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In a recent talk at SRC, Chuck Thacker described a routing scheme for a small hypercube network.  In Chuck's
talk, he described a dimension-4 network of processor/switches, with several interesting properties: 

1. All packets are routed via a shortest path. 
We can label nodes with length-d binary strings, where neighboring nodes differ in exactly one bit. 
The shortest distance between two nodes is equal to the number of 1-bits in the exclusive-OR of
the labels.  The bits which differ can be flipped in any order, but only those bits may be flipped, or
else the path-length is increased. 

2. No input port on a switch is connected to more than two output ports. 
In Chuck's routing scheme, each switch has two input ports with exactly one output connection, and
two inputs with two outputs.  As we'll see later, this is optimal.  Note that every input port might
also represent a terminus for the arriving packet. 

3. The routes are oblivious: once a packet arrives at a node, you can determine the next output port from the
current node label, and the destination label.

Although Chuck didn't define it this way, we believe that Chuck's routing can be obtained by
considering the set of bits to be flipped as a binary string, and flipping the rightmost 1 in the leftmost
group of 1's.  The symmetric choice would work equally well 
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4. The utilization of edges is balanced, when routing an all-pairs set of messages 
That is, if every processor sends a message to every other processor, and the messages are routed
as defined in Chuck's scheme, then all of the edges in Chuck's scheme will see (to within one) an
equal number of packets routed over them, and that is true even when looking at utilization per step
(if we imagine all the packets taking one step toward their destinations simultaneously). 

5. An additional property, which we do not fully understand how to mimic in the extensions we'll describe, is
Chuck's assertion that these properties can be preserved even in the presence of a switch failure. 

In a subsequent conversation, Chuck agreed that he did not know how to do this while preserving
all of the previously listed properties.  We will show later that property 1 and 2 cannot both be
maintained in our generalizations of Chuck's network in the presence of a failed switch. 

Chuck's routing scheme viewed from the origin

1010 <- 1000 -> 1001 -> 1011

  
^
|     

0010 <- 0000 -> 0001 -> 0011
|
v

 |
v

   |
v

0110  0100 -> 0101  0111
|
v

 |
v

   |
v

1110  1100 -> 1101  1111

In this note, we explore some generalizations of Chuck's ideas.  In particular, we offer a routing scheme in
arbitrary dimensional hypercubes, prove that Chuck's properties 1, 2, and 3 are preserved in any dimension, and
prove that property 4 holds overall independent of dimensionality, and on a per step basis if the number of
dimensions is prime.  We show that property 5 cannot hold in any odd dimension hypercube routing for which
properties 1 and 2 both hold. 

To define a routing for a k-dimensional hypercube, consider a packet at node s with destination node d, where s
and d are represented as k-bit strings.  s XOR d is a string in which the bits set to 1 represent the dimensions we
must still change.  Consider the rotations of s XOR d.  There will be some numerically (or lexicographically;
they're the same here, since all the strings have length k) least value which results.  If k is prime, there will be
exactly one rotation which is least, except for the all-0 and all-1 strings.  If k is composite, there may be a
rotation by a divisor of k which preserves the value of the string.  In any case, take the shortest leftward rotation
which produces that minimum value (it doesn't really matter which rotation you take, but you have to choose
some way to break the symmetry).  Flip the 1 which, when rotated, corresponds to the leftmost 1 in the chosen
minimal rotation.    Observe that, in the diagrams below, this changes the complement to Chuck's routing in
dimension 4 ffor paths starting at the origin only for the path to 0101; he would arrive from 0001, while we would
arive from 0100.

Chuck's routing scheme complemented (i.e., left-most 1 in right-most block) viewed from the origin
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0101 <- 0001 -> 1001 -> 1101

  ^
|

    

0100 <- 0000 -> 1000 -> 1100
|
v

 |
v

   |
v

0110  0010 -> 1010  1110
|
v

 |
v

   |
v

0111  0011 -> 1011  1111

Our routing scheme viewed from the origin, same labelling as above

0101  0001 -> 1001 -> 1101
^
|

 ^
|

    

0100 <- 0000 -> 1000 -> 1100
|
v

 |
v

   |
v

0110  0010 -> 1010  1110
|
v

 |
v

   |
v

0111  0011 -> 1011  1111

Clearly, we satisfy property 1.  We only flip bits which need to be flipped.   

We satisfy the generalization of property 2: each input port has outputs to at most k/2 ports.  

Lemma

Given a source and destination, the route taken chooses a first bit to flip, and then flips bits from left-to-right,
wrapping around as needed. 

Proof

Consider the minimal-valued rotation of the exclusive-OR.  The route we choose flips the leftmost 1 bit, which
produces a longer run of zeroes at the left end, resulting in a numerically smaller value which is the unique
minimal-valued rotation of the resulting string.  

Given that, the generalization is easy: the number of outputs needed from an input port corresponds to the number
of positions in which the next 1 bit might be located.  But the intervening bits must all be 0; if more than half the
total bits in the string were zeroes, then that block of zeroes would be longer than the string of zeroes preceding
the bit we just flipped, contradicting minimality.   

