGL requires the real values.

Clear the screen

call CGL by ref (initialize_core)
call CGL by ref (new_frame)

Guarantees that the graphics system is in
a start state with default parameters
established, and clears the screen.

Map the positional device coordinates to the
screen and allow for the aspect ratio.

call CGL by ref (set_window,0,4095.,0,4095.*.625)

Specifies the edges of the window and resets
the current position to the origin of the window.

Set window origin to top-left to match
positional device.

call CGL by ref (set_origin,1)

Specifies which corner of the viewport
corresponds to the origin of the window.

Define our cursor symbol.

call CGL by ref (set_marker_symbol,2%,0%)
call CGL by ref (set_writing_mode,2%)

Specifies one of five standard symbols or
user-defined symbol as the current marker
symbol, and specifies the exact manner in
which CGL draws output primitives on the
screen.

Attach the positional device.

call ATTPD by ref (libstatus)
150 if libstatus <> 1 then goto 900

4-9

&

&

BASIC-PLUS-2

160 f% = 0%
300

Loop Begins here.

Read coordinates of positional device and convert
to real values. Notice that we do not care what
device we get input from, so we have ommited the
devid from the parameter list.

call REDRPT by ref (libstatus,xint,yint,bint)
310 if libstatus <> 1 then 900
320 xreal=xint

yreal=yint
330 if f% = 1% then call CGL by ref (marker_rel_2,0,0)

f% = 0%
350

360

! If button pressed, draw a line.

if bint = 1% then call CGL by ref (set_writing_mode,4%)
call CGL by ref (set_writing_mode,4%)
call CGL by ref (line_abs_2,xreal,yreal)
call CGL by ref (set_writing_mode,2%)
goto 300

Specifies the exact manner in which CGL
draws the output primitives on the screen,
changes the current position to the
specified position and draws a connecting
line.

If button not pressed, echo the cursor.

f bint = 0% then call CGL by ref {marker_abs_2,xreal,yreal)
f% = 1%
!

Changes the current position to the
specified position and draws a marker.

390 goto 300
900

Process error

print "Positional device error: ";libstatus
999 END

4-10

MACR0-11

4.4 MACR0-11

;+

; -

;+

; -

.TITLE

. IDENT

.ENABL

.MC.ALL

Example - POSITIONAL DEVICE EXAMPLE
IVl. 001
LC

DIR$,QIOW$,EXIT$S

This program demonstrates the Positional Device Interface
using GIDIS to move a cursor around the screen and draw lines
when the button is depressed. The program is an endless loop.
You must press INTERRUPT-DO to exit.

The following will assemble and build it.

PMA TEST
PAB TEST=TEST,[l,S]PDIOBJ
I
GBLDEF = PD$LUN:l
GBLDEF PD$EFN:2
II

This is the entry point. The SETUP data buffer will be sent to
TI: to initialize GIDIS, clear the screen, set device coordinate
system, and set the cursor to a continuous mode crosshair.
Refer to the data definition of SETUP for the actual commands.

We will also attempt to attach the positional device. If the
status from the call is not a +1, we will exit the task.

START: Dir$ #Setup
#Attach,RS
ATTPD
#1,Status
Error

Clear the screen

;+

Mov
Call
Cmp
Bne

Get PDI attachment arguments
Attach to the PDI
Check the status
Not successful, branch to exit

we have now attached the positional device and setup the screen.
It's time to go into our loop.

Logic is:

4-11

i

i

i -

;+

DO forever

Get device data

Is Button
Set?

