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In arecent talk at SRC, Chuck Thacker described arouting scheme for asmall hypercube network. In Chuck's
talk, he described a dimension-4 network of processor/switches, with severa interesting properties:

1. All packets are routed via a shortest path.

o We can labd nodeswith length-d binary strings, where neighboring nodes differ in exactly one bit.
The shortest distance between two nodes is equa to the number of 1-bitsin the exclusive-OR of
the labels. The bits which differ can be flipped in any order, but only those bits may be flipped, or
else the path-length is increased.

2. Noinput port on a switch is connected to more than two output ports.

o In Chuck's routing scheme, each switch has two input ports with exactly one output connection, and
two inputs with two outputs. Aswell see later, thisisoptima. Note that every input port might
a0 represent aterminus for the arriving packet.

3. Theroutes are oblivious. once apacket arrives a anode, you can determine the next output port from the
current node label, and the detination label.

o Although Chuck didn't define it thisway, we believe that Chuck's routing can be obtained by
consdering the sat of bitsto be flipped as abinary string, and flipping the rightmost 1 in the leftmost
group of 1's. The symmetric choice would work equaly well
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4. The utilization of edgesis baanced, when routing an dl-pairs set of messages
o Thatis, if every processor sends a message to every other processor, and the messages are routed
as defined in Chuck's scheme, then dl of the edges in Chuck's scheme will see (to within one) an
equa number of packets routed over them, and that is true even when looking at utilization per step
(if weimagine al the packets taking one step toward their destinations simultaneoudy).
5. Anadditiond property, which we do not fully understand how to mimic in the extensons well describe, is
Chuck's assertion that these properties can be preserved even in the presence of a switch failure.
o In asubsequent conversation, Chuck agreed that he did not know how to do thiswhile preserving
al of the previoudy listed properties. We will show later that property 1 and 2 cannot both be
maintained in our generdizations of Chuck's network in the presence of afaled switch.

Chuck's routing scheme viewed from the origin

1010 <- 1000 -> 1001 -> 1011

AN

I
0010 <- 0000 -> 0001 -> 0011

\ \' \'
0110 0100->0101 0111

\ \' \'
1110 1100->1101 1111

In this note, we explore some generdizations of Chuck'sideas. In particular, we offer arouting schemein
arbitrary dimensiona hypercubes, prove that Chuck's properties 1, 2, and 3 are preserved in any dimension, and
prove that property 4 holds overal independent of dimensondity, and on a per step basis if the number of
dimensonsisprime. We show that property 5 cannot hold in any odd dimension hypercube routing for which
properties 1 and 2 both hold.

To define arouting for ak-dimensiona hypercube, consder a packet at node s with destination node d, where s
and d are represented as k-bit strings. s XOR d isastring in which the bits set to 1 represent the dimensions we
mugt ill change. Congder the rotations of s XOR d. There will be some numericaly (or lexicographicaly;
they're the same here, since dl the strings have length k) least vaue which results. I k is prime, there will be
exactly one rotation which is least, except for the dl-0 and dl-1 strings. If k is composite, there may be a
rotation by adivisor of k which preserves the vaue of the string. In any case, take the shortest |eftward rotation
which produces that minimum vaue (it doesn't redly matter which rotation you take, but you have to choose
some way to break the symmetry). Hip the 1 which, when rotated, corresponds to the leftmost 1 in the chosen
minimd rotation. Observe that, in the diagrams below, this changes the complement to Chuck's routing in
dimension 4 ffor paths sarting a the origin only for the path to 0101; he would arrive from 0001, while we would
arive from 0100.

Chuck's routing scheme complemented (i.e, left-most 1 in right-most block) viewed from the origin
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0101 <- 0001 -> 1001 -> 1101

AN

|
0100 <- 0000 -> 1000 -> 1100

Vv \' \'
0110 0010->1010 1110

\' \' \'
0111 0011->1011 1111

Our routing scheme viewed from the origin, same labelling as above

0101 0001 ->1001->1101

N N

| I
0100 <- 0000 -> 1000 -> 1100

\ \' \'
0110 0010->1010 1110

\' \' \'
0111 0011->1011 1111

Clearly, we satisfy property 1. We only flip bits which need to be flipped.
We satisfy the generalization of property 2: each input port has outputs to at most k/2 ports.
Lemma

Given a source and destination, the route taken chooses afirg bit to flip, and then flips bits from left-to-right,
wrapping around as needed.

Proof

Congder the minimal-valued rotation of the exclusve-OR. The route we choose flips the leftmost 1 bit, which
produces alonger run of zeroes at the left end, resulting in anumericaly smdler vaue which is the unique
minima-vaued rotation of the resulting string.

Given that, the generdization is easy: the number of outputs needed from an input port corresponds to the number
of postionsin which the next 1 bit might be located. But the intervening bits must dl be O; if more than haf the
totd bitsin the string were zeroes, then that block of zeroes would be longer than the string of zeroes preceding
the bit we just flipped, contradicting minimality.