Moreover, we get equality only when k is even (obviously), and when there are only two bits to flip, equally
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spaced (e.g. 1010, or 00010001).   

Our routing trivially satisfies property 3: we defined the route by looking at the minimal rotation of the XOR of the
current node and the destination: the origin is irrelevant.  

We had to break ties in our definition of minimality and look at rotations, but ties can happen only at the very first
step, because that step extends the longest run of zeroes in the exclusive-OR by at least one, making it the unique
longest run of zeroes. In fact, using the lemma above, the route is quite trivial to compute a slightly non-oblivious
way: if each input port knows which bit in the original string it corresponds to, each input port routes a packet to
the cyclically-next bit that needs to be flipped. Only the origin node needs to consider rotations.

Property 4 also holds, when k is prime.  We'll show in that case that the load is perfectly balanced on every
routing step, if we ignore the messages which have to traverse every edge.  Even without primality, we'll show
that the aperiodic traversals are perfectly balanced per step, and that the total load for every edge is balanced.  

The total load is balanced, because

1. The dimension-i input ports on all switches have equal utilization per step, so the total utilization of every
dimension-i input port is the same across all switches.

If the path from source s to destination d utilizes input port i on intermediate node n on step t, then
the path from s XOR m XOR n to d XOR m XOR n utilizes input port i on intermediate node m on
step t. 

2. In looking at the set of XORs of node values, the total number of 1s in any bit position is the same.
Therefore, the total utilization of all dimension-i input ports is the same as the total utilization of all
dimension-j input ports. 

Let's look at item 1 above slightly differently, to introduce some notation and the idea of routing from the origin
and then translating. Consider any node ID n.  If there are m ones in n, then the path from 0^k reaches n in m
steps.  Suppose that, at step j, we arrive at some node i via input port d. We can use input port d of every switch
at step j by XORing both the source and destination nodes by the XOR between i and the target node.

We next want to show that every direction of every switch is equally utilized at every step when the XOR of the
source and destination nodes is aperiodic.  This is easy: if we start at node 0^k, heading for n, and arrive at node
i via input port d at step j, we can find a corresponding destination which uses input port d+1 at step j by rotating
our original destination one bit leftward.  This changes the intermediate node, but the translation properties in the
previous step allow us to shift both source and destination to restore the intermediate node.   

This proof strongly uses the aperiodicity of the XOR: if the XOR were periodic, then rotating leftward by one
might cause the first output port to leap rightward by the period.  Consider, for example, the antipodal traversal:
the XOR is 111...11 (i.e., 1^k) and so in any rotation the first step to be taken would be in direction k (i.e., the
left-most bit).   

Fortunately, for prime k, there are only two periodic XORs: 0^k and 1^k.  0^k uses no edges, so it doesn't
affect the balance.  1^k gives us a family of paths of length k which never use the same switch at the same time,
so they use 1 edge in each of the switches at each step (adding a slight imbalance on a per-step basis) and they
use every edge in every switch exactly once (leading to total balance).   

Given the limited number of periodic paths, it's possible that a slightly more sophisticated way to break ties would
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allow us to prove per-step near balance in composite dimension, but we'll leave that for the sequel.   

We finally turn our attention to property 5, the resilience of the network to single-switch failure.   

First, as a warm-up, let's show that our ceiling((k-1) / 2) edges per input port is optimal.  To do this, consider all
of the paths of length 2.  Each of them can be routed in only two ways, and contributes one edge from an input
port to an output port.  Every switch is the origin of k * (k-1) / 2 length-2 paths.  Therefore an average switch
has k * (k-1) / 2 edges from inputs to outputs, and so some switch has at least that many.  That switch has k
inputs, so the average input has at least (k-1) / 2 outputs.  Since the number of outputs must be an integer, some
input has ceiling((k-1) / 2) edges.   

Now, suppose we color the switches red and black based on their total parity.  A length-2 path starting from a
red node uses an edge in a black switch to arrive at a red node.  Now, every red switch is the origin of  k * (k-1)
/ 2 length-2 paths, which induce the same number of edges in black switches.  If a black switch fails, we have

2k-1 red nodes producing paths, but only 2k-1-1 black switches.  The average black switch therefore has 2k-1 * k
* (k-1) / (2 * (2k-1 -1)) edges.  It has k input ports, so the average input port in a black switch has 2k-2 * (k-1) /
(2k-1 - 1) edges, i.e. ((k-1)/2) * 2k-1/(2k-1-1).  Since the second term is strictly greater than 1 for k > 1, this
product is strictly greater than (k-1)/2.  

For odd k, therefore, some input port must exceed ceiling((k-1)/2) outputs.  For even k, we cannot show this: for
k=4, for example, the average rises from 3/2 to 12/7, which is still less than 2.  This simple counting argument is
insufficient to prove even that some switch must have 8 connections between inputs and outputs in dimension 4,
since 7 switches with 7 connections each yields more connections than 8 switches each with 6 connections.  We
do not know of an explicit construction of a satisfying fault-tolerant routing topology, with 7 connections,
however.
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