END DO

MACR0-11

NO
THEN Move Position

Draw .- False

YES
THEN Is Draw := False? NO

THEN Move position
Draw := true

YES
THEN Draw a line

;Structure of parameter block in REDRPT call:

i 8 7
lS ---#RS +O

UNUSED I NUMBER OF PARAMETERS
; ---#RS +2

ADDRESS OF STATUS
---#RS +4

ADDRESS OF XCOOR
--~--#RS +6

ADDRESS OF YCOOR
---#RS +8

; ADDRESS OF BUTTON

i -

Loop:

---#RS +10

Mov
Call

Cmp
Bne

Bit
Bne

#Read,RS
REDRPT

#1,Status
Error

#1,Button
10$

4-12

Load the REDRPT arguments
Call the library

Success?
Nope, exit

Is the RIGHTHAND button set?
Yes, branch

Clr
Br

10$: Tst
Bne

Mov

20$: Mov
Mov
Dir$
Br

30$: Dir$

40$: Br

;+

Draw
20$

Draw
30$

#1,Draw

Xdata,Xmove
Ydata,Ymove
#Track
40$

#Lines

Loop

MACR0-11

Set drawing flag FALSE
Go to common cursor tracking
code

Were we drawing last loop?
Yes, branch

Set Draw to TRUE

Load X address
Load Y address
Move the current position
Go to end of loop

Draw a line from last point

Loop

At this point, and error has occured. We will simply EXIT from
the task. Note that if the positional device was ATTACHED it
will be DETACHED automatically by the P/OS I/0 rundown mechanism.

; -

Error: Exit$s Just exit on an error

;+

These QIOW$'s are Write Special Data's (IO.WSD), and are in GIDIS
format (SD.GOS).

I'm simply going to use the default TI: LUN of 5

; -

Setup:
Track:
Lines:

;+
I

QIOW$
QIOW$
QIOW$

IO.WSD,5,1,,,,<bufl,bufll,,sd.gds>
IO.WSD,5,1,,,,<buf2,buf21,,sd.gds>
IO.WSD,5,1,,,,<buf3,buf31,,sd.gds>

; These are the data buffers for the TI: QIO's

; -

Bufl: .BYTE
.WORD

1, 1
-1

Initialize
All subsystems

4-13

.BYTE

.BYTE

.WORD

.WORD

.WORD

.BYTE

.WORD

. BYTE

. WORD

.BYTE

. WORD

.BYTE

. WORD

. BYTE

.WORD

. BYTE

.WORD

Bufll =.-Bufl

Buf2: .BYTE
XMOVE: .WORD
YMOVE: .WORD
Buf 21 =.-Buf2

Buf3: .BYTE
Xdata: .WORD
Ydata: .WORD
Buf31 =.-Buf3

;+

MACR0-11

0,6
6,5
-1
1
16. ,16. ,8. ,8.

1,72.
0

2,12 .
4096. ,2560 .

4, 9.
0,0,4095. ,2559 .

4, 13.
0,0,4095. ,2559 .

1, 21 .
7

1,22 .
4

2,29.
0
0

2,25.
0
0

New_Picture
Set_Output_Cursor
Special Alphabet
Tracking crosshair
Ignored for crosshair

Set_output_cursor_rendition
CONTINUOUS (nonblinking)

Set_Output_IDS

Set_GIDIS_Output_Space

Set_Output_Viewport

Set_Primary_Color
Use Color Map entry 7

Set_Writing_Mode
OVERLAY mode

Set_Position
x
y

Draw_Lines
x
y

These are the argument blocks for ATTPD and REDRPT
Notice that the devid parameter is NOT supplied, since
I'll use any device that responds.

; -

Attach: .WORD
.WORD

Read: .WORD
.WORD

1
Status

4
Status

4-14

1 parameter
Status

4 parameters
Status

MACR0-11

.WORD Xdata x

.WORD Ydata y

.WORD Button Button

Status: .WORD 0 Status word
Button: .WORD 0 Button

Draw: .WORD 0 Drawing flag

.END Start End of source

4-15

APPENDIX A

DEVICES YOU CAN USE WITH THE POI

There are several ports through which you can connect a
positional device to the Professional computer:

• The Communication Port

• The Printer Port

• Ports provided by the DECtouch (VRTSl-A) Color/Touch Screen
Monitor

The Communication and Printer ports can support a number of
serial input devices. Both ports function identically, with the
exception of the cable needed for each. A cable for the Printer
Port requires a 9-pin female connector, while a cable for the
Communication Port requires a standard 25-pin female RS-232 type
connector.

When not being used for positional device input, both of these
ports may be used for their standard functions.