Moreover, we get equality only when k is even (obvioudy), and when there are only two bitsto flip, equaly
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spaced (e.g. 1010, or 00010001).

Our routing trividly satisfies property 3: we defined the route by looking a the minimd rotation of the XOR of the
current node and the detination: the origin isirrelevant.

We had to breek tiesin our definition of minimdity and look at rotations, but ties can happen only at the very firg
step, because that step extends the longest run of zeroes in the exclusive-OR by at least one, making it the unique
longest run of zeroes. In fact, using the lemma above, the route is quite trivial to compute a dightly non-oblivious
way: if each input port knows which bit in the origina string it corresponds to, each input port routes a packet to
the cydlicaly-next bit that needs to be flipped. Only the origin node needs to consder rotations.

Property 4 dso holds, when k is prime. Well show in that case that the load is perfectly balanced on every
routing step, if we ignore the messages which have to traverse every edge. Even without primdity, well show
that the aperiodic traversds are perfectly balanced per step, and that the total load for every edgeis baanced.

Thetotd load is balanced, because

1. Thedimension-i input ports on al switches have equd utilization per step, so thetotd utilization of every
dimenson-i input port is the same across dl switches.

o If the path from source sto destination d utilizes input port i on intermediate node n on gep t, then
the path from s XOR m XOR nto d XOR m XOR n utilizesinput port i on intermediate node m on
sept.

2. Inlooking at the set of XORs of node vaues, the total number of 1sin any bit postion is the same.
Therefore, thetotd utilization of al dimenson+i input portsisthe same asthe tota utilization of dl
dimension+j input ports.

Let'slook at item 1 above dightly differently, to introduce some notation and the idea of routing from the origin
and then trandating. Consider any node ID n. If there are m ones in n, then the path from 0"k reechesnin m
seps. Supposethat, a step j, we arrive at some nodei viainput port d. We can use input port d of every switch
a step j by XORing both the source and destination nodes by the X OR between i and the target node.

We next want to show that every direction of every switch isequaly utilized at every step when the XOR of the
source and destination nodesis aperiodic. Thisiseasy: if we sart a node 0k, heading for n, and arrive a node
i viainput port d a step j, we can find a corresponding destination which usesinput port d+1 a step j by rotating
our origind destination one bit leftward. This changes the intermediate node, but the trandation propertiesin the
previous step alow usto shift both source and degtination to restore the intermediate node.

This proof strongly uses the gperiodicity of the XOR: if the XOR were periodic, then rotating leftward by one
might cause the first output port to legp rightward by the period. Congder, for example, the antipoda traversal:
the XORis111...11 (i.e, 1*K) and s0 in any rotation the first step to be taken would be in direction k (i.e., the
left-mogt bit).

Fortunately, for primek, there are only two periodic XORs. 0"k and 1°k. 0"k uses no edges, so it doesn't
affect thebdance. 17k gives usafamily of paths of length k which never use the same switch at the sametime,
s0 they use 1 edge in each of the switches a each step (adding a dight imbalance on a per-step basis) and they
use every edgein every switch exactly once (leading to total balance).

Given the limited number of periodic paths, it's possible that a dightly more sophisticated way to bresk ties would
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alow usto prove per-step near balance in composite dimension, but well leave that for the sequdl.
We findly turn our atention to property 5, the resilience of the network to single-switch falure.

Firg, asawarm-up, let's show that our celling((k-1) / 2) edges per input port isoptimal. To do this, congder al
of the paths of length 2. Each of them can be routed in only two ways, and contributes one edge from an input
port to an output port. Every switch istheorigin of k * (k-1) / 2 length-2 paths. Therefore an average switch
hask * (k-1) / 2 edges from inputs to outputs, and SO some switch has at least that many. That switch hask
inputs, so the average input has at least (k-1) / 2 outputs. Since the number of outputs must be an integer, some
input has celling((k-1) / 2) edges.

Now, suppose we color the switches red and black based on their total parity. A length-2 path starting from a
red node uses an edge in a black switch to arrive & ared node. Now, every red switchistheorigin of k* (k-1)
/ 2 length-2 paths, which induce the same number of edgesin black switches. If ablack switch fails, we have

2%1 red nodes producing paths, but only 21-1 black switches. The average black switch therefore has 261 * k
* (k-1) / (2* (2%1-1)) edges. It hask input ports, so the average input port in ablack switch has 2€2* (k-1) /
(251 1) edges, i.e. (k-1)/2) * 2K1/(2%1-1). Since the second term is strictly grester than 1 for k > 1, this
product is gtrictly greater than (k-1)/2.

For odd k, therefore, some input port must exceed celling((k-1)/2) outputs. For even k, we cannot show this: for
k=4, for example, the average rises from 3/2 to 12/7, which is il lessthan 2. This Smple counting argument is
insufficient to prove even that some switch must have 8 connections between inputs and outputs in dimension 4,
snce 7 switches with 7 connections each yields more connections than 8 switches each with 6 connections. We
do not know of an explicit congruction of a satisfying fault-tolerant routing topology, with 7 connections,
however.
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