By connecting a DECtouch monitor to your Professional, you
provide two additional serial ports as well as two parallel
ports. We describe DECtouch later in this appendix.

The following sections describe each of the available devices.
For specifications, installation instructions, and other detailed
information about a particular device, refer to the documentation
provided with that device.

Note that, as described in this appendix, some devices require
modification to the initial switch settings to work properly with
the Positional Device Interface.

A-1

SUMMAGRAPHICS MM 961 AND MM 1201 DIGITIZERS

A.1 SUMMAGRAPHICS MM 961 AND MM 1201 DIGITIZERS

The Summagraphics Corporation digitizers are tablet-type
positional devices. A tablet is a surface that has a specified
"active" area for digitizing. The Summagraphics tablet has a
narrow groove etched on its plastic surface that defines the
active area.

Summagraphics provides a
stylus that you can move
points defined within the
as digital information to

mouse-like cursor and a pencil-like
over the tablet. This movement locates
active area, and sends the coordinates
the computer.

The MM 961 is a 6" x 9" tablet. The MM 1201 is a 12" x 12"
version of the MM 961.

Both digitizers require a startup sequence after power-up, which
the positional device driver automatically sends. To receive
this data, the tablet must be connected to the desired port
before running an application that uses the Positional Device
Interface.

The MM 961 and MM 1201 require a power supply
cable for correct operation. Modifications you
standard jumper setting are to set the device to
no parity operation. Do this by setting the
options:

and null modem
must make to the
autobaud, 8-bit,
following jumper

• Jumper AC should be OUT. This selects no parity. On
older models of the bit pads, this jumper was called the
"8/9 bit" jumper, which also selected 8-bit bytes.

• Jumper AA should be OUT .
baud rate feature. On
called the "BDR" jumper.

This selects the automatic
early models, this jumper was

• Jumper AB should be IN. This selects 8-bit binary
bytes. On early models, this option was autmatically
selected by the "8/9 bit" jumper.

The technical reference manual that comes with your bit pad
should describe jumper modifications.

For ordering information, contact:

Summagraphics Corporation
35 Brentwood Avenue

P.O. Box 781
Fairfield, Connecticut 06430

(203) 384-1344

A-2

GTCO MICRO DIGI-PAD

A.2 GTCO MICRO DIGl-PAD

The Micro Digi-Pad is a compact electromagnetic positional
device. Like the GTCO Digi-Pad 5, the Micro Digi-Pad uses a
plastic tablet containing an array of conducting wires, through
which a pulsing direct current travels. The current produces an
electromagnetic field, which induces a signal in a coil contained
in the cursor or stylus as it moves over the tablet.

The tablet has an active area consisting of a 6" x 6" unmarked
square area on the tablet surface.

The Micro Digi-Pad needs no modification of the standard jumper
settings. You should order the device to operate at 9600 baud
(baud rate jumper IN). Also, the Micro Digi-Pad requires a power
supply and null modem cable.

For ordering information, contact:

GTCO Corporation
1055 First Street

Rockville, Maryland 20850
(301)279-9550

A.3 SUMMAGRAPHICS SUMMAMOUSE

The Summagraphics SummaMouse is a mouse that reads optical
information as it moves across a Mouse Pad. On the surface of
the Mouse Pad run two sets of perpendicular stripes; these
stripes absorb different wavelengths of light. The SummaMouse
uses this optical information to translate movement over the
stripes into digital data suitable for input to the computer.

The Summagraphics mouse needs no modification of the standard
settings. You must order the SummaMouse in the standard "MM"
data format, set with the standard automatic baud rate feature.

For ordering information, contact:

Summagraphics Corporation
35 Brentwood Avenue

P.O. Box 781
Fairfield, Connecticut 06430

(203) 384-1344

A-3

MICROSOFT SERIAL MOUSE

A.4 MICROSOFT SERIAL MOUSE

The Microsoft Serial Mouse is a mechanical positional device that
detects a change in position by the movement of a metal ball over
a hard surface. The mouse enclosure contains sensors that read
the motion of the ball, and send this information to an on-board
processor that digitizes the information. Once digitized, the
information passes to the host computer.

The Microsoft Serial Mouse needs no modifications; it connects
directly to the Professional's Communication Port. Note,
however, that to connect the mouse to the Professional's Printer
Port, you must connect pins 4 and 20 of the mouse to pin 5 (DTR)
of the Printer Port.

You can ignore the instructions that Microsoft provides for using
their mouse with the MS-DOS and PC-DOS operating systems.

For ordering information, contact:

Microsoft Corporation
10700 Northup Way

P.O. Box 97200
Bellevue, Washington 98009

(800) 426-9400

A.5 DECTOUCH (VRTS1-A)

The DECtouch (VRTSl-A) color monitor is a positional device whose
main feature is a touch-sensitive screen. The screen uses
resistive membrane technology, which provides extremely high
resolution for individual touch points.

In addition to the touch screen, DECtouch also provides two
parallel ports and two RS232 serial ports. To the parallel ports
you can connect either Atari(c)-compatible joysticks or the
DIGITAL LM200 Quadrature Mouse. To the two serial ports you can
connect any of the supported serial devices.

The joystick and Quadrature Mouse require no modification.

For ordering information, contact your local DIGITAL sales office
or sales representative. For detailed information on using,
installing, or programming with the DECtouch monitor, refer to
the DECtouch documents listed in the Preface.

A-4

SEIKO DT-3100 TABLET

A.6 SEIKO DT-3100 TABLET

The Seiko Tablet DT-3100 is a very high resolution tablet. Due
to this high resolution capability, the device is ideal for use
with Oriental character sets.

Figure A-1 shows how to connect the Seiko tablet to the
Communication or Printer ports.

Communication
or Printer Port Seiko Tablet

ground (AA) 1 1 ground

send data (BA) 2 3 receive data

receive data (BB) 3 2 send data

c 4 request to send

5 clear to send

signal ground (AB) 7 7 signal ground

6 data set ready

L20 data terminal ready

Figure A-1: Wiring for the Seiko Tablet

The connecting cable must
connects to the Seiko
Professional.

be male to female. The male end
Tablet. The female end connects to the

For ordering information, contact:

Seiko Instruments (USA), Inc.
19 Crosby Drive

Bedford, MA 01730
Tel: (617) 275-4092

A-5

SUMMAGRAPHICS BIT PAD ONE

A.7 SUMMAGRAPHICS BIT PAD ONE

The Bit Pad One is a tablet that works on the magnetostrictive
principle. Below the surface of the tablet are special wires
that deform in a known manner when current is pulsed nearby. A
send wire in the tablet carries the current past these
magnetostrictive wires, and the resulting deformation is received
as strain waves in the coils of the Bit Pad One's cursor or
stylus. A microprocessor formats the data and translates it into
x and y coordinates.

To connect the Bit
tablet by removing
board. Set the
follows:

Pad One to the Professional, you must open the
the metal bottom to gain access to the circuit
following connections, called "straps," as

• Pluggable Program Strap BA (Baud Rate)

This item consists of three pins located on the circuit
board, with a blue plug (Pluggable Strap) placed over two of
the pins. The letters A and B are on the board on each side
of the plug. Set the plug so that it covers the center pin
and the pin next to the letter B.

e POE Strap (Parity)

This item consists of two points on the circuit board labeled
POE. There should be no soldered connection (POE Strap)
between these two points. If there is a connection, remove
it. The factory setting omits the connection.

e HCB Strap (Stop Bits)

This item consists of two points on the circuit board labeled
HCB. There should be no soldered connection (HCB Strap)
between these two points. If there is a connection, remove
it. The factory setting omits the connection.

In addition to the strap settings, you must set the switches in
the three switch packs that are on the circuit board. These are
labeled on the circuit board as SW1, SW2, and 7.

Table A-1 shows the switch settings when you are connecting the
Bit Pad One to the Communication Port or the Printer Port. Table
A-2 shows the settings when you are connecting the Bit Pad One to
a DECtouch serial port.

A-6

SUMMAGRAPHICS BIT PAD ONE

Table A-1: Bit Pad One Switch Settings for XKO: or TT2:

Switch Pack 1 Switch Pack 2 Switch Pack 7

Switch 1 * off off

Switch 2 * off on

Switch 3 * off off

Switch 4 * off off

Switch 5 * off off

Switch 6 off off off

Switch 7 on x off

Switch 8 off x off

Switch 9 on x off

Switch 10 x x off

KEY
* = You must not alter the factory setting
x = Switch pack does not have the indicated switch

A-7

SUMMAGRAPHICS BIT PAD ONE

Table A-2: Bit Pad One Switch Settings for DECtouch Port

Switch Pack 1 Switch Pack 2

Switch 1 * on

Switch 2 * off

Switch 3 * on

Switch 4 * on

Switch 5 * on

Switch 6 off off

Switch 7 on x

Switch 8 off x

Switch 9 on x

Switch 10 x x

KEY
* You must not alter the factory setting
x = Switch pack does not have the indi-cated switch

For ordering information, contact:

Summagraphics Corporation
35 Brentwood Avenue

P.O. Box 781
Fairfield, Connecticut 06430

(203) 384-1344

A-8

Switch Pack 7

off

off

on

off

off

off

off

off

off

off

SUMMAGRAPHICS BIT PAD TWO

A.8 SUMMAGRAPHICS BIT PAD TWO

Table A-3 shows the switch settings when you are connecting the
Bit Pad Two to any port.

Table A-3: Bit Pad Two Switch Settings for Any Port

Switch Pack 1 Switch Pack 2 Switch Pack 7

Switch 1 off off off

Switch 2 off off off

Switch 3 on off on

Switch 4 off off off

Switch 5 off off off

Switch 6 on off on

Switch 7 off on on

Switch 8 off off off

A-9

APPENDIX B

USING THE SKETCHPAD DEMONSTRATION APPLICATION

The Sketchpad application
application that you can
screen.

included
use to

in the kit is a sample
draw simple pictures on the

NOTE

Before running the Sketchpad, you must first
start the Positional Device Interface, as
described in Section 1.2.

Note the following items regarding the positional devices you can
use with Sketchpad:

• Some devices, when initialized, transmit coordinates that are
below the viewport on the Sketchpad's screen display.
Therefore, you might have to move your positional device
around before the cursor appears on the screen. The
OptoMouse, for instance, must be "pushed up" several times
before the cursor appears.

• The driver recognizes only one button on any device .
Therefore, the demo will respond only to the first button of
a particular device. For devices that use a stylus instead
of buttons, the driver responds to pressure on the stylus
tip.

When you are finished with the demonstration, select EXIT to
return to the applications menu.

B-1

THE SCREEN

8.1 THE SCREEN

Figure B-1 shows the Sketchpad display. It is divided into three
areas:

1. Command Menu (left side of screen)

2. Drawing surface (center area)

3. Palette (right side of screen)

Exit

Clear

Line

Circle

Box

Print

Text AZ

Select

Fill OFF

Cancel

Command
Menu

Drawing Surface

Figure 8-1: Screen Display for Sketchpad Application

<Pen 6>

Red 0

Green 7

Blue 7

Palette

You can move freely among the three areas simply by moving your
positional device (your finger in the case of DECtouch).

Before you select any of the commands on the command menu,
Sketchpad places you in the default "Freehand Drawing" mode. By
pressing and holding down the button on your device, you can draw
lines on the drawing surface.

B-2

THE SCREEN

For various effects, you can select items from either the Command
Menu or the Palette, as described in Sections B.2 and B.3.

8.2 THE COMMAND MENU

When you move your positional device into the menu area, the
corresponding box "lights." Pressing the device button (or
depressing the stylus) selects the function. Sketchpad confirms
a selection by sounding the keyboard bell.

Only one function can be active at any time, except for the
following:

• FILL can be active in combination with other functions.

• You can select CANCEL at any time.

Table B-1 describes each of the commands available from the
Command Menu.

Table 8-1: Sketchpad Commands from Command Menu

Command Description

Exit

Clear

Line

Terminates program execution and returns to the
Main Menu.

Refreshes the screen, sets the current pen to 6,
and sets Fill to OFF.

Allows you to draw a straight line by marking its
end points. When you are at the first point you
want to select, press the device button. Then mark
the second point in the same fashion. Sketchpad
draws the line dynamically as you move to the
second point. To terminate line mode, press the
device button twice while on the second point; or,
you could select the Cancel command.

B-3

Command

Circle

Box

Print

Text

Select

THE COMMAND MENU

Description

Allows you draw a circle by marking its center
point, then marking the outside point of the the
circle's radius. Begin the circle by selecting a
center point and pressing the device button. Then
mark the outside point of the radius in the same
fashion. Sketchpad draws the circle dynamically as
you move to the second point.

Allows you draw a box by marking one corner, then
a diagonally opposite corner. Begin the box by
selecting a corner point and pressing the device
button. Then mark a point that you want to appear
as the diagonally opposite corner of the box.
Sketchpad draws the box dynamically as you move to
the second point.

Dumps the image from the drawing surface to the
printer connected to the Professional. The printer
must be able to print graphic images (refer to the
documentation that comes with your printer). The
background does not appear in the printed copy,
and all objects appear black. Neither the Command
Menu nor the Palette are printed.

Allows you to enter text from the keyboard. Once
you have selected this command, mark a point on
the drawing surface by moving your positional
device to that point and pressing the button. Then
you can enter text from the keyboard. To exit from
the Text command you press the CTRL key and then
the Z key on the keyboard.

Allows you to select a point that defines a fill
area when the Fill command is set to ON. If the
Box, Circle, or Line commands are not in effect,
Sketchpad fills areas to the selected point as you
move your positional device over the drawing
surface with the button depressed.

B-4

Command

Fill

Cancel

THE COMMAND MENU

Description

Causes Sketchpad to fill in areas of the screen.
Selecting Fill either toggles it to ON or OFF.
When Fill is ON, other commands are affected as
follows:

• Box--f ills the box with current color as
indicated by the Palette.

• Ci rcle--fills the circle with the current
color as indicated by the Palette.

• Line--fills the triangular area from the line
to a point that you have last marked with the
Select command.

Cancels any selected command and turns Fill to
OFF.

B.3 THE PALETTE

The top seven boxes on the right side of the screen are the
colors available from Sketchpad's Palette. These colors
correspond to the CGL writing index values zero through seven.

Sketchpad indicates the current color by displaying "<Pen n>" in
the appropriate box in the palette area of the screen (see Figure
B-1). You select a new color by moving the cursor to one of the
palette boxes and then pressing the positional device button.

The lower three boxes on the right side of the screen are the
red, green, and blue (RGB) settings for the current color. These
settings indicate how much of each of the primary colors is mixed
into the current color.

To alter the RGB settings, move the cursor to one of the RGB
boxes and press the positional device button. The setting
increases from zero to seven, and then resets to zero. Changing
the RGB values affects the entire display, as the Sketchpad's CGL
color map entry changes. See the Core Graphics Library Manual
for further information.

B-5

THE PALETTE

To erase a portion of the display, set the color to zero by
selecting the top box on the palette. This color is also the
background color.

Although you can change the background color, it does not appear
when you print an image from the screen.

B-6

APPENDIX C

GLOSSARY

aspect ratio
As used in this manual: the ratio between the size of the
units on the x-axis and the size of the units on the y-axis.

button
A switch-type mechanism on a positional device. It
the kind of standard button you find on a mouse, or
be some other type of mechanism such as a retracting
tip.

cluster library

can be
it can
stylus

A structure that allows tasks to dynamically map
memory-resident, shared libraries at run time. The
advantage of using a cluster library is that it saves task
virtual address space. A cluster library is also referred
to as a clustered resident library.

DBCtouch
A touch screen monitor.

device class
A set of similar devices, such as mice, keyboards, or
joysticks.

device dl'iver
A part of the operating system that interfaces hardware I/O
controllers and their attached devices with the Executive.

C-1

device subclass
A value indicating a specific device in a device class.

driver
See device driver.

input device area
The area from which a positional device is able to transmit
valid input.

positional device
Hardware used for input.
device is its ability to
to the computer.

The main feature of a positional
transmit information about location

Positional Device Interface (PDI)
Software that enables you to write applications that use a
mouse, digitizing tablet, touch screen, or other positional
device.

Positional Device Library (PDL)
A set of routines supplied with the
operations for positional devices.
library's global entry point.

PDI kit that perform
PDL is the name of the

Sketchpad

task

A sample application that allows you to use a positional
device to draw simple pictures on the terminal screen.

The fundamental executable program unit.

task builder
A tool (sometimes called a linker) that converts an object
module into a task image by relocating code and data and
resolving external references.

task image
A file that contains a loadable task in the form of absolute
binary instructions and data.

C-2

Alternative
coordinate unit mapping, 2-4

Application
Positional Device Interface,

1-2
Sketchpad, 1-3
Test the PDI, 1-3

Application development
mapping coordinate units, 2-1
writing the program, 2-lff

Aspect ratio
of input device area, 2-2

Attach
positional device routine, 3-2

ATTPD
routine, 3-2

BASIC-PLUS-2
sample program, 4-7

Button
status, 2-10

Calling method
RS, 3-1

Cancel
mouse AST, 3-4

Cancel Read on Event (EVNCAN)
positional device routine, 3-6

CLSTR option
modifying in .CMD file, 2-11

Cluster library
installing, 2-14
vs. object module, 2-13

CNMAST
routine, 3-4

Command file
installation, 2-14
modifying, 2-11
sample, 2-12

Components
of POI kit, 1-2

Connecting
positional device, 1-5

Coordinate units mapping, 2-1,
2-3, 2-4

Coordinates
of terminal screen, 2-3

INDEX

Core Graphics Library
installing, 2-14

DECtouch
parallel ports, A-4
serial ports, A-4
VRTS1-A, A-4

Descriptor File
modify1ng, 2-12
NOTE regarding, 2-12

Detach
explicitly vs. implicity, 2-10
positional device routine, 3-5

DETPD
routine, 3-5

Development
of PDI applications, 2-lff

Device
DECtouch, A-4
descriptions, A-lff
GTCO Micro Digi-Pad, A-3
identification, 2-5
Microsoft Mouse, A-4
Summagraphics MM 961/1201, A-2
Summagraphics SummaMouse, A-3

Device coordinates
mapping units, 2-1

Device driver
loading, 1-2

Device drivers
component of PDI kit, 1-2
loading, 2-13

Device identification
See Devid parameter

Devid parameter
possible values, 2-7, 2-8

DIGITAL
DECtouch VRTS1-A monitor, A-4

Event Flag Number
PD$EFN, 2-11

Example
BASIC-PLUS-2 program, 4-7
FORTRAN-77 program, 4-1
MACR0-11 program, 4-11
PASCAL program, 4-4

Executing

Index-1

INDEX

your program, 2-13

FORTRAN-77
sample program, 4-1

GBLDEF option
modifying in .CMD file, 2-11

Get Device Coordinates (GETDVC)
positional device routine, 3-7

Get Device Name (GETNAM)
positional device routine, 3-8

GTCO
Micro Digi-Pad, A-3

Identification
see device

IE.ABO
status, 3-14

IE.BAD
status, 3-2,

IE.DAA
status, 3-2

IE.DNA
status, 3-5,

IE.DUN
status, 3-2

IE.FHE
status, 3-2,

IE.ONP
status, 3-2

IE.TMO

3-5,

3-14,

3-14,

status, 3-2, 3-5
Input device area

aspect ratio, 2-2
definition, 2-1
shape, 2-1

3-14,

3-18

3-18

Summagraphics MM961, 2-2
Interface

3-18

see Positional Device Interface
Is.sue

status, 3-2, 3-4, 3-5, 3-6, 3-7,
3-8, 3-9, 3-11, 3-14, 3-18,
3-20, 3-43, 3-46

Joysticks
Atari(c)-compatible, A-4

Kit component
applications, 1-2
device drivers, 1-2

Languages
used with kit, 1-3

Library routines
calling, 2-lOff

Linking programs
description, 2-11

Loading
device drivers, 2-13

Logical Unit Number
PD$LUN, 2-11

LUN
See Logical Unit Number

MACR0-11
sample program, 4-11

Mapping
device coordinate units, 2-1

Micro Digi-Pad
GTCO, A-3

Microsoft
mouse, A-4

MM 1201
Summagraphics, A-2

MM 961
Summagraphics, A-2

Mouse
Microsoft, A-4

Object module
linking with, 2-13
vs. cluster library, 2-13

Overlay Descriptor Language File
See Descriptor File

P/OS
versions, 2-12

Parameter
button status, 2-10
passing mechanism, 3-1

PASCAL
sample program, 4-4

POI
see Positional Device Interface

POI Library
description, 1-3

PDLOBJ.OBJ
in .ODL file, 2-13

Performance
improvement in, 2-13

Ports
Communication, A-1

Index-2

INDEX

DECtouch, A-1
DECtouch (Figure), 2-7
Printer, A-1

Positional Device
connecting to DECtouch ports,

1-1
connecting to XKO: or MKO:, 1-1
def ini ti on, 1-1
supported by PDI, 1-1

Positional Device Interface
Application, 1-2
introduction, 1-1
kit components, 1-2

Programming languages
See Languages

Programs
sample, 4-lff

Read Configuration{REDCNF)
positional device routine, 3-11

Read on Event (REDEVN)
positional device routine, 3-14

Read Positional Report (REDRPT)
positional device routine, 3-18

Request PDL operation (PDL)
positional device routine, 3-9

routine
ATTACH (ATTPD), 3-2
Cancel mouse AST (CNMAST), 3-4
DETACH (DETPD), 3-5

Routines
Cancel Read on Event (EVNCAN),

3-6
Get Device Coordinates (GETDVC),

3-7
Get Device Name (GETNAM), 3-8
Read Configuration (REDCNF),

3-11
Read on Event (REDEVN), 3-14
Read Positional Report (REDRPT),

3-18
Request PDL operation (PDL),

3-9
Set Device Characteristics

(SETCHR), 3-20
Specify Mouse AST (SPMAST),

3-43
Write Raw Data to Device

(WRTDEV), 3-46
Running

your program, 2-13

Sample
command file, 2-12
.ODL file, 2-13

Sample programs, 4-lff
Set Device Characteristics

(SETCHR)
positional device routine, 3-20

Shape
of input device area, 2-1

Simple coordinate unit mapping,
2-3

Sketchpad
altering RGB, B-5
application, 1-3
Box command, B-4
Cancel command, B-5
Circle ~ommand, B-4
Clear command, B-3
directions for using, B-1
Exit command, B-3
Fill command, B-5
Line command, B-3
Palette, B-5
Print command, B-4
screen display, B-2
Select command, B-4
Text command, B-4

Specify Mouse AST (SPMAST)
positional device routine, 3-43

Status
return, 3-2, 3-4, 3-5, 3-6, 3-7,

3-8, 3-9, 3-11, 3-14, 3-18,
3-20, 3-43, 3-46

Success
button changed state, 3-14
timeout occurred, 3-14
x increment satsified, 3-14
y increment satsified, 3-14

Summagraphics
MM 1201 digitizer, A-2
MM 961 digitizer, A-2
MM961 input device area, 2-2
SummaMouse, A-3

SummaMouse
Summagraphics, A-3

Synchronizing
device operations, 2-11

Target machine
P/OS version on, 1-4

Terminal screen

Index-3

coordinates, 2-3
Test the POI

application, 1-3

Unit Number
See Logical Unit Number

Units
mapping, 2-3, 2-4

UNITS option
modifying in .CMD file, 2-11

INDEX

Using PDI Kit
procedural description, 1-3ff

Version of P/OS
see P/OS

VRTSl-A
DECtouch, A-4

Write Raw Data to Device (WRTDEV)
positional device routine, 3-46

Index-4

